Exercice 1. Sous espaces vectoriels Les parties suivantes sont-elles des sous-espaces vectoriels, si oui et si possible, en donner une base:

1.
$$\{(x,y) \in \mathbb{R}^2 | x = y \}$$

2.
$$\{(x,y) \in \mathbb{R}^2 | x | = |y| \}$$

3.
$$\{(x,y) \in \mathbb{R}^2 | x+y=1 \}$$

4.
$$\{(x, y, z) \in \mathbb{R}^3 | 2x + 3y + 4z = 0\}$$

5.
$$\{(x, y, z) \in \mathbb{R}^3 | x = 2y = 4z \}$$

- 6. l'ensemble des suites
- 7. l'ensemble des suites croissantes
- 8. l'ensemble des suites nulles à pcr
- 9. l'ensembles des suites 12-périodiques
- 10. l'ensemble des suites périodiques
- 11. l'ensemble des polynomes réels de degré n
- 12. $\{PQ|Q \in \mathbb{R}[X]\}$, avec $P \in \mathbb{R}[X]$ fixé

Exercice 2. Fonctions indépendantes Montrer que les familles suivantes sont indépendantes:

1.
$$(1)_{n \in \mathbb{N}}, (n^2)_{n \in \mathbb{N}}, (2^n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$$

2. $cos, sin, exp \in \mathbb{R}^{\mathbb{R}}$

Exercice 3. Famille libre Soit E un espace vectoriel de base (e_1, \ldots, e_n) .

Montrer que $(e_1 + e_2, e_2 + e_3, \dots, e_{n-1} + e_n)$ est une famille libre.

Exercice 4. Applications linéaires Les applications suivantes sont-elles linéaires ?

$$\bullet \ f: K^2 \to K, \quad (x,y) \mapsto xy$$

$$\bullet \ f: K^2 \to K^3, \quad (x,y) \mapsto (x+1,2x,3y)$$

•
$$f: K^3 \to K^3$$
, $(x, y, z) \mapsto (x - 2z, y + 2x, 3z - 2y)$

$$\bullet \ f:C^1(\mathbb{R})\to C^0(\mathbb{R}) \quad f\mapsto f'$$

•
$$f: C^n(\mathbb{R}) \to C^0(\mathbb{R})$$
 $f \mapsto f^{(n)}$, avec $n \in \mathbb{N}$

Exercice 5. Au corps à corps Déterminer toutes les applications linéaires de K dans K.

Exercice 6. L'exercice le plus classique de l'univers Soit $u \in \mathcal{L}(E)$ tel que $\forall x \in E$, x et u(x) sont colinéaires.

Montrer que u est une homothétie.

- Exercice 7. Composition nulle Soit E, F, G 3 espaces vectoriels, $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, G)$. Montrer que $g \circ f = 0$ ssi $im \ f \subseteq ker \ g$
- **Exercice 8. Commutation** Soit $f, g \in \mathcal{L}(E)$, avec $f \circ g = g \circ f$. Montrer que ker f et im f stables par g.

Exercice 9. Endomorphismes diagonalisables Soit $u \in \mathcal{L}(E)$, on dit que $a \in E$ est un vecteur propre de u si et seulement si $\exists \lambda \in K, u(a) = \lambda a$.

On dit que u est diagonalisable si et seulement si il existe une base de E constituée de vecteurs propres de u.

- 1. Montrer que $u: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (2x,3y)$ est diagonalisable.
- 2. Montrer que $u: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (\lambda y, \lambda x, 0)$, avec $\lambda \in \mathbb{R}$, est diagonalisable.
- 3. Montrer que si u est diagonalisable, alors $E = \ker u \oplus \operatorname{im} u$.
- 4. $u: \mathbb{R}_n[X] \to \mathbb{R}_n[X], P \mapsto P'$ est-il diagonalisable?