

Integrator Circuit

Design Goals

Input			Output		Supply	
f _{Min}	f _{0dB}	f _{Max}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}
100Hz	1kHz	100kHz	-2.45V	2.45V	2.5V	-2.5V

Design Description

The integrator circuit outputs the integral of the input signal over a frequency range based on the circuit time constant and the bandwidth of the amplifier. The input signal is applied to the inverting input so the output is inverted relative to the polarity of the input signal. The ideal integrator circuit will saturate to the supply rails depending on the polarity of the input offset voltage and requires the addition of a feedback resistor, R₂, to provide a stable DC operating point. The feedback resistor limits the lower frequency range over which the integration function is performed. This circuit is most commonly used as part of a larger feedback/servo loop which provides the DC feedback path, thus removing the requirement for a feedback resistor.

Copyright © 2018, Texas Instruments Incorporated

Design Notes

- 1. Use as large of a value as practical for the feedback resistor.
- 2. Select a CMOS op amp to minimize the errors from the input bias current.
- 3. The gain bandwidth product (GBP) of the amplifier will set the upper frequency range of the integrator function. The effectiveness of the integration function is usually reduced starting about one decade away from the amplifier bandwidth.
- 4. An adjustable reference needs to be connected to the non-inverting input of the op amp to cancel the input offset voltage or the large DC noise gain will cause the circuit to saturate. Op amps with very low offset voltage may not require this.

Design Steps

The ideal circuit transfer function is given below.

$$V_{out} = -\frac{1}{R_1 \times C_1} \int_0^t V_{in}(t) dt$$

1. Set R₁ to a standard value.

$$R_1 = 100k\Omega$$

2. Calculate C_1 to set the unity-gain integration frequency.

$$C_1 = \frac{1}{2 \times \pi \times R_1 \times f_{0dB}} = \frac{1}{2 \times \pi \times 100 k\Omega \times 1 \text{ kHz}} = 1.59 nF$$

3. Calculate R₂ to set the lower cutoff frequency a decade less than the minimum operating frequency.

$$R_2 \geq \frac{10}{2 \times \pi \times C_1 \times f_{Min}} \geq \frac{10}{2 \times \pi \times 1.59 nF \times 10 Hz} \geq 100 M\Omega$$

4. Select an amplifier with a gain bandwidth at least 10 times the desired maximum operating frequency.

GBP
$$\geq 10 \times f_{Max} \geq 10 \times 100 \text{kHz} \geq 1 \text{ MHz}$$

Design Simulations

AC Simulation Results

Transient Simulation Results

A 1-kHz sine wave input yields a 1-kHz cosine output.

A 1-kHz triangle wave input yields a 1-kHz sine wave output.

Design References

See TIPD191, www.ti.com/tool/tipd191.

Design Featured Op Amp

TLV9002				
V _{cc}	1.8V to 5.5V			
V _{inCM}	Rail-to-rail			
V _{out}	Rail-to-rail			
V _{os}	0.4mV			
I _q	0.06mA			
I _b	5pA			
UGBW	1MHz			
SR	2V/μs			
#Channels	1, 2, 4			
www.ti.com/product/tlv9002				

Design Alternate Op Amp

OPA376				
V _{cc}	2.2V to 5.5V			
V _{inCM}	(V _{ee} -0.1V) to (V _{cc} -1.3V)			
V _{out}	Rail-to-rail			
V _{os}	0.005mV			
I _q	0.76mA			
I _b	0.2pA			
UGBW	5.5MHz			
SR	2V/μs			
#Channels	1, 2, 4			
www.ti.com/product/opa376				

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated