О СВОЙСТВАХ ВЕРОЯТНОСТЕЙ ДЕРЕВЬЕВ ВЫВОДА ДЛЯ РАЗЛОЖИМОЙ СТОХАСТИЧЕСКОЙ КС-ГРАММАТИКИ

Л. П. Жильцова (Нижний Новгород)

В работе исследуются свойства вероятностей деревьев вывода высоты t при $t \to \infty$ для стохастической КС-грамматики с разложимой матрицей A первых моментов. Рассматривается критический случай, когда перронов корень матрицы A равен 1.

Стохастической КС-грамматикой называется система $G=\langle V_T,V_N,R,s\rangle$, где V_T и V_N - конечные множества терминальных и нетерминальных символов (терминалов и нетерминалов) соответственно; $s\in V_N$ - аксиома, $R=\cup_{i=1}^k R_i$, где k - мощность алфавита V_N и R_i - множество правил с одинаковой левой частью A_i . Каждое правило r_{ij} из R_i имеет вид

$$r_{ij}: A_i \stackrel{p_{ij}}{\to} \beta_{ij}, \ j = 1, ..., n_i,$$

где $A_i \in V_N, \beta_{ij} \in (V_T \cup V_N)^*$ и p_{ij} - вероятность применения правила r_{ij} , причем $0 < p_{ij} \le 1$ и $\sum_{j=1}^{n_i} p_{ij} = 1$. Применение правила грамматики к слову состоит в замене вхож-

Применение правила грамматики к слову состоит в замене вхождения нетерминала из левой части правила на слово, стоящее в его правой части.

Каждому слову α КС-языка соответствует последовательность правил грамматики (вывод), с помощью которой α выводится из аксиомы s. Выводу слова соответствует дерево вывода [1], вероятность которого определяется как произведение вероятностей правил, образующих вывод.

По стохастической КС-грамматике строится матрица A первых моментов. Для нее элемент a_l^i определяется как $\sum_j p_{ij} s_l^{(ij)}$, где величина $s_l^{(ij)}$ равна числу нетерминальных символов A_l в правой части правила r_{ij} . Перронов корень матрицы A обозначим через r.

Введем некоторые обозначения. Будем говорить, что нетерминал A_j непосредственно следует за нетерминалом A_i (и обозначать $A_i \to A_j$), если в грамматике существует правило вида $A_i \stackrel{p_{il}}{\to} \alpha_1 A_j \alpha_2$, где $\alpha_1,\alpha_2 \in (V_T \cup V_N)^*$. Рефлексивное транзитивное замыкание отношения \to обозначим \to_* .

Классом нетерминалов назовем максимальное по включению подмножество $K\subseteq V_N$ такое, что $A_i\to_* A_j$ для любых $A_i,A_j\in K$. Для различных классов нетерминалов K_1 и K_2 будем говорить, что класс K_2 непосредственно следует за классом K_1 (и обозначать $K_1\prec K_2$), если существуют $A_1\in K_1$ и $A_2\in K_2$, такие, что $A_1\to A_2$. Рефлексивное транзитивное замыкание отношения \prec обозначим через \prec_* .

Пусть $\{K_1,K_2,\ldots,K_m\}$ - множество классов нетерминалов грамматики, $m\geq 2$. Будем полагать, что классы нетерминалов перенумерованы таким образом, что $K_i\prec K_j$ тогда и только тогда, когда i< j.

Матрица первых моментов A имеет следующий вид:

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1m-1} & A_{1m} \\ 0 & A_{22} & \dots & A_{2m-1} & A_{2m} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_{m-1m-1} & A_{m-1m} \\ 0 & 0 & \dots & 0 & A_{mm} \end{pmatrix}.$$
 (1)

Один класс нетерминалов представлен в матрице множеством подряд идущих строк и соответствующим множеством столбцов с теми же номерами. Для класса K_i квадратная подматрица, образованная соответствующими строками и столбцами, обозначается через A_{ii} . Подматрица A_{ij} является нулевой, если $K_i \not\prec K_j$. Блоки, расположенные ниже главной диагонали, нулевые в силу упорядоченности классов.

Для каждого класса K_i матрица A_{ii} неразложима. Без ограничения общности будем считать, что она строго положительна и непериодична. Обозначим через r_i перронов корень матрицы A_{ii} . Для неразложимой матрицы перронов корень является действительным и простым [2]. Очевидно, $r = \max_i \{r_i\}$.

Пусть $J = \{i_1, i_2, \dots, i_l\}$ — множество всех номеров i_j классов, для которых $r_{i_j} = 1$.

Рассмотрим всевозможные последовательности классов $K_{i_1} \prec K_{i_2} \prec \ldots \prec K_{i_s}$, где $i_1=1, i_s=h$. Среди них выберем ту, которая содержит наибольшее число классов с номерами из J. Это число обозначим через s_{1h} . Дополнительно переупорядочим классы по неубыванию s_{1l} .

Рассмотрим также всевозможные последовательности классов $K_{i_1} \prec K_{i_2} \prec \ldots \prec K_{i_s},$ где $i_1=i.$ Среди них выберем ту, кото-

рая содержит наибольшее число классов с номерами из Ј. Это число обозначим через q_i .

Рассмотрим класс $K_j=\{A_1,A_2,\ldots,A_m\}$. Через $P_i^{(j)}(t)$ обозначим вероятность множества деревьев вывода высоты t, корень которых помечен нетерминалом A_i , и через $P^{(j)}(t) =$ $\left(P_1^{(j)}(t), P_2^{(j)}(t), \dots, P_m^{(j)}(t)\right)$ - вектор вероятностей для класса K_j .

TEOPEMA 1. Пусть $r_j = 1$. Тогда при $t \to \infty$

$$P^{(j)}(t) \sim U^{(j)} \cdot \frac{c_j}{t^{1+(\frac{1}{2})^{q_j-1}}},$$

где $U^{(j)}$ - правый собственный вектор для матрицы A_{ii} из (1), соответствующий $r_j,\ u\ c_j$ - некоторая константа.

ТЕОРЕМА 2. Пусть $r_i < 1$. Тогда при $t \to \infty$

$$P^{(j)}(t) \sim U^{(j)} \cdot \frac{1}{t^{1 + \left(\frac{1}{2}\right)^{q_j - 1}}},$$

где
$$U^{(j)} = (E - A_{jj})^{-1} \sum_{l} A_{jl} U^{(l)} \cdot c_l,$$

где суммирование ведется по всем номерам l классов $c r_l = 1$ таких, $umo\ K_j \prec_* K_l\ u\ q_l = q_j - 1.$ Здесь c_l и $U^{(l)}$ имеют тот же смысл, что и в теореме 1.

Из теорем 1 и 2 следует, что при $r_1=1$ наибольшую по порядку вероятность имеет множество деревьев вывода с корнем, помеченным нетерминалом из класса K_1 .

При $r_1 < 1$ наибольшую по порядку вероятность имеют множества деревьев вывода с корнями, помеченными нетерминалами из классов K_l с $q_l = q_1$.

Список литературы

1.