Homework #1 Deep Learning for Computer Vision

Problem 1 (10%)

1. (2%) Print the network architecture of your model.

Best model: ResNet-110

Architecture: Due to a large architecture in long print, please see Appendix A (p. 6-15).

2. (2%) Report the accuracy of the model on the validation set.

Accuracy: 92.52%

3. (6%) Visualize the classification result on the validation set by implementing t-SNE on output features of the second last layer. Briefly explain your result of the t-SNE visualization.

t-SNE visualization:

Explanation: From the t-SNE, we can observe that the images in the same classes are close in the 2D latent space, while the images in different classes are distant from one another. This result shows that our model can **well classify** the images in the validation dataset.

Problem 2 (20%)

1. (5%) Print the network architecture of your VGG16-FCN32s model.

```
VGG FCN32(
 (feats): Sequential(
  (0): Conv2d(3, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): ReLU(inplace=True)
  (2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (3): ReLU(inplace=True)
  (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (5): Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (6): ReLU(inplace=True)
  (7): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (8): ReLU(inplace=True)
  (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (10): Conv2d(128, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (11): ReLU(inplace=True)
  (12): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (13): ReLU(inplace=True)
  (14): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (15): ReLU(inplace=True)
  (16): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (17): Conv2d(256, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (18): ReLU(inplace=True)
  (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (20): ReLU(inplace=True)
  (21): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (22): ReLU(inplace=True)
  (23): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (25): ReLU(inplace=True)
  (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (27): ReLU(inplace=True)
  (28): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (29): ReLU(inplace=True)
  (30): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
 (fconn): Sequential(
  (0): Conv2d(512, 4096, kernel size=(7, 7), stride=(1, 1))
  (1): ReLU(inplace=True)
  (2): Dropout(p=0.5, inplace=False)
  (3): Conv2d(4096, 4096, kernel_size=(1, 1), stride=(1, 1))
  (4): ReLU(inplace=True)
  (5): Dropout(p=0.5, inplace=False)
 (score): Conv2d(4096, 7, kernel size=(1, 1), stride=(1, 1))
```

2. (5%) Implement an improved model which performs better than your baseline model. Print the network architecture of this model.

Best model: ResNet50+FCN

Architecture: Due to a large architecture in long print, please see Appendix B (p. 15-19).

3. (5%) Report model on the validation set.

Model	mIOU (validation)	Pretrained weights	Model size	GPU memory (training / inference)	Inference time
Improved model: ResNet50+FCN	70.102%	ResNet50+FCN on Coco 2017	264MB	10G / 2.5G	20 sec.
Baseline model: VGG16+FCN32	61.236%	VGG-16 on ImageNet	1.1G	8G / 3.7G	13 sec.

^{*}Train ResNet50+FCN: on GPU V100

4. (5%) Show the predicted segmentation mask of "validation/0010_sat.jpg", "validation/0097_sat.jpg", "validation/0107_sat.jpg" during the early, middle, and final stage during the training process of this improved model.

Validation dataset						
Dataset	"0010"	"0097"	"0107"			
Satellite map			Stands and			

^{*}Train VGG16+FCN32 & Inference both: on GPU GTX 1080

Ting-An Chen

Appendix A - Problem 1. 1

```
ResNet(
 (conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (layer1): Sequential(
  (0): ResBasicBlock(
   (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (shortcut): Sequential()
  (1): ResBasicBlock(
   (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (shortcut): Sequential()
  (2): ResBasicBlock(
   (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (shortcut): Sequential()
  (3): ResBasicBlock(
   (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (shortcut): Sequential()
  (4): ResBasicBlock(
   (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (relu): ReLU(inplace=True)
   (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (shortcut): Sequential()
  (5): ResBasicBlock(
```

```
(conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(6): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(7): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(8): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(9): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(10): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(11): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
```

```
(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(12): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(13): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(14): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(15): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(16): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(17): ResBasicBlock(
 (conv1): Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
```

```
(relu): ReLU(inplace=True)
  (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (shortcut): Sequential()
)
(layer2): Sequential(
(0): ResBasicBlock(
  (conv1): Conv2d(16, 32, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (shortcut): LambdaLayer()
(1): ResBasicBlock(
  (conv1): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (shortcut): Sequential()
 (2): ResBasicBlock(
  (conv1): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (shortcut): Sequential()
 (3): ResBasicBlock(
  (conv1): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (shortcut): Sequential()
 (4): ResBasicBlock(
  (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (shortcut): Sequential()
(5): ResBasicBlock(
  (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
```

```
(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(6): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(7): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(8): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(9): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(10): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(11): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
```

```
(relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(12): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel _size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(13): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(14): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(15): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(16): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(17): ResBasicBlock(
 (conv1): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
```

```
(conv2): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (shortcut): Sequential()
)
)
(layer3): Sequential(
(0): ResBasicBlock(
  (conv1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (shortcut): LambdaLayer()
(1): ResBasicBlock(
  (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (shortcut): Sequential()
 (2): ResBasicBlock(
  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (shortcut): Sequential()
 (3): ResBasicBlock(
  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (shortcut): Sequential()
 (4): ResBasicBlock(
  (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (shortcut): Sequential()
 (5): ResBasicBlock(
  (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
```

```
(relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(6): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(7): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(8): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(9): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(10): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(11): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
```

```
(conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(12): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(13): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (shortcut): Sequential()
(14): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(15): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(16): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (shortcut): Sequential()
(17): ResBasicBlock(
 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
```

```
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (shortcut): Sequential()
)
)
(avgpool): AdaptiveAvgPool2d(output_size=1)
    (fc): Linear(in_features=64, out_features=50, bias=True)
)
```

Appendix B - Problem 2. 2

```
FCN(
 (backbone): IntermediateLayerGetter(
  (conv1): Conv2d(3, 64, kernel size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil mode=False)
  (layer1): Sequential(
   (0): Bottleneck(
    (conv1): Conv2d(64, 64, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(64, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (downsample): Sequential(
      (0): Conv2d(64, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
      (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (1): Bottleneck(
    (conv1): Conv2d(256, 64, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
   (2): Bottleneck(
    (conv1): Conv2d(256, 64, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(64, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

```
(relu): ReLU(inplace=True)
(layer2): Sequential(
 (0): Bottleneck(
  (conv1): Conv2d(256, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (downsample): Sequential(
   (0): Conv2d(256, 512, kernel size=(1, 1), stride=(2, 2), bias=False)
   (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  )
 (1): Bottleneck(
  (conv1): Conv2d(512, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(128, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
 (2): Bottleneck(
  (conv1): Conv2d(512, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(128, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
 (3): Bottleneck(
  (conv1): Conv2d(512, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(128, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
 )
(layer3): Sequential(
 (0): Bottleneck(
  (conv1): Conv2d(512, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

```
(conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (downsample): Sequential(
      (0): Conv2d(512, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
      (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   )
   (1): Bottleneck(
    (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
    (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
   (2): Bottleneck(
    (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
    (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
   (3): Bottleneck(
    (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
    (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
   (4): Bottleneck(
    (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
    (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
```

```
)
   (5): Bottleneck(
    (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
    (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
   )
  (layer4): Sequential(
   (0): Bottleneck(
    (conv1): Conv2d(1024, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
    (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (conv3): Conv2d(512, 2048, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (downsample): Sequential(
      (0): Conv2d(1024, 2048, kernel size=(1, 1), stride=(1, 1), bias=False)
      (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    )
   (1): Bottleneck(
    (conv1): Conv2d(2048, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4),
bias=False)
    (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
   )
   (2): Bottleneck(
    (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4),
bias=False)
    (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (conv3): Conv2d(512, 2048, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
   )
```

Ting-An Chen

```
(classifier): FCNHead(
  (0): Conv2d(2048, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU()
  (3): Dropout(p=0.1, inplace=False)
  (4): Conv2d(512, 7, kernel_size=(1, 1), stride=(1, 1))
  )
}
```