6.829: Computer Networks and Mobile Systems

Lecture 6: Device-Free Localization

Previous Lecture: Device-based Localization

This Lecture: Using radio signals to track humans without any sensors on their bodies

Example: WiTrack

Device in another room

Applications

Measuring Distances

Distance = Reflection time x speed of light

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Capturing the pulse needs sub-nanosecond sampling

Multi-GHz samplers are expensive, have high noise, and create large I/O problem

What is the resolution direct time sampling?

FMCW: Measure time by measuring frequency

How do we measure ΔF ?

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

 $\Delta F \rightarrow Reflection Time \rightarrow Distance$

What is the resolution of FMCW?

<u>Challenge:</u> Multipath→ Many Reflections

Static objects don't move

→ Eliminate by subtracting consecutive measurements

Static objects don't move

→ Eliminate by subtracting consecutive measurements

Challenge: Dynamic Multipath

The direct reflection arrives before dynamic multipath!

Mapping Distance to Location

Person can be anywhere on an ellipse whose foci are (Tx,Rx)

By adding another antenna and intersecting the ellipses, we can localize the person

People are points

Want a silhouette

Approach: Combine antenna arrays with FMCW to get 3D image

- 2D Antenna array gives 2 angles
- FMCW gives depth (1D)

2D array

Challenge: We only obtain blobs in space

Output of 3D RF Scan

Challenge: We only obtain blob in space

At frequencies that traverse walls, human body parts are specular (pure mirror)

At every point in time, we get reflections from only a subset of body parts.

Solution Idea: Exploit Human Motion and Aggregate over Time

Solution Idea: Exploit Human Motion and Aggregate over Time

Combine the various snapshots

Human Walks toward Sensor

Human Walks toward Sensor

Combine the various snapshots

Human Walks toward Sensor

Sample Captured Figures through Walls

Through-wall classification accuracy of 90% among 13 users

Wireless Comm (Cont'd)

Packet Detection (sliding window)

Wireless Channel

Carrier Frequency Offset (CFO)