See Chapter 6 in Regression and Other Stories.

Widen the notebook.

```
html"""

<style>
    main {
        margin: 0 auto;
        max-width: 2000px;
        padding-left: max(160px, 10%);
        padding-right: max(160px, 10%);
}

</style>
"""
```

```
\circ using Pkg \checkmark , DrWatson \checkmark
```

A typical set of Julia packages to include in notebooks.

```
    begin
    # Specific to this notebook
    using GLM ✓
    # Specific to ROSStanPluto
    using StanSample ✓
    # Graphics related
    using GLMakie ✓
    # Common data files and functions
    using RegressionAndOtherStories ✓
    end
```

Replacing docs for 'RegressionAndOtherStories. rames.DataFrame, AbstractString}' in module 'R

6.1 Regression models.

6.2 Fitting a simple regression to fake data.

	х	у
1	1.0	1.67623
2	2.0	-0.176166
3	3.0	1.14516
4	4.01.342935.01.785356.02.60992	
5		
6		
7	7.0 2.3745	2.37454
8	8.0 3.53488 9.0 2.9214	
9		
10	10.0	3.11462
•	more	
20	20.0	5.21058

```
• stan6_1 = "
data {
• int N;
    vector[N] x;
    vector[N] y;
parameters {
    real a;
     real b;
    real<lower=0> sigma;
model {
     vector[N] mu;
     a \sim uniform(-2, 2);
     b \sim uniform(-2, 2);
     sigma ~ uniform(0, 10);
     mu = a + b * x;
     y ~ normal(mu, sigma);
· }";
```

	parameters	mean	mcse	std
1	"a"	0.43536	0.00719227	0.280506
2	"b"	0.287872	0.000610281	0.023650
3	"sigma"	0.592699	0.00298114	0.111676

```
data = (N=nrow(fake), x=fake.x,
y=fake.y)
global m6_1s = SampleModel("m6_1s",
stan6_1)
global rc6_1s = stan_sample(m6_1s;
data)
success(rc6_1s) && describe(m6_1s)
end
```

Informational Message: The current Metropolist be rejected because of the following issue: Exception: normal_lpdf: Scale parameter is 0 in '/var/folders/l7/pr04h0650q5dvqttnvs8s2c0 stan', line 17, column 1 to column 23) If this warning occurs sporadically, such as ariable types like covariance matrices, then but if this warning occurs often then your mly ill-conditioned or misspecified.

Informational Message: The current Metropoli rejected because of the following issue: Exception: normal_lpdf: Scale parameter is 0 in '/var/folders/l7/pr04h0650q5dvqttnvs8s2c0 stan', line 17, column 1 to column 23) If this warning occurs sporadically, such as ariable types like covariance matrices, then but if this warning occurs often then your mly ill-conditioned or misspecified.

	parameters	median	mad_sd	mean	stı
	ı "a"	0.435	0.255	0.435	0.28
2	2 "b"	0.288	0.022	0.288	0.02
3	3 "sigma"	0.576	0.098	0.593	0.11

```
if success(rc6_1s)
    post6_1s = read_samples(m6_1s,
    :dataframe)
    ms6_1s = model_summary(post6_1s, [:a,
    :b, :sigma])
end
```



```
let
      f = Figure()
      ax = Axis(f[1, 1]; title="Regression")
      of fake data.", xlabel="fake.x",
      vlabel="fake.y")
      scatter!(fake.x, fake.y)
      x = 1:0.01:20
      y = ms6_1s[:a, :mean] .+ ms6_1s[:b,
      :mean] .* x
      lines!(x, y)
      a = round(ms6_1s[:a, :mean]; digits=2)
      \hat{b} = round(ms6_1s[:b, :mean]; digits=2)
      annotations!("y = \$(\hat{a}) + \$(\hat{b}) * x + \epsilon";
      position=(5, 0.8)
      ax = Axis(f[1, 2]; title="Regression
      of fake data.", subtitle="(using the
      link() function)",
          xlabel="fake.x", ylabel="fake.y")
      scatter!(fake.x, fake.y)
      xrange = LinRange(1, 20, 200)
      y = mean.(link(post6_1s, (r,x) \rightarrow r.a)
      + x * r.b, xrange)
      lines!(xrange, y)
      annotations!("y = \$(\hat{a}) + \$(\hat{b}) * x + \epsilon";
      position=(5, 0.8))
      current_figure()
 end
```

0.255
0.022
0.098

6.3 Interpret coefficients as comparisons, not effects.

= ms6_1s[:, :mad_sd])

	earnk	height	male
1	50.0	74	1
2	60.0	66	0
3	30.0	64	0
4	25.0	65	0
5	50.0	63	0
6	62.0	68	0
7	51.0	63	0
8	9.0	64	0
9	29.0	62	0
10	32.0	73	1
: mc	ore		
1816	6.0	68	1

```
begin

earnings =

CSV.read(ros_datadir("Earnings",
    "earnings.csv"), DataFrame)
    earnings[:, [:earnk, :height, :male]]
end
```

	variable	mean	min	median	max	nı
1	:earnk	21.1473	0.0	16.0	400.0	0
2	:height	66.5688	57	66.0	82	0
3	:male	0.371696	0	0.0	1	0

```
• describe(earnings[:, [:earnk, :height,
:male]])
```

```
stan6_2 = "
data {
• int N;
   vector[N] male;
   vector[N] height;
     vector[N] earnk;
parameters {
real a;
    real b;
    real c;
    real<lower=0> sigma;
• model {
     vector[N] mu;
     sigma ~ exponential(1);
     mu = a + b * height + c * male;
     earnk ~ normal(mu, sigma);
· }";
```

	parameters	mean	mcse	std
1	"a"	-25.4574	0.349151	11.7441
2	"b"	0.640333	0.00544136	0.181886
3	"c"	10.6911	0.0393232	1.46507
4	"sigma"	21.2891	0.00857608	0.357163

```
data = (N=nrow(earnings),
height=earnings.height,
male=earnings.male,
earnk=earnings.earnk)
global m6_2s = SampleModel("m6_2s",
stan6_2)
global rc6_2s = stan_sample(m6_2s;
data)
success(rc6_2s) && describe(m6_2s)
end
```

	parameters	median	mad_sd	mean	stı
1	"a"	-25.399	12.279	-25.457	11.7
2	"b"	0.64	0.192	0.64	0.18
3	"c"	10.675	1.494	10.691	1.46
4	"sigma"	21.285	0.367	21.289	0.35

```
if success(rc6_2s)
    post6_2s = read_samples(m6_2s,
    :dataframe)
    ms6_2s = model_summary(post6_2s, [:a,
    :b, :c, :sigma])
end
```



```
let
      \hat{a}, \hat{b}, \hat{c} = round.(ms6_2s[:, :mean];
      digits=2)
      fig = Figure()
      ax = Axis(fig[1, 1]; title="Earnings")
      for males", subtitle="earnk =
      (round(\hat{c} + \hat{a}; digits=2)) + (\hat{b}) *
      mheight + \epsilon")
      m = sort(earnings[earnings.male .== 1,
      [:height, :earnk]])
      scatter!(m.height, m.earnk)
      mheight_range =
      LinRange(minimum(m.height),
      maximum(m.height), 200)
      earnk = mean.(link(post6_2s, (r,x) ->
      r.c + r.a + x * r.b, mheight_range))
      \#earnk = ms6\_2s[:c, "mean"] +
     ms6_2s[:a, "mean"] .+ ms6_2s[:b,
      "mean"] .* mheight
      lines!(mheight_range, earnk;
      color=:darkred)
      ax = Axis(fig[1, 2]; title="Earnings")
      for females", subtitle="earnk = $(â)
      + \$(\hat{b}) * fheight + \epsilon")
      f = sort(earnings[earnings.male .== 0,
      [:height, :earnk]])
      scatter!(f.height, f.earnk)
      fheight_range =
      LinRange(minimum(f.height),
      maximum(f.height), 200)
      earnk = mean.(link(post6_2s, (r,x) ->
      r.a + x * r.b, fheight_range))
      lines!(fheight_range, earnk;
      color=:darkred)
      fig
 end
```

```
R2 = 0.107270074493383
• R2 = 1 - ms6_2s[:sigma, :mean]^2 /
std(earnings.earnk)^2
```

6.4 Historical origins of regression.

```
stan6_3 = "
data {
    int N;
    vector[N] m_height;
    vector[N] d_height;
}
parameters {
    real a;
    real b;
    real<lower=0> sigma;
}
model {
    vector[N] mu;
    sigma ~ exponential(1);
    mu = a + b * m_height;
    d_height ~ normal(mu, sigma);
}";
```

heights =

	daughter_height	mother_height
1	52.5	59.5
2	52.5	59.5
3	53.5	59.5
4	53.5	59.5
5	55.5	59.5
6	55.5	59.5
7	55.5	59.5
8	55.5	59.5
9	56.5	58.5
10	56.5	58.5
: mc	re	
5524	73.5	63.5

	parameters	mean	mcse	std
1	"a"	29.756	0.0231077	0.791667
2	"b"	0.54561	0.000369518	0.0126612
3	"sigma"	2.26277	0.000536021	0.0211345

```
data = (N=nrow(heights),
    m_height=heights.mother_height,
    d_height=heights.daughter_height)
    global m6_3s = SampleModel("m6_3s",
    stan6_3)
    global rc6_3s = stan_sample(m6_3s;
    data)
    success(rc6_3s) && describe(m6_3s)
end
```

	parameters	median	mad_sd	mean	stı
1	"a"	29.755	0.773	29.756	0.79
2	2 "b"	0.546	0.012	0.546	0.01
3	s "sigma"	2.262	0.021	2.263	0.02

```
if success(rc6_3s)
    post6_3s = read_samples(m6_3s,
    :dataframe)
    ms6_3s = model_summary(post6_3s, [:a,
    :b, :sigma])
end
```



```
let
     f = Figure()
     ax = Axis(f[1, 1]; title="Mothers' and
     daughters' heights,\naverage of data,
     and fitted regression line",
          xlabel="Mother's height [in]",
          ylabel="Adult daugther's height
          [in]")
     scatter!(heights.mother_height,
     heights.daughter_height; markersize=5)
     xrange = LinRange(50, 72, 100)
     y = 30 .+ 0.54 .* xrange
     m = mean(heights.mother_height)
     d = mean(heights.daughter_height)
     scatter!([m̄], [d̄]; markersize=20,
     color=:gray)
     lines!(xrange, y)
     vlines!(ax, m̄; ymax=0.55, color=:grey)
     hlines!(ax, d; xmax=0.58, color=:grey)
     annotations!("y = 30 + 0.54 * mother's
     height", position=(49, 55),
     textsize=15)
     annotations!("or: y = 63.9 + 0.54 *
     (mother's height - 62.5)", position=
     (49, 54), textsize=15)
 end
```



```
let
     f = Figure()
     ax = Axis(f[1, 1]; title="Mothers' and
     daughters' heights,\naverage of data,
     and fitted regression line",
          xlabel="Mother's height [in]",
          ylabel="Adult daugther's height
          [in]")
     scatter!(heights.mother_height,
     heights.daughter_height; markersize=5)
     xrange = LinRange(0, 72, 100)
     y = 30 .+ 0.54 .* xrange
     m = mean(heights.mother_height)
     d = mean(heights.daughter_height)
     scatter!([m̄], [d̄]; markersize=20,
     color=:gray)
     lines!(xrange, y)
     annotations!("y = 30 + 0.54 * mother's
     height", position=(20, 35),
     textsize=15)
     annotations!("or: y = 63.9 + 0.54 *
     (mother's height - 62.5)", position=
     (20, 33), textsize=15)
 end
```

```
stan6_4 = "
data {
     int N;
     vector[N] m;
     vector[N] d;
parameters {
     real a;
     real b;
     real<lower=0> sigma;
• model {
     vector[N] mu;
     a \sim normal(25, 3);
     b \sim normal(0, 0.5);
     sigma ~ exponential(1);
     mu = a + b * m;
     d ~ normal(mu, sigma);
```

	parameters	mean	mcse	std
1	"a"	29.5462	0.0244595	0.775446
2	"b"	0.548979	0.000391118	0.012399
3	"sigma"	2.26283	0.000513259	0.021264

```
data = (N = nrow(heights), m =
heights.mother_height, d =
heights.daughter_height)
global m6_4s = SampleModel("m6_4s",
stan6_4)
global rc6_4s = stan_sample(m6_4s;
data)
success(rc6_4s) && describe(m6_4s)
end
```

	parameters	median	mad_sd	mean	stı
1	"a"	29.549	0.792	29.546	0.77
2	"b"	0.549	0.013	0.549	0.01
3	"sigma"	2.262	0.022	2.263	0.02

```
if success(rc6_4s)
    post6_4s = read_samples(m6_4s,
    :dataframe)
    ms6_4s = model_summary(post6_4s, [:a,
    :b, :sigma])
end
```


Above trankplot and the low ess numbers a couple of cells earlier do not look healthy.

6.5 The paradox of regression to the mean.

	midterm	final		
1	68.5082	44.1575		
2	37.3561	48.2467		
3	56.2125	55.1696		
4	35.5373	57.0595		
5	67.3843	41.6367		
6	40.4034	29.3544		
7	87.0529	82.9748		
8	44.2765	42.6294		
9	60.5094	56.5135		
10	62.6549	45.8147		
: more				
1000	55.6597	56.632		

```
n = 1000
true_ability = rand(Normal(50, 10), n)
noise_1 = rand(Normal(0, 10), n)
noise_2 = rand(Normal(0, 10), n)
midterm = true_ability + noise_1
final = true_ability + noise_2
global exams =
DataFrame(midterm=midterm,
final=final)
end
```

```
data {
   int N;
   vector[N] midterm;
   vector[N] final;
}
parameters {
   real a;
   real b;
   real<lower=0> sigma;
}
model {
   vector[N] mu;
   sigma ~ exponential(1);
   mu = a + b * midterm;
   final ~ normal(mu, sigma);
}";
```

	parameters	mean	mcse	std
1	"a"	26.1107	0.040882	1.38704
2	"b"	0.475452	0.000803038	0.027008
3	"sigma"	11.8656	0.00615894	0.268838

```
data = (N=nrow(exams),
midterm=exams.midterm,
final=exams.final)
global m6_5s = SampleModel("m6_5s",
stan6_5)
global rc6_5s = stan_sample(m6_5s;
data)
success(rc6_5s) && describe(m6_5s)
end
```

	parameters	median	mad_sd	mean	stı
1	"a"	26.104	1.399	26.111	1.38
2	"b"	0.475	0.028	0.475	0.02
3	"sigma"	11.859	0.263	11.866	0.26

```
if success(rc6_5s)
post6_5s = read_samples(m6_5s,
:dataframe)
ms6_5s = model_summary(post6_5s, [:a,
:b, :sigma])
end
```

df_poll =

	poll1	poll2	poll3	poll4	poll5	
1	2002	10.0	70.0	25.0	5.0	
2	2002	5.0	72.0	25.0	3.0	
3	2001	10.0	68.0	26.0	6.0	
4	2001	5.0	65.0	27.0	8.0	
5	2001	2.0	67.0	25.0	8.0	
6	2000	8.0	67.0	28.0	5.0	
7	2000	6.0	66.0	26.0	8.0	
8	2000	2.0	66.0	28.0	6.0	
9	1999	5.0	71.0	22.0	7.0	
10	1995	9.0	77.0	13.0	10.0	
: more						
32	1937	12.0	60.0	33.0	7.0	

Used in later notebooks.

	STATE	TOTLDF	DOR	DORAVG	HRS.
1	"AL"	296.0	33.47	32.65	11.61
2	"AR"	77.0	15.4	15.65	9.7
3	"AZ"	231.0	41.5	39.42	7.92
4	"CA"	528.0	9.21	9.14	8.8
5	"FL"	851.0	30.19	30.18	10.91
6	"GA"	323.0	19.63	19.12	12.78
7	"ID"	31.0	48.48	44.16	3.55
8	"IL"	238.0	11.26	10.98	8.18
9	"IN"	79.0	11.81	10.93	5.61
10	"KY"	59.0	10.67	10.24	7.03
•	more				
26	"WY"	5.0	9.98	11.63	4.58

```
    begin
    death_raw=CSV.read(ros_datadir("Death",
        "dataforandy.csv"), DataFrame;
    missingstring="NA")
        death =
        death_raw[completecases(death_raw), :]
        end
```

```
st_abbr = death[:, 1]
ex_rate = death[:, 8] ./ 100
err_rate = death[:, 7] ./ 100
hom_rate = death[:, 5] ./ 100000
ds_per_homicide = death[:, 3] ./ 1000
ds = death[:, 2]
hom = ds ./ ds_per_homicide
ex = ex_rate .* ds
err = err_rate .* ds
pop = hom ./ hom_rate
std_err_rate = sqrt.( (err .+ 1) .* (ds
.+ 1 .- err) ./ ((ds .+ 2).^2 .* (ds
.+ 3)) )
end;
```