

Distance entre deux droites gauches

Dans l'espace \mathbb{R}^3 muni de la <u>distance euclidienne</u>, la **distance entre deux <u>droites gauches</u>** est la plus courte distance séparant deux droites qui <u>ne se coupent pas</u> et ne sont pas <u>parallèles</u>.

Deux droites gauches. Le plan dessiné en gris contient l'une des droites et est parallèle à l'autre.

Formule de la distance

Soient:

- une droite affine D_1 passant par A_1 et de <u>vecteur</u> directeur \vec{d}_1 ;
- une droite affine D_2 passant par A_2 et de vecteur directeur \vec{d}_2 , avec D_1 et D_2 non parallèles;
- $\vec{n}=\vec{d}_1\wedge\vec{d}_2$, vecteur orthogonal à D_1 et D_2 (le symbole \wedge est celui du <u>produit vectoriel</u>). La distance δ entre D_1 et D_2 est égale à:

$$\delta = rac{\left|ec{m{n}}\cdot \overrightarrow{m{A_1}} \overrightarrow{m{A_2}}
ight|}{\left\|ec{m{n}}
ight\|},$$

ce qui correspond à la norme de la projection orthogonale de $\overrightarrow{A_1 A_2}$ sur \vec{n} .

Remarques:

- si les droites sont sécantes, elles sont coplanaires et le produit scalaire précédent est nul ;
- la formule n'est pas valable pour des droites parallèles, car le dénominateur serait alors nul, dans ce cas on utilisera la formule de la distance d'un point à une droite :

dans ce cas on utilisera la formule de
$$\left|\frac{\text{a distance d'un point à une droite}^1}{\overrightarrow{d_1} \wedge \overrightarrow{A_1 A_2}}\right|$$
 ou $\delta = \frac{\left|\overrightarrow{d_2} \wedge \overrightarrow{A_1 A_2}\right|}{\left\|\overrightarrow{d_2}\right\|}$.

Recherche des points les plus proches

Comme D_1 et D_2 sont gauches, elles admettent une unique <u>perpendiculaire</u> commune P, qui coupe D_1 en B_1 et D_2 en B_2 . La longueur B_1B_2 est également la distance $\delta(D_1,D_2)^{\frac{1}{2}}$. Pour trouver ces points il faut combiner les propriétés suivantes :

- lacksquare lacksquare lacksquare lacksquare appartient à D_1 ;
- $\mathbf{B_2}$ appartient à D_2 ;

- $lacksymbol{\overline{B_1B_2}}$ est perpendiculaire à D_1 ;
- $ightharpoonup \overline{ B_1 B_2}$ est perpendiculaire à D_2 .

Ou, mathématiquement:

$$lacksquare \mathbf{A_2}\mathbf{B_2'} = \mu\,ec{d}_{\,\mathbf{2}}$$
 ;

$$\blacksquare \overrightarrow{\mathbf{B_1}\mathbf{B_2}} \cdot \overrightarrow{d}_1 = 0;$$

$$\blacksquare \overrightarrow{\mathrm{B_1}\mathrm{B_2}} \cdot \overrightarrow{d}_2 = 0$$

La perpendiculaire commune et les deux points les plus proches.

 $\overrightarrow{B_1B_2} = \overrightarrow{B_1A_1} + \overrightarrow{A_1A_2} + \overrightarrow{A_2B_2} = \mu \, \overrightarrow{d}_2 - \lambda \, \overrightarrow{d}_1 + \overrightarrow{A_1A_2}$, le report de cette égalité dans les deux dernières relations conduit à deux équations linéaires à deux inconnues λ et μ .

On peut se passer de la résolution d'un système en utilisant des vecteurs \vec{n}_1 (resp. \vec{n}_2) orthogonaux à $\overrightarrow{B_1}\overrightarrow{B_2}$ qui soit également, pour l'un orthogonal à \overrightarrow{d}_2 et pour l'autre orthogonal à \overrightarrow{d}_1 .

On peut prendre, par exemple, $ec{n}_1 = ec{n} \wedge ec{d}_2$ et $ec{n}_2 = ec{n} \wedge ec{d}_1$

ou bien 2 , sans mobiliser de produit vectoriel, $\vec{n}_1 = \vec{d}_1 - \frac{\vec{d}_1 \cdot \vec{d}_2}{\vec{d}_2 \cdot \vec{d}_2} \vec{d}_2$ et $\vec{n}_2 = \vec{d}_2 - \frac{\vec{d}_1 \cdot \vec{d}_2}{\vec{d}_1 \cdot \vec{d}_1} \vec{d}_1$ (ces derniers vecteurs sont colinéaires aux précédents).

Les conditions $\overrightarrow{B_1B_2} \cdot \vec{n}_1 = 0$ et $\overrightarrow{B_1B_2} \cdot \vec{n}_2 = 0$ se traduisent alors par :

$$-\lambda \, \vec{d}_1 \cdot \vec{n}_1 + \overrightarrow{\mathbf{A}_1 \mathbf{A}_2} \cdot \vec{n}_1 = 0 ext{ et } \mu \, \vec{d}_2 \cdot \vec{n}_2 + \overrightarrow{\mathbf{A}_1 \mathbf{A}_2} \cdot \vec{n}_2 = 0$$

et fournissent les valeurs de λ et μ :

$$\lambda = rac{\overrightarrow{ ext{A}_1 ext{A}_2} \cdot ec{n}_1}{ec{d}_1 \cdot ec{n}_1} ext{ et } \mu = -rac{\overrightarrow{ ext{A}_1 ext{A}_2} \cdot ec{n}_2}{ec{d}_2 \cdot ec{n}_2}$$

En géométrie hyperbolique

En géométrie hyperbolique, un résultat formellement identique est le <u>théorème des ultraparallèles</u>: deux droites du plan hyperbolique ultraparallèles (qui ne se coupent pas et ne sont pas parallèles asymptotes) admettent une unique perpendiculaire commune, et la distance entre les pieds de cette perpendiculaire est la distance minimale entre les deux droites.

Notes et références

Notes

a. Les droites gauches n'existent que dans les espaces euclidiens de <u>dimension</u> supérieure à deux (dans le <u>plan</u>, deux droites sont nécessairement <u>sécantes</u> ou <u>parallèles</u>); le résultat est d'ailleurs vrai en toute dimension supérieure à 3, car deux droites de \mathbb{R}^n définissent n sousespace affine de dimension 3.

Références

- 1. Fred Lang, *Géométrie analytique*, Yverdon-les-bains, 2012, 61 p. (lire en ligne (http://math.heig-vd.ch/fr-ch/enseignement/Cours/GeometrieAnalytique2012.pdf) [PDF]), p. 30.
- 2. Renzo Cairoli, *Algèbre linéaire*, PPUR presses polytechniques, coll. « architecture Enseignement des mathématiques », 1991 (présentation en ligne (https://books.google.fr/books?id=n4FN1Hk_GMEC&pg=PA76#v=onepage&q&f=false)), p. 76-77

Ce document provient de « https://fr.wikipedia.org/w/index.php? title=Distance_entre_deux_droites_gauches&oldid=204850457 ».