Глава 4. Восходящий синтаксический анализ

4.3. Грамматики слабого предшествования

Грамматики слабого предшествования являются небольшим расширением класса грамматик простого предшествования, связанным с тем, что разрешено пересечение отношений < и \doteq . Таким образом, в отличие от грамматик простого предшествования, где между парами символов грамматики допускается не более одного отношения предшествования, в грамматиках слабого предшествования между парами символов могут быть одновременно отношения < и \doteq .

Для грамматик слабого предшествования отношение > по-прежнему используется для определения окончания основы. Возникают трудности с определением заголовка основы, обусловленные тем, что правая часть одной продукции может быть суффиксом правой части другой продукции.

Пусть $\alpha\beta\gamma w$, α , β , $\gamma\in (V_T\cup V_N)^*$, $w\in V_T^*$ – правосторонняя сентенциальная форма, в которой окончанием основы является последний символ строки γ . Если в грамматике есть продукции $A\to\gamma$ и $A\to\beta\gamma$, то возникает вопрос, какую из этих продукций необходимо выбрать для свертки (что будет основой – γ или $\beta\gamma$?). В этом случае между всеми символами строк β и γ выполняется отношение $\dot{=}$, а между последним символом строки β и первым символом строки γ выполняются отношения $\langle u \dot{=} \rangle$.

В грамматиках слабого предшествования в случае такого конфликта в качестве основы для свертки выбирается наиболее длинная основа, т. е. βγ.

Формально КС-грамматика $G = (V_T, V_N, P, S)$ называется грамматикой слабого предшествования:

- 1) если не содержит є-продукций;
- 2) никакие две продукции грамматики не имеют совпадающих правых частей;
- 3) отношение > не пересекается с объединением отношений < и ≐;
- 4) для продукций $A \to \alpha X\beta$ и $B \to \beta$, где $\alpha, \beta \in (V_T \cup V_N)^*, X \in V_T \cup V_N$, не выполняется ни отношение $X \leq B$, ни отношение $X \stackrel{.}{=} B$.

Для поиска окончания основы (как и для грамматик простого предшествования) достаточно проанализировать сентенциальную форму слева направо и найти самую левую пару символов X_j и X_{j+1} , таких, что $X_j \! > \! X_{j+1}$, т. е. X_j — окончание основы. Затем сентенциальная форма просматривается справа налево, начиная с символа X_j , до тех пор, пока не будет найдена пара символов X_{i-1} и X_i , таких, что $X_{i-1} \! < \! X_i$ и не выполняется отношение $X_{i-1} \! = \! X_i$, т. е. X_i — заголовок основы. Ясно, что между всеми соседними символами внутри основы выполняется либо отношение $\dot{=}$, либо отношения < и $\dot{=}$. Таким образом, в процессе поиска заголовка основы при просмотре сентенциальной формы справа налево в случае, если между парой соседних символов выполняется как отношение <, так и отношение $\dot{=}$, то отношение $\dot{=}$ имеет приоритет над отношением <.

Детали реализации алгоритма синтаксического анализа предлагаются в качестве упражнения.

4.4. Грамматики операторного предшествования

Грамматики операторного предшествования представляют достаточно широкий класс КС-грамматик.

Операторной грамматикой называется є-свободная (не содержит є-продукций) КС-грамматика, в которой правые части всех продукций не содержат смежных нетерминалов. В таких грамматиках терминалы можно рассматривать как операции, а нетерминалы — как операнды. Например, в арифметических выражениях можно сказать, что операция умножения предшествует операции сложения, поскольку умножение имеет более высокий приоритет, чем сложение. Порядок вычисления значения арифметического выражения определяется только порядком выполнения операций и не зависит от операндов. Поэтому понятие предшествования можно определить только для операций (терминалов).

Пусть $G = (V_T, V_N, P, S)$ — операторная КС-грамматика, пополненная продукцией $S' \to \bot S \bot$, где $\bot \in V_T$. Отношения операторного предшествования задаются на множестве $V_T \times V_T$ следующим образом:

- $1. a \doteq b$, если существует некоторая продукция $A \to \alpha a C b \beta$, $A \in V_N$, $\alpha, \beta \in (V_T \cup V_N)^*, C \in V_N \cup \{\epsilon\}.$
- $2. \ a < b$, если существует некоторая продукция $A \to \alpha aB\beta$, $A, B \in V_N$, $\alpha, \beta \in (V_T \cup V_N)^*$, такая, что $B \stackrel{+}{\Rightarrow} Cb\delta$, $C \in V_N \cup \{\epsilon\}$, $\delta \in (V_T \cup V_N)^*$.
 - $3. \perp \leq a$, если $S \stackrel{+}{\Rightarrow} Ca\alpha$, $C \in V_N \cup \{\epsilon\}$, $\alpha \in (V_T \cup V_N)^*$.
- $4. \ a > b$, если существует некоторая продукция $A \to \alpha B b \beta$, $A, B \in V_N$, $\alpha, \beta \in (V_T \cup V_N)^*$, такая, что $B \stackrel{+}{\Rightarrow} \delta a C$, $C \in V_N \cup \{\epsilon\}$, $\delta \in (V_T \cup V_N)^*$.
 - 5. $a > \bot$, если $S \stackrel{+}{\Rightarrow} \alpha a C$, $C \in V_N \cup \{\varepsilon\}$, $\alpha \in (V_T \cup V_N)^*$.

Отношения операторного предшествования можно задавать с помощью *матрицы операторного предшествования*. Строки и столбцы матрицы соответствуют символам из V_T . Пустой элемент матрицы соответствует синтаксической ошибке, например, если для пары a и b элемент пустой, то ни в одной правильной входной строке b не может следовать непосредственно за a.

Операторная КС-грамматика $G = (V_T, V_N, P, S)$ называется *грамматикой операторного предшествования*:

- 1) если никакие две продукции грамматики не имеют совпадающих правых частей;
- 2) между любыми двумя терминалами из множества $V_T \times V_T$ выполняется не более одного отношения операторного предшествования.

Отношения операторного предшествования вычисляются так же, как и для грамматик простого предшествования, нужно определить для каждого нетерминала X множества L(X) и R(X). Отличие заключается в том, что в эти множества включаются только терминалы, нетерминалы игнорируются (вместо нетерминалов подставляется пустая строка ε).

Построим матрицу операторного предшествования для грамматики (в предположении, что имеется продукция $S \to \bot E \bot$)

$$E \to E + T | T$$
 $T \to T \times F | F$
 $F \to (E) | i$
Определим множества $L(X)$ и $R(X)$ для $X \in \{E, T, F\}$:
 $L(E) = \{E, T, F, (, i\} = \{+, \times, (, i\};$
 $L(T) = \{T, F, (, i\} = \{\times, (, i\};$
 $L(F) = \{(, i\};$
 $R(E) = \{T, F,), i\} = \{+, \times,), i\};$
 $R(T) = \{F,), i\} = \{\times,), i\};$

Соответствующая матрица операторного предшествования приведена на рис. 4.5.

Рис. 4.5. Матрица операторного предшествования

При распознавании основы возникает проблема с нетерминалами, поскольку для них не определены отношения операторного предшествования. Чтобы решить эту проблему, исходная грамматика преобразуется в так называемую остовную грамматику путем замены всех нетерминалов одним начальным нетерминалом и устранением всех цепных продукций.

Пусть $G = (V_T, V_N, P, S)$ — операторная грамматика. Остовной грамматикой для грамматики G называется грамматика $G_S = (V_T, \{S\}, P', S)$, множество продукций P' которой строится следующим образом:

- а) если множество P грамматики G содержит продукцию вида $A \to Y_1Y_2...Y_n$, где $Y_i \in V_T \cup V_N$, $1 \le i \le n$, то в P' включается продукция $S \to X_1X_2...X_n$, где $X_i = Y_i$, если $Y_i \in V_T$, или $X_i = S$, если $Y_i \in V_N$;
 - б) множество продукций P' не должно содержать продукций вида $S \to S$.

Например, для рассмотренной выше грамматики арифметических выражений остовной будет грамматика с продукциями

$$E \rightarrow E + E \mid E \times E \mid (E) \mid i$$
.

Следует отметить, что язык $L(G) \subseteq L(G_S)$ и грамматика G_S может порождать строки, не принадлежащие L(G). Кроме того, грамматика G_S может быть неоднозначной. Однако отношения операторного предшествования гарантируют единственность синтаксического разбора и его правильность.

Поиск основы реализуется так же, как и для грамматик простого предшествования. Отличие заключается в том, что если в вершине стека оказывается нетерминал, то для определения отношения предшествования рассматривается ближайший к вершине стека терминал (нетерминал игнорируется). Детали реализации алгоритма синтаксического анализа предлагаются в качестве упражнения.

Рассмотрим работу анализатора на примере разбора строки $i \times (i+i) \bot$, которая выводится в соответствии со следующей правосторонней схемой (символ \bot начала строки опущен)

$$E\bot \Rightarrow E \times E\bot \Rightarrow E \times (E)\bot \Rightarrow E \times (E+E)\bot \Rightarrow E \times (E+i)\bot \Rightarrow$$
$$\Rightarrow E \times (i+i)\bot \Rightarrow i \times (i+i)\bot.$$

Процесс разбора показан в табл. 4.5.

			. `)		
+	>	<	<	>	<	Ÿ
×	>	⊳	<	>	<	>
(<	<	·	Ė	<	
	>			⊳		♭
i	>	⊳	 	⊳	 	>
\perp	÷	<	<		<	

Рис. 4.5. Матрица операторного предшествования

Таблица 4.5. Процесс разбора строки $i \times (i+i) \bot$

Входной буфер	Содержимое стека	Основа	Выполняемое действие
$i\times(i+i)\perp$	上		Перенос i в стек, т. к. $\bot \lessdot i$
$\times (i+i) \bot$	$\perp i$	i	Свертка для $E \rightarrow i$, т. к. $i > \times$
$\times (i+i) \bot$	$\perp E$		Перенос × в стек, т. к. ⊥ < ×
$(i+i)\bot$	$\perp E \times$		Перенос (в стек, т. к. × < (
$i+i)\bot$	$\perp E \times ($		Перенос i в стек, т. к. ($\leq i$
$+i)\bot$	$\perp E \times (i$	i	Свертка для $E \rightarrow i$, т. к. $i > +$
$+i)\bot$	$\perp E \times (E$		Перенос + в стек, т. к. (< +
$i)\bot$	$\perp E \times (E +$		Перенос i в стек, т. к. $+ < i$
)	$\perp E \times (E+i)$	i	Свертка для $E \rightarrow i$, т. к. $i >)$
)	$\perp E \times (E + E$	E+ E	Свертка для $E \rightarrow E + E$, т. к. $+ >$)
)	$\perp E \times (E$		Перенос) в стек, т. к. (=)
	$\perp E \times (E)$	(E)	Свертка для $E \to (E)$, т. к.) $> \bot$
上	$\perp E \times E$	$E \times E$	Свертка для $E \to E \times E$, т. к. $\times \triangleright \bot$
	$\perp E$		Разбор успешно завершен