

Maximin Optimal Cluster Randomized Designs Accounting for Treatment Effect Heterogeneity

Mary M. Ryan, PhD;

Denise Esserman PhD; Fan Li, PhD

Department of Biostatistics, Yale University

Disclosures

Research in this presentation was supported by a Patient-Centered Outcomes Research Institute Award® (PCORI® Award ME-2020C3-21072), and by CTSA Grant Number UL1 TR001863 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH). The statements presented in this article are solely the responsibility of the authors and do not necessarily represent the views of PCORI®, its Board of Governors or Methodology Committee, or the National Institutes of Health.

Introduction

- <u>Cluster randomized trials (CRT)</u>: treatment randomized at cluster level; outcomes (typically) collected at individual level
- <u>Heterogeneous treatment effects (HTE)</u>: effect modifiers driving variations in a patient's response to interventions

 Cluster treatment

(1)
$$Y_{ij} = \beta_1 + \beta_2 W_i + \beta_3 X_{ij} + \beta_4 X_{ij} W_i + \gamma_i + \epsilon_{ij}$$
Individual HTE
covariate

- Confirmatory HTE analyses must be pre-specified
 - Little guidance on how to power these analyses when we are uncertain about the outcome ICC, $\rho_{y|x}$, and covariate ICC, ρ_x

$$var(\widehat{\beta_4}) = \sigma_{HTE}^2 = \frac{\sigma_{y|x}^2 (1 - \rho_{y|x}) \{1 + (m+1)\rho_{y|x}\}}{m \sigma_w^2 \sigma_x^2 \{1 + (m-2)\rho_{y|x}\} - (m-1)\rho_x \rho_{y|x}\}}$$
[Yang et al.,(2020)] Outcome Covariat ICC ICC

Knowledge Gaps

- 1. What formulations of cluster size m and number of clusters n will minimize $\sigma_{\rm HTE}^2$, with respect to a budget constraint, when ICCs are known?
- 2. When ICCs are not known, can we find a (m, n) design that will be most efficient among scenarios of inefficient ICC combinations?
- 3. Is there a way to adequately power a CRT for both HTE and average treatment effect (ATE) analyses?

Application to K-DPP Study

Kerala Diabetes Prevention Program [Thankappan et al., 2018]

- CRT of peer-support lifestyle diabetes intervention
- Secondary outcome: change in Indian Diabetes Risk Score
 - Post-hoc HTE: IDRS interaction with BMI
- 60 clusters with 10-23 participants each

KG1: HTE Locally Optimal Design

KG1: What formulations of cluster size m and number of clusters n will minimize $\sigma_{\rm HTE}^2$, with respect to a budget constraint, when ICCs are known?

- Locally optimal design (LOD): design that maximizes power/minimizes variance under budget constraints for fixed values of design parameters
- Budget constraint:

per-cluster per-subject
$$cost cost
B = Cn + sinn
= n(c + sm)$$

$$= n(c + sm)$$
Replace n in
$$\sigma_{\text{HTE}}^2 \text{ and minimize for } n$$

KG1: HTE Locally Optimal Design

<u>Proposition 1</u> - Minimizing σ_{HTE}^2 with respect to m, the HTE LOD for a given minimum number of clusters, \underline{n} , is:

i. If
$$\frac{\rho_{y|x}(k+1)}{\rho_{y|x}k+1} < \rho_x \le 1$$
 and $m_{\text{opt}} \le \frac{B/\underline{n}-c}{s}$

$$m_{\text{opt}} = \frac{\left(1 - \rho_{y|x}\right)(1 - \rho_{x}) + \sqrt{\rho_{y|x}^{-1}k^{-1}(1 - \rho_{y|x})(\rho_{x} - \rho_{y|x})} \left\{1 - (k+2)\rho_{y|x} + k + 1\right)\rho_{x}\rho_{y|x}}}{k^{-1}(\rho_{x} - \rho_{y|x}) - \rho_{y|x}(1 - \rho_{x})}$$

$$n_{\text{opt}} = \frac{B}{c + sm_{\text{opt}}}$$
Only depends on cost ratio (c/s)

ii. Otherwise

$$m_{opt} = \frac{B/\underline{n} - c}{s}$$
 $n_{opt} = \frac{B}{c + sm_{opt}}$

(4)

KG1: Application to K-DPP

- Intervention cluster- to -individual cost ratio $k \approx 30$
 - Accounting for cheaper control arm, assume k=20 and B=\$20,000

•
$$\Delta_{IDRS} = -1.5$$
; $\Delta_{HTE} = 0.25 \times \Delta_{IDRS} = -0.375$

•
$$\rho_{y|x} = 0.028, \rho_x = 0.055$$

• If minimum of 66 clusters (maximum *m* of 40):

LOD:
$$m_{opt} = 40$$
, $n_{opt} = 66$

KG2: HTE Maximin Design

LOD requires fixed/known ICCs – unrealistic expectation

KG2: When ICCs are not known, can we find a (m, n) design that will be most efficient among scenarios of inefficient ICC combinations?

- Maximin designs (MMD): design that is highly efficient in worst case parameter scenarios [van Breukelen and Candel, 2015]
- Comparing designs (m, n) based on relative efficiency compared to LOD at a specific $(\rho_{y|x}, \rho_x)$ combination:

$$RE_{
m HTE} = rac{{\sigma^2}_{
m HTE}^*}{{\sigma^2}_{
m HTE}} \begin{array}{c}
m HTE \ variance \ under \ LOD(
ho_{y|x},
ho_x) \end{array}$$

HTE variance at (m, n) and $(\rho_{y|x}, \rho_x)$

KG2: HTE Maximin Design

MMD for assessing HTE in CRTs

- 1. Define the parameter space $(\rho_{y|x}, \rho_x)$ and design space (m, n(m))
- 2. For each $(\rho_{y|x}, \rho_x)$, compute HTE LOD according to (5). Then compute RE for each (m, n(m)) compared with the LOD at the $(\rho_{y|x}, \rho_x)$
- 3. For each (m, n(m)), identify the $(\rho_{y|x}, \rho_x)$ with the smallest RE
- 4. Among the smallest REs, choose the (m, n(m)) with the largest RE

KG2: Application to K-DPP

- $m \in [8, 40]$
- $n \in [66, 143]$
- $\rho_{y|x} \in [0.005, 0.1]$
- $\rho_{\chi} \in [0.1, 0.75]$

MMD: $m_{opt} = 40$, $n_{opt} = 66$ 96.4% power to detect Δ_{HTE}

KG3: Compound Objective

KG3: Is there a way to adequately power a CRT for both HTE and average treatment effect (ATE) analyses?

- Optimal designs for assessing HTE (minimizing $\sigma_{\rm HTE}^2$) may not be optimal for assessing ATE (minimizing $\sigma_{\rm ATE}^2$)
- Need compound criterion to optimize over that takes both HTE and ATE objectives into account

Weighted combo of single objective REs
$$\Theta(\zeta|\lambda) = \lambda \frac{\Theta_{ATE}(\zeta_{ATE}^*)}{\Theta_{ATE}(\zeta)} + (1-\lambda) \frac{\Theta_{HTE}(\zeta_{HTE}^*)}{\Theta_{HTE}(\zeta)}$$
Priority weight
$$\Theta(\zeta|\lambda) = \lambda \frac{\Theta_{ATE}(\zeta_{ATE}^*)}{\Theta_{ATE}(\zeta)} + (1-\lambda) \frac{\Theta_{HTE}(\zeta_{HTE}^*)}{\Theta_{HTE}(\zeta)}$$

KG3: Compound Maximin

When there is uncertainty around ICC values:

Compound MMD for assessing HTE and ATE in CRTs

- 1. Choose priority weight λ
- 2. Define the parameter space $(\rho_{y|x}, \rho_x)$ and design space (m, n(m))
- 3. For each $(\rho_{y|x}, \rho_x)$, compute the LOD for each objective. Then compute $\Theta(\zeta|\lambda)$ for each (m, n(m)) compared with their LODs at the $(\rho_{y|x}, \rho_x)$
- 4. For each (m, n(m)), identify the $(\rho_{y|x}, \rho_x)$ with the smallest criterion value
- 5. Among the smallest criterion values, choose the (m, n(m)) with the largest criterion value

KG3: Application to K-DPP

- $m \in [8, 40]$
- $n \in [66, 143]$

• $\rho_{y|x} \in [0.005, 0.1]$

• $\rho_x \in [0.1, 0.75]$

Lower ATE power because MMD under smaller $\rho_{v|x}$

Online Application

Locally Optimal and Maximin Designs for Cluster Randomized Trials

Shiny App: https://mary-ryan.shinyapps.io/HTE-MMD-app/

Conclusions

- Understanding treatment effect heterogeneity crucial for improving how and to whom future interventions can be designed and delivered
- Optimal designs free of effect size within budget constraint
- Possible to find maximin designs robust to ICC value misspecification that jointly consider both HTE and ATE objectives

References

Yang, S., Li, F., Starks, M.A., Hernandez, A.F., Mentz, R.J., Choudhury, K.R. (2020). Sample size requirements for detecting treatment effect heterogeneity in cluster randomized trials. *Statistics in Medicine* 39(28): 4218–4237. doi:10.1002/sim.8721

Thankappan KR, Sathish T, Tapp RJ, et al (2018). A peer-support lifestyle intervention for preventing type 2 diabetes in India: A cluster-randomized controlled trial of the Kerala Diabetes Prevention Program. *PLOS Medicine* 15(6): e1002575. doi:10.1371/journal.pmed.1002575

Van Breukelen, G.J. and Candel, M.J. (2015). Efficient design of cluster randomized and multicentre trials with unknown intraclass correlation. *Statistical Methods in Medical Research* 24(5): 540–556. doi:10.1177/0962280211421344

Thank you!

Mary Ryan, PhD
Department of Biostatistics, Yale University

Email: mary.ryan@yale.edu

Twitter: @marym_ryan

Shiny App: https://mary-ryan.shinyapps.io/HTE-MMD-app/

Questions?

KG3.1: Compound LOD

• When ICCs are known, find compound LOD by solving for m that maximizes $\Theta(\zeta|\lambda)$

$$\max_{m} \Theta(\zeta|\lambda) = \lambda \frac{\Theta_{\text{ATE}}(\zeta_{\text{ATE}}^{*})}{\Theta_{\text{ATE}}(\zeta)} + (1 - \lambda) \frac{\Theta_{\text{HTE}}(\zeta_{\text{HTE}}^{*})}{\Theta_{\text{HTE}}(\zeta)}
= \frac{w_{\text{ATE}}}{\sigma_{\text{ATE}}^{2}} + \frac{w_{\text{HTE}}}{\sigma_{\text{HTE}}^{2}}$$

Appendix: Compound LOD

Proposition 2 - Locally optimal compound design

i. If
$$w_{\text{ATE}} > w_{\text{HTE}} \{ (k+1) \rho_{y|x} - \rho_x (k \rho_{y|x} + 1) \}$$
 and $m_{\text{opt}} \le \frac{B/\underline{n} - c}{s}$

$$m_{\text{opt}} = \frac{-w_{\text{HTE}}k a_2 - \sqrt{w_{\text{HTE}}^2 k^2 a_2^2 - 4\{w_{\text{HTE}}(k a_1 - b_1) - w_{\text{ATE}}\rho_{y|x}\}\{w_{\text{ATE}}k(1 - \rho_{y|x}) + w_{\text{HTE}}k a_3\}}{2\{w_{\text{HTE}}(k a_1 - b_1) - w_{\text{ATE}}\rho_{y|x}\}}$$

$$m_{\text{opt}} = \frac{B}{m_{\text{opt}}} = \frac{B}{m_{\text{opt}}}$$
Constants involving

 ρ_x and $\rho_{y|x}$

ii. Otherwise

$$m_{opt} = \frac{B/\underline{n} - c}{\frac{S}{B}}$$
 $n_{opt} = \frac{c}{c + sm_{opt}}$

(A1)

Appendix: Compound LOD

Extraneous terms in (A1):

$$a_{1} = \rho_{y|x}^{2}(1 - \rho_{x})$$

$$a_{2} = 2\rho_{y|x}(1 - \rho_{y|x})(1 - \rho_{x})$$

$$a_{3} = (1 - 2\rho_{y|x} + \rho_{x}\rho_{y|x})(1 - \rho_{y|x})$$

$$b_{1} = \rho_{y|x}(\rho_{x} - \rho_{y|x})$$