DISS. ETH NO.

Understanding the molecular mechanisms of germline-dependent epigenetic inheritance: Computational analysis of multi-omics data

A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich)

presented by

Deepak Kumar Tanwar

M.Sc., McGill University, Canada

born on 30.10.1991 citizen of India

accepted on the recommendation of

Prof. Isabelle Mansuy, examiner

Prof. Tuncay Baubec, co-examiner

Prof. Mark Robinson, co-examiner

Acknowledgements

I want to thank a few people.

Table of Contents

List of	Abbreviations	1
Abstra	${f ct}$	3
Zusam	menfassung	5
Introdu	action	8
0.1	Epigenetics	8
0.2	Germline epigenetics	8
	0.2.1 Spermatogonial Stem Cells	8
	0.2.2 Reprogramming	8
0.3	Epigenetic Inheritance	8
	0.3.1 Transgenerational Epigenetic Inheritance	8
0.4	Models of Epigenetic Inheritance	8
0.5	MSUS mouse model	8
0.6	Vectors of TEI	8
0.7	Extracellular vesicles	8
0.8	Small RNAs	8
	0.8.1 Challenges for analyzing sRNA-seq dataset	8
0.9	Aims	8
0.10	Thesis overview	8
Metho	${ m ds}$	9
0.11	FACS	9
0.12	Immunocytochemistry	9
0.13	RNA extraction and library preparation	9
0.14	Library preparation for Omni-ATAC	9
0.15	Version controlled data analysis using git	9
0.16	Data analysis directory organization	9

0.17	' Pipelii	nes for data analysis	9
	0.17.1	Bulk RNA-seq	9
	0.17.2	ATAC-seq	9
	0.17.3	ChIP-seq	9
	0.17.4	WGBS & RRBS	9
hapte	er 1: D	Dynamic chromatin accessibility in spermatogonial cells for	
traı	nscript	ional programmings from early postnatal to adult stages	11
1.1	Graph	nical Abstract	12
1.2	Abstra	act	13
1.3	Introd	luction	14
1.4	Result	s	15
	1.4.1	Enrichment of spermatogonial cells from postnatal and adult	
		mouse testis	15
	1.4.2	Chromatin is remodeled in spermatogonial cells during develop-	
		ment	15
	1.4.3	Differentially accessible chromatin regions associate with distinct	
		gene expression dynamics	15
	1.4.4	Differentially accessible chromatin regions associate with distinct	
		epigenetic profiles	15
	1.4.5	Accessibility changes at open chromatin regions are markedcarry	
		by binding sites for distinct families of transcription factors	15
	1.4.6	Chromatin accessibility at transposable elements undergoes	
		significant remodeling in the transition from postnatal to adult	
		spermatogonia	15
1.5	Discus	ssion	16
1.6	Metho	ods	17
	1.6.1	Mouse husbandry	17
	1.6.2	Germ cells isolation	17
	1.6.3	Spermatogonial cells enrichment by FACS	17
	1.6.4	Immunocytochemistry	17
	1.6.5	RNA extraction and RNA-seq library preparation for RNA-seq	17
	1.6.6	Omni-ATAC Llibrary preparation for Omni-ATAC and sequencing	17
	1.6.7	RNA sequencing (RNA-seq)	17
	1.6.8	Assay for Transposase-Accessible Chromatin using sequening	•
	-	(Omni-ATAC)	17

	1.6.9 Chromatin iImmunnoprecipitation sequencing (ChIP-seq)
	1.6.10 Bisulfite sequencing (BS)
	1.6.11 High-throughput sequencing data analysis
	1.6.12 Figures
1.7	Data and materials availability
1.8	Authors Contribution
1.9	Competing interest
1.10	Acknowledgments
1.11	Funding
1.12	Supplementary Figures
	1.12.1 Figure 1
	1.12.2 Figure 2
	1.12.3 Figure 3
	1.12.4 Figure 4
	1.12.5 Figure 5
	1.12.6 Figure 6
1.13	References
-	er 2: Early life stress affects the miRNA cargo of epididyma racellular vesicles in mouse
ext	· · ·
ext 2.1	racellular vesicles in mouse
-	racellular vesicles in mouse
ext: 2.1 2.2 2.3	Abstract
ext: 2.1 2.2	Abstract
2.1 2.2 2.3 2.4 2.5	Abstract
ext: 2.1 2.2 2.3 2.4	Abstract Summary sentence Graphical Abstract Key words Introduction Results 2.6.1 Isolation of cauda epididymosomes confirmed by several method 2.6.2 The number and size of epididymosomes in adult males are not altered by postnatal stress 2.6.3 miRNAs are persistently altered by postnatal stress in cauda
ext: 2.1 2.2 2.3 2.4 2.5	Abstract Summary sentence Graphical Abstract Key words Introduction Results 2.6.1 Isolation of cauda epididymosomes confirmed by several method 2.6.2 The number and size of epididymosomes in adult males are not altered by postnatal stress 2.6.3 miRNAs are persistently altered by postnatal stress in cauda epididymosomes.
2.1 2.2 2.3 2.4 2.5	Abstract Summary sentence Graphical Abstract Key words Introduction Results 2.6.1 Isolation of cauda epididymosomes confirmed by several method 2.6.2 The number and size of epididymosomes in adult males are not altered by postnatal stress 2.6.3 miRNAs are persistently altered by postnatal stress in cauda epididymosomes 2.6.4 mRNA targets of miRNAs from cauda epididymosomes are
ext; 2.1 2.2 2.3 2.4 2.5 2.6	Abstract

	2.8.2	MSUS
	2.8.3	Tissue collection
	2.8.4	Electron microscopy images
	2.8.5	Epididymosomes isolation by ultracentrifugation
	2.8.6	Immunoblotting
	2.8.7	Nanoparticle tracking analysis
	2.8.8	RNA isolation and epididymosomes profiling
	2.8.9	Preparation and sequencing of sRNA-seq libraries from epididy-
		mosomes
	2.8.10	RT-qPCR
	2.8.11	Cholesterol measurements
	2.8.12	Bioinformatics data analysis
2.9	Data a	availability
2.10	Autho	rs' contributions
2.11	Grant	Support
2.12	Ackno	wledgements
2.13	Supple	ementary Figures
	2.13.1	Figure 1
	2.13.2	Figure 2
	2.13.3	Figure 3
	2.13.4	Figure 4
	2.13.5	Figure 5
	2.13.6	Figure 6
2.14	Supple	ementary Tables
	2.14.1	Table 1
	2.14.2	Table 2
	2.14.3	Table 3
	2.14.4	Table 4
2.15	Refere	nces
Chapte	er 3: sl	hortRNA
3.1	Abstra	act
3.2	Introd	uction
3.3	Metho	ds
	3.3.1	Pipeline
	3.3.2	OC

	3.3.3	Annotation preparation	44
	3.3.4	Alignment	44
	3.3.5	Reads assignment	44
	3.3.6	Assignment rules	44
	3.3.7	TreeSummarizedExperiment object	44
	3.3.8	Differential analysis	44
3.4	Result	s	44
	3.4.1	Datasets used for testing the pipeline	44
	3.4.2	Databases included for analyzing these data	44
	3.4.3	result 1	44
	3.4.4	result 2	44
	3.4.5	result 3	44
	3.4.6	Comparison with other tools	44
3.5	Discus	sion & Outlook	44
3.6	Data a	and code availibility	44
Discus	sion .		45
Conclu	sion .		47
Appen	dix A		49
3.7	Datase	ets analyzed	49
Appen	dix B		51
3.8		manuscripts during PhD	51
Appen	dix C		53
Refere	nces .		55

List of Tables

List of Figures

List of Abbreviations

?? ??

?? ??

Abstract

Zusammenfassung

Introduction

0.1	Epigene	etics

- 0.2 Germline epigenetics
- 0.2.1 Spermatogonial Stem Cells
- 0.2.2 Reprogramming
- 0.3 Epigenetic Inheritance
- 0.3.1 Transgenerational Epigenetic Inheritance
- 0.4 Models of Epigenetic Inheritance
- 0.5 MSUS mouse model
- 0.6 Vectors of TEI
- 0.7 Extracellular vesicles
- 0.8 Small RNAs
- 0.8.1 Challenges for analyzing sRNA-seq dataset
- 0.9 Aims
- 0.10 Thesis overview

Methods

0.17.2

0.17.3

ATAC-seq

ChIP-seq

0.17.4 WGBS & RRBS

0.11**FACS** 0.12Immunocytochemistry 0.13 RNA extraction and library preparation Library preparation for Omni-ATAC 0.14 Version controlled data analysis using git 0.150.16 Data analysis directory organization 0.17Pipelines for data analysis 0.17.1Bulk RNA-seq

Chapter 1

Dynamic chromatin accessibility in spermatogonial cells for transcriptional programmings from early postnatal to adult stages

1.1 Graphical Abstract

1.2. Abstract

1.2 Abstract

1.3 Introduction

1.4. Results

1.4 Results

1.4.1 Enrichment of spermatogonial cells from postnatal and adult mouse testis

- 1.4.2 Chromatin is remodeled in spermatogonial cells during development
- 1.4.3 Differentially accessible chromatin regions associate with distinct gene expression dynamics
- 1.4.4 Differentially accessible chromatin regions associate with distinct epigenetic profiles
- 1.4.5 Accessibility changes at open chromatin regions are markedcarry by binding sites for distinct families of transcription factors
- 1.4.6 Chromatin accessibility at transposable elements undergoes significant remodeling in the transition from postnatal to adult spermatogonia

1.5 Discussion

1.6. Methods

1	- 4	R	T /	$[\mathbf{et}]$	ho	പ്പ
L	٠,	U	TAT	LEU	ш	us

- 1.6.1 Mouse husbandry
- 1.6.2 Germ cells isolation
- 1.6.3 Spermatogonial cells enrichment by FACS
- 1.6.4 Immunocytochemistry
- 1.6.5 RNA extraction and RNA-seq library preparation for RNA-seq
- 1.6.6 Omni-ATAC Llibrary preparation for Omni-ATAC and sequencing
- 1.6.7 RNA sequencing (RNA-seq)
- 1.6.8 Assay for Transposase-Accessible Chromatin using sequening (Omni-ATAC)
- 1.6.9 Chromatin iImmunnoprecipitation sequencing (ChIP-seq)
- 1.6.10 Bisulfite sequencing (BS)
- 1.6.11 High-throughput sequencing data analysis
- **1.6.12** Figures

- 1.7 Data and materials availability
- 1.8 Authors Contribution
- 1.9 Competing interest

1.10 Acknowledgments

1.11 Funding

1.12 Supplementary Figures

- 1.12.1 Figure 1
- 1.12.2 Figure 2
- 1.12.3 Figure 3
- 1.12.4 Figure 4
- 1.12.5 Figure 5
- 1.12.6 Figure 6

1.13. References 21

1.13 References

Chapter 2

Early life stress affects the miRNA cargo of epididymal extracellular vesicles in mouse

Anar Alshanbayeva^{1,2,3}, **Deepak K Tanwar**^{1,2,3}, Martin Roszkowski^{1,2,3}, Francesca Manuella^{1,2,3}, Isabelle M Mansuy^{1,2,3,#}

¹Laboratory of Neuroepigenetics, Brain Research Institute at the Medical Faculty of the University of Zurich.

²Institute for Neuroscience of the Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

³Zurich Neuroscience Center, ETH and University of Zurich, Zurich, Switzerland.

#Corresponding author

Journal: Biology of Reproduction

DOI: 10.1093/biolre/ioab156

Contributions: I performed data analysis with Anar Alshanbayeva, generated figures with Anar Alshanbayeva, helped Anar Alshanbayeva in writing the manuscript, and revised manuscript with Anar Alshanbayeva.

2.1 Abstract

Sperm RNA can be modified by environmental factors and has been implicated in communicating signals about changes in a father's environment to the offspring. The small RNA composition of sperm could be changed during its final stage of maturation in the epididymis by extracellular vesicles (EVs) released by epididymal cells. We studied the effect of exposure to stress in early postnatal life on the transcriptome of epididymal EVs using a mouse model of transgenerational transmission. We found that the small RNA signature of epididymal EVs, particularly miRNAs, is altered in adult males exposed to postnatal stress. In some cases, these miRNA changes correlate with differences in the expression of their target genes in sperm and zygotes generated from that sperm. These results suggest that stressful experiences in early life can have persistent biological effects on the male reproductive tract that may in part be responsible for the transmission of the effects of exposure to the offspring.

2.2 Summary sentence

miRNA cargo of extracellular vesicles in cauda epididymis is altered by paternal exposure to early life stress. This correlates with changes in the expression of target genes in sperm and in zygotes generated from that sperm.

2.3 Graphical Abstract

2.4 Key words

epigenetics, epididymis, epididymosomes, early life stress, extracellular vesicles, miR-NAs, sperm.

2.5 Introduction

2.6. Results

2.6 Results

2.6.1 Isolation of cauda epididymosomes confirmed by several methods

- 2.6.2 The number and size of epididymosomes in adult males are not altered by postnatal stress
- 2.6.3 miRNAs are persistently altered by postnatal stress in cauda epididymosomes
- 2.6.4 mRNA targets of miRNAs from cauda epididymosomes are altered by postnatal stress in sperm and in zygotes

2.7 Discussion

2.8 Materials and methods

- 2.8.1 Animals
- 2.8.2 MSUS
- 2.8.3 Tissue collection
- 2.8.4 Electron microscopy images
- 2.8.5 Epididymosomes isolation by ultracentrifugation
- 2.8.6 Immunoblotting
- 2.8.7 Nanoparticle tracking analysis
- 2.8.8 RNA isolation and epididymosomes profiling
- 2.8.9 Preparation and sequencing of sRNA-seq libraries from epididymosomes
- 2.8.10 RT-qPCR
- 2.8.11 Cholesterol measurements
- 2.8.12 Bioinformatics data analysis

2.9 Data availability

The datasets collected for this study are available as follows: - sRNA-seq dataset of cauda epididymosomes before and after sizeselection: NCBI GEO under accession number GSE175976. - Codes for bioinformatics analysis of RNA-sequencing datasets and all corresponding differential expression analyses: Github repository https://github.com/mansuylab/alshanbayeva_et_al_2021%5Bhttps://github.com/mansuylab/alshanbayeva_et_al_2021]. - Sperm and zygote sequencing datasets from previous publications can be found in ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) with the accession number E-MTAB-5834 (sperm) and E-MTAB-6589 (zygotes).

2.10 Authors' contributions

AA and IMM conceived and designed the study. FM and MR performed the MSUS breeding and collected tissue samples. AA and DKT performed data analysis and generated figures. AA wrote the manuscript with input from DKT and IMM. AA performed all experiments for RNA sequencing and all molecular analyses. IMM supervised the project and raised funds.

2.11 Grant Support

The work was supported by Swiss National Science Foundation (31003A-135715), ETH grants (ETH-10 15-2 and ETH-17 13-2), the Slack-Gyr Foundation, the Escher Foundation. The Mansuy lab is funded by the University Zürich, the Swiss Federal Institute of Technology, the Swiss National Science Foundation (31003A-135715), ETH grants (ETH-10 15-2 and ETH-17 13-2), the Slack-Gyr foundation, the Escher Foundation. Deepak K. Tanwar is supported by the Swiss Government Excellence Scholarship. Martin Roszkowski was funded by the ETH Zurich Fellowship (ETH-10 15-2).

2.12 Acknowledgements

We thank Pierre-Luc Germain for advice on data analysis and for generating cumulative distribution plots, Irina Lazar-Contes for help with MSUS breeding, Silvia Schelbert for work on the animal license, Emilio Yandez at Function Genomics Center Zurich (FGCZ) for advice on the sRNA sequencing, Alekhya Mazumkhar for help with nanoparticle-tracking analysis, Yvonne Zipfel for animal care, Zurich Integrative Rodent Physiology facility for performing cholesterol measurements. We also thank Eloise Kremer, Ali Jawaid, and Mea Holmes for their initial contributions to the project.

Conflict of interest: The authors declare no conflict of interest.

2.13 Supplementary Figures

2.13.1 Figure 1

2.13.2 Figure 2

2.13.3 Figure 3

2.13.4 Figure 4

2.13.5 Figure 5

2.13.6 Figure 6

2.14 Supplementary Tables

2.14.1 Table 1

2.14.2 Table 2

2.14.3 Table 3

2.14.4 Table 4

2.15. References 41

2.15 References

Chapter 3

shortRNA

\mathbf{a}	-	A 1
3.		Abstract
v,	• 上 •	Abstract

- 3.2 Introduction
- 3.3 Methods
- 3.3.1 Pipeline
- 3.3.2 QC
- 3.3.3 Annotation preparation
- 3.3.4 Alignment
- 3.3.5 Reads assignment
- 3.3.6 Assignment rules
- 3.3.7 TreeSummarizedExperiment object
- 3.3.8 Differential analysis
- 3.4 Results
- 3.4.1 Datasets used for testing the pipeline
- 3.4.2 Databases included for analyzing these data
- 3.4.3 result 1
- 3.4.4 result 2

Discussion

Conclusion

Appendix A

3.7 Datasets analyzed

Appendix B

3.8 Other manuscripts during PhD

Appendix C

References

- Angel, E. (2000). Interactive computer graphics: A top-down approach with OpenGL. Boston, MA: Addison Wesley Longman.
- Angel, E. (2001a). Batch-file computer graphics: A bottom-up approach with Quick-Time. Boston, MA: Wesley Addison Longman.
- Angel, E. (2001b). Test second book by angel. Boston, MA: Wesley Addison Longman.