Question 4.2.3

Al25BTECH11040 - Vivaan Parashar

September 30, 2025

Question:

Find the equation of the plane determined by the points A(3, -1, 2), B(5, 2, 4) and C(-1, -1, 6). Also find the distance of the point P(6, 5, 9) from the plane.

Solution:

A plane in 3D is represented by the equation $\mathbf{n}^T\mathbf{x} = c$, where the vector \mathbf{n} represents the normal to the plane, and c is an arbitrary constant, that can be set to 1 for simplicity. We have three points that lie on the plane, \mathbf{A} , \mathbf{B} , and \mathbf{C} . We therefore have the following equations:

$$\mathbf{n}^{\mathrm{T}}\mathbf{A} = 1 \tag{1}$$

$$\mathbf{n}^{\mathrm{T}}\mathbf{B} = 1 \tag{2}$$

$$\mathbf{n}^{\mathrm{T}}\mathbf{C} = 1 \tag{3}$$

$$\implies$$
 $\mathbf{n}^{\mathrm{T}} (\mathbf{A} \quad \mathbf{B} \quad \mathbf{C}) = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ (4)

(5)

Let's call the matrix (**A B C**) **M**. Multiply both sides by \mathbf{M}^{-1} on the right:

$$\implies$$
 $\mathbf{n}^{\mathrm{T}} = \frac{1}{19} \begin{pmatrix} 3 & -4 & 3 \end{pmatrix} \qquad (7)$

Thus, the equation of the plane is given by:

$$(3 -4 3) \mathbf{x} = 19$$
 (8)

The distance d of the point **P** from the plane is given by:

$$d = \frac{|\mathbf{n}^{\mathrm{T}}\mathbf{x}_{\mathbf{P}} - c|}{\|\mathbf{n}\|}$$

$$\Rightarrow d = \frac{|(3 -4 3) \begin{pmatrix} 6 \\ 5 \\ 9 \end{pmatrix} - 19|}{\sqrt{(3)^2 + (-4)^2 + (3)^2}}$$

$$\Rightarrow d = \frac{6}{\sqrt{34}}$$

$$(10)$$

V → □ → ← E → ← E → へ Q へ ○

Plot:

Figure: Graph of plane and points A, B, C and P