تعريفات

- الازاحة الزاوية: التغير في الزاوية اثناء الدوران
- السرعة الزاوية: التغير في الازاحة الزاوية اثناء الدوران
- التسارع الزاوي: التغير في السرعة الزاوية اثناء الدوران
 - التردد الزاوي: عدد الدورات التي يتمها الجسم في ثانية
 - العزم: مقدرة القوة على احداث دوران
- ذراع القوة: المسافة بين محور الدوران و القوة بشكل عامودي
- مركز الكتلة: نقطة تتحرك بالطريقة نفسها التي يتحرك بها الجسيم النقطي
 - الجسيم النقطي: نقطة تتركز فيها معذم كتلة الجسم
 - الدفع: حاصل ضرب متوسط القوة في زمن تأثير ها
 - الزخم: حاصل ضرب كتلة الجسم في سرعتة

معلومات مهمة

- $rad = \frac{1}{2}\pi \bullet$
- $grad = \frac{1}{360} \bullet$
- $2\pi \ rad = 360 \ grad = 1$ الدورة الكاملة
- تعد الارض مثالاً للحركة جسم صلب حركة دورانية لان جميع النقاط الواقعة عليها تدور بسرعة نفسها
 - مركز كتلة الانسان ليس ثابت لان جسمه مرن
 - يكون الجسم اكثر استقراراً حين:
 - مركز كتلة الجسم منخفض
 - القاعدة عريضة
 - مركز الكتلة قوق القاعدة

- شروط الاتزان:
- $\Sigma F = 0$ اتزان انتقالي \blacksquare
- $\Sigma au = 0$ اتزان دوراني =

وحدات و رموز

theta(Θ)	(<i>rad</i>)	• الازاحة الزاوية
$omega(\omega)$	$(\frac{rad}{s})$	 السرعة الزاوية
alpha(α)	$\left(\frac{rad}{s^2}\right)$	 التسارع الزاوي
frequency(f)	$(\frac{rad}{s})$	• التردد الزاوي
tau(τ)	(N.M)	• العزم
Length(L)	(M)	• ذراع القوة
Force(F)	(N)	• القوة
(I)	(N.S)	• الدفع
(P)	$(Kg\frac{M}{S})$	• الزخم

قاونين

- $d = \Theta . r \bullet$
- $v = \omega . r \bullet$
- $a = \alpha . r \bullet$
- $f = \frac{\omega}{2\pi} \bullet$
- $\tau = sin\Theta.r$ or $\tau = F.L$
 - $I = \Delta F t \bullet$
 - $P = m.v \bullet$
- $I = \Delta P \iff I = m(v_2 v_1) \bullet$