Relations. Functions.

Bijection and counting.

Cartesian products

Cartesian product

Functions

Bijection

Inclusion-Exclusion

Given two sets

$$A = \{1, 2, 3\}$$
$$B = \{1, 2, 3, 4\}$$

Their Cartesian product

$$A \times B = \{(1,1), (2,1), (3,1), (1,2), (2,2), (3,2), (1,3), (2,3), (3,3), (1,4), (2,4), (3,4)\}$$

Question: What is the cartesian product of $\mathbb{Z} \times \mathbb{Z}$?

(\mathbb{Z} is the set of all integers)

Cartesian product $\mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$

All pairs of integers are in \mathbb{Z}^2 , for exmaple $(1,2) \in \mathbb{Z}^2$

Cartesian product

Functions

Bijection

Is it a Cartesian product?

Cartesian product

Functions

Bijection

Cartesian product of $\mathbb{Z} \times \mathbb{N}$

Cartesian product

Functions

Bijection

Is it a Cartesian product?

Cartesian product

Functions

Bijection

Cartesian product of $\mathbb{N} \times \mathbb{N} = \mathbb{N}^2$

Cartesian product

Functions

Bijection

Is it a Cartesian product?

Cartesian product

Functions

Bijection

Is it a Cartesian product? No

Functions

Bijection

$$R = \left\{ (x, y) \in \mathbb{Z}^2 \mid \max(|x|, |y|) = 2 \right\} \subseteq \mathbb{Z}^2$$

Is it a Cartesian product? No

Cartesian product

Functions

Bijection

Relations

Cartesian product

Functions

Bijection

Inclusion-Exclusion

Given any two sets

$$A = \{ \spadesuit, \clubsuit, \heartsuit, \diamondsuit \}$$
 and $B = \{1, 2, 3, \ldots \}$

Def. A *subset R of the Cartesian product A* \times *B* is called a *relation* from the set *A* to the set *B*.

$$R = \{ (\spadesuit, 99), (\heartsuit, 15), (\clubsuit, 10^5), (\clubsuit, 1), (\clubsuit, 15) \} \subseteq A \times B$$

Relations

Example of a relation:

S = set of students

C = set of classes

 $R = \{(s, c) \mid \text{student } s \text{ takes class } c\}$

Cartesian product

Functions

Bijection

Airline route map

We connect two cities if the airline operates a flight from one to the other. Is it a relation?

Cartesian product

Functions
Bijection
Inclusion-Exclusion

Airline route map

 $Routes \subseteq Cities \times Cities$

Cartesian product

Functions
Bijection
Inclusion-Exclusion

Airline route map

Cartesian product

Functions

Bijection

Any subset of $A \times B$ is a relation

Cartesian product

Functions

Bijection

Any subset of $A \times B$ is a relation

Cartesian product

Functions

Bijection

A function is a relation too!

Cartesian product

Functions

Bijection

Relation $\{(x, y) \mid y = |x|\}$

Cartesian product

Functions

Bijection

Relation $\{(x, y) \mid y = x \text{ rem } 3\}$

Cartesian product

Functions

Bijection

Functions

Def. A relation $R \subseteq A \times B$ is a *function* (a functional relation) if for every $a \in A$, there is at most one $b \in B$ so that $(a, b) \in R$.

$$A = \{1, 2, 3\}, \quad B = \{1, 2, 3, 4\}$$

$$R_1 = \{(1,1), (2,2), (3,3)\}\$$

 $R_2 = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}\$ \leftarrow Not a function
 $R_3 = \{(1,2), (2,3), (3,4)\}$

Cartesian product
Functions
Bijection
Inclusion-Exclusion

Functions

Cartesian product **Functions** Bijection

Inclusion-Exclusion

Functional relation $R \subseteq A \times B$ defines a unique way to map each element from the set A to an element from the set B.

There is a well-known and convenient notation for functions:

$$f(a) = b$$
 where $a \in A$ and $b \in B$

It maps elements from *A* to *B*:

$$f: A \to B$$
$$A \xrightarrow{f} B$$

$$A \xrightarrow{f} E$$

Functions

Cartesian product
Functions
Bijection
Inclusion-Exclusion

Def. For the function $f: A \rightarrow B$, set A is called *domain*, and set B is called *codomain*.

Def. f(a) is the image of a point $a \in A$.

Def. The *image of a function* f, denoted by f(A), is the set of all images of all points $a \in A$

$$f(A) = \{x \mid \exists a \in A (f(a) = x)\}.$$

The image of a function is also called *range*.

Onto

Cartesian product
Functions

Bijection
Inclusion-Exclusion

Def. A function $f: A \to B$ is called *onto* if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

In other words, the image f(A) is the whole codomain B.

One-to-one

Cartesian product
Functions
Bijection

Inclusion-Exclusion

Def. A function $f: A \to B$ is said to be *one-to-one* if and only if f(x) = f(y) implies that x = y for all $x, y \in A$.

p. 25

Bijection

Cartesian product **Functions** Bijection

Inclusion-Exclusion

Def. The function f is a *bijection* (also called one-to-one correspondence) if and only if it is both one-to-one and onto.

 $f: A \rightarrow B$ is a bijection $g: A \rightarrow B$ is not a bijection

Bijection

So, both functions are not bijections.

Cartesian product Functions

Bijection

Bijection Rule. Given two sets A and B, if there exists a bijection

$$f: A \rightarrow B$$
, then $|A| = |B|$.

We can count the size of the set *A*, instead of the size of *B*!

Cartesian product
Functions
Bijection

Bijection Rule.

Cartesian product
Functions
Bijection
Inclusion-Exclusion

Consider two similar problems:

(a) How many bit strings contain exactly three 1s and two 0s?

11010

(b) How many strings can be composed of three 'A's and five 'b's so that an 'A' is always followed by a 'b'?

AbAbbAbb

We show that this two problems are equivalent by constructing a bijection.

Bijection Rule.

Cartesian product
Functions
Bijection

Inclusion-Exclusion

Let *X* be the set of bit strings

$$X = \{11010, \ldots\}$$

and Y be the set of 'A' and 'b' strings

$$Y = \{AbAbbAbb, \ldots\}$$

We can construct a bijection $f: X \to Y$:

1 gets replaced by *Ab* 0 gets replaced by *b*

Bijection Rule.

Cartesian product
Functions
Bijection
Inclusion-Exclusion

```
f: 11100 \mapsto Ab \ Ab \ Ab \ b
     11010 \mapsto Ab Ab b Ab b
     11001 \rightarrow Ab Ab b b Ab
     10110 \rightarrow Ab \ b \ Ab \ Ab \ b
     10101 \mapsto Ab \ b \ Ab \ b \ Ab
     10011 \mapsto Ab \ b \ h \ Ah \ Ah
    01110 \mapsto b \ Ab \ Ab \ Ab \ b
    01101 \rightarrow b \ Ab \ Ab \ b \ Ab
     01011 \rightarrow b Ab b Ab Ab
     0.0111 \mapsto b \ b \ Ab \ Ab \ Ab
```

Function f is one-to-one and onto, so it is a bijection. Therefore, the cardinalities of two sets are equal: $|X| = |Y| = {5 \choose 3} = 10$.

Observation For every bijection $f: A \rightarrow B$, exists an *inverse* function

$$f^{-1}: B \to A$$

 $f:A\to B$

Cartesian product
Functions
Bijection

Observation For every bijection $f: A \rightarrow B$, exists an *inverse* function

$$f^{-1}: B \to A$$

The inverse function is a bijection too.

Cartesian product
Functions
Bijection
Inclusion-Exclusion

Given two bijections $f: A \rightarrow B$ and $g: B \rightarrow C$. Consider their composition

$$h(x) = g(f(x))$$

Cartesian product
Functions
Bijection

Given two bijections $f: A \rightarrow B$ and $g: B \rightarrow C$. Consider their composition

$$h(x) = g(f(x))$$

$$f: A \rightarrow B$$

$$g: B \rightarrow C$$

$$h: A \rightarrow C$$

$$2 \qquad 4 \qquad 4/5$$

$$y \qquad 3/5$$

$$x \qquad 2 \qquad 2/5$$

$$x \qquad 1/5$$

 $h: A \to C$ is a bijection, and therefore |A| = |C|.

Cartesian product
Functions
Bijection
Inclusion-Exclusion

p. 35

Bijection. Counting subsets

Cartesian product

Functions

Bijection

Inclusion-Exclusion

Please, count the number of subsets of a set

$$A = \{a, b, c, d, e\}$$

by reducing the problem to counting bit strings.

Bijection. Counting subsets

Cartesian product
Functions
Bijection

Inclusion-Exclusion

Please, count the number of subsets of a set

$$A = \{a, b, c, d, e\}$$

by reducing the problem to counting bit strings.

Let's find a bijection f between the power set

$$\mathscr{P}(A) = \{\emptyset, \{a\}, \{b\}, \ldots\}$$

and the set of bit stings of length 5:

$$\{0,1\}^5 = \{00000,00001,00010,00011,\ldots\}$$

Bijection. Counting subsets

Cartesian product
Functions
Bijection

Inclusion-Exclusion

$$f: \mathcal{P}(\{a,b,c,d,e\}) \to \{0,1\}^5$$

Os and 1s encode the membership of the five elements of $\{a,b,c,d,e\}$

 $f: \varnothing \mapsto 00000$ $\{a\} \mapsto 10000$ $\{b\} \mapsto 01000$ $\{a,b\} \mapsto 11000$ $\{c\} \mapsto 00100$ $\{a,c\} \mapsto 10100$ $\{b,c\} \mapsto 01100$ $\{a,b,c\} \mapsto 11100$

The cardinality

$$\left| \{0,1\}^5 \right| = 2^5 = 32$$

Therefore, by the bijection rule,

$$\left|\mathscr{P}(A)\right|=2^5$$

...skipping um.. 23 subsets

 $\{a,b,c,d,e\} \mapsto 111111$

Cartesian product
Functions
Bijection
Inclusion-Exclusion

We remember the subtraction rule for the union of two sets

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Can it be generalized for a union of *n* sets

$$|A_1 \cup \ldots \cup A_n| = |A_1| + \ldots + |A_n| - \langle something \rangle$$
?

Cartesian product
Functions
Bijection
Inclusion-Exclusion

We remember the subtraction rule for the union of two sets

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Can it be generalized for a union of *n* sets

$$|A_1 \cup \ldots \cup A_n| = |A_1| + \ldots + |A_n| - \langle something \rangle$$
?

Of course, it can!

Cartesian product
Functions
Bijection
Inclusion-Exclusion

Union of three sets

$$\begin{split} |A_1 \cup A_2 \cup A_3| &= \quad |A_1| + |A_2| + |A_3| \\ &- |A_1 \cap A_2| - |A_2 \cap A_3| - |A_1 \cap A_3| \\ &+ |A_1 \cap A_2 \cap A_3| \end{split}$$

$$|\{1,2,3\} \cup \{2,3,4\} \cup \{3,4,1\}| = 3+3+3-2-2-2+1=4$$

Cartesian product
Functions
Bijection
Inclusion-Exclusion

Union of *n* sets

 $|A_1 \cup ... \cup A_n|$ = the sum of the sizes of the individual sets minus the sizes of all two-way intersections plus the sizes of all three-way intersections minus the sizes of all four-way intersections plus the sizes of all five-way intersections etc.