ICS HW3

PB22111679 孙婧雯

T1

题意: 32 bit 指令按照如下成分构成: OPCODE + SR + DR + IMM.

如果有 64 个操作码和 56 个寄存器,那么 IMM 能表示的数据范围是多大?

opcode 有 64个,需要 6 bit; register 有 56 个,也需要 6 bit,则 IMM 还有 32 - 6 - 6 - 6 = 14 bit,数据范围是 $-2^{13}\sim 2^{13}-1$ 。

T3

题意: 执行题目所给的两条指令, 什么情况下第三条指令位于 x3009?

前两条指令分别是:

AND 将 R2 + R1 的结果储存到 R0;

BR 如果上一条指令操作的寄存器的值大于等于 0,那么跳转 PCoffset9 = 7;

那么只要 $R_1 + R_2 \geq 0$ 就满足条件。

T4

题意:描述寄存器位数变小之后对操作指令是否有影响。

根据中文课本 P79 的指令集构成成分可以回答:

1. 对操作 AND(0101) 和 ADD(0001) 有好处,寄存器位数变小带来的影响是 IMM 位数增加,可操作 范围变大;

对操作 NOT(1001) 没有影响,因为 NOT 比寄存器低的位全部置 1,不会有变化。

- 2. 对操作 LD(0010) 和 ST(0011) 有好处,寄存器位数变小使得偏移量 PCoffset9 位数增加,可寻址范围变大;
- 3. 对操作 BR(0000) 没有影响,因为 BR 指令的成分本身就不含有寄存器。

T5

题意:根据题目所给地址和输入,补全 2^2-by-3 bit memory 的状态量。

需要注意的是只有使能信号 EN = 1的时候才能写入内存。因此我们只要看使能状态下,每个地址最终被覆盖为什么数据即可。

根据表格知道最终数据如下:

A[1:0]	Cycle No.	$D_{in}[2:0]$
0 0	6	1 0 1
0 1	4	0 1 1
1 0	3	010
1 1	7	100

最终状态是 Cycle No.7 ,即 $D_{out}[2:0]$ 。

补全图片如下:

T6

题意:对寻址能力为 5 bit 的 MAR MDR 进行 R/W 操作,补全操作指令和操作后的结果。 (推理能力++)

注意 MDR 只能写入已经读入的数据。

注意到从 Access1 到 Access3, x4000 的值和 x4001 的值都变化了,并且 x4001 末态的值和 x4000 不同,证明 Access1-3 应该读入一次写入两次 (实际上可以假定存在 Access0 是对于 x4000 的数据的读入?),那么 operation No.2 应为 R;观察 x4001 的数据来源,符合 _0_0 特点的只有 x4003。则第一张表格的前三行填写如下:

Operation No.	R/W	MAR	MDR
1	W	x4000	11110
2	R	x4003	10110
3	W	x4001	10110

观察从 Access3 到 Access5, x4003 的值也变化,且 01101 和 Operation No.2 读入的数据不同,那么 Operation No.4-5 应该是先 R 后 W; 考虑从哪里读入 01101,只能是 x4002,那么第一张表格补全如下:

Operation No.	R/W	MAR	MDR
1	W	x4000	11110
2	R	x4003	10110
3	W	x4001	10110
4	R	x4002	01101
5	W	x4003	01101

从而第二张表格补全如下:

Address	Before Access 1	After Access 3	After Access 5
x4000	01101	11110	11110
x4001	11010	10110	10110
x4002	01101	01101	01101
x4003	10110	10110	01101
x4004	11110	11110	11110

T8

题意:用 LC-3 指令实现 XOR 运算。

(推理能力++) (这真的不是数字电路题吗 doge)

我们知道

$$R_1 \ XOR \ R_2 = R_1 \ \& \ \overline{R_2} \ + \ R_2 \ \& \ \overline{R_1} = \overline{(\overline{R1} \ \& \ \overline{R_2})} \ \& \ \overline{(\overline{R2} \ \& \ \overline{R_1})}$$

根据最后一条指令推理

$$1001\ 011\ 000\ 1111111\ \Rightarrow\ \overline{R_0}\ to\ R3$$

$$R_0 = \overline{(R1 \& \overline{R_2})} \& \overline{(R2 \& \overline{R_1})}$$
 (1)

那么 x3006 一定是一个 AND 操作; 并且根据上面已知的其他指令可以写出

$$1001\ 110\ 010\ 1111111\ \Rightarrow\ \overline{R_2}\ to\ R_6$$
 $0101\ 101\ 111\ 000\ 010\ \Rightarrow\ R_7\ \&R_2\ to\ R_5$

则 x3000 一定是 $\overline{R_1} \Rightarrow to R_7$, 8 个操作整体的思路是符合 (1) 式的。 我们先补全所有的逻辑运算:

$$egin{aligned} \overline{R_1} &\Rightarrow to \, R_7 \ \overline{R_2} &\Rightarrow to \, R_6 \ R_7 \, \& R_2 \, to \, R_5 \ \overline{R_6} \, \& R_1 \, to \, R_4 \ \overline{R_5} &\Rightarrow to \, R_1 \ \overline{R_4} &\Rightarrow to \, R_2 \ \overline{R_0} &= R_1 \, \& \, R_2 \ \overline{R_0} \, to \, R_3 \end{aligned}$$

达到题目要求的 XOR 功能,从而补全表格如下:

Address	Instruction
x3000	1001 111 001 111111
x3001	1001 100 010 111111
x3002	0101 101 111 000 010
x3003	0101 100 110 000 001
x3004	1001 001 101 111111
x3005	1001 010 100 111111
x3006	0101 000 001 000 010
x3007	1001 011 000 111111

T10

题意: 描述 BR 指令的问题, 以及 JMP 指令如何解决这些问题。

使用 BR 指令时,如果上一个操作过的寄存器的值符合指令中的 n z p 的条件,则对现有的 PC 进行 offset 跳转,否则继续执行下一个指令。这要求我们必须预知或者规定 BR 前面的一条语句,以及 PC 此时的地址。 JMP 指令则不需要知道这些,使用直接寻址跳转,非常方便。

备注

由于本周和上周进行科考协会拉练的准备工作,本次作业只写了 7 道题 qwq。(敲公式还是很花时间的qwq)

助教辛苦了!