A Comparison of Cost Partitioning Algorithms for Optimal Classical Planning

Jendrik Seipp Thomas

Thomas Keller Malte Helmert

University of Basel

June 21, 2017

Setting

- optimal classical planning
- A* search + admissible heuristic
- abstraction heuristics

Setting

- optimal classical planning
- A* search + admissible heuristic
- abstraction heuristics

Problem

• single heuristic unable to capture enough information

Problem

- single heuristic unable to capture enough information
 - → use multiple heuristics

Problem

- single heuristic unable to capture enough information
 - \rightarrow use multiple heuristics
- how to combine multiple heuristics admissibly?

Multiple Heuristics

Multiple Heuristics

Multiple Heuristics

• maximizing only selects best heuristic $\rightarrow h(s_1) = 5$

Multiple Heuristics: Cost Partitioning

Cost Partitioning

- split operator costs among heuristics
- total costs must not exceed original costs
- → combines heuristics
- → allows summing heuristic values admissibly

Optimal Cost Partitioning

- cost partitioning with highest heuristic value for a given state among all cost partitionings
- computable in polynomial time for abstractions
- too expensive in practice

Optimal Cost Partitioning

- cost partitioning with highest heuristic value for a given state among all cost partitionings
- computable in polynomial time for abstractions
- too expensive in practice

Post-hoc Optimization

- compute best factor $0 \le w \le 1$ for each heuristic
- for each operator: sum of relevant heuristic factors ≤ 1 e.g., $w_1+w_2\leq 1$, $w_2\leq 1$
- use costs $w \cdot cost(o)$ if o is relevant for h, otherwise 0

Post-hoc Optimization

- compute best factor $0 \le w \le 1$ for each heuristic
- for each operator: sum of relevant heuristic factors ≤ 1 e.g., $w_1+w_2\leq 1$, $w_2\leq 1$
- use costs $w \cdot cost(o)$ if o is relevant for h, otherwise 0

Greedy Zero-one Cost Partitioning

- order heuristics
- use full costs for the first relevant heuristic

Greedy Zero-one Cost Partitioning

- order heuristics
- use full costs for the first relevant heuristic

Saturated Cost Partitioning

- order heuristics
- for each heuristic h:
 - ullet use minimum costs preserving all heuristic estimates for h
 - use remaining costs for subsequent heuristics

Saturated Cost Partitioning

- order heuristics
- for each heuristic h:
 - ullet use minimum costs preserving all heuristic estimates for h
 - use remaining costs for subsequent heuristics

Uniform Cost Partitioning

distribute costs uniformly among relevant heuristics

Uniform Cost Partitioning

• distribute costs uniformly among relevant heuristics

Opportunistic Uniform Cost Partitioning (New)

- order heuristics
- for each heuristic h:
 - distribute costs uniformly among h and other relevant remaining heuristics
 - use saturated costs for h
 - use remaining costs for subsequent heuristics

Opportunistic Uniform Cost Partitioning (New)

- order heuristics
- for each heuristic h:
 - distribute costs uniformly among h and other relevant remaining heuristics
 - use saturated costs for h
 - use remaining costs for subsequent heuristics

Canonical Heuristic

- compute independent heuristic subsets
- compute maximum over sums

Canonical Heuristic

- compute independent heuristic subsets
- compute maximum over sums

Theoretical Comparison

Theoretical Comparison

Theoretical Comparison

Empirical Comparison

Heuristics:

- hill climbing pattern databases
- systematic pattern databases
- Cartesian abstractions
- landmark heuristics

Empirical Comparison

Heuristics:

- hill climbing pattern databases
- systematic pattern databases
- Cartesian abstractions
- landmark heuristics

Orders:

• for order-dependent algorithms: single order and diverse orders

Empirical Comparison: Systematic PDBs

	h^{UCP}	$h_{ m single}^{ m OUCP}$	$h_{ m diverse}$	$h_{\rm single}^{\rm GZOCP}$	$h_{\rm diverse}^{\rm GZOCP}$	$h_{ m single}^{ m SCP}$	$h_{ m diverse}^{ m SCP}$	h^{CAN}	h^{PHO}	h^{OCP}	
	H	$h_{ m si}^{ m O}$	$h_{\rm di}^{\rm O}$	$h_{ m si}^{ m G}$	h_{di}^{G}	$h_{ m si}^{ m S}$	h_{di}^{S}	h^{C}	h^{P}	$\mid h^{0}$	coverage
h^{UCP}	_	0	3	15	3	4	0	11	10	30	709.0
h_{single}^{OUCP}	14	-	9	22	8	6	0	14	13	31	744.9
$h_{diverse}^{OUCP}$	13	8	_	22	7	6	0	14	14	31	734.6
h_{single}^{GZOCP}	3	1	4	_	3	0	0	9	11	29	694.0
$h_{ m diverse}^{ m GZOCP}$	15	12	14	20	_	9	0	13	13	30	749.9
h_{single}^{SCP}	20	19	17	23	16	_	0	18	21	32	775.7
$h_{ m diverse}^{ m SCP}$	27	26	24	28	22	22	-	23	26	33	854.9
h^{CAN}	8	7	7	17	5	8	2	-	13	28	656.0
h^{PHO}	9	7	7	15	7	6	3	10	_	31	737.0
h^{OCP}	4	4	4	4	4	4	3	5	3	_	471.0

Empirical Comparison: Systematic PDBs

Discussion of Results

In each setting:

- reuse unused costs
- assign costs greedily
- use multiple orders
- \rightarrow saturated cost partitioning

Comparison to State of the Art (Using h^2 Mutexes)

	$HC + h_{diverse}^{SCP}$	$_{\rm Sys2} + h_{\rm diverse}^{\rm SCP}$	$Cart. + h_{diverse}^{SCP}$	$LM{+}h_{single}^{SCP}$	$SymBA_2^*$	coverage
$HC + h_{diverse}^{SCP}$	_	7	9	19	17	845.0
$Sys2 {+} h^{SCP}_{diverse}$	10	_	11	18	16	878.5
$Cart. + h_{diverse}^{SCP}$	19	14	-	24	17	1017.9
$LM{+}h^{SCP}_{single}$	8	9	4	_	9	934.0
$SymBA_2^*$	20	18	16	23	_	1008.0

Related SoCS 2017 Paper

Better Orders for Saturated Cost Partitioning in Optimal Classical Planning

- combination of three types of abstraction heuristics
- better method for finding heuristic orders
- significantly higher coverage

Conclusion

- new dominance relations
- new cost partitioning algorithm
- saturated cost partitioning preferable in all tested settings