Catch Me If You Can: Blackbox Adversarial Attacks on Automatic Speech Recognition using Frequency Masking-Supplementary Material

1 Results

1.1 RQ1: Comparison of Frame Selection Techniques

We present one-way Anova and Tukey's Honest Significant Difference (HSD) test(at 5% significance level) on WER and Similarity to compare our frame selection techniques.

1.1.1 WER: P-values for pairwise comparisons of WERs between frame selection techniques.

	Lil	orispeech		Con	nmonvoice	
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google
All vs Random	0.001	0.001	0.001	0.011	0.07	0.31
All vs Important	0.043	0.001	0.06	0.40	0.9	0.43
Important vs Random	0.001	0.001	0.006	0.35	0.23	0.9

Table 1: P-values for pairwise comparison of WER achieved by frame selection methods (using GL attack generation).

	Lil	orispeech		Commonvoice			
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	
All vs Random	0.001	0.001	0.23	0.58	0.001	0.9	
All vs Important	0.036	0.001	0.28	0.51	0.001	0.9	
Important vs Random	0.03	0.032	0.9	0.07	0.9	0.9	

Table 2: P-values for pairwise comparison of WER achieved by frame selection methods (using DE attack generation).

	Lib	orispeech		Commonvoice			
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	
All vs Random	0.001	0.001	0.59	0.58	0.03	0.9	
All vs Important	0.001	0.001	0.80	0.9	0.04	0.87	
Important vs Random	0.228	0.01	0.85	0.76	0.8	0.9	

Table 3: P-values for pairwise comparison of WER achieved by frame selection methods (using OP attack generation).

1.1.2 Similarity: P-values for pairwise comparisons of Similarity between frame selection techniques.

	Librispeech	Commonvoice
Random VS All	0.01	0.014
Important VS All	0.57	0.9
Random VS Important	0.09	0.06

Table 4: P-values for pairwise comparison of Similarity achieved by frame selection methods (using GL attack generation).

	Librispeech	Commonvoice
Random VS All	0.001	0.001
Important VS All	0.001	0.001
Random VS Important	0.34	0.9

Table 5: P-values for pairwise comparison of Similarity achieved by frame selection methods (using DE attack generation).

	Librispeech	Commonvoice
Random VS All	0.001	0.001
Important VS All	0.001	0.001
Random VS Important	0.09	0.11

Table 6: P-values for pairwise comparison of Similarity achieved by frame selection methods (using OP attack generation).

Tables 6, 5 and 4 in Section 1.1.2 do not show different ASRs as the adversarial attacks are agnostic to the ASR used.

1.1.3 Pareto Front: Number of non-dominated samples for three frame selection techniques

Table 7 and 8 compares frame selection configurations for a fixed attack generation in terms of number of non-dominated samples on two datasets. Column heading in the table shows the fixed parameter; we fix one attack generation at a time and compare frame selection configurations.

	Deepspeech		Sphinx			Google			
	GL	OP	DE	GL	OP	DE	GL	OP	\mid DE \mid
All	4	3	1	7	5	3	5	2	5
Random	3	7	12	5	7	9	6	5	8
Important	4	9	17	7	9	13	6	9	9

Table 7: Number of non-dominated samples for frame selection techniques using different attack and ASRs on **Commonvoice**

	Deepspeech			Sphinx			Google		
	GL	OP	DE	GL	OP	DE	GL	OP	DE
All	3	3	3	7	6	4	1	2	2
Random	8	4	5	6	3	6	7	6	8
Important	9	5	7	7	6	6	8	7	13

Table 8: Number of non-dominated samples for frame selection techniques using different attack and on ASRs on **librispeech**

1.2 RQ2: Comparison of Attack Generation Techniques

We present one-way Anova and Tukey's Honest Significant Difference (HSD) test(at 5% significance level) on WER and Similarity to compare our attack generation techniques.

1.2.1 WER: P-values for pairwise comparisons of WERs between frame selection techniques.

	Lil	brispeech		Commonvoice			
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	
GL vs OP	0.001	0.001	0.001	0.009	0.001	0.81	
GL vs DE	0.001	0.001	0.001	0.001	0.001	0.79	
OP vs DE	0.55	0.66	0.9	0.75	0.63	0.81	

Table 9: P-values for pairwise comparison of WER achieved by attack generation methods (using Important frames).

	Li	brispeech		Commonvoice			
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	
GL vs OP	0.001	0.001	0.007	0.009	0.001	0.9	
GL vs DE	0.001	0.001	0.001	0.006	0.001	0.9	
OP vs DE	0.9	0.66	0.9	0.9	0.21	0.9	

Table 10: P-values for pairwise comparison of WER achieved by attack generation methods (using Random frames).

	Lil	brispeech		Commonvoice			
	Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	
GL vs OP	0.001	0.001	0.001	0.001	0.001	0.189	
GL vs DE	0.001	0.001	0.001	0.002	0.001	0.05	
OP vs DE	0.04	0.03	0.60	0.9	0.58	0.818	

Table 11: P-values for pairwise comparison of WER achieved by attack generation methods (using All frames).

1.2.2 Similarity: P-values for pairwise comparisons of Similarity between attack generation techniques.

	Librispeech	Commonvoice
OP VS GL	0.001	0.001
DE VS GL	0.001	0.001
DE VS OP	0.1	0.001

Table 12: P-values for pairwise comparison of Similarity achieved by attack generation methods (using Important frames).

	Librispeech	Commonvoice
OP VS GL	0.001	0.001
DE VS GL	0.001	0.001
DE VS OP	0.38	0.001

Table 13: P-values for pairwise comparison of Similarity achieved by attack generation methods (using Random frames).

	Librispeech	Commonvoice
OP VS GL	0.001	0.001
DE VS GL	0.001	0.001
OP VS DE	0.06	0.56

Table 14: P-values for pairwise comparison of Similarity achieved by attack generation methods (using All frames).

1.2.3 Pareto Front: Number of non-dominated samples for three attack generation techniques

Table 15 and 16 compares attack generation configurations for a fixed frame selection in terms of number of non-dominated samples on two datasets.

	Deepspeech			Sphinx			Google		
	All	Random	Important	All	All Random Important			Random	Important
GL	2	1	2	7	7	10	1	1	5
OP	10	0	5	8	1	2	11	3	5
DE	6	17	16	9	23	25	8	20	12

Table 15: Number of non-dominated samples for attack generation techniques using different frame selection techniques and ASRs on **Commonvoice**

	Deepspeech			Sphinx			Google		
	All	Random	Important	All	All Random Important		All	Random	Important
GL	4	2	4	7	7	6	3	3	2
OP	8	3	7	8	1	6	8	1	5
DE	1	7	9	4	7	8	2	4	8

Table 16: Number of non-dominated samples for attack generation techniques using different frame selection techniques and ASRs on **Librispeech**

1.3 RQ4: Comparison with Abdullah et al.

Results comparing our attack with Abdullah et al. on Librispeech dataset is shown in Table 18. We present one-way Anova and Tukey's Honest Significant Difference (HSD) test (at 5% significance level) on WER and Similarity in Tables 17 and 19 for Commonvoice and Librispeech datasets, respectively.

1.3.1 P-values for the comparison of WER and Similarity between our approach and Abdullah et al. on Commonvoice dataset.

	Similarity	WER on Deepspeech	WER on Sphinx	WER on Google
OP+All vs Abdullah's work	0.041	0.026	0.037	0.001
OP+Important vs Abdullah's work	0.001	0.66	0.08	0.003
DE+All vs Abdullah's work	0.79	0.027	0.013	0.001
DE+Important vs Abdullah's work	0.001	0.88	0.06	0.001

Table 17: P-values for pairwise comparison of Similarity and WER achieved by Abdullah et al, against OP+All, OP+Important, DE+All, DE+Important on Commonvoice dataset.

1.3.2 Comparison with Abdullah et al. on Librispeech Dataset

Technique	Time	Similarity	Success rate			WER			Detection score
			Deepspeech	Sphinx	Google	Deepspeech	Sphinx	Google	
Abdullah	22 seconds	2.6	76%	86%	50%	0.10	0.18	0.06	0.40
OP	3.5 seconds	3.65	95%	96.5%	97.5%	0.17	0.28	0.20	0.14
DE	2.5 seconds	3.72	91%	94%	95.5%	0.11	0.19	0.20	0.11

Table 18: Comparison of OP, DE with Abdullah et al. with respect to generation time for per adversarial audio sample, Similarity to original audio samples, WER, Success Rate and Detection score against defense system in attacking all three ASRs on Librispeech dataset

1.3.3 P-values for the comparison of WER and Similarity between our approach and Abdullah et al. on Librispeech dataset.

	Similarity	WER on Deepspeech	WER on Sphinx	WER on Google
OP+All vs Abdullah's work	0.001	0.001	0.012	0.001
OP+Important vs Abdullah's work	0.001	0.38	0.56	0.001
DE+All vs Abdullah's work	0.009	0.077	0.072	0.001
DE+Important vs Abdullah's work	0.009	0.13	0.9	0.001

Table 19: P-values for comparison of Similarity and WER achieved by Abdullah et al. against OP+All, OP+Important, DE+All, DE+Important on Librispeech dataset.