1. Winkelfunktionen im rechtwinkeligen Dreieck

1.1. Trage die richtigen Seitenlängen w, x, y, z, h in die Kästchen ein.

$$\sin(\alpha) = \frac{\left[\begin{array}{c} \\ \end{array}\right]}{\left[\begin{array}{c} \\ \end{array}\right]}$$

$$\sin(\beta) = \frac{1}{1 - 1}$$

$$\sin(\gamma) = \frac{1}{|\alpha|}$$

$$\sin(\delta) = \frac{1}{1 - \epsilon}$$

$$\cos(\alpha) = \frac{1}{1 - \alpha}$$

$$\cos(\beta) = \frac{1}{1-\alpha}$$

$$\cos(\gamma) = \frac{1}{1 - 1}$$

$$\cos(\delta) = \frac{1}{1 - \epsilon}$$

$$tan(\alpha) = \frac{}{}$$

$$\tan(\beta) = \frac{1}{1-2}$$

$$tan(\gamma) = \frac{1}{1-1-1}$$

$$\tan(\delta) = \frac{1}{1 - \epsilon}$$

MmF

1.2. Vom dargestellten Dreieck sind die Längen der Seiten x und y bekannt.

1) Stelle mithilfe von x und y eine Formel zur Berechnung des Winkels β auf.

$$\beta =$$

2) Berechne den Winkel β , wenn $x = 74 \,\mathrm{cm}$ und $y = 1.8 \,\mathrm{m}$ gilt.

MmF

1.3. Kreuze jeweils alle auf das gegebene Dreieck zutreffenden Aussagen an.

$$\Box \sin(\varphi) = \frac{x}{z} \qquad \Box \sin(\delta) = \frac{y}{z}$$

$$\Box \sin(\varphi) = \frac{y}{z} \qquad \Box \tan(\varphi) = \frac{x}{y}$$

$$\Box \cos(\delta) = \frac{x}{z} \qquad \Box \tan(\varphi) = \frac{y}{x}$$

$$\square \sin(\varphi) = \frac{y}{z} \qquad \square \tan(\varphi) = \frac{x}{y}$$

$$\Box \cos(\delta) = \frac{x}{z} \qquad \Box \tan(\varphi) = \frac{y}{x}$$

$$\Box \ a^2 + b^2 = c^2 \qquad \qquad \Box \ a^2 = b^2 + c^2$$

$$\Box \sin(\beta) = \cos(\gamma)$$
 $\Box \sin(\gamma) = \cos(\beta)$

$$\square \beta = 90^{\circ} - \gamma \qquad \qquad \square \left[\sin(\beta) \right]^{2} + \left[\cos(\gamma) \right]^{2} = 1$$

$$\Box A = \frac{a \cdot b}{2} \qquad \Box A = \frac{b \cdot c}{2}$$

MmF

1.4. Vom dargestellten Dreieck sind $a = 7 \,\mathrm{cm}$ und $b = 4 \,\mathrm{cm}$ bekannt.

Berechne die Längen c und h_c , die Winkel α und β und den Flächeninhalt A.

MmF

1.5. Vom dargestellten Dreieck sind $\alpha = 65^{\circ}$ und $h_c = 22 \,\mathrm{m}$ bekannt.

Berechne die Längen $a,\,b$ und c, den Winkel β und den Flächeninhalt A.

MmF

1.6. Berechne jeweils die fehlenden Seiten und Innenwinkel zu den Angaben des rechtwinkeligen Dreiecks.

- a) $p = 4.93 \,\mathrm{cm}, \, \beta = 70.3^{\circ}$
- **b)** $p = 28 \,\mathrm{cm}, \, q = 63 \,\mathrm{cm}$
- c) $a = 12.5 \,\mathrm{cm}, p = 4.4 \,\mathrm{cm}$
- **d)** $h = 9.1 \, \text{cm}, q = 6 \, \text{cm}$
- e) $a = 27.8 \,\mathrm{cm}, A = 373 \,\mathrm{cm}^2$
- f) $a:b=3:4, u=60 \,\mathrm{cm}$

MmF

1.7. Eine regelmäßige 8-seitige Pyramide hat ein regelmäßiges 8-Eck als Grundfläche. Der Fußpunkt F der Höhe ist der Mittelpunkt der Grundfläche.

Die dargestellte regelmäßige 8-seitige Pyramide hat die Basiskantenlänge $a=5\,\mathrm{cm}$ und die Höhe $h=42\,\mathrm{cm}.$

- 1) Berechne den Inhalt der Grundfläche.
- 2) Berechne das Volumen der Pyramide in Liter.
- 3) Berechne den Winkel β , unter dem die Seitenkanten zur Grundfläche geneigt sind.

1.12. Gegeben ist ein Dreieck mit Seitenlängen 13, 14 und 15.

- 1) Berechne die Winkel α , β und γ . Hinweis: Berechne zuerst die Höhe auf zwei Arten mit dem Satz von Pythagoras.
- 2) Berechne den Flächeninhalt des Dreiecks.

MmF

- 1.13. Für die Winkel 30° , 45° und 60° kannst du die Werte der Winkelfunktionen auch ohne Taschenrechner ermitteln. Dabei helfen die beiden rechts dargestellten Dreiecke.
- 1) Ermittle (ohne TR) die Winkel und Seitenlängen in den beiden Dreiecken.
- 2) Fülle die nachstehende Tabelle (ohne TR) aus.

Anmerkung: Die Ergebnisse dürfen $\sqrt{2}$ und $\sqrt{3}$ enthalten.

	$\alpha = 30^{\circ}$	$\alpha = 45^{\circ}$	$\alpha = 60^{\circ}$
$\sin(\alpha)$			
$\cos(\alpha)$			
$\tan(\alpha)$			

MmF

1.14. \bigstar In dieser Aufgabe ermittelst du $\sin(72^\circ)$ und $\cos(72^\circ)$ ohne Taschenrechner:

Das Dreieck $\triangle ABC$ ist gleichschenklig mit Schenkellänge 1 und Basiswinkel 72°. Links ist die Winkelsymmetrale AC' eingezeichnet.

- 1) Die Basis AB hat Länge x. Beschrifte die Strecken AC', CC' und BC' mit ihren Längen in Abhängigkeit von x.
- 2) Begründe, warum die Dreiecke $\triangle ABC$ und $\triangle ABC'$ ähnlich sind.
- 3) Zeige, dass $x = \frac{\sqrt{5} 1}{2}$ gilt.
- 4) Zeige, dass $\cos(72^{\circ}) = \frac{\sqrt{5}-1}{4}$ gilt.
- **5)** Zeige, dass $\sin(72^{\circ}) = \sqrt{\frac{\sqrt{5} + 5}{8}}$ gilt.

MmF

1.15. Von einem spitzen Winkel α weiß man, dass $\tan(\alpha) = 5/12$. Ermittle $\sin(\alpha)$ und $\cos(\alpha)$.

MmF