

 $k_1 \sim \text{Binomial}(\theta_1, n_1)$ $k_2 \sim \text{Binomial}(\theta_2, n_2)$ $\theta_1 \sim \text{Beta}(1, 1)$ $\theta_2 \sim \text{Beta}(1, 1)$ $\delta \leftarrow \theta_1 - \theta_2$

Fig. 3.3 Graphical model for inferring the difference, $\delta = \theta_1 - \theta_2$, in the rates of two binary processes.

Uno de los problemas más frecuentes a los que se enfrentan los organismos es la detección de estados o eventos específicos (**señales**) que les proporcionen información relevante sobre el estado del mundo (McNicol, 2005).

Depredador

Los aciertos pagan y los errores cuestan....

Estado real del mundo

Juicio de detección

"No, debió" "¡Sí, es un ser otra cosa" depredador!"

Hit Ganancia: Poder correr y escapar a tiempo.

Señal

(Depredador)

Omisión Costo: ¡La muerte! Ruido

Falsa Alarma

Costo: Gasto innecesario

de energía

Rechazo Correcto

Ganancia: Poder continuar con sus actividades

Los aciertos pagan y los errores cuestan....

Teoría de Detección de Señales

Teoría de Detección de Señales

Estado real del mundo

		Estitus I till att III all	
	-	Señal	Ruido
uicio de detección	"Sí, ahí está	Hit	Falsa Alarma
	la señal"	(Acierto)	(Error)
Juicio de	"No,	Omisión	Rechazo Correcto
	10 hay señal"	(Error)	(Acierto)

Teoría de Detección de Señales

