Conventions, Accuracy Metrics, Classification, Regression

Nipun Batra July 19, 2025

IIT Gandhinagar

Demo

• Complete PoseNet Demo

Demo

- Complete PoseNet Demo
- Blog post from Google

Demo

- Complete PoseNet Demo
- Blog post from Google
- Rock Paper Scissors

"Field of study that gives computers the ability to learn without being explicitly programmed" - Arthur Samuel [1959]

"Field of study that gives computers the ability to learn without being explicitly programmed" - Arthur Samuel [1959]

Let us work on the digit recognition problem.

• How would you program to recognise digits? Start with 4.

• How would you program to recognise digits? Start with 4.

• How would you program to recognise digits? Start with 4.

- How would you program to recognise digits? Start with 4.

- How would you program to recognise digits? Start with 4.

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: |+--+| + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- There can be some cases of 4 where the first | is at 45 degrees

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: |+--+| + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- There can be some cases of 4 where the first | is at 45 degrees

- How would you program to recognise digits? Start with 4.
- Maybe 4 can be thought of as: | + + | + another vertically down |
- The heights of each of the | need to be similar within tolerance
- Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- There can be some cases of 4 where the first | is at 45 degrees
- There can be some cases of 4 where the width of each stroke is different

Traditional Programming vs Machine Learning

Traditional Programming vs Machine Learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." - Tom Mitchell

First ML Task: Grocery store tomato quality prediction

Problem statement: You want to predict the quality of a tomato given its visual features.

Imagine you have some past data on quality of tomatoes. What visual features do you think will be useful?

Size

Imagine you have some past data on quality of tomatoes. What visual features do you think will be useful?

Size

- Size
- Colour

- Size
- Colour

- Size
- Colour
- Texture

Sample Dataset

Here is our example dataset with tomato features:

Sample	Colour	Size	Texture	Condition
1	Orange	Small	Smooth	Good
2	Red	Small	Rough	Good
3	Orange	Medium	Smooth	Bad
4	Yellow	Large	Smooth	Bad

Useful Features

Is the sample number a useful feature for predicting quality of a tomato?

Useful Features

Is the sample number a useful feature for predicting quality of a tomato?

Answer: Usually no! Sample numbers are typically arbitrary identifiers and not meaningful features. Let us remove it.

Useful Features

Is the sample number a useful feature for predicting quality of a tomato?

Answer: Usually no! Sample numbers are typically arbitrary identifiers and not meaningful features. Let us remove it.

Let us modify our data table for now.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Training Set

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Training Set

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

Training Set

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

1. Features (Input Variables)

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

1. Features (Input Variables)

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

- 1. Features (Input Variables)
- 2. Output or Response Variable

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as $\ensuremath{\mathcal{D}}\xspace$, containing:

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as $\ensuremath{\mathcal{D}}\xspace$, containing:

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as \mathcal{D} , containing:

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as \mathcal{D} , containing:

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as \mathcal{D} , containing:

• Thus,
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as \mathcal{D} , containing:

• Thus,
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_n^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as \mathcal{D} , containing:

1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.

• Thus,
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_T^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Example (after encoding):
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 (Orange=1, Small=0,

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as \mathcal{D} , containing:

1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.

• Thus,
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_T^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Example (after encoding):
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 (Orange=1, Small=0,

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as \mathcal{D} , containing:

1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.

• Thus,
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_T^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Example (after encoding):
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 (Orange=1, Small=0,

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as \mathcal{D} , containing:

1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.

• Thus,
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_T^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Example (after encoding):
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 (Orange=1, Small=0,

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

We call this matrix as \mathcal{D} , containing:

1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.

• Thus,
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_T^\top \end{bmatrix}$$
 where $\mathbf{x}_i \in \mathbb{R}^d$

• Example (after encoding):
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 (Orange=1, Small=0,

Estimate condition for unseen tomatoes (#5, 6) based on data set.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

Testing Set

Testing set is similar to training set, but, does not contain labels for output variable.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

We hope to:

1. Learn f: Condition = f(colour, size, texture)

We hope to:

1. Learn f: Condition = f(colour, size, texture)

- 1. Learn f: Condition = f(colour, size, texture)
- 2. From Training Dataset

- 1. Learn f: Condition = f(colour, size, texture)
- 2. From Training Dataset

- 1. Learn f: Condition = f(colour, size, texture)
- 2. From Training Dataset
- 3. To Predict the condition for the Testing set

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

• Q: Is predicting on test set enough to say our model generalises?

• Q: Is predicting on test set enough to say our model generalises?

• Q: Is predicting on test set enough to say our model generalises?

- Q: Is predicting on test set enough to say our model generalises?
- A: Ideally, no!

- Q: Is predicting on test set enough to say our model generalises?
- A: Ideally, no!

- Q: Is predicting on test set enough to say our model generalises?
- A: Ideally, no!
- Ideally we want to predict "well" on all possible inputs. But, can we test that?

- Q: Is predicting on test set enough to say our model generalises?
- A: Ideally, no!
- Ideally we want to predict "well" on all possible inputs. But, can we test that?

- Q: Is predicting on test set enough to say our model generalises?
- A: Ideally, no!
- Ideally we want to predict "well" on all possible inputs. But, can we test that?
- No! Since, the test set is only a sample from all possible inputs.

Image courtesy Google ML crash course

Image courtesy Google ML crash course

Both the training set and the test set are samples drawn from the hidden true distribution (also sometimes called population)

Image courtesy Google ML crash course

Both the training set and the test set are samples drawn from the hidden true distribution (also sometimes called population)

More discussion later once we study bias and variance

Second ML Task: Predict energy consumption of campus

Question: What factors does the campus energy consumption depend on?

Answer:

Question: What factors does the campus energy consumption depend on?

Answer:

Question: What factors does the campus energy consumption depend on?

Answer:

ullet # People (More people \Longrightarrow More Energy)

Question: What factors does the campus energy consumption depend on?

Answer:

ullet # People (More people \Longrightarrow More Energy)

Question: What factors does the campus energy consumption depend on?

Answer:

- ullet # People (More people \Longrightarrow More Energy)
- ullet Temperature (Higher Temp. \Longrightarrow Higher Energy)

Question: What factors does the campus energy consumption depend on?

Answer:

- ullet # People (More people \Longrightarrow More Energy)
- ullet Temperature (Higher Temp. \Longrightarrow Higher Energy)

# People	Temp (C)	Energy (kWh)
4000	30	30
4200	30	32
4200	35	40
3000	20	?
1000	45	?

Classification

Classification

Classification

- Classification
 - Output variable is discrete

- Classification
 - Output variable is discrete

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, \dots, k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:
 - How much energy will campus consume?

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:
 - How much energy will campus consume?

- Classification
 - Output variable is discrete
 - i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:
 - How much energy will campus consume?
 - How much rainfall will fall?

Metrics for Classification

Ground Truth: From the actual training set

Prediction: Made by the model

Accuracy

Accuracy

Prediction
$$(\hat{y})$$
 Ground Truth (y)
 \checkmark Good
Good
Good
Good
Good
Bad
Bad
Bad
Bad

Accuracy =
$$\frac{|\{i: y_i = \hat{y}_i\}|}{n}$$
$$= \frac{3}{5} = 0.6$$

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices i such that $y_i = \hat{y}_i$ "

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices i such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices i such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices i such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices i such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i]}{n}$$

where
$$\mathbf{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices i such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i]}{n}$$

where
$$\mathbf{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

- Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - Reads as: "Number of indices i such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i]}{n}$$

where
$$\mathbf{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

 Both notations are mathematically equivalent and commonly used in ML literature

$$\begin{array}{c} \text{1 sample } \{ \begin{array}{c} \text{Bad} \\ \text{Good} \\ \text{Good} \\ \dots \\ \text{Good} \end{array} \right) \\ \text{Imbalanced Classes} \end{array}$$

$$\begin{array}{c} 1 \text{ sample } \{ \left(\begin{array}{c} \mathsf{Bad} \\ \mathsf{Good} \\ \mathsf{Good} \\ \cdots \\ \mathsf{Good} \end{array} \right) \end{array} \\ \\ \mathsf{Imbalanced \ Classes} \\ \end{array}$$

Cases for this:

Cancer Screening

$$\begin{array}{c} 1 \; \mathsf{sample} \; \{ \; \left(\begin{array}{c} \mathsf{Bad} \\ \mathsf{Good} \\ \mathsf{Good} \\ \\ \ldots \\ \mathsf{Good} \end{array} \right) \end{array}$$

Imbalanced Classes

Cases for this:

- Cancer Screening
- Planet Detection

Accuracy Metrics: Precision

Precision =
$$\frac{|\{i : y_i = \hat{y}_i = \text{Good}\}|}{|\{i : \hat{y}_i = \text{Good}\}|} = \frac{2}{4} = 0.5$$

"the fraction of relevant instances among the retrieved instances", i.e. "out of the number of times we predict Good, how many times is the condition actually Good"

Accuracy Metrics: Precision

Precision =
$$\frac{|\{i : y_i = \hat{y}_i = \text{Good}\}|}{|\{i : \hat{y}_i = \text{Good}\}|} = \frac{2}{4} = 0.5$$

"the fraction of relevant instances among the retrieved instances", i.e. "out of the number of times we predict Good, how many times is the condition actually Good"

Accuracy Metrics: Recall

Recall =
$$\frac{|\{i : y_i = \hat{y}_i = \text{Good}\}|}{|\{i : y_i = \text{Good}\}|} = \frac{2}{3} = 0.67$$

"the fraction of the total amount of relevant instances that were actually retrieved"

Given predictions of whether a tissue is cancerous or not (n = 100).

Given predictions of whether a tissue is cancerous or not (n = 100).

$$\mbox{Accuracy} = \frac{98}{100} = 0.98 \qquad \qquad \mbox{Recall} = \frac{0}{1} = 0$$

$$\mbox{Precision} = \frac{0}{1} = 0$$

		Ground Truth	
		Yes	No
ted	Yes	0	1
redicted	No	1	98
Д			

		Ground	d Truth
		Yes	No
ted	Yes	0	1
redicted	No	1	98
Д			

		Ground Truth	
		Yes	No
ted	Yes	True Positive	False Positive
redicted	No	False Negative	True Negative
_			

		Ground Truth	
		Yes	No
redicted	Yes	True Positive	False Positive
redi	No	False Negative	True Negative
Д			

$$\mathsf{Precision} = \tfrac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

		Ground	Ground Truth	
		Yes	No	
redicted	Yes	True Positive	False Positive	
redi	No	False Negative	True Negative	
Д				

$$\mathsf{Precision} = \tfrac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

		Ground	Ground Truth	
		Yes	No	
cted	Yes	True Positive	False Positive	
redicted	No	False Negative	True Negative	
Д				

$$\mathsf{Recall} = \tfrac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

		Ground	Ground Truth		
		Yes	No		
redicted	Yes	True Positive	False Positive		
redi	No	False Negative	True Negative		
Д					

$$\mathsf{Recall} = \tfrac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

Accuracy Metrics: F-Score

		Ground Truth	
		Yes	No
cted	Yes	True Positive	False Positive
redicted	No	False Negative	True Negative
Д			

$$F-$$
 Score = $\frac{2 \times Precision \times Recall}{Precision + Recall}$

Accuracy Metrics: Matthew's Correlation Coefficient

		Ground Truth	
		Yes	No
cted	Yes	True Positive	False Positive
redicted	No	False Negative	True Negative
Д			

$$\frac{\text{TP} \times \text{TN} - \text{FP} \times \text{FN}}{\sqrt{(\text{TP} + \text{FP})(\text{TP} + \text{FN})(\text{TN} + \text{FP})(\text{TN} + \text{FN})}}$$

Accuracy Metrics: Example

For the data given below, calculate:

$$\begin{array}{cccc} & & G.T. \ \mbox{Positive} & G.T. \ \mbox{Negative} \\ \mbox{Pred Positive} & & 90 & 4 \\ \mbox{Pred Negative} & & 1 & 1 \\ \end{array}$$

Precision = ?

Recall = ?

F-Score = ?

Matthew's Coeff. =?

Accuracy Metrics: Answer

For the same data

G.T. Positive G.T. Negative Pred Positive
$$\begin{pmatrix} 90 & 4 \\ 1 & 1 \end{pmatrix}$$

Precision =
$$\frac{90}{94}$$

Recall = $\frac{90}{91}$
F-Score = 0.9524
Matthew's Coeff. = 0.14

Confusion Matrix for multi-class classification

Metrics for Regression MSE & MAE

Prediction
$$(\hat{y})$$
 Ground Truth (y)

$$\begin{pmatrix}
10 \\
20 \\
30 \\
40 \\
50
\end{pmatrix}$$
Ground Truth (y)

Mean Squared Error (MSE) =
$$\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}$$
 Root Mean Square Error (RMSE) = $\sqrt{\text{MSE}}$

Accuracy Metrics: MAE & ME

Prediction
$$(\hat{y})$$
 Ground Truth
$$\begin{pmatrix} 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{pmatrix} \qquad \begin{pmatrix} 20 \\ 30 \\ 40 \\ 50 \\ 60 \end{pmatrix}$$

Mean Absolute Error (MAE) =
$$\frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}$$
 Mean Error =
$$\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)}{n}$$

Accuracy Metrics: MAE & ME

Prediction
$$(\hat{y})$$
 Ground Truth

 $\begin{pmatrix}
10 \\
20 \\
30 \\
40 \\
50
\end{pmatrix}$
Ground Truth

 $\begin{pmatrix}
60 \\
60 \\
60
\end{pmatrix}$

Mean Absolute Error (MAE) =
$$\frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}$$
Mean Error =
$$\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)}{n}$$

Is there any downside with using mean error?

Accuracy Metrics: MAE & ME

Prediction
$$(\hat{y})$$
 Ground Truth

 $\begin{pmatrix}
10 & & & \\
20 & & & \\
30 & & & \\
40 & & & \\
50 & & & & \\
60 & & & & \\
\end{pmatrix}$

Mean Absolute Error (MAE) =
$$\frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}$$
Mean Error =
$$\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)}{n}$$

Is there any downside with using mean error? Errors can get cancelled out

The Importance of Plotting

Dummy Baselines

Notebook: dummy-baselines.html

The Importance of Plotting

Property Value		Across datasets
mean(X)	9	exact
mean(Y)	7.5	up to 3 decimal places
Linear regression line	y = 3.00 + 0.500x	up to 2 decimal places