به نام خدا

درس پایگاه داده ها

در این جلسه:

- مبانی نظری مدل رابطه ای
 - □ مفهوم جامعیت
 - 🗖 جبر رابطه ای
- □ امتحان میان ترم تا انتهای جبر رابطه ای

مفهوم جامعیت در مدل رابطه ای

- در مدل رابطه ای سه نوع جامعیت مورد تاکید قرار گرفته است:
 - (domain integrity) جامعیت دامنه ای =
 - تعریف: یعنی تمام صفات در تمامی رابطه ها از نوع دامنه خود باشند
- مثال: ۱۲/۲ به عنوان شماره دانشجویی که عددی صحیح است قرار نمی گیرد
 - (intra-relation integrity) جامعیت درون رابطه ای
- تعریف: یعنی هر رابطه به تنهایی صحیح باشد؛ مثلا عضو تکراری نداشته باشد و کلید های آن به درستی انتخاب شده باشند.
 - (referential integrity) جامعیت ارجاع
- تعریف: یعنی کلید خارجی درست تعریف شده باشد؛ مثلا کلید خارجی یک رابطه حتما در رابطه دیگر کلید باشد و مقداری که به کلید خارجی داده می شود در جدول دیگر وجود داشته باشد.

جبر رابطه ای

- جبر: به معنی نوعی داده و عملگرهایی (operator) روی آن است.
 - مثال: جبر بول
 - توع داده: false, true
 - and, or , not ...
 - جبر رابطه ای قویترین مبانی تئوریک مل رابطه ای می باشد.
 - □ نوع داده: رابطه؛ یعنی ورودی و خروجی تمامی عملگرها رابطه است.
 - □ عمگرها: ۱-عمگرهای ساده ۲- عملگرهای مجموعه ای
 - ۳- عملگرهای پیوند ۴- عملگرهای دیگر
 - در جبر رابطه ای توان محاسباتی در ترکیب انواع عملگرها نهفته است.

عمگرها در جبر رابطه ای

■ عملگرهای اصلی

جايگزيني	I	تفاضل	اجتماع	پرتو	گزینش	عملگر
	دکارتی					شرح /
←	X	_	C	Π	ь	علامت
اصلی	اصلی	اصلی	اصلی	اصلی	اصلی	اصلی یا اضافی
کپی کردن جدول	زمان و حافظه زیادی می گیرد	جداول باید همتا باشند	جداول باید همتا باشند	انتخاب ستون	انتخاب سطر	توضيحات

عمگرها در جبر رابطه ای...

$A \cap B = A - (A - B)$

عملگرهای اضافی

نامگذاری	نيم	پيوند	پيوند	تقسيم	اشتراک	عملگر
	پيوند	طبيعى	شرطی			شرح /
ρ	œ	∞	\mathbf{X}_{θ}	÷	\cap	علامت
اضافی	اضافی	اضافی	اضافی	اضافی	اضافی	اصلی یا اضافی
تغییر نام جدول	کاربرد اصلی آن در بانک اطلاعاتی نا متمرکز است		زیر مجموعه ای از ضرب دکارتی	برای پرس و جو های دارای شرط همه	جداول باید همتا باشند	توضيحات

(σ) عملگر گزینش

- عملگر گزینش، سطرهایی را ازجدول انتخاب می کند.
 - نحوه نگارش دستور:

$$\sigma_{\rm bm}$$
 (نام جدول)

- مثال: تمام سطرهایی از جدول دانشجو که شهر آنها کلمه یزد را نشان می دهد و همچنین شماره دانشکده آنها ۴ است.

S#	Sname	City	Avg	Clg#
73120504	كمالي	یزد	17.5	4
			6	

s#	sname	city	avg	clg#
Y117774X	محمدي	تهران	17/74	١٠
771770	وكيلى	اصفهان	14/08	1+
۵۰۳۳۰۲۷	علينقى زاده	مشهد	18/47	١
۲۳۱۲۰۵۰۴	کمانی	يزد	۱۷/۵۶	۴
V٣1۶۶ λ +1	احمدى	كرمان	10/44	۵
741772	جوادى	تهران	18/10	4
V*Y+9,179	حسين زاده	تبريز	17/7.	۶

عملگر پرتو (П)

■ عملگر پرتو فقط ستون هایی از جدول را بدون هیچ شرطی انتخاب می کند.

نحوه نگارش:

city

تهران

اصفهان

مشهد

یزد

كرمان

تبريز

(نام جدول) نام ستون یا ستون ها

□ نکته: در عملگر پرتو، سطرها تکراری وجود ندارد.

□ مثال: ستون شهر محل اقامت دانشجویان از جدول دانشجو.

 Π_{city} (stud)

s#	sname	city	avg	clg#
V1177X4X	محمدي	تهران	17/74	١٠
77177	وكيلى	اصفهان	14/08	1+
۵۰۳۲۰۲۲۷	علينقى زاده	مشهد	18/47	١
7412.71	کمانی	يزد	۱۷/۵۶	۴
V٣1۶۶λ·1	احمدى	كرمان	10/44	۵
7417724	جوادى	تهران	18/10	۵
V*T+9,1T5	حسين زاده	تبريز	17/7.	۶

مثال:

- ستون های شماره دانشجویی، نام دانشجویانی که معدل آنها بالای ۱۷ است؟
 Π_{S#,Sname} (σ _{avg>15}(stud))
 - □ آیا ترکیب پرتو و گزینش قابلیت جابجایی دارد؟

S#	Sname
71133848	محمدی
73120504	كمالي

s#	sname	city	avg	clg#
Y1177X4X	محمدي	تهران	17/74	١٠
771770	وكيلى	اصفهان	14/08	1.
۵۰۳۲۰۲۲۷	علينقى زاده	مشهد	18/47	١
7412-71	کمانی	يزد	۱۷/۵۶	۴
V٣1۶۶۸·1	احمدى	كرمان	10/44	۵
7417774	جوادى	تهران	18/10	G
V4L-4YL2	حسين زاده	تبريز	17/7.	۶

عملگرهای مجموعه ای

- عملگرهای اجتماع، اشتراک و تفاضل معنای خود را در تئوری مجموعه ها را حفظ کرده اند.
- ورودی هر کدام دو رابطه و خروجی هر کدام یک رابطه است.
 - نکته: رابطه های ورودی باید همتا باشند یعنی:
- □ تعداد صفتهای دو رابطه یا همان ستون های دوجدول یکسان باشند.
 - □ صفتها به ترتییب دارای دامنه های یکسان باشند.

عملگرهای مجموعه ای

- لیست نام همه افراد در دانشکده ها؟
- □ جواب: اجتماع نام دانشجویان و اساتید در دانشگاه

 Π_{sname} (stud) U Π_{pname} (Prof)

Prof.

Pname	Office	Esp	degree	Clg#
ميرشمسي	34	برق	دكترى	2
ابوطالبي	3	فناوري اطلاعات	دكترى	1
جلالى	2	شيمى	فوق ليسانس	4
مكرمى	13	كامپيوتر	دكترى	2

name محمدی وکیلی . . .

s#	sname	city	avg	clg#
V1177747	محمدي	تهران	17/74	١٠
771770	وكيلى	اصفهان	14/08	۱۰
۷۲۲۰۳۳۰۵	علينقى زاده	مشهد	18/47	١
7412.0.4	كمانى	يزد	۱۷/۵۶	۴
74.1257.1	احمدى	كرمان	10/44	۵
Y#1XY5#Y	جوادى	تهران	18/10	۵
V*T+9,179	حسين زاده	تبريز	17/7.	۶

عملگر مجموعه ها(چند مثال)

clg

		-0	
clg#	clgname	city	pname
١	رياضي	تهران	حسنى
1.	كامپيوتر	تهران	جاهد مطلق
-11	معمارى	يزد	نقره کار
17	معارف	تهران	خاتمى
٢	فيزيک	مشهد	ذاكر
٣	زبان	مشهد	مفتون
۴	صنايع	تهران	صادقيان
۵	شيمى	تهران	اشرفى زاده
۶	مواد	تبريز	ابوطالبى
٧	برق	تهران	جلالی

Prof.

Pname	Office	Esp	degree	Clg#
ميرشمسي	34	برق	دكترى	2
ابوطالبي	3	فناوري اطلاعات	دكترى	1
جلالى	2	شيمى	فوق ليسانس	4
مکرمی	13	كامپيوتر	دكترى	2

مثال ۱) لیست نام اساتیدی که رئیس دانشگاه نیستند؟

 Π_{pname} (Prof) - Π_{pname} (clg)

مثال ۲) لیست اسامی دانشجویان همنام اساتید؟

 Π_{sname} (stud) Π_{pname} (Prof)

عملگرهای پیوند

- ویژگی ها:
- □ بسیار پر کاربرد و قدرتمند
- □ سربار اجرایی بالا (زمان و حافظه)
 - ضرب دکارتی:
 - □ حتى الامكان از آن پرهيز كنيد.
- □ ضرب دکارتی دو جدول، جدولی است که ستون هایش همه ستونهای دو جدول است. جدول و سطرهایش تمام ترکیب های ممکن سطرهای آن دو جدول است.
 - □ نکته: اگر دو جدول ستون های همنام داشته باشند در برخی از نقطه از نقطه از نقطه گذاری استفاده می کنیم.

ضرب دکارتی:

People x Cars ?

People

Cars

Name	Age
Ali	20
Sara	30

Name	Car#
Benz	1021
Toyota	1000

People x Cars

People.name	Age	Cars.name	Car#
Ali	20	Benz	1021
Ali	20	Toyota	1000
Sara	30	Benz	1021
Sara	30	Toyota	1000

پیوند شرطی (theta join)

- این عملگر زیر مجموعه ای از ضرب دکارتی است که شرط θ روی سطرهای آن اعمال شده باشد.
 - 🗖 (ستون های آن معادل ستون های ضرب دکارتی است)
 - □ سوال: نام و شماره دروسی که توسط استاد قربانی ارائه می شود؟

sec

sec#	c#	s#	term	pname	score
1774	1 - 177	V1144Y4Y	751	هاشمی اصل	14/0.
1018	۵۱۵۱۶	7417774	۷۵۲	اشرفى زاده	۱۷
1441	1.174	V115274Y	۷۵۲	ميرشمسى	۱۵/۲۵
1141	1.174	۲۲۱۳۰۵۰۲	۷۵۲	ميرشمسى	۱۲/۵
1747	1 - 177	۷۲۲۰۳۳۰۵	751	قربانى	18/70

crs

c#	cname	unit	clg#
1 - 177	شبیه سازی	٣	1.
1.174	مدار منطقى	٣	1.
171	معارف ۱	٢	17
17088	ریاضی عمومی ۱	۴	١
۵۱۵۱۶	شيمي آلي	٣	۵
717.7	كنترل خطي	٣	٧

پیوند شرطی (theta join)

 دستور معادل سوال: نام و شماره دروسی که توسط استاد قربانی ارائه می شود؟

□ П_{cname,crs.c#} (crs

X

sec)

#crs.c#=sec.c " قربانی"=pname

□ جواب:

C#	Cname
10172	شبیه سازی

□ به نظر شما آیا اجرای دستور فوق از لحاظ سربار اجرایی با ضرب دکارتی تفاوت دارد؟

(natural join) پیوند طبیعی

- این نوع پیوند از عملگرهای اصلی جبر رابطه ای نیست، ولی از معروفترین و کارآمد ترین آنهاست.
 - تفاوتهای پیوند طبیعی با پیوند شرطی:
- در پیوند طبیعی، شرط "تساوی" روی همه ستون های همنام اعمال می
 گردد. اگر دو جدول ستون همنام نداشته باشند، آنگاه پیوند طبیعی همان ضرب دکارتی است.
 - □ ستون های تکراری فقط یک بار در خروجی ظاهر می شوند.

مثال:

است؛ ارائه شده است؛ -1 وشماره دروسی که توسط استاد قربانی ارائه شده است؛ $\Pi_{\text{c#}} \sigma_{\text{pname}="_{\text{قربانی}"}} (\text{sec})) <math>\infty (\Pi_{\text{c#,cname}}(\text{crs}))$

C#	Cname
10172	شبیه سازی

sec

sec#	c#	s#	term	pname	score
1774	1 - 177	V1144Y4Y	751	هاشمی اصل	14/0.
1018	۵۱۵۱۶	7417774	۷۵۲	اشرفى زاده	۱۷
1741	1.174	V114474Y	۷۵۲	ميرشمسى	16/Y6
1747	1.174	7717.0.7	۷۵۲	ميرشمسى	۱۲/۵
1747	1 - 177	٧٢٢٠٣٠٥	781	قربانى	18/50

crs

с#	cname	unit	clg#
1.177	شبیه سازی	٣	1.
1.174	مدار منطقى	٣	1.
171	معارف ۱	٢	17
17084	ریاضی عمومی ۱	۴	١
۵۱۵۱۶	شيمي آلي	٣	۵
Y17-7	كنترل خطي	٣	٧

مثال دیگر:

■ مشخصات كامل روساى دانشكده ها؟

$(\Pi_{pname} (clg)) \sim Prof$

Pname	Office	Esp	degree	Clg#
ابوطالبي	3	فناوري اطلاعات	دكترى	1
جلالى	2	شيمى	فوق ليسانس	4

Prof.

Pname	Office	Esp	degree	Clg#
ميرشمسي	34	برق	دكترى	2
ابوطالبي	3	فناوري اطلاعات	دكترى	1
جلالى	2	شيمى	فوق ليسانس	4
مكرمي	13	كامپيوتر	دكترى	2

clg

clg#	clgname	city	pname
١	رياضي	تهران	حسنى
1.	كامپيوتر	تهران	جاهد مطلق
11	معمارى	يزد	نقره کار
17	معارف	تهران	خاتمى
٢	فيزيک	مشهد	ذاكر
٣	زبان	مشهد	مفتون
۴	صنايع	تهران	صادقيان
۵	شيمى	تهران	اشرفى زاده
۶	مواد	تبريز	ابوطالبى
٧	برق	تهران	جلالى

مثال:

- خروجی دستور stud ∞ clg چیست؟
- □ مشخصات دانشجویان و دانشکده کسانی را که در همان شهر به دنیا آمده اند را می دهد.

	c	:lg	
clg#	clgname	city	pname
١	رياضي	تهران	حسنى
1.	كامپيوتر	تهران	جاهد مطلق
11	معماري	يزد	نقرہ کار

s#	sname	city	avg	clg#
Y117774X	محمدي	تهران	17/74	١٠
771770	وكيلى	اصفهان	14/08	1+
۵۰۳۳۰۲۷	علينقى زاده	مشهد	18/47	١
۲۳۱۲۰۵۰۴	کمانی	يزد	۱۷/۵۶	۴
VT155X+1	احمدى	كرمان	10/44	۵
7417724	جوادى	تهران	18/1.	۵
V#T-9,179	حسين زاده	تبريز	17/7.	۶

خاتمي

ذاكر

تهران

مشهد

11

۴

۵

معارف

فيزيك

نيم پيوند(semi-join)نيم

- این عملگر مانند پیوند طبیعی می باشد با این تفاوت که فقط ستونهای جدول اول در دستور را در خروجی نمایش می دهد.
 - مثال: خروجی دو دستور زیر چیست؟

 $\sigma_{\text{clg\#=1 ^term=771}}$ (crs α sec) $\sigma_{\text{clg\#=1 ^tunit=3}}$ (crs α sec)

crs Sec

c#	cname	unit	clg#
1.177	شبیه سازی	٣	1.
1.174	مدار منطقى	٣	1.
171	معارف ۱	٢	17
17084	ریاضی عمومی ۱	۴	١
۵۱۵۱۶	شيمي آلي	٣	۵
٧١٢٠٣	كنترل خطي	٣	٧

sec#	c#	s#	term	pname	score
1774	1 • 177	V117774X	751	هاشمی اصل	14/0.
1018	۵۱۵۱۶	7417774	۷۵۲	اشرفی زاده	۱۷
1747	1.174	Y11777.FX	۷۵۲	ميرشمسى	۱۵/۲۵
1741	1.174	٧٢١٣٠۵٠٢	۷۵۲	ميرشمسى	۱۲/۵
1747	1 - 177	۷۲۲۰۳۳۰۵	751	قربانی	18/70

Prof.

Pname	Office	Esp	degree	Clg#
ميرشمسي	3	برق	دكترى	2
ابوطالبى	3	فناوري اطلاعات	دكترى	1
جلالى	2	شيمى	فوق ليسانس	4
مکرمی	13	كامپيوتر	دكترى	2

Q_b^a د دستور نامگذاری

- ابتدا به سوال زیر پاسخ دهید؟
- □ نام اساتیدی که دفتر کارشان مشترک است؟
- برای پاسخ به سوال بالا باید جدول prof را با خودش پیوند دهیم.
- در این جا با استفاده از قابلیت دستور نامگذاری، ابتدا نام و دفتر اساتید را از جدول استاد با نامی دیگر ذخیره می کنیم. سپس این جدول را با جدول استاد پیوند می دهیم.

Prof X (
$$\rho_J(\Pi_{pname, office}(prof))$$
)
Prof.office=J.office ^ prof.pname \neq J.pname)

ماهیت دستور نامگذاری: نام b روی جدول a نیز گذاشته می شود.

دستور جایگزینی: -

- دستور جایگزینی، جدول حاصل از دستورات را ذخیره می کند تا در ادامه کار مورد استفاده قرار بگیرد.
 - مثال: نام اساتیدی که دفتر کارشان مشترک است؟
- □ Temp \leftarrow ($\Pi_{pname, office}$ (prof))
- ProfXTemp

Prof.office=temp.office ^ prof.pname≠temp.pname)

دستور تقسیم: ÷

- این دستور در زبان های متداول بانک اطلاعات مستقیما پیاده سازی نشده است.
- مثال: دانشجویانی که همه درسهای استاد جلالی را گرفته اند؟ □ آیا سوال درست است؟
 - □ با استفاده از دستور تقسیم می توان به سوال به راحتی جواب داد!!!
- □ در تقسیم، مقسوم علیه بخش مربوط به کلمه "همه" می باشد و مقسوم بخش با قی مانده دستور می باشد. در مقسوم باید صفتهای مقسوم علیه وجود داشته باشد.

مثال:

یس باید:

- مثال: دانشجویانی که همه درسهای استاد جلالی را گرفته اند؟
 - مقسوم علیه: همه درسهای استاد جلالی

های s#, sname می باشد.

- □ Temp ← $\Pi_{c\#}(\sigma_{pname="_{ellb}}"(sec))$ $\sigma_{pname="_{ellb}}$ σ_{pname} σ_{pname}
- □ Temp2 ← Π_{s#,sname,c#}(stud ∞sec) اکنون می توان تقسیم را انجام داد و نتیجه آن(باقی مانده) شامل ستون

temp2 ÷ temp