1

Matrix theory Assignment 19

Shivangi Parashar

Abstract—This document contains the concept of matrix diagonalization.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment19/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment19/ Assignment 19.tex

1 Problem

Let A be a 3×3 matrix with real entries. Identify the correct statements.

- 1.A is necessarily diagonalizable over **R**
- 2.If A has distinct real eigen values than it is diagonalizable over ${\bf R}$
- 3.If A has distinct eigen values than it is diagonalizable over C
- 4.If all eigen values are non zero than it is diagonalizable over C

2 Solution

Given	A 3×3 matrix with real entries.
To prove	A is necessarily diagonalizable over R
Proof	matrix A is diagonalizable if and only if there is a basis of \mathbf{R}^3 consisting of eigenvectors of A. Consider a matrix $ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} $ Eigen values are given by $ \begin{pmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{pmatrix} = 0 $ Simplifying eigen values are $\lambda_1 = 1, \lambda_2 = 4$ Eigen vectors are: $ \lambda_1 = 1 \text{ has eigen vector} $ $ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} $ $ \lambda_2 = 4 \text{ has eigen vector} $ We have found only two linearly independent eigenvectors for A Hence not diagonalizable.
	$\lambda_2 = 4 \text{ has eigen vector}$ $\begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$

Given	A 3×3 matrix with real entries.
To prove	If A has distinct real eigen values than it is diagonalizable over R
Proof	Consider any invertible matrix P with columns (v_1, v_2, \dots, v_n) and any diagonal matrix D with diagonal entries $(\lambda_1, \lambda_2, \dots, \lambda_n)$ Now, $AP = A(v_1, v_2, \dots, v_n) = (Av_1, Av_2, \dots, Av_n)$ $PD = \begin{pmatrix} v_1, v_2, \dots, v_n \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$ $\implies \begin{pmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots \lambda_n v_n \end{pmatrix}$ Suppose that A has n linearly independent eigen vectors Now , $Av_i = \lambda v_i$ Thus, $AP = PD$ Hence we have, $D = P^{-1}AP$ and so A is diagonalizable with diagonalizing matrix P. Now suppose A is diagonalizable. Than there is invertible matrix P and a diagonal matrix D with entries $\lambda_1, \lambda_2, \dots, \lambda_n.$ such that $D = P^{-1}AP$ So $PD = AP$, which means $Av_i = \lambda_i v_i$ for each $i = 1, 2, \cdots, n$ that is, each v_i is an eigenvector of A. Since P is invertible, the columns of P form an independent set of vectors, and therefore A has n linearly independent eigenvectors which implies it is diagonalizable.
	F

Given	A 3×3 matrix with real entries.
To prove	If A has distinct real eigen values
	than it is diagonalizable overC
D 6	
Proof	eigenvectors for distinct eigenvalues are
	linearly independent.
	If vectors are linearly independent than matrix can be
	diagonalized

Given	A 3×3 matrix with real entries.
To prove	If all eigen values are non zero than it is diagonalizable over C
Proof	matrix A is diagonalizable if and only if there is a basis of R ³ consisting of eigenvectors of A.

A is necessarily diagonalizable over R .	False statement
If A has distinct real eigen values than it is diagonalizable over R	True statement
If A has distinct eigen values than it is diagonalizable over C	True statement
If all eigen values are non zero than it is diagonalizable over C	False statement

TABLE 5: Summary