5. tétel

Furuglyás Kristóf 2019. június 22.

Kivonat

Fraktáldimenzió, önhasonló matematikai fraktálok, természetben előforduló fraktálok, sejtautomaták.

1. Fraktáldimenzió

Mindennapi objektumoknál megfigyelhető, hogy ha egyre kisebb skálán vizsgáljuk őket, az egyes tulajdonságaik konvergálnak egy adott értékhez. Fraktálok esetében azonban a kisebb felbontás nem eredményez konvergenciát; a fraktálok határai ugyanis végtelenül "gyűröttek" vagy "szakadásosak", azaz nem-differenciálhatóak. Továbbá, a fraktálok másik fontos tulajdonsága, hogy önhasonlók – azaz különböző nagyítás mellett nézve ugyanazt az alakzatot látjuk kibontakozni. A természetben előforduló fraktálok például a szigetek partvonalai vagy a hegyek felszíne. Előfordulhatnak még növekedésből származó fraktálok is, mint például az a növények gyökérzete vagy épp a keringési rendszer. Ilyenkor az elégazó struktúrák valamilyen növekedési instabilitás váltja ki.

Megmérve bármilyen d dimenziós test a térfogatát különböző l oldalhosszúságú szintén d dimenziós (tehát l^d térfogatú) kockákkal, és feltételezve, hogy ekkor a lefedéshez szükséges kockák száma N(l), a test téfogata:

$$V(l) = N(l) \cdot l^{d}. \tag{1}$$

Hétköznapi objektumoknál ha $l \to 0$, akkor V(l) gyorsan konvergál egy adott értékhez. Azonban **fraktálok** esetében ha $l \to 0$, akkor $\mathbf{V}(\mathbf{l}) \to \mathbf{0}$! Ugyanakkor ezzel egyidőben a d-1 dimenziós S(l) **felszíne pedig divergál**: $\mathbf{S}(\mathbf{l}) \to \infty$.

A geomatriai (matematikai) fraktálok:

- olyan **önhasonló** geometriával rendelkező formák,
- ahol az önhasonlóság tetszőleges iteráción keresztül fennáll.
- és a lefedéshez szükséges l élhosszúságú dobozok $N\left(l\right)$ száma **nemtriviálisan skálázó- dik**:

$$N(l) \sim l^{-D},\tag{2}$$

ahol D egy pozitív, nem egész szám, amely az objektum törtdimenziója, fraktáldimenziója.

Az előbbiek alapján a két oldal logaritmusát véve definiálhatjuk a fraktál **box-counting di-menzióját**:

$$D_B = \lim_{l \to 0} \frac{\ln N(l)}{\ln (1/l)}.$$
 (3)

Ugyanez érvényes akkor is, ha a fraktál növekvő, és annak lineáris hosszát L-lel jelöljük:

$$D_B = \lim_{L \to \infty} \frac{\ln N(L)}{\ln L}.$$
 (4)

1. ábra. Példa fraktálokra különböző iterációk után. Lehet látni, hogy változik a térfogat és a felszín aránya.

1.1. Műveletek

A fraktálokkal, mint matematikai objektumokkal műveleteket is végezhetünk:

- **Projekció**: d dimenziós euklidészi térbe ágyazott D dimenziós fraktált projektálunk egy d_s dimenziós szintér eklidészi altérre:
 - ha $d_s > D$, akkor a projekció dimenzió nem változik, $D_p = D$,
 - ha $d_s < D$, akkor a projekció kitölti a rendelkezésre álló teret, $D_p = d_s$. Tehát $\mathbf{D_p} = \max{(\mathbf{D}, \mathbf{d_s})}$.
- Metszet I.: ha vesszük egy d dimenziós euklidészi térbe ágyazott D dimenziós fraktál és egy d-m dimenziós szintén euklidészi tér metszetét, akkor a metszet dimenziója $\mathbf{D_i} = \mathbf{D} \mathbf{m}$ lesz.
- Metszet II. : két fraktál metszetének dimenzióját a részecskék sűrűségéből tudjuk kiszámolni:
 - egy L lineáris hosszúságú szakaszon az A fraktál részecskéinek sűrűsége $\sim \frac{L^{D_A}}{L^d}$, B-nek hasonlóképp,
 - mivel a két fraktál részecské
inek eloszlása független egymástól, az együttes sűrűség
 $\sim \frac{L^{D_A}}{L^d} \cdot \frac{L^{D_B}}{L^d}$, az összes részecskét pedig a teljes térre nézzük
 $N_{A\cap B}\left(L\right) \sim \frac{L^{D_A}L^{D_B}}{L^d},$
 - tehát a dimenzió leolvasható: $\mathbf{D}_{\mathbf{A} \cap \mathbf{B}} = \mathbf{D}_{\mathbf{A}} + \mathbf{D}_{\mathbf{B}} \mathbf{d}$.
- Unió: két fraktál uniójának dimenzióját a nagyobbik dimenziójú fraktál fogja megadni, azaz $\mathbf{D}_{\mathbf{A}\cup\mathbf{B}} = \max{(\mathbf{D}_{\mathbf{A}}, \mathbf{D}_{\mathbf{B}})}$.
- Szorzat: két fraktál szorzatának dimenziója a fraktálok dimenziójának összege, azaz $\mathbf{D_{AB}} = \mathbf{D_A} + \mathbf{D_B}$.

1.2. Típusok

Determinisztikus fraktál Egy fraktál determinisztikus, ha önhasonló rekurzióval generálódik – azaz vagy kicseréljük a részeit önmaga lekicsinyített képével vagy önmaga felnagyított képével. Ezekre tökéletes példát mutat a 1. ábra. Például, ha harmadik sorban egységoldalúnak vesszük az első ábrát és a mellette lévőket felskálázzuk úgy, hogy az egyes négyzetek oldalai rendre egységhosszúak legyenek, akkor egy növekvő fraktált kapunk. Ennek a fraktálnak a lineáris mérete a háromszorosára, kvázi "területe", azaz a lefedéshez szükséges négyzetek száma pedig az ötszörösére nő. Ezek alapján a fraktál dimenziója:

$$D = \lim_{L \to \infty} \frac{\ln N(L)}{\ln L} = \lim_{k \to \infty} \frac{\ln (5^k)}{\ln (3^k)} = \frac{\ln 5}{\ln 3} = 1.465...$$
 (5)

2. ábra. Példa non-uniform fraktálra.

Előfordulhat azonban, hogy nem egyenletes a másolatok nagysága – lásd 2. ábra. Ekkor ha q különböző másolatot készítünk (r_1, r_2, \ldots, r_q) , akkor az összes lefedéshez szükséges négyzet az elsóbb fraktálokból jön: $N(l) = \sum_{i=1}^q N_i(l)$. Az önhasonlóság miatt $N(l) = N_i(l/r_i)$. A fraktál definíciójából jön, hogy $N_i(l) = N(lr_i) \sim (lr_i)^{-D_B}$. Visszahelyettesítve $N(l) = \sum_{i=1}^q N_i(l) = \sum_{i=1}^q (lr_i)^{-D_B} \sim l^{-D_B}$, tehát a dimenzióra egy implicit egyenletet kapunk: $\sum_{i=1}^q r_i^{-D_B} = 1$.

Szotochasztikus fraktálok Hasonlóképp, mint a determinisztikus fraktáloknál, itt is van egy önhasonló rekurzió, mellyel generálódik a fraktál, azonban ekkor bejön továbbá egy random tényező. Ha a random tényező nem befolyásolja fraktál méretét, csak a struktúráját, akkor a fraktál box-counting dimenziója ugyanaz, mint a determinisztikus esetben – lásd 3. ábra.

3. ábra. Sztochasztikus Cantor halmaz. Bal oldalon determinisztikus, jobb oldalon sztochasztikus formában. Észrevehető, hogy a lefedéshez szükséges négyzetek száma (N(l)) nem változik.

4. ábra. Diffúzió-limitált növekedés következtében kialakult random fraktálszerkezet. Ilyen lehet például egy baktériumtelep, vagy elektromos áram elvezetése fában.

5. ábra. Az állatok tömegének és felületének összefüggése log-log skálán.

Random fraktálok A legtöbb, természetben előforduló fraktál ilyen. Ekkor nincsen iterációs szabály, és emiatt a dimenzió kiszámítása is bonyolulttá válhat, ezért célszerűbb a sűrűségkorrelációs függvényt vizsgálni:

$$C(\vec{\mathbf{r}}) = \frac{1}{V} \sum_{\vec{\mathbf{r}'}} \rho \left(\mathbf{r} + \vec{\mathbf{r}'} \right) \rho \left(\vec{\mathbf{r}'} \right), \tag{6}$$

ahol V a térfogat, a szumma a tér minden pontjára vonatkozik, a $\rho(\vec{\mathbf{r}})$ pedig a sűrűségfüggvény, mely = 1 ha a $\vec{\mathbf{r}}$ pontban van fraktál és = 0 egyébként – 4. ábra. A sűrűség-korrelációs függvény

izotróp testek esetében csak a sugártól függ, és amíg hétköznapi objektumokra a lépcsőfüggvény, kristályrácsra pedig diszkrét vonalak, addig fraktáloknál skálázódik:

$$C\left(r\right) \sim r^{-\alpha}.\tag{7}$$

A skálázódásra példa lehet Zipf törvénye, illetve a biológiában az allometria (élőlények tulajdonságia közötti arány). A skálázódásból fakadóan kiszámítható a fraktálhoz szükséges négyzetek száma:

$$N(L) \sim \int_0^L C(r) d^d r \sim L^{d-\alpha}, \tag{8}$$

melyből leolvasható, hogy $D = d - \alpha$.

2. Természetben előforduló fraktálok

A természetben előforduló fraktálok többsége növekvő fraktál. Ebben a fejezetben erre fogunk példákat nézni.

2.1. Random mozgás

Négyzetrácson történő mozgást nézünk, ahol az egyen irányokba történő elmozdulás valószínűsége ugyanakkora. Ekkor egy dimenzióban az elmozdulásnak i lépés után (x_i) a várható értéke nulla, $\langle x_i \rangle = 0$., szórása egy, $\sigma(x_i) = 1$. Az pozíció (x) a centrális határeloszlás-tétel következtében egy $\mu = 0$ várhatóértékű és $\sigma = \sqrt{t}$ szórású normális eloszlást fog követni:

$$\rho\left(x\right) = \frac{1}{\sqrt{1\pi t}} \exp^{-\frac{x^2}{2}}.$$
(9)

Amelyből kifolyólag az átlagos elmozdulás az origótól az időnek a gyökével egyenlő:

$$R = \sqrt{\langle x^2 \rangle} = \sqrt{t}. \tag{10}$$

d=2,3 dimenzióban feltételezzük, hogy az irányok egymástól függetlenek, így több normális eloszlás összege χ eloszlást fog követni, melyből megkapható, hogy az átlagos távolság arányos:

$$\langle R \rangle = \sqrt{t} \sqrt{\frac{2}{d}} \frac{\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(d/2\right)} \Longrightarrow \langle R \rangle \sim \sqrt{t}$$
 (11)

Hogyan lesz ebből fraktál? Ha minden pontot, ahol a részecskénk járt, kitöltünk, a teljes objektum fraktál-struktúrát fog mutatni, feltéve, hogy $d \ge 3$.

2.2. Aggregátumok, perkoláció

Az aggregátumok olyan objektumok, melyben elemi blokkok kapcsolódnak egymáshoz. A perkoláció pedig az anyagnak akadályokkal teli, porózus közegben történő mozgását jelenti. Jelen esetben mindvégig csak olyan objektumokról beszélünk, melyben az elemi blokkok megkülönböztethetetlenek, teljesen ugyanazok. Négyzetrácson (diszkrét térben) a szomszéd jelentheti az egy egységen belüli lépéseket (azaz 2 dimenzióban 4 szomszéd például) vagy tekinthetjük az átlós helyeket is (2 dimenzióban 9 szomszéd). Valós (folytonos) térben a szomszédoknak az

adott távolságon belüli pontokat értjük, ugyanakkor itt figyelembe vesszük, hogy azok között kölcsönhatás lehet.

Aggregációnál általában egy maghoz kapcsolódnak a blokkok egy sztochasztikus folyamat révén. Ez kétféleképpen valósulhat meg: 1) elindítunk random pozícióból egy részecskét és az csatlakozik valahol a klaszterhez, avagy 2) kiválasztunk egy a klaszternek szomszédos véletlenszeű pozíciót és azt szintén random paraméterek alapján vagy kitöltjük, vagy nem. Pszeudo-random paraméter például a hőmérséklet-szerű paraméterek vagy több más paraméter összessége.

Lokális modell A lokális modellben a helyszín kitöltése csakis önmagától (betöltött-e vagy sem) és a többi szomszédtól függhet (diagonális megengedett) – ilyenek például a sejtautomaták és a diffúzió-limitált növekedés alapú baktériumtelepek is. A lokális modellben elöfordulhatnak egymástól független klaszterek is, másnéven rács-állatkák (lattice animals) – lásd 6. ábra. A rács-állatkák típusa (szimmetriák megléte (forgatás és/vagy tükrözés)), illetve gyakorisága jellemző az iterációs módszerre – erről bövebben később a 3. fejezetben.

6. ábra. Rács-állatkák két dimenzióban.

Nemlokális modell A nemlokális modellben azonban megengedhetjük a távolhatást, azaz a távoli részecskék közötti kölcsönhatást – erre tökéletes példa az ábeli homokdomb modell. Ebben – értelemszerűen – a lokális randomitás helyett a globális lesz jelen.

A perkolációs modell esetében egy véges rács minden pontjához rendelünk valami random számot (0 és 1 között), majd egy p határérték (valószínűség) alatt feltöltjük azokat. Ekkor lehet vizsgálni a legnagyobb klaszter méretét, melynek keletkezése egy bizonyos p_c kritikus valószínűségnél következik be. Perkolációra példa a természetben a szivacsban, falban vagy kőben történő folyadékterjedés.

2.3. Diffúzió-limitált növekedés

A diffúzió-limitált növekedés (DLA – diffusion limited aggregation) esetében nem egy random walker van, hanem hanem kontinuum sok. A cél megmutatni, hogy a növekedés nemlokális tér következtében történik. Ekkor a Laplace egyenletet kell megoldanunk időben változó határfeltételek mellett:

$$\frac{\partial C}{\partial t} = D\nabla^2 C. \tag{12}$$

Ennek modellezésére egy példa: indítunk egy részecskét a távolból, ami random walkkal hozzácsatlakozik a nagy klaszterhez, amennyiben hozzáér, majd a következő részecske. Optimalizálási lehetőségek: egy az adott aggregátumot körülvevő körről indítjuk a részecskét (seed circle), távoli részecskéket elfelejtjük, és újraindítjuk őket a seed circle-ről. 2 dimenzióban kísérletek alapján a fraktáldimenziója ≈ 1.71 . Magasabb dimenziókban átlagtér közelítésssel megadható a fraktáldimenzió: $D = (d^2 + 1) / (d + 1)$.

Ilyen alapon az aggregátumoknak izotrópnak és rácsfüggetlennek kéne lenniük, ezzel szemben anizotrópia és rácsfüggőség a megfigyelhető. Ezen ellentmondás feloldását az $N \to \infty$ határesetben lehet megtalálni, ugyanis a kísérletekben csak véges méretben és dimenzióban tudunk mérni.

A DLA különböző variációi lehetnek:

- folytonos térben történe random walk,
- be lehet vezetni egy valószínűséget, mellyel a hozzákapcsolódás rátáját befolyásolhatjuk,
- \bullet véges méretben számíthat a rácsfüggőség \rightarrow háromszögrács, hatszögrács, stb.

3. Sejtautomaták

Az első sejtautomatát Neumann János készítette, mellyel modellezni tudta a biológiai reprodukció folyamatát, amely többek között teljes Turing machine-ként is funkcionált. A leghíresebb sejtautomata minden bizonnyal Conway életjátéka. A sejtautomaták általános jellemzói:

- ullet az x,y,z folytonos tér felosztódik cellákra, melyek általában valamilyen rácson helyezkednek el,
- egy sejt állapotát jelző funkciók diszkretizálódnak,
- a t idő is diszkretizálódik,
- egy sejt dinamikáját leíró függvényt a szomszédos cellák határozzák meg (lokális szabályok),
- a frissítések történhetnek szimultán vagy szinkronizálva.

A sejtautomatákat könnyen lehet párhuzamosítani, ugyanis a cellák változóinak a számai végesek, így könnyen lehet integereket használni, illetve a cellák lokális szabályai miatt az egész teret fel lehet osztani kisebb részekre.

3.1. Egydimenziós eset

Egydimenziós esetben egy sorba rendezett cellákról beszélhetünk, melyek 0 vagy 1 értéket tudnak felvenni (boolean cellular automaton). Ekkor egy cella szomszédainak tekintjük az ahhoz egy-egy oldalról kapcsolódó cellákat. Mivel a cella következő állapota függ a sajátjától, illetve a szomszédjaitól, $2 \times 2 \times 2 = 8$, azaz nyolcféle helyzet alakulhat ki. Ekkor minden egyes helyzetre meg tudjuk szabni, hogy a következő időlépésben milyen állapotban legyen a központi sejtünk. Erre példát a 7. ábra szolgáltat.

7. ábra. Egydimenziós sejtautomata egyik féle szabálya. A felső sor megdja a lehetséges kialakuló helyzeteket, az alsó sorban pedig megszabhatjuk, milyen állapotban legyen a központi cellánk a következő lépésben.

Összességében tehát $2^8 = 256$ féle klünböző szabályt tudunk megalkotni. A 7. ábrán látott szabályt a 90-esnek nevezik (rule 90), ugyanis a kialakuló állapotokat binárisnak tekintve (01011010), ha átírjuk azt decimálissá, 90-et kapunk (Bin01011010 = Hex90).

Wolfram tanulámnyozta ezt a fajta sejtautomatát, és a hosszútávú viselkedésüket tekintve az alábbi négy csoportra tudta osztani a szabályokat:

- Határponti viselkedés (limit point behaviour): sejtek értékei egy meghatározott értékhez tartanak, mely a kezdeti állapottól független,
- Határciklus (limit cycle behaviour): stabil (időben) periodikus mintázat jön létre,
- Kaotikus viselkedés: a sejt állapotának változása nem követ semmi struktúrát, kaotikus viselkedés jön létre,
- Komplex viselkedés: komplex és lokális mozgó mintázatok jönnek létre.

3.2. Conway életjátéka

1970-ben John Conway matematikus alkotta meg a sejtautomaták azon csoportját, melyben egy 2 dimenziós négyzetrács van, a sejt bináris (élő - 0, halott - 1), és a sejt következő állapotát csak az életben lévő szomszédok száma határozza meg. Továbbá, *Moore szomszédokat* veszünk, azaz megengedjük a diagonális átmenetet is, tehát egy sejtnek 8 szomszédja lesz – az eredeti Neumann-féle sejtautomaták *Neumann szomszédokat* használtak, ahol a diagonál nem volt megengedett, tehát 2 dimenzióban is csak 2 szomszédja volt egy sejtnek.

Ekkor szintén lehet definiálni szabályokat, és értelmezni egy bináris kódot: például a 000011100 kódot úgy kell értelmezni, hogy alárakjuk az életben lévő szomszádok számát (012345678). A kód alapján, élő lesz (marad) a sejt, ha az életben lévő szomszédjainak a száma 4, 5 vagy 6, minden más esetben halott. Értelemszerűen, a sejt saját állapotától is függhet a jövője, amellyel a szabályokat Ezzel az élet különöző modelljeit tudjuk rekonstruálni.

3.3. Gáz szimulálása rácson

Egy nagyon effektív modellt publikált U. Frisch et al. 1986-ban a kétdimenziós Navier-Stokes egyenletek alapján. Ennek a modellnek a főbb jellemzői:

- Hatszögrács: A hexagonális szimmetria elengedhetetlen ahhoz, hogy elég szabadsági fok legyen a forgásszimmetriának, így biztosítva a perdületmegmaradást.
- **Sűrűség:** Minden cellának maximum 6 db m=1 tömegű részecskéje lehet, így a sűrűség 7 különböző értéket vehet fel.
- Szabad áramlás (Euler): a szabad áramlás létrejöttét az alábbi szabályok segítik elő:
 - Sebesség: minden részecskének 6 lehetséges irányú sebessége lehet, azonban egy időlépés alatt csak egy cellát mozdulhat el.
 - Sebesség egy cellán belül: az egy cellán belül lévő részecskéknek csakis különböző irányú sebességei lehetnek – két részecske nem akarhat ugyanoda menni.
- Viszkozitás (Navier-Stokes): A viszkozitás létrejöttét az ütközési szabályok biztosítják: ha egy sejtre 2, 3 vagy 4 részecske pályázik, azok úgy változtatják majd a sebességüket, hogy az összimpulzus megmaradjon. Ilyen ütközésekre példa a 8. ábra.

8. ábra. Kétdimenziós hatszográcson történő ütközések lehetséges kimenetelei. Mindenhol az X jelöli a részecskét, és a közepe felé haladnának. Az első és negyedik esetben a két választás egyenértékű. Ha az irányt véletlenszerűen választjuk ki, a rendszer sztochasztikussá válhat. Akkor tudjuk megtartani a rendszert determinisztikusnak, ha nem választunk kitüntetett irányt, mert így nem törik meg a királis szimmetria sem.

Források

Fraktálokat Palla Gergely előadásjegyzete alapján: http://pallag.web.elte.hu/fractals/, a sejtautomatákat pedig Csabai István jegyzete alapján: csabai.web.elte.hu/http/szamszim/lecture7/topic6-lec1.pdf készítettem.