

	Aside: $Los \pi/2 = 0$, $sin \pi/2 = 1$ Los 0 = 1, $sin 0 = 0Los \pi = -1, sin \pi = 0$
2	Remark When we defined sine & cosine , assumed 040 < T/2
	So have night angled triangle
2	In sine & cosine nues, need sin & cosine for 0<9<17.
	(x,y) $\chi = \cos\theta$. Equivalently, for, $\pi/2 < \theta < \pi$, $y = \sin\theta$. $\sin\theta = \sin(\pi - \theta)$
	$\cos \theta = -\cos(\pi - \theta)$
	Posts we gave still work with Minor Modifications.
	HW problem: Use the cosine true to prove the triangle inequality. bala (a < b+c). "easier to cut corners"
	Center of Mass
	Theorem: C
考 李····	Let D be the midpoint of BC
4	A H B . F AB
2	"medians"
	The lines AD, BE, CE; all meet at a point 6, and
<u> </u>	Poof First snow 1AG1 - 1BG1 - 2, where G is the intersection
	16D1 1GEI point of AD & BE
	Converse of Thales' theorem: B ICEI - ICDI (= I here) => ED is parallel to AB.
→	IEAI IDBI

DAGB ~ ADGE (alternate angles)	
AG = B6 = AB DG EG DE	
△ CED ~ O CAB (corresponding angles)	
$\frac{ AB - CA = 2 - 2}{ DE } = \frac{2}{1}$ Combining, $\frac{ AG - BG }{ DG } = 2$	
Want: The 3rd median CF also passes through 6 & 1061 = 2	
C [6FI	
Let H=ADnCF B AH = 1CH = 2 (from some logic. IDH IHF As before)	
But we know $ AG = 2 = AH $, so $G = H$, so $ DG = DH $. Medians meet at a point G .	
[68 H are two points in the interior of the line segment A and $ AG = AH = \frac{2}{3} AD \Rightarrow 6 = H$ Ly $ AG = \frac{2 \cdot DG }{ AD = \frac{2}{3} DG }$ $ AD = AG + DG = \frac{3}{3} DG $	
O = center of mass; can balance triangle on the head of a pin at this point.	
Sir Michael Atiyah -> "Geometry vs. Algebra"	