Programowanie Obiektowe - Projekt Etap 3

Mikołaj Chmielecki, Jakub Mroziński 30 kwietnia 2020

1 Analiza czasownikowo - rzeczownikowa

Symulacja łąki

Język: Java

Symulacja polega na pokazaniu łąki (o ustawionym przez użytkownika rozmiarze) po której poruszają się zwierzęta. Będą nimi: krowy, owce, wilki, koty i myszy. Na początku działania symulacji zostaną one rozmieszczone na losowych polach w losowej liczebności (jednak maksymalna i minimalna początkowa liczba osobników każdego gatunku będzie ustalona przed rozpoczęciem symulacji). Każdy gatunek zwierząt będzie się poruszał po łące z charakterystyczną prędkością i z czasem będzie się starzeć i umierać ze starości. Aby zapobiec wymarciu gatunku przy spotkaniu dwóch zwierząt przeciwnej płci powstanie trzecie o zerowym wieku i posiadające jedną z dwóch płci (50% prawdopodobieństwa).

Zwierzęta różnych gatunków przy spotkaniu na jednym polu będą mogły wchodzić ze sobą w interakcje. Koty po spotkaniu z myszami zjadają je. Wilki, w celu zyskania pożywienia, mogą zaatakować wszystkie zwierzęta, ale prawdopodobieństwo przeprowadzenia skutecznego ataku nie jest stuprocentowe we wszystkich przypadkach: z myszą – 100%, z kotem – 80%, z owcą – 60%, z krową – 40%. Jeżeli atak skończy się niepowodzeniem to zwierzęta rozchodzą się osłabione. Poza tymi przypadkami na jednym polu nie może przebywać więcej niż jedno zwierzę.

Na wolnych polach podczas działania symulacji będzie się pojawiało losowo rozmieszczane pożywienie potrzebne zwierzętom do przetrwania. Będzie to trawa (dla krów i owiec) oraz ser (dla myszy). Gdy jakieś zwierzę napotka na pożywienie którym nie może się pożywić to zostaje ono zniszczone. Przy krawędzi łąki będzie usytuowany wodopój (jeden lub więcej – ustala użytkownik przed rozpoczęciem symulacji), z którego będą mogły w każdej chwili korzystać aby zaspokoić pragnienie.

Symulacja zakończy się gdy wszystkie zwierzęta zginą lub gdy któryś z gatunków osiągnie ustaloną przed rozpoczęciem symulacji liczebność. Po zakończeniu zostaną pokazane statystyki symulacji dla każdego gatunku: maksymalna liczba zwierząt, całkowita liczba zwierząt, liczba zabitych oraz czas trwania symulacji. Statystyki te zostaną również zapisane do pliku, którego nazwa zostanie podana na początku.

2 Karty CRC

Classname: Animal	
Superclass: none	
Subclass(es): Cat, Cow, Mouse, Sheep, Wolf	
Responsibilities:	Collaboration:
The class contains parameters and operations that	Simulation
can be performed on each animal and collects sta-	
tistics for each species (current and maximum po-	
pulation).	

Classname: Cat	
Superclass: Animal	
Subclass(es): none	
Responsibilities:	Collaboration:
The class stores the value of the speed at which	none
cats move, and operations specific to this species.	
It makes it possible to distinguish between cats and	
other animals.	

Classname: Cow	
Superclass: Animal	
Subclass(es): none	
Responsibilities:	Collaboration:
The class stores the value of the speed at which	none
cows move, and operations specific to this species.	
It makes it possible to distinguish between cows and	
other animals.	

Classname: Sheep	
Superclass: Animal	
Subclass(es): none	
Responsibilities:	Collaboration:
The class stores the value of the speed at which	none
sheeps move, and operations specific to this species.	
It makes it possible to distinguish between sheeps	
and other animals.	

Classname: Mouse	
Superclass: Animal	
Subclass(es): none	
Responsibilities:	Collaboration:
The class stores the value of the speed at which	none
mouses move, and operations specific to this species.	
It makes it possible to distinguish between mouses	
and other animals.	

Classname: Wolf	
Superclass: Animal	
Subclass(es): none	
Responsibilities:	Collaboration:
The class stores the value of the speed at which	none
wolves move, and operations specific to this species.	
It makes it possible to distinguish between wolves	
and other animals.	

Classname: Meadow	
Superclass: none	
Subclass(es): none	
Responsibilities:	Collaboration:
The class stores meadow state information, consists	Field, Simulation
of subfields, arranges waterholes and food during	
board initialization and arranges new food during	
the simulation.	

Classname: Field	
Superclass: none	
Subclass(es): Waterhole	
Responsibilities:	Collaboration:
The class stores information about the content of	Feed, Meadow
a given field in a meadow. It contains information	
on whether there is food for animals in a given field	
and stores this food.	

Classname: Waterhole	
Superclass: Field	
Subclass(es): none	
Responsibilities:	Collaboration:
The class stores information on the number of wa-	none
terholes in the meadow. It makes it possible to di-	
stinguish between a waterhole and a regular field.	

Classname: Feed	
Superclass: none	
Subclass(es): none	
Responsibilities:	Collaboration:
The class stores information about food placed on	Field
the meadow. It also contains statistics on the amo-	
unt of food eaten and destroyed during stimulation.	

Classname: Parameters	
Superclass: none	
Subclass(es): none	
Responsibilities:	Collaboration:
The class communicates with the user, sets and sto-	Control
res initial parameters, i.e. the minimum and maxi-	
mum numbers of each animal species, the dimen-	
sions of the meadow and the number of waterholes.	

Classname: Simulation	
Superclass: none	
Subclass(es): none	
Responsibilities:	Collaboration:
The class is responsible for the simulation. In it the-	Meadow, Animal,
re is the main simulation loop. It coordinates the	Control
actions of animals and forces interactions betwe-	
en them, such as reproduction, quenching thirst or	
hunger. Generates animals and gives the signal to	
the Meadow class to initialize. Displays the current	
state of the simulation. It is responsible for checking	
the end conditions of the simulation.	

Classname: Control	
Superclass: none	
Subclass(es): none	
Responsibilities:	Collaboration:
The class is responsible for starting and ending the	Simulation, Para-
simulation. Stores the path to the statistics output	meters
file. The class generates and stores statistics after	
the simulation.	

3 Diagram przypadków użycia

4 Diagram klas

5 Diagram obiektów

