A Dispersed Information Theory of Asset Purchases, Sovereign Risk and Inflation

Carlo Galli

Sciences Po

Model

Two periods, t = 1, 2Fiscal authority

 \bullet t=1 budget constraint

$$y(\epsilon)\gamma = \Phi(\epsilon) = b$$

• t = 2 budget constraint

$$\frac{R(1-\delta h)}{\Pi}=\tau$$

normalisation

Continuum of risk-neutral agents $i \in [0,1]$

• t = 1 budget constraint: portfolio choice

$$b^i + m^i + s^i \le e_1$$

• t = 2 budget constraint: consumption

$$c^{i} = b^{i} \frac{R(1 - \delta h)}{\Pi} + \frac{m^{i}}{\Pi} + \rho s^{i} - \tau - \phi \delta - \zeta(\tau)$$

what about the tax normalisation for households???

Model 2

Central bank

• t = 1 budget constraint Period t = 1

$$s^{cb} + b^{cb} = m \qquad \qquad s^{cb} = 1 - \alpha$$

• t = 2 budget constraint

$$\rho s^{cb} + \frac{b^{cb}R(1-\delta h)}{\Pi} = \frac{m}{\Pi} \qquad \qquad \rho(1-\alpha) + \frac{\alpha R(1-\delta h)}{\Pi_2} = \frac{1}{\Pi_2}$$

CB balance sheet

Let share of money invested in bonds be $\alpha := \frac{b}{m}$

How is inflation determined?

$$\frac{1}{\Pi(\delta)} = \frac{\rho(1-\alpha)}{1-\alpha R(1-\delta h)}$$

Return on money is weighted (by α) average of storage & bonds returns

$$\frac{1}{\Pi(\delta)} = (1 - \alpha)\rho + \alpha \frac{R(1 - \delta h)}{\Pi_2}$$

 $\alpha \Rightarrow$ degree of fiscal dominance

2/5

Default decision

$$\zeta\left(\frac{R}{\Pi(0)}\right) > \zeta\left(\frac{R(1-h)}{\Pi(1)}\right) + \phi(\theta)$$

Government Budget Normalisation

$$\gamma y(\epsilon) = b$$

$$\frac{B_1}{P_2}R(1 - \delta h) = \tau y(\epsilon)$$

which becomes

$$\gamma \frac{P_1}{P_2} R (1 - \delta h) = \tau$$

Central Bank Balance Sheet

Central bank balance sheet at t = 1

Assets	Liabilities
bonds b ^{cb}	money m
storage s^{cb}	

Central bank balance sheet at t=2

Assets	Liabilities
bonds $b^{cb} \frac{R(1-\delta h)}{\Pi}$	money $\frac{m}{\Pi}$
storage $ ho s^{cb}$	

back