

Problem 6: Maximum Likelihood

<u>Course</u> > <u>Final exam</u> > <u>Final Exam</u> > Estimation of Phase Noise

Problem 6: Maximum Likelihood Estimation of Phase Noise

Phase Noise Estimation under Gaussian Noise: Setup

This problem is motivated by estimation in communication systems (Wi-Fi, cellphones, etc). The solution obtained in this problem is implemented real-time in many communication systems. For example, your laptop Wi-Fi adapter, which is downloading and uploading all the content that you are consuming in this course, is performing this estimation (albeit in a more complicated statistical model) tens of hundreds of times every second.

Let

$$\mathbf{x} = egin{bmatrix} \cos{(heta)} \ \sin{(heta)} \end{bmatrix}$$

be a known vector, i.e. **we assume that we know** $oldsymbol{ heta}$. Let $heta \in [0,\pi/2]$.

Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ be defined as follows:

$$\mathbf{Y}_i = egin{bmatrix} Y_i^{(1)} \ Y_i^{(2)} \end{bmatrix} = egin{bmatrix} \cos{(heta + \phi)} \ \sin{(heta + \phi)} \end{bmatrix} + \mathbf{Z}_i, \;\; i = 1, \ldots, n,$$

where $\mathbf{Z}_i \sim \mathcal{N}\left(0,\sigma^2\mathbf{I}_2
ight)$ for a known σ^2 and ϕ is an unknown constant. Assume that $\mathbf{Z}_i, i=1,\dots,n$ are independent.

Objective: Upon observing $\mathbf{Y}_i, i=1,\ldots,n$, we wish to produce an estimate $\widehat{\phi}$ of $\phi\in[-\pi,\pi]$.

(a) True or False

1/1 point (graded)

Select whether the following statement is ${f true}\ {f or}\ {f false}$: " ${f Y}_i$ are iid.""

False

Solution:

The statement is true. The multivariate Gaussian vectors \mathbf{Z}_i are iid. Therefore, \mathbf{Y}_i , which are deterministic functions of the \mathbf{Z}_i 's, respectively for $i=1,\ldots,n$, are iid.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

(b) The Underlying Problem

1/1 point (graded)

Referring to the **objective** in the problem setup given above, select from the following the statements that are correct. (Choose all that apply.)

- \blacksquare We are trying to estimate the **magnitude** by which \mathbf{x} is scaled (in the presence of vector Gaussian noise).
 - lacktriangle We are trying to estimate the **phase rotation** undergone by ${f x}$ (in the presence of vector Gaussian noise). lacktriangle
 - \square We are trying to estimate the **magnitude and phase changes** undergone by \mathbf{x} (in the presence of vector Gaussian noise).

~

Grading Note: Partial credit is given.

Solution:

The objective of the problem states that we wish to produce an estimate of ϕ , which is the phase rotation undergone by \mathbf{x} under an additive Gaussian noise.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

(c) Observation Under Zero Noise

1.0/1 point (graded)

For a moment, assume that there is **no Gaussian noise in the problem**. That is, let $\mathbf{Y}_i = [\cos{(\theta+\phi)} \ \sin{(\theta+\phi)}]^T \triangleq \begin{pmatrix} Y^{(1)} \\ Y^{(2)} \end{pmatrix}$, for all i, in this sub-problem.

For simplicity, assume that $heta \in [0,\pi/2]$, $heta + \phi \in [0,\pi/2]$.

What is ϕ ?

(Express your answer in terms of $Y^{(1)}$, $Y^{(2)}$, θ , and the $\arctan(x)$ function. Use **Y_1** for $Y^{(1)}$ and **Y_2** for $Y^{(2)}$. Type $\arctan(x)$ for $\arctan(x)$ (where x can be any expression). **Do not use** any trigonometric function other than \arctan .)

$$\phi =$$
 arctan(Y_2/Y_1) - theta
 \checkmark Answer: -theta + arctan(Y_2/Y_1)

STANDARD NOTATION

Solution:

If there is no noise, the value of ϕ is $\arctan\left(rac{Y^{(2)}}{Y^{(1)}}
ight)- heta$, where we assume that $heta\in[0,\pi/2]$, $heta+\phi\in[0,\pi/2]$ for simplicity.

Submit

You have used 1 of 3 attempts

- Answers are displayed within the problem
- (d) Maximum Likelihood Estimator of the Phase Noise Log Likelihood

1.0/1 point (graded)

Now, let us return to the original setup. What is the log-likelihood ℓ_n ($\mathbf{Y}_1,\ldots,\mathbf{Y}_n;\phi$)?

For the answer box below, ignore the term $\ln\left(\frac{1}{(\sqrt{2\pi\sigma^2})^{2n}}\right)$ in the log-likelihood and input the rest of the log-likelihood expression.

(Use **Sigma_i(X_i)** for $\sum_{i=1}^{n} (X_i)$ (where X_i can be any quantity in a series indexed by i), **Y_1** for $Y_i^{(1)}$, and **Y_2** for $Y_i^{(2)}$. Enter **sin(x)** for $\sin(x)$, **cos(x)** for $\cos(x)$.)

- (Sigma_i((Y_1 - cos(theta+phi))^2 + (Y_2 - sin(theta+phi))^2))/(2*sigma^2)

Answer: $-(1/(2*sigma^2))*Sigma_i((Y_1 - cos(theta + phi))^2 + (Y_2 - sin(theta + phi))^2)$

Solution:

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

(e) Maximum Likelihood Estimator of the Phase Noise

1.0/1 point (graded)

Let
$$\widehat{\mu}_1=\sum_{i=1}^nrac{Y_i^{(1)}}{n}$$
 and $\widehat{\mu}_2=\sum_{i=1}^nrac{Y_i^{(2)}}{n}$.

Compute the maximum likelihood estimator $\widehat{\phi}_{n, ext{MLE}}$ of ϕ upon observing $\mathbf{Y}_i, i=1,\dots,n$

Note: Again for simplicity, assume while entering the expression in the following box that $heta\in[0,\pi/2]$, $\widehat{\mu}_1>0$, and $\widehat{\mu}_2>0$.

(Use **hatmu_1** for $\widehat{\mu}_1$ and **hatmu_2** for $\widehat{\mu}_2$. Type **arctan(x)** for $\arctan(x)$ (where x can be any expression). **Do not use** any trigonometric function other than $\arctan(x)$

$$\widehat{\phi}_{n, ext{MLE}} = oxed{arctan(hatmu_2/hatmu_1) - theta}$$

Answer: -theta + arctan(hatmu_2/hatmu_1)

STANDARD NOTATION

Solution:

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

(f) Geometry of the MLE of Phase Noise

0.5/1 point (graded)

Select from the following all statements that are true. (Choose all that apply.)

- $ule{\hspace{-0.1cm}\hspace{-0.1cm}\hspace{-0.1cm}}$ The MLE of ϕ does not change if we scaled ${f x}$ by r>0. ${f \checkmark}$
- lacktriangle The MLE of ϕ does not change if the covariance matrix of the multivariate Gaussian is scaled by s>0. \checkmark

Grading Note: Partial credit is given.

Solution:

Submit

You have used 2 of 3 attempts

Answers are displayed within the problem

Error and Bug Reports/Technical Issues

Topic: Final exam: Final Exam / Problem 6: Maximum Likelihood Estimation of Phase Noise

Show Discussion