Classification: Clustering

Unsupervised Algorithm:

Classification: Clustering 1

K-Means Algorithm for Clustering

K-Means is an unsupervised machine learning Algorithm used for clustering.

It partitions a dataset into K clusters based on Similarity.

Clusters are formed by minimizing the sum of squared distances between data points and the centroid of their assigned cluster.

Example of Implementation of K-Means.

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Step 1: Choose K initial centroids (points representing cluster centers)

Randomly we choose fallowing two centraids (K=2) for two clusters.

In this case the 2 centroids are: m1 = (1.0, 1.0) and m2 = (5.0, 7.0)

Step 2: Assign each data point to the nearest centroid, forming K clusters. For this we have to find the distance of each data point by voing formulas like Euclidean or Manhattan.

Euclidean =
$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

Distance
Manhattan = $|x_1-x_2|+|y_1-y_2|$
Distance

Individual	Variable 1	Variable 2	Centroid 1	Centroid 2
1	1.0	1.0	0	7.21
2	1.5	2.0	1.12	6.10
3	3.0	4.0	3.61	3.6
4	5.0	7.0	7.21	0
5	3.5	5.0	4.72	2.5
6	4.5	5.0	2.31	2.06
7	3.5	4.5	4.30	2.92

Thus, we obtain two clusters containing: $\{1,2,3\}$ and $\{4,5,6,7\}$

Step3: Recalculate the centroids as the mean of all points in the cluster.

$$m_1$$
, $(\frac{1}{3}(1.0+1.5+3.0), \frac{1}{3}(1.0+2.0+4.0))$
 $= (1.83, 2.33)$
 m_2 , $(\frac{1}{4}(5.0+3.5+4.5+3.5), \frac{1}{4}(7.0+5.0+4.5))$
 $= (4.12, 5.38)$

Step 4: Repeat until there is no change in the cluster.

Individual	Variable 1	Variable 2		
1	1.0	1.0	1.57	7.21
2	1.5	2.0	0.47	6.10
3	3.0	4.0	2.04	1.78
4	5.0	7.0	5.64	1.84
5	3.5	5.0	3.15	0.73
6	4.5	5.0	3.78	0.54
7	3.5	4.5	2.74	80.1

New Clusters: {1,23 and {3,4,5,6,7}

Next Centroids: m1 = (1.25,1.5) & m2 = (3.9,5.1)

Individual	Variable 1	Variable 2	Centroid 1	Centroid 2
1	1.0	1.0	0.58	5.02
\bar{z}	1.5	2.0	0.58	3.92
3	3.0	4.0 7.0	3.05 6.66	2.20
4	5.0	5.0	4.18	0.41
5 6	3.5 4.5	5.0	4.78	0.61
Ť	3.5	4.5	3.75	0.72

Hence, there is no change in clusters.

The final 2 clusters are

{1,2} and {3,4,5,6,7}

Note: In case of K-medians Algorithm, we just take median instead of mean for finding new centroids.

<u>Plot</u>

Supervised Algorithm:

K-Nearest Neighbors Algorithm (K-NN):

Example: Predicting Movie Grenne

MDb Rating	Duration	Gienre
8.0 (Mission Impossible)	160	Action
6.2 (Gradar 2)	170	Action
7.2 (Rocky & Rani)	160	Comedy
8.2 (OMG 2)	155	Comedy

Now predict the genre of "Barbie" movie with IMDb rating 7.4 and duration 144.

Step 1: Calculate Distances:

Calculate the Euclidean distance between the new movie and each movie in data set.

Distance to (8.0, 160) = 1(7.4-8.0)2 + (114-160)2 = 46.00

Distance to (6.2, 160), 56.01

Distance to (7.2,168) > 54.00

Distance to (8.2,155), 41.00

Step 2: Select Nearest Neighbors:

Let, K=3 K={41.00, 46.00, 54.00}

Step 3: Majority Voting (Classification):

{Action, Comedy, Comedy} So the genre is Comedy of "Borbie" movie.