OSA Dotters) savare Pattern we will be using the 1=4 rested loops. 1234 1) Outer loops will fur n 1234 1234 fines nears it will count 1234 the number of lines. 2) Irrer 100p will decide what to print in a single 100. for (i=1; 1C=n; i++) { for (int) =1; jeer : jtt) cout ac ;; 3 cout-wendli Outer loop will revair some for (intj=1; j c=n: j++) { cout ce" " In general, 100PS when iof je when ior j= 0 In chracters Outer 100p will remain some ACCD Invertoop for (j=0; jcn; j+1) ABCD ABCD out a ch ABCD Chtt; 3

161 (50) (16) 3 (100) 3 (1	for (1:0); 111) { That toop (1+1) { (41) 3606 (1+1) { 0 to it (1+1) { costuin (1+1) { 0 to it (1+1) {	88 60000
1,2,3 4,5,6 7,8,9 61 (j=0;) 6 100 F N=3 64 (j=0;) 6 1411 1411	Triongle Pather 2 xxxx 3 xxxx 3 xxxx 4 (11) 1 (11) 2 22(11) 2 3 3 (11) 3 44 4(11) 501 (120) 11 c · (11) 601 (120) 11 c · (11) 501 (120) 11 c · (11) 501 (120) 11 c · (11) 501 (120) 11 c · (11)	contuends)

1234	for (1:0) ier : 1:41) {
Reverse Trioryle 1 21 21 321 4321	for (1:0 to icr 144) } full: 120: j } full: 20: j }
Floyd's hiargle 23 456 789 10	16 for (120) ser : 141) 8 (21 (120 4) 111) 8 couteerum:
9 C F 9 C F 6 M I 5 J	
8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Interted microle Parter Gre(1:0) 1 ch: 141) { 222 222 222 222 33 AMAD COULT 333 P 3 AMAD COULT 433 P 5 CES FOR (320; 50.1.)

(1:0) 1. (1:0) sept (1	Paller Space (r-i-1) Space (r-i-1) Space 24; (1:20) { (1:120) } (2:120) }	
128/221 128/221	Hollow Dismond Pallers * * T for (1=0 * * * Space) * * * Space)	