2019年普通高等学校招生全国统一考试

(全国卷, 2019年6月7日)

考试形式: 闭卷 考试时间: 120 分钟 满分: 150 分

绝密★启用前 解题人: Hoganbin 微信公众号: 八一考研数学竞赛

注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上。用 2B 铅笔将试卷类型 (B) 填涂在答题卡相应的位置上。将条形码横贴在答题卡右上角"条形码粘贴处"。

- 2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。
- 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
- 4. 考生必须保证答题卡的整洁。考生结束后,将试卷和答题卡一并交回。

对 2019 年全国卷导数压轴大题试题解析

离 19 年高考数学结束两天了,分析全国三套文理科,共 6 张试题的导数大题,难度均中等. 比如 2019 年卷 1 理科数学第 1 问是 17 年卷 2 的 21 题改编,是基于导函数有一个零点 x=0,由对数变指数,或增加参数,发现导函数有一个零点 x=0 可得导函数在 $(-1,\frac{\pi}{2})$ 的零点,从而判断其单调性,研究三角函数零点问题,逐个区间分析法是常用思想. 下面请看试题详解:

2019·全国新课标 I 卷理 20

已知函数 $f(x) = \sin x - \ln(x+1)$, f'(x) 为 f(x) 的导数, 证明:

- (1) f'(x) 在区间 $(-1, \frac{\pi}{2})$ 存在唯一极大值点;
- (2) f(x) 有且仅有两个零点.

证明:

- (1) 易知 $f'(x) = \cos x \frac{1}{1+x}$, $f''(x) = -\sin x + \frac{1}{(1+x)^2}$, 通过观察二阶导函数的单调性,可得 f''(x) 在 $(-1, \frac{\pi}{2})$ \(\text{. 由于 } f''(0) > 0, $f''\left(\frac{\pi}{2}\right) < 0$, 即 f''(x) 在 $(-1, \frac{\pi}{2})$ 有唯一零点为 x_0 . 当 $x \in (-1, x_0)$ 时, f''(x) > 0, $f'(x) \nearrow$; 当 $x \in \left(x_0, \frac{\pi}{2}\right)$ 时, f''(x) < 0, f'(x) \(\text{.} \)
 因此 f'(x) 在区间 $(-1, \frac{\pi}{2})$ 存在唯一极大值点;
- (2) 注意到 f(x) 定义域 $(-1, +\infty)$ 且 f'(0) = 0.

①考虑
$$x \in \left(-1, \frac{\pi}{2}\right)$$
, 由 (1) 知 $f(x)$ 在 $(-1,0)$ 、 在 $(0,x_0)$ 、 在 $(x_0, \frac{\pi}{2})$ 单减,因为对 $\forall x \in (-1,0)$,有 $f(x) < f(0) = 0$,且 $f(x_0) > f(0) = 0$, $f\left(\frac{\pi}{2}\right) = 1 - \ln\left(1 + \frac{\pi}{2}\right) > 0$,即 $f(x)$ 在 $(-1, \frac{\pi}{2})$ 有唯一零点;②考虑 $x \in \left[\frac{\pi}{2}, \pi\right)$,由于 $f'(x) < 0$,可知 $f(x)$ 、 因为 $f\left(\frac{\pi}{2}\right) > 0$, $f(\pi) < 0$,即即 $f(x)$ 在 $x \in \left[\frac{\pi}{2}, \pi\right)$ 有唯一零点;

③考虑 $x \in (\pi, +\infty)$,由于 $f(x) < 1 - \ln(1 + \pi) < 0$,即无零点. 即证 f(x) 有且仅有两个零点.

2019·全国新课标 I 卷文 20

已知函数 $f(x) = 2\sin x - x\cos x - x$, f'(x) 为 f(x) 的导数, 证明:

- (1) f'(x) 在区间 (0, π) 存在唯一零点;
- (2) 若 $x \in [0, \pi]$ 时, $f(x) \ge ax$, 求 a 的取值范围.

证明:

- (1) 当 $x \in (0,\pi)$ 时,有 $f'(x) = \cos x + x \sin x 1$, $f''(x) = x \cos x$. 当 $x \in (0,\frac{\pi}{2})$ 时,有 f''(x) > 0; 当 $x \in \left(\frac{\pi}{2}, \pi\right)$, 有 f''(x) < 0. 即 $f'(x)_{\text{极大值}} = f'\left(\frac{\pi}{2}\right) > 0$, 且 f'(0) = 0, $f'(\pi) = -2$, 因此 f'(x) 在区间 (0, π) 存在唯一零占·
- (2) 由 (1) 知 f'(x) 在区间 $(0,\pi)$ 存在唯一零点,即存在 x_0 使得 $f'(x_0) = 0$,则 f(x) 在 $[0,x_0]$ 人,在 $[x_0,\pi]$ \ , 又 f(0) = 0, $f(\pi) = 0$, 即 f(x) 在 $[0,\pi]$ 有 f(x) > 0, 要使 f(x) > ax 则 a < 0.

2019· 全国新课标 II 卷理 20

- 已知函数 $f(x) = \ln x \frac{x+1}{x-1}$. (1) 讨论 f(x) 的单调性,并证明 f(x) 有且仅有两个零点;
 - (2) 设 x_0 是 f(x) 的一个零点,证明曲线 $y = \ln x$ 在点 $A(x_0, \ln x_0)$ 处的切线也是曲线 $v = e^x$ 的切线.

证明:

(1) 这里
$$x > 0$$
 且 $x \neq 1$,有 $f'(x) = \frac{1}{x} + \frac{2}{(x-1)^2} > 0$,则 $f(x)$ 在定义域 $(0,1) \cup (1,+\infty)$ 上 \nearrow .

$$f\left(\frac{1}{e}\right) = \frac{2}{e-1} > 0, f\left(\frac{1}{e^2}\right) = \frac{e^2+1}{e^2-1} - 2 < 0, f\left(\sqrt{e}\right) = \frac{1}{2} - \frac{\sqrt{e}+1}{\sqrt{e}-1} < 0, f\left(e^2\right) = 2 - \frac{e^2+1}{e^2-1} > 0$$

由于
$$\left(\frac{1}{e}, \frac{1}{e^2}\right) \in (0,1)$$
 与 $\left(\sqrt{e}, e^2\right) \in (1, +\infty)$,且 $f\left(\frac{1}{e}\right) f\left(\frac{1}{e^2}\right) < 0$, $f\left(\sqrt{e}\right) f\left(e^2\right) < 0$,即 $f(x)$ 在 $(0,1)$ 和 $(1, +\infty)$ 上各有一个零点,即证 $f(x)$ 有且仅有两个零点;

(2) 由题设易知
$$f(x0=0)$$
,有 $\ln x_0 = \frac{x_0+1}{x_0-1} = 1 + \frac{2}{x_0-1}$. 因曲线 $y = \ln x$, $y' = \frac{1}{x}$,即在 $A(x_0, \ln x_0)$ 处切线 方程为: $y - \ln x_0 = \frac{1}{x_0}(x - x_0) \Rightarrow y = \frac{1}{x_0}x + \frac{2}{x_0-1}$.

设该切线与
$$y = e^x$$
 切于 $B(m, e^m)$,即有 $e^m = \frac{1}{x_0} \pm e^m = \frac{1}{x_0} + \frac{2}{x_0 - 1}$,则 $\frac{1}{x_0} = \frac{1}{x_0} + \frac{2}{x_0 - 1} \Rightarrow m = -\ln x_0$.

因此曲线 $y = \ln x$ 在点 $A(x_0, \ln x_0)$ 处的切线也是曲线 $y = e^x$ 的切线且切点为 $B\left(-\ln x_0, \frac{1}{x_0}\right)$.

2019· 全国新课标 II 卷文 21

已知函数 $f(x) = (x-1) \ln x - x - 1$.

- (1) f(x) 存在唯一极值点;
- (2) f(x) = 0 有且仅有两个实根,且两个实根互为倒数.

证明:

(1) 易知 $f'(x) = \frac{x-1}{x} + \ln x - 1 = \ln x - \frac{1}{x}, x \in (0, +\infty)$,即 f'(x) > 0 人,又 f'(1) < 0, f'(2) > 0,即存在唯一 $x_0 \in (1, 2)$ 使得 $f'(x_0) = 0$. 当 $x < x_0$ 时, $f'(x_0) < 0$ 、当 $x > x_0$ 时, $f'(x_0)$ 人.

因此 f(x) 存在唯一极值点.

(2) 由于 $f(x_0) < f(1) = -2$, $f(e^2) = e^2 - 3 > 0$, 即 f(x) 在 $(x_0, +\infty)$ 有唯一零点 t, 则 f(t) = 0. 考虑 $t > x_0 > 1$,得 $\frac{1}{t} < 1 < x_0$,有 $f\left(\frac{1}{t}\right) = \frac{1}{t}f(t) = 0$,即 f(x) 在 $(0, x_0)$ 有唯一零点 $\frac{1}{t}$. 故 f(x) = 0 有且仅有两个实根,且两个实根互为倒数.

2019· 全国新课标 III 卷理 20

已知函数 $f(x) = 2x^3 - ax^2 + b$.

- (1) 讨论 f(x) 的单调性;
- (2) 是否存在 a,b,使得 f(x) 在区间 [0,1] 的最小值为 -1,最大值为 1? 若存在,求出 a,b 的所有值,若不存在,说明理由.

证明:

(1) 易知
$$f'(x) = 6x\left(x - \frac{a}{3}\right) \Rightarrow f'(x) = 0 \Rightarrow x = 0$$
或 $\frac{a}{3}$, 对 a 分类讨论:

①当
$$a = 0$$
时,有 $f'(x) > 0$,即 $f(x)$ 在 \mathbb{R} 上 \mathbb{Z} ;

②当
$$a > 0$$
 时,有 $f(x)$ 在 $\left(-\infty,0\right) \cup \left(\frac{a}{3},+\infty\right)$ 人,在 $\left(0,\frac{a}{3}\right)$ 〉;

③当
$$a < 0$$
时,有 $f(x)$ 在 $\left(-\infty, \frac{a}{3}\right) \cup \left(0, +\infty\right)$ 人,在 $\left(\frac{a}{3}, 0\right)$ 〉;

- (2) 由上问易知
 - ①当 $a \le 0$ 时,有 f(x) 在 [0,1] /,则

$$\begin{cases} f(x)_{\text{max}} = f(1) = 2 - a + b = 1 \\ f(x)_{\text{min}} = f(0) = b = -1 \end{cases} \Rightarrow \begin{cases} a = 0 \\ b = -1 \end{cases}$$
 (符合)

②当 $a \ge 3$ 时,有 f(x) 在 $[0,1] \setminus$,则

$$\left\{ \begin{array}{l} f\left(x\right)_{\max} = f\left(0\right) = b = 1 \\ f\left(x\right)_{\min} = f\left(1\right) = 2 - a + b = -1 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a = 4 \\ b = 1 \end{array} \right. \left(\text{符合} \right)$$

③当 $a \in (0,3)$ 时,有f(x)在 $[0,\frac{a}{3}]$ 、,在 $[\frac{a}{3},1]$ /,则

$$\begin{cases} f(x)_{\max} = \begin{cases} f(1) = 2 - a + b = 1 \\ f(0) = b = 1 \end{cases} \Rightarrow \begin{cases} \begin{cases} a = 3\sqrt[3]{2} \\ b = 1 \end{cases} \\ \left\{ a = \pm 3\sqrt{3} \vec{\bowtie} a = 0 \end{cases} & (5 + 5) \vec{\bowtie} f(0) = b = 1 \end{cases} \\ \begin{cases} f(x)_{\min} = f\left(\frac{a}{3}\right) = \frac{2a^3}{27} - \frac{a^3}{9} + b = -1 \end{cases} \Rightarrow \begin{cases} \begin{cases} a = 3\sqrt[3]{2} \\ b = 1 \end{cases} \\ \begin{cases} a = \pm 3\sqrt{3} \vec{\bowtie} a = 0 \end{cases} \\ b = \frac{a^3}{27} - 1 \end{cases} \end{cases}$$

综上当 $\begin{cases} a=0 \\ b=-1 \end{cases}$ 与 $\begin{cases} a=4 \\ b=1 \end{cases}$ 时,f(x) 在区间 [0,1] 的最小值为 -1,最大值为 1.

2019· 全国新课标 III 卷文 20

已知函数 $f(x) = 2x^3 - ax^2 + 2$.

- (1) 讨论 f(x) 的单调性;
- (2) 当 0 < a < 3 时,记 f(x) 在区间 [0,1] 的最大值为 M,最小值为 m,求 M-m 的取值范围.

证明:

(1) 易知
$$f'(x) = 6x\left(x - \frac{a}{3}\right) \Rightarrow f'(x) = 0 \Rightarrow x = 0$$
或 $\frac{a}{3}$, 对 a 分类讨论:

①当
$$a = 0$$
时,有 $f'(x) > 0$,即 $f(x)$ 在 \mathbb{R} 上 \mathbb{Z} ;

②当
$$a > 0$$
 时,有 $f(x)$ 在 $\left(-\infty, 0\right) \cup \left(\frac{a}{3}, +\infty\right)$ 》,在 $\left(0, \frac{a}{3}\right)$ 〉;

③当
$$a < 0$$
 时,有 $f(x)$ 在 $\left(-\infty, \frac{a}{3}\right) \cup (0, +\infty)$ 人,在 $\left(\frac{a}{3}, 0\right)$ 〉、

(2) 当
$$a \in (0,3)$$
 时,有 $f(x)$ 在 $[0,\frac{a}{3}]$ 、 在 $[\frac{a}{3},1]$ /,则

$$\begin{cases} f\left(x\right)_{\max} = \begin{cases} f\left(1\right) = 4 - a \\ f\left(0\right) = 2 \end{cases} \Rightarrow \begin{cases} M = \begin{cases} 4 - a, a \in (0, 2) \\ 2, a \in [2, 3) \end{cases} \Rightarrow M - m = \begin{cases} 2 - a + \frac{a^3}{27}, a \in (0, 2) \\ \frac{a^3}{27}, a \in [2, 3) \end{cases} \end{cases}$$

$$\Rightarrow \left\{ \begin{array}{l} \exists a \in (0,2) \,, \; \exists \exists a \in$$