

# ECE 3561 Advanced Digital Design

Class 30: Sequential Circuit Design 8 – Equations

Drew Phillips Spring 2024

### Sequential Circuit Design Process

- 1) State / Output Diagram / Table
- 2) Minimization of Number of States
- 3) State Variable Assignment
- 4) Transition / Output Table
- 5) Selection of Flip Flop Types
- 6) Excitation Table
- 7) Excitation Equations
- 8) Output Equations
- 9) Logic Diagram

#### **State Assignment Procedure Summary**

- 1) Apply Guideline 1 to the state table to identify adjacency relationships for states that have the same next state for a given input.
- 2) Apply Guideline 2 to the state table to identify adjacency relationships for the next states of the same state.
- 3) Apply Guideline 3 to the state table to identify adjacency relationships for states that have the same output.
- **4)** Assign the initial/start state to the "all 0s" square in the assignment map.
- 5) Place states in the assignment map to satisfy as many adjacency relationships as possible with this priority:

First: relationships from Guidelines 1 and 2 which occur multiple times

Second: remaining relationships from Guidelines 1 and 2

Third: relationships from Guideline 3

6) Iterate and/or move states as needed to determine "best" mapping which best satisfies the adjacency relationships.

SP24

Consider this previous state machine (detects 010 or 1001)



|               | NEXT STATE |     | OUTPUT |     |
|---------------|------------|-----|--------|-----|
| Present State | X=0        | X=1 | X=0    | X=1 |
| S0            | S1         | S4  | 0      | 0   |
| S1            | S1         | S2  | 0      | 0   |
| S2            | S3         | S4  | 1      | 0   |
| S3            | S5         | S2  | 0      | 0   |
| S4            | S3         | S4  | 0      | 0   |
| S5            | S1         | S2  | 0      | 1   |

SP24

• Apply the three guidelines:

|                      | NEXT STATE |     | OUTPUT |     |
|----------------------|------------|-----|--------|-----|
| <b>Present State</b> | X=0        | X=1 | X=0    | X=1 |
| S0                   | S1         | S4  | 0      | 0   |
| <b>S</b> 1           | S1         | S2  | 0      | 0   |
| S2                   | S3         | S4  | 1      | 0   |
| <b>S</b> 3           | S5         | S2  | 0      | 0   |
| S4                   | S3         | S4  | 0      | 0   |
| S5                   | S1         | S2  | 0      | 1   |

SP24

5

 Enter S0 as the initial state and then enter states into the state assignment map to satisfy as many adjacency relationships as possible given the priorities

#### **OUTPUT**

| Present State | X=0        | X=1 | X=0 | X=1 |
|---------------|------------|-----|-----|-----|
| S0            | <b>S</b> 1 | S4  | 0   | 0   |
| <b>S</b> 1    | <b>S</b> 1 | S2  | 0   | 0   |
| S2            | <b>S</b> 3 | S4  | 1   | 0   |
| S3            | S5         | S2  | 0   | 0   |
| S4            | <b>S</b> 3 | S4  | 0   | 0   |
| S5            | <b>S</b> 1 | S2  | 0   | 1   |



Here is one possible assignment mapping

#### **OUTPUT**

| Present State | X=0        | X=1 | X=0 | X=1 |
|---------------|------------|-----|-----|-----|
| S0            | <b>S</b> 1 | S4  | 0   | 0   |
| <b>S</b> 1    | <b>S</b> 1 | S2  | 0   | 0   |
| S2            | <b>S</b> 3 | S4  | 1   | 0   |
| S3            | S5         | S2  | 0   | 0   |
| S4            | <b>S</b> 3 | S4  | 0   | 0   |
| S5            | <b>S</b> 1 | S2  | 0   | 1   |



Then enter the state assignments into the state table



| Present State | Next State  |            | Output     |                            |
|---------------|-------------|------------|------------|----------------------------|
| ABC           | <u>X =0</u> | <u>X=1</u> | <u>X=0</u> | $\underline{\mathbf{X}=1}$ |
| S0 000        | S1          | S4         | 0          | 0                          |
| S1            | S1          | S2         | 0          | 0                          |
| S2            | S3          | S4         | 1          | 0                          |
| S3            | S5          | S2         | 0          | 0                          |
| S4            | S3          | S4         | 0          | 0                          |
| S5            | S1          | S2         | 0          | 1                          |

SP24 8

Then generate K-maps and the equations/logic. Use D flip-flops.

| Present State | Next State  |            | Output     |            |
|---------------|-------------|------------|------------|------------|
| ABC           | <u>X =0</u> | <u>X=1</u> | <u>X=0</u> | <u>X=1</u> |
| S0 000        | S1          | S4         | 0          | 0          |
| S1            | S1          | S2         | 0          | 0          |
| S2            | S3          | S4         | 1          | 0          |
| S3            | S5          | S2         | 0          | 0          |
| S4            | S3          | S4         | 0          | 0          |
| S5            | S1          | S2         | 0          | 1          |







 $\mathbf{Z} =$ 

#### Total circuit cost:

- 3 D flip-flops
- X complement: 1 gate
- A excitation logic: 2 gates
- B excitation logic: 1 gate
- C excitation logic: 2 gates (but 1 is reused from A)
- Z combinational logic: 3 gates
- Total = 3 FFs + 7 gates

SP24 10

Draw the circuit!

SP24 11