IMPORTING LIBRARIES & DATASET

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
```

In [2]: M df = pd.read_csv('telco.csv')

In [3]: ▶ df.head()

Out[3]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLin€
0	7590- VHVEG	Female	0	Yes	No	1	No	No phor servic
1	5575- GNVDE	Male	0	No	No	34	Yes	Ν
2	3668- QPYBK	Male	0	No	No	2	Yes	٨
3	7795- CFOCW	Male	0	No	No	45	No	No phor servic
4	9237- HQITU	Female	0	No	No	2	Yes	Ν

5 rows × 21 columns

EXPLORATORY DATA ANALYSIS

Number of Rows: 7043 Number of Columns: 21 Number of Missing Values: 0 Number of Unique: customerID 7043 gender 2 SeniorCitizen 2 2 Partner Dependents 2 73 tenure 2 PhoneService 3 MultipleLines 3 InternetService 3 OnlineSecurity 3 OnlineBackup 3 DeviceProtection TechSupport 3 3 StreamingTV 3 StreamingMovies 3 Contract 2 PaperlessBilling PaymentMethod 4 MonthlyCharges 1585 TotalCharges 6531 Churn 2 dtype: int64

```
In [5]:
         M df.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 7043 entries, 0 to 7042
            Data columns (total 21 columns):
                                   Non-Null Count Dtype
             #
                 Column
                 _____
                                   -----
             0
                 customerID
                                   7043 non-null
                                                   object
             1
                                   7043 non-null
                                                   object
                 gender
             2
                                   7043 non-null
                                                   int64
                 SeniorCitizen
             3
                                   7043 non-null
                                                   object
                 Partner
             4
                 Dependents
                                   7043 non-null
                                                   object
             5
                 tenure
                                   7043 non-null
                                                   int64
             6
                 PhoneService
                                   7043 non-null
                                                   object
             7
                 MultipleLines
                                   7043 non-null
                                                   object
             8
                 InternetService
                                   7043 non-null
                                                   object
             9
                 OnlineSecurity
                                   7043 non-null
                                                   object
             10
                 OnlineBackup
                                   7043 non-null
                                                   object
             11
                 DeviceProtection
                                   7043 non-null
                                                   object
             12
                 TechSupport
                                   7043 non-null
                                                   object
             13
                 StreamingTV
                                   7043 non-null
                                                   object
             14
                StreamingMovies
                                   7043 non-null
                                                   object
             15
                 Contract
                                   7043 non-null
                                                   object
             16
                 PaperlessBilling
                                   7043 non-null
                                                   object
             17
                 PaymentMethod
                                   7043 non-null
                                                   object
                 MonthlyCharges
                                   7043 non-null
                                                   float64
             19
                 TotalCharges
                                   7043 non-null
                                                   object
             20 Churn
                                   7043 non-null
                                                   object
            dtypes: float64(1), int64(2), object(18)
            memory usage: 1.1+ MB
         df = df[df['TotalCharges']!=" "]
In [6]:
In [7]:

    | df['TotalCharges'] = df['TotalCharges'].astype('float')

In [8]:
         M df.columns
   'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport',
                   'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges', 'TotalCharges', 'Churn'],
                  dtype='object')
```

```
In [9]:  uni=[]
for i in df.columns:
    if df[i].nunique()<5:
        print(i, df[i].unique())</pre>
```

```
gender ['Female' 'Male']
SeniorCitizen [0 1]
Partner ['Yes' 'No']
Dependents ['No' 'Yes']
PhoneService ['No' 'Yes']
MultipleLines ['No phone service' 'No' 'Yes']
InternetService ['DSL' 'Fiber optic' 'No']
OnlineSecurity ['No' 'Yes' 'No internet service']
OnlineBackup ['Yes' 'No' 'No internet service']
DeviceProtection ['No' 'Yes' 'No internet service']
TechSupport ['No' 'Yes' 'No internet service']
StreamingTV ['No' 'Yes' 'No internet service']
StreamingMovies ['No' 'Yes' 'No internet service']
Contract ['Month-to-month' 'One year' 'Two year']
PaperlessBilling ['Yes' 'No']
PaymentMethod ['Electronic check' 'Mailed check' 'Bank transfer (automati
c)'
 'Credit card (automatic)']
Churn ['No' 'Yes']
```



```
In [11]:  plt.figure(figsize=(12,8))
    sns.distplot(df['MonthlyCharges'])
    plt.show()
```


In [12]:

sns.catplot(data=df, x='Churn', y='tenure', kind='violin', height=7, aspect=1
plt.show()


```
In [14]: N cat_col=[]
for i in df.columns:
    if df[i].nunique()<10:
        cat_col.append(i)</pre>
```

```
In [15]: M cat_df = df[cat_col]
```

In [16]: N cat_df

Out[16]:

	gender	SeniorCitizen	Partner	Dependents	PhoneService	MultipleLines	InternetService
0	Female	0	Yes	No	No	No phone service	DSL
1	Male	0	No	No	Yes	No	DSL
2	Male	0	No	No	Yes	No	DSL
3	Male	0	No	No	No	No phone service	DSL
4	Female	0	No	No	Yes	No	Fiber optic
7038	Male	0	Yes	Yes	Yes	Yes	DSL
7039	Female	0	Yes	Yes	Yes	Yes	Fiber optic
7040	Female	0	Yes	Yes	No	No phone service	DSL
7041	Male	1	Yes	No	Yes	Yes	Fiber optic
7042	Male	0	No	No	Yes	No	Fiber optic

7032 rows × 17 columns

In [20]: ► temp

Out[20]:

	attribute1	attribute2	No	Yes	churn_rate
0	gender	Female	2544	939	0.269595
1	gender	Male	2619	930	0.262046
2	SeniorCitizen	0	4497	1393	0.236503
3	SeniorCitizen	1	666	476	0.416813
4	Partner	No	2439	1200	0.329761
5	Partner	Yes	2724	669	0.197171
6	Dependents	No	3390	1543	0.312791
7	Dependents	Yes	1773	326	0.155312
8	PhoneService	No	510	170	0.250000
9	PhoneService	Yes	4653	1699	0.267475
10	MultipleLines	No	2536	849	0.250812
11	MultipleLines	No phone service	510	170	0.250000
12	MultipleLines	Yes	2117	850	0.286485
13	InternetService	DSL	1957	459	0.189983
14	InternetService	Fiber optic	1799	1297	0.418928
15	InternetService	No	1407	113	0.074342
16	OnlineSecurity	No	2036	1461	0.417787
17	OnlineSecurity	No internet service	1407	113	0.074342
18	OnlineSecurity	Yes	1720	295	0.146402
19	OnlineBackup	No	1854	1233	0.399417
20	OnlineBackup	No internet service	1407	113	0.074342
21	OnlineBackup	Yes	1902	523	0.215670
22	DeviceProtection	No	1883	1211	0.391403
23	DeviceProtection	No internet service	1407	113	0.074342
24	DeviceProtection	Yes	1873	545	0.225393
25	TechSupport	No	2026	1446	0.416475
26	TechSupport	No internet service	1407	113	0.074342
27	TechSupport	Yes	1730	310	0.151961
28	StreamingTV	No	1867	942	0.335351
29	StreamingTV	No internet service	1407	113	0.074342
30	StreamingTV	Yes	1889	814	0.301147
31	StreamingMovies	No	1843	938	0.337289
32	StreamingMovies	No internet service	1407	113	0.074342
33	StreamingMovies	Yes	1913	818	0.299524

	attribute1	attribute2	No	Yes	churn_rate
34	Contract	Month-to-month	2220	1655	0.427097
35	Contract	One year	1306	166	0.112772
36	Contract	Two year	1637	48	0.028487
37	PaperlessBilling	No	2395	469	0.163757
38	PaperlessBilling	Yes	2768	1400	0.335893
39	PaymentMethod	Bank transfer (automatic)	1284	258	0.167315
40	PaymentMethod	Credit card (automatic)	1289	232	0.152531
41	PaymentMethod	Electronic check	1294	1071	0.452854
42	PaymentMethod	Mailed check	1296	308	0.192020

FEATURE ENGINEERING

```
In [21]: ► df.drop('customerID', axis=1, inplace=True)
```

In [22]: ▶ df.head()

Out[22]:

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetSe
0	Female	0	Yes	No	1	No	No phone service	
1	Male	0	No	No	34	Yes	No	
2	Male	0	No	No	2	Yes	No	
3	Male	0	No	No	45	No	No phone service	
4	Female	0	No	No	2	Yes	No	Fiber

```
cat cols = [x for x in cat cols if x not in target col + bin cols]
In [27]:
          num cols = [x for x in df.columns if x not in cat cols+target col+bin cols]
In [28]:

★ target_col, num_cols, bin_cols, cat_cols

In [29]:
   Out[29]: (['Churn'],
              ['tenure', 'MonthlyCharges', 'TotalCharges'],
              ['gender',
               'SeniorCitizen',
               'Partner',
               'Dependents',
               'PhoneService',
               'PaperlessBilling'],
              ['MultipleLines',
               'InternetService',
               'OnlineSecurity',
               'OnlineBackup',
               'DeviceProtection',
               'TechSupport',
               'StreamingTV',
               'StreamingMovies',
               'Contract',
               'PaymentMethod'])
          In [30]:
In [31]:
          num cols std = scale.fit transform(df[num cols])
          ▶ | num cols std = pd.DataFrame(num cols std, columns=num cols)
In [32]:
          ▶ encoder = LabelEncoder()
In [33]:
In [34]:
          | for i in bin cols:
                 num cols std[i] = encoder.fit transform(df[i])
```

In [35]: ▶ num_cols_std

Out[35]:

	tenure	MonthlyCharges	TotalCharges	gender	SeniorCitizen	Partner	Dependents	F
0	-1.280248	-1.161694	-0.994194	0	0	1	0	
1	0.064303	-0.260878	-0.173740	1	0	0	0	
2	-1.239504	-0.363923	-0.959649	1	0	0	0	
3	0.512486	-0.747850	-0.195248	1	0	0	0	
4	-1.239504	0.196178	-0.940457	0	0	0	0	
7027	-0.343137	0.664868	-0.129180	1	0	1	1	
7028	1.612573	1.276493	2.241056	0	0	1	1	
7029	-0.872808	-1.170004	-0.854514	0	0	1	1	
7030	-1.158016	0.319168	-0.872095	1	1	1	0	
7031	1.368109	1.357932	2.012344	1	0	0	0	

7032 rows × 9 columns

```
| cat_cols_dum = pd.get_dummies(df[cat_cols])
In [36]:
In [37]:
         ▶ | num_cols_std.shape, cat_cols_dum.shape
   Out[37]: ((7032, 9), (7032, 31))
In [38]:
           cat_cols_dum.reset_index(drop=True, inplace=True)
            num_cols_std.reset_index(drop=True, inplace=True)
         df_final = pd.concat([num_cols_std, cat_cols_dum], axis=1, )
In [39]:
         In [40]:
   Out[40]: ((7032, 40), (7032,))
         y = encoder.fit_transform(df['Churn'])
In [41]:
         X = df_final
In [42]:
In [43]:
         X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_si
```

MODEL BUILDING

I Logistics Regression

```
In [45]:
             model_log = LogisticRegression()
In [46]:
          M model_log.fit(X_train, y_train)
    Out[46]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=Tru
             e,
                                 intercept_scaling=1, l1_ratio=None, max_iter=100,
                                 multi class='auto', n jobs=None, penalty='12',
                                 random state=None, solver='lbfgs', tol=0.0001, verbose=
             0,
                                 warm_start=False)
In [47]:
          y log pred = model log.predict(X test)

▶ print("Accuracy Score :", accuracy score(y test, y log pred)), print("Confusi
In [48]:
             Accuracy Score : 0.8100113765642776
             Confusion Matrix:
              [[1156 135]
              [ 199 268]]
    Out[48]: (None, None)
In [49]:
          ▶ | print(classification_report(y_test, y_log_pred))
                            precision
                                         recall f1-score
                                                             support
                                           0.90
                         0
                                 0.85
                                                      0.87
                                                                1291
                         1
                                 0.67
                                           0.57
                                                      0.62
                                                                 467
                                                      0.81
                                                                1758
                 accuracy
                macro avg
                                 0.76
                                           0.73
                                                      0.74
                                                                1758
             weighted avg
                                           0.81
                                                      0.81
                                                                1758
                                 0.80
```

II Random Forest Classification

```
model rfc = RandomForestClassifier()
In [50]:
In [51]:
          M model_rfc.fit(X_train, y_train)
   Out[51]: RandomForestClassifier(bootstrap=True, ccp alpha=0.0, class weight=None,
                                    criterion='gini', max_depth=None, max_features='aut
             ο',
                                    max_leaf_nodes=None, max_samples=None,
                                    min_impurity_decrease=0.0, min_impurity_split=None,
                                    min samples leaf=1, min samples split=2,
                                    min weight fraction leaf=0.0, n estimators=100,
                                     n jobs=None, oob score=False, random state=None,
                                     verbose=0, warm start=False)
In [52]:
          y_rfc_pred = model_rfc.predict(X_test)
          print("Accuracy Score :", accuracy_score(y_test, y_rfc_pred)), print("Confusi
In [53]:
             Accuracy Score: 0.7957906712172924
             Confusion Matrix:
              [[1158 133]
              [ 226 241]]
   Out[53]: (None, None)
In [54]:
          ▶ print(classification report(y test, y rfc pred))
                           precision
                                        recall f1-score
                                                            support
                        0
                                0.84
                                          0.90
                                                     0.87
                                                               1291
                        1
                                0.64
                                          0.52
                                                     0.57
                                                                467
                                                     0.80
                                                               1758
                 accuracy
                                          0.71
                macro avg
                                0.74
                                                     0.72
                                                               1758
             weighted avg
                                0.79
                                          0.80
                                                     0.79
                                                               1758
```

XG Boost

In [56]: ▶ model_xgb = xgb.XGBClassifier(max_depth=5, learning_rate=0.08, objective= 'bi

```
In [57]:
          M model xgb.fit(X train, y train)
   Out[57]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                          colsample bynode=1, colsample bytree=1, gamma=0, gpu id=-1,
                           importance_type='gain', interaction_constraints='
                          learning rate=0.08, max delta step=0, max depth=5,
                          min_child_weight=1, missing=nan, monotone_constraints='()',
                          n_estimators=100, n_jobs=-1, num_parallel_tree=1,
                          objective='binary:logistic', random state=0, reg alpha=0,
                          reg lambda=1, scale pos weight=1, subsample=1,
                          tree_method='exact', validate_parameters=1, verbosity=None)
In [58]:
          In [59]:

▶ | accuracy_score(y_test, y_xgb_pred)
   Out[59]: 0.8088737201365188
In [60]:
          ► confusion_matrix(y_test, y_xgb_pred)
   Out[60]: array([[1157,
                           134],
                    [ 202,
                           265]], dtype=int64)

▶ print(classification report(y test, y xgb pred))
In [61]:
                          precision
                                       recall f1-score
                                                          support
                                         0.90
                       0
                               0.85
                                                   0.87
                                                             1291
                       1
                               0.66
                                         0.57
                                                   0.61
                                                              467
                                                   0.81
                                                             1758
                 accuracy
                macro avg
                               0.76
                                         0.73
                                                   0.74
                                                             1758
             weighted avg
                               0.80
                                         0.81
                                                   0.80
                                                             1758
```

IV Artificial Neural Network

```
In [62]:
          M model ann = Sequential()
```

```
In [63]:
            model ann.add(Dense(input dim=40, units=64, activation='relu'))
            model ann.add(Dropout(0.2))
            model ann.add(Dense(units=64, activation='relu'))
            model ann.add(Dropout(0.2))
            model ann.add(Dense(units=64, activation='relu'))
            model ann.add(Dropout(0.2))
            model ann.add(Dense(units=32, activation='relu'))
            model ann.add(Dropout(0.2))
            model ann.add(Dense(units=1, activation='sigmoid'))
            model_ann.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc
In [64]:
            model_ann.fit(X_train, y_train, batch_size=50, epochs=35, validation_data=(X_
             Epoch 1/35
             88/106 [============>.....] - ETA: 0s - loss: 0.5273 - accu
             racy: 0.7302WARNING:tensorflow:Callbacks method `on test batch begin` is
             slow compared to the batch time (batch time: 0.0000s vs `on_test_batch_b
             egin` time: 0.0010s). Check your callbacks.
             106/106 [=============== ] - 0s 3ms/step - loss: 0.5139 -
             accuracy: 0.7419 - val_loss: 0.4387 - val_accuracy: 0.7878
             Epoch 2/35
             106/106 [=============== ] - 0s 2ms/step - loss: 0.4506 -
             accuracy: 0.7759 - val loss: 0.4304 - val accuracy: 0.7952
             106/106 [=============== ] - 0s 3ms/step - loss: 0.4398 -
             accuracy: 0.7907 - val_loss: 0.4165 - val_accuracy: 0.8072
             Epoch 4/35
             106/106 [=============== ] - 0s 3ms/step - loss: 0.4346 -
             accuracy: 0.7943 - val_loss: 0.4169 - val_accuracy: 0.8038
             Epoch 5/35
             106/106 [=============== ] - 0s 3ms/step - loss: 0.4319 -
             accuracy: 0.7950 - val loss: 0.4240 - val accuracy: 0.8055
In [65]:
          y ann pred = model ann.predict classes(X test)
            WARNING:tensorflow:From <ipython-input-65-25eb986ee273>:1: Sequential.predi
             ct classes (from tensorflow.python.keras.engine.sequential) is deprecated a
             nd will be removed after 2021-01-01.
             Instructions for updating:
             Please use instead:* `np.argmax(model.predict(x), axis=-1)`,
                                                                          if your mode
             l does multi-class classification (e.g. if it uses a `softmax` last-layer
             activation).* `(model.predict(x) > 0.5).astype("int32")`, if your model d
                                       (e.g. if it uses a `sigmoid` last-layer activat
             oes binary classification
             ion).
In [66]:

    | accuracy_score(y_test, y_ann_pred)

   Out[66]: 0.7918088737201365
```

```
In [67]:
   Out[67]: array([[1124,
                         167],
                  [ 199, 268]], dtype=int64)
         ▶ | print(classification_report(y_test, y_ann_pred))
In [68]:
                         precision
                                     recall f1-score
                                                      support
                      0
                             0.85
                                       0.87
                                                0.86
                                                         1291
                      1
                             0.62
                                       0.57
                                                0.59
                                                          467
                                                0.79
                                                         1758
               accuracy
              macro avg
                             0.73
                                      0.72
                                                0.73
                                                         1758
            weighted avg
                             0.79
                                       0.79
                                                0.79
                                                         1758
In [70]:
         # XGB performs slightly better than other model. Better Feature Engineer can
In [ ]:
```