mpi* - lycée montaigne informatique

Informatique - MPI

Question 1. Si u est un préfixe de v alors il existe un mot $w \in \Sigma^*$ tel que v = uw et, par conséquent, $u^{-1}v = \{w\}$. Si le mot w n'existe pas, $u^{-1}v = \emptyset$.

Question 2. L est le langage dénoté par l'expression régulière $\Sigma^*a\Sigma^*$. Alors :

$$\varepsilon^{-1}L = \{ w \in \Sigma^* \mid \varepsilon w \in L \} = L$$

Puis;

$$a^{-1}L = \{w \in \Sigma^* \mid aw \in L\} = \Sigma^*$$

Et enfin:

$$b^{-1}L = \{w \in \Sigma^* \mid bw \in L\} = L$$

Question 3. Par associativité de la concaténation, on a :

$$x \in (uv)^{-1}L \iff uvx \in L \iff vx \in u^{-1}L \iff x \in v^{-1}(u^{-1}L)$$

D'où :
$$(uv)^{-1}L = v^{-1} (u^{-1}L)$$

Question 4. Si L est reconnaissable, il existe un automate fini déterministe complet \mathcal{A} qui le reconnaît. Soit q l'état de \mathcal{A} atteint après la lecture du mot u. L'automate \mathcal{A}' identique à \mathcal{A} mais dont l'état initial est q reconnaît $u^{-1}L$. Donc $u^{-1}L$ est reconnaissable.

Question 5. Soit $x \in \operatorname{Quot}(L)$. Alors il existe $u \in \Sigma^*$ tel que $ux \in L$. Soit q l'état de $\mathcal A$ atteint après la lecture du mot $u: \delta^*(q_0,u) = q$. Alors $\delta^*(q_0,ux) = \delta^*(\delta^*(q_0,u),x) = \delta^*(q,x)$. Comme ux est reconnu par L, $\delta^*(q_0,ux) \in T$ (états acceptants) et par conséquent, $\delta^*(q,x) \in T$. Donc $x \in L_q$.

Réciproquement, si $x \in L_q$ alors $\delta^*(q,x) \in T$. Par hypothèse sur \mathcal{A} , il existe un chemin de q_0 à q dans \mathcal{A} . Soit v le mot correspondant. Alors $\delta^*(q_0,vx) \in T$, soit $vx \in L$ puis $x \in \operatorname{Quot}(L)$.