# Different versions of Inception



#### Challenges with GoogLeNet





### Challenges with GoogLeNet

High computational cost (e.g. using 5X5 or 7X7 filters)

| type           | patch size/<br>stride | output<br>size | depth | #1×1 | #3×3<br>reduce | #3×3 | #5×5<br>reduce | #5×5 | pool<br>proj | params | ops  |
|----------------|-----------------------|----------------|-------|------|----------------|------|----------------|------|--------------|--------|------|
| convolution    | 7×7/2                 | 112×112×64     | 1     |      |                |      |                |      |              | 2.7K   | 34M  |
| max pool       | 3×3/2                 | 56×56×64       | 0     |      |                |      |                |      |              |        |      |
| convolution    | 3×3/1                 | 56×56×192      | 2     |      | 64             | 192  |                |      |              | 112K   | 360M |
| max pool       | 3×3/2                 | 28×28×192      | 0     |      |                |      |                |      |              |        |      |
| inception (3a) |                       | 28×28×256      | 2     | 64   | 96             | 128  | 16             | 32   | 32           | 159K   | 128M |
| inception (3b) |                       | 28×28×480      | 2     | 128  | 128            | 192  | 32             | 96   | 64           | 380K   | 304M |
| max pool       | 3×3/2                 | 14×14×480      | 0     |      |                |      |                |      |              |        |      |
|                |                       |                |       |      |                |      |                |      |              |        |      |



#### Challenges with GoogLeNet

High computational cost (e.g. using 5X5 or 7X7 filters)

Reduce representational bottleneck

| inception (5a) |       | 7×7×832                  | 2 | 256 | 160 | 320 | 32 | 128 | 128 | 1072K | 54M |
|----------------|-------|--------------------------|---|-----|-----|-----|----|-----|-----|-------|-----|
| inception (5b) |       | $7 \times 7 \times 1024$ | 2 | 384 | 192 | 384 | 48 | 128 | 128 | 1388K | 71M |
| avg pool       | 7×7/1 | 1×1×1024                 | 0 |     |     |     |    |     |     |       |     |
| dropout (40%)  |       | 1×1×1024                 | 0 |     |     |     |    |     |     | ĺ     |     |
| linear         |       | 1×1×1000                 | 1 |     |     |     |    |     |     | 1000K | 1M  |
| softmax        |       | $1 \times 1 \times 1000$ | 0 |     |     |     |    |     |     |       |     |



### GoogLeNet: High Computational Cost

| type           | patch size/<br>stride | output<br>size | depth | #1×1 | #3×3<br>reduce | #3×3 | #5×5<br>reduce | #5×5 | pool<br>proj | params | ops  |
|----------------|-----------------------|----------------|-------|------|----------------|------|----------------|------|--------------|--------|------|
| convolution    | 7×7/2                 | 112×112×64     | 1     |      |                |      |                |      |              | 2.7K   | 34M  |
| max pool       | 3×3/2                 | 56×56×64       | 0     |      |                |      |                |      |              |        |      |
| convolution    | 3×3/1                 | 56×56×192      | 2     |      | 64             | 192  |                |      | 23           | 112K   | 360M |
| max pool       | 3×3/2                 | 28×28×192      | 0     |      |                |      |                |      |              |        |      |
| inception (3a) |                       | 28×28×256      | 2     | 64   | 96             | 128  | 16             | 32   | 32           | 159K   | 128M |
| inception (3b) |                       | 28×28×480      | 2     | 128  | 128            | 192  | 32             | 96   | 64           | 380K   | 304M |
| max pool       | 3×3/2                 | 14×14×480      | 0     |      |                |      |                |      |              |        |      |
| inception (4a) |                       | 14×14×512      | 2     | 192  | 96             | 208  | 16             | 48   | 64           | 364K   | 73M  |
| inception (4b) |                       | 14×14×512      | 2     | 160  | 112            | 224  | 24             | 64   | 64           | 437K   | 88M  |
| inception (4c) |                       | 14×14×512      | 2     | 128  | 128            | 256  | 24             | 64   | 64           | 463K   | 100M |
| inception (4d) |                       | 14×14×528      | 2     | 112  | 144            | 288  | 32             | 64   | 64           | 580K   | 119M |
| inception (4e) |                       | 14×14×832      | 2     | 256  | 160            | 320  | 32             | 128  | 128          | 840K   | 170M |
| max pool       | 3×3/2                 | 7×7×832        | 0     |      |                |      |                |      |              |        |      |
| inception (5a) |                       | 7×7×832        | 2     | 256  | 160            | 320  | 32             | 128  | 128          | 1072K  | 54M  |
| inception (5b) |                       | 7×7×1024       | 2     | 384  | 192            | 384  | 48             | 128  | 128          | 1388K  | 71M  |
| avg pool       | 7×7/1                 | 1×1×1024       | 0     |      |                |      |                |      |              |        |      |
| dropout (40%)  |                       | 1×1×1024       | 0     |      |                |      |                |      | 2            |        |      |
| linear         |                       | 1×1×1000       | 1     |      |                |      |                |      |              | 1000K  | 1M   |
| softmax        |                       | 1×1×1000       | 0     |      |                |      |                |      |              |        |      |

































Two 3X3 Conv

5X5 Conv

























#### Wider filters















Proposed in 2015

#### **Rethinking the Inception Architecture for Computer Vision**

Christian Szegedy Google Inc.

Vincent Vanhoucke vanhoucke@google.com Sergey Ioffe

Jonathon Shlens

szegedy@google.com

sioffe@google.com

shlens@google.com

Zbigniew Wojna University College London

zbigniewwojna@gmail.com

#### Abstract

Convolutional networks are at the core of most stateof-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we are explorlarly high performance in the 2014 ILSVRC [16] classification challenge. One interesting observation was that gains in the classification performance tend to transfer to significant quality gains in a wide variety of application domains. This means that architectural improvements in deep convolutional architecture can be utilized for improving performance for most other computer vision tasks that are increasingly reliant on high quality, learned visual features. Also, improvements in the network quality resulted in new application domains for convolutional networks in cases where AlexNet features could not compete with hand engineered, crafted solutions, e.g. proposal generation in detection 41.



- Proposed in 2015
- It has 42 layers





- Proposed in 2015
- It has 42 layers
- Architectural details:
  - 3 Inception module 1





- Proposed in 2015
- It has 42 layers
- Architectural details:
  - o 3 Inception module 1
  - 5 Inception module 2



- Proposed in 2015
- It has 42 layers
- Architectural details:
  - 3 Inception module 1
  - 5 Inception module 2
  - 2 Inception module 3





- Proposed in 2015
- It has 42 layers
- Architectural details:
  - 3 Inception module 1
  - 5 Inception module 2
  - 2 Inception module 3
  - Global average pooling

Analytics Vidhya



- Proposed in 2015
- It has 42 layers
- Architectural details:
  - 3 Inception module 1
  - 5 Inception module 2
  - 2 Inception module 3
  - Global average pooling
  - 2 Fully connected layers





- Proposed in 2015
- It has 42 layers
- Architectural details:
  - 3 Inception module 1
  - 5 Inception module 2
  - 2 Inception module 3
  - Global average pooling
  - 2 Fully connected layers
- Trained on ImageNet dataset





### Architecture: Inception V2

| type        | patch size/stride<br>or remarks | input size                 |
|-------------|---------------------------------|----------------------------|
| conv        | 3×3/2                           | 299×299×3                  |
| conv        | 3×3/1                           | $149 \times 149 \times 32$ |
| conv padded | 3×3/1                           | 147×147×32                 |
| pool        | 3×3/2                           | 147×147×64                 |
| conv        | 3×3/1                           | 73×73×64                   |
| conv        | 3×3/2                           | 71×71×80                   |
| conv        | 3×3/1                           | $35 \times 35 \times 192$  |
| 3×Inception | As in figure 5                  | $35 \times 35 \times 288$  |
| 5×Inception | As in figure 6                  | $17 \times 17 \times 768$  |
| 2×Inception | As in figure 7                  | 8×8×1280                   |
| pool        | 8 × 8                           | $8 \times 8 \times 2048$   |
| linear      | logits                          | $1 \times 1 \times 2048$   |
| softmax     | classifier                      | $1 \times 1 \times 1000$   |







RMSProp optimizer





- RMSProp optimizer
- Only 1 auxiliary classifier is used





Vidhya

- RMSProp optimizer
- Only 1 auxiliary classifier is used
- Added Batch Normalization in the auxiliary classifier



Model Top-5 Error

Analytics
Vidhya



| Model                    | Top-5 Error               |
|--------------------------|---------------------------|
| GoogLeNet / Inception V1 | nalytic <del>7</del> .89% |
| /V Vi                    | dhya                      |



| Model                    | Top-5 Error  |
|--------------------------|--------------|
| GoogLeNet / Inception V1 | nalytic7.89% |
| Inception V2             | dhya 5.82%   |



| Model                    | Top-5 Error              |  |  |  |  |
|--------------------------|--------------------------|--|--|--|--|
| GoogLeNet / Inception V1 | nalytic <sub>7.89%</sub> |  |  |  |  |
| Inception V2             | dhya 5.82%               |  |  |  |  |
| Inception V3             | 4.2%                     |  |  |  |  |





