Partially Observable Markov Decision Processes

Lionel Rigoux & Frederike Petzschner

Introduction

- MDP >> Full observability: the agent always knows the state of the world
- This might often not be true in real life
 - Imperfect memory
 // navigation: "turn left on the seventh street"
 > what if you loose track of the number of
 streets already passed?
 - Changing environment
 // reward selection in a T-maze
 > reward location changes every trials, as cued
 by a smell

state

action state outcome leave Stay stay leave

action state outcome R = 100leave Stay R = 30stay leave R = -40

action

outcome

R = 100

R = 30

R = -40

outcome

R = 100

$$R = 30$$

R = -40

action

outcome

R = 100

stay

R = 30

R = -40

R = 100

stay

action

R = 30

R = -40

state

state not known

statenot known

belief
$$b=p(s=S_1)$$

 $p(s=S_1) = 1$

state

actions and payoff function

not known

$$b=p(s=S_1)$$

$$p(s=S_1)=0$$

state

not known

 $b=p(s=S_1)$

$$p(s=S_1)=0$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

state *not known*

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

belief

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

belief

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

belief

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

belief

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

belief

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

belief

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

belief

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

belief

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

belief

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

statenot known

$$b=p(s=S_1)$$

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

$$p(s=S_1)=0$$

$$p(s=S_1)=1$$

observation function

$$p(s=S_1)=0$$

$$p(s=S_1) = 1$$

$$p(s=S_1)=0$$

_	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

$$p(s=S_1)=1$$

observation function

_	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

_	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

$$p(s=S_1)=0$$

observation function

$$p(s=S_1)=0$$

	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

$$b' \sim p(o|s', a) \sum_{s} p(s'|s, a)b(s)$$

	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

$$p(s=S_1) = 1$$

observation function

	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

$$b' \sim p(o|s', a) \sum_{s} p(s'|s, a)b(s)$$

	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

$$p(s=S_1)=0$$

observation function

	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

$$b' \sim p(o|s', a) \sum_{s} p(s'|s, a)b(s)$$

	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

$$p(s=S_1)=0$$

$$p(s=S_1)=1$$

observation function

	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

$$b' \sim p(o|s', a) \sum_{s} p(s'|s, a)b(s)$$

	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

$$p(s=S_1)=0$$

$$p(s=S_1)=1$$

observation function

_	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

$$p(s=S_1)=0$$

$$p(s=S_1)=1$$

observation function

	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

$p(s=S_1) =$	0
--------------	---

observation function

_	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

observation function

provide information about state

	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

 $p(s=S_1)=1$

state space

belief space

state space

belief space

POMDP Formalism

MDP

- S set of states
- A set of actions
- * T transition matrix $S \times A \rightarrow S$
- * R reward function $S \times A \to \mathbb{R}$
- γ discount factor

POMDP extension

- Ω set of observations
- 0 observation probabilities $S \times A \times \Omega \rightarrow [0, 1]$
- B belief space
- r reward function $B \times A \to \mathbb{R}$
- τ belief update function $B \times A \times \Omega \rightarrow B$

$$V^{\pi}(b) = \sum_{t=0}^{\infty} \gamma^{t} r(b_{t}, a_{t})$$
$$\pi^{*} = \underset{\pi}{\operatorname{argmax}} V^{\pi}$$

POMDP Formalism

MDP

- S set of states
- A set of actions
- * T transition matrix $S \times A \rightarrow S$
- * R reward function $S \times A \to \mathbb{R}$
- γ discount factor

POMDP extension

- Ω set of observations
- 0 observation probabilities $S \times A \times \Omega \rightarrow [0, 1]$
- *B* belief space
- r reward function $B \times A \to \mathbb{R}$
- τ belief update function $B \times A \times \Omega \to B$

Simulation workflow

Initial state (s, b)

- Select action $a = \pi(b)$
- Update state s' = T(s, a)
- Receive outcome R(s, a)
- Get observation o = O(s', a)
- Update belief $b' = \tau(b, a, o)$
- -Start over

$$V^{\pi}(b) = \sum_{t=0}^{\infty} \gamma^t \, r(b_t, a_t)$$

$$\pi^* = \operatorname*{argmax}_{\pi} V^{\pi}$$

Resolution

The value function is always convex

- Certainty is preferable to uncertainty
- Gathering information is valuable

The solution can be discretized

- Optimal solution often visit a finite number of belief states
- The POMDP can then be reformulated as a (fully observable) MDP

Take home message

POMDPs allow to model:

- sequential decision making in a complex, evolving environment (MDP)
- subjectivity about the state of the world (PO)

POMDPs can capture:

- information gathering as an economic decision
- irrational behaviour as an optimal policy based on wrong representations

Perspectives

Information sequential sampling with varying payoffs

Errors as exploratory behaviour in reversal learning tasks

Checking behaviours in OCD

Perspectives

Information sequential sampling with varying payoffs

Errors as exploratory behaviour in reversal learning tasks

Checking behaviours in OCD

[Averbeck 2015, PCB]

Questions?

The story, characters, and incidents portrayed in this presentation are fictitious. No identification with actual persons, places, and buildings is intended or should be inferred.

