Test Tema 5 de Percepción

ETSINF, Universitat Politècnica de València, Mayo de 2019

Apellidos:	Nombre:	
1	1	

Profesor: \square Jorge Civera \square Carlos Martínez

Cuestiones (0.25 puntos, 15 minutos, con apuntes)

D Ante el siguiente conjunto de entrenamiento:

n	1	2	3	4	5	6	7	8
x_{n1}	0	1	1	0	1	0	0	0
x_{n2}	0	0	0	0	1	0	0	1
x_{n3}	1	1	1	0	0	0	1	1
c_n	Α	Α	Α	Α	В	В	В	В

Los parámetros de las Bernoullis asociadas estimados por máxima verosimilitud serían:

- A) $\hat{p}_A = \left(\frac{3}{8}, \frac{1}{4}, \frac{5}{8}\right)^t \hat{p}_B = \left(\frac{5}{8}, \frac{3}{4}, \frac{3}{8}\right)^t$
- B) $\hat{p}_A = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, 0\right)^t \hat{p}_B = \left(\frac{2}{3}, 0, \frac{1}{3}, \frac{2}{3}\right)^t$
- C) $\hat{p}_A = (\frac{1}{2}, 0, \frac{3}{4})^t \hat{p}_B = (\frac{1}{2}, 1, \frac{1}{4})^t$
- D) $\hat{p}_A = \left(\frac{1}{2}, 0, \frac{3}{4}\right)^t \hat{p}_B = \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{2}\right)^t$
- $\overline{\mathbb{D}}$ Si al parámetro multinomial estimado $\hat{p}=(\frac{1}{10},\frac{2}{5},\frac{1}{5},\frac{3}{10})$ le aplicamos un suavizado de descuento absoluto con interpolación posterior por distribución uniforme, ¿qué valor de $\epsilon>0$ haría que no cambiara?
 - A) Cualquiera
 - B) Cualquiera menor a $\frac{1}{2}$
 - C) Cualquiera menor a $\frac{1}{5}$
 - D) Cualquiera menor a $\frac{1}{10}$
- \square Sean A y B dos clases con igual probabilidad a priori y probabilidades condicionales de clase gaussianas gobernadas por sus medias $\mu_A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ y $\mu_B = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ y matriz de covarianzas común $\Sigma = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$, ¿cuál de los siguientes pares de funciones discrimantes no son los de la clase A y B?:
 - A) $g_A(\mathbf{x}) = 0.75 \text{ y } g_B(\mathbf{x}) = 0.5 \cdot x_2$
 - B) $g_A(\mathbf{x}) = 0.5 \cdot x_2 \text{ y } g_B(\mathbf{x}) = x_2 0.75$
 - C) $g_A(\mathbf{x}) = 0.5 \cdot x_2 0.94 \text{ y } g_B(\mathbf{x}) = x_2 1.69$
 - D) Todas las anteriores son funciones discriminantes equivalentes y correctas

Nota: $\Sigma^{-1} = \begin{pmatrix} -1 & 1 \\ 1 & -0.5 \end{pmatrix}$

Test Tema 5 de Percepción

ETSINF, Universitat Politècnica de València, Mayo de 2019

Apellidos: Nombre:	
--------------------	--

Profesor: □ Jorge Civera ⊠ Carlos Martínez

Cuestiones (0.25 puntos, 15 minutos, con apuntes)

- D ¿Cuál de los siguientes parámetros Bernoulli no está correctamente definido?
 - A) $\mathbf{p} = \begin{pmatrix} \frac{1}{7} & \frac{2}{7} & \frac{2}{7} & \frac{2}{7} \end{pmatrix}^t$
 - B) $\mathbf{p} = \begin{pmatrix} \frac{6}{7} & \frac{5}{7} & \frac{6}{7} & \frac{5}{7} \end{pmatrix}^t$
 - C) $\mathbf{p} = (0 \ 0 \ 0 \ 0)^t$
 - D) Todos los anteriores parámetros Bernoulli están correctamente definidos
- C Dado el siguiente conjunto de datos extraído aleatoriamente de 2 distribuciones multinomiales independientes, ¿cuál es la estimación máximo verosimil de los prototipos multinomiales?

n	1	2	3	4	5	6	7	8
x_{n1}	2	4	2	2	3	2	3	2
x_{n2}	3	5	2	5	1	2	4	3
x_{n3}	1	1	1	2	7	8	9	6
c_n	Α	Α	Α	Α	В	В	В	В

- A) $\mathbf{p}_A = \left(\frac{10}{80} \frac{15}{80} \frac{5}{80}\right)^t \mathbf{p}_B = \left(\frac{10}{80} \frac{10}{80} \frac{30}{80}\right)^t$
- B) $\mathbf{p}_A = \left(\frac{10}{30} \frac{15}{30} \frac{5}{30}\right)^t \mathbf{p}_B = \left(\frac{10}{30} \frac{10}{30} \frac{30}{30}\right)^t$
- C) $\mathbf{p}_A = \left(\frac{10}{30} \frac{15}{30} \frac{5}{30}\right)^t \mathbf{p}_B = \left(\frac{10}{50} \frac{10}{50} \frac{30}{50}\right)^t$
- D) $\mathbf{p}_A = \left(\frac{10}{50} \frac{15}{50} \frac{5}{50}\right)^t \mathbf{p}_B = \left(\frac{10}{50} \frac{10}{50} \frac{30}{50}\right)^t$
- \square Sean A, B y C tres clases con igual probabilidad $a \ priori y$ probabilidades condicionales de clase gaussianas gobernadas por sus medias $\mu_A = \begin{pmatrix} -2 \\ -2 \end{pmatrix}, \ \mu_B = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \ y \ \mu_C = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ y matriz de covarianzas común $\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, ¿en que clase se clasifica la muestra $\mathbf{y} = (1 \ 1)$
 - A) A
 - B) B
 - C) C
 - D) Hay un empate entre dos clases