

Specification and Verification

Lecture 2: Transition systems

Guillermo A. Pérez

September 30, 2024

TL;DR: This lecture in short

What is a TS? Why study them?

A simple model of systems and how they evolve, we will focus on them as the main model on which we apply model checking.

Main references

- Christel Baier, Joost-Pieter Katoen: Principles of Model Checking. MIT Press 2018.
- Mickael Randour: Verification course @ UMONS.

Required and target competences

What tools do we need?

Modelling, Automata theory, and computational models

What skills will we obtain?

- theory: the main computational model we will be using (transition systems) and its properties
- practice: TSs as models of real systems, the state-explosion problem

How will these skills be useful?

We cannot do verification (model checking, to be precise) if we do not have a model!

Outline

- 1 Transition systems
- 2 Modelling systems with TSs
- 3 Comparing TSs: why and how
- 4 Trace inclusion and equivalence

Beverage-vending transition system

- Model describing the behaviour of a system
- **State**: current mode of the system, current values of program variables, current colour of a traffic light...

Beverage-vending transition system

- Model describing the behaviour of a system
- **State**: current mode of the system, current values of program variables, current colour of a traffic light...
- **Transitions** as atomic actions: mode switching, execution of a program instruction, change of colour...

Formal definition

Definition: Transition system (TS)

Tuple $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ with

- lacksquare S the set of states,
- A the set of actions,
- $\longrightarrow \subseteq S \times A \times S$ the transition relation,
- $I \subseteq S$ the set of initial states,
- P the set of atomic propositions, and
- $L: S \longrightarrow 2^P$ the labelling function

Formal definition

Definition: Transition system (TS)

Tuple $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ with

- *S* the set of states,
- A the set of actions,
- $\longrightarrow \subseteq S \times A \times S$ the transition relation,
- $I \subseteq S$ the set of initial states,
- P the set of atomic propositions, and
- $L: S \longrightarrow 2^P$ the labelling function

Notation: sometimes we write $s \xrightarrow{a} s'$ instead of $(s, a, s') \in \longrightarrow$.

- \blacksquare $S = \{pay, select, beer, soda\}$
- \blacksquare $A = \{insert_coin, get_beer, get_soda, <math>\tau\}$
- Some transitions: $pay \xrightarrow{insert_coin} select$, $select \xrightarrow{\tau} beer$
- $\blacksquare I = \{pay\}$

What about the propositions and the labelling?

Labelling the example TS

- Simple choice: $\forall s, L(s) = \{s\}.$
- Say the property is "the vending machine only delivers a drink after providing a coin"
 - $\hookrightarrow P = \{paid, drink\}, L(pay) = \emptyset, L(select) = \{paid\} \text{ and } L(soda) = L(beer) = \{paid, drink\}.$
 - ⇒ useful to model check logic formulas

Labelling the example TS

- Simple choice: $\forall s, L(s) = \{s\}.$
- Say the property is "the vending machine only delivers a drink after providing a coin"
 - $\hookrightarrow P = \{paid, drink\}, L(pay) = \emptyset, L(select) = \{paid\} \text{ and } L(soda) = L(beer) = \{paid, drink\}.$
 - ⇒ useful to model check logic formulas
- When the labelling is not important, we often omit it
- We do the same for actions or simply use *internal actions* (ε or τ)

Actions are often used to model communication mechanism (e.g., parallel processes)

When two actions are possible (select), the choice is made non-deterministically!

When two actions are possible (select), the choice is made non-deterministically!

lacktriangle Also true for the initial state if |I|>1

When two actions are possible (select), the choice is made non-deterministically!

- Also true for the initial state if |I| > 1
- Meaningful to model e.g. *interleaving* of parallel executions

When two actions are possible (select), the choice is made non-deterministically!

- Also true for the initial state if |I| > 1
- Meaningful to model e.g. *interleaving* of parallel executions
- Also for *abstraction* or to model an *uncontrollable environment* (here, drink choice by the user)

Let \mathcal{T} be a TS. For $s \in S$ and $a \in A$, we define the following sets.

Let \mathcal{T} be a TS. For $s \in S$ and $a \in A$, we define the following sets.

Direct (a-)successors of s:

$$\operatorname{Post}(s,a) = \left\{ s' \in S \mid s \xrightarrow{a} s' \right\}, \quad \operatorname{Post}(s) = \bigcup_{s \in A} \operatorname{Post}(s,a).$$

Let \mathcal{T} be a TS. For $s \in S$ and $a \in A$, we define the following sets.

Direct (a-)successors of s:

$$\operatorname{Post}(s,a) = \left\{ s' \in S \mid s \xrightarrow{a} s' \right\}, \quad \operatorname{Post}(s) = \bigcup_{a \in A} \operatorname{Post}(s,a).$$

Direct (a-)predecessors of s:

$$\operatorname{Pre}(s,a) = \left\{ s' \in S \mid s' \xrightarrow{a} s \right\}, \quad \operatorname{Pre}(s) = \bigcup_{a \in A} \operatorname{Pre}(s,a).$$

Let \mathcal{T} be a TS. For $s \in S$ and $a \in A$, we define the following sets.

Direct (a-)successors of s:

$$\operatorname{Post}(s,a) = \left\{ s' \in S \mid s \xrightarrow{a} s' \right\}, \quad \operatorname{Post}(s) = \bigcup_{a \in A} \operatorname{Post}(s,a).$$

Direct (a-)predecessors of s:

$$\operatorname{Pre}(s,a) = \left\{ s' \in S \;\middle|\; s' \stackrel{a}{\longrightarrow} s \right\}, \quad \operatorname{Pre}(s) = \bigcup_{s \in A} \operatorname{Pre}(s,a).$$

+ natural extensions to subsets of S

Some examples:

 $\blacksquare \operatorname{Post}(\operatorname{select}) = \{\operatorname{soda}, \operatorname{beer}\},$

Some examples:

- $\blacksquare \operatorname{Post}(\operatorname{select}) = \{\operatorname{soda}, \operatorname{beer}\},$
- $Pre(pay, get_beer) = \{beer\},\$

Some examples:

- $\blacksquare \operatorname{Post}(\operatorname{select}) = \{\operatorname{soda}, \operatorname{beer}\},$
- $Pre(pay, get_beer) = \{beer\},\$
- Post(beer, τ) = \emptyset .

Terminal states

A state $s \in S$ is called terminal iff $Post(s) = \emptyset$.

- For *reactive systems*, those states should in general be avoided
- A.k.a. sinks or trapping states

 \Rightarrow deadlocks

Let \mathcal{T} be a TS.

Let \mathcal{T} be a TS.

Finite execution fragment:

 $h = s_0 a_1 s_1 a_2 \dots a_n s_n$ such that $s_0 \xrightarrow{a_1} \dots \xrightarrow{a_n} s_n$.

Let \mathcal{T} be a TS.

Finite execution fragment:

 $h = s_0 a_1 s_1 a_2 \dots a_n s_n$ such that $s_0 \stackrel{a_1}{\longrightarrow} \dots \stackrel{a_n}{\longrightarrow} s_n$.

Infinite execution fragment:

 $ho = s_0 a_1 s_1 a_2 \ldots$ such that $s_i \stackrel{a_{i+1}}{\longrightarrow} s_{i+1}$ for all $i \geq 0$

Let \mathcal{T} be a TS.

Finite execution fragment:

 $h = s_0 a_1 s_1 a_2 \dots a_n s_n$ such that $s_0 \xrightarrow{a_1} \dots \xrightarrow{a_n} s_n$.

Infinite execution fragment:

 $ho = s_0 a_1 s_1 a_2 \ldots$ such that $s_i \stackrel{a_{i+1}}{\longrightarrow} s_{i+1}$ for all $i \geq 0$

Maximal execution fragment:

Fragment that cannot be prolonged

Initial execution fragment:

Fragment starting in $s_0 \in I$

Execution:

Initial and maximal execution fragment

Execution:

Initial and maximal execution fragment

Reachable states:

$$\begin{aligned} \operatorname{Reach}(\mathcal{T}) &= \left\{ s \in S \;\middle|\; \exists \; s_0 \in I \;\land\; s_0 \xrightarrow{a_1} \ldots \xrightarrow{a_n} s_n = s \right\} \\ &= \operatorname{Post}^*(I) \end{aligned}$$

- $\begin{array}{c} \bullet \quad \rho_1 = \textit{pay} \stackrel{\textit{insert_coin}}{\longrightarrow} \textit{select} \stackrel{\tau}{\longrightarrow} \textit{beer} \stackrel{\textit{get_beer}}{\longrightarrow} \textit{pay} \stackrel{\textit{insert_coin}}{\longrightarrow} \dots \\ \hookrightarrow \rho_1 \text{ is an execution} \end{array}$
- $\begin{array}{c} \bullet \quad \rho_2 = beer \stackrel{get_beer}{\longrightarrow} pay \stackrel{insert_coin}{\longrightarrow} select \stackrel{\tau}{\longrightarrow} beer \stackrel{get_beer}{\longrightarrow} \dots \\ \hookrightarrow \quad \rho_2 \text{ is not (maximal but not initial)} \end{array}$

- $\begin{array}{c} \bullet \quad \rho_2 = beer \stackrel{get_beer}{\longrightarrow} pay \stackrel{insert_coin}{\longrightarrow} select \stackrel{\tau}{\longrightarrow} beer \stackrel{get_beer}{\longrightarrow} \dots \\ \hookrightarrow \quad \rho_2 \text{ is not (maximal but not initial)} \end{array}$
- $h_3 = pay \xrightarrow{insert_coin} select \xrightarrow{\tau} soda \xrightarrow{get_soda} pay$ $\hookrightarrow h_3$ is not (initial but not maximal)

- $h_3 = pay \xrightarrow{insert_coin} select \xrightarrow{\tau} soda \xrightarrow{get_soda} pay$ $\hookrightarrow h_3$ is not (initial but not maximal)
- Reach(\mathcal{T}) = S

Outline

- 1 Transition systems
- 2 Modelling systems with TSs
- 3 Comparing TSs: why and how
- 4 Trace inclusion and equivalence

Independent traffic lights

- Concurrency is represented by interleaving
- Non-deterministic choice between activities of simultaneously acting processes
- In general, needs to be complemented with fairness assumptions

Mutex with semaphores (1/3)

- Program graphs (PGs) retain conditional transitions
- - \Rightarrow Then we consider the TS $\mathcal{T}(PG_1 \mid\mid\mid PG_2)$

 $PG_1 \mid \mid \mid PG_2$ for semaphore-based mutex

 $PG_1 \mid \mid \mid PG_2$ for semaphore-based mutex

The TS unfolding will tell us if $\langle crit_1, crit_2 \rangle$ is reachable (which we want to avoid obviously)

semaphore-based mutex

 $\mathcal{T}(\textit{PG}_1 \mid\mid\mid \textit{PG}_2)$ for

Mutual exclusion is verified: $\langle c_1, c_2, y = ... \rangle \notin \operatorname{Reach}(\mathcal{T}(PG_1 \mid \mid PG_2))$

The scheduling problem in $\langle w_1, w_2, y = 1 \rangle$ is left open

The scheduling problem in $\langle w_1, w_2, y = 1 \rangle$ is left open

→ implement a discipline later (LIFO, FIFO, etc) or use an algorithm solving the issue explicitly: Peterson's mutex

Peterson's algorithm (1/2)

```
 \begin{array}{|c|c|c|c|}\hline P_1 & \textbf{loop forever}\\ \vdots & (* \text{ noncritical actions } *)\\ (b_1 \coloneqq \text{true}; \ x \coloneqq 2); & (* \text{ request } *)\\ \textbf{wait until} \ (x = 1 \lor \neg b_2)\\ \textbf{do critical section od}\\ b_1 \coloneqq \text{false} & (* \text{ release } *)\\ \vdots & (* \text{ noncritical actions } *)\\ \textbf{end loop} & \end{array}
```


Program graphs for Peterson's mutex

 \Rightarrow The value of x determines who will enter the critical section

Peterson's algorithm (2/2)

Peterson's mutex

 $\mathcal{T}(PG_1 \mid\mid\mid PG_2)$ for

Peterson's algorithm (2/2)

Mutual exclusion is verified: $\langle c_1, c_2, x = ... \rangle \notin \operatorname{Reach}(\mathcal{T}(PG_1 ||| PG_2))$

Peterson's algorithm (2/2)

Peterson's also has bounded waiting, hence fairness is satisfied

Verification techniques operate on TSs obtained from programs or program graphs. Their size can be **huge**, or they can even be **infinite**. Some sources:

Verification techniques operate on TSs obtained from programs or program graphs. Their size can be **huge**, or they can even be **infinite**. Some sources:

Variables

- PG with 10 locations, three Boolean variables and five integers in $\{0, \dots, 9\}$ already contains $10 \cdot 2^3 \cdot 10^5 = 8.000.000$ states
- Variables in infinite domain ⇒ infinite TS!

Verification techniques operate on TSs obtained from programs or program graphs. Their size can be **huge**, or they can even be **infinite**. Some sources:

Variables

- PG with 10 locations, three Boolean variables and five integers in $\{0, \dots, 9\}$ already contains $10 \cdot 2^3 \cdot 10^5 = 8.000.000$ states
- Variables in infinite domain ⇒ infinite TS!

Parallelism

- $\blacksquare \ \mathcal{T} = \mathcal{T}_1 \ ||| \cdots \ ||| \ \mathcal{T}_n \ \Rightarrow \ |S| = |S_1| \cdots |S_n|.$

Verification techniques operate on TSs obtained from programs or program graphs. Their size can be **huge**, or they can even be **infinite**. Some sources:

Variables

- PG with 10 locations, three Boolean variables and five integers in $\{0, ..., 9\}$ already contains $10 \cdot 2^3 \cdot 10^5 = 8.000.000$ states
- Variables in infinite domain ⇒ infinite TS!

Parallelism

- $\blacksquare \ \mathcal{T} = \mathcal{T}_1 \ ||| \cdots \ ||| \ \mathcal{T}_n \ \Rightarrow \ |S| = |S_1| \cdots |S_n|.$

 - ⇒ Need for (a lot of) **abstraction** and efficient **symbolic** techniques

Pause

A short break?

Outline

- 1 Transition systems
- 2 Modelling systems with TSs
- 3 Comparing TSs: why and how
- 4 Trace inclusion and equivalence

Why?

- To see if two TSs are *similar*.
 - Is one a **refinement** or an **abstraction** of the other?
 - Are the two *indistinguishable* w.r.t. observable properties?

Why?

- To see if two TSs are *similar*.
 - Is one a **refinement** or an **abstraction** of the other?
 - Are the two *indistinguishable* w.r.t. observable properties?
- To be able to *model check large systems*
 - If \mathcal{T}_1 is a small abstraction of \mathcal{T}_2 that preserves the property to be checked, then model checking \mathcal{T}_1 is more efficient!
 - → Can help for large or infinite systems: not all complexity is necessary!

Why?

- To see if two TSs are *similar*.
 - Is one a **refinement** or an **abstraction** of the other?
 - Are the two *indistinguishable* w.r.t. observable properties?
- To be able to *model check large systems*
 - If \mathcal{T}_1 is a small abstraction of \mathcal{T}_2 that preserves the property to be checked, then model checking \mathcal{T}_1 is more efficient!
- What does it mean to *preserve a property*?
 - Each type of relation preserves a different logical fragment (intuitively, a different kind of properties)
 - \hookrightarrow Depends on what we are interested in

Linear vs. branching time semantics (1/2)

TS \mathcal{T} with state labels $P = \{a, b\}$ (state and action names are omitted)

Linear vs. branching time semantics (1/2)

TS T with state labels $P = \{a, b\}$ (state and action names are omitted)

- **Linear time semantics** deal with *traces* of executions, e.g. the language of (in)finite words described by \mathcal{T}
- E.g., do all executions eventually reach {b}?

Linear vs. branching time semantics (2/2)

Linear vs. branching time semantics (2/2)

- **■** Linear time properties
 - ⇒ Trace equivalence/inclusion is an obvious choice

- **■** Linear time properties
 - ⇒ Trace equivalence/inclusion is an obvious choice
 - But language inclusion is costly! (PSPACE-complete)

- **■** Linear time properties
 - ⇒ Trace equivalence/inclusion is an obvious choice
 - But language inclusion is costly! (PSPACE-complete)
 - → Other relations provide a more efficient alternative (P-complete)

■ Linear time properties

- ⇒ Trace equivalence/inclusion is an obvious choice
- But language inclusion is costly! (PSPACE-complete)
- → Other relations provide a more efficient alternative (P-complete)

■ Branching time semantics

- ⇒ Bisimulation: related states can mutually mimic all individual transitions
- ⇒ **Simulation**: one state can mimic all step-wise behaviour of the other, but the reverse is not necessary

■ Linear time properties

- ⇒ Trace equivalence/inclusion is an obvious choice
- But language inclusion is costly! (PSPACE-complete)
- → Other relations provide a more efficient alternative (P-complete)

Branching time semantics

- ⇒ Bisimulation: related states can mutually mimic all individual transitions
- ⇒ **Simulation**: one state can mimic all step-wise behaviour of the other, but the reverse is not necessary

In the following, we assume state-based labelling and often that there is no deadlock (self-loops otherwise)

Outline

- 1 Transition systems
- 2 Modelling systems with TSs
- 3 Comparing TSs: why and how
- 4 Trace inclusion and equivalence

What is a trace? An execution seen through its labelling

What is a trace? An execution seen through its labelling

Definition: paths and traces

Let \mathcal{T} be a TS and $\rho = s_0 a_1 s_1 a_2 \dots$ one of its executions:

- \blacksquare its *path* is $\pi = \operatorname{path}(\rho) = s_0 s_1 s_2 \dots$,
- its trace is $trace(\pi) = L(\pi) = L(s_0)L(s_1)L(s_2)...$

We denote $Paths(\mathcal{T})$ (resp. $Traces(\mathcal{T})$) the set of all paths (resp. traces) in \mathcal{T} .

What is a trace? An execution seen through its labelling

Definition: paths and traces

Let \mathcal{T} be a TS and $\rho = s_0 a_1 s_1 a_2 \dots$ one of its executions:

- \blacksquare its *path* is $\pi = \operatorname{path}(\rho) = s_0 s_1 s_2 \dots$,
- its trace is $trace(\pi) = L(\pi) = L(s_0)L(s_1)L(s_2)...$

We denote $Paths(\mathcal{T})$ (resp. $Traces(\mathcal{T})$) the set of all paths (resp. traces) in \mathcal{T} .

Defined for fragments starting in a state s (Paths(s) and Traces(s)), a subset of states $S' \subseteq S$ (Paths(S') and Traces(S')), as well as for *finite* fragments (Paths_{fin} and Traces_{fin}).

■ Notice the added self-loop on (b)

■ Notice the added self-loop on (b)

Paths:

$$\pi_2 = -$$

$$\pi_3 = -$$

- Notice the added self-loop on (b)

Paths:

$$\pi_1 = -$$

$$\pi_2 = -$$

$$\pi_3 = -$$

Corresponding traces:

$$trace(\pi_1) = \{a\} \varnothing \{a\} \varnothing \{a\} \varnothing \dots = (\{a\} \varnothing)^{\omega}$$
$$trace(\pi_2) = \{a\} \varnothing \{a, b\} \{a, b\} \{a, b\} \{a, b\} \dots = \{a\} \varnothing \{a, b\}^{\omega}$$
$$trace(\pi_3) = \{a\} \varnothing \{a\} \varnothing \{b\} \{b\} \dots = \{a\} \varnothing \{a\} \varnothing \{b\}^{\omega}$$

- Notice the added self-loop on (b)
- Paths:

$$\pi_1 = -$$

$$\pi_2 = -$$

$$\pi_3 = -$$

Corresponding traces:

$$\operatorname{trace}(\pi_1) = \{a\}\varnothing\{a\}\varnothing\{a\}\varnothing\ldots = (\{a\}\varnothing)^\omega \\ \operatorname{trace}(\pi_2) = \{a\}\varnothing\{a,b\}\{a,b\}\{a,b\}\{a,b\}\ldots = \{a\}\varnothing\{a,b\}^\omega \\ \operatorname{trace}(\pi_3) = \{a\}\varnothing\{a\}\varnothing\{b\}\{b\}\ldots = \{a\}\varnothing\{a\}\varnothing\{b\}^\omega \\ \operatorname{Traces are (infinite) words on alphabet } 2^P$$

 \hookrightarrow alphabet exponential in |P|

What are the trace languages of this TS?

What are the trace languages of this TS?

Finite traces:

$$\operatorname{Traces}_{\operatorname{fin}}(\mathcal{T}) = \{a\} (\varnothing \{a,b\}^* \{a\})^* \left[\varepsilon \mid \varnothing \left(\{b\}^* \mid \{a,b\}^*\right)\right]$$

What are the trace languages of this TS?

■ Finite traces:

$$\operatorname{Traces}_{\operatorname{fin}}(\mathcal{T}) = \{a\}(\varnothing \{a,b\}^* \{a\})^* \left[\varepsilon \mid \varnothing \left(\{b\}^* \mid \{a,b\}^*\right)\right]$$

■ Traces:

$$R = (\emptyset \{a, b\}^* \{a\})$$

Traces $(\mathcal{T}) = \{a\} R^* [R^{\omega} | (\emptyset \{a, b\}^{\omega}) | \emptyset \{b\}^{\omega}]$

Trace inclusion and equivalence example

Trace-equivalent systems

For $P = \{pay, soda, beer\}$, these TSs are trace-equivalent.

→ They are indistinguishable by LT properties

Summary and conclusions

How do we compare TSs?

It depends on what kind of behaviour we want to focus on:

- For linear-time properties we can look at the trace languages
- For branching-time properties we can look at simulation and bisimulation

Verification

- TSs are compared when we include model refinement in our design process
- There are algorithms to decide trace equivalence and inclusion
- Deciding the existence of a (bi)simulation is less complex
- We will focus on specifying desired properties via logic

