Homework #2

TA: Yifan Yu

Due: September 23, 2024 at 6:00 p.m.

Instructions: All your answers must be appropriately justified. Please note that you should

- Submit a zip or pdf file through canvas containing code, plots, and justifications;
- Write your code in a modular, readable way. Code organization will be taken into account for the grading;
- Use the discipline convex programming language CVX to code the problems below. There are several interfaces for CVX in popular programming languages including Python¹, R², Julia³, and MATLAB⁴. Choose your favorite one!

In case you do not have access to canvas, submit your solutions, as a zip or pdf file, to yyuco@connect.ust.hk. Late submissions or submissions that are not zip or pdf files won't be considered.

Problem 1 (Linear Regression, 50 points)

Given n = 50 pairs of data (x_i, y_i) , i = 1, ..., n. Try to do linear regression: y = ax + b.

- (a) Write down the problem formulation with respect to the general residual penalty function $\phi(r)$, where r = ax + b y. Please determine the convexity of the problem when the penalty function is specified as $\phi_1(r) = r^2$, $\phi_2(r) = |r|$ and $\phi_3(r) = \log(1 + r^2)$ (with base e).
- (b) Solve only the convex problems with CVX using 'dataset1.csv' and display the corresponding estimations. Plot the original data points and all your fitted curves. Suppose the real parameter $a_{\rm true}=3, b_{\rm true}=4$, and estimation error is defined as $\|[a_{\rm est},b_{\rm est}]-[a_{\rm true},b_{\rm true}]\|_2^2$, which penalty function minimizes the estimation error?
- (c) Now we consider the situation where there are additional three outliers in the data. Please use 'dataset2.csv' and then repeat (b).

Problem 2 (50 points)

Smoothing regularization: Given the impulse response function $h(t) = \frac{1}{9}0.9^t(1 - 0.4sin(3t))$, consider a dynamic system with scalar input sequence $\mathbf{u} = [u(0), u(1), \dots, u(N)]^T$, and scalar output sequence $\mathbf{y} = [y(0), y(1), \dots, y(N)]^T$, related by convolution:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t-\tau), t = 0, 1, \dots, N.$$
 (1)

Use desired output $\mathbf{y}_{\text{des}} = [y_{\text{des}}(0), y_{\text{des}}(1), \dots, y_{\text{des}}(N)]^T$ in dataset3.csv, where N = 400, and try to use cvx to find the following required inputs.

(a) Find the input such that its output should track the desired output sequence \mathbf{y}_{des} . Denote the error as $J_{\text{track}} = \|\mathbf{y} - \mathbf{y}_{\text{des}}\|$. Use different different norms (i.e., ℓ_1 , ℓ_2 , and ℓ_{∞} -norms) in the problem formulation and compare them.

¹https://www.cvxpy.org/

²https://cvxr.rbind.io/

³https://github.com/jump-dev/Convex.jl

⁴http://cvxr.com/cvx/

- Write down the problem formulations and state what class of problem it is, i.e., LP, QP, etc.
- Use cvx to find the results. Plot and explain them.
- (b) Define the magnitude of the input as $J_{\text{mag}} = \|\mathbf{u}\|_2^2$, and the magnitude of the input variations as $J_{\text{var}} = \sum_{t=0}^{N-1} (u(t+1) u(t))^2$. Use ℓ_2 -norm in J_{track} , and the problem is to find the input to minimize the trade-off objective

$$J_{\text{track}} + \delta J_{\text{var}} + \eta J_{\text{mag}}, \tag{2}$$

where $\delta > 0$ and $\eta > 0$.

- State what class of problem it is.
- Choose different δ and η and draw two plots for each set of δ , η :
 - The input **u*** you find.
 - The comparison of the desired output \mathbf{y}_{des} and the optimized output $\mathbf{H}\mathbf{u}^*$.
- Illustrate and compare the results.