Relatório Técnico - Trabalho 1

Disciplina: CI1009 - Programação Paralela com GPUs

Professor: W. Zola Instituição: UFPR Semestre: 2º/2025 Data: Outubro de 2025

Autores: Cristiano Creppo Mendieta e Thiago Ruiz

1. Objetivo

O objetivo deste trabalho é implementar e comparar diferentes estratégias de **kernels CUDA** para realizar a operação de **redução paralela**, especificamente para encontrar o valor máximo em vetores de ponto flutuante (float). Foram implementadas duas abordagens principais (Many-threads e Persistente) e os resultados foram comparados com a implementação de referência da biblioteca **Thrust**.

2. Metodologia

2.1. Especificações de Hardware

- GPU: NVIDIA GeForce GTX 750 Ti

2.2. Configuração dos Experimentos

Parâmetro	Valor
Tamanhos de entrada	10■ e 16×10■ elementos
Número de repetições (nR)	30
Tipo de dado	float (32 bits)
Threads por bloco	1024
Blocos (kernel persistente)	32

2.3. Geração dos Dados de Entrada

```
for (int i = 0; i < nTotalElements; i++) {
   int a = rand(); // Número pseudo-aleatório [0, RAND_MAX]
   int b = rand(); // Número pseudo-aleatório [0, RAND_MAX]
   float v = a * 100.0 + b;
   Input[i] = v;
}</pre>
```

2.4. Implementação dos Kernels

Kernel 1 – Many-threads (reduceMax)

Implementação clássica de redução paralela com as seguintes fases: cada thread carrega um elemento para memória compartilhada; redução em árvore (tree reduction) no bloco; a thread 0 grava o resultado parcial; múltiplas invocações do kernel até obter um único valor.

Kernel 2 - Persistente (reduceMax_atomic_persist)

Versão otimizada com kernel persistente: cada thread processa múltiplos elementos (coalesced access), redução intra-bloco usando atomicMax em shared memory e thread 0 de cada bloco aplicando atomicMax na memória global.

Thrust

Utilizou-se a função thrust::max_element como referência pela sua implementação altamente otimizada.

3. Resultados Experimentais

3.1. Tabela de Resultados

Teste	Kernel	Elementos	Tempo Médio (na	s)Vazão (GFLO	P S) celeração ve	Thr
1M	copyKernel	1.000.000	115.856	8,630	1,60×	
1M	Many-threads	1.000.000	595.779	1,678	0,31×	
1M	Thrust	1.000.000	185.944	5,378	1,00×	
1M	Persistente	1.000.000	114.926	8,701	1,62×	
16M	Many-threads	16.000.000	8.750.399	1,828	0,12×	
16M	Thrust	16.000.000	1.009.741	15,846	1,00×	
16M	copyKernel	16.000.000	1.785.718	8,960	0,57×	
16M	Persistente	16.000.000	1.046.368	15,291	0,96×	

3.2. Gráfico de Desempenho

Figura 1 – Desempenho dos Kernels de Redução CUDA (GTX 750 Ti).

Desempenho dos Kernels de Redução CUDA - GTX 750 Ti

4. Análise e Discussão

4.1. copyKernel - Baseline de Largura de Banda

Tamanho	Vazão (GFLOPS)	Largura de banda (GB/	sEficiência
1M	8,630	69,05	79,9%
16M	8,960	71,68	83,0%

Os valores indicam operação próxima ao limite teórico (86,4 GB/s), confirmando que o copyKernel é uma operação memory-bound eficiente.

4.2. Kernel Many-threads

O kernel Many-threads apresentou desempenho significativamente inferior (≈1.7–1.8 GFLOPS). As razões principais incluem múltiplas invocações do kernel, overhead de sincronização e leituras/gravações repetidas na memória global.

4.3. Kernel Persistente

O kernel Persistente obteve bom desempenho, com 8,701 GFLOPS (1M) e 15,291 GFLOPS (16M). Beneficia-se de uma única invocação, acessos coalescidos e uso eficiente de atomics em shared memory.

4.4. Thrust

A biblioteca Thrust apresentou desempenho muito bom, especialmente para 16M elementos (15,846 GFLOPS), provavelmente devido a heurísticas de balanceamento de carga, unrolling e otimizações específicas da arquitetura.

4.5. Escalabilidade

Kernel	Vazão 1M	Vazão 16M	Ganho
copyKernel	8,63	8,96	1,04×
Many-threads	1,68	1,83	1,09×
Persistente	8,70	15,29	1,76×
Thrust	5,38	15,85	2,95×

5. Conclusões

- copyKernel define o limite de largura de banda, alcançando 80–83% da capacidade teórica.
- Kernel Persistente alcança eficiência próxima ao copyKernel para 1M elementos, indicando que está limitado por banda e não por computação.
- Para vetores menores, o Persistente supera o Thrust (1,62x) devido à redução de overhead.
- Para vetores maiores, o Thrust apresenta leve vantagem graças a otimizações de cache e escalabilidade.
- Many-threads é inadequado para este problema, apresentando penalidades significativas de desempenho.
- Operações atômicas em shared memory mostraram-se eficientes e sem impacto negativo relevante.

6. Decisões de Implementação e Limitações

6.1. Interface de Execução

Nota: o número de repetições nR = 30 está fixo na constante NTIMES no código-fonte.

7. Arquivos Entregues

- Código-fonte: cudaReduceMax.cu, helper_cuda.h, chrono.c
- Scripts: compila.sh, executar_experimentos.sh, scripts/processar_resultados_completo.py
- Dados experimentais: resultados/dados_*.txt e resultados/resultados_completos.csv
- Gráficos: resultados/plots/resultado_final.png

8. Reprodutibilidade dos Experimentos

```
# Compilar o programa
make

# Executar todos os experimentos
make test

# Execuções individuais
./copyKernel 1000000 > resultados/dados_1M_copy.txt
./cudaReduceMax 1000000 > resultados/dados_1M_many.txt
./cudaReduceMax 1000000 32 > resultados/dados_1M_persist.txt
./copyKernel 16000000 > resultados/dados_16M_copy.txt
./cudaReduceMax 16000000 > resultados/dados_16M_many.txt
./cudaReduceMax 16000000 > resultados/dados_16M_many.txt
./cudaReduceMax 16000000 32 > resultados/dados_16M_persist.txt

# Processar resultados e gerar gráficos
python3 scripts/processar_resultados_completo.py
```