ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ

Asignatura: COMUNICACIONES II. Grupo: 20. Fecha: 4 de Diciembre de 2007. Tiempo: 2h

Nota: Explique y justifique todos los cálculos y planteamientos. Solución disponible en internet.

Considere una modulación digital binaria de la forma $x(t) = \sum_{k=0}^{\infty} \underline{\mathbf{s}}^{T}(k)\underline{\gamma}(t-kT)$.

- $\underline{\mathbf{s}}(k)$ es la secuencia de vectores de símbolos estacionarios, equiprobables e independientes. Los posibles símbolos en $\underline{\mathbf{s}}(k)$ son $\underline{\mathbf{s}}_0 = A \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ y $\underline{\mathbf{s}}_1 = A \begin{pmatrix} 0 \\ -1 \end{pmatrix}$.
- $\underline{\gamma}(t) = \begin{pmatrix} \gamma_1(t) \\ \gamma_2(t) \end{pmatrix} \text{ es el vector de formas de onda tal que } \gamma_2(t) = \gamma_1(t T/2), \text{ y } \gamma_1(t) \text{ tiene una}$ $\text{transformada de Fourier constante en la banda } |f| \leq B, \text{ es decir, } \Gamma_1(f) = \begin{cases} K & para |f| \leq B \\ 0 & fuera \end{cases}$
- 1) (0.4 puntos) Halle K para que las funciones $\gamma_1(t)$ y $\gamma_2(t)$ sean de energía unitaria.
- 2) (0.5 puntos) Halle las funciones de autocorrelación ($R_{\gamma_1}(\tau)$ y $R_{\gamma_2}(\tau)$) y correlación cruzada ($R_{\gamma_1,\gamma_2}(\tau)$) de las formas de onda. Exprese $R_{\gamma_2}(\tau)$ y $R_{\gamma_1,\gamma_2}(\tau)$ en función de $R_{\gamma_1}(\tau)$.
- 3) (0.8 puntos) Enuncie el criterio de Nyquist extendido y halle el ancho de banda B mínimo para una transmisión libre de ISI (interferencia inter-simbólica) y de ICI (interferencia entre componentes). Razone si $\gamma_1(t)$ y $\gamma_2(t)$ constituyen una base ortonormal.
- **4)** (0.8 puntos) Halle el vector media $\underline{\boldsymbol{\mu}}_s = E[\underline{\boldsymbol{s}}(k)]$ y la matriz de covariancia $\underline{\underline{\boldsymbol{C}}}_s = E\Big[\Big(\underline{\boldsymbol{s}}(k) \underline{\boldsymbol{\mu}}_s\Big)\Big(\underline{\boldsymbol{s}}(k) \underline{\boldsymbol{\mu}}_s\Big)^T\Big]$ de los vectores símbolo $\underline{\boldsymbol{s}}(k)$.
- 5) (1 punto) Halle y dibuje la densidad espectral de potencia de x(t), $S_x(f)$.

Nota: para determinar de la parte impulsiva tenga en cuenta que: $\sum_{k=-\infty}^{\infty} (-1)^k \operatorname{sinc}(\lambda - k) = \cos(\pi \lambda)$

Considere que, cumpliendo el criterio de Nyquist extendido, el canal discreto equivalente es de la forma $\underline{\mathbf{r}}(k) = \underline{\mathbf{s}}(k) + \underline{\mathbf{n}}(k)$, donde y $\underline{\mathbf{n}}(k) = \begin{pmatrix} \beta_1(k) \\ \beta_2(k) \end{pmatrix}$ es el vector de ruido de componentes incorreladas y ambas de variancia $N_a/2$.

Considere la componente de ruido en la dirección de 45 grados sobre la constelación, la cual viene dada por $\beta(k) = \frac{\beta_1(k) + \beta_2(k)}{\sqrt{2}}$

- 6) (0.4 puntos) A la vista de la constelación, justifique que la probabilidad de error viene determinada por la varianza σ_{β}^2 y halle el valor de dicha variancia.
- 7) (0.4 puntos) Halle una cota de la BER en función de la E_b/N_o .

La modulación atraviesa un canal con distorsión de modo que, en conjunto, el canal equivalente discreto puede expresarse como:

 $\underline{\mathbf{r}}(k) = \underline{\underline{\mathbf{U}}}(\underline{\mathbf{s}}(k) + d\underline{\mathbf{s}}(k-1)) + \underline{\mathbf{n}}(k)$, con $\underline{\underline{\mathbf{U}}} = \begin{pmatrix} 1 & d \\ d & 1 \end{pmatrix}$, y $0 \le d < 1$. Por lo tanto, el canal provoca ISI del símbolo anterior y ICI entre las dos componentes de un mismo símbolo.

- **8)** (0.5 puntos) Halle y dibuje los posibles vectores recibidos sobre la constelación en ausencia de ruido.
- 9) (0.5 puntos) Halle una cota la BER en función de la E_b/N_o .

una cota de la BER resultante en función de la $E_b \, / \, N_o$ asociada al detector óptimo.