

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	Marco Antonio Martínez
Asignatura: -	Fundamentos de Programación
Grupo:	1103
No de Práctica(s):	Practica #3
Integrante(s):	Rosas Cañada Abraham
No. de Equipo de cómputo empleado:	Ninguno
No. de Lista o Brigada:	44
Semestre:	2021-1
Fecha de entrega:	25/10/2020
Observaciones:	Ninguno
_	

CALIFICACIÓN:

Solución de problemas y Algoritmos.

Objetivo:

Elaborar algoritmos correctos y eficientes en la solución de problemas siguiendo las etapas de Análisis y Diseño pertenecientes al Ciclo de vida del software.

Introducción:

En la informática existen problemas los cuales se pueden definir como el conjunto de instancias al cual corresponde un conjunto de soluciones, junto con una relación que asocia para cada instancia del problema un subconjunto de soluciones.

Para poder solucionar un problema nos apoyamos en la Ingeniería de Software que de acuerdo a la IEEE se define como "La aplicación de un enfoque sistemático, disciplinado y cuantificable hacia el desarrollo, operación y mantenimiento del software".

La Ingeniería de Software provee métodos que indican cómo generar software.

Estos métodos abarcan una amplia gama de tareas:

- Planeación y estimación del proyecto.
- Análisis de requerimientos del sistema y software.
- Diseño de la estructura de datos, la arquitectura del programa y el procedimiento algorítmico.
- Codificación.

Dentro del ciclo de vida del software, en el análisis se busca comprender la necesidad, es decir, entender el problema.

El análisis es el proceso para averiguar qué es lo que requiere el usuario del sistema de software (análisis de requisitos). Esta etapa permite definir las necesidades de forma clara y concisa (especificación de requisitos).

Para ello es importante identificar dos grandes conjuntos dentro del sistema: el conjunto de entrada y el conjunto de salida.

Una vez realizado el análisis, es decir, ya que se entendió qué es lo que está solicitando el usuario y ya identificado el conjunto de entrada y el conjunto de salida, se puede proceder al diseño de la solución, esto es, a la generación del algoritmo.

Un algoritmo se define como un conjunto de reglas, expresadas en un lenguaje específico, para realizar alguna tarea en general, es decir, un conjunto de pasos, procedimientos o acciones que permiten alcanzar un resultado o resolver un problema. Estas reglas o pasos pueden ser aplicados un número ilimitado de veces sobre una situación particular.

Las principales características con las que debe cumplir un algoritmo son:

- Preciso: Debe indicar el orden de realización de paso y no puede tener ambigüedad
- Definido: Si se sigue dos veces o más se obtiene el mismo resultado.
- Finito: Tiene fin, es decir tiene un número determinado de pasos.
- Correcto: Cumplir con el objetivo.
- Debe tener al menos una salida y esta debe de ser perceptible
- Debe ser sencillo y legible
- Eficiente: Realizarlo en el menor tiempo posible
- Eficaz: Que produzca el efecto esperado.

Desarrollo:

Ejercicio 1

PROBLEMA: Seguir el algoritmo para obtener una figura ENTRADA: Hoja tamaño carta en limpio, regla y lápiz.

SALIDA: Figura correcta.

Algoritmo:

1. Dibuja una V invertida. Empieza desde el lado izquierdo, sube, y baja hacia el lado derecho, no levantes el lápiz.

2. Ahora dibuja una línea en ángulo ascendente hacia la izquierda. Debe cruzar la primera línea más o menos a 1/3 de la altura. Todavía no levantes el lápiz del papel.

3. Ahora, dibuja una línea horizontal hacia la derecha. Debe cruzar la V invertida más o menos a 2/3 de la altura total. Sigue sin levantar el lápiz.

4. Dibuja una línea en un ángulo descendente hasta el punto de inicio. Las líneas deben unirse.

5. Ahora ya puedes levantar el lápiz del papel. Has terminado la estrella de 5 puntas.

Ejercicio 2

PROBLEMA: Seguir el algoritmo para obtener una figura ENTRADA: Hoja tamaño carta en limpio, regla y lápiz.

SALIDA: Figura correcta.

Algoritmo:

1. Empieza dibujando un círculo con un compás. Coloca un lápiz en el compás. Coloca la punta del compás en el centro de una hoja de papel.

2. Ahora gira el compás, mientras mantienes la punta apoyada en el papel. El lápiz dibujará un círculo perfecto alrededor de la punta del compás.

3. Marca un punto en la parte superior del círculo con el lápiz. Ahora, coloca la punta del compás en la marca. No cambies el radio del compás con que hiciste el círculo.

4. Gira el compás para hacer una marca en el propio círculo hacia la izquierda. Haz una marca también en el lado derecho.

5. Ahora, coloca la punta del compás en uno de los puntos. Recuerda no cambiar el radio del compás. Haz otra marca en el círculo.

6. Continúa moviendo la punta del compás a las otras marcas, y continúa hasta que tengas 6 marcas a la misma distancia unas de otras. Ahora, ya puedes dejar tu compás a un lado.

- 7. Usa una regla para crear un triángulo que empiece en la marca superior del círculo. Coloca el lápiz en la marca superior. Ahora dibuja una línea hasta la segunda marca por la izquierda. Dibuja otra línea, ahora hacia la derecha, saltándote la marca de la parte más baja. Complementa el triángulo con una línea hacia la marca superior. Así completarás el triángulo.
- 8. Crea un segundo triángulo empezando en la marca en la base del círculo. Coloca el lápiz en la marca inferior. Ahora conéctala con la segunda marca hacia la izquierda. Dibuja una línea recta hacia la derecha, saltándote el punto superior. Completa el segundo triángulo dibujando una línea hasta la marca en la parte inferior.

9. Borra el círculo. Has terminado de dibujar tu estrella de 6 puntos.

Conclusión:

Me gusto la forma de ejemplificar la manera en cómo es que funcionan los algoritmos, igual a mi parecer le falto un poco más de explicación en unos pasos para una mejor comprensión, pero fuera de ello estan muy bien, determinamos que es un algoritmo, de que se compone, para que sirven, y donde aplicarlos.