## **RF Circuit Design**

#### **Prof. Salvatore Levantino**

Available time: 90 minutes

April 10<sup>th</sup>, 2019

# **Mid-term Test**

## Problem #1

Assume that x(t) and d(t) are square-wave signals between 0V and  $V_{dd} = 2.5$ V, with x(t) being a 20-MHz signal. The VCO has 1-GHz free-running frequency and two tuning nodes  $V_{t1}$  and  $V_{t2}$ , which vary the frequency linearly when their voltages are swept from 0V to  $V_{dd}$ .



Let  $R_1 = 3k\Omega$ ,  $C_1 = 1nF$ ,  $C_2 = 27pF$ , N = 60,  $g_m = 10\mu S$ ,  $K_{vco, I} = 1.3$  Grad/(sV) (from  $V_{tI}$ ) and  $K_{vco, 2} = 330$  Mrad/(sV) (from  $V_{t2}$ ).

- a) Calculate the values of  $I_p$  and  $C_3$  to have the loop-gain crossover frequency at 500kHz with 60-degree phase margin. How do the crossover frequency and phase margin change at  $g_m = 0$ ?
- b) Calculate the values of the tuning voltages  $V_{t1}$  and  $V_{t2}$  at steady-state.
- c) Assume that the stand-alone VCO has  $1/f^3$  phase noise such that  $\mathcal{L}_{VCO}(1\text{kHz}) = -40\text{dBc/Hz}$ . For both cases  $(g_m = 10\mu\text{S} \text{ and } g_m = 0)$ , calculate the value of the output phase noise  $\mathcal{L}_y(1\text{kHz})$ .

[ Sol.: a) 
$$C_3 = 71 \text{pF}$$
,  $I_p = 1.2 \text{mA}$ ;  $f_u = 500 \text{kHz}$ , PM = 70deg; b)  $V_{t1} = 0.97 \text{V}$ ,  $V_{t2} = 0 \text{V}$ ; c)  $\mathcal{L}_y = -167 \text{dBc/Hz}$  ( $g_m = 10 \mu \text{S}$ ),  $-128 \text{dBc/Hz}$  ( $g_m = 0$ ) ]

## Problem #2

The circuit in figure is used to transform the load impedance  $R_L = 50\Omega$  to have an input impedance of  $Z_{in} = 10\Omega + j0\Omega$  at  $f_0$ =5GHz frequency.

- a) Find the values of the inductance L and the capacitance  $C_1 = C_2$ .
- b) Calculate the **gain**  $V_{\text{out}}/V_{\text{in}}$  at  $f = f_0$  (magnitude and phase), and estimate the **shape** of the frequency response of  $V_{\text{out}}/V_{\text{in}}$ .



[ Sol.: a)  $C_1 = C_2 = 0.63 \text{pF}$ , L = 0.96nH; b)  $/V_{\text{out}}/V_{\text{in}}$  | =  $\sqrt{5} = 2.23$ , Phase $(V_{\text{out}}/V_{\text{in}}) = -26 \text{deg}$ , bandpass ]