Roteiro da Aula 10

Roteiro

MT simulando um AFD

MT simuland outra MT

O problema d Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atua

- 1 MT simulando um AFD Situação atual
- 2 MT simulando outra MT MT Universal
- ${f 3}$ O problema da Parada ${\cal L}_{\sf MT}$ ${\cal L}_{\sf MT}$ é indecidível
- 4 Situação atual

Codificando coisas com Σ

Roteiro

MT simulando um AFD Situação atual

MT simuland outra MT

O problema da Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atua

Para
$$\Sigma = \{0,1,\#,\$\}$$
:
$$\mathcal{L} = \{ \ \#1^k \#w \#\$x_1\$x_2\$ \dots \$x_n\$ \mid w,x_i \in \{0,1\}^* \\ 1 < k < n \text{ e } w = x_k \}$$

Exemplo:

#	1	1	#	0	1	#	\$ 1	1	0	\$
0	1	\$	0	\$	0	0	\$			

Codificando coisas com Σ

Roteiro

MT simulando um AFD Situação atual

MT simulando outra MT

O problema da Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atua

Dado um AFD $A=(Q,\Sigma_A,\delta,q_0,F)$ e uma palavra w sobre $\Sigma_A=\{0,1\}$:

Para
$$\Sigma = \{0, 1, \#, \$, ;\}$$
:

- Denotamos $\langle A, w \rangle$ uma palavra sobre Σ que codifica A e w da seguinte forma:
- $\langle A, w \rangle = \#Q \#q_0 \#F \#\delta \#w;$
- $\langle A, w \rangle =$ $\#q_1; q_2; \dots; q_n \#q_0 \#f_1; f_2; \dots; f_n \#q_1; 0; q_2 \$q_1; 1; q_1 \$ \dots \#w$

Exemplo

Roteiro

MT simulando um AFD Situação atual

outra MT

Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atual

Autômato A:

- Para w = 0001101;
- $\langle A, w \rangle =$ $\#q_0; q_1 \#q_0 \#q_1 \#q_0; 0; q_0 \$q_0; 1; q_1 \$q_1; 0; q_1 \$q_1; 1; q_1 \#0001101$

Roteiro

MT simulando um AFD Situação atual

MT simulando outra MT

O problema d Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atual

A linguagem $\mathcal{L}_{\mathsf{AFD}}$

Com isso podemos definir:

para
$$\Sigma = \{0, 1, \#, \$, ; \}$$

$$\mathcal{L}_{\mathsf{AFD}} = \{ \langle A, w \rangle \mid \mathsf{aut\^{o}mato} \ A \ \mathsf{aceita} \ w \}$$

Roteiro

MT simulando um AFD Situação atual

MT simulandoutra MT

Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atual

A linguagem $\mathcal{L}_{\mathsf{AFD}}$

Com isso podemos definir:

para
$$\Sigma = \{0, 1, \#, \$, ; \}$$

$$\mathcal{L}_{\mathsf{AFD}} = \{ \langle A, w \rangle \mid \mathsf{aut\^{o}mato} \ A \ \mathsf{aceita} \ w \}$$

 $\mathcal{L}_{\mathsf{AFD}}$ é recursiva?

Roteiro

MT simulando um AFD

MT simuland

O problema da Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atual

MT simulando um AFD

Observe que M sempre pára!

Roteiro

MT simulando

Situação atual

MT simuland

O problema d Parada $\mathcal{L}_{\mathsf{MT}}$

Tarada ZMT

Situação atual

Situação atua

Codificando MT's

Dado uma MT $M=(Q,\Sigma_M,\Gamma,\delta,q_0,q_{aceita},q_{rejeita})$ e uma palavra w sobre $\Sigma_M=\{0,1\}$:

Para
$$\Sigma = \{0, 1, \#, \$, ; , R, L\}$$
:

- Denotamos $\langle M, w \rangle$ uma palavra sobre Σ que codifica M e w da seguinte forma:
- $\langle M, w \rangle = \#Q \# q_0 \# q_{\text{aceita}} \# q_{\text{rejeita}} \# \delta \# w;$
- $\langle M, w \rangle =$ $\#q_1; q_2; \dots; q_n \#q_0 \#q_{\text{aceita}} \#q_{\text{rejeita}} \#q_1; a; r; b; R\$ \dots \#w$

por exemplo:
$$\delta(q_1, a) = (r, b, R)$$

Roteiro

MT simulando um AFD

MT simulando outra MT MT Universal

O problema da Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atual

Exemplo

MT M:

- Para w = 01101;
- $\langle M, w \rangle = \#q_0; q_1 \#q_0 \#q_1 \#q_{rejeita} \#q_0; 0; q_0; A; R\$$ $q_0; \sqcup; q_{rejeita}; \sqcup; S\$q_0; 1; q_1; B; R\#01101$

Roteiro

MT simulando um AFD

MT simulando

MT Universal

O problema da

Situação atual

MT simulando outra MT

Roteiro

MT simulando um AFD

MT simulando

MT Universal

O problema da

Situação atual

MT simulando outra MT

 M_U é uma MT Universal!

Roteiro

MT simulando

MT simulando outra MT

O problema da Parada \mathcal{L}_{MT}

Situação atual

O problema da Parada $\mathcal{L}_{\mathsf{MT}}$

 $\bullet \ \mathcal{L}_{\mathsf{MT}} = \{ \langle M, w \rangle \ | \ \mathsf{m\'aquina} \ \mathsf{de} \ \mathsf{Turing} \ M \ \mathsf{aceita} \ w \}$

Roteiro

MT simulando

MT simulando outra MT

O problema da Parada \mathcal{L}_{MT} \mathcal{L}_{MT} indecidível

Situação atual

O problema da Parada $\mathcal{L}_{\mathsf{MT}}$

• $\mathcal{L}_{\mathsf{MT}} = \{\langle M, w \rangle \mid \mathsf{m\'aquina} \mathsf{ de Turing } M \mathsf{ aceita } w \}$

 $\mathcal{L}_{\mathsf{MT}}$ é recursivamente enumerável?

Roteiro

MT simulando

MT simulando outra MT

O problema da Parada \mathcal{L}_{MT} $\mathcal{L}_{\text{MT}} \stackrel{\text{\'e}}{=} \text{indecidivel}$

Situação atual

O problema da Parada $\mathcal{L}_{\mathsf{MT}}$

 $\bullet \ \mathcal{L}_{\mathsf{MT}} = \{ \langle M, w \rangle \ | \ \mathsf{m\'aquina} \ \mathsf{de} \ \mathsf{Turing} \ M \ \mathsf{aceita} \ w \}$

 $\mathcal{L}_{\mathsf{MT}}$ é recursivamente enumerável?

 $\mathcal{L}_{\mathsf{MT}}$ é recursiva?

Roteiro

MT simuland

MT simuland outra MT

O problema d Parada $\mathcal{L}_{\mathsf{MT}}$

L_{MT} é indecidível

Situação atual

$\mathcal{L}_{\mathsf{MT}}$ é indecidível (não é recursiva)

• $\mathcal{L}_{\mathsf{MT}} = \{\langle M, w \rangle \mid \mathsf{máquina} \mathsf{ de Turing } M \mathsf{ aceita } w\}$

Se, por hipótese, existe essa H ...

Roteiro

MT simulando um AFD

MT simulando outra MT

O problema de Parada \mathcal{L}_{MT}

 $\mathcal{L}_{\text{MT}} \stackrel{\text{\'e}}{\scriptscriptstyle \text{indecidivel}}$

Situação atua

$\mathcal{L}_{\mathsf{MT}}$ é indecidível

 \dots podemos construir uma máquina D:

Roteiro

MT simulando um AFD

MT simulando outra MT

O problema d Parada \mathcal{L}_{MT}

L_{MT} é indecidível

Situação atua

$\mathcal{L}_{\mathsf{MT}}$ é indecidível

E agora? D aceita $\langle D \rangle$?

Roteiro

MT simulando um AFD

MT simulando outra MT

O problema d Parada \mathcal{L}_{MT}

L_{MT} é indecidível

Situação atua

$\mathcal{L}_{\mathsf{MT}}$ é indecidível

E agora? D aceita $\langle D \rangle$?

Roteiro

MT simulando um AFD

MT simuland

O problema d Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atual

Situação atual

Rotein

MT simulando

MT simulando outra MT

O problema da Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atual

Mais exemplos:

$$\begin{split} \mathcal{L}_{\mathsf{NE}} &= \{ \langle M \rangle \mid \mathcal{L}(M) \neq \emptyset \} \\ \mathcal{L}_{\mathsf{E}} &= \{ \langle M \rangle \mid \mathcal{L}(M) = \emptyset \} \end{split}$$

Roteiro

MT simuland um AFD

MT simuland outra MT

O problema d Parada $\mathcal{L}_{\mathsf{MT}}$

Situação atual

Mais exemplos:

$$\mathcal{L}_{\mathsf{NE}} = \{ \langle M \rangle \mid \mathcal{L}(M) \neq \emptyset \}$$

$$\mathcal{L}_{\mathsf{E}} = \{ \langle M \rangle \mid \mathcal{L}(M) = \emptyset \}$$

