Contrôle continu 3

Durée 1h10. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. On définit $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ par

$$f(x,y) = \frac{x^2}{(x^2 + y^2)^{3/4}}$$

1. Déterminer la limite de f en (0,0).

2. En déduire que l'on peut prolonger f en une fonction \tilde{f} continue sur tout \mathbb{R}^2 .

3. Étudier l'existence des dérivées partielles de \tilde{f} . Les calculer lorsqu'elles existent.

4. Sur quel domaine la fonction \tilde{f} est-elle différentiable ?

Exercice 2. Soit $a \in \mathbb{R}$, on cherche toutes les fonctions $g : \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 sur \mathbb{R}^2 vérifiant

$$\frac{\partial g}{\partial x}(x,y) - \frac{\partial g}{\partial y}(x,y) = a. \tag{1}$$

1. On pose $\phi:(u,v)\to((u+v)/2,(v-u)/2)$. Montrer que ϕ est un \mathcal{C}^1 -diffeomorphisme sur \mathbb{R}^2 et preciser son inverse.

2. Étant donnée une fonction $g: \mathbb{R}^2 \to \mathbb{R}$ solution de (1), on pose $f = g \circ \phi$. Démontrer alors que $\frac{\partial f}{\partial u}(u,v) = \frac{a}{2}$.

3. Intégrer l'expression de la question précédente pour en déduire une expression générique $\mathrm{de}\ f.$

4. En déduire les solutions de (1).

sercice 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$, définie par $f(x,y) = \frac{1}{3}x^3 + 4xy^2 + x^2 + 4y^2$. 1. Démontrer que les 4 points critiques de la fonction f sont (0,0), (-2,0), (-1,-1/2) et (-1, 1/2).

2. Déterminer la nature (maximum, minimum, point selle) de chacun de ces points critiques.

3. La fonction f possède-t-elle un maximum global?