Baccalauréat 2007

Session normale

Honneur - Fraternité - Justice

Séries: C & TMGM Epreuve: Mathématiques Durée: 4 heures Coefficients: 9 & 6

Exercice 1 (4 points)

Le plan est muni d'un repère orthonormé direct. On considère le triangle direct ABC d'angles aigus et de centre de gravité G. On construit les trois segments [AA'], [BB'] et [CC'] tels que :

$$AA' = BC \text{ et } (\overrightarrow{BC}, \overrightarrow{AA'}) = \frac{\pi}{2} [2\pi],$$
 [1]

BB' = CA et
$$(\overrightarrow{CA}, \overrightarrow{BB'}) = \frac{\pi}{2} [2\pi],$$
 [2]

CC'= AB et
$$(\overrightarrow{AB}, \overrightarrow{CC'}) = \frac{\pi}{2} [2\pi]$$
 [3]

On note a, b, c, a', b' et c' les affixes respectives des points A, B, C, A', B' et C'. On considère la rotation vectorielle o

d'angle $\frac{-\pi}{2}$

A) Dans cette partie on se propose de démontrer, par deux méthodes, que les triangles ABC et A'B'C' sont de même centre de gravité.

1. Méthode 1: Utilisation des nombres complexes

a) Montrer que : $a' = a - ib + ic$.	(0.5 pt)
b) Ecrire b' et c' en fonction de a, b et c.	(0,5 pt)
c) En déduire que les triangles ARC et AIRICI sont de même centre de gravité	(0.25 nt)

2. Méthode 2 : Utilisation d'une rotation vectorielle

a) Vérifier que $\varphi(\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'}) = \overrightarrow{0}$.	(0,5 pt)
b) En déduire que $\overrightarrow{GA'} + \overrightarrow{GB'} + \overrightarrow{GC'} = \overrightarrow{0}$.	(0,25 pt)
c) En déduire que les triangles ABC et A'B'C' sont de même centre de gravité.	(0,25 pt)

B) L'objectif de cette partie est de construire le triangle ABC connaissant le triangle A'B'C'.

1. Méthode 1: Utilisation des nombres complexes

a) Démontrer que $\frac{c-b'}{c-a'} = i$, en déduire la nature du triangle A'B'C.	(0,5 pt)
--	----------

b) En déduire les deux résultats similaires au résultat précédent, (0,25 pt)

2. Méthode 2 : Utilisation d'une rotation vectorielle

a) Démontrer que
$$\varphi(\overline{CB'}) = \overline{CA'}$$
, en déduire la nature du triangle A'B'C. (0,5 pt)
b) Donner les résultats similaires au résultat précédent. (0,25 pt)

3. Construire, en le justifiant, le triangle ABC à partir d'un triangle A'B'C' donné d'angles aigus. (0,25 pt) Exercice 2 (5 points)

Exercise 2 (5 points)	
Dans le plan orienté, on considère le losange direct ABCD de centre I tel que $IB = 2IC = 2a$.	
On désigne Γ_1 le cercle de centre C et de rayon $CI = a$ et par Γ_2 le cercle de centre B et de rayon $BI = 2a$	
1.a) Faire une figure (On pourra prendre (BD) horizontale).	(0,5 pt)
b) Placer sur la figure précédente les points \mathbf{E} et \mathbf{F} tels que : $\overrightarrow{\mathbf{EB}} + 2\overrightarrow{\mathbf{EC}} = \overrightarrow{0}$ et $\overrightarrow{\mathbf{FB}} - 2\overrightarrow{\mathbf{FC}} = \overrightarrow{0}$.	(0,5 pt)
2. On considère l'ensemble Γ_3 des points M du plan tels que : $\frac{MB}{MC} = 2$.	
a) Vérifier que les points I, E et F appartiennent à Γ_3 .	(0,5 pt)
b) Déterminer puis construire l'ensemble Γ_3 .	(0,25 pt)
3. Montrer qu'il existe une unique rotation r qui transforme C en B et A en I. Déterminer l'angle	
et le centre Ω de cette rotation. Placer Ω sur la figure.	(0,75 pt)
4.a) Montrer qu'il existe une unique similitude s qui transforme C en B et A en D.	(0,25 pt)
b) Montrer que $s(I) = I$.	(0,25 pt)
c) Donner les éléments caractéristiques de s.	(0,5 pt)
d) Montrer que $s(\Gamma_1) = \Gamma_2$.	(0,25 pt)
5. On pose $f = h \circ r$, où h est l'homothétie de centre B et de rapport 2 , et r la rotation définie en 3).	
a) Montrer que $\mathbf{f} = \mathbf{s}$.	(0,25 pt)
b) Donner la forme réduite de s.	(0,25 pt)
6. Soit s' une similitude directe qui transforme Γ_1 en Γ_2 .	
a) Montrer que toutes les similitudes s' sont de même rapport k' que l'on déterminera.	(0,25 pt)
b) Déterminer le lieu géométrique des centres des similitudes s'.	(0,25 pt)
c) Dans le cas où s' est une homothétie, donner les positions possibles du centre et les valeurs du rapport	- 1
de cette homothétie.	(0,25 pt)

Problème (11 points)

Partie A

Soit f la fonction de variable réelle x définie par : $f(x) = \ln \left| \frac{x}{x-1} \right|$; $x \in \mathbb{R} - \{0;1\}$.

Soit C sa courbe représentative dans un repère orthonormé direct (O;i,j) d'unité 2cm.

1.a) Calculer $\lim_{x\to 0} f(x)$, $\lim_{x\to 1} f(x)$, $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$. Interpréter graphiquement ces limites.	(1 pt)
b) Déterminer $f'(x)$ où f' est la fonction dérivée de f .	(0,5 pt)
c) Dresser le tableau de variation de f.	(0,5 pt)
2.a) Pour tout x appartenant à $IR - \{0;1\}$, montrer que $f(x) + f(1-x) = 0$. Interpréter ce résultat.	(0,5 pt)
b) Tracer C dans le repère (O; i, j).	(0,5 pt)
3. Pour $k \in \mathbb{R}^*$ on définit, sur $\mathbb{R} - \{0;1\}$, la fonction f_k par : $f_k(x) = \ln \left \frac{kx}{x-1} \right $.	

 $Soit \, C_k \, \text{ sa courbe représentative dans un repère orthonormé } \, (O; \vec{i}, \vec{j}) \, d'unité \, \, 2cm \, .$

a) Montrer que le point $\Omega\left(\frac{1}{2};\ln \mathbf{k} \right)$ est un centre de symétrie de $\mathbf{C}_{\mathbf{k}}$.	(0,25 pt)
b) Montrer que C_k est l'image de C par une transformation simple que l'on déterminera.	(0.5 pt)
c) Que peut on dire des courbes C_{ν} et $C_{-\nu}$?	(0,25 pt)