AHRS 구축

An **Unmanned aerial vehicle** (UAV) is a Unmanned Aerial Vehicle. UAVs include both autonomous (means they can do it alone) drones and remotely piloted vehicles (RPVs). A UAV is capable of controlled, sustained level flight and is powered by a jet, reciprocating, or electric engine.

CONTENTS

- 01 AHRS 기본 개념 자세방위시스템에 대하여 알아보자.
- O2 AHRS Programming AHRS를 구현하기 위한 프로그래밍 방법에 대하여 알아본다.
- 03 AHRS 처리시간 처리시간에 대하여 알아본다.
- 04
- 05

AHRS 기본 개념

AHRS 기본 개념

- AHRS(Attitude, Heading Reference System 자세방위시스템)
 - IMU센서와 Magnetometer를 융합하여 자세와 절대 방위각을 찾을 수 있는 시스템
 - MARG(Magnetic, Angular Rate, and Gravity) 라고도 불리기도 함.
 - 고도계와 GPS를 결합하여 x, y, z 좌표까지 얻을 수 있으면 관성항법시스템(INS)

AHRS 기본 개념

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 드론의 AHRS 구축

- IMU는 중력 벡터 이용하기 때문에 동축 선상의 회전인 yaw 각도를 얻는데 정보 제공 불가능.
- Magnetometer를 이용하여 지자기력선의 벡터를 알면 yaw 정보를 얻을 수 있음.

Structure of program

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 구조

- 클래스 MPU6000, HMC5883L 의 객체 mpu, hmc 를 선언
- setup에서 각각을 초기화
- loop에서 각각을 주기적으로 업데이트
- 상보필터를 이용한 AHRS 실행

MPU_HMC_fusion.ino

```
MPU6000 mpu;
HMC5883L hmc;
setup(){
    ...
    mpu.configureMPU6000();
    hmc.init();
    ...
}
void loop(){
    AHRS(...);
}
```

class MPU6000 MPU6k.h MPU6k.cpp

class HMC5883L HMC5883L.h HMC5883L.cpp

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

code <1/3>

```
#include <SPI.h>
#include "MPU6k.h"
#include <Wire.h>
#include "HMC5883L.h"
#define BARO CS PIN 40
#define RadToDeg (180/PI)
#define ALPHA 0.96
extern MPU6000 mpu;
HMC5883L hmc;
float roll=0, pitch=0, yaw=0, dt=0.01;
float gyAngleX=0, gyAngleY=0, gyAngleZ=0;
uint32 t prevTime=micros();
void setup() {
  Serial.begin(115200);
  pinMode(BARO CS PIN, OUTPUT); pinMode(12, OUTPUT);
  pinMode(MPU6K CS PIN, OUTPUT); digitalWrite(MPU6K CS PIN, HIGH);
  digitalWrite(BARO CS PIN, HIGH); //Diselect Barometer
  SPI.begin();
  SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI MODE0));delay(100);
  mpu.configureMPU6000(); // configure chip
  while (!hmc.begin()) delay(500);
  hmc.init();
```

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

code <2/3>

```
void loop() {
  makeDt(10000);
 AHRS(roll, pitch, yaw, dt);
  Serial.print(roll*RadToDeg); Serial.print(",");
  Serial.print(pitch*RadToDeg); Serial.print(",");
  Serial.print(yaw*RadToDeg);
 Serial.print("\n");
 digitalWrite(12,!digitalRead(12));
void calcDT() {
  uint32_t newTime = micros();
  dt = (newTime - prevTime)/1000000.0;
  prevTime = newTime;
void makeDt(uint32_t p){
  uint32_t newTime;
  do {newTime = micros();}while (newTime - prevTime<p);</pre>
  prevTime = newTime;
```

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

code <3/3>

```
void AHRS(float &roll, float &pitch, float &yaw,float dt){
 mpu.updateData( );
 Vector norm = hmc.readNormalize();
 // acceleration --> angle
 digitalWrite(12,HIGH);
 float accAngleX=-atan2(mpu. accel.y,-mpu. accel.z);
 float srtAccXY=sqrt(mpu. accel.y*mpu. accel.y+mpu. accel.z*mpu. accel.z);
 float accAngleY=atan2(mpu._accel.x,srtAccXY);
 // complementary filter roll, pitch
 roll=ALPHA* (roll+mpu. gyro.x*dt)+(1-ALPHA)*accAngleX;
 pitch=ALPHA* (pitch+mpu. gyro.y*dt)+(1-ALPHA)*accAngleY;
 // magnetometer --> heading angle
 float xd=-norm.YAxis, yd=norm.XAxis, zd=-norm.ZAxis;// internal HMC
 //compensate heading angle to remove roll, pitch effects
 float s r=sin(roll), c r=cos(roll), s p=sin(pitch), c p=cos(pitch);
 float xh=xd*c p+yd*s r*s p+zd*c r*s p;
 float yh=yd*c r+zd*s r;
 float heading = atan2(yh, xh);
 // complementary filter yaw
 yaw=ALPHA*(yaw+mpu._gyro.z*dt)+(1-ALPHA)*heading;
 digitalWrite(12,LOW);
```

AHRS 함수

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ AHRS 함수 설명

```
void AHRS(float &roll, float &pitch, float &yaw, float dt)
```

- 함수에 roll, pitch, yaw 를 참조 매개변수로 전달 &를 붙여서 결과값을 반환받을 수 있음.
- dt는 값으로 전달

```
mpu.updateData();
```

• mpu에서 측정된 값을 읽어들임.

```
Vector norm = hmc.readNormalize();
```

• hmc에서 측정된 m_x, m_y, m_z 를 읽어들임

```
float xd=-norm.YAxis, yd=norm.XAxis, zd=-norm.ZAxis;
```

• hmc의 좌표축을 변경사항 반영

AHRS 함수

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ AHRS 함수 설명

```
float s_r=sin(roll), c_r=cos(roll),s_p=sin(pitch),c_p=cos(pitch);
```

• hmc의 roll, pitch 영향을 보상하기위하여 미리 필요한 $\sin \phi$, $\cos \phi$, $\sin \theta$, $\cos \theta$ 를 구함

```
float xh=xd*c_p+yd*s_r*s_p+zd*c_r*s_p;
float yh=yd*c_r+zd*s_r;
```

• 다음 식을 반영

$$m_x^E = m_x^B c\theta + m_y^B s\phi s\theta + m_z^B c\phi s\theta$$

$$m_y^E = m_y^B c\phi + m_z^B s\phi$$

```
float heading = atan2(yh, xh);
```

• heading 각을 구함

```
yaw=ALPHA*(yaw+mpu._gyro.z*dt)+(1-ALPHA)*heading;
```

• mpu의 gyro z 값과 heading을 융합하여 yaw 값을 산출

AHRS 처리시간

AHRS 처리시간

- loop 함수의 sample time
 - makeDt(10000); **→** 10ms
- AHRS함수 내의 소요 계산 시간
 - mpu.updateData(): 200us
 - hmc.readNormalize(): 2ms
 - filter 계산: 1.2 ms
- 나머지 연산
 - GPS, barometer, PID제어, motor 구동
 - 통신
 - 대략 6ms 정도에 모두 처리 필요

Simulation

- 검증을 위하여 python으로 시뮬레이터 구현
 - python + vpython (3D graphics)
 - threading: 통신과 그래픽 동시에 실행
 - pyserial: 직렬통신
 - 1패킷 35bytes

실험결과

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

pitch, roll, yaw를 simulation으로 검증

Kalman filter의 개요

Kalman filter 개요

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■의미

- 잡음이 존재하는 선형 동역학 (linear Dynamic) 시스템에서 최적의 통계적 예측을 하는 필터
- 동역학시스템의 시간에 따른 예측과 센서 측정의 결과를 보정하는 것이 근간
 - 시간 예측 정규분포 $\mathcal{N}(\mu_t, \sigma_t)$ 과 센서 측정 $\mathcal{N}(\mu_s, \sigma_s)$ 를 곱하면 $\mathcal{N}(\mu_e, \sigma_e)$ 를 구할 수 있음.

$$\mu_e = \mu_t + k(\mu_s - \mu_t)$$

$$\sigma_e^2 = \sigma_t^2 - k\sigma_t^2$$
어기서
$$k = \frac{\sigma_t^2}{\sigma_t^2 + \sigma_s^2}$$

■ 역사

- 1960년 Rudolf E. Kalman이 개발
- 아폴로 우주선의 궤도 추정에 적용

대상 시스템 정의

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 대상 시스템

• 선형 이산(discrete) 시스템에 대하여 상태 방 정식 정의

$$x_k = Ax_{k-1} + Bu_k + w_k$$
$$y_k = Cx_k + v_k$$

여기서 A 는 상태천이행렬(State transition matrix)이고, B 는 입력 행렬

 x_k 는 상태 벡터, u_k 는 입력, y_k 는 출력 w_k 는 시스템 잡음으로 $\mathcal{N}(0, \mathbf{Q}_k)$ 이고, v_k 는 측정 잡음으로서 $\mathcal{N}(0, \mathbf{R}_k)$ 로 가정

 Q_k , R_k 는 각각 시스템 잡음과 측정 잡음의 공분산 (covariance) 행렬

Kalman filter 문제

- 알고 있는 정보
 - 시스템 파라미터: A, B, C
 - 입력: u_k, u_{k-1} ...
 - 출력 : *y_k*, *y_{k-1}*, ...
- 모르는 정보
 - 시스템 잡음: **w**_k
 - 측정 잡음: *v_k*
 - 상태벡터: **x**_k
- 추정하고자하는 정보
 - 상태벡터 추정: \hat{x}_k

Kalman filter 알고리즘

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 알고리즘

- 시간 예측 단계
 - 시스템의 상태 방정식을 기반
 - 시간 변화에 따른
 - 상태 벡터 예측
 - 상태 오차 공분산 예측
- 측정 업데이트 단계
 - 센서측정으로 예측 오차 보정
 - 상태 오차 공분산 예측값으로 이득 구함
 - 측정값으로 평균(추정값) 보정
 - 상태 오차 공분산 보정
- 이 두 과정 반복

Kalman filter: 시간 예측 단계

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- 시간 예측 단계 (Time prediction)
 - 시간에 대한 상태 벡터 예측

$$\widehat{\pmb{\chi}}_k^- = \pmb{A}\widehat{\pmb{\chi}}_{k-1} + \pmb{B}u_k$$
 여기서, $\widehat{\pmb{\chi}}_{k-1}$ 은 이전 스텝에서의 최적 추정 상태 벡터 $\widehat{\pmb{\chi}}_k^-$ 는 상태 벡터의 예측이고, ' - '는 과거의 정보($\widehat{\pmb{\chi}}_{k-1}$)를 근거한다는 의미

• 시간에 대한 오차 공분산 예측

$$m{P}_k^- = m{A} m{P}_{k-1} m{A}^T + m{Q}_k$$
 여기서 $m{P}_{k-1}$ 은 이전 스텝의 상태 오차의 공분산

 P_k^- 는 과거의 정보(P_{k-1})로부터 시간 변화를 반영하여 구한 상태 오차의 공분산

Kalman filter: 측정 업데이트 단계

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- 측정 업데이트 단계 (Measurement update)
 - Kalman Gain 계산

$$m{K}_k = m{P}_k^- m{C}^T (m{C} m{P}_k^- m{C}^T + m{R}_k)^{-1}$$
 여기서, $m{K}_k$ 는 Kalman gain, 공분산의 추정값으로 보정을 위한 이득을 구함

• 측정에 의한 상태 보정

$$\widehat{\boldsymbol{x}}_k = \widehat{\boldsymbol{x}}_k^- + \boldsymbol{K}_k (y_k - C\widehat{\boldsymbol{x}}_k^-)$$

이식은 출력 오차 $y_k - C\widehat{\boldsymbol{x}}_k^-$ 를 근거로 $\widehat{\boldsymbol{x}}_k^-$ 을 보정

Kalman filter: 측정 업데이트 단계

- 측정 업데이트 단계 (Measurement update)
 - 오차 공분산 보정

$$m{P}_k = (I - m{K}_k m{C}) m{P}_k^-$$
이식은 $m{K}_k$ 를 사용하여 $m{P}_k^-$ 를 $m{P}_k$ 로 보정

Kalman filter 정리

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 총정리

시간 예측 단계

$$\widehat{\boldsymbol{x}}_{k}^{-} = A\widehat{\boldsymbol{x}}_{k-1} + \boldsymbol{B}\boldsymbol{u}_{k}$$

$$\boldsymbol{P}_k^- = \boldsymbol{A}\boldsymbol{P}_{k-1}\boldsymbol{A}^T + \boldsymbol{Q}_{k-1}$$

측정 보정 단계

$$\mathbf{K}_k = \mathbf{P}_k^{-} \mathbf{C}^T (\mathbf{C} \mathbf{P}_k^{-} \mathbf{C}^T + \mathbf{R}_k)^{-1}$$

$$\widehat{\boldsymbol{x}}_k = \widehat{\boldsymbol{x}}_k^- + \boldsymbol{K}_k (\boldsymbol{y}_k - \boldsymbol{C}\widehat{\boldsymbol{x}}_k^-)$$

$$\boldsymbol{P}_k = (I - \boldsymbol{K}_k \boldsymbol{C}) \boldsymbol{P}_k^-$$

시간 예측 단계		
상태 벡터	$\widehat{\boldsymbol{x}}_{k}^{-} = A\widehat{\boldsymbol{x}}_{k-1} + \boldsymbol{B}\boldsymbol{u}_{k}$	예측값 산출
오차의 공분산	$\boldsymbol{P}_k^- = \boldsymbol{A}\boldsymbol{P}_{k-1}\boldsymbol{A}^T + \boldsymbol{Q}_k$	공분산 예측값 산출
측정 업데이트 단계		
칼만 게인	$K_k = \mathbf{P}_k^{-} \mathbf{C}^T (\mathbf{C} \mathbf{P}_k^{-} \mathbf{C}^T + \mathbf{R}_k)^{-1}$	공분산 예측값으로 게인 산출
상태벡터 보정	$\widehat{\boldsymbol{x}}_k = \widehat{\boldsymbol{x}}_k^- + \boldsymbol{K}_k (y_k - C\widehat{\boldsymbol{x}}_k^-)$	예측값과 측정값 비교 및 보정
오차 공분산 보정	$P_k = (I - K_k C) P_k^-$	

IMU Roll angle에 적용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 시스템 방정식 유도

- 주요 전제
 - 샘플 시간: Δ*t*,
 - 가속도로부터 구한 roll 각: ϕ_k^a
 - gyro로 부터 구한 각속도: ω_k
- 구하고자 하는 roll각: ϕ_k $\phi_k = \phi_{k-1} + (\omega_k b_{k-1})\Delta t$ $b_k = b_{k-1}$
- 시스템 상태방정식에 적용

$$\begin{bmatrix} \phi_k \\ b_k \end{bmatrix} = \begin{bmatrix} 1 & -\Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \phi_{k-1} \\ b_{k-1} \end{bmatrix} + \begin{bmatrix} \Delta t \\ 0 \end{bmatrix} \omega_k$$
$$y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \phi_k \\ b_k \end{bmatrix}$$

IMU Roll angle에 적용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- 공분산
 - $m{Q}_k = egin{bmatrix} q_\omega & 0 \\ 0 & q_b \end{bmatrix}$, $m{R}_k = r_a$ 는 각각 시스템과 측정 잡음의 공분산으로 가정 q_ω 는 gyro 로 부터의 잡음, q_b 는 gyro의 drift 관련 , r_a 는 가속도센서의 측정 잡음
- 오차 공분산,

$$\boldsymbol{P}_{k} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix},$$

Kalman gain

$$\boldsymbol{K}_{k} = \begin{bmatrix} k_{1} \\ k_{2} \end{bmatrix}$$

식의 간략화

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- 계산의 간략화
 - 시간 예측 단계

•
$$\widehat{\boldsymbol{x}}_{k}^{-} = A\widehat{\boldsymbol{x}}_{k-1} + \boldsymbol{B}\boldsymbol{u}_{k}$$

 $\boldsymbol{x}_{1} = \boldsymbol{x}_{1} + (\boldsymbol{u} - \boldsymbol{x}_{2})\Delta t,$
 $\boldsymbol{x}_{2} = \boldsymbol{x}_{2}$

$$\begin{aligned} \bullet & \ \boldsymbol{P}_{k}^{-} = \boldsymbol{A}\boldsymbol{P}_{k-1}\boldsymbol{A}^{T} + \boldsymbol{Q}_{k} \\ P &= \begin{bmatrix} 1 & -\Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{1} & 0 \\ 0 & q_{2} \end{bmatrix} \\ &= \begin{bmatrix} p_{11} - (p_{21} + p_{12} - p_{22}\Delta t)\Delta t + q_{1} & p_{12} - p_{22}\Delta t \\ p_{21} - p_{22}\Delta t & p_{22} + q_{2} \end{bmatrix} \end{aligned}$$

시간 예측 단계

$$\widehat{\boldsymbol{x}}_{k}^{-} = A\widehat{\boldsymbol{x}}_{k-1} + \boldsymbol{B}\boldsymbol{u}_{k}$$

$$\boldsymbol{P}_{k}^{-} = \boldsymbol{A}\boldsymbol{P}_{k-1}\boldsymbol{A}^{T} + \boldsymbol{Q}_{k-1}$$

측정 보정 단계

$$\boldsymbol{K}_k = \boldsymbol{P}_k^- \boldsymbol{C}^T (\boldsymbol{C} \boldsymbol{P}_k^- \boldsymbol{C}^T + \boldsymbol{R}_k)^{-1}$$

$$\widehat{\boldsymbol{x}}_k = \widehat{\boldsymbol{x}}_k^- + \boldsymbol{K}_k(\boldsymbol{y}_k - \boldsymbol{C}\widehat{\boldsymbol{x}}_k^-)$$

$$\boldsymbol{P}_k = (I - \boldsymbol{K}_k \boldsymbol{C}) \boldsymbol{P}_k^-$$

계산의 간략화

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

• 측정 보정 단계

•
$$P_k = (I - K_k C) P_k^-$$

$$\mathbf{P} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} k_1 & 0 \\ k_2 & 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \\
= \begin{bmatrix} 1 - k_1 & 0 \\ -k_2 & 1 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} (1 - k_1)p_{11} & (1 - k_1)p_{12} \\ p_{21} - k_2p_{11} & p_{22} - k_2p_{12} \end{bmatrix}$$

Kalman filter programming

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ Kaman filter 함수

```
float q1=0.001,q2=0.003, r1=0.03;
float kalmanFilter(float u, float y){
   static float x1=0, x2=0, p11=0, p12=0, p21=0, p22=0;
   //= Time Update State, error covariance
   x1+=(u-x2)*dt;
   p12+=-p22*dt; p11-=(p21+p12)*dt+q1*dt;
   p21+=-p22*dt; p22+=q2*dt;
   //= Measurement Update Gain, State, error covariance
   float s=p11+r1, k1=p11/s, k2=p21/s, e=y-x1;
   x1+=k1*e; x2+=k2*e;
   p11*=(1-k1); p12*=(1-k1);
   p21+=-k2*p11; p22+=-k2*p12;
   return x1;
```


Kalman filter programming

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ loop에 Kaman filter 반영

```
void loop() {
 calcDT();
 mpu.updateData();
 float accAngleX=-atan2(mpu._accel.y,-mpu._accel.z);
  float srtAccXY=sqrt(mpu._accel.y*mpu._accel.y+mpu._accel.z*mpu._accel.z);
  float accAngleY=atan2(mpu._accel.x,srtAccXY);
 roll=ALPHA* (roll+mpu._gyro.x*dt)+(1-ALPHA)*accAngleX; //Complementary
  float roll_kalman=kalmanFilter(mpu._gyro.x, accAngleX); //Kalman filter
  pitch=ALPHA* (pitch+mpu._gyro.y*dt)+(1-ALPHA)*accAngleY;
  gyAngleX=gyAngleX+mpu._gyro.x*dt;
  Serial.print(roll*RAD_TO_DEG); Serial.print(",");
 Serial.print(accAngleX*RAD_TO_DEG); Serial.print(",");
  Serial.print(gyAngleX*RAD_TO_DEG); Serial.print(",");
 Serial.print(roll_kalman*RAD_TO_DEG);
 Serial.print("\n");
```

상보필터와 비교

Kalman filter의 또다른 관점

- 칼만 필터의 또 다른 관점
 - 대상시스템의 x를 추정하는 것이 목적
 - 똑같은 가상 모델을 구축하고 똑같은 입력u를 인가하면 대상 시스템의 출력 y는 가상 시스템의 출력 \hat{y} 와 같아야 함.
 - 그런데 잡음 w, v 가 있고 t=0에서의 상태 벡터의 초기값 $x_0 \neq \hat{x}_0$ 이기 때문에 $y \neq \hat{y}$ 임.
 - 이들이 같아지도록 확률관점에서 최적의 K를 찾아 보정하여 $\hat{x} \rightarrow x$ 가 되도록 하는 방법론이 Kalman filter!

Quaternion 적용

Gimbal Lock

- Gimbal lock은 Euler angle로 자세를 표시할 때 발생하는 문제
 - pitch θ 가 $\frac{\pi}{2}$ 일 때, 회전행렬을 구해보면

•
$$R(\psi, z)R\left(\frac{\pi}{2}, y\right)R(\phi, x) = \begin{bmatrix} c\theta c\psi & s\phi s\theta c\psi - c\phi s\psi & c\phi s\theta c\psi + s\phi s\psi \\ c\theta s\psi & s\phi s\theta s\psi + c\phi c\psi & c\phi s\theta s\psi - s\phi c\psi \\ -s\theta & s\phi c\theta & c\phi c\theta \end{bmatrix}$$
• $= \begin{bmatrix} 0 & s\phi c\psi - c\phi s\psi & c\phi c\psi + s\phi s\psi \\ 0 & s\phi s\psi + c\phi c\psi & c\phi s\psi - s\phi c\psi \end{bmatrix} = \begin{bmatrix} 0 & s(\phi - \psi) & c(\phi - \psi) \\ 0 & c(\phi - \psi) & -s(\phi - \psi) \end{bmatrix}$
• $= \begin{bmatrix} 0 & s\phi s\psi + c\phi c\psi & c\phi s\psi - s\phi c\psi \\ -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & c(\phi - \psi) & -s(\phi - \psi) \\ -1 & 0 & 0 \end{bmatrix}$

- R 이 주어졌을 경우 roll, yaw 를 독립적으로 정할 수 없음.
- Gimbal lock의 문제를 해결하기 위하여 Quaternion 도입

Quaternion (사원수): 정의

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- 쿼터니언(Quaternion; 사원수)
 - Gimbal Lock 없이 물체의 회전이나 자세를 정의할 때 사용
 - 회전행렬은 9개의 원소를 갖지만 쿼터니언은 4개로 간단.
- 정의
 - 좌표계 $\{B\}$ 에서 $\{A\}$ 좌표로의 회전을 쿼터니언 q^B_A 정의

$$\mathbf{q}_A^B \triangleq [q_0 \quad q_1 \quad q_2 \quad q_3]^T = \left[\cos\frac{\alpha}{2} \quad e_x \sin\frac{\alpha}{2} \quad e_y \sin\frac{\alpha}{2} \quad e_z \sin\frac{\alpha}{2}\right]^T \quad (1)$$

여기서, 이 회전의 $\mathbf{e} = [e_x \quad e_x \quad e_x]^T$ 는 중심축의 단위 행렬 그리고 α 는 그 축으로의 회전각.

- 쿼터니언, 오일러각, 회전행렬 표현
 - 이들 간의 상호변환이 가능함.

Quaternion (사원수): 연산

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- 쿼터니언 연산
 - 크기

$$\|\boldsymbol{q}\| = \sqrt{q_1^2 + q_2^2 + q_3^2 + q_4^2} \tag{2}$$

Conjugate:

$$q_A^{B*} = q_B^A = [q_0 \quad -q_1 \quad -q_2 \quad -q_3]^T$$

축을 반대방향으로 하고 같은 각을 돌리는 개념

- Quaternion product
 - 좌표계{A}, {B}, {C} 에서 {C}좌표에서 본 {C} 좌표를 q_A^C 라고하면 $q_A^C = q_B^C \otimes q_A^B$ 여기서, \otimes 은 쿼터니언 곱 연산자이고 다음과 같이 정의

$$\boldsymbol{p} \otimes \boldsymbol{q} \triangleq \begin{bmatrix} p_0 q_0 - p_1 q_1 - p_2 q_2 - p_3 q_3 \\ p_0 q_1 + p_1 q_0 + p_2 q_3 - p_3 q_2 \\ p_0 q_2 - p_1 q_3 + p_2 q_0 + p_3 q_1 \\ p_0 q_3 + p_1 q_2 - p_2 q_1 + p_3 q_0 \end{bmatrix}$$
(3)

Quaternion (사원수): 응용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 쿼터니언 응용

- 일반 벡터의 쿼터니언 표현
 - 벡터 v 를 쿼터니언 표현을 v_q $v_q = \begin{bmatrix} 0 & v_x & v_y & v_z \end{bmatrix}^T$
- 좌표계 $\{A\}$, $\{B\}$ 에서 본 v_q 를 각각 v_q^A , v_q^B 라 하면

$$v_q^B = q_A^B \otimes v_q^A \otimes q_A^{B*} \tag{4}$$

이식은 다음 회전 행렬 표현과 동등

$$v^B = R_A^B(q)v^A \tag{5}$$

• (3)을 (4)식에 적용하여 (5)의 회전행렬을 구함

$$\mathbf{R}_{A}^{B}(\mathbf{q}) = \begin{bmatrix} q_{0}^{2} + q_{1}^{2} - q_{2}^{2} - q_{3}^{2} & 2(q_{1}q_{2} - q_{0}q_{3}) & 2(q_{1}q_{3} + q_{0}q_{2}) \\ 2(q_{1}q_{2} + q_{0}q_{3}) & q_{0}^{2} - q_{1}^{2} + q_{2}^{2} - q_{3}^{2} & 2(q_{2}q_{3} - q_{0}q_{1}) \\ 2(q_{1}q_{3} - q_{0}q_{2}) & 2(q_{2}q_{3} + q_{0}q_{1}) & q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2} \end{bmatrix}$$
(6)

Quaternion (사원수): 센서 융합에 적용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 지구 좌표계 {E}에 대하여

- $\{E\}$ 의 정규화 중력 $g^E = [0 \ 0 \ 1]^T$
- $\{E\}$ 의 정규화 지자기 벡터 $\mathbf{h}^E = [h_x \quad h_y \quad h_z]^T$
- Body 좌표계 {B} 에 대하여
 - {B}의 가속도센서에서의 정규화 가속도 벡터 $\mathbf{a}^B = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}^T, \|\mathbf{a}^B\| = 1$
 - $\{B\}$ 의 지자기센서에서의 정규화 지자기 벡터 $\mathbf{m}^B = [m_x \quad m_y \quad m_z]^T, \ \|\mathbf{m}^B\| = 1$
 - {B}의 자이로센서에서의 정규화 각속도 벡터 $\boldsymbol{\omega}^{B} = \begin{bmatrix} \omega_{x} & \omega_{y} & \omega_{z} \end{bmatrix}^{T}, \|\boldsymbol{\omega}^{B}\| = 1$

정규화(normalize):

벡터 a 를 정규화한 벡터를 n 이라 하면

$$n=\frac{a}{\|a\|}$$

Quaternion (사원수): 센서 융합에 적용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 목표

- 알고있는 불변의 정보:
 - g^E: 방향- Down, 크기- 거의 9.81
 - h^{E} : 방향- North, 크기- 지역에 따라 크게 달라짐
- ullet 센서로부터 측정된 정보: a^B , m^B , ω^B
- 이 정보로부터 q_B^E , 또는 $R_B^E(q)$ 를 구하면 euler angle 을 구할 수 있음.

Quaternion (사원수): 센서 융합에 적용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 중력, 지자기 관계식

$$R_B^E(q)a^B = g^E$$

 $R_B^E(q)m^B = h^E$

- 문제점
 - 식 6개 미지수 3개 이므로 해가 많은 과일 결정(Overdetermined)
 - 잡음, 지자기 변동 등에 해가 영향을 받음.
- 쿼터니언의 분리
 - 가속도와 지자기에 대한 항으로 분리

$$q_B^E = q_{acc} \otimes q_{mag}$$

$$R_B^E(q) = R(q_{acc})R(q_{mag})$$
(10)

• 지자기의 경우 z축에 대한 회전만 사용할 것이기 때문에 $q_{mag} = [q_{0mag} \ 0 \ 0 \ q_{3mag}]^T$ (11)

Quaternion (사원수): 가속도 센서 적용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 중력, 지자기 관계식

$$R_E^B(q)g^E = R(q_{acc})R(q_{mag})g^E = a^B$$

$$R(q_{mag}) = \begin{bmatrix} c\Delta & -s\Delta & 0 \\ s\Delta & c\Delta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R(q_{acc})R(q_{mag})[0 \quad 0 \quad 1]^T = \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}^T$$

$$(12)$$

• 중력 벡터는 z 성분만 있고 $R(q_{mag})$ 는 z 방향으로의 회전이기 때문에

$$\mathbf{R}(\mathbf{q_{acc}})[0 \quad 0 \quad 1]^T = [a_x \quad a_y \quad a_z]^T \tag{13}$$

• 식(6)을 (13)에 적용하면

$$\begin{bmatrix} 2(q_{1acc}q_{3acc} + q_{0acc}q_{2acc}) \\ 2(q_{2acc}q_{3acc} - q_{0acc}q_{1acc}) \\ q_{0acc}^2 - q_{1acc}^2 - q_{2acc}^2 + q_{3acc}^2 \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
(14)

 \bullet (14) 에서 a^B 를 측정하여 알고 있기 때문에 식 3개에 미지수는 4개가 됨.

Quaternion (사원수): 가속도 센서 적용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- 식(14) 는 z축에 대한 회전 성분을 제공하지 못하기 때문에 $q_{3acc} = 0$ 라고 가정.
- 그러면 다음 식이 되고

$$\begin{bmatrix} 2q_{0acc}q_{2acc} \\ -2q_{0acc}q_{1acc} \\ q_{0acc}^2 - q_{1acc}^2 - q_{2acc}^2 \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 (15)

• 식 (15)를 풀면,

$$q_{acc} = \begin{cases} \left[\sqrt{\frac{a_z + 1}{2}} - \frac{a_y}{\sqrt{2(a_z + 1)}} & \frac{a_x}{\sqrt{2(a_z + 1)}} & 0 \right]^T, & a_z \ge 0 \\ \left[-\frac{a_y}{\sqrt{2(1 - a_z)}} & \sqrt{\frac{1 - a_z}{2}} & 0 & \frac{a_x}{\sqrt{2(1 - a_z)}} \right]^T, & a_z < 0 \end{cases}$$
(16)

Quaternion (사원수): 지자기 센서 적용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 지자기 센서에 적용

• 식 (8)에서

$$R_B^E(q)m^B = R(q_{mag})R(q_{acc})m^B = h^E$$
(17)

• (16)에서 $l = R_B^E(q_{acc})m^B$ 을 구하여 (17)에 대입 $R(q_{mag})l = h^E$ (18)

- 그림과 같이 z와 +x 축으로 구성된 평면 Π_{zx+}^E 를 정의하면, $R(q_{mag})l \in \Pi_{zx+}^E \tag{19}$
- 여기에 식(14) 를 만족시키는 평면상의 벡터를 지정하면

$$R(q_{mag})l = \begin{bmatrix} \sqrt{\Gamma} & 0 & l_z \end{bmatrix}^T$$
 (20)
여기서 $\Gamma = \sqrt{l_x^2 + l_y^2}$

Quaternion (사원수): 지자기 센서 적용

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 지자기 센서

• 연산을 거치면

$$q_{mag} = \begin{cases} \left[\frac{\sqrt{\Gamma + l_{x}\sqrt{\Gamma}}}{\sqrt{2\Gamma}} & 0 & 0 & \frac{l_{y}}{\sqrt{2}\sqrt{\Gamma + l_{x}\sqrt{\Gamma}}} \right]^{T}, & l_{x} \geq 0 \\ \left[\frac{l_{y}}{\sqrt{2}\sqrt{\Gamma - l_{x}\sqrt{\Gamma}}} & 0 & 0 & \frac{\sqrt{\Gamma - l_{x}\sqrt{\Gamma}}}{\sqrt{2\Gamma}} \right]^{T}, & l_{x} < 0 \end{cases}$$

$$(21)$$

- 센서의 융합
 - (16), (21) 식을 이용한 상보필터 연구 [1]
 - (16), (21) 식에 최대경사법을 이용한 연구 [2]
 - (16), (21) 식에 Extended Kalman Filter를 적용한 연구 [3]

참고

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

Quaternion to Euler angle (ZYX)

$$\begin{bmatrix} \phi \\ \theta \\ \psi \end{bmatrix} = \begin{bmatrix} atan2(q_0q_1 + q_2q_3, 0.5 - q_1^2 - q_2^2) \\ asin(2(q_0q_2 - q_1q_3)) \\ atan2(q_1q_2 + q_0q_3, 0.5 - q_2^2 - q_3^2) \end{bmatrix}$$
(22)

Euler angle (ZYX) to Quaternion

$$q = \begin{bmatrix} \cos(0.5\phi)\cos(0.5\theta)\cos(0.5\psi) + \sin(0.5\phi)\sin(0.5\theta)\sin(0.5\psi) \\ \sin(0.5\phi)\cos(0.5\theta)\cos(0.5\psi) - \cos(0.5\phi)\sin(0.5\theta)\sin(0.5\psi) \\ \cos(0.5\phi)\sin(0.5\theta)\cos(0.5\psi) + \sin(0.5\phi)\cos(0.5\theta)\sin(0.5\psi) \\ \cos(0.5\phi)\cos(0.5\theta)\sin(0.5\psi) - \sin(0.5\phi)\sin(0.5\theta)\cos(0.5\psi) \end{bmatrix}$$
(23)

참고문헌

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- [1] Roberto G. Valenti, Ivan Dryanovski and Jizhong Xiao. "Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs", Sensors 2015, 15, 19302-19330
- [2] Sebastian O.H. Madgwick, Andrew J.L. Harrison, Ravi Vaidyanathan, "Estimation of IMU and MARG orientation using a gradient descent algorithm", 2011 IEEE International Conference on Rehabilitation Robotics. 2011
- [3] Angelo M. Sabatini, "Quaternion-Based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic", IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 7, JULY 2006

THANK YOU

Powerpoint is a complete presentation graphic package it gives you everything you need to produce a professional-looking presentation

