ROBEM I Prove that if $(X_n : n \ge 0)$ is a simple random walk, then so is $(-X_n : n \ge 0)$.

SOUTHON. Since $(X_n: n \geq 0)$ is a simple random walk, then $\exists (\xi_i: i \geq 0)$ are i.i.d. r.v. X_0 is a r.v. which is independent with ξ_1 such that $X_n = X_0 + \sum_{i=0}^n \xi_i$, $\mathbb{P}(|\xi_1| = 1) = 1$. So let $Y_n = -X_n$, $Y_0 = -X_0$ is r.v., $\varepsilon_i = -\xi_i, i \geq 0$, then $(\varepsilon_i, i \geq 0)$ are i.i.d. and is independent with Y_0 , and $\mathbb{P}(|\varepsilon_1| = 1) = 1$. So $(Y_n: n \geq 0)$ is a simple random walk.

ROBEM II Let $(X_n : n \ge 0)$ be a d-dimentional random walk, and $\mathbb{P}(|\xi_1| \ge 1) > 0$, prove that $\mathbb{P}(\sup_n |X_n| = \infty) = 1$.

SOUTHON. Since $\mathbb{P}(|\xi_1| \geq 1) > 0$, then $\exists t \in \mathbb{R}^d$, such that $\mathbb{P}(\xi_1 = t) > 0$. Besides,

$$\mathbb{P}(\sup_{n} |X_{n}| = \infty)$$

$$= \mathbb{P}(\bigcap_{k \in \mathbb{N}} \{\sup_{n} |X_{n}| \ge k\})$$

$$= \lim_{k \to \infty} \mathbb{P}(\sup_{n} |X_{n}| \ge k)$$

$$= \inf_{k \in \mathbb{N}} \mathbb{P}(\sup_{n} |X_{n}| \ge k)$$

$$(1)$$

Then, to prove $\mathbb{P}(\sup_n |X_n| = \infty) = 1$ is equal to prove $\forall k \in \mathbb{N}, \mathbb{P}(\sup_n |X_n| \ge k) = 1$. Let $v > 4\frac{k}{|t|}$ and let $A_u = \{\omega \in \Omega : \xi_{uv+1} = t, \cdots, \xi_{uv+v} = t\}$, so $\forall \omega \in A_u, |X_{uv+v} - X_{uv}| = |\sum_{m=uv+1}^{uv+v} \xi_m| = |vt| = v|t| \ge 4k$. Then $2\max\{|X_{uv+v}|, |X_{uv}|\} \ge |X_{uv+v}| + |X_{uv}| \ge |\sum_{m=uv+1}^{uv+v} \xi_m| \ge 4k$, so $\max\{|X_{uv+v}|, |X_{uv}|\} \ge 2k > k$. Thus $\sup_n |X_n| \ge k$. Besides, since $\xi_i, i \in \mathbb{N}^+$ is i.i.d., then $\mathbb{P}(A_u) = \mathbb{P}(\xi_1 = 1)^v$. And it is obvious that $A_u, u \in \mathbb{N}^+$ is independent, $\sum_{i=0}^{\infty} \mathbb{P}(A_i) = \infty$, by BC theorem, we can get that $\mathbb{P}(\bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j) = 1$. Since $\bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j \subset \bigcup_{i=1}^{\infty} A_i \subset \{\sup_n |X_n| = \infty\}$, then $\mathbb{P}(\{\sup_n |X_n| = \infty\}) = 1$.

ROBEM III Let $(X_n : n \ge 0)$ be a symmtry simple random walk with $X_0 = 0$, for d = 2, prove that

$$\mathbb{P}(S_{2n} = 0) = \frac{1}{4^{2n}} \left(\frac{(2n)!}{(n!)^2}\right)^2$$

For d=3, prove that

$$\mathbb{P}(S_{2n} = 0) = \frac{1}{2^{2n}} \frac{(2n)!}{(n!)^2} \sum_{i+j+k=n} \left(\frac{1}{3^n} \frac{n!}{i!j!k!} \right)^2$$

SOUTHOW. 1. d=2,

$$\mathbb{P}(S_{2n} = 0) \\
= \left(\frac{1}{4^{2n}}\right) \left(\sum_{k=0}^{n} {2n \choose k} {2n-k \choose k} {2n-2k \choose n-k}\right) \\
= \frac{1}{4^{2n}} \sum_{k=0}^{n} \frac{(2n)!}{(k!)^{2} ((n-k)!)^{2}} \\
= \frac{1}{4^{2n}} \frac{(2n)!}{(n!)^{2}} \sum_{k=0}^{n} \frac{(n!)^{2}}{(k!)^{2} ((n-k)!)^{2}} \\
= \frac{1}{4^{2n}} \frac{(2n)!}{(n!)^{2}} \sum_{k=0}^{n} {n \choose k} {n \choose n-k} \\
= \frac{1}{4^{2n}} \frac{(2n)!}{(n!)^{2}} {2n \choose n} \\
= \frac{1}{4^{2n}} \left(\frac{(2n)!}{(n!)^{2}}\right)^{2}$$
(2)

2. d = 3,

$$\mathbb{P}(S_{2n} = 0) \\
= \frac{1}{6^{2n}} \left(\sum_{k+j=0}^{n} {2n \choose k} {2n-k \choose k} {2n-2k \choose j} {2n-2k-j \choose j} {2n-2k-2j \choose n-k-j} \right) \\
= \frac{1}{6^{2n}} \left(\sum_{j+k=0}^{n} \frac{(2n)!}{(k!)^2 (j!)^2 ((n-k-j)!)^2} \right) \\
= \frac{1}{6^{2n}} \frac{(2n)!}{(n!)^2} \sum_{j+k=0}^{n} \frac{(n!)^2}{(k!)^2 (j!)^2 ((n-k-j)!)^2} \\
= \frac{1}{2^{2n}} \frac{(2n)!}{(n!)^2} \sum_{i+j+k=n}^{n} \left(\frac{1}{3^n} \frac{n!}{i!j!k!} \right)^2$$
(3)

ROBEM IV Assume $(S_n : n \ge 0)$ is a symmtry simple random walk with $S_0 = i \in \mathbb{Z}$. Prove that $\forall a \in \mathbb{Z}$, let $\tau_a := \min\{n \in \mathbb{N} : S_n = a\}$, then $\mathbb{P}(\tau_a < \infty) = 1$.

SOLTON. By the theorem 1.2.2 of textbook, it is obvious that $P(\tau_a < \infty) = \lim_{b \to \infty} P_i(\tau_a < \tau_b) = \frac{b-i}{b-a} = 1.$