Основные свойства логарифмов

Логарифмом числа b по основанию a называют число $x := \log_a b$, такое что

$$a^{\mathcal{X}} = b$$

О.Д.З: Исходя из определения, логарифм числа b по основанию a однозначно опреде-

лен тогда и только тогда, когда $a>0,\quad a\neq 1,\quad b>0$

Простейшие свойства	Логарифм и степень
$\log_a 1 = 0$	$\log_{a^k} a = \frac{1}{k}$
$\log_a a = 1$	$\log_a a^m = m$
$\log_a \frac{1}{a} = -1$	$\log_{a^k} a^m = \frac{m}{k}$
	$\log_{a^k} b = \frac{1}{k} \log_a b$
	$\log_a b^m = m \log_a b$
	$\log_{a^k} b^m = rac{m}{k} \log_a b$
Логарифм произведения и частного	Формулы перехода к новому основанию
$\log_a(bc) = \log_a b + \log_a c$	$\log_a b = \frac{\log_c b}{\log_a a}$
$\log_a(bc) = \log_a b + \log_a c$ $\log_a \frac{b}{c} = \log_a b - \log_a c$	$\log_a b = \frac{\log_c b}{\log_c a}$ $\log_a b = \frac{1}{\log_b a}$

Экзотические свойства логарифмов

$$\log_a b \cdot \log_c d = \log_c b \cdot \log_a d$$
 ; $a^{\log_c b} = b^{\log_c a}$