Redes de Computadores I

Sinais Analógicos e Digitais

Assis Tiago assis.filho@unicap.br

Modelo de Camadas

Relembrando.....

Uma das funções mais importantes da camada física é converter dados em sinais eletromagnetécos e transmiti-los através de um meio de transmissão.

Geralmente **os dados** manipulados por um **usuário não** estão na forma **adequada** para serem transmitidos na rede, pois os dados são codificados em uma **cadeia de bits Os e 1s.**

Para serem enviados através de um enlace de rede, **os bits** devem ser **convertidos** para uma forma aceitável pelo meio de transmissão (um sinal).

Pergunta???

O que é um sinal?

Sinal

É uma função de uma ou mais variáveis, a qual se **veicula informações** através de **energia eletromagnético** entre o **transmissor** e **receptor**.

Sinais - Classificação

Existem dois tipos de sinais:

 Analágico: assumem valores contínuos, ou seja, podem ter um número infinito de valores em um período de tempo.

Digital: assumem
 valores discretos, ou seja, podem
 ter apenas um número limitado
 de valores, por exemplo 0 e 1.

Sinais - Classificação

Tanto os sinais analógicos quanto os digitais podem se apresentar nas seguintes formas:

- Períodico: a cada intervalo de Não-periódico: evolui **tempo** (chamado período) este sinal repete de acordo com um determinado padrão;
 - no tempo **sem** exibir um padrão.

Sinais - Classificação

• Em comunicação de dados, utilizamos geralmente sinais analógicos periódicos e sinais digitais não peridicos.

Sinais Analógicos Periódicos

Sinais Analógicos Periódicos

Sinais analógicos periódicos podem ser classificados como:

- Simples: é uma onda senoidal.
- Compostos: é sinal formado por várias ondas senoidais simples com diferentes frequências, amplitudes e fases.

Sinal Simples

- Por exemplo, podemos utilizar um sinal simples (onda senoidal) para transportar energia elétrica de um lugar a outro ou um sinal de alarme numa central de segurança.
- Uma onda senoidal pode ser representada por trêsparâmetros: amplitude máxima, frequência e fase.

Amplitude Máxima

Amplitude máxima de um sinal é o valor absoluto da máxima intensidade, proporcional à energia que ele transporta.

Período

Período (T) é o **intervalo de tempo**, em segundos, que uma onda leva para completar um ciclo.

Marco de

Frequência

Frequência (f) é o **número de períodos** num **intervalo de tempo** de 1 segundo. A frequência é expressa em hertz (Hz).

A frequência e o período são inversos entre si.

$$f = \frac{1}{T}$$
$$T = \frac{1}{f}$$

Frequência

a. A signal with a frequency of 12 Hz

Unidades

O período é expresso formalmente em segundos. A frequência é exporessa geralmente em Hertz (Hz), que são ciclos por segundo. **Unidades de período e frequência** são mostrados abaixo:

Unidade	Equivalência	Unidade	Equivalência
Segundos (s)	1s	Hertz (Hz)	1 Hz
M i ssegundos (ms)	10^{-3} s	Quilohertz(KHz)	10 ³ Hz
Microssegundos (µs)	10^{-6} s	Megahertz (MHz)	106 Hz
Nanossegundo (<i>n</i> s)	10 ⁻⁹ s	Gigahertz (GHz)	10 ⁹ Hz
Picossegundo (<i>p</i> s)	10 ⁻¹² s	Terahertz (THz)	10 ¹² Hz

Exercício

01. A energia elétrica que usamos pode ser considerada como uma onda senoidal simples que possui a frequência de 60Hz. Dessa forma, o período dessa onda senoidal é?

Exercício

$$T = \frac{1}{f} = \frac{1}{60} = 0,0166s = 16,6ms$$

Nossa visão não é suficientemente sensível paradistinguir essas rápidas mudanças de amplitude.

Frequência

A frequência é uma taxa de mudança em relação ao tempo. A mudança em curto espaço de tempo significa alta frequência. Mudanças ao longo de espaço de tempo prolongado significa baixa frequência.

Fase

A fase descreve a posição de uma forma de onda relativa ao tempo zero.

b. 90 degrees

 A onda pode se desbcar para a frente e para trás ao longo do eixo de tempo, a fase quantifica esse desbcamento.

 A fase é medida em graus (°) ou radianos (rad).

• 360° equivale a $\frac{2\pi}{360}$ rad

Comprimento de Onda

Comprimento de onda associa o **período, ou frequência**, de uma onda senoidal simples à velocidade de propagação do meio. É a distância que um **sinal simples pode percorrer em um período**.

- Em comunicação de dados usamos o comprimento de onda para descrever a transmissão de luz em uma fibra óptica.
- O comprimento de onda (λ) pode ser calculado por:

Comprimento de onda (λ) = velocidade de propagação (c) período

(T) Comprimento de onda (
$$\lambda$$
) = $\frac{\text{velocidade de propagação}}{\text{frequencia}(f)}$

Comprimento de Onda

Exercício

02. A luz se propaga, no vácuo, com velocidade de 3×108 m/s. Considere a luz vermelha, frequência de 4×1014 Hz, determine o seu comprimento de onde considerando a mesma se propagando no vácuo.

Exercício

$$\lambda = \frac{c}{f} = \frac{3x10^8}{4x10^{14}} = 0,75x10^{-6}m = 0,75\mu m$$

Sinais Compostos

Uma onda senoidal simples não é útil para comunicação de dados, precisamos enviar um sinal composto, um sinal formado por várias ondas senoidais simples.

Um sinal composto é uma combinação de ondas senoidais simples com diferentes frequência, amplitudes e fases.

Marco de

26 / 45

Exercício

03. Se um sinal periodico for decomposto em cinco ondas senoidais com frequências iguais a 100, 300, 500, 700 e 900 Hz, qual será sua largura de banda?

Exercício

$$B = f_h - f_l = 900 - 100 = 800$$
Hz.

Sinais Digitais

- Podemos representar as informações por um formato digital. Por exemplo, o nível lógico 1 pode ser codificado como uma voltagem positiva e o nível lógico zero (0) como uma voltagem zero.
- Um sinal digital pode ter mais de dois níveis, podendo enviar mais de 1 bit por nível. Se um sinal tiver L níveis (possibilidades), cada nível precisa de logz L bits.

Sinais Digitais

Sinais Digitais

a. A digital signal with two levels

Exercício

04. Um sinal tem 8 níveis. Quantos bits são necessários por nível?

Marco de

Exercício

 N° de bits por nível = $log_28 = 3$

Taxa de Transferência

A maioria dos sinais digitais não são períodicos. Sendo assim, os termos período e frequência não são apropriados. Para descrever estes sinais são utilizados:

- Taxa de transferência: é o número de bits enviados em 1s, expresso em bits por segundo (bps);
- Comprimento de Bits: é a distância que um bit ocupa no meio de transmissão. Ou seja, é a velocidade de propagação vezes a duração dos bits.

Taxa de Transferência

Pergunta???

Mas precisamos converter um sinal digital em analógico para transmitir?

Sinal Digital e Analógico

Podemos transmitir um sinal digital utilizando uma das duas abordagens:

- Transmissão banda-base: significa enviarum sinal digital por um canal sem transforma-lo em um sinal analóigico.
- Transmissão banda-larga: não podemos enviar o sinal diretamente para o canal, para isso utiliza-se a modulação para transformar o sinal digital em um sinal analógico para transmissão.

Banda Base

Banda Larga

Pergunta???

O sinal recebido é igual ao enviado?

Margo de

1 / 45

Perda na Transmissão

- Os sinais viajam através dos meios de transmissão (cabo de par trançado, fibra óptica, cabo coaxial, etc.), que não são perfeitos. Estas imperfeição causam prejuízo de sinal.
- Isto significa que o sinal no início da transmissão não é o mesmo do que o sinal no final da transmissão. O que é enviado não é o que é recebido.
- Normalmente as causas de deficiência em uma transmissão são:
 - Atenuação;
 - Distorção;
 - Ruído.

Atenuação

Atenuação significa **perda** de energia. Quando um sinal viaja num meio, irre media velmente perde energia. Muitas vezes essa perda é associada à resistência do meio. Para compensar essa perda, amplificadores podem ser utilizados para restaurar o nível do sinal.

Marco de

43 / 45

Distorção

Distorção significa que o sinal **muda** sua forma ou formato. A distorção é comum de ocorrer em um sinal composto. Cada componente do sinal tem sua própria velocidade de propagação, e portanto seu próprio retardo em atingir o destino final. Diferença de retardo pode criar diferença de fases, causando distorção.

Composite signal received

Composite signal received

Components, out of phase

At the sender

At the receiver

Ruídos

Um **ruído** corresponde a **interferência** de um sinal por um outro(s) sinal(is) de forma inesperada. Os ruídos podem ser provocado pelo movimento aleatório de elétrons nos condutores (ruído térmico), pelo acionamento de motores e outros aparelhos eletrônicos (ruído induzido), pelo efeito que a corrente num condutor provoca e moutro fio (linha cruzada) e ruídos gerados no meio proveniente de redes elétricas, de iluminação e outras fontes (ruído impulsivo)

Relação Sinal-Ruídos

Redes de Computadores I

Sinais Análogicos e Digitais

Assis Tiago assis.filho@unicap.br