PHY306 Advanced Quantum Mechanics Jan-Apr 2025: Assignment 10

Prof. Kavita Dorai, Department of Physics IISER Mohali. kavita@iisermohali.ac.in

- 1. Prove that the Dirac γ^i matrices (i = 0, 1, 2, 3) are hermitian, traceless matrices of even dimensionality, with eigenvalues ± 1 . Also show that $(\sigma.\mathbf{p})^2 = |\mathbf{p}|^2$
- 2. Operate on the Dirac equation with $\gamma^{\nu}\partial_{\nu}$ and show that each of the four components ψ_i satisfy the Klein-Gordon equation

$$\left(\Box - \frac{m^2 c^2}{\hbar^2}\right)\psi_i = 0$$

where \square is the d'Alembertian operator.

- 3. Check that of the four plane wave solutions to the Dirac equation, u^1 and u^2 are orthogonal and similarly, u^3 and u^4 are orthogonal. Are u^1 and u^3 orthogonal?
- 4. Calculate the $\lambda = +\frac{1}{2}$ helicity eigenspinor of an electron of momentum $\mathbf{p} = (p\sin\theta, 0, p\cos\theta)$
- 5. First construct the Hamiltonian H for the Dirac equation. Find the commutator of H with the total orbital angular momentum $(L = r \times P)$ and the spin angular momentum $(S = (\hbar/2)\Sigma)$ where

$$\Sigma = \left(\begin{array}{cc} \sigma & 0\\ 0 & \sigma \end{array}\right)$$

and show that L, S are not conserved. Show that the total angular momentum $J = L + \frac{\hbar}{2}\Sigma$ is conserved. Show that every bispinor is an eigenstate of S^2 and write down the corresponding eigenvalue.

- 6. For a nonrelativistic electron of velocity v, use the two-component spinor solutions of the Dirac equation u_A , u_B to show that u_A is larger than u_B by a factor of the order of v/c.
- 7. Show that the spinor representing an electron at rest is an eigenstate of the parity operator P. What is its intrinsic parity? What about the positron?
- 8. The charge conjugation operator C takes a Dirac spinor ψ into its charge conjugate spinor ψ_c given by

$$\psi_c = i\gamma^2 \psi^*$$

Find the charge-conjugates of u^1 and u^2 and compare them with v^1 and v^2

9. Choose the z axis points along the direction of motion and write out the four independent plane wave equations of the Dirac equation. Confirm that these are eigenspinors of S_z and find the eigenvalues.