Problem: 2nd-Order Function. Quadratic Equation

Bài Tập: Hàm Số Bậc 2 $y=ax^2$. Phương Trình Bậc 2 1 Ẩn $ax^2+bx+c=0$

Nguyễn Quản Bá Hồng*

Ngày 25 tháng 10 năm 2023

Muc luc

1	2nd-Order Function – Hàm Số $y = ax^2, a \neq 0$	1
2	Quadratic Equation – Phương Trình Bậc 2 1 Ẩn $ax^2 + bx + c = 0$, $a \neq 0$	1
3	Hệ Thức Viète & Ứng Dụng	2
4	Phương Trình Quy Về Phương Trình Bậc 2	3
5	Miscellaneous	3
Tã	ài liệu	3

1 2nd-Order Function – Hàm Số $y = ax^2$, $a \neq 0$

1 ([Bìn23], VD74, p. 18). (a) Cho parabol $y=\frac{1}{4}x^2$, điểm A(0,1) & đường thẳng d:y=-1. Gọi M là 1 điểm bất kỳ thuộc parabol. Chứng minh MA bằng khoảng cách MH từ điểm M đến d. (b) Cho điểm A(0,a), d:y=-a. Chứng minh quỹ tích của điểm M(x,y) sao cho khoảng cách MH từ M tới d bằng MA là 1 parabol.

[Bìn23, 235., p. 19, 236., p. 20].

- 2 ([Bìn23], 237., p. 20). (a) Xác định hệ số a của parabol $y = ax^2$, biết parabol đi qua điểm A(-2, -2). (b) Tìm tọa độ của điểm M thuộc parabol này, biết khoảng cách từ M đến trục hoành gấp đôi khoảng cách từ M đến trục tung.
- **3** ([Bìn23], 238., p. 20). Vẽ đồ thị hàm số $y = \frac{1}{3}x|x|$.
- 4 ([Bìn23], 239., p. 20). (a) Vẽ đồ thị hàm số $y = -\frac{1}{2}x^2$. (b) Gọi C là 1 điểm tùy ý nằm trên parabol $y = -\frac{1}{2}x^2$. Gọi K là trung điểm OC. Khi điểm C di chuyển trên parabol đó thì điểm K di chuyển trên đường nào?

2 Quadratic Equation – Phương Trình Bậc 2 1 Ân $ax^2 + bx + c = 0$, $a \neq 0$

- 5 ([Bìn23], VD75, p. 20). Cho phương trình $(m^2-m-2)x^2+2(m+1)x+1=0$ với tham số m. (a) Giải phương trình khi m=1. (b) Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt. (c) Tìm các giá trị của m để tập nghiệm của phương trình chỉ có 1 phần tử.
- 6 ([Bìn23], VD76, p. 21). Chứng minh phương trình $(a+1)x^2-2(a+b)x+b-1=0$ có nghiệm $\forall a,b \in \mathbb{R}$.
- 7 ([Bìn23], VD77, p. 22). Chứng minh phương trình $x^2 (3m^2 5m + 1)x (m^2 4m + 5) = 0$ có nghiệm $\forall a, b \in \mathbb{R}$.
- **8** ([Bìn23], VD78, p. 22). Cho phương trình $x^2 + mx + n = 0$ với $m, n \in \mathbb{Z}$. (a) Chứng minh nếu phương trình có nghiệm hữu tỷ thì nghiệm đó là số nguyên. (b) Tìm nghiệm hữu tỷ của phương trình với n = 3.
- 9 ([Bìn23], VD79, p. 20). Tìm $n \in \mathbb{Z}$ để các nghiệm của phương trình $x^2 (4+n)x + 2n = 0$ là các số nguyên.
- 10 ([Bìn23], VD80, p. 20). Tìm các giá trị của a để 2 phương trình $x^2 + ax + 8 = 0$, $x^2 + x + a = 0$ có ít nhất 1 nghiệm chung.
- 11 ([Bìn23], 240., p. 25). Cho phương trình $mx^2 + 6(m-2)x + 4m 7 = 0$. Tìm các giá trị của m để phương trình: (a) Có nghiệm kép. (b) Có 2 nghiệm phân biệt. (c) Vô nghiệm.

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

- **12** ([Bìn23], 241., p. 25). Giải phương trình với tham số m: (a) $x^2 mx 3(m+3) = 0$. (b) $mx^2 4x + 4 = 0$.
- 13 ([Bìn23], 242., p. 25). Tìm các giá trị của m biết phương trình $x^2 + mx + 12 = 0$ có hiệu 2 nghiệm bằng 1.
- **14** ([Bìn23], 243., p. 25). Cho 2 số thực dương a,b thỏa $a + b = 4\sqrt{ab}$. Tính tỷ số $\frac{a}{b}$.
- **15** ([Bìn23], 244., p. 25). Tim $x, y \in \mathbb{Z}$ biết $2(x^2 + 1) + y^2 = 2y(x + 1)$.
- **16** ([Bìn23], 245., p. 26). Tìm các giá trị của m để phương trình có nghiệm: (a) $(m^2 m)x^2 + 2mx + 1 = 0$. (b) $(m + 1)x^2 2x + (m 1) = 0$.
- 17 ([Bin23], 246., p. 26). Chứng minh phương trình có nghiệm $\forall a, b \in \mathbb{R}$: (a) x(x-a) + x(x-b) + (x-a)(x-b) = 0. (b) $x^2 + (a+b)x 2(a^2 ab + b^2) = 0$.
- **18** ([Bìn23], 247., p. 26). Chứng minh phương trình có nghiệm $\forall a, b, c \in \mathbb{R}$: (a) $3x^2 2(a+b+c)x + (ab+bc+ca) = 0$. (b) (x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) = 0.
- **19** ([Bìn23], 248., p. 26). Chứng minh nếu $a, b, c \in \mathbb{R}^*$ thì tồn tại 1 trong 3 phương trình bậc $2 ax^2 + 2bx + c = 0, bx^2 + 2cx + a = 0, cx^2 + 2ax + b = 0$ có nghiệm.
- **20** ([Bìn23], 249., p. 26). Chứng minh phương trình $ax^2 + bx + c = 0$, $a \neq 0$, có nghiệm, biết 5a + 2c = b.
- **21** ([Bìn23], 250., p. 26). Cho a, b, c là độ dài 3 cạnh 1 tam giác. Chứng minh phương trình $(a^2+b^2-c^2)x^2-4abx+a^2+b^2-c^2=0$ có nghiệm.
- **22** ([Bìn23], 251., p. 26). Chứng minh phương trình $ax^2 + bx + c = 0, a \neq 0$, có nghiệm nếu $\frac{2b}{a} \geq \frac{c}{a} + 4$.
- **23** ([Bìn23], 252., p. 26). Chứng minh nếu b
m = 2(c+n) thì ít nhất 1 trong 2 phương trình $x^2 + bx + c = 0$, $x^2 + mx + n = 0$ có nghiệm.
- **24** ([Bìn23], 253., p. 26). Cho $a, b, c \in \mathbb{Q}, a \neq 0, |b| = |a + c|$. Chứng minh các nghiệm của phương trình $ax^2 + bx + c = 0$ là các số hữu tỷ.
- **25** ([Bìn23], 254., p. 26). Chứng minh phương trình $ax^2 + bx + c = 0$ không có nghiệm hữu tỷ nếu a, b, c là 3 số nguyên lẻ.
- **26** ([Bìn23], 255., p. 26). Chứng minh nếu \overline{abc} là số nguyên tố thì phương trình $ax^2 + bx + c = 0$ không có nghiệm hữu tỷ.
- 27 ([Bìn23], 256., p. 27). Tìm các giá trị nguyên của m để nghiệm của phương trình $mx^2 2(m-1)x + m 4 = 0$ là số hữu tỷ.
- **28** ([Bìn23], 257., p. 27). Tìm $n \in \mathbb{Z}$ để các nghiệm của phương trình $x^2 (n+4)x + 4n 25 = 0$ là các số nguyên.
- **29** ([Bìn23], 258., p. 27). Tìm số nguyên tố p biết phương trình $x^2 + px 12p = 0$ có 2 nghiệm đều là các số nguyên.
- **30** ([Bìn23], 259., p. 27). Tìm các giá trị của m để 2 phương trình có ít nhất 1 nghiệm chung: (a) $x^2 + 2x + m = 0, x^2 + mx + 2 = 0$. (b) $x^2 + mx + 1 = 0, x^2 x m = 0$.
- **31** ([Bìn23], 260., p. 27). Tìm các giá trị của m để 2 phương trình có ít nhất 1 nghiệm chung: (a) $x^2 + (m-2)x + 3 = 0, 2x^2 + mx + m + 2 = 0$. (b) $2x^2 + (3m-5)x 9 = 0, 6x^2 + (7m-15)x 19 = 0$.
- **32** ([Bìn23], 261., p. 27). Tìm các giá trị của m để 1 nghiệm của phương trình $2x^2 13x + 2m = 0$ gấp đôi 1 nghiệm của phương trình $x^2 4x + m = 0$.
- **33** ([Bìn23], 262., p. 27). Cho 2 phương trình $ax^2 + bx + c = 0$, $cx^2 + bx + a = 0$. Biết phương trình thứ nhất có nghiệm dương m, chứng minh phương trình thứ 2 có nghiệm n sao cho m + n > 2.

3 Hệ Thức Viète & Ứng Dụng

- 34 ([Bìn23], VD81, p. 28). Cho phương trình $mx^2 2(m+1)x + m 4 = 0$ với tham số m. (a) Tìm m để phương trình có nghiệm. (b) Tìm m để phương trình có 2 nghiệm trái dấu. Khi đó trong 2 nghiệm, nghiệm nào có giá trị tuyệt đối lớn hơn? (c) Xác định m để 2 nghiệm x_1, x_2 của phương trình thỏa mãn $x_1 + 4x_2 = 3$. (d) Tìm 1 hệ thức giữa x_1, x_2 không phụ thuộc vào m.
- **35** ([Bìn23], VD82, p. 30). Cho phương trình $mx^2 2(m-2)x + m 3 = 0$. Tìm các giá trị của m để 2 nghiệm x_1, x_2 của phương trình thỏa $x_1^2 + x_2^2 = 1$.
- **36** ([Bìn23], VD83, p. 30). Cho phương trình $x^2 + ax + b = 0$ có 2 nghiệm c, d, phương trình $x^2 + cx + d = 0$ có 2 nghiệm a, b. Tính a, b, c, d biết chúng đều khác 0.
- 37 ([Bìn23], VD84, p. 31). Cho phương trình $x^2 + 5x 1 = 0$. Không giải phương trình, lập 1 phương trình bậc 2 có 2 nghiệm là lũy thừa bậc 4 của 2 nghiệm của phương trình ban đầu.

- **39** ([Bìn23], 264., p. 31). Không giải phương trình, xét dấu các nghiệm của phương trình (nếu có): (a) $3x^2 7x + 2 = 0$. (b) $5x^2 + 3x 1 = 0$. (c) $2x^2 + 13x + 8 = 0$. (d) $4x^2 11x + 8 = 0$.
- **40** ([Bìn23], 265., p. 32). Xác định giá trị của m để phương trình $(m-1)x^2 2x + 3 = 0$ có 2 nghiệm phân biệt cùng dấu.
- **41** ([Bìn23], 266., p. 32). Giải phương trình $x^2 mx + n = 0$ biết phương trình có 2 nghiệm nguyên dương phân biệt & m, n là 2 số nguyên tố.
- **42** ([Bìn23], 267., p. 32). Gọi x_1, x_2 là 2 nghiệm của phương trình $2x^2 3x 5 = 0$. Không giải phương trình, tính: (a) $\frac{1}{x_1} + \frac{1}{x_2}$. (b) $(x_1 x_2)^2$. (c) $x_1^3 + x_2^3$.
- **43** ([Bìn23], 268., p. 32). Cho phương trình $x^2 2(m-2)x + m^2 + 2m 3 = 0$. Tìm các giá trị của m để phương trình có 2 nghiệm x_1, x_2 phân biệt thỏa $\frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{5}$.
- **44** ([Bìn23], 269., p. 32). Cho phương trình $x^2 + mx + n = 0$ có $3m^2 = 16n$. Chứng minh trong 2 nghiệm của phương trình, có 1 nghiệm gấp 3 lần nghiệm kia.
- **45** ([Bìn23], 270., p. 32). Cho biết phương trình $x^2 (m+2)x + 2m 1 = 0$ có 2 nghiệm x_1, x_2 . Lập 1 hệ thức giữa x_1, x_2 độc lập đối với m.
- **46** ([Bìn23], 271., p. 32). Tìm 2 số biết: (a) Tổng của chúng bằng 2, tích của chúng bằng -1. (b) Tổng của chúng bằng 1, tích của chúng bằng 5.
- **47** ([Bìn23], 272., p. 32). Lập phương trình bậc 2 có 2 nghiệm bằng: (a) $\sqrt{3}$, $2\sqrt{3}$. (b) $2 \pm \sqrt{3}$.
- **48** ([Bìn23], 273., p. 32). Chứng minh tồn tại 1 phương trình có các hệ số hữu tỷ nhận 1 trong các nghiệm là: (a) $\frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}+\sqrt{5}}$. (b) $\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$. (c) $\sqrt{2}+\sqrt{3}$.
- **49** ([Bìn23], 274., p. 32). Lập phương trình bậc 2 có 2 nghiệm bằng: (a) Bình phương của 2 nghiệm của phương trình $x^2-2x-1=0$. (b) Nghịch đảo của 2 nghiệm của phương trình $x^2+mx-2=0$.
- **50** ([Bìn23], 275., p. 33). Xác định m, n sao cho 2 nghiệm của phương trình $x^2 + mx + n = 0$ cũng là m, n.
- **51** ([Bìn23], 276., p. 33). Cho $a,b,c \in \mathbb{R}$ khác nhau đôi một, $c \neq 0$. Biết 2 phương trình $x^2 + ax + bc = 0, x^2 + bx + ca = 0$ có ít nhất 1 nghiệm chung. (a) Tìm các nghiệm còn lại của 2 phương trình. (b) Chứng minh các nghiệm còn lại đó là nghiệm của phương trình $x^2 + cx + ab = 0$.
- **52** ([Bìn23], 277., p. 33). Cho 2 phương trình $ax^2 + bx + c = 0$, $cx^2 + dx + a = 0$. Biết phương trình thứ nhất có 2 nghiệm m, n, phương trình thứ 2 có 2 nghiệm p, q. Chứng minh $m^2 + n^2 + p^2 + q^2 \ge 4$.
- **53** ([Bìn23], 278., p. 33). Cho 2 phương trình $ax^2 + bx + c = 0$, $cx^2 + bx + a = 0$. Tìm 1 hệ thức giữa 3 hệ số a, b, c, biết 2 nghiệm x_1, x_2 của phương trình thứ nhất & 2 nghiệm x_3, x_4 của phương trình thứ 2 thỏa mãn đẳng thức $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 4$.
- **54** ([Bìn23], 279., p. 33). Cho phương trình $x^2 + bx + c = 0$ có 2 nghiệm x_1, x_2 , phương trình $x^2 b^2x + bc = 0$ có 2 nghiệm x_3, x_4 . Biết $x_3 x_1 = x_4 x_2 = 1$. Xác định b, c.
- **55** ([Bìn23], 280., p. 33). Tim $a, b \in \mathbb{R}$ sao cho 2 phương trình $x^2 + ax + 6 = 0, x^2 + bx + 12 = 0$ có ít nhất 1 nghiệm chung \mathcal{E} |a| + |b| nhỏ nhất.
- **56** ([Bìn23], 281., pp. 33–34). Gọi x_1, x_2 là 2 nghiệm của phương trình $x^2 6x + 1 = 0$. Ký hiệu $s_n = x_1^n + x_2^n$, $\forall n \in \mathbb{N}^*$. (a) Tính s_1, s_2, s_3 . (b) Tîm 1 hệ thức giữa s_n, s_{n+1}, s_{n+2} . (c) Chứng minh $s_n \in \mathbb{Z}$, $\forall n \in \mathbb{N}^*$. (d) Tîm số dư khi chia s_{50} cho 5.

4 Phương Trình Quy Về Phương Trình Bậc 2

5 Miscellaneous

Tài liệu

[Bìn23] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tập 2. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 290.