

CLAIMS

WHAT IS CLAIMED:

1 1. A method for planning a mission profile in real time, comprising:
2 ascertaining a plurality of target information, including a target location, a target
3 velocity, and a target location error; and
4 autonomously determining a pattern from the ascertained target information.
 or what?

1 2. The method of claim 1, wherein ascertaining the target information includes
2 assuming a value for at least one of the target velocity and the target location error.

1 3. The method of claim 1, wherein ascertaining the plurality of target information
2 includes ascertaining a target location that places the target in the air, on the surface, or
3 submerged underwater.

1 4. The method of claim 1, wherein ascertaining the plurality of target information
2 includes receiving at least one of the target location, target velocity, and target location error
3 in a transmission.

1 5. The method of claim 1, further comprising:
2 dispensing at least a formation including at least one vehicle; and
3 implementing the pattern with the vehicle.

1 6. The method of claim 5, wherein ascertaining the target information includes:
2 acquiring the target information at a platform from which the formation is dispensed;
3 receiving at least the target location from a platform other than the platform from
4 which the formation is dispensed; or
5 acquiring the target information aboard the vehicle.

1 7. The method of claim 5, wherein dispensing the formation includes:
2 launching the formation from an airborne platform; or
3 launching the formation from a surface-based platform; or
4 launching the formation from an underwater platform.

1 8. The method of claim 5, wherein the vehicle includes a vehicle selected from
2 the group consisting of a submersible vehicle, a reconnaissance drone, a flying submunition,
3 a cruise missile, and a smart bomb.

1 9. The method of claim 1, wherein autonomously determining the pattern from
2 the ascertained target information includes autonomously determining a serpentine pattern or
3 a fan blade pattern.
 how, why, what?

1 10. The method of claim 1, wherein autonomously determining the pattern from
2 the ascertained target information includes:

3 projecting along a target axis a direction opposite a target heading defined by the
4 target velocity a distance of at least twice the target location error to establish
 an intersection of the target axis with the target location error;
5 projecting left and right relative to the target axis from the intersection a distance at
 least as great as one-half the target location error to determine a pair of
 possible start points;
6 selecting the possible start point closest to the platform;
7 determining a dispense point;
8 laying out a trace from the selected start point; and
9 translating the trace along a heading defined by the target velocity a distance
 determined by the elapsed time of travel for the platform to the dispense point
 and for a vehicle from the dispense point to the start point.
10

1 11. The method of claim 10, further comprising:

2 dispensing a formation including at least one vehicle, at the dispense point defined by
3 the preplanned mission profile; and
4 implementing the pattern with the formation at the selected start point.

1 12. The method of claim 11, further comprising adjusting the selected start point
2 by a predetermined distance along a leg of the trace.

1 13. The method of claim 10, wherein projecting along the target axis opposite the
2 target heading includes projecting 180° relative to the target heading.

- 1 14. The method of claim 10, wherein projecting left and right includes projecting
2 ±90°.
- .1 15. The method of claim 1, further comprising identifying the target.
- 1 16. The method of claim 15, wherein identifying the target includes employing an
2 automatic target recognition system.
- 1 17. The method of claim 15, further comprising attacking the target.
- 1 18. A method for planning a mission profile in real time, comprising:
2 ascertaining a plurality of target information, including a target location, a target
3 velocity, and a target location error; and
4 autonomously determining a pattern including a trace from the ascertained target
5 information, including: / / 2
6 projecting along a target axis a direction opposite a target heading defined by
7 the target velocity a distance of at least twice the target location error
8 to establish an intersection of the target axis with the target location
9 error;
10 projecting left and right relative to the target axis from the intersection a
11 distance at least as great as one-half the target location error to
12 determine a pair of possible start points;
13 selecting the possible start point closest to the platform;
14 determining a dispense point;
15 laying out a trace from the selected start point; and
16 translating the trace along a heading defined by the target velocity a distance
17 determined by the elapsed time of travel for the platform to the
18 dispense point and for a vehicle from the dispense point to the start
19 point.
- 1 19. The method of claim 18, wherein ascertaining the target information includes
2 assuming a value for at least one of the target velocity and the target location error.

1 20. The method of claim 18, wherein ascertaining the plurality of target
2 information includes ascertaining a target location that places the target in the air, on the
3 surface, or submerged underwater.

1 21. The method of claim 18, wherein ascertaining the plurality of target
2 information includes receiving at least one of the target location, target velocity, and target
3 location error in a transmission.

1 22. The method of claim 18, further comprising:
2 dispensing at least a formation including at least one vehicle; and
3 implementing the pattern with the vehicle.

20 23. The method of claim 22, wherein ascertaining the target information includes:
21 acquiring the target information at a platform from which the formation is dispensed;
22 receiving at least the target location from a platform other than the platform from
23 which the formation is dispensed; or
24 acquiring the target information aboard the vehicle.

25 24. The method of claim 22, wherein dispensing the formation includes:
26 launching the formation from an airborne platform; or
27 launching the formation from a surface-based platform; or
28 launching the formation from an underwater platform.

1 25. The method of claim 22, wherein the vehicle includes a vehicle selected from
2 the group consisting of a submersible vehicle, a reconnaissance drone, a flying submunition,
3 a cruise missile, and a smart bomb.

1 26. The method of claim 18, wherein autonomously determining the pattern from
2 the ascertained target information includes autonomously determining a serpentine pattern or
3 a fan blade pattern.

1 27. The method of claim 18, further comprising:
2 dispensing a formation including at least one vehicle at the dispense point defined by
3 the preplanned mission profile; and
4 implementing the pattern with the formation at the selected start point.

1 28. The method of claim 27, further comprising adjusting the selected start point
2 by a predetermined distance along a leg the trace.

1 29. The method of claim 18, wherein projecting along the target axis opposite the
2 target heading includes projecting 180° relative to the target heading.

1 30. The method of claim 18, wherein projecting left and right includes projecting
2 ±90°.

1 31. The method of claim 18, further comprising identifying the target.

1 32. The method of claim 31, wherein identifying the target includes employing an
2 automatic target recognition system.

1 33. The method of claim 31, further comprising attacking the target.

1 34. An apparatus for use in planning a mission profile in real time, comprising:
2 a receiver capable of receiving a plurality of target information, the target information
3 including a target location;
4 a computing device; and
5 a program storage device encoded with instructions that, when executed by the
6 computing device, perform a method for autonomously determining a pattern
7 from the target information.

1 35. The apparatus of claim 34, wherein the method for autonomously determining
2 the pattern from the target information includes assuming a value for at least one of a target
3 velocity and a target location error.

1 36. The apparatus of claim 34, wherein the receiver, the computing device, and
2 the program storage device are distributed across a platform and a vehicle.

1 37. The apparatus of claim 36, wherein the platform is an airborne platform, a
2 surface platform, or a submerged platform.

1 38. The apparatus of claim 36, wherein the vehicle includes a vehicle selected
2 from the group consisting of a submersible vehicle, a reconnaissance drone, a flying
3 submunition, a cruise missile, and a smart bomb.

1 39. The apparatus of claim 34, wherein the receiver, the computing device, and
2 the program storage device comprise a portion of a platform.

1 40. The apparatus of claim 39, wherein the platform is an airborne platform, a
2 surface platform, or a submerged platform.

1 41. The apparatus of claim 34, wherein the receiver, the computing device, and
2 the program storage device comprise a portion of a vehicle.

1 42. The apparatus of claim 41, wherein the vehicle includes a vehicle selected
2 from the group consisting of a submersible vehicle, a reconnaissance drone, a flying
3 submunition, a cruise missile, and a smart bomb.

1 43. The apparatus of claim 34, wherein the encoded method for autonomously
2 determining the pattern from the ascertained target information includes autonomously
3 determining a serpentine pattern or a fan blade pattern.

1 44. The apparatus of claim 34, wherein the encoded method for autonomously
2 determining the pattern includes:

3 projecting along a target axis 180° off the target velocity a distance of at least twice
4 the target location error to establish an intersection of the target axis with the
5 target location error;
6 projecting left and right relative to the target axis from the intersection a distance at
7 least as great as one-half the target location error to determine a pair of
8 possible start points;
9 selecting the possible start point closest to the platform;
10 determining a dispense point;
11 laying out a trace from the selected start point; and
12 translating the trace along a heading defined by the target velocity a distance
13 determined by the elapsed time of travel for the platform to the dispense point
14 and for a vehicle from the dispense point to the start point.

1 45. The apparatus of claim 44, wherein the encoded method for autonomously
2 determining the pattern further comprises adjusting the selected start point by a
3 predetermined distance along a leg of the trace.

1 46. The apparatus of claim 44, wherein the projecting along the target axis
2 opposite the target heading in the encoded method includes projecting 180° relative to the
3 target heading.

1 47. The apparatus of claim 44, wherein projecting left and right in the encoded
2 method includes projecting ±90°.

1 48. The apparatus of claim 34, further comprising an automatic target recognition
2 system.

1 49. The apparatus of claim 48, wherein the method for autonomously determining
2 the pattern further comprises identifying the target.

1 50. An apparatus for planning a mission profile in real time, comprising:
2 a receiver capable of receiving a plurality of target information, the target information
3 including a target location;
4 a computing device; and
5 a program storage device encoded with instructions that, when executed by the
6 computing device, perform a method for autonomously determining a pattern
7 from the ascertained target information, the method including:
8 projecting along a target axis a direction opposite a target heading defined by
9 the target velocity a distance of at least twice the target location error
10 to establish an intersection of the target axis with the target location
11 error;
12 projecting left and right relative to the target axis from the intersection a
13 distance at least as great as one-half the target location error to
14 determine a pair of possible start points;
15 selecting the possible start point closest to the platform;
16 determining a dispense point;
17 laying out a trace from the selected start point; and
18 translating the trace along a heading defined by the target velocity a distance
19 determined by the elapsed time of travel for the platform to the
20 dispense point and for a vehicle from the dispense point to the start
21 point.

1 51. The apparatus of claim 50, wherein the method for autonomously determining
2 the pattern from the target information includes assuming a value for at least one of a target
3 velocity and a target location error.

1 52. The apparatus of claim 50, wherein the receiver, the computing device, and
2 the program storage device are distributed across a platform and a vehicle.

1 53. The apparatus of claim 52, wherein the platform is an airborne platform, a
2 surface platform, or a submerged platform.

1 54. The apparatus of claim 52, wherein the vehicle includes a vehicle selected
2 from the group consisting of a submersible vehicle, a reconnaissance drone, a flying
3 submunition, a cruise missile, and a smart bomb.

1 55. The apparatus of claim 50, wherein the receiver, the computing device, and
2 the program storage device comprise a portion of a platform.

1 56. The apparatus of claim 55, wherein the platform is an airborne platform, a
2 surface platform, or a submerged platform.

1 57. The apparatus of claim 50, wherein the receiver, the computing device, and
2 the program storage device comprise a portion of a vehicle.

1 58. The apparatus of claim 57, wherein the vehicle includes a vehicle selected
2 from the group consisting of a submersible vehicle, a reconnaissance drone, a flying
3 submunition, a cruise missile, and a smart bomb.

1 59. The apparatus of claim 50, wherein the method for autonomously determining
2 the pattern from the ascertained target information includes autonomously determining a
3 serpentine pattern or a fan blade pattern.

1 60. The apparatus of claim 50, wherein the method for autonomously determining
2 the pattern further comprises adjusting the selected start point by a predetermined distance
3 along a leg of the trace.

1 61. The apparatus of claim 50, wherein projecting along the target axis opposite
2 the target heading in the encoded method includes projecting 180° relative to the target
3 heading.

1 62. The apparatus of claim 50, wherein projecting left and right in the encoded
2 method includes projecting ±90°.

1 63. The apparatus of claim 50, further comprising an automatic target recognition
2 system.

1 64. The apparatus of claim 63, wherein the method for autonomously determining
2 the pattern further comprises identifying the target.

1 65. An apparatus capable of planning a mission profile in real time, comprising:
2 a platform, including

3 a receiver capable of receiving a plurality of target information, the target
4 information including a target location;

5 a first computing device; and

6 a first program storage device encoded with instructions that, when executed
7 by the computing device, perform a method for autonomously
8 determining a pattern from the ascertained target information, the
9 method including: 112

10 projecting along a target axis a direction opposite a target heading
11 defined by the target velocity a distance of at least twice the
12 target location error to establish an intersection of the target
13 axis with the target location error;

14 projecting left and right relative to the target axis from the intersection
15 a distance at least as great as one-half the target location error
16 to determine a pair of possible start points;

17 selecting the possible start point closest to the platform;

18 determining a dispense point;

19 laying out a trace from the selected start point; and

20 translating the trace along a heading defined by the target velocity a
21 distance determined by the elapsed time of travel for the

22 platform to the dispense point and for a vehicle from the
23 dispense point to the start point; and

24 a vehicle, including:

25 a second program storage device capable of being encoded with the pattern by
26 the first computing device; and

27 a second computing device capable of implementing the pattern encoded on
28 the second program storage device through control of the vehicle.

1 66. The apparatus of claim 65, wherein the method for autonomously determining
2 the pattern from the target information includes assuming a value for at least one of a target
3 velocity and a target location error.

67. The apparatus of claim 65, wherein the platform is an airborne platform, a
surface platform, or a submerged platform.

68. The apparatus of claim 65, wherein the vehicle includes a vehicle selected
from the group consisting of a submersible vehicle, a reconnaissance drone, a flying
submunition, a cruise missile, and a smart bomb.

69. The apparatus of claim 65, wherein the method for autonomously determining
the pattern from the ascertained target information includes autonomously determining a
serpentine pattern or a fan blade pattern.

1 70. The apparatus of claim 65, wherein the method for autonomously determining
2 the pattern further comprises adjusting the selected start point by a predetermined distance
3 along a leg of the trace.

1 71. The apparatus of claim 65, wherein projecting along the target axis opposite
2 the target heading in the encoded method includes projecting 180° relative to the target
3 heading.

1 72. The apparatus of claim 65, wherein projecting left and right in the encoded
2 method includes projecting ±90°.

1 73. The apparatus of claim 65, further comprising an automatic target recognition
2 system.

74. The apparatus of claim 73, wherein the method for autonomously determining the pattern further comprises identifying the target.

75. An apparatus for planning a mission profile in real time, comprising:
means for ascertaining a plurality of target information, including a target location, a
target velocity, and a target location error; and
means for autonomously determining a pattern from the ascertained target
information.

112