1

Chapter 9 Gaussian

Jay Vikrant EE22BTECH11025

Q9.3.6: The probability that a student is not a swimmer is $\frac{1}{5}$. Then the probability that out of five students, four are swimmers

1)
$${}^5C_4\left(\frac{4}{5}\right)^4\frac{1}{5}$$

2)
$$\left(\frac{4}{5}\right)^4 \frac{1}{5}$$

3)
$${}^{5}C_{1}\frac{1}{5}\left(\frac{4}{5}\right)^{4}$$

4) None of these

Solution: The pmf of X is,

	1	,
Parameter	Value	Description
n	5	number of students
q	$\frac{1}{5}$	probability for not a swimmer
р	4/5	probability for a swimmer

TABLE 4
GIVEN INFORMATION

$$p_X(k) = {}^{n}C_k p^k q^{n-k} \tag{1}$$

and the desired probability is

$$p_X(4) = {}^5C_4 \left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right)^{5-4} = 0.4096$$
 (2)

Let Y be gaussian variable

$$\mu = np = 4 \tag{3}$$

$$\sigma^2 = npq = \frac{4}{5} \tag{4}$$

by the central limit theorem we can take a random variable Z such that,

$$Z \approx \frac{Y - \mu}{\sigma}$$
 (5)

Using Normal distribution at Y = 4.

$$Z = \frac{Y - \mu}{\sigma} = \frac{4 - 4}{\sqrt{\frac{4}{5}}} = 0 \tag{6}$$

For pdf calculation

$$f_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (7)

$$\implies p_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{8}$$

and probability at Y = 4 is,

$$p_Z(0) = \frac{1}{\sqrt{2\pi}}e^{-\frac{0}{2}} = \frac{1}{\sqrt{2\pi}} = 0.44603$$
 (9)

Fig. 4. Binomial pmf vs Gaussian pdf

From the plot also, pmf is close to normal distribution pdf.

$$p_Y(4) = p_Z(0) = 0.44603$$
 (10)

From (2) and (10),

$$p_X(4) \approx p_Y(4) \tag{11}$$

Hence, option (3) is correct