CSE460: VLSI Design

Lecture 7

CMOS DC Characteristics

Contents

- CMOS Inverter DC Characteristics
- Noise Margin
- nMOS & pMOS Pass Transistor DC Characteristics

Static CMOS Inverter

A static CMOS inverter is built using a pMOS and an nMOS

DC Transfer function or DC response: V_{out} vs V_{in}

For the CMOS inverter shown:

•
$$V_{in} = 0$$
 \Rightarrow $V_{out} = V_{DD}$
• $V_{in} = V_{DD}$ \Rightarrow $V_{out} = 0$

- In between these 2 cases, V_{out} depends transistor current
- V_{out} vs V_{in} relationship can be found by setting $I_{dsn} = |I_{dsp}|$
- V_{out} vs V_{in} relationship can also be found via graphical solutions

CMOS Inverter DC response can be determined as:

- 1. Divide the input into 5 different regions:
 - a. **A**: $0 \le V_{in} < V_{tn}$
 - b. **B**: $V_{tn} \le V_{in} < V_{DD}/2$
 - c. **C**: $V_{in} = V_{DD}/2$
 - d. **D**: $V_{DD}/2 < V_{in} \le V_{DD} |V_{tp}|$
 - e. **E**: $V_{in} > V_{DD} |V_{to}|$
- 2. Determine the operating regions of the devices
 - a. Cutoff, Linear or Saturation?
- Approximate V_{out} at A, B, C, D & E regions depending on the pMOS and nMOS operating regions

V_{SD}= 5-5=0 (NoVI CMOS Inverter DC response

Region A

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{\rm out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

Region B

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\text{in}} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\text{in}} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{\rm out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

As NMOS gets ON now, the Vout value is now connected to GND now at same time hence Vout degrades from VDD to lower value now

Region C

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\text{in}} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{\rm out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

NMOS is at its peak performance ie now Vout's previous value ie VDD is now totally degraded due to connection to GND and as saturation occurs for NMOS, IDn is max now

Region D

Region	Condition	p-device	n-device	Output	V _{DD}			 		
A	$0 \le V_{\text{in}} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$		Α	В			
В	$V_{tn} \le V_{\text{in}} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$	V_{out}					
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply	out			С		
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$						
Е	$V_{\rm in} > V_{DD} - V_{tp} $	outoff	linear	$V_{\text{out}} = 0$				D		
: Vout has	s dropped too much, now,				0	-	V _{tn}	V _{DD} /2	V _{DD}	- V _{in}
	·Vout > Vsg - Vt						· tn		0– V _{tp}	

Region E

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\text{in}} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
E	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

for PMOS, Vsg = VDD - (VDD- |Vtp| + some value) < |Vtp| hence, PMOS turns off now

Complete V_{out} vs V_{in}

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

Practical CMOS Inverter DC response

In reality, the sharp change at region C is not that sharp and has finite slope

Theoretical inverter DC response vs Practical inverter DC response

Supply Current

If $I_{DD} = I_{dsn} = |I_{dsp}|$ is the supply current drawn from V_{DD}

- I_{DD} is non-zero in regions B, C & D
- I_{DD} is zero in regions A & E

Region	Condition	p-device	n-device
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear

Power Consumption

If $I_{DD} = I_{dsn} = |I_{dsp}|$ is the current drawn from supply V_{DD}

- I_{DD} is non-zero in regions B, C & D
- I_{DD} is zero in regions A & E

That is why we always try to work with strong signals

- A strong 0 falls in the region A where I_{DD} ≈ 0
- A strong 1 falls in the region E where I_{DD} ≈ 0

 $I_{DD} \approx 0$ or low implies <u>low power consumption!</u>

Power Consumption

If $I_{DD} = I_{dsn} = |I_{dsp}|$ is the current drawn from supply V_{DD}

- I_{DD} is non-zero in regions B, C & D
- I_{DD} is zero in regions A & E

That is also why we try to avoid degraded signals

- A degraded 0 falls in the region B/C where I_{DD} ≠ 0
- A degraded 1 falls in the region D/C where $I_{DD} \neq 0$

I_{DD} ≠ 0 or high implies <u>high power consumption!</u>

Bh=MhCox L

Beta Ratio Effects

The crossover point, where $V_{in} = V_{out}$ is called the input threshold, V_{inv}

For $\beta_p = \beta_n$, the inverter threshold voltage, $V_{inv} = V_{DD}/2$

 β_p / β_n is called the beta ratio; $r = \beta_p / \beta_n$

- $r = 1 \Rightarrow$ inverter is un-skewed
- $r > 1 \Rightarrow$ inverter is HI-skewed $7 \frac{1}{100} > 1$
- $r < 1 \Rightarrow$ inverter is LO-skewed

Thus, by changing *r* we can shift the response!

Beta Ratio Effects for a Static CMOS Inverter

We would like to know how V_{inv} changes for a CMOS inverter as we change r

For the CMOS inverter shown:

$$\bullet$$
 $V_{asn} = V_{in} - 0 = V_{in}$

$$V_{dsn} = V_{out} - 0 = V_{out}$$

Assume: $V_{tp} = -V_{tn}$

Beta Ratio Effects for a Static CMOS Inverter

For $\beta p \neq \beta n$, we can calculate the inverter threshold voltage by setting $V_{in} = V_{inv}$

- 1. In region C, both pMOS & nMOS are saturated
- 2. So the nMOS and pMOS currents are:

•
$$I_{dsp} = \beta_p (V_{gsp} - V_{tp})^2 / 2 = \beta_p (V_{inv} - V_{DD} - V_{tp})^2 / 2$$

•
$$I_{dsn} = \beta_n (V_{gsn} - V_{tn})^2 / 2 = \beta_n (V_{inv} - V_{tn})^2 / 2$$

3. Set the currents $I_{dsp} = -I_{dsn}$

4. Solve for V_{inv} :

$$V_{\text{inv}} = \frac{V_{DD} + V_{tp} + V_{tn}\sqrt{\frac{1}{r}}}{1 + \sqrt{\frac{1}{r}}}$$

not modulus; put value with sign

Beta Ratio Effects

So thus for $\beta_p \neq \beta_n$, we can calculate the inverter threshold voltage as a function of "r", where $r = \beta_p / \beta_n$

$$V_{\text{inv}} = \frac{V_{DD} + V_{tp} + V_{tn} \sqrt{\frac{1}{r}}}{1 + \sqrt{\frac{1}{r}}}$$

Other CMOS Gates

DC transfer characteristics of other static CMOS gates can be understood by collapsing the gates into an equivalent inverter

- Series transistors can be viewed as a single transistor of greater length
- If only one of several parallel transistors is ON, the other transistors can be ignored
- If several parallel transistors are ON, the collection can be viewed as a single transistor of greater width

Noise Margin (Noise Immunity)

Noise margin is closely related to the DC voltage characteristics

Helps determine the allowable noise voltage on the input of a gate so that the output will not be corrupted

The specification most commonly used to describe noise margin uses two parameters:

- 1. The LOW noise margin, NM₁
- 2. The HIGH noise margin, NM_H

Noise Margin

Voltage definitions:

 V_{IH} = minimum HIGH input voltage

 V_{II} = maximum LOW input voltage

 V_{OH} = minimum HIGH output voltage

 V_{OL} = maximum LOW output voltage

NM, = The LOW noise margin

 NM_H = The HIGH noise margin

noice prone hence receiver may receive voltage between VOH and VOL range so we need noise margin now

Low Noise Margin

The LOW noise margin (NM_L)
 is the difference in maximum
 LOW input voltage recognized by
 the receiving gate and the
 maximum LOW output voltage
 produced by the driving gate

$$NM_L = V_{IL} - V_{OL}$$

High Noise Margin

The HIGH noise margin (NM_H)
 is the difference between the
 minimum HIGH output voltage of
 the driving gate and the
 minimum HIGH input voltage
 recognized by the receiving gate

$$NM_H = V_{OH} - V_{IH}$$

Selecting V_{IL} , V_{IH} , V_{OL} & V_{OH}

How to choose the logic levels V_{IL} , V_{IH} , V_{OL} & V_{OH} such that the noise margins NM_I , & NM_H are maximized?

Use the DC transfer characteristics!

Selecting V_{IL} , V_{IH} , V_{OL} & V_{OH}

How to choose the logic levels V_{IL} , V_{IH} , V_{OL} & V_{OH} such that the noise margins NM_L & NM_H are maximized?

- Use the DC transfer characteristics!
- Logic levels are defined at the unity gain point where the slope is -1
- This gives a conservative bound on the worst case static noise margin

Selecting V_{IL} , V_{IH} , V_{OL} & V_{OH}

Logic levels of typical 5 V and 3.3 V logic families

Logic Family	V_{DD}	$V_{I\!L}$	$V_{I\!H}$	V_{OL}	V_{OH}
TTL	5 (4.75-5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5-6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3-3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3-3.6)	0.9	1.8	0.36	2.7

Noise Margin: Summary

- NM_L or NM_H too small: the gate may be disturbed by noise that occurs on the inputs
- An unskewed gate has equal noise margins: which maximizes immunity to arbitrary noise sources
- If a gate sees more noise in the high or low input state: the gate can be skewed to improve that noise margin at the expense of the other

Noise Margin: Summary

 Noise sources tend to scale with the supply voltage: so noise margins are best given as a fraction of the supply voltage; for example 0.3V_{DD}

A noise margin of 0.4 V is quite comfortable in a 1.8 V process, but marginal in a 5 V process

Pass Transistor DC Characteristics

Recall from our previous lectures that

- nMOS transistors pass '0's well but '1's poorly
- pMOS transistors pass '1's well but '0's poorly

We are now better prepared to define how "poorly"

nMOS Pass Transistor DC Characteristics

To keep an nMOS transistor ON, we need

•
$$V_{gs} \ge V_{tn}$$

$$\bullet \Rightarrow \bigvee_{g} - \bigvee_{g} \geq \bigvee_{tn}$$

$$\bullet \Rightarrow \bigvee_{s} \leq \bigvee_{q} - \bigvee_{tn}$$

$$\bullet \quad \Rightarrow V_{s(max)} = V_{g} - V_{tn}$$

nMOS Pass Transistor DC Characteristics

To keep an nMOS transistor ON, we need

•
$$V_{s(max)} = V_g - V_{tn}$$

nMOS transistors passing '1' $(V_{in} = V_{DD}, V_{out} = ?)$

- Gate is connected to V_{DD}: V_g = V_{DD}
- Current flowing from drain to source
- $V_{in} = V_{d} = V_{DD}$; $V_{out} = V_{s} = ?$
- But we know $V_{s(max)} = V_g V_{tn} \Rightarrow V_{out(max)} = V_{DD} V_{tn}$

nMOS transistors attempting to pass a '1' never pass above V_{DD} - V_{tn}

pMOS Pass Transistor DC Characteristics

To keep a pMOS transistor ON, we need

•
$$V_{sg} \ge |V_{tp}|$$

$$\begin{array}{ccc} \bullet & \bigvee_{sg} \geq |V_{tp}| \\ \bullet & \Rightarrow \bigvee_{s} - \bigvee_{g} \geq |V_{tp}| \end{array}$$

$$\bullet \quad \Rightarrow \bigvee_{s} \geq \bigvee_{g} + |\bigvee_{tp}|$$

$$\Rightarrow \bigvee_{s} \geq \bigvee_{g} + |\bigvee_{tp}|$$

$$\Rightarrow \bigvee_{s(min)} = \bigvee_{g} + |\bigvee_{tp}|$$

hence now, V_out ie V_drain fully

but if this vol=VDD: Now, it's the source end as Source of PMOS is always at higher voltage than drain

 $V_s = |V_{tp}|$

charges to VDD

GND

To keep a pMOS transistor ON, we need

$$\bullet \quad V_{s(min)} = V_{g} + |V_{tp}|$$

pMOS transistors passing '0' (Vin = 0; Vout = ?)

- Gate is connected to GND: V_g = 0
- Current flowing from source to drain
- $V_{in} = V_{d} = 0$; $V_{out} = V_{s} = ?$
- But we know $V_{s(min)} = V_g + |V_{tp}| \Rightarrow V_{out(min)} = |V_{tp}|$

pMOS transistors attempting to pass a '0' never pass lower than |V_{tp}|

nMOS Pass Transistor DC Characteristics

Series nMOS transistors passing '1' (V_{DD}) T1 T2 T3

• If all of the transistors have gates tied to V_{DD} V_{DD

nMOS Pass Transistor DC Characteristics

nMOS transistor driven by degraded output

- If T1 transistor has gate tied to V_{DD}
- $V_{g(T1)} = V_{DD}$; $V_{in} = V_{DD}$; $V_{out} = ?$

Output of Transistor T1:
$$V_{out(max), T1} = V_{g(T1)} - V_{tn(T1)} = V_{DD} - V_{tn}$$

- Output of transistor T1 is now driving the gate of transistor T2
- T2 transistor has gate tied to V_{DD} V_{tn}
- $V_{g(T2)} = V_{DD} V_{tn}$; $V_{in} = V_{DD}$; $V_{out} = ?$

Output of Transistor T2:
$$V_{out(max), T2} = V_{g(T2)} - V_{tn(T2)} = (V_{DD} - V_{tn}) - V_{tn} = V_{DD} - 2V_{tn}$$

Pass Transistor DC Characteristics: Summary

nMOS pass transistor

nMOS pass transistor

•
$$V_{in} = GND$$
 $\Rightarrow V_{out} = GND \text{ (strong 0)}$

• $V_{in} = V_{DD}$ $\Rightarrow V_{out(max)} = V_{g} - V_{tn} \text{ (degraded 1)}$

• $V_{in} = V_{DD}$ $\bigvee_{out} = V_{g} - V_{tn}$

pMOS pass transistor

- $V_{in} = GND$ $\Rightarrow V_{out(min)} = |V_{tp}|$ (degraded 0) $V_{in} = V_{DD}$ $\Rightarrow V_{out} = V_{DD}$ (strong 1)

$$V_{in} = 0$$
 $V_{out} = |V_{tp}|$

$$V_{in} = V_{DD}$$
 $V_{out} = V_{DD}$

Pass Transistor DC Characteristics: Summary

- nMOS/pMOS pass transistors sometimes produce degraded outputs
- The loss is sometimes called a threshold drop
- In old processes where $V_{\rm DD}$ was high and Vt was a small fraction of $V_{\rm DD}$, the threshold drop was tolerable
- In modern processes V_{DD} is significantly lower and Vt is almost $\frac{1}{3}$ of V_{DD} , the threshold drop can produce an invalid or marginal logic at the output

To solve this problem we use CMOS transmission gates