Prof. Dr. Leandro Alves Neves

Bacharelado em Ciência da Computação

Processamento Digital de Imagens

Aula 03

^E Sumário

- Correlação e Convolução
- Filtros lineares e não-lineares
 - Média, Mediana e Operador Laplaciano (derivada segunda)
- Exemplos de Aplicações: Filtragem Espacial
 - Passa-Baixa
 - Passa-Alta
 - Aguçamento Não Normalizado e Normalizado

Filtragem de Imagens

- Aplicada no domínio do espaço ou da frequência
- Classificados como:
 - passa-baixa
 - passa-alta
 - passa-faixa

- Domínio do espaço
 - □ Nível de cinza de um ponto f(x,y) depende dos valores dos níveis
 - do ponto original
 - de pontos da vizinhança de f(x,y)
- Classificados como Não Lineares e Lineares:

- Domínio do espaço
 - Filtragem matrizes matrizes denominadas máscaras
- Máscara (W) 🖒 valores numéricos rotulados como pesos
- Pesos do filtro e Processo
 - 1. Multiplicados pelos níveis de cinza dos pixels
 - Somados
 - 3. Resultado substitui o nível de cinza do pixel

- Conceitos Envolvidos: Correlação -
 - Processo de mover W pela imagem
 - Calcular a soma dos produtos em cada posição
- Caso 1D
 - Filtragem da Média
 - Substituir cada pixel do sinal 1D média de seu nível de cinza e

 Dos dois vizinhos

Conceitos Envolvidos: Correlação -

Em geral, w é constituído por um número ímpar de elementos

$$\mathbf{w} \cdot \mathbf{f}(x) = \sum_{i=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} w(i) f(x+i)$$

Conceitos Envolvidos: Correlação -

Caso 2D Sinal
$$f$$

$$\mathbf{w} \cdot \mathbf{f}(x,y) = \sum_{i=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} \sum_{j=\lfloor -n/2 \rfloor}^{\lfloor n/2 \rfloor} w(i,j) f(x+i,y+j)$$

Filtragem da Média

Máscara (média)

w_1	<i>w</i> ₂	<i>W</i> 3
<i>W</i> ₄	<i>w</i> ₅	<i>w</i> ₆
W ₇	W 8	W 9

Em geral, W é constituído por um número ímpar de elementos

- Similar à Correlação

- Mesmos conceitos da Correlação
- □ Porém, w □ Reflexão (rotacionado em 180º)

Caso 1D
$$w*f(x) = \sum_{i=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} w(i) f(x-i)$$

Caso 2D
$$w(x,y) * f(x,y) = \sum_{i=\lfloor -m/2 \rfloor} \sum_{j=\lfloor -n/2 \rfloor} w(i,j) f(x-i,y-j)$$

Correlação e Convolução são idênticas quando o filtro é simétrico

Correlação

Origem

(h)

Convolução

0 1 2 3 2 8 0 0

Origem

w rotacionado 180°

0 8 2 3 2 1 0 0

(p)

Correlação e Convolução 2D

PDI

- Correlação e Convolução: Propriedades
 - Soluções para Pontos de Borda
 - Atribuindo valor zero aos resultados não calculáveis;
 - Preenchimento da imagem com 0's antes do cálculo da imagem final (P);
 - Replicação dos pixels das bordas (replicate);
 - Espelhamento (symmetric);

PDI

- Correlação e Convolução: Propriedades
 - □ Pontos da borda □ não têm todos os vizinhos
 - Calculados de maneira diferente
 - Janelas quadradas com n × n pixels
 - Valores pequenos para n
 - Por exemplo, máscara 3 × 3 sobre uma imagem de 512 × 512 pixels
 - 9 multiplicações e 8 adições para cada pixel
 - Total de: 2.359,296 multiplicações e 2.097,152 adições
 - Máscaras de organização par (2 x 2, 4 x 4 ,)
 - □ Resultado é colocado sobre o Primeiro Pixel
 - Máscaras de organização ímpar (3 x 3, 5 x 5,)
 - Resultado é colocado sobre o Pixel de Centro

Algoritmo: Convolução * Similar à Correlação

```
Entrada: imagem \mathbf{f} de M \times N pixels e uma máscara \mathbf{w} de m \times n pixels.
Saída: imagem \mathbf{g} de M \times N pixels.
1: x1 = \lfloor m/2 \rfloor
 2: y1 = \lfloor n/2 \rfloor
 3: for x = 0 até M - 1 do
 4: for y = 0 até N - 1 do
 5: soma = 0
    for i = -x1 até x1 do
    for j = -y1 até y1 do
              soma = soma + w(i,j) * f(x - i, y - j)
           end for
    end for
10:
    g(x,y) = soma
11:
      end for
12:
13: end for
```

Correlação e Convolução: Exemplo

Seja a região da imagem mostrada na figura abaixo, cujos níveis de cinza estão destacados. A máscara de correlação é mostrada à direita.

O resultado da correlação para a região em destaque é igual a 137*(-1)+115*0+153*1+177*(-2)+213*1+103*2+115*(-1)+182*0+158*1=124.

O resultado da convolução é igual a 137 * 1 + 115 * 0 + 153 * (-1) + 177 * 2 + 213 * 1 + 103 * (-2) + 115 * 1 + 182 * 0 + 158 * (-1) = 302.

Filtros de Suavização Lineares e Não Linear

Exemplos de Filtros Lineares

Pixel f'(x,y) combinação linear dos níveis de cinza da sua vizinhança local na imagem original

- Filtro Passa-Baixa: suavização da imagem (Smoothing)
 - Frequências altas **transições** abruptas são atenuadas
 - **Detalhes finos podem ser removidos**
 - Exemplos de Filtros (Convolução)

Filtro da média
$$h_1 = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix} \quad h_2 = \frac{1}{25} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \end{bmatrix}$$

$$h_3 = \frac{1}{49} = \frac{1}{11} = \frac{1$$

Ponderação, considerando a distância e a orientação dos pontos vizinhos.

$$h_4 = \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$h_5 = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

■ Filtro Passa-Baixa: suavização da imagem (Smoothing)

■ Filtro Passa-Baixa: suavização da imagem (Smoothing)

Exemplo de Filtro Não Linear

- Filtro Não Linear: Estatísticas de Ordem
 - Resultado obtido a partir da classificação (ordenação) dos pontos
 - Substituição do Pixel
 Resultado da Classificação
 - Mais Conhecido: Filtro de Mediana
 - Filtro 3x3[™] mediana é o 5º maior elemento
 - Filtro 5x5[®] mediana é o 13^o maior elemento

Ruídos Aleatórios (Sal e Pimenta) excelentes resultados

Figura 8 - (a) Imagem original; (b) imagem contaminada por ruído impulsivo (sal e pimenta); (c) resultado da filtragem pelo filtro da mediana com máscara 3x3; (d) resultado da filtragem pelo filtro da média com máscara 3 x 3.

(c)

Filtro Não Linear: Mediana

Figura 9 - (a) Imagem original; (b) imagem contaminada por ruído gaussiano; (c) resultado filtragem pelo filtro da mediana com máscara 3x3; (d) resultado da filtragem pelo filtro média com máscara 3 x 3.

(c)

Filtro Não Linear: Mediana

Filtros de Aguçamento

Fundamentos

Borramento

 Efeito definido a partir do cálculo da média, que é análogo a um processo de integração

Aguçamento

- Definido pela operação inversa (Diferenciação)
- Derivada

Derivadas de uma função digital são definidas por meio de diferenças

Para uma função f(x): $\frac{df}{dx} = f(x+1) - f(x)$

- A derivada segunda pode ser definida como:
 - Diferença do próximo somada a diferença do anterior

$$\frac{d^2f}{dx^2} = f(x+1) - f(x) + f(x-1) - f(x) = f(x+1) + f(x-1) - 2f(x)$$

- Estas aproximações consideram a derivada primeira como:
 - Seja zero em áreas de intensidade constante;
 - Seja diferente de zero no início de um degrau ou rampa de intensidade;
 - Seja diferente de zero ao longo das rampas.

- De forma similar, qualquer definição de uma derivada segunda:
 - Deve ser zero em áreas constantes;
 - Deve ser diferente de zero no início e no final de um degrau ou rampa de intensidade;
 - Deve ser zero ao longo de rampas de inclinação constante.

Fundamentos: Derivadas

PDI

Fundamentos: Motivação para aplicar a derivada segunda

- Bordas em imagens digitais muitas vezes são transições parecidas com rampas em termos de intensidade.
- A derivada primeira resultaria em bordas espessas.
- A derivada segunda produz uma dupla borda, com espessura de um pixel.
- Ela realça muito mais os detalhes finos do que a derivada primeira
 - Critério necessário para aguçamento de imagens

PDI

Laplaciano: Segunda derivada para o aguçamento de imagens

- Definir uma fórmula discreta da derivada de segunda ordem
- Construir uma máscara de filtragem espacial com base nessa formulação
 - A melhor estratégia para o cálculo de derivadas
- Filtros isotrópicos
 - Invariante à rotação

O Laplaciano - Definição da segunda variável

Temos:
$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$
$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

A derivada segunda f'' da função f(x,y) é:

$$f''(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = f(x+1,y) + f(x-1,y) - 2f(x,y) + f(x,y+1) + f(x,y-1) - 2f(x,y)$$
$$f''(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Operador Laplaciano: Máscara de filtragem

0	1	0
1	- 4	1
0	1	0

1	1	1
1	- 8	1
1	1	1

Outras implementações do Laplaciano comumente encontradas na prática

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

- Filtro Passa-Alta: realçar características
 - □ Frequências baixas atenuadas
 - Exemplos de Filtros (Convolução)

Filtro Passa-Alta: Detector de Altas Frequências

255 -

■ Filtro Passa-Alta: Detector de Altas Frequências (Normalizado)

- Filtro Aguçamento (Sharpening): Realce de Altas frequências
 - 1^a. Etapa: Aplicar Filtro Passa-Alta: Detector de bordas

- Filtro Aguçamento (Sharpening): Realce de Altas frequências
 - 2ª. Etapa: Aplicar Máscara para Gerar a mesma Imagem

■ Filtro Aguçamento (Sharpening): Realce de Altas frequências

■ Filtro Aguçamento (Sharpening): Realce de Altas frequências

Resultado de Passa-Alta

- Filtro Aguçamento (Sharpening): Realce de Altas frequências
 - 1^a. Etapa: Aplicar Filtro Passa-Alta (Normalizado)

Entrada

Máscara

Resultado Etapa 1

- Filtro Aguçamento (Sharpening): Realce de Altas frequências
 - 2ª. Etapa: Aplicar Máscara para Gerar a mesma Imagem

Máscara

Resultado Etapa 2

Filtro Aguçamento (Sharpening): Realce de Altas frequências

3^a. Etapa: Aplicar Filtro Aguçamento Normalizado

Resultado Etapa 1 Resultado Etapa 2

Sharpening

	-1	-1	-1
1	-1	17	-1
7	-1	-1	-1

■ Filtro Aguçamento (Sharpening): Realce de Altas frequências

Resultado de Passa-Alta Normalizado

- 1. Considere uma imagem digital representada por uma matriz 5 x 5, conforme indicada abaixo. O pixel central é um ponto de referência. Forneça o valor resultante do pixel central caso a imagem seja processada:
- a) pelo algoritmo de filtragem mediana com uma janela 3 x 3.
- b) pelo algoritmo da média utilizando janela 5 x 5.
- c) pela média dos k vizinhos mais próximos, utilizando janela 5 x 5, sendo k = 9.

121	20	198	84	4
87	188	189	99	8
88	115	134	49	19
16	18	187	98	9
12	103	15	176	38

2. Considere uma imagem representada por uma matriz 7 x 7, indicada abaixo, em que cada elemento corresponde ao nível de cinza do pixel. A taxa de quantização desta imagem foi definida como de 8 bits. Considere o pixel central como o pixel de referência e forneça o valor deste ponto central após processamento com:

0	3	221	220	198	84	4
3	23	187	188	189	99	8
9	9	188	115	134	49	9
0	5	176	18	187	98	9
15	15	123	103	165	76	9
14	12	156	188	188	98	9
9	8	190	190	190	90	0

- a) algoritmo de filtragem mediana utilizando uma janela 3 x 3;
- b) algoritmo da filtragem pela mediana com uma janela em forma de cruz, isto é considerando no cálculo da mediana apenas os pixels de coordenadas: (x, y) (pixel de referência), (x-1, y), (x+1, y), (x, y-1) e (x, y+1);
- c) algoritmo da média utilizando janela 7 x 7.

- d) algoritmo adaptativo que funciona da seguinte maneira: primeiramente aplica-se um filtro da mediana em uma janela 3 x 3 ao redor do pixel de referência, calculando-se MED. Depois disto, aplica-se um filtro da média utilizando uma janela 5 x 5, levando em consideração apenas os pixels em que as intensidades estejam na faixa entre MED C e MED + C, inclusive os extremos. Assumir que C = 22.
- 3. Considere a imagem a seguir, representada por uma matriz 7×7 , em que cada elemento indica um nível de cinza normalizado, sendo 0 = preto, 1 = branco.

0	3/7	2/7	2/7	1/7	1/7	4/7
3/7	2/7	1/7	1/7	1/7	1/7	4/7
2/7	0	1	1/7	3/7	0	0
0	5/7	1/7	0	6/7	0	1/7
1/7	1/7	1/7	3/7	6/7	6/7	5/7
1/7	1/7	1/7	1/7	5/7	6/7	4/7
0	1	0	0	0	0	4/7

Pede-se:

- a) Calcular as probabilidades de cada nível de cinza e plotar o histograma.
- b) Na imagem original predominam pixels claros ou escuros?
- c) Equalizar o histograma e reescrever a imagem com os novos valores de intensidades.

4. Considere as imagens a seguir e construa um programa para aplicar:

- a) Filtro Passa-Baixa: suavização da imagem (Smoothing), com janelas de 3x3, 5x5 e 7x7;
- b) Filtro Passa-Alta; Detector de Altas Frequências; Filtro de Aguçamento (*Sharpening*) Realce de características. Considerar as versões normalizadas e não normalizadas. Considere, para estes, as máscaras,

$$h_2 = \begin{array}{|c|c|c|c|c|c|} \hline -1 & -1 & -1 \\ \hline -1 & 8 & -1 \\ \hline -1 & -1 & -1 \\ \hline \end{array}$$

5. Utilize as funções estudadas na aula 2 (ruídos) para adicionar ruídos em uma imagem dada como entrada. Aplique sobre cada imagem indicada a seguir os ruídos aditivos: sal e pimenta; uniforme e gaussiano. As distribuições devem ser fornecidas pelo usuário. Aplique os filtros apresentados abaixo e indique os que permitiram minimizar os efeitos provocados pelos ruídos, sem provocar borramentos.

- a) Suavização da imagem (*Smoothing*), com janelas de 3x3, 5x5 e 7x7;
- b) Filtro Passa-Alta com as máscaras,

	0	-1	0
$h_1 =$	-1	4	-1
	0	-1	0

	-1	-1	-1
$h_2 =$	-1	8	-1
	-1	-1	-1

c) Mediana 3x3 e 5x5.

Referências

Pedrini, H., Schwartz, W. R. Análise de Imagens Digitais: Princípios Algoritmos e Aplicações. São Paulo: Thomson Learning, 2008.

2. González, R. C., Woods, R. E. Processamento de Imagens Digitais. São Paulo: Edgard Blücher Itda, 2000.

Marques Filho, O., Vieira Neto, H. Processamento Digital de Imagens, Rio de Janeiro: Brasport, 1999

