HR Analysis - Employee Churn

After much struggle with my original dataset and ideas, I had to fall back to a contingency plan, still focusing on my main idea of churn, but instead for employee turnover and retention, rather than company contractural churn.

My original idea was to use a real life dataset from my work but I came across two challenges, I was not given ideal data for the challenge of predicting churn, and I ran security risks if I did not conceal the data.

```
In [1]: # import initial needed libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: # read in our data
        df = pd.read csv("HR Dataset.csv")
         df.head()
Out[2]:
        atisfaction_level last_evaluation number_project average_montly_hours time_spend_company Work_accident left promotion_last_5years
                  0.38
                                0.53
                                                 2
                                                                   157
                                                                                        3
                                                                                                      0
                                                                                                         1
                                                                                                                              0
                  0.80
                                0.86
                                                 5
                                                                   262
                                                                                        6
                                                                                                                              0
                                                                                                      0
                  0.11
                                0.88
                                                 7
                                                                   272
                                                                                        4
                                                                                                                              0
                                                                                                      0
                  0.72
                                                 5
                                                                   223
                                                                                        5
                                0.87
                  0.37
                                0.52
                                                 2
                                                                   159
                                                                                        3
                                                                                                      0
                                                                                                                              0
In [3]: df.columns
Out[3]: Index(['satisfaction level', 'last evaluation', 'number project',
                'average montly hours', 'time spend company', 'Work accident', 'left',
                'promotion_last_5years', 'Departments ', 'salary'],
               dtvpe='object')
```

```
In [4]: # need to change 'Departments ' to 'Departments'
        df.rename(columns = {'Departments ':'Departments'}, inplace = True)
In [5]: df.shape
Out[5]: (14999, 10)
In [6]: # use df.info() to get some information on our data set
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 14999 entries, 0 to 14998
        Data columns (total 10 columns):
           Column
                                   Non-Null Count Dtype
        --- -----
         0 satisfaction level
                                   14999 non-null float64
         1 last evaluation
                                   14999 non-null float64
         2 number project
                                   14999 non-null int64
            average montly hours 14999 non-null int64
           time spend company
                                   14999 non-null int64
         5
            Work accident
                                   14999 non-null int64
             left
                                   14999 non-null int64
         7
            promotion last 5years 14999 non-null int64
             Departments
                                   14999 non-null object
             salary
                                   14999 non-null object
        dtypes: float64(2), int64(6), object(2)
        memory usage: 1.1+ MB
In [7]: # Departments and Salary are both object: categorical variables that will
        # need to be transformed before moving on to prediction
        # lets take a look at the values within these columns
        print(df.salary.unique())
        ['low' 'medium' 'high']
```

Ordinal variables have two or more categories which can be ranked and ordered

Nominal variables have two or more categories which do not have an intrinsic order

Salary: Ordinal

Department: Nominal

The dataset I chose has no missing values, it is best practice in HR Departments to have all personal info on employees on file, but the process in which a the data is collected and stored can have an impact on its accuracy.

```
In [9]: # start transforming categorical variables to numeric
# in the case of ordinal variables we can convert them into a respective numeric value
# encoding the salary column
# first changing the data type to categorical
df.salary = df.salary.astype('category')
In [10]: # the ordinal values are low, medium, and high in this order
df.salary = df.salary.cat.reorder_categories(['low', 'medium', 'high'])
In [11]: # encode the values to make integer
df.salary = df.salary.cat.codes
```

```
In [12]: | df.head()
Out[12]:
             satisfaction_level last_evaluation number_project average_montly_hours time_spend_company Work_accident left promotion_last_5y
          0
                       0.38
                                     0.53
                                                     2
                                                                       157
                                                                                            3
                                                                                                         0
                                                                                                            1
                                                     5
          1
                       0.80
                                     0.86
                                                                       262
          2
                        0.11
                                                     7
                                                                       272
                                     0.88
                                                                                                         0
          3
                       0.72
                                     0.87
                                                     5
                                                                       223
                       0.37
                                     0.52
                                                                       159
                                                                                                         0
In [13]: # next we have to transform the nominal variable departments and save them inside a new dataframe
         # using pandas get dummies I will transform the values in departments column
         # there is no rank between departments, so encoding approach is not useful anymore
         # to avoid the dummy trap I will use the drop_first parameter
         df1 = pd.get_dummies(df.Departments, drop_first=True)
In [14]: # new dataframe where each row is a separate employee with 1s in front of their respective department
         # and zeros in all other places
         df1.head()
Out[14]:
             RandD accounting hr management marketing product_mng sales support technical
          0
                 0
                            0 0
                                           0
                                                    0
                                                                 0
                                                                              0
                                                                                       0
          1
                 0
                            0 0
                                           0
                                                    0
                                                                 0
                                                                      1
                                                                              0
                                                                                       0
          2
                 0
                            0 0
                                           0
                                                    0
                                                                                       0
```

0 0

0 0

```
In [15]: # need to drop the old department column
         df = df.drop("Departments", axis=1)
         # join the new dataframe df1 to the dataset
         df = df.join(df1)
In [16]: df.head()
Out[16]:
             satisfaction_level last_evaluation number_project average_montly_hours time_spend_company Work_accident left promotion_last_5y
          0
                       0.38
                                     0.53
                                                     2
                                                                       157
                                                                                            3
                                                                                                         0
                                                                                                            1
          1
                       0.80
                                     0.86
                                                     5
                                                                       262
          2
                       0.11
                                     0.88
                                                                       272
                       0.72
                                     0.87
                                                                       223
          3
                       0.37
                                     0.52
                                                                       159
In [17]: # the variable that tells us whether the employee has churned or not
         # is in the column left
          # 1 = churn
          # 0 = has not churned
         # I will need to calculate the turnover rate percentage by counting the times 1 and 0 occured and divide by tota
In [18]: # total number of observations in the dataset for employees
         n \in ployees = len(df)
In [19]: # number of employees who have churned or not
         print(df.left.value counts())
                                         # have not churned = 11,428, churn = 3,571
          0
               11428
                3571
         Name: left, dtype: int64
```

In [20]: # percentage of employees churn/not churn print(df.left.value_counts()/n_employees*100)

76.19174623.808254

Name: left, dtype: float64

In [21]: # now I need to look at correlations or variables that are in a positive # or negative linear relationship with the target variable corr matrix = df.corr()

corr_matrix = dt.corr()
sns.heatmap(corr_matrix)
plt.show()

In [22]: # in the heat map, you can see that left has the most filled in,
or highest negative correlation with satisfaction level
in otherwords, inversely correlated, increase in satisfaction, means decrease in the probability an employee w

```
In [23]: # split the data
         target = df.left
         features = df.drop("left",axis=1)
         from sklearn.model selection import train test split
In [24]: target train, target test, features train, features test = train test split(target, features, test size=0.25, rand
In [26]: # employee churn is a binary classification problem, one algorithm that works
         # well with this type of problem is Decision tree model
         # decision trees have accurate predictions and can help with understanding the reasons employees churn
         # import the decision tree classifier
         from sklearn.tree import DecisionTreeClassifier
In [30]: #instantiate the decision tree classifier and set a random state
         # limiting the max depth to 5 levels, to prevent overfitting
         clf = DecisionTreeClassifier(max depth=5, random state=42) # random state does not affect the model results but
In [31]: # now that the model is set up, we can use the fit() method to fit our features to the target
         # will also use .treee .node count to get the number of nodes in the tree
         clf.fit(features train, target train).tree .node count
Out[31]: 45
In [32]: # to test how good the tree is making predictions we need to calculate
         # the accuracy score of the prediction using score()
         # because we developed the model on the training set, we calculate accuracy score on the test set
         clf.score(features test, target test)*100
Out[32]: 97.06666666666666
In [33]: | clf.score(features train, target train)*100
Out[33]: 97.71535247577563
 In [ ]: # accuracy score dropped a bit when limiting the growth of the tree,
         # but the difference between shows that we reduced overfitting and the model will act more realisiticly
```

In [35]: # giving features_test, data poitns where I havent given the model the answers to
but I want to get the answers that the model comes up with

clfpredictions = clf.predict(features_test)
clfpredictions

Out[35]: array([0, 0, 0, ..., 0, 0, 0], dtype=int64)

In [36]: # whole dataset had nearly 15,000 rows, we set aside 3750 for testing
when we do predictions, its going to give us the class number that it is predictin, so 0 or 1, churn or not ch
so for the first three as you can see from the array above the model is predicting 0, they did not churn
this is a way to see generally how the model is predicting on the new information that its giving you
features_test

Out[36]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	promotion_last_5yε
6723	0.65	0.96	5	226	2	1	
6473	0.88	0.80	3	166	2	0	
4679	0.69	0.98	3	214	2	0	
862	0.41	0.47	2	154	3	0	
7286	0.87	0.76	5	254	2	1	
10371	0.99	0.37	6	219	6	0	
12541	0.81	0.87	4	254	5	0	
2656	0.67	0.59	3	177	3	1	
6759	0.22	0.57	5	174	6	0	
13564	0.36	0.73	2	111	2	0	

3750 rows × 17 columns

4

```
In [39]: # so we have the predictions for the test instances but how will we know if the predictions are good or not? we
         # by using our performance metrics
         from sklearn.metrics import accuracy score
         accuracy score(target test, clfpredictions)*100
Out[39]: 97.0666666666666
In [42]: from sklearn.metrics import confusion matrix
         confusion matrix(target test, clfpredictions, labels=[0,1])
         # if the class is 0 and is predicted as 0, this happened 2812 times
         # when the class is 1 and predicted as 1 this happened 828 times
         # wrongly classified instances FP=69, and FN 41
Out[42]: array([[2812, 41],
                [ 69, 828]], dtype=int64)
In [46]: # our precision score
         from sklearn.metrics import precision score
         precision_score(target test, clfpredictions)*100
Out[46]: 95.2819332566168
In [47]: # recall score
         # True positives over the sum of True positives and False negatives
         # if our goal is mostly focused on those who are churning, then you probably
         # want to have less false negatives, people who leave in reality but your algorithm is not able to predict it
         # for that reason recall can be useful
         # higher values of recall correspond lower values of false negatives
         # recall score 92%, of correct predictions among 1s(churners)
         from sklearn.metrics import recall score
         recall score(target test, clfpredictions)*100
```

Out[47]: 92.3076923076923

```
In [ ]: # we want to be able to correctly predict churn, so recall score is our target
         # but recall score is not enough, because only targeting one lass the 1s we might have low accuracy for our 0s,
         # people who did not churn
         # so I want to use a measure that is not concentrated on just one class or the other
         # AUC score if we want to target both churners and non churners
         # Area Under Curve and is basically a compound measure that is maximized when
         # both recall and specificity are maximized
         # using AUC as a target to maximize, the model will try to correctly classify both
         # 1s and 0s keeping an eye on recall and specificity at the same time
In [48]: from sklearn.metrics import roc auc score
In [50]: prediction = clf.predict(features test)
         roc auc score(target test, prediction)*100
Out[50]: 95.43530426811185
In [53]: new model = DecisionTreeClassifier(max depth=5, class weight="balanced", random state=42)
In [55]: new_model.fit(features_train, target_train).tree_.node_count
Out[55]: 47
In [56]: # print the accuracy score of the new model
         print(new model.score(features test, target test)*100)
         93.706666666668
In [63]: # print the recall score for new model
         print(recall score(target test, clfpredictions)*100)
         92,3076923076923
```

```
In [ ]: # how do we decide what the max depth or other parameters should be?
         # we can simply do this by trying different values and find the one that provides the
         # best predictions
         # to find the optimal parameters we can create a grid (referenced sklearn documentation),
         # of values we want to test to find the values that will give us the highest accuracy
         # with hyperparameter tuning we also want to validate the model on different test components
         # using cross validationa
In [86]: # grid search and cross validation for hyperparameter tuning
         from sklearn.model selection import cross val score
         print(cross val score(clf,features,target,cv=10))
         [0.98
                     0.97133333 0.97266667 0.97333333 0.97133333 0.97266667
          0.97933333 0.96866667 0.96866667 0.96731154]
In [87]: # generate values for maximum depth
         depth = [i for i in range(5,21,1)]
In [88]: # generate values for minimum sample size
         samples = [i for i in range(50,500,50)]
In [89]: # Create the dictionary with parameters to be checked
         parameters = dict(max_depth=depth, min_samples_leaf=samples)
In [90]: # import grid search from sklearn
         from sklearn.model selection import GridSearchCV
In [91]: param search = GridSearchCV(clf, parameters)
```

```
In [92]: param search.fit(features train, target train)
Out[92]: GridSearchCV(estimator=DecisionTreeClassifier(max depth=5, random state=42),
                      param grid={'max depth': [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
                                                 16, 17, 18, 19, 20],
                                   'min samples leaf': [50, 100, 150, 200, 250, 300, 350,
                                                        400, 450]})
In [93]: |print(param_search.best params )
         {'max depth': 5, 'min samples leaf': 50}
In [94]: # feature importance
         # what are the important features that drive the decision to leave the company?
         # sklearn can calculate the feature importance
         # in sklearn, importances are scaled up to equal 100%
         # the higher the percentage the higher the importance
         # if you find that a feature is not important at all, you should drop it and run the model without that feature
In [96]: # Lets find the features in our data
         feature names = list(features)
         feature names
Out[96]: ['satisfaction_level',
           'last evaluation',
           'number project',
           'average_montly_hours',
           'time_spend_company',
           'Work accident',
           'promotion last 5years',
           'salary',
           'RandD',
           'accounting',
           'hr',
           'management',
          'marketing',
          'product_mng',
           'sales',
           'support',
           'technical'l
```

```
In [98]: # one of the best things about decision trees is its interpretability
# so you can understand how the decision tree is making its decisions
# so we can see which features are more important than the others

feature_importance = pd.DataFrame(clf.feature_importances_, index = feature_names, columns=["importance"])
feature_importance.sort_values(by="importance", ascending=False)
```

Out[98]:

	importance
satisfaction_level	0.535522
time_spend_company	0.152146
last_evaluation	0.151002
number_project	0.097404
average_montly_hours	0.062417
technical	0.001510
promotion_last_5years	0.000000
salary	0.000000
Work_accident	0.000000
accounting	0.000000
hr	0.000000
management	0.000000
marketing	0.000000
product_mng	0.000000
sales	0.000000
support	0.000000
RandD	0.000000

_

```
In [102]: feature_importance.plot(kind='bar')
```

Out[102]: <AxesSubplot:>


```
In [103]: # now that we can see what features are important
# we need to select those features that have the importance above 1%
selected_features = feature_importance[feature_importance.importance>0.01]
```

```
In [104]: # create a list from those features
selected_list = selected_features.index
```

```
In [105]: # transform both features train and features test components
          # to include only selected features
          features train selected = features train[selected list]
          features test selected = features test[selected list]
In [133]: # I now have the most important features, along with the optimal parameters we found earlier
          # so now I have to redo the model for predicting churn with these new features and parameters
          # (adjusted to get higher accuracy)
          best model = DecisionTreeClassifier(max depth=5, min samples leaf = 100, class weight="balanced", random state=4
In [134]: # fit this new model with only the selected features
          best model.fit(features train selected, target train).tree .node count
Out[134]: 41
In [135]: # make a new prediction based on the important features from the test set
          best prediction = best model.predict(features test selected)
In [136]: # Lets see the general accuracy of the best model
          print(best model.score(features test selected, target test)*100)
          95.6266666666667
In [137]: # recall score of best model
          print(recall score(target test, best prediction)*100)
          92.08472686733556
In [138]: # print ROC/AUC score of the best model
          print(roc auc score(target test, best prediction)*100)
          94.4125001318802
In [141]: | # time to visualize the decision tree
          # import from sklearn
          from sklearn import tree
          from matplotlib import pyplot as plt
```


In [150]: selected_features

Out[150]:

importance

satisfaction_level0.535522last_evaluation0.151002number_project0.097404average_montly_hours0.062417time_spend_company0.152146

In []: