Curve fitting with likelihoods

Likelihood

- Likelihood is a general approach to statistics that can be used for:
 - Estimating parameters, building confidence intervals
 - Testing hypotheses
 - Comparing hypotheses against one another
- Likelihood appears to be similar to probability, but has a very different interpretation

Definition of likelihood

- Likelihood is a measure of support for a particular estimated value given a set of data
- We need to specify a particular statistical distribution of deviations from the estimated value (such as normal, binomial, etc.) to use the approach
- We then use the formula for the assumed distribution to calculate the likelihood

Likelihood and probability

- Probabilities treat parameters (μ, σ) as known, and calculate the chances of observing data values given the parameters → p(x_i | μ, σ)
- Likelihoods invert this they treat the data as known, and ask how likely a set of parameters is given the known data → L(μ, σ | x_i)

Probability and likelihood – single observation

Probability

$$p(x_i | \mu, \sigma)$$

Use a probability distribution to represent a "random variable"

Likelihood

$$L(\mu, \sigma \mid x_i)$$

Likelihood of possible values of the mean given observed x

Some nice features of likelihoods

- Likelihoods can be combined
 - Data can be added as it becomes available, such as adding observations until two treatment groups diverge
 - Big no-no with hypothesis testing
- No "sampling" distributions
 - Likelihoods of samples are just products of likelihoods of individual obserations
- Parameter estimates and confidence intervals
 - "Maximum likelihood estimates"
 - Even when analytical formulas aren't available

Probability and likelihood – a sample of data points

Probability

Use a "sampling distribution", such as the t

Likelihood

$$\prod L(\mu,\sigma \mid x_i)$$

Likelihood of a sample is the product of likelihoods of data points

Likelihood functions

- Derived from probability distributions
- Used to model differences between hypothetical values and observed data (residuals)
- Example: Normally distributed deviations

$$L(\mu \mid x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left[\frac{x_i - \mu}{\sigma}\right]}$$

 $L(\mu \mid x_i) = \frac{1}{\sqrt{2\pi \alpha^2}} e^{-\frac{1}{2} \left[\frac{x_i - \mu}{\sigma}\right]^2}$ Likelihood of parameters given a single data point - the normal probability distribution

$$L(\mu \mid x_{i...n}) = \prod \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left[\frac{x_i - \mu}{\sigma}\right]^2}$$

Likelihood of parameters given all the data the product of all the likelihoods given each single data point

Example of the normal likelihood function

Have a data value, x_i, equal to 0

The highest likelihood for a possible value for the mean given this one data point is the value of the data point itself

Other values for μ are possible, but have lower likelihood given the one data value we have

Using likelihood for estimation

 Given some data, what is the best estimate for the mean of a population, μ?

• We use
$$\bar{x} = \frac{\sum x_i}{n}$$
, is that the best estimator?

 Maximum likelihood criterion: the parameter value with the highest likelihood given the data is the best estimate

Some data...

Infinite number of possible values of μ – which is best?

Pick a likelihood function

- Need to specify a likelihood function to model deviations of estimates from data points
- We'll use the normal distribution
- We then find the value for µ with the highest likelihood across all the data
- Let's try this out...

Log-likelihoods

The log of the normal likelihood function is:

$$-0.5 \ln(2\pi) - 0.5 \ln(\sigma^2) - \frac{(x_i - \mu)^2}{2\sigma^2}$$

- Multiplicative terms are additive now
- Across multiple data values the likelihood function is:

$$-0.5 n \ln(2\pi) - 0.5 n \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2$$

No effect on which value has the highest likelihood

Calculations – comparing likelihoods among possible means

	Data	Possible means	Likelihood	LogLikelihood	
	119.42	119	5.81E-35	-78.8	
	123.67	120	1.74E-31	-70.8	
	124.86	121	1.99E-28	-63.8	
	125.17	122	8.69E-26	-57.7	
	125.3	123	1.45E-23	-52.6	
	126.9	124	9.28E-22	-48.4	
	126.96	125	2.27E-20	-45.2	
	128.13	126	2.12E-19	-43.0	
	128.31	127	7.58E-19	-41.7	
	128.74	128	1.04E-18	-41.4	
	130.36	129	5.41E-19	-42.1	
	130.63	130	1.08E-19	-43.7	
	130.78	131	8.25E-21	-46.2	
	132.53	132	2.41E-22	-49.8	
	135.61	133	2.69E-24	-54.3	
		134	1.15E-26	-59.7	
Mean	127.82	135	1.88E-29	-66.1	
Std. Dev	3.95	136	1.17E-32	-73.5	

Numerical solution – try different possible means, calculate logLikelihood for each

Pick the one with the lowest logLikelihood

Not an analytical solution! Only approximately correct (but often good enuf)

Minimum -LogLikelihood at the maximum likelihood

	Data	Possible means	Likelihood	LogLikelihood	-LogLikelihood
	119.42	119	5.81E-35	-78.8	78.8
	123.67	120	1.74E-31	-70.8	70.8
	124.86	121	1.99E-28	-63.8	63.8
	125.17	122	8.69E-26	-57.7	57.7
	125.3	123	1.45E-23	-52.6	52.6
	126.9	124	9.28E-22	-48.4	48.4
	126.96	125	2.27E-20	-45.2	45.2
	128.13	126	2.12E-19	-43.0	43.0
	128.31	127	7.58E-19	-41.7	41.7
	128.74	128	1.04E-18	-41.4	41.4
	130.36	129	5.41E-19	-42.1	42.1
	130.63	130	1.08E-19	-43.7	43.7
	130.78	131	8.25E-21	-46.2	46.2
	132.53	132	2.41E-22	-49.8	49.8
	135.61	133	2.69E-24	-54.3	54.3
		134	1.15E-26	-59.7	59.7
Mean	127.82	135	1.88E-29	-66.1	66.1
Std. De	3.95	136	1.17E-32	-73.5	73.5

Back to the app...

Curve fitting with maximum likelihood

- The predicted value from a curve is the average of y expected for a given value of x
- We can calculate the likelihood of parameter values given the residuals around the line that they produce
- Example: caloric content of foods as a function of carbohydrate content

Relationship between carbohydrates and kcal of foods

Another app...

Finding the maximum likelihood with Solver

Solver's solution

How do they compare to analytical values?

	Solver	Analytical	
Slope	4.256484	4.256491	
Intercept	4.431798	4.431768	
StdDev	5.415386	5.556068	

Slope and intercept – very close Standard deviation of residuals under-estimated

Today...

 We will use maximum likelihood to find the best-fit line for the photosynthesis data we used previously