Ovlivnění nazality poruchou basálních ganglií

Vojtěch Illner & Tomáš Hyhlík

9. 1. 2020

Semestrální projekt B2M31AEDA, 2019/20

Úvod

Výrazný aspekt neurodegenerativních onemocnění je dopad na motorické schopnosti.

Mezi nejčastější patří Parkinsonova (PN) a Huntingtonova nemoc (HN).

S tím spojený velice častý výskyt poruchy řeči.

Zde zkoumána jedna z jejích charakteristik - **hypernazalita**.

Hypernazalita

Jedná se o patologicky zvýšenou nosovost.

Různé příčiny u HN a PN.

Může sloužit jako užitečný biomarker?

- Trpí pacient neurodegenerativní chorobou? Popřípadě jakým typem?
- Dá se zjišťovat závažnost nemoci?

Řečová data

Úloha prodloužené fonace hlásky /i/ a krátký monolog.

Pořízena od 37mi zdravých lidí (HC), 37mi pacientů s PN a 37mi s HN.

Závažnost onemocnění hodnocena podle standardizovaných škál UPDRS III a UHDRS.

Akustické příznaky nazality

Vypočítány z prodloužené fonace pomocí algoritmu analýzy třetino-oktávového spektra [2].

Míra Kolísavost Nárůst v čase

EFN mean

EFN SD

EFN trend

Subjektivní vyhodnocení nezávislými hodnotiteli z řečového monologu.

Použité statistické testy

Předpoklady

- · Normalita dat: Shapiro-Wilcoxon test
- Rovnost rozptylů: Bartlett test

Skupinové rozdíly + vliv pohlaví na výsledky

- · two-way ANOVA
- · Post-hoc vyhodnocení pomocí Bonferroniho metody

Reflexe závažnosti onemocnění

- Spearmanův korelační test
- Holm-Bonferroniho korekce (kvůli chybám 2. druhu)

Výsledky

Normalitu dat zamítáme pro všechny veličiny a rovnost rozptylů pro dvě, *EFN SD* a *EFN trend*, při hladině významnosti $\alpha=$ 0.05.

Two-way ANOVA

typ onemocnění pohlaví typ onemocnění × pohlaví

EFN mean	EFN SD	EFN trend	mean rates
p < 0.001	p < 0.001	n. s.	p < 0.001
n. s.	n. s.	n. s.	n. s.
n. s.	n. s.	n. s.	n. s.

Výsledky

Post-hoc testy:

Spearmanův korelační test po přepočítání Holm-Bonf. korekcí nenalezl žádný signifikantní případ korelace ($\alpha=$ 0.05), až na dvě výjimky u HN.

6

Interpretace

Typ onemocnění (HC, PN, HN) má zásadní vliv na měřené veličiny *EFN mean* a *EFN SD*, i na subjektivní skóre hodnotitelů.

Nezajímavý parametr *pohlaví* nemá žádný signifikantní vliv, stejně jako jeho interakce s typem nemoci.

Naměřené veličiny *EFN mean* a *EFN SD* mají signifikantní rozdíly *pouze* mezi skupinou HC a HN.

Subjektivní hodnocení má významné rozdíly mezi všemi skupinami.

V naprosté většině případů nebyla nalezena signifikantní korelace mezi měřenou veličinou a hodnotami na stand. škále, což platilo i pro subjektivní hodnocení.

Limitace práce

Velké limitace a omezená věrohodnost především v předpokladech použitých testů (two-way ANOVA).

Naštěstí bylo zjištěno, že ANOVA není tolik citlivá na rozumné odchylky od normálního rozdělení [1].

Na zpřesnění výsledků by bylo možné použít složitější, více robustní neparametrické metody.

Závěr

Veličiny *EFN mean* a *EFN SD* fungují jako účinné charakteristiky pro odlišení HC a HN. Pro PN skupinu nebyly zjištěny žádné významné rozdíly.

EFN trend nezaznamenal žádný signifikantní rozdíl mezi skupinami.

Až na výjimky, naměřené veličiny nereflektují závažnost nemoci, danou stand. škálami.

Budoucí práce

V oblasti automatického vyhodnocování hypernazality mají dosavadní metody stále *horší výsledky* než subjektivní hodnocení.

V některých úlohách již ale stojí na podobné úrovni, např. pří přítomnosti HN.

Automatické vyhodnocení pak přináší velké výhody při šetření času, objektivitu a možnost detailních analýz, např. průběh nemoci, účinnost medikace.

Reference

R. Kataoka, D. Warren, D. Zajac, R. Mayo, and R. Lutz.

The relationship between spectral characteristics and percieved hypernasality in children.

J. Acoust. Soc. Am., 109:2181-2189, 2001.