Il moto nel piano: coordinate cartesiane e coordinate polari

La posizione del punto P nel piano può essere definita in due modi:

- COORDINATE CARTESIANE

x(t) y

COORDINATE POLARI

r(t) $\hat{\theta}(t)$

Come passare da un tipo di coordinate ad un altro?

$$r(t) = \sqrt{x(t)^2 + y(t)^2}$$

$$x(t) = r(t)\cos\theta(t)$$

$$\tan \theta(t) = \frac{y(t)}{x(t)}$$

$$y(t) = r(t)\sin\theta(t)$$

Il moto nel piano: coordinate cartesiane e coordinate polari

La posizione del punto P nel piano può anche essere definita con il raggio vettore. Mentre nei moti rettilinei abbiamo potuto trascurare la natura vettoriale di spostamento velocità e accelerazione, nei moti sul piano, dobbiamo considerare tali grandezze come vettori.

$$\overrightarrow{OP} = \overrightarrow{r}(t)$$
 RAGGIO VETTORE

$$\vec{r}(t) = \vec{r}_x(t) + \vec{r}_y(t)$$
$$= x(t)\vec{u}_x + y(t)\vec{u}_y$$

Il moto nel piano: spostamento e velocità

Spostamento:
$$\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta \vec{r}$$

 $\Delta \vec{r} = \vec{r}(t + \Delta t) - \vec{r}(t)$

Velocità vettoriale:
$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d \vec{r}}{dt}$$

Per $\Delta t \rightarrow 0$ dr diventa tangente alla traiettoria e in modulo diventa pari allo spostamento infinitesimo ds:

$$d\vec{r} = ds \vec{u}_T$$

$$\vec{v} = \frac{ds}{dt} \vec{u}_T = v \vec{u}_T$$

Il vettore velocità individua con la sua direzione e il suo verso la direzione e il verso del moto e con il suo modulo individua la velocità istantanea con cui è percorsa la traiettoria

Il moto nel piano: componenti della velocità

Componenti cartesiane

Poiché

$$\vec{r} = x\vec{u}_x + y\vec{u}_y$$

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{u}_x + \frac{dy}{dt}\vec{u}_y = v_x\vec{u}_x + v_y\vec{u}_y$$

 v_x e v_y sono le componenti cartesiane della velocità del punto P.

 v_x e v_y dipendono dalla posizione degli assi.

$$v = \sqrt{v_x^2 + v_y^2}$$

Il moto nel piano: componenti della velocità

Componenti polari

$$\vec{v} = \vec{v}_r + \vec{v}_\theta = \frac{dr}{dt}\vec{u}_r + r\frac{d\theta}{dt}\vec{u}_\theta$$

 v_r e v_θ sono le componenti polari *radiale* e *trasversa*. La componente radiale dipende dalle variazioni del modulo del raggio vettore; la componente trasversa dipende dalle variazioni di direzione del raggio vettore.

Il moto nel piano: accelerazione

L'accelerazione nel moto piano esprime le variazioni di velocità in modulo e in direzione: avrà perciò 2 componenti.

Nei moti rettilinei invece abbiamo visto che essa ha un'unica componente perchè la direzione non cambia.

essendo
$$\vec{v} = \frac{d\vec{r}}{dt}$$
 $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$

Si ricava che:
$$\vec{a} = \vec{a}_T + \vec{a}_N = \frac{dv}{dt}\vec{u}_T + \frac{v^2}{R}\vec{u}_N$$

La prima componente è parallela alla velocità e prende il nome di accelerazione tangenziale, la seconda componente dipende dalla variazione della direzione della velocità ed è ortogonale a questa; essa prende il nome di accelerazione normale o centripeta.

Il moto nel piano: componenti dell'accelerazione nei diversi moti

Vediamo quali sono le componenti

- Moto rettilineo uniforme
- Moto rettilineo uniformemente accelerato
- Moto curvilineo
- Moto curvilineo uniforme

$$a_{N} = 0$$
 $a_{T} = 0$
 $a_{N} = 0$ $a_{T} \neq 0$
 $a_{N} \neq 0$ $a_{T} \neq 0$
 $a_{N} \neq 0$ $a_{T} = 0$

$$\vec{a} = \vec{a}_T + \vec{a}_N = \frac{dv}{dt}\vec{u}_T + \frac{v^2}{R}\vec{u}_N$$

Composizione di due moti rettilinei

Consideriamo una pallina che rotola su un piano con velocità costante. Quando il piano del tavolo finisce la pallina comincia a cadere a terra.

Vogliamo determinare con quale velocità toccherà terra e a quale distanza rispetto al limite del tavolo la pallina toccherà terra.

Composizione di due moti rettilinei

Consideriamo una pallina che rotola su un piano con velocità costante. Quando il piano del tavolo finisce la pallina comincia a cadere a terra.

Vogliamo determinare con quale velocità toccherà terra e a quale distanza rispetto al limite del tavolo la pallina toccherà terra.

Composizione di due moti rettilinei: tempo di caduta

Se la pallina, da ferma, cadesse dall'altezza del tavolo, essendo la sua accelerazione costante e pari a **g** e il moto avverrebbe lungo un'unica direzione, quella verticale (asse y) in modo uniformemente accelerato.

Composizione di due moti rettilinei: velocità durante la caduta

Tuttavia la pallina non cade da ferma, bensì ha una componente di velocità lungo l'asse orizzontale (asse x). Questo fa sì che le due velocità (orizzontale e verticale) debbano essere composte per poter individuare la velocità finale (direzione, verso e modulo).

Quindi la velocità varia al variare del tempo.

Composizione di due moti rettilinei: spostamento massimo

La distanza dal limite del tavolo in cui la pallina toccherà terrà è la componente orizzontale dello spostamento che sarà determinata a partire dalla componente orizzontale della velocità e del tempo impiegato durante la caduta:

Moto circolare

È un moto la cui traiettoria è rappresentata da una circonferenza. Si dice che il moto è uniforme se la velocità con cui il punto si sposta lungo la circonferenza è costante in modulo (ma non in direzione e verso) e l'accelerazione tangenziale è nulla, per cui avrò solo la componente centripeta.

L'equazione oraria del moto può essere scritta in coordinate curvilinee o in coordinate polari.

Moto circolare: velocità

Geometricamente l'arco di circonferenza percorso è: $ds = R d\theta$

Il vettore velocità è tangente alla traiettoria e il suo modulo è pari alla velocità istantanea.

Poiché la velocità istantanea è: v = ds/dt

Allora $v = \frac{d\theta}{dt}R = \omega R$ dove ω è la velocità angolare; esprime il rapporto tra l'angolo descritto dal punto in movimento e il tempo impiegato per descriverlo.

$$\omega = \frac{d\theta}{dt} = \frac{ds}{R} \frac{1}{dt} = \frac{1}{R} \frac{ds}{dt} = \frac{v}{R}$$

$$\omega = \frac{v}{R} \qquad \qquad v = \omega R$$

Moto circolare: accelerazione

Il vettore accelerazione è composto dai due vettori uno tangente alla traiettoria e uno normale alla traiettoria.

La componente normale alla traiettoria dipende dalla velocità istantanea con cui viene percorsa la traiettoria e dalla sua curvatura (R).

$$\vec{a} = \vec{a}_N = \frac{v^2}{R}\vec{u}_N$$
 in modulo $a_N = \frac{v^2}{R} = \omega^2 R$

Moto circolare: accelerazione angolare

Se il moto è circolare ma non uniforme:

$$\vec{a} = \vec{a}_T + \vec{a}_N = \frac{dv}{dt}\vec{u}_T + \frac{v^2}{R}\vec{u}_N$$

Possiamo definire una grandezza nuova che è l'accelerazione angolare:

$$\alpha = \frac{d\omega}{dt} = \frac{1}{R} \frac{dv}{dt} = \frac{a_T}{R}$$

$$a_T = \alpha R$$

$$a_N = \frac{v^2}{R} = \omega^2 R$$

Da cui l'accelerazione vettoriale può essere scritta come:

$$\vec{a} = \vec{a}_T + \vec{a}_N = (\alpha R)\vec{u}_T + (\omega^2 R)\vec{u}_N$$

Moto circolare uniforme: equazione oraria

L'equazione oraria del moto può essere scritta in coordinate curvilinee o in coordinate polari.

coordinate curvilinee: $s(t) = s_0 + v(t - t_0)$

coordinate polari: $\theta(t) = \theta_0 + \omega(t - t_0)$

Il moto circolare è un moto periodico perciò il punto ripassa nelle stesse posizioni ad intervalli di tempo fissi.

Si definisce PERIODO l'intervallo di tempo impiegato dal punto per coprire una circonferenza; si definisce FREQUENZA il numero di giri compiuti in un intervallo di tempo unitario.

$$P = \frac{2\pi R}{v} = \frac{2\pi}{\omega} \qquad f = \frac{v}{2\pi R} = \frac{\omega}{2\pi}$$

Moto circolare uniforme: coordinate del punto in movimento

La posizione del punto in funzione del tempo può essere determinata se sono note le coordinate del punto al passare del tempo:

$$x(t) = R \cos \theta(t)$$
$$y(t) = R \operatorname{sen} \theta(t)$$

ma
$$\theta(t) = \theta_0 + \omega(t - t_0)$$
 quindi

$$x(t) = R\cos(\theta_0 + \omega t)$$
$$y(t) = R\sin(\theta_0 + \omega t)$$

Moto parabolico

Analizziamo ora il moto nel vuoto di un punto P lanciato dall'origine O con velocità iniziale v_0 formante un angolo α con l'asse orizzontale, x.

Vogliamo determinare:

- 1) Traiettoria
- 2) Posizione G in cui il punto ricade sull'asse x (GITTATA)
- 3) Massima altezza raggiunta

Nel punto in O:

Accelerazione $\mathbf{a} = \mathbf{g} = -g \mathbf{u}_{\mathbf{y}}$

Posizione: $\mathbf{r} = 0$

Velocità: $\mathbf{v} = \mathbf{v}_0$

Istante iniziale: $t_0 = 0$ s

Moto parabolico: velocità

Il moto avviene nel piano individuato dai vettori **g** e **v**. Entrambi i vettori possono essere quindi scomposti secondo gli assi cartesiani x e y. Il moto è soggetto alla componente tangenziale dell'accelerazione gravitazionale che ne fa decelerare il moto prima che il punto raggiunga la massima altezza e fa accelerare il moto subito dopo.

La velocità è dunque esprimibile secondo la relazione:

$$\vec{v}(t) = \vec{v}_0 + \int_0^t \vec{a}(t) dt = \vec{v}_0 - gt \vec{u}_y$$

$$\vec{v}(t) = v_0 \cos \alpha \vec{u}_x + v_0 \sin \alpha \vec{u}_y - gt \vec{u}_y = v_0 \cos \alpha \vec{u}_x + v_0 \sin \alpha \vec{u}_y + v_0 \sin \alpha \vec{u}_y + v_0 \sin \alpha \vec{u}_y = v_0 \cos \alpha \vec{u}_x + v_0 \sin \alpha \vec{u}_y + v_0 \sin \alpha \vec{u}_y = v_0 \cos \alpha \vec{u}_x + v_0 \sin \alpha \vec{u}_y + v_0 \sin \alpha \vec{u}_y = v_0 \cos \alpha \vec{u}_x + v_0 \cos \alpha \vec{u}_y = v_0 \cos \alpha \vec{u}_x + v_0 \cos \alpha \vec{u}_y = v_0 \cos \alpha \vec{u}_y + v_0 \cos \alpha \vec{u}_y = v_0 \cos \alpha \vec{u}_x + v_0 \cos \alpha \vec{u}_y = v_0 \cos \alpha \vec{u}_y + v_0 \cos \alpha \vec{u}_y = v_0 \cos \alpha \vec{u}_y + v_0 \cos \alpha$$

Moto parabolico: spostamento

Possiamo scrivere le leggi orarie dei moti proiettati:

$$x(t) = v_0 \cos \alpha t$$
 (1) $y(t) = v_0 sen \alpha t - \frac{1}{2} gt^2$ (2)

Se per diversi istanti di tempo andiamo a tracciare le posizioni così calcolate sul diagramma cartesiano, otteniamo la traiettoria del punto e vediamo che essa è una parabola. Possiamo anche determinarlo matematicamente ricavando il tempo dall'equazione 1 e sostituendolo nell'equazione 2.

Si ottiene:

$$y(t) = x \tan \alpha - \frac{g}{2v_0^2 \cos^2 \alpha} x^2$$

Moto parabolico: gittata

Calcoliamo ora la gittata ossia la distanza da O in cui il punto tocca l'asse delle x. In questo punto la coordinata y della posizione è nulla. Pertanto dobbiamo porre y(x) = 0.

$$y(x) = x \tan \alpha - \frac{g}{2v_0^2 \cos^2 \alpha} x^2 = 0$$

Abbiamo due soluzioni: per x=0 e per :

$$x_G = \frac{2v_0^2 \cos^2 \alpha \tan \alpha}{g} = 2x_M$$

Da cui ricaviamo che l'altezza massima raggiunta è:

$$y_M = \frac{v_0^2 sen^2 \alpha}{2g}$$

N.B. Si calcola che l'angolo di lancio per il quale la gittata è massima è un angolo di 45° ($\pi/4$)