#### Fast Flux Service Networks





Carlos Martínez-Cagnazzo LACNIC XII Ciudad de Panamá Mayo de 2009

# Plan de la Presentación

- · Anatomía de un mensaje de phishing
- DNS
  - TTL, Round Robin
- · Anatomía de un phishing
- Fast Flux
- · Conclusiones / Referencias

# Un mensaje de phishing típico



#### Un mensaje de phishing típico

- Para que el phishing "funcione" hacen falta:
  - Un sistema comprometido donde alojar las páginas web que simulan al sitio "real"
  - Una forma de direccionar (nombre o IP), para dirigir a los usuarios al mismo
    - En general, las IPs de los sistemas mas frecuentemente comprometidos son variables, por hacen falta nombres para enmascarar esto
  - El nombre a usar debería

"parecer" genuino

- Un agente de recolección de datos
  - Drop-boxes o similar



#### DNS (I)

- · DNS: Domain Name System
- · Propósito básico:
  - Traducir números IP en nombres textuales mas amigables para los usuarios "humanos" de la red
- · Propósitos adicionales:
  - Soporte a diferentes servicios a dar sobre la red (directorio de servicios)
    - Ejemplo: Correo electrónico
  - Sub-delegaciones de nombres
    - Zonas, autoridad
  - Resolución reversa
    - Reverso: correspondencia nombre -> número IP

# DNS (II)



#### DNS (III)

• Estructura de los nombres de dominio:



- · Comentarios:
  - Los niveles del árbol reflejan las delegaciones
  - El root del árbol presente de forma implícita
  - No hay restricciones a la cantidad de niveles
  - Los niveles superiores "delegan" hacia los inferiores

#### **DNS Round Robin** · Técnica empleada para: - Balanceo de carga - Tolerancia a fallas Concepto: Una consulta por un nombre devuelve varios registros - El servidor DNS permuta el orden de estos registros en respuestas siguientes · Problemas: IN A 10.11.20.21 www.google.com - Falta de feedback de IN A 50.55.60.65 IN A 10.11.20.21 IN A 10.23.4 IN A 4.5.6.7 www.google.com servicios a DNS Tiempo de reacción limitado por TTL de los

#### Time-to-Live

- · Cada consulta al DNS es "costosa"
  - Consulta a servidores remotos
  - Consultas recursiva

registros

- · Los resultados se almacenan en caché local
- ¿Por cuánto tiempo? Time-to-Live
- Típicamente
  - 86400 segundos (1 día)



# El "Problema" (para el atacante)

- Bloqueos
  - Un sitio de phishing o similar, "tradicional" es muy sencillo de bloquear una vez detectado
    - Basta con eliminar el sistema comprometido que aloja las páginas fraudulentas
  - La distribución de software en la Botnet también puede ser bloqueada de manera completa si se detecta el sistema central
  - Los administradores de redes en general toman acciones inmediatas contra sitios de phishing y similares bloqueándolos
- ¿Como puedo dotar de alta disponibilidad a mi botnet?

# La "Solución" (para la misma...)

- · Eliminar los puntos únicos de falla
  - Web Server
  - Sistema comprometido donde se aloja el phishing
  - Resolución de nombres
  - a donde se apunta el phishing
- Fast Flux Service Networks
- Modos
  - Single flux: Servidor web
    - Servidor web distribuido, no ya un único sistema
    - Registros "A" en round robin
  - Double flux: Resolución de nombres
    - · Resolución de nombres distribuída
      - Registros "NS" variables

#### Anatomía de una FFSN

· Acceso web "normal"



- Etapas
  - Consulta al DNS por "A" de
  - www.google.com
  - 2. Envía pedido HTTP al servidor web
  - 3. Obtiene la página buscada

#### Anatomía de una FFSN: Tipos

- · Single Flux
  - Múltiples servidores web
    - Alojados en sistemas comprometidos (botnets)
  - Servidores DNS limitados
    - · Alojados en proveedores de DNS "usuales"
      - Deben permitir configurar dinámicamente registros "A" con TTLs pequeños
- Double Flux
  - Múltiples servidores web
  - Múltiples servidores DNS
    - Proveedor de DNS debe además permitir la configuración dinámica de registros "NS"

#### Anatomía de una FFSN: Single Flux

- ¿En que se diferencia del caso normal?
  - Múltiples registros "A" devueltos por el DNS
  - TTLs muy pequeños
  - Los "servidores" son en general computadores personales comprometidos
  - Registros "A" van cambiando con el tiempo
- Servidores DNS similares al caso "normal"
  - Pocos registros
  - Asociados a un proveedor



- Observaciones
  - Contenido entregado desde un sitio central
    - Facilita gestión

# Anatomía de una *FFSN: Do<u>uble Flux</u>*

El double flux agrega
"redundancia" a la
resolución de nombres

 En este caso, también los
registros "NS" del dominio
asociado están alojados en
bots y varían

Des la la la resolución central de correndo
registros "NS" del dominio
asociado están alojados en
bots y varían

Des la la la resolución central de correndo
registros "NS" del dominio
asociado están alojados en
bots y varían

|     |      |     |   | <br>$\sim$  |   |
|-----|------|-----|---|-------------|---|
| Oto | CCIO | n c | 0 | C.V.        | c |
|     | cció |     |   | <b>0</b> /V |   |

- Holz et al [1] proponen un criterio de scoring para detectar FFSNs
- · Posibles parámetros:
  - nA: el número de registros "A" devuelto por la consulta
  - nNS: el número de registros "NS" devueltos por la consulta
  - nASN: el número de sistemas autónomos diferentes representados en los registros "A"

|   |          |      | FFO    | 1- | (0)      |
|---|----------|------|--------|----|----------|
|   | etección | n MA | ++     | VC |          |
| 느 |          | uc   | 1 1 01 | VO | <b>4</b> |

- · Otros criterios:
  - Nombres reversos de las IPs devueltas en la consulta pertenecientes a redes de clientes ADSL, dialup o similares
  - Variaciones temporales nA o nNS
    - Respuesta a eliminaciones de nodos
  - TTLs en los registros pequeños
- Software
  - FFDetect
    - Biblioteca Java, Universidad de Wellington, Open Source
  - ffdetect.pl
    - Script Perl, CSIRT Antel, Open Source

# Ejemplo de una FFSN detectada

• Dominio "81dns.ru" (salida de dig 81dns.ru)

| ;; ANSWER SECTION:    |        |    |    |                 |
|-----------------------|--------|----|----|-----------------|
| 81dns.ru.             | 600    | IN | A  | 61.64.210.29    |
| 81dns.ru.             | 600    | IN | A  | 61.224.132.13   |
| 81dns.ru.             | 600    | IN | A  | 68.200.93.27    |
| 81dns.ru.             | 600    | IN | A  | 69.14.27.151    |
| 81dns.ru.             | 600    | IN | A  | 70.196.175.168  |
| 81dns.ru.             | 600    | IN | A  | 71.234.239.212  |
| 81dns.ru.             | 600    | IN | A  | 81.202.211.11   |
| 81dns.ru.             | 600    | IN | A  | 85.90.9.24      |
| 81dns.ru.             | 600    | IN | A  | 85.225.209.183  |
| 81dns.ru.             | 600    | IN | A  | 89.36.58.189    |
| 81dns.ru.             | 600    | IN | A  | 99.149.197.114  |
| 81dns.ru.             | 600    | IN | A  | 124.125.176.244 |
| 81dns.ru.             | 600    | IN | A  | 210.97.124.66   |
| 81dns.ru.             | 600    | IN | A  | 220.129.81.51   |
|                       |        |    |    |                 |
| ;; AUTHORITY SECTION: |        |    |    |                 |
| 81dns.ru.             | 345586 | IN | NS | ns1.81dns.ru.   |
| 81dns.ru.             | 345586 | IN | NS | ns2.81dns.ru.   |
| 81dns.ru.             | 345586 | IN | NS | ns3.81dns.ru.   |
|                       |        |    |    |                 |

#### Ejemplo de una FFSN detectada (2)

• Reversos de "81dns.ru" (Registros "A")

29.210.64.61 PTR 61-64-210-29-adsl-tpe.dynamic.so-net.net.tw.

13.132.224.61 PTR 61-224-132-13.dynamic.hinet.net.

27.93.200.68 PTR 27-93.200-68.tampabay.res.rr.com.

151.27.14.69 PTR d14-69-151-27.try.wideopenwest.com.

168.175.196.70 PTR 168.sub-70-196-175.myvzw.com.

212.239.234.71 PTR c-71-234-239-212.hsdl.ct.comcast.net.

11.211.202.81 PTR 81.202.211.11.dyn.user.ono.com.

24.9.90.85 PTR 24.9.90.85.lully.cust.dynamic.gepowernet.ch.

183.209.225.85 PTR c-b7d1e155.82-6-64736c12.cust.bredbandsbolaget.se.

114.197.149.99 PTR adsl-99-149-197-114.dsl.chcgil.sbcglobal.net.

51.81.129.220 PTR 220-129-81-51.dynamic.hinet.net.

#### Conclusiones

- · Las FFSNs:
  - Dan redundancia y estabilidad a redes para entrega de contenido dudoso
    - · Phishings y otros fraudes
    - · Venta de productos famacéuticos, etc.
  - Proveen de una capa adicional de anonimización a quienes operan estas redes
    - Difícilmente se puedan hallar logs en los PCs comprometidos (bots) que actúan de servidores web
  - Desde el punto de vista del ISP se debe ser cauteloso con las herramientas de gestión de DNS automatizadas de las que se proveen a los clientes
- · Hace falta más investigación
  - Formas de detectar y de eliminar

#### Referencias

- [1] Holz T., Gorecki C., Rieck K. and Freiling F. C. "Measuring and Detecting Fast-Flux Service Networks": https://pi1.informatik.uni-mannheim.de/filepool/research/publications/fast-flux-ndss08.pdf
- [2] Know Your Enemy: Fast Flux Service Networks: http://www.honeynet.org/papers/ff/fast-flux.html
- [3] SSAC Advisory 025: SSAC Advisory on Fast Flux Hosting and DNS:
- http://www.icann.org/en/committees/security/sac025.pdf
- [4] Nazario J., Holz T. "As the Net Churns: Fast Flux Service Networks Observations"; MALWARE'08: http://honeyblog.org/junkyard/paper/fastfluxmalware08.pdf

7

| $D \cap$ | to  | con | 20       |
|----------|-----|-----|----------|
| Re       | 110 | -   | $\sigma$ |

 [5] ATLAS from Arbor Networks, Fast Flux Summary Report: <a href="http://atlas.arbor.net/summary/fastflux">http://atlas.arbor.net/summary/fastflux</a>

¡Muchas gracias por su atención!

ANTEL



¡Muchas gracias por su atención!

ANTEL



# ¡Muchas gracias por su atención!





#### Amenazas en la Web

- · Algunas amenazas...
  - Envío de correo electrónico no solicitado (spam)
  - Ataques de denegación de servicio distribuidos
  - Phishing
  - Instalación de "adware"
  - "Sniffing" de tráfico
  - "Keylogging"
    - Guardar las "teclas" pulsadas por el usuario y enviar esa información al "bot herder"

       Guardar las "teclas" pulsadas por el usuario y enviar esa información al "bot herder"
  - "Click Fraud"
    - Generación de clicks fraudulentos a herramientas de promoción en Internet (Google, Yahoo)
- · En general [el atacante] necesita alguna infraestructura
  - Páginas de log in; agentes de recolección de datos; envíos de correo masivos

# Amenazas en la Web Shell Security - Seguridad informatica The & Register The tilicit trade in compromised PCs