## ${\bf Description:}$

Modal analysis of a rectangular strip with axial stress  $(N_2)$  on short edge.

### ${\bf Reference:}$

Arthur W.Leissa ,Vibration of Plates,NASA SP-160, pg:277, Ch:10.2.

## Material and Geometric data:



Figure 1: NAS277

Table 1: Input Data

| Material Property        |               | Geometric Data  |      | Loading Data |                      |
|--------------------------|---------------|-----------------|------|--------------|----------------------|
| Young's Modulus $(E)$    | 1E11 pa       | Length (a)      | 1 m  | $N_2$        | $3\text{E}11\ N/m^2$ |
| Poission's Ratio $(\nu)$ | 0.3           | Breath (b)      | 40~m |              |                      |
| Density $(\rho)$         | $7810~Kg/m^3$ | Thickness $(t)$ | 1 m  |              |                      |

# Mesh and boundary condition :

Table 2: FEM and Boundary condition data

| Direchlet Boundary |       |            | Loading Conditions |             |              |
|--------------------|-------|------------|--------------------|-------------|--------------|
| Geo -Entity        | w     | $\theta_x$ | $\theta_y$         | Geo -Entity | $N_2$        |
| line $\{1,3\}$     | Fixed | Free       | Free               | line {1,3}  | $3E11 N/m^2$ |



(a) Geomentry of the problem

### (b) Discritization

## ${\bf Analytically\ solution:}$

The analytical solution of the this problem is given by

$$\omega_{mn} = \sqrt{\frac{1}{\rho} \left( D \left[ \left( \frac{m\pi}{a} \right)^2 + \left( \frac{n\pi}{b} \right)^2 \right] + N_1 \left( \frac{m\pi}{a} \right)^2 + N_2 \left( \frac{n\pi}{b} \right)^2 \right)}$$
 (1)

Natural frequencies are

 $\begin{array}{l} {\rm mode} \; 1: \; 77.479 \; Hz \\ {\rm mode} \; 2: \; {\rm N.A} \\ {\rm mode} \; 3: \; 155.00 \; Hz \end{array}$ 

mode 4 : N.Amode  $5 : 232.61 \ Hz$ mode 6 : N.A

note: modes 2,4 and 6 are twisting modes, which are not given by the formula.

### Result and error analysis:

The natural frequencies of the plates are provided below.

 $\begin{array}{l} \bmod {\rm e} \ 1: \ 77.458 \ Hz \\ \bmod {\rm e} \ 2: \ 95.610 \ Hz \\ \bmod {\rm e} \ 3: \ 154.98 \ Hz \\ \bmod {\rm e} \ 4: \ 191.46 \ Hz \\ \bmod {\rm e} \ 5: \ 232.63 \ Hz \\ \bmod {\rm e} \ 6: \ 287.38 \ Hz \end{array}$ 

So the Error percentage for each mode is :

 $\begin{array}{l} mode \ 1: \ 0.026 \ \% \\ mode \ 3: \ 0.012 \ \% \\ mode \ 5: \ 0.013 \ \% \end{array}$ 



Figure 3: Natural Modes of a rectangular strip