

DSD Midterm Project

Gauss-Seidel Iteration Machine

Speaker: Alan

Advisor: Prof. An-Yeu Wu

Date: 2022/03/22

Background

- Large linear system of equations is required to be solved in many engineering simulations and scientific computing applications
- Several iterative methods is used to accelerate the computing due to their simplicity, such as Jacobi method, Gauss-Seidel iteration model (GSIM), Conjugate gradient...

$$\begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}$$

$$\vdots$$

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1N}x_N = b_1$$

$$\vdots$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2N}x_N = b_2$$

$$\vdots$$

$$a_{N1}x_1 + a_{N2}x_2 + \cdots + a_{NN}x_N = b_N$$

Expand eq (1)

Gauss-Seidel Iteration Model (GSIM)

Iterative method to solve a linear system of equations

$$x_3^0 \text{: initial value of } x_3 \\ x_1^1 = \frac{1}{a_{11}} (b_1 - a_{12} x_2^0 - \dots - a_{1N} x_N^0) \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2N} x_N = b_1 \\ \vdots \\ a_{N1} x_1 + a_{N2} x_2 + \dots + a_{NN} x_N = b_N \\ \vdots \\ x_N^1 = \frac{1}{a_{11}} (b_1 - a_{12} x_2^0 - \dots - a_{1N} x_N^0) \\ x_1^2 = \frac{1}{a_{21}} (b_2 - a_{21} x_1^1 - a_{22} x_3^0 - \dots - a_{2N} x_N^0) \\ \vdots \\ x_N^1 = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{N} a_{ij} x_j^k \right] \\ \vdots \\ x_N^1 = \frac{1}{a_{NN}} (b_N - a_{N1} x_1^1 - a_{N2} x_2^1 - \dots - a_{NN-1} x_{N-1}^1)$$

Change the order

Final equation

Project Problem

- Given a fixed matrix A
- Input Different matrix b
- After k iterations (define by yourself!), output final results x

At most 7 non-zero terms one time

By the previous equation:

$$\begin{split} x_1^1 &= \frac{1}{20} [b_1 + 13 \left(x_2^0 + 0 \right) - 6 \left(x_3^0 + 0 \right) + \left(x_4^0 + 0 \right)] \\ x_2^1 &= \frac{1}{20} [b_2 + 13 \left(x_3^0 + x_1^1 \right) - 6 \left(x_4^0 + 0 \right) + \left(x_5^0 + 0 \right)] \\ x_3^1 &= \frac{1}{20} [b_3 + 13 \left(x_4^0 + x_2^1 \right) - 6 \left(x_5^0 + x_1^1 \right) + \left(x_6^0 + 0 \right)] \\ x_4^1 &= \frac{1}{20} [b_4 + 13 \left(x_5^0 + x_3^1 \right) - 6 \left(x_6^0 + x_2^1 \right) + \left(x_7^0 + x_1^1 \right)] \\ &\vdots \\ x_{16}^1 &= \frac{1}{20} [b_{16} + 13 \left(0 + x_{15}^1 \right) - 6 \left(0 + x_{14}^1 \right) + \left(0 + x_{13}^1 \right)] \end{split}$$

Only divide 20

Score Criteria

- ❖ 評分一: Error rate E²

A 級:		E^2	< 0.000001
B級:	$0.000001 \le$	E^2	< 0.000005
C級:	$0.000005 \le$	E^2	< 0.000010
D級:	$0.000010 \leq$	E^2	< 0.000050
E級:	$0.000050 \le$	E^2	< 0.000100
F級:	$0.000100 \le$	E^2	< 0.001000
G級:	$0.001000 \le$	E^2	< 0.005000
H級:	$0.005000 \le$	E^2	< 0.010000
I級:	$0.010000 \le$	E^2	< 0.100000
J級:	$0.100000 \le$	E^2	< 0.300000
K級:	$0.300000 \le$	E^2	

- ❖ 評分二:AT score
 - $AT = area \times total timing$
 - Area: synthesis cell area
 - Timing: total execution time (tb1+tb2+...+tb5)

```
Your Score Level: A

Congratulations! GSIM's Function Successfully!

PASS

Simulation complete via $finish(1) at time 3734500 PS + 0

/testfixture5.v:213 #(`CYCLE/2); $finish;
ncsim> exit
```

Combinational area: 3875.164193
Buf/Inv area: 434.534396
Noncombinational area: 1147.442383
Macro/Black Box area: 0.000000
Net Interconnect area: 48580.242432

Total cell area: 5022.606576 Total area: 53602.849008

Design Guidelines

- Algorithm level
 - Mixture with other algorithms (i.e. Jacobi Method)
 - Relaxation for iterative processing
- Architecture level
 - Data path scheduling
 - Parallel processing (unfolding)
 - Pipelining
- Computation unit level
 - Constant multiplier, constant divider
 - Decimal analysis

Algorithm Level Optimization (1/2)

Gauss-Seidel: $x_i^{k+1} = \frac{1}{a_{ij}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{N} a_{ij} x_j^k \right] \Longrightarrow$ Data dependent

Jacobi: $x_i^{k+1} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^k - \sum_{j=i+1}^{N} a_{ij} x_j^k \right] \quad \Longrightarrow \text{Not data dependent}$

	Jacobi	Gauss-Seidel
Update $x^{(k+1)}$	Simultaneously	Sequentially
Parallelable	No	Yes
Iteration count	More (about 2x)	Less
Computation time	Less (about 0.5x)	More 😟

Algorithm Level Optimization (2/2)

- Iteration relaxation (Nesterov gradient descent)
 - Motivation: speed up convergence

w/o relaxing:
$$x_i^{k+1} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{N} a_{ij} x_j^k \right]$$

$$x_i^* = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{n} a_{ij} x_j^k \right]$$
 w/ relaxing:
$$x_i^{k+1} = \lambda x_i^* + (1 - \lambda) x_i^k$$

- Relaxation factor λ
 - \diamond 0 < λ < 2
 - ❖ Under-relaxation: $0 < \lambda < 1$
 - Make non-convergent systems converge
 - Over-relaxation: $1 < \lambda < 2$
 - Speed up convergence of a convergent system

Architecture Level Optimization (1/3)

- Reading data
 - Arbitrary reading: Using several MUXs to load data
 - Structural reading: Similar computation dataflow

Scheduling by removing 6 MUXs

Architecture Level Optimization (2/3)

- Parallel processing (unfolding)
 - Using multi-core to compute
 - Necessity: No data dependancy
- Reordering computation
 - ❖ Processing elements: 1, 5, 9, 13, ...

rescheduling

Architecture Level Optimization (3/3)

- Pipelining
 - Divide computation into several cycles

e.g. 3-stages pipeling

Computation Unit Level (1/2)

1 Division 2 Multiplication

Computation flow x_5^0 x_3^1 x_6^0 x_2^0 x_1^0 Divider x_7^0 x_1^1 x_1^0 x_2^0 x_2

Division and multiplication is complicated.
It need large area and long computation time.

Computation Unit Level (2/2)

- Multiplier
 - Power-of-two method (e.g. $6 = 110_2$, $13 = 1101_2$)
- Divider
 - Conventional (for arbitrary input): requires 32 cycles
 - Constant divider: requires 3 cycles
 - Canonic Signed Digit (CSD) code
 - For each odd integer d, there exists an odd integer m such that $d \times m = 2^n 1$

Need: 1 Adder, 1 shifter

Time: 32 cycles

$$\frac{1}{d} = \frac{m}{2^{n} - 1} = \frac{m}{2^{n} (1 - 2^{-n})}$$
$$= \frac{m}{2^{n}} (1 + 2^{-n}) (1 + 2^{-2n}) (1 + 2^{-4n}) \dots$$

Need: 1 Adder, 1 shifter

Time: 3 cycles

Notification

- Deadline: 4/5 23:59
 - Submit your result by group
 - Submit RTL file, SYN file (.sdf, .v files)
- Midterm presentation
 - Date: TBD
 - Materials: Your optimization towards improvements

Baseline: 4.0×10^9

We will score by performance of each team