中山大学数据科学与计算机学院本科生实验报告 (2017学年秋季学期)

课程名称: 数字电路与逻辑设计实验 任课教师: 保延翔 助教: 岳锐

年级&班级	16级教务二班	专业(方	软件工程	
学号	16340154	姓名	刘硕	
电话	13954608969	Email	ninomyemail@163.com	
开始日期	2017.10.23	完成日期	2017.10.23	

一、实验目的

- 1.掌握组合逻辑电路的分析方法并验证其逻辑功能。
- 2.掌握组合逻辑电路的设计方法,并能用最少的逻辑门来实现它。

二、实验原理

卡诺图化简方法、真值表枚举法。

三、实验仪器及器件

74LS00、74LS86、74LS197、示波器、Proteus

四、实验内容

1.设计流程

1) 列出真值表如图

输入				输出				
Q_3	Q_2	Q_1	Q_0	G_3	G_2	G ₁	G_0	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	
1	0	0	0	~	1	0	0	
1	0	0	1	1	1	0	1	
1	0	1	0	1	1	1	1	
1	0	1	1	1	1	1	0	
1	1	0	0	1	0	1	0	
1	1	0	1	1	0	1	1	
1	1	1	0	1	0	0	1	
1	1	1	1	1	0	0	0	

2) 卡诺图化简可以得到逻辑表达式

$$G_i = B_i \oplus B_{i+1} (n-1 \ge i \ge 0)$$

- 2.静态电路测试
- * 电路设计:
- 1)选择器件74LS86(四组二输入异或门)
- 2) 编辑器件参数设定为High
- 3) 连接74LS86的接线端
- 4) 利用LED灯,逐个对比真值表
- 3.动态电路测试
- * 电路设计:
- 1) 74LS197构成16进制计数器作为代码转换电路的输入信号
- 2) 编辑器件参数
- 3) 连接74LS197各个接线端
- 4) 用示波器显示二进制码和四位循环码的波形
- * 电路结果如图:

4.Proteus模拟实现

测试结果如图:

5.相关分析说明

根据显示,发现这个电路基本实现了二进制码到格雷码的转化。其中注意事项是197芯片的管脚 \overline{PL} 一定接高电平,悬空可能会导致出错。

五、实验结论

入门了设计一个简单组合逻辑电路,明晰了设计过程,并探索了其他组合逻辑电路的实验(如二进制转为七段数码管显示)。增强了学习数学电路与逻辑设计实验的兴趣,收获颇丰。