Quiz 3: Mathematical Statistics (MATH-UA 234)

In-class 10/13 (15min). Print your name and NetID, write in the box, and circle your final answer.

Name:	NetID:										
Problem 1. Suppose $X \sim \text{Exp}(\beta)$ for some X has probability density function	eta > 0 (here we are using t	he b	ook'	's po	ıram	etri	zatio	on). Th	at is,	supp	oose
$f_X(t)$:	$= \begin{cases} \beta^{-1} \exp(-\beta^{-1}t) & t \ge 0 \\ 0 & t < 0 \end{cases}$	≥ 0 : 0									
It is a well-known fact that $\mathbb{E}[X] = eta$ and $\mathbb{V}[$	$[X^2] = \beta^2.$										
Suppose $X_1,, X_n$ are iid copies of X . That is parameter β . Define, the estimator $\hat{\beta}_n$ for β by	s, X_1, \ldots, X_n are all indep	ende	ent .	Ехр	onei	ıtial	ran	dom v	arail	oles v	vith
\hat{eta}_n	$=\frac{1}{n+1}(X_1+\cdots+X_n).$										
(a) Compute $\operatorname{Bias}_n = \mathbb{E}[\hat{\beta}_n] - \beta$.										(5	pts)
(b) Compute $\operatorname{se}_n = \sqrt{\mathbb{V}[\hat{\beta}_n]}$.										(5	pts)
(c) Compute $MSE_n = \mathbb{E}[(\hat{\beta}_n - \beta)^2]$.										(5	pts)
Justify all steps!											

