TC / PWM

Lab 3

Readings:

Atmel SAMD20 DataSheet

- Section 14: GCLK - Generic Clock Controller

- Section 15: PM - Power Manager

- Section 27: TC - Timer/Counter

Lab Description:

In this Lab students will learn how to utilize PWM waveforms for two different functions.

- 1. Create a sinusoidal waveform by using a filter and a PWM.
- 2. Control the speed of a motor using PWMs and the Lab 2 code for the ADC to read the position of the POT

Theory of Operation:

- 1. Power Manager
 - a. In previous Labs the Power Manager (PM) has either been enabled by default or set in the sample code for you. The PM has Peripheral Clock Masks to allow the user to turn on or off a peripheral clock to conserve power. In this Lab you will need to enable some of the Timer/Counter Peripheral Clocks. Use the following information from lecture to enable the correct TC.

0x14	AHBMASK	7:0				NVMCTRL	DSU	HPB2	HPB1	HPB0
0x15		15:8								
0x16		23:16								
0x17		31:24								
0x18	APBAMASK	7:0		EIC	RTC	WDT	GCLK	SYSCTRL	РМ	PAC0
0x19		15:8								
0x1A		23:16								
0x1B		31:24								
0x1C	APBBMASK	7:0					PORT	NVMCTRL	DSU	PAC1
0x1D		15:8								
0x1E		23:16								
0x1F		31:24								
0x20	APBCMASK	7:0	SERCOM5	SERCOM4	SERCOM3	SERCOM2	SERCOM1	SERCOM0	EVSYS	PAC2
0x21		15:8	TC7	TC6	TC5	TC4	TC3	TC2	TC1	TC0
0x22		23:16					PTC	DAC	AC	ADC
0x23		31:24								

The above registers allow for individually enable/disable APB clock goes to the peripherals connected on the APBs. For example, the General Purpose IO is on APBB. The APBB clock to PORT can be enabled by writing a 1 to APBBMASK.PORT.

2. Counter

a. The counter can be set to count up or down on every clock cycle. When the counter is counting up and the top value is reached, the counter will wrap around to zero on the next clock cycle. When counting down, the counter will wrap around to the top value when zero is reached. For this lab keep the counter in its default state of counting up.

- b. There are three counters to choose from
 - i. 8-bit
 - ii. 16-bit
 - iii. 32-bit

Basic Counter Operation

- 3. Compare and Capture / Period and Frequency
 - a. When using the TC with the Compare/Capture Value registers (CCx) configured for compare operation, the counter value is continuously compared to the values in the CCx registers. This can be used for timer or waveform operation.
 - b. There are four configurations for the Waveform Generation Operation bit group in the Control A register, two Frequency generation modes and two PWM generation modes.
 - i. Normal frequency (NFRQ)
 - ii. Match frequency (MFRQ)
 - iii. Normal PWM (NPWM)
 - iv. Match PWM (MPWM)
 - c. Frequency Generation mode is in many ways identical to PWM generation. However, in Frequency Generation a toggle only occurs on the output when a match on a capture channels occurs. When the match is made, the timer value is reset, resulting in a variable frequency square wave with a fixed 50% duty cycle.
 - d. In PWM Generation mode the frequency, for the 8-bit counter, is determined by the Period register. While the Compare/Capture Value registers (CCx) are used to determine the duty cycle of the waveform. This allows for a variable duty cycle and a variable frequency for the 8-bit counter. The 16-bit and 32-bit counters don't have a period register making the frequency more fixed than that of the Frequency Generation modes.

Normal PWM Operation

Peripheral and Coding:

Address-	SAM	D20 Syntax Code	"*por" is pointer variable name				
0x40000400 offset 0x1C	- -	PM APBCMASK.reg	//definition address for PM functionality //used to enable peripheral clocks on the APBC bus				
0x42002800	_	TC2	//definition address for TC2 functionality				
0x42003000	-	TC4	//definition address for TC4 functionality				
0x42003800	-	TC6	//definition address for TC6 functionality				
offset 0x00	-	CTRLA.reg	// used to setup and enable TC				
offset 0x0F	-	STATUS.reg	// used to check synchronization of registers				
offset 0x10	-	COUNT.reg	// increments on every clock cycle				
offset 0x14	-	PER.reg	//sets the top value for the 8bit mode counter				
offset 0x18	-	CC0.reg //sets the co	ompare and capture for even pin then outputs to WO[0]				
offset 0x19	-	CC1.reg //sets the co	ompare and capture for odd pin then outputs to WO[1]				

NOTE: CC0 and CC1 serve different functions when Waveform Generation Operations other than NPWM is used or when a counter other than 8-bit counter is used.

Required Tasks:

*please comment your code

Task 1: PWM generated sinusoidal from PA13 using the 8-bit counter

- Sine wave should about 500Hz (+/- 50Hz)
 - Screen capture the waveform before and after the filter for the Lab Report.
- Extra Credit: The same as above but with the 16-bit counter

Task 2: Open loop motor controller

- PA22 and PA23 are the outputs for the PWM to the motor.
- The POT will control the speed and direction of motor.
- Extra Credit:
 - Control the motor using the keypad by entering a certain Duty cycle that changes the speed of the motor after an "enter" button has been pressed.

Schematics for ADC and PWM:

Lab 2 ADC schematic used for task 2

Lab 3 Low pass filter that will be used for task 1

Lab 3 Motor driver circuit for task 2