7. Random vectors

7.1. Motivation

7.2. 2-dimensional random vectors

Definition 7.1

Let S be a probability space. A 2-dimensional random vector is a function

$$\mathbf{X}:S o\mathbb{R}^2.$$

Thus, we may write $\mathbf{X}(s) = (X_1(s), X_2(s))$ for each sample point $s \in S$, where

$$X_1:S o\mathbb{R}\quad ext{and}\quad X_2:S o\mathbb{R}$$

are random variables. When we do so, the random variables X_1 and X_2 are called the components of the random vector \mathbf{X} .

Pmeasures P_{xy} measures probability here probability here (X,Y)

Definition 7.2

Let $(X,Y):S o \mathbb{R}^2$ be a 2-dimensional random vector on a probability space S with probability measure P. We define the *probability measure* of (X,Y), denoted P_{XY} , via the formula

$$P_{XY}(C) = P(\{s \in S : (X(s), Y(s)) \in C\}),$$
 (7.1)

for all events $C\subset \mathbb{R}^2$. The probability measure P_{XY} is also called the *joint distribution* or the *bivariate distribution* of X and Y.

Problem Prompt

Do problem 1 on the worksheet.

Definition 7.3

Let (X, Y) be a 2-dimensional random vector.

ullet We shall say (X,Y) is discrete, or that X and Y are jointly discrete, if the joint probability distribution P_{XY} is discrete. In other words, we require that there exists a joint probability mass function p(x,y) such that

$$P((X,Y) \in C) = \sum_{(x,y) \in C} p(x,y)$$

for all events $C \subset \mathbb{R}^2$.

ullet We shall say (X,Y) is continuous, or that X and Y are jointly continuous, if the joint probability distribution P_{XY} is continuous. In other words, we require that there exists a joint probability density function f(x,y) such that

$$P\left((X,Y)\in C
ight)=\iint_C f(x,y)\,\mathrm{d}x\mathrm{d}y$$

for all events $C \subset \mathbb{R}^2$.

Theorem 7.1

Let (X, Y) be a 2-dimensional random vector.

- 1. The random vector (X,Y) is discrete if and only if both X and Y are discrete.
- 2. If (X,Y) is continuous, then X and Y are both continuous. However, it does not necessarily follow that if both X and Y are continuous, then so too is (X,Y).

Problem Prompt

Do problems 2-4 on the worksheet.

7.3. Bivariate distribution functions

Let (X,Y) be a 2-dimensional random vector. The *distribution function* of (X,Y) is the function $F:\mathbb{R}^2 \to \mathbb{R}$ defined by

$$F(x,y) = P(X \le x, Y \le y).$$

In particular:

1. If (X,Y) is discrete with probability mass function p(x,y), then

$$F(x,y) = \sum_{x^\star \leq x, \ y^\star \leq y} p(x^\star, y^\star).$$

2. If (X,Y) is continuous with probability density function f(x,y), then

$$F(x,y) = \int_{-\infty}^y \int_{-\infty}^x f(x^\star,y^\star) \; \mathrm{d}x^\star \mathrm{d}y^\star.$$

Problem Prompt

Do problem 5 on the worksheet.