Page 1 de 9 ST245 Data Structures

Laboratory practice No. 1: Recursion

Juan S. Cárdenas Rodríguez

Universidad EAFIT Medellín, Colombia jscardenar@eafit.edu.co

David Plazas Escudero

Universidad EAFIT Medellín, Colombia dplazas@eafit.edu.co

August 24, 2017

1) ONLINE EXERCISES (CODINGBAT)

1.a. Recursion I

```
i.
                                                           // c0
        public int countPairs(String str) {
          if (str.length() <= 2) {</pre>
                                                           // c1
            return 0;
                                                           // c2
          } else if (str.charAt(0) == str.charAt(2)) { // c3}
                                                         // c4 + T(n-1)
            return 1 + countPairs(str.substring(1));
                                                           // c4
          } else {
            return countPairs(str.substring(1));
                                                          // T(n-1)
          }
        }
```

Complexity of countPairs can be writen as:

$$T(n) = \begin{cases} c_0 + c_1 + c_2 & n \le 2\\ c_3 + c_4 + T(n-1) & n > 2 \end{cases}$$

Solving the recursive equation yields:

$$T(n) = (c_3 + c_4)n + k$$

Therefore, T(n) is O(cn+k) and applying the sum and product rule T(n) is O(n).

Page 2 de 9 ST245 Data Structures

```
// T(n-2)
      return countHi2(str.substring(2));
    } else {
                                                 // c5
      return countHi2(str.substring(1));
                                                 // T(n-1)
  } else if (str.charAt(0) == 'h'
    && str.charAt(1) == 'i') {
                                                 // c5
                                                 // c5
    return 1 + countHi2(str.substring(1));
                                                 // c6
  } else {
                                                 // T(n-1)
    return countHi2(str.substring(1));
  }
}
```

The complexity of countHi2 can be writen as:

$$T(n) = \begin{cases} c_0 + c_1 + c_2 & n \le 1 \\ c_5 + T(n-1) & n > 1 \end{cases}$$

Solving the recursive equation for this algorithm, yields:

$$T\left(n\right) = c_5 n + k$$

Then, T(n) is $O(c_5n + k)$ and applying the sum and product rule T(n) is O(n).

```
iii.
         public int countAbc(String str) {
                                                           // c0
            if (str.length() == 0 || str.length() == 1
            || str.length() == 2) {
                                                           // c1
                                                           // c2
             return 0;
            } else if (str.charAt(0) == 'a'
              && str.charAt(1) == 'b'
              && (str.charAt(2) == 'c'
              || str.charAt(2) == 'a')) {
                                                           // c3
                                                          // c4 + T(n-1)
              return 1 + countAbc(str.substring(1));
                                                           // c5
           } else {
                                                           // T(n-1)
              return countAbc(str.substring(1));
            }
```

The complexity of countAbc can be writen as:

$$T(n) = \begin{cases} c_0 + c_1 + c_2 & n \le 2 \\ c_3 + c_4 + T(n-1) & n > 2 \end{cases} 1$$

The solution to this recursive equation yields:

$$T(n) = (c_3 + c_4)n + k$$

Therefore, T(n) is $O((c_3+c_4)n+k)$ and applying the sum and product rule T(n) is O(n).

 $\begin{array}{c} \text{Page 3 de 9} \\ \text{ST245} \\ \text{Data Structures} \end{array}$

```
// c0
iv.
         public String parenBit(String str) {
           int a = str.length();
                                                           // c1
           if (a <= 1) {
                                                           // c2
               return "";
                                                           // c3
           }
           if (str.substring(a - 1).equals(")")) {
                                                          // c4
                                                          // c5
             int paren = str.indexOf("(");
                                                          // T(n-k)
             return str.substring(paren);
           }
           return parenBit(str.substring(0,a - 1));
                                                      // T(n-1)
         }
```

The complexity of parenBit can be writen as:

$$T(n) = \begin{cases} c_0 + c_1 + c_2 + c_3 & n \le 1 \\ c_4 + T(n-1) & n > 1 \end{cases}$$

Solving the recursive equation yields:

$$T(n) = c_4 n + k$$

Then T(n) is $O(c_4n + k)$ and applying the product and sum rules, we obtain that T(n) is O(n).

```
v. public int strCount(String str, String sub) {
    int a = str.length();
    int b = sub.length();
    if (a < b || b == 0){
        return 0;
    }
    if (str.substring(a - b).equals(sub)) {
        return 1 + strCount(str.substring(0,a - b),sub);
    }
    return strCount(str.substring(0,a - 1), sub);
}</pre>
```

1.b. Recursion II

Page 4 de 9 ST245 Data Structures

Complexity of splitArray can be writen as:

$$T(n) = \begin{cases} c_1 + c_2 + c_3 + c_4 & n = 0 \\ c_5 + 2T(n-1) & n \neq 0 \end{cases}$$

The solution to this recursive equation is:

$$T(n) = k2^{n-1} + (2^n - 1)(c1 + c2 + c3 + c4 + c5)$$

Then, T(n) is $O(k2^{n-1} + (2^n - 1)(c_1 + c_2 + c_3 + c_4 + c_5))$. Therefore, applying the sum and product rule T(n) is $O(2^n)$.

```
public boolean splitOdd10(int[] nums) {
ii.
           return splitOdd10Aux(nums, 0, 0, 0);
         public boolean splitOdd10Aux(int [] nums, int start,
                                                              // c1
           int first, int second) {
           if (start == nums.length) {
                                                              // c2
             return (first % 10 == 0) && (second % 2 != 0); // c3
           } else {
                                                               // c4
             return splitOdd10Aux(nums, start + 1;
               first + nums[start], second) ||
             splitOdd10Aux(nums, start + 1,
               first, second + nums[start]);
                                                              // c5 + 2T(n-1)
           }
         }
```

Complexity of split0dd10 can be writen as:

$$T(n) = \begin{cases} c_1 + c_2 + c_3 + c_4 & n = start \\ c_5 + 2T(n-1) & n \neq start \end{cases}$$

The solution to this recursive equation is:

$$T(n) = k2^{n-1} + (2^n - 1)(c1 + c2 + c3 + c4 + c5)$$

Then, T(n) is $O(k2^{n-1} + (2^n - 1)(c1 + c2 + c3 + c4 + c5))$. Therefore, applying the sum and product rule T(n) is $O(2^n)$.

 $\begin{array}{c} \text{Page 5 de 9} \\ \text{ST245} \\ \text{Data Structures} \end{array}$

```
iii.
          public boolean groupSumClump(int start, int[] nums,
            int target) {
                                                                // c1
            if (start >= nums.length) {
                                                                // c2
              return target == 0;
                                                                // c3
            }
            int sum = 0;
                                                                // c4
                                                                // c5
            int i;
                                                                // c6 * n
            for (i = start; i < nums.length; i++) {</pre>
              if (nums[i] == nums[start]) {
                                                                // c7 * n
                sum += nums[start];
                                                                // c8 * n
              } else {
                                                                // c9 * n
                                                                // c10
                break:
              }
            }
            return groupSumClump(i, nums, target - sum)
                                                                // 2T(n-1)
            || groupSumClump(i, nums, target);
          }
```

Can be writen as:

$$T(n) = \begin{cases} c_3 & n \le \text{start} \\ c_1 + c_2 + c_4 + c_5 + (c_6 + c_7 + c_8) n + 2T(n-1) & n > start \end{cases}$$

The solution to this recursive equation is:

$$T(n) = 2^{n-1}(c+4c_1) + c_2(2^n-1) - c_1(n+2).$$

Then, T(n) is $O(2^{n-1}(c+4c_1)+c_2(2^n-1)-c_1(n+2))$ Therefore, applying the sum and product rule T(n) is $O(2^n)$.

```
public boolean groupSum5(int start, int[] nums, int target) {
iv.
                                                     // c1
          if (start == nums.length) {
           return target == 0;
                                                     // c2
                                                     // c3
          } else {
            if (nums[start] % 5 == 0) {
                                                     // c4
             return groupSum5(start + 1, nums,
             target - nums[start]);
                                                     // c5 + T(n-1)
            } else if (start > 0 && nums[start] == 1
             && nums[start - 1] % 5 == 0) {
                                                     // c6
             return groupSum5(start + 1, nums, target); // c7 + T(n-1)
                                                     // c8
            } else {
             return groupSum5(start + 1, nums,
             target - nums[start])
             }
```

Page 6 de 9 ST245 Data Structures

} }

Taking into account that the case $c_9 + 2T(n-1)$ is the worst out of all, we can write the recursive equation as:

$$T(n) = \begin{cases} c_2 & n = start \\ c_1 + c_3 + c_4 + c_6 + c_8 + c_9 + 2T(n-1) & n \neq start \end{cases}$$

The solution to this recursive equation is:

$$T(n) = (c_1 + c_3 + c_4 + c_6 + c_8 + c_9)(2^n - 1) + c2^{n-1}$$

```
public boolean split53(int[] nums) {
\mathbf{v}.
           return split53Aux(nums, 0, 0, 0);
         }
        public boolean split53Aux(int [] nums, int start,
           int first, int second) {
           if (start == nums.length) {
             return first == second;
           } else {
             if (nums[start] % 5 == 0) {
               return split53Aux(nums, start + 1, first + nums[start], second);
             } else if (nums[start] % 3 == 0) {
               return split53Aux(nums, start + 1, first, second + nums[start]);
             } else {
               return split53Aux(nums, start + 1, first + nums[start], second)
               || split53Aux(nums, start + 1, first, second + nums[start]);
             }
          }
         }
```

 $\begin{array}{c} \text{Page 7 de 9} \\ \text{ST245} \\ \text{Data Structures} \end{array}$

2) ArrayMax

Figure 1: Time vs. N for ArrayMax

$\overline{\mathbf{N}}$	Time (ns)
10	6000
100	27000
1000	346000
10000	6717000

Table 1: ArrayMax's data.

3) ArraySum

Figure 2: Time vs. N for ArraySum

N	Time (ns)
10	8000
100	26000
1000	463000
10000	5227000

Table 2: ArrayMax's data.

4) Fibonacci

Figure 3: Time vs. N for Fibonacci

N	Time (ns)
4	5000
8	9000
12	51000
16	356000

Table 3: ArrayMax's data.

5) What did you learn about Stack Overflow?

The Stack Overflow error is caused by a bad recursive call -for example you do not make the problem simpler every time you make a recursive call- or when you do not have a stopping

Page 8 de 9 ST245Data Structures

condition.[2] Java Stack memory is used for execution of a thread. Whenever a method is invoked, a new block is created in the stack memory for the method to hold local primitive values and reference to other objects in the method.[1]

6) What's the biggest Fibonacci value you were able to compute? Why? Why are you not able to compute Fibonacci with 1 million?

The maximum Fibonacci number we could calculate was the 51th number of the series on our computers on a reasonable time; as a side note, we could calculate bigger values but the time of doing so isn't worth it compared to the computational cost. We couldn't calculate bigger for two reasons:

- The time would be really big, as of lasting days or weeks to calculate. - The ram of the computer has a limited space so, even if we set the stack size to a really big number, the memory consumed will eventually occupied the whole ram memory.

The number of operations the computer has to do for big values is approximately in the order of an exponential base 2. In this manner, to calculate the millionth term of the series it would need around 2^{10^6} , even if we had a 4 GHz computer processor the time it would take whould be $2^{10^6-2}*10^{-9}$. Additionally, if we had infinite time to calculate this term we cannot solve the problem that we do need finite memory to fill the stack memory for the recursion.

 $\begin{array}{c} \text{Page 9 de 9} \\ \text{ST245} \\ \text{Data Structures} \end{array}$

References

- [1] Pankaj. Java heap space vs. stack memory allocation in java. http://www.journaldev.com/4098/java-heap-space-vs-stack-memory, 2017.
- [2] Sean. What is a stackoverflowerror? https://stackoverflow.com/questions/214741/what-is-a-stackoverflowerror, 2008.
- [3] WolframAlpha. https://www.wolframalpha.com/.