

MATEMÁTICA BÁSICA – CE82 SEMANA 6 – SP1

Temario: Ecuaciones exponenciales y logarítmicas. Cálculo de dominio de funciones exponencial y logarítmica.

Logro de la sesión: Al término de la sesión el estudiante resuelve ecuaciones exponenciales y logarítmicas. Calcula asertivamente el dominio de diversas funciones exponenciales y logarítmicas.

ECUACIONES EXPONENCIALES

Estas ecuaciones se resuelven usando leyes de exponentes o de logaritmos. Una ecuación exponencial es aquella en la cual la incógnita aparece en el exponente.

Para resolver se aplica la definición: $b^y = x \Leftrightarrow y = \log_b x$, luego se escribe el conjunto solución.

Ejemplo:

Resuelva la ecuación $3^{x+1} - 4 = 0$

Solución:

 Paso 1: Reescriba la ecuación para que uno de sus lados tenga una única expresión exponencial con la variable como parte del exponente.

$$3^{x+1} = 4$$

• Paso 2: Se aplica la definición.

$$x + 1 =$$

• Se escribe le conjunto solución:

$$CS =$$

Ejercicios 1: Resuelva las siguientes ecuaciones

1.
$$5^{3x-2} + 3 = 9$$

2.
$$e^{\frac{x+1}{2}} - 3 = 2$$

ECUACIONES LOGARÍTMICAS

En las ecuaciones logarítmicas la variable aparece dentro del argumento de un logaritmo.

Para resolver se aplica la definición: $\log_b x = y \Leftrightarrow b^y = x$, luego se escribe el conjunto solución.

Nota: Antes de comenzar a resolver es importante determinar el conjunto de valores que puede tomar la variable (CVA)

Ejemplo:

Resuelva la ecuación $\log_2(2x+3)+2=0$

Solución:

• Paso 1: Determine el conjunto de valores admisibles (CVA)

CVA: 2x+3>0 resolviendo la designaldad se obtiene ______, CVA =

• Paso 2: Obtenga una única expresión logarítmica de un lado de la igualdad.

$$\log_2(2x+3) =$$

• Paso 3: Aplique la definición: $\log_b x = y \Leftrightarrow b^y = x$

$$2x + 3 =$$

• Paso 4: Despeje la incógnita, verifique que pertenece al CVA y escriba el conjunto solución.

Ejercicios 2: Resuelva las siguientes ecuaciones

1.
$$3 + \log_3(2x - 5) = 5$$

2.
$$6 + 5 \ln(4x - 3) = 2$$

3. Halle las coordenadas de los puntos de intersección de la gráfica con los ejes coordenados.

CÁLCULO DE DOMINIO DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

Recordar:

FUNCIÓN	DOMINIO	RANGO
$f(x) = \mathbf{b}^x$		
$f(x) = \log_{b} x$		

Ejemplos: Halle el dominio en cada uno de los siguientes casos

1. $f(x) = \log_2(4x - 12)$	$2. \ g(x) = 2^{x-4} + 3$
	_
$3. \ p(x) = \ln\left(x+3\right)$	$4. \ q(x) = \frac{5}{2^x - 8}$
	2 -8

Ejercicios 3: Halle el dominio en cada uno de los siguientes casos

CIERRE DE CLASE

1.
$$f(x) = \log_3(4x - 6)$$

2.
$$g(x) = \ln(9-x) + \ln(x-2)$$

Solución:

Solución:

3.
$$f(x) = \frac{\sqrt{5-x}}{\log_2 x - 2}$$

4.
$$f(x) = \frac{\sqrt{x}}{3^x - 27}$$

Solución:

Solución:

- A. Sea la función $f(x) = 2^{\sqrt{x}}$, luego ¿su dominio es $]-\infty;0[$? ¿Por qué?
- B. Sea la función $y = e^{-\frac{1}{x}}$, luego ¿es cierto que $]-\infty;\infty[$ es su dominio?
- C. La función $y = \ln(4-x)$, ¿su dominio es? Explique ¿por qué?

EJERCICIOS Y PROBLEMAS

1. Resuelva cada una de las siguientes ecuaciones

ECUACIÓN	CONJUNTO SOLUCIÓN	ECUACIÓN	CONJUNTO SOLUCIÓN
a) $4^{2-x} + 5 = 13$		$c) \log_3\left(\frac{x}{2} + 3\right) = 2$	
b) $e^{3x-1}-2=3$		$d) \ln \left(4-x\right) = 5$	

2. Halle las coordenadas de los puntos de intersección de la gráfica con los ejes coordenados. $f(x) = 4 - 2^{x-2}$

