Software Requirements

Virtual Reality for Sensor Data Analysis

Project: Virtual Reality for Sensor Data Analysis 0.1

Author: Gero Birkhölzer, Johannes Blank, Alexej Gluschkow, Fabian Klopfer, Lisa-Maria Mayer

Last Change: May 11, 2017

Contents

1	Purpose	4
	1.1 Product Idea and Goal	4
	1.2 Mandatory Criteria	4
	1.3 Desired Criteria	4
2	Product Environment	6
	2.1 Software	6
	2.2 Hardware	6
3	Product Functions	7
	3.1 General Features	7
	3.2 VR-World	7
	3.3 Settings	8
4	Proposed Architecture	9
	4.1 Overview	9
	4.2 Component Decomposition	9
	4.2.1 Services	9
	4.2.2 GUI	10
	4.2.3 Additional Classes	11
5	Product Data	12
	5.1 VR-World	12
	5.2 Bluetooth Functionality	12
6	User interface	14
	6.1 Structure	14
	6.1.1 Start screen	14
	6.1.2 VR-Mode	14
	6.1.3 Live Data	14
	6.1.4 Settings	15
	6.2 Layout	15
7	Quality Requirements	16
8	Test Cases	17
9	Development Environment	18
	9.1 Software	18
	9.2 Hardware	18
10	Project Time Line	19
11	Abbreviations	20

_	-	-	~	-	
١	/IDTILAT	PEATTEN	FOR SENSOR	1) ATCA	AMATMOTO
١	VIBLUAL	INFALLEY	FUR DENSUR	LIJATA	ANALISIS

CONTENTS

12 Glossary 20

1 Purpose

The software project in the summer term 2017 at the University of Constance focuses on the development of apps for mobile devices.

In the course of the project an Android app is being developed which allows the user to explore sensor data in virtual reality.

Especially, this Software Requirements document intends to describe the functionality and requirements of the app being developed. Furthermore, the internal structure of the app as well as some test cases are specified.

1.1 Product Idea and Goal

The general idea of the product is to allow the user to record data about their environment and later explore the data in a three-dimensional scene via virtual reality. Therefore, the developed product will consist of two parts:

Firstly, the app itself. It's main goal is to connect to an external sensor via Bluetooth and to process and save the data collected by the sensor.

In order to view the saved data, the second part consists of a web site where a virtual reality scene is generated and the stored data are visualized.

These two parts will be connected in such a way that the user can open the browser with the according web site from within the app.

1.2 Mandatory Criteria

- M1 The app shall use the Bluetooth adapter of the smartphone to connect to the sensor.
- **M2** The app shall track the position of the sensor with up to 30m tolerance.
- M3 The app shall store the data retrieved from the sensor.
- M4 The web site shall display a virtual reality scene using the WebVR framework.
- M5 The web site shall display the stored data within the virtual reality scene.
- M6 The virtual reality scene in M4 shall be explorable for the user by using an external controller.

1.3 Desired Criteria

- **D1** There could be a visualization of the stored data in augmented reality in the product.
- **D2** The virtual reality world could represent more than a single scene.
- **D3** The product could contain the functionality to view not only one set of data at a time but to gerenerate a time lapse of the data that can be experienced like an interactive video where the user can move around and change the camera perpective.

2 Product Environment

2.1 Software

 $\circ\,$ Android 5.0 Lollipop or higher

2.2 Hardware

- $\circ\,$ Bluetooth-enabled Smartphone
- o TI SimpleLink SensorTag device (referred to as "sensor")
- $\circ\,$ Victor star VRBox 2.0
- $\circ\,$ VR-Park Bluetooth Controller

3 Product Functions

3.1 General Features

- **F1.1** The app shall use the Bluetooth adapter of the smartphone and the Android bluetooth library to connect to a TI SimpleLink SensorTag device.
- **F1.2** The app shall be able the record data from a connected sensor.
- F1.3 The app shall display recorded data in a VR-World
- **F1.4** The app shall track connected TI SimpleLink SensorTag devices by tracking the position of the cellphone.

3.2 VR-World

The VR-Mode is a 3D view of the world. When entering VR-Mode the user will see a fullscreen 3D world and by pressing the button in the lower right corner he can enter the stereoscopic view of the World. The VR-World is a 3D representation of a real series of rooms.

- **F2.1** The VR-World shall be able to be viewed inside a web browser and from within the app.
- **F2.2** While viewing the VR-World the user shall be able to look around using the gyro sensor of his phone to pan the camera around.
- **F2.3** While the app is not in stereoscopic 3D mode the user shall be able to click and drag to pan the camera around.
- **F2.4** The app shall be able to move the camera inside the VR-World by using a bluetooth controller.
- **F2.5** The data fechted from the sensors shall be displayed inside the VR-World.
- **F2.6** When in VR-Mode, the app shall be in fullscreen mode.
- **F2.7** The app shall exit the VR-Mode if the user is pressing the "x" in the top right corner of the screen.
- **F2.8** The app shall be able to switch between stereoscopic 3D and normal 3D mode.
- **F2.9** The app shall be able to switch from fullscreen VR-Mode to stereoscopic by pressing the button in the lower right corner or by pressing the A-Button on his controller.
- **F2.10** The app shall be able to exit by pressing the back button on his device or by touching the back button in the top left corner.

- **F2.11** The app shall be able to switch to the settings screen, while it's in normal 3D mode.
- **F2.12** The app shall be able to switch rooms if the user pushes the B-Button on his controller.
- **F2.13** The app shall visualize the position of stored data from the TI SimpleLink SensorTag device.
- **F2.14** The app shall visualize the given data by the Ti SimpleLink SensorTag, by displaying a point approximately at the sensors stored location, with a number for the value of the the data.
- **F2.15** The app shall visualize the data by spanning a mesh over all recorded points from the sensor, while the height is the value of the given data.
- **F2.16** The User shall be able to switch between the two representation by pressing the X-Button on his controller.

3.3 Settings

The user can set the following options:

- **F3.1** The app shall be configurable so that the user may choose wich data shall be displayed in the VR-World (temperature, etc.).
- **F3.2** The app shall list the connected devices and a short info about the current setting and state of the TI SimpleLink SensorTag device.
- **F3.4** The app shall list the results of a Bluetooth scan and present an user interface for controlling the connection of TI SimpleLink SensorTag devices.

4 Proposed Architecture

A better zoomable representation of these diagrams can be found in the github repository of this project in /doc/pflichtenheft/pics, where also the xml sources are.

4.1 Overview

4.2 Component Decomposition

4.2.1 Services

From AndroidDoc:

"A Service is an application component that can perform long-running operations in the background, and it does not provide a user interface".

• BluetoothManager: Uses the android.bluetooth and especially the android.bluetooth.le libraries to fetch the sensor data from the TI CC2650.

• Tracking Manager: Handles the tracking of the cellphone and therefore of the TI Sensor Tag devices. the current position gets determined by GPS and enhanced by the cellphone sensor and wifi data.

• **StorageManager:** Processes the data provided by the TrackingManager and the BluetoothManager. Uses a JSON file to store data.

 \circ ${\bf WebVRManager:}$ Handles the display of the Vr-World and the given data from the sensor.

4.2.2 GUI

From AndroidDoc:

"They (Activities) serve as the entry point for a user's interaction with an app, and are also central to how a user navigates within an app (as with the Back button) or between

apps (as with the Recents button)".

- o MainActivity Provides the main startup screen as the main entry point.
- **VRViewActivity** Shall open a new browser window to display the WebVR webpage.
- \circ **LiveDataActivity** shall provide a view of the sensor data in human readable form.
- TISettingsActivity: Settings screen containing scanning and connecting, connected devices and device settings fragments.
 - ♦ ScanningConnectingFragment shall show the scanning results, delivered by the SensorTagBluetoothReceiverService and controll to which device to connect to or disconnect.
 - ConnectedDevicesFragment shall show a list of all connected devices and a short info about the current setting and state of the TI SimpleLink SensorTag device.
 - ♦ ConnectedDevicesSettingsFragment shall implement the configuration of the app features of the sensor.

4.2.3 Additional Classes

- GATT Profiles (for each sensor one)
- $\circ \ \mathbf{GATT} \ \mathbf{Sensor} \ \mathbf{Service} \ \mathbf{UUIDs}$
- \circ **Parser Functions** because the BLE protocol implemented in the TI CC2650 delivers raw sensor output

5 Product Data

5.1 VR-World

D1.1 Models: The modeles used to render the VR-World will be saved as .obj files using Blender in /webvr/models/.

D1.2 Textures: As .png files in /webvr/img/.

5.2 Bluetooth Functionality

Service UUIDs Device Info Service 0000180a-0000-1000-8000-00805f9b34fb

Firmware Revision 00002A26-0000-1000-8000-00805f9b34fb

IR Temprature Service f000aa00-0451-4000-b000-0000000000000

Optical Service f000aa70-0451-4000-b000-0000000000000

Period in tens of milliseconds Configuration: 0: disable, 1: enable; in case of 3D

value: 0: disable, bit 0: enable x, bit 1: enable y, bit 2: enable z

6 User interface

6.1 Structure

A small overview of the menu Structure.

6.1.1 Start screen

The Start screen will be shown when the app is launched, can switch to everything. He can enter the VR-Mode, Live-Data from the sensor or change the settings.

6.1.2 VR-Mode

The VR-Mode launches normally in normal 3D mode from where the user can switch to stereoscopic 3D view by touching the button in the lower left corner or by pressing the A-Button on his controller.

6.1.3 Live Data

Live Data just shows the current live data from the connected sensor.

6.1.4 Settings

Here the user can select which sensor in range he wants to connect to and some basic settings like switching blue-tooth on and scan for more devices. From the Setting menu the user can switch to VR-Mode without going back to the start screen.

6.2 Layout

A mockup of the Start up screen.

And a mockup of the stereoscopic Vr-Mode.

7 Quality Requirements

	very important	important	less important	lesser important
Functionality				
Adequacy		${f X}$		
Correctness		\mathbf{X}		
Interoperability				\mathbf{X}
Security				${f X}$
Reliability		X		
Usability				
Comprehensibleness			\mathbf{X}	
Usability			\mathbf{X}	
Efficiency				
$Time\ response$			\mathbf{X}	
$Resource\ costs$			\mathbf{X}	
Portability				X

Functionality All functions should work as intended, but neither the interaction with other programms nor the security of the system is taken into account.

Reliability Errors should be reduced to a reasonable amount.

Usability The App should be usable, but user-friendliness is not stressed during the development.

Efficiency The App should respond in reasonable time to inputs. It also should use reasonable amounts of processor time and storage.

Portability The App will developed for Android without consideration for other operating system.

8 Test Cases

/T0300/ Look around: While in normal 3D mode the tester shall click the screen and drag first up to move the camera up. Then move down to move the camera down, then at last left and then right, all the time the camera must follow the movement of the finger. After this the tester shall tilt the phone up to move the camera up, then tilt it down, left and right. The camera shall follow the tilt direction of the phone all the time with no delay.

This test shall be repeated in stereoscopic 3D view. While the clicking and dragging shall not work, the tilting of the phone shall be the only way to pan the camera.

/T0310/ Move inside VR-World: While in normal 3D mode the tester shall tilt the joystick on the controller forward and the camera shall move forward. By tilting the joystick backward the camera shall move back, by tilting left the camera shall move left and by tilting right it shall move right. The camera shall allways follow the view point, so forward is allways in the center of the camera.

This test shall be again repeated in stereoscopic 3D view and all functions shall work the same.

/T0320/ Searching, connecting and disconnecting devices: While on the TISettings-Activity the tester shall search a TI SimpleLink SensorTag device by pressing the "Scann" button. All devices nearby shall be shown in a list with distinguishable entries. By tapping on a list entry a connection to the device shall be established. By tapping again on the list entry the connection shall be terminated.

/T0330/ Displaying temperature: While in normal 3D Mode and a established connection to a TI SimpleLink SensorTag device the tester shall look around. At the position of the device a glowing shere shall be displayed.

This test shall be again repeated in stereoscopic 3D view and shall work the same.

9 Development Environment

9.1 Software

OS Windows 10, macOS Sierra, Linux Mint 18.1

IDEs Android Studio, Sensor Controller Studio 1.4.1, Atom, Chrome DevTools

VCS Git,GitHub

UML-Editor Enterprise Architekt, MS Visio, draw.io

Zeichensatz LATEX

9.2 Hardware

Smartphone Motorola XT1572

Sensor TI CC2650STK

VR-Headset Victorstar VRBox 2.0

Bluetooth-Controller VR-Park (?)

10 Project Time Line

Week / Final Date	Event / Tasks		
25.5 1.5.	first research, write Pflichtenheft		
2.5.	release Pflichtenheft, project plan, subjects of milestones		
2.5 8.5.	distribute tasks, decide on design		
9.5 15.5.	start building		
16.5 22.5.			
22.5.	Milestone 1: Bluetooth and sensor location data can be gathered, a		
	VR-Room is built, a GUI is worked out		
23.5 29.5.			
30.5 5.6.			
6.6 12.6.			
12.6.	Milestone 2: Gathered data can be displayed in 3D, intermediate as-		
	sessment		
13.6 19.6.			
20.6 26.6.			
27.6 3.7.			
4.7 10.7.			
11.7 17.7.			
17.7.	Milestone 3: The app works as wanted :D		
18.7 24.7.	prepare presentation and usage examples		
25.7.	final presentation		

Possible starting points:

Simple, bad layout TI official, complex

11 Abbreviations

TI Texas Instruments

VR Virtual Reality

DB Database

App Application

BLE Bluetooth Low Energy

12 Glossary

Bluetooth Technology for wireless transmitting data between devices in close

proximity.

Bluetooth Low Energy More energy efficient version of Bluetooth.

TI SimpleLink SensorTag Device that provides data from multiple sensors via a Bluetooth

interface.

Virtual Reality Visual 3D computer simulation of a real world.

Stereoscopic 3D The impression of 3D is created by rendering different pictures for

every eye of the viewer.

Augmented Reality A view of the real world gets combined with images from the VR-

World.

Gyroscope sensor Sensor for measuring orientation in space.