UNCLASSIFIED

AD NUMBER AD245503 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 15 FEB 1960. Other requests shall be referred to Air Force Cambridge Research Laboratories, Hanscom AFB, MA. **AUTHORITY** AFCRL 1tr dtd 3 Nov 1971

UNCLASSIFIED

AD 245 503

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

MONITORING AGENCY DOCUMENT NO.

AFCR C-TN-60-461

Notes on the preparation and analysis of ruthenium(III) and ruthenium(IV) in sulfate medium

Felipe Brito Department of Inorganic Chemistry, Royal Institute of Technology, Stockholm 70, Sweden

TECHNICAL NOTE NO. 1

CONTRACT NO. AF 61(052)-181

DATE OF REPORT: February 15, 1960

The research reported in this document has been sponsored by the AIR FORCE CAMBRIDGE RESEARCH CENTER of the AIR RESEARCH AND DEVELOPMENT COMMAND, UNITED STATES AIR FORCE; through its European Office.

Abstract

For equilibrium studies, pure solutions of ruthenium(III) and ruthenium(IV) perchlorates or sulfates are needed. A survey is given of synthetic and analytical methods reported in literature. Since none of them was suitable for our purpose, new or modified methods were worked out.

For the preparation of ruthenium(IV) sulfate solution, RuO_4 was reduced with $\mathrm{H_2O}_2$ in dilute $\mathrm{H_2SO}_4$ and the ruthenium(IV) cations separated from complex anions by a cation exchanger. For the preparation of ruthenium(III), RuO_4 was reduced with SO_2 , the excess SO_2 removed and the sulfito complex decomposed.

Total ruthenium was determined by reducing to metallic ruthenium, using Mg metal, and then weighing.

For determining ruthenium(III) or ruthenium(IV), a redox titration method is proposed: a known excess of cerium(IV) sulfate in ~ 2 M $_2$ SO₄ is added, the RuO₄ formed is boiled off and the remaining cerium(IV) backtitrated with iron(II) + ferroin.

For the determination of H, the total analytical concentration of H^+ , in purely cationic Ru(IV) solutions, the ruthenium may be either held back in a H^+ -saturated ion exchanger or bound by adding acetylacetone. The H^+ set free can in both cases be titrated with standard NaOH. Concordant results were obtained using these two methods.

Notes on the preparation and analysis of ruthenium(III) and ruthenium(IV) in sulfate medium

By Felipe Brito, Department of Inorganic Chemistry, Royal
Institute of Technology, Stockholm, Sweden

For some time, investigations have been made in this laboratory to study the hydrolysis of ruthenium(III) and ruthenium(IV) by means of the general methods that have been developed here. This work, which is still under way, has met with several experimental difficulties. It is thought, however, that some of our experience may be useful to others.

We tried first to use a <u>perchlorate</u> medium - it has been used in most other studies in this department and has the advantage that, usually, the complex formation with the medium ions is a minimum. Amber-red solutions of ruthenium in HClO₄ could be obtained by reducing RuO₄ with H₂O₂ and boiling off the excess of H₂O₂. However, it was found that these solutions precipitate RuO₂(H₂O)_x on standing. For instance, in a filtered solution with [H⁺] as high as 150 mM, the total concentration, B, of Ru(IV) was finally less than 2 mM. Moreover, solutions of ruthenium(III) in perchloric acid, obtained by electrelytic reduction of a ruthenium(IV) perchlorate solution, proved to be unstable, Ru(IV) and Cl being formed. This agrees with the findings of Wehner and Hindman¹.

Four our purposes, it was desirable to have solutions with a low analytical H⁺ concentration, H, and a large total concentration, B, of the oxidation state of Ru, the hydrolysis of which was to be studied. The reaction might be followed by measuring either the free concentration of H⁺, h, with a glass electrode, or the remaining free concentration of Ru³⁺ or Ru⁴⁺, b, using for instance a redox electrode.

Since there were disadvantages with other media, such as Cl $^-$, it was decided to use a sulfate medium despite certain difficulties, especially the formation of HSO_4^- , and the possibility of rather strong complexing.

Preparation and spectra (schema I). The starting material was commercial ruthenium chloride, from which a chloride-free ruthenium sulfate solution was prepared by repeated evaporation in 25 °/o sulfuric acid under an infrared lamp during which SO₃ fumes appeared - this ensured the removal of Cl⁻ and Os¹. From this solution, RuO₄ was prepared by oxidation with KMnO₄ 2,3,4,6.

The RuO_4 was then collected and reduced in various ways; for clarity, the various solutions obtained will be denoted by letters: S, G_1 , B_1 , etc. (See schema I and figs.). Each of the experiments to be described has been repeated several times with various modifications.

excess of KMnO₄ was added. The RuO₄ formed was distilled in an all-glass apparatus by heating and passing a slow stream of N₂. The vapor was caught in three ice-cooled receivers containing 0.5 - 1 M $_2$ SO₄ and an excess of $_2$ C. The solution, which was first yellow due to the RuO₄, gradually turned green ("G₁") with the evolution of O₂. The absorption spectrum of G₁ has a maximum at 3000 Å. (Fig 1). With time, G₁ gradually changed colour and after a couple of days had turned reddish brown ("B₁").

Solutions similar to G_1 have been prepared by other workers. Martin⁵ (schema II) reduced RuO_4 in H_2SO_4 using $NaNO_2$, Na_2SO_3 , $FeSO_4$ etc, and obtained a green or greenish-brown solution, depending on the relative excess of Ru(VIII), which he suggested contained ruthenium(VI) and ruthenium(VI) + sulfate complexes. El Guebely and Haissinsky⁶ (schema III) obtained a green solution by electrolytic oxidation of ruthenium(III) sulfate (E = 1.4 volt against a saturated calomel electrode) or by electrolytic reduction of RuO_4 in sulfate solutions (E = -0.2 volt). They claimed it contained ruthenium(VI). In neither case, however, were spectra given.

A S Wilson reduced RuO₄ in H_2SO_4 with an excess of H_2O_2 and obtained a solution for which he gives the spectra obtained after various times. The spectrum after about 9 days has a maximum at 2900 Å and coincides approximately with that of G_1 (Fig 1). He ascribed it to ruthenium(III). Using less H_2O_2 , Wilson obtained, following Martin, greenish-brown solutions. He suggested they might contain Ru in the valency states IV and VI. By considering the reactions to be described in the following, it seems likely that the ruthenium species in G_1 has a higher valency state than +4, probably +6.

The solutions B_1 , B_2 and R_1 . When G_1 was kept for two or three days, it turned into a reddish-brown solution B_1 . This solution was boiled to remove H_2O_2 , cooled and then passed through a H^+ -saturated Dowex-50 ion exchanger. A brown solution, " B_2 ", passed through the resin - it probably contained an uncharged or anionic sulfate complex. When the resin was washed with a H_2SO_4 or Na_2SO_4 solution, a red solution, " R_1 ", was obtained. The spectra of B_2 and R_1 are given in figure 2.

For hydrolysis studies, a ruthenium(IV) sulfate solution of relatively low acidity can be prepared conveniently by eluting a cation exchanger, saturated with a red cationic species R_1 , with a dilute Na_2SO_4 solution and then concentrating by careful evaporation under vacuum at room temperature.

Solutions R₂, V and Y. In another series of experiments, RuO₄ was collected in, say, 0.2 M H₂SO₄ saturated with SO₂. In this case, a rapid reduction was observed. The solution first turned reddish-brown with the same shade as R₂ (no spectra could however be taken because of experimental difficulties) and then gradually turned yellowish brown. However, if the excess SO₂ was not immediately boiled off, a violet solution, "V", was formed overnight, which was stable over a long time, even after the excess SO₂ had been boiled off. When V was evaporated slowly to dryness with an electric mantle in a N₂ atmosphere (free from O₂) and the dry residue dissolved, the solution was blackish brown when concentrated, and yellow, "Y", when diluted. The spectra of V and Y are given in Fig 1 and 2.

A similar yellow solution was obtained by El Guebeley and Haissinsky who concluded that it contained ruthenium(III). We agree with their conclusion and consider that R_2 contains ruthenium(IV). The solution V is probably a strong sulfito complex of ruthenium(III).

Analysis.

The literature on the analysis of Ru is rather meagre. The volumetric redox titrations proposed are somewhat uncertain⁸.

The most reliable method for finding the total Ru concentration is by transformation to metallic Ru. It was found convenient to add, to a known amount of solution, an excess of magnesium metal and dilute sulfuric acid. When the reaction has been almost completed at ordinary temperature, more H_2SO_4 is added and the solution is boiled in order to dissolve all excess of magnesium and to agglomerate any colloidal Ru that may have been formed. The Ru is carefully collected on a weighed porcelain filter crucible "Berlin 1A1", washed with 0.5 M H_2SO_4 and water, heated in H_2 and finally weighed.

The results were reproducible and agreed well with those obtained by precipitation of ${\rm RuO}_2({\rm H}_2{\rm O})_{\rm x}$ from a solution of ${\rm Ru(IV)}$, ${\rm R}_1$, with NaHCO $_3$ at pH = 6 and handled in the same way as above. However, the reduction with metallic Mg is applicable to both Ru(III) and Ru(IV) and to cationic species as well as anionic ones whereas the precipitation of the hydroxide is feasible only if the solution contains cationic species or weak anionic complexes. For instance, from ${\rm B}_2$, the precipitation of the hydroxide is not complete.

The results given by this method agreed with those obtained by a different one. To a Ru(IV) solution, R_1 , a known amount of standard cerium(IV) sulfate solution was added so that $[H^+]$ was 3 - 4 M. Then, RuO₄ was removed by boiling and passing N_2 through the solution, after which it was cooled and back-titrated with Fe(II) + ferroin. In this way, it is possible to determine the total concentration of Ru(IV) in the solution.

To determine the total sulfate concentration, two methods were tried:

a) the solution R_1 was passed through a H^+ -saturated ion exchanger and the eluate titrated as $H_2^+SO_4^{2-}$ with standard NaOH and b) a slight excess of acetylacetone, AH, was added to the solution. Once again, ruthenium forms an uncharged complex, perhaps RuA_4 but more probably $RuOA_2$. The solution, as before, can be potentiometrically titrated as $H_2^+SO_4^{2-}$ with standard NaOH. The two methods gave concordant results which indicates that there is no serious error from the retention of sulfate in the ion exchanger.

To test the assignment of the oxidation number +3 to the "ruthenium(III)" solution Y, a sample of previously analysed Ru(IV) solution R_1 , was reduced wireless of $S0_2$. The solution was then freed from the excess of $S0_2$ by bubbling and prolonged boiling. Now, using the previous method with Ce(IV) oxidation, it was found that one equivalent more of Ce(IV) was needed which is evidence that Ru(III) had been formed.

Conclusion. The results obtained have confirmed our view that " R_1 " is a Ru(IV) cationic species. " B_2 " is an anionic species of Ru(VI) or Ru(IV). B_1 is a mixture of B_2 and R_1 . It seems likely that G_1 contains a higher valence state than +4, perhaps +6. In the transient solution, R_2 , the main constituent is probably Ru(IV) whereas V and Y probably contain Ru(III). G_2 , finally, may be Ru(II), or a Ru(III) + Ru(II) mixture.

Work is under way to confirm the tentative valencies given here and especially to study the hydrolysis reactions.

References

- 1. P. Wehner and J.C. Hindman J.Am. Chem. Soc. 72 (1950) 3911
- 2. L.W. Niedrach and A.D. Tevebaugh J.Am. Chem. Soc. 73 (1951) 2835
- 3. M.D. Silverman and H.A. Levy J.Am. Chem. Soc. 76 (1954) 3319
- 4. R.E. Connick and C.R. Harley J.Am.Chem.Soc. 74 (1952) 5012
- 5. F.S. Martin J.Chem.Soc. 1952, 3055
- 6. M.A. El Guebeley and M. Haissinsky J.Chim.Phys. 51 (1954) 290
- 7. A.S. Wilson J. Inorg. Nuclear Chem. 7 (1958) 149
- 8. F.E. Beamish Anal.Chim.Acta 20 (1959) 101

RuO₄ + reducer (Fe⁺⁺, SO₃⁼, etc.)
$$\longrightarrow$$
 Ru(IV)

RuO₄ (excess)

