

Institutt for matematiske fag

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163
Eksamensdato: 06. juni 2016 Eksamenstid (fra-til): 09:00–13:00 Hjelpemiddelkode/Tillatte hjelpemidler: B: Spesifiserte trykte og håndskrevne hjelpemidler tillatt:
K. Rottmann: Matematisk formelsamling
Bestemt, enkel kalkulator tillatt.
Målform/språk: bokmål
Antall sider: 7
Antall sider vedlegg: 0
Kontrollert av:

Sign

Dato

Oppgave 1 Vi ser på likningen

$$e^x - y = 0,$$

hvor y > 0 er gitt, og $x \in \mathbb{R}$ er ukjent.

a) Formuler Newtons metode for å løse denne likningen. Gjør to iterasjoner for hånd for y = e. Start med $x_0 = 0$.

Solution: direct computation. The Newton's iteration for the equation f(x) = 0 is $x_{k+1} = x_k - f(x_k)/f'(x_k)$, which in our case simplifies to

$$x_{k+1} = x_k - (e^{x_k} - y)/e^{x_k} = x_k - 1 + ye^{-x_k}.$$

Thus $x_0 = 0$, $x_1 \approx 1.718281828459045$, $x_2 \approx 1.205871127178306$

Oppgave 2

a) Finn det polynomet p(x) av lavest mulig grad som interpolerer funksjonen $f(x) = \sqrt{|x|}$ i punktene $x_1 = 0, x_2 = 4, x_3 = 9.$

Solution: direct computation. For example using Lagrange's form of the interpolation polynomial we get

$$L_1(x) = \frac{(x-4)(x-9)}{(0-4)(0-9)} = \frac{x^2 - 13x + 36}{36}$$

$$L_2(x) = \frac{(x-0)(x-9)}{(4-0)(4-9)} = -\frac{x^2 - 9x}{20}$$

$$L_3(x) = \frac{(x-0)(x-4)}{(9-0)(9-4)} = \frac{x^2 - 4x}{45}$$

$$P(x) = \sqrt{0}L_1(x) + \sqrt{4}L_2(x) + \sqrt{9}L_3(x) = -\frac{x^2 - 9x}{10} + \frac{x^2 - 4x}{15}$$

$$= \frac{-3x^2 + 27x + 2x^2 - 8x}{30} = \frac{-x^2 + 19x}{30}$$

Vi bruker samme notasjon for f(x) og p(x) som i **a**) i resten av oppgaven.

b) Funksjonen F(x) = x er lik med $(f(x))^2$ for $x \ge 0$. Derfor interpolerer $P(x) = (p(x))^2$ funksjonen F(x) i punktene $x_1 = 0$, $x_2 = 4$ og $x_3 = 9$. Forklar hvorfor formelen for estimatet av interpolasjonsfeilen, gitt av

$$F(x) - P(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{3!}F'''(c),$$

med $c \in [\min\{x, x_1\}, \max\{x, x_3\}]$, ikke holder i denne situasjonen.

Solution: The short answer here is that the error estimate is valid only for the interpolation polynomials of minimal degree, whereas $P(x) = (p(x))^2$ is not an interpolation polynomial of minimal degree. (Indeed, it has degree 4, whereas for 3 interpolation nodes we should have degree 2 or less. In fact in the present situation the interpolation polynomial is F(x) = x, and thus has degree 1.)

One could see that the error estimate predicts that the interpolation error should be zero (as F'''(x) = (x)''' = 0) and it is for the interpolation polynomial of minimal degree, that is x, but clearly not for our interpolation polynomial P(x).

Why is the error estimate

$$F(x) - P(x) = \frac{(x - x_1)(x - x_2)\dots(x - x_n)}{n!}F^{(n)}(c),$$

only valid for polynomials of minimal degree? Suppose we remove the minimal degree requirement. Then we have n interpolation points and we look at

interpolating polynomials P of degree at least n. With polynomials of this degree we can interpolate through n+1 points. Thus we can chose n+1-st interpolation node x_{n+1} arbitrarily and place the corresponding $y=P(x_{n+1})$ -value as far from $F(x_{n+1})$ as we like. Then the left hand side of the estimate, $F(x_{n+1})-P(x_{n+1})$ can be made arbitrarily large, whereas the right hand side of the estimate is determined by the position of the nodes $x_1, \ldots, x_n, x_{n+1}$ and the n-th derivative of F.

Oppgave 3

a) Approksimer integralet $\int_0^1 \ln(x) dx$ ved å bruke midtpunktskvadraturer med n=1 og n=2 delintervaller.¹

Solution: Direct computation. With 1 panel we have:

$$\int_0^1 \ln(x) \, \mathrm{d}x \approx 1 \ln(0.5) \approx -0.6931471805599453$$

With 2 panels we have:

$$\int_0^1 \ln(x) \, dx \approx 0.5 [\ln(0.25) + \ln(0.75)] \approx -0.8369882167858358.$$

b) Hvis vi antar at f'' er kontinuerlig på intervallet [a, b], er feilestimatet for midtpunktskvadraturet $Q_{[a,b]}f$ gitt av

$$\int_{a}^{b} f(x) dx = Q_{[a,b]} f + \frac{h^{3}}{24} f''(c),$$

¹delintervaller = "panels" i boken

der c er et punkt mellom a og b, og h = b - a.

Bruk nå adaptive kvadraturer til å estimere forskjellen $\int_0^1 \ln(x) dx - Q_{[0,1]} \ln$. (Ignorer det at ln på intervallet [0,1] ikke oppfyller deriverbarhetskravet i feilestimatet.) Du kan gjenbruke de numeriske beregningene fra **a**).

Solution: We have:

$$0 = Q_{[0,1]} \ln - (Q_{[0,0.5]} \ln + Q_{[0.5,1]} \ln) + \frac{1^3}{24} \ln''(c_1) - \frac{0.5^3}{24} \ln''(c_2) - \frac{0.5^3}{24} \ln''(c_3).$$

We assume that $\ln''(c_1) \approx \ln''(c_2) \approx \ln''(c_3)$ (this is the standard assumption in adaptive quadratures) and thus get

$$\frac{0.75}{24} \ln''(c_1) = (Q_{[0,0.5]} \ln + Q_{[0.5,1]} \ln) - Q_{[0,1]} \ln$$

$$\approx -0.8369882167858358 - (-0.6931471805599453)$$

$$\approx -0.1438410362258905.$$

Thus the error estimate is

$$\int_0^1 \ln(x) \, dx - Q_{[0,1]} \ln = \frac{1}{24} \ln''(c_1) \approx 4/3 * (-0.1438410362258905)$$
$$\approx -0.19178804830118734.^2$$

Oppgave 4 Vi skal nå se på et initialverdiproblem:

$$y'(t) = -(y(t))^2, y(0) = 1.$$

Løsningen av differensiallikningen er $y(t) = (t+1)^{-1}$.

a) Regn ut to steg av y numerisk ved hjelp av den eksplisitte Eulermetoden. Bruk steglengde h = 1.

Solution: Direct computation. Explicit Eulers method for this IVP is

$$w_{i+1} = w_i - hw_i^2 = w_i(1 - hw_i),$$

$$w_0 = y(0) = 1.$$

Thus we get:

$$w_1 = w_0(1 - hw_0) = 1(1 - 1 \cdot 1) = 0,$$

 $w_2 = w_1(1 - hw_1) = 0.$

$$\int_0^1 \ln(x) \, \mathrm{d}x - Q_{[0,1]} \ln \approx -1 - (-0.6931471805599453) \approx -0.3068528194400547.$$

²Note that the exact error is

b) Formuler den implisitte Eulermetoden (med tilfeldig $h_i = t_{i+1} - t_i > 0$) for problemet. Vis at andregradslikningen som framkommer i metoden har to reelle røtter for approksimasjonen $w_{i+1} \approx y(t_{i+1})$ gitt av $w_i \approx y(t_i)$ og h_i , gitt at h_i er "liten nok". Finn de eksplisitte utrykkene for røttene og forklar hvilken av dem som bør velges i metoden.

Solution: Implicit Eulers method for this IVP is

$$w_{i+1} = w_i - h_i w_{i+1}^2$$
.

 $w_0 = y(0) = 1$. Thus at every iteration we need to sovle the quadratic equation

$$h_i w_{i+1}^2 + w_{i+1} - w_i = 0.$$

We solve this equation:

$$D = 1 + 4h_i w_i,$$

$$w_{i+1}^{\pm} = \frac{-1 \pm \sqrt{1 + 4h_i w_i}}{2h_i}.$$

In particular, if $w_i \ge 0$, or if $w_i < 0$ and $h_i < -1/(4w_i)$ then D > 0 and the quadratic equation has two real roots.

Which root should we choose? There are several ways in which one could argue here. For example, for small h we can use a first order Taylor series expansion $\sqrt{1+4h_iw_i}\approx 1+2h_iw_i$, and therefore $w_{i+1}^{\pm}\approx -1/(2h_i)\pm (1/(2h_i)+w_i)$. Since we expect that for small h we have $w_{i+1}\approx w_i$, we should select $w_{i+1}\approx w_{i+1}^{\pm}$ based on this information.

Another way of making this decision is to require that w_{i+1} behaves as much as the solution y(t); for example, that it is positive. Indeed we know that $w_0 > 0$, and if $w_i > 0$ then $\sqrt{1 + 4h_iw_i} > 1$ and as a result $w_{i+1}^- < 0 < w_{i+1}^+$. Therefore we should choose w_{i+1}^+ .

Oppgave 5

a) Beregn den diskrete Fouriertransformasjonen av $x = [1, 2, 3]^{T}$.

Solution: direct computation.

$$y_0 = \frac{1}{\sqrt{3}} \sum_{j=0}^{3-1} x_j \exp\{-i2\pi j0/3\} = \frac{6}{\sqrt{3}} \approx 3.4641$$

$$y_1 = \frac{1}{\sqrt{3}} \sum_{j=0}^{3-1} x_j \exp\{-i2\pi j 1/3\} = \frac{1}{\sqrt{3}} [1 \exp\{0\} + 2 \exp\{-i2\pi/3\} + 3 \exp\{-i4\pi/3\}]]$$
$$= \frac{1}{\sqrt{3}} [1 + 2\{-1/2 - i\sqrt{3}/2\} + 3\{-1/2 + i\sqrt{3}/2\}] = \frac{1}{\sqrt{3}} [-3/2 + i\sqrt{3}/2]$$
$$= -\sqrt{3}/2 + i/2.$$

Because $x \in \mathbb{R}^3$ we have $y_3 = \bar{y}_2 = -\sqrt{3}/2 - i/2$.

b) La $y = [y_0, y_1, \dots, y_{n-1}]^T \in \mathbb{C}^n$ være den diskrete Fouriertransformasjonen av vektoren $x = [x_0, x_1, \dots, x_{n-1}]^T \in \mathbb{C}^n$.

Nå konstruerer vi vektoren $\hat{x} = [x_0, x_{n-1}, x_{n-2}, \dots, x_1]^T$. Vis at den har en diskret Fouriertransformasjon gitt som $\hat{y} = [y_0, y_{n-1}, y_{n-2}, \dots, y_1]^T$.

Solution: Per definition of DFT:

$$\hat{y}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \hat{x}_j \exp\{-i2\pi j k/n\}$$

$$= \frac{1}{\sqrt{n}} \left[\hat{x}_0 + \hat{x}_1 \exp\{-i2\pi 1 k/n\} + \dots + \hat{x}_{n-1} \exp\{-i2\pi (n-1)k/n\} \right]$$

$$= \frac{1}{\sqrt{n}} \left[x_0 + x_{n-1} \exp\{-i2\pi 1 k/n\} + \dots + x_1 \exp\{-i2\pi (n-1)k/n\} \right]$$

$$= \frac{1}{\sqrt{n}} \left[x_0 + x_1 \exp\{-i2\pi (n-1)k/n\} + \dots + x_{n-1} \exp\{-i2\pi 1 k/n\} \right],$$

and

$$y_{n-k} = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \exp\{-i2\pi j(n-k)/n\}$$
$$= \frac{1}{\sqrt{n}} \left[x_0 + x_1 \exp\{-i2\pi 1(n-k)/n\} + \dots + x_{n-1} \exp\{-i2\pi (n-1)(n-k)/n\} \right].$$

Direct comparison shows that $\hat{y}_0 = y_0$ (then all $\exp\{\cdot\} = \exp\{0\} = 1$). To conclude the proof we need to show that the coefficients in front of x_j in two formulas agree. Indeed, the coefficient in front of x_j in the formula for \hat{y}_k is

$$\exp\{-i2\pi(n-j)k/n\} = \underbrace{\exp\{-i2\pi k\}}_{=1} \exp\{i2\pi jk/n\} = \exp\{i2\pi jk/n\},$$

and similarly, the coefficient in front of x_i in the formula for y_{n-k} is:

$$\exp\{-i2\pi j(n-k)/n\} = \underbrace{\exp\{-i2\pi j\}}_{=1} \exp\{i2\pi jk/n\} = \exp\{i2\pi jk/n\},$$

where we used the face that $\exp\{-i2\pi j\} = \exp\{-i2\pi k\} = 1$ for all integers j, k. Thus the proof is concluded.

c) La $n = 2^p$, $p \in \mathbb{N}$, og $t_j = c + j(d - c)/n$, $j = 0, \ldots, n-1$ være en samling av uniformt distribuerte punkter på intervallet [c, d]. Vi vil finne en kurve som passerer gjennom(interpolerer) punktene i datasettet $(t_0, x_0), \ldots, (t_{n-1}, x_{n-1})$. I dette kurset har vi sett på to mulige metoder for å gjøre dette: polynominterpolasjon, (her vist i Newtons form)

$$P(t) = f[t_0] + f[t_0, t_1](t - t_0) + \dots + f[t_0, \dots, t_{n-1}](t - t_0) + \dots + f[t_{n-2}](t - t_n)$$

og trigonometrisk interpolasjon:

$$Q(t_j) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} y_k \exp\{i2\pi k j/n\} = \sum_{k=0}^{n-1} y_k \exp\left\{\frac{i2\pi k (t_j - c)}{d - c}\right\} / \sqrt{n}.$$

Gi et overslag på antallet av elementære operasjoner³ som trengs til å beregne:

- alle Newtons differenser⁴ $f[t_0], f[t_0, t_1], \ldots, f[t_0, \ldots, t_{n-1}];$
- alle trigonometriske interpolasjonskoeffisientene y_0, \ldots, y_{n-1} ved hjælp av FFT algoritmen.

Sammenlign to vurderingene og bestem, hva er raskest for store n.

Solution: The coefficients y_0, \ldots, y_{n-1} are efficiently computed using FFT, which requires $O(n \log n)$ operations.

Computing each Newton's divided difference requires one division and two subtractions. There are n-1 divided differences $f[t_0,t_1],\ldots,f[t_{n-2},t_{n-1}];$ n-2 divided differences $f[t_0,t_1,t_2],\ldots,f[t_{n-3},t_{n-2},t_{n-1}],\ldots$, and finally 1 difference $f[t_0,t_1,\ldots,t_{n-1}]$. Therefore, computing all Newton's divided differences requires $(n-1)+(n-2)+\cdots+1=O(n^2)$ subtractions and divisions.

For large n we have $n > \log n$ and therefore computing the trigonometric expansion coefficients is faster.

³Elementære operasjoner ≈ addisjon, subtraksjon, multiplikasjon, divisjon

⁴Newton's divided differences