A.Belcaid

ENSA-Safi

March 10, 2022

- Présentation
- 2 Exemples
- Modélisation
- 4 Histoire
- Plan du cours

• Créée en **Angleterre** durant la deuxième guerre mondiale pour aider a décisions **militaires** comme la:

- Créée en **Angleterre** durant la deuxième guerre mondiale pour aider a décisions **militaires** comme la:
 - Positionnement des radars.

- Créée en Angleterre durant la deuxième guerre mondiale pour aider a décisions militaires comme la:
 - Positionnement des radars.
 - Gestion de convois d'approvisionnement.

- Créée en Angleterre durant la deuxième guerre mondiale pour aider a décisions militaires comme la:
 - Positionnement des radars.
 - Gestion de convois d'approvisionnement.

Dictionnaire Cambridge

- Créée en Angleterre durant la deuxième guerre mondiale pour aider a décisions militaires comme la:
 - Positionnement des radars.
 - Gestion de convois d'approvisionnement.
- Dictionnaire Cambridge

Définition

The Systematic study of how best to solve problems in business and industry.

- Créée en Angleterre durant la deuxième guerre mondiale pour aider a décisions militaires comme la:
 - Positionnement des radars.
 - Gestion de convois d'approvisionnement.
- Dictionnaire Cambridge

Définition

The Systematic study of how best to solve problems in business and industry.

Wikipedia:

- Créée en Angleterre durant la deuxième guerre mondiale pour aider a décisions militaires comme la:
 - Positionnement des radars.
 - Gestion de convois d'approvisionnement.
- Dictionnaire Cambridge

Définition

The Systematic study of how best to solve problems in business and industry.

Wikipedia:

Définition

is the use of mathematical models, statistics and algorithms to aid in decision making.

• La science de chercher la solution d'un problème.

¹A définir par complexité

- La science de chercher la solution d'un problème.
 - Meilleur temps.

¹A définir par complexité

- La science de chercher la solution d'un problème.
 - Meilleur temps.
 - Meilleur coût¹

¹A définir par complexité

- La science de chercher la solution d'un problème.
 - Meilleur temps.
 - Meilleur coût¹
- Approche quantitative pour produire les meilleurs solutions.

¹A définir par complexité

- La science de chercher la solution d'un problème.
 - Meilleur temps.
 - Meilleur coût¹
- Approche quantitative pour produire les meilleurs solutions.
- Ensemble d'outils et techniques liés permettant une approche analytique de problèmes lié a la décision:

¹A définir par complexité

- La science de chercher la solution d'un problème.
 - Meilleur temps.
 - Meilleur coût¹
- Approche quantitative pour produire les meilleurs solutions.
- Ensemble d'outils et techniques liés permettant une approche analytique de problèmes lié a la décision:
 - Science de **gestion**.

¹A définir par complexité

- La science de chercher la solution d'un problème.
 - Meilleur temps.
 - Meilleur coût¹
- Approche quantitative pour produire les meilleurs solutions.
- Ensemble d'outils et techniques liés permettant une approche analytique de problèmes lié a la décision:
 - Science de gestion.
 - Science de décision.

¹A définir par complexité

- La science de chercher la solution d'un problème.
 - Meilleur temps.
 - Meilleur coût¹
- Approche quantitative pour produire les meilleurs solutions.
- Ensemble d'outils et techniques liés permettant une approche analytique de problèmes lié a la décision:
 - Science de **gestion**.
 - Science de décision.
 - Méthodes d'optimisation.

¹A définir par complexité

- La science de chercher la solution d'un problème.
 - Meilleur temps.
 - Meilleur coût¹
- Approche quantitative pour produire les meilleurs solutions.
- Ensemble d'outils et techniques liés permettant une approche analytique de problèmes lié a la décision:
 - Science de **gestion**.
 - Science de décision.
 - Méthodes d'optimisation.
 - Programmation mathématique.

¹A définir par complexité

Formalisation problème

Face a un problème pratique de décision:

- Aspects mathématiques:
 - Contraintes
 - Objectif.
 - Simplification.

• Modélisation:

- Théorie de graphes.
- Programmation linéaire.
- Programmation par contraintes.

Analyse de modelés

Étude de complexité.

Allocation de tâches

- Deux personnes veulent organiser une fête. Ils ont besoin de compléter les taches suivantes:
- Une tâche doit être affectée a une seule personne.
- Une personne ne peux effectuer qu'une seule tâche a la fois.
- Comment assigner ces taches, pour les terminer dans le plus court temps.
- Quelles sont les ressources et notre objectif.

ID	task	Temps (min)
1	Boiling boba	20
2	Brewing milk tea	30
3	bakins cookies	60
4	desinging poster	15
5	renting handcart	25

Gestion de projet

- n ouvriers doivent compléter m tâches.
 - Certains tâches doivent précéder d'autres.
 - Certains tâches ne peuvent pas être effectuées par certains ouvriers.
 - Certains tâches peuvent être divisées entre ouvriers.
 - Le temps de chaque tâches diffère selon l'ouvrier.
- Combien de temps nous faut il pour compléter ce projet?

 Un voyageur de commerce, basé à Rabat, doit visiter ses clients a travers le Maroc.

- Un voyageur de commerce, basé à Rabat, doit visiter ses clients a travers le Maroc.
- Il souhaite effectuer la tournée la plus courte possible.

- Un voyageur de commerce, basé à Rabat, doit visiter ses clients a travers le Maroc.
- Il souhaite effectuer la tournée la plus courte possible.
- Données: n villes, avec une matrice des routes entre celles ci.

- Un voyageur de commerce, basé à Rabat, doit visiter ses clients a travers le Maroc.
- Il souhaite effectuer la tournée la plus courte possible.
- Données: n villes, avec une matrice des routes entre celles ci.
- Solution: Un cycle qui doit visiter une ville qu'une seule fois.

Décisions clés:

Décisions clés:

• Comment délivrer 6.5 millions articles a plus de 220 pays chaque jour?

Décisions clés:

- Comment délivrer 6.5 millions articles a plus de 220 pays chaque jour?
- Dans chaque région, Où doit en installer des centres de distribution.

Décisions clés:

- Comment délivrer 6.5 millions articles a plus de 220 pays chaque jour?
- Dans chaque région, Où doit en installer des centres de distribution.
- Dans chaque centre, comment classifier et trier les articles.

Décisions clés:

- Comment délivrer 6.5 millions articles a plus de 220 pays chaque jour?
- Dans chaque région, Où doit en installer des centres de distribution.
- Dans chaque centre, comment classifier et trier les articles.
- Dans chaque ville, comment choisir les routes.

Décisions clés:

- Comment délivrer 6.5 millions articles a plus de 220 pays chaque jour?
- Dans chaque région, Où doit en installer des centres de distribution.
- Dans chaque centre, comment classifier et trier les articles.
- Dans chaque ville, comment choisir les routes.

Comment résoudre?:

Décisions clés:

- Comment délivrer 6.5 millions articles a plus de 220 pays chaque jour?
- Dans chaque région, Où doit en installer des centres de distribution.
- Dans chaque centre, comment classifier et trier les articles.
- Dans chaque ville, comment choisir les routes.

Comment résoudre?:

• Un système d'information bien désigne.

Décisions clés:

- Comment délivrer 6.5 millions articles a plus de 220 pays chaque jour?
- Dans chaque région, Où doit en installer des centres de distribution.
- Dans chaque centre, comment classifier et trier les articles.
- Dans chaque ville, comment choisir les routes.

Comment résoudre?:

- Un système d'information bien désigne.
- Recherche opérationnelle.

Knapsack problem

 Vous préparer une randonnée. Vous avez des objets utiles a prendre avec vous.

ID	item	Poids	valeur
1	Compas	0.5	6
2	Hachette	1.5	5
3	Allumettes	0.4	4
4	bâche	1	4
5	Télescope	1.1	4
6	Cylindre	1.6	4
7	Jouet	8.0	1

Knapsack problem

- Vous préparer une randonnée. Vous avez des objets utiles a prendre avec vous.
- Malheureusement votre sac a dos ne peut supporter que 5 kilograms.

ID	item	Poids	valeur
1	Compas	0.5	6
2	Hachette	1.5	5
3	Allumettes	0.4	4
4	bâche	1	4
5	Télescope	1.1	4
6	Cylindre	1.6	4
7	Jouet	8.0	1

Knapsack problem

- Vous préparer une randonnée. Vous avez des objets utiles a prendre avec vous.
- Malheureusement votre sac a dos ne peut supporter que 5 kilograms.
- Un objet ne peut pas être divisé. Soit on le prend, soit on le laisse.

ID	item	Poids	valeur
1	Compas	0.5	6
2	Hachette	1.5	5
3	Allumettes	0.4	4
4	bâche	1	4
5	Télescope	1.1	4
6	Cylindre	1.6	4
7	Jouet	0.8	1

- Vous préparer une randonnée. Vous avez des objets utiles a prendre avec vous.
- Malheureusement votre sac a dos ne peut supporter que 5 kilograms.
- Un objet ne peut pas être divisé. Soit on le prend, soit on le laisse.
- Quels sont les objets outils qu'on doit prendre?

ID	item	Poids	valeur
1	Compas	0.5	6
2	Hachette	1.5	5
3	Allumettes	0.4	4
4	bâche	1	4
5	Télescope	1.1	4
6	Cylindre	1.6	4
7	Jouet	0.8	1

 Choix Glouton selon le poids-valeur rapport.

ID	item	Poids	valeur	valeur / poids
1	Compas	0.5	6	12
2	Hachette	1.5	5	3.33
3	Allumettes	0.4	4	10
4	bâche	1	4	4
5	Télescope	1.1	4	2.73
6	Cylindre	1.6	4	2.5
7	Jouet	8.0	1	1.25

- Choix Glouton selon le poids-valeur rapport.
- Solution Glouton: prendre les articles {1, 2, 3, 4, 5}.
 Valeur total 22.

ID	item	Poids	valeur	valeur / poids
1	Compas	0.5	6	12
2	Hachette	1.5	5	3.33
3	Allumettes	0.4	4	10
4	bâche	1	4	4
5	Télescope	1.1	4	2.73
6	Cylindre	1.6	4	2.5
7	Jouet	8.0	1	1.25

- Choix Glouton selon le poids-valeur rapport.
- Solution Glouton: prendre les articles {1, 2, 3, 4, 5}.
 Valeur total 22.
- Solution optimale est de prendre {1, 2, 3, 4, 6} avec un total 23.

ID	item	Poids	valeur	valeur / poids
1	Compas	0.5	6	12
2	Hachette	1.5	5	3.33
3	Allumettes	0.4	4	10
4	bâche	1	4	4
5	Télescope	1.1	4	2.73
6	Cylindre	1.6	4	2.5
7	Jouet	8.0	1	1.25

- Choix Glouton selon le poids-valeur rapport.
- Solution Glouton: prendre les articles {1, 2, 3, 4, 5}.
 Valeur total 22.
- Solution optimale est de prendre {1, 2, 3, 4, 6} avec un total 23.
- Comment peut on formuler ce problème?

ID	item	Poids	valeur	valeur / poids
1	Compas	0.5	6	12
2	Hachette	1.5	5	3.33
3	Allumettes	0.4	4	10
4	bâche	1	4	4
5	Télescope	1.1	4	2.73
6	Cylindre	1.6	4	2.5
7	Jouet	8.0	1	1.25

On doit poser **quatre** questions:

Sur quelles quantités peut-on travailler?

On doit poser quatre questions:

Sur quelles quantités peut-on travailler?

Que cherche-t-on a optimiser

On doit poser quatre questions:

- Sur quelles quantités peut-on travailler?
- Que cherche-t-on a optimiser
- Quelles sont les restrictions du problème?

On doit poser quatre questions:

- Sur quelles quantités peut-on travailler?
- Que cherche-t-on a optimiser
- Quelles sont les restrictions du problème?
- Quelle est la formulation scientifique a considérer?

Modele mathématique

• Variables de Décision: Variables qu'on peut contrôler.

$$x_{i} = \left\{ \begin{array}{ll} 1 & \text{si object i est choisi} \\ \\ 0 & \text{sinon} \end{array} \right. \tag{1}$$

Modele mathématique

• Variables de Décision: Variables qu'on peut contrôler.

$$x_{i} = \left\{ \begin{array}{ll} 1 & \text{si object i est choisi} \\ \\ 0 & \text{sinon} \end{array} \right. \tag{1}$$

• Fonction objective: Qu'est ce qu'on cherche a optimiser:

$$\max 6x_1 + 5x_2 + 4x_3 + 4x_4 + 3x_5 + 4x_6 + x_7 \tag{2}$$

Modele mathématique

Variables de Décision: Variables qu'on peut contrôler.

$$x_{i} = \left\{ \begin{array}{ll} 1 & \text{si object i est choisi} \\ \\ 0 & \text{sinon} \end{array} \right. \tag{1}$$

• Fonction objective: Qu'est ce qu'on cherche a optimiser:

$$\max 6x_1 + 5x_2 + 4x_3 + 4x_4 + 3x_5 + 4x_6 + x_7 \tag{2}$$

Contraintes Les limitations du problème

$$0.5x_1 + 1.5x_2 + 0.4x_3 + x_4 + 1.1x_5 + 1.6x_6 + 0.8x_7 \le 5$$
 (3)

et

$$x_i \in \{0,1\} \quad \forall i = 1,\ldots,7 \tag{4}$$

Formulation du problème

Si on combine tous ces informations, on obtient la formulation (modèle) suivante:

$$\left\{ \begin{array}{ll} \text{max} & 6x_1+5x_2+4x_3+4x_4+3x_5+4x_6+x_7 \\ \\ \text{s.t} & 0.5x_1+1.5x_2+0.4x_3+x_4+1.1x_5+1.6x_6+0.8x_7 \leqslant 5 \\ \\ & x_i \in \{0,1\} \quad \forall i=1,\ldots,7 \end{array} \right.$$

- Si on considère que w_i les poids.
- les v_i les valeurs de chaque objet.
- n le nombre d'objets et B la capacité maximale.
- Une formulation plus compacte (Integer Programming(IP)

$$\left\{ \begin{array}{ll} \max & \sum_{i=1}^n \nu_i x_i \\ \\ \text{s.t} & \sum_{i=1}^n w_i x_i \leqslant B \\ \\ & x_i \in \{0,1\} \quad \forall i=1,\dots,n \end{array} \right.$$

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

George Dantzig (1914-2005)

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).
 - Résolution de deux problèmes difficiles qu'il as pris pour des homework!!

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).
 - Résolution de deux problèmes difficiles qu'il as pris pour des homework!!
- Il as servi dans la deuxième guerre mondiale dans la planification des routes.

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).
 - Résolution de deux problèmes difficiles qu'il as pris pour des homework!!
- Il as servi dans la deuxième guerre mondiale dans la planification des routes.
 - Chaque plan est appelé programme.

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).
 - Résolution de deux problèmes difficiles qu'il as pris pour des homework!!
- Il as servi dans la deuxième guerre mondiale dans la planification des routes.
 - Chaque plan est appelé programme.
- Il a trouvé que:

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).
 - Résolution de deux problèmes difficiles qu'il as pris pour des homework!!
- Il as servi dans la deuxième guerre mondiale dans la planification des routes.
 - Chaque plan est appelé programme.
- Il a trouvé que:
 - Plusieurs programmes sont des LP.

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).
 - Résolution de deux problèmes difficiles qu'il as pris pour des homework!!
- Il as servi dans la deuxième guerre mondiale dans la planification des routes
 - Chaque plan est appelé programme.
- Il a trouvé que:
 - Plusieurs programmes sont des LP.
 - Personne ne peut systématiquement résoudre un LP de large échelle.

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).
 - Résolution de deux problèmes difficiles qu'il as pris pour des homework!!
- Il as servi dans la deuxième guerre mondiale dans la planification des routes
 - Chaque plan est appelé programme.
- Il a trouvé que:
 - Plusieurs programmes sont des LP.
 - Personne ne peut systématiquement résoudre un LP de large échelle.

Il a invente la méthode de Simplexe

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).
 - Résolution de deux problèmes difficiles qu'il as pris pour des homework!!
- Il as servi dans la deuxième guerre mondiale dans la planification des routes
 - Chaque plan est appelé programme.
- Il a trouvé que:
 - Plusieurs programmes sont des LP.
 - Personne ne peut systématiquement résoudre un LP de large échelle.
- Il a invente la méthode de Simplexe
 - Première solution effective d'un problème LP.

Plusieurs modèles en RO, s'écrivent en forme de programme linéaire:

- George Dantzig (1914-2005)
 - Doctorat en Statistiques, Université California Berkeley (1946).
 - Résolution de deux problèmes difficiles qu'il as pris pour des homework!!
- Il as servi dans la deuxième guerre mondiale dans la planification des routes
 - Chaque plan est appelé programme.
- Il a trouvé que:
 - Plusieurs programmes sont des LP.
 - Personne ne peut systématiquement résoudre un LP de large échelle.
- Il a invente la méthode de Simplexe
 - Première solution effective d'un problème LP.
 - Toujours une composante principale dans les logiciels Commerciaux.

• Nombre de personnel requis dans un aéroport varie selon l'heure.

0-6	6-8	8-10	10-12	12-14	14-16	16-18	18-22	22-24
6	10	15	20	16	24	28	20	10

• Nombre de personnel requis dans un aéroport varie selon l'heure.

0-	6 6	5-8	8-10	10-12	12-14	14-16	16-18	18-22	22-24
6		10	15	20	16	24	28	20	10

Combien d'employées il vous faut?

• Nombre de personnel requis dans un aéroport varie selon l'heure.

ĺ	0-6	6-8	8-10	10-12	12-14	14-16	16-18	18-22	22-24
	6	10	15	20	16	24	28	20	10

- Combien d'employées il vous faut?
 - Chaque employée travaille dans 8 heurs continue.

Nombre de personnel requis dans un aéroport varie selon l'heure.

0-6	6-8	8-10	10-12	12-14	14-16	16-18	18-22	22-24
6	10	15	20	16	24	28	20	10

- Combien d'employées il vous faut?
 - Chaque employée travaille dans 8 heurs continue.
 - Il peuvent commencer leurs shift a diffèrent tempes.

Nombre de personnel requis dans un aéroport varie selon l'heure.

0-6	6-8	8-10	10-12	12-14	14-16	16-18	18-22	22-24
6	10	15	20	16	24	28	20	10

- Combien d'employées il vous faut?
 - Chaque employée travaille dans 8 heurs continue.
 - Il peuvent commencer leurs shift a diffèrent tempes.
- Programmation linéaire est utilisée par United Airlines pour réduire le nombre de délai par 50% et elle as économise plus de \$5 million par année en 1992.

• La programmation Linéaire est en utilisation large dans les gouvernements, **Économie**.

²Gass, S.I. and Assa, A.A. (2005). An Annotated Timelien of Operations Research. An Informal History. Boson, MA: Springer

- La programmation Linéaire est en utilisation large dans les gouvernements, Économie.
- Deux Académiques, Leonid Kantorovich et Tjalling Koopmans ont gagne le prix Nobel en 1975.

²Gass, S.I. and Assa, A.A. (2005). An Annotated Timelien of Operations Research. An Informal History. Boson, MA: Springer

- La programmation Linéaire est en utilisation large dans les gouvernements, Économie.
- Deux Académiques, Leonid Kantorovich et Tjalling Koopmans ont gagne le prix Nobel en 1975.
 - Pour leur contribution dans la théorie d'Allocation optimale des resources.

²Gass, S.I. and Assa, A.A. (2005). An Annotated Timelien of Operations Research. An Informal History. Boson, MA: Springer

- La programmation Linéaire est en utilisation large dans les gouvernements, Économie.
- Deux Académiques, Leonid Kantorovich et Tjalling Koopmans ont gagne le prix Nobel en 1975.
 - Pour leur contribution dans la théorie d'Allocation optimale des resources.
- Quand est il de Dantzig?

²Gass, S.I. and Assa, A.A. (2005). An Annotated Timelien of Operations Research. An Informal History. Boson, MA: Springer

- La programmation Linéaire est en utilisation large dans les gouvernements, Économie.
- Deux Académiques, Leonid Kantorovich et Tjalling Koopmans ont gagne le prix Nobel en 1975.
 - Pour leur contribution dans la théorie d'Allocation optimale des resources.
- Quand est il de Dantzig?
- On sait au moins qu'ils ont pris une photo ensemble.²

²Gass, S.I. and Assa, A.A. (2005). An Annotated Timelien of Operations Research. An Informal History. Boson, MA: Springer

Plan du cours (Priori)

Table: Plan proposé du cours.

Semaines	Semaines Chapitre				
1	Introduction				
3	Théorie basique de graphes	V			
3	Programmation Linéaire	V			
2	Programmation non Linéaire	V			
2	Ordonnancement simple	V			
2	Aspect algorithmique des graphes	V			
1	Algorithmes sélectionnées	V			

³Travaux pratiques en Python et Gurobi