Schätzer

Unterscheide (konzeptionell):

• Die Abbildung $\widehat{\vartheta}_n = \widehat{\vartheta}_n(x)$,

$$x = (x_1, \ldots, x_n) \mapsto \widehat{\vartheta}_n(x),$$

die jeder Realisation x des Stichprobenraums $\mathcal X$ einen Schätzwert zuordnet; gedanklich nach Durchführung des Zufallsexperiments.

• Die Abbildung $\widehat{\Theta}_n = \widehat{\vartheta}_n(X)$,

$$X = (X_1, \ldots, X_n) \mapsto \widehat{\vartheta}_n(X),$$

die jedem (zufälligen) Vektor X die Zufallsgröße $\widehat{\vartheta}_n(X)$ zuordnet; gedanklich vor Durchführung des Zufallsexperiments).

Es ist üblich, in beiden Fällen $\widehat{\vartheta}_n$ zu schreiben und von einem 'Schätzer' zu sprechen. Ob die Statistik (als Zufallsvariable bzw. Zufallsvektor) oder eine Realisation derselben gemeint ist, muss aus dem Kontext erschlossen werden.

Gütekriterien: Erwartungstreue

- Sei $\widehat{\vartheta}_n = \widehat{\vartheta}_n(X)$ ein Schätzer für ϑ .
- Da $\widehat{\vartheta}_n = T_n(X_1, \dots, X_n)$ von den Zufallsvariablen X_1, \dots, X_n abhängt, ist $\widehat{\vartheta}_n$ zufällig, streut also.
- Frage: Um welchen Wert streut der Schätzer?
- Berechne den Erwartungswert:

$$E(\widehat{\vartheta}_n) = E(T_n(X_1,\ldots,X_n)) = \ldots?$$

- Das Ergebnis der Berechnung hängt von der Verteilung der $X_i \sim F_{\vartheta}$ ab! Um diese Abhängigkeit zum Ausdruck zu bringen schreibt man mitunter $E_{\vartheta}(\cdots)$ statt $E(\cdots)$.
- Im Allgemeinen ist $E(\widehat{\vartheta}_n)$ daher eine Funktion des Parameters ϑ !

Gütekriterien: Erwartungstreue

Erwartungstreue

Ein Schätzer $\widehat{\vartheta}_n$ heißt **erwartungstreu für** ϑ , wenn für alle $\vartheta \in \Theta$ gilt:

$$E(\widehat{\vartheta}_n) = \vartheta$$

 $g(\widehat{\vartheta}_n)$ heißt **erwartungstreu für** $g(\vartheta)$, wenn für alle $\vartheta \in \Theta$ gilt:

$$E(g(\widehat{\vartheta}_n)) = g(\vartheta)$$

Sinngemäß gelten diese Definitionen auch für nichtparametrische Modelle: T_n heißt erwartungstreu für eine Kenngröße g(F), wenn $E(T_n) = E_F(T_n) = g(F)$ für alle Verteilungsfunktionen F der betrachteten Verteilungsklasse. Hierbei deutet $E_F(\cdot)$ an, dass der EW unter der Annahme $X_i \sim F$ berechnet wird.

Erwartungstreue

Beispiele: a) X_1, \ldots, X_n seinen unabhängig und identisch verteilt mit Erwartungswert $\mu \in \mathbb{R}$. \overline{X}_n ist erwartungstreu für μ .

- b) Parameter: $\vartheta = g(\mu) = \mu^2$. $g(\overline{X}_n) = (\overline{X}_n)^2$ ist nicht erwartungstreu für $\vartheta = g(\mu) = \mu^2$.
- c) $X_1, \ldots, X_n \sim U(0, \vartheta)$ mit $\vartheta > 0$ unbekannt.

Der ML-Schätzer $\widehat{\vartheta}_n = \max_{i=1,\dots,n} X_i$ für ϑ ist nicht erwartungstreu, aber der Schätzer

$$\widehat{\vartheta}_n^* = \frac{n+1}{n} \widehat{\vartheta}_n$$

Erwartungstreue: Anschauung

Anschauung:

- Wende erwartungstreuen Schätzer N Mal auf Stichproben vom Umfang n an.
- *N* Schätzungen: $\widehat{\vartheta}_n(1), \dots, \widehat{\vartheta}_n(N)$.
- Wende Gesetz der großen Zahlen an!

$$\frac{1}{N}\sum_{i=1}^{N}\widehat{\vartheta}(i)\to E(\widehat{\vartheta}_n(i))=E(\widehat{\vartheta}_n)$$

- $\widehat{\vartheta}_n$ erwartungstreu: rechte Seite ist ϑ unabhängig von $\vartheta \in \Theta$.
- sonst: rechte Seite $\neq \vartheta$.

Werden Schätzungen aus einer täglichen Stichprobe vom Umfang n über einen langen Zeitraum gemittelt, so schwankt dieses Mittel um $E(\widehat{\vartheta}_n)$. Bei einer erwartungstreuen Schätzfunktion also um den wahren Wert ϑ .

Bias (Verzerrung)

Verzerrung (Bias)

Die Verzerrung (engl.: bias) wird gemessen durch

$$\mathsf{Bias}(\widehat{\vartheta}_n;\vartheta) = E_{\vartheta}(\widehat{\vartheta}) - \vartheta.$$

Beispiele

Beispiele:

 X_1, \ldots, X_n seinen unabhängig und identisch verteilt mit EW μ und Varianz $\sigma^2 > 0$.

Der Bias von $(\overline{X}_n)^2$ bzgl. des Parameters μ^2 ist:

$$\mathsf{Bias}((\overline{X}_n)^2; \mu^2) = \frac{\sigma^2}{n}$$

Gütekriterien: Asymptotische Erwartungstreue

(Asymptotische) Erwartungstreue, Unverfälschtheit

Ein Schätzer $\widehat{\vartheta}_n$ für einen Parameter ϑ heißt **asymptotisch erwartungstreu für** ϑ , wenn für alle ϑ

$$E_{\vartheta}(\widehat{\vartheta}_n) \to \vartheta$$
,

gilt.

Gütekriterien: Konsistenz

Das Gütekriterium der **Konsistenz** fragt danach, ob bei wachsendem Stichprobenumfang n die Wahrscheinlichkeit gegen 1 strebt, dass der Unterschied zwischen Schätzer $\widehat{\vartheta}_n$ und wahrem Wert ϑ kleiner als eine beliebig vorgegebene Toleranz $\delta>0$ ist:

Für beliebiges $\delta > 0$ gilt:

$$P(|\widehat{\vartheta}_n - \vartheta| \le \delta) \to 1, \qquad n \to \infty$$

oder gleichbedeutend:

$$P(|\widehat{\vartheta}_n - \vartheta| > \delta) \to 0, \qquad n \to \infty$$

Diese Eigenschaft entspricht der stochastischen Konvergenz:

$$\widehat{\vartheta}_n \stackrel{P}{\to} \vartheta, \qquad n \to \infty.$$

Gütekriterien: Konsistenz

Konsistenz

Ein Schätzer $\widehat{\vartheta}_n = T(X_1, \dots, X_n)$ basierend auf einer Stichprobe vom Umfang n heißt (schwach) konsistent für ϑ , falls

$$\widehat{\vartheta}_n \stackrel{P}{\to} \vartheta, \qquad n \to \infty,$$

Gilt sogar fast sichere Konvergenz, dann heißt $\widehat{\vartheta}_n$ stark konsistent für ϑ .

- **1** Ist $\widehat{\vartheta}_n$ konsistent für ϑ und ist g stetig, dann ist $g(\widehat{\vartheta}_n)$ konsistent für den abgeleiteten Parameter $g(\vartheta)$.
- ② Die obige Aussage gilt auch für vektorwertige Parameter und ihre Schätzer. Insbesondere folgt aus der Konsistenz von $\widehat{\vartheta}_n$ für ϑ und $\widehat{\xi}_n$ für ξ die Konsistenz von $\widehat{\vartheta}_n \pm \widehat{\xi}_n$ für $\vartheta \pm \xi$.

Konsistenz: Beispiele

- **1** X_1, \ldots, X_n i.i.d. mit $\mu = E(X_1)$. Dann ist $\widehat{\mu}_n = \overline{X}_n$ konsistent für μ .
- **2** $g(\overline{X}_n) = (\overline{X}_n)^2$ ist konsistent für den abgeleiteten Parameter $g(\mu) = \mu^2$.
- **3** Gilt $E(X_1^2) < \infty$, dann folgt (starkes Gesetz der großen Zahlen):

$$\widehat{m}_{2,n} = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

ist (stark) konsistent für das zweite Moment $m_2 = E(X_1^2)$. Dann ist auch die Stichprobenvarianz

$$\widehat{\sigma}_n^2 = \widehat{m}_{2,n} - \widehat{\mu}_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\overline{X}_n)^2$$

konsistent für $\sigma^2 = E(X_1^2) - (E(X_1))^2 = Var(X_1)$.

Konsistenz: Beispiele

Schätzung der Varianz σ^2 : (s. Basiswissen, S. 192) X_1, \ldots, X_n einfache Zufallsstichprobe mit $\mu = E(X_1)$, $\sigma^2 = \text{Var}(X_1) < \infty$. Stichprobenvarianz:

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Dieser Schätzer ist konsistent aber nicht erwartungstreu:

$$E(\widehat{\sigma}_n^2) = \frac{n-1}{n}\sigma^2 = \sigma^2 - \frac{\sigma^2}{n}$$

Im Mittel wird σ^2 unterschätzt. Man verwendet daher

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Dieser Schätzer ist konsistent und erwartungstreu für σ^2 .

Effizienz und mittlerer quadratischer Fehler

- Mitunter stehen mehrere Schätzfunktionen zur Auswahl.
- Angenommen, alle sind erwartungstreu. Welche sollte man nehmen?

Effizienz

- Sind T_1 und T_2 zwei erwartungstreue Schätzer für ϑ und gilt $Var(T_1) < Var(T_2)$, so heißt T_1 effizienter als T_2 .
- **2** T_1 ist **effizient**, wenn T_1 effizienter als jede andere erwartungstreue Schätzfunktion ist.

Beispiele

Beispiel: X_1, \ldots, X_n sei eine einfache Stichprobe. Betrachte

$$T_1 = \frac{X_1 + X_n}{2}, \qquad T_2 = \overline{X}_n.$$

Welche Schätzfunktion ist effizienter für die Schätzung von μ ?

Beide Schätzfunktionen sind erwartungstreu: $E(T_2) = E(\overline{X}_n) = \mu$ und

$$E(T_1) = \frac{1}{2}E(X_1 + X_n) = \frac{1}{2}(E(X_1) + E(X_n)) = \frac{2\mu}{2} = \mu$$

Vergleich der Varianzen:

$$Var(T_1) = \frac{\sigma^2}{2}, \qquad Var(T_2) = \frac{\sigma^2}{n}$$

Für n > 2 ist T_2 effizienter als T_1 .

Beispiele

Beispiel

Gelte $X_1, \ldots, X_n \sim G[0, \vartheta], \ \vartheta > 0$ unbekannt.

Zwei erwartungstreue Schätzer für ϑ :

$$T_1 = 2\overline{X}$$
 und $T_2 = \frac{n+1}{n} \max(X_1, \dots, X_n)$.

Welche Schätzfunktion ist effizienter?

Abbildung: Dargestellt sind Dichten von zwei Schätzern zur Schätzung des Parameters ϑ . T_1 ist zwar verzerrt, hat aber eine viel kleinere Streuung.

MSE: Mean Squared Error

Der MSE ist das wichtigste Gütemaß für Bewertung und Vergleiche von Schätzern. Er integriert die Varianz (als Streuungsmaß) und den Bias in einer Kennzahl.

MSE

$$\mathsf{MSE}(\widehat{\vartheta}_n;\vartheta) = E_{\vartheta}(\widehat{\vartheta}_n - \vartheta)^2$$

Additive Zerlegung

Ist $\widehat{\vartheta}_n$ eine Schätzfunktion mit ${\sf Var}_{\vartheta}(\widehat{\vartheta}_n)<\infty$, dann gilt die additive Zerlegung

$$\mathsf{MSE}(\widehat{\vartheta}_n; \vartheta) = \mathsf{Var}_{\vartheta}(\widehat{\vartheta}_n) + [\mathsf{Bias}(\widehat{\vartheta}_n; \vartheta)]^2.$$

MS-Effizienz

- Sind T_1 und T_2 zwei Schätzer für ϑ und gilt $MSE(T_1; \vartheta) < MSE(T_2; \vartheta)$, so heißt T_1 effizienter als T_2 .

Beispiel: $X_1, \ldots, X_n \sim G(0, \vartheta)$. Effizienzvergleich¹ von

$$T_1 = 2\overline{X}_n, \qquad T_2 = \frac{n+1}{n} \max_{1 \le i \le n} X_i.$$

Schritt 1: Berechne $MSE(T_1; \vartheta)$:

Erwartungswert und Varianz von T_1 :

$$E(T_1) = \vartheta, \qquad Var(T_1) = 4Var(\overline{X}_n) = 4\frac{\sigma^2}{n}$$

mit $\sigma^2 = \text{Var}(X_i) = \frac{\vartheta^2}{12}$. Also: $\text{Var}(T_1) = \frac{\vartheta^2}{3n}$. Damit ist

$$MSE(T_1;\vartheta) = \frac{\vartheta^2}{3n}$$

Prof. Dr. Ansgar Steland (ISW)

¹Diese Aufgabe ist eine gute Übung für das Zusammenspiel von Erwartungswerten, Varianzen, Termumformungen und Berechnung von Integralen (Arbeiten mit Dichten)!

Schritt 2: Berechne $MSE(T_2; \vartheta)$:

Berechne die Varianz von $Z = \max_{1 \le i \le n} X_i$ mit Verschiebungssatz:

$$Var(Z) = E(Z^2) - (E(Z))^2$$

Oben schon berechnet: $E(Z) = E(X_{(n)}) = \frac{n}{n+1}\vartheta$ und

$$f_Z(x) = \frac{n}{\vartheta^n} x^{n-1} \mathbf{1}_{(0,\vartheta)}(x), \qquad x \in \mathbb{R}.$$

$$\Rightarrow E(Z^2) = \int_{-\infty}^{\infty} x^2 \cdot f_Z(x) \, dx = \int_0^{\vartheta} x^2 \frac{n}{\vartheta^n} x^{n-1} \, dx$$
$$= \frac{n}{\vartheta^n} \int_0^{\vartheta} x^{n+1} \, dx = \frac{n}{\vartheta^n} \frac{\vartheta^{n+2}}{n+2}$$
$$= \frac{n}{n+2} \vartheta^2$$

Fs. Schritt 2:

$$Var(Z) = E(Z^{2}) - (E(Z))^{2} = \frac{n}{n+2} \vartheta^{2} - \left(\frac{n}{n+1}\vartheta\right)^{2}$$
$$= \vartheta^{2} \left(\frac{n}{n+2} - \frac{n^{2}}{(n+1)^{2}}\right)$$
$$= \vartheta^{2} \left(\frac{n(n+1)^{2} - (n+2)n^{2}}{(n+2)(n+1)^{2}}\right)$$

Vereinfachen des Ausdrucks im Zähler des Bruchs:

$$n(n+1)^2 - (n+2)n^2 = n(n^2 + 2n + 1) - (n^3 + 2n^2)$$

= $(n^3 + 2n^2 + n) - n^3 - 2n^2 = n$.

Damit folgt:

$$\mathsf{Var}(Z) = \vartheta^2 \frac{n}{(n+2)(n+1)^2}$$

Fs. Schritt 2:

$$\mathsf{Var}(Z) = \vartheta^2 \frac{n}{(n+2)(n+1)^2}$$

Mit $T_2 = \frac{n+1}{n}Z$ ergibt sich

$$Var(T_2) = \frac{(n+1)^2}{n^2} \cdot \vartheta^2 \frac{n}{(n+2)(n+1)^2} = \frac{\vartheta^2}{n(n+2)}$$

Da T_2 erwartungstreu für ϑ ist, ergeben sich also die folgenden MSEs:

$$MSE(T_1; \vartheta) = \frac{\vartheta^2}{3n}$$
 $MSE(T_2; \vartheta) = \frac{\vartheta^2}{n(n+2)}$

Schritt 4: Vergleich der Ausdrücke:

$$MSE(T_1; \vartheta) > MSE(T_2; \vartheta) \Leftrightarrow \frac{\vartheta^2}{3n} > \frac{\vartheta^2}{n(n+2)} \Leftrightarrow n^2 + 2n > 3n$$

Dies ist für alle n > 1 der Fall (für n = 1 sind die Ausdrücke gleich).