

CUSTOMER PROCUREMENT SPECIFICATION

(MARCOM) DC2845 DOCUMENT CONTROL

Z84C30

CMOS Z80® CTC Counter/Timer Circuit

GENERAL DESCRIPTION

The Z84C30 CTC, hereinafter referred to as the CTC, is a four-channel counter/timer that can be programmed by system software for a broad range of counting and timing applications. The four independently programmable channels of the CTC satisfy common microprocessor system requirements for event counting, interrupt and interval timing, and general clock rate generation.

System design is simplified as the CTC connects directly to both the Z80 CPU and the Z80 SIO with no additional logic. In larger systems, address decoders and buffers may be required.

Programming the CTC is straightforward. Each channel is programmed with two bytes; a third is necessary when interrupts are enabled. Once started, the CTC counts down, automatically reloads its time-constant, and resumes counting. Software timing loops are completely eliminated. Interrupt processing is simplified as only one vector need be specified. The CTC internally generates a unique vector for each channel.

The CTC requires a single +5V power supply and the standard Z80 single-phase system clock. It is offered in 28-pin DIP, 44-pin PLCC, and 44-pin QFP packages. Note that the QFP package is only available for CMOS versions.

Functional Block Diagram

DC-2845-04 (10-01-93)

GENERAL DESCRIPTION (Continued)

Pin Functions

28-Lead DIP Pin Assignments

44-Lead PLCC Pin Assignments

44-Lead QFP Pin Assignments (CMOS Device Only)

ABSOLUTE MAXIMUM RATINGS

Voltages on V_{CC} with respect to V_{SS} – 0.3V to + 7.0V
Voltages on all inputs with respect
to V _{SS}
Storage Temperature 65°C to + 150°C

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only: operation of the device at any condition above these indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics below apply for the following test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin. Available operating temperature range is:

■ S = 0°C to +70°C, V_{cc}Range

CMOS: $+4.50V \le V_{cc} \le +5.50V$ *16 MHz $+4.75V \le V_{cc} \le +5.25V$

■ $E = -40^{\circ}C$ to $100^{\circ}C$

The Ordering Information section lists package temperature ranges and product numbers. Refer to the Literature List for additional documentation. Package drawings are in the Package Information section.

DC CHARACTERISTICS (Z84C30/CMOS Z80 CTC) $V_{\rm cc}$ =5.0V \pm 10%, unless otherwise specified

Symbol	Parameter	Min	Max	Unit	Condition
V _{ILC}	Clock Input Low Voltage	-0.3	+0.45	V	······
V _{IHC}	Clock Input High Voltage	V _{cc} -0.6 2.2	V _{cc} +0.3	V	
V,,	Input High Voltage		V _{cc}	V	
Λ ^{III}	Input Low Voltage	-0.3	0.8	V	
Vor	Output Low Voltage		0.4	V	I _{LO} =2.0mA
Vorri	Output High Voltage	2.4		V	I _{oH} =-1.6mA
V _{OH2}	Output High Voltage	V_{cc} -0.8		V	I _{αн} =-250μΑ
l _u	Input Leakage Current	-10	10	μА	$V_{iN} = 0.4V$ to V_{cc}
LO	3-state Output Leakage Current in Float	-10	10	μA	$V_{\text{out}} = 0.4 \text{V to } V_{\text{cc}}$
I _{CC1}	Power Supply Current - 4MHz		7 [1]	mA	V _{cc} =5V
001	- 6MHz		8 [1]	mΑ	CLK=4.6,8,1016 MH
	- 8MHz		10 [1]	mA	V _{IH} =V _{cc} -0.2V '
	- 10MHz		12 [1]	mΑ	V ₁₁ =0.2V
	- 16 MHz*		TBD	mA	_
CC2	Standby Supply Current		10	μA	V _{cc} =5V
					CLK=(0)
					$V_{IH} = V_{CC} - 0.2V$
					V _{IL} =0.2V
l OHD	Darlington Drive Current	-1.5	- 5.0	mA	V _{oH} =1.5V
					REXT=1.1K ohm

Note: [1] Measurements made with outputs floating.

CAPA	CI.	TAN	ICE

Symbol	Parameter	Max	Unit
CLK	Clock Capacitance	10	pf
C _{IN}	Input Capacitance '	10	pf
COUT	Output Capacitance	15	ρf

 $T_{\Delta} = 25$ °C. f = 1 MHz

Unmeasured pins returned to ground.

 $^{^{\}star}\,\mathrm{V}_{\mathrm{cc}}$ limit is $\,$ +, –5% for 16 MHz device.

No	Symbol	Parameter	Z84C Min	3004 ° Max	Z84C Min	3006 Max	Z84C Min	3008 Max	Z84C Min	3010 Max	Z840 Min (ns)	C3016* Max (ns)	Note
1	TcC	Clock Cycle Time	250	[1]	162	[1]	125	[1]	100	[1]	62	DC	
2	TwCh	Clock pulse Width (High)	110	DC	65	ÒĆ	55	ÒĊ	42	DĊ	26	DC	
3	TwCI	Clock puise Width (Low)	110	DC	65	DC	5 5	DC	42	DC	26	DC	
4 5	TIC TrC	Clock Fall Time		30		20		10		10		5	
	····	Clock Rise Time		30		20		10		10		5	
3	Th	All Hold Times	0		0		0		0		0		
7	TsCS(C)	/CS to Clock Rise Setup Time	160		100		50		35		25		
3	TsCE(C)	/CE to Clock Rise Setup Time	150		100		50		35		25		
9 10	TsIO(C)	/IORQ to Clock Rise Setup Time	115		70		40		35		25		
	TsRD(C)	/RD Fall to Clock Rise Setup Time	115		70		40		35		25		
11	TdC(DO)	Clock Rise to Data Out Float Delay		200		130		90		90		55	[2]
12	TdRIr (DOz)	/RD, /IORQ rising to Data Outime Float Delay		50		40		40		40		25	
13	TsDI (C)	Data In to Clock rising set-up	50		40		30		30		15		
	TsM1(C)	/M1 to Clock Rise Setup Time	90		70		50		40		25		
15	TdM1(IEO)	/M1 Fall to IEO Fall Delay					-				LO		
		(Interrupt Immediately Preceding /M1 Fall)		190		130		90		70		45	[3]
16	TdIO(DIO)	/IORQ Fail to Data Out Delay (/INTACK Cycle)		160	-	110	<u></u>	80	_	80		80	[2,6]
17	TdlEl(lEOt)	IEI Fall to IEO Fall Delay		130		100		70		70		70	[3]
18	TdiEl(IEOr)	IEI Rise to IEO Rise Delay (After ED Decode)		160		110		70		70		70	[3]
	TdC(INT) TdCLK(INT)	Clock Rise to /INT Fall Delay CLK/TRG Rise to /INT Fall Delay	(TcC	+140)	(TcC	+120)	(TcC	+100)	(TcC	+80)		TcC+30	[4]
	- COCINETY	TsCTR(C) Satisfied	(19)+	L(26)	/10\-	(26)	/101	(00)	/101	(00)		(10) . (06)	
		TsCTR(C) Not Satisfied		(26) (19)+(26)		+(26) 19) +(26)	(19)4		(19)4	H(26)		(19)+(26)	[5]
21	TcCTR	CLK/TRG Cycle Time	(2Tc	C)	(2Tc		(2Tc		(1)+(2Tc)		(2TcC)	(1)+(19)+(26)	[5] [5]
 22	TrCTR	CLK/TRG Rise Time		50		40	<u> </u>	30		20		15	
23	TICTR	CLK/TRG Fall Time		50		40		30 30		30 30		15	
24	TwCTRh +	CLK/TRG Width (Low)	200	50	120	70	90	<i>3</i> 0	90	SU	25	10	
25	TwCTRI	CLK/TRG Width (High)	200		120		90		90		25 25		
26	TsCTR(Cs)	CLK/TRG Rise to Clock Rise	210		150	_	110		90		40		[5]
27	TsCTR(Ct)	Setup Time for Immediate Count CLK/TRG Rise to Clock Rise	240										
۲.	130111(01)	Setup Time for Enabling of Prescaler On Following Clock Ris	210 e		150		110		90		40		[4]

^{* 4} MHz Z84C30 is obsoleted and replaced by 6 MHz

 $^{^{\}star}\,\mathrm{V_{cc}}$ limit is +, -5% for 16 MHz device.

No Symbol		Z84C3004 ·		Z84C3006		Z84C3008		Z84C3010		Z84C3016*			
	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min (ns)	Max (ns)	Note
28	TdC(ZC/TOr)	Clock Rise to ZC/TO Rise Delay		190	-	140		100		80		25	
		Clock Fall to ZC/TO Fall Delay		190		140		100		80		25	
30	ThRir(D)	/CE. /IORQ Rise to Data Hold	20		20		10	,00	10	00	10	20	
31	ThC(CS)	Clock Rise to /CS Hold	20		20		10		10		10		

RESET must be active for a minimum of 3 clock cycles.
 Units in Nanoseconds

Notes:

- [1] TcC = TwCh + TwCl + TrC + TfC.
- [2] Increasing delay by 10nS for each 50pF increase in loading, 200pF max for data lines, and 100pF for control lines.
- [3] Increase delay by 2nS for each 10pF increase in loading, 100pF max.
- [4] Timer mode.
- [5] Counter mode
- [6] 2.5TcT > (N-2)TdlEl(IEOf) + TdM1(IEO) + TslEl(IO) + TTL Buffer Delay, if any

© 1993 by Zilog, inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056

 ⁴ MHz Z84C30 is obsoleted and replaced by 6 MHz

^{*} V_{cc} limit is +, -5% for 16 MHz device.