FIRST PRINCIPLE CALCULATIONS OF DEFECT STRUCTURES IN ZINC OXIDE

By

CHRISTIAN LOER T. LLEMIT

An dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

NATIONAL INSTITUTE OF PHYSICS University of the Philippines - Diliman

MAY 2020

© Copyright by CHRISTIAN LOER T. LLEMIT, 2020 All Rights Reserved

То	the	Faculty	of	Washington	State	Univer	rsity

The members of the Committee appointed to examine the dissertation of CHRISTIAN LOER T. LLEMIT find it satisfactory and recommend that it be accepted.

Roland V. Sarmago, Ph.D., Chair
Donald Trump, Ph.D.
Rodrigo Duterte, Ph.D.

ACKNOWLEDGMENT

Nullam mollis et leo at pharetra. Nulla efficitur molestie euismod. Sed dapibus metus sed tempus varius. Aenean finibus eros ut urna luctus feugiat. Duis turpis risus, viverra vitae porta et, ullamcorper ac est. Proin in eros nec ipsum interdum tempus. Nam fringilla lectus velit, non posuere ex vehicula ut. Mauris tincidunt, dolor sit amet commodo tempor, erat mi egestas dui, at elementum tellus est rhoncus libero. Ut et rutrum lectus, id viverra tortor. Vivamus nec lacus eros. Donec dictum porta nisi et vestibulum. Mauris luctus ligula ut libero aliquet luctus. Quisque malesuada egestas finibus.

Mauris dictum pharetra fermentum. Maecenas ut felis varius, dapibus sapien imperdiet, dictum dui. Proin feugiat viverra metus non laoreet. Integer pulvinar mi id lacus semper commodo. Praesent vel erat interdum purus scelerisque maximus. Sed enim risus, mollis blandit ligula ac, sagittis venenatis augue. Mauris nisi purus, gravida ac aliquam eu, ullam-corper eget nulla. Proin id finibus purus. Vestibulum leo ante, porta in quam sed, eleifend feugiat arcu. Nunc viverra fringilla turpis a iaculis. In condimentum aliquet mauris, quis laoreet eros porta eu. Aenean ut turpis a massa gravida pretium. Phasellus auctor purus quis diam interdum, nec luctus lorem auctor. Pellentesque finibus elit justo, a vulputate diam fermentum lacinia.

FIRST PRINCIPLE CALCULATIONS OF DEFECT STRUCTURES IN ZINC OXIDE

Abstract

by Christian Loer T. Llemit, BS University of the Philippines - Diliman May 2020

: Roland V. Sarmago

Nullam mollis et leo at pharetra. Nulla efficitur molestie euismod. Sed dapibus metus sed tempus varius. Aenean finibus eros ut urna luctus feugiat. Duis turpis risus, viverra vitae porta et, ullamcorper ac est. Proin in eros nec ipsum interdum tempus. Nam fringilla lectus velit, non posuere ex vehicula ut. Mauris tincidunt, dolor sit amet commodo tempor, erat mi egestas dui, at elementum tellus est rhoncus libero. Ut et rutrum lectus, id viverra tortor. Vivamus nec lacus eros. Donec dictum porta nisi et vestibulum. Mauris luctus ligula ut libero aliquet luctus. Quisque malesuada egestas finibus.

Mauris dictum pharetra fermentum. Maecenas ut felis varius, dapibus sapien imperdiet, dictum dui. Proin feugiat viverra metus non laoreet. Integer pulvinar mi id lacus semper commodo. Praesent vel erat interdum purus scelerisque maximus. Sed enim risus, mollis blandit ligula ac, sagittis venenatis augue. Mauris nisi purus, gravida ac aliquam eu, ullam-corper eget nulla. Proin id finibus purus. Vestibulum leo ante, porta in quam sed, eleifend feugiat arcu.

TABLE OF CONTENTS

			P	age
ACK	NOV	WLED	GMENT	iii
ABS	ΓRA	CT .		iv
LIST	OF	TABI	LES	X
LIST	OF	FIGU	URES	xi
СНА	PTE	ER		
1	IN	ГROD	UCTION	1
	1.1	Purpo	ose and Motivation	1
	1.2	Objec	etives	1
	1.3	Outlin	ne	1
2	Rev	view o	f Related Literature	2
	2.1	Semic	conductors	2
		2.1.1	Properties	2
		2.1.2	Applications of Semiconductors	2
		2.1.3	Defects in Semiconductors	2
	2.2	Zinc (Oxide	2
		2.2.1	Crystal Structure	2
		2.2.2	Crystallographic Directions and Planes	3
		2.2.3	Brillouin Zone Symmetry	3
		2.2.4	Photoluminescence Properties	3
		2.2.5	Defects	3
3	\mathbf{TH}	EORE	ETICAL FRAMEWORK	4
	3.1	Electr	ronic Structure	4

	3.1.1 Electronic Bandstructure	4
	3.1.1.1 Bloch Wavefunctions	4
	3.1.2 Density of States	4
	3.1.3 Projected Density of States	4
3.2	Many-body Quantum Mechanics	4
	3.2.1 Time Independent Schrödinger Equation	6
	3.2.2 Simplifying Assumptions	6
	3.2.3 Use of Atomic Units	6
	3.2.4 Hamiltonian Operator	6
	3.2.5 Indistinguishability of electrons	6
3.3	Early First Principle Calculations	6
	3.3.1 n-electron problem	6
	3.3.2 Hartree Method	6
	3.3.3 Hartree-Fock Method	6
3.4	Density Functional Theory	6
	3.4.1 Electron Density	6
	3.4.2 Hohenberg-Kohn (HK) Formalism	6
	3.4.2.1 First HK Theorem	6
	3.4.2.2 Second HK Theorem	6
	3.4.3 Kohn Sham (KS) Formalism	6
	3.4.3.1 KS Equation	6
		6
	3.4.3.2 Energy Terms	6
2 5	Exchange-correlation Functional	6
5.5	3.5.1 Local Density Approximation (LDA)	6
	3.5.2 Generalized Gradient Approximation (GGA)	6
3.6	Corrections to DFT	6
5.0	3.6.1 GW Method	6
	3.6.2 Hybrid Functionals	6
	3.6.3 Hubbard U Correction	6
DF	T Calculation of Solids	7
4.1	Basis Sets	7
	4.1.1 Plane Wave	7

4

	4.1.2 Gaussian Orbital	7
	4.1.3 Slater type orbitals	7
4.2	Pseudopotential Approach	7
	4.2.1 Freezing the core electrons	8
	4.2.2 Pseudizing the valence electrons	8
	4.2.3 Common Pseudopotentials	8
	4.2.3.1 Norm-Conserving PP	8
	4.2.3.2 Ultrasoft PP	8
	4.2.3.3 Projector Augmented Wave	8
4.3	Choosing the appropriate Calculation Size	8
	4.3.1 Use of Supercell	8
	4.3.1.1 Periodic Boundary Conditions (PBC)	8
	4.3.2 Use of Reciprocal Space	8
	4.3.2.1 Reciprocal Lattice	8
	4.3.2.2 First Brillouin Zone	8
	4.3.2.3 Irreducible Brillouin Zone	8
	4.3.3 k-point sampling	8
	4.3.3.1 Monkhorst-Pack method	8
	4.3.3.2 Gamma Point Sampling	8
4.4	Bloch Representations	10
	4.4.1 Electrons in solid	10
	4.4.2 Bloch Theorem in periodic systems	10
	4.4.3 Fourier Expansion of Bloch representations	10
	4.4.3.1 Fourier Expansions	10
	4.4.3.2 Fast Fourier Transformation (FFT)	10
	4.4.3.3 Kohn-Sham Matrix Representations	10
4.5	Plane Wave (PW) Expansion	10
	4.5.1 Basis Set	10
	4.5.1.1 Local Basis Set	10
	4.5.1.2 Plane Wave Basis Set	10
	4.5.2 Plane Wave Expansion for KS quantities	10

		4.5.2.1 Charge Density
		4.5.2.2 Kinetic Energy
		4.5.2.3 Effective Potential
	4.6	Electronic Structure
		4.6.1 Band Structure of free electrons
		4.6.2 Band Structure of electrons in solids
		4.6.3 Electronic Density of States
	4.7	Practical Aspects
		4.7.1 Energy Cutoffs
		4.7.1.1 Cutoff for Wavefunction
		4.7.1.2 Cutoff for Charge Density
		4.7.2 Smearing
		4.7.2.1 Gaussian Smearing
		4.7.2.2 Fermi Smearing
		4.7.2.3 Methfessel–Paxton Smearing
5	Sof	tware Implementation
	5.1	QUANTUM ESPRESSO
		5.1.1 MKL Libraries
		5.1.2 PWSCF routines
	5.2	Intel Compilers
	5.3	Executables
	5.4	Computational Details
		5.4.1 Convergence Testing
		5.4.2 Hubbard correction parameters
		5.4.3 Supercell creation
		5.4.4 Slab Model
		5.4.5 Structural relaxation
		5.4.6 scf calculation
		5.4.7 bandstructure calculation
		5.4.8 dos calculation

REFE	ER	E	N(CE	ES			•		•				•	•			•					 13
APPI	ΞN	D	IX																				
A													 										 15
В													 										 17
\mathbf{C}													 										 18
D													 		•					•			 19
I.																							20

LIST OF TABLES

LIST OF FIGURES

A.1	Cost per raw megabase of DNA sequence from 2001 to 2015	 15
A.2	Cost per raw megabase of DNA sequence from 2001 to 2015	 16
B.1	Cost per raw megabase of DNA sequence from 2001 to 2015	 17
C.1	Cost per raw megabase of DNA sequence from 2001 to 2015	 18
D.1	Cost per raw megabase of DNA sequence from 2001 to 2015	 19
E.1	Cost per raw megabase of DNA sequence from 2001 to 2015	 20

Dedication

This dissertation/thesis is dedicated to my mother and father who provided both emotional and financial support ${\cal C}$

Chapter One

INTRODUCTION

1.1 Purpose and Motivation

Describe the importance of defects in ZnO

1.2 Objectives

Study the mechanisms of different defects in ZnO

1.3 Outline

This is an example of how to cite $\left[\begin{array}{c} 1 \end{array} \right]$

Chapter Two

Review of Related Literature

- 2.1 Semiconductors
- 2.1.1 Properties
- 2.1.2 Applications of Semiconductors
- 2.1.3 Defects in Semiconductors

2.2 Zinc Oxide

describe ZnO in broad perspective

2.2.1 Crystal Structure

Consider different phases

- 2.2.2 Crystallographic Directions and Planes
- 2.2.3 Brillouin Zone Symmetry
- 2.2.4 Photoluminescence Properties
- 2.2.5 Defects

Chapter Three

THEORETICAL FRAMEWORK

- 3.1 Electronic Structure
- 3.1.1 Electronic Bandstructure
- 3.1.1.1 Bloch Wavefunctions

insert the symmetry points in IBZ.

3.1.2 Density of States

explains fermi dirac distribution

3.1.3 Projected Density of States

3.2 Many-body Quantum Mechanics

insert text here

3.2.1	Time Independent Schrödinger Equation
3.2.2	Simplifying Assumptions
3.2.3	Use of Atomic Units
3.2.4	Hamiltonian Operator
3.2.5	Indistinguishability of electrons
3.3	Early First Principle Calculations
3.3.1	n-electron problem
3.3.2	Hartree Method
3.3.3	Hartree-Fock Method
3.4	Density Functional Theory
3.4.1	Electron Density
3.4.2	Hohenberg-Kohn (HK) Formalism
3.4.2.1	First HK Theorem
3.4.2.2	Second HK Theorem
3.4.3	Kohn Sham (KS) Formalism
3.4.3.1	KS Equation
3 4 3 2	Energy Terms

3.5

3.4.4 Self Consistent Field Calculation

Chapter Four

DFT Calculation of Solids

- 4.1 Basis Sets
- 4.1.1 Plane Wave
- 4.1.2 Gaussian Orbital
- 4.1.3 Slater type orbitals
- 4.2 Pseudopotential Approach

This is sample text

4.2.1	Freezing the core electrons
4.2.2	Pseudizing the valence electrons
4.2.3	Common Pseudopotentials
4.2.3.1	Norm-Conserving PP
4.2.3.2	Ultrasoft PP
4.2.3.3	Projector Augmented Wave
4.3	Choosing the appropriate Calculation Size
4.3.1	Use of Supercell
4.3.1.1	Periodic Boundary Conditions (PBC)
4.3.2	Use of Reciprocal Space
4.3.2.1	Reciprocal Lattice
4.3.2.2	First Brillouin Zone
4.3.2.3	Irreducible Brillouin Zone
4.3.3	k-point sampling
4.3.3.1	Monkhorst-Pack method
4.3.3.2	Gamma Point Sampling

Example of double quotes "word". Lore

4.4 Bloch Representations

- 4.4.1 Electrons in solid
- 4.4.2 Bloch Theorem in periodic systems
- 4.4.3 Fourier Expansion of Bloch representations
- 4.4.3.1 Fourier Expansions
- 4.4.3.2 Fast Fourier Transformation (FFT)
- 4.4.3.3 Kohn-Sham Matrix Representations

4.5 Plane Wave (PW) Expansion

- 4.5.1 Basis Set
- 4.5.1.1 Local Basis Set
- 4.5.1.2 Plane Wave Basis Set
- 4.5.2 Plane Wave Expansion for KS quantities
- 4.5.2.1 Charge Density
- 4.5.2.2 Kinetic Energy
- 4.5.2.3 Effective Potential

4.6 Electronic Structure

- 4.6.1 Band Structure of free electrons
- 4.6.2 Band Structure of electrons in solids
- 4.6.3 Electronic Density of States

4.7 Practical Aspects

Chapter Five

Software Implementation

- 5.1 QUANTUM ESPRESSO
- 5.1.1 MKL Libraries
- 5.1.2 PWSCF routines

cbands, cegterg, cdiaghg

- 5.2 Intel Compilers
- 5.3 Executables
- 5.4 Computational Details
- 5.4.1 Convergence Testing
- 5.4.2 Hubbard correction parameters
- 5.4.3 Supercell creation
- 5.4.4 Slab Model
- 5.4.5 Structural relaxation
- 5.4.6 scf calculation
- 5.4.7 bandstructure calculation
- 5.4.8 dos calculation

DOST COARE

REFERENCES

- 1. Prades, J. D., Cirera, A. & Morante, J. R. Ab initio calculations of NO2 and SO2 chemisorption onto non-polar ZnO surfaces. *Sensors and Actuators, B: Chemical* **142**, 179–184 (1 Oct. 2009).
- 2. Wetterstrand, K. A. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) www.genome.gov/sequencingcosts.

Appendix A

Figure A.1 Cost per raw megabase of DNA sequence from 2001 to 2015. Straight line - Moore's Law, blue curve - cost in US dollars, Y-axis scale is logarithmic. Graph reproduced from [2]

Figure A.2 Cost per raw megabase of DNA sequence from 2001 to 2015. Straight line - Moore's Law, blue curve - cost in US dollars, Y-axis scale is logarithmic. Graph reproduced from [2]

Appendix B

Figure B.1 Cost per raw megabase of DNA sequence from 2001 to 2015. Straight line - Moore's Law, blue curve - cost in US dollars, Y-axis scale is logarithmic. Graph reproduced from [2]

Appendix C

Figure C.1 Cost per raw megabase of DNA sequence from 2001 to 2015. Straight line - Moore's Law, blue curve - cost in US dollars, Y-axis scale is logarithmic. Graph reproduced from [2]

Appendix D

Figure D.1 Cost per raw megabase of DNA sequence from 2001 to 2015. Straight line - Moore's Law, blue curve - cost in US dollars, Y-axis scale is logarithmic. Graph reproduced from [2]

Appendix E

Figure E.1 Cost per raw megabase of DNA sequence from 2001 to 2015. Straight line - Moore's Law, blue curve - cost in US dollars, Y-axis scale is logarithmic. Graph reproduced from [2]