

Cours Modélisation et Vérification des Systèmes Informatiques (MVSI)

Sémantique des langages de programmation et applications à l'analyse des programmes

Dominique Méry Telecom Nancy, Université de Lorraine

Année universitaire 2024-2025

Plan

- Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation
- 3 Sémantique opérationnelle
- 4 Sémantique dénotationnelle
- **5** Equivalence des deux sémantiques
- 6 Transformateurs de prédicats
 - Introduction
 - Définition et propriétés
 - Construction du wp pour la
 - conditionnelle
 - Construction du wp pour
 - l'itération
- 7 Logique de Hoare
- 8 Conclusion

Sommaire

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation
- 3 Sémantique opérationnelle
- 4 Sémantique dénotationnelle
- 5 Equivalence des deux sémantiques
- 6 Transformateurs de prédicats
 - Introduction
 - Définition et propriétés
 - Construction du wp pour la conditionnelle
 - Construction du wp pour l'itération
- 7 Logique de Hoare
- 8 Conclusion

Current Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation
- Sémantique opérationnelle
- 4 Sémantique dénotationnelle
- 5 Equivalence des deux sémantiques
- 6 Transformateurs de prédicats
 - Introduction
 - Définition et propriétés
 - Construction du wp pour la conditionnelle
 - Construction du wp pour l'itération
- 7 Logique de Hoare
- Conclusion

Un programme P remplit un contrat (pre,post) :

- P transforme une variable x à partir d'une valeur initiale x_0 et produisant une valeur finale $x_f: x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f$
- ightharpoonup x₀ satisfait pre : pre(x_0) and x_f satisfait post : post(x_0, x_f)

- $ightharpoonup P_f(x_0,x) \Rightarrow post(x_0,x)$
- conditions de vérification pour toutes les paires $\ell \longrightarrow \ell'$

Un programme P remplit un contrat (pre,post) :

- ▶ P transforme une variable x à partir d'une valeur initiale x_0 et produisant une valeur finale $x_f: x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f$
- ightharpoonup x₀ satisfait pre : pre(x_0) and x_f satisfait post : post(x_0, x_f)

```
requires pre(x_0)
ensures post(x_0, x_f)
variables X
        instruction<sub>f-1</sub>
f: P_f(x_0, x)
```

$$ightharpoonup pre(x_0) \wedge x = x_0 \Rightarrow P_0(x_0, x)$$

- Pour toute paire d'étiquettes ℓ, ℓ' telle que $\ell \longrightarrow \ell'$, on vérifie que, pour toutes valeurs $x, x' \in \text{MEMORY}$

$$\begin{pmatrix}
x, x \in MEMORY \\
pre(x_0) \land P_{\ell}(x_0, x)) \\
\land cond_{\ell, \ell'}(x) \land x' = f_{\ell, \ell'}(x)
\end{pmatrix},$$

$$\Rightarrow P_{\ell'}(x_0, x')$$

Méthode de vérification pour RTE

Un programme P remplit un contrat (pre,post) :

- P transforme une variable x à partir d'une valeur initiale x_0 et produisant une valeur finale $x_f: x_0 \stackrel{P}{\longrightarrow} x_f$
- ightharpoonup x₀ satisfait pre : pre(x₀) and x_f satisfait post : post(x₀, x_f)
- ▶ $\operatorname{pre}(x_0) \wedge x_0 \xrightarrow{\mathsf{P}} x_f \Rightarrow \operatorname{post}(x_0, x_f)$ et $\mathbb D$ est le domaine RTE de X

```
requires pre(x_0)
ensures post(x_0, x_f)
variables X
        begin 0: P_0(x_0, x)
       f: P_{\ell}(x_0, x)
```

- Pour toute paire d'étiquettes ℓ, ℓ' telle que $\ell \longrightarrow \ell'$, on vérifie que, pour toutes valeurs $x, x' \in \text{MEMORY}$

$$\begin{pmatrix}
x, x \in MEMORY \\
formula & formula \\
formu$$

Pour toute paire d'étiquettes m,n tell e que $m \longrightarrow n$, on vérifie que, $\forall x,x' \in \text{MEMORY}: pre(x_0) \land$

Point d'étape

- $\forall x_0, x \in \text{VALS}.Init(x_0) \land \text{NEXT}^*(x_0, x) \Rightarrow A(x)$
- $\forall x \in \text{VALS.}(\exists x_0.x_0 \in \text{VALS} \land Init(x_0) \land \text{NEXT}^*(x_0, x)) \Rightarrow A(x).$
- ightharpoonup REACHABLE $(M) = \{u | u \in \text{VALS} \land (\exists x_0.x_0 \in A)\}$ VALS $\wedge Init(x_0) \wedge NEXT^*(x_0, u)$ est l'ensemble des états accessibles à partir des états initiaux.
- Model Checking : on doit montrer l'inclusion REACHABLE $(M) \subseteq \{u | u \in \text{VALS} \land A(u)\}.$
- Preuves : définir un invariant $I(\ell,v) \equiv \bigvee_{\ell \in \text{Locations}} \left(\bigvee_{v \in \text{MEMORY}} P_{\ell}(v)\right)$ avec la famille d'annotations $\{P_{\ell}(v): \ell \in \text{Locations}\}\$ et démontrer les conditions de vérification.
- Analyse automatique :
 - Mécaniser la vérification des conditions de vérification
 - Calculer REACHABLE(M)
 - Calculer une valeur approchée de REACHABLE(M)

$$(\mathcal{P}(\mathrm{Vals}),\subseteq) \overset{\gamma}{\underset{\alpha}{\longleftarrow}} (D,\sqsubseteq)$$

$$\alpha(\mathrm{Reachable}(M)) \sqsubseteq A \text{ ssi Reachable}(M) \sqsubseteq \gamma(A)$$
 Si $\gamma(A) \subseteq \{u|u \in \mathrm{Vals} \land A(u)\}$, alors

Analyse automatique

- Mécaniser la vérification des conditions de vérification
- ightharpoonup Calculer REACHABLE(M) comme un point-fixe.
- ightharpoonup Calculer une valeur approchée de REACHABLE(M)

$$(\mathcal{P}(\mathrm{Vals}),\subseteq) \xleftarrow{\gamma}_{\alpha} (D,\sqsubseteq)$$

$$\alpha(\mathrm{REACHABLE}(M)) \sqsubseteq A \text{ ssi } \mathrm{REACHABLE}(M) \sqsubseteq \gamma(A)$$

Si
$$A$$
 vérifie $\gamma(A)\subseteq\{u|u\in\mathrm{VALS}\wedge A(u)\}$, alors $\mathrm{REACHABLE}(M)\subseteq\{u|u\in\mathrm{VALS}\wedge A(u)\}$

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

- First, a phase of **domain engineering** \mathcal{D} : an analysis of the application domain leads to a description of that domain.
- ightharpoonup Second, a phase of **requirements engineering** \mathcal{R} : an analysis of the domain description leads to a prescription of requirements to software for that domain. ¡bloc
- ▶ Third, a phase of **software/system design** S: an analysis of the requirements prescription leads to software for that domain.

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

Pre/Post Specification

 $\triangleright \mathcal{R}$: pre/post.

 $\triangleright \mathcal{D}$: integers, reals, ...

 \triangleright S: algorithm, program, ...

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

Pre/Post Specification

- $\triangleright \mathcal{R}$: pre/post.
- $\triangleright \mathcal{D}$: integers, reals, ...
- \triangleright S: algorithm, program, ...
- Semantical relationship
- Verification by induction principle

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

System Modelling

 $\triangleright \mathcal{R}$: safety properties in Event-B

▶ D : theories, context in Event-B

 \triangleright S: machines for reactive systems

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

System Modelling

- $\triangleright \mathcal{R}$: safety properties in Event-B
- D: theories, context in Event-B
- \triangleright S: machines for reactive systems
- Checking proof obligations
- Refinement of models

$$\mathcal{D}, \mathcal{S} \Rightarrow \mathcal{R}$$

- First, a phase of **domain engineering** \mathcal{D} : an analysis of the application domain leads to a description of that domain.
- ightharpoonup Second, a phase of **requirements engineering** \mathcal{R} : an analysis of the domain description leads to a prescription of requirements to software for that domain.
- ▶ Third, a phase of **software/system design** S: an analysis of the requirements prescription leads to software for that domain.

J. Piaget. Logique et Connaissance scientifique. La Pléiade, encyclopaedia.

If we refer to whom is talking, or more generally to the language users, this investigation is attributed to the **pragmatics**.

If we make an abstraction of the language users and if we analyze the expressions and their meanings only, we are in the area of the **semantics**. Finally, if we make an abstraction of the meanings to analyze the relations between expressions, we are dealing with syntax

relations between expressions, we are dealing with syntax.

These three elements constitute the science of the language or semiotics.

Listing 1 – annotation

```
#include < limits . h>
/*@ requires x < INT\_MAX && <math>x >= INT\_MIN ;
requires y < INT_MAX;
     requires y >= INT_MIN ;
requires z < INT_MAX:
     requires z \gg = INT_-MIN:
requires z+x*x+2*x*(y+3) < INT\_MAX;
     requires z+x*x+2*x*(y+3) >= INT\_MIN;
requires z+x*x < INT_MAX:
     requires z+x*x >= INT_MIN;
     requires x = y + 3 \&\& z = (y+3)*(y+3);
@*/
int funny(int x, int y, int z) {
    //@ assert x = y + 3 \&\& z = (y+3)*(y+3);
    z=z+x*x+2*x*(y+3);
    //@ assert z = (y+3+x)*(y+3+x);
    return 0;
```

Etrange spécification

Listing 2 - calcul d'une moyenne

```
/*@
  requires a < 0 && a > 0;
  ensures \false;
*/
void afunnyfun(int a){ }
```

Listing 3 - calcul d'une moyenne

```
#include <stdio.h>
#include <limits.h>
/*@
    requires INT_MIN <= a && a <= INT_MAX:
    requires INT\_MIN \le b \&\& b \le INT\_MAX;
    requires INT_MIN <= a+b && a+b <= INT_MAX;
    ensures INT_MIN <= \ result && \ result <= INT_MAX;
int average (int a, int b)
  return ((a+b)/2);
int main()
  int x, y;
  x=INT\_MAX: v=0:
//@ assert INT_MIN <= x && x <= INT_MAX:
//@ assert INT_MIN <= y && y <= INT_MAX;
//@ assert INT_MIN <= x+y \&\& x+y <= INT_MAX;
  printf("Average - - for -%d - and -%d - is -%d\n", x, y,
         average(x,y));
  return 0:
```

Current Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation

- **5** Equivalence des deux sémantiques
- Logique de Hoare

Quelques observations

Implicite versus explicite

ightharpoonup Ecrire 101 = 5 peut avoir une signification

Implicite versus explicite

- ightharpoonup Ecrire 101 = 5 peut avoir une signification
- Le code du nombre n est 101 à gauche du symbole = et le code du nombre n est sa représentation en base 10 à droite.
- $n_{10} = 5$ et $n_2 = 101$
- \blacktriangleright Vérification : $base(2, 10, 101) = 1.2^2 + 0.2 + 1.2^0 = 5_{10}$

Example: description of static behaviour

- A train moving at absolute speed spd1
- \triangleright A person walking in this train with relative speed spd2
 - One may compute the absolute speed of the person
- Modelling
 - Syntax. Classical expressions
 - ightharpoonup Type Speed = Float
 - \triangleright spd1. spd2 : Speed
 - ightharpoonup AbsoluteSpeed = spd1+spd2
 - Semantics
 - If spd1 = 25.6 and spd2 = 24.4 then AbsoluteSpeed = 50.0If spd1 = "val" and spd2 = 24.4 then exception raised
 - Pragmatics
 - What if spd1is given in mph (miles per hour) and spd2 in km/s(kilometers per second)?
 - What if spd1 is a relative speed?

Des sémantiques pour des langages de programmation

- La sémantique décrit le sens des objets définis par la syntaxe.
- La sémantique permet d'éviter l'ambiguïté des éléments d'un langage.
- Exemples
 - L'objet 123 désigne le nombre 123 en base dix.
 - L'objet x+12+8 désigne la somme des valeurs de la variable x et des deux nombres écrits en base dix 12 et 8.
- Styles de sémantique
 - Sémantique Opérationnelle : la sémantique du programme est décrite par une relation de transition qui décrit les différents étas du programme et la relation de transition est définie par des opérations ou des actions.
 - Sémantique Dénotationnelle : la sémantique du programme est une fonction calculant le résultat à partir de la donnée.
 - Sémantique Axiomatique : le programme est caractérisé par des axiomes et des règles d'inférences comme par exemple la logique de HOARE

Current Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation.
- 3 Sémantique opérationnelle
- **5** Equivalence des deux sémantiques
- Logique de Hoare

Sémantique Opérationnelle Structurelle et Sémantique Natutelle

- ► Sémantique à petits pas (small steps) :
 - Définition d'une relation notée $\longrightarrow_{\text{sos}}$ sur l'ensemble des configurations de la forme (S,s) où S est une instruction ou un programme ou une instruction et s est un état ou de la forme s où s est un état.
 - Transitions de type $1:(S,s) \xrightarrow[sc]{} (S',s')$
 - Transitions de type 2 : $(S,s) \xrightarrow[sos]{sos} s'$
- ► Sémantique naturelle ou à grands pas (big step) :
 - Définition d'une relation notée $\longrightarrow_{\text{nat}}$ sur l'ensemble des configurations de la forme (S,s) où S est une instruction ou un programme ou une instruction et s est un état ou de la forme s où s est un état.
 - Transitions uniquement de ce type : $(S,s) \xrightarrow{\text{nat}} s'$

Cadre pour la sémantique opérationnelle

- ▶ Un état s est un élément de $STATES = V \rightarrow \mathbb{Z}$ et STATES est l'ensemble des états.
- ▶ \mathcal{E} est une fonction associant à toute expression arithmétique une fonction permettant de donner la valeur de cette expression en un état donné : $\mathcal{E} \in EXPR \to (STATES \to \mathbb{Z})$:
 - $\mathcal{E}(x)(s) = s(x)$ où $x \in V$ et $s \in STATES$.
 - $\mathcal{E}(constant)(s) = constant$.
 - $\mathcal{E}(e1 \ op \ e2)(s) = \mathcal{E}(e1)(s) \ \mathbf{op} \ \mathcal{E}(e2)(s)$.
- ▶ \mathcal{B} est une fonction associant à toute expression booléenne une fonction permettant de donner la valeur de cette expression en un état donné : $\mathcal{B} \in BEXPR \to (STATES \to BOOL)$:
 - $\mathcal{B}(ff)(s) = FALSE$
 - $\mathcal{B}(tt)(s) = TRUE$
 - $\mathcal{B}(e1 \ relop \ e2)(s) = \mathcal{E}(e1)(s) \ \mathbf{relop} \ \mathcal{E}(e2)(s)$.
 - $\mathcal{B}(b1 \ bop \ b2)(s) = \mathcal{B}(b1)(s) \ \mathbf{bop} \ \mathcal{B}(b2)(s)$.

Règles de définition selon la syntaxe

- Si $\mathcal{E}(e)(s)$ est la valeur de l'expression e en s, alors $(x := e, s) \longrightarrow s[x \mapsto \mathcal{E}(e)(s)]$
- $\triangleright (skip, s) \xrightarrow{sos} s$
- ightharpoonup Si $(S_1,s) \xrightarrow[sos]{sos} (S'_1,s')$, alors $(S_1;S_2,s) \xrightarrow[sos]{sos} (S'_1;S_2,s')$.
- ightharpoonup Si $(S_1,s) \xrightarrow{\text{sof}} s'$, alors $(S_1;S_2,s) \xrightarrow{\text{sof}} (S_2,s')$.
- ▶ Si $\mathcal{B}(b)(s) = TRUE$, alors (if b then S_1 else S_2 fi, s) $\longrightarrow_{\mathsf{enc}} (S_1, s)$.
- ▶ Si $\mathcal{B}(b)(s) = FALSE$, alors (if b then S_1 else S_2 fi, s) $\xrightarrow[soc]{} (S_2, s)$.
- ▶ (while b do S od, s) $\xrightarrow[sos]{}$ (if b then S; while b do S od else skip fi, s)

Règles de définition selon la syntaxe

- Si $\mathcal{E}(e)(s)$ est la valeur de l'expression e en s, alors $(x := e, s) \xrightarrow{} s[x \mapsto \mathcal{E}(e)(s)]$
- $\triangleright (skip, s) \xrightarrow{\mathsf{nat}} s$
- ightharpoonup Si $(S_1,s) \xrightarrow{\text{nat}} s'$ et $(S_2,s') \xrightarrow{\text{nat}} s$ ", alors $(S_1;S_2,s) \xrightarrow{\text{nat}} s$ ".
- Si $(S_1, s) \xrightarrow{\text{nat}} s'$ et $\mathcal{B}(b)(s) = TRUE$, alors (if b then S_1 else S_2 fi, $s) \xrightarrow{\text{nat}} s'$.
- ▶ Si $(S_2, s) \xrightarrow{\text{nat}} s'$ et $\mathcal{B}(b)(s) = FALSE$, alors (if b then S_1 else S_2 fi, s) $\xrightarrow{\text{nat}} s'$.
- ▶ Si $(S, s) \xrightarrow[\text{nat}]{} s'$ et (while b do S od, s') $\xrightarrow[\text{nat}]{} s$ " et $\mathcal{B}(b)(s) = TRUE$, alors (while b do S od, s) $\longrightarrow s$ ".
- ▶ Si $\mathcal{B}(b)(s) = FALSE$, alors (while b do S od, s) $\longrightarrow s$.

Fonction sémantique S_{sos} :

- $\triangleright S_{sos} \in STATS \rightarrow (STATES \rightarrow STATES)$:
- $\triangleright S_{sos}(S)(s) \stackrel{def}{=} \begin{cases} s' \ si \ (S,s) \xrightarrow{\star} s' \\ indefinie \ sinon \end{cases}$

Fonction sémantique S_{nat} :

- $\triangleright S_{nat} \in STATS \rightarrow (STATES \rightarrow STATES)$:
- $\triangleright S_{nat}(S)(s) \stackrel{def}{=} \begin{cases} s' \ si \ (S,s) \xrightarrow{nat} s' \\ indefinie \ sinon \end{cases}$

Equivalence de deux fonctions sémantiques

Equivalence pour les instructions de STATS

Pour toute instruction S de STATS, pour tout état s de STATES, $S_{sos}(S)(s) = S_{nat}(S)(s)$

Preuve

- Montrons que si $(S,s) \xrightarrow{\text{nat}} s'$, alors $(S,s) \xrightarrow{\star} s'$.
- $\blacktriangleright \text{ Montrons que si } (S,s) \xrightarrow[\text{sos}]{\star} s'., \text{ alors } (S,s) \xrightarrow[\text{pat}]{\star} s'.$

Current Summary

- Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation
- Sémantique opérationnelle
- 4 Sémantique dénotationnelle
- 5 Equivalence des deux sémantiques
- 6 Transformateurs de prédicats
 - Introduction
 - Définition et propriétés
 - Construction du wp pour la conditionnelle
 - Construction du wp pour l'itération
- 7 Logique de Hoare
- Conclusion

Motivations

- ► Fondement des langages de programmation.
- Outils mathématiques permettant de raisonner sur les objets de la programmation.
- Liaison entre les programmes et les spécifications : le raffinement
- Préservation de la sémantique d'un langage de programmation dans un langage de plus bas niveau par compilation : correction du compilateur.

Langage de programmation

Une notation pour des instructions comme par exemple C, PASCAL, SHELL,

- Syntaxe : Structure et forme des sentences
- ► Sémantique : Association d'un sens aux sentences comme par exeple des nombres, des fonctions, des actions d'une machine, . . .
- ► Pragmatique : Utilisation effective du langage comme par exemple les domaines d'applications, les performances, . . .

Des éléments spécifiques pour chaque programme d'une machine.

- ► Un module d'analyse syntaxique : lecture du texte fourni, vérification de la syntaxe, génération de la représentation interne.
- Un module d'évaluation : évaluation du texte fourni en donnée du texte analysé en un texte résultat; cela définit la sémantique du langage.

La mise en œvre d'un langage est une activité pragmatique.

Interprétation versus compilation

- Interprétation : Exécution du programme
 L'interprète définit le sens par ses actions.
- Compilation : Transformation d'un programme écrit dans un langage L en un texte équivalent d'un langage L2 (langage machine en général).
 - Le compilateur préserve le sens par équivalence.

Spécifications formelles des langages

- ► Syntaxe sous BNF (Backus Naur Form)
 - Correspondance entre la BNF et l'analyseur syntaxique.
 - Générateur d'analysuer à partir de spécification du langage.
- Sémantique :
 - Opérationnelle.
 - Axiomatique
 - Dénotationnelle

Sémantique dénotationnelle

- Le sens d'un programme est un objet mathématique.
- Chaque construction du langage est associée à un objet mathématique par une fonction de valuation. Le sens d'une structure est appelée une dénotation.

$$\mathcal{M}(P) = D \tag{1}$$

 ${\cal P}$ est un programme

 \mathcal{M} est une fonction de valuation.

D est une dénotation ou une valeur sémantique de dénotation.

Fonction de valuation

- Domaine : Structure syntaxique abstraite du langage
- ► Codomaine : Objets des domaines sémantiques.
- Définition structurelle : le sens d'un arbre est défini à partir du sens de ses sous-arbres.

Une fonction de valuation sémantique associe une syntaxe abstraite à des objets d'un domaine sémantique.

Langage des nombres binaires

► Syntaxe abstraite :

 $\bullet \ \, \text{Domaines syntaxiques} : \ \, \begin{array}{l} B \in Nombre-binaire \\ D \in Chiffre-binaire \end{array}$

 $\bullet \ \, \text{Règles syntaxiques} : \ \, \begin{array}{l} B ::= BD|D \\ D ::= 0|1 \end{array}$

Sens des sentences terminales

- Sous-arbre : |
- Sens: $\mathcal{D}(\begin{vmatrix} D \\ 0 \end{vmatrix}) = zero$
- $\blacktriangleright \ \, \mathsf{Notation} : \mathcal{D}[\![0]\!] = zero$

Fonction de valuation : $\begin{array}{l} \mathcal{D}[\![0]\!] = zero \\ \mathcal{D}[\![1]\!] = un \end{array}$

Sens des sentences non-terminales

```
ightharpoonup Sous-arbre : D
     \blacktriangleright \  \, \mathsf{Sens} : \mathcal{B}(\begin{array}{c} | \\ D \end{array}) = \mathcal{D}(\begin{array}{c} D \\ \Delta \end{array})
     ▶ Notation : \mathcal{B}\llbracket D \rrbracket = \mathcal{D}\llbracket D \rrbracket
\begin{array}{ll} \text{Fonction de valuation}: & \mathcal{B}[\![D]\!] = \mathcal{D}[\![D]\!] \\ \mathcal{B}[\![BD]\!] = (\mathcal{B}[\![B]\!] \ fois \ deux) \ plus \ \mathcal{D}[\![D]\!] \end{array}
```

Définition de la sémantique

```
Syntaxe abstraite B \in Nombre-binaire D \in Chiffre-binaireB ::= BD|D D ::= 0|1 Algèbres sémantiques Nombres naturels : Domaine Nat = \mathbb{N} Opérations zero, un deux, trois, ... : Nat plus, fois : Nat \times Nat \to Nat
```

Définition de la sémantique

```
Fonctions de valuation \mathcal{B}: Nombre-binaire \to Nat \mathcal{B}[\![D]\!] = \mathcal{D}[\![D]\!] \mathcal{B}[\![BD]\!] = (\mathcal{B}[\![B]\!] \ fois \ deux) \ plus \ \mathcal{D}[\![D]\!] \mathcal{D}: Chiffre-binaire \to Nat \mathcal{D}[\![0]\!] = zero \mathcal{D}[\![1]\!] = un
```

İ

Syntaxe

```
	au ::= bool \mid nat \ \% types de données \theta ::= exp[	au] \mid comm \ \% types des textes de commandes
```

- ▶ tout nom de type τ dénote un ensemble non vide $[\![\tau]\!]$ de valeurs possibles :
 - $\llbracket bool \rrbracket = \{true, false\}$
 - $\bullet \hspace{0.2cm} \llbracket \mathtt{nat} \rrbracket = \{0,1,2,3\ldots \}$
- $$\begin{split} & \hspace{-0.2cm} \llbracket \exp[\tau] \rrbracket = \operatorname{States} \longrightarrow \llbracket \tau \rrbracket \\ & \hspace{-0.2cm} \llbracket \operatorname{comm} \rrbracket = \operatorname{States} \rightarrow \operatorname{States} \text{ (fonction partielle)} \\ & \hspace{-0.2cm} \text{où States est l'ensemble des états,} \\ & \hspace{-0.2cm} \text{par exemple States} = Variable \longrightarrow Nat \\ \end{aligned}$$

Syntaxe et sémantique d'un langage impératif

► Equations sémantiques :

```
[\![\bullet]\!]_{\exp[\tau]}:\exp[\tau]\longrightarrow[\![\exp(\tau)]\!]
```

 $\llbracket \bullet \rrbracket_{\mathtt{comm}} : \mathtt{comm} \longrightarrow \llbracket \mathtt{comm} \rrbracket$

Syntaxe et sémantique d'un langage impératif

- $ightharpoonup [C_0; C_1]_{\text{comm}} = [C_1] \circ [C_0]$
- $\blacktriangleright \ [\![\text{for } N \text{ do } C]\!]_{\text{comm}} = [\![C]\!]^{[\![N]\!]}$
- Application à des démonstrations de propriétés sur les commandes :
 - $C \equiv C'$ si, et seulement si, $[\![C]\!] = [\![C']\!]$
 - for 0 do $C \equiv SKIP$
 - $(C;C);C \equiv C;(C;C)$
- Affectation :

$$[\![I:=E]\!]_{\mathtt{comm}} = \lambda s \in \mathtt{States}.s[I \mapsto [\![E]\!]_{\mathtt{exp}}(s)]$$

Observation

while B do C \equiv_{comm} if B then C; while B do C

- Vue par les commandes ou instructions
 - $C_0 = \text{diverge}$ (instruction ou comande qui ne terline jamais)
 - ullet $\forall i \in \mathbb{N}: \mathsf{C}_{i+1} = \mathtt{if}$ B then $\mathsf{C}; \mathsf{C}^i$
 - $\forall i \in \mathbb{N} : \mathsf{C}_{i+1}(s) = \mathsf{si} \ \llbracket B \rrbracket(s) \ alors \ (\llbracket \mathsf{C} \rrbracket; \mathsf{C}_i)(s) \ sinon \ s$
- Vue par les fonctions sémantiques :
 - $c_0 = \varnothing$ où $\llbracket C_0 \rrbracket = c_0$
 - $\forall i \in \mathbb{N} : c_i = \llbracket C_i \rrbracket$
 - $\forall i \in \mathbb{N} : c_{i+1}(s) = si \llbracket bb \rrbracket(s) \ alors (\llbracket \mathbf{C} \rrbracket; c_i)(s) \ sinon \ s$
 - $\forall i \in Nat : graphe(c_i) \subseteq graphe(c_{i+1}) \ \mathsf{et} c_i = \llbracket C_i \rrbracket$
- ▶ [while B do C] = c_{∞} où $graphe(c_{\infty}) = graphe(c_{0}) \cup \ldots \cup graphe(c_{i}) \cup$
- ▶ [while B do C] = μW où $W(f) = \lambda s \in \text{States. si}$ [B](s) $alors \ f([C](s)) \ sinon \ s$

Current Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation.
- 4 Sémantique dénotationnelle
- **5** Equivalence des deux sémantiques
- Logique de Hoare

Equivalence des sémantiques opérationnelles et dénotationnelles

Equivalence pour les instructions de STATS

Pour toute instruction S de STATS, pour tout état s de STATES, $\mathcal{S}_{sos}(S)(s) = \mathcal{S}_{nat}(S)(s) = \mathcal{D}(S)(s)$

- La sémantique opérationnelle est une sémantique liée à une fonction d'interprétation et de calcul du programme évalué.
- La sémantique dénotationnelle est une expression fonctionnelle du programme;

Current Summary

- 1 Ingénierie des logiciels et des systèmes
- Introduction à la sémantique des langages de programmation
- Sémantique opérationnelle
- **5** Equivalence des deux sémantiques
- 6 Transformateurs de prédicats
 - Introduction
 - Définition et propriétés
 - Construction du wp pour la conditionnelle
 - Construction du wp pour l'itération
- Logique de Hoare

Current Subsection Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation.

- **5** Equivalence des deux sémantiques
- **6** Transformateurs de prédicats

Introduction

- Logique de Hoare

```
Listing 4 - annotation
```

```
int main(void){
  int \times, y, z, u;
 x = 1:
  /*0 assert x == 1; */
  y = 2:
 /*0 assert x = 1 \& y = 2; */
  z = x * y;
 /*0 assert x = 1 \& y = 2 \& k z = 2; */
  u = z:
 /*0 assert x = 1 \& y = 2 \& k z = 2 \& k u = 2
  return 0:
```

```
Listing 5 - difference de deux nombres

/*@
    assigns \ result;
    ensures \ result == (a - b);

*/
static int difference(int a, int b) {
    return a-b;
}
```

```
Listing 6 - swap
/*@
     requires \valid(a) && \valid(b);
     assigns *a, *b;
     ensures *a = \setminus old(*b);
    ensures *b = \setminus old(*a);
*/
static void swap(int* a, int* b) {
    int temp;
    temp = (*a);
    (*a) = (*b);
    (*b) = temp:
```

```
Listing 7 – call
/*@
    assigns \result:
    ensures \ \ result = (a - b);
*/
static int difference(int a, int b) {
    return a-b;
/*@
    requires \valid(a) && \valid(b);
    assigns *a. *b:
    ensures *a = \setminus old(*b);
    ensures *b = \old(*a):
*/
static void swap(int* a, int* b) {
    int temp:
```

Intuition

- ▶ Un programme P *produit* des résultats à partir de données en accord avec une sémantique :
 - STATES est l'ensemble de tous les états de P : STATES = X → Z où X désigne les variables de P.
 - s_0 et s_f deux états de STATES : $\mathcal{D}(P)(s_0) = s_f$ signifie que P est exécuté à partir d'un état s_0 et produit un état s_f .
 - Pour un état s de P courant, on notera s(X) = x pour distinguer la valeur de la variable X et sa valeur courante en s:

- Un programme P produit des résultats à partir de données en accord avec une sémantique :
 - STATES est l'ensemble de tous les états de P : STATES = X → Z où X désigne les variables de P.
 - s₀ et s_f deux états de STATES : D(P)(s₀) = s_f signifie que P est exécuté à partir d'un état s₀ et produit un état s_f.
 - Pour un état s de P courant, on notera s(X) = x pour distinguer la valeur de la variable X et sa valeur courante en s :

$$s_0(X) = x_0, \ s_f(X) = x_f, \ s'(X) = x'$$

Intuition

- Un programme P produit des résultats à partir de données en accord avec une sémantique :
 - STATES est l'ensemble de tous les états de P : STATES = X → Z où X désigne les variables de P.
 - s₀ et s_f deux états de STATES : D(P)(s₀) = s_f signifie que P est exécuté à partir d'un état s₀ et produit un état s_f.
 - Pour un état s de P courant, on notera s(X) = x pour distinguer la valeur de la variable X et sa valeur courante en s:

$$s_0(X) = x_0, \ s_f(X) = x_f, \ s'(X) = x'$$

• $\mathcal{D}(P)(s_0) = s_f$ définit la relation suivante sur l'ensemble des valeurs :

$$x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f$$

- Un programme P produit des résultats à partir de données en accord avec une sémantique :
 - STATES est l'ensemble de tous les états de P : STATES = X → Z où X désigne les variables de P.
 - s₀ et s_f deux états de STATES : D(P)(s₀) = s_f signifie que P est exécuté à partir d'un état s₀ et produit un état s_f.
 - Pour un état s de P courant, on notera s(X) = x pour distinguer la valeur de la variable X et sa valeur courante en s:

$$s_0(X) = x_0, \ s_f(X) = x_f, \ s'(X) = x'$$

• $\mathcal{D}(P)(s_0) = s_f$ définit la relation suivante sur l'ensemble des valeurs :

$$x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f$$

- Un programme P remplit un contrat (pre,post) :
 - P transforme une variable x à partir d'une valeur initiale x₀ et produisant une valeur finale x_f : x₀

 P x_f
 - x₀ satisfait pre : pre(x₀)
 - x_f satisfait post : $post(x_0, x_f)$
 - $\operatorname{pre}(x_0) \wedge x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \operatorname{post}(x_0, x_f)$

Vérification du contrat

Un programme P remplit un contrat (pre,post) :

- ightharpoonup P transforme une variable x à partir d'une valeur initiale x_0 et produisant une valeur finale $x_f: x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f$
- \triangleright x₀ satisfait pre : pre(x₀)
- \triangleright x_f satisfait post : post(x_0, x_f)
- $ightharpoonup \operatorname{pre}(x_0) \wedge x_0 \stackrel{\mathsf{P}}{\longrightarrow} x_f \Rightarrow \operatorname{post}(x_0, x_f)$

```
requires pre(x_0)
ensures post(x_0, x_f)
variables X
```

```
\begin{aligned} & \text{begin} \\ & 0: P_0(x_0, x) \\ & \text{instruction}_0 \end{aligned}
f: P_f(x_0, x)
```

- $ightharpoonup pre(x_0) \wedge x = x_0 \Rightarrow P_0(x_0, x)$
- $ightharpoonup P_f(x_0,x) \Rightarrow post(x_0,x)$
- conditions de vérification pour toutes les paires $\ell \longrightarrow \ell'$

Asserted Program $\{P\}$ S $\{Q\}$

Current Subsection Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation.

- **5** Equivalence des deux sémantiques
- **6** Transformateurs de prédicats

Définition et propriétés

- Logique de Hoare

Opérateur WP

Soit STATES l'ensemble des états sur l'ensemble X des variables. Soit S une instruction de programme sur X. Soit A une partie de STATES. $s \in WP(S)(A)$, si la condition suivante est vérifiée :

$$\left(\begin{array}{c} \forall t \in STATES : \mathcal{D}(P)(s) = t \Rightarrow t \in A \\ \land \\ \exists t \in STATES : \mathcal{D}(P)(s) = t \end{array}\right)$$

- $WP(X := X+1)(A) = \{ s \in STATES | s[X \mapsto s(X) \oplus 1] \in A \}$
- $\blacktriangleright \ WP(X:=Y+1)(A) = \{s \in STATES | s[X \mapsto s(Y) \oplus 1] \in A\}$
- ▶ $WP(while \ X > 0 \ do \ X := X 1 \ od)(A) = \{s \in STATES | (s(X) \le 0) \lor (s(X) \in A \land s(X) < 0)\}$
- ▶ $WP(while \ x > 0 \ do \ x := x+1 \ od)(A) = \{s \in STATES | (s(X) \in A \land s(X) \le 0)\}$
- \blacktriangleright WP(while x > 0 do x := x+1 od)(\varnothing) = \varnothing
- $WP(while \ x > 0 \ do \ x := x+1 \ od)(STATES) = \{s \in STATES | s(Y) < 0\}$

Propriétés

- ▶ WP est une fonction monotone pour l'inclusion d'ensembles de STATES.
- $\blacktriangleright WP(S)(\varnothing) = \varnothing$
- $\blacktriangleright WP(S)(A \cap B) = WP(S)(A) \cap WP(S)(B)$
- $\blacktriangleright WP(S)(A)\cup WP(S)(B)\subseteq WP(S)(A\cup B)$
- ▶ Si S est déterministe, $WP(S)(A \cup B) = WP(S)(A) \cup WP(S)(B)$
- WP est un opérateur avec le profil suivant

pour toute instruction S du langage de programmation, $WP(S) \in \mathcal{P}(STATES) \rightarrow \mathcal{P}(STATES)$

- \triangleright $(\mathcal{P}(STATES), \subseteq)$ est un treillis complet.
- $ightharpoonup (Pred, \Rightarrow)$ est une structure où
 - (1) Pred est une extension du langage d'expressions booléennes
 - (2) Pred est une intension introduite comme un langage d'assertions
 - ⇒ est l'implication
- $s\in A$ correspond une assertion P vraie en s notée P(s). Sémantique des langages de programmation et applications à l'analyse des programmes « (18 novembre $s \in S$) and $s \in S$ so 024) (Dominique Méry)

Définition structurelle des transformateurs de prédicats

- S est une instruction de STATS.
- ► *T* est le type ou les types des variables et *D* est la constante ou les constantes Définie(s).
- P est un prédicat du langage Pred
- X est une variable de programme
- ▶ E(X, D) (resp. B(X, D)) est une expression arithmétique (resp. booléenne) dépendant de X et de D.
- x est la valeur de X (X contient la valeur x).
- e(x,d) (resp. b(x,d)) est l'expression arithmétique (resp. booléenne) du langage Pred associée à l'expression E(X,D) (resp. B(X,D)) du langage des expressions arithmétiques (resp. booléennes) du langage de programmation Prog
- $lackbox{b}(x,d)$ est l'expression arithmétique du langage Pred associée à l'expression E(X,D) du langage des expressions arithmétiques du langage de programmation Prog

Définition structurelle des transformateurs de prédicats

S	wp(S)(P)
X := E(X,D)	P[e(x,d)/x]
SKIP	P
$S_1; S_2$	$wp(S_1)(wp(S_2)(P))$
IF $B S_1$ ELSE S_2 FI	$(B \Rightarrow wp(S_1)(P)) \land (\neg B \Rightarrow wp(S_2)(P))$
WHILE B DO S OD	$\mu.(\lambda X.(B \Rightarrow wp(S)(X)) \land (\neg B \Rightarrow P))$

- $\blacktriangleright wp(X := X+5)(x \ge 8) \stackrel{def}{=} x+5 \ge 8 \stackrel{\sim}{=} x \ge 3$
- \blacktriangleright wp(WHILE x > 1 DO X := X+1 OD)(x = 4) = FALSE
- $\blacktriangleright \ wp(WHILE \ x > 1 \ DO \ X := X+1 \ OD)(x=0) = x = 0$

S est une instruction et P et Q sont des prédicats.

- ▶ Loi du miracle exclu : wp(S)(FALSE) = FALSE
- ▶ Distributivité de la conjonction : $wp(S)(P) \land wp(S)(Q) = wp(S)(P \land Q)$
- ▶ Distributivité de la disjonction : $wp(S)(P) \lor wp(S)(Q) \Rightarrow wp(S)(P \lor Q)$
- ▶ Si S est déterministe, alors $wp(S)(P) \vee wp(S)(Q) = wp(S)(P \vee Q)$

Current Subsection Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation.

- **5** Equivalence des deux sémantiques
- **6** Transformateurs de prédicats

 - Construction du wp pour la conditionnelle
- Logique de Hoare

$$\triangleright S \stackrel{def}{=} = \begin{bmatrix}
\operatorname{IF} B_1 & \longrightarrow & \operatorname{S}_1 \\
\square B_2 & \longrightarrow & \operatorname{S}_2 \\
\dots \\
\square B_n & \longrightarrow & \operatorname{S}_n \\
\operatorname{FI}
\end{bmatrix}$$

$$wp(S)(P) = \begin{bmatrix} (B_1 \lor \dots \lor B_n) \\ \land (B_1 \Rightarrow wp(S_1)(P)) \\ \dots \\ \land (B_n \Rightarrow wp(S_n)(P)) \end{bmatrix}$$

Current Subsection Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation
- 3 Sémantique opérationnelle
- 4 Sémantique dénotationnelle
- 5 Equivalence des deux sémantiques
- 6 Transformateurs de prédicats

Introduction

Définition et propriétés

Construction du wp pour la conditionnelle

Construction du wp pour l'itération

- 7 Logique de Hoare
- Conclusion

Instruction DO

$$S \stackrel{def}{=} = \begin{bmatrix} DO B_1 & \longrightarrow S_1 \\ \Box B_2 & \longrightarrow S_2 \\ \dots \\ \Box B_n & \longrightarrow S_n \\ OD \end{bmatrix}$$

$$\triangleright BS \stackrel{def}{=} = \begin{bmatrix}
\operatorname{IF} B_1 \longrightarrow \operatorname{S}_1 \\
\square B_2 \longrightarrow \operatorname{S}_2 \\
\dots \\
\square B_n \longrightarrow \operatorname{S}_n \\
\operatorname{FI}
\end{bmatrix}$$

$$\triangleright B \stackrel{def}{=} (B_1 \vee \ldots \vee B_n)$$

- $T \stackrel{def}{=} = [DO B \longrightarrow BS OD]$
- ightharpoonup wp(S)(P) = wp(T)(P)
- $ightharpoonup wp(T)(P) = \bigvee_{k \in \mathbb{N}} W_k$ où
 - Une suite d'assertions notées $W_0, \ldots, W_k \ldots$ est définie comme étant
 - $W_0(P) = \neg B \wedge P$
 - $\forall k \in \mathbb{N} : W_{k+1}(P) = W_0(P) \vee wp(BS)(W_k)$
- $\blacktriangleright wp(S)(P) = \exists k \in \mathbb{N} : W_k$

Instruction DO

- ▶ W est un transformateur de prédicats de Pred dans Pred défini par $W(X) = (B \land wp(BS)(X)) \lor (\neg B \land P)$
- \blacktriangleright W est monotone croissant (Si $P \Rightarrow Q$, alors $W(P) \Rightarrow W(Q)$).
- $lackbox{$W$}$ admet un plus petit point-fixe d'après le Théorème de Tarski noté μW et défini par :
 - $F_0 = FALSE$
 - $\forall i \in \mathbb{N} : F_{i+1} = W(F_i)$

© Theorem

$$\forall i \in \mathbb{N} : F_{i+1} = W_i$$

© Theorem

$$\mu W = WP(S)(P)$$

□ Definition

$$WP(S)(P) = \mu \lambda X.((B \land wp(BS)(X)) \lor (\neg B \land P))$$

- \blacktriangleright La suite W_k compte le nombre de boucles avant de terminer.
- La méthode de terminaison consiste à définir une borne de terminaison.
- En général, il faut une relation bien fondée telle que chaque boucle décroît strictement selon la relation bien fondée:

Current Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation.

- **5** Equivalence des deux sémantiques
- **7** Logique de Hoare

Axiomatisation de la Logique de Hoare

☑ Definition(Axiomes et règles d'inférence)

- Axiome d'affectation : $\{P(e/x)\}X := E(X)\{P\}$.
- Axiome du saut : $\{P\}$ **skip** $\{P\}$.
- ▶ Règle de composition : Si $\{P\}$ **S**₁ $\{R\}$ et $\{R\}$ **S**₂ $\{Q\}$, alors $\{P\}$ **S**₁;**S**₂ $\{Q\}$.
- ▶ Si $\{P \land B\}$ S₁ $\{Q\}$ et $\{P \land \neg B\}$ S₂ $\{Q\}$, alors $\{P\}$ if B then S₁ then S₂ fi $\{Q\}$.
- ▶ Si $\{P \land B\}$ S $\{P\}$, alors $\{P\}$ while B do S od $\{P \land \neg B\}$.
- ▶ Règle de renforcement/affaiblissement : Si $P' \Rightarrow P$, $\{P\}$ **S** $\{Q\}$, $Q \Rightarrow Q'$, alors $\{P'\}$ **S** $\{Q'\}$.

Exemple de preuve $\{x=1\}$ **Z** :=**X**;**X** :=**Y**;**Y** :=**Z** $\{y=1\}$

- ▶ (1) $x = 1 \Rightarrow (z = 1)[x/z]$ (propriété logique)
- (2) $\{(z=1)[x/z]\}$ **Z** :=**X** $\{z=1\}$ (axiome d'affectation)
- ▶ (3) $\{x=1\}$ **Z** :=**X** $\{z=1\}$ (Règle de renforcement/affaiblissement avec (1) et (2))
- ► (4) $z = 1 \Rightarrow (z = 1)[y/x]$ (propriété logique)
- (5) $\{(z=1)[y/x]\}$ **X** :=**Y** $\{z=1\}$ (axiome d'affectation)
- ▶ (6) $\{z=1\}$ **X** :=**Y** $\{z=1\}$ (Règle de renforcement/affaiblissement avec (4) et (5))
- ▶ (7) $z = 1 \Rightarrow (y = 1)[z/y]$ (propriété logique)
- (8) $\{(z=1)[x/z]\}$ **Y** :=**Z** $\{y=1\}$ (axiome d'affectation)
- (9) $\{z=1\}$ **Y** :=**Z** $\{y=1\}$ (Règle de renforcement/affaiblissement avec (7) et (8))
- (10) $\{x = 1\}$ **Z** :=**X**;**X** :=**Y**; $\{z = 1\}$ (Règle de composition avec 3 et 6)
- ▶ (11) $\{x = 1\}$ **Z** :=**X**;**X** :=**Y**;**Y** :=**Z** $\{y = 1\}$ (Règle de composition avec 11 et 9)

Sémantique des triplets de Hoare

□ Definition

$$\{P\}\mathbf{S}\{Q\} \text{ est défini par } \forall s,t \in STATES: P(s) \land \mathcal{D}(S)(s) = t \Rightarrow Q(t)$$

- © PropertyCorrection du système axiomatique des programmes commentés
 - S'il existe une preuve construite avec les règles précédentes de $\{P\}S\{Q\}$, alors $\{P\}S\{Q\}$ est valide.
 - ightharpoonup Si $\{P'\}$ **S** $\{Q'\}$ est valide et si le langage d'assertions est suffisamment expressif, alors il existe une preuve construite avec les règles précédentes de $\{P\}$ **S** $\{Q\}$.

□ Definition

Un langage d'assertions est la donnée d'un ensemble de prédicats et d'opérateurs de composition comme la disjonction et la conjonction; il est muni d'une relation d'ordre partielle appelée implication. On le notera $(PRED, \Rightarrow, false, true, \land, \lor) : (PRED, \Rightarrow, false, true, \land, \lor)$ est un treillis

Introduction de wlp

- ▶ {*P*}**S**{*Q*}
- $\forall s, t \in STATES : P(s) \land \mathcal{D}(S)(s) = t \Rightarrow Q(t)$

Définition de wlp

$$wlp(S)(Q) \stackrel{def}{=} (\forall t \in STATES : \mathcal{D}(S)(s) = t \Rightarrow Q(t))$$

$$wlp(S)(Q) \equiv \overline{(\exists t \in STATES : \mathcal{D}(S)(s) = t \land \overline{Q}(t))}$$

.....

Lien entre wp et wlp

- ▶ $loop(S) \equiv (\exists t \in STATES : \mathcal{D}(S)(s) = t \text{ (ensemble des états qui ne permettent pas à S de terminer)}$
- $\blacktriangleright wp(S)(Q) \equiv wlp(S)(Q) \wedge \overline{loop(S)}$

Définition de wlp

□ Definition

$$WLP(S)(P) = \nu \lambda X.((B \wedge wlp(BS)(X)) \vee (\neg B \wedge P))$$

- © Property
 - ▶ Si $P \Rightarrow Q$, then $wlp(S)(P) \Rightarrow wlp(S)(Q)$.

Axiomatisation de la Logique de Hoare

.....

□ Definitiontriplets de Hoare

$$\{P\}\mathbf{S}\{Q\}\stackrel{def}{=}P\Rightarrow wlp(S)(Q)$$

Axiomatisation de la Logique de Hoare

.....

□ Definitiontriplets de Hoare

$$\{P\}\mathbf{S}\{Q\} \stackrel{def}{=} P \Rightarrow wlp(S)(Q)$$

□ Definition(Axiomes et règles d'inférence)

- Axiome d'affectation : $\{P(e/x)\}\mathbf{X} := \mathbf{E}(\mathbf{X})\{P\}$.
- ightharpoonup Axiome du saut : $\{P\}$ **skip** $\{P\}$.
- ▶ Règle de composition : Si $\{P\}$ S₁ $\{R\}$ et $\{R\}$ S₂ $\{Q\}$, alors $\{P\}$ if B then S₁ then S₂ fi $\{Q\}$.
- ▶ Si $\{P \land B\}$ **S**₁ $\{Q\}$ et $\{P \land \neg B\}$ **S**₂ $\{Q\}$, alors $\{P\}$ if **B** then **S**₁ then **S**₂ fi $\{Q\}$.
- ▶ Si $\{P \land B\}$ **S** $\{P\}$, alors $\{P\}$ while **B** do **S** od $\{P \land \neg B\}$.
- ▶ Règle de renforcement/affaiblissement : Si $P' \Rightarrow P$, $\{P\}$ **S** $\{Q\}$, $Q \Rightarrow Q'$, alors $\{P'\}$ **S** $\{Q'\}$.

- $ightharpoonup \{P\} S\{Q\}$
- $\forall s \in STATES.P(s) \Rightarrow wlp(S)(Q)(s)$
- $ightharpoonup \forall s \in STATES.P(s) \Rightarrow (\forall t \in STATES: \mathcal{D}(S)(s) = t \Rightarrow Q(t))$
- $\forall s, t \in STATES.P(s) \land \mathcal{D}(S)(s) = t \Rightarrow Q(t)$
- ► Correction : Si on a construit une preuve de $\{P\}$ **S** $\{Q\}$ avec les règles de la logique de Hoare, alors $P \Rightarrow wlp(S)(Q)$
- ▶ Complétude sémantique : Si $P \Rightarrow wlp(S)(Q)$, alors on peut construire une preuve de $\{P\}\mathbf{S}\{Q\}$ avec les règles de la logique de Hoare si on peut exprimer wlp(S)(P) dans le langae d'assertions.

Logique de Hoare Correction Totale

□ Definitiontriplets de Hoare Correction Totale

$$[P]\mathbf{S}[Q] \stackrel{def}{=} P \Rightarrow wp(S)(Q)$$

Logique de Hoare Correction Totale

□ Definitiontriplets de Hoare Correction Totale

$$[P]\mathbf{S}[Q] \stackrel{def}{=} P \Rightarrow wp(S)(Q)$$

☑ Definition(Axiomes et règles d'inférence)

- Axiome d'affectation : [P(e/x)]X := E(X)[P].
- Axiome du saut : [P]**skip**[P].
- ▶ Règle de composition : Si $[P]\mathbf{S}_1[R]$ et $[R]\mathbf{S}_2[Q]$, alors [P] if \mathbf{B} then \mathbf{S}_1 then \mathbf{S}_2 fi[Q].
- ▶ Si $[P \land B]$ S₁[Q] et $[P \land \neg B]$ S₂[Q], alors [P]if B then S₁ then S₂ fi[Q].
- ► Si [P(n+1)]**S**[P(n)], $P(n+1) \Rightarrow b$, $P(0) \Rightarrow \neg b$, alors $[\exists n \in \mathbb{N}.P(n)]$ while **B** do **S** od[P(0)].
- Règle de renforcement/affaiblissement : Si $P' \Rightarrow P$, $[P]\mathbf{S}[Q]$, $Q \Rightarrow Q'$, alors $[P']\mathbf{S}[Q']$.

Correction

Si $[P]\mathbf{S}[Q]$ est dérivé selon les règles ci-dessus, alors $P\wp(S)5Q$).

- ightharpoonup [P(e/x)] X := E(X)[P] est valide : wp(X := E)(P)/x = P(e/x).
- ▶ $[\exists n \in \mathbb{N}.P(n)]$ while **B** do **S** od[P(0)]: si s est un état de P(n) alors au bout de n boucles on atteint un état s_f tel que P(0) est vrai en s_f .

Complétude

:

Si $P\Rightarrow wp(S)(Q)$, alors il existe une preuve de $[P]\mathbf{S}[Q]$ construites avec les règles ci-dessus,

- ▶ $P \Rightarrow wp(X := E(X))(Q) : P \Rightarrow Q(e/x)$ et [Q(e/x)]**X** :=**E(X)**[Q] constituent une preuve.
- $ightharpoonup P \Rightarrow wp(while)(Q)$:
 - On construit la suite de P(n) en définissant $P(n) = W_n$.
 - On vérifie que cela vérifie la règle du while.

Current Summary

- 1 Ingénierie des logiciels et des systèmes
- 2 Introduction à la sémantique des langages de programmation.

- **5** Equivalence des deux sémantiques
- Logique de Hoare
- Conclusion

Conclusion et Perspectives

- ► Trois notions importantes : syntaxe, sémantique et pragmatique
- La sémantique est le fondement des langages de programmation.
- ► La sémantique permet de donner une vue cohérente des programmes et des spécifications.
- Développement de techniques et d'outils de vérification et de validation de systèmes.