COMPUTER ORGANIZATION AND ASSEMBLY LANGUAGE

Computer Arithmetic Integer Representation, Integer Arithmetic Course Instructor: Klarence M. Baptista, MIT

Arithmetic & Logic Unit

- Does the calculations
- Everything else in the computer is there to service this unit
- Handles integers
- May handle floating point (real) numbers
- May be separate FPU (maths co-processor)
- May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Integer Representation

- Only have 0 & 1 to represent everything
- Positive numbers stored in binary
 - e.g. 41=00101001
- No minus sign
- No period
- Sign-Magnitude
- Two's compliment

Sign-Magnitude

- The simplest form of representation that employs a sign bit is the sign-magnitude representation
- In an *n*-bit word, the rightmost *n*-1 bits hold the magnitude of the integer
- +18 = 00010010
- -18 = 10010010

Sign-Magnitude

- Problems
 - Need to consider both sign and magnitude in arithmetic
 - Two representations of zero (+0 and -0)
- Inconvenient because it is slightly more difficult to test for 0 (an operation performed frequently on computers) than if there were a single representation
- Sign-magnitude representation is rarely used in implementing the integer portion of the ALU
- Instead, the most common scheme is twos complement representation

Two's Compliment

- Like sign magnitude, twos complement representation uses the most significant bit as a sign bit, making it easy to test whether an integer is positive or negative
- It differs from the use of the sign-magnitude representation in the way that the other bits are interpreted

Characteristics of Twos Complement Representation and Arithmetic

Range	-2^{n-1} through $2^{n-1}-1$			
Number of Representations of Zero	One			
Negation	Take the Boolean complement of each bit of the corresponding positive number, then add 1 to the resulting bit pattern viewed as an unsigned integer.			
Expansion of Bit Length	Add additional bit positions to the left and fill in with the value of the original sign bit.			
Overflow Rule	If two numbers with the same sign (both positive or both negative) are added, then overflow occurs if and only if the result has the opposite sign.			
Subtraction Rule	To subtract B from A , take the twos complement of B and add it to A .			

Two's Compliment

$$\Box$$
 +3 = 00000011

$$\Box$$
 +2 = 00000010

$$\Box$$
 +1 = 00000001

$$\Box$$
 +0 = 00000000

$$-1 = 111111111$$

$$-2 = 111111110$$

$$-3 = 111111101$$

Alternative Representations for 4-Bit Integers

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation	Biased Representation	
+8	_	_	1111	
+7	0111	0111	1110	
+6	0110	0110	1101	
+5	0101	0101	1100	
+4	0100	0100	1011	
+3	0011	0011	1010	
+2	0010	0010	1001	
+1	0001	0001	1000	
+0	0000	0000	0111	
-0	1000	_	_	
-1	1001	1111	0110	
-2	1010	1110	0101	
-3	1011	1101	0100	
-4	1100	1100	0011	
-5	1101	1011	0010	
-6	1110	1010	0001	
-7	1111	1001	0000	
-8	_	1000	_	

Benefits

- One representation of zero
- Arithmetic works easily
- Negating is fairly easy
 - 3 = 00000011
 - Boolean complement 11111100

gives

Add 1 to LSB111111101

Negation Special Case 1

- \Box 0 = 00000000
- Bitwise not 111111111
- □ Add 1 to LSB +1
- Result 1 0000000
- Overflow is ignored, so:
- $\Box 0 = 0$

Negation Special Case 2

- □ 128 = 10000000
- bitwise not 01111111
- Add 1 to LSB +1
- Result 1000000
- □ So:
- \Box -128 = 128
- Monitor MSB (sign bit)
- It should change during negation

Range of Numbers

- 8 bit 2s compliment
 - +127 = 01111111 = 2^7 -1
 - $-128 = 10000000 = -2^7$
- □ 16 bit 2s compliment
 - +32767 = 0111111111 11111111 = 2^{15} -
 - 1

Conversion Between Lengths

- Positive number pack with leading zeros
- \Box +18 = 00010010
- \Box +18 = 00000000 00010010
- Negative numbers pack with leading ones
- □ -18 = 10010010
- \Box -18 = 11111111 10010010
- i.e. pack with MSB (sign bit)

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow

- Take twos compliment of substahend and add to minuend
 - i.e. a b = a + (-b)
- So we only need addition and complement circuits

Overflow

- For unsigned integers, overflow occurs when there is a carry out of the msb.
- 1000 (8) +1001 (9) ----- 1 0001 (1)
- For 2's complement integers, overflow occurs when the signs of the addends are the same, and the sign of the result is different
- 0011 (3) + 0110 (6) ----- 1001 (-7)
- (note that a correct answer would be 9, but 9 cannot be represented in 4-bit 2's complement)

Hardware for Addition and Subtraction

OF = overflow bit

SW = Switch (select addition or subtraction)

Problems

- Represent the following decimal numbers in both binary sign/magnitude and twos complement using 16 bits:
- . +512
- **⊪** -29
- Represent the following twos complement values in decimal:
- 1101011
- _{II.} 0101101.

Problem

Assume numbers are represented in 8-bit twos complement representation. Show the calculation of the following:

- ı. 6**+**13
- ıı. -6+13
- III. 6-13
- ··· -6-13

Problem

Find the following differences using twos complement arithmetic:

Multiplication

- Complex
- Work out partial product for each digit
- Take care with place value (column)
- Add partial products

Multiplication Example

```
1011 Multiplicand (11 dec)
   x 1101 Multiplier (13 dec)
      1011 Partial products
   0000
            Note: if multiplier bit is 1 copy
  1011
             multiplicand (place value)
              otherwise zero
 1011
 10001111 Product (143 dec)
Note: need double length result
```

Unsigned Binary Multiplication

Execution of Example

C	A	Q	M	Turk 1 1 2 2 2	7	****
0	0000	1101	1011	Initia	Τ	Values
0	1011	1101	1011	Add Shift	Ţ	First
0	0101	1110	1011	Shift	ነ	Cycle
0	0010	1111	1011	Shift	}	Second Cycle
0	1101	1111	1011			
0	0110	1111	1011	Add Shift	5	Third Cycle
1	0001	1111	1011	Add	ſ	Fourth
0	1000	1111	1011	Add Shift	5	Fourth Cycle

Flowchart for Unsigned Binary Multiplication

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Flowchart for Unsigned Binary Division

