This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1 I CLAIM: A robot adapted to climb stairs and obstacles, 2 1. said robot comprising: 3 4 a left body section; 5 a right body section; said left and right body sections forming a robot body; a pivotable tail boom mounted between the left and the 7 8 right body section; a plurality of support legs affixed to each body 9 section, wherein the robot body is supported above a ground 10 11 surface; a motor housed in the robot body; 12 wherein the motor powers the tail boom downward in an 13 obstacle climbing mode against a ground surface, thereby 14 rotating a rear end of the robot body upward and forward to 15 accomplish a flipping (panning) of the robot body, thereby 16 effectuating a positioning of a pair of rear support legs up 17 18 and over a first obstacle; and wherein the motor again powers the tail boom downward 19 and repeats the panning of the robot body over a second 20 21 obstacle. 22

2. The robot of claim 1, wherein the plurality of

- 1 support legs further comprise a left forward and rearward
- 2 set of wheels and a right forward and rearward set of
- 3 wheels, all said wheels having a driving source mounted
- 4 inside the robot body, thereby enabling the robot to travel.

5

- 6 3. The robot of claim 2, wherein the left set of wheels
- 7 has a motive power source, and the right set of wheels has a
- 8 motive driving source, thereby enabling a turning of the
- 9 robot by varying a speed of the left and right set of
- 10 wheels.

T T.

- 12 4. The robot of claim 3, wherein the left and the
- 13 right bodies are each a separate housing interconnected by a

- 14 central axle, thereby providing an independent movement of
- 15 each body about the center axle.

16

- 5. The robot of claim 4, wherein the motive driving
- 18 source further comprises a left and a right motor housed in
- 19 their respective body sections.

- 21 6. The robot of claim 4 further comprising a remote
- 22 signal receiver and a control processor, wherein the remote

- 1 signal carries control information including speed.
- 2 direction and a stair climbing mode, wherein the stair
- 3 climbing mode comprises a locking of the left and the right
- 4 bodies in a fixed position relative to one another, and the
- 5 tail boom is lowered downward to pan the robot body while
- 6 all the wheels are powered forward.

7

- 8 7. The robot of claim 6 further comprising a video
- 9 camera having a transmitter for its signal.

10

- 11 8. The robot of claim 7, wherein the video camera is
- 12 mounted on the tail boom.

13

- 14 9. The robot of claim 8 further comprising a
- 15 microphone and a speaker and an audio transmitter.

16

- 17 10. The robot of claim 7 further comprising a payload
- 18 area.

19

- 20 11. The robot of claim 8, wherein the tail boom has
- 21 variable length mode of remote control operation.

22

- 23 12. The robot of claim 11, wherein the variable length
- 24 mode further comprises a telescoping tail boom having a worm
- 25 gear drive.

- 27 13. The robot of claim 7 further comprising a remote
- 28 control unit having a user headgear heads up display and a

1 joystick control module.

2

- 3 14. The robot of claim 13, wherein the robot and the
- 4 remote control unit each have a separate battery power
- 5 source.

6

- 7 15. The robot of claim 14, wherein the robot further
- 8 comprises a speaker and a microphone, and the user headgear
- 9 further comprises a microphone and a speaker sending a voice
- 10 signal to the robot via the remote control unit.

11

- 12 16. The robot of claim 7 further comprising a remote
- 13 control unit having a video screen and a control panel to
- 14 control the robot.

15

- 16 17. The robot of claim 2 further comprising an
- 17 environmental sensor and a transmitter for sending the
- 18 environmental sensor signal to a remote receiver.

19

- 20 18. The robot of claim 8, wherein the tail boom has a
- 21 remote controllable positioning mechanism.

22

- 23 19. The robot of claim 4, wherein the robot has a
- 24 positive buoyancy in water, and the wheels have a paddle
- 25 type extension.

- 27 20. A robot comprising:
- 28 a left clam shell housing means functioning to house a front

- 1 and a rear wheel and a motor for powering the left wheels,
- 2 and providing a connection to an interconnect axle;

1 01 · •

- a right clam shell housing means functioning to house a
- 4 front and a rear wheel and a motor for powering the right
- 5 wheels and providing a connection to the interconnect axle,
- 6 thereby enabling an independent axial motion between the
- 7 left and the right clam shell housing means when traversing
- 8 a rough terrain; and
- 9 a tail boom means mounted between the left and the right
- 10 clam shell housing means functioning to controllably push
- 11 down against a ground surface causing the left and the right
- 12 clam shell housings to flip (pan), thereby placing the left
- 13 and the right rear wheels forward and on top of an obstacle,
- 14 thus defining a stair climbing mode.

15

- 16 21. The robot of claim 20, wherein the stair climbing
- 17 mode further comprises a locking of the left and the right
- 18 clam shell housings into a fixed position relative to one
- 19 another.

20

- 21 22. The robot of claim 21 further comprising an on
- 22 board video camera with a transmitter.

23

- 24 23. The robot of claim 22 further comprising a remote
- 25 control station having a receiver for the video camera
- 26 signal and a control panel to control the robot.

27

28 24. The robot of claim 23, wherein the tail boom means

1 further comprises a mount for housing the video camera.

2

- 3 25. The robot of claim 24, wherein the tail boom has
- 4 an independent position controller controlled by the remote
- 5 control station.

6

- 7 26. The robot of claim 25, wherein the remote control
- 8 station further comprises a user headgear mounted heads up
- 9 display.

10

- 11 27. The robot of claim 26, wherein each of the robot
- 12 and the remote control station has a battery pack.

13

- 14 28. The robot of claim 21 further comprising a payload
- 15 area.

16

- 17 29. The robot of claim 20, wherein the tail boom means
- 18 further comprises a motor mounted either in the right or the
- 19 left clam shell housing means.

- 21 30. A surveillance robot comprising:
- a robotic body having a video camera;
- a stair stepping mechanism housed in the robotic body;
- 24 a left, right, forward, reverse direction mechanism
- 25 housed in the robotic body;
- a remote control station having a communication module

1 to control the stair stepping, left, right, forward and

- 2 reverse directions of the robot;
- 3 wherein the remote control station further comprises a
- 4 user headgear assembly having a heads up display to receive
- 5 a signal from the video camera and display it in front of
- 6 the user's eyes; and
- 7 wherein the stair stepping mechanism further comprises
- 8 a left clamshell and a right clamshell body segment
- 9 interconnected by a central axle, a tail boom mounted
- 10 between the left and the right body segment on the central
- 11 axle, said tail boom having a power source to force it down
- 12 against a ground surface causing the robotic body to flip
- 13 (pan), thereby effecting an upward, climbing motion.

14

- 15 31. The robot of claim 30, wherein the left and the
- 16 right clamshell bodies each have a motor to power a front
- 17 and rear wheel in each respective clamshell body segment.

18

19