A Modern Array Language for Ar-

tificial Life Research

Noah Syrkis

October 6, 2025

1 | Introduction

2 | Minimax

 $3 \mid \alpha - \beta \text{ pruning}$

4 | MCTS

5 | Python

1 | Introduction

The future is a garden of forking paths [1]. Action a at state s_t yields a new state s_{t+1} . A different action a', however, might have yielded some different state s'_{t+1} .

2 | Minimax

- ► Suppose we have a function that:
- ▶ given a state and an action returns a new state,
- ▶ and another that given a state returns who won
- ▶ What can we do?

2 | Minimax

- ► Suppose we have a function that:
- ▶ given a state and an action returns a new state,
- ▶ and another that given a state returns who won
- ► What can we do? Play perfectly and never loose

2 | Minimax

- ► We can win (or at least not loose) any game¹ by:
 - 1. Calling the minimax function for all actions
 - 2. Storing the values of each action in a list
 - 3. Taking the action with the highest value
- ► How can we do better? What are the issues?

Algorithm 1: minimax(state, maxim) \rightarrow value

- 1 **if** node is terminal
- 2 | return the value of node
- 3 temp = $-\infty$ if maxim else ∞
- 4 for each child of state
- value = minimax(child, not maxim)
 temp = (max if maxim else min)(temp,
 - value)
- 7 return temp

¹that is two player, winnable, deterministic, etc.

$3 \mid \alpha - \beta \text{ pruning}$

- ► Skip branches worse than current floor
- ightharpoonup and eta refer to those precisely floors

$3 \mid \alpha - \beta \text{ pruning}$

- ▶ Algorithm 2 looks daunting but the idea is:
- ► Stop exploring paths you already know are bad

Algorithm 2: $\alpha - \beta$ pruning(node, maxim, α , β)

- 1 **if** node is terminal
- 2 **return** the value of node
- 3 bestValue = $-\infty$ if maxim else ∞
- 4 condition = max if maxim else min
- 5 **for** each child of node
- value = minimax(child, not maxim, α , β)
- 7 bestValue = condition(bestValue, value)
- 8 α = (condition(α , value) if maxim else α)
 - β = (condition(β , value) if not maxim else
- 9 β)
- if $\alpha >= \beta$; break
- 11 **return** bestValue

4 | MCTS

- ► We haven't actually looked at the board
- ightharpoonup Humans don't mentally finish n games

4 | MCTS

- ► Monte Carlo (random) tree search [2]
- ► Core idea: sample from bottom of each branch
- ► How much to sample from each branch?
- ► How should we reach the bottom?

4.1 | Explore / exploit

- ▶ When do we exploit the best tool we have?
- ▶ When should we explore for a new tool?
- ► There is a good entropy based solution [3]

Figure 4: Which distribution would you sample

from? Which is more likely to reach 1?

5 | Python

```
▶ You will see code that looks like Script 1
```

- ▶ In some games $s \neq o$, so we need separate obs
- Multi player setup will have inner player loop

```
import gymnasium as gym
env = gym.game("tic tac toe")
state, done = env.init()
while not done:
  action = action_fn(state)
  state, done = env.step(state, action)
Script 1: Playing games in Python usually look
            something like this
```

5 | Python

- ▶ Some useful packages
- ► Understanding gymnasium is a must
- ► Get comfy with .reset and .step
- ► Sometimes state has a valid action mask!

aigs	package for our course
gymnasium[4]	Basic env package
petting-zoo[5]	gym for multiplayer

References

- [1] J. L. Borges, "The Garden of Forking Paths," Ficciones. Grove Press, New York, 1962.
- [2] C. B. Browne et al., "A Survey of Monte Carlo Tree Search Methods," IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1-43, Mar. 2012, doi: 10.1109/TCIAIG.2012.2186810.
- [3] H. Robbins, "SOME ASPECTS OF THE SEQUENTIAL DESIGN OF EXPERIMENTS," 1952.
- [4] M. Towers et al., "Gymnasium: A Standard Interface for Reinforcement Learning Environments." Mar. 2025.
- [5] J. Terry et al., "Pettingzoo: Gym for Multi-Agent Reinforcement Learning," Advances in Neural Information Processing Systems, vol. 34, pp. 15032-15043, 2021.