

Lane Keeping Assistance of Autonomous Vehicles using Reinforcement Learning and Deep Learning on ROS

Supervised by : Dr. Hazem M.Abbas Eng. Mohammed Abdou

Done By

Mohamed Alaa El-din Farghaly Mohamed Ahmed Mohamed Ali Khaled Hefnawy Mohamed Rohanda Hamed El Sayed Karim Mohamed Ibrahim

Problem Definition

 Autonomous lane keeping using ROS as a simulation environment and using 3 different algorithms for machine learning.

Reinforcement learning Supervised learning

- Q-learning
- DDPG

CNN

Then comparing their performance based on selected criteria

Our Motivation

 We chose lane keeping project because it is a basic building block for other autonomous functions and hot area of interest for autonomous industry.

✓ Why ROS?

A realistic environment ,real time simulation ,flexible, with lots of packages and plugins, open source, Modular, very powerful

✓ Why RL?

Model-free learning, hot area of research.

✓ Why CNN?

State of the art in autonomous driving algorithms (NIVDIA) (Bojarski et al., 2016)

Simulation Environment

CAR MODEL

TRACK DESIGN

- Two tracks one for testing and other for training
- Made using Blender
- Design considerations:
 - Varying patterns
 - Sharper curves in test track

Training Track

Test Track

RL in a nutshell

- RL is capable of model-free learning.
- Agent takes action a based on policy π .
- Action a moves the agent from state s to s'
- Agent is rewarded based on a designed Reward function R_t
- Agent's objective is to find the policy that maximizes the cumulative discounted reward.
- Action-value function Q(s, a) is an indication of how good it is to take action a while being in state s based on estimation of future Rewards.

Q-learning

- Discrete Off-policy RL algorithm.
 - Agent's policy is updated using experience sampled by following a different policy.
- It can only deal with finite discrete states.
- It constructs a Q-table that
 - Includes action-value function Q(s, a) of all possible state-action pairs.
 - Serves as a trained agent that can be used in different environments.
- $Q(s,a) = Q(s,a) + \alpha[R_t + \lambda max_{a'}Q(s',a') Q(s,a)]$

	State 1	State 2	State 3	State 4	State 5
Action 1	-8.85	35.35	28.44	-0.312	-106.4
Action 2	-9.95	25.10	28.44	-0.659	-106.1
Action 3	-8.09	33.25	28.31	-0.039	-104.7
Action 4	-7.06	28.09	27.44	-0.111	-101.6

Discretization

- Tile coding
 - Discretization of multi-dimensional state-space
 - Every 10 laser arrays are averaged into one representative reading.
- State-space dimension
 - 5 laser readings
 - Each reading is approximated to one of 3 possible values.
- Action-space dimension
 - 7 possible steering values.
- Final Q-table
 - 1701 cells

Reward Function

- Agent receives proportional positive reward when
 - It sees no obstacle ahead of it.
- Agent receives proportional negative reward when
 - There is a obstacle ahead of it.
 - There is a difference between leftmost and rightmost laser-readings.
 - Indicative of how successful the agent is in sticking to the center of the lane.
- Agent receives big negative reward when
 - The vehicle is not moving.
 - The vehicle crashes.
 - The vehicle loses contact with the ground.

• R = 0.5 * (FrontLR - 15) - 0.5 * abs(LeftLR - RightLR) - 5 * slowMove

Exploration by ε-greedy

Infamous exploration technique

 Adds a small probability ε of taking a totally random action to the policy followed by the agent.

Advantages

- Forces the agent to visit as much unknown states as possible
- Avoids overfitting of the trained model.
- Ensures better convergence to a more general model.

$$\pi(s_t) = \begin{cases} Random \ action \ a \in A(s_t) & if \ (\rho < \varepsilon) \\ argmax_a \ Q(s_t, a) & otherwise \end{cases}$$

Deep Deterministic Policy Gradient (DDPG)

- Algorithm Combined of 3 techniques:
 - 1. Deterministic Policy-Gradient
 - Actor-Critic Methods
 - 3. Deep Q-Network
- DQN is better for Continuous state-action space problems
- The Actor-Critic Algorithm is a hybrid method of the policy gradient method and the value function method.

Control Steering angle

- Constant speed
- States (Dim=7)
 - Laser sensors ranges 5
 - Current speed
 - Current angle
- Actions(Dim=1)
 - Steering angle (- 0.5:0.5)

 $Reward = c_1 * (FrontLR - 15) - c_2 * abs(LeftLR - RightLR) - c_3 * (slowMove)$

Control Acceleration and Steering (1/2)

- States (Dim=31)
 - Laser sensors ranges 25
 - Current speed
 - Current angle
 - wheel-ground contact normal 4

Actions(Dim=2)

- Steering angle (- 0.5:0.5)
- Added Velocity (-1:1)

Control Acceleration and Steering (2/2)

- Reward
 - = normalized velocity $(c_1(FrontLR 15))$
 - $-c_2 * abs(LeftLR RightLR) c_3$
 - $* angle) c_4(slowMove)$

 Reward -=1 if a wheel lost contact with ground

Exploration

for steering and acceleration control

- Steering only control *Exploration steps* = 7,000 steps
- Steering and acceleration control = 200,000 steps
- Explore the track using Ornstein-Uhlenbeck (OU) process

•
$$\varepsilon_t = \varepsilon_{t-1} - \frac{1}{Exploration \, steps}$$
; $\varepsilon_0 = 1$
• $dx_t = \theta(\mu - x_t)dt + \sigma dW_t$; $dW \sim N(0,1)$, $dt = 1$

- $X_t = x_t + \varepsilon_t dx_t$
- Steering ,mean=0
- Acceleration, mean=0.3

CNN Algorithm

- The train and test data are extracted from informed action algorithm.
- The cost function is Root Mean square Error.

$$Cost = \sqrt{\frac{\sum_{i=1}^{n} (predictedOutput_{i} - exactOutput_{i})^{2}}{n}}$$

CNN Enhancements (1/2)

- Temporary Evaluation Criteria → if the car has more than 10 critical errors without interruption, the car will be exposed to an accident.
- First Enhancement → modifying cost function.

$$Cost = \sqrt{\frac{\sum_{i=1}^{n} (predictedOutput_{i} - exactOutput_{i})^{2}}{n} + \max(error^{2})}$$

 Second Enhancement → modifying the histogram of train data.

CNN Enhancements (2/2)

The CNN trained on a very little data with steering angle above 25 degrees and below 15 degrees:

- 1. Any angle above 25 degrees or less than 15 degrees cannot be predicted due to the lack of data.
- 2. the CNN is not trained to behave properly when the car is going to crash.
- Third enhancement → crash avoidance data is extracted from the simulation.

CNN Advantages and Results

- 1. The CNN algorithm is trained using only one camera (front camera).
- 2. The CNN model is capable of finishing test track without any crash.
- 3. If the car gets out of the lane, the model will be able to get back to the lane and avoid crash.

Evaluation Criteria

- Training time
- Number of completed laps
- Mean lap time
- Mean absolute change in steering angle per second
- Mean deviation per lap

All higher than 20 laps

26

DDPG steering with acceleration graphs

Mean deviation per lap

Mean deviation per lap

Conclusion and future work

- Managed to build realistic model
- Lane keeping task
- Comparative study for 4 algorithms

Future work

- Crash avoidance
- Cross roads for learning brake

Thank you ©

