Задача 1. Для функции $f\left(u\right),\quad u=x^2+e^y$ найти $f_x',\quad f_y',\quad$ если известно $f_u'.$

Задача 2. Для функции $\varphi = f(u, v), u = x \cos y, v = x \sin y$ найти $f'_x, f'_y,$ если известны $f'_u, f'_v.$

Задача 3. Решить уравнение gradf = 0.

- $f = 2z^3 + x^2 + 2y^2 + xy + 3x 2y 6z + 1$;
- $f = z^3 + x^3 + y^3 3xyz;$

Задача 4. Доказать, что дифференцируемая в области $G \in \mathbb{R}^n$ функция f удовлетворяет в G тождеству Эйлера $\sum_{k=1}^n x_k \frac{\partial f}{\partial x_k} = \alpha f$ тогда и только тогда, когда она локально однородная степени α в области G, построить функцию, удовлетворяющую тождеству Эйлера в некоторой области, но не являющуюся однородной функцией в этой области.

узнать: 1) однородность функции

Задача 5. Используя тождество Эйлера, вычислить $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z}$

- $\bullet \ f = \frac{x}{x2 + y^2};$
- \bullet $f = \frac{xy}{z} \ln x + x \varphi \left(\frac{y}{x}; \frac{x}{y} \right), \quad \varphi \left(u, v \right)$ дифференцируемая функция.

Задача 6. Доказать, что функция f(x; y), имеющая ограниченные производные $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ в некоторой выпуклой области G, равномерно непрерывна в этой области.

Задача 7. Найти производную $f = x^2/a^2 + y^2/b^2 + z^2/c^2$, $M(x_0, y_0, z_0)$, по направлению градиента f в точке M.

Задача 8. Найти в точке (1, 2) дифференциалы для дифференцируемых

функций $u\left(x;\ y\right),\ v\left(x;\ y\right),\$ заданных неявно уравнениями $xe^{u+v}+2uv=1,\ ye^{u-v}-\frac{u}{1+v}=2x,\ u\left(1;\ 2\right)=v\left(1;\ 2\right)=0.$

Задача 9. Перейти от декартовых координат к полярным $x=r\cos\varphi,\quad y=r\sin\varphi$: $dy/dx=\frac{x+y}{x-y}$