Hypothesis Testing: UMP Tests

Tiandong Wang

Department of Statistics Texas A&M University

The materials are copyrighted

Neyman-Pearson Lemma:

Consider testing $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$, where the pdf or pmf corresponding to θ_i is $f(x|\theta_i)$, i = 0, 1, using a test with rejection region R that satisfies

$$x \in R$$
 if $f(x|\theta_1) > kf(x|\theta_0)$

$$x \in R^c$$
 if $f(x|\theta_1) < kf(x|\theta_0)$,

for some $k \geq 0$, and $\alpha = P_{\theta_0}(\mathbf{X} \in R)$, Then

- a) (Sufficiency) Any test that satisfies (1) and (2) is a UMP level α test
- b) (Necessary) If there is a test satisfying (1) and (2) with k > 0, then
 - i) every UMP level α test is a size α test;
 - ii) every UMP level α test satisfies (1) except on a set A satisfying P_{θ0}(**X** ∈ A) = P_{θ1}(**X** ∈ A) = 0

UMP: Binomial Example

Let $X \sim Bin(2, \theta)$. Consider testing $H_0: \theta = 1/2$ vs $H_1: \theta = 3/4$

Sufficiency statistic and UMP test

Consider testing $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$. Suppose $T(\mathbf{X})$ is sufficient for θ and $g(t|\theta_i)$ is the pdf or pmf corresponding to θ_i is $f(x|\theta_i)$, i = 0, 1, . Then any test based on T with rejection region S is a UMP level α test if it satisfies

$$t \in S$$
 if $g(t|\theta_1) > kg(t|\theta_0)$

$$t \in S^c$$
 if $g(t|\theta_1) < kg(t|\theta_0)$

, for some $k \geq 0$, and $\alpha = P_{\theta_0}(T \in S)$,

Sufficiency statistic and UMP test: Examples

- Example: n samples iid $N(\theta, \sigma^2)$, σ^2 known. Test $H_0: \theta = \theta_0$ vs $\theta = \theta_1$ Find the UMP level α test.
- Example: n samples iid $N(\theta, \sigma^2)$, θ is known and σ^2 unknown. Test

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs } \sigma^2 = \sigma_1^2,$$
 where $\sigma_1^2 > \sigma_0^2$. Find the UMP level α test.

Monotone Likelihood Ratio (MLR)

Question: When does the UMP test exist for one-sided composite hypotheses?

Often when pdfs or pmfs have the monotone likelihood ratio property.

A family of pdfs or pmfs $\{g(t|\theta):\theta\in\Theta\}$ for a univariate random variable T with real-valued parameter θ has a monotone likelihood ratio (MLR) if

 $g(t|\theta_2)/g(t|\theta_1)$ is an increasing function of t

for every $\theta_2 > \theta_1$, on $\{t: g(t|\theta_1) > 0\}$ or $\{g(t|\theta_2) > 0\}$

Monotone Likelihood Ratio (MLR): Examples

- Normal, Poisson, Binomial all have the MLR property. (Exercise 8.25)
- If T is from an exponential family with the density

$$f(t|\theta) = h(t)c(\theta) \exp^{w(\theta)t}$$

then the distribution of T has an MLR if $w(\theta)$ is a nondecreasing function in θ .

• If X_1, \dots, X_n iid from $N(\mu, \sigma^2)$ with σ^2 unknown, then $\sum_{i=1}^n (X_i - \mu)^2$ has an MLR

Note: Monotone decreasing is similarly defined.

Karlin-Rubin Theorem

Theorem

Suppose T(X) is a sufficient statistic for θ and the family $\{g(t|\theta_i), \theta \in \Theta\}$ is an MLR family. Then:

(1) For testing

 $H_0: \theta \leq \theta_0 \text{ vs } \theta > \theta_0$

the UMP level α test is given by rejects H_0 if and only if $T > t_0$ where $\alpha = P_{\theta_0}(T > t_0)$.

Karlin-Rubin Theorem: continue

Theorem

Suppose T(X) is a sufficient statistic for θ and the family $\{g(t|\theta_i), \theta \in \Theta\}$ is an MLR family. Then:

(2) For testing

 $H_0: \theta \geq \theta_0 \text{ vs } \theta < \theta_0$

the UMP level α test is given by rejects H_0 if and only if $T < t_0$ where $\alpha = P_{\theta_0}(T < t_0)$.

Karlin-Rubin Theorem: Examples

- Example 1: X₁, · · · , X_n ~ iid N(θ, σ²) with θ unknown and σ² known.
 - ullet Find the UMP level lpha test for testing

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$

• Find the UMP level α test for testing

$$H_0: \theta \geq \theta_0$$
 versus $H_1: \theta < \theta_0$

Example 2: X₁, · · · , X_n ~ iid N(μ₀, σ²) with μ₀ known and σ² unknown. Find the UMP level α test for testing

$$H_0: \sigma^2 \leq \sigma_0^2$$
 versus $H_1: \sigma^2 > \sigma_0^2$

Nonexistence of UMP test

- For many problems, there is no UMP level α test, because the class level α test is so large that no one test dominates all the others in terms of power. Example 8.3.19 (textbook)
- Similar to UMVUE, we search a UMP test within some subset of the class of level α test, for example, the subset of all unbiased tests.

p-value

One method of reporting the hypotheses results is to report the size, α , of the test used and the decision to reject H_0 or accept H_0 .

- If α is small, the decision to reject H_0 is fairly convincing
- If α is large, the decision to reject H_0 is not very convincing because the test has a large probability of incorrectly making that decision.

p-value

Two issues of this testing procedure:

- The choice of α is subjective. Different people may have differe tolerance levels α .
- The final answer does not not show the strength of decision (Is it a strong rejection or weak rejection? strong acceptance or weak acceptance?).

p-value

A p-value is the smallest possible level $\hat{\alpha}$ at which H_0 would be rejected.

- p-value is a test statistic, taking value $0 \le p(x) \le 1$ for the sample **x**.
- Small values of p(X) gives evidence that H_1 is true.
- The smaller p-value, the stronger the evidence of rejecting H₀.
- A p-value is valid if, for every $\theta \in \Theta_0$ and every $0 \le \alpha \le 1$

$$P_{\theta}(p(\mathbf{X}) \leq \alpha) \leq \alpha$$

Compute p-value

Theorem

Let W(X) be a test statistic such that large values of W give evidence that H_1 is true. For each sample point x, define

$$p(x) = \sup_{\theta \in \Theta_0} P_{\theta}(W(X) \geq W(x))$$

Then p(X) is a valid p-value.

- •
- p-value testing procedure:
 - Compute p-value based on the data x_1, \dots, x_n .
 - If p-value $< \alpha$, we reject H_0 at level α ; otherwise accept H_0

P-value: Examples

Example 1: X₁, · · · , X_n ~ iid N(θ, σ²) with θ unknown and σ² unknown. Consider testing

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$

- Compute the p-value of the LRT statistic W(X).
- Assume n = 16 and we observed $\bar{x} = 1.5$, $s^2 = 1$. Assume $\theta_0 = 1$. Calculate the p-value. Do you reject the null hypothesis at level 0.05? at level 0.1?
- Example 2: In the above example, consider testing

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$