

Resultado parciais TCC

Autor Iago Marçal Costa dos Santos

Requerente

Sumário

1	Introdução	2
2	Correções ao relatório parcial de TCC 1 2.1 Esfericidade	
3	Modelagem	3
4	Resultados Armadilhas 4.1 Dados brutos	
5	Resultados Plantas 5.1 Dados brutos	
6	Regressão de Poisson para colheitas	18

1 Introdução

Neste documento serão apresentados os resultados obtidos para as Analises de Variância por medidas repetidas para os dados de Moscas Brancas em armadilhas e plantas, além de uma regressão de Poisson para os dados de colheita.

2 Correções ao relatório parcial de TCC 1

2.1 Esfericidade

A esfericidade parte do princípio de que uma matriz só é esferica se ela for do tipo H, ou seja,

$$\Sigma_{n \times n} = A_{n \times n} + A'_{n \times n} + \lambda I_{n \times n}.$$

Como demonstrado em uma das minhas referências (Huynh 1970), ao multiplicar Σ por uma matriz de contrastes normalizados C, na forma $C\Sigma C'$, AC' = CA' = 0.

Assim, em caso de esfricidade, $C\Sigma C' = \lambda I$.

A hipótese do teste de Mauschly para esfericidade é H_0) $C\Sigma C' = \lambda I$

No relatório de TCC1 eu defini a estatísica do teste de Mauschly para esfericidade como

$$W = \frac{(m-1)^{m-1} \times |CSC'|}{tr(CSC')^{s-1}},$$

quando na verdade esse é o critério de Mauschly (m é o número de medidas repetidas).

 C_{8x9} é uma matriz de contrastes ortogonais e o livro que uso como base informa que os contrastes adequados para dados temporais são contrastes polinomiais (a matriz C que anexei no github). Obtive esses contrastes pelo SAS (O SAS dá o nome de "matriz M").

 S_{9x9} é a matriz de variâncias e covariâncias estimadas, ou seja, e'e, a matriz de resíduos transposta multiplicada pela matriz de resíduos.

Portanto, CSC'_{8x8} é identica a "matriz E" fornecida pelo SAS. Para conseguir essa matriz basta fazer M(e'e)M' com a matriz de resíduos e a matriz de contrastes.

A estatística do teste de esfericidade é na verdade

$$\chi^2 = -\gamma \times ln(W),$$

onde γ é igual a

$$\gamma = DFE - \frac{2m^2 - 3m + 3}{6(m - 1)},\tag{1}$$

onde DFE é o número de graus de liberdade do erro da análise de entre sujeitos. Para armadilhas, DFE = 8 e para plantas DFE = 84.

E tem distribuição χ^2 com $\frac{m(m-1)}{2}-1$ graus de liberdade sob a hipótese nula.

2.2 Correção nos graus de liberdade

Citei que a correção de Greenhouse-Geisser utiliza os autovalores da matriz CSC', quando na verdade são os valores da diagonal principal.

$$\hat{\varepsilon}_{gg} = \frac{\left(\sum_{i=1}^{m-1} a_{ii}\right)^2}{(m-1)\sum_{i=1}^{m-1} \sum_{j=1}^{m-1} a_{ij}^2}$$

Por fim, descobri que a Correção de Huynh e Feldt é aplicada apenas quando não existem fatores entre sujeitos, tais como o tratamento e os blocos, apenas as medidas repetidas.

A solução é uma modificação que Lacoutre fez, então a correção adequada para os dados é a correção de Huynh-Feldt e Lacoutre

$$\hat{\varepsilon}_{hfl} = \frac{(DFE+1) \times (m-1)\hat{\varepsilon}_{gg} - 2}{(m-1) \times (DFE - (m-1)\hat{\varepsilon}_{gg})}.$$

3 Modelagem

Estou trabalhando com um modelo Split-plot, tal como sugeriu o livro do KUEHL, na forma:

$$Y_{ijk} = \mu + \tau_i + \beta_j + d_{ij} + m_k + (m\tau)_{ik} + (m\beta)_{jk} + \varepsilon_{ijk},$$

para as armadilhas.

- τ_i é o efeito dos tratamentos
- β_i o efeito dos blocos
- d_{ij} o erro 1
- \bullet m_k o efeito das medidas repetidas
- $(m\tau)_{ik}$ a interação entre as medidas repetidas e os tratamentos
- $(m\beta)_{jk}$ a interação entre as medidas repetidas e os blocos
- ε_{ijk} o erro 2.

Não botei interação entre tratamentos e blocos no modelo para armadilhas pois elefica saturado e não tem soma de quadrados.

Ao fazer a estimativa de parâmetros, tal qual eu fazia na aula de delineamento, utilizando tapply, muitas vezes eu obtenho valores preditos negativos, o que não é condizente com a natureza do estudo:

```
attach (armadilhas)

mu <- mean (moscab)

taus <- tapply (moscab, trat, mean) - mean (moscab)

betas <- tapply (moscab, bloco, mean) - mean (moscab)

semanas <- tapply (moscab, semana, mean) - mean (moscab)

int_semana_trat <- tapply (moscab, semana: trat, mean) - mean (moscab)

int_semana_bloco <- tapply (moscab, semana: bloco, mean) - mean (moscab)

Calculando os parâmetros de outra forma, obtenho os valores corretos

tapply (moscab, semana, mean)

tapply (moscab, semana: trat, mean) - rep (tapply (moscab, semana, mean), each = 5)

tapply (moscab, semana: bloco, mean) - rep (tapply (moscab, semana, mean), each = 3)

Não sei o porquê desse erro.
```

4 Resultados Armadilhas

4.1 Dados brutos

- Matriz de resíduos e de contrastes fornecidas pelo SAS em anexo (preditos-resíduos-armadilhas)
- Critério de Mauschly $W=8.828\times 10^{-11}$ (pode ser confirmado pelo codigo R)
- $\gamma = 5.125$ e estatística do teste de Mauschly $\chi^2 = 118,646$ e p-valor < 0.001 (pode ser confirmado pelo R), portanto não há esfericidade na matriz de covariâncias estimada. É necessário usar correções ao teste F na análise dentre sujeitos. O valor das correções também pode ser confirmado pelo R.

Sphericity Tests							
Variables	DF	Mauchly's Criterion	Chi-Square	Pr >ChiSq			
Orthogonal Components	35	8.828E-11	118.64607	<.0001			

Correções	
Greenhouse-Geisser Epsilon	0.2778
Huynh-Feldt-Lecoutre Epsilon	0.3894

Com essas infromações, partimos para a Análise de variância. A análise entre sujeitos é a que estamos mais interessados, visto que o objetivo do trabalho é apontar se existe alguma diferença entre as variedades de tomateiro.

A análise entre sujeitos consiste em ignorar o efeito das medidas repetidas e verificar diferenças nas condições do experimento, tais como tratamentos e blocos.

Análise entre sujeitos DF Sum Square Mean Square F Value Pr >F Source 0.4609 trat 4 14144350.93 3536087.73 1.00 bloco 2 11941969.30 5970984.65 1.69 0.24458 28289707.513536213.44Error

Com esses valores, não é possível rejeitar a hipótese nula de que os tratamentos e blocos não influenciam na quantidade de moscas brancas apeendidas pelas armadilhas, o que pode ser confirmado pelos gráficos abaixo:

A análise dentre os sujeitos investiga a relação entre medidas repetidas, ou seja como cada sujeito se comporta no decorrer do estudo.

Análise dentre sujeitos

						Adj Pr	>F
Source	$_{ m DF}$	Sum Square	Mean Square	F Value	Pr > F	G - G	H-F-L
semana	8	140090485.9	17511310.7	20.36	<.0001	<.0001	<.0001
semana*trat	32	25450001.6	795312.6	0.92	0.5867	0.5264	0.5405
semana*bloco	16	42111529.4	2631970.6	3.06	0.0008	0.0402	0.0210
Error(semana)	64	55044915.2	860076.8				

Pela tabela, existem evidências para rejeitar a hipótese de igualdade entre as semanas. Pelo gráfico boxplot abaixo, podemos verificar que com o decorrer do estudo a quantidade de moscas brancas apreendidas cresce.

A interação entre o tempo e o tratamentos não é significativa, ou seja, no decorrer do estudo, as quantidades de moscas brancas apreendidas crescem igualmente entre as armadilhas de cada uma das variedades de tomateiro.

Quantidade média de moscas-brancas encontradas por tratamento

Já a interação entre o tempo e os blocos é significativa, portanto a quantidade de moscas apreendidas cresce de forma diferente entre as armadilhas de cada bloco.

Quantidade média de Moscas Brancas encontradas por bloco

Os parâmetros do modelo serão apresentados numa planilha no github.

4.2 Ranques

- Matriz de resíduos e de contrastes fornecidas pelo SAS em anexo (preditos-resíduos-armadilhas)
- \bullet Critério de Mauschly $W=7.55\times 10^{-10}$ (pode ser confirmado pelo codigo R)
- $\gamma=6.125$ e estatística do teste de Mauschly $\chi^2=107.647$ e p-valor < 0.001 (pode ser confirmado pelo R). Não há esfericidade na matriz de covariâncias estimada. É necessário usar correções ao teste F na análise dentre sujeitos.

Sphericity Tests							
Variables	DF	Mauchly's Criterion	Chi-Square	Pr >ChiSq			
Orthogonal Components	35	7.55×10^{-10}	107.647	<.0001			

Correções	
Greenhouse-Geisser Epsilon	0.2914
Huynh-Feldt-Lecoutre Epsilon	0.4185

Analise entre sujeitos										
Source	DF	Sum Square	Mean Square	F Value	Pr > F					
trat	4	562.1296296	140.5324074	2.28	0.1491					
bloco	2	86.8777778	43.4388889	0.71	0.5223					
Error	8	492.7148148	61.5893519							

Novamente, não existem evidências para afirmar que exista algum tratamento ou bloco que seja diferente dos demais.

Para a análise dentre os sujeitos não existe o efeito das medidas repetidas, visto que semanalmente todos os ranques variam de 1 a 15.

Source	DF	Type III SS	Mean Square	F Value	$\Pr > F$	Adj Pr	>F
						G - G	H-F-L
moscab	8	0.0000000	0.0000000	0.00	1.0000	1.0000	1.0000
moscab*trat	32	384.3703704	12.0115741	1.69	0.0370	0.1593	0.1194
moscab*bloco	16	539.4222222	33.7138889	4.75	<.0001	0.0064	0.0016
Error(moscab)	64	453.9851852	7.0935185				

Note que com as correções de esfericidade, o p-valor cresceu a ponto de não rejeitar a hipótese nula para interação entre tempo e tratamentos. Portanto, não existem evidências para rejeitar a hipótese de igualdade entre a interação do tempo e dos tratamentos, ou seja, os tratamentos mantém a mesma média de ranks por todo o estudo.

Total de moscas-brancas encontradas por tratamento

Já a hipótese de igualdade entre a interação dos blocos é rejeitada, portanto existe algum bloco cuja média de ranks muda de forma significativa durante o decorrer do estudo.

Total de moscas-brancas encontradas por bloco

5 Resultados Plantas

5.1 Dados brutos

- Matriz de resíduos e de contrastes fornecidas pelo SAS em anexo (preditos-resíduos-plantas)
- \bullet Critério de Mauschly W=0,002 (pode ser confirmado pelo codigo R)
- estatística do teste de Mauschly $\chi^2=507,857$ e p-valor < 0.001 (pode ser confirmado pelo R), portanto não há esfericidade na matriz de covariâncias estimada. É necessário usar correções ao teste F na análise dentre sujeitos. O valor das correções também pode ser confirmado pelo R.

Sphericity Tests						
Variables	DF	Mauchly's Criterion	Chi-Square	Pr >ChiSq		
Orthogonal Components	20	0.0020088	507.85725	<.0001		

Correções	
Greenhouse-Geisser Epsilon	0.4728
Huynh-Feldt-Lecoutre Epsilon	0.4910

Análise entre sujeitos

			J		
Source	DF	Sum Square	Mean Square	F Value	Pr >F
trat	6	102049.1510	17008.1918	19.16	<.001
bloco	2	63472.7211	31736.3605	35.74	<.001
${\rm trat} \times {\rm bloco}$	12	265483.8122	22123.6510	24.92	<.001
Error	84	74583.9429	887.9041		

todos os efeitos foram significativos, inclusive a interação entre blocos e tratamentos. Portanto, existe algum tratamento em que a média é diferente das demais. Também existe algum bloco que tem médias diferentes dos demais e o efeito de interação não é nulo pra alguma combinação entre tratamentos e blocos.

Os tratamentos 3, 6 e 7 aparentam ter menores resultados em relação aos outros (depois vou apresentar um intervalo de confiança)

O bloco 1 aparenta ter menor incidência de moscas-brancas.

interação tratamento 1 e bloco 3, tratamento 4 e bloco 2 e tratamento 5 e bloco 3 tem maior incidência de moscas brancas.

Análise de variância dentre os sujeitos:

Source	DF	Sum Square	Mean Square	F Value	$\Pr > F$	Adj Pr	>F
						G - G	H-F-L
semana	6	96888.5034	16148.0839	14.27	<.0001	<.0001	<.0001
semana * trat	36	90594.0871	2516.5024	2.22	<.0001	0.0043	0.0038
semana * bloco	12	34721.7170	2893.4764	2.56	0.0027	0.0226	0.0209
semana * trat * bloco	72	163414.9497	2269.6521	2.01	<.0001	0.0014	0.0012
Error(semana)	504	570294.4571	1131.5366				

Todos os efeitos são significativos com as correções nos graus de liberdade. Portanto, a quantidade de moscas brancas encontradas nas plantas muda significativamente no decorrer do estudo.

Além disso, o crescimento durante as semanas ocorre de forma desigual entre os tratamentos. Note que os tratamentos 4 e 5 mantém um ritmo acelerado de crescimento durante todo o estudo e ao final são ultrapassados pelo tratamento 1.

O crescimento do número médio de moscas brancas nos bloco 2 e 3 é constante, porém, o bloco 1 apresenta crescimento bem lento e em algumas semanas até diminuição no número de parasitas encontrados.

interação semana \times trat \times bloco

Teste de Tukey para tratamentos - Plantas

Effect	trat	trat	Estimate	Standard Error	DF	t Value	Adj P
trat	1	2	13.2667	4.1125	84	3.23	0.0285
trat	1	3	24.2476	4.1125	84	5.90	<.0001
trat	1	4	-5.0381	4.1125	84	-1.23	0.8824
trat	1	5	-4.9619	4.1125	84	-1.21	0.8898
trat	1	6	21.5905	4.1125	84	5.25	<.0001
trat	1	7	18.6381	4.1125	84	4.53	0.0004
trat	2	3	10.9810	4.1125	84	2.67	0.1189
trat	2	4	-18.3048	4.1125	84	-4.45	0.0005
trat	2	5	-18.2286	4.1125	84	-4.43	0.0005
trat	2	6	8.3238	4.1125	84	2.02	0.4076
trat	2	7	5.3714	4.1125	84	1.31	0.8473
trat	3	4	-29.2857	4.1125	84	-7.12	<.0001
trat	3	5	-29.2095	4.1125	84	-7.10	<.0001
trat	3	6	-2.6571	4.1125	84	-0.65	0.9950
trat	3	7	-5.6095	4.1125	84	-1.36	0.8191
trat	4	5	0.07619	4.1125	84	0.02	1.0000
trat	4	6	26.6286	4.1125	84	6.48	<.0001
trat	4	7	23.6762	4.1125	84	5.76	<.0001
trat	5	6	26.5524	4.1125	84	6.46	<.0001
trat	5	7	23.6000	4.1125	84	5.74	<.0001
trat	6	7	-2.9524	4.1125	84	-0.72	0.9911

De modo geral, os tratamentos 1, 4 e 5 não têm diferença significativa entre si, porém, são significativamente diferentes dos tratamentos 2, 3, 6 e 7, que não são significativamente diferentes entre si.

Fazendo o procedimento de Scott Knott para clusterização hierárquica dos tratamentos, temos:

Procedimento de Scott-Knott						
Tratamento	Média	Cluster				
4	32.019	A				
5	31.943	A				
1	26.981	A				
2	13.714	В				
7	8.342	В				
6	5.390	В				
3	2.733	В				

Obtemos o mesmo resultado do teste de Tukey.

Teste de Tukey para blocos - Plantas

V I							
Effect	bloco	bloco	Estimate	Standard Error	DF	t Value	Adj P
bloco	1	2	-17.2449	2.6922	84	-6.41	<.0001
bloco	1	3	-21.4898	2.6922	84	-7.98	<.0001
bloco	2	3	-4.2449	2.6922	84	-1.58	0.2613

O tratamento 1 tem diferenças significativas do tratamento 2 e 3, que por sua vez não são significativamente diferentes entre si.

5.2 Ranques

- Critério de Mauschly W=0,771 (pode ser confirmado pelo codigo R)
- Estatística do teste de Mauschly $\chi^2=21,17$ e p-valor 0,38 (pode ser confirmado pelo R), portanto não é possível rejeitar a hipótese de esfericidade na matriz de covariâncias estimada. Não é necessário usar correções ao teste F na análise dentre sujeitos.

Sphericity Tests						
Variables	DF	Mauchly's Criterion	Chi-Square	Pr >ChiSq		
Orthogonal Components	20	0,771	21,17	0,38		

Análise entre sujeitos						
Source	DF	Sum Square	Mean Square	F Value	Pr >F	
trat	6	86918.30	14486.3833	80.32	<.001	
bloco	2	83934.1163	41967.0582	35.74	<.001	
${\rm trat} \times {\rm bloco}$	12	152493.198	12707.7665	24.92	<.001	
Error	84	43891.5286	522.5182			

Novamente, todos os efeitos foram significativos.

Existe um tratameto que tem ranques diferentes dos demais. Note que os ranks dos tratamentos 3, 6 e 7 são menores que os outros. (Esses tratamentos são os tratamentos com variedades selvagens, resistentes as moscas brancas)

As plantas do bloco do 1 ficaram com os menores ranks, como podemos observar pelos boxplots abaixo:

As interações 1:2, 4:2, 5:3 e 7:3 apresentaram ranks maiores que as outras.

Análise entre sujeitos:

Source	DF	Sum Square	Mean Square	F Value	$\Pr > F$
semana	6	0.0000	0.0000	0.00	1.0000
$semana \times trat$	36	27251.1000	756.9750	1.94	0.0012
semana \times bloco	12	15366.4408	1280.5367	3.27	0.0001
semana \times trat \times bloco	72	54992.6449	763.7867	1.95	<.0001
Error(moscab)	504	197110.1714	391.0916		

Novamente, todos os efeitos e interações são significativos, exceto pela variação semanal, que não ocorre pois os ranks sempre variam de 0 a 105. Essa característica induz os valores médios semanais a serem 53.

Pela linha temporal abaixo, podemos ver que os tratamentos apresentam comportamentos diferentes no decorrer do estudo. os tratamentos sem a presença da variedade selvagem crescem enquanto os tratamentos com a variedade selvagem se mantém em níveis baixos por todo o período estudado.

Em relação aos blocos, temos que o bloco 2 apresenta uma queda no início do estudo e se estabiliza em torno do ranque médio 60. O bloco 3 apresenta um crescimento e também estabiliza em torno do valor 60. Já o bloco

1 tem queda no ranque médio semanal e por fim uma leve alta.

o próximo gráfico, interação semana \times tratamento \times bloco, está horrível, mas dá pra ver que o comportamento das linhas é diferente em cada nível de bloco.

Teste de Tukey para tratamentos - Plantas rank

Effect	trat	trat	Estimate	Standard Error	DF	t Value	Adj P
trat	1	2	11.0286	3.1548	84	3.50	0.0129
trat	1	3	33.8571	3.1548	84	10.73	<.0001
trat	1	4	8.4286	3.1548	84	2.67	0.1185
trat	1	5	11.7762	3.1548	84	3.73	0.0061
trat	1	6	26.8429	3.1548	84	8.51	<.0001
trat	1	7	22.0000	3.1548	84	6.97	<.0001
trat	2	3	22.8286	3.1548	84	7.24	<.0001
trat	2	4	-2.6000	3.1548	84	-0.82	0.9818
trat	2	5	0.7476	3.1548	84	0.24	1.0000
trat	2	6	15.8143	3.1548	84	5.01	<.0001
trat	2	7	10.9714	3.1548	84	3.48	0.0136
trat	3	4	-25.4286	3.1548	84	-8.06	<.0001
trat	3	5	-22.0810	3.1548	84	-7.00	<.0001
trat	3	6	-7.0143	3.1548	84	-2.22	0.2944
trat	3	7	-11.8571	3.1548	84	-3.76	0.0056
trat	4	5	3.3476	3.1548	84	1.06	0.9375
trat	4	6	18.4143	3.1548	84	5.84	<.0001
trat	4	7	13.5714	3.1548	84	4.30	0.0009
trat	5	6	15.0667	3.1548	84	4.78	0.0001
trat	5	7	10.2238	3.1548	84	3.24	0.0273
trat	6	7	-4.8429	3.1548	84	-1.54	0.7230

Procedimento de Scott-Knott:

Tratamento	Média	Cluster
1	69.276	A
4	60.848	AB
2	58.248	В
5	57.5	В
7	47.276	\mathbf{C}
6	42.433	CD
3	35.419	D

Existe overlapping entre tratamentos 1 e 4 e 3 e 6.

Teste de Tukey para blocos - Plantas rank

Effect	bloco	bloco	Estimate	Standard Error	DF	t Value	Adj P
bloco	1	2	-24.0122	2.0653	84	-11.63	<.0001
bloco	1	3	-21.0306	2.0653	84	-10.18	<.0001
bloco	2	3	2.9816	2.0653	84	1.44	0.3234

Novamente, o bloco 1 é significativamente diferente dos blocos 2 e 3, que não são estatisticamente diferentes entre si.

6 Regressão de Poisson para colheitas

Na última parte do estudo, fiz uma regressão de Poisson pra os dados de colheita.

A média estimada de frutos por planta é 6,81 e a variância é 6,42. Assim, não há o problema de superdispersão. De qualquer forma, optei por testar modelos de Poisson e Binomial Negativa. O melhor modelo, pelo critério AIC considerando as variáveis explicativas tratamento, bloco e interação trat:bloco, foi o modelo apenas com intercepto e função de ligação logaritmo.

Critério AIC para escolha do melhor modelo

Modelo	Poisson	Bin. Negativa
Tratamentos + blocos + interações (saturado)	296.90	298.90
Tratamentos + blocos	288.36	290.36
Tratamentos + interações	296.90	298.90
Blocos + interações	296.90	298.90
Tratamentos	284.39	286.69
Blocos	284.86	286.86
Interações	296.90	298.90
Modelo vazio (intercepto)	281.19	283.19

Vale ressaltar que em todos os modelos, nenhum fator foi significativo. Portanto, o melhor modelo não tem nenhuma variável explicativa.

Modelo proposto:

$$log(\mu_i) = 1.91937$$

O resíduos deviance para este modelo é 56,59. Pelo teste Qui-quadrado de razão de verossimilhança, o modelo está adequado (p-valor 0.564761 com 59 graus de liberdade).

Gráfico dos valores preditos v
s resíduos (todos os valores preditos são iguais, mas dei uma chocalhada para mehorar a visualização.)

Valores preditos X resíduos

Distância de Cook para pontos influentes:

Gráfico envelope para os resíduos:

