MAC 105 – Fundamentos de Matemática para Computação

$2^{\underline{a}}$ Lista de Exercícios 1.0 -7/3/2016 - Entrega 14/3/2016

Eduardo Hashimoto nUSP 6514136

Nas questões abaixo, justifique suas respostas, não fique só num *sim* ou *não*. Se for uma demonstração, diga antes que tipo de método usou (vai direto, vem direto, mistura de vai e vem, mágica,..); uma demonstração detalhada, que mostre claramente os métodos usados, é, neste ponto do curso, mais importante que duas demonstrações mais ou menos.

A lista para nota consiste só das questões marcadas com . Ao lado do símbolo aparece um <u>número</u> que é o valor da questão. O peso da lista é a soma dos valores das questões.

Outras questões podem ser entregues para correção, ou comentadas em classe ou no fórum.

- 1. 3 Considere os seguintes enunciados:
 - (a) Se está chovendo então está ventando e sem sol. Em notação matemática $A \Rightarrow (B \land C)$.
 - (ā) O reverso de (a), isto é, se está ventando e sem sol, então está chovendo. Em notação matemática $(B \wedge C) \Rightarrow A$.

Para cada um dos enunciados abaixo, indique se é equivalente a (a), (\bar{a}) , ou nenhum deles. Interprete as variações na linguagem coloquial de uma forma razoável ("chover" X "estar chovendo" tem uma relação óbvia, por exemplo).

(b) Está ventando e sem sol só se está chovendo.

A expressão "só se" indica que estar chovendo é condição necessária para estar ventando e sem sol. Assim, poderiamos reescrever da seguinte maneira: Se está ventando e sem sol então está chovendo, isto é, $(B \land C)$ só se A, que é o mesmo que $(B \land C) \Rightarrow A$.

Logo a afirmação (b) é equivalente ao reverso de (a).

- (c) Chover é suficiente para ventar sem sol.
 - Sim, o enunciado coloca em outras palavras que sempre que chove está ventando e sem sol, o que torna chover uma condição suficiente para que esteja ventando e sem sol. No mais, em uma implicação do tipo $A \wedge B$, A é condição suficiente para B.
- (d) Chover é necessário para ventar sem sol.

Esse enunciado, no entanto, não é verdade. Como não sabemos poderiamos dizer que "Se está trovejando então está ventando e sem sol"e nada dizer sobre a chuva (e ainda assim estar ventando e sem sol). Assim, chover não é condição necessária para ventar sem sol. É suficiente, mas não necessária.

- (e) Vento é condição necessária para chuva, assim como falta de sol. O vento ou falta de sol isoladamente não são condições necessárias para a chuva. Em notação matemática teríamos dois enunciados, a saber: $A \Rightarrow B$ e também $A \Rightarrow C$, e cada um desses enunciados é diferente dos enunciados dados.
- (f) Ou está ventando só se está chovendo ou não tem sol só se está chovendo. O enunciado é complexo e, talvez, seja melhor estudá-la na notação matemática: $(B\Rightarrow A)\vee(C\Rightarrow A)$ Usando uma tabela verdade, temos:

A	В	С	$B \wedge C$	$B \Rightarrow A$	$C \Rightarrow A$	$(B \Rightarrow A) \lor (C \Rightarrow A)$	$A \Rightarrow (B \land C)$	$(B \wedge C) \Rightarrow A$
F	F	F	F	V	V	V	V	V
F	F	V	F	V	F	V	V	V
F	V	F	F	F	V	V	V	V
V	F	F	F	V	V	V	F	V
V	V	F	F	V	V	V	F	V
V	F	V	F	V	V	V	F	V
F	V	V	V	F	F	F	V	F
V	V	V	V	V	V	V	V	V

Como podemos observar na tabela-verdade, o enunciado $(B \Rightarrow A) \lor (C \Rightarrow A)$ é equivalente ao enunciado $(B \land C) \Rightarrow A$.

2. $\boxed{5}$ Seja Ruma relação transitiva sobre um conjunto A. Considere agora a relação E sobre A dada por

aEb se e só se a = b ou aRb e bRa.

(a) Mostre que E é uma relação de equivalência.

Para E ser uma relação de equivalência deve satisfazer as seguintes propriedades:

reflexiva, isto é aEa. Do enunciado podemos concluir que $a=a\Rightarrow aEa$. Assima relação E é reflexiva.

simétrica, isto é se aEb então bEa. Do enunciado temos que $a=b\Rightarrow aEb$, mas $a=b\Leftrightarrow b=a$. Assim, $b=a\Rightarrow bEa$.

transitiva, isto é, se aEb, bEc então aEc. Analogamente ao exposto acima, temos que se a=b e b=c, então a=c. Do enunciado temos que $a=c\Rightarrow aEc$. Assim, a relação E é uma relação de equivalencia.

(b) Suponha que A consiste de todos os subconjuntos de $\{1,2,3,4,5,6,7,8,9\}$, e R é a inclusão própria \subset . O que é E?

Reescrevendo o enunciado teríamos, aEb se e só se a = b ou $a \subset b$ e $b \subset a$, com a e b sendo elementos do conjunto A. Como a relação R é de inclusão própria o elemento a só pode estar contido em algo maior, e.g, $1, 2 \subset 1, 2, 3$, mas não menor ou igual, e.g., $1, 7 \subset 1, 7$. O mesmo acontece com o elemento b. Assim para satisfazer as duas condições simultaneamente, o elemento a deve ser igual ao elemento b. Assim, a relação E é uma relação de igualdade.

(c) Suponha que A consiste de todos os subconjuntos de $\{1,2,3,4,5,6,7,8,9\}$, e R é a inclusão \subseteq . O que é E?

Reescrevendo o enunciado teríamos, a Eb se e só se a = b ou $a \subseteq b$ e $b \subseteq a$, com a e b sendo elementos do conjunto A. Como a relação R é de inclusão própria o elemento a só pode estar contido em algo maior ou igual, e.g, $1,2 \subseteq 1,2,3,1,7 \subset 1,7$. O mesmo acontece com o elemento b. Assim para satisfazer as duas condições simultaneamente, o elemento a deve ser igual ao elemento b. Assim, a relação E é uma relação de igualdade.