Trabajo de laboratorio $\mathrm{N}^{\mathrm{o}}1$

Federico Verstraeten Ezequiel Ignacio Pepe

20 de Marzo de 2017

${\bf \acute{I}ndice}$

A) Amplificador de tensión o multiplicador por una constante 1. Tensión pico de salida y su forma de variación temporal	1 1 2 2 2
B) Circuito Integrador	3
F) Circuitos Rectificadores Image Maths Tables Links	3 3 3 4
A) Amplificador de tensión o multiplicador po una constante	or
1. Tensión pico de salida y su forma de variación tempor	al
a) $R_1 = 1K\Omega$ y $R_2 = 10K\Omega$	
$\hat{V}_o =$	
{sacar foto de la forma de onda}	
Reemplazar R_L por una resistencia de 10Ω	

 $*{sacar foto de la forma de onda}$

b)
$$R_1 = 1M\Omega \ \mathbf{y} \ R_2 = 10M\Omega$$

$$\hat{V}_o =$$

{sacar foto de la forma de onda}

{sacar foto de la forma de onda con la fuente de ruido y explicar qué es}

c)
$$R_1 = 1K\Omega$$
 y $R_2 = 1M\Omega$

$$\hat{V}_o =$$

{sacar foto de la forma de onda}

2. Valor de tensión pico en vacío ($R_1=1K\Omega,\ R_2=10K\Omega$ y punta 10X)

f(Hz)	\hat{V}_C
0	
10	
10k	
100k	
1M	
10 Meg	

 $recordar \ que \ una \ caida \ de \ 3db \ se \ da \ cuando \ est\'as \ en \ el \ \%70,7 \ del \ valor \ inicial$

$$V_c =$$

$$con V_i = 0, 4V$$

{sacar foto de la forma de onda distorcionada}

B) Circuito Integrador

señal de entrada cuadrada de f=1/10RC=1kHz de A=0,2V, con $R_1=1K\Omega$ $y C_1 = 100nF$

sacar foto con y sin la resistencia $R_2=10K\Omega$ en paralelo al capacitor con punta 10x y 1x

F) Circuitos Rectificadores

 $\{sacar\ foto\ de\ v_o(t)\}$

$$\hat{V}_o =$$

$$\bar{V}_o =$$

Con un capacitor de 47uF en paralelo y una señal de f=50Hz y $\mathrm{A}{=}5\mathrm{V}$

$\overline{R_L(\Omega)}$	$V_{ripple(ef)}$	\bar{V}_o	\$z % \$
10K			
4,7K			
1K			

Image

This is **Dr.Strangelove**.

Maths

- Bayes theorem: $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$ $\sqrt{x^2 1}$ is a random formula.

Tables

Markdown table:

Figura 1: Dr.Strangelove

Cuadro 3: Demonstration of pipe table syntax.

Right	Left	Default	Center
12	12	12	12
123	123	123	123
1	1	1	1

Age	Frequency
18-25	15
26-35	33
36-45	22

Cuadro 4: Pure LATEX table

Links

Internal link: link to markup.External link: link to Google.