Computer Science 452 - Homework Assignment #3

Hari Amoor, NetID: hra25

February 11, 2020

Problem 1.2.1: Convert the following finite automata to regular expressions.

- (a) The given automaton computes the regular expression ba^* .
- (b) The given automaton computes the regular expression $((a \cup b)a^*b(bb)^*a)^*$.

Problem 1.29b, Claim: The language $A = \{www \mid w \in \{a,b\}^*\}$ is not regular.

Proof. Suppose for contradiction that A is regular. Let p be the Pumping length of A, and $w = a^p b^p$. Then, $x = www \in A$.

The string x is sufficiently large, so the decomposition x = qrs must exist as per the Pumping lemma. Since $|qr| \le p$ and $r \ne \varepsilon$, r must consist only of the symbol "a". Then, the string qr^2s has more "a"s than "b"s, so it cannot be in A.

This result contradicts the Pumping lemma; thus, it is true that A is not regular.

Problem 1.32, Claim: The language B as defined is regular.

NOTE: Arithmetic is done in \mathbb{Z}_2 when describing δ .

Proof. It suffices to show that B^R is regular. We construct a DFA to recognize B^R .

We assume w.l.o.g. that $\varepsilon \in B^R$. The DFA $M_B = (Q, \sum_3, \delta, q_0, F)$, where:

$$Q = \{q_0, q_1, q_e\}; \tag{1}$$

$$F = \{q_0\}; \tag{2}$$

$$\delta \begin{pmatrix} q_i, \begin{bmatrix} a \\ b \\ c \end{bmatrix} \end{pmatrix} = \begin{cases} q_{a+b+i} & q_i \neq q_e \text{ and } a+b+i=c \\ q_e & \text{otherwise} \end{cases}$$
 (3)

recognizes B. Thus, the claim holds.