Tutorial - Class Activity

10 October, 2018 (Solution)

Question 1

Suppose that the November price of corn is \$2.50/bushel, the effective monthly interest rate is 1%, and the storage cost per bushel are \$0.05/month. Assuming that corn is stored from November to February (i.e. the storage cost is paid on Dec, Jan and Feb).

- (a) Find the theoretical forward price of this February forward.
- (b) Suppose the February forward price had been \$2.80. What would the arbitrage be?

Solution

(a)

The future value of the storage cost

$$$0.05 + ($0.05 \times 1.01) + ($0.05 \times 1.01^2) = ($0.05/.01) \times [(1+0.01)^3 - 1]$$

= $$0.1515$

Thus, the February forward price will be

$$2.50 \times (1.01)^3 + 0.1515 = 2.7273$$

(b)

If the February corn forward price is \$2.80, the observed forward price is too expensive relative to our theoretical price of \$2.7273. We will therefore sell the February contract short, and create a synthetic long position, engaging in cash and carry arbitrage:

Transaction	Nov	Dec	Jan	Feb
Short Feb forward	0			2.80 - ST
Buy spot	-2.50			ST
Borrow purchasing cost	+2.50			-2.57575
Pay storage cost Dec,		-0.05		
borrow storage cost		+0.05		-0.051005
Pay storage cost Jan,			-0.05	

borrow storage cost			+0.05	-0.0505
Pay storage cost Feb				-0.05
Total	0	0	0	0.072745

We made an arbitrage profit of 0.07 dollar on Feb.

Question 2

7.4 Suppose you observe the following 1-year implied forward rates: 0.050000 (1-year), 0.034061 (2-year), 0.036012 (3-year), 0.024092 (4-year), 0.001470 (5-year). For each maturity year compute the zero-coupon bond prices, effective annual and continuously compounded zero-coupon bond yields, and the par coupon rate.

Solution

Maturity	Zero-Coupon Bond Yield	Zero-Coupon Bond Price	One-Year Implied Forward Rate	Par Coupon	Cont. Comp. Zero Yield
1	0.05000	0.95238	0.05000	0.05000	0.04879
2	0.04200	0.92101	0.03406	0.04216	0.04114
3	0.04000	0.88900	0.03601	0.04018	0.03922
4	0.03600	0.86808	0.02409	0.03634	0.03537
5	0.02900	0.86681	0.00147	0.02962	0.02859

Notes

1. From the one-year implied forward rate, we can compute $P(0, t_i)$. For example,

$$(1+r_0(0,1)) = \frac{P(0,0)}{P(0,1)}$$

$$= \frac{1}{P(0,1)}$$

$$P(0,1) = \frac{1}{(1+r_0(0,1))}$$

$$= \frac{1}{(1+0.05)}$$

$$= 0.95238.$$

$$(1+r_0(1,2)) = \frac{P(0,1)}{P(0,2)}$$

$$= \frac{0.95238}{P(0,2)}$$

$$P(0,2) = \frac{0.95238}{(1+0.034061)}$$

$$= 0.92101.$$

2. The **zero-coupon bond yield and continuous compounding zero-coupon yield** can be calculated by using the following formula:

$$P(0,t) = \frac{1}{\left(1 + r(0,t)\right)^{t}}$$
$$P(0,t) = e^{-r^{CC}(0,t)t}.$$

It is worth to note that the 1-year implied forward rate which matures at the end of the first year is our r(0,1).

3. The **par coupon** for the t_n maturity coupon bond ($c(t_n)$) can be calculated by the following formula:

