A LOWER BOUND FOR THE SCALAR CURVATURE OF NONCOMPACT NONFLAT RICCI SHRINKERS

BENNETT CHOW, PENG LU, AND BO YANG

ABSTRACT. We show that recent work of Ni and Wilking [7] yields the result that a noncompact nonflat Ricci shrinker has at most quadratic scalar curvature decay. The examples of noncompact Kähler–Ricci shrinkers by Feldman, Ilmanen, and Knopf [5] exhibit that this result is sharp.

Let (\mathcal{M}^n, g, f) be a complete shrinking gradient Ricci soliton (*Ricci shrinker* for short) with $R_{ij} + \nabla_i \nabla_j f - \frac{1}{2} g_{ij} = 0$ and $R + |\nabla f|^2 - f = 0$. Bing-Long Chen [2] proved that $R \geq 0$. If (\mathcal{M}, g) is not isometric to Euclidean space, then R > 0 (see Stefano Pigola, Michele Rimoldi, and Alberto Setti [8] and Shijin Zhang [9]).

Recently, Lei Ni and Burkhard Wilking [7] proved that on any noncompact nonflat Ricci shrinker and for any $\epsilon > 0$, there exists a constant $C_{\epsilon} > 0$ such that $R(x) \ge C_{\epsilon} d(x, O)^{-2-\epsilon}$ wherever d(x, O) is sufficiently large. The purpose of this note is to observe the following version of their result.

Theorem 1. Let (\mathcal{M}^n, g, f) be a complete noncompact nonflat shrinking gradient Ricci soliton. Then for any given point $O \in \mathcal{M}$ there exists a constant $C_0 > 0$ such that $R(x)d(x,O)^2 \geqslant C_0^{-1}$ wherever $d(x,O) \geqslant C_0$. Consequently, the asymptotic scalar curvature ratio of g is positive.

Proof. Recall that Huai-Dong Cao and De-Tang Zhou [1] proved that there exists a positive constant C_1 such that f satisfies the estimate:

(1)
$$\frac{1}{4} \left[\left(d(x, O) - C_1 \right)_+ \right]^2 \le f(x) \le \frac{1}{4} \left(d(x, O) + 2f(O)^{\frac{1}{2}} \right)^2,$$

where $c_+ = \max(c, 0)$ (see also Fu-Quan Fang, Jian-Wen Man, and Zhen-Lei Zhang [4] and, for an improvement, Robert Haslhofer and Reto Müller [6]). Define the f-Laplacian $\Delta_f = \Delta - \nabla f \cdot \nabla$. We have $0 < R + |\nabla f|^2 = f = \frac{n}{2} - \Delta_f f$. Recall that (see [3] for example)

(2)
$$\Delta_f R = -2 \left| \text{Rc} \right|^2 + R.$$

Note that

(3)
$$\Delta_f(f^{-1}) = f^{-1} - f^{-2} \left(\frac{n}{2} - 2 \frac{|\nabla f|^2}{f} \right),$$

(4)
$$\Delta_f(f^{-2}) = 2f^{-2} - f^{-3}\left(n - 6\frac{|\nabla f|^2}{f}\right).$$

Using (2) and (3), we compute for any c > 0

(5)
$$\Delta_f \left(R - cf^{-1} \right) \leqslant R - cf^{-1} + cf^{-2} \left(\frac{n}{2} - 2 \frac{|\nabla f|^2}{f} \right).$$

Define $\phi = R - cf^{-1} - cnf^{-2}$. By (4) we obtain

(6)
$$\Delta_f \phi \leqslant \phi - cn f^{-3} \left(\frac{f}{2} - n \right) - c f^{-4} \left(2f + 6n \right) |\nabla f|^2.$$

Choosing c>0 sufficiently small, we have $\phi>0$ inside $B(O,C_1+3n)$, where C_1 is as in (1). If $\inf_{\mathcal{M}-B(O,C_1+3n)}\phi \doteq -\delta<0$, then by (1) there exists $\rho>C_1+3n$ such that $\phi>-\frac{\delta}{2}$ in $\mathcal{M}-B(O,\rho)$. Thus a negative minimum of ϕ is attained at some point x_0 outside of $B(O,C_1+3n)$. By the maximum principle, evaluating (6) at x_0 yields $\frac{f(x_0)}{2}-n\leq 0$. However, (1) implies that $f(x_0)\geqslant \frac{9n^2}{4}$, a contradiction. We conclude that $R\geq cf^{-1}+cnf^{-2}$ on \mathcal{M} . The theorem follows from (1).

Remark. Mikhail Feldman, Tom Ilmanen, and Dan Knopf [5] constructed complete noncompact Kähler–Ricci shrinkers on the total spaces of k-th powers of tautological line bundles over the complex projective space \mathbb{CP}^{n-1} for 0 < k < n. These examples, which have Euclidean volume growth and quadratic scalar curvature decay, show that Theorem 1 is sharp.

Acknowledgment. We would like to thank Lei Ni for informing us of his result with Burkhard Wilking.

References

- [1] Cao, Huai-Dong; Zhou, Detang. On complete gradient shrinking Ricci solitons. Journal of Differential Geometry 85 (2010), 175–185.
- [2] Chen, Bing-Long. Strong uniqueness of the Ricci flow. Journal of Differential Geometry 82 (2009), 363–382.
- [3] Eminenti, Manolo; La Nave, Gabriele; Mantegazza, Carlo. Ricci solitons: the equation point of view. Manuscripta Mathematica 127 (2008), 345–367.
- [4] Fang, Fu-Quan; Man, Jian-Wen; Zhang, Zhen-Lei. Complete gradient shrinking Ricci solitons have finite topological type. C. R. Math. Acad. Sci. Paris 346 (2008), 653–656.
- [5] Feldman, Mikhail; IImanen, Tom; Knopf, Dan. Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons. Journal of Differential Geometry, 65 (2003), 169–209.
- [6] Haslhofer, Robert; Müller, Reto. A compactness theorem for complete Ricci shrinkers. arXiv:1005.3255v2.
- [7] Ni, Lei; Wilking, Burkhard. In preparation.
- [8] Pigola, Stefano; Rimoldi Michele; Setti; Alberto G.. Remarks on non-compact gradient Ricci solitons. Mathematische Zeitschrift, DOI 10.1007/s00209-010-0695-4.
- [9] Zhang, Shijin. On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below. arXiv:0909.0716, to appear in Acta Mathematica Sinica.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA SAN DIEGO, LA JOLLA, CA 92093 E-mail address: benchow@math.ucsd.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OR 97403 E-mail address: penglu@uoregon.edu

Department of Mathematics, University of California San Diego, La Jolla, CA 92093 $E\text{-}mail\ address$: b5yang@math.ucsd.edu