Mathematical Induction is a special way of proving things. It has only 3 steps:

- Step 1. Show it is true for the first one
- Step 2.
- Step 3. Show that if any one is true then the next one is true Then all will be true

Proof by Induction: Example 1

- ► Use proof by induction to show that 3ⁿ 1 is a multiple of 2, for all values of the integer n.
- Is that true? Let us find out.

Proof by Induction: Example 1

Step 1. Show it is true for n=1

- \rightarrow 3¹ 1 = 3 1 = 2
- ► Yes 2 is a multiple of 2.
- ▶ $3^1 1$ is true

Step 2. Assume it is true for n = k i.e. assume that $3^k - 1$ is true

This is an assumption that we treat as a fact for the rest of this exercise.

Now, prove that $3^{k+1} - 1$ is a multiple of 2 3^{k+1} is also 3×3^k And each of these are multiples of 2

Because: 2.3k is a multiple of 2 (you are multiplying by 2) 3k-1 is true (we said that in the assumption above) So: 3k+1-1 is true

Example: Adding up Odd Numbers

$$1+3+5+\ldots+(2n-1)=n^2$$

- 1. Show it is true for n=1 1 = 1^2 is True
- 2. Assume it is true for n=k

$$1+3+5+\ldots+(2k-1)=k^2$$

Now, prove it is true for "k+1"

$$1+3+5+\ldots+(2k-1)+(2(k+1)-1)=(k+1)^2$$

We know that $1 + 3 + 5 + ... + (2k - 1) = k^2$ (the assumption above), so we can do a replacement for all but the last term:

$$k^2 + (2(k+1) - 1) = (k+1)^2$$

Now expand all terms:

$$k^2 + 2k + 2 - 1 = k^2 + 2k + 1$$

And simplify:

$$k^2 + 2k + 1 = k^2 + 2k + 1$$

They are the same! So it is true.

So the following expression is true.

$$1+3+5+\ldots+(2(k+1)-1)=(k+1)^2$$

Prove by induction that the series 3 + 7 + 11 + ... has the sum to r terms given by S_r , where

$$S_r = 2r^2 + r.$$

Step 1 Demonstrate for r = 1

- We know that first term is 3
- $S_1 = 2(1)^2 + 1 = 3$

Step 2 : Make statement for r = k

Step 2 : Make statement for r = k + 1

$$S_{k+1} = 2(k+1)^2 + (k+1)$$

$$(k+1)^2 = k^2 + 2k + 1$$

►
$$2(k+1)^2 = 2k^2 + 4k + 2$$

 $S_{k+1} = 2k^2 + 4k + 2 + (k+1) = 2k^2 + 5k + 3$

$$S_k = 2k^2 + k$$

$$S_{k+1} = 2k^2 + 4k + 2 + (k+1) = 2k^2 + 5k + 3$$

Difference is 4k + 3 which is also expressed as 4(k + 1) - 1

A sequence is defined by the recurrence relation

$$x_{n+2} = 3x_{n+1} - 2x_n$$

The initial terms are $x_1=1$ and $x_2=3$. Find the values of x_3 and x_4 showing your workings.

$$x_3 = 3x_2 - 2x_1 = 3(3) - 2(1) = 7$$

$$x_4 = 3x_3 - 2x_2 = 3(7) - 2(3) = 15$$

Prove by induction that

$$x_n = 2^n - 1$$
 for $n \ge 1$

Step 1 Show that statement is true for n = 1. (N.B. $x_1 = 1$).

$$x_n = 2^n - 1$$

 $x_1 = 2^1 - 1 = 2 - 1 = 1$

Step 2 Assume that statement is true for n = k.

$$x_k = 2^k - 1$$

Similarly we will assume it for n = k - 1. The reason for this will become obvious later on.)

$$x_{k-1}=2^{k-1}-1$$

Step 3 Show that statement is true for n = k + 1.

$$x_{k+1} = 2^{k+1} - 1$$

Re-expressing this

$$x_{k+1} = 2.2^k - 1$$

Recall

$$x_{k+1} = 3x_k - 2x_{k-1}$$

Looking at right hand side

- ► First Term: $3x_k = 3(2^k 1) = 3.2^k 3$
- ► Second Term: $2x_{k-1} = 2(2^{k-1} 1) = 2^k 2$

$$x_{k+1} = (3.2^k - 3) - (2^k - 2) = 2.2^k + 1$$

 $x_{k+1} = 2.2^k + 1 = 2^{k+1} + 1$