

Reversed Image Signal Processing and RAW Reconstruction. AIM 2022 Challenge Report

Marcos V. Conde and Radu Timofte

Project page: https://github.com/mv-lab/AISP

AIM 2022 Reversed ISP Challenge

Related work: "Learned smartphone ISP" Challenges at AIM and Mobile AI FlexISP (Heide et al.), DeepISP (Schwartz et al.), PyNET (Ignatov et al.)

Fig. 1. Images Source "PyNet", Andrey Ignatov, ETH

Motivation

- RAW camera sensor data is scarce
- RAW images collection is expensive
- Numerous low-level vision tasks operate in the RAW domain
- NTIRE 2020/2022 Challenge on Spectral Reconstruction from an RGB Image
- Establish a benchmark for this inverse problem

Objective

- Recover RAW sensor images from the corresponding RGBs without metadata and, by doing this, "reverse" the ISP transformation.
- No camera parameters.

Fig. 2. Image from Delbracio et al. "Mobile Computational Photography: A Tour"

Datasets

- Samsung S7* (12MP Sony IMX260)
 Dataset from "DeepISP", Schwartz et al. IEEE TIP 2018
- **Huawei P20*** (12.3 MP Sony Exmor IMX380) Pro ETH Dataset by "PyNET", Ignatov et al. CVPRW 2020
- Samsung S6 Edge (16MP Sony IMX240)
 Dataset "SSID" by Abdelhamed et al. CVPR 2018
- **Samsung Galaxy S9** (Sony IMX345)
 Dataset "RAW-to-RAW" by Afifi et al. BMVC 2021.

Datasets

Benchmark

	Tra	ck 1 (Sa	amsung	S7)	Track 2 (Huawei P20)			
Team	Test1		Test2		Test1		Test2	
name	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑
NOAHTCV	31.86	0.83	32.69	0.88	38.38	0.93	35.77	0.92
MiAlgo	31.39	0.82	30.73	0.80	40.06	0.93	37.09	0.92
CASIA LCVG (*)	30.19	0.81	31.47	0.86	37.58	0.93	33.99	0.92
HIT-IIL	29.12	0.80	30.22	0.87	36.53	0.91	34.25	0.90
SenseBrains	28.36	0.80	30.08	0.86	35.47	0.92	32.63	0.91
CS^2U (*)	29.13	0.79	29.95	0.84	-	-	-	-
HiImage	27.96	0.79	_	2	34.40	0.94	32.13	0.90
0noise	27.67	0.79	29.81	0.87	33.68	0.90	31.83	0.89
OzU VGL	27.89	0.79	28.83	0.83	32.72	0.87	30.69	0.86
PixelJump	28.15	0.80	-	-	-	-	-	-
CVIP	27.85	0.80	29.50	0.86	-	-	-	-
CycleISP [47]	26.75	0.78	(7)	-	32.70	0.85	-	-
UPI [8]	26.90	0.78	-	-	-	-	-	-
U-Net Base	26.30	0.77	-	<u>~</u>	30.01	0.80	_	125

Tab. 1. AIM 2022 Reversed ISP Challenge Benchmark

Top Solutions

Model-Based Image Signal Processors via Learnable Dictionaries by Conde et al.

MiAlgo, Xiaomi Team Solution by Bai and Liu et al.

Visual Results

Ground-truth RGB-RAW Scene 1

Ground-truth RGB-RAW Scene 5

Samsung S7 Comparison

Huawei P20 Comparison

Conclusions

- Efficient solutions Offline/Online use.
- Great RAW reconstruction results, even when learning from "non-aligned" image pairs. Model-agnostic methods.
- Approximate inverse functions of real-world ISPs is hard!

Team	Input	Epochs	ED	ENS	FR	# Params. (M)	Runtime (ms)
NOAHTCV	(504,504)	500	X	X	1	5.6	25
MiAlgo	(3024,4032)	3000	X	X	1	4.5	18
CASIA LCVG	(504,504)	300K it.	1	1	1	464	219
CS^2U	(504,504)	276K it.	1	1	1	105	1300
HIT-IIL	(1536, 1536)	1000	X	X	1	9/116	19818 (cpu)
SenseBrains	(504,504)	220	X	1	1	69	50
PixelJump	(504,504)	400	X	1	1	6.64	40
HiImage	(256, 256)	600	X	X	1	11	200
OzU VGL	(496, 496)	52	X	X	1	86	6
CVIP	(504,504)	75	X	X	1	2.8	400
0noise	(504,504)	200	X	X	1	0.17	19

Challenge Papers

- "Learned Reverse ISP with Soft Supervision"
 by Beiji Zou and Yue Zhang (Central South University)
- "RISPNet: A Network for Reversed Image Signal Processing" by Xiaoyi Dong, Yu Zhu, Chenghua Li, Peisong Wang Jian Cheng (Institute of Automation, Chinese Academy of Sciences; MAICRO; AiRiA)
- "Reversing Image Signal Processors by Reverse Style Transferring" by Furkan Osman Kınlı, Barış Özcan and Furkan Kirac (Ozyegin University)
- "Overexposure Mask Fusion: Generalizable Reverse ISP Multi-step Refinement" by Jinha Kim (MIT), Jun Jiang and Jinwei Gu (SenseBrain)

Thank you!

Reversed Image Signal Processing and RAW Reconstruction.

AIM 2022 Challenge Report

Project page: https://github.com/mv-lab/AISP