TIME SERIES FORECASTING PROJECT

For this particular assignment, the data of different types of wine sales in the 20th century is to be analyzed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyze and forecast Wine Sales in the 20th century.

ROSE.CSV

Read the data as an appropriate Time Series data and plot the data.
 Time Series is a sequence of observations recorded at regular time intervals.

YearMonth Rose

Time_Stamp		
1980-01-31	1980-01	112.0
1980-02-29	1980-02	118.0
1980-03-31	1980-03	129.0
1980-04-30	1980-04	99.0
1980-05-31	1980-05	116.0
Ye	arMonth R	ose

Time_Stamp		
1995-03-31	1995-03	45.0
1995-04-30	1995-04	52.0
1995-05-31	1995-05	28.0
1995-06-30	1995-06	40.0
1995-07-31	1995-07	62.0

Given data is not time. So we parse the date range and create a timestamp. We also notice the fluctuations in the trend in the initial years and slowly decreasing the following years.

- Data consist of 187 data points
- It seems to be contain seasonality

2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

There is a huge increase in 1981 and slowly decrease in the rose data. After that, there is a rise and fall equally. Seasonality is seen from the stable fluctuations repeating over the data.

- To understand the spread of the data, we use plotting.
- Boxplot helps to check the outliers in each year and month.

- We can clearly see some of the outliers in the plot.
- Monthly plot
- The box plot for various months is plotted
- Monthly plot contains outliers in the month of June, July, August, September and December.

Plot for different months and different years

Time_Stamp	April	August	December	February	January	July	June	March	May	November	October	September
Time_Stamp												
1980	99.0	129.0	267.0	118.0	112.0	118.0	168.0	129.0	116.0	150.0	147.0	205.0
1981	97.0	214.0	226.0	129.0	126.0	222.0	127.0	124.0	102.0	154.0	141.0	118.0
1982	97.0	117.0	169.0	77.0	89.0	117.0	121.0	82.0	127.0	134.0	112.0	106.0
1983	85.0	124.0	164.0	108.0	75.0	109.0	108.0	115.0	101.0	135.0	95.0	105.0
1984	87.0	142.0	159.0	85.0	88.0	87.0	87.0	112.0	91.0	139.0	108.0	95.0
1985	93.0	103.0	129.0	82.0	61.0	87.0	75.0	124.0	108.0	123.0	108.0	90.0
1986	71.0	118.0	141.0	65.0	57.0	110.0	67.0	67.0	76.0	107.0	85.0	99.0
1987	86.0	73.0	157.0	65.0	58.0	87.0	74.0	70.0	93.0	96.0	100.0	101.0
1988	66.0	77.0	135.0	115.0	63.0	79.0	83.0	70.0	67.0	100.0	116.0	102.0
1989	74.0	74.0	137.0	60.0	71.0	86.0	91.0	89.0	73.0	109.0	87.0	87.0
1990	77.0	70.0	132.0	69.0	43.0	78.0	76.0	73.0	69.0	110.0	65.0	83.0
1991	65.0	55.0	106.0	55.0	54.0	96.0	65.0	66.0	60.0	74.0	63.0	71.0
1992	53.0	52.0	91.0	47.0	34.0	67.0	55.0	56.0	53.0	58.0	51.0	46.0
1993	45.0	54.0	77.0	40.0	33.0	57.0	55.0	46.0	41.0	48.0	52.0	46.0
1994	48.0	NaN	84.0	35.0	30.0	NaN	45.0	42.0	44.0	63.0	51.0	46.0
1995	52.0	NaN	NaN	39.0	30.0	62.0	40.0	45.0	28.0	NaN	NaN	NaN

• December records have the high number of rose wine sales

- May, January have low number of wine sales.
- Yearly Plot aggregate the time series from an annual perspective and summing up the observations

- The plot shows that in 1982 there is a fall in the wine sales and there is a steep downfall is observed.
- Quarterly plot aggregate the time series from a quarterly perspective and sum the observations of each quarter.

- High rise is found in 1988
- Daily plot –aggregate the data from a daily perspective
- Resampling can also be used for better overview

185.000000 count <class 'pandas.core.frame.DataFrame'> mean 90.394595 DatetimeIndex: 187 entries, 1980-01-31 to 1995-07-31 39.175344 std Data columns (total 2 columns): Non-Null Count Column Dtype min 28.000000 25% 63.000000 object 0 YearMonth 187 non-null 50% 86.000000 float64 185 non-null dtypes: float64(1), object(1) 75% 112.000000 memory usage: 4.4+ KB 267.000000 max

Rose

• From the decomposition, there is seasonality in the data.

3. Split the data into training and test. The test data should start in 1991.

- The test data starts from 1991
- It is difficult to predict the future if the past is not happened. From the above split, we are predicting similar to the past data.
- 4. Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression,naïve forecast models, simple average models etc. should also be built on the training data and check the performance on the test data using RMSE.

Model1: Linear Regression

- Regress the "Rose" variable against the order of occurrence.
- Modifying the training set
- Generate the numerical instance order for both training and test set
- Printing the head and tail of test and train data

First few r	ows of Rose	Training Dat	ta	First few r	ows of Rose		é
Time Stamp				Time Stamp			
1980-01-31	112.0	1		1990-11-30	110.0	43	
1980-02-29	118.0	2		1990-12-31	132.0	44	
1980-03-31	129.0	3		1991-01-31	54.0	45	
1980-04-30	99.0	4		1991-02-28	55.0	46	
1980-05-31	116.0	5		1991-03-31	66.0	47	
Last few ro	ws of T Rose	raining Data time	а	Last few ro	ws of T Rose	est Data time	
Time_Stamp				Time_Stamp			
1990-06-30	76.0	126		1995-03-31	45.0	95	
1990-07-31	78.0	127		1995-04-30	52.0	96	
1990-08-31	70.0	128		1995-05-31	28.0	97	
1990-09-30	83.0	129		1995-06-30	40.0	98	
1990-10-31	65.0	130		1995-07-31	62.0	99	

Linear Regression is built on the training and test dataset

1992-12-31	91.000000	68	103.369335
1993-01-31	33.000000	69	102.840145
1993-02-28	40.000000	70	102.310956
1993-03-31	46.000000	71	101.781767
1993-04-30	45.000000	72	101.252578
1993-05-31	41.000000	73	100.723388
1993-06-30	55.000000	74	100.194199

- Defining the accuracy metrics
- Evaluating the model

For RegressionOnTime forecast on the Test Data, RMSE is 48.754

Test RMSE

RegressionOnTime 48.754146

Model2 - Naïve model

We say that the prediction for tomorrow is the same as today and the prediction for day after tomorrow is tomorrow

129

```
Time_Stamp
1990-11-30 65.0
1990-12-31 65.0
1991-01-31 65.0
1991-02-28 65.0
1991-03-31 65.0
Name: naive, dtype: float64
```


For RegressionOnTime forecast on the Test Data, RMSE is 21.767

Test	RMSE
------	------

RegressionOnTime 48.754146
NaiveModel 21.766930

Model3 – Simple Average – Forecast using the average of training values

Rose mean_forecast

Time_Stamp		
1990-11-30	110.0	104.692308
1990-12-31	132.0	104.692308
1991-01-31	54.0	104.692308
1991-02-28	55.0	104.692308
1991-03-31	66.0	104.692308

For Simple Average forecast on the Test Data, RMSE is 52.412

Test RMSE

RegressionOnTime	48.754146
NaiveModel	21.766930
SimpleAverageModel	52.412093

Model4- Moving Average – Calculating the rolling means (or moving averages) for different intervals. The best interval can be determined by the maximum accuracy (or the minimum error) over here.

Rose	Trailing_2	Trailing_4	Trailing_6	Trailing_9
------	------------	------------	------------	------------

Time_Stamp					
1980-01-31	112.0	NaN	NaN	NaN	NaN
1980-02-29	118.0	115.0	NaN	NaN	NaN
1980-03-31	129.0	123.5	NaN	NaN	NaN
1980-04-30	99.0	114.0	114.5	NaN	NaN
1980-05-31	116.0	107.5	115.5	NaN	NaN

```
For 2 point Moving Average Model forecast on the Training Data, RMSE is 11.801 For 4 point Moving Average Model forecast on the Training Data, RMSE is 15.367 For 6 point Moving Average Model forecast on the Training Data, RMSE is 15.862 For 9 point Moving Average Model forecast on the Training Data, RMSE is 16.342
```


Let us split the data into train and test and plot this Time Series. The window of the moving average is need to be carefully selected as too big a window will result in not having any test set as the whole series might get averaged over.

Test RMSE

RegressionOnTime	48.754146
NaiveModel	21.766930
SimpleAverageModel	52.412093
2pointTrailingMovingAverage	11.801043
4pointTrailingMovingAverage	15.367212
6pointTrailingMovingAverage	15.862350
9pointTrailingMovingAverage	16.341919

Before we go on to build the various Exponential Smoothing models, let us plot all the models and compare the Time Series plots

Model -5- Exponential Smoothing

Rose	predict
11036	

Time_Stamp							
1990-11-30	110.0	78.89952					
1990-12-31	132.0	78.89952					
1991-01-31	54.0	78.89952					
1991-02-28	55.0	78.89952					
1991-03-31	66.0	78.89952					

	Test RMSE
RegressionOnTime	48.754146
NaiveModel	21.766930
SimpleAverageModel	52.412093
2pointTrailingMovingAverage	11.801043
4pointTrailingMovingAverage	15.367212
6pointTrailingMovingAverage	15.862350
9pointTrailingMovingAverage	16.341919
Alpha=0.995, SimpleExponential Smoothing	30.188322

Setting different alpha values. Higher the alpha, the more weightage is given to more recent observation.

Rose auto_predict

Time_Stamp		
1990-11-30	110.0	89.115658
1990-12-31	132.0	122.254704
1991-01-31	54.0	54.549530
1991-02-28	55.0	61.040149
1991-03-31	66.0	66.100106

For Alpha=0.676,Beta=0.088,Gamma=0.323, Triple Exponential Smoothing Model forecast on the Test Data, RMSE is 12.666

	Test RMSE
RegressionOnTime	48.754146
NaiveModel	21.766930
SimpleAverageModel	52.412093
2pointTrailingMovingAverage	11.801043
4pointTrailingMovingAverage	15.367212
6pointTrailingMovingAverage	15.862350
9pointTrailingMovingAverage	16.341919
Alpha=0.995,SimpleExponentialSmoothing	30.188322
Alpha = 0.676, Beta = 0.088, Gamma = 0.323, Triple Exponential Smoothing	12.666350

	Test RMSE
2pointTrailingMovingAverage	11.801043
Alpha = 0.676, Beta = 0.088, Gamma = 0.323, Triple Exponential Smoothing	12.666350
4pointTrailingMovingAverage	15.367212
6pointTrailingMovingAverage	15.862350
9pointTrailingMovingAverage	16.341919
NaiveModel	21.766930
Alpha=0.995,SimpleExponentialSmoothing	30.188322
RegressionOnTime	48.754146
SimpleAverageModel	52.412093

	lower_CI	prediction	upper_ci
1995-08-31	8.740506	50.719439	92.698373
1995-09-30	8.148766	50.127699	92.106633
1995-10-31	14.391781	56.370714	98.349648
1995-11-30	24.477306	66.456239	108.435173
1995-12-31	53.865719	95.844653	137.823586

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

Results of Dickey-Fuller Test:	
Test Statistic	-1.876699
p-value	0.343101
#Lags Used	13.000000
Number of Observations Used	173.000000
Critical Value (1%)	-3.468726
Critical Value (5%)	-2.878396
Critical Value (10%)	-2.575756
dtyne: float64	

Results of Dickey-Fuller Test:

Test Statistic -8.044392e+00
p-value 1.810895e-12
#Lags Used 1.200000e+01
Number of Observations Used 1.730000e+02
Critical Value (1%) -3.468726e+00
Critical Value (5%) -2.878396e+00
Critical Value (10%) -2.575756e+00

 When the time series data is not stationary we need to convert it into stationary before applying models.

dtype: float64

- We use Augmented Dickey fuller test.
- It determines how strongly a time series is defined by the trend.
- From the null and alternate hypothesis, we define time series data is stationary or not.
- We see that 5% significant level the time series is non-stationarity
- P value >0.05 Failed to reject null hypothesis Stationary
- Let us take a difference of order 1 and check whether the Time Series is stationary or not
- At α = 0.05 the Time Series is indeed stationary.
- 6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.
- 7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

• From the above plot, we see seasonality in the data.

		param	AIC
	2	(0, 1, 2)	1254.786678
	5	(1, 1, 2)	1255.270908
ARIMA(0, 1, 0) - AIC:1315.1645929217334	4	(1, 1, 1)	1255.604615
ARIMA(0, 1, 1) - AIC:1258.039048575531 ARIMA(0, 1, 2) - AIC:1254.786677530965	7	(2, 1, 1)	1256.862595
ARIMA(1, 1, 0) - AIC:1299.0560243200116	8	(2, 1, 2)	1257.240183
ARIMA(1, 1, 1) - AIC:1255.6046151581302	1	(0, 1, 1)	1258.039049
ARIMA(1, 1, 2) - AIC:1255.2709084666585 ARIMA(2, 1, 0) - AIC:1280.0806971753402	6	(2, 1, 0)	1280.080697
ARIMA(2, 1, 1) - AIC:1256.862594546858	3	(1, 1, 0)	1299.056024
ARIMA(2, 1, 2) - AIC:1257.2401826353614	0	(0, 1, 0)	1315.164593

- If we have seasonality, then we should go for SARIMA model.
- We are building ARIMA model by looking at minimum AIC values and ACF and PACF plots.
- Sorting the AIC values to see the lower AIC value.

ļ	4	R	1	M	А		M	0	d	e	Τ		R	e	S	u	Т	t	S
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

==========									
Dep. Variable:		D.Rose	No. Obse	No. Observations:					
Model:	AR	IMA(2, 1, 1)	Log Like	Log Likelihood					
Method:		css-mle	S.D. of	innovations		29.839			
Date:	Fri,	02 Jul 2021	AIC			1256.863			
Time:	_	06:31:10	BIC			1271.162			
Sample:		02-29-1980	HQIC			1262.673			
•		- 10-31-1990	-						
==========		========	========			========			
	coef	std err	z	P> z	[0.025	0.975]			
const	-0.5291	0.079	-6.673	0.000	-0.685	-0.374			
ar.L1.D.Rose	0.1971	0.088	2.240	0.027	0.025	0.369			
ar.L2.D.Rose	-0.0758	0.088	-0.863	0.390	-0.248	0.096			
ma.L1.D.Rose	-1.0000	0.032	-31.129	0.000	-1.063	-0.937			
		Re	oots						
==========									
	Real	Imagi	nary	Modulus	F	requency			
AR.1	1.2999	-3.39	_	3.6319		-0.1917			
AR.2	1.2999	+3.39	9 14 j	3.6319		0.1917			
MA.1	1.0000	+0.00	000j	1.0000		0.0000			

RMSE

ARIMA(2,1,1) 17.436875

- Again we plot ACF to see and understand the seasonal parameter of SARIMA model.
- First iteration by setting 6 as the seasonality
- We sort the AIC values to see the lowest of all vales.
- Next predicting the data using the SARIMA model and evaluating the model.
- We get the summary of the data

```
SARIMA(2, 1, 1)x(2, 0, 2, 6) - AIC:1034.1310578958723
Examples of some parameter combinations for Model. SARIMA(2, 1, 2)x(0, 0, 0, 0, 6) - AIC:1233.5045954992431
Model: (0, 1, 1)(0, 0, 1, 6)
                                                    SARIMA(2, 1, 2)x(0, 0, 1, 6) - AIC:1165.708439811226
                                                    SARIMA(2, 1, 2)x(0, 0, 2, 6) - AIC:1065.2709643814117
Model: (0, 1, 2)(0, 0, 2, 6)
                                                    SARIMA(2, 1, 2)x(1, 0, 0, 6) - AIC:1179.9266583946824
Model: (1, 1, 0)(1, 0, 0, 6)
Model: (1, 1, 1)(1, 0, 1, 6)
                                                    SARIMA(2, 1, 2)x(1, 0, 1, 6) - AIC:1128.9638001128374
                                                    SARIMA(2, 1, 2)x(1, 0, 2, 6) - AIC:1043.9776059292521
Model: (1, 1, 2)(1, 0, 2, 6)
                                                    SARIMA(2, 1, 2)x(2, 0, 0, 6) - AIC:1056.3458634986323
Model: (2, 1, 0)(2, 0, 0, 6)
                                                   SARIMA(2, 1, 2)x(2, 0, 1, 6) - AIC:1051.9522744457843
Model: (2, 1, 1)(2, 0, 1, 6)
                                                   SARIMA(2, 1, 2)x(2, 0, 2, 6) - AIC:1029.198822670194
Model: (2, 1, 2)(2, 0, 2, 6)
                                      AIC
       param seasonal
26 (0, 1, 2) (2, 0, 2, 6) 1025.823325
80 (2, 1, 2) (2, 0, 2, 6) 1029.198823
53 (1, 1, 2) (2, 0, 2, 6) 1031.313972
71 (2, 1, 1) (2, 0, 2, 6) 1034.131058
44 (1, 1, 1) (2, 0, 2, 6) 1034.920837
```

Statespace Model Results

========	.=======						
Dep. Variab	ole:			y No. (Observations:		130
Model:		MAX(0, 1, 2))x(2, 0, 2,	6) Log l	Likelihood		-505.912
Date:			i, 02 Jul 2				1025.823
Time:			06:32				1044.977
Sample:				0 HQIC			1033.597
			-	130			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ma.L1	-0.7887	652.856	-0.001	0.999	-1280.364	1278.786	
ma.L2	-0.2113	137.890	-0.002	0.999	-270.470	270.047	
ar.S.L6	-0.0636	0.038	-1.692	0.091	-0.137	0.010	
ar.S.L12	0.8373	0.042	20.141	0.000	0.756	0.919	
ma.S.L6	0.2034	652.867	0.000	1.000	-1279.393	1279.799	
ma.S.L12	-0.7966	520.014	-0.002	0.999	-1020.005	1018.412	
sigma2	345.1849	3.084	111.926	0.000	339.140	351.230	
Ljung-Box (========	24.55	Jarque-Bera			:=== .11
	(0):			Prob(JB):	a (JB):).00
Prob(Q):				Skew:).42
	sticity (H):			Kurtosis:			7.42 7.37
Prob(H) (tw	10-21aea):		0.01	Kurtosis:		/	.3/

У	mean	mean_se	mean_ci_lower	mean_ci_upper
0	85.176012	19.135821	47.670491	122.681532
1	109.402253	19.605757	70.975675	147.828831
2	66.211885	19.605759	27.785304	104.638466
3	67.805730	19.607598	29.375545	106.235915
4	75.481847	19.599286	37.067951	113.895742

RMSE

ARIMA(2,1,1) 17.436875 SARIMA(0,1,2)(2,0,2,6) 25.766527

- There is a huge gain in the RMSE value by including seasonal parameters
- Keeping 12 as seasonal parameter for second iteration

	param	seasonal	AIC
26	(0, 1, 2)	(2, 0, 2, 12)	871.075238
53	(1, 1, 2)	(2, 0, 2, 12)	873.003875
80	(2, 1, 2)	(2, 0, 2, 12)	874.213962
69	(2, 1, 1)	(2, 0, 0, 12)	879.792363
78	(2, 1, 2)	(2, 0, 0, 12)	880.763857

Statespace Model Results

Dep. Variabl	le:			y No	. Observations	5:	130
Model:	SARI	IMAX(1, 1,	2)x(2, 0, 2	, 12) Lo	g Likelihood		-428.502
Date:			Fri, 02 Jul	2021 AI	С		873.004
Time:			06:	35:13 BI	С		894.004
Sample:				0 HQ:	IC		881.507
				- 130			
Covariance 1	Гуре:			opg			
========	========						
	coef	std err	Z	P> z	[0.025	0.975]	
	0.1002	0.350	0.286	0.775	-0.587	0.787	
ma.L1	-0.9391	484.578	-0.002	0.998	-950.694	948.815	
ma.L2	-0.0609	29.580	-0.002	0.998	-58.036	57.915	
ar.S.L12	0.3490	0.077	4.534	0.000	0.198	0.500	
ar.S.L24	0.3067	0.073	4.193	0.000	0.163	0.450	
ma.S.L12	0.0506	0.133	0.379	0.705	-0.211	0.312	
ma.S.L24	-0.0896	0.146	-0.615	0.539	-0.375	0.196	
sigma2	250.4588	1.21e+05	0.002	0.998	-2.38e+05	2.38e+05	
Ljung-Box (0): 23.26 Jarque-Bera (JB): 2.89						2.89	
Prob(0):	۷):			Prob(JB):	ra (Jb):		0.24
107	:-: (u).						
Heteroskedas Prob(H) (two		•	0.88 0.70	Skew:			0.41
Prob(n) (two	o-sidea):		0.70	Kurtosis:			3.02

У	mean	mean_se	mean_ci_lower	mean_ci_upper
0	91.010006	15.904143	59.838457	122.181554
1	114.697036	16.134059	83.074861	146.319211
2	60.835502	16.138989	29.203665	92.467339
3	70.598439	16.139302	38.965988	102.230891
4	76.889513	16.139329	45.257010	108.522017

8. Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

RMSE

```
ARIMA(2,1,1) 17.436875

SARIMA(0,1,2)(2,0,2,6) 25.766527

SARIMA(1,1,2)(2,0,2,12) 25.420876
```

Prob(H) (two-sided):

- It is clear that SARIMA(0,1,2)(2,0,2,6) has the higher RMSE and ARIMA(2,1,1) has the lowest value.
- 9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Statespace Model Results _____ Rose No. Observations: Dep. Variable: Model: SARIMAX(0, 1, 2)x(2, 0, 2, 6) Log Likelihood -734.147 Fri, 02 Jul 2021 AIC Date: 1482.294 Time: 06:35:49 BIC 1504.286 Sample: 01-31-1980 HQIC 1491.218 - 07-31-1995 Covariance Type: opg ______ coef std err z P>|z| [0.025 _____ ma.L1 -0.7297 0.070 -10.350 0.000 -0.868 -0.592 ma.L2 -0.1899 0.066 -2.883 0.004 -0.319 ar.S.L6 -0.0496 0.029 -1.687 0.092 -0.107 ar.S.L12 0.8766 0.030 29.411 0.000 0.818 ma.S.L6 0.1746 0.235 0.744 0.457 -0.286 ma.S.L12 -0.7825 0.194 -4.033 0.000 -1.163 sigma2 283.5320 58.864 4.817 0.000 168.161 -0.061 0.008 0.935 0.635 -0.402 398.903 _____ 26.88 Jarque-Bera (JB): Ljung-Box (Q): 297.19 Prob(Q): 0.94 Prob(JB): 0.00 Heteroskedasticity (H): 0.17 Skew: 0.45

0.00 Kurtosis:

9.40

Rose	mean	mean_se	mean_ci_lower	mean_ci_upper
1995-08-31	51.906635	16.960539	18.664588	85.148681
1995-09-30	48.560882	17.562344	14.139321	82.982443
1995-10-31	51.876503	17.615197	17.351352	86.401654
1995-11-30	52.523982	17.667892	17.895550	87.152413
1995-12-31	70.922129	17.720430	36.190724	105.653533
1996-01-31	35.608491	17.772813	0.774418	70.442564
1996-02-29	36.103892	18.066583	0.694041	71.513744
1996-03-31	40.520377	18.159129	4.929139	76.111616
1996-04-30	40.337886	18.222257	4.622919	76.052853
1996-05-31	38.152511	18.285167	2.314243	73.990780
1996-06-30	38.640570	18.347861	2.679423	74.601718
1996-07-31	48.980236	18.410343	12.896628	85.063845

RMSE of the Full Model 28.050812588685464

10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

- To find the most optimum model, we run the model on the full data
- Correlogram, histogram, residual and quartiles are shown.
- We predict for the next 12 months for next years.
- We get forecast.
- RMSE of the full complete data is 28.05
- Plotting the forecast with the confidence band
- It is clear that SARIMA(0,1,2)(2,0,2,6) has the higher RMSE and ARIMA(2,1,1) has the lower value.