Duration: 25 minutes

You have to use the designated spaces for your answers. No extra pages will be provided.

Problem 1: Converting DFAs to Regular Expressions (7 points)

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q_2 , then q_3 and finally q_1 . You must show work.

Student ID:	Duration: 25 minutes	Set 1
Problem 2: Regular Expression Give a regular expression for the f	ons (3 points) following language over $\Sigma = \{0, 1\}$.	
$L = \{u$	v: 11 appears at the beginning of w but nowhere else	