Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Data Quality and Imputation

Class Logistics and Agenda

- Agenda:
 - Data Quality
 - Data Representations
 - Imputation methods
- Logistics:
 - need help? canvas has links to various resources
 - the class GitHub is also a resource!
 - TA hours posted!

Course Github Page:	https://github.com/eclarson/MachineLearningNotebooks
Other Useful Guides:	Helpful Links and Guides for Semester
Participation For Distance Students	Turn in answers to questions here: Participation

Class Overview, by topic

Last Time

Data Quality Problems

- Missing
 - Easy to find, NaNs
- Duplicated
 - Easy to find, hard to verify
- Noise or Outlier.
 - Hard to define
 - Hard to catch

TID	Hair Color	Height	Age	Arrested
1	Brown	5'2"	23	cn
2	Hazal	1.5m	12	na
3	BI	5	999	cn
4	Brown	5'2"	28	na

Split-Impute-Combine

כוד	Pregnant	ВМГ	Age	Claberes
1	Y	33.6	41-50	positive
2	N	26.6	31-40	regative
3	Υ	23.3	7	cositive
4	N	28.1	21-00	regative
5	N	43.1	31-40	positive
6	Y	25.6	21-30	negative
7	Y	31.0	21-00	positive
8	Y	35.3	7	regative
9	N	30.5	51-60	positive
16	Υ	37.6	51-60	positive

split: pregnant split: BMI > 32

TID	Pregnant	BMI	Age	Diabetes
1	Y	>32	41-50	positive
8	Y	>32	7	regative
10	Y	>32	51-60	positive

Mode: none, can't impute

TAD	Programt	DAN	Age	Diabetes
a .	Y	132	7	pusitive
e .	Y	c32	21-30	regative
7	Y	<32	21-30	positive

Mode: 21-30

K-Nearest Neighbors Imputation

7D Progrant BMI Age Diabetes

1 Y 33.6 41.50 positive

2 N 26.6 31.40 negative

3 Y 23.3 ? positive

4 ? 26.1 21.50 negative

5 N 43.1 31.40 positive

6 Y 25.6 21.30 negative

7 Y 31.0 21.30 positive

8 Y 35.3 ? negative

9 N 30.5 51.60 positive

10 Y 37.6 51.60 positive

For K=3, find 3 closest neighbors

	πo	Prog nant	BMI	Age	Disbetes	Distance
,	3	Υ	23.3	?	positive	0
-	6	Υ	25.6	21-30	negative	(0 + 2.3 + 1)/3
	2	Ν	26.6	21-40	negative	(1 + 3.3 + 1)/3
	4	?	28.1	21-90	negative	(4.8 + 1)/2

Imputed Age: 21-30

How to calculate distance?

- Difference for valid features only
- May need to normalize ranges
- Or weight neighbors differently
- Or have min # of valid features
- Euclidean, city-block, etc.

K-Nearest Neighbors Imputation

TID	Pregnant	ВМІ	Age	Diabetes
1	Y	33.6	31-40	positive
2	Ν	26.6	31-40	negative
3	Υ	23.3	?	positive
4	?	28.1	21-30	negative
5	N	43.1	31-40	positive
6	Υ	25.6	21-30	negative
7	Υ	31.0	21-30	positive
8	Υ	35.3	?	negative
9	N	30.5	51-60	positive
10	Υ	37.6	21-30	positive

$$d_k = \frac{1}{|F_{valid}|} \sum_{i \in F_{valid}} ||f_i - f_i^{(k)}||$$

$$i^{th} \text{ feature, } f, \text{ in row}$$

For k = 3, find 3 closest neighbors

	TID	Preg.	ВМІ	Age	Diabetes	Distance d_k
,	3	Υ	23.3	?	positive	0
	6	Υ	25.6	21-30	negative	(0 + 2.3 + 1)/3
	2	Ν	26.6	31-40	negative	(1 + 3.3 + 1)/3
	4	?	28.1	21-30	negative	(4.8 + 1)/2

... repeat for all rows, select 3 closest ...

Imputed Age: 21-30

Distance can be calculated differently:

- Difference for valid features only
- May need to normalize ranges
- Weight neighbors differently?
- Have min # of valid features?
- Type: Euclidean, city-block, etc.

Demo

Pandas and Imputation Scikit-Learn

03. Data Visualization.ipynb

Data Representation and Documents

Data Tables as Variable Representations

TID	Pregnant	BMI	Age	Eye Color	Diabetes
1	Υ	33.6	41-50 brown		positive
2	Ν	26.6	31-40	hazel	negative
3	Υ	23.3	31-40	blue	positive
4	Ν	28.1	21-30	brown	inconclusive
5	Ν	43.1	31-40	blue	positive
6	Υ	25.6	21-30	hazel	negative

| TID | 1 | 2 | 3 | 4 | 5 | 6 | 6 |

Data Tables as Variable Representations

	TID	Pregnant	BMI	Age	Eye Color	Diabetes
	1	Y	33.6	41-50	brown	positive
<u>e</u>	2	Ν	26.6	31-40	hazel	negative
Table	3	Y	23.3	31-40	blue	positive
<u> </u>	4	Ν	28.1	21-30	brown	inconclusive
	5	N	43.1	31-40	blue	positive
	6	Y	25.6	21-30	hazel	negative
	TID	Binary	Float	Ordinal	Object	Diabetes
Sep	1	1	33.6	2	hash(0)	1
	2	0	26.6	1	hash(1)	0
חש	3	1	23.3	1	hash(2)	1
nternal Rep	4	0	28.1	0	hash(0)	2
Int	5	0	43.1	1	hash(2)	1

25.6

6

hash(1)

Bag of words model

TID	Pregnant	BMI	Chart Notes	Diabetes
1	Υ	33.6	Complaints of fatigue wh	positive
2	N	26.6	Sleeplessness and some	negative
3	Y	23.3	First saw signs of rash o	positive
4	N	28.1	Came in to see Dr. Steve	inconclusive
5	N	43.1	First diagnosis for hospit	positive
6	Y	25.6	N/A	negative

Bag of Words

Vocabulary

TID	Sleep	Fatigue	Weight	Rash	First	Sight
1	0	1	0	0	2	0
2	1	1	0	0 Imbor of	1	1 rences
3	1	1	0	2	1	1

Term-Frequency, Inverse-Document-Frequency

$$\label{eq:tf-idf} \begin{split} \text{tf-idf}(t,d) &= \text{tf}(t,d) \cdot \text{idf}(t,d) \\ \text{tf-idf}(t,d) &= \text{tf}(t,d) \cdot (1+\text{idf}(t,d)) \quad \text{smoothed} \end{split}$$

For Next Lecture

- Before next class:
 - verify installation of seaborn, plotly, (and/or bokeh if you want)
 - look at pandas table data and additional tutorials
- Next time: Data Visualization

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Data Quality and Imputation**