Note del corso di Analisi Matematica 1

Gabriel Antonio Videtta

31 marzo, 4, 18 e 20 aprile 2023

Teoria sulle derivate

Definizione. (derivata) Sia $f: X \subseteq \mathbb{R} \to \mathbb{R}$. Si definisce allora **derivata** di f in $\overline{x} \in X$ punto di accumulazione, se esiste, il seguente limite:

$$Df(\overline{x}) = f'(\overline{x}) = \lim_{h \to 0} \frac{f(\overline{x} + h) - f(\overline{x})}{h} = \lim_{x \to \overline{x}} \frac{f(x) - f(\overline{x})}{x - \overline{x}}.$$

Qualora tale limite non esista, si dirà che non esiste la derivata di f in \overline{x} . Si definisce anche $f':D\subseteq X\to \overline{\mathbb{R}}$ come la funzione derivata, la quale associa ogni punto \overline{x} in cui la derivata di f esiste al valore del limite computato in \overline{x}

Definizione. $\overline{x} \in X$ si dice **derivabile** se e solo se esiste la derivata di f in \overline{x} e $f'(\overline{x})$ è finito.

Osservazione.

- ightharpoonup L'insieme D può essere vuoto.
- ▶ Si definisce $f^{(n)}(\overline{x})$ come la derivata n-esima di f in \overline{x} .
- ▶ Si definisce per convenzione $f^{(0)}(x) = f(x)$.
- ▶ L'operazione di derivata è un operatore lineare.

Definizione. (derivata destra e sinistra) Dato \overline{x} punto di accumulazione destro di X, si definisce allora **derivata destra** di f in $\overline{x} \in X$, se esiste, il seguente limite:

$$D_+f(\overline{x}) = f'_+(\overline{x}) = \lim_{h \to 0^+} \frac{f(\overline{x} + h) - f(\overline{x})}{h} = \lim_{x \to \overline{x}^+} \frac{f(x) - f(\overline{x})}{x - \overline{x}}.$$

Qualora tale limite non esista, si dirà che non esiste la derivata destra di f in \overline{x} . Analogamente, per un punto di accumulazione sinistro $\overline{x} \in X$, si definisce la **derivata sinistra** di f in $\overline{x} \in X$, se esiste, il seguente limite:

$$D_{-}f(\overline{x}) = f'_{-}(\overline{x}) = \lim_{h \to 0^{-}} \frac{f(\overline{x} + h) - f(\overline{x})}{h} = \lim_{x \to \overline{x}^{-}} \frac{f(x) - f(\overline{x})}{x - \overline{x}}.$$

Osservazione.

- \blacktriangleright Se esistono sia la derivata sinistra che destra di f in \overline{x} e coincidono, allora la derivata di f in \overline{x} esiste e coincide con il valore di entrambe le due derivate.
- ▶ Vale anche il viceversa, se \overline{x} è un punto di accumulazione sia destro che sinistro: se esiste la derivata di f in \overline{x} , allora sia la derivata sinistra che destra esistono e coincidono con la derivata.

Definizione. Si dice che $f: X \to \mathbb{R}$ è derivabile se è derivabile $\forall x \in X$.

Definizione. Si dice che $f \in \mathcal{C}^1$ se è derivabile e la sua funzione derivata è continua. In generale, si dice che $f \in \mathcal{C}^n$ se è derivabile n volte e ogni sua derivata, fino alla n-esima, è continua. Si pone $f \in \mathcal{C}^{\infty}$ se f è derivabile per un numero arbitrario di volte e ogni sua derivata è continua.

Proposizione. Sia $f: X \to \mathbb{R}$ e sia $\overline{x} \in X$ un punto di accumulazione di X. Allora:

- (i) f derivabile in $\overline{x} \implies f(\overline{x} + h) = f(\overline{x}) + f'(\overline{x})h + o(h)$.
- (ii) Se esiste a tale che $f(\overline{x} + h) = f(\overline{x}) + ah + o(h)$, allora f è derivabile in \overline{x} e $f'(\overline{x}) = a$.

Dimostrazione. Se f è derivabile in \overline{x} , allora $\lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})-f'(\overline{x})h}{h} = \lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})}{h} - f'(\overline{x}) = f'(\overline{x}) - f'(\overline{x}) = 0$, da cui la prima tesi.

Inoltre, se esiste a come nelle ipotesi, $\lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})}{h} = \lim_{h\to 0} \frac{ah+o(h)}{h} = a+\lim_{h\to 0} \frac{o(h)}{h} = a+0 = a$, quindi f è derivabile in \overline{x} e $f'(\overline{x}) = a$.

Corollario. Se f è derivabile in \overline{x} , allora f è anche continua in \overline{x} .

Dimostrazione. Infatti, poiché
$$f(x) = f(\overline{x}) + f'(\overline{x})(x - \overline{x}) + o(x - \overline{x})$$
, $\lim_{x \to \overline{x}} f(x) = \lim_{x \to \overline{x}} f(\overline{x}) + \lim_{x \to \overline{x}} f'(\overline{x})(x - \overline{x}) + \lim_{x \to \overline{x}} o(x - \overline{x}) = \lim_{x \to \overline{x}} f(\overline{x}) = f(\overline{x})$, e quindi f è continua in \overline{x} .

Proposizione. Siano $f_1, f_2: X \to \mathbb{R}$ entrambe derivabili in \overline{x} . Allora:

- (i) $(f_1 + f_2)'(\overline{x}) = f_1'(\overline{x}) + f_2'(\overline{x}),$
- (ii) $(f_1f_2)'(\overline{x}) = f_1(\overline{x})f_2'(\overline{x}) + f_1'(\overline{x})f_2(\overline{x}).$

Dimostrazione. Poiché f_1 ed f_2 sono derivabili in \overline{x} , vale che:

$$f_1(\overline{x}+h) = f_1(\overline{x}) + f_1'(\overline{x})h + o(h), \qquad f_2(\overline{x}+h) = f_2(\overline{x}) + f_2'(\overline{x})h + o(h).$$

- (i) $(f_1 + f_2)(\overline{x} + h) = (f_1 + f_2)(\overline{x}) + (f'_1 + f'_2)(\overline{x})h + o(h)$. Quindi, per la proposizione precedente, $(f_1 + f_2)'(\overline{x}) = (f_1' + f_2')(\overline{x}) = f_1'(\overline{x}) + f_2'(\overline{x})$.
- (ii) $(f_1f_2)(\overline{x} + h) = (f_1f_2)(\overline{x}) + (f_1(\overline{x})f_2'(\overline{x}) + f_1'(\overline{x})f_2(\overline{x}))h + \underbrace{(f_1(\overline{x}) + f_2(\overline{x}))o(h) + (f_1'f_2')(\overline{x})h^2 + (f_1'(\overline{x}) + f_2'(\overline{x}))h \cdot o(h) + o^2(h))}_{=o(h)} = \underbrace{-o(h)}$

 $(f_1f_2)(\overline{x}) + (f_1(\overline{x})f_2'(\overline{x}) + f_1'(\overline{x})f_2(\overline{x}))h + o(h)$. Quindi, per la proposizione precedente, $(f_1f_2)'(\overline{x}) = f_1(\overline{x})f_2'(\overline{x}) + f_1'(\overline{x})f_2(\overline{x})$.

Proposizione. Siano $f: X \to Y \in g: Y \to \mathbb{R}$, con f derivabile in \overline{x} e g derivabile in $\overline{y} := f(\overline{x})$. Allora $g \circ f$ è derivabile in \overline{x} e $(g \circ f)'(\overline{x}) =$ $f'(\overline{x})g'(\overline{y}).$

Dimostrazione. Poiché $f'(\overline{x})$ è finito, $f(\overline{x}+h)=\overline{y}+f'(\overline{x})h+o(h)$. Analogamente, $g(\overline{y} + h) = g(\overline{y}) + g'(\overline{y})h + o(h)$. Allora $g(f(\overline{x} + h)) =$ $g(\overline{y} + (f'(\overline{x})h + o(h))) = g(\overline{y}) + g'(\overline{y})(f'(\overline{x})h + o(h)) + o(f'(\overline{x})h + o(h)) =$ $g(\overline{y}) + g'(\overline{y})f'(\overline{x})h + o(h) + o(f'(\overline{x})h + o(h)).$

Si osserva che $\lim_{h\to 0} \frac{o(f'(\overline{x})h+o(h))}{h} = \lim_{h\to 0} \frac{o(f'(\overline{x})h+o(h))}{f'(\overline{x})h+o(h)} \frac{f'(\overline{x})h+o(h)}{h} = \lim_{h\to 0} \frac{o(f'(\overline{x})h+o(h))}{f'(\overline{x})h+o(h)} \lim_{h\to 0} \frac{f'(\overline{x})h+o(h)}{h} = 0 \cdot f'(\overline{x}) = 0$, e quindi che $o(f'(\overline{x})h+o(h)) = o(h)$. Allora $g(f(\overline{x}+h)) = g(\overline{y}) + g'(\overline{y})f'(\overline{x})h + o(h)$, da cui si conclude the $(g \circ f)'(\overline{x}) = g'(\overline{y})f'(\overline{x}).$

Proposizione. Sia $f: X \to Y$ con inversa $g: Y \to X$. Sia f derivabile in \overline{x} con $f'(\overline{x}) \neq 0$. Sia q continua in $\overline{y} = f(\overline{x})$. Allora:

- (i) \overline{y} è un punto di accumulazione di Y,
- (ii) g è derivabile in \overline{y} e $g'(\overline{y}) = \frac{1}{f'(\overline{x})}$.

Dimostrazione. Si dimostrano i due risultati separatamente.

(i) Poichè f è derivabile in \overline{x} , f è continua in \overline{x} . Quindi per ogni intorno $I \text{ di } \overline{y}$, esiste un intorno $J \text{ di } \overline{x}$ tale per cui $f(I \cap X \setminus \{\overline{x}\}) \subseteq J$. Inoltre, $I \cap X \setminus \{\overline{x}\}$ non è mai vuoto, dacché, essendo f derivabile in \overline{x} , \overline{x} è un punto di accumulazione di X. Quindi J contiene in particolare un immagine di f in esso, e quindi un punto di Y; inoltre, tale punto è diverso da \overline{y} dal momento che f è iniettiva, essendo bigettiva. Quindi \overline{y} è un punto di accumulazione.

(ii) Poiché f è derivabile in $g(\overline{y})$, $\overline{y} + h = f(g(\overline{y} + h)) = f(g(\overline{y}) + (g(\overline{y} + h) - g(\overline{y}))) = \overline{y} + f'(\overline{x})k + o(k)$, ossia vale che:

$$h = f'(\overline{x})k + o(k).$$

Dal momento che g è continua in \overline{y} , $k \xrightarrow[h \to 0]{} 0$, e quindi $o(k) \xrightarrow[h \to 0]{} 0$. Quindi, per $h \to 0$, $k \sim \frac{h}{f'(\overline{x})}$. Si conclude dunque che $\lim_{h \to 0} \frac{g(\overline{y} + h) - g(\overline{y})}{h} = \lim_{h \to 0} \frac{k}{h} = \frac{1}{f'(\overline{x})}$.

Esempio. La continuità è necessaria nelle scorse ipotesi. Si può costruire infatti una funzione del tipo:

$$f(x) = \begin{cases} x & \text{se } x \ge 0, \\ -(x+2) & \text{se } -2 < x \le -1. \end{cases}$$

dove f'(0) = 1, f è invertibile, ma la derivata di g in 0 non esiste $(D_+g(0) = 1$, ma $D_-g(0) = +\infty$).

Teorema. (di Fermat) Sia I intervallo, $f: I \to \mathbb{R}$, \overline{x} interno a I punto di massimo o minimo locale con f derivabile in \overline{x} , allora $f'(\overline{x}) = 0$.

Dimostrazione. Poiché I è un intervallo e \overline{x} è interno a I, \overline{x} è sia punto di accumulazione sinistro che punto di accumulazione destro di I. Dal momento che f è derivabile in \overline{x} , esistono sia la derivata destra che la derivata sinistra in \overline{x} .

Si assuma che \overline{x} è un punto di massimo locale (altrimenti è sufficiente considerare g = -f). Allora esiste un intorno J di \overline{x} tale per cui $x \in J \implies f(x) - f(\overline{x}) \leq 0$. Sia dunque J_+ l'intorno destro relativo a J, e sia J_- quello sinistro.

Poiché $\overline{x} = \inf J_+$, esiste una successione $\{x_n\} \subseteq J_+ \setminus \{\overline{x}\}$ tale per cui $x_n \xrightarrow[n \to \infty]{} \overline{x}$. Dal momento che allora f è derivabile in \overline{x} , f è anche continua in \overline{x} , e quindi si ricava che $f(x_n) \xrightarrow[n \to \infty]{} f(\overline{x})$. Si osserva dunque che

 $f(x_n) - f(\overline{x}) \leq 0 \text{ e } x_n - \overline{x} > 0 \implies \frac{f(x_n) - f(\overline{x})}{x_n - \overline{x}} \leq 0, \text{ da cui, per il teorema della permanenza del segno, si ricava che } L_+ = \lim_{n \to \infty} \frac{f(x_n) - f(\overline{x})}{x_n - \overline{x}} \leq 0.$

Allora, dal momento che f è derivabile in \overline{x} e che la derivata destra deve coincidere con la derivata classica, $f'(\overline{x}) = \lim_{x \to \overline{x}^+} \frac{f(x) - f(\overline{x})}{x - \overline{x}} = \lim_{n \to \infty} \frac{f(x_n) - f(\overline{x})}{x - \overline{x}} = L_+ \le 0.$

Analogamente si ricava che $f'(\overline{x}) \geq 0$, e quindi che $f'(\overline{x})$ è necessariamente pari a zero, da cui la tesi.

Osservazione.

▶ Si può facilmente generalizzare il teorema di Fermat assumendo ipotesi più deboli. Sia infatti x_M un punto di massimo locale e sia f continua in x_M , allora, qualora esistano, $D_+f(x_M) \leq 0$ e $D_-f(x_M) \geq 0$. Analogamente si estende la proposizione a x_m punto di minimo locale.

Teorema. (di Rolle) Sia $I = [a, b] \subset \mathbb{R}$ e sia $f : I \to \mathbb{R}$ tale che f sia continua su I, che f(a) = f(b) e che f sia derivabile in [a, b]. Allora $\exists \overline{x} \in (a, b)$ tale che $f'(\overline{x}) = 0$.

Dimostrazione. Per il teorema di Weierstrass f ammette un punto di massimo M e uno di minimo m in I. Se f(a) = M e f(b) = m o viceversa, la funzione f è costante in I, e quindi per ogni punto in (a,b) la derivata è nulla. Altrimenti, sicuramente uno tra il punto di massimo e quello di minimo appartiene a (a,b). Sia \overline{x} tale punto. Allora, per il teorema di Fermat, $f'(\overline{x}) = 0$, da cui la tesi.

Teorema. (di Cauchy) Sia $I = [a, b] \subset \mathbb{R}$ e siano $f, g : I \to \mathbb{R}$ continue su I e derivabili in (a, b), con g' non nulla in (a, b) e $g(a) \neq g(b)$. Allora $\exists \overline{x} \in (a, b)$ tale che $\frac{f'(\overline{x})}{g'(\overline{x})} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Dimostrazione. Si consideri la funzione $h:I\to\mathbb{R}$ tale che $h(x)=f(x)-\left(\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))+f(a)\right)$. Si osserva che h, essendo una somma di funzioni continue su I e derivabili in (a,b), è anch'essa continua su I e derivabile in (a,b). Inoltre h(a)=h(b)=0. Quindi, per il teorema di Rolle, $\exists\,\overline{x}\in(a,b)\mid h'(\overline{x})=0\implies \frac{f'(\overline{x})}{g'(\overline{x})}=\frac{f(b)-f(a)}{g(b)-g(a)},$ da cui la tesi. \square

Teorema. (di Lagrange) Sia $I = [a, b] \subset \mathbb{R}$ e sia $f : I \to \mathbb{R}$ tale che f sia continua su I e che f sia derivabile in (a, b). Allora $\exists \overline{x} \in (a, b)$ tale che $f'(\overline{x}) = \frac{f(b) - f(a)}{b - a}$, ossia tale per cui la retta tangente a f in \overline{x} è parallela alla secante che passa per (a, f(a)) e (b, f(b)).

Dimostrazione. Si consideri g(x) = x. g è continua in [a,b] e derivabile in (a,b), con derivata sempre non nulla in tale intervallo. Allora, per il teorema di Cauchy, $\exists \overline{x} \in (a,b) \mid f'(\overline{x}) = \frac{f(b)-f(a)}{b-a}$, da cui la tesi.

Proposizione. Sia $I = [a, b] \subset \mathbb{R}$ e sia $f : I \to \mathbb{R}$ tale che f sia continua su I e che f sia derivabile in (a, b), con derivata non negativa. Allora f è crescente in [a, b]. Analogamente, se la derivata è non positiva, f è decrescente.

Dimostrazione. Senza perdita di generalità si dimostra il caso in cui la derivata di f in (a,b) è non negativa (altrimenti è sufficiente considerare g=-f). Si considerino $c < d \in I$. Allora, per il teorema di Lagrange, $\exists \overline{x} \in (c,d) \mid f'(c) = \frac{f(d)-f(c)}{d-c} \implies f(d)-f(c) = \underbrace{f'(c)(d-c)}_{>0} \implies f(d) \geq f(c)$, e

quindi f è crescente in I, da cui la tesi.

Proposizione. Sia $I \subset \mathbb{R}$ un intervallo e sia $f: I \to \mathbb{R}$ tale che f sia derivabile in I. Allora f è convessa se e solo se la derivata è crescente.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

(\Longrightarrow) Siano $x_0, x_1 \in I$ con $x_0 < x_1$. Sia h positivo tale che $x_0 < x_0 + h \le x_1$. Allora $x_0 + h = (1 - \lambda)x_0 + \lambda x_1$ con $\lambda = \frac{h}{x_1 - x_0}$. Allora, poiché f è convessa, $f(x_0 + h) \le (1 - \lambda)f(x_0) + f(x_1) \le f(x_0) + \frac{h}{x_1 - x_0}(f(x_1) - f(x_0))$, da cui si ricava che:

$$\frac{f(x_0+h)-f(x_0)}{h} \le \frac{f(x_1)-f(x_0)}{x_1-x_0}.$$

Quindi, passando al limite, $f'(x_0) \leq \frac{f(x_1) - f(x_0)}{x_1 - x_0}$. Analogamente si dimostra che $\frac{f(x_1) - f(x_0)}{x_1 - x_0} \leq f'(x_1)$. Si conclude dunque che $f'(x_1) \geq f'(x_0)$, ossia che f' è crescente.

 (\Leftarrow) Siano $x_0, x_1 \in I$ con $x_0 < x_1$. Si considera $x = (1 - \lambda)x_0 + \lambda x_1 \in (x_0, x_1)$ con $0 < \lambda < 1$. Per il teorema di Lagrange $\exists \tilde{x_0} \in (x_0, x)$ tale che $f'(\tilde{x_0}) = \frac{f(x) - f(x_0)}{x - x_0}$. Analogamente $\exists \tilde{x_1} \in (x, x_1)$ tale che $f'(\tilde{x_1}) = \frac{f(x_1) - f(x)}{x_1 - x}$. Poiché allora per ipotesi la derivata f' è crescente, si ricava che:

$$\frac{f(x_1) - f(x)}{x_1 - x} \ge \frac{f(x) - f(x_0)}{x - x_0},$$

da cui si conclude che:

$$f(x) \leq (1-\lambda)f(x_0) + \lambda f(x_1),$$

ossia che vale la disuguaglianza di Jensen, e quindi che f è convessa, da cui la tesi. $\hfill\Box$

Osservazione.

- ▶ L'interpretazione geometrica del teorema di Cauchy, rispetto a quella di Lagrange, è leggermente più complicata. Si consideri la curva continua $\gamma: \mathbb{R} \to \mathbb{R}^2$ tale che $\gamma(t) = (g(t), f(t))$. Si osserva che il coefficiente della retta tangente in \overline{x} per γ è dato da $\lim_{h\to 0} \frac{f(\overline{x}+h)-f(\overline{x})}{g(\overline{x}+h)-g(\overline{x})}$, che, sotto le ipotesi del teorema di Cauchy, può essere riscritto come $\frac{f'(\overline{x})}{g'(\overline{x})}$. Allora, il teorema di Cauchy asserisce che esiste un punto della curva γ tale per cui la retta tangente alla curva in quel punto è parallela alla secante passante per (g(a), f(a)) e (g(b), f(b)).
- ▶ Inoltre f è strettamente crescente in I se $f' \ge 0$ e non esistono intervalli di punti stazionari. Analogamente se f' < 0 in I e non esistono ancora tali intervalli, f è strettamente decrescente in I.

Esercizio 1. Si descriva un insieme X tale che i suoi unici punti di accumulazione siano ± 1 .

Soluzione. Si consideri $X=\{1+\frac{1}{n}\}\cup\{-1-\frac{1}{n}\}$, al variare di $n\in\mathbb{N}$. Sia $J=[1-\varepsilon,1+\varepsilon]$ un intorno di 1. Allora $1+\frac{1}{n}\in J$ per $n>\frac{1}{\varepsilon}$, da cui si ricava che 1 è un punto di accumulazione di X; analogamente si verifica che -1 è un punto di accumulazione di X. Si consideri adesso l'intorno $J=\left[1+\frac{1}{n}-\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right),1+\frac{1}{n}+\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)\right]$. Si verifica che nessun punto di X, oltre $1+\frac{1}{n}$ appartiene a J, e quindi $1+\frac{1}{n}$ non è punto di accumulazione di X. Analogamente non lo è alcun numero della forma $-1-\frac{1}{n}$.

Esercizio 2. Sia $f: X \to \overline{\mathbb{R}}$ continua in \overline{x} e sia $a < f(\overline{x})$. Allora esiste J intorno di \overline{x} tale che $a < f(x) \ \forall \ x \in J \cap X \setminus \{\overline{x}\}$.

Soluzione. Si consideri $g: X \to \overline{\mathbb{R}}$ tale che g(x) = f(x) - a. Poiché g è una somma di funzioni continue in \overline{x} , anch'essa è continua in g. Allora, poiché $g(\overline{x}) > 0$, per il teorema della permanenza del segno, esiste un intorno J di \overline{x} tale per cui $g(x) > 0 \ \forall x \in J$, ossia tale per cui $f(x) > a \ \forall x \in J$, da cui la tesi.

Esercizio 3. Sia $X \subseteq \overline{\mathbb{R}}$ e sia \overline{x} punto di accumulazione di X. Siano f_1 , $f_2: X \to \overline{\mathbb{R}}$. Si dimostri allora che:

- (i) se $f_1 \xrightarrow[x \to \overline{x}]{} +\infty$ e f_2 è limitata inferiormente in un intorno J di \overline{x} , allora $f_1(x) + f_2(x) \xrightarrow[x \to \overline{x}]{} +\infty$;
- (ii) se $f_1 \xrightarrow[x \to \overline{x}]{} 0$ e f_2 è limitata in un intorno J di \overline{x} , allora $f_1 f_2(x) \xrightarrow[x \to \overline{x}]{} 0$;
- (iii) se $f_1 \xrightarrow[x \to \overline{x}]{} + \infty$ ed f_2 è limitata inferiormente da una costante positiva c in un intorno J di \overline{x} , allora $f_1 f_2 \xrightarrow[x \to \overline{x}]{} + \infty$.

Soluzione. Si dimostrano i tre risultati separatamente.

- (i) Sia c la costante tale per cui $f_2(x) \geq c \ \forall x \in J \cap X$. Sia $I = [a, \infty]$ un intorno di $+\infty$. Se c < 0, poiché $f_1 \xrightarrow[x \to \overline{x}]{} +\infty$, esiste un intorno J' tale per cui $f_1(J' \cap X \setminus \{\overline{x}\}) \subseteq [a-c,\infty] \subseteq I$. Sia dunque $Z = J \cap J'$. Allora $(f_1 + f_2)(x) = f_1(x) + f_2(x) \geq a c + c = a \ \forall x \in Z$, da cui si conclude che $(f_1 + f_2)(Z \cap X \setminus \{\overline{x}\}) \subseteq I$. Se invece $c \geq 0$, è sufficiente considerare un intorno J' di \overline{x} tale per cui $f_1(J' \cap X \setminus \{\overline{x}\}) \subseteq I$, da cui $(f_1 + f_2)(x) = f_1(x) + f_2(x) \geq a + c \geq a \ \forall x \in Z \implies (f_1 + f_2)(Z \cap X \setminus \{\overline{x}\}) \subseteq I$, da cui la tesi.
- (ii) Poiché f_2 è limitata in J, esistono delle costanti finite $a, b \in \mathbb{R}$ tali per cui $a \leq f_2(x) \leq b \ \forall x \in J$. Sia $I = [-\varepsilon, \varepsilon]$ un intorno di 0, con $\varepsilon > 0$. Si consideri $c := \max\{|a|, |b|\}$. Allora vale che $-c \leq f_2(x) \leq c$ $\forall x \in J$. Poiché $f_1 \xrightarrow[x \to \overline{x}]{} 0$, esiste un intorno J' di \overline{x} tale per cui $f(J' \cap X \setminus \{\overline{x}\}) \subseteq [-\frac{\varepsilon}{c}, \frac{\varepsilon}{c}]$. Si consideri ora $Z := J \cap J'$: vale allora che $|(f_1 f_2)(x)| = |f_1(x) f_2(x)| \leq c\frac{\varepsilon}{c} = \varepsilon \ \forall x \in Z \cap X \setminus \{\overline{x}\}$. Si conclude dunque che $(f_1 f_2)(Z \cap X \setminus \{\overline{x}\}) \subseteq I$, da cui la tesi.
- (iii) Sia $I = [a, \infty]$ un intorno di $+\infty$. Allora, poiché $f_1 \xrightarrow[x \to \overline{x}]{} +\infty$, esiste un intorno J' di \overline{x} tale per cui $f_1(J' \cap X \setminus \{\overline{x}\}) \subseteq [|a|, \infty] \subseteq I$. Si consideri dunque $Z := J \cap J'$: vale dunque che $(f_1f_2)(x) = f_1(x)f_2(x) \geq |a| c \geq a \ \forall x \in Z \cap X \setminus \{\overline{x}\}$. Si conclude allora che $(f_1f_2)(Z \cap X \setminus \{\overline{x}\}) \subseteq I$, da cui la tesi.

Esercizio 4. Sia $f: \mathbb{R} \to \mathbb{R}$ tale che:

$$f(x) = \begin{cases} x + 2x^2 \sin\left(\frac{1}{x}\right) & \text{se } x \neq 0, \\ 0 & \text{altrimenti.} \end{cases}$$

Si mostri che f è continua ovunque e che $D_+f(0)=1$.

Soluzione. Poiché somma di funzioni elementari, f è continua in $(0,\infty)$. Analogamente è continua in $(-\infty,0)$ dacché è costante in tale intervallo. Affinché allora f sia continua ovunque è sufficiente che si dimostri che è continua anche in 0. Dal momento che 0 è un punto di accumulazione sia destro che sinistro di \mathbb{R} , questo equivale a mostrare che il limite destro e sinistro di f esistono in 0 e coincidono.

Si verifica dunque che

$$\lim_{x \to 0^{-}} f(x) = 0, \qquad \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x + \lim_{x \to 0^{+}} 2x^{2} \sin\left(\frac{1}{x}\right) = 0,$$

dove si è impiegato il fatto che sin $\left(\frac{1}{x}\right)$ è limitata in ogni intorno di 0 e che $2x^2 \xrightarrow[x \to 0^+]{} 0$; quindi f è continua in 0, e lo è allora ovunque.

Si computa allora la derivata destra di f in 0:

$$D_{+}f(0) = \lim_{h \to 0^{+}} \frac{h + 2h^{2} \sin\left(\frac{1}{h}\right)}{h} = 1 + \lim_{h \to 0^{+}} 2h \sin\left(\frac{1}{h}\right) = 1,$$

dove si è usato lo stesso argomento di prima per computare $\lim_{h\to 0^+} 2h\sin\left(\frac{1}{h}\right)=0$.

Teorema. (di de l'Hopital) Siano I intervallo e $x_0 \in I$. Sia detto $I' := I \setminus \{x_0\}$. Siano $f, g: I' \to \mathbb{R}$ derivabili tali che:

- (i) esiste $L := \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$,
- (ii) $g' \neq 0$ in I',
- (iii) vale che (a) f(x), $g(x) \xrightarrow[x \to x_0]{} 0$ oppure che (b) $g(x) \xrightarrow[x \to x_0]{} \pm \infty$.

Allora
$$\frac{f(x)}{g(x)} \xrightarrow[x \to x_0]{} L$$
.

Dimostrazione. Si consideri il caso (a) per x_0 finito. Si ponga $f(x_0) = g(x_0) := 0$. Senza perdità di generalità si assuma che I sia un intorno destro di x_0 . Sia $x \in I \setminus \{x_0\}$, da cui si ricava che $x > x_0$.

Si osserva che $\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x)} - g(x_0)$. Per il teorema di Cauchy, esiste allora $\tilde{x} \in (x_0, x)$, in funzione di x, tale che $\frac{f(x)}{g(x)} = \frac{f'(\tilde{x})}{g'(\tilde{x})}$. Allora $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(\tilde{x})}{g'(\tilde{x})} = \lim_{\tilde{x} \to x_0} \frac{f'(\tilde{x})}{g'(\tilde{x})} = L$, dove si è utilizzato che $\tilde{x} \xrightarrow[x \to x_0]{} x_0$ per il teorema del confronto applicato sulla relazione $x_0 < \tilde{x} < x$.

Si consideri ora il caso (b) per x_0 finito. Siano $x_1 > x_0$ tali che $x_1 > x > x_0$. Allora vale la seguente identità:

$$\frac{f(x)}{g(x)} = \left(\frac{f(x) - f(x_1)}{g(x) - g(x_1)} + \frac{f(x_1)}{g(x) - g(x_1)}\right) \frac{g(x) - g(x_1)}{g(x)}.$$

Si osserva allora che:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x) - f(x_1)}{g(x) - g(x_1)}.$$

Osservazione. È essenziale che I sia un intervallo affinché il teorema di de l'Hopital sia vero.

Proposizione. Sia I un intervallo, sia $x_0 \in I$ e sia $f: I \to \mathbb{R}$ continua e derivabile dappertutto tranne che in x_0 . Se esiste $L := \lim_{x \to x_0} f'(x)$, allora $f'(x_0) = L$.

Dimostrazione. Si consideri il rapporto incrementale $\frac{f(x)-f(x_0)}{x-x_0}$. Allora, per $x \to x_0$, per il teorema di de l'Hopital, $f'(x_0) = \lim_{x \to x_0} f'(x)$.

Teorema. (sullo sviluppo di Taylor) Sia I un intervallo e sia $\overline{x} \in I$. Sia $f: I \to \mathbb{R}$ e sia $d \in \mathbb{N}$. Sia f derivabile d-1 dappertutto e sia derivabile d volte in \overline{x} . Allora, detti

$$P_d(h) = f(\overline{x}) + f'(\overline{x})h + \ldots + \frac{f^{(d)}(\overline{x})}{d!}h^d,$$

$$R_d(h) = f(\overline{x} + h) - P_d(h),$$

- (a) $R_d(h) = o(h^d)$ per $h \to 0$,
- (b) se f è derivabile d volte su I e d+1 volte in \overline{x} , allora $R_d(h) = O(h^{d+1})$ per $h \to 0$ e $\frac{R_d(h)}{h^{d+1}} \to \frac{f^{(d+1)}(\overline{x})}{(d+1)!}$,

- (c) se f è derivabile d+1 volte su I, allora $\forall h \mid \overline{x}+h \in I$, $\exists \tilde{x} \in [\overline{x}, \overline{x}+h] \mid R_d(h) = \frac{f^{(d+1)}(\tilde{x})}{(d+1)!}$ (formula del resto di Lagrange),
- (d) se $f \in C^{d+1}$, allora $R_d(h) = \frac{1}{d!} \int_0^h (h-t)^d f^{(d+1)}(\overline{x}+t) dt$ (formula integrale).

Dimostrazione. (d) Si assuma $\overline{x} = 0$ e $f \in C^{d+1}$. Innanzitutto si osserva che la tesi è equivalente a mostrare che $f(h) = P_d(h) + \frac{1}{d!} \int_0^h (h-t)^d f^{(d+1)}(t) dt$.

Se $d=0, f(h)=f(0)+\int_0^h f'(t)\,dt$ (teorema fondamentale del calcolo integrale). $f(h)=f(0)+|-(h-t)f'(h)|_0^h+\int_0^h (h-t)f''(t)\,dt$. [...]

Proposizione. Sia $f: I \to \mathbb{R}$ derivabile. Sia $\overline{x} \in I$ tale che $f'(\overline{x}) = 0$ ed esista $f''(\overline{x})$. Allora:

- (i) $f''(\overline{x}) > 0 \implies \overline{x}$ è un punto di minimo locale stretto,
- (ii) $f''(\overline{x}) < 0 \implies \overline{x}$ è un punto di massimo locale.stretto,
- (iii) \overline{x} è un punto di minimo locale $\implies f''(\overline{x}) \ge 0$,
- (iv) \overline{x} è un punto di massimo locale $\implies f''(\overline{x}) \le 0$.

Dimostrazione. Per lo sviluppo di Taylor, $f(\overline{x}+h)=f(\overline{x})+f'(\overline{x})h+\frac{1}{2}f''(\overline{x})h^2+o(h^2) \Longrightarrow \frac{f(\overline{x}+h)-f(\overline{x})}{h^2}=\frac{1}{2}f''(\overline{x})+o(1)$ (infinitesimo). Allora $\frac{f(\overline{x}+h)-f(\overline{x})}{h^2} \xrightarrow[x \to h]{} L>0$. Quindi permanenza del segno. \square