Tidal Dissipation in Cool Evolved Stars

Mats Esseldeurs Stéphane Mathis Leen Decin

Observations and Simulations

Orbital properties of binary systems

Statistics of orbital properties

Tidal Dissipation mechanisms

Tidal Dissipation mechanisms

Stellar Structure and Evolution

Stellar Structure and Evolution

Tidal Dissipation in Cool Evolved Stars

Tidal Dissipation in Cool Evolved Stars

Relative strengths of tidal dissipation

Relative strengths of tidal dissipation

Relative strengths of tidal dissipation

Eccentricity change during the AGB phase

Eccentricity change during the AGB phase

Tidal eccentricity pumping through resonances

Conclusions

- Tidal dissipation can be calculated ab-initio throughout the entire lifetime of a star
- The dynamical tide of gravity waves remains moderate during the giant phases
- The eccentricity problem is not yet solved
- The dynamical tide connecting with pressure modes remains to be studied

Mixing due to tidal waves

Mixing due to tidal waves

Tidal Dissipation in Cool Evolved Stars

Equilibrium Tides

$$\begin{split} &\frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}\Phi_l^{\mathrm{nw}}}{\mathrm{d}r} \right) - \frac{l(l+1)}{r^2} \Phi_l^{\mathrm{nw}} - 4\pi G \frac{\mathrm{d}\rho_0}{\mathrm{d}r} \frac{1}{g_0} \left(\Phi_l^{\mathrm{nw}} + \Psi_l \right) = 0 \\ &\left\{ \frac{\mathrm{d}\ln\Phi_l^{\mathrm{nw}}}{\mathrm{d}\ln r} = l & \text{at } r = \eta R_\star \text{ for } \eta \to 0 \\ \frac{\mathrm{d}\ln\Phi_l^{\mathrm{nw}}}{\mathrm{d}\ln r} = -(l+1) & \text{at } r = R_\star \\ &\xi_{r,l}^{\mathrm{nw}} = -\frac{\Phi_l^{\mathrm{nw}} + \Psi_l}{g_0} , & \xi_{h,l} = \frac{1}{l(l+1)} \left(2\xi_{r,l}^{\mathrm{nw}} + r \frac{\mathrm{d}\xi_{r,l}^{\mathrm{nw}}}{\mathrm{d}r} \right) . \\ &D_l(r) = \frac{1}{3} \left(3 \frac{\mathrm{d}\xi_{r,l}^{\mathrm{nw}}}{\mathrm{d}r} - \frac{1}{r^2} \frac{\mathrm{d} \left(r^2 \xi_{r,l}^{\mathrm{nw}} \right)}{\mathrm{d}r} + l(l+1) \frac{\xi_{h,l}^{\mathrm{nw}}}{r} \right)^2 \\ &+ l(l+1) \left(\frac{\xi_{r,l}^{\mathrm{nw}}}{r} + r \frac{\mathrm{d} \left(\xi_{h,l}^{\mathrm{nw}} / r \right)}{\mathrm{d}r} \right)^2 \\ &+ l(l+1) l(l+1) (l+2) \left(\frac{\xi_{h,l}^{\mathrm{nw}}}{r} \right)^2 , \end{split}$$

$$\mathrm{Im} \left(k_2^2 \right)_{\mathrm{eq}} = \frac{16\pi G \omega_t}{4(2l+1)R_\star |\varphi_T(R_\star)|^2} \int_0^{R_\star} r^2 \rho \nu_t D_l(r) \mathrm{d}r , \end{split}$$

Dynamical Tides

$$\begin{split} \mathcal{F}_{\text{in}} &= \int_{0}^{r_{\text{in}}} \left[\left(\frac{r^{2} \varphi_{T}}{g_{0}} \right)'' - \frac{l(l+1)}{r^{2}} \left(\frac{r^{2} \varphi_{T}}{g_{0}} \right) \right] \frac{X_{1,\text{in}}}{X_{1,\text{in}} (r_{\text{in}})} \mathrm{d}r \\ \mathcal{F}_{\text{out}} &= \int_{r_{\text{out}}}^{R_{\star}} \left[\left(\frac{r^{2} \varphi_{T}}{g_{0}} \right)'' - \frac{l(l+1)}{r^{2}} \left(\frac{r^{2} \varphi_{T}}{g_{0}} \right) \right] \frac{X_{1,\text{out}}}{X_{1,\text{out}} (r_{\text{out}})} \mathrm{d}r \\ \begin{cases} X_{1,\text{out}}'' - \frac{\partial_{r} \rho_{0}}{\rho_{0}} X_{1,\text{out}}' - \frac{l(l+1)}{r^{2}} X_{1,\text{out}} = 0 \\ X_{1,\text{out}}(r)_{r \to 0} \propto \left(\frac{1}{2} + \sqrt{\frac{1}{4} + l(l+1)}}{r^{2}} X_{1,\text{in}} = 0 \\ X_{1,\text{out}}(r)_{r \to R_{\star}} \propto \rho_{0} \left(r - R_{\star} - \frac{\varphi_{T}(R_{\star})}{g_{0}(R_{\star})} \right) \\ X_{1,\text{out}}'(r)_{r \to R_{\star}} \propto \rho_{0}(R_{\star}) \end{split}$$

Tidal Dissipation in Cool Evolved Stars

Equilibrium Tides

$$\begin{split} &\frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}\Phi_l^{\mathrm{nw}}}{\mathrm{d}r} \right) - \frac{l(l+1)}{r^2} \Phi_l^{\mathrm{nw}} - 4\pi G \frac{\mathrm{d}\rho_0}{\mathrm{d}r} \frac{1}{g_0} \left(\Phi_l^{\mathrm{nw}} + \Psi_l \right) = 0 \\ &\left\{ \frac{\mathrm{d} \ln \Phi_l^{\mathrm{nw}}}{\mathrm{d} \ln r} = l & \text{at } r = \eta R_{\star} \text{ for } \eta \to 0 \\ \frac{\mathrm{d} \ln \Phi_l^{\mathrm{nw}}}{\mathrm{d} \ln r} = -(l+1) & \text{at } r = R_{\star} \\ &\xi_{r,l}^{\mathrm{nw}} = -\frac{\Phi_l^{\mathrm{nw}} + \Psi_l}{g_0} , & \xi_{h,l} = \frac{1}{l(l+1)} \left(2\xi_{r,l}^{\mathrm{nw}} + r \frac{\mathrm{d}\xi_{r,l}^{\mathrm{nw}}}{\mathrm{d}r} \right) . \\ &D_l(r) = \frac{1}{3} \left(3 \frac{\mathrm{d}\xi_{r,l}^{\mathrm{nw}}}{\mathrm{d}r} - \frac{1}{r^2} \frac{\mathrm{d} \left(r^2 \xi_{r,l}^{\mathrm{nw}} \right)}{\mathrm{d}r} + l(l+1) \frac{\xi_{h,l}^{\mathrm{nw}}}{r} \right)^2 \\ &+ l(l+1) \left(\frac{\xi_{r,l}^{\mathrm{nw}}}{r} + r \frac{\mathrm{d} \left(\xi_{h,l}^{\mathrm{nw}} / r \right)}{\mathrm{d}r} \right)^2 \\ &+ (l-1)l(l+1)(l+2) \left(\frac{\xi_{h,l}^{\mathrm{nw}}}{r} \right)^2 , \end{split}$$

$$\mathrm{Im} \left(k_2^2 \right)_{\mathrm{eq}} = \frac{16\pi G \omega_t}{4(2l+1)R_{\star} |\varphi_T(R_{\star})|^2} \int_0^{R_{\star}} r^2 \rho \nu_t D_l(r) \mathrm{d}r , \end{split}$$

Dynamical Tides

$$\mathcal{F}_{\text{in}} = \int_{0}^{r_{\text{in}}} \left[\left(\frac{r^{2} \varphi_{T}}{g_{0}} \right)'' - \frac{l(l+1)}{r^{2}} \left(\frac{r^{2} \varphi_{T}}{g_{0}} \right) \right] \frac{X_{1,\text{in}}}{X_{1,\text{in}}(r_{\text{in}})} dr$$

$$\mathcal{F}_{\text{out}} = \int_{r_{\text{out}}}^{R_{\star}} \left[\left(\frac{r^{2} \varphi_{T}}{g_{0}} \right)'' - \frac{l(l+1)}{r^{2}} \left(\frac{r^{2} \varphi_{T}}{g_{0}} \right) \right] \frac{X_{1,\text{out}}}{X_{1,\text{out}}(r_{\text{out}})} dr$$

$$\text{Im} \left(k_{2}^{2} \right)_{\text{IGW}} = \frac{3^{-\frac{1}{3}} \Gamma^{2} \left(\frac{1}{3} \right)}{2\pi} [l(l+1)]^{-\frac{4}{3}} \omega_{t}^{\frac{8}{3}} \frac{a^{6}}{GM_{2}^{2} R_{\star}^{5}}$$

$$\times \left(\rho_{0} (r_{\text{in}}) r_{\text{in}} \left| \frac{dN^{2}}{d \ln r} \right|_{r_{\text{in}}}^{-\frac{1}{3}} \mathcal{F}_{\text{in}}^{2} \right)$$

$$+ \rho_{0} (r_{\text{out}}) r_{\text{out}} \left| \frac{dN^{2}}{d \ln r} \right|_{r_{\text{out}}}^{-\frac{1}{3}} \mathcal{F}_{\text{out}}^{2} \right)$$