IN THE CLAIMS:

Please cancel claim 15 without prejudice or disclaimer.

Claims 1, 2, 3, 9, 14, 16, 20 and 21 have been amended herein. Please note that all claims currently pending and under consideration in the referenced application are shown below, in clean form, for clarity. Please enter these claims as amended. Also attached is a version with markings to show changes made to the claims.

- 1. (Amended) A capacitive sensor for detecting a level of fluid in a container having an interior volume, the sensor comprising mutually cooperative first and second electrodes arranged for placement on the container in isolation from the interior volume of the container, wherein each electrode exhibits a two-dimensional area having a vertical dimension and a horizontal dimension, and wherein the first and second electrodes are arranged such that a majority of each of their respective areas are vertically and horizontally offset from each other.
- 2. (Amended) The sensor of claim 1, wherein the first and second electrodes are arranged such that their respective areas are substantially vertically and horizontally offset from each other.
- 3. (Amended) The sensor of claim 1, wherein the first and second electrodes are arranged such that their respective areas are completely vertically and horizontally offset from each other.
- 4. The sensor of claim 1, wherein the first and second electrodes are vertically spaced from each other.
- 5. The sensor of claim 1, wherein the electrodes comprise substantially two-dimensional plates.

BI

- 6. The sensor of claim 1, further comprising a conductor coupled to each of the first and second electrodes.
- 7. The sensor of claim 6, wherein the conductors coupled to each of the first and second electrodes are also coupled to control circuitry.
- 8. (Previously Amended) The sensor of claim 7, wherein the conductors coupled to each of the first and second electrodes are coupled to the control circuitry through a Zero Insertion Force connector.
- 10. (Previously Amended) The sensor of claim 9, wherein the control circuitry is configured to supply a signal at a frequency of at least about 4 MHz.
- 11. (Previously Amended) The sensor of claim 10, wherein the control circuitry is configured to supply a signal at a frequency of at least about 8 MHz.
- 12. The sensor of claim 1, further comprising control circuitry configured to detect a change in a capacitance of the sensor.
- 13. The sensor of claim 1, further comprising at least one alarm responsive to an output signal of the sensor.
- 14. (Amended) The sensor of claim 1, wherein the first and second electrodes are horizontally spaced.

15. (Canceled)

BI

- 16. (Amended) The sensor of claim 1, wherein the first and second electrodes are arranged for placement on a wall of the container.
- 17. The sensor of claim 16, further comprising a mounting structure to which the first and second electrodes are affixed.
- 18. (Previously Amended) The sensor of claim 17, wherein the mounting structure is a thin, electrically insulative film.
- 19. (Previously Amended) The sensor of claim 18, wherein the thin, electrically insulative film is Mylar.
- 20. (Amended) The sensor of claim 1, wherein the first and second electrodes are placed within the wall of the container.
- 21. (Twice Amended) A method for detecting a level of a fluid within a container a having an interior volume, comprising:

placing a capacitive structure including first and second electrodes on a wall of the container in-

isolation from the interior volume of the container, wherein each electrode exhibits a twodimensional area having a vertical dimension and a horizontal dimension and wherein the first and second electrodes are arranged such that a majority of each of their respective areas are vertically and horizontally offset from each other;

driving the capacitive structure at a frequency of more than about 1 MHz and generating an output signal from the capacitive structure responsive thereto:

output signal from the capacitive structure responsive thereto; adjusting a fluid level within the container; and detecting a change in the output signal responsive to the adjusting of the fluid level.

By

- 22. The method of claim 21, wherein placing a capacitive structure on a wall of the container comprises placing a capacitive structure within the wall of the container.
- 23. The method of claim 21, wherein driving the capacitive structure at a frequency of more than about 1 MHz further comprises driving the capacitive structure at a frequency of at least about 4 MHz.
- 24. (Previously Amended) The method of claim 21, wherein driving the capacitive structure at a frequency of more than about 1 MHz further comprises driving the capacitive structure at a frequency of at least about 8 MHz.
- 25. The method of claim 21, wherein placing the capacitive structure on a wall of the container comprises forming the capacitive structure on a mounting structure and affixing the mounting structure to an exterior wall of the container with adhesive.
- 26. The method of claim 21, wherein placing the capacitive structure on a wall of the container comprises forming the capacitive structure on the wall.
- 27. The sensor of claim 21, further comprising determining whether the output signal exceeds a reference signal.
- 28. (Previously Amended) The method of claim 27, further comprising initiating at least one alarm if the output signal exceeds the reference signal.
- 29. The method of claim 28, wherein the at least one alarm is at least one of an audible alarm and a visual alarm.