瑜珈姿勢檢測 Yoga Pose Detection

Yoga Master

Instructor: 張志勇教授、蒯思齊教授

Team Leader: 047 劉建宏

Team Members:

014 陳亭均

015 梁毓琳

025 毛彥文

051 于復申

046 邵文綺

Agenda

- Objective & Motivation
- Why Yoga Master
- Technical & Structure
- Optimization Evaluation
- Conclusion
- Reference

Objective & Motivation 緣起

歷經了三年新冠疫情,由於公共場所(如健身房等)因隔離政策暫時關閉的緣故,瑜珈成為愈來愈多人調整身心靈的運動方式。

Yoga Master的創立目的便是希望能推廣瑜珈運動,

利用 "動作行為辨識" + "檢測人體關鍵點"不需去瑜珈教室也能有效地調整自己的瑜珈姿勢。

Yoga Master會針對下列五種瑜珈姿勢,進行辨認並讓使用者知悉自己的瑜珈姿勢的正確率。

Yoga Pose

About Yoga

瑜珈姿勢說明

下犬式-瑜伽動作的基本起始動作之一, 做的時候身體會呈現一個倒 V 字型,可以用非常和緩的方式來伸展背部和腿部的肌肉,同時也可以順便訓練腹部和手臂肌肉,並幫助肩頸的放鬆 。

女神式-雙腳打開。身體下蹲,將膝蓋彎曲,雙手打開往上伸直。

平板式-從下犬式開始,身體往前移動。雙腳往後退一小步,保持核心用力,完成平板式。

樹式-山式,雙腳併攏站立,雙腳內側相互觸碰,身體重量均勻地放在雙腳全腳掌上。雙膝併攏,大腿內側收緊,臀部收緊。收腹,挺胸,整條脊柱向上伸展拉長,頭、頸端正。雙肩下沉,手臂向下伸展。保持身體在這種狀態上不動。

勇士二式-腳掌踩地,身體抬起,臀部向上提起,身體呈現倒三角形。左腳向前跨置於雙手之間,右腳尖向外旋轉**90**度 踩穩。雙臂打開與肩膀呈水平,左手向前延伸,右手向後延伸。左腳成弓箭步站姿,右腳膝蓋伸直,上身保持挺直。

— Why Yoga Master

相關技術

Yoga Master的優勢

現存的解決方案

- 捲積神經網路對瑜珈動作分類
- 瑜珈動作的關鍵點檢測

現有方案的缺點及瓶頸

尚未有結合瑜珈動作分類與關鍵點檢測的模型

本專題的優勢

透過結合瑜珈動作分類&關鍵點檢測來對使用者的姿勢進行標準度判斷

系統架構及技術

yogamaster_overpower.ipynb

https://github.com/quilty1012/NYMCU/blob/main/yogamaster_overpower_r.ipynb

系統架構及技術

流程表

數據蒐集

數據期前處理1

OpenCV

JPG 224X224 pixel color mode='rgb'

統一照片檔案

```
def convert_to_ipg(input_folder, output_folder):
  if not os.path.exists(output_folder): # 確保輸出資料夾存在
    os.makedirs(output_folder)
  file_list = os.listdir(input_folder) # 列出輸入資料夾中的所有檔案
  for file_name in file_list:
    name, ext = os.path.splitext(file_name) # 將檔案名稱和副檔名拆開
    if ext.lower() in ['.png', '.jpeg', '.jpg']: #確保是圖片檔案
      img_path = os.path.join(input_folder, file_name) # 讀取圖片
      img = cv2.imread(img_path)
      output_path = os.path.join(output_folder, name + '.jpg') # 將圖片另存為JPG格式
      cv2.imwrite(output_path, img)
      print(f"Converted {file_name} to JPG.")
input_folder = '../DATASET/TEST/downdog'
output_folder = 'DATASET/TEST/downdog'
convert_to_ipg(input_folder, output_folder) # 執行轉換
```

系統架構及技術

流程表

數據期前處理2

MoveNet

Ultra fast and accurate pose detection model

模型設計

人體關鍵點檢測模型

Next-Generation Pose Detection with MoveNet and TensorFlow.js

https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html

系統架構及技術

數據期前處理2

MoveNet

Ultra fast and accurate pose detection model

模型設計

身體的關鍵點 INDEX

KEYPOINT_DICT={ 'nose' :0, 'left_eye' :1, 'right_eye' :2, 'left_ear' :3, 'right_ear' :4, 'left_shoulder' :5, 'right_shoulder' :6, 'left_elbow' :7, 'right_elbow' :8, 'left_wrist' :9, 'right_wrist':10, 'left_hip':11, 'right_hip':12, 'left_knee':13, 'right_knee':14, 'left_ankle':15, 'right_ankle':16 }

Movenet關鍵點檢測模型

keypoints=keypoints.flatten()

folder_name = os.path.basename(sub_folder)

movenet_keypoints[image_key] = keypoints

儲存關鍵點座標到字典中,這裡使用子資料夾的名稱作為鍵

image_key = os.path.join(folder_name, image_name)

系統架構及技術

流程表

數據期前處理2

MoveNet

Ultra fast and accurate pose detection model

https://www.tensorflow.org/hub/tutorials/movenet

sub_folders = ['downdog', 'goddess', 'plank', 'tree', 'warrior2'] # 子資料夾列表 movenet_keypoints = {} # 儲存關鍵點座標的字典 for sub_folder in sub_folders: # 遍歷子資料夾,處理圖片 folder_path = os.path.join(train_dir, sub_folder) image_list = os.listdir(folder_path) for image_name in image_list: image_path = os.path.join(folder_path, image_name) image = load_img(image_path, target_size=(224, 224)) input_image = tf.expand_dims(image, axis=0) input_image = tf.image.resize_with_pad(input_image, input_size, input_size) reshaped_data = movenet(input_image) # 使用MoveNet模型進行關鍵點檢測 reshaped_data = reshaped_data.reshape(17, 3) keypoints=reshaped_data[:, :2] keypoints=np.around(keypoints,2)

──Technical & Structure 系統架構及技術

流程表

17個點,共34個座標

數據期前處理2

MoveNet

Ultra fast and accurate pose detection model

https://www.tensorflow.org/ hub/tutorials/movenet

CNN 瑜珈姿勢預測模型 關鍵點座標辨識

MOVEMENT 標準度判斷

	nose_y	nose_x	left_eye_y	left_eye_x	right_eye_y	right_eye_x	left_ear_y	left_ear_x	right_ear_y	right_ear_>		
downdog/00000005.jpg	0.66	0.26	0.67	0.24	0.67	0.24	0.63	0.21	0.63	0.21		
downdog/00000003.jpg	0.75	0.54	0.76	0.55	0.76	0.55	0.73	0.61	0.73	0.61	1922	
downdog/00000000.jpg	0.73	0.52	0.74	0.51	0.74	0.51	0.71	0.45	0.71	0.45		
downdog/00000006.jpg	0.76	0.39	0.76	0.38	0.76	0.38	0.70	0.36	0.70	0.35		
downdog/00000002.jpg	0.72	0.59	0.73	0.61	0.73	0.62	0.68	0.66	0.68	0.66	m.	
	***	lenn	***	***	5325	(4.00)	liese	1-1-	500	85	1888	
warrior2/00000116.jpg	0.05	0.32	0.01	0.34	0.02	0.34	0.01	0.41	0.02	0.40		
warrior2/00000117.jpg	0.17	0.39	0.15	0.42	0.15	0.41	0.17	0.47	0.17	0.46		
warrior2/00000114.jpg	0.23	0.56	0.21	0.56	0.21	0.54	0.22	0.52	0.22	0.48		
warrior2/00000108.jpg	0.05	0.32	0.01	0.34	0.02	0.34	0.01	0.41	0.02	0.40		
warrior2/00000115.jpg	0.21	0.44	0.18	0.47	0.18	0.43	0.19	0.53	0.19	0.44		
	right_hi	ip_x le	ft_knee_y 1	eft_knee_x	right_knee_y	right_knee_x	left_ankle_	y left_ankl	e_x right_a	nkle_y righ	t_ankle_x	targe
owndog/00000005.jpg		0.41	0.57	0.51	0.57	0.50	0.7	8 ().58	0.77	0.57	
owndog/00000003.jpg		0.41	0.55	0.30	0.55	0.30	0.8	0 ().19	0.81	0.19	
owndog/00000000.jpg		0.66	0.57	0.78	0.58	0.78	0.8	6 ().88	0.84	0.86	
owndog/00000006.jpg	à	0.61	0.55	0.77	0.54	0.77	0.8	8 ().91	0.83	0.88	
owndog/00000002.jpg		0.39	0.56	0.23	0.56	0.22	0.8	2 (). <mark>1</mark> 0	0.83	0.09	
(me)		1000	***	1070	***			15	***	***		
varrior2/00000116.jpg		0.47	0.84	0.81	0.73	0.25	0.9	9 ().94	0.99	0.30	
arrior2/00000117.jpg		0.41	0.78	0.59	0.55	0.28	0.9	0 ().77	0.81	0.30	
arrior2/00000114.jpg		0.39	0.60	0.70	0.74	0.21	0.8	2 ().74	0.83	0.07	
		0.47	0.84	0.81	0.73	0.25	0.9	9 ().94	0.99	0.30	
arrior2/00000108.jpg												

系統架構及技術

流程表

模型設計

CNN

瑜珈姿勢預測模型

關鍵點座標辨識

MOVEMENT

標準度判斷

模型訓練

Loss: MSE

Optimizer: adam

Early_stopping

模型設計

from keras.layers import Dense, Conv1D, Flatten, MaxPool1D

```
model = Sequential() #順序型模型類型,
單一輸入,單一輸出
```

17個偵測點 =34個座標 (34個欄位)

```
model.add(Conv1D(16, 2, input_shape=(34,1), activation="relu"))
model.add(Conv1D(32, 2, activation = "relu"))
model.add(MaxPool1D())
model.add(Flatten())
model.add(Dense(5, activation = "softmax"))
model.summary()
```

系統架構及技術

流程表

模型設計

CNN

瑜珈姿勢預測模型 關鍵點座標辨識

MOVEMENT

標準度判斷

模型訓練

Loss: MSE

Optimizer: adam

Early_stopping

模型訓練

遇事不決 用 Adam

model.compile(loss= "MSE", optimizer= "adam", metrics=["accuracy"])

編譯模型

梯度下降方式

量測標準

model.fit(X, Y, epochs=300, batch_size=128)

early_stopping = EarlyStopping(monitor='val_loss', patience=5,
restore_best_weights=True)

epochs=300

history = model.fit(X, Y, epochs=epochs, validation_data=(X_test, Y_test), callbacks=[early_stopping])

設定validation loss 連續5次無法降低,停止訓練並使用先前較好的權重

系統架構及技術

流程表

模型設計

CNN

瑜珈姿勢預測模型 關鍵點座標辨識

MOVEMENT

標準度判斷

模型訓練

Loss: MSE

Optimizer: adam

Early_stopping

模型訓練

遇事不決 用 Adam

model.compile(loss= "MSE", optimizer= "adam", metrics=["accuracy"])

編譯模型

梯度下降方式

量測標準

model.fit(X, Y, epochs=300, batch_size=128)

early_stopping = EarlyStopping(monitor='val_loss', patience=5,
restore_best_weights=True)

epochs=300

history = model.fit(X, Y, epochs=epochs, validation_data=(X_test, Y_test), callbacks=[early_stopping])

設定validation loss 連續5次無法降低,停止訓練並使用先前較好的權重

──Technical & Structure 系統架構及技術

— Technical & Structure 系統架構及技術

Downward dog 下犬式

系統架構及技術

Goddess 女神式

— Technical & Structure 系統架構及技術

Plank

平板式

——Technical & Structure 系統架構及技術

Tree

樹式

——Technical & Structure 系統架構及技術

Warrior2 勇士二式

系統架構及技術

— Technical & Structure 系統架構及技術

評估目標的瑜珈姿勢類型

Predicted Class: warrior2

Predicted Class: goddess

Predicted Class: tree

Predicted Class: downdog

系統架構及技術

瑜珈姿勢關鍵點檢測

──Technical & Structure 系統架構及技術

人體動作判斷

篩選目標姿 勢

標準姿勢與目 標姿勢差異比 較

篩選目標姿勢

- 透過使用者的臉部面向、姿勢以及預測的姿勢種類來配對合適的標準 姿勢
- 臉部面向為透過比較鼻子、左耳和右耳的位置,例如:鼻子在左耳和右耳的中間以及上面時,為使用者面向正面
- 鼻子在左耳和右耳的左邊以及上面時,為使用者面向左邊
- 鼻子在左耳和右耳的右邊以及上面時,為使用者面向右邊

系統架構及技術

目標對象姿勢與標準姿勢差異比較

left side of body:

left_wrist to left_elbow
left_elbow to left_shoulder
left_ear to left_shoulder
left_shoulder to left_hip
left_hip to left_knee
left_knee to left_ankle

right side of body:

	. 1 11
	right_wrist to right_elbow
	right_elbow to right_shoulder
	right_ear to right_shoulder
	right_shoulder to right_hip
١.	right_hip to right_knee right_knee to right_ankle
,	right_knee to right_ankle

A 目標對象 左膝至左腳踝之角度為: 33.942974 度 B 標準姿勢 左膝至左腳踝之角度為: 58.406986 度

A - B = -24.464012 度

start_keypoint	end_keypoint	angle difference
9	7	-8. 440210
7	5	-3.792137
3	5	2.797974
5	11	12. 588238
11	13	27. 397408
13	15	-24. 464012

start_keypoint	end_keypoint	angle difference
10	8	-9. 263792
8	6	-1. 297108
4	6	7. 727936
6	12	10.690731
12	14	24. 915279
14	16	-29. 538383

系統架構及技術

目標對象姿勢與標準姿勢差異比較

left side:

	start_keypoint	end_keypoint	angle difference
left_wrist to left_elbow	9	7	-65. 143356
left_elbow to left_shoulder	7	5	-20 <u>5</u> . <u>076050</u>
left_ear to left_shoulder	3	5	-0.753609
left_shoulder to left_hip	5	11	-1.015976
left_hip to left_knee	11	13	3. 092125
left_knee to left_ankle	13	15	0. 942223

	start_keypoint	end_keypoint	angle difference
right_wrist to right_elbow	10	8	59. 378387
right_elbow to right_shoulder	8	6	-14 <u>0</u> . 871124
right_ear to right_shoulder	4	6	1.608948
right_shoulder to right_hip	6	12	-6. 757362
right_hip to right_knee	12	14	0. 949799
right_knee to right_ankle	14	16	-9. 435909

系統架構及技術

目標對象姿勢與標準姿勢差異比較

left side:

left_wrist to left_elbow
left_elbow to left_shoulder
left_ear to left_shoulder
left_shoulder to left_hip
left_hip to left_knee
left_knee to left_ankle

A 目標對象 左手腕至左手肘的角度為: -154.33853度
B 標準姿勢 左手腕到左手肘的角度為: 177.61024度
A D 224 0400 H

start_keypoint	end_keypoint	angle difference
9	7	-331. 948792
7	5	15. 192474
3	5	-4. 412685
5	11	-13. 519119
11	13	1. 377876
13	15	0. 572403

	start_keypoint	end_keypoint	angle difference
right_wrist to right_elbow	10	8	-19. 415665
right_elbow to right_shoulder	8	6	-13. 110435
right_ear to right_shoulder	4	6	-6. 132851
right_shoulder to right_hip	6	12	-10.899956
right_hip to right_knee	12	14	-1.004547
right_knee to right_ankle	14	16	-9. 308151

系統架構及技術

- B = 57.840782 度

A 目標對象 左手腕到左手肘的角度為: 64.01941度 B 標準姿勢 左手腕到左手肘的角度為: 6.1786265度

目標對象姿勢與標準姿勢差異比較

left side:

	start_keypoint	end_keypoint	angle difference
left_wrist to left_elbow	9	7	57.840782
left_elbow to left_shoulder	7	5	20. 713463
left_ear to left_shoulder	3	5	5. 261414
left_shoulder to left_hip	5	11	0.688614
left_hip to left_knee	11	13	-12. 239449
left_knee to left_ankle	13	15	-3. 059662

start_keypoint	end_keypoint	angle difference
10	8	-42. 960648
8	6	-37. 291786
4	6	1. 007690
6	12	4. 029533
12	14	17. 498779
14	16	10. 414352
	10 8 4 6	12 14

系統架構及技術

start barraint and barraint angle difference

目標對象姿勢與標準姿勢差異比較

left side:

Start_Keypoint	ena_keypoint	angle difference
9	7	26. 815895
7	5	27. 640854
3	5	-4. 336105
5	11	-27. 296547
11	13	-54. 277096
13	15	29. 548500
	9 7 3 5 11	11 13

	start_keypoint	end_keypoint	angle difference
right_wrist to right_elbow	10	8	31.734306
right_elbow to right_shoulder	8	6	16. 934258
right_ear to right_shoulder	4	6	-15. 564301
right_shoulder to right_hip	6	12	-27.836884
right_hip to right_knee	12	14	-9. 325287
right_knee to right_ankle	14	16	-4. 154968

系統架構及技術

stant barnaint and barnaint angle difference

目標對象姿勢與標準姿勢差異比較

Predicted Class: tree

left side:

	start_keypoint	ena_keypoint	angle difference
left_wrist to left_elbow	9	7	1. 797142
left_elbow to left_shoulder	7	5	9. 325912
left_ear to left_shoulder	3	5	2. 235481
left_shoulder to left_hip	5	11	3. 968666
left_hip to left_knee	11	13	14. 776613
left_knee to left_ankle	13	15	7. 262375

	start_keypoint	end_keypoint	angle difference
right_wrist to right_elbow	10	8	18. 196579
right_elbow to right_shoulder	8	6	-2. 228691
right_ear to right_shoulder	4	6	-4. 746422
right_shoulder to right_hip	6	12	1. 045639
right_hip to right_knee	12	14	2. 923149
right_knee to right_ankle	14	16	-4. 443985

— Problem Occured

遭遇問題

- · 一開始有些訓練的檔案有混入png檔,利用Open cv轉檔成 JPG後,問題排除。
- · 改寫程式,先使用MoveNet標關鍵點增加模型準確率。

— Conclusion

結論

技術REVIEW

STEP1: 使用OpenCV資料前處理,使圖檔大小類型一致。

STEP2: 使用由google訓練好的MoveNet模型來資料前處理(速度快)。先透過關鍵點檢測模型把

圖片的關鍵點座標都找出。

STEP3: 瑜珈姿勢預測(CNN關鍵點座標辨識),辨識目標照片屬於哪一類瑜珈姿勢。

STEP4: 以MoveNet關鍵點檢測,確認動作準確度。

<u>優勢</u>

CNN模型: 可以自動萃取特徵,辨識由線、面、角,構成複雜的形狀,因此在影像識別方面的威力非常

強大,可獲得高度準確率。

MoveNet: 可以檢測人體的17個關鍵點。模型輕量化,能減少運算負擔,並加快姿態檢測的速度。

Yoga Master Overpower:高效、快速、準確。即時執行瑜珈姿態檢測,清爽無負擔。

感想

• 解決問題,要先問對問題!

• 如果能夠讓使用者更方便、即時將影像資訊載入模型,並且使用chatbot自動回覆給予使用者建議,可用於瑜珈相關的商業應用。但因礙於有限的時間及資源,所以我們決定專注在訂定的主題。

— Industry Case Sharing

產學界案例分享

視覺式體操動作辨識系統

Vision-based Gymnastics Motion Recognition System

圖六、六種不同體操動作所對應之MEI圖[13]

圖七 三種不同動作所對應之 MHI 圖[13]

本計畫設計一套以電腦視覺為基礎偵測 人體全身肢體動作之系統,將連續之體 操運動影像輸入電腦後做肢體動作判斷 辨識其動作種類或發出錯誤動作訊息。

 以motion-energy images (MEI) motionhistory images(MHI) 做為比對的依據

— Industry Case Sharing

產學界案例分享

Johnson@Mirror 新概念健身魔鏡

— Industry Case Sharing

產學界案例分享

Hong Kong Univisual Intelligent Technology (HKUIT)

透過物體偵測、物體追踪及人體姿勢分析,自動識別人體13個關節節點並作出分析。公司開發了兩項產品,分別是人工智能游泳安全及泳姿分析系統,以及人體姿勢分析開發套件(SDK),前者應用於室內泳池內,後者則供開發商設計不同運動分析方案如瑜珈應用程式。

在泳池內不同位置包括水底、天花、 池邊等安裝多個網絡攝影機,以及以 太網絡(Ethernet),收集及分析泳客泳 姿影像數據,例如游泳頻率、幅度、 撥水速度、手腳協調度等,救生員透 過平板電腦辯識遇溺者,游泳教練則 可協助泳手改善技術。

https://www.hkuit.com/

—分工表

Organization Chart

組員姓名/ 工作類別	組長: 047 劉建宏	組員: 014 陳亭均	組員: 015 梁毓琳	組員: 025 毛彥文	組員: 051 于復申	組員: 046 邵文綺
主題綱要	V					
程式修正	V		V			
文字編排	V	V		V	V	V
資料尋找/提供	V	V	V	V	V	V
上台發表	V	V	V	V		V

Reference

參考文獻

- 看山健康科技(n.d)。Johnson@Mirror 新概念健身魔鏡。Johnson@Mirror 新概念健身魔鏡-JOHNSON看山健康科技-跑步機、按摩椅。
 https://www.johnsonfitness.com.tw/prod/?q=MIRROR
- 顏羽君(2008年)。視覺式體操動作辨識系統 Vision-based Gymnastics Motion Recognition System。國立臺灣師範大學。
- HKUIT。(2023, 5月10日)。【 人工智能】港大研AI偵測技術 分析人體動作實時警報溺水跌倒等意外。TOPick。https://www.it-square.hk/archives/15362/ai%E5%88%86%E6%9E%90%E8%82%A2%E9%AB%94%E5%8B%95%E4%BD%9C-%E6%B8%9B%E4%BD%8E%E9%81%87%E6%BA%BA%E6%94%B9%E5%96%84%E9%81%8B%E5%8B%95%E5%A7%BF%E5%8B%A2/
- Suradech Kongkiatpaiboon, Burq Latif.(2021, November 23). 03_keypoint_movenet_v2. https://www.kaggle.com/code/suradechk/03-keypoint-movenet-v2
- Aayush Mishra. (2021, June 03). Yoga Pose Detection. https://www.kaggle.com/code/aayushmishra1512/yoga-pose-detection/notebook
- Ronny Votel, Na Li. (2021, May 17). Next-Generation Pose Detection with MoveNet and TensorFlow.js. https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html
- Aayush Mishra. (2021, June 03). YogaNet VGG19
 https://www.kaggle.com/code/aayushmishra1512/yoganet-vgg19
- VK. (2022, Feb 21). Pose_Prediction|Generate_CSV_Keypoints|MediaPipe
 https://www.kaggle.com/code/venkatkumar001/pose-prediction-generate-csv-keypoints-mediapipe
- OXXO.STUDIO.(2023, Aug 01). Mediapipe 姿勢偵測 (Pose). https://steam.oxxostudio.tw/category/python/ai/ai-mediapipe-pose.html