DENTAL IMPLANT MEMBER

Publication number: JP62172944 Publication date: 1987-07-29

Inventor: NAGAI NORIYUKI; ISHIZAWA KENKI; AYUSAWA

NOBUO; KUROSHIMA HIROSHI

Applicant: NAGAI NORIYUKI; SHINAGAWA REFRACTORIES CO

Classification:

- international: A61C8/00; A61C8/00; (IPC1-7): A61C8/00

- European: A61C8/00F2

Application number: JP19860015534 19860127 Priority number(s): JP19860015534 19860127

Report a data error here

Abstract not available for JP62172944

Data supplied from the ${\it esp@cenet}$ database - Worldwide

⑩ 公 開 特 許 公 報 (A) 昭62 - 172944

⑥Int Cl.⁴

識別記号

庁内整理番号

④公開 昭和62年(1987)7月29日

A 61 C 8/00

Z-8615-4C

審査請求 未請求 発明の数 1 (全4頁)

図発明の名称 歯科用インプラント部材

②特 願 昭61-15534

20出 願 昭61(1986)1月27日

⑫発 明 者 永 井 数 之 岡山市津島西坂1-2-30

砂発 明 者 石 沢 健 喜 備前市東片上394

⑩発 明 者 鮎 沢 信 夫 備前市伊部1935 ⑩発 明 者 黒 島 浩 岡山市西大寺中3-18-40

 ⑩発 明 者 黒 島 浩 岡山市西大寺中3-18-40

 ⑪出 願 人 永 井 教 之 岡山市津島西坂1-2-30

⑪出 願 人 品川白煉瓦株式会社 東京都千代田区大手町2丁目2番1号

個代 理 人 弁理士 重 野 剛

明細書

1. 発明の名称

歯科用インプラント部材

2,特許請求の範囲

(1) 一方向に長い形状を有するセラミックス 製の歯科用インプラント部材において、該一方向の一側には骨内への螺入用のネジ部が形成された 一方向の他側には該インプラント部材の埋入入 回工具の装着用切り欠き部が形成されており、政 可力向の一側の先端に中心が形成されており、政 でしたされており、該切り込みの1 は数ネジ部の少なくとも途中まで延在ないで 成し、ポスト部に於て、円錐台形状をないことを特 微とする歯科用インプラント部材。

3.発明の詳細な説明

[産業上の利用分野]

本発明は歯科用インプラント部材に係り、特に 生体骨内への植立術施行後咬合機能回復時に外力 が作用しても、安定に固定され、生体骨組織との

1

良好な密着性を保つことができるセラミックス製 の歯科用インプラント部材に関する。

[従来の技術]

歯科用インプラントに関する歴史は古く、 1930年代より種々の研究開発がなされている。従来より、歯科用インプラント部材の薬材と しては、金属Ti、Co-Cr系合金あるいは Fe-Ni-Cr系合金等が広く使用されており、現在もなお主流を占めている。また、その形状としては、骨組織等への刺激の問題から、板状のインプラントが一般的である。

しかしながら、これらの金属系インプラント部材は、金属特有の光沢等から、天然歯とはその色調を著しく異にしているうえに、生体組織との親和性に劣るなどの欠点を有していた。

このような問題点を解決すべく、金属系インプラント部材に代わるものとして、近年、アルミナ、アパタイト、ジルコニア等のセラミック製インプラント部材が開発され、その一部は人工歯根として、歯科臨床に用いられている。特に高強

度タイプ・インプラント部材として単結晶アルミナ製インプラント部材が市販されており、多くの 臨床例が報告されている。

このようなセラミック製の歯科用インプラント部材が生体に悪影響がないことは病理学的実験や最近の臨床等によって明らかにされている。また、生体骨内への密着性、生体組織との親和性、審美性、更に所望形状のものを得る成型性にも優れ、臨床時の様々な症例に対応できるものとして、従来の金属系インプラント部材に対する優位性が認められている。

セラミック製インプラント部材の有用性が確認されて以来、セラミックス製インプラント部材は、その形状についても種々の改良がなされており、インプラントの対象物である骨の形状に対応して種々の形状のものが製作されている。現在では棒状タイプ、スクリュータイプ、プレードタイプ等が考案され、臨床的にも使用されている。

これらのうちスクリュータイプのインプラント 部材は、顎骨内に埋入される所謂スクリュー部分

3

本発明は上述のスクリュータイプのインプラント部材の問題点を解消し、埋入された後、完全固定化されるまでの変位を防止し、骨内組織内で確実かつ良好に保持される、歯科用インプラント部材を提供することを目的とするものである。

この目的を達成するために、本発明の歯科用インプラント部材は、一方向に長い形状を有するセラミックス製の歯科用インプラント部材において、該一方向の一側には骨内への螺入用のネジ 部が形成され、該一方向の他側には該インプラント部材の埋入用旋回工具の装着用切り欠き部が形成されており、該一方向の一側の先端には中心部に到る切り込みが複数方向から形成されており、該切り込みの1つは該ネジ部の少なくとも途中まで延在して講を形成しているものである。

[作用]

本発明の歯科用インプラント部材は一方向に長い形状を有し、長さ方向の一側にネジ部が形成されると共に、該一側の先端には、複数方向からの切り込みが中心部に到るように形成されているた

と咬合機能を修復させるヘッド部分とが一体物を 成すか、あるいは組合せて構成されている。

「発明が解決しようとする問題点]

スクリュータイプのセラミック製インプラント 部材には、植立術後、埋入されたインプラント部 材の骨内組織内での保持性に問題があり、場合に よっては抜け落ちが生じるおそれがあった。この 対策として、従来のスクリュータイプのインプ ラント部材において、スクリュー部分のネジ山を 不規則にすることなどが行われているが、生体組 織に埋入されて該生体組織と一体構造を成して完 全固定されるまでの期間に、不適当な外力・刺激 により周囲の骨形成が遅れることにより回転し、 この回転によりその位置がずれて、場合によって は抜け落ちることもある。また、インプラント部 材が回転すると、インプラント部材埋入部周辺の 支持骨組織の再生が遅くなり、インプラント体が 動揺し咬合機能の回復がなされないという問題も 生じる。

[問題点を解決するための手段]

4

め、インプラント部材の螺入時において、インプラント部材の素材、例えばアルミナ、ジルコニア等のセラミックスよりも強度の低い骨組織体に対し、自己螺進効果が奏される。同時に、先端中心部に到る複数方向からの切り込みの存在により、硬質組織との密着性の向上を図ることも可能となる。

さらに、切り込みのうちの1つがネジ部の少なくとも途中にまで延在して満を形成しているため、インプラント部材の生体組織に対する密着性が一段と向上されると共に、インプラント部材の回転が確実に防止されるようになる。

[実施例]

以下に本発明の歯科用インプラント部材の好適な実施例を図面を参照して詳細に説明する。

第1 図は本発明のインプラント部材の一例を示す図であり、(a) は平面図、(b) は側面図、(c) は底面図である。

歯牙修復のために骨内に埋入されて使用される、本発明の歯科用インプラント部材1は、一方

向に長い形状であり、第1図(b)に示されるようにポスト部I、ネック部Ⅱならびにルート部Ⅲに大別される。

ポスト部Iはネック部Iと連結されている。このポスト部Iはテーバ形状を成しており、その傾部にはインプラント部材の螺入用旋回工具装着のための切り欠き部1が形成されている。この切り欠き部1は、インプラント部材の植立後に嵌合される義歯に対しても、接着性を向上させるという作用効果を奏する。

ネック部Iはインプラント部材の中間にあたり、インプラント部材を埋入したときに粘膜組織に位置するものであるので、その表面は極めて滑らかに仕上げておくのが好ましい。

ルート部(スクリュー部)田は旋回工具によって骨組織内に螺入されるネジ部を成しているが、ネジ部の山及び谷の各部分は、螺入時に硬組織に与える刺激をなるべく少なくするように、第1図(b)のネジ部Wの拡大断面図である第2図に示す如く、その表面部は滑らかに仕上げ、角部や観

7

おける生体組織回復時に、密着性を高めインプラント部材の回転防止に大きな効果が奏され、インプラント部材の保持性が高められ、埋入したインプラント部材の離脱が防止される。

ポスト部Iの下部及びネック部IIは、埋入後歯の粘膜組織が成長してくることにより、その周辺部が覆われる。本発明のインプラント部材は、粘膜に刺激を与えることなく、粘膜との接着性を良好に保つことが可能である。

このような本発明の歯科用インプラント部材の 各部の寸法等は特に制限はなく、使用する箇所 への適合性等を考慮して決定されるが、第1図 (a)~(c)及び第2図に示す箇所の寸法等の 一例を挙げると以下の通りである。

L : 1 9 m m γ ι : 4 m m

Ω ι : 7 m m γ ε : 5 m m

Ω ε : 3 m m γ ε : 3 m m

Ω ε ε : 9 m m γ ε : 4 m m

2 4 : 5 m m θ : 4 5 °

 ℓ_5 : 1 m m θ_2 : 4°45'

q

部に丸みを付けることが好ましい。また、ネジ部の山と谷の数はできる限り少なくすることによって、インプラント部材に対する局部的応力集中を減ずると共に、周囲組織とのなじみを良くするのが好ましい。

8

ls: 1 m m θ s: 55°

27:3mm

2 s: 0.5 m m

le: 1 m m

1 . 2 5 m m

 $l_{r}:0.5 mm$

1 m m 2 0 . 5 3 m m

本発明のセラミックス製歯科用インプラント部材 の素材としては、特に制限はないが、アルミナ、 アパタイト、ジルコニア等が好ましい。

このような本発明のインプラント部材は、セラミックス製造用の原料を乾燥、造粒等の通常の通常の原料を乾燥、造粒等の通常の原料処理に供した後、通常の方法により成形し、焼成することにより容易に製造することができる。成形方法としては特に制限はなく、静水圧プレス、一軸プレス、射出成形、鋳込み成形等がいずれも好適に採用される。また、焼成は、セラミックスの種類によっても異なるが、通常、電気炉等を使用して大気雰囲気下にて1500~1800

℃、好ましくは1550℃程度の高温焼成を行う。また、HIP処理法も採用できる。

焼成により得られたセラミックス焼結体は、必要に応じ、インプラント部材として最終形状に加工すべく、円筒研削機、芯無研削機あるいは複整等を使用して、切削、研磨を施して本発明のインプラント部材とする。

[効果]

以上詳述した過り、本発明の歯科用インプラント部材は、埋入後の回転が十分に防止される。そのため、インプラント部材の抜け落ちが防止されることはもとより、生体組織の回復が速められ、咬合機能の早期回復が可能となる。更に、本発明の歯科用インプラント部材は、生体組織との密着性も強めて高いものであり、また生体に対する毒性も全くないなど、インプラント部材として著しく優れた特性を有するものである。

4. 図面の簡単な説明

第1 図は本発明の 熊科用インプラント 部材の一 例を示す図であり、 (a) は平面図、 (b) は側 面図、(c) は底面図である。また、第2図は第 1図(b)のWの部分の拡大断面図である。

Ⅰ…ポスト部、 Ⅱ…ネック部、

Ⅲ … ルート部、 1 … インプラント部材、

2 … 切り欠き部、

3 a ~ 3 b … 切り込み、

4 … 漢。

代理人 弁理士 重野 剛

1 1

12

