

Segmenting Retinal Blood Vessels with Deep Neural Networks

{ Problem statement }

What are trying to do? And why?

- The condition of the vascular network of human eye is an important diagnostic factor.
- Segmentation is a nontrivial task due to variable size of vessels, low contrast, and potential presence of pathologies.
- Deep Networks are known to perform well in computer vision, but are hard to train on small datasets.
- They are usually inefficient both in terms of training and inference time.

What do we want to achieve?

What data do we have?

DRIVE dataset

- 20 training images
- 20 test images
- ♦ 560 x 560 pixels

HRF dataset

- ♦ 15 images (healthy) +
- ♦ 15 images (diabetic retinopathy) +
- 15 images (glaucomatous)
- ♦ 3504 x 2336 pixels
- 6 random images chosen as a test set

What Methods do we use?

convnets

{ Preprocessing }

How to handle the data?

Overview

Channel-Wise normalization

Compute dataset-wide maen and std for each channel, and then use that to normalize.

Conversion to grayscale

Convert RGB image to grayscale.

Extracting random crops

For each image, random crops of size 64x64 or 128x128 are extracted. We generate between 150 and 500 random patches per image.

ZCA - whitening

Decorrelates pixels in the image.

Random Rotations

Each image is cloned 3 to 6 times, and each copy is randomly rotated. Rotation angle is chosen between 0 and 270 deg.

Patch-wise normalization

For each patch, and for each channel, subtract its mean and divide by its std

Generating random patches

- Acts as data augmentation
- Combined with random rotations

Patch-wise normalization

- Proved to be extremely helpful
- Easy to compute
- In the end the only color transformation we used

Patch-wise normalization (code)

```
def ChannelWiseStd(with mean=True, with std=True):
   def f(images, masks):
        for i, img in enumerate(tqdm(images, desc="{:<10}".format("Std"))):
                  = np.mean(img, axis=(0, 1), keepdims=True)
            sigma = np.std(img, axis=(0, 1), keepdims=True) + 1e-6
            if with mean:
                img = img - mu
            if with std:
                img = img / (sigma + le - 6)
            images[i] = img
        return images, masks
    return f
```


ZCA whitening

- Decorelates the features
- Normalizes variance of each feature
- Requires computing SVD -- we couldn't use it due to memory requirements:(
- Others report great results -- prehaps we should try to adopt it after all?

{ Neural Network Details }

How exactly our net looks like? How is it trained?

Overview

Batch-Norm

Deals with covariate shift. Greatly speeds up training.

Lots of conv layers

We use several different building blocks

Adam

Dropout

overfitting

Because we love adaptive learning rate.

Standard way to combat

Up-scaling with convolution.

Each up-scaling operation if followed by a 1x1 convolution.

U-Net design choices

Lot's of those...

ConvNets

Cool demos:

http://cs231n.github.io/convolutional-networks/http://scs.rverson.ca/~aharlev/vis/conv/

Design Choices

- 3 levels instead of 4: we use smaller crops
- Upsampling with 1x1 conv to preserve the sh Different number of channels
- Dropout only in DoubleConv

Adam

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
.

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2.$$

$$\hat{m}_t = rac{m_t}{1-eta_1^t}.$$
 $\hat{v}_t = rac{v_t}{1-eta_2^t}.$

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t.$$

SGD

Momentum NAG Adagrad Adadelta Rmsprop

Batch Norm

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

Overview

How did we perform?

Can we compare to anyone?

Prediction on fullsize images

We train on random patches. How do we predict on full images?

Evaluation measures How do we measure network's performance?

Training progress

How to visualize learning?

Training progress (smoothed with IIR 1st order filter)

Performance measures

Accuracy

- Very intuitive
- Sensitive to class imbalance

AUC (ROC)

- Robust to class imbalance
- Expensive to compute
- Measured as area under a curve, where we Plot TPR vs FPR at various thresholds

Log Loss

- This is what we directly optimize
- Not really intuitive (KL divergence)

LOSS \ DSET	DRIVE	HRF
Log Loss	0 .075	0 .084
Accuracy	0.971	0.966
AUCROC	0.911	0.828

{ Tools we used }

Overview

Visdom

Facebook's lightweight alternative to Tensorboard.

Supports plotly graphs and video exporting.

Used to track experiments

PyTorch

New deep learning library straight from Facebook Al Research.

Numpy-like, with strong GPU acceleration.

Provides Autograd engine.

NumFocus Stack

Jupyter + NumPy

PIL.Image

Please, stop using obsolutely necessary!

PYTORCH

Back-propagation uses the dynamically built graph

```
from torch.autograd import Variable
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
next_h.backward(torch.ones(1, 20))
```


Pillow

- Great alternative to OpenCV
- Clean and up-to-date docs
- Many useful primitives for manipulating images
- pip installable!

☆ Pillow (PIL Fork)

40 x

Search docs

Installation

Handbook

□ Reference

☐ Image Module

Examples

⊕ Functions

The Image Class

Attributes

Docs » Reference » Image Module

C Edit on GitHub

Image Module

The Image module provides a class with the same name which is used to represent a PIL image.

The module also provides a number of factory functions, including functions to load images from files, and to create new images.

Examples

The following script loads an image, rotates it 45 degrees, and displays it using an external viewer (usually xv on Unix, and the paint program on Windows).

What have we used?

How does it work?

- 1. Input image preprocessing
- 2. Algorithm
- 3. Output image processing
- 4. Show the result on the input image

Disadvantages

- 1. Processing time
- 2. Ineffective results