Package 'utilitR'

December 17, 2017

Type Package

Title Lots of useful functions	
Version 0.1.0	
Author JuG	
Maintainer JuG <julien.godet@unistra.fr></julien.godet@unistra.fr>	
Description Useful functions	
License GPL-3	
Encoding UTF-8	
LazyData true	
RoxygenNote 6.0.1	
Roxygenivote 0.0.1	
R topics documented:	
cleanUpAttempt	2
· · · · · · · · · · · · · · · · · · ·	3
	3
HDIofICDF	4
lmB	5
lmBselect	6
	7
	7
	8
	9
openRefine	
piEst	
relWeights	_
stripPlot	
subReg	
summaryOR	-
tonum	5
unaccent	6
Index 1	7

2 cleanUpAttempt

cleanUpAttempt

Attempt to clean-up messy vectors

Description

An attempt to clean-up messy vectors

Usage

```
cleanUpAttempt(messy, cluster = FALSE, ngroup = NULL)
```

Arguments

messy

a factor vector

Details

```
use stringdist package. examples from https://cran.r-project.org/web/packages/rrefine/vignettes/rrefine-vignette.html
```

Value

void or cleaned-up factor

Author(s)

JuG

```
x <- c("Y", "Y", "Yes", "N", "No","No","No","No","No","Nope","Yes","Yes","Yes")
cleanUpAttempt(x)
cleanUpAttempt(x,ngroup = 2)
cleanUpAttempt(messy = x,ngroup = 2, cluster = TRUE)

# install.packages("devtools")
devtools::install_github("vpnagraj/rrefine")
library(rrefine)
cleanUpAttempt(messy = lateformeeting$what.day.whas.it,ngroup=5)
cleaned <-cleanUpAttempt(messy = lateformeeting$what.day.whas.it,ngroup = 5,cluster=TRUE)
table(cleaned)

cleanUpAttempt(messy = lateformeeting$was.i.on.time.for.work,ngroup=2)

raw <- c("persistante modérée à sévère", "Persistante modérée a sévère", "légère", "persistante modérée à sévère cleanUpAttempt(messy = raw,ngroup=4)
#' cleanUpAttempt(messy = raw)</pre>
```

closeRefine 3

closeRefine

Close connection to openRefine API

Description

Get openRefine cleaned data.frame and close

Usage

```
closeRefine(dataFrameOutput = TRUE, kill = FALSE)
```

Arguments

dataFrameOutput

if TRUE, return a data.frame (a tibble otherwise)

kill if TRUE delete openRefine project

Details

...

Value

data.frame or tibble

Author(s)

JuG

Examples

```
cleanedData <- closeRefine(dataFrameOutput = TRUE)</pre>
```

factOrNot

Define class of data.frame variables

Description

Merge several data.frames

Usage

```
factOrNot(datafr, arg = "factor", ind)
```

Arguments

datafr data.frame

arg class to be evaluated c(factor", "Date", "integer", "numeric")

ind if TRUE return index, else return names

4 HDIofICDF

Value

list or names of columns

Author(s)

JuG

HDIofICDF

Compute Highest Density Interval limits

Description

Compute Highest Density interval limits.

Usage

```
HDIofICDF(ICDFname, credMass = 0.95, tol = 1e-08, ...)
```

Arguments

ICDFname R's name for the inverse cumulative density function of the distribution

credMass the desired mass of the HDI region.

tol tolerance passed to R's optimize function

Details

Code from J.K.Kruschke - Doing bayesian data analysis. Adapted and corrected from Greg Snow's TeachingDemos package.

Value

HDI

Author(s)

JuG

```
#ICDFname must be explicitly named
HDIofICDF( qbeta , shape1 = 30 , shape2 = 12 )
#does not work
HDIofICDF( qbeta , 30 , 12 )
```

ImB 5

lmB	Fitting Linear Models using bayesian inference	

Description

Fitting Linear Models using bayesian inference

Usage

```
lmB(formula, data, graphOutput = TRUE, nIter = 10000, thin = 1)
```

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic

description of the model to be fitted.

data an optional data frame containing the variables in the model. If not found in data,

the variables are taken from environment(formula), typically the environment

from which blm is called.

graphOutput regression parameters graphical output (MCMC Trace and posterior density)

nIter number of iterations

thin thinning interval for monitors

Details

Models for lm are specified symbolically. A typical model has the form response \sim terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response.

Value

regression parameters

Author(s)

JuG

```
data(mtcars)
summary(lm(mpg~ cyl + vs+gear+carb,data=mtcars))
lmB(mpg~ cyl + vs+gear+carb,data=mtcars,nIter=50000)
lmB(mpg~ .,data=mtcars,nIter=50000,graphOutput=FALSE)
```

6 lmBselect

_	_	_		
- 1	mRse	·Ге	~	H

Variable selection and fitting Linear Models using bayesian inference.

Description

Variable selection and fitting Linear Models using bayesian inference.

Usage

```
lmBselect(formula, data, graphOutput = TRUE, nIter = 10000, thin = 1,
  effect = "random")
```

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic

description of the model to be fitted.

data an optional data frame containing the variables in the model. If not found in data,

the variables are taken from environment(formula), typically the environment

from which blm is called.

graphOutput regression parameters graphical output (MCMC Trace and posterior density)

nIter number of iterations

thin thinning interval for monitors

effect "fixed", "random" or "randomPrior" effect for variable selection

Details

Models for Im are specified symbolically. A typical model has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. The effect "randomPrior" adds a beta prior for the model inclusion probability. This induces a distribution for the number of included variables which has longer tails than the binomial distribution, allowing the model to learn about the degree of sparsity.

Value

regression parameters

Author(s)

JuG

References

- 1. O'Hara, R. and Sillanpaa, M. (2009) A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis, 4(1):85-118.
- 2. Kuo, L. and Mallick, B. (1998) Variable selection for regression models. Sankhya B, 60(1):65-81.

merge.all 7

Examples

```
data(mtcars)
summary(lm(mpg~ cyl + vs+gear+carb,data=mtcars))
lmB(mpg~ cyl + vs+gear+carb,data=mtcars,nIter=50000)
lmB(mpg~ .,data=mtcars,nIter=50000,graphOutput=FALSE)
mod <- lm(mpg~ .,data=mtcars)
stepAIC(mod,direction = "both")</pre>
```

merge.all

Merge several data.frames

Description

Merge several data.frames

Usage

```
## S3 method for class 'all'
merge(by, ...)
```

Arguments

by

variable to merge on

Value

merged data.frame

Author(s)

JuG

Examples

```
a <- data.frame("USUBJID" = 1:10, val1 = rnorm(10,1,.2))
b <- data.frame("USUBJID" = 1:10, val2 = LETTERS[1:10])
c <- data.frame("USUBJID" = 1:10, val3 = gl(n = 5,k = 2,length = 10))
merged<-merge.all(by="USUBJID",a,b,c)</pre>
```

na.count

Count missing data

Description

Count missing data

Usage

```
na.count(data)
```

8 newFun

Arguments

data

a vector (numeric, factor or ordered), a matrix, a data.frame or a list

Details

```
key function nafun <- function(x){sum(is.na(x))}</pre>
```

Value

vector of missing value per variable

Author(s)

JuG

Examples

```
#with data.frame
data3 <- data.frame(a = c(1,2,3), b= c("e",NA,3), c = 1:3)
na.count(data3)
#with list
data4 <- list(a = c(1,2,3), b= c("e",NA))
na.count(data4)</pre>
```

newFun

Print a skeleton for a new function in the console

Description

Print a skeletton for a new function in the console

Usage

```
newFun(name, createFile = FALSE, path = NULL)
```

Arguments

name

A name for the function

Details

```
> Sys.setenv(TZ = "Europe/Berlin") > Sys.setlocale("LC\_TIME", "C"); to get UK date format a superior of the superior of the
```

Value

void

Author(s)

JuG

nlsB

Examples

```
newFun("newFunction")
newFun("newFunction",createFile = TRUE)
```

nlsB Determine the nonlinear (weighted) MCMC estimates of the parameters of a nonlinear model.

Description

Determine the nonlinear (weighted) MCMC estimates of the parameters of a nonlinear model.

Usage

```
nlsB(formula, data, graphOutput = TRUE, nIter = 10000, thin = 1)
```

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic

description of the model to be fitted.

data an optional data frame containing the variables in the model. If not found in data,

the variables are taken from environment(formula), typically the environment

from which blm is called.

graphOutput regression parameters graphical output (MCMC Trace and posterior density)

nIter number of iterations

thin thinning interval for monitors

Details

Models for Im are specified symbolically. A typical model has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response.

Value

non-linear regression parameters

Author(s)

JuG

```
data(mtcars)
summary(lm(mpg~ cyl + vs+gear+carb,data=mtcars))
lmB(mpg~ cyl + vs+gear+carb,data=mtcars,nIter=50000)
lmB(mpg~ .,data=mtcars,nIter=50000,graphOutput=FALSE)
```

10 piEst

openRefine

Connect to openRefine API

Description

Connect to openRefine API to import, export or delete a project in OpenRefine directly from an R script

Usage

```
openRefine(data)
```

Arguments

data

a data.frame

Details

Connect to openRefine API https://cran.r-project.org/web/packages/rrefine/vignettes/rrefine-vignette.html. openRefine must be installed on the local machine http://openrefine.org/download.html.

Value

void

Author(s)

JuG

Examples

```
devtools::install_github("vpnagraj/rrefine")
library(rrefine)
lateformeeting[1:10,]
openRefine(lateformeeting)
```

piEst

Estimate population proportion and interval limits

Description

Estimate population proportion and interval limits from observede counts of succes and trials.

Usage

```
piEst(y = 12, n = 20, beta.priors = c(0.5, 0.5), credMass = 0.95, showPlot = FALSE, ...)
```

plotCorMat 11

Arguments

y counts of successes
n counts of trials

beta.priors vector of 2 non-negative parameters of the Beta prior distribution (shapes - by

default Jeffrey's c(0.5,0.5))

credMass mass of the HDI region

showPlot if TRUE, show a graphical representation of \$\pi\$ distribution

Value

Proportion estimates with HDI, CI (quantile c(.025,0.975)), and binomial CI (from binom.test)

Author(s)

JuG

Examples

```
piEst(y = 3, n = 12, showPlot = TRUE)
```

plotCorMat

Plot correlation matrix

Description

Plot correlation matrix

Usage

```
plotCorMat(cormat, cexlab = 12, angle.label = 45)
```

Arguments

cormat correlation matrix

cexlab label size angle.label cex.label size

Value

plot

Author(s)

JuG

12 relWeights

Examples

```
#correlation matrix - simulated (or alternative fact)
corMat <- matrix(runif(400,-1,1),ncol=20)
diag(corMat)<-1
colnames(corMat) <- rownames(corMat) <- paste("Vble",1:20,sep='')
#plot CorMat
plotCorMat(corMat)

# Correlation matrix from mtcars
corMat2 <-cor(mtcars)
plotCorMat(corMat2)</pre>
```

relWeights

Functions for predictor selection

Description

Predictor selection. The total amount of variance accounted for by the model is divided amoong the predicator variables.

Usage

```
relWeights(fit, ...)
```

Arguments

fit

a models lm object.

Value

graphic for rredictor selection

Author(s)

JuG

```
form = as.formula("Fertility ~ .")
allsubreg(formula = form, data = swiss, nbest=6)
if(!require('MASS')){install.packages('MASS')}
library('MASS')
fit1 <- lm(Fertility ~ ., data = swiss)
relWeights(fit1, col="lightgrey",las=1)</pre>
```

stripPlot 13

stripPlot	Plot a customized stipchart	

Description

Plot a customized stipchart

Usage

```
stripPlot(data, formula, col = NULL, addBoxplot = FALSE, jitter = 0.3,
  grid = FALSE, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
  ...)
```

Arguments

formula a formula, such as $y \sim grp$, where y is a numeric vector of data values to be split

into groups according to the grouping variable grp (usually a factor)

col if col is non-null it is assumed to contain colors to be used

addBoxplot if TRUE, a bxplot (package beeswarm) is drawn for each factor modalities

grid if TRUE, draw a grid

datafr data.frame

Value

customized stripchart graphics

Author(s)

JuG

```
dtf <- data.frame(val1 = rnorm(1000,1,.2), fact2 = LETTERS[gl(n = 5,k = 200,length = 1000)])
if(!require(colorRamps)){install.packages('colorRamps')}
require(colorRamps)
stripPlot(data = dtf, val1 ~ fact2, addBoxplot = TRUE,col=matlab.like(12))

if(!require(RColorBrewer)){install.packages('RColorBrewer')}
library("RColorBrewer")
stripPlot(data = dtf, val1 ~ fact2,col=brewer.pal(n = 5, name = "Dark2"), jitter = .2,grid = T)</pre>
```

14 subReg

subReg

Functions for model selection

Description

Model selection by exhaustive search. All subset regression are evaluated to help choosing the best minimalist model. R in action p 211.

Usage

```
subReg(formula, data, nbest)
```

Arguments

formula The models fit by, e.g., the lm and glm functions specified in a compact symbolic

form.

data data.frame

nbest number of subsets of each size to record

Value

graphic for best model selection based on Adjusted R-squre

Author(s)

JuG

```
form = as.formula("Fertility ~ .")
if(!require('MASS')){install.packages('MASS')}
library('MASS')
fit1 <- lm(form, data = swiss)
stepAIC(fit1,direction = "both")
subReg(form, data=swiss, nbest = 3)
relweights(fit1, col="lightgrey",las=1)</pre>
```

summaryOR 15

summaryOR

Odds ratio summary statistics #' @author JuG

Description

Fitting Linear Models using bayesian inference

Usage

```
summaryOR(glm.fit, lateX = TRUE)
```

Arguments

glm.fit an object of class "glm.fit" calculated with a "binomial "link function.

lateX if TRUE, return lateX xtable of the result table

Details

Provide Odds ratio (exponential of the glm.fit coefficients) and their confidence intervals (given by confint). Stars are "***" if p-value < 0.001, "**" if 0.001 < p-value <= 0.01, "*" if 0.05 < p-value <= 0.1

Examples

```
y <- rbinom(n = 50, size = 1, prob = .3)
x1 <- rnorm(50, 5,1)
x2 <- runif(50, 0,5) * (1 + y)
x3 <- rnorm(50, 12,5)
Data <- data.frame(y,x1,x2,x3)

logist <- glm(y~., data=Data, family="binomial")
summary(logist)
summaryOR(logist,lateX=FALSE)</pre>
```

tonum

Convert ill-encoded factor to numeric

Description

Convert ill-encoded factor to numeric

Usage

```
tonum(data, comma2period = TRUE)
```

Arguments

```
data a vector (character, factor, oredered) or a data.frame comma2period change "," to "."
```

16 unaccent

Details

```
Apply as.numeric(as.character())
```

Value

```
numeric() vector or matrixaze
```

Author(s)

JuG

Examples

```
devtools::install_github("vpnagraj/rrefine")
library(rrefine)
lateformeeting$sleephours
tonum(lateformeeting$sleephours)
```

unaccent

Transform accented into unaccented characters

Description

Transform accented into unaccented characters

Usage

```
unaccent(text)
```

Arguments

text

an in put that can be coerced as character

Details

```
from http://data.hypotheses.org/564
```

Value

text

Author(s)

JuG

```
unaccent(c("é","à","è","ù","ç",'ü',"a,"))
unaccent("À Süßen (Ba.-Wü.), j'ai mangé des Curry Würstchen")
```

Index

```
cleanUpAttempt, 2
closeRefine, 3
confint, 15
factOrNot, 3
HDIofICDF, 4
1mB, 5
lmBselect, 6
{\tt merge.all}, \textcolor{red}{7}
na.count, 7
newFun, 8
nlsB, 9
{\it openRefine}, \textcolor{red}{10}
piEst, 10
{\tt plotCorMat}, {\tt 11}
{\tt relWeights}, \textcolor{red}{12}
stripPlot, 13
subReg, 14
summaryOR, 15
tonum, 15
unaccent, \\ 16
```