Sortering

Sortering

Input: n tal

Output: De *n* tal i sorteret orden

Eksempel:

$$6,2,9,4,5,1,4,3 \rightarrow 1,2,3,4,4,5,6,9$$

Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger, adresselister i telefoner,...). Dette gælder både for mennesker og for computere. Sortering er ofte en byggesten i algoritmer for andre problemer.

Sortering af information er en fundamental og central opgave.

Mange algoritmer er udviklet: Insertionsort, Selectionsort, Bubblesort, Mergesort, Quicksort, Heapsort, Radixsort, Countingsort, . . .

Vi skal møde alle ovenstående i dette kursus.

Sortering

Kommentarer:

- Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus altid bruge stigende (mere præcist: ikke-faldende). Skal man sortere faldende, skal alle sammenligninger bare vendes.
- Vi vil antage, at input ligger i et array (Python: en liste).
- ▶ Man sorterer ofte elementer sammensat af en sorteringsnøgle samt yderligere information. Sorteringsnøglen kan være et tal, eller andet der kan sammenlignes (f.eks. strenge/ord). Vi viser i dette kursus blot elementer som rene tal.

Insertionsort

Bruges af mange når man sorterer en hånd i kort:

Samme idé udført på tal i et array:

Argument for korrekthed: Del af array til venstre for sorte felt er altid sorteret. Denne del udvides med én hele tiden (\Rightarrow algoritmen stopper, og når den stopper er alle elementer sorteret).

Insertionsort

Som pseudo-kode:

Køretid for Insertionsort

Analyse:

Her er t_j hvor mange gange testen i den indre **while**-løkke udføres. Dvs. t_j-1 er hvor mange gange løkken kører (hvilket er hvor mange elementer det j'te element skal forbi under indsættelsen). Sæt $c=c_1+c_2+\cdots+c_8$.

Best case: $t_j = 1$ for alle j. Samlet tid $\leq c \cdot n$.

Worst case: $t_j = j$ for alle j. Samlet tid $\leq c \cdot n^2$, da

$$\sum_{i=1}^{n} j = (1+2+3+\cdots+n) = \frac{(n+1)n}{2} = \frac{n^2+n}{2} \le \frac{2n^2}{2} = n^2.$$

Selectionsort

En anden simpel og naturlig sorteringsalgoritme:

```
IndListe = input
UdListe = tom liste
While IndListe ikke tom:
  find mindste element x i IndListe
  flyt x fra IndListe til enden af UdListe
```

Klart korrekt.

Køretid?

I alt n gange findes mindste element i IndListe. Simpel metode er lineær søgning \Rightarrow tid $\leq c \cdot (n + (n-1) + (n-2) + \cdots + 1) \leq c \cdot n^2$.

Merge

Input: To sorterede rækker 2,4,5,7 1,2,3,6 Output: De samme elementer i én sorteret række 1,2,2,3,4,5,6,7

Vi kan naturligvis sortere. Men det er hurtigere at flette (merge):

Repeat:

Flyt det mindste af de to forreste elementer

Tid: $\leq c \cdot n$, hvor n = antal elementer i alt.

Korrekthed: Merge kan ses som en udgave af Selectionsort.

Merge

Som pseudo-kode, med to rækker $A[p \dots q]$ and $A[q+1 \dots r]$:

```
MERGE(A, p, q, r)
 n_1 = q - p + 1
 n_2 = r - q
 let L[1...n_1 + 1] and R[1...n_2 + 1] be new arrays
 for i = 1 to n_1
     L[i] = A[p+i-1]
 for i = 1 to n_2
     R[i] = A[q+i]
 L[n_1+1]=\infty
 R[n_2+1]=\infty
 i = 1
 i = 1
 for k = p to r
     if L[i] < R[j]
         A[k] = L[i]
         i = i + 1
     else A[k] = R[j]
         i = i + 1
```

Mergesort: opbyg længere og længere sorterede dele af input ved gentagen brug af merge:

Tid: Hver merge bruger højst $c \cdot n_1$ tid, hvor n_1 er antal elementer der merges. Så alle merge-operationer i ét lag bruger tilsammen højst $c \cdot (n_1 + n_2 + \dots) = c \cdot n$. Dette gælder alle lagene. Der er i alt $\log_2 n$ lag, så den samlede tid er højst $c \cdot n \cdot \log_2 n$.

Hvorfor er der $\log_2 n$ merge-lag?

Antal sorterede lister efter k merge-lag (antag n er en potens af 2):

k	Antal lister
:	:
k	$n/2^k$
:	:
3	$n/2^3$
3 2	$n/2^{2}$
1	n/2
0	n

Algoritmen stopper når der er én sorteret liste:

$$n/2^k = 1 \Leftrightarrow n = 2^k \Leftrightarrow \log_2 n = k$$

Hvis n ikke er en potens af 2?

Algoritmen merger i hvert lag så mange par, den kan, og der bliver evt. én liste som ikke merges (denne er med som liste på næste lag).

F.eks. bliver 12 lister bliver til 6 lister mens 13 (= 12 + 1) lister til 7 (= 6 + 1) lister.

Generelt: Hvis der er x lister før et merge-lag, er der $\lceil x/2 \rceil$ lister efter.

Se på to input størrelse n_1 og n_2 , med $n_1 \leq n_2$. Da $\lceil x/2 \rceil$ er en voksende funktion af x, kan antallet af lister i hvert lag ikke være mindre for n_2 end for n_1 . Derfor kan antallet af merge-lag (før algoritmen når ned på én liste) ikke være mindre for n_2 end for n_1 .

Sæt n_2 til mindste potens af to, som er $\geq n_1$. Som set tidligere er der præcis $\log_2 n_2$ merge-lag for n_2 , og dermed højst så mange merge-lag for n_1 .

Så der er $\lceil \log_2 n \rceil$ merge lag for generelt n.

n										$16 = 2^4$	17
$\log_2(n)$	2.807	3	3.169	3.321	3.459	3.584	3.700	3.807	3.906	4	4.087
Antal lag	3	3	4	4	4	4	4	4	4	4	5

Mergesort som pseudo-kode, i en variant formuleret med rekursion:

```
\begin{aligned} & \text{MERGE-SORT}(A,p,r) \\ & \textbf{if } p < r & \text{$/\!\!\!/} \text{ check for base case} \\ & q = \lfloor (p+r)/2 \rfloor & \text{$/\!\!\!/} \text{ divide} \\ & \text{MERGE-SORT}(A,p,q) & \text{$/\!\!\!/} \text{ conquer} \\ & \text{MERGE-SORT}(A,q+1,r) & \text{$/\!\!\!/} \text{ conquer} \\ & \text{MERGE}(A,p,q,r) & \text{$/\!\!\!/} \text{ combine} \end{aligned}
```


Et kald MERGE-SORT(A,p,r) har til opgave at stille elementerne i A[p...r] i sorteret orden. Første kald er MERGE-SORT(A,1,n), som har til opgave at sortere hele A.

Quicksort

Mergesort:

- ▶ Del input op i to dele X og Y (trivielt)
- Sorter hver del for sig (rekursion)
- ► Merge de to sorterede dele til én sorteret del (reelt arbejde)

Basistilfælde: $n \le 1$ (allerede sorteret, gør intet)

Quicksort:

- ▶ Del input op i to dele X og Y så $X \leq Y$ (reelt arbejde)
- Sorter hver del for sig (rekursion)
- Returner X efterfulgt af Y (trivielt)

Basistilfælde: $n \le 1$ (allerede sorteret, gør intet)

[Hoare, 1960]

Quicksort

Som pseudo-kode:

QUICKSORT
$$(A, p, r)$$

if $p < r$
 $q = \text{PARTITION}(A, p, r)$
QUICKSORT $(A, p, q - 1)$
QUICKSORT $(A, q + 1, r)$

Et kald $\mathrm{QUICKSORT}(A,p,r)$ har til opgave at stille elementerne i $A[p\dots r]$ i sorteret orden. Første kald er $\mathrm{QUICKSORT}(A,1,n)$, som har til opgave at sortere hele A.

Et kald Partition(A,p,r) vælger et element $x \in A$ og opdeler $A[p \dots r]$ således at:

- ightharpoonup A[q] = x
- $ightharpoonup A[p \dots q-1] \leq x$
- $ightharpoonup A[q+1\ldots r] > x$

Partition

Hvordan lave PARTITION?

Idé: Vælg et element x fra input at opdele efter (her sidste element i array-del). Opbyg de to dele under et gennemløb af array ud fra flg. princip:

Hvordan tage et skridt under gennemløb?

Partition

Et eksempel på gennemløb:

Tid: O(n), hvor n er antal elementer i $A[p \dots r]$.

Partition

Som pseudo-kode:

```
\begin{aligned} & \operatorname{PARTITION}(A, p, r) \\ & x = A[r] \\ & i = p - 1 \\ & \mathbf{for} \ j = p \ \mathbf{to} \ r - 1 \\ & \quad \mathbf{if} \ A[j] \leq x \\ & \quad i = i + 1 \\ & \quad \operatorname{exchange} \ A[i] \ \text{with} \ A[j] \\ & \quad \operatorname{exchange} \ A[i + 1] \ \text{with} \ A[r] \\ & \quad \mathbf{return} \ i + 1 \end{aligned}
```


Quicksort køretid

Hænger på, hvordan partitions gennem rekursionen deler input.

To ekstremer af størrelser på rekursive kald:

- ▶ Helt ubalanceret: 0 og n-1
- ▶ Helt balanceret: $\lceil (n-1)/2 \rceil$ og $\lfloor (n-1)/2 \rfloor$
- ► Hvis alle partitions er helt balancerede: $O(n \log n)$ (ca. samme analyse som for Mergesort).
- Hvis alle partitions er helt ubalancerede: $O(n + (n - 1) + (n - 2) + \cdots + 2 + 1) = O(n^2).$

Man kan vise at dette er henholdsvis best case og worst case for Quicksort.

Quicksort køretid

- ▶ I praksis: $O(n \log n)$ for næsten alle input.
- ▶ Dog: sorteret input giver $\Theta(n^2)$ for ovenstående valg af opdelingselement x i partition (brug *ikke* det valg i praksis).
- ► Mere robuste valg af opdelingselement x: enten som midterelementet, som medianen af flere elementer, som et tilfældigt element, eller som medianen af flere tilfældigt valgte elementer.
- Quicksort er inplace: bruger ikke mere plads end input-array'et.
- ► Kode er meget effektiv i praksis. En godt implementeret Quicksort er ofte bedste all-round sorteringsalgoritme (og valgt i mange biblioteker, f.eks. Java og C++/STL).

En Heap er:

- 1. et binært træ
- 2. med heap-orden
- 3. og heap-facon
- 4. udlagt i et array

(Note: "heap" bruges også om et hukommelsesområde brugt til allokering af objekter under et programs udførsel. De to anvendelser er urelaterede.)

[Williams, 1964]

1) Binært træ

Et binært træ er enten

▶ det tomme træ

eller

► en knude v (evt. med indhold af data) samt to undertræer (et højre og et venstre).

Visualisering:

Knuden v kaldes også rod for træet. Roden af et (ikke-tomt) undertræ af v kaldes for et barn af v, og v kaldes dennes forælder. Hvis begge v's undetræer er tomme, kaldes v et blad. Stregerne mellem børn og forældre kaldes for kanter.

1) Binært træ

- ▶ Dybde af knude = antal kanter til rod
- ► Højde af knude = max antal kanter til blad
- ► Højde af træ = højde af dets rod
- ► Fuldt (complete) binært træ = træ med alle blade i samme dybde.

Et fuldt binært træ af højde h har

$$1 + 2 + 4 + 8 + \dots + 2^h = \sum_{i=0}^h 2^i = 2^{h+1} - 1$$

knuder (formel A.5 side 1147), heraf 2^h blade.

2) Heaporden

Et binært træ med nøgler i alle knuder er max-heapordnet hvis det for alle par af knuder v og u, hvor v er forældre til u, gælder

 $nøgle i v \ge nøgle i u$

NB: dubletter er tilladt (ikke vist).

Specielt gælder at roden indeholder den største nøgle i hele heapen.

Det er min-heapordnet hvis der gælder

 $n \phi g le i v \leq n \phi g le i u$

3) Heapfacon

Et binært træ har heapfacon hvis alle lag i træet er helt fyldte, undtagen det sidste lag, hvor alle knuder findes længst til venstre. (Specielt har et fuldt træ heapfacon).

For et træ af heapfacon af højde h med n knuder:

$$n >$$
 antal knuder i fuldt træ af højde $h - 1 = 2^h - 1$

$$n > 2^h - 1 \Leftrightarrow n + 1 > 2^h \Leftrightarrow \log_2(n+1) > h$$

4) Heap udlagt i et array

Et binært træ i heapfacon kan naturligt udlægges i et array ved at tildele array-indekser til knuder ved et top-down, venstre-til-højre gennemløb af træets lag:

Navigering mellem børn og forældre i array-versionen kan udføres ved simple beregninger: Knuden på plads *i* har

- ► Forælder på plads | i/2|
- ightharpoonup Børn på plads 2i og 2i+1

(Se figur ovenfor. Formelt bevis til eksaminatorier.)

Operationer på en heap

Vi ønsker at lave følgende operationer på en heap:

- MAX-HEAPIFY: Givet en knude med to undertræer, som hver især overholder heap-orden, få hele knudens undertræ til at overholde heap-orden.
- ightharpoonup BUILD-MAX-HEAP: Lav n input elementer (uordnede) til en heap.

[Navnene ovenfor er for en max-heap. For en min-heap findes de samme operationer med "min-" i stedet for "max-" i navnet.]

Max-Heapify

Givet en knude med to undertræer, som hver især overholder heap-orden, få hele knudens træ til at overholde heap-orden.

- Problem: knudens nøgle kan være mindre end en af sine børns nøgler.
- ► Løsning: byt nøgle med barnet med den største nøgle, kør derefter MAX-HEAPIFY på dette barn.

Tid: O(højde af knude).

Max-Heapify

Som pseudo-kode (med indarbejdet check for at man ikke kigger "for langt" i arrayet, dvs. længere end plads n):

```
\begin{aligned} \text{MAX-HEAPIFY}(A,i,n) \\ l &= \text{LEFT}(i) \\ r &= \text{RIGHT}(i) \\ \text{if } l &\leq n \text{ and } A[l] > A[i] \\ largest &= l \\ \text{else } largest &= i \\ \text{if } r &\leq n \text{ and } A[r] > A[largest] \\ largest &= r \\ \text{if } largest &\neq i \\ \text{exchange } A[i] \text{ with } A[largest] \\ \text{MAX-HEAPIFY}(A, largest, n) \end{aligned}
```


Build-Heap

Lav *n* input elementer (uordnede) til en heap.

- ▶ Ide: arranger elementerne i heap-facon, bring derefter træet i heap-orden nedefra og op.
- ▶ Observation: et træ af størrelse én overholder altid heaporder.

Build-Heap

Tid: $O(n \log_2 n)$ klart. Bedre analyse giver O(n).

Build-Heap

Som pseudo-kode:

BUILD-MAX-HEAP(A, n)for $i = \lfloor n/2 \rfloor$ downto 1 MAX-HEAPIFY(A, i, n)

En form for selectionsort hvor der bruges en heap til hele tiden at udtage det største tilbageværende element:

```
byg en heap gentag til heap er tom:
  udtag rod (største element i heapen)
  sæt sidste element op som ny rod
  genskab heap-struktur ved MAX-HEAPIFY på ny rod.
```

Eksempel:

Som pseudo-kode:

HEAPSORT
$$(A, n)$$

BUILD-MAX-HEAP (A, n)
for $i = n$ downto 2
exchange $A[1]$ with $A[i]$
MAX-HEAPIFY $(A, 1, i - 1)$

Tid:
$$O(n) + O(n \log n) = O(n \log n)$$

Tre $n \log n$ sorteringsalgoritmer

	Worstcase	Inplace
QuickSort		$\sqrt{}$
MergeSort		
HeapSort		$\sqrt{}$

Heapsort kører dog langsommere end Mergesort og Quicksort pga. ineffektiv brug af hukommelse (random access).

Introsort [Musser, 1997]: brug Quicksort, men skift under rekursionen til heapsort hvis rekursionen bliver for dyb. Dette giver en inplace, worst case $O(n \log n)$ algoritme, med god køretid i praksis (dette er sorteringsalgoritmen i standardbiblioteket STL for C++).