Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 7. Inference Based on The Normal Distribution

- § 7.1 Introduction
- § 7.2 Comparing $\frac{\overline{Y}-\mu}{\sigma/\sqrt{n}}$ and $\frac{\overline{Y}-\mu}{S/\sqrt{n}}$
- § 7.3 Deriving the Distribution of $\frac{\overline{Y}-\mu}{\mathcal{S}/\sqrt{n}}$
- § 7.4 Drawing Inferences About μ
- § 7.5 Drawing Inferences About σ^2

1

Plan

- § 7.1 Introduction
- § 7.2 Comparing $\frac{\overline{Y}-\mu}{\sigma/\sqrt{n}}$ and $\frac{\overline{Y}-\mu}{S/\sqrt{n}}$
- § 7.3 Deriving the Distribution of $\frac{\overline{Y} \mu}{S / \sqrt{n}}$
- § 7.4 Drawing Inferences About μ
- § 7.5 Drawing Inferences About σ^2

Chapter 7. Inference Based on The Normal Distribution

- § 7.1 Introduction
- § 7.2 Comparing $\frac{\overline{Y}-\mu}{\sigma/\sqrt{n}}$ and $\frac{\overline{Y}-\mu}{S/\sqrt{n}}$
- § 7.3 Deriving the Distribution of $\frac{\overline{Y} \mu}{S / \sqrt{r}}$
- § 7.4 Drawing Inferences About µ
- § 7.5 Drawing Inferences About σ^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2}$$

$$\downarrow \downarrow$$

$$\frac{(n-1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2} \sim \text{Chi Square}(n-1)$$

$$100(1-\alpha)\%$$
 C.1 for σ^2

$$\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}\right)$$

$$100(1 - \alpha)\%$$
 C L for σ

$$\left(\sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}},\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}\right)$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2}$$

$$\downarrow \downarrow$$

$$\frac{(n-1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2} \sim \text{Chi Square}(n-1)$$

$$100(1-\alpha)\%$$
 C.1 for σ^2

$$\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}\right)$$

$$100(1 - \alpha)\%$$
 C L for σ

$$\left(\sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}},\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}\right)$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2}$$

$$\downarrow \downarrow$$

$$\frac{(n-1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2} \sim \text{Chi Square}(n-1)$$

$$\mathbb{P}\left(\chi_{\alpha/2, n-1}^{2} \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq \chi_{1-\alpha/2, n-1}^{2} \right) = 1 - \alpha.$$

$$100(1-\alpha)\%$$
 C.I. for σ^2

$$\left(\frac{(n-1)s^2}{v_+^2}, \frac{(n-1)s^2}{v_-^2}\right)$$

$$100(1-\alpha)\%$$
 C.I. for σ

$$\left(\sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}},\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}\right)$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2}$$

$$\downarrow \downarrow$$

$$\frac{(n-1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2} \sim \text{Chi Square}(n-1)$$

$$\mathbb{P}\left(\chi_{\alpha/2, n-1}^{2} \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq \chi_{1-\alpha/2, n-1}^{2} \right) = 1 - \alpha.$$

$$100(1-\alpha)\%$$
 C.I. for σ^2

$$\left(\frac{(n-1)s^2}{v_+^2}, \frac{(n-1)s^2}{v_-^2}\right)$$

$$100(1-\alpha)\%$$
 C.I. for σ

$$\left(\sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}},\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}\right)$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(Y_i - \overline{Y} \right)^2$$

$$\downarrow \downarrow$$

$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i - \overline{Y} \right)^2 \sim \text{Chi Square}(n-1)$$

$$\mathbb{P}\left(\chi^2_{\alpha/2, n-1} \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi^2_{1-\alpha/2, n-1} \right) = 1 - \alpha.$$

$$100(1-\alpha)\%$$
 C.I. for σ^2

$$\left(\frac{(n-1)s^2}{v_+^2}, \frac{(n-1)s^2}{v_-^2}\right)$$

$$100(1-\alpha)\%$$
 C.I. for σ

$$\left(\sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}},\sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}\right)$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2}$$

$$\downarrow \downarrow$$

$$\frac{(n-1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2} \sim \text{Chi Square}(n-1)$$

$$\mathbb{P}\left(\chi_{\alpha/2, n-1}^{2} \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq \chi_{1-\alpha/2, n-1}^{2} \right) = 1 - \alpha.$$

$$100(1-\alpha)\% \text{ C.l. for } \sigma^2 \colon \qquad \qquad 100(1-\alpha)\% \text{ C.l. for } \sigma \colon$$

$$\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}\right) \qquad \qquad \left(\sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}}, \sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}\right)$$

Testing
$$H_0: \sigma^2 = \sigma_0^2$$

v.s.

(at the α level of significance)

$$\chi^2 = \frac{(\mathit{n}-1)\mathit{s}^2}{\sigma_0^2}$$

E.g. 1. The width of a confidence interval for σ^2 is a function of n and S^2 :

$$W = \frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} - \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$$

Find the smallest n such that the average width of a 95% C.I. for σ^2 is no greater than $0.8\sigma^2$.

Sol. Notice that $\mathbb{E}[S^2] = \sigma^2$. Hence, we need to find n s.t.

$$(n-1)\left(\frac{1}{\chi^2_{0.025,n-1}} - \frac{1}{\chi^2_{0.975,n-1}}\right) \le 0.8$$

Trial and error (numerics on R) gives n = 57.

E.g. 1. The width of a confidence interval for σ^2 is a function of n and S^2 :

$$W = \frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} - \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$$

Find the smallest n such that the average width of a 95% C.I. for σ^2 is no greater than $0.8\sigma^2$.

Sol. Notice that $\mathbb{E}[S^2] = \sigma^2$. Hence, we need to find *n* s.t.

$$(n-1)\left(\frac{1}{\chi^2_{0.025,n-1}} - \frac{1}{\chi^2_{0.975,n-1}}\right) \le 0.8.$$

Trial and error (numerics on R) gives n = 57.

E.g. 1. The width of a confidence interval for σ^2 is a function of n and S^2 :

$$W = \frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} - \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$$

Find the smallest n such that the average width of a 95% C.I. for σ^2 is no greater than $0.8\sigma^2$.

Sol. Notice that $\mathbb{E}[S^2] = \sigma^2$. Hence, we need to find n s.t.

$$(n-1)\left(\frac{1}{\chi^2_{0.025,n-1}} - \frac{1}{\chi^2_{0.975,n-1}}\right) \le 0.8.$$

Trial and error (numerics on R) gives n = 57.

```
> # Example 7.5.1
  > n = seq(45.60.1)
  > l=achisa(0.025.n-1)
4 > u = qchisq(0.975, n-1)
  > e=(n-1)*(1/I-1/u)
  > m=cbind(n,l,u,e)
  > colnames(m) = c("n",
                    "error")
  > m
         n chi(0.025.n-1) chi(0.975.n-1)
                                           error
                27.57457
                               64.20146 0.9103307
   [2,] 46
                28.36615
                               65.41016 0.8984312
    [3.]
        47
                               66.61653 0.8869812
                29.16005
    [4.]
       48
                29.95620
                               67.82065 0.8759533
   [5,] 49
                30.75451
                               69.02259 0.8653224
    [6.] 50
                31.55492
                               70.22241 0.8550654
   [7,] 51
                32.35736
                               71.42020 0.8451612
   [,8]
                33.16179
                               72.61599 0.8355901
   [9.]
                33.96813
                               73.80986 0.8263340
  [10.] 54
                34.77633
                               75.00186 0.8173761
  [11,] 55
                35.58634
                               76.19205 0.8087008
  [12,] 56
                36.39811
                               77.38047 0.8002937
  [13,] 57
                37.21159
                               78.56716 0.7921414
  [14,] 58
                38.02674
                               79.75219 0.7842313
  [15,] 59
                38.84351
                               80.93559 0.7765517
   [16.]
        60
                               82.11741 0.7690918
                39.66186
```

Case Study 7.5.2

Mutual funds are investment vehicles consisting of a portfolio of various types of investments. If such an investment is to meet annual spending needs, the owner of shares in the fund is interested in the average of the annual returns of the fund. Investors are also concerned with the volatility of the annual returns, measured by the variance or standard deviation. One common method of evaluating a mutual fund is to compare it to a benchmark, the Lipper Average being one of these. This index number is the average of returns from a universe of mutual funds.

The Global Rock Fund is a typical mutual fund, with heavy investments in international funds. It claimed to best the Lipper Average in terms of volatility over the period from 1989 through 2007. Its returns are given in the table below.

Year	Investment Return %	Year	Investment Return %
1989	15.32	1999	27.43
1990	1.62	2000	8.57
1991	28.43	2001	1.88
1992	11.91	2002	-7.96
1993	20.71	2003	35.98
1994	-2.15	2004	14.27
1995	23.29	2005	10.33
1996	15.96	2006	15.94
1997	11.12	2007	16.71
1998	0.37		

The standard deviation for these returns is 11.28%, while the corresponding figure for the Lipper Average is 11.67%. Now, clearly, the Global Rock Fund has a smaller standard deviation than the Lipper Average, but is this small difference due just to random variation? The hypothesis test is meant to answer such questions.

$$H_0: \sigma^2 = (11.67)^2$$

versus
 $H_1: \sigma^2 < (11.67)^2$

Let $\alpha = 0.05$. With n = 19, the critical value for the chi square ratio [from part (b) of Theorem 7.5.2] is $\chi^2_{1-\alpha,n-1} = \chi^2_{.05,18} = 9.390$ (see Figure 7.5.3). But

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(19-1)(11.28)^2}{(11.67)^2} = 16.82$$

so our decision is clear: Do not reject H_0 .

