

Research Question

Our research question was to evaluate how a machine learning model could predict stocks prices through a black swan event like the coronavirus. We wanted to see how a model would work through something that is typically not "modelable"

What are Black Swan Events?

The **black swan theory** or **theory of black swan events** is a metaphor that describes an event that comes as a surprise, has a major effect, and is often inappropriately rationalised after the fact with the benefit of hindsight. The term is based on an ancient saying that presumed black swans did not exist – a saying that became reinterpreted to teach a different lesson after the first European encounter with them. (Source: Wikipedia)

Stocks selected

- Carnival Cruise Lines (CCL)
- Delta Airlines (DAL)
- Paypal (PYPL)
- ETSY (ETSY)

Stock name	5 year return ending 12/31/20	4 year return ending 12/31/19	2020 return	Sentiment Analysis Compound Mean
Carnival (CCL)	-14.55%	5.67%	-56.89%	0.13 = Positive
Delta(DAL)	-2.69%	5.96%	-30.77%	-0.05 = Negative
Paypal (PYPL)	45.27%	31.48%	116.51%	0.13 = Positive
Etsy (ETSY)	84.78%	52.18%	301.60%	0.32 = Positive
S&P 500 ETF (SPY)	15.11%	14.31%	18.37%	-0.01 = Neutral

Linear regression

- Simple model
- Tends to overfit
- Not recommended

Deep Learning - LSTM

- Model learns over time with new information
- Model "forgets" less relevant information
- Provides better predictions versus linear regression

LSTM Models Precovid

The Black Swan Event

Carnival Cruise Lines Word Cloud

Articles = 1,238

Stop Words:

Ship UK

N-Grams:

Net, loss Loss, billions Italian, shipbuilder State, controlled

Compound Score:

0.13 = Positive

Delta Airlines Word Cloud

Articles = 4,674

Stop Words:

Delta Air Photo European

N-Grams:

Negative, covid Covid, test Coronavirus, disease Line, airbus

Compound Score:

-0.05 = Negative

Paypal Word Cloud

Articles = 5,599

Stop Words:

CHAR amp

N-Grams:

Paypal, holding Affirm, holding Holding, founded Founded, paypal Founder, max

Compound Score:

0.13 = Positive

ETSY Word Cloud

Articles = 872

Stop Words:

Co inc

N-Grams:

Creative, fabrica Apple, smart Smart, case Keep, warm Stefan, founder

Compound Score:

0.32 = Positive

S&P 500 Word Cloud

Articles = 9,939

Stop Words:

Reuters Live File

N-Grams:

New, york Blog, stock Stock, market Market, click

Compound Score:

-0.01 = Neutral

Challenges

- Availability of data from News API
- Selecting appropriate models
- No reliable benchmark for comparison
- Overfitting Model

Conclusions

- Linear Regression v. LSTM Model Accuracy
- Continuing Volatility in Observed Stocks (Next 60 Days)
- Very difficult to foresee and account for Black Swan events
- Trade Off between Large amount of historical data v. Small amount of historical data