Master Degree in Artificial Intelligence Statistical and Mathematical Methods for Artificial Intelligence

2022-2023

Application: Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA)

PCA and LDA comparison.

The task for this exercise is to compare PCA and LDA in their ability to cluster when projecting very high-dimensional datapoints to 2 or 3 dimensions. In particular, consider the dataset MNIST provided on Virtuale. This dataset contains images of handwritten digits with dimension 28×28 , together with a number from 0 to 9 representing the label. You are asked to:

- Load the dataset in memory and explore its head and shape to understand how the informations are placed inside of it;
- Split the dataset into the X matrix of dimension $d \times N$, with d = 784 being the dimension of each datum, N is the number of datapoints, and $Y \in \mathbb{R}^N$ containing the corresponding labels;
- Choose a number of digits (for example, 0, 6 and 9) and extract from X and Y the sub-dataset containing only the considered digits. Re-call X and Y those datasets, since the originals are not required anymore;
- Set $N_{train} < N$ and randomly sample a training set with N_{train} datapoints from X (and the corresponding Y). Call them X_{train} and Y_{train} . Everything else is the test set. Call it X_{test} and Y_{test} .
- Implement the algorithms computing the PCA and LDA of X_{train} with a fixed k. Visualize the results (for k=2) and the position of the centroid of each cluster;
- For both the algorithms, compute for each cluster the average distance from the centroid. Comment the result;
- For both the algorithms, compute for each cluster the average distance from the centroid on the test set. Comment the results;
- Define a classification algorithm in this way: given a new observation x, compute the distance between x and each cluster centroid. Assign x to the class corresponding the the closer centroid. Compute the accuracy of this algorithm on the test set and compute its accuracy for both PCA and LDA;
- Repeat this experiment for different values of k and different digits. What do you observe?

Visualizing dyad.

Consider an image from skimage.data. For simplicity, say that $X \in \mathbb{R}^{m \times n}$ is the matrix representing that image. You are asked to visualize the dyad of the SVD Decomposition of X and the result of compressing the image via SVD. In particular:

- Load the image into memory and compute its SVD;
- Visualize some of the dyad $\sigma_i u_i v_i^T$ of this decomposition. What do you notice?
- Plot the singular values of X. Do you note something?

- \bullet Visualize the k-rank approximation of X for different values of k. What do you observe?
- Compute and plot the approximation error $||X X_k|||$ for increasing values of k, where X_k is the k-rank approximation of k.
- Plot the compression factor $\frac{k}{mn}$ for increasing k;