IC153: Calculus 1 (Lecture 11)

by

Anurag Singh IIT Bhilai

December 28, 2021

Series of real numbers

Definition

Let (a_n) be a sequence of real numbers. Then

- $\sum_{n=1}^{\infty} a_n := a_1 + a_2 + a_3 + \dots$ is called a series.
- $S_n = a_1 + a_2 + \cdots + a_n$ is called the n^{th} partial sum of the series $\sum_{n=1}^{\infty} a_n$.
- sequence (S_n) is called the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$.

Example

- $\bullet \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$

Convergence/divergence of a series

Definition

If $S_n \longrightarrow S$ for some $S \in \mathbb{R}$, then we say that the series $\sum_{n=1}^{\infty} a_n$ converges

to S and denote is by $\sum_{n=1}^{\infty} a_n = S$.

If (S_n) does not converge, then we say that the series $\sum_{n=1}^{\infty} a_n$ diverges.

Example

$$\sum_{n=1}^{\infty} \log(\frac{n+1}{n}) \text{ diverges.}$$

$$S_{h} = \log \frac{2}{1} + \log \frac{3}{2} + \dots + \log \frac{h}{h-1} + \log \frac{h+1}{h}$$

$$= \log(2 - \log 1 + \log 3 - \log 2 + \dots + \log h - \log h - \log h)$$

$$= \log(h+1) - 0 = \log(h+1) \longrightarrow \infty$$

Necessary condition for convergence

Theorem

If $\sum_{n=0}^{\infty} a_n$ converges, then $a_n \longrightarrow 0$.

Proof:
$$S_n \longrightarrow S$$
, $S_{n-1} \longrightarrow S$

$$\lim_{n\to\infty} Q_n = \lim_{n\to\infty} (S_n - S_{n-1}) = \lim_{n\to\infty} S_n - \lim_{n\to\infty} S_{n-1} = S - S = 0$$

Example

- $2^h \longrightarrow \infty$ or $n \rightarrow \infty$

Note: The converse of the above result is not true. Example:

$$\sum_{n=0}^{\infty} \log(\frac{n+1}{n})$$

$$\sum_{n=0}^{\infty} \log(\frac{n+1}{n}). \qquad \log \frac{n+1}{n} \quad 2 \quad \log \left(1 + \frac{1}{n}\right) = \log 1 = 0$$

Necessary and sufficient condition for convergence

Theorem

Suppose $a_n \geq 0$ for all $n \in \mathbb{N}$. Then $\sum_{n=0}^{\infty} a_n$ converges if and only if (S_n) is bounded above.

Proof:
$$(\Leftarrow)$$
 $S_n \leq S_{n+1} + n \geq 1 \implies (S_n)$ is \uparrow
if (S_n) is bounded above \Rightarrow (S_n) is convergent.
Plet $\overset{\circ}{\sum}$ $a_n = 1 \Leftrightarrow (S_n) \rightarrow 1 \Rightarrow (S_n)$ is bounded above.

Example

• The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

$$S_{2}^{k} = 1 + \frac{1}{2} + \cdots + \frac{1}{2^{k}} \geqslant 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots + 2^{k-1} \cdot \frac{1}{2^{k}}$$

$$\geqslant 1 + \frac{k}{2} \Rightarrow \left(S_{n}\right) \text{ in not bounded above}$$

$$\Rightarrow \sum_{n=1}^{n=1} \frac{1}{n} \text{ in not convergen} + \cdots$$

Theorem

If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Proof:
$$S_{n} = Q_{1} + Q_{2} + \cdots + Q_{n}$$

 $T_{n} = |Q_{1}| + |Q_{2}| + \cdots + |Q_{n}|$
Recall: (S_{n}) in Cauchy if $\forall \in >0 \exists N : S_{1} \cdot n > m$
 $\frac{|S_{n} - S_{m}|}{|S_{m}|} < C \quad \forall n, m > N_{1}$
 $|\sum_{i=m+1}^{m} Q_{i}| \leq \sum_{i=m+1}^{m} |Q_{i}| = T_{n} - T_{m} < C$
 $|S_{n} - S_{m}| + |S_{n} - S_{m}| = T_{n} - T_{m} < C$

Note: We say that the series $\sum_{n=1}^{\infty} a_n$ converges absolutely if series $\sum_{n=1}^{\infty} |a_n|$ converges. Therefore, the above result implies the following.

Absolutely convergent ⇒ convergent

Example

Proof:
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n} \quad \text{which in not convergent}$$

$$\frac{\text{Pf:}}{S_2} \quad S_2 = 1 - \frac{1}{2} > 0 \qquad S_4 = S_2 + \frac{1}{3} - \frac{1}{4} > S_2$$

$$S_6 = S_4 + \frac{1}{5} - \frac{1}{6} > S_4 \cdot \cdot \cdot = S_{2n} \text{ is increasing }.$$

$$S_{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdot \cdot \cdot = 1 - \left(\frac{1}{4} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) = \cdots$$

$$=) S_{2n} \longrightarrow \mathcal{S} \longrightarrow \underbrace{\begin{array}{c} \leq 1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}} = \underbrace{\begin{array}{c} S_{2n} + \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \leq 1 \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_{h \rightarrow \infty} \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}_$$

Questions?

Alternating series test

$\mathsf{Theorem}$

Let (b_n) be a decreasing sequence of non-negative real numbers such that $\lim b_n = 0$. Then the series $\sum_{n=0}^{\infty} (-1)^{n+1} b_n$ is convergent.

Proof:

oof:
Claim:
$$S_{2n}$$
 is a convergent sequence.
$$S_2 = b_1 - b_2 \ge 0$$

$$S_4 = S_2 + \underbrace{b_3 - b_4}_{\geqslant 0} \ge S_2 = 0$$

$$\vdots$$

$$S_{2k+2} \ge S_{2k}$$

$$S_{2n} = b_1 - b_2 + b_3 - b_4 + b_5 - \cdots$$

= $b_1 - (b_2 - b_3) - (b_4 - b_5) - \cdots \leq b_1$

Alternating series test

Proof (Cont.):
$$\underbrace{S_{2n} \text{ in } \uparrow + S_{2n} \text{ in bounded above}}_{S_{2n} \longrightarrow L}$$

$$\varprojlim_{n \to \infty} S_{2n+1} = \varprojlim_{n \to \infty} S_{2n} + \varprojlim_{n \to \infty} \underbrace{\lim_{n \to \infty} S_{2n+1}}_{0}$$

$$= \varprojlim_{n \to \infty} S_{2n} = L$$

$$S_{2n} \longrightarrow L \quad \& \quad S_{2n+1} \longrightarrow L \quad \Longrightarrow \quad S_{n} \longrightarrow L.$$

Problem: Show that the series
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{\sqrt{n}}$$
 is convergent. $\frac{1}{\sqrt{n}}$ $\frac{1}{\sqrt{n}}$