

#### **SITUATION**

On cherche parfois à déterminer la limite en a de la fonction h définie comme la composée de deux fonctions f et g ( $h=f\circ g$ ), où a représente un réel,  $+\infty$  ou  $-\infty$ .

### ÉNONCÉ

Déterminer la limite en  $+\infty$  de la fonction h définie par :

$$orall x \in \mathbb{R}_{+}^{st}, \ h\left(x
ight) = e^{\displaystylerac{1}{x}}$$

## Etape 1

# Déterminer la limite de la première fonction

On a  $h=f\circ g$  .

On détermine dans un premier temps la limite de g en a.

### **APPLICATION**

On sait que:

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

### Etape 2

# Effectuer le changement de variable

On pose le changement de variable  $X=g\left( x
ight)$  dans l'expression de la fonction h.

#### **APPLICATION**

En posant le changement de variable  $X=rac{1}{x}$  , on a :

$$e^{\frac{1}{x}} = e^X$$

### Etape 3

# Calculer la deuxième limite

On détermine la limite quand X tend vers b de la fonction f, où b est la limite de la fonction g lorsque x tend vers a.

#### **APPLICATION**

De plus, on sait que :

$$\lim_{X o 0}e^X=1$$

## Etape 4

## **Conclure**

En notant / la limite trouvée précédemment, on peut conclure :

$$\lim_{x o a}h\left(x
ight)=\lim_{x o a}f\left(g\left(x
ight)
ight)=l$$

**APPLICATION** 

On a donc:

$$\lim_{x o +\infty}e^{rac{1}{x}}=1$$