

4D SCENE RECONSTRUCTION

ARMIN MUSTAFA

Applications

Surveillance

Film

Existing methods - Static scenes

3

Structure from motion

3D reconstruction from single camera

Bundle Adjustment

Optimization of 3D structure and camera parameters

• 3D from unstructured photo collection

3D reconstruction from multiple images typically order of 1000.

Limitation: Narrow field of view. Fails for wide-baseline images

Existing methods - Dynamic scenes

4

- Visual-hull: Require a foreground segmentation of the object
- Photo-hull: Require distinct colour contrast between
 foreground and background limiting their use on natural scenes.
- Multiple-view stereo: Stereo matching requires either narrow
 baseline between camera views or prior initialisation
- Multiple view depth maps

Why it fails?

Depth map

Problems in existing methods

- Requires accurate segmentation of foreground objects
- Does not work for wide-baseline outdoor complex scenes
- Known background and structure
- High computational complexity

Problem statement

• Input:

- Uncalibrated multiple view scene acquisition from static (wide-baseline) or moving camera networks
- Challenging outdoor scenes:
 - × Handheld camera
 - ★ Large capture volume
 - Natural scene backgrounds
 - × Uncontrolled illumination
 - Dynamic fast scene motion
 - **Repetitive texture**

Problem statement

8

Complete scene reconstruction:

- Reconstruction of static and dynamic scene elements automatically
- Introduce temporal coherence to improve quality of the reconstruction and obtain 4D model

Schematic diagram of proposed dynamic scene reconstruction

- Sparse reconstruction the first frame of the scene
- Dense scene reconstruction using energy minimization
- Introducing sparse temporal matching between frames.
- Extending the sparse tracking to dense using optical flow to obtain final 4D scene reconstruction.

Contributions

- (10)
- Unsupervised temporally coherent dense reconstruction and segmentation of general dynamic scenes.
- A framework for space-time sparse-to-dense segmentation and reconstruction.
- Robust and computationally efficient reconstruction of dynamic scenes by exploiting temporal coherence.

Wide-baseline feature matching using Segmentation based features (SFD)

Problem: Existing feature detectors are very sparse

Requirement: Large number of points in less time

A. Mustafa, H. Kim, H. Imre, and A. Hilton. SFD: Segmentation based feature detector for wide-baseline reconstruction. 3DV, 2015. (Oral)

Wide-baseline feature matching using Segmentation based features (SFD)

Feature detection:

Odzemok segmented image

Feature examples

Initial complete scene reconstruction

Joint reconstruction and segmentation:

- Initial coarse reconstruction is refined using optimization based on graph cuts.
- The optimization is based on photoconsistency, smoothness, contrast and color information.

15

$$E(l,d) = \lambda_{data} E_{data}(d) + \lambda_{contrast} E_{contrast}(l) + \lambda_{smooth} E_{smooth}(l,d) + \lambda_{color} E_{color}(l)$$

where I is the label and d is the depth.

- •Error tolerant photo-consistency is combined with edge information to refine the depth.
- Color with contrast information combined with geodesic star-convexity is used to refine segmentation.

(16)

Geodesic star convexity:

$$E^{\star}(l|x,C) = \sum_{p \in R} \sum_{q \in \Gamma_{c,p}} E^{\star}_{p,q}(l_p, l_q)$$

where C is the set of star centres defined by sparse correspondence.

$$\forall q \in \Gamma_{c,p}, \ E_{p,q}^{\star} = \begin{cases} \infty \text{ if } l_p \neq l_q \\ 0 \text{ otherwise} \end{cases}$$

And $\Gamma_{c,p}$ is the geodesic path joining a pixel p to any star centre in the set C

Optimization of energy term based on geodesic star convexity using graph cut for complete scene reconstruction.

Dynamic feature tracking:

Sparse temporal correspondence:

20

Sparse to dense temporal correspondence:

Results - Segmentation:

Results - Dynamic reconstruction:

Results - Complete scene reconstruction:

Results - Video:

Dance3 dataset:

- 1. Captured with 7 cameras
- 2. Resolution: 1920 X 1080
- 3. Public dataset
- 4. Cluttered background

Results - Computation time:

Dataset	Furukawa	Guillemaut	Mustafa	Ours
Dance1	326	493	295	254
Magician	311	608	377	325
Odzemok	381	598	394	363
Office	339	533	347	291
Juggler	394	634	411	378
Dance2	312	432	323	278

Results - 4D (Temporal coherence):

Results - 4D (Temporal coherence):

Dance2 dataset:

- 1. Captured with 8 cameras
- 2. Resolution: 1920 X 1080
- 3. Public dataset
- 4. Loose clothing
- 5. 2 people

Conclusions

29)

- An automatic framework for temporally coherent 4D reconstruction.
- Sparse to dense temporal coherence to improve quality.
- Joint segmentation and reconstruction refinement using geodesic star convexity.
- Computationally efficient compared to existing methods.

Future Work

30)

- Extending 4D temporally reconstruction to single view video.
- Joint semantic segmentation using recognition.
- Handle crowded dynamic scenes

