CÁLCULO NUMÉRICO COMPUTACIONAL MÉTODOS NUMÉRICOS PARA RESOLUÇÃO DE EQUAÇÕES -PARTE 2

Autor: Me. Ronald Ramos Alves

Revisor: Raimundo Almeida

INICIAR

introdução Introdução

Na tentativa de oferecer respostas aos diversos problemas da Engenharia, naturalmente, necessitamos realizar a modelagem matemática destes. Após o processo de modelagem, comumente encontramos uma função/equação a qual precisamos resolver. Essas funções/equações não lineares ou polinomiais não são facilmente resolvidas de forma analítica e, dessa forma, recorremos aos métodos numéricos para resolvê-las.

Tais métodos numéricos para a determinação das raízes de funções/equações envolvem processos que se aproximam das raízes a cada passo. Como pode ser visto em todo o processo iterativo, devemos estabelecer um critério de parada, isto é, a partir de alguma regra específica, devemos ser capazes de determinar o momento de encerrar a aplicação do método, obtendo a raiz com a precisão desejada. Nessa direção, veremos como aplicar o método de Newton e o método da Iteração Linear, bem como suas vantagens e desvantagens.

Método de Newton

Existem diversos métodos numéricos para a determinação de raízes de funções não lineares ou polinomiais. Cada método apresenta vantagens e desvantagens. O método de Newton destaca-se pela aplicabilidade e convergência excepcional, tendo, como desvantagem, o conhecimento da forma analítica da derivada da função.

Descrição do Método

Vamos considerar uma função contínua f(x) em um intervalo [a,b], e λ a sua única raiz nesse intervalo. Vamos considerar, também, que as derivadas f'(x) ($f'(x) \neq 0$) e f''(x) sejam contínuas. Assim, encontramos uma aproximação x_n para a raiz λ e fazemos uma expansão em série de Taylor da função f(x) centrada em x_n :

$$f(x) = f(x_n) + \frac{f'(x_n)}{1!}(x - x_n) + \frac{f''(x_n)}{2!}(x - x_n)^2 + \frac{f'''(x_n)}{3!}(x - x_n)^3 + \cdots$$

Nessa expressão, faremos um truncamento na série e tomaremos apenas os dois primeiros termos da série como aproximação, isto é:

$$f(x) = f(x_n) + \frac{f'(x_n)}{1!}(x - x_n)$$

Nosso objetivo é determinar uma melhor aproximação para a raiz λ , ou seja, chamando esta aproximação refinada de x_{n+1} , temos:

$$f(x_{n+1}) = 0 = f(x_n) + f(x_n)(x_{n+1} - x_n)$$

Como desejamos encontrar x_{n+1} , precisamos isolar essa variável:

$$-\frac{f(x_n)}{f(x_n)} = x_{n+1} - x_n$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$$

$$n = 0, 1, 2, 3, \dots$$

Dada uma aproximação inicial x_0 , utilizaremos a expressão $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$

para determinar x_1 . Em seguida, repete-se a aplicação da expressão e determina-se x_2 . O processo deve continuar até que se obtenha uma aproximação para a raiz exata λ , com a tolerância ϵ desejada. Para cada aproximação x_n da raiz exata λ , usamos o critério $\left|x_n-x_{n-1}\right| \leq \epsilon$ e comparamos o resultado com a tolerância ϵ prefixada. O valor $\left|x_n-x_{n-1}\right|$ representa o erro máximo que pode ser cometido ao utilizar a raiz aproximada x_n como a raiz exata λ .

O que fazer nos casos em que a derivada da função seja difícil de calcular? Uma alternativa é recorrer aos métodos de Passos Múltiplos, como o método da secante. Este substitui a expressão da derivada da função por uma aproximação, sendo assim, são necessárias duas atribuições iniciais para calcular uma primeira iteração da raiz aproximada.

Fonte: Jarletti (2018).

Interpretação Geométrica

Podemos dizer que o método de Newton, geometricamente, conduz-nos a aproximar um pequeno arco de uma curva genérica y = f(x) por uma reta tangente, construída a partir de um ponto da curva. Aqui, em relação aos sinais das derivadas de ordem 1 e 2, temos quatro possibilidades a considerar:

I

II

III

IV

Nos cursos iniciais de Cálculo Diferencial, você estudou sobre o significado geométrico do sinal das derivadas de ordem 1 e 2. Os intervalos em que a função possui a primeira derivada positiva indicam os intervalos de crescimento da função e, analogamente, os intervalos cuja função possui a primeira derivada negativa indicam os intervalos de decrescimento. Por sua vez, os intervalos nos quais a função assume a segunda derivada positiva (respectivamente, negativa) indicam os intervalos em que a função possui concavidade voltada para cima (respectivamente, concavidade voltada para baixo). Para fixar as ideias, utilizaremos o caso listado em f'(x) > 0 e f''(x) > 0 e

mostraremos como determinar a expressão $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$ para o cálculo

das iterações, para n = 0, conforme a figura a seguir:

Figura 2.1 - Interpretação geométrica do método de Newton Fonte: Barroso et al. (1987, p. 123).

Pela Figura 2.1, observando o triângulo retângulo formado pelos pontos B_0 ,

 $(x_0, 0)$ e $(x_1, 0)$, podemos perceber que $tan(\alpha) = \frac{f(x_0)}{x_0 - x_1}$. Pelo Cálculo Diferencial, sabemos que a tangente do ângulo que a reta tangente à curva no ponto B_0 faz com o eixo OX é igual à derivada da função no ponto em análise, isto é:

$$tan(\alpha) = \frac{f(x_0)}{x_0 - x_1} = f'(x_0)$$

Essa última equação pode ser reescrita como:

$$x_0 - x_1 = \frac{f(x_0)}{f'(x_0)}$$

Finalmente, temos:

$$x_1 = x_0 - \frac{f(x_0)}{f(x_0)}$$

Repetindo o processo para o triângulo retângulo formado pelos pontos B_1 , $(x_1, 0)$ e $(x_2, 0)$, encontramos:

$$x_2 = x_1 - \frac{f(x_1)}{f(x_1)}$$

Podemos mostrar, por indução, que a expressão é válida para todo número natural, assim:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$$

$$n = 0, 1, 2, 3, \dots$$

Ainda pela Figura 2.1, podemos notar que a sequência de raízes aproximadas x_0 , x_1 , x_2 , ... converge para a raiz exata λ . Note, também, que escolhemos $x_0 = b$ para iniciar o processo de obtenção das raízes aproximadas, pois, caso escolhêssemos $x_0 = a$, o processo poderia convergir para a raiz exata λ . Perceba que a interseção entre o eixo OX e a reta tangente à curva em a localiza-se fora do intervalo inicial [a,b], podendo nem mesmo estar no domínio da função f(x). Portanto, como escolher adequadamente a primeira aproximação x_0 ? Como garantir a convergência do método de Newton?

Escolha da Aproximação Inicial x_0

Novamente, pela Figura 2.1, podemos visualizar que, traçando a reta tangente a partir do ponto $A(x_0,f(x_0))$, é possível que encontremos um ponto $x_1 \notin [a,b]$, e o método de Newton pode não convergir. Por outro lado, escolhendo-se $x_0 = b$, o processo convergirá.

Dessa forma, é preciso estabelecer um critério objetivo para decidirmos sobre a escolha da aproximação inicial x_0 . Assim, podemos mostrar, como condição **suficiente** para a convergência do método de Newton, que f(x) e f'(x) sejam não nulas e preservem o sinal em (a, b), e x_0 seja tal que $f(x_0) \cdot f'(x_0) > 0$.

Exemplo de Aplicação do Método de Newton

Exemplo 1: determine todas as raízes reais da função $f(x) = x^3 + ln(x) - 10$, com uma tolerância $\epsilon \le 10^{-7}$.

Inicialmente, aplicamos o método gráfico para isolar as raízes. Nesse caso, colocamos $g(x) = x^3$ e h(x) = -ln(x) + 10, bem como construímos os gráficos em um mesmo sistema de eixos coordenados.

Figura 2.2 - Gráficos das funções g e h Fonte: Elaborada pelo autor.

Para isolar a raiz em um intervalo [a,b], é necessário construir a tabela com os valores para g e h, além de observar o momento em que ocorre a interseção entre as curvas. Pelo esboço dos gráficos, podemos perceber que existe uma única interseção entre estes, a qual ocorre para x > 0. Lembre-se de que, em uma situação genérica, você não teria os valores já preenchidos no gráfico. Acompanhe a tabela a seguir:

X	g(x)	h(x)
0,5	0,125	10,6931472
1	1	10
1,5	3,375	9,59453489
2	8	9,30685282
2,5	15,625	9,08370927

Tabela 2.1 - Aplicação do método gráfico para isolamento das raízes da função f(x) Fonte: Elaborada pelo autor.

Analisando apenas os pontos da tabela, vemos que a função h(x) assume valores maiores do que a função g(x) até x=2. Em x=2, 5, temos g(x)>h(x), ou seja, para x entre 2 e 2,5, ocorre uma interseção entre as curvas plotadas. Consequentemente, a raiz exata λ pertence ao intervalo [a,b]=[2;2,5].

De posse da raiz isolada, devemos proceder e verificar se todas as hipóteses para a aplicação do método de Newton são satisfeitas. De fato, a função f(x) é contínua, no intervalo [2; 2, 5], e possui um único zero nesse intervalo. Além disso:

1.
$$f'(x) = 3x^2 + \frac{1}{x} > 0$$
 para $x \in [2; 2, 5];$
2. $f''(x) = 6x - \frac{1}{x^2} > 0$ para $x \in [2; 2, 5];$
3. $f(2) \cdot f''(2) = -15, 65 < 0$ (x_0 não pode ser igual a 2);
4. $f(2, 5) \cdot f''(2, 5) = 97, 07 > 0$ (x_0 pode ser igual a 2,5).

Portanto, mostramos que f e suas derivadas satisfazem todas as condições necessárias para a aplicação do método de Newton, bem como x_0 = 2, 5. Assim, temos a segurança de que a sequência de raízes aproximadas x_n convergirá para a raiz exata λ .

Observe, a seguir, o passo a passo para a construção da tabela que culminará com a raiz desejada:

n
$$x_n$$
 $f(x_n)$ $f'(x_n)$ E_n
0 2,5 6,54129073 19,15

Tabela 2.2 - Passo a passo para a construção da tabela do método de Newton Fonte: Elaborada pelo autor.

n representa a quantidade de iterações, x_n são as raízes aproximadas, $f(x_n)$ é a imagem de cada raiz aproximada, $f(x_n)$ é a imagem de cada raiz

aproximada pela derivada de f, e E_n representa o erro máximo cometido no cálculo de x_n . Para n=0, temos que:

- $x_0 = 2, 5;$
- $f(x_0) = f(2, 5) = 2, 5^3 + ln(2, 5) 10 = 6,541;$
- $f(x_0) = f(2, 5) = 3 * 2, 5^2 + \frac{1}{2, 5} = 19, 15;$
- ullet só é possível calcular o valor de E_n a partir da primeira iteração.

Observe que os valores determinados para x_0 , $f(x_0)$ e $f(x_0)$ serão utilizados na próxima linha da tabela, no cálculo da primeira iteração x_1 , pois, de acordo com a equação geral:

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$$

Fazendo n = 0, ficamos com:

$$x_1 = x_0 - \frac{f(x_0)}{f(x_0)}$$

Portanto, seguimos o processo e encontramos mais uma linha da tabela, conforme se vê a seguir:

n

$$x_n$$
 $f(x_n)$
 $f'(x_n)$
 E_n

 0
 2,5
 6,54129073
 19,15

 1
 2,15841824
 0,82494827
 14,4396101
 0,34158176

Tabela 2.3 - Determinação da primeira iteração da sequência de raízes aproximadas $x_1 = 2$, 15841824

Fonte: Elaborada pelo autor.

Para n=1, temos:

•
$$x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 2, 5 - \frac{f(2,5)}{f(2,5)} = 2, 5 - \frac{6,54129073}{19,15} = 2,15841824;$$

•
$$f(x_1) = f(2, 15841824) = 0, 82494827;$$

•
$$f(x_1) = f(2, 15841824) = 14, 4396101;$$

•
$$E_1 = |x_1 - x_0| = |2, 15841824 - 2, 5| = 0,34158176.$$

Esse processo deve continuar até que o erro máximo E_n torne-se menor ou igual à tolerância prefixada $\epsilon=10^{-7}$. Logo, a tabela completa pode ser visualizada a seguir:

n	x _n	$f(x_n)$	$f'(x_n)$	E_n
0	2,5	6,54129073	19,15	
1	2,15841824	0,82494827	14,4396101	0,34158176
2	2,10128731	0,02059178	13,7221239	0,05713092
3	2,09978669	1,3937 · 10 ⁻⁵	13,7035513	0,00150063
4	2,09978567	6,4002 · 10 ⁻¹²	13,7035387	$1,017 \cdot 10^{-6}$
5	2,09978567	0	13,7035387	$4,6718 \cdot 10^{-13}$

Tabela 2.4 - Tabela completa com 5 iterações

Fonte: Elaborada pelo autor.

Conseguimos determinar a raiz aproximada $x_5 = 2$, 09978567, com a tolerância prefixada $\epsilon \le 10^{-7}$. Cabe ressaltar que atingimos o limite de precisão da máquina, uma vez que $f(x_5) = 0$. De agora em diante, não adianta tentar calcular $x_6, x_7, x_8, ...$, pois sempre encontraremos todos esses valores iguais a x_5 . Para efeito de comparação, se tentássemos determinar essa raiz aproximada a partir da utilização do método da bisseção, teríamos de calcular 22 iterações, pois:

$$n \ge \frac{lr\left(\frac{b-a}{\epsilon}\right)}{ln(2)} - 1$$

$$l\left(\frac{2,5-2}{10^{-7}}\right) \\ n \ge \frac{l}{\ln(2)} - 1$$

 $n \ge 21, 25$

Apenas com propósito didático, construímos o gráfico da função $f(x) = x^3 + ln(x) - 10$ e podemos confirmar nossos resultados.

Figura 2.3 - Gráfico da função f(x), evidenciando a unicidade da solução encontrada

Fonte: Elaborada pelo autor.

No desenvolvimento desse exemplo, foi possível perceber que o método de Newton garante uma convergência muito rápida para a raiz com a precisão escolhida ($\epsilon \le 10^{-7}$). Foram apenas 5 iterações. Entretanto, é necessário que verifiquemos se todas as hipóteses são satisfeitas, o que demanda um maior esforço inicial. Por outro lado, se compararmos com o método da bisseção, no qual as hipóteses são verificadas rapidamente, temos a desvantagem da convergência ser lenta, uma vez que seriam necessárias 22 iterações.

No **problema da embalagem** discutido na apresentação da disciplina, encontramos a equação $9x^3 + 3x^2 - 600 = 0$. O valor de x, que torna a equação verdadeira, é a raiz da função $f(x) = 9x^3 + 3x^2 - 600$, que representa uma das dimensões da embalagem em forma de paralelepípedo (uma caixa). Esse problema foi resolvido com a utilização do método da bisseção para o intervalo inicial [a, b] = [3, 4] e encontramos a solução com um número mínimo de iterações igual a seis. Sabendo que $\lambda \in [3, 4]$, use esse intervalo inicial e o método de Newton para calcular a quantidade mínima de iterações na determinação da raiz da função com uma tolerância $\epsilon \le 0$, 01.

- **a)** 1.
- **b)** 3.
- **c)** 4.
- Od) 2.
- **e)** 5.

Método da Iteração Linear

Há uma infinidade de métodos numéricos para a resolução de equações não lineares. Uma vez que não podemos aplicar o método de Newton em todos os casos, faz-se necessário conhecermos outros métodos para a determinação das raízes procuradas. Nesse contexto, o método da Iteração Linear apresenta-se como uma alternativa e possui uma convergência superior ao método da bisseção, porém é ligeiramente inferior ao método de Newton. Em alguns casos, pode ser difícil encontrar uma função de iteração que satisfaça a todas as condições de convergência.

Descrição do Método

Seja f(x) uma função contínua no intervalo [a,b] e λ um número pertencente a este intervalo tal que $f(\lambda)=0$. Por um artifício algébrico, pode-se transformar f(x)=0 em x=F(x), em que F(x) é chamada de função de iteração.

Sendo x_0 uma primeira aproximação da raiz λ , calcula-se $F(x_0)$. Faz-se, então, $x_1 = F(x_0)$; $x_2 = F(x_1)$; $x_3 = F(x_2)$ e, assim, sucessivamente, ou seja:

$$x_{n+1} = F(x_n)$$

 $n = 0, 1, 2, 3, ...$

Interpretação Geométrica

Traçam-se, no plano xy, os gráficos das funções y=x (primeira bissetriz) e y=F(x) (função de iteração). Cada raiz real λ da equação x=F(x) é uma abscissa do ponto de interseção R da curva y=F(x) com a bissetriz y=x.

Figura 2.4 - Interpretação geométrica do método da Iteração Linear Fonte: Barroso et al. (1987, p. 132).

Outra forma de pensar a interpretação geométrica do método da Iteração Linear é que estamos determinando os chamados **pontos fixos** da função de iteração y=F(x), isto é, buscamos os valores de x, que são "levados" para o próprio x, pela função de iteração F(x) (VARGAS *et al* ., 2017, p. 99). Mais precisamente, queremos determinar os valores de x, tal que F(x)=x.

Escolha da Função de Iteração

A partir de uma função f(x), é possível obter várias funções de iteração F(x), porém nem todas poderão ser utilizadas para avaliar λ .

TEOREMA 3.7: seja $\lambda \in I$ uma raiz da equação f(x)=0 e F(x) contínua e diferenciável em I. Se $\left|F'(x)\right| \leq k < 1$ para todos os pontos em I e $x_0 \in I$, então, os valores dados pela equação $x_{n+1} = F(x_n)$ convergem para λ .

Exemplo de Aplicação do Método da Iteração Linear

Exemplo 1: determinar a raiz da função $f(x) = e^x - cos(x) - 2$ com uma tolerância $\epsilon \le 10^{-5}$.

Aplicamos o método gráfico para isolar as raízes. Nesse caso, colocamos $g(x) = e^x e h(x) = cos(x) + 2 e construímos os gráficos em um mesmo sistema de eixos coordenados.$

Figura 2.5 - Gráficos das funções g e h Fonte: Elaborada pelo autor.

Para isolar a raiz em um intervalo [a,b], é necessário construir a tabela com os valores para g e h, além de observar o momento no qual ocorre a interseção entre as curvas. Pelo esboço dos gráficos, podemos perceber que existe uma única interseção entre estes e, além disso, essa interseção ocorre para x > 0. Caso tivéssemos mais de uma interseção, bastaria aplicar o método em cada

intervalo encontrado. Lembre-se de que, em uma situação genérica, você não teria os valores já preenchidos no gráfico. Acompanhe a tabela a seguir:

X	g(x)	h(x)
0	1	3
0,2	1,22140276	2,98006658
0,4	1,4918247	2,92106099
0,6	1,8221188	2,82533561
0,8	2,22554093	2,69670671
1	2,71828183	2,54030231

Tabela 2.5 - Determinação do intervalo no qual ocorre a interseção entre g e h Fonte: Elaborada pelo autor.

Analisando apenas os pontos da tabela, vemos que a função h(x) assume valores maiores do que a função g(x) até x=0,8. Em x=1, temos g(x)>h(x), ou seja, para x entre 0,8 e 1, ocorre uma interseção entre as curvas traçadas. Consequentemente, a raiz exata λ pertence ao intervalo [a,b]=[0,8;1].

Com a raiz isolada em mãos, devemos proceder e verificar se todas as hipóteses para a aplicação do método da Iteração Linear são satisfeitas. De fato, a função f(x) é contínua no intervalo [0, 8; 1] e possui um único zero nesse intervalo. Agora, devemos proceder e encontrar uma função de iteração F(x), assim, fazemos:

$$f(x) = e^x - cos(x) - 2 = 0$$

Temos duas opções para isolar a variável x. Escolhendo o x da parcela exponencial, temos:

$$e^{x} = cos(x) + 2$$

Isso diz que:

$$x = ln(cos(x) + 2)$$

Consequentemente:

$$F(x) = ln(cos(x) + 2)$$

Perceba que F(x) = ln(cos(x) + 2)é contínua e diferenciável para todo x real, em particular, também o é para $x \in I = [0, 8; 1]$. Além disso,

$$|F'(x)| = \left| \frac{-sen(x)}{cos(x) + 2} \right| = \frac{|sen(x)|}{cos(x) + 2} \le 0, 6 < 1$$

para todos os números reais, em particular, para $x \in I = [0, 8; 1]$. Portanto, podemos utilizar o método da Iteração Linear com convergência garantida para qualquer $x_0 \in I$. Cabe salientar que as hipóteses não precisam ser satisfeitas para todos os números reais, mas sim, apenas para o intervalo I. Neste caso, especificamente, obtivemos um resultado mais geral, entretanto, isso nem sempre ocorre e não é necessário. Arbitrariamente, vamos escolher $x_0 = 0, 8$.

Observe o passo a passo para a construção da tabela que culminará com a raiz desejada:

$$x_n$$
 E_n

Tabela 2.6 - Passo a passo para a construção da tabela do método da Iteração Linear

Fonte: Elaborada pelo autor.

Em que n representa a quantidade de iterações, x_n são as raízes aproximadas e E_n representa o erro máximo cometido no cálculo de x_n . Para n=0, temos

que:

• $x_0 = 0.8$ (podemos escolher qualquer valor pertencente ao intervalo [0, 8; 1]);

• só é possível calcular o valor de E_n a partir da primeira iteração.

Observe que o valor escolhido para x_0 será utilizado na próxima linha da tabela, no cálculo da primeira iteração x_1 , pois, de acordo com a equação geral:

$$x_{n+1} = F(x_n)$$

Fazendo n = 0, ficamos com:

$$x_1 = F(x_0)$$

Portanto, seguimos o processo e encontramos mais uma linha da tabela.

Tabela 2.7 - Determinação da primeira iteração da sequência de raízes aproximadas, $x_1 = 0$, 99203129

Fonte: Elaborada pelo autor.

Para n=1, temos:

- $x_1 = F(x_0) = ln(cos(0, 8) + 2) = 0,99203129;$
- $E_1 = |x_1 x_0| = 0$, 99203129 0, 8| = 0,19203129.

Esse processo deve continuar até que o erro máximo, E_n , torne-se menor ou igual à tolerância prefixada $\epsilon=10^{-5}$. Logo, a tabela completa pode ser visualizada a seguir:

n	X_n	\boldsymbol{E}_{n}
0	0,8	
1	0,99203129	0,19203129
2	0,93491247	0,05711882
3	0,95315824	0,01824576
4	0,94744486	0,00571338
5	0,94924554	0,00180068
6	0,94867916	0,00056638
7	0,94885742	0,00017826
8	0,94880133	5,6093 · 10 ⁻⁵
9	0,94881898	1,7652 · 10 ⁻⁵
10	0,94881343	5,5548 · 10 ⁻⁶

Tabela 2.8 - Tabela completa com 10 iterações

Fonte: Elaborada pelo autor.

Conseguimos determinar a raiz aproximada $x_{10}=0$, 94881343 com a tolerância prefixada $\epsilon \leq 10^{-5}$. Como escolhemos arbitrariamente $x_0=0$, 8, poderíamos ter escolhido $x_0=0$, 95, por exemplo, uma vez que não conhecemos a raiz antecipadamente. Caso escolhêssemos $x_0=0$, 95, o resultado seria encontrado com apenas 6 iterações, conforme pode ser visto na seguinte tabela:

n	x _n	E_n
0	0,95	
1	0,94844155	0,00155845
2	0,94893218	0,00049063
3	0,9487778	0,00015437
4	0,94882638	$4,8582 \cdot 10^{-5}$
5	0,9488111	1,5288 · 10 ⁻⁵
6	0,94881591	4,8109 · 10 ⁻⁶

Tabela 2.9 - Tabela completa com 6 iterações

Fonte: Elaborada pelo autor.

Para efeito de comparação, se tentássemos determinar essa raiz aproximada a partir da utilização do método da bisseção, teríamos de calcular 14 iterações, pois:

$$n \ge \frac{\ln\left(\frac{b-a}{\epsilon}\right)}{\ln(2)} - 1$$

$$l\left(\frac{1-0.8}{10^{-5}}\right)$$

$$n \ge \frac{l}{\ln(2)} - 1$$

$$n \ge 13, 29$$

Apenas com um propósito didático, construímos o gráfico da função $f(x) = e^x - cos(x) - 2$ e podemos confirmar nossos resultados.

Figura 2.6 - Gráfico da função f(x), evidenciando a unicidade da solução encontrada

Fonte: Elaborada pelo autor.

No desenvolvimento desse exemplo, foi possível perceber que o método da Iteração Linear garante uma boa convergência para a raiz com a precisão escolhida ($\epsilon \le 10^{-5}$). Foram 10 iterações escolhendo $x_0 = 0,8$ e apenas 6 iterações para $x_0 = 0,95$. Entretanto, é necessário que verifiquemos se todas as hipóteses são satisfeitas, o que demanda um maior esforço inicial. Por outro lado, se compararmos com o método da bisseção, no qual as hipóteses são verificadas rapidamente, temos a desvantagem de a convergência ser lenta, uma vez que seriam necessárias 14 iterações.

Saiba mais

O vídeo mostra o passo a passo da modelagem de uma situação conhecida como **problema da colmeia**, além de tratar sobre o isolamento de raízes. Quando a população de uma colmeia atinge uma quantidade superior a 50 mil abelhas, iniciase um processo de migração da abelha rainha para outro local seguro, onde continuará depositando seus ovos, dando início a uma nova colmeia. Após compreender o problema, você poderá aplicar os métodos de refinamento de raízes para resolver o problema apresentado.

ASSISTIR

Vamos Praticar

No **problema da embalagem** , discutido na apresentação da disciplina, encontramos a equação $9x^3 + 3x^2 - 600 = 0$. O valor de x, que torna a equação verdadeira, é a raiz da função $f(x) = 9x^3 + 3x^2 - 600$ e representa uma das dimensões da embalagem em forma de paralelepípedo (uma caixa). Esse problema foi resolvido com a utilização do método da bisseção para o intervalo inicial [a, b] = [3, 4] e encontramos a solução com um número mínimo de iterações igual a seis. Esse mesmo problema foi resolvido com o método de Newton, encontrando um número mínimo de iterações

igual a dois. Agora, sabendo que $\lambda \in [3,4]$, use esse intervalo inicial e o método da Iteração Linear para calcular a quantidade mínima de iterações na determinação da raiz da função com uma tolerância $\epsilon \leq 0$, 01, fazendo $x_0 = 3$.

- **a)** 1.
- **b)** 2.
- **c)** 3.
- O d) 4.
- **e)** 5.

indicações Material Complementar

LIVRO

Cálculo numérico

Neide Bertoldi Franco

Editora: Pearson

ISBN: 978-85-760-5087-2

Comentário: o livro é indicado aos(as) alunos(as) que desejam visualizar a aplicação de diversos métodos numéricos sobre um mesmo tema, dando ênfase ao detalhamento dos prós e contras de cada um dos métodos utilizados. Além disso, o livro dedica-se a mostrar exercícios que simulam a aplicação prática dos conceitos vistos. Nesta obra, você poderá aprofundar seus conhecimentos sobre os métodos da bisseção,

Newton e Iteração Linear, bem como aprender outros métodos de resolução de equações não lineares.

FILME

Tempos Modernos

Ano: 1936

Comentário: esse é um dos filmes mais famosos de Charles Chaplin, o qual mostra o ambiente de trabalho em uma fábrica, de forma bastante crítica, ressaltando a ideia da especialização do trabalho. Para conhecer mais sobre o filme, acesse o *trailer*.

TRAILER

conclusão Conclusão

Na busca por respostas aos mais variados tipos de problemas físicos que surgem nas Engenharias, frequentemente, precisamos realizar a modelagem matemática e resolver a equação/função encontrada. Assim, o(a) estudante desta área multidisciplinar, invariavelmente, deve conhecer diversas técnicas de resolução de equações/funções, a fim de que possa aplicá-las, de forma adequada, e obtenha resultados que guardem uma relação inquestionável com o problema inicial.

Para alcançar tais objetivos, mostramos o desenvolvimento teórico do método de Newton e do método da Iteração Linear, bem como suas respectivas aplicações na resolução de problemas práticos. De forma simples, o estudante foi conduzido a uma comparação entre os métodos da Bisseção, Newton e Iteração Linear. Vimos que o método de Newton está na posição dianteira, quando pensamos na velocidade de convergência, seguido pelo método da Iteração Linear e, mais lentamente, o método da Bisseção.

Referências Referências Bibliográficas

BARROSO, L. C. *et al* . **Cálculo numérico (Com aplicações)** . 2. ed. São Paulo: Harbra ltda, 1987.

JARLETTI, C. Cálculo numérico . Curitiba: Intersaberes, 2018.

VARGAS, J. V. C.; ARAKI, L. K. **Cálculo numérico aplicado** . Barueri: Editora Manole, 2017.