

FORMULA

Number of moles
$$n = \underline{m} \underline{(mass)}$$

 $M \underline{(molar mass)}$

Number of moles of a gas n =
$$\frac{V}{22.41}$$

pH of a solution pH =
$$-\log [H^{\dagger}]$$

Density
$$\rho = \frac{\text{mass of sample}}{\text{volume of sample}}$$

Units

Volumes are given in the units of litres (L), or millilitres (mL)

Temperatures are given in the units of degrees Celsius (°C) or Kelvin (K).

It may be assumed that 0.0° C = 273.1 K

Energy changes are given in the SI unit kilojoule (kJ)

Pressures are given in the SI unit kilopascal (kPa) and in atmospheres.

Solution concentrations are given in the unit moles per litre (mol L⁻¹)

Constants

Universal Gas Constant, R = 8.315 J K⁻¹ mol⁻¹

Avogadro Constant, N = 6.022 x 10²³ mol⁻¹

Volume of 1.000 mol of an ideal gas at 0.0°C and 101.3 kPa is 22.41 L

S.T.P. is 0.0°C and 101.3 kPa

Equilibrium Constant for Water at 25° C Kw = $1x10^{-14}$

Solubility rules for ionic solids in water

Soluble in water

Soluble	Exc	eptions					
Ooluble	Insoluble	Slightly soluble					
Most chlorides	AgCI,	PbCl ₂					
Most bromides	AgBr,	PbBr ₂					
Most iodides	Agl, Pbl ₂						
All nitrates							
All ethanoates	No ex	cceptions					
Most sulfates	SrSO ₄ , BaSO ₄ , PbSO ₄	CaSO ₄ , Ag ₂ SO ₄					

Insoluble in water

Insoluble	Exceptions							
Ilisoluble	Soluble	Slightly soluble						
Most hydroxides	NaOH, KOH, Ba(OH) ₂ (NH₄OH and AgOH do not exist)	Ca(OH) ₂ , Sr(OH) ₂						
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃							
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄							
Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S							

Soluble = more than 0.1 mole dissolves per litre

Slightly soluble = between 0.01 and 0.1 mole dissolves per litre

Insoluble = less than 0.01 mole dissolves per litre

Colour of species in aqueous solution

Cation	Colour	Cation	Colour
Al ³⁺	colourless	Mn ²⁺	very pale pink
NH ⁺ ₄	colourless	Ni ²⁺	green
Ba ²⁺	colourless	Ag⁺	colourless
Ca ²⁺	colourless	Na⁺	colourless
Cr³+	deep green	Sr ²⁺	colourless
Co ²⁺	pink	Sn ²⁺	colourless
Cu ²⁺	blue	Zn ²⁺	colourless
Fe ²⁺	pale green		
Fe³+	brown		
K ⁺	colourless		
Pb ²⁺	colourless		
Mg ²⁺	colourless		

Anion	Colour
Br⁻	colourless
Cℓ-	colourless
Cr O ₄ ²⁻	yellow
Cr ₂ O ₇ ²⁻	orange
1-	colourless
Mn O ₄	deep purple
P O ₄ ³⁻	colourless
S ²⁻	colourless
-	

Halogen	Colour				
$C\ell_{2(aq)}$	pale yellow				
Br _{2 (aq)}	orange				
I _{2(aq)}	brown				
Halogen in orga	nic solvent				
Halogen	Colour				
Br ₂	red				
l ₂	purple				

Standard Reduction Potentials at 25°C

Half-reaction			E°(volts)
F ₂ (g) + 2 e ⁻	=	2 F ⁻ (aq)	+ 2.87
$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	=	2 H ₂ O(ℓ)	+ 1.78
$PbO_2(s) + SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^-$	=	PbSO ₄ (s) + 2 H ₂ O(ℓ)	+ 1.69
2 HCℓO(aq) + 2 H ⁺ (aq) + 2 e ⁻	\rightleftharpoons	$C\ell_2(g) + 2 H_2O(\ell)$	+ 1.61
$MnO_{4}^{-}(aq) + 8 H^{+}(aq) + 5 e^{-}$	=	$Mn^{2^+}(aq)$ + 4 $H_2O(\ell)$	+ 1.51
Au ³⁺ (aq) + 3 e ⁻	=	Au(s)	+ 1.50
$HC\ellO(aq) + H^{+}(aq) + 2 e^{-}$	=	$C\ell^-(aq) + H_2O(\ell)$	+ 1.48
$PbO_2(s) + 4 H^+(aq) + 2 e^-$	=	$Pb^{2+}(aq) + 2 H_2O(\ell)$	+ 1.46
Cl ₂ (g) + 2 e ⁻	\rightleftharpoons	2 C ℓ ¯(aq)	+ 1.36
Cr ₂ O ₇ ²⁻ (aq) + 14 H ⁺ (aq) + 6 e ⁻	=	$2 \text{ Cr}^{3+}(aq) + 7 \text{ H}_2\text{O}(\ell)$	+ 1.23
$O_2(g) + 4 H^+(aq) + 4 e^-$	=	2 H ₂ O(ℓ)	+ 1.23
$\operatorname{Br}_2(\ell) + 2 e^-$	=	2 Br ⁻ (aq)	+ 1.07
NO ₃ (aq) + 4 H ⁺ (aq) + 3 e ⁻	=	$NO(g) + 2 H_2O(\ell)$	+ 0.96
$Ag^+(aq) + e^-$	=	Ag(s)	+ 0.80
Fe ³⁺ (<i>aq</i>) + e ⁻	=	Fe ²⁺ (aq)	+ 0.77
$O_2(g) + 2 H^+(aq) + 2 e^-$	=	$H_2O_2(aq)$	+ 0.68
$I_2(s) + 2 e^-$	4	2 Γ(aq)	+ 0.54
$O_2(g) + 2 H_2O(\ell) + 4 e^-$	-	4 OH⁻(<i>aq</i>)	+ 0.40
	-	Cu(s)	+ 0.34
$S(s)+ 2H^{+}(aq) + 2e^{-}$	~	H ₂ S(aq)	+ 0.14
2 H ⁺ (aq) + 2 e ⁻	\rightleftharpoons	$H_2(g)$	0 exactly
Pb ²⁺ (aq) + 2 e ⁻	\rightleftharpoons	Pb(s)	- 0.13
	=	Sn(s)	- 0.14
Ni ²⁺ (aq) + 2 e ⁻	•	Ni(s)	- 0.26
Co ²⁺ (aq) + 2 e ⁻	=	Co(s)	- 0.28
		$Pb(s) + SO_4^{2-}(aq)$	- 0.36
Cd ²⁺ (aq) + 2 e ⁻	•	, ,	- 0.40
$2 CO_2(g) + 2 H^+(aq) + 2 e^-$			- 0.43
$Fe^{2^+}(aq) + 2e^-$			- 0.44
$Cr^{3+}(aq) + 3 e^{-}$			- 0.73
$Zn^{2^+}(aq) + 2 e^-$			- 0.76
		$H_2(g) + 2 OH^- (aq)$	- 0.83
$Mn^{2^+}(aq) + 2 e^-$			- 1.18
$A\ell^{3+}(aq) + 3 e^{-}$			- 1.66
$Mg^{2+}(aq) + 2e^{-}$			- 2.37
$Na^{+}(aq) + e^{-}$			- 2.71
$Ca^{2+}(aq) + 2 e^{-}$ $Sr^{2+}(aq) + 2 e^{-}$			2.762.89
Sr ²⁺ (aq) + 2 e ⁻ Ba ²⁺ (aq) + 2 e ⁻			- 2.89 - 2.91
$K^{+}(aq) + e^{-}$			- 2.91 - 2.93
n (ay) + e	\rightarrow	11(3)	- 2.93

Periodic Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H 1.008												A						2 He 4.003
	3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
	11 Na 22.99	12 Mg 24.31											13 Aℓ 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cℓ 35.45	18 Ar 39.95
	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
	55 Cs 132.9	56 Ba 137.3	57 *La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po	85 At	86 Rn
	87 Fr	88 Ra 226.0	89 **Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt			1	1	1			1	
			* Lanthani	:	50	50	l 60	61	62	62	64	65	l ee	67	l 60	60	70	71

* Lanthanide Series

** Actinide Series

			700		Velialization	iiib.								
	58	59	60	61	62	63	64	65	66	67	68	69	70	71
A	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
1	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
4 100														
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
-40	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
2	232.0		238.0											
	- 4		A											

6 ← Atomic Number C ← Symbol 12.01 ← Atomic Mass ← Atomic Number