Ordered and Disordered Contributions to Lattice Thermal Conductivity

Jason Larkin and Alan McGaughey
Nanoscale Transport Phenomena Laboratory
Carnegie Mellon Department of Mechanical Engineering

http://ntpl.me.cmu.edu/ 07/12/2012

Thermal Transport in Disordered

Materials

 Phonon picture valid with perturbations. Perfect systems and dilute alloys

- Phonon picture only valid for very long wavelengths. **Alloy and amorphous**

- **Localized** vibrations (diffusons) become important.

Theoretical Models

$$k_{vib} = k_{AF} + k_{ph}$$

Phonons (ordered): Interacting Phonon Gas

$$k_{ph} = \sum_{\kappa} \sum_{\nu} C_{ph}(^{\kappa}_{\nu}) v_{g,\mathbf{n}}^{2}(^{\kappa}_{\nu}) \tau(^{\kappa}_{\nu}) \quad \mathbf{v}_{g} = \partial \omega / \partial \kappa \\ \Lambda(^{\kappa}_{\nu}) = |\mathbf{v}_{g}| \tau(^{\kappa}_{\nu})$$

 phonon-phonon (anharmonicity), defects (dilute), boundaries, (phonon-diffuson?)

Diffusons (disordered): Allen-Feldman Theory

$$k_{AF} = \sum_{i} C(\omega_i) D_{AF}(\omega_i)$$
 $v_g = ?$ $\Lambda = ?$

diffuson-diffuson, (boundaries, phonon-diffuson?)

$$C_{ph}(\mathbf{k}) = k_B/V \quad C(\omega_i) = k_B/V$$

Modeled Systems:

LJ Alloys and Amorphous

Virtual Crystal (VC)

Unit cell

$$m_{1-c}^a m_c^b$$
 $m^a = 1$ $m^b = 3$ c=0.5, $m_{avg} = 2.0$

Gamma point

$$au(\omega^{\kappa=0})$$

Unit cell

Thermal Conductivity: System-Level

Green-Kubo

$$k_{vib} = \frac{V}{3k_B T^2} \int_0^\infty \langle \mathbf{J}(0) \cdot \mathbf{J}(t) \rangle \, dt$$

 Heat current J has all effects of MD (anharmonicity, defects, etc.)

Normal Mode Decomposition (NMD)

$$q(_{\nu}^{\kappa};t) = \sum_{\alpha,b,l}^{3,n,N} \sqrt{\frac{m_b}{N}} u_{\alpha}(_b^l;t) e^{*(_{\nu}^{\kappa} _{\alpha}^{b})} \exp[i\kappa \cdot \mathbf{r}_0(_0^l)]$$

Atomic pos/vel from MD (anharmonicity, defects, etc)

Eigenvectors (HLD) w/ VC or Gamma

Allowed or Gamma point

Phonon/diffuson lifetimes:
$$\exp\left[-t/\tau\binom{\kappa}{\nu}\right] = \frac{\langle E_{\kappa,\nu}(t)E_{\kappa,\nu}(0)\rangle}{\langle E_{\kappa,\nu}(0)E_{\kappa,\nu}(0)\rangle}$$

- Includes all effects of MD.
- Limited by HLD mapping.

PHYSICAL REVIEW B 79, 064301'2009

Normal Mode Decomposition (NMD)

Virtual Crystal

$$au({}^{m{\kappa}}_{
u})$$

Gamma point

$$\tau(\omega^{\kappa=0})$$

Thermal Conductivity: Systemand Carrier-Level

Virtual Crystal approximation and phonon scaling relations work well!

Anharmonic Lattice
Dynamics + Defect
scaling =

PHYSICAL REVIEW B 85, 184303 (2012)

PRL 106, 045901 (2011)

Ioffe-Regel Limit:

$$\tau(\omega) = 2\pi i \omega$$

PHIL. MAG. B 79, 1715-1731 (1999)

Cahill-Pohl Model:

$$\tau(\omega) = 2\pi i \omega$$

 $v_{\rm s} \longrightarrow k_{vib}$

Solid State Communications 70 (1989) 927-930.

$$v_{AF}^2(\omega) = D_{AF}(\omega) / \tau(\omega)$$

= sound speed

For amorphous:

$$k_{vib} = k_{AF}$$

$$\Lambda = v_{\rm s} \tau(\omega)$$

Diffuson:

$$egin{aligned} & \Lambda = v_{
m s} au(\omega) \ & \Lambda = \left(D_{AF}(\omega) au(\omega)
ight)^{1/2} \end{aligned}$$

Cumulative Thermal Conductivity

PbTe

PbSe

PbSe

PbSe

PbSe

PbSe

PbSe

PbSe

PbSe

10

10

10

10

Phonon MFP (nm)

 Large c alloys and amorphous vibrations have (drastically) decreased MFP

- Boundary scattering less effective for length scales >10 nm, alloying can still be effective.

Amorphous Silicon

- a-Si thermal conductivity with varying film thickness indicates a phonon-like boundary scattering dependance.
- Ordered/Disordered analysis could measure the MFP spectrum in a-Si

$$k_{vib} = k_{AF} + k_{ph}$$

APPLIED PHYSICS LETTERS 98, 144101'2011

Modeling Tools

	Predicted quantities	Computational cost	Code availability
Green-Kubo (GK) w/ Molecular Dynamics (MD)	Thermal conductivity	Classical	Several
Harmonic Lattice Dynamics (HLD)	Vibrational frequencies, eigenvectors, group velocities, diffuson properties (Allen- Feldman (AF))	Classical/Ab- Initio	Several
Normal Mode Decomposition (NMD) w/ HLD and MD	Thermal conductivity, Vibrational frequencies, lifetimes	Classical	None

Green-Kubo

$$\kappa = \frac{V}{3k_B T^2} \int_0^\infty \langle \mathbf{J}(0) \cdot \mathbf{J}(t) \rangle \, dt$$

- Heat current J has all effects of MD (anharmonicity, defects, etc.)
- Heat current J has KE and PE parts.
- J is difficult to define using *ab-initio* calculations.

(NMD)

Perfect system: vibrations are phonons with an

allowed wavevector

 $au({}^{m{\kappa}}_{
u})$

<u>Perturbed system</u>: vibrations are phonons with an allowed wavevector (dilute alloy). Virtual Crystal (VC) approximation.

<u>Disordered system</u>: vibrations are phonons/diffusons. Vibrations analyzed at Gamma point.

$$\tau \begin{pmatrix} \kappa = 0 \\ \omega \end{pmatrix}$$

<u>Normal Mode Decomposition</u>

1

<u>(NMD)</u>

$$q(_{\nu}^{\kappa};t) = \sum_{\alpha,b,l}^{3,n,N} \sqrt{\frac{m_b}{N}} u_{\alpha}(_b^l;t) e^{*(_{\nu}^{\kappa} _{\alpha}^{b})} \exp[i\kappa \cdot \mathbf{r}_0(_0^l)]$$

NMD: Frequency-Domain

NMD: Time-Domain

<u>Ioffe-Regel Limit:</u>

$$\tau(\omega) = 2\pi i \omega$$

PHIL. MAG. B 79, 1715-1731 (1999)

Cahill-Pohl Model:

$$\tau(\omega) = 2\pi i \omega$$

$$v_{\rm s} \longrightarrow k_{vit}$$

Solid State Communications 70 (1989) 927-930.

Dynamic Structure Factor:

$$S_L(\mathbf{Q},\omega) = \sum_i |A_i(\mathbf{Q})|^2 \delta(\omega - \omega_i)$$

Low-frequency modes can identify a **wavelength**, not possible in general:

PHYS. REV. B 48, 589-601 (1993) PHIL. MAG. B 79, 1715-1731 (1999) PHIL. MAG. B 79, 1747-1754 (1999)

$$\lambda = ?$$

Predicted Thermal Conductivity

For amorphous:

$$k_{vib} = k_{AF}$$

