

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

COMBINED SCIENCE

5129/21

Paper 2

May/June 2017

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Define mass and v	weight.
-------------------------	---------

mass .	 	 	 	
weight	 	 	 	
		 	 	[2]

(b) A hammer has a mass of 0.75 kg.

Its weight on the Moon is 1.25 N.

(i) An astronaut on the Moon uses the hammer to break some pieces of rock.

Complete Fig. 1.1 to show how the astronaut now uses the hammer and the beam balance to measure a mass of 0.75 kg of rock. [1]

Fig. 1.1

(ii) The astronaut now drops the hammer.

Calculate the acceleration of the hammer as it falls to the surface of the Moon.

State the unit.

2	Carbon dioxide reacts with carbon to produce carbon monoxide.
	The equation for the reaction is

$$CO_2 + C \longrightarrow 2CO$$

(a) The relative molecular mass of carbon dioxide is 44.

[*A*_r: O, 16; C, 12]

(i)	Calculate the relative molecular mass of carbon monoxide.			
	[1]			

(ii) Complete the following sentences.

44 g of carbon dioxide produces g of carbon monoxide.

1.1 g of carbon dioxide produces g of carbon monoxide. [2]

(b) Carbon monoxide is a common pollutant of the atmosphere.

of carbon with carbon dioxide.

Explain how the carbon monoxide in the atmosphere is produced other than by the reaction

.....[2]

(c) Carbon monoxide acts as a reducing agent in the extraction of iron from iron ore in the blast furnace.

Balance the equation for this reaction.

$$Fe_2O_3 + \dots Fe_1 + \dots Fo_2$$
 [1]

3 (a) (i) Complete Table 3.1 to compare the structure of arteries and veins.

Table 3.1

structure	arteries	veins
thickness of wall		
size of lumen		

[2]

(ii) Complete Table 3.2 to compare the blood pressure and direction of blood flow in arteries and veins.

Table 3.2

	arteries	veins
blood pressure		
direction of blood flow		

[2]
ly one cell thick.
•
[1]

(c) Veins have valves at intervals along their inner walls.

A section through one of these valves is shown in Fig. 3.1.

Fig. 3.1

• •	State the function of the valve.
	[1]
(ii)	Explain why arteries do not have valves.
	[2]

4 A girl walks across a carpet and gains a positive electric charge.

As she touches a metal door handle, there is a small spark, as shown in Fig. 4.1.

Fig. 4.1

xplain why there is a small spark.	
	.լՆ

5

Chlorine, bromine and iodine are diatomic elements in Group VII of the Periodic Table.			
(a)	(i)	State the name given to the elements in Group VII.	
		[1]	
	(ii)	State how the melting points of the Group VII elements change down the group from chlorine to iodine.	
		[1]	
(b)	Sta	te the meaning of the term <i>diatomic</i> .	
		[1]	
(c)	Bro	mine displaces iodine from an aqueous solution of sodium iodide.	
	The equation for the reaction is		
		$Br_2 + 2NaI \longrightarrow 2NaBr + I_2$	
	Exp	lain why iodine is displaced by bromine.	
		[1]	
(d)	Exp	lain why chlorine is used in the purification of water supplies.	
		[1]	

6 Part of a food web is shown in Fig. 6.1.

not drawn to scale

Fig. 6.1

(a) Finches eat seeds from the tree.

Finches are eaten by hawks and eagles.

Complete Fig. 6.1 to show this information.

[2]

(b)	(i)	State the source of energy for this food web.	[1]
	(ii)	Name one herbivore in this food web.	[1]
(c)	The	eagles in the food web die out.	
	Sug	gest what happens to the finch population and ex	plain your answer.
			[2]

7 A beam rests on a pivot.

Masses W, X and Y are placed on the beam as shown in Fig. 7.1.

The beam has negligible mass.

Fig. 7.1

The weight of mass \boldsymbol{Y} is 12N and the weight of mass \boldsymbol{W} is 4.0 N.

Calculate the weight of mass **X** that balances the beam.

weight = N [3]

8 An element Q exists as two isotopes, ¹¹³Q and ¹¹⁵Q.

Q is not the correct symbol for the element.

9

(a) Complete Table 8.1 for a neutral atom of each isotope.

Table 8.1

isotope	number of protons	number of neutrons	number of electrons
¹¹³ Q	49		
¹¹⁵ Q	49	66	

10 A power station uses a hydrocarbon fuel to produce electrical energy.

The energy **outputs** of the power station, shown as percentages of the total energy in the fuel, are given in Fig. 10.1.

Fig. 10.1

(a)	Explain how Fig. 10.1 shows that energy is conserved in the power station.	
(b)	Describe the energy transfers from the fuel to the generator.	

11	Sul	furic	acid, I	H ₂ SO ₄ , and ethano	ic acid, CH ₃ CO ₂ H, are b	ooth acids.	
	(a)	(i)	State	e the name of the ic	on that causes acidity.		[1]
		(ii)	Com	plete Table 11.1 for	sulfuric acid and ethan	oic acid.	
					Table 11.1		
				acid	colour with Universal Indicator	pH value of the acid	
				sulfuric acid	red		
				ethanoic acid		5	
							[2]
	(b)	Zin	c sulfa	te is prepared by r	eacting zinc metal with s	sulfuric acid.	
		(i)	Nam	e two other substa	nces that produce zinc	sulfate when they read	ct with sulfuric acid.
					and		[2]
		(ii)	Sugg	gest a reason why o	copper(II) sulfate is not	made by adding copp	er to sulfuric acid.

12 Fig. 12.1 shows the names of different parts of the alimentary canal and some functions.

Fig. 12.1

(a) Complete Fig. 12.1 by drawing **one** line from each part to its function.

One has been done for you.

[5]

(b) The number of villi in the ileum of four students is compared.

Table 12.1 shows the average number of villi present in $1\,\mathrm{cm}^2$ of ileum for each student.

Table 12.1

student	average number of villi/cm ²
Р	4200
Q	4500
R	3500
S	4050

(i)	Student Q absorbs digested food more rapidly than the other three students.
	Use the information in Table 12.1 to suggest a reason for this.
	Explain your reasoning.
	[2
(ii)	The absorption of the products of digestion involves diffusion.
	Suggest why this diffusion occurs continuously.
	F41

13 A circuit containing a battery, a motor, a resistor and a buzzer is shown in Fig. 13.1.

Fig. 13.1

The potential differences across the motor, resistor and buzzer are also shown in Fig. 13.1.

(a) (i) The current in the circuit is 0.08A.

Calculate the total resistance in the circuit.

resistance = Ω [3]

(ii) Calculate the energy transferred by the motor in 30 s.

energy = J [2]

(b) The circuit is re-arranged as shown in Fig. 13.2.

The battery is the same battery, producing the same e.m.f., as in Fig. 13.1.

The currents in the motor, the resistor and the buzzer in the new arrangement are also shown in Fig. 13.2.

Fig. 13.2

(i) Calculate the current in the battery.

	current = A [1]
(ii)	Explain why the current calculated in (b)(i) is different to the current given in (a)(i).
	141

Fig. 14.1 shows some reactions of ethene.

		Fig. 14.1	
(a)	Nan	ne reagent A and process B .	
	reag	gent A	
	prod	cess B	[2]
(b)	Ехр	lain why the conversion of ethene to ethane is called reduction.	
(c)	Nan	ne the reagent that is used to distinguish between ethene and ethane.	[4]
(d)	(i)	Draw the structure of ethanol.	[1
			[1]
	/ii\	Ethanal is a constituent of wine, beer and other alcoholic drinks	[1.
	(ii)	Ethanol is a constituent of wine, beer and other alcoholic drinks. State one other use of ethanol.	
		State one other use of ethanol.	[1]

15 Fig. 15.1 shows the male reproductive system

Fig. 15.1

- (c) One method of birth control is surgical, when a surgeon makes a cut in part of the male reproductive system.
 - On Fig. 15.1, draw a cross (X) to show where the cut is made. [1]

16 (a) A wave is shown in Fig. 16.1

On Fig. 16.1, label a one-quarter wavelength of the wave.

[1]

Fig. 16.1

(b) A tuning fork can be used to produce a sound wave in a column of air, as shown in Fig. 16.2.

Fig. 16.2

The fork vibrates with a constant frequency. The sound produced has the same frequency as the tuning fork.

The length *L* of the column of air is one quarter of the wavelength of the sound produced.

(i) Calculate the wavelength of the sound wave that is produced.

wavelength = m [1]

(ii) The speed of the sound wave in air is $330\,\text{m/s}$.

Calculate the frequency of the sound wave.

			fr	equency =		Hz [2]
17	The	following is a list of substance	es.			
		ammonium nitrate	calcium	carbonate	carbon monoxide	
		nitrogen nitroge	n dioxide	oxygen	potassium nitrate	
	Use	the list to complete the follow	ving sentence	es.		
	Eac	h substance may be used on	ce, more thar	once, or not a	at all.	
	(a)	The substance that contains	two essentia	l elements for	plant growth	
		is				[1]
	(b)	The substance that is used t	to remove imp	ourities in the e	xtraction	
		of iron in the blast furnace is	·			[1]
	(c)	The substance that makes u	ıp about 21%	of the air		
		is				[1]
	(d)	The substance that dissolve	s in water to p	oroduce an aci	dic solution	
		is				[1]
	(e)	The substance used in the n	nanufacture o	f ammonia in t	he Haber process	
		is				[1]

18 A transformer is shown in Fig. 18.1.

Fig. 18.1

(a) An e.m.f. is induced in the secondary coil.

oroduce	the e.m	.f. in the	seconda	ary coil.	ŕ	soft-iron			-	
								 		 •••
										[3]

(b) The current in a cable from the transformer is 100A.

The resistance of 1 km length of the cable is 1 Ω .

Calculate the potential difference across 1 m of the cable.

potential difference =V [2]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	=>	2	Ηe	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	86	格	radon			
	II/				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	B	bromine 80	53	Н	iodine 127	85	¥	astatine -			
	5				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	molonium –	116	_	livermorium -
	>				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209			
	≥				9	O	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	90	Sn	tin 119	82	Pb	lead 207	114	Ρl	flerovium -
	≡				2	М	boron 11	13	Ρſ	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lL	thallium 204			
											30	Zu	zinc 65	48	8	cadmium 112	80	롼	mercury 201	112	ე	copernicium -
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group											28	Z	nickel 59	46	Pq	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
Ģ					1						27	ဝိ	cobalt 59	45	R	rhodium 103	77	٦	iridium 192	109	Ψŧ	meitnerium -
		-	I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium -
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium -
					_	loq	ass				24	ဝ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbol	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>n</u>	tantalum 181	105	o O	dubnium -
						atc	<u>a</u>				22	F	titanium 48	40	Zr	zirconium 91	72	Έ	hafnium 178	104	Ŗ	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium -
	_				က	:-	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	& S	rubidium 85	22	Cs	caesium 133	87	Ā	francium _

71	n	lutetium 175	103	۲	lawrencium	I
70	Υp	ytterbium 173	102	Š	nobelium	I
69	Tm	thulium 169	101	Md	mendelevium	ı
89	Ē	erbium 167	100	Fm	ferminm	I
29	운	holmium 165	66	Es	einsteinium	-
99	۵	dysprosium 163	98	ŭ	californium	ı
65	Д	terbium 159	97	Ř	berkelium	_
64	Вd	gadolinium 157	96	Cm	curium	_
63	En	europium 152	95	Am	americium	I
62	Sm	samarium 150	94	Pu	plutonium	I
61	Pm	promethium	93	ď	neptunium	_
09	PZ	neodymium 144	92	\supset	uranium	238
69	Ā	praseodymium 141	16	Ра	protactinium	231
58	Ce	cerium 140	06	T	thorium	232
22	Га	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)