Leo W. Gordon

□+1 917-742-7804 | ■ leowilliamgordon@gmail.com | ♠ leowgordon.github.io | 面 www.linkedin.com/in/leo-gordon

Education

The City College of New York

PHD - CHEMICAL ENGINEERING

MPHIL - CHEMICAL ENGINEERING

New York, NY 2018-2023

University of Edinburgh

MCHEM - CHEMISTRY

Edinburgh, U.K. 2012-2017

Research Experience

University of California, Santa Barbara - Materials Department

ADVISOR: PROF. RAPHAËLE J. CLÉMENT

Santa Barbara, CA 2023 - Present

- Determination of ionic diffusion through polymeric materials by applications of pulsed-field gradient and electrophoretic NMR measurements
- Studying both partitioning behaviours and transport processes in multi-phasic systems using spatially-resolved NMR techniques
- Designing apparatus for *operando* NMR transport measurements in membranes
- Probing ion-ion and ion-solvent interactions via their coupled diffusion, as compared to equilibrium models of ion dissociation
- Mentoring and teaching graduate students and facilitating NMR and electrochemistry training

The City College of New York - Department of Chemical Engineering

ADVISOR: PROF. ROBERT J. MESSINGER

New York, NY 2018-2023

- Applying advanced solid-state NMR methodologies to establish ionic and electronic charge storage mechanisms in quinone electrodes for aluminum batteries
- NMR characterization of molten-salt electrolytes in liquid and heterogeneous samples to develop understanding of reaction processes following electrochemical cycling
- Quantum chemical calculations to determine thermochemical viability of ion generation pathways and quadrupolar NMR parameters of electroactive ions
- Evaluating reaction schemes via NMR to characterize the modification of LiPF₆ by P₂O₅ for long-life and low hysteresis lithium-metal batteries
- Investigating chalcogen electrodes for rechargeable aluminum batteries, studying the impacts of structure at different length-scales to the resultant reactions
- Understanding a novel non-intensive recycling process for lithium-ion battery cathodes by NMR analysis, in combination with complimentary techniques
- Mentoring undergraduate and graduate students, training in NMR, electrochemistry and other instrumentation

The City College of New York - Department of Chemical Engineering

ADVISOR: PROF. ELIZABETH BIDDINGER

New York, NY Summer 2018

• Performed preliminary work for surface-enhanced FTIR studies of reaction pathways in the electrochemical upgrading of bio-oils derived from otherwise wasted feedstocks to bio-fuels

University of Edinburgh - Department of Chemistry

Advisor: Dr. Dimitrios Kampouris

Investigated the design of microelectrode arrays, in particular the impact of reference electrode positioning producing stacked, one-dimensional microelectrode arrays of working electrodes and coupled reference electrodes. This work was performed in the clean-room environment of the Scottish Microelectronics Centre

Edinburgh, U.K. 2016-2017

Teaching Experience _

Spring 2022	Chemical Engineering Thermodynamics I, Teaching Assistant
Spring 2021	Chemical Engineering Thermodynamics I, Teaching Assistant
Fall 2020	Chemical Engineering Thermodynamics II, Teaching Assistant
Spring 2020	Chemical Engineering Thermodynamics I, Teaching Assistant

Awards & Fellowships _____

2024 **Heeger Travel Award**, Materials Research Laboratory, UCSB

Rising Stars of Materials Science & Engineering, Stanford University

2022 Travel Award, The Electrochemical Society

Twitter Conference Poster Award, Global NMR Discussions

Travel Award, Rocky Mountain Conference (RMC) on Magnetic Resonance **Travel Award**, Experimental Nuclear Magnetic Resonance Conference (ENC)

2020 **Grove School of Engineering Fellowship**, The City College of New York

2019 Acrivos Fellowship, The City College of New York

Outreach & Professional Development _____

SERVICE AND OUTREACH

2023-present Organizer, UCSB NMR Seminar Series

2024 Volunteer, MRL Outreach

Summer 2024 Entrepreneurial Lead, NSF I-CORPS

2021-2023 Treasurer, Electrochemical Society Student Chapter

2019-2020 Treasurer, Graduate Student Council, CCNY

PEER REVIEW

Polymer

ACS Sustainable Chemistry & Engineering Journal of Physical Chemistry

Publications & Patents _____

PUBLISHED

- [1] Harrison Y. Asare, Surabh S. KT, **Leo W. Gordon**, George John, and Robert J. Messinger. Effects of ion mass transport on electrochemical reaction pathways in aluminum-anthraquinone batteries. *Electrochimica Acta*, 507:145031, Dec 2024.
- [2] Jonah Wang, Theresa Schoetz, **Leo W. Gordon**, Elizabeth J. Biddinger, and Robert J. Messinger. Ternary ionic liquid analogues as electrolytes for ambient and low-temperature rechargeable aluminum batteries. *ACS Applied Energy Materials*, Jun 2024.
- [3] <u>Leo W. Gordon</u>, Rahul Jay, Ankur L. Jadhav, Snehal S. Bhalekar, and Robert J. Messinger. Elucidating Consequences of Selenium Crystallinity on Its Electrochemical Reduction in Aluminum–Selenium Batteries. *ACS Materials Letters*, pages 2577–2581, May 2024.
- [4] James T. Bamford, Seamus D. Jones, Nicole S. Schauser, Benjamin J. Pedretti, <u>Leo W. Gordon</u>, Nathaniel A. Lynd, Raphaële J. Clément, and Rachel A. Segalman. Improved Mechanical Strength without Sacrificing Li-Ion Transport in Polymer Electrolytes. *ACS Macro Letters*, pages 638–643, May 2024.

- [5] Theresa Schoetz, Loleth E. Robinson, **Leo W. Gordon**, Sarah A. Stariha, Celia E. Harris, Hui Li Seong, John-Paul Jones, Erik J. Brandon, and Robert J. Messinger. Elucidating the Role of Electrochemically Formed LiF in Discharge and Aging of Li-CF, Batteries. *ACS Applied Materials & Interfaces*, 16:18722–18733, Apr 2024.
- [6] Oi Man Leung, <u>Leo W. Gordon</u>, Robert J. Messinger, Themis Prodromakis, Julian A. Wharton, Carlos Ponce de León, and Theresa Schoetz. Solid Polymer Electrolytes with Enhanced Electrochemical Stability for High-Capacity Aluminum Batteries. *Advanced Energy Materials*, 2303285, Jan 2024.
- [7] Brendan E. Hawkins, Theresa Schoetz, **Leo W. Gordon**, Surabh KT, Jonah Wang, and Robert J. Messinger. Reversible Zinc Electrodeposition at –60 °C Using a Deep Eutectic Electrolyte for Low-Temperature Zinc Metal Batteries. *The Journal of Physical Chemistry Letters*, 14(9):2378–2386, Mar 2023.
- [8] **Leo W. Gordon**, Jonah Wang, and Robert J. Messinger. Revealing impacts of electrolyte speciation on ionic charge storage in aluminum-quinone batteries by NMR spectroscopy. *Journal of Magnetic Resonance*, 348:107374, Mar 2023.
- [9] Atanu Roy, Theresa Schoetz, **Leo W. Gordon**, Hung-Ju Yen, Qingli Hao, and Daniel Mandler. Formation of a CoMn-Layered Double Hydroxide/Graphite Supercapacitor by a Single Electrochemical Step. *ChemSusChem*, e202201418, Aug 2022.
- [10] **Leo W. Gordon**, Ankur L. Jadhav, Mikhail Miroshnikov, Theresa Schoetz, George John, and Robert J. Messinger. Molecular-Scale Elucidation of Ionic Charge Storage Mechanisms in Rechargeable Aluminum–Quinone Batteries. *The Journal of Physical Chemistry C*, 126:14082–14093, Aug 2022.
- [11] Jian Zhang, Jiayan Shi, Leo W. Gordon, Nastaran Shojarazavi, Xiaoyu Wen, Yifan Zhao, Jianjun Chen, Chi-Cheung Su, Robert J. Messinger, and Juchen Guo. Performance Leap of Lithium Metal Batteries in LiPF₆ Carbonate Electrolyte by a Phosphorus Pentoxide Acid Scavenger. ACS Applied Materials & Interfaces, 14:36679–36687, Aug 2022.
- [12] Rahul Jay, Ankur L. Jadhav, <u>Leo W. Gordon</u>, and Robert J. Messinger. Soluble Electrolyte-Coordinated Sulfide Species Revealed in Al-S Batteries by Nuclear Magnetic Resonance Spectroscopy. *Chemistry of Materials*, 34:4486–4495, May 2022.
- [13] T. Schoetz, **L.W. Gordon**, S. Ivanov, A. Bund, D. Mandler, and R.J. Messinger. Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems. *Electrochimica Acta*, 412:140072, Feb 2022.

In Review

- [1] N. Shojarazavi, **L.W. Gordon**, J. Zhang, Y. Fu, H. Pazooki, C. Hung, D. Jiang, J. Shi, R.J. Messinger, J. Guo. Aluminometallurgy for Lithium-Ion Battery Recycling.
- [2] T.R. Webber, D.P. Shannon, L.W. Gordon, O.A. Nordness, J.D. Moon, R.J. Clément, B.D. Freeman, R.A. Segalman, C.J. Hawker, S. Han. Solution-like Water Transport Across Molecular to Macroscopic Length Scales in Crosslinked Poly(ethylene glycol diacrylate) Networks with Tailored Sidechains.
- [3] S Kang, J. Kim, Y. Choi, S. Lee, J.-C. Badot, **L.W. Gordon**, E.N. Bassey, R.J. Clément, O.J. Borkiewicz, O. Dubrunfaut, Y.-M. Kang. Modulated interlayer structure of a sodium manganese oxide cathode exploiting the metastable phase transition route toward reversible cycling.
- [4] J.T. Bamford, <u>L.W. Gordon</u>, R.J. Clément, R.A. Segalman. Converting a Metal-Coordinating Polymer to a Polymerized Ionic Liquid Improves Li⁺ Transport.
- [5] R. Sujanani, P.H. Nguyen, <u>L.W. Gordon</u>, A. Zele, J.T. Bamford, B.J. Pedretti, N.A. Lynd, N. Marioni, V. Ganesan, R.J. Clément, and R.A. Segalman. The Influence of Water Sorption on Ionic Conductivity in Polyether Electrolytes at Low Hydration.
- [6] N. Shojarazavi, **L.W. Gordon**, H. Pazooki, R.J. Messinger, J. Guo. Aqueous methods to recover and purify metals from lithium-ion batteries treated with chloroaluminum reagents. [Patent, *Disclosure Filed*.]

Presentations .	

CONFERENCE PRESENTATIONS

American Institute for Chemical Engineers Annual Meeting

"Application of Advanced Magnetic Resonance Methodologies to Elucidate Charge Storage Mechanisms and Ion Interactions for Energy Storage Systems and Beyond," 27-31 October 2024, San Diego, CA.

Southern California Users of Magnets Conference

"Spatially-Resolved NMR Methods for Investigating Partitioning Behavior," 26 October 2024, Los Angeles, CA.

Experimental Nuclear Magnetic Resonance Conference

"Spatially-Resolved NMR Methods for Determination of Solute Partitioning," 7-11 April 2024, Asilomar, CA.

Experimental Nuclear Magnetic Resonance Conference

"Impacts of Electrolyte Speciation on Ion Binding Environments in Aluminum-Quinone Batteries Elucidated by Dipolar-Mediated and Multiple-Quantum Solid-State NMR Methods," 16-20 April 2023, *Asilomar, CA*.

Battery & Energy Storage Conference

"Impacts of Electrolyte Speciation on Aluminum-Organic Battery Charge Storage," 26-28 October 2022, New York, NY.

Electrochemical Society Meeting

"Understanding Improved Lifetimes of Lithium-Metal Batteries LiPF₆ Carbonate Electrolyte Modified by Phosphorus Pentoxide." 9-13 October 2022, *Atlanta, GA*.

Global NMR Twitter Conference

"Electrochemical Complexation of Polyatomic Aluminum Ions to Heterogeneous Organic Electrode Samples Investigated Using Solid-State Dipolar-Mediated NMR Methods," 3-5 August 2022, Virtual.

Rocky Mountain Conference on Magnetic Resonance

"Electrochemical Complexation of Polyatomic Aluminum Ions to Heterogeneous Organic Electrode Samples Investigated Using Solid-State Dipolar-Mediated NMR Methods," 25-29 July 2022, Copper Mountain, CO.

Experimental Nuclear Magnetic Resonance Conference

"Molecular Structures of Reaction Products in LiPF₆ Carbonate Electrolyte with a Phosphorous Pentoxide Scavenger for Rechargeable Lithium Metal Batteries," 24-29 April 2022, Orlando, FL.

American Institute for Chemical Engineers Annual Meeting

"Charge Storage Mechanisms of Quinone- & Flavin-Type Organic Electrodes for Rechargeable Aluminum Batteries Elucidated with Molecular-level Specificity," 7-12 November 2021, Boston, MA.

Electrochemical Society Meeting

"Electrochemical Complexation of Polyatomic Aluminum Cations in Quinone-type Organic Battery Electrodes Revealed by Solid-state NMR," 10-14 October 2021, *Virtual*.

Experimental Nuclear Magnetic Resonance Conference

"Molecular-level Insights into the Charge Storage Mechanisms of Rechargeable Aluminum-Indanthrone Quinone Batteries Revealed by Solid-state NMR Spectroscopy," 29-31 March 2021, Virtual.

Battery & Energy Storage Conference

"Molecular-level Investigation into the Charge-storage Mechanisms of Rechargeable Aluminum-organic Batteries," 21-23 October 2020, Virtual.

Electrochemical Society Meeting

"Molecular-Scale Understanding of Charge Storage Mechanisms in Organic Positive Electrode Materials for Recharge-able Aluminum Batteries," 4-9 October 2020, Virtual.

Battery & Energy Storage Conference

"Rechargeable Aluminum Batteries Using Organic Cathode Materials with High Cycle Life and Capacity," 21-22 October 2019, New York, NY.