Assignment-Regression Algorithm

1.) Identify your problem statement

Client requests to predict the insurance charges based on the several parameter using provided dataset.

2.) Tell basic info about the dataset (Total number of rows, columns)

Total number of rows: 1338 Total number of columns: 6

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

Columns "Sex "and "Smoker" are categorical columns and will be converted to numerical data. Then first column will be dropped for converted numerical data of Sex and Smoker.

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

Multilinear Regression, Support Vector Machine, Decision Tree and Random Forest algorithm used to create the models.

5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

Multiple Linear Regression:

R^2 value = 0.789479034986701

Support Vector Machine:

SL.No	Hyper Parameter	Linear (r value)	RBF (Non Linear) (r value)	Poly (r value)	SIGMOID (r value)
1		0.465930219	-0.033169074	0.03906576	0.040195212
2	C100	0.631242902	0.313798207	0.61565518	0.531425558
3	C500	0.764481266	0.661926404	0.8234642	0.444274245
4	C1000	0.767145485	0.811494921	0.85205496	0.287397825
5	C2000	0.747843338	0.858330622	0.85623714	- 0.587880094
6	C3000	0.745373651	0.869845312	0.85531902	- 2.091526784

R^2 value = 0.869845312

Decision Tree:

SL.No	CRITERION	SPLITTER	R VALUE
1	squared_error	best	0.679259405
2	squared_error	random	0.715221069
3	friedman_mse	best	0.68719868
4	friedman_mse	random	0.733678367
5	absolute_error	best	0.680253952
6	absolute_error	random	<mark>0.731183473</mark>
7	poisson	best	0.712080005
8	poisson	random	0.71210777

R^2 value = 0.731183473

Random Forest:

SL.No	n_estimators	Random_State	R Value
1	1	0	0.744103403
2	10	0	0.833030413
3	50	0	0.849832932
4	100	0	<mark>0.853830791</mark>

R^2 value = 0.853830791

6.) Mention your final model, justify why u have chosen the same.

Final model R^2 value = 0.869845312030898 from Support Vector Machine Regression algorithms which is closer to 1 compared to other algorithm's R^2 values for the given data from insurance_pre.csv file