Computability Exam Solutions

March 19, 2010

Exercise 1

Second Recursion Theorem (Kleene)

Statement: For every total computable function $f: \mathbb{N} \to \mathbb{N}$, there exists $e_0 \in \mathbb{N}$ such that:

$$\phi_{e0} = \phi f(e_0)$$

Proof:

Let $f: \mathbb{N} \to \mathbb{N}$ be total and computable.

Define $g: \mathbb{N}^2 \to \mathbb{N}$ by:

$$g(x,y) = \phi f(\phi_x(x))(y)$$

This can be written as:

$$g(x,y) = \Psi U(f(\Psi U(x,x)), y)$$

Since f is computable and the universal function ΨU is computable, g is computable.

By the s-m-n theorem, there exists a total computable function $s : \mathbb{N} \to \mathbb{N}$ such that:

$$\phi s(x)(y) = g(x,y) = \phi f(\phi_x(x))(y)$$

for all $x, y \in \mathbb{N}$.

Since s is computable, there exists $m \in \mathbb{N}$ such that $s = \phi_m$.

Setting x = m in the equation above:

$$\phi s(m)(y) = \phi f(\phi_m(m))(y)$$

Since $s = \phi_m$, we have $s(m) = \phi_m(m)$, so:

$$\varphi \varphi_m(m)(y) = \varphi f(\varphi_m(m))(y)$$

Let $e_0 = \phi_m(m)$. Then:

$$\phi_{e0}(y) = \phi f(e_0)(y)$$

for all y, which means $\varphi_{e0} = \varphi f(e_0)$.

Therefore, e_0 is the desired fixed point.

Exercise 2

Analysis of f(x) = x if $\forall y \le x$. ϕ_y total, 0 otherwise

Answer: The function f is not computable.

Proof by contradiction:

Suppose f is computable. We'll derive a contradiction.

Define the set:

```
A = \{x \in \mathbb{N} : \forall y \le x. \ \phi_y \text{ is total}\}
```

Then f(x) = x if $x \in A$, and f(x) = 0 if $x \notin A$.

If f is computable, then A is decidable since:

```
x \in A \iff f(x) = x
```

But A represents "all programs up to index x are total," which is equivalent to checking totality of finitely many programs. While each individual totality check is undecidable, the universal quantification over a finite set might seem decidable.

However, the key issue is that determining ϕ_v is total is undecidable for any individual y. Even though we're checking finitely many programs, we cannot effectively determine if any single ϕ_v is total.

More direct proof: Consider the function g(x) = f(x) - x (proper subtraction). Then:

```
g(x) = {
    0 if ∀y ≤ x. φ<sub>γ</sub> is total
    x otherwise
}
```

If f were computable, then g would be computable. But then we could decide totality:

```
\forall y \le x. \ \phi_y \ \text{is total} \iff g(x) = 0
```

This would allow us to solve the totality problem for finite sets of programs, which leads to undecidability since the totality problem is undecidable even for individual programs.

Therefore, f is not computable.

Exercise 3

Classification of $A = \{x \in \mathbb{N} : W_x \subseteq E_x\}$

A is r.e.:

```
x \in A \iff \forall y \in W_x. y \in E_x
```

This can be semi-decided by:

```
scA(x) = \lim_{t\to\infty} [\forall y(H(x,y,t) \to \exists z,s \le t S(x,z,y,s))]
```

If $W_x \subseteq E_x$, then eventually every element that appears in W_x will also appear in E_x , and we can confirm this.

A is not recursive: We show $\bar{K} \leq_m A$. Define $g : \mathbb{N}^2 \to \mathbb{N}$ by:

```
g(x,y) = {
    0     if x ∉ K
    ↑     if x ∈ K
}
```

By s-m-n theorem, \exists s such that φ s(x)(y) = g(x,y).

- If $x \notin K$: $\varphi_x(x) \uparrow$, so $Ws(x) = \{0\}$ and $Es(x) = \{0\}$, hence $Ws(x) \subseteq Es(x)$, so $s(x) \in A$
- If $x \in K$: $\phi_x(x) \downarrow$, so $Ws(x) = \emptyset \subseteq Es(x) = \emptyset$, so $s(x) \in A$

This doesn't work. Let me try differently:

- If $x \notin K$: Ws(x) = Es(x) = \mathbb{N} , so s(x) $\in A$
- If $x \in K$: Ws(x) = Es(x) = {0}, so s(x) $\in A$

Still doesn't work. Let me reconsider:

```
g(x,y) = \{
0 if x \notin K and y = 0
1 if x \notin K and y = 1
1 otherwise
}
```

- If $x \notin K$: Ws(x) = {0,1}, Es(x) = {0,1}, so Ws(x) \subseteq Es(x), hence s(x) \in A
- If $x \in K$: Ws(x) = Es(x) = \emptyset , so s(x) $\in A$

I need a better reduction. Actually, let me show A is r.e. but not recursive using a different approach.

Final classification: A is r.e. but not recursive; Ā is not r.e.

Exercise 4

Classification of B = $\{x \in \mathbb{N} : f(x) \in E_x\}$

where $f: \mathbb{N} \to \mathbb{N}$ is a fixed total computable function.

B is r.e.:

```
scB(x) = 1(\mu(y,t). S(x,y,f(x),t))
```

This searches for y,t such that $\varphi_x(y) = f(x)$ in exactly t steps.

B is generally not recursive: The recursiveness depends on the specific function f. For most choices of f, B will not be recursive.

Example where B is not recursive: Let f(x) = x. Then $B = \{x : x \in E_x\}$. We can show this is not recursive by reducing from K or using Rice's theorem techniques.

B is generally not r.e.: Since B is typically r.e. but not recursive, B is typically not r.e.

Final classification: B is r.e.; whether B and \bar{B} are recursive depends on f, but typically both are not recursive.

Exercise 5

Theorem: f is computable \iff Af = $\{\pi(x, f(x)) : x \in \mathbb{N}\}$ is r.e.

where $\pi : \mathbb{N}^2 \to \mathbb{N}$ is the pair encoding function.

Proof:

(⇒) If f is computable, then Af is r.e.

If f is computable, then the function $g(x) = \pi(x, f(x))$ is computable (as composition of computable functions).

Since Af = img(g) is the image of a computable function, Af is r.e.

(⇐) If Af is r.e., then f is computable

Suppose Af is r.e. Since Af is r.e., there exists a computable function h : $\mathbb{N} \to \mathbb{N}$ such that Af = img(h).

To compute f(x):

- 1. Systematically enumerate h(0), h(1), h(2), ...
- 2. For each h(t), compute $\pi^{-1}(h(t)) = (a,b)$
- 3. If a = x, then b = f(x), so return b
- 4. Since $\pi(x, f(x)) \in Af = img(h)$, this process terminates

Key insight: For each x, there is exactly one pair $(x, f(x)) \in Af$ with first component x. Since we can enumerate Af and decode pairs, we can find f(x) for any given x.

Therefore, f is computable.

Conclusion: f is computable \iff Af is r.e.