

Bridging Between Tables and Human Languages

From Tables to Knowledge: Recent Advances in Table Understanding (Part IV)

Muhao Chen

Department of Computer Science / Information Sciences Institute University of Southern California

Aug 2021

KDD Tutorials

Recent Advances in Table Understanding

Understanding Event Processes in Natural Language

How Do *Table Understanding* Interface with *Natural Language Understanding*?

Table Understanding and NLU Are Related

Experimental result table(s)

Dataset	CN15K	NL27k
Metrics	linear exp.	linear exp.
TransE	0.601 0.591	0.730 0.722
DistMult	0.689 0.677	0.911 0.897
ComplEx	0.723 0.712	0.921 0.913
RotatE	0.715 0.703	0.901 0.887
TuckER	0.736 0.724	0.877 0.870
URGE	0.572 0.570	0.593 0.593
UKGE	0.769 0.768	0.933 0.929
BEUrRE	0.796 0.795	0.942 0.942
UKGE(rule+)	0.789 0.788	0.955 0.956
BEUrRE(rule+)	0.801 0.803	0.966 0.970

Table 5: Mean nDCG for fact ranking. *linear* stands for linear gain, and *exp*. stands for exponential gain.

separate transforms for head and tail boxes, we conduct an ablation study based on CN15k. The results for comparison are given in Table 4. First, we resort to a new configuration of BEUrRE where we use smoothed boundaries for boxes as in (Li et al., 2019) instead of Gumbel boxes. We refer to boxes of this kind as soft boxes. Under the unconstrained setting, using soft boxes increases MSE by 0.0033 on CN15k (ca. 4% relative degrada-

should be at the top of the list. When using the BEUrRE(rule+) model, the top 10 in all entities are place, town, bed, school, city, home, house, capital, church, camp, which are general concepts. Among the observed objects of the atLocation predicate, the entities that have the least coverage are Tunisia, Morocco, Algeria, Westminster, Veracruz, Buenos Aires, Emilia-Romagna, Tyrrhenian sea, Kuwait, Serbia. Those entities are very specific locations. This observation confirms that the box volume effectively represents probabilistic semantics and captures specificity/granularity of concepts, which we believe to be a reason for the performance improvement.

Result discussions

ne enr with ample

about Honda Motor Co. in Section 1, where it was mentioned that (Honda, competeswith, Toyota) should have a higher belief than (Honda, competeswith, Chrysler). Following this intuition, this task focuses on ranking multiple candidate tail entities for a query $(h, r, \underline{?t})$ in terms of their confidence.

Reading about experiments in a scientific paper.

Tables and text: two views of information, complementary sources of knowledge

Natural Language Interfaces to Tabular Content

Connecting tables and NL lead to a flexible way of accessing tabular content.

The best-selling video game?

	Rank +	Title	Sales +	Platform(s) +
1	1	Minecraft	200,000,000	Multi-platform
)	2	Grand Theft Auto V	135,000,000	Multi-platform
	3	Tetris (EA)	100,000,000	Mobile
	4	Wii Sports	82,900,000	Wii
	5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
	6	Super Mario Bros.	48,240,000	Multi-platform
	7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

Semantic retrieval of tables

Rank +	Title \$		Sales +	Platform(s) +
1	Minecraft		200,000,000	Multi-platform
2	Grand Theft Auto V	Grand Theft Auto V		Multi-platform
3	Tetris (EA)		100,000,000	Mobile
4	Wii Sports		82,900,000	Wii
5	PlayerUnknown's Battlegrou	nds	70,000,000	Multi-platform
6	Super Mario Bros.		48,240,000	Multi-platform
7	Pokémon Red / Green / Blue	e / Yellow	47,520,000	Multi-platform

A wii game by Nintendo.

12 Months Ended OPERATIONS - USD (\$) Jan. 31, 2020 Jan. 31, 2019 Jan. 31, 2018 \$ 330.517 \$ 151,478 61,001 30,780 Cost of revenue 115 396 269,516 120,698 Gross profit Operating expenses 33.014 15.733 Research and development 185,821 82,707 86 841 44 514 27,091 263,349 125,531 12,696 6,167 (4,833)13.666 1,315 26,362 8.349 (3,518)1,057 765 304 Provision for income taxes Net income (loss) 25,305 7,584 (3,822)(4,405)participating securities Undistributed earnings attributable to (3,555)(7,584)Net income (loss) attributable to common \$ 21,750 \$0 \$ (8,227) stockholders Net income (loss) per share attributable to common stockholders Basic (in dollars per share) \$ 0.09 \$ 0.00 \$ (0.11) Diluted (in dollars per share) \$ 0.00 \$ (0.11) Weighted-average shares used in computing net income (loss) per share Basic (in shares) 233,641,336 84,483,094 78,119,865 254,298,014 116,005,681

Table showing the growing revenue of Zoom.

Retrieving cell content

Generating summarizations for tables

Tabular Knowledge Assists NLU

Rank 🕏	Title	Sales ♦	Platform(s) +
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

 The best-selling video game of all time is Minecraft.

 The best-selling video game of all time is Tetris.

Tables as evidence for natural language claim verification

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

```
y_1: {2004}

x_2: "In which city's the first time with at least 20 nations?"

y_2: {Paris}

x_3: "Which years have the most participating countries?"

y_3: {2008, 2012}

x_4: "How many events were in Athens, Greece?"
```

 x_1 : "Greece held its last Summer Olympics in which year?"

 x_5 : "How many more participants were there in 1900 than in the first year?"

 y_5 : {10}

 y_4 : {2}

Tables as reference for answering questions

Common Challenges for Connecting Tables and Natural Language

Gameloft

Video game publisher

Gameloft SE is a French video game publisher based in Paris, founded in December 1999 by Ubisoft co-founder Michel Guillemot. The company operates 19 development studios worldwide, and publishes games with a special focus on the mobile games market.

Handling heterogeneous structures

Lake	Area
Windermere	5.69 sq mi
Ullswater	3.86 sq mi
Derwent Water	2.06 sq mi

Country	United States
State	California
County	Los Angeles
Region	South California

	Right-handed	Left-handed
Males	43	9
Females	44	4
Totals	87	12

(a) Relational table

(b) Entity table

(c) Matrix table

(d) Nested table

Linear text vs. diverse table layout structures

Weak connections between tables and text

Gameloft

From Wikipedia, the free encyclopedia

Gameloft SE is a French video game publisher based in Paris, founded in December 1999 by Ubisoft co-founder Michel Guillemot. The company operates 19 development studios worldwide, and publishes games with a special focus on the mobile games market. Formerly a public company traded at the Paris Bourse, Gameloft was acquired by media conglomerate Vivendi in 2016.

Contents [hide] 1 History 1.1 Game development strategy 1.2 Vivendi subsidiary 2 Corporate affairs 2.1 Studios 2.2 Services 3 Games

History [edit]

4 References

5 External links

Game development strategy [edit]

Gameloft was founded by Michel Guillemot, one of the five founders of Ubisoft, on 14 December 1999. [2][3] By February 2009, Gameloft had

Capturing multi-granular content

Agenda

1. Representation Learning for Tables + Language

3. Table-assisted Natural Language Understanding

Rank +	Title	Sales +	Platform(s) +
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

2. Natural Language Interface for Tabular Content

4. Open Research Directions

Agenda

1. Representation Learning for Tables + Language

3. Table-assisted Natural Language Understanding

Rank +	Title +	Sales +	Platform(s)
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

2. Natural Language Interface for Tabular Content

4. Open Research Directions

Representation Learning for Tables and Text

The backbone of NL interfaces to tables and table-assisted NLU

Goal

Tables

Rank ₹	iitie =	Sales ₹	Platform(s) ₹
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

Relevance between NL and tabular content

Natural Language

should be at the top of the list. When using the BEUrRE(rule+) model, the top 10 in all entities are place, town, bed, school, city, home, house, capital, church, camp, which are general concepts. Among the observed objects of the atLocation predicate, the entities that have the least coverage are Tunisia, Morocco, Algeria, Westminster, Veracruz, Buenos Aires, Emilia-Romagna, Tyrrhenian sea, Kuwait, Serbia. Those entities are very specific locations. This observation confirms that the box volume effectively represents probabilistic semantics and captures specificity/granularity of concepts, which we believe to be a reason for the performance improvement.

Joint (latent) representation

Challenges

- Precise table-text alignment rarely exists.
- Tabular content is presented in different granularities (cells, rows, cols, etc.)
- Linear text vs. structured tables

TaBERT: Joint Language Modeling for Tables and Text

1. Coarse-grained table-text association

***2.6M** from **Wikipedia** and **WDC Web**Tables

surrounding text

Coarse-grained association

In which city did Piotr's last 1st place finish occur?

	Year	Venue	Position	Event
R_1	2003	Tampere	3rd	EU Junior Championship
R_2	2005	Erfurt	1st	EU U23 Championship
R_3	2005	Izmir	1st	Universiade
R_4	2006	Moscow	2nd	World Indoor Championship
R_5	2007	Bangkok	1st	Universiade

Selected Rows as Content Snapshot: $\{R_2, R_3, R_5\}$

Top K rows based on n-gram overlapping with the text utterance ($n \le 3$)

2. BERT-based encoding with three pre-training tasks

pre-training objectives

- Masked Language Modeling (MLM) objective
- Masked Column Prediction: recovering column names and data types
- Cell Value Recovery

Transformer (BERT)

 R_2 [CLS] In which city did Piotr's ... [SEP] Year | real | 2005 [SEP] Venue | text | Erfurt [SEP] Position | text | 1st [SEP] ...

Text utterance

Row linearization: a sequence of (column name, data type, value) tuples

Yin, et al. TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. ACL-20

https://github.com/facebookresearch/TaBERT

TaPas: Weakly-supervised Table Question Answering

1. Pretraining

• 6.2M Tables: 3.3M infoboxs and 2.9M WikiTables

 Table captions, article titles, article descriptions, segment titles and surround segment text

2. Fine-tuning

Which wrestler had the most number of reigns?	Ric Flair	Cell selection
Average time as champion for top 2 wrestlers?	AVG(3749,3103)=3426	Scalar answer

- Cell selection: selecting subsets of cells
- Scalar answer: estimating a soft scalar outcome over all aggregates with Huber loss

TaPas offers SOTA performance as the backbone model of table-based NLI tasks.

Herzig, et al. TaPas: Weakly Supervised Table Parsing via Pre-training. ACL-20 Eisenschlos, et al. Understanding tables with intermediate pre-training. Findings of EMNLP-20 https://github.com/google-research/tapas

Graph Representation Learning for Complex Tables

Comparing to language models

Pros:

- Can handle arbitrary table layout structures
- Can easily summarize multi-granular contents (with global nodes)

Con:

Weaker table-text association (semantic shifts between feature spaces of the LM and the graph encoder)

Zhang, et al. A Graph Representation of Semi-structured Data for Web Question Answering. COLING-20 Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR-21

(e.g. Graph Transformer)

Agenda

1. Representation Learning for Tables + Language

3. Table-assisted Natural Language Understanding

Rank \$	Title \$	Sales +	Platform(s)
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

2. Natural Language Interface for Tabular Content

4. Open Research Directions

Natural Language Interfaces for Tabular Content

1. Using natural language to retrieve the tabular content

2.Describing tabular content with natural language

Changes of taxes in U.S.?

Taxing wages in the United States

	Ye	ear	
Indic	2000	2001	
Standard tax	Basic	7200	7200
allowances	Dependent children	0	0

Olympic Games Host Cities

City	Country	Year	Continent
Los Angeles	U.S.	2028	North America
Milan-Cortina d'Ampezzo	Italy	2026	Evene
Paris	France	2024	Europe
Beijing	China	2022	Asia

X

- A natural language query
- A set of tables, where each table consists of:
 - table body (headers, data cells, etc.)
 - context (captions, footnotes, etc.)

Output:

A ranked list of semantically relevant tables

Earlier methods

Lexical matching

- BM25: Robertson, et al. Okapi at TREC-3. NIST special publication 500225 (1995)
- Multi-field doc ranking: Pimplikar and Sarawagi. 2012. Answering table queries on the web using column keywords. PVLDB-12
- Lexical Table Retrieval: Zhang and Balog: Ad hoc table retrieval using semantic similarity. WWW-18

Feature engineering / statistical machine learning

- Linear regression: Cafarella et al. Data integration for the relational web. PVLDB-09
- Tab-Lasso: Bhagavatula, et al. Methods for exploring and mining tables on wikipedia. KDD-13
- MDF & GRU-matching: Sun, et al. Content-based table retrieval for web queries. Neurocomputing 349 (2019), 183–189

Recent language models offer more precise and generalizable retrieval

BERT4TR

- Using BERT to match between queries and linearized tables
- Chen, et al. Table Search Using a Deep Contextualized Language Model. SIGIR-20

TaBERT offers even better performance

More challenges: Complex tables and diverse query intents

Various layout structures

Lake	Area
Windermere	5.69 sq mi
Ullswater	3.86 sq mi
Derwent Water	2.06 sq mi

Country	United States
State	California
County	Los Angeles
Region	South California

	Right-handed	Left-handed
Males	43	9
Females	44	4
Totals	87	12

		То				
		Solid	Liquid	Gas		
	Solid	Solid trans	Melting	Sublimation		
From	Liquid	Freezing	-	Boiling		
	Gas	Deposition	Condensation	-		

(a) Relational table

(b) Entity table

(c) Matrix table

(d) Nested table

Diverse query intents

Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR, 2021

Arbitrary table layouts

Olympic Games Host Cities 💢

Multi-granular tabular graph

Cell node adjacency

Row-/Col- node summarization

 Year

 Indicator
 2000
 2001

 Standard tax allowances
 Basic
 7200
 7200

 Dependent children
 0
 0

Pre-trained graph transformer

Table-caption matching

Model Architecture

Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR, 2021

Pre-trained Graph Transformer (GTR)

Results on WikiTables

Method	NDCG@5	NDCG@10	NDCG@15	NDCG@20	MAP
BM25	0.3196	0.3377	0.3732	0.4045	0.4260
WebTable	0.2980	0.3150	0.3486	0.3922	-
SDR	0.4573	0.4841	0.5195	0.5534	-
MDR	0.5021	0.5116	0.5451	0.5761	-
Tab-Lasso	0.5161	0.5018	0.5330	0.5481	-
LTR	0.5910	0.5712	0.5858	0.6041	0.5615
TaBERT	0.5926	0.6108	0.6451	0.6668	0.6326
BERT4TR	0.6052	0.6171	0.6386	0.6689	0.6191
GTR (w/o pre-training)	0.6554	0.6747	0.6978	0.7211	0.6665
GTR	0.6671	0.6856	0.7065	0.7272	0.6859

Graph Transformer vs. Linear Language Models

- >8% relative improvement on all metrics
- better than BERT-based methods even w/o pre-training

Better generalization to **complex tables** and **diverse query intents**

Better cross-dataset generalization

Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR, 2021

Table-to-text Generation

Generating NL descriptions to summarize tabular content

- WIKIBIO dataset [Lebret+ EMNLP-16]: surface-level NLG.
- Logical NLG dataset [Chen+ ACL-20]

The emerging challenge: describing logical comparison

Medal Table from Tournament

Nation	Gold Medal	Silver Medal	Bronze Medal	Sports
Canada	3	1	2	Ice Hockey
Mexico	2	3	1	Baseball
Colombia	1	3	0	Roller Skating

Surface-level Generation

Sentence: Canada has got 3 gold medals in the tournament. **Sentence**: Mexico got 3 silver medals and 1 bronze medal.

Logical Natural Language Generation

Sentence: Canada obtained 1 more gold medal than Mexico. **Sentence**: Canada obtained the most gold medals in the game.

GPT-TabGen [Chen+ ACL-20]

- 1. Generating a per-row (intermediate) description based on a <col name, value> template.
- 2. Summarize the intermediate description: fulfilling a summary template with GPT-2

Existing models can only achieve 20% logical correctness (according to Chen+ ACL-20)!

Lebret, et al. Neural Text Generation from Structured Data with Application to the Biography Domain. EMNLP-16 Chen et al. Logical Natural Language Generation from Open-Domain Tables. ACL-20

Controlled Table-to-text Generation

Summarizing facts only based on several highlighted cells

• The ToTTo dataset: 121,000 training examples; 7,500 examples each for development and test

			11 Dooley				
			coaching reco				
Year	Team	0veral1	Conference	Standing	Bowl/playoffs	Coaches#	ΑP°
	orth Carolina Tar				(1967 - 1977)		
	North Carolina	2 - 8	2 - 5	7th			
1968	North Carolina	3 - 7	1 - 6	8th			
	North Carolina	5 - 5	3 - 3	T - 3rd			
1970	North Carolina	8 - 4	5 - 2	T - 2nd	L Peach		
1971	North Carolina	9 - 3	6 - 0	1st	L Gator	18	
1972	North Carolina	11 - 1	6 - 0	1st	W Sun	14	12
1973	North Carolina	4 - 7	1 - 5	6th			
1974	North Carolina	7 - 5	4 - 2	T - 2nd	L Sun		
1975	North Carolina	3 - 7 - 1	1 - 4 - 1	6th			
1976	North Carolina	9 - 3	4 - 1	2nd	L Peach		
1977	North Carolina	8 - 3 - 1	5 - 0 - 1	1st	L Liberty	14	17
North Carolina:	69 - 53 - 2	38 - 28 - 2					
	a Tech Gobblers		CAA Division	I-A Indepen	dent) (1978 - 198	6)	
	Virginia Tech	4 - 7					
	Virginia Tech	5 - 6					
	Virginia Tech	8 - 4			L Peach		
	Virginia Tech	7 - 4			2 reach		
	Virginia Tech	7 - 4					
	Virginia Tech	9 - 2					
	Virginia Tech	8 - 4			L Independence		
	Virginia Tech	6 - 5			L Independence		
	Virginia Tech	10 - 2 - 1			W Peach		20
Virginia Tech:	64 - 38 - 1	10 2 1			w reach		20
	ake Forest Demon	Deacons (At	lantic Coast	Conference)	(1987 - 1992)		
	Wake Forest	7 - 4	4 - 3	T - 3rd	(1501 1552)		
	Wake Forest	6 - 4 - 1	4 - 3	T - 4th			
	Wake Forest	2-8-1	1-6	7th			
	Wake Forest	3-8	0 - 7	8th			
	Wake Forest	3 - 8	1 - 6	T - 7th			
	Wake Forest	8 - 4	4 - 4	T - 4th	W Independence	25	25
Wake Forest:	29 - 36 - 2		4-4	1 - 4th	" Independence	25	25
		14 - 29					
Total:	163 - 126 - 5	C	 			L.	
National championship C					onship game bert	n	
#Rankings from final Co	aches Poll. " Rai	nkings from	final AP Po.	11.			

The challenge: overgeneration (missing descriptions) and under generation (unexpected descriptions).

- •GOLD: Bill Dooley served as the head coach at the North Carolina (1967–1977), Virginia tech (1978–1986) and Wake Forest (1987–1992).
- •BART(sub-table): Bill Dooley served as the head coach at North Carolina from 1967 to 1974 and at Virginia Tech from 1974 to 1992.
- •BART(full-table): Bill Dooley served as the head coach at North Carolina from 1967 to 1989 and at Virginia Tech from 1990 to 2005, compiling a career coaching record of 201–151–10.

An open question: graph representation learning as prior?

Parikh,, et al. ToTTo: A Controlled Table-To-Text Generation Dataset. EMNLP-20

Agenda

1. Representation Learning for Tables + Language

3. Table-assisted Natural Language Understanding

Rank +	Title \$	Sales ♦	Platform(s)
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

2. Natural Language Interface for Tabular Content

4. Open Research Directions

Table-assisted Natural Language Understanding

Rank +	Title	Sales +	Platform(s) +
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

The best-selling video game of all time is Minecraft.

The best-selling video game of all time is Tetris.

X

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

x =Greece held its last Summer Olympics in which year?

y = 2004

1. Web tables as trustworthy evidence for verifying claims

2. Web tables as clean references for answering questions

Table-based Fact Verification

The TabFact dataset: 16k Wikipedia tables as evidence for verifying 118k human annotated statements

United States House of Representatives Elections, 1972

ratic re-elected	John E. Moss (d) 69.9% John Rakus (r) 30.1%
ratic re-elected	Phillip Burton (d) 81.8% Edlo E. Powell (r) 18.2%
ratic lost renomination of	democratic hold Pete Stark (d) 52.9% Lew M. Warden , Jr. (r) 47.1%
ican re-elected	Jerome R. Waldie (d) 77.6% Floyd E. Sims (r) 22.4%
ican re-elected	John J. Mcfall (d) unopposed
i	ratic lost renomination of ican re-elected

Entailed Statement

- 1. John E. Moss and Phillip Burton are both re-elected in the house of representative election.
- 2. John J. Mcfall is unopposed during the re-election.
- 3. There are three different incumbents from democratic.

Refuted Statement

- 1. John E. Moss and George Paul Miller are both re-elected in the house of representative election.
- 2. John J. Mcfall failed to be re-elected though being unopposed.
- 3. There are five candidates in total, two of them are democrats and three of them are republicans.

- 1. Table retrieval: finding evidence table(s)
- 2. NLI: textual entailment using the table as premise and the statement as hypothesis

Chen et al. TabFact: A Large-scale Dataset for Table-based Fact Verification. ICLR-20

Table-based Fact Verification

Logical program based approach: learn to parse NL statements into logical programs, and execute the program on tables

Year	Tournaments Played	Avg. Score	Scoring Rank
2007	22	72.46	81
2008	29	71.65	22
2009	25	71.90	34
2010	18	73.42	92
2011	11	74.42	125

Statement Ji-young Oh played more tournament in 2008 than any other year.

Program eq { max { all_rows ; tournaments played } ; hop { filter_eq { all_rows ; year ; 2008 } ; tournaments played } } = True

Zhong et al. LogicalFactChecker: Leveraging Logical Operations for Fact Checking with Graph Module Network. ACL-20 Yang et al. Program Enhanced Fact Verification with Verbalization and Graph Attention Network. EMNLP-20

Jointly learning for table retrieval and textual entailment.

Schlichtkrull, et al. Joint Verification and Reranking for Open Fact Checking Over Tables. 2020

Table-based Fact Verification

Textual entailment seems to be the right direction.

Table-assisted language modeling (TaPas) provides a strong solution.

Fact Verification Accuracy on TabFact

TaPas

Herzig, et al. TaPas: Weakly Supervised Table Parsing via Pre-training. ACL-20

Table QA

Searching for table cells that answer natural language questions

TabMCQ [Jauhar+, ACL-16] and WikiTableQuestions [Pasupat and Liang, EMNLP-15]

Given:

Goal: to find a table cell containing answers.

Chain matching

Sun, et al. Table Cell Search for Question Answering. WWW-16

Table QA

Tabert [ACL-20] +Weakly-supervised Semantic Parser (MAPO [Liang+ NIPS-18])

1. Coarse-grained table-text association

×2.6M from **Wikipedia** and **WDC Web**Tables

surrounding text

Coarse-grained association

In which city did Piotr's last 1st place finish occur?

Year	Venue	Position	Event
2003	Tampere	3rd	EU Junior Championship
2005	Erfurt	1st	EU U23 Championship
2005	Izmir	1st	Universiade
2006	Moscow	2nd	World Indoor Championship
2007	Bangkok	1st	Universiade
	2003 2005 2005 2006	2003 Tampere 2005 Erfurt 2005 Izmir 2006 Moscow	2003 Tampere 3rd 2005 Erfurt 1st 2005 Izmir 1st 2006 Moscow 2nd

Selected Rows as Content Snapshot: $\{R_2, R_3, R_5\}$

Top K rows based on n-gram overlapping with the text utterance ($n \le 3$)

2. TaBERT as encoder for parsing questions into symbolic forms

In which city did Piotr's last 1st place finish occur?

Table.contains(column=Position, value=1st) # Get rows whose 'Position' field contains '1st'
.argmax(order_by=Year) # Get the row which has the largest 'Year' field
.hop(column=Venue) # Select the value of 'Venue' in the result row

51.8 testing accuracy on WIKITQ, one of the SOTA's

HybridQA

Answering questions based on complementary information in tables and documents:

- 13K Wiki Tables
- Hyperlinked paragraphs

Split	Train	Dev	Test	Total
In-Passage	35,215	2,025	20,45	39,285 (56.4%)
In-Table	26,803	1,349	1,346	29,498 (42.3%)
Computed	664	92	72	828 (1.1%)
Total	62,682	3,466	3,463	69,611

Need to combine both TableQA and Doc QA

Chen, et al. HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data. Findings of EMNLP-20

Agenda

1. Representation Learning for Tables + Language

3. Table-assisted Natural Language Understanding

Rank \$	Title \$	Sales +	Platform(s)
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

2. Natural Language Interface for Tabular Content

4. Open Research Directions

Language Grounding to Tables

Grounding text spans (in scientific literature) to corresponding tabular content

Table 4: Ablation study of EVA based on DBP15k (FR→EN).

model	H@I	11@10	MRR	
W/O structure	.391 ±.004	.514 ±.003	.423 ±.004	
W/O image	.749 ±.002	.929 ±.002	.817 ±.001	
W/O attribute	.750 ±.003	.927 ±.001	.813 ±.003	
W/O relation	.763 ±.006	.928 ±.003	.823 ±.004	
W/O IL	.715 1 pos	.936 ± 002	.795 ± .004	
W/O CSLS	.786 ±.005	.928 ± .001		
full model	.793 ±.003	.942 ±.002	.847 ±.004	

4.3 Ablation Study

We report an ablation study of EVA in Tab. 4 using DBP15k (FR→EN). As shown, IL brings ca. 8% absolute improvement. This gap is smaller than what has been reported previously (Sun et al. 2018). This is because the extra visual supervision in our method already allows the model to capture fairly good alignment in the first 500 epochs, leaving smaller room for further improvement from IL. CSLS gives minor but consistent improvement to all metrics during infer-

Scientific Leaderboard Construction

Scientific Publication

A Joint Model for Entity Analysis: Coreference, Typing, and Linking

Abstract: We present a joint model of three core tasks in the entity analysis stack: coreference resolution (within-document clustering), named entity recognition (coarse semantic typing), and entity linking (matching to Wikipedia entities). Our model is formally a structured conditional random field. Unary factors encode local features from strong baselines for each task. We then add binary and ternary factors to capture cross-task interactions, such as the constraint that coreferent mentions have the same semantic type. On the ACE 2005 and OntoNotes datasets, we achieve state-of-the- art results for all three tasks. Moreover, joint modeling improves performance on each task over strong independent baselines.

	Dev					Test						
	MUC	B^3	$CEAF_e$	Avg.	NER	Link	MUC	B^3	$CEAF_e$	Avg.	NER	Link
INDEP.	77.95	74.81	71.84	74.87	83.04	73.07	81.03	74.89	72.56	76.16	82.35	74.71
JOINT	79.41	75.56	73.34	76.10	85.94	75.69	81.41	74.70	72.93	76.35	85.60	76.78
Δ	+1.46	+0.75	+1.50	+1.23	+2.90	+2.62	+0.42	-0.19	+0.37	+0.19	+3.25	+2.07

Leaderboard Annotations

Table 1: Results on the ACE 2005 dev and test sets for the INDEP. (task-specific factors only)

Task	Dataset	Evaluation Metric	Best Result
Named Entity Recognition	ACE 2005 (Test)	Accuracy	85.60
Entity Linking	ACE 2005 (Test)	Accuracy	76.78
Coreference Resolution	ACE 2005 (Test)	Avg. F1	76.35

Hou, et al. Identification of Tasks, Datasets, Evaluation Metrics, and Numeric Scores for Scientific Leaderboards Construction. ACL-19

Automated Table Cleaning and Expansion

How to automatically query Web corpora, verify what are in the table and add what are not there?

Rank ≑	Title	Sales +	Platform(s) +
1	Minecraft	200,000,000	Multi-platform
2	Grand Theft Auto V	135,000,000	Multi-platform
3	Tetris (EA)	100,000,000	Mobile
4	Wii Sports	82,900,000	Wii
5	PlayerUnknown's Battlegrounds	70,000,000	Multi-platform
6	Super Mario Bros.	48,240,000	Multi-platform
7	Pokémon Red / Green / Blue / Yellow	47,520,000	Multi-platform

1. Answer-agnostic question generation

2. Cleaning: Open-domain QA + Claim verification

Web corpora

How many sales does Minecraft have?

3. Expansion: Open-domain QA + Answer consolidation

What are popular Nintendo Switch games?

Tables and Dialogue Agents

Table-assisted Dialogue Agent

A popular steakhouse.

How about Lawry's the Prime Rib?

Conversational Spreadsheet Editing

	Main rates (CC BY rate or all licences rate)			Main member rates (CC BY rate or all licences rate)			Licences offered		
Journal	GBP ▼	USD =	EUR 🔻	GBP 🔻	USD 🔻	EUR 🔻	CC BY	CC BY-NC 🔻	CC BY-NC-ND
Acta Biochimica et Biophysica Sinica	2090	3350	2720				X	X	X
Adaptation	2265	3312	2725				x		
Advances in Nutrition	4044	5500	4894	3309	4500	4004	x	x	
Aesthetic Surgery Journal	3177	4765	3875	2530	3800	3100	Available for fu	nded articles only	
Aesthetic Surgery Journal Open Forum	1838	2500	2188	1471	2000	1750	x		
African Affairs	2841	4261	3484				x		
Age and Ageing	2658	4202	3460				Available for fu	n x	X
Alcohol and Alcoholism	2791	4413	3634				x		
American Entomologist	2478	3717	3017	1983	2974	2413	x		
American Journal of Clinical Pathology	2690	4290	3219	1759	2812	2286	x		
American Journal of Epidemiology	2363	3833	3098				x	x	
American Journal of Health-System Pharma	2809	3820	3343	2478	3371	2949	x		
American Journal of Hypertension	2757	4136	3343				Available for fu	nded articles only	
American Journal of Legal History	2596	3894	3180				x		
American Law and Economics Review	2307	3460	2812				x		
American Literary History	2892	3955	3341				x		x
Analysis	2200	2992	2442				x	x	x
Animal Frontiers	0		0				X		
Annals of Behavioral Medicine	2286	3809	2742	1829	3047	2195	x	x	

delete 6 rows from the beginning delete the left most two rows merge the cells from C1 to C3 create line charts using data from B2 through D20

References

Yin, et al. TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. ACL-20

Herzig, et al. TaPas: Weakly Supervised Table Parsing via Pre-training. ACL-20

Eisenschlos, et al. Understanding tables with intermediate pre-training. Findings of EMNLP-20

Zhang, et al. A Graph Representation of Semi-structured Data for Web Question Answering. COLING-20

Wang, et al. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. SIGIR-21

Chen, et al. Table Search Using a Deep Contextualized Language Model. SIGIR-20

Lebret, et al. Neural Text Generation from Structured Data with Application to the Biography Domain. EMNLP-16

Chen et al. Logical Natural Language Generation from Open-Domain Tables. ACL-20

Parikh,, et al. ToTTo: A Controlled Table-To-Text Generation Dataset. EMNLP-20

Chen et al. TabFact : A Large-scale Dataset for Table-based Fact Verification. ICLR-20

Schlichtkrull, et al. Joint Verification and Reranking for Open Fact Checking Over Tables. 2020

Zhong et al. LogicalFactChecker: Leveraging Logical Operations for Fact Checking with Graph Module Network.

ACL-20

Yang et al. Program Enhanced Fact Verification with Verbalization and Graph Attention Network. EMNLP-20 Sun, et al. Table Cell Search for Question Answering. WWW-16

Chen, et al. HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data. Findings of EMNLP-20

lyyer, et al. Search-based neural structured learning for sequential question answering. ACL-17

Zhong, et al. Seq2sql: Generating structured queries from natural language using reinforcement learning. 2017

School of Engineering

Thank You

Muhao Chen. Homepage: https://muhaochen.github.io/ Email: muhaoche@usc.edu

08/2021