1

Otimização do Alto-falante

Felipe Campelo

I. DESCRIÇÃO DO PROBLEMA

Por esta seção trataremos da descrição das características físicas do alto-falante ilustrado na Figura 1. O modelo aqui tratado consiste de três materiais distintos: *Ar*, *Ferro* e *Ímã*, e é baseado em um modelo originalmente proposto pela *Infolytica Corporation* [1]. As propriedades físicas de cada um destes materiais são dadas na Tabela I. As curvas de magnetização B-H do ferro e do ímã foram obtidas através da interpolação quadrática de pontos amostrados experimentalmente, conforme ilustrado nas figuras 2-3. Os pontos utilizados para gerar estas interpolações foram obtidos na biblioteca de materiais do software de análise numérica *FEMM 4.2* [2], utilizado na construção deste modelo.

Fig. 1: Modelo do alto-falante.

TABLE I: Materiais utilizados no modelo do alto-falante

Denominação	Ar	Ferro	Ímã
Material	Air	Pure Iron	Ceramic 5 magnet
μ_r	1,0	*	*
H_c [A/m]	0,0	0,0	191262
σ [MS/m]	0,0	10,44	0,0

II. OTIMIZAÇÃO

O objetivo na otimização deste alto-falante é a minimização do volume total de material utilizado na construção deste dispositivo. Este objetivo é restrito pelo requerimento de um valor mínimo da densidade de fluxo magnético na região definida pela variável x_9 . Matematicamente, o problema pode é descrito por (1):

$$\min f(\mathbf{x}) = \text{Volume}$$
Sujeito a: $|\mathbf{B}| \ge B_{min}$ (1)

Departamento de Engenharia Elétrica, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31720-010, MG, Brasil. e-mail:fcampelo@ufmg.br

Última atualização: 16 de Março de 2011.

Fig. 2: Curva de magnetização utilizada para a modelagem do núcleo de ferro

Fig. 3: Curva de magnetização utilizada para a modelagem do ímã de cerâmica

com $B_{min} = 0,5T$ e o *Volume* representando a soma total do volume das partes do alto-falante.

Os limites recomendados para as variáveis de otimização são dados na Tabela II. Esta tabela também fornece sugestões de valores fixos, a serem utilizados em casos de otimização parcial do modelo ou como ponto de partida para o teste de algoritmos determinísticos.

III. MODELO DE ELEMENTOS FINITOS

O alto-falante descrito nas seções anteriores foi modelado na forma de um script LUA [3], que por sua vez é interpretado pelo pacote de elementos finitos FEMM 4.2 [2]. A implementação atual é capaz de realizar simulações em batelada, retornando um arquivo de saída contendo os valores de densidade de fluxo magnético e volume do dispositivo. Este pacote á capaz ainda de gerar facilmente a visualização de

TABLE II: Limites do espaço de busca

Variável	min[mm]	max[mm]	fixo[mm]
x_1	3.0	12.0	5.0
x_2	1.0	4.0	3.0
x_3	1.0	4.0	2.0
x_4	0.0	3.0	1.5
x_5	5.0	15.0	7.0
x_6	2.0	5.0	4.0
x_7	1.0	10.0	2.0
x_8	1.0	3.0	2.0
x_9	0.5	2.0	1.0
x_{10}	0.0	3.0	1.0
x_{11}	1.0	5.0	2.0
x_{12}	2.0	5.0	2.0
x_{13}	0.0	2.0	1.0
x_{14}	5.0	12.0	7.0
x_{15}	2.0	5.0	4.0
x_{16}	1.0	5.0	2.0

linhas de campo e mapas de densidade de fluxo magnético. Um tutorial rápido sobre o FEMM 4.2 pode ser encontrado em [4].

IV. INSTRUÇÕES DE USO

- 1) Software necessário:
 - Finite Element Method Magnetics v.4.2
 - Matlab
- 2) Arquivos necessários [5]:
 - loudspeaker.lua
 - · CallFEMM_LS.m
 - LS_fun.m
- 3) Opções de problema:
 - Otimização completa (16 variáveis)
 - Otimização parcial (7 variáveis):

$$[x_2, x_6, x_9, x_{10}, x_{11}, x_{14}, x_{15}]$$

- 4) Forma de utilização:
 - Copie todos os arquivos contidos em [5] para um diretório local (p.ex., 'C:\loudspeaker\')
 - Nas linhas 33-35 do arquivo loudspeaker.lua, insira os diretórios corretos.
 - Nas linhas 5-8 do arquivo CallFEMM_LS.m, insira os diretórios corretos.

Para testar se os diretórios estão corretos, proceda da seguinte forma:

- 1) LUA script:
 - Abra o FEMM 4.2;
 - Selecione File Open LUA Script loudspeaker.lua
 - Caso o arquivo loudspeaker.lua esteja correto, o FEMM deve executar uma simulação de teste (definida pelo arquivo loudspeaker.in contido em [5]) e fechar automaticamente.
- 2) Rotina Matlab:
 - Abra o Matlab e selecione o diretório contendo os arquivos do alto-falante;
 - Na janela de comando, digite:

>> X = [5.0,3.0,1.0,0.0,7.0,6.0,2.0,5.0,0.5,...0.0,1.0,0.5,1.0,7.0,4.0,1.0];

 $>> Y = CallFEMM_LS(X)$

 Caso o arquivo CallFEMM_LS.m esteja correto, o Matlab invocará uma janela do FEMM, que executará uma simulação de teste e retornará o foco para o Matlab.

Além da função *LS_fun.m*, há também as funções *LS_vol.m* e *LS_B.m*, capazes de retornar as componentes de volume e de campo separadamente. As rotinas de Matlab são extensivamente comentadas e facilmente adaptáveis para uma ampla gama de algoritmos de otimização.

V. MAIORES INFORMAÇÕES

Em caso de dúvidas, sinta-se livre para entrar em contato comigo através do e-mail fcampelo@gmail.com.

REFERENCES

- [1] Infolytica Corporation, "Optimization Minimizing Loudspeaker Mass", *online*, available from: http://www.infolytica.com/en/applications/ex0086/
- [2] David Meeker, "Finite Element Method Magnetics, v. 4.2", online, available from: http://www.femm.info/wiki/HomePage
- [3] R. Ierusalimschy, L. H. de Figueiredo, W. Celes, "LUA scripting language", online, available from: http://www.lua.org/
- [4] David Meeker, "Finite Element Method Magnetics v. 4.2 Magnetics tutorial", online, available from: http://www.femm.info/Archives/doc/tutorial-magnetic.pdf
- [5] Felipe Campelo, "Loudspeaker design model", online, available from: http://www.cpdee.ufmg.br/~fcampelo/files/loudspeaker/