Slido: #ADA2020

CSIE 2136 Algorithm Design and Analysis, Fall 2020

National Taiwan University 國立臺灣大學

Graph Algorithms - III

Hsu-Chun Hsiao

3.5-week Agenda

Graph basics

- Graph terminology [B.4, B.5]
- Real-world applications
- Graph representations [Ch. 22.1]

Graph traversal

- Breadth-first search (BFS) [Ch. 22.2]
- Depth-first search (DFS) [Ch. 22.3]

DFS applications

- Propological sort [Ch. 22.4]
- Strongly-connected components [Ch. 22.5]

Minimum spanning trees [Ch. 23]

- Kruskal's algorithm
- Prim's algorithm

Single-source shortest paths [Ch. 24]

- Dijkstra algorithm
- Bellman-Ford algorithm
- SSSP in DAG

All-pairs shortest paths [Ch. 25]

- Floyd-Warshall algorithm
- Johnson's algorithm

Today's Agenda

- Shortest paths: terminology and properties
 - Edge relaxation
 - Shortest-paths properties
- Single-source shortest paths [Ch. 24]
 - Bellman-Ford algorithm
 - Dijkstra algorithm
 - SSSP in DAG

Bellman-Ford algorithm

Textbook Chapter 24.1

匯率換算

○ 1公克黃金最多可以換到多少 TWD? (假設零手續費)

找weight<u>相乘</u>後最大路徑?

如何轉成我們熟悉的最短路徑問題?

匯率換算

▶ 1公克黃金最多可以換到多少TWD? (假設零手續費)

We want to detect the existence of negative cycles (利用匯差賺錢) and find the shortest path (最佳的兌換率)

Bellman-Ford algorithm: intuition

- ρ 共執行 |V|-1 回合
 - 。 每一回合中,relax 所有的邊
 - ρ 節點 v 一方面接收從各個上游來的最短路徑估計值,試試看改走不同上游會不會比較好,另一方面把自己的估計值傳給下游節點

u 和 x 為 v 的上游,y 為 v 的下游

以v的觀點來看, 每一回合會 relax (u,v), (x,v), (v,y)順序不重要

Bellman-Ford algorithm: intuition

- Paran-Ford 保證在第 k 回合結束後,節點 v 的最短路徑估計值 ≤ 所有邊數至多為 k 的 $s \sim v$ 路徑的最短距離
- ρ => |V|-1 回合結束後,節點v的最短路徑估計值 \leq 所有邊數至多為 |V|-1 的 $s \sim v$ 路徑的最短距離
- => 若最短路徑存在,由於最短路徑的邊數不會大於 |V| 1,因
 此 Bellman-Ford 結束後的確能正確算出最短路徑值

Bellman-Ford algorithm

```
BELLMAN-FORD(G,w,s)
    INITIALIZE-SINGLE-SOURCE(G,s)

for i = 1 to |G.V|-1
    for (u,v) in G.E
        RELAX(u,v,w)

for (u,v) in G.E
    if v.d > u.d + w(u,v)
        return FALSE
    return TRUE
```

```
INITIALIZE-SINGLE-SOURCE(G,s)
  for v in G.V
    v.d = ∞
    v.π = NIL
    s.d = 0
```

- Paragraph Relax each edge e; repeat V-1 times
- Detect a negative cycle if exists
- Find shortest simple path if no negative cycle exists

Relaxation sequence in each iteration: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

<u>Iteration 2</u>

$\begin{array}{c|c} \underline{\text{Iteration 1}} \\ \hline s & 0 \\ \hline \end{array}$

```
BELLMAN-FORD(G,w,s)
   INITIALIZE-SINGLE-SOURCE(G,s)
   for i = 1 to |G.V|-1
        for (u,v) in G.E
            RELAX(u,v,w)
   for (u,v) in G.E
        if v.d > u.d + w(u,v)
            return FALSE
   return TRUE
```

Relaxation sequence in each iteration: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

<u>Iteration 2</u>

<u>Iteration 4</u>

<u>Iteration 3</u>

BELLMAN-FORD (G, w, s)

INITIALIZE-SINGLE-SOURCE(G,s)
for i = 1 to |G.V|-1
 for (u,v) in G.E
 RELAX(u,v,w)

for (u,v) in G.E
 if v.d > u.d + w(u,v)
 return FALSE
return TRUE

Running time analysis

```
Using adjacency lists,

BELLMAN-FORD(G,w,s)

INITIALIZE-SINGLE-SOURCE(G,s)

for i = 1 to |G.V|-1

for (u,v) in G.E

RELAX(u,v,w)

for (u,v) in G.E

if v.d > u.d + w(u,v)

return FALSE

return TRUE
```

• Adjacency-list representation = $\Theta(VE)$

Q: Running time of adjacency-matrix representation = ? It takes $\Theta(V^2)$ to loop through all edges, thus $\Theta(V^3)$ in total

Correctness of Bellman-Ford (Theorem 24.4)

We want to prove the following two statements:

- 1. Correctly compute $\delta(s, v)$ when no negative-weight cycle
 - After the |V|-1 iterations of relaxation of all edges, it must hold that $v.d=\delta(s,v)$ for all vertices $v\in V$ that are reachable from s
 - Provided For each vertex $v \in V$, there is a path from s to v if and only if the algorithm terminates with $v \cdot d < \infty$.
- 2. Correctly detect the existence of negative cycles
 - Return FALSE If G does contain a negative-weight cycle reachable from s

Correctness of Bellman-Ford (Theorem 24.4)

- 1. Correctly compute $\delta(s, v)$ when no negative-weight cycle
 - After the |V|-1 iterations of relaxation of all edges, it must hold that $v.d=\delta(s,v)$ for all vertices $v \in V$ that are reachable from s

Proof

Although the shortest path p from s to v is unknown, we know it has at most V-1 edges if the path exists

ho The relaxation sequence must contain all edges in p in order:

$$e_1,e_2,\ldots,e_m; e_1,e_2,\ldots,e_m; \cdots; e_1,e_2,\ldots,e_m \qquad (m=|E|)$$
 Must contain 1st edge in p Must contain 2nd edge in p Repeated $V-1$ times, must contain all edges in p in order

According to the path-relaxation property, $v.d = \delta(s, v)$ for all vertices $v \in V$ that are reachable from s

Correctness of Bellman-Ford (Theorem 24.4)

- 2. Correctly detect the existence of negative cycles
 - ho Return FALSE If G does contain a negative-weight cycle reachable from s

Proof by contradiction

- Suppose Bellman-Ford returns TRUE while G does contain a negativeweight cycle C reachable from s
- $p \Rightarrow v.d \leq u.d + w(u,v), \forall (u,v) \in C$
- $\Rightarrow \sum_{v \in C} v \cdot d \le \sum_{v \in C} u \cdot d + \sum_{(u,v) \in C} w(u,v)$
- $\Rightarrow 0 \le \sum_{(u,v) \in C} w(u,v)$
- > => contradiction

```
//negative cycle detection
for (u,v) in G.E
   if v.d > u.d + w(u,v)
      return FALSE
```


Bellman-Ford algorithm: the DP view

- Bellman-Ford is a dynamic programming algorithm
 - What are the subproblems?
 - Does it have optimal substructure?

Recap: 4 steps to dynamic programming

- 1. Characterize the structure of an optimal solution
 - Overlapping subproblems: revisits same subproblem repeatedly
 - Optimal substructure: an optimal solution to the problem contains within it optimal solutions to subproblems
- 2. Recursively define the value of an optimal solution
 - Express the original problem's solution using optimal solutions for smaller problems
- 3. Compute the value of an optimal solution (typically bottom-up)
- 4. Construct an optimal solution from computed information

Recap: Optimal substructure

Shortest path problem (最短路徑問題) has optimal substructure (Lemma 24.1)

Path $P_{ac}+P_{cb}$ is a shortest path between A and B \Rightarrow Then P_{ac} must be a shortest path between A and C

Bellman-Ford algorithm: the DP view

- Let $\ell_{sv}^{(k)}$ be the shortest path value from s to v using at most k edges
 - Subproblems: given s, $\ell_{sv}^{(k)}$ for all v, k
 - Optimal substructure: by Lemma 24.1
- P Base cases: $\ell_{ss}^{(0)} = 0$; $\ell_{sv}^{(0)} = \infty$ when $s \neq v$
- P The recurrence relation can be formulated as

$$\ell_{sv}^{(k)} = \min \left\{ \ell_{sv}^{(k-1)}, \min_{u \in V} \left\{ \ell_{su}^{(k-1)} + w_{uv} \right\} \right\}$$
$$= \min_{u \in V} \left\{ \ell_{su}^{(k-1)} + w_{uv} \right\}$$

$$w_{ij} = \begin{cases} 0, & i = j \\ w(i,j), & i \neq j \text{ and } (i,j) \in E \\ \infty, & i \neq j \text{ and } (i,j) \notin E \end{cases}$$

Dijkstra's algorithm

Textbook Chapter 24.3

Dijkstra's algorithm: intuition

- Pecall that BFS finds shortest paths on an unweighted graph by expanding the search frontier like ripples.
- Can we do the same on weighted graph?

Dijkstra's algorithm: intuition

- Pecall that BFS finds shortest paths on an unweighted graph by expanding the search frontier like ripples.
- Can we do the same on weighted graph?

Dijkstra's algorithm speeds up the process by "skipping" layers that do not intersect with any vertex!

Dijkstra's algorithm

Dijkstra greedily adds vertices by increasing distance

- Maintains a set of explored vertices S whose final shortestpath weights have already been determined
 - 1. Initially, $S = \{s\}$, s.d = 0
 - 2. At each step, select unexplored vertex u in V-S with minimum u. d
 - 3. Add u to S, and relaxes all edges leaving u. Go back to Step 2.

Implementation of Dijkstra's algorithm

```
DIJKSTRA(G,w,s)
    INITIALIZE-SINGLE-SOURCE(G,s)
    S= empty
    Q= G.v //BUILD-PRIORITY-QUEUE
    while Q ≠ empty
    u = EXTRACT-MIN(Q)
    S = SU {u}
    for v in G.adj[u]
        RELAX(u,v,w)
```

```
INITIALIZE-SINGLE-SOURCE(G,s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0
```

- Q is a min-priority queue of vertices, keyed by d values
- Observations (will prove these later)
 - Property For u in Q (that is, V-S), u. d is the shortest-path estimate (i.e., minimum length over all observed $s \sim u$ paths so far).
 - $Por u in S, u.d = \delta(s, v)$

DIJKSTRA(G,w,s) INITIALIZE-SINGLE-SOURCE(G,s) S= empty Q= G.v //BUILD-PRIORITY-QUEUE while Q ≠ empty u = EXTRACT-MIN(Q) S = S ∪ {u} for v in G.adj[u] RELAX(u,v,w)

Black: in *S*White: in *Q*

Grey: selected

Blue lines: predecessors

Step 0

Step 1

DIJKSTRA(G,w,s) INITIALIZE-SINGLE-SOURCE(G,s) S= empty Q= G.v //BUILD-PRIORITY-QUEUE while Q ≠ empty u = EXTRACT-MIN(Q) S = SU {u} for v in G.adj[u] RELAX(u,v,w)

Black: in *S*White: in *Q*

Grey: selected

Blue lines: predecessors

Step 2

Step 3

DIJKSTRA(G,w,s) INITIALIZE-SINGLE-SOURCE(G,s) S= empty Q= G.v //BUILD-PRIORITY-QUEUE while Q ≠ empty u = EXTRACT-MIN(Q) S = S ∪ {u} for v in G.adj[u] RELAX(u,v,w)

Black: in *S*White: in *Q*

Grey: selected

Blue lines: predecessors

Step 4

Step 5

Running time analysis

- ho is a min-priority queue of vertices, keyed by d values
 - ρ # of INSERT = O(V)
 - ρ # of EXTRACT-MIN = O(V)
 - ρ # of DECREASE-KEY = O(E)
- P The running time depends on queue implementation
- P Implementing the min-priority queue using an array indexed by v: $O(V^2 + E) = O(V^2)$
 - ρ INSERT: O(1)
 - \circ EXTRACT-MIN: O(V)
 - ρ DECREASE-KEY: O(1)

Correctness of Dijkstra's algorithm (Theorem 24.6)

Dijkstra's algorithm, run on a weighted, directed graph G = (V, E) with non-negative weight function w and source s, terminates with $u \cdot d = \delta(s, u)$ for all vertices $u \in V$.

<u>Idea</u>

- S: the set of explored vertices whose final shortest-path weights have already been determined
 - \triangleright Initially, $S = \{s\}$, s.d = 0
 - Invariant: for all u in S, u. d = length of the shortest path from s to u
 - Pote that for u in V-S, u. d = length of some path from s to u
- We want to prove that the loop invariant holds throughout the execution of the algorithm.

Loop invariant: for u in S, u. $d = \delta(s, u)$

Proof by induction on the size of S

- Pase case: |S| = 1, correct
- Inductive step: Let v be the next vertex to be added to S, $u = v \cdot \pi$, P = shortest path from s to u + (u, v)
- $\Rightarrow v.d = w(P) = \delta(s,u) + w(u,v)$
- P Consider any other $s \sim v$ path P', and Let y be the first vertex on path P' outside S
- P We want to prove that $w(P') \ge w(P)$

Loop invariant: for u in S, u. $d = \delta(s, u)$ Proof by induction on the size of S (cont'd)

- $^{\circ}$ Prove that w(P') ≥ w(P)
- 1. Because of no negative edges, $w(P') \ge \delta(s, x) + w(x, y)$
- 2. By induction hypothesis, $\delta(s,x) = x.d$
- 3. By construction, $y.d \ge v.d$
- 4. By construction, $x.d + w(x,y) \ge y.d$
- $\Rightarrow w(P') \ge \delta(s, x) + w(x, y) = x \cdot d + w(x, y) \ge y \cdot d \ge v \cdot d = w(P)$

Loop invariant: for u in S, u. $d = \delta(s, u)$

Proof by induction on the size of S (cont'd)

- P Hence, the greedy choice v (and the corresponding path P) is at least as good as any other path from s to v
- \triangleright => The invariant still holds after adding one more vertex v to S
- At termination, every vertex is in S
- $P \quad \text{Thus, } u.d = \delta(s, v) \text{ for all } u \text{ in } V$

Dijkstra's algorithm may work incorrectly with negative-weight edges

- Let's go back to the proof and see where it breaks!
 - P This greedy algorithm assumed adding edges always increases path weight, which is not true in case of negative-weight edges
- <u>C.f. Bellman-Ford</u>: a dynamic programming algorithm either detects negative cycles or returns the shortest-path tree

Q: See any similarity between BFS, DFS, Prim and Dijkstra?

- Pare all greedy algorithms for graph search
- P They are each a special case of priority-first search

Priority-first search

- Maintain a set of explored vertices S
- Grow S by exploring highest-priority edges with exactly one endpoint leaving S

Q: What's the priority in each variant (BFS, DFS, Prim and Dijkstra)?

BFS: edges from vertex discovered least recently

DFS: edges from vertex discovered most recently

Prim: edges of minimum weight

Dijkstra: edges to vertex closest to s

Single-source shortest paths in directed acyclic graphs

Textbook Chapter 24.2

Recap: Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no cycles
- Often used to indicate precedence among events (X must happen before Y)
 - ▶ E.g., cooking, taking courses, clothing…

Single-source shortest paths in DAG

- <u>Claim</u>: relaxing the edges in topologically sorted order correctly computes the shortest paths in DAG
- Intuition: putting vertices in a topologically sorted order, edges only go from left to right; so when relaxing an edge (u, v), all edges to u must have been relaxed.

DAG-SHORTEST-PATHS (G, w, s)

topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G,s)

DAG-SHORTEST-PATHS (G, w, s)

topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G,s)

DAG-SHORTEST-PATHS (G, w, s)

topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G,s)

Running time analysis

```
DAG-SHORTEST-PATHS(G,w,s) topologically sort the vertices of G //\Theta(V+E) INITIALIZE-SINGLE-SOURCE(G,s) //\Theta(V) for each vertex u, taken in topologically sorted order for each vertex v in G.adj[u] -\Theta(V+E) RELAX(u,v,w)
```

=> total running time is $\Theta(V + E)$, same as topological sort

Theorem 24.5

If G = (V, E) is a DAG, then at the termination of DAG-SHORTEST-PATHS, $v.d = \delta(s, v)$, for all $v \in V$

Proof by induction on the position in topological sort order

- P Inductive hypothesis: if all the vertices before v in a topological sort order have been updated, then $v \cdot d = \delta(s, v)$
- Base case:
 - For all v before $s, v, d = \infty = \delta(s, v)$
 - $For s, s. d = 0 = \delta(s, s)$

Theorem 24.5

If G = (V, E) is a DAG, then at the termination of DAG-SHORTEST-PATHS, $v.d = \delta(s, v)$, for all $v \in V$

Proof by induction on the position in topological sort order (Cont.)

- P Inductive hypothesis: if all the vertices before v in a topological sort order have been updated, then $v \cdot d = \delta(s, v)$
- Inductive step:
 - Consider a vertex v after s
 - P By construction, $v.d = \min_{(u,v) \in E} (u.d + w(u,v))$
 - P By inductive hypothesis, $u.d + w(u,v) = \delta(s,u) + w(u,v)$
 - Since some (u, v) must be on the shortest path, by optimal substructure, $v \cdot d = \delta(s, v)$

Summary of single-source shortest-path algorithms

SSSP algorithm	Applicable graph types	Running time
Dijkstra	Nonnegative weights	$\Theta(V^2)$ (array-based)
Topological sort based	DAG	$\Theta(V+E)$
Bellman-Ford	generic	$\Theta(EV)$