CLAIMS

1. A fluorescent cyanine dye having the formula:

$$T_1 (-CH=)_{n1} A (-CH=)_{n2} T_2$$

wherein:

 $n \ge 1$ and n_1 is the same as or different from n_2 ;

A comprises the formula:

wherein:

 X_1 and Y_1 are selected from the group consisting of $C(CH_3)_2$, CH=CH, O, N, S, Se and Te and either X_1 or Y_1 is N;

 X_2 and Y_2 are selected from the group consisting of C(CH₃)₂, CH=CH, O, N, S, Se and Te and either X_2 or Y_2 is N; or

A comprises the formula:

wherein:

 Z_1 and Y_1 are selected from the group consisting of C(CH₃)₂, CH=CH, O, N, S, Se and Te and either Z_1 or Y_1 is N;

 Z_2 and Y_2 are selected from the group consisting of $C(CH_3)_2$, CH=CH, O, N, S, Se and Te and either Z_2 or Y_2 is N; and

wherein a and b are 0 or 1, and a+b=1; and where X, Y or Z is N, R_2 and R_3 are substituents on N and are the same or different and are selected from the group consisting of H, methyl, ethyl, $C(CH_3)_2$ and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H; and wherein:

T1 and T2 are the same or different and have the formula:

$$W_2$$
 W_3
 W_4
 R_1
 W_5
 W_6
 W_7
 W_8
 R_4

wherein:

Q is selected from the group consisting of O, S, CH₂, (CH=CH) and C(CH₃)₂;

R₁ and R₄ are the same or different and are selected from the group consisting of H,

methyl, ethyl and (CH₂)_qV, wherein q is an integer from 1 to 25 and V is a reactive group or H;

each of W₁₋₈ is the same or different and may be H or a hydrophilic moiety;

at least one occurrence of W is a hydrophilic moiety; and

wherein at least one of R₁-R₄ has a reactive group.

2. The fluorescent cyanine dye of claim 1 wherein one or both of Y_1 and Y_2 are N.

- 3. The fluorescent cyanine dye of claim 2 wherein one or both of X_1 and X_2 are S.
- 4. The fluorescent cyanine dye of claim 2 wherein one or both of X_1 and X_2 are O.
- 5. The fluorescent cyanine dye of claim 2 wherein one or both of X_1 and X_2 are CH_2 .
- 6. The fluorescent cyanine dye of claim 2 wherein one or both of X_1 and X_2 are (CH=CH).
- 7. The fluorescent cyanine dye of claim 2 wherein one or both of Y_1 and Y_2 are S.
- 8. The fluorescent cyanine dye of claim 1 wherein Z_1 and Y_2 are S.
- 9. The fluorescent cyanine dye of claim 1 wherein Y_1 and Z_2 are S.
- 10. The fluorescent cyanine dye of claim 1 wherein Q is CH₂.
- 11. The fluorescent cyanine dye of claim 1 wherein Q is C(CH₃)₂.
- 12. A composition comprising a fluorescent cyanine dye of claim 1.
- 13. A fluorescent cyanine dye having the formula:

$$\begin{array}{c} W_1 \\ W_2 \\ \hline \\ W_3 \\ \hline \\ W_4 \\ \hline \\ R_1 \\ \end{array} \\ \begin{array}{c} Q \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_5 \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_6 \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_7 \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_7 \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_8 \\ \\ \\ \end{array} \\ \begin{array}{c} W_7 \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_8 \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_8 \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_8 \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_8 \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_8 \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_8 \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} W_8 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

 $n \ge 1$;

Q is selected from the group consisting of O, S, CH_2 , (CH=CH) and $C(CH_3)_2$;

 R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R1-R4 has a reactive group;

each of W_{1-8} is the same or different and may be H or a hydrophilic moiety; and at least one occurrence of W is a hydrophilic moiety.

- 14. A composition comprising the dye of claim 13.
- 15. A fluorescent cyanine dye having the formula:

wherein R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group.

 $n \ge 1$;

Q is selected from the group consisting of O, S, CH_2 , (CH=CH) and $C(CH_3)_2$;

R1-R4 are the same or different and are selected from the group consisting of H, methyl, ethyl and (CH₂)_qV, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R1-R4 has a reactive group;

each of W_{1-8} is the same or different and may be H or a hydrophilic moiety; and at least one occurrence of W is a hydrophilic moiety.

- 17. A composition comprising the dye of claim 16.
- 18. A fluorescent cyanine dye having the formula:

wherein R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group.

$$W_2$$
 W_3
 W_4
 R_1
 R_2
 R_3
 R_4
 R_4
 R_8

 $n \ge 1$;

Q is selected from the group consisting of O, S, CH₂, (CH=CH) and C(CH₃)₂;

R1-R4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R1-R4 has a reactive group;

each of W_{1-8} is the same or different and may be H or a hydrophilic moiety; and at least one occurrence of W is a hydrophilic moiety.

- 20. A composition comprising the dye of claim 19.
- 21. A fluorescent cyanine dye having the formula:

wherein R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group.

$$\begin{array}{c} W_2 \\ W_3 \\ W_4 \\ \end{array} \\ \begin{array}{c} Q \\ R_1 \\ \end{array} \\ \begin{array}{c} Q \\ R_2 \\ \end{array} \\ \begin{array}{c} Q \\ R_2 \\ \end{array} \\ \begin{array}{c} Q \\ R_3 \\ \end{array} \\ \begin{array}{c} Q \\ R_4 \\ \end{array} \\ \begin{array}{c} W_6 \\ W_7 \\ \end{array} \\ \begin{array}{c} W_7 \\ \end{array} \\ \begin{array}{c} Q \\ W_7 \\ \end{array} \\ \begin{array}{c} Q \\ W_7 \\ \end{array} \\ \begin{array}{c} Q \\ W_8 \\ \end{array} \\ \begin{array}{c} Q \\ W_7 \\ \end{array} \\ \begin{array}{c} Q \\ W_8 \\ \end{array} \\ \begin{array}{c} Q \\ W_7 \\ \end{array} \\ \\ \begin{array}{c} Q \\ W_7 \\ \end{array} \\ \begin{array}{c$$

 $n \ge 1$;

Q is selected from the group consisting of O, S, CH₂, (CH=CH) and C(CH₃)₂;

 R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group;

each of W_{1-8} is the same or different and may be H or a hydrophilic moiety; and at least one occurrence of W is a hydrophilic moiety.

- 23. A composition comprising the dye of claim 22.
- 24. A fluorescent cyanine dye having the formula:

wherein R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group.

 $n \ge 1$;

Q is selected from the group consisting of O, S, CH₂, (CH=CH) and C(CH₃)₂;

 R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group;

each of W_{1-8} is the same or different and may be H or a hydrophilic moiety; and at least one occurrence of W is a hydrophilic moiety.

- 26. A composition comprising the dye of claim 25.
- 27. A fluorescent cyanine dye having the formula:

wherein R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl, $C(CH_3)_2$ and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group.

 $n \ge 1$;

Q is selected from the group consisting of O, S, CH₂, (CH=CH) and C(CH₃)₂;

 R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group;

each of W_{1-8} is the same or different and may be H or a hydrophilic moiety; and at least one occurrence of W is a hydrophilic moiety.

- 29. A composition comprising the dye of claim 28.
- 30. A fluorescent cyanine dye having the formula:

$$R_{1}$$
 R_{2} R_{3} R_{4} R_{4}

wherein R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group.

$$\begin{array}{c} W_2 \\ W_3 \\ W_4 \\ R_1 \end{array} \\ \begin{array}{c} R_3 \\ R_2 \end{array} \\ \begin{array}{c} R_3 \\ R_2 \end{array} \\ \begin{array}{c} R_3 \\ R_4 \\ W_8 \end{array} \\ \begin{array}{c} W_6 \\ W_7 \\ \end{array}$$

 $n \ge 1$;

Q is selected from the group consisting of O, S, CH₂, (CH=CH) and C(CH₃)₂;

 R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group;

each of W_{1-8} is the same or different and may be H or a hydrophilic moiety; and at least one occurrence of W is a hydrophilic moiety.

- 32. A composition comprising the dye of claim 30.
- 33. A fluorescent cyanine dye having the formula:

wherein R_1 - R_4 are the same or different and are selected from the group consisting of H, methyl, ethyl and $(CH_2)_qV$, wherein q is an integer from 1 to 25 and V is a reactive group or H, and at least one of R_1 - R_4 has a reactive group.

- 34. A fluorescent cyanine dye of any one of claims 1, 13, 16, 19, 22, 25 or 28 that comprises a succinimide ester linked to a heterocyclic nitrogen.
- 35. A nucleoside or nucleotide labeled with a flourescent cyanine dye of any one of claims 1, 13, 16, 19, 22, 25 or 28.
- 36. A polynucleotide labeled with a flourescent cyanine dye of any one of claims 1, 13, 16, 19, 22, 25 or 28.
- 37. A polypeptide labeled with a flourescent cyanine dye of any one of claims 1, 13, 16, 19, 22, 25 or 28.
- 38. A method of labeling a nucleotide or nucleoside, said method comprising contacting a fluorescent cyanine dye of claim 1 with said nucleotide or nucleoside.
- 39. A method of labeling a nucleic acid, said method comprising contacting a fluorescent cyanine dye of claim 1 with said nucleic acid.
- 40. The method of claim 39 wherein said nucleic acid comprises an allyl-amine-modified nucleotide, and said dye comprises an NHS group.

- 41. A method of labeling a polypeptide, said method comprising contacting a fluorescent cyanine dye of claim 1 with said polypeptide.
- 42. A method of labeling a nucleic acid, said method comprising contacting said nucleic acid with a cis-platinum complex comprising a fluorescent cyanine dye of claim 1.
- 43. A method of determining a nucleic acid sequence, said method comprising performing a nucleic acid sequencing reaction in the presence of a labeled nucleotide of claim 35.
- 44. The method of claim 43, wherein said contacting is performed in the presence of a second nucleotide comprising a fluorescent dye that is spectrally distinct from the dye on said first nucleotide.
- 45. A method of determining a nucleic acid sequence, said method comprising determining a nucleic acid sequence on a nucleic acid comprising a fluorescent cyanine dye of claim 1.
- 46. A method of detecting a polynucleotide, said method comprising detecting a polynucleotide comprising a labeled nucleotide of claim 35.

- 47. A method of detecting a polynucleotide, said method comprising detecting a polynucleotide comprising a fluorescent cyanine dye of claim 1.
- 48. The method of claim 47, wherein said detecting is performed on a nucleic acid microarray.
- 49. A method of detecting a polypeptide, said method comprising detecting a polypeptide comprising a fluorescent cyanine dye of claim 1.