SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 15.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : MATH F353

Course Title : Statistical Inference and Applications

Instructor-in-Charge : Rakhee

1. Course Description: Review of elements of probability and statistical methods, Classical Decision theory including parametric and non-parametric methods for testing of hypotheses, Analysis of Variance: One way and two way classifications, Design of experiments: Analysis of Completely randomized design, Randomized block design and Latin square design with one or more missing values, Statistical Quality control for variables and measurements.

2. Scope and Objective of the Course:

The course deals with some of the statistical techniques of decision-making. Test of hypotheses, both parametric and nonparametric methods will be discussed. Comparison of two treatments will be discussed. Comparison of several treatments using analysis of variance will be dealt with. Control charts for measurements and attributes will also be discussed.

3. Text Books:

1. Venkateswaran, S., & B. Singh, Operations Research, Notes-EDD, Vol.1 and 2, 1997

4. Reference Books:

1. Devore JL, Probability and Statistics for Engineering and the Sciences, 5th ed., Thomson, 2000.

5. Course Plan:

Module No.	Lecture Session	Reference	Learning outcomes	
M.1	L1-6 Review of Elements of Probability Theory	Chapter 1	Revise the fundamentals of Probability theory	
M.2	Classical decision theory (Tests of Parametric hypotheses).	Chapter 2	To understand the classical theory for	
	L 6: Classification of hypotheses, Distributional and parametric hypotheses.	2.1 to 2.4	Parametric Hypothesis	
	L 7-8: Hypothesis testing in General Terminology L9-10: Neymann Pearson's lemma, BCR (Simple vs. Simple hypotheses)	2.5, 2.5.1		
	L11-15: UMPCR (Simple vs composite, composite vs composite). Monotone likelihood	2.5.2-2.5.3		
	ratio and its application. L16-18: GLRT (No derivation of GLRT need to be discussed. One example of derivation of	2.6, 2.7		
	GLRT, given in the book may be explained.) Use of various tests based on GLRT without derivation.			

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

	L19: Approximate tests, paired t-test (Omit the		
	derivations of GLRT, but the results to be applied		
	to numerical problems)		
	L20 Testing of hypotheses about multinomial	2.0	
	probabilities.	2.8	
M.3	Classical Decision Theory (Non- parametric	Chapter 3	To understand the non-
	hypotheses)		parametric hypothesis
	L17-18: Applications of the test in lect.1 (above)	3.2, 3.3	
	to distributional hypotheses and the resulting		
	Chi-Square test of goodness of fit.		
	L19: Kolmogorov-Smirnov one sample test	3.4	
	L20-21: Chi-Square test for independence and	3.5, 3.6	
	homogeneity		
	L22: Wilcoxon's test	3.7, 3.8, 3.8.2	
	L23-24: Sign test, Signed rank-sum test	3.9, 3.9.1, 3.9.2	
M.4	Analysis of Variance and Design of Experiments	Chapter 4	Students can understand
	L25-26: Introduction and one-way	4.1, 4.2	ANOVA and other DoE
	classification (Fixed Effects Model)		concepts
	L27-30: Randomized Block Design for one-way	4.3,4.3.1-4.3.3	
	classification, two-way classification (one	and 4.4	
	observation per cell-interaction absent.)		
	L31-32 Latin Square Design and missing values	4.5 & 4.6	
	L 33-34: Test for testing the equality of variances	4.7	
M.5	Lecture 35-40: Statistical Quality Control	Chapter 5	Motivate to apply the
		1	concept learned in
			Statistical Quality Control.

6. Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Nature of component
		(%)		(Close Book/ Open Book)
Mid-Semester Test	90 Min.	30	<test_1></test_1>	Open Book
Quiz		15	To be announced in the	Open Book
			class	
Assignment		10	To be announced in the	Open book
			class	
Comprehensive	3 h	45	<test_c></test_c>	Open book
Examination				_

- **7. Chamber Consultation Hour**: will be announced in the class.
- 8. Notices: Notices concerning the course will be displayed on the NALANDA only.
- 9. Make-up Policy: Make-up for any component of evaluation will be given only in genuine cases of absence.
- **10. Note** (**if any**): Students are strongly advised to work out all the relevant problems in the text-book and do similar problems from the reference books.

Rakhee
Instructor-in-charge
Course No. MATH F353