Diskrete Mathematik

Patrick Bucher & Lukas Arnold

17. Mai 2017

Inhaltsverzeichnis			1 Foundations
1	Foundations 1.1 Operationen	1	1.1 Operationen
	1.2 Prioritäten der Operationen1.3 Tautologie & Kontraktion	1	Negation $\neg p$ Verneinung Konkunktion $p \land q$ Und-Verknüpfung
	1.4 Logische Äquivalenzgesetze1.5 Äquivalenzgesetze	1 2	Disjunktion $p \lor q$ Oder-Verknüpfung EXOR $p \oplus q$ Exklusiv-Oder Implikation $p \to q$ falls p dann q
	1.6 Quantifikatoren	2 2 2	Bikonditional $p \leftrightarrow q$ p genau dann wenn q
2	Basic Structures	2	
	2.1 Mengen	2 2	1.2 Prioritäten der Operationen
	2.3 Mengenoperationen	2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2.5 Definition von Fuktionen2.6 Arten von Funktionen	2 2	
	2.7 Zusammengesetzte Funktion2.8 Umkehrfunktion2.9 Folgen	2 2	
	2.9 Folgen 2.10 Reihen 2.11 Summenformeln	2 2 3	1.3 Tautologie & Kontraktion
3	Diskrete Wahrscheinlichkeitsrechnung	3	Tautologie $p \lor \neg p$ immer wahre Aussage Kontraktion $p \land \neg q$ immer falsche Aussage
	3.1 Wahrscheindlichkeit nach Laplace3.2 Komplement der Wahrscheindlichkeit	3	
	3.3 Additionsregel	3 3 3	1.4 Logische Äquivalenzgesetze
	3.6 Satz der totalen Wahrscheindlichkeit	3	Identität $p \wedge \mathbf{T} \equiv p \qquad p \vee \mathbf{F} \equiv p$
	3.8 Binomialverteilung	3	Dominanz $p \land \mathbf{I} \equiv p$ $p \lor \mathbf{F} \equiv p$ $p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$ Negation $p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$
	3.10 Poissonverteilung	3	Assoziativ 1 $(p \lor q) \lor r \equiv p \lor (q \lor r)$ Assoziativ 2 $(p \land q) \land r \equiv p \land (q \land r)$ Distributiv 1 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
	3.12 Erwartungswert einer Zufallsvariable3.13 Varianz einer Zufallsvariable3.14 Standardabweichung einer Zufallsvariable	3 3 3	Distributiv 2 $p \lor (q \lor r) \equiv (p \lor q) \lor (p \lor r)$ Distributiv 2 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ De Morgan's 1 $\neg (p \land q) \equiv \neg p \lor \neg q$ De Morgan's 2 $\neg (p \lor q) \equiv \neg p \land \neg q$

1.5 Äquivalenzgesetze

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

$$p \rightarrow (q \land r) \equiv (p \rightarrow q) \land (p \rightarrow r)$$

$$(p \lor q) \rightarrow r \equiv (p \rightarrow q) \land (q \rightarrow r)$$

$$p \rightarrow (q \lor r) \equiv (p \rightarrow q) \land (q \rightarrow r)$$

$$p \rightarrow (q \lor r) \equiv (p \rightarrow q) \lor (p \rightarrow r)$$

$$(p \land q) \rightarrow r \equiv (p \rightarrow q) \lor (p \rightarrow r)$$

$$(p \land q) \rightarrow r \equiv (p \rightarrow r) \lor (q \rightarrow r)$$

$$p \oplus q \equiv (p \lor q) \land (\neg p \lor \neg q)$$

$$\neg (p \oplus q) \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \oplus q) \equiv p \leftrightarrow q$$

1.6 Quantifikatoren

For All \forall für alle \mathbf{x} aus \mathbf{P} wahr Exists \exists für mindestens ein \mathbf{x} aus \mathbf{P} wahr

Not Exists $\neg \exists$ für alle x aus P falsch

Not For All $\neg \forall$ für mindestens ein x aus P falsch

1.7 Negation von Quantifikatoren

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

1.8 Beweise

direkter Beweis $p \rightarrow q$ indirekter Beweis $\neg q \rightarrow \neg p$ Widerspruch $\neg p \rightarrow q$ $Vorgehen\ Widerspruch$ $(\neg p \rightarrow \mathbf{f}) \Rightarrow (p \rightarrow \mathbf{w})$

2 Basic Structures

2.1 Mengen

$$\begin{split} \mathbb{N} &= \{1, 2, \ldots\} \\ \mathbb{N}_0 &= \{0, 1, 2, \ldots\} \\ \mathbb{Z} &= \{..., -1, 0, 1, 2, \ldots\} \\ \mathbb{Z}^+ &= \{1, 2, \ldots\} \\ \mathbb{Q} &= \{p/q | p \in Z \land q \in N\} \\ \mathbb{R} : \text{die Menge der komplexen Zahlen} \\ \mathbb{C} : \text{die Menge der komplexen Zahlen} \end{split}$$

2.2 Spezielle Menegen

Teilmenge: $A \subset B \equiv \forall x (x \in A \rightarrow x \in B)$ Leere Menge: $\emptyset \subset A \ gilt \ fiir \ jede \ Menge \ A$ Kardinalität: $|S| \ beschreibt \ Anzahl \ Elmenete \ von \ A$

Potenzmenge: $P(S) = 2^S = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ Kreuzprodukt: $A \times B = \{(a, b) | a \in A \land b \in B\}$

2.3 Mengenoperationen

 $\begin{array}{ll} \text{Komplement:} & A^c = \overline{A} = \{m \in M : m \notin A\} \\ \text{Durchschnitt:} & A \cap B = \{m \in M | m \in A \wedge m \in B\} \\ \text{Vereinigung:} & A \cup B = \{m \in M | m \in A \vee m \in B\} \\ \text{Differenz:} & B - A = \{m \in M | m \in B \wedge m \notin A\} \\ \end{array}$

2.4 Rechenregeln für Mengen

Kommutativgesetz $A \cup B = B \cup A$ $A \cap B = B \cap A$ Kommutativgesetz Assoziativgesetz $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$ Assoziativgesetz $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributivgesetz $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributivgesetz De Morgan's Gesetz $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$ De Morgan's Gesetz

2.5 Definition von Fuktionen

$$f: X \to Y \quad x \mapsto f(x) \quad f: x \mapsto f(x)$$

$$f(x) := \left\{ \begin{array}{cc} 5 & \text{für } x < 0 \\ x^2 + 5 & \text{für } x \in [0, 2] \\ 0.5x + 8 & \text{für } x > 2 \end{array} \right\}$$

2.6 Arten von Funktionen

injektiv auf jedes Element in Y zeigt höchstens ein Pfeil surjektiv auf jedes Element in Y zeigt mindestens ein Pfeil bijektiv auf jedes Element in Y zeigt genau ein Pfeil

2.7 Zusammengesetzte Funktion

$$g: X \to U \qquad x \mapsto g(x)$$

$$f: U \to Y \qquad u \mapsto g(u)$$

$$F = f \circ g: X \to Y \qquad x \mapsto f(g(x))$$

2.8 Umkehrfunktion

$$y = f(x)$$
 $x = f^{-1}(y)$
 $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$
 $(f^{-1} \circ f)(y) = f^{-1}(f(y)) = y$

2.9 Folgen

harmonisch $a_k = 1/k$ geometrisch $a_k = a_0 * q^k$ arithmetisch $a_k = a_0 + (k * d)$

2.10 Reihen

harmonisch $\sum_{k=1}^{n} 1/k$ geometrisch $a_0 * \sum_{k=0}^{n-1} q^k = a_0 \frac{q^n - 1}{q - 1}$ arithmetisch $\sum_{k=0}^{n-1} (a_0 + kd) = n \frac{a_0 + a_{n-1}}{2}$

2.11 Summenformeln

$$\begin{array}{lll} \sum_{k=1}^{n} k & \frac{n*(n+1)}{2} \\ \sum_{k=1}^{n} k^2 & \frac{n(n+1)(2n+1)}{6} \\ \sum_{k=1}^{n} k^3 & \frac{n^2(n+1)^2}{4} \\ \sum_{k=0}^{n} x^k, |x| < 1 & \frac{1}{1-x} \\ \sum_{k=1}^{n} k x^{k-1}, |x| < 1 & \frac{1}{(1-x)^2} \end{array}$$

3 Diskrete Wahrscheinlichkeitsrechnung

3.1 Wahrscheindlichkeit nach Laplace

$$p(A) = \frac{|A|}{|S|} = \frac{Anzahl\ guenstige}{Anzahl\ moegliche}$$

3.2 Komplement der Wahrscheindlichkeit

$$p(\overline{A}) = 1 - p(A)$$

3.3 Additionsregel

$$p(A_1 \cup A_2) = p(A_1) + p(A_2) - p(A_1 \cap A_2)$$

3.4 Bedingte Wahrscheinlichkeit

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

3.5 Unabhängige Ereignisse

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(A)p(B)}{p(B)} = p(A)$$

3.6 Satz der totalen Wahrscheindlichkeit

$$p(A) = \sum_{i=1}^{k} p(A \cap B_i) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i)$$

$$p(A|C) = \frac{1}{p(C)} \sum_{i=1}^{k} p(A \cap (B_i \cap C))$$

$$p(A|C) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i|C)$$

Spezialfall für 2 Mengen:

$$p(A) = p(A|B) \cdot p(B) + p(A|\overline{B}) \cdot p(\overline{B})$$

3.7 Satz von Bayes

$$p(B_j|A) = \frac{P(A|B_j) \ p(B_j)}{p(A)} = \frac{p(A|B_j) \ p(B_j)}{\sum_{i=1}^k p(A|B_i) \cdot p(B_i)}$$

Spezialfall für 2 Mengen:
$$p(B|A) = \frac{P(A|B) \ p(B)}{p(A|B) \cdot p(B) + p(A|\neg B) \cdot p(\overline{B})}$$

3.8 Binomialverteilung

$$B(k|n,p) = B_{n,p}(k) = C(k)p^{k}(1-p)^{n-k}$$

$$B(k|n,p) = \binom{n}{k}p^{k}(1-p)^{n-k}$$

Bedingung:

$$p = M/N \text{ und } n \le M/10 \le (N-M)/10$$

3.9 Hypergeometrische Verteilung

$$p(k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

3.10 Poissonverteilung

$$f(k) = \frac{u^k}{k!}e^{-u}$$

Bedingung:

$$u = np \text{ und } p \le 0.1, n > = 100$$

3.11 W'keitsverteilung einer Zufallsvariablen

$$\{(r, p(X=r)) | \forall r \in X(S)\}$$

3.12 Erwartungswert einer Zufallsvariable

$$E(C) = \sum_{s \in S} X(s) \cdot p(s) = \sum_{r \in X(S)} r \cdot p(X = r)$$

3.13 Varianz einer Zufallsvariable

$$\begin{array}{l} V(X) = \sum_{s \in S} (X(s) - E(X))^2 \cdot p(s) \\ V(X) = \sum_{r \in X(S)} (r - E(X))^2 \cdot p(X = r) \end{array}$$

3.14 Standardabweichung einer Zufallsvariable

$$o(X) = \sqrt{V(X)}$$