Practicals

Practical 1: Marginal Models Continuous

- We will use the PBC dataset; this is available as the object pbc2 in the R workspace available on GitHub
- To load this workspace and make the data and packages available execute the following steps:
 - 1. Open a new Rstudio session
 - 2. Create a new R script file (File \rightarrow New File \rightarrow R Script)
 - 3. Copy-paste and execute the following lines

```
con <- url("https://raw.github.com/drizopoulos/Repeated_Measurements/master/Data.RData")
load(con)
close(con)

library("lattice")
library("nlme")
library("splines")</pre>
```


- We will need the following variables:
 - * id: patient id number
 - * prothrombin: prothrombin time in sec (the response variable of interest)
 - * year: follow-up times in years
 - * drug: the randomized treatment
 - * sex: the gender of the patients
 - * age: the age of the patients

Aim: To build an appropriate marginal model to investigate the relationships between the prothrombin time and the aforementioned variables

- Q1: We will start by producing some descriptive plots for the prothrombin time, similar to those we have seen in Chapter 1, i.e.,
 - > spaghetti plot per treatment group including the loess curve
 - > spaghetti plot per sex including the loess curve

(hint: see code for Section 1.1)

What observations can you make?

- Remove outliers: From the plots you produced in Question 1 it was evident that we have some outlying observations
 - be proposed by processes the processes of the pr

```
pbc2 <- pbc2[pbc2$prothrombin < 18, ]</pre>
```


- We will continue by starting our model building exercise
 Remember
 - > we start with a full specification of the mean structure, and investigate the covariance structure
 - based on our chosen covariance structure we can make inferences for the mean structure
- Q2: Start by fitting a marginal model with independent error terms using gls() and the following specification of the mean structure (hint: see code for Section 2.4)
 - > nonlinear time evolutions using natural cubic splines with 3 degrees of freedom
 - ▷ correct for sex, drug and age
 - interactions of the time effect with sex and drug

- Q2:
 - interpret the results you obtained
 - > should we simplify the model by excluding the non-significant terms?
- ullet Q3: Continue with the same mean structure and try different covariance structures

 - by then extend the above structures by assuming heteroscedastic errors, i.e., that the variance increases (or decreases) with time

(hint: see code for Section 2.9)

- Q4: Using appropriate tools (hypothesis tests, information criteria) decide which structure is the best
 - > which models are nested to which models?
- For the remainder we will use the covariance structure you have chosen in Q4
- Q5: Check if we can drop all the interaction terms

(hint: see code for Section 2.9)

- Q6: Continue and check whether you can drop the nonlinear terms for the time effect
 - > to do that fit a model that assumes a linear time trend, and
 - > then do the likelihood ratio test to compare it to the model that includes the nonlinear terms
- Q7: Interpret the results of your final model
 - > regression coefficients
 - > covariance structure

- Q8: Use an Effect Plot to depict the model with the following settings

 - ▷ sex: both males and females

(hint: see code for Section 2.4 – Effect Plot)

- Q9: Check the assumptions of the model using scatterplots of the standardized & normalized residuals versus the fitted values,
 - ▷ overall
 - ⊳ separately per sex
 - ▷ separately per treatment group

(hint: see code for Section 2.11)

What are your conclusions?

Practical 2: Mixed Models Continuous

• We will use the PBC dataset; this is available as the object pbc2 in the R workspace available on GitHub

- To load this workspace and make the data and packages available execute the following steps:
 - 1. Open a new Rstudio session
 - 2. Create a new R script file (File \rightarrow New File \rightarrow R Script)
 - 3. Copy-paste and execute the following lines

```
con <- url("https://raw.github.com/drizopoulos/Repeated_Measurements/master/Data.RData")
load(con)
close(con)

library("lattice")
library("nlme")
library("splines")</pre>
```


- We will need the following variables:
 - * id: patient id number
 - * prothrombin: prothrombin time in sec (the response variable of interest)
 - * year: follow-up times in years
 - * drug: the randomized treatment
 - * sex: the gender of the patients
 - * age: the age of the patients

Aim: To build an appropriate linear mixed effects model to investigate the relationships between the prothrombin time and the aforementioned variables

- Q1: Compute summary statistics for the number of repeated measurements per patient
 - be do we have enough information to model potential nonlinearities in the subject-specific trajectories?
- Q2: Examine graphically for samples of patients (hint: see code for Section 1.1)

 - ▶ What observations can you make?

• Q3: Start by fitting a linear mixed effects model using 1me() with the following specification of the fixed and random effects

(hint: see code for Section 3.2)

▶ fixed effects:

- * linear & quadratic time evolutions, nonlinear effect of age using natural cubic splines with 3 degrees of freedom
- * correct for sex and drug
- * interactions of time with sex and drug, and age with sex and drug
- > random effects: random intercepts

<u>Note:</u> As in Practical 1, in the analysis requested above, and for the remainder of this practical exclude the prothrombin times that were above 18 sec.

- Q4: Keeping the mean structure (i.e., the fixed effects as is), start elaborating the random-effects structure that captures the within subject correlations, i.e., consider
 - > random intercepts & random slopes
 - > random intercepts, linear & quadratic random slopes
 - > random intercepts, linear, quadratic & cubic random slopes

For each extra random effect that you add, perform the likelihood ratio test to see if it is required to add it

▶ which are the null and alternative hypotheses for each of these tests?

- Q5: Based on the model you selected Question 4, test whether you can drop all the *interaction terms* in order to simplify the model

 - if it is (highly) non-significant, you can drop them
 - ▷ if it is significant, find which group(s) are the significant ones.
- Q6: In the same spirit as in Question 5, test whether you can drop all the *nonlinear* terms to simplify the model

 - ▷ if it is significant, find which group(s) are the significant ones

- Q7: Interpret the results of your final model
 - > regression coefficients
- Q8: Compare the marginal and subject-specific predictions from your final model, i.e.,
 - ▷ add in you data frame the marginal and subject-specific fitted values from the final model (remember to use the dataset that excludes the outliers)
 - ⊳ select the following patients from the data set: 133, 36, 180, 11, 168, 116, 70, 58, 82, 104, 43, 21, 101, 210, 176, 157
 - > create the plot that compares the predictions

(hint: see code for Section 3.4)

- Q9: Use an Effect Plot to depict the model with the following settings

 - ▶ sex: both males and females

 - ▷ age: the median age from the original data for the respective four groups of patients (i.e., the median age of male in placebo, females in placebo, males in active treatment & females in active treatment)

(hint: see code for Section 3.2 – Effect Plot)

- Q10: Check the assumptions of the model using scatterplots of the standardized subject-specific & standardized marginals residuals versus the fitted values,
 - ▷ overall
 - ⊳ separately per sex
 - ▷ separately per treatment group

(hint: see code for Section 3.11)

What are your conclusions?

Practical 3: Marginal Models Discrete

• We will use the PBC dataset; this is available as the object pbc2 in the R workspace available on GitHub

- To load this workspace and make the data and packages available execute the following steps:
 - 1. Open a new Rstudio session
 - 2. Create a new R script file (File \rightarrow New File \rightarrow R Script)
 - 3. Copy-paste and execute the following lines

```
con <- url("https://raw.github.com/drizopoulos/Repeated_Measurements/master/Data.RData")
load(con)
close(con)

library("lattice")
library("geepack")
library("splines")</pre>
```


- We will need the following variables:
 - * id: patient id number
 - * prothrombin: prothrombin time in sec (the response variable of interest)
 - * year: follow-up times in years
 - * drug: the randomized treatment
 - * sex: the gender of the patients
 - * age: the age of the patients

Aim: To build an appropriate GEE model to investigate the relationships between a dichotomized version of the prothrombin time and the aforementioned variables

- Q1: A normal prothrombin time is between 11 and 13 sec
 - > create a dichotomous variable, with '0' denoting a normal prothrombin time, and '1' an abnormal one
- Q2: Examine graphically the probability of abnormal prothrombin time (hint: see code for Section 1.1)
 - > separately per treatment including the loess curve
 - > separately per sex including the loess curve
 - \triangleright separately for each age category [25,43], [43,50], [50,55] and [55,80] including the loess curve
 - ▶ what observations can you make?

- Q3: The researchers in this study made the following conjectures
 - b the log odds of abnormal prothrombin time may evolve nonlinearly during follow-up;
 - ▷ in addition, it is plausible that the log odds evolutions in time are different between males and females, and between placebo and treated patients;
 - be problem by furthermore, age is an important risk factor, and the effect of age may be modified by sex

Translate the above conjectures into a suitable GEE model for the log odds of abnormal prothrombin time

- □ use the exchangeable working correlation matrix, and
- ⊳ for the nonlinear terms use natural cubic splines with 2 degrees of freedom

(hint: see code for Section 4.3)

- Q4: Re-fit the model you fitted in Question 3 by assuming
 - > an independence working correlation matrix, and
 - □ an AR1 working correlation matrix
 - ▷ Compare the estimated coefficients and the corresponding naive and sandwich standard errors using a coefficients' plot

(hint: see code for Section 4.5)

▶ Which working correlation matrix do you choose and why?

- Q5: The researchers in the study want to see if the model can be simplified by dropping the *interaction terms*

 - if it is (highly) non-significant, you can drop them
 - ▷ if it is significant, find which group(s) are the significant ones
- Q6: Do the same for the *nonlinear terms*, i.e.,

 - if it is (highly) non-significant, you can drop them
 - ▷ if it is significant, find which group(s) are the significant ones

- Q7: Interpret the results of your final model
- Q8: Use an Effect Plot to depict the model with the following settings
 - > year: in the range from 0 to 12 years of follow-up

(hint: see code for Section 4.3 – Effect Plot)

Do the plot in both the log odds and probability scales

- Q9: From the effect plot we observe that the trajectories of the log odds for males and females in the D-penicillamine group are nonlinear (more so for the females)
 - bet in males and females separately
 - b with age 49 years old
 - > whether there are differences in the log odds of abnormal prothrombin time
 - ⊳ at the follow-up years 2, 6, 8 and 10
 - ▷ in other words, perform all the pairwise comparisons for the aforementioned follow-up times
 - ▷ should you adjust for multiple comparisons?

(<u>hint:</u> see code for Section 4.6 – complex effects)

Practical 4: Mixed Models Discrete

• We will use the PBC dataset; this is available as the object pbc2 in the R workspace available on GitHub

- To load this workspace and make the data and packages available execute the following steps:
 - 1. Open a new Rstudio session
 - 2. Create a new R script file (File \rightarrow New File \rightarrow R Script)
 - 3. Copy-paste and execute the following lines

```
con <- url("https://raw.github.com/drizopoulos/Repeated_Measurements/master/Data.RData")
load(con)
close(con)
library("lattice"); library("splines")
library("lme4"); library("MASS")</pre>
```


- We will need the following variables:
 - * id: patient id number
 - * prothrombin: prothrombin time in sec (the response variable of interest)
 - * year: follow-up times in years
 - * drug: the randomized treatment
 - * sex: the gender of the patients
 - * age: the age of the patients

Aim: To build an appropriate GLMM to investigate the relationships between a dichotomized version of the prothrombin time and the aforementioned variables

- Q1: A normal prothrombin time is between 11 and 13 sec
 - > create a dichotomous variable, with '0' denoting a normal prothrombin time, and '1' an abnormal one
- Q2: Examine graphically the probability of abnormal prothrombin time for each patient

(hint: see code for Section 1.1)

- ▷ create the subject-specific smooth trajectories of abnormal prothrombin time for patients who had more than five measurements
- □ b use as a smoother the "splines" option in the 'type' argument of xyplot()
- ▶ what observations can you make?

- Q3: The researchers in this study made the following conjectures
 - by the subject-specific log odds of abnormal prothrombin time evolve linearly during follow-up;
 - ▷ in addition, it is plausible that the subject-specific log odds evolutions in time are different between males and females;
 - by sex
 contact prothrombin time, and its may be modified
 by sex
 contact prothrombin time, and its may be modified
 by sex
 contact prothrombin time, and its may be modified
 by sex
 contact prothrombin time, and its may be modified
 contact prothrombin time,

Translate the above conjectures into a suitable GLMM for the log odds of abnormal prothrombin time using random intercepts

(hint: see code for Section 5.2)

- Q4: Test wether it is required to also include a random slopes component
 - > depending on the result keep the most parsimonious model that best fits the data