Информационный поиск

Лекция 2 ВМ25

Дроздова Ксения drozdova.xenia@gmail.com

Что было в прошлый раз

Индексирование (подготовка данных)

Булев поиск

Идея поиска через TF-IDF

Итоги:

Наша общая идея поиска - умножение матрицы на вектор + сортировка

Матрица это проиндексированная коллекция документов

Вектор – это проиндексированный запрос

Bag of words

tf-idf Weight

	Hitchhiker's Guide to Galaxy	Last Chance to See	Life, Universe & Everything	Restaurant at End of Universe	So Long & Thanks for all the Fish	Starship Titanic
galaxy	0.2204	0	0.2140	0.2125	0.1880	0.1943
zaphod	0.5861	0	0.5174	0.6354	0.2288	0
ship	0	0	0	0	0	0
arthur	0.6230	0	0.6301	0.5931	0.6160	0
fiordland	0	1.5171	0	0	0	0
santorini	0	0	1.1437	0	0	0
wordlings	0	0	0	0	0.7780	0

Arthur has Samsung Galaxy
0.46
0
0
0.51
0
0
0

D1	0.43		
D2	0		
D3	0.42		
D4	0.4		
D5	0.41		
D6	0.09		

Scores

Indexed Collection

Indexed Query

Формула ВМ25

$$bm25(Query, Doc) = \sum_{i=1}^{n} IDF(q_i) \cdot \frac{TF(q_i, Doc) \cdot (k+1)}{TF(q_i, Doc) + k \cdot (1 - b + b \cdot \frac{l(d)}{avadl})}$$

$$bm25(Query, Doc) = \sum_{i=1}^{n} IDF \cdot \frac{TF \cdot (k+1)}{TF + k \cdot (1 - b + b \cdot \frac{l(d)}{avadl})}$$

Формула ВМ25

$$bm25(Query, Doc) = \sum_{i=1}^{n} IDF \cdot \frac{TF \cdot (k+1)}{TF + k \cdot (1 - b + b \cdot \frac{l(d)}{avgdl})}$$

$$IDF(q_i) = \frac{N}{n(q_i)} \to \log \frac{N}{n(q_i)} \to \log \frac{N - n(q_i) + 0.5}{n(q_i) + 0.5}$$

$$bm25(Query, Doc) = \sum_{i=1}^{n} \log \left(\frac{N - n(q_i) + 0.5}{n(q_i) + 0.5} \right) \cdot \frac{TF(q_i, Doc) \cdot (k+1)}{TF(q_i, Doc) + k \cdot (1 - b + b \cdot \frac{l(d)}{avadl})}$$

BM25 – это TF-IDF на стероидах

- BM25 это оценка близости между запросом Query и документом Doc
- BM25 складывается из близостей каждого слова qi запроса Query и документа Doc
- формула BM25 по сути состоит из IDF * TF * Conct

Компоненты ВМ25

$$bm25(Query, Doc) = \sum_{i=1}^{n} \log \left(\frac{N - n(q_i) + 0.5}{n(q_i) + 0.5} \right) \cdot \frac{TF(q_i, Doc) \cdot (k+1)}{TF(q_i, Doc) + k \cdot (1 - b + b \cdot \frac{l(d)}{avadl})}$$

Не зависит от слов запроса:

N - кол-во доков в коллекции

I(d) – длина документа Doc

avgdl – средняя длина документа в коллекции

k = 2

b = 0.75

Зависит от слов запроса:

n(qi) - кол-во доков, где есть qi

TF(qi, Doc) – частота qi в Doc

Компоненты ВМ25

$$IDF(q_i) = \frac{N}{n(q_i)} \to \log \frac{N}{n(q_i)} \to \log \frac{N - n(q_i) + 0.5}{n(q_i) + 0.5}$$

Чему равно значение IDF, когда слово входит в более чем половину документов?

Для того, чтобы статистика не была скошенной, можно скорректировать эту формулу:

- 1. Не учитывать отрицательные компоненты в итоговой сумме
- 2. Установить нижнюю границу: если IDF меньше е, то считать его равной е

Вариации ВМ25

BM11 - вариация BM25 при b=1

BM15 - вариация BM25 при b=0

BM15F (BM15Field) - вариация BM25, когда мы разбиваем документ на поля (заголовок, предисловие, пр) и присваиваем им веса в итоговой сумме

Моделируем реализацию

Все, что можно посчитать заранее, надо посчитать заранее и сохранить, чтобы на запрос тратилось минимум времени

N - количество документов в коллекции

I(d) – длина документа Doc

avgdl – средняя длина документа в коллекции

n(qi) - количество документов, содержащих слово qi

TF(qi, Doc) - частота слова qi в документе Doc

Моделируем реализацию

Сам алгоритм может быть реализован как в формуле – по циклу по словам запроса

Это нормально, и если у вас все предпосчитано, то даже займет не очень много времени

Но может быть реализован через концепт умножения матрицы на вектор, что, конечно, будет быстрее