Solution 5.3: The two formulas are not equivalent, and in fact, none is stronger than the other.

Consider a trace ρ such that the formula φ_1 holds at every position and the formula φ_2 holds at no position. Then the trace does not satisfy the untilformula $(\varphi_1 \mathcal{U} \varphi_2)$, and thus, satisfies $\neg (\varphi_1 \mathcal{U} \varphi_2)$. However, it does not satisfy the untilformula $(\neg \varphi_2) \mathcal{U} (\neg \varphi_1)$. This shows that $\neg (\varphi_1 \mathcal{U} \varphi_2)$ does not imply $(\neg \varphi_2) \mathcal{U} (\neg \varphi_1)$.

Conversely, consider a trace ρ such that at the first position φ_2 holds but φ_1 does not hold. By the semantics of the until-formulas, the trace satisfies both $(\neg \varphi_2) \mathcal{U} (\neg \varphi_1)$ and $(\varphi_1 \mathcal{U} \varphi_2)$. This shows that $(\neg \varphi_2) \mathcal{U} (\neg \varphi_1)$ does not imply $\neg (\varphi_1 \mathcal{U} \varphi_2)$.

Solution 5.4: The two formulas are equivalent. We will show that if a trace satisfies $\Box \Diamond (\varphi_1 \wedge \Diamond \varphi_2)$, then it must satisfy $\Box \Diamond (\varphi_2 \wedge \Diamond \varphi_1)$. By a symmetric argument, it follows that if a trace satisfies $\Box \Diamond (\varphi_2 \wedge \Diamond \varphi_1)$, then it must satisfy $\Box \Diamond (\varphi_1 \wedge \Diamond \varphi_2)$, establishing the desired equivalence.

Suppose the trace ρ satisfies $\square \lozenge (\varphi_1 \land \lozenge \varphi_2)$. Then, there must be infinitely many positions j such that $(\rho, j) \models (\varphi_1 \land \lozenge \varphi_2)$. Then, there must be infinitely many positions j such that φ_1 holds at position j and φ_2 holds at some position $k \geq j$. It follows that there must be infinitely many positions k where φ_2 holds, and furthermore, at each such position k, there must be a position $j \geq k$ where φ_1 holds. Thus there are infinitely many positions k such that $(\rho, k) \models (\varphi_2 \land \lozenge \varphi_1)$. Hence, the trace ρ satisfies $\square \lozenge (\varphi_2 \land \lozenge \varphi_1)$.

Solution 5.5: The desired requirement is expressed by the following LTL-formula:

$$\square \lozenge (inc = 1) \rightarrow \square \lozenge (out_0 = 1 \land out_1 = 1 \land out_2 = 1).$$

The circuit 3BitCounter does not satisfy this specification. Suppose in every round both the input variables *start* and *inc* equal 1. The counter remains at zero in response to such a sequence of inputs. In the resulting execution the input *inc* is repeatedly high but the counter is never at its maximum value. This is a counterexample to the desired requirement.

Solution 5.6: The desired requirement is expressed by the following LTL-formula:

$$\square \ [(on = 1 \land \square \neg cruise? \land \square \neg inc? \land \square \neg dec?) \rightarrow \Diamond \square \ (speed = cruiseSpeed)].$$

Solution 5.7: Consider a trace ρ and assume that it satisfies the formula φ_1 . Then it satisfies either $\Box \Diamond \neg Guard(A)$ or $\Box \Diamond$ (taken = A). That is, there are infinitely many positions where either $\neg Guard(A)$ holds or (taken = A) holds.

This implies that at every position j, there is a position $k \geq j$, where the disjunction $(taken = A) \vee \neg Guard(A)$ is satisfied. It follows that the always-formula φ_2 holds since to show that φ_2 is satisfied, we simply need to establish that every position j where the condition Guard(A) holds is followed by a position $k \geq j$ where the disjunction $(taken = A) \vee \neg Guard(A)$ holds.

In the converse direction, suppose that a trace ρ satisfies the formula φ_2 . To show that it also satisfies φ_1 , assume that the trace also satisfies the antecedent $\Diamond \Box Guard(A)$ of φ_1 . Then there exists a position j such that for all positions $k \geq j$, Guard(A) holds at position k. Since the trace satisfies φ_2 , it follows that for all positions $k \geq j$, the formula \Diamond ((taken = A) $\lor \neg Guard(A)$) holds. Since $\neg Guard(A)$ does not hold at any of these positions, it follows that for every position $k \geq j$, there is a later position where (taken = A) is satisfied. This means that the trace satisfies the consequent $\Box \Diamond$ (taken = A) of φ_1 .

- **Solution 5.8: 1.** Along an execution where the input task A_z is executed at each step, the value of x stays stuck at 0, and thus, the process does not satisfy $\Diamond(x>5)$. If we assume weak fairness for the task A_x , since it is always enabled, we are guaranteed that it will be executed repeatedly along every fair execution. Thus, the value of x is guaranteed to be incremented repeatedly, and the process satisfies the eventuality property $\Diamond(x>5)$.
- **2.** Along an execution where the task A_x is executed at each step, the value of y stays stuck at 0, and thus, the process does not satisfy $\Diamond (y > 5)$. In this specific execution, the value of z is also 0 at every step, and thus, the task A_y is never enabled and the execution is strongly-fair to the task A_y . Thus the specification is not satisfied even if we add fairness assumptions.
- **3.** Along an execution where the input task A_z is executed at each step, the antecedent $\Box \Diamond (z=1)$ is satisfied, but the value of y is stuck at 0. Thus, the specification $\Box \Diamond (z=1) \to \Diamond (y>5)$ is not satisfied. This execution is weakly-fair to the task A_y . However, if we assume strong fairness for the task A_y , then in every execution that satisfies the antecedent $\Box \Diamond (z=1)$, the task A_y is repeatedly enabled, and is guaranteed to be executed repeatedly ensuring the satisfaction of $\Diamond (y>5)$. Thus, the specification is satisfied assuming strong-fairness for the task A_y .
- **Solution 5.9: 1.** The Büchi automaton is shown below. The transitions between the initial state a and the accepting state b are similar to the automaton of figure 5.5 for the formula $\Box \Diamond e$, and the nondeterministic switch to the accepting state c is similar to the automaton of figure 5.6 for the formula $\Diamond \Box f$. A trace is accepted exactly when either the state b is visited repeatedly, which can happen only when the trace contains infinitely many positions satisfying e, or when the state c is visited repeatedly, which can happen exactly when the property f holds persistently.

2. The Büchi automaton is shown below. In the initial state a, the automaton is waiting for an input where e holds, and on such an input, switches to the state b. In the state b, it is waiting for an input where f holds, and on such an input, switches to the accepting state c and then at the next step returns to the initial state. The accepting state is visited infinitely often precisely when the input trace satisfies e repeatedly and f repeatedly.

3. The Büchi automaton is shown below. The automaton switches to the state b when it encounters an input where e holds but f does not hold. In the state b, it is waiting to satisfy the formula $e\ \mathcal{U}\ f$: it returns to the initial accepting state a on an input that satisfies f and continues to wait as long as the inputs satisfy e.

Solution 5.10: Observe that the input e must be 1 at every step for the automaton to take a transition. In addition, the accepting state is visited repeatedly only if the input trace contains infinitely many positions where f equals 1. Thus a trace is accepted by the Büchi automaton of figure 5.9 precisely when it

satisfies the LTL-formula $\Box e \land \Box \Diamond f$.

Solution 5.11: Suppose the Büchi automaton M_1 has states Q_1 , initial states $Init_1$, accepting states F_1 , and edges E_1 , and the automaton M_2 has states Q_2 , initial states $Init_2$, accepting states F_2 , and edges E_2 . We first construct the "product" automaton M_{12} over the input variables V as follows: the set

initial states, and edges of the tableau M_{φ} are defined as before. In addition to the accepting sets corresponding to the always and eventuality subformulas, now for every until-subformula $\psi = \psi_1 \mathcal{U} \psi_2$ in the closure $Sub(\varphi)$, there is an accepting set F_{ψ} containing states q such that either $\psi_2 \in q$ or $\psi \notin q$.

The construction can be proved correct exactly as in the proof of proposition 5.2. Whenever an until-formula $\psi = \psi_1 \mathcal{U} \psi_2$ belongs to a state q along an accepting run of the tableau, the consistency condition ensures that either ψ_2 belongs to the state q (and in such a case, the satisfaction of ψ_2 suffices to ensure the satisfaction of ψ), or both ψ_1 and $\bigcirc \psi$ belong to q. In the latter case, the rules for adding edges in the tableau ensure that the next state along the execution contains ψ , and the accepting condition imposed by F_{ψ} ensures the eventual satisfaction of ψ_2 later in the execution.

Solution 5.15: Let
$$\varphi = (e \ \mathcal{U} \bigcirc f) \lor \neg e$$
 and let $\psi = (e \ \mathcal{U} \bigcirc f)$. Then $Sub(\varphi) = \{e, \neg e, f, \bigcirc f, \psi, \bigcirc \psi, \varphi\}.$

The tableau has the following 16 states (that is, there are 16 consistent subsets of $Sub(\varphi)$):

```
\begin{array}{lll} q_0 & = & \{e,f,\bigcirc f,\bigcirc \psi,\psi,\varphi\}; & q_1 & = & \{e,f,\bigcirc f,\psi,\varphi\}; \\ q_2 & = & \{e,f,\bigcirc \psi,\psi,\varphi\}; & q_3 & = & \{e,f\}; \\ q_4 & = & \{e,\bigcirc f,\bigcirc \psi,\psi,\varphi\}; & q_5 & = & \{e,\bigcirc f,\psi,\varphi\}; \\ q_6 & = & \{e,\bigcirc \psi,\psi,\varphi\}; & q_7 & = & \{e\}; \\ q_8 & = & \{\neg e,f,\bigcirc f,\bigcirc \psi,\psi,\varphi\}; & q_9 & = & \{\neg e,f,\bigcirc f,\psi,\varphi\}; \\ q_{10} & = & \{\neg e,f,\bigcirc \psi,\varphi\}; & q_{11} & = & \{\neg e,f,\varphi\}; \\ q_{12} & = & \{\neg e,\bigcirc f,\bigcirc \psi,\psi,\varphi\}; & q_{13} & = & \{\neg e,\bigcirc f,\psi,\varphi\}; \\ q_{14} & = & \{\neg e,\bigcirc \psi,\varphi\}; & q_{15} & = & \{\neg e,\varphi\}. \end{array}
```

Of these all states but q_3 and q_7 contain φ and are initial states. The edges are defined by the rules of the tableau. We give edges out of a few states as examples. The state q_0 has edges, all with the guard $e \wedge f$, to states that contain both f and ψ , that is, to states q_0 , q_1 , q_2 , q_8 , and q_9 . The state q_{11} has edges, all with the guard $\neg e \wedge f$, to states that exclude both f and ψ , that is, to states q_7 , q_{14} , and q_{15} . The state q_{13} has edges, all with the guard $\neg e \wedge \neg f$, to states that include f but exclude ψ , that is, to states q_3 , q_{10} and q_{11} . The automaton M_{φ} has a single accepting set F_{ψ} : it contains all states that either include $\bigcirc f$ or exclude ψ , that is, all states except q_2 and q_6 .

Solution 5.16: For the Büchi automaton shown below, on a given input trace, the automaton has an infinite execution (that is, the automaton can keep processing the inputs at each step) exactly when the input e has value 1 in every even position. If this is the case, the input trace is accepted since such an infinite execution contains the accepting state b repeatedly.

