QUICK NOTE

Bài 1. NGUYÊN HÀM

A. KIẾN THỰC SÁCH GIÁO KHOA CẦN CẦN NẮM

1. Đinh nghĩa nguyên hàm

Cho hàm số f(x) xác định trên khoảng K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) nếu F'(x) = f(x) với mọi $x \in K$.

Nhận xét: Nếu F(x) là một nguyên hàm của f(x) thì F(x) + C, $(C \in \mathbb{R})$ cũng là nguyên hàm của f(x).

Ký hiệu $\int f(x) dx = F(x) + C$.

2. Một số tính chất của nguyên hàm

$$\bigcirc \left(\int f(x) \, \mathrm{d}x \right)' = f(x).$$

3. Một số nguyên hàm cơ bản

N	N
Nguyên hàm của hàm số cơ bản	Nguyên hàm mở rộng
$\int a \cdot dx = ax + C, a \in \mathbb{R}$	
$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$	$\int (ax+b)^{\alpha} dx = \frac{1}{a} \cdot \frac{(ax+b)^{\alpha+1}}{\alpha+1} + C$ $\int \frac{dx}{ax+b} = \frac{1}{a} \cdot \ln ax+b + C$ $\int \frac{dx}{ax+b} = \frac{2}{\sqrt{ax+b}} + C, x > 0$
$\int \frac{\mathrm{d}x}{x} = \ln x + C, x \neq 0$	$\int \frac{\mathrm{d}x}{ax+b} = \frac{1}{a} \cdot \ln ax+b + C$
$\int \frac{\mathrm{d}x}{\sqrt{x}} = 2\sqrt{x} + C, x > 0$	$\int \frac{dx+b}{\sqrt{ax+b}} = \frac{2}{a}\sqrt{ax+b} + C, x > 0$ $\int \frac{dx}{dx} = 1 1$
$\int \frac{\mathrm{d}x}{x^2} = -\frac{1}{x} + C, x \neq 0$	$\int \frac{\mathrm{d}x}{(ax+b)^2} = -\frac{1}{a} \cdot \frac{1}{ax+b} + C$
$\int \frac{\mathrm{d}x}{x^{\alpha}} = -\frac{1}{(\alpha - 1)x^{\alpha - 1}} + C$	$\int \frac{\mathrm{d}x}{(ax+b)^{\alpha}} = -\frac{1}{a} \cdot \frac{1}{(\alpha-1)} \cdot (ax+b)^{\alpha-1} + C$ $\int e^{ax+b} \mathrm{d}x = \frac{1}{a} \cdot e^{ax+b} + C$
$\int e^x \mathrm{d}x = e^x + C$	$\int e^{ax+b} dx = \frac{1}{a} \cdot e^{ax+b} + C$
$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + C$	$\int a^{\alpha x + \beta} dx = \frac{1}{\alpha} \cdot \frac{a^{\alpha x + \beta}}{\ln a} + C$
$\int \cos x \mathrm{d}x = \sin x + C$	$\int \cos(ax+b) \mathrm{d}x = \frac{1}{a} \cdot \sin(ax+b) + C$
$\int \sin x \mathrm{d}x = -\cos x + C$	$\int \sin(ax+b) \mathrm{d}x = -\frac{1}{a} \cdot \cos(ax+b) + C$
$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$	$\int \frac{1}{\cos^2(ax+b)} \mathrm{d}x = \frac{1}{a} \cdot \tan(ax+b) + C$
$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + C$	$\int \frac{1}{\sin^2(ax+b)} dx = -\frac{1}{a} \cdot \cot(ax+b) + C$

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP

Dạng 1. Định nghĩa, tính chất và các nguyên hàm cơ bản

1. Các ví dụ

VÍ DỤ 1. Tìm nguyên hàm của hàm số $f(x) = (x-1)^3$.

VÍ DỤ 2. Tìm nguyên hàm của hàm số $f(x) = \frac{1}{1-x}$.

VÍ DỤ 3. Tìm nguyên hàm của hàm số $f(x) = \sqrt{x} - 1$ trên $(0; +\infty)$.

\sim 11	ICK	\mathbf{N}	11
พบ			113

VÍ DỤ 4. Tìm nguyên hàm của hàm số $f(x) = \frac{1}{2x+1} + \cos x$.

VÍ DỤ 5. Tìm nguyên hàm của hàm số $I = \int \frac{2x^2 - 7x + 5}{x - 3} dx$.

2. Câu hỏi trắc nghiệm

CÂU 1. Mệnh đề nào sau đây **sai**?

A. $\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$, với mọi hàm số f(x), g(x) liên tục trên

B. $\int f'(x) dx = f(x) + C$ với mọi hàm số f(x) có đạo hàm trên \mathbb{R} .

C. $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$, với mọi hàm số f(x), g(x) liên tục trên

D. $\int kf(x) dx = k \int f(x) dx$ với mọi hằng số k và với mọi hàm số f(x) liên tục trên \mathbb{R} .

CÂU 2. Cho hàm số $f(x) = 4x^3 + 2x + 1$. Tìm $\int f(x) dx$.

A. $\int f(x) dx = 12x^4 + 2x^2 + x + C.$ **B.** $\int f(x) dx = 12x^2 + 2.$

C. $\int f(x) dx = x^4 + x^2 + x + C$. **D.** $\int f(x) dx = 12x^2 + 2 + C$.

CÂU 3. Giả sử F(x) là một nguyên hàm của hàm số $f(x)=\frac{1}{3x+1}$ trên khoảng $\left(-\infty;-\frac{1}{3}\right)$.

Mệnh đề nào sau đây đúng?

A. $F(x) = \frac{1}{3}\ln(3x+1) + C.$ **C.** $F(x) = \ln|3x+1| + C.$

B. $F(x) = \frac{1}{3}\ln(-3x - 1) + C.$ **D.** $F(x) = \ln(-3x - 1) + C.$

CÂU 4. Cho hàm số F(x) là một nguyên hàm của hàm số f(x) xác định trên K. Mệnh đề nào dưới đây sai?

A. $\left(x\int f(x)\,\mathrm{d}x\right)'=f'(x).$

B. $\left(\int f(x) \, \mathrm{d}x\right)' = f(x).$

 $\mathbf{C.} \left(\int f(x) \, \mathrm{d}x \right)' = F'(x).$

CÂU 5. Tìm họ nguyên hàm của hàm số $f(x) = \tan^2 2x + \frac{1}{2}$.

A. $\int \left(\tan^2 2x + \frac{1}{2}\right) dx = 2\tan 2x - 2x + C.$

B. $\int \left(\tan^2 2x + \frac{1}{2}\right) dx = \tan 2x - \frac{x}{2} + C.$

C. $\int \left(\tan^2 2x + \frac{1}{2}\right) dx = \tan 2x - x + C.$

D. $\int \left(\tan^2 2x + \frac{1}{2}\right) dx = \frac{\tan 2x}{2} - \frac{x}{2} + C.$

CÂU 6. Tìm họ nguyên hàm của hàm số $f(x) = \sqrt{2x+3}$. **A.** $\int f(x) \, \mathrm{d}x = \frac{2}{3} x \sqrt{2x+3} + C$. **B.** $\int_f f(x) \, \mathrm{d}x = \frac{1}{3} (2x+3) \sqrt{2x+3} + C$.

C. $\int f(x) dx = \frac{2}{3} (2x+3)\sqrt{2x+3} + C$. **D.** $\int f(x) dx = \sqrt{2x+3} + C$.

CÂU 7. Tìm nguyên hàm của hàm số $f(x) = e^x (1 + e^{-x})$.

A. $\int f(x) dx = e^x + 1 + C$.

 $\mathbf{B.} \int f(x) \, \mathrm{d}x = \mathrm{e}^x + x + C.$

 $\mathbf{C.} \quad \int f(x) \, \mathrm{d}x = -\mathrm{e}^x + x + C.$

CÂU 8. Tìm họ nguyên hàm của hàm số $f(x) = 3^x + \frac{1}{x^2}$.

A. $\int f(x) dx = 3^x + \frac{1}{x} + C$.

B. $\int f(x) dx = \frac{3^x}{\ln 3} + \frac{1}{x} + C.$

C. $\int f(x) dx = 3^x - \frac{1}{x} + C$.

D. $\int f(x) dx = \frac{3^x}{\ln 3} - \frac{1}{x} + C.$

QUICK NOTE

CÂU 9. Tìm nguyên hàm F(x) của hàm số $f(x) = 4x + \sin 3x$, biết $F(0) = \frac{2}{3}$

A.
$$F(x) = 2x^2 + \cos 3x - \frac{1}{3}$$
.

B.
$$F(x) = 2x^2 - \cos 3x + \frac{5}{3}$$
.

C.
$$F(x) = 2x^2 + \frac{\cos 3x}{3} + \frac{3}{3}$$
.

D.
$$F(x) = 2x^2 - \frac{\cos 3x}{3} + 1$$
.

CÂU 10. Tính nguyên hàm $I = \int \frac{2x^2 - 7x + 5}{x - 3} dx$.

A.
$$I = x^2 - x + 2 \ln |x - 3| + C$$
.
C. $I = 2x^2 - x + 2 \ln |x - 3| + C$.

B.
$$I = x^2 - x - 2 \ln |x - 3| + C$$
.
D. $I = 2x^2 - x - 2 \ln |x - 3| + C$.

CÂU 11. Khẳng định nào đây sai?

A.
$$\int \frac{2}{2x+3} dx = \ln|2x+3| + C.$$

$$\mathbf{B.} \int \tan x \, \mathrm{d}x = -\ln|\cos x| + C.$$

C.
$$\int e^{2x} dx = e^{2x} + C$$
.

$$\int \frac{1}{2\sqrt{x}} \, \mathrm{d}x = \sqrt{x} + C.$$

CÂU 12. Tìm một nguyên hàm F(x) của hàm số $f(x) = ax + \frac{b}{r^2} (x \neq 0)$ biết rằng F(-1) = 1; F(1) = 4; f(1) = 0.

A.
$$F(x) = \frac{3x^2}{4} + \frac{3}{2x} + \frac{7}{4}$$
.
C. $F(x) = \frac{3x^2}{2} + \frac{3}{4x} - \frac{7}{4}$.

B.
$$F(x) = \frac{3x^2}{4} - \frac{3}{2x} - \frac{7}{4}$$
.
D. $F(x) = \frac{3x^2}{2} - \frac{3}{2x} - \frac{1}{2}$.

C.
$$F(x) = \frac{3x^2}{2} + \frac{3}{4x} - \frac{7}{4}$$
.

D.
$$F(x) = \frac{3x^2}{2} - \frac{3}{2x} - \frac{1}{2}$$

CÂU 13. Một đám vi khuẩn ngày thứ x có số lượng là N(x). Biết rằng $N'(x) = \frac{2000}{1+x}$ và lúc đầu số lượng vi khuẩn là 5000 con. Vậy ngày thứ 12 số lượng vi khuẩn (sau khi làm tròn) là bao nhiêu con?

A. 10130.

B. 5130.

C. 5154.

D. 10132.

CÁU 14. Một đoàn tàu đang chuyển động với vận tốc $v_0 = 72 \text{ km/h}$ thì hãm phanh chuyển động chậm dần đều, sau 10 giây đạt vận tốc $v_1=54~\mathrm{km/h}$. Tàu đạt vận tốc $v=36~\mathrm{km/h}$ tại thời điểm nào tính từ lúc bắt đầu hãm phanh.

A. 30 giây.

B. 20 giây.

C. 40 giây.

D. 50 giây.

CÂU 15. Một chiếc xe đua đang chạy 180 km/h. Tay đua nhấn ga để về đích kể từ đó xe chạy với gia tốc $a(t) = 2t + 1 \text{ (m/s}^2)$. Hỏi rằng 5 giây sau khi nhấn ga thì xe chạy với vận tốc bao nhiêu km/h.

A. 200.

CÂU 16. Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \left\{ \frac{1}{3} \right\}$ thỏa mãn $f'(x) = \frac{3}{3x-1}$, f(0) = 1 và

 $f\left(\frac{2}{3}\right) = 2$. Giá trị của biểu thức f(-1) + f(3) bằng

A. $5 \ln 2 + 3$.

B. $5 \ln 2 - 2$.

C. $5 \ln 2 + 4$.

D. $5 \ln 2 + 2$.

CÂU 17. Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{\pm 1\}$ thỏa mãn $f'(x) = \frac{1}{x^2 - 1}$. Biết f(-3) + (-3)

f(3) = 0 và $f\left(-\frac{1}{2}\right) + f\left(\frac{1}{2}\right) = 2$. Giá trị T = f(-2) + f(0) + f(4) bằng

A. $T=2+\frac{1}{2}\ln\frac{5}{9}$. **B.** $T=1+\frac{1}{2}\ln\frac{9}{5}$. **C.** $T=3+\frac{1}{2}\ln\frac{9}{5}$. **D.** $T=\frac{1}{2}\ln\frac{9}{5}$.

CÂU 18. Hàm số f(x) xác định, liên tục trên \mathbb{R} và có đạo hàm là f'(x) = |x-1|. Biết rằng f(0) = 3. Tính f(2) + f(4)?

A. 10.

CÂU 19. Biết $\int (\sin 2x - \cos 2x)^2 dx = x + \frac{a}{h} \cos 4x + C$, với a, b là các số nguyên dương,

 $\frac{a}{b}$ là phân số tối giản và $C \in \mathbb{R}.$ Giá trị của a+b bằng

A. 5.

D. 3.

CÂU 20. Biết luôn có hai số a và b để $F(x)=\frac{ax+b}{x+4}\,(4a-b\neq 0)$ là nguyên hàm của hàm số f(x) và thỏa mãn $2f^2(x) = (F(x) - 1) f'(x)$. Khẳng định nào dưới đây đúng và đầy đủ nhất?

A. a = 1, b = 4.

B. a = 1, b = -1.

C. $a = 1, b \in \mathbb{R} \setminus \{4\}.$

D. $a \in \mathbb{R}, b \in \mathbb{R}$.

\frown	ш	ICK	/ NI	\sim	TE
ы	u		V IV	U	ıE

🖶 Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số

Nếu
$$\int f(x) dx = F(x) + C$$
 thì $\int f[u(x)] \cdot u'(x) dx = F[u(x)] + C$.

Giả sử ta cần tìm họ nguyên hàm $I = \int f(x) dx$, trong đó ta có thể phân tích $f(x)=g\left(u(x)\right)u'(x)$ thì ta thực hiện phép đổi biến số t=u(x), suy ra $\mathrm{d}t=u'(x)\,\mathrm{d}x$. Khi đó ta được nguyên hàm $\int g(t) dt = G(t) + C = G[u(x)] + C$.

Sau khi tìm được họ nguyên hàm theo t thì ta phải thay t = u(x).

1. Các ví du

VÍ DỤ 6. Tìm nguyên hàm của hàm số $f(x) = x^2 \sqrt{4 + x^3}$.

VÍ DỤ 7. Cho $\int 2x \cdot (3x-2)^6 dx = A(3x-2)^8 + B(3x-2)^7 + C \text{ với } A, B \in \mathbb{Q} \text{ và } C \in \mathbb{R}.$ Giá trị của biểu thức 12A + 7B bằng bao nhiêu?

VÍ DỤ 8. Tìm nguyên hàm F(x) của hàm số $f(x) = \sin^2 2x \cdot \cos^3 2x$ thỏa $F\left(\frac{\pi}{4}\right) = 0$.

VÍ DỤ 9. Tìm nguyên hàm của hàm số $f(x) = \sin 2x \cdot e^{\sin^2 x}$.

VÍ DỤ 10. Tìm nguyên hàm của hàm số $\int \frac{1+\ln x}{x} dx$ (x>0).

2. Câu hỏi trắc nghiệm

CÂU 21. Tìm họ nguyên hàm của hàm số $f(x) = x^2 e^{x^3+1}$

A.
$$\int f(x) dx = e^{x^3 + 1} + C.$$

B.
$$\int f(x) dx = 3e^{x^3+1} + C$$
.

C.
$$\int f(x) \, \mathrm{d}x = \frac{1}{3} e^{x^3 + 1} + C.$$

D.
$$\int f(x) dx = \frac{x^3}{3} e^{x^3 + 1} + C.$$

CÂU 22. Tìm họ nguyên hàm của hàm số $f(x) = \frac{1}{2\sqrt{2x+1}}$.

A.
$$\int f(x) dx = \frac{1}{2} \sqrt{2x+1} + C.$$

B.
$$\int f(x) dx = \sqrt{2x+1} + C$$
.

C.
$$\int f(x) dx = 2\sqrt{2x+1} + C.$$

D.
$$\int f(x) \, dx = \frac{1}{(2x+1)\sqrt{2x+1}} + C.$$

CÂU 23. Biết F(x) là một nguyên hàm của hàm số $f(x) = \sin^3 x \cdot \cos x$ và $F(0) = \pi$. Tính $F\left(\frac{\pi}{2}\right)$

A.
$$F\left(\frac{\pi}{2}\right) = -\pi$$
.

B.
$$F\left(\frac{\pi}{2}\right) = \pi$$
.

c.
$$F\left(\frac{\pi}{2}\right) = -\frac{1}{4} + \pi.$$

D.
$$F\left(\frac{\pi}{2}\right) = \frac{1}{4} + \pi$$
.

CÂU 24. Cho F(x) là một nguyên hàm của hàm số $f(x) = \frac{1}{2e^x + 3}$ thỏa mãn F(0) = 10.

A.
$$F(x) = \frac{1}{3} [x - \ln(2e^x + 3)] + 10 + \frac{\ln 5}{3}.$$

B. $F(x) = \frac{1}{3} [x + 10 - \ln(2e^x + 3)].$

B.
$$F(x) = \frac{3}{3} [x + 10 - \ln(2e^x + 3)].$$

C.
$$F(x) = \frac{3}{3} \left[x - \ln \left(e^x + \frac{3}{2} \right) \right] + 10 + \ln 5 - \ln 2.$$

D.
$$F(x) = \frac{1}{3} \left[x - \ln \left(e^x + \frac{3}{2} \right) \right] + 10 - \frac{\ln 5 - \ln 2}{3}$$

CÂU 25. Khi tính nguyên hàm $\int \frac{x-3}{\sqrt{x+1}} dx$, bằng cách đặt $u = \sqrt{x+1}$ ta được nguyên

B.
$$\int (u^2 - 4) du$$
.

c.
$$\int 2(u^2-4) du$$
.

D.
$$\int (u^2 - 3) du$$
.

CÂU 26. Biết F(x) là một nguyên hàm của hàm số $f(x) = \sin^3 x \cdot \cos x$ và $F(0) = \pi$. Tính $F\left(\frac{\pi}{4}\right)$.

A.
$$F\left(\frac{\pi}{4}\right) = -\pi$$
.

B.
$$F\left(\frac{\pi}{4}\right) = \pi$$
.

C.
$$F\left(\frac{\pi}{4}\right) = \frac{1}{16} + \pi.$$

D.
$$F\left(\frac{\pi}{4}\right) = -\frac{1}{16} + \pi.$$

CÂU 27. Tìm họ nguyên hàm của hàm số $f(x) = x^2 e^{x^3 + 1}$

A.
$$\int f(x) dx = e^{x^3 + 1} + C.$$

B.
$$\int f(x) dx = 3e^{x^3+1} + C.$$

C.
$$\int f(x) \, \mathrm{d}x = \frac{x^3}{3} e^{x^3 + 1} + C.$$

D.
$$\int f(x) dx = \frac{1}{3} e^{x^3 + 1} + C.$$

CÂU 28. Tìm nguyên hàm F(x) của hàm số $f(x) = \cos x \cdot \sqrt{\sin x + 1}$?

A.
$$F(x) = \frac{1}{3}\sin x \cdot \sqrt{\sin x + 1} + C.$$

B.
$$F(x) = \frac{1}{3}(\sin x + 1) \cdot \sqrt{\sin x + 1} + C.$$

C.
$$F(x) = \frac{2}{3}(\sin x + 1) \cdot \sqrt{\sin x + 1} + C$$

A.
$$F(x) = \frac{1}{3}\sin x \cdot \sqrt{\sin x + 1} + C.$$
 B. $F(x) = \frac{1}{3}(\sin x + 1) \cdot \sqrt{\sin x + 1} + C.$ **C.** $F(x) = \frac{2}{3}(\sin x + 1) \cdot \sqrt{\sin x + 1} + C.$ **D.** $F(x) = \frac{1 - 2\sin x - 3\sin^2 x}{2\sqrt{\sin x + 1}} + C.$

CÂU 29. Hàm số nào dưới đây là một nguyên hàm của hàm số $y = 2^{\sin x} \cdot 2^{\cos x} (\cos x - \sin x)$?

A.
$$y = 2^{\sin x + \cos x} + C$$
.

B.
$$y = \frac{2^{\sin x} \cdot 2^{\cos x}}{\ln 2}$$
.

$$\mathbf{C.} \ \ y = \ln 2 \cdot 2^{\sin x + \cos x}.$$

B.
$$y = \frac{2^{\sin x} \cdot 2^{\cos x}}{\ln 2}$$
.
D. $y = -\frac{2^{\sin x + \cos x}}{\ln 2} + C$.

CÂU 30. Tìm họ nguyên hàm của hàm số $f(x) = x^2 e^{x^3 + 1}$

A.
$$\int f(x) dx = e^{x^3+1} + C.$$

B.
$$\int f(x) dx = \frac{1}{3} e^{x^3 + 1} + C.$$

C.
$$\int f(x) \, \mathrm{d}x = 3\mathrm{e}^{x^3 + 1} + C.$$

D.
$$\int f(x) dx = \frac{x^3}{3} e^{x^3 + 1} + C.$$

CÂU 31. Nguyên hàm F(x) của hàm số $f(x) = \sin^2 2x \cdot \cos^3 2x$ thỏa $F\left(\frac{\pi}{4}\right) = 0$ là

A.
$$F(x) = \frac{1}{6}\sin^3 2x - \frac{1}{10}\sin^5 2x + \frac{1}{15}$$
.
B. $F(x) = \frac{1}{6}\sin^3 2x + \frac{1}{10}\sin^5 2x - \frac{1}{15}$.
C. $F(x) = \frac{1}{6}\sin^3 2x - \frac{1}{10}\sin^5 2x - \frac{1}{15}$.
D. $F(x) = \frac{1}{6}\sin^3 2x + \frac{1}{10}\sin^5 2x - \frac{4}{15}$.

B.
$$F(x) = \frac{1}{6}\sin^3 2x + \frac{1}{10}\sin^5 2x - \frac{1}{15}$$
.

C.
$$F(x) = \frac{1}{6}\sin^3 2x - \frac{1}{10}\sin^5 2x - \frac{1}{15}$$
.

D.
$$F(x) = \frac{9}{6}\sin^3 2x + \frac{10}{10}\sin^5 2x - \frac{4}{15}$$
.

CÂU 32. Nguyên hàm của $f(x) = \frac{1 + \ln x}{x \cdot \ln x}$ là

$$\mathbf{A.} \int \frac{1 + \ln x}{x \cdot \ln x} \, \mathrm{d}x = \ln|\ln x| + C.$$

B.
$$\int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln \left| x^2 \cdot \ln x \right| + C$$

C.
$$\int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln |x + \ln x| + C$$

A.
$$\int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln |\ln x| + C.$$

B. $\int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln |x^2| \cdot \ln x| + C.$
C. $\int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln |x + \ln x| + C.$
D. $\int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln |x \cdot \ln x| + C.$

CÂU 33. Hàm số $f(x) = \frac{7\cos x - 4\sin x}{\cos x + \sin x}$ có một nguyên hàm F(x) thỏa mãn $F\left(\frac{\pi}{4}\right) = \frac{3\pi}{8}$.

Giá trị $F\left(\frac{\pi}{2}\right)$ bằng **A.** $\frac{3\pi - 11 \ln 2}{4}$. **B.** $\frac{3\pi}{4}$.

A.
$$\frac{3\pi - 11 \ln 2}{4}$$

B.
$$\frac{3\pi}{4}$$
.

c.
$$\frac{3\pi}{8}$$
.

D.
$$\frac{3\pi - \ln 2}{4}$$
.

CÂU 34. Giả sử hàm số y = f(x) liên tục, nhận giá trị dương trên khoảng $(0; +\infty)$ thỏa mãn $f(1) = 1, f(x) = f'(x)\sqrt{3x+1}, \forall x > 0$. Mệnh đều nào đúng trong các mệnh đề dưới đây?

A.
$$\max_{x \in [2;4]} f(x) > 3.$$

B.
$$\max_{x \in [2;4]} f(x) < 2.$$

C.
$$2 < \max_{x \in [2:4]} f(x) < 3$$
.

D.
$$\max_{x \in [2;4]} f(x) = \frac{3}{2}.$$

CÂU 35. Cho hàm số y = f(x) thỏa mãn $y' = x^2 \cdot y$ và f(-1) = 1 thì giá trị f(2) là

CÂU 36. Biết rằng trên khoảng $\left(\frac{3}{2};+\infty\right)$, hàm số $f(x)=\frac{20x^2-30x+7}{\sqrt{2x-3}}$ có một nguyên

hàm $F(x) = (ax^2 + bx + c)\sqrt{2x - 3} \ (a, b, c \text{ là các số nguyên})$. Tổng S = a + b + c bằng **A.** 4. **B.** 3. **C.** 5. **D.** 6.

CÂU 37. Cho $f(x) = \frac{x}{\cos^2 x}$ trên $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ và F(x) là một nguyên hàm của xf'(x) thỏa mãn F(0) = 0. Biết $a \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ thỏa mãn $\tan a = 3$. Tính $F(a) - 10a^2 + 3a$.

QUICK NO

TE		
TΕ		
-		

- **A.** $-\frac{1}{2}\ln 10$. **B.** $-\frac{1}{4}\ln 10$. **C.** $\frac{1}{2}\ln 10$.
- **D.** ln 10.

CÂU 38. Giả sử $\int \frac{(2x+3) dx}{x(x+1)(x+2)(x+3)+1} = -\frac{1}{g(x)} + C$ (C là hằng số). Tính tổng các nghiệm của phương trình g(x) =

- **A.** -1.
- **C.** 3.

CÂU 39. Cho hàm số f(x) xác định trên khoảng $(0; +\infty) \setminus \{e\}$ thỏa mãn $f'(x) = \frac{1}{x(\ln x - 1)}$, $f\left(\frac{1}{e^2}\right) = \ln 6$ và $f(e^2) = 3$. Giá trị của biểu thức $f\left(\frac{1}{e}\right) + f(e^3)$ bằng

- **C.** $3(\ln 2 + 1)$.

CÂU 40. Cho hàm số $f(x) \neq 0$ thỏa mãn điều kiện $f'(x) = (2x+3)f^2(x)$ và $f(0) = -\frac{1}{2}$. Biết rằng tổng $f(1) + f(2) + f(3) + \dots + f(2017) + f(2018) = \frac{a}{b}$ với $(a \in \mathbb{Z}, b \in \mathbb{N}^*)$ và $\frac{a}{b}$ là phân số tối giản. Mệnh đề nào sau đây đúng?

A.
$$\frac{a}{b} < -1$$
. **B.** $\frac{a}{b} > 1$.

B.
$$\frac{a}{l} > 1$$
.

C.
$$a+b=1010$$

D.
$$b - a = 3029$$

Dạng 3. Tìm nguyên hàm bằng phương pháp từng phần

Cho hai hàm số u và v liên tục trên đoạn [a;b] và có đạo hàm liên tục trên đoạn [a;b]. Khi đó: $\int u \, dv = uv - \int v \, du$. (*).

Để tính nguyên hàm $\int f(x) dx$ bằng từng phần ta làm như sau

- \odot Bước 1. Chọn u, v sao cho f(x) dx = u dv (chú ý dv = v'(x) dx). Sau đó tính $v = \int dv$ và $du = u' \cdot dx$.
- \odot Bước 2. Thay vào công thức (*) và tính $\int v \, du$.

Cần phải lựa chọn u và dv hợp lí sao cho ta dễ dàng tìm được v và tích phân $\int v \, \mathrm{d}u \, d\tilde{e} \, t \text{ính hơn} \, \int u \, \mathrm{d}v.$

Ta thường gặp các dạng sau.

Dạng 1. $I = \int P(x) \begin{bmatrix} \sin x \\ \cos x \end{bmatrix} dx$, trong đó P(x) là đa thức. Với dạng này, ta đặt $\begin{cases} u = P(x) \\ dv = \begin{bmatrix} \sin x \\ \cos x \end{bmatrix} dx. \end{cases}$

Dạng 2. $I = \int P(x)e^{ax+b} dx$, trong đó P(x) là đa thức. Với dạng này, ta đặt $\begin{cases} u = P(x) \\ \mathrm{d}v = \mathrm{e}^{ax+b} \, \mathrm{d}x. \end{cases}$

Dạng 3. $I = \int P(x) \ln(mx + n) dx$, trong đó P(x) là đa thức. Với dạng này, ta đặt $\begin{cases} u = \ln(mx + n) \\ dv = P(x) dx. \end{cases}$

Dạng 4. $I = \int \begin{vmatrix} \sin x \\ \cos x \end{vmatrix} e^x dx$. Với dạng này, ta đặt $\begin{cases} u = \begin{bmatrix} \sin x \\ \cos x \end{bmatrix} \end{cases}$

1. Các ví du

VÍ DU 11. Tìm nguyên hàm của hàm số $f(x) = x \ln(x+2)$.

VÌ DỤ 12. Tìm nguyên hàm của hàm số $f(x) = x \cdot e^{2x}$.

VÍ DỤ 13. Biết $\int x \cos 2x \, dx = ax \sin 2x + b \cos 2x + C$ với a, b là các số hữu tỉ. Tính tích

VÍ DỤ 14. Cho $F(x) = \frac{a}{x}(\ln x + b)$ là một nguyên hàm của hàm số $f(x) = \frac{1 + \ln x}{x^2}$, trong đó $a, b \in \mathbb{Z}$. Tính S = a + b.

VÍ DU 15. Cho $F(x) = (ax^2 + bx - c) e^{2x}$ là một nguyên hàm của hàm số $f(x) = (2018x^2 - 3x + 1) e^{2x}$ trên khoảng $(-\infty; +\infty)$. Tính T = a + 2b + 4c.

2. Câu hỏi trắc nghiệm

CÂU 41. Phát biểu nào sau đây là đúng?

A.
$$\int e^x \sin x \, dx = e^x \cos x - \int e^x \cos x \, dx.$$

$$\mathbf{B.} \int e^x \sin x \, \mathrm{d}x = -e^x \cos x + \int e^x \cos x \, \mathrm{d}x.$$

C.
$$\int e^x \sin x \, dx = e^x \cos x + \int e^x \cos x \, dx.$$

$$\int e^x \sin x \, dx = -e^x \cos x - \int e^x \cos x \, dx.$$

CÂU 42. Tìm nguyên hàm của hàm số $F(x) = \int x \cos x \, dx$.

$$F(x) = x \sin x - \cos x + C.$$

$$\mathbf{B.} \quad F(x) = -x\sin x - \cos x + C.$$

$$\mathbf{C.} \ F(x) = x \sin x + \cos x + C.$$

$$\mathbf{D.} \ F(x) = -x\sin x + \cos x + C.$$

CÂU 43. Cho biết $\int xe^{2x} dx = \frac{1}{4}e^{2x}(ax+b) + C$, trong đó $a,b \in \mathbb{Z}$ và C là hằng số bất

kì. Mệnh đề nào dưới đây là đúng?

A.
$$a + 2b = 0$$
.

$$B. b > a.$$

D.
$$2a + b = 0$$
.

CÂU 44. Nguyên hàm của hàm số $f(x) = x \sin x$ là

$$A. F(x) = -x \cos x - \sin x + C.$$

B.
$$F(x) = x \cos x - \sin x + C$$
.

C.
$$F(x) = -x \cos x + \sin x + C$$
.

$$\mathbf{D.} \ F(x) = x \cos x + \sin x + C.$$

CÂU 45. Kết quả của $I = \int x e^x dx$ là

A.
$$I = xe^x - e^x + C$$
.
C. $I = \frac{x^2}{2}e^x + C$.

B.
$$I = e^x + xe^x + C$$

C.
$$I = \frac{x^2}{2}e^x + C$$
.

B.
$$I = e^x + xe^x + C$$
.
D. $I = \frac{x^2}{2}e^x + e^x + C$.

CÂU 46. Tính $I = \int (1 - x) \cos x \, dx$?

A.
$$I = (1 - x)\cos x - \sin x + C$$
.

B.
$$I = (1 - x)\sin x - \cos x + C$$
.

C.
$$I = (1 - x)\cos x + \sin x + C$$
.

D.
$$I = (1 - x)\sin x + \cos x + C$$
.

CÂU 47. Giả sử F(x) là một nguyên hàm của $f(x) = \frac{\ln(x+3)}{x^2}$ sao cho F(-2) + F(1) = 0.

Giá trị của F(-1) + F(2) bằng

A.
$$\frac{10}{3} \ln 2 - \frac{5}{6} \ln 5$$
. **B.** 0.

C.
$$\frac{7}{2} \ln 2$$
.

D.
$$\frac{2}{3} \ln 2 + \frac{3}{6} \ln 5$$
.

CÂU 48. Cho biết $F(x) = \frac{1}{3}x^3 + 2x - \frac{1}{x}$ là một nguyên hàm của $f(x) = \frac{\left(x^2 + a\right)^2}{x^2}$. Tìm nguyên hàm của $g(x) = x \cos ax$

$$A. x \sin x - \cos x + C.$$

B.
$$\frac{1}{2}x\sin 2x - \frac{1}{4}\cos 2x + C$$

$$\mathbf{C.} \ x \sin x + \cos x + C.$$

B.
$$\frac{1}{2}x\sin 2x - \frac{1}{4}\cos 2x + C.$$

D. $\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + C.$

CÂU 49. Biết $F(x) = (ax^2 + bx + c) e^x$ là một nguyên hàm của hàm số $f(x) = (x^2 + 5x + 5) e^x$ Giá trị của 2a + 3b + c là

CÂU 50. Biết $\int x \cos 2x \, dx = ax \sin 2x + b \cos 2x + C$ với a, b là các số hữu tỉ. Tính tích

QUICK NOTE

QUICK NOTE

$ A. ab = \frac{1}{2} $	1 5
--------------------------	--------

B.
$$ab = \frac{1}{4}$$
.

B.
$$ab = \frac{1}{4}$$
. **C.** $ab = -\frac{1}{8}$. **D.** $ab = -\frac{1}{4}$.

D.
$$ab = -\frac{1}{4}$$
.

CÂU 51. Cho $F(x) = \frac{a}{x}(\ln x + b)$ là một nguyên hàm của hàm số $f(x) = \frac{1 + \ln x}{x^2}$, trong đó $a, b \in \mathbb{Z}$. Tính S = a + b.

A.
$$S = -2$$

B.
$$S = 1$$
.

C.
$$S = 2$$

D.
$$S = 0$$

CÂU 52. Cho biết $\int xe^{2x} dx = \frac{1}{4}e^{2x}(ax+b) + C$, trong đó $a,b \in \mathbb{Z}$ và C là hằng số bất

kì. Mệnh đề nào dưới đây là đúng

A.
$$a + 2b = 0$$
.

D.
$$2a + b = 0$$
.

CÂU 53. Biết $F(x) = (ax^2 + bx + c) e^x$ là một nguyên hàm của hàm số $f(x) = (x^2 + 5x + 5) e^x$. Giá trị của 2a + 3b + c là

CÂU 54. Cho F(x) là một nguyên hàm của hàm số $f(x) = e^{\sqrt[3]{x}}$ và F(0) = 2. Hãy tính

A.
$$6 - \frac{15}{e}$$
. **B.** $4 - \frac{10}{e}$.

B.
$$4 - \frac{10}{9}$$

c.
$$\frac{15}{9} - 4$$
.

D.
$$\frac{10}{6}$$
.

CÂU 55. Cho $f(x) = \frac{x}{\cos^2 x}$ trên $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ và F(x) là một nguyên hàm của xf'(x) thỏa mãn F(0) = 0. Biết $a \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ thỏa mãn $\tan a = 3$. Tính $F(a) - 10a^2 + 3a$.

A.
$$-\frac{1}{2} \ln 10$$
.

B.
$$-\frac{1}{4} \ln 10$$
.

c.
$$\frac{1}{2} \ln 10$$
.

CÂU 56. Hàm số nào dưới đây là nguyên hàm của hàm số $f(x) = \frac{1}{\sqrt{1+r^2}}$ trên khoảng

A.
$$F(x) = \ln\left(x + \sqrt{1 + x^2}\right) + C.$$

B.
$$F(x) = \ln\left(1 + \sqrt{1 + x^2}\right) + C.$$

D. $F(x) = \frac{2x}{\sqrt{1 + x^2}} + C.$

C.
$$F(x) = \sqrt{1+x^2} + C$$
.

D.
$$F(x) = \frac{2x}{\sqrt{1+x^2}} + C$$

CÂU 57. Biết $F(x) = a \ln x + \left(b + \frac{c}{x}\right) \ln(2x + 3)$ là nguyên hàm của hàm số f(x) = $\frac{\ln(2x+3)}{x^2}. \text{ Tính } S = a+b+c.$

A.
$$S = -1$$
.

A.
$$S = -1$$
. **B.** $S = \frac{1}{3}$.

C.
$$S = \frac{7}{3}$$
.

C.
$$S = \frac{7}{3}$$
. **D.** $S = -\frac{4}{3}$.

CÂU 58. Cho $F(x)=(x-1)\mathrm{e}^x$ là một nguyên hàm của hàm số $f(x)\mathrm{e}^{2x}$. Tìm nguyên hàm của hàm số $f'(x)e^{2x}$.

A.
$$\int f'(x)e^{2x} dx = (4-2x)e^x + C$$

B.
$$\int f'(x)e^{2x} dx = \frac{2-x}{2}e^x + C$$

C.
$$\int f'(x)e^{2x} dx = (2-x)e^x + C.$$

A.
$$\int f'(x)e^{2x} dx = (4-2x)e^x + C.$$
 B. $\int f'(x)e^{2x} dx = \frac{2-x}{2}e^x + C.$ **C.** $\int f'(x)e^{2x} dx = (2-x)e^x + C.$ **D.** $\int f'(x)e^{2x} dx = (x-2)e^x + C.$

CÂU 59. Cho $F(x) = -\frac{1}{3x^3}$ là một nguyên hàm của hàm số $\frac{f(x)}{x}$. Tìm nguyên hàm của

A.
$$\int f'(x) \ln x \, dx = \frac{\ln x}{x^3} + \frac{1}{5x^5} + C.$$
 B. $\int f'(x) \ln x \, dx = \frac{\ln x}{x^3} - \frac{1}{5x^5} + C.$

B.
$$\int f'(x) \ln x \, dx = \frac{\ln x}{x^3} - \frac{1}{5x^5} + C.$$

C.
$$\int f'(x) \ln x \, dx = \frac{\ln x}{x^3} + \frac{1}{3x^3} + C$$

C.
$$\int f'(x) \ln x \, dx = \frac{\ln x}{x^3} + \frac{1}{3x^3} + C.$$
 D. $\int f'(x) \ln x \, dx = -\frac{\ln x}{x^3} + \frac{1}{3x^3} + C.$

CÂU 60. Cho $I_n = \int \tan^n x \, \mathrm{d}x$ với $n \in \mathbb{N}$. Khi đó $I_0 + I_1 + 2 \left(I_2 + I_3 + \dots + I_8 \right) + I_9 + I_{10}$

A.
$$\sum_{r=1}^{9} \frac{(\tan x)^r}{r} + C.$$

B.
$$\sum_{r=1}^{9} \frac{(\tan x)^{r+1}}{r+1} + C.$$

c.
$$\sum_{r=1}^{r-1} \frac{(\tan x)^r}{r} + C.$$

D.
$$\sum_{r=1}^{10} \frac{(\tan x)^{r+1}}{r+1} + C.$$