Brücken (Forts.)

Es sei G = (V, E) ein Graph und $I \in \mathbb{N}$.

Satz

Ist $u \in V$ zu I Brücken inzident, so besitzt G mindestens I von u verschiedene Knoten von ungeradem Grad.

Folgerung

Haben in einem Graphen alle Knoten geraden Grad, so besitzt er keine Brücken.

Distanz

Es sei G = (V, E) ein Graph.

Definition

Es seien $v, w \in V$.

▶ lst $v \sim w$, dann sei

$$d(v,w) := \min\{l \in \mathbb{N}_0 \mid \text{in } G \text{ ex. } v\text{-}w\text{-Pfad der Länge } l\} \in \mathbb{N}_0.$$

- ▶ Ist $v, w \in V$ mit $v \not\sim w$, dann sei $d(v, w) := \infty$.
- ▶ Wir nennen d(v, w) die *Distanz* zwischen v und w.

Distanz

Es sei G = (V, E) ein Graph.

Bemerkung

Für alle $v, w \in V$ gelten:

- $b d(v,w) = 0 \Leftrightarrow v = w,$
- $d(v,w) < \infty \Leftrightarrow v \sim w.$

G ist genau dann zusammenhängend, wenn gilt: $d(v, w) < \infty$ für alle $v, w \in V$.

Breitensuche

Es sei G = (V, E) ein Graph und $w \in V$.

Die Breitensuche ist ein Algorithmus, der, beginnend mit $w \in V$, alle Knoten der Zusammenhangskomponente von w mit aufsteigender Distanz zu w durchläuft.

Anwendungen

- ightharpoonup Berechnung der Zusammenhangskomponenten von G.
- Berechnung der Distanzen d(v, w) für v in der Zusammenhangskomponente von w.
- ▶ Berechnung kürzester Pfade von jedem v zu w.

```
Breitensuche (\Gamma, w)
      initialisiere array d[1,\ldots,n] mit allen Einträgen gleich \infty
     initialisiere array p[1, ..., n] mit allen Einträgen gleich NIL
      initialisiere leere queue Q (FIFO)
    d[w] \leftarrow 0
  5 INSERT(Q, w)
    while Q ist nicht leer
     do v \leftarrow \text{Extract}(Q)
          for u \in \Gamma(v)
  8
  9
          do if d[u] = \infty
10
                 then INSERT(Q, u)
                       d[u] \leftarrow d[v] + 1
11
12
                       p[u] \leftarrow v
13
      return d, p
```

Kommentare (zum Algorithmus)

- ► Eingabe:
 - Γ: Adjazenzliste des Graphen G = (V, E) mit $V = \underline{n}$
 - ▶ w: Knoten $w \in V$
- ▶ Der array d[1,...,n] enthält nach der Terminierung an Position v den Wert d(w,v).
- Der array p[1,..., n] enthält nach der Terminierung an Position v einen Knoten u, der auf einem w-v-Pfad der Länge d(w, v) unmittelbar vor v kommt.
- queue ist eine Warteschlange im "First-in-first-out"-Modus.
- ▶ Der Aufruf INSERT(Q, x) hängt das Element x an das Ende der Warteschlange.
- ► Der Aufruf Extract(Q) entnimmt das Element, das am Anfang der Warteschlange steht.

Bemerkung

Der Verlauf der Breitensuche und das Ergebnis p hängen von der Anordnung der Mengen $\Gamma(v)$ in der Adjazenzliste von G ab.

Beispiel

Beispiel

Die Listen $\Gamma(v)$ sind aufsteigend angeordnet.

d	p	Q	V	Γ(ν)	$d[u] = \infty$
	$ \begin{bmatrix} [-,-,-,-,-,-] \\ [-,1,1,-,-,-] \\ [-,1,1,2,-,-] \\ [-,1,1,2,3,-] \\ [-,1,1,2,3,4] \\ [-,1,1,2,4] \\ [-,$	[1] [2, 3] [3, 4] [4, 5] [5, 6] [6]	1 2 3 4 5 6	[2,3] [1,4] [1,4,5] [2,3,6] [3,6] [4,5]	[2, 3] [4] [5] [6] []

Beispiel

Die Listen $\Gamma(v)$ sind absteigend angeordnet.

d	p	Q	V	Γ(ν)	$ \begin{vmatrix} d[u] \\ = \infty \end{vmatrix}$
	$ \begin{bmatrix} -, -, -, -, -, - \\ -, 1, 1, -, -, - \end{bmatrix} $ $ \begin{bmatrix} -, 1, 1, 3, 3, - \\ -, 1, 1, 3, 3, - \end{bmatrix} $ $ \begin{bmatrix} -, 1, 1, 3, 3, 5 \\ -, 1, 1, 3, 3, 5 \end{bmatrix} $ $ \begin{bmatrix} -, 1, 1, 3, 3, 5 \\ -, 1, 1, 3, 3, 5 \end{bmatrix} $	[1] [3, 2] [2, 5, 4] [5, 4] [4, 6] [6]	1 3 2 5 4 6	[3, 2] [5, 4, 1] [4, 1] [6, 3] [6, 3, 2] [5, 4]	[3, 2] [5, 4] [] [6]

Tiefensuche

Bemerkung

- ▶ Die *Tiefensuche* ist ein Algorithmus mit der gleichen Ein- und Ausgabe wie die Breitensuche.
- In jedem Schritt der Breitensuche wird die Distanz zu w möglichst beibehalten.
- ▶ In jedem Schritt der Tiefensuche wird die Distanz zu w möglichst vergrößert.
- Sie wird realisiert, indem die queue (FIFO) durch einen stack (LIFO= "Last-in-first-out") ersetzt wird.

Dijkstras Algorithmus

Definition

Ein gewichteter Graph ist ein Tripel G = (V, E, f) mit: (V, E) ist ein Graph und f eine Gewichtsfunktion $f : E \to \mathbb{R}_{\geq 0}$.

Definition

Es sei G = (V, E, f) ein gewichteter Graph.

- ► Es sei $z = (v_0, ..., v_l)$ ein Kantenzug in G. $f(z) := \sum_{i=1}^{l} f(v_{i-1}v_i)$ heißt das *Gewicht* von z.
- Für alle $v, w \in V$ mit $v \sim w$ definieren wir die *Distanz* zwischen v und w als

$$d(v, w) := \min\{f(z) \mid z \text{ ist } v\text{-}w\text{-Pfad in } G\} \in \mathbb{R}_{\geq 0}.$$

▶ Für alle $v, w \in V$ mit $v \nsim w$ wird $d(v, w) := \infty$ gesetzt.

```
DIJKSTRA(\Gamma, w, f)
      initialisiere array d[1, \ldots, n] mit allen Einträgen gleich \infty
      initialisiere array p[1, ..., n] mit allen Einträgen gleich NIL
  3
      initialisiere priority queue Q mit Elementen 1, \ldots, n und
     allen Prioritäten = \infty
  5 d[w] \leftarrow 0
     INSERT(Q, w, d[w])
    while Q nicht leer
  8
      do v \leftarrow \text{EXTRACTMIN}(Q)
          for u \in \Gamma[v]
          do if d[v] + f(uv) < d[u]
10
                 then d[u] \leftarrow d[v] + f(uv)
11
12
                       p[u] \leftarrow v
                       INSERT(Q, u, d[u])
13
14
      return d, p
```

Kommentare (zum Algorithmus)

- ► Eingabe:
 - Γ: Adjazenzliste des Graphen G = (V, E) mit $V = \underline{n}$
 - ▶ w: Knoten $w \in V$
 - ▶ f: Liste der Werte $f(v), v \in V$
- ▶ Der array d[1,...,n] enthält nach der Terminierung an Position v den Wert d(w,v).
- Der array p[1,..., n] enthält nach der Terminierung an Position v einen Knoten u, der auf einem w-v-Pfad der Distanz d(w, v) unmittelbar vor v kommt.

Kommentare (zum Algorithmus), Forts.

- priority queue ist eine Vorrangwarteschlange, bei der jedem ihrer Element ein Prioritätswert zugeordnet ist.
- ▶ Der Aufruf INSERT(Q, x, k) fügt das Element x in die Warteschlange ein und ordnet x die Priorität k ≥ 0 zu. Falls x bereits in der Warteschlange enthalten ist, wird nur die Priorität neu auf k gesetzt.
- ▶ Der Aufruf ExtractMin(Q) entnimmt das Element mit der niedrigsten Priorität.

Beispiel

	d	p	Q	v	Γ(ν)	d[v] + f(uv) < d[u]
•	$ \begin{bmatrix} [0, \infty, \infty, \infty] \\ [0, 6, 4, 9] \\ [0, 5, 4, 9] \\ [0, 5, 4, 8] \\ [0, 5, 4, 8] \end{bmatrix} $	$ \begin{bmatrix} -, -, -, - \\ -, 1, 1, 1 \\ -, 3, 1, 1 \\ -, 3, 1, 2 \\ -, 3, 1, 2 \end{bmatrix} $	{1,2,3,4} {2,3,4} {2,4} {4} {}	1 3 2 4	[2,3,4] [1,2] [1,3,4] [1,2]	[2, 3, 4] [2] [4]

Hamiltonkreise und Eulertouren

Definition

Es sei G = (V, E) ein Graph.

- ▶ Ein Kreis der Länge n_G in G heißt Hamiltonkreis.
- ▶ Eine Tour der Länge m_G in G heißt *Eulertour*.

Hamiltonkreise und Eulertouren (Forts.)

Es sei G = (V, E) ein Graph.

Bemerkung

- ▶ Ein geschlossener Kantenzug (v_0, \ldots, v_l) ist genau dann ein Hamiltonkreis, wenn in der Auflistung v_0, \ldots, v_{l-1} jeder Knoten aus V genau einmal vorkommt.
- ▶ Ein geschlossener Kantenzug $(v_0, ..., v_l)$ ist genau dann eine Eulertour, wenn in der Auflistung $v_0v_1, v_1v_2, ..., v_{l-1}v_l$ jede Kante aus E genau einmal vorkommt.

Definition

Ein (nicht notwendig geschlossener) Kantenzug (v_0, \ldots, v_l) heißt *Eulerzug*, wenn in der Auflistung $v_0v_1, v_1v_2, \ldots, v_{l-1}v_l$ jede Kante aus E genau einmal vorkommt.

Hamiltonkreise und Eulertouren (Forts.)

Beispiel

- Das Straßennetz einer Stadt sei durch einen Graphen modelliert (Knoten: Kreuzungen, Kanten: Straßenabschnitte).
 Der Fahrer eines Schneeräumfahrzeuges sucht eine Eulertour.
- Der Graph "Haus vom Nikolaus" besitzt einen Eulerzug, aber keine Eulertour.

▶

Eulertouren

Es sei G = (V, E) ein Graph.

Bemerkung

- ► Existiert in *G* eine Eulertour, so gelten:
 - ▶ Alle Knoten von G haben geraden Grad, und
 - ► höchstens eine Zusammenhangskomponente von *G* ist nicht-trivial.
- ► Existiert in *G* ein Hamiltonkreis, so gelten:
 - ▶ Jeder Knoten von G hat Grad ≥ 2 , und
 - ▶ *G* ist zusammenhängend und $n_G \ge 3$.

Eulertouren (Forts.)

Es sei G = (V, E) ein zusammenhängender Graph.

Satz

Hat G genau zwei Knoten u, v mit ungeradem Grad, dann existiert ein u-v-Eulerzug in G.

Folgerung

Der Graph G besitzt genau dann eine Eulertour, wenn alle Knoten von G geraden Grad haben.

Eulertouren (Forts.)

Es sei G = (V, E) ein zusammenhängender Graph, dessen Knoten geraden Grad haben. Die folgende Prozedur FLEURY berechnet eine Eulertour.

```
FLEURY (V, E)
      initialisiere leere Liste T
  2 v \leftarrow beliebiger Knoten aus V
  3 Append(T, v)
  4 while E ist nicht leer
  5
     do if \deg v = 1
  6
             then w \leftarrow \text{einziger Nachbar von } v
             else w \leftarrow \text{ein Nachbar von } v \text{ mit } vw \text{ keine Brücke}
  8
           APPEND(T, w)
  9
          E \leftarrow E \setminus \{vw\}
 10
           v \leftarrow w
      return T
 11
```

Hamiltonkreise

Satz

Es sei G = (V, E) ein zusammenhängender Graph mit $n_G \ge 3$.

Falls für alle $u, v \in V$ mit $u \neq v$ und $uv \notin E$ gilt

$$\deg u + \deg v \geq n_G$$

so besitzt G einen Hamiltonkreis.

Bemerkung

Erfüllt G die Voraussetzungen des Satzes und ist n_G gerade, so gilt

$$m_G \geq \frac{n_G^2}{4}$$
.