

# **Evolutionary Algorithms**

**Encoding, Fitness, Selection** 

## Prof. Dr. Rudolf Kruse Pascal Held

{kruse,pheld}@iws.cs.uni-magdeburg.de
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
Institut für Wissens- und Sprachverarbeitung



## **Outline**

## 1. Encoding

Hamming-Cliffs
Problem of epistasis
Leaving the space

- 2. Fitness
- 3. Selection

# Desirable properties of an encoding

now: deeper investigation of the different elements of an EA

## At first: encoding of a solution candidate

- encoding has to be chosen problem-specific
- no general "recipe" to find a good encoding
- but: some principes which should be taken into consideration

## Desirable properties of an encoding:

- Representation of similar phenotypes by similar genotype
- Similar fitness on similar candidates
- Closure on  $\Omega$  under the used evolutionary operators

# **Encoding:** first desirable trait

Similar phenotypes should be represented by similar genotypes

- mutations of certain genes result in similar genotypes (particular changes of allels → small change of the chromosome)
- if trait is not satisfied, obvious changes cannot be generated in some cases
- consequence: huge change of the genotype to end up in a similar (and perhaps better) phenotype

## **Demonstration example:**

- Optimization of a real function  $y = f(x_1, \dots, x_n)$
- Representation of the (real) arguments by binary codes
- Problem: binary representation leads to "Hamming-Cliffs"

Some neighbors in real space have very different binary representations: 1000 is next to 0111, but all bits flip.

2 / 46

# Binary coding of real numbers

given: real interval [a,b] and coding precision arepsilon

desired: coding rule for  $x \in [a, b]$  as binary number z

so that devation of z and x is lower than  $\varepsilon$ 

**Idea:** divide [a, b] in equidistant sections of length  $\leq \varepsilon$ 

$$\Rightarrow 2^k \text{ sections with } k = \left\lceil \log_2 \frac{b-a}{\varepsilon} \right\rceil$$

$$\text{coded by } 0, \dots, 2^k - 1$$

We normally do this with IEEE 754, but that will make the Hamming cliffs worse.

Remember, 754 divides the bit string into a sign, the exponent, and the mantissa.

# Binary coding of real numbers

Sections: 
$$k = \left\lceil \log_2 \frac{b-a}{\varepsilon} \right\rceil$$
 or  $k = \left\lceil \log_2 \frac{b-a}{2\varepsilon} \right\rceil$ 

Coding: 
$$z = \left\lfloor \frac{x-a}{b-a}(2^k-1) \right\rfloor$$
 or  $z = \left\lfloor \frac{x-a}{b-a}(2^k-1) + \frac{1}{2} \right\rfloor$ 

Decoding: 
$$x = a + z \cdot \frac{b-a}{2^k-1}$$

**Example:** intervall [-1,2], precision  $\varepsilon = 10^{-6}$ , x = 0.637197

$$k = \left\lceil \log_2 \frac{2 - (-1)}{10^{-6}} \right\rceil = \left\lceil \log_2 3 \cdot 10^6 \right\rceil = 22$$

$$z = \left\lfloor \frac{0.637197 - (-1)}{2 - (-1)} (2^{22} - 1) \right\rfloor = 2288966_{10}$$

$$= 10001011101101101000110_2$$

# Hamming-Cliffs

#### Problem:

- adjacent numbers can be coded very differently
- encodings have big Hamming-distance (# different Bits)
- Mutations/Crossover overcome "Hamming-Cliffs" poorly

#### **Example:**

- Representation of the numbers from 0 til 1 by 4-Bit-Numbers
- also mapping  $\frac{k}{15} \to k$
- $\Rightarrow~\frac{7}{15}$  (0111) and  $\frac{8}{15}$  (1000) have the same Hamming-distance 4

# **Gray-Codes: Avoidance of Hamming-Cliffs**

**Solution:** Gray-Codes

Hamming-distance of adjacent numbers = 1 Bit

| binär | Gray |
|-------|------|
| 0000  | 0000 |
| 0001  | 0001 |
| 0010  | 0011 |
| 0011  | 0010 |

| Gray |
|------|
| 0110 |
| 0111 |
| 0101 |
| 0100 |
|      |

| binär | Gray |
|-------|------|
| 1000  | 1100 |
| 1001  | 1101 |
| 1010  | 1111 |
| 1011  | 1110 |

| binär | Gray |
|-------|------|
| 1100  | 1010 |
| 1101  | 1011 |
| 1110  | 1001 |
| 1111  | 1000 |

# **Gray-Codes: Computation**

- Gray-Codes are not unique
- each code where encodings of adjacent numbers differ in only 1
   Bit is called Gray-Code
- Computation of Gray-Codes is usually started from binray number enconding

## Most frequent form:

Encoding: 
$$g = z \oplus \left| \frac{z}{2} \right|$$

Decoding: 
$$z = \bigoplus_{i=0}^{k-1} \left| \frac{g}{2^i} \right|$$

⊕: Exclusive-Or of the binary representation

# **Gray-Codes: Computation**

**Example:** interval [-1,2], precision  $\varepsilon = 10^{-6}$ , x = 0.637197

$$z = \left\lfloor \frac{0.637197 - (-1)}{2 - (-1)} (2^{22} - 1) \right\rfloor = 2288966_{10}$$
$$= 10001011101101101000110_2$$

$$g = 1000101110110101000110_2$$

$$\oplus \quad 100010111011010100011_2$$

# **Gray-Codes: Implementation**

```
unsigned int num2gray (unsigned int x)
                               /* --- convert number to Gray code */
 return x ^ (x >> 1);
                              /* exclusive or with shifted input */
} /* num2gray() */
unsigned int gray2num (unsigned int x)
                               /* --- convert Gray code to number */
                             /* copy the input number and */
 unsigned int y = x;
 while (x >>= 1) y \hat{}= x; /* do an exclusive or with all */
                               /* shift downs of the input */
 return v;
} /* grav2num() */
                               /* and return the result */
unsigned int gray2num (unsigned int x)
{
                               /* --- convert Gray code to number */
 x = x >> 16; x = x >> 8; /* do an exclusive or with all */
 x = x >> 4; x = x >> 2; /* shift downs of the input */
 return x ^ (x >> 1);
                          /* and return the result */
} /* grav2num() */
                             /* (32 bit integers only) */
```



# **Encoding: second desirable trait**

Similarly encoded candidate solutions should have a similar fitness

## Problem of the epistasis:

- *in biology:* one allele of a (so-called epistatic) gene suppresses the effect of all possible alleles of another gene
- in evolutionary algorithms:

   interaction between genes of a chromosome,
   Changes of the fitness by modifying one gene strongly depends on the value(s) of (an)other gene(s)

# **Example: The Traveling Salesman Problem**

Find a round trip of n cities with respect to minimal costs

two different encodings of the round trip:

- 1. Permutation of the cities
  - visit city at the k-th position in the k-th step
  - low epistasis: z.B. swapping two cities alters fitness(costs) by comparable amounts (only local changes)
- 2. Specification of a list of numbers that state the position of the next city to be visited in a (sorted) list from which all already visited cities have been deleted
  - *high epistasis:* Modifying a single gene (esp. the closer to the top) may alter the complete round trip (global tour-change)
  - ⇒ leads mostly to large changes of the fitness



# Second encoding: Effect of a Mutation

| Mutation | Chromosome                 | Remaining cities Round                                                                                    | Round trip |  |
|----------|----------------------------|-----------------------------------------------------------------------------------------------------------|------------|--|
| before   | 5<br>3<br>2<br>2<br>1      | 1, 2, 3, 4, <b>5</b> , 6<br>1, 2, <b>3</b> , 4, 6<br>1, 2, <b>4</b> , 6<br>1, <b>2</b> , 6<br>1, <b>6</b> |            |  |
| after    | 1<br>3<br>3<br>2<br>2<br>1 | 1, 2, 3, 4, 5, 6<br>2, 3, 4, 5, 6<br>2, 3, 5, 6<br>2, 3, 6<br>2, 6<br>2                                   |            |  |

## **Epistasis: summary**

- high epistatic encoding: no regularities
- ⇒ Mutation/Crossover leads to almost random fitness changes
- ⇒ optimization problem is very hard to solve by EAs
  - very low epistatic encoding: other methods often more successful
  - [Davidor, 1990] tried to classify optimization problems as *easy or* hard to solve by an EA based on the notion of epistasis⇒ failure
  - since: epistasis = property of the encoding, not of the problem itself
  - ullet encodings of a problem with higher and lower epistasis
  - $\bullet \ \exists$  problems with low epistatic encoding: too hard to solve by an EA

# **Encoding:** 3<sup>rd</sup> desirable trait

If possible, the search space  $\Omega$  should be closed under the used genetic operators.

## In general: Space is left, if

- new chromosome cannot be meaningfully interpreted or decoded
- a candidate solution does not fulfill certain basic requirements
- a candidate solution is evaluated incorrectly by the fitness function

## Problem of **coordination** of encoding and EA-operators:

- choose or design encoding-specific genetic operators
- use mechanisms to "repair" chromosomes
- introduce a penalty term that reduces the fitness of such individuals  $\notin \Omega$

# Leaving the space: example

n-Queens-Problem

Two different encodings: chromosome of length n

- 1. File positions of queens per rank (alleles  $0,\ldots,n-1$ ) Operators: One-point Crossover, standard mutation generates always valid vectors of file position
  - $\Rightarrow$  search space is not left



2. Numbers of the field (alleles  $0, \ldots, n^2 - 1$ ) of the queens Operators: One-point crossover, standard mutation generates chromosomes with more than one queen per field  $\Rightarrow$  search space is left



# Leaving the space: solving approachs *n*-Queens-Problem

- Use other encoding: first encoding avoids problem and  $\Omega$  is considerably smaller (if feasible, best method!)
- Encoding-specific evolutionary operators:
  - Mutation: Excluding of already existing alleles on random
  - Crossover: look at first for field numbers of each chromosome which are not contained in other chromosomes and apply one-point crossover on shortened chromosomes
- Repair mechanisms: find und replace multiple occuring field numbers until all field numbers are distinct
- **Penalty term:** reduce fitness by amount of multiple allocations of fields multiplied with weight if necessary

One more; any child that leaves search space is a fatality; continue reproduction until you have the target # of survivors.

# Leaving space using the example of TSP

- Representation of the round trip by permutation of the cities (city at *k*-th position is visited in the *k*-th step.)
- one-point crossover can exceed the space of permutations

| 3 | 5 | 2 | 8 | 1 | 7 | 6 | 4 |
|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

| 3 | 5 | 2 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 8 | 1 | 7 | 6 | 4 |

- Encoding-specific evolutionary operators:
  - Mutation: e.g. pair swaps, shift/cyclic permutation, inversion
  - *Crossover:* edge recombination (will be discussed later)
- Repair mechanisms: remove twice occurring cities and append the missing cities at the end: 3 5 2 4 5 6 7 8 1
- **Penalty term:** reduce fitness by value *c* for each missing city

Weakness of fatality approach: what fraction of possible crossovers/mutations yields a surviving chromosome?

# Leaving the space

- if  $\Omega$  is not connected, repair mech. can complicate the search
- immediately restoring of "forbidden"  $x \in \Omega$  in permitted regions



- in such cases: introduce penalty term
- $x \in \Omega$  in "forbidden" region is penalized but not removed
- penalty term should be increased on time: suppresses  $x \in \Omega$  in "forbidden" regions in following generations

19 / 46



## **Outline**

## 1. Encoding

#### 2. Fitness

Selective pressure
Selection intensity
Fitness-proportionate Selection
Premature convergence
Vanishing selective pressure
Adapting of the fitness function

#### 3. Selection

# Principe of selection

- better individuals (better fitness) should have better chances to create offspring(differential reproduction)
- Selective pressure: Strength of preferencing good individuals
- Choice of selective pressure: Contrast of Exploration of the space:
  - deviation of the individuals over  $\Omega$  as wide as possible
  - preferably big chances to find global optimum
  - ⇒ smaller selective pressure is desired

## **Exploitation (of good individuals):**

- Strive for (perhaps local) optimum in the vicinity of good individuals
- Convergence to optimum
- ⇒ higher selective pressure is preferred



# Choice of the selective pressure

- **best strategy:** time-dependent selective pressure low selective pressure in prior generations higher selective pressure in later generations
- ⇒ at first good exploration of the space, then exploitation of the promising region
  - regulation of the selective pressure by adapting the fitness function or by the parameter of selection method
  - important selection methods:
     Roulette-wheel Selection, Rank-based Selection, Tournament Selection
  - important adaption methods:
     Adaption of the variation of the fitness, linear dynamical scaling,
     σ-scaling

# Roulette wheel selection (dt. Glücksradauswahl)

- best known selection method
- compute the relative fitness of the individuals  $A^{(i)}$ ,  $1 \le i \le |P|$

$$f_{\text{rel}}\left(A^{(i)}\right) = \frac{A^{(i)}.F}{\sum_{j=1}^{|P|} A^{(j)}.F}$$

and interprete  $f_{\text{rel}}\left(A^{(i)}\right)$  as a probability to be selected (so called **fitness-proportionate Selection**)

- Please note: absolute fitness A.F may not be negative
- Attention: fitness has to be maximized (otherwise: selection of bad individuals with high probability)
- **Demonstration:** Roulette-wheel with 1 sector per individuual  $A^{(i)}$ , sector size = relative fitness values  $f_{\text{rel}}\left(A^{(i)}\right)$

## Roulette-wheel selection: Demonstration



#### Selection of an individual:

- 1. set the roulette-wheel into motion
- **2.** choose the ind. of the corresponding sector

## Selection of the next population:

• repeat selection # individuals-times

**Disadvantage:** Calculation of the relative fitness by summing up all fitness values (normalization factor)

- constant initial population during the selection
- aggravated parallelization of the implementation

## Roulette-wheel selection: Dominance Problem



- individual with a very high fitness may dominate the selection
- Due to many copies/very similar individuals: dominance may become even stronger in subsequent generations
- ⇒ **Crowding:** population of very similar/identical individuals
- results in a very fast find of the (local) optimum
- **Disadvantage:** diversity of the population vanishs
  - Exploitation of worse individuals
  - No exploration of the space but local optimization (preferred in later generations, undesirable at the beginning)

# Fitness function: Premature convergence

Dominance problem illustrates the strong influence of the fitness function on the effect of the fitness-proportionate selection

- Problem of premature convergence:
   If (value) range of the maximizing function is very huge
- Example: no chromosome at the beginning in the section  $\Omega'' \to$  population remains by selection in the vicinity of the local maximum in the section  $\Omega'$



Individuals which converge to the section between  $\Omega'$  and  $\Omega''$  have worse chances to create offspring

# Vanishing selective pressure

- Problem is perhaps grounded on the EA itself
- it increases tendentially the (average) fitness of the individuals
- higher selective pressure at the beginning due to random fitness values
- later: smaller selective pressure (inverse way is preferred)
- Example: points illustrate individuals of the generation





early generation later generation

# Adapting of the fitness function

Approach: Scaling of the fitness

## linear dynamical scaling:

$$f_{\mathsf{Ids}}(A) = \alpha \cdot A.F - \min\left\{A^{(i)}.F \mid P(t) = \left\{A^{(1)}, \dots, A^{(r)}\right\}\right\}, \quad \alpha > 0$$

- instead minimum of P(t), minimum of the last k generations can be used
- usually  $\alpha > 1$

## $\sigma$ -Scaling:

$$f_{\sigma}(A) = A.F - (\mu_f(t) - \beta \cdot \sigma_f(t)), \quad \beta > 0$$

• Problem: Choice of the parameter  $\alpha$  and  $\beta$ 

# Adaption of the fitness function: dependence on time

- determine  $f_{\text{rel}}$  not directly from f(x) but  $g(x) \equiv (f(x))^{k(t)}$
- time-dependent exponent k(t) regulates selective pressure
- Method to determine k(t) [Michalewicz, 1996] (should limit selection intensity  $I_{\rm sel}$  in the vicinity of  $I_{\rm sel}^* \approx 0.1$ )

$$k(t) = \left(\frac{I_{\mathsf{sel}}^*}{I_{\mathsf{sel}}}\right)^{\beta_1} \left( \mathsf{tan}\left(\frac{t}{T+1} \cdot \frac{\pi}{2}\right) \right)^{\beta_2 \left(\frac{I_{\mathsf{sel}}}{I_{\mathsf{sel}}^*}\right)^{\alpha}}$$

 $I_{\rm sel}^*$ ,  $\beta_1$ ,  $\beta_2$ ,  $\alpha$ : parameter of the method

 $\emph{I}_{\mathsf{sel}}$ : coefficient of variation (e.g. estimated from  $\emph{P}(\emph{t}=0)$ )

T: max. number of remaining generations to be computed

t: current time step (number of generation)

• Recommended:  $I_{\text{sel}}^* = 0.1, \ \beta_1 = 0.05, \ \beta_2 = 0.1, \ \alpha = 0.1$ 

# Adaption of the fitness function: Boltzmann-Selection

- determine relative fitness not directly from f(x) but from  $g(x) \equiv \exp\left(\frac{f(x)}{kT}\right)$
- ullet time-dependent **temperature**  ${\cal T}$  controls selective pressure
- k is normalizing constant
- Temperature decreases e.g. linearly to the predefined maximum number of generations



## **Outline**

## 1. Encoding

#### 2. Fitness

#### 3. Selection

Roulette-wheel Selection Expected value model

Rank-based Selection

Tournament selection

Elitism

Niche Techniques

Characterization

# Roulette-wheel Selection: vaiance problem

- Selection of individuals is indeed proportional to the fitness, but random
- no guarantee that "fitter" individuals are taken to the next generation, not even for the best individual
- gen.: high deviation (high variance) of the offspring of an individual
- Computation of the mean value: see the exercise sheet
- very simple but not implicitly a recommendable solution:
   Discretization of the fitness range
  - compute  $\mu_f(t)$  and  $\sigma_f(t)$  of P
  - if  $\mu_f(t) \sigma_f(t) > f(x)$  : 0 offspring
  - if  $\mu_f(t) \sigma_f(t) \le f(x) \le \mu_f(t) + \sigma_f(t)$ : 1 offspring
  - if  $f(x) > \mu_f(t) + \sigma_f(t)$ : 2 offsprings

## Rank-based Selection

- Sort individuals decendingly according to their fitness:
   Rank is assigned to each individual in population
   (from statistics: distribution-free techniques, z.B. rank correlation)
- **2.** Define prob. distribution over Rank scale: the lower the rank the lower the probability
- 3. Roulette-wheel selection based on the distribution

## Adavantage:

- Avoidance of dominance problem: decoupling of fitness value and selection probability
- regulation of the selective pressure by prob. distribution on rank scale

**Disadvantage:** Sort of individuals (complexity:  $|P| \cdot \log |P|$ )

## **Tournament selection**

- 1. Draw k individuals  $(2 \le k < |P|)$  randomnly from P(t) (draw can be reclined or not, selection *without* regarding the fitness, let k be the **tournament size**).
- **2.** Individuals carry out the tournament and best indivual wins: Tournament winner receives a descendant in the next population
- 3. All participants (even the winner) of the tournament are returned to P(t)

## Advantage:

- Avoidance of the dominance problem: decoupling of fitness value and selection probability
- regulation of the selective pressure by tournament size with limitations

**Modification:**  $f_{rel}$  of the participants determine winning probability (Roulette-wheel selection of an individual in tournament)

41 / 46



## **Elitism**

- only the expected value model (and some of its variants) ensures that the best individual enters the next generation
- if best individual in next population: no protection from modifications by genetic operators (even in the expected value model)
- ⇒ fitness of the best individual can decrease from one generation to the next (= undesired)

#### Solution: Elitism

- unchanged transfer of the best individual (or the k,  $1 \le k < |P|$  best individuals) into the next generation
- elite of a population never gets lost, hence elitism
- **Attention:** elite is *not* exclued from normal selection: genetic operator can improve them

## **Elitism**

- many times: offspring (Mutation-/Crossover products) replace their parents
- "local" elitism (Elitism between parents and offspring)
  - Mutation: mutated individual replaces its parents ↔ it has at least the same fitness
  - Crossover: sort the four involved individuals (2 parents, 2 descendants) according to the fitness, both best individuals → next generation
- Adavantage: better convergence as the local optimum is intended more consequently
- **Disadvantage:** pretty high risk of getting stuck in local optima as no local degradation is possible