Chapter 23 Suites récurrentes

Exercice 23.1

Soit $a \in \mathbb{R}$. On considère la suite (u_n) définie par

$$\begin{aligned} u_0 &= a \\ \forall n \in \mathbb{N}, u_{n+1} &= u_n - u_n^2. \end{aligned}$$

- **1.** Étudier rapidement la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x x^2$.
- **2.** Étudier la suite (u_n) dans les cas suivants : a = 0 et a = 1.
- **3.** Étudier le sens de variation de la suite (u_n) .
- **4.** Étudier la convergence de (u_n) dans chacun des cas : a < 0, a > 1, $a \in]0,1[$. Dans chacun des cas, si (u_n) admet une limite, on la précisera.

Solution 23.1

- 1. Étude facile.
- **2.** Si a = 0, (u_n) est la suite nulle. Si a = 1, $u_0 = 1$, $u_1 = 0$ et pour $n \in \mathbb{N}^*$, $u_n = 0$.
- 3. Pour $n \in \mathbb{N}$, $u_{n+1} u_n = -u_n^2 \le 0$, donc (u_n) est décroissante.
- **4.** Si (u_n) est convergente vers ℓ , alors

$$\lim_{n\to\infty} u_{n+1} = \lim_{n\to\infty} u_n - u_n^2 = \ell - \ell^2.$$

Or la suite (u_{n+1}) est une suite extraite de (u_n) , elle converge donc également vers ℓ .

Par unicité de la limite de (u_{n+1}) , on a $\ell = \ell - \ell^2$, c'est-à-dire $\ell = 0$.

- Si a < 0, (u_n) étant décroissante, on a: $\forall n \in \mathbb{N}, u_n \le u_0 = a < 0$. Si (u_n) était convergente, sa limite ℓ vérifierai $\ell \le u_0 < 0$, d'où la contradiction avec $\ell = 0$. La suite (u_n) étant décroissante et divergente, on a $\lim_{n \to +\infty} u_n = -\infty$.
- Si a > 1, $u_1 = u_0(1 u_0) < 0$ et pour $n \ge 1$, $u_n \le u_1 < 0$. Un raisonnement analogue au précédent montre que $\lim_{n \to +\infty} u_n = -\infty$.
- Si $a \in]0, 1[$, sachant que $f([0, 1[) \subset]0, 1[$, puisque $u_0 \in]0, 1[$, on a: $\forall n \in \mathbb{N}, u_n \in]0, 1[$. La suite (u_n) est ainsi décroissante, minorée (par 0) donc convergente et sa limite est $\ell = 0$.

Étudier la suite (x_n) définie par récurrence par : $\begin{cases} x_0 = 1/2 \\ x_{n+1} = \frac{3}{16} + x_n^2 \end{cases}$

- 1. Étudier la fonction définie par $f(x) = \frac{3}{16} + x^2$.
- **2.** Quelle limite finie est possible pour (x_n) ?
- 3. La suite (x_n) est-elle minorée ? Majorée ? Monotone ?
- **4.** Discuter de la convergence de (x_n) .

Solution 23.2

- 1. La fonction f est une fonction polynômiale de degré 2, de coefficient dominant 1 > 0. Elle est donc décroissante sur $]-\infty,0]$ et croissante sur $[0,+\infty[$. Notons également que atteind son minimum en 0 et que $f(0) = \frac{3}{16} > 0$.
- **2.** Supposons que la suite (x_n) converge vers $\ell \in \mathbb{R}$. Alors, la suite extraite (x_{n+1}) converge également vers ℓ . Or

$$x_{n+1} = \frac{3}{16} + x_n^2 \xrightarrow[n \to +\infty]{} \frac{3}{16} + \ell^2.$$

Par unicité de la limite de la suite (x_{n+1}) , on a $\ell = \frac{3}{16} + \ell^2$, c'est-à-dire

$$\ell = \frac{1}{4}$$
 ou $\ell = \frac{3}{4}$.

3. Puisque f est minorée par $\frac{3}{16}$, on a clairement

$$\forall n \ge 1, x_n \ge \frac{3}{16}.$$

Cette minoration s'étend également au cas n = 0.

Montrons par récurrence sur n que $0 < x_{n+1} \le x_n$.

Pour
$$n = 0$$
, nous avons $0 < x_1 = \frac{7}{16} < \frac{1}{2} = x_0$.

De plus, puisque f est croissante sur \mathbb{R}_+ , on a pour $n \in \mathbb{N}$,

$$0 \le x_{n+1} \le x_n \implies f(0) \le f\left(x_{n+1}\right) \le f\left(x_{n+1}\right) \implies 0 \le \frac{3}{16} \le x_{n+2} \le x_{n+1}.$$

Par récurrence,

$$\forall n \in \mathbb{N}, x_{n+1} \leq x_n,$$

la suite (x_n) est décroissante et donc majorée par $x_0 = \frac{1}{2}$.

4. La suite (x_n) est décroissante et minorée par 0, elle est donc convergente. On note ℓ sa limite. D'après la question (2), $\ell = \frac{1}{4}$ ou $\ell = \frac{3}{4}$. Or pour tout $n \in \mathbb{N}$,

$$0 \le x_n \le \frac{1}{2}.$$

2

Par compatibilité de la limité avec la relation d'ordre \leq , on a $0 \leq \ell \leq \frac{1}{2}$.

Conclusion

La suite (x_n) converge vers $\frac{1}{4}$.

On considère la suite u définie par $\begin{cases} u_0 = 10 \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n} \end{cases}.$

- **1.** Étudier les variations de la fonction f définie par $f(x) = \frac{x}{2} + \frac{1}{x}$.
- 2. Déterminer un intervalle I stable par f (c'est-à-dire tel que $f(I) \subset I$) et contenant u_0 . En déduire que la suite u est bien définie et que : $\forall n \in \mathbb{N}, u_n \in I$.
- **3.** Étudier la monotonie de *u*.
- **4.** Montrer que *u* converge et donner sa limite.

Exercice 23.4

On se propose de définir une suite (u_n) par $u_0 \in \mathbb{R}_+^*$ et la relation de récurrence

$$\forall n \in \mathbb{N}, u_{n+1} = 2 + \ln u_n.$$

- 1. Montrer que l'équation $2 + \ln x = x$ admet deux solutions a et b telles que 0 < a < 1 < b.
- 2. Démontrer les résultats suivants
 - (a) Si $0 < u_0 < a$, alors on ne peut définir u_n pour tout $n \in \mathbb{N}$.
 - (b) Si $u_0 > a$, alors (u_n) est monotone et converge vers b.

Exercice 23.5

Voici quelques exemples supplémentaires pour s'entrainer

$$1. \ f(x) = \sin^2 x,$$

1.
$$f(x) = \sin^2 x$$
,
2. $f(x) = \ln(1+2x)$,
3. $f(x) = \sqrt{1+x}$ et $u_0 = 2$,
4. $f(x) = x^2 + \frac{3}{16}$.

Attention, pour certaines fonctions f, le problème peut être très difficile, la suite (u_n) pouvant avoir un comportement chaotique. C'est le cas par exemple de la suite de Feigenbaum définie par la relation u_{n+1} $\mu(u_n - u_n^2)$. Le comportement de cette suite est très sensible aux variations u_0 et du paramètre $\mu \in [0, 4]$.

Solution 23.5

On donne la suite (u_n) définie par

$$u_1 = \sqrt{2}$$
 et $u_n = \sqrt{2 - u_{n-1}}$.

En étudiant les suites (u_{2n}) et (u_{2n+1}) , montrer que la suite (u_n) est convergente.

Exercice 23.7

On considère la suite (u_n) définie par

$$u_0 \in \left[0, \frac{4}{3}\right] \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{1}{3}(4 - u_n^2).$$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $u_n \in \left[0, \frac{4}{3}\right]$.
- **2.** Si (u_n) était convergente, quelle serait sa limite ℓ ?
- **3.** Montrer que pour tout $n \in \mathbb{N}$, $\left| u_{n+1} \ell \right| \leq \frac{7}{9} \left| u_n \ell \right|$.
- 4. Conclure.

Solution 23.7

1. On peut introduire la fonction $f: \mathbb{R} \to \mathbb{R}$. Un tableau de variation rapide permet de $x \mapsto \frac{1}{3} (4 - x^2)$

montrer que

$$f([0,4/3]) = [20/27,4/3] \subset [0,4/3].$$

Puisque $u_0 \in [0, 4/3]$, la suite (u_n) vérifiant $u_{n+1} = f(u_n)$ est bien définie est à valeurs dans [0, 4/3].

Variante. On peut également faire une démonstration par récurrence.

2. Supposons (u_n) convergente de limite ℓ , alors nous avons

$$\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} \frac{1}{3} (4 - u_n^2) = \frac{1}{3} (4 - \ell^2).$$

De plus, la suite (u_{n+1}) est une suite extraite de la suite (u_n) , elle converge donc également vers ℓ . Par unicité de la limite de la suite (u_{n+1}) , on a

$$\frac{1}{3}(4-\ell^2) = \ell \quad \text{qui \'equivaut \`a} \quad \ell^2 + 3\ell - 4 = 0.$$

On a donc nécessairement $\ell = 1$ ou $\ell = -4$. Or, pour tout $n \in \mathbb{N}$, $0 \le u_n \le \frac{4}{3}$. Par compatibilité de la relation \le avec la limite, on a également $0 \le \ell \le 4/3$.

Conclusion

Si la suite (u_n) est convergente, alors sa limite est nécessairement $\ell = 1$.

3. Pour $n \in \mathbb{N}$,

$$\left|u_{n+1} - 1\right| = \left|\frac{1}{3} - \frac{1}{3}u_n^2\right| = \frac{1}{3}\left|u_n^2 - 1\right| = \frac{1}{3}\left|u_n + 1\right|\left|u_n - 1\right| \le \frac{1}{3}\frac{7}{3}\left|u_n - 1\right| \tag{1}$$

4. Une récurrence classique permet de montrer que, pour tout $n \in \mathbb{N}$,

$$\left|u_n - 1\right| \le \left(\frac{7}{9}\right)^n \left|u_0 - 1\right|.$$

Puisque 0 < 7/9 < 1, le terme de droite a pour limite 0. D'après le théorème d'existence de limite par domination, la suite (u_n) est convergente et a pour limite $\ell = 1$.

4

Soit (u_n) définie par $u_0 = 0$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{12 - u_n}.$$

- **1.** La suite (u_n) est-elle monotone?
- **2.** Prouver que les suites (u_{2n}) et (u_{2n+1}) sont monotones.
- 3. Prouver

$$\forall n \in \mathbb{N}, u_{2n} \le u_{2n+1} \le u_1 \le 4.$$

4. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\left|u_{2n+1} - u_{2n}\right| \le \frac{1}{4\sqrt{2}} \left|u_{2n} - u_{2n-1}\right| \text{ et } \left|u_{2n+1} - u_{2n}\right| \le \left(\frac{1}{4\sqrt{2}}\right)^{2n} \times 4.$$

5. Que dire des suites (u_{2n}) et (u_{2n+1}) ? Conclure que (u_n) est convergente.

Solution 23.8

- **1.** Soit $f: x \mapsto \sqrt{12-x}$, f est décroissante sur $]-\infty, 12]$, $u_0 = 0$ et $f([0,12]) \subset [0,12]$, donc (u_n) est bien définie, f étant décroissante sur [0,12], (u_n) n'est pas monotone (en effet, pour tout $n \in \mathbb{N}^*$, $u_{n+1} u_n = f(u_n) f(u_{n-1})$ et $u_n u_{n-1}$ sont de signe opposés).
- **2.** On a

$$\forall n \in \mathbb{N}^*, u_{2n+2} = f \circ f(u_{2n}) \text{ et } u_{2n+3} = f \circ f(u_{2n+1}),$$

avec $f \circ f$ croissante sur [0, 12] (car f est décroissante sur [0, 12] et $f([0, 12]) \subset [0, 12]$), ce qui prouve par une récurrence immédiate que (u_{2n}) et (u_{2n+1}) sont monotonse. Plus précisement,

- Pour $n \in \mathbb{N}$, $u_{2n+2} u_{2n}$ a le signe de $u_2 u_0 = u_2 \ge 0$, d'où (u_{2n}) est croissante.
- Pour $n \in \mathbb{N}$, $u_{2n+3} u_{2n+1}$ a le signe de $u_3 u_1 = \sqrt{12 u_2} \sqrt{12} \le 0$, d'où (u_{2n+1}) est croissante.
- 3. Pour $n \in \mathbb{N}$, $u_{2n+1} u_{2n}$ a le signe de $-(u_{2n} u_{2n-1})$, c'est le signe de $(-1)^{2n}(u_1 u_0)$, d'où $u_{2n+1} u_{2n} \ge 0$.

De plus, (u_{2n+1}) est décroissante, on a

$$\forall n \in \mathbb{N}, u_{2n} \le u_{2n+1} \le u_1 \le 4.$$

4. Pour $n \in \mathbb{N}^*$,

$$u_{2n+1} - u_{2n} = \sqrt{12 - u_n} - \sqrt{12 - u_{2n-1}} = \frac{u_{2n-1} - u_{2n}}{\sqrt{12 - u_{2n}} + \sqrt{12 - u_{2n-1}}}.$$

Or, pour $n \in \mathbb{N}$, $u_n \le u_1 \le 4$, d'où

$$\sqrt{12-u_n} + \sqrt{12-u_{2n-1}} \ge 4\sqrt{2} \text{ et } |u_{2n+1}-u_{2n}| \le \frac{1}{4\sqrt{2}}|u_{2n}-u_{2n-1}|.$$

Par un récurrence, on obtient

$$\forall n\in\mathbb{N}, \left|u_{2n+1}-u_{2n}\right|\leq \left(\frac{1}{4\sqrt{2}}\right)^{2n}\left|u_{1}-u_{0}\right|\leq 4\times\left(\frac{1}{4\sqrt{2}}\right)^{2n}.$$

5. D'après le théorème d'existence de limite par domination, le résultat précédent prouve que $\lim_{n\to+\infty} (u_{2n+1}-u_{2n}) =$

0 (en effet,
$$\frac{1}{4\sqrt{2}} \in]0, 1[$$
 et $\lim_{n \to +\infty} \left(\frac{1}{4\sqrt{2}}\right)^{2n} = 0$).

Ainsi (u_{2n}) est croissante, (u_{2n+1}) est décroissante et $\lim_{n\to+\infty} (u_{2n+1}-u_{2n})=0$, ceci prouve que (u_{2n}) et (u_{2n+1}) sont des suites adjacentes. Elles sont donc convergentes de même limite ℓ .

De plus, (u_{2n+1}) et (u_{2n}) étant convergentes de même limite ℓ , on en déduit que (u_n) est convergente de limite ℓ (pourquoi? Justifiez!).

De plus, l'égalité $u_{n+1} = \sqrt{12 - u_n}$ donne par passage à la limite (unicité de la limite pour la suite extraite (u_{n+1}))

$$\ell = \sqrt{12 - \ell}$$

On a donc $\ell = 3$.

Finalement, (u_n) est convergente de limite 3.

On considère les suites (u_n) et (v_n) définies par

$$u_0 = v_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{3 - v_n}$ et $v_{n+1} = \sqrt{3 + u_n}$.

- **1.** Justifier que (u_n) et (v_n) sont bien définies.
- 2. Montrer

$$\forall n \in \mathbb{N}, |u_{n+1} - 1| \le |v_n - 2| \text{ et } |v_{n+1} - 2| \le \frac{1}{2}|u_n - 1|.$$

3. Déduire

$$\forall n \in \mathbb{N}, \left| u_{n+2} - 1 \right| \le \frac{1}{2} \left| u_n - 1 \right|.$$

- **4.** Montrer que (u_n) est convergente.
- 5. Montrer que (v_n) est convergente.

Solution 23.9

C'est un bon problème à travailler!

On considère la fonction f définie par

$$\forall x \in \mathbb{R}, f(x) = \cos(x).$$

Soit $u = (u_n)$ la suite réelle donnée par

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- **1.** Montrer que f admet un unique point fixe α et que $\alpha \in [0, 1]$.
- 2. Représenter graphiquement les premiers termes de la suite *u*.
- **3.** Montrer: $\forall n \in \mathbb{N}, u_n \in [0, 1]$.
- **4.** Première méthode. Pour tout $n \in \mathbb{N}$, on note $x_n = u_{2n}$ et $y_n = u_{2n+1}$. On pose également $g = f \circ f$.
 - (a) Vérifier que α est l'unique point fixe de g et donner le sens de variation de g sur [0, 1].
 - (b) Montrer que les suites (x_n) et (y_n) sont monotones, de monotonies opposées et qu'elles convergent vers α .
 - (c) Conclure sur la convergence de la suite u.
 - (d) Écrire une suite d'instructions qui permette de calculer une valeur approchée de α à 10^{-5} près.
- 5. Seconde méthode.
 - (a) Montrer

$$\forall n \in \mathbb{N}, |u_n - \alpha| \le (\sin 1)^n.$$

Retrouver ainsi le fait que la suite u converge vers α .

(b) En déduire une suite d'instructions qui permette de calculer une valeur approchée de α à 10^{-5} près.

Solution 23.10