	Date		
Ex	pt. No. 10 Page No. 49		
	Program 10		
	Implement the non-parametric Locally Weighted		
	Regression algorithm in order to fit data points.		
	select appropriate data set for your experiment and		
	draw graphs.		
_			
	import numpy as np		
	from bokes. plotting import figure, show, output notebook		
	from boken layouts import graput		
	from bokes, to import push-notebook		
	def local-regression(xo, x, Y, fau): $xo = np.r - (1, ko)$		
	$x = n\rho \cdot c_{-}(n\rho - ones(len(x)), x)$		
	XW = X.T * radial_ kenel (xo, X, tau)		
	beta = np. linalg. pinv (xw ex) @xw ex		
	return xo & beta		
	def radial-kernel(xo, x, tau):		
-	return np. exp(np. sum((x-X0) * *2, 0xis=1)/(-2		
	* tau * tau)		
	M > 4		
	m = 1000		
	x = np. bnspace (-3,3, num=n) print ("The Data Set (10 samples x: n", x[1:10])		
	Y= np. wg (np. abs (x + + 2-1) + 0.5)		
	print "The Fitting curve Date Set (10 samples) 4:17",		
1	YC1:10])		
1			
1			
	Teacher's Signature		
-			

	Date
Expt. No	Page No 57
x+= np. random. normal (scale = 0.	1, size=n)
print (ivormaused (10 samples)	x: 12", x[1:10])
aumiari - np. unspace (-7, 3, no	m=300)
print ("XO Domain Space Cio sa	mples) : In', de main (1:10])
dy plot - Iwr (taw):	
prediction = two cal-regression (xo, x, Y, tau) for xo in domain?
par figure (plot - width = 400	o, plot_height =400)
par lille tex = tau = /09	Yo tau
plat. silette (x, v, alpho=0.	3)
ploto line (domain, prediction	n, line width = 2, wor = 'red')
rcturn plot	
Show (gridplot (IT plot-lur (10.D, plot - (wr (1.)7, [plow-
	wr(0.1), plo = (wr (0.01)]))
	<u> </u>
	Teacher's Signature

```
output
```

```
The Data set (10 samples) X;

[-2.99399399, -2.89798799 -2.95795796 -2.95195195
-2.96596997 -2.96396396 -2.95795796 -2.95195195
-2.94594595]

The fitting curve datoket (10 samples) Y:

[2.13582188 2.13156306 2.12730467 2.12703166 2.11874593
2.11445659 2.11015444 2.10584249 2.10152068]

Normalized (10 samples) X;

[-2.98570718 -3.0283034 -2.9450019 -2.9005112] -2.967877,
-2.94366518 -7.10168986 -2.91344219 -2.9438611]

XO Domain Space (10 samples) :

[-2.979931 -2.95986622 -2.93979933 -2.91973244
2.89966555 -2.87959866 -2.85953177 -2.83946488
-2.81939799]
```