POLITECHNIKA ŚLĄSKA

Wydział Matematyki Stosowanej

PRACA INŻYNIERSKA

Temat: Porównanie wybranych algorytmów heurystycznych w rozwiązywaniu zagadnień odwrotnych

Dyplomant: Kamil Kryus

Kierunek studiów: Informatyka

Specjalizacja: Programowanie Aplikacji Mobilnych

Opiekun pracy: dr inż. Adam Zielonka

Spis treści

1	Wprowadzenie	2
2	Opis problemu	3
3	Opis algorytmów 3.1 Algorytm symulowanego wyżarzania 3.1.1 Opis 3.1.2 Parametry 3.1.3 Kroki algorytmu	4 4 4 4
4	$\operatorname{Cel}\dots$	5
5	Funkcje testowe $5.1 ext{ x2+y2}$ $5.2 ext{ Funkcja Rastrigina}$ $5.3 ext{ Funkcja Rosenbrocka}$	6 6 6
6	Dobór parametrów	7
7	Implementacja	8
8	Dostosowanie algorytmów do funkcji testowej zadań odwrotnych	9
9	Narzędzia i technologie	10 10 10
10	Podsumowanie	

Wprowadzenie

Opis problemu

Opis algorytmów

3.1 Algorytm symulowanego wyżarzania

3.1.1 Opis

Algorytm ten został stworzony wzorując się na zjawisku wyżarzania w metalurgii, które polega na nagrzaniu elementu stalowego do odpowiedniej temperatury, przetrzymaniu go w tej temperaturze przez pewien czas, a następnie powolnym jego schłodzeniu. Sam algorytm natomiast bazuje na metodach Monte-Carlo i w pewnym sensie może być rozważany jako algorytm iteracyjny.

Główną istotą i zarazem zaletą tego algorytmu jest wykonywanie pewnych losowych przeskoków do sąsiednich rozwiązań, dzięki czemu jest w stanie uniknąć wpadania w lokalne minimum. Algorytm ten najczęściej jest używany do rozwiązywania problemów kombinatorycznych, jak np. problemu komiwojażera.

3.1.2 Parametry

3.1.3 Kroki algorytmu

Cel

Przetestowanie algorytmu wyżarzania, bla bla

Funkcje testowe

- $5.1 \quad x\hat{2} + y\hat{2}$
- 5.2 Funkcja Rastrigina
- 5.3 Funkcja Rosenbrocka

Dobór parametrów

Implementacja

Dostosowanie algorytmów do funkcji testowej zadań odwrotnych

Narzędzia i technologie

- 9.1 Użyte narzędzia
- 9.2 Użyte technologie

Podsumowanie

10.1 Dalsze kierunki rozwoju

Foobar