Assignment 3

CS215: Data Structures and Algorithms

Shaik Awez Mehtab, 23B1080 Satyam Sinoliya, 23B0958 Vaibhav Singh, 23B1068

Solutions

SOLUTION 1

Detecting Anomalous Transactions using KDE

Figure 1.1: Distribution of transactions As can be seen in the given figure, the resulting estimated distribution contains two modes.

SOLUTION 2

Higher-Order Regression

Part 1

Suppose our estimates for α and β are A and B respectively, then these values of A and B minimize

$$\sum_{i=1}^{n} (y_i - A - Bx_i)^2 \tag{1.1}$$

$$\implies \frac{\partial}{\partial A} \sum_{i=1}^{n} (y_i - A - Bx_i)^2 = 0 \tag{1.2}$$

$$\sum_{i=1}^{n} -2(y_i - A - Bx_i) = 0 {(1.3)}$$

$$n\bar{y} - nA - nB\bar{x} = 0 \tag{1.4}$$

$$\bar{y} = A + B\bar{x} \tag{1.5}$$

Least square regression line is given by y = A + Bx. Thus by (1.5), (\bar{x}, \bar{y}) lies on the regression line.

2 **CS215** Assignment 3

Part 2

Suppose our estimates for β_0^* and β_1^* are A^* and B^* respectively, then A^* and B^* minimize $\sum_{i=1}^n (y_i - y_i)^2$ $A^* - B^* z_i)^2$

$$\implies \frac{\partial}{\partial A^*} \sum_{i=1}^n (y_i - A^* - B^* z_i)^2 = 0 \qquad \qquad \frac{\partial}{\partial B^*} \sum_{i=1}^n (y_i - A^* - B^* z_i)^2 = 0$$
 (1.6)

$$\sum_{i=1}^{n} -2(y_i - A^* - B^* z_i) = 0 \qquad \qquad \sum_{i=1}^{n} -2z_i (y_i - A^* - B^* z_i) = 0 \qquad (1.7)$$

$$n\bar{y} - nA^* - nB^* \bar{z} = 0 \qquad \qquad \sum_{i=1}^{n} -2z_i (y_i - A^* - B^* z_i) = 0 \qquad (1.8)$$

$$n\bar{y} - nA^* - nB^*\bar{z} = 0$$

$$\sum z_i y_i - A^* n\bar{z} - B^* \sum z_i^2 = 0$$
 (1.8)

$$\sum y_i z_i - n(\bar{y} - B^* \bar{z}) \bar{z} - B^* \sum z_i^2 = 0$$
 (1.9)

$$B^* = \frac{\sum y_i z_i - n\bar{y}\bar{z}}{n\bar{z}^2 - \sum z_i^2} \qquad A^* = \bar{y} - B^*\bar{z}$$
 (1.10)

Since, $z_i = x_i - \bar{x}$. $\bar{z} = \frac{\sum (x_i - \bar{x})}{n} = \frac{n\bar{x} - n\bar{x}}{n} = 0$. $\sum (x_i - \bar{x})^2 = \sum x_i^2 - n\bar{x}^2$

$$B^* = \frac{\sum y_i(x_i - \bar{x}) - n\bar{y} \cdot 0}{n(0)^2 - (\sum x_i^2 - n\bar{x}^2)}$$
(1.11)

$$=\frac{\sum y_i x_i - n\bar{x}\bar{y}}{n\bar{x}^2 - \sum x_i^2} \tag{1.12}$$

This is same as B, least square estimate of β_1 i.e $B^*=B$. Also since $\bar{z}=0$, we have $A^*=\bar{y}$ i.e $A^* = A + B\bar{x}$, where *A* is the least square estimate of β_0 .

Part 3

Let's restrict ourselves to single feature for simplicity. Suppose we have n data points

$$\{(x_1, y_1), \dots, (x_n, y_n)\}\$$
 (1.13)

and our OLS estimates for β_0, \ldots, β_m be B_0, \ldots, B_m . These must minimize

$$\sum_{i=1}^{n} (y_i - B_0 - B_1 x_i - \dots - B_m x_i^m)^2$$
 (1.14)

Partial differentiation w.r.t each B_i must be 0 which gives

$$\sum_{i=1}^{n} -2(y_i - B_0 - B_1 x_i - \dots - B_m x_i^m) = 0$$
 (1.15)

$$\sum_{i=1}^{n} -2x_i(y_i - B_0 - B_1x_i - \dots - B_mx_i^m) = 0$$
 (1.16)

(1.17)

$$\sum_{i=1}^{n} -2x_i^m (y_i - B_0 - B_1 x_i - \dots - B_m x_i^m) = 0$$
 (1.18)

Which give

$$\sum_{i=1}^{n} y_i = B_0 n + B_1 \sum_{i=1}^{n} x_i + \dots + B_m \sum_{i=1}^{n} x_i^m$$
(1.19)

$$\sum_{i=1}^{n} x_i y_i = B_0 \sum_{i=1}^{n} x_i + B_1 \sum_{i=1}^{n} x_i^2 + \dots + B_m \sum_{i=1}^{n} x_i^{m+1}$$
(1.20)

$$\vdots (1.21)$$

$$\sum_{i=1}^{n} x_i^m y_i = \sum_{i=1}^{n} B_0 x_i^m + B_1 \sum_{i=1}^{n} x_i^{m+1} + \dots + B_m \sum_{i=1}^{n} x_i^{2m}$$
(1.22)

Vaibhav Awez Satyam

Taking
$$X = \begin{bmatrix} 1 & x_1 & \dots & x_1^m \\ 1 & x_2 & \dots & x_2^m \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^m \end{bmatrix}$$
, $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$, $B = \begin{bmatrix} B_0 \\ \vdots \\ B_m \end{bmatrix}$ we have

$$X^T Y = X^T X B \tag{1.23}$$

$$B = (X^T X)^{-1} X^T Y (1.24)$$

We'll use this in our code.

SOLUTION 3

Non-parametric regression

Report Bandwidth Corresponding to Minimum Estimated Risk

After running the Nadaraya-Watson kernel regression using the Epanechnikov and Gaussian kernel and performing cross-validation for bandwidth selection, the optimal bandwidth corresponding to the minimum estimated risk is:

Optimal Bandwidth of Gaussian kernel: 0.180 Optimal Bandwidth of Gaussian kernel: 0.164

Similarities and Differences Due to Choice of Different Kernel Functions **Similarities**

- **General Functionality:** Both kernels assign weights to data points based on their distance from the query point, resulting in similar predictions in regions with high data density.
- Smoothing: As the bandwidth increases, all kernel functions produce smoother estimates. At very large bandwidths, all kernels oversmooth the data, giving too much influence to distant points.
- Cross-validation Behavior: Both kernels display a similar behavior during cross-validation, and the corresponding risk curves follow the same trend with bandwidth changes.

Differences

- Shape of the Weights:
 - **Epanechnikov Kernel:** This kernel assigns zero weight to points farther than the bandwidth due to its quadratic form, creating a more localized effect.
 - Gaussian Kernel: This kernel assigns non-zero weight to every point, regardless of distance, due to its exponential decay. It results in smoother estimates, but it is more sensitive to distant points.
- Sensitivity to Outliers:
 - **Epanechnikov Kernel:** This kernel is more resilient to outliers because they assign zero or reduced weight to distant points, decreasing the influence of outliers on the prediction.
 - **Gaussian Kernel:** The Gaussian kernel is more prone to incorporating outliers, as it assigns non-zero weights even to far-away points, making it less resilient in the presence of outliers.

• Plots

- Epanechnikov Kernel: This kernel produces more precise and localized estimates, with a
 good balance between bias and variance when using the optimal bandwidth.
- Gaussian Kernel: The Gaussian kernel leads to smoother curves but gives undue influence to distant points, which can result in overfitting or oversmoothing depending on the bandwidth.