Browse Site

AP Statistics

Tutorials

Probability

Linear Regression

ANOVA

Survey Sampling Matrix Algebra

AP Statistics

Test Preparation

Practice Exam

AP Statistics Formulas

FAQ: AP Statistics

Stat Tables

Binomial

Chi-Square

f Distribution

Hypergeometric Multinomial

Negative Binomial Normal

Poisson

t Distribution Stat Tools

Random Number Generator

Probability Calculator Bayes Rule Calculator

Combination-Permutation **Factorial Calculator**

Event Counter

Bartlett's test Sample Size Calculator

Help

Statistics Dictionary

Statistics Formulas Statistics Notation

Statistics Problems

Sample Size Below, the first two formulas find the smallest sample sizes required to achieve a fixed margin of error, using

 Mean (simple random sampling): n = { z² * σ² * [N / (N - 1)] } / { ME² + [z² * σ² / (N - 1)] } Proportion (simple random sampling): n = [(z²*p*q) + ME²]/[ME² + z²*p*q/N] Optimum allocation (stratified sampling): $n_h = n * [(N_h * \sigma_h) / sqrt(c_h)] / [\Sigma (N_i * \sigma_i) / sqrt(c_i)]$

This web page lists statistics formulas used in the Stat Trek tutorials. Each formula links to a web page that explains how to use the formula.

Population mean = μ = (Σ X_i) / N

Statistics Formulas

Parameters

Statistics

Correlation

Counting

Probability

Random Variables

- Population standard deviation = σ = sqrt [Σ (X_i μ)² / N] • Population variance = $\sigma^2 = \Sigma (X_1 - \mu)^2 / N$
- Standardized score = Z = (X μ) / σ
- Population correlation coefficient = $\rho = [1/N] * \Sigma \{ [(X_i \mu_X)/\sigma_X] * [(Y_i \mu_Y)/\sigma_Y] \}$

Variance of population proportion = σ_P² = PQ / n

Unless otherwise noted, these formulas assume simple random sampling. • Sample mean = $\bar{x} = (\Sigma x_i) / n$

- Sample standard deviation = s = sqrt [Σ(x_i x̄)²/(n 1)]
- Sample variance = $s^2 = \Sigma (x_1 \overline{x})^2 / (n 1)$ Variance of sample proportion = s_p² = pq / (n - 1)

Pooled sample proportion = p = (p₁ * n₁ + p₂ * n₂) / (n₁ + n₂)

- Pooled sample standard deviation = $s_p = sqrt[(n_1 1) * s_1^2 + (n_2 1) * s_2^2]/(n_1 + n_2 2)]$
- Pearson product-moment correlation = r = Σ (xy) / sqrt [(Σ x²) * (Σ y²)]

Linear correlation (sample data) = r = [1/(n-1)]*Σ{[(x_i - x̄)/s_x]*[(y_i - ȳ)/s_y]}

• Linear correlation (population data) = $\rho = [1/N] * \Sigma \{ [(X_i - \mu_X)/\sigma_X] * [(Y_i - \mu_Y)/\sigma_y] \}$

• Sample correlation coefficient = $r = [1/(n-1)] * \Sigma \{ [(x_i - \overline{x})/s_x] * [(y_i - \overline{y})/s_y] \}$

Simple linear regression line: ŷ = b₀ + b₁x

Simple Linear Regression

• Regression coefficient = $b_1 = \Sigma [(x_i - \overline{x})(y_i - \overline{y})] / \Sigma [(x_i - \overline{x})^2]$

Regression coefficient = b₁ = r * (s_v / s_x)

Regression slope intercept = b₀ = ȳ - b₁ * x̄

Standard error of regression slope = s_{b1} = sqrt [Σ(y_i - ŷ_i)² / (n - 2)] / sqrt [Σ(x_i - x̄)²]

Combinations of n things, taken r at a time: nCr = n! / r!(n - r)! = nPr / r!

n factorial: n! = n * (n-1) * (n - 2) * . . . * 3 * 2 * 1. By convention, 0! = 1.

Permutations of n things, taken r at a time: nPr = n! / (n - r)!

Rule of addition: P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

Rule of multiplication: P(A ∩ B) = P(A) P(BIA)

In the following formulas, X and Y are random variables, and a and b are constants.

Expected value of X = E(X) = μ_X = Σ [x_i * P(x_i)]

Normal random variable = z-score = z = (X - μ)/σ

Mean of sampling distribution of the mean = μ_x = μ

Standard deviation of the mean = σ_x = σ/sqrt(n)

Standard error of the mean = SE_x = s_x = s/sqrt(n)

Standard Error

• Mean of sampling distribution of the proportion = $\mu_0 = P$

Rule of subtraction: P(A') = 1 - P(A)

 Chi-square statistic = X² = [(n-1)*s²]/σ² • f statistic = $f = [s_1^2/\sigma_1^2]/[s_2^2/\sigma_2^2]$

Expected value of sum of random variables = E(X + Y) = E(X) + E(Y)

• Variance of X = Var(X) = $\sigma^2 = \Sigma [x_i - E(x)]^2 * P(x_i) = \Sigma [x_i - \mu_x]^2 * P(x_i)$

Sampling Distributions

Variance of the sum of independent random variables = Var(X + Y) = Var(X) + Var(Y)

Variance of the difference between independent random variables = Var(X - Y) = Var(X) + Var(Y)

Expected value of difference between random variables = E(X - Y) = E(X) - E(Y)

Standard deviation of difference of sample proportions = σ_d = sqrt{ [P₁(1 - P₁) / n₁] + [P₂(1 - P₂) / n₂] }

Standard error of proportion = SE_p = s_p = sqrt[p * (1 - p)/n] = sqrt(pq / n)

• Standard deviation of difference of sample means = σ_d = sqrt[$(\sigma_1^2 / n_1) + (\sigma_2^2 / n_2)$]

Standard deviation of proportion = σ₀ = sqrt[P * (1 - P)/n] = sqrt(PQ / n)

Pooled sample standard error = spooled = sqrt [(n₁ - 1) * s₁² + (n₂ - 1) * s₂²] / (n₁ + n₂ - 2)]

Standard error of difference of sample proportions = s_d = sqrt{ [p₁(1 - p₁) / n₁] + [p₂(1 - p₂) / n₂] }

Standard error of difference of paired sample means = SE_d = s_d = { sqrt [(Σ(d_i - d̄)² / (n - 1)] } / sqrt(n)

Standard error of difference for proportions = SE_p = s_p = sqrt{ p * (1 - p) * [(1/n₁) + (1/n₂)]}

Standard error of difference of sample means = SE_d = s_d = sqrt[(s₁² / n₁) + (s₂² / n₂)]

• Binomial formula: $P(X = x) = b(x; n, P) = {}_{n}C_{x} * P^{x} * (1 - P)^{n-x} = {}_{n}C_{x} * P^{x} * Q^{n-x}$

Negative Binomial formula: P(X = x) = b*(x; r, P) = x-1Cr-1 * Pr * (1 - P)X - r

Variance of binomial distribution = σ_x² = n * P * (1 - P)

Mean of negative binomial distribution = μ_x = rQ / P

Geometric formula: P(X = x) = g(x; P) = P * Q^{X - 1}

Mean of geometric distribution = μ_x = Q / P

Variance of negative binomial distribution = σ_x² = r * Q / P²

Mean of binomial distribution = μ_x = n * P

Discrete Probability Distributions

 Variance of geometric distribution = σ_χ² = Q / P² Hypergeometric formula: P(X = x) = h(x; N, n, k) = [kCx] [N-kCn-x] / [NCn]

• Variance of hypergeometric distribution = $\sigma_X^2 = n * k * (N - k) * (N - n) / [N^2 * (N - 1)]$

For the following formulas, assume that Y is a linear transformation of the random variable X, defined by the

Multinomial formula: P = [n!/(n₁! * n₂! * ... n_k!)] * (p₁^{n₁} * p₂^{n₂} * ... * p_k^{n_k})

Mean of hypergeometric distribution = μ_x = n * k / N

• Variance of Poisson distribution = $\sigma_x^2 = \mu$

• Mean of a linear transformation = $E(Y) = \overline{Y} = a\overline{X} + b$.

Standardized score = z = (x - μ_x) / σ_x.

t statistic = t = (x - μ_x) / [s/sqrt(n)].

Variance of a linear transformation = Var(Y) = a² * Var(X).

Poisson formula: P(x; μ) = (e^{-μ}) (μ^x) / x!

Mean of Poisson distribution = μ_x = μ

Linear Transformations

equation: Y = aX + b.

Hypothesis Testing

Degrees of Freedom

About us

Estimation Confidence interval: Sample statistic + Critical value * Standard error of statistic

Margin of error = (Critical value) * (Standard deviation of statistic)

Standardized test statistic = (Statistic - Parameter) / (Standard deviation of statistic)

■ Matched-sample t-test for means: t statistic = t = [(x

1 - x

2) - D]/SE = (d - D)/SE

• Two-sample t-test: DF = $(s_1^2/n_1 + s_2^2/n_2)^2 / \{ [(s_1^2/n_1)^2/(n_1 - 1)] + [(s_2^2/n_2)^2/(n_2 - 1)] \}$

One-sample z-test for proportions: z-score = z = (p - P₀) / sqrt(p * q / n)

Margin of error = (Critical value) * (Standard error of statistic)

 Two-sample z-test for proportions: z-score = z = z = [(p₁ - p₂) - d] / SE One-sample t-test for means: t statistic = t = (x - μ) / SE

Two-sample t-test for means: t statistic = t = [(x

1 - x

2) - d] / SE

Chi-square test statistic = X² = Σ[(Observed - Expected)² / Expected]

The correct formula for degrees of freedom (DF) depends on the situation (the nature of the test statistic, the number of samples, underlying assumptions, etc.). One-sample t-test: DF = n - 1

Two-sample t-test, pooled standard error: DF = n₁ + n₂ - 2

 Chi-square goodness of fit test: DF = k - 1 Chi-square test for homogeneity: DF = (r - 1) * (c - 1)

Chi-square test for independence: DF = (r - 1) * (c - 1)

Simple linear regression, test slope: DF = n - 2

- simple random sampling. The third formula assigns sample to strata, based on a proportionate design. The fourth formula, Neyman allocation, uses stratified sampling to minimize variance, given a fixed sample size. And the last formula, optimum allocation, uses stratified sampling to minimize variance, given a fixed budget.
- Proportionate stratified sampling: n_h = (N_h / N) * n Neyman allocation (stratified sampling): n_h = n * (N_h * σ_h) / [Σ (N_i * σ_i)]
 - Privacy policy Contact us
 - Copyright © 2021 StatTrek.com

Terms of use