Unit 3. Waves

Y12

Table of contents

_	Wave Basics 1.1 Analysis of a Wave	1
2	Wave types 2.1 By oscillation plane	3
3	Wave Phase, Superposition 3.1 Phase	
4	Stationary waves	6

1 Wave Basics

What is a wave? How many types of waves are there? Why are they useful?

- \rightarrow **Wave:** transfer of energy without matter (by transmission of oscillations):
 - Mechanical: oscillations of the medium.
 - Electromagnetic: oscillations of fields (electrical or magnetic).

1.1 Analysis of a Wave

- Displacement x(m): distance to the equilibrium (average) position.
- Amplitude A(m): maximum displacement of a wave.
- Frequency f (Hertz Hz): number of cycles through a point per second.
- Wavelength λ (m): distance between 2 equal waypoints (eg 2 peaks). Figure 1
- Period T(s): time for 1 full oscillation or wavelength. Figure 2
- Phase θ (rad): stage of wave at a point (~ angle around a circle, we will see it...).

Figure 1: wave components 1

- Wave speed v(m/s): $v = \frac{d}{t}$ and also $v = f\lambda$ (Wave equation)
- Pulse-echo measurements (like bat and dolphin echolocation): emit a pulse of ultrasound (50-100kHz) and calculate d = vt/2 (rebound).

Figure 2: wave components 2

Checkpoint questions. (Extra: Read the experiment p.91, draw the wave diagram).

Answers

- 1. Graph from top to bottom: 0.2m, 80m, 5.5m.
- 2. $1240m (d = v \cdot t)$
- 3. $8.5 \cdot 10^{14} Hz$ $(f = c/\lambda, \text{ wave equation})$
- 4. As frequency is defined as waves per second, multipliying frequency by wavelenght is equivalent as dividing distance by time (velocity)
- 5. Student's own answers using $v = f \cdot \lambda$. Eg. estimated wavelength is 5m, estimated frequency is 1 wave every 3 seconds, so f = 0.33Hz. $v = f \cdot \lambda = 0.33 \times 5 = 1.7m \ s^{-1}$

2 Wave types

2.1 By oscillation plane

According to the oscillation plane, compared with wave displacement, we find transverse and longitudinal waves.

Do you know what transverse and longitudinal means?

Figure 3: Transverse and longitudinal planes

- \rightarrow Transverse wave: motion is perpendicular to displacement (up/down). Eg ropes, electromagnetic waves (light), earthquake S-waves.
- \rightarrow Longitudinal wave: motion is parallel to displacement (front-back). Eg sound waves (compressions vs rarefactions), earthquake P-waves.

Both kinds of waves are represented in the same graphs.

- Compression: area at higher pressure (molecules closer together).
- Rarefaction: area at lower pressure (molecules further apart).

Watch this video

Minipractical: flick a string on top of the table and let it stop. Waves should remain visible. Measure the time for 10 "flicks" (oscillations) to calculate the frequency $(\frac{1}{T})$, and with a ruler the amplitude and wavelength. From this calculate the speed.

3 Wave Phase, Superposition

What is the phase in a wave? Why is it useful?

What is superposition? How can superposition apply to waves?

3.1 Phase

Phase (φ in radians) measures the wave position compared to a circular movement.

• Phase of 1 cycle (wavelength, λ) = 360° or $2\pi rad$.

Figure 4: Phase compared to circular movement

• More than 1 cycle is expressed as the equivalent of the first cycle Eg: $450^{\circ} = 360^{\circ} + 90^{\circ} \rightarrow 90^{\circ}$; $2.5\pi \ rad = 2\pi \ rad + 0.5\pi \ rad \rightarrow 0.5\pi \ rad$.

The phase between two point can be measured_ $\Delta \varphi_{twopoints} = 2\pi \frac{\Delta d(m)}{\lambda}$.

Watch this video.

3.2 Interference

- Wavefront: lines/surfaces with the wave at the same point Perpendicular to displacement of the wave.
- Superposition: if waves coincide in the same point, the amplitude of the different waves add. \$Amplitude_T = A_i \$. But displacement does not change.
- \rightarrow In pulses, waves pass through each other. Figure 5
- \rightarrow In continuous waves they do interfere (create a new wave, A_T). constructive ($A_T > A_i$) or destructive ($A_T < A_i$). It depends on the A_i and on the phase difference ($\Delta\theta$). Figure 6

Figure 5: Waves add amplitude

Figure 6: Constructive and destructive interference

Important

NOT REQUIRED FOR UK: The general equation of a wave is

$$y(x,t) = A \cdot \sin(2\pi \frac{x-vt}{\lambda}) = A \cdot \sin(2\pi \frac{x}{\lambda} \mp \omega t + \varphi_0) = A \cdot \cos(2\pi \frac{x}{\lambda} \mp \omega t + \varphi_0 - \frac{\pi}{2})$$

Also, $T = \frac{2\pi}{\omega} = \frac{1}{f}$ with -= moving forward; += moving backward; $v = \frac{\omega \lambda}{2\pi}$.

4 Stationary waves

What are coherent waves?

Coherent waves: same frequency and "constant phase relationship" (=wavelength, so they stay in sync).

Figure 7: Constant phase shift

Figure 8: Constant phase in movement

Stationary ("standing") wave: superposition of opposite direction coherent waves. At points with opposite phase the interference results in no movement ("nodes"). Points with maximum amplitude are "antinodes". Total transfer of energy = 0 J (the net result is not a wave!).

Progressive waves do transfer energy. Watch here.

Harmonics: half-wavelengths that fit in a stretch of string L: "1st" or fundamental harmonic, $f_0 \to 0.5 \lambda = L$

"2nd": $\lambda = L$

"3rd": $1.5\lambda = L$... etc.

Figure 9: Harmonics