Review of basic notions of linear algebra

- We will denote the N-dimensional space of complex vectors $\mathbf{v} = (v_1, v_2, \dots, v_N)$ by \mathbb{C}^N .
- \bullet The sum of two vectors \mathbf{v} and \mathbf{w} can be defined in a natural way by adding element by element:

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_N + w_N).$$
 (1)

• Multiplication of a vector by a complex number α (scalar) is defined by

$$\alpha \mathbf{v} = (\alpha v_1, \alpha v_2, \dots, \alpha v_N). \tag{2}$$

• m vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m$ are linearly independent if

$$\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_m \mathbf{e}_m = 0 \tag{3}$$

implies $\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$.

• An N-dimensional vector space has N independent vectors. A set $\{\mathbf{e}_j\}_{j=1,\dots,N}$ of N independent vectors is called basis. A canonical basis is given by the N-tuple

$$\mathbf{e}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \quad \mathbf{e}_{N} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}. \tag{4}$$

• Given a basis $\{e_j\}_{j=1,\dots,N}$ a vector can be written in a unique way as linear combination of the basis vectors:

$$\mathbf{v} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_N \mathbf{e}_N, \quad \alpha_i \in \mathbb{C}.$$
 (5)

 $\alpha_1, \alpha_2, \ldots, \alpha_N$ are called *components* of **v** in the basis $\{\mathbf{e}_i\}_{i=1,\ldots,N}$.

• If we write $\mathbf{v} = (v_1, v_2, \dots, v_N)$, the v_j are the components of \mathbf{v} in the canonical basis.

Elementary notions to be remembered:

- If $M = (m_{ij})$ is a $N \times N$ matrix (with real or complex elements), then $\mathbf{x} \neq \mathbf{0}$ is said to be an eigenvector of M corresponding to the eigenvalue $\lambda \in \mathbb{C}$ if $M\mathbf{x} = \lambda \mathbf{x}$.
- The eigenvalues of a matrix are computed by finding the roots of the characteristic polynomial

$$Z(\lambda) = \det(M - \lambda I) = \sum_{k=0}^{N} a_k \lambda^k$$
(6)

• Let $\lambda_1, \ldots, \lambda_N$ be the eigenvalues of M, then

$$\det(M) = \prod_{j=1}^{N} \lambda_j. \tag{7}$$

- Many $N \times N$ matrices (not all) can be diagonalized, that is they admit N independent eigenvectors.
- Let Y be an arbitrary $N \times N$ matrix and write

$$M' = Y^{-1}MY. (8)$$

We say that M' is conjugated to M by Y.

• Let λ_j be the j-th eigenvalue of M and \mathbf{x}_j its corresponding eigenvector. If X is the matrix whose j-th column is \mathbf{x}_j , then

$$X^{-1}MX = \Lambda, (9)$$

where Λ is the diagonal matrix

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_N \end{pmatrix}$$
(10)

- We say that X diagonalizes M. (M is conjugated by X to a diagonal matrix.)
- The determinant of the matrix has the following properties:

$$\det(AB) = \det(A)\det(B),\tag{11}$$

$$\det(Y^{-1}MY) = \det(Y^{-1})\det(M)\det(Y) = \det(M)$$
(12)

which follows from the identity

$$\det(Y^{-1}) = 1/\det(Y). \tag{13}$$

• The trace $\operatorname{Tr} M$ is the sum of all the diagonal elements of M,

$$\operatorname{Tr}(M) = \sum_{j=1}^{N} m_{jj}.$$
(14)

It has the cyclic property

$$\operatorname{Tr}(ABC) = \operatorname{Tr}(BCA) = \operatorname{Tr}(CAB).$$
 (15)

• The cyclic property implies that

$$Tr(X^{-1}MX) = Tr(M). (16)$$

Functions of matrices that are invariant under conjugation by an arbitrary matrix are called *class functions*.

• If X diagonalizes M then

$$Tr(M) = Tr(X\Lambda X^{-1}) = Tr(\Lambda) = \sum_{i=1}^{N} \lambda_{i}.$$
 (17)

The trace of a matrix that can be diagonalized is the sum of its eigenvalues.