DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Chenye Wang

Feb 18, 2025

Introduction to Reinforcement Learning

 Reinforcement Learning is concerned with how an intelligent agent should take actions in an environment to maximize the cumulative reward.

RL example

Agent: the cat

State: the position of the cat (x, y) in the grid

Action: at each position, the cat can move to one of the 4-directionally connected cells. If a move is invalid, the cell will not move and remain in the same position. Every time the cat makes a move, it results in a new state and a reward.

Reward model:

- A move to another empty cell results in a reward of 0.
- A move towards the broom, will result in a reward of -1.
- A move towards the bathtub will result in a reward of -10 and the cat fainting (episode over). The cat will be respawned at the initial position again.
- A move towards the meat will result in a reward of +100

Policy: a policy rules how the agent selects the action to perform given the state it is in: $a_t \sim \pi(\cdot | s_t)$

The goal in RL is to select a policy that maximizes the expected return when the agent acts according to it.

RL: connection to language models

Agent: the language model itself

State: the prompt (input tokens)

Action: which token is selected as the next token

Reward model: the language model should be rewarded for generating "good responses" and should not receive any reward for generating "bad responses".

Policy: In the case of language models, the policy is the language model itself! Because it models the probability of the action space given the current state of the agent: $a_t \sim \pi(\cdot | s_t)$

Let's look at how we can define the reward model for our language model

DeepSeek-R1-Zero

 Our goal is to explore the potential of LLMs to develop reasoning capabilities without any supervised fine-tuning(SFT) data(time-intensive to gather), focusing on their self-evolution through a pure RL process.

This approach allows the model to explore chain-of-thought

(CoT) for solving complex problems.

DeepSeek-V3-Base (base model)

GRPO (RL framework)

DeepSeek-R1-Zero

RL Algorithm -- Group Relative Policy Optimization

Value model brings a substantial memory and computational burden.

RL Algorithm -- Group Relative Policy Optimization

Specifically, for each question q, GRPO samples a group of outputs $\{o_1, o_2, \dots, o_G\}$ from the old policy $\pi_{\theta_{old}}$ and then optimizes the policy model π_{θ} by maximizing the following objective:

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)]$$

$$\frac{1}{G} \sum_{i=1}^G \left(\min\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)} A_i, \operatorname{clip}\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon\right) A_i \right) - \beta \mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right) \right), \tag{1}$$

$$\mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right) = \frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - \log\frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - 1,\tag{2}$$

where ε and β are hyper-parameters, and A_i is the advantage, computed using a group of rewards $\{r_1, r_2, \ldots, r_G\}$ corresponding to the outputs within each group:

$$A_{i} = \frac{r_{i} - \text{mean}(\{r_{1}, r_{2}, \cdots, r_{G}\})}{\text{std}(\{r_{1}, r_{2}, \cdots, r_{G}\})}.$$
(3)

Reward Modeling

- The reward is the source of the training signal, which decides the optimization direction of RL.
- DeepSeek-R1-Zero adopts a *rule-based* reward system that mainly consists of two types of rewards:
 - Accuracy rewards: math problems, LeetCode problems
 - Format rewards: avoid content-specific biases, align with human preferences

Performance

 The findings underscore the model's ability to learn and generalize effectively through RL alone.

Model	AIME 2024		MATH-500	GPQA Diamond	LiveCode Bench	CodeForces
	pass@1	cons@64	pass@1	pass@1	pass@1	rating
OpenAI-o1-mini	63.6	80.0	90.0	60.0	53.8	1820
OpenAI-o1-0912	74.4	83.3	94.8	77.3	63.4	1843
DeepSeek-R1-Zero	71.0	86.7	95.9	73.3	50.0	1444

Table 2 | Comparison of DeepSeek-R1-Zero and OpenAI o1 models on reasoning-related benchmarks.

Self-evolution Process & Aha Moment

 To maximize the cumulative reward, RL drives a model to improve its reasoning capabilities autonomously.

Question: If a > 1, then the sum of the real solutions of $\sqrt{a} - \sqrt{a + x} = x$ is equal to

Response: <think>

To solve the equation $\sqrt{a} - \sqrt{a+x} = x$, let's start by squaring both \cdots

$$\left(\sqrt{a-\sqrt{a+x}}\right)^2 = x^2 \implies a - \sqrt{a+x} = x^2.$$

Rearrange to isolate the inner square root term:

$$(a-x^2)^2 = a+x \implies a^2-2ax^2+(x^2)^2 = a+x \implies x^4-2ax^2-x+(a^2-a)=0$$

...

Wait, wait. Wait. That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be \cdots

We started with the equation:

$$\sqrt{a-\sqrt{a+x}}=x$$

First, let's square both sides:

$$a - \sqrt{a + x} = x^2 \implies \sqrt{a + x} = a - x^2$$

Next, I could square both sides again, treating the equation: ...

..

Table 3 | An interesting "aha moment" of an intermediate version of DeepSeek-R1-Zero. The model learns to rethink using an anthropomorphic tone. This is also an aha moment for us, allowing us to witness the power and beauty of reinforcement learning.

DeepSeek-R1 pipeline

- Cold Start: construct and collect a small amount of long CoT data to fine-tune the model as the initial RL actor
- Reasoning-oriented RL: focus on enhancing the model's reasoning capabilities, particularly in reasoning-intensive tasks
- Rejection Sampling and SFT: incorporate data from other domains
- RL for all Scenarios: train the model using a combination of reward signals and diverse prompt distributions

Distillation: Smaller Models Can Be Powerful Too

- Using the reasoning data generated by DeepSeek-R1 to finetuned small dense models yields excellent results.
- Smaller models relying on the large-scale RL require enormous computational power and may not even achieve the performance of distillation.

	AIME 2024		MATH-500	GPQA Diamond	LiveCodeBench
Model	pass@1	cons@64	pass@1	pass@1	pass@1
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9
DeepSeek-R1-Zero-Qwen-32B	47.0	60.0	91.6	55.0	40.2
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2

Table 6 | Comparison of distilled and RL Models on Reasoning-Related Benchmarks.

Conclusion

- DeepSeek-R1 shows the power and beauty of RL: we simply provide models with the right incentives, they can autonomously develops advanced problem-solving strategies.
- Iterative training is a better way for reasoning models.
- While distillation is both economical and effective, advancing beyond the boundaries of intelligence may still require more powerful base models and larger_x0002_scale reinforcement learning.