Analysis Work Sheet Final

by Toby Chen

July 31, 2024

Contents

1	Seq	uen	ces	5																1
	1.1	Q1																		1
	1.2																			
	1.3																			

1 Sequences

1.1 Q1

Find the formula for the *n*-th term of the sequence 1, -4, 9, -16, 25.

Answer: Given 1, -4, 9, -16, 25, we can clearly see that it's a sequence of squares with an alternating negative sign,

$$a_n = (-1)^{n-1}(n^2)$$
, for $n \ge 1$.

1.2 Q2

Find a formula for the nth term of the sequence in terms of n, where the sequence is $1, 0, 1, 0, 1, \ldots$

Answer: The sequence is a periodic one which oscillates from 1 to 0. Let us create a table of values to assist in this,

1	2	3	4	5	6
1	0	1	0	1	0
odd	even	odd	even	odd	even

We can see that when n is even, we get a 0, and else is 1. This implies we will have a formula making use of n/2.

Let $a_n = n/2$: $a_n = 1/2, 1, 3/2, 2, 5/2, ...$ It seems that we get closer to our desired result if we let $a_n = (n+1)/2$: $a_n = 1, 3/2, 2, 5/2, 3, ...$

I have just realized that the most suitable function would be sin(x),

$$a_n = \sin\left(\frac{n\pi}{2}\right)^2.$$

1.3 Q3

Determine if the sequence $\{a_n\}$ converges or diverges. Find the limit if the sequence converges. The sequence is $a_n=4+(0.3)^n$

Answer: