Inducing and tuning Kondo screening in a narrow-electronic-band system

Ben Safvati 10/7/2022

References:

- S. Shen et al., Nat. Commun. 13, 2156 (2022).

Background: Kondo Effect

Background: Narrow or Flat Band Systems

- Dispersionless, highly degenerate states where **kinetic energy is quenched** and **interactions between electrons** often create strongly correlated phases.
- Destructive interference of degenerate states often leads to **localization** in flat band systems. \bar{h}^2
 - Can also be seen by considering divergent effective mass

Background: Narrow or Flat Band Systems

Twisted Bilayer Graphene: Moiré-induced Electronic Structure

Images from Y. Cao, et al., Nature 556, 80 (2019)

Charge Density Wave (CDW) in 1T-TaS2

- Localized "star of david" (SD) sites each host one unpaired electron, form a superlattice on surface.
 - Unpaired electrons act as local magnetic moments.

 Coulombic interactions between SD sites leads to a gap opening, can't be explained with single particle band theory (Mott insulator).

Two Types of Cleaved 1T-TaS2 Surfaces

Two possible surfaces are seen upon cleaving in UHV at room temperature:

- 1. Type-I: Dimerized surface. Interlayer bonding between SD sites pairs the localized electrons, surface is a **typical band insulator**.
- 2. Type-II: Undimerized surface. Unpaired electrons only weakly coupled to layer underneath, SD site interactions make the surface a **correlated insulator**.
 - Larger vdw gap allows for Pb intercalation between layers.

Pb Intercalation on Cleaved 1T-TaS2

- Bulk surface unchanged by Pb evaporation.
- ~150 mV dimerization-induced insulating gap is preserved.

Type-II:

- Instead of Mott insulator gap, strong zero bias peak (ZBP) at Fermi energy appears on SD spots.
- Some SD sites now appear "dark," only in regions where ZBP appears.

Effect of Pb sub-layer on SD Sites

Concluding ZBP is a Kondo Resonance

 Magnetic field dependence: would expect splitting of peak due to Zeeman effect, but none observed up to 8.5 T.

- Splitting was observed for single layer 1T-TaS2 at 10 T in another paper.
 - Kondo resonance linewidth for monolayer is 4x linewidth measured here, requires larger field to see splitting.

Concluding ZBP is a Kondo Resonance

 Temperature dependence: Fano lineshape used to model asymmetric Kondo peaks in dl/dV at each temperature.

 Measure linewidth vs. temperature and fit lorentzian function to estimate Kondo temperature.

width =
$$2\sqrt{(\pi k_B T)^2 + 2(k_B T_K)^2}$$

Tuning Kondo Effect with Pb Concentration

 In addition to Kondo screening, the Pb intercalants act to dope the SD sites, shift narrow band below Fermi level.

- As the concentration is raised, the Kondo effect is suppressed and eventually eliminated.
- At high Pb concentration, charge on surface redistributes, new superlattice appears.

Emergent Superstructure with increasing Pb Concentration

- New dark and bright sites appear, more pronounced for negative bias topograph.
- dl/dV on each site suggests
 Pb intercalants force charge modulation, splitting of narrow band into e-doped and hole-doped sites.
- Conductance maps show contrast inversion between superlattice sites.

Summary/Conclusions

 Demonstrates a way to transition between many-body electronic states by varying concentration of a dopant.

 Ability to add a bottom layer on cleaved surface, making vdw heterostructure without stacking.

 Platform for studying Kondo lattice systems with TMD bulk surfaces.

Changing the position of the SD cluster during the STM measurements

