Seminar 10

- **1.** Let R be a ring. An element $a \in R$ is called idempotent if $a^2 = a$. Determine the idempotents of the ring \mathbb{Z}_{12} , and write down 4 idempotents of the ring $M_2(\mathbb{Z})$.
- **2.** Let R be a ring. An element $a \in R$ is called nilpotent if there exists $n \in \mathbb{N}$ such that $a^n = 0$.

Determine the nilpotent elements of the ring \mathbb{Z}_{12} , and write down 2 nilpotent elements of the ring $M_2(\mathbb{Z})$.

- **3.** Are the following functions ring homomorphism between the corresponding rings:
- (i) $f: \mathbb{Z} \to \mathbb{Z}_n$ defined by $f(x) = \hat{x}$;
- (ii) $f: \mathbb{R} \to M_2(\mathbb{R})$ defined by $f(x) = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$; (iii) $g: M_2(\mathbb{R}) \to \mathbb{R}$ defined by $g(A) = \det(A)$?
- **4.** Let $f: \mathbb{Z}_{12} \to \mathbb{Z}_4$ be defined by $f(\widehat{x}) = \overline{x}$. Prove that f is well defined (that is, f is a function) and f is a ring homomorphism.
- **5.** Consider the fields $(\mathcal{M}, +, \cdot)$ and $(\mathbb{Q}(\sqrt{2}), +, \cdot)$, where $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \middle| a, b \in \mathbb{Q} \right\}$ and $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$ Show that the fields $(\mathcal{M}, +, \cdot)$ and $(\mathbb{Q}(\sqrt{2}), +, \cdot)$ are isomorphic.
- **6.** Consider the field $(\mathcal{M}, +, \cdot)$, where $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$. Show that the fields $(\mathcal{M}, +, \cdot)$ and $(\mathbb{C}, +, \cdot)$ are isomorphic.
- 7. For $a \in \mathbb{Z}$, let $t_a : \mathbb{Z} \to \mathbb{Z}$ be defined by $t_a(x) = ax$. Using the result $\operatorname{End}(\mathbb{Z}, +) = \{t_a \mid x \in \mathbb{Z} \mid x \in \mathbb{Z} \}$ $a \in \mathbb{Z}$, show that $\operatorname{End}(\mathbb{Z}, +, \cdot) = \{t_0, t_1\}$ and $\operatorname{Aut}(\mathbb{Z}, +, \cdot) = \{t_1\}$.
- **8.** Consider the field $(\mathbb{Q}(\sqrt{2}), +, \cdot)$, where $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. Determine $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}),+,\cdot).$