

Mechanical modes (Photo-elastic effect)

Wombat 2022, Erlangen, June 14th 2022. Gustavo Wiederhecker.

$$S_{I} = egin{bmatrix} S_{1} & S_{xx} \ S_{2} & S_{yy} \ S_{3} \ S_{4} & S_{5} \ S_{6} \end{bmatrix} = egin{bmatrix} S_{xx} \ S_{yy} \ S_{zz} \ 2S_{yz} \ 2S_{xy} \ 2S_{xy} \end{bmatrix}$$

 $[\Delta \beta(\mathbf{r}; \overrightarrow{S})]_{ij} = p_{ijkl}(\mathbf{r})S_{kl}(\mathbf{r})$

terms of the "impermeability tensor"

Photo-elastic effect is described in

Voigt notation: Strain is a

symmetric tensor

$$\Rightarrow \Delta \epsilon_{im} \beta_{mn} = -\epsilon_{im} \Delta \beta_{mn}$$

$$\Rightarrow \Delta \epsilon_{im} \beta_{mn} \epsilon_{nj} = -\epsilon_{im} \Delta \beta_{mn} \epsilon_{nj}$$

$$\Rightarrow \Delta \epsilon_{ij} = -\epsilon_{im} \Delta \beta_{mn} \epsilon_{nj}$$

$$\Rightarrow \Delta \epsilon_{ij} = -\epsilon_{im} \left(p_{mnrs} S_{rs} \right) \epsilon_{nj}$$

 $(p_{ijrs}S_{rs})$

$$\beta_{ij}x_ix_j=1$$

Perturbation

 $-\epsilon^2 p_{IJ} S_j$

 $\Rightarrow \Delta \epsilon_I =$

p_{11}	p_{12}	p_{12}	0	0	0
p_{12}	p_{11}	p_{12}	0	0	0
p_{12}	p_{12}	p_{11}	0	0	0
0	0	0	p_{44}	0	0
0	0	0	0	p_{44}	0
0	0	0	0	0	p_{44}

 \triangle

-

 $(p_{ijrs}S_{rs})$

