LOISIRS magazine

MENSUEL DE L'ÉLECTRONIQUE POUR TOUS

1°7

ECTRONIQUE PAR LA PRATIQUE

C€0681X

Hi-Tech: Télécommande pilotée par GSM

Nouveauté : RX UHF 433 MHz à c.i. MICREL

http://www.electronique-magazine.com

UN TESTEUR EB.C. POUR TRANSISTORS

Sécurité : Lecteur de carte à sortie RS232C

France 27 F - DOM 35 F EU 5,5 € - Canada 4,95 \$C

GM 981N PAL - SECAM, NTSC (en vidéo)

L/L', B/G, I, D/K/K'
Affichage numérique du canal et de la fréquence

Son Nicam Sorties : Vidéo - Y/C - Péritel - HF 11700 F (1783,65 €)

DV 862 225 F (34,30 €)

1991

DM 871 89 F (13,57 €) 200 F (30,49 €)

MOD 52 ou 70 265 F (40,40 €)

TSC 150 67 F (10,21 €)

BS220 59 F (8,99 €)

FRÉQUENCEMÈTRE COMPTEUR

FR 649 très haute sensibilité 2 entrées 0 - 100 MHz 1 entrée 50 MHz - 2,4 GHz 3050 F (464,97 €)

GF 763 avec vobulation interne lin. et log. protégé 1900 F (289,65 €)

Protection sortie 50 Ω en cas de réinjection de tension jusqu'à ± 60V

Protection sortie 1 Ω jusqu'à 5A

Offset indépendant de l'atténuateur

Rapport cyclique 20/80 à 80/20 sans influence sur la fréquence Commandes digitalisées

GF 763 A avec vobulation interne lin. et log. et ampli. 10W protégé 2150 F (327,77 €)

PRIX TTC 1€=6,55957 F

BOÎTES À DÉCADES

DR 04 1 Ω à 11,110 K Ω 750 F (114,34 \in) DR 05 1 Ω à 111,110 K Ω 920 F (140,25 €) DR 06 1 Ω à 1,111 110 M Ω , 1050 F (160,07 €) DR 07 1 Ω à 11,111 110 MΩ 1150 F (175,32 €)

DC 05 100 pF à 11,111µF 1680 F (256,11 €)

DL 07 1µH à 11,111 110 H 1500 F (228,67 €)

1750 F (266,79 €)

GF 960 0,02 Hz - 2 MHz ◇ ◇ □ □ ✓ ★★ avec affichage numérique sortie 30V à vide 3200 F (487,84 €)

59, avenue des Romains - 74000 Annecy Tél. 33 (0)4 50 57 30 46 - Fax 33 (0)4 50 57 45 19

En vente chez votre fournisseur de composants électroniques ou les spécialistes en appareils de mesure

Je souhaite recevoir une documentation sur: Ville......Code postal....

SOMMAIRE

Ci		٠.				
Sh	n	n′	Α	C	ıU	ıa

Toute l'actualité de l'électronique...

Informatique pour électroniciens (6)

Il n'est plus à prouver que l'accès aux données techniques de la plupart des composants est une réalité et que les gains en temps et en argent en sont largement augmentés. On peut tout savoir, sur tout et rapidement! Du côté des constructeurs,

rien de plus commercial que de proposer un support technique accessible gratuitement, 24 h/24, pour promouvoir ses produits. Il en est de même avec les fabricants de logiciels. Dans ce domaine, les fabricants mettent bien souvent à la disposition des Internautes, des versions limitées (ou de démonstration) gratuites de leurs fameux logiciels. Certaines sociétés proposent, quant à elles, des versions shareware (libres essais), voire même des logiciels totalement gratuits. Les électroniciens que nous sommes peuvent largement profiter de cette tendance commerciale pour retirer de ce gigantesque supermarché informatique, des logiciels bien utiles pour s'épanouir dans leurs passions.

Un scanner de réception audio/vidéo pour satellites TV 12

Le scanner dont nous vous proposons ici la description est à la télévision par satellite ce que le mesureur de champ est à la télévision hertzienne. Cet appareil permet la lecture de la fréquence des porteuses audio/vidéo mais il est également équi-

pé d'un moniteur LCD couleur pour la réception des images.

L'appareil, dont nous vous proposons la description dans ces lignes, utilise un microcontrôleur ST62T15 programmé pour déterminer le brochage d'un transistor. Il sait définir quelle broche de n'importe quel transistor est l'émetteur, la base

ou le collecteur. Il indique également s'il s'agit d'un transistor PNP ou NPN. Si le transistor en test est défectueux, l'afficheur le signalera.

Une télécommande pilotée par portable GSM

Le montage proposé dans cet article est né d'une discussion sur le non respect des règles de sécurité par certains locataires de jet-skis. Le système permet de bloquer à distance une machine lorsque le pilote effectue des manœuvres dangereuses. Il

utilise le réseau GSM en se servant d'un simple téléphone portable pour émetteur, tandis que chaque récepteur est constitué par le nouveau module GSM Falcom A2, avec un abonnement prépayé. La commande d'activation ou de désactivation du jet-ski n'entraîne aucune consommation d'unité. Ce système peut trouver d'autres applications dans tous les cas où l'on est confronté à la nécessité d'activer, à une distance importante, un dispositif électrique, électronique ou mécanique.

Un récepteur de télécommande UHF à circuit monolithique Micrel

Voici un récepteur monocanal sur 433 MHz, muni d'un relais de sortie, utilisable avec les télécommandes standards de type MM53200. L'étage de réception est très innovant car il est constitué d'un simple circuit intégré de 14 broches. Extrêmement

précis et sensible, il représente une alternative aux modules hybrides CMS les plus connus. Le récepteur fonctionne en mode monostable ou bistable.

Un lecteur de cartes magnétiques avec sortie RS232C

Le système que nous vous proposons dans cet article est étudié pour fonctionner avec les lecteurs de cartes magnétiques ISO781 grâce à un simple bus à trois fils. Il est possible de connecter plusieurs dispositifs sur une seule entrée série

RS232C. Un commutateur électronique et une ligne de contrôle permettent d'autoriser la communication entre l'ordinateur et la carte en cours d'acquisition des données, en bloquant les autres. La sortie fournit une liaison pour chaque lecture en ajoutant éventuellement une identification de l'unité concernée.

Un émetteur spécial, couplé à une source BF, modulé en fréquence et transmettant dans la bande 150-160 kilohertz, sert à envoyer, sur le secteur 220 volts, une sonorisation que vous pourrez "récupérer" dans n'importe quelle pièce de votre appar-

tement, maison ou entreprise, sur un récepteur FM spécialement conçu pour se syntoniser sur cette gamme de fréquence uniquement.

Microcontrôleurs PIC

Nous allons continuer la description des ressources internes des microcontrôleurs PIC, en nous intéressant aujourd'hui à une ressource à la fois particulière et très utile : la mémoire EEPROM. C'est dans cette mémoire que vous allez pouvoir stoc-

ker des données qui seront protégées contre l'effacement, même lorsque le dispositif ne sera plus alimenté. Une utilisation type de cette zone de mémoire pourrait être le stockage de paramètres de calibrage d'une machine-outil, paramètres qui devraient, évidemment, être disponibles à chaque mise sous tension de ladite machine-outil. Vous pourrez également utiliser cette zone mémoire lorsque vous voudrez effectuer des comptages dont les résultats devront être conservés, même lorsque la machine-outil sera hors tension.

Cours d'électronique en partant de zéro (7)

Au lieu d'alimenter vos circuits électroniques avec des piles qui se déchargent très vite, nous vous suggérons de réaliser une alimentation fournissant des tensions de 5, 6, 9, 12 et 15 volts continus. Dans cette leçon, nous vous expliquerons com-

ment monter cette alimentation capable de fournir 5 tensions continues stabilisées ainsi que 2 tensions, alternatives. Elle vous servira pour alimenter de nombreux circuits électroniques parmi ceux que nous vous présenterons dans la revue.

Etant donné que nous vous avons déjà appris, dans la leçon numéro 5, comment procéder pour obtenir des soudures parfaites, nous pouvons vous assurer qu'une fois le montage de votre alimentation terminé, elle fonctionnera tout de suite correctement. Dans le cas contraire, si vous avez commis une erreur, nous vous aiderons à résoudre votre panne. Si vous soudez de façon soignée tous les composants, vous vous apercevrez que vous pouvez faire fonctionner n'importe quel appareil électronique, même ceux qui, au départ, vous semblaient très complexes. Une fois notre alimentation réalisée, nous aborderons les électro-aimants.

Les Petites Annonces 92

L'index des annonceurs se trouve page

CE NUMÉRO A ÉTÉ ROUTÉ À NOS ABONNÉS LE 22 NOVEMBRE 1999

Shop' Actua

Dans cette rubrique, vous découvrirez, chaque mois, une sélection de nouveautés. Toutes vos informations sont les bienvenues.

Shop' Actua
ELECTRONIQUE magazine
BP29
35890 LAILLÉ

LOGICIELS

Un microcontrôleur 68HC11 virtuel

Il n'est pas nécessaire de posséder un simulateur pour évaluer le programme d'un 68HC11, parce qu'on peut travailler directement sur la

carte cible avec un débogueur, ce qui est le point fort du 68HC11. Mais un établissement scolaire ne peut donner une carte à base du 68HC11 à chaque élève, et les IUT veulent que les étudiants préparent des travaux pratiques chez eux. CONTROLORD a donc créé un simulateur du 68HC11 qui est désormais intégré aux compilateurs Basic11 et CC11, comme dans leur starter kit Controlboy.

Le microcontrôleur virtuel se comporte comme un microcontrôleur réel. Si le débogueur communique avec un microcontrôleur réel par le port série COM, il communique avec le simulateur par un port virtuel. On charge et débogue son programme comme avec un microcontrôleur réel.

Les entrées et sorties du 68HC11 sont directement accessibles. On peut même ouvrir tout délicatement le capot du 68HC11, ce qui est déconseillé pour un microcontrôleur réel! On entre donc dans la microchirurgie.

Pour profiter pleinement d'un microcontrôleur, il faut le placer sur une carte intégrée. L'illustration présentée ici montre l'exemple d'un 68HC11F1 monté sur une carte Controlboy F1 avec un afficheur LCD et un clavier. On peut créer sa propre carte virtuelle et placer le microcontrôleur virtuel là-dessus. Le microcontrôleur virtuel est exposé comme nouveauté au salon EDUCATEC. Une version de démonstration est également disponible sur le site Internet : http://www.controlord.fr.

GRAND PUBLIC

SEGA

fait un tabac

Lors des quatre premiers jours de sa commercialisation en Europe, SEGA a vendu 185 000 exemplaires de la "Dreamcast" atteignant un chiffre d'affaires de 80 millions d'euros. La firme compte atteindre 700 000 exemplaires (toujours pour la seule Europe) d'ici la fin de l'année.

http://www.sega.com ◆

GRAND PUBLIC

Un ordinateur, comme papa! Dès l'âge de 7 ans, un enfant peut apprendre les langues, les mathématiques avec le "Power de Luxe", le tout en s'amusant. Une centaine d'activités ludiques et éducatives sont ainsi permises : 29 dans le domaine des langues, 31 pour la pratique du français, 19 pour les mathéma-

tiques et une dizaine de jeux quiz. Parmi les fonctions du "Power de Luxe" se trouve un traducteur de 8 000 mots, avec la prononciation de plus de 500 d'entre eux... et un vocabulaire total de 40 000 mots dans les 4 langues (français, anglais, allemand et espagnol). Une palette graphique est mise à disposition de l'enfant, afin de stimuler son imagination et sa créativité. L'écran graphique affiche 4 lignes de 36 caractères. Le "Power de Luxe" se pilote à la souris. Pour la commande au Père Noël, il faudra établir un chèque de 599 F. Disponible dans toutes les grandes surfaces et magasins de jouets. http://www.lexibook.com ◆

NOUVEAUTÉS

GRAND PUBLIC

AKG Acoustics

sans fil

Dans la série des casques AKG, voici les K305 et K405, plus particulièrement destinés au grand public. Ces casques fonctionnent avec une liaison UHF 433 MHz (donc sans fil), dont la portée peut atteindre une centaine de mètres, suivant l'environnement. Les écouteurs ont un diamètre de 40 mm, garantissant un signal audio de bonne qualité. L'émetteur, relié à la source audio (ampli Hi-fi, téléviseur, etc.) permet aussi le rechargement de la batterie qui équipe le casque. Ce dernier dispose d'oreillettes

lavables, pour un maximum de confort. L'ensemble dispose d'un circuit squelch, coupant l'audio quand le signal est trop faible (éloignement excessif de l'émetteur). Le récepteur se cale automatiquement sur la fréquence de l'émetteur, ce qui simplifie à l'extrême l'utilisation de ce casque UHF. AKG est réputée pour la qualité de ses casques audio et a su s'adapter, de bonne heure, au marché des casques à liaison UHF, leur adjoignant CAF et silencieux tout en développant un circuit au rapport signal sur bruit très flatteur...

http://www.akg-acoustics.com ◆

GRAND PUBLIC

THOMSON Connaissez-vous

Le marché des lecteurs MPEG3 est. semble-t-il, considérable. Un véritable engouement pour ces fichiers musicaux, téléchargeables sur l'Internet, est à l'origine de cette demande. Ecouter de la musique avec un PC, c'est bien, pouvoir promener ses morceaux favoris dans un "baladeur moderne", c'est mieux! Avec les lecteurs MP3, plus de pièces en mouvement : vous pouvez marcher, courir, danser, sauter, la musique n'en fera pas autant! Lyra lit les fichiers au format MP3 et RealAudio G2. Equipé d'une carte "compact flash", il est livré avec tous les accessoires nécessaires au téléchargement et transfert de fichiers. Parmi ces accessoires figurent même le casque et les piles, afin de pouvoir écouter immédiatement ses premières sélections musicales. La carte 64 Mo permet d'enregistrer jusqu'à 2 heures de musique (ou de fichiers audio en général) en qualité numérique. Son LCD est rétro-éclairé, permettant de voir la liste des artistes et des morceaux de musique. Le logiciel qui contrôle Lyra peut être mis à jour (option payante). http://www.thomson.fr •

INTERNET

CLUB INTERNE

Vers une spectaculaire baisse des prix!

Club Internet fait baisser de façon spectaculaire le coût de l'accès à l'Internet en France. Le "Forfait Transparence" permet de se brancher au net pour 97 F TTC par mois, 20

97 F TTC par mois, 20 heures de connexions étant comprises dans cette offre. Ceci ramène l'heure de connexion à 4,85 F quel que soit le

moment de la journée. Ce forfait est

disponible depuis le 15 octobre.

Par ailleurs, la formule "Sans Abonnement" inclut la connexion à Club Internet, les communications téléphoniques, l'assistance

personnalisée 7 jours sur 7 et tous les services de Club Internet pour 0,22 F TTC/mn. Disponible depuis le début octobre. http://www.club-internet.fr ◆

INTERNET

NATIONAL SEMICONDUCTOR Un outil de

sur Internet

WebSim est un outil de simulation "on line" qui permet aux concepteurs de circuits analogiques de tester le comportement de leur réalisation. Pour ce faire, le développeur choisit ses composants, les assemble en circuit, définit les conditions de test et procède à la simulation. Bien entendu, on peut faire varier les conditions de ces tests. WebSim évolue en permanence, ce qui constitue un gage de performances pour les techniciens utilisateurs du site. Une sacrée avancée puisqu'ils n'auront plus besoin d'acheter un logiciel de simulation : tout ce dont ils ont besoin est un simple navigateur Internet! http://www.national.com

NOUVEAUTÉS

MESURE

SCHOSCOPE SCHOSCOPE

"Personal Scope"

Le "PersonalScope" HPS5 de VELLE-MAN permet à tous ceux qui ne peuvent disposer d'un oscilloscope de labora-

toire de s'offrir les avantages de cet appareil de mesure indispensable. A ne pas confondre avec un simple multimètre graphique, le HPS5 est pour tant proposé au prix d'un multimètre de bonne qualité. Destiné aux techniciens (qui doivent fréquemment intervenir sur le terrain, par exemple, et ne veulent pas s'encombrer d'un appareil lourd et fragile), aux hobbyistes, aux écoles (pour le prix d'un seul oscilloscope, vous pouvez acquérir plusieurs HPS5), l'appareil convient aux mesures de tensions, aux contrôles en audio, en vidéo, à la visualisation de signaux numériques, aux vérifications des installations embarquées à bord des véhicules. Bâti autour d'un processeur RISC cadencé à 20 MHz, sa sensibilité maximale atteint 5 mV par division. L'entrée s'effectue sur un connecteur BNC, l'alimentation étant confiée à 5 piles de type LR6 (rechargeables en option). Son autonomie atteint 20 heures avec des piles alcalines. http://www.velleman.be

INFORMATIQUE

INTEL

Intel vient d'annoncer la sortie de toute une gamme de nouveaux processeurs (15 en tout). Avec

la technologie 0,18 micron, Intel met sur le marché le premier Pentium III destiné aux portables. Par ailleurs, le fabricant annonce la sortie de processeurs tournant à 733 MHz, destinés aux machines de bureau. La technologie 0,18 micron permet, entre autres, une réduction de la consommation d'énergie. Avec eux, grâce également à l'installation d'écrans

15" et la présence de DVD, les portables vont offrir un intérêt supplémentaire aux yeux des utilisateurs qui ne seront pas trop regardants sur le prix, misant avant tout sur la mobilité et les performances. http://www.intel.com ◆

KITS

VELLEMAN

électronique

Amusez-vous! Ce kit n'est pas bien complique a monter... vous pourrez même le confier à vos enfants. N'est-ce pas une décoration originale à l'approche de Noël? A mettre sur votre porte, dans la voiture (ou le camion pour nos amis routiers) grâce à la possibilité de l'alimenter sous 12 V (alimentation normale par pile de 9 V). Ce sapin électronique est formé de 134 LED avec clignotement aléatoire des bougies. L'interrupteur "Marche-Arrêt" évite de devoir débrancher la pile ou la source d'alimentation.

http://www.velleman.be ◆

INFORMATIQUE

sur votre PC?

La TVHD (Télévision à Haute Définition) se cherche toujours, en attendant que les fabricants parviennent à commercialiser des produits accessibles à tous

(par leur prix). Le PC pourrait bien leur damer le pion! En effet, un PC "haut de gamme" (tout au moins selon les normes d'aujourd'hui), c'est-à-dire une machine PIII tournant à 500 MHz, disposant d'une mémoire d'environ 100 Mo, d'une carte graphique compatible TVHD, d'un logiciel capable de décoder du MPEG-2 HD... c'est tout ce qu'il faudrait pour recevoir de belles images. C'est peut-être pour demain car des fabricants se sont lancés dans l'aventure comme Ravisent et Conexant, deux firmes US qui présentent leur savoir-faire au COMDEX en cette fin d'année... ◆

COMPOSANTS

TEXAS INSTRUMENTS

Grâce aux nombreuses applications des techniques DSP (traitement numérique du signal) dont Texas Instruments est passé maître, voici un intéressant circuit destiné à améliorer considérablement les performances des casques, haut-parleurs et autres sources sonores (par exemple les enceintes de PC). TI introduit une interactivité entre le haut-parleur et le circuit sonore, offrant à l'utilisateur un résul-

tat plus réaliste, un son plus clair. Quatre circuits différents ont été développés dans ce but : TUSB3200 (qui travaille en collaboration avec un bus USB), TAS3001 (avec processeur digital 32 bits), TLC320AD81 (processeur audio avec convertisseur numérique analogique intégré) et TLC 320AD77 (codage décodage haute résolution audio).

http://www.ti.com ◆

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél : 04 42 82 96 38 - Fax 04 42 82 96 51 Internet : http://www.comelec.fr

MODULES CAMERA CCD NOIR ET BLANC CAMERAS COULEURS ET ACCESSOIRES

Concues pour le contrôle d'accès et pour la surveillance. Un vaste assortiment de produits à haute qualité d'image. Grande stabilité en température. Capteur CCD 1/3" ou 1/4". Optique de 2,5 à 4 mm. Ouverture angulaire de 28° à 148°. Conformes à la norme CE. Garanties un an.

MODELE AVEC **OBJECTIF STANDARD**

Elément sensible : CCD 1/3"; Système : standard CCIR; Résolution : 380 lignes; Sensibilité: 0,3 lux; Obturateur: autofocus; Optique: 4,3 mm/f1.8; Angle d'ouverture: 78° Sortie vidéo : 1 Vpp / 75 Ω ; Alimentation : 12 V; Consommation: 110 mA; Température de fonctionnement: -10 °C à + 55 °C; Poids: 20 g / dim : 32 x 32 x 27 mm.

FR72 496 F

MODELE AVEC OBJECTIF PIN-HOLE

Elément sensible : CCD 1/3"; Système : standard CCIR; Résolution : 380 lignes; Sensibilité : 2 lux; Obturateur : autofocus; Optique: 3,7 mm/f3,5; Angle d'ouverture: 90°; Sortie vidéo : 1 Vpp / 75 Ω ; Alimentation : 12 V; Consommation: 110 mA; Température de fonctionnement: -10 °C à + 55 °C; Poids: 20 g; Dim: 32 x 32 x 20 mm.

FR72PH 496 F

VERSIONS CCD B/N AVEC OBJECTIFS DIFFERENTS

MODELE AVEC OPTIQUE 2,5 mm - Réf : FR72/2,5 Mêmes caractéristiques que le modèle standard mais avec une ontique de 2.5 mm et un angle d'ouverture de 148°. MODELE AVEC OPTIQUE 2,9 mm - Réf: FR72/2,9 Mêmes caractéristiques que le modèle standard mais avec une optique de 2,9 mm et un angle d'ouverture de 130°. MODELE AVEC OPTIQUE 6 mm - Réf : FR72/26 Mêmes caractéristiques que le modèle standard mais avec une optique de 6 mm et un angle d'ouverture de 53°. MODELE AVEC OPTIQUE 8 mm - Réf : FR72/28 Mêmes caractéristiques que le modèle standard mais avec une optique de 8 mm et un angle d'ouverture de 40°. MODELE AVEC OPTIQUE 12 mm - Réf: FR72/12 Mêmes caractéristiques que le modèle standard mais avec une optique de 12 mm et un angle d'ouverture de 28° Prix unitaire..... 535 F

Recherchons revendeurs Fax: 04 42 82 96 51

MODELE AVEC FIXATION POUR OBJECTIF TYPE C

Mêmes caractéristiques électriques que le modèle standard mais avec des dimensions de 38 x 38 mm. Le module dispose d'une fixation standard pour des objectifs de type C (l'objectif n'est pas compris dans le prix).

FR72/C 479 F

MODELE AVEC LED INFRAROUGES

Mêmes caractéristiques que le modèle standard mais avec des dimensions de 55 x 38 mm. Le module dispose de six LED infrarouges qui permettent d'obtenir une sensibilité de 0.01 lux à une distance d'un mètre environ.

FR72/LED 496 F

MODELES NOIR & BLANC PIN-HOLE F 5.5

BASSE RESOLUTION : Elément sensible : 1/3" B/W CMOS; Système standard CCIR; Résolution: supérieure à **240 lignes TV**; Pixel: 100 k; Sensibilité: 1 lux / F1.4; Obturateur électronique 1/50 à 1/4000; Optique: f5.5; Ouverture angulaire : 90°; Sortie vidéo composite : 1 Vpp / 75 Ω; Alimentation : 12 Vdc; Conso : 50 mA; Poids : 5 g; Dim. : 22x15x16 mm.

HAUTE RESOLUTION : Mêmes caractéristiques que le modèle basse résolution sauf pour la résolution qui est supérieure à 380 lignes TV avec 330 k pixels et la vitesse de l'obturateur électronique de 1/50 à 1/15000.

FR125 565 F

MODELES NOIR & BLANC AVEC OBJECTIF F 3.6

BASSE RESOLUTION: Elément sensible: 1/3" B/W CMOS; Système standard CCIR; Résolution supérieure à 240 lignes TV; Pixel : 100 k; Sensibilité : 1 lux / F1.4; Obturateur électronique 1/50 à 1/4000; Optique : f3,6; Ouverture angulaire : 90°; Sortie vidéo composite: 1 Vpp / 75 Ω; Alimentation: 12 Vdc; Conso.: 50 mA; Poids: 10 g; Dim.: 22x15x31 mm.

HAUTE RESOLUTION : Mêmes caractéristiques que le modèle basse résolution sauf pour la résolution qui est supérieure à 380 lignes TV avec 330 k pixels et la vitesse de l'obturateur électronique de 1/50 à 1/15000

FR125/3,6 565 F

MODELES COULEUR PIN-HOLE F 5.5

HAUTE RESOLUTION COULEUR: Mêmes caractéristiques que le modèle haute résolution noir et blanc sauf pour le système qui est en PAL la sensibilité de 10 lux / (F1.4).

MODELES COULEUR AVEC OBJECTIF F 3.6

HAUTE RESOLUTION **COULEUR**: Mêmes caractéristiques que le modèle haute résolution noir et blanc sauf pour le système qui est en PAL la sensibilité de 10 lux / (F1.4).

FR126/3,6 827 F

EMETTEUR A LED IR POUR CAMÉRA N & B

96 LED infrarouges avec une longueur d'onde de 880 mm. Angle de couverture : 40°. Portée : 18 m. Alimentation: 12 V. 750 mA. Puissance: 14 W. Dimensions: 150 x 85 x 40 mm. Poids: 430 grammes.

MODULE COULEUR

Contrôle de l'image par DSP. Elément sensible : CCD 1/4". Système : standard PAL. Résolution: 380 lignes. Sensibilité: 2 lux pour F1,2. Obturateur : automatique (1/50 à 10 000). Optique : f4.0 F=3.5. Sortie vidéo : 1 Vpp / 75 Ω . Alimentation : 12 Vdc (±10%). Consommation : 250 mA. AGC : sélectionnable ON/OFF. Balance des blancs : automatique. BLC : automatique. Température de fonctionnement : -10 °C à +45 °C. Poids : 40 grammes. Dimensions : 32 x 32 mm.

FR89/PH..... 980 F Version avec objectif pin-hole (f5.0 F=5.5) FR89 980 F

Informatique pour électroniciens

7ème partie : Les gratuits pour électroniciens

Ce mois-ci nous allons, une fois de plus, montrer la puissance d'Internet. Il n'est plus à prouver que l'accès aux données techniques de la plupart des composants est une réalité et que les gains en temps et en argent en sont largement augmentés. On peut tout savoir, sur tout et rapidement! Du côté des constructeurs, rien de plus commercial que de proposer un support technique accessible gratuitement, 24 h/24, pour promouvoir ses produits. Il en est de même avec les fabricants de logiciels. Dans ce domaine, les fabricants mettent bien souvent à la disposition des Internautes, des versions limitées (ou de démonstration) gratuites de leurs fameux logiciels. Parallèlement, ils proposent une vente "on line" par carte bancaire de la version complète. Certaines sociétés proposent, quant à elles, des versions shareware (libres essais), voire même des logiciels totalement gratuits.

Les électroniciens que nous sommes peuvent largement profiter de cette tendance commerciale pour retirer de ce gigantesque supermarché informatique, des logiciels bien utiles pour s'épanouir dans leurs passions.

Cette 7ème partie d'Informatique pour Electroniciens vous propose donc un tour d'horizon de ces logiciels gratuits.

Les traducteurs

Vous voilà en possession de votre documentation fraîchement imprimée. Trente-six pages de caractéristiques et de schémas blocs fort intéressants. Mais une fois de plus, ce roman technique est codé en anglais! Même si vos vieux souvenirs d'école vous permettent de déchiffrer les principales caractéristiques, le fond des explications reste souvent obscur et parfois se prête à des contresens. Pas de problème, Internet est là!

Voyons où trouver des traducteurs Anglais/Français.

Titre	Taille	Adresse de téléchargement	Type de logiciel	Remarques
BABYLON	7,5 Mo	http://www.babylon.com/	Complet	Dictionnaire très complet et convivial. Dispose d'un OCR intégré et permet de traduire les expressions.
Word Translator for Windows	13,5 Mo	http://www.tranexp.com/	Démo	Permet de scanner et de traduire un document. Supporte la traduction d'e-mail et de page web.
Transcend	8 Mo	http://www.translc.com /Download/trialpage.htm	Démo pour 30 jours	Permet de traduire du texte, mais aussi des e-mail et des pages web.
HTML Translator	783 Ko	http://members.aol.com /htmltran/	Complet	Traducteur de page web.
Freelang	249 Ko	http://www.freelang.com/freelang/dictionnaire/index.html	Freeware	Enfin un dictionnaire français ! Merci à M. Beaumont.
Systran	/	http://www.systransoft.com/	On line	Pour du mot à mot et un traducteur de page web. Utilisable "on line".

Tableau 1 : Traducteurs Anglais/Français téléchargeables.

Calcul de filtres analogiques, HF et numériques

En électronique, le filtrage est un domaine fort utilisé dans tout type d'application. Il s'avère donc intéressant de disposer d'outils d'aide à la conception de filtres électroniques.

Oue ce soit en analogique, en HF ou bien en numérique, Internet met à la disposition, des logiciels de calculs bien souvent complets.

ia conception de	· IIII C3 CIC	ctroniques. piets.		and country maps - reporting
Titre	Taille	Adresse de téléchargement	Type de logiciel	Remarques
CALCUL FILTRE ANALOGIQUES				
Filter Solution	2,2 Mo	http://www.kahlereng.com /filter/	Version complète pour 10 jours	Donne la fonction de transfert, tous les graphes et le schéma.
AADE filter design and analysis	2,2 Mo	http://www.aade.com /download.htm	Version complète limitée à 10 utilisations	Calcul de filtre analogique. L'utilisation est très conviviale.
PLL Loop Filter Design	4,3 Mo	http://www.apnpc.com.au/swlib /Applications/Math_Engineering /000SBW.html	Version complète	Pour le calcul des filtres de PLL.
Active Filter Design Coltrane	195 Ko	http://www.sherlab.com/english /filter.htm	Version complète	Pour filtres actifs.
Filter wiz pro	832 Ko	http://www.schematica.com /Fil_Xfer/Transfer.htm	Demo - Ne donne pas les valeurs des résistances	Permet le calcul des filtres actifs à AOP. Très complet. Propose une multitude de schémas.
Box plot	140 Ko	http://www.cedata.nl/ded /free_electronics_software.htm	Shareware	Pour le calcul des dimensions et des filtres pour enceintes acoustiques.
Faisyn21	421 Ko	http://members.aol.com/faisyn/faisyn.htm	Shareware	Calcul de filtre analogique.
Tunnig kit	43,3 Ko	http://members.aol.com/maxfro/index.html	Version complète	Petit programme pour le calcul des filtres HF.
CALCUL POUR FILTRE NUMERIQUE / DSP.				
Scope FIR	477 Ko	http://www.iowegian.com/	Version complète	Permet le calcul des coefficients de filtre FIR.
CMSA Filter Designer	/	http://dolphin.wmin.ac.uk /filter_design.html	On line	Calcul des coefficients pour filtre numérique.
Programmers	/	http://www.programmersheaven .com/zone5/cat195/index.htm	/	Une multitude de codes en assembleur pour la programmation des CI DSP.
/ FFT				
Schematica Software 555 Designer	253 Ko	http://www.schematica.com /Fil_Xfer/Transfer.htm	Version complète	Petit programme qui effectue tous les calculs pour le NE555.
Switchmin	1,6 Mo	http://incolor.inetnebr.com /double/softlib/switchmin.html	Version complète	Réduit puis convertit une expression logique en schéma à base de portes.
Scope DSP	398 Ko	http://www.iowegian.com/	Version complète	Permet de convertir un signal temporel en signal fréquenciel (et vice-versa).
DADISP	1,6 Mo	http://www.dadisp.com /cgi-bin/dmdl.pl	démo	Plutôt orienté mathématique, ce logiciel propose des analyses de Fourrier.

Tableau 2 : Logiciels pour le calcul de filtre électronique.

Vous venez de découvrir

et vous désirez vous procurer les numéros 2 à 6

le N°1 est ÉPUISÉ... mais disponible sur CD-ROM

NOUVEAU

Les 6 premiers numéros en intégralité sur un CD-ROM

136F le CD-ROM port compris

adressez votre commande à :

JMJ/ELECTRONIQUE - B.P. 29 - 35890 LAILLÉ avec un règlement par Chèque à l'ordre de JMJ ou au Tél.: 02 99 42 52 73 - Fax: 02 99 42 52 88 avec un règlement par Carte bancaire.

INFORMATIQUE

Les logiciels de CAO

Ça y est, après lecture de vos documentations et le calcul de vos filtres, vous êtes enfin prêts à concevoir votre circuit imprimé pour valider votre prototype. Pour cela, la première étape consiste à dessiner le schéma structurel. Ces utilitaires sont généralement intégrés dans le logiciel permettant de dessiner le circuit imprimé (routeur).

La deuxième étape (qui est facultative) est la simulation de votre système. Pour finir, il ne vous reste plus qu'à "router" (dessiner) votre circuit et à imprimer le typon final.

Le tableau 3 propose quelques logiciels de saisie de schéma, de simulation, de routage ainsi que de visualisation de fichiers Gerber.

Titre	Taille	Adresse de téléchargement	Type de logiciel	Remarques
Eagle	4,2 Mo	http://www.cadsoft.de	Version limitée mais utilisable.	Saisie de schéma et routeur, à recommander Très complet, sont utilisation est relativemer simple.
Protel 99	60 Mo	http://www.protel.com	Complet pour 30 jours	Il vaut mieux commander le CD! Toutefois ur des meilleurs logiciel de conception de circuit imprimé.
SMASH	11 Mo	http://www.dolphin.fr/	Kit d'évaluation	Un simulateur superpuissant
Winschema 98 et Wincircuit 98	601 Ko 550 Ko	http://www.kagi.com /alain.michel/francais.htm	démo, pas d'impression possible	2 logiciels : schéma et routeur.
Viewlogic	2 Mo	http://www.ee.ualberta.ca /~charro/cookbook/softw/ibm/	Démo	Attention, il faut télécharger les 2 fichiers.
CircuitMaker PRO et TraxMaker 3 PRO	4,5 Mo	http://www.microcode.com /DEMOS.HTM	Version démo pour 45 jours	Saisie de schéma, simulateur et routeur.
Simetrix	4 Mo	http://www.newburytech.co.uk /Pages/download.html	Version complète	Saisie de schéma et simulateur.
MMIC	9 Mo	http://www.optotek.com /software.htm	Démo	Schéma et simulation. Le meilleur pour la HF et les micro-ondes.
Wiring diagram 2000	50 Ko	http://www.Geocities.Com /SiliconValley/Park/5228	Complète	Petit logiciel pour la saisie de schéma.
Pspice	3 Mo	http://www.engr.unl.edu/ee /eeshop/cad.html	shareware	Le simulateur le plus connu au monde.
WinLAP download	249 Ko	http://www.schematica.com /Fil_Xfer/Transfer.htm	complet	Petit simulateur.
APLAC	4,1 Mo	http://www.aplac.com/	Démo	Simulateur de circuits non linéaires.
Utilitaire Gerber				
CAMCAD	3 Мо	http://www.rsi-inc.com /cgi-bin/demo/getinfo.pl	Démo	Pour visualisr vos fichiers Gerber.
GC-prevue	3 Mo	http://www.graphicode.com/	complet	Pour visualisr vos fichiers Gerber.
GerbTool 32 bit	5.4 Mo	http://www.ivex.com/	Démo	Pour visualisr vos fichiers Gerber.

Tableau 3 : Tout pour la saisie de schéma, la simulation, le routage et les utilitaires Gerber.

Assembleur et système de développement pour microcontrôleurs

Voilà, vous y êtes, vous avez sorti votre circuit imprimé du bain de perchlorure de fer et vous venez de finir de souder votre dernier condensateur chimique. Il ne vous reste plus qu'à programmer votre microcontrôleur dont le support reste, pour le moment, désespérément vide.

Une fois de plus, cette tâche pourra être réalisée par un logiciel téléchargé sur le web. En voici quelques exemples classés par famille.

Titre	Taille	Adresse de téléchargement	Type de logiciel	Remarques
Pic MPLAB	10 Mo	http://www.microchip.com/10/ Tools/PICmicro/DevEnv/MPLABi /Software/V41212/index.htm	Complet	Le système de développement de Microchip.
Scenix SASM SX12_dis	100 Ko 43 Ko	http://www.scenix.com/tools /index.html	Complet	Assembleur et désassembleur pour microcontrôleur Scenix.
Motorola	/	http://www.mcu.motsps.com /download/index.html	Complet	Vous trouverez à cette adresse une multitude de systèmes de développement pour micros Motorola.
STXX	/	http://eu.st.com/stonline /microcontrollers/index.htm	Complet	Vous trouverez à cette adresse tous les outils pour la programmation des micros de la famille STXX.
Xasm220	161 Ko	http://ftp.iis.com.br/pub /simtelnet/msdos/crossasm/	Complet	Assembleur pour: 6800 - 6801 / 6802 - 6502 - 6805 - 68HC08 - 6809 - 68HC11 - 68HC16 - 8051 / 8052 - 803x / 873x / 875x - 8085 - 8080 - Z80 - 8086 - 8096.

Tableau 4 : Assembleur / système de développement.

INFORMATIQUE

Gestion des ports de communication pour PC

Bien que votre prototype semble fonctionner correctement, vous n'avez toujours pas testé le transfert des données, recueillies par

votre capteur, vers l'ordinateur. Pour ce faire, deux solutions s'offrent à vous : utiliser un programme de type "Terminal" pouvant visualiser à l'écran les données reçues sur les liaisons séries de votre ordi-

discussion personnalisée et automatique avec votre carte.

La première solution, qui reste la plus facile à mettre en œuvre, mais qui se révèle la plus limitée est réalisable par des logiciels référencés à titre d'exemple dans le tableau 5.

Titre	Taille	Adresse de téléchargement	Type de logiciel	Remarques
PC Anywhere	16,5 Mo	http://shop.symantec.com /trialware/subsites/fr/index.html	Complet 30 jours	Très performant.
Hyperterminal	860 Ko	http://www.hilgraeve.com/htpe/downloadsites.html	complet	Pour ceux qui ne l'auraient pas !
Look RS232 PRO	1 Mo	http://www.fcoder.com /shareware.htm	complet	Simple mais efficace.
Freecomm	871 Ko	http://hotfiles.zdnet.com /cgibin/texis/swlib/hotfiles /info.html?fcode=0000JV	complet	Fonctionne sous DOS.

Tableau 5 : Logiciel de communication RS232.

La deuxième solution apparaît beaucoup plus personnalisée : menus adaptés à l'application, envoi d'ordres, RAZ ou configuration de votre carte, mais aussi représentation graphique des résultats, statistiques et stockages des données sur disque dur. Elle pourra être mise en œuvre par l'un des programmes du tableau 6.

Titre	Taille	Adresse de téléchargement	Type de logiciel	Remarques
QBASIC	300 Ko	http://members.aol.com /qscott12/qbasicd.html	Complet	Langage de programmation QBASIC.
Free PASCAL	2 Mo	http://www.arava.co.il/~uri/fp /download.html	Complet	Langage de programmation PASCAL.

Tableau 6 : Logiciel pour la programmation des PC.

Saisie de plan et sérigraphie pour la mise en boîte

Maintenant que votre prototype fonctionne à merveille, votre caractère perfectionniste n'admet pas que vous laissiez cette carte, coiffée de tous ses fils multicolores, aussi peu présentable. Vous décidez de l'habiller de votre plus belle boîte (évitez celles pour les chaussures, elles ne sont pas assez rigides!). Les logiciels suivants vous aideront à dessiner des plans mécaniques pour le perçage et l'usinage. Vous pourrez aussi les utiliser pour créer vos sérigraphies pour les différents marquages frontaux (l'utilisation de feuilles autocollantes A4 passées à l'imprimante semble être un compromis intéressant).

Titre	Taille	Adresse de téléchargement	Type de logiciel	Remarques
SmartDraw	1,8 Mo	http://www.smartdraw.com /freecopy.htm	Freeware - Entièrement fonctionnel pour 30 jours	Primé par tous les bancs d'essais. A utiliser sans modération !
Mayura draw	340 Ko	http://www.mayura.com/	Démo	
TS CAD/Draw	8 Mo	http://download.cnet.com /downloads /0-10074-101-874175.html	complet	

Tableau 7 : Tout pour la saisie de plan et pour la sérigraphie.

Il ne va pas sans dire que la liste d'adresses fournie dans cet article est loin d'être exhaustive. Vous pourrez toujours la compléter en utilisant des moteurs de recherche (voir article précédent). De plus, Internet étant en perpétuel mouvement et évolution, certaines adresses peuvent se révéler être "vides" ou modifiées de leur contenu.

Une recherche par le nom du programme devrait vous permettre de la retrouver.

Le mois prochain

Nous commencerons une série d'articles visant à expliquer les différentes

étapes de réalisation d'un petit prototype.

Pour illustrer ce cheminement, nous utiliserons des logiciels "gratuits" vus dans cet article, en expliquant leurs fonctionnements par le détail.

Un scanner de réception audio/vidéo

pour satellites TV

Le scanner dont nous vous proposons ici la description est à la télévision par satellite ce que le mesureur de champ est à la télévision hertzienne.

Cet appareil permet la lecture de la fréquence des porteuses audio/vidéo mais il est également équipé d'un moniteur LCD couleur pour la réception des images.

TETTERNA n installateur d'antenne, qu'il soit professionnel ou particulier, devant TV SAT Scanner

Figure 1 : Sur la face avant du scanner, nous trouvons un afficheur LCD sur lequel nous pouvons lire la fréquence audio ou vidéo et un moniteur LCD couleur qui permet de voir les images reçues.

mesureur de champ adé-

positionner

satellite TV, peut évidem-

ment y parvenir en s'aidant

seulement d'une boussole

et d'un inclinomètre à défaut de disposer d'un

parabole sur un

quat. Dans ces conditions, il ne saura pas à coup sûr si la parabole est bien orientée vers le bon satel-

lite ni si elle est centrée de façon parfaite.

Pour s'en assurer, il devra descendre du toit ou de son échelle, aller voir sur le téléviseur quels émetteurs il reçoit et, s'il s'aperçoit qu'il a dirigé la parabole vers un satellite adjacent, il devra monter de nouveau sur le toit ou sur son échelle et déplacer légèrement la parabole. Il devra répéter ce petit manège plusieurs fois, jusqu'à l'obtention d'un résultat acceptable. Sauf coup de chance extraordinaire, le résultat en question ne sera jamais parfait.

Si cet installateur disposait d'un mesureur de champs économique pour satellite TV, il pourrait rechercher rapidement

lite et verrait immédiatement, tout en restant sur le toit ou sur son échelle si la parabole est orientée de façon parfaite.

la position d'un

quelconque satel-

Le projet que nous vous présentons ici cherche à répondre à cette attente. Il dispose d'un afficheur LCD qui sert pour lire la fréquence de la porteuse

vidéo, celle de la porteuse audio et l'état de charge de la batterie. Par ailleurs, un moniteur LCD couleur sert à visualiser les images transmises par les émetteurs captés.

Rôles des commandes

Sur le panneau frontal de cet instrument nous ne trouvons que quatre boutons poussoirs et trois inverseurs, ce qui rend son utilisation très simple.

En fait, un inverseur sert pour la mise en service (S1), un second pour le scanner (S2), un autre pour lire la fréquence

des porteuses vidéo et audio (S3), deux poussoirs pour l'accord (P1-P2), un poussoir pour commuter la polarisation horizontale et verticale (P3), et un poussoir pour envoyer aux LNB bibande une fréquence de 22 kHz pour passer de la bande des 11 GHz à celle des 12 GHz (P4).

En déplaçant le levier de l'inverseur S2 en position OFF vous pourrez utiliser l'appareil comme un simple récepteur TV et, pour vous syntoniser sur la fréquence que vous désirez recevoir, vous devrez seulement appuyer sur les poussoirs P1 et P2. La fréquence d'accord est visualisée directement sur l'afficheur LCD.

En déplaçant le levier de l'inverseur S2 en position ON, l'appareil commute sur le mode scanner.

En appuyant simultanément les poussoirs P1 et P2, vous explorerez auto-

matiquement toute la bande 11 - 12 GHz et vous verrez, sur le moniteur LCD, les images transmises par les émetteurs que vous capterez.

Vous noterez immédiatement que, à la différence des mesureurs de champ pour la TV hertzienne, sur cet appareil il n'existe aucun instrument indiquant la valeur en dBµV (décibels/microvolts) du signal reçu. La raison de cette absence s'explique facilement.

Dans le cas de la TV hertzienne, il est indispensable de disposer d'un galvanomètre pouvant indiquer l'amplitude en dBµV du signal reçu. En effet, chaque émetteur, outre transmettre avec une puissance dont la valeur lui est propre, peut se trouver à une distance variable, à 50 comme à 200 km, du point de réception. Le résultat de la mesure de ce signal est donc indispensable pour définir le type d'antenne directive à utiliser, son orientation exacte et le niveau de l'éventuelle amplification à lui appliquer.

Dans le cas de la TV par satellite, ces problèmes n'existent pas. Le satellite, situé dans l'espace sur une position fixe, envoie vers la terre un signal ne devant pas être amplifié. Sur la parabole est fixé un LNB (Low Noise Bloc, tête faible bruit) qui permet déjà une amplification maximale et à la conversion de ce signal sur une fréquence comprise entre 1 et 1,7 GHz environ. Pour augmenter l'amplitude du signal, il faut augmenter le diamètre de la parabole. Mais, dans nos régions, les paraboles de 60 à 80 cm sont largement suffisantes pour assurer une réception parfaite.

En cas de signal faible, plutôt que de vouloir augmenter le diamètre de la parabole, il suffit souvent de chercher à l'orienter avec une bonne précision vers le satellite que l'on désire recevoir.

Pour déterminer si la parabole est parfaitement orientée vers le satellite, un moniteur est pratiquement indispensable, sauf quant à réaliser des bricolages abracadabrants et souvent dangereux lorsqu'ils sont utilisés sur une échelle! Si vous vous trouvez décalé. même de quelques millimètres seulement, par rapport au point requis, vous verrez des images pleines de bruit (voir figure 26). Dans ce cas, le moniteur du scanner vous sera de la plus grande utilité. En surveillant l'image, vous devrez déplacer légèrement la parabole vers la gauche ou vers la droite et/ou vers le haut ou vers le bas, jusqu'au

Figure 2 : Les connexions des 10 broches qui sortent du tuner Sharp. Les deux broches marquées "masse" sont directement reliées au blindage du tuner.

Figure 3 : Les signaux audio et vidéo présents sur les prises de sortie, peuvent êtres appliqués sur un téléviseur couleur équipé d'une prise péritélévision.

Figure 4: Le signal audio est appliqué sur la broche 6 et le signal vidéo sur la broche 20 de la prise péritélévision mâle. Aux broches 4 et 17, est reliée la tresse de blindage des deux câbles audio et vidéo.

moment où les images apparaîtront exemptes de bruit. Il peut arriver également de devoir bouger très légèrement le LNB vers la gauche ou vers la droite.

Le tuner Sharp

Dans ce projet nous avons utilisé un tuner (syntoniseur) Sharp pour satellite TV.

Figure 5 : La dimension utile de l'écran du moniteur LCD est de 80 x 65 millimètres. La définition d'un moniteur LCD ne peut pas être comparée à celle d'un téléviseur couleur. Néanmoins, cette solution est plus que suffisante pour effectuer les réglages d'une parabole dans des conditions optimales.

Figure 6 : Photo l'arrière du moniteur LCD. C'est du petit connecteur situé sur la droite que sortent les fils permettant l'alimentation et la sortie des signaux audio et vidéo (voir figure 22).

Sur la figure 2 nous représentons les connexions de ses broches et en voici la description :

Broche 1 – Alimentation LNB – Sur cette broche est appliquée la tension qui doit rejoindre, à travers le câble coaxial, le LNB installé sur la parabole. Si nous appliquons une tension de 18 volts sur cette entrée nous recevrons tous les émetteurs qui transmettent en polarisation horizontale.

En appliquant une tension de 13 volts nous recevrons tous les émetteurs qui transmettent en polarisation verticale. Si nous ajoutons un signal carré de 22 kHz à ces deux tensions et que nous disposons d'un LNB bibande, ce dernier commutera automatiquement sur la bande des 12 GHz.

Broche 4 – +12 V – Sur cette broche est appliquée une tension de 12 volts qui servira pour alimenter tous les étages présents dans le tuner.

Broche 7 – Sortie prédiviseur – De cette broche sort la fréquence de l'étage oscillateur local divisée par 128 par un prédiviseur interne. Nous attirons votre attention sur le fait que l'étage oscillateur local, oscille sur une fréquence de 479,5 MHz plus élevée que la fréquence à recevoir.

Ainsi, si nous nous syntonisons sur la fréquence de 950 MHz, l'étage oscillateur génère une fréquence de :

950 + 479,5 = 1 429,5 MHz

Si nous nous syntonisons sur une fréquence de 1 750 MHz, l'étage oscillateur génère une fréquence de :

1750 + 479,5 = 2229,5 MHz

Etant donné que le diviseur interne divise cette fréquence par 128, de cette broche sortira une fréquence variant de :

1 429,5 : 128 = 11,16 MHz

2229,5: 128 = 17,41 MHz

Broche 9 – Tension de syntonisation – Sur cette broche, il faut injecter une tension qui, d'un minimum de 0,6 volt, atteigne un maximum de 15 volts pour pouvoir syntoniser le groupe de 950 à 1750 MHz.

Broche 10 – +5 V – Sur cette broche, il faut injecter une tension de 5 volts nécessaire pour alimenter le prédiviseur par 128.

Broche 11 – Tension de CAG – (AGC en anglais = CAG = commande automatique de gain). Cette broche est utilisée pour signaler la présence d'un signal TV et pour bloquer automatiquement la fonction scanner par l'in-

termédiaire du microcontrôleur IC8 lorsqu'un tel signal est détecté.

Broche 14 – Sortie audio/vidéo – De cette broche sortent le signal vidéo et les porteuses audio.

Broche 15 – Tension de CAF – (AFC en anglais = CAF = commande automatique de fréquence). Cette broche n'est pas utilisée dans notre application.

Description du schéma électrique

Commençons la description du schéma électrique, donné en figure 7, en partant de la broche 14 du tuner Sharp, d'où sortent le signal vidéo et les porteuses audio modulées en FM.

Le signal vidéo, avant d'être appliqué sur deux transistors amplificateurs, TR4 et TR5, est égalisé par une cellule de désaccentuation composée de la résistance R26 et du condensateur C24. Cette cellule permet de nettoyer les fronts montant des signaux de synchronisation et de burst qui passent ensuite à travers un filtre passe-bas, destiné à éliminer les porteuses audio, composé de C25, JAF2 et C26.

Sur le collecteur du transistor PNP TR5 est présent un signal vidéo amplifié qui est appliqué, à travers le condensateur C29, sur la base du transistor NPN

Liste des composants LX.1415

Note : Les composants avec l'astérisque sont montés sur le circuit imprimé LX.1415/B.

R1		Note : Les com	posams avec	Tasterisque sont montes sur	ie eirean impri	me Ext. 1 1107 B.
R2 : 100 Ω C2 : 100 n polyester C64 : 10 n polyester C65* : 10 n polyester C66* : 10 n polyester L70 n polye	R1	: 10 kΩ	C1	: 1000 µF électrolytique	C62 :	22 pF céramique
R3 18 KΩ						
R4						
RS 1 Ω Ω C5 1 0 π polyester C66* 1 0 n polyester R6 1 kΩ C6 1 n F polyester JAF1 self 47 μH R7 0,1 Ω 1/2 W C7 470 μF electrolytique JAF2 self 10 μH R9 330 Ω C9 1 000 μF electrolytique JAF3 self 10 μH R10 6,8 kΩ C10 1 000 μF electrolytique JAF4 self 10 μH R11 1 kΩ C11 1 000 πP polyester JAF5 self 10 μH R12 1 000 Ω C12 470 μF electrolytique JAF5 self 10 μH R13 1 kΩ C13 1 000 πF polyester JAF7 self 22 μH R14 820 Ω C14 1 00 nF polyester MF1 Pot MF 10,7 MHz (rose) R15 1,5 kΩ C16 470 nF polyester MF2 Pot MF 10,7 MHz (rose) R16 1,5 kΩ C16 470 nF polyester MF2 Pot MF 10,7 MHz (rose) R16 1,7 kΩ C2 C1 100 nF polyester						
R6 1 kΩ C6 1 n F polyester JAF1 self 47 μH R7 1, Ω 1/2 / W C7 470 μF electrolytique JAF2 self 56 μH R8 1 kΩ C8 470 μF electrolytique JAF3 self 10 μH R10 6.8 kΩ C10 1 000 μF electrolytique JAF4 self 10 μH R11 1 kΩ C11 1 00 π polyester JAF6 self 12 μH R12 1 80 Ω C12 470 μF electrolytique JAF6 self 10 μH R13 1 kΩ C13 1 00 nF polyester MF1 JAF6 self 12 μH R14 820 Ω C15 4,7 nF polyester MF1 JAF7 self 22 μH R15 5 60 Ω C15 4,7 nF polyester MF1 Pot MF 10,7 MHz (rose) R16 1,5 kΩ C16 470 nF polyester MF1 Pot MF 10,7 MHz (rose) R17 220 Ω C17 100 nF polyester TC1 Hilte ceranique D.0 L R18 4,7 kΩ C21						
R8						, ,
R8						
R9						self 56 µH
R10					JAF3 :	self 10 µH
R10					JAF4 :	self 10 µH
R12					JAF5 :	self 2,2 µH
R13						
R14						
R16 560Ω C15 $4.7 \text{n} \text{F} \text{polyester}$ MF2 Pot MF 10,7 MHz (vert) R16 : 1,5 kΩ C16 4.70 \text{f} \ \text{polyester} FC1 : filtre céramique 10,7 MHz R18 : 4,7 kΩ C18 100 \text{ n} \ \text{polyester} XTAL Quartz 8 MHz R19 : 47 kΩ C20 100 \text{ n} \ \text{polyester} DV1 Diode varicap BB405B R20 : 4,7 kΩ C20 100 \text{p} \ \text{electrolytique} DS1 Diode Schottky BYT11/800 R21 : 4,7 kΩ C22 10 \text{ n} \ \text{ céramique} DS3 Diode Schottky BYT11/800 R22 : 1 kΩ C22 10 \text{ p \text{ céramique}} DS5 Diode IN4148 R24 : 220 \ \text{ C} C26 33 \text{ p \text{ céramique}} DS5 Diode IN4148 R25 : 1,8 kΩ C25 33 \text{ p \text{ céramique}} DS7 Diode IN4148 R26 820 \ \text{ Q} C26 30 \text{ p \text{ céramique}} DS7 Diode IN4148 R27 1 kΩ C27 10 \t						•
R16						
R17	R15	: 560 Ω		: 4,7 nF polyester	MF2 :	Pot MF 10,7 MHz (vert)
R18					FC1 :	Filtre céramique 10,7 MHz
R19					XTAL :	Quartz 8 MHz
R2O 4,7 kΩ C2O 100 μF electrolytique DS1 Diode 1M4007 R21 4,7 kΩ C21 2,2 μF electrolytique DS2 Diode Schottky BYT11/800 R22 1 kΩ C22 10 nF céramique DS3 Dlode Schottky BYT11/800 R23 1 00 kΩ C24 220 pG récramique DS4 Dlode Schottky BYT11/800 R24 220 Ω C24 220 QF céramique DS5 Dlode 1N4148 R25 1,8 kΩ C25 33 pF céramique DS6 Dlode 1N4148 R26 820 Ω C26 33 pF céramique DS6 Dlode 1N4148 R27 1 kΩ C27 10 µF electrolytique TR1 Transistor NPN BC547 R28 33 kΩ C28 10 µF electrolytique TR1 Transistor NPN BC547 R30 100 Ω C30 100 nF polyester TR2 Transistor NPN BC547 R31 220 Ω C31 10 nF polyester TR4 Transistor NPN BC547 R33 1 kΩ C33 470 µF elect		·			DV1 .	Diada varican PRACER
R21 4,7 kΩ C21 2,2 μF electrolytique DS2 Diode Schottky BYT11/800 R22 1 kΩ C22 10 nF céramique DS3 Diode Schottky BYT11/800 R24 1 20 Ω C24 220 μG ceramique DS5 Diode Schottky BYT11/800 R24 1 20 Ω C24 220 μG ceramique DS5 Diode Schottky BYT11/800 R25 1,8 kΩ C25 33 pF céramique DS6 Diode 1N4148 R26 820 Ω C26 33 pF céramique DS7 Diode 1N4148 R27 1 kΩ C27 10 μF electrolytique DS7 Diode 1N4148 R28 33 kΩ C28 10 μF electrolytique TR1 Transistor NPN BC547 R28 33 kΩ C28 10 μF electrolytique TR2 Transistor NPN BC547 R30 100 Ω C30 100 nF polyester TR3 Transistor NPN BC547 R31 220 Ω C31 100 nF polyester TR4 Transistor NPN BC547 R33 1 kΩ C35 10						
R22 : 1 kΩ C22 : 10 n F céramique DS3 Diode Schottky BYT11/800 R23 : 100 kΩ C23 : 1 n F polyester DS4 Diode Schottky BYT11/800 R24 : 220 Ω C24 : 220 p f céramique DS5 Diode 1N4148 R25 : 1,8 kΩ C25 : 33 p F céramique DS6 Diode 1N4148 R26 : 820 Ω C26 : 33 p F céramique DS7 Diode 1N4148 R27 : 1 kΩ C27 : 10 μ F electrolytique TR1 Transistor NPN BC547 R28 : 33 kΩ C28 : 10 μ F electrolytique TR1 Transistor NPN BC547 R29 : 10 kΩ C29 : 100 n F polyester TR3 Transistor NPN BC547 R31 : 220 Ω C31 : 100 n F polyester TR4 Transistor NPN BC547 R32 : 1,5 kΩ C32 : 470 μ F electrolytique TR5 Transistor NPN BC547 R33 : 1 kΩ C33 : 470 μ F electrolytique TR7 Transistor NPN BC547 R35 :						
R23 100 Ω C23 : 1 nF polyester DS4 Diode Schottiky BYT11/800 R24 : 220 Ω C24 : 220 pF céramique DS5 Diode 1N4148 R25 : 1,8 kΩ C25 : 33 pF céramique DS6 Diode 1N4148 R26 : 820 Ω C26 : 33 pF céramique DS7 Diode 1N4148 R27 : 1 kΩ C27 : 10 µF electrolytique TR1 Transistor NPN BC547 R28 : 33 kΩ C29 : 100 nF polyester TR2 Transistor NPN BC547 R30 : 100 Ω C30 : 100 nF polyester TR3 Transistor NPN BC547 R31 : 220 Ω C31 : 100 nF polyester TR4 Transistor NPN BC547 R32 : 1,5 kΩ C32 : 470 µF electrolytique TR5 Transistor NPN BC547 R33 : 1 kΩ C33 : 470 µF electrolytique TR5 Transistor NPN BC547 R34 : 470 Ω C34 : 1 nF polyester TR7 Transistor NPN BC547 R33 : 1 kΩ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
R24 220 Ω C24 220 ρ céramique DS5 Diode 1N4148 R25 1,8 kΩ C25 33 pF céramique DS6 Diode 1N4148 R26 820 Ω C26 33 pF céramique DS7 Diode 1N4148 R27 1 kΩ C27 10 μF electrolytique TR1 Transistor NPN BC547 R28 33 kΩ C28 10 μF electrolytique TR2 Transistor NPN BC547 R30 100 Ω C30 100 nF polyester TR3 Transistor NPN BC547 R31 220 Ω C31 100 nF polyester TR4 Transistor NPN BC547 R31 220 Ω C31 100 nF polyester TR5 Transistor NPN BC547 R33 1 kΩ C33 470 μF electrolytique TR5 Transistor NPN BC547 R33 1 kΩ C33 470 μF electrolytique TR5 Transistor NPN BC547 R33 1 kΩ C33 10 nF polyester TR7 Transistor NPN BC547 R35 100 kΩ C35 10 nF polyester						
R25 1,8 kΩ C25 : 33 pF céramique DS6 Diode 1N4148 R26 : 820 Ω C26 : 33 pF céramique DS7 Diode 1N.4148 R27 1 kΩ C27 : 10 μF electrolytique TR1 Transistor NPN BC547 R29 : 10 kΩ C28 : 10 μF electrolytique TR1 Transistor NPN BC547 R30 : 100 Ω C30 : 100 nF polyester TR3 Transistor NPN BC547 R31 : 220 Ω C31 : 100 nF polyester TR4 Transistor NPN BC547 R32 : 1,5 kΩ C32 : 470 μF electrolytique TR5 Transistor NPN BC547 R33 : 1 kΩ C33 : 470 μF electrolytique TR6 Transistor NPN BC547 R34 : 470 Ω C34 : 1 nF polyester TR7 Transistor NPN BC547 R35 : 100 kΩ C35 : 10 nF polyester TR7 Transistor NPN BC547 R35 : 100 kΩ C35 : 10 nF polyester FT1 Transistor NPN BC547 R36 : 1 kΩ						
R26 820 Ω C26 33 pF céramique DS7 Diode 1N.4148 R27 1 kΩ C27 10 μF electrolytique TR1 Transistor NPN BC547 R28 33 kΩ C28 10 μF electrolytique TR2 Transistor NPN BC547 R30 100 Ω C30 100 nF polyester TR2 Transistor NPN BC547 R31 220 Ω C31 100 nF polyester TR4 Transistor NPN BC547 R31 220 Ω C31 100 nF polyester TR4 Transistor NPN BC547 R32 1,5 kΩ C32 470 μF electrolytique TR5 Transistor NPN BC547 R33 1 kΩ C33 470 μF electrolytique TR5 Transistor NPN BC547 R34 470 Ω C34 1 nF polyester TR7 Transistor NPN BC547 R35 1 0 kΩ C35 1 0 nF polyester TR7 Transistor NPN BC547 R35 1 0 kΩ C35 1 0 nF polyester TR7 Transistor NPN BC547 R36 1 kΩ C32 4						
R27						
R28 : $33 k\Omega$					DS7 :	Diode 1N.4148
R2910 kΩC29100 nf polyesterTR2Transistor NPN BCS47R30100 ΩC30100 nf polyesterTR3Transistor NPN BC547R31: 220 ΩC31100 nf polyesterTR4Transistor NPN BC547R32: 1,5 kΩC32: 470 µf électrolytiqueTR5Transistor NPN BC557R33: 1 kΩC33: 470 µf électrolytiqueTR6Transistor NPN BC547R34: 470 ΩC34: 1 nf polyesterTR7Transistor NPN BC547R35: 100 kΩC35: 10 nf polyesterTR7Transistor NPN BC547R36: 1 kΩC36: 47 pf céramiqueFT1Transistor FET J310R37: 1 kΩC37: 10 nf polyesterFT2Transistor FET J310R38: 100 kΩ pot. lin.C39: 56 pf céramiqueMFT1Transistor MOS P.321R40: 22 kΩC40: 100 nf polyesterMFT1Transistor MOS P.321R41: 22 kΩC41: 47 pf céramiqueIC1Circuit intégré UC3843R42: 22 kΩC42: 150 pf céramiqueIC2Circuit intégré NE555R43: 56 kΩC43: 33 pf céramiqueIC3Circuit intégré LM317R44: 150 ΩC45: 1 nf polyesterIC5Circuit intégré LM317R44: 150 ΩC45: 1 nf polyesterIC5Circuit intégré LM3089R45: 100 kΩC45: 1 nf polyesterIC6Circuit intégré TDA7052BR46: 1 kΩC46<					TD1 ·	Transistor NPN RC5/17
R301 0 NΔC29100 III polyesterTR3Transistor NPN BCS47R31220 Ω C31100 nF polyesterTR4Transistor NPN BCS47R321,5 k Ω C32470 µF electrolytiqueTR5Transistor NPN BCS47R331 k Ω C33470 µF electrolytiqueTR6Transistor NPN BCS47R34470 Ω C341 nF polyesterTR7Transistor NPN BCS47R351 00 k Ω C3510 nF polyesterTR7Transistor NPN BCS47R361 k Ω C3647 pF céramiqueFT1Transistor FET J310R371 k Ω C3710 nF polyesterFT2Transistor FET J310R381 00 Ω C3810 nF polyesterTransistor MOS P.321R39*10 k Ω pot. lin.C3956 pF céramiqueMFT1Transistor MOS P.321R402 2 k Ω C40100 nF polyesterIC2Circuit intégré UC3843R412 2 k Ω C4147 pF céramiqueIC2Circuit intégré UC3843R422 2 k Ω C42150 pF céramiqueIC2Circuit intégré UC3843R44150 Ω C4456 pF céramiqueIC3Circuit intégré LM317R44150 Ω C451 nF polyesterIC5Circuit intégré LM317R44150 Ω C451 nF polyesterIC5Circuit intégré MB02R451 l Ω C46100 nF polyesterIC5Circuit intégré MB039R461 k Ω C46100 nF céramiqueIC						
R31 : 220Ω C31 : $100 \Pi F$ polyester TR4 : Transistor NPN BC547 R32 : $1,5 k\Omega$ C32 : $470 \mu F$ électrolytique TR5 : Transistor PNP BC557 R33 : $1 k\Omega$ C33 : $470 \mu F$ électrolytique TR6 : Transistor NPN BC547 R34 : 470Ω C34 : $1 n F$ polyester TR7 : Transistor NPN BC547 R35 : $100 k\Omega$ C35 : $10 n F$ polyester R36 : $1 k\Omega$ C36 : $47 p F$ céramique FT1 : Transistor FET J310 R37 : $1 k\Omega$ C37 : $10 n F$ polyester R38 : 100Ω C38 : $10 n F$ polyester R39* : $10 k\Omega$ pot. lin. C39 : $56 p F$ céramique R40 : $22 k\Omega$ C40 : $100 n F$ polyester R41 : $22 k\Omega$ C40 : $100 n F$ polyester R43 : $56 k\Omega$ C42 : $150 p F$ céramique IC2 : Circuit intégré LM317 R44 : 150Ω C44 : $56 p F$ céramique IC3 : Circuit intégré NE602 R45 : $100 k\Omega$ C45 : $1 n F$ polyester IC5 : Circuit intégré LM317 R44 : 150Ω C46 : $100 n F$ polyester IC5 : Circuit intégré LM3189 R46 : $1 k\Omega$ C46 : $100 n F$ polyester IC5 : Circuit intégré LM3089 R46 : $1 k\Omega$ C46 : $100 n F$ polyester IC5 : Circuit intégré LM3089 R46 : $1 k\Omega$ C48 : $100 k\Omega$ C48 : $100 n F$ polyester IC6 : Circuit intégré PM5452 R50 : 330Ω C50 : $10 n F$ céramique IC8 : CPU programmé EP.1415 R53 : $2.7 k\Omega$ C51 : $10 n F$ céramique IC8 : CPU programme EP.1415 R53 : $2.7 k\Omega$ C55 : $470 n F$ polyester IC9 : Circuit intégré MM5452 R55 : $1 k\Omega$ C55 : $470 n F$ polyester IC7 : Circuit intégré MM5452 R55 : $1 k\Omega$ C55 : $470 n F$ polyester S2* : Inverseur S3* : Inverseur S85 : $1 k\Omega$ C55 : $470 n F$ polyester S2* : Inverseur S3* : Inverseur S85 : $1 k\Omega$ C55 : $470 n F$ polyester S2* : Inverseur S3* : Inverseur S86 : $1 M\Omega$ pot. lin. C56 : $100 n F$ polyester S2* : Inverseur S3* : Inverseur S85 : $2.2 k\Omega$ C59 : $100 n F$ polyester S2* : Inverseur S3* : Inverseur S85 : $2.2 k\Omega$ C59 : $100 n F$ polyester CD2 : Moniteur LCD couleur 4"						
R32 : 1,5 kΩ C32 : 470 μF électrolytique TR5 : Transistor PNP BC557 R33 : 1 kΩ C33 : 470 μF électrolytique TR6 : Transistor NPN BC547 R34 : 470 Ω C34 : 1 nf polyester TR7 : Transistor NPN BC547 R35 : 100 kΩ C35 : 10 nf polyester R36 : 1 kΩ C36 : 47 pF céramique FT1 : Transistor NPN BC547 R37 : 1 kΩ C37 : 10 nf polyester R39 : 10 kΩ pot. lin. C39 : 56 pF céramique R40 : 22 kΩ C40 : 100 nf polyester R41 : 22 kΩ C41 : 47 pF céramique IC1 : Circuit intégré MC555 R43 : 56 kΩ C42 : 150 pF céramique IC2 : Circuit intégré LM317 R44 : 150 Ω C44 : 56 pF céramique IC3 : Circuit intégré LM317 R44 : 150 Ω C44 : 56 pF céramique IC4 : Circuit intégré LM317 R44 : 150 Ω C44 : 56 pF céramique IC5 : Circuit intégré ME602 R45 : 100 kΩ C45 : 1 nf polyester IC5 : Circuit intégré TDA7052B R47 : 120 kΩ C47 : 10 nf céramique IC7 : Circuit intégré MC52B R47 : 120 kΩ C48 : 10 nf céramique IC7 : Circuit intégré MM5452 R50 : 330 Ω C50 : 10 nf céramique IC8 : CPU programmé EP.1415 R53 : 2,7 kΩ C53 : 4,7 μf electrolytique R54 : Inverseur R55 : 1 kΩ C55 : 470 nf polyester R55 : 1 kΩ C55 : 470 nf polyester R55 : 1 kΩ C55 : 470 nf polyester R55 : 1 kΩ C55 : 470 nf polyester R57 : 4,7 Ω 1/2 W C57 : 100 nf polyester R59 : 2,2 kΩ C59 : 100 nf polyester R59 : 2,2 kΩ C50 : 100 nf polyester R50 : 100 nf pol						
R32 1,5 kΩ C32 470 μF électrolytique TR6 Transistor NPN BC547 R34 470 Ω C34 1 nF polyester TR7 Transistor NPN BC547 R35 1 100 kΩ C35 1 0 nF polyester TR7 Transistor NPN BC547 R36 1 kΩ C36 47 pF céramique FT1 Transistor FET J310 R38 100 Ω C38 1 0 nF polyester MFT1 Transistor MOS P.321 R40 22 kΩ C40 1 00 nF polyester MFT1 Transistor MOS P.321 R41 22 kΩ C40 1 00 nF polyester MFT1 Transistor MOS P.321 R41 22 kΩ C40 1 00 nF polyester MFT1 Transistor MOS P.321 R41 22 kΩ C40 1 00 nF polyester MFT1 Transistor MOS P.321 R41 22 kΩ C40 1 00 nF polyester IC1 Circuit intégré UC3843 R42 22 kΩ C42 1 50 pF céramique IC2 Circuit intégré ME555 R43 56 kΩ C43	R31	: 220 Ω		: 100 nF polyester		
R34 470 Ω C33 4 4 0 μr electrolytique TR7 Transistor NPN BC547 R35 100 kΩ C35 10 nF polyester FT2 Transistor FET J310 R36 1 kΩ C36 47 pF céramique FT2 Transistor FET J310 R38 10 Ω Ω C38 10 nF polyester FT2 Transistor MOS P.321 R39* 10 kΩ pot. lin. C39 56 pF céramique MFT1 Transistor MOS P.321 ou MTP3055 R40 22 kΩ C40 100 nF polyester MFT1 Transistor MOS P.321 ou MTP3055 R41 22 kΩ C41 47 pF céramique IC1 Circuit intégré UC3843 R42 22 kΩ C41 47 pF céramique IC2 Circuit intégré VE555 R43 56 kΩ C43 33 pF céramique IC3 Circuit intégré VE555 R43 150 Ω C44 56 pF céramique IC4 Circuit intégré VE555 R43 150 Ω C44 56 pF céramique IC4 Circuit intégré VE555 R43 150 Ω	R32	: 1,5 kΩ	C32	: 470 µF électrolytique		
R34 : 470 Ω C34 : 1 nF polyester IR7 : Iransistor NFN BC547 R35 : 100 kΩ C35 : 10 nF polyester FT1 : Transistor FET J310 R36 : 1 kΩ C36 : 47 pF céramique FT2 : Transistor FET J310 R38 : 100 Ω C38 : 10 nF polyester FT2 : Transistor MOS P.321 R40 : 22 kΩ C40 : 100 nF polyester MFT1 : Transistor MOS P.321 R41 : 22 kΩ C41 : 47 pF céramique IC1 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC2 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC2 : Circuit intégré UC3843 R44 : 150 Ω C44 : 56 pF céramique IC3 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC3 : Circuit intégré NE555 R43 : 56 kΩ C43 : 33 pF céramique IC4 : Circuit intégré ME602 R45 <td>R33</td> <td>: 1 kΩ</td> <td>C33</td> <td>: 470 µF électrolytique</td> <td></td> <td></td>	R33	: 1 kΩ	C33	: 470 µF électrolytique		
R35 : 100 kΩ C35 : 10 nF polyester FT1 : Transistor FET J310 R36 : 1 kΩ C36 : 47 pF céramique FT2 : Transistor FET J310 R37 : 1 kΩ C37 : 10 nF polyester FT2 : Transistor FET J310 R38 : 100 Ω C38 : 10 nF polyester RT Transistor MOS P.321 R40 : 22 kΩ C40 : 100 nF polyester MFT1 : Transistor MOS P.321 R41 : 22 kΩ C40 : 100 nF polyester IC1 : Circuit intégré UC3843 R42 : 22 kΩ C41 : 47 pF céramique IC2 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC2 : Circuit intégré UC3843 R42 : 150 Ω C44 : 56 pF céramique IC3 : Circuit intégré LM317 R44 : 150 Ω C44 : 56 pF céramique IC3 : Circuit intégré LM317 R44 : 150 Ω C45 : 1 nF polyester IC5 : Circuit intégré NE602 R45	R34	: 470 Ω	C34	: 1 nF polyester	IR/ :	Iransistor NPN BC547
R36 : 1 kΩ C36 : 47 pF céramique F11 : Iransistor FEI J310 R37 : 1 kΩ C37 : 10 nF polyester FT2 : Transistor FEI J310 R38 : 100 Ω C38 : 10 nF polyester MFT1 : Transistor MOS P.321 R40 : 22 kΩ C40 : 100 nF polyester MFT1 : Transistor MOS P.321 R41 : 22 kΩ C41 : 47 pF céramique IC1 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC2 : Circuit intégré VE555 R43 : 56 kΩ C43 : 33 pF céramique IC3 : Circuit intégré NE602 R45 : 100 kΩ C45 : 1 nF polyester IC5 : Circuit intégré NE602 R45 : 100 kΩ C45 : 1 nF polyester IC6 : Circuit intégré LM3089 R46 : 1 kΩ C46 : 100 nF céramique IC7 : Circuit intégré TAPA52B R47 : 1 20 kΩ C47 : 10 nF céramique IC7 : Circuit intégré TAPA52B R49<	R35	: 100 kΩ	C35		F.T.4	T
R37 : 1 kΩ C37 : 10 nF polyester F12 : Iransistor FE1 J310 R38 : 100 Ω C38 : 10 nF polyester MFT1 : Transistor MOS P.321 R39* : 10 kΩ pot. lin. C39 : 56 pF céramique MFT1 : Transistor MOS P.321 R41 : 22 kΩ C41 : 47 pF céramique IC1 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC2 : Circuit intégré NE555 R43 : 56 kΩ C43 : 33 pF céramique IC3 : Circuit intégré NE555 R43 : 56 kΩ C43 : 33 pF céramique IC3 : Circuit intégré NE602 R45 : 100 kΩ C44 : 56 pF céramique IC3 : Circuit intégré NE602 R45 : 100 kΩ C44 : 56 pF céramique IC4 : Circuit intégré ME602 R45 : 100 kΩ C45 : 1 nF polyester IC6 : Circuit intégré LM3089 R46 : 1 kΩ C47 : 10 nF céramique IC7 : Circuit intégré TDA7052B						
R38 : 100 Ω C38 : 10 nF polyester MFT1 : Transistor MOS P.321 ou MTP3055 R40 : 22 kΩ C40 : 100 nF polyester MFT1 : Transistor MOS P.321 ou MTP3055 R41 : 22 kΩ C41 : 47 pF céramique IC1 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC2 : Circuit intégré NE555 R43 : 56 kΩ C43 : 33 pF céramique IC3 : Circuit intégré LM317 R44 : 150 Ω C44 : 56 pF céramique IC3 : Circuit intégré LM317 R45 : 100 kΩ C45 : 1 nF polyester IC5 : Circuit intégré LM3089 R46 : 1 kΩ C46 : 100 nF polyester IC6 : Circuit intégré TDA7052B R47 : 120 kΩ C47 : 10 nF céramique IC7 : Circuit intégré TDA7052B R47 : 1 kΩ C48 : 10 nF céramique IC8 : CPU programmé EP:1415 R49 : 1 kΩ C50 : 10 nF céramique IC9* : Circuit intégré MM5452 </td <td></td> <td></td> <td></td> <td></td> <td>F12 :</td> <td>Transistor FET J310</td>					F12 :	Transistor FET J310
R39* : 10 kΩ pot. lin. C39 : 56 pF céramique MFT1 : Iransistor MOS P.321 ou MTP3055 R40 : 22 kΩ C40 : 100 nF polyester IC1 : Circuit intégré UC3843 R41 : 22 kΩ C41 : 47 pF céramique IC2 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC2 : Circuit intégré LM317 R44 : 150 Ω C44 : 56 pF céramique IC3 : Circuit intégré LM317 R44 : 150 Ω C44 : 56 pF céramique IC4 : Circuit intégré LM3089 R45 : 100 kΩ C45 : 1 nF polyester IC5 : Circuit intégré NE602 R45 : 100 kΩ C45 : 1 nF polyester IC6 : Circuit intégré LM3089 R46 : 1 kΩ C47 : 10 nF céramique IC7 : Circuit intégré TDA7052B R47 : 120 kΩ C47 : 10 nF céramique IC8 : CPU programmé EP.1415 R49 : 1 kΩ C49 : 10 nF céramique IC8 : CPU programmé EP.1415						
R40 : 22 kΩ C40 : 100 nF polyester OU MIP3055 R41 : 22 kΩ C41 : 47 pF céramique IC1 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC2 : Circuit intégré NE555 R43 : 56 kΩ C43 : 33 pF céramique IC3 : Circuit intégré LM317 R44 : 150 Ω C44 : 56 pF céramique IC4 : Circuit intégré NE602 R45 : 100 kΩ C45 : 1 nF polyester IC5 : Circuit intégré LM3089 R46 : 1 kΩ C46 : 100 nF polyester IC6 : Circuit intégré LM3089 R47 : 120 kΩ C47 : 10 nF céramique IC7 : Circuit intégré TDA7052B R47 : 120 kΩ C47 : 10 nF céramique IC8 : CPU programmé EP.1415 R49 : 1 kΩ C49 : 10 nF céramique IC8 : CPU programmé EP.1415 R50 : 330 Ω C50 : 10 nF céramique F1 Fusible 3A. R51 : 4,7 kΩ <td< td=""><td></td><td></td><td></td><td></td><td>MFT1 :</td><td>Transistor MOS P.321</td></td<>					MFT1 :	Transistor MOS P.321
R41 : 22 kΩ C41 : 47 pF céramique IC1 : Circuit intégré UC3843 R42 : 22 kΩ C42 : 150 pF céramique IC2 : Circuit intégré NE555 R43 : 56 kΩ C43 : 33 pF céramique IC3 : Circuit intégré LM317 R44 : 150 Ω C44 : 56 pF céramique IC4 : Circuit intégré LM3089 R45 : 100 kΩ C45 : 1 nF polyester IC5 : Circuit intégré LM3089 R46 : 1 kΩ C46 : 100 nF polyester IC6 : Circuit intégré LM3089 R47 : 120 kΩ C47 : 10 nF céramique IC7 : Circuit intégré TDA7052B R47 : 120 kΩ C47 : 10 nF céramique IC8 : CPU programmé EP.1415 R49 : 1 kΩ C49 : 10 nF polyester IC9* : Circuit intégré MM5452 R50 : 330 Ω C50 : 10 nF céramique F1 : Fusible 3A. R51 : 4,7 kΩ C51 : 10 nF céramique T1 : Transform. mod. TM.1415 R53 : 2,7 kΩ C53 : 4,7 μF électrolytique S1* : Inverseu		·				ou MTP3055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					IC1 ·	Circuit intégré LIC38/13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
R44 : 150 Ω C44 : 56 pF céramique IC4 : Circuit intégré NE602 R45 : 100 kΩ C45 : 1 nF polyester IC5 : Circuit intégré LM3089 R46 : 1 kΩ C46 : 100 nF polyester IC6 : Circuit intégré TDA7052B R47 : 120 kΩ C47 : 10 nF céramique IC7 : Circuit intégré TDA7052B R48 : 100 kΩ C48 : 10 nF céramique IC8 : CPU programmé EP.1415 R49 : 1 kΩ C49 : 10 nF céramique IC9* : Circuit intégré MM5452 R50 : 330 Ω C50 : 10 nF céramique IC9* : Circuit intégré TDA7052B R51 : 4,7 kΩ C50 : 10 nF céramique IC9* : Circuit intégré TDA7052B R51 : 4,7 kΩ C50 : 10 nF céramique IC9* : Circuit intégré TDA7052B R52 : 4,7 kΩ C51 : 10 nF céramique IC9* : Circuit intégré MM5452 R53 : 2,7 kΩ C52 : 4,7 μF électrolytique S1* : Inverseur R54 : 33 kΩ C54 : 6,8 nF polyester S2*						
R45 : 100 kΩ C45 : 1 nF polyester IC5 : Circuit intégré LM3089 R46 : 1 kΩ C46 : 100 nF polyester IC6 : Circuit intégré TDA7052B R47 : 120 kΩ C47 : 10 nF céramique IC7 : Circuit intégré 74HC4520 R48 : 100 kΩ C48 : 10 nF céramique IC8 : CPU programmé EP.1415 R49 : 1 kΩ C49 : 10 nF céramique IC9* : Circuit intégré 74HC4520 R50 : 330 Ω C50 : 10 nF céramique IC9* : Circuit intégré 74HC4520 R50 : 330 Ω C50 : 10 nF céramique IC9* : Circuit intégré 74HC4520 R50 : 330 Ω C50 : 10 nF céramique IC9* : Circuit intégré MM5452 R51 : 4,7 kΩ C51 : 10 nF céramique F1 F usible 3A. R52 : 4,7 kΩ C52 : 4,7 μF électrolytique S1* Inverseur R54 : 33 kΩ C54 : 6,8 nF polyester S2* Inverseur *R55						
R46 : 1 kΩ C46 : 100 nF polyester IC6 : Circuit intégré TDA7052B R47 : 120 kΩ C47 : 10 nF céramique IC7 : Circuit intégré 74HC4520 R48 : 100 kΩ C48 : 10 nF céramique IC8 : CPU programmé EP.1415 R49 : 1 kΩ C49 : 10 nF polyester IC9* : Circuit intégré MM5452 R50 : 330 Ω C50 : 10 nF céramique IC9* : Circuit intégré MM5452 R51 : 4,7 kΩ C50 : 10 nF céramique F1 : Fusible 3A. R52 : 4,7 kΩ C52 : 4,7 μF électrolytique T1 : Transform. mod. TM.1415 R53 : 2,7 kΩ C53 : 4,7 μF électrolytique S1* : Inverseur R54 : 33 kΩ C54 : 6,8 nF polyester S2* : Inverseur R55 : 1 kΩ C55 : 470 nF polyester S3* : Inverseur *R56 : 1 MΩ pot. lin. C56 : 100 nF polyester P1 à P4* Poussoirs R58 : 5,6 kΩ C58 : 470 μF électrolytique LCD1* Afficheur S5018 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•		
R50 : 330 Ω C50 : 10 nF céramique F1 : Fusible 3A. R51 : 4,7 kΩ C51 : 10 nF céramique T1 : Transform. mod. TM.1415 R52 : 4,7 kΩ C52 : 4,7 μF électrolytique S1* : Inverseur R53 : 2,7 kΩ C53 : 4,7 μF électrolytique S1* : Inverseur R54 : 33 kΩ C54 : 6,8 nF polyester S2* : Inverseur R55 : 1 kΩ C55 : 470 nF polyester S3* : Inverseur *R56 : 1 MΩ pot. lin. C56 : 100 nF polyester P1 à P4* Poussoirs R57 : 4,7 Ω 1/2 W C57 : 100 nF polyester LCD1* : Afficheur S5018 R59 : 2,2 kΩ C59 : 100 nF polyester LCD2 : Moniteur LCD couleur 4" R60 : 3,3 kΩ C60 : 100 nF polyester LCD2 : Moniteur LCD couleur 4"						
R51 : 4,7 kΩ C51 : 10 nF céramique F1 Fusible 3A. R52 : 4,7 kΩ C52 : 4,7 μF électrolytique T1 : Transform. mod. TM.1415 R53 : 2,7 kΩ C53 : 4,7 μF électrolytique S1* : Inverseur R54 : 33 kΩ C54 : 6,8 nF polyester S2* : Inverseur R55 : 1 kΩ C55 : 470 nF polyester S3* : Inverseur *R56 : 1 MΩ pot. lin. C56 : 100 nF polyester P1 à P4* Poussoirs R57 : 4,7 Ω 1/2 W C57 : 100 nF polyester LCD1* : Afficheur S5018 R59 : 2,2 kΩ C59 : 100 nF polyester LCD2 : Moniteur LCD couleur 4" R60 : 3,3 kΩ C60 : 100 nF polyester LCD2 : Moniteur LCD couleur 4"					IC9* :	Circuit integre MM5452
R52 : 4,7 kΩ C52 : 4,7 μF électrolytique T1 : Transform. mod. TM.1415 R53 : 2,7 kΩ C53 : 4,7 μF électrolytique S1* : Inverseur R54 : 33 kΩ C54 : 6,8 nF polyester S2* : Inverseur R55 : 1 kΩ C55 : 470 nF polyester S3* : Inverseur *R56 : 1 MΩ pot. lin. C56 : 100 nF polyester P1 à P4* Poussoirs R57 : 4,7 Ω 1/2 W C57 : 100 nF polyester LCD1* : Afficheur S5018 R58 : 5,6 kΩ C59 : 100 nF polyester LCD2 : Moniteur LCD couleur 4" R60 : 3,3 kΩ C60 : 100 nF polyester LCD2 : Moniteur LCD couleur 4"					F1 :	Fusible 3A.
R53 : $2.7 \text{ k}\Omega$				•	T1 .	Transform mod TM 1/1E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						nansionii. mou. nvi. 14 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					S1* :	Inverseur
R56 : $1 \text{ M}\Omega$ pot. lin. C56 : 100 nF polyester R57 : $4.7 \Omega 1/2 \text{ W}$ C57 : 100 nF polyester P1 à P4 : Poussoirs R58 : $5.6 \text{ k}\Omega$ C58 : $470 \mu\text{F}$ électrolytique LCD1* : Afficheur S5018 R59 : $2.2 \text{ k}\Omega$ C59 : 100 nF polyester R60 : $3.3 \text{ k}\Omega$ C60 : 100 nF polyester					S2* :	Inverseur
R56 : $1 \text{ M}\Omega$ pot. lin. C56 : 100 nF polyester R57 : $4.7 \Omega 1/2 \text{ W}$ C57 : 100 nF polyester P1 à P4 : Poussoirs R58 : $5.6 \text{ k}\Omega$ C58 : 470 µF électrolytique LCD1* : Afficheur S5018 R59 : $2.2 \text{ k}\Omega$ C59 : 100 nF polyester R60 : $3.3 \text{ k}\Omega$ C60 : 100 nF polyester					S3* :	Inverseur
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
R59 : 2,2 kΩ C59 : 100 nF polyester LCD2 : Moniteur LCD couleur 4"					PIAP4^:	PUUSSUIIS
R59 : 2,2 kΩ C59 : 100 nF polyester LCD2 : Moniteur LCD couleur 4"					LCD1* :	Afficheur S5018
ROU : 3,3 KIZ COU : TOUTIF polyestel		: $2,2 \text{ k}\Omega$: 100 nF polyester	I CD2	
*R61 : 47 kΩ C61 : 22 pF céramique TUNER : TunerTV SAT Sharp		: 3,3 kΩ				Moniteur LCD Couleur 4"
	*R61	: 47 kΩ	C61	: 22 pF céramique	TUNER :	TunerTV SAT Sharp

TR6, qui permet de maintenir stable la luminosité des images. De l'émetteur de ce transistor nous prélevons un signal vidéo standard PAL que nous pouvons injecter à l'entrée d'un quelconque moniteur couleur ou même noir et blanc.

Le signal audio

Toujours de la broche 14 du tuner nous prélevons, à travers le condensateur C34, le signal des porteuses audio à appliquer sur la porte (gate) du transistor FET FT1 utilisé comme étage séparateur.

Le signal, récupéré sur sa source, avant de rejoindre la broche 1 du circuit intégré IC4, un NE602 utilisé comme oscillateur convertisseur, passe à travers un filtre passe-bande composé de JAF4 et C35. Ce filtre ne laisse passer que les porteuses audio comprises entre 6 et 8 MHz.

Toutes les porteuses audio sont appliquées sur la broche 1 du mélangeur IC4, qui effectue la conversion sur la fréquence standard de 10,7 MHz, par l'intermédiaire de l'étage oscillateur qui se trouve sur les broches 6 et 7.

En reliant à la broche 6 l'inductance JAF5, avec en parallèle la diode varicap DV1, et en faisant varier la tension de polarisation de cette diode par l'intermédiaire du potentiomètre R39, nous obtenons une variation de la fréquence générée par cet étage oscillateur.

Si nous appliquons une tension de 12 volts sur la diode varicap, une fréquence d'environ 19 MHz est générée.

Si la tension est de 0 volt, une fréquence d'environ 16 MHz est générée.

Un transformateur moyenne fréquence, accordé sur 10,7 MHz (MF1), est connecté sur les broches de sortie 4 et 5 de IC4. Il est donc facile de déduire que, lorsque l'étage oscillateur génère une fréquence de 19 MHz, nous sommes syntonisés sur la porteuse audio de :

19 - 10,7 = 8,3 MHz

Quand l'étage oscillateur génère une fréquence de 16 MHz, nous sommes syntonisés sur la porteuse audio de :

Ainsi, en tournant le potentiomètre R39, nous pouvons syntoniser toutes les porteuses audio, standardisées sur ces fréquences, des émetteurs TV:

Il faut savoir que la porteuse audio principale se trouve sur 6,50 MHz ou sur 6,60 MHz et qu'elle est répétée sur les deux porteuses de 7,02 et 7,20 MHz pour obtenir une audition stéréo.

Les autres porteuses, toujours en stéréo, sont utilisées pour transmettre de la musique, des informations non liées aux images vidéo ou bien à transmettre dans une langue différente.

Comme vous pouvez le noter, les deux porteuses vidéo sont séparées de 0,18 MHz. Ainsi, ne vous étonnez pas d'entendre le même signal audio sur d'autres fréquences :

$$7.02 + 0.18 = 7.20 \text{ MHz}$$

7,38 + 0,18 = 7,56 MHz

7,74 + 0,18 = 7,92 MHz

Tous les signaux audio convertis sur 10,7 MHz, sont prélevés du secondaire de la bobine MF1 et appliqués, après être passés à travers un filtre céramique (FC1) de 10,7 MHz, sur la broche d'entrée 1 du circuit intégré LM3089 (IC5), qui est un démodulateur FM.

Le signal BF démodulé, disponible sur la broche 6 de ce circuit intégré, est transféré à travers la résistance R53 sur le circuit intégré amplificateur de puissance IC6 qui pilote un petit hautparleur.

A travers la résistance R55 et le condensateur électrolytique C53 le signal BF rejoint la prise de sortie audio qui peut être utilisée pour appliquer ledit signal à un amplificateur externe ou à la prise SCART (péritélévision) d'un quelconque téléviseur.

Le signal vidéo

Après avoir traité le problème du signal audio, à présent voyons comment faire pour syntoniser le tuner Sharp sur toute la gamme comprise entre 950 MHz et 1 750 MHz.

Comme nous l'avons déjà indiqué, pour pouvoir varier la fréquence d'accord, il est nécessaire d'appliquer sur la broche 9 de ce groupe, une tension variable de 0,6 à 15 volts.

Comme cela est mis en évidence sur le schéma électrique, cette broche 9 est connectée au collecteur du transistor TR2, dont la base est raccordée, à travers la résistance R21, à la broche 9 du microcontrôleur IC8.

De la broche 9 du microcontrôleur IC8 il ne sort pas une tension continue, mais un signal carré avec un rapport cyclique variable. Cela veut dire que le rapport de la durée de la demionde positive par rapport à la demi-onde négative change, maintenant stable la fréquence.

Pour transformer le signal carré en une tension continue, nous utilisons le condensateur C21 situé après la résistance R19.

Quand la demi-onde positive parvient à la largeur maximale, nous obtenons une tension de 15 volts et lorsqu'elle descend à sa largeur minimale, nous obtenons une tension de 0,6 volt.

Pour élargir ou rétrécir ce signal carré, il faut appuyer sur les deux poussoirs P1 et P2.

En appuyant sur P1, nous élargissons la demi-onde positive et, de ce fait, la fréquence d'accord du tuner augmente car la valeur de la tension appliquée sur la broche 9 augmente.

En appuyant sur P2, nous rétrécissons la demi-onde positive; ainsi la fréquence d'accord

Figure 8 : Schéma synoptique du circuit intégré UC3843 utilisé dans l'étage d'alimentation à découpage pour obtenir le 5 volts, le 12 volts et le 25 volts (voir IC1 sur la figure 7).

Figure 9 : Schéma synoptique du circuit intégré NE602 utilisé comme oscillateur/convertisseur pour prélever toutes les sous-porteuses audio (voir IC4 sur la figure 7).

Figure 10 : Brochages, vus de dessus, des deux circuits intégrés UC3843 et NE602.

descend car la tension sur la broche 9 diminue.

La fréquence générée par l'oscillateur local, qui comme nous le savons est supérieure de 479,5 MHz à la fréquence sur laquelle est syntonisé le tuner Sharp, est divisée par 128 par un prédiviseur interne. Ainsi, de la broche 7 du tuner, sort une fréquence variable de 11,16 MHz à 17,41 MHz.

Si nous syntonisons le tuner sur 950 MHz, sur la broche 7 nous retrouvons une fréquence de :

(950 + 479,5) : 128 = 11,167 MHz

Si nous syntonisons le tuner sur 1750 MHz, sur cette broche 7, nous retrouvons une fréquence de :

(1750 + 479,5) : 128 = 17,417 MHz

La fréquence prélevée de la broche 7 du tuner est appliquée sur la base du transistor TR3 qui procède à son amplification.

La fréquence amplifiée, prélevée du collecteur de TR3, est appliquée sur la broche 10 de IC7, un 74HC4520 qui, comme nous le voyons sur la figure 29, contient un double diviseur.

La fréquence que nous prélevons de la broche de sortie 14 de IC7 est divisée par 16. Ainsi, nos 11,16 MHz et 17,41 MHz deviennent 0,69 MHz et 1,08 MHz.

Cette division par 16 est nécessaire parce que le microprocesseur IC8 n'est en mesure de fonctionner sans erreur que sur des fréquences environ 6 fois inférieures à la fréquence du quartz d'horloge placé entre les broches 20 et 21.

Comme nous utilisons un quartz de 8 MHz, le microcontrôleur peut fonc-

tionner sans problème jusqu'à une fréquence maximale de :

8:6 = 1,33 MHz

La fréquence générée par l'étage oscillateur audio (IC4) varie d'un minimum de 16 MHz jusqu'à un maximum de 19 MHz. Pour pouvoir l'appliquer sur la broche d'entrée 27 du microcontrôleur IC8, il est nécessaire de la diviser par 16.

La fréquence de l'oscillateur audio, prélevée sur la broche 7 de IC4, est amplifiée par l'étage composé de FT2 et TR7. Récupérée sur le collecteur de TR7, à travers le condensateur C49, elle est appliquée sur la broche 2 du circuit intégré IC7 qui précède le second diviseur contenu dans le boîtier. La fréquence appliquée sur son entrée est prélevée de la broche de sortie 6 et divisée par 16. Ainsi, nos 16 et 19 MHz deviennent 1 et 1,18 MHz.

La suite du fonctionnement

Les broches de sortie 1 et 5 du microcontrôleur (IC8) permettent de sélectionner le premier diviseur du signal vidéo quand l'inverseur S3 ne relie pas la broche 10 à la masse, ou bien de sélectionner le second diviseur du signal audio quand l'inverseur S3 relie la broche 10 à la masse.

Toutes les fréquences vidéo ou audio, divisées par 16, entrent sur la broche 27 du microcontrôleur lequel, à l'aide de calculs mathématiques, permet d'obtenir un nombre correspondant à la fréquence qui doit être visualisé sur l'afficheur.

Par l'intermédiaire d'une liaison série, le microcontrôleur envoie ces données sur les broches 21 et 22 du driver IC9 qui, à son tour, pilote l'afficheur LCD. Si, à travers l'inverseur S3, nous sélectionnons le diviseur IC7 pour visualiser sur l'afficheur la fréquence du signal vidéo, la fréquence qui entre sur la broche 27 est multipliée par 16, puis par 128. Au résultat obtenu on soustrait 479,5 qui est la fréquence de l'oscillateur local du tuner Sharp.

Si, à travers l'inverseur S3, nous sélectionnons le diviseur IC7 pour visualiser sur l'afficheur la fréquence du signal audio, la fréquence qui entre sur la broche 27 est multipliée par 16. Au résultat obtenu on soustrait 10,7 qui est la valeur de la fréquence intermédiaire (MF).

Ainsi, nous lirons sur l'afficheur la fréquence exacte du signal vidéo (voir figure 11), ou bien celle du signal audio (voir figure 12).

Il faut signaler que la fréquence vidéo qui apparaît sur l'afficheur n'est pas celle transmise par le satellite, mais celle que le LNB envoie sur l'entrée du tuner.

Les LNB classiques convertissant la fréquence du satellite sur une fréquence inférieure de 9 750 MHz, si nous captons un émetteur transmettant sur la fréquence de 10 834 MHz, à l'entrée du tuner, nous aurons une fréquence de :

10834 - 9750 = 1084 MHz

Le nombre 1 084 apparaîtra donc sur l'afficheur.

Si nous captons un émetteur transmettant sur la fréquence de 11 671 MHz, sur l'entrée du tuner nous aurons une fréquence de :

11671 - 9750 = 1921 MHz

Le nombre 1 921 apparaîtra donc sur l'afficheur.

Figure 11 : En déplaçant l'inverseur "FREQ." (S3) en position "VIDEO", la fréquence du signal vidéo s'inscrit sur l'afficheur.

Figure 12 : En déplaçant l'inverseur "FREQ." (S3) en position "AUDIO", la fréquence du signal audio s'inscrit sur l'afficheur.

Figure 14 : Schéma d'implantation des composants de la platine LX.1415/B vue du côté sur lequel est monté l'afficheur. Avant de fixer les deux potentiomètres, il faut raccourcir leur axe à 18 mm. Lorsque vous insérez l'afficheur dans son support, il faut placer le repère situé sur le verre vers la gauche.

Si nous voulons connaître la fréquence de l'émetteur TV capté, nous devons ajouter 9 750 au nombre apparaissant sur l'afficheur. Si le nombre 1362 apparaît sur l'afficheur, nous sommes syntonisés sur l'émetteur qui transmet sur :

1362 + 9750 = 11112 MHz

Les LNB bibande qui permettent de passer de la bande des 11 GHz à la

bande des 12 GHz, en appliquant sur le câble coaxial une fréquence de 22 kHz, convertissent la fréquence du satellite sur une fréquence inférieure de 10 600 MHz. Ainsi, si nous captons un émetteur transmettant sur 12 051 MHz, sur l'entrée du tuner arrivera une fréquence de : 12051 - 10600 = 1451 MHz

Le nombre 1 451 apparaîtra donc sur l'afficheur.

Si nous captons un émetteur transmettant sur la fréquence de 12 423 MHz, sur l'entrée du tuner arrivera une fréquence de :

12423 - 10600 = 1823 MHz

Le nombre 1 823 apparaîtra donc sur l'afficheur.

Partant de là, si nous avons envoyé vers le LNB bibande la fréquence de 22 kHz, pour connaître la fréquence de l'émetteur reçu, nous devons ajouter 10 600 au nombre qui apparaît sur l'afficheur.

Si le nombre 1 905 apparaît sur l'afficheur nous sommes syntonisés sur un émetteur qui transmet sur :

1905 + 10600 = 12505 MHz

Pour envoyer vers le LNB la fréquence de 22 kHz, il faut appuyer sur le poussoir P4 relié à la broche 16 du microcontrôleur IC8. En appuyant une seconde fois, la fréquence de 22 kHz est annulée.

Pour savoir si nous avons bien envoyé les 22 kHz sur le LNB, il suffit de regarder le signe "+" qui apparaît sur la gauche de l'afficheur LCD, indiquant si celui-ci est prépositionné sur la polarisation horizontale ou verticale. Quand le 22 kHz est présent sur le LNB, ce symbole clignote.

Le poussoir P3, relié à la broche 15 du microcontrôleur, est utilisé pour faire basculer le LNB de la réception des émetteurs en polarisation horizontale aux émetteurs en polarisation verticale et vice-versa.

Chaque fois que nous allumons le scanner celui-ci se positionne automatiquement sur la polarisation horizontale, condition qui est confirmée par le symbole "–" apparaissant sur la gauche de l'afficheur.

En appuyant le poussoir P3 pour passer sur la polarisation verticale, le microcontrôleur commande le passage de 18 volts à 13 volts de la tension qui entre dans la broche 1 du tuner Sharp. Il effectue cette commande en polarisant la base du transistor TR1, lequel passe en conduction et court-circuite à la masse, par l'intermédiaire de son collecteur, la résistance R14. La valeur du pont diviseur, formé par R14, R15, R16 et R17, réglant la valeur de la tension de sortie du circuit intégré stabilisateur IC3, se trouve ainsi modifiée.

En résumé, la mise à la masse de la résistance R14 fait passer de 18 à 13 volts la tension présente sur la broche de sortie de IC3.

Pour obtenir de nouveau les 18 volts, il suffit d'appuyer une nouvelle fois sur le poussoir P3.

Quand le LNB est disposé sur la polarisation verticale, sur la gauche de l'afficheur apparaît le symbole "|".

En appuyant le poussoir P4 des 22 kHz, le microcontrôleur valide l'étage oscillateur IC2 qui commence à générer un signal carré sur cette fréquence. Ce signal, présent sur la broche de sortie 3 de IC2, est appliqué, à travers le condensateur C16, sur la broche R du circuit intégré IC3, qui la mélange à la tension continue de 18 volts ou 13 volts qui se trouvent sur sa broche de sortie.

Sur la droite du microcontrôleur IC8 nous trouvons l'inverseur S2 marqué "SCAN." "OFF" et "ON". En déplaçant le levier de l'inverseur S2 sur "OFF", cet appareil peut être utilisé comme s'il s'agissait d'un simple récepteur pour satellite.

Pour résumer

En appuyant le poussoir P1, nous déplaçons l'accord sur les fréquences supérieures. En appuyant le poussoir P2, nous déplaçons l'accord des fréquences supérieures aux fréquences inférieures. En appuyant simultanément les poussoirs P1 et P2 le récepteur effectue un balayage de toute la bande. Dans ce mode, pour l'arrêter sur une émission, il suffira d'appuyer un des deux boutons P1 ou P2.

Lorsque nous serons syntonisés sur une émission, pour nous caler finement, il suffira d'appuyer alternativement P1 ou P2, et de tourner le potentiomètre R39 pour rechercher la fréquence des signaux audio.

Si nous déplaçons le levier de l'inverseur S2 sur "ON", à première vue, il n'apparaît aucune différence car toutes les fonctions décrites plus haut s'exécutent exactement de la même manière. La seule différence induite par la position "ON", c'est qu'elle permet de commander l'arrêt automatique du balayage sur le premier émetteur que le récepteur parvient à syntoniser.

Pour activer cette fonction, il faut procéder de la façon suivante :

- 1 Avec le circuit hors tension, déplacez le levier de l'inverseur S2 sur SCAN ON.
- 2 La parabole ne doit être dirigée vers aucun satellite.
- 3 Dès que le circuit est alimenté, vous verrez apparaître sur l'afficheur deux petites lignes "– –" pour confirmer que le scanner est en train de mémoriser le niveau de bruit généré par le LNB pour l'utiliser comme niveau de seuil. Un signal quelconque, capté par le LNB et en mesure de dépasser le niveau de seuil mémorisé, sera un signal vidéo capté du satellite.
- 4 Une fois que le niveau de bruit sera mémorisé, les deux lignes "– –" disparaîtront de l'afficheur et, à leur place, apparaîtra la fréquence minimale sur laquelle est syntonisé le tuner.
- 5 A ce point, en appuyant simultanément sur les deux poussoirs P1 et P2, la fréquence commencera à monter du minimum vers le maximum en cycle continu et, dès que le récepteur capte un signal vidéo d'un quelconque émetteur, le balayage se bloquera automatiquement. Pour voir les autres émetteurs, il est nécessaire d'appuyer de nouveau sur P1 et P2 et, quand le scanner rencontrera un autre émetteur, il s'arrêtera de nouveau.

En aparté : comment régler la parabole

Cette fonction de balayage est très utile pour positionner la parabole sur un satellite dont on ne connaît pas la position exacte.

En fait, après avoir mis en fonction le scanner, il suffit de déplacer la parabole dans le sens horizontal en partant de l'est vers l'ouest et, si l'on ne parvient pas à capter un signal, il faut relever de quelques degrés, dans le sens vertical, l'angle de la parabole, puis déplacer de nouveau la parabole de l'est vers l'ouest. En supposant ne toujours capter aucun satellite, il faut à nouveau relever la parabole de quelques degrés et répéter cette opération jusqu'au moment où l'on réussit à capter un émetteur.

Grâce au logo de la chaîne, pratiquement toujours incrusté dans l'image reçue par le moniteur, nous comprendrons si l'émetteur capté est celui du satellite désiré ou bien provenant d'un satellite adjacent.

◆ Suite et fin le mois prochain

LES KITS DU MOIS

SCANNER DE RECEPTION AUDIO/VIDEO **POUR SATELLITES TV**

Permet la recherche de satellites TV sur les bandes 11 Ghz et 12 Ghz. La recherche peut être effectuée soit manuellement soit par scanner. Un afficheur permet d'indiquer la fréquence de la porteuse vidéo ainsi que celle de la porteuse audio. Un second afficheur (LCD

couleur 4") permet de visualiser l'image reçue. L'alimentation s'effectue à partir d'une batterie 12 V interne pour une utilisation en portable (ajustement de parabole sur un toit). Deux connexions (type RCA) arrières permettent de fournir le signal audio et vidéo pour une utilisation externe. Un commutateur permet de sélectionner la polarisation de la parabole (horizontale ou verticale).

LX1415/K	En kit sans batterie et sans écran l	_CD1 290 F
BAT 12 V / 3 A	Batterie 12 volts, 3 ampères	154 F
MTV40	Moniteur LCD	890 F

SYSTEME DE SONORISATION PAR LE SECTEUR 220 V

Cet appareil permet, à partir d'un transmetteur, de diffuser n'importe quelle source audio sur le réseau secteur. Un récepteur permet de capter le signal audio et de le reproduire à partir d'un haut parleur intégré. Plusieurs récepteurs permettent de diffuser la source audio dans les différentes pièces de votre hâtiment

L'émission est modulée en FM dans la gamme 150/160 kHz.

LX1416/KKit émetteur avec coffret	332 F
LX1417/KKit récepteur avec coffret	447 F
LX1416/MKit émetteur monté avec coffret.	464 F
LX1417/MKit récepteur monté avec coffret	625 F

LECTEUR DE CARTES MAGNETIQUES AVEC SORTIE RS232C

Nouveau système modulaire de lecteur de carte avec sortie série RS232C : Etudié pour fonctionner avec des lecteurs standards ISO 7811. Vous

pourrez connecter plusieurs systèmes sur la même RS232 : Un commutateur électronique et une

ligne de contrôle permettent d'autoriser la communication entre le PC et la carte active, bloquant les autres

FT221/KKit complet avec lecteur	590 F
FT221/MKit monté avec lecteur	790 F

AMPLIFICATEUR VHF FM 140 - 146 MHz

E: 0.04 W - S: 10 W

Caractéristiques:

Fréquence de travail ..135 à 160 MHz Courant max. absorbé......2,5 A Puissance max. d'entrée0,04 W

Puissance max. de sortie10 W

Impédance d'entrée et de sortie :50 ohms Température de travail......—30 à +100° C

Gain en puissance25 dB LX1418/KKit complet avec refroidisseur407 F LX1418/M.....Kit monté avec refroidisseur......510 F

TRANSISTOR PIN-OUT CHECKER

Ce kit va vous permettre de repérer les broches E, B, C d'un transistor et de savoir si c'est un NPN ou un PNP. Si celui-ci est défectueux vous lirez sur l'afficheur "bAd".

LX1421/K Kit complet avec boîtier249 F

Kit monté avec boîtier338 F

ALIMENTATION STABILISEE PRESENTEE DANS LE COURS N° 7

Cette alimentation de laboratoire vous permettra de disposer des tensions suivantes :

En continu stabilisée :

5 - 6 - 9 - 12 - 15 V

En continu non régulée : 20 V En alternatif: 12 et 24 V

l	-0	ov v sv	E31 ® E32		
ooîtier				427 F	

Alimentatore

LX5004/KKit complet avec boît	er427 F
LX5004/MKit monté avec boîtie	r590 F

TELECOMMANDE PILOTEE PAR PORTABLE GSM

Permet d'actionner un relais via un téléphone portable. Très pratique pour les systèmes embarqués (voitures, avions, bateaux). Un simple appel téléphonique gratuit permet d'activer ou de désactiver le relais. Le kit ne comprend que le module FALCOM A2 et sa connectique.

Falcom A2......2900 F

RECEPTEUR DE TELECOMMANDE UHF **AVEC CIRCUIT INTEGRE** DE CHEZ MICREL

Récepteur monocanal pouvant fonctionner avec tous les codeurs de type MM53200, UM86409.

Kit complet (sans boîtier)169 F FT273/M

Kit complet (sans boîtier)239 F

La détermination du brochage d'un transistor

Figure 1 : Cet appareil vous permettra de détecter rapidement la disposition des pattes E, B et C d'un transistor et de savoir s'il s'agit d'un type PNP ou NPN. Si le transistor en examen est défectueux, vous verrez apparaître sur les afficheurs 7 segments le mot anglais "bAd" (mauvais).

L'appareil, dont nous vous proposons la description dans ces lignes, utilise un microcontrôleur ST62T15 programmé pour déterminer le brochage d'un transistor. Il sait définir quelle broche de n'importe quel transistor est l'émetteur, la base ou le collecteur. Il indique également s'il s'agit d'un transistor PNP ou NPN. Si le transistor en test est défectueux, l'afficheur le signalera.

ombien de fois vous est-il arrivé de vous retrouver avec un transistor dont vous ignoriez le brochage et, ne connaissant pas son nom, s'il s'agissait d'un PNP ou d'un NPN?

Si vous réalisez ce circuit, il vous suffira de relier, grâce à ses trois pinces crocodiles d'entrée, les trois broches du transistor et d'appuyer sur le bouton P1 pour voir apparaître immédiatement sur les afficheurs l'ordre dans lequel sont disposées ces broches, c'est-à-dire E-B-C ou B-C-E, ainsi que leur polarité, PNP ou NPN.

Etant donné que ce genre d'appareil ne se trouve pas facilement dans le commerce, il suscitera l'intérêt de tous les amateurs et, plus encore, celui des dépanneurs. Ces derniers, en effet, lorsqu'ils se trouveront devoir remplacer un transistor inconnu dans un appareil "made in Taïwan" ou "made in Korea", sauront immédiatement établir s'il s'agit d'un PNP ou d'un NPN.

Ce circuit pourra se révéler très utile également lorsque, à l'occasion d'un salon, on vous proposera des transistors à des prix tellement alléchants que vous serez en droit de

MESURE

douter de leur qualité. Grâce à cet appareil, vous pourrez immédiatement les contrôler et si, dans le lot, il devait y en avoir de défectueux, vous verriez apparaître le mot anglais "bAd", qui signifie "mauvais".

Schéma électrique

Comme vous pouvez le voir sur la figure 4, le schéma électrique de ce circuit est très simple, car il utilise un seul microcontrôleur et trois afficheurs 7 segments pour faire apparaître E-B-C, NPN ou PNP.

Pour établir, sans possibilité d'erreur, laquelle des trois broches est l'émetteur, la base et le collecteur, le microcontrôleur relie de façon séquentielle les broches 19, 20 et 21 à la masse pour vérifier si le transistor est un NPN, puis il les relie au positif pour vérifier si c'est un PNP.

Ensuite, toujours de façon séquentielle, le microcontrôleur envoie une onde carrée sur les broches 22, 23 et 24 pour

Figure 2 : Photo du circuit imprimé monté, vu du côté des afficheurs 7 segments. Si vous effectuez des soudures parfaites, le circuit fonctionnera dès la mise sous tension.

Figure 3 : Photo du circuit imprimé, vu du côté du microprocesseur. Dans ce montage, on utilise des résistances de 1/8 de watt.

rechercher la Base et commute automatiquement les broches 25, 26 et 27. Il vérifie alors qu'en sortie des broches 19, 20 et 21 il y ait une tension de valeur bien définie afin d'établir s'il s'agit vraiment des broches du collecteur.

En fait, le microcontrôleur relie ses sorties aux trois douilles dans l'ordre suivant, en fonction de la disposition des pattes du transistor :

19 - 23 - 27 pour les pattes dans l'ordre EBC, 19 - 26 - 24 pour les pattes dans l'ordre ECB, 22 - 20 - 27 pour les pattes dans l'ordre BEC, 22 - 26 - 21 pour les pattes dans l'ordre BCE, 25 - 23 - 21 pour les pattes dans l'ordre CBE, 25 - 20 - 24 pour les pattes dans l'ordre CBE, 25 - 20 - 24 pour les pattes dans l'ordre CEB.

Si, après avoir effectué les 6 contrôles avec la polarité demandée par un NPN et les 6 autres avec la polarité inverse pour un PNP, le microcontrôleur détecte un mauvais fonctionnement du transistor, il affiche alors le mot "bAd".

Pour alimenter ce circuit, nous avons utilisé une pile de 9 volts mais, puisque

Figure 4 : Schéma électrique du circuit capable de reconnaître la disposition des pattes E, B et C d'un transistor et d'établir s'il s'agit d'un PNP ou d'un NPN. Les diodes DS1, à DS5, en série dans l'alimentation, sont utilisées pour réduire la tension 9 volts de la pile à une valeur d'environ 5,5 volts.

MESURE

Figure 5 : Brochage d'un afficheur 7 segments. Les broches DP1 et DP2 des points décimaux ne sont pas utilisées. A droite, les connexions d'un transistor BC559 vues de dessous.

le microcontrôleur nécessite une tension ne devant pas dépasser 5,9 volts, nous avons relié en série deux diodes dans la ligne du positif, et trois dans celle du négatif, de façon à obtenir une chute de tension totale d'environ 3,5 volts. Nous avons choisi cette solution,

plutôt que d'utiliser un circuit intégré régulateur, tel qu'un 7805, pour éviter de faire monter la consommation du circuit à plus de 150 mA et voir ainsi la pile se décharger rapidement.

Montage de l'instrument

Comme chacun de nos montages, celui-ci ne présente aucune difficulté : comme toujours, nous vous recommandons de veiller à la qualité de vos soudures.

Ceci étant dit, prenez le circuit imprimé double face à trous métallisés LX.1421 et installez les composants en les disposant comme indiqué sur les figures 6 et 7. Nous vous conseillons de commencer par le support du circuit intégré IC1.

Après avoir soudé toutes ses broches, insérez les 5 diodes au silicium, en dirigeant la bague noire des diodes DS1 et DS2 vers le bas et celle des diodes DS3, DS4 et DS5 vers le haut.

Poursuivez le montage en insérant les résistances qui sont ici, toutes de 1/8 de watt. Vous devrez, bien sûr, avant d'insérer une résistance, contrôler que les bagues de couleurs pré-

sentes sur son corps correspondent bien à la valeur ohmique indiquée sur le schéma d'implantation, afin d'éviter de l'insérer au mauvais emplacement!

Insérez, à côté du support du circuit intégré IC1, le filtre céramique FC1, puis les deux condensateurs électrolytiques C1 et C3 en respectant la polarité des deux pattes. Pour finir, mettez en place le condensateur polyester C2.

A présent, prenez les trois transistors BC559 et insérez-les sur les emplacements indiqués, en dirigeant le côté plat de leur corps vers le bas (voir figure 6).

Sur le côté opposé du circuit imprimé (voir figure 7), vous pouvez insérer les trois afficheurs alphanumériques et le poussoir P1, en faisant très attention au côté chanfreiné de son corps qui doit être obligatoirement dirigé vers le bas.

Une fois la soudure des composants terminée, insérez le microcontrôleur IC1 sur son support en dirigeant son encoche-détrompeur en U vers la gauche (voir figure 6).

Vérifiez que toutes les broches de IC1 soient bien rentrées à l'intérieur du support car il arrive fréquemment que l'une d'elles se plie vers l'extérieur.

Pour finir, montez la face avant métallique à l'aide de quatre petites vis.

Vous devez fixer, toujours sur cette face avant et à l'aide de deux petites vis et de deux écrous, l'interrupteur à glissière S1. Ensuite, vissez les trois douilles d'entrée pour les cordons à pinces crocodile.

Avant de visser ces douilles, vous devez retirer la bague plastique, insérer le

Figure 6 : Plan d'implantation du circuit LX.1421, vu du côté du microprocesseur. Les broches de l'interrupteur S1 doivent être reliées à l'aide de deux petits morceaux de fil sur les pistes du circuit imprimé, placées près du condensateur C2.

Figure 7 : Plan d'implantation du circuit LX.1421, vu du côté des afficheurs 7 segments. Lorsque vous installez le poussoir P1, dirigez le méplat vers le bas.

MESURE

Figure 8 : Après avoir effectué quatre trous à l'aide d'une perceuse et d'une mèche de 2 mm, fixez la face avant sur le boîtier plastique et appliquez sur cette dernière, le petit interrupteur S1 et les trois douilles d'entrée. Le circuit imprimé doit être bloqué à l'intérieur du boîtier grâce aux trois écrous des douilles, comme vous pouvez le voir sur cette figure.

Liste des composants LX.1421

R1 : 15 kΩ R2 $1 \text{ k}\Omega$ R3 : 15 kΩ R4 : 1 kΩ : 15 kΩ R5 : 1 kΩ R₆ R7 : 10 kΩ : 10 kΩ R8 : 470 Ω R9 R10 : 470Ω R11 : 470Ω R12: 470Ω 470 Ω R13 : R14: 470 Ω R15: 470 Ω R16: $4.7 \text{ k}\Omega$ R17: $10 \text{ k}\Omega$ $4.7 \text{ k}\Omega$ R18 : $10 \text{ k}\Omega$ R19 · R20 : $4.7 k\Omega$ $10 \text{ k}\Omega$ R21 ·

C1 : $22 \mu F$ électrolytique C2 : 100 nF polyester C3 : $1 \mu F$ électrolytique FC1 : Filtre céramique

8 MHz

DS1: Diode 1N4148 DS2: Diode 1N4148 DS3: Diode 1N4148 DS4: Diode 1N4148 DS5: Diode 1N4148

TR1: Transistor PNP BC559
TR2: Transistor PNP BC559
TR3: Transistor PNP BC559
IC1: Microcontrôleur ST62T15
programmé (EP.1421)

Afficheurs 1-3: mod. BS-A302RD

P1 : Bouton poussoir S1 : Interrupteur à glissière

Note : toutes les résistances sont des 1/8 de watt.

corps dans le panneau, replacer la bague du côté intérieur du boîtier et, enfin, serrer l'écrou de façon à isoler leur corps du métal du panneau (voir figure 8).

Une fois le circuit imprimé installé dans le boîtier plastique, serrez les trois écrous des douilles sur les pistes du circuit imprimé. Ce sont eux qui feront office de fixation.

En dernier, vous devez souder les deux fils de la prise pile et les bornes de l'interrupteur S1 sur leurs pistes correspondantes, à côté de la découpe.

Comment utiliser l'instrument

Dès que vous alimenterez le circuit, vous verrez apparaître trois lignes sur les afficheurs 7 segments (voir figure 10), indiquant qu'il est déjà prêt à détecter les broches E, B et C du transistor relié sur ses douilles d'entrée.

En admettant que le transistor soit un NPN et que les trois broches soient dans l'ordre B-C-E, en appuyant sur le bouton P1, vous verrez apparaître trois fois de suite sur les afficheurs 7 segments :

bCE-nPn bCE-nPn bCE-nPn (voir figure 11)

Une fois cette recherche terminée, les trois lignes de la figure 10 réapparaîtront, indiquant que le circuit est déjà prêt à détecter les broches d'un autre transistor.

En admettant que le transistor soit un PNP et que les broches soit dans l'ordre C-B-E, après avoir appuyé sur le bouton P1, vous verrez apparaître trois fois de suite sur les afficheurs 7 segments :

bCE-nPn bCE-nPn bCE-nPn (voir figure 12)

après quoi, les trois lignes de la figure 10 réapparaîtront.

Figure 9 : La pile 9 volts doit être placée sur la gauche, dans l'emplacement prévu à cet effet.

Figure 10 : Dès que vous alimenterez le circuit, vous verrez s'allumer, sur les afficheurs, les trois segments centraux, indiquant que l'instrument est prêt à détecter les broches du transistor relié sur ses douilles d'entrée.

Si le transistor est défectueux, le mot "bAd" apparaîtra, en clignotant (voir figure 13) pendant quelques secondes, puis les trois lignes de la figure 10 réapparaîtront.

Le mot "bAd" apparaîtra même si le transistor en examen possède un gain très faible.

Avec ce circuit, capable de repérer les pattes E, B et C de tous les transistors, des plus petits aux plus grands, vous aurez résolu le problème

Figure 11 : Si les broches sont disposées dans l'ordre BCE et que le transistor est de type NPN, l'instrument affichera d'abord bCE, puis nPn.

Figure 12 : Si les broches sont disposées dans l'ordre CBE et que le transistor est de type PNP, l'instrument affichera d'abord CbE et, ensuite, PnP.

Figure 13: Si le transistor relié aux douilles d'entrée était défectueux, vous verriez clignoter pendant quelques secondes le mot "bAd", puis réapparaître à nouveau les trois tirets de la figure 10.

de savoir dans quel ordre elles sont disposées et vous ne pourrez plus confondre un NPN avec un PNP.

Où trouver les composants

Le circuit imprimé double face à trous métallisés seul ainsi gu'un kit complet (LX.1421) sont disponibles. Voir publicités dans la revue.

♠ N. E.

OSCILLOSCOPES

Plus de 34 modèles portables, analogiques ou digitaux couvrant de

5 à 150 MHz, simples ou doubles traces.

ALIMENTATIONS

Quarante modèles digitaux ou analogiques couvrant tous les besoins en alimentation jusqu'à 250 V et 120 A.

AUDIO, VIDÉO, HF

Générateurs BF, analyseurs,

millivoltmètres, distortiomètre, etc...Toute une gamme de générateurs de laboratoire couvrant de 10 MHz à 2 GHz.

DIVERS

Fréquencemètres, Générateurs de fonctions ainsi qu'une gamme complète

d'accessoires pour tous les appareils de mesures viendront compléter votre laboratoire.

6 MAGASINS GES À VOTRE SERVICE

SAINT-SARDOS IT-SARDOS 8 Tél: 05.63.64.46 SUR GARONNE 63.64.38.39

> **SUR INTER** rauie.fr/ anadoo.f e-mail: arquie

	'	- man rarqui
C.Mos		Circ. intégrés
4001 B 4002 B 4007 B	2.00 2.00 2.20	linéaires
4009 B	3.40 2.00 2.40	MAX 038 163.00
4012 B 4013 B 4014 B		MAX 038 163 00 TL 062 4.90 TL 064 5.90 UM 66T19L 8.50 UM 66T68L 8.50 TL 071 3.90 TL 072 3.90 TL 074 4.70 TL 081 3.90 4.0
4014 B 4015 B	3.80 3.30 2.40	UM 66T68L 8.50 TL 071 3.90 TL 072 3.90
4016 B 4017 B		TL 071 3.90 TL 072 3.90 TL 074 4.70
4020 B 4022 B	3.50	TL 074 4.70 TL 081 3.90 TL 082 4.10
4024 B	2.40 3.40 2.10 2.90	TL 082 4.10 TL 084 5.80 SSI 202 31.50
4025 B 4027 B	2.10	SSI 202 31.50 MAX 232 14.30 TLC 271 5.80 TLC 272 8.70
4028 B 4029 B 4030 B	3.00 3.50 2.30	UM 66T19L 8.50 UM 66T68L 8.50 TL 071 3.90 TL 072 3.90 TL 074 4.70 TL 082 4.10 TL 082 4.10 TL 084 5.80 SSI 202 31.50 MAX 232 14.30 TLC 271 5.80 TLC 272 8.70 TLC 274 9.90 LM 308 8.40 LM 311 2.80 LM 324 2.90
4030 B 4033 B 4040 B		LM 308 8.40 LM 311 2.80
4041 B 4042 B 4043 B	3.00 3.90 2.60	LM 324 2.90 LM 334Z 8.40 LM 335 8.40
4043 B 4046 B	3.00	LM 336 8.70 LM 339 3.40
4047 B	4.10	LF 351 4.90
4050 B 4051 B 4052 B	2.60 2.40 3.90 3.60 3.50 3.40 2.60	LF 353 5.90 LF 356 6.80 LF 357 7.90 LM 358 2.60
4053 B	3.60	LM 358 2.60 LM 385Z 1.2 6.80
4060 B 4066 B 4067 B	2.60	LM 385Z 17.00
4067 B 4068 B 4069 B	2.30	LM 393 2.70 LF 411 9.50 TL 431CP 8B 6.50
4070 B 4071 B 4073 B	2.40 2.20 2.20 2.20	TL 431 TO 92 4.60 TL 494 9.40
4075 B		NE 555 2.50
4076 B 4077 B	3.60	NE 556 3.40 NE 567 4.20 LMC 567 CN 16.50
4081 B	2.10	SLB 0587 31.80 NE 592 8b 5.80
4093 B	2.40	SA 602N 19.00 LM 710 11.50
4094 B 4098 B 4503 B	3.50 3.90 4.00	LM 703 1.50 LM 723 4.50 LM 723 1.50 LM 7458 1.
4503 B	4.20 3.80	DAC 0800 15.00 SAE 800 41.50
	10.60	ADC 0804 25.70 TBA 810 S 8.40
4518 B	3.40 3.50	TBA 810 S 8.40 TBA 820M 8p 3.70 TCA 965 41.00 TDA 1010A 11.50
4521 B 4528 B	6.80 3.90	ISD 1416P 89.00 ISD 1420P 96.00
4532 B 4538 B	4.40	TDA 1023 18.80 TEA 1039 21.80
4538 B 4541 B 4543 B 4553 B	3.90 4.40 10.80	TEA 1039 21.80 TEA 1100 49.00 LM 1458 4.50 MC 1488 P 4.40 MC 1496 6.80
	2.90 4.80	
40103 B 40106 B 40174 B	2 90	TDA 1514A 44.00 TDA 1518 33.00
40174 B	4.50	TDA 1518 33.00
40174 B	4.50	TDA 1524 29.00
C.M.S	4.50	TDA 2003 9.50 ULN 2003 4.80
C.M.S	4.50	TDA 2003 9.50 ULN 2003 4.80
C.M.S UM 3750M MC145028 MC145026 MC145027 74 HC	19.00 17.00	TDA 2003 9.50 ULN 2003 4.80
C.M.S UM 3750M MC145028 MC145026 MC145027 74 HC	19.00 17.00 13.00 17.00	TDA 2003 9.50 ULN 2003 4.80 TDA 2004 21.50 ULN 2004 4.80 TDA 2005 20.50 TDA 2014A 21.00 UAA 2016 13.00 TDA 2030 12.00
C.M.S UM 3750M MC145028 MC145026 MC145027 74 HC	19.00 17.00 13.00 17.00	TDA 2003 9.50 ULN 2003 4.80 TDA 2004 21.50 ULN 2004 4.80 TDA 2005 20.50 TDA 2014A 21.00 UAA 2016 13.00 TDA 2030 12.00
C.M.S UM 3750M MC145028 MC145026 MC145027 74 HC	19.00 17.00 13.00 17.00 2.40 2.40 2.40 2.50 2.80	TDA 2003 9.50 ULN 2003 4.80 TDA 2004 21.50 ULN 2004 4.80 TDA 2005 20.50 TDA 2014A 21.00 UAA 2016 13.00 TDA 2030 12.00
C.M.S UM 3750M MC145028 MC145026 MC145027 74 HC	19.00 17.00 13.00 17.00 2.40 2.40 2.50 2.80 2.50 2.50	TDA 2003 9.50 ULN 2003 9.50 ULN 2003 9.50 ULN 2004 21.50 ULN 2004 21.50 ULN 2004 20.50 TDA 2004 20.50 TDA 2004 21.50 ULN 2004 21.50 ULN 2004 21.50 ULN 2004 21.50 ULN 2016 17.30 ULN 2016
C.M.S UM 3750M	19.00 17.00 13.00 17.00 2.40 2.40 2.50 2.80 2.50 2.90 2.50 3.40	TDA 2003 9.50 ULN 2003 9.50 ULN 2003 9.50 ULN 2004 21.50 ULN 2004 21.50 ULN 2004 20.50 TDA 2004 20.50 TDA 2004 21.50 ULN 2004 21.50 ULN 2004 21.50 ULN 2004 21.50 ULN 2016 17.30 ULN 2016
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 00 74 HC 02 74 HC 04 74 HC 04 74 HC 04 74 HC 04 74 HC 14 74 HC 30 74 HC 30 74 HC 30 74 HC 30 74 HC 31	19.00 17.00 13.00 17.00 12.40 2.40 2.40 2.50 2.50 2.50 3.40 2.50 3.40 2.50 3.40 2.50 3.40 2.50 3.40	TDA 2003 9.50 ULN 2003 4.80 TDA 2004 21.50 ULN 2004 4.80 TDA 2005 20.50 TDA 2014A 21.00 UAA 2016 13.00 TDA 2040 21.50 UAA 2040 21.50 XR 2206 38.50 XR 2211CP 27.50 U 2400B 17.30 TDA 2030 169.00 TDA 2030 169.00 ULN 2800 25.00 ULN 2800 5.00 ULN 2800 37.00
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 00 74 HC 04 74 HC 14 74 HC 03 74 HC 14 74 HC 18	19.00 17.00 13.00 17.00 12.40 2.40 2.40 2.50 2.50 3.40 2.50 3.40 2.50 3.250 3.40 2.50 3.40 2.50	TDA 2003 9.50 ULN 2003 9.50 UDA 2004 2.50 UDA 2004 2.50 UDA 2005 2.50 TDA 2014 A. 21.00 UAA 2015 13.00 TDA 2030 12.00 UAA 2016 13.00 TDA 2040 21.50 XR 2206 38.50 ULN 2040 17.30 UAA 2016 13.00 TDA 2030 15.00 UAA 2016 38.50 ULN 2030 169.00 ULN 2030 169.00 ULN 2030 5.80 ULN 2040 5.80 ULN 2040 2.00 ULN 2040 2.00 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.50 ULN 2040 3.70 ULN 2040 3.50
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 00 74 HC 04 74 HC 14 74 HC 03 74 HC 14 74 HC 18	19.00 17.00 13.00 17.00 12.40 2.40 2.40 2.50 2.50 3.40 2.50 3.40 2.50 3.250 3.40 2.50 3.40 2.50	TDA 2003 9.50 ULN 2003 9.50 UDA 2004 2.50 UDA 2004 2.50 UDA 2005 2.50 TDA 2014 A. 21.00 UAA 2015 13.00 TDA 2030 12.00 UAA 2016 13.00 TDA 2040 21.50 XR 2206 38.50 ULN 2040 17.30 UAA 2016 13.00 TDA 2030 15.00 UAA 2016 38.50 ULN 2030 169.00 ULN 2030 169.00 ULN 2030 5.80 ULN 2040 5.80 ULN 2040 2.00 ULN 2040 2.00 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.50 ULN 2040 3.70 ULN 2040 3.50
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 00 74 HC 04 74 HC 14 74 HC 03 74 HC 14 74 HC 18	19.00 17.00 13.00 17.00 12.40 2.40 2.40 2.50 2.50 3.40 2.50 3.40 2.50 3.250 3.40 2.50 3.40 2.50	TDA 2003 9.50 ULN 2003 9.50 UDA 2004 2.50 UDA 2004 2.50 UDA 2005 2.50 TDA 2014 A. 21.00 UAA 2015 13.00 TDA 2030 12.00 UAA 2016 13.00 TDA 2040 21.50 XR 2206 38.50 ULN 2040 17.30 UAA 2016 13.00 TDA 2030 15.00 UAA 2016 38.50 ULN 2030 169.00 ULN 2030 169.00 ULN 2030 5.80 ULN 2040 5.80 ULN 2040 2.00 ULN 2040 2.00 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.50 ULN 2040 3.70 ULN 2040 3.50
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 00 74 HC 04 74 HC 14 74 HC 03 74 HC 14 74 HC 18	19.00 17.00 13.00 17.00 12.40 2.40 2.40 2.50 2.50 3.40 2.50 3.40 2.50 3.250 3.40 2.50 3.40 2.50	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 00 74 HC 04 74 HC 14 74 HC 03 74 HC 14 74 HC 18	19.00 17.00 13.00 17.00 12.40 2.40 2.40 2.50 2.50 3.40 2.50 3.40 2.50 3.250 3.40 2.50 3.40 2.50	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 00 74 HC 04 74 HC 14 74 HC 03 74 HC 14 74 HC 18	19.00 17.00 13.00 17.00 12.40 2.40 2.40 2.50 2.50 3.40 2.50 3.40 2.50 3.250 3.40 2.50 3.40 2.50	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4.80 4.80 4.80 4.90	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4.80 4.80 4.80 4.90	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4.80 4.80 4.80 4.90	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4.80 4.80 4.80 4.90	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2003 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4.80 4.80 4.80 4.90	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2004 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4.80 4.80 4.80 4.90	TDA 2003 9,50 ULN 2003 4,80 UDA 2004 21,50 ULN 2004 4,80 UDA 2005 20,50 TDA 2014A 21,00 UAA 2016 13,00 TDA 2014A 21,00 UAA 2016 38,00 TDA 2040 21,50 UAA 2040 38,50 UAA 2040 5,80 UAA 2040 5,
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 02 74 HC 02 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 04 74 HC 03 74 HC 03 74 HC 04 74 HC 04 74 HC 03 74 HC 04	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4.80 4.80 4.80 4.90	DA 2003 9.50 ULN 2003 4.80 DA 2004 21.50 ULN 2003 4.80 DA 2005 20.50 TDA 2014 21.50 ULN 2004 4.80 DA 2005 20.50 TDA 2014 21.50 ULN 2004 21.50 ULN 2004 21.50 ULN 2004 21.50 ULN 2004 21.50 ULN 2008 21.50
C.M.S UM 3750M MC145028 MC145027 74 HC 00 74 HC 00 74 HC 04 74 HC 14 74 HC 03 74 HC 14 74 HC 18	4.50 19.00 13.00 17.00 13.00 17.00 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 3.40 3.40 3.40 3.80 5.80 5.80 5.80 4.80 4.80 4.80 4.90	TDA 2003 9.50 ULN 2003 9.50 UDA 2004 2.50 UDA 2004 2.50 UDA 2005 2.50 TDA 2014 A. 21.00 UAA 2015 13.00 TDA 2030 12.00 UAA 2016 13.00 TDA 2040 21.50 XR 2206 38.50 ULN 2040 17.30 UAA 2016 13.00 TDA 2030 15.00 UAA 2016 38.50 ULN 2030 169.00 ULN 2030 169.00 ULN 2030 5.80 ULN 2040 5.80 ULN 2040 2.00 ULN 2040 2.00 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.70 ULN 2040 3.50 ULN 2040 3.70 ULN 2040 3.50

2600 VERD	IIN SUR GA
.91 Fax:	ŬN SUR GA 05.63.64.38
NET http://wv	ww.arquie.fr/
-composants	s@wanadoo.f
Condens.	Cond. LCC
	Petits jaunes 63V Pas de 5.08
Chimiques axiaux 22 µF 25V	De 1nF à 100nF (Préciser la valeur)
220 μF 25V 2.40 470 μF 25V 4.00 1000μF 25V 6.00	Le Condensateur 1.00
2200 µF 25V 10.00 4700 µF 25V 14.00	150 nF 63V 1.20 220 nF 63V 1.40 330 nF 63V 1.40
22 μF 40V 1.70	150 nF 63V 1.20 220 nF 63V 1.40 330 nF 63V 1.40 470 nF 63V 1.40 680 nF 63V 2.20 1 µF 63V 2.20
22 μF 40V 1.70 47 μF 40V 1.90 100 μF 40V 2.30 220 μF 40V 2.40 470 μF 40V 5.40 1000 μF 40V 7.50 2200 μF 40V 14.00 4700 μF 40V 22.00	Régula-
470 μF 40V 5.40 1000 μF 40V 7.50	teurs
4700 µF 40V 22.00	POSITIFS TO220 7805 1 5A 5V 3 30
1 μF 63V 1.40 2.2 μF 63V 1.40 4.7 μF 63V 1.40 22 μF 63V 1.80 74 μF 63V 1.90 100 μF 63V 2.90 1000 μF 63V 12.00	7805 1.5A 5V 3.30 7806 1.5A 6V 3.40 7808 1.5A 8V 3.40 7809 1.5A 9V 3.40 7812 1.5A 12V 3.30 7815 1.5A 15V 3.40 7824 1.5A 24V 4.50
22 μF 63V 1.80 47 μF 63V 1.90 100 μF 63V 2.90	7808 1.5A 8V 3.40 7809 1.5A 9V 3.40 7812 1.5A 12V 3.30 7815 1.5A 15V 3.40 7824 1.5A 24V 4.50
1000 μF 63V 12.00 Chimiques radiaux	78M05 0.5A 5V 3.50
	7805S 1.5A 5V Isol. 6.00 78T05 3A 5V 18.00 78T12 3A 12V 18.00
100 μF 25V 0.80 220 μF 25V 1.40	78T12 3A 12V 18.00 NEGATIFS TO220
22 μF 25V 0.50 47 μF 25V 0.80 100 μF 25V 0.80 220 μF 25V 1.40 470 μF 25V 2.40 1000 μF 25V 4.10 2200 μF 25V 6.50 4700 μF 25V 11.80	7905 1.5A -5V . 4.40
4700 μF 25V 11.80 10 μF 35/50V . 0.70	7905 1.5A -5V. 4.40 7912 1.5A -12V 4.40 7915 1.5A -15V 4.40 7924 1.5A -24V 4.40
22 µF 35/50V . 0.70 47 µF 35/50V . 0.90	POSITIFS TO92 78L05 0.1A 5V 2.80
220 µF 35/50V 1.90 470 µF 35/50V 3.80	78L05 0.1A 5V 2.80 78L06 0.1A 6V 3.10 78L08 0.1A 8V 2.80 78L09 0.1A 9V 3.10
10 μF 35/50V . 0.70 22 μF 35/50V . 0.70 27 μF 35/50V . 0.90 100 μF 35/50V 1.40 220 μF 35/50V 1.90 470 μF 35/50V 3.80 1000 μF 35/50V 5.90 2200 μF 35/50V 5.90 4700 μF 35/50V 23.00	78L05 0.1A 5V 2.80 78L06 0.1A 6V 3.10 78L08 0.1A 8V 2.80 78L09 0.1A 9V 3.10 78L10 0.1A 10V 3.10 78L12 0.1A 12V 2.80 78L15 0.1A 15V 3.10
1 μF 63V 0.50 2.2 μF 63V 0.50	NEGATIFS TO92
1 μF 63V 0.50 2.2 μF 63V 0.50 4.7 μF 63V 0.90 10 μF 63V 0.90 22 μF 63V 0.90	79L05 0.1A -5V 3.40 79L12 0.1A -12V 3.40 79L15 0.1A -15V 3.40
47 μF 63V 1.50 100 μF 63V 1.90 220 μF 63V 3.00	VARIABLES
470 μF 63V 4.40 1000 μF 63V 8.30	L 200 2A 13.00 LM 317T TO220 4.60 LM 317LZ TO92 4.50
1 µF 63V 0.50 2.2 µF 63V 0.50 4.7 µF 63V 0.90 10 µF 63V 0.90 22 µF 63V 0.90 22 µF 63V 0.90 22 µF 63V 1.90 10 µF 63V 1.90 100 µF 63V 3.90 100 µF 63V 6.90 100 µF 63V 6.	LM 317LZ TO92 4.50 LM 317K TO3 20.00 LM 337T TO220 7.50
	TO 220 FAIBLE DDP
1 nF 400V 1.30 2.2nF 400V 1.30 3.3nF 400V 1.30 4.7nF 400V 1.30 10 nF 400V 1.30 15 nF 400V 1.30 22 nF 400V 1.30	L4940 5V 1.5A 14.00 L4940 12V 1.5A 14.00 L4960 32.00
4.7nF 400V 1.30 10 nF 400V 1.30 15 nF 400V 1.30	Supports
33 nF 400V 1.40 47 nF 400V 1.40	de C.I.
68 nF 400V 1.90 100nF 400V 1.90 220nF 400V 3.20	Contacts lyre
220nF 400V 3.20 330nF 400V 3.80 470nF 400V 4.30 1 µF 400V 5.90	8 Br. 0.80 14 Br. 0.90 16 Br. 1.00
Classe X2 C330	16 Br. 1.00 18 Br. 1.20 20 Br. 1.30 24 Br. Etroit 1.90
47nF 250V 15mm 2.50 100nF 250V 15 3.20 220nF 250V 15 4.70	28 Br. Large 1.70 28 Br. Etroit 1.80
Classe X2 C330 470F 250V 15mm 2.50 1000F 250V 15 3.20 2200F 250V 15 4.70 470F 250V 15 9.00 1µF 250V 15mm 13.50	32 Br. Large 2.00 40 Br 1.90 Contacts tulipe
MKH Siemens 1 nF 400V 1.00 4.7 nF 400V 1.70	8 Br 1.30
22 pE 250V 1 70	1 14 Br 1.80

Tantales

2.2 µF 16V 4.7 µF 16V 10 µF 16V 22 µF 16V 47 µF 16V

0.1 μF 35V 0.47μF 35V 1 μF 35V 2.2μF 35V

Céramiques monocouches

1.10 1.10 1.20 1.70 2.30 3.90

8 Br. 0.80 14 Br. 0.90 16 Br. 1.00 18 Br. 1.20 20 Br. 1.30 24 Br. Etroit 1.90 28 Br. Large 1.70 28 Br. Large 2.00 40 Br. 1.90	BUK 455-60A 13.50 BUT 11AF TO220 7.7 BUT 18AF SAT186 13.00
Contacts tulipe	IRF 9530 TO220 13.50 IRF 9540 TO220 23.00
8 Br. 1.30 14 Br. 1.80 16 Br. 2.60 18 Br. 2.90 20 Br. 3.20 28 Br.Large 3.70 28 Br.Etroit 4.00 40 Br. 6.00 68 Br. 6.00 84 Br. 5.20	MJ 15004 TO3 24.50 MJ 15024 TO3 29.00 MJ 15025 TO3 30.00 TIP 29C TO220 4.80 TIP 30C TO220 4.50 TIP 32C TO220 4.60 TIP 32C TO220 4.60 TIP 36C TOP3 1.45.50 TIP 36C TOP3 1.90 TIP 41C TO220 5.80 TIP 42C TO220 4.60
Barettes sécables	TIP 121 TO220 . 6.00 TIP 126 TO220 . 4.30
32 Br.Tulipe 6.10 32 Br.Tul. A Wrapper 19.00	TIP 127 TO220 . 5.00 TIP 142 TOP3 . 13.00 TIP 147 TOP3 . 11.80 TIP 2955 TOP3 8.80
Supports à force d'insertion nulle 28 broches 72.00	MINI PR

tors	2.40 2.50 2.40 1.90 2.30 3.40 2.20 14.30 3.80 0.90 4.80 2.40 2.40 2.40 2.70 0.90
sisi	TO5 TO18 A TO18 A TO18 A TO18 A TO18 A TO3 TO3 TO92 TO92 TO92 TO18 TO18
Tran	2N 1613 2N 1711 2N 2219 2N 2219 2N 2636 2N 2905 2N 2905 2N 2907 2N 3055 2N 3904 2N 3904 2N 3904 2N 3904 2N 3905 2N 3440 3N 344

	2N 3440 TO5 BC 107B TO18 . BC 109B TO18 . BC 177B TO18 . BC 237B TO92 .	4.80 2.40 2.40 2.70 0.90
000000000000000000000000000000000000000	BC 237C TO92 BC 238B TO92 BC 238C TO92 BC 307B TO92 BC 309B TO92 BC 327B TO92 BC 337B TO92 BC 368 TO92 BC 369 TO92	1.10 0.90 0.90 0.90 0.90 0.90 0.90 2.40 2.40
00.00	BC 516 TO92 BC 517 TO92 BC 546B TO92 .	2.30 2.30 0.90
0	BC 547B TO92 . BC 547C TO92 . BC 548B TO92 . BC 549C TO92 . BC 550C TO92 .	0.90 0.90 0.90 0.90 0.90
0 0 0 0	BC 556B TO92 . BC 557B TO92 . BC 557C TO92 . BC 558B TO92 . BC 559C TO92 . BC 639 TO92 BC 639 TO92	0.90 0.90 0.90 0.90 0.90 0.90
000000000000000000000000000000000000000	BC 639 TO92 BC 847B CMS BD 135 TO126 BD 136 TO126 BD 139 TO126 BD 140 TO126 BD 237 TO126 BD 238 TO126 BD 238 TO126 BD 239 TO220	1.90 0.80 1.70 1.70 2.00 2.10 3.30 3.50 4.20
	BD 240 TO220 . BD 242C TO220	4.20

40 broches 82.00

Modèles "PRO" dans

EXTRAIT DES PROMOTIONS ACTUELLES

Insoleuse KF (livrée à monter) Dim. utiles 160X260mm Comprend: la valise-chassis 4 tubes 8 w. ballasts, douilles inter et

Poids:

3,3 Kg

Quickroute 4.0

Livré avec Quickroute 4 logiciel de CAO

Microcontroleurs x10, x25, x60 ..

TX-FM Audio RX-FM Audio TX433SAWS RX290A-433 MAV-VHF224 US40-AS (ult

Galvanomètre

LCD 2000 Pts

58.00 F

Les 2 90.00 F

Modules "MIPOT" Emet stand. AMTX12B Récepteur AMRXSTD Emet. miniature TX433 Emet. AMTXACC12B Récep. AM Sup.H. SH5B Antenne flexible

Graveuse double face

Prix catalogue PROMOTION

275,00 L'ensemble 824,00 760,00 F N° 11694 Insoleuse 4 tubes KF 499.00 N° 13020 Quickroute version démo 50,00

Logiciel de C.A.O. EN FRANÇAIS. Création de shémas, simulation, saisie, autoroutage. Prise en main facile. Enfin un logiciel de CAO à la portée de

l'amateur et des PME. Version démo 100% opérationnelle limitée à 40 broches N°13021 Quickroute 4 twenty 300b 1200.00 N° 13024 Quickroute 4 twenty 800b 1995.00

EXT	RAIT DES PROMOTIONS AG	CTUELLES	N°22
	Prix Unit Epoxy 1F 200x300 prés. 16/10 . 48.50 F Epoxy 1F 100X160 prés. 16/10 14.00 F	PROMOTION Les 3 120.00F Les 3 40.50F	N° 68 N° 68 N° 68
	Borniers 2 plots. Pas de 5 mm 1.90 F Borniers 3 plots. Pas de 5 mm 2.90 F	Les 10 13.00F Les 10 23.00F	N°71 N°71 N°71 N°71
N°2820	Condensateur LCC 100nF 63V $\underline{\text{1.00 F}}$	Les 10 16.00F	N°71 N°71
N°1640	Barette HE14 2x40 droit. 2.54 <u>5.30 F</u>	Les 10 39.00F	N°8 N°8
	Inter inverseur 1 pole 3A/250V 3.60 F Inter inverseur bipol. 3A/250V 6.00 F	Les 10 24.00F Les 10 37.00F	N° 8 N° 8 N° 62 N° 62
N°5512	Relais DIL 2RT 6V 1.2A 67Ω 16.40 F Relais DIL 2RT 12V 1.2A 270Ω 16.40 F Relais Typ.40 1RT 12V 10A 200Ω 19.00 F	Les 3 42.00F Les 3 42.00F Les 3 44.00F	N° 63 N° 63 N° 63
N°1032	Barette TULIPE 32 Pts sécable 6.10 F	Les 10 39.00F	N°54 N°54

N°1032 Barette TULIPE 32 Pts sécable 6.10 F	Les 10 39.00F
N°50109 SUB D droit mâle 9b3.40 F	Les 10 26.00F
N°50125 SUB D droit mâle 25b3.90 F	Les 10 29.00F
N°50209 SUB D droit femelle 9b 3.50 F	Les 10 26.00F
N° 50225 SUB D droit femelle 25b 3.80 F	Les 10 29.00F
N°51009 SUB D capot plastique 9b 3.40 F	Les 10 26.00F
N°51025 SUB D capot plastique 25b 3.90 F	Les 10 29.00F
BASIC STAMP	
N°1032 Stater Kit Stampl pour BS1 1224.00F	1099.00 F

Le STATER KIT 1 comprend : Le manuel BASIC STAMP I / STAMP II, un cordon èle, un BS I, un circuit imprimé BS I, le logiciel PARALLAX éditeur de

N°8682 Module BASIC Stamp II . BS2-SX .. 549.00 F

ROMMASTER II Programmateur universel. Connection sur le port parralléle d'un PC. Logiciel sous DOS avec menus déroulants, fenêtres et boites de dialogues, gestion de la souris. Editeur de texte, modification possible des fichiers JEDEC, HEX et vecteurs de tests. Macros pour les taches répétitives. Livré avec alimentation 9V 2A. Support 32b ZIF. Programme

plus de 840 composants: EPROMS / EEPROMS / FLASH EPROMS: 10C, 11C, 12C, 14C, 15C, 17, 20C, 22C, 24, 24C, 24LC, 25,27, 27C, 27CP, 27CX, 27H, 27L, 27P, 27S, 28, 28C, 28EE, 28F, 28HC, 28LV, 28PC, 28SF, 29C, 29EE, 29F, 29LE, 46, 48, 48F, 52, 54, 55, 57C, 58C, 59C, 68, 7C, 85C, 87C, 93C, 93CS, 93LS, 97, 98. *PLD*: 5A, 5C, 85C, ATF,

CPL, CY, EP, GAL, PALCE, PEEL, PL, PLC, PLS. MICROCONTROLEURS: AT92C, PIC12C, PIC16C, PIC16F, TESTE ET INDENTIFIE plus de 260 composants :

DRAM / SRAM. TTL 74xxx. CMOS 40xx, 45xx umentation détaillée sur demande N° 13031 Programmateur ROMMASTER II 2850.00 F

LPC-2b PROGRAMMATEUR D'EPROMS/EEPROMS/

En externe sur le port parallèle d'un PC (détection automatique). Tension de prog. 5V,12V, 12.5V, 21V,25V. Livré avec cable, alimentation, logiciel et doc en français

8 autres modèles dans le catalogue

OGRAMMATEUR DE PIC

(12C508, 16F84, 24C16...) sur port série de PC. Avec giciel, cable série.et mode d'emploi. Livré monté. PIC -01: **390.00**

KITS VELLEMAN: plus de 140 kits référencés dans notre catalogue

CONDITIONS DE VENTE:	PAR CORRESPONDANCE UNIQUEMENT.	NOS PRIX SONT T T C (T.V.A	20.6% comprise)

- PAIEMENT A LA COMMANDE PAR CHEQUE, MANDAT OU CCP
- -FRAIS DE PORT ET D'EMBALLAGE: 43.00 F (Assurance comprise) -PORT GRATUIT AU DESSUS DE 900 F PAR CARTE BANCAIRE: DONNER LE NUMERO , LA DATE DE VALIDITE, UN NUMERO DE TELEPHONE ET SIGNER
- CONTRE REMBOURSEMENT: JOINDRE UN ACOMPTE MINIMUM DE 20% (TAXE de C.R. EN PLUS: 28.00F)
- DETAXE A L'EXPORTATION. NOUS ACCEPTONS LES BONS DE COMMANDE DE L'ADMINISTRATION

TOUS NOS COMPOSANTS SONT GARANTIS NEUFS ET DE GRANDES MARQUES

Nom:		Prénom:
Adresse:		
Code Poetal:	Villa	

Une télécommande pilotée par portable GSM

Le montage proposé dans cet article est né d'une discussion sur le non respect des règles de sécurité par certains locataires de jet-skis. Le système permet de bloquer à distance une machine lorsque le pilote s'approche trop près des plages ou lorsqu'il effectue des manœuvres dangereuses. Il utilise le réseau GSM en se servant d'un simple téléphone portable pour émetteur, tandis que chaque récepteur est constitué par le nouveau module GSM Falcom A2, avec un abonnement prépayé. La commande d'activation ou de désactivation du jet-ski n'entraîne aucune consommation d'unité. Ce système, bien qu'étudié à l'origine pour équiper des jet-skis, peut trouver d'autres applications dans tous les cas où l'on est confronté à la nécessité d'activer à une distance importante, sinon considérable, un dispositif électrique, électronique ou mécanique. Il est même tout à fait possible d'imaginer pouvoir stopper à distance, par réseau GSM interposé, votre nouvelle TDI qu'un indélicat vous aurait emprunté!

C€0681X

'utilisation des lignes téléphoniques, par réseau
commuté ou par radio,
n'est plus, aujourd'hui, limitée aux seules communications téléphoniques entre utilisateurs. Il
est maintenant possible d'y faire transiter les commandes de systèmes
d'automatisation et de contrôle à
distance qui intéressent bon nombre
de domaines les plus divers.

Il est possible de prendre la mesure de ce qui peut être fait sur les lignes GSM, à travers l'exemple tout simple du projet décrit dans cet article. Cette application peut sembler très particulière mais, en dehors du secteur spécifique abordé, elle peut trouver une multitude d'utilisations aussi différentes qu'intéressantes.

Utilité et fonctionnement

Comme nous l'avons déjà écrit en introduction, ce projet a été étudié pour satisfaire aux exigences de la location de jet-skis. En effet, les gérants d'établissements balnéaires louant des jet-skis, ou d'autres appareils à moteur évoluant sur l'eau, sont tenus, selon les lois et règlements en vigueur, d'équiper leurs engins d'un système de contrôle à distance permettant d'éteindre le moteur en cas de danger.

Lorsqu'un pilote se lance dans des figures trop dangereuses ou s'approche trop près de la plage, le responsable doit avoir la possibilité de bloquer le moteur et de le réactiver ensuite. A l'heure actuelle, il

HI-TECH

existe principalement deux types de systèmes de télécontrôle installés sur les jets ski par les loueurs :

- des dispositifs semblables à ceux assurant l'ouverture automatique de portail, ou bien
- des systèmes radio particuliers pouvant fonctionner en VHF ou en UHF.

Dans le premier cas, c'est un système peu coûteux, mais d'une portée limitée comprise entre 50 et 200 mètres, qui n'a d'autre utilité que de répondre à d'éventuels contrôles des autorités compétentes.

Dans le deuxième cas, le système installé sur le moteur de chaque jet-ski coûte très cher, plusieurs milliers de francs, auxquels vient s'ajouter le prix de l'émetteur assurant la commande. Par ailleurs, les canaux radio utilisés peuvent souvent être dérangés par d'autres émissions et la portée est souvent médiocre pour différentes raisons

L'utilisation d'un système GSM permet d'obtenir des résultats extrêmement plus intéressants, une plus grande sûreté, un coût moins important et une installation beaucoup plus simple.

Le dispositif monté sur un jet-ski comprend un module GSM (pour lequel on aura acquis un abonnement prépayé) et un circuit simple contrôlant un relais. Les contacts de ce dernier sont reliés à l'installation électrique du jet ski dont ils autorisent ou inhibent le fonctionnement cette façon, on ne consommera aucune unité), mais l'impulsion provoquée sur la sortie "ring" du GSM monté sur le jet-ski, suffira à activer le circuit électronique de blocage/ déblocage.

En fait, l'impulsion provoque la commutation d'un circuit bistable qui contrôle le relais de puissance. Un second appel effectué au même jetski provoquera le retour à l'état primitif du circuit bistable, permettant ainsi au conducteur de rallumer le moteur.

Le seul point sombre possible de notre système est la couverture de la zone concernée par le réseau GSM. Bien évidemment, le système ne peut fonctionner que si la zone est couverte! Toutefois, il suffit de consulter les cartes des zones de couverture fournies par les opérateurs, pour s'apercevoir que, même en ce qui concerne les côtes, dans 98 % des cas, on ne rencontre pas de problèmes de couverture.

Le système que nous avons mis au point pour le jet-ski peut être extrapolé dans bon nombre de domaines différents. Il suffit de disposer d'une source d'alimentation de 12 volts et de s'assurer que la couverture radio soit suffisante.

Le schéma

quelle peut en être l'utilité, passons au schéma électrique. Le cœur du dispositif est un modem cellulaire GSM Falcom A2, indiqué "U2" sur le schéma électrique. Nous nous sommes déjà penchés sur ce module dans le numéro 2 d'ELM, pages 36 et suivantes, où nous vous proposions une platine d'essai pour GSM. Nous ne saurions trop vous recommander de relire cet article.

Pour ceux qui ne connaîtraient pas ce produit, rappelons qu'il s'agit d'un modem cellulaire GSM complet, homologué, capable d'opérer aussi bien en phonie qu'en télécopie.

Ce dispositif a des dimensions particulièrement réduites et peut être intégré à l'intérieur de n'importe quel appareil. La carte SIM, de type "plugin" (petite), doit être introduite dans une fente du module prévue à cet effet.

Pour les liaisons avec les circuits externes, le Falcom A2 dispose de deux principaux connecteurs : un à 40 broches, placé sous le module, et un de 15 broches, placé sur un côté.

Dans notre application, nous utiliserons seulement quelques lignes de contrôle qui se trouvent toutes sur le connecteur à 15 broches. Nous nous

sommes connectés sur les broches 10, 11 et 12, reliées au positif d'alimentation (5 volts), sur les broches 13, 14 et 15, toutes reliées à la masse, sur la broche 3 (soft on), et sur la broche 4 (ring).

Une fois sous tension, le module GSM ne s'active que lorsque la broche 3 (soft on) reste à l'état logique 1 pendant un minimum de trois secondes. En fait, il faudrait un petit bouton

comme le "ON" que l'on trouve sur les téléphones portables, relié entre la broche 3 et la ligne positive. Dans le cas qui nous occupe, cette fonction est dévolue au microcontrôleur U3, et plus précisément, à la sortie correspondant à la broche 6.

Au démarrage, cette ligne présente un niveau logique 1 pendant environ 5 secondes, pour retourner ensuite à 0 volt (niveau logique 0).

Toujours au démarrage, le microcontrôleur initialise la sortie (broche 2) qui pilote le transistor T1 et le relais.

Lors d'un appel, sur la broche 4 du modem U2, on obtient un train d'impulsions, qui, détecté par l'entrée du microcontrôleur U3 (broche 7), commute l'état logique de la broche de sortie 2. Cela provoque la saturation du transistor T1 et active le relais jusqu'à l'appel suivant.

A l'intérieur du microcontrôleur se trouve un circuit de temporisation qui, après le premier "ring" d'un appel, désactive la ligne d'entrée pendant environ 20 secondes empêchant ainsi, aux autres "rings" du même appel, d'agir sur le circuit. Il est donc nécessaire d'attendre environ 20 secondes avant d'effectuer le deuxième appel pour débloquer le moteur.

Le microcontrôleur utilisé est un simple et économique PIC12C672, dispositif à 8 broches, doté d'une mémoire EEPROM de 2 048 octets et d'une RAM de 128 octets. Le programme intégré est vraiment très simple et peut aussi être écrit par nos lecteurs les moins experts en utilisant des compilateurs Basic, disponibles dans le commerce.

Le module GSM Falcom A2 et ses connexions

Le système d'arrêt moteur pour jet-ski utilise un module GSM Falcom A2 dont les dimensions sont particulièrement réduites malgré la présence d'un emplacement pour la carte SIM. Le A2 dispose de deux connecteurs, de 15 et de 40 broches, pour la connexion avec des circuits extérieurs. Etant donné le nombre limité de fonctions nécessaires dans ce projet, nous avons utilisé exclusivement les lignes disponibles sur le connecteur 15 broches (voir photo de droite).

Le tableau qui suit, illustre les fonctions des 15 lignes d'entrée/sortie de ce connecteur.

Pin	# Signal Name	Signal Type	Signal Level	Description	Currently Configured For	Other Uses
1	RS232Data_TX	Output		RS-232 Transmit Data	300 to 9600 baud	38400 for Loader, 115200 for Burn Flash
2	RS232Data_RX	Input	12 / -12 Vdc	RS-232 Receive Data	300 to 9600 baud	38400 for Loader, 115200 for Burn Flash
3	SOFT_ON	See 40 Pin - Pin 29				
4	RING_PWM	See 40 Pin - Pin 30				
5	BRSF	Input with Resistor	CMOS	0 = power on bootstrap, 1 or float = Normal		
6	SPKR_P	See 40 Pin - Pin 37				
7	SPKR_N	See 40 Pin - Pin 38				
8	MIC1_P	See 40 Pin - Pin 39				
9	MIC1_N	See 40 Pin - Pin 40				
10	V_EXT	Power		Battery / Supply		
11	V_EXT	Power		Battery / Supply	+ 1	
12	V_EXT	Power		Battery / Supply		
13	GND	Ground		Ground		
14	GND	Ground		Ground		
1:	GND	Ground		Ground		

On aurait également pu obtenir les fonctions nécessaires avec des composants moins performants, tels que les circuits intégrés 555 et 4013. Nous avons préféré la solution du microcontrôleur car elle offre au système, la possibilité de pouvoir modifier rapidement son fonctionnement grâce au programme.

Revenons au schéma électrique.

Etant donné que la plupart des circuits électriques des jet-skis fonctionnent avec une batterie 12 V, notre circuit dispose d'un régulateur de tension intégré, capable de fournir les 5 volts nécessaires à alimenter le module GSM ainsi que le microcontrôleur.

Ce circuit utilise le régulateur U1 et trois condensateurs de filtrage. La diode D1 protège le circuit des éventuelles inversions de la tension d'alimentation, tandis que D2 élimine les pics de tension générés par la bobine du relais, pendant la commutation.

Le relais, alimenté par la tension d'entrée 12 volts, dispose de contacts capables de supporter jusqu'à 10 ampères. Ces contacts sont utilisés pour désactiver l'étage d'allumage électronique, dont tous les jet-skis sont équipés.

Si on souhaite utiliser ce circuit avec une tension d'alimentation de 6 volts, il suffit d'éliminer le régulateur U1, d'utiliser deux ou trois diodes reliées en série au positif de l'alimentation ainsi qu'un relais ayant une bobine de 6 et non de 12 volts.

Si, comme nous l'avons vu, le circuit électrique est très simple, vous verrez

Le contrôle à distance est placé à l'intérieur d'un boîtier plastique étanche, normalement utilisé pour les installations électriques traditionnelles.

que sa réalisation pratique l'est encore plus.

Montage et installation

Pour le montage de notre contrôleur à distance, nous avons prévu un circuit imprimé sur lequel tous les composants trouvent place, y compris le module GSM.

Le circuit a été inséré ensuite à l'intérieur d'un boîtier plastique étanche, comme ceux utilisés dans les installations électriques traditionnelles, duquel sortent le câble d'alimentation, le câble relié à l'étage d'allumage et le coaxial de l'antenne GSM.

Le dispositif, antenne comprise, est placé à l'intérieur de la carrosserie du jet ski, car la fibre de verre qui la compose n'empêche absolument pas le rayonnement des ondes radio.

Mais, procédons par ordre.

Le module GSM occupe la majeure partie de la surface du circuit imprimé sur lequel il est fixé à l'aide de trois vis. Les connexions aux emplacements présents sur le circuit, numérotés 3, 4, 10, 11, 12, 13, 14 et 15, sont assurées par un connecteur 15 broches, prévu à cet effet. Faites très attention de ne pas inverser les fils et évitez les courts-circuits entre broches voisines.

Le montage des autres composants ne présente aucune difficulté. Soudez tous les composants, y compris le microcontrôleur, afin d'éviter que les nombreuses sollicitations mécaniques,

La version professionnelle

Le dispositif proposé dans cet article, est parfaitement fonctionnel et sûr à tous points de vue. Nous avons toutefois mis au point une version, que nous avons appelé "professionnelle" et qui offre, en plus et sans rien perdre des fonctions de la version "de base", l'identification de l'émetteur.

Concrètement, la réception d'un appel n'activera le relais que si le numéro téléphonique du poste appelant a été préalablement mémorisé dans l'unité réceptrice. De cette façon, on a l'absolue certitude que le moteur commandé ne peut être arrêté et redémarré que par l'appel provenant d'un portable autorisé et de celui-là uniquement.

Cette version "professionnelle" de notre système d'arrêt moteur commandé par GSM fonctionne, elle aussi, sans consommations téléphoniques.

Dans un prochain article, nous vous proposerons la description de cette nouvelle version adaptée à une application différente de celle décrite ici.

Figure 2 : Schéma d'implantation des composants.

Liste des composants

 $\begin{array}{cccc} R1 & : & 4,7 \; k\Omega \\ R2 & : & 4,7 \; k\Omega \\ R3 & : & 4,7 \; k\Omega \end{array}$

C1 : 470 µF 25 V électrolytique C2 : 100 nF multicouche C3 : 470 µF 16 V électrolytique

D1 : Diode 1N4007 D2 : Diode 1N4007 U1 : Régulateur 7805

U2 : Module GSM Falcom A2

U3 : Microcontrôleur programmé

(MF279) PIC12C672

T1 : transistor NPN BC547B RL1 : Relais 12 V 1 RT

Divers

1 support 4 + 4 broches

1 bornier 2 plots

1 bornier 3 plots

1 connecteur 15 broches pour A2

1 circuit imprimé réf. S279

auxquelles le circuit sera constamment soumis, ne puissent entraîner de faux contacts.

Avant d'effectuer les soudures, contrôlez attentivement que les composants polarisés aient bien été insérés dans le bon sens.

En position de repos, le circuit fonctionne avec un peu plus de 35 mA, c'est pourquoi le régulateur, qui dissipe environ 250 mW, ne nécessite pas de radiateur de refroidissement. A la réception d'un appel, le courant absorbé augmente jusqu'à 5 fois pendant quelques secondes seulement. C'est la raison pour laquelle la puissance maximale dissipée par le régulateur reste insignifiante.

Pour pouvoir fonctionner correctement et se connecter au réseau, le module GSM doit être équipé d'une carte SIM active. Le type d'abonnement n'a aucune importance car, comme nous l'avons dit précédemment, notre système ne consomme aucune unité, étant donné que personne ne répond aux appels!

Après avoir inséré la carte SIM dans l'emplacement du Falcom A2 prévu à cet effet, fixez le circuit à l'intérieur du boîtier étanche en laissant sortir les câbles par les trous percés au plus juste diamètre pour ne pas compromettre l'étanchéité. Un éventuel ajout de mastic silicone ne sera pas inutile pour parfaire ladite étanchéité.

HI-TECH

Collez ensuite l'antenne GSM aux parois internes de la carrosserie du jet-ski et, à l'aide de silicone, recouvrez-la entièrement. Une antenne pour pare-brise est idéale. Ne collez évidemment pas cette antenne sur une partie de la carrosserie devant être fréquemment démontée. Evitez également les endroits trop proches de masses métalliques. Si vous extrapolez pour monter cet appareil sur un véhicule terrestre, choisissez une antenne adaptée et camouflez-la en la placant... sur le toit! En effet, de nos jours, quel voleur s'inquiéterait de trouver une antenne GSM sur le toit du véhicule qu'il convoite?

Reliez directement le câble d'alimentation aux bornes de la batterie et les bornes du relais à l'étage d'allumage électronique, de façon à en bloquer le fonctionnement en cas de commutation.

Pour activer ou désactiver le système, il suffit d'utiliser un simple téléphone portable, dans lequel vous aurez mémorisé le ou les numéros des GSM montés sur le ou les différents véhicules. En fait, et en restant dans notre application jet-skis, on rentrera en mémoire

les noms "MOTO 1", "MOTO 2", etc. auxquels on associera les numéros de téléphone respectifs.

Concrètement, pour bloquer la première moto, il faudra rechercher dans la mémoire "MOTO 1" et effectuer l'appel. Après quelques instants, la moto se bloquera. Pour permettre au conducteur de redémarrer son engin, il faudra attendre une vingtaine de secondes et ensuite, effectuer un nouvel appel.

Ce système, extrapolé à une voiture, par exemple, laissera croire à notre indélicat que le véhicule qu'il a "emprunté" a une panne. Ne pouvant plus compter sur lui, il l'abandonnera.

Où trouver les composants

Le dessin du circuit imprimé et la liste des composants sont fournis.

Le montage nécessite un microcontrôleur programmé (MF279). Le circuit imprimé est également disponible (S279). Voir publicités dans la revue.

♠ A. G.

ABONNEZ-VOUS A ELECTRONIQUE ELECTRONIQUE POUR TOUS ELECTRONIQUE POUR TOUS

HOT LINE TECHNIQUE

Vous rencontrez un problème lors d'une réalisation?

Vous ne trouvez pas un composant pour un des montages décrits dans la revue?

UN TECHNICIEN EST À VOTRE ÉCOUTE

le matin de 9 heures à 12 heures les lundi, mercredi et vendredi

sur la HOT LINE TECHNIQUE d'ELECTRONIQUE magazine au

04 42 82 30 30

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél. : 04 42 82 96 38 - Fax 04 42 82 96 51 Internet : http://www.comelec.fr

MODULES AUREL

TX-433-SAW

Transmetteur SAW à antenne externe, haute qualité et basse émission d'harmoniques. Fréquence de travail : 433,92 MHz. Sortie HF : 10 mW / 50 Ω et 50 mW en antenne sous 12V. Dim. : 12,2 x 38,1 mm. Connexions au pas de 2,54 mm.

TX-433-SAW 122 F

PLA-05W-433

Booster UHF 433,92 MHz pouvant délivrer 400 mW. Version SIL à 15 broches en boîtier métallique pouvant être fixé sur radiateur. Il dispose de deux entrées, la première pour des signaux inférieurs à 1 mW et la seconde pour des signaux de 10 à 20 mW. Modulation : AM, FM ou numérique.

PLA-05W-433 195 F

Recherchons revendeurs Fax: 04 42 82 96 51

MAV-VHF-224

L'hybride inclut un double modulateur audio/vidéo très stable, réglé à 224,5 MHz (canal TV H2) tandis que le signal audio est à 5,5 MHz avec une déviation FM de +/–70 kHz. Connexions

FM de +/-70 kHz. Connexions au pas de 2,54 mm.

MAV-VHF-224 170 F

TX-433-SAW-BOOST

Transmetteur hybride SAW à 433,92 MHz en mesure de fournir une puissance HF de 400 mW en antenne sous 12 V. Modulation AM en mode On/Off, avec des signaux TTL (0 - 5 V). Dim: 31,8 x 16,3 x 3 mm. Connexions au pas de 2,54 mm. Alimentation: 12V.

TX-433-SAW-BOOST: 154 F

RF-290A-433

Récepteur 433,92 MHz de type superhétérodyne. Sensibilité d'entrée: –100 dBm (2,24 µV). Bande passante +/–1 MHz, plage d'accord +/–10 MHz. Sortie signaux carrés avec Fmax. de 2 kHz. Dim.: 31,8 x 16,3 x 4,5 mm. Connexions au pas de 2,54 mm.

RF-290A-433 73 F

MCA

Amplificateur classe A pour signaux TV fonctionnant sur le canal 12 VHF (224,5 MHz). Il peut fournir une puissance de 50 mW avec un signal d'entrée de 2 mW (idéal pour le MAV-VHF-224). Son impédance de sortie est de $50\,\Omega$ et sa consommation est de $100\,\text{mA}$

max. sous 12 V. Dim: 38,2 x 25,5 x 4,2 mm.

MCA: 140 F

SRC pub 029

DEMANDEZ NOTRE NOUVEAU CATALOGUE 32 PAGES ILLUSTRÉES AVEC LES CARACTÉRISTIQUES DE TOUS LES KITS NUOVA ELETTRONICA ET COMELEC Expéditions dans toute la France. Moins de 5 kg: Port 55 F. Règlement à la commande par chèque, mandat ou carte bancaire. Bons administratifs acceptés. Le port est en supplément. De nombreux kits sont disponibles, envoyez votre adresse et cinq timbres, nous vous ferons parvenir notre catalogue général.

Un récepteur de télécommande UHF

à circuit monolithique Micrel

Voici un récepteur monocanal sur 433 MHz, muni d'un relais de sortie, utilisable avec les télécommandes standards de type MM53200. L'étage de réception est très innovant car il est constitué d'un simple circuit intégré de 14 broches. Extrêmement précis et sensible, il représente une alternative aux modules hybrides CMS les plus connus. Le récepteur fonctionne en mode monostable ou bistable.

outes les radiocommandes proposées jusqu'à présent étaient pourvues de récepteurs dotés de modules hybrides qui contenaient le système de radiofréquence complet, depuis l'amplificateur jusqu'au démodulateur AM en passant par le contrôleur de signal numérique.

Le choix était dicté par la grande variété des produits CMS (Aurel en tête) qui eux seuls pouvaient résoudre la problématique de la dimension des étages de réception UHF, tout en simplifiant les circuits et en garantissant un fonctionnement stable et précis.

Cette solution n'était pas uniquement due à l'orientation technique générale de nombreux constructeurs de systèmes de commande à distance, d'antivols et autres. Elle provenait surtout de l'impossibilité de réaliser des récepteurs radio avec un simple circuit intégré, mais aussi de la nécessité d'utiliser à la place des hybrides, des circuits complexes et particulièrement encombrants, au point de rendre la réalisation de certains projets impossibles pour une production en série.

Aujourd'hui, les choses ont un peu changé et l'arrivée sur le marché d'un nouveau composant permet d'envisager de

nouvelles solutions. C'est pourquoi, dans cet article, nous allons vous parler d'un récepteur de type standard à 433,92 MHz, qui peut être couplé à tous les transmetteurs codés sur la base du MM53200 ou UM86409.

Voici donc un montage tout à fait nouveau dans lequel le module hybride disparaît au profit d'un récepteur monolithique de conception récente. Le récepteur radio 433,92 MHz est entièrement

intégré à l'intérieur d'un circuit 14 broches que l'on pourra insérer sur un simple support dip. Ce récepteur peut être directement relié à n'importe quelle antenne pour ce qui concerne l'entrée, et offre en sortie un niveau logique TTL standard. Il s'agit d'une grande nouveauté car les circuits intégrés HF capables de travailler à des fréquences supérieures à 250 MHz ne sont pas courants.

A titre d'exemple, on citera le très ancien S042P de Siemens qui est un des amplificateurs AF, mélangeur, oscillateur local parmi les plus utilisés pour construire des récepteurs FM et FM stéréo, mais qui est toutefois limité à 200 MHz.

Cependant, la technologie de fabrication des composants à base de silicium a fait d'énormes progrès, ce qui nous

permet aujourd'hui de disposer non seulement de semi-conducteurs de qualité correcte mais aussi de circuits intégrés UHF.

Nous avons donc saisi l'opportunité en développant le récepteur que vous allez découvrir dans cet article.

Un récepteur de télécommande moderne

Il s'agit donc d'un récepteur pour radiocommande équipé, comme d'habitude, d'une sortie à relais fonctionnant en mode monostable ou impulsion, ce qui le rend universel et adapté à tous types d'utilisations.

Sur notre circuit, nous avons, en revanche, remplacé le RF290A/433 ou le BC-NBK par un seul circuit intégré, le Micrel MICRF001BN dont le brochage est donné en figure 1.

Mais, allons voir le schéma électrique et analysons-le ensemble en faisant un tour d'horizon général.

Le MICRF001BN

Produit par la société Micrel, le MICRF001BN est un récepteur radio superhétérodyne à simple changement de fréquence avec démodulateur AM. Il est tout à fait adapté pour des radiocommandes ainsi que pour les systèmes d'échange de données via radio. Il n'est, en revanche, pas conçu pour traiter des signaux analogiques, bien que l'on puisse probablement y arriver dans le futur.

Le signal HF capté par l'antenne entre directement dans la broche 4, puis passe par l'amplificateur d'entrée (RF AMP) qui en augmente l'amplitude. Il va ensuite entrer dans le mélangeur où il sera mixé avec une fréquence légèrement supérieure (433 MHz + 2,25 MHz). Il en résulte une troisième fréquence dite "Moyenne Fréquence" (2,25 MHz), qui sort du mélangeur pour être filtrée avant d'être envoyée vers le démodulateur. Avec ce principe de changement de fréquence, vous l'avez compris, la modulation d'amplitude (AM) de la moyenne fréquence (MF) est identique à celle contenue dans le signal du transmetteur.

La valeur de la moyenne fréquence de notre intégré est assez atypique puisqu'elle est de 2,25 MHz. Le changement de fréquence permet d'éviter le risque d'auto-oscillation causé par la réinjection sur l'antenne des signaux HF fortement amplifiés. Bien utile dans notre cas, car notre circuit ne possède pas, en entrée, d'étage d'accord.

Seul l'oscillateur local est accordé, puisqu'il travaille sous le contrôle extrêmement précis d'un synthétiseur de fréquence programmable de l'extérieur grâce à un quartz ou un résonateur céramique situé entre la broche 13 et la masse. C'est la valeur de ce quartz qui détermine le type d'émetteur à utiliser (voir tableau 1).

Fréq. réf. Ft (MHz)	Fréq. TX Ftx (MHz)
2,44	315
3,00	387
3,02	390
3,07	396
3,21	414
3,24	418
3,31	427
3,36	433,9

Tableau 1 : Rapport entre la fréquence de référence et la fréquence de travail.

Pour être exact, il faut préciser que si l'on veut utiliser ce récepteur avec les TX de 433,92 MHz, il faut que le quartz soit de 3,36 MHz et c'est bien sûr celui que nous avons monté sur notre circuit.

Si nous reprenons le parcours du signal, nous voyons qu'après être passée par l'oscillateur local, la MF de 2,25 MHz rentre dans un second amplificateur qui augmente son amplitude, puis il traverse un filtre passe-bande (1 MHz de bande passante). Pour finir, il rejoint le dernier amplificateur et, enfin, le démodulateur AM duquel est extrait le code numérique ou tout autre signal de basse fréquence envoyé par

un transmetteur travaillant 433,92 MHz.

Un second filtre, cette fois de type passe-bas, nettoie le résultat en supprimant les pics et les résidus HF. La fréquence de coupure de ce filtre, dans notre cas 2,4 kHz, se pro-

gramme à l'aide des broches SELO et SEL1 (voir le tableau 2).

Enfin la BF, une fois démodulée et filtrée, entre dans un comparateur de tension qui permet de la contrôler et d'obtenir,

		Largeur
SELO	SEL1	de bande
broche	broche	du filtre
1	12	passe-bas
	ŗ	programmable
		(Hz)
0	0	600
1	0	1 200
0	1	2 400
1	1	4 800

Tableau 2 : Fréquence de coupure du filtre passe-bas programmable en fonction du câblage des broches 1 et 12.

Le circuit intégré Micrel est pourvu de deux entrées spéciales appelées SELO et SEL1 (respectivement broches 1 et 12) qui permettent de déterminer la fréquence de coupure du filtre passe-bas situé sur la sortie du démodulateur. Au zéro logique, les deux entrées imposent 600 Hz, avec la première au niveau haut on atteint 1 200 Hz, 2 400 Hz avec 0 et 1. Enfin, avec les deux entrées au niveau haut, la valeur est de 4,8 kHz. Dans notre application, nous nous contentons de 2,4 kHz puisque nous travaillons avec des transmetteurs relativement "lents".

sur la sortie numérique D0 (broche 8), des impulsions dont les fronts de montée et de descente sont bien raides.

Avant de passer à l'étude du schéma, arrêtons-nous sur les derniers détails inhérents au circuit de Micrel: Q1 est un résonateur céramique de 3,36 MHz qui cadence l'horloge principale du synthétiseur de fréquence, C6 sert à régler le seuil du comparateur et C7 le temps de réaction de la CAG interne (commande automatique de gain).

Les broches 2 et 3 sont la masse de la partie radio, 9 et 10 la masse de la logique. Les broches 1 (SEL0) et 12 (SEL1), dont nous avons déjà parlé, servent à sélectionner la fréquence de coupure des filtres numériques internes.

Etude du schéma

Si l'on applique ces concepts au schéma électrique de la figure 2, nous pouvons donc comprendre comment fonctionne la radiocommande.

Quand un transmetteur travaillant sur 433,92 MHz est activé, l'onde émise atteint l'antenne ANT, puis se dirige sur l'entrée de U2. Ce dernier l'accorde et la démodule en restituant le signal numérique entre la broche 8 et la masse.

Dans notre cas, il s'agit d'un code émis par un MM53200, UM3750 ou UM86409, raison pour laquelle nous avons un composant analogue dans notre circuit pour le décodage. Ici c'est U3 (UM86409) qui a ce rôle.

Pour information, rappelez-vous qu'avec ces circuits, c'est la broche 15 qui détermine le mode de fonctionnement : broche 15 au zéro logique, c'est le mode décodeur alors qu'au 1 logique, c'est le mode codeur.

U3 reçoit donc les impulsions sur son entrée (broche 16) en provenance directe de OUT D0 du circuit intégré Micrel. Si les 10 dip-switchs du DS1 ainsi que les 2 de DS2 sont programmés de façon analogue à ceux du transmetteur, U3 active la broche 17 en la mettant au niveau bas après chaque réception identifiée.

Le transistor T1 inverse le signal reçu de la broche 17 pour l'envoyer soit à la bascule U4 soit à la base de T2. Ce choix se fait en fonction de la position des dip-switchs de DS3. Ce dernier permet de sélectionner le mode de commande de la sortie en choisissant entre monostable (par impulsion) et bistable (par niveau).

Bien évidemment les deux commutateurs ne doivent pas être fermés en même temps ! Si l'on se réfère au schéma électrique, celui du dessus permet d'envoyer les impulsions du collecteur de T1 directement sur la base de T2. Ainsi, chaque créneau généré par U3 entraînera la fermeture du relais (RL1) via T1 et T2 : c'est le mode impulsion.

En revanche, si l'on ferme le commutateur du bas, à chaque impulsion de U3, T1 générera le signal d'horloge de U4. Ce circuit intégré est une double bascule D dont une seule bascule est utilisée. Chaque front montant sur l'en-

Caractéristiques techniques

- Fréquence de travail 433,92 MHz.
- Section réceptrice HF de type superhétérodyne avec une sensibilité de –95 dBm (environ 2 µV).
- Emission parasite de l'oscillateur local inférieure à -30 µV.
- Système d'encodage standard MM53200 avec 4096 combinaisons différentes.
- Sortie monocanal à relais.
- Fonctionnement monostable sur impulsion, ou bistable sur niveau.
- Alimentation en courant continu de 12 à 25 volts.
- Couplé à une télécommande standard de type TX3750/1C/SAW la portée du système est d'environ 100 mètres en zone dégagée.

trée horloge (clock), broche 11, fait changer l'état de sa sortie Q pin 13. Ainsi, à chaque nouveau front, alternativement le relais sera excité ou au repos : c'est le mode bistable.

Pour résumer, on peut dire que dans le premier cas de figure le relais "suit" l'interrupteur du transmetteur radio dans le sens où il s'active et reste excité tant que l'on ne relâche pas le bouton.

Dans le second cas de figure, c'est-àdire en position bistable, on active ou on désactive le relais RL1 à chaque pression sur le bouton.

L'ensemble du circuit fonctionne sous une tension continue comprise entre

12 et 25 volts appliquée sur les points +V et la masse. Si on ne dispose que de 12 à 16 volts, il faut fermer le pont

S1 pour court-circuiter la résistance R1. Celle-ci doit par contre être connectée (S1 ouvert) si on veut faire fonctionner la carte avec une tension de 16 à 25 Volts. Dans ce dernier cas, R1 assure la chute de tension nécessaire

Le circuit intégré monolithique UHF de Micrel

Alors qu'ils semblaient délaissés au profit des hybrides, les intégrés monolithiques pour hautes fréquences radio sont à nouveau d'actualité. C'est le cas, en particulier, avec l'arrivée de la série MICRFOxx de Micrel. Cette société spécialisée dans ce créneau de produit, a démontré que les récepteurs superhétérodynes monoblocs peuvent avoir d'autres applications que la simple réception de la FM ou de la bande radioamateur (VHF, 144-146 MHz) en atteignant le seuil des 433,92 MHz de la radiocommande, domaine incontesté jusqu'à aujourd'hui des modules CMS de Aurel.

Le dispositif publié dans cet article en est un bon exemple, puisqu'il s'agit d'un très bon récepteur pour commande à distance qui peut être couplé à la grande majorité des minitransmetteurs commerciaux basés sur la règle d'encodage UM86409.

Le composant Micrel est de type front-end avec amplificateur d'antenne, oscillateur local à quartz, mixer AF, double ampli de moyenne fréquence, réglé à 2,25 MHz avec filtre intermédiaire de 1 MHz de lar-

geur de bande, démodulateur AM, second filtre, passe-bas cette fois, et comparateur de sortie pour contrôler les signaux numériques.

En fait, il ne se contente pas seulement d'être le bloc fondamental d'un récepteur superhétérodyne, puisqu'il assure également l'extraction du signal modulé et son premier "nettoyage". Il constitue donc l'équivalent des hybrides les plus connus comme les RF290A/433 et BC-NBK, par rapport auxquels il présente deux avantages importants : d'une part, il est plus petit, puisqu'il ressemble à un circuit intégré 2 fois 7 broches et, d'autre part, il est à quartz.

En outre, il travaille en superhétérodyne et non en super-réaction, ce qui explique sa stabilité et sa précision.

Il pourrait être comparé au STD433L de Aurel, avec l'avantage du boîtier dip en plastique mais avec un coût nettement inférieur à un RF290A/433.

afin d'éviter la détérioration de la bobine du relais par le surcroît de tension qu'il faudrait absorber à chaque "fermeture" de T2, (bobine 12 Vcc).

Le régulateur intégré U1 permet, quant à lui, de stabiliser la tension d'alimentation à 5 V pour la logique et le MICRF001BN.

Réalisation pratique

Comme d'habitude la première chose à faire est de réaliser le circuit imprimé. C'est très simple puisqu'il suffit de photocopier le circuit côté piste donné en figure 4 de manière à réaliser le film nécessaire à la photogravure.

Après avoir coupé et percé la carte, vous pouvez effectuer le montage des composants en vous aidant du plan d'implantation des composants de la figure 3. Commencez par les résistances, puis les diodes pour lesquelles il faut bien respecter la polarité et se rappeler que l'anneau coloré correspond à la cathode.

On passe ensuite aux supports des trois circuits intégrés, que nous vous recommandons d'insérer en tenant compte des détrompeurs.

Installez les mini-interrupteurs (dip-switchs) en veillant à ce que le "1" de DS1 soit en correspondance avec la broche 1 du décodeur U3, et le "1" de DS2 avec la broche 11 de ce même U3. La photo vous aidera dans cette opération.

Quant à DS3, l'interrupteur 1 doit être relié à la broche 13 du CD4013 (U4). S1 étant un simple interrupteur, aucun détail particulier n'est à préciser. Continuez le montage

en soudant les autres pièces, en prêtant une attention toute particulière à l'orientation des deux transistors T1 et T2 et au régulateur (U1) 7805 dont la face métallique est tournée vers R3.

Pour les connexions, prévoyez des borniers au pas de 5 mm. Ils doivent être

Figure 3: Plan d'implantation des composants.

Figure 4 : Tracé du circuit imprimé à l'échelle 1.

Liste des composants

: $47 \Omega 2 W$ R2 : 220 kΩ R3 : 47 kΩ R4 : 10 kΩ : 47 kΩ R5 : 12 kΩ R6 : 12 kΩ R7 R8 : $4.7 \text{ k}\Omega$ R9 : 47 kΩ

C1 : $470 \mu F$ 25 V chimique rad. C2 : $100 \mu F$ 25 V chimique rad. C3 : 100 nF multicouche C4 : 100 pF céramique C5 : $10 \mu F$ 25 V chimique rad.

C6 : 10 nF céramique C7 : 4,7 µF 25 V chimique rad.

D1 : Diode 1N4007 D2 : Diode 1N4007 U1 : Régulateur 7805

U2 : Circuit intégré MICRF001 U3 : Circuit codeur UM86409 U4 : Circuit intégré 4013B T1 : Transistor PNP BC557B T2 : Transistor NPN BC547B RL1 : Relais 12 V miniature 1 RT

S1 : Dip-switch 1 circuit
DS1 : Dip-switch 10 circuits
DS2 : Dip-switch 2 circuits
Q1 : Résonnateur 3,36 MHz

Divers:

- Bornier 2 plots
- Bornier 3 plots
- Support Cl 2 x 7 broches (2)
- Support CI 2 x 9 broches
- Circuit imprimé réf. S273

Sauf spécification contraire, toutes les résistances sont des 1/4 W à 5 %.

montés de manière à ce que l'entrée des fils se trouve au bord du circuit imprimé. Veillez au marquage des borniers pour la connexion de l'alimentation et du contact NO/NF du relais.

Ceci fait, il ne vous reste plus qu'à mettre les bons circuits intégrés dans

les bons supports en veillant à faire coïncider les détrompeurs et leurs références (U2 et U4).

Enfin, pour réaliser l'antenne du module, soudez un morceau de fil de cuivre, rigide de préférence, sur l'emplacement marqué ANT.

Votre montage vérifié, il est prêt à fonctionner sans aucun étalonnage préliminaire. La seule chose à faire c'est de régler les dip-switchs de DS1 (bits 1 à 10) et DS2 (bits 11 et 12) de manière analogue à ceux du trans-

metteur portable dont vous disposez. A ce propos, nous vous recommandons d'utiliser le modèle TX/3750/1C/SAW qui travaille à 433,92 MHz et qui permet d'être accouplé au récepteur en autorisant une portée d'environ 100 mètres en zone dégagée.

Il est très important de bien positionner les dip-switchs de l'émetteur et du récepteur. Dans le cas contraire, le récepteur ne réussira pas à interpréter les instructions reçues par radio. Contrôlez donc bien la position des dipswitchs de l'émetteur, du 1 au 12 et faites de même avec les dip-switchs de DS1 et de DS2.

A la fin du montage vous pouvez intégrer le circuit imprimé dans un boîtier plastique de dimensions adéquates. Pour notre prototype, nous avons utilisé le boîtier étanche SCM433 qui dispose également d'une antenne réglée sur 433 MHz.

Si, par contre, le circuit est enfermé dans un boîtier métallique, il est indispensable de prévoir à l'extérieur une antenne préréglée, comme l'AS433 de Aurel par exemple, et de la relier au circuit par un morceau de câble coaxial 50Ω de petit diamètre. Le brin central sera branché au bornier ANT et la tresse à la masse.

Pour ce qui est de l'alimentation, le circuit peut fonctionner en 12 ou 25 volts continus en sélectionnant la tension grâce au micro-interrupteur S1. En position fermée, le circuit travaille avec une tension de 12 à 16 volts, en position ouverte, il travaille avec une tension de 16 à 25 volts. Dans tous les cas la consommation de notre montage restera inférieure à 100 milliampères.

Où trouver les composants

Le dessin du circuit imprimé ainsi que la liste des composants étant fournis, aucun circuit programmé n'étant nécessaire, vous pouvez vous approvisionner auprès des annonceurs de la revue ou de votre fournisseur habituel.

Le circuit imprimé seul (réf. S273) ou un kit complet (FT273) sont également disponibles. Voir publicités dans la revue.

C. V.

aruds - BP 1241 : 04 42 82 96 38 Internet : http - 13783 AUBAGNE C - Fax 04 42 82 96 51

* Offre promotionnelle valable jusqu'à fin décembre 99

PROGRAMMATEUR UNIVERSEL POUR PIC.

Permet de programmer tous microcontrôleurs les MICROCHIP, à l'exception des PIC16C5x et des PIC17Cxx.

FT284 (Kit complet + câble PC + SFW 284) 455 F

MF284 (PIC 12C508 programmé seul)82 F

Développé par MICROCHIP, le PICSTARTPLUS vous permet d'éditer et d'assembler le programme source des PIC 12c5xx, PIC 14000, PIC 16Cxx, PIC 17Cxx. Le starter kit comprend, en plus du programmateur proprement dit, un CD de programmes (MPLAB, MPASM, MPLAP-SIM) avec toute la documentation technique nécessaire, un câble RS232 pour le raccordement à un PC, une alimentation secteur et un échantillon de microcontrôleur PIC

PICSTARTPLUS 1696,00 F 1590 F'

Un compilateur sérieux est enfin disponible (en COMPILATEUR BASIC POUR PIC évidents : l'apprentissage des commandes est évidents : l'apprentissage des commandes est

8 bits. Avec ces softwares il est possible "d'écrire" un quelconque programme en utilisant des instructions Basic que le compilateur transformera en codes machine, ou en instructions prêtes pour être simulées par MPLAB ou en instructions transférables directement dans la mémoire du micro. Les avantages de l'utilisation d'un compilateur

PIC BASIC COMPILATEUR: Permet d'utiliser des fonctions de programmation avancées, commandes de saut (GOTO, GOSUB), de boucle (FOR... NEXT), de condition (IF... THEN...), d'écriture et de lecture d'une mémoire (POKE, PEEK) de gestion du bus I2E (I2CIN, I2COUT), de contrôle des liaisons séries (SERIN, SEROUT) et naturellement de toutes les commandes classiques du BASIC. La compilation se fait très rapidement, sans se préoccuper du langage machine.

PBC (Pic Basic Compiler)

immédiat; le temps de développement est considérablement réduit; on peut réaliser des programmes complexes avec peu de lignes d'instructions; on peut immédiatement réaliser des fonctions que seul un expert programmateur pourrait réaliser en assembleur. (pour la liste complète des instructions basic : www.melabs.com)

PIC BASIC PRO COMPILATEUR: Ajoute de nombreuses autres fonctions à la version standard, comme la gestion des interruptions, la possibilité d'utiliser un tableau, la possibilité d'allouer une zone mémoire pour les variables, la gestion plus souple des routines et sauts conditionnels (IF... THEN... ELSE...). La compilation et la rapidité d'exécution du programme compilé sont bien meilleures que dans la version standard. Ce compilateur est adapté aux utilisateurs qui souhaitent profiter au maximum de la puissance des PIC.

2070,00 F

DEMANDEZ NOTRE NOUVEAU CATALOGUE 32 PAGES ILLUSTRÉES AVEC LES CARACTÉRISTIQUES DE TOUS LES KITS NUOVA ELETTRONICA ET COMELEC Expéditions dans toute la France. Moins de 5 kg : Port 55 F. Règlement à la commande par chèque, mandat ou carte bancaire. Bons administratifs acceptés. Le port est en supplément. De nombreux kits sont disponibles, envoyez votre adresse et cinq timbres, nous vous ferons parvenir notre catalogue général.

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél : 04 42 82 96 38 - Fax 04 42 82 96 51 Internet : http://www.comelec.fr

RADIOCOMMANDE ET VIDÉO

RADIOCOMMANDE 32 CANAUX PILOTÉE PAR PC

Ce kit va vous permettre de piloter de votre PC, 32 récepteurs différents. Vous pouvez utiliser tous les récepteurs utilisant les circuits intégrés type MM53200 ou UM86409. Pour radiocommande. Très bonne portée. Le nouveau module AUREL permet, en champ libre, une portée entre 2 et 5 km. Le système utilise un circuit intégré codeur MM53200 (UM86409). Décrit dans ELECTRONIQUE n° 4.

FT 270/K ..Kit complet (cordon PC + Logiciel)317 F FT 270/M ..Kit complet monté avec cordon + log. 474 F AS433Antenne accordée 433 MHz99 F

RADIOCOMMANDE CODÉE 4 CANAUX (6561 COMBINAISONS)

Ce kit est constitué d'un petit émetteur et d'un récepteur capable de piloter deux ou quatre relais. Le récepteur est alimenté en 220 V, il possède une antenne télescopique et un coffret avec une face avant sérigraphiée.

LX1409	Kit emetteur complet	
	CI + comp. + pile + boîtier	127 F
LX1411/K2	Kit récepteur complet	
	version 2 relais (sans coffret)	423 F
LX1411/K4	Kit récepteur complet	
	version 4 relais (sans coffret)	471 F
MO1410	Coffret plastique avec sérigraphie	77 F

Les circuits imprimés peuvent être achetés séparément, consultez-nous!

FILTRE ÉLECTRONIQUE POUR CASSETTES VIDÉO

Ce kit vous permet de dupliquer vos cassettes. Ce filtre permet de réaliser des enregistrements de qualité en PAL comme en SECAM. Indispensable pour dupliquer correctement vos cassettes vidéo.

Décrit dans ELECTRONIQUE n° 3.

FT282/K	(Kit comp	et)398 F
)557 F

MODULATEUR UHF POUR TV SANS PRISE SCART (PÉRITEL)

Ce modulateur TV reçoit sur ses entrées un signal Vidéo et un signal Audio. Il dispose en sortie d'un signal (60 dBµV) qui peut être directement appliqué sur l'entrée antenne d'un téléviseur démunie de prise SCART.

LX1413 (Kit: composants, CI et boîtier)......143

CLÉ DTMF 4 OU 8 CANAUX

Pour contrôler à distance via radio ou téléphone la mise en marche ou l'arrêt d'un ou plusieurs appareils électriques. Elle est gérée par un microcontrôleur et munie d'une EEPROM. En l'absence d'alimentation, la carte gardera en mémoire toutes les informations nécessaires à la clé : code d'accès à 5 chiffres, nombre de sonneries, états des canaux, etc. Les relais peuvent

fonctionner en ON/OFF ou en mode impulsions. Le code d'accès peut être reprogrammé à distance. Interrogation à distance sur l'état des canaux et réponse différenciée pour chaque commande. Le kit 8 canaux est constitué de 2 platines : une platine de base 4 canaux et une platine d'extension 4 canaux. Décrit dans ELECTRONIQUE n° 1.

FT110K (4C en kit)	.395 F	FT110M (4C monté).	470 F
FT110EK (extension 4C))		68 F
FT110K8 (8C en kit)	.463 F	FT110M8 (8C monté)	590 F

TX ET RX CODÉS MONOCANAL

Pour radiocommande. Très bonne portée. Le nouveau module AUREL permet, en champ libre, une portée entre 2 et 5 km. Le système utilise un circuit intégré codeur MM53200 (UM86409). Décrit dans ELECTRONIQUE n° 1

LL	LOTTONIQUE II I.	
ICH IP	FT151K (émetteur en kit)	190 F
	FT152K (récepteur en kit)	
	FT151M (émetteur monté)	240 F
	FT152M (récepteur monté)	

FILTRE ÉLECTRONIQUE POUR MAGNÉTOSCOPES

En cas de duplication de vos images les plus précieuses, il est important d'apporter un filtrage correctif pour régénérer les signaux avant duplication. Fonctionne en PAL comme

en SECAM. Correction automatique des signaux de synchronisation vidéo suivants. Synchronisation : composite, verticale. Signal du burst couleur. Signal d'entrelacement. Permet aussi la copie des DVD.

LX1386/K	(kit complet	avec boîtier)473 F
LX1386/M	(kit monté)		699 F

CAMÉRA ÉTANCHE N&B TRÈS SENSIBLE

Une caméra de surveillance, étanche et robuste, qui saura vous protéger pendant longtemps, c'est la FR-129. Enfermée dans un boîtier cylindrique en aluminium épais, d'un diamètre de 28 mm pour une longueur de 102 mm, elle pèse 600 g. Elle est livrée avec un support de fixation à rotule, permettant une orientation facile dans toutes les directions. La FR-129 est également fournie avec un câble de liaison de 30 mètres, terminé

par des connecteurs RCA et une prise d'alimentation. Le bloc d'alimentation secteur est, par ailleurs, fourni avec la caméra. La FR-129 utilise un capteur "Hyper HAD CCD" de Sony et offre une résolution horizontale de 420 lignes TV. Très sensible, elle fonctionnera même en faible lumière (0,05 lux), de –15° C à +55° C. Etanche, elle résiste à 3 atmosphères. La consommation électrique est de 1,3 W.

FT-129Mod	dele noir et blanc	1 550 F
FT-130Mod	dèle couleur	2503 F

DÉTECTEURS DE MÉTAUX

Pour rechercher des pièces de monnaies ou tout objet métallique caché sous terre. Disponible en deux versions, économique (FR142) et professionnel (FR143). Les deux modèles disposent d'une sonde de recherche étanche. Caractéristiques techniques FR143:

Caractéristiques techniques FR142 :

- prise casque.
- manche réglable en longueur
- alim.: 6 x 1.5V (batteries non comprises)
- poids : 1 kg
- Dim. : 67 x 18 x 11,5 cm.

FR142.....699 F

- prise casque.
- manche réglable en longueur
- alim.: 3 x 9 V (batteries non comprises).
- poids : 2,5 kg
- Dim. : 72 x 23 x 16 cm.
- Discriminateur à trois sons, discriminateur pour terrain ferreux.

Discriminateur de métaux ferreux et non ferreux.

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél : 04 42 82 96 38 - Fax 04 42 82 96 51 Internet : http://www.comelec.fr

CARTES MAGNETIQUES ET CARTES À PUCE

Dispositifs réalisés avec différentes technologies pour le contrôle d'accès et l'identification digitale.

Lecteurs/enregistreurs de cartes magnétiques

MAGNÉTISEUR MANUEL

Programmateur et lecteur manuel de carte. Le système est relié à un PC par une liaison série. Il permet de travailler sur la piste 2, disponible sur les cartes standards ISO 7811. Il est alimenté par la liaison RS232-C et il est livré avec un logiciel.

MAGNÉTISEUR MOTORISÉ

alimenté en 220 V et il est livré avec son logiciel.

PRB33...... 10500 F

LECTEUR À DÉFILEMENT

Le dispositif contient une tête magnétique et un circuit amplificateur approprié capable de lire les données présentes sur la piste ISO2 de la carte et de les convertir en impulsions digitales. Standard de lecture ISO 7811; piste de travail (ABA);

méthode de lecture F2F (FM); alimentation 5 volts DC; courant absorbé max. 10 mA; vitesse de lecture de 10 à 120 cm/sec.

Programmateur et lecteur de

carte motorisé. Le système

s' interface à un PC et il est

en mesure de travailler sur

toutes les pistes disponibles

sur une carte. Standard utilisé ISO 7811. Il est

LECTEUR AVEC **SORTIE SÉRIE**

Nouveau système modulaire de lecteur de carte avec sortie série : étudié pour fonctionner avec des

lecteurs standards ISO7811. Vous pouvez connecter plusieurs systèmes sur la même RS232 : un commutateur électronique et une ligne de contrôle permettent d'autoriser la communication entre le PC et la carte active, bloquant les autres.

FT221..... Kit complet

(avec lecteur + carte) 590 F

CARTES MAGNETIQUES

Carte magnétique ISO 7811 vierge ou avec un code inscrit sur la piste 2.

Carte vierge.....BDG01BDG01

Carte progr. pour FT127 et FT133 DG01/M9 F

CONTRÔLEUR D'ACCÈS À CARTE

Lecteur de cartes magnétiques avec autoapprentissage des codes mémorisés sur la carte (1.000.000 de combinaisons possibles). Composé d'un lecteur à « défilement » et d'une carte à microcontrôleur pilotant un relais. Possibilité de mémoriser 10 cartes différentes. Le kit comprend 3 cartes magnétiques déjà program-mées avec 3 codes d'accès différents.

FT127/K..... Kit complet (3 cartes + lecteur) 507 F

Recherchons revendeurs - Fax: 04 42 82 96 51

LECTEUR / ENREGISTREUR DE CARTE À PUCE 2K

FT269/K	Kit carte de base	321 F
FT237/K	Kit interface	74 F
CPCK	Carte à puce 2K	35 F

PROTECTION POUR PC AVEC CARTE À PUCE

Ce dispositif utilisant une carte à puce permet de protéger votre PC. Votre ordinateur reste bloqué tant que la carte n'est pas introduite dans le lecteur. Le kit comprend le circuit avec tous ses composants, le micro déià programmé, le lecteur de carte à puce et une carte de 416 bits.

FT187	Kit complet	317 F
CPC416	Carte à puce de 416 bits	35 F

MONNAYEUR À CARTE À PUCE

Monnayeur électronique à carte à puce 2 Kbit. Idéal pour les automatismes. La carte de l'utilisateur contient : le nombre de crédits (de 3 à 255) et la durée d'utilisation de chaque crédit (5 à 255 secondes). En insérant la carte dans le lecteur, s'il reste du crédit, le relais s'active et reste excité tant que le crédit n'est pas égal à zéro ou que la carte n'est pas retirée. Ce kit est constitué de trois cartes, une platine de base (FT288), l'interface (FT237) et la platine de visualisation (FT275). Pour utiliser ce kit, vous devez posséder les cartes "Master" (PSC,

FT288...... Kit carte de base 305 F CPC2K-MP Master PSC..... 50 F CPC2K-MC Master Crédit 68 F

Crédits, Temps) ou les fabriquer à l'aide du kit FT269.

Un lecteur de cartes magnétiques avec sortie RS232C

Le système que nous vous proposons dans cet article est étudié pour fonctionner avec les lecteurs de cartes magnétiques ISO781 grâce à un simple bus à trois fils. Il est possible de connecter plusieurs dispositifs sur une seule entrée série RS232C. Un commutateur électronique et une ligne de contrôle permettent d'autoriser la communication entre l'ordinateur et la carte en cours d'acquisition des données, en bloquant les autres. La sortie fournit une liaison pour chaque lecture en ajoutant éventuellement une identification de l'unité concernée.

Ce n'est pas par hasard, si nous trouvons aujourd'hui une myriade de portes, de tourniquets (accès métro), de barrières ainsi que des services comme le téléphone, les caisses de supermarché, etc., chacun fonctionnant avec une carte.

Le développement de ces systèmes nous a conduits à parler plusieurs fois de ce sujet, en proposant des circuits adaptés pour lire des codes plus ou moins longs sur des Pour pouvoir décoder les données avec un ordinateur, nous avons décrit des circuits à microcontrôleur capables de gérer les informations lues par le lecteur de carte pour les envoyer ensuite, par l'intermédiaire d'un convertisseur adéquat, sur le port série de ce dernier.

Jusqu'à présent, nous nous étions limités à des interfaces conçues pour utiliser un seul lecteur par ordinateur. Mais, dans la pratique, nous rencontrons des situations pour lesquelles il devient nécessaire d'acquérir des données en provenance de plusieurs lecteurs. C'est le cas lorsque, par

Figure 1 : Schéma électrique du lecteur de cartes magnétiques avec sortie RS232C.

exemple, nous devons contrôler trois ou quatre tourniquets ou un certain nombre de portes à accès réglementé. C'est également le cas lorsque l'on veut pouvoir superviser des opérations exécutées loin de l'emplacement de contrôle.

Dans tous ces cas, il est impensable de devoir utiliser un ordinateur par point de lecture, ou de devoir introduire dans un seul ordinateur autant de cartes série qu'il y a de lecteurs. Notre solution prévoit ainsi une unité de commande principale et quelques artifices sur les platines de lecture. En substance, rien n'est changé dans le programme ni dans le mode d'acquisition des données par l'ordinateur. Ce dernier recoit les trains d'impulsions contenant les données lues sur la carte magnétique avec, en plus, les codes indiquant quelle est la platine active au moment de la lecture.

Notre circuit d'interface dispose d'un double interrupteur électronique sur les canaux TXD et RXD du port série du PC de façon à se désactiver lorsque c'est un autre appareil qui fonctionne. En outre, avec le système proposé, un seul ordinateur peut permettre de gérer jusqu'à 64 platines de lecture qui lui sont raccordées par un bus de trois fils. Deux lignes représentent la liaison série émission et réception et la troisième, la validation du port série. Le microcontrôleur de chaque unité détermine la priorité et désactive la ligne série, en laissant exclusivement la

connexion entre l'ordinateur et la platine en lecture à ce moment là. Ce système est sûr et fiable car il est structurellement simple. En effet, il n'y a pas d'unité de contrôle et chaque circuit se gère tout seul.

Description du fonctionnement

Voyons à présent de quelle façon le système fonctionne. Le schéma électrique, donné en figure 1, décrit l'interface du lecteur de carte. Elle est étudiée pour fonctionner avec des dispositifs de lecture manuelle de la société KDE (KDR1000). Les trois lignes pour la connexion avec ce dernier (CLS, PCL, RPD) vont directement

à trois broches du port A du microcontrôleur U3. L'alimentation +5 volts par rapport à la masse (–) est prélevée à la sortie du régulateur intégré U4. Le microcontrôleur utilisé est un ST62T65.

A ce microcontrôleur est connectée une série de dip-switchs dont le rôle est de différencier une unité par rapport aux autres. En pratique, nous avons un dip-switch à 8 interrupteurs qui correspondent à autant de broches (configurées en entrées) de U3. Les 6 premiers interrupteurs (1 à 6, raccordés aux broches 16, 17, 18, 19, 28, 26) servent à donner un "nom" au circuit en lui attribuant un identifiant qui sera ensuite transmis en série avec les données lues sur la carte magnétique. Cela permet d'indiquer à l'ordinateur de

Le jeu de caractères des cartes magnétiques

	Bits		Code	Caractère		
Р	b4	b3	b2	b1	Code	Caractere
1	0	0	0	0	0	0
0	0	0	0	1	1	1
0	0	0	1	0	2	2
1	0	0	1	1	3	3
0	0	1	0	0	4	4
1	0	1	0	1	5	5
1	0	1	1	0	6	6
0	0	1	1	1	7	7
0	1	0	0	0	8	8
1	1	0	0	1	9	9
1	1	0	1	0	10 (A)	а
0	1	0	1	1	11 (B)	SS
1	1	1	0	0	12 (C)	а
0	1	1	0	1	13 (D)	SEP
0	1	1	1	0	14 (E)	а
1	1	1	1	1	15 (F)	ES

Le tableau illustre le protocole de lecture et d'écriture de la piste magnétique ISO2, qui présente une densité de 29,5 bits/cm et une capacité maximale de 40 caractères.

Chacun d'eux est représenté par l'ensemble de 5 bits.

Les quatre premiers, nommés b1 à b4, expriment vraiment le caractère, le dernier est utilisé pour le contrôle de la parité.

Les six symboles restants sont utilisés comme codes de contrôle.

quelle unité arrivent les données. Pour ce qui est du code, un interrupteur fermé correspond à un niveau logique 0, ouvert, à un niveau logique 1.

Avec ces 6 bits disponibles, il est possible d'exploiter un maximum de 64 combinaisons, ce qui permet donc d'utiliser 64 lecteurs. Les possibilités d'utilisation sont nombreuses, même avec la limitation du nombre de circuits, étant donné que, dans la pratique, rares sont les cas où il faille gérer plus de 64 lecteurs! Il faut également considérer que si 64 appareils étaient montés en parallèles, les capacités parasites des circuits intégrés commenceraient à devenir importantes et dégraderaient les fronts montants des signaux. Dans le cas présent, il n'y a pas de gros problèmes mais, par contre, cela pourrait s'amplifier avec un nombre plus élevé de lecteurs.

Toujours à propos du dip-switch DS1, le huitième interrupteur sert à préciser si l'on doit activer ou désactiver l'envoi du code d'identification vers l'ordinateur. Fermé pour activer, ouvert pour désactiver. Si l'envoi du code est activé, à chaque train d'impulsions le microcontrôleur ajoute aux données lues sur

la carte magnétique le code binaire correspondant à l'unité en fonctionnement, qui est le code imposé avec les 6 premiers dip-switchs.

Notre platine dispose de deux connecteurs, un à 25 points, pour la liaison série avec l'ordinateur et un second à 5 points pour la connexion avec le lecteur. A propos de ce dernier, précisons que le circuit utilise un lecteur du commerce, fabriqué par KDE, précisément le modèle LSB12. Ce dispositif est composé d'un coffret en plastique muni d'une fente dans laquelle la carte magnétique est glissée. A l'intérieur du capteur, nous trouvons une tête magnétique et un circuit d'amplification, permettant de lire les données présentes sur la piste ISO2 du badge et de les convertir en impulsions numériques. Le lecteur est alimenté par une tension de 5 volts et dispose de trois points de sortie pour les signaux. Sur le schéma, ces points sont nommés "A", "B" et "C". Ils coïncident respectivement avec les lignes CLS (Card Loading Signal), RCL (Read Clock) et RDP (Read Data Pulse).

Voyons en détail la signification de ces sigles.

- La ligne CLS indique la présence ou non d'une carte dans le lecteur. Lorsqu'une carte est présente devant la tête de lecture, CLS est au niveau bas (0).
- La ligne RCL représente l'horloge des données en sortie. En pratique cette broche est au niveau logique bas (0) lorsqu'elle détecte la présence d'un bit sur la piste magnétique d'une carte.
- La ligne RDP indique la donnée. Elle exprime ainsi l'état du bit lu sur la carte. L'indication fournie dans cette situation est l'inverse du cas de la lecture : si la donnée est à 1, la ligne présente un niveau logique bas (0), dans le cas contraire (donnée à 0), le niveau est haut (1).

En conclusion, lorsque nous glissons une carte dans la fente de lecture, sur les trois lignes nous trouvons un train d'impulsions correspondant aux données mémorisées sur le badge. Tous ces signaux sont lus par le microcontrôleur qui les mémorise temporairement dans son espace mémoire interne RAM. A ce point, il active la ligne de priorité en portant au niveau logique bas (0) la broche 8 et par là même la sortie "LINE CONTROL" (ligne de contrôle), commune à toutes les unités. Simultanément, les microcontrôleurs des autres unités, relèvent la situation par l'intermédiaire de leur broche 9 (entrée de priorité) et s'inhibent, ou bien traitent et mémorisent les données en provenance de leurs lecteurs respectifs, afin de les transmettre dès que la ligne aura été libérée.

Notez une particularité: pour simplifier le bus et utiliser un fil seulement, nous avons réuni l'entrée et la sortie de priorité du microcontrôleur. Ceci est possible car le port PB6 étant à collecteur ouvert, il peut fournir tout seul un niveau logique bas en utilisant la résistance R8 comme résistance de pull-up pour maintenir, au repos, l'entrée PB7 à un niveau haut. De cette façon, on utilise une seule ligne pour communiquer avec les unités connectées et pour recevoir la demande de priorité.

Pour mieux comprendre ce type de fonctionnement, considérons ce qu'il advient en imaginant avoir un certain nombre de dispositifs, tous reliés par les lignes "TXD" et "RXD" (broche 2 et 3 du connecteur série) et par la ligne "LINE CONTROL" (ligne de contrôle).

Voyons, en premier lieu, les caractéristiques des broches 8 et 9.

La première (PB6) fonctionne en sortie à collecteur ouvert et se met au zéro logique lorsque le lecteur de badge,

L'unité de lecture manuelle

Le circuit proposé dans cet article utilise comme clé un lecteur commercial produit par la société KDE, dont voici les principales caractéristiques :

Standard de lecture : ISO 7811
Piste de travail : ISO 2 (ABA)
Méthode de lecture : F2F (FM)
Alimentation : 5 volts
Consommation maximale : 10 mA

Vitesse de lecture : de 10 à 120 cm/sec Durée de vie de la tête de lecture : < 300 000 lectures Température de fonctionnement : de 0 à 50° C

Dimensions : E 30 mm x L 99 mm x H 29 mm

Poids : 45 grammes

Le logiciel

La gestion de chaque unité de lecture et confiée a un microcontrôleur ST6 de SGS-Thomson, convenablement programmé pour exécuter les fonctions illustrées dans l'organigramme. Comme on peut l'observer, après la mise en service et la remise à zéro initial, le microcontrôleur procède à l'initialisation des I/O (entrées, sorties) broches 16, 17, 18, 19, 28, 26, 25, 24 en les définissant en entrées avec des résistances de pull-up (maintient d'un niveau haut) et comme des entrées normales pour les broches 5, 9, 13, 14, 15. Les sorties PBO, PB2 et PB6 (broches 1, 4, 8) sont du type collecteur ouvert, PB1 est actif et il en est de même pour les broches 6 et 10 (respectivement PB4 et PA0). Après cette phase, les ports PBO et PB2 passent au niveau bas pendant une seconde allumant ainsi les deux LED, LD1 et LD2. Simultanément, la broche 2 passe au niveau haut (1 logique), ce qui permet à T1 de devenir conducteur et au buzzer d'émettre un bip d'une seconde. A partir de ce moment, tout est prêt pour fonctionner. Le logiciel attend le signal de la présence d'une carte dans le lecteur, ou bien un front descendant sur la broche 15 du microcontrôleur (ligne CLS). Lorsque cela arrive, le microcontrôleur vérifie la présence de l'impulsion d'horloge et autorise la lecture de la bande magnétique. S'il venait à manguer quelque chose ou si les données présentes étaient déformées par rapport au standard, la procédure de lecture serait suspendue. Par contre,

si les données sont valides, le microcontrôleur attend les caractères, chacun formé de 5 bits. Ensuite, il les convertit en un nombre décimal et procède au contrôle de la parité. L'opération est répétée jusqu'à la lecture des 40 caractères (ce que peut contenir une piste ISO7811-2) et chaque caractère valide est converti dans sa valeur correspondante en ASCII, puis sauvegardé en RAM. Les groupes de 5 bits (caractères) non valides ou altérés activent l'inscription du message "nul" en RAM, dans la position correspondante. Le contrôle des données et leur mémorisation terminés, la routine de transmission sur le port série est appelée, comme cela est représenté sur l'organigramme.

La transmission série

L'acquisition des données envoyées par le lecteur de badge terminée, le microcontrôleur vérifie l'état de la ligne de contrôle (broche 9); ainsi, si elle est au niveau haut, il sélectionne le bus en mettant au zéro logique la broche 8. A ce point, il vérifie l'état de l'interrupteur 8 du dip-switch et si ce dernier est ouvert, il active la transmission série sur la broche 10; si l'interrupteur est fermé, le microcontrôleur ajoute au message série, le code

de la carte, sélectionné par l'intermédiaire des interrupteurs DS1 à DS6. Après transmission du train d'impulsions un bip est émis et la LED verte est allumée, indiquant que la procédure de transmission s'est déroulée avec succès. Nous reportons ci-dessous le listing d'un programme en QBASIC en mesure de lire un train de 41 caractères sur le port série et de l'afficher sur l'écran du moniteur.

```
REM CARD READER WITH LINE-CONTROL
REM (C) 1998 BY FUTURA ELETTRONICA SNC
CLS
OPEN "com1:300,N,8,1" FOR RANDOM AS #1
LABEL1:
          C$ = INPUT$(41, #1)
          CLS
          C = ASC(LEFT\$(C\$, 1))
          C$ = RIGHT$(C$, 40)
          CLS
          LOCATE 14, 15: PRINT "CODE CARTE ="
          LOCATE 14, 33: PRINT C$
          LOCATE 15, 15: PRINT "CODE CIRCUIT ="
          LOCATE 15, 32: PRINT C; : PRINT " "
GOTO LABEL1
CLOSE #1
```

REM QBASIC PROGRAM FOR SERIAL SMART

Pour étalonner notre lecteur de badge, il faut charger dans le PC le listing en QBASIC transcrit ici. Notez que le programme procède à l'extrapolation du

END

train de 41 caractères, le premier à gauche, qui coïncide avec le code de la platine sélectionnée par l'intermédiaire des dip-switchs.

relié à son microcontrôleur, envoie des données. Ainsi, elle détecte la présence d'une carte. Elle s'active ensuite si l'entrée PB7 n'a pas déjà été excitée en premier.

La seconde (PB7) est une entrée compatible TTL. Portée au niveau logique zéro elle demande au microcontrôleur de ne pas activer la transmission jusqu'à ce que le lecteur reçoive une carte.

Maintenant que nous avons compris la gestion de la priorité, voyons ce qu'il advient dans le dispositif qui prend la communication et dans ceux qui, par conséquent, sont inhibés.

Ayant à disposition un port série, celui de l'ordinateur, toutes les lignes TXD et RXD des circuits sont reliées entre elles par deux fils, qui aboutissent sur les broches 2 et 3 du connecteur DB25 femelle, unique pour tous les appareils. L'activation de la ligne de contrôle (LINE CONTROL) force les microcontrôleurs des différentes unités à désactiver la communication. Autrement dit, à mettre au niveau logique zéro la broche 6 (PB4, configuré comme sortie), désactivant ainsi deux des quatre interrupteurs CMOS contenus dans le CD4016 référencé U1. Cela permet d'isoler du connecteur les lignes d'émission et de réception dédiées au convertisseur TTL/RS232C (U2) un MAX232. Naturellement ceci se produit pour tous les lecteurs, sauf pour celui qui, en premier, a reçu les données de son lecteur de badge. En effet, ayant déjà mis au niveau bas la ligne de contrôle, il ignore l'état de cette ligne en entrée et laisse actif l'interrupteur CMOS concerné, étant donné qu'il doit envoyer les données sur le port série RS232C.

Cela se passe de façon simple et transparente. Quand un lecteur reçoit une carte, il commande la ligne CLS en la maintenant au niveau logique zéro, puis il envoie les données qu'il lit sur la bande magnétique sous forme série sur la ligne RDP (Read Data Pulse) parfaitement synchronisées avec l'horloge présente sur la RCL (Read Clock). Le microcontrôleur acquiert les données et, si elles sont reconnues valides, les mémorise en RAM après les avoir converties en caractères ASCII. A ce point, le microcontrôleur s'assure que le bus n'est pas occupé et si cela est vérifié, il l'utilise pour charger les données dans la RAM de l'ordinateur par le port série.

Les données issues de la broche 10 du microcontrôleur U3 sont converties en niveaux RS232C du type +12 V / -12 V

par le circuit intégré U2, un MAX232 de la société Maxim, conçu spécialement pour cet usage. En réalité, ce circuit a deux sections et ne fait pas seulement la conversion TTL/RS232C, mais également le contraire (RS232C/TTL). La partie RS232C/TTL de la ligne de réception est reliée à la broche 5 du micro-

contrôleur. Toutefois, il faut noter que, pour l'instant, la réception n'est pas utilisée. Notre système n'attend donc pas de réponse de l'ordinateur.

La section de commutation, autrement dit la section de connexion et de déconnexion des lignes de données, est réalisée avec un commutateur électronique U1, un CD4016, dont les broches de contrôles sont directement gérées par la sortie PB4 du microcontrôleur ST6265. Lorsque les broches 6 et 12 sont au niveau haut, les interrupteurs CMOS internes au circuit intégré sont conducteurs et

Figure 2 : Plan d'implantation des composants du lecteur de cartes.

Figure 3 : Dessin du circuit imprimé du lecteur de carte, échelle 1.

Liste des composants

R1 $4.7 k\Omega$ R2 $1 k\Omega$ R3 $100 \text{ k}\Omega$ R4 $1 k\Omega$ R5 $1 k\Omega$ R6 $22 k\Omega$ R7 $22 \text{ k}\Omega$ R8 $220 \text{ k}\Omega$

C1 : 100 nF multicouche C2 : 470 μ F 35 V chimique C3 : 1 μ F 50 V chimique

C3 : $1 \mu F 50 V$ chimique C4 : $1 \mu F 50 V$ chimique C5 : $1 \mu F 50 V$ chimique C6 : $1 \mu F 50 V$ chimique C7 : $1 \mu F 50 V$ chimique C8 : $22 \mu F$ céramique C9 : $22 \mu F$ céramique C10 : $220 \mu F$ 16 V chimique

C11 : 100 nF multicouche
C12 : 4,7 nF céramique
C13 : 100 nF multicouche
C14 : 100 µF 25 V chimique
D1 : Diode 1N4007
D2 : Diode 1N4148

DZ1 : Diode zener 12 V 1/2 W
U1 : Circuit intégré HCF4016B
U2 : Circuit intégré MAX232
U3 : µcontrôleur ST62T65B

(MF221)

U4 : Régulateur de tension

7805

DS1: Dip-switch

8 interrupteurs

Q1 : Quartz 6 MHz

BZ : Buzzer sans électronique T1 : Transistor NPNBC547B LD1 : LED rouge 5 mm LD2 : LED verte 5 mm

LD2 : LED verte 5 mm BADGE : Lecteur manuel de carte magnétique mod. LSB12

Divers:

- Bornier 3 emplacements (2 pièces)
- Support 14 broches
- Support 16 broches
- Support 28 broches
- Connecteur 25 broches femelle mod. Canon pour circuit imprimé
 Prise alimentation pour circuit
- Prise alimentation pour circuit imprimé
- Circuit imprimé réf. S221.

Sauf spécification contraire, toutes les résistances sont des 1/4 W à 5 %.

présentent une résistance de quelques centaines d'ohms. Si ces mêmes broches sont au niveau bas, les interrupteurs sont ouverts et la résistance entre les points 10/11 et 8/9 et de plusieurs dizaines de millions d'ohms. Notez que les interrupteurs CMOS peuvent êtres tranquillement utilisés avec des niveaux RS232C car ils fonctionnent indépendamment des niveaux et de leur nature. En somme, ils commutent des impulsions logiques et non des signaux linéaires.

Pour ce qui concerne l'alimentation, chaque unité demande 12 à 15 volts avec un courant d'environ 150 milliampères. La diode D1 protège l'ensemble contre les inversions de polarité accidentelles. Le régulateur intégré U4 stabilise à 5 volts la tension de fonctionnement de la partie logique. La tension d'alimentation filtrée par les condensateurs C1 et C2, est appliquée directement sur le buzzer BZ qui sonne chaque fois qu'une carte est lue et que le format des données est valide et compatible avec le modèle standard mémorisé dans le microcontrôleur. La diode zener DZ1, avec laquelle est obtenu un potentiel stable à travers la résistance R1, garde au niveau haut la ligne de transmission de la platine lorsque l'interrupteur CMOS U1 est désactivé.

En pratique

Après avoir décrit tout ce qu'il est utile de savoir du fonctionnement du circuit, voyons comment réaliser une unité, étant entendu que pour en réaliser d'autres, il suffit de suivre les mêmes instructions et d'interconnecter ensuite les lignes 2 et 3 du connecteur série, sans oublier le point LINE CONTROL de chacune d'elles. A ce propos, vous observerez que les liaisons entre les platines et le PC sont effectuées avec un ou plusieurs câbles qui ne font pas l'inversion entre les broches 2 et 3 de la sortie série.

En figure 2, vous trouverez le plan d'implantation des composants qui prennent tous place sur le circuit imprimé S221 donné à l'échelle 1 en figure 3. Vous pouvez réaliser ce dernier selon votre méthode habituelle ou l'acquérir prêt à l'utilisation (voir publicités dans la revue).

Une fois en possession de votre circuit, vous pouvez monter les composants en commençant par les résistances et les diodes, pour lesquelles il est impératif de respecter la polarité

PIN	LIGNE	E/S	DESCRIPTION
1	PB0	OUT	LED rouge
2	PB1	OUT	Buzzer
3	TEST	IN	GND
4	PB2	OUT	LED verte
5	PB3	IN	RX RS232C
6	PB4	OUT	Autoris. RS232
7	PB5	-	N.C.
8	PB6	OUT	Line control
9	PB7	IN	Line control
10	PAO	OUT	TX RS232C
11	Vdd	-	+5V
12	Vss	-	GND
13	PA1	IN	RDP badge
14	PA2	IN	PCL badge
15	PA3	IN	CLS badge
16	PA4	IN	DS1-1 Bit0 cod.
17	PA5	IN	DS1-2 Bit1 cod.
18	PA6	IN	DS1-3 Bit2 cod.
19	PA7	IN	DS1-4 Bit3 cod.
20	OSC	IN	Oscillator
21	OSC	OUT	Oscillator
22	RST/	IN	Reset
23	NMI	IN	Interrupt
24	PC4	IN	DS1-8
			ON Autoris.
			TX serial
25	PC3	IN	DS1-7
26	PC2	IN	DS1-6 Bit5 cod.
27	PC1	-	N.C.
28	PC0	IN	DS1-5 Bit4 cod.

Notre lecteur contient un microcontrôleur qui s'occupe de toutes les fonctions logiques. Le tableau indique la signification de chaque broche de ce circuit intégré.

indiquée sur le plan d'implantation des composants. Montez ensuite les supports des circuits intégrés en orientant leur repère-détrompeur dans le sens indiqué clairement sur le schéma d'implantation des composants. Poursuivez le montage par le dip-switch à 8 interrupteurs, les condensateurs (en veillant à la polarité des électrolytiques), les deux LED, le quartz, le transistor T1 et le régulateur. Pour ces deux derniers, il faut respecter le sens indiqué. Il reste à présent à terminer le montage par la mise en place du buzzer (attention à la polarité), du connecteur 25 points femelle pour circuit imprimé et des borniers à vis permettant la liaison du lecteur et de l'alimentation. Prenez les circuits intégrés et insérez-les dans leur support respectif, en veillant à ne pas plier malencontreusement leurs broches. Le microcontrôleur ST6265 est préprogrammé et porte la référence MF221 (voir publicité dans la revue).

A présent, le circuit est prêt et pour le compléter il suffit de lui relier le lecteur de cartes. Vous pouvez alimenter le montage en le reliant à une alimentation de 12 à 15 volts, pouvant débiter 150 milliampères. Si tout a été correctement monté, les deux LED doivent s'allumer environ une seconde et le buzzer doit émettre un bip. Ensuite, tout passe au repos et le lecteur est prêt pour lire la première carte.

Avant d'utiliser le système, il faut positionner les interrupteurs du dip-switch. Pour cela, coupez l'alimentation. Il faut décider ce que vous voulez faire. Si vous utilisez un seul lecteur, le code est superflu, vous pouvez donc laisser ouvert le huitième interrupteur du dipswitch. En faisant cela, à chaque lecture sur le port série, seul le contenu de la piste magnétique de la carte sera envoyé à l'ordinateur.

Si vous disposez de plusieurs unités, ou si vous voulez tout simplement envoyer le code d'identification à l'ordinateur, il faut fermer le huitième interrupteur du dip-switch, et positionner les 6 premiers pour obtenir la combinaison voulue.

Naturellement, l'utilisation d'un nombre de dispositifs supérieur à l'unité requiert la mise en parallèle de tous les points relatifs aux broches 2 et 3 du connecteur du port série. De façon analogue, reliez tous les points LC (LINE CONTROL). A ce propos, si les unités sont distantes entre elles de plus de quelques mètres, nous vous conseillons d'utiliser du câble coaxial avec son blindage (tresse métallique) reliée à la masse, afin d'éviter les interférences qu'elles pourraient générer en fonctionnement.

A lire ou à relire

Jeu de piste. ELM n° 1, pages 70 et suivantes.

Contrôleur d'accès à carte magnétique. ELM n° 2, pages 64 et suivantes.

Où trouver les composants

Comme pour toutes les réalisations qui vous sont proposées dans nos colonnes, un kit complet (FT221) ou le circuit imprimé (S221), le microcontrôleur préprogrammé (MF221), le lecteur de cartes magnétiques (LSB12), les cartes (DBG01M) ainsi que tous les composants sont disponibles. Voir publicités dans la revue.

♦ C. V.

Pour le contrôle et l'automatisation industrielle, une vaste gamme parmi les centaines de cartes professionnelles

QTP 24 Quick Terminal Panel 24 touches Panneau opérateur professionnel, IP 65, à bas prix, avec 4 différents types de Display, 16 LED, Buzzer, Poches de

personnalisation, Série en RS232, RS422, RS485 ou Current Loop; Alimentateur incorporé, E2 jusqu'à 200 mes-

sages, messages qui défilent sur le display, etc. Option pour lecteur de cartes magnétiques, manuel ou motorisé, et relais. Très facile à utiliser quel que soit l'environnement.

2.401,91 FF 366,17€

GPC® 153

Aucun système de développement extérieur n'est nécessaire. 84C15 de 10 MHz compatible Z80. De très nombreux langages de programmation sont disponibles comme FGDOS. PASCAL, C, FORTH, BASIC, etc. Il est capable de piloter directement le Display LCD et le clavier. Alimentateur incorporé et magasin pour barre à Omega. 512K RAM avec batterie au lithium, ; 512K FLASH ; 16 lignes de I/O TTL , 8 lignes de A/D converter de 12 bits ; Counter et Timer ; Buzzer ; 2 lignes série en RS 232, RS 422, RS 485, Current Loop; RTC; E2 en série ; connecteur d'expansion pour Abaco® I/O BUS ; Watch-Dog ; etc. Il programme directement la FLASH de bord avec le programme de l'utilisateur. 1.683,71 FF 256,68€

GPC® 11

68HC11A1 avec quartz de 8MHz ; absorption très basse. Il ne

consume que 0,25 W. 2 socles pour 32KRAM; 32K EPROM et module

de 8K RAM+RTC : E2 à l'intérieur de CPU, 8 lignes A/D; 32 I/O TTL, RS 232, RS 422 ou RS 485, Watch-Dog; Timer; Counter; etc. Alimentateur incorporé de 220Vac. Idéal pour le combiner au tool de développement logiciel ICC-11 ou Micro-C. 1.317.83 FF 200.90€

GPC® 184

General Purpose Controller Z180

Carte de la Série 4 de 5x10 cm avec CPU Z180 avec quartz de 20MHz code compatible Z80 ; jusqu'à 512K RAM, ; jusqu'à 512K FLASH avec gestion de RAM-ROM, DSK; RTC avec botterie au Lifnium ; connecteur botterie au Lifnium externe ; 2 lignes sérielles : une RS 232 plus une RS232, RS422, RS485 ou Current-Loop ; Warlch-Dog ; Timer (Registre d'horloge) ; Counter (Comptage) ; etc. Elle programme directement la Flash de bord par le OS FGDOS offert en promotion GRATUITEMENT sur cette carte. Connecteur d'expansion pour Abaco® I/O BUS; montage en Piggy-Back. De nombreux outils de logiciel comme PASCAL, C, BASIC, etc.

823,22 FF 125,50€

GPC® 15R

Aucun système de développement extérieur n'est nécessaire. 84C15 avec quartz de 20MHz, Z80 compatible. De très nombreux langages de programmation sont disponibles comme PASCAL, C, FORTH, BASIC Compiler, FGDOS, etc. Il est capable de piloter directement le Display LCD et le clavier. Double alimentateur incorporé et magasin pour barre à Omega. Jusqu'à 512K RAM avec batterie au lithium et 512K FLASH, Real Time Clock ; 24 lignes de I/O TTL ; 8 relais ; 16 entrées optocouplées ; 4 Counters optocouplés ; Buzzer ; 2 lignes série en RS 232, RS 422, RS 485, Current Loop; connecteur pour expansion Abaco® I/O BUS; Watch Dog ; etc. Grâce au système opérationnel FGDOS, il gère RAM-Disk et ROM-Disk et programme directement la FLASH de bord avec le progra 3.181,09 FF

GPC® AM4

Carte de la Série 4 de 5x10 cm avec CPU Atmel ATmega 103 de 5,52MHz avec 128K FLASH; 4K RAM et 4K EEPROM internes plus 32K RAM externes. 16 lignes de I/O; Timer/Counter; 3 PWM; 8 A/D de 10 bit; RTC avec batterie au Lithium ; 1 sérielles en RS232; RS422; RS485 ou Current Loop; Watch Dog; Connecteur pour Abaco® I/O BUS; montage en Piggy Back ; programmation de la FLASH en ISP compatible Equinox ; etc. Outils de logiciel comme BASCOM, Assembler, Compilatore C, PASCAL, etc.

935.02 FF

SCAL

Environnement complet de développement integré pour language PASCAL pour Windows 95, 98 ou NT. Cet compilateur est compatible avec le très puissant Borland DELPHI. Il génère un code optimisé qui occupe très peux d'espace. Il a aussi un simulateur très rapide. Cet compilateur permet l'integration des sources PASCAL avec l'Assembler. Le Demo est disponible sur notre web-site. Le compi lateur est disponible dans la version pour Z80 et Z180; 68HC11; ATMEL AVR; 1.243.30 FF

PIKprog - 51&AVRprog

Programmateur, à Bas Prix, pour µP PIC ou pour MCS51 et Atmel AVR. Il est de plus à même de programmer les EEPROM sérielles en IIC, Microwire et SPI. Fourni avec logiciel et alimento 1.134,89 FF 173.00€

ICEmu-51/UNI

Puissant In-Circuit Emulator professionnel en Real-Time de type Universel, pour la famille de µP 51 jusqu'à 42 MHz d'émulation. Large disponibilité de Pod, pour les différents µP, à partir des 51 génériques ; Dallas ; Siemens ; Philips ; Intel ; Oki ; Atmel ; etc. Trace memory ; Breakpoints ; Debugger à haut niveau ; etc.

formant un seul dispositif solide. On peut les piloter directement, au moyen d'un adaptateur PCC-A26, depuis la porte parallèle du PC.

GPC® 323D

Dallas 80C320 extrêmement rapide de 22 ou 33MHz. Aucun système de développement n'est nécessaire et avec FM052 on peut de programmer la FIASH avec le programme utilisateur; 32KRAM; 3 socles pour 32K RAM, 32K EPROM et 32K RAM, EPROM ou EEPROM; RTC avec batterie au lithium; E² en série; connecteur pour batterie au lithium extérieure, 24 lignes de I/O; 11 lignes de A/D de 12 bits ; 2 lignes série ; une RS 232 plus un RS 232, RS 422, RS 485 ou Current-Loop; Watch-Dog Counter; Connecteur d'expansion pour Abaco® I/O BUS; Alimentateur incorporé, etc. De nombreux tools de développement de logiciel avec des langages à haut niveau. 1.344,93 FF 203

Compilateur Micro-C

DDS Micro-C. Grand choix de Tools, à bas prix, pour le Développement Logiciel pour les µP de la fam. 68HC08, 6809, 68HC11, 68HC16, 8080, 8085, 8086, 8096, Z8, Z80, 8051, AVR, etc. Vous trouverez des assembleurs, des compilateurs C, des Monitors debugger, des Simulateurs, des Désassembleurs, 677,55 FF 103.29 € Demandez la documentation.

LADDER-WORK

Compilateur LADDER bon marché pour cartes et Micro de la fam. 8051. Il crée un code machine efficace et compact pour résoudre rapidement toute problématique. Vaste documentation avec exem-ples, Idéal également pour ceux qui veulent commencer. Outils de développement à partir de 338,77 FF 182,00€

CD Vol 1Le seul CD dédié aux microcontrôleurs. Des centaines de listes de programmes pinout, utility, description des puces pour les µP les plus connus comme 8051, 8952, 80553, PIC 68K, 68HC11, H8, Z8, etc. 340 FF 62.00 €

PREPROM-02a

284.05 €

40016 San Giorgio di Piano (BO) - Via dell'Artigiano, 8/6 Tel. +39 051 892052 (4 linee r.a.) - Fax +39 051 893661

E-mail: grifo@grifo.it - Web au site: http://www.grifo.it - http://www.grifo.com GPC® - abaco grifo® sont des marques enregistrées de la société grifo®

Un chapitre est consacré aux postes un peu spéciaux (coloniaux, portatifs, autoradios et même « pick-up »). Suit une méthodologie, permettant d'approcher la panne et de faire un diagnostic. Enfin, on apprendra à restaurer l'ébénisterie. L'auteur s'est efforcé d'être aussi complet que possible, en fournissant des adresses pour ces vieux composants et en listant une bibliographie qui est

un modèle du genre. Les formules électroniques

essentielles nous sont rappelées. L'ouvrage, illus-

tré par de nombreux schémas est écrit sur un

RÉE JEO70 249 F ÉLECTRONIQUE

167^f PRIX ÉLECTRONIQUE

128^F PRIX **ÉLECTRONIOUE**

style agréable et facile à lire.

.130 F ÉLECTRONIQUE

148F

Réf. JEJA008-2 130 F PRIX ÉLECTRONIQUE

Réf. JEJ2² PRIX 125 F ÉLECTRONIQUE

189 ÉLECTRONIQUE

Le téléphone

RÉF. JEJ33-1 .160 f ÉLECTRONIQUE

Réf. JEJ33-2 160 F ÉLECTRONIQUE

210 ÉLECTRONIQUE

ÉLECTRONIQUE

REE JE 171 PRIX 290 Le téléphone et son extension nomade, le radiotéléphone, s'appuient sur des technologies numériques de pointe qui sont ici expliquées de façon claire et pratique. La 3e édition de cet ouvrage fait le point sur les derniers perfectionnements connus en la matière. L'auteur, qui est un spécialiste des communications terrestres et satellitaires, s'aide dans sa démonstration de très nombreux graphiques et schémas de principe. Le technicien d'exploitation ou l'ingénieur R & D, mais aussi les étudiants du domaine, ont enfin à leur disposition un ouvrage de référence extrêmement didactique et abondamment illustré.

LISTE COMPLÈTE

1 - LES LIVRES

		I - LES LIVKE		
	REF	DÉSIGNATION	PRIX	PRIX
			EN F	EN €
		ÉLECTRONIQUE		
ı	JEJ75	27 MODULES D'ÉLECTRONIQUE ASSOCIATIFS	225 F	34,30€
	JEJ12	350 SCHÉMAS HF DE 10 KHZ À 1 GHZ	198 F	30,18€
	JEA12	ABC DE L'ÉLECTRONIQUE	50 F	7,62€
ı	JEJ27	ALIMENTATIONS ÉLECTRONIQUES	262F	39,94€
	JEO24	APPRENEZ LA CONCEPT° DES MONTAGES ÉLECT	95 F	14,48€
1	JE023	APPRENEZ LA MESURE DES CIRCUITS ÉLECT	110 ^F	16,77€
	JEJ83	ASTUCES ET MÉTHODES ÉLECTRONIQUES	135 F	20,58€
	JEJ84	CALCUL PRATIQUE DES CIRCUITS ÉLECT	135 F	20,58€
ı	JEJ85	CALCULER SES CIRCUITS	99 F	15,09€
	JEO70	COMPRENDRE ET UTLISER L'ÉLECT. DES HF	249 F	37,96€
	JEI09	COMPRENDRE L'ÉLECT. PAR L'EXPÉRIENCE		14,94€
	JE015	CRÉATIONS ÉLECTRONIQUES		19,67€
	JEJ99	DÉPANNAGE DES RADIORÉCEPTEURS		25,46€
	JEI05	DÉPANNAGE EN ÉLECTRONIQUE		30,18€
	JEJA003	ÉLECTRICITÉ PRATIQUE		17,99€
1	JEJA005	ÉLECTRONIQUE DIGITALE		19,51€
		ÉLECTRONIQUE LABORATOIRE ET MESURE (T.1)		19,82€
		ÉLECTRONIQUE LABORATOIRE ET MESURE (T.2)		19,82€
	JEO43	ÉLECTRONIQUE : MARCHÉ DU XXIÈME SIÈCLE		41,01€
i	JEJA011	ÉLECTRONIQUE PRATIQUE		19,51€
	JEJ21	FORMATION PRATIQUE À L'ÉLECT. MODERNE		19,06€
	JEU92	GETTING THE MOST FROM YOUR MULTIMETER		6,10€
	JE058-1	GUIDE DES APPLICATIONS (T.1)		30,18€
	JE058-2	GUIDE DES APPLICATIONS (T.2)		30,34€
	JEO14 JEJ68	LA RADIO ? MAIS C'EST TRÈS SIMPLE!		28,81€
	JEJ08 JEJ15	LA RESTAURATION DES RÉCEPTEURS À LAMPES		24,39€ 22,56€
	JEO 15 JEO 26	L'ART DE L'AMPLIFICATEUR OPÉRATIONNEL		22,56€ 25,76€
	JE028 JE013	LE COURS TECHNIQUE		25,7 6 € 11,43€
į	JEO 15 JEO 35	LE MANUEL DES GAL		41,92€
	JEO40	LE MANUEL DU BUS I2C		39,49€
	JEJA101	LE SCHÉMA D'ÉLECTRICITÉ		10,98€
	JEJ71	LE TÉLÉPHONE		44,21€
	JEJA040	L'ÉLECTRONIQUE DE PUISSANCE		37,35€
	JEO38	LOGIQUE FLOUE & RÉGULATION PID		30.34€
	JE067-1	MESURES ET ESSAIS T.1		21,50€
	JE067-2	MESURES ET ESSAIS T.2		22,41€
	JEJA057	MESURES ET ESSAIS D'ÉLECTRICITÉ	98 F	14,94€
	JEJA068	MODEMS	130 F	19,82€
1	JEJA069	MODULES DE MIXAGE		25,00€
1	JEJA071	MONTAGES AUTOUR DU 68705	190 F	28,97€
	JEU91	More advanced uses of the mulimeter $\ldots\ldots$		6,10€
	JEO34	MULTIMEDIA ? PAS DE PANIQUE !		22,71€
	JEJ33-1	PARASITES ET PERTURBATIONS DES ÉLECT. (T.1)		24,39€
i	JEJ33-2	PARASITES ET PERTURBATIONS DES ÉLECT. (T.2)		24,39€
	JEJ33-3	PARASITES ET PERTURBATIONS DES ÉLECT. (T.3)		24,39€
	JEJ33-4	PARASITES ET PERTURBATIONS DES ÉLECT. (T.4)		24,39€
	JEU98	PRACTICAL OSCILLATOR CIRCUITS		10,67€
	JEJ18	PRATIQUE DES OSCILLOSCOPES		30,18€
	JEJ63-1	PRINCIPES ET PRATIQUE DE L'ÉLECT. (T.1)		29,73€
	JEJ63-2	PRINCIPES ET PRATIQUE DE L'ÉLECT. (T.2)		29,73€
	JEJ29	RÉCEPTION DES HAUTES FRÉQUENCES (T.1)		37,96€
	JEJ29-2	RÉCEPTION DES HAUTES FRÉQUENCES (T.2)		37,96€
	JEJ04	RÉUSSIR SES RÉCEPTEURS TOUTES FRÉQUENCES		22,87€
	JEJA091	SIGNAL ANALOGIQUE ET CAPACITÉS COMMUTÉES		32,01€
	JEJ36	TRACÉ DES CIRCUITS IMPRIMÉS		23,63€
	JEJA094 JEO25	TÉLÉCOMMANDESTHYRISTORS ET TRIACS		22,71€ 30,34€
	JE025 JE030-1	TRAITÉ DE L'ÉLECTRONIQUE (T.1)		30,34€ 37,96€
	3LU3U-1	INAITE DE L'ELEVINONIQUE (1.1)	247'	37,90€

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE Tarif expéditions : 1 livre 35 (5,34€), de 2 à 5 livres 45 (6,86€), de 6 à 10 livres 70 (10,67€), par quantité, nous consulter

450 F

57,78€

LIBRAIRIE

Réf. JE048 110 Certaines connaissances élémentaires sont indispensables pour entrer avec profit dans l'univers des microcontrôleurs et des ordinateurs monocarte. On les trouvera dans ce livre, expliquées de façon claire et compréhensible par tous. Elles concernent aussi bien le matériel (c'est-à-dire « l'électronique ») que le logiciel, c'est-à-dire la « programmation » en langage machine. L'auteur présente par exemple : Les signaux numériques. Les composants des ordinateurs, depuis les composants de mémoire jusqu'aux convertisseurs numérique/analogique et analogique/numérique. Les microcontrôleurs et leurs particularités. La pratique de la programmation et ses auxiliaires. La recherche des erreurs (debogage).

Réf. JEJ77 97 F **MONTAGES**

PRIX

Réf. JEJ40 129F MONTAGES

.298F **ELECTRONIQUE**

298F

ELECTRONIQUE

Circuits

imprimés en

pratique

Réf. JEJA104

DEBUTANTS

.128F

Rff. JEJ38 128^F PRIX DEBUTANTS

MOS

Réf. JEJ81 145^f MONTAGES

Rff. JEJ24 129 F INFORMATIQUE

MATCHBOX

Réf. JE042

INFORMATIQUE

269 F

PRIX

et circuits

275 F

Réf. JEJ74

MONTAGES

Réf. JE054 INFORMATIQUE

149 F INFORMATIQUE

450 F

Réf. JEJ41 Mémoires EPROM ou EEPROM, réseaux logiques programmables PAL, et même cartes à puce sont désormais des composants courants et peu coûteux. Grâce à des équipements de programmation pouvant être fort simples, il est facile de les transformer en véritables circuits intégrés spécifiques, spécialement conçus pour une application précise. Il devient ainsi possible de construire très simplement des montages performants qui seraient difficilement réalisables à partir de composants standards.

٠,				
ı	JE030-2	TRAITÉ DE L'ÉLECTRONIQUE (T.2)	249 F	37,96€
ı	JEO63	TRAITEMENT NUMÉRIQUE DU SIGNAL		48,63€
	JE031-1	TRAVAUX PRATIQUE DU TRAITÉ (T.1)		45,43€
ı	JE031-2	TRAVAUX PRATIQUE DU TRAITÉ (T.2)		45,43€
ı	JEO27	UN COUP ÇA MARCHE, UN COUP ÇA MARCHE PAS		37,96€
ı	JLU27	ON COOL ON WINNOITE, ON COOL ON WINNOITE LAS	247	37,70€
		DÉBUTANTS		
ı	JEJ82	APPRENDRE L'ÉLECTRONIQUE FER EN MAIN	148 F	22,56€
ı	JEJ02	CIRCUITS IMPRIMÉS	138 F	21,04€
ı	JEJA104	CIRCUITS IMPRIMÉS EN PRATIQUE		19,51€
1	JEO48	ÉLECT. ET PROGRAMMATION POUR DÉBUTANTS		16,77€
į	JEJ57	GUIDE PRATIQUE DES MONTAGES ÉLECTRONIQUES		13,72€
ı	JEJ42-1	L'ÉLECTRONIQUE À LA PORTÉE DE TOUS (T.1)	118 ^F	17,99€
ı	JEJ42-2	L'ÉLECTRONIQUE À LA PORTÉE DE TOUS (T.2)		17,99€
ı	JEJ31-1	L'ÉLECTRONIQUE PAR LE SCHÉMA (T.1)		24,09€
ı	JEJ31-2	L'ÉLECTRONIQUE PAR LE SCHÉMA (T.2)		24,09€
	JE022-1	L'ÉLECTRONIQUE ? PAS DE PANIQUE ! (T.1)		25,76€
ı	JE022-2	L'ÉLECTRONIQUE ? PAS DE PANIQUE ! (T.2)		25,76€
ı	JE022-3	L'ÉLECTRONIQUE ? PAS DE PANIQUE ! (1.2)		25,76€
ı	JEJA039	L'ÉLECTRONIQUE ? RIEN DE PLUS SIMPLE !		14,79€
ı	JEJ38	LES CELLULES SOLAIRES		19,51€
ı	JEJ45	MES PREMIERS PAS EN ÉLECTRONIQUE		18,14€
į	JEJ55	OSCILLOSCOPES FONCTIONNEMENT UTILISATION		29,27€
ı	JEJ39	POUR S'INITIER À L'ÉLECTRONIQUE		22,56€
ı	JEJ34 JEJ44	PROGRESSEZ EN ÉLECTRONIQUE		24,24€
ı	JEJ44	PROGRESSEZ EN ELECTRONIQUE	1091	24,24€
	IV	IONTAGES ÉLECTRONIQU	JES	
	JEJ74	1500 SCHÉMAS ET CIRCUITS ÉLECTRONIQUES	275 F	41,92€
į	JEJ11	300 SCHÉMAS D'ALIMENTATION	165 F	25,15€
ı	JEO16	300 CIRCUITS		19,67€
	JEO17	301 CIRCUITS	129 F	19,67€
ı	JEO18	302 CIRCUITS		19,67€
	JEO19	303 CIRCUITS		25,76€
į	JEO20	304 CIRCUITS		25,76€
ı	JE021	305 CIRCUITS		25,76€
i	JE032	306 CIRCUITS		25,76€
	JEJ77	75 MONTAGES À LED		14,79€
ı	JEJ40	ALIMENTATIONS À PILES ET ACCUS		19,67€
į	JEJ79	AMPLIFICATEURS BF À TRANSISTORS		14,48€
į	JEJ81	APPLICATIONS C MOS		22.11€
į	JEJ90	CIRCUITS INTÉGRÉS POUR THYRISTORS ET TRIACS		25,61€
	JEJA015	FAITES PARLER VOS MONTAGES		19,51€
ı	JEJA022	JEUX DE LUMIÈRE		22,56€
	JEJ24	LES CMS		19,67€
	JEJA043	LES INFRAROUGES EN ÉLECTRONIQUE		25,15€
Ì	JEJA044	LES JEUX DE LUMIÈRE ET SONORES POUR GUITARE		11,43€
	JEJ41	MONTAGES À COMPOSANTS PROGRAMMABLES		19,67€
	JEJ22	MONTAGES AUTOUR D'UN MINITEL		21,34€
	JEJ22 JEJA073	MONTAGES CIRCUITS INTÉGRÉS		12,96€
1	JEJ37	MONTAGES DIDACTIQUES		14,94€
ı	IF IAO74	MONTAGES DOMOTIQUES		22,71€
1	JEJA074 JEJ26	MONTAGES FLASH		14,79€
	JEJ43	MONTAGES SIMPLES POUR TÉLÉPHONE		20,43€
	IFIA103	RÉALISATIONS PRATIQUES À AFFICHAGE LED		20,43€
i	JEJA103 JEJA089	RÉUSSIR 25 MONTAGES À CIRCUITS INTÉGRÉS		14,48€
١	JEJA007			
	ÉLEC	CTRONIQUE ET INFORMA		JE
į	JEU51	AN INTRO. TO COMPUTER COMMUNICATION		9,91€
	IFO36	AUTOMATES PROGRAMMABLES EN BASIC		37,96€
	JEO42	AUTOMATES PROGRAMMABLES EN MATCHBOX	269 F	41,01€
i	JEJA102	BASIC POUR MICROCONTRÔLEURS ET PC	225 F	34,30€
1	JEJ8/	CARTES À PUCE	225 F	34,30€
	JEJ88	CARTES MAGNÉTIQUES ET PC	198 F	30,18€
	IFO54	COMPILATELIA CROISÉ PASCAI	450 F	40 406

COMPILATEUR CROISÉ PASCAL

COMPATIBILITÉ ÉLECTROMAGNÉTIQUE......379 F

DÉPANNEZ LES ORDI. (ET LE MAT.NUMÉRIQUE T.1) 249 F 37,96€

DÉPANNEZ LES ORDI. (ET LE MAT. NUMÉRIQUE T.2)249 F 37,96€

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE Tarif expéditions : 1 livre 35 (5,34€), de 2 à 5 livres 45 (6,86€), de 6 à 10 livres 70 (10,67€), par quantité, nous consulter

JEO54

JEO65

JE055-1

JE055-2

JEQ04

Réf. JEJ60 PRIX 230F

Ce livre aborde tous les aspects de l'utilisation du PC pour la conception, la mise au point et la réalisation des montages électroniques : saisie de schémas, création de circuits imprimés, simulation analogique et digitale, instrumentation virtuelle, etc.

Le CD-ROM d'accompagnement contient de nombreux logiciels de conception électronique, testés par l'auteur.

Réf. JE011 169F PRIX INFORMATIQUE

PRIX 155 F INFORMATIQUE

IF IAOR4 298F PRIX INFORMATIOUE

PRIX 229 INFORMATIOUE

Rfr IF 178 250^f TECHNOLOGIE

.155 f **TECHNOLOGIE**

.198F **TECHNOLOGIE**

.198F **TECHNOLOGIE**

RÉF. JEO33 229 F MICROCONTRÔLEURS

248 F MICROCONTRÔLEURS

grammateur.

PRIX .130

.178 F COMPOSANTS

Réf. JE046 PRIX Les microcontrôleurs de la famille 16C5x de Microchip ont une architecture RISC, c'est-à-dire que leur jeu d'instructions a été délibérément réduit. Ils n'en connaissent que 33, ce qui est modeste en effet pour un processeur à 12 bits. Ce livre décrit un assembleur apparenté au jeu d'instructions de 8051, lequel fait figure de standard dans l'industrie. Grâce à cet outil, la prise en main des processeurs PIC ne présente pas de difficulté spécifique. Outre l'assembleur et le simulateur, l'ouvrage présente aussi les outils matériels, c'est-à-dire l'émulateur et le pro-

JEJA020	INSTRUMENTATION VIRTUELLE POUR PC	.198F	30,18€
JEJA021	INTERFACES PC	198 F	30.18€
JE011	J'EXPLOITE LES INTERFACES DE MON PC		25,76€
JE012	JE PILOTE L'INTERFACE PARALLÈLE DE MON PC		23,63€
JEJA024			-
	LA LIAISON SÉRIE RS232		35,06€
JEO45	LE BUS SCSI		37,96€
JEQ02	LE GRAND LIVRE DE MSN		25,15€
JEA09	LE PC ET LA RADIO		11,43€
JEJ60	LOGICIELS PC POUR L'ÉLECTRONIQUE		35,06€
JEJA055	MAINTENANCE ET DÉPANNAGE PC ET MAC	215F	32,78€
JEJA056	MAINTENANCE ET DÉPANNAGE PC WINDOWS 95 .	230 F	35,06€
JEJ48	MESURE ET PC	230 F	35,06€
JEJA072	MONTAGES AVANCÉS POUR PC		35.06€
JEJ23	MONTAGES ÉLECTRONIQUE POUR PC		34,30€
JEJ47	PC ET CARTE À PUCE		34,30€
JEJ59			
	PC ET DOMOTIQUE		30,18€
JEJA077	PC ET ROBOTIQUE		35,06€
JEJA078	PC ET TÉLÉMESURES		34,30€
JEJA084	PSPICE 5.30		45,43€
JEO73	TOUTE LA PUISSANCE DE C++	.229 F	34,91€
TE	CHNOLOGIE ÉLECTRONI	OLIE	
JEJ78	ACCESS.BUS		38,11€
JEJA099	CIRCUITS LOGIQUES PROGRAMMABLES		28,81€
JEJA031	LE BUS CAN THÉORIE ET PRATIQUE		38,11€
JEJA031-2	LE BUS CAN APPLICATIONS	.250 F	38,11€
JEJA032	LE BUS I2C	250 F	38,11€
JEJA033	LE BUS I2C PAR LA PRATIQUE	.210F	32,01€
JEJA034	LE BUS IEE-488		32,01€
JEJA035	LE BUS VAN		22,56€
JEJA037	LE MICROPROCESSEUR ET SON ENVIRONNEMENT.		23,63€
JEJ35	LES DSP		
			25,92€
JEJA051	LES MICROPROCESSEURS COMMENT CA MARCHE		13,42€
JEJA064	MICROPROCESSEUR POWERPC		25,15€
JEJA065	MICROPROCESSEURS		41,92€
JEJ32-1	TECHNOLOGIE DES COMPOSANTS ÉLECT. (T.1)		30,18€
JEJ32-2	TECHNOLOGIE DES COMPOSANTS ÉLECT. (T.2)	198 F	30,18€
JEJA097	THYRISTORS, TRIACS ET GTO	242 F	36,89€
	A MODO CONTRÔLEUDO		
	MICROCONTRÔLEURS		
JEO52	APPRENEZ À UTILISER LE MICROCONTRÔLEUR 8051	110 ^F	16,77€
JEJA019	INITIATION AU MICROCONTRÔLEUR 68HC11	.225 ^F	34,30€
JEO59	JE PROGRAMME LES MICROCONTRÔLEURS 8051.	.303 F	46,19€
JEO33	LE MANUEL DES MICROCONTRÔLEURS	229 F	34,91€
JEO44	LE MANUEL DU MICROCONTRÔLEUR ST62	249 F	37.96€
JEJA048	LES MICROCONTRÔLEURS 4 ET 8 BITS		27,14€
JEJA108	LES MICROCONTRÔLEURS ST7		37,81€
JEJA100 JEJA049	LES MICROCONTRÔLEURS PIC		22,87€
JEJA049 JEJA050	LES MICROCONTRÔLEURS PIC		22,87€
JEJA038	LE ST62XX		30,18€
JEJA058	MICROCONTRÔLEUR 68HC11 APPLICATIONS		34,30€
JEJA059	MICROCONTRÔLEUR 68HC11 DESCRIPTION		27,14€
JEJA061	MICROCONTRÔLEURS 8051 ET 8052		24,09€
JEJA062	MICROCONTRÔLEURS 80C535, 80C537, 80C552		24,09€
JEO47	MICROCONTRÔLEUR PIC À STRUCTURE RISC		16,77€
JEJA060-1	MICROCONTRÔLEURS 6805 ET 68HC05 (T.1)	153 F	23,32€
JEJA060-2	MICROCONTRÔLEURS 6805 ET 68HC05 (T.2)	153F	23,32€
JEJA063	MICROCONTRÔLEURS ST623X	198F	30,18€
JEJA066	MISE EN ŒUVRE DU 8052 AH BASIC		28,97€
JE046	PRATIQUE DES MICROCONTRÔLEURS PIC		37,96€
JEJA081	PRATIQUE DU MICROCONTRÔLEUR ST622X		30,18€
JEJAUUT	TRAINZOL DO MICHOCOMINOLEUN STUZZA	170	30,10€
	COMPOSANTS		
JEJ34	APPRIVOISEZ LES COMPOSANTS ÉLECTRONIQUES.	.130F	19,82€
JEJ62	COMPOSANTS ÉLECT. : TECHNO. ET UTILISATION .		30,18€
JEJ94	COMPOSANTS ÉLECT. PROGRAMMABLES POUR PC		30,18€
JEJ95	COMPOSANTS INTÉGRÉS		27,14€
JEIO3	CONNAITRE LES COMPOSANTS ÉLECTRONIQUES		14,94€
L	OOMANINE LES COIVII OSAIVIS ELECTROIVIQUES	70.	14,74€
	NILOUE MAAGAZINE		

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE TARIF EXPÉDITIONS : 1 LIVRE 35 (5,34€), DE 2 à 5 LIVRES 45 (6,86€), DE 6 à 10 LIVRES 70 (10,67€), PAR QUANTITÉ, NOUS CONSULTER

ELECTRONIQUE POUR TOUS

EQUIVALENCES CIRCUITS INTEGRES
SARRIANT COMPRESSOR STATEMENT OF THE PROPERTY

DOCUMENTATION

Réf. JEJA014 Prix**180** ^f **documentation**

Réf. JE064	Prix	189 ^f
Les tubes à ba	sse fréquence encore	courants de nos

Les tubes a basse rrequence encore courants de noispours dans l'industrie et les appareils de construction d'amateur sont tous repris dans ces tableaux faciles d'accès. Le choix des types est orienté vers les domaines de la haute fidélité et des instruments de musique. Le recueil de tableaux contient, en plus des grandeurs caractéristiques des tubes, les courbes les plus importantes, d'où on pourra déduire le comportement des tubes dans des conditions diverses de fonctionnement. S'y ajoutent sous une forme concise et claire les propriétés spéciales de chaque tube. Les passionnés trouveront dans ce livre un ouvrage de référence capable de les renseigner rapidement et complètement sur les tubes et leurs caractéristiques.

.295 F

KEF, JEUZ8
PRIX**145** F

DOCUMENTATION

DEMANDEZ LE CATALOGUE ELECTRONIQUE AVEC LA DESCRIPTION DÉTAILLÉE DE CHAQUE OUVRAGE (ENVOI CONTRE 4 TIMBRES À 3 FRANCS)

PRIX149 F AUDIO, MUSIQUE, SON

Les haut-parteurs

Réf. JEJ73
PRIX188 F
VIDEO, TELEVISION

RÉF. JEJ91-5 RIX**115** F **VIDEO, TELEVISION**

REF. JEJ91-8 PRX**115** F VIDEO, TELEVISION

REF. JEJ69

Le jargonoscope est un lexique destiné aux utilisateurs des techniques vidéo, audio et informatique. À travers ses définitions, il rappelle notamment les principes fondamentaux de l'analyse, du stockage et de la transmission des informations visuelles et sonores. Il présente les différents standards de codage des signaux analogiques et numériques, les supports et formats d'enregistrement, les matériels et systèmes adaptés aux différents secteurs d'activité, les équipements existants, des principaux types de circuits, composants et connecteurs. Les termes sont classés par ordre alphabétique et référencés dans un index.

	DOCUMENTATION		
JEJ53	AIDE-MÉMOIRE D'ÉLECTRONIQUE PRATIQUE	128 F	19,51€
JEU03	ARRL ELECTRONICS DATA BOOK		24,09€
JEJ96	CONVERSION, ISOLEMENT ET TRANSFORM. ÉLECT.		17,99€
JEJ54	ÉLECTRONIQUE AIDE-MÉMOIRE		35,06€
JEJ56	ÉQUIVALENCES DIODES		26,68€
JEJA013	ÉQUIVALENCES CIRCUITS INTÉGRÉS		44,97€
JEJA014	ÉQUIVALENCES THYRISTORS, TRIACS, OPTO		27,44€
JEO64	GUIDE DES TUBES BF		28,81€
JEJ52	GUIDE MONDIAL DES SEMI CONDUCTEURS		27,14€
JEJ50	LEXIQUE DES LAMPLES RADIO		14,94€
	LISTE DES ÉQUIVALENCES TRANSISTORS (T.1)		28,20€
	LISTE DES ÉQUIVALENCES TRANSISTORS (T.2)		26,68€
JEJ07	MÉMENTO DE RADIOÉLECTRICITÉ		11,43€
JE010	MÉMO FORMULAIRE		11,59€
JE029	MÉMOTECH ÉLECTRONIQUE		37,65€
JEJA075	OPTO-ÉLECTRONIQUE		23,32€
JE028			22,11€
JEJA090	SCHÉMATHÈQUE		24,39€
	AUDIO, MUSIQUE, SON		
JEJ76	400 SCHÉMAS AUDIO, HIFI, SONO BF		30,18€
JE053	AMPLIFICATEURS À TUBES POUR GUITARE HI-FI		34,91€
JEO39	AMPLIFICATEURS HIFI HAUT DE GAMME		34,91€
JEJ58	CONSTRUIRE SES ENCEINTES ACOUSTIQUES		22,11€
JEO37	ENCEINTES ACOUSTIQUES & HAUT-PARLEURS	249 F	37,96€
JEJA016	GUIDE PRATIQUE DE LA DIFFUSION SONORE		14,94€
JEJA017	GUIDE PRAT. DE LA PRISE DE SON D'INSTRUMENTS		14,94€
JEJA105	GUIDE PRATIQUE DU MIXAGE		14,94€
JEJ51	INITIATION AUX AMPLIS À TUBES		25,92€
JEJ69	JARGANOSCOPE - DICO DES TECH. AUDIOVISUELLES		38,11€
JEJA023	LA CONSTRUCTION D'APPAREILS AUDIO		21,04€
JEJA029	L'AUDIONUMÉRIQUE		53,36€
JEJ67-1	LE LIVRE DES TECHNIQUES DU SON (T.1)		53,36€
JEJ67-2	LE LIVRE DES TECHNIQUES DU SON (T.2)		53,36€
JEJ67-3 JEJ72	LE LIVRE DES TECHNIQUES DU SON (T.3)		59,46€
JEJ72 JEJ66	LES AMPLIFICATEURS À TUBES		22,71€ 29,73€
JEJOO JEJA045	LES LECTEURS OPTIQUES LASER		29,73€ 28,20€
JEJA045 JEJ70	LES MAGNÉTOPHONES		28,20€ 25,92€
JEJ64	MINI STUDIO, MIDI STUDIO		22,87€
JEO41	PRATIQUE DES LASERS		41.01€
JE062	SONO ET STUDIO.		34,91€
JEJA092	SONORISATION PROFESSIONNELLE		35,83€
JEJA093	TECHNIQUES DE PRISE DE SON		25.76€
JEJ65	TECHNIQUES DES HAUT-PARLEURS ET ENCEINTES		42,69€
	VIDÉO, TÉLÉVISION		
JEJ73	100 PANNES TV	189 F	28,66€
JEJ73 JEJ25	75 PANNES VIDÉO ET TV		28,00€ 19,21€
JEJ25	ANTENNES ET RÉCEPTION TV		19,21€
JEJ86	CAMESCOPE POUR TOUS		16,01€
JEJ91-1	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.1)		17,53€
JEJ91-2	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.2)		17,53€
JEJ91-3	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.3)		17,53€
JEJ91-4	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.4)		17,53€
JEJ91-5	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.5)		17,53€
JEJ91-6	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.6)		17,53€
JEJ91-7	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.7)		17,53€
JEJ91-8	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.8)		17,53€
JEJ91-9	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.9)		17,53€
JEJ91-10	CIRCUITS INTÉGRÉS POUR TÉLÉ ET VIDÉO (T.10)	115 F	17,53€
JEJ92	CIRCUITS INTÉGRÉS TÉLÉVISION LES 9 TOMES		118,15€
JEJ98-1	COURS DE TÉLÉVISION (T.1)		30,18€
JEJ98-2	COURS DE TÉLÉVISION (T.2)	198 F	30,18€
JEJ28	DÉPANNAGE MISE AU POINT DES TÉLÉVISEURS		30,18€
JEJA018	GUIDE RADIO-TÉLÉ		18,29€
JEJ69	JARGANOSCOPE - DICO DES TECH. AUDIOVISUELLE	S250 F	38,11€

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE
TARIF EXPÉDITIONS : 1 LIVRE 35 (5,34€), DE 2 à 5 LIVRES 45 (6,86€), DE 6 à 10 LIVRES 70 (10,67€), PAR QUANTITÉ, NOUS CONSULTER

REF. JEJA080
PRIX168 F
VIDEO, TELEVISION

RÉF. JEJ20 Prix**154** F **VIDEO, TELEVISION**

RÉF. JE050 PRX**110** ^F **MAISON ET LOISIRS**

PRIX118 F
MAISON ET LOISIRS

PRIX130 F
MAISON ET LOISIRS

REF. JEJ17
PRIX 149 F
MAISON ET LOISIRS

JEJA025-1	LA TÉLÉVISION EN COULEUR (T.1)	230 F	35,064
	LA TÉLÉVISION EN COULEUR (T. 2)		35,064
	LA TÉLÉVISION EN COULEUR (T.3)		30,184
JEJA025-4	LA TÉLÉVISION EN COULEUR (T.4)	.169 F	25,764
JEJA026	LA TÉLÉVISION NUMÉRIQUE	.198 F	30,184
JEJA027	LA TÉLÉVISION PAR SATELLITE	.178 ^F	27,14
JEJA028	LA VIDÉO GRAND PUBLIC	.175 ^F	26,684
JEJA036	Le dépannage TV ? Rien de plus simple !		16,014
	LES CAMESCOPES (T.1)		32,784
	LES CAMESCOPES (T.2)		51,074
JEJA046	MAGNÉTOSCOPES VHS PAL ET SECAM		35,064
JEJ46	MONTAGES ÉLECTRONIQUE POUR VIDÉO		21,19
JEJA076	PANNES TV		22,714
JEJA080	PRATIQUE DES CAMESCOPES		25,614
JEJ20	RADIO ET TÉLÉVISION MAIS C'EST TRÈS SIMPLE		23,484
JEJA085	RÉCEPTION TV PAR SATELLITES		22,564
JEJA088	RÉSOLUTION DES TUBES IMAGE		22,874
JEJA098	VOTRE CHAÎNE VIDÉO	.178 ⁺	27,14
	СВ		
JEJ05	MANUEL PRATIQUE DE LA CB	98 F	14,94
JEJA079	PRATIQUE DE LA CB	98 F	14,944
	MAISON ET LOISIRS		
JEO49	ALARME ? PAS DE PANIQUE !	95 F	14.484
JEO50	CONCEVOIR ET RÉALISER UN ÉCLAIRAGE HALOGÈN		16,774
JEJ16	CONSTRUIRE SES CAPTEURS MÉTÉO	.118F	17,994
JEJ97	COURS DE PHOTOGRAPHIE	.175 F	26,684
JEJA001	DÉTECTEURS ET MONTAGES POUR LA PÊCHE	.145 F	22,114
JEJ49	ÉLECTRICITÉ DOMESTIQUE	.128 F	19,51
JEJA004	ÉLECTRONIQUE AUTO ET MOTO	130 F	19,82
JEJA006	ÉLECTRONIQUE ET MODÉLISME FERROVIAIRE	.139 F	21,194
JEJA007	ÉLECTRONIQUE JEUX ET GADGETS	.130 F	19,824
JEJA009	ÉLECTRONIQUE MAISON ET CONFORT	.130 F	19,824
JEJA010	$ \hbox{\it £LECTRONIQUE POUR CAMPING CARAVANING } \ldots \\$.144 F	21,95
JEJ17	ÉLECTRONIQUE POUR MODÉL. RADIOCOMMANDÉ	149 F	22,71
JEJA012	ÉLECTRONIQUE PROTECTION ET ALARMES		19,82
JEJA052	LES RÉPONDEURS TÉLÉPHONIQUES		21,34
JEJA067	MODÉLISME FERROVIAIRE		20,584
JE071	RECYCLAGE DES EAUX DE PLUIE	149 F	22,714
JLO71	NECTOBIGE DES ENON DE LEGIE		22,711

2 - LES CD-ROM

JCD023-1	300 CIRCUITS VOLUME 1 11	9 F	18,14€
JCD023-2	300 CIRCUITS VOLUME 211	9 F	18,14€
JCD023-3	300 CIRCUITS VOLUME 311	9 F	18,14€
JCD036	DATA BOOK : CYPRESS12	0 F	18,29€
JCD037	DATA BOOK : INTEGRATED DEVICE TECHNOLOGY 12	0 F	18,29€
JCD038	DATA BOOK : HAIL SENSORS12	0 F	18,29€
JCD039	DATA BOOK : LIVEARVIEW12	0 F	18,29€
JCD040	DATA BOOK : MAXIM12	0 F	18,29€
JCD041	DATA BOOK : MICROCHIP12	0 F	18,29€
JCD042	DATA BOOK : NATIONAL14	0 F	21,34€
JCD043	DATA BOOK : SGS-THOMSON12	0 F	18,29€
JCD044	DATA BOOK : SIEMENS12	0 F	18,29€
JCD045	DATA BOOK : SONY12	0 F	18,29€
JCD046	DATA BOOK : TEMIC12	0 F	18,29€
JCD022	DATATHÈQUE CIRCUITS INTÉGRÉS22	9 F	34,91€
JCD035	E-ROUTER22	9 F	34,91€
JCD024	ESPRESSO11	7 F	17,84€
JCD030	ELEKTOR 9532	0 F	48,78€
JCD031	ELEKTOR 96	7 F	40,70€
JCD032	ELEKTOR 9726	7 F	40,70€
JCD027	SOFTWARE 96/9712	3 F	18,75€
JCD028	SOFTWARE 97/9822	9 F	34,91€
JCD025	SWITCH28	9 F	44,06€
JCD026	THE ELEKTOR DATASHEET COLLECTION14	9 F	22,71€
	JCD023-2 JCD023-3 JCD036 JCD037 JCD038 JCD039 JCD040 JCD041 JCD042 JCD043 JCD044 JCD045 JCD022 JCD035 JCD024 JCD030 JCD031 JCD032 JCD032 JCD032 JCD032 JCD032 JCD032 JCD032 JCD032 JCD032 JCD032 JCD032 JCD032 JCD032 JCD032	JCD023-2 300 CIRCUITS VOLUME 2 11 JCD023-3 300 CIRCUITS VOLUME 3 11 JCD036 DATA BOOK : CYPRESS 12 JCD037 DATA BOOK : INTEGRATED DEVICE TECHNOLOGY 12 JCD038 DATA BOOK : HAIL SENSORS 12 JCD039 DATA BOOK : LIVEARVIEW 12 JCD040 DATA BOOK : MICROCHIP 12 JCD041 DATA BOOK : MICROCHIP 12 JCD042 DATA BOOK : SGS-THOMSON 12 JCD043 DATA BOOK : SIEMENS 12 JCD044 DATA BOOK : SIEMENS 12 JCD045 DATA BOOK : SIEMENS 12 JCD046 DATA BOOK : TEMIC 12 JCD022 DATATHEQUE CIRCUITS INTEGRES 22 JCD035 E-ROUTER 22 JCD036 ELEKTOR 95 32 JCD037 SUFTWARE 96/97 12 JCD028 SOFTWARE 96/97 12 JCD028 SOFTWARE 97/98 22 JCD025 SWITCH 28	JCD023-2 300 CIRCUITS VOLUME 2 119 F JCD023-3 300 CIRCUITS VOLUME 3 119 F JCD036 DATA BOOK : CYPRESS 120 F JCD037 DATA BOOK : INTEGRATED DEVICE TECHNOLOGY 120 F JCD038 DATA BOOK : HAIL SENSORS 120 F JCD039 DATA BOOK : LIVEARVIEW 120 F JCD040 DATA BOOK : MICROCHIP 120 F JCD041 DATA BOOK : MICROCHIP 120 F JCD042 DATA BOOK : SGS-THOMSON 120 F JCD043 DATA BOOK : SIEMENS 120 F JCD044 DATA BOOK : SIEMENS 120 F JCD045 DATA BOOK : SIEMENS 120 F JCD046 DATA BOOK : TEMIC 120 F JCD047 DATA BOOK : TEMIC 120 F JCD048 SPRESSO 117 F JCD030 ELEKTOR 95 320 F JCD031 ELEKTOR 96 267 F JCD022 SOFTWARE 96/97 123 F JCD028 SOFTWARE 97/98 229 F JCD025 SWITCH 289 F JCD025 JCD025

UTILISEZ LE BON DE COMMANDE SRC / ÉLECTRONIQUE MAGAZINE
TARIF EXPÉDITIONS : 1 LIVRE 35 (5,34€), DE 2 à 5 LIVRES 45 (6,86€), DE 6 à 10 LIVRES 70 (10,67€), PAR QUANTITÉ, NOUS CONSULTER

SRC/ELECTRONIQUE magazine – Service Commandes B.P. 88 - 35890 LAILLÉ - Tél.: 02 99 42 52 73+ Fax: 02 99 42 52 88

CONDITIONS DE VENTE:

REGLEMENT: Pour la France, le paiement peut s'effectuer par virement, mandat, chèque bancaire ou postal et carte bancaire. Pour l'étranger, par virement ou mandat international (les frais étant à la charge du client) et par carte bancaire. Le paiement par carte bancaire doit être effectué en francs français.

COMMANDES: La commande doit comporter tous les renseignements demandés sur le bon de commande (désignation de l'article et référence). Toute absence de précisions est sous la responsabilité de l'acheteur. La vente est conclue dès acceptation du bon de commande par notre société, sur les articles disponibles uniquement.

PRIX: Les prix indiqués sont valables du jour de la parution de la revue ou du catalogue, jusqu'au mois suivant ou jusqu'au jour de parution du nouveau catalogue, sauf erreur dans le libellé de nos tarifs au moment de la fabrication de la revue ou du catalogue et de variation importante du prix des fournisseurs ou des taux de change.

la journée de réception, sauf en cas d'indisponibilité temporaire d'un ou plusieurs produits en attente de livraison. SRC ÉDITIONS ne pourra être tenu pour responsable des retards dus au transporteur ou résultant de mouvements sociaux.

retards dus au transporteur ou resultant de mouvements sociaux.

TRANSPORT: La marchandise voyage aux risques et périls du destinataire. La livraison se faisant soit par colis postal, soit par transporteur. Les prix indiqués sur le bon de commande sont valables dans toute la France métropolitaine. Pour les expéditions vers la CEE, les DOM/TOM ou l'étranger, nous consulter. Nous nous réservons la possibilité d'ajuster le prix du transport en fonction des variations du prix des fournisseurs ou des taux de change. Pour bénéficier des recours possibles, nous invitons notre aimable clientèle à opter pour l'envoi en recommandé. A réception des colis, toute détérioration delt être signalés directement au transporteur. doit être signalée directement au transporteur.

LIVRAISON: La livraison intervient après le règlement. Nos commandes sont traitées de	marchandises et nous être adressée par lettre recommandée avec accusé de réception			
JE PEUX COMMANDER PAR TÉLÉPHONE AU AVEC UN RÈGLEMENT PAR CARTE BANCAIRE	<mark>2 99 42 52 73</mark>			
DÉSIGNATION	RÉF. QTÉ PRIX UNIT. S/TOTAL			
JE COMMANDE ET J'EN PROFITE POUR M'ABONNER	SOUS-TOTAL			
JE REMPLIS LE BULLETIN SITUÉ AU VERSO ET JE BÉNÉFICIE IMMÉDIATEMENT	REMISE-ABONNÉ x 0,95			
DE LA REMISE DE 5 % SUR TOUT LE CATALOGUE D'OUVRAGES TECHNIQUES ET DE CD-ROM	SOUS-TOTAL ABONNÉ			
JE SUIS ABONNÉ, POUR BÉNÉFICIER DE LA REMISE DE	+ PORT*			
5%, JE JOINS	* Tarifs expédition CEE / DOM-TOM / Étranger NOUS CONSULTER			
OBLIGATOIREMENT MON ÉTIQUETTE ADRESSE	*Tarifs expédition FRANCE : 1 livre : 35 F (5,34 €) 2 à 5 livres : 45 F (6,86 €) 6 à 10 livres : 70 F (10,67 €) autres produits : se référer à la liste			
DEMANDEZ NOTRE CATALOGUE description détaillée de chaque ouvrage (envoi contre 4 timbres à 3 F)	RECOMMANDÉ FRANCE (facultatif) : 25 F (3,81€) ☐ RECOMMANDÉ ÉTRANGER (facultatif) : 35 F (5,34€) ☐			
Je joins mon règlement à l'ordre de SRC chèque bancaire	TOTAL:			
JE PAYE PAR CARTE BANCAIRE	VEUILLEZ ECRIRE EN MAJUSCULES SVP, MERC NOM : PRÉNOM : ADRESSE :			
Signature > Date de commande	CODE POSTAL : VILLE : TÉLÉPHONE (Facultatif) :			

Ces informations sont destinées à mieux vous servir. Elles ne sont ni divulguées, ni enregistrées en informatique.

et profitez de vos privilèges

sur tout le catalogue d'ouvrages techniques et de CD-ROM.*

* à l'exception des promotions et des références BNDL

S'ABONNER C'EST:

- L'assurance de ne manquer aucun numéro.
- L'avantage d'avoir
 ELECTRONIQUE magazine directement dans votre boîte aux lettres près d'une semaine avant sa sortie en kiosques.
 Recevoir un CADEAU*!
 - * pour un abonnement de deux ans uniquement. (délai de livraison : 4 semaines)

OUI, Je m'abonne à	A PARTIR DU N°
Ci-joint mon règlement de F corr Adresser mon abonnement à : Nom	espondant à l'abonnement de mon choix. Prénom
Adresse	
Code postalVille	
Je joins mon règlement à l'ordre de JMJ chèque bancaire mandat	TARIFS FRANCE 6 numéros (6 mois) au lieu de 162 FF en kiosque, soit 26 FF d'économie 136 FF
☐ Je désire payer avec une carte bancaire Mastercard – Eurocard – Visa	soit 26 FF d'économie 20,73€ 12 numéros (1 an)
Date d'expiration :	au lieu de 324 FF en kiosque, soit 68 FF d'économie

TARIFS CEE/EUROPE

12 numéros

Signature obligatoire >

Avec votre carte bancaire, vous pouve

Date, le

306^{FF}
46,65€

24 numéros (2 ans)

au lieu de 648 FF en kiosque, soit 152 FF d'économie

75,61€

Pour un abonnement de 2 ans, cochez la case du cadeau désiré.

DOM-TOM/ETRANGER: NOUS CONSULTER

Bulletin à retourner à : **JMJ — Abo. ELECTRONIQUE** B.P. 29 – F35890 LAILLÉ – Tél. 02.99.42.52.73 – FAX 02.99.42.52.88

Gratuit:

- Une torche de poche
- ☐ Un outil 7 en 1 ☐ Une pince à dénuder
- Avec 24 FF

uniquement en timbres :

- Un multimètre
- ☐ Un fer à souder
- 🖵 Un agenda électronique

(délai de livraison : 4 semaines)

Un amplificateur FM de 10 W

pour le 140 - 146 MHz

Fabriquer un amplificateur VHF de 10 watts FM n'a généralement rien d'extraordinaire. Dans le montage que nous vous proposons ici et qui ne nécessite aucun réglage, les 10 watts HF sont obtenus en appliquant sur l'entrée d'un module amplificateur hybride à large bande Mitsubishi, une puissance de 0,03 watt (30 milliwatts) seulement. Voilà où se trouve l'originalité de cette réalisation.

I y a quelques années seulement, pour réaliser un amplificateur de ce genre, à relier à la sortie

d'un étage oscillateur, il fallait utiliser trois transistors HF montés d'après un schéma similaire à celui représenté sur la figure 1. Une fois tous les condensateurs ajustables réglés, on parvenait à obtenir environ 10 à 12 watts sur sa sortie.

Un tel amplificateur ne pouvait être monté que par un technicien ayant de bonnes connaissances en HF car, sans une expérience suffisante dans ce domaine, il était difficile de parvenir à régler de façon parfaite les circuits d'accord. Conséquence : il arrivait parfois que l'amplificateur se mette à auto-osciller de façon inexpliquée après un bref temps de fonctionnement, ce qui entraînait la "mort" des trois transistors.

Aujourd'hui, les modules HF à large bande modernes permettent de réaliser des amplificateurs de bonne qualité ne nécessitant aucune mise au point. De plus, il suffit d'appliquer quelques milliwatts seulement sur leur entrée pour obtenir une puissance importante à leur sortie.

Si vous disposez d'un tel module hybride, il vous faudra résoudre des problèmes que vous n'avez jamais rencontrés auparavant. En effet, les

seules caractéristiques que l'on trouve concernant ces composants sont : la tension d'alimentation, la fréquence d'utilisation, la puissance que nous pouvons appliquer sur l'entrée et la puissance maximale fournie sur la sortie.

Si ces données peuvent être suffisantes à un technicien spécialisé et compétent, celui qui n'a jamais utilisé un de ces modules, ne réussira pas à construire un amplificateur s'il n'a pas à sa disposition un schéma électrique et l'indispensable circuit imprimé au moins. Il faut, en outre, que quelqu'un lui ai dit ce qu'il convient de ne pas faire pour ne pas mettre son module hors d'usage immédiatement.

A ce point, nous intervenons pour vous proposer le circuit d'un amplificateur HF pour le 140-146 MHz, étudié pour utiliser un module de puissance de la marque Mitsubishi référencé M.57732/L.

Si nous consultons les caractéristiques données par le constructeur, nous trouvons ces quelques éléments :

RADIO

Fréquence de fonctionnement	135-160 MHz
Tension maximale sur les broches 2-4	15 volts
Tension maximale sur la broche 3	6 volts
Consommation maximale	2,5 ampères
Puissance maximale en entrée	0,04 watt
Impédance d'entrée et de sortie	50 ohms
Température de fonctionnement	−30 à +100° C
Gain en puissance	25 dB

Mais même si nous ajoutons la signification des différentes broches (voir figure 2) à ces caractéristiques, selon vous, combien sauraient concevoir un schéma électrique valable?

Il faut tout d'abord savoir qu'il n'est pas conseillé de dépasser les 15 volts d'alimentation. Partant de là, nous devons alimenter le module avec une tension de 12-13 volts.

Si ensuite, nous prenons en compte le gain en puissance de 25 dB, ce qui signifie une augmentation de la puissance de 316 fois, si nous appliquons 0,04 watt sur l'entrée, en sortie nous devons obtenir :

$0.04 \times 316 = 12.64 \text{ watts}$

Toutefois, pour ne pas endommager le module, il vaut mieux limiter la puissance d'entrée à une valeur légèrement inférieure à celle préconisée dans les caractéristiques.

En admettant n'utiliser en entrée que 0,03 watt (égal à 30 milliwatts), en sortie nous obtenons :

$0.03 \times 316 = 9.48 \text{ watts}$

Evidemment, si nous appliquons au module des puissances inférieures à 30 milliwatts, la puissance de sortie sera auto-

matiquement réduite comme nous l'avons spécifié dans le tableau ci-dessous.

puissance d'entrée	puissance de sortie
5 milliwatts	1,58 watt
10 milliwatts	3,16 watts
15 milliwatts	4,74 watts
20 milliwatts	6,32 watts
25 milliwatts	7,90 watts
30 milliwatts	9,48 watts
35 milliwatts	11,0 watts

Il existe également une autre donnée qui varie en rapport avec la puissance produite. A la puissance maximale, le module absorbe environ 2,5 ampères, la consommation descend à 2 ampères pour une puissance de 9,5 watts et est réduite à 1,7 ampère pour une puissance de 7 watts.

Laissant de côté toutes ces particularités, nous nous trouvons devant un autre problème à résoudre : celui de la commutation automatique, pour passer de la réception à l'émission

Un amplificateur se connecte toujours à la sortie d'un émetteur/récepteur. Ainsi, en émission, le signal HF présent sur la sortie de l'émetteur doit entrer dans l'amplificateur et doit ensuite être prélevé sur la sortie de l'amplificateur pour rejoindre l'antenne rayonnante. Par contre en réception, le signal capté par l'antenne doit rejoindre directement l'entrée de récepteur en contournant l'amplificateur.

Comme vous pouvez le voir sur le schéma électrique, la commutation est effectuée par deux relais.

Figure 1 : Schéma théorique d'un amplificateur utilisant des transistors amplificateurs HF. Après avoir calculé la valeur de toutes les inductances et des condensateurs d'accord, il est nécessaire de régler de façon parfaite chaque étage, car si un de ceux-ci auto-oscille, tous les transistors seront détruits en peu de temps.

Figure 2 : En utilisant le module amplificateur à large bande M.577632/L de chez Mitsubishi, on peut amplifier une fréquence comprise entre 135 et 160 MHz sans avoir de réglage à effectuer. Sur la figure de gauche, nous représentons son brochage et sur celle de droite, le schéma synoptique interne fourni par le fabricant.

Figure 3 : Schéma électrique de l'amplificateur de 10 watts pour le 140-146 MHz. Si nous appliquons sur l'entrée des signaux supérieurs à 40 milliwatts, nous devrons les atténuer avec un atténuateur en «

R16 et R17. Dans le tableau (voir texte), nous avons reporté la valeur des résistances à utiliser en fonction de la puissance injectée à l'entrée.

Liste des composants de l'amplificateur LX.1418

R1	: 3,9 kΩ	C4	: 10 nF céramique	L4	: voir texte
R2	: 22 kΩ	C5	: 10 nF céramique	L5	: voir texte
R3	: 22 kΩ	C6	: 100 nF céramique	JAF1	: Self 10 µH
R4	: 3,9 kΩ	C7	: 10 nF céramique	JAF2	: Self VK 200
R5	: 150 k Ω	C8	: 100 nF céramique	JAF3	: Self VK 200
R6	: 150 k Ω	C9	: 47 µF électrolytique	JAF4	: Self VK 200
R7	: 100 Ω	C10	: 100 nF céramique	DS1	: Diode Schottky 1N5711
R8	: 100 Ω	C11	: 10 nF céramique	DS2	: Diode Schottky 1N5711
R9	: 1 kΩ	C12	: 100 nF céramique	DS3	: Diode 1N4148
R10	: 10 kΩ	C13	: 10 nF céramique	DS4	: Diode 1N4007
R11	: 10 kΩ	C14	: 100 nF céramique	DS5	: Diode BY255
R12	: 1 MΩ	C15	: 10 nF céramique	DZ1	: Diode zener 4,7 V 1 W
R13	: 10 kΩ	C16	: 100 nF céramique	TR1	: Transistor NPN BC547
R14	: 22 kΩ	C17	: 10 nF céramique	IC1	: Circuit intégré LM358
R15	: voir tableau	C18	: 100 nF céramique	IC2	: Module hybride Mitsubishi M.57732/L
R16	: voir tableau	C19	: 10 nF céramique	RL1	: Relais 12 V 1 RT
R17	: voir tableau	C20	: 39 pF céramique VHF	RL2	: Relais 12 V 1 RT
R18	: 120 Ω 1/2 W	C21	: 39 pF céramique VHF		
C1	: 10 nF céramique	C22	: 100 µF électrolytique		
C2	: 10 nF céramique	L1-L2	: Self en strip-line	Note:	toutes les résistances sont des 1/4 W,
C3	: 10 nF céramique	L3	: voir texte	saufs	spécification contraire.

Schéma électrique

Le schéma complet de l'amplificateur utilisant le module M.57732/L est représenté sur la figure 3.

Sur la prise d'entrée située sur la gauche, nous pouvons connecter

la sortie de l'émetteur dont on veut augmenter la puissance ou bien le signal issu d'un VFO prévu pour les fréquences de 140-160 MHz.

Lorsque l'émetteur/récepteur est en réception, les deux relais sont au repos

et, ainsi, le signal capté par l'antenne atteint directement l'entrée du récepteur.

Quand l'émetteur est en émission, le signal HF passant par la ligne L1 se retrouve, par induction, également sur la ligne L2.

Figure 4 : Par curiosité nous avons ouvert un de ces modules.

Sur cette photo, vous pouvez donc voir le module hybride déshabillé! La diode DS1, reliée à la gauche de cette ligne, redresse le signal de l'onde directe, de cette façon, sur la cathode, nous retrouvons une tension positive qui est appliquée sur la broche non-inverseuse 5 de l'amplificateur opérationnel IC1/A.

Lorsque nous retrouvons cette tension sur l'amplificateur opérationnel, les relais sont activés. Le relais 1 connecte la sortie de l'émetteur sur la broche 1 du module IC2 et le relais 2 connecte l'antenne sur la broche de sortie 5.

Figure 5 : Photo de l'amplificateur vu du côté des composants. Sur la face opposée de cette platine, sera monté un gros radiateur dont le montage est donné en figures 7 et 8. Il servira à dissiper la forte chaleur générée par le module IC2.

7 mm

5 mm

toutes les diodes au silicium et de la diode zener DZ1. Les deux prises

d'entrée et de sortie peuvent être reliées au circuit avec deux courts morceaux de câble coaxial de 50-52 ohms. En bas, nous avons représenté le nombre de spires et les dimensions en millimètres des deux bobines L3 et L5 et de la bobine L4.

En regardant le circuit de détection, certains se demanderont pourquoi nous prélevons la tension positive de 12 volts sur le diviseur formé par les résistances R9 et R7+R8 et pourquoi nous faisons parvenir une tension positive d'environ 0,3 volt, à travers les diodes DS1 et DS2, sur les deux entrées de l'amplificateur opérationnel IC1/A.

Si nous n'avions pas appliqué cette tension aux diodes, pour les faire passer en conduction, nous aurions dû dépasser leur niveau de seuil, en fait nous aurions dû appliquer sur la prise d'entrée du module des puissances exagérées alors que nous savons qu'il ne faut pas dépasser 40 milliwatts.

Ainsi, la diode DS1 est déjà conductrice avec la tension positive prélevée du diviseur de tension à résistances et il suffit d'une puissance dérisoire pour faire activer les deux relais.

En fait, les deux relais seront excités avec une puissance de seulement 10 milliwatts.

Il faut signaler que l'amplificateur opérationnel IC1/A est utilisé comme amplificateur différentiel. De cette façon, quand les deux tensions appliquées ont une valeur identique, nous aurons 0 volt sur la broche de sortie, comme le confirme la formule :

Volt de sortie = (R6 : R4) x (V1 - V2)

D'où:

V1 est la valeur de tension (0,3 volt) présente sur la broche non inverseuse 5.

V2 est la valeur de tension (0,3 volt) présente sur la broche inverseuse 6.

Sachant que la résistance R6 et de 150 k Ω et la résistance R4 de 3,9 k Ω , en sortie, nous retrouvons une tension de :

 $(150000:3900) \times (0,3-0,3) = 0 \text{ volt}$

Lorsque, sur l'entrée du module, nous appliquons le signal HF prélevé de la sortie d'un émetteur ou d'un VFO, la diode DS1 détecte cette tension et, même si elle est aussi dérisoire que de passer de 0,3 volt à 0,4 volt, sur la sortie de l'amplificateur opérationnel IC1/A, nous retrouverons une tension positive de :

 $(150000 : 3900) \times (0.4 - 0.3) = 3.84 \text{ volts}$

Cette tension est appliquée sur l'entrée non inverseuse 3 de l'amplificateur opérationnel IC1/B, utilisé comme comparateur de tension.

Dès que la tension sur l'entrée non inverseuse dépasse la valeur de la tension présente sur l'entrée inverseuse 2, qui est d'environ 0,7 volt par la présence de DS3, nous retrouvons, sur la sortie, une tension positive d'environ 10 à 12 volts. Cette tension polarise la base du transistor TR1, qui devient conducteur et active les deux relais reliés sur son collecteur.

Comme vous pouvez le voir sur le schéma électrique, avant d'atteindre la broche d'entrée 1 du module, nous avons fait passer le signal HF prélevé à la sortie de l'émetteur ou du VFO, à travers un atténuateur à résistances (voir les résis-

tances R16, R15 et R17 dans le rectangle jaune), car nous savons qu'il ne faut pas appliquer au module une puissance supérieure à 0,04 watt.

Dans le tableau ci-dessous, nous avons reporté les valeurs des résistances qu'il faut utiliser pour l'atténuateur en fonction de la puissance d'entrée.

puissance entrée	valeur de R16	valeur de R15-R17	atténuation de puissance
50 mW	12 ohms	390 ohms	2,2 dB
60 mW	18 ohms	270 ohms	3,0 dB
70 mW	22 ohms	220 ohms	3,7 dB
80 mW	27 ohms	220 ohms	4,3 dB
90 mW	27 ohms	180 ohms	4,8 dB
100 mW	33 ohms	180 ohms	5,3 dB
125 mW	39 ohms	150 ohms	6,2 dB
150 mW	47 ohms	120 ohms	7,0 dB
200 mW	56 ohms	120 ohms	8,3 dB
250 mW	68 ohms	100 ohms	9,2 dB
300 mW	75 ohms	100 ohms	10,0 dB
350 mW	82 ohms	100 ohms	10,7 dB
400 mW	82 ohms	82 ohms	11,3 dB
450 mW	90 ohms	82 ohms	11,8 dB
500 mW	95 ohms	82 ohms	12,2 dB
550 mW	100 ohms	82 ohms	12,7 dB
600 mW	110 ohms	82 ohms	13,0 dB
650 mW	120 ohms	82 ohms	13,4 dB
700 mW	120 ohms	75 ohms	13,7 dB
750 mW	120 ohms	68 ohms	14,0 dB
800 mW	130 ohms	68 ohms	14,3 dB
900 mW	140 ohms	68 ohms	14,8 dB
1,0 watt	150 ohms	68 ohms	15,3 dB
1,5 watt	180 ohms	68 ohms	17,0 dB
2,0 watts	220 ohms	68 ohms	18,3 dB

Note: Les valeurs non standard des résistances peuvent êtres obtenues en reliant en parallèle ou en série deux résistances. Par exemple pour obtenir 75 ohms, il suffit de relier en parallèle deux résistances de 150 ohms, par contre, pour obtenir 95 ohms, il suffit de relier une résistance de 82 ohms et une résistance de 12 ohms.

Jusqu'à une puissance de 250 milliwatts, nous pouvons utiliser des résistances au carbone de 1/4 watt, jusqu'à 600 milliwatts des résistances au carbone de 1/2 watt et pour des puissances supérieures des résistances de 1 watt.

Si le VFO ou l'émetteur que nous utilisons pour piloter le module délivre une puissance inférieure à 40 milliwatts, il faut exclure l'atténuateur. Ainsi nous relirons la sortie du relais 1 directement sur la broche 1 de IC2.

Le problème de l'atténuateur d'entrée étant résolu, voyons à présent les broches d'alimentation.

Dans le tableau des caractéristiques, il est indiqué qu'il faut appliquer une tension inférieure à 6 volts sur la broche 3. Pour cela, nous avons réduit la tension de 12 volts d'alimentation à 4,7 volts par l'intermédiaire de la diode zener DZ1.

Pour éviter les auto-oscillations, il faut appliquer la tension d'alimentation sur les différentes broches 2, 3 et 4, à travers des selfs HF en ferrite (voir JAF2, JAF3 et JAF4) et il

RADIO

faut relier, entre ces broches et la masse, des condensateurs de 100 nF et 10 nF.

De la broche de sortie 5, nous prélevons nos 10 watts, lesquels, avant de rejoindre le relais 2 et l'antenne, passent à travers un filtre passe-bas composé des trois bobines L3, L4 et L5 et des deux condensateurs céramiques C20 et C21.

Ce filtre, qui a une fréquence de coupure d'environ 170 MHz, permet d'éviter de générer à l'antenne des harmoniques à 320, 480 et 640 MHz.

Pour fournir à ce module la tension qui lui est nécessaire, il faut utiliser une alimentation stabilisée en mesure de fournir 12 volts sous 2,5 ampères maximum.

Réalisation pratique

En regardant le schéma d'implantation des composants, vous vous rendrez compte que pour réaliser un circuit HF, il ne suffit pas de disposer du schéma électrique, mais il faut qu'avec celuici, vous ayez également un circuit imprimé adéquat. Le modèle utilisé est un circuit double face à trous métallisés, sur lequel les composants doivent êtres placés dans une position bien précise pour éviter des couplages capacitifs indésirables.

Vous pouvez commencer le montage par le support de circuit intégré IC1 et poursuivre par le transistor TR1 en orientant le côté plat de son boîtier vers le module IC2. Après ces composants, insérez la première diode DS1, en dirigeant le repère de son boîtier vers le condensateur C2, puis la seconde diode DS2 avec son repère dirigé vers R4 et, enfin, la dernière diode DS3, son repère dirigé vers le condensateur C7 (voir schéma de la figure 6).

Insérez maintenant l'inductance JAF1 sur le circuit imprimé, puis toutes les résistances et les condensateurs situés à gauche du relais RL1.

Si vous connaissez déjà la puissance que délivre votre VFO ou votre émetteur, vous pouvez installer les résistances R15, R16 et R17 en choisissant leur valeur dans le tableau donné plus haut. Si le VFO ou l'émetteur délivrent une puissance inférieure à 40 milliwatts, connectez, avec un morceau de fil rigide, les deux pistes où doit se trouver la résistance R16 et ne montez pas les deux résistances R15 et R17.

Montez à présent les deux relais spéciaux pour la commutation HF. Ces relais sont capables de commuter des signaux allant jusqu'à une fréquence de 1 GHz.

Comme vous l'avez noté, le relais RL2 est installé sur le côté opposé du circuit imprimé, près de la prise de sortie.

Poursuivez le montage par la mise en place de la diode DS4, dont le repère doit être dirigé vers le bas, puis la diode zener, avec son repère dirigé vers R18 et, enfin, la grosse diode DS5, avec son repère dirigé vers la gauche.

Après ces composants, il faut monter le bornier à deux plots, tous les condensateurs céramiques (à l'exclusion de C14, C15, C16, C17, C18 et C19) et les deux condensateurs électrolytiques en prenant soin de respecter leur polarité (patte longue = positif).

Prenez à présent le dissipateur de chaleur et, sur celui-ci, installez le module non sans avoir replié toutes ses broches en "L" vers le haut.

Sur les deux ailettes latérales du module, appuvez les deux écarteurs en aluminium (voir figure 7) et fixez, sur le dissipateur, le module et le circuit imprimé à l'aide de deux vis en acier, en serrant fermement les écrous de façon à ce que toute la surface métallique du module appuie uniformément sur la surface radiateur.

Les broches de sortie du module, que nous avons pliées en "L", sont à présent pliées de nouveau en "L" sur le circuit imprimé afin de pouvoir les souder sur les 5 pistes en cuivre.

Maintenant, entre les pistes qui sont situées devant les broches 2, 3 et 4 et les pistes de masse qui séparent ces pistes, soudez les condensateurs céramiques C14 à C19 en prenant soin de raccourcir leurs pattes au maximum.

Pour compléter le montage, il faut insérer les bobines L3, L4 et L5 ainsi que les condensateurs céramiques pour HF C20 et C21 du filtre passe-bas.

Il vous faut fabriquer vous-même ces bobines, cette étape est on ne peut plus simple, comme vous allez voir. Pour cela, nous allons vous indiquer leurs caractéristiques.

Bobine L3-L5 = sur un support de diamètre de 8 mm (queue de foret), bobinez deux spires jointives en utilisant du fil de cuivre argenté de 1 mm. Après les avoir bobinées, il faut écarter les

deux spires de façon à obtenir une bobine de 5 mm de long environ.

Bobine L4 = sur un support de diamètre 8 mm, bobinez 3 spires jointives en utilisant du fil de cuivre argenté de 1 mm. Après les avoir bobinées, il faut écarter les trois spires de façon à obtenir une bobine de 7 mm de long environ

Les deux bobines L3 et L5 sont montées dans le sens horizontal par rapport au circuit imprimé. Par contre, la bobine L4 est montée à 90 degrés (voir figure 6).

Entre les bobines L3 et L4 et entre les bobines L4 et L5, soudez les deux condensateurs HF céramiques C20 et C21 d'une capacité de 39 pF chacun.

La réalisation de l'amplificateur sera terminée après avoir inséré le circuit intégré IC1 dans son support en orientant son repère vers la droite.

Cet amplificateur peut être enfermé dans un coffret soit métallique soit en plastique. Pour connecter les deux prises BNC d'entrée et de sortie aux pistes du circuit imprimé, utilisez deux petits morceaux de câble coaxial de 50-52 ohms.

Derniers conseils

Sur l'entrée de cet amplificateur, vous ne devez appliquer qu'un signal HF modulé en fréquence. Il ne faut pas relier sur l'entrée un émetteur modulé en amplitude, car vous pourriez endommager irrémédiablement le module.

Avant de passer en émission, vous devrez avoir relié à l'appareil le câble coaxial allant à l'antenne ou une charge fictive de 50-52 ohms.

Ce montage ne nécessite aucun réglage, dès que vous appliquez un signal HF sur l'entrée, vous obtenez, sur la sortie, une puissance proportionnelle à celle que vous avez appliquée sur l'entrée.

Pour alimenter cet amplificateur, utilisez une tension stabilisée de 12 volts sous 2,5 ampères environ.

Où trouver les composants

Le circuit imprimé double face à trous métallisés seul ou un kit complet (LX.1418) sont disponibles. Voir publicité dans la revue.

♠ N. E.

Pour vos achats, choisissez de préférence nos annonceurs. C'est auprès d'eux que vous trouverez les meilleurs tarifs et les meilleurs services.

avec un règlement par Carte bancaire

Un système de sonorisation par le 220 V

Figure 1 : Sur l'émetteur, nous appliquons le signal prélevé à la sortie d'une radio ou d'un quelconque préamplificateur stéréo.

Un émetteur spécial, couplé à une source BF, modulé en fréquence et transmettant dans la bande 150-160 kilohertz, sert à envoyer, sur le secteur 220 volts, une sonorisation que vous pourrez "récupérer" dans n'importe quelle pièce de votre appartement, maison ou entreprise, sur un récepteur FM spécialement conçu pour se syntoniser sur cette gamme de fréquence uniquement.

ous sommes prêts à parier, qu'après avoir lu l'introduction, vous vous êtes immédiatement dit que pour écouter de la musique dans n'importe quelle pièce d'un lieu donné, il suffirait d'acquérir autant de "radios-de-poche-made-in-Japan" que

de pièces et le problème serait résolu!

Ce qui pourrait être exact pour un "particulier" l'est déjà beaucoup moins pour un "professionnel". En effet, si vous étiez gestionnaire d'une entreprise ou d'un restaurant avec 4 ou 5 pièces ou salles et si vous vouliez faire écouter, à votre personnel ou à vos clients, la musique ou une sonorisation quelconque issue d'un amplificateur ou d'un magné-

tophone situé au secrétariat ou près de la caisse, comment résoudriez-vous ce problème?

N'oublions pas également que depuis votre amplificateur ou votre magnétophone vous pourrez, par microphone interposé, faire passer un message ou une annonce, ce qui n'est pas possible avec la solution des "radios-de-poche-made-in-Japan".

Certains nous répondront encore qu'il suffit de relier deux fils sur la sortie haut-parleur de l'amplificateur afin de rejoindre les locaux intéressés et de connecter ces fils à de petites enceintes acoustiques. Bien sûr, ce pourrait être

AUDIO

une solution. En pratique, pourtant, ce n'est pas réalisable car, en reliant en parallèle sur le haut-parleur principal des haut-parleurs secondaires, cela abaissera l'impédance de charge et, dans ces conditions, les transistors de sortie de l'amplificateur "partiront en fumée" après peu de temps!

En fait, si votre amplificateur a été étudié pour une charge de 8 ohms, en reliant en parallèle deux haut-parleurs, la charge descend à 4 ohms et, en reliant 3 haut-parleurs, la charge descend à 2,6 ohms.

Pour sonoriser plusieurs pièces, il n'y a qu'un seul système simple, utiliser les fils de l'installation électrique!

Même si sur ces fils une tension de 220 volts est présente, nous pouvons lui superposer un signal haute fréquence, compris entre 150 et 160 kHz, fourni par un petit émetteur modulé en fréquence. Ce signal pourra être récupéré sur n'importe laquelle des prises secteur de l'appartement par un petit récepteur FM, spécialement étudié pour recevoir cette gamme de fréquences.

La fréquence de 150-160 kHz que nous utilisons n'a pas été choisie par hasard. Nous avons contrôlé le niveau d'atténuation des fréquences comprises entre 50 et 250 kHz en reliant l'émetteur et le récepteur à une distance de 100 mètres (longueur des fils de l'installation électrique), après avoir allumé toutes les lampes existantes dans le local.

Comme vous pouvez le voir sur le graphique représenté sur la figure 4, lorsque toutes les lampes sont éteintes, toutes les fréquences comprises entre 50 et 250 kHz, subissent une atténuation d'environ 10 dB. Mais si nous allumons toutes les lampes. nous constatons que toutes les fréquences supérieures à 170 kHz, subissent une atténuation d'environs 30 dB.

Nous avons également constaté, que seules les fréquences comprises entre 150 et 160 kHz subissent une atténuation mineure. Nous avons donc basé notre étude sur ces constatations pour réaliser l'émetteur et le récepteur que nous vous proposons ici.

Nous prévoyons déjà que certains nous demanderont si cet appareil peut être utilisé comme interphone, nous pouvons répondre immédiatement que c'est possible. Bien entendu, chaque "poste" devra disposer d'un émetteur et d'un

Figure 2 : En reliant le récepteur FM à une prise du secteur 220 volts, nous capterons les signaux sonores envoyés par l'émetteur.

récepteur. Il suffira alors d'appliquer, sur l'entrée de l'émetteur, le signal dûment amplifié d'un microphone.

Même si vous ne réalisez pas ce projet, il sera très instructif de savoir comment on peut moduler en FM une fréquence de 150-160 kHz.

L'émetteur FM sur 150-160 kHz

Pour réaliser un émetteur modulé en fréquence sur des fréquences aussi basses, nous ne pouvions pas utiliser un classique oscillateur LC, car il aurait été presque impossible de faire varier la fréquence, par l'intermédiaire de diodes varicap.

Pour résoudre ce problème, nous avons réalisé un simple VCO (oscillateur contrôlé en tension) en utilisant le circuit intégré NE555 et nous avons modulé en FM le signal carré disponible sur sa broche 3 en appliquant le signal BF sur sa broche 5.

Pour connaître, avec une bonne approximation, quelle sera la fréquence générée par le NE555, nous pouvons utiliser la formule suivante :

kHz = 525 : (R12 kilohms x)C12 nanofarads)

Dans notre projet, la valeur de la résistance R12 est de 1.5 kilohm et celle du condensateur C12 est de 2,2 nanofarads, théoriquement nous devrions

 $525: (1,5 \times 2,2) = 159 \text{ kHz}$

obtenir la fréquence suivante :

Nous avons souligné que, théoriquement, nous devrions obtenir une fréquence de 159 kHz car nous devons tenir compte de la tolérance des résistances et des condensateurs qui se situe autour des ±10 %.

En figure 3, nous avons représenté le schéma complet de l'étage émetteur modulé en FM.

Le signal stéréo que nous avons appliqué sur les bornes d'entrée situées à gauche du schéma, est transformé en signal mono par le mélangeur passif constitué par les deux résistances R1 et R2. Le signal BF peut être prélevé sur la sortie ligne, présente sur l'arrière de chaque préamplificateur, ou bien sur la sortie casque. Nous avons prévu une entrée stéréo car, si nous ne modulions le signal qu'avec un seul canal, cela se ressentirait dans le récepteur. Pour ceux qui ne disposent que d'un signal mono, ils pourront indifféremment l'appliquer sur l'une ou l'autre des entrées.

Le signal BF ainsi mélangé, rejoint l'entrée non inverseuse (broche 5) du premier amplificateur opérationnel IC1/A, disponible dans le MC1458. La modification de la position du curseur de R7, disposé entre la broche de sortie et la broche inverseuse 6, permet de faire varier l'amplification en tension du signal d'un minimum de 2 fois à un maximum de 12 fois.

Avant de rejoindre la broche 3 du second amplificateur IC3/B, le signal passe à travers un filtre de préaccentuation composé de R8-C6 et de R9-C7 permettant de relever les fréquences aiguës.

Figure 3 : Schéma électrique de l'émetteur FM qui utilise le secteur 220 volts pour transmettre à distance les signaux BF qui sont appliqués sur ses deux entrées situées à gauche. Le potentiomètre ajustable R7 sert à faire varier le gain de l'étage préamplificateur IC1/A.

Liste des composants de l'émetteur FM LX.1416

		de l'efficiteur	FIVI LA. 14 10
R1	:	$2,2 \text{ k}\Omega$	C18 : 100 µF électrolytique
R2	:	$2,2 \text{ k}\Omega$	C19: 100 nF polyester
R3	:	100 kΩ	C20 : 100 nF polyester
R4	:	100 kΩ	C21 : 470 µF électrolytique
R5	:	4,7 kΩ	C22 : 4,7 µF électrolytique
R6	:	4,7 kΩ	C23 : 1,5 nF céramique
R7		50 kΩ trimmer	C24 : 22 nF pol. 1 000 V
R8		22 kΩ	C25 : 22 nF pol. 1 000 V
R9 R10		4,7 kΩ	•
R10		6,8 kΩ 100 Ω	
R12		1,5 kΩ	JAF2 : Self 1 mH
R13		4,7 kΩ	JAF3 : Self 47 mH
R14		820 Ω	JAF4 : Self 47 mH
R15		18 kΩ	MF1 : Pot MF 470 kHz
R16		5,6 kΩ	RS1 : Pont redresseur 100 V 1 A
R17	:	1 kΩ	DZ1 : Diode zener 30 V 1/2 W
R18	:	100 Ω	TR1 : Transistor NPN BC547
R19	:	100 Ω	TR2 : Transistor NPN BC547
C1	:	10 μF électrolytique	IC1 : Circuit intégré MC1458
C2	:	10 μF électrolytique	IC2 : Circuit intégré NE555
C3	:	2,2 µF électrolytique	IC3 : Régulateur L7812
C4	:	1 nF polyester	F1 : Fusible 1 A
C5	:	100 pF céramique	T1 : Transform. 12 W (T012.04)
C6 C7		3,3 nF polyester 2,2 µF électrolytique	sec. 12 A 0,8 A
C8		10 μF électrolytique	S1 : Interrupteur
C9	:	100 nF polyester	31 . Interruptedi
C10	:	1 μF polyester	Note
C11	:	100 nF polyester	
C12	:	2,2 nF polyester	(Sauf spécifications contraires)
C13	:	680 pF céramique	- toutes les résistances sont des
C14		220 pF céramique	1/4 W 5 %,
C15	:	680 pF céramique	 les condensateurs électrolytiques
C16	:	10 nF céramique	ont une tension de service de 25 V

10 µF électrolytique

C17

Le signal BF présent sur la sortie (broche 1) de IC1/B est appliqué à travers R10-C10 sur la broche 5 de IC2, le NE555, qui permet de moduler en FM la fréquence qui sort par la broche 3.

Avant d'atteindre la base du transistor TR1, ce signal carré est transformé en un signal sinusoïdal par le filtre passe-bande composé de JAF1-C13 et de JAF2-C15 afin d'éviter de transmettre une infinité de fréquences harmoniques qui pourraient perturber la réception.

Le signal est ensuite amplifié par le transistor TR2 et appliqué sur la bobine MF1 accordée sur 150-160 kHz.

La diode zener DZ1, placée entre le collecteur de TR2 et la masse, ne sert pas à stabiliser la tension d'alimentation, mais seulement à protéger ce transistor des éventuels pics de tension présents sur le secteur 220 volts qui pourraient l'atteindre à travers MF1.

Le signal de 150-160 kHz est prélevé du secondaire de la bobine MF1 et modulé en FM. Il est ensuite appliqué sur les fils du secteur 220 volts par l'intermédiaire des inductances JAF3-JAF4 de 47 microhenrys et des deux condensateurs C24-C25 de 22 000 picofarads.

Les deux inductances et les deux condensateurs, se comportent comme un filtre passif qui permet de laisser passer vers la ligne électrique

mini.

les fréquences comprises entre 149 et 162 kHz uniquement.

Si nous voulons calculer la fréquence centrale d'accord, nous pouvons utiliser la formule suivante :

$kHz = 159\,000 : \sqrt{picofarad x microhenry}$

Ainsi, avec les valeurs choisies nous obtenons :

159 : $\sqrt{22000 \times 47}$ = 156,36 kHz

Tout l'étage émetteur est alimenté par une tension stabilisée de 12 volts fournie par le circuit intégré IC3.

Etage récepteur pour les 150-160 kHz

Sur la figure 7 nous avons représenté le schéma de l'étage récepteur FM accordé sur 150-160 kHz.

Le signal HF que nous prélevons de la ligne électrique 220 volts, à travers le filtre passif composé également dans ce cas de deux inductances de 47 µH (voir JAF1-JAF2) et de deux condensateurs de 22 nF (voir C1-C2), est appliqué sur l'enroulement secondaire de la bobine MF1 et, par induction, passe sur l'enroulement primaire accordé sur 150-160 kHz.

Le signal présent sur le primaire de la bobine MF1, est appliqué à travers C4R1 sur la gate (porte) du FET FT1 qui procède à son amplification.

Les deux diodes DS1-DS2 montées en opposition sur l'entrée servent à éviter que des pics de tension présents sur le secteur 220 volts puissent atteindre le transistor FT1 et l'endommager.

L'inductance JAF3 de 100 μH , avec en parallèle le condensateur C6 de

10000 pF et la résistance R4 que nous trouvons sur le drain du transistor FT1, forment un circuit d'accord à large bande sur la fréquence centrale de :

 $159\,000: \sqrt{10\,000\ x\ 100}$ $= 159\ kHz$

Le signal HF amplifié, disponible sur le drain de FT1, est prélevé à travers le condensateur C8 et appliqué sur la

Figure 4 : Sur le graphique, nous pouvons voir l'atténuation en décibels des fréquences comprises entre 50 kHz et 250 kHz au moment où toutes les lampes du réseau sont allumées et au moment où elles sont toutes éteintes. Comme vous pouvez le constater, les fréquences qui subissent une atténuation mineure, sont comprises entre 130 et 160 kHz.

Figure 5 : Photo de l'émetteur monté. Sur la figure 10, vous trouverez le schéma d'implantation des composants.

broche 1 du circuit intégré IC1, un démodulateur FM type TCA3089.

A l'intérieur de ce circuit intégré (voir figure 9), nous trouvons un étage préamplificateur, suivi d'un étage limiteur d'amplitude et d'un démodulateur FM à quadrature.

Sur la broche 6 nous disposons du signal BF qui est appliqué sur l'entrée 2 du circuit intégré IC2, un TDA7052/B, à travers R9. IC2 est un amplificateur de puissance qui permet de piloter un petit haut-parleur de 1 ou 2 watts.

Comme vous pouvez le noter, le potentiomètre de volume n'est pas relié en série avec le signal BF comme cela se fait habituellement. En effet, il est monté en résistance variable entre la broche 4 et la masse. La variation de sa valeur ohmique entraîne la variation du niveau sonore. De ce fait, aucun signal BF ne circule dans le potentiomètre. Cela nous permet de le relier éventuellement à une distance importante, sans avoir besoin d'utiliser du câble blindé.

Tout l'étage récepteur est alimenté par une tension stabilisée de 12 volts fournie par le circuit intégré IC3.

Réalisation pratique de l'émetteur

Tous les composants sont montés sur le circuit imprimé LX.1416, comme cela est représenté sur le schéma d'implantation de la figure 10.

Nous vous conseillons, comme à l'accoutumé, de commencer par monter et

souder les composants les plus bas, résistances, supports de circuits intégrés et même le potentiomètre ajustable R7.

Après cela, montez la diode zener DZ1 en orientant la bague de repère vers le condensateur C17.

Poursuivez le montage en soudant tous les condensateurs céramiques, les condensateurs polyesters et, en dernier, les condensateurs chimiques en respectant la polarité de leurs pattes (la patte longue est le "+", la courte, le "-").

Après ces composants, vous pouvez insérer les inductances JAF en faisant attention à leur marquage. Sur les deux inductances JAF1-JAF2 le marquage est 1K, par contre sur JAF3-JAF4 le marquage est 47. Près de ces deux dernières inductances, il faut monter la bobine MF1 et, à sa gauche, les deux transistors TR1 et TR2 en orientant la partie plate de leur corps vers le transformateur T1.

Comme vous pouvez le voir sur le schéma pratique de câblage des composants de la figure 10, le circuit intégré stabilisateur IC3 est fixé sur le circuit imprimé sur un petit dissipateur en forme de U.

Près du circuit intégré IC3, insérez le pont redresseur RS1, le signe "+" orienté vers IC3.

Pour compléter le montage, insérez les deux borniers à 2 plots, puis le portefusible et, en dernier, le transformateur d'alimentation T1, qui sera fixé sur le circuit imprimé à l'aide de deux vis.

Après avoir terminé le montage, insérez dans leur support respectif, les circuits intégrés IC1, référencé CA1458 ou MC1458 et IC2, le circuit NE555 ou KA555. Le repère en U de chaque circuit intégré est orienté vers le bas.

Réalisation pratique du récepteur

Tous les composants du récepteur sont montés sur le circuit imprimé LX.1417 (voir figure 11).

Comme pour l'émetteur, montez en premier les résistances et les supports des circuits intégrés IC1 et IC2.

Montez ensuite les deux diodes DS1 et DS2 en orientant leur baque en

Figure 6 : Photo du récepteur monté. Sur la figure 11, vous trouverez le schéma d'implantation des composants.

Figure 7 : Schéma électrique du récepteur FM accordé sur 150-160 kHz. Si vous voulez améliorer la qualité du son, fixez le haut-parleur dans une enceinte acoustique en bois.

opposition, une dans un sens, l'autre dans l'autre.

Insérez ensuite tous les condensateurs céramiques, polyester et, en dernier, les condensateurs chimiques en faisant attention à la polarité de leurs pattes (la plus longue indique le positif).

Après ces composants, vous pouvez monter les deux inductances JAF1-JAF2, marquée 47, puis l'inductance JAF3, marquée, quant à elle, 100 et, enfin, l'inductance JAF4, marquée 2,2K. Près de JAF3, insérez le transistor FT1, en orientant la partie plate de son corps vers T1.

Ensuite, montez les deux bobines MF1 et MF2 ainsi que le circuit intégré stabilisateur IC3, fixé sur le circuit imprimé sur un petit dissipateur en forme de U.

Près du condensateur chimique C17, montez le pont redresseur RS1 en orientant le signe positif vers la droite.

Pour terminer le montage, insérez les deux borniers à 2 plots, puis le portefusible et le transformateur d'alimentation T1, ce dernier étant fixé au circuit imprimé par deux vis.

Insérez à présent les deux circuits intégrés dans leur support respectif, le repère en U de IC1 vers la gauche et le repère en U de IC2 vers le haut (voir figure 11).

Liste des composants du récepteur FM LX.1417

R1	:	1 kΩ	C21 : 47 µF électrolytiqu	ue	
R2	:	220 kΩ	C22 : 100 nF polyester		
R3	:	2,2 k Ω	JAF1 : Self 47 µH		
R4	:	4,7 kΩ	JAF2 : Self 47 µH		
R5	:	220 Ω	JAF3 : Self 100 μH		
R6	:	4,7 kΩ	JAF4 : Self 2,2 mH		
R7	:	4,7 kΩ	MF1 : Pot MF 470 kHz		
R8	:	4,7 kΩ			
R9	:	2,7 kΩ	MF2 : Pot MF 470 kHz	001/44	
R10	:	1 M Ω pot. lin.	RS1 : Pont redresseur 1	00 V 1 A	
C1	:	22 nF pol. 1 000 V	DS1 : Diode 1N4148		
C2	:	22 nF pol. 1 000 V	DS2 : Diode 1N4148		
C3	:	1 5 nF céramique	FT1 : Transistor FET J31	10	
C4	:	1,2 nF céramique	IC1 : Circuit intégré TCA	43089	
C5	:	10 μF électrolytique	IC2 : Circuit intégré TDA	47052/B	
C6	:	10 nF céramique	IC3 : Régulateur L7812) -	
C7	:	10 nF céramique	F1 : Fusible 1 A		
C8	:	100 nF polyester	T1 : transform. 12 W (T012.04)	
С9	:	10 nF polyester	sec. 12 V 0,8 A	,	
C10	:	10 nF polyester	S1 : Interrupteur		
C11	:	10 µF électrolytique	AP : Haut-parleur 8 Ω		
C12	:	100 nF polyester	Ai . Hadt-paricul 0 32		
C13	:	1,5 nF céramique	Noto		
C14	:	10 nF polyester	Note:		
C15	:	470 nF polyester	(Sauf spécifications contrai		
C16	:	100 nF polyester	- toutes les résistances s	sont des	
C17	:	1 000 µF électrolytique	1/4 W 5 %,		
C18	:	100 nF polyester	 les condensateurs électrolytiques 		
C19	:	100 nF polyester	ont une tension de service de 25 V		

mini.

100 µF électrolytique

C20 :

Montage dans les coffrets

Pour l'émetteur, nous avons choisi un coffret standard en plastique de couleur noire dont les faces avant et arrière en aluminium ne sont pas percées. En fonction de l'emplacement que vous allez affecter à cet émetteur et en fonction des raccordements à y effectuer, vous percerez quatre trous, répartis à l'avant et à l'arrière, en fonction de vos besoins. Deux serviront à fixer les prises d'entrées, un pour fixer l'interrupteur, et le dernier pour le passage du câble d'alimentation. On peut, comme sur la photo de la figure 1, percer 3 trous sur la face avant pour les entrées et l'interrupteur et le dernier sur la face arrière pour le cordon secteur.

Il est également possible de percer 1 seul trou sur la face avant pour l'interrupteur et les 3 autres sur la face arrière pour les entrées et le cordon secteur.

Pour le récepteur, nous avons choisi un coffret en plastique de forme pupitre de couleur blanche, fourni avec sa face avant percée et sérigraphiée. Le petit

et du transistor J310, vu de dessous, utilisés dans le récepteur. A droite, le schéma synoptique du TCA3089.

AUDIO

haut-parleur est fixé sur le panneau à l'aide de trois vis en métal et de trois rondelles plates.

Il est également possible de relier les deux fils qui sortent des broches 5 et 8 du circuit intégré TDA.7052/B à une petite enceinte acoustique de 8 ohms.

Réglages

Régler l'émetteur et le récepteur est une opération très simple et pour cela il faut procéder de la façon suivante.

- 1 Tourner le noyau de la bobine MF1 de l'émetteur à mi-course.
- 2 Après avoir relié l'émetteur à une prise du secteur 220 volts, reliez le récepteur à une prise située dans une pièce contiguë et allumez-le.
- 3 Prenez un multimètre et reliez-le entre le point TP1 et la masse. Tournez lentement le noyau de la bobine MF2 du

Figure 10a : Schéma d'implantation des composants de l'émetteur FM à courant porteur accordé sur la fréquence de 150-160 kHz.

Nous vous rappelons que, sur le corps des inductances JAF1 et JAF2, nous trouvons le marquage 1K, par contre, sur les inductances JAF3 et JAF4, le marquage est 47. Si vous prélevez le signal BF de la sortie stéréo d'un préamplificateur, il faut appliquer les signaux sur les deux prises, canal droit et canal gauche.

Le mélangeur passif composé des résistances R1-R2 transforme le signal en un signal mono. Si vous prélevez le signal d'une sortie mono, vous pouvez l'appliquer sur une seule des deux prises.

Après avoir tourné à mi-course le curseur de R7, vous pouvez le tourner dans le sens des aiguilles d'une montre ou dans le sens inverse pour augmenter ou réduire le gain de l'amplificateur opérationnel IC1/A.

Figure 11a : Schéma d'implantation des composants du récepteur FM accordé sur la fréquence de 150-160 kHz. Après avoir allumé l'émetteur, tournez le noyau de la bobine MF2 de manière à obtenir, sur le point test TP1, une tension de 6 volts. Le noyau de la bobine MF1 est réglé pour le maximum de sensibilité, après avoir connecté le récepteur à une distance de 80 à 100 mètres de l'émetteur.

récepteur jusqu'au moment où vous lisez une tension de 6 volts sur le multimètre.

- 4 Si vous éteignez l'émetteur, vous entendez dans le récepteur un bruit assez fort, car ce dernier ne capte plus aucun signal HF.
- 5 À présent, reliez sur l'entrée de l'émetteur un signal BF que vous pouvez prélever de la prise casque d'un petit récepteur radio.
- 6 Reliez le récepteur à une prise très éloignée de celle où est relié l'émetteur, puis tournez le noyau de la bobine

MF1 du récepteur (vous pouvez également tourner le noyau de MF1 de l'émetteur), jusqu'au moment où le son augmente d'intensité.

7 - Si, pour écouter le son, vous devez tourner le potentiomètre de volume au maximum, il faut préamplifier un peu plus le signal BF de l'émetteur. Pour cela il faut agir sur le potentiomètre ajustable R7.

Quelques notes utiles

Le récepteur et l'émetteur doivent être reliés au secteur 220 volts alimenté par le même compteur. En effet, si le récepteur est placé sur une ligne électrique alimentée par un compteur différent, le signal subira une atténuation élevée.

Si, durant la réception, vous constatez un bruit de fond, cela signifie que vous n'avez pas réglé correctement le noyau de la bobine MF2 du récepteur. Parfois, ce bruit est également produit par l'alimentation à découpage des ordinateurs d'ancienne génération. Ces alimentations ne sont pas correctement blindées et, par conséquent, génèrent, sur le secteur, une quantité d'harmoniques qui perturbent le récepteur.

Figure 11b : Dessin, à l'échelle 1, du circuit imprimé du récepteur FM LX.1417.

Si vous éteignez l'ordinateur concerné, vous noterez la disparition du bruit.

Si vous voulez éliminer cet inconvénient, vous devez insérer un filtre antiparasites entre la prise de l'ordinateur et la prise du secteur 220 volts.

Où trouver les composants

Dessins des circuits imprimés et listes des composants étant fournis, vous pouvez vous approvisionner, de préférence, auprès de nos annonceurs. Les circuits imprimés peuvent être acquis séparément et, pour ceux qui préfèrent le "tout prêt" un kit est également disponible. Voir publicités dans la revue.

♦ N. E.

Figure 12 : Le circuit imprimé du récepteur est fixé sur le fond du coffret de couleur blanche visible sur la figure 2. Sur le panneau frontal en aluminium, sont fixés le potentiomètre de volume et le haut-parleur.

Figure 13 : Le circuit imprimé de l'émetteur est fixé sur le fond du coffret en plastique de couleur noire visible sur la figure 1.

Microcontrôleurs PIC

6ème partie

Nous allons continuer la description des ressources internes des microcontrôleurs PIC, en nous intéressant aujourd'hui à une ressource à la fois particulière et très utile : la mémoire EEPROM. C'est dans cette mémoire que vous allez pouvoir stocker des données qui seront protégées contre l'effacement, même lorsque le dispositif ne sera plus alimenté. Une utilisation type de cette zone de mémoire pourrait être le stockage de paramètres de calibrage d'une machineoutil, paramètres qui devraient, évidemment, être disponibles à chaque mise sous tension de ladite machine-outil. Vous pourrez également utiliser cette zone mémoire lorsque vous voudrez effectuer des comptages dont les résultats devront être conservés, même lorsque la machine-outil sera hors tension.

urant le fonctionnement normal du microcontrôleur (sous tension), vous pouvez lire et écrire ce type de mémoire grâce à des instructions particulières. Parmi toutes les mémoires disponibles, les EEPROM sont certainement les plus malléables, puisqu'elles sont complètement gérées par voie électrique et peuvent donc être contrôlées directement par le microcontrôleur ou par l'opérateur/programmateur.

Pour accéder à cette zone de mémoire particulière vous devrez obligatoirement vous servir de quatre registres d'utilisation spéciale qui correspondent aux adresses suivantes :

EECON1	88h
EECON2	89h
EEDATA	08h
EEDR	09h

Les deux derniers registres de la liste sont ceux qui contiennent réellement les données et les adresses des valeurs qui doivent être mémorisées et lues : le registre EEDATA contient

with MPLINK &

l'octet qui doit être écrit ou qui a été lu, tandis que le registre EEDR contient l'adresse de la case mémoire qui doit être écrite ou lue. Le PIC 16F84 dispose de 64 cases mémoires EEPROM qui se situent aux adresses comprises entre OOh et 3Fh. Ce qui signifie que seuls les six premiers huit bits constituant le registre EEDR sont utilisés. Le registre EECON1 est le registre de contrôle : dans ce

registre on n'utilise que les cinq bits

DO	RD	commence une opération de lecture;
D1	WR	commence une opération d'écriture;
D2	WREN	autorise une opération d'écriture;
D3	WRERR	indique qu'une opération d'écriture
		a échoué par reset ou par Watchdog;
D4	EEIF	ce bit génère une interruption quand
		une opération d'écriture a été accomplie.

de poids faibles :

Dans la précédente parution (n° 6), la lecture du texte d'introduction de ce cours a dû vous laisser dans la plus totale perplexité! En effet, vous avez pu lire "Le mois dernier nous avons commencé à analyser la structure interne d'un microcontrôleur de la famille PIC, et notamment du modèle **TARO** dont nous avons décrit certaines ressources disponibles comme...". Il s'agit en fait du modèle **16F84!** Pourquoi

le modèle TARO? Impossible de vous donnez une réponse. Le texte d'origine est bien orthographié 16F84 alors qu'à l'impression nous avons obtenu TARO! Probablement l'affaire d'un voyant. Nous n'avons aucune explication sérieuse à vous donner, nous pouvons seulement vous présenter nos excuses. Merci aux très nombreux passionnés de ce cours qui nous ont signalé cette "coquille"!

TECHNOLOGIE

Comme le montre la description du rôle des différents bits, le registre EECON1 permet de travailler avec la mémoire EEPROM contenue dans les microcontrôleurs de Microchip. Voyons donc en détail les opérations à effectuer pour lire ou écrire une case de la mémoire non volatile.

Lecture d'une case de la mémoire EEPROM

Pour lire une case mémoire, il suffit de transférer l'adresse de cette mémoire dans le registre EEADR et de mettre ensuite le bit de lecture (RD) du registre EECON1 à 1. Le contenu de la case mémoire sera présent dans le registre EEDATA à partir du cycle suivant.

Voyons donc une séquence possible d'instructions pour lire par exemple le contenu de la case mémoire EEPROM d'adresse 5 :

EEADR	equ	09	
EEDATA	equ	08	
EECON1	equ	88	

MOV	LW	05	
MOV	WF E	EADR	;met en EEADR
			;l'adresse de la
			;case mémoire
BSF	EE	CON1,0	;active la lecture

Même si nous n'avons pas encore analysé en détail le jeu d'instructions des PIC, vous pouvez essayer de comprendre le sens du listing que nous venons d'illustrer. Dans la suite de ce cours, nous consacrerons plusieurs pages à l'explication approfondie de chacune des instructions.

Voyons donc ce qui se passe lorsque l'on tape les instructions énoncées cidessus. Les directives "equ" permettent d'attribuer aux registres EEADR, EEDATA et EECON1 leurs adresses mémoires respectives. La première ins-

truction du listing met 05 dans le registre W (le registre de travail utilisé par le micro) pour ensuite le transférer, grâce à "MOVWF", dans le registre d'adresse EEADR. L'instruction "BSF" met alors à 1 le bit D0 du registre EECON1 qui représente le bit de démarrage de l'opération de lecture de la donnée.

A partir de l'instruction suivante, il vous sera possible de lire et d'utiliser le contenu du registre EEDATA, dans lequel est justement placé le contenu de la case mémoire en question.

Ecriture d'une case de la mémoire EEPROM

L'écriture d'une case mémoire requiert une procédure plus complexe que sa lecture. Il vous faudra donc redoubler d'attention et disposer évidemment de davantage d'instructions afin d'éviter d'écrire en mémoire des informations erronées. Il faudra en effet:

- mettre l'adresse de la case mémoire dans laquelle vous voulez écrire en EEADR;
- mettre la donnée que vous voulez écrire en EEDATA;
- écrire 55h dans le registre EECON2;
- écrire AAh dans le registre EECON2;
- mettre le bit d'écriture (WR) du registre EECON1 à 1 ;

Pendant la durée de ces opérations, nous vous conseillons de désactiver toutes les interruptions, en agissant sur le registre INTCON. Une fois toutes les instructions énumérées terminées, la donnée est écrite en mémoire. Cette opération prend environ 10 ms.

Lorsque la case mémoire est correctement écrite, le micro met le bit WR à 0 et effectue automatiquement une demande d'interruption à travers le bit EEIF.

Address	Name	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								Value on all other resets (Note1)
08h	EEDATA	EEPROM	data regis	ter						xxxx xxxx	uuuu uuuu
09h	EEADR	EEPROM	address re	egister						xxxx xxxx	עעעע עעעע
88h	EECON1	_	-	_	EEIF	WRERR	WREN	WR	RD	0 x000	0 ?000
89h	EECON2	EEPROM	control re								

Figure 2 : Tableau des registres associés à la mémoire EEPROM avec leurs bits correspondants. Légende : x = inconnu; u = inchangé; – = non implémenté, lu comme "0"; ? = valeur dépendant des conditions.

TECHNOLOGIE

Watchdog

cité.

ne bloque le programme.

Dans la famille des PIC, le

constitué d'un oscillateur

RC intégré au microcon-

trôleur et indépendant de

l'horloge. Ce qui veut dire

que le WDT est en mesure

de fonctionner même si

l'horloge est bloquée, par

exemple quand le circuit

est mis en mode Sleep

(veille) pour limiter la

consommation d'électri-

En fait, le WDT est un

compteur qui, passé un certain intervalle de temps

et s'il n'a pas été remis à zéro, génère

un Reset (réinitialisation) du micro-

contrôleur, forçant ainsi le système à

recommencer le programme depuis le

début. Il faudra donc prévoir d'insérer,

à l'intérieur du programme, des ins-

tructions assurant la remise à zéro du

WDT avant que cet intervalle de temps

ne soit écoulé.

(WDT)

Voyons, dans ce cas également, comment vous pouvez écrire une donnée dans la case mémoire d'adresse 5 :

EEADR	equ	09	
EEDATA	equ	08	
EECON1	equ	88	
EECON2	equ	89	
INTCON	equ	0B	

BCF INTCON, 7 ; désactive toutes les interruptions **MOVLW** 05 **MOVWF EEADR** ;charge l'adresse de la case mémoire **MOVLW** 12h **MOVWF EEDATA** ;charge en EEDATA la donnée à écrire, par exemple 12h **MOVLW** 55h **MOVWF** EECON2 ;met 55h en EECON2 **MOVLW** AAh **MOVWF** EECON2 ;met Aah en EECON2 ;met à 1 le bit d'écriture de EECON1 **BSF** EECON1, 1 INTCON, 7 ; réactive les interruptions **BSF**

Nous abandonnons, pour l'instant, la description de la mémoire EEPROM, que nous reprendrons plus tard en vous proposant des exemples pratiques d'utilisation de cette ressource importante du microcontrôleur.

Le watchdog

Le Watchdog pourrait se traduire "chien de garde" ou plus simplement "surveillant". Le Watchdog est un Timer (compteur) qui est normalement utilisé dans les systèmes à microcontrôleurs comme système de sécurité afin d'éviter qu'une cause accidentelle et non prévue par le programmateur

Si le dispositif se trouve en mode Sleep, le WDT permet de faire sortir le microcontrôleur de ce mode. Quand le Watchdog est utilisé sans le Prescaler (qui, comme nous l'avons déjà vu, peut être branché soit au Timer intégré soit, alternativement, au WDT), il a une période de 18 ms environ. Si vous utilisez le Prescaler, en mettant à 1 le bit PSA du registre OPTION (de cette façon vous connectez le Prescaler au Watchdog), il est possible d'augmenter jusqu'à 128 fois la durée de cet intervalle : vous obtiendrez alors, au maximum, une durée d'environ 2,3 secondes.

Pour établir le temps d'intervention du WDT, il vous faudra agir sur les trois bits PSO, PS1 et PS2 du registre OPTION. Pour remettre à zéro le WDT, il vous suffira d'utiliser l'instruction CLRWDT qui permet de remettre à 0 aussi bien le Watchdog que le Prescaler. Rappelez-vous, enfin, qu'à chaque fois qu'un signal de fin de comptage est généré, le bit TO du registre STATUS est mis à zéro, alors qu'il se trouve normalement à un niveau logique haut. Vous pouvez désactiver complètement le Watchdog, en phase de programmation, en mettant le bit WDTE du registre de configuration à 0 logique.

L'oscillateur externe

Comme tous les microcontrôleurs, les PIC ont également besoin d'une horloge externe qui leur permette de synchroniser toutes les opérations qu'ils doivent exécuter. Le PIC 16F84 peut travailler avec quatre configurations différentes d'oscillateur, qui sont sélectionnées lors de la phase de programmation du micro, en initialisant certains bits contenus dans le registre de configuration. Ce registre permet également d'autoriser d'autres fonctions particulières. En ce qui concerne l'oscillateur, les bits à utiliser sont les deux premiers. Trois des quatre modes de fonctionnement de l'oscillateur exigent l'utilisation d'un quartz ou d'un résonateur céramique tandis que le quatrième mode prévoit l'utilisation d'un simple réseau RC (Résistance-Condensateur).

Fonctionnement avec quartz ou résonateur céramique

Pour faire fonctionner l'oscillateur, il suffit d'intercaler, entre les pattes OSC1 et OSC2 du microcontrôleur, un quartz (ou un résonateur céramique) et deux condensateurs comme le montre le schéma de la figure 7.

La valeur des condensateurs varie en fonction du quartz utilisé. Elle est cependant toujours comprise entre 10 et 100 pF. Les trois modes de fonctionnement prévoyant justement l'utilisation d'un quartz ou d'un résonateur

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	_	_	_	CP	PWRTE	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Figure 4 : Tableau des registres associés au timer Watchdog. NOTE : les cases mémoire colorées ne sont pas utilisées par le timer Watchdog.

TECHNOLOGIE

ont pour différence la gamme de fréquence dans laquelle ils peuvent être utilisés et l'absorption de courant qu'ils déterminent.

Voyons ces trois configurations :

LP (Low Power)

Dans ce mode vous ne pouvez utiliser que des quartz ayant des valeurs de fréquence allant jusqu'à environ 200 kHz. Dans cette gamme de fréquence, on réduit la consommation à quelques dizaines de microampères.

XT (Crystal)

Dans ce mode vous pouvez aussi bien utiliser des quartz que des résonateurs céramiques. La fréquence à laquelle on "monte" est de 4 MHz et la consommation "tourne" autour de 5 mA.

HS (High Speed)

Il est possible d'arriver jusqu'à 10 MHz – si vous utilisez le 16F84-10 – ou jusqu'à 4 MHz – si vous utilisez le PIC 16F84-04 – en employant, soit des quartz, soit des résonateurs céramiques. La consommation, à 10 MHz, est d'environ 10 mA.

Fonctionnement avec réseau RC

Il est possible de faire fonctionner l'oscillateur simplement en connectant à la patte OSC1 un réseau constitué d'une résistance et d'un condensateur comme indiqué sur la figure 8. Avec ce mode de fonctionnement, il est possible d'atteindre des fré-

Figure 5a : Valeur de capacité avec les résonateurs céramiques.

Les tableaux ci-dessus mettent en évidence les valeurs conseillées par

Mode	fréq.	fréq. OSC1/C1							
LP	32 kHz	68 - 100 pF	68 - 100 pF						
	200 kHz	15 - 30 pF	15 - 30 pF						
XT	100 kHz	68 - 150 pF	150 - 200 pF						
	2 MHz	15 - 33 pF	15 - 33 pF						
	4 MHz	15 - 33 pF	15 - 33 pF						
HS	4 MHz	15 - 33 pF	15 - 33 pF						
	10 MHz	15 - 47 pF	15 - 47 pF						

Figure 5b : Valeur de capacité avec les résonateurs à quartz.

le fabricant, avec les différents types de résonateurs céramiques aux différentes fréquences. On note que pour le type de résonateur utilisé, tous les modes de travail ne sont pas disponibles.

Figure 6 : Le registre de configuration.

Parmi les bits de configuration disponibles à l'intérieur du registre, ceux concernés par le type d'oscillateur utilisé sont les deux premiers : FOSC0 et FOSC1.

quences maximales de 10 MHz. Si vous souhaitez vous servir du micro-contrôleur dans des applications qui ne nécessitent pas de temporisations extrêmement précises, nous vous conseillons d'avoir recours à cette solution, nettement plus économique que la précédente.

Evidemment la fréquence d'oscillation dépend des valeurs de R, de C et de la tension d'alimentation Vdd. En règle générale, il faut utiliser des valeurs de résistance comprises entre 3,3 k Ω et 100 k Ω et de condensateur comprises entre 20 pF et 300 pF.

Pour connaître la fréquence de l'horloge, vous pouvez utiliser des tableaux fournis par Microchip grâce auxquels vous pourrez déterminer, dans ses grandes lignes, la fréquence de fonctionnement. Il ne faut toutefois pas oublier que celle-ci est également influencée par la température et bien évidemment par la tolérance des composants utilisés.

Pour trouver la fréquence de fonctionnement à 5 V, qui est la tension à laquelle on fait habituellement fonctionner les microcontrôleurs, vous pouvez utiliser le tableau suivant :

Cext	Rext	Freq. osc
20 pF	3,3 K	4,68 MHz
	5,1 K	3,94 MHz
	10 K	2,34 MHz
	100 K	250,16 KHz
100 pF	3,3 K	1,49 MHz
	5,1 K	1,12 MHz
	10 K	620,31 KHz
	100 K	90,25 KHz
300 pF	3,3 K	524,24 KHz
	5,1 K	415,52 KHz
	10 K	270,33 KHz
	100 K	25,37 KHz

Utilisation d'un oscillateur externe

Les microcontrôleurs de chez Microchip peuvent également fonctionner en étant pilotés par un oscillateur externe, en reliant simplement la sortie de l'oscillateur à la patte OSC1 du micro et en laissant la patte OSC2 ouverte. Dans ce cas, le micro doit être programmé pour un des modes LP, XT ou HS.

♦ R. N.

Apprendre l'électronique en partant de zéro

8° EXERCICE : Alimentation universelle type LX.5004

Si vous suivez attentivement toutes nos instructions, nous pouvons vous assurer que, une fois le montage terminé et même si beaucoup des composants utilisés vous sont encore étrangers, l'alimentation fonctionnera immédiatement et à la perfection.

Cette alimentation vous sera très utile car la plupart des circuits que nous vous présentons dans la revue ont besoin de tensions très stables dont les valeurs sont souvent différentes de celles pouvant être débitées par une pile (par exemple 5 ou 15 volts).

Bien qu'une alimentation universelle coûte plus cher qu'une pile normale, vous devez considérer qu'elle est capable de fournir différentes tensions continues et alternatives avec une puissance qu'une pile conventionnelle ne pourra jamais fournir. Ne parlons même pas de sa durée de vie pratiquement illimitée si elle est utilisée dans des conditions normales ni qu'elle vous fournira tension et courant sans jamais se décharger!

Au lieu d'alimenter vos circuits électroniques avec des piles qui se déchargent très vite et finissent par coûter cher, nous vous suggérons de réaliser une petite alimentation dont le rôle sera de réduire la tension alternative du secteur 220 volts, disponible sur n'importe quelle prise de courant, à des valeurs de tension de 5, 6, 9, 12 et 15 volts. Cette même alimentation devra pouvoir transformer la tension alternative en tension continue, c'est-à-dire pouvoir fournir à sa sortie une tension identique à celle que fournirait une pile.

Dans cette leçon, nous vous expliquerons comment monter une alimentation capable de fournir des tensions continues stabilisées de 5, 6, 9, 12 et 15 volts ainsi que deux autres tensions, alternatives cette fois, de 12 et 24 volts, qui vous serviront pour alimenter de nombreux circuits électroniques parmi ceux que nous vous présenterons dans la revue.

Etant donné que nous vous avons déjà appris, dans la leçon numéro 5, comment procéder pour obtenir des soudures parfaites, nous pouvons vous assurer qu'une fois le montage de votre alimentation terminé, elle fonctionnera tout de suite correctement. Dans le cas contraire, si vous avez commis une erreur, nous vous aiderons à résoudre votre panne.

Si vous soudez de façon soignée tous les composants, vous vous apercevrez que vous pouvez faire fonctionner n'importe quel appareil électronique, même ceux qui, au départ, vous semblaient très complexes.

Une fois notre alimentation réalisée, nous aborderons les électroaimants.

Figure 196 : Nous avons représenté sur cette figure les connexions, vues du dessous, des broches du circuit intégré LM317 et du transistor BC547. Si vous ne trouvez pas indiqué sur les condensateurs électrolytiques la patte du "positif", souvenez-vous qu'elle est toujours légèrement plus longue que la patte du "négatif".

Notre alimentation est capable de fournir toutes les tensions suivantes :

2 tensions alternatives de 12 et 24 volts, avec un courant maximum de 1 ampère.

5 tensions continues stabilisées de 5, 6, 9, 12 et 15 volts, avec un courant maximum de 1 ampère.

1 tension continue non stabilisée de 20 volts, avec un courant maximum de 1 ampère.

Monter cette alimentation sera également un très bon exercice pour

apprendre à lire un schéma électrique. Dans le même temps, vous pourrez voir comment sont disposés, en pratique, tous les composants grâce à la seule lecture du plan d'implantation de la figure 198.

Le schéma électrique

Nous commençons la description du schéma électrique (voir figure 197) par la prise secteur 220 volts.

Avant que le "secteur" n'atteigne l'enroulement primaire du transformateur T1, il passe à travers l'interrupteur S1, qui nous permet d'allumer et d'éteindre notre alimentation.

On trouve, sur le transformateur T1, deux enroulements secondaires, l'un capable de fournir 17 volts alternatifs sous 1 ampère et l'autre, capable de fournir 0, 12 et 24 volts alternatifs également sous 1 ampère.

La tension alternative de 17 volts est appliquée sur l'entrée du pont redresseur RS1, qui la transforme en tension continue.

Le condensateur électrolytique (chimique) C1, placé sur la sortie du pont RS1, nous permet de rendre la tension redressée parfaitement continue.

Cette tension est ensuite appliquée sur l'entrée d'un circuit intégré stabilisa-

Nous vous conseillons de réaliser cette alimentation car vous pourrez y prélever toutes les tensions nécessaires pour alimenter les différents projets que nous vous présenterons dans ce cours d'électronique.

teur de type LM317, représenté sur le schéma électrique par un rectangle noir nommé IC1.

Comme vous pouvez l'observer sur la figure 196, ce circuit intégré dispose de trois broches, désignées par les lettres R, S et E.

E – c'est la broche d'Entrée sur laquelle est appliquée la tension continue que nous voulons stabiliser.

S – c'est la broche de Sortie sur laquelle nous prélevons la tension continue stabilisée.

R – c'est la broche de Réglage qui détermine la valeur de la tension à stabiliser. Pour obtenir une tension stabilisée de 5, 6, 9, 12 ou 15 volts sur la sortie, nous devons appliquer sur la broche R une tension que nous déterminons grâce au commutateur rotatif S2.

Figure 197 : Schéma électrique de l'alimentation. Dans l'encadré jaune, en bas à gauche, vous remarquerez les positions sur lesquelles vous devrez placer le commutateur S2 pour obtenir les différentes tensions en sortie.

R1

Liste des composants de l'alimentation LX.5004

R2 $1 k\Omega$ R3 $1.2 \text{ k}\Omega$ R4 $1,2 k\Omega$ R5 $1.2 \Omega 1/2 W$ R6 $1.2 \Omega 1/2 W$ R7 220Ω $1.8 \text{ k}\Omega$ R8 R9 $1.8 \text{ k}\Omega$ R10 $1,2 k\Omega$ R11 $2.2 \text{ k}\Omega$ R12 $1,2 k\Omega$ R13 $8.2 k\Omega$ R14 470 Ω R15 $1.2 \text{ k}\Omega$ R16 $10 \text{ k}\Omega$

 $1.2 \text{ k}\Omega$

C1 : 2 200 μ F électrolytique 50 V C2 : 10 μ F électrolytique 50 V C3 : 220 μ F électrolytique 25 V

C4 : 100 nF polyester
DS1 : Diode 1N4007
DS2 : Diode 1N4007
DL1 : Diode LED rouge
DL2 : Diode LED verte

RS1 : Pont redresseur 200 V / 1,5 A TR1 : transistor NPN type BC547

S1 : Interrupteur

S2 : Commutateur 1 circuit / 5 positions

IC1 : Régulateur intégré LM317
 T1 : Transformateur 40 W (T040.02)
 Sec. 0 - 12 - 24 V 1 A + 17 V 1 A

La tension stabilisée que nous appliquons sur les bornes de sortie de l'alimentation, est filtrée par les condensateurs C3 et C4, qui éliminent le moindre résidu de tension alternative.

La tension redressée par le pont RS1, alimente la broche E du circuit intégré IC1 et rejoint directement les bornes indiquées "SORTIE 20 V", desquelles nous pouvons prélever cette valeur de tension non stabilisée.

La diode LED DL2 reliée sur la tension de 20 volts, indique l'état de l'alimentation : allumée ou éteinte.

Dans cette alimentation nous avons prévu plusieurs sécurités :

- une première pour les courts-circuits,
- une seconde pour les surcharges et, enfin.
- une troisième pour les inversions de courant.

Ces sécurités sont destinées à éviter la destruction du circuit intégré IC1 en cas de court-circuit involontaire entre les deux fils de sortie de la tension stabilisée, ou bien, en cas de prélèvement de courant supérieur à 1 ampère.

Dans ces deux hypothèses, on retrouverait sur les pattes des deux résistances R5 et R6, une tension positive qui ferait brusquement chuter la tension de référence de la broche R et, par conséquent, celle de la broche de sortie S du régulateur.

La tension présente sur les deux résistances R5 et R6 rejoint également, par l'intermédiaire de la résistance R2, la base (B) du transistor TR1 qui, devenant conducteur, commande l'allumage de la diode LED DL1, reliée en série dans son collecteur (C).

Donc, quand la diode DL1 s'allume, cela signifie qu'il y a un court-circuit sur l'appareil que nous alimentons ou

bien, que celui-ci consomme un courant supérieur à 1 ampère.

Pour protéger le circuit intégré IC1 lorsqu'on coupe l'alimentation, nous avons relié la diode au silicium DS1 entre les pattes E et S.

En fait, chaque fois que l'on retire le 220 volts du primaire du transformateur T1, la tension sur la broche d'entrée E du circuit régulateur LM317 descend rapidement à 0 volt. Mais n'oublions pas que sur la broche de sortie S de ce même circuit régulateur se trouve le condensateur électrolytique de sortie C3, qui ne parvient pas à se décharger aussi rapidement que celui placé sur l'entrée.

On retrouvera donc sur la broche de sortie S une tension supérieure à celle présente sur la broche E, et cette différence risquerait également d'endommager le circuit intégré IC1.

Figure 198 : Plan d'implantation des composants de l'alimentation. Vous devrez mettre en place, sur le circuit imprimé, les composants correspondant à la sérigraphie et ayant les valeurs données dans la liste des composants, sans vous tromper (lire l'article) !

Quand la tension sur le condensateur électrolytique C3 est supérieure à celle présente sur le condensateur électrolytique C1, la diode DS1 s'excite et transfère sa tension sur la broche E. C'est pour cette raison qu'on ne retrouvera jamais sur la broche d'entrée une tension inférieure à celle de la broche de sortie.

La diode DS2, placée entre la broche S et la broche R, sert à décharger rapidement le condensateur électrolytique C2, relié à cette dernière, chaque fois que l'on passe d'une tension supérieure à une tension inférieure, en tournant le commutateur \$2

En admettant que le commutateur S2 soit placé sur la position 12 volts, on obtiendrait alors sur le condensateur électrolytique C2 une tension d'environ 10,75 volts.

Si I'on tournait S2 pour obtenir une tension stabilisée de 5 volts en sortie, le condensateur électrolytique C2 continuerait à fournir sur la broche R de IC1, une tension de 10,75 volts, qui serait aussi présente sur les bornes de sortie. On risquerait ainsi d'alimenter un appareil fonctionnant avec une tension stabilisée de 5 volts, avec une tension de 12 volts. Le rôle de la diode DS2 est donc d'assurer la décharge rapide du condensateur électrolytique C2 de façon à ce qu'on ne trouve sur la sortie de l'alimentation que la tension demandée.

Les résistances R8/R9, R10, R11/R12 et R13/R14, reliées au commutateur S2 servent à appliquer sur la broche R du circuit intégré IC1, les valeurs de tension permettant d'obtenir en sortie une tension stabilisée de 5, 6, 9, 12 et 15 volts.

La réalisation pratique

Après cette brève explication du schéma électrique, nous passons à la description de la réalisation pratique de notre alimentation universelle.

Le dessin du plan d'implantation, représenté sur la figure 198, vous aidera à dissiper vos moindres doutes. En effet, on y voit clairement apparaître l'emplacement de chaque composant sur le circuit imprimé (remarquer leurs appellations).

Pour connaître la valeur des résistances et des condensateurs devant être insérés aux emplacements indiqués, reportez-vous à la liste des composants.

Si vous faites l'acquisition du kit LX.5004, vous y trouverez tous les composants nécessaires au montage, le circuit imprimé percé et sérigraphié ainsi qu'un boîtier plastique prêt à recevoir votre réalisation.

Bien qu'il soit possible de commencer le montage par n'importe lequel des composants, nous vous conseillons de commencer par les résistances. Avant de les placer sur le circuit imprimé, vous devez plier leurs broches en "L" de façon à en faciliter l'insertion dans les trous prévus à cet effet.

Prenez ensuite le tableau de décodage des couleurs, que nous avons publié dans la deuxième leçon de ce cours (ELM n° 2, page 82), et commencez à organiser les différentes résistances.

Figure 199 : Après avoir monté tous les composants sur le circuit imprimé et soudé leurs pattes sur les pistes en cuivre en dessous, vous obtiendrez un montage identique à celui de cette photo. Notez bien le radiateur de refroidissement sur lequel est fixé le circuit intégré IC1.

Figure 200 : Une fois monté, le circuit imprimé devra être installé à l'intérieur de son boîtier plastique. Sur la face avant, vous fixerez le commutateur S2 et les douilles bananes de sortie des tensions ainsi que les supports chromés contenant les diodes LED. En ce qui concerne les connexions du commutateur S2, vous pourrez vous référer à la figure 204. Pour fixer les douilles bananes de sortie, référez-vous au dessin de la figure 206.

La première résistance à insérer, R1, est de 1 200 ohms et doit avoir sur le corps les couleurs suivantes : marron – rouge – rouge – or.

Après l'avoir repérée, insérez-la sur le circuit imprimé à l'emplacement marqué R1, en l'enfonçant complètement de façon à ce que son corps vienne s'appuyer sur le support. Retournez alors le circuit imprimé et soudez les pattes sur les pistes de cuivre, comme nous vous l'avons enseigné.

Essayez de réaliser des soudures parfaites car une patte mal soudée pourrait empêcher le circuit de fonctionner. Après soudure, coupez l'excédent des pattes à l'aide d'une pince coupante. Une fois la résistance R1 soudée, passez à la résistance R2 de 1 000 ohms, ayant sur le corps les couleurs suivantes : marron – noir – rouge – or.

Cette résistance doit être insérée sur le circuit imprimé à l'emplacement marqué R2.

Après avoir soudé et coupé ses pattes, vous pouvez insérer les résistances R3 et R4 qui, étant toutes les deux de 1 200 ohms, ont sur le corps les mêmes couleurs que R1.

Vous reconnaîtrez immédiatement les résistances R5 et R6 de 1,2 ohm – 1/2 watt car elles ont des dimensions légèrement plus grandes que les autres résistances de 1/4 de watt. Les couleurs apparaissant sur les corps de ces résistances sont : marron – rouge – or – or.

Les deux premières couleurs nous indiquent la valeur 12 tandis que la troisième, indique que cette valeur doit être divisée par 10. Donc la valeur finale de cette lecture sera de 1,2 ohm.

Après avoir inséré les résistances R5 et R6, installez toutes les autres, en contrôlant les couleurs marquées sur leurs corps.

En poursuivant ce montage, prenez les deux diodes au silicium et, après avoir plié leurs pattes en L, insérez-les sur le circuit imprimé dans les trous marqués DS1 et DS2.

Pendant l'installation des diodes, faites très attention à la disposition de la bague colorée, toujours positionnée sur un seul côté du corps. La bague de la diode DS1 doit être dirigée vers le haut, tandis que celle de la diode DS2 doit être dirigée vers la droite, comme indiqué sur le schéma d'implantation de la figure 198.

Une fois les diodes soudées, montez le transistor en l'insérant à l'emplacement marqué TR1. Les pattes de ce transistor ne doivent pas être raccourcies mais directement insérées sur le circuit imprimé de façon à ce qu'il ne dépasse, côté pistes, qu'environ un millimètre. Cette longueur suffira pour pouvoir effectuer la soudure. Avant de souder les pattes du transistor, contrôlez que la partie plate de son corps soit bien dirigée vers le condensateur électrolytique C1 (voir figure 198).

Après le transistor, prenez le circuit intégré LM317 et fixez-le, à l'aide d'une vis et d'un écrou, au radiateur de refroidissement, en dirigeant sa partie métallique vers le radiateur.

Insérez ce circuit intégré en le poussant vers le bas jusqu'à ce que le radiateur touche le circuit imprimé. Ensuite, sur le côté opposé, soudez ses trois pattes sur les pistes en cuivre et coupez l'excédent à l'aide de la pince coupante.

A présent, prenez le pont redresseur et insérez-le dans les quatre trous marqués RS1. Pendant son installation, vérifiez bien le positif et le négatif indiqués sur son corps. Insérez la broche positive dans le trou marqué "+" et la broche négative dans le trou marqué "-"

Poussez le corps du pont dans les trous de façon à le positionner à environ 10 mm du circuit imprimé, puis soudez de l'autre côté ses quatre pattes sur les pistes en cuivre et coupez les parties excédentaires.

Si, en coupant les pattes, vous remarquez une mauvaise tenue du

Figure 201 : Sur cette photo vous pouvez voir comment doivent se présenter toutes les soudures sur les pistes en cuivre du circuit imprimé.

Figure 202 : Le circuit réussira difficilement à fonctionner si les soudures que vous avez réalisées ressemblent à celles-ci. Dans ce cas-là, vous devrez les refaire en suivant les instructions de la leçon numéro 5.

composant, cela signifie que les soudures ont été mal effectuées et qu'il faut donc les refaire. Vous pouvez voir sur la figure 201 un circuit imprimé parfaitement soudé.

Si vos soudures se présentent comme celles de la figure 202, cela signifie que vous ne savez pas encore souder et qu'il faut donc que vous relisiez toute la leçon sur les soudures.

Petite astuce pour souder bien droit certains composants :

Lorsque vous devez souder un transistor, ou un pont redresseur, ou encore un régulateur, etc., soudez d'abord une seule patte, retournez le circuit et vérifiez le résultat, redressez éventuellement le composant et soudez les autres pattes.

Poursuivez le montage en insérant les trois condensateurs électrolytiques C1, C2 et C3, en respectant la polarité de leurs pattes. Les symboles "+/-" ne sont pas toujours portés sur le corps des condensateurs. Souvent, seul le signe "-" y figure. Si vous avez un doute, sachez que la patte la plus longue (voir figure 205) est toujours le positif.

Insérez cette patte dans le trou marqué "+", puis poussez le condensateur jusqu'à ce qu'il touche le support. Du côté des pistes en cuivre, soudez les deux pattes puis coupez l'excédent, toujours à l'aide de la pince coupante.

Après les condensateurs électrolytiques, insérez le condensateur polyester C4. Puisque ses pattes ne sont pas polarisées, vous pouvez le positionner dans n'importe quel sens. Maintenant, insérez et soudez les broches du bornier d'entrée destiné à recevoir la tension secteur 220 volts.

Une fois cette phase terminée, prenez le transformateur T1 et enfilez ses broches dans le circuit imprimé. Cellesci sont conçues de façon à pouvoir être installées exclusivement dans un sens, c'est-à-dire avec l'enroulement primaire dirigé vers le bornier des 220 volts et les secondaires, vers le radiateur de refroidissement de IC1.

Une fois le transformateur inséré, fixezle sur le circuit imprimé à l'aide de quatre vis et de quatre écrous, puis, soudez toutes ses broches sur les pistes en cuivre.

Dans les trous marqués 1, 2, 3, 4 et C, soudez des morceaux de fil de cuivre gainés de plastique de 8 cm de long. Ils vous serviront pour relier les broches

du commutateur rotatif R2 une fois fixé sur la face avant du boîtier.

Une fois tous les composants montés, le circuit imprimé doit être à son tour fixé à l'intérieur du boîtier plastique à l'aide de quatre vis autotaraudeuses.

Démontez le panneau avant du boîtier, fourni déjà percé et sérigraphié, pour pouvoir y fixer l'interrupteur S1, les supports chromés des diodes LED et le commutateur S2. Avant de fixer S2, sciez son axe à une longueur de 10 mm comme indiqué sur la figure 203.

Toujours sur ce même panneau, fixez les douilles banane de sortie, qui vous serviront pour prélever la tension alternative de 0, 12 et 24 volts, la tension continue non stabilisée de 20 volts et celle continue stabilisée que vous pourrez choisir entre ces différentes valeurs: 5, 6, 9, 12 et 15 volts.

Lorsque vous fixez ces douilles banane, vous devez d'abord retirer la bague isolante en plastique, puis, après avoir inséré les douilles dans les trous du panneau, enfilez la bague et serrez les écrous comme indiqué sur la figure 206. Si vous n'appliquez pas cette bague en plastique sur la partie postérieure de la douille, la vis centrale sera en contact avec le métal du panneau et entraînera le court-circuit de toutes les sorties, causant ainsi la chute totale de la tension de sortie.

Avant de remettre le panneau en place dans le boîtier, soudez deux fils isolés plastique sur les deux broches de l'interrupteur S1. Dénudez leurs extrémités en retirant l'isolant sur environ 3 mm. Ensuite, soudez les fils en cuivre après les avoir enfilés dans les trous des broches. Lorsque la soudure a refroidi, essayez de les bouger ou de les tirer pour vérifier qu'ils ont été bien soudés.

Dans le cas où cet interrupteur aurait trois broches, soudez un fil sur la broche centrale et l'autre sur une des deux broches latérales (voir figure 198).

Prenez à présent deux petits fils isolés plastique bicolore et soudez-les sur les deux pattes des diodes LED (voir DL1 et DL2). Vous devrez maintenir ces deux pattes légèrement éloignées l'une de l'autre afin d'éviter qu'elles ne se touchent. Comme vous le savez déjà, ces diodes ont une broche plus longue appelée "anode" (voir lettre A) et une plus courte appelée "cathode" (voir lettre K), dont il faut respecter la polarité. Si vous inversez par erreur la position des deux fils sur le bornier, il ne se passera rien de grave mais la diode LED ne pourra pas s'allumer. Dans ce cas-là, il suffit d'inverser les deux fils sur le bornier pour que les diodes s'allument. Vous ne verrez bien

Figure 203 : L'axe du commutateur S2 sera scié de façon à obtenir une longueur restante d'environ 10 millimètres.

Figure 204 : Le commutateur S2 étant composé de deux sections identiques, l'une d'elles restera inutilisée.

Figure 205 : La patte la plus longue de la diode LED est "l'anode", celle du condensateur électrolytique est le "positif".

Figure 206 : Pour fixer les douilles bananes sur la face avant, vous devrez retirer de leurs corps la bague isolante plastique et la replacer côté intérieur.

sûr s'allumer que la diode DL2, car DL1 s'allume uniquement quand l'appareil alimenté est court-circuité.

A présent, prenez deux morceaux de fils rouge et noir, d'un diamètre supérieur à celui utilisé pour alimenter les deux diodes LED, et retirez à leur extrémité environ 5 mm de plastique de façon à dénuder le fil de cuivre.

Soudez le fil noir sur la sortie de la douille noire et le fil rouge sur la sortie de la douille rouge de la "SORTIE 20 V". Faites de même pour les douilles "TENSION STABILISEE".

Faites attention car souder ces fils sur les douilles en laiton présente une certaine difficulté. En effet, si le corps des douilles n'est pas bien préchauffé par la panne du fer à souder lorsque vous y déposerez la soudure, celle-ci se refroidira immédiatement sans adhérer au métal. Afin d'évitez cet inconvénient, nous vous conseillons de commencer par étamer les extrémités des fils qui devront être soudés aux douilles, puis par étamer l'extrémité des douilles. Vous pourrez alors appuyer l'extrémité du fil en cuivre à l'extrémité de la douille, puis faire votre soudure en maintenant la panne du fer contre l'extrémité de la douille jusqu'à ce que toute la soudure soit bien fondue et brillante.

Insérez les extrémités opposées des fils venant des douilles, après les avoir étamés pour éviter qu'ils ne s'effilochent, dans les trous des borniers du circuit imprimé, en respectant le positif et le négatif et, bien sûr, en serrant les vis afin d'assurer un bon contact.

Les extrémités opposées des fils que vous avez soudés dans les trous C, 4, 3, 2 et 1, devront être soudées, une fois étamés, sur les broches correspondantes du commutateur S2. Etant donné que ce commutateur est composé de deux sections, vous trouverez sur son corps six broches d'un côté et six de l'autre (voir figure 204). Une

Figure 208 : Pour tester l'alimentation, vous pouvez relier une ampoule de 12 volts sur sa sortie. Cette ampoule peut également être reliée sur les douilles de sortie des tensions alternatives 0 V - 12 V.

seule des deux sections est utilisée. Le choix de cette section est sans importance mais rappelez-vous que la broche C (curseur central) est celle placée le plus vers l'intérieur.

Essayez de respecter l'ordre des fils, comme représenté sur le schéma de la figure 198, car en les inversant, vous risqueriez, par exemple, de retrouver une tension de 12 ou 15 volts sur la position "5 V".

A présent, prenez le cordon d'alimentation secteur 220 volts et insérez-le dans le trou qui se trouve sur le panneau arrière du boîtier. Pour éviter qu'en tirant dessus involontairement le cordon ne soit arraché du circuit imprimé, pensez à faire un nœud qui assurera la butée contre ce panneau (voir figure 207).

Après avoir dénudé les extrémités du câble secteur sur 5 mm, torsadez les brins et étamez-les pour éviter qu'ils ne s'effilochent. Ensuite, après avoir inséré les extrémités du câble secteur dans les trous du bornier, serrez les deux vis puis contrôlez qu'elles soient

effectivement bien bloquées en tirant légèrement dessus.

Vous devrez également insérer sur ce bornier les deux fils provenant de l'interrupteur S1.

Une fois le couvercle du boîtier plastique refermé avec ses deux vis, fixez le bouton sur l'axe du commutateur S2 et. en le tournant, vérifiez que son index corresponde bien aux valeurs 5, 6, 9, 12 et 15 V. Si ce n'est pas le cas, dévissez légèrement le bouton, puis positionnez l'encoche face à "5 V" et resserrez la vis.

Quand toutes ces opérations seront terminées, votre alimentation est prête à être utilisée.

Dernières vérifications

Branchez la prise de votre alimentation sur le secteur, puis, actionnez l'interrupteur S1 de facon à allumer la diode LED DL2. Quand cette diode s'allume, les tensions que nous vous avons indiquées sont disponibles sur les douilles de sortie.

Afin de le vérifier, mesurez-les à l'aide d'un multimètre et si vous n'en avez pas encore, procurez-vous une petite ampoule d'environ 12 V - 3 watts et reliez-la sur les deux sorties 0 et 12 volts alternatifs. Vous verrez alors l'ampoule s'allumer.

Maintenant, reliez-la sur la sortie des tensions stabilisées et tournez le bouton du commutateur S2 de la position

Figure 207: Pour éviter que le cordon d'alimentation secteur 220 volts ne soit arraché accidentellement, il est conseillé de faire un nœud sur la partie du fil qui reste à l'intérieur du boîtier.

"5 V" vers "15 V" et vous verrez que la luminosité de l'ampoule augmente progressivement.

Evitez de garder trop longtemps l'ampoule sur la tension "15 V" car elle pourrait griller. En effet, nous l'alimentons avec une tension supérieure aux 12 volts nécessaires à son fonctionnement. Pour la même raison, évitez de relier l'ampoule sur la tension non stabilisée des 20 volts.

Lorsque vous éteignez l'alimentation par l'intermédiaire de l'interrupteur S1, ne vous étonnez pas si la diode LED DL2 ne s'éteint pas instantanément car, tant que les condensateurs électrolytiques C1, C2 et C3 ne sont pas complètement déchargés, la diode LED reste allumée.

L'alimentation que vous venez de réaliser, après quelques leçons seulement, sera votre premier succès, et vous vous rendrez bien vite compte combien elle est indispensable dans le domaine de l'électronique.

Note: n'utilisez jamais l'alimentation avant de l'avoir enfermé dans son boîtier plastique afin éviter tout contact accidentel avec la tension secteur 220 volts, ce qui est, vous vous en doutez, très dangereux.

LES ELECTROAIMANTS

Lorsqu'une tension traverse un fil de cuivre, il se forme autour de lui des lignes concentriques capables de générer un très faible flux magnétique (voir figure 212). Si l'on enroule un certain nombre de spires sur un support, le flux magnétique augmente au point de réussir à attirer à lui de petits objets métalliques, comme le ferait un simple aimant.

Plus on bobine de spires ou plus on applique une tension importante aux extrémités de la bobine, plus le flux magnétique augmente.

Pour renforcer l'action du flux magnétique, il suffit d'insérer un noyau de fer à l'intérieur de la bobine. On obtient ainsi un petit électroaimant qui attirera de petits objets métalliques lorsqu'on appliquera une tension à la bobine et qui les repoussera en l'absence de tension

Les électroaimants sont utilisés en électronique pour réaliser des relais (voir figure 210), c'est-à-dire des commutateurs capables d'ouvrir et de fermer les contacts mécaniques.

Comme l'observation d'un champ magnétique n'est possible qu'à travers ces effets, nous avons pensé utile de mettre à votre disposition, sous forme de kit (LX.5005), deux supports déjà bobinés accompagnés de quelques accessoires. Vous aurez ainsi la possibilité de faire des expériences très

Figure 209 : Un relais est un élément composé d'un électroaimant servant à fermer ou à ouvrir des contacts mécaniques.

Figure 210: Les relais peuvent avoir différentes formes et dimensions. Vous ne devez appliquer sur la bobine de chaque relais que la tension de travail pour laquelle elle a été calculée, c'està-dire 4, 6, 12, 24 et 48 volts.

Figure 211 : Si la bobine du relais n'est pas alimentée, les contacts A et B resteront fermés. Dès sa mise sous tension les contacts B et C se fermeront, tandis que les contacts A et B s'ouvriront.

instructives avec ces électroaimants à monter soi-même.

La première expérience consiste à prendre les deux boulons de fer se trouvant dans le kit et à les insérer à l'intérieur des bobines sans les fixer avec leurs écrous.

Positionnez les bobines sur une table, à une distance de 1 cm environ comme le suggère la figure 215 et reliez sur leurs extrémités une tension continue de 12 volts que vous pouvez obtenir de l'alimentation LX.5004, réalisé dans cette leçon.

Vous verrez alors se vérifier seulement deux phénomènes :

1) Les têtes des deux boulons se repoussent.

Ce phénomène se vérifie quand les parties des deux bobines mises face à face ont la même polarité, c'est-à-dire Nord/Nord ou Sud/Sud.

2) Les têtes des deux boulons s'attirent.

Ce phénomène se vérifie quand les parties des deux bobines mises face à face ont une polarité opposée, c'est-à-dire Nord/Sud ou Sud/Nord.

Si vous remarquez que les têtes des deux boulons se repoussent, retourner seulement l'une des deux bobines et vous verrez les deux boulons s'attirer avec force. Pour les séparer, il suffira de couper la tension d'alimentation.

Figure 212 : Lorsqu'une tension traverse un fil de cuivre, de faibles flux magnétiques se créent tout autour.

Figure 213 : Pour augmenter ce flux magnétique, il suffit d'enrouler un certain nombre de spires sur un support.

Figure 214 : Le flux magnétique augmente encore si l'on place à l'intérieur de cette bobine un noyau en fer.

Si vous appliquez pendant quelques minutes la lame d'un petit tournevis sur la tête du boulon d'une des deux bobines, lorsque vous la retirerez, elle sera aimantée.

Si vous alimentez la bobine avec une tension de 6 volts la puissance d'attraction diminuera, tandis qu'avec une tension de 15 volts, cette puissance augmentera.

L'échauffement de la bobine ne doit pas vous inquiéter car il est absolument normal. Si vous remarquez que la bobine est chaude au point de ne pas pouvoir la toucher, interrompez vos expériences et attendez qu'elle refroidisse.

Ne vous inquiétez pas non plus si après un moment vous remarquez que le boulon inséré à l'intérieur de la bobine est lui aussi aimanté car, étant en acier, il réagit de la même façon que la lame du tournevis.

Si, au lieu d'alimenter les deux bobines avec une tension continue de 9 ou 12 volts, vous les alimentez avec une tension alternative de 12 volts, que vous pouvez toujours prélever de l'alimentateur LX.5004, vous sentirez vibrer les deux boulons à une fréquence de 50 hertz.

Une autre expérience que vous pouvez réaliser, consiste à prendre de la limaille de fer que vous déposerez sur un morceau de carton. Vous pouvez vous la procurer en limant vous-même

Figure 215 : En alimentant les deux bobines avec une tension "continue" de 12 volts, vous verrez les deux têtes des boulons placées à l'intérieur des bobines s'attirer avec force.

Figure 216 : Les têtes des deux boulons ne s'attirent que si elles ont deux polarités opposées, c'est-à-dire Nord/Sud ou Sud/Nord.

Figure 217 : Les têtes des deux boulons se repoussent quand elles ont la même polarité, c'est-à-dire Nord/Nord ou Sud/Sud.

Figure 218 : Si vous placez votre bobine sous un petit carton sur lequel vous avez déposé de la limaille de fer, vous verrez se dessiner le flux magnétique.

un morceau de fer ou en demandant à un serrurier un peu de la poussière tombée sous sa meule.

Si vous placez notre électroaimant alimenté avec une tension continue sous le carton et la limaille, vous verrez la limaille de fer dessiner sur le carton le flux magnétique généré par l'électroaimant (voir figure 218).

Si vous placez sous le carton la même bobine dans le sens vertical, vous verrez encore la limaille dessiner le flux magnétique, mais en se disposant cette fois d'une façon complètement différente de la précédente.

Théoriquement, en alimentant une seule des deux bobines, son champ magnétique devrait influencer de façon inductive l'enroulement de la deuxième, et on devrait alors retrouver aux extrémités de celle-ci une tension identique à celle appliquée sur la première. Toutefois, ceci ne se vérifie que si vous appliquez sur la première bobine une tension alternative.

Pour faire cette expérience, reliez aux extrémités de la seconde bobine une diode LED, avec une résistance de 220 ohms en série.

Si vous alimentez la première bobine avec une tension continue, vous obtiendrez un champ magnétique instantané qui ne réussira à influencer la seconde bobine que pendant le bref instant ou vous appliquerez ou retirerez la tension, et donc, la diode LED ne s'allumera pas (voir figure 222).

En théorie, si vous alimentez la première bobine avec une tension alternative de 12 volts, vous devriez obtenir un champ

Figure 219 : Si vous fixez les deux petites plaques de fer des deux côtés de la bobine, vous verrez que leurs extrémités attireront des petits corps métalliques comme le ferait un aimant.

Figure 220 : Si vous fixez deux bobines sur une seule petite plaque, vous augmenterez la force d'attraction. Si rien ne se passe, retournez l'une des deux bobines.

Figure 221 : Après avoir effectué toutes les expériences que nous vous avons décrites, prenez les deux petites plaques de fer et fixez-les sur les extrémités des deux bobines comme vous pouvez le voir sur ce dessin car, à présent, nous vous proposons une nouvelle expérience très intéressante.

magnétique alternatif et donc une tension alternative de 12 volts également aux bornes de la seconde bobine.

Cette tension ne pourra sortir sur la seconde bobine que dans les conditions que nous venons de décrire. En pratique, vous obtiendrez une tension inférieure à 12 volts car le noyau en fer (vis + petites barres), utilisé pour transférer le flux magnétique de la première à la seconde bobine entraîne des pertes. Toutefois, la tension que vous obtenez sur la seconde

bobine est plus que suffisante pour allumer la diode LED qui y est reliée (voir figure 222).

Sans le savoir, vous avez réalisé un petit transformateur capable de transférer une tension alternative de la première à la seconde bobine par l'intermédiaire d'un noyau en fer.

Vous vous êtes assuré, grâce à cette expérience, qu'un transformateur ne peut fonctionner qu'avec une tension alternative et pas avec une tension continue.

Ceci vous aidera à comprendre plus facilement la leçon dans laquelle nous parlerons des transformateurs, utilisés en électronique, pour abaisser la tension du secteur 220 volts à des valeurs de tension alternatives de 30, 25, 12 et 9 volts ou à n'importe quelle autre valeur.

♦ G. M.

Figure 222 : Reliez une résistance de 220 ohms et une diode LED sur les fils d'une bobine comme décrit sur ce dessin. Ensuite, reliez les extrémités de la bobine opposée aux bornes 12 volts alternatif de l'alimentation LX.5004 et vous verrez, à votre grande surprise, la diode LED s'allumer.

Figure 223 : Dans le kit LX.5005, vous trouverez, pour effectuer les expériences décrites, deux bobines déjà bobinées, deux boulons en fer et leurs écrous ainsi que deux petites plaques percées.

PETITES ANNONCES

Appareils de mesures électroniques d'occasion. Oscilloscopes, générateurs, etc.

HFC Audiovisuel

Tour de l'Europe 68100 MULHOUSE

10/99

RCS Mulhouse B306795576

TEL.: 03 89 45 52 11

Vends émetteur/récepteur vidéo 350 MHz, 1 watt de petite taille, portée 1 km pour modèles réduits. Grande stabilité d'image noir et blanc. Ecrire à Patrick Lafond, 29 rue Pierre Nicole, 75005 Paris. Recherche un livret mode d'emploi de la calculatrice Casio FX7000G (ou photocopie). Frais remboursés. Ecrire à Richard Guérillon, 8 rue Jean Graffin, 53410 La Brulatte. Téléphoner au 02.43.01.84.00. Merci.

Vends câble argent pur pour réalisations. Prix: 400 F les 10 mètres. Pour HP 900F-12 fourches argent pur. Prix: 120 F la paire. Tél. 04.91.73.37.14.

Vends générateurs HF à lampes LERES type 100 F, 50 kHz à 30 MHz, années 50-60. Prix : 300 F. Téléph. au 01.60.04.49.73. Vends pont d'impédances RLC type IX307A Metrix. Prix : 900 F. Voltmètre amplificateur Ferisol A404. Prix : 250 F. Mire couleur Metrix type GX953A. Prix : 400 F. Fréquencemètre Ferisol type HB221. Prix : 800 F. Jean Villette, tél. 04.94.57.96.90.

Recherche composants anciens: condensateurs, selfs, transfos, commutateurs, lampes, etc., tout type - faire offre. Recherche notice scope Tektro 7613 - tiroir 7A22 - filtre Wavetek modèle 852, pont LEA IPT1 - filtre HP8056A - ampli Philips RM5175 - compteur Metrix 443A. Faire offre au 04.94.91.22.13 le soir.

OM vend matériel radioamateur très bon état, très peu servi, IC271H (100 W, 2 m), IC725 (100 W déca), alimentation 220-20 A, IC490E (400 MHz), portable TH77E (144/400), antenne beam 2 éléments Fritzel, moteur KR600C, antenne Hustler 4BTV (verticale). Tél. au 02.47.28.65.46.

Directeur de Publication

James PIERRAT elecwebmas@aol.com

Direction - Administration

JMJ éditions La Croix aux Beurriers - B.P. 29 35890 LAILLÉ

Tél.: 02.99.42.52.73 + Fax: 02.99.42.52.88

Rédaction

Rédacteur en Chef James PIERRAT

> Publicité A la revue

Secrétariat

Abonnements - Ventes Francette NOUVION

> Vente au numéro A la revue

Maquette - Dessins Composition - Photogravure

SRC sarl Béatrice JEGU Marina LE CALVEZ

Impression SAJIC VIEIRA - Angoulême

Distribution

Inspection - Gestion des ventes

Axe Media Services Alain LESAINT 01 44 83 94 83 01 44 83 94 84

Hot Line Technique 04 42 82 30 30

Web

http://www.electronique-magazine.com

e-mail

elecwebmas@aol.com

-SR

EN COLLABORATION AVEC:

ELETTRONICA Elettronica In

JMJ éditions

Sarl au capital social de 50 000 F RCS RENNES : B 421 860 925 – APE 221E Commission paritaire : 1000T79056 ISSN : En cours Dépôt légal à parution

Ont collaboré à ce numéro : Florence Afchain, Michel Antoni, Denis Bonomo, Alberto Ghezzi, Giuseppe Montuschi, Roberto Nogarotto, Arsenio Spadoni, Carlo Vignati.

I M P O R T A N T Reproduction totale ou partielle interdite sans accord écrit de l'Editeur. Toute utilisation des articles de ce magazine à des fins de notice ou à des fins commerciales est soumise à autorisation écrite de l'Editeur. Toute utilisation non autorisée fera l'objet de poursuites. Les opinions exprimées ainsi que les articles n'engagent que la responsabilité de leurs auteurs et ne reflètent pas obligatoirement l'opinion de la rédaction. L'Editeur décline toute responsabilité quant à la teneur des annonces de publicités insérées dans le magazine et des transactions qui en découlent. L'Editeur se réserve le droit de refuser les annonces et publicités sans avoir à justifier ce refus. Les noms, prénoms et adresses de nos abonnés ne sont communiqués qu'aux services internes de la société, ainsi qu'aux organismes liés contractuellement pour le routage. Les informations peuvent faire l'objet d'un droit d'accès et de rectification dans le cadre légal.

ANNONCEZ-VOUS

VOTRE ANNONCE POUR SEULEMENT 3 TIMBRES À 3 FRANCS!

LIGNES								RES OT						sc	UL	ES.	LA	ISS	ΕZ	UN	BL	ANC	E	NTF	RE	LE:	s M	ЮТ	S.
1				ı		ı			1	1				1	1									1	1	1		_	_
2			1	1	1	1	1		1	1	1	1	1	1	_		1	1	1	1	ı		1	1	1	1	1	1	
3		1	1	1	ĺ	1	1	1	1	1	1	1	ĺ	1	1	1	1	1	ı	1	ı		ı	1	1	1	1	1	
4			ı	1		1		1	1		ı								i		ı		ı						
5			<u>' </u>	_							<u>'</u>									_									
6			<u>' </u>								<u>'</u>														_				
7																													
8				_		_				_			_													_			_
9		_		_		_	_		_	_		_		_		_				_					_	_		_	
10			 	_		_			_		<u> </u>				_				1	_	1					_			_

Particuliers : 3 timbres à 3 francs - Profession	nnels : La ligne : 50 F TTC - PA avec photo : + 250 F - PA encadrée : + 50 F
Nom	Prénom
Adresse	
T	7 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Toute annonce professionnelle doit être accompagnée de son règlement libellé à l'ordre de JMJ éditions. Envoyez la grille, éventuellement accompagnée de votre règlement à :

ELECTRONIQUE magazine • Service PA • BP 88 • 35890 LAILLÉ

VOUS AIMEZ ELEGIRONICUE

ET LOISIRS

LE MENSUEL DE L'ÉLECTRONIQUE POUR TOUS

et vous vous intéressez également à l'électronique des radiocommunications de loisirs

LISEZ LE MENSUEL DES PASSIONNÉS DE RADIOCOMMUNICATION

DEPUIS NOVEMBRE 1982 : 200 NUMÉROS !

... et tous les mois, trouvez :

- Des réalisations d'antennes, de transceivers, d'interfaces et de nombreux montages électroniques du domaine des radiocommunications.
 - Des rubriques Actua, CW, Packet, Internet, Satellite...
 - Un carnet de trafic bourré d'infos pour les DX'eurs.
 - Des bancs d'essai, des nouveaux produits commerciaux, pour bien choisir votre matériel.
- Des centaines de petites annonces.

COMPOSANTS ÉLECTRONIQUES À UN PRIX DE LIQUIDATION

LISTE SUR DEMANDE À : *MEDELOR SA, 42800 TARTARAS*

TÉL. 04.77.75.80.56 FAX 04.77.83.72.09.

Vends antenne active de 1 MHz à 30 MHz en 4 bandes accordée à distance par le coaxial LX1078/K. Gain: 22 dB, prix: 400 F + port recommandé 35 F. Robert Sénéchal, R.P.A. Le Clos de Censé, 36 rue de Fay, Appt. 105, 60600 Clermont. Tél. au 03.44.50.53.78 HR.

Vends oscilloscope Schlumberger professionnel, 2 voies, 20 MHz. Prix: 1500 F. Alimentation variable 0-30 V, 3 A. Prix: 800 F. Lunette astronomique 2 oculaires. Prix: 900 F. Téléph. au 05.61.67.73.09. Vends pour raison de santé oscill. Hameg HM603 2x60 méga, double base de temps avec documentation, schémas. Prix: 4500 F + port SNCF. Robert Sénéchal, R.P.A. Le Clos de Censé, 36 rue de Fay, Appt. 105, 60600 Clermont. Tél. au 03.44.50.53.78 heures repas.

Recherche manuel d'utilisation de l'oscilloscope à mémoire CRC5071. Frais remboursés. Téléph. au 03.23.68.22.45.

Vends oscillo Metrix OX712, voltmètre électronique Cartex V30, coffret service télé radio-controle, générateur module 412 Eurelec, contrôleur Metrix 462, pistolets Engel 100 W, multitesteur 202 20K/V, lots de petits HP + matériel divers. Liste de prix sur demande au 05.49.73.93.83, dépt. 79.

HOT LINE TECHNIQUE

Vous rencontrez un problème lors d'une réalisation?

Vous ne trouvez pas un composant pour un des montages décrits dans la revue?

UN TECHNICIEN EST À VOTRE ÉCOUTE

le matin de 9 heures à 12 heures les lundi, mercredi et vendredi sur la HOT LINE TECHNIQUE d'ELECTRONIQUE magazine au

04 42 82 30 30

ELECTRONIQUE POUR TOUS VOUS SOUhaite UN Joyeux Noël.

Pour les passionnés d'informatique et d'électronique, c'est l'association multi-technologique. Venez nous retrouver au local 31 rue Maryse Bastié, 69008 Lyon, du lundi au vendredi de 18 à 20 h, le samedi de 14 à 20h. Téléph. au 06.07.14.75.08.

Recherche schémas techniques sur amplis VHF FM88-108 MHz, forte puissance 300 à 500 W. Cherche également documentation sur le ROS et la DAR. Faire envoi à : Marc Lollien, 136, avenue de Paris, 92320 Châtillon. Téléph. 06.85.14.42.94.

Vends ampli BV2001 neuf, jamais servi. Prix: 1000 F + port. Micro Yaesu MD1B8 neuf. Prix: 450 F. Ordinateur 486 complet, 133 MHz. Prix: 500 F + port. Ant. A99. Prix: 150 F + port. AH03 neuve, jamais montée. Prix: 200 F + port. Filtres, quartz TS820. Prix: 200 F pièce. Coupleur CF416 Comet. Prix: 150 F. CFX431. Prix: 200 F. JRC 5250K. Prix: 3000 F. Tél. au 05.57.34.32.44. Tous matériels + port Colissimo.

Vends bandes magnétiques de marque Ø 18 549M en boîte d'origine, servis une fois. Prix : 200 F les 10. Magnétophone bandes Ø 27 Akaï GX630D révisé avec noyaux et notice d'utilisation. Faire offre prix de magnétophone Ø 18 Uher Royal avec deux jeux de têtes neufs. Téléphoner au 02.33.52.20.99.

Vends planeur débutant Robby RC-Start + servo + télécommande Futaba F16 + accus. Prix : 2000 F à débattre. F5PM, tél. 04.78.08.13.58.

Vends voiture pirate 4x2 + moteur thermique de 3,5 cm³ < MAX> + télécommande (fréq. : 41,8 MHz) + accu démarrage 2 V - 5 A/h + petit outillage + carburant. Prix : 2200 F à débattre. F5PM, tél. 04.78.08.13.58.

Vends nombreux composants électroniques (lot ou détail), idéal pour débutant désirant faire son stock. 28 livres d'électronique divers à -50 %. Alimentation variable 0 à 40 V/3 A. Prix: 450 F. Scie circulaire Maxicraft. Prix: 250 F. Perceuse + support Maxicraft + accessoires / 500 F. Insoleuse + graveuse CI. Prix: 400 F, le tout en très bon état. Tél. 04.68.54.18.75. Vends ligne Bird double + galva en coffret. Prix: 1000 F ferme. Bouchons 1 kW, 144 MHz. Prix: 250 F. 500 MHz, 100 W. Prix: 250 F. Coupleur 2 V 432. Prix: 150 F. Coupleur 4 V, 144. Prix : 200 F. TS820 1,8 k et 2,1 k. Prix : 200 F pièce. Comet CF416, 2 voies. Prix: 150 F. CFX431. Prix: 200 F. Echange possible contre matériels de mesure. Faire offre au 05.57.34.32.44. Tous matériels + port Colissimo.

INDEX DES ANNONCEURS

ARQUIE COMPOSANTS - «Composants»	29
COMELEC - «Caméras couleur & noir et blanc»	07
COMELEC - «Cartes magnétiques et à puce»	43
COMELEC - «Kits du mois»	23
COMELEC - «Modules Aurel»	35
COMELEC - «Moniteurs»	95
COMELEC - «PIC»	41
COMELEC - « Radiocommandes et vidéo »	42
ECE - «Composants»	96
ELC - «Alimentations»	02
GES - «Mesure Kenwood»	28
GRIFO - «Contrôle automatisation industrielle»	51
HFC AUDIOVISUEL - « Mesure et occasions »	92
JMJ - « Anciens numéros »	09
JMJ - « Anciens numéros »	65

JMJ - «Bulletin d'abo à ELECTRONIQUE MAGAZINE» 58

SRC - «Lisez megahertz magazine» 93

SRC - «Bon de commande» 57

ZI des Paluds - BP 1241 - 13783 AUBAGNE Cedex Tél : 04 42 82 96 38 - Fax 04 42 82 96 51 Internet : http://www.comelec.fr

MONITEURS COULEURS LCD

Solutions idéales pour réaliser des systèmes de contrôles vidéo portables, compatibles avec toutes nos caméras et n'importe quels appareils délivrant un signal vidéo composite.

MONITEUR 6,4" LCD HI-RES

Nouveau LCD TFT couleur de 6,4" à haute résolution pour une vision parfaite de l'image. Module en version « Super Slim », épaisseur 16 mm seulement.

Système de fonctionnement : Pal. Principe de fonctionnement : TFT à matrice active. Dimension de l'affichage : 16 cm (6,4"). Nombre de pixels : 224640. Résolution : 960 (I) x 234 (L). Configuration pixels : RVB Delta. Rétro-éclairage : CCFT.

FR123 .. (sans coffret) .. 3090 F

Signal vidéo d'entrée : 1 Vpp / 75 Ω . Tension d'alimentation : 12 VDC. Consommation : 8 watts. Dimensions : 156 (I) x 16 (P) x 118 (H) mm. Température de travail : -20 °C à +40 °C. Durée garantie : 10 000 heures.

FR123/cof .. (avec coffret) .. 3 450 F

MONITEUR 4" LCD TFT HI-RES

Système de fonctionnement : Pal. Principe de fonctionnement : TFT à matrice active. Dimension de l'affichage : 10 cm (4"). Nombre de pixels : 112320. Résolution : 480 (I) x 234 (L). Configuration pixels : RVB Delta. Rétro-éclairage : CCFT. Signal vidéo d'entrée : 1 Vpp / 75 Ω . Tension d'alimentation : 12 VDC. Consommation : 7 watts. Dimensions : 122 (I) x 36 (P) x 84 (H) mm. Température de travail : 5 °C à + 40 °C. Durée garantie : 10 000 heures.

FR122 1 550 F

MONITEUR 4" LCD TFT

Système de fonctionnement : Pal. Principe de fonctionnement : TFT à matrice active. Dimension de l'affichage : 10 cm (4"). Nombre de pixels : 89622. Résolution : 383 (I) x 234 (L). Configuration pixels: RVB Delta. Rétro-éclairage : CCFT. Signal vidéo d'entrée : 1 Vpp / 75 Ω. Tension : 12 d'alimentation VDC. Consommation watts. Dimensions: 125 (I) x 60 (P) x 83 (H) mm. Température de travail : -5 °C à + 40 °C. Durée garantie : 10 000 heures.

MTV40 890 F

SYSTEMES DE TRANSMISSION AUDIO/VIDÉO

EMETTEURS TV AUDIO/VIDÉO

Permettent de retransmettre en VHF (224 MHz) une image ou un film sur plusieurs téléviseurs à la fois. Alimentation 12 V, entrée audio et entrée vidéo par fiche RCA.

FT272/K	 Kit	complet	245	F
FT272/M	 Kit	monté	285	F

Version 1 mW

(Description complète dans ELECTRONIQUE et Loisirs magazine n° 2)

FT292/K	 Kit	complet	403	F
FT292/M	Kit	monté	563	F

Version 50 mW

(Description complète dans ELECTRONIQUE et Loisirs magazine n° 5)

Recherchons revendeurs Fax: 04 42 82 96 51

TX/RX AUDIO/VIDEO A 2,4 GHz

Nouveau système de transmission à distance de signaux audio / vidéo travaillant à 2,4 GHz. Les signaux transmis sont d'une très grande fidélité et le rapport qualité/prix est excellent.

Récepteur 4 canaux

Récepteur audio/vidéo livré complet avec boîtier et antenne. Il dispose de 4 canaux sélectionnables à l'aide d'un cavalier. Sortie vidéo : 1 Vpp sous 75 Ω. Sortie

audio : 2 Vpp max. FR137 990 F

Emetteur 4 canaux

Module émetteur audio/vidéo offrant la possibilité (à l'aide d'un cavalier) de travailler sur 4 fréquences différentes (2,400 - 2,427 - 2,457 - 2,481 GHz). Puissance de sortie 10 mW sous 50 Ω, entrée audio 2 Vpp max. Tension

SYSTEME TRX AUDIO/VIDEO MONOCANAL 2,4 GHz

Système de transmission à distance audio/vidéo à 2,4 GHz composé de deux unités, d'un émetteur d'une puissance de 10 mW et d'un récepteur. Grâce à l'utilisation d'une antenne directive à gain élevé incorporée dans chacune des unités, la

portée du système est d'environ 400 mètres en dégagé. Fréquence de travail : 2430 MHz. Bande passante du canal audio : 50000 à 17000 Hz. Alimentation des deux modules 12 volts. Consommation de 110 mA pour l'émetteur et de 180 mA pour le récepteur. A l'émetteur on peut appliquer un signal vidéo provenant d'une quelconque source (module caméra, magnétoscope, sortie SCART TV, etc.) de type vidéo composite de 1 Vpp / 75 Ω et un signal audio de 0,8 V / 600 Ω . Les connecteurs utilisés sont des fiches RCA. Le récepteur dispose de deux sorties standard audio/vidéo. Dimensions : 150 x 88 x 40 mm. Alimentation secteur et câbles fournis

FR120 1 109 F

Ampli 2,4 GHz / 50 mW

Petite unité d'amplification HF à 2,4 GHz qui se connecte au transmetteur 10 mW permettant d'obtenir en sortie une puissance de 50 mW sous 50 Ω . L'amplificateur est

alimenté en 12 V et il est livré sans son antenne.

FR136 691 F

ESPACE COMPOSANT ELECTRONIQUE

66 rue de Montreuil 75011 Paris Métro Nation tel: 01.43.72.30.64

fax: 01.43.72.30.67

Ouvert du lundi au samedi de 9h30 à 19 heure

LUMIERE STROBO JUSQU'A 15 ÉGLATS/SEG

VDL60ST

399 FRS

STATION DE SOUDAGE 48 W AVEG L'ECTEUR NUMÉRIQUE DES TEMP. 160°G-480°G. LIVRÉ AVEG PARKE DE O.8MM

VT-SS30

257 FRS

MICRO DYNAMIQUE G148G HAUTE IMPEDANCE INTERRUPTEUR MARGHE/ARRÊT CORDON & WETRES XLR ET SUPPORT

Lentilles couleurs

Bleu: VDLCDBL POUR VOLEOST

Vert: VDLCDG

Rouge: VDLCDR

Jaune: VDLCDY 39 FRS LA PIÈGE

PROMIX50 PROMIX700

PROGRAMATEUR DE PIG EN KIT

12 C 508/509 et 16 F84 avec affichage digital livre complet avec notice de montage et programme sur disquette

Option nulle 90 Frs

Vente demi-gros et détail

Nos prix sont donnés à titre indicatif pouvant être modifiés sans préavis . Tout nos prix son TTc . Les fraits de port s'élèvent à 40 Frs(Gratuit au dessus de 1500 Frs d'achats si chèque joint) Contre remboursement forfais de 72 frs Chronopost possible au tarif en vigueur