Autómatas y Lenguajes Formales Tarea 2

Alumnos: Torres Partida Karen Larissa Altamirano Niño Luis Enrique

5 de marzo de 2020

1. De los AFNs que se muestran a continuación, encuentre sus equivalentes AFDs usando la construcción por subconjuntos.

Tenemos la siguiente tabla:

	a	b
$\rightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_1\}$
$\{q_0, q_1\}$	$\{q_0, q_1, q_2\}$	$\{q_1\}$
$\{q_1\}$	$\{q_2\}$	$\{q_1\}$
$\{q_2\}$	$\{q_2\}$	$\{q_2,q_3\}$
$\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$	$\{q_1,q_2,q_3\}$
$\{q_2,q_3\}$	$\{q_2\}$	$\{q_2,q_3\}$
$\{q_1,q_2,q_3\}$	$\{q_2\}$	$\{q_1,q_2,q_3\}$

Y entonces el correspondiente AFD para el AFN dado está dado por:

Tenemos la siguiente tabla:

	a	b
$\rightarrow \{q_0\}$	$\{q_1\}$	$\{q_0, q_2, q_3\}$
$\{q_1\}$	ϕ	$\{q_2\}$
$\{q_0, q_2, q_3\}$	$\{q_1\}$	$\{q_0, q_2, q_3\}$
ϕ	ϕ	ϕ
$\{q_2\}$	$\{q_1\}$	$\{q_0, q_2, q_3\}$

Y entonces el correspondiente AFD para el AFN dado está dado por:

- 2. Construya autómatas finitos no-deterministas (AFNs) con el número especificado de estados que reconozcan los siguientes lenguajes. El alfabeto para ambos es $\{0,1\}$.
 - $\{w \mid w \text{ contiene un par de 1s separados por un número impar de símbolos}\}$. El AFN que diseñe debe tener cuatro estados.

• $\{w \mid w \text{ contiene un número par de 0s y exactamente dos 1s}\}$. El AFN que diseñe debe tener seis estados.

3. Sea $M=(Q,\Sigma,\delta_M,q_0,F)$ un AFD, y sea $N=(Q,\Sigma,\delta_N,q_0,F)$ el AFN para el cual $\delta_N(q,a)=\{\delta_M(q,a)\}$ para todo $q\in Q$ y $a\in \Sigma$. Muestre que para toda $q\in Q$ y $w\in \Sigma^*$,

$$\widehat{\delta}_N(q, w) = {\widehat{\delta}_M(q, w)}$$

.

Demostración:

Sean $q \in Q$ y $w \in \Sigma^*$. Procedemos por inducción sobre w.

<u>Caso Base:</u> Sea $w = \varepsilon$, hay que mostrar que:

$$\widehat{\delta}_N(q,\varepsilon) = {\widehat{\delta}_M(q,\varepsilon)}$$

Entonces:

$$\widehat{\delta}_N(q,arepsilon)=\{q\}$$
 por definición
$$\{\widehat{\delta}_M(q,arepsilon)\}=\{q\}$$
 por definición

Y por lo tanto $\widehat{\delta}_N(q,\varepsilon) = {\widehat{\delta}_M(q,\varepsilon)}.$

Hipótesis de Inducción: Sea w=x. Supongamos que $\widehat{\delta}_N(q,x)=\{\widehat{\delta}_M(q,x)\}$

<u>Paso Inductivo:</u> Sea w = xa. Tenemos que mostrar que:

$$\widehat{\delta}_N(q,xa) = \{\widehat{\delta}_M(q,xa)\}\$$

Entonces:

$$\begin{split} \widehat{\delta}_N(q,xa) &= \bigcup_{p_i \in \widehat{\delta}_N(q,x)} \delta_N(p_i,a) & \text{por definición de } \widehat{\delta}_N(q,x) \\ &= \delta_M(\widehat{\delta}_N(q,x),a) & \text{por la construcción de un AFD dado un AFN (Nota 3 pág. 10)} \\ &= \delta_M(\{\widehat{\delta}_M(q,x)\},a) & \text{por la hipótesis de inducción} \\ &= \widehat{\delta}_M(\{\widehat{\delta}_M(q,x)\},a) & \text{Propiedad } (\widehat{\delta}_M(q,a) = \delta_M(q,a)) \\ &= \widehat{\delta}_N(\widehat{\delta}_M(q,x),a) & \text{por el lema 4.2 (Nota 3)} \\ &= \delta_N(\widehat{\delta}_M(q,x),a) & \text{Propiedad } (\widehat{\delta}_N(q,a) = \delta_N(q,a)) \\ &= \{\delta_M(\widehat{\delta}_M(q,x),a)\} & \text{por la propiedad inicial dada } (\delta_N(q,a) = \{\delta_M(q,a)\}) \\ &= \{\widehat{\delta}_M(q,xa)\} & \text{por definición de } \widehat{\delta}_M(q,a)\} \end{split}$$

Y por lo tanto $\widehat{\delta}_N(q, w) = {\widehat{\delta}_M(q, w)}.$

4. En la Definición 5.7 de la Nota 3, $\hat{\delta}$ se definió recursivamente para un AFN- ε primero definiendo $\hat{\delta}(q,\varepsilon)$ y luego definiendo $\hat{\delta}(q,xa)$, donde $q \in Q$, $x \in \Sigma^*$ y $a \in \Sigma$. Proporcione una definición recursiva aceptable

en la cual la parte recursiva defina a $\widehat{\delta}(q,ax)$ en vez de $\widehat{\delta}(q,xa)$. Justifique su respuesta.

La definición recursiva es:

$$\widehat{\delta}(q, \varepsilon) = ECLOSURE(q)$$

$$\widehat{\delta}(q, ax) = \bigcup_{p_i \in ECLOSURE(q)} \widehat{\delta}(\delta(p_i, a), x)$$

Justificación:

Funciona pues primero tomamos la ECLOSURE del primer estado, esto podrían verse como posibles primeros estados pues sin procesar nada puedes llegar a ellos, por lo que también tienes que procesar la cadena con estos estados.

- 5. Sea $N=(Q,\Sigma,\delta,q_0,F)$ un AFN- ε . Sea $S\subseteq Q$, por lo que su complemento se denota \overline{S} . Dibuje un diagrama de transiciones mostrando el hecho que $ECLOSURE(\overline{S})$ y $\overline{ECLOSURE(S)}$ no son siempre lo mismo. ¿Cuál es siempre un subconjunto del otro? ¿Bajo qué circunstancias son iguales? Justifique sus respuestas.
- 6. En cada uno de los siguientes AFN- ε aplique el algoritmo visto en clase para encontrar su correspondiente AFN que acepte el mismo lenguaje.

Primero calculalos la ECLOSURE de cada uno de los estados:

$$ECLOSURE(q_0) = \{q_0\}$$

 $ECLOSURE(q_1) = \{q_1\}$
 $ECLOSURE(q_2) = \{q_2, q_0\}$
 $ECLOSURE(q_3) = \{q_3, q_0\}$
 $ECLOSURE(q_4) = \{q_4\}$

Y ahora calculamos la función de transición extendida

$$\delta_{M}(q, a) = \widehat{\delta}_{N}(q, a) = \bigcup_{p_{i} \in \text{ ECLOSURE}(q)} \text{ECLOSURE}(\delta_{N}(p_{i}, a))$$

donde M es el AFN resultante y N es el AFN- ε original. Así tenemos:

$$\begin{split} \delta_{M}(q_{0},a) &= \{q_{1}\} \\ \delta_{M}(q_{0},b) &= \emptyset \\ \delta_{M}(q_{1},a) &= \{q_{3},q_{0}\} \\ \delta_{M}(q_{1},b) &= \{q_{2},q_{0}\} \\ \delta_{M}(q_{2},a) &= \{q_{4},q_{1}\} \\ \delta_{M}(q_{2},b) &= \emptyset \\ \delta_{M}(q_{3},a) &= \{q_{1}\} \\ \delta_{M}(q_{3},b) &= \emptyset \\ \delta_{M}(q_{4},a) &= \emptyset \\ \delta_{M}(q_{4},b) &= \{q_{2},q_{0}\} \end{split}$$

Y obtenemos:

Primero calculalos la ECLOSURE de cada uno de los estados:

$$ECLOSURE(q_0) = \{q_0, q_1, q_3, q_4\}$$

$$ECLOSURE(q_1) = \{q_1\}$$

$$ECLOSURE(q_2) = \{q_2\}$$

$$ECLOSURE(q_3) = \{q_3, q_4\}$$

$$ECLOSURE(q_4) = \{q_4\}$$

$$ECLOSURE(q_5) = \{q_5\}$$

Y ahora calculamos la función de transición extendida. Así tenemos:

$$\begin{split} \delta_{M}(q_{0},a) &= \{q_{1},q_{3},q_{4},q_{5}\} \\ \delta_{M}(q_{0},b) &= \{q_{4}\} \\ \delta_{M}(q_{1},a) &= \{q_{2}\} \\ \delta_{M}(q_{1},b) &= \emptyset \\ \delta_{M}(q_{2},a) &= \emptyset \\ \delta_{M}(q_{2},b) &= \{q_{1}\} \\ \delta_{M}(q_{3},a) &= \{q_{3},q_{4},q_{5}\} \\ \delta_{M}(q_{3},b) &= \{q_{4}\} \\ \delta_{M}(q_{4},a) &= \{q_{5}\} \\ \delta_{M}(q_{4},b) &= \{q_{4}\} \\ \delta_{M}(q_{5},a) &= \emptyset \\ \delta_{M}(q_{5},b) &= \emptyset \end{split}$$

Y obtenemos:

7. Encuentre una expresión regular para $L = \{w \in \{a,b\}^* \mid w \text{ no termina en } aa \text{ ni } bb\}.$

Respuesta:

La expresión regular para el lenguaje L sería $\Sigma^*(ab+ba)$ o lo que es lo mismo $(a+b)^*(ab+ba)^*$