FORMÁT BNL SOUBORU

jindroush@seznam.cz, červen 2025

Co obsahuje BNL soubor

Většina informací níže jsou jen teorie ověřené na známých souborech, většinou bez zkoumání zpracování firmwarem tužky.

- Číslo knihy podle ťuknutí na tlačítko zapínání pak tužka vybere správný soubor
- Módy knihy mezi módem 0 a 1 se přepíná dvojitým ťuknutím na stejný OID kód, na další módy pak výběrem speciálních ikon. Mód určuje, který zvuk se pro OID kód bude přehrávat.
- Vazbu mezi OID kódem a zvukovými soubory. Pro každý OID kód je tolik vazeb, kolik je módů knihy
- Kvízy opačná vazba mezi zvukem otázky a OID kódem odpovědi
- Systémové globální tabulky zvuků pro kvízy, zvuky na systémových tlačítcích apod.
- Zvukové soubory MP3

Pořadí bloků v souboru

Pořadí jednotlivých bloků odpovídá tomu, jak jsou soubory uspořádány v distribuovaných BNL souborech.

- Hlavička obsahující ukazatele na další struktury a nějaké konstanty
- Tabulka offsetů (převodů OID kódů na zvuky)
- Tabulka kvízů, která svazuje intro kvízu s otázkami a správnými odpověďmi
- Tabulky OIDů
- Tabulky zvuků
- Tabulka offsetů na MP3 soubory
- Zašifrované MP3 soubory

Číselné formáty

Číselné formáty použité v tomto souboru jsou 8bitové (dále BYTE), 16bitové little-endian (dále WORD) a 32bitové little-endian (dále DWORD). Všechny ukazatele jsou absolutní DWORD od začátku souboru. Předpoklad je, že všechna čísla jsou unsigned (neznaménková). OID je interní kód tužky, ať už převedený z raw kódu čtečkou z teček z papíru nebo jako virtuální kód použitý ve kvízu. Je to vždy WORD. MediaId je index do tabulky MP3 souborů, od 0, WORD.

Hlavička

Ve všech zkoumaných souborech měla hlavička délku 0x200.

Offset	Тур	Popis	
0x0000	DWORD	Header key – Tímto se XORují všechny ukazatele v hlavičce, nejvyšší byte	
		hodnoty má dále použití u derivace šifrovacího klíče MP3 souborů. Tento	
		dword obsahuje 2 vzájemně svázané bajty – první a poslední. Druhý a třetí	
		bajt obsahuje počet kvízů (WORD, posunutý o 8 bitů vlevo). První bajt plus	
		poslední bajt DWORDu na 0x140 musí dávat 0xF5.	
0x0004	DWORD	? – délka hlavičky a/nebo ukazatel na první hodnotu tabulky OID kódů. Ve	
		všech zkoumaných souborech 0x200. Při pokusech o změnu této hodnoty	
		tužka nikdy nerozpoznala výsledný soubor (pokusy byly o plus mínus	
		DWORD, na 0x300 a na 0x400).	
0x0008	DWORD	Ukazatel na tabulku offsetů na MP3 soubory	
0x000C	DWORD	Ukazatel na tabulku zvuků – přehrávána na první dotyk Start tlačítka	
0x0010	DWORD	Ukazatel na tabulku zvuků – přehrávána na druhý dotyk Start tlačítka	
0x0014	DWORD	Ukazatel na tabulku zvuků – zvuk při "zavření" knihy – jak?	

0x0018	WORD	V oficiálních souborech vždy 0. Z pokusů vyplynulo, že se jedná o nejnižší			
		prvek v tabulce offsetů, tj. bázi tabulky offsetů.			
0x001A	WORD	Poslední použitý OID kód. Délka tabulky offsetů je tím pádem (poslední- báze+1).			
0x001C	WORD	Počet použitých media souborů – bohužel nesedí úplně přesně, většinou je o			
0110010	,, 512	něco menší, než je počet skutečných a využitých MP3 souborů. Tužce však			
		podle pokusů nevadí nastavení na "skutečný" počet MP3 souborů.			
0x001E	WORD	? – vždy 0. Pokus neprokázal, že by jakákoli hodnota zde měla vliv.			
		Pravděpodobně padding předchozího WORDu.			
0x0020	DWORD	Ukazatel na tabulku zvuků – neznámý účel			
0x0024	DWORD	Ukazatel na tabulku zvuků – zvuk, který se ozve při přepnutí módu			
0x0028	DWORD	? – vždy FFFFFFF			
0x002C	DWORD	Book_mode_read - Počet módů, které kniha podporuje (pravděpodobně jen			
		WORD, horní WORD vždy 0 – padding?). Módy jsou přepínány tlačítky			
		jako knížka, žárovka, bublina, vážou jeden OID k více zvukům.			
0x0030	DWORD	? – 5x FFFFFFF			
0x0044	DWORD	Ukazatel na tabulku kvízů			
0x0048	DWORD	Ukazatel na tabulku OIDů (přehrají se při správné odpovědi na kvíz)			
0x004C	DWORD	Ukazatel na tabulku OIDů (přehrají se při správné odpovědi na kvíz)			
0x0050	DWORD	Ukazatel na tabulku OIDů (přehrají se při špatné odpovědi na kvíz)			
0x0054	DWORD	Ukazatel na tabulku OIDů (přehrají se při špatné odpovědi na kvíz)			
0x0058	DWORD	Ukazatel na tabulku OIDů – neznámé použití			
0x005C	WORD	Unikátní číslo knihy – raw kód pro tento OID je vytištěn na tlačítku Start.			
0x005E	WORD	0, padding předchozího WORDu. Pokusem zjištěno, že nezávisí na jeho hodnotě.			
0x0060	DWORD	15x ukazatel na tabulku zvuků s neznámým použitím (syst. zvuky?)			
0x009C	DWORD	3x Ukazatel na tabulku OIDů s neznámým použitím			
0x00A8	DWORD	Ukazatel na tabulku OIDů, nejčastěji s délkou 6. Obsahuje mluvené			
		výsledky kvízu (od žádného dobře, až po všech 5 dobře)			
0x00AC	DWORD	8x DWORD 0xFFFFFFF			
0x00CC	DWORD	29x DWORD ukazatele na tabulky médií s neznámým použitím			
0x0140	DWORD	Pravděpodobně použito pro derivaci klíče, přesně neznámo. Hodnota			
		nejnižšího bajtu tohoto DWORDu sečtená s nejvyšším bajtem header_key			
		musí být 0xF5			
0x0144	BYTE	16 bajtů tvořících klíč k dešifrování MP3 souborů.			
0x0154	DWORD	Až po offset 0x200 samé 0xFFFFFFF			

Tabulka offsetů

Pouze řídký seznam DWORDových ukazatelů – 0xFFFFFFF je "prázdná" hodnota. Každý ukazatel ukazuje na místo, kde je book_mode_read tabulek zvuků za sebou. Každá tabulka má 0 nebo 1 zvuk, nezahlédl jsem žádnou s větší délkou. Pokusem zjištěno, že více zvuků v tabulce prostě znamená postupné přehrávání zvuků. OID je offset do této tabulky, tím váže OID+mód ke zvuku. Od OIDu se odečítá báze tabulky (0x18 v hlavičce). Módy 0 a 1 se střídají, ať už mód 0 je aktivován automaticky po zapnutí nebo po stisknutí ikony "knížky" – většina nebo všechny knihy mají vždy 0 a 1 mód shodný. K přepnutí mezi módy 0 a 1 dojde při opětovném načtení stejného OIDu.

Tabulka OIDů

Jednoduchá tabulka, která obsahuje WORDový počet položek N a za ním N WORDů OIDů.

Tabulka zvuků

Jednoduchá tabulka, která obsahuje WORDový počet položek N a za ním N WORDů zvuků.

Tabulka offsetů na MP3 soubory

Tabulka pro N MP3 souborů – pouze N+1 DWORDových offsetů na začátek MP3 souboru, poslední DWORD je délka celého souboru (a tím i konec posledního MP3 souboru). Začátky MP3 souborů jsou zarovnány na násobky 512, výplň jsou 0. Konec není zarovnán.

Tabulka kvízů

Nejkomplikovanější a nejméně probádaná část BNL souboru, v této jsou zatím největší nejasnosti:

Začíná seznamem DWORD ukazatelů na jednotlivé hlavičky kvízů. Není známa délka této tabulky, hned za ní následuje první hlavička kvízu, tím se dá procházení ukončit. Počet kvízů většinou odpovídá počtu dvoustran knihy, někdy násobeno více obtížnostmi kvízů.

Hlavička kvízu

0x0000	WORD	Neznámá hodnota, většinou 0. Hodnota 4 znamená speciální typ kvízu, viz				
		níže. Jednou zahlédnuta hodnota 0x100, 2x hodnota 1. Hodnota 1 u				
		"normálně" konstruovaného kvízu pero pouze přečte úvod kvízu, ale				
		nepokládá otázky. 0x100 se chová jako 0x00 (uvažuje se pouze dolní byte?)				
0x0002	WORD	Qcnt – Počet možných otázek kvízu				
0x0004	WORD	Počet položených otázek kvízu. Je nutno křížově kontrolovat, že pole na				
		offsetu 0xA8 má vždy délku o jedna větší než je hodnota zde (Všechny				
		špatně až po všechny dobře, N+1 možností). Teorie: podle všeho z toho				
		plyne, že všechny kvízy musí mít nastaveno stejný počet otázek – jinak by				
		nefungovalo správně vyhodnocení, některé knihy toto mají nastaveno různě				
		(nemám k dispozici)				
0x0006	WORD	Vyhodnocování odpovědí, většinou 0, občas 1, jednou 2 nebo 5. Vykoumané				
		možnosti:				
		0 – stačí najít jeden z OIDů v poli odpovědí				
		1 – chce všechny OIDy v libovolném pořadí				
		2 – chce všechny OIDy v přesném pořadí				
		3 – neustále cykluje otázku.				
0x0008	WORD	OID vedoucí na zvuk úvodu kvízu. Neplatná hodnota stejně způsobí spuštění				
		správného kvízu bez úvodního zvuku. Teorie: znamená to tedy, že pořadí				
		kvízů je dáno čistě pořadím v tabulce (a tím pádem je napevno nakódováno				
		od 100) a OID je tam pouze jako vazba k úvodnímu zvuku?				
0x000A	DWORD	Qcnt krát DWORD ukazatel na jednotlivé otázky				

Jednotlivá otázka kvízu (jiný typ než 4)

0x0000	WORD	Neznámá hodnota, dost často rovna druhé hodnotě, i při nastavení na			
		bovolnou hodnotu, klidně stejnou pro všechny otázky, jsem nezaznamenal			
		rozdíl – pro kvíz typu 0.			
0x0002	WORD	OID vedoucí na zvuk kvízové otázky			
0x0004		Zde je tabulka OIDů, které označují správné odpovědi (stejný formát jako			
		tabulka OIDů popsaná výše)			

Jednotlivá otázka kvízu – typ 4

0x0000	WORD	OID vedoucí na zvuk kvízové otázky	
0x0002	WORD	Neznámá hodnota, viděno 1	
0x0004	WORD	Neznámá hodnota, viděno 1	
0x0006	WORD	Neznámá hodnota, viděno 3	
		Tabulka OIDů označujících správné odpovědi	
		Tabulka OIDů, neznámý účel?	
		Tabulka OIDů, zvuk správné odpovědi 1	
		Tabulka OIDů, zvuk správné odpovědi 2	
		Tabulka OIDů, zvuk nesprávné odpovědi 1	
		Tabulka OIDů, zvuk nesprávné odpovědi 2	

	Tabulka OIDů, zvuk konečného vyhodnocení pozitivního
	Tabulka OIDů, zvuk konečného vyhodnocení negativního

Šifrování MP3

Šifrování MP3 používá 16bajtový klíč. Jeho hodnota je vytvořena tak, že se k 16 bajtům, uloženým v hlavičce od adresy 0x144 přičte nejvyšší byte header_key.

Na adrese 0x140 je nachází prozatím záhadná hodnota, ze které vychází generace meziklíče. Hodnota je relativně nízká, často zleva zarovnaná nulami, takže vypadá jako nějaký ukazatel nebo součet. Zatím se nepodařilo zjistit, s čím tato hodnota koreluje.

Na adrese 0x144 se pak nacházejí 4 DWORDy.

DWORD 1 – je zatím generován neznámým způsobem z hodnoty na adrese 0x140 (dost často jsou bajty 2 stejný a bajt 3 podobný), první a poslední bajt je pak provázán pomocí tabulky TblUnk2 z firmware.

DWORD 2 – je 32bitově zarovnaný trojnásobek DWORDu 1

DWORD 3 – je celočíselný výsledek dělení DWORDu 2 pěti.

DWORD 4 – je DWORD 3 plus dva.

Komentář: Je naprosto nepochopitelné, proč je meziklíč uložen v souboru BNL, když je algoritmicky snadné ho vygenerovat. Takto vlastně vyloženě vybízí k snadnému rozšifrování, protože DWORD 1 často obsahuje 0, takže se dá jednoduše odvodit, že se musí přičíst bajt z header_key. Navíc, protože je meziklíč uložený v souboru, je pak snadno odvoditelný celý klíč, ještě s přihlédnutím k tomu, že DWORD 3 a DWORD 4 jsou prakticky stejné. Všechno špatně (pro reverzní analýzu dobře).

MP3 soubory jsou uloženy za sebou, vždy na offsetu dělitelném 512 (0x200). Šifrování funguje takto:

Vezme se 16 bajtů uložených v hlavičce od offsetu 0x144, ke každému bajtu se přičte nejvyšší bajt header_key. Vygeneruje se řídký klíč o velikosti 512 (0x200) bajtů a to tak, že

- na každých 16 bajtů se použijí 4 bajty klíče z hlavičky, ty se umístí na offsety 0 až 3 od čísla dělitelného 4
- tj. každých 64 bajtů se použije celý 16 bajtový klíč z hlavičky přesně jednou
- toto se zopakuje v 8 blocích

Offsety 0 až 3 jsou uloženy ve firmware, na adrese, kterou jsem si provizorně nazval Tbl_mp3_encryption_offsets. Než jsem na to přišel, dal jsem dohromady tabulku, která funguje pro všechny BNL soubory.

Níže uvedená tabulka má pro každý bajt vstupního klíče jeden řádek, každý řádek pak říká, jaký má mít bajt klíče offset od čísla dělitelného 4 v každém z 8 bloků.

Tedy první bajt vstupního klíče bude uložen na offsetech: 0x00, 0x41, 0x81, 0xC2, 0x100, 0x141, 0x181, 0x1C2. Druhý bajt pak na offsetech 0x07, 0x47, 0x86, 0xC5, 0x105, 0x146, 0x186, 0x1C5.

```
[0,1,1,2,0,1,1,2],
[3,3,2,1,1,2,2,1],
[2,2,3,1,2,2,3,1],
[1,0,0,0,1,0,0,0],
[1,2,0,1,1,2,0,1],
[1,2,0,2,1,2,2,2],
[2,1,0,0,2,1,0,0],
[2,3,2,2,2,3,2,2],
```

```
[3,0,3,1,3,0,3,1],

[0,0,1,1,0,3,1,1],

[2,2,3,0,2,2,3,1],

[3,1,0,0,3,1,0,0],

[3,3,0,2,3,3,1,2],

[1,2,0,0,1,2,0,0],

[2,1,0,3,2,1,3,3],

[0,0,0,0,0,0,0,0]
```

```
Tedy
```

```
klíč[ blok * 0x40 + ofs_klíč * 4 + tabulka_výše[ofs_klíč][blok] = vstklíč[ofs_klíč];
```

Tento klíč se pak XORuje ke každému bajtu MP3 souboru. Vynechávají se bajty: 0x00, 0xFF, bajt shodný s bajtem klíče (protože by XOR vedl k 0x00) a bajt shodný s bajtem klíče XOR 0xFF.

Stejný postup se používá pro šifrování i dešifrování souboru.

Výchozí hodnoty

Číselné hodnoty OIDů jsou zcela jistě rozděleny do několika skupin. Původně toto rozdělení bylo odvozeno z existujících souborů, posléze, po úspěšné analýze tabulky na začátku třetí části firmware, bylo rozdělení lépe objasněno.

Kód knihy byl pozorován od 0x32A po 0xCFC, z analýzy firmware bylo posléze upřesněno na 0x2BD (701) až 0x270F (9999).

Kvízy (jejich "úvodní otázky" a kódy natištěné na ikonách kostky) začínají vesměs od 0x64 (100). Některé kvízy ovšem vedou na neexistující OIDy zvuků úvodu – vypadá to, že pak tužka nepřehraje žádný zvuk. Podle analýzy firmware kvízy začínají na 0x64 (100) a pokračují až k 0x1F3 (499).

OIDy v OID tabulkách 0x190-0x1BD, výjimečně 0x1F4-0x221.

Většina kódů na první straně knihy začíná OID kódem 0x2AF8 (11000), 0x2AF9, 0x2AFA. Učitel začíná 0x283D, Dinosauři 0x2711 (10001). Poměrně často se dá zaznamenat, že OID kódy pro fyzické stránky knih začínají na takto zarovnaných desítkových číslech. Vzhledem ke konci rozsahu čísel knih na 9999 můžeme odhadnout, že uživatelské kódy začínají na 0x2710 (10000).

Zabudované kódy tlačítek

Ikona	Raw kód na	Interní kód	Firmware kód
	papíře		
Start	Raw id knihy	0x02BD-0x270F	0x0010
Vol+	0x0015	0x0007	0x0030
Vol-	0x0016	0x0008	0x0031
Stop	0x0014	0x0006	0x0080
Porovnání	0x0531	0x0063	0x0050
Opakuje poslední zvuk		0x0009	0x0504 (nebo 0?)
MP3 mp3	0x0141	0x002E	0x0040
MP3 play	0x0143	0x002F	0x0043
MP3 pause	0x0150	0x0030	0x0042
MP3 stop	0x0151	0x0031	0x0044
MP3 prev	0x0153	0x0032	0x0045
MP3 next	0x0180	0x0033	0x0046
WAV Record 001-300		0xEA61-0xEB8C	0x3000-0x312B
WAV Record 301-999		0xF231-0xF4EB	0x312C-0x3257
WAV play 001-300		0xEB8D-0xECB8	0x4000-0x412B
		0xF4ED-0xF7A7	0x412C-0x43E6

WAV OK any		0xECB9-0xEDE4	0x7000
WAV OK any		0xF03D-0xF168	0x7001
Audioblok REC		0xEDE5-0xEF10	0x5000-0x512B
(bookidRecXXX.wav)			
Audioblok PLAY		0xEF11-0xF03C	0x6000-0x612B
Mód 1 / Otevřená kniha	0x000C	0x0004	0x0093
Mód 2 / Žárovka/Play	0x000F	0x0005	0x0094
Mód 3 / Bublina	0x0007	0x0003	0x0092
Mód 4 / Nota / Český	0x0006	0x0002	0x0091
překlad (zákl. inf.)			
Mód 5 / Český překlad	0x0005	0x0001	0x0090
(dialogy)			
Mód 6	0x25CF	0x0225	0x0095
Mód 7	0x25D5	0x0226	0x0096
Mód 8	0x25DA	0x0227	0x0097
Mód 9	0x25DF	0x0228	0x0098
Mód 10	0x25FC	0x0229	0x0099
Mód 11	0x2800	0x022A	0x009A
Mód 12	0x2819	0x022B	0x009B
Hlasitost (volume slider)	X	0x000A-0x0019	0x0020-0x002F
Nahrávání vlastního zvuku		0xCB3A	0x60
Ukončení nahrávání		0xCB3B	0x61
Přehrání všech REC		0xCB3C	0x62
Kalkulačka, spuštění		0xCB72	0x81
Kalkukačka, 0-9,+,-,*,/,=,C		0xCB73-0xCB81	0x82 ?

Existuje i řada dalších interních kódů firmware, ale zatím neznám jejich význam: 0x2000-0x201C

0x48-0x4A

0x60-0x62

0xF01-0xF16

0x70-0x77 (v novějším firmware, bez 0x73)

Další rozsahy OIDů v hlavní konverzní funkci, nejdřív se provede toto vyhodnocení, až pak se konzultuje šifrovaná tabulka v třetí části firmware. Naprosto mi zatím uniká důvod duplikace téhož v kódu i v tabulce.

0xFE11	=	0x31		->	vol-
0xFE12	=	0x30		->	vol+
0x9		=			0x504
0xCB3A		=			0x60
0xCB3B		=			0x61
0xCB3C		=			0x62
0xCB83		=			0x108
0x34-0x3A		=			0x100-0x106
0xCB54-0xCB5A		=			0x100-0x106
0x1E,	0xCB52		=		0x109
0x1F,	0xCB53		=		0x10A
0x50,	0xCB70		=		0x10B
0x51,	0xCB71		=		0x10C
0x3C-0x4F		=			0x300-0x313
0xCB5C-0xCB6F		=			0x314-0x327

0xEA61-0xEB8C		=			0x3000-0x312B
0xF231-0xF4EB		=			0x312C-0x3257
0xEB8D-0xECB8		=			0x4000-0x412B
0xF4ED-0xF7A7		=			0x412C-0x43E6
0xEDE5-0xEF10	=	0x5000-0x512B	->	wav	record?
0xEF11-0xF03C	=	0x6000-0x612B	->	wav	play?
0xECB9-0xEDE4		=			0x7000
0xF03D-0xF168		=			0x7001
0x52,0xCB72		=			0xE6
0x62,0xCB82		=			0xEF
0x5D-0x61		=			0xE8-0xEC
0xCB7D-0xCB81		=			0xE8-0xEC
0x53-0x5C		=			0xF0-0xF9
0xCB73-0xCB7C		=			0xF0-0xF9
0xD2F1-0xE14A	=	0x40C		->	písničky?
0x215		=			0x501
0x216		=			0x502
0x217		=			0x404
0x218		=			0x405
0x219		=			0x406
0x21A		=			0x407
0x21B		=			0x408
0x21C		=			0x503

Zatím nevyjasněné a nezpracované kódy lze popsat na Google sheetu zde

Historie

1.0	2.2.2022	Jindroush	první verze
1.1	21.2.2022	Jindroush přidány kódy tlačítek	
1.2	5.3.2022	Jindroush	přidány přesnější rozsahy kódů
1.3	7.4.2022	Jindroush	přidány další rozsahy kódů
1.4	24.6.2025	Jindroush	zapracovány poznámky Vaška Potočka z issue 4: význam byte 6
			v kvízu (již dříve reportováno Honzou Janovským na TataGeek,
			bohužel včas nezapracováno), interní kód 9 (již dříve reportováno
			darinas), kódy pro kalkulačku (částečně reportováno darinas),
			opraven rozsah až po 0x77, systémové zvuky a tabulka na 0x14,
			přidáno vysvětlení generace meziklíče. Přidán link na Google sheet.