

Preparação dos dados

Disciplina: Mineração de Dados

Prof. Braian Varjão

Principais técnicas de pré-processamento de dados

- 1. Identificação de variáveis;
- 2. Análise de variáveis;
- 3. Tratamento de dados faltantes;
- 4. Tratamento de outliers;
- 5. Transformação de atributos;
- 6. Derivação de atributos;
- 7. Reamostragem;
- 8. Redução de dimensionalidade.

Principais técnicas de pré-processamento de dados

- 1. Identificação de variáveis;
- 2. Análise de variáveis;
- 3. Tratamento de dados faltantes;
- 4. Tratamento de outliers;
- 5. Transformação de atributos;
- Derivação de atributos;
- 7. Reamostragem;
- 8. Redução de dimensionalidade.

Identificação de variáveis

Preditores vs. Objetivo

Student_ID	Gender	Prev_Exam_Marks	Height (cm)	Weight Caregory (kgs)	Play Cricket
S001	M	65	178	61	1
S002	F	75	174	56	0
S003	M	45	163	62	1
S004	M	57	175	70	0
S005	F	59	162	67	0

Preditor

Objetivo

Identificação de variáveis

Tipos de dados

Student_ID	Gender	Prev_Exam_Marks	Height (cm)	Weight Caregory (kgs)	Play Cricket
S001	М	65	178	61	1
S002	F	75	174	56	0
S003	M	45	163	62	1
S004	M	57	175	70	0
S005	F	59	162	67	0

String

Inteiro

Identificação de variáveis

Atributos categóricos vs. contínuos

Student_ID	Gender	Prev_Exam_Marks	Height (cm)	Weight Caregory (kgs)	Play Cricket
S001	М	65	178	61	1
S002	F	75	174	56	0
S003	M	45	163	62	1
S004	M	57	175	70	0
S005	F	59	162	67	0

Categórico

Contínuo

Principais técnicas de pré-processamento de dados

- 1. Identificação de variáveis;
- 2. Análise de variáveis;
- 3. Tratamento de dados faltantes;
- 4. Tratamento de outliers;
- 5. Transformação de atributos;
- Derivação de atributos;
- 7. Reamostragem;
- 8. Redução de dimensionalidade.

Principais perguntas:

- Os atributos estão nos tipos corretos?
- Existem dados faltantes?
- Existem outliers? De que tipo?
- A amostra dos dados representa o mundo real?
- Existe um desbalanceamento importante?
- Em que valores os dados se concentram?
- É possível simplificar os dados?
- É possível/necessário criar atributos derivados?

Atributos continuos

Média, mediana, máximo, mínimo...

Atributos categóricos

Contagem e percentual de ocorrência.

Atributos categóricos

Atenção: evitar gráficos de pizza e não utilizar estilos 3D em gráficos!

Principais perguntas:

- Existe correlação / dependência entre os atributos?
- Separando os dados a partir de um atributo x, como a distribuição do atributo k varia em cada grupo?
- Quais outros insights eu consigo obter das relações entre os dados?

- Contínua & Contínua;
- Categórica & Categórica;
- Contínua & Categórica.

Análise bivariada: Contínua & Contínua

Índice de correlação

- +1: correlação linear positiva perfeita;
- 0: sem correlação;
- -1: correlação linear negativa perfeita.

X	65	72	78	65	72	70	65	68
Υ	72	69	79	69	84	75	60	73

Metrics	Formula	Value
Co-Variance (X,Y)	=COVAR(E6:L6,E7:L7)	18.77
Variance (X)	=VAR.P(E6:L6)	18.48
Variance (Y)	=VAR.P(E7:L7)	45.23
Correlation	=G10/SQRT(G11*G12)	0.65

Análise bivariada: Contínua & Contínua

Análise bivariada: Categórica & Categórica

Frequency _ Row Pct	1	2	3	4	5	Total
Small	11.11	22.22	22.22	33.33	11.11	9
Medium	1.43	7.14	22 31.43	30 42.86	12 17.14	70
Large	0.00	0.00	0.00	100.00	0.00	2
Total	2	7	24	35	13	81

Análise bivariada: Categórica & Categórica

Teste X²: probabilidade de independência

- Probabilidade próxima de 0:
 - variáveis são dependentes.
- Probabilidade próxima de 1:
 - variáveis são independentes.

Probabilidade inferior a 0.05: isso indica que as variáveis são dependentes com 95% de confiança.

Análise bivariada: Contínua & Categórica

DISTRIBUIÇÃO DAS NOTAS DOS ALUNOS SUPONDO QUE NÃO HÁ DIFERENÇA ENTRE AS TURMAS T1, T2 E T3

DISTRIBUIÇÃO DAS NOTAS DOS ALUNOS SUPONDO DIFERENÇA ENTRE AS TURMAS T1, T2 E T3

Análise multivariada

Wine Alcohol Content - Fixed Acidity - Residual Sugar - Type

Wine Type - Quality - Alcohol Content

Life satisfaction vs Life expectancy, 2015

The vertical axis shows life expectancy at birth. The horizontal axis shows self-reported life satisfaction in the Cantril Ladder (0-10 point scale with higher values representing higher life satisfaction).

Principais técnicas de pré-processamento de dados

- 1. Identificação de variáveis;
- 2. Análise de variáveis;
- 3. Tratamento de dados faltantes;
- 4. Tratamento de outliers;
- 5. Transformação de atributos;
- Derivação de atributos;
- 7. Reamostragem;
- 8. Redução de dimensionalidade.

Tratamento de dados faltantes

Name	Weight	Gender	Play Cricket/ Not
Mr. Amit	58	M	Υ
Mr. Anil	61	M	Υ
Miss Swati	58	F	N
Miss Richa	55	J	Υ
Mr. Steve	55	M	N
Miss Reena	64	F	Υ
Miss Rashmi	57		Υ
Mr. Kunal	57	M	N

Gender	#Students	#Play Cricket	%Play Cricket
F	2	1	50%
M	4	2	50%
Missing	2	2	100%

A partir dos dados, a probabilidade de jogar cricket é maior entre homens do que entre mulheres.

Tratamento de dados faltantes

Name	Weight	Gender	Play Cricket/ Not
Mr. Amit	58	M	Y
Mr. Anil	61	M	Υ
Miss Swati	58	F	N
Miss Richa	55	F	Υ
Mr. Steve	55	M	N
Miss Reena	64	F	Υ
Miss Rashmi	57	F	Y
Mr. Kunal	57	M	N

Gender	#Students	#Play Cricket	%Play Cricket
F	4	3	75%
M	4	2	50%

Mas a realidade era diferente.

Por que existem dados faltantes?

Erro na consulta que recuperou os dados;

Erro no procedimento de raspagem;

Atributo que não era monitorado quando os primeiros dados foram coletados;

Distração/Recusa ao fornecer uma informação;

Inexistência para certas instâncias;

Dificuldade de acesso para certas instâncias;

Erro ou limitação do equipamento de medição.

. . .

Tratamento de dados faltantes (1/6)

Descarte

Vantagem: evita introdução de erros;

Desvantagem: perda de informação.

Substituir pelo valor anterior ou posterior

Vantagem: não reduz a amostra;

Desvantagem: o valor pode continuar nulo se o valor anterior ou posterior também estiver ausente.

Tratamento de dados faltantes (2/6)

Estimação direta

- Categóricos: moda;
- Contínuos: média ou mediana;
- Temporais: splines.

Vantagem: bons resultados com poucos valores ausentes.

Desvantagem: erro de estimação pode ser acumulativo (casos com muitos valores ausentes).

Tratamento de dados faltantes (3/6)

Estimação direta

- Estimação generalizada
- Estimação com instâncias similares
 - Ex: estimar o peso de uma pessoa A com base no peso médio de outras pessoas do mesmo sexo que A.

Tratamento de dados faltantes (4/6)

Geração de modelos preditivos

Vantagem: é a estratégia mais robusta para lidar dados ausentes;

Desvantagens:

- Os valores estimados do modelo são geralmente melhor comportados do que os valores reais;
- Os atributos do conjunto de dados pode não ter relação com o atributo com valores ausentes;
- Custo: é preciso gerar um modelo para cada atributo com valores ausentes.

Tratamento de dados faltantes (5/6)

Estimação com o kNN

Vantagens:

- O kNN pode prever atributos qualitativos e quantitativos;
- Não precisa criar um modelo preditivo para cada atributo;
- Eficiente em atributos com vários dados faltantes.

Tratamento de dados faltantes (6/6)

Estimação com o kNN

Desvantagens:

- O algoritmo kNN consome muito tempo na análise em grandes bancos de dados;
- Como definir o k?

Principais técnicas de pré-processamento de dados

- 1. Identificação de variáveis;
- 2. Análise de variáveis;
- 3. Tratamento de dados faltantes;
- 4. Tratamento de outliers;
- 5. Transformação de atributos;
- Derivação de atributos;
- 7. Reamostragem;
- 8. Redução de dimensionalidade.

Outlier univariado e bivariado

Problemas (1/3)

O outlier não afeta os padrões extraídos, mas afeta a percepção sobre a instância e o atributo.

Problemas (2/3)

O outlier afeta os padrões extraídos e a percepção sobre a instância e o atributo.

Problemas (3/3)

O outlier cria um padrão inexistente.

Tipos de outliers (1/3)

Outlier natural

 Ex.: numa pesquisa com o salário de funcionários de uma empresa, é natural que uma mínima parte dos participantes possuam salários muito maiores que as demais.

Erro de amostragem

 Ex.: em um experimento relacionado a altura de atletas, apenas uma pequena parcela dos participantes eram jogadores de basquete.

Tipos de outliers (2/3)

Erros de entrada de dados

Ex.: pessoa registrada com 680kg ao invés de 60,8kg.

Instrumento de medição com defeito

Ex.: sensores descalibrados.

Erro experimental

Ex: participante inicia um experimento após os demais.

Tipos de outliers (1/3)

Outlier intencional

Ex.: pessoas que mentem num questionário.

Erro na obtenção dos dados

Ex.: problema na rotina de consulta / integração dos dados.

Como tratar outliers?

Alterar o valor

Se for um erro cuja correção é trivial, basta corrigi-lo diretamente.

Ex.: dado categórico com erro de digitação.

Quando a instância é necessária, basta estimar um outro valor (tratar como um dado faltante)

- Situações onde o valor está errado, mas não se sabe o correto;
- Situações onde o valor está correto, mas afeta negativamente o aprendizado.

Deletar a instância inteira (1/2)

Se a remoção não afetará a mineração

Ex.: uma instância muito similar a diversas outras em uma coleção grande.

Se vários atributos da instância são problemáticos.

■ Ex.: respondente não levou o questionário a sério.

Deletar a instância inteira (2/2)

Se a instância representa um exemplo que não deveria fazer parte da base

Ex.: uma instância referente a uma criança em um experimento voltado a dados sobre adultos.

Trimming: remoção das observações com os menores e maiores valores para um determinado atributo.

Transformar o atributo (1/2)

A utilização de log ou raiz quadrada / cúbica mantém a distribuição dos valores originais, mas reduz a discrepância entre eles.

Transformar o atributo (2/2)

Binning: ao discretizar um atributo contínuo, dados anormais podem ser agregados a valores comuns, não afetando o aprendizado.

Tratar separadamente

Quando o volume de outliers é suficientemente grande, uma alternativa é gerar modelos separados e depois combinar a saída.

Principais técnicas de pré-processamento de dados

- 1. Identificação de variáveis;
- 2. Análise de variáveis;
- 3. Tratamento de dados faltantes;
- 4. Tratamento de outliers;
- 5. Transformação de atributos;
- Derivação de atributos;
- 7. Reamostragem;
- 8. Redução de dimensionalidade.

Por que transformar atributos? (1/3)

Mudança de escala

Atributos em diferentes escalas podem prejudicar o processo de aprendizado dos modelos preditivos.

Por que transformar atributos? (2/3)

Utilidade

Muitas vezes valores próximos de um atributo possuem o mesmo valor semântico para o problema em análise.

Ex.: Dados de idade são geralmente mais úteis quando distribuídos entre faixas (binning de dados).

Por que transformar atributos? (3/3)

Exigência do algoritmo de mineração

Transformação de simbólico para numérico

- Conversão para binário (duas categorias);
- Conversão para inteiro (categóricos ordinais);
- One hot encoding (categóricos não ordinais).

Transformação de numérico para simbólico

- Associar rótulos para cada valor;
- Discretização: média, quantiles, binning...

Principais técnicas de pré-processamento de dados

- 1. Identificação de variáveis;
- 2. Análise de variáveis;
- 3. Tratamento de dados faltantes;
- 4. Tratamento de outliers;
- 5. Transformação de atributos;
- 6. Derivação de atributos;
- 7. Reamostragem;
- 8. Redução de dimensionalidade.

Por que derivar atributos?

De modo geral, a derivação de atributos tem por objetivo extrair deles a informação mais útil para o problema em análise.

Alguns tipos:

- Composição:
 - Unir dois ou mais atributos para gerar um terceiro com maior utilidade. Ex: peso e altura => IMC.
- Separação:
 - Transformar um atributo em um conjunto de atributos.
 Ex: data => dia, mês e ano.

Principais técnicas de pré-processamento de dados

- 1. Identificação de variáveis;
- 2. Análise de variáveis;
- 3. Tratamento de dados faltantes;
- 4. Tratamento de outliers;
- 5. Transformação de atributos;
- 6. Derivação de atributos;
- 7. Reamostragem;
- 8. Redução de dimensionalidade.

Quando utilizar reamostragem?

Desbalanceamento Problemas (1/4)

Viés da acurácia

Acurácia do modelo: 0,9

Predito

Desbalanceamento Problemas (2/4)

Amostras reduzidas

Desbalanceamento Problemas (3/4)

Pequenos disjuntos

Fonte: Ali, Shamsuddin e Ralescu, 2015

Desbalanceamento Problemas (4/4)

Sobreposição de classes

Fonte: Martino et al., 2013

Desbalanceamento Soluções a nível de dados

Reamostragem

Equilibrar a quantidade de instâncias entre as classes

- Sobreamostragem;
- Subamostragem.

Seleção de atributos

Compor o espaço dimensional com atributos que evidenciem os limites de decisão da(s) classe(s) minoritária(s).

Subamostragem

Random Under Sampler

Subamostragem

One Sided Selection

Subamostragem

Vantagens

- Redução de custos de armazenamento e processamento;
- Redução dos efeitos do viés indutivo.

Desvantagem

- Perda de informação;
- Os dados da amostra podem se distanciar da distribuição real da população.

Sobreamostragem

SMOTE

Sobreamostragem

ADASYN

Sobreamostragem

Vantagens

- Redução dos efeitos da maior parte dos problemas afeitos ao desbalanceamento:
 - Viés indutivo, amostras reduzidas e Pequenos disjuntos.

Desvantagens

- Os dados obtidos não são reais e não trazem novidade sobre o comportamento real da classe;
- Aumento do custo de armazenamento e processamento.

Principais técnicas de pré-processamento de dados

- 1. Identificação de variáveis;
- 2. Análise de variáveis;
- 3. Tratamento de dados faltantes;
- 4. Tratamento de outliers;
- 5. Transformação de atributos;
- Derivação de atributos;
- 7. Reamostragem;
- 8. Redução de dimensionalidade.

Por que reduzir a dimensionalidade?

Visualização;

Custo de armazenamento / processamento; Melhorar o aprendizado.

(a) atributo relevante t_1

(b) atributo redundante t_2

(c) atributo irrelevante t_3

Redução de dimensionalidade

Seleção de atributos

Filtro

■ Term strength, chi-square, information gain...

Wrapper

■ First Search, Forward Selection, Backward Elimination...

Embedded

■ L1 (LASSO), árvore de decisão...

Extração de atributos

PCA, LDA, LSA...

Seleção de atributos Filtragem

Atributo	Relevância
pênalti	0.92
otimização	0.87
futebol	0.83
árbitro	0.82
software	0.79
computador	0.79
performance	0.62
classificação	0.41

Seleção com N = 4	
pênalti	
otimização	
futebol	
árbitro	


```
mtcars.pca <- prcomp(mtcars[,c(1:7,10,11)], center = TRUE, scale. = TRUE)
summary (mtcars.pca)
   Importance of components:
                                    PC2
                                           PC3
                                                    PC4
##
                             PC1
                                                            PC5
                                                                    PC6
  Standard deviation
                          2.3782 1.4429 0.71008 0.51481 0.42797 0.35184
  Proportion of Variance
                          0.6284 0.2313 0.05602 0.02945 0.02035 0.01375
                          0.6284 0.8598 0.91581 0.94525 0.96560 0.97936
  Cumulative Proportion
##
                              PC7
                                     PC8
                                             PC9
  Standard deviation
                          0.32413 0.2419 0.14896
  Proportion of Variance
                          0.01167 0.0065 0.00247
## Cumulative Proportion
                          0.99103 0.9975 1.00000
```


