

UNIVERSIDADE FEDERAL DO ABC Disciplina de Bases Conceituais da Energia

AULA 01 – Apresentação do curso e discussão do tópico: O que é Energia?

Objetivo: apresentar o curso, os critérios de avaliação e introduzir o conceito de energia e sua relação com trabalho e potência

Sequência de atividades:

- Apresentação do escopo da disciplina
- Apresentação do plano de ensino
- Critérios de avaliação
- Apresentação do conceito de energia

Conteúdos:

- Discussão conceitual sobre energia
- As definições clássicas de energia, trabalho e potência
- Relações matemáticas entre energia, trabalho e potência
- Unidades de energia, trabalho e potência
- Definições importantes envolvendo energia

Discussão conceitual sobre energia

• Desenvolvemos um conhecimento tácito sobre energia, de forma que sabemos identificar sua existência, mensurá-la quando ela se manifesta em formas específicas ou quando sofre transformações, mas não podemos defini-la com facilidade:

• A energia é mais bem descrita pelo que ela pode fazer. Ao contrário da comida e da moradia, a energia não é valorizada por si própria, mas pelo que pode ser feito com ela.

• Não podemos ver a energia, mas podemos ver seus efeitos. Não podemos criá-la*, mas podemos usá-la. Não podemos destruí-la, mas podemos desperdiçá-la usando-a de forma ineficiente.

• A energia é um dos principais constituintes da sociedade moderna e está diretamente ligada ao desenvolvimento econômico .

• O uso dos recursos energéticos nos libertou de muitos trabalhos penosos e tornou nossos esforços mais produtivos.

• Eventos políticos, como guerras e boicotes, nos fazem perceber como a energia é crucial para o bom funcionamento da sociedade.

• A energia é fundamental até mesmo para as necessidades humanas mais básicas. A energia mínima para um adulto permanecer vivo é de 1000 kcal por dia. Para desempenhar atividades normais, 2000 kcal/dia.

Esforço	Exemplo	Gasto energético(kcal/hora)
leve a moderado	Permanecer relaxado	20
Tovo a moderado	Atividades leves	50-60
	Caminhar, tomar banho	125-240
	Trabalho leve (ex. carpintaria)	150-180
	Marchar	280
pesado	Quebrar pedras	350
	Remar, nadar, correr	400-700
		800-1000

(Goldemberg, 2008)

• A modernidade exige cada vez mais energia para ser satisfeita...

Época	Atividade	
1.000.000 anos	Alimentos ingeridos	
100.000 anos	Alimentos e queima da madeira	
5.000 a. C.	Tração animal	
1.400 d.C	Carvão mineral, quedas d'água e vento	
1875	Máquina a vapor	
Século XX	Motores a combustão, motores elétricos e energia nuclear.	

(Goldemberg, 2008)

- Em 2004, cada habitante da Terra consumiu 17,7 milhões de kcal ou 1,77 tep, cerca de 1.000.000 de vezes o que consumia o homem primitivo.
- Cada africano consumiu 0,67 tep; cada brasileiro 1,11 tep; cada chinês
 1,25 tep. Cada norte-americano 7,91 tep!

• A modernidade exige cada vez mais energia para ser satisfeita...

• Para finalizar, entender a energia significa entender os recursos energéticos e suas limitações, bem como as consequências ambientais da sua utilização.

Nuclear energy is safe!!

Very clean energy!!!!

Oh no, it was made by coal in China!

"Definição" clássica de Energia:

Energia é a capacidade de realizar/ produzir trabalho. (Hinrichs, R.; Kleinbach, L.; Reis, L., 2014 & Goldemberg, 2012)

Definição clássica de Trabalho:

Da Física: Trabalho é o produto de uma força pelo deslocamento efetuado por um corpo, sob ação dessa força. Assim:

$$W = F \times d$$
 (p/ uma força constante)

$$W = \int_{x_1}^{x_2} F(x) dx$$
 (p/ uma força variável)

Unidade básica de Trabalho e Energia:

$$[W] = [F] \times [d]$$

Logo, no SI:

$$[W] = N \times m = J$$

$$1J = 1N \times 1m = 1N \times m$$

Assim, 1 joule corresponde à quantidade de energia transferida a um corpo (ou dele retirada) por uma força de 1 newton que atua nele ao longo de uma distância de 1 m.

Noção "mais realista" de o que é um joule:

 $W_P = F \times d = (mg)xH = 0,1.9,81.1,0 = 0,981J \approx 1 J$

Outras unidades úteis de energia e trabalho:

$$1 \text{ cal} = 4,184 \text{ J}$$

$$1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$$

$$1 \text{ tep} = 42 \times 10^9 \text{ J}$$

Variantes:

kJ, MJ, GJ, TJ

1 Quad = 10^{15} Btu

Uma definição conceitual clássica para trabalho seria:

Trabalho é uma forma de se transferir energia a um corpo ou sistema. (Hinrichs, R.; Kleinbach, L.; Reis, L., 2014).

Ou seja, energia é a capacidade de se realizar trabalho e trabalho é uma forma de se transferir energia? Socorro!

Embora trabalho e energia possam ser mensurados, sua definição não é mais importante do que saber o que pode ser obtido com eles, em termos práticos!

Nesse exemplo, o trabalho realizado pela mãe sobre o conjunto carrinho + bebê, a partir do repouso, está aumentando a energia mecânica do conjunto.

Matematicamente:

$$W = \Delta E_{MEC} = \Delta (E_C + E_P)$$

Nesse outro exemplo, o trabalho realizado pela pessoa sobre o palito de fósforo, a partir do repouso, variou sua energia cinética e sua energia térmica, a ponto de a elevação de temperatura permitir o início da combustão.

Matematicamente:

$$W = \Delta(E_C + E_T)$$

Pode-se intuir, a partir dos exemplos apresentados, que uma forma geral de se expressar matematicamente a relação entre trabalho, energia mecânica e energia térmica é:

$$W = \Delta(E_{MEC} + E_T) = \Delta(E_C + E_P + E_T)$$

Obviamente, tanto o trabalho realizado/sofrido por um sistema como as variações das energias envolvidas podem ter sinal positivo ou negativo.

Vejamos agora o exemplo de um balão de ar quente em ascensão.

O ar frio fora do balão realiza trabalho sobre ele devido à força de empuxo, aumentando sua energia mecânica.

Já o aumento da energia térmica do ar no interior do balão não tem relação com o empuxo, mas sim com o calor liberado na combustão do gás do maçarico.

Assim, para se realizar adequadamente o balanço energético, é necessária a adição do termo Q na equação anterior, o qual representa o calor proveniente da combustão:

$$W + Q = \Delta(E_C + E_P + E_T)$$

Essa equação também se aplica a outras formas de energia, como a química e a elétrica pois, no nível microscópico, elas se resumem a dois tipos básicos de energia, que são a cinética e a potencial.

Portanto, de forma geral, pode-se escrevê-la como:

$$W+Q=\Delta(E_C+E_P+E_T+E_E+E_Q)$$

Ou, simplesmente:

$$W + Q = \Delta E$$

sendo E a energia total do sistema.

Essa equação é uma das mais importantes da Física, a qual veremos mais adiante nesse curso. Ela é conhecida como a **Primeira Lei da Termodinâmica**.

Essa Lei diz, basicamente, que <u>se não houver variação de massa</u> <u>de um sistema</u>, a única forma de se variar a sua a energia total é através da realização de trabalho sobre/pelo sistema e/ou através da adição/retirada de calor ao/do sistema.

Um caso particular da **Primeira Lei da Termodinâmica** muito interessante é aquele em que o sistema não realiza trabalho sobre o entorno e nem sofre trabalho deste (W = 0) e também não cede nem recebe calor do entorno (Q = 0). Consideremos, também, que a massa do sistema não varie.

Nesse caso, temos que W + Q = 0 e dizemos que o **sistema é isolado**. Assim:

$$W + Q = \Delta E = 0$$

Esse último resultado é muito importante e é conhecido, na Física, como o **Princípio de Conservação da Energia**. Em última instância, pode-se concluir que:

[&]quot; A quantidade total de energia em um sistema isolado com massa constante sempre permanecerá constante ou, seja, a energia total é conservada."

Vamos olhar novamente a equação anterior:

$$\Delta(E_C + E_P + E_T + E_E + E_Q) = 0$$

Embora a quantidade total de energia do sistema não varie (ΔE =0), nesse sistema isolado deverão ocorrer conversões (ou transformações) da energia de uma forma para outra. Veja o exemplo a seguir (despreze o atrito):

$$\Delta(E_C + E_P) = 0$$

 $E_{MEC} = constante$

Definição clássica de potência

Potência representa um fluxo de energia por unidade de tempo ou a taxa em que se executa trabalho (Goldemberg, 2008).

$$\Delta t = 0.5 \text{ min}$$

$$P = \frac{dW}{dt} \ ou \ P = \frac{dE}{dt}$$

No exemplo ao lado, o trabalho é o mesmo para subir de escada ou de elevador, mas a potência do elevador é muitas vezes maior que a potência humana! Por quê?

Unidade básica de Potência

$$[P] = \frac{[W \ ou \ E]}{[\Delta t]}$$

Logo, no SI:

$$[P] = \frac{J}{s} = W$$

$$1W = \frac{1J}{1s} = 1J/s$$

Assim, 1 watt corresponde à realização de um trabalho de 1 J durante 1 segundo ou ao consumo de 1 J de energia a cada 1 segundo.

Uma outra unidade de potência, muito empregada em países de língua inglesa, é o horse-power ou HP.

Temos que 1 HP \approx 746 W

Equipamento	Data	Potência desenvolvida (HP)
Homem usando uma alavanca	Antes de 3000 a.C.	0,05
Boi puxando uma carga	Antes de 3000 a.C.	0,5
Turbina de água	1000 a.C.	0,4
Roda d'água vertical	350 a.C.	3
Moinho de vento	1600 d.C.	14
Máquina a vapor de Savery	1697 d.C.	1
Máquina a vapor de Newcomen	1712 d.C.	5,5

(Goldemberg, 2008)

Tabela 2.3 Unidades de potência

Unidade	Notação	Magnitude
Picowatt	$pW = 10^{-12}W$	Célula humana
Nanowatt	nW=10 ⁻⁹ W	Microchip
Microwatt	$\mu W = 10^{-6} Wt$	relógio de pulso a quartzo
Milliwatt	$mW = 10^{-3}W$	laser num aparelho de CD
Watt	W	lâmpada, eletrodomésticos em geral
Kilowatt	$kW = 10^3 W$	motores propulsores em geral
Megawatt	$MW = 10^6 W$	potência de locomotivas e plantas para a geração de
		eletricida de em geral
Gigawatt	$GW = 10^9 W$	capacidade de grandes hidrelétricas, consumo médio de
		eletricidade em um país em um ano
Terawatt	$TW = 10^{12}W$	consumo médio de eletricidade no mundo em um ano,
		produção global anual de energia no mundo pela fotossíntese
Petawatt	$PW = 10^{15}W$	potência do Sol recebida pela Terra

(Goldemberg, 2008)

Tabela :	2.3	Unidades	de	potência
----------	-----	----------	----	----------

Unidade	Notação	Magnitude
Picowatt	pW =10 ⁻¹² W	Célula humana
Nanowatt	nW=10 ⁻⁹ W	Microchip
Microwatt	$\mu W = 10^{-6} Wt$	relógio de pulso a quartzo
Milliwatt	$mW = 10^{-3}W$	laser num aparelho de CD
Watt	W	lâmpada, eletrodomésticos em geral
Kilowatt	$kW = 10^3 W$	motores propulsores em geral
Megawatt	$MW = 10^6 W$	potência de locomotivas e plantas para a geração de
		eletricida de em geral
Gigawatt	$GW = 10^9 W$	capacidade de grandes hidrelétricas, consumo médio de
		eletricidade em um país em um ano
Terawatt	$TW = 10^{12}W$	consumo médio de eletricidade no mundo em um ano,
		produção global anual de energia no mundo pela fotossíntese
Petawatt	$PW = 10^{15}W$	potência do Sol recebida pela Terra

Cuidado: é comum confundir potência com energia. Para você não cometer esse erro, lembre-se desse exemplo:

Aparelho 1: Chuveiro elétrico – Potência: 6.000 W ou 6 kW

Tempo diário de uso: 15 min ou 0,25 h

Aparelho 2: Lâmpada incandescente— Potência: 100 W ou 0,1 kW

Tempo diário de uso: 15 h

Qual desses equipamentos utiliza mais energia elétrica diariamente?

Chuveiro: $E = P.\Delta t = 6 \text{ kW.0,25 h} = 1,5 \text{ kWh}$

Lâmpada: E = P. Δt = 0,1 kW.15h = 1,5 kWh

Ou seja, ambos utilizam a mesma quantidade, porém o chuveiro o faz em um tempo muito menor!

Outra relação entre energia (ou trabalho) e potência:

Note que a energia utilizada ou o trabalho realizado ao longo do tempo, quando temos a expressão matemática ou o gráfico da potência instantânea, pode ser obtido a partir da integral* de P em relação a t. Isso equivale a encontrar a área sob o gráfico.

$$E_{(t1 \to t2)} = \int_{t1}^{t2} P(t) dt$$
 OU:
$$W_{(t1 \to t2)} = \int_{t1}^{t2} P(t) dt$$

$$W_{(t1 \to t2)} = \int_{t1}^{t2} P(t) dt$$

^{*} Esse conceito será visto mais adiante no curso de FUV – Não se preocupe pois, no momento atual, será necessário apenas saber calcular áreas de figuras planas.