ational Bureau of Standards Library, N. W. Bldg.

8 WAR 10".

Reference to the be

IONOSPHERIC DATA

ISSUED FEBRUARY 1954

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C.	7, 12, 20, 44
Ionospheric Storminess at Washington, D. C	7, 32
Sudden Ionosphere Disturbances	7. 33
Radio Propagation Quality Figures	8, 34
Observations of the Solar Corona	9. 36
Relative Sunspot Numbers	10, 40
Observations of Solar Flares	10, 42
Indices of Geomagnetic Activity	11, 43
Erratum	11
Tables of Ionospheric Data	12
Graphs of Ionospheric Data	44
Index of Tables and Graphs of Ionospheric Data	
in CRPL-F114	68

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva. 1951. Excerpts concerning symbols and terminology from Document Mo. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89. "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-\$78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Ez):

Values of fis missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1. leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month				Predi	cted S	unspot	Numbe	1°		
	1954	1953	1952	1951	1950	1949	1948	1947	1946	1945
December November October September August July June May April March February		15 16 17 18 18 20 21 22 24 27 29	33 38 43 46 49 51 52 52 52 51	53 52 52 54 57 60 63 68 78 82	86 87 90 91 96 101 103 102 101 103	108 112 114 115 111 108 108 108 109 111 113	114 115 116 117 123 125 129 130 133 133	126 124 119 121 122 116 112 109 107 105 90	85 83 81 79 77 73 67 67 62 51	38 36 23 22 20
January	14	30	53	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 48 and figures 1 to 96 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Republica Argentina, Ministerio de Marina: Buenos Aires, Argentina Decepcion I.

University of Graz: Graz. Austria

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Leopoldville, Belgian Congo Defence Rasearch Board, Canada:
Baker Lake, Canada
Churchill, Canada
Ottawa, Canada
Prince Rupert, Canada
Resolute Bay, Canada
St. John's, Newfoundland
Winnipeg, Canada

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China:
Formosa, China

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany: Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute: De Bilt. Holland

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

Radio Research Laboratories, Tokyo, Japan:
Akita, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yamagawa, Japan

Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway: Oslo, Norway Tromso, Norway

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden:
Kiruna, Sweden

Research Institute of National Defence, Stockholm, Sweden: Upsala, Sweden

Royal Board of Swedish Telegraphs, Radio Department, Stockholm, Sweden: Lulea, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

United States Army Signal Corps: Okinawa I. White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):
Anchorage, Alaska
Fairbanks, Alaska (Geophysical Institute of the University of Alaska)
Guam I.

Euancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Narearssauk, Greenland
Panama Canal Zone
Point Barrow, Alaska
Puerto Rico, W. I.
San Francisco, California (Stanford University)
Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 49 through 60 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 61 presents ionosphere character figures for Washington, D. C., during January 1954, as determined by the criteria given in the report IRPI-R5. "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

SUDDEN IONOSPHERE DISTURBANCES

Table 62 shows that no sudden ionosphere disturbances were observed at Ft. Belvoir. Virginia, during the month of January 1954. Table 63 lists the sudden ionosphere disturbances observed in Sweden for October 1953.

Tables 64a and 64b give for December 1953: the radio propagation quality figures for the North Atlantic area, CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, separately for each 6-hour interval of the Greenwich day, viz., 00-06, 06-12, 12-18, 18-24 hours UT (Universal Time or GCT).
- (b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the four quarter-day Q-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.
- (c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00^h, 06^h, 12^h, 18^h UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. Note that new scoring rules have been adopted beginning with October 1952 data.
- (d) advance forecasts, issued semiweekly (CEPL-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead.

 These forecasts are scored against the whole-day quality indices.
- (e) half-day averages of the geomagnetic X indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.
- (f) illustration of the comparison of short-term forecasts with Q-figures and also with estimates of radio quality based on CRPL observations only.
- (g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and, for comparison, the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

The radio propagation quality figures are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company, Mackay Radio and Telegraph Company, BCA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U. S. Government:—Coast Guard, Mavy, Army Signal Corps, and State Department. The method of calculation, summarized below, is similar to that described in a 1946 report. IRPL-R31, now out of print. Beginning with recalculated figures for January 1952, only reports of radio transmission on Morth Atlantic paths closely approximating New York-London are included in the estimation of quality. Observations of selected ionospheric characteristics, even though strongly correlated with radio transmission quality, and traffic reports for paths such as New York-Stockholm or New York-Tangier, previously included in the quality-figure determination with low weight, have been left out of the present calculations inasmuch as a sufficient number of homogeneous reports are now available.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the quality scale of the original reports. These 6-hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least four months, usually a year.

with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. The 6-hourly quality figures are (subjectively) weighted means of the reports received for that period. These 6-hourly quality figures replace, beginning January 1953, the half-daily quality figures which formerly appeared in this table.

These quality figures are, in effect, a consensus of reported radio propagation conditions in the North Atlantic area. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the Q-figures and solar, nuroral, geomagnetic or similar indices.

Note. The North Pacific quality figures, which were published through October 1951, have been temporarily discontinued. Since the establishment of the North Pacific Radio Warning Service at Anchorage, Alaska, a larger number of reports are being received than were previously available in Washington. The preparation of the quality figures will be resumed when sufficient data have been accumulated for determination of conversion tables for these new reports.

OBSERVATIONS OF THE SOLAR CORONA

Tables 65 through 67 give the observations of the solar corona during January 1954, obtained at Climax. Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 68 through 70 list the coronal observations obtained at Sacramento Peak, New Mexico, during January 1954, derived by Harvard College Observatory as a part of its performance of a research contract with the Upper Air Research Observatory, Geophysical Research Directorate, Air Force Cambridge Research Center. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 65 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 66 gives similarly the intensities of the first red (6374A) coronal line; and table 67, the intensities of the second red (6702A) coronal line; all observed at Climax in January 1954.

Table 68 gives the intensities of the green (5303A) coronal line; table 69, the intensities of the first red (6374A) coronal line; and table 70, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in January 1954.

The following symbols are used in tables 65 through 70: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

Attention is called to the publication of "Particulars of Observations" at Climax, Colorado, and Sacramento Peak, New Mexico, for July through December 1953 in tables 71 and 72 of CRPI-F113. Mention of these tables was inadvertently omitted in last month's issue.

RELATIVE SUNSPOT NUMBERS

Table 71 lists the daily provisional Zurich relative sunspot number, Rz. for January 1954, as communicated by the Swiss Federal Observatory. Table 72 contains the daily American relative sunspot number, RA:, for December 1953, as compiled by the Solar Division, American Association of Variable Star Observers.

OBSERVATIONS OF SOLAR FLARES

Table 73 gives the preliminary record of solar flares reported to the CHPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various ebservatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris) and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 74 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures, C; (2) geomagnetic planetary three-hour-range indices, Kp; (3) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following three criteria: (1) the sum of the eight Kp's: (2) the greatest Kp; and (3) the sum of the squares of the eight Kp's.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Kp is available from 1937 to date as noted in F108.

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

ERRATUM

The De Bilt. Holland, height values published in the F series, numbers 104 through 113, for January 1953 through October 1953, should be increased by 5 percent.

TABLES OF IONOSPHERIC DATA

				Tab	le 1			
Washin	gton, D.	C. (38.7	N, 77.1	OW)				January 1954
Time	h'F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2
00	(270)	(2.4)						(3.1)
01	(260)	(2.3)						(3.1)
02	260	2.8						(3.1)
03	250	(2.8)						(3.1)
04	250	2.9						3.2
05	250	3.1						3.2
06	240	(3.0)					2.1	(3.3)
07	230	2.9						3.4
60	220	4.3	210		W-4 4	1.7		3.6
09	230	4.8	220	100-10-10	110	2.2	2.4	3.6
10	250	5.3	210	3.6	110	2.5		3.5
11	250	5.7	210	3.7	110	2.7		3.5
12	250	5.9	210	3.8	110	2.8		3.5
13	260	5.8	210	3.8	110	2.8		3.5
14	260	5.6	210	3.6	110	2.6		3.5
15	250	5.6	210	second and	110	2.4		3.5
16	230	5.5	220		120	2.0	1.9	3.6
17	220	4.8						3.5
18	220	3.8						3.4
19	230	3.2						3.3
20	230	2.7						3.4
21	(250)	2.1						3.2
22	(270)	2.2						3.1
_23	(270)	(2.3)						3.1

Time: 75.0° W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	2			
Fairba	nks, Alas	ka (64.9	°N, 147.	8°W)			Doc	ember 1953
Time	p.LS	foF2	h'Fl	foFl	h * E	foE	fBe	(M3000)F2
00	280	(2.6)					4.3	(3.0)
01	330	(2.2)					4.4	(3.0)
02	330	(2.2)					5.7	(2.9)
03	360	(2.1)					4.5	(2.8)
04	335	(2.2)					5.0	(2.9)
05	320	(2.4)					4.8	(2.8)
06	320	(2.0)					4.1	(2.8)
07	300	(2.0)					4.2	(3.0)
80	320	(2.9)					4.3	(2.9)
09	250	2.6					3.2	3.2
10	230	3.6					3.0	3.4
11	220	4.1					1.9	3,4
12	220	4.2					2.4	3.4
13	220	4.5					3.9	3.5
14	210	4.1					2.7	3.5
15	210	3.6					2.6	3.4
16	220	2.7					3.1	3.4
17	250	2.0					3.6	3.3
18	300	(1.6)					4.4	(3.1)
19	340	(1.8)					5.0	(2.6)
20							4.4	
21	310						4.7	
22	270	(2.8)					3.4	(3.2)
23	280	2.6					4.0	3.1

Z3 | 280 2.6 Time: 150.0°W. Sweep: 1.0 Mo to 25.0 Mo in 15 eeconde.

Narear	Table 5 Varearseuak, Greenland (61.2°N, 45.4°W) December 1963											
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2				
00							5.0					
01		an 10-70					4.9					
02							6.0	-				
03							6.0					
04							5.1					
05	(300)	(2.4)					6.0	(3.2)				
06	(280)	(1.8)					4.4	(3.1)				
07	(270)	(1.6)					4.4	(3.5)				
08	250	(1.8)					2.4	3.3				
09	220	3.0			110		2.0	3.6				
10	230	3.8	2.50		140			3.6				
11	230	4.3	510		1 30	1.7		3.6				
12	230	4.7	220		140	1.8		3.6				
13	230	4.7	220		130	1.6		3.6				
14	230	4.7						3.6				
16	230	(3.9)					2.0	(3,2)				
16	240	(3.2)					3.6	(3.2)				
17	280	(2.8)					3.7	(3.1)				
18	(290)	(2.2)					4.2	(3.0)				
19	(250)	(0.0)					4.8	(5.0)				
50							6.8					
21							6.1					
22							6.6					
23							6.2	anua/file				

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconde.

			0.	Table 2				
Tromso,	Norway	(69.7°N,	19.0°E)				Dec	cember 1953
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	(MG000)F2
00						-	4.7	
01							4.6	
02	(320)	(2.4)					3.8	(3.0)
03	290	2.1					3.4	3.0
04	300	1.8					3.0	3.0
05	290	1.7					3.1	3.0
06	(280)	1.6					2.9	3.0
07	(275)	< 1.6					3.0	(3.2)
80		<1.6					3.0	(3.2)
09	250	1.8					2.8	3.1
10	225	2.7			140	1.2	2.6	3.4
11	220	3.3			120	1.3	2.7	3.5
12	220	3.4			125	1.2	2.8	3.4
13	220	3.3					2.9	3.4
14	220	2.8				-	2.9	3.4
15	240	2.1					2.9	3.2
16	245	1.7					2.7	3.2
17	(280)	(1.6)					3.0	3.1
18							3.3	
19							3.9	
20							4.4	
21							4.6	
22							4.4	
23							4.3	

23 4.3
Time: 15.0°E.
Sweep: 0.6 Me to 25.0 Me in 5 minutee, automatic operation.

Anchor	age, Alas	Dec	December 1963					
Time	h'F2	foF2	h'F1	foFl	h E	foE	fEs	(M3000)F2
00	(300)	(1.5)					2.9	(3.1)
01	300	(1.4)					2.6	(3.0)
02	330	(1.6)					3.2	(2.8)
03	320	1.6					2.9	2.8
04	320	(2.0)					2.9	(5.0)
06	340	(1.6)					3.0	(2.9)
06	320	(1.8)					2.7	(2.9)
07	300	(1.7)					2.4	(3.0)
08	300	1.8						3.0
09	230	3.2					1.6	3.4
10	220	4.2			120	1.7		3,6
11	550	4.6	220		110	1.8		3.5
12	550	4.7	210	2.2	110	1.8		3.5
13	220	5.1	220		120	1.7		3.6
14	210	4.8			120	1.6		3.6
15	210	4.0						3.6
16	220	3.2						3.4
17	230	2.2						3.3
18	260	1.7						3.3
19	(280)	(1.6)					3.2	(3.2)
50							(2.7)	
21							2.9	
22		-					3.6	
23							2.7	

Time: 160.00W.
Sweep: 1.0 Mc to 25.0 Mo in 16 eeconde.

Oslo,	Norway (6	0.0°H. 1	1.1°E)	Table 6	2	Dece	mber 1963	
Time	h†F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00		1.6						(3.1)
01	275	1.4						3.0
02	260	1.4						3.1
03	260	1.4					2,2	3.0
04	(255)	1.3					1.2	3.0
05	(260)	1.2						3.1
06		1.3						
07		1.4						
80		1.8						3.0
09	230	3.3					3.0	3.4
10	215	4.2					3.0	3.6
11	210	4.5	210			1.9	3.0	3.6
12	210	5.0	220				3.0	3.6
13	210	5.1	215				3.1	3.6
14	210	4.8				-	3.1	3.6
15	210	4.3					3.0	3,6
16	215	3.6					0.0	3.4
17	230	2.8						3.4
18		2.0						3.3
19		1.7						(3.1)
20		1.6						(3.0)
21		1.5						(5.0)
22		1.7						(3.1)
23		1.6						(3.0)

Time: $15.0^{\circ}E$. Sweep: 0.6 Mo to 14.0 Mo in 8 minutes, automatic operation.

Upsala,	Sweden	(59.8°N,	17.6°E)	Table	December 19				
Time	h'F2	foF2	h ⁱ #1	foF1	h*E	foE	fEe	(H3000)F2	
00	305	1.8					2.3	2.9	
01	305	1.8					2.3	2.9	
02	290	1.7					2.5	2.9	
03	(320)	1.6					2.6	2.9	
04	325	1.4					3.0	(2.8)	
05	-	1.4					2.9		
06		1.4					3.2		
07	-	1.4					2.6		
08	255	2.2				E	2.8	3.0	
09	220	3.9				E	3.1	3.5	
10	220	4.5	220	2.4	120	1.6	3.5	3.6	
11	220	5.0	215	2.4	115	1.8	2.6	3.6	
12	215	5.1	220	2.5	115	1.9	2.6	3.6	
13	215	5.0	< 215	2.4	115	(1.8)	2.4	3.6	
14	215	4.7	210			1.6	2.4	3.6	
15	210	3.9				E	2.5	3.5	
16	220	3.0					2.3	3.3	
17	230	2.3					2.3	3.2	
18	(260)	1.8					2.4	3.1	
19	(280)	1.6					2.4	(3.0)	
20	(300)	1.6					2.0	(2.9)	
21	(280)	1.6					2.2	(3.0)	
22	(295)	1.7					2.3	2.9	
23	(300)	1.7					2.3	(3.0)	

Time: 15.0°E.

Sweep: 1.4 Mc to 17.0 Mc in 6 minutes, automatic operation.

				Table	9			
San Fr	ancieco,	Californi	la (37.4	N, 122.	SoA)		Dec	mber 1953
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2
00	(250)	(2.9)					2.4	(3,2)
01	(240)	(2.9)					2.3	(3.3)
02	(230)	3.0					2.2	3.3
03	(240)	3.0						3.4
04	(230)	2.9					2.2	3.4
05	(240)	2.9						3,3
06	(250)	(2.9)					2.3	3.3
07	230	3.0					2.5	3.5
08	220	4.8	220		(120)	(1.8)	3.1	3.6
09	230	5.2	220		(120)	(2.3)	3.3	3,6
10	240	5.6	220	-	110	(2.6)	3.4	3.5
11	250	6.3	220		110	(2.8)	3.8	3.5
12	250	6.5	210		(120)	(2.9)	3.7	3.6
13	240	6.0	220		110	(2.9)	3.7	3.5
14	240	5.7	230		110	(2.7)	3.8	3.5
15	230	5.5	220		120	(2.4)	3.6	3.6
16	220	5.0	-				3.6	3.6
17	210	4.2					3.3	3.6
18	(230)	2.9					3.6	3.3
19	(220)	2.6					2.8	3.5
20	(230)	2.6					3.6	3.5
21	(230)	2.6					2.8	3.3
22	(250)	2.6					3.0	3.2
23	(250)	2.9					2.6	3.2

23 (250) 2.9 Time: 120.0°W. Sweep: 1.0 Ma to 25.0 Ma in 16 seconds.

		_		Table 1	<u>1</u>			
Okinaw.	a I. (26.	30N, 127	.8°E)				Dece	ember 1953
Time	P.LS	ro\$2	h'F1	foFl	h1E	foE	fBe	(M3000)F2
00	300	(2.8)						(3.0)
01	300	2:.8						(3.1)
02	270	8.0						3.2
03	250	2.8						3.2
04	240	2.8						3.6
05	250	2.7						100000
06	240	(3.3)						
07	220	4.4						3.6
80	240	5.2	220	******	120		3.0	3.6
09	250	6.0	220	3.8	110	***	3.2	3.6
10	260	6.4	220	4.0	110	2.8	3.5	3.5
11	260	6.7	200	4.2	110	3.0	3.8	3.4
12	260	8.0	200	4.2	110	3.0	4.2	3.4
13	260	8.8	(200)	4.1	110	3.0	4.3	3.4
14	250	8.2	220	4.0	110	2.9	4.5	3,5
15	240	7.1	220				4.0	3.,6
16	230	6.6					4.0	3.6
17	210	5.4					3.4	3.7
18	220	4.0					3.1	3.5
19	240	3.6						3.3
50	250	3.5						3., 3
21	250	3.4						3.4
22	240	3.2						
23	(260)	(8.8)						(3, 4)

Time: 127.5°E. Sweep: 1.0 Mc to 25.0 Mo in 15 seconds.

				Table	8			
Graz,	Austria	(47.1°N,	15.5°E)				De	cember 1953
Time	h'F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2
00	280	3.0						
01	270	3.0						
03	280	2.9						
03	280	2.9						
04	270	2.7						
05	240	2.3						
06	240	2.3						
07	250	2.4						
80	200	4.3						
09	200	5.1						
10	200	6.0						
11	200	6.0						
12	200	5.0						
13	200	6.2						
14	200	5.1						
15	200	5.0						
16	200	4.3						
17	220	3.4						
18	260	2.8						
19	260	3.0						
20	240	2.9						
21	260	2.9						
22	280	3.0						
23	290	2.9						

				Table				
White	Sande,	New Mexic	o (32.3 ⁰	N, 106.5	W)		Dace	mber 1953
Time	h'F2		h'F1	foFl	h1E	foE	fEs	(M3000)F2
00	260	3.2						3.1
01	250	3.4						3.2
02	240	3.4						3.2
03	240	3.3						3.3
04	230	3.4						3.3
05	250	3.0						3.2
06	260	2.9						3.2
07	230	3.9						3.4
80	230	5.0	220		110	2.0	2.9	3.6
09	250	5.3	220	3.6	110	2.4	3.3	3.5
10	260	5.8	220	3.9	110	2.7	3.6	3.4
11	260	6.0	210	4.0	110	2.8	3.6	3.4
12	260	6.8	200	4.0	110	2.9	3.8	3.4
13	260	6.6	210	4.0	110	2.9	4.0	3.4
14	250	6.2	220	3.8	110	2.7	3.9	3.5
16	240	5.9	220		110	2,5	4.0	3.6
16	220	5.4			110	2.0	4.2	3.6
17	210	4.5					3.4	3.5
18	220	3.1					3.3	3.4
19	230	2.8					3.6	3.3
20	240	2.8					3.2	3.4
21	250						3.3	3.3
22	260						2.4	3.1
23	270							3.1

Time: 105.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconde.

				Table	12			
Meni,	Hawaii (2	0.8°N, 1	56.5°W)				Deca	mber 1953
Time	h'F2	foF2	h*Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	(2.5)					2.1	(3.0)
01	300	2.7					2.4	3.0
03	260	2.6					1.7	3.3
03	250	2.6						3.4
04	240	(2.5)					1.6	(3.4)
06	260	(2.0)					2.0	(3.3)
06	300	(2.0)					2.1	(2.9)
07	250	3.7					2.7	3.3
08	250	5.3	240	-	120	2.2	3.0	3.4
09	290	6.5	250	4.0	120	2.6	3.7	3.3
10	280	7.2	230	4.2	120	2.9	5.1	3.4
11	290	7.5	220	4.3	120	3.1	4.8	3.3
12	300	7.8	220	4.3	120	3.1	4.7	3.0
13	300	9.1	200	4.3	120	3.1	4.9	3.1
14	270	9.6	220	42	120	3.0	6.6	3.2
16	260	8.5	240	4.0	120	2.8	5.4	3.4
16	240	7.3	240	3.7	120	2.5	3.7	3.6
17	230	5.6			130	1.9	4.4	3.6
18	220	4.6					4.5	3.6
19	220	3.1					4.1	3,5
20	270	2.7					4.0	3.1
21	280	2.9					3.4	3.2
23	250	2.8					3.5	3,3
_23	280	(2,8)					2.7	3, 2

Time; 150.0°W. Sweep: 1.0 Mg to 25.0 Mg in 15 seconds.

Puerto	Rico, W.	I. (18.5	°N, 67.2	OW) TROLE	: 13		Dec	December 1953 fEs (M3000)F2 3.1 2.3 (3.1)			
Time	h F2	foF2	h'Fl	foFl	h 1E	fcE	fEs	(M3000)F2			
00	250	4.0						3.1			
01	250	4.3					2.3	(3.1)			
02	240	(4.5)					2.7	(3.3)			
03	210	(4.5)					3.0	(3.5)			
04	210	3.5					2.5	3.5			
05	240	3.0					2.7	3.1			
06	240	3.0					2.5	3.2			
07	220	4.1						3.5			
08	240	4.9	230		110	2.0	2.8	3.5			
09	250	5.7	230		110	2.5	2.9	3.5			
10	260	6.3	220	4.1	110	2.8	3.0	3.5			
11	260	6.2	210	4.2	110	3.0	3.2	3.5			
12	260	6.0	210	4.2	110	3.1		3.5			
13	280	6.0	200	4.2	110	3.1	3.4	3.3			
14	270	6.5	210	4.1	110	3.0	3.9	3.4			
15	250	6.5	250	3.9	110	2.8	3.6	3.5			
16	240	5.6	220		110	2.5	3.6	3,6			
17	230	5.3	220		110	2.0	3.6	3,6			
18	210	4.9					3.0	3.6			
19	220	3.9					2.9	3.5			
50	240	3.4					2.8	3.2			
21	240	3.6						3.1			
22	250	3.8					2.5	3.1			
23	260	4.0					0.5	7 2			

23 260 4.0

Time: 60.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconde.

Panana	Canal Zo		Dec	ember 1953				
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00	240	(3.0)					2.0	(3,3)
01	230	(3.0)					2.2	(3.3)
02	220	(2.8)					2.4	(3.3)
03	550	(2.4)					2.4	(3.4)
04	260	(2.2)					2.6	(3.1)
05	260	(2.4)					4.2	(3.1)
06	260	2.6					3.1	3.1
07	240	4.6			120	1.8	4.1	3.5
08	280	5.7	240	3.8	120	2.4	4.0	3.4
09	280	6.8	230	4.1	110	2.8	4.2	3.3
10	270	7.4	210	4.2	110	3.1	4.3	3.4
11	280	7.6	210	4.3	100	3.2	4.3	3.3
12	290	7.6	210	4.3	110	3.3	4.8	3.3
13	290	7.2	250	4.3	100	3.3	5.0	3.2
14	290	7.6	220	4.2	110	3.2	5.6	3.2
15	280	7.3	220	4.2	110	3.0	5.1	3.3
16	250	6.8	220	3.9	110	2.7	4.4	3.6
17	230	5.7	230		120	2.2	4.2	3.6
18	250	4.4					4.0	3.6
19	230	3.3					4.2	3.4
20	240	3.0					3.7	3.4
21	260	2.9					3.2	3.2
22	260	2.9					2.6	3.1
23	250	(3.0)					2.3	3.2

23 | 250 (3.0) Time: 75.0°W. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

				Table 1	.7			
Point 1	Barrow, A	laska (7	1.3°N, 1	56.8 W)			Nov	ember 1953
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(H3000)F2
00		(2.4)			/		6.8	
01		(2.6)					6.5	
02		(2.5)					6.0	
03		2.7					5.0	
04		2.8					4.1	
05		(2.6)					4.2	
06		(3.0)					4.5	
07		3.3					4.4	
08		(2.8)					4.7	
09		3.0					4, 5	
10		3.7					4.2	
11		4.1					3.8	
12		4.0					3.0	
13		4.4					2.5	
14		4.2					2.8	
16		4,0					2.3	
16		3.4					1.9	
17	1	2.8					3.2	
18		2.2					2.8	
19	i	1.9					4.0	
50	1	(2.0)					4.0	
21	1	(2.4)					4.4	
22		(2.7)					4.6	
23		(2.4)					6.9	

Time: 150.0°W. Sweep: 1.0 Mo to 25.0 Mo in 15 seconds.

Guam I.	(13.6°N.	144.90	E)	Table 1	le 14 Decembe				
Time	P.ES	foF2	h'F1	foF1	h1E	foE	fEe	(M3000) F2	
00	240	3.0						3.8	
01	250	2.9						3.3	
02	260	2.8						3.3	
03	240	2.7						3.6	
04	240	1.9						3.6	
05	240	1.8						3.4	
06	240	1.4					1.6	(3.3)	
07	240	4.4	230		120	1.4		3.6	
08	260	6.2	550		110	2.2	2.8	3.4	
09	280	7.6	210	3.9	100	2.7	3.8	3.2	
10	300	8.0	200	4.1	100	2.9	3.4	2.9	
11	320	7.7	190	4.2	100	3.1	3.8	2.7	
12	330	7.7	200	4.2	100	3.1	4.4	2.7	
13	340	7.6	200	4.2	100	3.1	4.8	2.7	
14	320	8.0	200	4.1	100	3.0	4.0	2.8	
15	300	8.1	210		100	2.9	4.4	3.0	
16	270	8.4	220		110	2.5	3.8	3.2	
17	240	8.1	230		120	2.3	3.4	3.4	
18	550	7.8					3.0	3.5	
19	210	6.6					2.9	3.6	
20	210	5.4					2.6	3.5	
21	220	4.9					3.7	3.3	
22	230	3.9						3.4	
23	240	3.5						3.4	

23 240 3.5 Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

	_	40 -		Table 1	<u>6</u>		_	
Huanca	yo, Peru	(12.0°S,	75.3°W)				Dec	ember 1953
Time	hills	foF2	h'Fl	foF1	h1E	foE	fEe	(M3000)F2
00	300	(3.3)					3.5	(3.0)
01	340	(1.4)						-
02	340	< 1.0					4.0	
03	400	< 1.0					3.7	
04	360	< 1.0					4.1	
0.5	360	< 1.0					6.2	
06	240	4.5			120	1.7	4.6	3.3
07	(280)	6.4	230		110	2.6	7.6	3.2
80	320	7.3	210	4.1	100	2.8	10.5	3.0
09	340	7.4	200	4.2	100		11.5	2.7
10	370	7.6	200	4.3	100		12.2	2.6
11	380	7.2	200	4.4	100		11.7	2.6
12	380	7.3	200	4.4	100		12.0	2.6
13	370	7.4	190	4.3	100		11.5	2.6
14	360	7.6	200	4.3	100	3.2	10.3	2.7
15	330	8.1	200	4.1	100	3.0	9.3	2.8
16	300	8.5	200		110	2.8	6.5	3.0
17	(280)	8.3	230		110	2.3	4.6	3.1
18	250	7.9			120	1.7		3.1
19	250	7.2						3.3
50	250	6.0						3.3
21	260	5.2						3.2
22	280	4.0						3.2
2.7	700	R C						2.9

23 300 8.6 Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Kiruna	. Sweden	(67.8°M.	20.5°E)	18		Nov	ember 1953	
Time	h'F2	foF2	h'Fl	foFl	h¹E	fcE	fEs	(M3000)F2
00	340	3.5					4.2	3.1
01	(350)	3.4					4.1	3.0
0.3	340	3.3					2.2	3.0
0:3	330	2.2					2.7	3.0
04	310	2.2					1.6	(3.2)
0.5	(300)	(2.1)					1.6	(3.2)
06	(295)	(2.2)					2.0	(3,4)
07	275	2.8						3.2
80	235	3.2						3.4
09	235	4.0	-	turners.	-			3. 5
10	230	4.2		-	-			3.5
11	230	4.3			week	-		3.7
12	225	4.7			-			3.6
13	225	4.4						3.5
14	225	4.4						3.5
15	250	3.7						3.4
16	240	3.3						3.4
1"	(250)	(3.5)					2.1	(3.4)
18	(270)	(3.1)					2.2	(3.2)
19		(4.4	
50		tureres.					4.1	
21	(340)	(3.3)					4.0	(3.2)
22:	(355)	(2.8)					4.1	(3.1)
23	330	3.2					4.7	3.1

Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mo in 30 seconds.

				Table 1	.9			
Lulea,	Sweden	(65.6°N,	22.1°E)				Nov	embsr 1953.
Time	P. L.	foF2	h'F1	foF1	hIE	foE	fEs	(M3000)F2
00	320	(2.0)					3.0	
01		4						
02	330	(1.9)					2.6	
03 04	(300)						3.2	
05	(300)	**** 100 300					3.2	
06	(290)	-					3.0	
07	,,							
08	250	2.6					2.2	
09								
10	240	4.0	225			1.9	3.2	
11								
12	225	4.7	215		130	2.0	8.8	
14	225	4.0			~~~	1.6	3.3	
15		2.0				1.0	0.0	
16	245	2.8					2.6	
17								
18	(245)						3.2	
19	(53.0)							
20 21	(310)						2.7	
22	(300)	-					3.4	
23	, 5007						9.7	

23 time: 15.0°E.
Sweep: 1.5 Mc to 10.0 Mc in 6 minutes, automatic operation.

				Table	21			
Reykja	vik, Icel	and (64.	ı°n, 21.	8°W)			Nove	ember 1953
Time	h'F2	foF2	h'F1	foFl	hIE	foE	fEe	(M3000)72
00							4.4	
01	(370)	(2.6)					4.7	(2.8)
02	(350)	(2.9)					4.2	(3.0)
03	(320)	(2.4)					3.6	(2.9)
04	(320)	2.5					3.9	2.9
05	(300)	2.2					2.1	(3,2)
06	(330)	(1.9)					1.9	(3.2)
07		(1.6)					(2.0)	
08	260	2.6						3.2
09	250	3.6						3.3
10	240	4.3						3.4
11	250	4.7	240					3.4
12	250	4.7	240					3.4
13	250	4.4	250					3.4
14	250	4.2				-		3.3
15	250	4.1						3.2
16	250	(3.8)						(3.1)
17	260	(4.0)					2.5	(3.2)
18	270	(3.2)					2.2	(3.2)
19	(280)	(2.6)					4.2	(3.2)
20	(320)	(2.3)					4.0	
21							4.0	
22		-					4.1	
23							4.2	

Time: 15.0°W.
Sweep: 1.0 Mg to 25.0 Mc in 18 eeconde.

				Tabl	e 23			
Lindau	Zerz, Go	rmany (5	1.6°N. 1	0.1°E)			Nov	ember 1953
Time	h'F2	foF2	h'Fl	foFl	h,E	foE	fEs	(M3000)F2
00	280	2.8					2.1	3.1
01	260	2.8					2.0	3.1
02	260	2.9					2.2	3.1
03	260	2.8					2. 2	3.2
04	250	2.4					2.2	3.2
05	240	2.2					1.9	3.3
06	240	2.0						3.4
07	230	2.2					2.2	3.5
08	215	3.8	~~~			2	2.4	3.7
09	220	4.8	210		115	1.8	3.0	3.7
10	220	5.0	210			2.2	3.1	3.7
11	230	5.5	205		105	2.3	3.5	3.6
12	235	5.6	210		105	2.4	3.4	3.6
13	230	5.6	300		110	3.4	3.5	3.6
14	225	5.4	210		110	2.2	3.3	3.6
15	225	5.4	220		120	2.0	3.3	3.6
16	220	4.8				R	3.0	3.6
17	215	4.2					2.6	3.5
18	225	3.4					2.4	3.4
19	240	2.8					2.3	3.4
20	250	2.6					3.2	3.4
21	275	2.4					2.2	3.2
22	280	2.4					2.1	3.1
23	275	2.7					a. 2	3.3

Time: 15.0°E.
Sweep: 1.0 Me to 16.0 Me in 8 minutes.

					e 20					
airbar	ks, Alaa	ka (64.9	N, 147.	BoM)			Nove	ember 1953		
Time	h'F2	foF2	h'Fl	foFl	h*E	fcE	fEs	(M3000)F2		
00		(1.9)					5.0	(3.2)		
01							5.2			
02		(2.5)					5.8	(3.1)		
03		(1.8)					5.4	(3.0)		
04							5.0			
05	i	(2.6)					4.5	(3,2)		
06		(2.4)					5.0	(3.0)		
07		2.4					4.4	(3.2)		
08		3.0					4.0	(3.5)		
09		3.6				1.5	3.1	(3.6)		
10		4.4				1.7	2.2	(3.6)		
11		5.0				1.9	2.3	(3.8)		
12	1	4.8				1.8	2.2	(3,8)		
13		5.0				1.8	2.4	(3.8)		
14		4.8				1.5	1.9	(3.8)		
15		4.0					1.9	(3.7)		
16		3.5					1.8	(3.5)		
17		3.0					4.0	(3.6)		
18		2.0					4.6	(3.5)		
19		1.8					4.4	(3.3)		
20	i	(1.8)					4.4	(3.2)		
21		(2.2)					4.5	(3.3)		
22	i	(2.2)					4.0	(3.3)		
23		(2.2)					4.8	(3.3)		

Time: 150.0°W. Sweep: 1.0 Me to 25.0 Me in 15 eeconde.

				Table 2	2			
Do Bil	t. Holland	1 (52.1°)	7, 5.2°E)			Nov	ember 1953
Time	P.E.S.	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	260	2.8						3.0
01	255	(2.9)						3.0
02	250	(2.8)						3.1
03	< 250	(2.6)						3.1
04	230	(2.0)						3.1
05	230	(2.0)						3.3
06	(220)	(2.1)						3.3
07	< 220	3.0			-	E		3.5
80	210	4.4	210	2.4	-	1.9		3.6
09	230	4.8	200	3.2	110	2.2	2.4	3.6
10	230	5.2	200	3.3	105	2.4	2.5	3.6
11	230	5.8	200	3.4	100	2.4	2.4	3.6
12	230	5.6	210	3.5	105	2.5	1.9	3.6
13	230	5.3	205	3.3	100	2.4		3.6
14	230	5.2	215	2.8	110	2.2		3, 6
15	250	4.9	210	2.3	140	1.9	1.8	3.6
16	210	4.4						3.6
17	210	3.5						3.4
18	220	2.8						3.3
19	220	2.5						3.3
20	(230)	2.4						3.2
21	< 240	2.5						3.0
22	< 260	2.6						3.0
23	260	2.6						3.0

25 260 2.6 Time: 0.00. Sweep: 1.4 Mc to 11.2 Mc in 6 minutes, eutomatic operation.

	Table 24									
Schwer	genburg,	Switzerl	and (46,	8°N, 7.3	OE)		No	vember 1953		
Time	h'F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2		
00	260	3.0						3.3		
01	250	3.0						3.3		
02	250	3.0						3.4		
03	250	3.0						3.4		
04	220	3.0						3.5		
05	210	2.4						3.6		
06	200	2.5						3.8		
07	200	2.8						3.8		
80	200	4.0						4.0		
09	500	4.8				2.2		4.0		
10	200	5.2				2.4		4.0		
11	200	5.6				2.6		4.0		
12	200	5.8				2.6		4.0		
13	200	5.8				2.5		4.0		
14	200	5.4				2.4		3.9		
15	200	5.5				2.2		4.0		
16	200	5.5				2.2		4.0		
17	200	4.5						4.0		
18	200	3.6						3.8		
19	210	3.0						3.6		
20	210	2.8						3.6		
21	210	2.7						3.6		
22	250	2.8						3.4		
23	270	2.8						3.4		
Dinne	15 0°E									

Time: 15.0°E. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Time				1	able 25				
00 270 3,4 2,8 01 240 3,7 3,1 02 240 3,6 1,8 3,2 03 230 3,5 2,0 3,4 04 230 2,8 1,9 3,2 05 260 2,8 2,1 3,0 06 280 2,8 2,1 3,0 07 240 5,6 240 (3,8) 120 2,4 3,2 3,4 09 270 7,4 240 4,0 120 2,8 3,6 3,6 10 280 8,5 220 4,3 120 3,0 4,1 3,2 11 280 9,2 220 4,3 120 3,0 4,1 3,2 12 280 10,3 220 4,4 120 3,2 4,6 3,6 12 280 10,3 220 4,4 120 3,2 4,8 <t< td=""><td>Formosa,</td><td>China</td><td>(25.0°N,</td><td>121.5°E)</td><td></td><td>-</td><td></td><td>Nove</td><td>mber 1953</td></t<>	Formosa,	China	(25.0°N,	121.5°E)		-		Nove	mber 1953
01 240 3,7 3,1 02 240 3,6 1,8 3,2 03 230 3,5 2,0 3,4 04 230 2,8 1,9 3,2 05 260 2,3 2,1 3,0 06 280 2,8 2,0 2,9 07 240 5,6 130 1,9 2,2 3,5 08 240 6,6 240 (3,8) 120 2,4 3,2 3,4 09 270 7,4 240 4,0 120 2,8 3,6 3,6 10 280 8,5 220 4,3 120 3,0 4,1 3,2 11 280 9,2 220 4,4 120 3,2 4,6 3,6 12 280 11,9 240 4,3 120 3,2 4,6 3,6 12 280 10,3 220 4,4 <t< td=""><td>Time</td><td>h1F2</td><td>foF2</td><td>h'Fl</td><td>foFl</td><td>h I E</td><td>foE</td><td>1≚a</td><td>(M3000)F2</td></t<>	Time	h1F2	foF2	h'Fl	foFl	h I E	foE	1≚a	(M3000)F2
02 240 3,6 1,8 3,2 03 230 3,5 2,0 3,4 04 230 2,8 1,9 3,2 05 260 2,3 2,1 3,0 06 280 2,8 2,0 2,1 3,0 08 240 6,6 240 (3,8) 120 2,4 3,2 3,4 09 270 7,4 240 4,0 120 2,8 3,6 3,6 10 280 8,5 220 4,3 120 3,0 4,1 3,2 11 280 9,2 220 4,3 120 3,2 4,6 3,6 12 280 10,3 220 4,4 120 3,2 4,6 3,6 12 280 11,9 230 4,4 1,0 4,6 3,3 14 260 11,9 230 4,4 1,0	00	270	3.4						2.8
03 230 3,5 2,0 3,4 04 230 2,8 1,9 3,2 05 260 2,3 2,1 3,0 06 280 2,8 2,0 2,9 07 240 5,6 130 1,9 2,2 3,5 08 240 6,6 240 (3,8) 120 2,4 3,2 3,4 09 270 7,4 240 4,0 120 2,8 3,6 3,6 10 280 8,5 220 4,3 120 3,0 4,1 3,2 11 280 9,2 220 4,3 120 3,2 4,6 3,6 12 280 10,3 220 4,4 120 3,2 4,8 3,2 13 280 11,9 240 4,3	01	240	3.7						3.1
04 230 2.8 1.9 3.2 05 260 2.3 2.1 3.0 06 280 2.8 2.0 2.9 07 240 5.6 130 1.9 2.2 3.5 08 240 6.6 240 (3.8) 120 2.4 3.2 3.4 09 270 7.4 240 4.0 120 2.8 3.5 3.6 10 280 8.5 220 4.3 120 3.0 4.1 3.2 11 280 9.2 220 4.3 120 3.2 4.6 3.6 12 280 10.3 220 4.4 120 3.2 4.6 3.2 13 280 11.9 230 (4.1)	02	240	3.6					1.8	3.2
05 260 2.3 2.1 3.0 06 280 2.8 2.0 2.0 2.9 07 240 5.6 5.6 130 1.9 2.2 3.5 08 240 6.6 240 (3.8) 120 2.4 3.2 3.4 09 270 7.4 240 4.0 120 2.8 3.6 3.6 10 280 8.5 220 4.3 120 3.0 4.1 3.2 11 280 9.2 220 4.3 120 3.2 4.6 3.6 12 280 10.3 220 4.4 120 3.2 4.6 3.6 12 280 11.9 240 4.3 4.6 3.3 14 260 11.9 230 (4.1) 4.4 3.6 15 240 10.2 220 4.0	03	230	3.5					2.0	3.4
06 280 2.8 2.0 2.9 07 240 5.6 240 (3.8) 1.9 2.2 3.5 08 240 6.6 240 (3.8) 120 2.4 3.2 3.4 09 270 7.4 240 4.0 120 2.8 3.6 3.6 10 280 8.5 220 4.3 120 3.2 4.6 3.6 12 280 10.3 220 4.4 120 3.2 4.8 3.2 13 280 11.9 240 4.3 4.6 3.3 14 260 11.9 230 (4.1) 4.4 3.6 15 240 10.2 220 4.0 4.4 3.6 16 230 8.0 3.9 3.5 17 220 6.7 3.7 <td>04</td> <td>230</td> <td>2.8</td> <td></td> <td></td> <td></td> <td></td> <td>1.9</td> <td>3.2</td>	04	230	2.8					1.9	3.2
07 240 5.6 130 1.9 2.2 3.5 08 240 6.6 240 (3.8) 120 2.4 3.2 3.4 09 270 7.4 240 4.0 120 2.8 3.5 3.6 10 280 8.5 220 4.3 120 3.0 4.1 3.2 11 280 9.2 220 4.3 120 3.2 4.6 3.6 12 280 10.3 220 4.4 120 3.2 4.6 3.6 12 280 11.9 240 4.3 4.6 3.3 14 260 11.9 230 (4.1) 4.4 3.6 15 240 10.2 220 4.0 4.4 3.6 16 230 8.0 3.9 3.5 17 220	05	260	2.3					2.1	3.0
08 240 6.6 240 (3.8) 120 2.4 3.2 3.4 09 270 7.4 240 4.0 120 2.8 3.6 3.6 10 280 8.5 220 4.3 120 3.0 4.1 3.2 11 280 9.2 220 4.3 120 3.2 4.6 3.6 12 280 10.3 220 4.4 120 3.2 4.8 3.2 13 280 11.9 240 4.3	06	280	2.8					2.0	2.9
09 270 7,4 240 4.0 120 2.8 3.6 3.6 10 280 8.5 220 4.3 120 3.0 4.1 3.2 11 280 9.2 220 4.3 120 3.2 4.6 3.6 12 280 10.3 220 4.4 120 3.2 4.8 3.2 13 280 11.9 240 4.3 4.6 3.3 14 260 11.9 230 (4.1) 4.4 3.6 15 240 10.2 220 4.0 4.4 3.6 16 230 8.0 3.9 3.5 17 220 6.7 3.7 3.6 18 210 5.7 3.0 3.5 19 230 4.6 2.6 3.3	07	240	5.6			130	1.9	2.2	3.5
10		240	6.6	240	(3.8)	120	2.4	3.2	3.4
11 280 9.2 220 4.3 120 3.2 4.6 3.6 12 280 10.3 220 4.4 120 3.2 4.8 3.2 13 280 11.9 240 4.3 4.6 3.3 14 260 11.9 230 (4.1) 4.4 3.6 15 240 10.2 220 4.0 4.4 3.6 16 230 8.0 3.7 3.6 17 220 6.7 3.7 3.6 18 210 5.7 3.0 3.5 19 230 4.6 2.6 3.3 20 240 4.7 2.4 3.1	09	270	7.4	240	4.0	120	2.8	3.6	3.6
12 280 10.3 220 4.4 120 3.2 4.8 3.2 13 280 11.9 240 4.3 4.6 3.3 14 260 11.9 230 (4.1) 4.4 3.6 15 240 10.2 220 4.0 4.4 3.6 16 230 8.0 3.9 3.5 17 220 6.7 3.7 3.6 18 210 5.7 3.0 3.5 19 230 4.6 2.6 3.3 20 240 4.7 2.4 3.1	10	280	8.5	220	4.3	120	3.0	4.1	3.2
13 280 11.9 240 4.3 4.6 3.3 14 260 11.9 230 (4.1) 4.4 3.6 15 240 10.2 220 4.0 4.4 3.6 16 230 8.0 3.9 3.5 17 220 6.7 3.7 3.6 18 210 5.7 3.0 3.5 19 230 4.6 2.6 3.3 20 240 4.7 2.4 3.1	11	280	9.2	220	4.3	120	3.2	4.6	3.6
14 260 11.9 230 (4.1) 4.4 3.6 15 240 10.2 220 4.0 4.4 3.6 16 230 8.0 3.9 3.5 17 220 6.7 3.7 3.6 18 210 5.7 3.0 3.5 19 230 4.6 2.6 3.3 20 240 4.7 2.4 3.1	12	280	10.3	220	4.4	120	3.2	4.8	3.2
15 240 10.2 220 4.0 4.4 3.6 16 230 8.0 3.9 3.5 17 220 6.7 3.7 3.6 18 210 5.7 3.0 3.5 19 230 4.6 2.6 3.3 20 240 4.7 2.4 3.1	13	280	11.9	240	4.3			4.6	3.3
16 230 8.0 3.9 3.5 17 220 6.7 3.7 3.6 18 210 5.7 3.0 3.5 19 230 4.6 2.6 3.3 20 240 4.7 2.4 3.1	14	260	11.9	230	(4.1)	-		4.4	3.6
17 220 6.7 3.7 3.6 18 210 5.7 3.0 3.5 19 230 4.6 2.6 3.3 20 240 4.7 2.4 3.1		240	10.2	220	4.0			4.4	
18 210 5,7 3.0 3.5 19 230 4.6 2.6 3.3 20 240 4.7 2.4 3.1	16	230	8.0		-			3.9	3.5
19 230 4.6 2.6 3.3 20 240 4.7 2.4 3.1	17	220	6.7					3.7	3.6
20 240 4.7 2.4 3.1	18	210	5.7					3.0	3.5
	19	230	4.6					2.6	3.3
	20	240	4.7					2.4	3.1
	21	240	4.0					2.0	3.4
22 240 3.4 1.7 3.1		240	3.4					1.7	3.1
23 280 3,3 3,0	23	280	3.3						

23 | 280 3.3 Time: 120.0°E. Sweep: 1.1 Me to 19.5 Mc in 15 minutee, mammal operation.

					le 27			
Bueno e	Airee.	Argentina	(34.5°S,	58.5°V	1)		For	ember 1953
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2
00	300	5.2					2.8	2.9
01	290	5.0					3.0	2.9
02	280	5.0					2.6	3.0
03	260	5.0					2.0	3.0
04	250	4.7						3.1
05	240	4.6			130	1.8	2.1	3.4
06	240	5.2	220		110	2.3	3.6	3.4
07	280	5.8	220		110	2.7	3.7	3.3
08	200	5.9	210		100	3.0	4.0	3.0
09	340	6.4	210	4.5	100	(3.2)	4.2	2.9
10	400	7.0	200	4.5			4.5	2.7
11	390	8.4	200	4.5	100	3.3	5.2	2.7
12	350	9.8	200	4.5			5.0	2.9
13	310	10.5	200	4.4			4.4	3.0
14	290	11.0	200	4.4			4.4	3.1
15	280	11.0	200	4.2	100	3.0	4.4	3.3
16	260	10.2	220				3.9	3.3
17	260	10.0	220			-	3.8	3.4
18	240	8.6	230	-			2.9	3.4
19	240	7.6						3,2
20	260	6.3						3.0
21	290	5.8						2.9
22	300	5.8						2.9
23	300	5.7						2.9

Time: 60.0° W. Sweep: 1.0 Mc to 25.0 Mc in 30 eeconds.

				Tabl	e 29			
Resolute	Bay,	Canada (?	4.7°N, 9	4.9°W)			Oct	ober 1953
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	260	2.8					4.0	3.1
01	260	2.7					3.5	3.0
02	270	2.5					3.6	3.0
03	270	2.4					3.6	(3.1)
04	280	2.5					3.9	3.0
05	280	2.1					3.5	3.0
06	260	2.7			-		3.8	3.0
07	270	3.0				1.3	3.7	3.1
08	260	3.5			120	1.4	3.2	3.1
09	260	3.7			110	1.7	3.3	3.1
10	260	4.0	250	2.8	110	1.8	2.3	3.1
11	260	4.0	250	3.0	110	1.9		3.1
12	280	4.0	240	3.0	110	1.9	2.6	3.1
13	270	4.0	240	3.0	110	1.9	2.2	3.1
14	270	4.1	240		100	1.8	2.1	3.1
15	260	3.9	250		100	1.7	2.9	3.2
16	260	4.0			110	1.4	2.8	3.1
17	260	4.0						3.0
18	250	3.5					1.8	3.0
19	250	3.3					3,5	3.0
20	260	3.2					2.8	3.0
21	260	3.0					2.8	3.1
22	260	3.0						3.0
23	250	2.9					2.5	3.1

Time: 90.00W.
Sweep: 1.0 No to 25.0 Mc in 16 seconds.

Leopol	dville, E	elgian (ongo (4.	3°S, 15.	3°E)		Nove	mber 1953
Time	h'F2	foF2	h'Fl	foFl	h †E	foE	fEs	(M2000) F2
00	245	6.0						23
01	240	5.8						2.3
02	220	4 5						2.5
03	230	3.4						2.5
04	240	2.8					1.8	2.6
05	240	4.6			125	1.7		2.7
06	270	5.6	230		115	2.4	2.9	2.5
07	305	6.2	220	4.2	110	2.7	3.3	2.3
80	345	7.0	220	4.3	110	3.1	3.2	2.0
09	385	8.2	210	4.4	110	3.3	3.8	2.0
10	370	9.4	210	4.4	110	3.3	3.4	2.0
11	380	10.4	210	4.4	110	3.4	3.5	2.0
12	370	11.0	21.5	4.4	110	3.4	3.9	2.1
13	350	11.4	220	4.3	110	3,2	4.0	2.1
14	350	11.4	220	4.2	110	3.0	3.9	2.1
15	325	11.8	230	4.0	115	2.6	3.6	2.2
16	280	11.6	240		120	2.0	3.0	2.2
17	250	11.0					2.6	2.3
18	250	10.1					2.6	2.3
19	265	9.5					2.0	2.2
20	260	9.4					2.0	2.3
21	240	9.6						2.5
22	225	9.4						2.6
23	220	6.9						2.4

Time: 0.00. Sweep: 1.0 Mc to 16.0 Mc in 7 seconds.

Decene	ion I. (6	53.0°S 6	50. 7 0 1/3	Table	28		Warne	-> 2057
Time	h*F2	foF2	h'Fl	foFl	h ! E	foE	fEs	(M3000)F
00	270	5.8						(3.2)
01	280	5.4						(3.2)
02	280	5.2						(3.1)
03	280	5.5						(3.1)
04	260	5.5						(3.2)
05	250	5.8					2.0	(3.2)
06	250	5.4					3.3	(3.2)
07	260	5.4					3.9	(3.3)
08	250	5.6					4.0	(3.3)
09	1	- •					-440	(0.0)
10	250	5.6					4.6	(3.3)
11	240	5.7					4.9	(3.3)
12	240	5.6					4.5	(3.4)
13	240	5.8					4.7	(3.4)
14	230	5.4					3.8	(3.4)
15	230	5.3					4.0	(3.4)
16	240	5.3					4, 0	(3.4)
17	250	5.4					3.5	(3.3)
18	250	5.6					3.3	(3.3)
19	250	5.8					3.0	(3.2)
20	250	6.0					2.0	(3.3)
21	260	6.0					2.0	(3.3)
22	260	6.0						(3.3)
23	260	5.9						(3.0)

Time: 60.00%. Sweep: 1.5 Mo to 16.0 Mo in 15 minutee, manual operation.

					le 30			
Point 1	Barrow, A	laska (7	1.3°N, 1	56.8°W)			00	tober 1953
Time	h!F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	2.8					6.8	(3.3)
01	(300)	(2.4)					7.6	(3.0)
02	290	(2.6)					5.3	3.0
03	270	(2.6)					>5.4	(3.0)
04	280	2.9					4.4	(2.9)
05	(280)	(3.0)					3.8	(3.0)
06	(270)	(3.2)					4.6	(3.1)
07	< 320	(3.0)					4.6	(3.2)
08	300	3.4					4.6	3.2
09	290	5.6	240				4.4	3.2
10	280	4.0	240		100		3.6	3.3
11	270	4.1	230		100		2.6	3.3
12	260	4.4	230		100	-	2.6	3.3
13	260	4.6	230		100	1.9	2.0	3.3
14	260	4.6	220		Traver.		-,0	3.4
15	250	4.4	220		110	1.6		3.4
16	250	4.3			110	1.00	2.4	3.4
17	240	3.8			-		1.9	3.3
18	250	3.3					3.4	3.4
19	280	3.0					3.6	3.2
20	300	2.4					3.8	3.1
21	320	2.4					4.6	3.0
23	(300)	(2.7)					4.4	(3.2)
23	(290)	(2.7)					5.9	(3.1)
m4	250 001							7

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mo in 15 seconds.

Ta	h7	•	27

Baker	Lake, Car	October 1953						
Time	h*F2	foF2	h*Fl	foFl	h*E	foE	fEs	(M3000)F2
00	260	2.0				B	6.0	2.9
01	290	1.8				R	6.0	2.9
02	300	2.0			-	R	8.0	3.0
03	300	1.9				R	5.0	(2.9)
04	290	2.1				Zi .	4.5	(2.9)
05	300	2.4					5.0	(3.0)
06	270	2.7	-	-		any reduction	4.3	(2.9)
07	280	3.0		-	120	1.9	4.0	2.9
08	280	3.8			120	2.7	2.6	3.0
09	280	3.7			120	2.7	3.0	3.0
10	300	4.0	270	3.4	120	2.8	3.0	3.0
11	340	4.2	260	3.5	120	2.8		2.9
12	320	4.4	260	3.5	120	2.6		3.0
13	320	4.7	260	3.5	120	2.7		2.8
14	300	4.9	250	3.3	120	2.5		3.0
15	300	4.5	260	3.2	120	2.4		2.9
16	280	4.0	280		130	2.3		3.0
17	290	4.0	-		130	2.3	4.2	2.9
18	280	3.4			130	2.3	6.0	2.9
19	290	3.2				8.0	6.0	2.8
20	290	3.0				*****	4.7	2.9
21	270	3.0					7.5	3.0
22	270	2.8			-		7.2	2.9
23	280	2.5				Ž	7.0	3.0

Time: 90.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Church	ill. Cans	da (58.8	°N. 94.2	OW) Tab	10 33		00	tober 1953
Time	h*F2	foF2	h'F1	foFl	h*E	foE	fEs	(M3000)F2
00	290	2.8	-				8.0	(2.8)
01	300	2.8			130	3.2	8.0	(2.8)
02	290	2.8				(1.8)	6.0	
03	300	2.8			110	(2.3)	6.0	(2.8)
04	300	3.0			120	2.8	4.5	
05	320	3, 2			110	3.0	4.0	(2.8)
06	340	3.2			120	3.3	4.8	(2.9)
07	300	3.6			110	2.8	4.8	3.0
08	300	4.0	230	~~~	110	2.8	5.0	3.0
09	290	4.3	240	3.7	110	2.9	5.0	3.0
10	320	4.5	220	3.8	110	2.6	5.0	3.0
11	300	4.8	220	3.8	110	2.7		2.9
12	310	5.0	240	3.8	110	2.8		2.9
13	310	5.0	240	3.8	110	2.7		3.0
14	300	5.0	240	3.8	110	2.6		3.0
15	300	5.0	240	3.5	110	2.5		3.0
18	270	4.8	240		110	2.3		3.0
17	270	4.6			110	2.0		3.0
18	270	3.8			120	2,2		3.0
19	300	3.4			120	2.7	2.8	2.9
20	330	3.0			120	2.8	4.4	2.9
21	320	3.0			120	2.6	6.0	(2.9)
22	200	2.8			130	2.2	8.0	(2.9)
23	300	2.7			44 1000	(2.6)	9.0	(2.8)

Time: 90.0°W.
Sweep: 1.0 Mc to 10.0 Mc in 16 seconds.

				Table	35						
De Bil	De Bilt, Holland (52.1°N, 5.2°E) October 1953										
Time	h*F2	foF2	h*Fl	foFl	h !E	foE	fEs	(M3000)F2			
00	270	2.9						3.1			
01	270	3.0						3.1			
02	265	3.0					1.5	3.1			
03	260	2.9						3.1			
04	240	2.3					2.1	3.2			
05	< 240	2.2						3.3			
06	210	2.9				3		3.4			
07	210	4.3	205		Market and	1.8		3.6			
08	215	4.9	200	3.2	100	2.3	2.3	3.6			
09	230	5.5	200	3.6	100	2.5	2.9	3.8			
10	225	5.8	200	3.9	100	2.6	3.1	3.8			
11	230	6.2	200	3.9	100	2.7	3.1	3.8			
12	230	6.0	200	3.9	100	2.6	3.1	3.6			
13	230	6.1	200	3.7	105	2.6	2.7	3.8			
14	220	6.1	205	3.6	105	2.5	2.6	3.6			
15	215	5.8	210	3.0	105	2.2	2.2	3:6			
18	210	5.6				1.8	2.3	3.6			
17	205	5.3				E	2.1	3.5			
18	210	5.0					2.2	3.4			
19	210	3,9						3.5			
20	210	3.5						3.4			
21	230	2.9						3,2			
22	230	2.7						3.2			
23	260	2.8						3.1			

Time: 0.00. Sweep: 1.4 Mc to 11.2 Mc in 6 minutes, automatic operation.

	rik, Icel							tober 1953
Time	PILS	foF2	h'#1	foFl	h i E	foE	7.80	(M3000)F2
00							4.4	
01		(2.2)					4.0	
02		(2.0)					4.8	
03		(2.3)					4.0	
04		(2.3)					4.4	
05		(2.0)					2.2	
06		2.2						
07		2.9						
80		3.6				1.6		
09		4.0				1.7		
10		4.5				2.0		
11		4.7				2.2		
12		4.9				2.2		
13		5.0		~ 700		2.3		
14		5.0				2.2		
15		4.8				2.0		
16		4,5					1.8	
17		(4.2)					3.0	
18		(3.8)					3.5	
19		(3.3)					3.9	
20							3.9	
21		(3,2)					4.0	
22							4.2	
23							4.8	

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Table 34

				20.07.0				
Prince	Rupert,	Canada	(54.3°N,	130.3°W)			00	tober 1953
Time	h'F2	foF2	h*F1	foFl	h*E	foE	fEs	(M3000)F2
00	300	1.8					2.4	
01	300	1.7					2.7	
02	300	1.8					3.5	
03	(300)	1.5					4.2	
04	310	1.9				-	4.0	
05	320	1.9					4.0	
06	300	2.0					4.0	
07	260	3.0					3.6	(3.1)
08	240	3.8	220	~~~	120	2.0	3.0	3.3
09	260	4.2	220	3.3	110	2.2	2.3	3.3
10	300	4.6	210	3.6	110	2.6	2.6	3.3
11	300	5.0	200	3.8	110	2.7		3.2
12	300	5.2	210	3.8	110	2.7		3.3
13	290	5.2	220	3.8	110	2.8		3.3
14	290	5.1	220	3.7	110	2.7		3.3
15	260	5.0	230		110	2.6		3.3
16	240	5.0	240		110	2.3		3.3
17	240	4.8			110	2.0	1.6	3.3
18	230	4.2			-			3.2
19	230	3.4			~~~		1.6	(3.1)
20	260	2.5						
21	260	2.0						
22	280	2.0					2.1	
23	300	1.8					3.0	

Time: 120.0°W. Sweep: 1.0 Mc to 10.0 Mc in 15 seconds.

Table 36									
Winnip	eg, Canad	a (49.9°	J, 97.4°	W)			0	ctober 1953	
Time	h'F2	foF2	h'F1	foFl	h ª E	foE	fEs	(M3000)F2	
00	370	2.0							
01	400	(2.2)							
20	380	(2.2)					2.8		
03	370	(2.6)					3.0	~~~	
04	(350)	(2.2)					2.8		
06	(340)	(2.6)					2.8	ma matrix	
08	340	(2.5)					3.8	-	
07	250	3.2						3,3	
80	250	4.0	230		120	2.1	3.1	3.3	
03	290	4.3	220	3.6	120	2.4		3.3	
10	310	4.9	210	3.9	120	2.6		3.2	
11	320	5.1	200	3.9	110	2.8		3.1	
12	310	5.2	200	3.9	110	2.8		3,2	
13	300	5.2	210	3.9	110	2.8		3.2	
14	300	5.3	230	3.8	110	2.7		3.2	
15	280	5.2	230	3.7	110	2.6		3.2	
18	260	5.2	230		110	2.2		3.3	
17	240	4.9	240		130	2.0		3, 3	
18	230	4.5						3,3	
19	240	3.8						3.2	
20	260	2.9						3.1	
21	280	2.5						3.1	
22	300	2.1						(3.1)	
23	300	2.0						(3.0)	

Time: 90.0°W.
Sweep: 1.0 Mc to 10.0 Mc in 16 eccords.

	Table 37										
St. Jo	hn's, New	foundlan	d (47.6°	N, 52.7°	7(K		00	tober 1953			
Time	h'F2	foF2	h'Fl	foFl	h*E	fcE	fEs	(M3000)F2			
00	300	2.0					3.0	3.0			
01	320	2.0					3.5	3.0			
02	310	2.0					3.0	3.0			
03	300	1.8					3.1	3.0			
04	290	1.8					2.8	3.1			
0.5	300	1.8				E	3.0	3.0			
06	250	3.3	230		130	1.7		3.5			
07	240	4.3	240		120	2.2		3.6			
80	260	5.0	230	3.4	120	2.5		3.6			
09	280	5.2	210	3.7	120	2.7		3.5			
10	280	5.6	200	3.9	110	2.9		3.5			
11	290	5.8	200	4.0	110	2.9		3,5			
12	280	6.0	210	4.0	110	2.9		3.5			
13	280	5.8	220	3.8	110	2.8		3.5			
14	280	5.6	240	3.8	120	2.6		3.5			
15	260	5.7	240	3.3	120	2.4		3.5			
16	240	5.7	240	-	130	2.0		3.5			
17	230	5.2				E	2.0	3.5			
18	230	4.6				E		3.4			
19	240	3.9						3.3			
50	250	3.2						3.0			
21	280	2.7						2.9			
22	300	2.4					1.9	3.0			
23	310	2.1					2.9	2.9			

Time: 60.0°W.
Sweep: 0.8 Mc to 10.0 Mc in 18 eeconds.

	Table 39										
Wakkar	ai, Japan	(45.4°N,	141.70	E)			October 1953				
Time	h F2	foF2	h'Fl	foFl	h≀E	fcE	fEs	(M3000)F2			
00	300	3.8					2.8	3.0			
01	280	3.8					3.0	3.0			
02	270	3.8					3.0	3.0			
03	260	3.7					2.6	3.0			
04	250	3.7					2.6	3.1			
05	240	3.6					2.4	3.3			
06	230	4.2					2.5	3,4			
07	230	5.3			120	2.0	3.2	3.5			
08	240	6.1	230	3.7	110	2.4	3.3	3.4			
09	250	6.6	220	4.0	110	2.7	4.4	3.4			
10	250	6.8	220	4.1	110	2.8	4.4	3.4			
11	250	7.0	220	4.2	110	2.9	4.3	3.3			
12	250	7.2	220	4.1	110	2.8	4.2	3.4			
13	250	6.6	230	4.0	110	2.7	3.6	3.4			
14	250	6.3	230	3.8	110	2.5	3.5	3.4			
15	240	6.3	240	3.6	110	2.3	3.6	3.4			
16	230	6.1			120	1.8	3.3	3.4			
17	230	5.7					3.0	3.4			
18	230	4.5					3.5	3.2			
19	250	4.6					3.3	3.2			
50	260	4.1					3.0	3.1			
21	270	3.9					3.0	3.0			
22	270	3.9					2.8	3.0			
23	280	4.2					2.8	3.1			

Time: 135.0°E.
Sweep: 1.0 Mc to 15.5 Mc in 2 minutes.

Tokyo,	Japan (3	5.7°n,	139.5°E)	Table	41		October 1953			
Time	h*F2	foF2	h*Fl	foFl	hºE	foE	fEs	(M3000)F2		
00	280	3.5					2.6	3,0		
01	270	3.6					2.8	3.0		
02	270	3.4					2.8	3.0		
03	250	3.5					2.5	3.1		
04	230	3.2					2.6	3.3		
05	250	3.1					2.5	3.1		
06	220	4.4			150	1.7	2.5	3.4		
07	220	6.0	220		120	2.2	3.0	3,5		
08	230	6.9	220	4.0	110	2.6	4.0	3.5		
09	240	7.0	220	4.0	110	2.8	4.0	3.5		
10	260	7.0	210	4.3	110	3.0	4.5	3.3		
11	260	7.7	200	4.3	110	3.0	4.5	3.4		
12	250	8.4	210	4.3	110	3.0	4.0	3.4		
13	250	7.3	230	4.2	110	3.0	3.9	3.4		
14	260	7.1	230	4.0	110	2.9	3.9	3.3		
15	250	7.1	240	3.7	110	2.6	3.9	3.4		
16	230	6.8	230		120	2.2	4.0	3.5		
17	220	6.2				-	3,9	3.5		
18	220	4.5					3.5	3.4		
19	230	4.3					3.0	3.3		
50	260	3.8					3.0	3.1		
21	260	5.5					3.0	3.1		
22	270	3.3					3.0	3.0		
23	280	3.5					3.0	3.0		

Time: 135.0°E. Sweep: 1.0 Mc to 17.2 Mc in 2 mimutee.

Ottawa.	Conodo	(45.4°N,	75 0041	Table	≥ 38		0.0	October 1953			
Time	h'F2	foF2	h¹Fl	foFl	h*E	6.07					
line	n'r2	1012	n.t.	1011	n'E	fcE	fEs	(M3000)F2			
00	320	2.0						3.0			
01	330	1.9						(2.9)			
02	340	1.6					3.1	(2.8)			
03	330	1.8					2.3	(2.9)			
04	380	1.8					2.6				
05	(320)	(1.8)					3.3				
06	280	2.4						3.1			
07	240	4.0	240		120	2.0		3.3			
08	260	4.8	220	3.6	120	2.3		3.4			
09	280	5.3	550	3.9	120	2.6		3.3			
10	280	5.4	210	3.9	120	2.8		3.3			
11	290	5.8	210	4.0	120	2.9		3.2			
12	280	5.8	220	4.0	110	2.9		3.3			
13	290	5.8	220	4.0	120	2.9		3.3			
14	290	5.8	230	3.9	120	2.8		3.3			
15	280	5.9	230	3.8	120	2.6		3.3			
16	270	5.8	240	-	120	2.2		3.3			
17	240	5.3	-		140	1.9		3.3			
18	240	4.6				_,-		3.2			
19	250	3.8						3.2			
20	260	3.0						3.1			
21	280	2.8						3.0			
22	290 310	2.4						3.0			

23 | 310 2.0 Time: 75.0°W. Sweep: 1.0 Mc to 10.0 Mc in 15 seconds.

Akita, Japan (39.7°F, 140.1°E) Table 40 October 1953										
Time	h'F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2		
			11.57	TOLT	11.12	TOE	153	(15000)12		
00	280	3.5					3,2	2.8		
01	290	3.5					2.6	2.9		
02	290	3.5					2.8	2,9		
03	250	3.5					2.9	3.0		
04	240	3.4					2.8	3.1		
05	250	3.1					2.4	3.0		
06	230	4.5				1.8	2.4	3.4		
07	230	5.5	220	3.5	120	2.2	3.0	3.5		
08	240	6.5	230	3.8	170	2.5	4.0	3.6		
09	250	6.6	220	4.0	110	2.7	4.2	3.5		
10	260	6.8	210	4.2	110	2.8	4.4	3.4		
11	260	7.3	210	4.3	110	3.0	4.5	3.4		
12	250	7.6	550	4.2	100	3.0	4.2	3.4		
13	250	6.9	220	4.1	110	2.9	4.4	3.4		
14	260	6.6	230	4.0	110	2.8	3.8	3.3		
15	250	6.6	240	3.5	110	2.5	3.6	3.4		
16	240	6.6	250	3.4	120	2.1	3.7	3.5		
17	220	5.8					3.5	3.5		
18	240	4.1					3.5	3.2		
19	250	4.2					3.5	3.1		
20	250	4.0					3.8	3.0		
21	270	3.6					3.7	2.9		
22	270	3.6					3.7	2.9		
23	290	3.5					3.5	2.9		

Time: 135.0°E.
Sweep: 0.85 he to 22.0 Mc in 2 minutes.

Tanaga	wa, Japan		October 1953					
Time	h*F2	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	300	3.3					2.6	2.9
01	300	3.3					2.2	2.9
02	300	3.2					2.3	2.9
03	280	3.2					2.2	3.0
04	250	3.3					2.3	3.2
05	260	2.7					2.2	3.1
06	270	3.0					2.1	3.0
07	240	5.6		-	130	1.9	3.2	3.5
08	240	6.6	230		120	2.4	3.4	3.5
09	250	7.2	230	4.0	110	2.6	4.3	3.4
10	260	7.4	230	4.2	110	2.9	4.4	3.3
11	280	7.8	220	4.4	110	3.0	4.2	3.2
12	290	8.7	220	4.4	110	3.0	4.2	3.3
13	270	9.1	230	4.4	110	3.0	4.2	3.3
14	280	8.6	240	4.2	110	3.0	3.5	3.3
15	260	8.4	240	4.0	110	2.8	3.8	3.4
16	250	7.6	240	3.8	110	2.4	3.3	3.4
17	250	6.9			120	2.0	3.4	3.5
18	240	5.7			-		3.7	3.5
19	230	4.4					3.3	3.5
50	260	3.5					3.2	3.0
21	280	3.4					3.0	3.0
22	270	3.4					2.7	3.0
23	300	3.3					2.9	2.9

Time: 135.0°E. Sweep: 0.8 Mc to 20.0 Mc in 15 minutes, manual operation.

	Table 43									
Johanne	esburg, t	Jnion of	S. Africa	(26.2°	Os. 28.1°E) October 1953					
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F2		
00	260	3.4					2.3	3.0		
01	270	3.4					2.1	3.0		
02	250	3.4					1.8	3.1		
03	250	3.1						3.0		
04	260	2.9						3.0		
05	260	2.8					1.9	3.0		
06	230	4.6				1.8		3.4		
07	250	5.6	220	3.6	110	2.4		3.3		
08	280	6.1	220	4.1	110	(8.8)		3.3		
09	290	6.6	210	4.3	110	3.0		3.2		
10	290	6.9	200	4.4	110	3.2		3.2		
11	310	7.1	200	4.5	110	3.4		3.1		
12	310	7.7	200	4.5	110	3.4		3.0		
13	300	8.0	210	4.5	,110	3.4		3.0		
14	300	8.0	210	4.4	110	3.3	3.8	3.0		
15	290	8.0	210	4.2	110	3.1	4.0	3.1		
16	280	7.9	220	4.0	110	2.8	5.8	3.1		
17	260	8.0	230	3.4	120	2.3	3.2	3.2		
18	240	8.0					2.7	3.3		
19	220	6.8					2.3	3.3		
20	230	5.5						3.3		
21	240	4.2					1.7	3.2		
22	260	3.7					2.2	3.0		
23	260	3, 6					1.6	3.0		

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

			Table	45			
arrow, A	laska (7)	.3°N, 1	56.8°W)			Septe	mber 1953
P:12	foF2	h'F1	foF1	h ! E	foE	fEs	(M3000)F2
280	3.0					6,6	3.1
270	3.0					6.2	3.1
250	(3.0)					5.8	3.2
280	2.9					4.9	3.2
310	3.0					4.0	3.2
300	3.0					4.0	3.0
330	3.2					3.9	3.1
320	< 3.3	240				4, 7	(3.2)
(360)	3.8	250	-	-		4.0	(3.0)
(340)	3.9	220	3.4	100	2.2	4.2	(3.0)
440	3.8	220	3.5	100	2.3	4.1	2.8
410	4.0	220	3.5	100	2.3	2.5	2.7
420	4.0	220	3.5	100	2.4	2.4	2.7
380	4.0	230	3.6	100	2.5		2.8
360	4.0	230	3.6				3.0
320	4.0	230	3,5	100	2.3		3.1
320	4.2	240	3.4	100	2.2	2.2	3.1
280	4.0	240	3.1			2.1	3.2
250	3.8	220		110	1.5		3.3
250	3.3	0.000	-	-	9499		3.3
270	3.0	-					3.2
320	3.0						(3.1)
(340)	(2.9)					5.8	
	b'F2 280 270 250 280 310 300 330 320 (360) (340) 410 420 380 360 320 250 250 250 250 270	b'F2 foF2 280 3.0 270 3.0 250 (3.0) 280 2.9 310 3.0 300 3.0 330 3.2 320 < 5.3 (360) 3.8 (340) 3.9 440 3.8 410 4.0 420 4.0 360 4.0 320 4.0 320 4.0 320 4.0 320 4.0 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 3.8	h'F2 foF2 h'F1 280 3.0 270 3.0 250 (3.0) 280 2.9 310 3.0 300 3.0 330 3.2 320 <3.3 240 (360) 3.9 220 440 3.8 250 (340) 3.9 220 440 4.0 220 420 4.0 230 380 4.0 230 380 4.0 230 380 4.0 230 380 4.0 230 380 4.0 230 380 4.0 230 380 4.0 230 380 4.0 230 380 4.0 230 380 4.0 230 380 4.0 230 380 320 4.0 230 380 320 4.0 230 380 320 330 320 4.0 330 320 320 330 320 4.0 340 280 380 380 270 3.0 — 320 3.0	arrow, Alaeka (71.3°N, 166.8°W) b'F2 foF2 h'F1 foF1 280 3.0 270 3.0 280 (3.0) 280 2.9 310 3.0 300 3.0 300 3.0 300 3.2 320 <3.3 240 (360) 3.8 250 (340) 3.9 220 3.4 440 3.8 220 3.5 420 4.0 220 3.5 420 4.0 220 3.5 380 4.0 220 3.6 380 4.0 230 3.6 380 4.0 230 3.6 380 4.0 230 3.6 380 4.0 230 3.5 320 4.2 240 3.1 280 4.0 240 3.1 280 3.8 220 250 3.3 270 3.0 320 3.0	h'F2 foF2 h'F1 foF1 h'E	arrow, Alaska (71.3°N, 186.8°W) h'F2 foF2 h'F1 foF1 h'E foE 280 3.0 270 3.0 280 (3.0) 280 2.9 310 3.0 300 3.0 300 3.0 330 3.2 320 < 3.3 240 (360) 3.8 250 (340) 3.9 220 3.4 100 2.2 440 3.8 220 3.5 100 2.3 420 4.0 220 3.5 100 2.4 380 4.0 230 3.6 100 2.5 360 4.0 230 3.6 100 2.5 380 4.0 230 3.6 100 2.4 320 4.0 230 3.6 100 2.4 320 4.0 230 3.6 100 2.4 320 4.0 230 3.6 100 2.4 320 4.0 230 3.6 100 2.4 320 4.0 230 3.6 100 2.5 360 4.0 230 3.6 100 2.2 280 4.0 230 3.5 100 2.3 320 4.2 240 3.4 100 2.2 280 4.0 240 3.1 1.8 250 3.8 220 1.8	arrow, Alaska (71.3°N, 156.8°W) b'F2 foF2 h'F1 foF1 h'E foE fF8 280 3.0 6.2 270 3.0 6.2 250 (3.0) 6.2 250 (3.0) 4.9 310 3.0 4.0 300 3.0 3.0 330 3.2

22 (340) (2.9) 23 300 2.9 Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tab	le 47			
Point	Barrow,	Alaska	71.3°N,	156.8°W)			A	ngust 1953
Time	h*F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	320	3.0					6,8	3.2
01	280	3.2					5.0	3.3
02	290	3.2					5.8	3.2
03	270	3.3					4.9	3.2
04	300	3.3	220				4.9	3.2
05	310	3.5	220				4.6	3.1
08	420	3.6	230	3.2	100		4.6	2.8
07	390	3.8	230	3.5		-	4.6	2.9
08	430	4.0	220	3.6	100	(2.2)	4.8	2.8
09	400	4.0	210	3.6	100	2.4	4.8	2.8
10	500	4.0	200	3.7	100	2.5	4.0	2.5
11	470	4.1	220	3.8	100	2.5	3.1	2.7
12	430	4.2	210	3.8	100	2.7		2.8
13	440	4.0	220	3.8	100	2.7		2.8
14	440	4.1	220	3.8	100	2.5		2.7
15	430	4.1	220	3.7	100	2.5		2.8
16	410	4.2	220	3.6	1,00	2.4		2.9
17	370	4.1	230	3.5	110	2.2		3.0
18	330	4.0	230	3.4	110	2.0	2.9	3.2
19	310	3.9	240	3.3	100	1.7	3.9	3.2
20	280	3.6	240				3.9	3, 3
21	300	3.4			-	-	4.4	3.2
22	300	3.3					4.9	3.2
23	320	3.1					6.2	3.1

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Capetor	vn, Union	of 8. A	frica (3		8.3°E)		0	ctober 1953
Time	h*F2	foF2	h'Fl	foFl	h t E	fer	fEs	(M3000)F2
00	260	3.2						3.0
01	270	3.2						3.0
02	270	3.2						3.0
03	260	3.1						3.0
04	260	3.1						3.0
05	260	3.1						3.0
06	250	3.6						3.2
07	240	5.1	240	3.3	120	2.0		3.4
08	260	5.7	230	3.8	120	2.5		3.3
09	280	6.1	230	4.1	120	2.9		3.2
10	300	6.4	210	4.3	110	3.1	3.3	3.2
11	320	7.0	210	4.4	110	3.2		3.0
12	320	7.4	200	4.5	110	3.3	3.3	3.0
13	320	8.1	200	4.5	110	3.3	3.5	3.0
14	300	8.7	220	4.4	110	3.2	3.3	3.0
15	300	8.2	220	4.3	110	3.1		3.1
16	280	8.0	220	4.1	110	2.9	3.2	3.1
17	270	7.4	230	3.8	120	2.6	3.2	3.2
18	250	7.1	240	3.1	120	2.0	2.7	3.3
19	230	7.1					1.6	3.3
20	220	5.6					_, _	3.2
21	230	4.4						3.2
22	250	3.7						3.1
23	250	3.4						3.1

Time: 30.0°E.
Sweep: 1.0 Mc to 15.0 Mc in 7 eeconds.

Rande Los	vik, Icel	ond (64	10 ₁₇ 21		le 46		C	
Time	h'F2	foF2	h'Fl	foFl	h†E	foE	f Es	(M3000)F3
00							4.9	(1,5-1-7,1
01	ļ						5.0	
SO							5.0	
03							4.2	
04	1	(2.0)					4,6	
05	1	(2.2)					3.6	
06		(3.0)					0.0	
07	1	(3.5)						
08		3.7		3.3				
09		4.0						
10		4.2		3.6		ea-merite		
21		4.4		3.7		2.6		
12	1	4.6		3.8				
13		4.6		3.8		-		
14		4.3		3.7		-		
15		4.4		3.6				
16	1	4.4		3.5		2.3		
17		(4.0)		3.3			2,4	
18	1	3.8					3.6	
19	1	(3.8)					3.8	
20		(3.6)					3.9	
21		(3.3)					3.9	
22							5.1	
23							4 4	

23 Time: 15.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Davie i on	dic Idea	and (64.	10tr 22	Table	48		A	igust 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00		3.2					4.3	
01							4.9	
02		-					4.3	
03							5.0	
04		(2.7)					4.4	
05		3.2					2.6	
06		3.6		3.2		-		
07		3.8		3.4		-	2.5	
08		4.1		3.6		2.4	2.4	
09		4.3		3.7		2.5		
10		4.2		3.8		2.6		
11		4.4		3.9		2.8		
12		4.4		3.9				
13		4.4		3.9		2.8		
1.4		4.4		3.8		2.7		
15		4.4		3.8		2.7		
16		4.3		3.8		2.8		
17	}	4.4		3.7		(2.4)	2.1	
18		4.3		3.5		2.3	3.8	
19	-	4.0				-	2.7	
20		4.0					4.2	
21		(3.7)					4.0	
22							4.2	
23		(3.2)					4.4	

Time: 15.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Form adapted June 1946

National Bureau of Standards

Central Rodio Propogation Labaratary, National Bureau of Standards, Washington 25, D.C.

TABLE 49

Km January, 19 54 (Unit) (Month) Washington, D.C.

h' F2 (Characteristic) Observed at

(Char	Sign N	Washington	(Unit)	(Month)	SE,	0 0					0	NOSI	IONOSPHERIC		DAT	A				Scaled by	DUO	Mc C.	(Institution)	Standards ution) J.W.P.	
Observed at		Lat 3		'	77.1° W			ı				-	75° W	. Mean Time	ıme					Calculated by:		McC.	E.J.W.	J.W.P.	
Day	00	0	0.2	03	0.4	0.5	90	07	80	60	0	=	12	13	4	15	91		82	61	20	21	22	23	
-	A	S	S	(290)5	250)5	240	220	230	220	210	(240)4	240	240	250	(240)A	240	230	×40	(220) A		230 6	(260)5 (0	(230)3	(440)3	
2	240)5 (3	260)5	270	(270)	350	360	250	220	240	(250) 4	230	260	260	250.	240	240	240	220	220 (30)=	×30 ×	250 ((270) 5 6	(270)5	
ы			350	250	340	220	220	240	220	330	240	240	330	240	240	240	220		(230) A	220 /	(210)3 6	(280)5 ((300)5	< 330 S	
4	V3	(260°)	(240)5	240	240	230	220	P (025)	320	230	240H	_	250	250	260	250	230	230	220	-	220 0	250 /	(0270)	(240)3	
5		(250)5	290F	290F	550	A 0000	250		220	(230)	270	260	260	260	270	240	230	250	220	210	230 6	230	250	2550	
9		(270) 5 (340) 5	34015	1285	270	2.50	230	(240)	5.30	250	280	260	250	250	250	230	220	220	(340)3		(2 to) 5 [260] >	()	(270) 5/	(270)	
7	(250) (250)S		270	270	(270)	0.50	230	220	22.0	(250)4	(250)4	250	250	290	270	230	210	210		(270)	5	5	(300)	270	
80	220 6		(270)	2000	260M	(280)3	240	220	(220)		240	250	290	270	260	250	220	220	220	230	(250)5	388° ×	(330)	(300)	
6	1290)5 1	(300)3	270	250	(250)	(230)5	220	(230)5	(210)A	220	230 H	290	250	250	240	250	220	220	12405	-6	250)	3005	V,	2	
01	3205	× 3103	2015		(240)5	230	220			230	(260)3	270	250	260	270	250	230	7770	10,30%		(240)	2	3005	(260)5	
=	1 705 1	12400 1 240)3	(260)5	250	230	-			220	230	270	260	260	270	250	230	230		-	230)	4300°	8	v	5	
12	5	(280)	260	(260)	240	.230°	085	1230Tc	080	230	240	270	240	270	260	340	200	220		220 ((280)3 <	<3105	(280) = ((240)2	
13	(280)3	250	20000	(260)5	250	(200)	(250)	5 1240)=	240	310	5,60	250	[260]c	260	260	250	240	330	230	(240)	250 6	(260)3 ((270) /	1200)>	
4		lo.	5 (68.8)	250	200	0 + 1			220	330	250	230	240	250	240	250	230				220 ((1200)3	280	
15		624015	.230	- 7	200)5	250	(250)	230	220	240	270	260	260	280	240	240	(230)5	220	A. HO.A	250		(5 30)5 ((260)3	240	
91	(27.70)	(340)	0	G	رہ	0	×30	230	200	240	240	250	240	260	260	270	240	220 /	A(050)	210	-	2,02,2	5	2	
17		(260)	124015	230	220	220	(240)s	\$ 250	220	220	(240) H	240	240	240	280	280	230	220	210	(260)3	240 (-		(270,3	(260)3	
8	(360)5	340	340	260	760	(250)	240	210	210	220	240	250	240	250	270	270	230	230	20.0	220	230 6	1250)2 ((240)	250	
6.	040	(13.50)	240	256	1230A	(240)5	(300)	250	230	220	200	0740	270	270	(270H	280	260	220	210	230	(250)		(270)	(,500)	
20	(300)	(240)=	(260)	(2.70).	(270)A	(270)A (240)S	280	240	230	220	260	250	270	280	270	350	240	220	230	(220)	:240)5 (2x0)5		(2,60) 5 (300	3001	
21	(260)	(270)	250	000	230	330 (570) [2601s	1260	1s (240)	230	230	250	260	250	240	250	250	230	0220	230	250	(240) (280)		(300) 6	(280)	
22	(280)3 ((260)5	250	240	240	(270)3	FaciolA	4 (2350)	(240)	220	250	240	270	260	270	250	230	220	(310) 3 ((270)5	(330)5	S	\$	S	
23	5	(270)5	2350	250	250)	(250)	(290)5	250	220	230	090	250	260	260	270	250	230	220	230 6	(240)	240 6	(250)	8	2	ļ
24	V		(270)	(28.1	260	(200)3	230	220	0/3"	250	230	260	250	230	250	250	240	0770	210	(270)	(260) ((280)3	S	5	
25	5	(200)		250	250	(230)5	(240)	230	01/0	5.30	250	270	250	250	24.0	250	230	210	230	0/77	230	`	300) ((028)	(290)3	BOOK WILLIAM
26	(230)	(270)	2080	(2002)	(250)	(350)	(250)5	5 230	230	740H	.270 H	260	250	260	240	250	230	220	120.	.240	230	240	250 ((280)3	
27	- 4	260	240	250	250	250	240	220	220	330	02520	270	270	270	250	250	220	.220	2.10	330	220 6	(250) 5 ((280) 3	(250)	
28	-	1.	(280)	(290)	(250)	230	230	220	270	230	0820	240	260	250	250	240	230	210	210	250	2.50	120	(250)3 6	(260)5	
62	(300/) ((290F)	280	255	250	250	230	220	220	240	250	250	250	260	260	260	230	210	2.20	240 ((050	S	S	2	
30	8	v	300 t	(270)	240	220	(340)5	230	220	230	124012	260	260	260 4	3 HO H	250	250	220	230	230	230 ((340) 5	(250)2	(280)3	
31	(280)3 ((300)	(260)3	0,7.	(360)3	233	230	(00/20)	220	250	270	(280) 4	2704	260	2.70	270	240	310	220	230 1	1260) [(250)	V.,	S	C. C
Median	270 6	(000)	360	.5.5	\neg	250	240	9	220	-	250	250	250	260	.760	250	230	220	220	0 23	230 6	(250) 6	(270) (2	(270)	
Caunt	2.8	27	128	(r)	30	30	31	31	31	31	31	15	31 31 31	31	31	31	18	7	31	17	24	23	27	22	

Manual [] Automotic [8] $\begin{tabular}{ll} TABLE 50 \\ $\mathsf{Central}$ Radia Propagotion Labaratary, National Bureou of Standards, Washington 25, D.C. \\ \end{tabular}$

Form adopted June 1946

National Bureau of Standards

IONOSPHERIC DATA

foF2 Mc January 1954 (Characteristic) (Unit) (Month)

		12	(Characteristic)	(Unit)		(Month)		1,004						IONOSPHERIC	HERI		DATA						Mailonal Bareau of	5 5 5		Standards ution)	
The column The	The color	S	- 1	Nashin	1	D. C.																Scaled by		AC.	E. J. M	L, J.W.P.	
Colin Coli	10				8.7°N		W 01.7							75°		Mean Tim	يو					Calcutat	by: _	Ac.		J. V	
Color Colo	[18] (19] (29] (29] (29] (29] (29] (29] (29] (2		00	10	02	03	0.4	0.5	90	07	90	60	0	=	12		14	15	91	17	18	61	20		22	23	
3 1	31 31 31 31 31 31 31 31		(17) 3		7(61)	(2.4)5	(2	$ \cdot $				LL,		_	0 F	لر	+		4	ادم		-	7 2	41		2.6.6.	
3.4 (3.0)(3.14) 3.6 (3.0)(3 2 4 6 3 7 6 3 4 6 3 7 6 3 1 7 3 1 7 3 2 4 5 5 0 6 2 1 7 0 6 5 5 6 5 5 4 5 5 0 4 5 7 1 2 1 2 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1		(2.7)		3.35	345	3		3.1 F	(3.0)		2.2			0					5.8	64	7	7	4	Ī	2.3 F	
	2.0 f 2.4 f (3.0) f (3.0) f 4.9 f 5.1 f 5.4 f 6.9 f 4.9 f 6.1 f 6.2 f		2.75		(3.3)6	34 F	3.6	3.76	3.1			05		0	5		+		0	4.5	3	2	5	-	2	1.9)8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F F F F F F F F F F F F F F F F F F F		(1.9)	20	7	3(62)	2.8 F	(3.0)			3.9	4.9	5.1#	H H	K	4	3 5				25	77	80		17th		
3.5. \$ (20) \$	1, 10, 10, 10, 10, 10, 10, 10, 10, 10,				L.	F		F	(2.9)	1		4.6	23	0	7		4				0	0	ч	30	78		
(20)	(33)		9	S	(2.8)5	(2.4) 5	(3.2)5	3.3	3.43	2.5	3.7	4.6	5.3	7	-		7	-	-	<i>∞</i>	b	0	7	-	7	26)5	
(200) 2.8 (201) 2.7 (201) 3.2 (201) 4.5 4.9 4.9 4.9 5.5 5.1 5.4 6.7 5.7 5.4 4.8 3.5 (201) (10.9) 2.8 (201) 2.2 (201) 3.2 (201)	(20) 3.8 (38) 3.4 (38) 3.4 (39) 3.2 (29) 4.5 4.9 4.9 6.5 5.1 5.4 5.1 5.0 5.4 4.8 38 (23) (23) (23) (23) 2.4 (23) 2.2 (23) 2.4 (23		2.35	(2.3)	7	2.45	20	2.9	31	1	4.2	++	4.7	K		-		5.4	-	3.9	+		0	R 0			
(40) 3 24 (30) 3 34 35 (31) 3 25 (31) 3 25 413 44 49 52 60 60 60 60 60 60 60 60 60 60 60 60 60	(20)		-9	(3.6)5	2.0	(3.8)	27	(27)3	3	(29)3	4.5	4.9	4.9	-	-	-	-	5.6	7		33	-	u			21)8	
[49] [49] [49] [49] [49] [49] [49] [49]	[29] (29] (29] (29] (29] (29] (29] (29] ((2.1)	2.2 €	(2.8)	3.45	5.5	(31)	u	4.15	4.4	464	-		-		5.4	8			4	24			1.8]F	
(48) (39) 31 28 (38) 28 43 47 44 63 52 64 54 52 64 54 52 64 52 64 52 64 52 64 52 64 52 64 52 64 52 64 52 64 52 64 52 64 52 64 52 64 52 64 52 64 52 64 62 64 62 64 62 64 62 64 62 64 62 64 62 64 62 64 62 64 62 64 62 64 62 62 64 62 62 64 62 <				[20]5		(27)	(28)	3.1	30	8	3.7	4.4	5.1	4		-	\vdash		_	M		1	20		-	25.5	
(48) (49) (49) (49) (49) (49) (49) (49) (49	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(26)8	(2.5)		(30)	3.15	~	(38)		4.3	4.7	64	2	LE.	-	_	5.9	-			1	3)2	lo v	-	1.7)5	
31 (33)/2 34 f (32)/2 34 f	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.83	2	1(29)	3.6	3.6	7	w		4.3		<u> </u>	5.6	2	00	_	7	-		¥	4 7	24	n	4 4		
13 1 1 1 1 1 1 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(3.1) F	e		(3.3) }	7	(3.2)	3	(2	3.7	4.7	5.0.5		J	1		52	80			300	7	-	0	~	
(33)\$\(\beta\) (33)\$\(\beta\) (36)\$\(\beta\) (36)\$\	$ (39)_{1}^{2} (39)_{2}^{2} (39)_{3}^{2} (39)_{3}^{2} (39)_{3}^{2} (34)_{3}^{2} (3$			2.1 €	2.2 F	(2.8)	0	3.15	<u></u>		4.1	4.6	5.5	_				5.1	8 7	4.1	3.7		8 F	5)F	Z X	2.4)6	
			(2.7)3		(35) 3	(33) }	(30)5	3.6	(36) }	w.	3.9	45				7		5	4.5	a		27	4	il. v	8)8	24)8	
93. (3.9) (3.9) (3.9) (3.9) (3.9) (3.9) (3.9) (3.9) (4.9)	9. $\frac{3}{3}$ (2.9) $\frac{6}{9}$ 3.1 (3.9) $\frac{6}{9}$ 3.2 3.1 (3.5 3.4) (5.9) $\frac{6}{9}$ (4.8) $\frac{9}{9}$ (6.0) (5.9 5.5 5.7 5.5 5.6 5.0 5.9 5.1 (3.9) $\frac{6}{9}$ (3.1) (3.9) (3.9) $\frac{6}{9}$ (3.9) ([24]5	(2.0,F)	J	J	J	J	(36)5			4.5		-	H	-		2		7			8)8		_	707	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 1 1 23 34 3.3 3.4 44 54 54 62 62 62 55 55 55 50 50 50 50 5		(18)	(22)		(3.4.6)	a	3.1	25				H(8.4)					_	-	カナ		u.v.	ر ب و	3.7	45	3.6)8	
0.5 (39) 41 39 3.6 28 (28)5 3.1 5 50 (58)9 5.5 5 6.1 6.1 6.6 6.6 (72) 72 72 (72)5 72 (72)5 73 73 73 73 73 73 73 73 73 73 73 73 73	05 (3.9) 41 39 3.6 2.8 (2.8) 5 3.2 7 (5.8) 9 5.5 7 (5.4) 6.4 0 6.6 6.6 (7.2) 7 72 (8.1) 8 81 3.1 3.2 3.1 (2.9) 2.4 (2.0) 2.4		00	318	3(8 C)	3.1 %	R.	3	W	3.2	4.4	4.9	4:5			0	_			5.0		_	7			3.4)8	
F F (2.9)ff (3.9)ff (3.7) (3.7) (3.8) (4.8) (5.7) (5.7) (5.7) (5.8) (5.0) (5.7) (4.	7. f		(3.6)P	(3.9)5	1 17	3.9	9	°×'			0:5	(8.8)	5.53	T	-	2		7.235	7.2 (8.2)8	-		20	7	5	78)F	
31 32 31 3.7 62 3.9 62 3.5 62 63 64 5.6 64 5.6 65 66 5.6 67 67 5.6 67 67 5.6 67 5.6 68 69 63 66 5.6 67 5.6 67 5.6 67 5.6 68 69 63 66 5.6 67 5.6 67 5.6 67 5.6 68 69 63 66 5.6 67 5.6 67 5.6 67 5.6 68 69 63 66 5.6 68 69 67 5.6 67 5.6 67 5.6 67 5.6 67 5.6 67 5.6 68 69 5.6 68 69 5.6 68 5.6 69 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5.6 60 5	3.1 3.2 3.1 $2.7 + 3.2$ $2.0 + 2.0 $		9	F	F	₹	(2.9)8		(35)\$		(34)5	4.5	S					00	5.5	4.4			<u>ا</u>	7	5	3.8)F	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ (21)_{F}^{F} \ \ 24f^{F} \ \ \ 24f^{F} \ \ \ \ \ \ \ \ \ \ \ \ \ $		5(8 2)	3.1	32	-	1		2.05	2	4.3	52	H	6.2	×	50	-	0	7.5	14	7.7	75	7		0	225	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5 $(3.0)^{3}$ [$24\sqrt{3}$ $(2.0)^{3}$ $(2$		(23)	(27)	2 4 F	2.45	2.48	(22)	2	E	8.8	4.9	4.9	و.	_	0	_	<u></u>	5.8	44	9	75 (1		2.0)5	
0 3.0 2.0 2.1 24 26 [3.3] [3.4] [4.2 5.3 5.6 5.8 6.2 6.1 5.1 5.1 5.6 5.6 48 3.0 7.4 7.2 3.3 7.1 7.1 7.1 7.1 8.0 8.8 6.2 6.1 5.1 5.2 5.2 5.2 5.3 7.1 7.1 7.2 7.2 7.2 8.3 7.2 7.1 7.1 7.2 7.2 8.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	0 2.0 2.0 2.1 24 26 (3.4) ⁶ ((1.9)F	3 5		[26]F	3	(20)3	1		4.2	8 4	5.8					8	9:50	7	2.4)5	8 F	7)5	~	n	1.8)5	
	8) $\frac{1}{5}$ 2.1 (23) $\frac{1}{5}$ 2.5 (25) (25) (27) (27) (47) 4.2 4.4 5.0 5.6 5.7 5.7 5.4 5.8 5.8 5.7 5.4 5.8 5.8 5.8 4.7 4.9 5.7 5.4 5.0 5.8 5.7 5.4 5.8 5.8 5.8 4.8 38 38 38 4.7 4.9 5.1 5.7 5.6 5.7 5.0 5.8 6.0 5.8 6.0 4.9 4.3 88 5.1 5.1 5.2 5.8 6.0 5.8 6.0 5.8 6.0 5.8 6.0 5.8 6.0 4.9 4.3 5.8 6.1 5.1 5.2 5.8 5.8 6.0 5.0 5.8 6.0 5.0 5.8 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5		2.0	0	2.0		74		\sim		4.2		5.6	-				9	9:5		0	4 6	3	P. K.	'nЦ	1.8)5	
9	9 F 21 F 2.3 F 3 S		3(81)	_	(23)6		(2.5)F		2		4.25	4.4	5.0		5			00	56	177	3	5	7	2./			
4 3.7 3.0 3.1 4.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 4.7 4.9 5.1 5.6 5.7 6.0 5.8 6.0 4.9 5.7 5.6 5.7 6.0 5.8 6.0 5.8 6.0 5.8 6.0 5.8 6.0 5.8 6.0 5.8 6.0 5.8 6.0 5.8 6.0 5.8 6.0 5.8 6.0 6.0 5.8 6.0	4 21 ⁵ 3.0 3.1 6 3.2 3.3 3.3 3.3 4.7 4.9 5.1 5.7 5.6 5.7 6.0 5.8 6.0 5.8 6.0 4.9 4.9 4.9 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		0	-	2.3 F	2.5	2.6 F	00	n	(3.2)		4.54		0.9	00			7	15.5	4.8		5	0	5	in		
9\frac{9}{16} [23]^{6} (19)^{6} (19)^{6} 27^{6} 32 28 8 3.2 3.6 5.0 5.0 5.8 6.3 6.0 5.8 6.0 5.5 5.6 5.5 3.8 3.8 3.3 7.7 5.6 3.7 4.3 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	15 215 (19)f (19)f (19)f (23)f (24)f (23)f (24)f (25)f			F-		3.1 €	3.2		3	\sim	4.7	64	1:5	7		-	0		6.0	4.9	7		0	7	ħ	16	
15 215 (24)5 (24)7 325 3.15 3.25 3.25 4.49 5.4 5.4 5.6 5.7 6.0 (6.1)4 6.0 4 5.4 5.4 5.4 5.7 3.1 1.8 5 5.2 The [1.4]5 (1.6)5 (2.3)7 (2.6)7 28 (2.3)5 2.8 4.7 4.9 4.9 5.7 6.0 (6.1)4 6.0 4.5 5.4 5.6 5.4 4.6 4.2 3.7 3.15 2.5 2.2 Sp. (2.8)5 (2.8)5 (2.9)5 (2.9)5 2.8 (2.8)5 (2.8)5 4.2 5.4 5.0 5.1 (5.6)4 5.8 5.6 5.6 5.0 6.0 5.1 4.3 3.15 2.4 2.15 (2.0)7 1.7 The content of the content o	1\$\begin{array}{c c c c c c c c c c c c c c c c c c c		(24)	[2.1]F	3(61)	3(6.1)					5.0	50	58	5	0			4 5		5.5	8	2 5	76	6 5	100	5	
$3)^{4} \begin{bmatrix} 1.6 \\ 1.8 \\ 2.8 \end{bmatrix}^{5} \begin{bmatrix} (1.6)^{5} \\ 2.8 \end{bmatrix}^{5} \begin{bmatrix} (2.6)^{5} \\ 2.8 \end{bmatrix}^{5} \begin{bmatrix} 2.8 \\ 2.8 \end{bmatrix}^{5} \begin{bmatrix} 2$	7)5 [1,4]5 (1,6)5 (2,3)7 (2,6)7 28 F (2,3)7 2.8 4.7 4.7 4.7 6.0 (6,1)4 6,0 7 5.4 5.4 5.6 5.4 4.7 5.0 5.1 (5,6)4 5.8 5.6 5.4 4.7 5.1 5.0 5.1 (5,6)4 5.8 5.0 5.1 (5,6)4 5.8 5.0 5.1 (5,6)4 5.8 5.0 5.1 (5,6)4 5.8 5.0 5.1 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1		-	2.1 F	(7 H)	(29)		3.1 F	d	7	4.9	7.4	4:5	و	_	-						7	7	>0	5	7)	
5)F (2.8)F (2.8)F (3.6)F (2.4)F (2.8)F (2.8)F (2.8)F (3.6)H 58 56 56 56 56 67 (4.3 51F 24 21F (2.0)-17 4) (2.3) 2.8 (2.5) 2.9 31 (3.0) 2.9 43 53 5.7 5.9 5.8 5.6 5.6 5.6 5.8 5.8 3.2 2.7 2.1 2.0 (4.3 1) 2.9 2.8 2.8 2.8 2.8 2.1 2.0 (4.3 1) 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	S)F (2.8)F (2.8)F (3.0)F (2.9)F 2.8 (2.8)J ₃ (2.5)J ₂ 4.2 5.4 5.0 5.1 (5.6)H 5.8 5.6 5.6 5.6 5.7 (7.9)H 5.8 5.9 5.1 47 (3.9) 2.9 4.8 5.9 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1		(11)5	[16]5		(23) F	(26)		3		4.7	6.7	44	7	0	I	カエ	+		75		~	7	7 /	u		
4) (23) 2.8 (25) 29 31 (30) 29 43 48 53 5.7 59 5.8 56 56 56 55 38 3.2 27 21 20 (2)	4) (23) 2.8 (55) 29 31 (30) 29 43 48 53 5.7 59 54 56 56 56 56 56 57 31 31 31 31 31 31 31 31 31 31 31 31 31		5	(2.8)F	1 1	(36)	(29)		50	(2.5)	43	5:4	5.0	_	6)H	~	3	د		- 5		1 F	7	11	200	1	
4) (23) 2.8 (55, 29 31 (30) 29 43 43 53 57 59 58 56 56 56 55 78 38 37 27 21 25 (2	4) (23) 2.8 (55, 29 31 (30) 29 43 448 53 5.7 59 58 56 56 56 78 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3																								1		
24 28 24 29 39 31 31 31 31 31 31 31 31 31 31 31 31 31	29 28 2x 29 39 31 31 31 31 31 31 31 31 31 31 31 31 31		(74)	(43)	200		29	31	(30)	25	73		2		5	20	e	J			20	7	7		C ₁	13)	
	Mc ta 25.0 Mc In 0.25		31	29	7.00	2.4	43	29	3.	31	31	2.1			31	31	31	31	31	1.5	31	31			٠ <u>.</u>	30	

Manual 🗆 Autamatic 🛭

Standards
J.W. P.

(Institution)

Mc C.

National Bureau of

Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

TABLE

IONOSPHERIC DATA

January, 1954

Mc (Unit) Washington, D.C.

Observed at

ď. J.W. 2230 2330 2 2 2 (1.7) (81) (23) 30 E.J.W (1.2° F A 0.2 2.9 7 25 P (2.8) I 1.8 3 11.73 18/ 26 F 25.5 (2.1) (2.7) F 1.87 701 8 (2.9) 3.3 ∑. 30 5. 23 F 13.0 13 McC. (2.5) (2.1) F 2(61) (1.7) 5 21 2130 33 4 es w 30 0. (18) (2.1) 24 F 24 F Calculated by: (20)5 1930 2030 272 3.15 1(P)F (2.3)° 2.4 2.4 3.4 31 7:7 29 % 1 8 ST (3.1) F 296 (21)5 200 4 2.5 5 (3.7) 5.12 S 2.4 2000 300 2.5 6 4.5 23 8 6 3 30 (L) 3,3 es, gó 4.7 3 ω (1) 3 4 33 7 2.4)F 35, (3.7)5 5 1730 1830 3.5 7:5 30 2.4 3.4 3.7 00 5.1 1.7 2.7 0.0 30 1.7 00 00 3 0 3.7 3 3.7 30 4.4 3 3.1.8 (3.7)5 2 (45) 4.5 4.5 90 00 4.7 4.4 4.3 4.3 3 7. 8 5.0 4.1 4.3 4.3 04 4.5 43 40 37 4 400 7 17 4.9 3 0 3 1.7 (581) (47) S 17.6) 5 6 4.4 5.2 5.0 60 1530 1630 5.7 6.00 JX LY 18 4.7 4.9 4.6 5.0 4.9 55 3.6 4.0 4°, 4.3 4.7 40 64 67.23 0.0 9 45 4.2 (4.1) P 5.5F 5.5 h 7.9 5.4 6.0 6 55 5.6 6.2 5.5 × 3 8 50 3 4.9 5.6 5.9 60.00 7. 20 75 4.9 5.3 20 55 59 4.9 5.2 5.6 0 Sweep 1.0 Mc to 25.0 Mc in 0.25 min (56) 1230 1330 1430 4 09 4 1 4 64 à 5.9 5.2 6.5 5.4 4 5 5.4 57 5.9 6.4 4.5 4.0 50 45 5. 30.00 19 6.5 3 5.0 52 2.0 5.7 6 409 5.8 H 3.6 5.5 57 1.5. 60 5 4 55 5.7 55 6.4 5.6 5.2 5.4 4.3 5.9 5 5 6 50 5.9 5.4 4.5 5 4 3 5.5 55 18 7 5 75° W 6 5.5 60 5.4 53 1.9 8.9 5.5 6.4 10 5 5 0.0 6.4 6 6 6 60 80 40 5.6 3 60.5 4 4 5.4 4 30 52 6.1 554 5.7# 4(85) 65 00 1130 5 5.3 3 7 60 6.4 03 5.6 3 54 9.0 2.0 0 9 3 23 75 1.0 5.6 13 (5 6) H 5.5)# 0 1030 6 5.2 5.7 5.0 60 45 4.9 6.4 5.2 6.6 5.00 0 9 53 0.0 3 5.2 3.5 3 50 5.6 3. 5.6 9 0 (4.6) PS 5.3 H 15.5)H 0830 0930 510 50 50 7.5 0.5 7 4.7 0.0 4.4 4.9 4.9 4.7 4.7 4.9 6 5.0 54 4.5 6.0 3 4.00 63 4.6 6 4 5.6 4.9 # 147/2 45 [4.4] 4.7 4.7 7. 1 14 6.3 4.5 03. 4.9 4.4 45 5.2 7.8 3 0 4 4.3 4.2 7.8 4. 1 4. 23 43 4.6 4.6 3 36 3 3.4)4 3.8) 3.75 375 (3.9) 0730 4.0 4.0 3.7 6 3.7 3 3 000 1 17 30 5 (3.3) 1.3 30 7.3 65 3 65 0 3 7(82) 255 (20) 3 200 2.9 F 25) 5 2.7 F 13.112 12.8) F (2.4)F 215 0630 d' 6 es gi 0. 68 3 9 0130 0230 0330 0430 0530 0.10 18.8 3.4 3.0 0 3.3 3.0 0 9, 5 3 Ц 9 7 (2.7)3 2.7 F 3.0 F Lot 38.7° N Long 77.1° W 20.5 3.45 3.0 00 33 2.7 30 00 9 1 6 Ц 3.10 (24) P 29 F (23) 29 6 (3.3)F 3.4)F. 8.1 2 2.0 (50) P es 17:4 24 2.9 9 3.1 Ц (30) F 237 12.97E 3.95 22) F 1291 (2 3) F 2 8 (20) 3.5 60 3.23 (26) 60 3 3 Ш Ц 2000 295 13.67 7 (1.2) 2.4 (W. C.) (40) Ц 0 4.2 Ц Ŋ 7.6.1) 7334 (2.6)5 (2.2) = 12 17 (2.4) 1.7) 2515 (3.2)5 22) 53 2.3 5 .. Ш Ü, Median Count 4 S 9 ω 0 Ваў = 4 17 6 2 2 2 9 8 19 20 2 22 23 24 25 26 27 28 30 29 Ñ

Manual [3] Automatic [3]

 $TABLE \ 52$ Central Radia Propagation Labaratary, National Bureau of Standards, Washington 25, D.C.

Form accepted June 1946

Form accepted June 1946

National Bureau of Standards

J.W.P.

E.J.W.

McC.

Scaled by:_

FABLE 53

Central Radia Prapagatian Labaratary, National Bureau af Standards, Washingtan 25, D.C.

IONOSPHERIC DATA

January 1954

Ω

Observed of Washington, D.C.

fo F1 (Choracteristic)

J. W. P. 23 E.J.W. 22 Calculated by: McC. 2 20 <u></u> $\underline{\infty}$ _ 9 G 0 (37)H (4.0) H (3.6)H 15 30 3.0 7 (3.8) 4 (8.8) 13.47 19 21 20 14 Sweep 10 Mc to 25 0 Mc in 0.25 min 3,00 4 3.6 3.0 3.6 3.6 75°W Mean Time 7(8.8) [3.8]4 13.772 3.8 H (37) 4 2.7 30 4.0 3.7 39 9 m 3.9 3.9 13.8) 39 # 17/8/51 7(88) (3.9) 13.61 0.7 3,00 3.0 00 3.9 30 3.9 42 3.9 4.0 J. 2 13.77 (3.7)2 (3.6) (3.8) 7(6 8) (7.7)P 13.8/ 3.7 3.5 100 6 34 33 2 30 7(98) 3.7 I 3.6 3.6 9 30 T 7 9 7/1-5 60 08 7: 9 0 1 07 90 0.5 Lat 38.7° N, Lang 77.1° W 0 4 03 02 0 00 Median Caunt Day 20 9 0 5 91 17 8 9 22 23 24 24 25 26 26 28 30 4 $\stackrel{\sim}{-}$ 5 150

Manual

Automatic

Manual

Manual C. Automatic 🖾

 $\begin{tabular}{lllll} $TABLE 54$ \\ Central Radia Prapagation Lobaratory, National Bureou of Standards, Washington 25, D. C. \\ \end{tabular}$

Form adopted June 1946

Form adopted June 1946

Standards

National Bureau of

McC, E. J.W.

Scaled by:

LE 55

Central Radia Prapagatian Labaratary, National Bureau af Standards, Washingtan 25, D.C.

IONOSPHERIC DATA

January 1954

Mc

Washington, D.C.

fo E (Characteristic)

J. W. P. 23 Calculated by: McC. E.J.W. 22 2 20 <u>6</u> 8 7 (13.1)P 8.0 H (2.0) P W (8.1) (1.9) P (2.2)P 11.9)4 12.8) A 12.6) A 12.4]A (2.1) 0.0 9 1.8 1.9 2.0 1.9 [2.2]A 4.7 H 13.2) A 2.54 (2.4)# 12.5M 2.4/ A 8. K 2.5 H (2.4)# 12 31B 7.6 (2.3) 26 12.37 2.4 2.2 4.6 2.4 2.5 2 12.6A (25) 4 2.64 12.674 (2.8)P Sweep 1.0 Mc ta 25.0 Mc in 0.25 min 3.6 200 4 2.5 2.7 3.6 7 2.6 2,5 2.6 2.6 V (28)P [2.6] A 12.774 100 2.7 2.7 2.7 8.8 2.0 3.0 8.8 3.6 8.8 2.9 8.8 M . SZ A.8 H (2.8) A (3.8) F [2.3]A 2.7# FR 97A (25)A 12.87c 3.0 H 8.8 2.9 3.0 3.0 200 2.9 2.9 Si 8.8 2.8 12 2.6 2.6 (2.7) A (2.7)A 2.6 H 2.7 H 2.5H (2.7)A (2.4) # (2.5) H 4.5 H (2.6) 2.5 2.7 27 2.8 c.k 2.7 2.7 2.7 3.9 = A 2.6 2.7 A 2.9 2.8 (2.5)P (2.5)P (2.5)P 2.5 H P (2.5) A.3 H (2.4) A (2.7) 2.4 2.5 2.5 2.5 23 2.4 2.7 0 A 2.7 ₹ A X (2.2)H A A H (2 2) H (2.2)F A.1. H 2.4 H 1.9 2.2 2.4 61 60 Q V A A A A P T A K A 11.71 11.7)3 11.6) " 1.7 1.7 08 8:1 A B S S B 9 S S 5 5 S 5 M W V 5 A A 07 90 05 Lot 38.7° N, Lang 77.1° W 0 03 02 0 00 Observed at Median Caunt 2 4 9 σ 0 12 13 Day 2 Φ Ξ 5 4 5 9 | 8 6 50 25 2 22 24 27 29 30 50

Manual
Autamatic
Manual

Form acopted June 1946

IONOSPHERIC DATA

National Bureau of Standards

(Institution) J.W.P.

by McC. E.J.W., J.W.P. Scoled by:__

(Characteristic) (Unit) (Month)

Observed at Washington, D.C.

Observed at	-	I Cabillitacha	1000	;				1												2000	1				
		Lation	Lot 38.7° N	- , Lang	77.1° W	3						7	2° W	Mean Time	sme					Calcul	Calculoted by: MCC.	McC.	E.J.W.		J.W.P.
Day	00	Ю	02	03	40	0.5	90		80	60	0	=	12	13	4	15	92	17	18	61	20	21	22	23	
-	24/20	2.4 120	E	2.01/20	24 110	22/20	2 F	2.2/10	G	ß	2.8/20	0 3.1/20	4.2 120	4.2/20	38/20	011 1:4	24/20	3.6/110	511/10	E	F	E	E	E	
2	F	E	И	3	30/140	34 110	2.9%	0	32/	011 9:4 70	4.9/04	4 3.7 K	3.3 110	43/110	29 110	3.61110	29/120	01/10	3.4 110	М	2.97,00	2.7/1° X	E	3/00	
ы	E	E	E	B	E	~		1.3%	710	37%	10/1	ß	2.3 100	4.77,00	30,30	68/110	27/20	2.8/140	70/20	3.47/4	2.3/10 H	1	M	F	a reason
4	E	E	9.01/10	6.87110	E	26/20		0		B	23/100	ß	ß	36/110	৬	24 120	1.9 110	2.0.4	24(130)5	3.3,30	2 47/10	2 47 110 2.	97/10	Ш	
വ	E	E	2.4 110	2.4 100	2.41/100	747/45	231,00	00 2 330)5	11/6.2 3.60	9	S	y	y	00/ + 2	S	J	U	E	E	E	E	E	F	E	
9	E	E	24 110	Ш	2.3 110	Ē	24		U	2.4 110	0 26 110	0 4.37/10	2.7 110	U	Ŀ	2.3 110	(j	E	2.6 110	24/10	27 110	E	E 3	3.3/00	
7	24100	2.7 100	32/00	Ш	22 100		A		IJ	2.4 110	0	Ŀ		ß	B	(j	2.1/20	E	E	E	2.4 110	W	М	F.	
œ	E	E	24/120	39/110	27 110	3.2	100 4.4 110	10 38100	00 39 11	0,	S	G	2.47100	B	J	ß		24110	E	B	2.4100	24,00	2.3/00	E	
6	E	E	E	E	E	F	201305	20)S E	55%	3 01	U	S		ß	J	J	24,20	E	E	A	E	E	M	12,00	- Province
0	E	E	E	E	E	E	E	E	24/3	30 3.21/1	110 6	76,30	ı	ı	y	38/20	U	E	E	E	Ш	E	M	E	
=	E	B	E	E	F	3	A	E	U	10.6	110 34/20	U	U	IJ	y	B	Ġ	Ē	E	E	E	E	E	E	
12	E	E	E	E	E	23/00		5	U	B	IJ	U	3.6,00	U	y	Ŀ	ß	E	261100	2.4,00	23,00	2.5 1002	3/00	E	
_ IO	E	E	P	E	E	E	21 //	110 E	G	32,110	03.61110	3.5/110	U	IJ	3.17/10	U	Ŀ	E	М	E	E	F	4/1103	0110	Paerca
4	22/20	24 110	E	37/120	E	E	23/1	110 E	2.41/40	3.6 110	037 110	036/10	ß	ß	3.7 110	Ü	ß	П	E	E	F	Ē	F	E	Sec.
-52	E	Ш	22 110		E	FI	E	M	3.2 6	10 3 7/10	33/18	136 110	37,20	Ŀ	G	B	354110	3.1110	2.9 110	23/10	43 110	23/102	2,00	2.4,00	
91	27/100	28,00	U	U	U	()	24 110	10 2 4/110	0/1	281/1	110 3.01 110	3.57110	Ü	(J)	U	3.11/10	6	2.47/10	3.5 110	3/110	Z	É	E	A	
17	3	E	E		E		74 //	110 E	IJ	36,20	03.37110	3.51/10	17.2/20	43/110	37/20	33/10	28/120)5	E	2.4100	3/100	2.3/100	E	E	R	
18	E	E	E	Ħ	301/10	34/10	3.17/10	110 2.4110	10 2.3/100	300	B	8 44 110	01184	ı	Ŋ	Ŀ	ß	E	W	E	E	M	2 110	E	
61	E	Ш	2.2/20	3.0 110	3.0 110	E	34/6	3 001	241100	30.00	IJ	ß	Ŀ	37,00	Ŀ	ß	B	281110	2.4 110	30/10	W	2.1 110	E	E	
20	E	E	31/30	31/30 42,20	7.5/110		E	7	2/10 6	U	(b)	J	ß	S	y	2.1100	28/100	3.8,100	301100	E	M	E	2.6/110 2	2.9100	шири
12	26100	E	E	4.3 100	27 120	23/20	011 4.2 0		2.0	0.5	3.7/110	0/3.5/00	5 4 100	4.7 110	4.3 110	42110	42,00	3.2/10	25/20	3.0110	2 2(120)5	281202	7,202	4/20	
22	2.3 110	3.0 110	2.77/10	12,20	М	5.0,20	1 4 4 /30	1:4	110 37 11	10 2.9 110	6	9	Ś	y	J	J	23/20	IJ	Ш	E	1	E	22,00125	7.2/50	
23	E	E	E	3	E	E		F	()	36/10	039/20	4.81,00	31 110	3.4 110	3.8 110	3.3/10	3.81/20	011 8.1	3.3/14	2.74/30	23/20	F	77,007	2.7 100	
24	E	E	E	24100	E	4.3 H	23	1001	O.	B	P	B	IJ	B	ß	ı	ıs	A	E	M	Ш	E	EZ	28 110	
25	3.4/00	26,00	E	E	E	21,000	2	A	S	Ŀ	5	ن	34 110	Ü	2.6/10	2.4/10	22/10	3.0/10	2.4110	43,00	291,00	E	Ü	Ē	
	E	2.3 100	E	4.7100	3.84110) E	E	7	4100 2.0 F	2	0 +2,20	35/20	U	3.37/10	34110	4.000	33100	22,00	uı	F	E	E	E	E E	200 ABO
27	2.61/10	Ш	E	V	E	Ę	E	E	20 /	20 29/120/5	3.91,00	0 2.8 110	2.9 110	27 110	27 110	5	2.3/20	E	E	A	43,00	73,00 2	2.3/00 3	21100	
28	2.2/00	E	Ы	E	ы	E	32/	120 E	Ġ		B	Ġ	B	P	B	B	6	E	E	Ħ	E	E	E	6100	
2.9	34,00	24/00	2.3/00	W	2.1 100	4.41/00	4	100 23/	100	4.17110	0	B	IJ	Ġ	G	9	31,30	E	E	3.17110	2.4,00	3.0 1003	3.7,00 2	0016	C Alegary
30	E	W	W	E	Ш	E	W	28	100 6.2,100	30 3.7,00	S	B	Y	5	P	2.6,30	B	Ш	Ы	3,00	36,00	Ħ	3	ki	
3.	Ħ	2.3,00	ш	2.2 110	E	R	R	E	(b)	2.3 //0	0	IJ	J	B	ß	IJ	B	2.3 H	E	22,100	E	24,100	Ш	F	
																									ZMOR /
Median	*	*	*	*	* *	*	7.7	*	* *	イン・キ	*	* *	*	*	*	* *	6.7	*	水水	水水	米米	水水	冰	* *	P-1749000
Cauni	31	3/	30	30	30	30	31	30	31	3/	31	1	30	31	3/	31	31	3/	31	31	3.1	18	37	31	
	××	EDIAN	f Es LE	MEDIAN FES LESS THAN MEDIAN F'e	AN MED	DIAN F	e e				S	Sweep 1.0	-Mc to 25	Mc to 25.0 Mc In 0.25 min	2.25 min										

XX MEDIAN F ES LESS THAN MEDIAN F°e OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER

Morruel [3] Automotic [3]

TABLE 57

Central Radia Propagatian Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

eau of Stand	IONOSPHERIC DAIA Scaled by: Mc. E.J. W. J. W.	75° W Mean Time Calculated by: Mc. EJ.W.J.W.P.	11 12	2.6 2.6 (23) 2.5 2.46 23 24 25 25 (2.3) (24.) 5 2.3 23 21 5 (24.) 6 (2.3)	34 23 25 23 23 24 34 34 24 24 24 23 23 22 23 225 225 225	25 2.5 2.5 2.5 2.5 2.6 2.3 2.5 2.5 24 24 22 26 21 205 (2.1)5	25 24 25" 25" 25" 25 24 24 24 25 24 24 25 5 35 5 35 2 22 (20)7	26 25 24 34 24 24 25 24 25 34 25 19 30 22 28 22 22	24 25 24 24 24 24 25 2.6 2.6 25 24 22 24 24 20 21	216 24 25 24 34 34 32 28 26 26 25 22 31 20 195 (19) 215	8.4 2.5 2.5 2.5 2.4 2.3	2.63 2.6 2.3#	2.6 2.6	2.6 36 2.4 2.4 2.5 1.9 2.4 24 2.4 2.5 2.3 24. 2 5 5	2,5 25 26 24 26 2.2 2.4 2.5 2.4 2.4 2.5 20F 2.1 19 2.1F 2.1F	25 216 343 24 C 34 24 24 23 24 235 33 23 23 23 215	26 26 26 26 26 25 25 25 35 26 25 34 23 34 25 (21) 5 22 F (21)	24 25 6.35 24 24 24 23 25 25 25 25 25 25 23 625 23 625 25	2.5 2.6 (2.0) 25 2.5	(3415 (2.6) 6.4) 36 2.6 2.6 2.6 2.3 2.5 34 2.4 2.4 2.5 2.5 (2.0) 5	2.6 27 25 2.4 2.4 2.4 2.3 2.4 2.3 2.3 2.5 2.1 24 2.4 (2.1)\$ (2.1)\$ (2.1)\$	24 (216) F 36" 23 23 20 (210° 21 (23) 24 25) 23 21 23 F	124 24 25 20 20 20 20 20 20 20 20 20 20 20 20 20	25 24 24 24 (2.4) 3 24 24 25 2.4 2.4 2.4	24 26 24 25 23 23 23 24 26 25 25 25 25 25 20	34 35 23 25 24 24 24 24 35 25 24 (23) 2.36 (25) 32 (3.0) (20)	26 25 21.7 21.3 24 21.5 21.4 21.5 21.6 21.4 21.2 (23) F F F	255 26 24 23 25 25 24 24 24 26 25 228 24 24 24 21 21	(255) 254 244 24 3.5 2.5 2.8 2.5 2.5 2.5 2.4 2.3 2.3 2.3 2.3	3.6 2.6 2.5 3.3 3.3 2.3 2.4 2.4 2.7 2.4 3.3 2.3 24 2.2 2.0 2.3	25 25 26 24 34 34 34 35 356 24 36 35 356 256 256 256	2,5 25 25 2.5 2.4 2.4 2.3 2.5 2.3 2.4 2.3 2.4 5.3	35 36 3.34 2.4 3.4 (3.4)" (2.6)" (2.6)" 2.3 2.3 2.3 2.3 2.3 2.4 2.5 2.1	27 26 23 3.3 (3.3) 24 24 25 26 24 2.5 28 22 [3.15] 5		5 36 25 34 24 24 24 24 25 3.5 3.4 3.3 3.3 3.3 3.3 3.1	31 36 31 30 31 30 31 31 31 31 31 30 30 35 24 24	Sweep_LQ_MC to 25.50_MC in 0.25.5_min
on of	$\hat{\Box}$	Time				-		-						H	_								_					_				-				18		1n0.25
ional Bure	2	- 1				\dashv		_	\vdash				_			4.0			\vdash	-		-	_	-							_	\perp	(A.E)			\dashv	3/	25.0 Mc
tory, Nat	上に	N . S .	12	-	-		3		4.6			armana.c	2.4	2:6	2.6	U	_			or parameters.	-	2.2			CR		_				_		2.4	(9)	-	+	30	D Mc to
n Labara		, -	- 1		-	\dashv						1		-						ck	2.5	3.6	7	_			_							4		4.8	31	weep_L
opagatia	2		으		2.5	2.5	2.5	4.6	4.8	2.5	2.5	3.3	2.5	2.4	2.6	24.	2.6	(2.3)	(2.6)		20		2.5	74	2.4	2.3	2.7	4.8		2.5	2.6	2.5	2.3'			25	08	0)
Radia Pr			60	2.6	33	2.5	2.6	25,	is is	4.8	2.5	8	2.6	\vdash	25	26		_			_	-				2.5							_			-	31	
Central			90	E	d	25	8			2.6			2		2.5		A.6	4.6		(24)	3.6	2.6		_	J-24-	2				2.6			2.5	8	-	+	3	
			07	- 1	E (2.3)F	233	5 2.3	U.	3 (2.3)3	J.4	(23)3	# 245	3		U	F (2.3)#	3.3	3.3	JE (2 3) E	2.3	26	0)5 F	JE (2.3) 5	5 2.4	(2.3	3 (2.4)3	F (2.4)F	F (A. 4)3	(2.3)	3-8 2.4	24	F 24F	3)F 25	3) 1/2 (2.2) 2		is is	27	
			90	(2.3)E	215	F 24	P (2.4) 5	(22) F	(2.A)	2.3	13 22	5 (25th	-	(2.2)3) (2 1)F	5 2.3		(2.3)	2.1	3.3	Q	(20)	22	12.18	5 (2.2) J	F (2.1)F)F (24)F	3	2	3 2.2	F 2.3	1	Ö		7	E.	
25.		A	0.5	3,F F		Ц	5 (2.3)F		15	2.2	2. (2.0)3	2.3	35 23.3	F 2.1	2 (2.2)3	16 (21)5	25 2.2	15 2.1	C	3 = 2.3	5 2.15	FASE	DE 8.0	1.8	F (22)E	(2.3)5) (Q.4)F	F 2.1F	1 2.2	r.	F 2.2F	DF 2.4	5.3		-	2	
January	(Month)	77.1° W	0.4	18	8	1 2.1	5 2.2		15 (2.0)5	13	d	JE 2.15	23 (2.2)3	5 23	7	8	R	5 (2.0)5	U	C.R.	2.2	2.3	(2.1)P		5 2.2	F	2.6	(2.2)	-	7.2.1	8 32	F 2.1F	P (2.4) =	F (2.1)F	-	i,	28	
Jan		Lang.	03		15 (1.9) E	1 x 1 t	5 (2.05	F	7 (20)5	13 (23)3	(2.0)	F (2.1) P	278 62	\$ (2.0) \$	1)6 21	S 6005	6 (2.2) F	(21)5	D	(2.3)'5	25 21	1.8	4.7	7 %	F 2.3	13 F	2.0	£ 2.17	16 2.2	2 2.15		2) 5 (2.1) =	2)5 (2.1)F	1)F (2.0F		(3)	77	
	Washington	Lat 38.7° N	02	- 1		7 (2.2) F		¥	3 (18)7	2)5 (21	13 20) E 2 / F	8	18	C.	6.8	# 20F	K	S 3	12 2.2	F (22	13 22	1	0.0	6 2.2	F (Q.1)3	21	(2.1)P	3	5 2.3	3	0	62	0			27	
F 2	Mast.	Lot	ō		3	5 (2 UF	3.15	1F FS	,5 (2.1)3	2/2 62	5 (2.03	0 F (2 1)E	F 5	3 (2.2)8	(22)3	15 2.1	2.	y	(5.0)	(2.2)6	5 2.2	36 (21)3	0)P F	13 21	2)8 (22))F 21F	150	175 20	25 23'	22	4	FA 21F	3	UF (2.1)F		(2.1)	3	
(MI500) F2	(Characteristic)	n panasan	Day 00	7	2 (25)	3 2.25	4 (20)5	5 31	6 22	7 622	8	0.6	10 == 5	1 (21)5	2 5	3 (2.0)		5 5	6 6 6	7 7	18 2 /	9 (2.1)2	3	1 (21)3	9	3 (2.1)F	4 20	0	~	7 21	(2.1	2.1	0 0	0		-	unt 24	
5	ا أ	5	ă										-	=	12	_ EU	4	15	16	17	==	6	20	12	22	23	24	25	26	27	28	29	30	3		Median	Caunt	

Manual [] Automatic [6]

29

Form adopted June 1946

(M3	(M3000) F2	2		January		25.0			Central	Rodio Pra	pagatian	Laboratar	y, National	Bureau c	of Standor	ds, Wosh	Radia Prapagatian Laboratary, National Bureau af Standords, Woshingtan 25,	D. C.		2	o doi+o	Bure	90	Notional Bureau of Cthoracopus	
5	(Charocteristic)	Washin	(Unit)	(Month)							Ō	SON	IONOSPHERIC		DATA	7				Scaled by:	2	Mc.	(Institution) E. J. W. J. W.	ion) 	
Opser	Observed of	Lot	Lot 38.7°N	, Lang	77.1°W			1				7.5	75° W	Mean Time	e e					Calculated by:	ted by: MC.		E. J. W.	J. W. P.	
Day	00	ō	02	03	0.4	0.5	90	07	90	60	01	=	12	13	4-	15	91	12	81	61	20	2 2	22	23	L
-	₹	∢	(3.2) 8		(33)8	F	(3.3)	P F	3.7	3.7 F	(34)6	3.5	3.5 F	346	3.4	3.6	365 ((34)3 ((3.5) 8	34	3.3 F 3.	3.1 5 (3.	(34) 6	(33)5	
2	(3.5) 8	P (30)P	F (3.0) F	(2.8)3	3.2	3.1	31F	(3.4)	3.5	3.4	3.6	3.3	3.4	3.5	35	3.5	3 5	3.5	34	3.3	3.3	3 5 3.2	ii.	3.3 F	
15	3.2 \$	F (3.1) F	(3.2) F	3.1 F	3.1 F	3.4 F	3.4	F 3.4	3.6	3.6	36	3.6	3.6	3.7	34	3.6	3.6	3.5	35	34	3.7 3	1 3	0 8	(3.1) }	
4	(3.0)5	s 31 F	3.1.5	(31) \$	3.3 E	(3.3)		3 4	36	3.7	3.5 #	36#	3.6	3.5	35 F	3.6	35	33	3.3 5	S	36 3	14	(30) \$ (3	(3.3) \$	
2	3.1.	2 7	7	F	¥	¥	(32)5	17	3.7	3.6	3.5	3.5	5.5	3.5	3.4	3 6	3.4	22	2.9	3.0	325	Ki.	ч	3.3	
9	3.25	5 (3.1)3	(2.8) 5	(3.0)\$	(3.0)5	3.1	(3.5)5	J (3.3/5	3.5	3.6	34	35	35	3.4	36	3.7	3.5	34	3.2	3.4	34 2	0	3.1	(3.2)3	
7	(32)3	3 (3.2) F	(31)3	(32) 3	3.1	3.2	34	3.5	37	3.5	3.6	35	3.5	33	3.4	3.7	37	3.6	3.3	3.1	3.0	2.95 (4	(2.9) 8	3.15	
80	3.2 5	\$ (31)5	3.0	(3.0) 5	32	(3.0)5	3.2	(3.4) 5	3.5	3.6	3.6	36	3.5	34	3.5	3.6	37	3.5	3.4	35	3 4 F	F	F 5 ((31) P	
6	30 F	(3.1) 6	3.2 F	(3.1) }	3.1 5	3.3 5	(3.6)	P 3.45	375	37	3.3 #	33	3.6	3.6	36	3.5	37	35	3.2	32 ((3.2) 8	F s	2	5 7	
0	F 3	5 F S	3 (3.2) }	(32) 8	(32)8	34	34	335	36	37	36	3.4	3.5	35	35	3.6	3.6	3.5	3.2 ((3.4) 5 ((3.5) } (3	(30) \$ (3	(3.1) F	315	
=	(3.0) \$		3 (3.2) 8	3(0.5)	3.3 F	3.0	(3.2)5	5 3.5 5	3.7	3.7	34	3.5	3.6 F	2.9	3 25	3.5	35	35	3.2	3.4	S	5	5	4	
12	ď	(32) 3	(3.1) F	31	3.2	3.2)5	3.3	U	3.4	3.6	37	3.5	35	32	3.5	3.6	35	35	3.6	2.9 F	3.0 2.	0	3.1 F	30 F	
13	(3.1) F	F 3.1	3.2 5	(3.0) 5	316	31)5	(3.1)F	F (3.4)"	3.5	3.6	355	3.5	C	3.5	3.5	3.5	3.4	3.5	3.4 F	20	3.3	w.	7	31 F	
4	(3.3) 7	3.1.F	30F	(32) 6	3.25	3.25	3.4	3.4 F	3.7	3.7	3.7	3.4	3.6	3.6	3.5	3.6	3.7	34	3.2	35	36 F (3	(3.1)F 3	3.2 F ((31)F	
15	S	F	¥	(3.1) &	(3.0)	3-1	(3.1) &	33	5.5	3.6	(34)3	35	3.5	345	36	365	34	3.6 5	3.4 ((32) 8	3.4 3	2 5	(3.1) }	(32) }	
91	7	\$ (30)	O.	U	U	U	(3.4) }	(3.4)	g 3.6	37	(37)3	3.6	3.6	3.5	3.5	3.4	3.6	35 ((35) 8 ((35) 8 ((3.5) 8	5 (F	F	
17	U.	(3.3) }	3.2	(3.4)}	335	3.4	32	34	(34) }	(3.7) 8	(37)"	3.7	3.7	3.7	3.4	3.3	36	35	3.3	3.2 5	3.5 E 3	3.3 F 3	32 5 (3	3 2) 5	
-8	3.15	3.3 F	F (3.2)F	3.1 F	3.25	325	3	3.7	3.7	3.7	36	3.5	3.4	35	34	3.5	3.4	3 4	30	3.5	3.4 (3	(3.0) (3	(3.1) & (.	(3 1) 8	
61	(31)8	(3.1)	3 32	3.1	3.4 F	32 F	(3.0) 5	7	3.7	(3.7) P	F	3.7 #	3.2	3.4	29 ((31)5	3.1	(3.3) }	3.4 ((35)F	3.3 E 3	3.1 3.	3.2	F	
20	(30)}	4	F	FA	(31) 8	3.0	(30)\$	(33)	§ (3 #) s	35	3.6 5	36	3.5	3.3	34	3.5	35	35	31	3.5	33 3.	0	3.0 (.	(30)F	
12	(31)5	5 3.1	3.0	34	35 F	3.1	328	\$ 3.4	3.4	36	3.5	35	35 ((3.6) 3	35	34	36	35	3.5	3.2	3.3	1.2 3.		315	
22	(3.3) 8	(33)	P 32 F	348	3.2 F	(33)6	(3.1) &	A (34) A	35	3.7	3.5	3.6	33	34	33	35	36	36	35	3.1 F	(35) 5	5		(38) 5	
23	(3.1)F	F 3.1 F	(3.1)3	F	F	(34)5	(3.2) 7	7 (3.5)3	3.5	3.6	33	36	35	35	34	35	3.6	3.5 ((33)7	3.3 F ((35) = 3	3.3 F (3	(3.1)5 (.	(3.0)5	
24	30	31	3.1	30	32	3.1 F	(3.1)F	F (3.4)F	F 3.7	3.6	37	34	35	3.5	3.5	3.5	3.5	37	3.5 F	3.2 F	33 (3	3)5	F	F	
25	(31)5	3.0	(3.1) 8	31F	(3.2) F	(3.4)F	(3.5)	(34)	5 36 5	3.7	3.5	3.4	35	3.6	3.5	3.5	37	36	33 F	3.5	35	35 3.		31	
26	321	F 33 F	F 31 F	32	3.2 F	3.1 F	32	(33)F	F (36)5	3.6 #	34 #	3.4	36	3.5	3.6	34	36	3.5	3.5	3.3	34 3.	.4 3	7	3.1	
27	31	325	32	318	3.1	3.2	3.3	5 3.4 5	5 3.7	3.7	36	3.4	34	34	3.5	3.5	3.8	3.5	32	34	35 3.	3	0	34F	
28	(3.2)	P F	(31) F	(3.0) F	3.2 F	34	3.3	3.5	35	36	37	35	3.5	35	3.5	35 F	345	3.7	3.6	33F	33 F 3	3.5 F 3.	3 F	3.3 F	
29	316	F 32 F	F (3.3) E		31F	336	3.3	F 35 F	F 3.6	36	3.5	3.6	35	35	3.5	34	36	34	3 5	3.3	3.5	5	S	5	
30	S	S	(33) 5	(3.1) F	(3.4)F	3.5 F	(33)F	F 3.6	3.5	3.7	3.3 #	35		(34)" ((36) 7	36	3.4	36	33	33	34 3.	4 F 3	3 5	31	
3 i	(3.1)F	(3.0)	F (31) F	(31) F	(3.0) F	33	(33)#	(32)	5 3.7	37	33	33	(3.3)#	35	34	34	36	3.6	3.4	3 3 F	53 3	2 F	(3.0)5	S	
Median	(3.1)	(3.1)	(31)	(31)	32	32	(33)	34	3.6	3.6	35	35	3.5	3.5	3.5	3.5	36	35	3.4	33	34 3.	7	-	3.1	
Caunt	42	74	27	27	28	28	31	27	31	31	30	31	30	31	31	31	31	31	31	30	30 2	5	74	24	
											Sw	Sweep 1.0 Mc t	0	Autamatic ®	.25 min							D	U S GOVERMME	GOVERNMENT PRINTING OFFICE 1946 O .	102519

(M3000)FI (Unit)

Form coopted June 1946 National Bureau of Standards EJW. JWP EJW JW.P Scaled by McC. Calculated by. MCC. IONOSPHERIC DATA Mean Time 75° W January 1954 W 1.77 19 N 138.7° W Observed of Washington, D.C.

																														- Williams			
23																																FENDAN	
22																																	
21																																	-
20																																	
6																																	
82	The Control of the Co																																-
																																	and the same and t
91	3	0	0	O	7	©	B	O	7	a	7	3	7	0	Q	7	7	Ø	7	7	B	a	0	B	7	4.0	7	7	B	~	7		-
12	7	7	A	7	7	U	7	7	7	7	7	7	7	7	Y	Y	7	(3 E)#	7	7	~	7	7	7	42	4.7	7	7	7	7	#(8:6)	7.7	Ì
14	7	7	7	7	7	3.9	3.7	V	7	(x.3)2	7	2.7	7	7	7	7	4.4	0.7	7	7	(3.9)	#0#	3.8	7	7	7	7	7	4.1	3.8H	(4.2)	40	
50	7	7	7	7	3.9	7	X3.E)	7	3 6	7	25	~	39	7	3.9	16.4.0)	77	424	V	#1.4	7(68)	3.7#	3.8	7	39	3.8	7(0:4)	7	4.0	4.0	4.3	39	
12	1 +	7	7	7	7	7	(3.8)x	3.7	7	3.9	7	3.5	0	7	7	7	7	35	4.0	14	3.8		_	7	3.5	3.7	3.94	38	2	#3	13.7	3.8	-
=	7	7	30	7	3.8	3.9	00	3.87	13.87	20	404	3.7	7	7	7	(3.5)	7	3.4#	7	(3 g)	7	7	7	3.9	7	3.7	7	4.0	(3.9)	7	7	300	-
2	7	A	7	マ	7	<i>w</i>	7	7	7	7	7	7	7	7	7	7	7	7	8	38	7	13 8) x	8.8	7	7	3.7	7	7	7	3	394	3.8	
60	Q	7	7	Č,	7	7	7	8	a	7	7	7	0	7	7	1	3	7	V	Q	7	7	7	7	7	7	7	7	7	7	(3.6)#	1	
80	3	3	B	O	B	7	7	a	B	Q	7	7	7	7	8	a	a	8	0	Ø	Ø	a	S.	1 +	Ø	7	7	a	8	a	7		
07					Marco Common																											CAMBRIC S	-
90																																	-
0.5																																	
0.4																																	İ
03																		0469730															İ
0.2																																	-
ō																					-							-					1
00																																	-
Day	-	2	3	4	2	9	7	80	6	0	Ξ	12	13	4	15	91	1.7	18	61	20	21	22	23	24	25	92	27	28	29	30	31	Median	-

Sweep 1.0 Mc ta 2 5.0 Mc in 0.25 min Manual El Automatic 🗷 TABLE 60

Form adopted June 1946

National Bureau of Standards

J. W. P.

Scaled by: McC. E. J. W.

Central Radia Propagotian Laboratary, National Bureau af Standards, Woshingtan 25, D.C.

January 1954 (Month)

Observed at Washington, D.C. (M1500) E (Unit)

IONOSPHERIC DATA

J. W. P. 23 E.J.W 22 Calculated by: McC. 2 20 6 <u>@</u> _ (4.1) H (4.4)P (4.2) (4.4)" (4.2)P (4.1)P H02) 4.04 (4.3)A 424 4.2 ナナ 4.0 4.0 6 43 1:4 4.2 9 V Y 34 A 5 T A A 444 (4.3)P H(+.4) H (0,41) H & + 4.4 4.4 4.3 14 4.3 4 3 42 (4.6) 2 Ø A A A 4.44 4.4 4.4" (4.5).9 (4.5)A 4 43 4.2 E 7 7 7 4.3 43 4 4.3 4.7 43 P 43 V _ Mean Time V(++) 13 6 7 4.3 (42) 4.2 7 4.3 4.3 # 3 4.4 4.4 7 4 2 43 43 43 43 43 0.7 43 1:4 A(##) (45)A H + H (4.1) F 2 4.4 43 43 4.2 4.4 43 # # 43 43 4.3 1 1.4 1 4.3 # # 75° W 43 A 43 A V A(44) # 4.4 HE: 7 14.4)" 4.3 (4.2) (42)A 4.24 (43)9 44 4.3 43 = 43 42 43 1.4 1+ # 3 23 23 1.4 R 3.9 A A A 4.54 (E H) d(E.4) (4.1)P (4.4)P (4.1) A 4.2 4/2 4.4 43 + 4.2 43 1.1 4.0 4.0 43 4 43 0 17 A A K T V H.4.H H(1+1) A(++1)4 4.2 H 4.3H 4.3F (42)A (4.4)F 4.3 (4.2)" 7.4 4.3 4.0 I si 64 1.4 40 39 4.1 3.9 61 60 A 43 A V V A V A A A A 4.2 H (4.3)A (4.3) 3 08 H Z. V S S S 5 Ų 1/4 Ŋ 5 5 V S Ŧ V C W 5 A A # 20 90 05 Lat 38.7° N, Lang 77.1° W 04 03 0.5 <u></u> 00 15 Day Median Count ю 6 N 4 2 9 7 8 0 12 <u>6</u> 14 9 8 19 20 2 23 25 = 17 22 27 28 59 30 3

| 23 | 25 | 37 | 25 | Sweep 10 Mc to 25 0 Mc in 0 25 min

Manual 🗋 Automatic 🔞

31

Table 61

Ionospheric Storminess at Washington, D. C.

January 1954

United the same of					
Day	Ionospheric o	character*	Principal storms Beginning End GCT GCT	Geomagnetic	character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	31122221321212131122111332132	12-24 GCT 1 1 3 2 1 2 3 3 2 2 1 2 2 2 2 2 1 1 2 1 2	GCT GCT	232002132222312243333421112221	12-24 GCT 1
31	3 2	2		2	2

^{*}Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

Table 62

Sudden Ionosphere Disturbances Observed at Washington, D. C.

January 1954

No sudden ionosphere disturbances were observed during the month of January.

Table 63

Sudden Ionosphere Disturbances Reported by Direction Générale des
Télécommunications de Suède, as Observed at Enköping, Sweden

1953 Day	GCT Beginnin		Location of transmitters	Other phenomena		
October 10	1405	1425	Lebanon			
14	0955 1005		Argentina, Austria, Brazil, Bulgaria, Czechoslovakia, Netherlands, Peru, Switzer- land, Tangier	Solar flare* 1012		

*Time of observation at Wendelstein Observatory, Germany. Flare began before time of observation.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Table 64a

Radio Propagation Quality Figures (Including Comparisons with Short-Term and Advance Forecasts)

December 1953

Day	North Atlantic 6-hourly quality figures				Short-term forecasts issued about one hour in advance of:			Whole day quality index	(J-reports) for whole day; issued			Geomag- netic KCh		
	00 ts 05	06 to 12	12 to 18	18 to 24	00	06	12	18		1-4 days	4-7 days	8-25 days	Half	day (2)
1 2 3 4 5	6 7 6 6 6	6 6 6 6	7 7 7 7 7	6 6 7 6 7	66666	5 6 5 6	7 7 7 7 7	7 7 6 7 7	6 6 7 7 6	7 6 6 7 7	7 6 6 7 7		2 2 2	1 1 2 2 1
6 7 8 9 10	566666	6 6 6 6	7 7 7 6 7	7 6 7 6	6666(4)	5 6 7 5 5	7 7 7 6 6	6 7 6 6 5	7 7 6 6	7 7 7 5 (4)	7 7 7 5 (4)	Х	1 2 2 1 1	2 1 2 2 2
11 12 13 14 15	6 5 5 5 5	6 5 5 5 6	7 6 6 6 7	6 6 6 5 6	5 (4) (4) 5 (4)	(4) (4) (4)	6 5 5 6	5 5 5 5 6	6 6 6 5 6	(4) (3) (3) (4) 5	(4) (3) (3) (4) (4)	X X X X	3 (4) 2 2 1	(4) 3 3 2 2
16 17 18 19 20	5 6 5 6	66666	7 7 7 6 7	6 6 6 6	55666	5 5 5 6 6	7 7 6 7 7	6 6 7 6	6 6 6 6	(4) (4) 6 6 5	(4) (4) 5 5	X X	2 1 2 1 1	2 2 1 2
21 22 23 24 25	5 6 5 5 6	6 5 6 6	7 7 7 7 7	7 6 6 6	56656	56556	7 6 7 6 7	6 6 6 6	6 6 6	566666	5 6 6 5 6		1 2 0 2 1	1 2 2 1 2
26 27 28 29 30 31	6666666	5 6 6 5 6	7 7 7 7 7 6	7 6 6 7 6	6 6 6 7 6 7	6 6 6 6 6	7 7 7 7 7	7 7 7 7 7	6 6 6 6 6	6 7 7 7 7	6 7 7 7 7		1 1 2 1 1 2	2 2 2 3 1
Score: Quiet periods S U F					19 11 0	11 18 0 2	21 10 0	14 17 0 0		11 14 0 6	8 16 0 7		To the state of management of the state of t	
Disturb	5 J	0 0 0	0 0 0	0 0 0	0 0 0		0 0 0	0 0 0		***************************************				

Scales:

Q-scale of Radio Propagation Quality

- (1) useless (2) very poor
- (2) very poor (3) poor (4) poor to fair 5 fair 6 fair to good

- 7 good 8 very good 9 excellent

K-scale of Geomagnetic Activity 0 to 9, 9 representing the greatest disturbance; $K_{\mbox{Ch}} \geqslant \frac{\mu}{2}$ indicates significant disturbance, enclosed in () for emphasis

Scoring: (beginning October 1952)

P - Perfect: forecast quality equal to observed
S - Satisfactory: (beginning October 1952)
forecast quality one grade different from observed

U - Unsatisfactory: forecast quality two or more grades different from observed when both forecast and observed were ≥5, or both≤ 5
F - Failure: other times when forecast quality two or more grades different from observed

Symbols:
 X - probable disturbed date

Short-Term Forecasts---December 1953

Table 55a Coronal observations at Climax, Colorado (5303A), east limb

Date		-		Deg	gree	SI	ort	h (of t	the	50]	ar	equ	iato	r					1			Deg	ree	6 8	sout	h	of t	the	60.	lar	equ	ato)]"			~~~
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																																					
Jan. 1.7	-	_	~	-	90	-	-	-	~	_	-	-	-	40	-	-	_	-	-	-	-	-	-	-	-	**	1	2	2	1	-	-		-	~	~	-
2.8	-	-	_	_	-	-	-	_	-	-	~	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	679	-
3.7a	-	_	_	_	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	_	-	-	461	-	-	-	-	-
5.7	-	_	_	-	-	-	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	_	-	-	-	-	-	-	*(9
6.7	-	-	4.0	-	~	-	-	1	1	2	2	1	2	2	1	1	-	-	-	400	-	-	-	-	_	~	-	-	-	-	-	-	-	-	-	-	-
7.7	-	_	_	_	-	-	-	-	40	1	1	1	2	2	1	1	1	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-
8.90	es.a	_	-	_	-	-	-	-	-	079	***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	cm	-	-	-	-	-
10.8	_	_	_	cm.	-	_	2	2	3	3	3	3	3	4	4	3	1	-	-	-	60	-	-	~	~	-	-	-	-	-	-	-	-	_	639	-	-
14.9	-	-	-		-	-	-	***	-	-	-	-	-	40	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
21.9	-	_	~	-	_	-	-	1	3	3	3	1	-	-	-	-	**	-	-	-	-	-	-	1	1	2	100	-	-	-	-	100	-	-	-	-	-
22.7	-	-	-	_	-	nde	63	1	2	2	2	2	_	-	-	-	40	-	-	-	co	40	-	-	_	_	_	-	-	_	-	-	-	_	_	-	-
23.7	-	_	-	_	_	_	-	639	1	1	1	1	_	_	_		-		-	-	_	_	_	-	_	-	-	-	_	_	_	_	-	_	-	-	_
27.8	χ	χ	X	Х	X	X	X	X	X	-		_	_	_	-	_	_	_	-	OF.	-	-	-	-	-	-	-	-	-	_	-	-	-	-	Х	X	X
28.9	-	-	-	-	_	-	_	cm	_	_	-	1	2	1	-	_	-	-	-	-	-	90	-	40	69	-	-	~	-	_	_	-	40	-	~	_	-43
30.9	-	40	_	_	-	-	-	_	-	_	~	-	-	_	_	-	_	_	-	-	_	_	-	-	_	-	_	_	-	_	_	_	80	_	-	_	-
31.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.0	-	-	-		•	-	4.0	-		-	_	-	-	-	-	-	-	-	400

Table 664 Coronal observations at Climax, Colorado (6374A), east limb

Date				Deg	ree	s r	ort	h c	f t	he	50]	Lar	equ	ato	r								Deg	ree	S S	out	h c	of t	he	80	lar	equ	ato	r			-
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954 Jan. 1.7	,	1	,	2	,	,	,	,	,	0	,		7		_	_	0	_	_		6	ñ	_	_	_		7	,	,	,	,	,	,	2	0	2	0
2.8	2	1	1	3	7	1		Τ.	Τ.	2	1	2	2	2	5	6	6 5	5	6 5	6	5	5	0	0	4	4 7	2	1	1	1	1	1	1	1	1	2	2
3.7a	1	1	2	3	2	i	1	1	1	2	3	3	1	2	4	7	6	6	6	6	6	6	6	6	6	6	4	3	1	1	1	1	2	2	3	3	2
5.7	2	2	1	1	1	ī	1	1	1	1	1	2	1	2	4	5	6	7	6	6	6	6	5	3	4	4	5	3	2	1	1	ì	1	2	3	4	3
6.7	2	1	1	1	1	1	1	1	1	1	2	2	2	2	3	4	5	6	6	7	8	8	5	5	5	5	5	3	2	1	1	1	2	2	2	2	3
7.7	2	2	1	1	1	1	1	1	1	2	2	2	2	3	5	7	6	6	9	8	8	9	7	6	6	6	6	5	4	2	2	3	4	4	4	4	3
8.9b 10.8	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	2	2	2	3	3	3	2	2	2	2	2	1	1	X	X	X	X	~	-	-	_	-
14.9	3	4	4	2	2	3	2	1	1	2	3	3	3	4	3	3	4	4	5	6	8	8	9	6	7	7	8	2	3	2	3	3	3	3	3	3	3
21.9	2	3	3	7	1	3	_	-	_	1	2	4	5	4	1 4	4	3	2	2	5	5	5	5	4	e 4	3	3	3	7	J	1	1	1	1	1	3	2
22.7	3	2	2	2	ī	î	1	1	1	1	1	3	6	5	5	5	3	3	5	5	7	7	7	6	6	5	5	4	4	3	3	2	i	2	2	2	4
23.7	3	3	2	1	1	_	_	_	_	1	1	2	3	Ą	3	4	3	2	4	5	5	6	5	3	3	3	3	3	2	2	2	1	1	2	3	3	3
27.8	X	X	X	X	Х	Χ	χ	Х	Х	1	2	1	1	1	1	1	2	2	2	3	3	3	3	3	1	1	1	1	1	1	1	1	2	2	Х	Х	Х
28.9	2	2	1	1	1	1	1	1	1	1	2	3	3	3	4	5	5	4	5	5	6	5	5	3	3	3	3	1	1	1	1	2	2	2	2	2	2
30.9 31.7	2	2	1	1	1	1	1	1	1	1	1	2	3	3	2	4	5	5	5	5	4	4	4	5	5	3	2	1	1	1	1	1	1	1	2	2	2
01.1	2	2	2	2	3	2	1	1	1	1	1	2	2	2	2	6	9	5	5	5	4	3	5	5	4	3	3	2	2	2	2	2	2	2	3	3	3

Table 57a Coronal observations at Climax, Colorado (6702A), east limb

Date				De	gree	28	nor	th o	of ·	the	50	lar	eg	uato	r					Т	_		De	gre	es	sou	th o	of i	the	50	107	601	10 f c	179	-		
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	210	16	50	66	60	25	770	77.	Po	D.E	- 20
1954																				12)	20	22	+0	7)	<i></i>	20	00	02	10	12	00	05	90
Jan. 1.7	-	-	_	_	440	_	-	ngh.	-	_	_	_	_	_	_	_	_		_	_	_																
2.8	-	~	_	-	-	_	-	-	_	-	-	-	_	-	_	_	_	_	_	_	_	-	_		-	-	_	_	-	-	_	-	-	-	-	~	-
3.70	-	-	-	-	_	-	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	-	-		-	-	-	-	-	-	-	-	-	100
5.7	-	-	-	-	_	~	-	_	_		_	_	-	_		_		_	_	_	_	_	_	_	-		~	-	-	-	-	-	-	_	-	-	-
6.7	-	-	-		_	-	-	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_		-	-	-	-	-	-	-	-	-	-	-	-	-	-
7.7	-	-	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	40	-
8.9b	-	-	~	_	_	***	_	-	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	-	-	_	-	-	-	_	-		-	
10.8	-	-	-	_	-	-		_	_	-	_	**	_	-	_	_	_	_	_		_	_	_	_	-	-	-	-	-	-	-	_	-	-	-	-	-
14.9	-	-	-	_	-	-	-	_	~	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	-	-	-	-	-	-		-	_	-
21.9	-	-	-	-	-	_	-	-	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	-	~	_	-	-	_	-	-	-	-	-
22.7	-	-	_	-	-	-	_	_	_	_	_	_	_	_	_	_							_	_	_	-	-	_	-	-	-	-		***	_	-	-
23.7	-	-	-	_	_	_	_	-	_	_	_	_	_		_	_	_	_	_	-	-	-	_	-	-	-	-	-	-		-	-	-	-	-	-	40
27.8	Х	χ	Х	Χ	Х	X	X	Х	Х	***	_		_	_	_	_	_	_	-	_	_	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	40
28.9	-	-	-	_	_	_	_	_		-	-	_	_	_	_	_	_	_	_	_	-	-	-	-	-	-	-	~	-	-	-	-	-	-	Х	X	χ
30.9	-	-	-	-	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	-	-	40	-	-	_	-	-	-	-	-	-	-	-
31.7	-	-	-	-	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-
													_	_	_	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-

a indicates low weight M90 through 890 t indicates low weight M90 through M20

Table 65b

Coronal observations at Climax, Colorado (5303A), west limb

Date										10 S]						gre													
CCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																																					all and a second
an. 1.7	-	-	_	-	-	-	-	-	_	-	-	-	969	-	-	-	2	3	1	-	-	1	2	2	1	1	1	1	-	-	-	-	-	-	4.0	-	ed
2.8	-	_	_	-	-	-	400	-	-	-	-	-	-	-	-	1	5	3	2	-	-	1	2	2	1	1	1	1	-	=0.0	-	-	-	-	-	-	
3.7a	_	-	-	-	-	_	_	-	-	-	-	-	_	-	-	1	1	1	-	-	-	-	-	-	-	-	***	-	439	-	-	-	409	100	429	-	
5.7	-	_	467	_	-	_	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	1	1	1	1	1	1	2	1	1	679	400	-	100	-	-	
6.7	-	_	409	-	-	_	-	-	-	-	-	_	40	-	-	-	-	900	-	-	co	***		439	400	-	_	-	400	-	-	-	-	_	-	-	
7.7	-	-	-	_	***	_	-	nu	-	-	-	-	_	-	-	-	-	-	-	-	-	-	689	-	_	1	1	2	1	1	653	-	40	462	-	_	
8.9c	-	-	-	-	-	X	X	X	X	X	χ	Х	Х	Χ	Х	Х	Х	Х	Х	X	Х	Х	χ	X	X	Х	Х	X	Х	X	Х	Х	Х	X	-	90	
10.8	-	-	-	_	-	_	-	-	43	-	-	-	1	2	2	1	-	404	-	-	~	-	-	-	_	-	-		_	-	400	-	403	_	-	49	
14.9d	_	_	-	-	-	-	-	_	-	-	463	-	-	-	-	-	-	-	-	-	-	***	*0*	-	-	-	1	1	00	-	en	90	-		0.0	-	
21.9	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	429	-	439	-	-	-	w	1	1	1	1	1	1	-	40	-	460	**	60	-	429	
22.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	3	2	1	1	1	1	1	-	439	-	-	-	-	
23.7	-	-	_	_	-	-	_	-	-	_	_	_	-	_	-	_	-	-	-	-	_	1	1	1	1	1	1	1	1	1	1	_	_	-	-	***	
27.8	Х	Х	X	Х	X	Х	Х	Х	Х	Х	χ	Х	X	Х	Х	χ	Х	Х	Х	Х	X	X	Х	Х	χ	Х	Х	Х	X	χ	Х	X	Х	X	Х	Х	
28.9	_	-	-	_	-	_	_	_	_	_	_	_	_	_	en	-	-	-	-		-	-	-	100	_	440	_	1	1	1	-	_	-	-	_	_	
30.9	_	404	-	-	-	_	_	-	-	-	_	_	-		_	_	-	_	-	-	suit .	_	_	_	_	_	-	1	1	_	-	_	_		_	100	
31.7	_	-	_	_	-	_	_	_	-	-	_	_	_		-	_	_	600	-	_	1	2	1	1	1	1	1	2	1	_	_	-	-	_	_	_	

Table 66b Coronal observations at Climax, Colorado (6374A), west limb

Date)e a.	ree	8 8	out	n o	C H	10.	5011	- r	900	a † o	r			1	-				Des	ree	98 1	ort	th o	of .	the	80	lar	eqi	ato	or			
GCT		90	85				65		55								15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954					10					_					Badrah, and Park																							
Jan. 1		2	2	2	2	1	1	1	1	1	2	3	3	3	4	4	5	8	4	3	4	3	1	1	2	4	3	1	1	1	1	1	1	1	1	2	2	1
	8.8	2	2	2	1	1	i	i	i	î	3	2	3	2	4	4	4	7	6	6	5	3	2	3	3	5	4	3	1	1	1	1	1	1	1	2	2	2
	.7a	2	2	2	2	2	2	i	i	î	2	3	3	3	3	4	4	.3	5	5	4	4	3	3	2	6	5	3	1	1	1	1	1	1	2	2	2	1
	5.7	3	2	2	2	2	2	1	i	3	4	5	5	6	6	6	6	7	6	6	5	4	4	4	5	4	3	3	2	1	1	2	2	2	2	1	1	2
	.7	3	3	3	2	2	2	i	2	i	3	4	4	5	5	5	5	4	4	5	4	4	3	4	5	4	2	2	2	2	2	2	2	2	3	3	3	2
	7.7	3	3	3	3	2	2	î	ī	î	4	4	4	4	5	5	5	4	4	4	4	4	4	4	4	3	3	3	1	1	2	2	2	1	1	2	2	2
	3.9	_	_	_	_	_	x	Ÿ	x	x	x	x	x	X	X	X	X	X	X	х	Х	Х	Х	X	Х	Х	X	Х	Х	Х	χ	X	X	Х	X	2	2	2
	8.0	3	4	4	4	3	2	î	2	ï	1	2	3	3	3	5	5	5	5	4	2	3	3	3	4	6	5	4	3	2	2	2	1	2	3	3	3	3
	1.9c	2	ī	-	_	_	-	_	_	-	-	ĩ	1	ì	2	3	3	2	1	3	3	4	4	3	3	2	2	1	1	1	1	1	1	1	1	2	2	2
	1.9	2	2	2	3	2	1	1	1	1	2	3	3	4	3	8	9	8	5	5	3	3	4	3	2	1	1	2	1	1	1	1	1	1	2	2	2	2
	2.7	4	2	2	2	2	2	ī	ī	1	3	5	4	4	5	6	6	6	5	4	4	3	2	2	1	1	1	1	1	1	1	1	1	2	2	2	2	3
	3.7	3	3	3	3	2	2	î	î	î	1	2	2	2	2	4	5	6	5	4	4	3	2	2	2	1	1	2	1	1	1	1	1	2	2	1	2	3
	7.8	x	x	X	X	x	X	x	x	x	x	X	X	х	Х	X	X	Х	χ	х	Х	Х	Х	X	Х	X	Х	Х	Х	Х	X	Х	X	X	Х	Х	Х	X
	3.9	2	2	3	2	2	1	1	1	2	2	2	3	4	4	4	4	4	4	4	5	5	3	3	3	3	4	4	3	1	1	1	1	2	2	3	2	2
	0.9	2	2	2	2	2	2	ī	ī	1	1	4	4	4	4	4	4	4	5	5	5	5	4	4	3	3	3	2	2	1	1	1	1	1	2	2	2	2
	.7	3	3	3	3	. 2	1	1	1	1	2	3	4	6	6	3	4	4	4	5	5	4	4	4	4	4	4	3	2	1	1	1	1	1	1	2	2	2

- a indicates low weight S90 through N90. c indicates low weight N80 through N90. d indicates low weight S90 through S70.

Table 67b Coronal observations at Climax, Colorado (6702A), west limb

- - - -		75 70	65	- 60	55 - - -	50 - - -	45 - -	40 - -	35 - -	30 -	25 -	<u>-</u> .	15	10	5 -	-00	5	10	15 3 -	20 3	25 <u>;</u> -	30	35 -	40 -	45 -	<u>50</u> -	<u>55</u>	60	65 -	70 -	75 -	80	85 g
-				-		-	-	-	-	-	-		-	-	-	-	_	_	_	_	_	_	_	_	_	-	-	6	-	-	-		
				-	-	-	-	-	-	-	-	- '	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	0	-	-	-	**	
-				-	-	-	-	-	-	-	-	-	_																				
-	-	- :		-	_	-	-	_						-	-	-	-	*	-	-	-	***	-	-	-	-	-	460	-	-	-	-	-
-	-	-		-	-				_	-	-	-	-	-	+	-	-	_	-	-	400	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	N/D	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	600	_	-	-	-	-	*	-	40	-	-		-	-
				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	101	***	-	-	-	-	-	-
_	-		- X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	X	X	Х	Х	Х	X	X	X	X	Х	-	
-	-			-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	*0*	40	-	-	-	-	-
-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
-	-	-		-	-	-	-	-	-	-	40	-	-	-	-	-	-	*0*	-	***	-	-	-	-	-	-	-	-	40	-	-	-	-
-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	600	-	•	-	-	-	-	-	-	-	-	-	-	-	**	-
-	-	-		-	-	-	-	400	-	-	400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Х	X	X	χх	χ	X	χ	Х	Х	Х	Х	Х	X	Х	Х	X	X	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X
-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	400	•	-	-	-	-	-	-	-	-	
-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	-	-	-	*0*	-	-	-	-	-	-	-	-	-	-
40	+	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	- - x			x x x x x	x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x					x x x x x x x x x x x x x x x x x x x					x x x x x x x x x x x x x x x x x x x												

Table 652

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Date				Deg	gree	BI	nort	th c	of t	he	80	Lar	equ	ato)]*			- 1	-0														ato				
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	50	25	30	35	40	45	50	55	60	65	70	75	03	85	90
1954																																					
Jan. 1.7	-	_	_	- 100		2	2	2	3	2	2	2	2	2	2	3	2	2	2	2	2	3	3	2	2	_	-	3	3.	2		_	-	_	_	_	_
2.7	-	66.3	***	-		-	_	-	_	_	-	2	2	2	2	2	_	2	2	2	2	2	3	3	2	2	-	2	3	3	2	2	_	-	-	_	-
3.8	-	-	_	_	_	-	-	-		2	2	2	2	3	3	2	3	2	2	2	-	-	-100	-	-	-	-	-	-	-	_	-	-	es.	-	ca	_
4.7	-	_	-	_	-	-	_	_	-	2	2	3	2	3	2	2	_	_	-	-	qia	-	_	-	-	-	-	400	-	_	-	-	-	ca	_	_	-
5.7	-	_	-	_	-	-	_	_	2	3	4	4	4	3	4	3	3	3	2	2	2	3	2	3	3	3	2	2	2	3	-	-	-	-	-	_	-
6.7	-	-	-	-	2	_	2	2	3	3	4	4	3	2	2	_	2	2	2	3	2	2	2	***	2	3	3	3	4	3	2	2	real	-	ND.	_	-
7.9a	-	-	-	_	_	_	-	2	3	4	4	3	2	3	2	3	2	2	3	3	-	_	-	2	2	3	3	2	2	2	-	-	-	409	-	-	es
10.7a	-	_	-	_	-	-	2	3	2	3	3	4	3	2	5	4	4	3	3	2	2	<00	-	40	-	-	-	-	***	dos	-	400	-	-	calls	40	
11.7	-	_	-	-	603	2	3	5	7	6	5	5	5	4	5	4	3	2	3	-	-	630	_	3	3	2	3	2	3	2	2	-	400	-	-	-	-
16.7	-	-	_	_	-	2	2	3	3	3	2	3	3	2	3	3	4	3	3	3	4	3	2	2	2	-	-	cov	400	440	de	400	3	4	3	-	43
21.8e	-	_	-	-	-	2	2	3	3	4	4	3	2	2	2	2	2	2	-	-	-	401	-	m20	-	cale	***	-	639	0%	400	des	100	-	-	-	œ
22,9	-	_	-	400	-	_	2	3	5	5	4	4	3	2	2	2	2	3	2	-	-	600	-	00	win	2	3	2	2	2	_	_	_	-	·	4"	-
23.7	-	_	-	-	-	2	3	4.	5	4	5	5	4	2	2	2	2	2	2	3	2	2		-	2	3	3	3	3	3	2	_		_	œ	63	til.
26.7	-	-	400	-	Rips	-	2	2	3	3	3	2	3	3	2	3	3	3	2	2	3	2	2	2	3	4	4	5	5	4	3	3	2	2	cm	Ole	-
31.7	~	618	-	_	-	-	-	-	2	2	3	3	2	2	-	-	3	3	3	2	2	2	2	2	2	2	2	3	4	3	2	2	-	400	-	-	-
	!																																				

Table 698

Coronal observations at Sacremento Peak, New Mexico (6374A), east 11mb

Date					ree														-	Т			De	gre	es	Bout	in o	of t	the	so	lar	equ	ato	2			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	_5	00	5	10	15	50	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954									-																												
Jan. 1.7	3	2	2	2	2	-	2	2	***	3	3	4	5	4	5	10	8	9	8	7	8	8	7	7	6	5	5	5	3	2	43	OM:	œ	-	2	-	2
2.7	2	2	3	2	3	2	***	2	3	2	3	4	5	3	4	13	11	10	11	11	14	11	8	7	5	6	5	3	3	2	2	_	2	_	2	3	3
3.8	2	3	3	2	3	3	2	3	2	2	3	5	5	6	7	12	12	11	10	8	13	10	8	5	5	6	7	4	3	2	an	2	2	2	3	4	2
4.7	2	_	3	2	3	2	3	4	2	2	2	3	4	3	7	8	11	10	9	8	9	5	6	5	5	4	4	2	-	-	2	2	-	3	2	3	3
5.7	4	3	3	3	3	3	2	2	2	2	3	2	3	3	5	8	11	14	13	13	12	11	10	8	5	6	6	5	2	-	2	-	2	3	3	3	2
6.7	5	4	3	3	3	5	4	3	2	3	3	5	6	7	8	11	11	14	13	14	15	14	13	10	10	9	9	7	3	4	2	2	3	3	3	4	3
7.9a	5	4	3	3	3	4	3	3	2	3	5	5	4	4	6	8	11	12	11	11	12	14	15	11	12	12	8	7	5	5	4	2	2	3	3	3	2
10.7a	3	2	_	2	2	2	2	2	_	2	2	2	2	2	2	3	3	3	4	5	6	7	8	6	5	4	5	4	2	_	2	2	-	_	***	-10	910
11.7	4	3	4	4	5	4	3	2	4	-	2	3	5	4	5	5	6	7	8	11	12	14	15	13	12	8	6	5	2	2	3	2	2	2	3	3	3
16.7	3	3	3	2	2	3	3	3	3	3	3	4	5	8	6	11	12	14	13	13	12	10	8	8	7	5	5	4	3	2	2	2	3	3	2	3	2
21.8a	-	_	_	_	2	3	***	***	_	_	_	_	4	3	5	.5	6	7	3	3	3	2	3	3	2	3	2	2	2	2	3	-	_	-	-	-	-
22.9	3	5	4	4	4	3	2	2	2	3	3	4	5	7	8	8	11	8	7	8	10	12	13	13	9	7	5	5	4	4	3	3	2	2	3	3	2
23.7	5	4	4	3	3	3	2	2	3	3	2	4	8	16	15	13	12	11	8	9	16	14	14	13	11	8	5	4	4	4	3	2	2	3	3	2	3
26.7	4	2	3	3	3	5	3	2	-	3	4	8	9	7	3	5	6	8	9	10	10	11	8	5	11	8	4	4	3	-	2	2	-	2	3	3	4
31.7	2	2	2	_	2	2	3	_	_	_	2	3	3	4	8	11	16	11	10	8	6	5	5	6	8	9	3	3	2	-	***	3	2	2	3	2	2

Table 70a

Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

Date														uato					- 0				Dea	gree	8 8	out	h	of t	the	80.	lar	eqi	ato	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	_5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																																					
Jan. 1.7	-	***	-	-	-	-	_	-	-	_	-	_	-	-	-	***	00	-	-	-	400	-	***	-	409	-	_	_	-	***	_	-	-	-	***	-	_
2.7	-	_	-	_	_	-	_	-	***	-	-	-	-	-	_	-	_	_	-	-	439	_	_	-	4,0	_	-	_	-	_	_	801	-	_	_	_	-
3.8	-	-	-	-	_	_	_	-	-	-	-	-	-	-	***	_	-	_	-	-	_	-	4957	-	-	_	_	-	-	-	-	***	-	-	-	-	-
4.7	-	100	-	-	4,00	-	_	***	_	***	-	com	-	-	_	-	-	_	-	-	_	_	-	_	-	-	_	-	_	_	_	-	_	-		_	_
5.7	-	1_	-	-	-	_	_	_	-	-	-	-	_	_	_	-	_	_	-	-	_	_	-	-	-	_	-	-	_	-	-	_	_	-	_	-	_
6.7	-	_	_	_	-	_	-	-	_		_	-	-	-	-	-	-	-	-	-	_	****	_	-	-	_	-	_	_	_	_	-	-	_	***	-	-
7.9a	-	_	-	_	-	-	_	-	_	_	_	-	***	-	-	-	-	_	-	-	_	_	-	400	_	_	_	-	_	_	_	***	-	_	-	_	_
10.7a	-	-	-	-	_	-	_	_	-	-	_	-	***	~	-	-	Asso	_	_	-	-	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_
11.7	-	-	-	_	-	-	-	-	-	-	-	-	_	_	_	_	-	-	-	-	_	***	_	-	_	_	_	_	_	_	_	_	-	_	-	_	_
16.7	-	-	-	_	_	-	_	_	_	-	-	-	-	_	_	-	Asso	_	-	-	_	-	_	43	_	_	_	_	***		_	_	-	-	-	_	-
21.8a	-	-	_	***	-	-	_	-	_	-	**	_	_	_	-	_	_	-		-	_	-	_	-	_	_	_	_	***	_	_	_	_	_	_	_	_
22.9	-	40	-	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	-	-	_	_		_	_	-	_	_	_	_	_	-	_	_	-	-
23.7	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-	river.	_	-	_	_	_	_	_	-	_	_	_	-	_	-	_	_	-	_	_	_	_
26.7	-	_	_	_	_	_	_	-	***		-	_	_	_	_	_	-	_	-	-	_	_	_	_	_	-	-	-	_	-	_	_	-	-	_	_	-
31.7	-	_	_	_	_		-	_		_	_	_	_	_	_	-	_		_	-	-	_	_	_	_		-	_	_	_	_	-	_	_	_	-	_

Tatle 68b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

Date				De	gre	es	вou	th	οſ	the	SO	lar	eq	uat	or				00					ree													
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954																																					
Jan. 1.7		_	_	_	_	_	***	-	2	2	3	2	3	3	2	3	3	3	4	3	2	2	2	3	3	2	3	3.	3	2	3	3	2	one	an	-	~
2.7a	-	_	-	_	-	-	2	3	3	3	2	. 3	3	2	3	2	3	7	6	2	2	3	2	3	3	3	2	3	2	3	3	2	2	-	-	-	Pla
3.8	-	-	0	-	_	-	-	-	-	-	**	0.7	-	-	2	2	4	5	4	3	3	3	3	3	3	2	2	2	3	3	3	3	2	2	-	-	-
4.7	-		_	_	-	-	-	_		-	-	2	2	2	3	3	3	2	3	2	2	2	2	3	2	2	2	3	2	3	3	3	3	2	-	OPP	-
5.7	-	-	_	-	cor.	3	2	2	3	2	2	3	2	3	3	2	3	3	2	4	4	4	5	8	4	5	6	5	6	5	3	2	2	-	-	-	400
6.7	-	_	-	_	4900	_	-	-	_	2	3	2	3	2	2	2	3	2	2	3	3	4	5	5	4	4	4	5	5	6	5	4	2	-	-	-	-
7.9 a	-	-	-		_	-	_		2	3	3	2	2	2	2	2	3	2	3	2	2	2	2	3	2	2	2	3	5	4	5	3	-	_	-	-	_
10.7 a	-	-	_	_	_	_	_	-	_	-	-	_	-	-	2	2	3	2	2	2	3	2	3	2	2	3	2	2	-	-	-	-	-	***	-	-	-
11.7	-	-	_	_	-	_	2	3	3	4	5	4	3	3	3	2	3	2	3	3	3	4	3	2	2	2	-	-	3	2	2	2	-99	-	-	-	-
16.7		_	_	_	_	-	40	-	3	2	3	2	3	3	2	3	3	2	2	2	3	3	3	2	2	2	2	3	2	2	3	3	2				-
21.8 a	-	-	_	_	-	_	_	-	-	2	2	3	2	2	3	2	-	-	-	-	-	-	-	-	2	3	3	4	4	3	2	-	-	-	***	-	-
22.9	-	_	_	-	_	63	-	-	2	3	3	3	3	2	2	2	2	2	3	3	3	3	4	4	5	4	4	5	5	5	4	3	2		ech	-	684
23.7	-	_	_	_			-	2	2	3	3	3	2	3	2	2	2	2	3	4	5	5	5	6	7	5	6	6	7	7	5	3	-	410	-	-	
26.7	-	-	_	_	_	-	_	_	-	2	2	3	3	2	3	4	3	3	2	2	2	3	3	2	3	3	4	5	6	5	4	3	2	3	2	-	-
31.7	-	_	_	-	-	_	2	2	2	2	2	2	2	3	3	3	4	3	3	2	3	3	4	3	2	2	2	3	5	4	3	2	-		-	-	-

 $\frac{\text{Table 69b}}{\text{Coronal observations at Sacramento Peak, New Mexico (6374A), west limb}}$

Date			1	e = 1	rees	5 50	outh	· of	th	ie s	ole	re	qui	ato.	r				- ^				Deg	ree	s n	ort	h o	ft	he	sol	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954	}																																				
Jan. 1.7	2	2	2	2	2	-	-	2	-	2	2	3	3	3	3	3	5	6	4	3	4	3	2	2	3	5	4	2	3	2	-	2	2	2	2	2	3
2.7a	3	3	2	2	-	-	2	2	2	3	2	2	3	2	5	5	4	8	8	7	7	6	4	3	5	5	8	3	3	3	2	-	2	2	-	2	2
3.8	2	-	-	2	2	-	2	2	3	2	3	3	4	5	8	7	6	5	6	5	5	3	4	6	8	11	10	5	3	2	2	2	2	2	3	2	2
4.7	3	-	-	-	2	2	-	-	2	3	-	3	4	3	5	8	7	5	6	6	7	5	3	5	4	5	4	3	2	2	3	2	2	3	2	2	2
5.7	2	3	3	2	3	3	3	4	2	2	3	3	8	8	9	11	10	11	13	11	7	5	5	8	7	5	4	3	2	2	2	2	3	3	2	3	4
6.7	3	3	2	2	3	3	3	3	3	2	3	4	10	11	11	13	12	11	10	8	7	5	6	10	11	8	5	5	4	2	3	3	3	4	3	4	5
7.9a	2	3	3	2	3	2	2	2	2	3	5	4	5	10	11	9	8	6	5	5	6	5	11	8	6	5	4	3	4.0	2	3	3	3	2	3	4	5
10.7a	-	-	_	-	_	_	-	-	_	-	2	2	2	3	4	5	4	2	3	-	2	2	3	3	3	5	4	3	2	2	-	2	2	2	2	2	3
11.7	3	2	3	2	3	2	-	-	2	-	2	3	7	8	6	5	6	5	4	4	3	3	4	3	5	8	8	5	3	2	3	3	2	2	3	3	4
16.7	2	2	3	3	2	3	3	-	2	3	3	3	4	8	7	8	7	7	6	5	6	7	7	7	6	5	5	4	3	-	3	2	3	3	_	2	3
21.8a	-	_	-	-	-	_	-	2	2	2	-	3	2	6	7	8	7	6	5	4	3	2	2	2	_	***		3	**	2	-	-	_		-	_	-
22.9	2	3	2	2	3	2	2	2	2	_	3	3	4	4	10	9	8	7	7	5	5	3	2	3	2	2	2	2	3	2	-	***	2	3	3	2	3
23.7	3	4	3	3	2	3	2	3	3	5	5	6	5	10	14	15	15	14	11	10	8	6	4	6	5	4	5	6	4	2	2	2	3	4	4	4	5
26.7	4	2	3	4	-	_	2	3	3	3	5	8	9	7	6	8	8	9	8	8	5	4	3	4	3	6	5	3	2	-	49	-	2	3	3	3	4
31.7	2	3	2	2	2	-	2	-	-	2	3	4	6	8	7	7	8	10	11	10	10	7	6	8	7	7	4	3	2	3	2	-	3	2	-	3	2

Table 70b

Coronal observations at Sacramente Peak, New Mexico (6702A), west limb

Date				Deg	ree	6 8	out	h o	ft	he	sol	ar	equ	ato	r								Deg	ree	s i	nort	:h c	of i	the	so	lar	equ	ato	ľ			
GCT	90	85	80	75	70	65	60	55	50	45	40	35_	30	25	20	15	10	5	00	5	10	15	20	25	30	35	140	45	50	55	60	65	70	75	80	85	90
1954																																					
an. 1.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	_	-	_	-	-
2.7a	-		-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	***	-	-	-00-	-	-	_	-	-	-	-	-	-	-
3.8	-	**	***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	en	en	-	-	-	-	-	-	_	-	site	-
4.7	-	-	-	-	-	-	-	-	-	-	CHI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
5.7	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	***	-	-	-	-	-	-	-	-	-	-	-	-	-
6.7	-	-	-	-	-	do	-	-	-	-	-	-	**	-	-	-	-	œ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7.9a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	ĺ –	-	-	-		-	-	-	-	-	-	-	-	-	-	_	-	-
10.7a	-	-	-	-	-	-	-	-	-	-	60	-	_	_		-	***	-	-	-	-		_	_	-	-	cate		-	-		an	-	-	-	-	-
11.7	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	en	-	-	-
16.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	400	-
21.8a	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	60	-	-	
22.9	-	-	-	_	-	-	-	-	-	-	-	-	_	-	_	_	-	-	-	-		der	-	-	-	-	-	_	_	-	-	40	-	-	40		
23.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	œ	-	-	-	-	-	60	-	-	-	-	**	-	-	-	-	
26.7	-	-	-	-	-	-	-	-	-	-	q a	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	der	400	-	-	-	-	-	
31.7	-	-	-	-	-	_	øn.	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	40	esp.	-	-	-	-	-	CIP .	-	-	-	*

Table 71

Zürich Provisional Relative Sunspot Numbers

January 1954

Date	R _Z *	Date	R _Z *
1	0	17	0
2	0	18	
3	0	19	0
Ļ	0	20	0
5	0	21	0
6	0	22	0
7	0	23	0
8	0	24	0
9	0	25	0
10	0	26	0
11	0	27	0
12	0	28	0
13	0	29	0
14	0	30	0
15	0	31	0
16	0	Mean:	0.0

^{*}Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Table 72

American Relative Sunspot Numbers

December 1953

Date	RA"	Date	R _A '
1	0	17	0
2	0	18	0
3	0	19	. 0
14	0	20	0
5	0	21	1
6	۷4	22	0
7	6	23	0
8	1	24	3
9	0	25	7
10	0	26	3
11	0	27	1
12	0	28	15
13	0	29	9
14	0	30	0
15	0	31	0
16	0	Mean:	1.6

Table 73 Solar Flares, January 1954

No solar flares were reported for the month of January.

Table 74

Indices of Geomagnetic Activity for December 1953

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr.		Values Kp Final	
Day 1953	C	three-hour interval Sum Selected Days	
1 2 3 4 5	0.0 0.1 0.2 0.4 0.2	0+ 1- 1- 0+ 0+ 0+ 1- 1- 40 Five 1+ 1- 20 1- 0+ 1- 10 0+ 70 Quiet 2- 2- 1- 1+ 1+ 10 10 20 11- 40 2- 2- 1+ 1- 10 20 20 14+ 1 3- 20 10 10 0+ 1+ 10 00 9+ 2 23	
6 7 8 9 10	0.3 0.3 0.3 0.4 0.2	1+ 0+ 1- 10	
11 12 13 14 15	1.2 1.0 0.5 0.2 0.3	20 40 3- 4+ 50 4- 4- 4+ 30- Five 4+ 3+ 40 20 3+ 4- 3- 4- 270 Disturbed 2+ 3- 2- 2- 20 1+ 4- 2+ 18- 10 1+ 2- 1+ 1+ 1+ 20 1+ 11+ 4 12- 11 12	
16 17 18 19 20	0.2 0.3 0.3 0.2 0.3	2- 1- 20 20	
21 22 23 24 25	0.2 0.5 0.2 0.2 0.3	20 1+ 10 1- 1- 0+ 0+ 3- 90 Ten 2- 3- 2+ 1+ 2- 2+ 30 1+ 16+ Quiet 1- 0+ 1- 0+ 2- 1+ 2+ 2- 90 2+ 2+ 2+ 2- 0+ 00 10 10 110 1 1+ 10 20 10 10 20 1+ 30 13- 2 3	
26 27 28 29 30 31	0.2 0.4 0.4 0.4 0.2 0.1	1+ 0+ 00 10 10 1+ 2- 3- 9+ 10 1+ 10 2- 2- 2- 2- 20 4- 15- 16 30 20 10 2- 2+ 20 2- 1+ 150 19 3- 1- 10 1+ 20 3- 2- 30 150 21 10 2- 1+ 1+ 1+ 10 1+ 1+ 10+ 23 1- 10 20 2- 0+ 0+ 0+ 1- 70 30	
Mean:	0.32	31	

12 14

REYKJAVIK, ICELAND

AUGUST 1953

64.1°N, 21.8°W

Fig. 95.

Index of Tables and Graphs of Ionospheric Data

in CRPL-F114

Table page	Figure page
Akita, Japan	
October 1953	63
Anchorage, Alaska	
December 1953 12	45
Baker Lake, Canada	
October 1953	59
Buenos Aires, Argentina	ro
November 1953 16	57
Capetown, Union of S. Africa October 1953	65
Churchill, Canada	70
October 1953	60
De Bilt, Holland	00
November 1953	5/4
October 1953	61
Decepcion I.	_
November 1953 16	57
Fairbanks, Alaska	
December 1953 12	45
Movember 1953 15	53
Formosa, China	
November 1953 16	56
Graz, Austria	lu a
December 1953	47
Guam I. December 1953	50
	50
Huancayo, Peru December 1953	51
Johannesburg, Union of S. Africa) -
October 1953	65
Kiruna, Sweden	
November 1953 14	52
Leopoldville, Belgian Congo	
November 1953 16	56
Lindau/Harz, Germany	
November 1953	55
Lulea, Sweden	en.
November 1953 15	53
Maui, Hawaii December 1953	49
	77
Narsarssuak, Greenland December 1953	46
Okinawa I.	
December 1953	49
	•

Index (CRPL-F114, concluded)

				Table page	Figure page
Oslo, Norway					
December 1953				12	46
Ottawa, Canada					
October 1953				18	62
Panama Canal Zone					
December 1953				14	51
Point Barrow, Alaska				_	
November 1953				14	52
October 1953				16	58
September 1953				19	66
				19	67
August 1953	• •	• • • • •	• • •	4 7	01
Prince Rupert, Canada				3.69	(0
October 1953			• • •	17	60
Puerto Rico, W. I.				2.3.	and CPA.
December 1953				14	50
Resolute Bay, Canada					-10
October 1953	• •		• • •	16	58
Reykjavik, Iceland					
November 1953				15	54
October 1953				17	59
September 1953	• •			19	66
August 1953				19	67
St. John's, Newfoundland					
October 1953				18	62
San Francisco, California					
December 1953				13	48
Schwarzenburg, Switzerland					
November 1953				15	55
Tokyo, Japan					
October 1953				18	644
Tronso. Norway	• • •	• • • •	• • •		
December 1953				12	lale
Upsala, Sweden	• •	• • • •	• • •	allo diar	
				13	47
December 1953	• •	• • • •	• • •	2)	7/
Wakkanai, Japan				18	63
October 1953	• •		0 0 0	70	62
Washington, D. C.				. 30	لبل
January 1954	• •	• • • •	0 0 0	12	educida
White Sands, New Mexico				2.0	lı O
December 1953	• • •		• • • •	13	48
Winnipeg, Canada					43
October 1953	• • •			17	61
Yamagawa, Japan				a.6	al.
October 1953	• • •		• • • •	18	64

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily:

Radio disturbance forecasts, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL—J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following

month).

North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL—Jp. month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.)

CRPL—F. Ionospheric Data.

*IRPL—A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL—H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL—C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL—G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

(G1, G3, available. Others out of print; see second footnote.)

IRPL—R. Nonscheduled reports:

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5. Criteria for Ionospheric Storminess.

**R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

**R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Character-

**R12. Short Time Variations in Ionosphere Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.
**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

**R17. Japanese Ionospheric Data-1943.

R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.

**R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations.

(For distances out to 4000 km.)

**R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.
**R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

**R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

**R26. The Ionosphere as a Measure of Solar Activity.

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots

Grouped by Distance From Center of Disc.

**R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

**R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

**R33. Ionospheric Data on File at IRPL. **R34. The Interpretation of Recorded Values of fEs.

**R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL—T. Reports on tropospheric propagation:

Radar operation and weather. (Superseded by JANP 101.) Radar coverage and weather. (Superseded by JANP 102.) T1. T2.

CRPL-Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group -T3. WPG--5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14 () Series.
**Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

