

1 Verhalten für kleine bzw. große x-Werte

Haben wir eine Funktion

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

gegeben und möchten für diese das Verhalten für kleine bzw. große x-Werte beschreiben, so betrachten wir den charakteristischen Term $\mathbf{a_n}\mathbf{x^n}$. Für das Verhalten gilt folgendes

a_n	gerade	ungerade
positiv	$f(x) \xrightarrow{x \to -\infty} \infty$ $f(x) \xrightarrow{x \to \infty} \infty$	$f(x) \xrightarrow{x \to -\infty} -\infty$ $f(x) \xrightarrow{x \to \infty} \infty$
negativ	$f(x) \xrightarrow{x \to -\infty} -\infty$ $f(x) \xrightarrow{x \to \infty} -\infty$	$f(x) \xrightarrow{x \to -\infty} \infty$ $f(x) \xrightarrow{x \to \infty} -\infty$

2 Rechnerisch die Nullstellen (NST) bestimmen

Abhängig von der gegebenen Funktion haben wir verschiedene Möglichkeiten die NST dieser zu bestimmen.

- $a_1x+a_0 \Rightarrow$ Null setzen und nach x umformen $\left(a_1x+a_0=0 \Rightarrow x=\frac{a_0}{a_1}\right)$
- $a_2x^2 + a_1x + a_0 \Rightarrow$ Anwenden der pq-Formel **Beachte:** a_2 muss den Wert 1 haben (also muss gegebenenfalls : a_2 gerechnet werden).
- $a_2x^2+a_0\Rightarrow$ Null setzen und nach x umformen $(a_2x^2+a_0=0\Rightarrow x=\sqrt{\frac{a_0}{a_2}})$
- Funktionen mit Grad 3 und Höher \Rightarrow NST ausprobieren (meist -2, -1, 0, 1, 2); Dann mit Polynomdivision den Grad reduzieren $(a_n x^n + \ldots + a_1 x + a_0) : (x NST) = p(x)$ NST des Ergebnisses p(x) bestimmen
- Weitere Möglichkeit: Durch Substitution $2x^4 10x^2 + 8 \xrightarrow{z:=x^2} 2z^2 10z + 8$

Hat man hiervon die NST bestimmt, muss Rücksubstituiert werden (also $x^2=NST\Rightarrow x=\pm\sqrt{NST}$)

3 Zuordnen bzw. Skizzieren des Graphen der Ableitungsfunktion

Haben wir den Funktionsgraphen der Funktion f(x) gegeben und möchten den Graph der Ableitungsfunktion zeichnen, gehen wir wie folgt vor:

- Markiere die x-Werte der Hoch- bzw. Tiefpunkte auf der x-Achse
- Betrachte die Steigung des Funktionsgraphen links / zwischen / rechts von den markierten x-Werten
 - Steigung positiv \Rightarrow markiere oberhalb der x-Achse
 - Steigung negativ \Rightarrow markiere unterhalb der x-Achse
- Skizziere den Graph der Ableitung entsprechend der Markierungen (oberhalb / unterhalb). Der Graph muss dabei durch die markierten x-Werte gehen.

Um den Ableitungsgraphen zuzuordnen, können wir ähnlich vorgehen. ⇒ Suche den Graphen der Ableitungsfunktion, der an den Hoch- bzw. Tiefpunkten des Funktionsgraphen die x-Achse schneidet (also eine NST besitzt).

4 Extremwerte rechnerisch bestimmen

Extremstellen einer Funktion sind eben solche Stellen, an denen die Steigung m des Funktionsgraphen von f(x) 0 ist. Dies ist genau dann der

Fall, wenn die Ableitungsfunktion f'(x) den Wert 0 annimmt. Also wenn gilt: $\mathbf{f}'(\mathbf{x}) = \mathbf{0}$ Wir gehen also wie folgt vor, um die Extrempunkte zu bestimmen:

- ullet Bestimme zunächst die Ableitungsfunktion f'(x)
- \bullet Berechne die Nullstellen (NST) der Ableitungsfunktion f'(x)
- Ermittle die Koordinaten der berechneten Extremstellen. Dafür setze die x-Koordinate der NST in die Ausgangsfunktion ein (f(NST)).