

planetmath.org

Math for the people, by the people.

arithmetical hierarchy is a proper hierarchy

Canonical name Arithmetical Hierarchy Is A Proper Hierarchy

Date of creation 2013-03-22 12:55:14 Last modified on 2013-03-22 12:55:14

Owner Henry (455) Last modified by Henry (455)

Numerical id 6

Author Henry (455) Entry type Result Classification msc 03B10 By definition, we have $\Delta_n = \Pi_n \cap \Sigma_n$. In addition, $\Sigma_n \cup \Pi_n \subseteq \Delta_{n+1}$.

This is proved by vacuous quantification. If R is equivalent to $\phi(\vec{n})$ then R is equivalent to $\forall x \phi(\vec{n})$ and $\exists x \phi(\vec{n})$, where x is some variable that does not occur free in ϕ .

More significant is the proof that all containments are proper. First, let $n \geq 1$ and U be universal for 2-ary Σ_n relations. Then $D(x) \leftrightarrow U(x,x)$ is obviously Σ_n . But suppose $D \in \Delta_n$. Then $D \in Pi_n$, so $\neg D \in \Sigma_n$. Since U is universal, ther is some e such that $\neg D(x) \leftrightarrow U(e,x)$, and therefore $\neg D(e) \leftrightarrow U(e,e) \leftrightarrow \neg U(e,e)$. This is clearly a contradiction, so $D \in \Sigma_n \setminus \Delta_n$ and $\neg D \in \Pi_n \setminus \Delta_n$.

In addition the recursive join of D and $\neg D$, defined by

$$D \oplus \neg D(x) \leftrightarrow (\exists y < x[x = 2 \cdot y] \land D(x)) \lor (\neg \exists y < x[x = 2 \cdot y] \land \neg D(x))$$

Clearly both D and $\neg D$ can be recovered from $D \oplus \neg D$, so it is contained in neither Σ_n nor Π_n . However the definition above has only unbounded quantifiers except for those in D and $\neg D$, so $D \oplus \neg D(x) \in \Delta_{n+1} \setminus \Sigma_n \cup \Pi_n$