Section Notes for PSTAT 213B

Haosheng Zhou

Jan, 2024

Contents

Week 1	 	 	 2
Convergence Modes	 	 	 9

Week 1

Readers shall have a fundamental understanding in measure theory before taking this course, i.e. be familiar with concepts like $\pi - \lambda$ theorems, convergence theorems interchanging integrals and limits, L^p spaces, Radon-Nikodym derivatives etc. We will use those results from measure theory without providing any proofs.

Convergence Modes

The convergence modes we have learnt in the first week include almost sure convergence, convergence in probability, convergence in distribution and L^p convergence. The key takeaway here is the definitions of different convergence modes and the connection between them.

One of the mathematical perspective we can take to view those convergence modes is that if the convergence mode can be induced by a metric. That is to say, if there exists some metric (distance function) d on the space of certain random variables such that the convergence under d is exactly same as the convergence mode defined in the probabilistic setting.

Lemma 1 (L^p norm). Let $p \ge 1$, define $||X||_p = (\mathbb{E}|X^p|)^{\frac{1}{p}}$, show that $||\cdot||_p$ is a norm on the space of L^p random variables with the equality to be understood in the almost sure sense.

Proof. Clearly $\forall c \in \mathbb{R}, \|cX\|_p = |c| \|X\|_p$ satisfies homogeneity. If X = 0 a.s. then $\|X\|_p = 0$. If $\|X\|_p = 0$, then $\mathbb{E}|X^p| = 0$ with $|X^p| \ge 0$ a.s. so $|X^p| = 0$ a.s., and X = 0 a.s.

Finally, we prove the triangle inequality of this norm

$$||X + Y||_p^p = \mathbb{E}|X + Y| \cdot |X + Y|^{p-1} \tag{1}$$

$$\leq \mathbb{E}|X| \cdot |X+Y|^{p-1} + \mathbb{E}|Y| \cdot |X+Y|^{p-1} \tag{2}$$

$$= \||X| \cdot |X + Y|^{p-1}\|_{1} + \||Y| \cdot |X + Y|^{p-1}\|_{1}$$
(3)

$$\leq \|X\|_{p} \left\| |X+Y|^{p-1} \right\|_{q} + \|Y\|_{p} \left\| |X+Y|^{p-1} \right\|_{q} \tag{4}$$

where we used Holder's inequality for Holder conjugate p,q such that $\frac{1}{p} + \frac{1}{q} = 1$. It's thus clear that $q = \frac{p}{p-1}$ and $\||X + Y|^{p-1}\|_q = (\mathbb{E}|X + Y|^p)^{\frac{p-1}{p}} = \|X + Y\|_p^{p-1}$, plug into the inequality above

$$||X + Y||_p^p \le (||X||_p + ||Y||_p) \cdot ||X + Y||_p^{p-1}$$
(5)

proves the Minkowski inequality

$$||X + Y||_{p} \le ||X||_{p} + ||Y||_{p} \tag{6}$$

and we argued that $\|\cdot\|_p$ is a norm under almost sure sense.

Lemma 2 (Property of L^p convergence). 1. Prove that $X_n \stackrel{L^p}{\to} X$ $(n \to \infty)$ implies the convergence of p-th moment $\mathbb{E}|X_n|^p \to \mathbb{E}|X|^p$ $(n \to \infty)$ for $p \ge 1$.

- 2. Suppose $X_n \stackrel{L^1}{\to} X$ $(n \to \infty)$, show that $\mathbb{E}X_n \to \mathbb{E}X$ $(n \to \infty)$. Is the converse true?
- 3. Suppose $X_n \xrightarrow{L^2} X$ $(n \to \infty)$, show that $Var(X_n) \to Var(X)$ $(n \to \infty)$.

Proof. The first proof comes from Minkowski inequality of L^p norm proved above that $||X_n||_p \le ||X_n - X||_p + ||X||_p$ so $|||X_n||_p - ||X||_p || \le ||X_n - X||_p$. L^p convergence is equivalent to saying $||X_n - X||_p \to 0$, so $||X_n||_p \to ||X||_p$ concludes the proof.

When the convergence is L^1 , it's easy to see that $X_n^+ \xrightarrow{L^1} X^+$ $(n \to \infty)$. This is because

$$\mathbb{E}|X_n^+ - X^+| \le \mathbb{E}|X_n - X| \to 0 \ (n \to \infty)$$
 (7)

where $X^+ = \max\{X, 0\}$ is the positive part of X and $X^- = \max\{-X, 0\}$ is the negative part of X. Both the positive and negative parts are non-negative random variables. Apply the result proved above,

$$\mathbb{E}|X_n| \to \mathbb{E}|X|, \mathbb{E}X_n^+ \to \mathbb{E}X^+ \ (n \to \infty)$$
(8)

since $\mathbb{E}|X_n| = \mathbb{E}X_n^+ + \mathbb{E}X_n^-$, $\mathbb{E}X_n = \mathbb{E}X_n^+ - \mathbb{E}X_n^-$, it's clear that $\mathbb{E}X_n = 2\mathbb{E}X_n^+ - \mathbb{E}|X_n| \to 2\mathbb{E}X^+ - \mathbb{E}|X| = \mathbb{E}X$ $(n \to \infty)$.

However, the converse is not true. The counterexample can be constructed on the probability space $([0,1], \mathcal{B}_{[0,1]}, \lambda)$ with λ to be the Lebesgue measure. Set $X_n = n\mathbb{I}_{[0,\frac{1}{n}]}$ so $\forall n, \mathbb{E}X_n = n\frac{1}{n} = 1$ converges to 1 but X_n does not converge in L^1 . To see this fact, we first observe that $X_n \stackrel{p}{\to} 0$ $(n \to \infty)$, since L^1 convergence implies convergence in probability and the limit under the convergence in probability is unique, the L^1 limit, if exists, must be 0. Let's check

$$\mathbb{E}|X_n - 0| = 1 \to 0 \tag{9}$$

proves that X_n does not converge in L^1 . Actually the convergence of L^p norm and L^p convergence are equivalent under the uniform integrability condition shown by Vitali convergence theorem which we shall learn in the future.

When the convergence is L^2 , from the conclusion proved above, $\mathbb{E}X_n^2 \to \mathbb{E}X^2$. Since L^2 convergence implies L^1 convergence, it's also true that $\mathbb{E}X_n \to \mathbb{E}X$, as a result, $Var(X_n) = \mathbb{E}X_n^2 - (\mathbb{E}X_n)^2 \to \mathbb{E}X^2 - (\mathbb{E}X)^2 = Var(X)$ $(n \to \infty)$.

Remark. L^q convergence implies L^p convergence for q > p. Firstly, check that $\|X\|_q < \infty$ implies $\|X\|_p < \infty$ through a simple application of Holder's inequality

$$||X||_{p}^{p} = ||X|^{p}||_{1} \le ||X|^{p}||_{\frac{q}{p}} \cdot ||1||_{\frac{q}{q-p}} = ||X||_{q}^{p}$$

$$\tag{10}$$

with $\frac{p}{q} + \frac{q-p}{q} = 1$ so $\|X\|_p \le \|X\|_q$. Replace X with $X_n - X$ to see that L^q convergence implies L^p convergence. It's clear that L^p convergence is metric-induced, the metric is induced by the norm that $d(X,Y) = \|X - Y\|_p$.

Lemma 3 (Levy metric). For two distribution functions F, G, define

$$d(F,G) = \inf \{ \delta > 0 : \forall x \in \mathbb{R}, F(x-\delta) - \delta \le G(x) \le F(x+\delta) + \delta \}$$
(11)

show that d defines a metric on the space of distribution functions (d.f.).

Proof. Obviously for any $F, G, d(F, G) \ge 0$. First prove it's symmetric. If $\delta > 0$ is such that $\forall x \in \mathbb{R}, F(x - \delta) - \delta \le G(x) \le F(x+\delta) + \delta$, then set $x = y + \delta$ to see $\forall y \in \mathbb{R}, F(y) \le G(y+\delta) + \delta$, set $x = z - \delta$ to see $\forall z \in \mathbb{R}, G(z-\delta) - \delta \le F(z)$. Merge those two inequalities to see that such $\delta > 0$ satisfies $\forall x \in \mathbb{R}, G(x-\delta) - \delta \le F(x) \le G(x+\delta) + \delta$. Actually the fact holds vice versa. Through a same argument, one knows

$$\{\delta > 0 : \forall x \in \mathbb{R}, F(x - \delta) - \delta \le G(x) \le F(x + \delta) + \delta\} = \{\delta > 0 : \forall x \in \mathbb{R}, G(x - \delta) - \delta \le F(x) \le G(x + \delta) + \delta\}$$

$$(12)$$

taking inf on both sides gives d(F, G) = d(G, F).

If d(F,G) = 0, it means that

$$\exists \delta_n \to 0 \ (n \to \infty), \forall x \in \mathbb{R}, \forall n, \delta_n > 0, G(x) \le F(x + \delta_n) + \delta_n$$
 (13)

set $n \to \infty$, due to right-continuity of d.f. F, $F(x + \delta_n) + \delta_n \to F(x)$ proves $\forall x \in \mathbb{R}, G(x) \leq F(x)$. Interchange the position of F, G, from the symmetricity of G, $\forall x \in \mathbb{R}, F(x) \leq G(x)$ holds. Hence G, G implies G implies

Finally we prove the triangle inequality. Denote d(F,G) = a, d(G,H) = b, we want to prove $d(F,H) \le a+b$, it suffices to prove that

$$\forall x \in \mathbb{R}, F(x-a-b) - a - b \le H(x) \le F(x+a+b) + a + b \tag{14}$$

from d(F,G) = a it's clear that

$$\exists \eta_n \to a \ (n \to \infty), \forall x \in \mathbb{R}, \forall n, a < \eta_n < a + \frac{1}{n}, F(x - \eta_n) - \eta_n \le G(x) \le F(x + \eta_n) + \eta_n$$
 (15)

from d(G, H) = b it's clear that

$$\exists \mu_n \to b \ (n \to \infty), \forall x \in \mathbb{R}, \forall n, b < \mu_n < b + \frac{1}{n}, G(x - \mu_n) - \mu_n \le H(x) \le G(x + \mu_n) + \mu_n \tag{16}$$

where the $\eta_n < a + \frac{1}{n}$, $\mu_n < b + \frac{1}{n}$ conditions can be ensured by taking a good enough subsequence. Combine two inequalities to see that

$$\begin{cases}
\forall x \in \mathbb{R}, \forall n, F(x - \eta_n) - \eta_n \le G(x) \le H(x + \mu_n) + \mu_n \\
\forall x \in \mathbb{R}, \forall n, H(x - \mu_n) - \mu_n \le G(x) \le F(x + \eta_n) + \eta_n
\end{cases}$$
(17)

set $x = y + \frac{1}{n}$

$$\forall y \in \mathbb{R}, F\left(y + \frac{1}{n} - \eta_n\right) - \eta_n \le H\left(y + \frac{1}{n} + \mu_n\right) + \mu_n, H\left(y + \frac{1}{n} - \mu_n\right) - \mu_n \le F\left(y + \frac{1}{n} + \eta_n\right) + \eta_n \tag{18}$$

the reason we are doing this is because $\eta_n - \frac{1}{n} < a$ so $\eta_n - \frac{1}{n} \to a^ (n \to \infty)$ hence $\frac{1}{n} - \eta_n \to (-a)^+$ $(n \to \infty)$ approximates -a from the right hand side. Similarly, $\frac{1}{n} - \mu_n \to (-b)^+$ $(n \to \infty)$. Set $n \to \infty$, the approximation from right hand side matches the right-continuity of F, H that

$$\forall y \in \mathbb{R}, F(y-a) - a \le H(y+b) + b, H(y-b) - b \le F(y+a) + a \tag{19}$$

concludes the proof. \Box

Lemma 4 (Convergence in distribution). Prove that convergence in distribution is equivalent to convergence under the Levy metric defined above.

Proof. Denote F_n as d.f. of X_n , F as d.f. of X and C(F) the set of all continuity points of F.

If $d(F_n, F) \to 0 \ (n \to \infty), \forall \varepsilon > 0, \exists N, \forall n > N, d(F_n, F) < \varepsilon$, from the definition of Levy metric,

$$\forall \varepsilon > 0, \exists N, \forall n > N, \forall x \in \mathbb{R}, F(x - \varepsilon) - \varepsilon \le F_n(x) \le F(x + \varepsilon) + \varepsilon \tag{20}$$

set $n \to \infty$,

$$\forall \varepsilon > 0, \forall x \in \mathbb{R}, \liminf_{n \to \infty} F_n(x) \ge F(x - \varepsilon) - \varepsilon, \limsup_{n \to \infty} F_n(x) \le F(x + \varepsilon) + \varepsilon \tag{21}$$

restrict ourselves to $\forall x \in C(F)$, set $\varepsilon \to 0$ to see

$$\forall x \in C(F), \liminf_{n \to \infty} F_n(x) \ge F(x), \limsup_{n \to \infty} F_n(x) \le F(x)$$
(22)

proves $\forall x \in C(F), F_n(x) \to F(x) \ (n \to \infty)$ hence $X_n \stackrel{d}{\to} X \ (n \to \infty)$.

If $X_n \stackrel{d}{\to} X$ $(n \to \infty)$, then $\forall x \in C(F), F_n(x) \to F(x)$ $(n \to \infty)$. Since F is increasing, it has at most countably many discontinuities, hence on fixing $\varepsilon > 0$, we can figure out a compact concentration region of F, i.e. there exists $x_1, ..., x_k \in C(F), x_1 < x_2 < ... < x_k$ such that

$$F(x_1) < \varepsilon, F(x_k) > 1 - \varepsilon, x_i - x_{i-1} < \varepsilon \ (i = 2, 3, ..., k)$$

so the spaces between $x_1, ..., x_k$ are small enough and at most ε probability mass is missing at the left and right tail respectively. This compactness argument has its motivation coming from the definition of Levy metric that $F(x + \delta) + \delta$ allows δ difference in probability mass and δ difference in the variable, i.e. we shall use open intervals of radius δ to cover the compact set.

At each $x_i \in C(F)$, there exists $N_i, \forall n > N_i, |F_n(x_i) - F(x_i)| < \varepsilon$. Naturally take

$$N = \max_{i} \{N_i\} \tag{24}$$

so for $\forall n > N$, let's discuss where $\forall x \in \mathbb{R}$ is located.

If $x < x_1$,

$$F(x - 2\varepsilon) - 2\varepsilon \le F(x_1) - 2\varepsilon < 0 \le F_n(x) \le F_n(x_1) \le F(x_1) + \varepsilon < 2\varepsilon \le F(x + 2\varepsilon) + 2\varepsilon \tag{25}$$

if $x > x_k$,

$$F(x - 2\varepsilon) - 2\varepsilon \le 1 - 2\varepsilon < F(x_k) - \varepsilon \le F_n(x_k) \le F_n(x) \le 1 < F(x_k) + 2\varepsilon \le F(x_k + 2\varepsilon) + 2\varepsilon$$
(26)

if $x_1 \le x \le x_k$, then $x_{i-1} \le x \le x_i$ for some $i \in \{2, 3, ..., k\}$, in this case $x + \varepsilon \ge x_i$ and $x - \varepsilon \le x_{i-1}$

$$F(x - 2\varepsilon) - 2\varepsilon \le F(x - \varepsilon) - \varepsilon \le F(x_{i-1}) - \varepsilon \le F_n(x_{i-1}) \le F_n(x) \le F_n(x_i) \le F(x_i) + \varepsilon \le F(x + \varepsilon) + \varepsilon \le F(x + 2\varepsilon) + 2\varepsilon$$
(27)

everything we have used above is that F is increasing and takes value in [0,1]. As a result, for fixed $\forall \varepsilon > 0$ and such N constructed above,

$$\forall n > N, \forall x \in \mathbb{R}, F(x - 2\varepsilon) - 2\varepsilon < F_n(x) < F(x + 2\varepsilon) + 2\varepsilon, d(F_n, F) < 2\varepsilon$$
(28)

as a result, $d(F_n, F) \to 0 \ (n \to \infty)$.

Remark. From the lemmas prove above, convergence in distribution is metric-induced. To understand convergence in distribution which is essentially different from other convergence modes, notice that by saying $X_n \stackrel{d}{\to} X$ $(n \to \infty)$, we only care about the d.f. of X_n and X, which means that it's even possible that $X_1, X_2, ..., X$ are not in the same probability space. That's why the Levy metric is defined as a metric on the space of d.f. but not on the space of random variables. On the other hand, if $X_1, X_2, ..., X$ are not in the same probability space, almost sure convergence, convergence in probability and L^p convergence cannot be discussed.

Remark. Levy metric is defined above only on \mathbb{R} but can we generalize it onto \mathbb{R}^d or more general metric spaces? The answer is yes and it's called **Levy-Prokhorov metric**. Consider space M equipped with metric ρ and σ -field \mathscr{F} , ν , μ as two probability measures on (M, \mathscr{F}) , the Levy-Prokhorov metric is defined as

$$d_L(\mu,\nu) = \inf\left\{\delta > 0 : \forall A \in \mathscr{F}, \mu(A) \le \nu(A^\delta) + \delta, \nu(A) \le \mu(A^\delta) + \delta\right\}$$
(29)

where $A^{\delta} = \{x \in \mathbb{R}^d : \inf_{y \in A} \rho(x, y) < \delta\}$ is the δ -fattened version of A. Convergence in distribution on space M is still equivalent to the convergence under metric d_L .

6

Lemma 5 (Metric for convergence in probability). Show that

$$d(X,Y) = \mathbb{E}\frac{|X - Y|}{1 + |X - Y|} \tag{30}$$

defines a metric on the space of certain random variables in the sense of almost sure equality, check that $d(X_n, X) \to 0$ $(n \to \infty)$ iff $X_n \stackrel{p}{\to} X$ $(n \to \infty)$. This shows that **convergence in probability is metric-induced**.

Proof. Clearly $d(X,Y) \geq 0$, if d(X,Y) = 0, then since $\frac{|X-Y|}{1+|X-Y|} \geq 0$ a.s., |X-Y| = 0 a.s. and X = Y a.s. proves positivity. It's obvious that d is symmetric. Notice that $f(x) = \frac{x}{1+x}$ is increasing for $x \geq 0$ and $|X-Z| \leq |X-Y| + |Y-Z|$

$$d(X,Z) \le \mathbb{E}\frac{|X-Y| + |Y-Z|}{1 + |X-Y| + |Y-Z|} \le d(X,Y) + d(Y,Z)$$
(31)

proves the triangle inequality.

If $X_n \stackrel{p}{\to} X$ $(n \to \infty)$, then $|X_n - X| \stackrel{p}{\to} 0$ $(n \to \infty)$, since $f(x) = \frac{x}{1+x}$ takes value in [0,1) as $x \ge 0$, $\frac{|X_n - X|}{1+|X_n - X|} \stackrel{p}{\to} 0$, $\left|\frac{|X_n - X|}{1+|X_n - X|}\right| \le 1$ a.s., by bounded convergence theorem,

$$d(X_n, X) = \mathbb{E}\frac{|X_n - X|}{1 + |X_n - X|} \to 0 \ (n \to \infty)$$
(32)

conversely, if $d(X_n, X) \to 0 \ (n \to \infty)$, by Markov inequality,

$$\forall \varepsilon > 0, \mathbb{P}\left(|X_n - X| \ge \varepsilon\right) = \mathbb{P}\left(\frac{|X_n - X|}{1 + |X_n - X|} \ge \frac{\varepsilon}{1 + \varepsilon}\right) \le \frac{\mathbb{E}\frac{|X_n - X|}{1 + |X_n - X|}}{\frac{\varepsilon}{1 + \varepsilon}} \to 0 \ (n \to \infty)$$
(33)

proves $X_n \stackrel{p}{\to} X \ (n \to \infty)$.

Lemma 6 (Almost sure convergence). Show that $X_n \stackrel{p}{\to} X$ $(n \to \infty)$ iff for every subsequence X_{n_k} there exists a further subsequence $X_{n_{k_q}}$ such that $X_{n_{k_q}} \stackrel{a.s.}{\to} X$ $(q \to \infty)$. Use this fact to show that almost sure convergence is not metric-induced, actually it's even not topology-induced.

Proof. If for every subsequence X_{n_k} there exists a further subsequence $X_{n_{k_q}}$ such that $X_{n_{k_q}} \stackrel{a.s.}{\to} X$ $(q \to \infty)$, fix $\forall \varepsilon > 0$ and consider the sequence of real numbers $a_n = \mathbb{P}(|X_n - X| \ge \varepsilon)$. For every subsequence a_{n_k} , there exists a further subsequence $a_{n_{k_q}}$ such that $a_{n_{k_q}} \stackrel{a.s.}{\to} 0$ $(q \to \infty)$. This implies $a_n \to 0$ $(n \to \infty)$ so $X_n \stackrel{p}{\to} X$ $(n \to \infty)$.

On the other hand, if $X_n \stackrel{p}{\to} X$ $(n \to \infty)$, for every subsequence X_{n_k} , there exists its further subsequence n_{k_q} such that

$$\forall q \in \mathbb{N}, \mathbb{P}\left(|X_{n_{k_q}} - X| \ge \frac{1}{q}\right) \le \frac{1}{q^2} \tag{34}$$

by Borel-Cantelli, since $\sum_{q=1}^{\infty} \mathbb{P}\left(|X_{n_{k_q}} - X| \ge \frac{1}{q}\right) < \infty$,

$$\mathbb{P}\left(|X_{n_{k_q}} - X| \ge \frac{1}{q} \ i.o.\right) = 0 \tag{35}$$

which mean almost surely eventually $|X_{n_{k_q}}-X|<\frac{1}{q}$ so $X_{n_{k_q}}\overset{a.s.}{\to} X$ $(q\to\infty).$

It's clear that almost sure convergence implies convergence in probability but not vice versa. As a result, there exists $\{X_n\}$ such that for its every subsequence X_{n_k} there exists a further subsequence $X_{n_{k_q}}$ such that $X_{n_{k_q}} \stackrel{a.s.}{\to} X$ $(q \to \infty)$ but $X_n \stackrel{a.s.}{\to} X$ $(n \to \infty)$. This violates the property of metric-induced convergence, even topology-induced convergence. As a result, there exists no underlying metric and underlying topology inducing almost sure convergence.