7.2.7 Almost Sure Convergence

Consider a sequence of random variables X_1, X_2, X_3, \cdots that is defined on an underlying sample space S. For simplicity, let us assume that S is a finite set, so we can write

$$S = \{s_1, s_2, \cdots, s_k\}.$$

Remember that each X_n is a function from S to the set of real numbers. Thus, we may write

$$X_n(s_i) = x_{ni}, \qquad ext{for } i = 1, 2, \cdots, k.$$

After this random experiment is performed, one of the s_i 's will be the outcome of the experiment, and the values of the X_n 's are known. If s_j is the outcome of the experiment, we observe the following sequence:

$$x_{1j}, x_{2j}, x_{3j}, \cdots$$

Since this is a sequence of real numbers, we can talk about its convergence. Does it converge? If yes, what does it converge to? **Almost sure** convergence is defined based on the convergence of such sequences. Before introducing almost sure convergence let us look at an example.

Example 7.12

Consider the following random experiment: A fair coin is tossed once. Here, the sample space has only two elements $S = \{H, T\}$. We define a sequence of random variables X_1, X_2, X_3, \cdots on this sample space as follows:

- a. For each of the possible outcomes (H or T), determine whether the resulting sequence of real numbers converges or not.
- b. Find

$$P\left(\left\{s_i\in S: \lim_{n o\infty}X_n(s_i)=1
ight\}
ight).$$

Solution

a. If the outcome is H, then we have $X_n(H) = \frac{n}{n+1}$, so we obtain the following sequence

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots$$

This sequence converges to 1 as n goes to infinity. If the outcome is T, then we have $X_n(T)=(-1)^n$, so we obtain the following sequence

$$-1, 1, -1, 1, -1, \cdots$$

This sequence does not converge as it oscillates between -1 and 1 forever.

b. By part (a), the event $\{s_i \in S: \lim_{n \to \infty} X_n(s_i) = 1\}$ happens if and only if the outcome is H, so

$$egin{split} P\left(\left\{s_i \in S: \lim_{n o \infty} X_n(s_i) = 1
ight\}
ight) &= P(H) \ &= rac{1}{2}. \end{split}$$

In the above example, we saw that the sequence $X_n(s)$ converged when s=H and did not converge when s=T. In general, if the probability that the sequence $X_n(s)$ converges to X(s) is equal to 1, we say that X_n converges to X almost surely and write

$$X_n \stackrel{a.s.}{\longrightarrow} X.$$

Almost Sure Convergence

A sequence of random variables X_1, X_2, X_3, \cdots converges **almost** surely to a random variable X, shown by $X_n \stackrel{a.s.}{\longrightarrow} X$, if

$$P\left(\left\{s\in S: \lim_{n o\infty}X_n(s)=X(s)
ight\}
ight)=1.$$

Example 7.13

Consider the sample space $S=\left[0,1\right]$ with a probability measure that is uniform on this space, i.e.,

$$P([a,b]) = b - a,$$
 for all $0 \le a \le b \le 1$.

Define the sequence $\{X_n, n=1,2,\cdots\}$ as follows:

Also, define the random variable X on this sample space as follows:

$$X(s) = egin{cases} 1 & & 0 \leq s < rac{1}{2} \ & & \ 0 & & ext{otherwise} \end{cases}$$

Show that $X_n \stackrel{a.s.}{\longrightarrow} X$.

Solution

Define the set *A* as follows:

$$A = \left\{ s \in S : \lim_{n o \infty} X_n(s) = X(s)
ight\}.$$

We need to prove that P(A)=1. Let's first find A. Note that $\frac{n+1}{2n}>\frac{1}{2}$, so for any $s\in[0,\frac{1}{2})$, we have

$$X_n(s) = X(s) = 1.$$

Therefore, we conclude that $[0,0.5) \subset A$. Now if $s > \frac{1}{2}$, then

$$X(s) = 0.$$

Also, since 2s - 1 > 0, we can write

$$X_n(s)=0, \qquad ext{for all } n>rac{1}{2s-1}.$$

Therefore,

$$\lim_{n o\infty} X_n(s) = 0 = X(s), \qquad ext{ for all } s > rac{1}{2}.$$

We conclude $(\frac{1}{2},1]\subset S.$ You can check that $s=\frac{1}{2}\not\in A,$ since

$$X_n\left(rac{1}{2}
ight)=1, \qquad ext{for all } n,$$

while $X\left(\frac{1}{2}\right)=0$. We conclude

$$A = \left[0, rac{1}{2}
ight) \cup \left(rac{1}{2}, 1
ight] = S - \left\{rac{1}{2}
ight\}.$$

Since P(A) = 1, we conclude $X_n \stackrel{a.s.}{\longrightarrow} X$.

In some problems, proving almost sure convergence directly can be difficult. Thus, it is desirable to know some sufficient conditions for almost sure convergence. Here is a result that is sometimes useful when we would like to prove almost sure convergence.

Theorem 7.5

Consider the sequence X_1, X_2, X_3, \cdots . If for all $\epsilon > 0$, we have

$$\sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) < \infty,$$

then $X_n \stackrel{a.s.}{\longrightarrow} X$.

Example 7.14

Consider a sequence $\{X_n, n=1,2,3,\cdots\}$ such that

$$X_n = \left\{ egin{array}{ll} -rac{1}{n} & ext{with probability } rac{1}{2} \ & & \ rac{1}{n} & ext{with probability } rac{1}{2} \end{array}
ight.$$

Show that $X_n \stackrel{a.s.}{\longrightarrow} 0$.

Solution

By the Theorem above, it suffices to show that

$$\sum_{n=1}^{\infty} P(|X_n| > \epsilon) < \infty.$$