Aula 6 Redes complexas

Eduardo L. L. Cabral

Objetivos

- Apresentar RNAs de referência.
- Apresentar convolução 1x1.
- Apresentar RNAs complexas.
- Apresentar classe de modelos funcionais do Keras.

RNAs de referência

- Duas arquiteturas de RNAs convolucionais se tornaram referência na área de visão computacional pelas suas ideias inovadoras e desempenhos extraordinários:
 - RNAs residuais ("Residual networks");
 - "Inception Networks".
- Essas RNAs apresentam duas grandes inovações:
 - Caminhos alternativos do fluxo de informações (ResNet);
 - Convolução 1x1 (Inception).
- Essas são as RNAs com maior número de camadas que existem.

- Referência ⇒ He et al., Deep residual networks for image recognition, 2015.
- RNAs muito profundas são difíceis de treinar pelo fato do gradiente diminuir a cada camada da rede durante o processo de propagação para trás.
- A ResNet possui um bloco denominado Bloco Residual ("Residual Block") que consiste de um atalho entre duas camadas da rede não vizinhas.
- O bloco residual permite treinar de forma mais fácil RNAs muito profundas.

- Esquema de um bloco residual:
 - As ativações da *l*-ésima camada, a^[/], servem como entradas da camada /+1 e também da camada /+2;
 - As ativações a^[/] se somam às ativações a^[/+1] e ambas se tornam entradas da camada /+2.

 Nesse bloco existe o caminho padrão e o atalho que é somado ao caminho padrão.

Equações do bloco residual:

$$\begin{cases}
\mathbf{z}^{[l+1]} = \mathbf{W}^{[l+1]} \mathbf{a}^{[l]} + \mathbf{b}^{[l+1]} \\
\mathbf{a}^{[l+1]} = g^{[l+1]} (\mathbf{z}^{[l+1]})
\end{cases}$$

$$\mathbf{z}^{[l+2]} = \mathbf{W}^{[l+2]} \mathbf{a}^{[l+1]} + \mathbf{b}^{[l+2]} \\
\mathbf{a}^{[l+2]} = g^{[l+2]} (\mathbf{z}^{[l+2]} + \mathbf{a}^{[l]})$$

Observe que z^[/+2] tem que ter a mesma dimensão de a^[/].

- Uma RNA residual é criada com blocos residuais.
- RNA convencional:

 Adiciona-se os atalhos na RNA convencional e tem-se a RNA residual:

$$\mathbf{x}$$

- Quanto mais profunda é uma RNA mais difícil de ser treinada.
- O erro de treinamento de uma RNA varia em função do número de camadas da rede.

- Na RNA convencional o erro diminui e depois aumenta com o aumento do número de camadas.
- Na RNA residual o erro somente diminui com o aumento do número de camadas.
- Uma RNA residual pode ter 1.000 ou mais camadas que não tem problema de treinamento.
- Porém existe um limite onde o aumento do número de camadas não diminui mais o erro, ou seja, o erro se estabiliza em função do número de camadas quando esse número é muito grande.

- Porque o treinamento de uma RNA residual funciona muito bem?
 - As equações da saída do bloco podem ser escritas como sendo:

$$\mathbf{a}^{[l+2]} = g^{[l+2]} (\mathbf{z}^{[l+2]} + \mathbf{a}^{[l]})$$

$$\mathbf{a}^{[l+2]} = g^{[l+2]} (\mathbf{W}^{[l+2]} \mathbf{a}^{[l+1]} + \mathbf{b}^{[l+2]} + \mathbf{a}^{[l]})$$

 Considerando que todas as camadas do bloco residual tem função de ativação ReLu, então, se W^[/+2] = b^[/+2] = 0, temos que:

$$\mathbf{a}^{[l+2]} = \mathbf{a}^{[l]}$$

 Ou seja, se nada foi aprendido a mais na camada /+2, então a saída calcula pelo bloco residual é uma função identidade.

- Imagine que adicionamos um bloco residual na última camada de uma RNA.
- Como a função identidade é fácil de aprender pelo bloco residual, temos a seguinte situação:
 - Adicionar um bloco residual na última camada de uma RNA não altera muito essa RNA, porque a função identidade é facilmente aprendida pelo bloco residual;
 - O pior que pode acontecer é o bloco residual não fazer nada e calcular a função identidade;
 - Blocos residuais sempre aprendem alguma informação que melhora um pouco o desempenho da RNA ⇒ adicionar vários blocos residuais pode resultar em uma grande melhoria da RNA.
- É muito difícil treinar uma RNA muito profunda sem blocos residuais.

- Existe uma restrição grande nos blocos residuais:
 - $-\mathbf{a}^{[l+2]}$ tem que ter a mesma dimensão de $\mathbf{a}^{[l]}$.
 - Isso implica em princípio no uso de operações de convolução que preservam as dimensões ("same convolution").
- De fato essa restrição pode ser eliminada alterando as equações do bloco de forma a adicionar uma matriz extra de pesos para ajustar a dimensão:

$$\mathbf{a}^{[l+2]} = g^{[l+2]} (\mathbf{W}^{[l+2]} \mathbf{a}^{[l+1]} + \mathbf{b}^{[l+2]} + \mathbf{W}_{s} \mathbf{a}^{[l]})$$

 W_s = matriz de pesos para ajuste de dimensões \Rightarrow adiciona mais parâmetros que devem ser treinados.

Por exemplo se dimensão de a^[/] é 256 e de a^[/+2] é 128, então a dimensão de W_s é 128x256.

 Arquitetura da ResNet de He et al., Deep residual networks for image recognition, 2015:

Convolução usando filtro 1x1

- Referência ⇒ Lin et al., Network in network, 2013.
- Convolução 1x1 representa realizar a operação de convolução de uma imagem por um filtro de dimensão 1x1.
- Se tivermos um tensor de um único canal:

1	2	3	6	5	8			2	4	6	12	10	16
3	5	5	1	3	4			6	10	10	2	6	8
2	1	3	4	9	3	* 2		4	2	6	8	18	6
4	7	8	5	7	9	* [2]	· · · · · · · · · · · · · · · · · · ·	16	10	14	18		
1	5	3	7	4	8			2	10	6	14	8	16
5	4	9	8	3	5			10	8	18	16	6	10
		6x6	3x1					6x6x1					

Essa operação consiste simplesmente de uma multiplicação por uma constante.

Convolução usando filtro 1x1

Se tivermos um tensor de mais de um canal:

Essa operação consiste do cálculo da média ponderada dos pixels de todos os canais, onde os pesos são os parâmetros do filtro.

Camada convolucional com filtro 1x1

 Camada convolucional com filtros de dimensão 1x1 ⇒ após a multiplicação dos pesos dos filtros pelos valores do tensor em todos os canais, soma uma constante e aplica uma função de ativação.

Pode imaginar que essa operação consiste de um neurônio que recebe 32 entradas, multiplica por pesos, soma um viés e aplica uma função de ativação.

Camada convolucional com filtro 1x1

 Se existirem vários filtros 1x1, então, o resultado da camada será um tensor com largura e altura iguais ao tensor original e número de canais igual ao número de filtros.

➤ Convolução 1x1 ⇒ preserva largura e altura.

Camada convolucional com filtro 1x1

- Camada convolucional com filtro 1x1 aplica um cálculo não trivial ⇒ age como se fosse uma camada densa.
- Como tem-se uma "camada densa" aplicada em cada elemento da largura e altura do tensor ⇒ essa operação também é chamada rede dentro de rede.
- Utilidade da convolução com filtro 1x1:
 - Forma eficiente para diminuir número de canais quando se torna muito grande.
 - Muito eficiente para detectar novas características.
- Convolução 1x1 é usada nas RNAs Inceptions.

- Referência ⇒ Szegedy et al., Going deeper with convolutions, 2014.
- Uma RNA Inception possui na mesma camada filtros com dimensões diferentes e tipo de operações diferentes.
- No lugar de escolher uma única operação por camada pode-se incluir várias operações diferentes.

Exemplo de uma camada com várias operações:

- Largura e altura das saídas de todas operações precisam ser iguais;
- Todas operações de convolução são do tipo "same" com stride igual a 1;
- Resultados são empilhados na saída;
- No. de canais na saída é a soma do no. de canais de cada operação (256).

- Existem diferentes tipos de módulos inception ⇒ mas o conceito geral é o mesmo.
- Módulo de uma RNA Inception:
 - Vários tipos de filtros e operações no módulo;
 - Os resultados de todos os filtros tem a mesma largura e mesma altura;
 - Operação max-pooling é usada com stride s = 1, e padding $p \neq 0 \Rightarrow$ para preservar largura e altura da saída.
- RNA Inception:
 - Composta por vários módulos inceptions;
 - Repete os módulos inceptions várias vezes com pequenas modificações;
 - Possui saídas parciais ⇒ cuja função é auxiliar na prevenção de problemas de overfitting (uma forma de regularização).

- Muitas aplicações exigem RNAs mais complexas do que as que já estudamos, como por exemplo:
 - Detecção e localização de objetos em imagens ⇒ nesse caso a RNA tem que ter várias saídas de tipos diferentes;
 - RNAs que processam várias entradas em paralelo com a mesma RNA (visão estéreo) ⇒ nesse caso a RNA tem dois ramos iguais (RNA Siamesa);
 - Transferência de estilo ⇒ nesse caso tem-se duas imagens que são processadas em paralelo por duas RNAs diferentes e as saídas são comparadas para gerar o erro de treinamento.

Exemplo de RNA com diferentes tipos de entradas:

Exemplo de RNA com diversos tipos de saídas:

• Exemplo de RNA com mais de um ramo (siamesa):

Classe Funcional do Keras

- RNAs Residual, Inception e as "complexas" possuem fluxo de informação não sequencial.
- Modelo sequencial do Keras não serve para essas RNAs.
- Para configurar uma RNA com fluxo de informação não sequencial ⇒ tem que usar a Classe Funcional do Keras ("Functional API").
- A classe Funcional do Keras permite construir RNAs com vários ramos, várias entradas, várias saídas etc.
- A classe Funcional do Keras é muito flexível e permite construir praticamente qualquer tipo de RNA.

Classe Funcional do Keras

 Exemplo de uma RNA configurada com a classe de modelo funcional do Keras:

```
# Importa classe funcional
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense

# Configuração da RNA
X = Input(shape=(32,), activation='relu')
A = Dense(32, activation='relu')(X)
Y = Dense(32, activation='softmax')(A)

# Criação da RNA
model = Model(inputs=X, outputs=Y)
```

Essa RNA inclui todas as camadas necessárias para o cálculo de Y dado
 X.

Classe Funcional do Keras

 Comparação entre uma RNA criada com a classe sequencial e a mesma RNA cria com a classe funcional:

```
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras import layers
from tensorflow.keras import Input
# RNA criada com classe sequencial da forma que conhecemos
rna seq = Sequential()
rna seq.add(layers.Dense(32, activation='relu',input shape=(64,)))
rna seq.add(layers.Dense(32, activation='relu'))
rna seq.add(layers.Dense(10, activation='softmax'))
# Mesma RNA criada com classe funcional
input = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input)
x = layers.Dense(32, activation='relu')(x)
output = layers.Dense(10, activation='softmax')(x)
rna = Model(input, output)
```

Bloco residual com Keras

 Configuração de um bloco residual com camadas convolucionais dentro de uma função (evita repetição de comandos):

 Exemplo de configuração de uma RNA com 2 blocos residuais seguidos de uma camada softmax com 6 classes:

```
from tensorflow.keras import layers
from tensorflow.keras import Input
from tensorflow.keras.models import Model
# Definição da entrada
Xshape = X train.shape[1:4] # X train tensor de imagens de treinamento
X = Input(shape=Xshape)
# Camada convolucional para ajustar número de canais
X0 = layers.Conv2D(16, (3,3), strides=1, padding='same',
                   activation='relu')(X)
# Primeiro bloco residual com 16 filtros
X1 = bloco residual(X0, 16)
# Camada convolucional para ajustar número de canais
X2 = layers.Conv2D(32, (3,3), strides=1, padding='same',
                   activation='relu') (X1)
(continua)
```

Continuação:

```
# Camada de max-pooling
X2 = layers.MaxPooling2D((2, 2))(X2)
# Segundo bloco residual com 32 filtros
X2 = bloco residual(X2,32)
# Camada de max-pooling
X2 = layers.MaxPooling2D((2, 2))(X2)
# Camada de Flattening
X3 = layers.Flatten()(X2)
# Camada densa de classificação com 6 classes
Y = layers.Dense(6, activation='softmax')(X3)
# Criação da RNA
rna = Model(X, Y)
# Mostra resumo da RNA
rna.summary()
# Cria um gráfico da RNA no arquivo rna.png
plot model (rna, to file='rna.png', show shapes=True)
```

Resumo da RNA residual:

Layer	(type)	Output	Shape	Param#	Connected to
 input_1	(InputLayer)	(None,	64, 64, 3)	0	
conv2d 1	(Conv2D)	(None,	64, 64, 16)	448	input 1[0][0]
conv2d_2	(Conv2D)	(None,	64, 64, 16)	2320	conv2d_1[0][0]
conv2d 3	(Conv2D)	(None,	64, 64, 16)	2320	conv2d 2[0][0]
add_1	(Add)	(None,	64, 64, 16)	0	conv2d_3[0][0]
_					conv2d 1[0][0]
activation 1	(Activation)	(None,	64, 64, 16)	0	add 1[0][0]
conv2d 4	(Conv2D)	(None,	64, 64, 32)	4640	activation 1[0][0]
max_pooling2d_1	(MaxPooling2D)	(None,	32, 32, 32)	0	conv2d_4[0][0]
conv2d 5	(Conv2D)	(None,	32, 32, 32)	9248	max pooling2d 1[0][0]
conv2d_6	(Conv2D)	(None,	32, 32, 32)	9248	conv2d_5[0][0]
add_2	(Add)	(None,	32, 32, 32)	0	conv2d_6[0][0]
_					max pooling2d 1[0][0]
activation_2	(Activation)	(None,	32, 32, 32)	0	add_2[0][0]
max_pooling2d_2	(MaxPooling2D)		16, 16, 32)	0	activation_2[0][0]
flatten_1	(Flatten)	(None,	8192)	0	max_pooling2d_2[0][0]
dense_1	(Dense)	(None,	6)	49158	flatten_1[0][0]
=======================================		======		======	=======================================

Total params: 77,382 Trainable params: 77,382 Non-trainable params: 0

Fluxograma da RNA residual criada:

 Para compilar e treinar a RNA residual no Keras os comandos são os mesmos já utilizados:

Bloco inception com Keras

- Configuração de um módulo inception dentro de uma função:
 - Adimite que cada filtro possui *n* canais;
 - Todos os strides são iguais a 1 (padrão do keras).


```
def modulo inception (X, n):
    # Define os ramos
    ramo a = layers.Conv2D(n, 1, activation='relu')(x)
    ramo b = layers.Conv2D(n, 1, activation='relu')(x)
    ramo b = layers.Conv2D(n, 3, activation='relu',
                           padding='same') (ramo b)
    ramo c = layers.Conv2D(n, 1, activation='relu')(x)
    ramo c = layers.Conv2D(n, 5, activation='relu',
                           padding='same') (ramo c)
    ramo d = layers.MaxPooling2D(3, strides=1, padding='same')(x)
    ramo d = layers.Conv2D(n, 1, activation='relu',
                           padding='same') (ramo d)
    # Une os ramos na saída do módulo
    y = layers.concatenate([ramo a, ramo b, ramo c, ramo d], axis=-1)
    # Retorna saída
    return y
```

 Exemplo de configuração de uma RNA com 2 blocos inceptions seguidos de uma camada softmax com 6 classes:

```
from tensorflow.keras import layers
from tensorflow.keras import Input
from tensorflow.keras.models import Model
# Definição da entrada
Xshape = X train.shape[1:4] # X train tensor de imagens de treinamento
X = Input(shape=Xshape)
# Primeiro bloco inception com filtros de 64 canais
X1 = modulo inception(X, 64)
# Camada de pooling entre os módulos
X2 = layers.MaxPooling2D(3, strides=2)(X1)
# Segundo modulo inception com filtros de 128 canais
X3 = modulo inception(X2, 128)
(continua)
```

Continuação:

```
# Camada de Flattening
X4 = layers.Flatten()(X3)

# Camada densa de classificação com 6 classes
Y = layers.Dense(6, activation='softmax')(X4)

# Criação da RNA
rna = Model(X, Y)

# Mostra resumo da RNA
rna.summary()

# Cria um gráfico da RNA no arquivo rna.png
plot_model(rna, to_file='rna.png', show_shapes=True)
```

Resumo da RNA inception:

Layer	(type)	Output	Shaj	рe		Param#	Connected to
=====================================	======================================	(None,	==== 64,	= === : 64,	==== 3)	0	=======================================
conv2d_2	(Conv2D)	(None,	64,	64,	16)	64	input_1[0][0]
conv2d_4	(Conv2D)	(None,	64,	64,	16)	64	input_1[0][0]
max_pooling2d_1	(MaxPooling2D)	(None,	64,	64,	3)	0	input_1[0][0]
conv2d_1	(Conv2D)	(None,	64,	64,	16)	64	input_1[0][0]
conv2d_3	(Conv2D)	(None,	64,	64,	16)	2320	conv2d_2[0][0]
conv2d_5	(Conv2D)	(None,	64,	64,	16)	6416	conv2d_4[0][0]
conv2d_6	(Conv2D)	(None,	•	•	•		max_pooling2d_1[0][0]
concatenate_1	(Concatenate)	(None,	64,	64,	64)	0	conv2d_1[0][0]
							conv2d_3[0][0]
							conv2d_5[0][0]
							conv2d_6[0][0]
max_pooling2d_2	(MaxPooling2D)	(None,	31,	31,	64)	0	concatenate_1[0][0]
conv2d_8	(Conv2D)	(None,				2080	max_pooling2d_2[0][0]
conv2d_10	(Conv2D)	•	31,	31,	32)	2080	max_pooling2d_2[0][0]
max_pooling2d_3	(MaxPooling2D)	(None,	31,	31,	64)	0	max_pooling2d_2[0][0]
conv2d_7	(Conv2D)	(None,	31,	31,	32)	2080	max_pooling2d_2[0][0]
conv2d_9	(Conv2D)	(None,	31,	31,	32)	9248	conv2d_8[0][0]
(continua)							

Resumo da RNA inception (continuação):

conv2d 11	(Conv2D)	(None,	31,	31,	32)	25632	conv2d 10[0][0]	
conv2d_12	(Conv2D)	(None,	31,	31,	32)	2080	max_pooling2d_3[0][0]	
concatenate 2	(Concatenate)	(None,	31,	31,	128)	0	conv2d 7[0][0]	
_							conv2d 9[0][0]	
							conv2d 11[0][0]	
							conv2d 12[0][0]	
flatten 1	(Flatten)	(None,	1230	(800		0	concatenate 2[0][0]	
dense_1	(Dense)	(None,	6)			738054	flatten_1[0][0]	
Total params: 790,246 Trainable params: 790,246								

Non-trainable params: 0

Fluxograma da RNA inception criada:

