Responsi PML

Pengujian Hipotesis untuk Model Penuh

Pengujian kecukupan model

Model linear:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{ik} x_{ik} + \varepsilon_i$$

dimana i = 1, 2, ...,n.

Secara umum model dalam notasi matriks

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \, \boldsymbol{\varepsilon} \sim MN(\mathbf{0}, \sigma^2 \mathbf{I})$$

Penduga parameter β untuk model penuh

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Uji kecukupan model

Hipotesis yang diuji:

$$H_0$$
: $\beta = 0$ vs H_1 : $\beta \neq 0$

Statistik uji:

$$\frac{JK_{reg}/p\sigma^{2}}{JK_{galat}/(n-p)\sigma^{2}} = \frac{JK_{reg}/p}{JK_{galat}/(n-p)} = \frac{KT_{reg}}{KT_{galat}} \approx F_{(db_{reg}; db_{galat};\alpha)}$$

Tabel Anova

SK	db	JK	KT	F _{hitung}
Regresi	р	$\mathbf{y}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$	$JK_{reg/p}$	KT _{reg} /KT _{galat}
Galat	n-p	$\mathbf{y}'(\mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{y}$	$JK_{galat}/(n-p)$	
Total	n	$\mathbf{y}'\mathbf{y}$		

Kriteria Keputusan:

Tolak
$$H_0$$
 jika $F_{\text{hitung}} > F_{\text{tabel}} = F_{\text{(db}_{\text{reg}}; db_{\text{galat}};\alpha)}$

1. Teorema 4.1.1

Asumsi: bila $\underline{\varepsilon} \approx N(\underline{0}, \sigma^2 I)$ maka $\underline{y} \sim N(X\beta, \sigma^2 I)$ sehingga $\frac{JK_{Reg}}{\sigma^2} \approx \chi_{T,\lambda}^2$ dengan derajat bebas r = k + 1 yang merupakan rank dari matrik $X(X'X)^{-1}X'$ dan parameter ketaksentralan $\lambda = \frac{1}{2\sigma^2}\underline{\beta}'(X'X)\underline{\beta}$ (hint: sym, idemp).

2. Teorema 4.1.2

Asumsi: bila $\underline{\varepsilon} \approx N(\underline{0}, \sigma^2 I)$ maka $\underline{y} \sim N(X\beta, \sigma^2 I)$ sehingga $\frac{JK_{Res}}{\sigma^2} \approx \chi_{r,\lambda}^2$ dengan derajat bebas r = n - (k + 1) yang merupakan rank dari matrik $I - X(X'X)^{-1}X'$ dan parameter ketaksentralan $\lambda = 0$ (hint: sym, idemp).

3. Teorema 4.1.3

JKReg dan JKRes saling bebas $\langle hint:AVB=0 \rangle$.

4. Teorema 4.1.4

Jika X matrik berukuran n x p merupakan matriks berpangkat penuh dengan rank r = k+1 maka (X'X) positive definit (hint:definisi p.d).

Membuat partisi

$$\underline{\beta} = \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_{r-1} \\ - - - \\ \beta_r \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} \underline{\gamma_1} \\ - \underline{-} \\ \underline{\gamma_2} \end{bmatrix}, \qquad X = \begin{bmatrix} X_1 & X_2 \\ nxr & nx(k+1-r) \end{bmatrix}$$

Misalnya

 $H_0: \beta_1 = 0$

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_2 \\ \vdots \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_2 \end{bmatrix} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_0 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_2 \end{bmatrix}$$

Model reduksi: $y = X_1 \gamma_1 + \varepsilon^*$

Model reduksi: $\mathbf{y} = \mathbf{X}_2 \mathbf{\gamma}_2 + \mathbf{\varepsilon}^*$

Untuk menguji apakah kovariat pada partisi pertama berpengaruh terhadap y, ketika H_0 benar maka model tereduksinya adalah sebagai berikut.

$$\mathbf{y} = \mathbf{X}_2 \mathbf{y}_2 + \mathbf{\varepsilon}^*$$

Hipotesis yang diuji:

$$H_0: \gamma_1 = 0$$

Statistik uji:

$$\frac{R(\gamma_1|\gamma_2)/_{r\sigma^2}}{JK_{galat}/(n-p)\sigma^2} = \frac{R(\gamma_1|\gamma_2)/_r}{JK_{galat}/(n-p)} = \frac{KT_{(\gamma_1|\gamma_2)}}{KT_{galat}} \approx F_{(db_{(\gamma_1|\gamma_2)}; db_{galat};\alpha)}$$

Tabel Anova

SK	db	JK	KT	F _{hitung}
Regresi				
Model penuh	p	$R(\boldsymbol{\beta}) = \mathbf{y}' \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$		
Model tereduksi	p-r	$R(\gamma_2) = y'X_2(X_2'X_2)^{-1}X_2'y$		
γ_1 setelah γ_2	r	$R(\gamma_1 \gamma_2) = R(\boldsymbol{\beta}) - R(\gamma_2)$	$R(\gamma_1 \gamma_2)/r$	$KT_{(\gamma_1 \gamma_2)}/KT_{galat}$
Galat	n-p	$\mathbf{y}'\mathbf{y} - R(\mathbf{\beta})$	$JK_{galat}/(n-p)$	
Total	n	$\mathbf{y}'\mathbf{y}$		

Kriteria Keputusan:

Tolak
$$H_0$$
 jika $F_{hitung} > F_{tabel} = F_{(db_{(\gamma_1|\gamma_2)}; db_{galat};\alpha)}$

1. Lemma 4.2.1

Rank dari $X_2(X_2'X_2)^{-1}X_2'$ adalah p-r

2. Lemma 4.2.2

 $A = X(X'X)^{-1}X' - X_2(X_2'X_2)^{-1}X_2'$ adalah matriks idempoten

3. Lemma 4.2.3

Rank dari $A = X(X'X)^{-1}X' - X_2(X_2'X_2)^{-1}X_2'$ adalah r.

4. Lemma 4.2.4

Rank dari matriks $[I - X(X'X)^{-1}X']$ adalah n-p $\{hint: X'(I - X(X'X)^{-1}X') = 0, partisi \}$.

5. Teorema 4.2.1 (Cohran-Fisher)

Bila $\underline{z}_{nx1} \approx N\left(\underline{\mu}, I\right)$ dan $\underline{z}'\underline{z} = \sum_{i=1}^{m} \underline{y}' A_i \underline{y}$ maka semua $\underline{y}' A_i \underline{y}$ bebas dan menyebar menurut $\chi^2_{r_i \lambda_i}$ dengan $r_i = r(A_i)$ dan $\lambda_i = \frac{1}{2} \underline{\mu}' A_i \underline{\mu} \Leftrightarrow \sum_{i=1}^{m} r_i = n$. $\langle hint: A_i A_j = 0 \rangle$

CONTOH SOAL

Diketahui data hasil suatu penelitian sebagai berikut.

X	У
2	1,9
3	2,7
4	4,2
5	4,8
6	4,8
7	5,1

- a. Susunlah tabel anova dari data tersebut dan uji hipotesis H_0 : $\beta = 0$ vs H_1 : $\beta \neq 0$!
- b. Misalkan ingin diuji hipotesis H_0 : $\beta_1=0$, tentukan model penuh dan model tereduksinya!
- c. Ujilah hipotesis berdasarkan poin b!

Jawaban:

a. Susunlah tabel anova dari data tersebut dan uji hipotesis H_0 : $\beta = 0$ vs H_1 : $\beta \neq 0$!

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \implies \begin{bmatrix} 1,9\\2,7\\4,2\\4,8\\4,8\\5,1 \end{bmatrix} = \begin{bmatrix} 1 & 2\\1 & 3\\1 & 4\\1 & 5\\1 & 6\\1 & 7 \end{bmatrix} \begin{bmatrix} \beta_0\\\beta_1 \end{bmatrix} + \begin{bmatrix} \epsilon_1\\\epsilon_2\\\epsilon_3\\\epsilon_4\\\epsilon_5\\\epsilon_6 \end{bmatrix}$$

Tabel Anova

SK	db	JK	KT	F _{hitung}
Regresi	р	$\mathbf{y}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$	JK _{reg/p}	KT _{reg} /KT _{galat}
Galat	n-p	$\mathbf{y}'(\mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{y}$	$JK_{galat}/(n-p)$	
Total	n	$\mathbf{y}'\mathbf{y}$		

Menghitung derajat bebas (db)

$$\begin{aligned} db_{reg} &= p = 2 \\ db_{total} &= n = 6 \\ db_{galat} &= n - p = 6 - 2 = 4 \end{aligned}$$

Menghitung jumlah kuadrat (JK)

$$\mathbf{X}'\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix} \begin{bmatrix} 1,9 \\ 2,7 \\ 4,2 \\ 4,8 \\ 4,8 \\ 5,1 \end{bmatrix} = \begin{bmatrix} 23,5 \\ 117,2 \end{bmatrix}$$

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \\ 1 & 6 \\ 1 & 7 \end{bmatrix} = \begin{bmatrix} 6 & 27 \\ 27 & 139 \end{bmatrix}$$

Menghitung jumlah kuadrat (JK)

$$(\mathbf{X}'\mathbf{X})^{-1} = \frac{1}{105} \begin{bmatrix} 139 & -27 \\ -27 & 6 \end{bmatrix} = \begin{bmatrix} 139/105 & -9/35 \\ -9/35 & 2/35 \end{bmatrix}$$

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \begin{bmatrix} 139/105 & -9/35 \\ -9/35 & 2/35 \end{bmatrix} \begin{bmatrix} 23,5 \\ 117,2 \end{bmatrix} = \begin{bmatrix} 0,9724 \\ 0,6543 \end{bmatrix}$$

$$JK_{reg} = \mathbf{y}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \begin{bmatrix} 23.5 & 117.2 \end{bmatrix} \begin{bmatrix} 0.9724 \\ 0.6543 \end{bmatrix} = 99.5354$$

Menghitung jumlah kuadrat (JK)

Menghitung jumlah kuadrat (JK)
$$JK_{total} = \mathbf{y'y} = \begin{bmatrix} 1,9 & 2,7 & 4,2 & 4,8 & 4,8 & 5,1 \end{bmatrix} \begin{bmatrix} 1,9 \\ 2,7 \\ 4,2 \\ 4,8 \\ 4,8 \\ 5,1 \end{bmatrix} = 100,63$$

$$JK_{galat} = JK_{total} - JK_{reg} = 100,63 - 99,5354 = 1,0946$$

$$JK_{galat} = JK_{total} - JK_{reg} = 100,63 - 99,5354 = 1,0946$$

Menghitung kuadrat tengah (KT)

$$KT_{reg} = \frac{JK_{reg}}{db_{reg}} = \frac{99,5354}{2} = 49,7677$$
 $KT_{galat} = \frac{JK_{galat}}{db_{galat}} = \frac{1,0946}{4} = 0,2736$

Menghitung F_{hitung}

$$F_{\text{hitung}} = \frac{KT_{\text{reg}}}{KT_{\text{galat}}} = \frac{49,7677}{0,2736} = 181,8995$$

Tabel Anova

SK	db	JK	KT	F _{hitung}
Regresi	2	99,5354	49,7677	181,8995
Galat	4	1,0946	0,2736	
Total	6	100,63		

• Uji hipotesis H_0 : $\beta = 0$ vs H_1 : $\beta \neq 0$

Dari hasil sebelumnya, $F_{\rm hitung} = 181,8995 > F_{2;4;0,05} = 6,944$ maka Tolak H_0 atau cukup bukti untuk menerima H_1 , sehingga dapat disimpulkan bahwa ada pengaruh yang signifikan antara parameter terhadap model pada taraf nyata 5%.

b. Misalkan ingin diuji hipotesis H_0 : $\beta_1 = 0$, tentukan model penuh dan model tereduksinya!

Model penuh:

$$y = X\beta + \varepsilon$$

dengan

$$\mathbf{y} = \begin{bmatrix} 1,9\\2,7\\4,2\\4,8\\4,8\\5,1 \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} 1 & 2\\1 & 3\\1 & 4\\1 & 5\\1 & 6\\1 & 7 \end{bmatrix} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0\\\beta_1 \end{bmatrix} \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} \epsilon_1\\\epsilon_2\\\epsilon_3\\\epsilon_4\\\epsilon_5\\\epsilon_6 \end{bmatrix}$$

Hipotesis yang diuji \rightarrow H₀: $\beta_1 = 0$

$$\mathbf{X} = \begin{bmatrix} 1 & \vdots & 2 \\ 1 & \vdots & 3 \\ 1 & \vdots & 4 \\ 1 & \vdots & 5 \\ 1 & \vdots & 6 \\ 1 & \vdots & 7 \end{bmatrix}$$

$$\mathbf{x}_{1} \quad \mathbf{x}_{2}$$

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \cdots \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \gamma_1 \\ \cdots \\ \gamma_2 \end{bmatrix}$$

Sehingga model tereduksi

$$\mathbf{y} = \mathbf{X}_{1} \gamma_{1} + \boldsymbol{\varepsilon}^{*} \Longrightarrow \begin{bmatrix} 1,9\\2,7\\4,2\\4,8\\4,8\\5,1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} [\beta_{0}] + \begin{bmatrix} \varepsilon_{1}^{*}\\\varepsilon_{2}^{*}\\\varepsilon_{3}^{*}\\\varepsilon_{4}^{*}\\\varepsilon_{5}^{*}\\\varepsilon_{6}^{*} \end{bmatrix}$$

c. Ujilah hipotesis berdasarkan poin b!

Tabel Anova untuk H_0 : $\gamma_2 = 0$

SK	db	JK	KT	F _{hitung}
Regresi				
Model penuh	p	$R(\boldsymbol{\beta}) = \mathbf{y}' \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$		
Model tereduksi	p-r	$R(\gamma_1) = y'X_1(X_1'X_1)^{-1}X_1'y$		
γ_2 setelah γ_1	r	$R(\gamma_2 \gamma_1) = R(\boldsymbol{\beta}) - R(\gamma_1)$	$R(\gamma_2 \gamma_1)/r$	$KT_{(\gamma_2 \gamma_1)}/KT_{galat}$
Galat	n-p	$y'y - R(\beta)$	$JK_{galat}/(n-p)$	
Total	n	$\mathbf{y}'\mathbf{y}$		

Menghitung derajat bebas (db)

$$db_{(\gamma_1)} = p - r = 2 - 1 = 1$$

 $db_{(\gamma_2|\gamma_1)} = r = 1$

Menghitung jumlah kuadrat

$$R(\gamma_1) = \mathbf{y}' \mathbf{X_1} (\mathbf{X_1}' \mathbf{X_1})^{-1} \mathbf{X_1}' \mathbf{y} = \frac{(\sum_{i=1}^n y_i)^2}{n} = \frac{(23.5)^2}{6} = 92.0417$$

$$R(\gamma_2|\gamma_1) = R(\beta) - R(\gamma_1) = 99,5354 - 92,0417 = 7,4937$$

• Menghitung
$$F_{\text{hitung}}$$

$$KT_{(\gamma_2|\gamma_1)} = \frac{R(\gamma_2|\gamma_1)}{r} = \frac{7,4937}{1} = 7,4937$$

$$F_{\text{hitung}} = \frac{KT_{(\gamma_2|\gamma_1)}}{r} = \frac{7,4937}{r} = \frac{7,4937}{0,2736} = 27,3892$$

Tabel Anova untuk H_0 : $\gamma_2 = 0$

SK	db	JK	KT	F _{hitung}
Regresi				
Model penuh	2	99,5354		
Model tereduksi	1	92,0417		
γ_2 setelah γ_1	1	7,4937	7,4937	27,3892
Galat	4	1,0946	0,2736	
Total	6	100,63		

Dari hasil diatas, $F_{\rm hitung} = 27,3892 > F_{1;4;0,05} = 7,709$ maka Tolak H_0 atau cukup bukti untuk menerima H_1 , sehingga dapat disimpulkan bahwa peubah penjelas berpengaruh signifikan setelah ada intersep dalam model pada taraf nyata 5%.

Terima Kasih

Departemen Statistika
Fakultas Matematika dan Ilmu Pengetahuan Alam
JI Meranti Wing 22 Level 4
Kampus IPB Darmaga - Bogor 16680
0251-8624535 | http://stat.ipb.ac.id