上海大学 计算机学院

《数字逻辑实验》报告 6

姓名 ___严昕宇__ 学号 __20121802_

时间 周四 10-12 机位 24 指导教师 刘学民

实验名称: 时序电路 ___

一、实验目的

- 1. 使用 74LS112 芯片,构成 2 位同步二进制加计数器,并测试其功能。;
- 2. 设计用 2 片双 D 触发器 74LS74 构成单向移位寄存器的原理图,在 Quartus II 中根据逻辑图接线并仿真测试后,下载到 FPGA 进行硬件测试。

二、实验原理

依据《数字逻辑实验指导书》P.实验-60、P.实验-74的相关内容

三、实验内容

- 1. 实验任务一(同步二进制计数器)
 - (1) 实验步骤
 - ① 用 74LS112 芯片构造 2 位同步二进制加计数器, 其逻辑电路图如下

图 1 2 位同步二进制加计数器

各触发器的驱动方程为: $J_0 = K_0 = 1$ $J_1 = K_1 = Q_0$

计数器的状态方程为: $Q_0^{n+1} = \overline{Q_0}$ $Q_0^{n+1} = Q_0 \overline{Q_1} + \overline{Q_0} Q_1$

电路的输出方程即进位: $C = Q_0Q_1Q_2Q_3$

且上述方程均在 CP 下降沿有效

- ② 按照图 1 连接逻辑电路图, R、S 接开关; CP 接时钟的脉冲信号;
- O₀和 O₁接输出信号的数码显示管;
- ③ 测试前,利用对所有的触发器清零;
- ④ 逻辑功能测试

输入连续脉冲,测试其功能,观察数码显示管的变化。

(2) 实验现象

每当输入一个脉冲,计数器将按加1规律变化,到3以后回到0重新按加1规律变化,并重复此循环。

输入脉冲序号	Q ₁	Q_0	等效十进制数	实验现象 [数码管显示]
0	0	0	0	0
1	0	1	1	1
2	1	0	2	2
3	1	1	3	3
4	0	0	0	0

表 1 同步二进制计数器实验现象记录表

(3) 数据记录、分析与处理

数据记录: O_1O_0 由 $00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \rightarrow \cdots$

分析: 2 位同步二进制计数器在当低位不向高位进位时,令高位触发器的 JK=0,触发器的状态保持不变;低位向高位进位时,令高位触发器的 JK=1,触发器发生翻转,计数加 1.当低位全 1 时,再加 1,则低位向高位进位。

(4) 实验结论

根据实验数据可知,成功使用 74LS112 芯片,完成了 2 位同步二进制加计数器的搭建与测试,与理论一致。

2. 实验任务二(单向移位寄存器)

(1) 实验步骤

① 使用 2 片双 D 触发器 74LS74,构成单向位移(右移)寄存器,其逻辑电路图如图 2 所示。

图 2 D 触发器组成的右移位寄存器

② 在 Quartus II 中创建文件夹与工程文件,创建一个图形文件,根据逻辑电路图并画出图 3;

图 3 用 Quartus II 画出的逻辑电路图

- ④ 选择器件型号,定义 FPGA 的 IO 管脚功能,如定义时钟 CP 端为 8,输入端 DI 为 9,清除端 R 为 26,预置端 S 为 27,输出端 Q_1 、 Q_2 、 Q_3 、 Q_4 为 17、18、19、21;
- ⑤ 用模拟软件对步骤 1 创建的图像文件进行模拟测试,并用编译工具编译:

图 4 用 Quartus II 进行的波形时序仿真

- ⑥ 连接数据线,下载设计的电路到 FPGA;
- ⑦ 根据附录 B 中的 DICE-SEM II 实验箱与 EP1K10、EP1K30 引脚对照表,时钟 CP 对应 11,连接时钟脉冲信号;输入端 DI 对应 12,清除端 R 对应 26,预置端 S 对应 27,将输入端、清除端、预置端连接开关;输 出端 Q_1 、 Q_2 、 Q_3 、 Q_4 依次对应 14、15、16、17,将输出端发光数码显示管。用开关和数码显示管测试 FPGA 的功能;
- ⑧ 拨动开关,观察数码显示管的变化,填写表 3;

(2) 实验现象

表 3 单向移位寄存器实验现象记录表

CP	输入 DI = 1/输出								
	Q1	Q2	Q3	Q4					
↑	1	0	0	0					
↑	0	1	0	0					
↑	0	0	1	0					
↑	0	0	0	1					
↑	0	0	0	0					

(3) 数据记录、分析与处理

单向移位寄存器一个触发沿的时刻只够各个 D 触发器工作一次,所以输入 DI 一次向前一位, $Q_1Q_2Q_3Q_4$ 的值依次改变。

(4) 实验结论

根据实验数据可知,成功使用 2 片双 D 触发器 74LS74,构成单向位移 (右移)寄存器。

四、建议和体会

通过本次实验,使我理解了计数器和寄存器的原理,并学习了用掌握用74LS112构成同步二进制计数器、2片双 D 触发器 74LS74构成单向移位寄存器的方法。并且在此次实验中,第一次使用了 DICE-SEMII实验箱上的数码显示管,其相比小灯更直接易懂。

在这次实验中,我不仅学习了解了芯片的功能,而且也发现,实验箱上会存 在许多芯片或者按钮出现故障或者失灵的问题。实践中没有出现问题是不可能的, 我们必须有随机应变的能力,通过不断的试错,才能够完成目标。

五、思考题

- 1. 如果构成 3 位同步二进制加(减)计数器,该如何构建?
- ① 3 位同步二进制加计数器 逻辑电路图

时序图

② 3 位同步二进制减计数器逻辑电路图

时序图

2. 如何用 74LS74 构成双向移位寄存器?

参考《数字逻辑》教材 P169 页,可得

中规模集成电路寄存器有许多种类,4位双向移位寄存器是一种常用的中规模寄存器,其典型型号是74194。图 6.17(a)、(b)给出了74194的逻辑电路图和逻辑符号。

图 6.17 4 位双向移位寄存器 74194 的逻辑电路图和逻辑符号

使用基本的逻辑元件, 可以得到此组合逻辑电路, 如下图

根据以上的结果,也可以得到双向移位寄存器的功能表,如下图 **6.9 双向移位寄存器功能表

		4		输	人						输	出	
\overline{C}_r	CP	$M_{\rm B}$	M_{A}	D_{R}	D_0	D_1	D_2	D_3	D_{L}	Q_0	Q_{i}	Q_2	Q_3
0	ø	ø	ø	ø	ø	ø	ø	ø	ø	0	0	0	0
1	0	ø	ø	ø	ø	ø	ø	ø	ø	保			持
1	<u>.</u>	1	1	ø	d_0	d_1	d_2	d_3	ø	d_0	d_1	d_2	d_3
1	£	0	1	1	ø	ø	ø	ø	ø	1	Q_{0n}	Q_{1n}	Q_{2n}
1	<u>.</u>	0	1	0	ø	ø	ø	ø	ø	0	Q_{0n}	$Q_{1\mu}$	Q_{2n}
1	.	1	0	ø	ø	ø	ø	ø.	1	Q1.	Q_{2n}	Q_{3n}	1
1	1	1	0	ø	ø	ø	ø	ø	0	Qi.,	Q_{2n}	Q_{3n}	0
1	ø	0	0	ø	ø	ø	ø	ø	ø	保			持

从功能表可以看出,在工作方式选择控制 M_A 和 M_B 的作用下,74194 具有并行输入、右移串行输入、左移串行输入、保持和清除等功能。