#### SimCSE: Simple Contrastive Learning of Sentence Embeddings

- https://arxiv.org/pdf/2104.08821.pdf
- https://github.com/princeton-nlp/SimCSE
- 주로 텍스트 데이터에 적용가능한 간단한 contrastive learning 방법 제시
- 해당 도메인 데이터를 쓰지 않고 NLI 데이터로 학습한 SentenceBERT 성능을 능가함 (unsupervised)
- NLI 데이터셋을 사용하여 추가적인 성능 향상 방법도 제시 (supervised)

## Backgrounds

• Sentence BERT (SBERT): <a href="https://arxiv.org/pdf/1908.10084.pdf">https://arxiv.org/pdf/1908.10084.pdf</a>



Figure 1: SBERT architecture with classification objective function, e.g., for fine-tuning on SNLI dataset. The two BERT networks have tied weights (siamese network structure).



Figure 2: SBERT architecture at inference, for example, to compute similarity scores. This architecture is also used with the regression objective function.

# Background

- Wang and Isola (2020) (<a href="https://arxiv.org/abs/2005.10242">https://arxiv.org/abs/2005.10242</a>) 에서 제시하길 Contrastive Learning은 alignment와 uniformity가 중요하다.
- Alignment: 주어진 positive pair들에 대해, embedding간의 expected distance
- Uniformity: 임베딩 자체가 얼마나 균등하게 분포되어 있나
- 두 값 모두 lower is better

$$\ell_{\text{align}} \triangleq \underset{(x,x^+) \sim p_{\text{pos}}}{\mathbb{E}} \|f(x) - f(x^+)\|^2. \qquad \ell_{\text{uniform}} \triangleq \log \quad \underset{x,y^{i.i.d.}}{\mathbb{E}} e^{-2\|f(x) - f(y)\|^2},$$

## SimCSE

(a) Unsupervised SimCSE



- (E) Encoder
- → Positive instance
- → Negative instance

#### (b) Supervised SimCSE



### SimCSE

- Unsupervised SimCSE
- Dropout noise를 data augmentation으로 봄

| Data augmentation | STS-B |      |      |
|-------------------|-------|------|------|
| None              |       |      | 79.1 |
| Crop              | 10%   | 20%  | 30%  |
|                   | 75.4  | 70.1 | 63.7 |
| Word deletion     | 10%   | 20%  | 30%  |
|                   | 74.7  | 71.2 | 70.2 |
| Delete one word   |       |      | 74.8 |
| w/o dropout       |       |      | 71.4 |
| MLM 15%           | 66.8  |      |      |
| Crop 10% + MLM 15 | 70.8  |      |      |



Figure 2:  $\ell_{\text{align}}$ - $\ell_{\text{uniform}}$  plot for unsupervised SimCSE, "no dropout", "fixed 0.1" (same dropout mask for  $x_i$  and  $x_i^+$  with p=0.1), and "delete one word". We visualize checkpoints every 10 training steps and the arrows indicate the training direction. For both  $\ell_{\text{align}}$  and  $\ell_{\text{uniform}}$ , lower numbers are better.

#### SimCSE

- Anisotropy, isotropy problem
- Word embedding도 그렇고, sentence embedding도 그렇고 일반적으로 상당히 높은 similarity를 보임 -> 임베딩이 anisotropy하게 분포되어 있다.
- Word Embedding의 Singular value를 살펴봤을 때 몇몇개의 dominant한 값을 제외하고는 0에 가까운 값을 보임
- 이 논문에서 Contrastive learning이 실제로 이 값들을 flatten해서 성능을 더 끌어올릴 수 있을까?

| Model                                     | STS12        | STS13 | STS14 | STS15        | STS16        | STS-B | SICK-R       | Avg.         |  |  |  |
|-------------------------------------------|--------------|-------|-------|--------------|--------------|-------|--------------|--------------|--|--|--|
| Unsupervised models                       |              |       |       |              |              |       |              |              |  |  |  |
| GloVe embeddings (avg.)♣                  | 55.14        | 70.66 | 59.73 | 68.25        | 63.66        | 58.02 | 53.76        | 61.32        |  |  |  |
| BERT <sub>base</sub> (first-last avg.)    | 39.70        | 59.38 | 49.67 | 66.03        | 66.19        | 53.87 | 62.06        | 56.70        |  |  |  |
| $BERT_{base}$ -flow                       | 58.40        | 67.10 | 60.85 | 75.16        | 71.22        | 68.66 | 64.47        | 66.55        |  |  |  |
| BERT <sub>base</sub> -whitening           | 57.83        | 66.90 | 60.90 | 75.08        | 71.31        | 68.24 | 63.73        | 66.28        |  |  |  |
| IS-BERT <sub>base</sub> ♡                 | 56.77        | 69.24 | 61.21 | 75.23        | 70.16        | 69.21 | 64.25        | 66.58        |  |  |  |
| * SimCSE-BERT <sub>base</sub>             | 66.68        | 81.43 | 71.38 | <b>78.43</b> | <b>78.47</b> | 75.49 | 69.92        | 74.54        |  |  |  |
| RoBERTa <sub>base</sub> (first-last avg.) | 40.88        | 58.74 | 49.07 | 65.63        | 61.48        | 58.55 | 61.63        | 56.57        |  |  |  |
| RoBERTa <sub>base</sub> -whitening        | 46.99        | 63.24 | 57.23 | 71.36        | 68.99        | 61.36 | 62.91        | 61.73        |  |  |  |
| * SimCSE-RoBERTa <sub>base</sub>          | 68.68        | 82.62 | 73.56 | 81.49        | 80.82        | 80.48 | <b>67.87</b> | <b>76.50</b> |  |  |  |
| * SimCSE-RoBERTa <sub>large</sub>         | 69.87        | 82.97 | 74.25 | 83.01        | 79.52        | 81.23 | 71.47        | 77.47        |  |  |  |
| Supervised models                         |              |       |       |              |              |       |              |              |  |  |  |
| InferSent-GloVe*                          | 52.86        | 66.75 | 62.15 | 72.77        | 66.87        | 68.03 | 65.65        | 65.01        |  |  |  |
| Universal Sentence Encoder *              | 64.49        | 67.80 | 64.61 | 76.83        | 73.18        | 74.92 | 76.69        | 71.22        |  |  |  |
| SBERT <sub>base</sub> ♣                   | 70.97        | 76.53 | 73.19 | 79.09        | 74.30        | 77.03 | 72.91        | 74.89        |  |  |  |
| $SBERT_{\texttt{base}}$ -flow             | 69.78        | 77.27 | 74.35 | 82.01        | 77.46        | 79.12 | 76.21        | 76.60        |  |  |  |
| SBERT <sub>base</sub> -whitening          | 69.65        | 77.57 | 74.66 | 82.27        | 78.39        | 79.52 | 76.91        | 77.00        |  |  |  |
| * SimCSE-BERT <sub>base</sub>             | <b>75.30</b> | 84.67 | 80.19 | <b>85.40</b> | 80.82        | 84.25 | 80.39        | 81.57        |  |  |  |
| SRoBERTa <sub>base</sub> ♣                | 71.54        | 72.49 | 70.80 | 78.74        | 73.69        | 77.77 | 74.46        | 74.21        |  |  |  |
| SRoBERTa <sub>base</sub> -whitening       | 70.46        | 77.07 | 74.46 | 81.64        | 76.43        | 79.49 | 76.65        | 76.60        |  |  |  |
| * SimCSE-RoBERTa <sub>base</sub>          | 76.53        | 85.21 | 80.95 | 86.03        | 82.57        | 85.83 | 80.50        | 82.52        |  |  |  |
| * SimCSE-RoBERTa <sub>large</sub>         | <b>77.46</b> | 87.27 | 82.36 | 86.66        | 83.93        | 86.70 | 81.95        | 83.76        |  |  |  |

Table 6: Sentence embedding performance on STS tasks (Spearman's correlation, "all" setting). We highlight the highest numbers among models with the same pre-trained encoder. ♣: results from Reimers and Gurevych (2019); ♡: results from Zhang et al. (2020); all other results are reproduced or reevaluated by ourselves. For BERT-flow (Li et al., 2020) and whitening (Su et al., 2021), we only report the "NLI" setting (see Table D.3).



Figure 3:  $\ell_{\text{align}}$ - $\ell_{\text{uniform}}$  plot of models based on BERT<sub>base</sub>. Color of points and numbers in brackets represent average STS performance (Spearman's correlation). *Next3Sent*: "next 3 sentences" from Table 3.



Figure 4: Density plots of cosine similarities between sentence pairs in full STS-B. Pairs are divided into 5 groups based on ground truth ratings (higher means more similar) along the y-axis, and x-axis is the cosine similarity.



Figure E.1: Singular value distributions of sentence embedding matrix from sentences in STS-B. We normalize the singular values so that the largest one is 1.