Argument Principle

Theorem

Let f(z) be analytic on \overline{D} with boundary γ . The number of zeros of f(z) in D is given by:

$$N = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

Proof

D is a compact set, so the number of zeros is finite

Let
$$f(z) = \left[\prod_{k=1}^N (z-z_k)\right] g(z)$$
, where $g(z) \neq 0$ in D $\log f(z) = \sum_{k=1}^N \log (z-z_k) + \log g(z)$
Now differentiate wrt z :
$$\frac{f'(z)}{f(z)} = \sum_{k=1}^N \frac{1}{z-z_k} + \frac{g'(z)}{g(z)}$$
Now, multiply by $\frac{1}{2\pi i}$ and integrate on γ :
$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^N \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-z_k} dz + \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz$$
But $\frac{g'(z)}{g(z)}$ is analytic in D :

$$\frac{f'(z)}{f(z)} = \sum_{k=1}^{N} \frac{1}{z - z_k} + \frac{g'(z)}{g(z)}$$

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{N} \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_k} dz + \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz$$

$$\frac{1}{2\pi i} \int_{\gamma}^{\infty} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{N} (1) + 0$$

$$\therefore N = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

Theorem: Newton

Let
$$f(z) = \sum_{k=0}^{n} a_k z^k$$
:

$$\sum_{k=0}^{n} a_k = -\frac{a_{n-1}}{a_n}$$

Theorem

Let $f(z) = \sum_{k=0}^n a_k z^k$ and let γ enclose all of the zeros of f(z):

$$\frac{1}{2\pi i} \int_{\gamma} z \frac{f'(z)}{f(z)} = -\frac{a_{n-1}}{a_n}$$

Proof

$$f(z) = a_n \prod_{k=1}^{n} (z - z_k) \log f(z) = \log a_n + \sum_{k=0}^{n} \log (z - z_k)$$

$$\frac{f'(z)}{f(z)} = 0 + \sum_{k=0}^{n} \frac{1}{z - z_k}$$

Now differentiate wrt z: $\frac{f'(z)}{f(z)} = 0 + \sum_{k=0}^{n} \frac{1}{z - z_k}$ Now, multiply by $\frac{1}{2\pi i}z$ and integrate on γ :

$$\frac{1}{2\pi i} \int_{\gamma} z \frac{f'(z)}{f(z)} dz = \sum_{k=0}^{n} \frac{1}{2\pi i} \int_{\gamma} \frac{z}{z - z_{k}} dz = \sum_{k=0}^{n} z_{k} = -\frac{a_{n-1}}{a_{n}}$$