

Computação Embarcada - Projeto

B - Detalhamento da proposta

Rafael Corsi

rafael.corsi@insper.edu.br

10 de março de 2017

Matheus Marotzke

Engenharia da Computação – INSPER – 2017

INTRODUÇÃO

A atividade consiste em estipular de maneira detalhada a soluções para o projeto de Embarcados. Deixando clara a proposta do projeto para que o desenvolvimento possa ser baseado em um escopo anteriormente pensado e descrito.

DESCRIÇÃO DETALHADA

Hardware para educação

A solução consiste de um hardware para ensino. A ideia é construir um hardware modular. Que permita o acoplamento fácil de periféricos compatíveis com a pinagem, montada de forma simples.

Estruturar o sistema para que sua documentação seja amigável e de fácil utilização e que seja open-source para desenvolvimento de periféricos extras e de desenvolvedores externos, e cada vez mais complexos e ainda com bibliotecas associadas.

Talvez um desenvolvimento de uma plataforma desktop de desenvolvimento, bem usável e com preocupação com UX. Sendo pareado com plataformas de desenvolvimento como Scratch (https://scratch.mit.edu/) para facilitar o desenvolvimento por meio da plataforma.

PROJETOS SIMILARES

Definiria este projeto como um mesh-up de LittleBits™ e Arduino. Um sistema para prototipação e ensino de programação e desenvolvimento de hardware, com uma interface fácil e amigável como o LittleBits e com a capacidade de desenvolvimento de um Arduíno.

O conceito de prototipação de Hardware do **Arduino**.

O conceito de peças fáceis de encaixar e didáticas do LittleBits.

CRONOGRAMA DE EXECUÇÃO SIMPLIFICADO

O cronograma ainda é uma estimativa de como as etapas devem seguir, não há estimativa de tempo dedicado a cada etapa devido ao desconhecimento da velocidade da equipe. O projeto será realizado utilizando metodologias de desenvolvimento ágil (e.g. SCRUM).

DESCRIÇÃO DIAGRAMA E MONTAGEM

O princípio é poder construir diversos modelos de periféricos, baseado em um meio de comunicação estabelecido pelo produto. Estabelecido um padrão, o produto deve ter uma documentação incrivelmente simples para ambos o desenvolvimento para plataforma e para os periféricos existentes, com modelo para periféricos futuros, e para o desenvolvimento de novos módulos e sua integração com a plataforma pré-existente.

Estabelecidos a forma de funcionamento, a descrição é feita em relação à plataforma, com a compatibilidade para módulos genéricos. E os diagramas dos periféricos possíveis estarão descritos individualmente subsequentemente.

DIAGRAMA DETALHADO

(CORE + PERIFÉRICO GENÉRICO)

No contexto, o projeto terá provavelmente 18 pinos de conexão, divididos em trios, cada periférico deve ter toda sua comunicação reduzida a dois pinos. Isso permite que sejam compatíveis com qualquer das entradas e crie um padrão para novos módulos. O terceiro pino tem a função de leitura de um resistor que indica qual módulo é aquele. Assim, o produto pode disponibilizar os comandos daquele periférico na interface e fazer o upload do driver específico.

O Software também deve ficar checando por novas conexões durante o processo de conexão com a placa. Assim, em real-time disponibilizando o recurso na plataforma de desenvolvimento.

DIAGRAMA DETALHADO

DESCRIÇÃO DETALHADA DOS PERIFÉRICOS (PERIFÉRICOS BÁSICOS)

Ao planejar os periféricos que fariam parte do projeto, devemos pensar em sua arquitetura para que possua, três pinos de conexão, e sua interpretação seja feita a partir de somente dois deles e a interpretação seja feita no core e não através de custos extras de hardware para periféricos.

Para o projeto serão construídos 7 protótipos, sendo: 4 simples, 2 médios, 1 sofisticado.

- LED Um simples sistema com um (ou mais) LED que pode ser acionado a partir da placa.
- Botão Um sistema que acesse botões em uma placa e permita atuação sobre outros aspectos no projeto.
- Sensor Analógico e.g. Sensor de luminosidade (LDR), Multímetro simples
- Switch Uma chave simples que mude estado, talvez com mais de dois estados.
- Módulo Multímetro Simples Leitura de resistência, Tensão, Corrente, analógico, com uma chave para mudança de estado.
- Módulo LCD Display de mensagens escritas na plataforma, que podem mudar a partir de inputs de outros periféricos
- Módulo ainda a ser planejado

Todos os módulos passaram somente pelo processo de ideação, ainda cabe uma etapa de desenvolvimento da <u>ideia</u> e projeção de factibilidade. Alguns módulos extras que podem ser implementados em detrimento de outros.

- Módulo WIFI Comunicação com a rede e acesso a endereços configurados na plataforma.
- Módulo Sensor digital Implementação de algum sensor digital específico.
- Módulo Câmera fotográfica Acesso a fotografias capturadas por uma câmera acoplada como periférico.