Bayesian Statistics: An Introduction

Tim Frasier

Outline

- 1. Bayesian statistics, what is it?
- 2. Criticisms
- 3. Why haven't I heard of it before?

Bayesian Statistics, What Is It?

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

^{*} We'll get into a "richer" definition once you get some experience

A way to reassign probabilities across possibilities (hypotheses)*

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

Normalizing constant. Sum of all $P(H) \times P(D|H)$ combinations, so that all P(H|D) sum to 1

A way to reassign probabilities across possibilities (hypotheses)*

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

Discrete Variables

$$P(H|D) = \frac{P(H) \times P(D|H)}{\sum P(H) \times P(D|H)}$$

Continuous Variables

$$P(H|D) = \frac{P(H) \times P(D|H)}{\int P(H) \times P(D|H)}$$

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar?

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar?

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar?

Prior Probabilities

Before collecting data, equally likely from either

$$P(jar1) = 0.5$$

 $P(jar2) = 0.5$

P(jar2) = 0.5

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar? P(jar1) = 0.5

Prior Probabilities

Before collecting data, equally likely from either

$$P(jar1) = 0.5$$

 $P(jar2) = 0.5$

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar?

P(jar1) = 0.5P(jar2) = 0.5

<u>Likelihoods</u>

From the data

```
P(green | jar1) = (40 / (40 + 100)) = 0.286
P(green | jar2) = (80 / (80 + 40)) = 0.667
```

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

P(jar2) = 0.5

jar1) = 0.286

P(green

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar? P(jar1) = 0.5

Likelihoods

From the data

```
jar2) = 0.667
                                         P(green
P(green | jar1) = (40 / (40 + 100)) = 0.286
          jar2) = (80 / (80 + 40)) = 0.667
P(green
```

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar? P(jar1) = 0.5

Posterior Probabilities

P(green | jar1) = 0.286 P(green | jar2) = 0.667

P(jar2) = 0.5

P(jar1 | D) =
$$\frac{0.5 \times 0.286}{(0.5 \times 0.286) + (0.5 \times 0.667)} = 0.300$$

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar? P(jar1) = 0.5

Posterior Probabilities

P(jar2) = 0.5 $P(\text{green} \mid \text{jar1}) = 0.286$ $P(\text{green} \mid \text{jar2}) = 0.667$

P(jar2 | D) =
$$\frac{0.5 \times 0.667}{(0.5 \times 0.286) + (0.5 \times 0.667)} = 0.700$$

$$P(jar1 \mid D) = 0.300$$

 $P(jar2 \mid D) = 0.700$

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar?
- Big whoop, these are similar to what we would have come up with the old way!

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

- Suppose there are 2 jars:
 - Jar 1: 100 red, 40 green
 - Jar 2: 40 red, 80 green
- You have a green marble. What's the probability that it came from each jar?
- Big whoop, these are similar to what we would have come up with the old way!
 - True, but now we have P(H|D) rather than P(D|H)
 - Won't always be so similar
 - Can't tell yet, but opens up a whole new world

```
P(\text{jar1} \mid D) = 0.300
P(\text{jar2} \mid D) = 0.700
```

	Prior Prob. P(H)	Likelihood P(D H)	Product ∏
Jar 1			
Jar 2			
Sum (Σ)			

• Can think of it like a table

	Prior Prob. P(H)	Likelihood P(D H)	Product ∏
Jar 1	0.5	0.286	
Jar 2	0.5	0.667	
Sum (Σ)	1	0.953	

Has no requirement to sum to 1, but sometimes does (depends on situation)

	Prior Prob. P(H)	Likelihood P(D H)	Product Π
Jar 1	0.5	0.286	0.143
Jar 2	0.5	0.667	0.334
Sum (Σ)	1	0.953	0.477

$$P(H|D) = \frac{P(H) \times P(D|H)}{P(D)}$$

P(jar1 | D) =
$$\frac{0.143}{0.477}$$
 = 0.300

$$P(jar2 \mid D) = \frac{0.334}{0.477} = 0.706$$

- Suppose infection frequency in population is 1%
- False negative rate = 20% (80% success at detection)
- Rate of false positive is 10%

You've tested positive!

What's the probability you're infected?

 $\frac{P(H) \times P(D|H)}{P(D)}$

- Suppose infection frequency in population is 1%
- False negative rate = 20% (80% success at detection)
- Rate of false positive is 10%

		Prior Prob. P(H)	Likelihood P(D H)	Product Π
Specify	Infected			
Specify	Not Infected			
	Sum (Σ)			

 $= \frac{P(H) \times P(D|H)}{P(D)}$

- Suppose infection frequency in population is 1%
- False negative rate = 20% (80% success at detection)
- Rate of false positive is 10%

	Prior Prob. P(H)	Likelihood P(D H)	Product II
Infected	0.01		
Not Infected	1 - (0.01) = 0.90		
Sum (Σ)	1		

 $= \frac{P(H) \times P(D|H)}{P(D)}$

- Suppose infection frequency in population is 1%
- False negative rate = 20% (80% success at detection)
- Rate of false positive is 10%

 $\frac{P(H) \times P(D|H)}{P(D)}$

- Suppose infection frequency in population is 1%
- False negative rate = 20% (80% success at detection)
- Rate of false positive is 10%

	Prior Prob. P(H)	Likelihood P(D H)	Product Π
Infected	0.01	0.80	0.008
Not Infected	1 - (0.01) = 0.99	0.10	0.099
Sum (Σ)	1		0.107

)) –	$P(H) \times P(D H)$
na na	P(D)

	Prior Prob. P(H)	Likelihood P(D H)	Product Π
Infected	0.01	0.80	0.008
Not Infected	1 - (0.01) = 0.99	0.10	0.099
Sum (Σ)	1		0.107

P(infected | positive) =
$$\frac{0.008}{0.107} = 0.075$$
P(not infected | positive) =
$$\frac{0.099}{0.107} = 0.925$$

Criticisms

Criticisms Prior, prior pants on fire*

^{*}From McElreath (2016) Statistical Rethinking: A Bayesian Course with Example in R and Stan. CRC Press.

Criticisms Prior, prior pants on fire

- Extremely useful when you have prior information...
 - Repeated experiments
 - Multiple sources if information
 - Null hypothesis significance testing can't incorporate this
- ...but, most of the time we don't have any prior information
 - What do we do in these situations?

- 1. Choose "uninformative" priors
 - Equal probabilities across possible values

- 2. Choose "weakly informed" priors
 - Very loosely based on the data

3. Be explicit about what you really think!

- 4. Choose multiple types of priors and ensure results are robust to these changes
 - If you get different posterior probabilities when you use different realistic priors, then there is not enough information in your data to obtain a good estimate

 Some people think this requirement makes the analyses too subjective

- Some people think this requirement makes the analyses too subjective
 - There are many subjective aspects to NHST too!!!
 - Choice of critical p-value
 - Requirement of normal distribution (which Bayesian analyses don't have)
 - Intentions of the researcher
 - What test to use
 - etc...

- Some people think this requirement makes the analyses too subjective
 - There are many subjective aspects to NHST too!!!

Statistical Analysis and the Illusion of Objectivity

James O. Berger Donald A. Berry

- Some people think this requirement makes the analyses too subjective
 - I think this is a strength
 - Forces us to think about, and be explicit about, our assumptions (many of these are hidden in NHST)
 - If there is debate, use multiple priors (that make everyone happy), and ensure the same results are obtained
 - What could be wrong with that?

If Bayesian analysis is so great, why haven't I heard of it before?

Lack of possibilities prior to good computing power

- Lack of possibilities prior to good computing power
- Problem
 - Could only apply Bayesian analysis to "simple" problems

Lack of possibilities prior to good computing power

Solution

- Instead of calculating it exactly, can estimate it with Markov Chain Monte Carlo (MCMC) methods
- Require substantial computing power not available until recently (now common)

- Lack of possibilities prior to good computing power
- Unfortunate situation
 - Our current state of statistics would likely be very different were it not for this limitation/requirement

Questions?