Lecture 7: Comparison Branches

Today's Goals

- Review addressing modes
- Use basic instructions
- Use the Unsigned and Signed Comparison Branches to control the flow of programs

Addressing Mode Summary How to Get an Effective Address

Load and store instruction

- 8 Bit accumulator load
 - LDAA: load a value from the specified memory to accumulator A
 - LDAB: load a value from the specified memory to accumulator B
- 8 bit accumulator store
 - STAA: store a value in accumulator A into the specified memory
 - STAB: store a value in accumulator B into the specified memory
- 16 bit register load and store
 - LDD, LDX, LDY, LDS
 - STD, STX, STY, STS
- Examples:
 - Tell the difference between
 - LDAA #\$10 and LDAA \$10
 - LDD \$1000 and LDD #\$1000

Exchange, Move, and Clear

- Exchange instructions
 - EXG: exchange register contents
 - EXG X Y
 - EXG A B
 - EXG X B
 - EXG B X
 - XGDX: exchange register D and X
 - XGDY: exchange register D and Y
- Move
 - MOVB: move a byte from a memory to another
 - MOVB #32 \$0811
 - MOVB 1,X+ 1,Y+ ; $(X)+1 \rightarrow (Y) +1$ and X=X+1, Y=Y+1
 - MOVW: move a word (2 bytes) from a memory to another

Compare Move instructions

Move: Memory to Memory Store: Register to Memory

with Store ones.

- Clear
 - CLR: clear a byte in the specified memory
 - CLR \$0800 : set the content at \$0800 to 0
 - CLRA
 - CLRB

Register to register transfer

- Copy a value from one register to another
 - TFR: Transfer a content of one register to another
 - TFR A B
 - TAB: $(A) \rightarrow (B)$
 - TBA: (B) \rightarrow (A)
 - SEX: Sign EXtended transfer from 8 bit register to 16 bit register
 - SEX A D
 - TPA: (CCR) \rightarrow (A)
 - TAP: (A) \rightarrow (CCR)
 - TSX: $(SP) \rightarrow (X)$
 - TXS: $(X) \rightarrow (SP)$
 - TSY: $(SP) \rightarrow (Y)$
 - TYS: $(Y) \rightarrow (SP)$

Increments, Decrements, and Negate

- Increments
 - INC: $(M) + 1 \rightarrow M$
 - INCA: $(A) + 1 \rightarrow A$
 - INCB
 - INS
 - INX
 - INY
- Decrements
 - DEC
 - DECA
 - DECB
 - DES
 - DEX
 - DEY
- Negate
 - NEG: negate a memory byte
 - NEGA
 - NEGB

Basic Instructions Comparison

Comparison is nothing but subtraction discarding the answer.

- Comparison instructions
 - Actually, they are subtractions.
 - Discard the answer
 - No change in the registers and the memories
 - CCR bits are affected instead.
- CBA: Compare B to A:
 - Subtract the B accumulator from the A accumulator
 - (A) (B)
- CMPA, CMPB: Compare accumulator to memory :
 - Subtract the content of a memory from the accumulator
 - (A) (M), (B) (M)

The order is important!

Need to know which one is minuend or which subtrahend to interpret CCR bits.

Comparison Instruction

Example

- Let register A have 10h, register B have 20h
 - (A) = 10h, (B) = 20h
- CBA
 - (A) (B) = E0h
 - Instead of saving the result, the result \$E0 affects CCR bits.
 - N: 1, Z: 0, V: 0, C:1
- CMPA, CMPB
 - Assume FFh at address \$1000
 - CMPA \$1000
 - (A) (\$1000) = 10h FFh = 11h
 - N: 0, Z: 0, V: 0, C: 1
- Therefore,
 - CBA does not mean that I want to compare B and A.
 - Rather, CBA means that I want to know what happens in CCR bits after (A) – (B) operation.

Comparison Branches

- Comparison branches are based on comparing two numbers.
- Comparing is done by subtraction (see the previous slides).
- The subtraction instruction set CCR bits.
 - Three categories of subtraction
 - Actual subtraction
 - Perform operation and keep the result.
 - Comparison*
 - Perform subtraction and discard the answer.
 - Test
 - Perform subtraction using 0.

But, actually comparison branch instructions only check CCR bits.

Therefore, any instructions that can affect CCR bits can be placed before comparison branch instructions.

Comparison branch instructions examine the CCR bits.

branches.

Comparison Branches

Instructions

- Two sets of comparison branches: unsigned and signed
- Unsigned:
 - Higher, Higher or Same, Lower, Lower or Same
- Signed
 - Greater Than, Greater or Equal, Less Than, Less or Equal
- HCS12 instructions for comparison branches.

Comparison	Unsigned	Signed
>	BHI	BGT
2	BHS	BGE
<	BLO	BLT
≤	BLS	BLE
=	BEQ	BEQ
≠	BNE	BNE

Comparison Branches

Example Program

• Trace the program below. Assume the memory locations \$2000, \$2001, and \$2002 are already set to \$40, \$F0, and \$55 respectively.

1:	1500	CE 2000	LDX #\$2000
2:	1503	180B FF 1000	MOVB #\$FF,\$100
3:	1508	C6 02	LDAB #2
4:	150A	27 OE	BEQ 14
5:	150C	A6 00	LDAA 0,X
6:	150E	B1 1000	CMPA \$1000
7:	1511	24 03	BHS 3
8:	1513	7A 1000	STAA \$1000
9:	1516	08	INX
10:	1517	53	DECB
11:	1518	20 F0	BRA -16
12:	151A	3F	SWI

2000	40
2001	F0
2002	55

4	4500	CE 2000	107 442000
1:	1500	CE 2000	LDX #\$2000
2:	1503	180B FF 1000	MOVB #\$FF,\$1000
3:	1508	C6 02	LDAB #2
4:	150A	27 OE	BEQ 14
5:	150C	A6 00	LDAA 0,X
6:	150E	B1 1000	CMPA \$1000
7:	1511	24 03	BHS 3
8:	1513	7A 1000	STAA \$1000
9:	1516	08	INX
10:	1517	53	DECB
11:	1518	20 F0	BRA -16

SWI

151A

12:

3F

1000	
2000	40
2001	F0
2002	55

Trace	Line	PC	Α	В	X	N	Z	V	С
1	1	1503	-	ı	2000	0	0	0	-
2	2	1508	ı	-	2000	0	0	0	-
3	3	150A	ı	02	2000	0	0	0	-
4	4	150C	ı	02	2000	0	0	0	-
5	5	150E	40	02	2000	0	0	0	-
6	6	1511	40	02	2000	0	0	0	1
7	7	1513	40	02	2000	0	0	0	1
8	8	1516	40	02	2000	0	0	0	1
9	9	1517	40	02	2001	0	0	0	1
10	10	1518	40	01	2001	0	0	0	1

1:	1500	CE 2000	LDX #\$2000
2:	1503	180B FF 1000	MOVB #\$FF,\$1000
3:	1508	C6 02	LDAB #2
4:	150A	27 OE	BEQ 14
5:	150C	A6 00	LDAA 0,X
6:	150E	B1 1000	CMPA \$1000
7:	1511	24 03	BHS 3
8:	1513	7A 1000	STAA \$1000
9:	1516	08	INX
10:	1517	53	DECB -

20 F0

3F

11:

12:

1518

151A

1000	
2000	40
2001	F0
2002	55

Continued

FF → 40	
---------	--

BRA -16	Trace	Line	PC	А	В	Х	N	Z	V	С
SWI	11	11	150A	40	01	2001	0	0	0	1
	12	4	150C	40	01	2001	0	0	0	1
	13	5	150E	FO	01	2001	1	0	0	1
	14	6	1511	FO	01	2001	1	0	0	0
	15	7	1516	F0	01	2001	1	0	0	0
	16	9	1517	FO	01	2002	1	0	0	0
	17	10	1518	FO	00	2002	0	1	0	0
	18	11	150A	FO	00	2002	0	1	0	0
	19	4	151A	FO	00	2002	0	1	0	0
	20	12	-	-	-	-	-	-	-	-

Questions

- What does this program do?
 - Get a minimum value from the values from \$2000 to (\$2000 + the initial content in register B)
- What changes are needed to process 200 bytes?
 - Line 3: LDAB #2 → LDAB #200 (or #\$C8 or #C8h)
- What changes are needed to process signed numbers?
 - Line 7: BHS → BGT
 - Line 2: #\$FF → #\$7F (or #7Fh)
- What changes are needed if the list of data begins at \$3000?
 - Line 1: #\$2000 → #\$3000h (or #3000h)
- What changes are needed if the answer must be stored to location \$3FFF?
 - Line 2, 6, and 8: \$1000 → \$3FFF (or 3FFFh)

Questions?

Wrap-up

What we've learned

- Quick tour of basic instructions
- Comparison branches
 - Unsigned
 - BHI, BGT, BHS, BGE
 - Signed
 - BLO, BLT, BLS, BLE
 - Either signed or unsigned
 - BEQ, BNE

What to Come

- Assembly language
- Flowchart