練習(6.2-6.3):

Section 6.2

1–18 Find the volume of the solid obtained by rotating the region 3. $\pi/2$ bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.

3.
$$y = 1/x$$
, $x = 1$, $x = 2$, $y = 0$; about the x-axis

7.
$$y = x^3$$
, $y = x$, $x \ge 0$; about the x-axis

13.
$$y = 1 + \sec x$$
, $y = 3$; about $y = 1$

17.
$$y = x^2$$
, $x = y^2$; about $x = -1$

41–44 Each integral represents the volume of a solid. Describe the solid.

41.
$$\pi \int_0^{\pi/2} \cos^2 x \, dx$$

- **63.** (a) Set up an integral for the volume of a solid *torus* (the donut-shaped solid shown in the figure) with radii r and R.
 - (b) By interpreting the integral as an area, find the volume of the torus.

Answers:

- **41.** Solid obtained by rotating the region $0 \le y \le \cos x$, $0 \le x \le \pi/2$ about the x-axis
- **63.** (a) $8\pi R \int_0^r \sqrt{r^2 y^2} dy$ (b) $2\pi^2 r^2 R$

Answers:

7. $4\pi/21$

13. $2\pi(\frac{4}{3}\pi-\sqrt{3})$

17. $29\pi/30$

Section 6.3

3–7 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the *y*-axis. Sketch the region and a typical shell.

5.
$$y = e^{-x^2}$$
, $y = 0$, $x = 0$, $x = 1$

7.
$$y = 4(x-2)^2$$
, $y = x^2 - 4x + 7$

9–14 Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the given curves about the *x*-axis. Sketch the region and a typical shell.

9.
$$x = 1 + y^2$$
, $x = 0$, $y = 1$, $y = 2$

13.
$$x = 1 + (y - 2)^2$$
, $x = 2$

15–20 Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis. Sketch the region and a typical shell.

15.
$$y = x^4$$
, $y = 0$, $x = 1$; about $x = 2$

19.
$$y = x^3$$
, $y = 0$, $x = 1$; about $y = 1$

37–42 The region bounded by the given curves is rotated about the specified axis. Find the volume of the resulting solid by any method.

39.
$$y = 5$$
, $y = x + (4/x)$; about $x = -1$

Answers:

5. $\pi(1 - 1/e)$ $y = e^{-x^2}$

7. 16π

9. $21\pi/2$

13.
$$16\pi/3$$
 15. $7\pi/15$ **19.** $5\pi/14$

39.
$$2\pi(12-4\ln 4)$$