Tutorial 4 (week 4)

Exercise 10.1

In Exercise 1-8, match the equation with one of the conic sections labelled (a)-(h). If the conic is a parabola, find its vertex, focus and directrix. If it is an ellipse or a hyperbola, find its vertices, foci and eccentricity.

5.
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 6. $x^2 + \frac{y^2}{4} = 1$

In Exercise 15-20, find the foci and vertices of the ellipse, and sketch its graph.

15.
$$\frac{x^2}{4} + \frac{y^2}{25} = 1$$
 19. $x^2 + 4y^2 = 4$

In Exercise 31-38, find an equation of the ellipse that satisfies the given conditions.

- 31. Foci ($\pm 1, 0$), vertices ($\pm 3, 0$)
- 33. Foci (0, ± 1), length of major axis 6
- 35. Vertices (± 3 , 0), passing through (1, $\sqrt{2}$)
- 37. Passes through $(2, \frac{3\sqrt{3}}{2})$ with vertices at $(0, \pm 5)$

Exercise 10.1

In Exercise 1-8, match the equation with one of the conic sections labelled (a)-(h). If the conic is a parabola, find its vertex, focus and directrix. If it is an ellipse or a hyperbola, find its vertices, foci and eccentricity.

7.
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

$$8. \ y^2 - \frac{x^2}{4} = 1$$

In Exercise 21-26, find the vertices, foci, and asymptotes of the hyperbola, and sketch its graph using its asymptotes as an aid.

21.
$$\frac{x^2}{25} - \frac{y^2}{144} = 1$$

$$25. \ y^2 - 5x^2 = 25$$

In Exercise 39-44, find an equation of the hyperbola centred at the origin that satisfies the given conditions.

39. Foci (
$$\pm 5, 0$$
), vertices ($\pm 3, 0$)

41. Foci (0,
$$\pm 5$$
), conjugate axis of length 4

43. Vertices (
$$\pm 2$$
, 0), asymptotes $y = \pm \frac{3}{2}x$