Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe, Christian Szegedy (2015)

Presented by:

- Pin-Chieh Liao
- María Victoria Liendro

Quick Review: Gradient Descent

Gradient Descent Update Rule

$$w_{t+1} = w_t - \eta
abla w_t$$

- •Start with some θ_0, θ_1
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$

until we hopefully end up at a minimum

Quick Review: Learning Rate

Gradient Descent Update Rule

$$w_{t+1} = w_t - \eta
abla w_t$$

Learning rate

Improvement for Neural Network

- How to find a good learning rate?
 - Too large- Might not even converge
 - Too small- Slow converge
- Exploding/Vanishing Gradient
 - Exploding- Never converge or crashed model
 - Vanishing- Never update parameters
- Computational Expensive

Gradient Descent Update Rule $w_{t+1} = w_t - \eta \nabla w_t$ Learning rate gradient

Batch Normalization

- Technique that normalizes the input of each layer
- It aims to reduce Internal Covariate Shift

Why Normalization

• If it works for input to hidden, why not try implement in hidden to hidden layer?

Internal covariate shift

- Internal Covariate Shift Change of distribution of each layer's inputs as the parameters of the previous layer change.
- Then layers need to continuously adapt to the new distribution.

Benefits

- Reduce sensitivity to initialize parameters
 - o Larger learning rate
 - Reduce the effect of poor initialization

- Better model performance
 - Landscape become smoother
 - Higher chance to reach global minimum

With Batch Norm

- Regularize model
 - Parameters are trainable in BN networks

Algorithm

How does the BN works?

For each epoch, for each batch do:

1) For each layer, k, perform Batch Normalization Transform and modify the input of the next layer. **Input:** Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^K$

Output: Batch-normalized network for inference, $N_{\rm BN}^{\rm inf}$

- 1: $N_{\text{BN}}^{\text{tr}} \leftarrow N$ // Training BN network
- 2: **for** k = 1 ... K **do**
- 3: Add transformation $y^{(k)} = \mathrm{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N_{\mathrm{BN}}^{\mathrm{tr}}$ (Alg. 1)
- 4: Modify each layer in $N_{\rm BN}^{\rm tr}$ with input $x^{(k)}$ to take $y^{(k)}$ instead
- 5: end for
- 6: Train $N_{\rm BN}^{\rm tr}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)},\beta^{(k)}\}_{k=1}^K$
- 7: $N_{\rm BN}^{\rm inf} \leftarrow N_{\rm BN}^{\rm tr}$ // Inference BN network with frozen // parameters
- 8: **for** k = 1 ... K **do**
- 9: // For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
- O: Process multiple training mini-batches B, each of size m, and average over them:

$$E[x] \leftarrow E_{\mathcal{B}}[\mu_{\mathcal{B}}]$$

 $Var[x] \leftarrow \frac{m}{m-1} E_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$

11: In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y = \mathrm{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\mathrm{Var}[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma \, \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}}\right)$

12: end for

Algorithm 2: Training a Batch-Normalized Network

Algorithm

How does the BN works?

 $y_1 = 1.0 \times (-1.2247) + 0 = -1.2247$

 $y_3 = 1.0 \times 1.2247 + 0 = 1.2247$

 $y_2 = 1.0 \times 0 + 0 = 0$

Input:
$$\mathcal{B} = \{x_1 = 2, x_2 = 3, x_3 = 4\}$$

Parameters: $\gamma = 1$, $\beta = 0$, $\epsilon = 0.001$

$$\mu_{\mathcal{B}} = \frac{2+3+4}{3} = 3$$

$$\sigma_{\mathcal{B}}^2 = \frac{(2-3)^2 + (3-3)^2 + (4-3)^2}{3} = \frac{1+0+1}{3} = 0.6667$$

$$\hat{x}_1 = \frac{2-3}{\sqrt{0.6667 + 0.001}} = \frac{-1}{0.8166} = -1.2247$$

$$\hat{x}_2 = \frac{3-3}{0.8166} = 0.0$$

$$\hat{x}_3 = \frac{4-3}{0.8166} = 1.2247$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i + x_i)$$

$$\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv 0.6667$$
Algorithm 1: Batch activation x over a matrix of x

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

$$\mathcal{B} = \{x_1 = 2, \ x_2 = 3, \ x_3 = 4\}$$

$${y_1 = -1.2247, y_2 = 0, y_3 = 1.2247}$$

Algorithm

How does the BN works?

For each epoch, for each batch do:

- 1) For each layer, k, perform Batch Normalization Transform and modify the of the next layer.
- 2) Train the new network to optimize γ , β , θ
- 3) For the inference, in each k do:

$$E[x] = 3.0, \quad Var[x] = 0.6667$$

$$y = \frac{\gamma}{\sqrt{Var[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma E[x]}{\sqrt{Var[x] + \epsilon}}\right)$$

$$y = \frac{1}{0.8166} \cdot x + \left(0. - \frac{3}{0.8166}\right) = 1.2247 \cdot x - 3.674$$

Input: Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^K$

Output: Batch-normalized network for inference, $N_{\rm BN}^{\rm inf}$

- 1: $N_{\rm BN}^{\rm tr} \leftarrow N$ // Training BN network
- 2: **for** k = 1 ... K **do**
- 3: Add transformation $y^{(k)} = \mathrm{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N_{\mathrm{BN}}^{\mathrm{tr}}$ (Alg. 1)
- 4: Modify each layer in N_{BN}^{tr} with input $x^{(k)}$ to take $y^{(k)}$ instead
- 5: end for
- 6: Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^{K}$
- 7: $N_{\rm BN}^{\rm inf} \leftarrow N_{\rm BN}^{\rm tr}$ // Inference BN network with frozen // parameters
- 8: **for** k = 1 ... K **do**
- 9: // For clarity, $x \equiv x^{(k)}$, $\gamma \equiv \gamma^{(k)}$, $\mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
- 10: Process multiple training mini-batches B, each of size m, and average over them:

$$E[x] \leftarrow E_{\mathcal{B}}[\mu_{\mathcal{B}}]$$

 $Var[x] \leftarrow \frac{m}{m-1} E_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$

11: In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y = \mathrm{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\mathrm{Var}[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma \, \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}}\right)$

12: **end fo**

Algorithm 2: Training a Batch-Normalized Network

Experiments - Activations over time

- Dataset: MNIST
- Input: 28x28 binary image
- Model: 3 fully-connected hidden layers with 100 activations each
- Results:
 - o Figure (a) shows that BN network got higher accuracy and in less steps.
 - o Figures (b) and (c) show how the distribution of a hidden layer evolves, with BN model being more stable over time.

Experiments - Activations over time

```
model BN = keras.Sequential(
    keras.layers.Flatten(input shape=(28, 28)),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(100, kernel initializer='random normal'),
    keras.layers.BatchNormalization(),
    keras.layers.Activation('sigmoid'),
    keras.layers.Dense(100, kernel initializer='random normal'),
    keras.layers.BatchNormalization(),
    keras.layers.Activation('sigmoid'),
    keras.layers.Dense(100, kernel initializer='random normal'),
    keras.layers.BatchNormalization(),
    keras.layers.Activation('sigmoid'),
    keras.layers.Dense(10, activation='softmax')
model base = keras.Sequential([
    keras.layers.Flatten(input shape=(28, 28)),
    keras.layers.Dense(100, activation = 'sigmoid', kernel initializer='random normal'),
    keras.layers.Dense(100, activation = 'sigmoid', kernel initializer='random normal'),
    keras.layers.Dense(100, activation = 'sigmoid', kernel initializer='random normal'),
    keras.layers.Dense(10, activation='softmax')
```


Experiments - Activations over time

```
class BatchNormLayer(keras.layers.Layer):
                                                                                                                                                                  With BN
     def init (self, units=100, batch size = 60):
                                                                                                                    0.9
                                                                                                                                                                  Without BN
         super(). init ()
         self.units = units
                                                                                                                    0.8
         self.batch size = batch size
                                                                                                                    0.7
     def build(self, input shape):
         self.beta = self.add weight(
              shape=(input shape[-1],),
              initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.01),
              trainable=True
                                                                                                                    0.4
         self.gamma = self.add weight(
              shape=(input shape[-1],),
                                                                                                                    0.3
              initializer=keras.initializers.RandomNormal(mean=1.0, stddev=0.01),
              trainable=True
                                                                                                                    0.2
                                                                                                                                  10
                                                                                                                                            20
                                                                                                                                                      30
                                                                                                                                                                40
                                                                                                                                                                          50
                                                                                                                                               Epoch
                                                                   0.2
0.5
                                                                   -0.2
                                                                        - 15th percentile
-1.0
                                                                         50th percentile (median)
                                                                                             20000
                                                                                                                               50000
```

Model test accuracy

Experiments - ImageNet classification

- Dataset: ImageNet
- Model: variant of Inception model
- Results:
 - o To accelerate BN networks we need also to:
 - Increase learning rate
 - Remove Dropout
 - Reduce L2 weight regularization
 - In Figures 2 and 3, the comparison of variants of networks

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Model	Steps to 72.2%	Max accuracy
Inception	$31.0 \cdot 10^{6}$	72.2%
BN-Baseline	$13.3 \cdot 10^{6}$	72.7%
BN-x5	$2.1 \cdot 10^{6}$	73.0%
BN-x30	$2.7 \cdot 10^6$	74.8%
BN-x5-Sigmoid		69.8%

Figure 3: For Inception and the batch-normalized variants, the number of training steps required to reach the maximum accuracy of Inception (72.2%), and the maximum accuracy achieved by the network.

Experiments - ImageNet classification

- Dataset: ImageNet
- Model: variant of Inception model
- Results:
 - o BN-Inception multicrop outperformed all the single models
 - BN-Inception ensemble outperformed even human accuracy, ~5.1%

Model	Resolution	Crops	Models	Top-1 error	Top-5 error
GoogLeNet ensemble	224	144	7	5 <u>4</u> 8	6.67%
Deep Image low-res	256	-	1	-	7.96%
Deep Image high-res	512	(2)	1	24.88	7.42%
Deep Image ensemble	variable	(*)		190	5.98%
BN-Inception single crop	224	1	1	25.2%	7.82%
BN-Inception multicrop	224	144	1	21.99%	5.82%
BN-Inception ensemble	224	144	6	20.1%	4.9%*

Our thoughts

- The main reason why BN works are conservative
 - Some research shows that BN improves perfromance even with low Internal Covariate Shift

- We believed that BN works because:
 - Smoother landscape
 - Gradient flow improvement
 - Regularization

Improvement

- Dependence on batch size
 - Layer normalization
 - Weight standardization
 - Normalizing Batch Normalization
- Could not directly apply on specific tasks
 - o RNN
 - Small Datasets
- Feature bias are involved in some cases

Thanks!