

- Homework
 - Webwork 15 is due tonight
 - Will be an Webwork due Friday, but not over break
- Test 2 is postponed
 - Chapters 16 19
 - Probably have it Wednesday or Friday after break
- Polling: rembold-class.ddns.net

Joining the Resistance March 18, 2020 Jed Rembold 1 / 9

In Series

• By loop law:

$$\mathcal{E} - R_1 \mathbf{I} - R_2 \mathbf{I} - R_3 \mathbf{I} = 0$$

Current same through series

$$\mathcal{E} - \underbrace{\left(R_1 + R_2 + R_3\right)}_{R_{ea}} I = 0$$

• So in series:

$$R_{eq} = R_1 + R_2 + R_3 + \cdots$$

In parallel

- Same loop law
- ullet the same in parallel

$$I - \mathcal{E}\underbrace{\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)}_{1/R_{eq}} = 0$$

• So in parallel:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

Reduce the below circuit to a single resistor and determine its equivalent resistance.

Solution: 48.1Ω

Joining the Resistance March 18, 2020 Jed Rembold

Understanding Check!

Given the circuit to the right, what is the equivalent resistance?

- A. 5Ω
- B. 8.86 Ω
- C. 12 Ω
- D. 20 Ω

$$R_1 = 10 \Omega$$

$$R_2 = 6 \Omega$$

$$R_3 = 4 \Omega$$

Solution: 5 Ω 4 / 9

Ultimate Power in the Universe...

- Lightbulbs (or any resistor) don't use up current
 - But they do transform energy to light and heat
 - Rate at which they do so determines brightness
- Mathematically:

Power
$$=\frac{\Delta U}{\Delta t} = \frac{\Delta q \Delta V}{\Delta t} = I \Delta V$$

• Can also be related to the resistance:

Power =
$$I\Delta V = I^2 R = \frac{(\Delta V)^2}{R}$$

• Energy dissipated through a circuit component will depend on both the current and the potential difference across that circuit element

Joining the ResistanceMarch 18, 2020Jed Rembold5 / 9

Suppose you have three equivalent lightbulbs. How can you hook them up to a battery to ensure the greatest possible output of total light?

Solution: All in parallel

Joining the Resistance March 18, 2020 Jed Rembold 6 / 9

Back to Batteries

- Have been assuming perfect batteries
 - only force felt would be from the conveyor belt
 - What about the electrostatic forces from charges already moved?
- Would give opposing force:

$$\vec{\mathsf{F}}_{net} = \vec{\mathsf{F}}_{hatt} - e\vec{\mathsf{E}}_{hatt}$$

• Finding the change in potential:

$$\Delta V = (F_{batt} - eE_{batt}) \frac{s}{e}$$

$$\Delta V = \mathcal{E} - E_{hatt} s = \mathcal{E} - r_{int} I$$

7 / 9

Suppose you have a 9 V battery which, when hooked up to a 100Ω resistor only creates a current of only 75 mA. What is the internal resistance of the battery?

Solution: 20Ω

Joining the Resistance March 18, 2020 Jed Rembold

When does it matter?

Take the same battery and compare its ideal and real currents for a selection of resistances:

Circuit Resistor	$Ideal\;(\mathit{r}_{\mathit{int}}=0)$	Real $(r_{int}=20\Omega)$
100 Ω	90 mA	75 mA
1000 Ω	9 mA	8.8 mA
10 kΩ	0.9 mA	0.898 A

Joining the Resistance March 18, 2020 Jed Rembold 9 / 9

When does it matter?

Take the same battery and compare its ideal and real currents for a selection of resistances:

Circuit Resistor	$Ideal\;(\mathit{r_{int}}=0)$	Real $(r_{int}=20\Omega)$
10 Ω	0.9 A	0.3 A
100Ω	90 mA	75 mA
1000Ω	9 mA	8.8 mA
10 kΩ	0.9 mA	0.898 A

Internal resistance can make a huge difference when the resistances are small!

Joining the Resistance March 18, 2020 Jed Rembold 9 / 9