KISI-KISI SOAL HOTS

Jenjang Pendidikan: SMAMata Pelajaran: FisikaKelas: XISemester: GenapBentuk Soal: Pilihan ganda beralasan tertutupBentuk Penilaian: Tertulis

Kompetensi Dasar : 3.7 Menganalisis perubahan keadaan gas ideal dengan menerapkan Hukum Termodinamika

No	Ruang lingkup materi	Indikator	Aspek HOTS	Sub-aspek HOTS	Kompetensi Kognitif HOTS	Nomor soal A	Nomor soal B
1.	Hukum ke-0	- Mendefinisikan	Menganalisis	Membedakan	Membedakan suhu awal dan suhu	1	3
	Termodinamika	konsep	(C4)		akhir pada proses isobarik		
		kesetimbangan		Memberikan ciri	Menentukan usaha oleh gas karena	2	5
		kalor melalui		khusus	perubahan tekanan		
		Hukum ke-0	Mengevaluasi	Mengecek	Memilih faktor-faktor yang	3	7
		Termodinamika	(C5)		berkaitan dengan proses		
		- Menganalisis			termodinamika		
		Perubahan		Menilai	Menilai besar usaha yang dilakukan	4	9
		keadaan gas			pada sistem dengan dua proses yang		
		ideal.			berbeda		
			Mencipta (C6)	Merencanakan	Merencanakan besar volume yang	5	11
					diperlukan untuk menghasilkan		
					suatu usaha yang diinginkan		
2.	Hukum I	- Menjelaskan	Menganalisis	Membedakan	Membedakan usaha oleh gas jika	6	13
	Termodinamika	Hukum I	(C4)		suhu berbeda		
		Termodinamika		Memberikan ciri	Menentukan perubahan energi	7	15
		yang		khusus	dalam		
		merupakan 	Mengevaluasi	Mengecek	Memilih usaha yang paling besar	8	17
		prinsip	(C5)		pada proses adiabatik		
		kekekalan		Menilai	Menilai volume dan tekanan akhir	9	19
		energi dalam			gas agar sistem isotermal		
		sistem	Mencipta (C6)	Merencanakan	Merencanakan kerja negatif pada	10	1

		termodinamika Menganalisis kasus khusus pada Hukum I Termodinamika			sistem		
3.	Hukum II Termodinamika	Menganalisis cara kerja mesin kalor dan mesin	Menganalisis (C4)	Membedakan	Membedakan usaha tebesar dan terkecil yang dilakukan sistem pada mesin kalor	11	20
		pendingin dengan Hukum II		Memberikan ciri khusus	Menentukan koefesien performa dari efisiensi mesin kalor	12	18
		Termodinamika.	Mengevaluasi (C5)	Mengecek	Mengecek waktu yang diperlukan untuk pembekuan	13	16
				Menilai	Menilai perubahan entropi pada es yang melebur	14	14
			Mencipta (C6)	Merencanakan	Mendesain sebuah mesin pendingin dengan efisiensi tertentu	15	12
4.	Siklus Carnot	Menerapkan Hukum I dan II	Menganalisis (C4)	Mengurutkan	Mengurutkan efisiensi mesin dari yang terkecil ke terbesar	16	10
		Termodinamika pada siklus Carnot.		Memberikan ciri khusus	Menentukan suhu pada reservoir dingin berdasarkan daya yang dihasilkan	17	8
			Mengevaluasi (C5)	Mengecek	Mengecek suhu reservoir tinggi jika reservoir rendah diketahui	18	6
				Menilai	Menilai spesifikasi efisiensi sebuah mesin	19	4
			Mencipta (C6)	Memunculkan ide	Mendesain suhu terendah suatu ruangan	20	2

TES PENGUKURAN SOAL HOTS MATERI TERMODINAMIKA

Waktu 60 menit

Petunjuk pengerjaan soal

- 1. Pilihlah *option* (pilihan jawaban) yang menurut Anda benar.
- 2. Setiap soal terdiri dari pertanyaan dan alasan masing-masing terdiri atas 5 (lima) *option*.
- 3. Beri tanda silang huruf di depan option (A, B, C, D, E) yang anda pilih pada jawaban.

 \nearrow B C D E

4. Jika anda ingin mengganti jawaban (pembatalan jawaban) dapat dilakukan dengan cara menambahkan tanda = pada jawaban tersebut.

 \rightarrow B \rightarrow D E

Soal Materi Termodinamika

1. Pada suatu eksperimen, terdapat lima tabung yang mengalami proses isobarik. Terjadi penyusutan volume gas pada masing-masing tabung. Perubahan volume ditunjukkan pada tabel berikut,

Tabung	Volume awal (V ₁)	Volume akhir (V ₂)
1	V	1/5 V
2	V	1/8 V
3	2V	1/2 V
4	2V	1/4 V
5	2V	1/5 V

Berdasarkan data tersebut, maka perbandingan suhu T_1 : T_2 terbesar dan terkecil ada pada tabung ke

- A. 1 dan 2
- B. 2 dan 3
- C. 3 dan 1
- D. 4 dan 2
- E. 5 dan 3

- A. Jika tekanan gas dipertahankan konstan, maka volume gas sama dengan suhunya
- B. Jika tekanan gas dipertahankan konstan, maka volume gas berbanding terbalik dengan suhunya
- C. Jika tekanan gas dipertahankan konstan, maka volume gas berbanding lurus dengan suhunya
- D. Jika tekanan gas dipertahankan konstan, maka volume gas lebih besar dari suhunya
- E. Jika tekanan gas dipertahankan konstan, maka volume gas lebih kecil dari suhunya

- 2. Suhu suatu gas dalam sebuah ruangan tertutup mula-mula adalah 77°C. Jika tekanan akhir pada ruangan tertutup tersebut 5 kali lebih besar dari tekanan semula, maka suhu akhir gas tersebut sebesar
 - A. 35°C
 - B. 77°C
 - C. 160°C
 - D. 273°C
 - E. 385°C

- A. Pada volume tetap, tekanan gas berbanding lurus dengan suhunya
- B. Pada volume tetap, tekanan gas berbanding terbalik dengan suhunya
- C. Pada volume tetap, tekanan gas sama dengan dengan suhunya
- D. Pada volume tetap, tekanan gas lebih besar dari suhunya
- E. Pada volume tetap, tekanan gas lebih kecil dari suhunya
- 3. Perhatikan pernyataan berikut,
 - (1) Gas tidak melakukan usaha pada proses isokhorik.
 - (2) Gas menerima atau mengerjakan usaha pada proses isobaric.
 - (3) Gas mengalami perubahan energi pada proses isotermik.
 - (4) Gas selalu memperoleh usaha pada proses adiabatik.

Pernyataan-pernyataan di atas yang berkaitan dengan proses termodinamika adalah....

- A. 1, 2, dan 3
- B. 1 dan 4
- C. 1 dan 2
- D. 2, 3, dan 4
- E. 3 dan 4

Alasan:

- A. Usaha hanya bisa dilakukan oleh sistem
- B. Usaha tidak bisa dilakukan oleh lingkungan
- C. Usaha sebanding dengan suhu
- D. Usaha merupakan perkalian antara perubahan volume gas dengan tekanan tetap
- E. Usaha maksimal ketika proses isokhorik
- 4. Gas dengan suhu, tekanan, dan volume tertentu ditekan sehingga volumenya menjadi setengah dari volumenya semula. Pernyataan berikut yang benar adalah
 - A. kerja yang dilakukan lingkungan pada sistem jika proses berlangsung secara isobarik lebih besar daripada jika proses berlangsung secara isotermal
 - B. kerja yang dilakukan lingkungan pada sistem jika proses berlangsung secara isobarik lebih besar daripada jika proses berlangsung secara adiabatik
 - C. kerja yang dilakukan lingkungan pada sistem jika proses berlangsung secara adiabatic lebih besar daripada jika proses berlangsung secara isotermal
 - D. kerja yang dilakukan lingkungan pada sistem jika proses berlangsung secara adiabatic lebih kecil daripada jika proses berlangsung secara isotermal
 - E. tekanan dan suhu juga berkurang menjadi setengahnya

- A. Kerja yang dilakukan oleh lingkungan pada sistem bernilain positif, dan sistem mendapat kalor bernilai positif
- B. Kerja yang dilakukan oleh lingkungan pada sistem bernilain negatif, dan sistem mendapat kalor bernilai positif

- C. Kerja yang dilakukan oleh lingkungan pada sistem bernilain negatif, dan sistem mendapat kalor bernilai negatif
- D. Kerja yang dilakukan oleh lingkungan pada sistem bernilain positif, dan sistem mendapat kalor bernilai negative
- E. Kerja tidak bisa dilakukan oleh lingkungan pada sistem
- 5. Sebanyak 1,5 mol gas dalam wadah mengalami pemuaian isobarik pada tekanan 2×10^5 Pa. Suhu awal gas 300 K dan suhu akhirnya 600 K. Jika usaha selama proses -3.600 J, maka besar volume awal dan akhir untuk mencapai usaha tersebut sebesar
 - A. 0,003 m³ dan 0,006 m³
 - B. 0,004 m³ dan 0,009 m³
 - C. 0,013 m³ dan 0,029 m³
 - D. 0,019 m³ dan 0,037 m³
 - E. 0,021 m³ dan 0,043 m³

- A. Perubahan volume berbanding lurus dengan tekanan
- B. Perubahan volume berbanding terbalik dengan suhu
- C. Perubahan volume berbanding terbalik dengan jumlah mol gas
- D. Perubahan volume berbanding terbalik dengan konstanta gas umum
- E. Perubahan volume berbanding lurus dengan usaha
- 6. Sebuah piston mengandung 0,05 mol gas ideal pada suhu 27°C. Tekanan gas sebesar 10⁵ Pa. Proses selanjutnya, gas dipanaskan hingga suhunya mencapai 77°C dan volume piston bertambah pada tekanan konstan. Maka usaha yang telah dilakukan oleh gas sebesar
 - A. 12,8 joule
 - B. 20,8 joule
 - C. 25,6 joule
 - D. 29,3 joule
 - E. 33,3 joule

Alasan:

- A. Usaha merupakan perkalian antara perubahan suhu dengan tekanan tetap
- B. Usaha merupakan perkalian antara jumlah mol gas dengan suhu awal
- C. Usaha merupakan perkalian antara perubahan suhu dengan perubahan volume
- D. Usaha merupakan perkalian antara perubahan volume gas dengan tekanan tetap
- E. Usaha merupakan selisih dari perubahan suhu dan volume
- 7. 10 mol gas helium disimpan dalam tabung tertutup, volume 2 liter (isokhorik) dengan tekanan 1,2.10⁶ Pa. Jika gas menyerap kalor sehingga tekanan menjadi 2.10⁶ Pa. maka besar perubahan energi dalamnya adalah
 - A. 240 joule
 - B. 270 joule
 - C. 300 joule
 - D. 324 joule
 - E. 360 joule

- A. Perubahan energi dalam berbanding lurus dengan jumlah perkalian antara tekanan dan volume pada keadaan akhir dan awal
- B. Perubahan energi dalam berbanding terbalik dengan selisih perkalian antara tekanan dan volume pada keadaan akhir dan awal

- C. Perubahan energi dalam berbanding terbalik dengan jumlah perkalian antara tekanan dan volume pada keadaan akhir dan awal
- D. Perubahan energi dalam berbanding lurus dengan pembagian antara tekanan dan volume pada keadaan akhir dan awal
- E. Perubahan energi dalam berbanding lurus dengan selisih perkalian antara tekanan dan volume pada keadaan akhir dan awal
- 8. 800 gram oksigen diproses dengan cara adiabatik, mengalami perubahan suhu awal (T_1) menjadi suhu akhir (T_2) . Perubahan diamati sebanyak lima kali, dirangkum dalam tabel berikut.

Adiabatik	<i>T</i> ₁ (°C)	<i>T</i> ₂ (°C)
1	26	46
2	26	48
3	27	47
4	27	48
5	27	48

Berdasarkan hasil pengamatan di atas, maka usaha terbesar terjadi pada pengamatan ke

. . . .

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

Alasan:

- A. Usaha berbanding terbalik dengan perubahan suhu
- B. Usaha sama dengan perubahan suhu
- C. Usaha berbanding lurus dengan perubahan suhu
- D. Usaha dalam proses adiabatik selalu nol
- E. Usaha tidak dipengaruhi oleh suhu
- 9. Gas ideal sebanyak 0,24 mol berada dalam sebuah sistem yang dihubungkan dengan sebuah reservoir termal, agar sistem berada dalam suhu konstan 40°C. Jika diketahui volume awal sistem 4 liter dan usaha yang dilakukan 20 joule, maka kenaikan volume dan tekanan akhir gas adalah
 - A. $12.8.10^{-5}$ m³ dan $1.56.10^{5}$ Pa
 - B. $12.8.10^{-3}$ m³ dan $1.56.10^{3}$ Pa
 - C. $13,4.10^{-5}$ m³ dan $1,28.10^{5}$ Pa
 - D. $13.4.10^{-3}$ m³ dan $1.28.10^{3}$ Pa
 - E. $15.6.10^{-5}$ m³ dan $1.34.10^{5}$ Pa

- A. Tekanan berbanding terbalik dengan suhu, dan perubahan volume berbanding terbalik dengan usaha
- B. Tekanan berbanding lurus dengan suhu, dan perubahan volume berbanding lurus dengan usaha
- C. Tekanan berbanding terbalik dengan suhu, dan perubahan volume berbanding lurus dengan usaha
- D. Tekanan berbanding lurus dengan suhu, dan perubahan volume berbanding terbalik dengan usaha
- E. Tekanan berbanding lurus dengan volume, dan suhu berbanding terbalik dengan usaha

- 10. Gas dalam sebuah ruangan tertutup mengalami proses isotermik yang menyebabkan volumenya mengalami pengembangan sebesar $2.000~\rm{dm^3}$. Jika suhu awal gas $273~\rm{K}$ dan tekanan awalnya $4~x~10^5~\rm{Pa}$, maka kalor yang diterima atau dibuang sistem, agar kerja yang dilakukan lingkungan terhadap sistem bernilai negatif sebesar
 - A. $6,123.10^5$ J
 - B. 7,014.10⁵ J
 - C. $8,034.10^5$ J
 - D. $9,541.10^5$ J
 - E. 10,374.10⁵ I

- A. Untuk mendapatkan kerja bernilai negatif, maka sistem menerima kalor
- B. Untuk mendapatkan kerja bernilai negatif, maka sistem membuang kalor
- C. Untuk mendapatkan kerja bernilai positif, maka sistem membuang kalor
- D. Untuk mendapatkan kerja bernilai positif, maka sistem menerima kalor
- E. Untuk mendapatkan kerja bernilai negatif, maka lingkungan menerima kalor
- 11. Lima buah mesin kalor beroperasi secara bersama-sama. Kalor yang diserap dari reservoir panas (Q_1) dan kalor yang dibuang ke reservoir dingin (Q_2) dari setiap mesin berbedabeda. Perbedaan kalor tersebut ditunjukkan dalam tabel berikut,

Mesin Kalor	Q ₁ (Joule)	Q ₂ (Joule)	
1	1.000	800	
2	980	820	
3	910	790	
4	850	775	
5	830	760	

Berdasarkan data diatas, maka usaha terbesar dan terkecil dioperasikan oleh mesin kalor bernomor

- A. 1 dan 2
- B. 1 dan 4
- C. 1 dan 5
- D. 2 dan 3
- E. 2 dan 4

- A. Usaha merupakan selisih antara kalor yang diserap dari reservoir panas dan kalor yang dibuang ke reservoir dingin
- B. Usaha merupakan jumlah dari kalor yang diserap dari reservoir panas dan kalor yang dibuang ke reservoir dingin
- C. Usaha merupakan pembagian antara kalor yang diserap dari reservoir panas dengan kalor yang dibuang ke reservoir dingin
- D. Usaha sama dengan jumlah kalor yang diserap dari reservoir panas
- E. Usaha sama dengan jumlah kalor yang dibuang ke reservoir dingin
- 12. Sebuah mesin kalor memiliki efisiensi sebesar 20%. Jika arah proses dalam mesin tersebut dibalik sehingga menjadi pompa panas, maka koefesien performa pompa panas tersebut adalah
 - A. 5,0
 - B. 1,25
 - C. 0.9

- D. 0,8
- E. 0.2

- A. Koefesien performa berbanding lurus dengan efisiensi
- B. Koefesien performa berbanding terbalik dengan efisiensi
- C. Koefesien performa dan efisiensi sama besar
- D. Koefesien performa lebih besar dari efisiensi
- E. Koefesien performa lebih kecil dari efisiensi
- 13. Kulkas dengan koefesien performa 5,0 digunakan untuk membekukan air, dengan daya masukan sebesar 500 W. Jumlah kalor yang dipindahkan dari reservoir dingin sebesar 2,08. 10⁵ joule. Waktu yang diperlukan untuk terjadinya proses pembekuan adalah
 - A. 67,8 sekon
 - B. 83,3 sekon
 - C. 91.6 sekon
 - D. 105,4 sekon
 - E. 121,9 sekon

Alasan:

- A. Waktu pembekuan semakin cepat jika kalor yang dipindahkan dari reservoir dingin semakin besar
- B. Waktu pembekuan semakin lama jika kalor yang dipindahkan dari reservoir dingin semakin kecil
- C. Waktu pembekuan semakin lama jika kalor yang dipindahkan dari reservoir dingin semakin besar
- D. Waktu pembekuan semakin lama jika daya semakin besar
- E. Waktu pembekuan semakin lama jika koefesien performa semakin besar
- 14. Sebuah kubus es bermassa 60 gram dan bersuhu 0°C ditempatkan di dalam gelas. Setelah disimpan beberapa lama, setengah dari es tersebut mencair menjadi air bersuhu 0°C. perubahan entropi yang dialami es sebesar (diketahui kalor lebur es 80 kal/g)
 - A. 8,8 kal/K
 - B. 9,8 kal/K
 - C. 10.8 kal/K
 - D. 11,8 kal/K
 - E. 12,8 kal/K

- A. Semakin besar perubahan suhu, semakin besar pula perubahan entropinya
- B. Semakin kecil perubahan suhu, semakin besar perubahan entropinya
- C. Semakin kecil perubahan kalor untuk meleburkan es, semakin besar perubahan entropinya
- D. Semakin besar perubahan kalor untuk meleburkan es, semakin kecil perubahan entropinya
- E. Semakin besar perubahan kalor untuk meleburkan es, semakin besar pula perubahan entropinya

15. Suatu pabrik ingin membuat mesin pendingin dengan koefesien performa 2,5. Jika dituangkan dalam bentuk diagram proses, maka diagram yang sesuai adalah

- A. Kalor yang disedot reservoir panas lebih kecil dari kalor yang dibuang ke reservoir dingin
- B. Kalor yang disedot reservoir panas lebih besar dari kalor yang dibuang ke reservoir dingin
- C. Kalor yang disedot dari reservoir dingin lebih besar dari kalor yang dibuang ke reservoir panas
- D. Kalor yang disedot dari reservoir dingin lebih kecil dari kalor yang dibuang ke reservoir panas
- E. Kalor yang disedot dan buang dari reservoir panas dan dingin sama besar

16. Sebuah mesin Carnot dilakukan uji coba, dengan suhu pada reservoir tinggi (T₁) dan suhu pada reservoir rendah (T₂) yang berbeda-beda. Suhu pada kedua reservoir seperti tabel di bawah ini.

Uji coba Carnot ke-	T ₁ (°C)	T ₂ (°C)
1	537	290
2	523	123
3	327	127
4	277	77

Berdasarkan data di atas, maka efisiensi terbesar dan terkecil diperoleh ketika uji coba ke

. . . .

- A. 1 dan 2
- B. 1 dan 3
- C. 1 dan 4
- D. 2 dan 1
- E. 2 dan 4

Alasan:

- A. Efisiensi mesin Carnot berbanding lurus dengan jumlah suhu pada reservoir panas dan dingin, serta berbanding terbalik dengan suhu pada reservoir panas
- B. Efisiensi mesin Carnot berbanding lurus dengan suhu pada reservoir panas, serta berbanding terbalik dengan selisih suhu pada reservoir panas dan dingin
- C. Efisiensi mesin Carnot berbanding lurus dengan suhu pada reservoir panas, serta berbanding terbalik dengan jumlah suhu pada reservoir panas dan dingin
- D. Efisiensi mesin Carnot berbanding terbalik dengan selisih suhu pada reservoir panas dan dingin, serta berbanding lurus dengan suhu pada reservoir panas
- E. Efisiensi mesin Carnot berbanding lurus dengan selisih suhu pada reservoir panas dan dingin, serta berbanding terbalik dengan suhu pada reservoir panas
- 17. Suatu mesin Carnot menghasilkan daya 490 kW saat menyerap panas sebanyak 700 kJ per sekon dari reservoir panas. Jika suhu reservoir panas 1000 K, maka suhu reservoir dinginnya adalah
 - A. 450 K
 - B. 400 K
 - C. 350 K
 - D. 300 K
 - E. 273 K

- A. Suhu berbanding terbalik dengan kalor
- B. Suhu berbanding lurus dengan kalor
- C. Daya berbanding terbalik dengan usaha
- D. Daya berbanding lurus dengan efisiensi
- E. Daya sama dengan kalor pada reservoir rendah
- 18. Efisiensi sebuah mesin Carnot adalah 60%. Jika reservoir bersuhu rendah memiliki suhu 50°C, maka suhu reservoir yang lain sebesar
 - A. 872,5 K
 - B. 852.5 K
 - C. 832,5 K
 - D. 822,5 K

E. 812,5 K

Alasan:

- A. Suhu pada reservoir rendah sebanding dengan suhu pada reservoir tinggi
- B. Semakin besar efisiensi Carnot, maka kualitas mesin semakin menurun
- C. Efisiensi Carnot hanya bergantung pada suhu di reservoir rendah
- D. Semakin besar selisih suhu pada reservoir panas dan dingin, maka efisiensi makin besar
- E. Semakin besar selisih suhu pada reservoir panas dan dingin, maka efisiensi makin kecil
- 19. Perhatikan gambar siklus Carnot di bawah ini!

 $T_1 = 900 \; \mbox{K}$, $T_2 = 720 \; \mbox{K}$, dan $W = 4.10^4$ Joule. Kalor yang dilepas Q_2 sebesar

- A. 0,2.10⁵ Joule
- B. 0,4.10⁵ Joule
- C. 0,8.10⁵ Joule
- D. 1,2.10⁵ Joule
- E. 1,6.10⁵ Joule

- A. Kalor yang dilepas adalah selisih antara kalor yang diserap dengan usaha
- B. Kalor yang dilepas adalah jumlah antara kalor yang diserap dan usaha
- C. Kalor yang dilepas lebih besar daripada kalor yang diserap
- D. Kalor yang dilepas berbanding terbalik dengan suhu
- E. Kalor yang dilepas tidak mempengaruhi efisiensi mesin
- 20. Pada sebuah restoran akan dipasang pendingin yang memiliki koefesien performa 5,0. Jika suhu ruangan di dapur 29°C, maka diagram alir suhu yang sesuai adalah

- A. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu tinggi ke reservoir bersuhu rendah, dengan diberikan usaha dari luar
- B. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu tinggi ke reservoir bersuhu rendah, dan menghasilkan usaha
- C. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu rendah menuju reservoir suhu tinggi, dengan diberikan usaha dari luar
- D. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu rendah menuju reservoir suhu tinggi, tanpa ada diberikan usaha dari luar
- E. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu rendah menuju reservoir bersuhu tinggi, dan mengasilkan usaha

PEDOMAN PENSKORAN TES PENGUKURAN SOAL HOTS MATERI TERMODINAMIKA

Petunjuk penskoran

- A. Jumlah soal sebanyak 20 butir soal yang terdiri dari kemampuan menganalisis, mengevaluasi dan mencipta
- B. Skor pada rubrik penilaian berskala 1-4 yang berarti
 - **4** = pemahaman konsep kuat dan jawaban benar (Jawaban dan alasan benar)
 - **3**= pemahaman konsep kuat dan jawaban salah (Jawaban salah dan alasan benar)
 - 2= pemahamn konsep lemah dan jawaban benar (Jawaban benar dan alasan salah)
 - 1= pemahaman konsep lemah dan jawaban salah (Jawaban salah dan alasan salah)
- C. Nilailah sesuai rubrik penilaian dan objektif

Soal A		Pen	yelesaian		Skor		
	Jawaban : E $\frac{V}{T} = konstanta$						
	$\begin{array}{c cccc} Tabung & Volume awal & Vo \\ \hline (V_1) & & \end{array}$		Volume akhir (V ₂)	T ₁ :T ₂			
	1	V	1/5 V	5:1			
	2	V	1/8 V	8:1	4		
	3	2V	1/2 V	4:1	7		
	4	2V	1/4 V	8:1			
1	5	2V	1/5 V	10:1			
	Alasan : C Jika tekanan gas dipertahankan konstan, maka volume gas berbanding lurus dengan suhunya.						
	Jawaban : A, B, C, D Alasan : C						
	Jawaban : E Alasan : A, B, D, E						
	Jawaban : A, B, C, D Alasan : A, B, D, E						
2	Jawaban : E $ \frac{p}{T} = konstanta $ $ \frac{p_1}{T_1} = \frac{p_2}{T_2} \longrightarrow \frac{p}{77^{\circ}C} = \frac{5p}{T_2} \longrightarrow T_2 = 385^{\circ} $ Alasan : A						
		etap, tekanan gas	berbanding lurus	dengan suhunya			
	Jawaban : A, H	3, C, D			3		

	Alasan : A	
	Jawaban : E	
	Alasan : B, C, D, E	2
	Jawaban : A, B, C, D	
	Alasan : B, C, D, E	1
	Jawaban : C	
	Usaha yang dilakukan oleh gas dinyatakan dengan persamaan $W = p\Delta V$	
	Jika usaha dilakukan oleh lingkungan terhadap sistem, maka usaha menjadi bernilai negatif. Alasan : D	4
3	Usaha merupakan perkalian antara perubahan volume dengan tekanan tetap	
	Jawaban : A, B, D, E	_
	Alasan : D	3
	Jawaban : C	_
	Alasan : A, B, C, E	2
	Jawaban : A, B, D, E	
	Alasan : A, B, C, E	1
	Jawaban: D	
	Kasus ini, menunjukkan kerja dilakukan oleh lingkungan terhadap	
	sistem (gas). Sehingga $\Delta U = Q - W$.	
	Hal ini berpengaruh terhadap proses termodinamika,	
	1. Adiabatik, $(Q = 0)$ maka $\Delta U = -W$	4
	2. Isothermal, $(\Delta U = 0)$ maka $Q = W$	4
	3. Isobarik, $Q - \Delta U = W$	
	4. Isokhorik, $(W = 0)$ maka $\Delta U = Q$	
4	Alasan : B	
	Kerja yang dilakukan oleh lingkungan pada sistem bernilain negatif,	
	dan sistem mendapat kalor bernilai positif	
	Jawaban : A, C, D, E	3
	Alasan : B	3
1	Jawaban : D	2
	Alasan : A, B, C, E	2
	Jawaban : A, C, D, E	1
	Alasan : A, B, C, E	1
	Jawaban : D	
	Menentukan volume awal V ₁ dengan persamaan	
	pV = nRT	
	$V_1 = 0.019 \text{ m}^3$	
	Menentukan perubahan volume ΔV	
	$W = -p\Delta V$	4
5	$\Delta V = 0.018 \mathrm{m}^3$	
,	Menghitung volume akhir V_2	
	$V_2 = V_1 + \Delta V = 0.037 \text{ m}^3$	
	$V_2 = V_1 + \Delta V = 0.037 \text{ m}^2$ Alasan : E	
	Perubahan volum berbanding lurus dengan usaha	
	Jawaban: A, B, C, D	3
	Alasan : E	

	Jawaban: D	2		
	Alasan : A, B, C, E Jawaban : A, B, C, D			
	Alasan : A, B, C, E	1		
	Jawaban : B			
	Menentukan volume awal V ₁ dengan persamaan			
	$p_1V_1 = nRT_1 \longrightarrow V_1 = 124,7.10^{-5} \text{ m}^3$			
	Menentukan volume akhir V ₂ dengan persamaan			
	$\left \frac{V_1}{T_1} = \frac{V_2}{T_2} \right \longrightarrow V_2 = 145,5. 10^{-5} \text{m}^3$			
	Menentukan usaha yang dilakukan oleh gas	4		
	$W = p\Delta V = 20.8$ joule			
6	$\begin{array}{c} \mathbf{Alasan} : \mathbf{D} \end{array}$			
	Usaha merupakan perkalian antara perubahan volume dengan			
	tekanan tetap			
	Jawaban : A, C, D, E	_		
	Alasan : D	3		
	Jawaban : B			
	Alasan : A, B, C, E	2		
	Jawaban : A, C, D, E	4		
	Alasan : A, B, C, E	1		
	Jawaban : A			
	$\Delta U = \frac{3}{2} nR \Delta T$			
	2			
	$\Delta U = \frac{3}{2} (nRT_{akhir} - nRT_{awal})$			
	$\Delta U = \frac{3}{2} (p_{akhir} V_{akhir} - p_{awal} V_{awal})$			
	$\Delta U = \frac{3}{2} (2.10^6. 2.10^{-3} - 1.2.10^6. 2.10^{-3})$			
	Z			
_	$\Delta U = 240$ joule			
7	A1 E			
	Alasan : E			
	Perubahan energi dalam berbanding lurus dengan selisih perkalian			
	antara tekanan dan volume pada keadaan akhir dan awal Jawaban : B, C, D, E			
	Alasan : E	3		
	Jawaban : A			
	Alasan : A, B, C, D	2		
	Jawaban : B, C, D, E			
	Alasan : A, B, C, D	1		
	Jawaban : B			
	Pada adiabatic, $Q = 0$, sehingga $\Delta U = W$			
	Dimana $\Delta U = \frac{3}{2}nR\Delta T$ (pada suhu rendah)	4		
	L L	7		
8	Alasan : C			
	Usaha berbanding lurus dengan perubahan suhu			
	Jawaban: A, C, D, E	3		
	Alasan : C			
	Jawaban: B	2		
	Alasan : A, B, D, E			

	Jawaban : A, C, D, I					1
	Alasan : A, B, D,	<u> </u>				
	Jawaban : A					
	Menentukan besar te		rsamaan			
	$pV = nRT \longrightarrow p$					
	Menentukan kenaika					4
	$W = p\Delta V \longrightarrow \Delta$	$V = 12,8.10^{-5} \text{r}$	n ³			•
	Alasan : B					
9	Tekanan berbandin		suhu, dan p	perubahan vo	olume	
	berbanding lurus der	~				
	Jawaban : B, C, D, I	3				3
	Alasan : B					
	Jawaban : A					2
	Alasan $: A, C, D, I$					
	Jawaban : B, C, D, I					1
	Alasan $: A, C, D, I$	Ε				1
	Jawaban : C					
		$\Delta U = Q$ -	-W			
		$\Delta U = Q - \frac{3}{2}nRT $	DAIZ			
		$\frac{1}{2}nRI = Q$	$-P\Delta V$			
	3	1x8,315x273 =	0 (4.105~	2)		4
	$\frac{1}{2}^{x}$			2)		
	$Q = 8,034.10^5$ joule					
10	Alasan : A					
10	Untuk mendapatkan kerja bernilai negatif, maka sistem menerima					
	kalor					
	Jawaban : A, B, D, I	Ξ				3
	Alasan : A					
	Jawaban : C					2
	Alasan : B, C, D, I	Ξ				2
	Jawaban: A, B, D, I	Ξ				1
	Alasan : B, C, D, I	Ξ				1
	Jawaban : C					
		$W = Q_1$	$-Q_2$			
	Mesin Kal	or Q ₁ (Joule)	Q ₂ (Joule)	W (Joule)		
	1	1.000	800	200		
	2	980	820	160]	
	3	910	790	120	1	4
	4	850	775	75	1	
			760	70	1	
11	5	830				
11		830	700]	
11	5	830	700			
11	5 Alasan : A				ervoir	
11	5 Alasan : A Usaha merupakan	selisih antara kal	or yang dise		ervoir	
11	Alasan : A Usaha merupakan sepanas dan kalor yang	selisih antara kal g dibuang ke rese	or yang dise		ervoir	
11	Alasan : A Usaha merupakan sepanas dan kalor yang Jawaban : A, B, D, I	selisih antara kal g dibuang ke rese	or yang dise		ervoir	3
11	Alasan : A Usaha merupakan sepanas dan kalor yang	selisih antara kal g dibuang ke rese	or yang dise		ervoir	3

	Jawaban : A, B, D, E	1
	Alasan : B, C, D, E	1
	Jawaban : A Efisiensi ε dimiliki oleh mesin kalor, sedang koefesien performa K dimiliki oleh mesin pendingin. Keduanya memiliki proses yang berkebalikan, dinyatakan dengan persamaan	
12	$K = \frac{1}{\varepsilon}$	4
	Sehingga diperoleh nilai $K = \frac{1}{0.2} = 5.0$ Alasan : B	
12	Koefesien performa berbanding terbalik dengan efisiensi	
	Jawaban: B, C, D, E	
	Alasan : B	3
	Jawaban : A	
	Alasan : A, C, D, E	2
	Jawaban : B, C, D, E	4
	Alasan : A, C, D, E	1
	Jawaban : B	
	Menentukan usaha	
	$K = \frac{Q_2}{W} \longrightarrow W = 4,17.10^4$ joule	
	Menentukan waktu pembekuan	
	$P = \frac{W}{t} \longrightarrow t = 83.3 \text{ sekon}$	4
	l L	
12	Alasan : C	
13	Waktu pembekuan semakin lama jika kalor yang dipindahkan dari reservoir dingin semakin besar	
	Jawaban: A, C, D, E	
	Alasan : C	3
	Jawaban : B	_
	Alasan : A, B, D, E	2
	Jawaban : A, C, D, E	1
	Alasan : A, B, D, E	1
	Jawaban : A	
	Kalor untuk meleburkan es	
	Q = m L = 2.400 kal	
	Perubahan entropi	
	$\Delta S = \frac{Q}{T} = \frac{2.400}{273} = 8.8 \text{ kal/K}$	4
	1 2/3	
14	Alasan : E Semakin besar kalor untuk meleburkan es, makin besar perubahan	
14	entropinya	
	Jawaban : B, C, D, E	
	Alasan : E	3
	Jawaban : A	2
	Alasan : A, B, C, D	2
	Jawaban : B, C, D, E	1
	Alasan : A, B, C, D	1
15	Jawaban : B	4
13	Berdasarkan arah aliran kalor, dan memeuhi efisiensi 40%, maka	₹

	diagram your married light	conout! L -	milar#		1		
	diagram yang memungkinkan	seperti be	TIKUT				
	Reservoir panas						
	<u> </u>						
	() ← W=400 J						
	\downarrow						
	Q ₂ =1.000 J						
	Reservoir dingin						
	Alasan : D						
	Kalor yang disedot dari reserv	voir dingin	lebih keci	l dari kalor	vang		
	dibuang ke reservoir panas				78		
	Jawaban : A, C, D, E					2	
	Alasan : D					3	
	Jawaban : B					2	
	Alasan : A, B, C, E					2	
	Jawaban : A, C, D, E					1	
	Alasan : A, B, C, E					1	
	Jawaban : D						
	$\varepsilon = \frac{1}{2}$	$\frac{T_1 - T_2}{T_1} x 1$	00%				
		T_1	0070				
	III ocho Comot ko	T (0C)	T (0C)		1		
	Uji coba Carnot ke-	T ₁ (°C)	T ₂ (°C)	ε 20.40.0/			
	1	537	290	30,49 %	-	4	
	3	523	123	50,25 %	-	4	
	4	327	127	33,33 %			
16	4	277	77	36,36 %			
10	Alasan : E						
	Efisiensi mesin Carnot berba	anding lur	nic dengan	celicih cu	hu nada		
	reservoir panas dan dingin,	_	_		-		
	pada reservoir panas	seria sere	anding ter	ounk deng	gan sana		
	Jawaban : A, B, C, E					2	
	Alasan : D					3	
	Jawaban : E					2	
	Alasan : A, B, C, D					2	
	Jawaban : A, B, C, E					1	
	Alasan : A, B, C, D					1	
	Jawaban : D						
	Menentukan kalor yang dibua	ing ke rese	rvoir renda	ah			
	D —	$\frac{W}{=} \frac{Q_1}{Q_1}$	- Q ₂			_	
17		t 70000	t No. o			4	
	490000	$\frac{\ddot{W}}{t} = \frac{Q_1}{T}$ $O = \frac{70000}{T}$	$JU - Q_2$				
	1,50000	210000	1				
	() ₀ =	= 210000	jouie				

	Menentukan suhu pada reservoir rendah	
	Q~T	
	$\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$	
	$T_2 = 300 \text{ K}$	
	$\begin{array}{c} 1_{2} = 500 \text{ K} \\ \mathbf{Alasan} : \mathbf{B} \end{array}$	
	Suhu berbanding lurus dengan kalor	
	Jawaban : A, B, C, E	
	Alasan : B	3
	Jawaban : D	
		2
	Alasan : A, C, D, E Jawaban : A, B, C, E	
		1
	Alasan : A, C, D, E Jawaban : C	
	From Eq. (2) $\varepsilon = \frac{T_1 - T_2}{T_1} x 100\%$ $0.6 = \frac{T_1 - 333}{T_1}$	
	$T_{1} = 333$	
	$0.6 = \frac{11 - 0.00}{T}$	4
	$T_1 = 832,5 \text{ K}$	'
	Alasan : D	
18	Semakin besar selisih suhu pada reservoir panas dan dingin, maka	
10	efisiensi makin besar	
	Jawaban : A, B, D, E	
	Alasan : D	3
	Jawaban : C	
	Alasan : A, B, C, E	2
	Jawaban : A, B, D, E	
	Alasan : A, B, C, E	1
	Jawaban : E	
	Menentukan efisiensi mesin	
	$T_1 - T_2 = 10000$	
	$\varepsilon = \frac{T_1 - T_2}{T_1} \times 100\% \longrightarrow \varepsilon = 20\%$	
	Menentukan kalor yang diserap (Q_1)	
	$\varepsilon = \frac{W}{Q_1} \longrightarrow Q_1 = 2.10^5$ Joule	4
	*1	4
	Menentukan kalor yang dilepas (Q_2)	
19	$W = Q_1 - Q_2 \longrightarrow Q_2 = 1,6.10^5$ Joule	
19	Alasan : A	
	Kalor yang dilepas adalah selisih antara kalor yang diserap dengan	
	usaha Lawahan A. B. C. D.	
	Jawaban : A, B, C, D Alasan : A	3
	Jawaban : E	
		2
	Alasan : B, C, D, E	
	Jawaban: A, B, C, D	1
	Alasan : B, C, D, E	
	Jawaban : E	
20	Menentukan efisiensi $K = \frac{1}{2} \longrightarrow \varepsilon = 0,2$	4

TES PENGUKURAN SOAL HOTS MATERI TERMODINAMIKA

Waktu 60 menit

Petunjuk pengerjaan soal

- 5. Pilihlah *option* (pilihan jawaban) yang menurut Anda benar.
- 6. Setiap soal terdiri dari pertanyaan dan alasan masing-masing terdiri atas 5 (lima) *option*.
- 7. Beri tanda silang huruf di depan option (A, B, C, D, E) yang anda pilih pada jawaban.
 - \nearrow B C D E
- 8. Jika anda ingin mengganti jawaban (pembatalan jawaban) dapat dilakukan dengan cara menambahkan tanda = pada jawaban tersebut.
 - \rightarrow B \rightarrow D E

Soal Materi Termodinamika

- 1. Gas dalam sebuah ruangan tertutup mengalami proses isotermik yang menyebabkan volumenya mengalami pengembangan sebesar 5.000 dm^3 . Jika suhu awal gas 303 K dan tekanan awalnya $3 \times 10^5 \text{ Pa}$, maka kalor yang diterima atau dibuang sistem, agar kerja yang dilakukan lingkungan terhadap sistem bernilai negatif sebesar
 - A. 10,123.10⁵ J
 - B. 13,014.10⁵ J
 - C. 15,038.10⁵ J
 - D. 16,541.10⁵ J
 - E. 17,374.10⁵ J

- A. Untuk mendapatkan kerja bernilai negatif, maka sistem menerima kalor
- B. Untuk mendapatkan kerja bernilai negatif, maka sistem membuang kalor
- C. Untuk mendapatkan kerja bernilai positif, maka sistem membuang kalor
- D. Untuk mendapatkan kerja bernilai positif, maka sistem menerima kalor
- E. Untuk mendapatkan kerja bernilai negatif, maka lingkungan menerima kalor
- 2. Pada sebuah restoran akan dipasang pendingin yang memiliki koefesien performa 5,0. Jika suhu ruangan di dapur 29°C, maka diagram alir suhu yang sesuai adalah

- A. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu tinggi ke reservoir bersuhu rendah, dengan diberikan usaha dari luar
- B. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu tinggi ke reservoir bersuhu rendah, dan menghasilkan usaha
- C. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu rendah menuju reservoir suhu tinggi, dengan diberikan usaha dari luar
- D. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu rendah menuju reservoir suhu tinggi, tanpa ada diberikan usaha dari luar
- E. Pada mesin pendingin, kalor mengalir dari reservoir bersuhu rendah menuju reservoir bersuhu tinggi, dan mengasilkan usaha
- 3. Pada suatu eksperimen, terdapat lima tabung yang mengalami proses isobarik. Terjadi penyusutan volume gas pada masing-masing tabung. Perubahan volume ditunjukkan pada tabel berikut,

Tabung	Volume awal (V ₁)	Volume akhir (V ₂)
1	V	1/5 V
2	V	1/8 V
3	2V	1/2 V
4	2V	1/4 V
5	2V	1/5 V

Berdasarkan data tersebut, maka perbandingan suhu T_1 : T_2 terkecil dan terbesar ada pada tabung ke

A. 1 dan 2

B. 1 dan 3

C. 2 dan 3

D. 2 dan 4

E. 3 dan 5

Alasan:

- A. Jika tekanan gas dipertahankan konstan, maka volume gas sama dengan suhunya
- B. Jika tekanan gas dipertahankan konstan, maka volume gas berbanding terbalik dengan suhunya
- C. Jika tekanan gas dipertahankan konstan, maka volume gas berbanding lurus dengan suhunya
- D. Jika tekanan gas dipertahankan konstan, maka volume gas lebih besar dari suhunya
- E. Jika tekanan gas dipertahankan konstan, maka volume gas lebih kecil dari suhunya
- 4. Perhatikan gambar siklus Carnot di bawah ini!

 $T_1=1.000~\textrm{K}$, $T_2=750~\textrm{K}$, dan $W=5.10^4$ Joule. Kalor yang dilepas Q_2 sebesar \dots

A. 0,3.10⁵ Joule

B. $0.6.10^{5}$ Joule

C. 0,9.10⁵ Joule D. 1,2.10⁵ Joule

E. 1,5. 10⁵ Joule

Alasan:

- A. Kalor yang dilepas adalah selisih antara kalor yang diserap dengan usaha
- B. Kalor yang dilepas adalah jumlah antara kalor yang diserap dan usaha
- C. Kalor yang dilepas lebih besar daripada kalor yang diserap
- D. Kalor yang dilepas berbanding terbalik dengan suhu
- E. Kalor yang dilepas tidak mempengaruhi efisiensi mesin
- 5. Suhu suatu gas dalam sebuah ruangan tertutup mula-mula adalah 47°C. Jika tekanan akhir pada ruangan tertutup tersebut 3 kali lebih besar dari tekanan semula, maka suhu akhir gas tersebut sebesar

A. 249°C

B. 221°C

C. 194°C

D. 169°C

E. 141°C

Alasan:

A. Pada volume tetap, tekanan gas berbanding lurus dengan suhunya

- B. Pada volume tetap, tekanan gas berbanding terbalik dengan suhunya
- C. Pada volume tetap, tekanan gas sama dengan dengan suhunya
- D. Pada volume tetap, tekanan gas lebih besar dari suhunya
- E. Pada volume tetap, tekanan gas lebih kecil dari suhunya
- 6. Efisiensi sebuah mesin Carnot adalah 65%. Jika reservoir bersuhu rendah memiliki suhu 30°C, maka suhu reservoir yang lain sebesar
 - A. 872,5 K
 - B. 869,5 K
 - C. 865,7 K
 - D. 856,5 K
 - E. 827.5 K

- A. Suhu pada reservoir rendah sebanding dengan suhu pada reservoir tinggi
- B. Semakin besar efisiensi Carnot, maka kualitas mesin semakin menurun
- C. Efisiensi Carnot hanya bergantung pada suhu di reservoir rendah
- D. Semakin besar selisih suhu pada reservoir panas dan dingin, maka efisiensi makin besar
- E. Semakin besar selisih suhu pada reservoir panas dan dingin, maka efisiensi makin kecil
- 7. Perhatikan pernyataan berikut,
 - (1) Gas tidak melakukan usaha pada proses isokhorik.
 - (2) Gas menerima atau mengerjakan usaha pada proses isobaric.
 - (3) Gas mengalami perubahan energi pada proses isotermik.
 - (4) Gas selalu memperoleh usaha pada proses adiabatik.

Pernyataan-pernyataan di atas yang berkaitan dengan proses termodinamika adalah....

- A. 1, 2, dan 3
- B. 1 dan 4
- C. 1 dan 2
- D. 2, 3, dan 4
- E. 3 dan 4

Alasan:

- A. Usaha hanya bisa dilakukan oleh sistem
- B. Usaha tidak bisa dilakukan oleh lingkungan
- C. Usaha sebanding dengan suhu
- D. Usaha merupakan perkalian antara perubahan volume gas dengan tekanan tetap
- E. Usaha maksimal ketika proses isokhorik
- 8. Suatu mesin Carnot menghasilkan daya 400 kW saat menyerap panas sebanyak 800 kJ per sekon dari reservoir panas. Jika suhu reservoir panas 900 K, maka suhu reservoir dinginnya adalah
 - A. 600 K
 - B. 550 K
 - C. 500 K
 - D. 450 K
 - E. 400 K

- A. Suhu berbanding terbalik dengan kalor
- B. Suhu berbanding lurus dengan kalor
- C. Daya berbanding terbalik dengan usaha

- D. Daya berbanding lurus dengan efisiensi
- E. Daya sama dengan kalor pada reservoir rendah
- 9. Gas dengan suhu, tekanan, dan volume tertentu ditekan sehingga volumenya menjadi setengah dari volumenya semula. Pernyataan berikut yang benar adalah
 - A. kerja yang dilakukan lingkungan pada sistem jika proses berlangsung secara isobarik lebih besar daripada jika proses berlangsung secara isotermal
 - B. kerja yang dilakukan lingkungan pada sistem jika proses berlangsung secara isobarik lebih besar daripada jika proses berlangsung secara adiabatik
 - C. kerja yang dilakukan lingkungan pada sistem jika proses berlangsung secara adiabatic lebih besar daripada jika proses berlangsung secara isotermal
 - D. kerja yang dilakukan lingkungan pada sistem jika proses berlangsung secara adiabatic lebih kecil daripada jika proses berlangsung secara isotermal
 - E. tekanan dan suhu juga berkurang menjadi setengahnya

- A. Kerja yang dilakukan oleh lingkungan pada sistem bernilain positif, dan sistem mendapat kalor bernilai positif
- B. Kerja yang dilakukan oleh lingkungan pada sistem bernilain negatif, dan sistem mendapat kalor bernilai positif
- C. Kerja yang dilakukan oleh lingkungan pada sistem bernilain negatif, dan sistem mendapat kalor bernilai negatif
- D. Kerja yang dilakukan oleh lingkungan pada sistem bernilain positif, dan sistem mendapat kalor bernilai negative
- E. Kerja tidak bisa dilakukan oleh lingkungan pada sistem
- 10. Sebuah mesin Carnot dilakukan uji coba, dengan suhu pada reservoir tinggi (T₁) dan suhu pada reservoir rendah (T₂) yang berbeda-beda. Suhu pada kedua reservoir seperti tabel di bawah ini.

Uji coba Carnot ke-	T_1 (°C)	T ₂ (°C)
1	537	290
2	523	123
3	327	127
4	277	77

Berdasarkan data di atas, maka efisiensi terkecil dan terbesar diperoleh ketika uji coba ke

. . . .

- A. 4 dan 3
- B. 4 dan 2
- C. 3 dan 4
- D. 1 dan 2
- E. 2 dan 1

- A. Efisiensi mesin Carnot berbanding lurus dengan jumlah suhu pada reservoir panas dan dingin, serta berbanding terbalik dengan suhu pada reservoir panas
- B. Efisiensi mesin Carnot berbanding lurus dengan suhu pada reservoir panas, serta berbanding terbalik dengan selisih suhu pada reservoir panas dan dingin
- C. Efisiensi mesin Carnot berbanding lurus dengan suhu pada reservoir panas, serta berbanding terbalik dengan jumlah suhu pada reservoir panas dan dingin

- D. Efisiensi mesin Carnot berbanding terbalik dengan selisih suhu pada reservoir panas dan dingin, serta berbanding lurus dengan suhu pada reservoir panas
- E. Efisiensi mesin Carnot berbanding lurus dengan selisih suhu pada reservoir panas dan dingin, serta berbanding terbalik dengan suhu pada reservoir panas
- 11. Sebanyak 1,5 mol gas dalam wadah mengalami pemuaian isobarik pada tekanan 2×10^5 Pa. Suhu awal gas 300 K dan suhu akhirnya 600 K. Jika usaha selama proses -3.600 J, maka besar volume awal dan akhir untuk mencapai usaha tersebut sebesar
 - A. 0,003 m³ dan 0,006 m³
 - B. $0,004 \text{ m}^3 \text{ dan } 0,009 \text{ m}^3$
 - C. 0,013 m³ dan 0,029 m³
 - D. 0,019 m³ dan 0,037 m³
 - E. 0,021 m³ dan 0,043 m³

- A. Perubahan volume berbanding lurus dengan tekanan
- B. Perubahan volume berbanding terbalik dengan suhu
- C. Perubahan volume berbanding terbalik dengan jumlah mol gas
- D. Perubahan volume berbanding terbalik dengan konstanta gas umum
- E. Perubahan volume berbanding lurus dengan usaha
- 12. Suatu pabrik ingin membuat mesin pendingin dengan koefesien performa 5,7. Jika dituangkan dalam bentuk diagram proses, maka diagram yang sesuai adalah

- A. Kalor yang disedot reservoir panas lebih kecil dari kalor yang dibuang ke reservoir dingin
- B. Kalor yang disedot reservoir panas lebih besar dari kalor yang dibuang ke reservoir dingin
- C. Kalor yang disedot dari reservoir dingin lebih besar dari kalor yang dibuang ke reservoir panas
- D. Kalor yang disedot dari reservoir dingin lebih kecil dari kalor yang dibuang ke reservoir panas
- E. Kalor yang disedot dan buang dari reservoir panas dan dingin sama besar
- 13. Sebuah piston mengandung 1,0 mol gas ideal pada suhu 35°C. Tekanan gas sebesar 2. 10⁵ Pa. Proses selanjutnya, gas dipanaskan hingga suhunya mencapai 70°C dan volume piston bertambah pada tekanan konstan. Maka usaha yang telah dilakukan oleh gas sebesar
 - A. 252,51 joule
 - B. 291,02 joule
 - C. 298,00 joule
 - D. 302,79 joule
 - E. 310,02 joule

Alasan:

- A. Usaha merupakan perkalian antara perubahan suhu dengan tekanan tetap
- B. Usaha merupakan perkalian antara jumlah mol gas dengan suhu awal
- C. Usaha merupakan perkalian antara perubahan suhu dengan perubahan volume
- D. Usaha merupakan perkalian antara perubahan volume gas dengan tekanan tetap
- E. Usaha merupakan selisih dari perubahan suhu dan volume
- 14. Sebuah kubus es bermassa 80 gram dan bersuhu 0°C ditempatkan di dalam gelas. Setelah disimpan beberapa lama, setengah dari es tersebut mencair menjadi air bersuhu 0°C. perubahan entropi yang dialami es sebesar (diketahui kalor lebur es 80 kal/g)
 - A. 11,7 kal/K
 - B. 11,9 kal/K
 - C. 12,1 kal/K
 - D. 12.3 kal/K
 - E. 12.5 kal/K

- A. Semakin besar perubahan suhu, semakin besar pula perubahan entropinya
- B. Semakin kecil perubahan suhu, semakin besar perubahan entropinya
- C. Semakin kecil perubahan kalor untuk meleburkan es, semakin besar perubahan entropinya
- D. Semakin besar perubahan kalor untuk meleburkan es, semakin kecil perubahan entropinya
- E. Semakin besar perubahan kalor untuk meleburkan es, semakin besar pula perubahan entropinya
- 15. 5 mol gas helium disimpan dalam tabung tertutup, volume 3 liter (isokhorik) dengan tekanan 0,8. 10⁶ Pa. Jika gas menyerap kalor sehingga tekanan menjadi 1,2. 10⁶ Pa. maka besar perubahan energi dalamnya adalah
 - A. 1800 joule

- B. 1600 joule
- C. 1400 joule
- D. 1200 joule
- E. 1000 joule

- A. Perubahan energi dalam berbanding lurus dengan jumlah perkalian antara tekanan dan volume pada keadaan akhir dan awal
- B. Perubahan energi dalam berbanding terbalik dengan selisih perkalian antara tekanan dan volume pada keadaan akhir dan awal
- C. Perubahan energi dalam berbanding terbalik dengan jumlah perkalian antara tekanan dan volume pada keadaan akhir dan awal
- D. Perubahan energi dalam berbanding lurus dengan pembagian antara tekanan dan volume pada keadaan akhir dan awal
- E. Perubahan energi dalam berbanding lurus dengan selisih perkalian antara tekanan dan volume pada keadaan akhir dan awal
- 16. Refrigerator dengan koefesien performa 4,0 digunakan untuk membekukan air, dengan daya masukan sebesar 400 W. Jumlah kalor yang dipindahkan dari reservoir dingin sebesar 1,6. 10⁵ joule. Waktu yang diperlukan untuk terjadinya proses pembekuan adalah
 -
 - A. 90 sekon
 - B. 100 sekon
 - C. 105 sekon
 - D. 110 sekon
 - E. 120 sekon

Alasan:

- A. Waktu pembekuan semakin cepat jika kalor yang dipindahkan dari reservoir dingin semakin besar
- B. Waktu pembekuan semakin lama jika kalor yang dipindahkan dari reservoir dingin semakin kecil
- C. Waktu pembekuan semakin lama jika kalor yang dipindahkan dari reservoir dingin semakin besar
- D. Waktu pembekuan semakin lama jika daya semakin besar
- E. Waktu pembekuan semakin lama jika koefesien performa semakin besar
- 17. 800 gram oksigen diproses dengan cara adiabatik, mengalami perubahan suhu awal (T_1) menjadi suhu akhir (T_2) . Perubahan diamati sebanyak lima kali, dirangkum dalam tabel berikut.

Adiabatik	<i>T</i> ₁ (°C)	<i>T</i> ₂ (°C)
1	27	48
2	27	48
3	27	47
4	26	48
5	26	46

Berdasarkan hasil pengamatan di atas, maka usaha terbesar terjadi pada pengamatan ke

- • •
- A. 5
- B. 4
- C. 3

- D. 2
- E. 1

- A. Usaha berbanding terbalik dengan perubahan suhu
- B. Usaha sama dengan perubahan suhu
- C. Usaha berbanding lurus dengan perubahan suhu
- D. Usaha dalam proses adiabatik selalu nol
- E. Usaha tidak dipengaruhi oleh suhu
- 18. Sebuah mesin kalor memiliki efisiensi sebesar 40%. Jika arah proses dalam mesin tersebut dibalik sehingga menjadi pompa panas, maka koefesien performa pompa panas tersebut adalah
 - A. 2,5
 - B. 3.5
 - C. 4,0
 - D. 4,5
 - E. 5,0

Alasan:

- A. Koefesien performa berbanding lurus dengan efisiensi
- B. Koefesien performa berbanding terbalik dengan efisiensi
- C. Koefesien performa dan efisiensi sama besar
- D. Koefesien performa lebih besar dari efisiensi
- E. Koefesien performa lebih kecil dari efisiensi
- 19. Gas ideal sebanyak 0,15 mol berada dalam sebuah sistem yang dihubungkan dengan sebuah reservoir termal, agar sistem berada dalam suhu konstan 30°C. Jika diketahui volume awal sistem 3 liter dan usaha yang dilakukan 18 joule, maka kenaikan volume dan tekanan akhir gas adalah
 - A. $14,3.10^{-5}$ m³ dan $1,26.10^{5}$ Pa
 - B. $14.8.10^{-3}$ m³ dan $1.56.10^{3}$ Pa
 - C. $15.4.10^{-5}$ m³ dan $1.28.10^{5}$ Pa
 - D. $16.4.10^{-3}$ m³ dan $1.28.10^{3}$ Pa
 - E. $16.6.10^{-5}$ m³ dan $1.34.10^{5}$ Pa

- A. Tekanan berbanding terbalik dengan suhu, dan perubahan volume berbanding terbalik dengan usaha
- B. Tekanan berbanding lurus dengan suhu, dan perubahan volume berbanding lurus dengan usaha
- C. Tekanan berbanding terbalik dengan suhu, dan perubahan volume berbanding lurus dengan usaha
- D. Tekanan berbanding lurus dengan suhu, dan perubahan volume berbanding terbalik dengan usaha
- E. Tekanan berbanding lurus dengan volume, dan suhu berbanding terbalik dengan usaha

20. Lima buah mesin kalor beroperasi secara bersama-sama. Kalor yang diserap dari reservoir panas (Q_1) dan kalor yang dibuang ke reservoir dingin (Q_2) dari setiap mesin berbedabeda. Perbedaan kalor tersebut ditunjukkan dalam tabel berikut,

Mesin Kalor	Q ₁ (Joule)	Q ₂ (Joule)
1	830	760
2	850	775
3	1.000	800
4	1.200	1.310
5	1.300	1.390

Berdasarkan data diatas, maka usaha terbesar dan terkecil dioperasikan oleh mesin kalor bernomor

- A. 1 dan 2
- B. 2 dan 4
- C. 3 dan 1
- D. 4 dan 5
- E. 5 dan 3

- A. Usaha merupakan selisih antara kalor yang diserap dari reservoir panas dan kalor yang dibuang ke reservoir dingin
- B. Usaha merupakan jumlah dari kalor yang diserap dari reservoir panas dan kalor yang dibuang ke reservoir dingin
- C. Usaha merupakan pembagian antara kalor yang diserap dari reservoir panas dengan kalor yang dibuang ke reservoir dingin
- D. Usaha sama dengan jumlah kalor yang diserap dari reservoir panas
- E. Usaha sama dengan jumlah kalor yang dibuang ke reservoir dingin

PEDOMAN PENSKORAN TES PENGUKURAN SOAL HOTS MATERI TERMODINAMIKA

Petunjuk penskoran

- A. Jumlah soal sebanyak 20 butir soal yang terdiri dari kemampuan menganalisis, mengevaluasi dan mencipta
- B. Skor pada rubrik penilaian berskala 1-4 yang berarti
 - **4** = pemahaman konsep kuat dan jawaban benar (Jawaban dan alasan benar)
 - **3**= pemahaman konsep kuat dan jawaban salah (Jawaban salah dan alasan benar)
 - 2= pemahamn konsep lemah dan jawaban benar (Jawaban benar dan alasan salah)
 - 1= pemahaman konsep lemah dan jawaban salah (Jawaban salah dan alasan salah)
- C. Nilailah sesuai rubrik penilaian dan objektif

Soal B	Penyelesaian	Skor
1	Jawaban : C $\Delta U = Q - W$ $\frac{3}{2}nRT = Q - P\Delta V$ $\frac{3}{2}x1x8,315x303 = Q - (3.10^5x5)$ $Q = 15,038. \ 10^5 \text{ joule}$ Alasan : A Untuk mendapatkan kerja bernilai negatif, maka sistem menerima kalor	4
	Jawaban : A, B, D, E Alasan : A	3
	Jawaban : C Alasan : B, C, D, E	2
	Jawaban : A, B, D, E Alasan : B, C, D, E	1
2	Jawaban : E Menentukan efisiensi $K = \frac{1}{\varepsilon} \longrightarrow \varepsilon = 0,2$ Menentukan suhu pada reservoir rendah $\varepsilon = \frac{T_1 - T_2}{T_1} x 100\% \longrightarrow T_2 = 241,6 K$ Diagram yang mungkin	4

	_	→ W Indingin, kalor m	engalir dari reser engan diberikan u	voir bersuhu rendah saha dari luar	
	Jawaban : A, B Alasan : C				3
	Jawaban : E				2
	Alasan : A, E Jawaban : A, B	s, C, D			1
	Alasan : A, E Jawaban : E	B, D, E			1
3	Tabung 1 2 3 4 5 Alasan: C Jika tekanan berbanding lur	Volume awal (V ₁) V V 2V 2V 2V 2V us dipertahar	Volume akhir (V ₂) 1/5 V 1/8 V 1/2 V 1/4 V 1/5 V nkan konstan,		4
	Jawaban : A, B Alasan : C	s, C, D			3
	Jawaban : E Alasan : A, E	RDE			2
	Jawaban : A, B	s, C, D			1
4	Menentukan ka $\varepsilon = \frac{W}{Q_1} \longrightarrow$ Menentukan ka		(Q_1) (Q_2)		4

	Kalor yang dilepas adalah selisih antara kalor yang diserap dengan usaha	
	Jawaban : A, B, C, D	_
	Alasan : A	3
	Jawaban : E	2
	Alasan : B, C, D, E	2
	Jawaban : A, B, C, D	1
	Alasan : B, C, D, E	1
	Jawaban : E	
	p	
	$\frac{p}{T} = konstanta$	
	$\begin{vmatrix} \frac{p_1}{T_1} = \frac{p_2}{T_2} & \longrightarrow & \frac{p}{47^{\circ}C} = \frac{3p}{T_2} & \longrightarrow & T_2 = 141^{\circ}C \end{vmatrix}$	4
	$\frac{1}{T_1} - \frac{1}{T_2} \longrightarrow \frac{1}{47^{\circ}C} - \frac{1}{T_2} \longrightarrow I_2 = 141^{\circ}C$	
5	Alasan : A	
	Pada volume tetap, tekanan gas berbanding lurus dengan suhunya	
	Jawaban : A, B, C, D	3
	Alasan : A	_
	Jawaban : E	2
	Alasan : B, C, D, E Jawaban : A, B, C, D	
	Alasan : B, C, D, E	1
	Jawaban : C	
	$\varepsilon = \frac{T_1 - T_2}{T_1} \times 100\%$ $0,65 = \frac{T_1 - 303}{T_1}$	
	T_1	
	$0.65 = \frac{I_1 - 303}{I_1 - 303}$	4
		4
	$T_1 = 865,7 \text{ K}$	
6	Alasan : D Samakin basar salisih suhu pada rasaryair panas dan dingin maka	
	Semakin besar selisih suhu pada reservoir panas dan dingin, maka efisiensi makin besar	
	Jawaban : A, B, D, E	
	Alasan : D	3
	Jawaban : C	2
	Alasan : A, B, C, E	2
	Jawaban : A, B, D, E	1
	Alasan : A, B, C, E	1
	Jawaban : C	
	Usaha yang dilakukan oleh gas dinyatakan dengan persamaan	
	$W = p\Delta V$	
	Jika usaha dilakukan oleh lingkungan terhadap sistem, maka usaha	4
7	menjadi bernilai negatif. Alasan : D	
'	Usaha merupakan perkalian antara perubahan volume dengan	
	tekanan tetap	
	Jawaban : A, B, D, E	
	Alasan : D	3
İ	Jawaban : C	2

	Alasan : A, B, C, E	
	Jawaban : A, B, D, E	1
	Alasan : A, B, C, E	1
8	Jawaban: DMenentukan kalor yang dibuang ke reservoir rendah $P = \frac{W}{t} = \frac{Q_1 - Q_2}{t}$ $400000 = \frac{800000 - Q_2}{1}$ $Q_2 = 400000 \text{ Joule}$ Menentukan suhu pada reservoir rendah $Q \sim T$ $\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$ $T_2 = 450 \text{ K}$ Alasan: BSuhu berbanding lurus dengan kalor	4
	Jawaban : A, B, C, E Alasan : B	3
	Jawaban : D Alasan : A, C, D, E	2
	Jawaban : A, B, C, E	1
	Alasan : A, C, D, E	
9	 Jawaban: D Kasus ini, menunjukkan kerja dilakukan oleh lingkungan terhadap sistem (gas). Sehingga ΔU = Q - W. Hal ini berpengaruh terhadap proses termodinamika, 5. Adiabatik, (Q = 0) maka ΔU = -W 6. Isothermal, (ΔU = 0) maka Q = W 7. Isobarik, Q - ΔU = W 8. Isokhorik, (W = 0) maka ΔU = Q Alasan: B Kerja yang dilakukan oleh lingkungan pada sistem bernilain negatif, dan sistem mendapat kalor bernilai positif 	4
	Jawaban : A, C, D, E Alasan : B	3
	Jawaban : D	2
	Alasan : A, B, C, E	2
	Jawaban : A, C, D, E Alasan : A, B, C, E	1
	Jawaban : D	
10	$\varepsilon = \frac{T_1 - T_2}{T_1} x 100\%$ Uji coba Carnot ke- $\begin{array}{c cccc} T_1 & (^{\circ}\text{C}) & T_2 & (^{\circ}\text{C}) & \varepsilon \\ \hline 1 & 537 & 290 & 30,49 \% \\ \hline 2 & 523 & 123 & 50,25 \% \\ \hline \end{array}$	4
	3 327 127 33,33 %	
	4 277 77 36,36 %	

	Alasan : E	
	Efisiensi mesin Carnot berbanding lurus dengan selisih suhu pada	
	reservoir panas dan dingin, serta berbanding terbalik dengan suhu	
	pada reservoir panas	
	Jawaban : A, B, C, E	2
	Alasan : D	3
	Jawaban : E	2
	Alasan : A, B, C, D	2
	Jawaban : A, B, C, E	1
	Alasan : A, B, C, D	1
	Jawaban : D	
	Menentukan volume awal V ₁ dengan persamaan	
	pV = nRT	
	$V_1 = 0.019 \text{ m}^3$	
	Menentukan perubahan volume ΔV	
	$W = -p\Delta V$	4
	$\Delta V = 0.018 \mathrm{m}^3$	
	Menghitung volume akhir V ₂	
11	$V_2 = V_1 + \Delta V = 0.037 \text{ m}^3$	
	Alasan : E	
	Perubahan volum berbanding lurus dengan usaha	
	Jawaban : A, B, C, D	
	Alasan : E	3
	Jawaban : D	
	Alasan : A, B, C, E	2
	Jawaban : A, B, C, D	
	Alasan : A, B, C, E	1
	Jawaban : B	
	Berdasarkan arah aliran kalor, dan memenuhi koefesien performa 5,7	
	maka diagram yang memungkinkan seperti berikut	
	Reservoir	
	panas	
	T ₁ =30° C	
	() ← w	4
	\downarrow	4
	T ₂ =-15° C	
12		
	Reservoir	
	dingin	
	Alagam	
	Alasan : D	
	Kalor yang disedot dari reservoir dingin lebih kecil dari kalor yang	
	dibuang ke reservoir panas	
	Jawaban : A, C, D, E	3
	Alasan : D	
	Jawaban : B	2
	Alasan : A, B, C, E	
	Jawaban : A, C, D, E	1

	Alasan : A, B, C, E	
	Jawaban : B	
	Menentukan volume awal V ₁ dengan persamaan	
	$p_1 V_1 = nRT_1 \longrightarrow V_1 = 1280, 5.10^{-5} \text{ m}^3$	
	Menentukan volume akhir V_2 dengan persamaan	
	l	
	$\left \frac{V_1}{T_1} = \frac{V_2}{T_2} \right \longrightarrow V_2 = 1426, 0.10^{-5} \text{ m}^3$	4
	11 12 Menentukan usaha yang dilakukan oleh gas	·
	$W = p\Delta V = 291,02$ joule	
13	$N = p\Delta V = 251,02$ joure Alasan : D	
13	Usaha merupakan perkalian antara perubahan volume dengan	
	tekanan tetap	
	Jawaban : A, C, D, E	
	Alasan : D	3
	Jawaban : B	
	Alasan : A, B, C, E	2
	Jawaban : A, C, D, E	
	Alasan : A, B, C, E	1
	Jawaban : A	
	Kalor untuk meleburkan es	
	Q = m L = 3.200 kal	
	Perubahan entropi	
	<u> </u>	4
	$\Delta S = \frac{Q}{T} = \frac{3.200}{273} = 11,7 \text{ kal/K}$	·
	Alasan : E	
14	Semakin besar kalor untuk meleburkan es, makin besar perubahan	
. .	entropinya	
	Jawaban : B, C, D, E	2
	Alasan : E	3
	Jawaban : A	2
	Alasan : A, B, C, D	2
	Jawaban : B, C, D, E	1
	Alasan : A, B, C, D	1
	Jawaban : A	
	$\Delta U = \frac{3}{2} nR \Delta T$	
	<u></u>	
	$\Delta U = \frac{3}{2} (nRT_{akhir} - nRT_{awal})$	
	$\Delta U = \frac{3}{2} (p_{akhir} V_{akhir} - p_{awal} V_{awal})$	
	$\Delta U = \frac{3}{2}(1,2.10^6.3.10^{-3} - 0,8.10^6.3.10^{-3})$	4
15	$\Delta U = 1800$ joule	
	Alogon	
	Alasan : E	
	Perubahan energi dalam berbanding lurus dengan selisih perkalian	
	antara tekanan dan volume pada keadaan akhir dan awal	
	Jawaban: B, C, D, E	3
	Alasan : E	
	Jawaban : A P. C. D.	2
	Alasan : A, B, C, D	

	Jawaban : B, C, D, E	1
	Alasan : A, B, C, D	1
	Jawaban : B	
	Menentukan usaha	
	$K = \frac{Q_2}{W} \longrightarrow W = 4.10^4$ joule	
	Menentukan waktu pembekuan	,
	$P = \frac{W}{t} \longrightarrow t = 100 \text{ sekon}$	4
	l L	
1.0	Alasan : C	
16	Waktu pembekuan semakin lama jika kalor yang dipindahkan dari	
	reservoir dingin semakin besar	
	Jawaban : A, C, D, E Alasan : C	3
	Jawaban : B	
		2
	Alasan : A, B, D, E Jawaban : A, C, D, E	
	Alasan : A, B, D, E	1
	Jawaban : B	
	Pada adiabatic, $Q = 0$, sehingga $\Delta U = W$	
		4
	Dimana $\Delta U = \frac{3}{2}nR\Delta T$ (pada suhu rendah)	4
	Alasan : C	
17	Usaha berbanding lurus dengan perubahan suhu	
1 /	Jawaban : A, C, D, E	3
	Alasan : C Jawaban : B	
	Alasan : A, B, D, E	2
	Jawaban : A, C, D, E	
	Alasan : A, B, D, E	1
	Jawaban : A	
	Efisiensi ε dimiliki oleh mesin kalor, sedang koefesien performa K	
	dimiliki oleh mesin pendingin. Keduanya memiliki proses yang	
	berkebalikan, dinyatakan dengan persamaan	
		4
	$K = \frac{1}{\varepsilon}$	
	Sehingga diperoleh nilai $K = \frac{1}{0.4} = 2.5$	
18	Alasan : B	
	Koefesien performa berbanding terbalik dengan efisiensi	
	Jawaban : B, C, D, E	
	Alasan : B	3
	Jawaban : A	2
	Alasan : A, C, D, E	2
	Jawaban : B, C, D, E	1
	Alasan : A, C, D, E	1
	Jawaban : A	
19	Menentukan besar tekanan dengan persamaan	
	$pV = nRT \longrightarrow p = 1,26.10^5 \text{ Pa}$	4
	Menentukan kenaikan suhu dengan persamaan	
	$W = p\Delta V \longrightarrow \Delta V = 14.3.10^{-5} \text{ m}^3$	

	Alasan		_			_	
	Tekanan berbanding lurus dengan suhu, dan perubahan volume						
	berbanding lurus dengan usaha Jawaban : B, C, D, E						
	Alasan : B						3
	Jawaban : A						_
	Alasan : A, C, D, E						2
	Jawaban : B, C, D, E						1
	Alasan : A, C, D, E						1
	Jawaban: C						
	$W = Q_1 - Q_2$						
		Mesin Kalor	Q ₁ (Joule)	Q ₂ (Joule)	W (Joule)		
		1	830	760	70		
		2	850	775	75		4
		3	1.000	800	200		4
		4	1.200	1.310	110		
20		5	1.300	1.390	90		
20							
	Alasan : A						
	Usaha merupakan selisih antara kalor yang diserap dari reservoir						
	panas dan kalor yang dibuang ke reservoir dingin						
	Jawaban : A, B, D, E						3
	Alasan : A						
	Jawaban: C						2
	Alasan : B, C, D, E Jawaban : A, B, D, E						
	Alasan : B, C, D, E						1
	Masall	. b, C, D, E					