Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

Systèmes Linéaires Continus Invariants

SLCI2 - Correction

Cours

Programme PSI/MP 2022 (<u>LIEN</u>)			
Id	Compétence développée	Connaissances associées	
		Compensation de pôles, réglage de marges,	
C1-02	Proposer une démarche de	amortissement, rapidité et bande passante.	
C1-02	réglage d'un correcteur.	Application aux correcteurs de type proportionnel,	
		proportionnel intégral et à avance de phase.	
C2-04	Mettre en œuvre une démarche	Correcteurs proportionnel, proportionnel intégral et	
CZ-04	de réglage d'un correcteur.	à avance de phase.	

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

Correction des systèmes asservis	4
1.I. Introduction	4
1.II. Contexte de la correction abordée	5
1.III. Comprendre la correction	6
1.III.1 Exemple 1 – Souris d'ordinateur	
1.III.2 Exemple 2 – Remplissage d'un verre	
1.III.3 Conclusion	
1.III.4 Remarque	7
1.IV. Correcteurs P, I & D	8
1.IV.1 Correction proportionnelle	8
1.IV.1.a Fonction de transfert	8
1.IV.1.b Diagramme de Bode du correcteur	8
1.IV.1.b.i Diagramme général	8
1.IV.1.b.ii Diagrammes des 3 correcteurs de l'exemple	9
1.IV.1.b.iii Effet diagramme de Bode FTBO	9
1.IV.1.c Effet temporel	10
1.IV.1.d Bilan	10
1.IV.1.e Réglages	11
1.IV.1.e.i Précision	11
1.IV.1.e.ii Rapidité	11
1.IV.1.e.iii Stabilité	11
Marge de phase	11
Marge de gain	11
Application	12
1.IV.2 Correction intégrale	13
1.IV.2.a Fonction de transfert	13
1.IV.2.b Diagramme de Bode du correcteur	13
1.IV.2.b.i Diagramme général	
1.IV.2.b.ii Effet diagramme de Bode FTBO	
1.IV.2.b.iii Influence de <i>Ki</i>	15
1.IV.2.c Effet temporel	16
1.IV.2.d Bilan	16
1.IV.3 Correction dérivée	17
1.IV.3.a Fonction de transfert	17
1.IV.3.b Diagramme de Bode du correcteur	17
1.IV.3.b.i Diagramme général	17
1.IV.3.c Bilan	17
1.IV.4 Bilan des correcteurs seuls	18
1.V. Correcteurs avancés	18
1.V.1 Généralités	18
1.V.2 Compensation de pôles	18
1.V.3 Le correcteur PI	19
1.V.3.a Diagramme de Bode du correcteur	19
1.V.3.b Méthodes de réglages	20
1.V.3.b.i Exemple support	20
1.V.3.b.ii Méthodes	20

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.V.3.b.iii Réglage par compensation de pôle	21
• Choix de <i>Ti</i>	21
• Choix de <i>Ki</i>	21
Résultat	21
1.V.3.b.iv Réglage sans compensation de pôle	22
• Choix de <i>Ti</i>	22
• Choix de <i>Kp</i>	22
Résultat	22
1.V.3.b.v Remarque	24
1.VI. Correcteur idéal	25
1.VII. Correcteurs à action localisée	
1.VII.1 Correcteur à retard de phase	
1.VII.1.a Fonction de transfert	
1.VII.1.b Diagramme de Bode	
1.VII.1.c Réglage	
1.VII.1.c.i Coefficient a	
1.VII.1.c.ii Coefficient T	
1.VII.1.d Effets	
1.VII.2 Correcteur à avance de phase	
1.VII.2.a Fonction de transfert	
1.VII.2.b Diagramme de Bode	
1.VII.2.c Réglage	
1.VII.2.c.i Coefficient a	
1.VII.2.c.ii Coefficient T	
1.VII.2.d Effets	
1.VII.2.e Danger	30
1.VII.2.f Remarque	31
1.VII.2.f.i Cas 1	31
1.VII.2.f.ii Cas 2	
1.VII.2.g Retrouver les formules par le calcul	
1.VII.2.g.i Pulsation	33
1.VII.2.g.ii Remontée de phase	33
1.VII.3 Remarques	34

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

Correction des systèmes asservis

1.I. Introduction

Après avoir vu comment étudier les performances des systèmes, nous allons maintenant voir comment les modifier dans le but de les améliorer en fonction du besoin exprimé, que ce soit pour des réponses temporelles à des entrées types (impulsion, échelon, rampe...) ou des réponses fréquentielles.

La correction consiste à modifier :

- La précision statique (ε_s) définie par exemple par l'erreur de position maximale admissible.
- La précision dynamique (ε_v) : une erreur maximale de traînage peut aussi être nécessaire.
- La rapidité, matérialisée par exemple par une valeur maximale de temps de montée (t_m) , par une valeur de temps de réponse à 5% $(t_{r_5\%})$ ou à l'aide de la bande passante (ω_c, ω_{c_0}) .
- La marge de stabilité, matérialisée par exemple par une valeur minimale de marge de phase
- L'allure de la réponse : limitation du dépassement, du caractère oscillant...

La première idée consiste à imaginer ajouter une boucle à un système existant, ou à en modifier les composants.

Toutefois, il est aussi possible d'ajouter des composants permettant de modifier la fonction de transfert du système sans en changer les constituants. C'est ce que nous appellerons la correction des systèmes asservis.

Reprenons quelques résultats obtenus dans la partie précédente :

	Augmentation de la rapidité	Augmentation de la précision	Augmentation de la stabilité Systèmes 2°ordre et plus
ŀ		<u>'</u>	,
	Augmentation du gain de la	Présence d'un gain de FTBO	Diminution du gain de la FTBO
	FTBO	élevé	
			Augmentation de la phase de la
	Présence d'une large bande	Ajout d'intégration dans la	FTBO (le moins d'intégrations
	passante de la FTBO	FTBO	possible)

On met ici en évidence le dilemme stabilité-précision lié à l'influence contradictoire du gain sur les performances de précision et de stabilité. La correction des systèmes est donc un compromis entre différents objectifs contraires.

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.II. Contexte de la correction abordée

Il existe une multitude de correcteurs de technologies différentes et une multitude de mises en œuvre de cette correction. Dans ce chapitre, on se limite à la correction $\mathcal{C}(p)$ en amont de la chaîne directe, en sortie du comparateur. On dit que le correcteur est placé en cascade, ou en série.

Pourquoi placer le correcteur en cascade d'une manière générale? Parce qu'en général, au comparateur, on a des tensions (systèmes continus ou analogiques) ou des nombres (systèmes discrets ou numériques). Et on sait facilement ajouter des filtres électriques pour corriger le signal électrique ou travailler numériquement sur des nombres. Il est plus difficile d'avoir une action dérivée ou intégrale sur une vitesse, par exemple...

Tout l'art de la correction consiste à choisir le bon correcteur et ses paramètres.

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.III. Comprendre la correction

Dans ce paragraphe, je vais essayer de vous faire comprendre en quoi consiste la correction à travers 2 exemples, l'un pour comprendre la correction proportionnelle, l'autre pour comprendre les corrections intégrale et dérivée.

1.III.1 Exemple 1 - Souris d'ordinateur

D'un ordinateur à l'autre, vous avez pu remarquer que la sensibilité de la souris est différente. En réalité, c'est un réglage qui multiplie la vitesse de déplacement de la souris sur l'écran par rapport à la vitesse de déplacement de la main de l'utilisateur. Autrement dit, c'est un **correcteur proportionnel**.

Si vous effectuez un réglage très bas, il faudra beaucoup de temps pour atteindre l'objectif que vous ne devriez pas dépasser (je ne parlerai pas de précision ici car l'humain possède une action intégrale que j'aborderai dans le second exemple, et qui lui permet quoi qu'il arrive d'atteindre l'objectif).

Si maintenant vous effectuez le réglage le plus sensible, et que vous déplacez à nouveau la souris vers un objectif, cela devient tout de suite plus difficile. Généralement vous dépassez, revenez en arrière, redépassez dans l'autre sens etc... Vous avez grandement perdu en stabilité, mais la réaction est bien plus rapide.

Illustration de la trajectoire que je peux faire sur Paint avec ces deux réglages sur mon mac :

Vous imaginez bien que si le réglage pouvait devenir extrêmement sensible, il pourrait devenir presque impossible d'atteindre l'objectif.

Remarque intéressante : Heureusement, notre cerveau possède lui-même un correcteur proportionnel, il s'adapte aux différentes situations. Ainsi, selon la sensibilité de la souris, en quelques secondes après quelques essais, on s'adapte en contrant l'effet de cette sensibilité (ça va trop lentement, on bouge le bras plus vite ! Ca va trop vite, on bougera plus lentement).

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.III.2 Exemple 2 - Remplissage d'un verre

Vous avez maintenant à disposition un robinet qui permet de remplir un verre. Vous avez comme objectif (consigne humaine) d'atteindre un niveau bien précis. La consigne au niveau du robinet, que vous pilotez, est l'angle de rotation de celui-ci. On considère qu'il n'y a pas de limite de débit pour simplifier (saturation dans la réalité) et que le débit est proportionnel à l'angle d'ouverture.

On appelle ε l'écart de niveau entre le niveau de consigne et le niveau réel (entrée – sortie, ce qui est le cas dans les asservissements). Notons que l'écart est positif et diminue quand le niveau monte et qu'il est en dessous de l'objectif.

- Le robinet donne un faible débit quand on l'ouvre légèrement. Le niveau monte très doucement, alors vous l'ouvrez plus ! Vous venez de réaliser une **action intégrale**. En effet, vous constez que l'écart est grand et sur plusieurs secondes, vous ajoutez quelque chose à la consigne du type $\int \varepsilon dt$. Pour aller plus loin, imaginez un trou (perturbation) dans le fond du verre. L'ouverture du robinet vous conduit à obtenir un niveau constant qui n'est pas celui désiré. Vous ajoutez donc à la consigne quelque chose relié à cet écart qui dure... Intégrale ! Vous comprenez pourquoi l'action intégrale garantie (sans non-linéarités) d'atteindre le niveau souhaité ? S'il y a un écart pendant longtemps, on ajoute à la consigne. Par l'absurde, si l'écart ne finissait pas nul, la consigne se verrait ajouter une valeur infinie de l'intégrale de cet écart jusqu'à un temps infini, donc on atteindrait forcement le débit permettant d'avoir un écart nul !
- Le robinet donne un débit très fort. Le niveau monte très vite et vous risquez d'aller plus haut que souhaité. Vous réagissez immédiatement en enlevant de la consigne. Vous venez de réaliser une **action dérivée**. En effet, selon la vitesse de diminution de l'écart (dérivée négative), vous enlevez de la consigne (ajoutez sa dérivée).

1.III.3 Conclusion

Avec un nombre qui évolue au cours du temps, on ne peut pas faire plus que ces 3 actions :

- Le multiplier par un réel (action proportionnelle)
- Le dériver ou l'intégrer (comparer la valeur actuelle à la/aux précédente/s)

C'est cela, réaliser une correction. C'est en quelque sorte une manière de « mentir ». On travaille sur l'écart et ses évolutions pour adapter les ordres que reçoivent les éléments de la chaine d'action.

1.III.4 Remarque

Nous, êtres humains, sommes des systèmes asservis avec correcteurs PID à coefficients non constants ©. Nous les adaptons aux situations, et savons les modifier en fonction du comportement obtenu. Dans la suite, nous allons aborder la correction à coefficients constants. Pour avoir un peu regardé ce qui est fait dans les drones, les coefficients des correcteurs PID de leurs asservissements sont adaptés à la situation dans laquelle ils se trouvent...

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.IV. Correcteurs P, I & D

Voyons dans un premier temps les 3 types de correcteurs de base : Proportionnel, intégrale et dérivée.

1.IV.1 Correction proportionnelle

1.IV.1.a Fonction de transfert

$$C(p) = K_p$$

Ce correcteur change le gain statique de la FTBO du système en le multipliant par K_p .

Traitons 3 exemples pour $K_p=(0.1,1,10).$ On notera que $K_p=1$ correspond à l'absence de correction.

1.IV.1.b Diagramme de Bode du correcteur

1.IV.1.b.i Diagramme général

Dernière mise à jour	SLC12	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.IV.1.b.ii Diagrammes des 3 correcteurs de l'exemple

1.IV.1.b.iii Effet diagramme de Bode FTBO

Voici les diagrammes de Bode associés aux 3 valeurs de K_p choisies :

Dernière mise à jour	SLC12	Denis DEFAUCHY
27/09/2022	Correction	Cours

Ce correcteur est dit translatant, car son effet est de déplacer la courbe de gain en translation verticale dans le plan de Bode :

- Vers le haut si $K_p > 1$
- Vers le bas si $K_p < 1$

La phase n'est pas modifiée.

On note que l'augmentation de K_p augmente la bande passante (\nearrow rapidité), augmente le gain statique (\nearrow précision) et diminue les marges de gain et de phase (\searrow stabilité)

1.IV.1.c Effet temporel

Voici les réponses temporelles pour une entrée échelon unitaire :

L'augmentation de K_p augmente la précision, augmente la rapidité globale (le $\mathrm{t}t_{r_5\%}$ diminue puis augmente) et diminue la stabilité.

1.IV.1.d Bilan

$C(p) = K_p$	Stabilité	Précision	Rapidité	Dépassements
$K_p \nearrow ou K_p > 1$	>	7	$\nearrow (\Delta t_{r_{5\%}} peut \searrow)$	Apparition ou ↗

Remarques:

- Attention à $t_{r_{5\%}}$ qui lui peut diminuer malgré l'augmentation de la rapidité (temps de montée, « réaction initiale ») du système.
- Il peut y avoir des cas particuliers où ces résultats généraux ne sont pas vrais, par exemple sur un système présentant une remontée de phase (non monotone décroissante), l'augmentation de ω_{c_0} par augmentation de K_p peut induire une augmentation de la marge de phase
- Dans un système réel, il existe des saturations. La valeur de K_p sera donc toujours limitée, au risque d'obtenir une consigne en tout ou rien aux valeurs de saturation. Ex : un hacheur alimenté en 24V ne pourra jamais dépasser 24V, quelle que soit sa consigne...

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.IV.1.e Réglages

Attention, corriger une performance peut modifier les autres, on devra toujours vérifier que le système répond toujours au cahier des charges.

1.IV.1.e.i Précision

On peut régler la précision du système. En effet, connaissant le gain statique de la BO du système non corrigé K_{BO} , le gain statique corrigé vaut aK_{BO} , et connaissant l'expression de l'écart selon la classe de la BO (cf tableau des écarts), il suffit de résoudre l'équation $\varepsilon = f\left(K_{BO}^{Corr}\right)$ pour trouver K_p . Attention toutefois, cela va influencer la stabilité et la rapidité. On verra plus tard comment effectuer ce même réglage sans influencer les autres performances, avec le correcteur à retard de phase.

1.IV.1.e.ii Rapidité

Si le système est simple (1° ou 2° ordre), on peut déterminer le temps de réponse à 5% qui dépend de $K_{BO}^{Corr}=aK_{BO}...$

1.IV.1.e.iii Stabilité

Soit une BO de la forme : $H(p) = \frac{K_{BO}(1+\cdots)}{p^{\alpha}(1+\cdots)}$

On introduit le correcteur dans la BO, ce qui donne : $H'(p) = \frac{K_{BO}K_p(1+\cdots)}{p^{\alpha}(1+\cdots)} = \frac{K'_{BO}(1+\cdots)}{p^{\alpha}(1+\cdots)}$ avec $K'_{BO} = K_{BO}K_p$

Le gain sera donc translaté de $20 \log K_p$ et la phase est inchangée.

• Marge de phase

- On détermine sur la courbe de phase la pulsation à laquelle la marge de phase souhaitée pourrait être obtenue $\omega'_{c_0}/\pi + \varphi_{\omega'_{c_0}} = \Delta \varphi$. Il va falloir annuler le gain en ω'_{c_0} pour que ω'_{c_0} soit la pulsation de coupure à 0 db du système corrigé.
- On lit la valeur du gain à cette pulsation $G'_{\omega'_{c_0}}$. La translation de gain à obtenir vaut donc $TG=-G'_{\omega'_{c_0}}$
- On résout l'équation $TG=20\log K_p$, ce qui donne $K_p=10^{rac{TG}{20}}$
- ATTENTION : $K_{BO}' = K_{BO}K_p$ est le gain statique de la fonction de transfert corrigée

• Marge de gain

- On détermine sur la courbe de phase la pulsation ω_{-180} à laquelle la phase vaut -180°. Il va falloir que le gain soit égal à $-\Delta G$ à cette pulsation pour que la marge de gain soit respectée.
- On lit la valeur du gain à cette pulsation $G'_{\omega_{-180}}$. Il faut que le gain soit égal à $-\Delta G$, on lui retranche donc sa valeur, et la valeur de marge souhaitée. La translation de gain à obtenir vaut donc $TG = -\Delta G G'_{\omega_{-180}}$
- On résout l'équation $TG = 20 \log K_p$, ce qui donne $K_p = 10^{\frac{TG}{20}}$
- ATTENTION : $K'_{BO} = K_{BO}K_p$ est le gain statique de la fonction de transfert corrigée

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

• Application

Soit le système suivant de diagramme de Bode de FTBO suivant :

On souhaite à la fois qu'il possède une marge de phase de 45° et une marge de gain de 10 db. Il possède actuellement une marge de phase de 30° et une marge de gain de 4 db.

Pour respecter la marge de gain (construction vertes), il suffit de translater la courbe de gain de 6 db vers le bas, soit : $TG = -6 \Leftrightarrow K_p = 10^{\frac{-6}{20}} \approx 0,5$. La marge de phase vaut alors 65°.

Pour respecter la marge de phase (constructions rouges), on trouve la pulsation à laquelle le système a sa phase à -135°($\omega \approx 75~rd.~s^{-1}$), on détermine le gain à cette pulsation ($G\approx 3~db$), on applique une translation de gain de -3 db afin d'annuler le gain en $\omega \approx 75~rd.~s^{-1}$, soit : $TG=-3 \Leftrightarrow K_p=10^{\frac{-3}{20}}\approx 0$,7. La marge de gain vaut alors 7 db.

Pour respecter les deux marges, il faut donc que la translation de gain soit de -6 db au moins, soit la courbe verte, la marge de gain étant de 10 db, et la marge de phase 65°.

Finalement : $K_p = 10^{\frac{-6}{20}} \approx 0.5$

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.IV.2 Correction intégrale

1.IV.2.a Fonction de transfert

$$C(p) = \frac{K_i}{p} = \frac{1}{T_i p}$$
$$[K_i] = s^{-1}$$

Remarque: Un correcteur intégral augmente la classe de la FTBO.

1.IV.2.b Diagramme de Bode du correcteur

1.IV.2.b.i Diagramme général

$$C(p) = \frac{K_i}{p}$$

$$|C(j\omega)| = \frac{K_i}{\omega}$$

$$G_{db} = 20 \log \left(\frac{K_i}{\omega}\right) = 20 \log K_i - 20 \log \omega$$
 On pose $X = \log \omega$, On a alors :
$$G_{db} = 20 \log K_i - 20X$$
 Droite de pente -20 db/dec passant par
$$\begin{cases} \omega = 1; G = 20 \log K_i \\ \omega = K_i; G = 0 \end{cases}$$

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.IV.2.b.ii Effet diagramme de Bode FTBO

Soit le système de fonction de transfert en boucle ouverte non corrigé H(p):

On remarque (1) que la pulsation de coupure à 0 db est décalée, le sens dépendant de sa position avant correction par rapport à la pulsation 1 rd/s, et (2) que la courbe de phase est diminuée de 90°, on le savait. Il y aura donc un effet sur les marges de stabilité (**stabilité**), la bande passante (**rapidité**), et le gain statique qui devient « infini » (**précision**), on le savait aussi, l'écart statique en présence d'un intégrateur est nul...

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

Observons maintenant les tracés réels :

On peut aller un peu plus dans le détail de l'étude de l'influence de cette correction sur la **stabilité**. En effet :

- Si le correcteur ne changeait pas ω_{c_0} (très peu probable), la marge de phase se trouverait diminuée de 90°
- Si le correcteur change ω_{c_0} , et d'une manière générale dans nos systèmes qui répondent « vite », qui ont donc des pulsations de coupure grandes devant 1, ω_{c_0} diminue. Ainsi, à la perte de 90°, et là encore d'une manière générale sur des systèmes dont la courbe de phase est monotone décroissante, la diminution de ω_{c_0} va limiter la perte de phase à une valeur inférieure à 90°. Je ne connais pas d'exemple où cette diminution permet de déplacer ω_{c_0} assez pour que finalement, une augmentation de la phase soit observée... Dans l'exemple cidessus, les marges sont devenues nulles, le système oscille

Dans ce paragraphe, on a dit plusieurs fois « D'une manière générale ». On pourra donc retenir les résultats de ce correcteur sur les performances, mais sans toutefois oublier qu'il existe des cas particuliers, et qu'une étude des diagrammes de Bode au cas par cas est importante!

1.IV.2.b.iii Influence de K_i

Il est inutile de traiter plusieurs cas de K_i différents. En effet, cela revient à analyser l'effet du gain comme cela a été réalisé dans le paragraphe sur la correction proportionnelle.

Dernière mise à jour	SLC12	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.IV.2.c Effet temporel

Prenons un système tel que : $H(p) = \frac{1}{1+0,1p+0,01p^2}$; $FTBO(p) = \frac{1}{p} * H(p)$

La présence d'un intégrateur a comme attendu, rendu le système précis (erreur nulle !).

La bande passante à 0db à diminué, on remarque clairement que la rapidité a bien diminué.

La marge de phase a légèrement diminué, le système reste stable quand même.

1.IV.2.d Bilan

La phase étant généralement diminuée, la **stabilité** est dégradée (à mettre en balance de la diminution éventuelle de ω_{c_0} qui induit une augmentation de la marge de phase en parallèle.

La pulsation de coupure à 0 dB est généralement diminuée, le temps de montée augmente. L'intégrateur **ralenti** le système. Attention toutefois, si la pulsation de coupure à 0 dB est initialement en dessous de 1 rd/s, l'intégrateur peut avoir un effet opposé sur la bande passante.

La présence de l'intégration annule l'écart statique pour des perturbations de type impulsion et échelon. La classe du système est augmentée et la **précision** peut donc être améliorée.

$C(n) = \frac{1}{n}$	Stabilité	Précision	Rapidité
$C(p) = \frac{1}{p}$	7	7	>

Remarque : comme précédemment, ces résultats s'appliquent de manière générale, mais pas toujours. Bien étudier le diagramme de Bode pour conclure.

Dernière mise à jour	SLC12	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.IV.3 Correction dérivée

Ce correcteur est souvent utilisé pour améliorer la stabilité.

1.IV.3.a Fonction de transfert

Remarque: Un correcteur dérivée diminue la classe de la FTBO.

1.IV.3.b Diagramme de Bode du correcteur

1.IV.3.b.i Diagramme général

Ayant exactement l'effet inverse du correcteur « intégrale », je ne détaillerai pas plus ce correcteur.

C(n) = n	Stabilité	Précision	Rapidité
C(p) = p	7	/	7

Et comme précédemment, ces résultats s'appliquent « de manière générale ».

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.IV.4 Bilan des correcteurs seuls

D'une manière générale, on peut quantifier l'effet de chaque correction ainsi :

	Stabilité	Précision	Rapidité
C(p) = K > 1	`	7	$(\Delta t_{r_{5\%}} peut \ \)$
$C(p) = \frac{1}{p}$	`\	7	`\
C(p) = p	7	`	7

1.V. Correcteurs avancés

1.V.1 Généralités

On rencontrera différents types de correcteurs PI, PD, PID.

PI	PD	PID
$C(p) = K_p + \frac{K_i}{p}$	$C(p) = K_p + K_d p$	$C(p) = K_p + \frac{K_i}{p} + K_d p$
$C(p) = \frac{K_p p + K_i}{p}$	$C(p) = K_p + K_d p$	$C(p) = \frac{pK_p + K_i + K_d p^2}{p}$

En pratique, les correcteurs sont de deux types :

- Codes numériques dans le systèmes discrets (numériques) comme vous savez les faire (intégrale des trapèzes, dérivée numérique)
- Circuits RLC+AO dans les systèmes continus (analogiques) LIEN

1.V.2 Compensation de pôles

Quel que soit le correcteur utilisé, il est possible de l'utiliser pour « compenser un ou des pôles » de la fonction de transfert (du premier comme du second ordre). Prenons l'exemple d'un système du second ordre de fonction de transfert :

$$H(p) = \frac{K}{(1 + T_1 p)(1 + T_2 p)}$$

Proposons le correcteur de PD suivant : $C(p) = K_p + K_d p$

On obtient alors la FTBO suivante : $FTBO(p) = KK_p \frac{\left(1 + \frac{K_d}{K_p}p\right)}{\left(1 + T_1p\right)\left(1 + T_2p\right)}$

En réglant $\frac{K_d}{K_p} = T_1$ par exemple, on obtient $FTBO(p) = \frac{KK_p}{(1+T_2p)}$, ce qui permet d'avoir un premier ordre en BO et en BF, une marge de phase supérieure à 90°, pas de dépassement etc...

On peut donc faire disparaître le dénominateur que l'on souhaite, réduire l'ordre du système et améliorer ses performances.

Dernière mise à jour	SLC12	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.V.3 Le correcteur PI

Le correcteur proportionnel/intégral est explicitement cité au programme, décrivons donc celui-ci et les méthodes classiques de réglage.

$$C(p) = K_p + \frac{K_i}{p}$$

$$C(p) = \frac{pK_p + K_i}{p} = \frac{1 + \frac{K_p}{K_i}p}{\frac{p}{K_i}}$$

$$C(p) = K_i \frac{1 + T_i p}{p} \quad ; \quad T_i = \frac{K_p}{K_i}$$

1.V.3.a Diagramme de Bode du correcteur

On remarque tout de suite que l'on bénéficie de l'avantage du correcteur intégral (augmentation de la classe de la BO, et donc précision) tout en réglant la marge de phase en modifiant ω_{c_0} par l'action proportionnelle.

Toutefois, ce correcteur est néfaste à la stabilité s'il diminue la phase à proximité de ω_{c_0} .

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.V.3.b Méthodes de réglages

1.V.3.b.i Exemple support

Soit le système de fonction de transfert en boucle ouverte non corrigé H(p):

$$H(p) = \frac{10}{(1+0.1p)(1+0.01p)} \quad ; \quad \begin{cases} K = 10\\ \omega_0 = \sqrt{100} = 10\\ z = \frac{10}{2}0.1 = 0.5 \end{cases}$$

Comparons la réponse du système non corrigé à celle du système avec un intégrateur :

Voyons comment régler le correcteur PI afin d'avoir de meilleurs performances que l'intégrateur seul.

1.V.3.b.ii Méthodes

Dans la suite, appelons H(p) la FTBO non corrigée, et H'(p) la FTBO corrigée.

	Compensation de pôles Dénominateur ayant au moins une fonction $(1 + T_k p)$	Sans compensation de pôle Système quelconque
Choix de T_i	Après avoir factorisé $H(p)$, choisir $T_i = \max(T_k)$ avec T_k les constantes de temps des premiers ordres du dénominateur de $H(p)$	Déterminer ω_{c_0} de $H(p)$ permettant de respecter la marge de phase attendue par la méthode de réglage d'un correcteur proportionnel seul Choisir T_i afin de modifier le moins possible la phase à ω_{c_0} , par exemple $\frac{1}{T_i} \approx \frac{\omega_{c_0}}{10}$
Choix de K_i/K_n	Choisir K_i sur le système $rac{1+T_ip}{p}H(p)$	Choisir K_p sur $H(p)$
t, p	afin d'obtenir la marge de phase désirée cf. réglage correcteur proportionnel par translation de gain	

Précisions que pour ces méthodes, on peut travailler graphiquement sur des diagrammes de Bode, ou par le calcul, faut-il que les fonctions de transfert ne soient pas trop compliquées.

Dernière mise à jour	SLC12	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.V.3.b.iii Réglage par compensation de pôle

• Choix de T_i

En posant $H(p) = \frac{10}{(1+T_1p)(1+T_2p)}$, on choisit le correcteur PI $C(p) = K_i \frac{1+T_ip}{p}$ tel que $T_i = T_1$ (ou $T_i = T_2$) et appelons T l'autre constante, on obtient :

$$H'(p) = \frac{10}{\frac{(1+T_1p)}{(1+T_2p)}} K_i \frac{1+T_ip}{p} = \frac{K_i}{p} \frac{10}{1+Tp}$$

La plus grande rapidité est atteinte pour la plus grande bande passante en BO, soit T minimum, il faut donc compenser le plus grand T parmi T_1 et T_2 . On choisit $T_i = \max(T_1, T_2) = 0.1$, on a donc $T = \min(T_1, T_2) = 0.01$.

• Choix de Ki

On choisit K_i pour obtenir la marge de phase souhaitée, que ce soit par le calcul ou graphiquement.

Dans l'exemple étudié, nous avons H'(p) un premier ordre intégré pour lequel on sait régler simplement et sans calculs K_i afin d'obtenir la marge de phase de 45°. En effet, la phase vaut -135° en $\omega = \frac{1}{T}$, il faut donc que le module de H' y soit de 1 :

$$\left|H'_{\frac{j}{T}}\right| = 1 = \frac{K_i}{\frac{1}{T}} \frac{10}{\sqrt{2}} = \frac{10TK_i}{\sqrt{2}} \iff K_i = \frac{\sqrt{2}}{10T}$$

Soit
$$K_i = \frac{\sqrt{2}}{10*0.01} \approx 14.1$$
 et donc, $K_p = T_i K_i = \frac{\sqrt{2}}{10} \frac{T_i}{T} = \sqrt{2}$.

• Résultat

$$C(p) = \sqrt{2} + \frac{14,1}{p}$$
;
$$\begin{cases} K_p = \sqrt{2} \\ K_i = 14,1 \\ T_i = 0,1 \end{cases}$$

Cette réponse est précise, plus rapide et plus stable qu'avec le correcteur intégrateur.

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.V.3.b.iv Réglage sans compensation de pôle

On a tracé les diagrammes asymptotiques de Bode de la BO non corrigée H(p), du correcteur choisi dans cette partie $\mathcal{C}(p)$ et de la BO corrigée H'(p) à la page suivante.

• Choix de Ti

Dans le système non corrigé H(p), on remarque que la phase vaut environ -135° à la pulsation d'environ 100 rd/s. On voudra donc dans le système corrigé H'(p) une pulsation $\omega_{c_0} \approx 100 \ rd. \ s^{-1}$.

On prend alors
$$\frac{1}{T_i} \approx \frac{\omega_{c_0}}{10} \approx \frac{100}{10} \approx 10$$
, soit $T_i = 0,1$.

• Choix de K_p

Hasard du système, ω_{c_0} du système non corrigé H(p) vaut environ $100~rd.~s^{-1}$. On ne doit donc pas la modifier avec K_p . Il faut que $20\log K_p=0 \Leftrightarrow K_p=1$ et $K_i=\frac{K_p}{T_i}=\frac{1}{0,1}=10$

• Résultat

$$C(p) = 1 + \frac{10}{p}$$
 ; $\begin{cases} K_p = 1 \\ K_i = 10 \\ T_i = 0,1 \end{cases}$

Remarques:

- Pour être plus précis, nous aurions pu calculer la valeur de ω'_{c_0} souhaitée pour avoir exactement la marge de phase souhaitée $\left(\omega'_{c_0}/\Delta\varphi=\pi+\varphi_{\omega'_{c_0}}\right)$, puis le gain $G_{\omega'_{c_0}}$ et en déduire la translation de gain $TG=-G_{\omega'_{c_0}}$ de la correction proportionnelle seule pour finalement donner $K_p=10^{\frac{TG}{20}}$ permettant d'assurer la marge de phase. Mais de toute manière, la phase du correcteur en ω'_{c_0} étant légèrement négative, la marge obtenue ne sera pas précisément celle espérée...
- Trouver le même T_i est une coïncidence. En effet, dans le système non corrigé, il y a un rapport 10 entre les pulsations ET ω'_{c_0} est la seconde cassure. C'est très improbable.
- Un facteur 10 de $\frac{1}{T_i} \approx \frac{\omega_{c_0}}{10}$ est un premier choix qui fait ses preuves, on pourra tenter de ne pas trop s'éloigner avec par exemple le choix $\frac{1}{T_i} \approx \frac{\omega_{c_0}}{3}$

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.V.3.b.v Remarque

Dans le cas particulier traité d'un système du second ordre en BO factorisable, après avoir pratiqué la compensation de pôle, il aurait tout à fait été possible de régler le coefficient d'amortissement de la BF corrigée pour obtenir un système bien réglé et donc, de ne pas parler de marge de phase.

Exemple: Soit un second ordre en BO de fonction de transfert:

$$H(p) = \frac{K}{(1 + T_1 p)(1 + T_2 p)}$$

La BF associée est un système du second ordre du type $\frac{K'}{1+\frac{2z}{\omega_0}p+\frac{1}{\omega_0^2}p^2}$ avec $K'=\frac{K}{1+K}\neq 1$ et n'est pas précise.

Le réglage par compensation de pôle en choisissant $T_i = \max(T_1, T_2)$ pour garder la plus grande bande passante en BO donne :

$$H'(p) = \frac{K_i}{p} \frac{K}{1 + Tp}$$
 ; $T = \min(T_1, T_2)$

La BF associée est de la forme $G(p)=\frac{1}{1+\frac{2z}{\omega_0}p+\frac{1}{\omega_0^2}p^2}$ et permet d'obtenir une précision parfaite.

Plutôt que de parler de marge de phase, on peut alors exprimer le gain K_i en fonction de z et fixer z pour obtenir le système le plus rapide sans dépassement avec z=1 ou le plus rapide au sens $t_{r_{5\%}}$ avec z=0.69.

En effet, en supposant un retour unitaire :

$$G(p) = \frac{\frac{K_i}{p} \frac{K}{1 + Tp}}{1 + \frac{K_i}{p} \frac{K}{1 + Tp}} = \frac{K_i K}{K_i K + p + Tp^2} = \frac{K_i K}{K_i K + p + Tp^2} = \frac{1}{1 + \frac{1}{K_i K} p + \frac{T}{K_i K} p^2}$$

$$\omega_0 = \sqrt{\frac{K_i K}{T}} \quad ; \quad z = \frac{\omega_0}{2} \frac{1}{K_i K} = \frac{1}{2} \sqrt{\frac{K_i K}{T} \frac{1}{K_i K}} = \frac{1}{2\sqrt{TK_i K}}$$

Soit:

$$2\sqrt{TK_iK} = \frac{1}{z} \Leftrightarrow K_i = \frac{1}{4TKz^2}$$

Remarque : on voit que le choix d'éliminer le premier ordre de plus grande constante de temps (de garder le T minimum) est le bon car l'abaque nous donnera $t_{r_{5\%}} = \frac{k}{\omega_0}$ avec $k = \begin{cases} 5 \text{ si } z = 1 \\ 3 \text{ si } z = 0.69 \end{cases}$ soit $t_{r_{5\%}} = k \sqrt{\frac{T}{K_i K}}$. Il est préférable d'avoir T minimum 2.

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.VI. Correcteur idéal

Partant d'un système réel, donc de type passe bas, il faudrait corriger le système ainsi :

Un correcteur idéal permettrait :

- D'augmenter la précision en augmentant le statique uniquement au voisinage des basses fréquences (gain statique).
- D'augmenter la rapidité en augmentant la pulsation de coupure à 0 dB ω_{c_0} .
- Améliorer la stabilité en augmentant la marge de phase au voisinage de ω_{c_0} .

Les correcteurs à action proportionnelle, intégrale et dérivée que nous avons abordés modifient les caractéristiques sur l'ensemble des pulsations. C'est là leurs inconvénients majeurs. Les correcteurs idéaux doivent avoir une correction localisée différente en fonction de la plage de pulsation.

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.VII. Correcteurs à action localisée

Ces correcteurs sont issus de composants électroniques et permettent de réaliser des corrections spécifiques. Ils sont calculés en fonction d'un besoin spécifique, et leur mise en œuvre peut être délicate.

Les correcteurs que nous allons aborder permettent d'augmenter le gain soit en basse, soit en haute fréquence, tout en induisant une avance ou un retard de phase dans une zone particulière.

1.VII.1 Correcteur à retard de phase

Le correcteur à retard de phase est un correcteur qui, comme son nom ne l'indique pas, permet d'augmenter le gain uniquement aux basses fréquences. Il sera donc utilisé pour améliorer la précision d'un système asservi sans avoir une influence aussi importante sur la phase. Autrement dit, il a les avantages d'un correcteur proportionnel sur la précision, sans les inconvénients sur la stabilité.

Ce correcteur donne l'avantage d'un correcteur proportionnel sur la précision sans l'inconvénient de diminuer la stabilité puisque lorsqu'il est bien réglé, il ne modifie ni ω_{c_0} , ni la phase proche de ω_{c_0} .

1.VII.1.a Fonction de transfert

$$C(p) = \frac{a(1+Tp)}{1+aTp} \quad a > 1$$

1.VII.1.b Diagramme de Bode

On ajoute au diagramme de Bode du système corrigé le diagramme de Bode du correcteur ci-dessous :

Page 26 sur 34

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.VII.1.c Réglage

Remarque : nous verrons d'où viennent les formules proposées dans le correcteur à avance de phase.

1.VII.1.c.i Coefficient a

Le gain statique est augmenté de $20 \log a$, ce qui améliore la **précision** (a>1). Comme le gain statique de la BO corrigée vaut $K_{BO}^{Corr} = aK_{BO}$ et que les nouveaux écarts dépendent de K_{BO}^{Corr} , on trouve a en résolvant l'équation $\varepsilon = f(K_{BO}^{Corr})$

1.VII.1.c.ii Coefficient T

Le correcteur diminue la phase localement. On souhaite ne pas toucher à la stabilité. Il faut donc que la diminution de phase ne soit pas réalisée vers ω_{c_0} du système non corrigé. On doit donc régler ω_{min} du correcteur « loin » de ω_{c_0} . Si $\omega_{min}>\omega_{c_0}$, la pulsation de coupure à 0 db du système va se décaler vers la droite (gain non nul). Il faut donc régler $\omega_{min}=\omega_{choisi}\ll\omega_{c_0}$ et trouver T à l'aide de la formule $T=\frac{1}{\omega_{choisi}\sqrt{a}}$

1.VII.1.d Effets

Compte tenu du réglage proposé, la bande passant n'est pas touchée, la rapidité est inchangée.

Le déphasage négatif supplémentaire se situe aux basses fréquences. Il n'a donc généralement pas d'influence sur les marges de stabilité, donc sur la stabilité.

$C(p) = \frac{a(1+Tp)}{a} : a > 1$	Précision
$C(p) = \frac{1}{1 + aTp} ; a > 1$	7

Dernière mise à jour	SLC12	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.VII.2 Correcteur à avance de phase

Le correcteur à avance de phase est un correcteur qui, comme son nom l'indique, permet **d'augmenter** la marge de phase d'un système.

Ce correcteur peut légèrement augmenter ω_{c_0} (rapidité), et ne touche pas au gain statique (précision) si on choisit la formule proposée ci-dessous...

1.VII.2.a Fonction de transfert

$$C(p) = \frac{1 + aTp}{1 + Tp} \qquad a > 1$$

1.VII.2.b Diagramme de Bode

On ajoute au diagramme de Bode du système corrigé le diagramme de Bode du correcteur ci-dessous :

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.VII.2.c Réglage

L'intérêt de ce correcteur est visible sur son diagramme de Bode. A la pulsation $\omega_{max} = \frac{1}{T\sqrt{a'}}$ le déphasage présente un maximum qui vaut :

$$\varphi_{max} = \sin^{-1}\left(\frac{a-1}{a+1}\right)$$

Le principe de l'action corrective consiste à faire coı̈ncider ω_{max} avec la pulsation de coupure à 0 dB du système non corrigé ω_{c_0} et à régler φ_{max} afin d'obtenir une « remontée de phase » θ , de manière à obtenir la marge de phase voulue :

1.VII.2.c.i Coefficient a

On a:

$$\varphi_{max} = \sin^{-1}\left(\frac{a-1}{a+1}\right) \Leftrightarrow a = \frac{1+\sin\varphi_{max}}{1-\sin\varphi_{max}}$$

Connaissant la marge de phase du système non corrigé, on détermine la remontée de phase souhaitée :

$$\theta = \Delta \varphi^{souhait\acute{e}e} - \Delta \varphi$$

On règle alors le correcteur pour permettre cette remontée de phase en son maximum :

$$\varphi_{max} = \theta$$

Soit:

$$a = \frac{1 + \sin \theta}{1 - \sin \theta}$$

1.VII.2.c.ii Coefficient T

Il reste à faire coïncider le maximum de la phase du correcteur avec la pulsation de coupure à 0 db du système non corrigé ω_{c_0} .

On a:

$$\omega_{max} = \frac{1}{T\sqrt{a}} \Leftrightarrow T = \frac{1}{\omega_{max}\sqrt{a}}$$

On règle donc le correcteur pour que le maximum de la phase soit en face de ω_{c_0} :

$$\omega_{max} = \omega_{c_0}$$

Soit:

$$T = \frac{1}{\omega_{c_0} \sqrt{a}}$$

Dernière mise à jour	SLC12	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.VII.2.d Effets

$C(p) = \frac{1 + aTp}{1 + Tp} ; a > 1$	Stabilité
	7

1.VII.2.e Danger

Attention : en général, on prend une valeur de phase φ_{max} légèrement supérieure à la valeur de relèvement souhaitée, car la présence d'un gain non nul entre $\frac{1}{aT}$ et $\frac{1}{T}$ augmente légèrement la pulsation ω_{c0}^{Corr} de coupure à OdB du système corrigé, qui ne correspond alors plus exactement avec ω_{max} .

On remarquera qu'il n'est pas possible d'espérer une remontée de phase de plus de 90°... ($\phi_{max} < 90^\circ$). Par ailleurs, nous verrons en TD qu'il est même possible que la marge de phase DIMINUE lorsque l'on demande une trop grande remontée de phase. Il sera alors envisageable de cumuler plusieurs correcteurs à avance de phase en ayant toutefois conscience que ω_{c_0} sera alors encore plus décalée du fait du cumul des gains de chaque correcteur.

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.VII.2.f Remarque

On peut proposer un correcteur à avance de phase de gain statique non nul :

$$C(p) = K \frac{1 + aTp}{1 + Tp} \quad a > 1$$

Cela a pour effet de translater le gain verticalement. On a :

$$\omega_{max} = \frac{1}{T\sqrt{a}}$$
 ; $G_{\omega_{max}} = \frac{20\log(K) + 20\log(aK)}{2} = 20\log(K\sqrt{a})$

Il devient alors possible de faire en sorte que le système corrigé ait un gain nul en ω_{c_0} du système non corrigé. Alors :

Pulsation

20.log(aK)

- Gros avantage : ω_{c_0} du système corrigé n'a pas changé, on obtient exactement la remontée de phase voulue !
- Inconvénient : selon la classe du système, si ε_s ou ε_v est non nul, notre correcteur de gain statique K modifie le gain statique du système corrigé et diminue la précision. Si la classe de la BO est de 2 avant la perturbation, alors ce réglage permet de ne pas modifier la précision $(\varepsilon_s, \varepsilon_v)$ et d'obtenir la marge de phase souhaitée \bigcirc

On rencontre généralement deux cas :

- Cas 1 : Remontée de phase en ω_{c_0} actuelle
- Cas 2 : Remontée de phase en une future nouvelle ω_{c_0}

1.VII.2.f.i Cas 1

Le réglage de a et T est identique à ce que l'on vient de voir sans K.

On règle alors K afin d'annuler le gain du correcteur en ω_{max} , ce qui permet de ne pas décaler ω_{c_0} et d'obtenir la remontée de phase souhaitée.

Ainsi, il faut diminuer le gain en dB de la moitié du gain max, soit ajouter :

$$-\frac{20\log a}{2} = -20\log\sqrt{a} = 20\log\left(\frac{1}{\sqrt{a}}\right)$$

On a donc :

$$TG = \log\left(\frac{1}{\sqrt{a}}\right) \iff 20\log K = 20\log\left(\frac{1}{\sqrt{a}}\right) \iff K = \frac{1}{\sqrt{a}}$$

Ainsi, le gain statique total est diminué :

$$K_{BO}^{Corr} = \frac{K_{BO}}{\sqrt{a}}$$

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.VII.2.f.ii Cas 2

On souhaite une remontée de phase en une pulsation différence de ω_{c_0} actuelle. On règle donc :

- La remontée de phase à la pulsation cible qui sera ω_{max} du correcteur (réglage de a et T)
- Le gain du système corrigé pour l'annuler en ω_{max} (réglage de K)

Réglage:

- La remontée de phase donne le coefficient $a=rac{1+\sin \varphi_{max}}{1-\sin \varphi_{max}}$
- La pulsation ω_{max} à laquelle on veut la remontée de phase donne $T=rac{1}{\omega_{max}\sqrt{a}}$
- Il devient possible d'annuler réellement le gain à cette pulsation en résolvant l'équation donnant K:

$$G_{\omega_{max}}^{\mathit{Sys\ corrig\'e}} = 0 = G_{\omega_{max}}^{\mathit{Sys\ non\ corrig\'e}} + 20\log(K\sqrt{a}) \Leftrightarrow K = \frac{10^{-\frac{G_{\omega_{max}}^{\mathit{Sys\ non\ corrig\'e}}}{20}}{\sqrt{a}}$$
 Si on appelle TG la translation de gain souhaitée en ω_{max} , égale à $-G_{\omega_{max}}^{\mathit{Sys\ non\ corrig\'e}}$, on peut aussi écrire :

aussi écrire:

$$K = \frac{10^{\frac{TG}{20}}}{\sqrt{a}}$$

Remarques:

Une autre manière de voir les choses est la suivante, en introduisant un k tel que $K = \frac{k}{\sqrt{a}}$:

 $k=10^{rac{TG}{20}}$ avec TG la translation de gain à obtenir en ω_{max} pour y annuler le gain

Le cas 1 est un cas particulier de ce cas 2, mais pour la compréhension, j'ai préféré les organiser dans ce sens. En effet, dans le cas 1, $G^{Sys\,non\,corrig\'e}_{\omega_{max}}=0$, alors :

$$K = \frac{10^{\frac{G_{\omega_{max}}^{Sys \, non \, corrigé}}{20}}}{\sqrt{a}} = K = \frac{10^{0}}{\sqrt{a}} = \frac{1}{\sqrt{a}}$$

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

1.VII.2.g Retrouver les formules par le calcul

1.VII.2.g.i Pulsation

On retrouve facilement la valeur de ω_{max} en cherchant la pulsation centrale entre 1/T et 1/at en échelle logarithmique :

Sinon, par le calcul:

$$\varphi(\omega) = \arg\left(\frac{1 + aTj\omega}{1 + Tj\omega}\right) = \tan^{-1}aT\omega - \tan^{-1}T\omega$$

$$f(x) = \tan^{-1}x \quad ; \quad f'(x) = \frac{1}{1 + x^2} \quad ; \quad \frac{d\varphi(\omega)}{d\omega} = \frac{aT}{1 + (aT\omega)^2} - \frac{T}{1 + (T\omega)^2}$$

$$\frac{d\varphi(\omega_{max})}{d\omega} = 0 \Leftrightarrow \frac{aT}{1 + (aT\omega_{max})^2} = \frac{T}{1 + (T\omega_{max})^2} \Leftrightarrow 1 + (aT\omega_{max})^2 = a + a(T\omega_{max})^2$$

$$\Leftrightarrow a^2T^2\omega_{max}^2 - aT^2\omega_{max}^2 = a - 1 \Leftrightarrow aT^2\omega_{max}^2(a - 1) = a - 1 \Leftrightarrow aT^2\omega_{max}^2 = 1$$

$$\Leftrightarrow \omega_{max} = \frac{1}{T\sqrt{a}}$$

1.VII.2.g.ii Remontée de phase

$$\varphi(\omega_{max}) = \tan^{-1} aT\omega_{max} - \tan^{-1} T\omega_{max} = \tan^{-1} \sqrt{a} - \tan^{-1} \frac{1}{\sqrt{a}}$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan B} \quad ; \quad \tan\varphi(\omega_{max}) = \tan\left[\tan^{-1} \sqrt{a} - \tan^{-1} \frac{1}{\sqrt{a}}\right] = \frac{\sqrt{a} - \frac{1}{\sqrt{a}}}{1 + 1} = \frac{a-1}{2\sqrt{a}}$$

$$\cos^{2} \varphi(\omega_{max}) + \sin^{2} \varphi(\omega_{max}) = 1 \quad ; \quad \frac{1}{\sin^{2} \varphi(\omega_{max})} = \frac{1}{\tan^{2} \varphi(\omega_{max})} + 1$$

$$\frac{1}{\sin^{2} \varphi(\omega_{max})} = \frac{4a}{(a-1)^{2}} + 1 = \frac{4a + (a-1)^{2}}{(a-1)^{2}} = \frac{4a + a^{2} - 2a + 1}{(a-1)^{2}} = \frac{(a+1)^{2}}{(a-1)^{2}}$$

$$\sin^{2} \varphi(\omega_{max}) = \frac{(a-1)^{2}}{(a+1)^{2}}$$

Rappel : on cherche φ_{max} dans l'intervalle $\left[0,\frac{\pi}{2}\right]$, donc :

$$\sin \varphi(\omega_{max}) = \frac{a-1}{a+1}$$
 ; $\varphi_{max} = \sin^{-1}\left(\frac{a-1}{a+1}\right)$

Dernière mise à jour	SLCI2	Denis DEFAUCHY
27/09/2022	Correction	Cours

Si ça peut vous être utile, voici la courbe d'évolution de $arphi_{max}$ en fonction du coefficient a :

1.VII.3 Remarques

Les correcteurs à avance et à retard de phase peuvent être utilisés en simultanée pour corriger un système. Ils agissent à des fréquences différentes, basse fréquence pour le retard de phase et plus hautes fréquences pour l'avance de phase.