A HI Flexible High Resolution µDisplay Enabled By FlexTrateTM

Henry Sun¹, Lisong Xu², Kai Ding², Mingwei Zhu², and Subramanian S. Iyer¹ ¹UCLA CHIPS, ²Applied Materials Inc

Hsunhenry@ucla.edu

Introduction and Motivation

Novel approach to create Quantum dotenabled, flexible, uDisplays using FlexTrateTM Featuring:

- O GaN μLEDs: High brightness (>5000nits), high hi resolution (>600PPI in 360x280 resolution)
- High Performance CMOS driver for passive matrix display (TLC6984)
- Quantum Dots to convert monochrome LED to RGB subpixels (<10um thick QD layer)
- FlexTrateTM Platform for Heterogeneous Integration

Key Benefits:

- Light weight, High Flexibility
- Long display lifetime (10 years+)
- Substantial increase in manufacturability
- Agnostic to die thickness and material type

μDisplay Structure

Fabrication Process Flow for µLED Display

Mass Transfer onto Flexible PDMS substrate

4. Exposure #1 and post-exposure bake

5. Development for 7min

8. PDMS molding and de-gas for 30min + cure at 70C for 2+ hours

High throughput and high yield (>99.99%)

Wire fabrication and Driver, Quantum Dot Integration

Bonding of Drivers and Quantum Dot Integration

2. Flip-chip bonded driver chips

CMOS drivers and passive components are flip-chip bonded onto the driver pads using K&S APAMA flip-chip bonder

Quantum dots are dispensed onto a scaffold structure embedded in PDMS to prevent pixel-pixel optical crosstalk

LED ARRAY

3. Final Structure with Quantum Dot (QD) dispense

Results And Discussion

Mass transfer results

- ~100,000 dies transferred at >99.99% yield
 - 361 x 284 pixels
 - 30μm pixels at 40μm pitch
- High degrees of flexibility <3mm bending radius after molding on flexible substrate

Two-level wiring grid design

- M1 layer addresses the ncontacts of LEDs while M2 layer addresses the p-contacts
- Individual LEDs turn on at 3.01V
- Process optimization to maintain uniform, low resistance across individual wires

Sectio Average 13.2 1.79

Driver integration

 Bonding of 2.5mm x 3mm current and 3mm x 3.5mm voltage drivers using flip chip bonder (K&S APAMA) on driver pads

Conclusion and Acknowledgements

- Demonstrated a method of fabricating a high performance, flexible uDisplay on FlexTrateTM
- Demonstrated high yield and throughput during initial transfer step
- We thank our partners at Applied Materials and members of the UCLA CHIPS consortium for their generous support on this project.
- We also acknowledge the UCLA Nanoelectronics Research Facilities and Integrated Systems Nanofabrication Cleanroom and staff.

