Introducerende Statistik og Dataanalyse med R

Ensidet og tosidet variansanalyse

Jens Ledet Jensen

I dag

Generelle lineære model præsenteret via

ensidet variansanalyse (one-way anova)

tosidet variansanalyse (two-way anova)

Vigtige begreber:

- Faktor
- F-test, testtabel

Kendt i generel ramme

Ser på 184 Hornede tudseøgler: 154 levende, 30 spist af tornskade Respons: længde af horn

```
Model: X_{ji} \sim N(\mu_j, \sigma^2)
Teste: \mu_1 = \mu_2

ID deler data op i to grupper

ID deler data op i to grupper
```

I R angives at en variabel skal bruges som faktor ved at anvende funktionen factor:

```
fakID=factor(ID) (liste med tekststrenge)
```

```
> tal=c(1,1,2,2,2,3,3)
> class(tal)
[1] "numeric"
> fak=factor(tal)
> class(fak)
[1] "factor"
> fak
[1] 1 1 2 2 2 3 3
Levels: 1 2 3
```

Indgangene i fak kaldes faktorværdierne (tekststrenge)

De mulige værdier kaldes niveauer (levels)

Generel lineær model

Generel lineær model i R:

respons \sim sum af faktorer og regressionsvariable

Model:
$$X_i \sim N(\xi_i, \sigma^2)$$
, $i = 1, ..., n$, uafhængige

modelformel angiver hvor (ξ_1, \ldots, ξ_n) kan variere

modelformel definerer indirekte parametrene i modellen

Tudseøgler:
$$(\xi_1,\ldots,\xi_n)=(\underbrace{\mu_1,\mu_1,\ldots,\mu_1}_{154},\underbrace{\mu_2,\mu_2,\ldots,\mu_2}_{30})$$

Tudseøgler: L \sim faklD

Sceneskift

Faktor og modelformel er omtalt

Næste: Data til one-way anova: effekt af lys på bladenes hårdhed

Data med tre grupper: Effekt af lys. Oecologia (1991)

Jeg benytter simulerede data der passer med oplysninger i artiklen

Tre grupper: skygge , lys mellem blade og fuld sol

Måler egenskab (hårdhed, kiloPascal) ved blade fra inga oerstediana benth (4-10 m, sydamerika)

Notation: x: målte hårdhed

Oecologia (1991) 86:552-560

The effects of light on foliar chemistry, growth and susceptibility of seedlings of a canopy tree to an attine ant

Data: to måder at nummerere på

x_{ii}: målinger

$$j = 1, 2, 3$$
 angiver lysgruppe

 $\emph{i}=1,\ldots,\emph{n}_\emph{j}$ angiver prøvenummer

$$\mathit{n} = \mathit{n}_1 + \mathit{n}_2 + \mathit{n}_3$$

Nr (i)	j = 1	j = 2	j = 3
1	206.2	235.7	278.6
2	274.9	217.1	279.9
3	202.6	208.9	266.2
4	1996	240.5	259.4
5	220.4	239.2	256.7
6	230.1	269.9	204.0
7	201.9	253.5	220.6
8	224.8	237.1	302.1
9	194.8	231.8	217.5
10	264.7	156.2	204.9

 x_i : målinger, $i = 1, \ldots, n$

Gruppe: faktor

Gruppe; angiver lysgruppe hørende til måling i

Nr	Gruppe	Hårdhed
1	1	206.2
2	1	274.9
	:	
10	1	264.7
11	2	235.7
12	2	217.1
	•	
29	3	217.5
30	3	204.9

Model

Enten: $X_{ji} \sim N(\mu_j, \sigma_j^2)$

Eller: $X_i \sim N(\mu_{Gruppe_i}, \sigma_{Gruppe_i}^2)$

Data er normalfordelt, hver lysgruppe har sin egen midddelværdi (μ_j) og sin egen spredning (σ_j)

Data indlæses i R:

haardhed: vektor med målte hårdhedsværdier

gr: vector med gruppenummer

Gruppe: faktor dannet ud fra gr

qqnormFlere(haardhed,gr)

Normalfordelingsmodel ser rimelig ud, cirka samme varians (test senere)

Prøv selv i R

logLaeng=log(iris[,1])

```
art=iris[,5]
class(art)

boxplot()

source("../source/Rfunktioner.txt")
qqnormFlere()

Figurer viser at ...
```

Opgave: Opstil en statistisk model for data og lav grafiske undersøgelser

Data: log(længden) af blomsterblad for tre irisarter

Model: LogLaeng_i $\sim N(\mu_{\rm art}, \sigma^2)$, $i = 1, \ldots, 150$

Sceneskift

Data er præsenteret (hårdhed af blade for tre lysgrupper)

Næste: test for at middelværdier er ens (når varianser er ens)

Gruppe	1	2	3
Gennemsnit	222	229	249
Empirisk spredning	27.8	30.7	34.8
n	10	10	10

Hvordan tester vi tre middelværdier ens?

Modelformel

Model: Haardhed_i $\sim N(\mu_{\mathsf{Gruppe}_i}, \sigma^2)$

 ${\color{red} \textbf{Modelformel:}} \ \ \textbf{haardhed} {\sim} \textbf{Gruppe} \ \ \textbf{(Gruppe er en faktor)}$

Dette giver model med 3 middelværdiparametre μ_1 , μ_2 og μ_3

En faktor giver et bidrag (en parameter) for hvert niveau af faktor

R bruger et generelt niveau (intercept) og forskel til dette niveau:

$$\mathsf{intercept} = \mu_1, \qquad \mathsf{Gruppe2} = \mu_2 - \mu_1, \qquad \mathsf{Gruppe3} = \mu_3 - \mu_1$$

Kørsel i R: Obs: Gruppe er en faktor ikke en regressionsvariabel

 $ImUD=Im(haardhed \sim Gruppe)$

summary(lmUD)

Output fra summary

```
Call:
lm(formula = haardhed ~ Gruppe)
Residuals:
  Min 10 Median 30 Max
-72.79 -20.10 4.76 15.79 53.11
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 222.000 9.874 22.483 <2e-16 ***
Gruppe2 6.990 13.964 0.501 0.6207
Gruppe3 26.990 13.964 1.933 0.0638.
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 31.22 on 27 degrees of freedom
Multiple R-squared: 0.1297, Adjusted R-squared: 0.06527
```

F-statistic: 2.013 on 2 and 27 DF, p-value: 0.1532

Parameterestimater

Model
$$M$$
: $E(Haardhed_i) = \xi_i = \mu_{Gruppe_i}$

$$\hat{\mu}_1 = 222.00$$

$$\hat{\mu}_2 = 6.99 + 222.00 = 228.99$$

$$\hat{\mu}_3 = 26.99 + 222.00 = 248.99$$

Skøn over spredning σ : s(M) = 31.22 (residual standard error)

$$\hat{\mu}_j = \mathsf{gennemsnit}$$
 af Haardhed $_i$ over den j 'te gruppe

$$s^2 = rac{1}{n-3} \sum_i (\mathsf{Haardhed}_i - \hat{\xi}_i)^2, \;\; \hat{\xi}_i = \hat{\mu}_{\mathsf{Gruppe}_i}$$

Prøv selv i R

Opgave: find skøn over parametre i model for blomsterlængde i iris-data

logLaeng = log(iris[,1])

art=iris[,5]

 $summary(Im(logLaeng\sim art))$

Fra R-kørsel finder vi at skøn over de tre middelværdiparametre er ... og skøn over spredning σ er ...

Sceneskift

Data er analyseret via lm og summary.

Næste: forstå output

Teori

Model: $X_i \sim N(\xi_i(M), \sigma^2)$, i = 1, ..., n

Model
$$M$$
 med $d(M)$ parametre:
parametre i $\xi_i(M)$ findes ved at minimere $\sum_i (x_i - \xi_i(M))^2$
variansskøn $s^2(M) = \frac{1}{n-d(M)} \sum_i (x_i - \hat{\xi}_i(M))^2 = \text{RSE}^2$

heta: en parameter i middelværdimodel M

$$\hat{\theta} \sim N(\theta, \sigma^2 C)$$
, *C* er kendt ud fra middelværdimodel

Teste
$$\theta = \theta_0$$
: $T = \frac{\hat{\theta} - \theta_0}{\mathsf{sd}_s(\hat{\theta})} \sim t(\mathsf{df}(M))$

standard error
$$\operatorname{\mathsf{sd}}_{s}(\hat{ heta}) = s(M)\sqrt{C}$$

Konfidensinterval (95%):
$$\hat{\theta} \pm t_0 \cdot \mathsf{sd}_s(\hat{\theta}) = [\hat{\theta} - t_0 \cdot \mathsf{sd}_s(\hat{\theta}), \hat{\theta} + t_0 \cdot \mathsf{sd}_s(\hat{\theta})]$$

$$t_0 = t_{inv}(0.975, df(M)), df(M) = n - d(M)$$

R: parametertabel

Coefficients:

$$\hat{\mu}_1 = 222.0$$
, $\hat{\mu}_2 - \hat{\mu}_1 = 6.990$, $\hat{\mu}_3 - \hat{\mu}_1 = 26.990$

Std.Error: standard error

t value: t-teststørrelse for hypotesen
$$heta=0$$

$$Pr(>|t|)$$
: p -værdi = $2(1 - t_{cdf}(|t value|, df(M)))$

Teste
$$\mu_3 - \mu_1 = 0$$
 eller $\mu_3 = \mu_1$: *p*-værdi = 0.064

R: residual standard error

Residual standard error: 31.22 on 27 degrees of freedom Multiple R-squared: 0.1297, Adjusted R-squared: 0.06527 F-statistic: 2.013 on 2 and 27 DF, p-value: 0.1532

Degrees of freedom: df(M) = n - d(M)

Residual standard error:
$$s(M) = \sqrt{\frac{1}{n-d(M)} \sum_i (x_i - \hat{\xi}_i)^2}$$

R-squared:
$$R^2=1-\sum_i r_i^2/\sum_i (x_i-ar{x})^2$$
, $r_i=x_i-\hat{\xi}_i=$ residual

$$ImUD = Im(...)$$
, $sumUD = summary(ImUD)$

sumUD\$sigma giver s(M)sumUD\$df[2] giver df(M) ImUD\$residuals giver residualer $r_i = x_i - \hat{\xi}_i$ ImUD\$fitted.values giver de forventede værdier $\hat{\xi}_i$

R: confint

confint(ImUD) giver konfidensintervaller

```
2.5 % 97.5 % (Intercept) 201.739813 242.26019 Gruppe2 -21.662231 35.64223 Gruppe3 -1.662231 55.64223
```

95%-konfidensinterval for
$$\delta = \mu_3 - \mu_1$$
: [-1.662231, 55.64223] \approx [-2, 56]

(OBS: vi vidste godt at nul ligger i konfidensintervallet!)

Konfidensinterval for spredning σ : Webbog afsnit 2.6

erstat $s^2 \mod s^2(M)$ og $df \mod df(M)$

Sceneskift

Output fra summary(lm(..)) er beskrevet

Næste: Teste alle tre middelværdier ens

Teste ens middelværdier

Parametertabel: kan kun teste parameter lig med nul

eksempel: teste
$$\delta=\mu_{\rm 3}-\mu_{\rm 1}=$$
 0: t value = 1.933, $\Pr(>|{\rm t}|)=0.0638$

Ønsker: test for hypotesen
$$H$$
 : $\mu_1=\mu_2=\mu_3$

Teste reduktion fra model M_1 til model M_2 (generel notation her):

$$M_1: X_{ji} \sim N(\mu_j, \sigma^2), \qquad M_2: X_{ji} \sim N(\mu, \sigma^2)$$

eller

$$X_i \sim N(\mu_{\mathsf{Gruppe}_i}, \sigma^2), \qquad X_i \sim N(\mu, \sigma^2)$$

Metode: sammenligne variation mellem grupper med variation indenfor grupper

Illustration

Under hypotesen $\mu_1=\mu_2=\mu_3$ må variation mellem grupper ikke være for stor i forhold til indenfor grupper

F-test for one way anova

Her: dobbeltindeksnotation (enkeltindeks senere)

$$x_{jj}$$
: i'te måling i den j'te gruppe, $j = 1, \ldots, k$

$$\bar{x}_j = \frac{1}{n_j} \sum_i x_{ji}, \quad \bar{x} = \frac{1}{n} \sum_{ji} x_{ji}, \quad n = \sum_j n_j$$

Variation indenfor gruppe:
$$s^2(M_1) = \frac{1}{n-k} \sum_{ji} \left(x_{ij} - \bar{x}_j\right)^2$$

Variation mellem grupper:
$$s^2(M_1,M_2)=rac{1}{k-1}\sum_j n_jig(ar{x}_j-ar{x}ig)^2$$

Teststørrelse
$$F = \frac{s^2(M_1, M_2)}{s^2(M_1)} = \begin{cases} \text{lille} & \text{ikke kritisk for } H \\ \text{stor} & \text{kritisk for } H \end{cases}$$

Teori:
$$s^2(M_1) \sim \sigma^2 \chi^2(n-k)/(n-k)$$
, $s^2(M_1,M_2) \sim \sigma^2 \chi^2(k-1)/(k-1)$

$$F \sim F(3-1, n-3), p-vardi = 1 - F_{cdf}(F, k-1, n-k)$$

Teori: balancerede tilfælde

I model $X_i \sim N(\mu, \sigma^2)$ ved vi at

$$ar{X}$$
 og $\sum_i (X_i - ar{X})^2 \sim \sigma^2 \chi^2 (n-1)$ er uafhængige

I model $X_{jj} \sim N(\mu, \sigma^2)$ med $n_1 = \cdots = n_k$ har vi derfor

$$\sum_{j} n_{j} (\bar{X}_{j} - \bar{X})^{2} \sim \sigma^{2} \chi^{2} (k-1), \; \bar{X} = \sum_{j} \bar{X}_{j}/k$$

uafhængig af
$$\sum_{j,j} (X_{ji} - \bar{X}_j)^2 \sim \sigma^2 \chi^2(n-k)$$

F-test: data

Benyt funktionen anova i R:

Model 1: haardhed ~ 1

```
anova(lm(haardhed\sim1),lm(haardhed\simGruppe))
```

Res.Df RSS Df Sum of Sq F Pr(>F)

"Model 1: haardhed \sim 1" model M_2 , alle har samme middelværdi

"Model 2: haardhed \sim Gruppe" model M_1 , hver gruppe har sin egen middelværdi

$$s^2(M_1) = \frac{26325}{27} = 975.0$$
, $s^2(M_1, M_2) = \frac{3924.4}{2} = 1962.2$

$$F = 1962.2/975.0 = 2.0125, \quad 1 - F_{cdf}(2.0125, 2, 27) = 0.1532$$

Prøv selv i R

Opgave: Undersøg om de tre arter af iris har samme middelværdi af log(længde) logLaeng=log(iris[,1])art=iris[,5] anova($Im(logLaeng \sim), Im(logLaeng \sim)$) Fra R-kørsel finder vi F-teststørrelsen F = ..., som vurderes i en F(.,.)-fordeling. Da p-værdien er ...

Sceneskift

Vi har lavet test for samme middelværdi af hårdhed af blade for tre lysgrupper under forudsætning om samme varians

Næste: test for at varianser er ens (skal laves før ovenstående test)

Gruppe	1	2	3
Gennemsnit	222	229	249
Empirisk spredning	27.8	30.7	34.8
n	10	10	10

Hvordan tester vi tre varianser ens?

Bartlett test for ens varianser

Variansskøn inden for gruppe j: s_j^2 med df_j frihedsgrader, $j=1,\ldots,k$

Fælles variansskøn:
$$s^2 = \frac{\sum_{j=1}^k df_j s_j^2}{df}$$
, $df = \sum_j df_j$

Hypotese: samme varians i de k grupper:

Likelihood ratio test (opgave 4.5)

Sammenligner
$$\log\left(\sum_j \frac{df_j}{df}s_j^2\right) \mod \sum_j \frac{df_j}{df} \log(s_j^2)$$
:

Teststørrelse: Ba =
$$\frac{1}{C} \left\{ df \cdot \log(s^2) - \sum_{j=1}^k df_j \cdot \log(s_j^2) \right\}$$

$$C = 1 + \frac{1}{3(k-1)} \left\{ \sum_{j=1}^{k} \frac{1}{df_j} - \frac{1}{df} \right\}$$

$$p$$
–værdi = $1 - \chi^2_{\text{cdf}}(\text{Ba}, \mathsf{k} - 1)$ (approksimativt)

Bartletts test: konstanten C

Taylorudvikling:
$$\log(1+x) \approx x - \frac{1}{2}x^2$$
, $x = \frac{s^2}{\sigma^2} - 1$, lille

$$V \sim \chi^2(f)/f$$
: $E(V) = 1$, $Var(V) = \frac{2}{f}$

$$E(df \cdot \log(s^2) - \sum_{j=1}^k df_j \cdot \log(s_j^2)) = (k-1)C + \text{restled}$$

Hvorfor Ba
$$\approx \chi^2(k-1)$$
?

tester fra k parametre ned til 1 parameter

Bartletts test: data

Gruppe	1	2	3
Gennemsnit	222	229	249
Empirisk spredning	27.8	30.7	34.8
n	10	10	10

$$k=3$$
 grupper, $df=9+9+9=27$ $s^2=(9\cdot 27.8^2+9\cdot 30.7^2+9\cdot 34.8^2)/27=975.4567$ $C=1+\frac{1}{3(3-1)}\big(1/9+1/9+1/9-1/27\big)=1.0494$

Bartletts test: data

R: 1-pchisq(0.4300,3)

$$Ba = \frac{1}{1.0494} (27 \cdot \log(975.4567) - 9 \cdot \log(27.8^2) - 9 \cdot \log(30.7^2)$$

$$-9 \cdot \log(34.8^2)) = 0.4300$$

$$p\text{-værdi} = 1 - \chi^2_{\text{cdf}}(0.4300, 3 - 1) = 0.81$$

Konklusion: data strider ikke mod samme varians af hårdhed i de 3 lysgrupper

Bartletts test: R

bartlett.test(haardhed,gr)

Bartlett test of homogeneity of variances data: haardhed and gr Bartlett's K-squared = 0.43003, df = 2, p-value = 0.8065

Hvis kun variansskøn s_i^2 er til rådighed: selv kode test

Med outputs fra lm: bartlett.test(list(lmUD1,lmUD2,lmUD3))

Prøv selv i R

Opgave: Undersøg om der er samme varians på log(længde) i iris data

logLaeng=log(iris[,1])

art=iris[,5]

bartlett.test()

Fra R-kørsel ses, at p-værdien i Bartletts test for ens varianser (afsnit 6.5 i webbogen), hypotesen $\sigma_{\text{setosa}}^2 = \sigma_{\text{versicolor}}^2 = \sigma_{\text{virginica}}^2$, er ..., hvorfor data ...

Sceneskift

One-way anova er færdigbehandlet

Næste: two-way anova

To-sidet variansanalyse: Two way anova

```
Alanin i lymfevæsken af tusindben:
køn: han / hun, art: art1 / art2 / art3
```

To-sidet variansanalyse: Alanin i lymfevæske

kqn	art	Ala
han	1	21.5
han	1	19.6
han	1	20.9
han	1	22.8
han	2	14.5
han	2	17.4
han	2	15.0
han	2	17.8
han	3	16.0
han	3	20.3
han	3	18.5
han	3	19.3
hun	1	14.8
hun	1	15.6
hun	1	13.5
hun	1	16.4
hun	2	$\frac{12.1}{11.4}$
hun	2	11.4
hun	2	12.7
hun	2	14.5
hun	3	14.4
hun	1 1 2 2 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2	14.7
hun	3	13.8
hun	3	12.0

kqn: køn

Ala: koncentration of Alanin

Model: Ala_i $\sim N(\mu_{\mathsf{kqn}_i,\mathsf{art}_i},\sigma^2)$, $i=1,\ldots,n$

Parametre: $\mu_{\mathsf{han},1}, \mu_{\mathsf{han},1}, \dots, \mu_{\mathsf{hun},3}, \sigma^2$

Seks grupper med hver sin middelværdi

Teste additivitet: $\mu_{\mathsf{kqn,art}} = \eta_{\mathsf{kqn}} + \zeta_{\mathsf{art}}$

bidrag fra køn plus bidrag fra art

Fortolkning: ...

Kig på data

boxplot(Ala~kqn:art)

To faktorer

kqn inddeler i 2 grupper

art inddeler i 3 grupper

kqn*art inddeler i $2 \cdot 3 = 6$ grupper

kqn*art bruges i modelformel

udenfor modelformel bruges kqn:art

Startmodel

Model M_0 : Ala_i ~ $N(\mu_{\mathsf{kqn}_i,\mathsf{art}_i},\sigma^2_{\mathsf{kqn}_i,\mathsf{art}_i})$, $i=1,\ldots,n$

Hypotese om fælles varians: $\sigma_{\mathsf{han},1}^2 = \sigma_{\mathsf{han},2}^2 = \dots = \sigma_{\mathsf{hun},3}^2$

Bartletts test: bartlett.test(Ala,kqn:art) (kqn og art er faktorer)

Ba = 0.81732, df = 5, p-value = 0.9759

Data strider ikke mod samme varians i de 6 grupper

Fortolkning af additivitet

Model M_1 : hver af de 6 kombinationer af køn og art har sin egen middelværdi, $d(M_1)=6$

køn	art 1	art 2	art 3
han	$\mu_{han,1}$	$\mu_{han,2}$	$\mu_{han,3}$
hun	$\mu_{hun,1}$	$\mu_{hun,2}$	$\mu_{hun,3}$

Model M_2 (additive model): middelværdi består af et bidrag fra køn plus et bidrag fra art, $d(M_2)=2+3-1=4$

køn	art 1	art 2	art 3
han	$\eta_{han} + \zeta_1$	$\eta_{\sf han} + \zeta_2$	$\eta_{han} + \zeta_{3}$
hun	$\eta_{hun} + \zeta_1$	$\eta_{hun} + \zeta_2$	$\eta_{hun} + \zeta_{3}$

Additiv effekt

Forskel mellem arter under additive model:

$$\delta_2 = \zeta_2 - \zeta_1, \ \delta_3 = \zeta_3 - \zeta$$

Forskel mellem arter er den samme for de to køn

Forskel mellem køn:

$$\delta_{\rm hun} = \eta_{\rm hun} - \eta_{\rm han}$$

Forskel mellem køn er den samme for det tre arter

køn	art 1	art 2	art 3
han	μ	$\mu + \delta_2$	$\mu + \delta_3$
hun	$\mu + \delta_{hun}$	$\mu + \delta_2 + \delta_{hun}$	$\mu + \delta_3 + \delta_{hun}$

4 parametre!

To-sidet variansanalyse: figur

Gennemsnit plus minus standard error:

Middelværdi $\eta_{kqn} + \zeta_{art}$ giver parallelle kurver R: additivitetsPlot(kqn,art,Ala), additivitetsPlot(art,kqn,Ala) eller interaction.plot

Prøv selv i R

Tilvækst i tænder på grise, 3 grupper mht vitamin Dosis, 2 grupper mht fodrings Metode

```
len = Tooth Growth[, 1]
M=ToothGrowth[,2]
D=factor(Tooth Growth [,3])
source("Rfunktioner.txt")
additivitetsPlot(M, D, len)
additivitetsPlot(D, M, len)
```

Sceneskift

Vi har kigget på data og den additive model

Næste: analyse i R

To faktorer

kqn, art: begge faktorer: Se webbog afsnit 4.1

Modelformel: kqn*art giver ny faktor der deler op efter både kqn og art Direkte i kommandovindue: kqn:art

R modelformel:

kqn*art samme som kqn+art+kqn*art samme som kqn+art+kqn:art

Parametrisering i R:

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} a & a & a \\ a & a & a \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ d-a & d-a & d-a \end{bmatrix} + \begin{bmatrix} 0 & b-a & c-a \\ 0 & b-a & c-a \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & e-b-d+a & f-c-d+a \end{bmatrix}$$

Intercept kqnhun art2 art3 kqnhun:art2 kqnhun:art3

 $R: \qquad \qquad kqn \qquad + \qquad art \qquad + \qquad kqn:art$

```
lm
```

summary($lm(Ala \sim kqn*art)$

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.2000 0.7267 29.175 < 2e-16 ***
kqnhun -6.1250 1.0276 -5.960 1.22e-05 ***
art2 -5.0250 1.0276 -4.890 0.000118 ***
art3 -2.6750 1.0276 -2.603 0.017983 *
kqnhun:art2 2.6250 1.4533 1.806 0.087631 .
kqnhun:art3 1.3250 1.4533 0.912 0.373967
```

Residual standard error: 1.453 on 18 degrees of freedom

Gennemsnit for (han,art1): 21.20, (hun,art2): 21.20-6.125-5.0250+2.625=12.675

Skal vi acceptere additive model svarende til: kgnhun:art2=0 og kgnhun:art3=0 ?

lm

```
anova(Im(Ala \sim kqn + art), Im(Ala \sim kqn * art))
```

```
Model 1: Ala ~ kqn + art

Model 2: Ala ~ kqn * art

Res.Df RSS Df Sum of Sq F Pr(>F)

1 20 44.9083

2 18 38.0175 2 6.8908 1.6313 0.22331 *
```

Model 2 (kalder jeg
$$M_1$$
): Ala_i ~ $N(\mu_{kqn_i,art_i}, \sigma^2)$

Model 1 (kalder jeg
$$M_2$$
): Ala_i $\sim N(\eta_{\mathsf{kqn}} + \zeta_{\mathsf{art}}, \sigma^2)$

Teste additive model: teste reduktion fra M_1 til M_2 : F = 1.6313, p-værdi=0.22331, data strider ikke mod reduktionen

Sammenligne "variation indefor gruppe" med "variation mellem grupper" ?

Konfidensintervaller i additive model

Intercept:
$$\eta_{\mathsf{han}} + \zeta_1$$

kqnhun = $\eta_{\mathsf{hun}} - \eta_{\mathsf{han}}$, art2 = $\zeta_2 - \zeta_1$, art3 = $\zeta_3 - \zeta_1$

Uanset art så er middelværdien for han 4.8 større end middelværdi for hun Uanset køn så er middelværdien for art1 2.0 større end middelværdi for art3

```
confint(lm(Ala~kqn+art))
2.5 % 97.5 %
(Intercept) 19.265582 21.8177515
kqnhum -6.084418 -3.5322485
art2 -5.275378 -2.1496217
art3 -3.575378 -0.4496217
```

Sceneskift

Data, Im og Testtabel er vist

Næste forelæsning: forstå testtabel og F-test generelt

Næste hvis tid: parret t-test

Parret t-test som two-way anova

Høstu dbytt e				
Mark	Ny Såmaskine	Gængs Såmaskine	Forskel d	
1	8.0	5.6	2.4	
2	8.4	7.4	1.0	
3	8.0	7.3	0.7	
:				
9	5.6	5.5	0.1	
10	6.2	5.5	0.7	

$$E(X_i) = \xi_i = \eta_{\mathsf{Mark}_i} + \zeta_{\mathsf{Maskine}_i}$$
, Hypotese: $\delta = \zeta_{\mathsf{Ny}} - \zeta_{\mathsf{Gængs}} = 0$

Parret *t*-test:
$$t = \frac{\bar{d}}{s_d/\sqrt{10}} = 3.2143$$
, *p*-værdi = 0.0106

Two-way anova: $summary(Im(Hoest \sim Mark + Maskine))$

Sceneskift

Slut for i dag

Eller: hvis tid

$$Gruppe = factor(rep(c(1,2),c(10,20)))$$

blodtryk=
$$80+10*rnorm(30)+rep(c(0,5),c(10,20))$$

Benyt Im og summary til at undersøge om der er forskel i blodtryk for de to grupper