Algoritmo PSO [1]:

- 1. Iniciar t=1 Inicializar cada partícula de la población en posiciones x_i y velocidades v_i aleatorias, para $i=1,2,...,N_p$.
- Repetir hasta que se cumpla t = MaxIt:
 - a. Calcular el valor fitness para cada partícula i
 - Si el fitness de cada partícula i es mejor que su mejor solución, entonces actualizar $x_i^*(t)$
 - b. Determinar la ubicación de la partícula con el mejor fitness y actualizar $x^g(t)$ si es necesario
 - c. Para cada partícula i:

Calcular su velocidad $v_i(t+1)$

Fin del ciclo

- d. Actualizar la posición x_i de cada partícula i
- e. Aumentar t = t + 1

Fin del ciclo principal

Figura 1. Se observa el comportamiento de las partículas en la función Peaks para diferentes iteraciones

Ejemplo

Se optimiza la función Eggholder

$$f(x,y) = -\left(y + 47\right) \sin \sqrt{\left|\frac{x}{2} + (y + 47)\right|} - x \sin \sqrt{|x - (y + 47)|}$$

El mínimo se encuentra en

$$f(512, 404.2319) = -959.6407$$

$$-512 \le x,y \le 512$$

Resultados

Encontró el mínimo [512, 404.236] en 5 de 5 corridas

Corrida	x1	x2	costo
1	520	411.385	-976.128
2	520	411.385	-976.128
3	520	411.385	-976.128
4	520	411.385	-976.128
5	520	411.385	-976.128

Referencias

[1] K.-L. Du and M. Swamy, Search and Optimization by Metaheuristics. Techniques and Algorithms Inspired by Nature, 1 ed., -: Birkhäuser Cham, DOI: https://doi.org/10.1007/978-3-319-41192-7, 2016.