

of s) (a) del the initial mass he m.
and initial relacity be AV. V
gra sym g
Final mass = mt + M.
Giral velocity M=V+DV.
Conservey momentum,
MV = M(V+V (M-mt) (V+OV) - (mt) (V-Vexhauss)
Mr = Mr + Mov - into - into - into + intrep.
dmtv-mt verhaut = (M-mt) DV.
It initial v = Venhanat.
int Verhamt _ dv.
(M-riot)
So, u (speed) = V+ OV.
= vex + mt vex
(M-mt)
u = Mvex
(M-mt)
(b) $u = dH$ $n = Meight$
out -
dt - Muen clt /M-my +
$\int dy = Mvex \int dt$ $\int (r'-int),$
J (M-mt),
H = Mvex lm (M-mt)
$M = -Mv_{ex}$ $ln(1-m_t)$.
(M /

m

H= Nvex In (M) height at of = purmont time, $H_b = \frac{M \text{ vex } \ln \left(M \right)}{m}$ For man. height, only go is considered: so egns of motion can be applied. y2-12=2908 $\frac{1}{2g}\left(\frac{Mvex}{M-mtb}\right)^2 = ho$ Max. height = 4 + ho = Mvex In (M.) + 1 (Mven
m M-mtz) 290 (M-mtz)