FEM Phase

MEC-E1060

Kaur Jaakma 28.9.2020

Aim of the Phase

To give "machine designer" level view for FEM

- How the strength simulation process works?
- What you need to know to perform analysis?
- How to present results?
- How simulations can improve your design?

Strength Analyzes

Why we do them?

What is needed to perform an analysis?

- Case
- Geometry
- Constraints (placement)
- Forces

Strength Analyzes

Displacements

Stresses

Fatigue

Buckling

Analytical Calculations

Elastic curve equation

$$w''(x) = -\frac{M(x)}{E \times I(x)}$$

Mathcad

$$v(x) \coloneqq \int \int w(x) \, \mathrm{d}x + C_1 \, \mathrm{d}x + C_2 \xrightarrow{simplify} \frac{x^2 \cdot F \cdot (x - 3 \cdot L)}{6 \cdot E \cdot I}$$

Analytical vs. FEM

$$v(6 m) = -21.6 mm$$

Units = mm

Why FEM?

Analyses are key to effective design

If you know what you are doing

Faster than physical prototype

Although real world results are needed

Can use optimization to find the best solution

- Constraints may cause problems
- Validating needed

Optimization

First modal mode to 440 Hz

- Starting value 279,3 Hz
- Cross-section 20 → 32 mm

FEM Process

Iterative process

- All can be done in one program
- · Different program for each step can also be used

Geometry

Native geometry

Created within the analysis program

Imported geometry

- Neutral formats (for ex. STEP, IGES)
- Some programs may have importers for CAD programs

Stresses

Imported geometry

Constraints

Several ways to define boundary conditions

• i.e. constraints, forces

Constraints

Constraints matters

- Fixed or
- Revolute

Mesh Size

Example Stand-alone FEM Programs

Courses about FEM

MEC-E1050 Finite Element Method in Solids

5 cr, starts on 2nd period

MEC-E8001 Finite Element Analysis L

5 cr, starts on 3rd period

User's Responsibility

FEM Process in NX

NX Simulate

Integrated into Siemens NX

Uses NASTRAN solver

Export to other solvers also possible

FEA Process

Different Parts in NX

Part name and type	Description
Part.prt	Original CAD geometry
Part_fem1_i.prt	Idealized geometry copied from original CAD file (if selected when creating a new simulation)
Part_fem1.fem	Stored mesh file
Part_sim1.sim	Simulation file, defines constraints, material information and what is being calculated

Simulation file

- Container for all other files
- Contains model inputs

Model Quality

NASTRAN solver sees under 5% error acceptable

Smaller mesh elements normally increase quality

Results

Displacement

Results

Stress

Different modes

To update CAD geometry

When part file is active, Application → Modeling

To access FEM model

Application → Design

Different Solvers

Basic solver should be fine for this course

Goal

First modal mode to 440 Hz

Vibration analyze result

First mode 279,3 Hz

Starting geometry

• Cross-section 20

Requires ready made simulation as input

Objective

 First mode frequency to 440 Hz

Constrains

For ex. Stress limit

Dimensions that optimization tool can change

Within limits

Control parameters for solver

- Defaults mostly OK
- Sometime convergence margin % can be changed to stricter one
- Notice the amount of iterations

Results (notice the 2.5% convergence margin)

Optimization History

Based on Optimizer				
Dealer Objective Frankling Beauty				
Design Objective Function Results				
Target Frequency (440.000000) [Hz]	0	1	2	3
	279,8468	419,2751	439,7899	435,0152
Design Variable Results				
Name	0	1	2	3
"001420/A;1-Tuning Fork"::p10=20	20	30	31,48642	31,14084
Design Constraint Results				
	0	1	2	3
Result Measure				
Upper Limit = 250.000000 [N/mm^2(MPa)]	229,66	244,48	251,94	249,69
Small change in design, run converged				

Siemens Learning Advantage

Database for tutorials and videos related to software

NX Design mode

Students have access

Instructions in MyCourses

aalto.fi

