

Charles W. Davidson College of Engineering

Department of Computer Engineering

Real-Time Embedded System
Co-Design
CMPE 146 Section 1
Fall 2024

Basic Peripherals

Basic Peripherals

Low-level and basic peripherals commonly used in embedded systems

- General-Purpose Input/Output module
- ADC/DAC
- Voltage regulators
- Timing components
 - Crystals, Real-Time Clock (RTC), Timers, clock generators, phase-locked loop (PLL) circuits
- Voltage reference module
- Reset controller
- Electrostatic discharge module
- Temperature sensor
- Analog filters
- Power management module

SJSU SAN JOSÉ STATE UNIVERSITY

GPIO Controller

- Programmer's view on an I/O line:
 - Input: Read as 1 or 0
 - Output: Binary control of a signal line, either high or low
 - Usually mapped as part of an 8-bit byte in the memory space
 - One controller can support tens or hundreds of lines
- Individual I/O bits are independently programmable
 - Input or output
 - Interruptible or not, edge- or level-triggering
- Line can be attached with pullup, pulldown or no resistor
- Wake-up capability
 - In low-power mode, generates an interrupt on state change
- Capacitive-touch functionality
 - Used for detecting user finger touches by measuring capacitance changes
- High current drive capability
- Equipped with filter to remove noisy signal spikes

SJSU SAN JOSÉ STATE UNIVERSITY

ADC/DAC

Analog-to-Digital Converter (ADC)

- Converts a continuously-valued signal (analog) to discretely-valued signal (digital) that can be processed by a digital computer
 - Real-world signals mostly all analog: temperature, speed, volume, weight, etc.
- Input modes:
 - Single-ended: measure input signal in reference to ground
 - Differential: measure difference of two input signals
- Usually has a front-end anti-aliasing filter
 - Sampling rate > maximum frequency component of the signal of interest X 2
- Need a precise voltage reference
- Common resolutions: 12, 14, 16 bits

Digital-to-Analog Converter (DAC)

- Reverse of ADC
- A low-pass filter is typically placed after DAC

Analog Filters

- Some signal processing must be done in analog domain. Examples:
 - ADC: anti-aliasing filter
 - DAC: reconstruction filter
- One example of analog filter module: Maxim MAX74xx
 - 5th-Order low-pass filters
 - Clock-tunable corner frequency: 1 Hz to 45 kHz
 - Low Power
 - Operating Mode: 3mA
 - Shutdown Mode: 0.2μA

Voltage Regulators

- Maintain stable operating voltages despite unstable input power source
- Typically stand-alone devices on circuit board
 - Many modern MCUs have built-in regulator for processor core and digital modules
- May use separate devices for analog and digital components
 - Separate supply voltages and grounds for low-noise applications
- LaunchPad uses TI TPS73533DRB voltage regulator
 - 3.3-mm X 3.3-mm surface-mount package
 - Input voltage: 2.7 V to 6.5 V
 - Output voltage: 3.3 V
 - 2% overall accuracy
 - Maximum output current: 500 mA
 - Very low dropout: 280 mV at 500 mA
 - Thermal and overcurrent protection
 - Low Noise: 13.2 μ V_{RMS}
 - Fast start-up time: 45 μs

LaunchPad MSP-EXP432P401R

Timing Components

Various types for diverse applications

- Crystal units
 - External analog devices providing oscillation for generating digital clocks
 - LaunchPad has three on board
 - 16 MHz for debug probe, 32 kHz and 48 MHz for MCU
- Phase-Locked Loop (PLL)
 - Tunable feedback-loop circuitry to produce desired frequency
 - Many modern MCUs have unit built-in
- Timers
 - High-resolution for general-purpose operations
 - Can run at system clock frequency
 - Can work independently or combined with other peripherals
 - Provides timing for ADC, DAC, DMA, PWM (Pulse Width Modulation), capacitive touch, etc.

LaunchPad MSP-EXP432P401R

Timing Components (cont'd)

- Real-Time Clock (RTC)
 - Provides real-world time information: seconds, minutes, hours, day of week, day of month, month, and year (including leap year correction)
 - Operates in very low-power mode
 - Low frequency (in kilohertz)
 - Typically backed up by external battery that can last for years
 - One standalone example: STMicroelectronics M41T93 RTC module
 - Small package: 4 mm X 4 mm
 - Ultra-low battery supply current: 365 nA
 - Low operating current: 80 μA
 - Connect to MCU with SPI (Serial Peripheral Interface, a serial bus)

Voltage Reference Module

- Generates reference voltages for various analog modules
- Regular power supply voltage is not stable and accurate enough
 - An accuracy of 2-5% is common
- Reference module can output fixed voltage at 0.1% or better accuracy
 - Temperature compensated
- On LaunchPad, MCU has a built-in voltage reference while the debug probe uses an off-chip version
- A standalone example: TI REF5040 Precision Voltage Reference
 - 0.05% accuracy
 - Low noise: $3 \mu V_{PP}/V$
 - High output current: 10 mA
 - Small package: 3 mm x 3 mm

SJSU SAN JOSÉ STATE UNIVERSITY

Reset controller

- Controls how the system is reset
 - Registers maintain the source of reset
- On ARM Cortex-M MCU, typically there are three types of reset
 - Power-On Reset (POR)
 - Includes initiation by reset pin, power supply system, clock system
 - Reset everything in MCU: processor, debug support component, peripherals
 - System Reset
 - Same as POR but without the debug support component
 - Connection with debug host maintains
 - Can be initiated by debug host
 - Processor Reset
 - Reset processor only
 - Program is restarted

Electrostatic Discharge (ESD) Module

- Protect devices from (ESD)
 - Many embedded systems are portable; chances of accumulating electrostatic charges are high
- LaunchPad uses TI TPD4E004
 - Protects against ESD pulses up to ±15 kV
 - Provides a safe path to discharge through Vcc or ground

LaunchPad MSP-EXP432P401R

LaunchPad MSP-EXP432P401R

TPD4E004

Temperature Sensor

Temperature sensors are commonly used on embedded applications

- Many applications are directly temperature related
 - Thermostats, refrigerators, ovens, air conditioners, ...
- Protection of circuitry from overheating
- Compensation for component characteristics drift due to temperature changes
- One temperature sensor module example: ADI ADT7302
 - -40°C to +125°C operating temperature range
 - ±2°C accuracy
 - Operating power of 0.631 mW
 - Shutdown mode power of 4.88 μ W
 - SPI connection to MCU

Power Management Module

- Various power modes available for optimization of power in different execution conditions
- Two factors to tune: frequency and supply voltage
- On the MSP432 MCU, two main power operating modes
 - Active Mode (AM): CPU instruction execution is possible
 - Low Power Mode (LPM): CPU instruction execution is suspended
- AM is further divided to six sub-modes
 - Based on a combination of voltage regulator used, voltage and frequency settings
- LPM is further divided to 12 sub-modes in 3 general categories
 - Sleep
 - Processor is not active but peripherals are
 - Deep Sleep
 - Peripheral functionality is reduced or totally disabled
 - Stop or Shut Down
 - Processor and almost all peripherals are powered down