Partial solution to HW 4 and HW 5

HW4

Q6

The idea of disjoint union will be helpful to us. Given an set $A \in \mathbb{R}$, we may assume that $P(X \in A) \ge P(Y \in A)$. (Otherwise, replace X with Y in the following proof). The RHS can be written as

RHS =
$$1 - P(X = Y)$$

= $[P(X \in A) + P(X \in A^c)] - [P(X = Y, Y \in A) + P(X = Y, Y \in A^c)]$
= $[P(X \in A) + P(X \in A^c)] - [P(X = Y, Y \in A) + P(X = Y, X \in A^c)]$
 $\geq P(X \in A) - P(Y \in A) + P(X \in A^c) - P(X \in A^c, X = Y)$
= $LHS + P(X \in A^c, X \neq Y)$
 $\geq LHS$

Another way of doing it, is to consider the LHS

LHS =
$$P(X \in A) - P(Y \in A)$$

= $P(X \neq Y, X \in A) - P(X \neq Y, Y \in A)$ (1)
 $\leq P(X \neq Y)$

HW5

$\mathbf{Q3}$

 λ is the average 2. Therefore, the probability of scoring exactly 6 in one game is

$$p = e^{-\lambda} \frac{\lambda^6}{6!}$$

The problem ask for the probability that 'at least' one game scoring exactly 6 Field goals, which has the probability $1 - (1 - p)^{150}$

$\mathbf{Q4}$

Check the note for recitation on Google drive.