Network topology: Wired Wireless 802.15.4 mobile Wired-wireless

Parameters under variation:

1.nodes

2.flows

3.packets /sec

4.Speed (wireless)

Modifications made in the simulator:

For a given network status, the modified mechanism determines the congestion degree in the network using the change in the Round Trip Time. In entering the Fast Recovery algorithm, it can detect the change in the RTT and decreases the congestion window (cwnd) by a value related to the increase in the RTT.

Change in code:

tcp.h – define two macros my_method and my_method_2 tcp.cc- add two conditions in slowdown method call slowdown (my_method_2) in timeout method

tcp-newreno.cc - call slowdown (my_method) in dupack_action method

Result with graphs: Wired:

Throughput vs Number of nodes

Throughput vs Number of flows

Throughput vs Number of packets

Delay vs Number of packets

Delay vs Number of flows

Delay vs Number of nodes

Delivery $_{\rm r}$ atio vs Number of flows

Delivery _ratio vs Number of nodes

Delivery $_{\rm r}$ atio vs Number of packets

Drop_ratio vs Number of flows

Drop_ratio vs Number of nodes

Drop_ratio vs Number of packets

Per node throughput

Wireless 802.15.4 mobile:

Throughput vs Number of flows

Throughput vs Number of nodes

Throughput vs Number of packets

Throughput vs Speed

Delay vs Number of flows

Delay vs Number of nodes

Delay vs Number of packets

Delay vs Speed

Delivery $_{\rm r}$ atio vs Number of flows

Delivery _ratio vs Number of nodes

Delivery $_{\rm r}$ atio vs Number of packets

Delivery _ratio vs Speed

Drop _ratio vs Number of flows

Drop_ratio vs Number of nodes

Drop_ratio vs Number of packets

Drop _ratio vs Speed

Energy vs Number of flows

Energy vs Number of nodes

Energy vs Number of packets

Energy vs Speed

Per node throughput

comparison result between modifications and existing tcp protocols:

//modification

Throughput: 4679885.52 AverageDelay: 0.05894

Sent Packets: 54192.00 Received Packets: 53993.00 Dropped Packets: 130.00

PacketDeliveryRatio: 99.63 PacketDropRatio: 0.24

Total time: 49.99903

//newreno

Throughput: 4664410.02 AverageDelay: 0.05369

Sent Packets: 54006.00 Received Packets: 53900.00 Dropped Packets: 50.00

PacketDeliveryRatio: 99.80 PacketDropRatio: 0.09

Total time: 49.99903

//reno

Throughput: 4664112.15 AverageDelay: 0.05293

Sent Packets: 54004.00 Received Packets: 53887.00 Dropped Packets: 48.00

PacketDeliveryRatio: 99.78 PacketDropRatio: 0.09

Total time: 49.99962

//vegas

Throughput: 4650484.40 AverageDelay: 0.02665

Sent Packets: 55887.00 Received Packets: 55857.00 Dropped Packets: 0.00

PacketDeliveryRatio: 99.95 PacketDropRatio: 0.00

Total time: 49.99964

//sack

Throughput: 426.15 AverageDelay: 0.01820

Sent Packets: 60.00 Received Packets: 60.00 Dropped Packets: 0.00

PacketDeliveryRatio: 100.00 PacketDropRatio: 0.00

Total time: 45.05492

//tahoe

Throughput: 4664909.23 AverageDelay: 0.05126

Sent Packets: 54012.00 Received Packets: 53903.00 Dropped Packets: 44.00

PacketDeliveryRatio: 99.80 PacketDropRatio: 0.08

Total time: 49.99903

Summary:

The wired topology is basically point to point to link among nodes. 802.15.4 wireless mobile is a low energy , low tx range based protocol that defines the MAC and LL protocols. There are different kinds of tcp protocols used here. Each of them has plus points in some scenarios and negative effects in some scenarios.