

Technische Grundlagen der Informatik 2 Rechnerorganisation

Kapitel 1: Grundlegende Ideen, Technologien und Komponenten

Prof. Dr. Ben Juurlink

Fachgebiet: Architektur eingebetteter System
Institut für Technische Informatik und Mikroelektronik
Fak. IV – Elektrotechnik und Informatik

SS 2014

Kurzinhalt

- Die Computerrevolution
- Klassen von Computersystemen
- Hardware- und Software-Ebenen
- Von einer Hochsprache zur Sprache der Hardware
- Klassische Computerkomponente
- Technologien

Die Computerrevolution

- Computer haben die Welt verändert.
- Vor 10-20 Jahren waren folgende Anwendungen Science Fiction:
 - Laptops
 - World Wide Web (WWW, Web)
 - Handys
 - Digitales Fernsehen/Kamera
 - Forschung am menschlichen Genom
 - **–** ...
- Diese und andere Anwendungen sind nur möglich Dank der Entwicklung der Rechnertechnologie

Klassen von Computersystemen

- Arbeitsplatzrechner (desktop computers) (100 M/Jahr)
 - der auf/unter/neben ihrem Schreibtisch
 - gute Leistungen zu akzeptablen Preisen
 - führen Software von Drittanbietern aus
- Server (5 M/Jahr)
 - bewältigen große Lasten (Anwendungen aus dem technisch-/wissenschaftlichen Bereich, Verarbeitung vieler kleiner Jobs (Web Server))
 - gleiche Technologie wie Arbeitsplatzrechner, jedoch höheres Maß an Erweiterbarkeit
- Eingebettete Rechner (embedded computers) (1000 M/Jahr)
 - größte Klasse und größte Bandbreite an Anwendungen und Leistungen
 - in Waschmaschinen und KFZs, Handys und PDAs, Videospielsystemen und digitalen TV-Geräten, . . .

Anzahl der verkauften Prozessoren

- Für Arbeitsplatzrechner und Server komplette Rechnersysteme, können jedoch mit mehreren Prozessoren (cores) ausgestattet sein.
- Für eingebettete Rechner tatsächliche Anzahl der Prozessoren

Hinter einem Programm

- Vereinfachte Darstellung der Hardware (HW) und Software (SW) als hierarchische Ebenen in Form von konzentrischen Kreisen
- Komplexe Anwendungen bestehen häufig aus mehreren SW-Ebenen
- Systemsoftware: SW, die allgemein nützliche Dienste bereitstellt (z. B. Betriebssysteme, Compiler und Assembler)

Von Hochsprache zur Maschinensprache

Binärer Maschinencode für MIPS [Binary machine language program]

Computerkomponente / 1

Computerkomponente / 2

Die 5 klassischen Komponente eines Computers:

- Eingabegeräte (input devices) (Maus, Tastatur, ...)
- Ausgabegeräte (output devices) (Bildschirm, Drucker, ...)
- Speicher:
 - Intern: DRAM, SRAM [flüchtig]
 - Extern: Festplatte, CD, Diskettenlaufwerk [nicht flüchtig]
- Datenpfad
 - führt Operationen aus
 - die Muskeln eines Prozessors
- Leitwerk / Steuerung (control)
 - sendet Signale, welche die Operationen bestimmen
 - Gehirn eines Prozessors

Prozessor oder Central Processing Unit (CPU)

Inneres eines PCs

Hauptplatine (motherboard)

- DIMM = Dual Inline Memory Module
- PCI = Peripheral Component Interconnect
- IDE = Integrated
 Drive Electronics
 (bus for hard disk drives)
- SATA = Serial Advanced Technology Attachment

Inneres eines Prozessorchips (Pentium 4)

Scl		Leitwerk niedliche nitt- logiken	Ein-/ Ausgabe- schnitt- stelle
erweiterter Be- fehlssatz für Gleitkomma- operationen und Multimedia		Daten- Cache Integer Datenpfad	sekundärer
Leitwerk			Cache und Speicher- schnitt- stelle
Unterstützung von Advanced Pipelining und Hyperthreading		Leitwerk	

Fokus

- Unser Fokus: Der Prozessor (CPU = Central Processing Unit)
 - Datenpfad
 - Steuerwerk
- Realisiert mit Billionen von
- Unmöglich zu verstehen, wenn man die Transistoren einzeln betrachtet
- Wir benötigen Abstraktionen auf viele Ebenen.

Abstraktion

 Abstraktion: Ein Modell, bei dem Details der unteren Ebenen eines (Computer-)Systems vorübergehend ausgeblendet werden, um die Entwicklung komplexer Systeme zu erleichtern

Beispiele:

- Schaltkreise (MUX statt Schaltkreis)
- Befehlssatzarchitektur (digitaler Rechner "=" der Satz von Befehlen, den er ausführen kann)
- Programmabstraktion (Funktionen, Klassen, Objekte)
- Datenabstraktion (Sätze, Queues)

Befehlssatzarchitektur Instruction Set Architecture (ISA)

- Eine sehr wichtige Abstraktion!
- Schnittstelle zwischen HW und SW
- Standardisierung von Befehle, Bitfolgen, u. s. w.
- Vorteil:
 - verschiedene Implementierungen einer Architektur möglich
- Nachteil:
 - verhindert manchmal neue Innovationen

Wahr oder nicht wahr?

Binäre Kompatibilität ist äußerst wichtig

Zusammenfassung / Fazit

- Computer haben die Welt verändert
- Die 3 Klassen von Computersystemen sind Arbeitsplatzrechner, Server & eingebettete Rechner
 - eingebettete Rechner höchste in Anzahl, Arbeitsplatzrechner in \$\$\$
- 5 klassischen Komponenten eines Computers sind:
 - Eingabegeräte (input devices), Ausgabegeräte (output devices)
 Speicher, Datenpfad, Leitwerk/Steuerung (control)
- Unser Fokus ist der Prozessor (CPU = Central Processing Unit)
- Brauchen Abstraktion um den Prozessor verstehen zu können