Knowledge Graph Embeddings in Function Spaces

Vikrant Singh

University of Paderborn DICE Group

July 1, 2024

KGFS

Overview

- 1 Introduction
- 2 Background
- 3 Approach
- 4 Results and Analysis
- **5** Conclusions and Future Work

Introduction to Knowledge Graphs

Figure: Knowledge Graph Example

- $\mathcal{G} := \{(h, r, t) \in \mathcal{E} \times \mathcal{R} \times \mathcal{E}\},$ where \mathcal{E} and \mathcal{R} represent a set of entities and relations respectively
- Applications: Enhance search engines, recommendation, and question-answering systems.

Knowledge Graph Embedding Models

- KGs are incomplete.
- KG Embedding models predict missing links, aiding in KG completion.
- Continuous vector representation for entities (h, t) and relations (r): $\mathbf{h} = [\theta_h]$, $\mathbf{r} = [\theta_r]$, $\mathbf{t} = [\theta_t]$.

4/44

Traditional Embedding Models

- TransE [1]: Models relationships as translations in the embedding space.
- Scoring function: $\psi_{\textit{TransE}}(h, r, t) = \|\mathbf{h} + \mathbf{r} \mathbf{t}\|_{l_1/l_2}$

5/44

Model Scoring Functions

Model	Scoring Function ψ
TransE [1]	$\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ _{\mathit{l}_{1}/\mathit{l}_{2}}$
DistMult [2]	$\mathbf{h}^{ op}$ diag(\mathbf{r}) \mathbf{t}
ComplEx [4]	$Re(\mathbf{h}^{\top}diag(\mathbf{r})\mathbf{ar{t}})$

Table: Scoring functions of various KG embedding models.

Moving Beyond Vector Embeddings

- Function-based embeddings: Representing $(\mathbf{h}, \mathbf{r}, \mathbf{t})$ as functions $f(\theta, x)$.
- θ : Parameters for each triple component.
- Domain X: The function operates over a domain X.
- Goal: Utilize expressiveness of function spaces for more effective learning and optimization.
- Examples:
 - $\mathbf{h} = f(\theta_h, x)$
 - $\mathbf{r} = f(\theta_r, x)$
 - $\mathbf{t} = f(\theta_t, x)$

Process Pipeline

Figure: Schematic overview of the embedding as functions KG model.

8/44

Function Spaces Explored

- Polynomial Function Space.
- Complex Number Function Space.
- Neural Network Function Space.

KGFS

Function Spaces Explored

- Polynomial Function Space
- Complex Number Function Space
- Neural Network Function Space ← Neural Architecture Search.

KGFS

Polynomial Function Space

Embedding as a Polynomial Functions

$$f_{\text{poly}}(\theta, x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_{d-1} x^{d-1}.$$
 (1)

Example

• Consider head entity parameters $\theta_h = \{1, -2, 3\}$ over the domain X.

$$f_{\text{poly}}(\theta_h, x) = 1 - 2x + 3x^2$$

Complex Number Function Space

Embedding as a Complex Number Function

$$f_{complex}(\theta, x) = \sum_{k=0}^{d-1} \theta_k \cdot \cos(x) + i \cdot \sum_{k=0}^{d-1} \theta_k \cdot \sin(x),$$
 (2)

Example

• Consider head entity parameters $\theta_h = \{2, -1\}$ over the domain X.

$$f_{complex}(\theta_h, x) = (2-1) \cdot \cos(x) + i \cdot (2-1) \cdot \sin(x)$$

Neural Network Function Space Equation

Parameter set:

$$\theta = [\theta_1, \theta_2, \dots, \theta_d],$$
 where *d* is the dimension. (3)

Network function space :

$$f(\theta, X) = \sigma(\theta^{(n)}(\sigma(\theta^{(n-1)}(\dots \sigma(\theta^{(2)}(\sigma(\theta^{(1)}X)))))). \tag{4}$$

• Layer-specific matrix size:

$$\theta^n = \sqrt{\frac{d}{n}} \times \sqrt{\frac{d}{n}}, \text{ for } n \text{ layers.}$$
 (5)

Optimized Network Configuration

How to find Optimal Values:

- Dimension (*d*), number of layers (*n*), and Activation function (*σ*)?
- Network architecture type?
- Other network hyperparameters?

NAS

Neural Architecture Search

Overview of Neural Architecture Search (NAS)

Figure: The general framework of Neural Architecture Search.

 NAS aims to automate the design of neural network architectures, optimizing for performance on a given task.

16/44

Overview of Neural Architecture Search (NAS)

Figure: The general framework of Neural Architecture Search.

- NAS aims to automate the design of neural network architectures, optimizing for performance on a given task.
- Search Space: layer types, hyperparameters, and connectivity patterns.
- Search Algorithm: Uses techniques like reinforcement learning, Bayesian optimization, and evolutionary or gradient-based methods for efficient search.

17/44

NAS Frameworks

A variety of frameworks support NAS, each with unique features and methodologies:

- Microsoft's NNI (Neural Network Intelligence) [5].
- UniNAS [6].
- Auto-PyTorch [7].

18/44

NAS Frameworks

A variety of frameworks support NAS, each with unique features and methodologies:

- Microsoft's NNI (Neural Network Intelligence) [5].
- UniNAS [6].
- Auto-PyTorch [7].

19/44

NNI Visualization

Figure: Parameters as the different axis in NNI

NNI Visualization

	Trial No.	ID	Duration	Status	Default metric
>	26	klecB 🗈	1m 38s	SUCCEEDED	0.838603
>	12	C1axP 🗈	1m 21s	SUCCEEDED	0.808598
>	6	x4NIb 🗈	1m 58s	SUCCEEDED	0.736218
>	17	ex8X2 🖺	1m 41s	SUCCEEDED	0.717057

Optimal Network Configuration

$$f(\theta, X) = \sigma(\theta^{(n)}(\sigma(\theta^{(n-1)}(\dots \sigma(\theta^{(2)}(\sigma(\theta^{(1)}X)))))). \tag{6}$$

The most effective configuration identified through NAS

- Two layers
- · Layer normalization after each layer
- Residual connections
- Alternate relu activation function

Process Pipeline

Figure: Schematic overview of the embedding as functions KG model.

23/44

Scoring Functions

- Compositional Scoring Function.
- Trilinear Scoring Function.
- Vector Triple Product Scoring Function.

KGFS

Scoring Function

$$\psi_{compositional} = \int_{X} f(\theta_r, f(\theta_h, x)) \circ f(\theta_t, x) dx.$$
(7)

$$\psi_{trilinear} = \int_{X} f(\theta_h, x) \circ f(\theta_r, x) \circ f(\theta_t, x) \, dx. \tag{8}$$

$$\psi_{Vtp} = -\int_{X} f(\theta_{h}, x) dx \times \int_{X} f(\theta_{t}, x) \circ f(\theta_{r}, x) dx + \int_{X} f(\theta_{r}, x) dx \times \int_{X} f(\theta_{t}, x) \circ f(\theta_{h}, x) dx.$$
(9)

《□▶ 《□▶ 《□▶ 《□▶ 《□ 》

KGFS July 1, 2024 25 / 44

Scoring Function

$$\psi_{compositional} = \int_{X} f(\theta_r, f(\theta_h, x)) \circ f(\theta_t, x) dx.$$
(7)

$$\psi_{trilinear} = \int_{X} f(\theta_h, x) \circ f(\theta_r, x) \circ f(\theta_t, x) dx.$$
 (8)

$$\psi_{Vtp} = -\int_{X} f(\theta_{h}, x) dx \times \int_{X} f(\theta_{t}, x) \circ f(\theta_{r}, x) dx + \int_{X} f(\theta_{r}, x) dx \times \int_{X} f(\theta_{t}, x) \circ f(\theta_{h}, x) dx.$$
 (9)

(ロ) (部) (注) (注) 注 り(())

KGFS July 1, 2024 25 / 44

Process Pipeline

Figure: Schematic overview of the embedding as functions KG model.

26/44

- L2 Norm Loss.
- Margin Ranking Loss.
- Binary Cross-Entropy Logits Loss.

$$\mathcal{L}_{12} = \sqrt{(1 - \psi(h, r, t) + \psi(h, r, \hat{t}))^2}$$
 (10)

$$\mathcal{L}_{\text{margin}} = \max(0, \gamma - (\psi(h, r, t) - \psi(h, r, \hat{t}))) \tag{11}$$

$$\mathcal{L}_{BCE} = -y \cdot \log(\sigma(p)) - (1 - y) \cdot \log(1 - \sigma(p))$$
 (12)

28/44

$$\mathcal{L}_{12} = \sqrt{(1 - \psi(h, r, t) + \psi(h, r, \hat{t}))^2}$$
 (10)

$$\mathcal{L}_{\text{margin}} = \max(0, \gamma - (\psi(h, r, t) - \psi(h, r, \hat{t})))$$
 (11)

$$\mathcal{L}_{BCE} = -y \cdot \log(\sigma(p)) - (1 - y) \cdot \log(1 - \sigma(p))$$
 (12)

28/44

$$\mathcal{L}_{12} = \sqrt{(1 - \psi(h, r, t) + \psi(h, r, \hat{t}))^2}$$
 (10)

$$\mathcal{L}_{\text{margin}} = \max(0, \gamma - (\psi(h, r, t) - \psi(h, r, \hat{t}))) \tag{11}$$

$$\mathcal{L}_{BCE} = -y \cdot \log(\sigma(p)) - (1 - y) \cdot \log(1 - \sigma(p)) \tag{12}$$

28/44

Results and Analysis

Result and Analysis

Evaluation Overview

Dataset	E	R	G ^{Train}	G ^{Val.}	G ^{Test}
KINSHIP	104	25	8,544	1,068	1,074
UMLS	135	46	5,216	652	661
FB15K	14,951	1,345	483,142	50,000	59,071
WN18	40,943	18	141,442	5,000	5,000
NELL-995-h100	22,411	43	50,314	3,763	3,746
NELL-995-h50	34,667	86	72,767	5,440	5,393
NELL-995-h25	70,145	172	122,618	9,194	9,187

Dataset statistics.

Metrics Used:

- Mean Reciprocal Rank (MRR)
- Hits @n where $n = \{1, 3, 10\}$

30/44

UMLS Dataset Result

Figure: MRR performance of different function spaces with different loss and scoring functions for 64-dim vector on UMLS test dataset

31/44

KINSHIP Dataset Result

Figure: MRR performance of different function spaces with different loss and scoring functions for 64-dim vector on KINSHIP test dataset

32/44

Combined MRR Results for UMLS and KINSHIP Datasets

Model	MRR (Kinship)	MRR (UMLS)
TransE [1]	0.0545	0.6011
DistMult [2]	0.2299	0.1646
ComplEx [4]	0.1001	0.1142
QMult [3]	0.0670	0.1280
OMult [3]	0.0600	0.1043
Keci [8]	0.2193	0.1659
Complex Number FS	0.5236	0.6396
NNFS (NAS)	0.7783	0.8798

Table: MRR Comparison of Various KG Embedding Models Utilizing BCE Loss with a 1024-Dimensional Vector on the MLS and KINSHIP Test Dataset.

(ㅁ▶◀라▶◀돌▶◀돌▶ 돌 쒸٩C

MRR for NELL-995 with h50 and h100

Model	MRR (h50)	MRR (h100)
TransE [1]	0.109	0.100
DistMult [2]	0.115	0.105
ComplEx [4]	0.066	0.044
QMult [3]	0.028	0.020
OMult [3]	0.035	0.019
Keci [8]	0.085	0.055
ComplexNumber FS	0.172	0.158
NNFS	0.099	0.130

Table: MRR Comparison of Various KG Embedding Models Utilizing BCE Loss with a 2048-Dimensional Vector on the NELL-995 Test Dataset

34/44

Combined MRR Results for WN18 and FB15K

Model	MRR (WN18)	MRR (FB15K)
TransE [1]	0.258	0.226
DistMult [2]	0.821	0.479
ComplEx [4]	0.893	0.466
QMult [3]	0.481	0.363
OMult [3]	0.637	0.380
Keci [8]	0.075	0.348
ComplexNumber FS	0.197	0.298
NNFS	0.826	0.360

Table: MRR Comparison of Various KG Embedding Models Utilizing BCE Loss with a 2048-Dimensional Vector on the WN18 and FB15K Test Dataset

35/44

Effect of embedding dimension

Figure: Comparison of Mean Reciprocal Rank for Various Models on the Kinship Test Dataset across Parameter Dimensions Ranging from 32 to 2048.

36/44

Effect of number of Negative Samples

Figure: Heatmap reflecting the impact of varying negative ratios (k) on Mean Reciprocal Rank (MRR) scores across the KINSHIP, UMLS, and WN18 datasets.

37/44

Conclusions and Future Work

Conclusions:

- Compositional scoring function outperforms other.
- Different function spaces exhibit optimal performance with specific loss functions.
- NAS for automated discovery of optimal configurations.
- FS performs well at higher dimensions.
- Scalability issues on large datasets.

Future Directions:

- Enhance NNFS with NAS for scalability.
- Broaden scoring function research.
- Address large-scale dataset challenges.

The End

Questions? Comments?

Acknowledgements

Universität Paderborn

- Prof. Dr. Axel-Cyrille Ngonga Ngomo
- Jun.-Prof. Dr. Sebastian Peitz

References I

- Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko (2013).

 Translating Embeddings for Modeling Multi-relational Data.

 Advances in Neural Information Processing Systems.
- Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng (2014).
 Embedding Entities and Relations for Learning and Inference in Knowledge Bases.
 - International Conference on Learning Representations (ICLR).
- Caglar Demir, Diego Moussallem, Stefan Heindorf, and Axel-Cyrille Ngonga Ngomo (2021).
 Convolutional Hypercomplex Embeddings for Link Prediction.

 Proceedings of the 13th Asian Conference on Machine Learning (ACML 2021).

◆ロ → ◆部 → ◆ き → ◆き → ● りゅぐ

References II

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard (2016).

Complex Embeddings for Simple Link Prediction. *International Conference on Machine Learning*, 2071–2080.

Microsoft (2020).
Neural Network Intelligence.

https://github.com/microsoft/nni.

Kevin Alexander Laube (2020). UniNAS.

GitHub repository, GitHub.

https://github.com/cogsys-tuebingen/uninas.

KGFS

References III

IEEE Transactions on Pattern Analysis and Machine Intelligence, 3079-3090.

Also available under https://arxiv.org/abs/2006.13799.

Caglar Demir and Axel-Cyrille Ngonga Ngomo (2023). Clifford Embeddings – A Generalized Approach for Embedding in Normed Algebras.

Machine Learning and Knowledge Discovery in Databases: Research Track, Springer.

DOI: 10.1007/978-3-031-43418-1_34.

Available at

https://www.researchgate.net/publication/

References IV

373987609_Clifford_Embeddings_-_A_Generalized_ Approach_for_Embedding_in_Normed_Algebras.