Applicazioni del Massimo flusso

Progettazione di Algoritmi a.a. 2018-19 Matricole congrue a 1 Docente: Annalisa De Bonis

Matching bipartito

Matching

- Problema del max matching.
 Input: grafo non direzionato G = (V, E).
- $M \subseteq E$ e' un matching se ogni nodo appare in al piu' un un
- Max matching: trova un matching di cardinalita` massima.

Matching bipartito

- Problema del max matching bipartito.
- Input: grafo non direzionato bipartito G = (L ∪ R, E).
 M ⊆ E e` un matching se ogni nodo appare in al piu` un arco di
- Max matching bipartito: trova un matching di massima cardinalita`.

Matching Bipartito

Formulazione in termini del max flusso.

- Crea un grafo direzionato $G'=(L\cup R\cup \{s,t\},\ E'$). Orienta gli archi tra L ad R da L verso R, e assegna capacita` pari ad uno a questi archi.

 • Aggiungi un arco con capacita` uno da s a ciascun nodo di L.

 • Aggiungi un arco con capacita` uno da ciascun nodo da R a t.

Matching Bipartito

- Teorema. La cardinalita` del max matching in G = Valore del max flusso in G'.
- Dim. Dimostriamo prima che dimensione max matching ≤ valore max flusso
- Sia M un max matching e sia k la sua cardinalita.
- Consideriamo la funzione flusso f che invia 1 unita` lungo ciascuno dei k percorsi che passano per i k archi di G' corrispondenti agli archi di G in M.
 - Per ogni arco (i,j') in M, f assegna 1 agli archi (s,i), (i,j'), (j',t) di G'
- f soddisfa le proprieta` del flusso e ha valore k

G

Abbiamo quindi che dimensione max matching = valore di f ≤ valore max flusso

Matching bipartito

- Dimostriamo che dimensione max matching ≥ valore max flusso
- Sia f un massimo flusso di G' e sia k il suo valore.
- Capacita` degli archi =1 \Rightarrow k e` intero ed esiste f di valore k tale che f(e) intero (0 o 1) per ogni e.
- Consideriamo l'insieme di archi M = {e=(u,v): u in L, v in R, f(e)=1} e dimostriamo (nella prossima slide) che M e` un matching di dimensione k. Si ha quindi che max flusso = dimensione matching M ≤ dimensione max matching

Matching bipartito

- 1. Dim. che M e` un matching: Dimostriamo che ciascun nodo u di L \cup R e` contenuto in al piu` un arco.
 - Se u e` in L allora in u arriva flusso 0 o 1 da s. Per la conservazione del flusso da u esce questa stessa quantita` di flusso e quindi c'e` al piu` un arco con origine u attraverso il quale fluisce 1 unita` di flusso.
 - Se u e` in R allora da u fuoriesce flusso 0 o 1 verso t. Per la conservazione del flusso in u entra questa stessa quantita` di flusso e quindi c'e` al piu` un arco con destinazione u attraverso il quale fluisce 1 unita` di flusso.
 - Quindi in entrambi i casi in M c'e` al piu` un arco che ha una delle due estremita` uguali ad u.
- 2. Dim. che |M|=k: Consideriamo il taglio (L \cup s, R \cup t). Il flusso netto attraverso questo taglio e` proprio |M|. Lemma del valore del taglio \rightarrow |M|=v(f)=k

Matching bipartito

- Possiamo trovare il max matching di un grafo bipartito G
 eseguendo Ford-Fulkerson sul grafo G' ottenuto a partire da
 G. Il max matching e` ottenuto come illustrato nella seconda
 parte della dimostrazione del teorema precedente.
- Tempo di esecuzione: O(nm) in quanto la capacita` di ogni arco di G' e` al piu` C=1 e di conseguenza O(nmC)=O(nm)
- A questo va aggiunto il tempo per costruire G' (=?)

ROGETTAZIONE DI ALGORITMI A.A. 2018-19 A. DE BONIS

Matching perfetti

- Def. Un matching $M \subseteq E$ e' perfetto se ciascun nodo appare esattamente in un arco di M.
- Domanda. Quando un grafo bipartito ha un matching perfetto?
- Struttura dei grafi bipartiti con matching perfetti.
- Ovviamente deve essere |L| = |R|.
- Quali altre condizioni sono necessarie?
- · Quali condizioni sono sufficienti?

PROGETTAZIONE DI ALGORITMI A.A. 2018-19 A. DE BONIS

Matching Perfetto

- Notazione. Sia S un sottoinsieme di nodi di L. Indichiamo con N(S) l'insieme dei nodi di R adiacenti ai nodi di S.
- Osservazione. Se un grafo bipartito $G = (L \cup R, E)$ ha un matching perfetto allora $|N(S)| \ge |S|$ per tutti i sottoinsiemi $S \subseteq L$.
- Dim. Ciascun nodo in S deve essere accoppiato ad un nodo differente in N(5).

Nessun matching perfetto: S = { 2, 4, 5 } $N(5) = \{ 2', 5' \}.$

R

Teorema dei matrimoni

- Il teorema dei matrimoni. [Frobenius 1917, Hall 1935] Sia G
 = (L ∪ R, E) un grafo bipartito con |L| = |R|. G ha un matching
 perfetto se e solo se |N(S)| ≥ |S| per tutti i sottoinsiemi S
 ⊆ L.
- Dim. L'implicazione ⇒ l'abbiamo gia` dimostrata nella slide precedente.

Nessun matching perfetto: S = { 2, 4, 5 } N(S) = { 2', 5' }.

Teorema dei matrimoni

- Dimostriamo l'implicazione \leftarrow
- Dimostreremo che se G non ha un matching perfetto allora esiste un sottoinsieme L_Z di L per cui $N(L_Z) < L_Z$
- Supponiamo che ${\it G}$ non abbia un matching perfetto. Questo vuol dire che il max matching ha dimensione < |L|
- Costruiamo la rete di flusso G' nello stesso modo di prima e sia (A, B) un minimo taglio di G'.
- Teorema del Max Flusso-Min Taglio → cap(A,B) = max flusso G⁻
- Teorema appena dimostrato \rightarrow max flusso G' =max matching $G \mapsto \operatorname{cap}(A,B) \cdot |L|$
- Per ogni insieme di vertici F di G definiamo $L_F = L \cap F \in R_F = R \cap F$.
- Possiamo trasformare (A,B) in un altro taglio minimo (Z,W) in cui $N(L_Z) \subseteq Z$ (ogni nodo di Z che si trova in L e` adiacente solo a nodi che sono in Z).

14

continua

Teorema dei matrimoni

- Possiamo trasformare (A,B) in un altro taglio minimo (Z,W) in cui $N(L_Z)\subseteq Z$ (ogni nodo di Z che si trova in L e` adiacente solo a nodi che sono in Z).
 - Per far questo aggiungiamo ad A ciascun nodo di $N(L_{\text{A}})$ che si trova in B. Sia y un tale nodo.
 - Siccome y e` in $N(L_A)$, esiste un nodo x in L_A adiacente a y e di conseguenza, nel grafo G', y ha un arco entrante che ha come origine x.
 - Inoltre poiche` y e` in R allora, nel grafo G', y ha un arco uscente che finisce in t.

continua

15

Teorema dei matrimoni

• Portando y in A, la nuova capacita` del taglio e`ottenuta aggiungendo c(y,t)=1 e sottraendo almeno c(x,y)=1 (ci potrebbero essere anche altri archi entranti in y provenienti da nodi di L_A). Di conseguenza la capacita` del taglio non aumenta.

• Nella prossima slide useremo il fatto che (Z,W) e` un taglio s-t minimo per G' e che $N(L_z)\subseteq Z$ per dimostrare che $|N(L_z)|< L_z$

PROGETTAZIONE DI ALGORITMI A.A. 2018-19

continua

Teorema dei matrimoni

- Il nuovo taglio (Z,W) e` tale che non ci sono archi uscenti da Z che hanno come origine un nodo di Lz.
- Osserviamo che Z puo` essere partizionato nei seguenti insiemi disgiunti $\{s\}, L_Z, R_z$
- Dai due punti precedenti deriva che tutti gli archi uscenti da Z hanno come origine s oppure un nodo di R_Z .
 - Gli archi con origine s che escono da Z sono quelli che hanno come destinazione un nodo in Lw (visto che i nodi a cui e` collegato s sono i nodi di L= $L_Z \cup L_w$ e che $L_Z \subseteq Z$).
 - Gli archi che hanno come origine un nodo in R_Z hanno come destinazione t (visto che tutti i nodi di R hanno come destinazione t ed $R_Z \subseteq R$).
 - Si ha quindi cap(Z, W) = $|L_W| + |R_Z|$ (*)
- Inoltre si ha che $N(L_z) \subseteq R_z$ per cui $|N(L_z)| \le |R_z|$
- In quanto cap(Z,W)=cap(A,B)<|L|) Mettendo insieme tutto:
- $|N(L_Z)| \le |R_Z| = cap(Z, W) |L_W| < |L| |L_W| = |L_Z|$.

dalla (*)

Teorema dei matrimoni

Abbiamo trovato un insieme L_Z che e' piu' grande di $N(L_Z)$.

Percorsi disgiunti

PROGETTAZIONE DI ALGORITMI A.A. 2018-19
A. DE BONIS

Percorsi senza archi in comune

- Def. Due percorsi vengono detti disgiunti se non hanno archi in comune
- Il problema dei percorsi disgiunti. Dato un grafo direzionato e due nodi s e t, trovare il massimo numero di percorsi da s a t senza archi in comune.

Esempio: reti di comunicazione

Percorsi senza archi in comune

 Esempio: questi sono percorsi disgiunti nell'esempio precedente

Percorsi senza archi in comune

• Formulazione in termini di max flusso: assegnamo flusso pari ad 1 ad ogni arco.

- Teorema. Sia dato un grafo direzionato G e siano s e t due nodi di G. Il massimo numero di percorsi disgiunti da s a t in G e` uguale al valore del max flusso nella rete ottenuta assegnando capacita` 1 agli archi di G.
- Dim. Dimostriamo max numero percorsi disgiunti \leq max flusso
- Supponiamo k= max numero percorsi disgiunti e siano $\,P_1,\,\dots\,,\,P_k\,$ k percorsi disgiunti
- Poniamo f(e) = 1 se e compare su qualche P_i ; altrimenti poniamo f(e) = 0
- Siccome P_1,\ldots,P_k sono disgiunti, se m di questi percorsi passano per un certo nodo u allora ci sono esattamente m archi di P_1,\ldots,P_k che entrano in u ed m archi di P_1,\ldots,P_k che escono da u \rightarrow conservazione del flusso soddisfatta
- valore di f = k (in quanto k distinti archi e uscenti da s con f(e)=1)

PROGETTAZIONE DI ALGORITMI A.A. 2018-19 A. DE BONIS

Percorsi disgiunti

- Dimostriamo max numero percorsi disgiunti \geq max flusso
- Supponiamo che il max flusso abbia valore k.
- Siccome capacita` sono interi uguali ad 1 → esiste una funzione flusso f che assegna valori interi (0 o 1) ad ogni arco e ha valore k.
- Consideriamo un arco (s, u) con f(s, u) = 1.
 - Per la conservazione del flusso esiste un arco (u,v) per cui f(u,v)=1. Per lo stesso motivo esiste un arco (v,z) per cui f(v,z)=1. E cosi` via. – In questo modo possiamo individuare un percorso da s a t fatto di
 - archi con flussi unitari.
- Siccome il valore di f e` k allora da s escono k archi con flusso pari ad 1. Quindi con il procedimento descritto possiamo produrre k percorsi da s a t (non necessariamente semplici) che non hanno archi in comune (se li avessero non sarebbe soddisfatta la proprieta` sulla conservazione del flusso).

Connettivita` di una rete

- Connettivita' di una rete. Dato un grafo direzionato G = (V, E) e due nodi s e t, trovare il minimo numero di archi la cui rimozione disconnette t da s.
- Def. Un insieme di archi $F \subseteq E$ disconnette t da s se ogni percorso da s a t usa un arco di F.

Percorsi disgiunti e connetivita` di una rete

- Teorema. [Menger 1927] Sia G un grafo direzionato e siano s e t due nodi di G. Il max numero di percorsi disgiunti in G da s a t e` uguale al minimo numero di archi la cui rimozione disconnette t da s.
- . Dim.
- Dimostriamo ≤
- Sia $F \subseteq E$ il piu` piccolo insieme di archi la cui rimozione disconnette t da s e che $|F| = k \rightarrow$ ciascun percorso da s a t usa almeno un arco in F.
- Sia S il max insieme di percorsi disgiunti da s a t. Ciascun arco di F e` usato da al piu` un percorso in S \to $|S| \le k$

Percorsi disgiunti e connetivita` di una rete

Dimostriamo ≥

- Supponiamo che il max numero di percorsi disgiunti sia un certo intero k.
- Abbiamo dimostrato che max numero percorsi disgiunti = valore max flusso nella rete ottenuta assegnando capacita` 1 agli archi di G. Quindi il valore del max flusso in questa rete e` k.
- Teorema Massimo Flusso & Minimo Taglio \Rightarrow esiste taglio (A, B) con cap(A,B)= k.
- Sia F l'insieme degli archi che vanno da A verso B.
- Ogni arco ha capacita` 1 e la somma delle capacita` degli archi diretti da A verso B e` k → |F| = k
- Ovviamente se rimuoviamo gli archi di F disconnettiamo t da s per cui F e` un insieme che disconnette t da s e ha cardinalita` k.

Eliminazione dal campionato di Baseball

Team	Wins	Losses	To play	Against = r _{ij}			
i	Wi	l _i	ri	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

Quali squadre hanno la possibilita` di finire la stagione con piu` vittorie?

- Montreal e` eliminata dal momento che puo` finire con al piu` 80 vittorie e Atlanta ne ha gia` 83.
- $w_i + r_i < w_j \Rightarrow squadra \ i \ eliminata$ Questa condizione e` sufficiente ma non necessaria. In altre parole, in un certo momento una squadra potrebbe avere ancora la possibilita` di vincere il torneo ma poi da quel momento in poi le cose potrebbero andare male ed essere quindi eliminata.

Team	Wins	Losses	To play	Against = r _{i,j}			
i	Wi	l _i	l _i r _i		Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

- Philly puo` vincerne fino ad 83 ma essere ancora eliminata (Atlanta deve giocare 7 partite contro squadre diverse da Philly e quindi potrebbe finire il campionato con 90 punti anche se perdesse contro Philly)
- Se Átlanta perde una partita allora qualche altra squadra deve vincerla al suo posto
 - Ad esempio Philly potrebbe vincere il campionato solo se Atlanta perdesse tutte le partite ma in questo caso New York vincerebbe le 6 partite contro Atlanta arrivando ad un totale 84 vittorie!
- N.B. Il futuro di una squadra nel campionato dipende non solo da quante partite devono essere giocate dalla squadra ma anche da quali sono le squadre contro le quali deve giocare.

29

Eliminazione dal campionato di Baseball

Input:

- Insieme S di squadre
- Squadra particolare $z \in S$.
- per ogni x, w_x = numero di partite vinte dalla squadra x
- per ogni x e y, $r_{x,y}$ = numero di partite ancora da disputare tra le squadre x e y
- Output: Risposta alla seguente domanda: e` possibile che la squadra z finisca con il maggior numero di vittorie (anche ex aequo con altre)?

Eliminazione dal campionato di Baseball: Formulazione basata sul max flusso

- z puo` totalizzare il maggior numero di vittorie? Sia m il max numero di vittorie conseguibili da z.
- · Costruiamo una rete di flusso nel modo seguente.
- Nodi
- Sorgente s da cui si emanano le vittorie
- Pozzo t che assorbe le vittorie
- Per ogni squadra x diversa da z, inseriamo nodo $\boldsymbol{v}_{\boldsymbol{x}}$
- Per ogni coppia di squadre x, y diverse da z, inseriamo il nodo $u_{x,y}$ se x e y devono giocare almeno un'altra partita l'una contro l'altra
- Archi:
- Per ogni nodo ux,y, inseriamo
- Arco $(s,u_{x,y})$ con cap. $r_{x,y}$: rappresenta vittorie emanate da s in relazione alle restanti partite tra x e y
- archi (u_{x,y},v_x) e (u_{x,y},v_y) con cap. ∞: rappresentato rispettivamente le vittorie di x contro y e di y contro x
- Per ogni nodo vx inseriamo
- arco (v_x,t) con cap. m-w_x: rappresenta le vittorie di x assorbite da t (max numero vittorie associabili ad x affinche' z totalizzi maggior numero vittorie)

21

Eliminazione dal campionato di Baseball: Formulazione basata sul max flusso

- Puo' il team 3 terminare con il maggior numero di vittorie?
- Assumiamo che il team 3 vinca tutte le restanti partite \Rightarrow in totale w_3 + r_3 vittorie.
- Le altre partite devono finire in modo che ogni altra squadra totalizzi $\leq w_3 + r_3$ vittorie.

Eliminazione dal campionato di Baseball: Formulazione basata sul max flusso

Capacita` intere → esiste funzione di flusso max che associa valori interi ad
ogni arco per cui una partita giocata tra x e y si traduce in una vittoria per x
o per y (un'unita` di flusso lungo (s,u_{x,y}) si traduce in un'unita` di flusso lungo
(u_{x,y},v_x) o lungo (u_{x,y},v_y))

Eliminazione dal campionato di Baseball: Formulazione basata sul max flusso

Teorema. La squadra z puo` non essere eliminata se e solo se la funzione di flusso massimo satura tutti gli archi uscenti da s, cioe` valore flusso max = somma capacita` archi uscenti da s.

- Dim. m = numero totale di vittorie conseguibili da z al termine del campionato
- Dim. ← : Sia f la funzione di flusso con valore max.
- Il numero totale di partite che restano da giocare tra squadre diverse da z e` uguale alla somma delle capacita` degli archi uscenti da s. Di conseguenza, se f satura tutti gli archi uscenti da s si ha che il valore del flusso e` uguale al numero totale di partite da giocare tra squadre diverse da z.
- 2. Per la conservazione del flusso, il flusso f(v_x, t) e` uguale al flusso entrante in v_x e cioe` uguale al numero di partite vinte da x tra quelle che restano da giocare contro le altre squadre diverse da z. Per il vincolo sulla capacita` f(v_x, t) non puo` eccedere c(v_x, t)=m-w_x. Cio` vuol dire che per ogni x diverso da z, il numero totale di vittorie di x e` al piu` w_x +m-w_x =m → z non viene eliminato.
- Mettendo insieme i due punti precedenti concludiamo che e` possibile giocare tutte le
 partite del campionato (per il punto 1) in modo che alla fine z non venga eliminata (per il
 punto 2)

Eliminazione dal campionato di Baseball: Formulazione basata sul max flusso

- Dim. →: Supponiamo che sia possibile che z non venga eliminata.
- Se e` possibile che z non venga eliminata allora vuol dire che le partite restanti tra squadre diverse da z possono concludersi in modo che ciascuna squadra x diversa da z vinca in queste partite al piu` m-w_x partite.
- Per ogni x diverso da z indichiamo con n_x ($n_x \le m w_x$) il numero di partite vinte da x tra quelle che restano da giocare tra x e le altre squadre diverse da z
- Per ogni coppia di squadre x,y diverse da z, denotiamo con $n_{x,y}$ il numero di restanti partite vinte da x contro y e con $n_{y,x}$ il numero di restanti partite vinte da y contro x $(n_{y,x} + n_{x,y} = r_{x,y})$.
- Consideriamo la rete di flusso costruita prima e costruiamo una funzione flusso f per questa rete nel seguente modo:
- Per x diverso da z, poniamo f(vx,t)=nx
- Per ogni due nodi x e y diversi da z, poniamo, $f(u_{x,y}, v_x) = n_{x,y}$, $f(u_{x,y}, v_y) = n_{y,x}$ e $f(s,u_{x,y}) = r_{x,y}$
- Osserviamo che f soddisfa il vincolo sulla capacita` in quanto $c(s,u_{x,y}) = r_{x,y}$, $c(u_{x,y},v_x) = c(u_{x,y},v_y) = \infty$ e $c(v_x,t) = m-w_x$ e soddisfa il vincolo sulla conservazione del flusso in quanto $r_{x,y} = n_{x,y} + n_{y,x}$, $n_x = somma$ per ogni y diverso da $x \in z$ di $n_{x,y}$
- Osserviamo che f satura tutti gli archi uscenti da s (ed e` max).

3!

Eliminazione dal campionato di Baseball

Team	Wins	Losses	To play	Against = r _{ij}				
i	Wi	l _i	ri	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	10	8	7	3
Baltimore	71	63	28	10	-	2	12	4
Boston	69	66	27	8	2	-	8	9
Toronto	63	61	38	7	12	8	-	11
Detroit	49	86	27	3	4	9	11	-

- Quali squadre hanno una possibilita` di finire la stagione con il massimo numero di vittorie?
- Cerchiamo di capire se Detroit potrebbe essere una di queste squadre.
- Osserviamo innanzi tutto che Detroit potrebbe terminare la stagione con al piu` 49 + 27 = 76 vittorie.

Team	Wins	Losses	To play	Against = r _{ij}				
i	Wi	l _i	\mathbf{r}_{i}	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	10	8	7	3
Baltimore	71	63	28	10	-	2	12	4
Boston	69	66	27	8	2	-	8	9
Toronto	63	61	38	7	12	8	-	11
Detroit	49	86	27	3	4	9	11	-

- Quali squadre hanno una possibilita` di finire la stagione con il massimo numero di vittorie?
- Cerchiamo di capire se Detroit potrebbe essere una di queste squadre.
- Osserviamo innanzi tutto che Detroit potrebbe terminare la stagione con al piu` 49 + 27 = 76 vittorie.
- Certificato di eliminazione: sottoinsieme R = {NY, Bal, Bos, Tor}
- Le squadre in R hanno in totale gia` vinto w(R) = 75+71+69+63=278 partite . A queste vittorie se ne aggiungeranno r(R) = 47 (numero partite tra 2 squadre di
- Il numero medio di vittorie per squadra e` 325/4 > 76 → esiste squadra in R che totalizzera` piu` di 76 vittorie.

Eliminazione dal campionato di Baseball Certificato di Eliminazione

Per ogni sottoinsieme T di S calcoliamo:

$$T \subseteq S, \ \ w(T) \coloneqq \sum_{i \in T}^{\# \text{ wins}} w_i \ , \quad _{\Gamma}(T) \coloneqq \underbrace{\sum_{i \in T}^{\# \text{ remaining games}}}_{\{x,y\}} \subseteq T \underset{\{x,y\}}{\overset{\text{production}}{\sum}} r_{\underset{xy}{xy}} \ ,$$

Se per un certo sottoinsieme T di S si ha che

LB on avg # games won
$$\frac{w(T) + r(T)}{|T|} > w_z + r_z$$

allora z e` eliminato. Diremo che T elimina z in quanto l'esistenza di

T prova che z e' eliminato.

- Teorema. [Hoffman-Rivlin 1967] Una squadra z e' eliminata se e solo se c'e' un sottoinsieme T* che elimina z.
- Dim. (solo dell'implicazione →)
- Dimostriamo che se z e' eliminata allora e' possibile trovare un sottoinsieme T* che
- Costruiamo la rete di flusso nel modo visto. Sia f* il max flusso in questa rete.
- Consideriamo il taglio (A, B) del teorema max flusso min taglio.
- Poniamo T^* = insieme di vertici v_x contenuti in A.

 $\begin{array}{l} \bullet \quad \mbox{Osservazione:} \ u_{x,y} \in \mbox{A se e solo se} \ v_x \in \mbox{T^{\star} e $v_y \in \mbox{$T^{\star}$}.$} \\ \mbox{Dim} \rightarrow \quad : \mbox{se $u_{x,y} \in \mbox{$A$ allora la capacita}$` infinita degli archi $(u_{x,y},v_x)$ e $(u_{x,y},v_y)$ assicura} \\ \end{array}$

che $v_x \in A$ and $v_y \in A$ e di conseguenza $v_x \in T^*$ e $v_y \in T^*$. Dim \leftarrow : se $v_x \in T^*$ e $v_y \in T^*$ ma $u_{x,y} \in B$, allora potremmo decrementare la capacita` di (A,B) di $r_{x,y}$ aggiungendo $u_{x,y}$ ad A ((A,B) sarebbe ancora un taglio s-t. Perche'?). Cio` e` impossibile perche` (A,B) ha cap. minima

Eliminazione dal campionato di Baseball

$$\begin{array}{lll} & \text{Arco } (\mathbf{s}, \mathbf{u}_{\mathbf{x}, \mathbf{y}}) \text{ va da} \\ & \text{A a B se e solo se} \\ & \text{uno tra } v_{\mathbf{x}} \in v_{\mathbf{y}} \text{ si} \\ & \text{trova in B = (V-T^*)} \\ & & \\$$

- z eliminata →funzione di flusso max f* non satura tutti gli archi uscenti da s.
- Siccome f* non satura tutti gli archi della forma (s, $u_{x,y}$) allora si ha

$$cap(A,B) = v(f^*) < \sum_{x,y \in S \setminus \{z\}} r_{x,y} = r(S \setminus \{z\})$$

 $Si ha quindi r(S \setminus \{z\}) - r(T^*) + (w_z + r_z)|T^*| - w(T^*) < r(S \setminus \{z\})$

$$-r(T^*) + (w_z + r_z)|T^*| - w(T^*) < 0$$
 progettazione di algoritmi a.a. 2018-19 a. de bonis

- Abbiamo visto che $-r(T^*)+(w_z+r_z)|T^*|-w(T^*)$ 0
 - Ne deriva che

$$(r(T^*)+w(T^*))/|T^*|>w_z+r_z$$

PROGETTAZIONE DI ALGORITMI A.A. 2018-19 A. DE BONIS