Regression Models - Course Project

Nikolas Rohrmann 7/27/2021

Welcome

In the following steps I am going to introduce you to the mtcars data and evaluate the impact of automatic and manual transmission on mpg.

```
data("mtcars")
head(mtcars)
                    mpg cyl disp hp drat
                                           wt qsec vs am gear carb
## Mazda RX4
                         6 160 110 3.90 2.620 16.46
## Mazda RX4 Wag
                        6 160 110 3.90 2.875 17.02
## Datsun 710
                   22.8 4 108 93 3.85 2.320 18.61 1 1
## Hornet 4 Drive
                   21.4 6 258 110 3.08 3.215 19.44 1 0
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
## Valiant
                   18.1 6 225 105 2.76 3.460 20.22 1 0
```

The relevant variables for us are mpg, which is miles/(US) gallon and the variable am, which represents the transmission type. 0 is used for automatic and 1 for manual.

Exploratory Data Analysis

```
mtcars$amFactor <- as.factor(mtcars$am)</pre>
boxplot(mpg~ amFactor, mtcars, xlab = "Transmission", ylab = "MPG", col = c("green", "magenta"))
```


one of manual transmission. Additionally, the highest point (about 24) of the automatic transmission is belwo the 75th percentile of the manual transmission. library(ggplot2)

```
reduced <- mtcars[,c("mpg","am")]</pre>
aggdata <- aggregate(reduced, by = list(reduced$am), FUN = mean)</pre>
ggplot(mtcars, aes(x = mpg, color = amFactor, fill = amFactor)) + geom_histogram() + geom_vline(xintercept = aggd
ata[1,2], col = "red", linetype = "dotted", size = 1.5) + geom_vline(xintercept = aggdata[2,2], col = "blue", linetype = "dotted", size = 1.5) + geom_vline(xintercept = aggdata[2,2], col = "blue", linetype = "dotted", size = 1.5)
etype = "dotted", size = 1.5)
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
```

```
3 -
                                                                                                               amFactor
count
```

Hypothesis Testing

Here is a histogram of data (Remeber 0 = automatic and 1 = manual) The dotted lines are the respective means of mpg by am. This supports the

We concluded from the boxplot and the histogram above that manual transmission likely results in more mpg than automatic transmission. Let's verify this using a t-test.

t.test(automatic\$mpg, manual\$mpg)

image of the data we got from the first plot.

automatic <- reduced[reduced\$am == 0,]</pre> manual <- reduced[reduced\$am == 1,]</pre>

```
Welch Two Sample t-test
 ## data: automatic$mpg and manual$mpg
 ## t = -3.7671, df = 18.332, p-value = 0.001374
 ## alternative hypothesis: true difference in means is not equal to 0
 ## 95 percent confidence interval:
 ## -11.280194 -3.209684
 ## sample estimates:
 ## mean of x mean of y
 ## 17.14737 24.39231
The p-value is below 5% (about 1.4%) and we therefore reject the null hypothesis that manual and automatic transmission are equal. Thus,
automatic transmission leads to less mpg.
```

Regression Model 1 Here we just try to quantify the difference between automatic and manual transmission.

fit <- lm(mpg~am, data = mtcars)</pre>

summary(fit)

```
## Call:
 ## lm(formula = mpg ~ am, data = mtcars)
 ## Residuals:
        Min 1Q Median 3Q Max
 ## -9.3923 -3.0923 -0.2974 3.2439 9.5077
 ## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                              1.125 15.247 1.13e-15 ***
 ## (Intercept) 17.147
                 7.245
                              1.764 4.106 0.000285 ***
 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 ## Residual standard error: 4.902 on 30 degrees of freedom
 ## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
 ## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
According to this model the mpg value of cars with manual transmission is roughly 7.245 than that of cars with automatic transmission. Also, we
see that the Multiple R-squared is 0.3598. Therefore, am accounts for about 36% of the variance.
```

Regression Model 2 To assess the overall impact of transmission and determine the difference between manual and automatic transmission more accurately, I will perform a multivariate regression with a handful of other variables. For convenience I won't include the computation here, but I did the same thing

for every variable and picked the ones with a particularly high R^2: cyl had 73%, disp had 72%, wt had 75% and hp had 60%. However, the number of cylinders (cyl) and displacement (disp) are correlated. Therefore, I decided to model with cyl, wt (weight) and hp (groos horsepower).

lm(formula = mpg ~ wt + cyl + hp + factor(am), data = mtcars)

lm(formula = mpg ~ wt + cyl + hp, data = mtcars)

Call:

Call:

Residuals:

0

0

0

0

fit2 <- lm(mpg~ wt+ cyl+ hp + factor(am), data = mtcars)</pre> summary(fit2)

```
## Residuals:
        Min
              1Q Median
                                        Max
 ## -3.4765 -1.8471 -0.5544 1.2758 5.6608
 ## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
 ## (Intercept) 36.14654 3.10478 11.642 4.94e-12 ***
                -2.60648 0.91984 -2.834 0.0086 **
 ## wt
                -0.74516 0.58279 -1.279 0.2119
 ## cyl
 ## hp
              -0.02495 0.01365 -1.828 0.0786.
 ## factor(am)1 1.47805 1.44115 1.026 0.3142
 ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
 ## Residual standard error: 2.509 on 27 degrees of freedom
 ## Multiple R-squared: 0.849, Adjusted R-squared: 0.8267
 ## F-statistic: 37.96 on 4 and 27 DF, p-value: 1.025e-10
As you can see, this model accounts for roughly 85% of the variance. All factors negatively correlated with mpg, except for what is called
factor(am)1. Due to the fact that 1 means manual, we can infer that having a manual transmission will lead to a 1.48 increase in mpg.
 fit3 <- lm(mpg~ wt+ cyl+ hp, data = mtcars)</pre>
 summary(fit3)
```

Min 1Q Median -3.9290 -1.5598 -0.5311 1.1850 5.8986 ## Coefficients: Estimate Std. Error t value Pr(>|t|)

```
## (Intercept) 38.75179
                           1.78686 21.687 < 2e-16 ***
                -3.16697 0.74058 -4.276 0.000199 ***
 ## wt
                -0.94162 0.55092 -1.709 0.098480.
 ## cyl
                -0.01804 0.01188 -1.519 0.140015
 ## hp
 ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
 ## Residual standard error: 2.512 on 28 degrees of freedom
 ## Multiple R-squared: 0.8431, Adjusted R-squared: 0.8263
 ## F-statistic: 50.17 on 3 and 28 DF, p-value: 2.184e-11
Still, note that without incorporating am, the model still accounts for 84% of the variance. This suggests that the impact of transmission is not
that significant.
Appendix
 plot(fit2, which = 1)
                                     Residuals vs Fitted
     9
```

OChrysler Imperial 4 0 0 Residuals 7

0

Toyota CorollaO Fiat 1280

0

0

```
7
                                                    00
                                                             0
                                                                   0
                                                                    ° ° °
                                                                                 0
      4
                                15
                                                     20
                                                                           25
          10
                                               Fitted values
                                  lm(mpg ~ wt + cyl + hp + factor(am))
plot(fit2, which = 2)
                                               Normal Q-Q
                                                                                 Toyota CorollaO
                                                                                    OFiat 128
     7
                                                                               OChrysler Imperial
Standardized residuals
```

0

7 0 0

Fitted values lm(mpg ~ wt + cyl + hp + factor(am)) plot(fit2, which = 4)

20

15

10

distributed and not that correlated with the fit.

Obs. number lm(mpg ~ wt + cyl + hp + factor(am)) These are the diagnostic plots for the second model with am, hp, cyl and wt as predictors. The residuals seem to be approximately identically

25