

Universidad Nacional Autónoma de México Inferencia Prof. Jimmy Hernández Morales

- 1. Mostrar que cada una de las siguientes familias es miembro de la familia exponencial:
 - \blacksquare La familia normal ya sea el parametro μ o σ conocido
 - La familia gamma con algun parametro α o β conocido o ambos desconocidos.
 - La familia beta con algun parametro α o β conocido o ambos desconocidos.
 - La familia Poisson
 - \blacksquare La familia binomial negativa con r conocido 0
- 2. Si X es una variable aleatoria con pdf miembro de la familia exponencial entonces:

$$\mathbb{E}\left(\sum_{i=1}^{k} \frac{\partial w_i(\theta)}{\partial \theta_j} t_i(x)\right) = -\frac{\partial}{\partial \theta_j} \log c(\theta) \tag{1}$$

$$Var\left(\sum_{i=1}^{k} \frac{\partial w_i(\theta)}{\partial \theta_j} t_i(x)\right) = -\frac{\partial^2}{\partial \theta_j^2} \log c(\theta) - \mathbb{E}\left(\sum_{i=1}^{k} \frac{\partial^2 w_i(\theta)}{\partial \theta_j^2} t_i(x)\right)$$
(2)

3. Sea la familia exponencial de la forma $f(x;\theta) = h(x) \exp(\sum_{i=1}^{s} c_i(\theta) T_i(x) - B(\theta))$ Para s=1 pruebe que

$$\mathbb{E}[T(X)] = \frac{B'(\theta)}{c'(\theta)} \tag{3}$$

$$Var[T(X)] = \frac{B''(\theta)}{[c'(\theta)]^2} - \frac{c''(\theta)B'(\theta)}{[c'(\theta)]^3}$$

$$\tag{4}$$

4. 1. Sea $X_1, ..., X_n$ muestra aleatoria de de una población con distribución $F_X(x)$ tal que $\mathbb{E}(X_i) = \mu$ y $Var(X_i) = \sigma^2$. Pruebe que:

a)
$$S_1 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$
 con μ conocida es insesgado para σ^2

b)
$$S_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
 es sesgado para σ^2

c)
$$S_3 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 es insesgado para σ^2

- 5. Sea $X_1...X_n \sim Po(\lambda)$ y $\hat{\lambda} = n^{-1} \sum_{i=1}^n X_i$. Encontrar sesgo, error estandar y MSE de este estimador.
- 6. Sea $X_1...X_n \sim U(0,\theta)$ y $\hat{\theta} = \max\{X_1,...,X_n\}$. Encontrar sesgo, error estandar y MSE de ese estimador.

- 7. Sea $X_1...X_n \sim U(0,\theta)$ y $\hat{\theta} = 2\bar{X}$. Encontrar sesgo, error estandar y MSE de ese estimador.
- 8. Sea $X_1...X_n$ m.a. de una distribución gamma con α conocida y $\beta = \theta$ mostrar que el UMVUE es $\frac{1}{n\alpha} \sum_{i=1}^{n} X_i$ y que su varianza alcanza la cota inferior la cota inferior de Cramer y Rao
- 9. Sea $X_1...X_n$ m.a. de una distribución $N(\mu, \sigma^2)$ asumiremos que μ es conocida y $\sigma^2 = \theta$. Encuentra la $CICR(\theta)$
- 10. Sea $X_1, ..., X_n$ m.a. de una población con p.d.f. $Po(\lambda)$.
 - a) Calcule la $CICR(\lambda)$
 - b) Sea $\lambda = \bar{X}$ pruebe que es insesgado
 - c) Pruebe que es un UMVUE
- 11. Sean x, y son puntos diferentes. Encontrar la $Cov(\hat{F}(x), \hat{F}(y))$
- 12. Sea $X_1...X_m$ y $Y_1...Y_n$ dos muestras aleatorias independientes con la misma media θ y varianzas conocidas σ_1^2 , σ_2^2 respectivamente. Entonces mostrar que para todo $c \in [0,1]$, $U = c\bar{X} + (1-c)\bar{Y}$ es un estimador insesgado de θ . Y también encontrar el valor de c para la cual la varianza es mínima.
- 13. Prueba que $\sum_{n=1}^{n} X_i$ o bien \bar{X} es una estadística suficiente para θ . Si las X's se distribuyen como una Poisson.
- 14. Mostrar que $\sum_{i=1}^{n} X_i$ o bien \bar{X} es una estadística suficiente para θ . Si las X's se distribuyen como una Binomial negativa.
- 15. Sea X una observación de un población normal $N(0, \sigma^2)$. Es |X| un estadístico suficiente?
- 16. Sea $X_1, ... X_n$ m.a. con p.d.f.:

$$f(x;\theta) = \exp(-(x-\theta))I_{(\theta,\infty)}(x), \quad \theta \in \mathbb{R}$$
 (5)

muestra que $X_{(1)}$ es un estadístico suficiente para θ .

- 17. Sea $X_1,...X_n$ m.a. de una población gamma (α,β) . Encontrar dos estadísticos suficientes minimales para (α,β)
- 18. Considere $X_1, ..., X_n$ m.a. con p.d.f. $Po(\lambda)$
 - a) Encuentre la función de Score
 - b) Encuentre un estimador insesgado para λ que sea UMVUE
- 19. Sea $X_1,...X_n$ m.a. con p.d.f. de una población normal $N(\mu,\sigma)$ muestre que

$$T = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2), \tag{6}$$

es una estadística suficiente 2-dimensional para μ y σ

20. Sea $X_1, ... X_n$ m.a. de población con p.d.f. de localización $f(x-\theta)$ Mostrar que los estadísticos de orden $T(X_1, ... T_n) = (X_{(1)}, ..., X_{(n)})$ para estadísticos suficientes para θ .