Analysis I Summary

April 16, 2020

Chapter 1

Reelle Zahlen, Euklidische Raume, Komplexe Zahlen

1.1 Der Körper der reellen Zahlen

Menge der naturlichen Zahlen: $\mathbb{N} = \{0, 1, 2, \dots\}$

Menge der ganzen Zahlen: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

Menge der rationalen Zahlen: $\mathbb{Q}=\left\{rac{p}{q}:p,q\in\mathbb{Z},q
eq0
ight\}$

Satz 1.1.1 Lindemann:

Es gibt keine Gleichung der Form $x^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0$ mit $a_i \in \mathbb{Q}$, so dass $x = \pi$ eine Lösung hat

Satz 1.1.2 \mathbb{R} ist ein kommutativer,angeordneter Körper, der ordnungsvollständig ist. Es gilt:

- 1. Axiome der Addition
 - A1 Assoziativität $\mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z}\ \forall x,y,z\in\mathbb{R}$
 - A2 Neutrales Element x+0 = x $\forall x,z \in \mathbb{R}$
 - A3 Inverses Element $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x+y=0$ (eindeutig den. -x)
 - A4 Kommutativität x+z = z+x $\forall x,z \in \mathbb{R}$
- 2. Axiome der Multiplikation
 - M1 Assoziativität $x \cdot (y \cdot z) = (x \cdot y) \cdot z \forall x, y, z \in \mathbb{R}$
 - M2 Neutrales Element $x \cdot 1 = x \forall x \in \mathbb{R}$
 - M3 Inverses Element $\forall x \in \mathbb{R}, x \neq 0 \exists y \in \mathbb{R} : x \cdot y = 1$ (eindeutig den. x^{-1})
 - M4 Kommutativität $x \cdot z = z \cdot x \forall x, z \in \mathbb{R}$
- 3. Distributivität $x \cdot (y+z) = x \cdot y + x \cdot z \forall x, y, z \in \mathbb{R}$
- 4. Ordnungsaxiome
 - O1 Reflexivität $x \leq x \forall x \in \mathbb{R}$
 - \bullet O2 Transitivität $x \leq y$ und $y \leq z \Rightarrow x \leq z$
 - O3 Antisymmetrie $x \leq y$ und $y \leq x \Rightarrow x = y$
 - O4 Total $\forall x, y \in \mathbb{R}$ gilt entweder $x \leq y$ oder $y \leq x$
- 5. Kompatibilität
 - K1 $\forall x, y, z \in \mathbb{R} : x \leq y \Rightarrow x + z \leq y + z$
 - $K2 \forall x > 0, \forall y > 0 : x \cdot y > 0$
- 6. Ordnungsvollständigkeit (Was R von Q unterscheidet) Seien A,B Teilmengen von R so dass:
 - $A \neq \emptyset$, $B \neq \emptyset$
 - $\forall a \in A \text{ und } \forall b \in B \text{ gilt: } a \leq b$

Dann gibt es $c \in \mathbb{R}$, so dass $\forall a \in A : a \leq c$ und $\forall b \in B : c \leq b$

Korollar 1.17 (Archimedisches Prinzip) Sei $x, y \in \mathbb{R}$ mit x > 0. Dann gibt es $n \in \mathbb{N}$ mit $y \le n \cdot x$.

Satz 1.1.8 Für jedes $t \geq 0, t \in \mathbb{R}$ hat di Gleichung $x^2 = t$ eine Lösung in \mathbb{R}

Definition 1.1.9 seien $x, y \in \mathbb{R}$

1.

$$\max\{x,y\} = \begin{cases} x & \text{falls } y \le x \\ y & \text{falls } x \le y \end{cases}$$

2.

$$min\{x,y\} = \begin{cases} y & \text{falls } y \le x \\ x & \text{falls } x \le y \end{cases}$$

3. Der Absolutbetrag einer Zahl $x \in \mathbb{R} : |x| = max\{x, -x\}$

Satz 1.1.10 Für den Absolutbetrag gilt:

- 1. $|x| \ge 0$ $\forall x \in \mathbb{R}$
- $2. \ |xy| = |x| \cdot |y| \qquad \forall x,y \in \mathbb{R}$
- 3. $|x+y| \le |x| + |y|$ $\forall x, y \in \mathbb{R}$
- 4. $|x+y| \ge ||x| |y|| \quad \forall x, y \in \mathbb{R}$

Satz 1.1.11 (Young'sche Ungleichung) $\forall \epsilon > 0 \quad \forall x,y \in \mathbb{R}$ gilt: $2|xy| \leq \epsilon x^2 + \frac{1}{\epsilon}y^2$.

Intervalle

- 1. für $a \leq b$ in \mathbb{R}
 - $\bullet \ [a,b] = \{x \in \mathbb{R} : a \le x \le b\}$
 - $[a, b] = \{x \in \mathbb{R} : a \le x < b\}$
 - $|a, b| = \{x \in \mathbb{R} : a < x \le b\}$
 - $\bullet \]a,b[=\{x \in \mathbb{R}: a < x < b\}$
- 2. für $a \in \mathbb{R}$
 - $[a, \infty[=\{x \in \mathbb{R} : a \le x\}]$
 - $|a, \infty[= \{x \in \mathbb{R} : a < x\}]$
 - $\bullet \]-\infty,a]=\{x\in\mathbb{R}:a\geq x\}$
 - $\bullet \]-\infty, b[=\{x\in\mathbb{R}:a>x\}$
- 3. $]-\infty,\infty[=\mathbb{R}$

Definition 1.1.12 Sei $A \subset \mathbb{R}$ eine Teilmenge.

- 1. $c \in \mathbb{R}$ ist eine **obere Schranke** von A falls $\forall a \in A : a \leq c$. Die Menge A heisst nach oben beschränkt falls es eine obere Schranke von A gibt.
- 2. $c \in \mathbb{R}$ ist eine untere Schranke von A falls $\forall a \in A : c \leq a$. Die Menge A heisst nach unten beschränkt, falls es eine untere Schranke von A gibt
- 3. Ein Element $\in \mathbb{R}$ heisst ein **Maximum** von A falls $m \in A$ und m eine obere schranke von A ist.
- 4. Ein Element $m \in \mathbb{R}$ heisst ein **Minimum** von A falls $m \in A$ und m eine untere Schranke von A ist

Satz 1.1.15 Sei $A \subset \mathbb{R}$, $A \neq \emptyset$

- 1. Sei A nach oben beschränkt. Dann gibt es eine kleinste obere Schranke von A: c:=supA genannt das $\mathbf{Supremum}$ von A
- 2. Sei A nach unten beschränkt. Dann gibt es eine grösste untere Schranke von A: d:=infA genannt das **Infimum** von A

Korollar 1.1.16 Seien $A\subset B\subset \mathbb{R}$ Teilmengen von \mathbb{R}

- $\bullet\,$ Falls B nach oben beschränkt ist, folgt $supA \leq supB$
- $\bullet\,$ Falls B nach unten beschränkt ist, folgt $infB \leq infA$

Konvention: Falls A nicht nach oben beschränkt (bzw nicht nach unten beschränkt) definieren wir sup $A = \infty$ (bzw inf $A = -\infty$)

Definition 1.1.18 Kardinalität

- 1. Zwei Mengen X,Y heissen **gleichmachtig**, falls es eine Bijektion $f: X \to Y$ gibt.
- 2. Eine Menge X ist **endlich**, falls entweder $X=\emptyset$ oder $\exists n\in\mathbb{N}$, sodass X und $\{1,2,3,\ldots,n\}$ gleichmächtig sind. Im ersten Fall ist die **Kardinalitat** von X, cardX = 0 und im zweiten Fall ist cardX = n.
- 3. Eine Menge X ist **abzahlbar**, falls sie endlich oder gleichmächtig wie $\mathbb N$ ist.

Satz 1.1.20 (Cantor) \mathbb{R} ist nicht abzählbar.

1.2 Der Euklidische Raum

Das Skalarprodukt Das SP zweier Vektoren x,y $\in \mathbb{R}^n$ ist durch $\langle x,y \rangle := \sum_{j=1}^n x_j y_j$ definiert. Es gilt:

- 1. Symmetrie $\langle x, y \rangle = \langle y, x \rangle$ $\forall x, y \in \mathbb{R}^n$
- 2. Bilinear $\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle \ \forall \alpha_1, \alpha_2 \in \mathbb{R}, \forall x_1, x_2, y \in \mathbb{R}^n$
- 3. Positiv Definit $\langle x, x \rangle = \sum_{j=1}^{n} x_j^2 \ge 0$

Norm Die Norm des Vektors x ist $||x|| = \sqrt{\langle x, x \rangle}$

Satz 1.2.1 (Cauchy-Schwarz) $|\langle x,y \rangle| \leq ||x|| \cdot ||y|| \quad \forall x,y \in \mathbb{R}^n$

Satz 1.2.2 Für die Norm gilt:

- 1. $||x|| \ge 0$ mit Gleichheit genau dann wenn x = 0
- 2. $\|\alpha \cdot x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{R} \quad \forall x \in \mathbb{R}^n$
- 3. $||x+y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^n$

Kreuzprodukt Das KP zwischen zwei Vektoren a,b $\in \mathbb{R}^3$ ist definiert durch (a,b) $\mapsto a \times b$. a,b und $a \times b$ bilden ein Rechtssystem. $||a \times b||$ = Flächeninhalt des von a,b aufgespannten Parallelogramms. Es gilt:

- 1. Distributivität $(a+b)\times c = a\times c + b\times c$
- 2. Antisymmetrie $a \times b = -b \times a$
- 3. Jacobi-Identität $a \times (b \times c) + c \times (a \times b) + b \times (c \times a) = 0$

Chapter 2

Folgen und Reihen

2.1 Grenzwert einer Folge

Folge: Eine Folge (reeller Zahlen) ist eine Abbildung $a: \mathbb{N}^* \to \mathbb{R}$ Wir Schreiben a_n statt a(n) und bezeichnen eine Folge mit $(a_n)_{n>1}$

Lemma 2.1.3 Sei (a_n) eine Folge. Dann gibt es höchstens eine reelle Zahl $l \in \mathbb{R}$ mit der Eigenschaft: $\forall \epsilon > 0$ ist die Menge $\{n \in \mathbb{N} : a_n \notin (l - \epsilon, l + \epsilon)\}$ endlich

Konvergent: Eine Folge (a_n) heisst konvergent, falls es $l \in \mathbb{R}$ gibt, so dass $\forall \epsilon > 0$ die Menge $\{n \in \mathbb{N}^* : a_n \notin (l - \epsilon, l + \epsilon)\}$ endlich ist. Jede Konvergente Folge ist beschränkt

Grenzwert/Limes einer Folge: Nach L2.1.3 ist l eindeutig bestimmt und wird mit $l := \lim_{n \to \infty} a_n$

Lemma 2.1.6 Folgende Aussagen sind äquivalent:

- 1. (a_n) konvergiert gegen $l = \lim_{n \to \infty} a_n$
- 2. $\forall \epsilon > 0 \exists N \geq 1$, so dass $|a_n l| < \epsilon \forall n \geq N$

Satz 2.1.8 Seien (a_n) und (b_n) konvergente Folgen mit $a = \lim_{n \to \infty} a_n$, $b = \lim_{n \to \infty} b_n$ dann gilt:

- 1. $(a_n + b_n)$ ist konvergent und $\lim_{n \to \infty} (a_n + b_n) = a + b$
- 2. $(a_n \cdot b_n)$ ist konvergent und $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- 3. Nehmen wir zudem an, dass $b_n \neq 0 \quad \forall n \geq 1 \text{ und } b \neq 0 \text{ Dann ist } (\frac{a_n}{b_n}) \text{ konvergent und } \lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{a}{b}.$
- 4. Falls es ein $K \geq 1$ gibt mit $a_n \leq b_n \quad \forall n \geq K$ dann folgt $a \leq b$

2.2 Der Satz von Weierstrass und Anwendungen

Monotonie

- 1. (a_n) ist monoton wachsend falls: $a_n \leq a_{n+1} \quad \forall n \geq 1$
- 2. (a_n) ist monoton fallend falls: $a_{n+1} \le a_n \quad \forall n \ge 1$

Satz von Weierstrass Eine wichtige Anwendung dieser Satzes ist, wie man mit jeder beschränkten Folge (a_n) zwei monotone Folgen (b_n) und c_n definieren kann, welche dann einen Grenzwert besitzen

- Sei (a_n) monoton wachsend und nach oben beschränkt. Dann konvergiert (a_n) mit Grenzwert $\lim_{n\to\infty} a_n = \sup\{a_n : n \ge 1\}$
- Sei (a_n) monoton fallend und nach unten beschränkt. Dann konvergiert (a_n) mit Grenzwert $\lim_{n\to\infty} a_n = \inf\{a_n : n \ge 1\}$

Limits Examples

- $\lim_{n \to \infty} n^a q^n = 0$ mit $a \in \mathbb{Z}$ $0 \le q < 1$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$
- $\bullet \lim_{n \to \infty} (1 + \frac{1}{n})^n = e \quad n \ge 1$

Bernoulli Ungleichung $(1+x)^n \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1$

2.3 Limes superior und Limes inferior

Limes Inferior/Limes Superior (a_n) ein beschränkter Folge. Sei für jedes $n \ge 1$:

 $b_n = \inf\{a_k : k \ge n\}$ und $c_n = \sup\{a_k : k \ge n\}$

Aus Korollar 1.1.16 folgt: $b_n \leq b_{n+1}$ $c_{n+1} \leq c_n$ $\forall n \geq 1$ und beide Folgen sind beschränkt. Nach Weierstrass sind beide Folgen konvergent und wir definieren:

 $\lim_{n\to\infty}\inf f\ a_n:=\lim_{n\to\infty}b_n\ (\text{Limes inferior})$ $\lim_{n\to\infty}\sup a_n:=\lim_{n\to\infty}c_n\ (\text{Limes Superior})$ $\operatorname{Aus}b_n\leq c_n\ \text{folgt:}\lim_{n\to\infty}\inf a_n\leq \lim_{n\to\infty}\sup a_n$

2.4 Das Cauchy Kriterium:

Bestimmen ob ein Folge konvergiert ohne sein Grenzwert zu kennen.

Lemma 2.4.1 (a_n) konvergiert genau dann, falls (a_n) beschränkt ist und $\lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} \sup a_n$

Satz 2.4.2 (Cauchy Kriterium) Die Folge (a_n) ist genau dann konvergent, falls $\forall \epsilon > 0 \quad \exists N \ge 1 \text{ so dass } |a_n - a_m| < \epsilon \quad \forall n, m \ge N$

Der Satz von Bolzano-Weierstrass

Definition 2.5.1 Ein abgeschlossenes Intervall ist eine Teilmenge $I \subset \mathbb{R}$ der Form (L(I)) ist definiert als die Länge eines Intervalls):

- 1. $[a,b], a \leq b \ a,b \in \mathbb{R}$ L(I) = b - a
- 2. $[a, +\infty[, a \in \mathbb{R}$ $L(I) = +\infty$
- 3. $[-\infty, a[, a \in \mathbb{R}$ $L(I) = +\infty$
- $L(I) = +\infty$ $[4.] - \infty, +\infty[= \mathbb{R}]$

 \Rightarrow Ein Intervall $I \subset \mathbb{R}$ genau dann abgeschlossen, falls für jede konvergente Folge (a_n) aus Elementen in I, der Grenzwert $\lim_{n\to\infty} a_n \text{ auch in I ist}$

Cauchy-Cantor Sei $I_1 \supseteq I_2 \supseteq \dots I_n \supseteq I_{n+1} \supseteq \dots$ eine Folge abgeschlossener Intervalle mit $L(I_1) < +\infty$ Dann gilt:

$$\bigcap_{n\geq 1} I_n \neq \emptyset$$

Falls zudem $\lim_{n\to\infty}L(I_n)=0$ enthält $\bigcap_{n\geq 1}I_n$ genau ein Punkt.

Satz 2.5.6 \mathbb{R} ist nicht abzählbar.

Definition 2.5.7 Eine Teilfolge einer Folge (a_n) ist eine Folge (b_n) wobei

$$b_n = a_{l(n)}$$

und $l: \mathbb{N}^* \to \mathbb{N}^*$ eine Abbildung bezeichnet mit der Eigenschaft

$$l(n) < l(n+1) \quad \forall n \ge 1$$

Bolzano-Weierstrass: Jede beschränkte Folge besitzt eine konvergente Teilfolge \Rightarrow Sei (a_n) eine beschränkte Folge. Dann gilt für jede konvergente Teilfolge (b_n) :

$$\lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} b_n \le \lim_{n \to \infty} \sup a_n$$

Folgen in \mathbb{R}^d und \mathbb{C}

 $\mathbf{D2.6.1}$ Abbildung Eine Folge in \mathbb{R}^d ist eine Abbildung

$$a:\mathbb{N}^*\to\mathbb{R}^d$$

Wir schreiben a_n statt a(n) und bezeichnen die Folge mit (a_n)

Konvergenz einer Folge Eine Folge (a_n) in \mathbb{R}^d heisst konvergent, falls es $a \in \mathbb{R}^d$ gibt so dass:

$$\forall \epsilon > 0 \ \exists N \ge 1 \ \text{mit} \parallel a_n - a \parallel < \epsilon \quad \forall n \ge N$$

Falls solch ein a existiert, ist es eindeutig und heisst Grenzwert der Folge:

$$\lim_{n \to \infty} a_n = a$$

Eine koinvergente Folge (a_n) in \mathbb{R}^d ist beschränkt

Satz 2.6.6

- 1. Eine Folge (a_n) konvergiert genau dann, wenn sie eine Cauchy Folge ist
- 2. Jede beschränkte Folge hat eine konvergente Teilfolge

2.7 Reihen

Konvergenz: Die Reihe $\sum_{k=1}^{\infty} a_k$ ist konvergent, falls die Folge (S_n) der Partialsummen konvergiert. Wir definieren:

$$\sum_{k=1}^{\infty} a_k := \lim_{n \to \infty} S_n$$

2.7.1 Beispiele

• Geometrische Reihe : $\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}$ konvergiert für |q|<1

- Harmonische Reihe : $\sum_{k=1}^{\infty} \frac{1}{k}$ divergiert

• Alternierende Harmonische Reihe: $\sum_{k=1}^{\infty} \frac{1}{n} (-1)^n$ konvergiert aber nicht absolut

• $\sum_{k=1}^{\infty} \frac{1}{k^2}$ konvergiert

• $\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$ konvergiert für s > 1

• $\sum_{k=1}^{\infty} \frac{1}{k \cdot (k+1)}$ konvergiert

• $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ konvergiert, ist aber nicht absolut konvergent

• Exponential
funktion: $\sum_{k=1}^{\infty} \frac{z^k}{k!}$ konvergiert für all $z \in \mathbb{C}$

• Eulersche Zahl: $e = \sum_{k=0}^{\infty} \frac{1}{k!}$

• $\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$ für $z \in \mathbb{C}$ konvergiert absolut

• $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$ für $z \in \mathbb{C}$ konvergiert absolut

Satz 2.7.4 $\sum_{k=1}^{\infty} a_k, \sum_{j=1}^{\infty} b_j$ konvergent, sowie $\alpha \in \mathbb{C}$

1. Dann ist $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergent und $\sum_{k=1}^{\infty} (a_k + b_k) = \left(\sum_{k=1}^{\infty} a_k\right) + \left(\sum_{j=1}^{\infty} b_j\right)$

2. Dann ist $\sum_{k=1}^{\infty} \alpha \cdot a_k$ konvergent und $\sum_{k=1}^{\infty} \alpha \cdot a_k = \alpha \cdot \sum_{k=1}^{\infty} a_k$

Cauchy Kriterium: Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls:

$$\forall \epsilon > 0 \ \exists N \ge 1 \text{ mit } \left| \sum_{k=n}^{m} a_k \right| < \epsilon \quad \forall m \ge n \ge N$$

Satz 2.7.6 Sei $\sum_{k=1}^{\infty} a_k$ eine Reihe mit $a_k \geq 0 \quad \forall k \in \mathbb{N}^*$. Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert genau dann, falls die Folge

 $S_n = \sum_{k=1}^n a_k$ der Partialsummen nach oben beschränkt ist.

Vergleichssatz: $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ Reihen mit:

$$0 \le a_k \le b_k \quad \forall k \ge K \quad (K \ge 1)$$

dann gilt:

$$\sum_{k=1}^{\infty} b_k \text{ konvergent} \Rightarrow \sum_{k=1}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=1}^{\infty} a_k \text{ divergent} \Rightarrow \sum_{k=1}^{\infty} b_k \text{ divergent}$$

7

Absolut Konvergenz: Falls $\sum_{k=1}^{\infty} |a_k|$ konvergiert. Eine absolut konvergente Reihe $\sum_{k=1}^{\infty} a_k$ ist auch konvergent und es gilt:

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|$$

Leibniz: (a_n) monoton fallend mit $a \ge 0$ $\forall n \ge 1$ $und \lim_{n \to \infty} a_n = 0$. Dann konvergiert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

und es gilt: $a_1 - a_2 \le S \le a_1$

Umordnung: Eine Reihe $\sum_{k=1}^{\infty} a_n^{'}$ ist eine Umordnung der Reihe $\sum_{k=1}^{\infty} a_n$, falls es eine bijektive Abbildung

$$\phi: \mathbb{N}^* \to \mathbb{N}^*$$

gibt, sodass $a'_n = a_{\phi(n)}$

<u>Dirichlet:</u> Falls $\sum_{k=1}^{\infty} a_n$ absolut konvergiert, dann konvergiert jede Umordnung der Reihe und hat denselben Grenzwert.

Quotientenkriterium: Sei (a_n) mit $a_n \neq 0 \quad \forall n \geq 1$ Falls

$$\lim_{n \to \infty} \sup \frac{|a_{n+1}|}{|a_n|} < 1$$

dann konvergiert die Reihe $\sum_{k=1}^{\infty} a_n$ absolut. Falls

$$\lim_{n\to\infty} \ sup \frac{|a_{n+1}|}{|a_n|} > 1$$

divergiert die Reihe. Das Quotientenkriterium versagt, wenn z.B unendlich viele Glieder a_n der Reihe verschwinden.

Wurzelkriterium:

1. Falls

$$\lim_{n \to \infty} \sup \sqrt[n]{|a_n|} < 1$$

dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut

2. Falls

$$\lim_{n \to \infty} \sup \sqrt[n]{|a_n|} > 1$$

dann divergieren $\sum_{n=1}^{\infty}a_n$ und $\sum_{n=1}^{\infty}|a_n|$

Nullfolgenkriterium: Verwendet um zu zeigen dass eine Reihe divergiert

$$\sum_{n\to\infty}^{\infty}a_n \text{ existiert} \Rightarrow \lim_{n\to\infty}|a_n|=0$$

$$\Rightarrow |a_n| \text{ keine Nullfolge} \Rightarrow \sum_{n\to\infty}^{\infty}|a_n| \text{ nicht konvergent}$$

Wenn es 0 ist kann man noch keine Aussage machen.

<u>Majorantenkriterium:</u> zu zeigen $\sum_{n=1}^{\infty} a_n$ konvergiert

Finde
$$(b_n)$$
 s.d $|a_n| \le b_n (\forall n \ge n_0)$ und $\sum_{n=1}^{\infty} b_n$ konvergiert $\Rightarrow \sum_{n=1}^{\infty} a_n$ konvergiert (absolut!)

<u>Lineare Anordnung:</u> $\sum_{k=0}^{\infty} b_k$ ist eine lineare Anordnung der Doppelreihe $\sum_{i,j\geq 0} a_{ij}$, falls es eine Bijektion

$$\sigma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$$

gibt, mit $b_k = a_{\sigma(k)}$

SATZ 2.7.23 (Cauchy 1821). Wir nehmen an, dass es $B \ge 0$ gibt, so dass

$$\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \leqslant B \qquad \forall m \geqslant 0.$$

Dann konvergieren die folgenden Reihen absolut:

$$S_i := \sum_{j=0}^{\infty} a_{ij} \quad \forall i \geqslant 0 \quad und \quad U_j := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geqslant 0$$

sowie

$$\sum_{i=0}^{\infty} S_i \quad und \quad \sum_{j=0}^{\infty} U_j$$

und es gilt:

$$\sum_{i=0}^{\infty} S_i = \sum_{j=0}^{\infty} U_j$$

Zudem konvergiert jede lineare Anordnung der Doppelreihe absolut, mit selbem Grenzwert.

Figure 2.1:

Potenz Reihe: Eine Reihe der Form:

$$p(x) := \sum_{n=0}^{\infty} a_n (x - c)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots$$

wobei a_n eine beliebige folge ist und $x \in \mathbb{R}$ eine parameter.

Konvergenz Radius: Der konvergenz radius einer Potenzreihe ist gegeben durch:

$$\rho := \sup\{|x|: p(x) converges\} \begin{cases} \lim_{n \to \infty} \left|\frac{a_n}{a_{n+1}}\right| & \text{(i) Quotientenkriterium} \\ \frac{1}{\lim_{n \to \infty} \left|\sqrt[n]{a_n}\right|} & \text{(ii) Wurzelkriterium} \end{cases}$$

$$|x| := \begin{cases} <\rho \Rightarrow konvergiert \\ >\rho \Rightarrow divergiert \\ =\rho \Rightarrow keine\ Aussage \quad (*) \end{cases}$$

(*): in diesem Fall müssen wir kontrollieren ob es konvergiert oder divergiert

Cauchy-Produkt: der Reihen

$$\sum_{i=0}^{\infty} a_i, \quad \sum_{j=0}^{\infty} b_j$$

ist die Reihe

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + (a_0 b_2 + a_1 b_1 + a_2 b_0) + \dots$$

Falls die Reihen absolut konvergieren, so konvergiert ihr Cauchy Produkt und es gilt:

$$\sum_{n=0}^{\infty} \bigg(\sum_{j=0}^n a_{n-j} b_j\bigg) = \bigg(\sum_{i=0}^{\infty} a_i\bigg) \bigg(\sum_{j=0}^{\infty} b_j\bigg)$$

Satz 2.7.28: Sei $f_n: \mathbb{N} \to \mathbb{R}$ eine Folge. Wir nehmen an, dass:

- 1. $f(j) := \lim_{n \to \infty} f_n(j)$ existiert $\forall j \in \mathbb{N}$
- 2. Es gibt eine Funktion $g: \mathbb{N} \to [0, \infty[$, so dass:
 - (a) $|f_n(j)| \le g(j) \quad \forall j \ge 0, \forall n \ge 0$
 - (b) $\sum_{j=0}^{\infty} g(j)$ konvergiert

Dann folgt:

$$\sum_{j=0}^{\infty} f(j) = \lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j)$$

Chapter 3

Stetige Funktionen

3.1 Reelwertige Funktionen

Die Menge \mathbb{R}^D : Sei D eine beliebige Menge. Die Menge \mathbb{R}^D aller Funktionen

$$f_D \to \mathbb{R}$$

bildet ein VR über $\mathbb R$ mit:

 $(f_1+f_2)(x)=f_1(x)+f_2(x)$ $(\alpha \cdot f)(x)=\alpha \cdot f(x)$ $(f_1 \cdot f_2)(x)=f_1(x) \cdot f_2(x)$ $\theta(x)=0 \quad \forall x \in D$ $1(x)=1 \quad \forall x \in D$ $f+\theta=f, \quad g \cdot 1=g \quad \forall f,g \in \mathbb{R}^D$ Falls $|D| \geq 2$ gibt es immer ein $f \neq \theta$ das kein multiplikatives Inverses besitzt $f \leq g \text{ falls } f(x) \leq g(x) \quad \forall x \in D$ f ist nicht negativ falls $0 \leq f$

Beschränktheit: Sei $f \in \mathbb{R}^D$

- 1. f ist nach oben beschränkt, falls $f(D) \subset \mathbb{R}$ nach oben beschränkt ist
- 2. f ist nach unten beschränkt, falls $f(D) \subset \mathbb{R}$ nach unten beschränkt ist
- 3. f ist **beschränkt**, falls $f(D) \subset \mathbb{R}$ beschränkt ist.

<u>Monotonie:</u> $f:D\to\mathbb{R}$, wobei $D\subset\mathbb{R}falls\ \forall x,y\in D$

- 1. monoton wachsend $x \le y \Rightarrow f(x) \le f(y)$
- 2. streng monoton wachsend $x < y \Rightarrow f(x) < f(y)$
- 3. monoton fallend $x \le y \Rightarrow f(x) \ge f(y)$
- 4. streng monoton fallend $x < y \Rightarrow f(x) > f(y)$
- 5. monoton falls f monoton wachsend oder monoton fallend ist
- 6. steng monoton falls f streng monoton wachsend oder streng monoton fallend ist

Beispiel: Sei $n \in \mathbb{N}$ $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^n$. f ist genau dann (streng) monoton wachsend, falls n ungerade ist.

3.2 Stetigkeit

Stetigkeit in x_0 : Sei $D \subset \mathbb{R}, x_0 \in D$. Die Funktion $f: D \to \mathbb{R}$ ist in x_0 stetig, falls es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt so dass für alle $x \in D$ die Implikation:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

gilt.

Stetigkeit: Die Funktion $f:D\to\mathbb{R}$ ist stetig, falls sie in jedem Punkt von D stetig ist.

<u>Satz 3.2.4:</u> Sei $x_0 \in D \subset \mathbb{R}$ und $f: D \to \mathbb{R}$. Die Funktion f ist genau dann in x_0 stetig, falls für jede Folge (a_n) in D folgende Implikation gilt:

$$\lim_{n \to \infty} a_n = x_0 \Rightarrow \lim_{n \to \infty} f(a_n) = f(x_0)$$

Korollar 3.2.5: Sei $x_0 \in D \subset \mathbb{R}, \lambda \in \mathbb{R}$ und $f: D \to \mathbb{R}, g: D \to \mathbb{R}$ beide stetig in x_0 :

- 1. Dann sind $f + g, \lambda \cdot f, f \cdot g$ stetig in x_0
- 2. Falls $g(x_0) \neq 0$ dann ist

$$\frac{f}{g}: D \cap \{x \in D: g(x) \neq 0\} \to \mathbb{R}$$
$$x \mapsto \frac{f(x)}{g(x)}$$

stetig in x_0

polynomiale Funktion: $P: \mathbb{R} \to \mathbb{R}$ ist eine Funktion der Form

$$P(x) = a_n x^n + \dots + a_0$$

wobei: $a_n, \ldots, a_0 \in \mathbb{R}$. Falls $a_n \neq 0$ ist n der **Grad** von P.

Polynomiale Funktionen sind auf ganz \mathbb{R} stetig.

Seien P,Q polynomiale Funktionen auf $\mathbb R$ mit $\mathbf Q \neq \theta$. Seien x_1,\dots,x_m die Nullstellen von Q. Dann ist:

$$\frac{P}{Q}: \mathbb{R} \left\{ x_1, \dots x_m \right\} \to \mathbb{R}$$
$$x \mapsto \frac{P(x)}{Q(x)}$$

stetig.

3.3 Der Zwischenwertsatz

<u>Satz 3.3.1 Bolzano:</u> Sei $I \subset \mathbb{R}$ ein Intervall $f: I \to \mathbb{R}$ eine stetige Funktion und $a, b \in I$. Für jedes c zwischen f(a) und f(b) gibt es ein z zwischen a und b mit f(z) = c.

Korollar 3.3.2: Sei $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ ein Polynom mit $a_n \neq 0$ und n ungerade. Dann besitzt P mindestens eine Nullstelle in $\mathbb R$

Für c> 0 besitzt $Q(x) = x^2 + c$ keine Nullstelle in \mathbb{R}

3.4 Der Min-Max Satz

Kompakt: Ein intervall $\subset \mathbb{R}$ falls es von der Form

$$I = [a, b], \quad a \le b$$

Definitionen:

- $|f|(x) := |f(x)| \quad \forall x \in D$
- $max(f,g)(x) := max(f(x),g(x)) \quad \forall x \in D$
- $min(f,g)(x) := min(f(x),g(x)) \quad \forall x \in D$

<u>Lemma 3.4.3</u> Sei $D \subset \mathbb{R}, x_0 \in D$ und $f, g : D \to \mathbb{R}$ stetig in x_0 Dann sind

stetig in x_0

<u>Lemma 3.4.4:</u> Sei (x_n) eine konvergente Folge in \mathbb{R} mit Grenzwert $\lim_{n\to\infty} x_n \in \mathbb{R}$.

Sei $a \leq b$. Falls $\{x_n : n \geq 1\} \subset [a,b]$ folgt $\lim_{n \to \infty} x_n \in [a,b]$

Satz 3.4.5: Sei $f:I=[a,b]\to\mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u\in I$ und $v\in I$ mit

$$f(u) \le f(x) \le f(v) \quad \forall x \in I$$

insbesondere ist f beschränkt.

3.5 Der Satz über die Umkehrabbildung

Satz 3.5.1: Seien $D_1, D_2 \subset \mathbb{R}$ zwei Teilmengen, $f: D_1 \to D_2, g: D_2 \to \mathbb{R}$ Funktionen, sowie $x_0 \in D_1$. Falls f in x_0 und g in $f(x_0)$ stetig sind, so ist

$$g \circ f: D_1 \to \mathbb{R}$$

Falls f auf D_1 und g auf D_2 stetig sind, so ist $g \circ f$ auf D_1 stetig.

<u>Satz 3.5.3:</u> Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig, streng monoton. Dann ist $J := f(I) \subset \mathbb{R}$ ein Intervall und $f^{-1}: J \to I$ ist stetig, streng monoton

3.6 Die Reelle Exponentialfunktion:

Satz 3.6.1: $exp: \mathbb{R} \to]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv. Wichtige Eigenschaften:

$$\begin{array}{ccc} exp(x)>0 & \forall x\in\mathbb{R} \text{ i.e } (exp(\mathbb{R}\subset]0,+\infty[)\\ exp(z)>exp(y) & \forall z>y \text{ i.e } (\text{exp ist streng monoton wachsend})\\ exp(x)=\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n\geq 1+x & \forall x\in\mathbb{R} \end{array}$$

Aus der Potenzreihendarstellung von exp folgt:

$$exp(x) > 1 \quad \forall x > 0$$

natürlichen Logarithmus: Die Umkehrabbildung der bijektiven Abbildung $exp: \mathbb{R} \to]0, +\infty[$

$$ln:]0, +\infty[\to \mathbb{R}$$

ist eine streng monoton wachsende, stetige, bijektive Funktion. Es gilt:

$$ln(a \cdot b) = ln(a) + ln(b) \quad \forall a, b \in]0, +\infty[$$

Korollar 3.6.6:

(1) Für a > 0 ist

$$]0,\infty[\to]0,\infty[\quad x\mapsto x^a$$

eine stetige, streng monoton wachsende Bijektion

(2) Für a < 0 ist

$$]0,\infty[\rightarrow]0,\infty[\quad x\mapsto x^a$$

(3) $ln(x^a) = a \cdot ln(x) \quad \forall a \in \mathbb{R}, \forall x > 0$

(4)
$$x^a \cdot x^b = x^{a+b} \quad \forall a, b \in \mathbb{R}, \forall x > 0$$

(5)
$$(x^a)^b = x^{a \cdot b} \quad \forall a, b \in \mathbb{R}, \forall x > 0$$

3.7 Konvergenz von Funktionenfolgen

Funktionenfolge: Eine Abbildung $\mathbb{N} \to \mathbb{R}^D$ $n \mapsto f(n)$

Wie im Fall der Folgen bezeichnen wir f(n) mit f_n und die Funktionenfolge mit $(f_n)_{n\geq 0}$. Für jedes $x\in D$ erhält man eine Folge $(f_n(x))_{n>0}$ in $\mathbb R$

Punktweise Konvergenz: Die Funktionenfolge (f_n) konvergiert punktweise gegen eine Funktion $f: D \to \mathbb{R}$, falls für alle $x \in D$:

$$f(x) = \lim_{n \to \infty} f_n(x)$$

Gleichmässiges Konvergenz: Die Folge $f_n: D \to \mathbb{R}$ konvergiert gleichmässig in D gegen

$$f:D\to\mathbb{R}$$

falls gilt: $\forall \epsilon > 0 \; \exists N > 1$, so dass:

$$\forall n \ge N, \forall x \in D : |f_n(x) - f(x)| < \epsilon$$

Satz 3.7.4: Sei $D \subset \mathbb{R}$ und $f_n : D \to \mathbb{R}$ eine Funktionenfolge bestehend aus (in D) stetigen Funktionen die (in D) gleichmässig gegen eine Funktion $f : D \to \mathbb{R}$ konvergiert. Dann ist f (in D) stetig.

$$f(x) := \lim_{n \to \infty} f_n(x)$$

existiert und die Folge (f_n) gleichmässig gegen f
 konvergiert

Korollar 3.7.6: Die Funktionenfolge $f_n:D\to\mathbb{R}$ konvergiert genau dann gleichmässig in D, falls:

$$\forall \epsilon > 0 \exists N \geq 1$$
, so dass $\forall n, m \geq N$ und $\forall x \in D : |f_n(x) - f_m(x)| < \epsilon$

<u>Korollar 3.7.7:</u> Sei $D \subset \mathbb{R}$ Falls $f_n : D \to \mathbb{R}$ eine gleichmässig konvergente Folge stetiger Funktionen ist, dann ist die Funktion

$$f(x) := \lim_{n \to \infty} f_n(x)$$

stetig.

<u>Def 3.7.8:</u> Die Reihe $\sum_{k=0}^{\infty} f_k(x)$ konvergiert gleichmässig (in D), falls die durch

$$S_n(x) := \sum_{k=0}^n f_k(x)$$

definierte Funktionenfolge gleichmässig konvergiert

Satz 3.7.9: Sei $D \subset \mathbb{R}$ und $f_n : D \to \mathbb{R}$ eine Folge stetiger Funktionen. Wir nehmen an, dass $|f_n(x)| \leq c_n \quad \forall x \in D$ und dass $\sum_{n=0}^{\infty} c_n$ konvergiert. Dann konvergiert die Reihe:

$$\sum_{n=0}^{\infty} f_n(x)$$

gleichmässig in D und deren Grenzwert

$$f(x) := \sum_{n=0}^{\infty} f_n(x)$$

ist eine in D stetige Funktion

$$\rho = \begin{cases} +\infty & \text{falls } \lim_{k \to \infty} \sup \sqrt[k]{|c_k|} = 0 \\ \frac{1}{\lim_{k \to \infty} \sup \sqrt[k]{|c_k|}} & \text{falls } \lim_{k \to \infty} \sup \sqrt[k]{|c_k|} > 0 \end{cases}$$

<u>Satz 3.7.11:</u> Sei $\sum_{k=0}^{\infty} c_k x^k$ eine Potenzreihe mit positivem Konvergenzradius $\rho > 0$ und sei

$$f(x) := \sum_{k=0}^{\infty} c_k x^k, \quad |x| < \rho$$

Dann gilt: $\forall 0 \leq r < \rho$ konvergiert

$$\sum_{k=0}^{\infty} c_k x^k$$

gleichmässig auf [-r,r],insbesondere ist $f:]-\rho,\rho[\to\mathbb{R}$ stetig

3.8 Trigonometrische Funktionen

Satz 3.8.1: sin: $\mathbb{R} \to \mathbb{R}$ und $cos : \mathbb{R} \to \mathbb{R}$ sind stetige Funktionen

Satz 3.8.2:

- (1) $e^{iz} = \cos(z) + i \cdot \sin(z) \quad \forall z \in \mathbb{C}$
- (2) $\cos(z) = \cos(-z)$ und $\sin(-z) = -\sin(z) \ \forall z \in \mathbb{C}$
- (3) $sin(z) = \frac{e^{iz} e^{-iz}}{2i}, \quad cos(z) \frac{e^{iz} + e^{-iz}}{2}$
- $\begin{array}{l} (4) \ \sin(z+w) = \sin(z) cos(w) + cos(z) sin(w) \\ \cos(z+w) = \cos(z) cos(w) sin(z) sin(w) \end{array}$
- (5) $cos(z)^2 + sin(z)^2 = 1 \forall z \in \mathbb{C}$
- (6) $\sin(2z) = 2\sin(z)\cos(z)$ $\cos(2z) = \cos(z)^2 - \sin(z)^2$

3.9 Grenzwerte von Funktionen

Häufungspunkt: $x_0 \in \mathbb{R}$ ist ein Häufungspunkt der Menge D falls $\forall \delta > 0$:

$$(|x_0 - \delta, x_0 + \delta[x_0) \cap D \neq \emptyset$$

Grenzwert von f(x): Sei $f:D\to\mathbb{R}, x_0\in\mathbb{R}$ ein Häufungspunkt von D. Dann ist $A\in\mathbb{R}$ der Grenzwert von f(x) für $x\to x_0$ bezeichnet mit

$$\lim_{x \to x_0} f(x) = A$$

falls $\forall \epsilon > 0 \exists \delta > 0$ so dass

$$\forall x \in D \cap (|x_0 - \delta, x_0 + \delta[x_0) : |f(x) - A| < \epsilon$$

Bemerkung 3.10.4:

- (i) Sei $f: D \to \mathbb{R}$ und x_0 ein Häufungspunkt von D dann gilt $\lim_{x \to x_0} f(x) = A$ genau dann wenn für jede Folge (a_n) in $D \setminus \{x_0\}$ mit $\lim_{n \to \infty} a_n = x_0$ folgt $\lim_{n \to \infty} f(a_n) = A$
- (ii) Sei $x_0 \in D$ Dann ist f stetig in x_0 genau dann falls

$$\lim_{x \to x_0} f(x) = f(x_0)$$

(iii) Falls $f,g:D\to\mathbb{R}$ und $\lim_{x\to x_0}f(x),\lim_{x\to x_0}g(x)$ existieren, so folgt

$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) \text{ und}$$

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

- (iv) Sei $f, g: D \to \mathbb{R}$ mit $f \leq g$. Dann folgt $\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$ falls beide Grenzwerte existieren
- (v) Falls $g_1 \leq f \leq g_2$ und $\lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x)$ dann existiert $\lim_{x \to x_0} f(x)$ und

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g_1(x)$$

Satz 3.10.6: Seien $D, E \subset \mathbb{R}, x_0$ Häufungspunkt von $D, f: D \to E$ eine Funktion. Wir nehmen an, dass

$$y_0 := \lim_{x \to x_0} f(x)$$

existiert und $y_0 \in E$ Falls $g: E \to \mathbb{R}$ stetig in y_0 folgt:

$$\lim_{x \to x_0} g(f(x)) = g(y_0)$$

Links/Rechtsseitiger Grenzwert: Sei $f:D\to\mathbb{R}$ und $x_0\in\mathbb{R}$. Wir nehmen an x_0 ist ein Häufungspunkt von $\overline{D\cap]x_0,+\infty[}$ das heisst ein rechtsseitiger Häufungspunkt. Falls der Grenzwert der eingeschränkten Funktion:

$$f|_{D\cap[x_0,+\infty)}$$

für $x \to x_0$ existiert, wird er mit $\lim_{x \to x_0^+} f(x)$ bezeichnet und nennt sich rechtseitiger Grenzwert von f bei x_0

Wir erweitern diese Definition auf: $\lim_{x \to x_0^+} f(x) = +\infty$ falls gilt:

$$\forall \epsilon > 0 \ \exists \delta > 0, \forall x \in D \cap]x_0, x_0 + \delta[: f(x) > \frac{1}{\epsilon}]$$

und analog: $\lim_{x \to x_0^+} f(x) = -\infty$ falls gilt:

$$\forall \epsilon > 0 \; \exists \delta > 0, \forall x \in D \cap]x_0, x_0 + \delta[: f(x) < -\frac{1}{\epsilon}]$$