2° de Secundaria 2024-2025 Unidad 2

Practica la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:

- 🔽 Formula expresiones de primer grado para representar propiedades (perímetros y áreas) de figuras geométricas y verifica equivalencia de expresiones, tanto algebraica como geométricamente (análisis de las figuras).
- Construye polígonos regulares a partir de algunas medidas (lados, apotema, diagonales, etcétera).
- Descompone figuras en otras para calcular su área.
- 🔽 Calcula el perímetro y el área de polígonos regulares y del círculo a partir de diferentes datos.

Puntuación:

Pregunta	Puntos	Obtenidos
1	4	
2	6	
3	4	
4	4	
5	6	
6	6	
7	6	
8	4	
9	4	
10	4	
11	4	
12	4	

Pregunta	Puntos	Obtenidos	
13	4		
14	4		
15	3		
16	6		
17	4		
18	3		
19	5		
20	5		
21	5		
22	22 5		
Total	100		

Polígono regular

Si un polígono regular de n lados, de longitud L, un perímetro de Punidades, un apotema de a unidades, entonces el área A en unidades cuadradas es:

$$A = \frac{nLa}{2}$$

donde el perímetro es P = nL.

El círculo

Perímetro: $P = 2\pi r$

Área: $A = \pi r^2$

Volumen de un prisma recto

El volumen de un prisma recto de altura h, y cuyo polígono base tiene un área A_b , es:

$$V = A_b h$$

Si el polígono base es un polígono regular, entonces:

$$V = \frac{nLah}{2}$$

donde P es el perímetro; a, la apotema; n, el número de lados y l, la medida del lado.

Volumen de un cilindro recto

El volumen de un cilindro recto cuva base tiene un área de $A=\pi r^2$, se obtiene mediante la expresión

$$V = \pi r^2 h$$

donde r es el radio del círculo y h la altura del cilindro.

1 Círculo

1.1 Resolución de problemas

Ejercicio 1 de 4 puntos

Resuelve los siguientes problemas:

- Una casa tiene una alberca circular de 6 metros de diámetro. Calcula el área de la alberca.
- Calcula el área de un parque que tiene un radio de 170 metros.
- b El radio de una rueda es de 32 centímetros, ¿cuántos centímetros habrá recorrido esa rueda después de haber dado 22 vueltas?
- d Daniel tiene un terreno circular con un radio de 6 metros al cual le desea poner una barda en su periferia, si el precio por metro de barda es de 124 pesos. ¿Cuánto pagará en total por poner la barda?

1.2 Radio, Diámetro, Perímetro y Área de un círculo

2 Polígonos y circunferencias

2.1 Ángulos interiores

Ejer	rcicio 3		de 4 puntos
Resi	oonde a las siguientes preguntas:		
a	La suma de los ángulos interiores de un polígono de 8 lados es:	С	La suma de los ángulos interiores de un polígono de 11 lados es:
Ь	¿Cuánto mide el ángulo interior de un dodecágono	d	¿Cuánto mide el ángulo interior de un icoságono
O	regular?	U	regular?
2.2 Án	gulos centrales y exteriores		
Ejer	rcicio 4		de 4 puntos
$\mathrm{Res}_{\mathrm{I}}$	ponde a las siguientes preguntas:		
Q	\cite{c} Cuánto mide el ángulo central de un polígono de 9 lados?	С	¿Cuánto mide el ángulo exterior de un polígono de 6 lados?
Ь	$\ensuremath{\mathcal{C}}$ Cuánto mide el ángulo exterior de un polígono de 10 lados?	d	¿Cuánto mide el ángulo central de un polígono de 20 lados?

2.3 Ángulos centrales e inscritos

2.4 Arco de una circunferencia

2.5 Área de un sector circular

3 Figuras y cuerpos geométricos

3.1 Perímetro y Área

Ejercicio 8 ____ de 4 puntos

Encuentra el perímetro y el área de las siguientes figuras:

| O | | Perímetro: _____ | Área: _____

| C | Perímetro: _____ | Área: _____

Perímetro: _____ Área: ____

Perímetro: _____ Área: ____

3.2 Resolución de problemas

Ejercicio 9 ____ de 4 puntos

Resuelve los siguientes problemas:

Ricardo quiere poner una barda alrededor de un terreno pentagonal que mide 15 metros por lado. ¿Cuánta barda necesitará Ricardo para poner barda en todo el terreno?

b Calcula la altura de un prisma que tiene como área de la base 6 m 2 y 66 m 3 de capacidad.

 ${\color{red}{\sf C}}$ Calcula la altura de un prisma que tiene como área de la base 8 m² y 120 m³ de capacidad.

d ¿Cuál es el perímetro de un campo de fútbol que mide 95.12 metros de largo y 45.27 metros de ancho?

3.3 Área lateral, Área total y Volumen

Ejercicio 10

de 4 puntos

Calcula el volumen, el área lateral y el área total de las siguientes figuras:

a

Prisma cuyos lados "l
"de la base miden 8 cm y la altura "h
"mide 21 cm. $\,$

Volumen: _____

A. Lateral: _____

A. Total: _____

Prisma de 19 cm de altura y su base es un octágono cuyos los lados "l"miden 7 cm y tiene una apotema .a"de 5 cm.

Volumen: ____

 h_{prisma}

A. Lateral: _____

A. Total: _____

h

Cilindro con altura $h=17~{\rm cm}$ y un radio $r=4~{\rm cm}$. Volumen: _____

A. Lateral: _____

A. Total: _____

Prisma de 32 cm de altura y su base es un pentágono cuyos los lados "l"miden 13 cm y tiene una apotema .a"de 8 cm.

Volumen: _____

A. Lateral: _____

A. Total: _____

4 Monomios y polinomios

4.1 Lenguaje algebraico

Ejercicio 11 de 4 puntos

Elige la expresión algebraica correcta para cada uno de los siguientes enunciados:

A un número se le resta 14.

(A)
$$a + 14$$
 (B) $a - 14$ (C) $14a$ (D) $\frac{a}{14}$

$$\bigcirc \frac{a}{14}$$

$$\frac{a}{14}$$

b La suma de tres número diferentes

$$\bigcirc$$
 $-xy$

$$\bigcirc$$
 $x+y-$

c El cubo de un número aumentado en 10

$$\bigcirc$$
 $3x+10$

(A)
$$3x+10$$
 (B) $(x+10)^3$ (C) x^3+10 (D) $x+10$

$$\bigcirc x^3 + 10$$

$$\bigcirc$$
 $x+10$

d El doble de la suma de un número con 2

$$\bigcirc$$
 $2x+2$

$$\bigcirc$$
 2+x

(A)
$$2(x+2)$$
 (B) $2x+2$ (C) $2+x$ (D) $(x+2)^2$

e La diferencia del triple de un número con 1.

(A)
$$3(1-a)$$
 (B) $3a+1$ (C) $1-3a$ (D) $\frac{1}{3a}$

$$\bigcirc$$
 $3a + 1$

$$\bigcirc 1 - 3a$$

f Cinco novenos del cuadrado de un número.

$$\textcircled{A} \left(\frac{5}{9}x\right)^2 \quad \textcircled{B} \left(\frac{9}{5}x\right)^2 \quad \textcircled{C} \ 5(9x^2) \quad \textcircled{D} \ \frac{5}{9}x^2$$

$$\bigcirc 5(9x^2)$$

$$\bigcirc$$
 $\frac{5}{9}x^2$

9 La mitad de la suma de un número con 3.

(A)
$$\frac{1}{2}x + 3$$
 (B) $\frac{x+3}{2}$ (C) $\frac{1}{2} + x + 3$ (D) $\frac{x}{2} + 3$

$$\bigcirc$$
 $\frac{x+}{2}$

$$\bigcirc$$
 $\frac{1}{2}$ +

(D)
$$\frac{x}{2} + 3$$

h La suma de la mitad de un número con 3.

(A)
$$\frac{1}{2}x + 3$$

①
$$\frac{x}{2} + 3$$

4.2 Suma de monomios y polinomios

Ejercicio 12 de 4 puntos

Resuelve las siguientes sumas de monomios y polinomios:

$$12x + 8x + 50x =$$

$$(a+3b) + (2a+4b) + (-8a-10b) =$$

$$(5m-9n+5p)+(2m-n-4p)+(m+n-4p)=$$

d
$$(b+9c)+(-2b-3c)+(2a-4b-5c)=$$

$$(4x-y+3z)+(-4x+y-3z)=$$

$$f 18n + 13n + 19n =$$

$$(a-4b+3c)+(2a+4b-c)+(3a-2b+4c)=$$

h
$$(a+b+c)+(2a+2b+2c)=$$

4.3 Resta de monomios y polinomios

Ejercicio 13 de 4 puntos

Resuelve las siguientes sumas de monomios y polinomios:

$$a - 2a - 3a =$$

b
$$(8a - b - 5c) - (-2a + 5b + 3c) =$$

$$(5x-2y)-(2y-z)-(7x+3y-4z)=$$

d
$$(4x-3y-z)-(2x-5y+3z)=$$

$$(a+2b+3c)-(a-b+c)-(3a-4b-c)=$$

$$f(x+y+z)-(4x-5y+3z=$$

$$(3x-5y+4z)-(2x+5y+4z)=$$

h
$$18x - 22x - 10x =$$

4.4 Operaciones combinadas

Ejercicio 14

_ de 4 puntos

Resuelve las siguientes operaciones convinadas:

$$-5(3x+5)+4(7x-2)=$$

b
$$-5(5y+2)+3(-9y)=$$

$$3(10x-5y+2)+2(6x-9y)=$$

d
$$2(x-3y+7)-5(3x+4y-7)=$$

$$(x-7y+2)-3(2x-3y+4)=$$

f
$$2(8x) + 5(-x+7) =$$

$$3(x+y-5) + 5(2x-3y+1) - 3(4x-y-3) =$$

h
$$3(5x+3) - 2(-2x+3) + 4(2x-6) =$$

4.5 Perímetro de figuras geométricas

Ejercicio 15

de 3 puntos

Encuentra el perímetro de las siguientes figuras:

Perímetro:

Perímetro:

Perímetro:

Perímetro:

b

Perímetro:

d

Perímetro:

5 Operaciones con monomios y polinomios

5.1 Suma, resta y multiplicación de exponentes

Ejercicio 16

de 6 puntos

Realiza las siguientes operaciones con exponentes:

$$(-5a^4)(-3a^2) =$$

$$| \mathbf{i} | \frac{81a^5b^{12}c^9}{9a^3b^7c^5} =$$

f
$$7x^2 \cdot 3x^4 \cdot 6x^2 =$$

b
$$(-3a^4)(8a^2) =$$

$$\mathbf{j} (a^3b^2c^4)^3 =$$

$$4x^2 \cdot x^5 \cdot 5x^8 =$$

5.3

$$\begin{array}{c|c} \mathbf{h} & \frac{x^4y^{12}z^{13}}{x^3y^{12}z^{13}} = \\ \hline \end{array}$$

$$\left(a^3b^5c^{11}\right)^7 =$$

5.5 Multiplicación y división de monomios y polinomios

Ejercicio 17

de 4 puntos

Realiza la siguientes multiplicaciones de polinomios:

$$(x-3)(x^2-5x+4) =$$

$$(x-1)(x+1)(x^2+1) =$$

b
$$(2a+3b)(4x+3y) =$$

$$(x+5)(x^2+2x-3) =$$

$$(x+1)(x+2)(x+3) =$$

9
$$(x+-3(x-3)(x-2)=$$

d
$$(x+5)(2x^2+3x-7)=$$

h
$$(x+y)(x^2-xy+y^2) =$$

5.6 Áreas de figuras geométricas

Matemáticas

Ejercicio 18	de 3 puntos
Encuentra el área de las siguientes figuras:	
x+2	2x
x-3 d Área:	
$\frac{10x}{10x}$	x + 2
b Área:	
$\frac{\varepsilon}{\varepsilon}$	
c	

6 Sistema de unidades

6.1 Unidades de longitud

Ejercicio 19 ____ de 5 puntos

Convierte las siguientes unidades de longitud como se te pide:

- Convierte 4.9 kilómetros a metros.
- d Convierte 134 kilómetros a metros

- **b** Convierte 34 metros a hectómetros
- c Convierte 98 milímetros a centímetros
- e Convierte 134 centímetros a decámetros

6.2 Unidades de masa

Ejercicio 20 de 5 puntos

Convierte las siguientes unidades de masa como se te pide:

- Convierte 342 gramos a hectogramos.
- d Convierte 29 decagramos a miligramos.
- **b** Convierte 8334 centigramos a gramos.
- **c** Convierte 93.4 miligramos a centigramos.
- e Convierte 9 gramos a miligramos.

6.3 Unidades de capacidad

Ejercicio 21 ____ de 5 puntos

Convierte las siguientes unidades de capacidad como se te pide:

- Convierte 27 hectolitros a decilitros.
- f Convierte 8200 litros a metros cúbicos.

b Convierte 8 mililitros a centilitros.

- 9 Convierte 4.8 decímetros cúbicos a litros.
- c Convierte 1094 mililitros a decilitros.
- h Convierte 750 litros a metros cúbicos.
- d Convierte 702 mililitros a decilitros.

i Convierte 567 milímetros cúbicos a litros.

e Convierte 19 litros a mililitros.

i Convierte 4100 litros a metros cúbicos.

6.4 Unidades de área y volumen

Ejercicio 22 de 5 puntos

Convierte las siguientes unidades de área y volumen como se te pide:

- Convierte 8.03 metros cúbicos a milímetros cúbicos
- d Convierte 18 decámetros cúbicos a milímetros cúbicos
- b Convierte 8 kilómetros cuadrados a metros cuadrados
 - cua- e
- C Convierte 88 metros cuadrados a kilómetros cuadrados
- e Convierte 801 milímetros cuadrados a decámetros cuadrados