WEST

Generate Collection

L10: Entry 2 of 35

File: JPAB

Jun 8, 2001

PUB-NO: JP02001156588AJP 2001-156588

DOCUMENT-IDENTIFIER: JP 2001156588 A TITLE: SURFACE ACOUSTIC WAVE DEVICE

PUBN-DATE: June 8, 2001

INVENTOR-INFORMATION:

NAME

COUNTRY

ITO, \MIKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

KYOCERA CORP

APPL-NO: JP11336816

APPL-DATE: November 26, 1999

INT-CL (IPC): H03 H 9/64; H03 H 9/25

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a <u>surface acoustic wave</u> device with high resistance to <u>power</u> and high reliability.

SOLUTION: In the <u>surface acoustic wave</u> device that forms a <u>ladder</u> circuit consisting of connection of a plurality of resonators each having IDT electrodes I on a piezoelectric substrate, the <u>ladder</u> circuit is characterized in that one resonator or more is connected is <u>series</u> between a resonator passing an input signal first and a resonator connected in <u>parallel</u> with and at the poststage of the resonator passing the input signal first so as to form a resonator group 11 consisting of <u>series</u> connection of a plurality of the resonators.

COPYRIGHT: (C) 2001, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-156588

(P2001-156588A)

(43)公開日 平成13年6月8日(2001.6.8)

(51) Int.CL7

識別記号

FΙ

テーマコート*(参考)

H03H 9/64 9/25

H03H 9/64

5 J O 9 7 Z

9/25

Z

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21)出願番号

(22)出顧日

特顯平11-336816

平成11年11月26日(1999.11.26)

(71)出願人 000006633

京セラ株式会社

京都府京都市伏見区竹田鳥羽殿町6番地

(72)発明者 伊藤 幹

京都府相楽郡精華町光台3丁目5番地 京

セラ株式会社中央研究所内

Fターム(参考) 5J097 AA26 BB01 BB11 CC02 CC03

DD13 DD28 DD29 EE09 FF01

FF03 GG03 GG04 GG05 HA02

HBO8 KKO1 KKO4

(54) 【発明の名称】 弾性表面波装置

(57)【要約】

【課題】 高い耐電力性を有し信頼性の高い弾性表面波 装置を提供すること。

【解決手段】 圧電基板上に、IDT電極Iを備えた共 振子の複数を接続して成るラダー型回路を形成した弾性 表面波装置であって、ラダー型回路は、入力信号を最初 に通過させる共振子と、該共振子の後段に並列に接続さ れる共振子との間に、1以上の共振子を直列接続させ て、複数の共振子を直列接続した共振子群11を形成し ていることを特徴とする。

【特許請求の範囲】

【請求項1】 圧電基板上に、IDT電極を備えた共振 子の複数を接続して成るラダー型回路を形成した弾性表 面波装置であって、前記ラダー型回路は、入力信号を最 初に通過させる共振子と、該共振子の後段に並列に接続 される共振子との間に、1以上の共振子を直列接続させ て、複数の共振子を直列接続した共振子群を形成してい ることを特徴とする弾性表面波装置。

【請求項2】 前記圧電基板がタンタル酸リチウム単結 晶であり、かつ前記共振子群は、該共振子群を構成する 10 共振子の個数と、共振子の I DT電極対数の平均値との 積が、130~450の範囲内にあることを特徴とする 請求項1に記載の弾性表面波装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車電話及び機 帯電話などの移動体無線機器等に内蔵される周波数フィ ルタとして好適な弾性表面波装置に関し、特に高い電力 を入力しても破損し難い耐電力性に優れた弾性表面波装 置に関する。

[0002]

【従来の技術とその課題】図2に、弾性表面波 (Sur face Acoustic Waveで、以下、SA Wと略す)装置J1の基本的な電極構成を示す。一般 に、タンタル酸リチウム (LiTaO3) 単結晶などの 圧電基板K上には、A1やA1-Cu合金などの電極材 から成る一対の櫛歯状電極であるIDT(Inter Digital Transducer)電極Iを備え た共振子の複数が、直列及び並列に接続されてラダー型 回路が形成されている。

【0003】すなわち、入力信号が印加される入力電極 3と出力電極4との間に、直列に接続させた直列共振子 1と、直列共振子1に対し接地電位の接地電極5に接続 させる並列共振子2とがそれぞれ複数接続されており、 出力電極4から出力信号が取り出されるようにしてい

【0004】なお、共振子を構成する各IDT電極Iの SAW伝搬路の両端には、図示のようにSAWを効率よ く共振させるための反射器Rが設けられる。また、ID T電極及び反射器の電極指の本数は数10本~数100 40 長のことである。 本にも及ぶため、図示においてはそれらの形状を簡略化 している。

【0005】このようなSAW装置は、その駆動周波数 や通過帯域が数100MHz~数GHzに高周波化する と同時に、広帯域化や高出力化が要求されてきている。 近年、この要求を満足するために、広帯域化が図れ、か つ高い耐電力性を有するIDT電極構造として、上記の ような梯子型(ラダー型)フィルタが注目されている。 【0006】しかしながら、高周波化に対応させるため

 μ m ~ 1 μ mオーダーに微細化する必要があるので、高 い電力と圧電効果による電気的及び機械的ストレスが共 振子に発生し、これによりSAWの伝搬及び共振等の特 性劣化や共振子を構成する電極指の破壊が生じる。

【0007】この問題を解決するために、入力側に最も 近い接地電位に接続された並列共振子を複数個接続した SAW共振子を備えたSAW装置が提案されている(例 えば、特開平9-205343号公報等を参照)。

【0008】このSAW装置によれば、入力側に最も近 い並列共振子が複数段直列に接続されていることによ り、入力電力による電気的及び機械的ストレスはそれぞ れのSAW共振子に分散され耐電力性の向上が図れると されている。

【0009】しかしながら、実際に入力電力による電気 的及び機械的ストレスが集中するのは、入力側に最も近 い直列共振子であるので、上記SAW装置の構造では、 耐電力性の大きな向上は期待できない。

【0010】そこで本発明では、上記事情に鑑みて、高 い耐電力性を有し信頼性の高い弾性表面波装置を提供す 20 ることを目的とする。

[0011]

【課題を解決するための手段】上記課題を解決するた め、本発明の弾性表面波装置は、圧電基板上に、IDT 電極を備えた共振子の複数を接続して成るラダー型回路 を形成した弾性表面波装置であって、ラダー型回路は、 入力信号を最初に通過させる共振子と、該共振子の後段 に並列に接続される共振子との間に、1以上の共振子を 直列接続させて、複数の共振子を直列接続した共振子群 を形成していることを特徴とする。

【0012】また、圧電基板がタンタル酸リチウム単結 30 晶から構成され、かつ共振子群は、該共振子群を構成す る共振子の個数と、共振子のIDT電極対数の平均値と の積が、130~450の範囲内にあることを特徴とす る。

【0013】なお、IDT電極対数とは、一般に定義さ れるものであって、図7に示すように、IDT電極の全 長しを伝搬させる弾性表面波の波長み(一つの櫛歯状電 極を構成する電極指の中心線と隣の電極指の中心線との 距離に相当)で規格化した値であり、IDT電極の周期

[0014]

【発明の実施の形態】本発明に係るSAW装置の実施形 態を図面に基づき詳細に説明する。なお、既に説明した 同様な部材については同一符号を付し説明を省略する。 【0015】図1に、本発明に係るSAW装置S1の主 要部における模式的な平面図(電極形成領域の上面図) を示す。SAW装置S1は、圧電基板K上にIDT電極 Iと反射器Rとを備えた共振子の複数(1,2,11) を接続してラダー型回路を形成したものであって、入力 には、IDT電極の電極指ピッチ及び電極線幅を0.4 50 信号を最初に通過させる共振子11aと、この共振子1

1 aの後段に並列に接続される共振子2 aとの間に、1 以上の共振子を直列接続させて、複数の共振子を直列接 続した共振子群11を形成したものである。

【0016】すなわち、圧電基板K上において、入力信 号が印加される入力電極3と出力信号を取り出すための 出力電極4との間に、IDT電極を備えた直列共振子を 複数個直列に接続した直列共振子群11と、直列共振子 1とを直列に接続し、さらに、これら直列共振子に対し 接地電位の接地電極5に接続させるIDT電極を備えた 並列共振子2を接続してラダー型回路を構成している。 【0017】さらに、共振子群11は、これを構成する 共振子の個数と、各共振子の I D T電極対数の平均値と の積を適当な範囲内にあるものとした。

【0018】図2に示した構成のSAW装置を用い、入 力電力(信号)の印加と圧電基板Kの圧電効果による電 気的及び機械的ストレスが、ラダー型フィルタのどの共 振子に集中するかについて調べたところ、電気的及び機 械的ストレスは入力信号が最初に通過する直列共振子に 集中すること、及び、入力電力が高くなると、入力信号 が最初に通過する直列共振子から破壊されることが判明 20 した。

【0019】これに対して、本発明のSAW装置S1の 構成によれば、入力信号が最初に通過する直列共振子を 共振子群11としている。このため、入力電力は共振子 のIDT電極Iを構成する電極指に分散されるが、共振 子を複数にすることで共振子1個当たりに入力される電 力を低下することができ、耐電力性が向上する。

【0020】ここで、SAW装置S1用の圧電基板Kと しては、36°±3°YカットX伝搬タンタル酸リチウ ム単結晶、42°±3°YカットX伝搬タンタル酸リチ 30 明する。 ウム単結晶、64°±3°YカットX伝搬ニオブ酸リチ ウム単結晶、41°±3°YカットX伝搬リチウム単結 晶、45°±3°XカットZ伝搬四ホウ酸リチウム単結 晶が好適に使用可能である。これらの単結晶材料は、電 気機械結合係数が大きく、かつ、周波数温度係数が小さ く好ましいが、特に、挿入損失や通過帯域の幅等につい て総合的に評価するとタンタル酸リチウム単結晶が最適 である。

【0021】また、圧電基板の厚みは0.1mm~0. 5mm程度が好ましい。この理由は、0.1mm未満で は圧電基板がもろくなり、O.5mm超では材料コスト と部品寸法が大きくなり使用不可能となるからである。 【0022】また、IDT電極及び反射器は、A1もし くはA l 合金 (A l ーC u 系、A l ーT i 系) から成 り、蒸着法、スパッタ法、またはCVD法などの薄膜形 成法により形成する。電極厚みは0.1 μ m~0.5 μ m程度とすることがSAW装置としての特性を得るうえ で好適である。

【0023】また、本発明に係るSAW装置の電極及び 圧電基板上のSAW伝搬部にSi、SiO2、SiN、 A1203を保護膜として形成して、導電性異物による 通電防止や耐電力向上を図ってもよい。

【0024】次に、最も特性が良好であった圧電基板 (42° YカットX伝搬のLiTaO3単結晶)を用い てSAW装置を作製し、入力電力の耐電力試験をした結 果を図3に示す。図示において、横軸には直列に接続し た共振子の段数(直列共振子の個数)及びIDT電極対 数(平均値)の積を、縦軸には試験装置の耐電力値をと った。

10 【0025】図3に示すように、耐電力性は上記の積に 依存し、積の増加に伴い耐電力性が向上することを確認 した。また、入力信号の大きさは、一般的に+15dBm のものが要求されているため、直列に接続したSAW共 振子の段数及び I D T電極対数の積が急に緩やかになる 130以上のものが好ましいことが判明した。

【0026】また、図4に示すように、直列に接続した SAW共振子の段数及びIDT電極対数の積と、挿入損 失との相関を調査したところ、挿入損失は上記の積に依 存し、積の増加に伴い、挿入損失が増加することが確認 できた。 挿入損失は一般的に3 dB のものが要求されて いるため、図4から、直列に接続したSAW共振子の段 数及びIDT電極対数の積が450以下のものが好まし

【0027】なお、本発明は上記の実施形態に限定され るものではなく、SAWフィルタだけで無く、SAWデ ュプレクサにも本発明は適用でき、本発明の要旨を逸脱 しない範囲で種々の変更は何ら差し支えない。

[0028]

【実施例】本発明に係るより具体的な実施例を以下に説

【0029】42° YカットX伝搬のタンタル酸リチウ ム単結晶からなる圧電基板上に、図1に示すような電極 パターンを形成しSAW装置を完成した。この電極パタ ーンは2.5段π型ラダー回路とし、入力側に最も近く の、複数の直列に接続された共振子の数を3個とし、I DT電極対数を各々80対とした(上記積=240)。 【0030】まず、洗浄したタンタル酸リチウム単結晶 のウエハ基板にスパッタリング法によりA1-Cu電極 を成膜した。膜厚は約2000Åとした。次に、レジス トを約1 µ mの膜厚で塗布し、窒素雰囲気中でベーキン グを行った。その後、紫外線を用いた縮小投影露光装置 によるフォトリソグラフィー法により、上記基板上に多 数のSAWフィルタ用のレジストポジパターンを形成し た。そして、RIE (Reactive Ion Et ching) 装置によるドライエッチングを行い電極バ ターンを形成した。

【0031】次に、CVD (Chemical Vap or Deposition)装置により、電極パター ン及び圧電基板上にSi〇2膜を約200Aの厚みに形 50 成した。その後、レジストを約1μmの膜厚で塗布し、

5

窒素雰囲気中でベーキングを行った。そして、紫外線を 用いた縮小投影露光装置によるフォトリソグラフィー法 により、SAW共振子上にSiO2の保護膜が形成でき るようレジストパターンを形成した。さらに、RIE (Reactive Ion Etching)装置に よるドライエッチングを行い、SiO2による保護膜パ ターンを形成した。

【0032】そして、ダイシングにより、ウエハ基板より多数のSAW素子を個々に切り出した。次に、3mm角のセラミックパッケージ内にシリコン樹脂を塗布し、個々に切り出したSAW素子をセラミックパッケージ内に接着し、窒素雰囲気中でベーキングを行った。最後に、ワイヤボンディングにより30μm径のAu線を配線することによりSAW装置を完成した。

【0033】上記SAW装置をネットワークアナライザ (アジレントテクノロジー、型番HP8753D) に接 続し、挿入損失の周波数特性を測定した。その結果を図 5に示す。このSAW装置の耐電力性は以下のようにし て調べた。

【0034】まず、シグナル・ジェネレータ(アンリツ、MG3670B)により、SAW装置に所定の電力を一定時間入力した。次に、上記ネットワークアナライザにより、挿入損失の周波数特性を測定し、図6に示すように、入力前の特性から劣化したかどうかについて調べた。変化が無ければ、電力を大きくして再度一定時間入力し測定した。これを繰り返し、特性が劣化したところをSAW装置の耐電力性として評価した。この実験の際、比較用として本発明品の他に、図2に示すような従来の電極バターンを有するSAW装置も作製し、同様な耐電力性の評価を行った。

【0035】その結果、本発明品では平均で入力電力+ 18dBmまで耐電力性があることを確認した。一方、 従来品では平均+13dBm程度しか耐電力性がなかっ たことが判明した。この結果より、本発明品が従来に比 ベ+5dBmも向上していることが判り、本発明品の耐 電力性が従来品に比べ大幅に改善されていることを確認 した。

[0036]

【発明の効果】以上詳述したように、本発明の弾性表面 被装置によれば、圧電基板上に形成したラダー型回路に おいて、入力信号を最初に通過させる共振子と、この共 振子の後段に並列に接続される共振子との間に、1以上 の共振子を直列接続させて、複数の共振子を直列接続し た共振子群を形成したことにより、入力信号による電気 的及び機械的ストレスはラダー型回路を構成する共振子 及び、共振子を構成するIDT電極指に分散され、高い 耐電力性を有し信頼性に非常に優れた弾性表面波装置を 10 提供することできる。

【図面の簡単な説明】

【図1】本発明に係るSAW装置を模式的に説明する平面図である。

【図2】従来のSAW装置の平面図である。

【図3】共振子群を構成する共振子の数とIDT電極対数との積と、耐電力との関係を示すグラフである。

【図4】共振子群を構成する共振子の数とIDT電極対数との積と、挿入損失との関係を示すグラフである。

【図5】SAW装置の耐電力試験前の周波数特性を示す 20 グラフである。

【図6】SAW装置の耐電力試験後の周波数特性を示す グラフである。

【図7】対数を説明するための図であり、(a)はID T電極の平面図、(b)は(a)のA-A線断面図である。

【符号の説明】

1: 直列共振子

2:並列共振子

3:入力電極

30 4: 出力電極

5:接地電極

11:共振子群

K: 圧電基板

I:IDT電極

R:反射器

S1:本発明に係るSAW装置

J1:従来のSAW装置

【図3】

【図4】

