Álgebra I. Examen corto 3 Universidad de El Salvador, 26/04/2019

Cada uno de los ejercicios de abajo vale $2\frac{1}{2}$ puntos.

Ejercicio 1. Exprese el número 180 como un producto $up_1^{k_1} \cdots p_s^{k_s}$ en $\mathbb{Z}[i]$, donde $u \in \mathbb{Z}[i]^{\times}$ y p_1, \ldots, p_s son primos de Gauss no asociados entre sí.

Ejercicio 2. Consideremos el anillo cociente $\mathbb{F}_2[X]/(X^3+X+1)$.

- a) Demuestre que es un cuerpo.
- b) Escriba la tabla de multiplicación.

Ejercicio 3. Sean *A* un anillo conmutativo, $B \subseteq A$ un subanillo y $\mathfrak{a} \subseteq A$ un ideal.

- a) Demuestre que $B + \mathfrak{a} := \{x + y \mid x \in B, y \in \mathfrak{a}\}$ es un subanillo de A y que \mathfrak{a} es un ideal en $B + \mathfrak{a}$.
- b) Demuestre que $B/(B \cap \mathfrak{a}) \cong (B + \mathfrak{a})/\mathfrak{a}$.

Ejercicio 4.

- a) Demuestre que en un dominio de factorización única, si $mcd(\alpha, \beta) = 1$ y $\alpha\beta = \gamma^3$, entonces existen α' y β' tales que $\alpha \sim \alpha'^3$ y $\beta \sim \beta'^3$.
- b) Demuestre que en el anillo $\mathbb{Z}[\sqrt{-7}]$ se cumple $mcd(1+\sqrt{-7},1-\sqrt{-7})=1$, pero $1\pm\sqrt{-7}$ no son asociados con cubos.