# CS 6501 Natural Language Processing

Recurrent Neural Networks

Yangfeng Ji

November 12, 2019

Department of Computer Science University of Virginia



#### Overview

- 1. Recurrent Neural Networks
- 2. RNN Language Modeling
- 3. Challenge of Training RNNs
- 4. Variants of RNNs

1

### Recurrent Neural Networks

#### **RNNs**

A simple RNN is defined as

$$h_t = f(x_t, h_{t-1}) \tag{1}$$

where  $x_t$  and  $h_t$  is the input and hidden state at time  $t^1$ 



<sup>&</sup>lt;sup>1</sup>Double circles indicate non-random nodes

#### Transition Function

For the simplest case, f is an element-wise sigmoid function as

$$f(x_t, h_{t-1}) = \sigma(W_h h_{t-1} + W_i x_t + b)$$
 (2)

where

- $\triangleright$  **W**<sub>h</sub>: parameter matrix for hidden states
- $ightharpoonup W_i$ : parameter matrix for inputs
- ▶ *b*: bias term (also a parameter)

### **Unfolding RNNs**

Recursive:



### **Unfolding RNNs**

Recursive:

$$h_{t} = f(x_{t}, h_{t-1})$$

$$\cdots \qquad h_{t-1} \qquad h_{t} \qquad \cdots$$

$$x_{t} \qquad (3)$$

Unfolded:

$$h_{t} = f(x_{t}, f(x_{t-1}, h_{t-2}))$$

$$= f(x_{t}, f(x_{t-1}, f(x_{t-2}, h_{t-3})))$$

$$= \cdots$$

$$= f(x_{t}, f(x_{t-1}, f(x_{t-2}, \cdots f(x_{1}, h_{0}) \cdots)))$$
(4)

#### **Base Condition**



$$h_t = f(x_t, f(x_{t-1}, f(x_{t-2}, \dots f(x_1, h_0) \dots)))$$
 (5)

- $\blacktriangleright$   $h_0$ : zero vector or parameter
- $ightharpoonup x_1$ : input at time t = 1

### **Plot**



### For Sequential Modeling

Loss at single time step *t* 

$$L_t(y_t, \hat{y}_t) = \text{cross-entropy}(y_t, \hat{y}_t)$$
 (6)

where  $y_t$  and  $\hat{y}_t = g(h_t)$  are the ground truth and predicted output respectively.

The total loss is given as

$$\ell = \sum_{t=1}^{T} L_t(y_t, \hat{y}_t) \tag{7}$$

## RNN Language Modeling

### RNN Language Models

For a given sentence  $\{x_1, \dots, x_T\}$ , the input at time t is word embedding  $x_t$ . The probability distribution of next word  $X_{t+1}$ 

$$P(X_{t+1} = x) = \frac{\exp(\boldsymbol{w}_{o,x}^{\top} \boldsymbol{h}_t)}{\sum_{x'} \exp(\boldsymbol{w}_{o,x'}^{\top} \boldsymbol{h}_t)}$$
(8)

where  $w_{o,x}$  is the output weight vector related to word x.

### Plot



11

### **Special Cases**



$$\{ \mathsf{start}, x_1, \dots, x_T, \mathsf{stop} \}$$

▶ at time t = 1

$$P(X_1 = x) \propto \exp(\boldsymbol{w}_{o,x}^{\top} \boldsymbol{h}_{\mathsf{start}}) \tag{9}$$

▶ at time t = T

$$P(X_T = \mathsf{stop}) \propto \exp(\boldsymbol{w}_{o,x}^{\mathsf{T}} \boldsymbol{h}_T)$$
 (10)

#### Normalization Term

$$P(X_{t+1} = x) = \frac{\exp(\boldsymbol{w}_{o,x}^{\top} \boldsymbol{h}_t)}{\sum_{x'} \exp(\boldsymbol{w}_{o,x'}^{\top} \boldsymbol{h}_t)}$$
(11)

#### Options:

- ► Negative sampling (x)
- Class-factored softmax

#### Class-factored Softmax: Definition

▶ Partition the vocab into *K* classes  $\{\mathscr{C}_1, \ldots, \mathscr{C}_K\}$ , such that  $\mathscr{V} = \cup \mathscr{C}_k$  and  $\mathscr{C}_k \cap \mathscr{C}_{k'} = \emptyset$  for any  $k' \neq k$ 

[Baltescu and Blunsom, 2014]

#### Class-factored Softmax: Definition

- ▶ Partition the vocab into *K* classes  $\{\mathscr{C}_1, \ldots, \mathscr{C}_K\}$ , such that  $\mathscr{V} = \cup \mathscr{C}_k$  and  $\mathscr{C}_k \cap \mathscr{C}_{k'} = \emptyset$  for any  $k' \neq k$
- Define the probability distribution of word as

$$P(X_{t+1} = x; \mathbf{h}_t) = P(X_{t+1} = x, C_{t+1} = c; \mathbf{h}_t)$$

$$= P(X_{t+1} = x \mid C_{t+1} = c; \mathbf{h}_t)$$

$$\cdot P(C_{t+1} = c \mid \mathbf{h}_t)$$
(12)

[Baltescu and Blunsom, 2014]

#### Class-factored Softmax: Word clusters

#### Brown clusters



### Computational Complexity

#### Given

- $ightharpoonup |\mathcal{V}|$  is the vocab size
- ▶ *D* is the dimension of hidden representations

| Model          | Training/Decoding                          |
|----------------|--------------------------------------------|
| Standard       | $\mathbb{O}( \mathcal{V}  \cdot D)$        |
| Class-factored | $\mathbb{O}(\sqrt{ \mathcal{V} } \cdot D)$ |

Table: Computational complexities of different softmax functions.

### Challenge of Training RNNs

### **Backpropagation Through Time**

Consider the gradient of  $\ell$  with respect to the network parameters  $\theta = \{W_h, W_i, b\}$ ,

$$\frac{\partial \ell}{\partial \theta} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial \theta} \tag{13}$$



Backpropagation Through Time [Rumelhart et al., 1985, BPTT]

#### Gradients

For each time step t, we have

$$\frac{\partial L_t}{\partial \boldsymbol{\theta}} = \sum_{i=1}^t \left\{ \frac{\partial L_t}{\partial \boldsymbol{h}_t} \cdot \left( \prod_{j=i}^{t-1} \frac{\partial \boldsymbol{h}_{j+1}}{\partial \boldsymbol{h}_j} \right) \cdot \frac{\partial \boldsymbol{h}_i}{\partial \boldsymbol{\theta}} \right\}$$
(14)



### Challenges

$$\frac{\partial L_t}{\partial \boldsymbol{\theta}} = \sum_{i=1}^t \left\{ \frac{\partial L_t}{\partial \boldsymbol{h}_t} \cdot \left( \prod_{j=i}^{t-1} \frac{\partial \boldsymbol{h}_{j+1}}{\partial \boldsymbol{h}_j} \right) \cdot \frac{\partial \boldsymbol{h}_i}{\partial \boldsymbol{\theta}} \right\}$$
(15)

- vanishing gradients
- exploding gradients

[Pascanu et al., 2013]

### **Exploding Gradients**

Solution: norm clipping [Pascanu et al., 2013].

Consider the gradient  $g = \frac{\partial \ell}{\partial \theta}$ ,

$$\hat{g} \leftarrow \tau \cdot \frac{g}{\|g\|} \tag{16}$$

when  $||g|| > \tau$ . Usually,  $\tau = 3$  or 5 in practice.

### Vanishing Gradients

#### Solution:

- ▶ initialize parameters carefully
- replace hidden state transition function  $\sigma(\cdot)$  with other options

$$f(x_t, h_{t-1}) = \sigma(W_h h_{t-1} + W_i x_t + b)$$
 (17)

- LSTM [Hochreiter and Schmidhuber, 1997]
- ► GRU [Cho et al., 2014]

### Long Short-Term Memory

$$i_t = \sigma(\mathbf{W}_{xi}x_t + \mathbf{W}_{hi}h_{t-1} + \mathbf{W}_{ci}c_{t-1} + b_i)$$
 (18)

$$f_t = \sigma(\mathbf{W}_{xf}x_t + \mathbf{W}_{hf}h_{t-1} + \mathbf{W}_{cf}c_{t-1} + b_f)$$
 (19)

$$c_t = f_t \circ c_{t-1} + i_t \circ \tanh(\mathbf{W}_{xc} \mathbf{x}_t + \mathbf{W}_{hc} \mathbf{h}_{t-1} + \mathbf{b}_c)$$
 (20)

$$o_t = \sigma(\mathbf{W}_{xo}x_t + \mathbf{W}_{ho}h_{t-1} + \mathbf{W}_{co}c_t + b_o)$$
 (21)

$$h_t = o_t \circ \tanh(c_t) \tag{22}$$

o is the element-wise multiplication

[Graves, 2013]

### **LSTM**



#### **LSTM**



- ▶ Forget gate  $f_t$  discounting on the memory cell
- ► Peephole connections (connections in blue color) [Gers and Schmidhuber, 2000]

#### **Gated Recurrent Units**

A gated recurrent unit (GRU) was proposed in [Cho et al., 2014].

$$r_t = \sigma(\mathbf{W}_{rx}\mathbf{x}_t + \mathbf{W}_{rh}\mathbf{h}_{t-1}) \tag{23}$$

$$\tilde{h}_t = \tanh(\mathbf{W}_{hx}\mathbf{x}_t + \mathbf{W}_{hr}(\mathbf{r}_t \odot \mathbf{h}_{t-1})) \tag{24}$$

$$z_t = \sigma(\mathbf{W}_{zx}x_t + \mathbf{W}_{zh}h_{t-1}) \tag{25}$$

$$h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$$
 (26)

(27)

Empirical results show GRU units are *comparable* to LSTM units [Chung et al., 2014].

# Variants of RNNs

#### Overview

- Bi-directional RNNs
- ► Stacked (or Multi-layer) LSTM
- ► Memory networks [Weston et al., 2014]

#### Bi-directional RNNs

To construct a bi-directional RNN, we need another uni-directional RNN running from the end of the sequence to the beginning, as

$$u_t = f(x_t, u_{t+1}).$$
 (28)

where  $u_t$  is the hidden state at time t in this new model.

[Schuster and Paliwal, 1997]

#### Stacked LSTM

Use the hidden state  $h_t^{(k)}$  from the current layer as input  $x_t^{(k+1)}$  to the next layer [Sutskever et al., 2014],

$$x_t^{(k+1)} = h_t^{(k)}. (29)$$

[Sutskever et al., 2014]

### Summary

1. Recurrent Neural Networks

- 2. RNN Language Modeling
- 3. Challenge of Training RNNs
- 4. Variants of RNNs

#### Reference



Baltescu, P. and Blunsom, P. (2014).

Pragmatic neural language modelling in machine translation. arXiv preprint arXiv:1412.7119.



Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992).

Class-based n-gram models of natural language.

Computational linguistics, 18(4):467–479.



Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014).

On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.



Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014).

Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.



Gers, F. A. and Schmidhuber, J. (2000).

Recurrent nets that time and count.

In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, volume 3, pages 189–194. IEEE.



Graves, A. (2013).

Generating sequences with recurrent neural networks.



Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory.

Neural computation, 9(8):1735-1780.



Pascanu, R., Mikolov, T., and Bengio, Y. (2013).

On the difficulty of training recurrent neural networks.

In International Conference on Machine Learning, pages 1310–1318.



Rumelhart, D. E., Hinton, G. E., and Williams, R. I. (1985).