Algoritmo 1

F1		
N	OP	
0	0	
100	197	
rea de Plotagem 397		
300	597	
400	797	
500	997	
600	1197	
700	1397	
800	1597	
900	1797	
1000	1997	

Expoente 1,005911839 Fórmula 0 102,7599011 206,3637038 310,2884401 414,4221412 518,7115037 623,1250815 727,6420701 832,2476677 936,9307974 1041,682855

Foi um código de execução rápida, seu gráfico é de complexidade n, linear. Observa-se que, à medida que o tamanho da entrada dobra, o tempo de execução também cresce de forma proporcional. Esse comportamento é típico de algoritmos que percorrem todos os elementos de forma sequencial, sem repetições aninhadas. Por isso, o Algoritmo 1 se mostrou bastante eficiente, mantendo tempos de execução baixos mesmo para entradas maiores.

Algoritmo 2

Fórmula 0 1018264,463 8168338,193 27612108,93 65524970,45 128090746,8 221499475,1 351946127,3 525629773,3 748752988,5 1027521412

Foi um código de execução rápida, seu gráfico é de complexidade n ao cubo. O tempo de execução aumentou de forma muito acentuada à medida que o valor de n cresceu. Embora o tempo inicial tenha sido relativamente rápido para entradas pequenas, o crescimento se mostrou insustentável em entradas maiores, tornando esse algoritmo pouco escalável.

Algoritmo 3

Foi um código de execução rápida, seu gráfico é de complexidade n ao quadrado. O gráfico evidencia que o tempo de execução cresce mais rapidamente do que no Algoritmo 1 (linear), mas ainda menos abruptamente que no Algoritmo 2 (cúbico). Apesar de mais custoso que a versão linear, o Algoritmo 3 ainda pode ser considerado viável para entradas de tamanho moderado.

Algoritmo 4

F4	
N	OP
0	0
100	405553791
200	-2080247576
300	-203690645
400	-470844127
500	-1329816081
600	-806682940
700	1466048028
800	-1636671090
900	1022618534
1000	1706379110

Foi um código de execução mais lenta comparado aos outros, que demorou em torno de uma hora para finalizar, seu gráfico é de complexidade log n. Esse comportamento cresce de forma muito mais lenta do que os algoritmos lineares, quadráticos ou cúbicos, o que o torna bastante eficiente em cenários de entrada muito grande. Assim, apesar do tempo inicial elevado, tende a superar os demais em escalabilidade.

Algoritmo 5

F5	
N	OP
0	0
100	1899035032
200	255065140
300	-1987830736
400	2051388164
500	-1109181112
600	-303447386
700	-1220062488
800	215126802
900	519000666
1000	-487529366

Foi um código de execução lenta comparado aos outros, foi o que mais demorou para ser realizado, da operação 900 para 1000 demorou mais de uma hora. Com as fórmulas dadas no material, não era possível calcular o expoente por não haver log de número negativo, a formula do expoente adaptada foi:

=(LOG(ABS(OP final))-LOG(ABS(OP inicial em 100)))/(LOG(ABS(1000))-LOG(ABS(100))).

O gráfico sugere um crescimento superior ao polinomial, possivelmente de ordem exponencial, o que explica sua inviabilidade prática para entradas maiores. Dessa forma, embora seja possível executá-lo em instâncias pequenas, o algoritmo se torna impraticável em escalas maiores.