

# Richard W. Hamming

# **Learning to Learn**

The Art of Doing Science and Engineering

Session 12: Error-Correcting Codes

# **How Great Things Are Done**



I invented error correcting codes.

You know they are important.

What follows is how it happened.



### **Great Scientists**

# Feinman, Metropolis, Oppenheimer, Bohr, Teller and Farame

- I met these people at Los Alamos
- There, as a "janitor of science," I just kept the machines going
- What was the difference between them and me?
- Pasteur quote: "Luck favors the prepared mind."
- Study successes not mistakes!

# **Extreme Interest in Matters**



When you're up at bat, you think about hitting the ball. You don't think about how.

- I can tell you what happened at the conscious level and a slight probing of the unconscious
- The great stuff comes from people who care and care passionately
- Many people are content to just do things well
- Some great scientists sterilize themselves by inventing a great idea, but then forever dwell on it



# **How It Happened**

Two out of five code relay computer, circa 1947-48, could detect errors.

If it detected an error, it would try three times before dropping the problem to pick up the next.

Insight: if a machine can find out if there is an error, why can't it find out where it is?



### **Error Correction**

#### **Brute force method:**

- Build three machines
- Build inter-comparing circuits
- Take the majority vote
- Not really feasible, too expensive!

A better method: parity checks.



### **Rectangular Form**

Arrange the message bits of any message symbol in a rectangle. A single error will divulge its (row, column) coordinate



parity

### **Redundancy Ratio**

The closer the rectangle is to a square, the lower the redundancy for the same amount of message.

$$R = \frac{mn}{(m-1)(n-1)}$$

$$= 1 + \frac{1}{(m-1)} + \frac{1}{(n-1)} + \frac{1}{(m-1)(n-1)}$$
However, there is a risk of double error!

However, there is a risk or uouble error! Exercise your engineering judgment.



# **A Better Form - Triangular**





### A Cube of Bits

Parity checks across entire planes and parity check on all three axes can provide coordinates of error.





### n Dimensions

#### **Review Lecture 9**

- No need to build n dimensions, just wire it that way
- An n-dimensional cube will have (n + 1) parity checks
- (n + 1) parity checks represent 2<sup>n+1</sup> different things
- Need only 2<sup>n</sup> points in a cube plus 1 result that the message is correct
- This will be off by a factor of 2!



# Syndrome

Have the syndrome of the error name the place of the error - a binary number.

| 1 | <b>─</b> 1    |
|---|---------------|
| 2 | <b>─</b> 10   |
| 3 | 11            |
| 4 | — 100         |
| 5 | 101           |
| 6 | 110           |
| 7 | 111           |
| 8 | <b>—</b> 1000 |
| 9 | 1001          |

```
Parity check #1 1, 3, 5, 7, 9,11,13,15,...

Parity check #2 2, 3, 6, 7,10,11,14,15,...

Parity check #3 4, 5, 6, 7,12,13,14,15,...

Parity check #4 8, 9,10,11,12,13,14,15,...

etc.
```

Parity check bits involve ones in the position of the check.

# Checking the Syndrome Approach



An even parity example check of 4 message and 3 check positions must satisfy the colors  $7^3$  3 7+1

| ı          | position | 7 | 6 | 5 | 4 | 3 | 2 | 1 |  |
|------------|----------|---|---|---|---|---|---|---|--|
|            | message  | 1 | 0 | 0 |   | 1 |   |   |  |
| message    | encoded  | 1 | 0 | 0 | 1 | 1 | 0 | 0 |  |
| with error | message  | 1 | 1 | 0 | 1 | 1 | 0 | 0 |  |



# **Apply Parity Checks**

| 0 | 0 | 1                   | 1 | 0 | 1 | 1 | : | message with error |
|---|---|---------------------|---|---|---|---|---|--------------------|
| 1 |   | 3                   |   |   | 5 |   | 7 | <b>→</b> 0         |
|   | 2 | 3                   |   |   |   | 6 | 7 | <b>→</b> 1         |
|   |   |                     | 4 |   | 5 | 6 | 7 | → <u>1</u>         |
| 6 |   | Binary number 110 → |   |   |   |   |   |                    |

This result locates the error. Flip 6<sup>th</sup>

hit strip out shook bits reasi

# Single Error Correct, Double Detect



# Add a single new parity check over the whole message

- Single-error correct (SEC) double-error detect (DED) is a good balance
- For short message, redundancy of 4 message and four check bits, bad
- If message is too long, you risk double uncorrectable error: SEC/DED will mistakenly overcorrect into a third error!



# Working in L1 Space

The conventional conditions on a metric D(x,y) between two points x and y are:

- 1.  $D(x,y) \ge 0$  (non negative)
- 2. D(x,y) = 0 if and only if x = y (Identity)
- 3. D(x,y) = D(y,x) (symmetry)
- 4.  $D(x,y) + D(y,z) \ge D(x,z)$  (triangle inequality)



### A Cube of Bits (Revisited)

# Vertices are fixed at 1 unit, 2 units and 3 units away from the origin



| min. distance         | meaning                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5 | unique decoding single error detecting single error correcting 1 error correct and 2 error detect double error correcting |
| 2k + 1<br>2k + 2      | <pre>k error correction k error correction and k+1 error</pre>                                                            |

# **Higher Minimum Distance Codes**



$$\frac{2^n}{1+C(n,1)+C(n,2)+...+C(n,k)}$$
 \* #of spheres

**k** = sphere radius

C(n, k) = # of points in a sphere of radius k

 $2^n$  = whole space

This quotient represents the upper bound on the number of non-overlapping spheres and code points in

# Finding an Error Correcting Code



# Same as finding a set of code points in the n-dimensional space that has the required minimum distance between legal messages.

- Minimum distance function is both necessary and sufficient
- Some error correction can be exchanged for more detection, i.e. give up one error correction and get two more in error detection



### Why Error Correction?

Space vehicles operating on possibly as low as 5 watts can have hundreds of errors in a single block of message.

When you are not prepared to overcome "noise" or "deliberate jamming" then such codes are the only known answer.