Algebra II Examination 17 (Project)

Dr. Paul Bailey Tuesday, April 26, 2022

The examination contains 20 multiple choice questions worth 5 points each, and two bonus problems worth an additional 10 points each, for a maximum of 100 points.

• Compound Interest:
$$A(t) = A_0 \left(1 + \frac{r}{f}\right)^{ft}$$

• Exponential Growth:
$$A(t) = A_0 e^{rt}$$

• Change of Base:
$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)} = \frac{\ln(x)}{\ln(a)}$$

• Law of Sines:
$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

• Law of Cosines:
$$c^2 = a^2 + b^2 - 2ab\cos(C)$$

	MC #	MC Points	Bonus 1	Bonus 2	Raw Score	Adj Score
$\ $						

Question 1. Consider the equation

x = 1 + 2.

Find x.

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 6
- (E) Cannot be determined from the information given.

Question 2. Consider the equation

$$5x - 2 = 2x + 11$$
.

Find x.

- **(A)** 1.857
- **(B)** 3.000
- **(C)** 3.333
- **(D)** 4.333
- **(E)** 5.222

Question 3. Which of the following functions is NOT injective (one-to-one)?

- **(A)** $f(x) = e^x$
- **(B)** $f(x) = \ln(x)$
- (C) f(x) = 2x 7
- **(D)** $f(x) = x^3 x$
- **(E)** $f(x) = x^3 + x$

Question 4. Consider the points

$$A = (-23, 50)$$
 and $B = (31, 71)$.

The slope of the line through A and B is

- **(A)** 0.381
- **(B)** 0.389
- **(C)** 2.571
- **(D)** 2.625
- **(E)** 15.125

Question 5. Consider the equation

 $x = \log_5(1234).$

Find x.

- (A) 0.226
- **(B)** 1.234
- (C) 3.091
- **(D)** 4.423
- **(E)** 7.118

Question 6. Consider the equation

 $\log_x(43) = 17.$

Find x.

- **(A)** 1.068
- **(B)** 1.248
- **(C)** 2.529
- **(D)** 60.000
- **(E)** 731.000

Question 7. Consider the equation

 $e^{2x} - 2e^x = 15.$

Find x.

- **(A)** 0.213
- **(B)** 0.631
- (C) 1.098
- **(D)** 1.609
- **(E)** 2.718

Question 8. Consider the equation

 $\sin x = \frac{1}{4}.$

Find x.

- **(A)** 12.500°
- **(B)** 13.862°
- (C) 14.478°
- **(D)** 15.000°
- **(E)** 25.000°

(A) 1178
(B) 1933
(C) 2357
(D) 2835
(E) 2873
Question 10. A circular sector of area $A = 50$ is cut from a circle of radius 10. What is the approximate angle of the sector?
(A) 23°
(B) 28°
(C) 47°
(D) 57°
(E) 62°
Question 11. A triangle has vertices A , B , and C , with opposite sides of length a , b , and c . Let $a=8$, $b=15$, and $c=17$. Find the approximate angle at A .
(A) 23°
(B) 28°
(C) 47°
(D) 57°
(E) 62°
Question 12. A triangle has vertices A , B , and C , with opposite sides of length a , b , and c . Let $a=8$, $b=15$, and $B=47^{\circ}$. Find the approximate angle at A .
(A) 23°
(B) 28°
(C) 47°
(D) 57°
(E) 62°

Question 9. A circular arc of length s=2357 has a central angle of $\theta=47^{\circ}$. What is the approximate

radius of the circle?

Question 13. Consider the function

$$f(x) = \frac{\sqrt{x^2 - 4}}{x^3 - 9x}.$$

What is the fewest number of disjoint intervals required to write the domain of f?

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4
- **(E)** 5

Question 14. Consider the function

$$f(x) = 3 - \ln(x - 5).$$

Find the x-intercept of f.

- **(A)** (8.000,0)
- **(B)** (15.000,0)
- (C) (25.086, 0)
- **(D)** (25.608, 0)
- **(E)** (25.860, 0)

Question 15. Consider the function

$$f(x) = x^2 - 7.$$

The positive solution to the equation f(x) = 0 is

- **(A)** 2.500
- **(B)** 2.568
- **(C)** 2.625
- **(D)** 2.646
- **(E)** 2.750

Question 16. Consider the function

$$f(x) = x^2 - 7x - 11.$$

The positive solution to the equation f(x) = 0 is

- **(A)** 3.019
- **(B)** 4.618
- (C) 6.038
- **(D)** 8.322
- **(E)** 10.019

Question 17. Consider the function

$$f(x) = x^2(5-x) + 1.$$

How many x intercepts does this function have?

- **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 3
- **(E)** 4

Question 18. Billy Jo invested \$623.25 with 1.7% annual interest, compounded monthly. How much money will Billy Jo have after 20 years?

- **(A)** \$623.25
- **(B)** \$875.42
- **(C)** \$6232.50
- **(D)** \$31162.50
- **(E)** \$35619.76

Question 19. Twenty tribbles were smuggled onto the Starship Enterprise. Tribble populations grow exponentially, and increase by 57% per day. How many tribbles were aboard after ten days?

- (A) 20
- (B) 77
- **(C)** 1140
- **(D)** 5977
- **(E)** 11400

Question 20. Let A and B be intervals. Which of the following is NEVER true?

- (A) $A \cap B$ is the empty set.
- **(B)** $A \cap B$ is an single point.
- (C) $A \setminus B$ is a single point.
- **(D)** $A \cap B$ is the disjoint union of two intervals.
- **(E)** $A \setminus B$ is the disjoint union of two intervals.

Circle the letter corresponding to the best answer.			
Every real number is rational. (T) True	(F) False		
The integers are closed under division. (\mathbf{T}) True	(F) False		
The natural numbers are closed under (T) True	addition. (F) False		
Every polynomial of odd degree has an (\mathbf{T}) True	x-intercept. (F) False		
Every quadratic function has exactly to (T) True	wo x-intercepts. (F) False		
There exists a quadratic function whose (T) True	e range is $(0, \infty)$. (F) False		
Every nonconstant linear function has (T) True	exactly one x-intercept. (F) False		
There exists a logarithmic function who (T) True	ose domain is $(0, \infty)$. (F) False		
A linear equation with integer coefficient (T) True	nts has a solution in \mathbb{Z} . (F) False		

A quadratic equation with real coefficients has a solution in $\mathbb{C}.$

(F) False

(T) True

Problem 1. (Bonus - True/False)

Definition 1. Let $f:A\to B$, and let $D\subset B$. The *preimage* of D under f is

$$f^{-1}(D) = \{ a \in A \mid f(a) \in D \}.$$

That is, the preimage of D is the set of all points in the domain which are mapped by f into D.

Problem 2. (Bonus - Preimage)

Let

$$A = \mathbb{R} \setminus \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{2} + k\pi \text{ for some } k \in \mathbb{Z} \right\}.$$

Consider the function

$$f: A \to \mathbb{R}$$
 given by $f(x) = \tan(x)$.

Let
$$D = [0, 1]$$
. Find $f^{-1}(D)$.