Fluxo Máximo/Corte Mínimo

Input file: standard input
Output file: standard output

Time limit: 3 seconds Memory limit: 256 megabytes

Dado um grafo direcionado G=(V,E), encontre o valor do fluxo máximo/corte mínimo usando o algoritmo Simplex.

Input

O programa receberá como entrada a matriz de incidência N, com dimensões $|V| \ge |E|$, que representa a estrutura do grafo G e um vetor c com as capacidades de cada arco $e \in E$.

Uma entrada genérica é da forma:

onde n=|V| ($2 \le n \le 50$), m=|E| ($1 \le m \le 200$) e $c_j \in \mathbb{Z}$ é a capacidade do j-ésimo arco, para j=1,2,..,m. Na j-ésima coluna da matriz de incidência, há exatamente um -1 na posição $N_{a,j}$ e um +1 na posição $N_{b,j}$, que indicam que o j-ésimo arco sai do vértice a e chega ao vértice b. Todas as outras entradas da coluna j são iguais a 0.

A primeira linha da matriz de incidência corresponde ao vértice de origem do fluxo s e a última linha corresponde ao vértice destino t.

Output

Seu programa deve imprimir na saída padrão:

- \bullet o valor inteiro f do fluxo máximo em G na primeira linha;
- ullet um vetor $oldsymbol{x}$ de inteiros que indica o fluxo nos arcos em uma solução ótima na segunda linha;
- um vetor y que indica o conjunto S de vértices que determinam um corte de valor mínimo na terceira e última linha (0 para o vértices que não pertencem ao conjunto e 1 para os que pertencem).

¹https://en.wikipedia.org/wiki/Incidence_matrix

Examples

standard input	standard output
4 6 30 20 30 10 25 15 -1 -1 0 0 0 0 1 0 -1 1 -1 0 0 1 1 -1 0 -1 0 0 0 0 1 1	40 25 15 0 0 25 15 1 1 1 0
4 3 22 13 44 -1 0 0 0 1 -1 1 -1 0 0 0 1	13 13 13 13 1 0 1 0
6 7 31 27 27 39 20 32 6 -1 -1 0 0 0 0 0 0 1 -1 1 0 0 -1 0 0 0 0 0 -1 0 1 0 1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 1 1 1	26 20 6 0 0 20 0 6 1 1 0 1 1 0
6 11 32 45 38 19 26 46 35 25 16 47 10 -1 -1 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 0 1 0 -1 0 0 0 1 -1 0 1 0 0 0 0 -1 1 0 0 0 -1 -1 -1 0 1 0 0 0 1 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 1 1	57 32 25 4 0 26 6 0 25 0 47 10 1 1 1 1 0

Note

Soluções que não utilizarem o algoritmo Simplex **não serão consideradas**.

Em caso de dúvida, releia as notas de aula.

Verifique as instruções de submissão postadas no Moodle.