In the ALRM, since $v_6 = 0$, M_{W_R} takes the value of the upper limit of this range. The prediction of W_R^{\pm} in addition to Z' distinguishes these two models from the multitude of other proposals with an extra U(1)' gauge symmetry.

V. Z' DECAY

Consider the possible discovery of Z' at the LHC. For $M_{Z'}=1$ TeV, only an integrated luminosity of 0.2 fb⁻¹ is required [1]. Its discovery channel is presumably $\mu^+\mu^-$, but it will also have 4 charged muons in the final state from $\Delta_R^{++}\Delta_R^{--}$, and perhaps even 8 charged muons, as shown below.

In addition to all SM particles, Z' also decays into $n\bar{n}$, $\Delta_R^{++}\Delta_R^{--}$, $\xi_R^+\xi_R^-$, $A_R^0H_{R1}^0$, $H_L^+H_L^-$, and $A_L^0H_L^0$. In particular, the subsequent decay $\Delta_R^{\pm\pm}\to\mu^\pm\mu^\pm$ will be a unique signature where the like-sign dimuons have identical invariant masses ¹.

The interactions of Z' with fermions come from

$$\mathcal{L} = -g' Z'_{\mu} J^{\mu}_{Z'},\tag{27}$$

where $g' = e/\sqrt{x(1-x)(1-2x)}$. Ignoring fermion masses, each fermionic partial width is given by

$$\Gamma(Z' \to \bar{f}f) = \frac{(g')^2 M_{Z'}}{24\pi} [c_L^2 + c_R^2],$$
 (28)

where $c_{L,R}$ are the coefficients from $J_{Z'} = xJ_{3L} + (1-x)J_{3R} - xJ_{em}$, and a color factor of 3 should be added for each quark. In the DLRM, we have

$$u_L = -\frac{x}{6}, \quad u_R = \frac{1}{2} - \frac{7x}{6}, \quad d_L = -\frac{x}{6}, \quad d_R = \frac{x}{3},$$
 (29)

$$\nu_L = \frac{x}{2}, \quad n_R = \frac{1-x}{2}, \quad e_L = \frac{x}{2}, \quad e_R = -\frac{1}{2} + \frac{3x}{2}.$$
 (30)

Here we need to consider 3 families for u, d, ν, e but only one for n.

The decay of $Z' \to A^0_R H^0_{R1}$ to scalars come from

$$\mathcal{L} = -g'(1-x)Z'_{\mu}[(\partial^{\mu}H^{0}_{R1})A^{0}_{R} - (\partial^{\mu}A^{0}_{R})H^{0}_{R1}], \tag{31}$$

with the partial decay width

$$\Gamma(Z' \to A_R^0 H_{R1}^0) = \frac{(g')^2 M_{Z'} (1-x)^2}{48\pi},$$
 (32)

 $^{^{1}}$ Not all models involving doubly charged scalars have this decay, see for example [11].