

Little Objects Segmentation & Tracking Environment

What is LOBSTER?

LOBSTER is an environment to batch process multidimensional microscopy images; it can identify biological objects and measure their morphology, dynamics and intensity distribution.

The software was designed with speed and simplicity in mind and a strong emphasis on data exploration and validation; it is fit for:

- Cell phenotyping in large high-content screening assays
- Object tracking in long microscopy time-lapses
- Filament tracing / spot counting in massive 3D images

Why LOBSTER?

A growing number of biological images analysis software are available, but most suffer from at least one of the following shortcomings:

- Too generic: no guidance to assemble algorithms into workflows
- Too specific: 2D images only, no object tracking, etc.
- Not scalable: limited image size, slow, too sensitive to varying quality
- Not flexible: fixed workflow, difficult to customize to a specific project
- Not expressive: too much code to write, prone to errors

Highlights

- ✓ Handle multi-dimensional images (3D + channels + time)
- ✓ Virtually no image size limit
- ✓ Consistent set of robust, documented IA algorithms (functions)
- ✓ Easily assemble functions into readable IA workflows (journals)
- √ Many sample applications (images + journals)
- ✓ Image analysis server: queue jobs, email results

Usability

- ✓ Simple to deploy (Matlab), no programming (plumbing only)
- ✓ Streamlined flow, only 4 basic type of image masks
- ✓ Open, layered architecture, human readable data at each step
- ✓ Detailed documentation built as tutorials
- ✓ Images, results and workflows accessible from hyperlinks

Architecture JULI Email Job script **Journals** (IA workflow) Input images Masks Masks Measurements 2D / 3D 2D / 3D 2D / 3D reports 8-bit / 16-bit 8-bit / 16-bit 8-bit / 16-bit .csv files .tif files .tif files .tif files -IRMA-JOSE--JENI-301.084 Area Centroid_1 Centroid_2 272 Label mask **Grayscale images Measurements** reports **Visualization** scenes ImageJ, STL, SWC

Seed mask

Applications

3D Object detection

Filament / tube tracing

Out of focus resilient object segmentation

Objects extraction from seeds

Robust convex particles splitting

Speed measurement (PIV)

Orientation measurement

Points clustering

Image Features Measurements

Calling Journals: JENI

(Journal ENgine Interface)

Measurements: IRMA

(Image Regions Measurements & Analysis)

Exportation: JOSE

(JOb Scene Exporter)

Job 'NucleiCytoo_scene.m'

Journals

```
InputFolder = './Images/NucleiCytoo/';
OutputFolder = './Results/Images/NucleiCytoo/';
Fill = 1; display filled masks
           display labeled masks (colors)
Lbl = 1;
@iA = '*C00*.tif'; image filter (InputFolder)
@fxg mGradWaterTiles [iA] > [L];
                                  first function
params.GaussianRadInt = 2;
                                   + parameters
params.ExtendedMinThr = 2;
/endf
@fxm lTilesMerge [L, iA] > [L2];
params.GaussianRad = 2;
                                  second function
params.MinObjArea = 175;
params.MinSal = -0.5;
                                  + parameters
params.MaxValleyness = 1.075;
params.ConcavityThresh = 0.4;
/endf
/show iA > L2; display iA + L2 overlay (image viewer)
/keep L2 > tif; export L2 to tif (OutputFolder)
```


iA

Journal 'NucleiCytoo_GradWaterTilesMerge.jl'

Documented Functions

>> help fxm_lTileMerge

MaxVallevness:

ConcavityThresh: Concavity threshold (sensitive 0.25 -> 0.5 coarse)

Maximum tiles valleyness (rescue more 0.75 -> 1.25 rescue less)

Basic Measurements

Object label mask

Seed mask

Skeleton mask

Objects

Area
Centroids (X,Y,Z)
Bounding boxes (6 coords)
Mean intensity

Objects

Area

Centroids (X,Y,Z)

Mean intensity

Seeds

Centroids (X,Y,Z)

Mean intensity

Skeletons

Mask volume

Length

Nb brch/end points

Object volume

Image volume

Mean intensity

Advanced Measurements

Filaments: **Branch length distribution** Width distribution

Secondary objects count

Objects distance distribution

Objects colocalization Statistical colocalization

Clustering

- Normalized objects overlap
- Seeds FP / FN / TP rates
- Predicted ++ probability (assuming random seeds)
- Actual ++ observation prob. (assuming random seeds)
- Colocalization evidence
- P(r+ | g+) / P(r+ | g-)
- Exclusion evidence P(r- | g+) / P(r- | g-)
- Clustering factors (r and g)

Exportation & validation

... in massive images

Display object bounding Box + color-code (IJ) Montager IJ macro: Auto-montage objects + link to their locations

3D models exportation

Objects (STL) MeshLab

Image Analysis server: JULI

JULI enabled job

(Job UpLink)

>> JULI (PathToMonitoredFolder, PathToLogFile, 'user@gmail.com', 'password');

```
InputFolder = 'E:/LOBSTER_sandbox/Images/FISH/';
Dstmail = youremail@youremailprovider.com';
[InputFolder MaskFolder1] = GENI('FISH_nucseg.jl',InputFolder,1);
[InputFolder MaskFolder2] = GENI('FISH_sptdet.jl',InputFolder,2);
AttachmentFolder = IRMA(MaskFolder1,1,'Objs',2,1, MaskFolder2);
```


Monitored Folder (FTP)

LOBSTER + FTP + mail server (MATLAB + Filezilla server)

Attachment Folder (csv, scenes, models) zipped and sent to Dstmail

OUTLOOK

- 3D annotations edition tool (partly done)
- Deep learning all rounder module: images -> masks (in works)
- Job builder: graphical wizard
- Whatever else you find useful…

--> sebastien.tosi@irbbarcelona.org