การบวกและการสบเวกเตอร์

การบวกเวกเตอร์

การลบเวกเตอร์

TRICK !!!

II. การคูณเวกเตอร์ด้วยสเกลาร์

บทนิยาม

กำหนดให้ a เป็นจำนวนจริง

 \vec{u}

a > 0аù

 $a\bar{u}$ กับ \bar{u} มีทิศเดียวกัน

a < 0

aù

 $a\bar{u}$ กับ \bar{u} มีทิศตรงข้ามกัน

Trick!!

$$\overrightarrow{w} = \frac{1}{m+n} (n\overrightarrow{u} + m\overrightarrow{v})$$

ทฤษฎีบทที่สำคัญ

 $|\vec{v}| \hat{u} \neq \hat{0}, \hat{v} \neq \hat{0}, a \in R$

- 1. ทฤษฎีบท \widehat{u} // \widehat{v} \rightarrow มี $a \neq 0$ ที่ทำให้ $\widehat{u} = a\widehat{v}$
- 2. ทฤษฎีบท ถ้า \bar{u} % \bar{v} และ $a\bar{u}+b\bar{v}=\bar{0}$ แล้ว a=0 และ b=0

 $\underline{\mathbf{E}}\mathbf{x}$ กำหนด \widehat{u} , $\widehat{v} \neq \widehat{0}$ และ \widehat{u} \mathbb{X} \widehat{v} ถ้า $x\widehat{u} + (3x - 1)\widehat{v} = (2y + 1)\widehat{u} - 6y\widehat{v}$ จงหา x + y

Sol

$$(x-2y-1)\hat{u} + (3x-1+6y)\hat{v} = \hat{0}$$

$$\begin{cases} x - 2y - 1 = 0 \\ 3x + 6y - 1 = 0 \end{cases} \quad x = \frac{2}{3}, \quad y = -\frac{1}{6}$$

$$\therefore x + y = \frac{1}{2}$$

III. เวกเตอร์ในระบบพิกัดฉากสองมิติและสามมิติ

	2 มิติ	3 มิติ
	$\overrightarrow{j} \qquad \overrightarrow{j} \qquad \overrightarrow{j} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \overrightarrow{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\overrightarrow{PQ} = (x_2 - x_1) \overrightarrow{i} + (y_2 - y_1) \overrightarrow{j}$ $= \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix}$	$\vec{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \vec{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $P(x_1, y_1, z_1)$ $P(x_2, y_2, z_2)$ $P(x_1, y_1, z_1)$ y x $P(x_2, y_2, z_2)$ x $= \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix}$
ขนาดของเวกเตอร์	$\vec{u} = a\vec{i} + b\vec{j}$ $ \vec{u} = \sqrt{a^2 + b^2}$	$\overrightarrow{u} = a\overrightarrow{i} + b\overrightarrow{j} + c\overrightarrow{k}$ $(\overrightarrow{u}) = \sqrt{a^2 + b^2 + c^2}$

IV. ผลคูณเชิงสเกลาร์ (Dot Product)

บทนิยาม

ถ้า
$$\vec{u} = a\vec{i} + b\vec{j}$$
, $\vec{v} = c\vec{i} + d\vec{j}$
จะได้ว่า $\vec{u} \cdot \vec{v} = ac + bd$

$$\begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} c \\ d \end{bmatrix} = ac + bd$$

ถ้า
$$\vec{u} = a\vec{i} + b\vec{j} + c\vec{k}$$
, $\vec{v} = d\vec{i} + e\vec{j} + f\vec{k}$
จะได้ว่า $\vec{u} \cdot \vec{v} = ad + be + cf$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} d \\ e \\ f \end{bmatrix} = ad + be + cf$$

 $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos \theta$, θ มุมแบบหางต่อหาง

สมบัติของผลคูณเชิงสเกลาร์

ให้ \vec{u} , $\vec{v} \neq \vec{0}$ จะได้ว่า $\vec{u} \perp \vec{v} \leftrightarrow \vec{u} \cdot \vec{v} = 0$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\overrightarrow{w} \cdot (\overrightarrow{u} \pm \overrightarrow{v}) = \overrightarrow{w} \cdot \overrightarrow{u} \pm \overrightarrow{w} \cdot \overrightarrow{v}$$

$$\vec{u} \cdot \vec{u} = |\vec{u}|^2$$

$$|\overrightarrow{u} \pm \overrightarrow{v}|^2 = |\overrightarrow{u}|^2 \pm 2\overrightarrow{u} \cdot \overrightarrow{v} + |\overrightarrow{v}|^2$$

$$(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = |\overrightarrow{u}|^2 - |\overrightarrow{v}|^2$$

เวกเตอร์ภาพฉาย

ให้
$$\overrightarrow{AB} = \overrightarrow{u}$$
 และ $\overrightarrow{AC} = \overrightarrow{v}$

$$\overrightarrow{AD} = |\overrightarrow{u}| \cos \theta \cdot \frac{\overrightarrow{v}}{|\overrightarrow{v}|} = \frac{(\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{v}}{|\overrightarrow{v}|^2}$$

เรียก \overline{AD} ว่า โปรเจคชั่นเวกเตอร์ ของ \overline{u} บน \overline{v}

V . ผลคูณเชิงเวกเตอร์ (Cross Product)

บทนิยาม

$$\label{eq:variation} \begin{bmatrix} \vec{v} & \vec{u} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \vec{v} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

ทิศทางของเวกเตอร์ $\widehat{u} imes \widehat{v}$

ขนาดของเวกเตอร์ $\widehat{u} imes \widehat{v}$ $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$ heta เป็นมุมแบบหางต่อหาง

สมบัติของผลคูณเชิงเวกเตอร์

\overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} เป็นเวกเตอร์ใดๆ บนระนาบ และ $k \in R$

1.
$$\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$$

2.
$$(\overrightarrow{u} + \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} + \overrightarrow{v} \times \overrightarrow{w}$$
$$\overrightarrow{w} \times (\overrightarrow{u} + \overrightarrow{v}) = \overrightarrow{w} \times \overrightarrow{u} + \overrightarrow{w} \times \overrightarrow{v}$$

3.
$$\overrightarrow{u} \times (k\overrightarrow{v}) = k(\overrightarrow{u} \times \overrightarrow{v})$$

 $(k\overrightarrow{u}) \times \overrightarrow{v} = k(\overrightarrow{u} \times \overrightarrow{v})$

4.
$$\vec{u} \times \vec{u} = \vec{0}$$

5.
$$\vec{i} \times \vec{j} = \vec{k}$$
, $\vec{j} \times \vec{k} = \vec{i}$, $\vec{k} \times \vec{i} = \vec{j}$

6.
$$\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$$

7. ถ้า
$$\overline{u}$$
, $\overline{v} \neq \overline{0}$ และ $\overline{u} \times \overline{v}$ จะได้ว่า $(\overline{u} \times \overline{v}) \perp \overline{u}$ และ $(\overline{u} \times \overline{v}) \perp \overline{v}$

8. ถ้า \overline{u} , \overline{v} , \overline{w} อยู่บนระนาบเดียวกัน จะได้ว่า $\widehat{u} \cdot (\widehat{v} \times \widehat{w}) = 0$