非线性光学二次谐波产生实验报告

何金铭 PB21020660

实验目的,实验原理,实验内容均于预习报告中给出,此报告不再赘述。

1 实验结果与分析

1.1 II 型 PPKTP 晶体的倍频功率与晶体温度的关系

表 1: II 型 PPKTP 晶体的倍频功率与晶体温度的关系记录表

晶体温度 ℃	倍频功率 (mW)	晶体温度 ℃	倍频功率 (mW)
33.5	0.25	39	4.81
34	0.36	39.5	3.65
34.5	0.43	40	2.55
35	0.72	40.5	1.51
35.5	1.65	41	0.73
36	2.53	41.5	0.246
36.5	3.78	42	0.09
37	4.79	42.5	0.09
37.5	5.56	43	0.142
38	5.83	43.5	0.207
38.5	5.56		

给出了 II 型 PPKTP 晶体的倍频功率与晶体温度的关系图,如下图所示:

图 1: II 型 PPKTP 晶体的倍频功率与晶体温度的关系

发现大致符合相位匹配中的 Sinc 函数平方的形状

1.2 倍频光输出功率与基频光功率之间的关系

此时调节晶体温度为 38℃, 记录了倍频光输出功率与基频光功率之间的关系, 如下表所示:

表 2: 倍频光输出功率与基频光功率之间的关系记录表

基频功率 (mW)	倍频功率 (mW)
1006	5.94
805	3.72
598	2.02
402	0.872
201	0.19

图 2: 倍频光输出功率与基频光功率之间的关系

可以看出倍频输出功率是基频光输入功率的二次方关系

2 实验结论

- 1. 测得了 II 型 PPKTP 晶体的倍频功率与晶体温度的关系,发现大致符合相位匹配中的 Sinc 函数平方的形状
- 2. 测得了倍频光输出功率与基频光功率之间的关系,发现倍频输出功率是基频光输入功率的二次方关系

3 思考题

3.1 倍频功率与哪些因素有关? 倍频功率与基频光功率是什么关系?

倍频功率与以下因素有关:

- 1. 基频光功率: 倍频过程是将基频光转换为倍频光的过程, 因此倍频功率与基频光功率密切相关。 通常情况下, 倍频功率随着基频光功率的增加而增加。
- 2. II 型 PPKTP 晶体的晶体温度
- 3. 非线性系数: 倍频过程是一个非线性光学过程, 倍频功率与材料的非线性系数有关。非线性系数越大, 倍频功率的转换效率就越高。
- 4. 光束的空间和时间特性: 光束的空间和时间特性可以影响倍频过程的效率。例如, 光束的空间模式和聚焦性质可能会影响倍频功率的转换效率。
- 5. 光束的偏振状态: 光束的偏振状态对倍频过程也有影响。某些倍频过程对特定的偏振状态更加敏感,因此偏振状态的选择可以影响倍频功率的产生。

$$P_{SH} = \left(\frac{2\omega_F^2 d_{eff}^2 k_F P_F^2}{\pi n_F^2 n_{SH} \varepsilon_0 c^3}\right) Lh(B, \zeta), \tag{1}$$

$$\zeta = L/b, \quad b = 2\pi n_F \omega_0^2 / \lambda_F \tag{2}$$

倍频输出功率是基频光输入功率的二次方关系。

3.2 如何计算指定波长 PPKTP 晶体下 I 类准相位匹配在倍频转换中的极化周期? 试计算 780nm 到 390nm 倍频的极化周期。

I 型位相匹配的极化周期为:

$$\Lambda^I = \frac{\lambda_F}{2(n_{SHG} - n_F)} \tag{3}$$

在这里, n_F 和 n_{SHG} 为基频与倍频光在晶体 z 轴方向的折射率。

对于 PPKTP(铌酸锂钾盐晶体)来说,可以采用以下参数: $_F = 780nm$, $n_F = 1.834$ (对应于 780 nm 的折射率), $n_{SHG} = 1.822$ (对应于 390 nm 的折射率)。

代入计算即可

3.3 准相位匹配中倍频功率与温度是什么关系?如何测量倍频中的温度带宽?

准相位匹配中倍频功率与温度的关系:

$$P_{SHG} \propto sinc^2(\frac{\Delta kL}{2})$$
 (4)

这里 Δk 依赖于晶体的温度以及基频光的波长。

当基频光的波长固定时, 倍频的温度接收带宽为:

$$\Delta T_{FWHM} = \frac{0.4429\pi}{L} \left| \alpha (n_{SHG} - n_F) - \frac{\partial n_F}{\partial T} \right|_{T=T_0} + \frac{\partial n_{SHG}}{\partial T} \right|_{T=T_0} \right|^{-1}$$
 (5)

公式中 α 是材料的热膨胀系数, T_0 表示某一特定的位相匹配温度。测量倍频中的温度带宽通常可以采用以下方法:

- 1. 温度扫描法:通过改变晶体的温度,在不同温度下测量倍频功率的变化。可以绘制倍频功率与温度之间的关系曲线,从而确定倍频的温度带宽。
- 2. 温度控制法:通过控制晶体的温度在一定范围内变化,并在不同温度下测量倍频功率。可以记录倍频功率随温度变化的数据,并分析其带宽范围。温度稳定性测试:在一定温度范围内保持晶体温度恒定,并测量倍频功率的稳定性。观察倍频功率的变化情况,可以推测温度带宽的范围。
- 3. 温度稳定性测试:在一定温度范围内保持晶体温度恒定,并测量倍频功率的稳定性。观察倍频功率的变化情况,可以推测温度带宽的范围。

3.4 单次通过下的倍频转换效率较低,有哪些办法可以提升倍频的功率转换效率?

要提高单次通过下的倍频转换效率,可以采取以下办法:

- 1. 使用非线性光学晶体:选择具有较高非线性系数的光学晶体,例如铌酸锂(LiNbO3)、铌酸锂 钾盐(PPKTP)等。这些晶体具有较高的倍频转换效率,可以提高倍频功率的产生。优化相位 匹配条件:准确控制泵浦光和倍频光的相位匹配条件,使其在晶体中达到最佳匹配。可以通过 调整入射角度、温度等参数来实现相位匹配的优化。
- 2. 优化相位匹配条件:准确控制泵浦光和倍频光的相位匹配条件,使其在晶体中达到最佳匹配。可以通过调整入射角度、温度等参数来实现相位匹配的优化。
- 3. 使用光学腔:将倍频晶体放置在光学腔中,利用光腔的谐振增强效应,提高倍频转换效率。光学腔可以增加光场与晶体的相互作用长度,增强倍频过程中的能量耦合。使用调制技术:引入调制技术,如电光调制、声光调制等,可以调制泵浦光的强度或相位,从而优化倍频转换过程,提高转换效率。
- 4. 使用调制技术:引入调制技术,如电光调制、声光调制等,可以调制泵浦光的强度或相位,从而优化倍频转换过程,提高转换效率。
- 5. 优化光束质量:采取合适的光束整形和聚焦手段,优化泵浦光和倍频光的光束质量,减小光束的空间展宽和相位畸变,有助于提高倍频转换效率。使用波导结构:在光学波导中进行倍频转换,可以实现较长的倍频过程长度和较高的能量耦合效率,提高转换效率。
- 6. 使用波导结构:在光学波导中进行倍频转换,可以实现较长的倍频过程长度和较高的能量耦合效率,提高转换效率。