

There are a total of five problems. You have to solve the first four. Problem 5 is optional.

Problem 1 (CO1): DFA and Regular Languages (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w \text{ starts with 01}\}$

 $L_2 = \{ w \text{ doesn't contain 00} \}$

 $L_3 = \{ w \text{ doesn't contain 11} \}$

$$L_4 = \{w = 01\}$$

Now solve the following problems.

- (a) Give the state diagram for a DFA that recognizes L_1 . (3 points)
- (b) Give the state diagram for a DFA that recognizes L_2 . (3 points)
- (c) If you were to use the "cross product" construction shown in class to obtain a DFA for the language $L_2 \cap L_3$, how many states would it have? (1 point)
- (d) **Find** all four-letter strings in $L_2 \cap L_3$. (1 point)
- (e) **Give** the state diagram for a DFA that recognizes $L_2 \cap L_3$ using only four states. (2 points)
- (f) **Find** one six-letter string in L_4^* . (1 point)
- (g) Give the state diagram for a DFA that recognizes L_4^* . (2 points)
- (h) Is L_4^* and $L_1 \cap L_2 \cap L_3$ same? **Give** justification for your answer. (2 points)

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{ w \text{ contains exactly two 1} \}$

 $L_2 = \{ w \text{ doesn't start with 0} \}$

 $L_3 = \{ \text{every third position in } w \text{ is } 1 \}$

 $L_4 = \{ \text{every 1 in } w \text{ is followed by at least two 0} \}$

$$L_5 = L_3 \cap L_4$$

Now solve the following problems.

- (a) **Give** a regular expression for the language L_1 . (3 points)
- (b) **Give** a regular expression for the language L_2 . (3 points)
- (c) **Give** a regular expression for the language L_3 . (3 points)
- (d) Write a five-letter string that belongs to L_5 . (1 point)
- (e) **Give** a regular expression for the language L_5 . (2 points)
- (f) **Give** a regular expression for the language \overline{L}_4 . Here \overline{L} denotes the complement of the language L i.e., $\overline{L} = \Sigma^* L$. (3 points)

Automata and Computability

MIDTERM EXAM TOTAL MARKS: 50 DURATION: 80 MINUTES

Problem 3 (CO2): Converting Regular Expressions to NFAs (10 points)

Convert the following regular expression over $\Sigma = \{0,1\}$ into an equivalent NFA. Note that $R_1 + R_2$ is the same as $R_1 \cup R_2$.

$$(0(0+01)^*10)+01^*0$$

Problem 4 (CO2): Converting Finite Automata to Regular Expressions (10 points)

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q_2 , then q_3 and finally q_4 . You must show work.

Problem 5 (Bonus): Ternary Number System (5 points)

Disclaimer: This is a bonus problem. Attempt it only after you are done with everything else. Even if you do not attempt it, you can get a perfect score. So, do not worry if you find it too hard!

Let $\Sigma = \{0, 1, 2\}.$

 $L = \{w, \text{ when interpreted in three base number system, is divisible by nine}\}$

Give a state diagram for a DFA that recognizes *L*.