Homework 13 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

May 21, 2024

- 1. (a) For any $\varepsilon > 0$, we can find an open cube $D(x_0, \delta)$ that $R_i \subseteq D(x_0, \delta)$ and
 - (b) Since for any E_i is measure zero, we can find $\{R_{i,j}\}_j$ s.t. $\sum_j |R_{i,j}| < \frac{\varepsilon}{2^i}$. Then, let $R_{1,1} = R_1$, $R_{1,2} = R_2$, $R_{2,1} = R_3$, $R_{1,3} = R_4$, $R_{2,2} = R_5$ etc. And we can get $\{R_k\}_k$ contains $\bigcup_i E_i$ and $\sum_k |R_k| < \varepsilon(\frac{1}{2} + \frac{1}{4} + \cdots) = \varepsilon$. Therefore, union of countable measure zero sets is measure zero.
 - (c) Since A is compact and (a), we can find finite open cubes which covers A and volume of their union is less than ε . Thus, take union of closure on each open cube and we can find a retangle covers A with volume less than ε . Therefore, volume of A is 0.
- 2. For any grid g, U(1,g) = L(1,g). Then, 1 is integrable. And for any $\varepsilon > 0$, there exists rectangles R_i s.t. $|\sum |R_i| \operatorname{Vol}(E)| < \varepsilon$. Thus, $\int_E 1 \ dE \le U(1,g) = \sum 1 \cdot |R_i| < \operatorname{Vol}(E) + \varepsilon$. Also, $\int_E 1 \ dE \ge \operatorname{Vol}(E) \varepsilon$. Therefore, $\int_E 1 \ dE = \operatorname{Vol}(E)$.
- 3. (a) If x is rational, $G(x,t) = \int_0^t 1 \, dy = t$. If x is irrational, $G(x,t) = \int_0^t 2y \, dy = t^2$. Since $t \in [0,1]$, $t^2 \le t$. Then, (U) $\int_0^1 G(x,t) \, dx = t$ and (L) $\int_0^1 G(x,t) \, dx = t^2$. Therefore, $\int_0^1 (\int_0^1 f(x,y) \, dy) \, dx = \int_0^1 G(x,1) \, dx = \int_0^1 1 \, dx = 1$.
 - (b) As $y \to 0$, (U) $\int_0^1 f(x, y) dx = 1$ but (L) $\int_0^1 f(x, y) dx = 2y \to 0$. Thus, $\int_Q f(X) dx$ doesn't exists.