Notas de Clase en

Teoría Clásica de Campos

Borja Diez borjadiez1014@gmail.com

Estas notas de clase están basadas en el curso dictado por el Dr. Patricio Salgado durante el primer semestre del año 2024 en la Universidad Arturo Prat y han sido escritas con propósito de estudio personal.

Las notas están divididas por clase. Adicionalmente han sido complementadas con desarrollos de cálculo personal y comentarios sacados de la bibliografía citada al final de este documento.

${\rm \acute{I}ndice}$

I	Mecánica Clásica
1.	Clase 1 1.1. Mecánica de Newton
2.	Clase 2 2.1. Acerca de la matriz Hessiana
3.	Clase 3 3.1. Simetrías y leyes de conservación
4.	Clase 4 4.1. Teorema de Noether
5.	Clase 5 5.1. Relación entre y
3.	Clase 6 6.1. Continuación prueba del teorema de Noether
7.	Clase 7 7.1. Espacio lineal o espacio vectorial
3.	Clase 8 8.1. Generadores de grupos de Lie
9.	Clase 9 9.1. Ejemplo: Generadores y álgebra de $SO(3)$
10	Clase 10 10.1. Generadores de transformaciones infinitesimales

11.Clase 11	47
11.1. Grupo de Galileo y sus cargas conservadas	. 47
11.2. Partícula libre en 3-dimensiones	
II. Electro dinámico o Deleticido d	46
II Electrodinámica y Relatividad	48
11.3. Transformaciones de Galileo y ecuaciones de Newton	. 49
12.Clase 12	52
12.1. Generadores del grupo de Lorentz	. 56
13.Clase 13	58
13.1. Generadores de las rotaciones espaciales y Boosts	
13.2. Grupo de Poincare	
13.3. Algebra de Poincare	. 60
14.Clase 14	61
14.1. Algebra de Poincare	
This ingests de l'ontoute	. 0.
15.Clase 15	62
15.1. Teoría de campos relativista clásicos	. 62
15.2. Teoría Electromagnética de Maxwell	. 66
16.Clase 16	68
17.Clase 17	69
17.1. Hamiltoniano en teoría clásica de campos	
17.2. Formalismo de Hamilton	
17.3. Paréntesis de Poisson	
17.4. Crochete de Poisson fundamental	
17.5. Tensor energía momentum	
17.6. Transformaciones de simetría	
The Transfer as a simulation of the Control of the	
18.Clase 18	75
18.1. Corrientes y cargas	
18.2. Simetrías de Poincaré y leyes de conservación	. 77
III Orígen de las teorías de gauge	80
19.Clase 19	80
19.1. Teorías de gauge	
19.2. Geometría de Wevl	. 81

4 Índice

20.Clase 20	84
20.1. Schrodinger 1922	85
20.2. Weyl 1929	87
21.Clase 21	89
21.1. Electrodinámica a partir del principio de gauge	92
21.2. La ecuación de Schrodinger	92
21.3. Ecuación de Klein-Gordon	92
22.Clase 22	96
22.1. Ecuación de Dirac	96
22.2. Repesentación de Dirac	96
23.Clase 23	101
23.1. Cuadri-corriente y ley de conservación	101
23.2. Ecuación de Dirac en notación 4-dimensional	102
23.3. Electrodinámica cuántica a partir del principio de gauge	103
24.Clase 24	106
IV Teorías de Yang-Milss	108
25.Clase 25	109
25.1. Teoría de Yang-Mills	110

Parte I

Mecánica Clásica

1. Clase 1

1.1. Mecánica de Newton

Posición, velocidad, aceleración, fuerza.

Si consideramos un sistema de partículas de masa m

$$p_{\alpha} = m_{\alpha} \dot{x}_{\alpha}, \qquad p = \sum_{\alpha} p_{\alpha}, \qquad \alpha = 1, ..., k$$
 (1.1)

$$T = \frac{1}{2} \sum_{\alpha} m_{\alpha} \dot{x}^{2}, \qquad L = \sum_{\alpha} x_{\alpha} \times p_{\alpha}$$
 (1.2)

Newton estableció que a dinámica de un sistema mecánico queda determinada por tres leyes fundamentales:

- Primera ley del movimiento: Todo cuerpo en reposo permanecerá en reposo o en movimiento rectilíneo uniforme (MRU), a menos que una fuerza externa actúe sobre él.
- Primera ley del movimiento: Un cuerpo cambia su estado de movimiento si una fuerza actúa sobre él

$$F = ma (1.3)$$

 Tercera ley del movimiento: A cada acción le corresponde una reacción paralela y opuesta.

Estas lees sólo son válidas en un sistema de referencia inercial (SRI). Dos SRI están relacionados por medio de una transformación de Galileo.

$$x' = x - vt \tag{1.4}$$

$$t' = t \tag{1.5}$$

Además

$$\mathbf{F}_{\alpha} = m\ddot{\mathbf{x}} \tag{1.6}$$

$$\implies m\ddot{\boldsymbol{x}}_{\alpha} = \frac{\mathrm{d}}{\mathrm{d}t}(m\dot{\boldsymbol{x}}_{\alpha}) = \frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{p}_{\alpha} = \dot{\boldsymbol{p}}_{\alpha} \tag{1.7}$$

Si las fuerzas son conservativas, se tiene

$$\boldsymbol{F}_{\alpha} = -\boldsymbol{\nabla}V_{\alpha} \tag{1.8}$$

$$\Longrightarrow \left[\dot{\boldsymbol{p}}_{\alpha} + \boldsymbol{\nabla} V_{\alpha} = 0 \right] \tag{1.9}$$

1.2. Mecánica de Lagrange

Es basada en la llamada función de Lagrange, definida como

$$L(\boldsymbol{x}_{\alpha}, \dot{\boldsymbol{x}}_{\alpha}, t) = T(\dot{\boldsymbol{x}}_{\alpha}, t) - V(\boldsymbol{x}_{\alpha}, t)$$
(1.10)

Lagrange introdujo el concepto de coordenada generalizada

$$q_i, \quad i = 1, 2, ..., f$$
 (1.11)

donde f son los grados de libertad del sistema. De esta manera, se define la derivada de Euler-Lagrange como

$$[L]_i = \frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} = 0 \tag{1.12}$$

Así, las soluciones a estas ecuaciones describen la dinámica del sistema en un espacio f-dimensional de coordenadas $q_i, q_2, ..., q_f$.

Nota: La energía cinética debe ser una función homogénea de grados dos

$$T = \sum_{i,k} a_{ik} \dot{q}_i \dot{q}_k \tag{1.13}$$

Notemos que una función de Lagrange dada por

$$L' = L + \frac{\mathrm{d}}{\mathrm{d}t}B(q,t) \tag{1.14}$$

conduce a las mismas ecuaciones del movimiento.

La libertad en la elección de coordenadas generalizadas implica que las ecuaciones de movimiento de Euler-Lagrange son *estructuralmente invariantes* bajo una transofrmación de coordenadas generalizadas, es decir, bajo

$$q_i \to q_i' = q_i'(q_l) \implies \dot{q}_i' = \frac{\partial q_i'}{\partial q_l} \dot{q}_l$$
 (1.15)

$$\frac{\partial \dot{q}_i'}{\partial \dot{q}_l} = \frac{\partial q_i'}{\partial q_l} \tag{1.16}$$

Definiendo

$$\varphi(q_l) = \frac{\partial q_i'}{\partial q_l} \tag{1.17}$$

se tiene

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi(q_l) = \frac{\partial\varphi}{\partial q_l}\dot{q}_l \tag{1.18}$$

luego

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial q_i'}{\partial q_l} = \frac{\partial}{\partial q_k} \left(\frac{\partial q_i'}{\partial q_l} \right) \dot{q}_k \tag{1.19}$$

$$\implies \boxed{\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial q_i'}{\partial q_l} = \frac{\partial^2 q_i'}{\partial q_k \partial q_l} \dot{q}_k} \tag{1.20}$$

Dado que

$$\dot{q}_i' = \frac{\partial q_i'}{\partial q_l} \dot{q}_i \tag{1.21}$$

$$\frac{\partial \dot{q}_i}{\partial q_l} = \frac{\partial}{\partial q_l} \left(\frac{\partial \dot{q}_i}{\partial q_k} \dot{q}_k \right) = \frac{\partial^2 \dot{q}_i}{\partial q_l \partial q_k} \dot{q}_k + \frac{\partial \dot{q}_i}{\partial q_k} \frac{\partial \dot{q}_k}{\partial q_l} \right)$$
(1.22)

$$\implies \boxed{\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial q_i'}{\partial q_l} = \frac{\partial \dot{q}_i}{\partial q_l}}$$
 (1.23)

Dado que $L'(q',\dot{q}',t)=L(q,\dot{q},t),$ calculemos

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L'}{\partial \dot{q}'_k} \tag{1.24}$$

1.3. Acerca de la matriz Hessiana de las ecuaciones de Euler-Lagrange

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L'}{\partial \dot{q}'_k} = \frac{\partial L'}{\partial q'_k} - [L]_k \frac{\partial q_l}{\partial \dot{q}_k} \tag{1.25}$$

$$\Rightarrow \frac{\partial L'}{\partial q'_k} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L'}{\partial \dot{q}_k} = [L]_l \frac{\partial q_l}{\partial q'_k} \tag{1.26}$$

$$L']_k = [L]_l \frac{\partial q_l}{\partial q_k'}$$
(1.27)

La derivada de Euler-Lagrange transforma como un vector covariante bajo una transformación de coordenadas

Si
$$[L]_l = 0 \Rightarrow [L']_k = 0$$
 (1.28)

- 1. Las ecuaciones de Newton son *invariantes en forma* bajo las transformaciones de Galileo.
- 2. Las ecuaciones de Newton sn ecuaciones de segundo orden en x_{α} . Es bueno recalcar que todas las ecuaciones dinámicas de la física fundamental son de segundo orden. Las ecuaciones de orden mayor al segundo, tienden a tener inestabilidades [1].
- 3. Si $L = L(q_i, \dot{q}_i, t)$ es la función de Lagrange para un sistema mecánico, entonces la dinámica del sistema es gobernada por las ecuaciones de Euler-Lagrange,

$$[L]_i = \frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} = 0 \tag{2.1}$$

Estas ecuaciones no cambian si la función de Lagrange es modificada a la forma

$$\tilde{L} = L + \frac{\mathrm{d}}{\mathrm{d}t}B(q,t) \tag{2.2}$$

con
$$L = L(q_i, \dot{q}_i, t)$$
 y $\bar{L} = \bar{L}(q_i, \dot{q}_i, t)$

4. La libertad en la elección de las coordenadas generalizadas implica que las ecuaciones de Euler-Lagrange son estructuralmente invariantes bajo un cambio de coordenadas:

$$q_i \to q_i' = q_i'(q_l) \tag{2.3}$$

lo cual implica que

$$L']_k = [L]_l \frac{\partial q_l}{\partial q_k'}$$
(2.4)

que muestra que la derivada de Euler transforma como un vector covariante bajo la transformación 2.3

$$\operatorname{Si} [L]_l = 0 \Rightarrow [L']_k = 0. \tag{2.5}$$

Es importante recalcar que la invariancia estructural es distinto a la invariancia en forma (covariancia).

Todos los observadores observan la misma forma de las ecuaciones de los modelos de la naturaleza.

Ejemplo 2.1. La ecuación de Newton en el SRI K toma la forma $\mathbf{F} = m\mathbf{a}$ mientras que en el SRI K' toma la forma $\mathbf{F'} = m'\mathbf{a}'$.

Ejemplo 2.2. Las ecuaciones de Maxwell tendrán la misma forma en todos los SRI.

Notemos son embargo, que en la mecánica de Newton las transformaciones son las transformaciones de Galileo y que en la electrodinámica de Maxwell son las transformaciones de Lorentz.

La covariancia de las ecuaciones del movimiento bajo una transformación de coordenadas es la propiedad que define una **simetría de Lie**.

2.1. Acerca de la matriz Hessiana

Una característica básica de las ecuaciones de Newton $m\ddot{\mathbf{r}} = \mathbf{F}(\mathbf{r}, \dot{\mathbf{r}}, t)$ es que es posible expresar la aceleración $\ddot{\mathbf{r}}$ en función de la posición \mathbf{r} , de la velocidad $\dot{\mathbf{r}}$ y de t,

$$\ddot{\boldsymbol{r}}(t) = \frac{1}{m} \boldsymbol{F}(\boldsymbol{r}, \dot{\boldsymbol{r}}(t)) \tag{2.6}$$

Esta es una formulación vectorial de la mecánica es basada en el concepto d partícula material. Esto llevó a pensar que la naturaleza podría no ser contínua, sino que podría ser atómica (cuántica). Esto condujo a la formulación escalar de la mecánica representado de la introducción del concepto de energía.

La formulación de Lagrange y de Hamilton fue el resultado de esta búsqueda. Sin embargo, de las ecuaciones de Euler-Lagrange (2.1) no es evidente cómo expresar la aceleración $\ddot{q}(t)$ en función de $q(t), \dot{q}(t)$ y t.

Consideremos

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_n}, \qquad L = L(q_n, \dot{q}_n, t) \tag{2.7}$$

notemos que

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_n} = \frac{\partial^2 L}{\partial \dot{q}_n \partial \dot{q}_m} \ddot{q}^m + \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \dot{q}^m \tag{2.8}$$

luego

$$[L]_n = \frac{\partial L}{\partial q_n} - \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \dot{q}^m - \frac{\partial^2 L}{\partial \dot{q}_n \partial \dot{q}_m} \ddot{q}^m = 0$$
 (2.9)

así

$$\left[\left(\frac{\partial^2 L}{\partial \dot{q}_n \partial \dot{q}_m} \right) \ddot{q}^m = \frac{\partial L}{\partial q_n} - \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \dot{q}^m \right]$$
 (2.10)

Notemos que para poder expresar \ddot{q} como función de q y \dot{q} es necesario que la matriz $W_{nm} = \partial^2 L/\partial \dot{q}_n \partial \dot{q}_m$ sea invertible, es decir, det $W_{nm} \neq 0$.

Llamando

$$V_n = \frac{\partial L}{\partial q_n} - \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \dot{q}^m \tag{2.11}$$

tenemos

$$W_{nm}\ddot{q}^m - V_n = 0 (2.12)$$

Si det $W_{nm} \neq 0$ entonces existe una matriz inversa $W^{kn} \equiv (W_{kn})^{-1}$ tal que $W^{kn}W_{nm} = \delta_m^k$. Luego, multiplicando (2.12) por W^{km} , tenemos

$$W^{kn}W_{nm}\ddot{q}^m - W^{kn}V_n = 0 (2.13)$$

$$\Rightarrow \ddot{q}^k = W^{kn} V_n = F(q, \dot{q}, t) \tag{2.14}$$

En la física fundamental, las teorías de gauge tales como la teoría electromagnética o las toerías de Yang-Mills (teoría electrodébil, cromonodinámica cuántica), las correspondientes funciones de Lagrange tienen sus matrices Hessianas singulares, es decir, det $W_{nm} \neq 0$.

2.2. Formalismo de Hamilton

Consiste en pasarse de las coordenadas $\{q_i, \dot{q}_i, t\}$ a $\{q_i, p_i, t\}$, donde

$$p_i = \frac{\partial L}{\partial \dot{q}_i} = f_i(q_i, \dot{q}_i, t) \tag{2.15}$$

es el momentum generalizado.

Para escribir explícitamente la función de Hamilton es necesario expresar por medio de (2.15) $\dot{q}_i = \bar{f}(q_i, p_i)$. Esto implica que la función f_i sea invertible,

$$\dot{q}_n \to p_n = f_n(q_m, \dot{q}_m, t) \tag{2.16}$$

es decir, tenemos una transformación de coordenadas. Esta transformación tiene como matriz Jacobiana a

$$J_{nm} = \frac{\partial f_n}{\partial \dot{q}_m} = \frac{\partial p_n}{\partial \dot{q}_m} = \frac{\partial}{\partial \dot{q}_m} \left(\frac{\partial L}{\partial \dot{q}_n} \right)$$
 (2.17)

esto es

$$J_{nm} = \frac{\partial^2 L}{\partial \dot{q}_n \partial \dot{q}_m} \equiv W_{nm}$$
 (2.18)

Para clarificar esto calculemos d p_n recordando que $p_n = f_n(q_m, \dot{q}_m, t)$,

$$dp_n = \frac{\partial f_n}{\partial t} dt + \frac{\partial f_n}{\partial q_m} dq_m + \frac{\partial f_n}{\partial \dot{q}_m} d\dot{q}_m$$
(2.19)

$$= \frac{\partial f_n}{\partial t} dt + \frac{\partial f_n}{\partial q_m} dq_m + \frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} d\dot{q}_m$$
 (2.20)

esto implica que

$$\left(\frac{\partial^2 L}{\partial \dot{q}_n \partial q_m}\right) d\dot{q}_m = dp_n - \frac{\partial p_n}{\partial t} dt - \frac{\partial p_n}{\partial q_m} dq_m$$
(2.21)

De aquí vemos que para expresar $\dot{q} = \bar{f}(q, p, t)$ es necesario que

$$\det W_{nm} = \det \left(\frac{\partial^2 L}{\partial \dot{q}_n \partial q_m} \right) \neq 0 \tag{2.22}$$

2.3. *Transformaciones canónicas

Son transformaciones invertibles de la forma (Ref. [2]) ¹

$$\hat{q}^j = \hat{q}^j(q, p), \qquad \hat{p}^j = \hat{p}^j(q, p)$$
 (2.23)

que dejan los corchetes fundamentales invariantes.

Antes de continuar, introduzcamos una notación más compacta en la cual colectamos las 2N variables del espacio de fase en un único conjunto $(x^{\alpha}) = (q^1, ..., q^N, p_1, ..., p_N)$. En esta notación los corchetes fundamentales pueden ser escritos como

$$\{x^{\alpha}, x^{\beta}\} = \Gamma^{\alpha\beta}, \quad \text{con} \quad \Gamma \equiv \begin{pmatrix} 0_N & 1_N \\ -1_N & 0_N \end{pmatrix}$$
 (2.24)

¹Ver también el libro Arnold. y [3]

en términos de la matriz $\Gamma,$ el corchete de Poisson para dos funciones del espacio de fase A y B queda

$$\{A, B\} = \Gamma^{\alpha\beta} \frac{\partial A}{\partial x^{\alpha}} \frac{\partial B}{\partial x^{\beta}}$$
 (2.25)

La condición para que $\hat{x}(x)$ sea una transformación canónica se simplifica a $\{\hat{x}^{\alpha}, \hat{x}^{\beta}\} = \Gamma^{\alpha\beta}$

3.1. Simetrías y leyes de conservación

La homogeneidad del tiempo nos lleva a la conservación de la energía. Que el tiempo sea homogéneo significa que no hay instantes privilegeados. Los resultados de un experimento nno dependen del instantes en que se lleven a cabo, es decir, si llevamos a cabo un experimento para t=t será tambien el mismo en $t'=t+t_0$. La función de Lagrange (que describe un sistema físico) debe ser invariante bajo un desplazamiento temporal, es decir, $L=L(q_i,\dot{q}_i,t)$ es invariante bajo la transformación $t\to t'=t+t_0$ o $\delta t=t'-t=t_0$. Esto se cumplirá sólo si $L=L(q_i,\dot{q}_i,t)$ no depende explicitaente del tiempo, es decir,

$$\frac{\partial L}{\partial t} = 0 \tag{3.1}$$

Así,

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i \tag{3.2}$$

De la derivada de Euler-Lagrange, sabemos

$$[L]_i = \frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \qquad \Rightarrow \qquad \frac{\partial L}{\partial q_i} = [L]_i + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \tag{3.3}$$

Reemplazando en (3.2)

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \left([L]_i + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \right) \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i \tag{3.4}$$

$$= [L]_i \dot{q}_i + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i$$
(3.5)

de donde se obtiene

$$[L]_{i}\dot{q}_{i} = \frac{\mathrm{d}L}{\mathrm{d}t} - \frac{\mathrm{d}}{\mathrm{d}t}\dot{q}_{i}\frac{\partial L}{\partial \dot{q}_{i}} \tag{3.6}$$

$$= -\frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L \right) \tag{3.7}$$

Para trayectorias on-shell, es decir, para el espacio de soluciones de la ecuación de Euler-Lagrange $[L]_i = 0$, se tiene

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L \right) = 0 \tag{3.8}$$

Pero sabemos que la función de Hamilton es dada por

$$H = \dot{q}_i p_i - L = E \tag{3.9}$$

Luego,

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\mathrm{d}E}{\mathrm{d}t} = 0\tag{3.10}$$

es decir, la homogeneidad del tiempo implica la conservación de la energía.

Por otra parte, la homogeneidad del espacio conduce a la c
nservación del momentum lineal. Que el espacio sea homogeneo nos dice que todos los puntos son equivalentes y no hay posiciones privilegiadas en el espacio. Esto implica que la función de Lagrange $L = L(q_i, \dot{q}_i, t)$ debe ser invariante bajo una traslación espacial de la forma

$$q_i \rightarrow q_i' = q_i + a_i$$
 ó $\delta q_i = q_i' - q_i = a_i$ (3.11)

Así

$$\delta_q L = \frac{\partial L}{\partial q_i} \delta q_i = 0 \tag{3.12}$$

De la derivada de Euler-Lagrange,

$$[L]_i = \frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \tag{3.13}$$

$$\implies \delta_q L = \left([L]_i + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \right) a_i = 0 \tag{3.14}$$

$$\implies [L]_i a_i + a_i \frac{\mathrm{d}}{\mathrm{d}t} p_i = 0 \tag{3.15}$$

Para trayectorias on-shell, es decir, cuando las ecuaciones de Euler-Lagrange se cumplen, se tiene

$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = 0 \quad \Longrightarrow \quad p_i = \text{constante del movimiento} \tag{3.16}$$

es decir, la homogeneidad del espacio implica la conservación del momentum.

Finalmente, se puede mostrar que la isotropía del espacio implica la conservación del momentum angular. Que el espacio sea isótropo quiere decir que todas las direcciones son privilegiadas. Luego, la función de Lagrange es invariante bajo rotaciones espaciales.

4.1. Teorema de Noether

Teorema 4.1. Si las ecuaciones del movimiento son invariantes bajo una transformación de coordenadas tales como

$$t \to t' = t'(t) \tag{4.1}$$

$$q_i \to q_i' = q_i'(q_i, t) \tag{4.2}$$

entonces existe una cantidad conservada.

Análisis y prueba

Sea $L = L(q_i, \dot{q}_i, t)$ la función de Lagrange de un sistema mecánico, donde i = 1, 2, ..., f. q_i son las coordenadas del espacio de configuraciones. Sean q'_i y t' nuevas coordenadas relacionadas a las antiguas por medio de la transformación de coordenadas invertibles

$$t \to t' = t'(t) = t + \delta t \tag{4.3}$$

$$q_i \to q_i' = q_i'(q_i, t) = q_i + \delta q_I \tag{4.4}$$

Las correspondientes velocidades generalizadas \dot{q}_i y \dot{q}'_i definidas como

$$\dot{q}_i = \frac{\mathrm{d}}{\mathrm{d}t}q_i, \qquad \dot{q}'_i = \frac{\mathrm{d}}{\mathrm{d}t'}q'_i$$
 (4.5)

$$\implies \dot{q}_i' = \frac{\mathrm{d}}{\mathrm{d}t} q_i' \frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{\mathrm{d}}{\mathrm{d}t} (q_i + \delta q_i) \frac{\mathrm{d}t}{\mathrm{d}t'} \tag{4.6}$$

$$\implies \dot{q}_i' = \left(\dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t}\right) \frac{\mathrm{d}t}{\mathrm{d}t'}$$
 (4.7)

pero,

$$t' = t + \delta t \implies \frac{\mathrm{d}t'}{\mathrm{d}t} = 1 + \frac{\mathrm{d}\delta t}{\mathrm{d}t}$$
 (4.8)

$$\implies \frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{1}{1 + \mathrm{d}\delta t/\mathrm{d}t} \tag{4.9}$$

Así,

$$\dot{q}_I' = (\dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t}) \frac{1}{1 + \mathrm{d}\delta t/\mathrm{d}t} \tag{4.10}$$

$$\implies \left| \dot{q}_i' = \frac{\dot{q}_i + d\delta q_i/dt}{1 + d\delta t/dt} \right| \tag{4.11}$$

$$\delta \dot{q}_i = \dot{q}_i'(t') - \dot{q}_i(t) \tag{4.12}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t'} \dot{q}_i'(t') - \dot{q}_i(t) \tag{4.13}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}\dot{q}_i'(t')\frac{\mathrm{d}t}{\mathrm{d}t'} - \dot{q}_i(t) \tag{4.14}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}(\dot{q}_i + \delta q_i)\frac{\mathrm{d}t}{\mathrm{d}t'} - \dot{q}_i(t) \tag{4.15}$$

$$= \left(\dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t}\right) \frac{\mathrm{d}t}{\mathrm{d}t'} - \dot{q}_i(t) \tag{4.16}$$

pero

$$\frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{1}{1 + \mathrm{d}\delta t/\mathrm{d}t} = 1 - \frac{\mathrm{d}\delta t}{\mathrm{d}t} + \cdots \tag{4.17}$$

$$\delta \dot{q}_i = \left(\dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t}\right) \left(1 - \frac{\mathrm{d}\delta t}{\mathrm{d}t}\right) - \dot{q}_i \tag{4.18}$$

$$= \dot{q}_i + \frac{\mathrm{d}\delta q_i}{\mathrm{d}t} - \dot{q}_i \frac{\mathrm{d}\delta t}{\mathrm{d}t} - \frac{\mathrm{d}\delta q_i}{\mathrm{d}t} \frac{\mathrm{d}\delta t}{\mathrm{d}t} - \dot{q}_i \tag{4.19}$$

$$\Longrightarrow \left[\delta \dot{q}_i = \frac{\mathrm{d}}{\mathrm{d}t} \delta q - \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \delta t \right] \tag{4.20}$$

4.2. Transformaciones de simetría

Sabemos que las ecuaciones de Euler-Lagrange se obtienen al aplicar el principio de Hamilton a la acción

$$S(q_i, \dot{q}_i, t) = \int_{t_q}^{t_2} dt L(q_i, \dot{q}_i, t)$$
(4.21)

Sean ahora q_i' y t' otro sistema coordenado relacionado con q_i t t por medio de la transformación

$$q_i \to q_i' = q_i'(q_i, t) \tag{4.22}$$

$$t \to t' = t'(t) \implies t = t(t') \tag{4.23}$$

Escribimos (4.21) en términos de las nuevas coordenadas

$$dt = \frac{dt}{dt'}dt', \qquad q_i = q_i(q_i', t)$$
(4.24)

luego,

$$S(q_i, q_i', t) = \int_{t1'=t'(t_1)}^{t_2'=t'(t_2)} dt' \frac{dt}{dt'} L[q_i(q', t), \dot{q}_i(q, \dot{q}', t'), t(t')]$$
(4.25)

Por otro lado la acción $S'(q', \dot{q}', t')$ es dada por

$$S'(q', \dot{q}', t') = \int_{t'_1}^{t'_2} dt' L'(q'_i, \dot{q}'_i, t')$$
(4.26)

Dado que la física no puede ser alterada por un cambio de coordenadas, tenemos

$$S'(q', \dot{q}', t') = S(q, q', t) \tag{4.27}$$

$$\int_{t_{1'}}^{t_{2'}} dt' L'(q', \dot{q}', t') = \int_{t_{1'}}^{t_{2'}} dt' \frac{dt}{dt'} L[q_{i}(q', t), \dot{q}_{i}(q, \dot{q}', t'), t(t')]$$
(4.28)

$$\implies L'(q', \dot{q}', t') = L[q_i(q', t), \dot{q}_i(q, \dot{q}', t'), t(t')] \frac{\mathrm{d}t}{\mathrm{d}t'}$$
(4.29)

Una transformación de coordenadas que deja invariante en forma a las EOM es llamada una transformación de simetría.

Por lo tanto, si q son las coordenadas de un sistema físico descrito por las EOM,

$$\ddot{q} = G(q, \dot{q}, t) \tag{4.30}$$

entonces

$$t' = t'(t) \tag{4.31}$$

$$q' = q'(q, t) \tag{4.32}$$

será una transfrmación de simetría si las EOM transformadas es dada por

$$\overline{\ddot{q}' = G(q', \dot{q}', t')}$$

$$(4.33)$$

Teorema 4.2. Si las EOM expresadas en términos de las nuevas variables tiene exactamente la misma forma funcional que las EOM expresadas en las variables antiguas y si ellas deben ser obtenidas a partir del principio de Hamilton, entonces las respectivas funciones de Lagrange deben diferir a lo más en una derivada total.

$$L'(q', \dot{q}', t') = L(q', \dot{q}', t') + \frac{\mathrm{d}}{\mathrm{d}t'} \Omega(q', t')$$
(4.34)

Prueba

Dado que las EOM se obtienen a partir del principio de Hamilton

$$\delta S = \delta \int_{t_1}^{t_2} dt L(q, \dot{q}, t) = 0$$
 (4.35)

$$\implies \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' L'(q', \dot{q}', t') \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' L(q', \dot{q}', t') + \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' \frac{d}{dt'} \Omega(q', t')$$
(4.36)

Dado que (4.27) es válida, tenemos

$$\int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' L'(q'\dot{q}', t') = \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt L(q, \dot{q}, t)$$
(4.37)

$$\implies \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} L(q, \dot{q}, t) = \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' L(q, \dot{q}', t') + \delta \Omega(q', t') \Big|_{(q'_1, t'_1)}^{(q'_2, t'_2)}$$

$$(4.38)$$

el último término se cancela debido a que los puntos extremos son fijos,

$$\implies \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt L(q, \dot{q}, t) = \delta \int_{(q'_1, t'_1)}^{(q'_2, t'_2)} dt' L(q', \dot{q}', t')$$
(4.39)

Si queremos tener una simetría, entocnes debemos imponer dos condiciones

1.
$$L'(q', \dot{q}', t') = L(q', \dot{q}', t') + \frac{d}{dt'}\Omega(q', t')$$

2.
$$S'(q', \dot{q}', t') = S(q, \dot{q}, t)$$

Estas dos condiciones son el punto de partida para probar el teorema de Noether 2 .

²https://es.wikipedia.org/wiki/Emmy_Noether

Distinguimos entre dos tipos de variaciones. La primera es la **variación** δ la cual compara dos coordenadas distintas en tiempos distintos. Es decir, compara las coordenadas q y q' en los tiempos t y t',

$$\delta q = q'(t') - q(t), \qquad t' = t + \delta t \tag{5.1}$$

$$q'(t') = q(t) + \delta t \tag{5.2}$$

Por otro lado la variación $\bar{\delta}$ compara dos coordenadas distintas en el mismo instante. Es decir, compara las coordenadas q y q' en el mismo instante,

$$\bar{\delta}q = q'(t) - q(t) \tag{5.3}$$

$$q'(t) = q(t) + \bar{\delta}q \tag{5.4}$$

5.1. Relación entre y

$$\bar{\delta}q = q'(t) - q(t) + q'(t') - q'(t') \tag{5.5}$$

$$= (q'(t') - q(t)) + q'(t) - q'(t')$$
(5.6)

$$\implies \bar{\delta}q = \delta q - [q'(t') - q'(t)] \tag{5.7}$$

Pero

$$q'(t') = q'(t + \delta t) = q'(t) + \delta t \frac{\mathrm{d}q'(t)}{\mathrm{d}t}$$
(5.8)

$$\implies q'(t') - q'(t) = \delta t \frac{\mathrm{d}}{\mathrm{d}t} (q(t) + \bar{\delta}q) \tag{5.9}$$

$$= \delta t \frac{\mathrm{d}}{\mathrm{d}t} q(t) + \delta t \frac{\mathrm{d}}{\mathrm{d}t} \delta q \tag{5.10}$$

el ultimo término es despreciable por que es de segundo orden.

$$\implies q'(t') - q'(t) = \delta t \dot{q} \tag{5.11}$$

$$\Longrightarrow \boxed{\bar{\delta}q = \delta q(t) - \delta t \dot{q}(t)} \tag{5.12}$$

Propiedad 5.1. Los operadores $\bar{\delta}$ y d/dt conmutan.

$$\bar{\delta}\dot{q} = \dot{q}'(t) - \dot{q}(t) = \frac{\mathrm{d}}{\mathrm{d}t}q'(t) - \dot{q}(t) \tag{5.13}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(q(t) - \bar{\delta}q \right) - \dot{q}(r) \tag{5.14}$$

$$= \dot{q}(t) + \frac{\mathrm{d}}{\mathrm{d}t}\bar{\delta}q - \dot{q}(t) \tag{5.15}$$

$$\Longrightarrow \left[\bar{\delta}\dot{q} = \frac{\mathrm{d}}{\mathrm{d}t}\bar{\delta}q \right], \qquad \Longrightarrow \left[\left[\bar{\delta}, \frac{\mathrm{d}}{\mathrm{d}t} \right] = 0 \right] \tag{5.16}$$

Propiedad 5.2. Los operadores δ y d/dt no conmutan.

5.2. Prueba del teorema de Noether

Hemos visto que

$$S'(q', \dot{q}', t') = S(q, \dot{q}, t) \tag{5.17}$$

 $L'(q', \dot{q}', t') = L[q_i(q', t), \dot{q}_i(q, \dot{q}', t'), t(t')] \frac{\mathrm{d}t}{\mathrm{d}t'}$ (5.18)

$$L'(q', \dot{q}', t') = L(q', \dot{q}', t') + \frac{d}{dt'} \Omega(q', t')$$
(5.19)

De (5.18) y (5.19) vemos

$$L[q(q',t'),\dot{q}(q'\dot{q}',t'),t(t')]\frac{dt}{dt'} = L(q',\dot{q}',t')\frac{d}{dt'}\Omega(q',t')$$
(5.20)

cambiando a las coordenadas antiguas,

$$L(q, \dot{q}, t) = L[q'(q, t), \dot{q}'(q\dot{q}, t), t'(t)] \frac{\mathrm{d}t'}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}t'} \Omega(q'(q, t), t'(t)) \frac{\mathrm{d}t'}{\mathrm{d}t}$$
(5.21)

$$L(q, \dot{q}, t) = L(q'\dot{q}', t') \frac{\mathrm{d}t'}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q', t')$$
(5.22)

en el entendido que

$$q' = q'(q, t), \qquad \dot{q}' = \dot{q}'(q, \dot{q}, t), \qquad t' = t'(t)$$
 (5.23)

Dado que $t' = t + \delta t$,

$$\frac{\mathrm{d}t'}{\mathrm{d}t} = 1 + \frac{\mathrm{d}}{\mathrm{d}t}\delta t \tag{5.24}$$

$$L(q, \dot{q}, t) = L(q', \dot{q}', t') \left(1 + \frac{\mathrm{d}}{\mathrm{d}t} \delta t \right) + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q', t')$$
(5.25)

$$\implies L(q, \dot{q}, t) - L(q', \dot{q}', t') = L(q', \dot{q}', t') \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q', t')$$
(5.26)

Dado que las transformaciones son continuas, basta estudiar el caso infinitesimal. De (5.26),

$$-\delta L = L(q, \dot{q}, t) - L(q + \delta q, \dot{q} + \delta \dot{q}, t + \delta t)$$
(5.27)

$$= L(q + \delta q, \dot{q} + \delta \dot{q}, t + \delta t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q + \delta q, t + \delta t)$$
 (5.28)

Expandiendo el primer término hasta primer orden

$$-\delta L = L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q + \delta q, t + \delta t)$$
 (5.29)

Si consideramos el caso límite donde $\delta q = 0, \delta t = 0$

$$\delta L = 0, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\Omega(q,t) = 0$$
 (5.30)

Esto nos permite escribir

$$-\delta L = L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q + \delta q, t + \delta t) - \frac{\mathrm{d}}{\mathrm{d}t} \Omega(q, t)$$
 (5.31)

$$= L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} + \delta t \frac{\mathrm{d}}{\mathrm{d}t} [\Omega(q + \delta q, t + \delta t) - \Omega(q, t)]$$
(5.32)

$$\Longrightarrow \left[-\delta L = L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \delta \Omega(q, t) \right]$$
 (5.33)

Reemplazando $L = L(q_i, \dot{q}_i, t)$, tenemos

$$\delta L = \sum_{i} \left(\frac{\partial L}{\partial q_i} \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i \right) + \frac{\partial L}{\partial t} \delta t$$
 (5.34)

Reemplazando (5.34) en (5.33),

$$-\sum_{i} \left(\frac{\partial L}{\partial q_{i}} \delta q_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \delta \dot{q}_{i} \right) - \frac{\partial L}{\partial t} \delta t = L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\mathrm{d}}{\mathrm{d}t} \delta \Omega(q, t)$$
 (5.35)

Estudiaremos ahora el primer término del lado izquierdo. Dado que $\delta \dot{q}_i = d/dt \, \delta q_i - \dot{q}_i \, d/dt \, \delta t$ (eucación (4.20)),

$$\frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i = \frac{\partial L}{\partial \dot{q}_i} \left(\frac{\mathrm{d}}{\mathrm{d}t} \delta q_i - \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \delta t \right) \tag{5.36}$$

$$= \frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}}{\mathrm{d}t} \delta q_i - \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \delta t \tag{5.37}$$

$$\implies \sum_{i} \frac{\partial L}{\partial q_{i}} \delta q_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \delta \dot{q}_{i} = \sum_{i} \frac{\partial L}{\partial q_{i}} \delta q_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\mathrm{d}}{\mathrm{d}t} \delta q_{i} - \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \frac{\mathrm{d}}{\mathrm{d}t} \delta t$$
 (5.38)

$$= \sum_{i} \left(\frac{\partial L}{\partial q_{i}} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\mathrm{d}}{\mathrm{d}t} \right) \delta q_{i} - \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \frac{\mathrm{d}}{\mathrm{d}t} \delta t \tag{5.39}$$

Introduciendo en (5.35),

$$\sum_{i} \left(\frac{\partial L}{\partial q_{i}} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\mathrm{d}}{\mathrm{d}t} \right) \delta q_{i} - \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\partial L}{\partial t} \delta t = -L(q, \dot{q}, t) \frac{\mathrm{d}}{\mathrm{d}t} \delta t - \frac{\mathrm{d}}{\mathrm{d}t} \delta \Omega(q, t)$$
 (5.40)

$$\sum_{i} \left(\frac{\partial L}{\partial q_{i}} + \frac{\partial L}{\partial \dot{q}_{i}} \frac{\mathrm{d}}{\mathrm{d}t} \right) \delta q_{i} + \left(L(q, \dot{q}, t) - \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \right) \frac{\mathrm{d}}{\mathrm{d}t} \delta t + \frac{\partial L}{\partial t} \delta t = -\frac{\mathrm{d}}{\mathrm{d}t} \delta \Omega(q, t)$$
 (5.41)

después de algo de cálculo se llega a

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i} + L \delta t - \sum_{i} \frac{\partial L}{\partial q_{i}} \dot{q}_{i} \delta t + \delta \Omega \right] = -\sum_{i} \left(\frac{\partial L}{\partial q_{i}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}} \right) \delta q_{i} + \left(\frac{\mathrm{d}L}{\mathrm{d}t} - \frac{\partial L}{\partial t} \right) \delta t - \sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \right) \delta t \tag{5.42}$$

Analicemos los dos últimos términos de (5.42). Dado que $L = L(q_i, \dot{q}_i, t)$, se tiene que

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \sum_{i} \left(\frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial q_i} \ddot{q}_i \right) + \frac{\partial L}{\partial t}$$
(5.43)

$$\implies \frac{\mathrm{d}L}{\mathrm{d}t} - \frac{\partial L}{\partial t} = \sum_{i} \left(\frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial q_i} \ddot{q}_i \right) \tag{5.44}$$

y además

$$\sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial q_{i}} \dot{q}_{i} \right) = \sum_{i} \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}} \right) \dot{q}_{i} + \frac{\partial L}{\partial q_{i}} \ddot{q}_{i}$$
 (5.45)

$$\left(\frac{\mathrm{d}L}{\mathrm{d}t} - \frac{\partial L}{\partial t}\right) - \sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}\right) = \sum_{i} \left(\frac{\partial L}{\partial q_{i}} \dot{q}_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i} - \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}}\right) \dot{q}_{i} - \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}\right) \tag{5.46}$$

$$= \sum_{i} \left(\frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_i} \right) \dot{q}_i \tag{5.47}$$

Así, (5.42) toma la forma

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \left(\delta q_{i} - \dot{q}_{i} \delta t \right) + L \delta t + \delta \Omega \right] = -\sum_{i} \left(\frac{\partial L}{\partial q_{i}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}} \right) \left(\delta q_{i} - \dot{q}_{i} \delta t \right)$$
(5.48)

Dado que

$$\bar{\delta}q_i = \delta q_i - \dot{q}_i \delta t \tag{5.49}$$

y que

$$[L]_{i} = \sum_{i} \left(\frac{\partial L}{\partial q_{i}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}} \right)$$
(5.50)

tenemos

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial L}{\partial \dot{q}_i} (\delta q_i - \dot{q}_i \delta t) + L \delta t + \delta \Omega \right] = -[L]_i \bar{\delta} q_i$$
(5.51)

luego,

$$[L]_{i}\bar{\delta}q_{i} + \frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta}q_{i} + L\delta t + \delta\Omega \right] = 0$$
 (5.52)

esto implica, que en el espacio de soluciones de las ecuaciones de Euler-Lagrange, se tiene

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta} q_{i} + L \delta t + \delta \Omega \right] = 0 \tag{5.53}$$

Definiendo la cantidad,

$$J \equiv \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta} q_{i} + L \delta t + \delta \Omega$$
 (5.54)

$$\implies \frac{\mathrm{d}J}{\mathrm{d}t} = 0, \implies J = \text{constante}$$
 (5.55)

Luego, J es una cantidad conservada,

$$\boxed{[L]_i \bar{\delta} q_i + \frac{\mathrm{d}J}{\mathrm{d}t} = 0}$$
(5.56)

6.1. Continuación prueba del teorema de Noether

De la clase 5 vimos que

$$[L]_i \bar{\delta} q_i + \frac{\mathrm{d}J}{\mathrm{d}t} = 0, \qquad [L]_i = 0$$
(6.1)

donde

$$J \equiv \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta} q_{i} + L \delta t + \delta \Omega \tag{6.2}$$

con

$$\bar{\delta}q_i = \delta q_i - \dot{q}_i \delta t \tag{6.3}$$

$$J = \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \left(\delta q_{i} - \dot{q}_{i} \delta t \right) + L \delta t + \delta \Omega$$
(6.4)

$$= \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i} - \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \delta t + L \delta t + \delta \Omega$$
(6.5)

pero sabemos que

$$p_i = \frac{\partial L}{\partial \dot{q}^i}, \qquad H_c = \sum_i p_i \dot{q}^i - L$$
 (6.6)

así.

$$J = \sum_{i} p_{i} \delta q^{i} - H_{c} \delta t + \delta \Omega$$

$$(6.7)$$

donde H_c es el usual Hamiltoniano en el caso de que la función de Lagrange sea regular, y es el llamado **Hamiltoniano canónico** en el caso de que la función de Lagrange L sea de naturaleza singular. En (6.1) tenemos que

$$[L]_{i} = \frac{\partial L}{\partial q_{i}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}}$$

$$(6.8)$$

$$= \frac{\partial L}{\partial q_i} - \frac{\partial^2 L}{\partial \dot{q}_i \partial q_j} \dot{q}_j - \frac{\partial L}{\partial \dot{q}_i \dot{q}_j} \ddot{q}_j = 0$$
 (6.9)

Definiendo

$$V_{i} = \frac{\partial L}{\partial q_{i}} - \frac{\partial^{2} L}{\partial \dot{q}_{i} \partial q_{j}} \dot{q}_{j} \tag{6.10}$$

$$W_{ij} = \frac{\partial L}{\partial \dot{q}_i \dot{q}_j} \tag{6.11}$$

se tiene³

$$\implies [L]_i = V_i - W_{ij}\ddot{q}^j \tag{6.12}$$

³Abusando un poco de la posición de los índices, que para efecto des este cálculo no es tan relevante.

En el caso de que L sea regular, podemos escribir

$$V_i - W_{ij}\ddot{q}^j = 0 \quad /W^{ki} \tag{6.13}$$

$$W^{ki}V_i - W^{ki}W_{ij}\ddot{q}^j = 0 (6.14)$$

$$W^{ki}V_i - \delta^k_i \ddot{q}^j = 0 (6.15)$$

$$\Longrightarrow \left[\ddot{q}^k = W^{ki} V_i \right] \tag{6.16}$$

Dado que la derivada de Euler-Lagrange es

$$[L]_i = V_i - W_{ij}\ddot{q}^j \tag{6.17}$$

tenemos que (6.1) toma la forma

$$(V_i - W_{ij}\ddot{q}^j)\bar{\delta}q^i + \frac{\mathrm{d}J}{\mathrm{d}t} = 0 \tag{6.18}$$

$$V_i \bar{\delta} q^i - W_{ij} \ddot{q}^j \bar{\delta} q^i + \frac{\mathrm{d}J}{\mathrm{d}t} = 0 \tag{6.19}$$

pero $J = J(q, \dot{q}, t)$,

$$\frac{\mathrm{d}J}{\mathrm{d}t} = \frac{\partial J}{\partial q_i}\dot{q}_i + \frac{\partial J}{\partial \dot{q}_i}\ddot{q}_i + \frac{\partial J}{\partial t} \tag{6.20}$$

$$\implies V_i \bar{\delta} q^i - W_{ij} \ddot{q}^j \bar{\delta} q^i + \frac{\partial J}{\partial q_i} \dot{q}_i + \frac{\partial J}{\partial \dot{q}_i} \ddot{q}_i + \frac{\partial J}{\partial t} = 0$$
 (6.21)

$$V_i \bar{\delta} q^i + \frac{\partial J}{\partial q_i} \dot{q}_i + \frac{\partial J}{\partial t} + \frac{\partial J}{\partial \dot{q}_i} \ddot{q}_i - W_{ji} \ddot{q}^i \bar{\delta} q^j = 0$$
 (6.22)

$$V_i \bar{\delta} q^i + \frac{\partial J}{\partial q_i} \dot{q}_i + \frac{\partial J}{\partial t} + \left(\frac{\partial J}{\partial \dot{q}_i} - W_{ij} \bar{\delta} q^j \right) \ddot{q}^i = 0$$
 (6.23)

donde renombramos índices mudos y usado el hecho de que $W_{ij} = W_{ji}$ por como fue definido. Teniendo en cuenta que $J = J(q, \dot{q}, t)$,

$$V_i \bar{\delta} q^i + \frac{\partial J}{\partial q_i} \dot{q}^i + \frac{\partial J}{\partial t} = 0 \tag{6.24}$$

$$\frac{\partial J}{\partial \dot{q}_i} - W_{ij}\bar{\delta}q^j = 0 \tag{6.25}$$

Multiplicando (6.25) por W^{ki} , se tiene,

$$\bar{\delta}q^k = W^{ki} \frac{\partial J}{\partial \dot{q}^i} \tag{6.26}$$

Introduciendo (6.26) en (6.24), tenemos

$$V_i W^{ij} \frac{\partial J}{\partial \dot{q}^j} + \frac{\partial J}{\partial q_i} \dot{q}_i + \frac{\partial J}{\partial t} = 0$$
 (6.27)

De (6.16)

$$\ddot{q}^k = W^{ji}V_i = W^{ij}V_i \tag{6.28}$$

reemplazando (6.27),

$$\ddot{q}^{j}\frac{\partial J}{\partial \dot{q}^{j}} + \frac{\partial J}{\partial a_{i}}\dot{q}_{i} + \frac{\partial J}{\partial t} = 0 \tag{6.29}$$

$$\frac{\partial J}{\partial q_i}\dot{q}_i + \ddot{q}^j\frac{\partial J}{\partial \dot{q}^j} + \frac{\partial J}{\partial t} = 0 \tag{6.30}$$

$$\Longrightarrow \left[\frac{\mathrm{d}J}{\mathrm{d}t} = 0\right], \qquad J = \text{constante}$$
 (6.31)

$$J = \sum_{i} p_{i} \delta q^{i} - H_{c} \delta t + \delta \Omega = \text{constante}$$
 (6.32)

6.2. Grupos y álgebras de Lie

Sea A un conjunto de elementos $\{a, b, ...\}$ dotado de una operación binaria interna \square tal que $\forall a, b, c \in A \square b = c \in A$ la operación \square es cerrada (en este caso tenemos un **magma**).

Si la operación binaria interna tiene solo la propiedad asociativa entonces estamos en presencia de un **semigrupo**.

Definición 6.1. Un **semigrupo** es una estructura algebraica dotada de una sola operación binaria interna que satisface la propiedad asociativa.

Ejemplo 6.1. Sea $A = \{a, b\}$ dotado de la operación \diamond . Una tabla de multiplicación es la siguiente.

$$(a \diamond b) \diamond a = b \diamond a = a \tag{6.34}$$

$$a \diamond (b \diamond a) = a \diamond a = a \tag{6.35}$$

Luego, la operación \diamond es asociativa. Notemos que $a \diamond a = a$ y $a \diamond b = b$ pero $b \diamond a = a$ lo que implica que $a \diamond b \neq b \diamond a$. Luego el conjunto A con la operación \diamond dada en (6.33) no tiene elemento unidad y correspode a un semigrupo.

Si la operación binaria interna demás de ser asociativa admite un elemento unidad, entonces estamos en prsencia de un **monoide**.

Definición 6.2. Un monoide es una estructura algebraca dotada de una operación binaria interna que admite la propiedad asociativa y de elemento unidad.

Si sucediera que cada elemento del mnoide admitiera un elemento neutro, entonces estaos en presencia de un grupo.

Definición 6.3. Un **grupo** es una estructura algebraica dotada de una operación binaria interna que satisface

- 1. asociatividad
- 2. tiene elemento unidad
- 3. cada elemento de la estructura admite un elemento inverso.

Hasta ahora hemos visto estructuras con solo una ley de composición interna. Una estructura que tiene dos leyes de composición interna es el **anillo**.

Definición 6.4. Un anillo es una estructura algebraica dotada denotada por $(A, \square, *)$ donde

- 1. A con respecto a la operación \square es un grupo abeliano (conmutativo)
- 2. A con respecto de * es un semigrupo.

Normalmente la operación \square se denota por + y se le llama adición, y * se denota por · o solo por yuxtaposición.

Así entonces una estructura $(A, +, \cdot)$ se llama anillo si:

- 1. $\forall a, b, c \in A, (a+b) + c = a + (b+c)$
- 2. $\forall a \in A, \exists \in A / a + 0 = 0 + a = a$
- 3. $\forall a \in A, \exists (-a) \in A, /a + (-a) = (-a) + a = 0$
- $4. \ \forall a, b \in A, a+b=b+a$
- 5. $\forall a, b, c \in A, a(bc) = (ab)c$

Su sucediera que $\forall a, b \in A, ab = ba$ el anillo se llamará **anillo conmutativo**.

Si ocurriera que $\forall a \in A, \exists 1 \in A / a = 1 = 1 = a$ el anillo se llamará anillo con unidad.

Definición 6.5. Sea $(A, +, \cdot)$ un anillo. Si ocuriera que $\forall a \in A$, existiera un a^{-1} , salo para el elemento 0, entonces la estructura algebraica ser+a llamada un **campo**.

Definición 7.1. Una estructura $(A, +, \cdot)$ es una anillo si

- (A, +) es un grupo abeliano
- (A, \cdot) es un semigrupo

En el caso que la operación de multiplicación admita un elemento unidad, entonces $(A, +, \cdot)$ será un anillo con unidad, i.e. $\forall x \in A, \exists x \in A/ex = xe = x$.

En el caso que la operación multiplicativa del anillo sea conmutativa, el anillo es un anillo conmutativo.

Definición 7.2. Un campo denotado por K, es una estructura que además de tener las propiedades del anillo con unidad, cada elemento A, excepto el cero, tiene un inverso. Por lo tanto un campo $(K, +, \cdot)$ es una estructura tal que

- (K, +) es un grupo abeliano aditivo.
- $(K-0,\cdot)$ es un grupo abeliano multiplicativo.

Hasta ahora hemos estudiado estructuras que tienen una ó dos operaciones binarias internas. Consideremos ahora una estructura dotada de una operación binaria interna y una operación binaria externa.

7.1. Espacio lineal o espacio vectorial

Definición 7.3. Una estructura (M, K, \bullet) es llamado un espacio vectorial, si

- *M* es un grupo abeliano,
- \blacksquare K es un campo conmutativo,
- es una operación binaria externa que define la acción del campo K sobre el grupo M,

$$\bullet: K \times M \to M \tag{7.1}$$

$$(\alpha, x) \to \alpha \bullet x, \qquad \forall x \in M, \forall \alpha \in K$$
 (7.2)

- La operación binaria interna de *M* está relacionada con la operación binaria externa a través de una operación distintiva mixta.
 - $\alpha \bullet (x+y) = \alpha \bullet x + \alpha \bullet y$
 - $(\alpha + \beta) \bullet x = \alpha \bullet x + \beta \bullet y$

 $\forall \alpha, \beta \in K, \forall x, y \in M.$

Normalmente los elementos $x \in M$ se llaman vectores y los elementos $\alpha \in K$ se llaman escalares y la operación \bullet se llama producto por escalar.

7.2. Álgebra y álgebra de Lie

Definición 7.4. Una estructura algebraica (A, K, \bullet) es llamada un álgebra, si

- \blacksquare A es un anillo,
- \blacksquare K es un campo conmutativo,
- \bullet es una operación binaria externa que define la acción del campo K sobre el anillo,

$$\bullet: K \times A \to A \tag{7.3}$$

- La operació binara interna aditiva del anillo (+) está relacionada con la operación binaria externa a través de la propiedad distributiva mixta
 - $\alpha \bullet (x+y) = \alpha \bullet x\alpha \bullet y$, $\forall \alpha, \beta \in K, \forall x, y \in A$
 - $(\alpha + \beta)x = \alpha \bullet x + \beta \bullet x$
- La operación binaria interna multiplicativa del anillo (denotada por ⋄) está relacionada con la operación binaria externa • por medio de la propiedad asociativa mixta

$$\alpha \bullet (x \diamond y) = (\alpha \bullet x) \diamond y = x \diamond (\alpha \bullet y), \qquad \forall x, y \in A, \, \forall \alpha \in K \tag{7.4}$$

1. La operación binaria interna del anillo \diamond se le llama producto algebraico.

En el caso que la multiplicación algebraica \diamond sea asociativa, i.e., $\forall x, y, z \in A$,

$$(x \diamond y) \diamond z = x \diamond (y \diamond z) \tag{7.5}$$

entonces el álgebra se llama álgebra asociativa.

- 2. Si la multiplicación algebraica tiene además de la propiedad asociativa, al elemento unidad entonces el álgebra es llamada **álgebra asociativa unital**.
- 3. Si la operación multiplicación algebraica es una operación antisimétrica, i.e., si

4.

$$x \diamond y = [x, y] = xy - yx \tag{7.6}$$

entonces el álgebra se llama **álgebra de Lie** y la operación \diamond antisimétrica satisface la propiedad derivativa conocida como identidad de Jacobi.

7.3. Grupos, álgebras y simetrías

El concepto de grupo está muy relacionado con el concepto de invariancia o de simetría de objetos tales como superficies, funciones, ecuaciones algebraicas, ecuaciones diferenciales, entre otros.

Nota histórica:

- El estudio de las simetrías de las ecuaciones algebraicas se hace en el contexto de la teoría de Galois ⁴.
- El estudio de las simetrías de las ecuaciones diferenciales se hacen en el contexto de la teoría de Lie ⁵.

Los grupos de Lie son grupos continuos que tienen la propiedad que es suficiente estudiarlos en su forma infinitesimal. En física, los grupos de Lie se introducen como grupos de transformaciones de coordenadas, i.e., como actuando sobre los elementos de una variedad.

Ejemplo 7.1. Consideremos la típica rotación en un plano de los ejes coordenados en un ángulo θ , La relación entre las coordenadas primadas y las sin primar viene dada por

$$x_1' = \cos\theta x_1 - \sin\theta x_2 \tag{7.7}$$

$$x_2' = \sin \theta x_1 + \cos \theta x_2 \tag{7.8}$$

o de manera equivalente

$$\underbrace{\begin{pmatrix} x_1' \\ x_2' \end{pmatrix}}_{x'} = \underbrace{\begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}}_{R(\theta)} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x}$$
(7.9)

Así, tenemos una transformación de la forma

$$x' = f(x, \theta) \tag{7.10}$$

además, notemos que

• $\{R(\theta)\}$ tiene unidad $\forall \theta$, dada por

$$R(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{7.11}$$

⁴https://es.wikipedia.org/wiki/%C3%89variste_Galois

⁵https://es.wikipedia.org/wiki/Sophus_Lie

- tiene inverso, $\forall \theta, \exists (-\theta)$.
- es asociativo,
- es conmutativo

Si la transformación $x' = f(x, \theta)$, entonces la unidad es dada por x' = f(x, 0) = f(x, e) = x.

Definición 7.5. Un conjunto de transformaciones

$$x^{i} = f^{i}(x', ..., x^{n}; g^{1}, ..., g^{r}) \equiv f(x, g)$$
(7.12)

es llamado un grupo de transformaciones r-paramétrico si

1. admite el elemento unidad

$$x' = f(x, e) = x \tag{7.13}$$

- 2. admite elemento inverso
- 3. tiene definida una ley de composición interna,

$$x' = f(x,g),$$
 $x'' = f(x',g') = f[f(x,g),g'] = f(x,g'')$ (7.14)

entonces

$$g'' = g''(g, g')$$
 (7.15)

Definición 7.6. Un conjunto de transformaciones es un grupo de simetría de una ecuación diferencial

$$F(x, x^{(1)}, ..., x^{(n)}) = 0, \quad \text{con } x = (x^1, ..., x^n)$$
 (7.16)

si la ecuación (7.16) permanece invariante en forma bajo la acción del grupo,

$$F(x', x'^{(1)}, ..., x'^{(n)}) = 0 (7.17)$$

Lo interesante de los grupos de Lie es que basta estudiar sus versiones infinitesimales.

$$x' = f(x,g) \to x' = f(x,\delta g) \tag{7.18}$$

$$x^{i} = f^{i}(x, \delta g) = f^{i}(x, e) + \frac{\partial f^{i}(x, \delta g)}{\partial g^{k}} \bigg|_{g=e} \delta g^{k} + \cdots$$
 (7.19)

donde x' = f(x, e) = x

$$x^{\prime i} = x^i + \left. \frac{\partial f^i(x, \delta g)}{\partial g^k} \right|_{g=e} \delta g^k + \cdots$$
 (7.20)

$$\Rightarrow \delta x^{i} = x^{\prime i} - x^{i} = \left. \frac{\partial f^{i}(x, \delta g)}{\partial g^{k}} \right|_{g=e} \delta g^{k}$$
 (7.21)

Esto significa que un cambio infinitesimal en los parámetros implica un cambio infinitesimal en las coordenadas de la variedad sobre la cual actúa el grupo.

8.1. Generadores de grupos de Lie

Sea \mathcal{M} una variedad dotada de sistemas de coordenadas $\{x_i\}_{i=1}^n, \{x_i'\}_{i=1}^n$ y sea G un grupo r-paramétrico $a_{\nu}, \nu = 1, ..., r$. La acción del grupo G sobre la variedad \mathcal{M} es dada por el grupo de transformaciones

$$x' = f(x, a)x'_{i} = f_{i}(x_{j}, a_{\nu})$$
(8.1)

$$x_i' = f_i(x_1, x_2, ..., x_n; a_1, a_2, ..., a_r)$$
(8.2)

Para clarificar ideas consideremos el ejemplo de una variedad \mathcal{M} de 2 dimensiones que admite las coordenadas $x:(x_1,x_2)$ y $x':(x'_1,x'_2)$ y un grupo uni-paramétrico G=SO(2) de rotaciones en el plano,

$$x_1' = \cos \theta x_1 - \sin \theta x_2 \tag{8.3}$$

$$x_2' = \sin \theta x_1 + \cos \theta x_2 \tag{8.4}$$

o de manera equivalente

$$\underbrace{\begin{pmatrix} x_1' \\ x_2' \end{pmatrix}}_{x'} = \underbrace{\begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}}_{R(\theta)} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{x}$$
(8.5)

$$\implies x' = R(\theta)x \longleftrightarrow x' = f(x,\theta)x$$
 (8.6)

o en general

$$\implies x' = R(a)x \longleftrightarrow x' = f(x, a)x$$
 (8.7)

De aquí vemos:

- 1. La acción de G = SO(2) es rotar las coordenadas de \mathcal{M} .
- 2. Si el ángulo de rotación es pequeño, entonces el cambio experimentado por las coordenadas es también pequeño. Esto implica que en general, un pequeño cambio en los parámetros del grupo induce cambios pequeños en las coordenadas de \mathcal{M} .

Notemos que cuando $\theta = 0$,

$$R(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \tag{8.8}$$

es decir,

$$x_1' = x_1 \quad x_2' = x_2 \tag{8.9}$$

$$x' = R(0)x = x,$$
 $x' = f(x,0) = x$ (8.10)

Teniendo en cuenta que en el estudio de los grupos de Lie basta con estudiar su comportamiento infinitesimal, consideremos la expansión infinitesimal de la transformación x' = f(x, a) alrededor de a = 0.

$$x' = f(x,a) = f(x,0) + \left. \frac{\partial f(x,a)}{\partial a} \right|_{a=0} da + \cdots$$
(8.11)

$$x_i' = f_i(x_j, a_\nu) = f_i(x_j, 0) + \frac{\partial f_i(x_j, 0)}{\partial a_\nu} da_\nu$$
 (8.12)

$$x' = x + \frac{\partial f(x, a)}{\partial a} da \tag{8.13}$$

$$x_i' = x_i + \frac{\partial f_i(x,0)}{\partial a_\nu} da_\nu \tag{8.14}$$

Esto implica que

$$dx' = \frac{\partial f(x,0)}{\partial a} da, \qquad dx'_i = \frac{\partial f_i(x,0)}{\partial a_{\nu}} da_{\nu}$$
(8.15)

Definiendo por comodidad

$$u(x) = \frac{\partial f(x,0)}{\partial a}, \qquad u_{i\nu}(x) = \frac{\partial f_i(x,0)}{\partial a_{\nu}}$$
 (8.16)

Así,

$$dx = u(x)da, dx_i = u_{i\nu}da_{\nu} (8.17)$$

Notar que, de lo anterior⁶

$$\frac{\mathrm{d}x_i}{\mathrm{d}a_\nu} = u_{i\nu}(x) \tag{8.18}$$

También podemos escribir

$$dx_i = \sum_{\nu} u_{i\nu}(x) da_{\nu} \qquad i = 1, 2, ..., n, \qquad \nu = 1, 2, ..., r$$
(8.19)

Definición 8.1. Sea $F(x) = F(x_1, ..., x_n)$ una función definida sobre la variedad \mathcal{M} . La función F(x) es **invariante** bajo el grupo de transformaciones

$$x' = f(x, a) \tag{8.20}$$

 \sin

$$F(x') = F[f(x, a)] = F(x).$$

⁶No estamos siendo estrictos con la posición de los índices coordenados de momento.

Consideremos ahora el cambio experimentado por la función F(x) cuando cambian las coordenadas x debido a un cambio en los parámetros del grupo.

Bajo un cambio en x se tiene que F(x) cambia como⁷

$$dF = \frac{\partial F}{\partial x} dx = \frac{\partial F}{\partial x} u(x) da$$
 (8.21)

$$dF = da \left(u(x) \frac{\partial}{\partial x} \right) F \tag{8.22}$$

$$dF = da_{\nu} \left(u_{i\nu}(x) \frac{\partial}{\partial x_i} \right) F \tag{8.23}$$

donde hemos usado (8.17).

Definición 8.2. Se define el generador del grupo como el operador dado por

$$X_{\nu} = \sum_{i} u_{i\nu} \frac{\partial}{\partial x_{i}}, \qquad i = 1, 2, ..., n, \qquad \nu = 1, 2, ..., r$$
 (8.24)

Así, existe un generador por cada parámetro del grupo.

Esto implica que

$$dF = da_{\nu} X_{\nu} F \equiv XF \tag{8.25}$$

donde

$$X = \mathrm{d}a_{\nu}X_{\nu} \equiv \mathrm{d}a^{\nu}X_{\nu} \tag{8.26}$$

Observación 8.1. Los generadores X_{ν} son operadores que pueden o no ser operadores hermíticos. En el caso que ellos no sean hermíticos, pueden ser convertidos en hermíticos en general, multiplicándolos por i.

Teorema 8.1. A partir de un conjunto de operadores hermíticos X_{ν} podemos obtener una representación del grupo por medio de operadores unitarios

$$U(a_{\nu}) = e^{ia_{\nu}X_{\nu}} \tag{8.27}$$

Teorema 8.2. Si X_{ν} y X_{μ} son generadores de un grupo de Lie, entonces su conmutador es una combinación lineal se dichos generadores:

$$[X_{\nu}, X_{\mu}] = C_{\nu\mu}^{\ \lambda} X_{\lambda} \equiv C_{\mu\nu\lambda} X_{\lambda} \tag{8.28}$$

donde

$$C_{\nu\mu}^{\ \lambda} = -C_{\mu\nu}^{\ \lambda} \tag{8.29}$$

Dado que este producto es antisimétrico, satisface la identidad de Jacobi,

$$[[X_{\mu}, X_{\nu}], X_{\lambda}] + [[X_{\lambda}, X_{\mu}], X_{\nu}] + [[X_{\nu}, X_{\lambda}], X_{\mu}] = 0$$
(8.30)

⁷El cambio en el parámetro genera un cambio en las coordenadas, y el cambio en las coordenadas genera un cambio en la función F(x).

Ejemplo 8.1. Consideremos el siguiente grupo de transformaciones

$$x' = \alpha_1 x + \alpha_2, \qquad \alpha = (\alpha_1, \alpha_2) \tag{8.31}$$

- Encuentre los generadores del grupo
- Determine sus relaciones de conmutación

Solución 8.1. De (8.31) vemos que la identidad del grupo es dada por $\alpha_1 = 1$ y $\alpha_2 = 0$ ya que x' = 1x + 0 = x, lo que implica que $\alpha_0 = (\alpha_1^0, \alpha_2^0) = (1, 0)$. Con el objeto de tener una identidad nula, definimos

$$a_1 = \alpha_1 - 1, \qquad a_2 = \alpha_2 \tag{8.32}$$

Es decir,

$$a_1^0 = \alpha_1^0 - 1, \qquad a_2^0 = \alpha_2^0$$
 (8.33)

$$\implies a_1^0 = 1 - 1 = 0, \qquad a_2^0 = 0 \tag{8.34}$$

$$\implies a_0 = (a_1^0, a_2^0) = (0, 0) \tag{8.35}$$

Así, el grupo de transformaciones toma la forma

$$x' = (1 + a_1)x + a_2 (8.36)$$

$$\Longrightarrow \boxed{x' = f(x, a) = x + a_1 x + a_2} \tag{8.37}$$

$$\implies dx_i = \frac{\partial f_i(x,0)}{\partial a_\nu} da_\nu = u(x)_{i\nu} da_\nu \tag{8.38}$$

$$dx_i = \sum_{\nu} \frac{\partial f_i}{\partial a_{\nu}} da_{\nu} \tag{8.39}$$

$$dx_1 \equiv dx = \frac{\partial f}{\partial a_1} da_1 + \frac{\partial f}{\partial a_2} da_2$$
(8.40)

$$dx = xda_1 + 1da_2 \tag{8.41}$$

$$dx = xda_1 + da_2 \tag{8.42}$$

pero

$$dx = u_{11}da_1 + u_{12}da_2 (8.43)$$

$$\implies u_{11} = x, \qquad u_{12} = 1 \tag{8.44}$$

de manera que

$$X_{\nu} = \sum_{i} u(x)_{i\nu} \frac{\partial}{\partial x_{i}} \tag{8.45}$$

$$X_1 = u_{11} \frac{\partial}{\partial x_1} = u_{11} \frac{\partial}{\partial x} = x \frac{\partial}{\partial x}$$
 (8.46)

$$X_2 = u_{12} \frac{\partial}{\partial x_1} = u_{12} \frac{\partial}{\partial x} = \frac{\partial}{\partial x}$$
 (8.47)

Así, los generadores del grupo son

$$X_1 = x \frac{\partial}{\partial x}, \qquad X_2 = \frac{\partial}{\partial x}$$
 (8.48)

El conmutador es

$$[X_1, X_2]f = X_1 X_2 f - X_2 X_1 f (8.49)$$

$$= x \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) - \frac{\partial}{\partial x} \left(x \frac{\partial f}{\partial x} \right) \tag{8.50}$$

$$=x\frac{\partial^2 f}{\partial x^2} - \frac{\partial f}{\partial x} - x\frac{\partial^2 f}{\partial x^2} \tag{8.51}$$

$$= -\frac{\partial f}{\partial x} \tag{8.52}$$

$$= -X_2 f \tag{8.53}$$

$$\implies [X_1, X_2] = -X_2 \tag{8.54}$$

Dado que

$$[X_1, X_2] = C_{12}^{1} X_1 + C_{12}^{2} X_2 (8.55)$$

se tiene que las constantes de estructura son

$$C_{12}^{1} = 0, C_{12}^{2} = -1 (8.56)$$

8.2. Grupos matriciales

Sea \mathcal{M} una variedad que admite las bases⁸ $\{\hat{e}_i\}_{i=1}^n, \{\hat{e}_i'\}_{i=1}^n$ y $\{\hat{e}_i''\}_{i=1}^n$ asociadas a las coordenadas $\{x_i\}_{i=1}^n, \{x_i'\}_{i=1}^n$ y $\{x_i''\}_{i=1}^n$. Un cambio de base es dado por

$$\hat{e}'_{i} = B_{i}^{i} \hat{e}_{i}, \qquad \hat{e}''_{k} = A_{k}^{j} \hat{e}'_{i}, \qquad \hat{e}''_{k} = C_{k}^{i} \hat{e}_{i}$$

$$(8.57)$$

es decir,

$$\hat{e}_k'' = A_k^{\ j} B_j^{\ i} \hat{e}_i' = C_k^{\ i} \hat{e}_i \tag{8.58}$$

$$\Longrightarrow \boxed{C_k^{\ i} = A_k^{\ j} B_j^{\ i}} \tag{8.59}$$

Todas las bases de un espacio vectorial están relacionadas por medio de matrices. El conjunto de estas matrices constituyen un grupo.

Definición 8.3. El conjunto de matrices $n \times n$ invertible que definen un cambio de base constituyen un grupo conocido como **grupo lineal general** definido sobre los espacios \mathbb{R}^n , \mathbb{C}^n , \mathbb{Q}^n . Estos grupos son denotados por $GL(n,\mathbb{R})$, $GL(n,\mathbb{C})$, $GL(n,\mathbb{Q})$.

Grupo general lineal $GL(n, \mathbb{C})$

Grupo compuesto por todas las matrices complejas invertibles $n \times n$.

Toda matriz $A \in GL(n, \mathbb{C}^n)$ tiene $2n^2$ elementos (n^2 elementos reales y n^2 elementos imaginarios).

Este grupo tiene $2n^2$ parámetros reales, por lo cual tiene dimensión $2n^2$.

⁸Ver Ref. [4]

Grupo general lineal real $GL(n, \mathbb{R})$

Si exigimos que las matrices de $GL(n,\mathbb{C}^n)$ sean todas con elemento reales, obtenemos el grupo lineal general real $GL(n,\mathbb{R}^n)$, el cual tiene n^2 parámetros reales.

Grupo general lineal especial $SL(n, \mathbb{C})$

Si exigimos que todas las matrices de $GL(n,\mathbb{C})$ satisfagan las condiciones que tengan determinante +1, entonces obtenemos el grupo lineal especial $SL(n,\mathbb{C})$. Así, si $A \in SL(n,\mathbb{C})$, entonces det A=1.

Grupo general lineal especial real $SL(n, \mathbb{R})$

Si exigimos que todas las matrices de $GL(n,\mathbb{R})$ tengan determinante +1 entonces obtenemos el grupo especial lineal real $SL(n,\mathbb{R})$.

Grupo unitario U(n)

Es el grupo de todas las matrices complejas unitarias de $n \times n$. Esto significa que si $A \in U(n)$, entonces $A^{\dagger}A = 1 \implies A^{\dagger} = A^{-1}$.

Grupo especial unitario SU(n)

Si exigimos a las matrices del grupo U(n) que tengan determinante 1, entonces obtenemos el grupo especial unitario SU(n). Esto significa que si $A \in SU(n)$, entonces $A^{\dagger}A = 1$ y det A = 1.

Ejemplos importantes en física son el grupo SU(2) y el grupo SU(3).

También son de gran importantes los grupos SU(4), SU(5) y SU(6).

<u>Nota</u>: El grupo $SU(2) \times U(1)$ está relacionado con las fuerzas electrodébiles (unificación del electromagnetismo con las fuerzas nucleares débiles). El grupo $SU(3) \times SU(2) \times U(1)$ está relacionado con la gran-unificación (unificación del electromagnetismo con las fuerzas nucleares débiles y fuertes).

Grupo ortogonal $O(n,\mathbb{C})$

Es el grupo de todas las matrices complejas ortogonales de $n \times n$. Esto significa que si $A \in O(n, \mathbb{C})$ entonces $A^T A = 1 \implies A^T = A^{-1}$.

Grupo ortogonal especial $SO(n, \mathbb{C})$

Si exigimos que las matrices del grupo $O(n, \mathbb{C})$ tengan determinante 1, entonces obtenemos el grupo ortogonal especial $SO(n, \mathbb{C})$. Es decir, si $A \in SO(n)^9$ entonces $A^TA = 1$ y det A = 1

9.1. Ejemplo: Generadores y álgebra de SO(3)

Ejemplo 9.1. Determine los generadores del grupo ortogonal especial 3-dimensional SO(3) así como también su álgebra de Lie.

Solución 9.1. El grupo SO(3) es el grupo de matrices ortogonales de 3×3 y de determinante igual a 1. La acción de SO(3) sobre E_3 (o \mathbb{R}^3) es dada por el grupo de transformaciones

$$x' = Ax \tag{9.1}$$

de aquí vemos que el elemento unidad es dado por $A_0 = 1 \implies x' = A_0 x = x$. Para lograr tener un elemento unidad nulo definimos

$$a = A - 1 \implies a_0 = A_0 - 1 = 1 - 1 = 0$$
 (9.2)

así, la transformación (9.1) toma la forma

$$x' = f(x, a) = (1 + a)x = x + ax (9.3)$$

⁹Por notación se puede omitir la \mathbb{C} .

$$dx = da \frac{\partial f(x,0)}{\partial a} \tag{9.4}$$

$$= dax (9.5)$$

y recordamos que

$$dx_i = \sum_{\nu} u_{i\nu} da_{\nu} \tag{9.6}$$

Dado que $A^T A = 1$, tenemos que en el caso infinitesimal (a primer oden)

$$(1 + da^{T})(1 + da) = 1 (9.7)$$

$$1 + \mathrm{d}a + \mathrm{d}a^T + \mathrm{d}a^T \mathrm{d}a = 1 \tag{9.8}$$

es decir,

$$da = -da^T (9.9)$$

explícitamente tenemos

$$\begin{pmatrix}
da_{11} & da_{12} & da_{13} \\
da_{21} & da_{22} & da_{23} \\
da_{31} & da_{32} & da_{33}
\end{pmatrix} = - \begin{pmatrix}
da_{11} & da_{21} & da_{31} \\
da_{12} & da_{22} & da_{32} \\
da_{13} & da_{23} & da_{33}
\end{pmatrix} (9.10)$$

luego,

$$da = \begin{pmatrix} 0 & da_{12} & da_{13} \\ -da_{12} & 0 & da_{23} \\ -da_{13} & -da_{23} & 0 \end{pmatrix}$$

$$(9.11)$$

Definimos

$$da_{12} = da_3, da_{13} = -da_2, da_{23} = da_1 (9.12)$$

así

$$da = \begin{pmatrix} 0 & da_3 & -da_2 \\ -da_3 & 0 & da_1 \\ da_2 & -da_1 & 0 \end{pmatrix}$$
(9.13)

de(9.5)

$$\begin{pmatrix} dx_1 \\ dx_2 \\ dx_3 \end{pmatrix} = \begin{pmatrix} 0 & da_3 & -da_2 \\ -da_3 & 0 & da_1 \\ da_2 & -da_1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
(9.14)

obteniendo

$$dx_1 = x_2 da_3 - x_3 da_2$$

$$dx_2 = -x_1 da_3 + x_3 da_1$$

$$dx_3 = x_1 da_2 - x_2 da_1$$
(9.15)

De (9.6)

$$dx_1 = u_{11}da_1 + u_{12}da_2 + u_{13}da_3 (9.16)$$

$$dx_2 = u_{21}da_1 + u_{22}da_2 + u_{23}da_3 (9.17)$$

$$dx_3 = u_{31}da_1 + u_{32}da_2 + u_{33}da_3 \tag{9.18}$$

comparando

$$u_{11} = 0, \quad u_{12} = -x_3, \quad u_{13} = x_2$$
 (9.19)

$$u_{21} = x_3, \quad u_{22} = 0_3, \quad u_{23} = -x_1$$
 (9.20)

$$u_{31} = -x_2, \quad u_{32} = x_1, \quad u_{33} = 0$$
 (9.21)

Los generadores vienen dados por

$$X_{\nu} = \sum_{i} u(x)_{i\nu} \frac{\partial}{\partial x_{i}} \tag{9.22}$$

$$X_1 = u_{11} \frac{\partial}{\partial x_1} + u_{21} \frac{\partial}{\partial x_2} + u_{31} \frac{\partial}{\partial x_3}$$

$$(9.23)$$

$$=x_3\frac{\partial}{\partial x_2} - x_2\frac{\partial}{\partial x_3} \tag{9.24}$$

$$X_2 = u_{12} \frac{\partial}{\partial x_1} + u_{22} \frac{\partial}{\partial x_2} + u_{32} \frac{\partial}{\partial x_3}$$

$$(9.25)$$

$$= -x_3 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_3} \tag{9.26}$$

$$X_3 = u_{13} \frac{\partial}{\partial x_1} + u_{23} \frac{\partial}{\partial x_2} + u_{33} \frac{\partial}{\partial x_3}$$
 (9.27)

$$=x_2\frac{\partial}{\partial x_1} - x_1\frac{\partial}{\partial x_2} \tag{9.28}$$

(9.29)

en resumen,

$$X_1 = x_3 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_3} \tag{9.30}$$

$$X_2 = x_1 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_1} \tag{9.31}$$

$$X_3 = x_2 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_2} \tag{9.32}$$

(9.33)

El conmutador

$$\begin{split} [X_1, X_2]F &= X_1 X_2 F - X_2 X_1 F \\ &= \left(x_3 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_3}\right) \left(x_1 \frac{\partial F}{\partial x_3} - x_3 \frac{\partial F}{\partial x_1}\right) - \left(x_1 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_1}\right) \left(x_3 \frac{\partial F}{\partial x_2} - x_2 \frac{\partial F}{\partial x_3}\right) \\ &= x_3 \frac{\partial}{\partial x_2} \left(x_1 \frac{\partial F}{\partial x_3}\right) - x_3 \frac{\partial}{\partial x_2} \left(x_3 \frac{\partial F}{\partial x_1}\right) - x_2 \frac{\partial}{\partial x_3} \left(x_1 \frac{\partial F}{\partial x_3}\right) + x_2 \frac{\partial}{\partial x_3} \left(x_3 \frac{\partial F}{\partial x_1}\right) \\ &- \left[x_1 \frac{\partial}{\partial x_3} \left(x_3 \frac{\partial F}{\partial x_2}\right) - x_1 \frac{\partial}{\partial x_3} \left(x_2 \frac{\partial F}{\partial x_3}\right) - x_3 \frac{\partial}{\partial x_1} \left(x_3 \frac{\partial F}{\partial x_2}\right) + x_3 \frac{\partial}{\partial x_1} \left(x_2 \frac{\partial F}{\partial x_3}\right)\right] \\ &= \left(x_2 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_2}\right) F \\ &= X_3 F \end{split}$$

El cálculo para los demás conmutadores es análogo y se obtiene,

$$[X_1, X_2] = X_3 (9.34)$$

$$[X_3, X_1] = X_2 \tag{9.35}$$

$$[X_2, X_3] = X_1 \tag{9.36}$$

o de manera compacta

$$[X_i, X_j] = \epsilon_{ijk} X_k \tag{9.37}$$

10.1. Generadores de transformaciones infinitesimales

Consideremos la siguiente transformación de simetría

$$q^{\prime k} = q^k + \delta_{\epsilon} q^k = q^k + \epsilon \eta^k(q, t) \tag{10.1}$$

$$t' = t + \delta_{\epsilon}t = t + \epsilon \xi(t) \tag{10.2}$$

Tenemos transformaciones de simetría uni-paramétricas de parámetro ϵ . Para calcular los generadores, usamos el método usual

$$q'^{k} = f^{k}(q^{i}, \epsilon) = q^{k} + \epsilon \eta^{k}(q, t), \qquad \Longrightarrow \delta q^{k} = \epsilon \eta^{k}(q, t)$$
(10.3)

$$t' = f(t, \epsilon) = t + \epsilon \xi(t), \qquad \Longrightarrow \delta t = \epsilon \xi(t)$$
 (10.4)

Usaremos el siguiente esquema:

$$(q^k, \epsilon) \Leftrightarrow x^i \implies x^1 = q^k, x^2 = t$$
 (10.5)

$$(f^k(q^i,\epsilon), f(t,\epsilon)) \Leftrightarrow f^i(x^i,a) \tag{10.6}$$

Recordemos que el generador viene dado por

$$X_{\nu} = \sum_{i}^{2} u_{i\nu} \frac{\partial}{\partial x_{i}}, \qquad \nu = 1$$
 (10.7)

$$X_1 = u_{11} \frac{\partial}{\partial x_1} + u_{21} \frac{\partial}{\partial x_2} \tag{10.8}$$

$$u_{i\nu} = \frac{\partial f^i}{\partial a_{\nu}} \tag{10.9}$$

En este caso

$$u_{11} = \frac{\partial f^k}{\partial \epsilon} = \eta^k(q, t) \tag{10.10}$$

$$u_{21} = \frac{\partial f}{\partial \epsilon} = \xi(t) \tag{10.11}$$

Así, el generador queda

$$X = \xi(q, t) \frac{\partial}{\partial t} + \eta^k(q, t) \frac{\partial}{\partial q^k}$$
(10.12)

Esto implica que

$$Xt = \xi \frac{\partial t}{\partial t} + \eta^k \frac{\partial t}{\partial q^k}$$
 (10.13)

$$=\xi \tag{10.14}$$

$$Xq^{k} = \xi \frac{\partial q^{k}}{\partial t} + \eta^{k} \frac{\partial q^{k}}{\partial a^{k}}$$
 (10.15)

$$= \eta^k \tag{10.16}$$

Recordemos que una función F(q,t) cambia bajo una transformación de simetría como

$$\delta F = \epsilon X F = \epsilon \left(\xi \frac{\partial F}{\partial t} + \eta^k \frac{\partial F}{\partial q^k} \right)$$
 (10.17)

Si la función F(q,t) es generalizada al caso de una función $G(t,q,\dot{q},\ddot{q},...)$ el correspondiente generador se denota \bar{X} tal que $\delta G = \epsilon \bar{X} G$, donde

$$X = \xi(t)\frac{\partial}{\partial t} + \eta^k(q, t)\frac{\partial}{\partial q^k} + \eta^k_{(1)}(t, q, \dot{q})\frac{\partial}{\partial \dot{q}^k} + \eta^k_{(2)}(t, q, \dot{q}, \ddot{q})\frac{\partial}{\partial \ddot{q}^k} + \cdots$$
(10.18)

Hemos visto que

$$\delta q^k = \epsilon \eta^k \tag{10.19}$$

$$\delta t = \epsilon \xi \tag{10.20}$$

Por otro lado sabemos

$$\bar{\delta}q^k = \delta q^k - \dot{q}^k \delta t \tag{10.21}$$

$$= \epsilon \eta^k - \dot{q}^k \epsilon \xi \tag{10.22}$$

$$= \epsilon(\eta^k - \dot{q}^k \xi) \equiv \epsilon \chi^k \tag{10.23}$$

donde $\chi^k = \eta^k - \dot{q}^k \xi$.

Recordemos que la corriente de Noether está dada por

$$J(t,q,\dot{q}) = \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta}q_{i} + L\delta t + \delta\Omega$$
 (10.24)

$$= \sum_{i} \frac{\partial L}{\partial \dot{q}^{i}} \epsilon \chi^{i} + L \epsilon \xi + \epsilon \Omega \tag{10.25}$$

$$= \epsilon \left(\sum_{i} \frac{\partial L}{\partial \dot{q}^{i}} \chi^{i} + L\xi + \Omega \right) \tag{10.26}$$

Definimos la carga conservada como

$$J(t,q,\dot{q}) = \epsilon C(t,q,\dot{q}) \tag{10.27}$$

donde

$$C(t,q,\dot{q}) = \sum_{i} \frac{\partial L}{\partial \dot{q}^{i}} \chi^{i} + L\xi + \Omega$$
(10.28)

Esta carga es válida para transformaciones uni-paramétricas.

Consideremos ahora el caso de un grupo de transformaciones r-paramétricas de parámetro $\epsilon_{\nu}, \ \nu=1,2,...,r,$

$$\delta_{\epsilon} q^k = \epsilon^{\nu} \eta_{\nu}^k(t, q) \implies q'^k = f^k(q^k, \epsilon_{\nu}) = q^k + \epsilon^{\nu} \eta_{\nu}^k \tag{10.29}$$

$$\delta_{\epsilon}t = \epsilon^{\nu}\xi_{\nu}(t,q) \implies t' = f(t,\epsilon_{\nu}) = t + \epsilon^{n}\xi_{\nu}$$
 (10.30)

En este caso, los generadores son

$$X_{\nu} = \sum_{i=1}^{2} u_{i\nu} \frac{\partial}{\partial x_{i}}, \qquad x_{1} \Leftrightarrow q^{k}, x_{2} \Leftrightarrow t$$
 (10.31)

donde

$$u_{11} = \frac{\partial f^k}{\partial \epsilon_{\nu}} = \eta_{\nu}^k \tag{10.32}$$

$$u_{21} = \frac{\partial f}{\partial \epsilon_{\nu}} = \xi_{\nu} \tag{10.33}$$

Luego,

$$X_{\nu} = \xi_{\nu} \frac{\partial}{\partial t} + \eta_{\nu}^{k} \frac{\partial}{\partial q^{k}}$$
(10.34)

Estos generadores tienen la propiedad que el producto antisimétrico de dos de ellos da lugar a un tercer generador, de acuerdo a

$$[X_{\mu}, X_{\nu}] = \Upsilon_{\mu\nu\lambda} X_{\lambda}$$
 (10.35)

En el caso que $\Upsilon_{\mu\nu\lambda}$ sea constante, este producto genera un álgebra de Lie.

10.2. Cargas conservadas

La corriente conservada es dada por (10.24)

$$J(t,q,\dot{q}) = \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \bar{\delta}q_{i} + L\delta t + \delta\Omega$$
 (10.36)

donde

$$\delta t = \epsilon^{\nu} \xi_n \tag{10.37}$$

$$\delta q^k = \epsilon^\nu \eta^k_\nu \tag{10.38}$$

de donde se desprende

$$\bar{\delta}q^i = \delta q^i - \dot{q}^i \delta t \tag{10.39}$$

$$= \epsilon^{\nu} \eta_{\nu}^{i} - \dot{q}^{i} \epsilon^{\nu} \xi_{\nu} \tag{10.40}$$

$$= \epsilon^{\nu} (\eta_{\nu}^i - \dot{q}^i \xi_{\nu}) \tag{10.41}$$

$$=\epsilon^{\nu}\chi^{k}_{\nu} \tag{10.42}$$

donde $\chi_{\nu}^{k} = \eta_{\nu}^{i} - \dot{q}^{i} \xi_{\nu}$. Así,

$$J(t,q,\dot{q}) = \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \epsilon^{\nu} \chi_{\nu}^{i} + L \epsilon^{\nu} \xi_{\nu} + \epsilon^{\nu} \Omega_{\nu}$$
 (10.43)

$$= \epsilon^{\nu} \left(\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \chi_{\nu}^{i} + L \xi_{\nu} + \Omega_{\nu} \right)$$
 (10.44)

$$\equiv \epsilon^{\nu} C_{\nu} \tag{10.45}$$

donde

$$C_{\nu} = \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \chi_{\nu}^{i} + L \xi_{\nu} + \Omega_{\nu}$$
 (10.46)

es la llamada carga conservada de Noether.

Dado que

$$\chi_{\nu}^{k} = \eta_{\nu}^{i} - \dot{q}^{i} \xi_{\nu} \tag{10.47}$$

tenemos

$$C_{\nu} = \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} (\eta_{\nu}^{i} - \dot{q}^{i} \xi_{\nu}) + L \xi_{\nu} + \Omega_{\nu}$$
(10.48)

$$= \sum_{i} \frac{\partial L}{\partial \dot{q}^{i}} \eta_{\nu}^{i} - \sum_{i} \left(\frac{\partial L}{\partial \dot{q}^{i}} \dot{q}^{i} - L \right) \xi_{\nu} + \Omega_{\nu}$$
 (10.49)

$$= \sum_{i} \frac{\partial L}{\partial \dot{q}^{i}} \eta_{\nu}^{i} - \sum_{i} \left(p_{i} \dot{q}^{i} - L \right) \xi_{\nu} + \Omega_{\nu}$$
(10.50)

$$\Longrightarrow \boxed{C_{\nu} = \sum_{i} \frac{\partial L}{\partial \dot{q}^{i}} \eta_{\nu}^{i} - H_{c} \xi_{\nu} + \Omega_{\nu}}$$
(10.51)

donde H_c corresponde al $Hamiltoniano\ can\'onico$.

Teorema 10.1. La variación de las coordenadas es dada en función de las cargas de Noether por medio de

$$\bar{\delta}q^k = [q^k, \epsilon^{\nu}C_{\nu}] \tag{10.52}$$

donde [,] es el corchete de Poisson.

Prueba 10.1. Calculemos

$$[q^k, \epsilon^{\nu} C_{\nu}] = \left[q^k, \epsilon^{\nu} \left(\sum_i \frac{\partial L}{\partial \dot{q}^i} \eta^i_{\nu} - H_c \xi_{\nu} + \Omega_{\nu} \right) \right]$$
(10.53)

$$= \left[q^k, \epsilon^{\nu} \sum_{i} p_i \eta_{\nu}^i \right] - \left[q^k, \epsilon^{\nu} H_c \xi_{\nu} \right] + \left[q^k, \epsilon^{\nu} \Omega_{\nu} \right],^0 \qquad \Omega_{\nu} = \Omega_{\nu}(q, t) \tag{10.54}$$

$$= \sum_{i} \epsilon^{\nu} [q^k, p_i] \eta^i_{\nu} - \epsilon^{\nu} [q^k, H_c] \xi_{\nu}$$

$$\tag{10.55}$$

$$= \sum_{i} \epsilon^{\nu} \delta_{i}^{k} \eta_{\nu}^{i} - \epsilon^{\nu} \dot{q}^{k} \xi_{\nu} \tag{10.56}$$

$$= \epsilon^{\nu} \eta_{\nu}^{k} - \epsilon^{\nu} \dot{q}^{k} \xi_{\nu} \tag{10.57}$$

$$= \epsilon^{\nu} (\eta_{\nu}^k - \dot{q}^k \xi_{\nu}) \tag{10.58}$$

$$=\epsilon^{\nu}\chi^{k}_{\nu}\tag{10.59}$$

$$= \bar{\delta}q^k \tag{10.60}$$

Así,

$$\bar{\delta}q^k = [q^k, \epsilon^{\nu}C_{\nu}] \qquad \Box \tag{10.61}$$

Teorema 10.2. Las cargas de Noether satisfacen la siguiente relación de conmutación

$$[C_{\mu}, C_{\nu}] = \Upsilon_{\mu\nu\lambda}C_{\lambda} + Z_{\mu\nu} \tag{10.62}$$

Prueba 10.2. Hemos visto que $\bar{\delta}q^k = [q^k, \epsilon^{\nu}C_{\nu}]$. Consideremos el conmutador de dos transformaciones $\bar{\delta}$,

$$\bar{\delta}_1 q^k = [q^k, \epsilon_1^{\nu} C_{\nu}] \tag{10.63}$$

$$\bar{\delta}_2(\bar{\delta}_1 q^k) = [\bar{\delta}_1 q^k, \epsilon_2^{\mu} C_{\nu}] = [[q^k, \epsilon_1^{\nu} C_{\nu}], \epsilon_2^{\mu} C_{\mu}]$$
(10.64)

$$\implies \bar{\delta}_2 \bar{\delta}_1 q^k = \epsilon_1^{\nu} \epsilon_2^{\nu} [[q^k, C_{\nu}], C_{\mu}] \tag{10.65}$$

Además,

$$\bar{\delta}_1(\bar{\delta}_2 q^k) = [\bar{\delta}_2 q^k, \epsilon_1^{\mu} C_{\mu}] = [[q^k, \epsilon_2^{\nu} C_{\nu}] \epsilon_1^{\mu}, C_{\mu}]$$
(10.66)

$$= \epsilon_2^{\nu} \epsilon_1^{\mu}[[q^k, C_{\nu}], C_{\mu}] \tag{10.67}$$

Así,

$$\bar{\delta}_2 \bar{\delta}_1 q^k - \bar{\delta}_1 \bar{\delta}_2 1^k = \epsilon_1^{\nu} \epsilon_2^{\mu} [[q^k, C_{\nu}], C_{\mu}] - \epsilon_2^{\nu} \epsilon_1^{\nu} [[q^k, C_{\nu}], C_{\mu}]$$
(10.68)

$$= \epsilon_1^{\mu} \epsilon_2^{\nu} \left\{ [[q^k, C_{\mu}], C_{\nu}] - [[q^k, C_{\nu}], C_{\mu}] \right\}$$
 (10.69)

De la identidad de Jacobi,

$$[[q^k, C_{\mu}], C_{\nu}] + [[C_{\nu}, q^k], C_{\mu}] + [[C_{\mu}, C_{\nu}], q^k] = 0$$
(10.70)

lo que implica que

$$\bar{\delta}_2 \bar{\delta}_1 q^k - \bar{\delta}_1 \bar{\delta}_2 q^k = \epsilon_1^{\mu} \epsilon_2^{\nu} [q^k, [C_{\mu}, C_{\nu}]]$$
(10.71)

Dado que el producto de dos transformaciones debe dar lugar a una tercera transformación

$$[\bar{\delta}_2, \bar{\delta}_1]q^k = \bar{\delta}_3 q^k = [q^k, \epsilon^{\lambda} C_{\lambda}]$$
(10.72)

luego, podemos conjeturar que $\epsilon^{\lambda} \sim \epsilon_{1}^{\mu} \epsilon_{2}^{\nu}$, de manera que $[C_{\mu}, C_{\nu}] \sim C_{\lambda}$. Para hacer consistente la conjetura introducimos (10.62) en (10.71)

$$\epsilon_1^{\mu} \epsilon_2^{\nu} [q^k, [C_{\mu}, C_{\nu}]] = \epsilon_1^{\mu} \epsilon_2^{\nu} [q^k, \Upsilon_{\mu\nu\lambda} C_{\lambda} + Z_{\mu\nu}] \tag{10.73}$$

$$= \Upsilon_{\mu\nu\lambda} \epsilon_1^{\mu} \epsilon_2^{\nu} [q^k, C_{\lambda}] + \epsilon_1^{\mu} \epsilon_2^{\nu} [q^k, Z_{\mu\nu}], \qquad (q \text{ conmuta con } Z)$$
 (10.74)

$$[\bar{\delta}_2, \bar{\delta}_1]q^k = \Upsilon_{\mu\nu\lambda}\epsilon_1^{\mu}\epsilon_2^{\nu}[q^k, C_{\lambda}] = \epsilon^{\lambda}[q^k, C_{\lambda}]$$
(10.75)

$$\implies \epsilon^{\lambda} = \Upsilon_{\mu\nu\lambda} \epsilon_1^{\mu} \epsilon_2^{\nu} \tag{10.76}$$

11.1. Grupo de Galileo y sus cargas conservadas

Consideremos la función de Lagrange

$$L = \frac{1}{2} \sum_{i} m_i \dot{x}_i^2 + \sum_{i < j} V|x_i - x_j|$$
 (11.1)

es invariante bajo el grupo de Galileo. A saber,

Traslaciones temporales: $G_{\tau}: t' = t + \tau = f(t, \tau)$.

Siguiendo el procedimiento usual, $a_{\nu} \leftrightarrow \tau, \ \nu = 1$ y $x_i \leftrightarrow t$. Luego

$$u_{11} = 1, \quad X_{\nu} = \sum_{i} u_{i\nu} \frac{\partial}{\partial x_{i}}$$
 (11.2)

$$X = \frac{\partial}{\partial t} = H \implies H = \frac{\partial}{\partial t}$$
 (11.3)

Traslaciones espaciales: $G_a: x' = x_i + a_i = f(x_i, a_i)$.

$$u_{11} = 1, X = \frac{\partial}{\partial x_i} \implies P_i = \frac{\partial}{\partial x}$$
 (11.4)

Rotaciones temporales: $G_R: x' = x_i + R_i^j x_j = f(x_i, \theta)$.

Anteriormente determinamos los generadores de SO(3),

$$X_{12} = x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1} \longrightarrow X_3 \tag{11.5}$$

$$X_{23} = x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2} \longrightarrow X_1 \tag{11.6}$$

$$X_{31} = x_3 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_3} \longrightarrow X_2 \tag{11.7}$$

de manera que

$$X_i = \epsilon_{ijk} x_j \frac{\partial}{\partial x^k} \equiv J_i \tag{11.8}$$

Boosts de Galileo: $G_v: x' = x_i + v_i t = f(x_i, v_i)$.

$$u_{11} = t, X_i = t \frac{\partial}{\partial x^i}, G_i = t \frac{\partial}{\partial x^i} \equiv tP_i$$
 (11.9)

Así tenemos que los generadores del grupo de Galileo son $\{H, P_i, J_i, G_i\}$ donde

$$H = \frac{\partial}{\partial t} \tag{11.10}$$

$$P_i = \frac{\partial}{\partial x^i} \tag{11.11}$$

$$J_i = \epsilon_{ijk} x_j \frac{\partial}{\partial x^k} \tag{11.12}$$

$$G_i = t \frac{\partial}{\partial x^i} \tag{11.13}$$

11.2. Partícula libre en 3-dimensiones

Las ecuaciones de Newton son invariantes bajo el grupo de transformaciones de Galileo. Normalmente es aceptado que las transformaciones de Galileo son las simetrías más generales bajo la cual las ecuaciones de Newton permanecen invariantes en forma.

Sin embargo, notemos que la trayectoria de una partícula libre que parte desde x_0 con velocidad v_0 es igual a

$$\boldsymbol{x}(t) = \boldsymbol{x}_0 + \boldsymbol{v}_0 t \tag{11.14}$$

que relaciona las posiciones de la partícula. Escribiendo (11.14) en la forma

$$\frac{\boldsymbol{x}(t)}{t} = \frac{\boldsymbol{x}_0}{t} + \boldsymbol{v}_0 \tag{11.15}$$

Si llamamos $\tilde{\boldsymbol{x}}(t) = \boldsymbol{x}(t)/t$ y $\tilde{t} = 1/t$, tenemos

$$\tilde{\boldsymbol{x}}(t) = \boldsymbol{v}_0 + \boldsymbol{x}_0 \tilde{t} \tag{11.16}$$

que relaciona velocidades. Notemos que existe una dualidad entre (11.14) y (11.15).

En Ref. [5] fue encontrado que el grupo de transformaciones más general que deja invariante la ecuación de Newton es un grupo de 12 generadores (12 parámetros) constituido por

- El grupo de Galileo de 10 parámetros.
- El grupo de dilataciones de 1 parámetro.
- El grupo de expansiones de 1 parámetro.

Los generadores de este grupo general son:

$$H = \frac{\partial}{\partial t}$$

$$P_i = \frac{\partial}{\partial q^i}$$

$$J_i = \epsilon_{ijk}q_j\frac{\partial}{\partial q^k}$$

$$G_i = t\frac{\partial}{\partial q^i}$$

$$S = 2t\frac{\partial}{\partial t} + q^i\frac{\partial}{\partial q^i}$$

$$C = t^2\frac{\partial}{\partial t} + tq^i\frac{\partial}{\partial q^i}$$

Este grupo es conocido como el grupo de Schrödinger que también deja invariante la ecuación de Schrödinger (Ver Ref. [6]).

Parte II

Electrodinámica y Relatividad

11.3. Transformaciones de Galileo y ecuaciones de Newton

Consideremos dos SRI K y K'. La relación entre las mediciones de ambos SRI está dado por

$$x' = x - vt,$$
 $y' = y,$ $z' = z,$ $t' = t$ (11.17)

La covariancia de las leyes de la física implican que las leyes de Newton en K deben tener la misma forma en K',

$$K: \quad \mathbf{F} = m\mathbf{a} \tag{11.18}$$

$$K': \quad \mathbf{F}' = m'\mathbf{a}' \tag{11.19}$$

Veamos si F = ma es invariante bajo Galileo: ¹⁰

$$x' = x - vt \implies \frac{\mathrm{d}x'}{\mathrm{d}t'} = \frac{\mathrm{d}x}{\mathrm{d}t} - v$$
 (11.20)

Definiendo la velocidad medida en K con $V=\mathrm{d}x/\mathrm{d}t$ y la velocidad medida en K' con $V'=\mathrm{d}x'/\mathrm{d}t'$ tenemos

$$V' = V - v \implies \boxed{V' \neq V} \tag{11.21}$$

es decir, la velocidad es una cantidad relativa.

$$\frac{\mathrm{d}V'}{\mathrm{d}t'} = \frac{\mathrm{d}V}{\mathrm{d}t} - \frac{\mathrm{d}v}{\mathrm{d}t} \tag{11.22}$$

pero v es constante, luego

$$\frac{\mathrm{d}V'}{\mathrm{d}t'} = \frac{\mathrm{d}V}{\mathrm{d}t} \implies \boxed{a' = a} \tag{11.23}$$

es decir, la aceleración es una cantidad absoluta. Dado que por postulado la masa es una cantidad absoluta m'=m, se tiene

$$F' = F \tag{11.24}$$

¹⁰Por simplicidad consideremos una sóla dimensión.

En este punto es natural hacerse la siguiente pregunta: ¿Son todas las leyes de la física invariante en forma? o ¿Son todas las leyes de la física invariantes en forma bajo Galileo? Las ecuaciones de Maxwell en el vacío vienen dadas por:

$$\nabla \cdot \boldsymbol{E} = 0 \tag{11.25}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{11.26}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{11.27}$$

$$\nabla \times \boldsymbol{B} = \mu_0 \epsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \tag{11.28}$$

tomando el rotacional de (11.27) tenemos

$$\nabla \times \nabla \times \mathbf{E} = -\nabla \times \frac{\partial \mathbf{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \mathbf{B})$$
 (11.29)

$$= -\frac{\partial}{\partial t} \left(\mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) \tag{11.30}$$

$$= -\mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} \tag{11.31}$$

usando la identidad del cálculo vectorial, se tiene

$$\nabla(\nabla \mathbf{E}) \stackrel{0}{-} \nabla^2 \mathbf{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
 (11.32)

$$\implies \nabla^2 \mathbf{E} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \tag{11.33}$$

Del mismo modo tenemos

$$\nabla^2 \mathbf{B} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0 \tag{11.34}$$

Cada componente $E_x, E_y, E_z, B_x, B_y, B_z$ satisface la ecuación

$$\nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = 0, \qquad c^2 = \frac{1}{\mu_0 \epsilon_0}$$
 (11.35)

Ejemplo 11.1. Probar que las ecuaciones de Maxwell no son invariantes bajo las transformaciones de Galileo, es decir, que las ecuaciones de Maxwell cambian de forma.

Solución 11.1.

$$x' = x - vt,$$
 $y' = y,$ $z' = z,$ $t' = t$ (11.36)

esto implica que

$$\frac{\partial x'}{\partial x} = 1, \qquad \frac{\partial x'}{\partial t} = -v, \qquad \frac{\partial t'}{\partial x} = 0, \qquad \frac{\partial t'}{\partial t} = 1$$
 (11.37)

Luego,

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial}{\partial t'} \frac{\partial t'}{\partial x} = \frac{\partial}{\partial x'}$$

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial x'} \frac{\partial x'}{\partial t} + \frac{\partial}{\partial t'} \frac{\partial t'}{\partial t} = \frac{\partial}{\partial t'} - v \frac{\partial}{\partial x'}$$
(11.38)

Las ecuaciones de Maxwell en una dimensión quedan

$$\nabla \cdot \mathbf{E} = 0 \Longrightarrow \frac{\partial E_x}{\partial x} = 0 \tag{11.39}$$

$$\nabla \cdot \boldsymbol{B} = 0 \Longrightarrow \frac{\partial B_x}{\partial x} = 0 \tag{11.40}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \Longrightarrow \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = -\frac{\partial B_x}{\partial t}$$
 (11.41)

$$\nabla \times \boldsymbol{B} = \mu_0 \epsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} \Longrightarrow \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} = \mu_0 \epsilon_0 \frac{\partial E_x}{\partial t}$$
(11.42)

(11.43)

Aplicando la transformación de Galileo, de (11.38) se tiene

$$\frac{\partial E_x'}{\partial x'} = 0 \tag{11.44}$$

$$\frac{\partial B_x'}{\partial x'} = 0 \tag{11.45}$$

$$\frac{\partial E_z'}{\partial y'} - \frac{\partial E_y'}{\partial z'} = -\frac{\partial B_x'}{\partial t'} = -\left(\frac{\partial B_x'}{\partial t'} - v\frac{\partial B_x'}{\partial x'}\right)$$
(11.46)

$$\frac{\partial B_z'}{\partial y'} - \frac{\partial B_y'}{\partial z'} = \mu_0 \epsilon_0 \frac{\partial E_x'}{\partial t'} = \mu_0 \epsilon_0 \left(\frac{\partial E_x'}{\partial t'} - v \frac{\partial E_x'}{\partial x'} \right)$$
(11.47)

Notar que estas dos últimas ecuaciones cambian en forma. Luego, bajo transformaciones de Galileo las ecuaciones de Maxwell cambian en forma.

Ejemplo 11.2. Probar que la ecuación de la onda (11.35) no es invariante bajo transformaciones de Galileo.

Hemos visto que las ecuaciones de Newton son invariantes en forma bajo las transformaciones de Galileo. Dado que las estas transformaciones sólo son validas en SRI, los cuales están relacionados por transformaciones de Galileo, se tiene que por medio de elemento mecánicos no es posible determinar si un sistema está en reposo o MRU ya que todos los SRI son equivalentes a los ojos de las transformaciones de Galileo.

Las ecuaciones de Maxwell no son invariantes bajo transformaciones de Galileo, lo cual implica que no todos los SRI son equivalentes a los ojos de las ecuaciones de Maxwell. Es decir, existen sistemas de referencia privilegiados para las ecuaciones de Maxwell. Dichas ecuaciones adquieren si forma más simple en el SRI donde fueron escritas por Maxwell. Este SRI es privilegiado con respecto a los SRI que se mueven con respecto al sistema de referencia de Maxwell. Al SRI de Maxwell se le postula como en reposo con respecto al éter.

Por medio de experimentos electromagnéticos (por ejemplo, ópticos) podría ser posible determinar si un SRI está en reposo ó en MUR con respecto del sistema del éter.

En este contexto se llevó a cabo el experimento de Michelson-Morley. El resultado de dicho experimento no encontró evidencia del éter ni como saber si un cuerpo estaba en reposo o en MUR.

Esto implicó que las ecuaciones de Maxwell deberían ser invariantes bajo un grupo de transformaciones. Lorentz encontró un grupo de transformaciones que dejaba invariante las ecuaciones de Maxwell. Dichas transformaciones sólo eran válidas para la electrodinámica.

Einstein postuló que debían existir transformaciones válidas para toda la física y estableció el principio de covariancia general: toda la física debe ser invariante en forma bajo un conjunto de transformaciones. Estas transformaciones deberían ser obtenidas a partir de principios fundamentales del espacio y del tiempo.

Einstein postuló que dichos principio eran:

- i) Homogeneidad del tiempo: todos los instantes son equivalentes.
- ii) Homogeneidad e isotropía del espacio: todos los puntos y las direcciones son equivalentes.
- iii) **Principio de la relatividad**: todos los SRI son equivalentes para *toda* la física. (No sólo para la mecánica).
- iv) Postulado de la constancia de la velocidad de la luz.

A partir de estos principios Einstein encontró que las transformaciones buscadas eran las transformaciones de Lorentz:

$$t' = \frac{\left(t - \frac{v}{c^2}x\right)}{\sqrt{1 - v^2/c^2}}\tag{12.1}$$

$$x' = \frac{(x - vt)}{\sqrt{1 - v^2/c^2}} \tag{12.2}$$

$$y' = y \tag{12.3}$$

$$z' = z \tag{12.4}$$

llamaremos $\gamma = \frac{1}{\sqrt{1-v^2/c^2}}$ y $x^0 = ct$. Escribiendo estas transformaciones como

$$x^{\prime 0} = \gamma \left(x^0 - \frac{v}{c} x^1 \right) \tag{12.5}$$

$$x^{\prime 1} = \gamma \left(x^1 - \frac{v}{c} x^0 \right) \tag{12.6}$$

$$x'^2 = x^2 (12.7)$$

$$x'^3 = x^3 (12.8)$$

o de manera equivalente

$$x^{0} = \gamma x^{0} - \gamma \frac{v}{c} x^{1} \tag{12.9}$$

$$x'^{1} = -\gamma \frac{v}{c}x^{0} + \gamma x^{1}$$

$$x'^{2} = x^{2}$$
(12.10)

$$x^{2} = x^{2} (12.11)$$

$$x^{\prime 3} = x^3 \tag{12.12}$$

Escribiendo estas transformaciones en forma matricial, se tiene

$$\underbrace{\begin{pmatrix} x'^{0} \\ x'^{1} \\ x'^{2} \\ x'^{3} \end{pmatrix}}_{x'^{\mu}} = \underbrace{\begin{pmatrix} \gamma & -\gamma \frac{v}{c} & 0 & 0 \\ -\gamma \frac{v}{c} & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\Lambda^{\mu}} \underbrace{\begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}}_{x^{\nu}} \tag{12.13}$$

$$\Longrightarrow \boxed{x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}} \tag{12.14}$$

donde en general

$$\Lambda^{\mu}_{\ \nu} = \begin{pmatrix}
\Lambda^{0}_{\ 0} \ \Lambda^{0}_{\ 1} \ \Lambda^{0}_{\ 2} \ \Lambda^{0}_{\ 3} \\
\Lambda^{1}_{\ 0} \ \Lambda^{1}_{\ 1} \ \Lambda^{1}_{\ 2} \ \Lambda^{1}_{\ 3} \\
\Lambda^{2}_{\ 0} \ \Lambda^{2}_{\ 1} \ \Lambda^{2}_{\ 2} \ \Lambda^{2}_{\ 3} \\
\Lambda^{3}_{\ 0} \ \Lambda^{3}_{\ 1} \ \Lambda^{3}_{\ 2} \ \Lambda^{3}_{\ 3}
\end{pmatrix}$$
(12.15)

De la Relatividad Especial, sabemos que el principio de constancia de la velocidad de la luz implica que la distancia entre dos puntos del espacio de Minkowski es invariante bajo transformaciones de Lorentz,

$$S^2 = x^{\mu} x_{\mu} = \eta_{\mu\nu} x^{\mu} x^{\nu} \tag{12.16}$$

$$S^{\prime 2} = x^{\prime \mu} x_{\mu}^{\prime} = \eta_{\mu \nu} x^{\prime \mu} x^{\prime \nu} \tag{12.17}$$

La invariancia de S^2 nos dice

$$S'^2 = S^2 (12.18)$$

$$\implies \eta_{\mu\nu} x'^{\mu} x'^{\nu} = \eta_{\mu\nu} x^{\mu} x^{\nu} \tag{12.19}$$

pero

$$x^{\prime \mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} \tag{12.20}$$

luego,

$$\implies \eta_{\mu\nu}\Lambda^{\mu}_{\alpha}x^{\alpha}\Lambda^{\nu}_{\beta}x^{\beta} = \eta_{\alpha\beta}x^{\alpha}x^{\beta} \tag{12.21}$$

$$\implies \eta_{\mu\nu} \Lambda^{\mu}_{\ \alpha} \Lambda^{\nu}_{\ \beta} x^{\alpha} x^{\beta} = \eta_{\alpha\beta} x^{\alpha} x^{\beta} \tag{12.22}$$

$$\Longrightarrow \left[\eta_{\mu\nu} \Lambda^{\mu}_{\ \alpha} \Lambda^{\nu}_{\ \beta} = \eta_{\alpha\beta} \right] \tag{12.23}$$

o en forma matricial

$$\boxed{\Lambda^T \eta \Lambda = \eta} \tag{12.24}$$

Teorema 12.1. Las matrices $\Lambda^{\mu}_{\ \nu}$ constituyen un grupo de Lie no-compacto conocido como grupo de Lorentz definido como

$$L := O(1,3) = \{ \Lambda \in GL(4,\mathbb{R}) / \Lambda^T \eta \Lambda = \eta \}$$
(12.25)

el cual tiene asociada un álgebra de Le conocida como el álgebra de Lorentz, definida como

$$\mathfrak{o}(1,3) = \{ a \in M_{4\times 4}(\mathbb{R})/a^T = -\eta a\eta \}$$
 (12.26)

Prueba 12.1. De la teoría de las álgebras de Lie sabemos que un elemento de un grupo y un elemento del álgebra están relacionados por exponenciación, a saber

$$\Lambda = e^{ta}, \quad \Lambda \in O(1,3), \quad a \in \mathfrak{o}(1,3) \tag{12.27}$$

donde t son los parámetros del grupo.

Las matrices Λ satisfacen la condición

$$\Lambda^T \eta \Lambda = \eta \tag{12.28}$$

$$\implies [e^{ta}]^T \eta [e^{ta}] = \eta \tag{12.29}$$

para determinar las condiciones del álgebra debemos remitirnos a la vecindad de la identidad de las Λ ,

$$\Lambda = e^{ta} \implies \Lambda = 1 \text{ ocurre en } t = 0$$
 (12.30)

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \left([e^{ta}]^T \eta [e^{ta}] \right) \bigg|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} \eta \bigg|_{t=0}$$
 (12.31)

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[e^{ta} \right]^T \eta \left[e^{ta} \right] \Big|_{t=0} + \left[e^{ta} \right]^T \eta \frac{\mathrm{d}}{\mathrm{d}t} \left[e^{ta} \right] \Big|_{t=0} = 0$$
(12.32)

$$\left[ae^{ta}\right]^{T}\eta[e^{ta}]\bigg|_{t=0} + \left[e^{ta}\right]^{T}\eta[ae^{ta}]\bigg|_{t=0} = 0$$
(12.33)

$$[a]^{T} \eta + \eta[a] = 0 (12.34)$$

$$a^T \eta + \eta a = 0 \tag{12.35}$$

multiplicando por $(\cdot \eta^{-1} \equiv \eta)$, se tiene

$$a^T + \eta a \eta = 0 \tag{12.36}$$

$$\implies \boxed{a^T = -\eta a \eta} \quad \Box \tag{12.37}$$

Teorema 12.2. Los constraints

$$\det \Lambda = \pm 1 \quad \text{y} \quad |\Lambda^0_0| \ge 1 \tag{12.38}$$

definen 4 partes desconectadas en el espacio de los parámetros del grupo de Lorentz.

Prueba 12.2. Sabemos que las matrices de Lorentz satisfacen la condición

$$\Lambda^T \eta \Lambda = \eta \tag{12.39}$$

$$\implies \det(\Lambda^T \eta) = \det \eta$$
 (12.40)

$$(\det \Lambda^T) \underbrace{(\det \eta)}_{-1} (\det \Lambda) = \underbrace{\det \eta}_{-1}$$
(12.41)

$$(\det \Lambda)^2 = 1 \tag{12.42}$$

$$\implies \boxed{\det \Lambda = \pm 1} \tag{12.43}$$

Por otro lado, dado que

$$\eta_{\alpha\beta} = \eta_{\mu\nu} \Lambda^{\mu}_{\ \alpha} \Lambda^{\nu}_{\ \beta} \tag{12.44}$$

$$\implies \eta_{00} = \eta_{\mu\nu} \Lambda^{\mu}_{0} \Lambda^{\nu}_{0} = \eta_{00} \Lambda^{0}_{0} \Lambda^{0}_{0} + \eta_{ii} \Lambda^{i}_{0} \Lambda^{i}_{0}$$
 (12.45)

$$\implies 1 = (\Lambda^0_0)^2 - (\Lambda^i_0)^2 \tag{12.46}$$

$$\implies (\Lambda^0_{\ 0})^2 = 1 + (\Lambda^i_{\ 0})^2 \tag{12.47}$$

$$\implies |\Lambda^0_0| \ge 1 \quad \Box \tag{12.48}$$

Estas condiciones permiten clasificar las transformaciones de Lorentz.

1. Grupo de Lorentz completo:

$$L := O(1,3) = \{ \Lambda \in GL(4,\mathbb{R}) / \Lambda^T \eta \Lambda = \eta \}$$
(12.49)

2. Grupo de transformaciones de Lorentz propias:

$$L_{+} := SO(1,3) = \{ \Lambda \in O(1,3) / \det \Lambda = +1 \}$$
(12.50)

es un subgrupo de O(1,3).

3. Transformaciones de Lorentz impropias:

$$L_{-} = \{ \Lambda \in O(1,3) / \det \Lambda = -1 \}$$
 (12.51)

no es un subgrupo de O(1,3).

4. Transformaciones de Lorentz ortocronas:

$$L^{\uparrow} = \{ \Lambda \in O(1,3) / \Lambda_0^0 \ge 1 \} \tag{12.52}$$

es un subgrupo de O(1,3).

5. Transformaciones de Lorentz no-ortocronas:

$$L^{\downarrow} = \{ \Lambda \in O(1,3) / \Lambda_0^0 \le 1 \}$$
 (12.53)

es un subgrupo de O(1,3).

6. Grupo de Lorentz restringido o grupo de Lorentz propio ortocrono:

$$L_{+}^{\uparrow} = \{ \Lambda \in O(1,3) / \det \Lambda = +1 \text{ y } \Lambda_{0}^{0} \ge 1 \}$$
 (12.54)

12.1. Generadores del grupo de Lorentz

En la vecindad de la identidad $\mathbb{I}_{SO(1,3)} \in L_+^{\uparrow}$ podemos escribir

$$\Lambda = \mathbb{I}_{4\times4} + \omega \implies \Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\nu} + \omega^{\mu}_{\ \nu} \tag{12.55}$$

donde $\omega^{\mu}_{\ \nu}$ son parámetros infinitesimales del grupo de Lorentz y además debe satisfacer

$$\eta_{\mu\nu}\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta} = \eta_{\alpha\beta} \tag{12.56}$$

Luego,

$$\eta_{\mu\nu} \left(\delta^{\mu}_{\alpha} + \omega^{\mu}_{\alpha} \right) \left(\delta^{\nu}_{\beta} + \omega^{\nu}_{\beta} \right) = \eta_{\alpha\beta} \tag{12.57}$$

$$(\eta_{\mu\nu}\delta^{\mu}_{\alpha} + \eta_{\mu\nu}\omega^{\mu}_{\alpha})\left(\delta^{\nu}_{\beta} + \omega^{\nu}_{\beta}\right) = \eta_{\alpha\beta} \tag{12.58}$$

$$\eta_{\mu\nu}\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta} + \eta_{\mu\nu}\delta^{\mu}_{\alpha}\omega^{\nu}_{b} + \eta_{\mu\nu}\omega^{\mu}_{\alpha}\delta^{\nu}_{\beta} + \underline{\eta}_{\mu\nu}\omega^{\mu}_{\alpha}\omega^{\nu}_{\beta} = \eta_{\alpha\beta}$$
 (12.59)

$$\eta_{\alpha\beta} + \eta_{\alpha\nu}\omega^{\nu}_{\ \beta} + \eta_{\mu\beta}\omega^{\mu}_{\ \alpha} = \eta_{\alpha\beta}$$
(12.60)

$$\omega_{\alpha\beta} + \omega_{\beta\alpha} = 0 \tag{12.61}$$

$$\Longrightarrow \boxed{\omega_{\alpha\beta} = -\omega_{\beta\alpha}} \tag{12.62}$$

Es decir, los parámetros infinitesimales del grupo de Lorentz son antisimétricos.

$$\implies x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} = (\delta^{\mu}_{\nu} x^{\nu} + \omega^{\mu}_{\ \nu} x^{\nu}) = x^{\mu} + \omega^{\mu}_{\ \nu} x^{\nu}$$
 (12.63)

$$\Longrightarrow \left[\delta x^{\mu} = \omega^{\mu}_{\ \nu} x^{\nu} \right] \tag{12.64}$$

Las matrices $\Lambda^{\mu}_{\ \nu} \in L^{\uparrow}_{+}$ y las matrices $\omega^{\mu}_{\ \nu}$ pertenecen al álgebra. Los elementos del grupo y los del álgebra están relacionados por

$$\Lambda = e^{\omega} \Longrightarrow \Lambda^{\mu}_{\ \nu} = (e^{\omega})^{\mu}_{\ \nu} \tag{12.65}$$

Si $M_{\rho\sigma}$ son una base del espacio de los parámetros del grupo, entonces

$$\omega = -\frac{i}{2}\omega^{\rho\sigma}M_{\rho\sigma} \tag{12.66}$$

$$\implies \Lambda^{\mu}_{\ \nu} = \left(e^{-\frac{i}{2}\omega^{\rho\sigma}M_{\rho\sigma}}\right)^{\mu}_{\ \nu} \tag{12.67}$$

así, de (12.64)

$$\delta x^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} - x^{\mu} \tag{12.68}$$

$$= \left(e^{-\frac{i}{2}\omega^{\rho\sigma}M_{\rho\sigma}}\right)^{\mu}_{\nu}x^{\nu} - x^{\mu} \tag{12.69}$$

$$= \left(\delta^{\mu}_{\nu} - \frac{i}{2}\omega^{\rho\sigma}(M_{\rho\sigma})^{\mu}_{\nu}\right)x^{\nu} - x^{\mu} \tag{12.70}$$

$$= -\frac{i}{2}\omega^{\rho\sigma}(M_{\rho\sigma})^{\mu}_{\ \nu}x^{\nu} \tag{12.71}$$

$$=\omega^{\mu}_{\ \nu}x^{\nu} \tag{12.72}$$

$$\Longrightarrow \left[\omega^{\mu}_{\ \nu} = -\frac{i}{2}\omega^{\rho\sigma}(M_{\rho\sigma})^{\mu}_{\ \nu}\right] \tag{12.73}$$

cuya solución por inspección es

$$(12.74)$$

$$(M_{\rho\sigma})^{\mu}_{\ \nu} = i \left(\eta_{\sigma\nu} \delta^{\mu}_{\rho} - \eta_{\rho\sigma} \delta^{\mu}_{\sigma} \right)$$

y sa satisfacen

$$[M_{\mu\nu}, M_{\rho\sigma}] = -i(\eta_{\mu\rho}M_{\nu\sigma} - \eta_{\mu\sigma}M_{\nu\rho} - \eta_{\nu\rho}M_{\mu\sigma} + \eta_{\nu\sigma}M_{\mu\rho})$$
(12.75)

Hemos visto que álgebra de Lorentz viene dada por

$$[M_{\mu\nu}, M_{\rho\sigma}] = -i(\eta_{\mu\rho} M_{\nu\sigma} - \eta_{\mu\sigma} M_{\nu\rho} - \eta_{\nu\rho} M_{\mu\sigma} + \eta_{\nu\sigma} M_{\mu\rho})$$
(13.1)

13.1. Generadores de las rotaciones espaciales y Boosts

Podemos hacer la siguiente descomposición de los generadores del grupo de Lorentz $M_{\mu\nu}$: M_{ij}, M_{0i} .

Definimos

$$J_i = \epsilon_{ijk} M_{jk}$$
, generadores de rotaciones (13.2)

$$K_i = M_{i0} = -M_{0i}$$
, generadores de boosts (13.3)

de manera que

$$M_{\mu\nu} = \begin{pmatrix} M_{00} & M_{01} & M_{02} & M_{03} \\ M_{10} & M_{11} & M_{12} & M_{13} \\ M_{20} & M_{21} & M_{22} & M_{23} \\ M_{30} & M_{31} & M_{32} & M_{33} \end{pmatrix} = \begin{pmatrix} 0 & -K_1 & -K_2 & -K_3 \\ K_1 & 0 & J_3 & -J_2 \\ K_2 & -J_3 & 0 & J_1 \\ K_3 & J_2 & -J_1 & 0 \end{pmatrix}$$
(13.4)

Consideremos el caso $\mu = 0, \nu = i, \rho = 0, \sigma = j,$

$$[M_{0i}, M_{0j}] = -i(\eta_{00}M_{ij} - \eta_{0j}M_{i0} - \eta_{i0}M_{0j} + \eta_{ij}M_{00})$$
(13.5)

$$[-K_i, -K_j] = -i\eta_{00}M_{ij} \tag{13.6}$$

(13.7)

$$\Longrightarrow \left[[K_i, K_j] = -i\epsilon_{ijk} J_k \right] \tag{13.8}$$

Ahora consideremos $\mu = 0, \nu = i, \rho = k, \sigma = l,$

$$[M_{0i}, M_{kl}] = -i(\eta_{0k}M_{il} - \eta_{0l}M_{ik} - \eta_{ik}M_{0l} + \eta_{il}M_{0k})$$
(13.9)

$$[-K_i, \epsilon_{klm} J_m] = -i(\eta_{ik}(-K_l) + \eta_{il}(-K_k))$$
(13.10)

pero $\eta_{ik} = -\delta_{ik}$, así

$$-\epsilon_{klm}[K_i, J_m] = -i(-\delta_{ik}(-K_l) - \delta_{il}(-K_k))$$
(13.11)

$$\epsilon_{klm}[K_i, J_m] = -i(\delta_{ik}(-K_l) - \delta_{il}(-K_k)) \tag{13.12}$$

$$(13.13)$$

$$[K_i, J_j] = i\epsilon_{ijk}K_k$$
(13.14)

Haciendo algo similar, se puede calcular la relación de conmutación cuando $\mu=i,\nu=j,\rho=k,\sigma=l$ y se obtiene que el álgebra que satisfacen los generadores de boost y rotaciones es

Si definimos nuevos generadores

$$S_i = \frac{1}{2}(J_i + iK_i), \qquad T_i = \frac{1}{2}(J_i - K_i)$$
 (13.16)

Entonces (13.15) toma la forma

$$[S_i, S_j] = \epsilon_{ijk} S_k \tag{13.17}$$

$$[T_i, T_j] = \epsilon_{ijk} T_k \tag{13.18}$$

$$[T_i, S_j] = 0 (13.19)$$

y es conocida como el álgebra comlexificada de Lorentz.

13.2. Grupo de Poincare

Sabemos que el grupo de Lorentz deja invariante la distancia entre dos puntos del espacio de Minkowski,

$$S^2 = \eta_{\mu\nu} x^{\mu} x^{\nu} \tag{13.20}$$

También sabemos que el grupo de traslaciones en el espacio de Minkowski deja invariante a S^2 ,

$$x^{\mu} \to x'^{\mu} = x^{\mu} + a^{\mu} \tag{13.21}$$

Esto conduce a la definición del grupo de transformaciones de Poincare:

$$x^{\mu} \to x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} + a^{\mu}$$
 (13.22)

Esta definición permite definir la ley de composición (multiplicación) entre los elementos del grupo de Poincare.

$$x'^{\mu} = (\Lambda_1)^{\mu}_{\ \nu} x^{\nu} + a_1^{\mu} \tag{13.23}$$

$$x''^{\mu} = (\Lambda_2)^{\mu}_{\ \nu} x'^{\nu} + a_2^{\mu} \tag{13.24}$$

Así,

$$x''^{\mu} = (\Lambda_2)^{\mu}_{\nu} ((\Lambda_1)^{\nu}_{\alpha} x^{\alpha} + a_1^{\nu}) + a_2^{\mu}$$
(13.25)

$$x''^{\mu} = (\Lambda_2)^{\mu}_{\ \nu} (\Lambda_1)^{\nu}_{\ \alpha} x^{\alpha} + (\Lambda_2)^{\mu}_{\ \nu} a_1^{\nu} + a_2^{\mu}$$
(13.26)

Si denotamos a un elemento del grupo de Poincare como (Λ, a) entonces la ley de composición interna del grupo es:

$$(\Lambda_2, a_2) \cdot (\Lambda_1, a_1) = (\Lambda_2 \Lambda_1, \Lambda_2 a_1 + a_2)$$
(13.27)

El elemento unidad del grupo P_+^{\uparrow} ,

$$x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} + a^{\mu}, \qquad \mathbb{I} \equiv (1,0)$$
 (13.28)

El inverso del elemento (Λ, a) es definido como $(\Lambda^{-1}, -\Lambda^{-1}a)$. En efecto

$$(\Lambda, a) \cdot (\Lambda^{-1}, -\Lambda^{-1}a) = (\Lambda\Lambda^{-1}, -\Lambda\Lambda^{-1}a + a) = (1, -a + a) = (1, 0)$$
(13.29)

y también

$$(\Lambda^{-1}, -\Lambda^{-1}a) \cdot (\Lambda, a) = (\Lambda^{-1}\Lambda, \Lambda^{-1}a + (-\Lambda^{-1}a)) = (1, 0)$$
(13.30)

$$(\Lambda, a) \to g(\Lambda, a) \tag{13.31}$$

$$g(\Lambda_2, a_2)g(\Lambda_1, a_1) = g(\Lambda_2\Lambda_1, \Lambda_2a_1 + a_2)$$
(13.32)

$$g^{-1}(\Lambda, a) = g(\Lambda^{-1}, -\Lambda^{-1}a) \tag{13.33}$$

13.3. Algebra de Poincare

Consideremos el siguiente producto

$$g^{-1}(\Lambda, 0)g(\Lambda', a')g(\Lambda, 0) = ? \tag{13.34}$$

Habíamos visto que

$$(\Lambda, a) \to g(\Lambda, a) \tag{14.1}$$

$$g(\Lambda_2, a_2)g(\Lambda_1, a_1) = g(\Lambda_2\Lambda_1, \Lambda_2a_1 + a_2)$$

$$\tag{14.2}$$

$$g^{-1}(\Lambda, a) = g(\Lambda^{-1}, -\Lambda^{-1}a) \tag{14.3}$$

14.1. Algebra de Poincare

Consideremos el siguiente producto

$$g^{-1}(\Lambda, 0)g(\Lambda', a')g(\Lambda, 0) = ? \tag{14.4}$$

Notemos que

$$g^{-1}(\Lambda, 0) = g(\Lambda^{-1}, 0) \tag{14.5}$$

además

$$g(\Lambda', a')g(\Lambda, 0) = g(\Lambda'\Lambda, \Lambda' \cdot 0 + a')$$
(14.6)

$$= g(\Lambda'\Lambda, a') \tag{14.7}$$

luego (14.4) queda

$$g^{-1}(\Lambda, 0)g(\Lambda', a')g(\Lambda, 0) = g(\Lambda^{-1}, 0)g(\Lambda'\Lambda, a')$$
(14.8)

$$= g(\Lambda^{-1}\Lambda'\Lambda, \Lambda^{-1}a') \tag{14.9}$$

$$g^{-1}(\Lambda, 0)g(\Lambda', a')g(\Lambda, 0) = g(\Lambda^{-1}\Lambda'\Lambda, \Lambda^{-1}a')$$
(14.10)

Para calcular el álgebra consideramos el caso infinitesimal,

$$g(\Lambda', a') = \mathbb{I} - \frac{i}{2} \omega'_{\rho\sigma} M^{\rho\sigma} + i a'_{\mu} P^{\mu}$$
(14.11)

Estudiemos el lado izquierdo de (14.10),

$$g^{-1}(\Lambda, 0)g(\Lambda', a')g(\Lambda, 0) = g^{-1}(\Lambda, 0) \left[\mathbb{I} - \frac{i}{2} \omega'_{\mu\nu} M^{\mu\nu} + i a'_{\rho} P^{\rho} \right] g(\Lambda, 0)$$
 (14.12)

$$= \mathbb{I} - \frac{i}{2} \omega'_{\mu\nu} g^{-1}(\Lambda, 0) M^{\mu\nu} g(\Lambda, 0) + i a'_{\rho} g^{-1}(\Lambda, 0) P^{\rho} g(\Lambda, 0) \quad (14.13)$$

Para el lado derecho de (14.10)

$$g(\Lambda^{-1}\Lambda'\Lambda, \Lambda^{-1}a') = \mathbb{I}$$
(14.14)

15.1. Teoría de campos relativista clásicos

De la mecánica clásica sabemos que la densidad Lagrangeana debe depender de los campos y de sus primeras derivadas, además de las coordenadas. Esto con el objeto de tener ecuaciones de movimiento de segundo orden en los campos.

La densidad de Lagrange $\mathcal{L} = \mathcal{L}(\psi, \partial \psi, x)$. El principio de Hamilton nos permite obtener las ecuaciones de movimiento (también llamadas ecuaciones de campo.

El Lagrangeano es dado por $L = \int d^3x \mathcal{L}(\psi, \partial \psi, x)$.

La acción es dada por

$$S = \int L dt = \int_{\Omega} d^4x \mathcal{L}(\psi, \partial \psi, x)$$
 (15.1)

Variación $\bar{\delta}$

Consideremos variaciones que dejan la región de integración Ω del espacio-tiempo sin cambios. Esta variación se denota con $\bar{\delta}$, la cual compara dos campos ψ y ψ' en el mismo punto del espacio-tiempo. Los campos en el borde de la región Ω no cambian, esto es,

$$\left. \bar{\delta}\psi \right|_{B=\partial\Omega} = 0 \tag{15.2}$$

$$\implies \bar{\delta}\psi(x) = \psi'(x) - \psi(x) \tag{15.3}$$

$$\implies \psi'(x) = \psi(x) + \bar{\delta}\psi(x) \tag{15.4}$$

de manera que las variaciones $\bar{\delta}$ actuan como

$$\bar{\delta}: \psi(x) \to \psi'(x)$$
 (15.5)

es decir, sólo cambian los campos. De aquí, es directo que

$$\bar{\delta}x^{\mu} = x'^{\mu} - x^{\mu} = 0, \implies [\bar{\delta}, \partial_{\mu}] = 0 \tag{15.6}$$

Así entonces,

$$\bar{\delta}S = \bar{\delta} \int_{\Omega} d^4x \mathcal{L}(x) = \int_{\Omega} \bar{\delta}\mathcal{L}(x)$$
 (15.7)

pero,

$$\bar{\delta}\mathcal{L}(x) = \bar{\delta}\mathcal{L}(\psi, \partial \psi, x) \tag{15.8}$$

$$= \frac{\partial \mathcal{L}}{\partial \psi} \bar{\delta} \psi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \bar{\delta} (\partial_{\mu} \psi) + \frac{\partial \mathcal{L}}{\partial x^{\mu}} \bar{\delta} x^{\mu}$$
(15.9)

$$= \frac{\partial \mathcal{L}}{\partial \psi} \bar{\delta} \psi + \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \bar{\delta} \psi \right] - \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \right] \bar{\delta} \psi \tag{15.10}$$

$$= \left[\frac{\partial \mathcal{L}}{\partial \psi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \right) \right] \bar{\delta} \psi - \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \right] \bar{\delta} \psi \tag{15.11}$$

lo que implica que

$$\bar{\delta}S = \int_{\Omega} d^4x \left[\frac{\partial \mathcal{L}}{\partial \psi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \right) \right] - \int_{\Omega} d^4x \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \bar{\delta} \psi \right)$$
(15.12)

$$= \int_{\Omega} d^4 x [\mathcal{L}] \bar{\delta} \psi - \int_{\partial \Omega} dS_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \bar{\delta} \psi = 0$$
 (15.13)

$$= \int_{\Omega} d^4 x [\mathcal{L}] \bar{\delta} \psi = 0 \tag{15.14}$$

$$\implies [\mathcal{L}] = \frac{\partial \mathcal{L}}{\partial \psi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} = 0 \tag{15.15}$$

Variación δ

Ahora consideremos variaciones que cambian la región de integración Ω , denotada por δ . Esta variación compara dos campos ψ y ψ' en dos puntos diferentes x y x',

$$\implies \delta x^{\mu} = x^{\prime \mu} - x^{\mu} \neq 0 \tag{15.16}$$

La variación δ se define como

$$\delta\psi = \psi'(x) - \psi(x) \tag{15.17}$$

Es decir, δ cambia x a x' y ψ a ψ' .

Relación entre $\bar{\delta}$ y δ

$$\bar{\delta}\psi = \psi'(x) - \psi(x) + \psi'(x') - \psi'(x') \tag{15.18}$$

$$= \underbrace{(\psi'(x') - \psi(x))}_{\delta\psi} - \psi'(x') + \psi'(x)$$
(15.19)

$$= \delta \psi - (\psi'(x') - \psi'(x)) \tag{15.20}$$

pero

$$\psi'(x') = \psi'(x + \delta x) = \psi'(x) + \delta x^{\mu} \partial_{\mu} \psi'(x) + \cdots$$
(15.21)

$$\implies \psi'(x') - \psi'(x) = \delta x^{\mu} \partial_{\mu} \psi'(x) \tag{15.22}$$

de(15.20)

$$\implies \bar{\delta}\psi = \delta\psi - \delta x^{\mu}\partial_{\mu}\psi'(x) \tag{15.23}$$

pero $\psi'(x) = \psi(x) - \bar{\delta}\psi(x)$, luego

$$\bar{\delta}\psi = \delta\psi - \delta x^{\mu}\partial_{\mu}(\psi(x) + \bar{\delta}\psi(x)) \tag{15.24}$$

$$= \delta \psi - \delta x^{\mu} \partial_{\mu} \psi(x) - \underbrace{\delta x^{\mu} \partial_{\mu} \bar{\delta} \psi(x)}_{\text{segundo orden}}$$
(15.25)

$$\Longrightarrow \left[\bar{\delta}\psi = \delta\psi - \partial_{\mu}\psi(x)\delta x^{\mu} \right]$$
 (15.26)

Hemos dicho que $\partial_{\mu}(\bar{\delta}\psi) = \bar{\delta}(\partial_{\mu}\psi)$, es decir, $[\bar{\delta}, \partial_{\mu}]\psi = 0$. Consideremos ahora

$$\frac{\partial}{\partial x^{\mu}}(\delta\psi(x)) = \frac{\partial}{\partial x^{\mu}}(\psi'(x') - \psi(x))$$
 (15.27)

$$= \frac{\partial \psi'(x')}{\partial x^{\mu}} - \frac{\partial \psi(x)}{\partial x^{\mu}} + \frac{\partial \psi'(x')}{\partial x'^{\mu}} - \frac{\partial \psi'(x')}{\partial x'^{\mu}}$$
(15.28)

$$= \left(\frac{\partial \psi'(x')}{\partial x'^{\mu}} - \frac{\partial \psi(x)}{\partial x^{\mu}}\right) + \frac{\partial \psi'(x')}{\partial x^{\mu}} - \frac{\partial \psi'(x')}{\partial x'^{\mu}}$$
(15.29)

$$= \delta \left(\frac{\partial \psi(x)}{\partial x^{\mu}} \right) + \frac{\partial \psi'(x')}{\partial x'^{\nu}} \frac{\partial x'^{\nu}}{\partial x^{\mu}} - \frac{\partial \psi'(x')}{\partial x'^{\mu}}$$
(15.30)

pero

$$\frac{\partial x^{\prime \nu}}{\partial x^{\mu}} = \frac{\partial}{\partial x^{\mu}} (x^{\nu} + \delta x^{\nu}) \tag{15.31}$$

$$= \frac{\partial x^{\nu}}{\partial x^{\mu}} + \frac{\partial \delta x^{\nu}}{\partial x^{\mu}} \tag{15.32}$$

$$= \delta^{\nu}_{\mu} + \frac{\partial \delta x^{\nu}}{\partial x^{\mu}} \tag{15.33}$$

luego,

$$\frac{\partial \psi'(x')}{\partial x'^{\nu}} \frac{\partial x'^{\nu}}{\partial x^{\mu}} - \frac{\partial \psi'(x')}{\partial x^{\mu}} = \frac{\partial \psi'(x')}{\partial x'^{\nu}} \left(\delta^{\nu}_{\mu} + \frac{\partial \delta x^{\nu}}{\partial x^{\mu}} \right) - \frac{\partial \psi'(x')}{\partial x'^{\mu}}$$
(15.34)

$$= \frac{\partial \psi'(x')}{\partial x'^{\mu}} + \frac{\partial \psi'(x')}{\partial x'^{\nu}} \frac{\partial \delta x^{\nu}}{\partial x^{\mu}} - \frac{\partial \psi'(x')}{\partial x'^{\mu}}$$
(15.35)

$$= \frac{\partial \psi'(x')}{\partial x'^{\nu}} \frac{\partial \delta x^{\nu}}{\partial x^{\mu}} \tag{15.36}$$

Así, de (15.30)

$$\frac{\partial}{\partial x^{\mu}}(\delta\psi(x)) = \delta\left(\frac{\partial\psi(x)}{\partial x^{\mu}}\right) + \frac{\partial\psi'(x')}{\partial x'^{\nu}}\frac{\partial\delta x^{\nu}}{\partial x^{\mu}}$$
(15.37)

$$\implies [\partial_{\mu}\delta]\psi \neq 0 \tag{15.38}$$

Consideremos de nuevo la acción

$$S = \int d^4x \mathcal{L} \tag{15.39}$$

Así,

$$\delta S = \int_{\Omega'} d^4 x' \mathcal{L}'(x') - \int_{\Omega} d^4 x \mathcal{L}(x)$$
 (15.40)

(15.41)

donde

$$\mathcal{L}(x) = \mathcal{L}(\psi, \partial_{\mu}\psi, x), \qquad \mathcal{L}'(x') = \mathcal{L}'(\psi', \partial'_{\mu}\psi', x')$$
(15.42)

у

$$\delta \mathcal{L}(x) = \mathcal{L}'(x') - \mathcal{L}(x) \implies \mathcal{L}'(x') = \mathcal{L}(x) + \delta \mathcal{L}(x)$$
 (15.43)

de manera que

$$\delta S = \int_{\Omega'} d^4 x' (\mathcal{L}(x) + \delta \mathcal{L}(x)) - \int_{\Omega} d^4 x \mathcal{L}(x)$$
 (15.44)

(15.45)

Sabemos que d^4x' y d^4x se relacionan por det del Jacobiano,

$$d^4x' = Jd^4x, \qquad \text{con } J = \left| \frac{\partial x'^{\mu}}{\partial x^{\mu}} \right|$$
 (15.46)

$$J = \left| \frac{\partial (x^{\mu} + \delta x^{\mu})}{\partial x^{\mu}} \right| = \left| \frac{\partial x^{\mu}}{\partial x^{\mu}} + \frac{\partial \delta x^{\mu}}{\partial x^{\mu}} \right| = \left(1 + \frac{\partial \delta x^{\mu}}{\partial x^{\mu}} \right)$$
(15.47)

así,

$$\delta S = \int_{\Omega} d^4 x \left(1 + \frac{\partial \delta x^{\mu}}{\partial x^{\mu}} \right) \left(\mathcal{L}(x) + \delta \mathcal{L}(x) \right) - \int_{\Omega} d^4 x \mathcal{L}(x)$$
 (15.48)

$$= \int_{\Omega} d^4x \left[\mathcal{L}(x) + \delta \mathcal{L}(x) + \frac{\partial \delta x^{\mu}}{\partial x^{\mu}} \mathcal{L}(x) \right] - \int_{\Omega} d^4x \mathcal{L}(x)$$
 (15.49)

$$= \int_{\Omega} d^4x \left[\delta \mathcal{L}(x) + \frac{\partial \delta x^{\mu}}{\partial x^{\mu}} \mathcal{L}(x) \right]$$
 (15.50)

pero

$$\delta \mathcal{L}(x) = \bar{\delta} \mathcal{L}(x) + \partial_{\mu} \mathcal{L} \delta x^{\mu}$$
 (15.51)

así

$$\delta S = \int_{\Omega} d^4 x \left[\bar{\delta} \mathcal{L}(x) + \partial_{\mu} \mathcal{L} \delta x^{\mu} + \partial_{\mu} \delta x^{\mu} \mathcal{L}(x) \right]$$
 (15.52)

$$= \int_{\Omega} d^4x \left[\bar{\delta} \mathcal{L}(x) + \partial_{\mu} (\mathcal{L} \delta x^{\mu}) \right]$$
 (15.53)

pero

$$\bar{\delta}\mathcal{L}(x) = [\mathcal{L}]\bar{\delta}\psi + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)} \bar{\delta}\psi \right)$$
 (15.54)

luego

$$\delta \mathcal{L} = \bar{\delta} \mathcal{L} + \partial_{\mu} (\mathcal{L} \delta x^{\mu}) \tag{15.55}$$

$$= [\mathcal{L}]\bar{\delta}\psi + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)} \bar{\delta}\psi + \mathcal{L}\delta x^{\mu} \right)$$
 (15.56)

$$= [\mathcal{L}]\bar{\delta}\psi + \partial_{\mu}J^{\mu} \tag{15.57}$$

donde

$$J^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \bar{\delta} \psi + \mathcal{L} \delta x^{\mu}$$
 (15.58)

$$= \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \left(\delta \psi - \partial_{\nu} \psi \delta x^{\nu} \right) + \mathcal{L} \delta x^{\mu} \tag{15.59}$$

$$= \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \delta \psi - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \partial_{\nu} \psi \delta x^{\nu} + \mathcal{L} \delta x^{\mu}$$
(15.60)

$$= \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \delta \psi + \left(\delta^{\mu}_{\nu} \mathcal{L} - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \partial_{\nu} \psi \right) \delta x^{\nu}$$
 (15.61)

Se define,

$$\pi^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \tag{15.62}$$

$$T^{\mu}_{\ \nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)}\partial_{\nu}\psi - \delta^{\mu}_{\nu}\mathcal{L} \tag{15.63}$$

de manera que

$$J^{\mu} = \pi^{\mu} \delta \psi - T^{\mu}_{\ \nu} \delta x^{\nu} \tag{15.64}$$

15.2. Teoría Electromagnética de Maxwell

Las ecuaciones de Maxwell vienen dadas por

$$\partial_i E_i = \frac{\rho}{\epsilon} \tag{15.65}$$

$$\partial_i B_i = 0 \tag{15.66}$$

$$\epsilon_{ijk}\partial_j E_k = -\frac{\partial B_i}{\partial t} \tag{15.67}$$

$$\epsilon_{ijk}\partial_j B_k = \mu_0 J_i + \mu_0 \epsilon_0 \frac{\partial E_i}{\partial t} \tag{15.68}$$

De (15.66) se tiene que

$$B_i = \epsilon_{ijk} \partial_j A_k \tag{15.69}$$

$$\implies \epsilon_{ijk}\partial_j E_k = -\frac{\partial}{\partial t}(\epsilon_{ijk}\partial_j A_k) \tag{15.70}$$

$$\implies \epsilon_{ijl}\partial_j\left(E_k + \frac{\partial A_k}{\partial t}\right) = 0 \tag{15.71}$$

$$\implies E_k = -\partial_k \phi - \frac{\partial A_k}{\partial t} \tag{15.72}$$

Así, las ecuaciones (15.66) y (15.67) definen los potenciales electromagnéticos,

$$B_i = \epsilon_{ijk} \partial_j A_k \tag{15.73}$$

$$\begin{bmatrix}
B_i = \epsilon_{ijk}\partial_j A_k \\
E_i = -\partial_i \phi - \frac{\partial A_i}{\partial t}
\end{bmatrix}$$
(15.73)

La dinámica de estos potenciales vienen determinadas por (15.65) y (15.68). De (15.65)

$$\partial_i E_i = \frac{\rho}{\epsilon_0} \tag{15.75}$$

$$\partial_i \left(-\partial_i \phi - \frac{\partial A_i}{\partial t} \right) = \frac{\rho}{\epsilon_0} \tag{15.76}$$

$$\partial_i \partial_i \phi + \frac{\partial}{\partial t} \partial_i A_i = -\frac{\rho}{\epsilon_0}$$
(15.77)

De (15.68)

$$\epsilon_{ijk}\partial_j(\epsilon_{klm}\partial_l A_m) = \mu_0 J_i + \mu_0 \epsilon_0 \frac{\partial}{\partial t} \left(-\partial_i \phi - \frac{\partial A_i}{\partial t} \right)$$
(15.78)

$$(\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl})\partial_j\partial_l A_m = \mu_0 J_i - \mu_0 \epsilon_0 \partial_i \frac{\partial \phi}{\partial t} - \mu_0 \epsilon_0 \frac{\partial^2 A_i}{\partial t^2}$$
(15.79)

$$\partial_j \partial_i A_j - \partial_j \partial_j A_i = \mu_0 J_i - \mu_0 \epsilon_0 \partial_i \frac{\partial \phi}{\partial t} - \mu_0 \epsilon_0 \frac{\partial^2 A_i}{\partial t^2}$$
 (15.80)

$$\partial_j \partial_j A_i - \mu_0 \epsilon_0 \frac{\partial^2 A_i}{\partial t^2} = -\mu_0 J_i + \partial_i \partial_j A_i + \mu_0 \epsilon_0 \partial_i \frac{\partial \phi}{\partial t}$$
 (15.81)

$$\left| \partial_j \partial_j A_i - \mu_0 \epsilon_0 \frac{\partial^2 A_i}{\partial t^2} = -\mu_0 J_i + \partial_i \left(\partial_j A_j + \mu_0 \epsilon_0 \frac{\partial \phi}{\partial t} \right) \right|$$
 (15.82)

De (15.77)

$$\partial_i \partial_i \phi - \mu_0 \epsilon_0 \frac{\partial^2 \phi}{\partial t^2} = -\frac{\rho}{\epsilon_0} - \frac{\partial}{\partial t} \partial_i A_i - -\mu_0 \epsilon_0 \frac{\partial^2 \phi}{\partial t^2}$$
 (15.83)

$$\partial_{i}\partial_{i}\phi - \mu_{0}\epsilon_{0}\frac{\partial^{2}\phi}{\partial t^{2}} = -\frac{\rho}{\epsilon_{0}} - \frac{\partial}{\partial t}\partial_{i}A_{i} - -\mu_{0}\epsilon_{0}\frac{\partial^{2}\phi}{\partial t^{2}}$$

$$\left[\partial_{i}\partial_{i}\phi - \mu_{0}\epsilon_{0}\frac{\partial^{2}\phi}{\partial t^{2}} = -\frac{\rho}{\epsilon_{0}} - \frac{\partial}{\partial t}\left(\partial_{i}A_{i} + \mu_{0}\epsilon_{0}\frac{\partial\phi}{\partial t}\right)\right]$$

$$(15.83)$$

Ver PDF.

17.1. Hamiltoniano en teoría clásica de campos

Recordemos que

$$S = \int d^3x dt \mathcal{L}(\psi, \partial_i \psi, \partial_t \psi, x)$$
 (17.1)

$$\bar{\delta}x = 0 \tag{17.2}$$

$$\bar{\delta}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial \psi} \bar{\delta}\psi + \frac{\partial \mathcal{L}}{\partial (\partial_i \psi)} \bar{\delta}(\partial_i \psi) + \frac{\partial \mathcal{L}}{\partial (\partial_t \psi)} \bar{\delta}(\partial_t \psi)$$
(17.3)

$$\overline{\delta}\mathcal{L} = \left(\frac{\partial \mathcal{L}}{\partial \psi} - \partial_i \frac{\partial \mathcal{L}}{\partial (\partial_i \psi)} - \partial_t \frac{\partial \mathcal{L}}{\partial (\partial_t \psi)}\right) \overline{\delta}\psi + \partial_i \left(\frac{\partial \mathcal{L}}{\partial (\partial_i \psi)} \overline{\delta}\psi\right) + \partial_t \left(\frac{\partial \mathcal{L}}{\partial (\partial_t \psi)} \overline{\delta}\psi\right) \tag{17.4}$$

Usando que $\bar{\delta}S=\int \mathrm{d}^3\mathrm{d}t\bar{\delta}\mathcal{L}=0$ y que $\left.\bar{\delta}\psi\right|_{\mathrm{borde}}=0$, se tiene

$$\frac{\partial \mathcal{L}}{\partial \psi} - \partial_i \frac{\partial \mathcal{L}}{\partial (\partial_i \psi)} - \partial_t \frac{\partial \mathcal{L}}{\partial (\partial_t \psi)} = 0 \tag{17.5}$$

$$\Longrightarrow \boxed{\frac{\partial \mathcal{L}}{\partial \psi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \right) = 0}$$
 (17.6)

Introducimos la derivada funcional

$$\frac{\delta \mathcal{L}}{\delta \psi} = \frac{\partial \mathcal{L}}{\partial \psi} - \partial_i \frac{\partial \mathcal{L}}{\partial (\partial_i \psi)} \tag{17.7}$$

$$\frac{\delta \mathcal{L}}{\delta \dot{\psi}} = \frac{\partial \mathcal{L}}{\partial \dot{\psi}} \equiv \frac{\partial \mathcal{L}}{\partial (\partial_t \psi)} \tag{17.8}$$

Luego, las ecuaciones de movimiento quedan

$$\frac{\partial \delta \mathcal{L}}{\partial \delta \psi} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\delta \mathcal{L}}{\delta \dot{\psi}} = 0$$
(17.9)

17.2. Formalismo de Hamilton

El primer paso es definir el Hamiltoniano para lo cual necesitamos definir el momentum,

$$\pi(\boldsymbol{x},t) = \frac{\delta \mathcal{L}}{\delta \dot{\psi}} \equiv \frac{\partial \mathcal{L}}{\partial \dot{\psi}}$$
 (17.10)

luego, las ecuaciones de movimiento quedan

$$\frac{\delta \mathcal{L}}{\delta \psi} - \frac{\mathrm{d}}{\mathrm{d}t} \pi(\boldsymbol{x}, t) = 0 \tag{17.11}$$

$$\implies \dot{\pi}(\boldsymbol{x},t) = \frac{\delta \mathcal{L}}{\delta \psi} = \frac{\partial \mathcal{L}}{\partial \psi} - \partial_i \frac{\partial \mathcal{L}}{\partial (\partial_i \psi)}$$
 (17.12)

Definición 17.1. Se define la densidad Hamiltoniana como

$$\mathcal{H}(\boldsymbol{x},t) = \pi(\boldsymbol{x},t)\dot{\psi}(\boldsymbol{x},t) - \mathcal{L}$$
(17.13)

de manera que el Hamiltoniano viene dado por

$$H = \int d^3x \mathcal{H}(\boldsymbol{x}, t) \tag{17.14}$$

Las ecuaciones de movimiento en términos de la densidad Hamiltoniana quedan

$$\dot{\psi}(\boldsymbol{x},t) = \frac{\delta H}{\delta \pi} = \frac{\partial \mathcal{H}}{\partial \pi} - \partial_i \frac{\partial \mathcal{H}}{\partial (\partial_i \pi)}$$
 (17.15)

$$\dot{\pi}(\boldsymbol{x},t) = -\frac{\delta H}{\delta \psi} = -\left(\frac{\partial \mathcal{H}}{\partial \psi} - \partial_i \frac{\partial \mathcal{H}}{\partial (\partial_i \psi)}\right)$$
(17.16)

17.3. Paréntesis de Poisson

Definición 17.2. Sea $F = F(\psi, \pi)$ y $G = G(\psi, \pi)$. Se define el corchete de Poisson, como

$$[F,G] = \int d^3x \left(\frac{\delta F}{\delta \psi(\mathbf{x},t)} \frac{\delta G}{\delta \pi(\mathbf{x},t)} - \frac{\delta F}{\delta \pi(\mathbf{x},t)} \frac{\delta G}{\delta \psi(\mathbf{x},t)} \right)$$
(17.17)

Por otro lado,

$$\dot{F}(t) = \int d^3x \left(\frac{\delta F}{\delta \psi} \dot{\psi} + \frac{\delta F}{\delta \pi} \dot{\pi} \right)$$
 (17.18)

$$= \int d^3x \left(\frac{\delta F}{\delta \psi} \frac{\delta H}{\delta \pi} - \frac{\delta F}{\delta \pi} \frac{\delta H}{\delta \psi} \right)$$
 (17.19)

$$= [F, H] \tag{17.20}$$

es decir,

$$\dot{F}(t) = [F, H] \tag{17.21}$$

Si hay dependencia explícita del tiempo, lo anterior queda

$$\dot{F}(t) = \frac{\partial F}{\partial t} + [F, H] \tag{17.22}$$

Ejemplo 17.1.

$$\dot{\psi}(\boldsymbol{x},t) = [\psi(\boldsymbol{x},t), H] = \frac{\delta H}{\delta \pi}$$
(17.23)

$$\dot{\pi}(\boldsymbol{x},t) = [\pi(\boldsymbol{x},t), H] = -\frac{\delta H}{\delta \psi}$$
 (17.24)

Debe ser notado que podemos escribir $\psi(x,t)$ ó $\pi(x,t)$ como una funcional

$$\psi(\boldsymbol{x},t) = \int d^3x \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}')\psi(\boldsymbol{x}',t)$$
 (17.25)

$$\pi(\boldsymbol{x},t) = \int d^3x \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}') \pi(\boldsymbol{x}',t)$$
 (17.26)

lo cual implica que

$$\frac{\delta\psi(\boldsymbol{x},t)}{\delta\psi(\boldsymbol{x}',t)} = \delta^{(3)}(\boldsymbol{x}-\boldsymbol{x}')$$
(17.27)

$$\frac{\delta \pi(\boldsymbol{x},t)}{\delta \pi(\boldsymbol{x}',t)} = \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}')$$
 (17.28)

$$\frac{\delta\psi(\boldsymbol{x},t)}{\delta\pi(\boldsymbol{x}',t)} = \frac{\delta\pi(\boldsymbol{x},t)}{\delta\psi(\boldsymbol{x}',t)} = 0$$
(17.29)

Con esto, podemos probar (17.23) y (17.24). En efecto,

$$\dot{\psi}(\boldsymbol{x},t) = [\psi(\boldsymbol{x},t), H] \tag{17.30}$$

$$= \int d^3x' \left(\frac{\delta \psi(\boldsymbol{x},t)}{\delta \psi(\boldsymbol{x}',t)} \frac{\delta H}{\delta \pi(\boldsymbol{x}',t)} - \frac{\delta \psi(\boldsymbol{x},t)}{\delta \pi(\boldsymbol{x}',t)} \frac{\delta H}{\delta \psi(\boldsymbol{x}',t)} \right)$$
(17.31)

$$= \int d^3x' \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}') \frac{\delta H}{\delta \pi(\boldsymbol{x}', t)}$$
(17.32)

$$=\frac{\delta H}{\delta \pi(\boldsymbol{x},t)} \qquad \checkmark \tag{17.33}$$

De manera similar, se prueba (17.24).

17.4. Crochete de Poisson fundamental

$$[\psi(\boldsymbol{x},t),\pi(\boldsymbol{x}',t)] = \int d^3x'' \left(\int \frac{\delta\psi(\boldsymbol{x},t)}{\delta\psi(\boldsymbol{x}'',t)} \frac{\delta\pi(\boldsymbol{x}',t)}{\delta\pi(\boldsymbol{x}'',t)} - \frac{\delta\psi(\boldsymbol{x},t)}{\delta\pi(\boldsymbol{x}'',t)} \frac{\delta\pi(\boldsymbol{x}',t)}{\delta\psi(\boldsymbol{x}'',t)} \right)$$
(17.34)

$$= \int d^3 x'' \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}'') \delta^{(3)}(\boldsymbol{x}', \boldsymbol{x}'')$$
(17.35)

$$=\delta^{(3)}(\boldsymbol{x}-\boldsymbol{x}')\tag{17.36}$$

$$\Longrightarrow \left[\left[\psi(\boldsymbol{x}, t), \pi(\boldsymbol{x}', t) \right] = \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}') \right]$$
 (17.37)

De manera similar

$$[\psi(\boldsymbol{x},t),\psi(\boldsymbol{x}',t)] = [\pi(\boldsymbol{x},t),\pi(\boldsymbol{x}',t)] = 0$$
(17.38)

17.5. Tensor energía momentum

El tensor energía momentum se define como

$$T^{\mu}_{\ \nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)}\partial_{\nu}\psi - \delta^{\mu}_{\nu}\mathcal{L} \tag{17.39}$$

De aquí, vemos que

$$T_0^0 = \frac{\partial \mathcal{L}}{\partial(\partial_0 \psi)} \partial_0 \psi - \delta_0^0 \mathcal{L}$$
 (17.40)

$$= \frac{\partial \mathcal{L}}{\partial \dot{\psi}} \dot{\psi} - \mathcal{L} \tag{17.41}$$

$$=\pi\dot{\psi}-\mathcal{L}\tag{17.42}$$

$$=\mathcal{H}\tag{17.43}$$

$$\Longrightarrow \boxed{T^0_{\ 0} = \mathcal{H}} \tag{17.44}$$

y además,

$$T_{i}^{0} = \frac{\partial \mathcal{L}}{\partial(\partial_{0}\psi)}\partial_{i}\psi - \delta_{i}^{0}\mathcal{L}$$
(17.45)

$$= \frac{\partial \mathcal{L}}{\partial \dot{\psi}} \partial_i \psi \tag{17.46}$$

$$\Longrightarrow \boxed{T_i^0 = \pi \partial_i \psi} \tag{17.47}$$

Además, sabemos que

$$P^{\mu} = \int d^3x T^{0\mu} \tag{17.48}$$

lo que implica que

$$P^{0} = \int d^{3}x T^{00} = \int d^{3}x \mathcal{H} = H$$
 (17.49)

у

$$P^{i} = \int d^{3}x T^{0i} = \int d^{3}x \pi(\boldsymbol{x}, t) \partial^{i} \psi(\boldsymbol{x}, t)$$
(17.50)

$$\Longrightarrow \boxed{P^i = -\int d^3x \pi(\boldsymbol{x}, t) \partial_i \psi(\boldsymbol{x}, t)}$$
(17.51)

Consideremos ahora

$$[\psi(\boldsymbol{x},t),P^{0}] = [\psi(\boldsymbol{x},t),H] = \dot{\psi}(\boldsymbol{x},t)$$
(17.52)

$$[\psi(\boldsymbol{x},t), P^{i}(\boldsymbol{x}',t)] = \int d^{3}x'' \frac{\delta\psi(\boldsymbol{x},t)}{\delta\psi(\boldsymbol{x}'',t)} \frac{\delta P^{i}(\boldsymbol{x}',t)}{\delta\pi(\boldsymbol{x}'',t)}$$
(17.53)

$$= \int d^3 x'' \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}'') \frac{\delta P^i(\boldsymbol{x}', t)}{\delta \pi(\boldsymbol{x}'', t)}$$
(17.54)

$$=\frac{\delta P^{i}(\boldsymbol{x}',t)}{\delta \pi(\boldsymbol{x},t)} \tag{17.55}$$

$$= -\frac{\delta}{\delta \pi(\boldsymbol{x}, t)} \int d^3 x' \pi(\boldsymbol{x}', t) \partial_i \psi(\boldsymbol{x}', t)$$
 (17.56)

$$= -\int d^3x' \frac{\delta \pi(\mathbf{x}', t)}{\delta \pi(\mathbf{x}, t)} \partial_i \psi(\mathbf{x}', t)$$
 (17.57)

$$= -\int d^3x' \delta^{(3)}(\boldsymbol{x} - \boldsymbol{x}') \partial_i \psi(\boldsymbol{x}, t)$$
 (17.58)

$$\Longrightarrow \left[\left[\psi(\boldsymbol{x}, t), P^{i}(\boldsymbol{x}', t) \right] = -\partial_{i} \psi(\boldsymbol{x}, t) \right]$$
 (17.59)

17.6. Transformaciones de simetría

Hemos visto las siguientes transformaciones:

- $\bar{\delta}\psi = \psi'(x) \psi(x)$: compara dos campos en un mismo punto.
- $\delta \psi = \psi'(x') \psi(x)$: Compara dos campos distintos en dos puntos distintos.
- $\delta_s \psi = \psi(x') \psi(x)$: Compara un campo en dos puntos distintos.

Así, tenemos

$$\delta_s S = \int_{\Omega'} d^4 x' \mathcal{L}(x') - \int_{\Omega} d^4 x \mathcal{L}(x)$$
 (17.60)

La covariancia de \mathcal{L} implica que $\mathcal{L}'(x') = \mathcal{L}(x')$. Luego,

$$\delta_s S = \int_{\Omega'} d^4 x' \mathcal{L}(x') - \int_{\Omega} d^4 x \mathcal{L}(x), \qquad \delta \mathcal{L} = \mathcal{L}'(x') - \mathcal{L}(x)$$
 (17.61)

$$= \int_{\Omega'} d^4 x' (\mathcal{L} + \delta \mathcal{L}) - \int_{\Omega} d^4 x \mathcal{L}(x)$$
 (17.62)

$$= \int_{\Omega} d^4x (1 + \partial_{\mu} \delta x^{\mu}) (\mathcal{L} + \delta \mathcal{L}) - \int_{\Omega} d^4x \mathcal{L}(x)$$
 (17.63)

$$= \int_{\Omega} d^4 x \left[\delta \mathcal{L} + (\partial_{\mu} \delta x^{\mu}) \mathcal{L} \right]$$
 (17.64)

pero $\delta \mathcal{L} = \bar{\delta} \mathcal{L} + (\partial_{\mu} \mathcal{L}) \delta x^{\mu}$,

$$\delta_s S = \int_{\Omega} d^4 x \left(\bar{\delta} \mathcal{L} + (\partial_{\mu} \mathcal{L}) \delta x^{\mu} + (\partial_{\mu} \delta x^{\mu}) \mathcal{L} \right)$$
 (17.65)

$$= \int_{\Omega} d^4x \left(\bar{\delta} \mathcal{L} + \partial_{\mu} (\mathcal{L} \delta x^{\mu}) \right)$$
 (17.66)

pero

$$\bar{\delta}\mathcal{L} = [\mathcal{L}]_{\alpha}\bar{\delta}\psi^{\alpha} + \partial_{\mu}\left(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{\alpha})}\bar{\delta}\psi^{\alpha}\right)$$
(17.67)

luego,

$$\delta_s S = \int_{\Omega} d^4 x \left([\mathcal{L}]_{\alpha} \bar{\delta} \psi^{\alpha} + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} \bar{\delta} \psi^{\alpha} \right) + \partial_{\mu} (\mathcal{L} \delta x^{\mu}) \right)$$
(17.68)

$$= \int_{\Omega} d^4x \left[[\mathcal{L}]_{\alpha} \bar{\delta} \psi^{\alpha} + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \bar{\delta} \psi^{\alpha} + \mathcal{L} \delta x^{\mu} \right) \right]$$
 (17.69)

Recordando que $\delta x^{\mu} = \epsilon \xi^{\mu}$ y $\delta \psi^{\alpha} = \epsilon \eta^{\alpha}$ y que

$$\bar{\delta}\psi^{\alpha} = \delta\psi^{\alpha} - \partial_{\mu}\psi^{\alpha}\delta x^{\mu} \tag{17.70}$$

$$= \epsilon \xi^{\alpha} - \partial_{\mu} \psi^{\alpha} \epsilon \xi^{\mu} \tag{17.71}$$

$$= \epsilon (\eta^{\alpha} - \partial_{\mu} \psi^{\alpha} \xi^{\mu}) \tag{17.72}$$

$$= \epsilon \chi^{\alpha} \tag{17.73}$$

donde $\chi^{\alpha} = \eta^{\alpha} - \partial_{\mu}\psi^{\alpha}\xi^{\mu}$. Luego,

$$\delta_s S = \int_{\Omega} d^4 x \left[[\mathcal{L}]_{\alpha} \epsilon (\eta^{\alpha} - \partial_{\mu} \psi^{\alpha} \xi^{\mu}) + \partial_{\mu} \left(\epsilon \chi^{\alpha} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} + \epsilon \mathcal{L} \xi^{\mu} \right) \right]$$
(17.74)

$$= \epsilon \int_{\Omega} d^4x \left[[\mathcal{L}]_{\alpha} (\eta^{\alpha} - \partial_{\mu} \psi^{\alpha} \xi^{\mu}) + \partial_{\mu} \left(\chi^{\alpha} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \partial^{\alpha})} + \mathcal{L} \xi^{\mu} \right) \right]$$
(17.75)

A partir de aquí se formulan los dos teoremas de Noether.

18. Clase 18

Teníamos que

$$\delta S = \epsilon \int_{\Omega} d^4 x \left[[\mathcal{L}]_{\alpha} (\eta^{\alpha} - \partial_{\mu} \psi^{\alpha} \xi^{\mu}) + \partial_{\mu} \left(\chi^{\alpha} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \partial^{\alpha})} + \mathcal{L} \xi^{\mu} \right) \right]$$
(18.1)

De aquí vemos:

Teorema 18.1. Sea $\xi_r^{\mu} = \xi_r^{\mu}(\psi, \partial \psi, x), \ \eta_r^{\alpha} = \eta_r^{\alpha}(\psi, \partial \psi, x)$ funciones continuas. Si ϵ^r , r = 1, ..., N son parámetros constantes tales que

$$\delta x^{\mu} = \epsilon^r \xi_r^{\mu}(\psi, \partial \psi, x) \tag{18.2}$$

$$\delta\psi^{\alpha} = \epsilon^{r} \eta_{r}^{\mu}(\psi, \partial \psi, x) \tag{18.3}$$

entonces existen las siguientes N identidades

$$(\eta_r^{\alpha} - \partial_{\mu}\psi^{\alpha}\xi_r^{\mu})[\mathcal{L}]_a = \nabla_{\mu} \left(\chi_r^{\alpha} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{\alpha})} + \mathcal{L}(x)\xi_r^{\mu} \right)$$
(18.4)

por lo cual

$$J_{\mu} = \chi_r^{\alpha} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} + \mathcal{L} \xi_r^{\mu}$$
 (18.5)

es una cantidad conservada on-shell.

Teorema 18.2. Sean $\hat{\xi}_r^{\mu}$, $\hat{\eta}_r^{\alpha}$ operadores. Si $\epsilon^r, r = 1, ..., N$ son funciones continuas, tales que

$$\delta x^{\mu} = \epsilon^r \hat{\xi}_r^{\mu} \tag{18.6}$$

$$\delta\psi^{\alpha} = \epsilon^r \hat{\eta}_r^{\alpha} \tag{18.7}$$

entonces existen N identidades de la forma

$$\hat{\eta}_r^{*\alpha}[\mathcal{L}]_\alpha - \hat{\xi}_r^{*\mu}(\partial_\mu \psi^\alpha[\mathcal{L}]_\alpha) = 0$$
(18.8)

donde * indica el adjunto del operador.

18.1. Corrientes y cargas

En el Teorema 18.2 se establece que

$$\delta x^{\mu} = \epsilon^r \xi_r^{\mu}(\psi, \partial \psi, x) \tag{18.9}$$

$$\delta\psi^{\alpha} = \epsilon^{r} \eta_{r}^{\mu}(\psi, \partial \psi, x) \tag{18.10}$$

donde ϵ^r son parámetros constantes. Por simplicidad consideremos las siguientes transformaciones

$$\delta x^{\mu} = \epsilon^r A_m^r(x), \qquad \delta \psi^{\alpha} = \epsilon^r B_r^{\alpha}(x)$$
 (18.11)

de manera que

$$\bar{\delta}\psi^{\alpha} = \delta\psi^{\alpha} - \partial\psi^{\alpha}\delta x^{\mu} \tag{18.12}$$

$$= \epsilon^r B_r^{\alpha}(x) - \partial_{\mu} \psi^{\alpha} \epsilon^r A_r^{\mu}(x) \tag{18.13}$$

$$= \epsilon^r (B_r^\alpha - \partial_\mu \psi^\alpha A_r^\mu) \tag{18.14}$$

$$= \epsilon^r \chi_r^{\alpha} \tag{18.15}$$

pero

$$\delta S = \int d^4x \left[[\mathcal{L}]_{\alpha} \bar{\delta} \psi^{\alpha} + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \bar{\delta} \psi^{\alpha} + \mathcal{L}(x) \delta x^{\mu} \right) \right]$$
(18.16)

luego,

$$\delta \mathcal{L} = [\mathcal{L}]_{\alpha} \bar{\delta} \psi^{\alpha} + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \bar{\delta} \psi^{\alpha} + \mathcal{L}(x) \delta x^{\mu} + \Sigma^{\mu} \right)$$
(18.17)

$$= [L]_{\alpha} \bar{\delta} \psi^{\alpha} + \partial_{\mu} J^{\mu} \tag{18.18}$$

donde

$$J^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)} \bar{\delta}\psi^{\alpha} + \mathcal{L}(x)\delta x^{\mu} + \Sigma^{\mu}$$
(18.19)

Definimos el pseudomomentum $\pi^{\alpha\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\psi^{\alpha})}$, de manera que

$$J^{\mu} = \pi^{\alpha\mu} \bar{\delta} \psi^{\alpha} + \mathcal{L} \delta x^{\mu} + \Sigma^{\mu} \tag{18.20}$$

Dado que $\bar{\delta}\psi^{\alpha} = \delta\psi^{\alpha} - \partial_{\nu}\psi^{\alpha}\delta x^{\nu}$, se tiene

$$J^{\mu} = \pi^{\alpha\mu} \bar{\delta} \psi^{\alpha} - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} \partial_{\nu} \psi^{\alpha} \delta x^{\nu} + \mathcal{L} \delta x^{\mu} + \Sigma^{\mu}$$
 (18.21)

$$\Longrightarrow \boxed{J^{\mu} = \pi^{\alpha\mu} \delta \psi^{\alpha} - T^{\mu}_{\ \nu} \delta x^{\nu} + \Sigma^{\mu}}$$
 (18.22)

donde

$$T^{\mu}_{\ \nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{\alpha})} \partial_{\nu}\psi^{\alpha} - \delta^{\mu}_{\nu}\mathcal{L}$$
 (18.23)

$$= \pi^{\alpha\mu} \partial_{\nu} \psi^{\alpha} - \delta^{\mu}_{\nu} \mathcal{L} \tag{18.24}$$

Dado que $\delta \psi^{\alpha} = \epsilon^r B_r^{\alpha}$, $\delta x^{\nu} = \epsilon^r \xi_r \nu$ y $\Sigma^m = \epsilon \sigma_r^{\mu}$, se tiene

$$J^{\mu} = \epsilon^r \pi^{\alpha \mu} B_r^{\alpha} - T^{\mu}_{\nu} \epsilon^r \xi_r^{\nu} + \epsilon^r \sigma_r^{\mu}$$
 (18.25)

$$= \epsilon^r \left(\pi^{\alpha \mu} B_r^{\alpha} - T_{\nu}^{\mu} \xi_r^{\mu} + \sigma_r^{\mu} \right) \tag{18.26}$$

$$= \epsilon^r J_r^{\mu} \tag{18.27}$$

Integrando sobre el 3-espacio la ley de conservación $\partial_{\mu}J^{\mu}=0$, se tiene

$$\int d^3x \partial_\mu J^\mu = 0 \tag{18.28}$$

$$\int d^3x \partial_0 J^0 + \int d^3x \partial_i J^i = 0 \tag{18.29}$$

$$\implies \int d^3x \partial_0 J^0 = -\int d^3x \partial_i J^i \tag{18.30}$$

$$= -\int \mathrm{d}^2 x J^i \mathrm{d}S_i \tag{18.31}$$

asumiendo que los campos se anulan en el infinito,

$$\partial_0 \int \mathrm{d}^3 x J^0 = 0 \tag{18.32}$$

luego, la carga

$$C = \int \mathrm{d}^3 x J^0 \tag{18.33}$$

se conserva.

Teorema 18.3. La variación $\bar{\delta}$ de los campos ψ^{α} pueden ser expresadas en función de las cargas

$$\bar{\delta}\psi^{\alpha} = [\psi^{\alpha}, \epsilon^r C_r] \tag{18.34}$$

Teorema 18.4. Las cargas de Noether satisfacen la relación de conmutación

$$[C_r, C_s] = f_{rst}C_t + \gamma_{rs} \tag{18.35}$$

18.2. Simetrías de Poincaré y leyes de conservación

a) Invariancia bajo traslaciones: La homogeneidad del espacio-tiempo implica invariancia bajo traslaciones,

$$x'^{\mu} = x^{\mu} + \epsilon^{\mu} \implies \delta x^{\mu} = \epsilon^{\mu} \tag{18.36}$$

Esta homogeneidad implica que los campos no cambian bajo traslaciones

$$\psi'(x') = \psi(x) \implies \delta\psi^{\alpha}(x) = 0 \tag{18.37}$$

por lo cual, la corriente

$$J^{\mu} = \pi^{\alpha\mu}\delta\psi^{\alpha} - T^{\mu}_{\ \nu}\delta x^{\nu} \tag{18.38}$$

toma la forma

$$J^{\mu} = -T^{\mu}_{\ \nu}\delta x^{\nu} = -T^{\mu}_{\ \nu}\epsilon^{r} \tag{18.39}$$

$$\implies \partial_m J^\mu = 0 \implies \boxed{\partial_\mu T^\mu_{\ \nu} = 0} \tag{18.40}$$

Integrando sobre el volumen espacial

$$\int d^3x \partial_\mu T^\mu_{\ \nu} = 0 \tag{18.41}$$

$$\implies \frac{\mathrm{d}}{\mathrm{d}x^0} P_{\nu} = 0 \tag{18.43}$$

donde

$$P_{\nu} = \int d^3x T^0_{\ \nu} = 0 \tag{18.44}$$

b) Invariacia bajo rotaciones de Lorentz: La isotropía del espacio-tiempo implica invariancia bajo rotaciones espaciales y boosts de Lorentz.

Bajo transformaciones de Lorentz

$$x^{\prime \mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} \tag{18.45}$$

donde $\Lambda^{\mu}_{\ \nu}$ son elemento del grupo de Lie-Lorentz, lo que implica que basta estudiarlas transformaciones infinitesimales. Sabemos que bajo $\Lambda^{\mu}_{\ \nu}=\delta^{\mu}_{\nu}+\omega^{\mu}_{\ \nu}$,

$$\delta x^{\mu} = \omega^{\mu}_{\ \nu} x^{\nu} \equiv \omega^{\mu\nu} x_{\nu} \tag{18.46}$$

$$\delta\psi_r = \frac{1}{2}\omega^{\mu\nu}(J_{\mu\nu})_{rs}\psi_s \tag{18.47}$$

Consideremos estas transformaciones en la corriente

$$J_{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial^{\mu}\psi_{r})} \delta\psi_{r} - T_{\mu\nu}\delta x^{\nu}$$
 (18.48)

con

$$T_{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial^{\mu}\psi_{r})}\psi_{r} - \eta_{\mu\nu}\mathcal{L}$$
 (18.49)

así,

$$J_{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial^{\mu} \psi_{r})} \frac{1}{2} \omega^{\mu \lambda} (J_{\nu \lambda}) \psi_{s} - T_{\mu \nu} \omega^{\nu \lambda} x_{\lambda}$$
 (18.50)

pero

$$T_{\mu\nu}\omega^{\nu\lambda} = \frac{1}{2}T_{\mu\nu}\omega^{\nu\lambda}x_{\lambda} + \frac{1}{2}T_{\mu\nu}\omega^{\nu\lambda}x_{\lambda}$$
 (18.51)

$$= \frac{1}{2} T_{\mu\nu} \omega^{\nu\lambda} x_{\lambda} + \frac{1}{2} T_{\mu\lambda} \omega^{\lambda\nu} x_{\nu} \tag{18.52}$$

$$= \frac{1}{2}\omega^{\nu\lambda}(T_{\mu\nu}x_{\lambda} - T_{\mu\lambda}x_{\nu}) \tag{18.53}$$

luego,

$$J_{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial^{\mu} \psi_{r})} \frac{1}{2} \omega^{\nu \lambda} (J_{\nu \lambda})_{rs} \psi_{r} + \frac{1}{2} \omega^{\nu \lambda} (T_{\mu \nu} x_{\lambda} - T_{\mu \lambda} x_{\nu})$$
 (18.54)

$$= \frac{1}{2} \omega^{\nu\lambda} \left(x_{\nu} T_{\mu\lambda} - x_{\lambda} T_{\mu\nu} + \frac{\partial \mathcal{L}}{\partial (\partial^{\mu} \psi_{r})} (J_{\nu\lambda})_{rs} \psi_{s} \right)$$
(18.55)

$$=\frac{1}{2}\omega^{\nu\lambda}M_{\mu\nu\lambda} \tag{18.56}$$

donde

$$M_{\mu\nu\lambda} = x_{\nu}T_{\mu\lambda} - x_{\lambda}T_{\mu\nu} + \frac{\partial \mathcal{L}}{\partial(\partial^{\mu}\psi_{r})} (J_{\nu\lambda})_{rs} \psi_{s}$$
(18.57)

Así,

$$C = \int d^3x J_0 = \frac{1}{2}\omega^{\nu\lambda} \int d^3x M_{0\nu\lambda} = \frac{1}{2}\omega^{\nu\lambda} M_{\nu\lambda}$$
 (18.58)

donde

$$M_{\nu\lambda} = \int \mathrm{d}^3 x M_{0\nu\lambda} \tag{18.59}$$

luego,

$$M_{\nu\lambda} = \int d^3x \left(x_{\nu} T_{0\lambda} - x_{\lambda} T_{0\nu} + \frac{\partial \mathcal{L}}{\partial (\partial^0 \psi_r)} (J_{\nu\lambda})_{rs} \psi_s \right)$$
(18.60)

Consideremos solo la parte espacial $\nu=n, \lambda=l$

$$M_{nl} = \int d^3x \left(x_{\nu} T_{0l} - x_l T_{0n} + \frac{\partial \mathcal{L}}{\partial (\partial^0 \psi_r)} (J_{nl})_{rs} \psi_s \right)$$
(18.61)

Escribiendo

$$M_{nl} = L_{nl} + S_{nl} (18.62)$$

donde

$$L_{nl} = \int d^3x (x_n T_{0l} - x_l T_{0n})$$
 (18.63)

$$S_{nl} = \int d^3x \frac{\partial \mathcal{L}}{\partial (\partial^0 \psi_r)} (J_{nl})_{rs} \psi_s$$
 (18.64)

Dado que

$$T_{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial^{\mu}\psi_r)} \partial_{\nu}\psi_r - \eta_{\mu\nu}\mathcal{L}$$
 (18.65)

$$\implies T_{0l} = \frac{\partial \mathcal{L}}{\partial (\partial^0 \psi_r)} \partial_l \psi_r - g_{\theta \ell} \mathcal{L}^{\bullet 0}$$
(18.66)

$$\implies L_{nl} = \int d^3x \left(x_n \frac{\partial \mathcal{L}}{\partial (\partial^0 \psi_r)} \partial_l \psi_r - x_l \frac{\partial \mathcal{L}}{\partial (\psi^0 \psi_r)} \partial_n \psi_r \right)$$
(18.67)

donde se obtiene el momentum orbital dado por

$$L_{nl} = \int d^3x \frac{\partial \mathcal{L}}{\partial (\partial^0 \psi_r)} (x_n \partial_l - x_l \partial_n) \psi_r$$
 (18.68)

Parte III

Orígen de las teorías de gauge

19. Clase 19

19.1. Teorías de gauge

Se divide en dos periodos:

a) Periodo antiguo: 1918-1954

b) Periodo antiguo: 1954-actualidad

La idea de gauge fue inspirada en la teoría general de la relatividad.

Relatividad especial

¿Cómo se relacionan las medidas en el SRI K con las hechas en el SRI K'? La respuesta es por medio de las transformaciones de Lorentz,

$$x^{\prime \mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} \tag{19.1}$$

que en una dimensión es dada por

$$x^{\prime 1} = \frac{x^1 - \frac{v}{c}x^0}{\sqrt{1 - v^2/c^2}} \tag{19.2}$$

$$x^{0} = \frac{x^{0} - \frac{v}{c}x^{1}}{\sqrt{1 - v^{2}/c^{2}}}$$
(19.3)

Estas transformaciones dependen solo de la velocidad entre los observadores, pero no dependen de la posición de dichos observadores. Esto implica que las transformaciones forman un grupo de parámetro constante v/c. ¹¹ Luego, las transformaciones de Lorentz, son transformaciones globales.

 $^{^{11}{\}rm O}$ desde el punto de vista de las rotaciones, $\tan\theta=v/c.$

Relatividad general

Consideremos un conjunto de observadores ubicados en ascensores que caen libremente sobre la Tierra. Estos observadores toman medidas de un fenómeno tal como el movimiento de una partícula en un campo gravitacional.

<u>Nota:</u> Los símbolos de Christoffel miden el cambio en la dirección de un vector (o tensor) al ser transportado paralelamente

¿Cómo están relacionadas las medidas de estos observadores? Debido a que los diferentes SRI no se mueven uno con respecto al otro con velocidad constante, dichas medidas *no* pueden estar relacionadas mediante una transformación de Lorentz.

Las medidas de los observadores en los ascensores están conectadas por medio de transformaciones no-lineales,

$$x'^{\mu} = x'^{\mu}(x^{\nu}) \tag{19.4}$$

o bien

$$x^{\prime \mu} = x^{\mu} + \frac{1}{2} (\Gamma^{\mu}_{\alpha\beta})_P x^{\alpha} x^{\beta}$$
 (19.5)

con

$$\Gamma^{\mu}_{\alpha\beta} = \frac{\partial^2 x'^{\mu}}{\partial x^{\alpha} \partial x^{\beta}} \tag{19.6}$$

19.2. Geometría de Weyl

En la geometría de Riemann, un vector ξ^{μ} que es trasladado paralelamente experimenta un cambio en su dirección, dado por

$$\mathrm{d}\xi^{\mu} = \Gamma^{\mu}_{\alpha\beta} \mathrm{d}x^{\alpha} \xi^{\beta} \tag{19.7}$$

En esta geometría, la dirección de un vector es un concepto relativo, ya que depende del SR, pero la longitud del vector, i.e., su norma, es constante, por lo cual, es un concepto absoluto.

Weyl consideró que la longitud del vector debería ser también un concepto relativo, es decir, que depende del observador. La norma de un vector es dada por

$$l = (\xi^{\mu}\xi_{\mu})^{1/2} \tag{19.8}$$

Esto implica que si $g_{\mu\nu}$ es la métrica de la superficie, entonces

$$l^2 = g_{\mu\nu} \xi^{\mu} \xi^{\nu} \tag{19.9}$$

Bajo traslación paralela, el largo l del vector ξ^{μ} cambia de acuerdo a

$$dl = \varphi_{\beta} dx^{\beta} l \tag{19.10}$$

es decir, el cambio debe ser proporcional al largo l y al desplazamiento dx^{μ} .

De (19.9) y (19.23) vemos que

$$dl^2 = d\left(g_{\alpha\beta}\xi^{\alpha}\xi^{\beta}\right) \tag{19.11}$$

$$=2l\mathrm{d}l\tag{19.12}$$

$$=2l^2\varphi_{\gamma}\mathrm{d}x^{\gamma} \tag{19.13}$$

$$=2g_{\alpha\beta}\xi^{\alpha}\xi^{\beta}\varphi_{\gamma}\mathrm{d}x^{\gamma} \tag{19.14}$$

$$\implies \boxed{\mathrm{d}l^2 = 2g_{\alpha\beta}\varphi_{\gamma}\xi^{\alpha}\xi^{\beta}\mathrm{d}x^{\gamma}}$$
 (19.15)

Además,

$$d\left(g_{\alpha\beta}\xi^{\alpha}\xi^{\beta}\right) = \partial_{\gamma}g_{\alpha\beta}dx^{\gamma}\xi^{\alpha}\xi^{\beta} + g_{\alpha\beta}d\xi^{\alpha}\xi^{\beta} + g_{\alpha\beta}\xi^{\alpha}d\xi^{\beta}$$
(19.16)

$$= \partial_{\gamma} g_{\alpha\beta} \xi^{\alpha} \xi^{\beta} dx^{\gamma} + g_{\alpha\beta} \Gamma^{\alpha}_{\mu\nu} dx^{\mu} \xi^{\nu} \xi^{\beta} + g_{\alpha\beta} \xi^{\alpha} \Gamma^{\beta}_{\mu\nu} dx^{\mu} \xi^{\nu}$$
(19.17)

$$= \left(\partial_{\gamma} g_{\alpha\beta} + g_{\sigma\beta} \Gamma^{\sigma}_{\gamma\alpha} + g_{\alpha\sigma} \Gamma^{\sigma}_{\gamma\beta}\right) \xi^{\alpha} \xi^{\beta} dx^{\gamma}$$
(19.18)

donde hemos renombrado algunos índices de manera conveniente para poder factorizar. De (19.15) y (19.18) vemos

$$\partial_{\gamma} g_{\alpha\beta} + g_{\sigma\beta} \Gamma^{\sigma}_{\gamma\alpha} + g_{\alpha\sigma} \Gamma^{\sigma}_{\gamma\beta} = 2g_{\alpha\beta} \varphi_{\gamma} \tag{19.19}$$

es decir,

$$\nabla_{\gamma} g_{\alpha\beta} = 2g_{\alpha\beta} \varphi_{\gamma} \tag{19.20}$$

o de manera equivalente

$$\nabla g = 2\varphi \otimes g, \qquad \varphi = \mathrm{d}x^{\mu}\varphi_{\mu}$$
 (19.21)

Notemos que si el lado derecho de (19.20) es igual a cero, recuperamos la condición de metricidad de la geometría de Riemann.

De (19.19) podemos despejar $\Gamma^{\alpha}_{\beta\gamma}$ usando ciclicidad, de donde se obtiene

$${}^{W}\Gamma^{\alpha}_{\beta\gamma} = \Gamma^{\alpha}_{\beta\gamma} + \delta^{\alpha}_{\beta}\varphi_{\gamma} + \delta^{\alpha}_{\gamma}\varphi_{\beta} - g_{\beta\gamma}g^{\alpha\sigma}\varphi_{\sigma}$$
(19.22)

donde $\Gamma^{\alpha}_{\beta\gamma}$ son los símbolos de Christoffel usuales.

Consideremos de nuevo la ecuación (19.23)

$$dl = \varphi_{\beta} dx^{\beta} l \tag{19.23}$$

Si llamamos l_0 al largo del vector en el punto P y l al largo del vector en el punto Q, luego,

$$\frac{\mathrm{d}l}{l} = \varphi_{\beta} \mathrm{d}x^{\beta} \tag{19.24}$$

$$\int_{l_0}^{l} \frac{\mathrm{d}l}{l} = \int_{C} \varphi_{\beta} \mathrm{d}x^{\beta} \tag{19.25}$$

$$\ln\left(\frac{l}{l_0}\right) = \int_C \varphi_\beta \mathrm{d}x^\beta \tag{19.26}$$

$$l = e^{\int_C \varphi_\beta dx^\beta} l_0 \tag{19.27}$$

$$\Longrightarrow \boxed{l^2 = e^{2\int_C \varphi_\beta dx^\beta} l_0^2} \tag{19.28}$$

Dado que $l^2 = g_{\alpha\beta}\xi^{\alpha}\xi^{\beta}$ vemos que un cambio en la norma del vector generará un cambio en la métrica. Esto implica que si el largo del vector cambia punto a punto, entonces la métrica cambiará punto a punto. Entonces, la variedad \mathcal{M} está dotada de una familia de métricas, una en cada punto. Para todas ellas se cumplirá que en un punto x^{μ} se tiene

$$\nabla_{\gamma} g_{\alpha\beta} = 2g_{\alpha\beta} \varphi_{\gamma} \Longleftrightarrow \nabla g = 2\varphi \otimes g \tag{19.29}$$

lo que implica que en otro punto $x^{\mu} + dx^{\mu}$ tenemos

$$\nabla_{\gamma} \bar{g}_{\alpha\beta} = 2\bar{g}_{\alpha\beta} \varphi_{\gamma} \Longleftrightarrow \nabla \bar{g} = 2\varphi \otimes \bar{g}$$
 (19.30)

Dado que en x^{μ} tendríamos $l_0^2 = g_{\mu\nu}\xi^{\mu}\xi^{\nu}$ y en $x^{\mu} + dx^{\mu}$ tendremos $l^2 = \bar{g}_{\mu\nu}\xi^{\mu}\xi^{\nu}$. De (19.28),

$$\bar{g}_{\mu\nu}\xi^{\mu}\xi^{\nu} = e^{2\int_{C}\varphi_{\beta}\mathrm{d}x^{\beta}}g_{\mu\nu}\xi^{\mu}\xi^{\nu} \tag{19.31}$$

$$\implies \bar{g}_{\mu\nu} = e^{2\int_C \varphi_\beta dx^\beta} g_{\mu\nu} \tag{19.32}$$

llamando

$$\chi = \int_C \varphi_\beta \mathrm{d}x^\beta \tag{19.33}$$

tenemos

$$\bar{g}_{\mu\nu} = e^{2\chi} g_{\mu\nu} \iff \bar{g} = e^{2\chi} g \tag{19.34}$$

conocidas como las transformaciones de escala de Weyl o transformaciones conformes de la métrica.

Para el lado izquerdo de (19.30)

$$\nabla \bar{g} = \nabla (e^{2\chi}g) \tag{19.35}$$

$$=2\mathrm{d}\chi e^{2\chi}g+e^{2\chi}\nabla g\tag{19.36}$$

$$=2\mathrm{d}\chi\bar{g}+e^{2\chi}2\varphi g\tag{19.37}$$

$$=2\mathrm{d}\chi\bar{g}+2\varphi\bar{g}\tag{19.38}$$

$$=2(\mathrm{d}\chi+\varphi)\bar{g}\tag{19.39}$$

y el lado derecho de (19.30) nos dice que

$$\nabla \bar{q} = 2(\varphi + \mathrm{d}\chi)\bar{q} = 2\bar{\varphi}\bar{q} \tag{19.40}$$

$$\Longrightarrow \left[\bar{\varphi} = \varphi + \mathrm{d}\chi \right] \tag{19.41}$$

$$dx^{\mu}\bar{\varphi}_{\mu} = dx^{\mu}\varphi_{\mu} + dx^{\mu}\partial_{\mu}\chi \tag{19.42}$$

$$\Longrightarrow \left[\bar{\varphi}_{\mu} = \varphi_{\mu} + \partial_{\mu} \chi \right] \tag{19.43}$$

20. Clase 20

Sea \mathcal{M} una variedad dotada de una métrica $g_{\mu\nu}$ que pertenece a una clase [g] de métricas tal que en el punto P de coordenada x se tiene que

- En P el vector ξ^{μ} tiene norma l_0
- En Q el vector ξ^{μ} tiene norma l

La métrica en P es $g_{\mu\nu}$ y en Q es $\bar{g}_{\mu\nu}$. Lo que implica que

$$l_0^2 = g_{\alpha\beta}\xi^{\alpha}\xi^{\beta} \tag{20.1}$$

$$l^2 = \bar{g}_{\alpha\beta} \xi^{\alpha} \xi^{\beta} \tag{20.2}$$

Bajo traslación paralela, ξ^{μ} cambia de dirección de modo que

$$\mathrm{d}\xi^{\mu} = \Gamma^{\mu}_{\alpha\beta} \mathrm{d}x^{\alpha} \xi^{\beta} \tag{20.3}$$

y además cambia su norma de acuerod a

$$dl = \varphi_{\beta} dx^{\beta} l \tag{20.4}$$

$$\implies \frac{\mathrm{d}l}{l} = \varphi_{\beta} \mathrm{d}x^{\beta} \tag{20.5}$$

$$\int_{l_0}^{l} \frac{\mathrm{d}l}{l} = \int_{C} \varphi_{\beta} \mathrm{d}x^{\beta} \tag{20.6}$$

$$\ln\left(\frac{l}{l_0}\right) = \int_C \varphi_\beta \mathrm{d}x^\beta \tag{20.7}$$

$$l = e^{\int_C \varphi_\beta dx^\beta} l_0 \tag{20.8}$$

$$\Longrightarrow \left[l^2 = e^{2 \int_C \varphi_\beta dx^\beta} l_0^2 \right] \tag{20.9}$$

$$\implies \bar{g}_{\mu\nu} = e^{2\int_C \varphi_\beta dx^\beta} g_{\mu\nu} \tag{20.10}$$

llamamos $\chi = \int_C \varphi_\beta \mathrm{d}x^\beta$, conocido como el factor de escala de Weyl, de manera que

$$l = e^{\chi} l_0 \implies \bar{g}_{\mu\nu} = e^{2\chi} g_{\mu\nu}$$
 (20.11)

$$\boxed{\bar{g} = e^{2\chi}g} \tag{20.12}$$

Dado que $l^2 = g_{\mu\nu} \xi^{\mu} \xi^{\nu}$ se tiene

$$dl^2 = d(g_{\mu\nu}\xi^{\mu}\xi^{\nu}) \tag{20.13}$$

$$\implies \nabla_{\gamma} g_{\alpha\beta} = 2g_{\alpha\beta} \varphi_{\gamma} \tag{20.14}$$

$$\nabla g = 2\varphi \otimes g \tag{20.15}$$

Así, se tiene que $\forall x \in \mathcal{M}$,

$$\bar{g} = e^{2\chi}g\tag{20.16}$$

$$\nabla g = 2\varphi \otimes g \tag{20.17}$$

y también

$$\nabla \bar{g} = 2\bar{\varphi} \otimes \bar{g} \tag{20.18}$$

$$\implies \nabla \bar{g} = \nabla (e^{2\chi}g) = 2d\chi e^{2\chi}g + e^{2\chi}\nabla g \tag{20.19}$$

$$\nabla \bar{q} = 2d\chi \otimes \bar{q} + e^{2\chi} 2\varphi \otimes q = 2d\chi \otimes \bar{q} + 2\varphi \otimes \bar{q}$$
 (20.20)

$$\nabla \bar{q} = 2(\varphi + d\chi) \otimes \bar{q} = 2\bar{\varphi} \otimes \bar{q} \tag{20.21}$$

$$\implies \bar{\varphi} = \varphi + \mathrm{d}\chi \tag{20.22}$$

 \mathbf{o}

$$\bar{\varphi}_{\mu} = \varphi_{\mu} + \partial_{\mu}\chi \tag{20.23}$$

Weyl interpretó este resultado como el equivalente a la transformación del potencial electromagnético

$$A_{\mu} \to A'_{\mu} = A_{\mu} + \partial_{\mu}\chi \tag{20.24}$$

y postuló que la conexión φ_{μ} era una conexión de la cual podría obtenerse la electrodinámica. De todas las posibles conexiones φ_{μ} , solo una elegida como $\varphi_{\mu} = \frac{e}{\gamma} A_{\mu}$ hacía contacto con la física. Esto implica que

$$l = e^{\int_C \varphi_\beta dx^\beta} l_0 = e^{\frac{e}{\gamma} \int_C A_\mu dx^\mu} l_0 \tag{20.25}$$

$$l = e^{\frac{e}{\gamma} \int_C A_\mu \mathrm{d}x^\mu} l_0$$
 (20.26)

Este resultado fue en el que Einstein basó su lapidaria crítica a la teoría de Weyl. Einstein escribió:

Si consideramos un sistema monoatómico y lo trasladamos desde el punto P al punto Q, deberíamos entonces tener lo que sigue:

- En el punto P, la longitud de onda de la línea espectral principal sería $\lambda_0 = l_0$.
- En el punto Q, la longitud de onda de la línea espectral principal sería $\lambda = l$.

Esto implica que $\lambda = e^{\frac{e}{\gamma} \int A_{\mu} \mathrm{d}x^{\mu}} \lambda_0$. Si el sistema atómico fuera sodio, entonces en P veríamos la línea de longitud λ_0 de color amarillo pero en el punto Q podría ser verde, lo cual es falso.

20.1. Schrodinger 1922

En el estudio de sistemas atómicos periódicos llevamos a cabo por Schrodinger en 1922 aparecieron los primeros indicios de que la teoría de Weyl podría ser realidad en mecánica cuántica. Schrodinger mostró que el factor de escala de Weyl era cuantizable para sistemas periódicos usando la cuantización de Sommerfeld-Wilson,

$$\oint p \mathrm{d}q = nh = 2\pi n\hbar \tag{20.27}$$

Esto fue mostrado en 5 ejemplos.

Estas ideas son mejor entendidas usando los resultados de F. London de 1927, el cual usó la teoría de Hamilton-Jacobi. De esta teoría sabemos que

$$\mathbf{p} = \nabla S \qquad E = -\frac{\partial S}{\partial t}$$
 (20.28)

donde S es la función principal de Hamilton.

Por otro lado

$$S = \int dS = \int dx^{\mu} \partial_{\mu} S = \int dx^{i} \partial_{i} S - dt \partial_{0} S$$
 (20.29)

$$= \int \nabla S \cdot d\mathbf{x} - \int dt \frac{\partial S}{\partial t} = \int \nabla S \cdot d\mathbf{x} + \int E dt \qquad (20.30)$$

$$= \int \nabla S \cdot d\mathbf{x} + Et \tag{20.31}$$

$$\Longrightarrow \boxed{S - Et = \int \nabla S \cdot d\mathbf{x}}$$
 (20.32)

Sabemos que el momentum para una partícula en un campo electromagnético es

$$p_{\mu} = \partial_{\mu} S - e A_{\mu} \tag{20.33}$$

$$\mathrm{d}x^{\mu}p_{\mu} = \mathrm{d}x^{\mu}\partial_{\mu}S - e\mathrm{d}x^{\mu}A_{\mu} \tag{20.34}$$

$$\mathrm{d}x^{\mu}p_{\mu} = \mathrm{d}S - eA_{\mu}\mathrm{d}x^{\mu} \tag{20.35}$$

$$S = \int dS = e \int A_{\mu} dx^{\mu} + \int p_{\mu} dx^{\mu}$$
 (20.36)

$$S = e \int A_{\mu} dx^{\mu} + \frac{1}{m_0} \int p_{\mu} m_0 \frac{dx^{\mu}}{d\tau} d\tau$$
 (20.37)

$$= e \int A_{\mu} dx^{\mu} + \frac{1}{m_0} \int p_{\mu} p^{\mu} d\tau$$
 (20.38)

$$= e \int A_{\mu} dx^{\mu} + \frac{1}{m_0} \int m_0^2 c^2 d\tau$$
 (20.39)

$$= e \int A_{\mu} dx^{\mu} + \int m_0 c^2 d\tau = e \int A_{\mu} dx^{\mu} + \int E_0 d\tau$$
 (20.40)

$$= e \int A_{\mu} \mathrm{d}x^{\mu} + E_0 \tau \tag{20.41}$$

$$S - E_0 \tau = e \int A_\mu \mathrm{d}x^\mu$$
 (20.42)

$$\implies e \int A_{\mu} dx^{\mu} = \int \nabla S \cdot dx \tag{20.43}$$

Esto implica que

$$l = e^{\frac{e}{\gamma} \int A_{\mu} \mathrm{d}x^{\mu}} l_0 \tag{20.44}$$

$$=e^{\frac{1}{\gamma}\int \nabla S \cdot d\mathbf{x}} l_0 \tag{20.45}$$

$$=e^{\frac{1}{\gamma}\int \mathbf{p}\cdot\mathrm{d}\mathbf{x}}l_0\tag{20.46}$$

y usando la cuantización de Sommerfeld-Wilson, tenemos

$$l = e^{\frac{2\pi n\hbar}{\gamma}} l_0$$
 (20.47)

Schrodinger postuló que $\gamma = -i\hbar$, de manera que

$$e^{\frac{2\pi n\hbar}{-i\hbar}}l_0 = e^{i2\pi n}l_0 \implies l = l_0 \tag{20.48}$$

Lo que implica que para sistemas atómicos periódicos, la objeción de Einstein no es válida.

En 1927, London retomó el problema y usando los resultados de Schrodinger de 1922 y de los trabajos de De-Broglie obtuvo la siguiente conclusión: La onda mecánica (onda de materia) viene dada por

$$\Psi = |\Psi| e^{\frac{i}{\hbar}(S - Et)} \tag{20.49}$$

Así,

$$\boxed{\frac{\Psi}{|\Psi|} = e^{\frac{ie}{\hbar} \int_C A_\mu dx^\mu}}$$
 (20.50)

Aquí, $e^{\frac{ie}{\hbar}\int_C A_\mu \mathrm{d}x^\mu}$ corresponde a la fase local de la onda de De-Broglie.

Por otro lado sabemos que

$$l = e^{\frac{e}{\gamma} \int_C A_\mu \mathrm{d}x^\mu} l_0 \tag{20.51}$$

$$\implies \frac{l}{l_0} = e^{\frac{e}{\gamma} \int_C A_\mu dx^\mu}$$
 (20.52)

Aquí, $e^{\frac{e}{\gamma}\int_C A_\mu \mathrm{d}x^\mu}$ corresponde al factor de escala de Weyl.

Usando la conjetura de Schrodinger, donde $\gamma = -i\hbar$, se tiene

$$\boxed{\frac{l}{l_0} = e^{\frac{ie}{\hbar} \int_C A_\mu dx^\mu}}$$
 (20.53)

20.2. Weyl 1929

El principal resultado de Weyl en 1929 fue la obtención de la electrodinámica a partir del principio de gauge. De la mecánica cuántica sabemos que la probabilidad de encontrar una partícula en un volumen Ω es dada por

$$P_{\Psi}(\Omega) = \int |\Psi(x)|^2 \mathrm{d}^3 x \tag{20.54}$$

$$|\Psi(x)| = \Psi(x)\Psi^*(x) = \Psi'(x)\Psi'^*(x)$$
(20.55)

Esto implica que existe una libertad de gauge en la probabilidad, es decir, $P_{\Psi}(x)$ no cambia bajo diferentes elecciones de $\Psi(x)$. Existe una libertad en la elección de la fase de la funcón de onda, del mismo estilo que existe una libertad en la elección del potencial en la teoría electromagnética.

21. Clase 21

Hasta ahora tenemos:

1. Electrodinámica, con su simetría de gauge. Esto implica que las ecuaciones de Maxwell son invariantes bajo

$$A \to A' = A + \nabla \chi$$

 $V \to V' = V - \frac{\partial \chi}{\partial t}$ (21.1)

2. La mecánica cuántica es invariante bajo la transformación

$$\psi \to \psi' = \psi e^{i\alpha} \tag{21.2}$$

El conjunto de las transformaciones (21.2) forman el grupo abeliano unitario U(1). (U(1) global).

3. De acuerdo a Weyl, Schrodinger y London, las simetría debería ser locales. Es decir, deberiamos generalizar la transformaciones (21.2) al caso local

$$\psi \to \psi' = \psi e^{i\alpha(x)} \tag{21.3}$$

El conjunto de las transformaciones (21.3) constituyen el grupo U(1) local.

Pregunta: ¿Existe alguna relación entre las transformaciones (21.1) y (21.3)?

Consideremos la ecuación de Schrodinger para una partícula en un campo electromagnético. La partícula material representada por la onda de materia de De-Broglie es descrita por la ecuación de Schrodinger. El campo electromagnético es decrito por las ecuaciones de Maxwell. ¿Son compatibles las ecuaciones de Maxwell con la mecánica cuántica?

La ecuación de Schrodinger para la partícula libre es

$$-\frac{\hbar^2}{2m}\nabla^2\psi = i\hbar\frac{\partial\psi}{\partial t} \tag{21.4}$$

Para $\hbar = 1$,

$$-\frac{1}{2m}\nabla^2\psi = i\frac{\partial\psi}{\partial t} \tag{21.5}$$

$$\frac{1}{2m}(-i\nabla)^2\psi = i\frac{\partial\psi}{\partial t} \tag{21.6}$$

Para obtener la ecuación de Schrodinger para una partícula en un campo electromagnético basta con sustituir:

$$-i\nabla \to -i\nabla - q\mathbf{A} = -i\left(\nabla - iq\mathbf{A}\right) \tag{21.7}$$

$$i\frac{\partial}{\partial t} \to i\frac{\partial}{\partial t} - qV = i\left(\frac{\partial}{\partial t} + iqV\right)$$
 (21.8)

Luego, (21.6) queda

$$\frac{1}{2m} \left[-i(\nabla - iq\mathbf{A}) \right]^2 \psi(\mathbf{x}, t) = i \left(\frac{\partial}{\partial t} + iqV \right) \psi(\mathbf{x}, t)$$
 (21.9)

Definiendo:

$$\mathbf{D} = \nabla - iq\mathbf{A} \tag{21.10}$$

$$D^0 = \frac{\partial}{\partial t} + iqV \tag{21.11}$$

(21.9) queda

$$\boxed{\frac{1}{2m}(-i\mathbf{D})^2\psi(\mathbf{x},t) = iD^0\psi(\mathbf{x},t)}$$
(21.12)

Esta ecuación describe a una partícula en un campo electromagnético.

Estudiemos la invariancia de (21.12) bajo de gauge (21.1),

$$\frac{1}{2m} \left[-i(\nabla - iq\mathbf{A}') \right]^2 \psi(\mathbf{x}, t) = i \left(\frac{\partial}{\partial t} + iqV' \right) \psi(\mathbf{x}, t)$$
 (21.13)

$$\frac{1}{2m} \left[-i(\nabla - iq\mathbf{A} - iq\nabla\chi) \right]^2 \psi(\mathbf{x}, t) = i \left(\frac{\partial}{\partial t} + iqV - iq\frac{\partial\chi}{\partial t} \right) \psi(\mathbf{x}, t)$$
(21.14)

La ecuación (21.14) muestra una aparente incompatibilidad entre la electrodinámica y la mecánica cuántica.

Teorema 21.1. La ecuación de Schrodinger que describe una partícula de carga q en un campo electromagnético

$$\frac{1}{2m} \left[-i(\nabla - iq\mathbf{A}) \right]^2 \psi(\mathbf{x}, t) = i \left(\frac{\partial}{\partial t} + iqV \right) \psi(\mathbf{x}, t)$$
 (21.15)

es invariante bajo las transformaciones

$$\mathbf{A} \to \mathbf{A}' = \mathbf{A} + \nabla \chi$$

$$V \to V' = V - \frac{\partial \chi}{\partial t}$$

$$\psi(\mathbf{x}, t) \to \psi'(\mathbf{x}, t) = e^{iq\chi(\mathbf{x}, t)} \psi(\mathbf{x}, t)$$
(21.16)

Prueba 21.1. Sabemos que una partícula en un campo electromagnético es regida por la ecuación

$$\frac{1}{2m}(-i\mathbf{D})^2\psi(\mathbf{x},t) = iD^0\psi(\mathbf{x},t)$$
(21.17)

Esta ecuación se puede reescribir como

$$\frac{1}{2m}(-i\mathbf{D}')^2\psi'(\mathbf{x},t) = iD'^0\psi'(\mathbf{x},t)$$
(21.18)

Para el lado izquerdo, se tiene

$$-i\mathbf{D}'\psi' = -i(\nabla - iq\mathbf{A}')\psi' \tag{21.19}$$

$$= (-i\nabla - q\mathbf{A} - q\nabla\chi)(e^{iq\chi}\psi) \tag{21.20}$$

$$= -i\nabla(e^{iq\chi}\psi) - q\mathbf{A}e^{iq\chi}\psi - q\nabla\chi e^{iq\chi}\psi \tag{21.21}$$

$$= -i^{2}q\nabla\chi e^{iq\chi}\psi - ie^{iq\chi}\nabla\psi - q\mathbf{A}e^{iq\chi}\psi - q\nabla\chi e^{iq\chi}\psi \qquad (21.22)$$

$$= -ie^{iq\chi}\nabla\psi - q\mathbf{A}e^{iq\chi}\psi \tag{21.23}$$

$$=e^{iq\chi}(-i\nabla - q\mathbf{A})\psi\tag{21.24}$$

$$=e^{iq\chi}(-i(\nabla - iq\mathbf{A}))\psi \tag{21.25}$$

Es decir,

$$-i\mathbf{D}'\psi' = e^{iq\chi}(-i\mathbf{D})\psi$$
 (21.26)

Para el lado derecho de (21.18) se tiene

$$iD'^{0}\psi'(\boldsymbol{x},t) = i\left(\frac{\partial}{\partial t} + iqV'\right)\psi'$$
 (21.27)

$$= i \left(\frac{\partial}{\partial t} + iqV - iq \frac{\partial \chi}{\partial t} \right) (e^{iq\chi} \psi)$$
 (21.28)

$$= i\frac{\partial}{\partial t} \left(e^{iq\chi} \psi \right) - qV e^{iq\chi} \psi + q \frac{\partial \chi}{\partial t} e^{iq\chi} \psi \tag{21.29}$$

$$=i^{2}q\frac{\partial\chi}{\partial t}e^{iq\chi}\psi+ie^{iq\chi}\frac{\partial\psi}{\partial t}-qVe^{iq\chi}\psi+q\frac{\partial\chi}{\partial t}e^{iq\chi}\psi \tag{21.30}$$

$$= ie^{iq\chi} \frac{\partial \psi}{\partial t} - qVe^{iq\chi}\psi \tag{21.31}$$

$$=e^{iq\chi}\left(i\frac{\partial}{\partial t}-qV\right)\psi\tag{21.32}$$

$$=e^{iq\chi}\left[i\left(\frac{\partial}{\partial t}+iqV\right)\right]\psi\tag{21.33}$$

De manera que

$$iD^{\prime 0}\psi' = e^{iq\chi}(iD^0\psi)$$
(21.34)

De (21.12) y (21.34),

$$iD^0\psi' = e^{iq\chi} \left(\frac{1}{2m} (-i\mathbf{D})^2 \psi\right)$$
 (21.35)

De (21.18) y (21.35),

$$\frac{1}{2m}(-i\mathbf{D}')^2\psi = e^{iq\chi}\left(\frac{1}{2m}(-i\mathbf{D})^2\psi\right)$$
(21.36)

Luego,

$$e^{iq\chi}\left(\frac{1}{2m}(-i\mathbf{D})^2\psi\right) = e^{iq\chi}(iD^0\psi) \tag{21.37}$$

$$\implies \frac{1}{2m}(-i\mathbf{D})^2\psi = iD^0\psi \qquad \qquad \Box \tag{21.38}$$

21.1. Electrodinámica a partir del principio de gauge

Antes de estudiar esto estudiaremos:

- La ecuación de Schrodinger
- La ecuación de Klein-Gordon
- La ecuación de Dirac

21.2. La ecuación de Schrodinger

El Hamiltoniano para una partícula libre es

$$H = \frac{p^2}{2m} \tag{21.39}$$

donde H = E.

El paso a la mecánica cuántica es $H \to \hat{H}, E \to \hat{E}$. Así, se tiene

$$\hat{H} = \frac{\hat{p}}{2m} \tag{21.40}$$

donde $\hat{p} = -i\hbar \nabla$ y $\hat{E} = i\hbar \frac{\partial}{\partial t}$. Luego,

$$\hat{H} = \frac{1}{2m}\hat{p}\cdot\hat{p} \tag{21.41}$$

$$= \frac{1}{2m} (-i\hbar\nabla)(-i\hbar\nabla) \tag{21.42}$$

$$= -\frac{\hbar^2}{2m} \nabla^2 \tag{21.43}$$

$$\implies \hat{H}\psi = \hat{E}\psi \implies \boxed{-\frac{\hbar^2}{2m}\nabla^2\psi = i\hbar\frac{\partial\psi}{\partial t}}$$
 (21.44)

Esta ecuación no es invariante de Lorentz, luego, no es válida para partículas con alta energía, es decir, con alta velocidad¹².

21.3. Ecuación de Klein-Gordon

También conocida como ecuación de Schrodinger relativista.

De la teoría Especial de la Relatividad sabemos que

$$p^{\mu} = \left(\frac{E}{c}, \mathbf{p}\right), \qquad p_{\mu} = \left(\frac{E}{c}, -\mathbf{p}\right)$$
 (21.45)

y además

$$p_{\mu}p^{\mu} = m_0^2 c^2 \tag{21.46}$$

 $^{^{12}}$ En átomos livianos $v\sim 10^3~{\rm km/s}$ mientras que en átomos pesados $v\sim 10^5~{\rm km/s}.$

Así,

$$p_{\mu}p^{\mu} = \left(\frac{E}{c}, -\mathbf{p}\right) \left(\frac{E}{c}, \mathbf{p}\right) \tag{21.47}$$

$$=\frac{E^2}{c^2} - p^2 \tag{21.48}$$

$$\implies \frac{E^2}{c^2} - p^2 = m_0^2 c^2 \tag{21.49}$$

$$\implies \boxed{E^2 = p^2 c^2 + m_0^2 c^4} \tag{21.50}$$

El paso a la mecánica cuántica:

$$\hat{p}_{\mu} = i\hbar\partial_{\mu}, \qquad \hat{p}^{\mu} = i\hbar\partial^{\mu} \tag{21.51}$$

$$\hat{p}_{\mu} = \left(\frac{\hat{E}}{c} - \hat{\boldsymbol{p}}\right) = \left(\frac{i\hbar}{c}\frac{\partial}{\partial t}, i\hbar\nabla\right) = i\hbar\left(\frac{\partial}{\partial x^{0}}, \nabla\right)$$
(21.52)

$$\hat{p}_{\mu} = i\hbar \partial_{\mu} = i\hbar \left(\frac{\partial}{\partial x^{0}}, \nabla \right) \tag{21.53}$$

$$\hat{p}^{\mu} = i\hbar \partial^{\mu} = i\hbar \left(\frac{\partial}{\partial x^{0}}, -\nabla \right) \tag{21.54}$$

$$\implies \hat{p}_{\mu}\hat{p}^{\mu}\psi = m_0^2 c^2 \psi = (i\hbar\partial_{\mu})(i\hbar\partial^{\mu})\psi \tag{21.55}$$

de manera que la ecuación de Klein-Gordon queda

$$\partial_{\mu}\partial^{\mu}\psi + \frac{m_0^2 c^2}{\hbar^2}\psi = 0$$
(21.56)

Notemos que podemos llegar a esta ecuación de otra manera. Consideremos (21.50)

$$E^2 = p^2 c^2 + m_0^2 c^4 (21.57)$$

Promoviendo a operadores,

$$\hat{E}^2 = \hat{p}^2 c^2 + m_0^2 c^4 \tag{21.58}$$

$$\left(i\hbar\frac{\partial}{\partial t}\right)\left(i\hbar\frac{\partial}{\partial t}\right)\psi = c^2(-i\hbar\nabla)(-i\hbar\nabla)\psi + m_0^2c^4\psi$$
(21.59)

$$-\hbar^{2} \frac{\partial^{2} \psi}{\partial t^{2}} = -\hbar^{2} c^{2} \nabla^{2} \psi + m_{0}^{2} c^{4} \psi$$
 (21.60)

$$\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = \nabla^2 \psi - \frac{m_0^2 c^4}{\hbar^2 c^2}$$
 (21.61)

$$\Longrightarrow \left[\partial_{\mu} \partial^{\mu} \psi + \frac{m_0^2 c^2}{\hbar^2} \psi = 0 \right] \tag{21.62}$$

Obteniendo nuevamente (21.56).

Consideremos ahora la densidad y corriente de probabilidad de la ecuación de Klein-Gordon y su compleja comjugada:

$$\partial_{\mu}\partial^{\mu}\psi + \frac{m_0^2 c^2}{\hbar^2}\psi = 0 \tag{21.63}$$

$$\partial_{\mu}\partial^{\mu}\psi^* + \frac{m_0^2 c^2}{\hbar^2}\psi^* = 0 \tag{21.64}$$

$$\frac{\hbar}{m_0} \partial_\mu \partial^\mu \psi + \frac{m_0 c^2}{\hbar} \psi = 0 \qquad /\frac{i}{2} \psi^* \cdot () \tag{21.65}$$

$$\frac{\hbar}{m_0} \partial_\mu \partial^\mu \psi^* + \frac{m_0 c^2}{\hbar} \psi^* = 0 \qquad /\frac{i}{2} \psi \cdot () \tag{21.66}$$

$$\frac{i\hbar}{2m_0}\psi^*\partial_\mu\partial^\mu\psi + \frac{im_0c^2}{2\hbar}\psi\psi^* = 0$$
 (21.67)

$$\frac{i\hbar}{2m_0}\psi\partial_\mu\partial^\mu\psi^* + \frac{im_0c^2}{2\hbar}\psi^*\psi = 0$$
 (21.68)

Restando (21.68) de (21.67),

$$\frac{i\hbar}{2m_0} \left(\psi^* \partial_\mu \partial^\mu \psi - \psi \partial_\mu \partial^\mu \psi^* \right) = 0 \tag{21.69}$$

$$\frac{i\hbar}{2m_0} \left[\partial_{\mu} (\psi^* \partial^{\mu} \psi) - \partial_{\mu} \psi^* \partial^{\mu} \psi - \partial_{\mu} (\psi \partial^{\mu} \psi^*) + \partial_{\mu} \psi \partial^{\mu} \psi^* \right] = 0 \tag{21.70}$$

$$\partial_{\mu} \left[\frac{i\hbar}{2m_0} (\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*) \right] = 0 \tag{21.71}$$

$$\partial_{\mu}J^{\mu} = 0 \tag{21.72}$$

con

$$J^{\mu} = \frac{i\hbar}{2m_0} (\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*) \tag{21.73}$$

Recordando que

$$\partial_{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right), \qquad \partial^{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\nabla\right)$$
 (21.74)

tenemos

$$\left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right) \left[\frac{i\hbar}{2m_0} \left(\psi^* \left(\frac{1}{c}\frac{\partial}{\partial t}, -\nabla\right)\psi - \psi \left(\frac{1}{c}\frac{\partial}{\partial t}, -\nabla\right)\psi^*\right)\right] = 0$$
(21.75)

$$\left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right) \left[\frac{i\hbar}{2m_0 c} \left(\psi^* \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^*}{\partial t}\right), -\frac{i\hbar}{2m_0} \left(\psi^* \nabla \psi - \psi \nabla \psi^*\right)\right] = 0$$
(21.76)

$$\frac{\partial}{\partial t} \left[\frac{i\hbar}{2m_0 c^2} \left(\psi^* \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^*}{\partial t} \right) \right] + \nabla \left[-\frac{i\hbar}{2m_0} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) \right] = 0$$
 (21.77)

lo que implica que

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{J} = 0 \tag{21.78}$$

 ${\rm donde}$

$$\rho = \frac{i\hbar}{2m_0c^2} \left(\psi^* \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^*}{\partial t} \right)$$

$$J = -\frac{i\hbar}{2m_0} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right)$$
(21.79)

$$\boldsymbol{J} = -\frac{i\hbar}{2m_0} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) \tag{21.80}$$

22. Clase 22

Habíamos encontrado que

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{J} = 0 \tag{22.1}$$

Integrando sobre todo el espacio

$$\int_{V} \left(\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{J} \right) d^{3}x = 0$$
 (22.2)

$$\int_{V} \frac{\partial \rho}{\partial t} d^{3}x + \int_{V} \nabla \cdot \boldsymbol{J} d^{3}x = 0$$
 (22.3)

$$\implies \frac{\partial}{\partial t} \int_{V} \rho d^{3}x = -\int_{V} \nabla \cdot \boldsymbol{J} d^{3}x = -\int_{S} \boldsymbol{J} \cdot d\boldsymbol{S} = 0$$
 (22.4)

$$\implies \int_{V} \rho \mathrm{d}^{3} x = \text{cte.} \tag{22.5}$$

$$\implies \rho = \frac{i\hbar}{2m_0c^2} \left(\psi^* \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^*}{\partial t} \right) \tag{22.6}$$

podría ser una densidad de probabilidad.

Dado que la ecuación de Klein-Gordon es una ecuación con segundas derivadas temporales, su solución requiere que se conozca la función $\psi(\boldsymbol{x},t)$ y su primera derivada temporal $\partial \psi(\boldsymbol{x},t)/\partial t$. Tanto la función ψ como su derivada $\partial \psi/\partial t$ pueden tomar cualquier valor, se tiene que ρ puede ser positiva, negativa o nula, es decir, ρ no es definida postiva. Luego, no puede ser interpretada como una densidad de probabilidad. Por esta razón Schrodinger tomó el límite no-relativista de la ecuación de Klein-Gordon, obteniendo la conocida ecuación de Schrodinger,

$$i\frac{\partial\psi}{\partial t} = \hat{H}\psi,\tag{22.7}$$

donde, para el caso de la partícula libre,

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2. \tag{22.8}$$

Esto condujo a Dirac a pensar que la correcta ecuación relativista debería ser de primer orden en el tiempo.

22.1. Ecuación de Dirac

Para partículas de altas energías es válida la teoría especial de la relatividad, donde

$$E^2 = p^2 c^2 + m_0^2 c^4, (22.9)$$

donde se obtiene usando la prescripción

$$E \to \hat{E}, \qquad H \to \hat{H}, \qquad \text{con} \quad \hat{H}\psi = \hat{E}\psi,$$
 (22.10)

se obtiene la ecuación de Klein-Gordon

$$-\hbar^2 \frac{\partial^2 \psi}{\partial t^2} = -\hbar^2 c^2 \nabla^2 \psi + m_0^2 c^4 \psi = \hat{H}^2 \psi.$$
 (22.11)

$$\implies \hat{H}^2 = \hat{p}^2 c^2 + m_0^2 c^4 \tag{22.12}$$

$$\Longrightarrow \left[\hat{H}^2 = -\hbar^2 c^2 \nabla^2 + m_0^2 c^4 \right] \tag{22.13}$$

Dirac postuló que para tener una ecuación tipo Schrodinger

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi \tag{22.14}$$

se debería escribir

$$i\hbar \frac{\partial \psi}{\partial t} = \sqrt{-\hbar^2 c^2 \nabla^2 + m_0^2 c^4} \psi \tag{22.15}$$

y postuló

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{\hbar c}{i}\left(\alpha_1\frac{\partial}{\partial x^1} + \alpha_2\frac{\partial}{\partial x^2} + \alpha_3\frac{\partial}{\partial x^3}\right)\psi + \beta m_0c^2$$
 (22.16)

$$\implies \hat{H} = \frac{\hbar c}{i} \alpha_i \frac{\partial}{\partial x^i} = \frac{\hbar c}{i} \left(\alpha_1 \frac{\partial}{\partial x^1} + \alpha_2 \frac{\partial}{\partial x^2} + \alpha_3 \frac{\partial}{\partial x^3} \right) \psi + \beta m_0 c^2$$
 (22.17)

$$\hat{H}\psi = \frac{\hbar c}{i} \boldsymbol{\alpha} \cdot \nabla \psi + \beta m_0 c^2 \psi \tag{22.18}$$

$$= c\boldsymbol{\alpha} \cdot \boldsymbol{p}\psi + \beta m_0 c^2 \psi \tag{22.19}$$

De acuerdo con Heisenberg, \hat{H} es un operador (una matriz), lo que implica que tanto α como β deben ser matrices. Luego, la función ψ deber ser una especia de vector columna

$$\psi = \begin{pmatrix} \psi_1(\boldsymbol{x}, t) \\ \psi_2(\boldsymbol{x}, t) \\ \vdots \\ \psi_N(\boldsymbol{x}, t) \end{pmatrix}, \tag{22.20}$$

el cual es llamado espinor de Dirac, en analogía al espinor que aparece en la eucación de Pauli.

Notemos que los coeficientes α_i y β deben ser matrices, ya que si fueran números, el Hamiltoniano \hat{H} no sería invariante bajo rotaciones espaciales.

Para encontrar la estructura algebraíca de las matrices α_i y β , debemos estudiar la compatibilidad de (22.16) con (22.11).

$$i\hbar \frac{\partial \psi}{\partial t} = \left(\frac{\hbar c}{i} \sum_{k} \alpha_k \partial_k + \beta m_0 c^2\right) \psi \tag{22.21}$$

consideremos la acción de (22.21) sobre si misma,

$$i\hbar \frac{\partial}{\partial t} \left(i\hbar \frac{\partial \psi}{\partial t} \right) = \left[\frac{\hbar c}{i} \sum_{j} \alpha_{j} \partial_{j} + \mu m_{0} c^{2} \right] \left[\frac{\hbar c}{i} \sum_{i} \alpha_{i} \partial_{i} + \mu m_{0} c^{2} \right]$$

$$-\hbar^{2} \frac{\partial^{2} \psi}{\partial t^{2}} = \frac{\hbar^{2} c^{2}}{i^{2}} \sum_{i,j} \alpha_{j} \partial_{j} (\alpha_{i} \partial_{i} \psi) + \frac{\hbar c}{i} \sum_{j} \alpha_{j} \partial_{j} (\beta m_{0}^{2} c^{2} \psi) + \beta m_{0} c^{2} \frac{\hbar c}{i} \sum_{i} \alpha_{i} \partial_{i} \psi + \beta^{2} m_{0}^{2} c^{4} \psi$$

$$= -\hbar^{2} c^{2} \sum_{i,j} \alpha_{j} \alpha_{i} \partial_{j} \partial_{i} \psi + \frac{\hbar m_{0} c^{3}}{i} \sum_{j} \alpha_{j} \beta \partial_{j} \psi + \frac{\hbar m_{0} c^{3}}{i} \sum_{i} \beta \alpha_{i} \partial_{i} \psi + \beta^{2} m_{0}^{2} c^{4} \psi$$

$$= -\hbar c^{2} \sum_{i,j} \frac{1}{2} (\alpha_{j} \alpha_{i} + \alpha_{i} \alpha_{j}) \partial_{i} \partial_{j} \psi + \frac{\hbar^{2} m_{0} c^{3}}{i} \sum_{i} (\alpha_{i} \beta + \beta \alpha_{i}) \partial_{i} \psi + \beta^{2} m_{0}^{2} c^{4} \psi$$

$$= -\hbar c^{2} \sum_{i,j} \frac{1}{2} (\alpha_{j} \alpha_{i} + \alpha_{i} \alpha_{j}) \partial_{i} \partial_{j} \psi + \frac{\hbar^{2} m_{0} c^{3}}{i} \sum_{i} (\alpha_{i} \beta + \beta \alpha_{i}) \partial_{i} \psi + \beta^{2} m_{0}^{2} c^{4} \psi$$

$$(22.22)$$

De (22.22) y (22.11) vemos que coinciden sólo si

$$\frac{1}{2}(\alpha_i \alpha_j + \alpha_j \alpha_i) = \delta_{ij}$$
$$\alpha_i \beta + \beta \alpha_i = 0$$
$$\beta^2 = 1$$
$$\alpha_i^2 = 1$$

De aquí,

$$\{\alpha_i, \alpha_j\} = \alpha_i \alpha_j + \alpha_j \alpha_i = 2\delta_{ij}$$

$$\{\alpha_i, \beta\} = \alpha_i \beta \beta \alpha_i = 0$$

$$\beta^2 = 1$$

$$\alpha_i^2 = 1$$
(22.23)

Dado que $\hat{H} = \frac{\hbar c}{i} \partial_i \partial_i + \beta m_0 c^2$ es un operador hermítico, luego, α_i y β son hermíticos, es decir, $\alpha_i^{\dagger} = \alpha_i$ y $\beta^{\dagger} = \beta$. Esto implica que α_i y β tienen eigevalores reales.

Consecuencias de las relaciones de conmutación (22.23):

1. La traza de las matrices α_i y β son nulas. En efecto

$$\alpha_i \beta + \beta a_i = 0 \qquad / \cdot \beta \tag{22.24}$$

$$\alpha_i \beta^2 + \beta \alpha_i \beta = 0 \tag{22.25}$$

$$\alpha_i = -\beta \alpha_i \beta \tag{22.26}$$

$$Tr(\alpha_i) = -Tr(\beta \alpha_i \beta) \tag{22.27}$$

$$= -\operatorname{Tr}(\beta^2 \alpha_i) \tag{22.28}$$

$$= -\operatorname{Tr}(\alpha_i) \tag{22.29}$$

$$\implies \operatorname{Tr}(\alpha_i) = 0$$
 (22.30)

De manera similar, multiplicando por α_i , se tiene

$$Tr(\beta) = 0 \tag{22.31}$$

2. Los eigenvalores de las matrics α_i y β son ± 1 . En efecto, dado que los eigenvalores de una matriz son independiente de la representación, podemos escribir la matriz α_i en la eigen-representación, es decir,

$$\alpha_{i} = \begin{pmatrix} A_{1} & 0 & \cdots & 0 \\ 0 & A_{2} & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & A_{N} \end{pmatrix}$$
 (22.32)

$$\implies \alpha_i^2 = \begin{pmatrix} A_1^2 & 0 & \cdots & 0 \\ 0 & A_2^2 & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & A_N^2 \end{pmatrix}$$
 (22.33)

pero sabemos que

$$\alpha_i^2 = \mathbb{I} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
 (22.34)

$$\implies A_k^2 = 1 \tag{22.35}$$

$$\implies \boxed{A_k = \pm 1} \tag{22.36}$$

De manera similar para β .

Dado que la traza de una matriz es la suma de sus eigenvalores, las matrices α_i y β deben ser de dimensión par. La dimensión menor es N=2 que se excluye debido a que corresponde al caso de las matrices de Pauli más la identidad, y debdo a que no satisfacen la relación (22.23).

La menor dimensión a estudiar será N=4.

Repesentación de Dirac

Las matrices α_i y β pueden ser representadas en función de las matrices de Pauli y de la identidad:

$$\beta = \begin{pmatrix} \mathbb{I} & 0 \\ 0 & -\mathbb{I} \end{pmatrix} \tag{22.37}$$

$$\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix} \tag{22.38}$$

Verifiquemos la propiedad $\alpha_i \alpha_j + \alpha_j \alpha_i = 2\delta_{ij}$. En efecto,

$$\alpha_i \alpha_j + \alpha_j \alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix} + \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}$$
(22.39)

$$= \begin{pmatrix} \sigma_i \sigma_j + \sigma_j \sigma_i & 0 \\ 0 & \sigma_i \sigma_j + \sigma_j \sigma_i \end{pmatrix}$$
 (22.40)

$$= \begin{pmatrix} \sigma_i \sigma_j + \sigma_j \sigma_i & 0 \\ 0 & \sigma_i \sigma_j + \sigma_j \sigma_i \end{pmatrix}$$

$$= \begin{pmatrix} 2\delta_{ij} & 0 \\ 0 & 2\delta_{ij} \end{pmatrix}$$

$$(22.40)$$

$$(22.41)$$

23. Clase 23

23.1. Cuadri-corriente y ley de conservación

Consideremos la ecuación de Dirac y su conjugada

$$i\hbar \frac{\partial \psi}{\partial t} = \frac{\hbar c}{i} \sum_{k} \alpha_{k} \frac{\partial \psi}{\partial x^{k}} + \beta m_{0} c^{2} \psi \qquad /\psi^{\dagger}. \tag{23.1}$$

$$-i\hbar \frac{\partial \psi^{\dagger}}{\partial t} = \frac{\hbar c}{-i} \sum_{k} \alpha_{k} \frac{\partial \psi^{\dagger}}{\partial x^{k}} + m_{0} c^{2} \psi^{\dagger} \beta^{\dagger} \qquad / \cdot \psi$$
 (23.2)

$$\implies i\hbar\psi^{\dagger}\frac{\partial\psi}{\partial t} = \frac{\hbar c}{i}\sum_{k}\psi^{\dagger}\alpha_{k}\frac{\partial\psi}{\partial x^{k}} + m_{0}c^{2}\psi^{\dagger}\beta\psi \tag{23.3}$$

$$\implies -i\hbar \frac{\partial \psi^{\dagger}}{\partial t}\psi = -\frac{\hbar c}{i} \sum_{k} \frac{\partial \psi^{\dagger}}{\partial x^{k}} \alpha_{k} \psi + m_{0} c^{2} \psi^{\dagger} \beta \psi \tag{23.4}$$

Restando (23.4) de (23.3) tenemos

$$i\hbar \left(\psi^{\dagger} \frac{\partial \psi}{\partial t} + \frac{\partial \psi^{\dagger}}{\partial t} \psi \right) = \frac{\hbar c}{i} \left(\sum_{k} \psi^{\dagger} \alpha_{k} \frac{\partial \psi}{\partial x^{k}} + \frac{\partial \psi^{\dagger}}{\partial x^{k}} \alpha_{k} \psi \right)$$
(23.5)

$$i\hbar \frac{\partial}{\partial t} \left(\psi^{\dagger} \psi \right) = \frac{\hbar c}{i} \sum_{k} \frac{\partial}{\partial x^{k}} \left(\psi^{\dagger} \alpha_{k} \psi \right) \tag{23.6}$$

$$i\hbar \frac{\partial}{\partial t} \left(\psi^{\dagger} \psi \right) = -i\hbar \sum_{k} \frac{\partial}{\partial x^{k}} \left(c\psi^{\dagger} \alpha_{k} \psi \right) = 0$$
 (23.7)

Podemos escribir

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{J} = 0 \tag{23.8}$$

donde

$$\rho = \psi^{\dagger} \psi, \qquad \boldsymbol{J} = c \psi^{\dagger} \boldsymbol{\alpha} \psi \tag{23.9}$$

Integrando en el espacio,

$$\int_{V} \frac{\partial \rho}{\partial t} d^{3}x + \int_{V} \nabla \cdot \boldsymbol{J} d^{3}x = 0$$
 (23.10)

$$\frac{\partial}{\partial t} \int_{V} \rho d^{3}x = -\int_{V} \nabla \cdot \boldsymbol{J} d^{3}x = -\int_{V} \boldsymbol{J} \cdot d\boldsymbol{S} = 0$$
 (23.11)

$$\implies \frac{\partial}{\partial t} \int_{V} \rho d^{3}x = 0 \tag{23.12}$$

Es decir, ρ se puede interpretar como una densidad de probabilidad definida positiva.

$$\rho = \psi^{\dagger} \psi = \left(\psi_1^* \ \psi_2^* \cdots \psi_N^* \right) \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{pmatrix}$$
 (23.13)

$$\rho = |\psi_1|^2 + |\psi_2|^2 + \dots + |\psi_N|^2 > 0 \tag{23.14}$$

23.2. Ecuación de Dirac en notación 4-dimensional

Consideremos la ecuación de Dirac

$$i\hbar\frac{\partial\psi}{\partial t} = \frac{\hbar c}{i}\left(\alpha_1\frac{\partial}{\partial x^1} + \alpha_2\frac{\partial}{\partial x^2} + \alpha_3\frac{\partial}{\partial x^3}\right)\psi + \beta m_0 c^2\psi$$
 (23.15)

$$i\hbar\frac{\partial\psi}{\partial t} = -i\hbar\left(c\alpha_1\frac{\partial}{\partial x^1} + c\alpha_2\frac{\partial}{\partial x^2} + c\alpha_3\frac{\partial}{\partial x^3}\right)\psi + \beta m_0c^2\psi \qquad /\frac{\beta}{c}$$
 (23.16)

$$i\hbar\beta \frac{\partial\psi}{\partial(ct)} = -i\hbar\left(\beta\alpha_1 \frac{\partial}{\partial x^1} + \beta\alpha_2 \frac{\partial}{\partial x^2} + \beta\alpha_3 \frac{\partial}{\partial x^3}\right)\psi + \beta^2 m_0 c\psi \tag{23.17}$$

$$i\hbar \left[\beta \frac{\partial}{\partial x^0} + \beta \alpha_1 \frac{\partial}{\partial x^1} + \beta \alpha_2 \frac{\partial}{\partial x^2} + \beta \alpha_3 \frac{\partial}{\partial x^3} - m_0 c \psi \right] = 0$$
 (23.18)

Definimos $\gamma^0=\beta$ y $\gamma^i=\beta\alpha^i.$ Luego, lo anterior queda

$$i\hbar \left[\gamma^0 \frac{\partial}{\partial x^0} + \gamma^1 \frac{\partial}{\partial x^1} + \gamma^2 \frac{\partial}{\partial x^2} + \gamma^3 \frac{\partial}{\partial x^3} \right] \psi - m_0 c \psi = 0$$
 (23.19)

$$i\hbar\gamma^m\partial_\mu\psi - m_0c\psi = 0$$
(23.20)

conocida como la ecuación de Dirac en notación relativista. Usando la notación de Feymann

$$A = \gamma^{\mu} A_{\mu} \implies \gamma^{\mu} \partial_{\mu} = \emptyset \tag{23.21}$$

$$i\hbar\partial\psi - m_0c\psi = 0 \tag{23.22}$$

$$(i\hbar\partial - m_0 c)\psi = 0 (23.23)$$

En notación de coordenadas naturales $\hbar = 1, c = 1$, se tiene

$$(i\partial \!\!\!/ - m_0)\psi = 0 \tag{23.24}$$

$$(i\gamma^{\mu}\partial_{\mu} - m_0)\psi = 0 \tag{23.25}$$

Si $m=m_0$,

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$
 (23.26)

La ecuación de Dirac (23.26) puede ser obtenida a partir del llamado Lagrangeano de Dirac

$$\mathcal{L}_0 = \bar{\psi}(i\gamma^\mu \partial_\mu - m)\psi \tag{23.27}$$

donde $\bar{\psi} = \psi^{\dagger} \gamma^0$.

Observación 23.1. Los anticonmutadores de α_i , β en notación cuadri-dimensional dan lugar al álgebra de Clifford. En efecto, primero

$$\gamma^0 \gamma^0 + \gamma^0 \gamma^0 = \beta^2 + \beta^2 = 2 = 2\delta_0 \tag{23.28}$$

$$\gamma^0 \gamma^0 + \gamma^0 \gamma^0 = 2\delta_{00} = 2g^{00}$$
 (23.29)

Segundo

$$\gamma^{i}\gamma^{0} + \gamma^{0}\gamma^{i} = \beta\alpha_{i}\beta + \beta\beta\alpha_{i} = \alpha_{i}\beta^{2} + \beta^{2}\alpha_{i} = -\alpha_{i} + \alpha_{i} = 0$$
 (23.30)

$$\gamma^i \gamma^0 + \gamma^0 \gamma^i = 0 \tag{23.31}$$

Y tercero

$$\gamma^{i}\gamma^{j} + \gamma^{j}\gamma^{i} = \beta\alpha_{i}\beta\alpha_{j} + \beta\alpha_{i}\beta\alpha_{i} \tag{23.32}$$

$$= -\alpha_i \beta^2 \alpha_i - \alpha_i \beta^2 \alpha_i \tag{23.33}$$

$$= -(\alpha_i \alpha_j + \alpha_j \alpha_i) \tag{23.34}$$

$$= -2\delta_{ij} \tag{23.35}$$

$$\gamma^{i}\gamma^{j} + \gamma^{j}\gamma^{i} = -2\delta_{ij} = -2g^{ij}$$
(23.36)

De (23.29), (23.31) y (23.36) podemos escribir

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu} \equiv 2\eta^{\mu\nu} \tag{23.37}$$

la cual corresponde al álgebra de Clifford.

23.3. Electrodinámica cuántica a partir del principio de gauge

Consideremos el Lagrangeano de Dirac (23.27)

$$\mathcal{L}_0 = \bar{\psi}(x) \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi(x) \tag{23.38}$$

Bajo una transformación U(1) global, los campos ψ transforman como

$$\psi(x) \to \psi'(x) = e^{i\alpha}\psi(x), \qquad \alpha \in \mathbb{R}$$
 (23.39)

¿Cómo transforma $\bar{\psi}(x)$? Sabemos que $\bar{\psi}(x) = \psi^{\dagger}(x)\gamma^{0}$, lo que implica que

$$\bar{\psi}'(x) = \psi'^{\dagger}(x)\gamma^0 = (\psi')^{\dagger}\gamma^0 \tag{23.40}$$

$$= (e^{i\alpha})^{\dagger} \gamma^0 \tag{23.41}$$

$$=\psi^{\dagger}e^{-i\alpha}\gamma^0\tag{23.42}$$

$$=\psi^{\dagger}\gamma^{0}e^{-i\alpha} \tag{23.43}$$

$$=\bar{\psi}e^{-i\alpha} \tag{23.44}$$

Así, para el caso de U(1) global, se tiene ¹³

$$\psi \to \psi' = e^{i\alpha}\psi \tag{23.45}$$

$$\bar{\psi} \to \bar{\psi}' = \bar{\psi}e^{-i\alpha} \tag{23.46}$$

Teorema 23.1. El Lagrangeano de Dirac es unvariante bajo U(1) global.

 $^{^{13}}$ Para el caso de U(1) local se debe tener cuidado con la conmutación entre los objetos que dependen de las coordenadas.

Prueba 23.1.

$$\mathcal{L}_0' = \bar{\psi}' i \gamma^\mu \partial_\mu \psi' - m \bar{\psi}' \psi' \tag{23.47}$$

Veamos como queda el segundo término:

$$m\bar{\psi}'\psi' = m\bar{\psi}e^{-i\alpha}e^{i\alpha}\psi = m\bar{\psi}\psi \quad \checkmark \tag{23.48}$$

Ahora el primero:

$$i\bar{\psi}'\gamma^{\mu}\partial_{\mu}\psi' = i\bar{\psi}e^{-i\alpha}\gamma^{\mu}\partial_{\mu}(e^{i\alpha}\psi), \quad \alpha \in \mathbb{R}$$
 (23.49)

$$= i\bar{\psi}e^{-i\alpha}e^{i\alpha}\gamma^{\mu}\partial_{m}\psi \tag{23.50}$$

$$=i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi \qquad \checkmark \quad \Box \tag{23.51}$$

Notemos que para el caso de U(1) local, esto último ya no se cumple, debido a que α sería una función de las coordenadas.

¿Cuál es la razón de la invariancia? La razón es que la derivada de un campo es también un campo, por lo cual debe transformar como un campo, es decir,

$$(\partial_{\mu}\psi)' = e^{i\alpha}(\partial_{\mu}\psi) \tag{23.52}$$

$$\partial_{\mu}'\psi' = e^{i\alpha}(\partial_{\mu}\psi) \tag{23.53}$$

$$\partial'_{\mu}e^{i\alpha}\psi = e^{i\alpha}\partial_{\mu}\psi \tag{23.54}$$

$$\partial_{\mu}^{\prime}e^{i\alpha} = e^{i\alpha}\partial_{\mu} \tag{23.55}$$

$$\partial'_{\mu}e^{i\alpha} = e^{i\alpha}\partial_{\mu}$$

$$\Longrightarrow \boxed{\partial'_{\mu} = e^{i\alpha}\partial_{\mu}e^{-i\alpha}}$$
(23.55)

Es por eso que en el caso de U(1) global $\partial_{\mu} = \partial'_{\mu}$, pero para el caso local esto ya no es cierto. La idea fundamental de Weyl fue pasar de transformaciones globales a locales, es decir, pasar de $U(1)_{\text{global}}$ a $U(1)_{\text{local}}$.

Para el caso de U(1) local, se tiene

$$\psi(x) \to \psi'(x) = e^{i\alpha(x)}\psi(x) \tag{23.57}$$

$$\bar{\psi}(x) \to \bar{\psi}' = \bar{\psi}(x)e^{-i\alpha(x)} \tag{23.58}$$

Consideremos de nuevo el Lagrangeano de Dirac (23.27),

$$\mathcal{L}_0' = \bar{\psi}'(i\gamma^\mu \partial_\mu - m)\psi' \tag{23.59}$$

$$= i\bar{\psi}'\gamma^{\mu}\partial_{\mu}\psi' - m\bar{\psi}'\psi' \tag{23.60}$$

Con el segundo término hay problema, como fue mostrado anteriormente. Sin embargo, con el primero ya no

$$i\bar{\psi}'\gamma^{\mu}\partial_{\mu}\psi' = i\bar{\psi}e^{-i\alpha(x)}\gamma^{\mu}\partial_{\mu}(e^{i\alpha(x)}\psi) \tag{23.61}$$

$$= i\bar{\psi}e^{-i\alpha(x)}\gamma^{\mu} \left[e^{i\alpha(x)}\partial_{\mu}\psi + i(\partial_{\mu}\alpha(x))e^{i\alpha(x)}\psi \right]$$
 (23.62)

$$= i\bar{\psi}e^{-i\alpha(x)}\gamma^{\mu}e^{i\alpha(x)}\left[\partial_{m}\psi + i(\partial_{\mu}\alpha(x))\psi\right]$$
(23.63)

$$= i\bar{\psi}\gamma^{\mu} \left[\partial_{\mu} + i\partial_{\mu}\alpha(x)\right]\psi \tag{23.64}$$

Lo que implica que

$$\mathcal{L}'_{0} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \bar{\psi}\gamma^{\mu}\psi\partial_{\mu}\alpha(x) - m\bar{\psi}\psi$$

$$= \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \bar{\psi}\gamma^{\mu}\psi\partial_{\mu}\alpha(x)$$
(23.65)
$$(23.66)$$

$$= \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \bar{\psi}\gamma^{\mu}\psi\partial_{\mu}\alpha(x)$$
 (23.66)

Esto implica que \mathcal{L}_0 no es invariante bajo U(1) local.

24. Clase 24

Habíamos visto que:

1. El Lagrangeano $\mathcal{L}_0 = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi \implies \mathcal{L}' = i\psi'\gamma^{\mu}(\partial_{\mu}\psi)' - m\bar{\psi}\psi$ es invariante bajo U(1) global, debido a que $\partial_{\mu}\psi$ transforma como ψ

$$\psi' = e^{i\alpha}\psi \leftrightarrow (\partial_{\mu}\psi)' = e^{i\alpha}(\partial_{\mu}\psi) \tag{24.1}$$

2. El Lagrangeano $\mathcal{L}_0 = \bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi - m \bar{\psi} \psi$ no es invariante bajo U(1) local

$$\psi'(x) = e^{i\alpha(x)}\psi(x) \tag{24.2}$$

$$\bar{\psi}'(x) = \bar{\psi}(x)e^{-i\alpha(x)} \tag{24.3}$$

En efecto, $\mathcal{L}' = i\bar{\psi}'\gamma^{\mu}(\partial_{\mu}\psi)' - m\bar{\psi}'\psi'$ no es invariante bejo U(1) local debido a que $(\partial_{\mu}\psi)'$ no transforma como ψ'

$$(\partial_{\mu}\psi)' = e^{i\alpha(x)}(\partial_{\mu} + i\partial_{\mu}\alpha(x))\psi(x)$$
(24.4)

La solución al problema es introducir una derivada tal que la derivada del campo transforme como el campo. Sea D_μ dicha derivada:

$$(D_{\mu}\psi)' = e^{i\alpha(x)}D_{\mu}\psi \tag{24.5}$$

la cual obliga a escribir el Lagrangeano como

$$\mathcal{L}_0 = \bar{\psi}(i\gamma^\mu D_\mu - m)\psi \tag{24.6}$$

$$=i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m\bar{\psi}\psi \tag{24.7}$$

$$\implies \mathcal{L}' = \bar{\psi}' \gamma^{\mu} (D_{\mu} \psi)' - m \bar{\psi}' \psi' = \mathcal{L}_0$$
 (24.8)

¿Cómo definimos la derivada D_{μ} ? La respuesta es que dado que

1.
$$\partial'_{\mu} = e^{i\alpha(x)}(\partial_{\mu} + i\partial_{\mu}\alpha(x))e^{-i\alpha(x)}$$

2. De (24.5)
$$D'_{\mu} = e^{i\alpha(x)}D_{\mu}e^{-i\alpha(x)}$$

podemos postular

$$\boxed{D_{\mu} = \partial_{\mu} + iA_{\mu}} \tag{24.9}$$

es decir, para recuperar la invariancia, introducimos un nuevo campo A_{μ} llamado campo de gauge, potencial de gauge, o campo compensante, cuya ley de transformación debe ser encontrada.

Teorema 24.1. Bajo una transformación U(1) local, el nuevo campo potencial de gauge transforma como

$$A'_{\mu} = A_{\mu} - \partial_{\mu}\alpha(x) \tag{24.10}$$

Prueba 24.1. Sabemos que

$$\partial_{\mu} = e^{i\alpha(x)}(\partial_{\mu} + i\partial_{\mu}\alpha(x))e^{-i\alpha(x)}$$
(24.11)

$$D_{\mu}' = e^{i\alpha(x)}D_{\mu}e^{-i\alpha(x)} \tag{24.12}$$

$$\implies \partial'_{\mu} + iA'_{\mu} = e^{i\alpha(x)}(\partial_{\mu} + iA_{\mu})e^{-i\alpha(x)}$$
(24.13)

$$e^{i\alpha(x)}(\partial_{\mu} + i\partial_{\mu}\alpha(x))e^{-i\alpha(x)} + iA'_{\mu} = e^{i\alpha(x)}(\partial_{\mu} + iA_{\mu})e^{-i\alpha(x)}$$
(24.14)

$$\underline{e^{i\alpha(x)}}\partial_{\overline{\mu}}e^{-i\alpha(\overline{x})} + e^{i\alpha(x)}[i\partial_{\mu}\alpha(x)]e^{-i\alpha(x)} + iA'_{\mu} = \underline{e^{i\alpha(x)}}\partial_{\overline{\mu}}e^{-i\alpha(\overline{x})} + e^{i\alpha(x)}(iA_{\mu})e^{-i\alpha(x)}$$
(24.15)

$$i\partial_{\mu}\alpha(x) + iA'_{\mu} = iA_{\mu} \tag{24.16}$$

$$\Longrightarrow \boxed{A'_{\mu} = A_{\mu} - \partial_{\mu} \alpha(x)} \qquad \Box \tag{24.17}$$

Así entonces, el Lagrangeando \mathcal{L}_0 invariante bajo U(1) local y bajo $A'_{\mu} = A_{\mu} - \partial_{\mu}\alpha(x)$ es

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - m\bar{\psi}\psi, \qquad D_{\mu} = \partial_{\mu} + iA_{\mu} \tag{24.18}$$

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + iA_{\mu})\psi - m\bar{\psi}\psi \tag{24.19}$$

$$= i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \bar{\psi}\gamma^{\mu}A_{\mu}\psi - m\bar{\psi}\psi \tag{24.20}$$

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\psi_{\mu} - m)\psi - \bar{\psi}\gamma^{\mu}\psi A_{\mu}$$
(24.21)

Este Lagrangenao muestra la interacción del campo compensante A_{μ} con la materia ψ . Sin embargo, no aparece el término cinético correspondiente al campo A_{μ} . Para obtener dicho término seguimos el procedimiento introducido en la teoría general de la Relatividad,

$$[D_{\mu}, D_{\nu}]\psi = iF_{\mu\nu} \tag{24.22}$$

Calculemos el conmutador:

$$\begin{split} [D_{\mu},D_{\nu}]\psi &= D_{\mu}D_{\mu}\psi - D_{\nu}D_{\mu}\psi \\ &= (\partial_{\mu} + iA_{\mu})(\partial_{\nu} + iA_{\nu})\psi - (\partial_{\nu} + iA_{\nu})(\partial_{\mu} + iA_{\mu})\psi \\ &= \partial_{\mu}\partial\nu\psi + i\partial_{\mu}(A_{\nu}\psi) + iA_{\mu}\partial_{\nu}\psi - A_{\mu}A_{\nu}\psi - \partial_{\nu}\partial_{\mu}\psi - i\partial_{\nu}(A_{\mu}\psi) - iA_{\nu}\partial_{\mu}\psi + A_{\nu}A_{\mu}\psi \\ &= i(\partial_{\mu}A_{\nu})\psi + iA_{\mu}\psi_{\nu}\psi + iA_{\mu}\partial_{\nu}\psi - i(\partial_{\nu}A_{\mu})\psi - iA_{\nu}\partial_{\mu}\psi - iA_{n}\partial_{\mu}\psi \\ &= i(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})\psi \\ &= iF_{\mu\nu}\psi \end{split}$$

$$\Longrightarrow \boxed{F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}} \tag{24.23}$$

El Lagrangeano que corresponde al campo A_{μ} es

$$\mathcal{L}_F = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \tag{24.24}$$

Así entonces, tenemos que el Lagrangeano invariante bajo las transformaciones

$$\psi' = e^{i\alpha(x)}\psi, \qquad \bar{\psi}' = \bar{\psi}e^{-i\alpha(x)}, \qquad A'_{\mu} = A_{\mu} - \partial_{\mu}\alpha(x)$$
 (24.25)

es dado por

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma^{\mu} \partial_{\mu} - m) \psi - \bar{\psi} \gamma^{\mu} \psi A_{\mu}$$
 (24.26)

Parte IV

Teorías de Yang-Milss

1954: Postularon que las fuerzas nucleares fuertes podrían ser estudiadas como la teoría de campos análoga a la teoría de la Electrodinámica. También postularon que del mismo modo que la simetría local U(1) que describe la QED, la simetría de las fuerzas nucleares fuertes era la simetría SU(2).

 $\underline{1932}$: Heisenberg postuló que el protón y el neutrón son dos estados de una misma partícula llamada nucle'on.

Sabemos que los núcleos atómicos están compuestos de protones y neutrones. Los protones tienen carga eléctrica positiva, es decir, se repelen eléctricamente.

¿Cómo es posible que los núcleo permanezcan estables? La respuesta es que existe una fuerza atractiva entre protones y protones, entre protones y netrones, y entre neutrones y neutrones, de tal intensirdad que impide la desintegración del núcleo debido a la repulsión eléctrica. Esta fuerza es de muy poco alcance $\sim 10^{-15}$ m. A distancias mayores decae violentamente.

¿Cómo identificar a los ojos de la física nuclear protones y neutroes? Así como el electrón tiene dos esados identificados por el spin: spin +1/2 up (\uparrow) y spin -1/2 down (\downarrow), Heisenberg definió un número cuántico para los núcleo atómicos llamado isospin. Así, un núcleo con Z protones y N neutrones tiene como tercera comopoentes del isospin a

$$I_3 = \frac{Z - N}{2} \tag{24.27}$$

Por lo tanto, para el protón $I_3 = +1/2$, mientras que para el neutrón $I_3 = -1/2$.

La diferenca entre las masa del protón y del neutrón se debe sólo a la interacción electromagnética. Luego, a los ojos de la fuerza nuclear ellos son indistinguibles, salvo por la tercera componente del isospin.

Las masas del proón, neutrón y del electrón son

$$m_p \approx 1,6726 \times 10^{-27} \text{kg}$$
 (24.28)

$$m_N \approx 1,6749 \times 10^{-27} \text{kg}$$
 (24.29)

$$m_p \approx 9.1 \times 10^{-31} \text{kg}$$
 (24.30)

respectivamete.

25. Clase 25

En la clase pasada vimos que las fuerzas nucleares no dependen de la carga eléctrica de los nucleones. Es decir, un nucleón puede tener isospin up (protón) o isospin down (neutrón), cada uno con su respectiva función de onda ψ_p y ψ_n . La función de onda del nucleón es

$$\psi = \begin{pmatrix} \psi_p \\ \psi_n \end{pmatrix} \tag{25.1}$$

No estamos considerando la interacción electromagnética. La interacción nuclear no distingue un protón de un neutrón, luego, la interacción nuclear es invariante bajo el inetrcambio de un protón por un neutrón.

De acuerdo con el principio de superposición de la mecánica cuántica:

$$\psi_n' = \alpha \psi_+ + \beta \psi_n \tag{25.2}$$

$$\psi_n' = \gamma \psi_+ + \delta \psi_n \tag{25.3}$$

Entonces, ¿cómo trasforma el nucleón?,

$$\begin{pmatrix} \psi_p' \\ \psi_n' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \psi_p \\ \psi_n \end{pmatrix} \tag{25.4}$$

Si llamamaos

$$U = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \tag{25.5}$$

entonces

$$\psi' = U\psi \tag{25.6}$$

Las transformaciones son invariantes bajo las transformacion $\psi' = U\psi$ donde U es una matriz compleja de 2×2 .

 \mathcal{E} Cómo afecta a la matriz U la mecánica cuántica? Sabemos que en mecánica cuánica la probabilidad se consrerva, es decir,

$$|\psi'|^2 = |\psi|^2 \tag{25.7}$$

donde $\psi' = U\psi$, pero

$$|\psi'|^2 = \langle \psi' | \psi' \rangle = \langle \psi | \psi \rangle = |\psi|^2 \tag{25.8}$$

$$\implies \langle U\psi|U\psi\rangle = \langle \psi|\psi\rangle \tag{25.9}$$

$$\implies \langle \psi | U^{\dagger} U | \psi \rangle = \langle \psi | \psi \rangle \tag{25.10}$$

$$\implies U^{\dagger}U = \mathbb{I} \tag{25.11}$$

Es decir, la matriz U es una matriz unitaria,

$$U^{\dagger} = U^{-1} \tag{25.12}$$

De (25.11) vemos que $\det(U^{\dagger}U) = \det(\mathbb{I})$

$$\implies \det U^{\dagger} \det U = 1 \implies (\det U)^2 = 1$$
 (25.13)

$$\implies \det U = +1 \tag{25.14}$$

Es decir, tenemos el grupo SU(2). Tambien sabemos del álgebra lineal, que una matriz unitaria se puede exponenciar con una matriz hermítica,

$$U = e^{i\alpha}$$
 donde $\alpha = \alpha^{\dagger}$ (25.15)

es decir, α es hermítica. Esto implica que

$$\det U = \det(e^{i\alpha}) = 1 \tag{25.16}$$

Pero el álgebra lineal nos enseña que si A es una matriz, entonces $\det e^A = e^{\operatorname{Tr} A}$, lo que implica que

$$\det U = \det e^{i\alpha} = e^{\text{Tr}(i\alpha)} = 1 \tag{25.17}$$

$$\Longrightarrow \boxed{\operatorname{Tr} \alpha = 0} \tag{25.18}$$

Si $\{T_a\}$ son una base para las matrices hermíticas α , entonces $\alpha = \alpha^a T_a$,

$$\Longrightarrow \boxed{U = e^{i\alpha} = e^{i\alpha^a T_a}} \tag{25.19}$$

Estos resultados son válidos en general para el grupo SU(N).

En el caso N=2, las matrices bases $\{T_a\}$ vienen dadas por las matrices de Pauli. En el caso N=3, los $\{T_a\}$ son las matrices de Gell-Mann.

Las bases $\{T_a\}$ son bases, en general, no-coordenadas ¹⁴, por lo cual satisfacen las relaciones de conmutación

$$[T_a, T_b] = i f_{ab}{}^c T_c \tag{25.20}$$

25.1. Teoría de Yang-Mills

Consideremos ahora el grupo SU(N) cuya álgebra de Lie asociada su(N) tiene como generadores a la bae $\{T_a\}$ que satisface la relación de conmitación

$$[T_a, T_b] = i f_{ab}{}^c T_c \tag{25.21}$$

Si $U \in SU(N)$ entonces $U = e^{i\alpha} \equiv e^{i\alpha^a T_a}$.

Una función de onda nuclear transforma bajo SU(N) global como

$$\psi \to \psi' = U\psi \tag{25.22}$$

$$\bar{\psi} \to \bar{\psi}' = \bar{\psi}U^{\dagger} \tag{25.23}$$

Consideremos el Lagrangeano

$$\mathcal{L}_0 = i\bar{\psi}\gamma^\mu\partial_\mu\psi \tag{25.24}$$

¹⁴Las bases coordenadas conmutan.

Teorema 25.1. El Lagrangeano \mathcal{L}_0 es invariante bajo el grupo de transformaciones SU(N) global

$$\psi \to \psi = U\psi \tag{25.25}$$

$$\bar{\psi} \to \bar{\psi}' = \bar{\psi}U^{\dagger} \tag{25.26}$$

donde $U^{\dagger}U=UU^{\dagger}=\mathbb{I},\,U=e^{i\alpha}\equiv e^{i\alpha^aT_a},\,\mathrm{donde}\,\,\alpha^a=\mathrm{constante}.$

Prueba 25.1.

$$\mathcal{L}_0' = i\bar{\psi}'\gamma^\mu\partial_\mu\psi' \tag{25.27}$$

$$= i\bar{\psi}U^{\dagger}\gamma^{\mu}\partial_{\mu}(U\psi) \tag{25.28}$$

$$=i\bar{\psi}U^{\dagger}U\gamma^{\mu}\partial_{\mu}\psi\tag{25.29}$$

$$=i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi\tag{25.30}$$

$$=\mathcal{L}_0 \qquad \checkmark \tag{25.31}$$

Esto ocurre debido a que

$$\mathcal{L}_0' = i\bar{\psi}'\gamma^{\mu}(\partial_{\mu}\psi)' = i(\bar{\psi}U^{\dagger})(\gamma^{\mu}U\partial_{\mu}\psi) \tag{25.32}$$

es decir, la invariancia se debe a que

$$(\partial_{\mu}\psi)' = U\partial_{\mu}\psi \to \partial'_{\mu}\psi' = U\partial_{\mu}\psi \tag{25.33}$$

$$\Longrightarrow \left[\partial'_{\mu} = U \partial_{\mu} U^{\dagger} \right] \tag{25.34}$$

La idea implementada por Weyl y luego por Yang-Mills es pasar de SU(N) global a SU(N) local.

SU(N) local es dado por

$$\psi \to \psi' = U(x)\psi \tag{25.35}$$

$$\bar{\psi} \to \bar{\psi}' = \bar{\psi} U^{\dagger}(x)$$
 (25.36)

donde $U^{\dagger}U = UU^{\dagger} = \mathbb{I}$,

$$U = e^{i\alpha(x)} = e^{i\alpha^a(x)T_a} \tag{25.37}$$

Estudiemos ahora el comportamiento de $\mathcal{L}_0 = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$ bajo SU(N) local,

$$\mathcal{L}_0' = i\bar{\psi}'\gamma^\mu\partial_\mu\psi' \tag{25.38}$$

$$= i\bar{\psi}U^{\dagger}(x)\gamma^{\mu}\partial_{\mu}(U(x)\psi) \tag{25.39}$$

pero $\partial_{\mu}(U(x)\psi) = U(x)\partial_{\mu}\psi + [\partial_{\mu}U(x)]\psi$, con $\partial_{\mu}U(x) = \partial_{\mu}e^{i\alpha(x)} = e^{i\alpha(x)}i\partial_{\mu}\alpha(x) = U(x)i\partial_{\mu}\alpha(x)$. Esto implica que

$$\mathcal{L}_0' = i\bar{\psi}U^{\dagger}(x)\gamma^{\mu}\partial_{\mu}(U(x)\psi) \tag{25.40}$$

$$= i\bar{\psi}U^{\dagger}(x)\gamma^{\mu}[U(x)\partial_{\mu}\psi + U(x)i\partial_{\mu}\alpha(x)\psi]$$
 (25.41)

$$\Longrightarrow \mathcal{L}'_0 = i\bar{\psi}U^{\dagger}(x)\gamma^{\mu}U(x)[\partial_{\mu} + i\partial_{\mu}\alpha(x)]\psi$$
 (25.42)

Es decir, \mathcal{L}_0 no es invariante bajo SU(N) local. El siguiente paso es restaurar la invariancia de \mathcal{L}_0 .

Escribiendo

$$\mathcal{L}_0' = i\bar{\psi}'\gamma^{\mu}(\partial_{\mu}\psi)' \tag{25.43}$$

comparando (25.42) con (25.43)

$$\bar{\psi} = \bar{\psi}U^{\dagger} \tag{25.44}$$

$$(\partial_{\mu}\psi)' = U(x)[\partial_{\mu} + i\partial_{\mu}\alpha(x)]\psi \tag{25.45}$$

$$\partial_{\mu}' \psi' = U(x) [\partial_{\mu} + i \partial_{\mu} \alpha(x)] \psi \tag{25.46}$$

$$\partial'_{\mu} = U(x)[\partial_{\mu} + i\partial_{\mu}\alpha(x)]U^{\dagger}(x)$$
(25.47)

Para restaurar la invariancia es necesario definir una nueva derivada D_{μ} que bajo SU(N) local, transforme como

$$D_{\mu} \to D'_{\mu} = U(x)D_{\mu}U^{\dagger}(x)$$
 (25.48)

Por lo que el Lagrangeano invariante debe venir dado por

$$\mathcal{L}_0 = i\bar{\psi}\gamma^\mu D_\mu \psi \tag{25.49}$$

¿Cómo definimos la derivada D_{μ} ? Teniendo en cuenta que

$$\partial_{\mu}' = U(x)[\partial_{\mu} + i\partial_{\mu}\alpha(x)]U^{\dagger}(x) \tag{25.50}$$

y que

$$D'_{\mu} = U(x)D_{\mu}U(x)^{\dagger} \tag{25.51}$$

definimos $D_{\mu} = \partial_{\mu} + iA_{\mu}$ donde A_{μ} debe transformar bajo SU(N) local respetando la ley de transformación (25.51).

Teorema 25.2. Bajo una transformación SU(N) local, el campo potencial de gauge A_{μ} transforma como

$$A_{\mu} \to A'_{\mu} = U A_{\mu} U^{\dagger} + i [\partial_{\mu} U] U^{\dagger}, \qquad U = U(x)$$
 (25.52)

o bien

$$A_{\mu} \to A'_{\mu} = U A_{\mu} U^{\dagger} - i U [\partial_{\mu} U^{\dagger}] \tag{25.53}$$

Prueba 25.2. De (25.51),

$$\partial_{\mu}' + iA_{\mu}' = U[\partial_{\mu} + iA_{\mu}]U^{\dagger} \tag{25.54}$$

Usando (25.50) podemos escribir

$$U[\partial_{\mu} + i\partial_{\mu}\alpha]U^{\dagger} + iA'_{\mu} = U[\partial_{\mu} + iA_{\mu}]U^{\dagger}$$
(25.55)

$$U\partial_{\mu}U^{\dagger} + i(U\partial_{\mu}\alpha)U^{\dagger} + iA'_{\mu} = U\partial_{\mu}U^{\dagger} + iUA_{\mu}U^{\dagger}$$
(25.56)

$$iA'_{\mu} = iUA_{\mu}U^{\dagger} - i(U\partial_{\mu}\alpha)U^{\dagger} \tag{25.57}$$

$$A'_{\mu} = U A_{\mu} U^{\dagger} - (U \partial_{\mu} \alpha) U^{\dagger} \tag{25.58}$$

pero $\partial_{\mu}U = \partial_{\mu}e^{i\alpha}i\partial_{\mu}\alpha = i(U\partial_{\mu}\alpha)$. Luego,

$$A'_{\mu} = U A_{\mu} U^{\dagger} + i(\psi_{\mu} U) U^{\dagger} \qquad \checkmark \tag{25.59}$$

Pero, $\partial_{\mu}(UU^{\dagger}) = (\partial_{\mu}U)U^{\dagger} + U(\partial_{\mu}U^{\dagger}) = 0$, de manera que

$$(\partial_{\mu})U^{\dagger} = -U(\partial_{\mu}U^{\dagger}) \tag{25.60}$$

$$\Longrightarrow \left[A'_{\mu} = U A_{\mu} U^{\dagger} - i U (\partial_{\mu} U^{\dagger}) \right] \qquad \checkmark \tag{25.61}$$

Así entonces el Lagrangeano invariante bajo SU(N) local será

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi = i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + iA_{\mu})\psi \tag{25.62}$$

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \bar{\psi}\gamma^{\mu}\psi A_{\mu} \tag{25.63}$$

donde $A_{\mu} = A_{\mu}^{a} T_{a}$.

Pero los T_a son los generadores de SU(N) que son N^2-1 generadores, lo que implica que para restaurar la invariancia es necesario introducir N^2-1 campos de gauge A_{μ} (uno por cada generador).

El Lagrangeano (25.63) contiene N^2-1 campos compensantes pero no se observan términos cinéticos. Siguiendo el método usual obtenemos el término cinético,

$$[D_{\mu}, D_{\nu}]\psi = iF_{\mu\nu}\psi \tag{25.64}$$

Bajo SU(N) local,

$$[D'_{\mu}, D'_{\nu}]\psi = iF'_{\mu\nu}\psi \tag{25.65}$$

pero

$$[D'_{\mu}, D'_{\nu}] = [UD_{\mu}U^{\dagger}, UD_{\nu}U^{\dagger}] \tag{25.66}$$

$$= UD_{\mu}U^{\dagger}UD_{\nu}U^{\dagger} - UD_{\nu}U^{\dagger}UD_{\mu}U^{\dagger}$$
 (25.67)

$$= U(D_{\mu}D_{\nu} - D_{\nu}D_{\mu})U^{\dagger} \tag{25.68}$$

$$=U[D_{\mu},D_{\nu}]U^{\dagger} \tag{25.69}$$

$$=U(iF_{\mu\nu})U^{\dagger} \tag{25.70}$$

$$=iF'_{\mu\nu} \tag{25.71}$$

$$\Longrightarrow \boxed{F'_{\mu\nu} = U F_{\mu\nu} U^{\dagger}} \tag{25.72}$$

es decir, $F_{\mu\nu}$ es un invariante de gauge.

Veamos cual es su forma

$$iF_{\mu\nu}\psi = [D_{\mu}, D_{\nu}]\psi$$

$$= (\partial_{\mu} + iA_{\mu})(\partial_{\nu}\psi + i\partial_{\nu}\psi) - (\partial_{\nu} + i\partial_{\nu})(\partial_{\mu}\psi + iA_{\mu}\psi)$$

$$= \partial_{\mu}\partial_{\nu}\psi + i(\partial_{\mu}A_{\nu})\psi + iA_{\nu}\psi_{\mu}\psi + iA_{\mu}\psi_{\nu}\psi - A_{\mu}A_{\nu}\psi - \partial_{\nu}\partial_{\mu}\psi - i(\partial_{\nu}A_{\mu})\psi - iA_{\mu}\psi_{\nu}\psi + A_{\nu}A_{\mu}\psi$$

$$= i(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})\psi - (A_{\mu}A_{\nu} - A_{\nu}A_{\mu})\psi$$

$$\implies iF_{\mu\nu} = i(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) - [A_{\mu}, A_{\nu}] \tag{25.73}$$

$$\Rightarrow F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + i[A_{\mu}, A_{\nu}]$$

$$\Rightarrow F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + i[A_{\mu}, A_{\nu}]$$

$$(25.74)$$

Notemos que el conmutador no es cero debido a que

$$A_{\mu} = A_{\mu}^{a} T_{a} \tag{25.75}$$

$$A_{\nu} = A_{\nu}^b T_b \tag{25.76}$$

$$A_{\mu}A_{\nu} = A_{\mu}^{a}A_{\nu}^{b}T_{a}T_{b} \tag{25.77}$$

$$A_{\nu}A_{\mu} = A_{\nu}^{b}A_{\mu}^{a}T_{b}T_{a} \tag{25.78}$$

$$[T_a, T_b] = i f_{ab}{}^c T_c \tag{25.79}$$

Referencias

- [1] M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des isopérimètres, Mem. Acad. St. Petersbourg 6 (1850) 385.
- [2] J. Schwichtenberg, *Physics from Symmetry*, Undergraduate Lecture Notes in Physics, Springer International Publishing, Cham (2018), 10.1007/978-3-319-66631-0.
- [3] A.W. Harald J. W. Muller-Kirsten, *Introduction to Supersymmetry*, World Scientific Lecture Notes in Physics, World Scientific Publishing Company, 2 ed. (2010).
- [4] H.R. David Lovelock, Tensors, differential forms, and variational principles, Dover (1989).
- [5] O. Jahn and V.V. Sreedhar, The Maximal invariance group of Newtons's equations for a free point particle, Am. J. Phys. 69 (2001) 1039 [math-ph/0102011].
- [6] U. Niederer, The maximal kinematical invariance group of the free Schrodinger equation., Helv. Phys. Acta 45 (1972) 802.