DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

Senyal i Sistemes II 12 de Juny de 2007

Data notes provisionals:25 de Juny

Període d'al.legacions: 25 a 28 de Juny Data notes revisades: 2 de Juliol

Professors: J.R. Casas, J. Hernando, E. Monte, J. Ruiz, P. Salembier.

Informacions addicionals:

- Durada de la prova: 1h 30 min
- Responeu a cada problema en <u>fulls separats</u>.
- No podeu utilitzar ni llibres, ni apunts, ni taules, ni formularis, ni calculadora, ni telèfon mòbil.
- Poseu un document d'identificació en un lloc visible.
- El vostre nom ha de figurar en tots els fulls que utilitzeu, en format: COGNOMS, NOM.
- Justifiqueu tots els resultats. Els resultats sense justificació no seran valorats en la correcció.

Problema 1 4 puntos

Considere el siguiente sistema discreto:

Si el filtro $H_0\left(e^{j\omega}\right)$ es un filtro paso bajo ideal con una pulsación de corte $w_c=\frac{2\pi}{5}$. Se pide:

- a) El ancho de banda máximo de la señal x[n] para que el filtro $H_0(e^{j\omega})$ elimine todas las réplicas de la señal z[n]
- b) Encontrar las expresiones analíticas de $Y_0(e^{j\omega})$ y $Y_1(e^{j\omega})$ en función de $X(e^{j\omega})$ y de las respuestas frecuenciales de los filtros $H_0(e^{j\omega})$ y $H_1(e^{j\omega})$.
- c) Encontrar el valor de N y la relación entre $H_0\left(e^{j\omega}\right)$ y $H_1\left(e^{j\omega}\right)$ para que $y_0\left[n\right] = y_1\left[n\right]$

Si en lugar de utilizar el filtro $H_0\left(e^{j\omega}\right)$ ideal se utiliza el filtro $h_0^R\left[n\right] = h_0\left[n\right] \cdot v_L\left[n\right]$ resultado de enventanar la respuesta impulsional ideal con una ventana rectangular de L=20 muestras. Se pide:

- d) Dibuje aproximadamente el módulo de la respuesta frecuencial del nuevo filtro $H_0^R\left(e^{j\omega}\right)$ indicando claramente los valores de las frecuencias de la banda de paso y de la banda atenuada.
- e) Encontrar el nuevo ancho de banda máximo de la señal x[n] para que se eliminen completamente todas las réplicas de z[n]. (considere que las réplicas se eliminan sobre la banda atenuada del filtro)

Problema 2 3 puntos

Sea una señal genérica, de energía finita x[n] con transformada de Fourier $X(e^{j\omega})$.

Tenemos los sistemas: $T_1\{x[n]\} = x[-n]$ y $T_2\{x[n]\} = x[n-n_1]$ con $n_1 \in Z$.

Se pide:

- a) Calcular $y_1[n] = T_2\{T_1\{x[n]\}\}$ y su transformada de Fourier $Y_1(e^{j\omega})$. Indicando qué propiedades de la transformada de Fourier que ha usado para el calculo.
- b) Calcular la transformada de Fourier de $y_2[m] = r_{y_1y_1}[m]$ indicando qué propiedades de la transformada de Fourier que ha usado para el calculo.

Si la señal es
$$x[n] = \left\{ \cdots, 0, \frac{1}{2}, \frac{1}{2}, 0, \cdots \right\}$$

c) Calcular
$$Y_1[k] = DFT_3\{y_1[n]\}$$
 con $n_1 = 2$ y $y_1[n] = T_2\{T_1\{x[n]\}\}$

- d) Calcular $y_2[n] = IDFT_3\{|Y_1[k]|^2\}$
- e) Explicar porqué $y_2[n] \neq r_{y_1y_1}[m]$ y proponga una manera de obtener $r_{y_1y_1}[m]$ a partir de $DFT_N\left\{y_1[n]\right\}$

Problema 3 guntos

Sea el sistema causal de la figura siguiente:

Se pide:

a) Escribir las ecuaciones del sistema y calcular su función de transferencia H(z).

A partir de ahora, suponemos que a = 1, b = 1/4, es decir, $H(z) = \frac{0.25 + z^{-1} + z^{-2}}{1 + z^{-1} + 0.25 z^{-2}}$

- b) Dibujar el diagrama de polos y ceros, definir la ROC y comprobar que el sistema es pasa todo.
- c) Calcular la respuesta a $x[n] = \cos(\pi n)$.
- d) Calcular la respuesta a $x[n] = \delta[n] + 0.5 \delta[n-1]$.
- e) Definir la función de transferencia del sistema G(z) FIR de orden mínimo tal que la combinación H(z)G(z) sea un sistema de fase lineal.