

Public Key Cryptography

Levente Buttyán CrySyS Lab, BME buttyan@crysys.hu

Model of asymmetric key encryption

Public-key encryption schemes

- functions (algorithms) and terminology:
 - key-pair generation function G() = (K+, K-)
 K+ public key
 F- private key
 encryption function E(K+, X) = Y
 X plaintext

Y – ciphertext

- decryption function $D(K^-, Y) = X$
- typically, the plaintext (and the ciphertext) consists of a few hundred bits → operation is similar to symmetric-key block ciphers
- examples: RSA, ElGamal, NTRU

Hybrid encryption (digital envelop)

- public-key encryption schemes use large number arithmetics, and hence, they are several orders of magnitude slower than the best known symmetric key ciphers (on the same platform)
- to overcome this problem, the following hybrid approach is used in practice:

Security of public key crypto schemes

- security is usually related to the difficulty of some problems that are widely believed to be hard to solve (i.e., for which no polynomial time solution exists today), such as
 - factoring:

given a positive integer N, find its prime factors

– computing discrete logarithm:

given a prime p, a generator g of Z_p^* , and an element y in Z_p^* , find the integer x, $0 \le x \le p-2$, such that g^x mod p = y

- sometimes it can even be rigorously proven that breaking the encryption scheme would mean that there exists an efficient solution to the related hard problem (reduction)
 - although widely used practical schemes have no complete proofs

Semantic security

- an adversary should not be able to choose two plaintexts X and X' and later distinguish between the encryptions E_K(X) and E_K(X') of these messages
 - in case of public-key encryption, the adversary can compute $E_K(X)$ and $E_K(X')$ using the public key K and trivially determine that $E_K(X)$ is the encryption of X and $E_K(X')$ is the encryption of X'
 - How about symmetric-key encryption?
- the solution is *probabilistic encryption*
 - the ciphertext should depend on some random input that is kept secret
 - after decryption, the original plaintext van be recovered unambiguously
 - some public-key encryption schemes are probabilistic by design (e.g., ElGamal)
 - others need pre-formatting of messages which involves the addition of some randomness (e.g., RSA uses PKCS #1 formatting)

RSA

The (textbook) RSA cryptosystem

- key-pair generation algorithm:
 - choose two large primes p and q (easy)
 - $n = pq, \phi(n) = (p-1)(q-1)$ (easy)
 - choose e, such that $1 < e < \phi(n)$ and $gcd(e, \phi(n)) = 1$ (easy)
 - compute the inverse d of e mod $\phi(n)$, i.e., ed mod $\phi(n) = 1$ (easy if p and q are known)
 - output public key: (e, n) (made public after key-pair generation)
 - output private key: d (and p, q) (kept secret after key-pair generation)
- encryption algorithm:
 - represent the plaintext message as an integer $m \in [0, n-1]$
 - compute the ciphertext c = m^e mod n
- decryption algorithm:
 - compute the plaintext from the ciphertext c as $m = c^d \mod n$
 - this works, because $c^d \mod n = m^{ed} \mod n = m^{k\phi(n)+1} \mod n = m \mod n = m$

Proof of RSA decryption

- $c^d \mod n = m^{ed} \mod n = m^{k \phi(n) + 1} \mod n = m m^{k(p-1)(q-1)} \mod n$
- since m < n, it is enough to prove that $m m^{k(p-1)(q-1)} \equiv m \pmod{n}$
- Fermat theorem
 - if r is a prime and gcd(a, r) = 1, then $a^{r-1} \equiv 1 \pmod{r}$
- if gcd(m, p) = 1
 - $m^{p-1} \equiv 1 \pmod{p}$
 - $m m^{k(p-1)(q-1)} \equiv m \pmod{p}$
- if gcd(m, p) = p
 - -p|m
 - $m m^{k(p-1)(q-1)} \equiv m \equiv 0 \pmod{p}$
- for all m, m $m^{k(p-1)(q-1)} \equiv m \pmod{p}$
- similarly, for all m, m $m^{k(p-1)(q-1)} \equiv m \pmod{q}$
- p, q | m $m^{k(p-1)(q-1)}$ m --» pq | m $m^{k(p-1)(q-1)}$ m
- $m m^{k(p-1)(q-1)} \equiv m \pmod{pq}$

Security of RSA

- factoring integers is believed to be a hard problem
 - given a composit integer n, find its prime factors
 - true complexity is unknown
 - it is believed that no polinomial time algorithm exists to solve it
- computing d from (e, n) is equivalent to factoring n
- computing m from c and (e,n) (known as the RSA problem) may not be equivalent to factoring n
 - if the factors p and q of n are known, then one can easily compute d, and using d, one can also compute m from c
 - we don't know if one could factor n, given that he can efficiently compute m from c and (e,n)
 - nevertheless, the RSA problem is believed to be a hard problem
- textbook RSA is not semantically secure (encryption is deterministic) and malleable (due to its homomorphic property)
 - in practice, textbook RSA needs to be extended with message formatting (PKCS #1)

RSA in practice – special messages

unconcealed messages

- a message is unconcealed if it encrypts to itself
 - \gg i.e., if $m^e \mod n = m$
- trivial examples for unconcealed messages are m = 0, m = 1, and m = n-1
- exact number of unconcealed messages is
 - (1 + gcd(e-1, p-1))(1 + gcd(e-1, q-1))
 - » in practice, the number of unconcealed messages is negligibly small

small messages

- if $m < n^{1/e}$, then $m^e < n$, and hence $c = m^e \mod n = m^e$
- in such a case, m can be computed from c by taking the eth root of c
- to prevent this, m needs to be pre-formatted (setting most significant bits) to ensure that what is raised to e is not too small (see PKCS #1 formatting)

RSA in practice – small encryption exponent e

- a group of entities may use the same exponent e, but different moduli n₁, n₂, ...
- if a message m is sent to at least e recipients and e is small (e.g.,
 3), then an attacker may find a plaintext m efficiently:
 - assume that the attacker observes $c_i = m^3 \mod n_i$ (i = 1,2,3)
 - $let x = m^3$
 - the attacker must solve for x the following system of congruences:

```
x \equiv c_1 \pmod{n_1}

x \equiv c_2 \pmod{n_2}

x \equiv c_3 \pmod{n_3}
```

- <u>Chinese remainder theorem</u>: if n_1 , n_2 , ..., n_k are pairwise relatively primes, then such a congruence system has a unique solution (mod $n_1 \cdot n_2 \cdot ... \cdot n_k$)
- since $m^3 < n_1 \cdot n_2 \cdot n_3$, the solution found must be m^3
- the attacker then computes the cube root of m³ to obtain m

RSA in practice – homomorphic property

- if m₁ and m₂ are two plaintext messages and c₁ and c₂ are the corresponding ciphertexts, then the encryption of m₁m₂ mod n is c₁c₂ mod n
 - $(m_1m_2)^e \equiv m_1^e m_2^e \equiv c_1c_2 \pmod{n}$
- this leads to an adaptive chosen-ciphertext attack on RSA
 - assume that the attacker wants to decrypt c = m^e mod n
 - assume that an oracle decrypts arbitrary ciphertexts for the attacker, except c
 - the attacker can select a random number r and submit c·re mod n to the oracle
 - since $(c \cdot r^e)^d \equiv c^d \cdot r^{ed} \equiv m \cdot r \pmod{n}$, the attacker will obtain $m \cdot r \pmod{n}$
 - he then computes m by multiplication with r⁻¹ (mod n)
- we say that textbook RSA is malleable
 - valid new ciphertexts can be constructed from other known ciphertexts
 - this can be circumvented by imposing some structural constraints on plaintext messages → see PKCS #1 formatting

PKCS #1

- v1 vulnerable to adaptive chosen ciphertext attacks (Bleichenbacher)
- v2 Optimal Asymmetric Encryption Padding (OAEP) (Bellare-Rogaway)
 http://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf

ElGamal and ECC

ElGamal encryption scheme

- key-pair generation
 - domain parameters: p, q, g
 - » p is a large prime (defines a multiplicative group over {1, 2, ..., p-1})
 - » q is a prime divisor of p-1
 - » g in [1, p-1] is an element of order q (the smallest positive t satisfying g^t = 1 mod p is t = q)
 - private key: uniformly randomly selected x from [1, q-1]
 - public key: y = g^x mod p
- encryption
 - input: domain params p, q, g; public key y; message m in [0, p-1]
 - choose uniformly random k from [1, q-1]
 - compute $c_1 = g^k \mod p$ and $c_2 = my^k \mod p$
 - output: (c_1, c_2)
- decryption
 - input: domain params p, q, g; private key x; ciphertext (c₁, c₂)
 - output: $\mathbf{c_2}\mathbf{c_1}^{-\mathbf{x}} \mod \mathbf{p} = \mathbf{my}^k \mathbf{g}^{-\mathbf{x}k} \mod \mathbf{p} = \mathbf{mg}^{\mathbf{x}k}\mathbf{g}^{-\mathbf{x}k} \mod \mathbf{p} = \mathbf{m}$

Notes on ElGamal encryption

efficiency issues

- encrypted message is twice as long as the plaintext (message expansion)
- encryption requires two modular exponentiations, whereas decryption requires only one, but ...
- all entities in a system may choose to use the same prime p and generator g
 - » we can speed up encryption by pre-computation
 - » size of the public key is reduced (no need to contain domain parameters)

relation to hard problems

- computing the private key from the public key is equivalent to the discrete logarithm problem
- semantic security of the ElGamal scheme is based on the hardness of the socalled Decisional Diffie-Hellman problem, that is at most as hard as the discrete logarithm problem
- recovering m given p, q, g, y, c_1 , c_2 is equivalent to solving the Computational Diffie-Hellman problem

The idea of elliptic curve crypto

- ElGamal is essentially defined over a multiplicative cyclic group
 - elements: {1, 2, ..., p-1}
 - group operation: mod p multiplication
- <u>fact</u>: any two cyclic groups of the same order are essentially the same (isomorph)
 - i.e., they have the same structure even though the elements may be represented differently and the group operations may be different
- ElGamal over cyclic subgroups of elliptic curve groups → elliptic curve cryptography
 - elements: points on an elliptic curve
 - group operation: point addition

Elliptic curves over real numbers

- an elliptic curve (over real numbers) is a plane curve defined by an equation of the form $y^2 = x^3 + ax + b$ (Weierstrass equation)
- examples:

Elliptic curves over finite fields

- let p be a prime and let F_p denote the field of integers modulo p
 (with the usual multiplication * and addition + operations)
- consider the elliptic curve E defined by equation

$$y^2 = x^3 + ax + b$$
,

where $a,b \in F_p$ and the operations are the field operations

- $(x,y) \in F_p$ is a point on the curve if it satisfies the equation
- in addition, there is a distinguished point called *infinity* ∞
- the set of all the points on the curve E is denoted by E(Fp)
- example:
 - let p = 7 and $y^2 = x^3 + 2x + 4$
 - $E(F_7) = {\infty, (0,2), (0,5), (1,0), (2,3), (2,4), (3,3), (3,4), (6,1), (6,6)}$

Elliptic curves over finite fields

example: elliptic curve y² = x³ - x over finite field F₆₁

Elliptic curve groups

- we define an addition operation over the points of the curve:
 - illustrative examples (in case of ECs over real numbers):

(a) Addition: P + Q = R.

(b) Doubling: P + P = R.

Elliptic curve groups

illustrative example in case of an EC over a finite field

• with this addition operation, the set of points $E(F_p)$ form an (additive) abelian group with ∞ serving as the identity element

Cyclic subgroups of elliptic curve groups

- let E be an elliptic curve defined over a finite field F_p
- let P be a point in E(F_p) with prime order n
- then the cyclic subgroup of E(F_p) generated by P is {∞, P, 2P, 3P, ...,(n-1)P}
- such cyclic subgroups of elliptic curve groups can be used to implement discrete logarithm systems!
- Elliptic Curve Discrete Log Problem (ECDLP):
 - given an elliptic curve group $E(F_p)$, a generator P of a cyclic subgroup of prime order n of $E(F_p)$, and a point Q in that subgroup, find the integer d, $1 \le d \le n-1$, such that dP = Q

ElGamal over elliptic curves

- EC ElGamal key generation:
 - domain parameters:
 - » prime p
 - » equation defining an elliptic curve E (e.g., $y^2 = x^3 x$)
 - » point P that defines a cyclic subgroup of E(F_D)
 - » the prime order n of the subgroup
 - private key: uniformly randomly selected integer d from [1, n-1]
 - public key: Q = dP
- EC ElGamal encryption:
 - input: domain params (p, E, P, n); public key Q; message m
 - represent m as a point M in E(F_p)
 - uniformly randomly choose k from [1, n-1]
 - compute $C_1 = kP$ and $C_2 = M + kQ$
 - output: (C₁, C₂)
- EC ElGamal decryption:
 - input: domain params (p, E, P, n); private key d; ciphertext (C₁, C₂)
 - compute $C_2 dC_1 = M + kQ dkP = M + kdP dkP = M$
 - output: extract m from M

Original vs. EC ElGamal

- underlying group
 - cyclic subgroup of prime order q
 of Z_p* for some prime p
 - generator g
- group operation
 - mod p multiplication, exponentiation (repeated multiplication)
- computations
 - public key: $y = g^x$
 - encryption: $c_1 = g^k$; $c_2 = my^k$
 - decryption: $m = c_2 c_1^{-x}$

- underlying group
 - cyclic subgroup of prime order n of E(F_p) for some prime p and elliptic curve E over F_p
 - generator P
- group operation
 - point addition, point/scalar multiplication (repeated addition)
- computations
 - public key: Q = dP
 - encryption: $C_1 = kP$ and

$$C_2 = M + kQ$$

- decryption: $M = C_2 - dC_1$

Why elliptic curve crypto?

 smaller parameters in ECC provide the same level of security as in traditional schemes (RSA, ElGamal (discrete log – DL)):

	Security level (bits)				
	80	112	128	192	256
	(SKIPJACK)	(Triple-DES)	(AES-Small)	(AES-Medium)	(AES-Large)
DL parameter q EC parameter n	100	224	256	384	512
RSA modulus <i>n</i> DL modulus <i>p</i>	1024	2048	3072	8192	15360

faster operations:

- private-key operations for ECC are many times more efficient than RSA and DL privatekey operations
- public-key operations for ECC are many times more efficient than those for DL systems
- public-key operations for RSA are expected to be somewhat faster than for ECC if a small encryption exponent (such as e = 3 or e = $2^{16} + 1$) is selected for RSA

Digital Signature Schemes

Digital signature schemes

- similar to MACs but they are
 - unforgeable by the receiver
 - verifiable by a third party
- services:
 - message authentication and integrity protection: after successful verification of the signature, the receiver is assured that the message has been generated by the sender and it has not been altered
 - non-repudiation of origin: the receiver can prove this to a third party (hence the sender cannot repudiate)
- examples: RSA, DSA, ECDSA

Functions and terminology

- key-pair generation function $G() = (K^+, K^-)$ K^+ - public key K^- - private key
- signature generation function S(K⁻, m) = s
 m message
 s signature
- signature verification function $V(K^+, m, s) = accept or reject$

Security of digital signature schemes

- as in the case of public-key encryption, security is usually related to the difficulty of solving the underlying hard problems
- attacker models:
 - capabilities of the attacker:
 - » key-only attack (attacker knows only the signature verification key)
 - » known-message attack (attacker has message signature pairs)
 - » (adaptive) chosen-message attack (attcker can choose a message and obtain its signature from an oracle)
 - objectives of the attacker:
 - » forgery
 - attacker is able to compute a valid signature for a message for which no signature has been obtained by observation or from an oracle
 - » key recovery
 - the attacker is able to deduce the private key

Hash-and-sign paradigm

- public/private key operations are slow
- increase efficiency by signing the hash of the message instead of the message
- it is essential that the hash function is collision resistant (why?)

PKCS #1

v2 – Probabilistic Signature Scheme (PSS) (Bellare-Rogaway)

this is the input to RSA mod exponentiation

http://www.docstoc.com/docs/83431303/PKCS-_1-v21-RSA-Cryptography-Standard http://rsapss.hboeck.de/rsapss.pdf

Control questions

- What is the basic idea of public-key cryptography?
- What is a digital envelop? (hybrid approach)
- What hard problems is the security of public-key crypto schemes related?
- What is semantic security? How to achieve it?
- How does the RSA algorithm work?
- Which hard problems RSA is related to?
- What are practical issues to consider in case of RSA?
 - unconcealed messages
 - small messages
 - small encryption exponent e
 - homomorphic property
- What is PKCS #1?

Control questions

- How does the ElGamal encryption work?
- What is Elliptic Curve Cryptography (ECC) in a nutshell?
- What are the advantages of ECC?
- How does the ElGamal algorithm work over elliptic curves?
- What is a digital signature scheme?
- What is the key difference between MAC functions and digital signatures? What additional security function do signatures provide?
- What attacker models do exist for digital signature schemes?
- What is the hash-and-sign paradigm?
 - Why is it used in practice?
 - What are the requirements on the hash function used?