AUG 2 2 2002

UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Banerjee et al.

Serial No .:

09/887,281

Confirmation No.: 6268

Filed:

June 22, 2001

BRONCHODILATING COMPOSITIONS

AND METHODS

Art Unit:

1614

Examiner:

Weddington, K.

CERTIFICATE OF MANA

"Express Mail" Mailing Label

Date of Deposit: August 22

I hereby certify that this paper and the att papers are being deposited with the United States Postal "Express Mail Post Office to Addressee" Service under 37 CFR §1.10 on the date indicated above and addressed to: Commissioner for Patents, U.S. Patent and Trademark Office, P.O. Box 2327, Arlington, VA

MARKED UP PARAGRAPHS AND CLAIMS IN ACCORDANCE WITH 37 C.F.R. §1.121

IN THE SPECIFICATION:

Please amend the specification as follows:

Please amend the paragraph on page 8, lines 1-9, as follows:

As used herein, a nebulizer is an instrument that is capable of generating very fine liquid [droplet] droplets for inhalation into the lung. Within this instrument, the nebulizing liquid or solution is atomized into a mist of droplets with a broad size distribution by methods known to those of skill in the art, including, but not limited to, compressed air, ultrasonic waves, or a vibrating orifice. Nebulizers may futher contain, e.g., a baffle which, along with the housing of the instrument, selectively removes large droplets from the mist by impaction. Thus, the mist inhaled into the lung contains fine aerosol droplets.

Please amend the paragraph on page 8, lines 23-29, as follows:

As used herein, the stability of a composition provided herein refers to the length of time at a given temperature that is greater than 80%, 85%, 90% or 95% of the initial amount of active ingredient, e.g., formoterol, is present in the composition. Thus, for example, a composition that is stable for 30 days at 25 °C would have greater than 80%, 85%, 90% or 95% of the initial amount

of active ingredient present in the composition at 30 days following storage at 25 °C.

Please amend the paragraph beginning on page 8, line 30, through the paragraph on page 10, line 4, as follows:

As used herein, pharmaceutically acceptable derivatives of a compound include salts, esters, enol ethers, enol esters, acids, bases, solvates, hydrates or prodrugs thereof. Such derivatives may be readily prepared by those of skill in this art using known methods for such derivatization. The compounds produced may be administered to animals or humans without substantial toxic effects and either are pharmaceutically active or are prodrugs. Pharmaceutically acceptable salts include, but are not limited to, amine salts, such as but not limited to N,N'dibenzylethylenediamine, chloroprocaine, choline, ammonia, diethanolamine and other hydroxyalkylamines, ethylenediamine, N-methylglucamine, procaine, Nbenzylphenethylamine, 1-para-chlorobenzyl-2-pyrrolidin-1'-ylmethylbenzimidazole, diethylamine and other alkylamines, piperazine and tris(hydroxymethyl)aminomethane; alkali metal salts, such as but not limited to lithium, potassium and sodium; alkali earth metal salts, such as but not limited to barium, calcium and magnesium; transition metal salts, such as but not limited to zinc; and other metal salts, such as but not limited to sodium hydrogen phosphate and disodium phosphate; and also including, but not limited to, salts of mineral acids, such as but not limited to hydrochlorides and sulfates; and salts of organic acids, such as but not limited to acetates, lactates, malates, tartrates, citrates, ascorbates, succinates, butyrates, valerates and fumarates. Pharmaceutically acceptable esters include, but are not limited to, alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, heteroaralkyl, cycloalkyl and heterocyclyl esters of acidic groups, including, but not limited to, carboxylic acids, phosphoric acids, phosphinic acids, sulfonic acids, sulfinic acids and boronic acids. Pharmaceutically acceptable enol ethers include, but are not limited to, derivatives of formula C = C(OR) where R is hydrogen, alkyl, alkenyl, alkynyl,

aryl, heteroaryl, aralkyl, heteroaralkyl, cycloalkyl [ar] and heterocyclyl. Pharmaceutically acceptable enol esters include, but are not limited to, derivatives of formula C = C(OC(O)R) where R is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, heteroaralkyl, cycloalkyl [ar] and heterocyclyl. Pharmaceutically acceptable solvates and hydrates are complexes of a compound with one or more solvent or water molecule, preferably 1 to about 100, more preferably 1 to about 10, most preferably one to about 2, 3 or 4, solvent or water molecules. Formoterol salts and hydrates are used in certain embodiments herein.

Please amend the paragraph on page 14, lines 8-16, as follows:

In one embodiment, the β_2 -adrenoreceptor agonist [in] <u>is</u> formoterol, or a pharmaceutically acceptable derivative thereof. In other embodiments, the formoterol for use in the compositions provided herein is formoterol fumarate. Formoterol refers to 2-hydroxy-5-((1RS)-1-hydroxy-2-(((1RS)-2-(p-methoxy-phenyl)-1-methylethyl)amino)ethyl)formanilide; or a stereoisomer thereof. The term formoterol also refers herein to the single enantiomers 2-hydroxy-5-((1S)-1-hydroxy-2-(((1S)-2-(p-methoxyphenyl)-1-methylethyl)amino)ethyl)formanilide and 2-hydroxy-5-((1R)-1-hydroxy-2-(((1R)-2-(p-methoxyphenyl)-1-methylethyl)-amino)ethyl)formanilide.

Please amend the paragraph beginning on page 16, line 8, through the paragraph on page 17, line 20, as follows:

In other of the above embodiments, the compositions further contain a buffer, including, but not limited to, citric acid/phosphate, acetate, barbital, borate, Britton-Robinson, cacodylate, citrate, collidine, formate, maleate, McIlvaine, phosphate, Prideaux-Ward, succinate, citrate-phosphate-borate (Teorell-Stanhagen), veronal acetate, MES (2-(N-morpholino)ethanesulfonic acid), BIS-TRIS (bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane), ADA (N-(2-acetamido)-2-iminodiacetic acid), ACES (N-(carbamoylmethyl)-2-aminoethanesulfonaic acid), PIPES (piperazine-N,N'-bis(2-ethanesulfonic acid)),

MOPSO (3-(N-morpholino)-2-hydroxypropanesulfonic acid), BIS-TRIS PROPANE (1,3-bis(tris(hydroxymethyl)methylamino)propane), BES (N,N-bis(2hydroxyethyl)-2-aminoethanesulfonaic acid), MOPS (3-(Nmorpholino)propanesulfonic acid), TES (N-tris(hydroxymethyl)methyl-2aminoethanesulfonic acid), HEPES (N-(2-hydroxyethyl)piperazine-N'-(2ethanesulfonic acid), DIPSO (3-(N,N-bis(2-hydroxyethyl)amino)-2hydroxypropanesulfonic acid), MOBS (4-(N-morpholino)butanesulfonic acid), TAPSO (3-(N-tris(hydroxymethyl)methylamino)-2-hydroxypropanesulfonic acid), TRIZMA® (tris(hydroxymethylaminomethane), HEPPSO (N-(2hydroxyethyl)piperazine-N'-(2-hydroxypropanesulfonic acid), POPSO (piperazine-N,N'-bis(2-hydroxypropanesulfonic acid)), TEA (triethanolamine), EPPS (N-(2hydroxyethyl)piperazine-N'-(3-propanesulfonic acid), TRICINE (N-tris(hydroxymethyl)methylglycine), GLY-GLY (glycylglycine), BICINE (N,N-bis(2hydroxyethyl)glycine), HEPBS (N-(2-hydroxyethyl)piperazine-N'-(4-butanesulfonic acid)), TAPS (N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid), AMPD (2-amino-2-methyl-1,3-propanediol), and/or any other buffers known to those of skill in the art. In one embodiment, the buffer is citric acid/phosphate buffer, acetate buffer, citrate buffer or phosphate buffer. In another embodiment, the buffer is a citrate buffer (citric acid/sodium citrate). The buffer concentration has been found herein to affect the stability of the composition. Buffer concentrations for use herein include from about 0 or 0.01 mM to about 150 mM, or about 1 mM to about 20 mM. In one embodiment, the buffer concentration is about 5 mM. In another embodiment, the buffer concentration is about 1 mM to about 50 mM, or about 20 mM. The kinetic-pH profile of formoterol is dependent on buffer concentration. At low and approximately neutral conditions, increasing the buffer concentration from 5 mM to 20 mM increased the [rated] rate constant [ofdecomposition] of decomposition significantly. However, no noticeable differences in rate constant were observed in the pH region of about 4.5 to about 5.5 with increasing buffer

concentration from 5 mM to 20 mM. The particular buffer and buffer concentration of a given composition for long term storage provided herein may be determined empirically using standard stability assays well known to those of skill in the art (see, e.g., the Examples).

Please amend the paragraph beginning on page 18, lines 1-25, as follows:

In embodiments where the pharamacologically suitable fluid is a saline solution, tonicity adjusting agents may be added to provide the desired ionic strength. Tonicity adjusting agents for use herein include those which display no or only negligible pharmacological activity after administration. Both inorganic and organic tonicity adjusting agents may be used in the compositions provided herein. Tonicity adjusting agents include, but are not limited to, ammonium carbonate, ammonium chloride, ammonium lactate, ammonium nitrate, ammonium phosphate, ammonium sulfate, ascorbic acid, bismuth sodium tartrate, boric acid, calcium chloride, calcium disodium edetate, calcium gluconate, calcium lactate, citric acid, dextrose, diethanolamine, dimethylsulfoxide, edetate disodium, edetate trisodium monohydrate, fluorescein sodium, fructose, galactose, glycerin, lactic acid, lactose, magnesium chloride, magnesium sulfate, mannitol, polyethylene glycol, potassium acetate, potassium chlorate, potassium chloride, potassium iodide, potassium nitrate, potassium phosphate, potassium sulfate, [proplyene] propylene glycol, silver nitrate, sodium acetate, sodium bicarbonate, sodium biphosphate, sodium bisulfite, sodium borate, sodium bromide, sodium cacodylate, sodium carbonate, sodium chloride, sodium citrate, sodium iodide, sodium lactate, sodium metabisulfite, sodium nitrate, sodium nitrite, sodium phosphate, sodium propionate, sodium succinate, sodium sulfate, sodium sulfite, sodium tartrate, sodium thiosulfate, sorbitol, sucrose, tartaric acid, triethanolamine, urea, urethan, uridine and zinc sulfate. In certain embodiments, the tonicity adjusting agent is sodium chloride, which is present at a

concentration of from about 0 mg/mL to about 10, 15 or 20 mg/mL. In further embodiments, the compositions contain sodium chloride at a concentration of from about 0 mg/mL to about 7.5 mg/mL. In another embodiment, the compositions contain sodium chloride at a concentration of 0 mg/mL, 1.5 mg/mL, 6.8 mg/mL or 7.5 mg/mL. In these embodiments, the pharmacologically suitable fluid is aqueous saline.

Please amend the paragraph on page 22, lines 6-8, as follows:

Standard physiological, pharmacological and biochemical procedures are available for testing the compositions provided herein to identify those that possess [bronchdilatory] <u>bronchodilatory</u> activity.

Please amend the paragraph on page 25, lines 9-16, as follows:

Prophylactic therapeutics for use in combination therapy herein include steroidal anti-inflammatory agents, including, but not limited to, beclomethasone dipropionate (BDP), beclomethasone monopropionate (BMP), flunisolide, triamcinolone acetonide, dexamethasone, tipredane, ciclesonid, rofleponide, mometasone, mometasone furoate (Asmanex® Twisthaler™, Shering-Plough Corporation, Kenilworth, NJ), RPR 106541, having the formula

fluticasone or fluticasone propionate and budesonide or by way of sodium cromoglycate or nedocromil sodium.

IN THE CLAIMS:

Please amend claim 8 as follows:

8. (Amended) The pharmaceutical composition of claim 7, wherein the tonicity adjusting agent is ammonium carbonate, ammonium chloride,