

福州清大教育 2018-2019 学年高一数学期末考模拟卷

高一数学 必修四

(考试时间: 120 分钟,满分: 150 分, 另附加分 30 分)

— 、	选择题 (本大题共 12 小题,	每小题5分,	共60分.	每题有且只有一	-个选项是正确的,	请把答案填在
答卷	相应位置上)					

- 1 关于角度制与弧度制的等式,正确的是.....(
- A. $\pi = 1$ rad
- B. $\pi = 180$
- C. 1° = $\frac{180}{\pi}$ rad D. 1rad = $(\frac{180}{\pi})^{\circ}$
- **2** 已知 $\tan \alpha = -\sqrt{3}$, $0 < \alpha < \pi$, 那么 $\cos \alpha \sin \alpha$ 的值是.....
- B. $\frac{-1 + \sqrt{3}}{2}$
- C. $\frac{1-\sqrt{3}}{2}$

- **4** 函数 $f(x) = 2\sin(\omega x + \varphi)\left(\omega > 0, |\varphi| < \frac{\pi}{2}\right)$ 的部分图象如图所示,则 ω, φ 的值分别是(

- A. $2, -\frac{\pi}{3}$ B. $2, -\frac{\pi}{6}$ C. $4, -\frac{\pi}{6}$ D. $4, \frac{\pi}{3}$

- $A. a \parallel b$

- C. a 与 b 的夹角为 60° D. a 与 b 的夹角为 30°
- **6** 点 O 是 $\triangle ABC$ 所在平面上的一点,且满足 $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OA} \cdot \overrightarrow{OC}$,则点 O 是 $\triangle ABC$ 的...(

- 7 已知 $\sin\left(\frac{\pi}{3} + \alpha\right) = -\frac{5}{13}$,则 $\cos\left(\frac{\pi}{6} \alpha\right) = \dots$ ()

- 9 已知向量 $\mathbf{a} = \left(\cos\frac{3x}{2}, \sin\frac{3x}{2}\right)$, $\mathbf{b} = \left(\cos\frac{x}{2}, -\sin\frac{x}{2}\right)$, 且 $x \in \left[0, \frac{\pi}{2}\right]$, 若 $|\mathbf{a} + \mathbf{b}| = 2\mathbf{a} \cdot \mathbf{b}$, 则 $\sin 2x + \sin 2x = 1$

A. f(x) 的图像关于直线 $x = \frac{\pi}{3}$ 对称

- B. f(x) 的图像关于点 $\left(-\frac{\pi}{4},0\right)$ 对称
- C. 把 f(x) 的图像向左平移 $\frac{\pi}{12}$ 个单位长度,得到一个偶函数的图像
- D. f(x) 的最小正周期为 π,且在 $\left[0,\frac{\pi}{6}\right]$ 上为增函数
- 11 在平面直角坐标系中, AB = CD, A(0,3), B(-4,0), C(a,-1)(a>0), 则向量 \overrightarrow{BC} 在 \overrightarrow{AB} 上的投影

- 12 已知 $\tan \alpha$, $\tan \beta$ 是方程 $x^2 3x 5 = 0$ 的两根,则 $\tan 2(\alpha + \beta)$ 的值为

- 13 (附加题, 5分) 已知正方形 PQRS 对角线交点为 M, 坐标原点 O 不在正方形内部, $\overrightarrow{OP} = (0,3)$, $\overrightarrow{OS} =$

- **14** (附加题, 5分) 已知 $\theta \in [0,\pi]$, $f(x) = \sin(\cos\theta)$ 的最大值为 a, 最小值为 b, $g(\theta) = \cos(\sin\theta)$ 的最大值 为 c,最小值为 d,则 a, b, c, d 从小到大的顺序是(
- A.b < d < a < c
- B. d < b < c < a
- C. b < d < c < a

- 二、填空题(本大题共4小题,每小题5分,共20分)
- **15** 已知 |a| = 1, |b| = 2, a = b 的夹角为 120° , 则使 a + kb = ka + b 的夹角为锐角的实数 k 的取值范围
- **16** 已知 $\sin \alpha \cos \alpha = -\frac{12}{25}$, $\alpha \in \left(-\frac{\pi}{4}, 0\right)$, 则 $\sin \alpha + \cos \alpha =$ ______
- 17 已知正方形 ABCD 的边长为 1,点 E 是 AB 边上的动点,则 $\overrightarrow{DE} \cdot \overrightarrow{DC}$ 的最大值为
- 18 已知函数 $f(x) = \frac{(\sin x \cos x)\sin 2x}{\sin x}$,则 f(x) 的单调递减区间为_
- **19** (附加题, 5分) $\sqrt{3} \tan 18^{\circ} + \tan 18^{\circ} \tan 12^{\circ} + \sqrt{3} \tan 12^{\circ} =$.
- 三、 解答题(本大题共有6个小题, 共70分. 解答应写出文字说明、演算步骤或证明过程)
- 20 (本小题满分 10 分) 求值:

已知 $|\vec{a}| = \sqrt{2}, |\vec{b}| = 1$ (1) 若 \vec{a} , \vec{b} 的夹角 θ 为 45°, 求 $|\vec{a} - \vec{b}|$;

(2) 若 $(\overrightarrow{a} - \overrightarrow{b}) \perp \overrightarrow{b}$, 求 $\overrightarrow{a} = \overrightarrow{b}$ 的夹角 θ .

21 (本小题满分 12 分)

21 (本小题满分 12 分)
(1) 化简:
$$\frac{\cos\left(\alpha - \frac{\pi}{2}\right)}{\sin\left(\frac{5\pi}{2} + \alpha\right)} \cdot \sin\left(\alpha - 2\pi\right) \cdot \cos\left(\pi - \alpha\right);$$

(2) 已知
$$\tan a = -2$$
,求 $\frac{\sin 2a - \cos^2 a}{2 + \cos 2a}$ 的值.

22 (本小题满分 12 分)

设函数 $f(x) = a \cdot b$, 其中向量 $a = (\cos x, 1), b = (\cos x, \sqrt{3} \sin x \cos x), x \in \mathbb{R}$.

- (1) 求函数 f(x) 的解析式;
- (2) 求满足 f(x) ≤ 0 的 x 的集合;
- (3) 函数 $y = \sin x$ 的图像可由函数 y = f(x) 的图像经过怎样的变换得到?

23 (本小题满分 12 分)

已知函数 $f(x) = 2\sin^2\left(\frac{\pi}{4} + x\right) + \sqrt{3}\cos 2x$.

- (1) 求函数 f(x) 的最小正周期和对称轴方程;
- (2) 若关于 x 的方程 f(x) m = 2 在 $x \in \left[0, \frac{\pi}{2}\right]$ 上有两个不同的解,求实数 m 的取值范围.

已知向量 $\mathbf{a} = \left(\frac{1}{2}, \sin x\right), \ \mathbf{b} = \left(-1, \cos\left(x - \frac{\pi}{6}\right)\right), \ f(x) = \mathbf{a} \cdot \mathbf{b} + \frac{1}{4}, \ (x \in \mathbb{R}).$

- (1) 求函数 f(x) 的单调递减区间;
- (2) 若函数 g(x) = f(x) m, $\left(\frac{\pi}{3} \le x \le \frac{13\pi}{12}\right)$ 有两个不同的零点 x_1, x_2 , 求实数 m 的取值范围及 x_1, x_2 的和.

25 (本小题满分 12 分)

如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道($Rt \triangle FHE$,H 是 直角顶点)米处理污水,管道越长,污水净化效果越好。设计要求管道的接口 H 是 AB 的中点, $E \times F$ 分别落在线段 BC、AD 上. 已知 AB = 20 米, AD = $10\sqrt{3}$ 米, 记 \angle BHE = θ .

- (1) 试将污水净化管道的长度 l 表示为 θ 的函数,并写出定义域;
- (2) 若 $\sin \theta + \cos \theta = \sqrt{2}$, 求此时管道的长度 l;
- (3) 当 θ 取何值时,污水净化效果好?并求出此时管道的长度.

26 (附加题: 本小题满分 15 分)

(福州格致中学 2015-2016 学年高一数学第二学期期末检测 22) 已知函数 $f(x) = A\sin(\omega x + \varphi) + B(A > \varphi)$ $0, \omega > 0$) 的一系列对应值如下表:

x	$-\frac{\pi}{a}$	$-\frac{\pi}{2}$	$-\frac{5\pi}{a}$	$-\frac{4\pi}{2}$	$-\frac{11\pi}{2}$	$-\frac{7\pi}{2}$	$-\frac{17\pi}{2}$
y	-1	1	3	3 1	-1	1	3

- (1) 根据表格提供的数据求函数 f(x) 的一个解析式;
- (2) 根据(1)的结果:
- (i) 当 $x \in \left[0, \frac{\pi}{3}\right]$ 时,方程 f(3x) = m 恰有两个不同的解,求实数 m 的取值范围;
- (ii) 若是 α, β 是锐角三角形的两个内角, 试比较 $f(\sin \alpha)$ 与 $f(\cos \beta)$ 的大小.

福州清大教育 2018-2019 学年高一数学期末考模拟卷

参考答案

1 D
2 A
3 A
4 A
5 B
6 B
7 C
8 A
9 B
10 C
11 A
12 D
13 A
14 A
15 $\left(\frac{5-\sqrt{21}}{2},1\right) \cup \left(1,\frac{5+\sqrt{21}}{2}\right)$
16 $\frac{1}{5}$
17 1
18 $\left[k\pi + \frac{3\pi}{8}, k\pi + \frac{7\pi}{8}\right](k \in \mathbb{Z})$
19 1
20 \mathbf{m} : (1) $ \vec{a} - \vec{b} = \sqrt{\vec{a}^2 - 2\vec{a} \cdot \vec{b} + \vec{b}^2} =$
$\sqrt{2-2\times\sqrt{2}\times1\times\frac{\sqrt{2}}{2}}+1=1\ldots(5\ \%)$
(2) : $(\vec{a} - \vec{b}) \perp \vec{b}$,
$\therefore (\vec{a} - \vec{b}) \cdot \vec{b} = \vec{a} \cdot \vec{b} - \vec{b}^2 = \sqrt{2} \times 1 \times \cos \theta - 1 = 0,$

 $\therefore \cos \theta = \frac{\sqrt{2}}{2} (0 \le \theta \le \pi), \quad \therefore \theta = \frac{\pi}{4} \dots (10 \ \%)$

21 解: (1)原式 = $\frac{\sin \alpha}{\cos \alpha} \cdot \sin \alpha \cdot (-\cos \alpha) = -\sin^2 \alpha$; (2): $\tan \alpha = -2$.: 原式 = $\frac{2 \sin \alpha \cdot \cos \alpha - \cos^2 \alpha}{2 \cos^2 \alpha + 1}$ =

 $2\sin\alpha\cdot\cos\alpha-\cos^2\alpha$

 $3\cos^2\alpha + \sin^2\alpha$

 $2\sin\alpha\cdot\cos\alpha-\cos^2\alpha$

 $3\cos^2\alpha + \sin^2\alpha$

22 解:
$$(1)f(x) = a \cdot b = \cos^2 x + \sqrt{3} \sin x \cos x = \frac{\cos 2x + 1}{2} + \frac{\sqrt{3}}{2} \sin 2x = \sin \left(2x + \frac{\pi}{6}\right) + \frac{1}{2}.$$
(2): $f(x) \le 0$, $\therefore \sin \left(2x + \frac{\pi}{6}\right) \le -\frac{1}{2}.$
又 : 不等式 $\sin x \le -\frac{1}{2}$ 的解集为 $\left[2k\pi - \frac{5\pi}{6}, 2k\pi - \frac{\pi}{6}\right], k \in \mathbb{Z}.$
 $\therefore 2k\pi - \frac{5\pi}{6} \le 2x + \frac{\pi}{6} \le 2k\pi - \frac{\pi}{6}.$
解得: $k\pi - \frac{\pi}{2} \le x \le k\pi - \frac{\pi}{6}$ 即: 函数 $f(x) \le 0$ 的 x 的解集为 $\left\{x \mid k\pi - \frac{\pi}{2} \le x \le k\pi - \frac{\pi}{6}, k \in \mathbb{Z}\right\}.$
(3) 函数 $y = \sin x$ 的图像可由函数 $y = f(x)$ 的图像经过以下步骤变换得到: ①向下平移 $\frac{1}{2}$ 个单位,得到函数 $y = \sin \left(2x + \frac{\pi}{6}\right)$

- ② 向右平移 $\frac{\pi}{12}$ 个单位,得到函数 $y = \sin 2x$ 的图像:
- ③ 横坐标伸长 2 倍,得到函数 $y = \sin x$ 的图像.
- 23【分析】(1)利用三角函数的倍角公式以及辅助 角公式将函数进行化简即可求最小正周期和对 称轴方程;
- (2) 求出函数 f(x) 在 $x \in \left[0, \frac{\pi}{2}\right]$ 的取值情况,利用数形结合即可得到结论.

【解答】解: (1) 由
$$f(x) = 2\sin^2\left(\frac{\pi}{4} + x\right) + \sqrt{3}\cos 2x = 1 - \cos\left(\frac{\pi}{2} + 2x\right) + \sqrt{3}\cos 2x = 1 + \sin 2x + \sqrt{3}\cos 2x = 1 + 2\sin\left(\frac{\pi}{3} + 2x\right),$$

$$:: \omega = 2, :: 函数 f(x) 的最小正周期为 \pi.$$
由 $2x + \frac{\pi}{3} = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$ 得: $x = \frac{\pi}{12} + \frac{1}{2}k\pi, k \in \mathbb{Z}$, 故函数 $f(x)$ 的对称轴方程为: $x = \frac{\pi}{12} + \frac{1}{2}k\pi, k \in \mathbb{Z}$.
(2) 由 $f(x) - m = 2$ 得 $f(x) = m + 2$,

$$\stackrel{\text{"}}{=} x \in \left[0, \frac{\pi}{2}\right]$$
时, $2x + \frac{\pi}{3} \in$

$$\left[\frac{\pi}{3}, \frac{4\pi}{3}\right]$$

由图象得 $f(0) = 1 + 2\sin\frac{\pi}{3} = 1 + \sqrt{3}$, 函数 f(x) 的最大值为 1 + 2 = 3,

:. 要使方程 f(x) - m = 2 在 $x \in \left[0, \frac{\pi}{2}\right]$ 上有两个 不同的解,则 f(x) = m + 2 在 $x \in \left[0, \frac{\pi}{2}\right]$ 上有两 个不同的解,

即函数 f(x) 和 y = m + 2 在 $x \in \left[0, \frac{\pi}{2}\right]$ 上有两个 不同的交点,

 $\mathbb{P} 1 + \sqrt{3} \le m + 2 < 3,$

III $\sqrt{3} - 1 \le m < 1$.

24 解:
$$(1)f(x) = a \cdot b + \frac{1}{4} = -\frac{1}{2} + \sin x \cdot \cos\left(x - \frac{\pi}{6}\right) + \frac{1}{4} = \sin x \cdot \left(\cos x \cos \frac{\pi}{6} + \sin x \sin \frac{\pi}{6}\right) - \cos\left(x - \frac{\pi}{6}\right) + \sin x \cdot \sin \frac{\pi}{6}$$

:. 函数 f(x) 的单调递减区间为 $\left[\frac{\pi}{3} + k\pi, \frac{5\pi}{6} + k\pi\right]$,

(2): 函数 $g(x) = f(x) - m, \left(\frac{\pi}{3} \le x \le \frac{13\pi}{12}\right)$ 有两个 不同的零点 x_1, x_2 , : 函数 y = f(x) 的图像与函数 y = m 的图像在 $\left[\frac{\pi}{3}, \frac{13\pi}{12}\right]$ 上有两个交点.

25 解:

26 (1)
$$f(x) = 2\sin\left(x - \frac{\pi}{3}\right) + 1$$
; (2)(i)[$\sqrt{3} + 1, 3$);(ii) 易得 $f(x)$ 在 $\left[-\frac{\pi}{6}, \frac{5\pi}{6}\right]$ 上单调递增,故 $f(x)$ 在 $\left[0, 1\right]$ 上单调递增;又 $0 < \frac{\pi}{2} - \beta < \alpha < \frac{\pi}{2}$,从而 $\sin \alpha > \sin(\frac{\pi}{2} - \beta) = \cos \beta$,于是 $f(\sin \alpha) > f(\cos \beta)$