MA101 Mathematics I

Department of Mathematics Indian Institute of Technology Guwahati

Jul - Nov 2013

Slides originally created by: Dr. Bikash Bhattacharjya

Instructors:

Rafikul Alam, Bhaba K. Sarma, Sriparna Bandyopadhyay, Kalpesh Kapoor

ver. 21 Sept 2013, 10:18 (bks)

1/23

Slides 7

PLAN

- Similarity and Diagonalization
- ullet Inner product, Norm and Orthogonality in \mathbb{R}^n
- Gram-Schmidt Process
- Orthogonal Complements

Similarity and Diagonalization

Suppose $A \in \mathcal{M}_n$ has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, and \mathbf{v}_i are eigenvectors w.r.t. λ_i , $1 \le i \le n$.

Recall: $\mathbf{v}_1, \dots, \mathbf{v}_n$ are LI and so form a basis for \mathbb{R}^n .

Let $P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$. Then P is invertible. What is AP?

$$AP = A[\mathbf{v}_1 \, \mathbf{v}_2 \, \cdots \, \mathbf{v}_n] = [A\mathbf{v}_1 \, A\mathbf{v}_2 \, \cdots \, A\mathbf{v}_n] = [\lambda_1 \mathbf{v}_1 \, \lambda_2 \mathbf{v}_2 \, \cdots \, \lambda_n \mathbf{v}_n]$$

$$= P\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = P \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = PD.$$

Thus, we get $P^{-1}AP = D$, a diagonal matrix.

Definition

If $P^{-1}AP = B$ for some P, then we say that A and B are similar. (Note that, in that case $PBP^{-1} = A$.) We then write, $A \approx B$.

If for some P, $P^{-1}AP = D$, a diagonal matrix, then A is said to be diagonalizable, and $P^{-1}AP = D$ a diagonalization of A.

3 / 23

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$. Then $A \approx B$, since $AP = PB$, where $P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

Note: A has eigenvalues $\lambda = \pm 1$, and hence A is diagonalizable.

Find a diagonalization $Q^{-1}AQ = \text{diag}(1, -1)$. Is there another diagonalization?

(Note: For any invertible diagonal matrix D_1 , $D_1^{-1}DD_1 = D$.)

Is B diagonalizable? Yes, A and B have same eigenvalues. Moreover,

$$\operatorname{diag}(1,-1) = Q^{-1}AQ = Q^{-1}PBP^{-1}Q = (P^{-1}Q)^{-1}B(P^{-1}Q).$$

Exercise

Is the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ diagonalizable? If so, find a diagonalization of A.

Diagonalization

Suppose $A \in \mathcal{M}_n$ has n distinct eigenvalues. Then A is diagonalizable. Is the converse true? No. Consider $A = I_n$.

Suppose A is diagonalizable, and $P^{-1}AP = D = \text{diag}(\lambda_1, \dots, \lambda_n)$, i.e., AP = PD. If $P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$, then $\mathbf{v}_i \neq \mathbf{0}$ and

$$[\lambda_1 \mathbf{v}_1 \ \lambda_2 \mathbf{v}_2 \cdots \lambda_n \mathbf{v}_n] = PD = AP = [A\mathbf{v}_1 \ A\mathbf{v}_2 \cdots A\mathbf{v}_n],$$

i.e., λ_i is an eigenvalue and \mathbf{v}_i is an eigenvector w.r.t. λ_i . Consequently, $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis of \mathbb{R}^n comprising of eigenvectors of A.

Converse: If \mathbb{R}^n has a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ comprising of eigenvectors of A, then A is diagonalizable: $P^{-1}AP$ is diagonal, where $P = [\mathbf{v}_1\mathbf{v}_2 \cdots \mathbf{v}_n]$.

Note: The condition will hold if $\dim(E_{\lambda_i})$ equals the algebraic multiplicity of λ_i for each eigenvalue λ_i of A.

5 / 23

Exercise

The geometric multiplicity of each eigenvalue of a matrix is less than or equal to its algebraic multiplicity.

Exercise

Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of a matrix A. Suppose \mathcal{B}_i is a basis for the eigenspace \mathcal{E}_{λ_i} . Then $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \ldots \cup \mathcal{B}_k$ is a linearly independent set.

Result (**The Diagonalization Theorem**)

For an $n \times n$ matrix A, the following statements are equivalent:

- A is diagonalizable.
- A has n linearly independent eigenvectors.
- **3** The union \mathcal{B} of the bases of the eigenspaces of A contains n vectors.
- The algebraic multiplicity of each eigenvalue A equals its geometric multiplicity.

Exercise

Is the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$ diagonalizable? Yes. 1, 4, 6 are (distinct) eigenvalues of A.

You can easily find: 1, 4, 6 have eigenvectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 16 \\ 25 \\ 10 \end{bmatrix}$, respectively.

Exercise

Is the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ diagonalizable? No. 1 is the only eigenvalue with algebraic multiplicity three. However, the eigenspace,

$$E_1 = \mathsf{null} \left(\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \right) = \mathsf{span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right).$$

7 / 23

Result

For a matrix $A \in \mathcal{M}_n$, sum of the eigenvalues is trace(A) and the product of the eigenvalues is det(A).

[We will try to give a proof in the later part of the slides.]

Exercise

Is the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 4 & 8 & 4 \end{bmatrix}$ diagonalizable?

Note that rank(A) = 1. So, $dim(E_0) = nullity(A) = 2$. Since sum of the eigenvalues is 11, the third eigenvalue must be 11. The algebraic and geometric multiplicities of the eigenvalues are equal. So, A is diagonalizable.

Eigenvalues
$$0, 0, 11$$
; Eigenvectors $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$, respectively.

Inner Products on \mathbb{C}^n and \mathbb{R}^n , norm, angle

For
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{C}^n$, we define

- Conjugate transpose of \mathbf{u} : $\mathbf{u}^* := \overline{\mathbf{u}}^T = [\overline{u_1}, \overline{u_2}, \dots, \overline{u_n}].$
- The inner product or the dot product of **u** and **v**:

$$\mathbf{u} \cdot \mathbf{v} := \mathbf{u}^* \mathbf{v} = \overline{u_1} v_1 + \overline{u_2} v_2 + \ldots + \overline{u_n} v_n.$$

In case $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^* \mathbf{v} = \mathbf{u}^T \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n.$$

• The norm or length of **u**:

$$\|\mathbf{u}\| := \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{|u_1|^2 + |u_2|^2 + \ldots + |u_n|^2}.$$

- **u** is called an unit vector if $\|\mathbf{u}\| = 1$.
- For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, the angle between \mathbf{u} and \mathbf{v} is defined to be θ , where $\cos \theta := \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$.

9 / 23

Result

For $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^n$, $c \in \mathbb{C}$,

- $\bullet \ \mathbf{u} \cdot \mathbf{v} = \overline{\mathbf{v} \cdot \mathbf{u}}.$
- $\bullet \ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}.$
- $(c \mathbf{u}) \cdot \mathbf{v} = \overline{c}(u \cdot \mathbf{v}), \quad \mathbf{u} \cdot (c \mathbf{v}) = c(u \cdot \mathbf{v}).$
- $\|\mathbf{u}\| \ge 0$ and $\|\mathbf{u}\| = 0 \Leftrightarrow \mathbf{u} = 0$.

Definition

Let \mathbb{F} denote either \mathbb{R} or \mathbb{C} .

- Two elements \mathbf{u}, \mathbf{v} in \mathbb{F}^n are said to be orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$, i.e., if $\cos \theta = 0$.
- A set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ in \mathbb{F}^n is said to be orthogonal if $\mathbf{v}_i \cdot \mathbf{v}_i = 0$ whenever $i \neq j$.
- A basis \mathcal{B} of \mathbb{F}^n is an orthogonal basis, if it is an orthogonal set.
- The vector $\mathbf{0} \in \mathbb{F}^n$ is orthogonal to every vector in \mathbb{F}^n .
- The standard basis of \mathbb{F}^n is orthogonal.

Example

- The set $\left\{ \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}$ is orthogonal in \mathbb{F}^3 .
- The set $\left\{ \begin{bmatrix} 1\\i \end{bmatrix}, \begin{bmatrix} i\\1 \end{bmatrix} \right\}$ is orthogonal set in \mathbb{C}^2 .

Result

Any orthogonal set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of nonzero vectors is linearly independent.

PROOF. Suppose $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_k \mathbf{v}_k = 0$. Then, for each $i = \mathbf{v}_i \cdot (\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_k \mathbf{v}_k) = \alpha_i \mathbf{v}_i \cdot \mathbf{v}_i = \alpha_i ||\mathbf{v}_i||^2$. Note that since $\mathbf{v} \neq \mathbf{0}$, $||\mathbf{v}|| \neq 0$. Thus, $\alpha_i = 0$.

11 / 23

Result

Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be an orthogonal basis for a subspace \mathbb{W} of \mathbb{F}^n . Suppose $\mathbf{w} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k \in \mathbb{W}$. Then,

$$\mathbf{v}_i \cdot \mathbf{w} = \alpha_i \mathbf{v}_i \cdot \mathbf{v}_i, \quad \text{i.e.,} \quad \alpha_i = \frac{\mathbf{v}_i \cdot \mathbf{w}}{\|\mathbf{v}_i\|^2} \quad \text{ for } i = 1, 2, \dots, k.$$

In case $\|\mathbf{v}_i\|^2 = 1$ (i.e., \mathbf{v}_i are unit vectors), then $\alpha_i = \mathbf{v}_i \cdot \mathbf{w}$.

Definition

- An orthogonal set of unit vectors is called an orthonormal set.
- A basis which is an orthonormal set is called an othonormal basis.

Example

The standard basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is an orthonormal basis of \mathbb{F}^n .

Does every subspace of \mathbb{F}^n have an orthonormal basis? Yes. In fact, you can create one from any given basis of the subspace. The process is called Gram-Schmidt Process.

Gram-Schmidt Process- example

$$\mathsf{Suppose}\ \mathbb{W} = \mathsf{span}\left(\mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ 4 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 7 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 3 \\ 11 \\ 4 \end{bmatrix} \right) \preccurlyeq \mathbb{R}^4.$$

We find an orthonormal basis of W as follows: Put

$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \begin{bmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \\ 0 \end{bmatrix};$$

$$\mathbf{u}_2 = \mathbf{v}_2 - (\mathbf{w}_1 \cdot \mathbf{v}_2) \mathbf{w}_1 = \begin{bmatrix} -1 \\ 0 \\ 7 \\ 0 \end{bmatrix} - 5 \begin{bmatrix} \frac{3}{5} \\ 0 \\ \frac{4}{5} \\ 0 \end{bmatrix} = \begin{bmatrix} -4 \\ 0 \\ 3 \\ 0 \end{bmatrix},$$

$$\bullet \mathbf{w}_2 = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} = \begin{bmatrix} \frac{-4}{5} \\ 0 \\ \frac{3}{5} \\ 0 \end{bmatrix};$$

$$\mathbf{u}_3 = \mathbf{v}_3 - (\mathbf{w}_1 \cdot \mathbf{v}_3)\mathbf{w}_1 - (\mathbf{w}_2 \cdot \mathbf{v}_3)\mathbf{w}_2 = \mathbf{v}_3 - 10\mathbf{w}_1 + 5\mathbf{w}_2 = \begin{bmatrix} 0 \\ 3 \\ 0 \\ 4 \end{bmatrix}.$$

• $\mathbf{w}_3 = \frac{\mathbf{u}_3}{\|\mathbf{u}_3\|} = \begin{bmatrix} 0\\\frac{3}{5}\\0\\\frac{4}{5} \end{bmatrix}$. Then $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is an orthonormal basis of

13 / 23

Result (The Gram-Schmidt Process)

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a basis for a subspace W of \mathbb{R}^n . Define

$$\mathbf{u}_{1} = \mathbf{v}_{1}$$

$$\mathbf{u}_{2} = \mathbf{v}_{2} - (\mathbf{w}_{1} \cdot \mathbf{v}_{2})\mathbf{w}_{1}$$

$$\mathbf{u}_{3} = \mathbf{v}_{3} - (\mathbf{w}_{1} \cdot \mathbf{v}_{3})\mathbf{w}_{1} - (\mathbf{w}_{2} \cdot \mathbf{v}_{3})\mathbf{w}_{2}$$

$$\vdots$$

$$\vdots$$

$$\mathbf{u}_{k} = \mathbf{v}_{k} - \sum_{i=1}^{k-1} (\mathbf{w}_{i} \cdot \mathbf{v}_{k})\mathbf{w}_{i}$$

$$\mathbf{w}_{1} = \frac{\mathbf{u}_{1}}{\|\mathbf{u}_{2}\|};$$

$$\mathbf{w}_{3} = \frac{\|\mathbf{u}_{2}\|}{\|\mathbf{u}_{3}\|};$$

$$\vdots$$

$$\vdots$$

$$\mathbf{w}_{k} = \frac{\mathbf{u}_{k}}{\|\mathbf{u}_{k}\|}.$$

Then

- $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ is orthonormal.
- For $1 \le i \le k$, $span(\mathbf{w}_1, \dots, \mathbf{w}_i) = span(\mathbf{v}_1, \dots, \mathbf{v}_i)$.
- Therefore, $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ is an orthonormal basis of \mathbb{W} .

• Recall: For $A \in \mathcal{M}_n(\mathbb{C})$, the conjugate transpose of A, $A^* := \overline{A}^T$. Result

Let A be a Hermitian (or real symmetric) matrix. Then

- all eigenvalues of A are real.
- eigenvectors w.r.t. distinct eigenvalues of A are orthogonal.

PROOF. Suppose A is a Hermitian matrix, i.e., $A^* = A$. Let λ be an eigenvalue of A. Then for an eigenvector \mathbf{v} of A,

$$\lambda \|\mathbf{v}\|^{2} = \lambda(\mathbf{v} \cdot \mathbf{v}) = \mathbf{v} \cdot (\lambda \mathbf{v}) = \mathbf{v} \cdot A\mathbf{v} = \mathbf{v}^{*}(A\mathbf{v}) = (\overline{\mathbf{v}}^{T}A)\mathbf{v}$$

$$= (A^{T}\overline{\mathbf{v}})^{T}\mathbf{v} = (\overline{A^{*}}\overline{\mathbf{v}})^{T}\mathbf{v} = (\overline{A}\mathbf{v})^{T}\mathbf{v} = (A\mathbf{v})^{*}\mathbf{v}$$

$$= (\lambda \mathbf{v}) \cdot \mathbf{v} = \overline{\lambda}(\mathbf{v} \cdot \mathbf{v}) = \overline{\lambda}\|\mathbf{v}\|^{2}.$$

Since $\mathbf{v} \neq 0$, we have $\|\mathbf{v}\|^2 \neq 0$. Thus, $\lambda = \overline{\lambda}$, i.e., λ is real.

Next, suppose λ, μ are two distinct eigenvalues of A, and ${\bf u}$ and ${\bf v}$ are corresponding eigenvectors. Then

$$\mu(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (\mu \mathbf{v}) = \mathbf{u} \cdot (A\mathbf{v}) = (\mathbf{u}^*A)\mathbf{v} = (A^*\mathbf{u})^*\mathbf{v}$$
$$= (A\mathbf{u})^*\mathbf{v} = (\lambda \mathbf{u}) \cdot \mathbf{v} = \overline{\lambda}(\mathbf{u} \cdot \mathbf{v}).$$

Since λ is real we get $(\lambda - \mu)(\mathbf{u} \cdot \mathbf{v}) = 0$, i.e., $\mathbf{u} \cdot \mathbf{v} = 0$.

15 / 23

Definition

- A matrix $U \in \mathcal{M}_n(\mathbb{C})$ whose columns form an orthonormal set is called a unitary matrix.
- A real unitary matrix is called an orthogonal matrix.
- A matrix A is said to be unitarily diagonalizable if A has a diagonalization $U^{-1}AU=D$, where U is a unitary matrix.

Exercise

Show that $A \in \mathcal{M}_n(\mathbb{C})$ is unitary iff $A^{-1} = A^*$ and $A \in \mathcal{M}_n(\mathbb{R})$ is orthogonal iff $A^{-1} = A^*$

[Hint. If $A = [\mathbf{u}_1 \, \mathbf{u}_2 \dots \, \mathbf{u}_n]$, then the (i,j)-th entry of A^*A is $\mathbf{u}_i^* \mathbf{u}_i = \mathbf{u}_i \cdot \mathbf{u}_i$.]

Result (The Spectral Theorem of Hermitian matrices)

Every Hermitian matrix $A \in \mathcal{M}_n(\mathbb{C})$ is unitarily diagonalizable.

Sketch of the Proof.

Use induction on n. Result is obvious for n=1. Suppose true for n-1. Let λ_1 be an eigenvalue with eigenvector \mathbf{v}_1 . We can assume $\|\mathbf{v}\|=1$. Extend $\{\mathbf{v}_1\}$ to an orthonormal basis $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}$ of \mathbb{C}^n . Let $U=[\mathbf{v}_1\,\mathbf{v}_2\,\ldots\,\mathbf{v}_n]$. Then $U^{-1}=U^*$. Verify that $U^{-1}AU=\begin{bmatrix}\lambda_1&\mathbf{0}\\\overline{\mathbf{0}&A_1\end{bmatrix}$ for some A_1 and that A_1 is Hermitian. By induction hypothesis, we have unitary diagonalization $U_1^{-1}A_1U_1=D_1$ of A_1 . Now verify that $U_2=\begin{bmatrix}1&\mathbf{0}\\\overline{\mathbf{0}&U_1\end{bmatrix}$ is unitary, and $(U_2U)^{-1}A(U_2U)=\begin{bmatrix}\lambda_1&\mathbf{0}\\\overline{\mathbf{0}&D_1\end{bmatrix}$ is a unitarily diagonalization of A.

17 / 23

The technique of the proof of the previous theorem can be used to prove the following:

Result (Schur Triangulization Theorem)

For every $A \in \mathcal{M}_n(\mathbb{C})$, there is a unitary matrix U such that $U^{-1}AU$ is triangular.

- Suppose $A \in \mathcal{M}_n(\mathbb{C})$ and $U^{-1}AU = Q$, where Q is triangular. Now note the following:
 - $A \approx Q$, and so they have same eigenvalues.
 - ullet The eigenvalues of Q are its diagonal elements.
 - Sum of the eigenvalues of A equals the sum of the eigenvalues of Q, which equals the trace of Q.
 - Since $A \approx Q$, A and Q have same trace.
 - Sum of the eigenvalues of A is its trace.
 - Similarly (how?), the product of the eigenvalues of A is det(A).

Orthogonal Complements

Consider $\mathbb{W} = \operatorname{span}(\mathbf{e}_1, \mathbf{e}_2) \preceq \mathbb{R}^3$. If \mathbf{u} is orthogonal to every vector in \mathbb{W} , what can you say about \mathbf{u} ? We must have $\mathbf{u} = \alpha \mathbf{e}_3$ for some $\alpha \in \mathbb{R}$.

Consider $\mathbb{W} = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_k) \preccurlyeq \mathbb{R}^n$. Then, $w \cdot \mathbf{u} = 0$ for every $\mathbf{w} \in \mathbb{W}$ iff $\mathbf{v}_i^T \mathbf{u} = 0$ for $1 \le i \le k$, iff $A^T \mathbf{u} = \mathbf{0}$, where $A = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_k]$, iff $\mathbf{u} \in \operatorname{null}(A^T)$.

- Let \mathbb{W} be a subspace of \mathbb{R}^n .
 - $\mathbf{v} \in \mathbb{R}^n$ is said to be orthogonal to \mathbb{W} , if $\mathbf{v} \cdot \mathbf{w} = 0$ for every $\mathbf{w} \in \mathbb{W}$.
 - The orthogonal complement of W:

$$\mathbb{W}^{\perp} := \{ \mathbf{v} \in \mathbb{R}^n : \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \in \mathbb{W} \}.$$

• Clearly, $\mathbb{W}^{\perp} \preceq \mathbb{R}^n$, and $\mathbb{W} \cap \mathbb{W}^{\perp} = \{\mathbf{0}\}$.

19 / 23

• If $\mathbb{W} = \text{span}(\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k)$, then $\mathbf{v} \in \mathbb{W}^{\perp}$ if and only if $\mathbf{v} \cdot \mathbf{w}_i = 0$ for all $i = 1, 2, \dots, k$.

Result

Let A be an $m \times n$ matrix. Then $(\operatorname{col}(A))^{\perp} = \operatorname{null}(A^{\mathsf{T}})$ and $(\operatorname{row}(A))^{\perp} = \operatorname{null}(A)$.

Exercise

Find a basis for \mathbb{W}^{\perp} , where

$$\mathbb{W} = \text{span}([1, -3, 5, 0, 5]^T, [-1, 1, 2, -2, 3]^T, [0, -1, 4, -1, 5]^T).$$

Result

Let $\mathbb{W} \preceq \mathbb{R}^n$ and let $\mathbf{v} \in \mathbb{R}^n$. Then there are unique vectors $\mathbf{w} \in \mathbb{W}$ and $\mathbf{w}^{\perp} \in \mathbb{W}^{\perp}$ such that $\mathbf{v} = \mathbf{w} + \mathbf{w}^{\perp}$. That is, $\mathbb{R}^n = \mathbb{W} \bigoplus \mathbb{W}^{\perp}$.

[This result is known as the Orthogonal Decomposition Theorem.]

PROOF. Take an orthonormal basis $\{u_1, \ldots, \mathbf{u}_k\}$ of \mathbb{W} . For $\mathbf{v} \in \mathbb{R}^n$ take $\mathbf{w} = \sum_{i=1}^k (\mathbf{v} \cdot \mathbf{u}_i) \mathbf{u}_i$. Put $\mathbf{w}^{\perp} = \mathbf{v} - \mathbf{w} \in \mathbb{W}^{\perp}$. Then $\mathbf{v} = \mathbf{w} + \mathbf{w}^{\perp}$ is the unique representation.

Exercises

- Let $A, B \in \mathcal{M}_n(\mathbb{F})$ be similar. Argue that the following hold:
 - **1** For some invertible P, AP = PB.
 - \bigcirc det $A = \det B$.
 - **3** A is invertible iff B is invertible.
 - **4** A and B have the same rank.
 - **3** A and B have the same characteristic polynomial.
 - **10** A and B have the same eigenvalues.

21 / 23

Exercises

• Check for the diagonalizablity of the following matrices. If they are diagonalizable, find invertible matrices *P* that diagonalizes them:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix} \text{ and } \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}.$$

- Show that for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $c \in \mathbb{R}$
 - $\mathbf{0} \ \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u};$
 - $2 \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w};$
 - $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v});$
 - 4 $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.
- Apply the Gram-Schmidt process to find an orthonormal basis of the subspace spanned by $\mathbf{u} = [1, -1, -1]^T$, $\mathbf{v} = [0, 3, 3]^T$ and $\mathbf{w} = [3, 2, 4]^T$.

Exercises

- Use Orthogonal Decomposition Theorem to show:
 - (1) dim \mathbb{W} + dim \mathbb{W}^{\perp} = n,
 - (2) $(\mathbb{W}^{\perp})^{\perp} = \mathbb{W}$.
 - (3) For any matrix A, rank(A) + nullity(A) = n.
- Let \mathbb{W} be a subspace of \mathbb{R}^n . Show that there exists a matrix A such that $\mathbb{W} = \text{null}(A)$.

[Hint. Take $A = [\mathbf{a}_1 \dots \mathbf{a}_k]$, where $\{\mathbf{a}_1, \dots, \mathbf{a}_k\}$ is an orthonormal basis of \mathbb{W}^{\perp} .]

• Find a basis for W^{\perp} , where $W = \text{span}([1, -3, 5, 0, 5]^t, [-1, 1, 2, -2, 3]^t, [0, -1, 4, -1, 5]^t).$