

Programming Techniques for Supercomputers

(Heterogeneous and Distributed systems)

- Aditya Nitsure (IBM India)

About myself!

- Education
 - MS Computational Engineering, FAU Erlangen, Germany
 - BE Production Engineering, Pune University, India
- Technical Expertise
 - High performance computing
 - Performance engineering
 - Computational engineering/numerical simulation
 - Catastrophe modelling
- Interests
 - Trekking, Travelling, Motor sports/bike trips

Course outline

- Day 1
 - Introduction
 - Course structure/content
 - Hands on exercise examples
 - System setup
 - Evaluation
- Day 2
 - Introduction to Parallel programming
 - Computer architectures
 - Fundamentals of shared and distributed memory architecture
- Day 3
 - Shared memory programming
 - Introduction to OpenMP
 - Parallel constructs for CPU programming
 - Parallel constructs for GPU programming
- Day 4
 - Distributed memory programming
 - Introduction to MPI
 - Point to point communication
 - Collective communication

Course content (cont ...)

- Day 5
 - Hybrid programming and scalability
 - Heterogeneous computing
 - Introduction to heterogeneous architecture
 - Introduction to CUDA and OpenACC (GPU programming)
- Day 6
 - HPC application profiling (3)
 - CPU application profiling (perf tool, mpstat, perf stat, iosta, nmont etc.)
 - MPI profiling and tracing.
 - GPU profiling using NVProf and NVVP.
- Day 7
 - HPC benchmarks and case study of HPC application performance analysis (Gromacs, NAMD, CPMD etc.)
- Day 8
 - Revision/Summary
 - HPC cloud & containers
 - Convergence of AI and HPC
 - Q&A
 - Hands on completion and submission (OpenMRIIMPNandrGPU implementation)

What's in it for me (i.e. you :-))?

- Enable you for HPC programming
 - Understand fundamentals of parallel programming and parallel architecture
 - Learn shared and distributed memory programming techniques (OpenMP & MPI)
 - Able to write program using OpenMP pragma and MPI API
- Performance engineering of HPC applications
- Different aspects of HPC
 - Traditional HPC, accelerators, HPC cloud/container etc.
 - Traditional and emerging HPC areas

Introduction

High Performance Computing (HPC)

High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business.

- Weather Forecasting
- Molecular Dynamics
- Computational Fluid Dynamics
- Oil and gas exploration
- Climate research
- Artificial Intelligence and Data Science

HPC: Application Areas and Examples

- Healthcare : Drug discovery, Pacemaker simulation
- Engineering : Automobile/Aeroplane design
- Space and Research : Solar weather tracking
- Urban planning: Forecasting smog levels, Smarter construction
- Finance & business : Quicker and safer product development

Supercomputer

A large computer made up of many smaller computers and processors (nodes)

- Node is each individual computer
- Each node has processors or cores
- All nodes talk each other through communication network

Source: https://www.usgs.gov/core-science-systems/sas/Prd/ItbSut/wAaditya-plaintstute-ce-computing

https://computing.llnl.gov/tutorials/parallel_comp/OverviewRecentSupercomputers.2008.pdf

Top 5 Supercomputers (June 2020)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,299,072	415,530.0	513,854.7	28,335
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
66	Pratyush - Cray XC40, Xeon E5-2695v4 18C 2.1GHz, Aries interconnect , Cray/HPE Indian Institute of Tropical Meteorology India	119,232	3,763.9	4,006.2	1,353
119	Mihir - Cray XC40, Xeon E5-2695v4 18C 2.1GHz, Aries interconnect , Cray/HPE National Centre for Medium Range Weather Forecasting India	83,592	2,570.4	2,808.7	955

Source: https://www.top500.org/lists/top500/2020/06/

Distribution of Supercomputers

Source: https://www.top500.org/lists/top500/2020/06/

Top Energy Efficient Supercomputers (June 2020)

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power (kW)	Power Efficiency (GFlops/watts)
1	393	MN-3 - MN-Core Server, Xeon 8260M 24C 2.4GHz, MN-Core, RoCEv2/MN- Core DirectConnect, Preferred Networks Preferred Networks Japan	2,080	1,621.1	77	21.108
2	7	Selene - DGX A100 SuperPOD, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	272,800	27,580.0	1,344	20.518
3	468	NA-1 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz, PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	1,271,040	1,303.2	80	18.433
4	204	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D, Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
5	26	AIMOS - IBM Power System AC922, IBM POWER9 20C 3.45GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM Rensselaer Polytechnic Institute Center for Computational Innovations (CCI)	130,000	8,339.0	512	16.285
8	2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	10,096	14.719
9	1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,299,072	415,530.0	28,335	14.665

LINPACK benchmark

- #1 supercomputer chosen based on the 'best' performance measured by LINPACK benchmark
- Parallel LINPACK benchmark can be downloaded @ http://www.netlib.org/benchmark/hpl/.
- Solves dense system of linear equations (lots of matrix operations)
- R_{max}: Maximal performance achieved for largest problem sizes
- R_{peak}: Theoretical peak performance

Evolution of Supercomputer

Heterogeneous Supercomputer in Top500

Why Exascale Computing?

1,000,000,000,000,000 floating points operations per second

- At some point in research, there is a need to
 - Expand the current study area (regional \rightarrow national \rightarrow global)
 - Integrate new data
 - Increase model resolution
- Which leads to –

- Very large scale simulations
- More precision and accuracy
- Reduced time to solution i.e. faster simulations

Impact of Exascale Computing

National Security

- Stockpile stewardship
- · Next-generation simulation tools for assessing nuclear weapons performance
- · Response to hostile threat environments and hypersonic reentry

Scientific Discovery

- · Cosmological probing of the standard model of particle physics
- · Validation of fundamental laws of
- · Light-source-enabled analysis of protein and molecular structure and
- · Finding, predicting, and controlling materials
- · Whole-device modeling of magnetically confined fusion plasmas
- · Demystifying the origin of chemical

Economic Security

- · Acceleration of the adoption of additive manufacturing of qualifiable metal parts
- Urban planning
- · Reliable and efficient planning of the power grid
- · Seismic hazard risk assessment for the first coupling between earthquake motion and building response

Energy Security

- · Design and commercialization of small modular reactors
- · Turbine wind plant efficiency
- · Nuclear fission and fusion reactor materials design
- . Subsurface use for carbon capture. petroleum extraction, and waste
- · High-efficiency, low-emission combustion engine and gas turbine
- · Stress-resistant crop analysis and catalytic conversion of biomassderived alcohols

research by building predictive models for drug response and automation of analysis

What Next? Zetta scale??

Moore's Law

- In 1965 Gordon Moore predicted –
 The number of transistors and other components on integrated circuits will double every year for the next 10 years.
- In 1975 he revised his prediction forecasting that IC density would double every two years.
- What it means?
 - Processor speed doubles every2 years !

Moore's Law (2)

System setup and Hands-on Example

System Setup

- Linux operating system (RHEL, Ubuntu, Fedora etc.)
- gcc compiler (yum install gcc)
 - Supports CPU OpenMP
 - gcc 7 & later supports NVDIA PTX target (offloading to NVIDIA GPUs)
- OpenMPI library (MPI programming)
- NVIDIA GPU (P100/V100) OpenMP GPU offloading programming

Example: matrix multiplication

Matrix multiplication implementation

```
for(i=0;i<ROWSIZE;i++)
{
    for(j=0;j<COLSIZE;j++)
    {
        for(k=0;k<ROWSIZE;k++)
        {
            pC(i,j)+=pA(i,k)*pB(k,j);
        }
    }
}</pre>
```

Example: matrix multiplication

(domain decomposition to solve parallelly)

Implemented domain decomposition

Evaluation

- Completion of hands-on exercise (matrix multiplication program)
 - Implementation using OpenMP and MPI
- Complete the quiz/exam at the end of the course!

Thank you