ДОМАШНЕЕ ЗАДАНИЕ 8

Рассмотрим аккрецию (падение) вещества на замагниченную нейтронную звезду. Магнитное поле звезды считаем дипольным. Также считаем, что вещество свободно падает на звезду с бесконечности под действием её гравитации с нулевой начальной скоростью. Пусть падение происходит в плоскости магнитного экватора. Вращением звезды пренебрегаем. На некотором радиусе $r_{\rm m}$ свободное падение вещества будет остановлено давлением магнитного поля и в дальнейшем материя будет двигаться преимущественно вдоль магнитных силовых линий. Такой радиус $r_{\rm m}$ называется радиусом магнитосферы аккрецирующей нейтронной звезды. Покажите, что по порядку величины радиус магнитосферы равен Альфвеновскому радиусу и в системе СГС записывается как:

$$r_{\rm m} \sim r_{\rm A} = \left(\frac{\mu^4}{2GM_*\dot{M}^2}\right)^{\frac{1}{7}},$$

где μ — дипольный момент звезды, M_* — её масса, а \dot{M} -- темп аккреции [г/сек].

РЕШЕНИЕ ДОМАШНЕГО ЗАДАНИЯ 8

Падающая плазма останавливается в тот момент, когда её лобовое давление ρv^2 сравнивается с давлением магнитного поля $B^2/8\pi$. При этом, раз поле дипольное, то $B=\mu R^3$. С другой стороны, при аккреции с темпом \dot{M} , поток вещества через сферу любого произвольного радиуса радиуса R должен быть равен $\rho v = \dot{M}/4\pi R^2$ в силу закона сохранения массы. Наконец, коль скоро мы считаем, что вещество падает свободно из бесконечности, то на радиусе R скорость падения вещества будет равна $v=\sqrt{2GM/R}$ из закона сохранения энергий.

Таким образом условие равенства давлений запишется как:

$$\frac{\mu^2 R^6}{8\pi} = \rho v \cdot v = \frac{\dot{M}}{4\pi R^2} \sqrt{\frac{2GM}{R}},$$

откуда, выражая $R=r_{\!\scriptscriptstyle A}$, и получаем классическую формулу для Альфвеновского радиуса:

$$r_{\rm A} = \left(\frac{\mu^4}{2GM_*\dot{M}^2}\right)^{\frac{1}{7}}.$$

ЛЕКЦИЯ **8**: ГАЛАКТИКА И ГАЛАКТИКИ

ВВЕДЕНИЕ В АСТРОФИЗИКУ. ВШЭ 2022/2023. БАКАЛАВРЫ, 4-Й МОДУЛЬ.

АНТОН БИРЮКОВ (АСТРОНОМИЧЕСКИЙ ИНСТИТУТ МГУ ИМ. М.В. ЛОМОНОСОВА И ВШЭ), К.Ф.-М.Н

ГАЛАТИКИ – СВЯЗНЫЕ СИСТЕМЫ ЗВЁЗД

- В средней галактике $\sim 10^{11}$ звёзд, всего во Вселенной $\sim 10^{11}$ галактик.
- Галактики имеют спутники
- Галактики организованы иерархически (группы, скопления, сверхскопления...)

КИНЕМАТИКА ЗВЕЗД В МЛЕЧНОМ ПУТИ

- Круговые скорости около 250 км/с
- Скорость убегания 500-800 км/с (зависит от расстояния)
- Пекулярные скорости около 30 км/с

ГРАВИТАЦИОННЫЙ ПОТЕНЦИАЛ НАШЕЙ ГАЛАКТИКИ

astro-ph/9603106

$$\Phi = \Phi_H + \Phi_C + \Phi_D.$$

$$\Phi_H = \frac{1}{2} V_H^2 \ln(r^2 + r_0^2)$$

$$\Phi_C = -\frac{GM_{C_1}}{\sqrt{r^2 + r_{C_1}^2}} - \frac{GM_{C_2}}{\sqrt{r^2 + r_{C_2}^2}}.$$

$$\Phi_D = \Phi_{D_1} + \Phi_{D_2} + \Phi_{D_3}.$$

$$\Phi_{D_n} = \frac{-GM_{D_n}}{\sqrt{(R^2 + (a_n + \sqrt{(z^2 + b^2)})^2)}}$$

Component	Parameter	Value
Dark Halo	r_0	$8.5~\mathrm{kpc}$
	V_H	$220 \; {\rm km s^{-1}}$
Bulge/Stellar-halo	r_{C_1}	$2.7~\mathrm{kpc}$
	M_{C_1}	$3.0 \times 10^9~M_{\odot}$
Central comp.	r_{C_2}	$0.42~\mathrm{kpc}$
	M_{C_2}	$1.6 \times 10^{10} \ M_{\odot}$
Disk	b	$0.3~{ m kpc}$
	M_{D_1}	$6.6 \times 10^{10}~M_{\odot}$
	a_1	$5.81~\mathrm{kpc}$
	M_{D_2}	$-2.9 \times 10^{10} \ M_{\odot}$
m — 1 9 9	a_2	$17.43~\mathrm{kpc}$
n = 1, 2, 3	M_{D_3}	$3.3 \times 10^9~M_{\odot}$
	a_3	34.86 kpc

ГРАВИТАЦИОННЫЙ ПОТЕНЦИАЛ НАШЕЙ ГАЛАКТИКИ

astro-ph/9603106

$$\Phi = \Phi_H + \Phi_C + \Phi_D.$$

$$\Phi_H = \frac{1}{2} V_H^2 \ln(r^2 + r_0^2)$$

$$\Phi_C = -\frac{GM_{C_1}}{\sqrt{r^2 + r_{C_1}^2}} - \frac{GM_{C_2}}{\sqrt{r^2 + r_{C_2}^2}}.$$

$$\Phi_D = \Phi_{D_1} + \Phi_{D_2} + \Phi_{D_3}.$$

$$\Phi_{D_n} = \frac{-GM_{D_n}}{\sqrt{(R^2 + (a_n + \sqrt{(z^2 + b^2)})^2)}}$$

СПИРАЛЬНЫЕ ВЕТВИ

- Расстояние Солнца от центра Галактики 8 кпк.
- Скорость вращения на солнечном радиусе 230-250 км/с.
- У нас примерно 4 спиральных рукава, не считая ответвлений (шпуров)

СТРУКТУРА МЛЕЧНОГО ПУТИ

Галактика должна быть похожа на M101: есть как grand design спирали, так и мелкие ветви

СПИРАЛЬНЫЕ ВЕТВИ – ВОЛНЫ ПЛОТНОСТИ

Grand Design Spiral

МЕЖЗВЁЗДНАЯ СРЕДА

Межзвездная среда концентрируется к плоскости Галактики. Хорошо виден вклад пыли в поглощение света звезд.

Газ есть не только в галактическом диске, но в других настах его

ДИСК

балдж

Газ есть не только в галактическом диске, но в других частях его плотность не достигает больших значений и не начинается формирование новых звезд.

ФАЗЫ МЕЖЗВЕЗДНОЙ СРЕДЫ

Component	Fractional volume	Scale height (pc)	Temperature (K)	Density (particles/cm ³)	State of hydrogen	Primary observational techniques
Molecular clouds	< 1%	80	10–20	10 ² –10 ⁶	molecular	Radio and infrared molecular emission and absorption lines
Cold neutral medium (CNM)	1–5%	100–300	50–100	20–50	neutral atomic	H I 21 cm line absorption
Warm neutral medium (WNM)	10–20%	300–400	6000–10000	0.2-0.5	neutral atomic	H I 21 cm line emission
Warm ionized medium (WIM)	20–50%	1000	8000	0.2-0.5	ionized	Hα emission and pulsar dispersion
H II regions	< 1%	70	8000	10 ² –10 ⁴	ionized	Hα emission and pulsar dispersion
Coronal gas Hot ionized medium (HIM)	30–70%	1000–3000	10 ⁶ –10 ⁷	10 ⁻⁴ –10 ⁻²	ionized (metals also highly ionized)	X-ray emission; absorption lines of highly ionized metals, primarily in the ultraviolet

<u>arxiv:1803.02277</u> Межзвездная среда: от молекул до звездообразования

<u>arxiv:1412.5182</u> Физические процессы в межзвездной среде

<u>arxiv:1206.4090</u> Межзвездное поглощение и межзвездная поляризация

<u>arxiv:1104.2949</u> Межзвездная пыль

<u>arxiv:2004.06113</u> Жизненный цикл молекулярного облака

МИР ГАЛАКТИК: ПОСТАНОВКА ПРОБЛЕМЫ

Шарль Мессье (1730-1817), охотник за кометами

В 1744 г. публикует первый каталог туманных объектов (45 шт, сейчас – 110).

В современном каталоге Мессье содержится 40 галактик.

МИР ГАЛАКТИК: РЕШЕНИЕ ПРОБЛЕМЫ

Весто Слайфер (1875-1963)

Генриетта Ливитт (1868-1921)

Жорж Леметр (1894-1966)

Эдвин Хаббл (1**889**-19**53**)

Милтон Хьюмасон (1891-1972)

Созвездие Печь 2003-2004 гг

ЗООПАРК ГАЛАКТИК

Дисковая спиральная

Неправильная карликовая

ЛИНЗОВИДНОЯ

Эллиптическая

Взаимодействующие

КАМЕРТОН ХАББЛА

АКТИВНЫЕ ЯДРА: КВАЗАРЫ

Квазары начали открывать как радиоисточники в конце 50-х гг. Также их удалось обнаружить в оптическом диапазоне, как звездоподобные источники (сам термин появился в 1964 г.)

Долгое время шли дискуссии о природе этих «радиозвезд».

Cocoon Black hole Accretion disk Surrounding matter

ЧЕРНЫЕ ДЫРЫ И ДЖЕТЫ

$$M_{BH} = 10^7 - 10^9 M_{\odot}$$

 $L(<\sim L_{Edd}) \sim 10^{42} - 10^{47} \text{ spr/c}$

ГЕОМЕТРИЯ АКТИВНЫХ ЯДЕР

ПУЗЫРИ ФЕРМИ

Возраст пузырей в MW от 10 до 100 млн лет.

1603.07245

Возникновение такой структуры может быть связано с прошлой активностью центральной черной дыры.

В Туманности Андромеды – аналогичные структуры (там ЧД на порядок массивнее нашей).

Светимость пузырей в М31 на порядок выше, чем у нас.

МАССЫ СВЕРХМАССИВНЫХ ЧЕРНЫХ ДЫР

- Соотношение между массой черной дыры и массой балджа
- Измерение орбит звезд и мазерных источников
- Кинематика газа
- Профиль звездной плотности
- Реверберационное картирование

Конечно, всегда можно дать верхний предел на массу, исходя из того, что светимость не превосходит критическую (эддингтоновскую).

Для M87 скорости газа измерены внутри одной миллисекунды дуги (5pc).

Macca $3 \cdot 10^9 M_{\odot}$

Одна из самых тяжелых черных дыр

Наблюдая движение мазерных источников в галактике NGC 4258, стало возможным измерить массу внутри 0.2 пк. Получено значение 35-40 миллионов масс Солнца.

Это наиболее точный метод.

Мы видим, что далекие галактики только формируются. Они не похожи на симметричные галактики вокруг нас.

ФОРМИРОВАНИЕ ГАЛАКТИК

Путь роста массы галактики – «или слияние или поглощение» (c)

«Галактический каннибализм»

Мы видим, что скопления возникают постепенно.

На больших расстояниях скопления еще не успели сформироваться.

МОТИВАЦИЯ ТЁМНОЙ МАТЕРИИ

Сама идея появилась в 30-гг. благодаря работам Фрица Цвикки.

Подсчет массы видимого вещества в скоплениях галактик показывал, что его недостаточно для того, чтобы галактики и газ не разлетелись.

Большую часть материи, заполняющей вселенную, мы можем наблюдать лишь косвенными методами.

Неизвестные частицы

Неизвестные поля или вакуум

Рис. 16. (a) Иллюстрация хода лучей в гравитационной линзе. (б) Изображение почти идеального кольца Эйнштейна на гравитационной линзе 0038 + 4133 (телескоп Хаббла).

По линзированию проводятся оценки массы как для скоплений галактик, так и для отдельных галактик.

Благодаря эффекту гравитационного линзирования мы можем «видеть невидимое» и измерять его массу!

Optical

Сталкивающиеся скопления галактик 1E 0657-56 (<u>Bullet cluster</u>)

СТОЛКНОВЕНИЕ СКОПЛЕНИЙ ГАЛАКТИК

Крупномасштабная структура формируется в основном темным веществом. Но видим мы галактики, их скопления, горячий газ – т.е., обычное вещество.

Как увидеть сам скелет вселенной?

КРУПНОМАСШТАБНАЯ СТРУКТУРА

Кравцов и др.

ВОЛОКНА ТЁМНОГО ВЕЩЕСТВА

Скопления A222/223. z~0.2 Между скоплениями 18 Мпк. Распределение массы восстанавливается по линзированию. Массы газа не хватит для объяснения массы волокна.

Результат получен не для какой-то конкретной пары галактик, а в результате сложения данных по многим парам.

Распределение массы определено по слабому линзированию.

 $(1.6\pm0.3) imes10^{13}M_{\odot}$ for a stacked filament region 7.1 h^{-1} Mpc long and 2.5 h^{-1} Mpc

ДОМАШНЕЕ ЗАДАНИЕ 9

Ультрамощные рентгеновские источники (Ultraluminous X-ray Sources, ULXs) — это точечные источники рентгеновского излучения в других галактиках, не совпадающие ядрами этих галактик и светимость которых оценивается в, как минимум, 10^{39-40} эрг/с. Одним из таких источников является объект M82 X-2, расположенный в галактике M82 (d = 3.3Mnк). Наблюдаемый поток от этого источника в диапазоне энергий 0.5-30 кэВ равен примерно $F_{\rm x}\sim 10^{-11}$ эрг см $^{-2}$ с $^{-1}$.

Этот объект показывает периодические (с периодом 1.4 секунды) пульсации, которые интерпретируются как период вращения нейтронной звезды. А сама система М82 X-2 представляется как двойная, в которой идёт аккреция со звезды главной последовательности (звезды-донора) на, собственно, нейтронную звезду.

Считая, что излучение M82 X-2 изотропно, рассчитайте темп аккреции \dot{M} , необходимый для поддержания наблюдаемой светимости этого источника и выразите его в единицах эддингтоновского темпа $\dot{M}_{\rm Edd}$. Под $\dot{M}_{\rm Edd}$ понимается такой темп, при котором источник имеет эддингтоновскую светимость (для своей массы).