Recovery Guarantees for One-hidden-layer Neural Networks

Kai Zhong*

– Joint work with Zhao Song*, Prateek Jain†, Peter L. Bartlett‡, Inderjit S. Dhillon*

*UT-Austin, †MSR India, ‡UC Berkeley

- The objective functions of neural networks are highly non-convex.
- Gradient-descent-based methods only achieve local optima.

■ Good News

- When the size of the network is very large, no need to worry about bad local minima.
- Every local minimum is a global minimum or close to a global minimum. [Choromanska et al. '15, Nguyen & Hein '17, etc.]

■ Good News

- When the size of the network is very large, no need to worry about bad local minima.
- Every local minimum is a global minimum or close to a global minimum. [Choromanska et al. '15, Nguyen & Hein '17, etc.]

■ Bad News

- Typically over-parameterize
- May lead to overfitting!!

■ Good News

- When the size of the network is very large, no need to worry about bad local minima.
- Every local minimum is a global minimum or close to a global minimum. [Choromanska et al. '15, Nguyen & Hein '17, etc.]

■ Bad News

- Typically over-parameterize
- May lead to overfitting!!

• Can we learn a neural net without over-parameterization?

Recover A Neural Network

- Assume the data follows a specified neural network model.
- Try to recover this model.

Model: One-hidden-layer Neural Network

Assume n samples $S = \{(\boldsymbol{x}_j, y_j)\}_{j=1,2,\dots,n} \subset \mathbb{R}^d \times \mathbb{R}$ are sampled i.i.d. from distribution

$$\mathcal{D}: \qquad \boldsymbol{x} \sim \mathcal{N}(0, I), \quad y = \sum_{i=1}^{k} v_i^* \cdot \phi(\boldsymbol{w}_i^{*\top} \boldsymbol{x}),$$

where

- $\phi(z)$ is the activation function,
- \blacksquare k is the number of hidden nodes.
- $\{\boldsymbol{w}_{i}^{*}, v_{i}^{*}\}_{i=1,2,\cdots,k}$ are underlying ground truth parameters.

• Can we recover the model?

■ How many samples are required? (Sample Complexity)

■ And how much time? (Computational Complexity)

- Can we recover the model?
 - Yes, by gradient descent following tensor method initialization
- How many samples are required? (Sample Complexity)

■ And how much time? (Computational Complexity)

- Can we recover the model?
 - Yes, by gradient descent following tensor method initialization
- How many samples are required? (Sample Complexity)
 - $|S| > d \cdot \log(1/\epsilon) \cdot \operatorname{poly}(k, \lambda)$, where ϵ is the precision and λ is a condition number of W^* .
- And how much time? (Computational Complexity)

- Can we recover the model?
 - Yes, by gradient descent following tensor method initialization
- How many samples are required? (Sample Complexity)
 - $|S| > d \cdot \log(1/\epsilon) \cdot \operatorname{poly}(k, \lambda)$, where ϵ is the precision and λ is a condition number of W^* .
- And how much time? (Computational Complexity)
 - $|S| \cdot d \cdot \operatorname{poly}(k, \lambda)$

- Can we recover the model?
 - Yes, by gradient descent following tensor method initialization
- How many samples are required? (Sample Complexity)
 - $|S| > d \cdot \log(1/\epsilon) \cdot \operatorname{poly}(k, \lambda)$, where ϵ is the precision and λ is a condition number of W^* .
- And how much time? (Computational Complexity)
 - $|S| \cdot d \cdot \text{poly}(k, \lambda)$

The first recovery guarantee with both sample complexity and computational complexity linear in the input dimension and logarithmic in the precision.

Objective Function

• Given v_i^* and a sample set S, consider L2 loss

$$\widehat{f}_S(W) = \frac{1}{2|S|} \sum_{(\boldsymbol{x}, y) \in S} \left(\sum_{i=1}^k v_i^* \phi(\boldsymbol{w}_i^\top \boldsymbol{x}) - y \right)^2.$$

Objective Function

• Given v_i^* and a sample set S, consider L2 loss

$$\widehat{f}_S(W) = \frac{1}{2|S|} \sum_{(\boldsymbol{x}, y) \in S} \left(\sum_{i=1}^k v_i^* \phi(\boldsymbol{w}_i^\top \boldsymbol{x}) - y \right)^2.$$

■ We show it is locally strongly convex near the ground truth!

Approach

Algorithm:

1. Initialize $v_i = v_i^*$ exactly and W close to W^* by tensor methods

2. Gradient descent

Corresponding Analysis:

Error bound for tensor decomposition

Local strong convexity & smoothness

■ $\nabla^2 f(W)$ is positive definite (p.d.) for $W \in \mathcal{A}$ ⇒ f(W) is LSC in area \mathcal{A}

- $\nabla^2 f(W)$ is positive definite (p.d.) for $W \in \mathcal{A}$ ⇒ f(W) is LSC in area \mathcal{A}
- Consider the minimal eigenvalue of expected Hessian at ground truth,

$$\lambda_{\min} \left(\nabla^2 f_{\mathcal{D}}(W^*) \right) = \min_{\sum_j \|\boldsymbol{a}_j\|^2 = 1} \mathbb{E} \left[\left(\sum_j \phi'(\boldsymbol{w}_j^{*\top} \boldsymbol{x}) \boldsymbol{x}^{\top} \boldsymbol{a}_j \right)^2 \right]$$

where $f_{\mathcal{D}}$ is the expected risk.

- $\nabla^2 f(W)$ is positive definite (p.d.) for $W \in \mathcal{A}$ ⇒ f(W) is LSC in area \mathcal{A}
- Consider the minimal eigenvalue of expected Hessian at ground truth,

$$\lambda_{\min} \big(\nabla^2 f_{\mathcal{D}}(W^*) \big) = \min_{\sum_j \|\boldsymbol{a}_j\|^2 = 1} \mathbb{E} \left[\left(\sum_j \phi'(\boldsymbol{w}_j^{*\top} \boldsymbol{x}) \boldsymbol{x}^{\top} \boldsymbol{a}_j \right)^2 \right]$$

where $f_{\mathcal{D}}$ is the expected risk.

• $\lambda_{\min}(\nabla^2 f_{\mathcal{D}}(W^*)) \geq 0$ always holds.

- $\nabla^2 f(W)$ is positive definite (p.d.) for $W \in \mathcal{A}$ ⇒ f(W) is LSC in area \mathcal{A}
- Consider the minimal eigenvalue of expected Hessian at ground truth,

$$\lambda_{\min} \big(\nabla^2 f_{\mathcal{D}}(W^*) \big) = \min_{\sum_j \|\boldsymbol{a}_j\|^2 = 1} \mathbb{E} \left[\left(\sum_j \phi'(\boldsymbol{w}_j^{*\top} \boldsymbol{x}) \boldsymbol{x}^{\top} \boldsymbol{a}_j \right)^2 \right]$$

where $f_{\mathcal{D}}$ is the expected risk.

- $\lambda_{\min}(\nabla^2 f_{\mathcal{D}}(W^*)) \geq 0$ always holds.
- Does $\lambda_{\min}(\nabla^2 f_{\mathcal{D}}(W^*)) > 0$ always hold?

- $\nabla^2 f(W)$ is positive definite (p.d.) for $W \in \mathcal{A}$ ⇒ f(W) is LSC in area \mathcal{A}
- Consider the minimal eigenvalue of expected Hessian at ground truth,

$$\lambda_{\min} \big(\nabla^2 f_{\mathcal{D}}(W^*) \big) = \min_{\sum_j \|\boldsymbol{a}_j\|^2 = 1} \mathbb{E} \left[\left(\sum_j \phi'(\boldsymbol{w}_j^{*\top} \boldsymbol{x}) \boldsymbol{x}^{\top} \boldsymbol{a}_j \right)^2 \right]$$

where $f_{\mathcal{D}}$ is the expected risk.

- $\lambda_{\min}(\nabla^2 f_{\mathcal{D}}(W^*)) \geq 0$ always holds.
- Does $\lambda_{\min}(\nabla^2 f_{\mathcal{D}}(W^*)) > 0$ always hold? No

Two Examples when LSC doesn't Hold

- Set $v_i^* = 1$ and $W^* = I(k = d)$.
- **1** $When <math>\phi(z) = z,$

$$\lambda_{\min} \big(\nabla^2 f_{\mathcal{D}}(W^*) \big) = \min_{\sum_j \|\boldsymbol{a}_j\|^2 = 1} \mathbb{E} \left[(\boldsymbol{x}^\top \sum_j \boldsymbol{a}_j)^2 \right] = 0$$

The minimum is achieved when $\sum_{i} a_{i} = 0$

Two Examples when LSC doesn't Hold

- Set $v_i^* = 1$ and $W^* = I(k = d)$.
- **2** $When <math>\phi(z) = z^2,$

$$\lambda_{\min} \big(\nabla^2 f_{\mathcal{D}}(W^*) \big) = 4 \min_{\sum_j \|\boldsymbol{a}_j\|^2 = 1} \mathbb{E} \big[(\langle \boldsymbol{x} \boldsymbol{x}^\top, A \rangle)^2 \big] = 0$$

where $A = [\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_d] \in \mathbb{R}^{d \times d}$. The minimum is achieved when $A = -A^{\top}$.

When LSC Holds

- $\phi(z)$ satisfies three properties.
 - P1 Non-negative and homogeneously bounded derivative

 $0 \le \phi'(z) \le L_1|z|^p$ for some constants $L_1 > 0$ and $p \ge 0$.

Figure: activations satisfying P1

Figure: activations not satisfying P1

When LSC Holds

- $\phi(z)$ satisfies three properties.
 - P2 "Non-linearity" 1

For any $\sigma > 0$, we have $\rho(\sigma) > 0$, where

$$\rho(\sigma) := \min\{\alpha_{2,0} - \alpha_{1,0}^2 - \alpha_{1,1}^2, \alpha_{2,2} - \alpha_{1,1}^2 - \alpha_{1,2}^2, \alpha_{1,0}\alpha_{1,2} - \alpha_{1,1}^2\}$$

and $\alpha_{i,j} := \mathbb{E}_{z \sim \mathcal{N}(0,1)}[(\phi'(\sigma z))^i z^j].$

	ReLU	leaky	squared	erf	tanh	linear	quad-
		ReLU	ReLU				ratic
$\rho(0.1)$				1.9E-4	1.8E-4		
$\rho(1)$	0.091	0.089	0.27σ	5.2E-2	4.9E-2	0	0
$\rho(10)$				2.5E-5	5.1E-5		

¹Best name we can find... still need more understanding for $\rho(\sigma)$

When LSC Holds

- $\phi(z)$ satisfies three properties.
 - $\mathbf{P3} \phi''(z)$ satisfies one of the following two properties,
 - (a) Smoothness $|\phi''(z)| \le L_2$ for all z for some constant L_2 , or
 - (b) Piece-wise linearity $\phi''(z) = 0$ except for e (e is a finite constant) points.

Three Properties in Summary

- P1 Non-negative and homogeneously bounded derivative
- P2 "Non-linearity"
- P3 (a) Smoothness, or (b) Piece-wise linearity

name	$\phi(z)$	P1	P2	P3.a	P3.b	P1,2,3
ReLU	$\max\{z,0\}$	1	1	X	1	✓
leaky ReLU	$\max\{z, 0.01z\}$	1	1	X	1	1
$\operatorname{squared} ReLU$	$\max\{z,0\}^2$	1	1	1	X	1
$\operatorname{sigmoid}$	$\frac{1}{1+e^{-z}}$	1	1	✓	×	1
anh	$\frac{e^z - e^{-z}}{e^z + e^{-z}}$	1	1	✓	X	1
erf	$\int_0^z e^{-t^2} dt$	1	1	✓	×	1
linear	z	1	X	1	1	Х
quadratic	z^2	X	X	✓	X	X

Local Strong Convexity

Definition

Let $\sigma_i(i=1,2,\cdots,k)$ denote the *i*-th singular value of $W^* \in \mathbb{R}^{d \times k}$. Define $\kappa = \sigma_1/\sigma_k$ and $\lambda = (\prod_{i=1}^k \sigma_i)/\sigma_k^k$.

Theorem

Let

- **1** $\phi(z)$ satisfies Property 1,2,3 with $\rho(\sigma_k)$
- $|S| \ge d \cdot \operatorname{poly}(k, \lambda) / \rho^2(\sigma_k),$
- $||W W^*|| \le \rho^2(\sigma_k)/\operatorname{poly}(\lambda, k).$

Then there exist two positives $m_0 = \Theta(\rho(\sigma_k)/(\kappa^2 \lambda))$ and $M_0 = \Theta(k\sigma_1^{2p})$ such that w.h.p.,

$$m_0 I \leq \nabla^2 \widehat{f}_S(W) \leq M_0 I$$

Linear Convergence of Gradient Descent

For smooth activations, gradient descent has linear convergence.

Corollary

Let $\phi(z)$ satisfy Property 1,2,3(a) and |S|, W satisfy the conditions in the above theorem. Let

$$W^{\dagger} = W - \frac{1}{M_0} \nabla \widehat{f}_S(W),$$

then w.h.p.

$$||W^{\dagger} - W^*||_F^2 \le (1 - \frac{m_0}{M_0})||W - W^*||_F^2.$$

Initialization by Tensor Method

Definition

 $\phi(z)$ is called q-homogeneous if $\phi(\sigma \cdot z) = \sigma^q \phi(z)$ for some constant q and any $\sigma > 0$.

Fact

If (x, y) is sampled from

$$\mathcal{D}: \quad \boldsymbol{x} \sim \mathcal{N}(0, I), \quad y = \sum_{i} v_i^* \cdot \phi(\boldsymbol{w}_i^{*\top} \boldsymbol{x}),$$

and $\phi(z)$ is q-homogeneous, then

$$\mathbb{E}[y \cdot (\boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x} - \boldsymbol{x} \widetilde{\otimes} I)] = \sum_{i} c \ v_{i}^{*} \|\boldsymbol{w}_{i}^{*}\|^{q-3} \boldsymbol{w}_{i}^{*} \otimes \boldsymbol{w}_{i}^{*} \otimes \boldsymbol{w}_{i}^{*},$$

where
$$\mathbf{v} \widetilde{\otimes} I = \sum_{j=1}^{d} [\mathbf{v} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{j} + \mathbf{e}_{j} \otimes \mathbf{v} \otimes \mathbf{e}_{j} + \mathbf{e}_{j} \otimes \mathbf{e}_{j} \otimes \mathbf{v}].$$

Estimate Parameters Using Tensor Decomposition

- W.l.o.g. we can assume $v_i^* \in \{-1, 1\}$ due to the homogeneity.
- Setting $M_3 := \mathbb{E}[y \cdot (\boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x} \boldsymbol{x} \widetilde{\otimes} I)]$, we can
 - 1 Compute an empirical M_3 , \widehat{M}_3 , from samples.
 - 2 Do tensor decomposition on \widehat{M}_3 .
 - 3 $v_i^* \in \{-1,1\}$ can be exactly recovered and \boldsymbol{w}_i^* can be approximated.

Overall Theoretical Guarantees

Theorem

Let the activation function be homogeneous satisfying Property 1, 2, 3(a). Then for any $\epsilon > 0$, if $|S| \geq \widetilde{O}(d \cdot \log(1/\epsilon) \cdot \operatorname{poly}(k, \lambda))$, the tensor method followed by gradient descent takes $\widetilde{O}(|S| \cdot d \cdot \operatorname{poly}(k, \lambda))$ time and outputs \widehat{W} and $\widehat{\boldsymbol{v}}$ satisfying

$$\|\widehat{W} - W^*\|_F \le O(\epsilon)$$
, and $\widehat{v}_i = v_i^*$.

The proof mainly follows

- The matrix Bernstein inequality
- Error bound for non-orthogonal tensor decomposition from [Kuleshov-Chaganty-Liang'15]
- Linear convergence of gradient descent

Take-home Message and Future Work

■ Take-home message

- 1 The squared loss of one-hidden-layer neural nets is locally strongly convex near the ground truth w.r.t. the first-layer parameters.
- 2 Tensor method is able to initialize the parameters into the local strong convexity region.
- 3 Sample and computational complexities are linear in dim and logarithmic in precision.

■ Future work

- 1 One-hidden-layer nets have low capacity. –Multiple layers?
- 2 Tensor method highly depends on Gaussian assumption.
 - -Random Initialization?