Executive Summary

ML Model Development Lifecycle and Project Outcomes

The methodical lifecycle of creating machine learning (ML) models is intended to yield precise, trustworthy, and morally sound results. The goal of this study was to develop a predictive machine learning model using the Titanic dataset in order to categorize whether or not passengers survived by taking into account a number of characteristics, including age, sex, class, and family size. Data preparation, exploratory analysis, feature engineering, model selection, training, assessment, and deployment were all included in the workflow.

Data Collection and Preparation

Gathering the Titanic dataset from CSV files and cleaning it up by deleting unnecessary columns like Name and Passengerld and filling in missing variables (such as imputing Age, Cabin, and Embarked) were the first steps.

```
from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content,

| Let's load the dataset and inspect the first few rows to understand its structure.
import pandas as pd
# Load the dataset
df_train = pd.read_csv("/content/drive/MyDrive/ANIL_ASSIGN/Titanic/train.csv")
df_test = pd.read_csv("/content/drive/MyDrive/ANIL_ASSIGN/Titanic/test.csv")
target = pd.read_csv("/content/drive/MyDrive/ANIL_ASSIGN/Titanic/gender_submission.csv")
```

Exploratory Data Analysis (EDA)

The associations between different variables and survival rates were examined using exploratory data analysis (EDA). The following important parameters were highlighted by visual aids such histograms, box plots, and correlation matrices: age, family size, Pclass, and sex. First-class passengers, women, and children were shown to have

better survival rates. Decisions around feature engineering and model selection were informed by these findings.

[] # Display the last 5 rows of the df_train dataset df_train.tail()													
<u>₹</u>		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	886	887		2	Montvila, Rev. Juozas	male	27.0			211536	13.00	NaN	
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0			112053	30.00	B42	s
	888	889		3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1		W./C. 6607	23.45	NaN	
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0			111369	30.00	C148	С
	890	891		3	Dooley, Mr. Patrick	male	32.0			370376	7.75	NaN	Q
[]		lculate the t rain[df_train						vived l	by filt	ering ro	ows whe	ere 'Se	k' is 'mal
₹	109												
[]		lculate the t rain[df_train						urvive	d by fi	ltering	rows	here '	Sex' is 'f
₹	233												

Feature Engineering and Transformation

By creating predictive features, feature engineering improved the dataset. SibSp and Parch were combined to create FamilySize, while travelers without family were identified by IsAlone. Numerical features were standardized for homogeneity, while categorical data like Sex and Embarked were translated using one-hot encoding. Before modeling, column transformers made it easier to preprocess both categorical and numerical data.

```
[ ] # Create the FamilySize column
    df_train['FamilySize'] = df_train['SibSp'] + df_train['Parch']

# Create the IsAlone column
    df_train['IsAlone'] = (df_train['FamilySize'] == 0).astype(int)
```

Model Selection and Training

This binary classification assignment evaluated a number of machine learning models, including K-Nearest Neighbors (KNN), Decision Tree Classifier (DTC), Support Vector Classifier (SVC), and Logistic Regression (LR). A training-validation split was used to train the models in order to prevent overfitting and encourage efficient generalization. In order to guarantee consistent operations, pipelines were used to streamline preprocessing and modeling.

```
[ ] from sklearn.neighbors import KNeighborsClassifier
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.svm import SVC
    from sklearn.linear_model import LogisticRegression

model_KNN = make_pipeline(preprocessor, KNeighborsClassifier())
    model_DTC = make_pipeline(preprocessor, DecisionTreeClassifier())
    model_SVC = make_pipeline(preprocessor, SVC())
    model_LR = make_pipeline(preprocessor, LogisticRegression())
```

Model Evaluation

Using a test set, models were assessed for accuracy, precision, recall, and F1 score.

K-Neighbors Classifier: 0.8445

Decision Tree Classifier: 0.8780

Support Vector Classifier: 0.9522

Logistic Regression: 0.9474

While Logistic Regression worked well for modeling linear correlations, the SVC was notable for its capacity to identify intricate patterns. Although it performed well in handling categorical data, the Decision Tree Classifier displayed indications of possible overfitting. The K-Neighbors Classifier, which relies on proximity-based patterns, fared moderately despite being simpler. For situations where accuracy is a top concern, both SVC and logistic regression were very well-suited.

′ Classifica	ation Report	for Support	Vector Cla	assifier:
	precisio	n recall	f1-score	support
Not Surviv Surviv			0.96 0.94	266 152
accura macro a weighted a	avg 0.9		0.95 0.95 0.95	418 418 418

Classification Report for Logistic Regression:							
	precision	recall	f1-score	support			
Not Survived Survived	0.97 0.91	0.95 0.95	0.96 0.93	266 152			
accuracy macro avg weighted avg	0.94 0.95	0.95 0.95	0.95 0.94 0.95	418 418 418			

Classification	n Report for	Decision	Tree Class	ifier:
	precision	recall	f1-score	support
Not Survived Survived	0.89 0.84	0.91 0.81	0.90 0.82	266 152
accuracy macro avg weighted avg	0.86 0.87	0.86 0.87	0.87 0.86 0.87	418 418 418

Classification Report for K-Neighbors Classifier:							
	precision	recall	f1-score	support			
Not Survived Survived	0.88 0.78	0.88 0.79	0.88 0.79	266 152			
accuracy macro avg weighted avg	0.83 0.84	0.83 0.84	0.84 0.83 0.84	418 418 418			

Model Deployment and Outcomes

To ensure that it does not reflect biases connected to social and demographic aspects like gender and class, the final model was chosen based on its accuracy and fairness. It has been used for assessment and instruction, highlighting the elements that affected Titanic survival.

Conclusion

The ML model development lifecycle, from data collection and preparation to model deployment, was crucial in building a robust predictive system. The project not only demonstrated the practical steps of building an ML model but also highlighted ethical considerations and the importance of model fairness in decision-making. By carefully evaluating and selecting the best-performing model, the project provides valuable insights into the complexities of predictive modeling and its real-world implications.