

отчет по лабораторной работе Операционный усилитель

ЛЭТИ.849121.01 ЭЗ

1 Индивидуальное задание

Смоделировать работу схемы, использующей операционный усилитель. Коэффициент усиления по напряжению принять равным 30+N. Где N – порядковый номер студента в списке группы.

Реальный операционный усилитель выбрать из таблицы (1). Взять строку с номером, совпадающим с порядковым номером в списке группы.

Таблица 1 – операционный усилитель для индивидуального задания

$N_{\overline{0}}$	Операционный усилитель	Nº €	Операционный усилитель	примечания
1	ICL7652	15	LMC6062	
2	LF301	16	LT1013	
3	LF353	17	MC1458	
4	LF356	18	OP-07D	
5	LF411	19	OPA111	
6	LF412	20	OPA277	
7	LF442	21	OPA374	
8	LHV870	22	OPA411	
9	LM118	23	OPA445	
10	LM324	24	OPA511	
11	LM4250	25	TLC27M2	
12	LM6211	26	UA741	
13	LM7341	27	UA747	
14	LM741			

Просьба для графиков использовать светлый цвет фона.

Взам. инв. №

Подп. и дата

Инв. № подл.

1.1 Примеры использования данного шаблона

Формула для коэффициента усиления по напряжению инвертирующего усилителя на основе идеального операционного усилителя

- LJ							ЛЭТИ.849121.01 Э3						
		Изм	Лист	№ докум.	Подп.	Дата	ψ13 111.0 181 2 1.0						
		Разраб.		Иванов-Петров М. М.			отчет по лабораторной	Лит.	Лист	Листов			
		Пров. И		Иванов П.С.			работе	У	2	8			
1							1						
		Н. к	онтр.	Петров П.П.			Операционный						
		y_{TB} .		Сидоров С.С.			усилитель						

$$K_U = U_{\scriptscriptstyle
m BMX}/U_{\scriptscriptstyle
m BX} = -rac{R_2}{R_1}$$

Рисунок 1 – пример подключения идеального операционного усилителя

Листинг 1: Пример подключения модели идеального ОУ в ngspice (849104.0101.cir)

```
1 849104.0101 (PSpice format)
2
   *
3
   .control
   set color0 = white
                        ; белый фон
   set color1 = black
   set color2 = brown
   set color3 = green
   set color4 = gold
   set color5 = red
   * постоянное напряжение от 0 до 5 с шагом 0.1
11
   DC VS2 0 5 0.1
  plot v(3)
12
   .endc
13
14 XIOP1
               1 2 3 IdOpamp
15 R3
               0 1 1К ; узел 1 - неинвертирующий
16 R1
               4 1 1K
17 VS1
               4 0 0
  R.2
               5 2 1K
                         ; узел 2 - инвертирующий
18
19
   VS2
               5 0 14
               2 3 1К ; узел 3 - выход
20
21
22
23
   * http://www.ecircuitcenter.com/Circuits/opmodel1/opmodel2.htm
24
25
   * OPAMP MACRO MODEL, SINGLE-POLE
26
   * connections:
                      non-inverting input
27
                           inverting input
28
                           | output
29
   .SUBCKT IdOpamp
30
   * INPUT IMPEDANCE
31
  RIN 1 2 10MEG
33 * DC GAIN (100K) AND POLE 1 (10HZ)
```

Изм Лист № докум. Подп. Дата

Подп. и

Инв. № дубл.

инв.

Взам.

и дата

Подп.

подл.

Инв. №

ЛЭТИ.849121.01 ЭЗ

Лист

```
34 EGAIN 3 0 1 2 100K

35 RP1 3 4 1K

36 CP1 4 0 15.915UF

37 * OUTPUT BUFFER AND RESISTANCE

38 EBUFFER 5 0 4 0 1

39 ROUT 5 6 10

40 .ENDS
```

1.2 Выполнение задания

Собираем схему, как указано на рис $2\,$

Рисунок 2 – Схема проведения опыта

Подключение внешнего pdf-файла приведен ниже:

Изм	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

Подп. и дата Взам. инв. № Инв. № дубл. Подп. и

подл.

Инв. №

напряжение покоя $U_{0 \text{ вых}}$ можно внешней регулировкой (балансировкой нуля). Однако лучшей гарантией получения минимального напряжения ошибок является правильный выбор типа операционного усилителя и выполнение необходимых соотношений резисторами схемы. При этом желательно использовать в устройстве резисторы небольших номиналов. При приближении $U_{\text{вых}}$ к $U_{\text{напр.пит.}}$ ОУ выходит из линейного режима и переходит в режим ограничения с уровнем насыщения $U_{\text{вых. max}}$, близким к напряжению питания.

Коэффициент усиления по напряжению инвертирующего усилителя на основе идеального операционного усилителя

$$K_U = U_{\text{вых}}/U_{\text{вх}} = -R_2/R_1,$$
 (1)

где знак «минус» указывает на инверсию сигнала.

Входное сопротивление инвертирующего усилителя $R_{\text{вх}} \approx R_1$

Рис. 3: амплитудно-частотная характеристика(АЧХ) ОУ

На рис. 4 приведена схема дифференциального (разностного) усилителя на ОУ.

На входы усилителя подаются два входных сигнала — от источников E_1 и E_2 , часть выходного напряжения U через элементы отрицательной обратной связи (делитель напряжения R_2 и R_4) подаётся на инвертирующий вход усилителя. Коэффициент передачи усилителя по напряжению определяется как:

$$K_U = R_2/(R_2 + R_4) (2)$$

очень велик, то весьма малое значение $U_{\rm y}$ может вызвать существенные значения $U_{\rm Bыx}=K_UU_{\rm y}$. Ненулевое $U_{\rm выx}$ при $u_{\rm вx}=0$ затрудняет использование ОУ. Для исключения вредного влияния входных токов к прямому входу ОУ подключают резистор $R_2=R_1R_{OC}/(R_1+R_{OC})$. Входной ток прямого входа создает в нем падение напряжения, входной сигнал определяется разностью напряжений на прямом и инверсном входах и при равенстве входных токов обоих входов $u_{\rm вx}=0$.

- 5. Устанавливая равные по величине, но противоположные по знаку величины E_1 и E_2 , снять характеристику усилителя при работе с дифференциальным сигналом. Результаты измерений занести в таблицу 1.
- 6. Устанавливая равные по величине величины E_1 и E_2 , снять характеристику усилителя при работе с синфазным сигналом. Результаты измерений занести в таблицу 1.
- 7. По результатам опыта определить коэффициенты усиления усилителя при работе как инвертирующего усилителя K_{U-} , при работе как неинвертирующего усилителя K_{U+} , при работе как дифференциального усилителя K_U , а также коэффициент подавления синфазных сигналов $K_{\text{пол}}$.
- 8. Замените используемый идеальный операционный усилитель на аналог реальной микросхемы. Реальную микросхему для индивидуельного задания брать из таблицы 2.
- 9. Установив $E_1 = E_2 = 0$ В и, измерив выходное напряжение усилителя в этом случае, определить напряжение смещения операционного усилителя.
- 10. Увеличить величины сопротивления всех резисторов в 100 раз и, измерив выходное напряжение усилителя в этом случае, определить входной ток усилителя.

6

Лист № докум. Подп. Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

и дата

Подп.

подл.

Инв. №

ЛЭТИ.849121.01 ЭЗ

Рисунок 3 – пример графика зависимости выходного напряжения от входного

Листинг 2: Пример подключения модели реального ОУ по схеме дифференциального усилителя (849124_0224.cir)

```
VS6
                10 0 24
   VS5
                0 11 24
   VS4
                12 0 24
6
   VS3
                0 13 24
   VS2
                14 0 6M
   VS1
                15 0 2M
8
9
   R7
                2 1 1K
10
   R6
                0 3 1K
11
                7 2 1K
12 R4
                6 8 14.868MEG
13
   R3
14
   R2
                8 9 24K
   R1
                9 7 14.868MEG
   ХUЗ
                3 2 4 5 1 OPA277_0
16
   XU2
                14 8 10 11 6 OPA277_0
17
18 XU1
                15 9 12 13 7 OPA277_0
```

4 0 24

0 5 24

VS8

VS7

Подп. и дата

Инв. № дубл.

Взам. инв.

Подп.

Инв. № подл.

Содержание

1	Индивидуальное задание										
	1.1	Примеры использования данного шаблона	2								
	1.2	Выполнение задания	4								

Изм	л Лист	№ докум.	Подп.	Дата

	Листинги													
		1 2	Пример Пример ального	подклн	очени	ия моде.	ли реа.	льного	ОУ по	схеме	дифф	еренци	[-	3 7
				y		_	_ `	,						
a														
Подп. и дата														
Инв. № дубл.														
Взам. инв. №														
Подп. и дата														
. № подл.							π'		0.401	01.0	1 12		Л	Іист
$\it M_{HB}$.	Изм	Лист	№ докум.	Подп.	Дата		JI	フェル	.8491	Z1.U1	<u> </u>			8