POURCENTAGES

I) RAPPELS

1) Déterminer un pourcentage

Un pourcentage est une **proportion** écrite sous la forme d'une fraction dont le dénominateur est 100 :

$$17\% = \frac{17}{100} = 0.17$$

Ex : Sur un total de 32 élèves, 12 ont des lunettes. Quel pourcentage d'élèves a des lunettes ?

On calcule la proportion d'élèves ayant des lunettes :

$$p = \frac{12}{32} = \frac{37.5}{100} = 37.5\%$$

2) Pourcentage d'une quantité

Prendre t % de A revient à calculer $\frac{t}{100} \times A$.

Ex : Dans une classe de 30 élèves, ils sont 20 % à avoir été à Londres. Combien d'élèves ont été à Londres ?

On calcule 20 % de 30 :

$$n = \frac{20}{100} \times 30 = 6$$

Ex : Dans un parking de 400 véhicules, 20 % sont des Renault et 15 % de ces Renault sont des Méganes. Combien y a-t-il de Méganes ?

On calcule 15 % de 20 % de 400 : $n = \frac{15}{100} \times \frac{20}{100} \times 400 = \frac{300 \times 400}{100 \times 100} = 12$ p307: 2, 3 p317: 17 p319: 46 p320: 52 p321: 59

II) AUGMENTATION EN POURCENTAGE

Ex: Un pull affiché 30 € augmente de 5 %. Quel est son nouveau prix p?

1^{ère} méthode:
$$p=30+\frac{5}{100}\times30=30+\frac{150}{100}=30+1,5=31,5$$
€

2^{ème} méthode :
$$p=30 \times \left(1+\frac{5}{100}\right)=30 \times 1,05=31,5$$
 €

1) Propriété

Augmenter une quantité Q de t % revient à la multiplier par $\left(1 + \frac{t}{100}\right)$

Le coefficient $\left(1+\frac{t}{100}\right)$ s'appelle coefficient multiplicateur.

Remarques:

Le coeff. multiplicateur associé à une augmentation de 20% est : 1,2 Le coeff. multiplicateur associé à une augmentation de de 1% est : 1,01 Le coeff. multiplicateur associé à une augmentation de 150% est : 2,5

2) Augmentations successives

Ex : Le prix du blé a baissé de 15 % l'an dernier puis a augmenté de 15 % cette année. Est-on revenu au prix de départ ?

Appelons A le prix initial et B le prix final.

On a:
$$B = A \left(1 - \frac{15}{100}\right) \left(1 + \frac{15}{100}\right) = A \times 0.85 \times 1.15 = A \times 0.9775$$

Le prix final est donc légèrement inférieur au prix initial!

Rem : On ne peut ajouter des pourcentages que s'ils s'appliquent à une même référence. Ici la baisse de 15 % s'applique au prix initial alors que la hausse de 15 % s'applique au prix intermédiaire.

3) Variations absolues et relatives

Variation absolue = Valeur finale – Valeur initiale

Variations relative =
$$\frac{\text{Variation absolue}}{\text{Valeur initiale}}$$

Ex: On compare l'évolution des effectifs de 2 lycées:

	L'an dernier	Cette année
Lycée A	200	300
Lycée B	4000	4100

Ces deux lycées ont eu la même variation absolue sur un an : +100 élèves. En revanche le premier a une variation relative de 50 % alors que le second n'a une variation relative que de 2,5 %.

Rem:

Variation relative =
$$\frac{\text{Valeur finale} - \text{Valeur initiale}}{\text{Valeur initiale}}$$

$$= \frac{\text{Valeur finale}}{\text{Valeur initiale}} - 1$$

$$= \left(1 + \frac{t}{100}\right) - 1$$

$$= \frac{t}{100}$$

La variation relative permet de déterminer le pourcentage d'évolution.

p309: 4 p317: 20, 23, 26 p318: 32 p319: 40, 48, 49 p322: 60, 61, 63, 64 p323: 67 algo p323: 66