5. Bistabil

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila
- poboljšanje upravljanja
- karakteristični dinamički parametri

Pojam bistabila

- sekvencijski sklopovi (engl. sequential circuits):
 - digitalni sklopovi koji imaju sposobnost pamćenja
 - izlaz je funkcija:
 - trenutnog stanja ulaza
 trenutno narinute pobude
 - trenutnog unutarnjeg stanja sklopa
 postoji memorija
- struktura sekvencijskih sklopova:
 - kombinacijski dio (KS)
 - memorija (M)
 - obično memorijski elementi koji pamte *binarne* vrijednosti: moraju imati *dva stabilna* stanja

Pojam bistabila

- memorijski element = bistabil (engl. flip-flop)
 karakteristični digitalni sklop:
 - ostaje u jednom od dva moguća stanja i bez djelovanja vanjske pobude
 - stanja su *stabilna* posebna struktura sklopa:
 - unakrsno povezivanje invertora (sklopki)
 elektronička izvedba: multivibrator
 - logički i električki (naponski!) stabilno

Pojam bistabila

- simbol bistabila:
 - stanje reprezentirano izlazom Q
 - izlazi su komplementarni: Q, Q
 - potrebni su i *ulazi*
 - ~ kako mijenjati stanje?

S (engl. set): postavljanje Q = 1

R (engl. reset): postavljanje Q = 0

~ "brisanje"!

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
 - bistabil izveden univerzalnim sklopovima
 - analiza promjene stanja
- sinkroni bistabil
- tipovi bistabila
- poboljšanje upravljanja
- karakteristični dinamički parametri

- "logička" izvedba bistabila
 - ~ *izdvojeni* ulazi za okidanje:
 - interpretacija sklopki (invertora) univerzalnim funkcijama
 sklopovi NI i NILI

- bistabil izveden sklopovima NI/NILI
 - ~ osnovni bistabil (engl. latch): primjena u svim ostalim složenijim vrstama bistabila te u sekvencijskim sklopovima

bistabil ostvaren logičkim sklopovima NI:

bistabil ostvaren logičkim sklopovima NILI:

okidanje bistabila (radi promjene stanja)
 druge kombinacije 1 i 0 na ulazima

- analiza osnovnog bistabila ostvarenog NI sklopovima:
 - $Q^{n+1} = f(X,Y;Q^n)$: tablica (promjene) stanja
 - identifikacija ulaza:

$$X = \overline{S}$$
$$Y = \overline{R}$$

simbol:

 terminologija
 osnovni bistabil = "zasun" (engl. latch): podatak ostaje pohranjen u sklopu

X	Υ	Q ⁿ	Q	n+1
1	1	0	0	o n
1	1	1	1	Q.
0	1	0	1	4
0	1	1	1	1
1	0	0	0	
1	0	1	0	0
0	0	0	1	
0	0	1	1	X

X	Y	Qn+
1	1	Q ⁿ
1	0	0
0	1	1
0	0	X
U		

- komentar~ pobuda XY = 00 je zabranjena!!!
 - Q= Q = 1 za X=Y=0
 ~ proturječi definiciji izlaza bistabila

nesimetrija sklopa/pobude
 nije jasno u kojem će stanju ostati bistabil po "otpuštanju" ulaza

X	Υ	Q ⁿ	Q	n+1
1	1	0	0	∩n
1	1	1	1	Q
0	1	0	1	_
0	1	1	1	1
1	0	0	0	
1	0	1	0	0
0	0	0	1	
0	0	1	1	X

- osnovni bistabil ostvaren NILI sklopovima:
 - skraćena tablica stanja:

R	S	Q ⁿ⁺¹
0	0	Q ⁿ
0	1	1
1	0	0
1	1	Х

• simbol:

$$\begin{bmatrix} S & Q \\ R & \overline{Q} \end{bmatrix}$$

- analiza promjene stanja osnovnog bistabila:
 - bistabil ostvaren sklopovima NI:

uzeti u obzir stvarne sklopove: ∃ t_d

 analiza promjene stanja osnovnog bistabila:

 sklop je osjetljiv na trajanje pobude (okidnog impulsa): t > 2[.]t_d

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
 - sinkronizacija impulsima takta
 - asinkroni ulazi
- tipovi bistabila
- poboljšanje upravljanja
- karakteristični dinamički parametri

- svojstva osnovnog bistabila:
 - mijenja stanje u skladu s pobudom
 "transparentan" za ulaze
 - trenutno (≥ 2·t_d) reagira na pobudu
 romjena stanja nezavisno od sustavskog nadzora (tj. zajedničkih sinkronizacijskih impulsa)
 - hazard može prouzrokovati neželjenu promjenu stanja ~ nezgodno!

Primjer: neželjena promjena stanja zbog hazarda

protufazna pobuda ulaza S

proteinazina possada anaza si početno:
$$A = 1$$
, $B = 0 \rightarrow S = 0$ $R = 0$ $Q = 0$

promjena: A: $1 \rightarrow 0$ \rightarrow S = 0 itd.

B: $0 \rightarrow 1$

$$Q^{n+1} = Q^n = 0$$

promjena A kasni za promjenom B

$$\rightarrow$$
 hazard: nakratko S = A·B = 1 \Rightarrow Qⁿ⁺¹ = 1

- rješenje problema moguće pojave hazarda zbog transparentnosti ulaza osnovnog bistabila:
 - dozvoliti upis u bistabil samo u određenim trenucima vremena
 - ~ izbjegavanje efekata prijelazne pojave
 - upravljanje radom bistabila
 - ~ sinkronizacija

- sinkronizacija okidanja bistabila
 - ~ sinkronizacijski impulsi (impulsi takta) CP (engl. Clock Pulses) na poseban ulaz bistabila: sinkroni bistabil
 - promjena stanja bistabila u sinkronizaciji s CP: jedino za CP = 1
 - usputno invertiranje ulaza:
 S R → S R

- konceptualizacija sinkronizacije okidanja bistabila
 ~ diskretizacija vremena:
 - (bitno!) olakšava razmatranje sekvencijskih sklopova
 ~ sekvencijski problem sveden na kombinacijski
 - obično se razmatra prijelaz n-to \rightarrow (n+1)-vo stanje \sim prije, odnosno poslije, nailaska impulsa CP: $Q^{n+1} = f(S, R, Q^n)$
- simbol(i) sinkronog bistabila:

dodavanje asinkronih ulaza:

na osnovni bistabil,
 zaobiđena mreža za upravljanje:
 direktni ulazi (S_d, C_d)

- aktivni s 0
- dominiraju nad sinkronim ulazima (S, R)
- mogući problem
 - ~ za vrijeme CP aktivna pobuda preko sinkronih i asinkronih ulaza: hazard?

Primjer: hazard zbog istovremene pobude na sinkronom i asinkronom ulazu

• $\overline{C}_d = 0$, $\overline{S}_d = 1 \rightarrow Q = 0$, $\overline{Q} = 1$ uz dodatno S = 1, R = 0

$$CP = 0 \rightarrow 1 \rightarrow 0$$

$$Q = 1$$

$$Q = 1$$

$$Q = 1$$

- rješenje~ posebna izvedba:
 - dodati I sklopove na izlaze
 - zamijeniti značenje asinkronih ulaza

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila
 - SR bistabil
 - JK bistabil
 - T bistabil
 - D bistabil
- poboljšanje upravljanja
- karakteristični dinamički parametri

- tipovi bistabila:
 - SR bistabil
 - ~ osnovna funkcionalnost
 - JK bistabil
 - proširena funkcionalnost:"univerzalni" bistabil
 - T bistabil
 - ~ (samo) promjena stanja
 - D bistabil
 - ~ (samo) pamćenje 1 bita informacije

- formalizmi definicije bistabila:
 - tablica (promjene) stanja
 - jednadžba (promjene) stanja, karakteristična jednadžba $Q^{n+1} = f(ulazi, Q^n)$

- dijagram stanja
 ~ grafički prikaz uzbudne tablice
 - čvor ≡ stanje
 - strelica = prijelaz

SR bistabil (rekapitulacija):

S	R	Q ⁿ⁺¹
0	0	Q ⁿ
0	1	0
1	0	1
1	1	X

$$Q^{n+1} = S + \overline{R} \cdot Q^n$$
$$S \cdot R = 0$$

- JK bistabil:
 - posebna povratna veza na SR bistabil: propuštanje "vanjskih" ulaza tako da *nema* zabranjene kombinacije ulaza:
 - JK = 11
 bistabil *mijenja stanje* (engl. toggle)
 - JK bistabil
 ~ neka vrsta "univerzalnog" bistabila

JK bistabil:

$$\sim$$
 JK = 11 \rightarrow bistabil *mijenja stanje*

J	K	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	\overline{Q}^n

$$Q^{n+1} = J \cdot \overline{Q}^n + \overline{K} \cdot Q^n$$

- T bistabil
 - ~ samo mijenja stanje (engl. toggle)
 - tipična primjena
 ~ brojanje impulsa (→ brojila)
 - jednostavno se dobiva iz JK bistabila

Q^n	Q^{n+1}	T
0	0	0
0	1	1
1	Ο	1
1	1	0

- D bistabil
 - ~ kasni (engl. delay) za 1 x CP
 - "pamti" podatak narinut na ulazu
 - primjena: pohranjivanje podataka (→ registri)

$J \; \; K \; \; Q^{\scriptscriptstyle n+1}$	$D \mathcal{Q}^{n+1}$	
$0 0 Q^n$	0 0	
(0 1 0)	;1 1	
1 0 1		
$1 1 \boxed{\frac{2}{Q^n}}$	$Q^{n+1}=D^n$	
$Q^n Q^{n+1} D$	1	

Primjer: JK bistabil ostvaren D bistabilom

- "logika" u dodatni kombinacijski sklop na ulazu D
- povratna veza s Q i Q
- D bistabil: $Q^{n+1} = D^n \implies D^n = Q^{n+1}$

$$Q^{n+1} = J \cdot \overline{Q}^{n} + \overline{K} \cdot Q^{n} = D^{n}$$

Primjer: "izmišljeni", XY bistabil, ostvaren T bistabilom, zadan jednadžbom stanja $Q^{n+1} = XYQ^n + \overline{X}\overline{Q}^n$

- i dalje "prilagodni" sklop na ulazu bistabila
- funkciju pamćenja ostvaruje T bistabil: $Q^{n+1} = T \cdot \overline{Q}^n + \overline{T} \cdot Q^n$
- izraziti funciju za T putem uzbudne tablice! (promatrati promjenu stanja!)

Primjer (nastavak):

- T bistabil: $Q^{n+1} = T \cdot \overline{Q}^n + \overline{T} \cdot Q^n$
- XY bistabil: $Q^{n+1} = XYQ^n + \overline{X}\overline{Q}^n$

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila
- poboljšanje upravljanja
 - dvostruki bistabil
 - bridom upravljani bistabil
- karakteristični dinamički parametri

Poboljšanje upravljanja

- rekapitulacija problema vezanih za *upravljanje bistabila* za CP = 1 sinkroni se bistabil ponaša kao "asinkroni"
 - transparentnost za ulaze:
 - stanje nakon prestanka CP?
 - kaskadirani bistabili
 - ~ eventualne promjene stanja *nisu* ograničene na pobudu susjednih bistabila: *neispravni rad*!
 - posebno JK bistabil
 ~ osciliranje izlaza
 - rješenje~ *djelovati na CP*:
 - poboljšanje upravljanja razinom CP
 - upravljanje bistabila bridom CP

Poboljšanje upravljanja

- osciliranje izlaza JK bistabila izvedenog sklopovima NI
 zbog povratne veze na ulaznu mrežu za upravljanje:
 - intuitivni (i naivni!) pristup
 problemi kad CP = 1 "traje predugo"

Poboljšanje upravljanja

- JK bistabil izveden sklopovima NI
 ~ "predugo trajanje" CP = 1
 - CP = 1 & JK = 11
 - promjena stanja Q ∀ 2·t_d
 - osciliranje (stanja) izlaza:
 "utrka" (engl. race-around condition)

Primjer: osciliranje izlaza "naivnog" JK bistabila

- osciliranje izlaza JK bistabila izvedenog sklopovima NI ~ dva suprotstavljena zahtjeva:
 - CP "dovoljno dug" da bistabil promijeni stanje
 - CP "dovoljno kratak" da bistabil ne "zaoscilira"
 - moguća rješenja:
 - odgovarajuća kašnjenja u petlje povratne veze (rješenje na razini elektroničke izvedbe)
 - poboljšati upravljanje djelovanjem na CP

- upravljanje razinom CP
 - koristiti *dva* bistabila:"dvostruki" bistabil(engl. master-slave flip-flop)
- princip rada:
 - CP nije aktivan
 - ~ glavni i pomoćni bistabil povezani
 - CP aktivan
 - veza glavnog i pomoćnog bistabila prekinuta;
 u glavni se bistabil upisuje novi sadržaj
 - CP ponovno neaktivan
 - sadržaj glavnog se prenosi u pomoćni bistabil
 stanje na izlazima bistabila

dvostruki bistabil (engl. master-slave flip-flop)

~ prikaz sklopovima NI

objašnjenje rada dvostrukog bistabila:

t₁: CP izlazi iz područja 0 ~ prekid veze G i P

t₂: CP ulazi u područje 1

 uspostavljanje veze ulaza i G, upis podataka u G

t₃: CP izlazi iz područja 1

~ prekid veze ulaza i G

t₄: CP ulazi u područje 0

 uspostavljanje veze G i P, upis podatka iz G u P

stvarno onemogućeno osciliranje

blok-simbol dvostrukog bistabila:

- komentar izvedbe:
 - dva bistabila umjesto jednog!
 - brzina rada je manja
 - sklop i dalje osjetljiv na promjene ulaza (→ hazard) za vrijeme CP = 1
 - potrebno ograničiti mogućnost upisa

- dvostruki bistabil
 ~vrlo popularna SSI izvedba (mahom TTL, CMOS):
- dodatna logika na sinkronim ulazima radi olakšanja izgradnje složenijih sklopova ~ tipično sklopovi I
- primjer
 ~ dvostruki JK bistabil 7472 (TTL, serija 74)

- upravljanje bridom CP
 ~ bridom okidani bistabil
 (engl. edge-triggered flip-flop)
 - eliminiranje transparentnosti za trajanja impulsa CP
 - osnovna ideja
 na jedan od bridova impulsa CP
 generirati kratki impuls koji će propustiti ulaze
 - više mogućih izvedbi (ovdje: samo "digitalne"):
 - kašnjenje u logičkim sklopovima
 - kombiniranje više osnovnih bistabila

 izvedba bridom okidanog bistabila korištenjem kašnjenja u logičkim sklopovima (~ hazard):

- na rastući brid impulsa CP generiranje impulsa trajanja t_d
- ispravni rad mreže
 ~ 2·n+1 invertora:
 (2·n+1)·t_d

• blok-simbol:

okidanje negativnim bridom:

primjer
 bridom okidani JK bistabil
 7470 (TTL, serija 74)

- bridom okidani bistabil
 izveden kombiniranjem osnovnih bistabila:
 - karakteristična izvedba D bistabila:

• blok-simbol:

Sadržaj predavanja

- pojam bistabila
- osnovni bistabil
- sinkroni bistabil
- tipovi bistabila
- tipovi bistabila
- poboljšanje upravljanja
- karakteristični dinamički parametri

Karakteristični dinamički parametri

- maksimalna frekvencija, f_{max}:
 - najveća frekvencija CP,
 a da bistabil sigurno mijenja stanje kad to ulazi zahtijevaju
- vrijeme kašnjenja, t_d:
 - ~ interval od djelotvorne promjene na ulazu (asinkrono: S_d, C_d; sinkrono: CP) do promjene na izlazu

češće: *vrijeme proleta* (*propagacije*) \sim posebno za $0 \rightarrow 1$, odnosno $1 \rightarrow 0$

Karakteristični dinamički parametri

- vrijeme postavljanja, t_{set up}
 ~ minimalno vrijeme održavanja podatka
 na sinkronim ulazima prije djelotvorne promjene CP
 - (dvostruki bistabil: prekid veze ulaz-glavni bistabil), a da bistabil *sigurno* prihvati podatak
- vrijeme otpuštanja (oslobađanja), t_{release} (analogno t_{set up})
 ~ maksimalno vrijeme održavanja podatka na sinkronim
 - ulazima, a da ga bistabil sigurno *ne* prihvati
- vrijeme pridržavanja, t_{hold}
 - ~ minimalno vrijeme održavanja podatka na sinkronim ulazima nakon djelotvorne promjene CP; potrebno kod nekih izvedbi bistabila

Karakteristični dinamički parametri

definicija
 t_{set up}, t_{release}, t_{hold}:

 tipični parametri za TTL bistabile serije 74 (t_{PLH} i t_{PHL}za sinkrone ulaze)

	bridom okidani	dvostruki
	7474	7472
f _{max} [MHz]	25	20
t _{PLH} [ns]	14	16
t _{PHL} [ns]	20	25
t _{set up} [ns]	20	0
t _{hold} [ns]	5	0

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 5: Bistabil.
- pojam bistabila: str. 165-169
- osnovni bistabil: str. 169-176
- sinkroni bistabil: str. 176-179
- tipovi bistabila: str. 179-189
- poboljšanje upravljanja: str. 189-195

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 5: Bistabil.
- tipovi bistabila: 5.1-5.4, 5.7
- poboljšanje upravljanja: 5.5, 5.6

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 7: Bistabil.
- tipovi bistabila:
 - riješeni zadaci: 7.1-7.6
 - zadaci za vježbu: 1-3
- poboljšanje upravljanja:
 - riješeni zadaci: 7.7