# MARINDUQUE

Jeffrey Cepedoza Ivan John Naparota

#### Location [1].

- island province in the Philippines located in Southwestern Tagalog Region or MIMAROPA
- Its capital is the municipality of Boac



http://umich.edu/~snre492/Jones/marcopper.htm

## Marinduque's Population Density



## Municipalities [4]

| MUNICIPALITY  | POPULATION | LAND AREA     |
|---------------|------------|---------------|
| BOAC(CAPITAL) | 54730      | 212.70 sq. km |
| BUENAVISTA    | 23988      | 81.25 sq. km  |
| GASAN         | 34828      | 100.88 sq.km  |
| MOGPOG        | 34043      | 108.06 sq. km |
| SANTA CRUZ    | 56408      | 270.77 sq. km |
| TORRIJOS      | 30524      | 178.92 sq. km |

### Existing Power plants in Marinduque



#### Record

| POWER PLANT                        | OPERATING<br>HOURS | RATED    | DEPLOYED | ANNUAL<br>GENERATION | ACF     | FUEL TYPE |
|------------------------------------|--------------------|----------|----------|----------------------|---------|-----------|
| BOAC DPP                           | 24 HOURS           | 3.672 MW | 3 MW     | 26280 MWh            | 49 %    | DIESEL    |
| MONARK<br>EQUIPMENT<br>CORPORATION | BACK UP            | 5.715 MW | 4 MW     |                      |         | DIESEL    |
| TORRIJOS DPP                       | BACK UP            | 0.5 MW   | 0.46 MW  |                      |         | DIESEL    |
| POWER BARGE 120                    | 24 HOURS           | 7.2 MW   | 4.6 MW   | 40296 MWh            | 52%     | DIESEL    |
| MANIWAYA DPP                       | 8 HOURS            | 0.104 MW | 0.098 MW | 286.16 MWh           | 31.41 % | DIESEL    |
| MONGPONG DPP                       | 8 HOURS            | 0.104 MW | 0.098 MW | 286.16 MWh           | 31.41 % | DIESEL    |
| POLO DPP                           | 8 HOURS            | 0.092 MW | 0.088 MW | 256.96 MWh           | 31.88 % | DIESEL    |
| TOTAL                              |                    |          |          | 67405.28 MWh         |         |           |

#### GENERATION CHARGE



Generation Charge is 6.1631 Php / kWh

From http://kuryente.org.ph/electric-company/rates/41

# Wind Energy Assessment via Global Wind Atlas



## The Whole Region

- at 100m elevation, 10% windiest area in the region tallies 351 watts per square meter mean power density
- just by looking at the legend shown in the GUI and observing at the region, the power per square meter of almost the whole region is not that high, but

# Point Clicking on the "Redest" Portion

After point clicking on the "redest" portion of the region which is at Buenavista, Marinduque, it will give us a relatively larger mean power density of 521 watts per square meter, this is at 100 m elevation



### Let us compare it to San Lorenzo, Guimaras



- San Lorenzo, Guimaras is the location of one of Philippines' wind energy farm, the San Lorenzo Wind Farm (50 MW installed capacity)
- San Lorenzo has a mean power density of 398 watts per square meter
- The recorded mean power density of Marinduque is relatively larger than the mean power density of San Lorenzo

### Nabas, Aklan Comparison



- 36 MW wind energy source is located in Nabas, Aklan
- Mean power density due to wind in Nabas, Aklan is relatively larger than of Marinduque's but it does not have that much of a difference

#### **Implication**

- Marinduque's potential for wind energy source is noticeable
- Proposing a wind energy farm in Buenavista, Aklan is reasonable for it has the biggest mean power density across the region of Marinduque
- Marinduque's potential for wind energy source is complemented by its large land area, Buenavista has a land area of 81.25 sq. kilometer and according to [6], "a 2-megawatt wind turbine would require a total area of about half a square kilometer", making it even more possible to build a wind energy farm in Buenavista, Marinduque

#### Solar Assessment via Global Solar Atlas



### **Implication**

- It is observable in the GUI of Global Solar Atlas that Torrijos, Marinduque has the largest Global Horizontal Irradiance across the Marinduque region, it has a high potential for solar energy having a GHI of 1886 kWh per square meter.
- Also, it is favourable that Torrijos would be the place for the solar farm because the municipality has the least population density of only 170 persons/sq.km [4] and having a very large land area of 178.92 sq. km [4]

## Buenavista, Marinduque Wind Data (m/s)

| Lat 13.248<br>Lon<br>121.981 | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
|------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 10-year<br>Average           | 6.59 | 5.69 | 5.28 | 4.17 | 3.36 | 4.48 | 4.26 | 5.55 | 4.24 | 4.55 | 5.96 | 7.00 |

This is a 10 year average wind data from NASA's free access database.

Link: https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi?email=skip@larc.nasa.gov

# Torrijos, Marinduque Horizontal Insolation (kWh/m^2/day)

| Lat 13.334<br>Lon<br>122.016 | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
|------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 22-year<br>Average           | 4.34 | 5.09 | 5.84 | 6.53 | 6.18 | 5.32 | 4.99 | 5.11 | 4.93 | 4.51 | 4.12 | 3.87 |

This is a 22 year average of horizontal insolation data from NASA's free access database.

Link: https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi?email=skip@larc.nasa.gov

## Hybrid System Design

- Design a Hybrid System that can supply the island's energy needs
- Hybrid system composed of wind and solar renewable energy sources and the existing diesel power plants
- Consider limiting the carbon emission in designing
- HOMER is employed to design an optimized hybrid system

# Map of proposed RE's along with existing DPP's



# Carbon Emission and LCOE from existing DPP's solved in HOMER

#### System architecture

Boac DPP 3,000 kW

Power Barge120 4,600 kW

Torrijos DPP 460 kW

Polo DPP 88 kW

Maniwaya DPP 50 kW

Mongpong DPP 98 kW

Monark Equiment 4,000 kW

#### **Cost summary**

| Total net present cost   | \$ 438,678,816   |
|--------------------------|------------------|
| Levelized cost of energy | \$ 0.417/kWh     |
| Operating cost           | \$ 26,900,056/yr |

#### **Emissions**

| Pollutant            | Emissions (kg/yr) |
|----------------------|-------------------|
| Carbon dioxide       | 60,432,392        |
| Carbon monoxide      | 149,169           |
| Unburned hydocarbons | 16,523            |
| Particulate matter   | 11,245            |
| Sulfur dioxide       | 121,359           |
| Nitrogen oxides      | 1,331,045         |

## **Specifications of Components**

| COMPONENTS                   | CAPACITY             |  |
|------------------------------|----------------------|--|
| BOAC DPP                     | 3000 kw              |  |
| MONARK EQUIPMENT CORPORATION | 4000 kw              |  |
| TORRIJOS DPP                 | 460 kw               |  |
| POWER BARGE 120              | 4600 kw              |  |
| MANIWAYA DPP                 | 50 kw                |  |
| MONGPONG DPP                 | 98 kw                |  |
| POLO DPP                     | 88 kw                |  |
| PV ARRAY                     | 20000,25000,30000 kw |  |
| WIND TURBINE (WES 30)        | 250 kw AC            |  |
| BATTERY (300 Trojan L16P)    | 2.16 kwh             |  |
| CONVERTER                    | 15000 kwh            |  |

## Proposed Setup (HOMER Optimized)

#### System architecture

| PV Array        | 30,000 kW |
|-----------------|-----------|
| Wind turbine    | 40 WES 30 |
| Boac DPP        | 3,000 kW  |
| Power Barge120  | 4,600 kW  |
| Torrijos DPP    | 460 kW    |
| Polo DPP        | 88 kW     |
| Maniwaya DPP    | 50 kW     |
| Mongpong DPP    | 98 kW     |
| Monark Equiment | t4.000 kW |

Battery 1,500 Trojan L16P

Inverter 15,000 kW

Rectifier 15,000 kW

Dispatch strategy Cycle Charging

#### **Cost summary**

| Total net present cost   | \$ 360,420,000   |
|--------------------------|------------------|
| Levelized cost of energy | \$ 0.343/kWh     |
| Operating cost           | \$ 17,713,774/yr |

#### **Emissions**

| Pollutant            | Emissions (kg/yr) |
|----------------------|-------------------|
| Carbon dioxide       | 31,862,958        |
| Carbon monoxide      | 78,649            |
| Unburned hydocarbons | 8,712             |
| Particulate matter   | 5,929             |
| Sulfur dioxide       | 63,986            |
| Nitrogen oxides      | 701,793           |

#### **Electrical**

| Component       | Production | Fraction |
|-----------------|------------|----------|
| Component       | (kWh/yr)   |          |
| PV array        | 44,352,912 | 46%      |
| Wind turbines   | 16,058,743 | 17%      |
| Boac DPP        | 11,990,222 | 13%      |
| Power Barge120  | 9,628,506  | 10%      |
| Torrijos DPP    | 668,374    | 1%       |
| Polo DPP        | 94,541     | 0%       |
| Maniwaya DPP    | 52,122     | 0%       |
| Mongpong DPP    | 68,890     | 0%       |
| Monark Equiment | 12,656,629 | 13%      |
| Total           | 95,570,944 | 100%     |

#### **Discussions**

The results from HOMER which are presented shows that the optimized hybrid system is composed of generally a 30 MW solar energy source and a 10 MW wind energy source, it is observable that it limits the usage of existing diesel power plants to only 37 % of the total energy consumption of the island, resulting in a lesser carbon emission which is about a half of the total carbon emission of the existing diesel power plants in the island, and surprisingly, the levelized cost of energy became lesser with the proposed hybrid system, from \$ 0.417 to \$0.343.

#### Conclusion(s)

- Practicing the use of Renewable Energy is of big help in addressing problems related to CO2 emission
- The island of Marinduque has a high potential for solar and wind energy

#### References

- 1 https://en.wikipedia.org/wiki/Marinduque
- 2 http://newsinfo.inquirer.net/926591/diesel-fired-plant-boosts-marinduque-power-supply
- 3 https://deepresource.wordpress.com/2012/04/23/energy-related-conversion-factors/
- 4 Census of Population (2015). Highlights of the Philippine Population 2015 Census of Population. PSA. Retrieved 20 June 2016.
- 5- <a href="https://carbonpositivelife.com/co2-per-litre-diesel/">https://carbonpositivelife.com/co2-per-litre-diesel/</a>
- 6- https://sciencing.com/much-land-needed-wind-turbines-12304634.html