Design a single ended amplifier shown in the fig to achieve the following specs

Spec.		$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
DC Gain	6 dB	<u></u>
BW	≥ 10 GHz	—∘ V _{out}
Power Consumption	≤ 1.5 mW	V _{in} ⊶
Cap Load	50 fF	Ē

$$\begin{split} P_{cons} &= V_{DD} \ I_D \leq 1.5 \ mW \to I_D \leq 1.25 \ mA \\ GBW &= \frac{g_{m1}}{2\pi C_{out}} \geq 2*10 \ GHz \to g_{m1} \geq 6.28 \ mS \\ g_{m1} &= 18 \ mS \to \left(\frac{g_m}{I_D}\right)_1 = 14.4 \\ A_v &= g_{m1} R_{out} = 2 \to R_{out} = 115 \ \Omega \\ R_{D1} &= \frac{1}{g_{m2}} = 127 \ \Omega \\ R_{out} &= \frac{R_{D1} \cdot r_{o1}}{R_{D1} + r_{o1}} = 115 \to r_{o1} \geq 1220 \ \Omega \to \frac{g_m}{g_{ds}} \geq 22 \\ Assume \ V_{out} &= 300 \ mV \ and \ L_1 = L_2 \end{split}$$

With some fine tuning W2 reduced to 9.67 um, and VGS to 421.5 mV

Apply to Cadence

1. DC OP

2. AC Analysis

