Ficha de Problemas da disciplina de Algoritmia Avançada do 3º ano da Licenciatura em Engenharia Informática da Instituto Superior de Engenharia do Porto

Ficha nº 3 (2020/2021)

1) Considere o seguinte grafo de ligações unidirecionais:

- a) Escreva a Base de Conhecimento representando os arcos do grafo por factos do tipo liga/2 (por exemplo "liga(a,b).").
- b) Implemente o método Primeiro em Profundidade?- dfs(a,j,Caminho).Caminho = [a, b, e, j]
- c) Coloque os factos "liga(a,c)." e "liga(c,g)" como os primeiros da Base de Conhecimento e verifique que caminho é gerado.

- d) Implemente um predicado que coloque todas as soluções existentes numa lista de soluções.
- e) Implemente um predicado que obtenha a solução que passa por menos nós.
- f) Altere o Primeiro em Profundidade para considerar níveis de corte.
- g) Implemente o método Primeiro em Largura.
 - 2) Considere o problema que será desenvolvido no trabalho de LAPR5 (e também ALGAV) e represente o conhecimento de um conjunto de nós (paragens de autocarro normais, paragens que são pontos de rendição de tripulações, estações de recolha) por factos Prolog no/6 com 6 argumentos: nome do nó, abreviatura do nó, indicação se é ponto de rendição (t para verdade, f para falso), indicação se é estação de recolha (t para verdade, f para falso), latitude, longitude. Por exemplo, a paragem de Cristelo poderia ser representada do seguinte modo:

no('Cristelo','CRIST',t,f,-8.34639896125324,41.2207801252676).

Considere o que está representado na tabela seguinte:

Nome	Abreviatura	Latitude	Longitude	Tempo máximo de paragem Capacidade de viaturas Estação de recolha Ponto de rendição
Aguiar de Sousa	AGUIA	41,1293363229325	-8,4464785432391	
Baltar	BALTR	41,1937898023744	-8,38716802227697	
Besteiros	BESTR	41,217018845589	-8,34043029659082	
Cete	CETE	41,183243425797	-8,35164059584564	
Cristelo	CRIST	41,2207801252676	-8,34639896125324	Χ
Duas Igrejas	DIGRJ	41,2278665802794	-8,35481024956726	
Estação (Lordelo)	ESTLO	41,2521157104055	-8,4227924957086	X
Estação (Paredes)	ESTPA	41,2082119860192	-8,33448520831829	X
Gandra	GAND	41,1956579348384	-8,43958765792976	
Lordelo	LORDL	41,2452627470645	-8,42293614720057	X
Mouriz	MOURZ	41,1983610215263	-8,36577272258403	
Parada de Todeia	PARAD	41,1765780321068	-8,37023578802149	
Paredes	PARED	41,2062947118362	-8,33566951069481	X
Recarei	RECAR	41,1599363478137	-8,42215867462191	
Sobrosa	SOBRO	41,2557331783506	-8,38118071581788	X
Vandoma	VANDO	41,2328015719913	-8,34160692293342	
Vila Cova de Carros	VCCAR	41,2090666564063	-8.35109395257277	

Represente ainda as linhas de autocarros através de factos Prolog linha/5 com 5 argumentos: nome da linha, nº da linha, lista com abreviaturas das

paragens envolvidas nas linhas (incluindo estações de recolha e pontos de rendição), duração da viagem total (em minutos) e distância percorrida (em metros). Por exemplo, a linha de Lordelo para Parada poderia ser representada por:

```
linha('Lordelo Parada',7,['LORDL','DIGRJ','CRIST','VCCAR','BALTR','PARAD'],22,11000).
```

Considere o que está representado na tabela seguinte, arbitre números de linhas se não tiver essa informação:

Descrição	Vazio	Nó de Início	Nó de Fim	Duração Tot	tal Distância Total
AGUIA>RECAR>PARAD>CETE>PARED		Aguiar de Sousa	Paredes	00:31	15700
PARED>CETE>PARAD>RECAR>AGUIA		Paredes	Aguiar de Sousa	00:31	15700
GAND>VANDO>BALTR>MOURZ>PARED		Gandra	Paredes	00:26	13000
PARED>MOURZ>BALTR>VANDO>GAND		Paredes	Gandra	00:26	13000
LORDL>VANDO>BALTR>MOURZ>PARED		Lordelo	Paredes	00:29	14300
PARED>MOURZ>BALTR>VANDO>LORDL		Paredes	Lordelo	00:29	14300
BALTR>VCCAR>CRIST		Baltar	Cristelo	00:08	4000
CRIST>VCCAR>BALTR		Cristelo	Baltar	00:08	4000
CETE>MOURZ>VCCAR>BESTR>CRIST>SOBRO		Cete	Sobrosa	00:23	11500
SOBRO>CRIST>BESTR>VCCAR>MOURZ>CETE		Sobrosa	Cete	00:23	11500
LORDL>DIGRJ>CRIST>VCCAR>BALTR>PARAD		Lordelo	Parada de Todeia	00:22	11000
PARAD>BALTR>VCCAR>CRIST>DIGRJ>LORDL		Parada de Todeia	Lordelo	00:22	11000
ESTLO>LORDL	Χ	Estação (Lordelo)	Lordelo	00:02	1500
LORDL>ESTLO	X	Lordelo	Estação (Lordelo)	00:02	1500
ESTLO>SOBRO	Χ	Estação (Lordelo)	Sobrosa	00:05	1500
SOBRO>ESTLO	X	Sobrosa	Estação (Lordelo)	00:05	1800
ESTPA>PARED	Χ	Estação (Paredes)	Paredes	00:02	1500
PARED>ESTPA	X	Paredes	Estação (Paredes)	00:02	1500

a) Escreva um predicado Prolog gera_ligacoes/0 (0 significa que não tem argumentos) que seja capaz de gerar todas as ligações diretas entre pontos de rendição ou estações de recolha (no fundo onde podem mudar os motoristas/tripulações). As ligações diretas ocorrem quando há um autocarro que passa por esses dois pontos (rendição ou recolha). Notar que deve passar pelo primeiro ponto e só depois pelo segundo. O predicado gera_ligacoes/0 deverá fazer o assert das ligações através de termos liga/3, onde os dois primeiros argumentos são os dois pontos (rendição ou recolha) e o terceiro argumento é o nº da linha de autocarro. Por exemplo, para ir do ponto de rendição Paredes para o ponto de rendição Lordelo podemos usar o autocarro nº 6, sendo criado pelo assert o seguinte facto:

```
liga('PARED', 'LORDL', 6).
```

b) Escreva um predicado Prolog caminho/3 que seja capaz de gerar um caminho entre um ponto de rendição ou ponto de recolha para outro

ponto de rendição ou ponto de recolha e envolvendo o uso de uma ou mais linhas de autocarro. Notar que só podemos trocar de linha em pontos de rendição ou estações de recolha. Por exemplo, se perguntarmos quais os caminhos entre Estação de Paredes e Cristelo são gerados 2 caminhos possíveis

```
?- caminho('ESTPA','CRIST',LCaminho).
LCaminho=[('ESTPA','PARED',18),('PARED','LORDL',6),('LORDL', 'CRIST',7)];
LCaminho=[('ESTPA','PARED',18),('PARED','LORDL',6),('LORDL','ESTLO',15),('ESTLO','SOBRO',16),('SOBRO','CRIST',12)]
```

c) Escreva um predicado Prolog menor_ntrocas/3 que seja capaz de gerar o caminho entre um ponto de rendição ou ponto de recolha para outro ponto de rendição ou ponto de recolha envolvendo o uso do menor número de linhas, ou seja, minimizando o número de trocas de linhas. Por exemplo, se perguntarmos qual o caminho com menos trocas de linha entre Estação de Paredes e Cristelo é gerada a seguinte solução:

```
?- menor_ntrocas('ESTPA','LORDL',LCaminho_menostrocas).
LCaminho_menostrocas=[('ESTPA','PARED',18),('PARED','LORDL',6)].
```

d) Experimente ver o que acontece em termos de número de soluções geradas pelo predicado caminho/3 se aumentarmos o número de pontos de rendição. Pode fazer essa experiência de forma simples passando algumas paragens onde haja interseção de linhas para pontos de rendição (Baltar, Cete, Mouriz, Parada, Vandoma, Vila Cova de Carros).