SICO7O SISTEMAS INTELIGENTES 2

Aula 05 - Backpropagation

Prof. Rafael G. Mantovani

Roteiro

- 1 Introdução
- 2 Backpropagation
- 3 Exemplo
- 4 Exercício
- 5 Referências

Roteiro

- 1 Introdução
- 2 Backpropagation
- 3 Exemplo
- 4 Exercício
- 5 Referências

Multilayer Perceptron:

- neurônios possuem uma função de ativação não-linear e diferenciável
- contém uma ou mais camadas escondidas
- a rede possui alto grau de conectividade

 Se houverem N exemplos de treinamento, o erro médio sobre todos os exemplos (risco empírico) é dado por:

$$\varepsilon_{avg}(N) = \frac{1}{N} \sum_{n=1}^{N} \varepsilon(n) = \frac{1}{2N} \sum_{n=1}^{N} \sum_{j \in C} e_j^2(n)$$

Erro quadrático médio da época considera todos os neurônios da camada de saída **C** e todos os exemplos do conjunto de treinamento (**N**)

Roteiro

- 1 Introdução
- 2 Backpropagation
- 3 Exemplo
- 4 Exercício
- 5 Referências

Os pesos sinápticos são matrizes:

Wh - conecta camada oculta e a camada de entrada

Wº - conecta a camada de saída e a camada oculta

1 Sinal no neurônio de índice J na camada escondida:

$$net_{pj}^{h} = \sum_{i=1}^{N} W_{ji}^{h} x_{pi} + \theta_{j}^{h}$$

1 Sinal no neurônio de índice J na camada escondida:

$$net_{pj}^{h} = \sum_{i=1}^{N} W_{ji}^{h} x_{pi} + \theta_{j}^{h}$$

N: número de neurônios na camada de entrada

1 Sinal no neurônio de índice J na camada escondida:

$$net_{pj}^{h} = \sum_{i=1}^{N} W_{ji}^{h} x_{pi} + \theta_{j}^{h}$$

 $N\,:$ número de neurônios na camada de entrada

 \mathcal{X}_{pi} : exemplo de entrada fornecido para a rede

Sinal no neurônio de índice J na camada escondida:

$$net_{pj}^{h} = \sum_{i=1}^{N} W_{ji}^{h} x_{pi} + \theta_{j}^{h}$$

 $N\,$: número de neurônios na camada de entrada

 χ_{pi} : exemplo de entrada fornecido para a rede

 W_{ji}^h : pesos sinápticos que conectam os valores de entrada i ao neurônio j

1 Sinal no neurônio de índice J na camada escondida:

$$net_{pj}^{h} = \sum_{i=1}^{N} W_{ji}^{h} x_{pi} + \theta_{j}^{h}$$

 $N\,$: número de neurônios na camada de entrada

 χ_{pi} : exemplo de entrada fornecido para a rede

 W^h_{ji} : pesos sinápticos que conectam os valores de entrada i ao neurônio J

1 Sinal no neurônio de índice J na camada escondida:

$$net_{pj}^{h} = \sum_{i=1}^{N} W_{ji}^{h} x_{pi} + \theta_{j}^{h}$$

🚺 Sinal no neurônio de índice J na camada escondida:

$$net_{pj}^{h} = \sum_{i=1}^{N} W_{ji}^{h} x_{pi} + \theta_{j}^{h}$$

Ativação desse neurônio é igual a:

$$i_{pj} = f_j^h(net_{pj}^h)$$

3 Sinal no neurônio de índice K na camada de saída:

Sinal no neurônio de índice K na camada de saída:

$$net_{pk}^o = \sum_{j=1}^L W_{kj}^o i_{pj} + \theta_k^o$$

Sinal no neurônio de índice K na camada de saída:

$$net_{pk}^{o} = \sum_{j=1}^{L} W_{kj}^{o} i_{pj} + \theta_{k}^{o}$$

 $L\,$: número de neurônios na camada oculta

 $i_{pj}\,$: valor da ativação do neurônio i na camada oculta

 $W_{kj}^o:$ pesos sinápticos que conectam o neurônio ${\sf J}$ com a camada escondida

 $heta_k^o$: bias do neurônio k

Sinal no neurônio de índice K na camada de saída:

$$net_{pk}^o = \sum_{j=1}^L W_{kj}^o i_{pj} + \theta_k^o$$

Sinal no neurônio de índice K na camada de saída:

$$net_{pk}^{o} = \sum_{j=1}^{L} W_{kj}^{o} i_{pj} + \theta_{k}^{o}$$

Saída desse neurônio é igual a:

$$o_{pk} = f_k^o(net_{pk}^o)$$

BACKPROPAGATION

5 Calcular os termos de erro para as unidades de saída:

$$\delta \circ_{pk} = (\gamma_{pk} - \circ_{pk}) * f \circ'_{k} (net \circ_{pk})$$

Calcular os termos de erro para as unidades de saída:

$$\delta \circ_{pk} = (y_{pk} - o_{pk}) * fo'_k (neto_{pk})$$

$$y_{pk} : saída esperada no neurônio k$$

5 Calcular os termos de erro para as unidades de saída:

$$\delta \circ_{pk} = (y_{pk} - o_{pk}) * f \circ'_{k} (net \circ_{pk})$$

 \mathcal{Y}_{pk} : saída esperada no neurônio \mathbf{k}

••• Opk: saída obtida no neurônio k

Calcular os termos de erro para as unidades de saída:

$$\delta \circ_{pk} = (y_{pk} - o_{pk}) * f \circ'_k (net \circ_{pk})$$

 \mathcal{Y}_{pk} : saída esperada no neurônio \mathbf{k}

 O_{pk} : saída obtida no neurônio k

 $-net_{pk}^{o}$: sinal obtido no neurônio k

Calcular os termos de erro para as unidades de saída:

$$\delta \circ_{pk} = (\gamma_{pk} - o_{pk}) * f \circ'_k (net \circ_{pk})$$

 \mathcal{Y}_{pk} : saída esperada no neurônio \mathbf{k}

 O_{pk} : saída obtida no neurônio k

 net_{pk}^o : sinal obtido no neurônio ${f k}$

 $f_k^{'o}$: derivada da função de ativação do neurônio ${f k}$

6 Calcular os termos de erro para as unidades ocultas:

$$\delta_{pj} = f^{h'_j}(net^h_{pj}) \sum_k (\delta_{pk} * W^{o}_{kj})$$

6 Calcular os termos de erro para as unidades ocultas:

$$\delta h_{pj} = f^{h'}_{i}(net^{h}_{pj}) \sum_{k} (\delta^{o}_{pk} * W^{o}_{kj})$$

 $\delta \circ_{\mathsf{pk}}$

Wokj

neth_{pj}

 $f_i^{'h}$

6 Calcular os termos de erro para as unidades ocultas:

$$\delta_{pj} = f^{h'}_{j}(net^{h}_{pj}) \sum_{k} (\delta_{pk} * W^{o}_{kj})$$

δ°pk : termo de erro (gradiente) para o neurônio k da camada de saída

Wo_{kj}: pesos sinápticos que conectam o neurônio j da camada oculta a todos os neurônios k da camada de saída

neth_{pj}: sinal obtido no neurônio j

 $f_{i}^{'h}$: derivada da função de ativação do neurônio j

6 Calcular os termos de erro para as unidades ocultas:

$$\delta_{pj} = f^{h'}_{j}(net^{h}_{pj}) \sum_{k} (\delta_{pk} * W^{o}_{kj})$$

Obs: o erro das unidades ocultas é calculado **ANTES** do ajuste de pesos da camada de saída

7 Atualizar os pesos da camada de saída

$$W_{kj}(t+1) = W_{kj}(t) + \eta * \delta_{pk} * i_{pj}$$

8 Atualizar os pesos da camada oculta

$$\mathbf{W}^{h}_{ji}(t+1) = \mathbf{W}^{h}_{ji}(t) + \eta * \delta^{h}_{pj} * \chi_{pi}$$

- Calcular o erro total da época
 - Indica o quão bem a rende está aprendendo.
 - quando for menor que um limiar (threshold), parar

Algoritmo resumido

Multilayer Perceptron (MLP):

Inicio algoritmo

- 1. Aplicar um vetor de entrada para a rede (X) e calcular os valores de saída
- 2. Comparar as saídas atuais com as saídas desejadas e obter uma medida de erro
 - Determinar em qual direção (+ ou -) se deve modificar os pesos para minimizar o erro
 - Determinar a quantidade para se modificar cada peso
 - Aplicar as correções aos pesos
 - Repetir de 1 a 5 com todos os exemplos de treinamento, até que uma margem de erro de treinamento seja atingida

Fim algoritmo

3.

4.

5.

6.

Roteiro

- 1 Introdução
- 2 Backpropagation
- 3 Exemplo
- 4 Exercício
- 5 Referências

Exemplo

XOR dataset

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Exemplo

época	θμΟ	θ1	6∘0	W ^h OO	W ^h 10	WhO I	W ^h 1 1	W°00	W°01
0	0.05	0.06	0.07	0.2	0.15	0.35	0.18	0.10	0.12
1									
2									

- $\eta = 0.2$
- $f(net) = 1/(1 + exp^{-net})$
- f'(net) = net (1 net)

Roteiro

- 1 Introdução
- 2 Backpropagation
- 3 Exemplo
- 4 Exercício
- 5 Referências

Exercício

época	θμΟ	θ1	6∘0	W ^h OO	W ^h 10	WhO I	W ^h 1 1	W°00	W°01
0	0.05	0.06	0.07	0.2	0.15	0.35	0.18	0.10	0.12
1									
2									

- X = XOR dataset
- $\eta = 0.2$
- $f(net) = net^3 + 0.5$
- $f'(net) = 3*net^2$

Exercício

Roteiro

- 1 Introdução
- 2 Backpropagation
- 3 Exemplo
- 4 Exercício
- 5 Referências

Literatura Sugerida

(Haykin, 1999)

Literatura Sugerida

[Faceli et al, 2011]

[Braga et al, 2007]

Perguntas?

Prof. Rafael G. Mantovani

rgmantovani@gmail.com