Course Announcements

Due Friday (11:59 PM):

- D6
- Q6
- A3
- Weekly Project Survey (optional)

Machine Learning

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science <u>sellis@ucsd.edu</u>

- **Problem:** Detecting whether credit card charges are fraudulent.
- Data science question: Can we use the time of the charge, the location of the charge, and the price of the charge to predict whether that charge is fraudulent or not?
- **Type of analysis:** Predictive analysis

What is machine learning?

"Machine learning is the science of getting computers to act without being explicitly programmed"

- Andrew Ng, Stanford, ex-Google, chief scientist at Baidu, Coursera founder, Stanford Adjunct Faculty

Prediction Questions

Which of these questions is most appropriate for machine learning?

A How common is watching Sesame Street in the US?

B What is the effect of watching Sesame Street on children's brains?

C What is the relationship between early childhood educational programming and success in elementary school?

D Can we use information about one's early childhood to predict their success in elementary school?

E How does Sesame Street cause an increase in educational attainment?

Machine Learning Generalizations

Basic Steps to Prediction

model assessment

data partitioning

Data Partitioning

What portion of the data are typically used for generating the model?

feature selection

feature selection determines which variables are most predictive and includes them in the model

To modes of machine learning

Supervised Learning

You tell the computer what features to use to classify the observations

Unsupervised Learning

The computer determines how to classify based on properties within the data

Approaches to machine learning

Supervised Learning

Unsupervised Learning

Clustering (categorical) & dimensionality reduction (continuous)

can automatically identify structure in data

model selection

big datasets

simple models

CLASSICAL MACHINE LEARNING

Regression

"Draw a line through these dots. Yep, that's the machine learning"

Today this is used for:

- Stock price forecasts
- · Demand and sales volume analysis
- Medical diagnosis
- · Any number-time correlations

Popular algorithms are Linear and Polynomial regressions.

Classification

"Splits objects based at one of the attributes known beforehand. Separate socks by based on color, documents based on language, music by genre"

Today used for:

- Spam filtering
- Language detection
- A search of similar documents
- Sentiment analysis
- Recognition of handwritten characters and numbers
- Fraud detection

Popular algorithms: <u>Naive Bayes</u>, <u>Decision Tree</u>, <u>Logistic Regression</u>, <u>K-Nearest Neighbours</u>, <u>Support Vector Machine</u>

predicting <u>continuous</u> variables (i.e. Age)

continuous variable prediction

Classification:

variables
(i.e. education level)

categorical variable prediction

continuous variable prediction

continuous variable prediction

We'll use the linear relationship between variables to generate a predictive model

Independent Variable

Supervised Learning

regression

continuous variable prediction

PREDICT TRAFFIC JAMS

REGRESSION

predicting <u>continuous</u> variables (i.e. Age)

Classification:

variables
(i.e. give a loan?)

GIVE A LOAN?

DECISION TREE

Unsupervised Learning

To modes of machine learning

Supervised Learning

Dimensionality Reduction (Generalization)

Clustering

"Divides objects based on unknown features. Machine chooses the best way"

Nowadays used:

- For market segmentation (types of customers, loyalty)
- To merge close points on a map
- For image compression
- To analyze and label new data
- To detect abnormal behavior

Clustering

Popular algorithms: K-means_clustering, Mean-Shift, DBSCAN

"Assembles specific features into more highlevel ones"

Nowadays is used for:

- Recommender systems (★)
- · Beautiful visualizations
- Topic modeling and similar document search
- · Fake image analysis
- Risk management

Popular algorithms: <u>Principal Component Analysis</u> (PCA), <u>Singular Value Decomposition</u> (SVD), <u>Latent Dirichlet allocation</u> (LDA), <u>Latent Semantic Analysis</u> (LSA, pLSA, GLSA), <u>t-SNE</u> (for visualization)

PUT KEBAB KIOSKS IN THE OPTIMAL WAY

(also illustrating the K-means method)

1. Put kebab kiosks in random places in city

2. Watch how buyers choose the nearest one

3. Move kiosks closer to the centers of their popularity

4. Watch and move again

5. Repeat a million times

6. Done! You're god of kebabs!

You want to predict someone's emotion based on an image.

How would you approach this with machine learning?

A	В	С	D	E
Supervised,	Supervised,	Unsupervised,	Unsupervised,	Unsupervised,
Regression	Classification	dimensionality	clustering	Neural Network
		reduction		

"We have a thousand-layer network, dozens of video cards, but still no idea where to use it. Let's generate cat pics!"

Used today for:

- Replacement of all algorithms above
- Object identification on photos and videos
- Speech recognition and synthesis
- Image processing, style transfer
- Machine translation

Neural Networks

Popular architectures: <u>Perceptron</u>, <u>Convolutional Network</u> (CNN), <u>Recurrent Networks</u> (RNN), <u>Autoencoders</u>

WHAT IS A NEURON?

- Receives signal on synapse
- When trigger sends signal on axon

MATHEMATICAL NEURON

- Mathematical abstraction, inspired by biological neuron
- Either on or off based on sum of input

This will likely not be the last time you see this (mostly unhelpful) neural net image

These weights tell the neuron to respond more to one input and less to another. Weights are adjusted when training — that's how the network learns. Basically, that's all there is to it.

Manually labeling used to be the way...

Preliminary processing

Hand-crafted

features

Result

Neural Network

Original image

CNNs avoid manual labeling

"CNNs are all the rage right now. They are used to search for objects on photos and in videos, face recognition, style transfer, generating and enhancing images, creating effects like slow-mo and improving image quality. Nowadays CNNs are used in all the cases that involve pictures and videos."

CONVOLUTIONAL NEURAL NETWORK (CNN)

model assessment

Root Mean Squared Error (RMSE)

continuous variable prediction

$$Accuracy = \frac{\text{# of samples predicted correctly}}{\text{# of samples predicted}} * 100$$

		Actual		
		Positive	Negative	
Dradiated	Positive	True Positive (TP)	False Positive (FP)	
Predicted	Negative	False Negative (FN)	True Negative (TN)	

A 2x2 table is a type of confusion matrix

TP TP + FN

TN + FP

<u>categorical</u> variable prediction

Accuracy	What % were predicted correctly?		
Sensitivity	Of those that were positives, what % were predicted to be positive?		
Specificity	Of those that were <i>negatives</i> , what % were predicted to be negative?		

You've been given a dataset with a number of features and have been asked to predict each individual's age.

What prediction approach would you use?

After predicting each person's age, how would you assess your model?

Which would be the error value you'd want from your model?

Α	В	С	D	E
0.2	1.3	2.5	10.0	20.0