

Popular scaling approaches

Akanksha Bharadwaj CSIS Department

SE ZG583, Scalable Services Lecture No. 2

Partitioning and Sharding

Introduction

 In many large-scale solutions, data is divided into partitions that can be managed and accessed separately.

Why partition data?

- Improve scalability
- Improve performance
- Improve security
- Provide operational flexibility
- Improve availability

Types of Partitioning

- Horizontal partitioning
- Vertical partitioning
- Functional partitioning

Horizontal partitioning (Sharding)

Key	Name	Description	Stock	Price	LastOrdered
ARC1	Arc welder	250 Amps	8	119.00	25-Nov-2013
BRK8	Bracket	250mm	46	5.66	18-Nov-2013
BRK9	Bracket	400mm	82	6.98	1-Jul-2013
HOS8	Hose	1/2"	27	27.50	18-Aug-2013
WGT4	Widget	Green	16	13.99	3-Feb-2013
WGT6	Widget	Purple	76	13.99	31-Mar-2013

Key	Name	Description	Stock	Price	LastOrdered
ARC1	Arc welder	250 Amps	8	119.00	25-Nov-2013
BRK8	Bracket	250mm	46	5.66	18-Nov-2013
BRK9	Bracket	400mm	82	6.98	1-Jul-2013

Key	Name	Description	Stock	Price	LastOrdered
HOS8	Hose	1/2"	27	27.50	18-Aug-2013
WGT4	Widget	Green	16	13.99	3-Feb-2013
WGT6	Widget	Purple	76	13.99	31-Mar-2013

Vertical partitioning

Key	Name	Description	Stock	Price	LastOrdered
ARC1	Arc welder	250 Amps	- 8	119.00	25-Nov-2013
BRK8	Bracket	250mm	46	5.66	18-Nov-2013
BRK9	Bracket	400mm	82	6.98	1-Jul-2013
HOS8	Hose	1/2"	27	27.50	18-Aug-2013
WGT4	Widget	Green	16	13.99	3-Feb-2013
WGT6	Widget	Purple	76	13.99	31-Mar-2013

Key	Name	Description	Price
ARC1	Arc welder	250 Amps	119.00
BRK8	Bracket	250mm	5.66
BRK9	Bracket	400mm	6.98
HOS8	Hose	1/2"	27.50
WGT4	Widget	Green	13.99
WGT6	Widget	Purple	13.99

Key	Stock	LastOrdered
ARC1	8	25-Nov-2013
BRK8	46	18-Nov-2013
BRK9	82	1-Jul-2013
HOS8	27	18-Aug-2013
WGT4	16	3-Feb-2013
WGT6	76	31-Mar-2013

Functional partitioning

ARC1

BRK8

BRK9

HOS8

WGT4

WGT6

NoSQL

NoSQL databases are non tabular, and store data differently than relational tables

DATA MODELS SCALABLE **FAST** DISTRIBUTED RELIABLE **FLEXIBLE**

Document model

- These NoSQL databases replace the familiar rows and columns structure with a document storage model.
- Document-Oriented NoSQL DB stores and retrieves data as a key value pair

Graph model

- It is database that uses graph structures for semantic queries with nodes and edges
- The entity is stored as a node with the relationship as edges.
- Every node and edge has a unique identifier.

Key-value model

• In this NoSQL database model, a key is required to retrieve and update data.

Column-based

- Column-oriented databases work on columns and are based on BigTable paper by Google.
- Every column is treated separately. Values of single column databases are stored contiguously.

HDFS

 The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on commodity hardware.

HDFS Architecture

HDFS Components

HDFS Write

- Application writes as to any file system
- Client buffers until it gets 64K block
- Client informs NameNode it wishes to write a new block
- NameNode returns list of three DataNodes to hold block
- Client sends block to first DataNode and informs DataNode of other two replicas.
- First DataNode writes block and sends it to second DataNode. Second DataNode writes block and sends it to last DataNode.
- Each DataNode reports to client when it has completed its write
- Client commits write to NameNode when it has heard from all three DataNodes.

HDFS Write – Failure Cases

Client fails

- Application detects and retries
- Write is not complete until committed by Client

NameNode fails

- Backup NameNode takes over
- Log file maintained to avoid losing information
- DataNodes maintain true list of which blocks they each have
- Client detects and retries

DataNode fails

- Client (or earlier DataNode in pipeline) detects and asks NameNode for different DataNode.
- Since each block is replicated three times, a failure in a DataNode does not lose any data.

Goals of HDFS

- Fast recovery from hardware failures
- Access to streaming data
- Accommodation of large data sets
- Portability

How MapReduce Works

MapReduce are two functions: Map and Reduce. They are sequenced one after the other.

- The Map function takes input from the disk as <key,value> pairs, processes them, and produces another set of intermediate <key,value> pairs as output.
- The Reduce function also takes inputs as <key,value> pairs, and produces <key,value> pairs as output.

Combine and Partition

There are two intermediate steps between Map and Reduce.

- Combine is an optional process. The combiner is a reducer that runs individually on each mapper server. It reduces the data on each mapper further to a simplified form before passing it downstream.
- Partition is the process that translates the <key, value>
 pairs resulting from mappers to another set of <key,
 value> pairs to feed into the reducer. It decides how the
 data has to be presented to the reducer and also assigns
 it to a particular reducer.

MapReduce Pattern

Input-Map-Reduce-Output

Input-Multiple Maps-Reduce-Output

MapReduce Pattern

Input-Map-Combiner-Reduce-Output

Example: Word count problem

Image: dzone

Managing high velocity data streams

Content Delivery Network

- While back in 2005 about 1 billion people used the internet on a daily basis, today there are 3.5 billion internet users that share 4 Exabytes (4,000,000,000 Gigabytes) of data every single day.
- Basically a CDN is nothing more than a bunch of globally distributed computers that are directly connected and move data from one end to another.
- A good example of this is YouTube.

YouTube working

Image: google

Video streaming: Netflix

- Netflix launched in 1998. At first they rented DVDs through the US Postal Service. But Netflix saw the future was on-demand streaming video
- In 2007 Netflix introduced their streaming video-ondemand service
- It starts when you hit 'Play.'
- When Netflix hands off your video to your ISP, they must carry it through their network to your home.

Netflix Architecture

Real Time Fraud Detection

- Mobile phone call metadata is sent from the source system to an Azure Event Hubs instance.
- A Stream Analytics job is started, which receives data via the event hub source.
- The Stream Analytics job runs a predefined query to transform the input stream and analyze it based on a fraudulent-transaction algorithm.
- The Stream Analytics job writes the transformed stream representing detected fraudulent calls to an output sink in Azure Blob storage.

Web conferencing: Zoom

- Zoom customers with Business subscriptions can enjoy three times as many video participants in their meetings at no additional cost — and without doing a thing.
- such an increase is made possible in the way the Zoom platform is engineered
- From the very beginning, Zoom was engineered to be cloud-native and optimized for video.

Web conferencing: Zoom

There are two important aspects of Zoom's technology stack:

- Cloud network
- Video architecture
 - Distributed architecture
 - Multimedia routing
 - Multi-bitrate encoding
 - Application layer quality of service

What is Kafka?

- Apache Kafka is a publish-subscribe based durable messaging system.
- A messaging system sends messages between processes, applications, and servers.
- Apache Kafka is a software where topics can be defined (think of a topic as a category), applications can add, process and reprocess records.

Kafka

 Kafka Streams simplifies application development by building on the Kafka producer and consumer libraries

Kafka Related Concepts

- Kafka Topics
- Partitioning
- Kafka brokers
- Replication
- Kafka Producers
- Kafka Consumers
- Kafka Connect
- Kafka Streams

Kafka

There are close links between Kafka Streams and Kafka in the context of parallelism:

- Each stream partition is a totally ordered sequence of data records and maps to a Kafka topic partition.
- A data record in the stream maps to a Kafka message from that topic.
- The keys of data records determine the partitioning of data in both Kafka and Kafka Streams, i.e., how data is routed to specific partitions within topics.

What is Edge Computing?

- Edge computing is a distributed information technology (IT) architecture in which client data is processed at the periphery of the network, as close to the originating source as possible.
- It helps to provide server resources, data analysis, and artificial intelligence to data collection sources and cyberphysical sources like smart sensors and actuators

Edge computing: IoT systems

 Rapidly increasing numbers of IoT devices and resultant data, mean that new techniques are needed to meet customer requirements and ensure effective management need to be explored

Key Benefits of Edge for the loT

- Low latency
- Longer battery life for IoT devices
- Access to data analytics and Al
- Resilience
- Scalability
- More efficient data management

Example: IoT Image and Audio Processing

- IoT edge introduces new ways of analysing data without having to backhaul the entire image or audio stream
- An edge cloudlet can be used to process the image, video or audio data to determine key information, such as licence plate numbers or the number of people in an area.

Self Study

- https://developer.cisco.com/docs/webex-meetings/#!architecture/overview
- Kafka

References

- https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
- https://www.mongodb.com/nosql-explained
- https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
- https://netflixtechblog.com/
- http://highscalability.com/youtube-architecture
- https://docs.microsoft.com/en-us/azure/architecture/example-scenario/data/frauddetection
- https://blog.zoom.us/
- https://kafka.apache.org/11/documentation/streams/architecture
- https://www.gsma.com/iot/wp-content/uploads/2018/11/IoT-Edge-Opportunities-c.pdf
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696529/
- Reading material available on Confluent