

INNER PRODUCTS

Why

We abstract the notion of inner product to an arbitrary vector space.

Definition

Suppose **F** is a field which is either **R** or **C**. Let (V, \mathbf{F}) be a vector space. Then a function $f: V \times V \to \mathbf{F}$ is an *inner product* on V if

- 1. $f(x,x) \ge 0$, $f(x,x) = 0 \Leftrightarrow x = 0$;
- 2. $f(x,y) = \overline{f(y,x)}$
- 3. f(ax + by, z) = a(x, z) + b(y, z)

A inner product space (or pre-Hilbert space) is a tuple (V, f) where V is an inner product space over \mathbf{F} and $f: V^2 \to \mathbf{F}$ is an inner product.

Notation

Suppose V is a vector space over the field \mathbf{F} . We regularly denote an arbitrary inner product for V by $\langle \cdot, \cdot \rangle : V^2 \to \mathbf{F}$. So we would denote the inner product of the vector x with the vector y by $\langle x, y \rangle$.

