# Estimation Lift through linear modeling Tatari Interview Presentation

Ivan E. Perez

Hunter College - CUNY

March 27, 2021

#### Presentation Outline

- Background and Description of the Data
- 2 Point Processes
- 3 Identifying periods of influence from spot activity
- Experiments and Results
- 5 performance metrics and actionable conclusions
- 6 future ideas and new metrics Do this if I have time
- Suggested Improvements for Tatari Dashboard

## Description and treatment of data: Basic Description of Files

#### Web Traffic data

- filename: assignment-analyst-1-web-traffic-data.csv
- a columns:
  - time as UTC datetime, that pandas converts to pd.timeseries.datetime
  - source as string, either 'direct' or 'email'
  - value as int and float64
- **10** time range: 10/16/2017 7:05pm to 11/13/2017 7:05 pm
- web traffic range: find this please

Rate of arrival per minute to company-XYZ's site over 24h



## Cleaning the Data I: Web Traffic Data



### **Original Data**

- time: pandas datetime
- value: float64
- traffic\_source: str, email, direct

## Split Data

- email data
  - time: pandas datetime
  - value: int
- direct traffic
  - time: pandas datetime
  - value: float

## Imputed Direct Traffic (didn't do)

- Negative reals replaced by ints
- smoothing/grouping into 5-minute sections.

## Cleaning the Data II: Spot Data Description

| Column         | Description                                             | format       |
|----------------|---------------------------------------------------------|--------------|
| id             | Spot identifier                                         | integer      |
| time           | Time at which spot aired in local time with UTC offset  | pd.datetime  |
|                |                                                         | tz info      |
| creative_id    | Creative asset identifier                               | string       |
| spend          | Effective cost of spot USD                              | float64      |
| program        | Program during which spot aired                         | string       |
| duration       | Duration of spot in seconds                             | int, nan     |
| network_code   | Network on which the spot aired                         | string, nan  |
| is_dual_feed   | Specifies that the spot is aired at the same local time | True for all |
| rotation       | Description of the target rotation where the spot aired | string, nan  |
| rotation_days  | Days of the week on which the roration applies to       | string, nan  |
|                | begining with monday=1                                  |              |
| rotation_start | Time when rotation starts                               | datetime     |
| rotation_end   | Time when rotation ends                                 | datetime     |
| feed           | Which feed (East or West Coast) is the spot airing in   | 1, 2         |

filename: assignment-analyst-1-spot-data.csv

**②** time range: 10/16/2017 7:05pm to 11/13/2017 7:05 pm

## Exploring Spot Data: By Channel



## Exploring Spot Data: By creative id



More categorical and numerical groupings available in figures folder.

## Modeling Website traffic as a Poisson Point process:

## Definition: time-Homogeneous Poisson Point Process

Consider the homogeneous Poisson counting process,  $\{N(t)\}_{t\geq 0}$  with rate  $\lambda t$ . It is said to be a *Poisson process* with rate  $\lambda t>0$  if it initializes at 0, has independent stationary increments and the following conditions hold:

- **1**  $\mathbb{P}(N(t+s)-N(t)=1)=\lambda s+o(s)$
- ①  $\mathbb{P}(N(t+s)-N(t)\geq 2)=o(s)$

where  $\{N(t)\}_{t>0}$  is a Poisson process.

#### **Key Assumptions:**

- Arrivals to the site in non-overlapping periods are independent from one another.
- 2 The rate of arrival is constant and uniform across any period.
- **Goal 1:** Identify periods where spots are played on each network to identify which networks lead to *increased* rates of website visits.
- **Goal 2:** Identify periods where different versions of the same spots are played to identify which "creative id" leads to *increased* rates of website visits.
- **Goal 3:** Estimate lift-rate as the net increase in rate attributable to a spot, grouped by network or creative id.

## Identifying periods of influence from spot activity

An Informal<sup>1</sup> definition for the different periods from the set of all observed traffic visits, separated by traffic source we first define

- Quiet Periods a the set of observed site visits when No spots not been played recently.
- Active Periods for an identifier (e.g., network code, or creative id) as traffic when the spots associated with the identifier have been player recently.



Figure: (a) Cumulative Active periods (Red) from spots grouped by (a)network code, (b) creative id. (Green) represents the quiet periods

<sup>&</sup>lt;sup>1</sup>An incomplete definition can be found in the latex file

## Showing how the each creative builds up the total active period





## Showing how the each network code builds up the total active period





## t-test to compare Active and Quiet Periods and its limitations

#### Rationale:

- ① By identifying periods where no spots are being played, we can identify a base rate of arrival to the site through email,  $\hat{\lambda}_0^{\text{eml}}$ , and direct traffic  $\hat{\lambda}_0^{\text{dir}}$ .
- By comparing to the individual active periods for each spot and their network code or creative id we can see if the presence of an spot on a network or individual creative id contributes significantly leads to an elevated rate of site arrivals.

#### **Experimental Setup:**

- Let the identifier, n, have a N Active periods. The  $i^{\text{th}}$  Active period, describes the estimated rate of arrival,  $\hat{\lambda}_{1,i}^n$ ,  $i=1,2,\ldots,N$  in that period.
- ② To compare the assumed independent populations of active periods,  $\left\{\hat{\lambda}_{1,i}^n, \forall i \in N\right\}$ , and M quiet periods,  $\left\{\hat{\lambda}_{0,i}, \forall i \in M\right\}$ , we employ a t-test.
- **③** We define population means for the quiet and Active periods as  $\mu_0$  and  $\mu_1^n$  respectively.
- Our test becomes:  $H_0: \mu_1^n \mu_0 = 0, \\ H_1: \mu_1^n \mu_0 > 0$

#### **Assumptions and Limitations:**

- The periods are independent of one another.
- The statistic is less valid for low sample sizes, (which occurrs for spots that generate few periods)
- ullet weaker but still present assumption of normality for the distribution of  $\hat{\lambda}$ 's.

## t-test results: email data by Network

| channel   | $\mu_1$    | t-calc  | t-crit @        | Reject  | Lift.           | Total       |
|-----------|------------|---------|-----------------|---------|-----------------|-------------|
|           | visits/min |         | $\alpha = 0.05$ | $H_0$ ? | $\mu_1 - \mu_0$ | Spend (USD) |
| FXX       | 2.3921     | 2.1721  | 1.6790          | YES     | 1.3524          | 6477.00     |
| VEL       | 4.4217     | 3.6548  | 1.6820          | YES     | 3.3820          | 11152.00    |
| GRIT      | 1.6615     | 1.0509  | 1.6840          | NO      | 0.6218          | 4760.00     |
| VICE      | 1.5247     | 1.1486  | 1.6780          | NO      | 0.4850          | 15317.00    |
| DISH:ESPN | 1.5616     | 0.5921  | 1.6880          | NO      | 0.5219          | 17212.50    |
| NBAT      | 3.2167     | 3.6821  | 1.6770          | YES     | 2.1770          | 17902.70    |
| SPK       | 0.9825     | -0.0378 | 1.6910          | NO      | 0.0572          | 2890.00     |
| REVOLT    | 2.2442     | 1.8805  | 1.6840          | YES     | 1.2045          | 2210.00     |
| TRU       | 1.4554     | 0.3858  | 1.6900          | NO      | 0.4157          | 3740.00     |
| FUSE      | 1.5391     | 0.8507  | 1.6840          | NO      | 0.4994          | 3403.40     |
| LOGO      | 1.7982     | 1.0516  | 1.6860          | NO      | 0.7585          | 5397.50     |
| DISH:NFLN | 1.2984     | 0.2421  | 1.6900          | NO      | 0.2587          | 3060.00     |
| HIST      | 1.7743     | 0.9667  | 1.6870          | NO      | 0.7346          | 23247.50    |
| TRAV      | 2.4299     | 1.5684  | 1.6880          | NO      | 1.3902          | 5100.00     |
| FX        | 3.8182     | 1.8388  | 1.6910          | YES     | 2.7785          | 10540.00    |
| NHL       | 1.5646     | 0.7613  | 1.6860          | NO      | 0.5249          | 7352.50     |
| FS1       | 1.6658     | 0.7050  | 1.6880          | NO      | 0.6261          | 3179.00     |
| HLN       | 1.8803     | 0.9537  | 1.6880          | NO      | 0.8406          | 8160.00     |
| COM       | 14.0825    | 3.3233  | 1.6870          | YES     | 13.0428         | 2550.00     |
| TLC       | 1.1306     | 0.1031  | 1.6880          | NO      | 0.0909          | 6800.00     |
| TBS       | 1.0467     | 0.0046  | 1.6910          | NO      | 0.0070          | 5100.00     |

## t-test results: direct data by Network

| channel   | $\mu_1$    | t-calc  | t-crit @        | Reject  | Lift,                  | Total       |
|-----------|------------|---------|-----------------|---------|------------------------|-------------|
| Chamici   | visits/min | l care  | $\alpha = 0.05$ | $H_0$ ? | $\mu_1 - \mu_0$        | Spend (USD) |
| FXX       | 8.9825     | 1.1305  | 1.6790          | NO.     | $\frac{\mu_1}{1.5840}$ | 6477.00     |
|           |            | I       |                 | _       |                        |             |
| VEL       | 12.4398    | 3.4039  | 1.6820          | YES     | 5.0413                 | 11152.00    |
| GRIT      | 9.9908     | 1.5448  | 1.6840          | NO      | 2.5923                 | 4760.00     |
| VICE      | 22.1660    | 7.1580  | 1.6780          | YES     | 14.7675                | 15317.00    |
| DISH:ESPN | 48.1157    | 11.5616 | 1.6880          | YES     | 40.7172                | 17212.50    |
| NBAT      | 24.6751    | 8.9567  | 1.6770          | YES     | 17.2766                | 17902.70    |
| SPK       | 8.5671     | 0.2634  | 1.6910          | NO      | 1.1686                 | 2890.00     |
| REVOLT    | 14.0415    | 3.8185  | 1.6840          | YES     | 6.6430                 | 2210.00     |
| TRU       | 11.5695    | 1.3287  | 1.6900          | NO      | 4.1710                 | 3740.00     |
| FUSE      | 15.6779    | 4.3325  | 1.6840          | YES     | 8.2794                 | 3403.40     |
| LOGO      | 14.4085    | 3.3187  | 1.6860          | YES     | 7.0100                 | 5397.50     |
| DISH:NFLN | 24.7257    | 5.2490  | 1.6900          | YES     | 17.3272                | 3060.00     |
| HIST      | 46.4140    | 10.9205 | 1.6870          | YES     | 39.0155                | 23247.50    |
| TRAV      | 21.4131    | 3.8085  | 1.6880          | YES     | 14.0146                | 5100.00     |
| FX        | 59.8364    | 11.8217 | 1.6910          | YES     | 52.4379                | 10540.00    |
| NHL       | 23.8175    | 8.3011  | 1.6860          | YES     | 16.4190                | 7352.50     |
| FS1       | 24.8399    | 6.5103  | 1.6880          | YES     | 17.4414                | 3179.00     |
| HLN       | 43.4580    | 13.9879 | 1.6880          | YES     | 36.0595                | 8160.00     |
| СОМ       | 26.1737    | 7.1864  | 1.6870          | YES     | 18.7752                | 2550.00     |
| TLC       | 27.9236    | 7.8521  | 1.6880          | YES     | 20.5251                | 6800.00     |
| TBS       | 24.1560    | 3.7778  | 1.6910          | YES     | 16.7575                | 5100.00     |

## t-test results by creative id

|       | D 1.    |
|-------|---------|
| -mail | Results |
|       |         |

| Email Results |            |        |                 |         |                 |             |
|---------------|------------|--------|-----------------|---------|-----------------|-------------|
| creative_id   | $\mu_1$    | t-calc | t-crit @        | Reject  | Lift,           | Total       |
|               | visits/min |        | $\alpha = 0.05$ | $H_0$ ? | $\mu_1 - \mu_0$ | Spend (USD) |
| f3483         | 2.3608     | 1.4911 | 1.6960          | NO      | 1.7517          | 70555.1000  |
| eff6a         | 2.0483     | 1.2591 | 1.7140          | NO      | 1.4392          | 11391.7000  |
| 5992d         | 2.0586     | 1.3143 | 1.7140          | NO      | 1.4496          | 11099.3000  |
| b6cc0         | 2.2467     | 1.4401 | 1.7170          | NO      | 1.6376          | 10897.8500  |
| 6570d         | 2.4830     | 1.9204 | 1.7210          | YES     | 1.8739          | 12630.1500  |
| efc56         | 2.3951     | 2.1186 | 1.7210          | YES     | 1.7860          | 8749.9000   |
| a45ca         | 2.3823     | 2.2615 | 1.7290          | YES     | 1.7732          | 9520.8500   |
| 6e692         | 1.7295     | 0.5922 | 1.7400          | NO      | 1.1204          | 30706.2500  |

#### **Direct Results**

| creative_id | $\mu_1$    | t-calc | t-crit @        | Reject  | Lift,           | Total       |
|-------------|------------|--------|-----------------|---------|-----------------|-------------|
|             | visits/min |        | $\alpha = 0.05$ | $H_0$ ? | $\mu_1 - \mu_0$ | Spend (USD) |
| f3483f      | 13.8871    | 0.3346 | 1.6960          | NO      | 8.6028          | 70555.10    |
| eff6a       | 11.5753    | 0.3095 | 1.7140          | NO      | 6.2911          | 11391.70    |
| 5992d       | 11.3258    | 0.3041 | 1.7140          | NO      | 6.0415          | 11099.30    |
| b6cc0       | 12.1324    | 0.3522 | 1.7170          | NO      | 6.8482          | 10897.85    |
| 6570d       | 15.1600    | 0.4465 | 1.7210          | NO      | 9.8757          | 12630.15    |
| efc56       | 14.9599    | 0.4435 | 1.7210          | NO      | 9.6756          | 8749.90     |
| a45ca       | 14.2705    | 0.5527 | 1.7290          | NO      | 8.9863          | 9520.85     |
| '6e692      | 25.6538    | 0.9468 | 1.7400          | NO      | 20.3696         | 30706.25    |

#### **Actionable Conclusions**

#### **Email traffic conclusions:**

We determined that the networks where spots contributed to increased traffic were, FXX, VEL, NBAT, REVOLT, FX,  $COM^2$ . We determined that the creatives that were better received began with 6570d, efc56, and a45ca.

#### Direct traffic conclusions:

Many networks showed increased rates of site traffic, but many were erratic, unverifiable and short lived. Without further understanding of direct traffic data, I cannot make more effective conclusions beyond, the ineffective networks were GRIT, SPK, TRU.

#### Measuring Cost Effectiveness of our Spots:

These metrics

would have been good to calculate, it can be done by counting net total site visits instead of a rate.

|   | Metric Name           | Abbrev. | Description                    | Formula                                    |  |
|---|-----------------------|---------|--------------------------------|--------------------------------------------|--|
| ĺ | Cost per Visit        | CPV     | Amount Spent                   | Total cost of spots in all active periods/ |  |
|   |                       |         | per Visitor                    | Total No. of visits in the periods         |  |
| ſ | Spot Effectiveness    | SE      | How often a spot must be       | Total No. of visits /                      |  |
| ı |                       |         | shown to get increased traffic | No. times the spot was shown               |  |
| ſ | Network Effectiveness | CE      | How many channels a spot       | No. of networks                            |  |
| ı |                       |         | must be shown on to get        | where the spot is shown/                   |  |
|   |                       |         | increased traffic              | Total No. of visits across all networks    |  |

<sup>&</sup>lt;sup>2</sup>low counts for active periods.

## Future Idea: Modeling arrivals Hawke's processes

#### Rationale:

On slides 9,10,11 we see that when there is an engaging spot campaign, there is an initial jump with a long drift back to baseline. This implies that spot campaigns have a lasting effect, violating the independence assumption of simple Poisson point processes. To capture that we introduce Hawke's Processes.

#### Definition: Hawkes Process<sup>a</sup>

ahttps://en.wikipedia.org/wiki/Point\_process

A Hawkes process  $\{Q(t)\}_{t\geq 0}$ , also known as a self-exciting counting process, is a simple point process whose conditional intensity can be expressed as:

$$\lambda(t) = \mu(t) + \int_{-\inf}^{t} \nu(t-s) dN(s),$$

where  $\nu: \mathbb{R}^+ \to \mathbb{R}^+$  is a kernel function (i.e.,  $\nu(x) = \alpha e^{-\beta x}$ ) which expresses the positive influence of past events on the current rate process,  $\lambda(t), \mu(t)$ .

**Idea:** Hawke's parameter estimation  $\left\{\hat{\alpha},\hat{\beta},\hat{\mu},\right\}$  through stochastic optimization and simulation<sup>3</sup>.

³Da Fonseca, J., & Zaatour, R. (2014). Hawkes process: Fast calibration, application to trade clustering, and diffusive limit. Journal of Futures Markets, 34(6), 548-579

## Suggested Improvements for Tatari Dashboard

- User Interface:
  - In the linear panel the zoom could be adjusted by stretching the window instead of by a slider.
  - ▶ Users could have the option of adjusting granularity through a drop-down menu.
  - ▶ Toggle switch for axes sharing between top and bottom graphs in linear
  - Allowing users to change the date window.
- Peatures:
  - in calendar view for CPV, include an estimate for what the media slot has sold for in the past, to illustrate savings, or premium paid.
- Issues:
  - Creative heat map disabled and makes it hard to click back.
  - I'm not sure why the bar graphs for spots, limits colors to two channels each, may just be an glitch on my end.

18 / 18