串口接口协议 V1.1

2018/09/01

版本	修改内容	修改人	修改日期
V1.0	新建版本	郭鹏伟	20180807
V1.1	1、串口通信电平为 RS232 电平; 2、命令分为主机命令和从机命令, 并约定主机命令优先级最高,以避免 数据碰撞; 3、增加一些状态查询,以及命令格 式调整;	郭鹏伟	20180901

一、概述

串口数据传输遵循以下规则:

- 1、串口默认设置,速率 115200,停止位 1,数据位 8,无奇偶校验, RS232 电平通信;
- 2、碰撞检测模组为主机,车载机为从机;
- 3、所有数据传输都由命令对组成;
- 4、约定数据传输以主机数据为最高优先级,以避免数据碰撞(即如主机和从机同时发送命
- 令,则从机需响应主机命令,且在主机命令处理完毕后,重新发送其期待发送的命令);
- 5、主机检测到碰撞事件,实时将碰撞事件报给从机(命令: alarm);
- 6、从机检测到车辆 ACC 变化,需实时将 ACC 状态报给主机(命令: report);
- 7、容错机制后续协商加入;

二、基本数据包

1、基本数据包格式如下:

字段	传输训	只别码	K	度	度 命令		命令参数		校验
长度(byte)	1	1	1	1	1	1	1	LEN	1
值	5A	A5	LEN_H	LEN_L	CMD	P1	P2	DATA	CRC

2、各字段定义:

2.1、传输识别码

5A A5

收到 5A A5 标志着数据传输开始

2.2、长度

LEN_H LEN_L

为数据传输长度 LEN, LEN_H 为长度高字节, LEN_L 为长度低字节, 为 DATA 数据长度 LEN 最小值为 0,最大值为 512;

2.3、命令

CMD

命令码;

2.4、命令参数

P1 P2

为命令参数

P1:数据包序号,每发一个数据包,逐次加1,从1开始到255循环,无0值; P2:命令帧序号, P2=0表示该命令只有一帧或者为多帧命令中的最后一帧; 当命令有多帧时,P2取值从1开始到254,循环取值,直至等0为最后一条;

2.5、数据

DATA

数据,长度为LEN个字节,当LEN为0时,DATA为空;

2.6、校验和

CRC

校验和,为从 LEN_H 到 DATA,逐个字节相加后的值,做数据校验;

三、主机命令码

1、报警命令, alarm, 0xF1

报警命令,主机在检测到碰撞时,实时发送碰撞事件,命令中附带碰撞相关信息,如碰撞位置(2byte)、碰撞参数(2byte);

发送数据	5A	A5	0	4	F1	P1	0	data	CRC
返回数据	5A	A5	0	0	F1	P1	0	CRC	

发送数据: 主机发送报警命令, 并附带 4 个字节 data;

data, 4 个字节:

data	pos_h	pos_1	p_h	p_1
------	-------	-------	-----	-----

pos_h pos_l,碰撞位置组件 pos, pos_h 为高字节, pos_l 为低字节,目前的 pos 取值为:

pos	组件
1	右前车门
2	右后车门
3	左前车门
4	左后车门
5	前保险杠
6	后保险杠

 $p_h p_l$,碰撞参数 parameter, $p_h h$ 为高字节, p_l 为低字节,,暂定为力度级数;返回数据:从机返回报警命令,无数据;

2、获取车辆状态命令,getCarState,0xF5

获取车辆状态命令,从机需返回车辆的一些当前状态,如:车门开关状态、车速状态、当前时间;

发送数据	5A	A5	0	0	F5	P1	0	CRC	
返回数据	5A	A5	0	8	F5	P1	0	data	CRC

发送数据: 主机发送发送数据命令, 无数据;

返回数据: 从机返回发送数据命令, 附带 8 个字节 data;

data, 8 个字节:

door speed Y	M D	hour	min sec
--------------	-----	------	---------

data 的 8 个字节的定义如下:

字段	取值	意义
door	0	车门关
0001	1	车门开
speed	0~255	车速
Y	0~99	年
M	1~12	月
D	1~31	日
hour	0~23	时
min	0 [~] 59	分
sec	0 [~] 59	秒

3、发送数据命令,sendData,0xF4

发送数据命令,主机发送采集数据,从机接收数据后,需标注信息存储,标注信息示例:时间、位置、车辆状况等(标注信息后续概据需求协商完善);

发送数据	5A	A5	LEN_H	LEN_L	F4	P1	N	data	CRC
返回数据	5A	A5	0	4	F4	P1	N	CRC	

发送数据: 主机发送发送数据命令,并附带 6144 个字节 data,总数据超出 512 字节,因此该命令需按多帧命令方式发送,通过 P2 控制发送顺序;

返回数据:从机返回发送数据命令,无数据,P2 需与每帧发送数据的P2 保持一致;

四、从机命令码

1、设置域值命令,setThreshold,0xE1

设置域值命令,命令附带主机当前的6组件阈值,从机可返回期望设置的6组件新的阈值,若不需改变6组件的阈值,则返回相同的值;

发送数据	5A	A5	0	0/C	E1	P1	0	data	CRC
返回数据	5A	A5	0	С	E1	P1	0	data	CRC

发送数据: 从机发送设置域值命令,并附带 0 或 12 个字节 data, 附带 0 个字节时,命令实为查询当前主机域值;

data, 12 个字节:

data	1_h	1_1	2_h	2_1	3_h	3_1	4_h	4_1	5_h	5_1	6_h	6_1
						1						i

x hx l, 为x组件阈值, x h为高字节, x l为低字节;

返回数据: 主机返回设置域值命令,并附带当前主机域值,12个字节 data;

data, 12 个字节:

data	1_h	1_1	2_h	2_1	3_h	3_1	4_h	4_1	5_h	5_1	6_h	6_1
------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

 $x_h x_l$, 为 x 组件阈值, x_h 为高字节, x_l 为低字节;

2、上报命令,report,0xE2

上报命令,一些信息需要从机主动上报给主机,如: ACC 起动状态;

发送数据	5A	A5	0	10	E2	P1	0	data	CRC
返回数据	5A	A5	0	10	E2	P1	0	CRC	

发送数据: 从机发送上报命令, 并附带 1 个字节 data;

data, 1 个字节:

ACC

data 的 1 个字节的定义如下:

字段	取值	意义				
ACC	0	ACC 未上电				
ACC	1	ACC 上电				

3、在线升级命令,setOTA,0xE3

在线升级命令,从机需返回 IAP 升级数据,;

发送数据	5A	A5	LEN_H	LEN_L	Е3	P1	P2	data	CRC
返回数据	5A	A5	0	0	Е3	P1	P2	CRC	

发送数据:从机发送在线升级命令,数据长度会超出 512 字节,因此该命令需按多帧命令方式发送,通过 P2 控制发送顺序;

返回数据: 主机返回在线升级命令, 无数据返回, P2 需与每帧发送数据的 P2 保持一致;