Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/006384

International filing date: 31 March 2005 (31.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-102162

Filing date: 31 March 2004 (31.03.2004)

Date of receipt at the International Bureau: 20 May 2005 (20.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日 本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

2004年 3月31日 Date of Application:

願 番 号

特願2004-102162 Application Number:

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is JP2004-102162

出 願 人

東京電力株式会社

Applicant(s):

2005年 4月27日

Japan Patent Office

特許庁長官 Commissioner,

【書類名】 特許願 【整理番号】 T 0 2 P 0 2 3 【あて先】 特許庁長官 殿 G 0 1 P 5 / 2 2 【国際特許分類】 【発明者】 【住所又は居所】 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 【氏名】 治嗣 森 【発明者】 【住所又は居所】 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 【氏名】 手塚 英昭 【特許出願人】 【識別番号】 000003687 【氏名又は名称】 東京電力株式会社 【代理人】 【識別番号】 100101742 【弁理士】 【氏名又は名称】 麦島 隆 【選任した代理人】 【識別番号】 100101384 【弁理士】 【氏名又は名称】 的場 成夫 【手数料の表示】 【予納台帳番号】 107918 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 【物件名】 明細書

【物件名】

【物件名】

図面

要約書

【書類名】特許請求の範囲

【請求項1】

被測定流体に含まれる粒子の画像を微小時間間隔で撮像する撮像手段と、前記撮像手段を制御する制御手段と、前記撮像手段で取得した2時刻の輝度パターン分布を比較して、 粒子群の移動方向及び移動量を計測し、被測定流体の流れ場を解析する画像処理手段とを 備えた流体計測システムであって、

前記撮像手段が長焦点光学系を備え、長距離離間した被測定流体を撮像可能な長距離型であることを特徴とする流体計測システム。

【請求項2】

被測定流体に含まれる粒子の画像を微小時間間隔で撮像する撮像手段と、前記撮像手段を制御する制御手段と、前記撮像手段で取得した2時刻の輝度パターン分布を比較して、 粒子群の移動方向及び移動量を計測し、被測定流体の流れ場を解析する画像処理手段とを 備えた流体計測システムであって、

前記撮像手段が長焦点光学系を備え、長距離離間した被測定流体中の自然光反射による 輝度バターン分布を撮像可能な長距離型であることを特徴とする流体計測システム。

【請求項3】

被測定流体に含まれる粒子の画像を微小時間間隔で撮像する撮像手段と、前記撮像手段を制御する制御手段と、前記撮像手段で取得した2時刻の輝度バターン分布を比較して、粒子群の移動方向及び移動量を計測し、被測定流体の流れ場を解析する画像処理手段と、レーザ光を被測定流体中にシート状に投入させるレーザ光投入手段とを備えた流体計測システムであって、

前記撮像手段が長焦点光学系を備え、長距離離間した被測定流体中のレーザ光反射による輝度パターン分布を撮像可能な長距離型であることを特徴とする流体計測システム。

【請求項4】

前記撮像手段の設置位置から10m以上20km以下離間した被測定流体を撮像可能な長距離型であることを特徴とする請求項1~3のいずれか1に記載の流体計測システム。

【請求項5】

撮像手段により得られた画像の輝度信号から乱流構造の特徴を抽出するため、画像を輝度の空間周波数成分へ変換する手段、変換された周波数成分から所定以上の高周波成分を残すハイパスフィルタ、および該ハイパスフィルタによりフィルタリング処理した後の周波数成分を画像へ変換する手段を備えた、請求項1~4のいずれか1に記載の流体計測システム。

【請求項6】

前記制御手段は、画像処理手段により得られる2時刻の粒子画像における粒子群の移動 距離が所定の設定移動画素数範囲内に収まるような焦点距離を演算する焦点距離調整手段 を有し、

前記焦点距離調整手段により得られた焦点距離に対応する長焦点光学系を選択し、該長焦点光学系を撮像手段に装着して撮像するものであることを特徴とする請求項1~5のいずれか1に記載の流体計測システム。

【請求項7】

前記焦点距離調整手段が、次の関係式(1)、(2)

設定移動画素数 = $V \times \Delta t / D \cdot \cdot \cdot \cdot (1)$

 $D = f / L \times c \circ n \circ t \cdot \cdot \cdot \cdot \cdot (2)$

(但し、「V」は被測定流体の仮速度、「 Δ t」は2時刻の撮像時間間隔、「D」は撮像手段の1 画素当たりに映る像の大きさ、「f」は焦点距離、「L」は被測定流体までの距離、「const」は実験から得られた定数である。)

を満足する焦点距離 f を演算する構成であることを特徴とする請求項 6 記載の流体計測システム。

【請求項8】

前記被測定流体の仮速度Vが、被測定流体の最大流速Vmaxであることを特徴とする

請求項7記載の流体計測システム。

【請求項9】

長距離離間した被測定流体に含まれる粒子の画像を、長焦点光学系を備えた撮像手段により微小時間間隔で撮像し、

前記撮像手段により取得した2時刻の粒子画像の輝度バターン分布を比較して、粒子群の移動方向及び移動量を計測し、

前記粒子群の移動方向及び移動量から前記被測定流体の流れ場を解析することを特徴とする流体計測方法。

【請求項10】

被測定流体の自然光反射による輝度バターン分布を撮像し、被測定流体の流れ場を解析することを特徴とする請求項9記載の流体計測方法。

【請求項11】

被測定流体中にレーザ光をシート状に投入させ、被測定流体のレーザ光反射による輝度パターン分布を撮像し、被測定流体の流れ場を解析することを特徴とする請求項10記載の流体計測方法。

【請求項12】

前記撮像手段の設置位置から10m以上20km以下離間した被測定流体を撮像し、該被測定流体の流れ場を解析することを特徴とする請求項9~11のいずれか1に記載の流体計測方法。

【請求項13】

被測定流体として、前記撮像手段の設置位置から10m以上20km以下離間した煙突排煙、火山灰、水蒸気、黄砂又は空気の流れ場を解析することを特徴とする請求項9~1 1のいずれか1に記載の流体計測方法。 【書類名】明細書

【発明の名称】流体計測システム及び流体計測方法

【技術分野】

 $[0\ 0\ 0\ 1\]$

本発明は、遠方の被測定流体の流れ場を解析する長距離型の流体計測システム及び流体計測方法に関する。

【背景技術】

[00002]

例えば、発電施設などの煙突から排出される煙を遠方から観測するシステムとして、特許文献1、特許文献2に開示された技術が知られている。これらは、ITVカメラやカラーカメラを複数台用い、各カメラ間の視差や色差を利用して煙突から排出される煙の有無を検知する。

【特許文献1】特開昭63-88428号公報

【特許文献2】特開平10-232198号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

発電所等の煙突から排出される煙、水蒸気、火山灰、黄砂などについては、発電所等の運転管理や周辺環境への影響予測等のため、煙等の流れの速度や方向などの流動を検知することが望まれる。しかるに、特許文献1及び2に開示された技術では、煙等の有無を検知できるのみである。

 $[0\ 0\ 0\ 4\]$

一方、近年、複雑な流れ場の流動を高精度かつ精密に測定する粒子画像流速計(以下、「PIVシステム」という)が知られている。被測定流体の流れ場にレーザ光をシート状に投入してレーザーシートを形成して、レーザーシート上の2時刻の粒子画像を撮像し、その輝度パターン分布を比較して流体の流速や方向を測定する。しかしながら、PIVシステムは、水・オイルなどの液体の流れ場解析、燃焼の流れ場解析、自動車等の移動物体周囲における風洞実験による流れ場解析など、主として、閉空間における流体の流れ場解析に用いられているに過ぎない。すなわち、従来のPIVシステムは、被測定流体までの距離が1メートル程度といった近距離のいわゆる実験室用として開発されているに過ぎず、実用レベルでの利用が望まれている。

[0005]

本発明は上記に鑑みなされたものであり、煙突の排煙、水蒸気、火山灰、黄砂などの遠方の被測定流体の流動を検知でき、PIVシステムの実用レベルでの新たな用途を提供可能な流体計測システム及び流体計測方法を提供することを課題とする。

【課題を解決するための手段】

[0006]

上記課題を解決するに当たって、本発明者らは、まず、長焦点光学系を利用することに着目した。その一方、上記した遠方の被測定流体は、実験室内と異なり、その最大流速が未知であるか又は検知しにくい場合があるため、長焦点光学系の焦点距離とマッチングせず、撮像手段により得られる2時刻の粒子画像における粒子群の移動距離がPIV解析するのに適さないおそれがある。そこで、本発明者らはかかる点に鑑み、PIV解析に適する粒子画像を得る適切な焦点距離を備えた長焦点光学系を選択する手段も開発し、本発明を完成するに至った。

 $[0\ 0\ 0\ 7\]$

すなわち、請求項1記載の発明では、被測定流体に含まれる粒子の画像を微小時間間隔で撮像する撮像手段と、前記撮像手段を制御する制御手段と、前記撮像手段で取得した2時刻の輝度パターン分布を比較して、粒子群の移動方向及び移動量を計測し、被測定流体の流れ場を解析する画像処理手段とを備えた流体計測システムであって、

前記撮像手段が長焦点光学系を備え、長距離離間した被測定流体を撮像可能な長距離型

であることを特徴とする流体計測システムを提供する。

請求項2記載の発明では、被測定流体に含まれる粒子の画像を微小時間間隔で撮像する 撮像手段と、前記撮像手段を制御する制御手段と、前記撮像手段で取得した2時刻の輝度 バターン分布を比較して、粒子群の移動方向及び移動量を計測し、被測定流体の流れ場を 解析する画像処理手段とを備えた流体計測システムであって、

前記撮像手段が長焦点光学系を備え、長距離離間した被測定流体中の自然光反射による 輝度バターン分布を撮像可能な長距離型であることを特徴とする流体計測システムを提供 する。

請求項3記載の発明では、被測定流体に含まれる粒子の画像を微小時間間隔で撮像する 撮像手段と、前記撮像手段を制御する制御手段と、前記撮像手段で取得した2時刻の輝度 バターン分布を比較して、粒子群の移動方向及び移動量を計測し、被測定流体の流れ場を 解析する画像処理手段と、レーザ光を被測定流体中にシート状に投入させるレーザ光投入 手段とを備えた流体計測システムであって、

前記撮像手段が長焦点光学系を備え、長距離離間した被測定流体中のレーザ光反射による輝度バターン分布を撮像可能な長距離型であることを特徴とする流体計測システムを提供する。

請求項4記載の発明では、前記撮像手段の設置位置から10m以上20km以下離間した被測定流体を撮像可能な長距離型であることを特徴とする請求項1~3のいずれか1に記載の流体計測システムを提供する。

請求項5記載の発明では、請求項5記載の発明では、撮像手段により得られた画像の輝度信号から乱流構造の特徴を抽出するため、画像を輝度の空間周波数成分へ変換する手段、変換された周波数成分から所定以上の高周波成分を残すハイバスフィルタ、および該ハイバスフィルタによりフィルタリング処理した後の周波数成分を再び画像へ変換する手段を備えた、請求項1~4のいずれか1に記載の流体計測システムを提供する。

請求項6記載の発明では、前記制御手段は、画像処理手段により得られる2時刻の粒子画像における粒子群の移動距離が所定の設定移動画素数範囲内に収まるような焦点距離を演算する焦点距離調整手段を有し、

前記焦点距離調整手段により得られた焦点距離に対応する長焦点光学系を選択し、該長焦点光学系を撮像手段に装着して撮像するものであることを特徴とする請求項1~5のいずれか1に記載の流体計測システムを提供する。

請求項7記載の発明では、前記焦点距離調整手段が、次の関係式(1)、(2)

設定移動画素数 = $V \times \Delta t / D \cdot \cdot \cdot \cdot (1)$

 $D = f / L \times c \circ n \circ t \cdot \cdot \cdot \cdot \cdot (2)$

(但し、「V」は被測定流体の仮速度、「 Δ t」は2時刻の撮像時間間隔、「D」は撮像手段の1 画素当たりに映る像の大きさ、「f」は焦点距離、「L」は被測定流体までの距離、「Const」は実験から得られた定数である。)

を満足する焦点距離 f を演算する構成であることを特徴とする請求項 6 記載の流体計測システムを提供する。

請求項8記載の発明では、前記被測定流体の仮速度Vが、被測定流体の最大流速Vmaxであることを特徴とする請求項7記載の流体計測システムを提供する。

請求項9記載の発明では、長距離離間した被測定流体に含まれる粒子の画像を、長焦点光学系を備えた撮像手段により微小時間間隔で撮像し、

前記撮像手段により取得した2時刻の粒子画像の輝度バターン分布を比較して、粒子群の移動方向及び移動量を計測し、

前記粒子群の移動方向及び移動量から前記被測定流体の流れ場を解析することを特徴と する流体計測方法を提供する。

請求項10記載の発明では、被測定流体の自然光反射による輝度バターン分布を撮像し、被測定流体の流れ場を解析することを特徴とする請求項9記載の流体計測方法を提供する。

請求項11記載の発明では、被測定流体中にレーザ光をシート状に投入させ、被測定流

体のレーザ光反射による輝度パターン分布を撮像し、被測定流体の流れ場を解析することを特徴とする請求項10記載の流体計測方法を提供する。

請求項12記載の発明では、前記撮像手段の設置位置から10m以上20km以下離間した被測定流体を撮像し、該被測定流体の流れ場を解析することを特徴とする請求項9~11のいずれか1に記載の流体計測方法を提供する。

請求項13記載の発明では、被測定流体として、前記撮像手段の設置位置から10m以上20km以下離間した煙突排煙、火山灰、水蒸気、黄砂又は空気の流れ場を解析することを特徴とする請求項9~11のいずれか1に記載の流体計測方法を提供する。

【発明の効果】

[0008]

本発明によれば、長焦点光学系と撮像した2時刻の粒子画像を比較して解析する画像処理手段とを備えているため、接近困難な被測定流体の流れ場を解析することができ、PIVシステムの実用レベルでの新たな用途を提供できた。

また、適切な焦点距離を備えた長焦点光学系を選択可能な焦点距離調整手段を設けることにより、遠方の被測定流体の流れ場を正確に解析することができた。

また、遠方の被測定流体を撮像するため、1画素当たりに映る像の大きさDと焦点距離fとを線形比例とみなせることができ、これを利用した関係式を用いて適切な焦点距離を備えた長焦点光学系を選択可能とすることにより、被測定流体の最大流速を知ることができない場合であっても、流れ場を迅速かつ正確に解析することができた。

また、画像の輝度信号から所定以上の高周波成分を残すためのハイパスフィルタを備えた構成とした場合には、被測定流体中に生じている乱流構造を抽出することができ、かかる乱流構造を捉えてPIV手法を適用することにより、自然光下、より遠方の被測定流体を解析することが可能となる。

【発明を実施するための最良の形態】

[0009]

以下、本発明の実施形態を図面に基づいて更に詳しく説明する。図1は、本発明の一の 実施形態に係る流体計測システム1を示し、撮像手段としての、長焦点光学系を3を備え たCCDカメラ2、コンピュータ4、レーザ光投入手段5等を備えて構成される。

$[0\ 0\ 1\ 0\]$

CCDカメラ2に、長焦点光学系3が装着されるが、長焦点光学系3としては、単焦点系のレンズ(以下、「単レンズ」という)を用いることが好ましい。この場合、ターレットを設け、複数種類の単レンズを選択可能な構成とすることがより好ましい。ターレットを用いることにより、単レンズの自動選択も可能となる。ズーム機能を有するレンズの場合、一般に像面湾曲が大きい点で欠点があるが、高屈折率のガラスで安定した像が得られるものであれば使用することができる。なお、本実施形態では、撮像手段として、CCD撮像素子を備えたカメラ(CCDカメラ)を使用しているが、これに代え、CMOS撮像素子を備えたカメラを用いることもできる。

コンピュータ4は、図1及び図2に示したように、CCDカメラ2に接続され、CCDカメラ2の駆動を制御する制御手段41と、CCDカメラ2により撮影された画像信号を受信して所定の処理を行う画像取り込み手段42及び画像処理手段43とを備えてなる。制御手段41は、CCDカメラ2の適切な焦点距離fの算出等を行う焦点距離調整手段41aを備えてなるが、詳細については後述する。画像取り込み手段42は、CCDカメラ2からのアナログ画像信号をデジタル化するフレームグラバボードを備えてなる。画像処理手段43は、フレームグラバボードから出力されるデジタル画像信号である画像フレームをPIV手法により解析処理する。なお、画像処理手段43の前段に、像の歪み収差などを補正する回路を設けることもできる。

[0012]

画像処理手段43では、CCDカメラ2により微小時間間隔をおいて撮像された2時刻の粒子画像を輝度バターンの分布とみなし、2つの粒子画像を比較解析して粒子群の移動

量を推定する。すなわち、粒子画像中のある1点の値を輝度値とし、この輝度値が粒子画像中の所定領域に分布しているものを輝度バターンとして、相互相関法又は輝度差累積法により、かかる輝度バターンの類似度を求め、2画像間の粒子群の画素上の移動量及び移動方向を求める。そして、粒子群の画素上移動量・移動方向と微小時間間隔Δtとにより、被測定流体の実際の流速、流れの方向を求め、流れ場を解析する。

[0013]

レーザ光投入手段5は、半導体レーザ等のレーザ発振装置とレーザシート形成用の複数のレンズ群からなる走査光学系とを備えて構成され、レーザ発信装置から発振されるレーザ光が走査光学系によりシート状になり、被測定流体の流れ場に投入される。

$[0\ 0\ 1\ 4]$

ここで、画像処理手段43により解析処理して粒子群の移動量等を求めるに当たって、2時刻の粒子画像中の所定の輝度バターンの粒子群が離れすぎていては、両者の相関を知ることが困難である。従って、粒子群の移動距離は縦又は横の全画素数に対して $0.5\sim10\%$ 程度(例えば、縦(又は横)の全画素数1000画素の場合で、 $5\sim100$ 画素)の領域に収まっていることが好ましい。その一方、本発明では、撮像手段であるCCDカメラ2から長距離離間した遠方の被測定流体の流れ場を解析することを目的としており、CCDカメラ2に長焦点光学系3を装着しているが、粒子群の移動量が上記領域に収まるか否かは、長焦点光学系3の焦点距離 fに依存すると共に、2時刻の撮像時間間隔f 、及び被測定流体までの距離上にも依存する。

[0015]

このため、上記制御手段41の焦点距離調整手段41aでは、画像処理手段43により得られる2時刻の粒子画像における粒子群の移動距離が、上記範囲内に収まるようにするため、適切な焦点距離fを求める演算を行う。具体的には、次の関係式(1)、(2)より、上記範囲内に設定される2時刻の粒子画像における粒子群の設定移動画素数と、かかる設定移動画素数に対応する焦点距離fを求める。

設定移動画素数= $V \times \Delta t / D \cdot \cdot \cdot (1)$

 $D = f / L \times c \circ n \circ t \cdot \cdot \cdot \cdot \cdot (2)$

但し、Vは被測定流体の仮速度、Δtは2時刻の撮像時間間隔、Dは1画素当たりに映る像の大きさ、Lは撮像手段の設置位置から被測定流体までの距離、constは実験から得られた定数である。

$[0\ 0\ 1\ 6\]$

(2)式より、1 画素当たりに映る像の大きさとDと焦点距離 f とを線形比例の関係とみなし、上記範囲に収まる移動画素数に対応する適切な焦点距離 f を求めることができる。1 画素当たりに映る像の大きさとDと焦点距離 f とを線形比例とみなせるのは、被測定流体までの距離Lが遠いことによるものであり、このようにして焦点距離 f を調整することにより、短い処理時間で適切な長焦点光学系3を選択できる。

$[0\ 0\ 1\ 7]$

なお、被測定流体までの距離しが短い場合には、1 画素当たりに映る像の大きさDと焦点距離 f との関係は非線形となるため、この場合には、両者の相関を示す非線形テーブルを設定しておくことで対処できる。但し、テレセントリック系の光学系を用いることにより、上記と同様に線形比例とみなして計算することもできる。

[0018]

上記した焦点距離調整手段41aでは、被測定流体までの距離しを、所定の方法で計測して求めて、被測定流体の仮速度Vを決定し、上記関係式により、該距離しと仮速度Vに対応する焦点距離 f を有する長焦点光学系3を選択している。すなわち、計算により適切な焦点距離 f を算出しているため、簡易かつ短い処理時間で求められるわけであるが、任意の長焦点光学系3をCCDカメラ2に仮装着し、当該長焦点光学系3を用いて被測定流体の画像を2時刻で測定して、画像処理手段43により仮の流れ場を解析し、得られた粒子群の移動画素数が上記所定の範囲に収まっているか否かにより、適切な焦点距離 f を備えた長焦点光学系3を選択する構成とすることもできる。

[0019]

なお、被測定流体までの距離Lの計測方法としては、煙突等の対象物に対し、レーザ距離計や測距儀などにより直接計測する方法や、GPSからCCDカメラ2の設置位置の位置情報(経度・緯度)を得て、対象物の位置(経度・緯度)との関係で算出することもできる。また、CCDカメラ2の設置位置と対象物の位置とを地図上で特定し、両者間の距離Lを算出することもできる。

[0020]

また、本実施形態においては、レーザ光投入手段5を備え、被測定流体にレーザ光をシート状に投入し、CCDカメラ2により撮像する。このため、コンピュータ4の制御手段41には、レーザ光投入手段5によるレーザ光の発振とCCDカメラ2の駆動との同期を図るタイミングコントロール手段41bが設けられている。

[0021]

次に、本実施形態の流体計測システム1を用いて被測定流体の流れ場を測定する方法について図3に基づき説明する。

まず、CCDカメラ2を所定の位置にセットする。次に、コンピュータ4の入力手段を利用してCCDカメラ2から被測定流体までの距離しを、上記のようにレーザ距離計を用いるなどして測定し入力する(S1)。次に、被測定流体の流速V(最大流速Vmax)を入力する(S2)。この流速Vは、上記のように適切な焦点距離fを備えた長焦点光学系3を選択するための仮の値であり、任意の値でよいが、画像処理手段43により得られる2画像間の移動距離を上記のように縦又は横の全画素数の0.5~10%程度に収めるに当たり、より短い作業時間とするためには、被測定流体の最大流速Vmaxを入力するに当たり、より短い作業時間とするためには、被測定流体の最大流速Vmaxを入力するを送り出す送風機の仕様に基づく計算値から求められるものを用いることができる。煙突を送り出す送風機の仕様に基づく計算値から求められるものを用いることができる。煙突等から排出される煙の実際の最大流速は、煙突流路の圧損等により、この計算値より低く、通常、計算値以上になることはない。もちろん、送風機の仕様が特定できない場合や火山灰等を測定する場合には、経験値等を参照しておよその最大流速Vmaxを入力する。

[0022]

被測定流体までの距離し、仮の流速V(最大流速Vmax)を決定したならば、焦点距離調整手段において、それらに対応する焦点距離fを上記関係式(1)、(2)を用いて算出する(S3)。この際、計算に用いる2時刻の粒子画像の撮像時間間隔 Δ tは、得られる粒子群の移動画素数を上記範囲に収めるため、できるだけ短いことが好ましい。通常1/60 s $\sim 1/3$ 0 s の範囲で設定される。

[0023]

このようにして焦点距離 f が決定したならば、対応する長焦点光学系3を選択し(S4)、単レンズの場合には、例えば、ターレットを回転させてCCDカメラ2にセッティングし、あるいは、ズーム機構付きの場合には、ズーム調整し、レーザ光投入手段5からレーザ光をシート状に投入し、連続した2時刻の粒子画像を撮像する。

$[0\ 0\ 2\ 4]$

撮像された各画像は、画像取り込み手段42であるフレームグラバボードによりデジタル信号に変換され、画像処理手段43により各粒子画像の輝度バターンの移動量、移動方向から、被測定流体の実際の流れ場の流速、流れの方向等が求められる(S5)。

[0025]

上記説明では、被測定流体の最大流速Vmaxをおよその値で手動入力した場合について説明しているが、図4は、手動ではなく自動入力する場合の上記流体計測システムを用いた計測方法を説明するためのフローチャートである。

[0026]

この図に示したように、被測定流体までの距離Lを自動又は手動で入力する点は上記と同様であるが(S10)、次工程で入力する最大流速Vmaxは、適宜の流速を初期値として決定している。具体的には、CCDカメラ2にセッティング可能なものとして準備されている複数種類の長焦点光学系3のうち、焦点距離fのもっとも短いもの、例えば、焦

点距離 50 mm のもので測定可能な最大流速 V max (例えば、30 m/s) が自動的に入力される(S11)。

[0027]

被測定流体までの距離Lと自動入力される最大流速Vmaxを用いて上記関係式(1)、(2)を満足する焦点距離fを算出する(S12)。そして、算出された焦点距離fに対応する長焦点光学系3を選択し、CCDカメラ2にセッティングし(S13)、上記と同様に流れ場を計測する(S14)。本態様においては、解析された結果から最大流速Vmaxを算出し(S15)、さらに2画像間の移動距離が検出限界以下、すなわち、移動画素数が1画素未満が否かを判定する(S16)。通常、このような事態は生じないが、自動選択された最大流速Vmaxが実際よりも大きすぎた場合には、2画像が全く同じになってしまい流れ場を解析できない(工程S15における最大流速も求められない)ことから、念のため、かかる判定工程を設けておくことが好ましい。移動画素数が1画素未満となった場合には、関係式(1)、(2)の計算に用いる新たな最大流速Vmaxを、

最大流速Vmax(新)=最大流速Vmax(旧)×p

(pは任意に規定した緩和係数、例えばp=0.5)

により算出し、改めて関係式(1)、(2)を満足する焦点距離 f を求め、再度上記工程 S12~S16を繰り返す。

[0028]

移動画素数が1画素以上の場合には、2画像間の移動距離(移動画素数)が、撮像素子の縦又は横の全画素数に対して0.5~10%程度(例えば、縦(又は横)の全画素数1000画素の場合で、5~100画素)か否かがチェックされる(S17)。かかる条件を満足しない場合には、工程S15により求められた最大流速Vmaxを用い、工程S12に戻り、長焦点光学系3を選択し直す。条件を満足する場合は、結果を出力し、計測が終了する。

[0029]

図5は、本発明の他の実施形態に係る流体計測システム100を示す図である。この流体計測システム100は、CCDカメラ110、該CCDカメラ110に装着される長焦点光学系120及びコンピュータ130を備える点は上記実施形態と同様であるが、レーザ光投入手段を有していない点で異なる。

[0030]

本実施形態では、レーザ光を投入せずに自然光下で被測定流体を撮像するものである。 従って、撮像可能な被測定流体は、水蒸気、火山灰、煙突からの煙、黄砂などの自然光下 で反射可能なものに限られる。本実施形態によれば、レーザ光を投入する必要がないため 、より遠方の被測定流体の流れ場解析に適する。

ここで、PIV手法により捉える粒子画像は、一つの粒子がCCD撮像素子の2画素以上に跨っている必要があり、さらには2~5画素に跨って捉えられることが好ましいされているが、遠方の被測定流体を長焦点光学系3を介して撮像した場合、1画素中に含まれる粒子数は多数となり、粒子一つ一の挙動を2時刻の画像により解析することは困難ないしは不可能である。そこで、本実施形態では、画像取り込み手段42により取り込れた画像について輝度の空間周波数を演算し、演算した空間周波数分から所定以上の高周波成分を残すためのハイバスフィルタにより、得られた輝度の周波数成分を可ィルタリングして所定以上の高周波成分のみを残すことにより、被測定流体のうちから、自然光により反射する粒子の一つ一つを捉えるのではなく、被測定流体中に生じている乱流構造を抽出することができる。ここでいう乱流構造は、渦、ないしは渦に類似した流れ構造からなるクラスタであり、このようにクラスタとして捉えることにより、各乱流構造がCCD撮像素子の2画素以上に跨って捉えられ、PIV手法を用いた解析が可能となる。

具体的には、撮像された画像の各画像信号をフーリエ変換するなどして空間周波数成分を求め、これをハイパスフィルタによりフィルタリングする。フィルタリングする際の周

波数(f)は、

周波数 (f) \geq ストローハル数 (St) /代表長さ (D) により決定することが好ましい。

 $[0\ 0\ 3\ 1]$

(試験例)

上記各流体計測システム1,100について、長焦点光学系3,120を介して被測定流体を撮像し、PIV手法によりその流れ場を解析する試験を以下のように行った。試験例1は、図1に示したレーザ光投入手段5を用いた流体計測システム1に関する試験であり、試験例2は、図5に示したレーザ光投入手段5を使用しない流体計測システム100に関する試験である。

[0032]

(試験例1)

・流体計測システム1の構成

長焦点光学系3して、マクストフ・カセグレイン光学望遠鏡(ORION OPTICS社製、製品名「OMI-140」(口径140mm))を、CCDカメラ2として、製品名「MEGAPLUS ESI.0」(Redlake社製)を、フレームグラバーボードとして、製品名「PIXCI-D2X」(EPIX社製)をそれぞれ用い、このフレームグラバーボードを介して、CCDカメラ2により得られたデジタル画像信号がコンピュータ4のハードディスクに記録されるようにして、流体計測システム1を構成した。また、レーザ光投入手段5としては、製品名「Gemini PIV 120m」」(Newwave Research Co.製)を用いた。

また、上記光学望遠鏡の前面の中央部は、円形の遮蔽体(中央遮蔽体)で被覆した。これにより、トレーサー粒子画像は、輪郭が際立った状態を維持して、すなわちピンぼけするのではなく、ピントが合ったまま拡大される。長焦点光学系により撮像した場合、該光学系の倍率が高くなるほど画像が暗くなってしまい、PIV手法による解析が困難となるが、このような中央遮蔽体を設けることにより、トレーサーの粒子画像が拡大され、長焦点光学系を用いているにも拘わらず、PIV手法による解析が可能な輝度を有する画像を撮像できる。長焦点光学系を用いた場合でも、各粒子をCCD撮像素子の2画素以上に跨って捉えられる範囲では、上記した乱流構造を抽出する手法を用いることなく、このような手法で撮像可能である。

図6は、上記光学望遠鏡を使用して撮像されるトレーサーの粒子画像を示すシミュレーションであり、(a)は、中央遮蔽体による中央遮蔽率(中央遮蔽体の直径/光学望遠鏡の口径)0%の場合を、(b)は、中央遮蔽率35%の場合を、(c)は、中層遮蔽率50%の場合をそれぞれ示す。図6からトレーサーの粒子画像がピンぼけすることなく拡大されていることがわかる。そして、これをCCD撮像素子の画素上でシミュレーションするとそれぞれ図7(a)~(c)のようになる。この図から明らかなように、中央遮蔽率0%の場合には、画像が2画素に跨っているのみであるが、35%、50%になると3画素に跨って捉えられ、しかも順に画像が明るくなることがわかる。適切な中央遮蔽率は、光学望遠鏡の口径や被測定流体までの距離などによっても異なるが、20~60%の範囲で選択することが好ましい。

なお、本試験例においては、中央遮蔽率は33%とした。

[0033]

・計測

長焦点光学系3を備えたCCDカメラ2の設置位置から被測定流体までの距離Lを20mとし、トレーサー粒子としてウォータミストを噴霧し、撮像時間間隔 $\Delta t = 1/30$ sで撮像した。使用した長焦点光学系3の焦点距離 f は480mmであった。

得られた2時刻の画像信号は、フレームグラバーボードから画像処理手段43にデジタル信号として送られ、相互相関法により解析処理された。解析された被測定流体の流れ場の様子が図7である。図7から明らかなように、被測定流体までの距離が20mあり、長焦点光学系3を用いているにもかかわらず、十分な輝度でトレーサー粒子の移動量、移動方向を捉えることができている。

$[0\ 0\ 3\ 4]$

(試験例2)

・流体計測システム100の構成

レーザ光投入手段及び中央遮蔽体を備えていないことを除き、試験例1と全く同じである。

[0035]

・計測

被測定流体は、火力発電所の煙突尖端から排出される排煙とし、被測定流体から7.8 km離れた位置に流体計測システム100 を設置した。日光下、撮像時間間隔 Δ t = 1/30 s で撮像した。使用した長焦点光学系3の焦点距離 f は 1260 mmであった。得られた2時刻の各画像信号をフーリエ変換して空間周波数成分を求め、これを上記したハイバスフィルタにより所定以上の高周波成分のみを残し、乱流構造を抽出した。本試験例の場合、フィルタリングする周波数 f の決定に用いる上記式の代表長さDは、煙突尖端の吐出口の直径とした。そして、この乱流構造の画像を画像処理手段 4 3 において相互相関法により解析処理した。

図9は、本試験例の被測定流体である排煙の原画像を示す。図10は、ハイバスフィルタによりフィルタリングしたものを逆変換して示した乱流構造の画像である。図10から、ハイバスフィルタによりフィルタリング処理されることにより、乱流構造が抽出されていることがわかる。図11は、図10のようにして求めた2時刻の画像を用いて、被測定流体の流れ場の様子をベクトルで示した図である。図11に示したように、本試験例の手法により、十分な輝度で排煙の移動量、移動方向を捉えることができた。また、この流れ場から求められる排煙の速度は、火力発電所の経験値データとよく一致していた。

【産業上の利用可能性】

[0036]

以上のことから、本発明では、長焦点光学系を用いて撮像し、得られた画像をPIV手法を用いて処理することにより、接近困難な遠方の被測定流体の流れ場を解析することができる。従って、例えば、煙突の煙の流れ場を解析することによる発電所の運転管理や、火山灰、黄砂の流れ場を解析することによる環境への影響評価などに利用することができる。また、遠方の被測定流体にレーザ光を投入可能とすることにより、空気流の解析も可能である。なお、長焦点光学系から被測定流体までの距離は、長焦点光学系や使用する撮像素子の精度によっても異なり、特に限定されるものではないが、入手可能な長焦点光学系等の性能を考慮すると、10m以上20km以下で用いることが実用的には好ましい。

【図面の簡単な説明】

$[0\ 0\ 3\ 7\]$

【図1】図1は、本発明の一の実施形態に係る流体計測システムの概要を示す図である。

【図2】図2は、上記実施形態に係る流体計測システムのコンピュータの概略構成を示すブロック図である。

【図3】図3は、上記実施形態に係る流体計測システムを用いた流体計測方法の一態様を示す図である。

【図4】図4は、上記実施形態に係る流体計測システムを用いた流体計測方法の他の 態様を示す図である。

【図5】図5は、本発明の他の実施形態に係る流体計測システムの概要を示す図である。

【図6】図6は、光学望遠鏡を使用して撮像されるトレーサーの粒子画像を示すシミュレーション図であり、(a)は、中央遮蔽体による中央遮蔽率(中央遮蔽体の直径/光学望遠鏡の口径)0%の場合を、(b)は、中央遮蔽率35%の場合を、(c)は、中層遮蔽率50%の場合をそれぞれ示す。

【図7】図7は、図6のトレーサーの粒子画像をCCD撮像素子の画素上でシミュレーションした図であり、(a)は、中央遮蔽体による中央遮蔽率(中央遮蔽体の直径

/光学望遠鏡の口径)0%の場合を、(b)は、中央遮蔽率35%の場合を、(c)は、中層遮蔽率50%の場合をそれぞれ示す。

【図8】図8は、試験例1で計測した被測定流体の流れ場の様子を示す図である。

【図9】図9は、試験例2の被測定流体である排煙の原画像を示す図である。

【図10】図10は、試験例2においてハイバスフィルタによりフィルタリングしたものを逆変換して示した乱流構造の画像である。

【図11】図11は、試験例2で計測した被測定流体の流れ場の様子を示す図である

【符号の説明】

[0038]

1,100 流体計測システム

2, 110 CCDカメラ

3,120 長焦点光学系

4,130 コンピュータ

41 制御手段

4 1 a 焦点距離調整手段

41b タイミングコントロール手段

42 画像取り込み手段

43 画像処理手段

5 レーザ光投入手段

口径140mm (中央遮蔽率50%)

口径140mm(中央遮蔽率50%) (CCDカメラで撮像した場合のシミュレーション)

【図8】

【図9】

【図10】

【書類名】要約書

【要約】

【課題】 遠方の被測定流体の流動を検知でき、PIVシステムの実用レベルでの新たな用途を提供する。

【解決手段】 本発明の流体計測システムは、CCDカメラ2に長焦点光学系3を備えると共に、撮像した2時刻の粒子画像を比較して解析する画像処理手段43を備えている。このため、接近困難な被測定流体の流れ場を解析することができる。また、適切な焦点距離を備えた長焦点光学系3を選択可能な焦点距離調整手段41aを設けることにより、遠方の被測定流体の流れ場を正確に解析することができる。

【選択図】 図2

0000000368719900817

東京都千代田区内幸町1丁目1番3号東京電力株式会社