Θεωρία Γραφημάτων 4η Διάλεξη

Α. Συμβώνης

Εθηίκο Μετσοβείο Πολυτέχνειο Σχολή Εφαρμόσμενος Μαθηματικών και Φυσικών Επιστημών Τόμεας Μαθηματικών

Φεβρουάριος 2015

Συνεκτικότητα

Συνεκτικό γράφημα:

Ένα γράφημα G ονομάζεται συνεκτικό αν κάθε ζεύγος κορυφών του $u,v\in V(G)$ ενώνεται με ένα μονοπάτι

Συνεκτική συνιστώσα:

Μια συνεκτική συνιστώσα ενός γραφήματος G είναι ένα μεγιστοτικό επαγόμενο υπογράφημα του G το οποίο είναι συνεκτικό

Διαχωριστής (Separator, cut-set):

Έστω ένα συνεκτικό γράφημα G και έστω σύνολο $S \subset V(G)$. Το σύνολο S είναι ένας διαχωριστής του G αν το γράφημα $G \backslash S$ δεν είναι συνεκτικό

$$S_1 = \{3\}$$
 $S_2 = \{4,7\}$ $S_3 = \{4,5\}$

$$G_4 \xrightarrow{5} \xrightarrow{7}$$

$$2$$

$$3$$

$$4$$

$$8$$

$$S_1 = \{3\}$$
 $S_2 = \{4\}$
 $S_3 = \{4, 5, 6, 8\}$

$$S_1 = \{3\}$$
 $S_2 = \{4\}$ $S_1 = \{4,5\}$ $S_2 = \{1,3\}$ $S_3 = \{5,8\}$ $S_3 = \{4,5,6,8\}$ $S_4 = \{5,6\}$ $S_5 = \{4,8\}$

Ελαχιστοτικός διαχωριστής [minimal separator]:

Ένας διαχωριστής S του G ονομάζεται ελαχιστοτικός αν κανένα υποσύνολό του δεν είναι επίσης διαχωριστής του G

Ελάχιστος διαχωριστής [minimum separator]:

Ένας διαχωριστής S του G ονομάζεται ελάχιστος αν δεν υπάρχει άλλος διαχωριστής του G με μικρότερο μέγεθος

(u, v)-διαχωριστής:

Ένας διαχωριστής S του G τέτοιος ώστε οι κορυφές $u,v\in V(G)\backslash S$ να ανήκουν σε διαφορετικές συνεκτικές συνιστώσες του $G\backslash S$

• ελαχιστοτικός (u, v)-διαχωριστής/ελάχιστος (u, v)-διαχωριστής

ελαχιστοτικοί διαχωριστές:

$$\underbrace{S_1 = \{1, 4, 5\}}_{\uparrow} \quad \underbrace{S_2 = \{6, 7, 8\}}_{\uparrow} \quad S_3 = \{1, 4, 6, 9\}$$

ελάχιστοι διαχωριστές

Κορυφή τομής:

κορυφή $u \in V(G): G \setminus u$ έχει περισσότερες συνεκτικές συνιστώσες από το G

Γέφυρα:

Ακμή $e \in E(G)$: $G \setminus e$ έχει περισσότερες συνεκτικές συνιστώσες από το G

Συνεκτικότητα:

Η συνεκτικότητα k(G) ενός γραφήματος G ορίζεται ως το μέγεθος ενός ελάχιστου διαχωριστή του G

• Απαιτείται η αφαίρεση k(G) κορυφών από το G ώστε να καταστεί μη-συνεκτικό

2-συνεκτικό γράφημα:

Γράφημα με ελάχιστο διαχωριστή μεγέθους 2

3-συνεκτικό γράφημα:

Γράφημα με ελάχιστο διαχωριστή μεγέθους 3

k- συνεκτικό γράφημα:

Γράφημα G με $|V(G)| \geq k+2$ το οποίο έχει ελάχιστο διαχωριστή μεγέθους k

κρίσιμη ακμή:

Μια ακμή $e \in E(G)$ ονομάζεται **κρίσιμη** αν $k(G \backslash e) = k(G) - 1$

κρίσιμες ακμές του G_2 : όλες εκτός της (5,9)

Ιδιότητες Συνεκτικών Γραφημάτων

Θεώρημα 4.1:

Ένα γράφημα G είναι συνεκτικό ανν περιέχει περίπατο που περνάει από όλες τις κορυφές του

Απόδειξη : "**仁**"

 Προφανές από τον ορισμό του συνεκτικού γραφήματος και το γεγονός ότι "αν υπάρχει ένας (u, v)-περίπατος τότε υπάρχει και ένα (u, v)- μονοπάτι"

- Έστω μια αυθαίρετη διάταξη $[u_1, u_2, \ldots, u_n]$ των κορυφών του G
- Το G είναι συνεκτικό $\stackrel{\text{ορισμός}}{\Longrightarrow} \forall u_i, u_{i+1} \exists$ μονοπάτι P_i από την u_i στην u_{i+1} , $1 \leq i < n$
- Η παράθεση των μονοπατιών $P_1P_2 \dots P_{n-1}$ ορίζει περίπατο που περνά από όλες τις κορυφές του G

Θεώρημα 4.2:

Για κάθε γράφημα G ισχύει ότι είτε το G είναι συνεκτικό ή το \overline{G} είναι συνεκτικό

Απόδειξη [Με επαγωγή στον αριθμό κορυφών του G]:

- Βάση: |V(G)|=2 Το K_2 [ullet είναι συνεκτικό ενώ Το $\overline{K_2}$ [ullet ullet
 - Αυτά είναι τα μόνα γραφήματα 2 κορυφών 🗸
- Ε.Υ. Έστω ότι για όλα τα γραφήματα H με |V(H)| < n ισχύει ότι είτε το H είναι συνεκτικό ή το \overline{H} είναι συνεκτικό
- Ε.Β. Έστω γράφημα G με |V(G)|=n και κορυφή $v\in V(G)$
 - $H = G \backslash v$: H συνεκτικό ή \overline{H} συνεκτικό

Περίπτωση 1: Η v είναι καθολική κορυφή $\Rightarrow G$ συνεκτικό \checkmark

Περίπτωση 2: Η ν είναι απομονωμένη κορυφή

$$\Rightarrow$$
 στο \overline{G} η v είναι καθολική κορυφή $\Rightarrow \overline{G}$ συνεκτικό \checkmark

Περίπτωση 3: Η ν δεν είναι ούτε καθολική ούτε απομονωμένη

•
$$\exists x, y \in V(G) : (v, x) \in E(G), (v, y) \notin E(G)$$

$$\left. \begin{array}{l} H \text{ sunektik\'o} \\ (v,x) \in E(G) \\ \overline{H} \text{ sunektik\'o} \\ (v,y) \in E(\overline{G}) \end{array} \right\} \quad \Rightarrow \quad G \text{ sunektik\'o} \quad \checkmark$$

Θεώρημα 4.3:

Έστω H μια συνεκτική συνιστώσα του γραφήματος G. Τότε ισχύει

i.
$$\delta(H) \geq \delta(G)$$

ii.
$$\Delta(H) < \Delta(G)$$

Απόδειξη :

i.
$$\delta(H) \geq \delta(G)$$

- $' E \sigma \tau \omega \ \delta(H) < \delta(G)$
- $\exists v \in V(G) : d_G(v) = \delta(G)$ και για κάθε άλλη κορυφή

$$w \in V(G): d_G(v) \le d_G(w) \tag{1}$$

• $\exists x \in V(H) : d_H(x) = \delta(H)$ και για κάθε άλλη κορυφή $y \in V(H) : d_H(x) < d_H(y) \Rightarrow$

[ο βαθμός κάθε κορυφής στο *Η* είναι ίσος με τον βαθμό της στο *G*]

$$d_G(x) \le d_G(y) \tag{2}$$

(1),(2)
$$\Rightarrow d_G(v) \leq d_G(x)$$

 $\Leftrightarrow \delta(G) < \delta(H) \quad \acute{\alpha}\tau o \pi o \quad \checkmark$

ιί. όμοια ✓

Θεώρημα 4.4:

Κάθε απλό γράφημα G με $\delta(\mathit{G}) \geq \frac{|\mathit{V}(\mathit{G})|}{2}$ είναι συνεκτικό

Απόδειξη:

- Έστω ότι δεν είναι συνεκτικό
- Έστω Η η μικρότερη συνιστώσα

$$|V(H)| \le \frac{|V(G)|}{2} \tag{3}$$

[αλλιώς το G θα είχε > |V(G)| κορυφές !!]

• $\delta(G) \geq \frac{|V(G)|}{2} \Rightarrow$ Κάθε συνιστώσα έχει μέγεθος $\geq \frac{|V(G)|}{2} + 1$ $\Rightarrow |V(H)| \geq \frac{|V(G)|}{2} + 1 \tag{4}$

 $(3),(4) \Rightarrow \alpha \tau o \pi o$

Ερώτηση 4.1: Ποια η διάμετρος του γραφήματος G με $\delta(G) \geq \frac{|V(G)|}{2}$?

Θεώρημα 4.5:

Έστω απλό συνεκτικό γράφημα G. Τότε $|E(G)| \geq |V(G)| - 1$

Απόδειξη [Με επαγωγή στο |V(G)|]:

Bάση:
$$|V(G)| = 2$$
 $\bullet \longrightarrow$ $|E(G)| = |V(G)| - 1$

- Ε.Υ. Για κάθε απλό συνεκτικό γράφημα G με |V(G)| < n ισχύει $|E(G)| \ge |V(G)| 1$
- E.B. |V(G)| = n

Περίπτωση 1: $\delta(G) \geq 2$

$$2|E(G)| = \sum_{u \in V(G)} d(u) \ge \sum_{u \in V(G)} \delta(G) \ge 2|V(G)| \Leftrightarrow$$

$$2|E(G)| \ge 2|V(G)| \Leftrightarrow |E(G)| \ge |V(G)|$$

Περίπτωση 2: $\delta(G) = 1$ [$\delta(G) \neq 0$ γιατί G συνεκτικό]

- Έστω $v \in V(G)$ κορυφή με βαθμό d(v) = 1
- *G\ν* συνεκτικό γιατί η *ν* δεν είναι κορυφή τομής
- $|E(G \setminus v)| > |V(G \setminus v)| 1 [\alpha \pi \circ E.\Upsilon]$

$$|E(G)| - 1 \ge |V(G)| - 1 - 1 \Rightarrow |E(G)| \ge |V(G)| - 1$$

Θεώρημα 4.6:

Ένα γράφημα G είναι συνεκτικό ανν για κάθε σύνολο $H\subset V(G)$ υπάρχει τουλάχιστον μια ακμή $e\in E(G)$ με το ένα άκρο της στο H και το άλλο στο $V(G)\backslash H$

$A\pi\delta\delta\varepsilon\iota\xi\eta:$ " \Rightarrow "

- 'Eστω $u \in H$ και $v \in V(G) \setminus H$
- G συνεκτικό $\Rightarrow \exists$ μονοπάτι από $u \rightarrow v$
- u' η τελευταία κορυφή του μονοπατιού στο H v' η πρώτη κορυφή του μονοπατιού στο $V(G)\backslash H$
- Η ακμή (u'v') ικανοποιεί το θεώρημα

Έστω το G δεν είναι συνεκτικό

- Έστω Η μια συνεκτική συνιστώσα
- Δεν υπάρχουν ακμές του G με το ένα μόνο άκρο τους στην H

Ιη συνεκτική συνιστώσα είναι μενιστοτικό συνεκτικό υπογράφημα του *G*Ι

άτοπο

Θεώρημα 4.7:

Μια ακμή e είναι γέφυρα ενός γραφήματος G ανν δεν ανήκει σε κάποιο κύκλο του G

Απόδειξη:

- Έστω H η συνεκτική συνιστώσα του G στην οποία ανήκει η e. Αρκεί να δείξουμε ότι το θεώρημα ισχύει για την H
- " \Leftarrow " Έστω η e=(u,v) δεν είναι γέφυρα
 - \Rightarrow To $H \setminus e$ είναι συνεκτικό
 - \Rightarrow στο $H \backslash e$ υπάρχει (u, v)-μονοπάτι P
 - \Rightarrow Η παράθεση του P με την e=(u,v) δημιουργεί κύκλο
 - \Rightarrow H e ανήκει σε κύκλο του Η άτοπο \checkmark
- " \Rightarrow " Έστω η e=(u,v) ανήκει σε κάποιο κύκλο του H
 - \Rightarrow Στο H υπάρχει (u, v)-μονοπάτι P_{uv}^H
 - Θα δείξω ότι το Η\e είναι συνεκτικό [δηλ. η e δεν είναι γέφυρα].
 Αυτό οδηγεί σε άτοπο.
 - Έστω $x, y \in V(H)$. Στο H υπάρχει (x, y)-μονοπάτι P_{xy}^H γιατί το H είναι συνεκτικό

Περίπτωση 1: $e \notin P_{xy}^H$

• Τότε P_{xy}^H είναι επίσης μονοπάτι του $H \setminus e$ \Rightarrow $H \setminus e$ συνεκτικό \Rightarrow H e δεν είναι γέφυρα άτοπο 🗸

Περίπτωση 2: $e \in P_{xy}^H$

Τότε ορίζονται τα: (x, u)-μονοπάτι P_{xu}^H (v, y)-μονοπάτι P_{vv}^H

- Το ότι η e = (u, v) ανήκει σε κάποιο κύκλο του H σημαίνει ότι υπάρχει (u, v)-μονοπάτι P_{uv}^{H} , $\sigma \tau o H$
- Η παράθεση των μονοπατιών $P_{xu}^{H}P_{vv}^{H}P_{vv}^{H}$ σημαίνει ότι υπάρχει (x,y)-περίπατος και, συνεπώς, (x,y)-μονοπάτι P_{xy}^H στο H το οποίο δεν περιέχει την e
- Το P_{xy}^H είναι μονοπάτι και του $H \setminus e$
 - \Rightarrow H e δεν είναι γέφυρα. άτοπο 🗸

Θεώρημα 4.8:

Ένα συνεκτικό γράφημα G περιέχει τουλάχιστον 2 κορυφές οι οποίες δεν είναι κορυφές-τομής

Απόδειξη :

- Έστω ένα αυθαίρετο μεγιστοτικό (u, v)-μονοπάτι P_{uv}
- Το Puv δεν μπορεί να επεκταθεί
 - \Rightarrow οι γείτονες των u, v ανήκουν στο P_{uv}
- Όλοι οι γείτονες των u, v ανήκουν στην ίδια συνεκτική συνιστώσα
- G\ {u, v} συνεκτικό
 - \Rightarrow Οι u, v δεν είναι κορυφές-τομής \checkmark

Ερώτηση 4.2: Να δειχθεί ότι εάν το γράφημα G έχει k συνεκτικές συνιστώσες τότε $K_k \subseteq \overline{G}$.

Ερώτηση 4.3: Να δειχθεί ότι κάθε 2 μέγιστα μονοπάτια ενός συνεκτικού γραφήματος έχουν κάποια κοινή κορυφή.

Ερώτηση 4.4: Να δειχθεί ότι για κάθε συνεκτικό γράφημα G με n κορυφές, υπάρχει μια απαρίθμηση $V(G) = \{v_1, v_2, \ldots, v_n\}$ των κορυφών του τέτοια ώστε το επαγόμενο υπογράφημα G_i από τις κορυφές $\{v_1, \ldots, v_i\}$ $1 \le i \le n$ να είναι συνεκτικό.

Ερώτηση 4.5: Να δειχθεί ότι για κάθε γράφημα G με k συνεκτικές συνιστώσες ισχύει $|E(G)| \geq |V(G)| - k$.

Δισυνεκτικότητα

Δισυνεκτικό (2-Συνεκτικό) γράφημα:

Ένα γράφημα G με |V(G)| > 2ονομάζεται δισυνεκτικό αν όλοι οι διαχωριστές του έχουν μέγεθος > 2

Δισυνεκτική Συνιστώσα (biconnected component-block):

Ένα μεγιστοτικό δισυνεκτικό υπογράφημα ενός γραφήματος G ονομάζεται δισυνεκτική συνιστώσα του G

εσωτερικώς διακεκριμένα μονοπάτια:

 $k \geq 2$ μονοπάτια ενός γραφήματος G ονομάζονται εσωτερικώς διακεκριμένα εάν τα σύνολα των εσωτερικών κορυφών τους είναι διακεκριμένα, δηλαδή ανά δύο ξένα μεταξύ τους

3 εσωτερικώς διακεκριμένα (u, v)-μονοπάτια

Θεώρημα 4.9:

Έστω ένα απλό συνδεδεμένο γράφημα G με $|V(G)| \geq 3$. Το G είναι δισυνεκτικό ανν κάθε ζεύγος κορυφών του συνδέεται με 2 εσωτερικών διακεκριμένα μονοπάτια

Απόδειξη:

- **"="** [με άτοπο]
 - Έστω το G δεν είναι δισυνεκτικό, δηλαδή έχει κορυφή τομής u και έστω x,y δύο κορυφές σε δύο διαφορετικές συνεκτικές συνιστώσες του $G \setminus u$

- Όλα τα μονοπάτια από την *x* προς την *y* περνούν από την *u*
- Το G δεν περιέχει 2 εσωτερικώς διακεκριμένα (x,y)-μονοπάτια. άτοπο Άρα το G είναι δισυνεκτικό \checkmark

- Έστω G δισυνεκτικό γράφημα και $x,y \in V(G)$
- Θα δείξουμε ότι \exists 2 εσωτερικώς διακεκριμένα (x,y)-μονοπάτια με επαγωγή ως προς την ποσότητα $\mathrm{dist}(x,y)$

Bάση: dist(x, y) = 1

- $e = (x, y) \in E(G)$
- *G\e* είναι συνεκτικό

Απόδειξη: • d(x) > 1, d(y) > 1

[Αν d(x) = 1 τότε το y είναι διαχωριστής τους G

 \Rightarrow G δεν είναι δισυνεκτικό - άτοπο]

• $G \setminus \{x\}$ είναι συνεκτικό

[διαφορετικά το $\{x\}$ θα ήταν διαχωριστής του G

 \Rightarrow G δεν είναι δισυνεκτικό - άτοπο]

G\e είναι συνεκτικό

[γιατί $G \setminus \{x\} \subset G \setminus e$]

- $\exists (x, y)$ -μονοπάτι P στο $G \setminus e$
- $\exists 2$ εσωτερικώς διακειριμένα μονοπάτια στο G [το P και η e] \checkmark

- Ε.Υ. Έστω ότι για κάθε $x,y \in V(G): \mathrm{dist}(x,y) < k$ ισχύει ότι $\exists \ 2$ εσωτερικώς διακριτά (x,y)-μονοπάτια
- E.B. $\text{'Eot}\omega x, y \in V(G) : \text{dist}(x, y) = k \ge 2$
 - G συνεκτικό $\Rightarrow \exists (x,y)$ -μονοπάτι στο G. Έστω w προτελευταία κορυφή του
 - από Ε.Υ. $\Rightarrow \exists 2$ εσωτερικώς διακεκριμένα (x, w)-μονοπάτια $P_1(x, w)$ και $P_2(x, w)$

Περίπτωση 1: To $y \in P_1(x, w)$ [ή $y \in P_2(x, w)$]

 \Rightarrow Τα μονοπάτια $P_1(x,y)$ και $P_2(x,y)\cdot (w,y)$ είναι τα ζητούμενα 🗸

Περίπτωση 2: $y \notin P_1(x, w)$ και $y \notin P_2(x, w)$

• Έστω R(x,y) ένα (x,y)-μονοπάτι που δεν περιέχει την w [υπάρχει γιατί $G \setminus w$ είναι συνεκτικό]

Περίπτωση 2α: Το R(x,y) δεν έχει κοινές κορυφές με τα $P_1(x,w)$, $P_2(x,w)$

• Τα R(x,y) και $P_1(x,w)\cdot (w,y)$ είναι τα ζητούμενα 2 εσωτερικώς διακεκριμένα (x,y)-μονοπάτια \checkmark

Περίπτωση 2β: Το R(x,y) έχει κοινές κορυφές με τα $P_1(x,w)$, $P_2(x,w)$

• Έστω $u \in R(x,y)$ η τελευταία (πηγαίνοντας από το $x \to y$) κοινή κορυφή και έστω $u \in P_1(x,w)$.

• Τα μονοπάτια $P_1(x,u) \cdot R(u,y)$ και $P_2(x,w) \cdot (w,y)$ είναι τα ζητούμενα 2 εσωτερικώς διακεκριμένα (x,y)-μονοπάτια \checkmark

Πόρισμα 4.10:

Έστω G ένα δισυνεκτικό γράφημα. Οι παρακάτω πράξεις δεν επηρεάζουν την δισυνεκτικότητα του G:

- προσθήκη ακμής
- ii. διάλυση κορυφής βαθμού 2 [πρέπει $|V(G)| \ge 3$]
- iii. υποδιαίρεση ακμής [που δεν είναι βρόγχος]

Θεώρημα 4.11:

Έστω ένα δισυνεκτικό γράφημα G με $|V(G)| \geq 3$. Τότε για κάθε $x,y,z \in V(G)$ υπάρχει ένα μονοπάτι από την x προς την z το οποίο διέρχεται από την y

Απόδειξη [1ος τρόπος]:

- G δισυνεκτικό $\Rightarrow 32$ εσωτερικώς διακεκριμένα μονοπάτια ανάμεσα στην y και την z καθώς και ανάμεσα στην x και την y
- Έστω $P_1(y, z)$ και $P_2(y, z)$ τα (y, z)-μονοπάτια
- Έστω P(x, y) το (x, y)-μονοπάτι

Περίπτωση 1: Το P(x,y) και ένα από τα $P_1(y,z)$, $P_2(y,z)$ είναι εσωτερικώς διακεκριμένα

Περίπτωση 2: Το P(x,y) έχει κοινές κορυφές και με τα 2 μονοπάτια

- Έστω t η τελευταία κοινή κορυφή των $P_1(y, z)$, $P_2(y, z)$ με το P(x, y) και έστω ότι ανήκει στο $P_2(y, z)$
- Το μονοπάτι $P(x,t) \cdot P_2(t,y) \cdot P_1(y,z)$ είναι το ζητούμενο ✓

Απόδειξη [2ος τρόπος]:

- Έστω το γράφημα G' που κροκύπτει από τις πράξεις:
 - i. Πρόσθεση ακμής e = (x, y)
 - ii. Υποδιαίρεση της e. Έστω w η νέα κορυφή

[Εάν $\exists e' = (\mathbf{x}, \mathbf{y}) \in \mathit{E}(\mathit{G})$ τότε το G' είναι πολυγράφημα]

- Από το Πόρισμα 4.10~G' είναι δισυνεκτικό
- Από το Θεώρημα 4.9 \exists 2 εσωτερικώς διακεκριμένα (z,w)-μονοπάτια $P_1(z,w)$ και $P_2(z,w)$
- Έστω το $P_1(z, w)$ περνάει από το x και το $P_2(z, w)$ από το y
- Το μονοπάτι $P_1(x,z) \cdot P_2(z,y)$ είναι το ζητούμενο

Θεώρημα 4.12:

Έστω δισυνεκτικά γραφήματα G_1 , G_2 τέτοια ώστε $|V(G_1)\cap V(G_2)|\geq 2$. Τότε το γράφημα $G_1\cup G_2$ είναι δισυνεκτικό

Απόδειξη :

- Έστω $u, v \in V(G_1) \cap V(G_2)$

Αρκεί να δείξω ότι \exists 2 εσωτερικώς διακεκριμένα μονοπάτια ανάμεσα στις x, y

• Εξετάζουμε μόνο την περίπτωση όπου μια κορυφή (έστω η x) ανήκει στο ένα γράφημα (έστω το G_1) και η άλλη (y) στο άλλο (G_2)

- G_1 δισυνεκτικό $\stackrel{6.4.11}{\Longrightarrow} \exists P_1(u,x,v)$ στο G_1 Έστω u' [v'] η πρώτη κορυφή του $P_1(x,u)$ $[P_1(x,v)]$ που ανήκει στο $V(G_1) \cap V(G_2)$
 - G_2 δισυνεκτικό $\stackrel{\Theta. \ 4.11}{\Longrightarrow} \exists P_2(u', y, v')$ στο G_2
 - Τα μονοπάτια $P_1(x, u') \cdot P_2(u', y)$ και $P_1(x, v') \cdot P_2(v', y)$ είναι εσωτερικώς διακεκριμένα
 - \Rightarrow $G_1 \cup G_2$ δισυνεκτικό

Θεώρημα 4.13:

Έστω 2 δισυνεκτικές συνιστώσες H_1 και H_2 ενός γραφήματος G. Τότε οι H_1 και H_2 έχουν το πολύ μια κοινή κορυφή η οποία πρέπει να είναι κορυφή-τομής

Απόδειξη:

Έστω $V(H_1) \cap V(H_2) \neq \emptyset$ [διαφορετικά ισχύει]

- i. Θα δείξω ότι $|V(H_1) \cap V(H_2)| = 1$
 - $Y = V(H_1) \cap V(H_2)$
 - 'Esta $w \in V(H_1) \backslash V(H_2)$
 - H_1 δισυνεκτικό $\Rightarrow \exists P_1(x, w, y)$ στο H_1
 - $H_2 \cup P_1(x, w, y)$ δισυνεκτικό [Μπορεί να δημιουργηθεί από το H_2 με την προσθήκη της ακμής (x, y) και διαδοχικές διαιρέσεις της [Πόρισμα 4.10]]
 - $H_2 \subset H_2 \cup P_1(x, w, y)$ άτοπο γιατί H_2 είναι μεγιστοτικό ως συνεκτική συνιστώσα

- ii. Έστω u η κοινή κορυφή των $H_1, H_2 \Rightarrow$ η u είναι κορυφή τομής
 - Έστω το *G\u* είναι συνεκτικό
 - Έστω $x \in H_1$, $y \in H_2$ κορυφές διαφορετικές από την u
 - \exists μονοπάτι P από την x προς την y στο $G \setminus u$
 - $H = H_1 \cup H_2$, $H \setminus u$ ένωση 2 "ξένων" μεταξύ τους γραφημάτων εκ των οποίων το ένα περιέχει το x και το άλλο το y

- Το P δεν ανήκει αποκλειστικά στο $H \setminus u$
- Το P περιέχει ακμές του $E(G) \setminus E(H)$
- Έστω το γράφημα $H' = H \cup P$
- Έστω Ρ' ένα μεγιστοτικό υπομονοπάτι του Ρ το οποίο αποτελείται από ακμές που δεν ανήκουν στα H_1, H_2
- Έστω $x' \in V(H_1)$ και $y' \in V(H_2)$ τα άκρα του P'

- H_2 δισυνεκτικό $\Rightarrow \exists P_2(v', u)$ στο H_2
- $C = P'(x', y') \cdot P_2(y', u) \cdot P_1(u, x')$ κύκλος $\Rightarrow C$ δισυνεκτικό
- $H_1 ∪ H_2 ∪ C$ είναι δισυνεκτικό

[γιατί H_1 , C δισυνεκτικό και $|V(H_1) \cap V(H_2)| \ge 2 \xrightarrow{0.4.12} H_1 \cup C$ δισυνεκτικό $\xrightarrow{0.4.12} (H_1 \cup C) \cup H_2$ δισυνεκτικό]

- $H' = H \cup P = H_1 \cup H_2 \cup C$ δισυνεκτικό
- Αλλά $H_1 \subset H' = H \cup P$ άτοπο γιατί H_1 είναι μεγιστοτικό συνεκτικό υπογράφημα του G
- \Rightarrow $G \setminus u$ δεν είναι συνεκτικό
- \Rightarrow H u είναι κορυφή-τομής

Θεώρημα 4.14:

Ένα γράφημα είναι δισυνεκτικό ανν μπορεί να κατασκευαστει ξεκινώντας από το K_3 και εφαρμόζοντας μια ακολουθία από:

- υποδιαιρέσεις ακμής
- πρόσθεση ακμής

Απόδειξη :

- Κ3 δισυνεκτικό
- Από Πόρισμα 4.10 η υποδιαίρεση ακμής και η πρόσθεση ακμής διατηρούν την δισυνεκτικότητα ✓
 "⇒" Θα ακολουθήσει...

Παράδειγμα:

Δένδρο δισυνεκτικών συνιστωσών:

Έστω συνεκτικό γράφημα G και G_1, G_2, \ldots, G_k οι δισυνεκτικές του συνιστώσες. Έστω $CC = \{g_i : G_i$ συνεκτική συνιστώσα του $G\}$, και $CV = \{u : u$ κορυφή τομής του $G\}$. Το γράφημα $T = (CC \cup CV, E)$ όπου

$$E = \{(g_i, u) : g_i \in CC, \{u\} \in CV, \{u\} \in V(G_i)\}$$

ονομάζεται δένδρο δισυνεκτικών συνιστωσών του G

Ερώτηση 4.6: Να δειχθεί ότι:

- Το Τ είναι διμερές
- Το Τ είναι όντως δένδρο

k-συνεκτικότητα

Συνεκτικότητα:

Η συνεκτικότητα k(G) ενός γραφήματος G ορίζεται ως το μέγεθος ενός ελαχίστου διαχωριστή του

k-συνεκτικό:

Ένα γράφημα G με $|V(G)| \ge k+2$ το οποίο έχιε ελάχιστο διαχωριστή μεγάθους k ονομάζεται k-συνεκτικό γράφημα

Λήμμα 4.15:

 $k(G) < \delta(G)$ [για απλό γράφημα G]

Απόδειξη :

- Έστω γράφημα G και έστω $u \in V(G): d(u) = \delta(G)$
- Έστω $N_G(u)$ η γειτονιά της u
- Στο γράφημα $G \setminus N_G(u)$ η κορυφή u είναι απομονωμένη
- $\Rightarrow N_G(u)$ είναι διαχωριστής του G
- $\Rightarrow k(G) \leq |N_G(u)| = \delta(G)$

Θεώρημα 4.16[Menger-1927]:

Για κάθε γράφημα G και για κάθε ζεύγος s,t μη γειτονικών κορυφών του G ισχύει ότι το μέγεθος ενός ελαχίστου (s,t)-διαχωριστή του G είναι ίσο με τον μέγιστο αριθμό εσωτερικώς διακεκριμένων (s,t)-μονοπατιών στο G

Θεώρημα 4.17[Whitney-1932]:

Ένα γράφημα G είναι k-συνεκτικό ανν για κάθε ζεύγος u, v διαφορετικών κορυφών του G υπάρχουν τουλάχιστον k εσωτερικώς ανεξάρτητα (u, v)-μονοπάτια

Θεώρημα 4.18[Halin-1968]:

Για κάθε γράφημα G με $\delta(G)>k(G)$ υπάρχει ακμή $e\in E(G)$ τέτοια ώστε $k(G\backslash e)=k(G)$ [δηλαδή η e δεν είναι κρίσιμη ακμή]

Ερώτηση 4.7: Να αποδειχθεί το "⇒"τμήμα του Θεωρήματος 4.14 κάνοντας χρήση του Θεωρήματος του Halin.

Θεώρημα 4.19:

Έστω ένα k-συνεκτικό γράφημα $G,k\geq 2$. Τότε κάθε k κορυφές του G ανήκουν σε ένα κύκλο του G

Σημείωση: Το έχουμε δείξει για k = 2.

Συνεκτικότητα ακμών/Πλευρική συνεκτικότητα

Συνεκτικότητα ακμών:

Έστω ένα γράφημα G. Ο ελάχιστος αριθμός ακμών που πρέπει να αφαιρεθεί από το G ώστε να δημιουργηθεί ένα μη-συνεκτικό γράφημα ονομάζεται συνεκτικότητα ακμών του G και συμβολίζεται με $\lambda(G)$

$$\lambda(G) = \min\{|F| : F \in E(G)$$
και $G \setminus F$ μη συνεκτικό $\}$

Θεωρία Γραφημάτων 4η Διάλεξη

Θεώρημα 4.20:

Για κάθε γράφημα G ισχύει ότι $k(G) \leq \lambda(G) \leq \delta(G)$

Απόδειξη :

- Έστω v κορυφή του G με $d(v) = \delta(G)$
- Έστω $E_G(v)$ οι προσκείμενες στην v ακμές
- $G \setminus E_G(v)$ είναι μη συνεκτικό γιατί η v είναι απομονωμένη

$$\lambda(G) \le \delta(G) \tag{5}$$

• Η ανισότητα $k(G) < \lambda(G)$ ισχύει όταν:

$$\lambda(G)=0$$
 Το G είναι μη συνεκτικό $\Rightarrow k(G)=0$

$$\lambda(\mathit{G}) = 1$$
 Το G περιέχει γέφυρα $\mathit{e} = (\mathit{u},\mathit{v})$

$$\Rightarrow$$
 Οι $\{u\}$ και $\{v\}$ είναι διαχωριστές

$$\Rightarrow k(G) = 1$$

- 'E σ т $\omega \lambda(G) \geq 2$
- Έστω $e_i=(u_i,v_i)$, $i=1,\ldots,\lambda(G)$ οι ακμές ενός "διαχωριστή ακμών"
- Αφαιρώντας όλες εκτός από την e_1 , παίρνω συνεκτικό γράφημα με γέφυρα
- Έστω το σύνολο $S = \{w : w \in \{u_i, v_i\}, i = 2, \dots, \lambda(G)$ και $w \neq u_1, v_1\}$
- Αν S διαχωριστής του $G \Rightarrow k(G) < \lambda(G)$
- Αν όχι, $S \cup \{u_1\}$ είναι διαχωριστής του $G \Rightarrow k(G) \le \lambda(G)$

Θεώρημα 4.21[Πλευρικό Θεώρημα Menger]:

Έστω γράφημα G και u, v δυο κορυφές του. Τότε, το μέγιστο πλήθος των πλευρικά ανεξάρτητων (u, v)-μονοπατιών του ισούται με το ελάχιστο πλήθος ακμών που χωρίζουν τις u και v

Σημείωση: Αποδείχθηκε από τους Ford-Fulkerson το 1955.

Πλευρικά ανεξάρτητα μονοπάτια:

μονοπάτια που δεν περιέχουν κοινές ακμές [μπορεί να έχουν κοινές κορυφές]

Θεώρημα 4.22[Whitney]:

Έστω γράφημα G για το οποίο ισχύει ότι για όλες τις διακεκριμένες κορυφές του u,v υπάρχουν k πλευρικά ανεξάρτητα (u,v)-μονοπάτια. Τότε $\lambda(G)=k$