MIS356 Statistical Machine Learning Syllabus

Instructor: Bayar, Mustafa MehmetCommunication: mehmet. bayar@hbv. edu. tr

Ankara Haci Bayram Veli University - Besevler Campus,

Dept. of Business Administration (Building A, 2nd Story), Office 212

Ofis Hours : Make an appointment via email

Aim of the Course

MIS356 aims to deliver a gentle introduction to both the theory and applications of statistical learning.

Course Output

A student who passes this course;

- Learns the intuitive the math background of statistical learning,
- Identifies statistical learning and machine learning as AI disciplines,
- Learns the statistical learning terminology,
- Learns to build and fine-tune predictive models,
- Learns clustering,
- Learns inference and the bias-variance tradeoff,
- Performs python programming for classification, regression, and clustering tasks.

Required Reading

James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). *An introduction to statistical learning: With applications in python*. Springer Nature.

Additional Materials

- <u>Desmos Graphical Calculator</u>
- 3Blue1Brown: Calculus, linear algebra, probability, and neural networks wathclists
- <u>Google Colaboratory</u>
- Kaggle Databases

Tentative Course Outline

Week 1 : Why learng statistical learning?

o Data – driven decision – makingo Value of missing/unknown data

Capabilities, limitations, and implicationsMath Camp Session 1: Linear Algebra Essentials

Week 2 : Math Camp Session 2: Single Variable Differential Calculus

o Rate of change

o Formal definition of derivatives*o* Gradient – based local search

Week 3 : Math Camp Session 3: Multiple Variable Differential Calculus

o Functions of several variables

o Gradient ascent/descent algorithms revisited

o Pitfalls and workarounds

Week 4 : Introduction to Statistical Learning

o Inputs: predictors, independent variables, features

o Outputs: response, dependent variable

o Functions and models (parametric vs. non − parametric)

o Model accuracy and error

o Supervised vs. Unsupervised Learning

Week 5 : Supervised Learning Workshop 1: Linear Regression vs. KNN – Regression
Week 6 : Supervised Learning Workshop 1 (cont'd): Model flexibility decisions

o Underfitting*o* Overfitting

Week 7 : Supervised Learning Workshop 1 (cont'd): Bias — Variance tradeoff

Week 8 : Supervised Learning Workshop 2: Logistic Regression vs. SVM
Week 9 : Supervised Learning Workshop 2 (cont'd): Uneven categories
Week 10 : An introduction to feature engineering: Managing date – time data

Week 11 : An introduction to feature engineering (cont'd): Managing missing data

Week 12 : An introduction to feature engineering (cont'd):

o Curse of dimensionality

o Principal component analysis

Week 13 : Unsupervised Learning Workshop 1: Centroid – based clustering

o K − means clustering

o Mutually exclusive data clusters

o Intersecting data clusters

Week 14 : Unsupervised Learning Workshop 2: Density — based clustering

o DBSCAN clustering

o Mutually exclusive data clusters

o Intersecting data clusters

Grading Policy

Occasional ungraded-assignments will not be a grading metric. Their purpose is to maintain better learning.

See Ankara Bilim University Higher Education Guidelines/Article 38:

Score Intervals	Grades	Scores per Credit
[100, 90]	AA	4.0
(90, 80)	BA	3.5
(80,70)	BB	3.0
(70, 60)	CB	2.5
[60,55]	CC	2.0
(55, 50]	DC	1.5
(50, 45]	DD	1.0
(45, 0]	FF	0.0