

Psychotherapieforschung

MSc Klinische Psychologie und Psychotherapie SoSe 2025

Prof. Dr. Dirk Ostwald

(5) Pretest-Posttest-Designs

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Mixed-Model-Analyse

Bivariate Modellierung

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Mixed-Model-Analyse

Bivariate Modellierung

Parallelgruppen-Pretest-Posttest-Designs

Parallelgruppen-Pretest-Posttest-Design

Charakteristika

- Randomisierte Aufteilung von Proband:innen auf eine Kontroll- und eine Treatmentgruppe
- Messung der Zielvariablen vor (Pretest, T0, Baseline) und nach (Posttest, T1) Intervention

Nomenklatur im Kontext faktorieller Designs

- Zweifaktorielles Design mit Messwiederholung
- Between-Group Faktor Gruppe mit den Leveln Kontrolle und Treatment
- Within-Group Faktor Zeit mit den Leveln Pretest und Posttest

Motivation

- Parallelgruppen-Pretest-Postdesigns als die einfachsten RCT-Longitudinaldesigns
- RCT-Longitudinaldesigns oft primär an T0 und T1 interessiert

Anwendungsbeispiel

Р	Gruppe	Pre	Post
1	Kontrolle	35	35
2	Kontrolle	40	33
3	Kontrolle	35	26
4	Kontrolle	35	32
5	Kontrolle	35	28
6	Kontrolle	37	29
7	Kontrolle	33	31
8	Kontrolle	32	28
9	Treatment	34	26
10	Treatment	31	26
11	Treatment	38	23
12	Treatment	33	26
13	Treatment	38	28
14	Treatment	30	30
15	Treatment	30	27
16	Treatment	35	24

Anwendungsbeispiel

Datenanalysen für Parallelgruppen-Pretest-Posttest-Designs

Posttest-Varianzanalyse

• Analyse allein der Posttestdaten zu Vergleichszwecken

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

• Korrektur der Posttest-Gruppenunterschiede durch Pretest-Messungen

Change-Score-Varianzanalyse

• Analyse der Gruppenunterschiede basierend auf Posttest-Pretest-Differenzen

Mixed-Model-Analyse

• Einfachster Spezialfall für Longitudinal-Datenaanalyse mit Linear Mixed Models

Literaturhinweise

Vergleichsarbeiten zu den hier betrachteten Analyseverfahren

- Crager (1987), Frison and Pocock (1992), Fitzmaurice (2001), Oakes and Feldman (2001)
- Yang and Tsiatis (2001), Senn (2006), Winkens et al. (2007), O Connell et al. (2017)
- Tango (2017) für einen exzellenten Überblick insbesondere bezüglich Linear Mixed Models

Arbeiten mit einem Fokus auf bivariater Modellerierung des Prettest-Posttest-Szenarios

 Chen (2006), T. Funatogawa, Funatogawa, and Shyr (2011), I. Funatogawa and Funatogawa (2011), I. Funatogawa and Funatogawa (2020)

Zur Repeated-Measures ANOVA (Split-Plot ANOVA) Frage

- Generell für Parallelgruppen-Pretest-Posttest-Designs nicht empfohlen
- Winer (1971) gibt einen ausführlichen Überblick und zu Repeated-Measures ANOVA
- Huck and McLean (1975), Brogan and Kutner (1980), Jennings (1988), McCulloch (2005)

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Mixed-Model-Analyse

Posttest-Varianzanalyse

Posttest-Varianzanalyse

- Nichtberücksichtigung der Pretestdaten
- Einfaktorielle Varianzanalyse/Zweistichproben-T-Test-Analyse im Rahmen des Allgemeinen Linearen Modells
- Posttestdaten können Mittelwerte über mehrere Posttestmessungen sein
- Generell nicht empfohlen. Betrachtung hier nur zur Vergleichszwecken
- Vgl. Frison and Pocock (1992) (POST), O Connell et al. (2017) (ANOVA-POST), Tango (2017), Kapitel 2.1

Gründe für die datenanalytische Inklusion von Pretestdaten (vg. Huck and McLean (1975))

- Anpassen der Posttest-Daten für im Pretest bestehende Gruppenunterschiede
- Sensitivitätserhöhung für Gruppeneffekt durch Reduktion der Within-Group Variabilität

Posttest-Varianzanalyse

Strukturelle Modellform

Für $i=1,\dots,n$ Proband:innen seien y_{i1} die Posttest-Daten. Dann hat das Posttest-Varianzanalysemodell die Strukturelle Modellform

$$y_{i1} = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{1}$$

mit

- $x_i := 0$ für Proband:in i in Kontrollgruppe
- $x_i := 1$ für Proband:in i in Treatmentgruppe
- $\varepsilon_i \sim N(0, \sigma^2)$

Parameterbedeutungen

- β_0 Erwartungswert der Kontrollgruppen-Posttestdaten
- β_1 Ewartungswertunterschied zwischen Kontrollgruppen und Treatmentgruppen-Posttestdaten
- σ² Posttestdatenvariabilität

Designmatrixform für das Anwendungsbeispiel

$$y = X\beta + \varepsilon \Leftrightarrow \begin{pmatrix} y_{11} \\ y_{21} \\ y_{31} \\ y_{41} \\ y_{51} \\ y_{61} \\ y_{71} \\ y_{81} \\ y_{91} \\ y_{101} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \\ \varepsilon_{7} \\ \varepsilon_{8} \\ \varepsilon_{9} \\ \varepsilon_{10} \end{pmatrix}$$

$$(2)$$

mit

$$\varepsilon_i \sim N(0,\sigma^2) \text{ u.i.v. für } i=1,...,n \Leftrightarrow \varepsilon \sim N(0_{10},\sigma^2I_{10}) \tag{3}$$

Modellevaluation für das Anwendungsbeispiel

```
D = read.csv("./5_Daten/ld-pre-post.csv", row.names = 1)  # Dateneinlesen

M = lm(Post - Gruppe, data = D)  # Modellformulierung und -schätzung
round(summary(M)$coefficients,2)  # Parameterschätzer
```

 \Rightarrow Geschätzter Ewartungswertunterschied zwischen Treatment- und Kontrollgruppe: -3.4 (\pm 2.23)

Posttest-Varianzanalyse

Visualisierung für das Andwendungsbeispiel

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Mixed-Model-Analyse

Bivariate Modellierung

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

- Kovarianzanalyse der Posttestdaten mit Pretestdaten als Kovariate im Rahmen des ALM
- Vgl. Crager (1987), Frison and Pocock (1992), Chen (2006), Senn (2006)

Strukturelle Modellform

Für i=1,...,n Proband:innen seien y_{i0} und y_{i1} die Pretest- bzw. Posttest Daten. Dann hat das Kovarianzanaly-semodell mit Pretest-Kovariaten die Strukturelle Modellform

$$y_{i1} = \beta_0 + \beta_1 x_i + \beta_2 y_{i0} + \varepsilon_i \tag{4}$$

mit

- ullet $x_i := 0$ für Proband:in i in Kontrollgruppe
- ullet $x_i := 1$ für Proband:in i in Treatmentgruppe
- $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$

Parameterbedeutungen

- β_0 Erwartungswert der Kontrollgruppe
- β_1 Ewartungswertunterschied zwischen Kontrollgruppe und Treatmentgruppe
- β_2 Steigungsparameter der Pretest-Kovariaten
- √2 Variabilität der Differenzen von Posttest- und Pretest-Daten

Designmatrixform für das Anwendungsbeispiel

$$y = X\beta + \varepsilon \Leftrightarrow \begin{pmatrix} y_{11} \\ y_{21} \\ y_{31} \\ y_{41} \\ y_{51} \\ y_{61} \\ y_{71} \\ y_{81} \\ y_{101} \end{pmatrix} = \begin{pmatrix} 1 & 0 & y_{10} \\ 1 & 0 & y_{20} \\ 1 & 0 & y_{30} \\ 1 & 0 & y_{40} \\ 1 & 1 & y_{60} \\ 1 & 1 & y_{60} \\ 1 & 1 & y_{90} \\ 1 & 1 & y_{100} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \\ \varepsilon_7 \\ \varepsilon_8 \\ \varepsilon_9 \\ \varepsilon_{10} \end{pmatrix}$$
 (5)

mit

$$\varepsilon_i \sim N(0,\sigma^2) \text{ u.i.v. für } i=1,...,n \Leftrightarrow \varepsilon \sim N(0_{10},\sigma^2I_{10}) \tag{6}$$

Modellevaluation für das Anwendungsbeispiel

```
D = read.csv("./5_Daten/ld-pre-post.csv", row.names = 1)  # Dateneinlesen

M = lm(Post ~ Gruppe + Pre, data = D)  # Modellformulierung und -schätzung
round(summary(M)$coefficients,2)  # Parameterschätzer
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.92 8.99 3.66 0.00
GruppeTreatment -4.12 1.42 -2.90 0.01
Pre -0.08 0.25 -0.30 0.77
```

 \Rightarrow Geschätzter Ewartungswertunterschied zwischen Treatment- und Kontrollgruppe: -3.95 (\pm 1.54)

 $\bullet \ \, \text{Kontrollgruppe,} \quad \bullet \ \, \text{Treatmentgruppe,} \quad -\text{,} \quad -\hat{y}=X\hat{\beta}\text{,} \\$

Adjustierte Gruppenmittelwerte

Maxwell, Delaney, and Kelley (2018), Kapitel 9, Goodnight and Harvey (1978), Searle, Speed, and Milliken (1980), Lenth (2016)

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Mixed-Model-Analyse

Bivariate Modellierung

Change-Score-Varianzanalyse

• Einfaktorielle Varianzanalyse/Zweistichproben-T-Test-Analyse der Post-Pre-Differenzen

Strukturelle Modellform

Für i=1,...,n Proband:innen seien y_{i0} und y_{i1} die Pretest- bzw. Posttest Daten. Weiterhin seien

$$y_{i1} - y_{i0}$$
 (7)

die Differenzem von Posttest- und Pretest-Daten. Dann hat das Change-Score-Analyse-Modell die Strukturelle Modellform

$$y_{i1} - y_{i0} = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{8}$$

mit

- $x_i := 0$ für Proband:in i in Kontrollgruppe
- $x_i := 1$ für Proband:in i in Treatmentgruppe
- $\varepsilon_i \sim N(0, \sigma^2)$

Parameterbedeutungen

- β_0 Erwartungswert der Kontrollgruppe
- β_1 Ewartungswertunterschied zwischen Kontrollgruppe und Treatmentgruppe
- σ^2 Variabilität der Differenzen von Posttest- und Pretest-Daten

Designmatrixform für das Anwendungsbeispiel

$$y = X\beta + \varepsilon \Leftrightarrow \begin{pmatrix} y_{11} - y_{10} \\ y_{21} - y_{20} \\ y_{31} - y_{30} \\ y_{41} - y_{40} \\ y_{51} - y_{50} \\ y_{61} - y_{60} \\ y_{71} - y_{70} \\ y_{81} - y_{80} \\ y_{91} - y_{90} \\ y_{101} - y_{100} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \\ \varepsilon_{7} \\ \varepsilon_{8} \\ \varepsilon_{9} \\ \varepsilon_{10} \end{pmatrix}$$

$$(9)$$

mit

$$\varepsilon_i \sim N(0,\sigma^2) \text{ u.i.v. für } i=1,...,n \Leftrightarrow \varepsilon \sim N(0_{10},\sigma^2I_{10}) \tag{10}$$

Modellevaluation für das Anwendungsbeispiel

```
D = read.csv("./5_Daten/ld-pre-post.csv", row.names = 1)  # Dateneinlesen

D$D = D$Post - D$Pre  # Change-Score Berechnung

M = lm(D ~ Gruppe, data = D)  # Modellformulierung und -schätzung

round(summary(M)$coefficients,2)  # Parameterschätzer
```

```
| Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.00 1.43 -3.49 0.00

GruppeTreatment -2.38 2.03 -1.17 0.26
```

 \Rightarrow Geschätzter Ewartungswertunterschied zwischen Treatment- und Kontrollgruppe: -4.00 (\pm 1.64)

Lord Paradox

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Mixed-Model-Analyse

Bivariate Modellierung

Referenzen I

Posttest-Varianzanalyse

Posttest-Kovarianzanalyse mit Pretest-Kovariaten

Change-Score-Varianzanalyse

Mixed-Model-Analyse

Bivariate Modellierung

Referenzen I

- Brogan, Donna R, and Michael H Kutner. 1980. "Comparative Analyses of Pretest-Posttest Research Designs." *The American Statistician* 34 (4): 229–32.
- Chen, Xun. 2006. "The Adjustment of Random Baseline Measurements in Treatment Effect Estimation." Journal of Statistical Planning and Inference 136 (12): 4161–75. https://doi.org/10.1016/j.jspi.2005.08.046.
- Crager, Michael R. 1987. "Analysis of Covariance in Parallel-Group Clinical Trials with Pretreatment Baselines." Biometrics 43 (4): 895. https://doi.org/10.2307/2531543.
- Detry, Michelle A., and Yan Ma. 2016. "Analyzing Repeated Measurements Using Mixed Models." *JAMA* 315 (4): 407. https://doi.org/10.1001/jama.2015.19394.
- Fitzmaurice, Garrett. 2001. "A Conundrum in the Analysis of Change." Nutrition 17 (4): 360–61. https://doi.org/10.1016/S0899-9007(00)00593-1.
- Frison, Lars, and Stuart J. Pocock. 1992. "Repeated Measures in Clinical Trials: Analysis Using Mean Summary Statistics and Its Implications for Design." Statistics in Medicine 11 (13): 1685–1704. https://doi.org/10.1002/ sim.4780111304.
- Funatogawa, Ikuko, and Takashi Funatogawa. 2011. "Analysis of Covariance with Pre-Treatment Measurements in Randomized Trials: Comparison of Equal and Unequal Slopes." Biometrical Journal 53 (5): 810–21. https://doi.org/10.1002/bimj.201100065.
- 2020. "Longitudinal Analysis of Pre- and Post-Treatment Measurements with Equal Baseline Assumptions in Randomized Trials." *Biometrical Journal* 62 (2): 350–60. https://doi.org/10.1002/bimj.201800389.

Referenzen II

- Funatogawa, Takashi, Ikuko Funatogawa, and Yu Shyr. 2011. "Analysis of Covariance with Pre-Treatment Measurements in Randomized Trials Under the Cases That Covariances and Post-Treatment Variances Differ Between Groups: ANCOVA with Baseline in Randomized Trials." Biometrical Journal 53 (3): 512–24. https://doi.org/10.1002/bimj.201000200.
- Goodnight, James, and Walter R Harvey. 1978. "Least Squares Means in the Fixed Effects General Linear Model SAS Technical Report." SAS Institute.
- Huck, Schuyler W., and Robert A. McLean. 1975. "Using a Repeated Measures ANOVA to Analyze the Data from a Pretest-Posttest Design: A Potentially Confusing Task." Psychological Bulletin 82 (4): 511–18. https: //doi.org/10.1037/h0076767.
- Jennings, Earl. 1988. "Models for Pretest-Posttest Data: Repeated Measures ANOVA Revisited." Journal of Educational Statistics 13 (3): 273–80.
- Lenth, Russell V. 2016. "Least-Squares Means: The R Package Lsmeans." Journal of Statistical Software 69 (1). https://doi.org/10.18637/jss.v069.i01.
- Ma, Yan, Madhu Mazumdar, and Stavros G. Memtsoudis. 2012. "Beyond Repeated-Measures Analysis of Variance: Advanced Statistical Methods for the Analysis of Longitudinal Data in Anesthesia Research." Regional Anesthesia and Pain Medicine 37 (1): 99–105. https://doi.org/10.1097/AAP.0b013e31823ebc74.
- Maxwell, Scott E., Harold D. Delaney, and Ken Kelley. 2018. *Designing Experiments and Analyzing Data: A Model Comparison Perspective*. Third edition. New York London: Routledge, Taylor & Francis Group.
- McCulloch, Charles E. 2005. "Repeated Measures ANOVA, R.I.P.?" CHANCE 18 (3): 29–33. https://doi.org/10. 1080/09332480.2005.10722732.

Referenzen III

- O Connell, Nathaniel S, Lin Dai, Yunyun Jiang, Jaime L Speiser, Ralph Ward, Wei Wei, Rachel Carroll, and Mulugeta Gebregziabher. 2017. "Methods for Analysis of Pre-Post Data in Clinical Research: A Comparison of Five Common Methods." *Journal of Biometrics & Biostatistics* 08 (01). https://doi.org/10.4172/2155-6180.1000334.
- Oakes, J. Michael, and Henry A. Feldman. 2001. "Statistical Power for Nonequivalent Pretest-Posttest Designs: The Impact of Change-Score Versus ANCOVA Models." *Evaluation Review* 25 (1): 3–28. https://doi.org/10.1177/0193841X0102500101.
- Searle, S R, F M Speed, and G A Milliken. 1980. "Population Marginal Means in the Linear Model: An Alternative to Least Squares Means." *The American Statistician* 34 (4): 216–22.
- Senn, Stephen. 2006. "Change from Baseline and Analysis of Covariance Revisited." Statistics in Medicine 25 (24): 4334–44. https://doi.org/10.1002/sim.2682.
- Tango, Toshiro. 2017. Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials. 0th ed. Chapman and Hall/CRC. https://doi.org/10.1201/9781315152097.
- Winer, B J. 1971. Statistical Principles in Experimental Design.
- Winkens, Bjorn, Gerard J. P. Van Breukelen, Hubert J. A. Schouten, and Martijn P. F. Berger. 2007. "Randomized Clinical Trials with a Pre- and a Post-Treatment Measurement: Repeated Measures Versus ANCOVA Models." Contemporary Clinical Trials 28 (6): 713–19. https://doi.org/10.1016/j.cct.2007.04.002.
- Yang, Li, and Anastasios A Tsiatis. 2001. "Efficiency Study of Estimators for a Treatment Effect in a Pretest–Posttest Trial." The American Statistician 55 (4): 314–21. https://doi.org/10.1198/000313001753272466.
- Yu, Zhaoxia, Michele Guindani, Steven F. Grieco, Lujia Chen, Todd C. Holmes, and Xiangmin Xu. 2022. "Beyond t Test and ANOVA: Applications of Mixed-Effects Models for More Rigorous Statistical Analysis in Neuroscience Research." Neuron 110 (1): 21–35. https://doi.org/10.1016/j.neuron.2021.10.030.