

MBOOM: An Out-of-order Dual-issue MIPS Architecture Processor

第七届"龙芯杯"全国大学生计算机系统能力培养大赛 養言龙 程家骏 刘思辰

2023年8月

Table of Contents

- ▶ Core 架构设计
- ▶ 操作系统支持
- ▶ 性能优化之路
- ▶ 总结致谢

MBoom 总体架构

- 乱序双发 CPU。
 - 一 最多两条指令取指、解码、重命名、分发、提交。
 - 最多四条指令同时执行。
- 16KiB 指令缓存、8KiB 数据缓存。
- 8 项全相连 TLB。

前端总体架构

分支预测: NLP 1 Core 架构设计

单周期分支预测器,减少气泡。

- BTB: 与 BPU 共用,用于预测当前 PC 是否是分支指令,并提供分支跳转地址。
- BIM: 简单二位饱和分支预测器,用于 预测分支指令是否跳转。

分支预测: BPU

- 由 BTB、BHT、PHT、RAS 四部分组成。
 - BTB: 提供分支类型及静态分支地址。
 - BHT: 提供分支跳转历史。
 - PHT: 位拼接法寻址,二位饱和计数器。
 - RAS: 32 项带计数器地址返回栈。
- 三周期分支预测器
 - 第一周期访问 BTB、BHT
 - 第二周期访问 PHT、RAS,并获取分 支预测结果。
 - 第三周期进行 RAS 的 Push / Pop。

后端总体架构

重命名阶段

- 基于统一 PRF 方式进行重命名。
- 使用 FreeList 管理空闲寄存器。
 - 采用双端口 FIFO 队列实现 FreeList。
 - commitPtr 保存提交时出队头指针.
- 使用 RMT (重命名映射表) 管理映射关系。
 - aRMT 管理提交时的映射关系.
- 需要 flush 时则分别用 commitPtr、 aRMT 恢复 FreeList 和 RMT。

分发阶段

- 将指令分发到对应发射队列,每周期 最多分发两条指令。
 - 每周期最多分发两条 ALU 指令、一条 LSU 指令、一条 MDU 指令。
 - 遇到 cpo Write 指令、TLB 指令或 cache 指令会阻塞至 ROB 为空时才 分发。
- 分发的同时将对应指令写入 ROB 中, 这是乱序 CPU 从顺序走向乱序的分隔 点。

发射阶段

1 Core 架构设计

两个 ALU 使用集中式发射队列,MDU 和 LSU 采用分布式发射队列。

- 均使用压缩队列实现。ALU 发射队列 为 10 项,其余两个为 8 项。
- Alulssue 支持全乱序发射, issueWindow 大小为 8。
- Lsulssue 支持伪乱序发射, issueWindow 大小为 4。
- Mdulssue 仅支持顺序发射。

ALU 运算单元

- 三级流水线运算。
 - 1. PRF: 接收 bypass 数据,获取操作数。
 - 2. Execute: 接收 bypass 数据,并执行 整数计算。
 - 3. WriteBack: 写回数据,激活 bypass 通路,并通知 ROB。
- 支持 Alu 之间的完全 bypass,整数指令之间的 RAW 相关性没有气泡。

LSU 访存单元

1 Core 架构设计

• 四级流水线访存

- 1. AGU: 获取访存虚拟地址。
- 2. Mem1: 发起 TLB 访问请求, load 指 令参与访 DataCache 仲裁。
- 3. Mem2(Cache 缺失或 UnCache Load 会阻塞该阶段): Load 指令获取到 Load 数据,Store 指令按照访存属性 入队。
- 4. WriteBack: 数据写回 PRF,并通知 ROB。

LSU 访存单元

- 支持推测唤醒,将 load-use 减少至两个周期。
 - mem1 阶段发起唤醒信号,若 mem2 阶段检测到 cache 缺失或者 unCache Load 则阻塞所有指令的执行流水线。
- dBuffer 大小为 8 项, unBuffer 大小为 4 项, 尽可能减少由于 store 指令造成 的阻塞。

ROB 及 Commit

1 Core 架构设计

用于顺序提交指令

- ROB 最多存放 32 项指令,每周期支持两条指令提交。
- 跳转指令和延迟槽同时提交,
 - 一 分支预测训练正确性。
 - 一 方便分支预测失败恢复状态。
- 中断在最早未提交指令可以提交时再 处理。

缓存设计 1 Core 架构设计

指令缓存:

- 四路组相连,每行32字节,16KiB
- VIPT
- 采用 PLRU 替换算法。
- 实现为二阶段 Cache。缓存命中有一个周期延迟。

数据缓存:

- 二路组相连,每行32字节,8KiB
- VIPT
- 采用 PLRU 替换算法。
- 实现为二阶段 Cache。缓存命中有一个周期延迟。

Table of Contents 2 操作系统支持

- ▶ Core 架构设计
- ▶ 操作系统支持
- ▶ 性能优化之路
- ▶ 总结致谢

引导程序 2 操作系统支持

- uboot 2023.8
- 移植处理
 - 一 根据时钟与外设情况编写设备树。
 - 关闭指令支持 (branch-likely、LL/SC)

```
D 00 00
U-Boot 2023.10-rc2+ (Aug 16 2023 - 07:21:45 +0000)
DRAM: 128 MiB
emaclite ethernet@bff00000: eth phy binds nodes: mdio subnode found!
emaclite ethernetabff00000: * Found child node: 'phya1'
emaclite ethernet@bff00000: - bound phy device: 'phy@1'
Core: 5 devices, 5 uclasses, devicetree: separate
Loading Environment from <NULL>... OK
      serial@bfe40000
Out: serial@bfe40000
Err: serial@bfe40000
Net: EMACLITE: bff00000, phyaddr 1, 1/1
eth0: ethernetabff00000
Hit any key to stop autoboot: 0
ethernetabff00000 Waiting for PHY auto negotiation to complete.. done
BOOTP broadcast 1
DHCP client bound to address 10.0.0.177 (10 ms)
*** Warning: no boot file name; using '0A0000B1.img'
Using ethernetabff00000 device
TFTP from server 10.0.0.1; our IP address is 10.0.0.177
Filename '0A0000R1 img'
Load address: 0x84000000
```


Linux 移植

2 操作系统支持

- Linux v6.3.9
- 移植处理:
 - 根据时钟与外设情况编写设备树、 同步更改编译选项。
 - 一 向 Kconfig 构建系统中添加所需源文 件。
 - 关闭指令支持 (浮点、branch-likely、 LL/SC)。
- 指令集处理:
 - PREF、SYNC、WAIT 等实现为 NOP。
 - BusyBox 中 LL/SC,内核会识别模拟。

Table of Contents 3 性能优化之路

- ▶ Core 架构设计
- ▶ 操作系统支持
- ▶ 性能优化之路
- ▶ 总结致谢

性能优化进程

3 性能优化之路

优化方式	IPC 比值	提升
朴素乱序多发流水线	29.597	\
分支预测改用三周期	30.634	3.50%
LSU 推测唤醒	34.264	11.85%
消除乘法阻塞	34.812	1.60%
压缩访存流水线	36.671	5.34%
nlp 减少分支预测气泡	37.419	1.38%
alu 完全 bypass	37.873	1.21%

性能优化主要关注点:

- 1. 分支预测
- 2. 访存优化

这也是 CPU 设计两大痛点。

最终 IPC 比值性能

3 性能优化之路

测试名	IPC 比值	分支预测正确率	
bitcount	41.862	93.4%	
bubble_sort	35.249	83.9%	
coremark	32.074	89.2%	
crc32	46.554	98.9%	
dhrystone	37.342	97.3%	
quick_sort	27.056	81.4%	
select_sort	41.781	96.5%	
sha	45.277	98.0%	
stream_copy	37.631	98.9%	
stringsearch	38.312	95.7%	

- 综合 IPC 比值 37.873。
- 总体 IPC 不高。
 - 结果前传未做到位。
- IPC 比值方差很大。
 - 一流水线很长,分支预测失败惩罚很大。

还有什么优化空间吗?

checkpoint 3 性能优化之路

测试名	优化前	优化后	提升率
bitcount	41.862	42.295	1.03%
bubble_sort	35.249	38.257	8.53%
coremark	32.074	33.983	5.95%
crc32	46.554	46.762	0.45%
dhrystone	37.342	38.018	1.81%
quick_sort	27.056	32.643	20.65%
select_sort	41.781	42.170	0.93%
sha	45.277	45.523	0.54%
stream_copy	37.631	37.720	0.24%
stringsearch	38.312	38.683	0.97%

- IPC 比值从 37.873 升至 39.366,总提 升率 3.9%。
- 采用 4 项 checkpoint 缓存状态。
- 分离 BRU 用于提前唤醒。
- 上板功能、性能测试通过,跑系统有问题,且资源占用极大影响频率,未进入最终提交版本。

流水线前传 (通过 PRF 实现完全的 Alu 结果的前传) 3 性能优化之路

测试名	优化前	优化后	提升率
bitcount	41.862	42.870	2.41%
bubble_sort	35.249	36.757	4.28%
coremark	32.074	33.190	3.48%
crc32	46.554	46.952	0.85%
dhrystone	37.342	37.923	1.56%
quick_sort	27.056	28.034	3.61%
select_sort	41.781	42.570	1.89%
sha	45.277	46.486	2.67%
stream_copy	37.631	37.996	0.97%
stringsearch	38.312	39.192	2.30%

- IPC 比值从 37.873 升至 38.780,总提 升率 2.4%。
- 主要提升的是 ALU 到 LSU 的唤醒效率。
- 决赛提交之后实现。

Table of Contents 4 总结致谢

- ▶ Core 架构设计
- ▶ 操作系统支持
- ▶ 性能优化之路
- ▶ 总结致谢

Good Luck!

4 总结致谢

- 经过近半年的努力我们终于实现了我们最初的梦想: 在自己的 CPU 上跑 Linux。
- 仍留有不少遗憾,这与我们后期开发效率低下很有关系。此次经历让我们认识 到用好 verilator、GEM5 等工具的重要性。

感谢周健老师长期以来的指导以及龙芯杯群友的帮助!

MBOOM: An Out-of-order Dual-issue MIPS Architecture Processor

Thank you for listening!
Any questions?