EMAT30008: Scientific Computing

Part 3: PDE Problems

Martin Homer

Department of Engineering Mathematics martin.homer@bristol.ac.uk

Outline

- Learn about **finite difference methods**: (one way) to numerically solve (some) partial differential equations problems
- Main focus will be applying them to parabolic PDEs, though the ideas can be extended to hyperbolic and elliptic PDE problems

EMAT30008 PDEs 1. Introduction Page 1

Rough outline

- PDE recap
- Finite difference method basics
- Explicit vs. implicit methods
- Stability and accuracy
- Implementation issues
- We'll start by solving the heat equation with homogenous boundary conditions, and then generalise to deal with
 - different boundary conditions (Dirichlet vs. Neumann)
 - other parabolic PDEs
 - more space dimensions

EMAT30008 PDEs 1. Introduction Page 2

General 2nd order semilinear PDE for a function u of two variables x and y has the form

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = f\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, x, y\right)$$

- a, b, c can be functions of x and y
- There are three classes of such PDEs
 - $b^2 4ac > 0$: hyperbolic, has solutions that travel, discontinuities can be generated and propagate, can be tricky to solve computationally
 - $b^2 4ac < 0$: elliptic, has stationary smooth solutions, usually not too hard to solve by computation
 - $b^2 4ac = 0$: parabolic, has solutions that diffuse, may have features of both

EMAT30008 PDEs 2. Revision and basics Page 3

Class	Canonical example	Initial/Boundary conditions
Parabolic	Heat equation	Initial/boundary value problem
	$u_t = \kappa u_{xx}$	x space coord., t time coord.
	$u_t = \kappa \nabla^2 u$	Need u at $t=0$, plus one condition on each
		boundary ¹ in space $(u \text{ or } \frac{\partial u}{\partial n})$
Hyperbolic	Wave equation	Initial/boundary value problem
	$u_{tt} = c^2 u_{xx}$	x space coord., t time coord.
	$u_{tt} = c^2 \nabla^2 u$	Need u and u_t at $t=0$, plus one condition on
		each boundary in space $(u \text{ or } \frac{\partial u}{\partial n})$
Elliptic	Laplace's equation	Boundary value problem
	$u_{xx} + u_{yy} = 0$	x,y space coords.; no time coord.
		Need one condition everywhere on the (closed)
		boundary $(u ext{ or } rac{\partial u}{\partial n})$

EMAT30008 PDEs 2. Revision and basics Page 4

Dirichlet = prescribed u, Neumann = prescribed $\frac{\partial u}{\partial n}$ on a boundary

Numerical methods for PDEs

- We will focus on finite difference methods
 - discretize the domain into a regular grid: $x_i = x_0 + i\Delta x$, $t_i = t_0 + j\Delta t$
 - discretize the solution values at the gridpoints: $u_{i,j} = u(x_i, t_j)$
 - ullet discretize the PDE: use finite differencing to approximate derivatives as combinations of $u_{i,j}$
 - leads to sets of equations for $u_{i,j}$
 - solve to find the $u_{i,j}$ using linear algebra/nonlinear system techniques
- Pros and cons:
 - + straightforward, both mathematically and also from a coding perspective
 - only really works for simple (rectangular) domains
- There are many alternative approaches: e.g., finite element/volume methods, spectral methods, method of lines, . . .

EMAT30008 PDEs 2. Revision and basics Page 5

Page 6

• Approximate first order derivatives with forward, backward, or central difference; e.g.

$$\begin{split} &\frac{\partial u}{\partial t}(x_i,t_j) \approx \frac{u(x_i,t_j+\Delta t)-u(x_i,t_j)}{\Delta t} = \frac{u_{i,j+1}-u_{i,j}}{\Delta t} \\ &\text{or} \quad \frac{\partial u}{\partial t}(x_i,t_j) \approx \frac{u(x_i,t_j)-u(x_i,t_j-\Delta t)}{\Delta t} = \frac{u_{i,j}-u_{i,j-1}}{\Delta t} \\ &\text{or} \quad \frac{\partial u}{\partial t}(x_i,t_j) \approx \frac{u(x_i,t_j+\Delta t)-u(x_i,t_j-\Delta t)}{2\Delta t} = \frac{u_{i,j+1}-u_{i,j-1}}{2\Delta t} \end{split}$$

Second derivatives can be approximated too, e.g. using central difference

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_j) \approx \frac{u(x_i + \Delta x, t_j) - 2u(x_i, t_j) + u(x_i - \Delta x, t_j)}{\Delta x^2} = \frac{u_{i+1, j} - 2u_{i, j} + u_{i-1, j}}{\Delta x^2}$$

Many other approximations exist: more accuracy, higher derivatives

EMAT30008 PDEs 2. Revision and basics Page 7

EMAT30008 PDEs

EMAT30008 PDEs 2. Revision and basics Page 8

Starter problem

Solve the heat equation

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < L, 0 < t \le T \tag{1}$$

with boundary & initial conditions

$$u(0,t) = u(L,t) = 0, \quad t > 0, \quad u(x,0) = f(x), \quad 0 < x < L$$
 (2)

• Select mesh constants Δx , Δt , so that

$$\frac{L}{\Delta x} = m, \quad \frac{T}{\Delta t} = n, \qquad m, n \in \mathbb{Z}$$

- Grid points are $(x_i, t_j) = (i\Delta x, j\Delta t)$, where $i = 0, 1, \dots, m$, and $j = 0, 1, 2, \dots, n$
- Find the approximate solution $u_{i,j} = u(x_i, t_j)$

EMAT30008 PDEs

Grid

Grid

Grid

- Expand the PDE about $(x,y) = (x_i,t_i)$, by discretizing the derivatives
- Use forward difference in time, central difference in space

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2}$$

- Expand the PDE about $(x,y) = (x_i,t_i)$, by discretizing the derivatives
- Use forward difference in time, central difference in space

$$\frac{\partial u}{\partial t}(x_i, t_j) = \kappa \frac{\partial^2 u}{\partial x^2}(x_i, t_j)$$

- Expand the PDE about $(x,y)=(x_i,t_j)$, by discretizing the derivatives
- Use forward difference in time, central difference in space

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \kappa \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2}$$

ullet Rearrange to give an equation for $u_{i,j+1}$ in terms of the $u_{i,j}$ s

$$u_{i,j+1} = u_{i,j} + \frac{\kappa \Delta t}{\Delta x^2} (u_{i+1,j} - 2u_{i,j} + u_{i-1,j})$$

- We can do timestepping! Solution at next timestep (j + 1) is given *explicitly* in terms of solution at previous timestep (j)
- This is the forward Euler scheme: an explicit method

EMAT30008 PDEs 3. Finite difference methods Page 11

- Expand the PDE about $(x,y) = (x_i,t_i)$, by discretizing the derivatives
- Use forward difference in time, central difference in space

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \kappa \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2}$$

ullet Rearrange to give an equation for $u_{i,j+1}$ in terms of the $u_{i,j}$ s

$$u_{i,j+1} = u_{i,j} + \lambda (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}), \qquad \lambda = \frac{\kappa \Delta t}{\Delta x^2}$$

- We can do timestepping! Solution at next timestep (j+1) is given *explicitly* in terms of solution at previous timestep (j)
- This is the forward Euler scheme: an explicit method

EMAT30008 PDEs 3. Finite difference methods

Page 11

Forward Euler — stencil

Boundary/initial conditions

- Dealing with the boundary and initial conditions is easy
- ullet Boundary conditions give, for all j

$$u_{0,j} = u_{m,j} = 0$$

• Use initial condition (at time t=0, i.e. for j=0) to start the iteration

$$u_{i,0} = f(x_i)$$

- The (unknown) solution values we need to find are $u_{1,j}, u_{2,j}, \ldots, u_{m-1,j}$ for $j=1,2,\ldots,n$
- Find them one row at a time: compute all the $u_{i,j}$ for j=1, then for j=2, etc.

EMAT30008 PDEs 3. Finite difference methods

Page 13

Forward Euler — iteration

x

Forward Euler — iteration

Forward Euler — iteration

Forward Euler — matrix form

- Can conveniently rewrite forward Euler scheme in matrix/vector form
- Let $u^{(j)} = (u_{1,j}, u_{2,j}, \dots, u_{m-1,j})^T$. Then

$$oldsymbol{u}^{(j+1)} = A_{\mathsf{FE}} oldsymbol{u}^{(j)} \qquad \mathsf{for} \; j \geqslant 1$$

• A_{FE} is a *tridiagonal* $(m-1) \times (m-1)$ matrix:

$$A_{\mathsf{FE}} = \begin{pmatrix} 1 - 2\lambda & \lambda & & & & 0 \\ \lambda & 1 - 2\lambda & \lambda & & & & \\ & \lambda & 1 - 2\lambda & \lambda & & & \\ & & \ddots & \ddots & \ddots & \\ & & & \lambda & 1 - 2\lambda & \lambda \\ 0 & & & \lambda & 1 - 2\lambda \end{pmatrix}, \qquad \lambda = \frac{\kappa \Delta t}{\Delta x^2}$$

- Initial conditions: $u^{(0)} = (f(x_1), f(x_2), \dots, f(x_{m-1}))^T$
- Boundary conditions: $u_{0,j} = u_{m,j} = 0$ for all j

EMAT30008 PDEs

Forward Euler — stability

- Numerical experiments suggest that whether the Forward Euler method gives the right answer depends on the values of Δx and Δt
- Simple calculation shows that errors grow as

$$\boldsymbol{e}^{(j)} = A_{\mathsf{FE}}^{j} \boldsymbol{e}^{(0)}$$

• Errors will decay to zero (i.e. the scheme is stable) if all the eigenvalues of A_{FE} are inside the unit circle; true if

$$0 < \lambda < \frac{1}{2} \qquad \Leftrightarrow \qquad \frac{\kappa \Delta t}{\Delta x^2} < \frac{1}{2}$$

• Forward Euler scheme is conditionally stable (that's bad)

- In order to solve the Forward Euler stability problem we could try alternative discretizations for the time derivative
- E.g., approximate the PDE at the point (x_i, t_{j+1}) , and use a backward difference approximation for $\frac{\partial u}{\partial t}$ and central difference for $\frac{\partial^2 u}{\partial x^2}$:

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2}$$

- In order to solve the Forward Euler stability problem we could try alternative discretizations for the time derivative
- E.g., approximate the PDE at the point (x_i, t_{j+1}) , and use a backward difference approximation for $\frac{\partial u}{\partial t}$ and central difference for $\frac{\partial^2 u}{\partial x^2}$:

$$\frac{\partial u}{\partial t}(x_i, t_{j+1}) = \kappa \frac{\partial^2 u}{\partial x^2}(x_i, t_{j+1})$$

- In order to solve the Forward Euler stability problem we could try alternative discretizations for the time derivative
- E.g., approximate the PDE at the point (x_i, t_{j+1}) , and use a backward difference approximation for $\frac{\partial u}{\partial t}$ and central difference for $\frac{\partial^2 u}{\partial x^2}$:

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \kappa \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{\Delta x^2}$$

ullet Rearrange so all the timestep j+1 terms are on the left, and timestep j on the right

$$u_{i,j+1} - \lambda (u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}) = u_{i,j}$$

$$\lambda = \kappa \frac{\Delta t}{\Delta x^2}$$

• We can't explicitly solve for $u_{i,j+1}$ in terms of $u_{\star,j}$: an *implicit* method

- In order to solve the Forward Euler stability problem we could try alternative discretizations for the time derivative
- E.g., approximate the PDE at the point (x_i, t_{j+1}) , and use a backward difference approximation for $\frac{\partial u}{\partial t}$ and central difference for $\frac{\partial^2 u}{\partial x^2}$:

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \kappa \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{\Delta x^2}$$

ullet Rearrange so all the timestep j+1 terms are on the left, and timestep j on the right

$$-\lambda u_{i+1,j+1} + (1+2\lambda)u_{i,j+1} - \lambda u_{i-1,j+1} = u_{i,j}$$
$$\lambda = \kappa \frac{\Delta t}{\Delta x^2}$$

• We can't explicitly solve for $u_{i,j+1}$ in terms of $u_{\star,j}$: an *implicit* method

Backward Euler — stencil

Backward Euler — matrix form

• Again write $\boldsymbol{u}^{(j)} = (u_{1,j}, u_{2,j}, \dots, u_{m-1,j})^T$. Matrix/vector form:

$$A_{\mathsf{BE}}\boldsymbol{u}^{(j+1)} = \boldsymbol{u}^{(j)}$$

with $(m-1) \times (m-1)$ tridiagonal matrix A_{BE}

$$A_{\mathsf{BE}} = \begin{pmatrix} 1 + 2\lambda & -\lambda & & & 0 \\ -\lambda & 1 + 2\lambda & -\lambda & & & \\ & -\lambda & 1 + 2\lambda & -\lambda & & \\ & & \ddots & \ddots & \ddots \\ 0 & & & -\lambda & 1 + 2\lambda \end{pmatrix}$$

- This is the *Backward Euler* scheme. It is an *implicit* method. We must solve a matrix equation at each time step.
- Initial and boundary conditions are as for Forward Euler

- Or we could try central differences for the time derivative
- To get $u_{\star,j+1}$ in terms of $u_{\star,j}$, expand the PDE about $(x_i,t_{j+1/2})$

$$\frac{\partial u}{\partial t}(x_i, t_{j+1/2}) = \frac{u_{i,j+1} - u_{i,j}}{\Delta t}$$

• But now the spatial derivative contains terms we don't really want

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_{j+1/2}) = \frac{u_{i+1,j+1/2} - 2u_{i,j+1/2} + u_{i-1,j+1/2}}{\Delta x^2}$$

• Approximate the "half" timestep terms by averaging over the two nearest gridpoints (at times j and j+1)

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_{j+1/2}) = \frac{\frac{u_{i+1, j+1} + u_{i+1, j}}{2} - 2\frac{u_{i, j+1} + u_{i, j}}{2} + \frac{u_{i-1, j+1} + u_{i-1, j}}{2}}{\Delta x^2}$$

- Or we could try central differences for the time derivative
- To get $u_{\star,j+1}$ in terms of $u_{\star,j}$, expand the PDE about $(x_i,t_{j+1/2})$

$$\frac{\partial u}{\partial t}(x_i, t_{j+1/2}) = \frac{u_{i,j+1} - u_{i,j}}{\Delta t}$$

• But now the spatial derivative contains terms we don't really want

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_{j+1/2}) = \frac{u_{i+1, j+1/2} - 2u_{i, j+1/2} + u_{i-1, j+1/2}}{\Delta x^2}$$

• Approximate the "half" timestep terms by averaging over the two nearest gridpoints (at times j and j+1)

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_{j+1/2}) = \frac{\frac{u_{i+1,j+1} + u_{i+1,j}}{2} - 2\frac{u_{i,j+1} + u_{i,j}}{2} + \frac{u_{i-1,j+1} + u_{i-1,j}}{2}}{\Delta x^2}$$

- Or we could try central differences for the time derivative
- To get $u_{\star,j+1}$ in terms of $u_{\star,j}$, expand the PDE about $(x_i,t_{j+1/2})$

$$\frac{\partial u}{\partial t}(x_i, t_{j+1/2}) = \frac{u_{i,j+1} - u_{i,j}}{\Delta t}$$

But now the spatial derivative contains terms we don't really want

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_{j+1/2}) = \frac{u_{i+1,j+1/2} - 2u_{i,j+1/2} + u_{i-1,j+1/2}}{\Delta x^2}$$

• Approximate the "half" timestep terms by averaging over the two nearest gridpoints (at times j and j+1)

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_{j+1/2}) = \frac{\frac{u_{i+1, j+1} + u_{i+1, j}}{2} - 2\frac{u_{i, j+1} + u_{i, j}}{2} + \frac{u_{i-1, j+1} + u_{i-1, j}}{2}}{\Delta x^2}$$

- Or we could try central differences for the time derivative
- To get $u_{\star,j+1}$ in terms of $u_{\star,j}$, expand the PDE about $(x_i,t_{j+1/2})$

$$\frac{\partial u}{\partial t}(x_i, t_{j+1/2}) = \frac{u_{i,j+1} - u_{i,j}}{\Delta t}$$

But now the spatial derivative contains terms we don't really want

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_{j+1/2}) = \frac{u_{i+1,j+1/2} - 2u_{i,j+1/2} + u_{i-1,j+1/2}}{\Delta x^2}$$

• Approximate the "half" timestep terms by averaging over the two nearest gridpoints (at times j and j+1)

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_{j+1/2}) = \frac{\frac{u_{i+1,j+1} + u_{i+1,j}}{2} - 2\frac{u_{i,j+1} + u_{i,j}}{2} + \frac{u_{i-1,j+1} + u_{i-1,j}}{2}}{\Delta x^2}$$

Putting the pieces together, we get

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \frac{\kappa}{2} \left[\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} + \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{\Delta x^2} \right]$$

• Rearrange as usual: put timestep j+1 terms on the left-hand-side, timestep j terms on the right-hand-side, and set $\lambda = \kappa \Delta t/\Delta x^2$, to get

$$u_{i,j+1} - \frac{\lambda}{2} \left[u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1} \right] = u_{i,j} + \frac{\lambda}{2} \left[u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right]$$

- Called the Crank-Nicholson scheme
- ullet Like backward Euler it's an implicit method; we have to solve a matrix equation at each time step to find $oldsymbol{u}^{(j+1)}$

• Putting the pieces together, we get

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \frac{\kappa}{2} \left[\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} + \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{\Delta x^2} \right]$$

• Rearrange as usual: put timestep j+1 terms on the left-hand-side, timestep j terms on the right-hand-side, and set $\lambda = \kappa \Delta t/\Delta x^2$, to get

$$-\frac{\lambda}{2}u_{i+1,j+1} + (1+\lambda)u_{i,j+1} - \frac{\lambda}{2}u_{i-1,j+1} = \frac{\lambda}{2}u_{i+1,j} + (1-\lambda)u_{i,j} + \frac{\lambda}{2}u_{i-1,j}$$

- Called the Crank-Nicholson scheme
- ullet Like backward Euler it's an implicit method; we have to solve a matrix equation at each time step to find $oldsymbol{u}^{(j+1)}$

Crank-Nicholson scheme

In matrix/vector form, the Crank-Nicholson scheme is

$$A_{\mathsf{CN}}\boldsymbol{u}^{(j+1)} = B_{\mathsf{CN}}\boldsymbol{u}^{(j)}$$

- As usual, $u^{(j)} = (u_{1,j}, \dots, u_{m-1,j})^T$
- This time there are two $(m-1) \times (m-1)$ tridiagonal matrices

$$A_{\mathsf{CN}} = \operatorname{tridiag}\left(-\frac{\lambda}{2}, 1+\lambda, -\frac{\lambda}{2}\right), \quad B_{\mathsf{CN}} = \operatorname{tridiag}\left(\frac{\lambda}{2}, 1-\lambda, \frac{\lambda}{2}\right)$$

• Initial and boundary conditions implemented as usual

Stability

- Is any of this worth it?
- Yes! Both backward Euler and Crank-Nicholson schemes are unconditionally stable
- Recall: forward Euler is only conditionally stable; stability criterion is

$$\lambda = \kappa \frac{\Delta t}{\Delta x^2} < \frac{1}{2}$$

- However, there is a price to pay: solving a matrix equation at each time step
- We must be careful not to make the algorithm inefficient as a result

Error/accuracy

- There is also a benefit to the extra work involved in coding a Crank-Nicholson solver
- Straightforward error analysis (Taylor series) shows that, to leading order
 - forward Euler has truncation error $E = C_t \Delta t + C_x \Delta x^2$
 - backward Euler has truncation error $E = C_t \Delta t + C_x \Delta x^2$
 - Crank-Nicholson has truncation error $E = C_t \Delta t^2 + C_x \Delta x^2$
- The Crank-Nicholson scheme is second order accurate in time; i.e. it converges to the true solution quicker as $\Delta t \to 0$

Implementation: solving Ax = b

- What you should not do: multiply by the inverse. It's very expensive, computationally
- For an $n \times n$ matrix
 - matrix inversion takes $\mathcal{O}(n^3)$ operations
 - \bullet multiplying two matrices together takes $\mathcal{O}(n^3)$ operations
 - ullet multiplying a matrix and a vector takes $\mathcal{O}(n^2)$ operations
- Using a linear solver is much better
 - linear solve typically takes $\mathcal{O}(n^2)$ operations
 - ullet if A is tridiagonal, the Thomas algorithm finds a solution in $\mathcal{O}(n)$ operations:

²see, e.g., https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

Implementation: sparse matrices

- There's also a lot of wasted memory (most our matrix entries are zeros)
- There's a whole suite of methods in Python (and every other serious programming language) to take advantage of the fact that our matrices are sparse (almost all the entries are zero)
- With even only a couple of hundred nodes in space, code that uses sparse operations can run tens of thousands times faster, and reduce storage by factors of hundreds!
- scipy.sparse is the package to use
 - scipy.sparse.diags to define a sparse diagonal matrix
 - scipy.sparse.linalg.spsolve to solve a sparse linear system
 - A.dot(v) as usual to multiply sparse matrix A and (regular) vector v (NB numpy.dot doesn't support sparse matrices)

Recap

- We've derived three finite difference methods to solve the PDE problem (1)–(2)
- In component form, for i = 1, 2, ..., m 1, j = 1, 2, ..., n 1:
 - Forward Euler (discretize PDE at (x_i, t_j) , forward difference $\partial u/\partial t$):

$$u_{i,j+1} = u_{i,j} + \lambda \left(u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right)$$

② Backward Euler (discretize PDE at (x_i, t_{j+1}) , backward difference $\partial u/\partial t$):

$$u_{i,j+1} - \lambda \left(u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1} \right) = u_{i,j}$$

3 Crank Nicholson (discretize PDE at $(x_i, t_{j+1/2})$), central difference $\partial u/\partial t$):

$$u_{i,j+1} - \frac{\lambda}{2} \left(u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1} \right) = u_{i,j} + \frac{\lambda}{2} \left(u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right)$$

- $\lambda = \kappa \Delta x / \Delta t^2$
- Boundary conditions: $u_{0,j} = u_{m,j} = 0 \ (j = 1, 2, ..., n)$

EMAT30008 PDEs 3. Finite difference methods

Page 28

Extensions

- It'd be nice to extend the range of systems we can solve
- Some (reasonably) straightforward modifications
 - other boundary conditions; e.g.

$$u(0,t)=p(t), \quad \text{or} \quad \frac{\partial u}{\partial x}(0,t)=q(t)$$

a heat source

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} + F(x, t)$$

variable diffusion coefficient

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\kappa(x) \frac{\partial u}{\partial x} \right)$$

- more general parabolic PDE problems
- We'll illustrate these in the case of forward Euler
- Other schemes can be adapted similarly, by taking care to remember at which point(s) the PDE is being discretized

Non-homogeneous Dirichlet boundary conditions

• General non-homogeneous Dirichlet boundary conditions are

$$u(0,t) = p(t),$$
 $u(L,t) = q(t)$ for all $t > 0$

• Forward Euler discretization is still valid; for $i=1,\ldots,m-1$

$$u_{i,j+1} = u_{i,j} + \lambda(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$

• For i=1,m-1 this refers to $u_{0,j}$ and $u_{m,j}$: the value of u at $x=x_0=0$ and $x=x_m=L$, time t_j :

$$u_{0,j} = u(0, t_j) = p(t_j) = p_j, \quad u_{m,j} = u(L, t_j) = q(t_j) = q_j$$

• Grid points next to boundaries get information from the boundary

Non-homogeneous Dirichlet boundary conditions

• General non-homogeneous Dirichlet boundary conditions are

$$u(0,t) = p(t),$$
 $u(L,t) = q(t)$ for all $t > 0$

• Forward Euler discretization is still valid; for $i=1,\ldots,m-1$

$$u_{i,j+1} = u_{i,j} + \lambda (u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$

• For i=1, m-1 this refers to $u_{0,j}$ and $u_{m,j}$: the value of u at $x=x_0=0$ and $x=x_m=L$, time t_i :

$$u_{0,j} = u(0, t_j) = p(t_j) = p_j, \quad u_{m,j} = u(L, t_j) = q(t_j) = q_j$$

• Grid points next to boundaries get information from the boundary

Non-homogeneous Dirichlet boundary conditions

• General non-homogeneous Dirichlet boundary conditions are

$$u(0,t) = p(t),$$
 $u(L,t) = q(t)$ for all $t > 0$

ullet Forward Euler discretization is still valid; for $i=1,\ldots,m-1$

$$u_{i,j+1} = u_{i,j} + \lambda(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$

• For i=1, m-1 this refers to $u_{0,j}$ and $u_{m,j}$: the value of u at $x=x_0=0$ and $x=x_m=L$, time t_j :

$$u_{0,j} = u(0, t_j) = p(t_j) = p_j, \quad u_{m,j} = u(L, t_j) = q(t_j) = q_j$$

• Grid points next to boundaries get information from the boundary

Dirichlet grid

Dirichlet grid

Component form

• In component form, we get

$$u_{1,j+1} = u_{1,j} + \lambda(-2u_{1,j} + u_{2,j}) + \lambda p_j \qquad i = 1$$

$$u_{i,j+1} = u_{i,j} + \lambda(u_{i-1,j} - 2u_{i,j} + u_{i+1,j}) \qquad i = 2, \dots, m-2$$

$$u_{m-1,j+1} = u_{m-1,j} + \lambda(u_{m-2,j} - 2u_{m-1,j}) + \lambda q_j \qquad i = m-1$$

ullet p_j and q_j come from the Dirichlet boundary conditions

$$p_j = p(t_j) = u(0, t_j), \qquad q_j = q(t_j) = u(L, t_j)$$

 Dirichlet boundary conditions give rise to two additive terms, in the equations next to the boundary

ullet Writing as a matrix equation as usual, $oldsymbol{u}^{(j)} = (u_{1,j},\dots,u_{m-1,j})^T$,

$$m{u}^{(j+1)} = A_{\mathsf{FE}} m{u}^{(j)} + \lambda egin{pmatrix} p_j \\ 0 \\ \vdots \\ 0 \\ q_j \end{pmatrix}, \qquad p_j = p(t_j), q_j = q(t_j)$$

ullet A_{FE} is the usual (m-1) imes (m-1) forward Euler tridiagonal matrix

$$A_{\mathsf{FE}} = \operatorname{tridiag}(\lambda, 1 - 2\lambda, \lambda)$$

- Boundary conditions give us an extra (known) RHS vector
- Must keep the boundary nodes up to date too: $u_{0,j} = p_j, u_{m,j} = q_j$
- Scheme is still only conditionally stable

• Suppose that $\frac{\partial u}{\partial n}$ is given at the boundaries x=0,L, i.e.,

$$\frac{\partial u}{\partial x}(0,t) = P(t), \qquad \frac{\partial u}{\partial x}(L,t) = Q(t)$$

- The values $u_{0,j}=u(0,t)$ and $u_{m,j}=u(L,t)$ are no longer prescribed: must solve for them at each time step too
- The Forward Euler discretization still applies, now for all $i = 0, \dots, m$

$$u_{i,j+1} = u_{i,j} + \lambda(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$

• At the boundaries, i = 0, m, we need to know $u_{-1,j}$ and $u_{m+1,j}$?!

$$u_{0,j+1} = u_{0,j} + \lambda(u_{-1,j} - 2u_{0,j} + u_{1,j})$$

$$u_{m,j+1} = u_{m,j} + \lambda(u_{m-1,j} - 2u_{m,j} + u_{m+1,j})$$

Neumann boundary conditions — grid

Page 35

Neumann boundary conditions — grid

Neumann boundary conditions — grid

Removing the fictitious nodes

We can use central difference to discretize the (gradient) boundary conditions

$$\frac{\partial u}{\partial x}(x_i, t_j) \approx \frac{u(x_i + \Delta x, t_j) - u(x_i - \Delta x, t_j)}{2\Delta x} = \frac{u_{i+1, j} - u_{i-1, j}}{2\Delta x}$$

• So, for example, at i = 0, we get

$$P_j = \frac{u_{1,j} - u_{-1,j}}{2\Delta x}, \qquad \text{where } P_j = P(t_j) = \frac{\partial u}{\partial x}(0,t_j)$$

• Rearranging gives us an expression for $u_{-1,i}$

$$u_{-1,j} = u_{1,j} - 2\Delta x P_j$$

• So forward difference at i=0 becomes

$$u_{0,j+1} = u_{0,j} + \lambda(u_{-1,j} - 2u_{0,j} + u_{1,j})$$

Removing the fictitious nodes

We can use central difference to discretize the (gradient) boundary conditions

$$\frac{\partial u}{\partial x}(x_i, t_j) \approx \frac{u(x_i + \Delta x, t_j) - u(x_i - \Delta x, t_j)}{2\Delta x} = \frac{u_{i+1, j} - u_{i-1, j}}{2\Delta x}$$

• So. for example, at i=0, we get

$$P_j = \frac{u_{1,j} - u_{-1,j}}{2\Delta x}, \qquad \text{where } P_j = P(t_j) = \frac{\partial u}{\partial x}(0,t_j)$$

• Rearranging gives us an expression for $u_{-1,i}$

$$u_{-1,j} = u_{1,j} - 2\Delta x P_j$$

• So forward difference at i=0 becomes

$$u_{0,j+1} = u_{0,j} + \lambda(-2u_{0,j} + 2u_{1,j}) - 2\lambda \Delta x P_j$$

Component form

• The complete forward difference discretization of the PDE is

$$u_{0,j+1} = u_{0,j} + \lambda(-2u_{0,j} + 2u_{1,j}) - 2\lambda \Delta x P_j$$
 $i = 0$

$$u_{i,j+1} = u_{i,j} + \lambda(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$
 $i = 1, \dots, m-1$

$$u_{m,j+1} = u_{m,j} + \lambda(2u_{m-1,j} - 2u_{m,j}) + 2\lambda \Delta x Q_j$$
 $i = m$

• P_i and Q_i come from the Neumann boundary conditions

$$P_j = P(t_j) = \frac{\partial u}{\partial x}(0, t_j), \quad Q_j = Q(t_j) = \frac{\partial u}{\partial x}(L, t_j)$$

- Differences from our previous discretizations
 - $u_{0,j}$ and $u_{m,j}$ are unknowns, to be solved for
 - Neumann boundary conditions create two additional terms, and modified coefficients

Component form

The complete forward difference discretization of the PDE is

$$u_{0,j+1} = u_{0,j} + \lambda(-2u_{0,j} + 2u_{1,j}) - 2\lambda \Delta x P_{j}$$
 $i = 0$

$$u_{i,j+1} = u_{i,j} + \lambda(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$
 $i = 1, \dots, m-1$

$$u_{m,j+1} = u_{m,j} + \lambda(2u_{m-1,j} - 2u_{m,j}) + 2\lambda \Delta x Q_{j}$$
 $i = m$

ullet P_j and Q_j come from the Neumann boundary conditions

$$P_j = P(t_j) = \frac{\partial u}{\partial x}(0, t_j), \quad Q_j = Q(t_j) = \frac{\partial u}{\partial x}(L, t_j)$$

- Differences from our previous discretizations
 - $u_{0,j}$ and $u_{m,j}$ are unknowns, to be solved for
 - Neumann boundary conditions create two additional terms, and modified coefficients

Component form

The complete forward difference discretization of the PDE is

$$u_{0,j+1} = u_{0,j} + \lambda(-2u_{0,j} + 2u_{1,j}) - 2\lambda \Delta x P_j$$
 $i = 0$

$$u_{i,j+1} = u_{i,j} + \lambda(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$
 $i = 1, \dots, m-1$

$$u_{m,j+1} = u_{m,j} + \lambda (2u_{m-1,j} - 2u_{m,j}) + 2\lambda \Delta x Q_j$$
 $i = m$

ullet P_j and Q_j come from the Neumann boundary conditions

$$P_j = P(t_j) = \frac{\partial u}{\partial x}(0, t_j), \quad Q_j = Q(t_j) = \frac{\partial u}{\partial x}(L, t_j)$$

- Differences from our previous discretizations
 - $u_{0,j}$ and $u_{m,j}$ are unknowns, to be solved for
 - Neumann boundary conditions create two additional terms, and modified coefficients

As a matrix equation

$$\boldsymbol{u}^{(j+1)} = \overline{A}_{\mathsf{FE}} \boldsymbol{u}^{(j)} + 2\lambda \Delta x (-P_i, 0, \dots, 0, Q_j)^T$$

with $u^{(j)} = (u_{0,j}, u_{1,j}, \dots, u_{m-1,j}, u_{m,j})^T$ and

$$\overline{A}_{\mathsf{FE}} = \begin{pmatrix} 1 - 2\lambda & 2\lambda & & & & 0\\ \lambda & 1 - 2\lambda & \lambda & & & & \\ & \lambda & 1 - 2\lambda & \lambda & & & \\ & & \ddots & \ddots & \ddots & \\ & & & \lambda & 1 - 2\lambda & \lambda \\ 0 & & & & 2\lambda & 1 - 2\lambda \end{pmatrix}$$

- Neumann boundary conditions appear as a RHS vector, and modify the evolution matrix
- Note that $\boldsymbol{u}^{(j)}$ now has m+1 entries, and $\overline{A}_{\mathsf{FE}}$ is a $(m+1)\times(m+1)$ matrix

As a matrix equation

$$\boldsymbol{u}^{(j+1)} = \overline{A}_{\mathsf{FE}} \boldsymbol{u}^{(j)} + 2\lambda \Delta x (-P_j, 0, \dots, 0, Q_j)^T$$

with $u^{(j)} = (u_{0,i}, u_{1,i}, \dots, u_{m-1,i}, u_{m,i})^T$ and

$$\overline{A}_{\mathsf{FE}} = \begin{pmatrix} 1 - 2\lambda & 2\lambda & & & & 0\\ \lambda & 1 - 2\lambda & \lambda & & & & \\ & \lambda & 1 - 2\lambda & \lambda & & & \\ & & \ddots & \ddots & \ddots & \\ & & & \lambda & 1 - 2\lambda & \lambda \\ 0 & & & & 2\lambda & 1 - 2\lambda \end{pmatrix}$$

- Neumann boundary conditions appear as a RHS vector, and modify the evolution matrix
- Note that $\boldsymbol{u}^{(j)}$ now has m+1 entries, and $\overline{A}_{\mathsf{FE}}$ is a $(m+1)\times(m+1)$ matrix

As a matrix equation

$$\boldsymbol{u}^{(j+1)} = \overline{A}_{\mathsf{FE}} \boldsymbol{u}^{(j)} + 2\lambda \Delta x (-P_j, 0, \dots, 0, Q_j)^T$$

with $u^{(j)} = (u_0, u_1, \dots, u_{m-1}, u_{m,i})^T$ and

$$\overline{A}_{\mathsf{FE}} = \begin{pmatrix} 1 - 2\lambda & 2\lambda & & & & 0\\ \lambda & 1 - 2\lambda & \lambda & & & & \\ & \lambda & 1 - 2\lambda & \lambda & & & \\ & & \ddots & \ddots & \ddots & \\ & & & \lambda & 1 - 2\lambda & \lambda \\ 0 & & & 2\lambda & 1 - 2\lambda \end{pmatrix}$$

- Neumann boundary conditions appear as a RHS vector, and modify the evolution matrix
- Note that $u^{(j)}$ now has m+1 entries, and $\overline{A}_{\mathsf{FF}}$ is a $(m+1)\times (m+1)$ matrix

Periodic boundary conditions

 Periodic boundary conditions are often used when simulating travelling solutions in large domains:

$$u(0,t) = u(L,t)$$
 for all t

• Straightforward to implement; in components, the boundary conditions are

$$u_{0,j} = u_{m,j}$$
 for all j

- Leaves m unknowns to find, per time-step: $u_{0,j}, u_{1,j}, \dots u_{m-1,j}$
- Usual forward Euler update rule for i = 1, 2, ..., m-2:

$$u_{i,j+1} = u_{i,j} + \lambda(u_{i-1,j} - 2u_{i,j} + u_{i+1,j})$$

• At the two ends, i = 0, m - 1, the nodes wrap around:

$$u_{0,j+1} = u_{0,j} + \lambda(u_{m-1,j} - 2u_{0,j} + u_{1,j})$$

$$u_{m-1,j+1} = u_{m,j} + \lambda(u_{m-2,j} - 2u_{m-1,j} + u_{0,j})$$

Periodic boundary conditions — grid

Page 40

Periodic boundary conditions — grid

EMAT30008 PDEs 4. Extensions

Page 40

Periodic boundary conditions — grid

EMAT30008 PDEs 4. Extensions

Page 40

Periodic boundary conditions — matrix form

• In matrix form, we get

$$\boldsymbol{u}^{(j+1)} = \tilde{A}_{\mathsf{FE}} \boldsymbol{u}^{(j)}$$

with $u^{(j)} = (u_{0,j}, u_{1,j}, \dots, u_{m-1,j}, u_{m-1,j})^T$ and

$$\tilde{A}_{\mathsf{FE}} = \begin{pmatrix} 1 - 2\lambda & \lambda & & & \lambda \\ \lambda & 1 - 2\lambda & \lambda & & & \\ & \lambda & 1 - 2\lambda & \lambda & & \\ & & \ddots & \ddots & \ddots & \\ & & & \lambda & 1 - 2\lambda & \lambda \\ \lambda & & & & \lambda & 1 - 2\lambda \end{pmatrix}$$

- Periodic boundary conditions appear as a modified evolution matrix
- The matrix is now no longer tridiagonal, though it is still sparse
- \bullet Note that ${m u}^{(j)}$ now has m entries, and $\tilde{A}_{\sf FE}$ is a $m \times m$ matrix

Periodic boundary conditions — matrix form

• In matrix form, we get

$$\boldsymbol{u}^{(j+1)} = \tilde{A}_{\mathsf{FF}} \boldsymbol{u}^{(j)}$$

with $u^{(j)} = (u_{0,j}, u_{1,j}, \dots, u_{m-1,j}, u_{m-1,j})^T$ and

$$\tilde{A}_{\mathsf{FE}} = \begin{pmatrix} 1 - 2\lambda & \lambda & & & & \lambda \\ \lambda & 1 - 2\lambda & \lambda & & & & \\ & \lambda & 1 - 2\lambda & \lambda & & & \\ & & \ddots & \ddots & \ddots & \\ & & & \lambda & 1 - 2\lambda & \lambda \\ & & & \lambda & 1 - 2\lambda \end{pmatrix}$$

- Periodic boundary conditions appear as a modified evolution matrix
- The matrix is now no longer tridiagonal, though it is still sparse
- ullet Note that $oldsymbol{u}^{(j)}$ now has m entries, and $ilde{A}_{\mathsf{FE}}$ is a m imes m matrix

Adding a right-hand-side function

ullet Consider the heat equation with a source term, independent of u

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} + F(x, t)$$

• Standard forward Euler discretization at (x_i, t_j) :

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \kappa \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} + F(x_i, t_j)$$

Writing as a matrix equation

$$\boldsymbol{u}^{(j+1)} = A_{\mathsf{FE}} \boldsymbol{u}^{(j)} + \Delta t \, \boldsymbol{F}^{(j)}$$

ullet $A_{\mathsf{FE}} =$ usual forward Euler matrix, and $oldsymbol{F}_i^{(j)} = F_{i,j} = F(x_i, t_j)$

Adding a right-hand-side function

ullet Consider the heat equation with a source term, independent of u

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} + F(x, t)$$

• Standard forward Euler discretization at (x_i, t_j) , set $\lambda = \kappa \Delta x / \Delta t^2$, $F_{i,j} = F(x_i, t_j)$:

$$u_{i,j+1} = u_{i,j} + \lambda \left(u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right) + \Delta t \, F_{i,j}$$

Writing as a matrix equation

$$\boldsymbol{u}^{(j+1)} = A_{\mathsf{FE}} \boldsymbol{u}^{(j)} + \Delta t \, \boldsymbol{F}^{(j)}$$

ullet $A_{\mathsf{FE}} = \mathsf{usual}$ forward Euler matrix, and $oldsymbol{F}_i^{(j)} = F_{i,j} = F(x_i, t_j)$

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[\kappa(x) \frac{\partial u}{\partial x} \right]$$

- Discretise the RHS at (x_i, t_j) in two steps, using central difference with spatial difference $\pm \Delta x/2$ for each derivative
- Outer space derivative

$$\begin{split} \frac{\partial}{\partial x} \left(\kappa(x) \frac{\partial u}{\partial x} \right) \Big|_{x_i, t_j} &= \frac{\left(\kappa(x) \frac{\partial u}{\partial x} \right) \Big|_{x_i + \frac{\Delta x}{2}, t_j} - \left(\kappa(x) \frac{\partial u}{\partial x} \right) \Big|_{x_i - \frac{\Delta x}{2}, t_j}}{\Delta x} \\ &= \frac{\kappa(x_i + \frac{\Delta x}{2}) \frac{\partial u}{\partial x} \Big|_{x_i + \frac{\Delta x}{2}, t_j} - \kappa(x_i - \frac{\Delta x}{2}) \frac{\partial u}{\partial x} \Big|_{x_i - \frac{\Delta x}{2}, t_j}}{\Delta x} \end{split}$$

ullet Can evaluate the diffusion coefficient $\kappa(x)$ at any value of x; set $\kappa_{i\pm 1/2}=\kappa(x_i\pm \Delta x/2)$

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[\kappa(x) \frac{\partial u}{\partial x} \right]$$

- Discretise the RHS at (x_i, t_j) in two steps, using central difference with spatial difference $\pm \Delta x/2$ for each derivative
- Outer space derivative

$$\begin{split} \frac{\partial}{\partial x} \left(\kappa(x) \frac{\partial u}{\partial x} \right) \bigg|_{x_i, t_j} &= \frac{\left(\kappa(x) \frac{\partial u}{\partial x} \right) \bigg|_{x_i + \frac{\Delta x}{2}, t_j} - \left(\kappa(x) \frac{\partial u}{\partial x} \right) \bigg|_{x_i - \frac{\Delta x}{2}, t_j}}{\Delta x} \\ &= \frac{\kappa(x_i + \frac{\Delta x}{2}) \frac{\partial u}{\partial x} \bigg|_{x_i + \frac{\Delta x}{2}, t_j} - \kappa(x_i - \frac{\Delta x}{2}) \frac{\partial u}{\partial x} \bigg|_{x_i - \frac{\Delta x}{2}, t_j}}{\Delta x} \end{split}$$

ullet Can evaluate the diffusion coefficient $\kappa(x)$ at any value of x; set $\kappa_{i\pm 1/2}=\kappa(x_i\pm \Delta x/2)$

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[\kappa(x) \frac{\partial u}{\partial x} \right]$$

- Discretise the RHS at (x_i, t_j) in two steps, using central difference with spatial difference $\pm \Delta x/2$ for each derivative
- Outer space derivative

$$\begin{split} \frac{\partial}{\partial x} \left(\kappa(x) \frac{\partial u}{\partial x} \right) \Big|_{x_i, t_j} &= \frac{\left(\kappa(x) \frac{\partial u}{\partial x} \right) \Big|_{x_i + \frac{\Delta x}{2}, t_j} - \left(\kappa(x) \frac{\partial u}{\partial x} \right) \Big|_{x_i - \frac{\Delta x}{2}, t_j}}{\Delta x} \\ &= \frac{\kappa(x_i + \frac{\Delta x}{2}) \frac{\partial u}{\partial x} \Big|_{x_i + \frac{\Delta x}{2}, t_j} - \kappa(x_i - \frac{\Delta x}{2}) \frac{\partial u}{\partial x} \Big|_{x_i - \frac{\Delta x}{2}, t_j}}{\Delta x} \end{split}$$

ullet Can evaluate the diffusion coefficient $\kappa(x)$ at any value of x; set $\kappa_{i\pm 1/2}=\kappa(x_i\pm \Delta x/2)$

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[\kappa(x) \frac{\partial u}{\partial x} \right]$$

- Discretise the RHS at (x_i, t_j) in two steps, using central difference with spatial difference $\pm \Delta x/2$ for each derivative
- Outer space derivative

$$\begin{split} \frac{\partial}{\partial x} \left(\kappa(x) \frac{\partial u}{\partial x} \right) \bigg|_{x_i, t_j} &= \frac{\left(\kappa(x) \frac{\partial u}{\partial x} \right) \bigg|_{x_i + \frac{\Delta x}{2}, t_j} - \left(\kappa(x) \frac{\partial u}{\partial x} \right) \bigg|_{x_i - \frac{\Delta x}{2}, t_j}}{\Delta x} \\ &= \frac{\kappa(x_i + \frac{\Delta x}{2}) \frac{\partial u}{\partial x} \bigg|_{x_i + \frac{\Delta x}{2}, t_j} - \kappa(x_i - \frac{\Delta x}{2}) \frac{\partial u}{\partial x} \bigg|_{x_i - \frac{\Delta x}{2}, t_j}}{\Delta x} \end{split}$$

• Can evaluate the diffusion coefficient $\kappa(x)$ at any value of x; set $\kappa_{i\pm 1/2}=\kappa(x_i\pm \Delta x/2)$

Same approach for the inner space derivatives

$$\frac{\partial u}{\partial x}\Big|_{x_i + \frac{\Delta x}{2}, t_j} = \frac{u(x_i + \Delta x, t_j) - u(x_i, t_j)}{\Delta x} = \frac{u_{i+1, j} - u_{i, j}}{\Delta x}$$

$$\frac{\partial u}{\partial x}\Big|_{x_i - \frac{\Delta x}{2}, t_j} = \frac{u(x_i, t_j) - u(x_i - \Delta x, t_j)}{\Delta x} = \frac{u_{i, j} - u_{i-1, j}}{\Delta x}$$

Hence

$$\left. \frac{\partial}{\partial x} \left(\kappa(x) \frac{\partial u}{\partial x} \right) \right|_{x_i, t_j} = \frac{\kappa_{i+1/2} (u_{i+1,j} - u_{i,j}) - \kappa_{i-1/2} (u_{i,j} - u_{i-1,j})}{\Delta x^2}$$

• Use forward difference as usual to discretize the time derivative

Variable diffusion coefficient — scheme

Collecting all the terms

$$u_{i,j+1} = u_{i,j} + \frac{\Delta t}{\Delta x^2} \left\{ \kappa_{i+1/2} u_{i+1,j} - (\kappa_{i+1/2} + \kappa_{i-1/2}) u_{i,j} + \kappa_{i-1/2} u_{i-1,j} \right\}$$

where $\kappa_{i\pm 1/2} = \kappa(x_i \pm \Delta x/2)$

• Write as a matrix equation as usual

$$oldsymbol{u}^{(j+1)} = \mathcal{A}_{\mathsf{FF}} oldsymbol{u}^{(j)}$$

 \bullet $\mathcal{A}_{\mathsf{FE}}$ is tridiagonal, but the entries in each row vary: row i entries are

$$\frac{\Delta t}{\Delta x^2} \kappa_{i-1/2}, \ 1 - \frac{\Delta t}{\Delta x^2} (\kappa_{i+1/2} + \kappa_{i-1/2}), \ \frac{\Delta t}{\Delta x^2} \kappa_{i+1/2}$$

- Scheme is stable if $\kappa(x) \geqslant \kappa^* > 0 \ \forall x$, and $\kappa^* \Delta t / \Delta x^2 < 1/2$
- NB: if κ is constant, this is just regular forward Euler!

Nonlinear PDE problems

More general source terms can pose significant problems; consider

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} + F(u, x, t)$$

- ullet If F is linear in u we can discretize as before, with no issues
- If F is nonlinear in u, life can become guite difficult
 - solutions might develop sharp transitions that require lots of spatial resolution
 - we don't know the stability criterion for explicit methods (e.g., forward Euler)
 - implicit methods require us to solve a nonlinear equation at each time step
 - testing is difficult because there are few (if any) analytic solutions available

Forward Euler

Consider the nonlinear diffusion PDE

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} + F(u)$$

• We could use forward Euler; discretizing at (x_i, t_i) gives an explicit rule:

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \kappa \frac{u_{i+1,j} - 2u_{i,j} + u_{i+1,j}}{\Delta x^2} + F(u_{i,j})$$
$$u_{i,j+1} = u_{i,j} + \lambda \left(u_{i+1,j} - 2u_{i,j} + u_{i+1,j} \right) + \Delta t F(u_{i,j})$$

- Downsides:
 - only conditionally stable, must experiment with Δx and Δt (and hope!)
 - slow convergence (first order in time)

Crank-Nicholson

 Backward Euler and Crank-Nicholson lead to a set of coupled nonlinear equations at each timestep. E.g., for Crank-Nicholson,

$$\frac{u_{i,j+1} - u_{i,j}}{\Delta t} = \frac{\kappa}{2} \left[\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} + \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{\Delta x^2} \right] + \frac{1}{2} \left[F(u_{i,j+1}) + F(u_{i,j}) \right]$$

or, in vector form,

$$\boldsymbol{u}^{(j+1)} - \boldsymbol{u}^{(j)} = \frac{\lambda}{2} \left[D\boldsymbol{u}^{(j)} + D\boldsymbol{u}^{(j+1)} \right] + \frac{\Delta t}{2} \left[\boldsymbol{F}(\boldsymbol{u}^{(j)}) + \boldsymbol{F}(\boldsymbol{u}^{(j+1)}) \right]$$
(3)

where
$$\lambda = \kappa \Delta t / \Delta x^2$$
, $D = \text{tridiag}(1, -2, 1)$, $\boldsymbol{u}_i^{(j)} = u_{i,j}$, $\boldsymbol{F}_i(\boldsymbol{x}) = F(\boldsymbol{x}_i)$

- ullet Must solve the nonlinear equation (3) for $oldsymbol{u}^{(j+1)}$ at each timestep
- ullet We have a reasonable initial guess: the solution at the previous timestep $oldsymbol{u}^{(j)}$

Diffusion in more space dimensions

- Methods so far have been to solve parabolic PDEs in one space dimension and time
- They can be generalised (to some extent) to more space dimensions
- E.g., find solution u = u(x, y, t) of

$$\frac{\partial u}{\partial t} = \kappa \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \qquad \text{for } 0 < x < L_x, \ 0 < y < L_y, \ 0 < t \leqslant T$$

Dirichlet boundary conditions for all t > 0

$$u(0, y, 0) = u(L_x, y, 0) = 0,$$

 $u(x, 0, 0) = u(x, L_y, 0) = 0$

Initial condition

$$u(x, y, 0) = u_I(x, y)$$

- We can use the same finite difference approach as before
- Grid spacing $\Delta x, \Delta y$ in x, y directions, Δt in time
- ullet Approximate solution at grid points by $u(x_i,y_j,t_k)=u_{i,j}^k$
- ullet Approximate derivatives as before; e.g. for forward Euler, discretize PDE at (x_i,t_j) using

$$\begin{split} \frac{\partial u}{\partial t}(x_i, t_j) &= \frac{u_{i,j}^{k+1} - u_{i,j}^k}{\Delta t} \\ \frac{\partial^2 u}{\partial x^2}(x_i, t_j) &= \frac{u_{i-1,j}^k - 2u_{i,j}^k + u_{i+1,j}^k}{\Delta x^2} \\ \frac{\partial^2 u}{\partial y^2}(x_i, t_j) &= \frac{u_{i,j-1}^k - 2u_{i,j}^k + u_{i,j+1}^k}{\Delta y^2} \end{split}$$

• Turning the handle gives us the full scheme

$$u_{i,j}^{k+1} = u_{i,j}^k + \lambda_x \left(u_{i+1,j}^k - 2u_{i,j}^k + u_{i-1,j}^k \right) + \lambda_y \left(u_{i,j+1}^k - 2u_{i,j}^k + u_{i,j-1}^k \right)$$

$$= (1 - 2(\lambda_x + \lambda_y))u_{i,j}^k + \lambda_x \left(u_{i+1,j}^k + u_{i-1,j}^k \right) + \lambda_y \left(u_{i,j+1}^k + u_{i,j-1}^k \right)$$

Two mesh Fourier numbers, one in each direction

$$\lambda_x = \kappa \frac{\Delta t}{\Delta x^2}, \qquad \lambda_y = \kappa \frac{\Delta t}{\Delta y^2}$$

• Exactly as before, write as a matrix/vector equation

$$\boldsymbol{u}^{k+1} = A_{\mathsf{FE2}} \boldsymbol{u}^k$$

• Solution vector u^k made up of all $u_{i,j}^k$ in sequence (here, in column-major order)

$$\mathbf{u}^{k} = (u_{1,1}^{k}, u_{1,2}^{k}, \dots u_{1,m_{y}-1}^{k}, \quad u_{2,1}^{k}, u_{2,2}^{k}, \dots, u_{2,m_{y}-1}^{k}, \dots \dots \dots \dots, \quad u_{m_{x}-1,1}^{k}, u_{m_{x}-1,2}^{k}, \dots, u_{m_{x}-1,m_{y}-1}^{k})$$

 \bullet A_{FE2} is a tridiagonal block matrix, with structure

$$A_{\mathsf{FE2}} = \begin{pmatrix} \mathcal{A} & \mathcal{B} & & & 0 \\ \mathcal{B} & \mathcal{A} & \mathcal{B} & & \\ & \ddots & \ddots & \ddots & \\ & & \mathcal{B} & \mathcal{A} & \mathcal{B} \\ 0 & & & \mathcal{B} & \mathcal{A} \end{pmatrix}$$

• \mathcal{A} and \mathcal{B} are tridiagonal and diagonal $(m_y-1)\times(m_y-1)$ matrices

$$\mathcal{A} = \begin{pmatrix} 1 - 2(\lambda_x + \lambda_y) & \lambda_y & 0 \\ \lambda_y & 1 - 2(\lambda_x + \lambda_y) & \lambda_y & & \\ & \ddots & \ddots & \ddots & \\ & \lambda_y & 1 - 2(\lambda_x + \lambda_y) & \lambda_y \\ 0 & & \lambda_y & 1 - 2(\lambda_x + \lambda_y) \end{pmatrix}$$

$$\mathcal{B} = \begin{pmatrix} \lambda_x & 0 \\ \lambda_x & \\ & \ddots \\ 0 & & \lambda_x \end{pmatrix}$$

• They are repeated a total of $m_x - 1$ (for \mathcal{A}) and $m_x - 2$ (for \mathcal{B}) times down the leading diagonal, and the two off-diagonals, of A_{FF2} , respectively

- The 2D forward Euler scheme is straightforward (if a bit cumbersome) to implement
- Sparse matrix techniques help a lot with storage requirements
- It is an *explicit* scheme
- It is only conditionally stable. We need, for stability

$$\kappa \frac{\Delta t}{\Delta x^2 + \Delta y^2} \leqslant \frac{1}{8}$$

- Truncation error is $\mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^2) + \mathcal{O}(\Delta y^2)$
- Again, we'd like to use an implicit scheme for unconditional stability, and also to have quicker convergence

Better 2D schemes

- In principle, we could turn the handle as usual to obtain e.g. a 2D Crank-Nicholson scheme³
- Unfortunately, this leads to a big mess: an $(m_x 1)(m_y 1)$ dimensional linear system to solve at each time step, with a coefficient matrix that isn't tridiagonal
- This gets prohibitively expensive very quickly
- Same problem with backward Euler
- There are several possible ways out
 - sparse solvers might be clever enough on moderate size problems
 - solve the matrix equation via an iterative method: e.g., SOR (successive over-relaxation), Gauss-Seidel, Jacobi
 - break each timestep down into simpler bits: the ADI (alternating direction implicit) method

 $^{^3}$ Central differences to find u_t , u_{xx} and u_{yy} at $(x_i,y_j,t_{k+1/2})$, then average over t_k and t_{k+1} in the spatial terms

The ADI method

- The idea: take two backward-Euler-like half-steps per timestep
 - ① time $k \to k + \frac{1}{2}$: evaluate u_{yy} at time t_k , update u_t, u_{xx} to $t_{k+\frac{1}{2}}$

$$\frac{u_{i,j}^{k+\frac{1}{2}} - u_{i,j}^{k}}{\Delta t/2} = \kappa \left(\frac{u_{i+1,j}^{k+\frac{1}{2}} - 2u_{i,j}^{k+\frac{1}{2}} + u_{i-1,j}^{k+\frac{1}{2}}}{\Delta x^{2}} + \frac{u_{i,j+1}^{k} - 2u_{i,j}^{k} + u_{i,j-1}^{k}}{\Delta y^{2}} \right)$$

② time $k+\frac{1}{2} \to k+1$: evaluate u_{xx} at time $t_{k+\frac{1}{2}}$, update u_t,u_{yy} to t_{k+1}

$$\frac{u_{i,j}^{k+1} - u_{i,j}^{k+\frac{1}{2}}}{\Delta t/2} = \kappa \left(\frac{u_{i+1,j}^{k+\frac{1}{2}} - 2u_{i,j}^{k+\frac{1}{2}} + u_{i-1,j}^{k+\frac{1}{2}}}{\Delta x^2} + \frac{u_{i,j+1}^{k+1} - 2u_{i,j}^{k+1} + u_{i,j-1}^{k+1}}{\Delta y^2} \right)$$

• Each half-step in time can be written in matrix/vector form $A_{\star}u^{(\star+\frac{1}{2})}=B_{\star}u^{(\star)}$ with a tridiagonal matrix A_{\star} : cheap to solve

The ADI method (2)

- The ADI method is unconditionally stable
- Second-order accurate in time and space; the truncation error is $\mathcal{O}(\Delta t^2) + \mathcal{O}(\Delta x^2) + \mathcal{O}(\Delta y^2)$
- It's no more computationally intensive than Crank-Nicholson for 1D in space systems
- Technical challenge: to make A_{\star} tridiagonal in each half-step in time, we need to re-order the solution vector (rows/columns first) at each half-step
- Sadly, it doesn't generalize to 3D in space parabolic PDEs

Summary

- Finite difference methods can be used to solve parabolic PDE problems
 - fixed steps Δt in time, and Δx in space
 - expand the PDE: replace derivatives with finite difference approximations
 - solve for $u_{i,j} = u(x_0 + i\Delta x, t_0 + j\Delta t)$
- Forward Euler scheme
 - explicit
 - only conditionally stable: $\kappa \Delta t/\Delta x^2 < 1/2$ for 1D diffusion
 - converges slowly: first order in time, second order in space
- Crank-Nicholson scheme
 - implicit; must solve an algebraic system at each time step
 - unconditionally stable
 - converges fast: second order in both time and space
- Boundary conditions, source terms, etc., lead to modified matrices and/or additional right-hand-side vectors

EMAT30008 PDEs 5. Summary Page 58