

UNIVERSIDAD AUTÓNOMA DE CHIAPAS.

FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN, CAMPUS I.

LICENCIATURA EN INGENIERÍA EN DESARROLLO Y TECNOLOGÍAS DE SOFTWARE.

SEXTO SEMESTRE, GRUPO: "M"

MATERIA: COMPILADORES.

DOCENTE: DR. LUIS GUTIÉRREZ ALFARO.

ALUMNA: CIGARROA HERNÁNDEZ LUISA FERNANDA (A210118).

"CONCEPTOS"

FECHA DE ENTREGA: SÁBADO 27 DE ENERO DE ENERO DE 2024.

ÍNDICE

DEFI	NIR EL CONCEPTO DE EXPRESIÓN REGULAR	3
1.	Explicar los tipos de operadores de expresiones regulares	3
2.	Explicar el proceso de conversión de DFA a expresiones regulares	3
3.	Explicar leyes algebraicas de expresiones regulares	4
REFI	ERENCIAS BIBLIOGRÁFICAS	6

DEFINIR EL CONCEPTO DE EXPRESIÓN REGULAR

1. Explicar los tipos de operadores de expresiones regulares.

Las expresiones regulares son un equivalente algebraico para un autómata. Utilizado en muchos lugares como un lenguaje para describir patrones en texto que son sencillos pero muy útiles. Pueden definir exactamente los mismos lenguajes que los autómatas pueden describir: Lenguajes regulares. (Regulares, 1. Expresiones. (s. f.). *Propedéutico: Teoría de Autómatas y Lenguajes Formales Expresiones regulares y lenguajes.*).

2. Explicar el proceso de conversión de DFA a expresiones regulares.

Las constantes y variables pueden ser combinadas por un operador para producir un resultado que a su vez puede ser utilizado con otro operador. El tipo de datos resultante o la expresión debe ser un entero escalar o un valor de coma flotante. Si el resultado es cero, la expresión se considera FALSE; de lo contrario, es TRUE. (IBM. Documentación).

Operador	Descripción	Tipos de datos izquierdos	Tipos de datos correctos	Ejemplo
+	Suma	Entero, flotante	Entero, flotante	"1 + 2" da como resultado 3
-	Resta	Entero, flotante	Entero, flotante	"1.0-2.0" da como resultado -1.0
*	Multiplicación	Entero, flotante	Entero, flotante	"2 * 3" da como resultado 6
/	División	Entero, flotante	Entero, flotante	"2/3" da como resultado 1
-	Unario menos	Ninguna	Entero, flotante	"-abc"
+	Suma unaria	Ninguna	Entero, flotante	"+ abc"
	Rango	Enteros	Enteros	"1 3" da como resultado 1,2,3
%	Módulo	Enteros	Enteros	"10%2" da como resultado 0
I	OR a nivel de bit	Enteros	Enteros	"2 4" da como resultado 6

0	AND a nivel de bit	Enteros	Enteros	"3 & 2" da como
α				resultado 2
				Tesuitau

3. Explicar leyes algebraicas de expresiones regulares.

En el contexto de las expresiones regulares, las "leyes algebraicas" a menudo se refieren a reglas o propiedades que pueden aplicarse para simplificar o transformar expresiones regulares de manera equivalente. (INAOEP. *Expresiones Regulares*. 06 de mayo de 2015).

Asociatividad y conmutatividad.

Existen un conjunto de leyes algebraicas que se pueden utilizar para las expresiones regulares:

- Ley conmutativa para la unión: L+M = M+L:
- Ley asociativa para la unión (L+M) + N: L+ (M+N)
- Ley asociativa para la concatenación: (LM)N = L(MN)

Elemento identidad y Elemento nulo.

Una identidad para un operador es un valor tal que cuando el operador se aplica a la identidad y a algún otro valor, el resultado es el otro valor.

- 0 es la identidad para la adición: 0 + x = x + 0 = x.
- 1 es la identidad para la multiplicación: 1 x x = x x 1 = x
- Ø es la identidad para la unión: Ø + L = L + Ø= L
- ϵ es la identidad para la concatenación: ϵ L= L ϵ = L
- Ø es la identidad para la concatenación: ØL= LØ = Ø

Leyes distributivas.

Como la concatenación no es conmutativa, tenemos dos formas de la ley distributiva para la concatenación:

 Ley Distributiva Izquierda para la concatenación sobre unión: L(M + N) = LM + LN Ley Distributiva Derecha para la concatenación sobre unión: (M + N)L = ML + NL

Leyes de idempotencia.

Se dice que un operador es idempotente (idempotent) si el resultado de aplicarlo a dos argumentos con el mismo valor es el mismo valor

- la suma no es un operador idempotente: $x + x \neq x$ (aunque para algunos valores si aplica como 0 + 0 = 0)
- En general la multiplicación tampoco es idempotente: x × x ≠ x
- La unión intersección son ejemplos comunes de operadores idempotentes. Ley idempotente para la unión: L + L = L

REFERENCIAS BIBLIOGRÁFICAS

✓ Regulares, 1. Expresiones. (s. f.). Propedéutico: Teoría de Autómatas y Lenguajes Formales Expresiones regulares y lenguajes.

Recuperado de:

https://posgrados.inaoep.mx/archivos/PosCsComputacionales/Curso_Propede utico/Automatas/03_Automatas_ExpresionesRegularesLenguajes/CAPTUL1.P DF

✓ IBM. (s. f.). Documentación, Expresiones Regulares.

Recuperado de:

https://www.ibm.com/docs/es/tsafm/4.1.1?topic=expressions-operators-that-can-be-used-in

✓ Inaoep. (06 de mayo de 2015). Expresiones Regulares.

Recuperado de:

https://ccc.inaoep.mx/ingreso/automatas/expresionesRegulares.pdf