随机过程

教授: 吴明燕 笔记由 Dafu Zhu 编写 基于 2025 春季厦大数院《随机过程》

最后修改: 2025/04/13

目录

1	概率	论准备	知识	3		
	1.1	事件概	E率	4		
		1.1.1	事件域	4		
		1.1.2	概率测度	5		
	1.2	独立性	£	8		
	1.3	条件概	E率与条件独立	11		
	1.4	期望与	5条件期望	14		
		1.4.1	离散随机变量的期望	14		
		1.4.2	条件期望	16		
	1.5	随机过	[程	24		
		1.5.1	什么是随机过程	24		
		1.5.2	随机过程的分布	24		
		1.5.3	随机过程的存在性	25		
		1.5.4	随机过程的基本类型	26		
2	马氏链					
	2.1	离散时		27		
	2.2	时齐马	1氏链与转移概率	31		
	2.3	多步转	·移概率与矩阵乘法	35		
		2.3.1	Chapman-Kolmogorov 方程	35		
		2.3.2	马氏链的任意有限维分布	37		
	2.4	(从固]定点出发的) 马氏链	38		
		2.4.1	链的状态: 常返和暂留	38		
		2.4.2	从数学角度: 并改写成不交并	39		
		2.4.3	从"多步转移概率"角度判别	40		
		2.4.4	从"首次回访时间"角度判别	43		

	2.4.5	从"平均回访次数"角度判别
	2.4.6	停时与强马氏性
2.5	类结构	5
	2.5.1	状态 i 间的关系: 可达与互通 \dots 55
	2.5.2	常返与暂留是类性质 54
	2.5.3	状态空间分解
2.6	平稳分	布与特殊例子 58
	2.6.1	双随机链 (Doubly Stochastic Chain)
	2.6.2	细致平衡条件 (Detailed Balance Condition)
	2.6.3	可逆性
	2.6.4	求 P 的平稳分布(若唯一)
2.7	极限行	为与平稳分布的存在唯一性 62

1 概率论准备知识

成绩:平时(作业+考勤)+期中论文+期末

概率论准备知识

概率论中, 随机变量的本质是可测函数.

$$X:\Omega \to S$$

S 的 σ -代数记为 S, 是个 Borel σ -代数 (由开集/闭集生成)

Q: 为什么要给 Ω 一个 σ -代数?

A: 样本空间是抽象的, 给它 σ-代数赋予它结构, 相当于对信息进行重整/提取概率测度的本质是集函数,

将信息具象化,

$$\mathbb{P}:\mathcal{F}\to[0,1]$$

$$A \to \mathbb{P}(A)$$

随机过程: 一族随机变量 $\{X_t\}_{t\in\mathbb{T}}$ 其中 \mathbb{T} 为指标集, $X_t:\Omega\to S$

Example 1

 $\mathbb{T} = \mathbb{N}_0$: 时间离散; $\mathbb{T} = [0, T]$: 时间连续

$$X:(\Omega,\mathcal{F},\mathbb{P})\to(S,\mathcal{S},\mu_X)$$

思考: 什么是随机过程的分布 $\{\mu_t\}_{t\in\mathbb{T}}$?

1.1 事件概率

1.1.1 事件域

Definition 1 (样本空间、事件)

样本点、样本空间、事件和事件的运算:

• 样本点 ω: 一次试验的结果

• 样本空间 Ω: 全体样本点

• 事件: Ω 的子集

• 事件的运算: 集合的运算, 即交并补 $(A \cap B, A \cup B, A^c)$

Definition 2

若 $A \cap B = \emptyset$, 则称 $A \subseteq B$ 不相交, 更一般地, 若 $A_i \cap A_j = \emptyset (i \neq j)$, 则称 $\{A_i\}_{i \geq 1}$ 互不相交

Definition 3 (σ -代数)

称 $\mathcal{F} \subset 2^{\Omega} = \{A | A \subset \Omega\}$ 是一个 σ -代数/事件域(其中 2^{Ω} 表示所有 Ω 的子集构成的集合, 是一个集类) 若

1. $\Omega \subset \mathcal{F}$

2. (对补封闭) $A \in \mathcal{F} \to A^c \in \mathcal{F}$

3. (对可列并封闭) $A_n \in \mathcal{F}, n \geqslant 1 \Rightarrow \bigcup_{n \geqslant 1} A_n = \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

 σ 代数是满足以上特定条件的集类, 是由 Ω 的子集构成的集合

注: σ 代数对有限交/有限并/可列交封闭

现在给出了一个定义, 我们会想"为什么定义会这样给呢", 现在要举一些例子说明"定义有意义"

Example 2

最小的 σ 代数: $\{\emptyset, \Omega\}$

最大的 σ 代数: 2^{Ω}

以上这两个例子一个太小、一个太大,似乎没意义,所以叫它们"平凡的"

Example 3

 $A \subset \Omega, \sigma(\{A\}) = \sigma(A) = \{A, A^c, \Omega, \varnothing\} = \sigma(A^c)$

这是由A生成的 σ 代数

Definition 4 (划分/分割)

称 $\Pi_{\Omega} := \{\Lambda_n, n \geq 1\}$ 是 Ω 的一个分划, 若 $\Omega = \sum_{n \geq 1} \Lambda_n$

1. $\Omega = \bigcup_{n \geq 1} \Lambda_n$

2. $\{\Lambda_n\}_{n\geq 1}$ 互不相交

Example 4

 $\Omega = \sum_{n\geqslant 1} \Lambda_n, \Pi_{\Omega} := \{\Lambda_n\}_{n\geqslant 1}$

$$\sigma(\Pi_{\Omega}) = \left\{ \sum_{k \in J} \Lambda_k, J \subset \mathbb{N} \right\}$$

Problem 1 (作业 1-1)

证明:

- 1. $\sigma(\Pi_{\Omega})$ 是一个 σ 代数
- 2. $\sigma(\Pi_{\Omega})$ 是包含集类 Π_{Ω} 的最小 σ 代数
- $(S, S) = (S, 2^S)$: S 可列时, 取 2^S 为 σ 代数
- $(S,S)=(\mathbb{R},\mathcal{B}(\mathbb{R}))$: S 为实数集时, 取博雷尔集 $\mathcal{B}(\mathbb{R})$ 为 σ 代数

1.1.2 概率测度

Definition 5 (概率测度)

 (Ω, \mathcal{F}) 称 $\mathbb{P}: \mathcal{F} \to [0,1]$ 是概率测度

- 1. 非负性
- 2. 归一性
- 3. 可列可加性*

其中, 可列可加性的表述为: 设 $\{E_n, n \ge 1\}$ 是 \mathcal{F} 中互不相交的集合序列 $(E_i \cap E_j = \emptyset, i \ne j)$, 则

$$\mathbb{P}(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mathbb{P}(E_n)$$

Property 1

ℙ满足有限可加性(可列可加一定有限可加,如果既不是可列可加、也不是有限可加,则不可测)

Corollary 1

- 1. $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- 2. 若 $A \subset B$, 则 $\mathbb{B} = \mathbb{A} + \mathbb{P}(BA^c) \geqslant \mathbb{P}(A)$
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Remark 1. 引用知乎上三维之外的大白话解释可列可加性:

首先,在我们总是习惯于处理有限相加,而很少遇到无限相加的情况.从测度论内容理解,有限相加与事实(数学的)不符,比如 (0,1) 区间有不可数个点,每个点的测度(理解为直径吧)是 0,按照习惯想法(有限相加),直径的加和(总宽度)应该为 0,显然,(0,1) 区间的宽度不可能是 0;

如果规定为"只要是无穷多个点相加, 其宽度就不再是 0"的话, 还是存在矛盾, 我们知道, 区间 (0,1) 上的有理数是是无穷多个的(而且是可列的), 那么其宽度就应该为 1, 可是无理数还是不可数的呢——理解为无理数是有理数的无穷大量或有理数是无理数的无穷小量, 那么无理数的宽度是多少呢?即使还是 1, 显然 (0,1) 区间的宽度不可能是 2 吧!?

于是,勒贝格说道:在测量长度、面积、体积时,我们采用可列可加性,即可列个点相加,规定其宽度(测度)为 0,如果点的个数超过了可列个(这时必是连续统的),那么,就不满足了——即这些点的总宽度就不是 0 了,而是具有了非 0 的宽度(正测度),当然,具有测度的这些点是紧挨在一起的,否则不一定有测度,比如康托大师制造的三分集就很诡异.

到这里, 可列可加性事实上讲完了, 再啰嗦一下次可列可加性. 这是因为不论作为集合, 还是概率上的事件(也是集合), 一般是存在公共元素的, 因此, 一般情形下, 当然满足次可列可加性的性质了, 可列可加性只有在集合之间的距离大于 0 或事件之间完全独立的情形下, 才会满足.

Property 2 (次可列可加性)

 $A_n \subset \mathcal{F}, n \geqslant 1$

$$\mathbb{P}(\bigcup_{n\geqslant 1} A_n) \leqslant \sum_{n\geqslant 1} \mathbb{P}(A_n)$$

证明: $\bigcup_{n\geqslant 1}A_n=\sum_{n\geqslant 1}B_n$, 其中 $B_1=A_1,B_2=A_2\cap(A_1)^c,\cdots,B_n=A_n\cap A_1^c\cap A_2^c\cap\cdots\cap A_{n-1}^c$ $B_n\subset A_n$, 由可列可加性和推论1(2)

Problem 2 (作业 1-2)

证明 $\cup_{n\geqslant 1}A_n=\sum_{n\geqslant 1}B_n$

证明:

1. 先证 $\bigcup_{n\geqslant 1} A_n \subseteq \sum_{n\geqslant 1} B_n$. 假设 $x \in \bigcup_{n\geqslant 1} A_n$, 若 $x \in A_1$,则 $x \in B_1$, 若 $x \in A_2$ 且 $x \notin A_1$,则 $x \in B_2$

若 $x \in A_n$ 且 $x \notin A_1, x \notin A_2, ..., x \notin A_{n-1}, 则 <math>x \in B_n$ $\forall x \in \bigcup_{n \geqslant 1} A_n, \text{ 都有 } x \in \bigcup_{n \geqslant 1} B_n$ $\therefore B_i \cap B_j = \emptyset, i \neq j, \therefore \bigcup_{n \geqslant 1} B_n = \sum_{n \geqslant 1} B_n, x \in \sum_{n \geqslant 1} B_n.$

2. 再证 $\sum_{n\geqslant 1} B_n \subseteq \bigcup_{n\geqslant 1} A_n$ 假设 $x\in \sum_{n\geqslant 1} B_n$, 则 $\exists n_0\in \mathbb{N}^+$, 使得 $x\in B_{n_0}$, 由 B 的定义

$$B_{n_0} = A_{n_0} \cap \left(\bigcap_{k=1}^{n_0-1} A_k^c\right)$$

$$\therefore x \in A_{n_0} \subseteq \bigcup_{n \geqslant 1} A_n$$
$$\therefore \bigcup_{n \geqslant 1} A_n = \sum_{n \geqslant 1} B_n$$

Property 3 (连续性)

- $(1)\ A_n \uparrow 单调上升, 即\ A_n \subset A_{n+1}, \lim_{n \to \infty} A_n = \cup_{n \geqslant 1} A_n, \, 则\ \mathbb{P}(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$
- $(2) \ B_n \downarrow \ \mathring{\mathtt{P}} \ \mathsf{调下降}, \ \mathfrak{P} \ B_n \supset B_{n+1}, \ \lim_{n \to \infty} B_n = \cap_{n \geqslant 1} B_n, \ \mathbb{M} \ \mathbb{P}(\lim_{n \to \infty} B_n) = \lim_{n \to \infty} \mathbb{P}(B_n)$

证明: $(1) \cup_{n \ge 1} A_n = A_1 + A_2 \setminus A_1 + A_3 \setminus A_2 + \cdots$

$$\mathbb{P}(\bigcup_{n\geqslant 1} A_n) = \mathbb{P}(A_1) + \sum_{n\geqslant 1} \mathbb{P}(A_{n+1} \setminus A_n)$$

$$= \mathbb{P}(A_1) + \lim_{m\to\infty} \sum_{n=1}^m \mathbb{P}(A_{n+1} \setminus A_n)$$

$$= \mathbb{P}(A_1) + \lim_{m\to\infty} \sum_{n=1}^m [\mathbb{P}(A_{n+1}) - \mathbb{P}(A_n)]$$

$$= \mathbb{P}(A_1) + \lim_{m\to\infty} [\mathbb{P}(A_{m+1}) - \mathbb{P}(A_1)]$$

$$= \lim_{m\to\infty} \mathbb{P}(A_{m+1})$$

$$= \lim_{n\to\infty} \mathbb{P}(A_n) \quad \square$$

(2) $B_n \downarrow B \Rightarrow \forall n, B_{n+1} \subseteq B_n \Rightarrow \forall B_n^c \subseteq B_{n+1}^c$

$$\mathbb{P}(B) = \mathbb{P}(\cap_{n\geqslant 1} B_n) = 1 - \mathbb{P}((\cap_{n\geqslant 1} B_n)^c)$$

$$= 1 - \mathbb{P}(\cup_{n\geqslant 1} B_n^c)$$

$$= 1 - \mathbb{P}(B_1^c \cup (\cup_{n\geqslant 2} (B_n^c \setminus B_{n-1}^c)))$$

$$= 1 - \mathbb{P}(B_1^c) - \sum_{n\geqslant 2} (\mathbb{P}(B_n^c) - \mathbb{P}(B_{n-1}^c))$$

$$= 1 - \mathbb{P}(B_1^c) - \lim_{m \to \infty} \sum_{n=2}^m (\mathbb{P}(B_n^c) - \mathbb{P}(B_{n-1}^c))$$

$$= 1 - \mathbb{P}(B_1^c) - \lim_{m \to \infty} (\mathbb{P}(B_m^c) - \mathbb{P}(B_1^c))$$

$$= 1 - \mathbb{P}(B_1^c) - \lim_{n \to \infty} \mathbb{P}(B_n^c) + \mathbb{P}(B_1^c)$$

$$= 1 - \lim_{n \to \infty} \mathbb{P}(B_n^c)$$

$$= \lim_{n \to \infty} \mathbb{P}(B_n) \quad \square$$

第二个等式用到 De Morgan's Law

1.2 独立性

Definition 6 (事件间的独立性)

 $(\Omega, \mathcal{F}, \mathbb{P}), A, B \in \mathcal{F},$ 称 A 与 B 独立, 若 $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B),$ 记为 $A \perp \!\!\! \perp B$

Definition 7 (事件间的相互独立)

 $\{A_n\}_{n\geqslant 1}\subset\mathcal{F}$, 称其相互独立, 若 $\forall J\subset\mathbb{N}, \#J\geqslant 2$

$$\mathbb{P}(\bigcap_{k\in J} A_k) = \prod_{k\in J} \mathbb{P}(A_k)$$

Property 4

 $A \perp\!\!\!\perp B \Rightarrow A \perp\!\!\!\perp B^c, A^c \perp\!\!\!\perp B, A^c \perp\!\!\!\perp B^c$

Definition 8 (σ 代数间的独立性)

 $(\Omega, \mathcal{F}_1, \mathbb{P}), (\Omega, \mathcal{F}_2, \mathbb{P})$ 称 \mathcal{F}_1 与 \mathcal{F}_2 独立, 若 $\forall A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$, 有 $A_1 \perp \!\!\!\perp A_2$, 记为 $\mathcal{F}_1 \perp \!\!\!\perp \mathcal{F}_2$

Definition 9 (σ 代数间相互独立)

 $(\Omega, \mathcal{F}_k, \mathbb{P})(k \ge 1)$ 称 $\{\mathcal{F}_k\}_{k \ge 1}$ 相互独立, 若 $\forall J \subset \mathbb{N}, \#J \ge 2, \forall A_k \in \mathcal{F}_k(k \in J),$ 有

$$\mathbb{P}(\bigcap_{k \in J} A_k) = \prod_{k \in J} P(A_k)$$

Property 5

 $\{\mathcal{F}_k\}_{k\geqslant 1}$ 相互独立 $\Leftrightarrow \forall A_k \in \mathcal{F}_k, \mathbb{P}(\cap_{k\geqslant 1}A_k) = \prod_{k=1}^{\infty} \mathbb{P}(A_k)$

证明: \Rightarrow 显然, J 取 \mathbb{N} 即可, $\mathbb{N} \subset \mathbb{N}$

 \Leftarrow 注意到右侧 $\forall A_k \in \mathcal{F}$ 对于左侧条件 $\forall A_k \in \mathcal{F}(k \in J)$ 更加一般, 所以证 \Leftarrow 的过程也是从一般到特殊. 从 $\cap_{k \geq 1} A_k \to \cap_{k \in J} A_k$ 即从 $k \in \mathbb{N} \to k \in J$. 思路是把 $k \in \mathbb{N} \to k \in J$ 和 $k \in J^c$, 在 $k \in J^c$ 上取 $A_k = \Omega$, 再 利用性质 $\Omega \perp \!\!\! \perp A$.

对于 $\forall J \subseteq \mathbb{N}$

$$\begin{split} \bigcap_{k\geqslant 1} A_k &= \left(\bigcap_{k\in J} A_k\right) \cap \left(\bigcap_{k\in J^c} \Omega\right) \\ \mathbb{P}(\bigcap_{k\geqslant 1} A_k) &= \mathbb{P}\left(\left(\bigcap_{k\in J} A_k\right) \cap \left(\bigcap_{k\in J^c} \Omega\right)\right) \\ &= \mathbb{P}(\bigcap_{k\in J} A_k) \mathbb{P}(\bigcap_{k\in J^c} \Omega) \qquad [\Omega \perp \!\!\! \perp A_k] \\ &= \mathbb{P}(\bigcap_{k\in J} A_k) \end{split}$$

$$\prod_{k\geqslant 1}\mathbb{P}(A_k)=\prod_{k\in J}\mathbb{P}(A_k)\cdot\prod_{k\in J^c}\mathbb{P}(\Omega)=\Pi_{k\in J}\mathbb{P}(A_k)$$

又因为 $\mathbb{P}(\cap_{k\geqslant 1}A_k) = \prod_{k=1}^{\infty}\mathbb{P}(A_k)$

$$\mathbb{P}(\bigcap_{k\in J} A_k) = \prod_{k\in J} \mathbb{P}(A_k) \quad \Box$$

Definition 10 (离散随机变量)

令取值空间 $S=\{x_k\}_{k\geqslant 1}$ $(x_k$ 互不相同), $\Omega=\sum_{k\geqslant 1}\Lambda_k$ (划分), 则称

$$X(\omega) = \sum_{k \ge 1} x_k \mathbb{I}_{\Lambda_k}(\omega), \omega \in \Omega$$
 (1.1)

为离散随机变量. 其中

$$\mathbb{I}_{\Lambda_k}(\omega) = \begin{cases} 1 & \text{if } \omega \in \Lambda_k \\ 0 & \text{if } \omega \notin \Lambda_k \end{cases}$$

这个定义的核心思想是:

- 对于每个样本点 $\omega \in \Omega$, $X(\omega)$ 的取值是 x_k , 当且仅当 $\omega \in \Lambda_k$
- 因此, X 的取值由样本点 ω 所在的划分 Λ_k 决定

由于随机变量是个可测函数

$$X:(\Omega,?)\to(S,2^S)$$

那么 X 生成的 σ 代数表示为 $\sigma(X) := X^{-1}(2^S) = \{X^{-1}(A) | A \in 2^S\}$

Property 6

 $\sigma(X):=X^{-1}(2^S),\;\mathbb{N}$

- $1. \ \sigma(X) = \sigma(\Pi_{\Omega})$ 故称 $\sigma(X)$ 为由 X 生成的 σ 代数. 其中 $\Pi_{\Omega} = \{\Lambda_k, k \geq 1\}, \Lambda_k = \{X = x_k\}$
- $2. \ X: (\Omega, \sigma(X)) \to (S, 2^S).$ 这个记号的解释是 $\forall A \in 2^S, X^{-1}(A) = \{\omega \in \Omega | X(\omega) \in A\} \in \sigma(X)$

证明: 要证 $\sigma(X)=\sigma(\Pi_\Omega)$, 即证两个集合互相包含 $\sigma(\Pi_X)=\{\sum_{k\in J}\Lambda_k|J\subseteq\mathbb{N}\}\text{ 由划分生成, }\sigma(X)=X^{-1}(2^S)\text{ 由 }X\text{ 生成下证 }\sigma(X)\subseteq\sigma(\Pi_X)$

$$\forall A \in 2^S, X^{-1}(A) = \{\omega | X(\omega) \in A\}$$

$$= \sum_{x_k \in A} \{\omega \in \Omega | X(\omega) = x_k\}$$

$$= \sum_{x_k \in A} \{X = x_k\}$$

$$= \sum_{x_k \in A} \Lambda_k \in \sigma(\Pi_X)$$

第二个等式用到离散 r.v. 定义10下证 $\sigma(\Pi_X) \subseteq \sigma(X)$

$$J \subseteq \mathbb{N}, \quad \sum_{k \in J} \Lambda_k = \sum_{k \in J} \{\omega | X(\omega) = x_k\}$$
$$= \{\omega | X(\omega) \in \{x_k, k \in J\}\}$$
$$= X^{-1}(\{x_k, k \in J\}) \in \sigma(X)$$

最后一个等式中 $\{x_k, k \in J\} \in 2^S$

Example 5

 $X = \mathbb{I}_A$ 由划分的定义 $\Pi_X = \{\Lambda_k\}_{k \geqslant 1}, \Lambda_k = \{X = x_k\},$ 知道划分将全集分成两部分

$$\Pi_X = \{ \{X = 1\}, \{X = 0\} \}$$

$$= \{ \{\omega \in \Omega | X(\omega) = 1\}, \{\omega \in \Omega | X(\omega) = 0\} \}$$

$$= \{A, A^c\}$$

 $\sigma(\Pi_A) = \{\varnothing, A, A^c, \Omega\} = \sigma(A) = \sigma(A^c)$ 其中 $\sigma(\Pi_A)$ 由划分生成, $\sigma(A)$ 由 A 生成, 两者相等 另外, $\sigma(X) = \sigma(\mathbb{I}_A) = \sigma(\Pi_X) = \{\varnothing, A, A^c, \Omega\} = \sigma(A) \Rightarrow \sigma(\mathbb{I}_A) = \sigma(A)$

Definition 11 (离散随机变量间的独立性)

 $X:\Omega \to S_1, Y:\Omega \to S_2$ 为两离散随机变量, 称 $X \perp\!\!\!\perp Y$, 若 $\sigma(X) \perp\!\!\!\perp \sigma(Y)$ [定义8], 即 $X^{-1}(2^{S_1}) \perp\!\!\!\perp X^{-1}(2^{S_2})$ 即 $\forall E_1 \subseteq S_1, E_2 \subseteq S_2$, 有 $\mathbb{P}(X \in E_1, Y \in E_2) = \mathbb{P}(X \in E_1)\mathbb{P}(Y \in E_2)$

 S_1, S_2 分别为 X, Y 的取值空间, $E_1 \subseteq S_1$ 为 X 的一个取值, $X \in E_1 := \{\omega \in \Omega | X(\omega) \in E_1\}, E_2$ 同理

Theorem 1

 $X \perp \!\!\!\perp Y \Leftrightarrow \forall x \in S_X, y \in S_Y \not \exists \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$

证明: \Rightarrow 一般到特殊, 取 $E_1 = \{x\}, E_2 = \{y\},$ 由 $\{x\} \in S_X, \{y\} \in S_Y$ 易证 \Leftarrow

$$\mathbb{P}(X \in E_1, Y \in E_2) = \mathbb{P}(\bigcup_{x \in E_1} \{X = x\} \cap \{Y \in E_2\}) \\
= \sum_{x \in E_1} \mathbb{P}(\{X = x\} \cap \sum_{y \in E_2} \{Y = y\}) \\
= \sum_{x \in E_1} \sum_{y \in E_2} \mathbb{P}(X = x, Y = y) \\
= \sum_{x \in E_1} (\sum_{y \in E_2} \mathbb{P}(X = x) \mathbb{P}(Y = y)) \\
= \sum_{x \in E_1} \mathbb{P}(X = x) \mathbb{P}(Y \in E_2) \\
= \mathbb{P}(X \in E_1) \mathbb{P}(Y \in E_2)$$

第一个等式中, $\{X = x\} \cap \{Y \in E_2\}$ 看作一整个集合 $\subseteq \{X = x\}$, 因为离散、每个 x 不相交, 所以这是个不交并, 由练习2, 可以改写成加法形式.

第四个等式由条件 $\mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x)\mathbb{P}(Y=y)$ 成立.

Theorem 2

 $X \perp \!\!\!\perp Y \Leftrightarrow \forall x \in S_X, y \in S_Y, \mathbb{P}(X \leqslant x, Y \leqslant y) = \mathbb{P}(X \leqslant x)\mathbb{P}(Y \leqslant y)$

用定理1证明

⇒ 己知 $X \perp \!\!\! \perp Y$,由定义 $\frac{11}{1}$, $\forall E_1 \subseteq S_1, E_2 \subseteq S_2$,有 $\mathbb{P}(X \in E_1, Y \in E_2) = \mathbb{P}(X \in E_1)\mathbb{P}(Y \in E_2)$. 取 $E_1 = \{\omega | X(\omega) \leqslant x\}, E_2 = \{\omega | Y(\omega) \leqslant y\}$

 \Leftarrow

$$\begin{split} \mathbb{P}(X = x, Y = y) &= \mathbb{P}(X \leqslant x, Y \leqslant y) - \mathbb{P}(X \leqslant x^-, Y \leqslant y) - \mathbb{P}(X \leqslant x, Y \leqslant y^-) + \mathbb{P}(X \leqslant x^-, Y \leqslant y^-) \\ &= \mathbb{P}(X \leqslant x) \mathbb{P}(Y \leqslant y) - \mathbb{P}(X \leqslant x^-) \mathbb{P}(Y \leqslant y) - \mathbb{P}(X \leqslant x) \mathbb{P}(Y \leqslant y^-) + \mathbb{P}(X \leqslant x^-) \mathbb{P}(Y \leqslant y^-) \\ &= [\mathbb{P}(X \leqslant x) - \mathbb{P}(X \leqslant x^-)] [\mathbb{P}(Y \leqslant y) - \mathbb{P}(Y \leqslant y^-)] \\ &= \mathbb{P}(X = x) \mathbb{P}(Y = y) \end{split}$$

其中 x^-, y^- 为小于 x, y 的最大值, 由于离散, $\{X \leqslant x\} - \{X \leqslant x^-\} = \{X = x\}, \{Y \leqslant y\} - \{Y \leqslant y^-\} = \{Y = y\}$

Definition 12

称一列离散随机变量 $\{X_n\}_{n\geq 1}$ 相互独立, 若 $\sigma(X_n), n \geq 1$ 相互独立

Theorem 3

 $\{A_n\}_{n\geq 1}$ 事件列下列等价

- 1. $\{A_n\}_{n\geq 1}$ 相互独立
- 2. $\sigma(A_n), n \ge 1$ 相互独立
- 3. $\mathbb{I}_{A_n}, n \geq 1$ 相互独立

证明:

- 1. 由例题5, $\sigma(\mathbb{I}_{A_n}) = \sigma(A_n)$, 所以 $(2) \Leftrightarrow (3)$
- 2. 下证 $(2) \rightarrow (1)$, 一般到特殊, $A_n \subseteq \sigma(A_n)$
- 3. 下证 $(1) \to (2)$, $\sigma(A_n) = \{A_n, A_n^c, \varnothing, \Omega\}$, $\varnothing \perp \!\!\! \perp A_n$, $\Omega \perp \!\!\! \perp A_n$, 由性质4, $\varnothing \perp \!\!\! \perp A_n^c$, $\Omega \perp \!\!\! \perp A_n^c$ 由定理5, $\forall A_k \in \sigma(A_n)$, $\mathbb{P}(\cap_{k \geqslant 1} A_k) = \prod_{k=1}^\infty \mathbb{P}(A_k)$

由于条件 (1), 上面等式成立 \Rightarrow 满足 σ 代数相互独立的定义

1.3 条件概率与条件独立

Definition 13 (条件概率)

 $B \in \mathcal{F}, \mathbb{P}(B) > 0$ 定义

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)} =: \mathbb{P}_B(A) \quad \forall A \in \mathcal{F}$$

Theorem 4 (乘法公式)

 $\mathbb{P}(AB) = \mathbb{P}(A|B)\mathbb{P}(B),$

$$\mathbb{P}(\bigcap_{k=1}^{n} A_k) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1A_2)\cdots\mathbb{P}(A_n|\bigcap_{k=1}^{n-1} A_k)$$
(1.2)

Theorem 5 (全概公式)

(1) $\Omega = \sum_{k\geqslant 1} \Lambda_k$ 划分 $\mathbb{P}(\Lambda_k) > 0$, 则 $\forall A \in \mathcal{F}$,

$$\mathbb{P}(A) = \sum_{k \geqslant 1} \mathbb{P}(A|\Lambda_k) \mathbb{P}(\Lambda_k)$$

(2)* 一般地, $\{B_n\}_{n\geqslant 1}$ 互不相交, $\mathbb{P}(B)>0$, $\mathbb{P}(\sum_{n\geqslant 1}B_n)=1$, 则 $\forall A\in\mathcal{F}$

$$\mathbb{P}(A) = \sum_{n \geqslant 1} \mathbb{P}(A|B_n) \mathbb{P}(B_n)$$

注: $\mathbb{P}(\cdot)=1$ 不一定是全集, 但概率测度是 1. 同样, $\mathbb{P}(\cdot)=0$ 不一定是 \varnothing , 而是叫零测集

证明:

(1) 由 $A = A \cap \Omega = A \cap (\sum_{k \ge 1} \Lambda_k) = \sum_{k \ge 1} (A \cap \Lambda_k)$, A 被划分成若干不相交的集合 $A \cap \Lambda_k$, 根据可列可加性, 得到

$$\mathbb{P}(A) = \sum_{k \geqslant 1} \mathbb{P}(A \cap \Lambda_k) = \sum_{k \geqslant 1} \mathbb{P}(A|\Lambda_k) \mathbb{P}(\Lambda_k)$$

(2)
$$\Omega = (\sum_{n \geqslant 1} B_n) + (\sum_{n \geqslant 1} B_n)^c = \sum_{n \geqslant 0} B_n$$
, $\not = \mathbb{P}(B_0) = 1 - \mathbb{P}(\sum_{n \geqslant 1} B_n) = 0 \to 0 \leqslant \mathbb{P}(AB_0) \leqslant \mathbb{P}(B_0) = 0$

左边不等号成立是因为概率测度非负, 右边不等号成立是因为 $AB_0 \subseteq B_0$, 所以 $\mathbb{P}(AB_0) = 0$

$$\mathbb{P}(A) = \sum_{n\geqslant 0} \mathbb{P}(AB_n)$$
 [可列可加性]
$$= \sum_{n\geqslant 1} \mathbb{P}(AB_n) \quad [\mathbb{P}(AB_0) = 0]$$

$$= \sum_{n\geqslant 1} \mathbb{P}(A|B_n)\mathbb{P}(B_n) \quad [全概公式] \quad \Box$$

Theorem 6

$$\mathbb{P}(A) > 0, \mathbb{P}(B) > 0$$

$$A \perp \!\!\!\perp B \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(B|A) = \mathbb{P}(B)$$

 $\mathbb{P}(A|B)$ 见定义13

Theorem 7

 $\mathbb{P}_B:\mathcal{F}\to[0,1]$ 也是 (Ω,\mathcal{F}) 上的概率测度 [定义5]

Property 7

$$\mathbb{P}(C) > 0, \mathbb{P}(B) > 0,$$
则

$$\mathbb{P}_B(\cdot|C) = \mathbb{P}(\cdot|BC) = \mathbb{P}_{BC}(\cdot)$$

 $\mathbb{P}_B(\cdot|C)$ 见定义13

Definition 14

称 C条件发生下, A与 B独立, 若

$$\mathbb{P}_C(AB) = \mathbb{P}_C(A)\mathbb{P}_C(B) \tag{1.3}$$

记为 $A \perp \!\!\! \perp_C B$ (条件独立)

Theorem 8

$$\mathbb{P}(C) > 0, \mathbb{P}(BC) > 0 \, \mathbb{N} \, A \perp \!\!\!\perp_C B \Leftrightarrow \mathbb{P}_C(A|B) = \mathbb{P}_C(A)$$

证明: 由 $A \perp \!\!\! \perp_C B$, $\mathbb{P}_C(AB) = \mathbb{P}_C(A)\mathbb{P}_C(B)$

$$\mathbb{P}_{C}(A|B) = \frac{\mathbb{P}_{C}(AB)}{\mathbb{P}_{C}(B)} = \mathbb{P}_{C}(A)$$

1.4 期望与条件期望

1.4.1 离散随机变量的期望

Definition 15 (X 的期望)

 $X:\Omega \to S$

$$\mathbb{E}(X) = \sum_{x \in S} x \mathbb{P}(X = x) = \mathbb{E}^{\mathbb{P}}(X)$$

当此求和绝对收敛

注: $\mathbb{E}^{\mathbb{P}}(X)$ 强调这是在概率测度 \mathbb{P} 下的期望

Definition 16 (g(X) 的期望)

 $g: \mathbb{R} \to \mathbb{R}$

$$\mathbb{E}g(X) = \sum_{x \in S} g(x) \mathbb{P}(X = x)$$

当此求和绝对收敛

关于"求和绝对收敛"的讨论:

Example 6

 $\mathbb{E}(\mathbb{I}_A) = \mathbb{P}(A), A \in \mathcal{F}$

Example 7

X 是离散随机变量, 由定义 $10, X = \sum_{x \in S} x \mathbb{I}_{A_x}$, 其中 $A_x := \{X = x\}$. B 是任意的, 求 $\mathbb{E}(\mathbb{I}_B X)$

Remark 2. 对于 $A_x := \{X = x\}$ 应这样理解, A_x 是样本空间 Ω 的一个子集, 包含了所有使得 $X(\omega) = x$ 的样本点 ω .

根据离散随机变量的定义, $X(\omega)=x_k$ 当且仅当 $\omega\in\Lambda_k$. 因此对于每个 $x_k\in S$, 有

$$A_{x_k} = \{X = x_k\} = \{\omega \in \Omega | X(\omega) = x_k\} = \Lambda_k$$

所以 $A_x = \{A_{x_k}\}_{k \geqslant 1}$ 就是离散随机变量的划分

对于 $X=\sum_{x\in S}x\mathbb{I}_{A_x}$ 可以这样理解. 对于每个 $x\in S$, $\mathbb{I}_{A_x}(\omega)$ 是事件 $A_x=\{X=x\}$ 的指示函数

$$\mathbb{I}_{A_x}(\omega) = \begin{cases} 1 & \text{if } X(\omega) = x \\ 0 & \text{if } X(\omega) \neq x \end{cases}$$

Solution. 要先求 $\mathbb{E}(|\mathbb{I}_B X|) < \infty$ 说明期望存在

对 $\forall \omega \in B$

$$\mathbb{I}_B X(\omega) = \mathbb{I}_B(\omega) \sum_{x \in S} (x \cdot \mathbb{I}_{A_x}(\omega))$$
$$= \sum_{x \in S} x \mathbb{I}_{A_x \cap B}(\omega)$$

其中 $\mathbb{I}_{A_x\cap B}$ 也可记为 \mathbb{I}_{A_xB}

 $\{A_xB,x\in S\}\cup\{B^c\}$ 构成了样本空间 Ω 的一个划分. 因为 A_x 本身是对 Ω 的一个划分, 其与 B 的交是对 B 的划分. 并上 B^c , 则满足划分的定义 4

对于 $\omega \in \Omega$, 由划分

$$\mathbb{I}_B X(\omega) = 0 \cdot \mathbb{I}_{B^c}(\omega) + \sum_{x \in S} x \mathbb{I}_{A_x \cap B}$$

$$\therefore \mathbb{E}|\mathbb{I}_B X| = \sum_{x \in S} |x| \mathbb{P}(A_x B) \leqslant \sum_{x \in S} |x| \mathbb{P}(A_x) = \mathbb{E}|X| < \infty$$

最后一个等号参考期望的定义15

$$\mathbb{E}(\mathbb{I}_B X) = \sum_{x \in S} x \mathbb{P}(A_x B) = \sum_{x \in S} x \mathbb{P}(\{X = x\} \cap B)$$

Theorem 9

 $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$

离散随机变量有两种表达形式,如定义10和练习7所示

$$X = \sum_{x \in S} x \mathbb{I}_{\{X = x\}} = \sum_{k \geqslant 1} x_k \mathbb{I}_{\Lambda_k}$$

$$\sum_{x \in S} x \mathbb{P}(X = x) = \sum_{k \geqslant 1} \mathbb{P}(X = x_k)$$

只有在"求和绝对收敛"(见定义15)的条件下,等式才成立

Remark 3.

- $1. \sum_{x \in S} (1)$ 级数的重排 (2) 可和族
- 2. X 是离散随机变量, $g: \mathbb{R} \to \mathbb{R}$, 则

$$g(X) = \sum_{x \in S} g(x) \mathbb{I}_{\{X = x\}}$$

是一个离散随机变量,且 $\sigma(g(X))\subseteq\sigma(X)$. 下面说明这个结论 当 $x_1\neq x_2$ 时可能 $g(x_1)=g(x_2)$, 因此

$$\Pi_X=\{\{X=x\}|x\in S\}\neq \Pi_{g(X)}$$

其实 $\Pi_{g(X)}\subseteq\sigma(\Pi_X)$,因为对于 $x_1\neq x_2$ 但 $g(x_1)=g(x_2)$ 的情况,比如在 Π_X 上 x_1,x_2 对应的样本空间是 Ω_1,Ω_2 ,但在 $\Pi_{g(X)}$ 上是 $\Omega_1\cup\Omega_2$. 这一项在 Π_X 里有,因为 σ 代数对可列并封闭. 但 Ω_1,Ω_2 分别在 $\Pi_{g(X)}$ 上没有. 把 σ 代数理解成信息,则 g(X)=y 提供的信息是比直接提供 x 的值要少的(在 $g(\cdot)$ 已知的情况下).

 $3. \ X \perp \!\!\!\perp Y, \quad g,h: \mathbb{R} \to \mathbb{R}, \ \mathbb{M} \ g(X) \perp \!\!\!\perp h(Y). \$ 因为 $\sigma(X) \perp \!\!\!\perp \sigma(Y), \$ 而 $\sigma(g(X)) \subseteq \sigma(X), \sigma(h(Y)) \subseteq \sigma(Y)$ 如果 X,Y 是连续随机变量,则对 g,h 有其他要求. 特殊地, 结论 3 对 g,h 连续时成立.

Theorem 10

- $(1) X \perp \!\!\!\perp Y, \mathbb{E}|X| < \infty, \mathbb{E}|Y| < \infty, \mathbb{M} \mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$
- (2) X_1, X_2, \cdots, X_n 相互独立,则 $\mathbb{E}(X_1 \cdots X_n) = \mathbb{E}X_1 \cdots \mathbb{E}X_n$
- $(3) \ X \perp\!\!\!\perp Y, g, h : \mathbb{R} \to \mathbb{R}, \mathbb{E}|g(X)| < \infty, \mathbb{E}|h(Y)| < \infty$

$$\Rightarrow g(X) \perp h(Y), \mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y))$$

Theorem 11

若 $X\geqslant 0$ 取整数值, 则 $\mathbb{E}(X)=\sum_{k\geqslant 1}\mathbb{P}(X\geqslant k)$

证明:

1.4.2 条件期望

1°关于"给定集合"的条件期望

Definition 17

 $(\Omega, \mathcal{F}, \mathbb{P}), X : \Omega \to S, A \in \mathcal{F}, \mathbb{P}(A) > 0, \mathbb{E}|X| < \infty$, 定义 X 关于 A 的条件期望

$$\mathbb{E}(X|A) := \sum_{x \in S} \mathbb{P}(X = x|A)$$
$$= \sum_{x \in S} x \mathbb{P}_A(X = x)$$
$$= E^{\mathbb{P}_A}(X)$$

Property 8 (线性性)

 $\mathbb{E}(aX + bY|A) = a\mathbb{E}(X|A) + b\mathbb{E}(Y|A)$

证明: (用期望的性质)

Example 8

$$\mathbb{E}(\mathbb{I}_B|A) = 1 \cdot \mathbb{P}(B|A) + 0 \cdot \mathbb{P}(B^c|A) = \mathbb{P}(B|A)$$

Example 9

 $B \perp \!\!\!\perp A \Rightarrow \mathbb{E}(\mathbb{I}_B | A) = \mathbb{E}(\mathbb{I}_B)$

Property 9

 $\mathbb{E}|X| < \infty, \mathbb{P}(A) > 0, X \perp \mathbb{I}_A \Rightarrow \mathbb{E}(X|A) = \mathbb{E}(X)$

证明:

 $\therefore X \perp \!\!\!\perp \mathbb{I}_A, \therefore \{X = x\} \perp \!\!\!\perp A$

$$\mathbb{E}(X|A) = \sum_{x \in S} x \mathbb{P}(X = x|A) = \sum_{x \in S} x \mathbb{P}(X = x) = \mathbb{E}(X)$$

其中

$$\sum_{x \in S} x \mathbb{P}(X = x | A) = \sum_{x \in S} x \frac{\mathbb{P}(\{X = x\} \cap A)}{P(A)} = \mathbb{E}(X \mathbb{I}_A) / \mathbb{P}(A)$$

最后一个等号由例题7

至此没有用到独立性, 可以得到以下推论

Corollary 2

 $\mathbb{E}(X|A) = \mathbb{E}(X\mathbb{I}_A)/\mathbb{P}(A)$

Problem 3 (作业 2-1)

Y 在 A 上取常数 c, 证明: $\mathbb{E}(XY|A) = c\mathbb{E}(X|A)$

 2° 关于"给定划分生成的 σ 代数"的条件期望

Definition 18

设 $\Pi = \{\Lambda_k\}_{k \geq 1}$ 是 Ω 的划分, X 为离散随机变量, $\mathbb{E}|X| < \infty$, 定义

$$\mathbb{E}(X|\sigma(\Pi))(\omega) := \mathbb{E}(X|\Lambda_k)$$

当 $\omega \in \Lambda_k$, 即

$$\mathbb{E}(X|\sigma(\Pi)) = \sum_{k \ge 1} \mathbb{I}_{\Lambda_k} \mathbb{E}(X|\Lambda_k)$$

期望的本质是积分, 现在因为数分里的积分不够用了, 我们要定义新积分, 希望它也能保留原先的好性质

Property 10 (线性性)

 $\mathbb{E}(aX+bY|\sigma(\Pi))=a\mathbb{E}(X|\sigma(\Pi))+b\mathbb{E}(Y|\sigma(\Pi))$

证明: $\omega \in \Lambda_k$, $LHS = \mathbb{E}(aX + bY | \Lambda_k) = a\mathbb{E}(X | \Lambda_k) + b\mathbb{E}(Y | \Lambda_k)$ 第二个等号由性质8成立.

Example 10

独立可以理解为: 什么信息也没提供

Example 11

$$\mathbb{E}(\mathbb{I}_B|\sigma(A)) = \mathbb{E}(\mathbb{I}_B|\{A, A^c, \Omega, \varnothing\})$$

$$= \mathbb{E}(\mathbb{I}_B|\sigma(A, A^c))$$

$$= \mathbb{I}_A \mathbb{E}(\mathbb{I}_B|A) + \mathbb{I}_{A^c} \mathbb{E}(\mathbb{I}_B|A^c)$$

更进一步, 若 $A \perp \!\!\! \perp B$, 由 $\sigma(B) \perp \!\!\! \perp \sigma(A) \to \sigma(\mathbb{I}_B) \perp \!\!\! \perp \sigma(\mathbb{I}_A) \Rightarrow \mathbb{E}(\mathbb{I}_B | \sigma(A)) = \mathbb{E}(\mathbb{I}_B)$

可以把这个结果推广:

Property 11

$$\sigma(X) \perp\!\!\!\perp \sigma(\Pi), \; \mathbb{M} \; \mathbb{E}(X|\sigma(\Pi)) = \mathbb{E}(X)$$

证明: $\Pi_X=\{\{X=x\}|x\in S\}$, 默认 x 不相同 $\sigma(X)=\sigma(\Pi_X)=\{\{X=x\}|x\in S\}$ 不妨设 $\Pi=\{\Lambda_k,k\geqslant 1\}$

$$\mathbb{N} \ \sigma(X) \perp \!\!\!\perp \sigma(\Pi) \Rightarrow \forall x \in S, k \geqslant 1, \{X = x\} \perp \!\!\!\perp \Lambda_k$$

$$\mathbb{E}(X|\sigma(\Pi)) = \sum_{k\geqslant 1} \mathbb{I}_{\Lambda_k} \mathbb{E}(X|\Lambda_k)$$

$$= \sum_{k\geqslant 1} \mathbb{I}_{\Lambda_k} \sum_{x\in S} x \mathbb{P}(X = x|\Lambda_k)$$

$$= \sum_{k\geqslant 1} \mathbb{I}_{\Lambda_k} \sum_{x\in S} x \mathbb{P}(X = x)$$

$$= \sum_{k\geqslant 1} \mathbb{I}_{\Lambda_k} \mathbb{E}(X)$$

$$= \mathbb{I}_{\Omega} \mathbb{E}(X)$$

$$= \mathbb{E}(X)$$

Example 12

 $\mathbb{E}(X|\sigma(X)) = X$

 $\sigma(X)$ 作为条件相当于知道了与 X 相关的所有信息, 即提取已知量

证明: $\sigma(X) = \sigma(\Pi_X)$, 其中 $\mathbb{I}_X = \{\{X = x\} | x \in S\}$

$$\begin{split} \mathbb{E}(X|\sigma(X)) &= \sum_{x \in S} \mathbb{I}_{\{X = x\}} \mathbb{E}(X|X = x) \\ &= \sum_{x \in S} \mathbb{I}_{\{X = x\}} \mathbb{E}(X\mathbb{I}_{\{X = x\}}) / \mathbb{P}(X = x) \quad [$$
 注论(2)]
$$&= \sum_{x \in S} \mathbb{I}_{\{X = x\}} \cdot \frac{x \cdot \mathbb{P}(X = x) + 0 \cdot \mathbb{P}(X \neq x)}{\mathbb{P}(X = x)} \\ &= \sum_{x \in S} x \mathbb{I}_{\{X = x\}} = X \quad \Box \end{split}$$

Property 12 (提取已知量)

设 $\Pi = \{\Lambda_k, k \ge 1\}$ 为 Ω 的划分, $\mathbb{E}|X| < \infty$, $\mathbb{E}|XY| < \infty$, 则当 $\sigma(X) \subseteq \sigma(\Pi)$ 时, 有

1. $\mathbb{E}(X|\sigma(\Pi)) = X$

2. $\mathbb{E}(XY|\sigma(\Pi)) = X\mathbb{E}(Y|\sigma(\Pi))$

特别地, 取 $X = \mathbb{I}_A, A \in \sigma(\Pi)$, 则

1. $\mathbb{E}(\mathbb{I}_A|\sigma(\Pi)) = \mathbb{I}_A$

2. $\mathbb{E}(\mathbb{I}_A Y | \sigma(\Pi)) = \mathbb{I}_A \mathbb{E}(Y | \sigma(\Pi))$

证明: 只需证 (2), 因为从 (2) \rightarrow (1) 即 $Y = \mathbb{I}_{\Omega}$

 $X = \sum_{x \in S} x \mathbb{I}_{A_x}$, 其中 $A_x := \{X = x\}$

(Step 1) $\sigma(X) = \{ \sum_{x \in S_X'} A_x | S_X' \subseteq S_X \}$

 $\sigma(X) = \{ \sum_{k \in J} \Lambda_k | J \subseteq \mathbb{N} \}$

已知: $\sigma(X) \subseteq \sigma(\Pi) \Rightarrow \exists$ 一族 $\{x_k\}_{k\geqslant 1}$ (可能有相同元素),使得 $X = \sum_{k\geqslant 1} x_k \mathbb{I}_{\Lambda_k}$,其中 $\cup_{k\geqslant 1} \{x_k\} = S_x$ (S_x 为取值空间)

注: $\Pi \neq \Pi_X = \{A_x | x \in S\}$ 的加细划分

图 1: 加细划分

(Step 2) 对于 $\omega \in \Lambda_j, \forall j \geq 1$

$$\mathbb{E}(XY|\sigma(\Pi))(\omega) = \mathbb{E}(\sum_{k\geqslant 1} x_k \mathbb{I}_{\Lambda_k} Y | \sigma(\Pi))(\omega) \qquad [X = \sum_{k\geqslant 1} x_k \mathbb{I}_{\Lambda_k}]$$

$$= \mathbb{E}(\sum_{k\geqslant 1} x_k \mathbb{I}_{\Lambda_k} Y | \Lambda_j) \qquad [\sigma(\Pi) \dot{\mathbb{E}} \, \mathcal{X}]$$

$$= \mathbb{E}(\sum_{k\geqslant 1} x_k \mathbb{I}_{\Lambda_k} Y \mathbb{I}_{\Lambda_j}) / \mathbb{P}(\Lambda_j) \qquad [\dot{\mathbb{I}}_{\Lambda_k} \mathbb{I}_{\Lambda_j} \, \dot{\mathbb{E}} \, \Lambda_k \neq \Lambda_j \, \dot{\mathbb{H}} = 0]$$

$$= \mathbb{E}(Y x_j \mathbb{I}_{\Lambda_j}) / \mathbb{P}(\Lambda_j) \qquad [\mathbb{I}_{\Lambda_k} \mathbb{I}_{\Lambda_j} \, \dot{\mathbb{E}} \, \Lambda_k \neq \Lambda_j \, \dot{\mathbb{H}} = 0]$$

$$= x_j \mathbb{E}(Y \mathbb{I}_{\Lambda_j}) / \mathbb{P}(\Lambda_j)$$

$$= x_j \mathbb{E}(Y \mathbb{I}_{\Lambda_j}) / \mathbb{P}(\Lambda_j)$$

$$= X(\omega) \mathbb{E}(Y | \mathbb{I}_{\Lambda_j})$$

$$\Rightarrow \mathbb{E}(XY|\sigma(\Pi)) = X \sum_{j\geqslant 1} \mathbb{I}_{\Lambda_j} \mathbb{E}(Y|\Lambda_j) = X \mathbb{E}(Y|\sigma(\Pi))$$

数学上有种现象叫"法国人的伎俩",即把定理当定义用.严格地讲,这么做有时会出现存在性和唯一性不满足的问题.下面介绍一个常被当做定义用的定理:

Theorem 12

 $\Pi=\{\Lambda_k,k\geqslant 1\}$ 为 Ω 的划分, $\mathbb{E}|X|<\infty$. 记 $Y:=\mathbb{E}(X|\sigma(\Pi))=\sum_{k\geqslant 1}\mathbb{I}_{\Lambda_k}\mathbb{E}(X|\Lambda_k)$,则

- 1. Y 仍是一个离散随机变量, 且 $\mathbb{E}|Y| \geqslant \mathbb{E}|X| < \infty$
- 2. $\sigma(Y) \subseteq \sigma(\Pi)$ (记作 $Y \in \sigma(\Pi)$, 即 Y 的所有信息都在 $\sigma(\Pi)$ 里)
- 3. $\forall A \in \sigma(\Pi)$, 有 $\mathbb{E}(Y\mathbb{I}_A) = \mathbb{E}(X\mathbb{I}_A)$

证明: $(1)E|X| = \sum_{x \in S_n} |x| \mathbb{P}(X = x) < \infty$

$$\mathbb{E}|Y| = \sum_{k \ge 1} |\mathbb{E}(X|\Lambda_k)|\mathbb{P}(\Lambda_k) \geqslant \sum_{k \ge 1} \sum_{x \in S} |x|\mathbb{P}(\{X = x\} \cap \Lambda_k)$$

逻辑上, 现在第一个等号不成立, 但之后 $< \infty$ 一写出来, 之前的所有等号立刻成立, 此处只为书写简便

$$\mathbb{E}|X| = \sum_{x \in S_x} |x| \mathbb{P}(X = x) = \sum_{x \in S} |x| \sum_{k \geqslant 1} \mathbb{P}(\Lambda_k \cap \{X = x\})$$

我们知道 $\sum_{x\in S}|x|\sum_{k\geqslant 1}\mathbb{P}(\Lambda_k\cap\{X=x\})$ 绝对收敛, 若求和次序交换后的 $\sum_{k\geqslant 1}\sum_{x\in S}|x|\mathbb{P}(\{X=x\}\cap\Lambda_k)$ 也绝对收敛, 则 $\mathbb{E}[Y]<\infty$ 得证. 有一个引理可以保证绝对收敛:

Lemma 1 ([5].P280. 推论)

从 273-280

Corollary 3 (来自定理12(1)) 1. (重期望公式) $\mathbb{E}|\mathbb{E}(X|\sigma(\Pi))| = \mathbb{E}|X|, \mathbb{E}(\mathbb{E}(X|\sigma(\Pi))) = \mathbb{E}(X)$

2. $|\mathbb{E}(X|\Lambda_k)| \leq \mathbb{E}(|X| \mid \Lambda_k), |\mathbb{E}(X|\sigma(\Pi))| \leq \mathbb{E}(|X| \mid \sigma(\Pi))$

(2) 由定义, $Y=\sum_{k\geqslant 1}y_k\mathbb{I}_{\Lambda_k}$, 其中 $y_k:=\mathbb{E}(X|\Lambda_k)$ 记 $S_Y=\cup_{k\geqslant 1}\{y_k\}$, 注意到, 可能 $\exists i\neq j$, 但 $y_i=y_j$ 故 $J_y=\{k|y_k=y\}(y\in S_Y)$ 中个数可能大于 1

$$Y = \sum_{y \in S_Y} y \mathbb{I}_{\sum_{k \in J_y} \Lambda_k}$$

$$\{Y=y\}=\sum_{k\in J_y}\Lambda_k\in\sigma(\Pi)$$

$$\sigma(Y) \subseteq \sigma(\Pi) \quad \Box$$

(3) $\mathbb{E}(Y\mathbb{I}_A) = \mathbb{E}(\mathbb{I}_A \mathbb{E}(X|\sigma(\Pi)))$

$$\begin{split} \mathbb{E}(Y\mathbb{I}_A) &= \mathbb{E}(\mathbb{I}_A \mathbb{E}(X|\sigma(\Pi))) \\ &= \mathbb{E}(\mathbb{E}(X\mathbb{I}_A|\sigma(\Pi))) \qquad [A \in \sigma(\Pi), \, \text{性质}(12)] \\ &= \mathbb{E}(X\mathbb{I}_A) \qquad [\text{重期望-推论}(3)] \end{split}$$

3° 关于离散随机变量的条件期望

Definition 19

概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$, X, Y 为离散随机变量, $\mathbb{E}|X| < \infty$. 定义 $\mathbb{E}(X|Y) = \mathbb{E}(X|\sigma(Y)) = \mathbb{E}(X|\sigma(\Pi_Y))$, 称为 X 关于 Y 的条件期望

Example 13

$$\mathbb{E}(X|\Pi_{\Omega}) = \mathbb{E}(X|\sigma(\Omega)) = \mathbb{E}(X)$$

Example 14

$$\mathbb{I}_A \perp \!\!\!\perp \mathbb{I}_B \Rightarrow \mathbb{E}(\mathbb{I}_A | \mathbb{I}_B) = [\operatorname{Exa}(\frac{11}{1})] \mathbb{E}(\mathbb{I}_A)$$

Example 15

$$\mathbb{E}(X|X) = \mathbb{E}(X|\sigma(X)) = X[\text{Exa } 12]$$

Property 13

假设以下期望、条件期望都有意义

- 1. $\mathbb{E}(aX + bY|Z) = a\mathbb{E}(X|Z) + b\mathbb{E}(Y|Z)$
- 2. $X \perp \!\!\!\perp Y \Rightarrow \mathbb{E}(X|Y) = \mathbb{E}(X)$
- 3. $\sigma(X) \subseteq \sigma(Z) \Rightarrow \mathbb{E}(XY|Z) = X\mathbb{E}(Y|Z)$
- 4. $\mathbb{E}(\mathbb{E}(X|Z)) = \mathbb{E}(X)$
- 5. $|\mathbb{E}(X|Z)| \leq \mathbb{E}(|X| \mid Z)$

4°关于多个离散随机变量的条件期望

 $\mathbb{E}(Y|X_1,\cdots,X_n)$

- 1. 由 X_1, \dots, X_n 生成的 σ 代数 $\sigma(X_1, \dots, X_n)$
- 2. := $\mathbb{E}(Y|\sigma(X_1,\cdots,X_n))$

怎样生成 σ 代数可以包含 X_1, \dots, X_n 尽可能多的信息?

直觉是 $\bigcup_{k=1}^{\infty} \sigma(X_k)$, 然而它不一定是 σ 代数, 因为它对可列并不封闭.

每个 $\sigma(X_k)$ 是一个 σ 代数, 因此它对可列并封闭.

然而, $\bigcup_{k=1}^{\infty} \sigma(X_k)$ 只是将每个 $\sigma(X_k)$ 中的集合简单地并在一起, 并没有保证这些集合的可列并仍然在 $\bigcup_{k=1}^{\infty} \sigma(X_k)$ 中.

例如,假设 $X_k \in \sigma(X_k)$,那么 X_k 在 $\bigcup_{k=1}^\infty \sigma(X_k)$ 中,但 $\bigcup_{k=1}^\infty X_k$ 可能不在 $\bigcup_{k=1}^\infty \sigma(X_k)$ 中,因为它可能不属于任何一个单独的 $\sigma(X_k)$. 问题出在 $\bigcup_{k=1}^\infty \sigma(X_k)$ 缺少 $\{\sigma(X_k)\}_{k\geqslant 1}$ 交互的部分 怎样把 $\bigcup_{k=1}^\infty \sigma(X_k)$ 变成 σ 代数?

Definition 20 (多个离散随机变量的条件期望)

定义由离散随机变量 X_1, \cdots, X_n 生成的 σ 代数

$$\begin{split} \sigma(X_1,\cdots,X_n) &:= (X_1,\cdots,X_n)^{-1}(2^{S_1}\times\cdots\times 2^{S_n})\\ &:= \{\underbrace{(X_1,\cdots,X_n)^{-1}(A_1\times\cdots\times A_n)}_{\text{柱集}} | A_1\times\cdots\times A_n \subseteq \underbrace{S_1\times\cdots\times S_n}_{\text{集积空间}} \}\\ &= \{\bigcap_{k=1}^\infty X_k^{-1}(A_k) | A_k \in 2^{S_k}, 1\leqslant k\leqslant n \} \end{split}$$

Theorem 13

令 $x_k = \sum_{i \ge 1} x_{k,i} \mathbb{I}_{\Lambda_{k,i}}, 1 \le k \le n$, 为离散随机变量, 对每一个 k, $\Pi_k := \{\Lambda_{k,i} | i \ge 1\}$ 为 Ω 的划分, 定义

$$\Pi_{(X_1,\dots,X_n)} := \{\Lambda_{1,i_1} \cap \dots \cap \Lambda_{n,i_n} | i_k \geqslant 1, 1 \leqslant k \leqslant n\}$$

则

1. $\Pi_{(X_1,\dots,X_n)}$ 是 Ω 的划分, 且

$$\sigma(\Pi_{(X_1,cdots,X_n)}) = \left\{ \sum_{\substack{(i_1,\cdots,i_n)\\ \in J_1\times\cdots\times J_n}} (\Lambda_{1,i_1}\cap\cdots\cap\Lambda_{1,i_n})|J_k\subseteq\mathbb{N}, 1\leqslant k\leqslant n \right\}$$

2. $\sigma(X_1, \dots, X_n) = \sigma(\Pi_{(X_1, \dots, X_n)})$ (即定义20是有意义的, well-defined, make sense, 良定义)

Problem 4 (作业 2-2)

证明定理13在n=2时成立

Definition 21

 $\mathbb{E}|Z|<\infty$ 定义

$$\mathbb{E}(Z|X_1,\cdots,X_n) = \mathbb{E}(Z|\sigma(X_1,\cdots,X_n)) := \mathbb{E}(Z|\sigma(\Pi_{(X_1,\cdots,X_n)}))$$

Definition 22

 $(\Omega, \mathcal{F}, \mathbb{P}), Y : \Omega \to S_Y, X_1 : \Omega \to S_1, X_2 : \Omega \to S_2$ 为离散随机变量,称 Y 和 (X_1, X_2) 独立,若 $\sigma(Y) \perp \!\!\! \perp \sigma(X_1, X_2).$ $[\sigma(Y) = Y^{-1}(2^{S_Y}), \sigma(X_1, X_2) = (X_1, X_2)^{-1}(2^{S_1} \times 2^{S_2})]$ 即 $\forall A \subseteq S_Y, B \subseteq 2^{S_1} \times 2^{S_2}, B = B_1 \times B_2, 有$

$$\mathbb{P}(Y \in A, (X_1, X_2) \in B) = \mathbb{P}(Y \in A)\mathbb{P}((X_1, X_2) \in B)$$

其中 $\mathbb{P}((X_1, X_2) \in B) = \mathbb{P}(X_1 \in B_1, X_2 \in B_2)$

Problem 5 (作业 2-3)

证明:

有了上述定义, 可以推广:

1.
$$(Y_1, \cdots, Y_n) \perp \!\!\! \perp (X_1, \cdots, X_n)$$

2.
$$Y \perp \!\!\! \perp_A (X_1, \cdots, X_n) (A \in \mathcal{F}, \mathbb{P}(A) > 0)$$

Property 14

 $Y \perp \!\!\!\perp (X_1, X_2) \Rightarrow Y \perp \!\!\!\perp X_1, Y \perp \!\!\!\perp X_2$

证明: 在定义22中取 $B_2 = \Omega$

$$\mathbb{P}(Y \in A, X_1 \in B_1) = \mathbb{P}(Y \in A, X_1 \in B_1, X_2 \in S_2)
= \mathbb{P}(Y \in A) \mathbb{P}(X_1 \in B_1, X_2 \in S_2) \qquad [Y \perp \!\!\! \perp (X_1, X_2)]
= \mathbb{P}(Y \in A) \mathbb{P}(X_1 \in B_1)$$

注:看到 ⇒ 要自然地问, 反过来 ← 成立吗? 做数学要多问自己一些问题, 即便没有答案

Corollary 4

$$(Y_1, \cdots, Y_n) \perp \!\!\! \perp (X_1, \cdots, X_n) \Rightarrow Y_k \perp \!\!\! \perp X_j, 1 \leqslant k \leqslant m, 1 \leqslant j \leqslant n$$

1.5 随机过程

1.5.1 什么是随机过程

Definition 23 (随机过程)

设 $(\Omega, \mathcal{F}, \mathbb{P})$ 为概率空间, (S, \mathcal{S}) 为可测空间, \mathbb{T} 为指标集/参数集, 称随机变量族

$$\{X_t: (\Omega, \mathcal{F}, \mathbb{P}) \to (S, \mathcal{S}) | t \in \mathbb{T}\}$$

为 (S 值) 随机过程 X. 其中 (S, S) 称为 X 的状态空间注:

- 1. forallt ∈ \mathbb{T} , X_t 为随机变量
- 2. \mathbb{T} 为时间集, X_t 为过程 X 在时刻 t 的状态

T\
$$S \subseteq \mathbb{R}$$
离散 $(e.g.\ \mathbb{N})$ 连续 $(e.g.\ \mathbb{R}, \mathbb{R}^+)$ 可数集 $(e.g.\ \mathbb{N}, \mathbb{Z})$ 离散时间/参数的随机过程连续统 $(e.g.\ [0,T], \mathbb{R}^+)$ 连续时间/参数的随机过程

1.5.2 随机过程的分布

- 1. $\forall t \in \mathbb{T}, X_t : \Omega \to S$ 为随机变量/可测映射
- $2. X: \mathbb{T} \times \Omega \to S$ 二元映射
- 3. $X: \Omega \to S^{\mathbb{T}} \not = \{f | f: \mathbb{T} \to \S\}, X: \omega \to X(\omega) = X(\cdot, \omega)$

分布可用有限维分布族刻画

Definition 24

固定样本点 ω , 则 $X.(\omega)$ 为 $\mathbb{T} \to S$ 的映射, 即 $X.(\omega) \in S^{\mathbb{T}}$, 称 $X.(\omega)$ 是过程 X 的一个实现/样本路径/样本函数

Definition 25

 $\forall n \geqslant 1, t_1, t_2, \cdots, t_n \$

$$(x_1, x_2, \cdots, x_n) \mapsto F_{t_1, t_2, \cdots, t_n}(x_1, x_2, \cdots, x_n) = \mathbb{P}(X_{t_1} \leqslant x_1, \cdots, X_{t_n} \leqslant x_n)$$

为X的n维分布

Definition 26 (过程的有限维分布族)

定义

$$\{F_{t_1,t_2,\cdots,t_n}|n\geqslant 1,t_1,\cdots,t_n\in\mathbb{T}\}$$

1.5.3 随机过程的存在性

- 1. (抽象的) 从概率论/测度论出发去证明随机过程存在性, 不写出具体形式, 满足随机过程符合给定的有限维分布族即可
- 2. (具体的) 构造性证明

Property 15

随机过程的有限维分布族具有以下两个性质

1. (对称性) 重排, 设 σ : {1,···,n} \rightarrow {1,···,n} 为双射,则

$$F_{t_{\sigma(1)},\dots,t_{\sigma(n)}}(x_{\sigma(1)},\dots,x_{\sigma(n)}) = F_{t_1,\dots,t_n}(x_1,\dots,x_n)$$

2. (相容性) $m \ge n$

$$F_{t_1,\dots,t_n,t_{n+1},\dots,t_n}(x_1,\dots,x_n,+\infty,\dots,+\infty) = F_{t_1,\dots,t_n}(x_1,\dots,x_n)$$

注:相容性类比从高维向低维的投影, $\mathbb{P}(X \leq +\infty) = F_X(+\infty) = 1$

这两个性质是随机过程存在的必要条件

Theorem 14 (Kolmogorov 定理)

设分布函数族

$$\{F_{t_1,\dots,t_n}|t_1,\dots,t_n\in\mathbb{T},n\geqslant 1\}$$

满足对称性, 相容性, 则必存在一个随机过程 $\{X_t, t \in \mathbb{T}\}$ 使得上述分布函数族 F 是 X 的有限维分布族

1.5.4 随机过程的基本类型

- 1. 离散时间马氏链(由条件概率定义)
- 2. Poisson 过程
- 3. 更新过程
- 4. 连续时间马氏链
- 5. 离散时间 Martingale (由条件期望定义)
- 6. 布朗运动

Definition 27

对连续时间的随机过程 $\{X_t, t \in \mathbb{T}\}$

- 1. 若对一切的 $t_0 < t_1 < \cdots < t_n$ 有 $X_{t_1} X_{t_0}, \cdots, X_{t_n} X_{t_{n-1}}$ 相互独立, 则过程 X 是独立增量过程 (e.g. 布朗运动)
- 2. 若对每一个 $S \in \mathbb{T}, X_{t+s} X_t$ 对一切的 t 都有相同分布, 称 X 为平稳增量过程

2 马氏链

2.1 离散时间马氏链

马尔可夫性 ↔ 已知现在, 过去与未来不相干/独立

Definition 28 ((离散时间) 马氏链)

称 S 值随机过程 $\{X_n, n \ge 0\}$ 为马氏链, 若 X 满足以下马氏性: $\forall n \ge 0, x_0, x_1, \dots, x_n, y \in S$,

$$\mathbb{P}(\underbrace{X_{n+1}=y}_{\text{**}} \mid \underbrace{X_0=x_0,\cdots,X_{n-1}=x_{n-1}}_{\text{!!}\pm},\underbrace{X_n=x_n}_{\text{!!}\pm}) = \mathbb{P}(X_{n+1}=y \mid X_n=x_n) \tag{M_1}$$

其中 X_0 的分布称为 X 的初始分布

Definition 29

当 S 为有限集, 称链为有限链, 当 S 为无限集, 称链为无限链

注:改写 (M_1)

$$LHS = \mathbb{P}_{X_n = x_n}(X_{n+1} = y | X_0 = x_0, \dots, X_{n-1} = x_{n-1})$$

$$RHS = \mathbb{P}_{X_n = x_n}(X_{n+1} = y)$$

$$M_1 \Leftrightarrow \{X_{n+1} = y\} \perp \{X_n = x_n\} \{X_0 = x_0, \dots, X_{n-1} = x_{n-1}\}$$

$$\Leftrightarrow X_{n+1} \perp \{X_n = x_n\} (X_0, \dots, X_{n-1})$$

 (M_1) 未来 $\coprod_{\mathfrak{A}_{\underline{1}}}$ 过去

$$\mathbb{P}_{\eta_A}(\mathbf{k},\mathbf{k}) = \mathbb{P}_{\eta_A}(\mathbf{k},\mathbf{k})$$

Lemma 2 (马氏性的等价表示)

[Grimmett [3]] 下面三个命题等价

- 1. (M₁) 马氏性
- 2. $(M_2) \ \forall k \geq 0, 0 \leq n_1 < \cdots < n_k \leq n, \ \forall f \ y, x_{n_1}, \cdots, x_{n_k} \in S,$

$$\mathbb{P}(X_{n+1} = y | X_{n_1} = x_{n_1}, \dots, X_{n_k} = x_{n_k}) = \mathbb{P}(X_{n+1} = y | X_{n_k} = x_{n_k})$$
(2.1)

即

$$\{X_{n+1}=y\} \perp \!\!\! \perp_{\{X_{n_k}=x_{n_k}\}} \{X_{n_1}=x_{n_1},\cdots,X_{n_{k-1}}=x_{n_{k-1}}\}$$

3. (M_3) 对 $\forall m \geq 1, n \geq 0, \{y, x_i, 0 \leq i \leq n\} \subseteq S$, 有

$$\mathbb{P}(X_{n+m} = y | X_0 = x_0, \dots, X_n = x_n) = \mathbb{P}(X_{n+m} = y | X_n = x_n)$$
(2.2)

即

$${X_{n+m} = y} \perp_{{X_n = x_n}} {X_0 = x_0, \cdots, X_{n-1} = x_{n-1}}$$

证明: 思路 $1 \leftrightarrows 3 \leftrightarrows 2$

 $(2) \to (3)$, 先处理一些记号的问题. 记 (2) 中的 n 为 $n^{(2)}$, (3) 中的 n 为 $n^{(3)}$. 则取 $n_k = n^{(3)} = n^{(2)} + 1 - m \leq n^{(2)}$, 所以 $n^{(3)} + m = (n^{(2)} + 1 - m) + m = n^{(2)} + 1$, 即已知 (2) 可推 (3)

 $(3) \to (1)$, 取 m = 1, 显然

只需证 $(3) \to (2), (1) \to (3)$

这里回顾独立的三种写法

- 1. A ⊥ B C 记号
- 2. $\mathbb{P}_B(A,C) = \mathbb{P}_B(A)\mathbb{P}_B(C)$ 定义
- $3. \mathbb{P}_{\mathcal{B}}(A|C) = \mathbb{P}_{\mathcal{B}}(A)$ 定理

(Step 1) 证明 $(3) \rightarrow (2)$

思路: (2)(3) 条件不同, 想要由 (3) 推 (2), 则切换到 (2) 的条件概率测度, 展开, 再用 (3) 的条件瘦身对 $\forall k \geq 2, 0 \leq n_1 < n_2 < \cdots < n_k = n$

$$\begin{split} \tilde{\mathbb{P}}(X_{n+1} = y) &= \sum_{x_j \in S, j \in J} \tilde{\mathbb{P}}(X_{n+1} = y | X_j = x_j, j \in J) \cdot \tilde{\mathbb{P}}(X_j = x_j, j \in J) \qquad [全概公式] \\ &= \mathbb{P}(X_{n+1} = y | X_{n_k} = x_{n_k}) \sum_{x_j \in S, j \in J} \tilde{\mathbb{P}}(X_j = x_j, j \in J) \qquad [(3), \mathbb{P}_C(\cdot | A) = \mathbb{P}_C(\cdot)] \\ &= \mathbb{P}(X_{n+1} = y | X_{n_k} = x_{n_k}) \end{split}$$

其中, 记号 $\sum_{x_j \in S, j \in J}$ 中的下标意为: 假设 J 中元素个数为 #J = u, 则 $(x^{(1)}, \cdots, x^{(u)}) \in S^u$. 从简单的开始, $\sum_{x \in S} \mathbb{P}(X = x) = \mathbb{P}(\Omega), \sum_{(x,y) \in S^2} \mathbb{P}(X = x, Y = y) = \mathbb{P}(\Omega), \cdots, \sum_{(x^{(1)}, \cdots, x^{(u)}) \in S^u} \mathbb{P}(X^{(1)} = x^{(1)}, \cdots, X^{(u)} = x^{(u)}) = \mathbb{P}(\Omega) = 1$

(Step 2) 下证 $(1) \rightarrow (3)$

- 1. m = 1 时, 即 (1)
- 2. 假设 m = k 时 (3) 成立, 即 $\forall n \geq 1, \{y, x_i, n \geq i \geq 0\} \subseteq S$,

$$\{X_{n+k} = y\} \perp \!\!\! \perp_{\{X_n = x_n\}} \{X_0 = x_0, \cdots, X_{n-1} = x_{n-1}\} \xrightarrow{\text{th} f_{(14)}} \{X_{n+k} = y\} \perp \!\!\! \perp_{\{X_n = x_n\}} \{X_{n-1} = x_{n-1}\}$$

$$\mathbb{P}(X_{n+k} = y | X_0 = x_0, \cdots, X_n = x_n) = \mathbb{P}(X_{n+k} = y | X_n = x_n)$$

$$= \mathbb{P}(X_{n+k} = y | X_n = x_n, X_{n-1} = x_{n-1})$$
(*)

当 m = k + 1 时, 对 $\forall \{y, x_i, n \ge i \ge 0\} \subseteq S$ 令 $\tilde{\mathbb{P}}_n(\cdot) := \mathbb{P}(\cdot | X_0 = x_0, \cdots, X_n = x_n)$

$$\tilde{\mathbb{P}}_{n}(X_{n+k+1} = y) \stackrel{\text{Thm}(5)}{=} \sum_{x_{n+1} \in S} \tilde{\mathbb{P}}_{n}(X_{n+k+1} = y | X_{n+1} = x_{n+1}) \cdot \tilde{\mathbb{P}}_{n}(X_{n+1} = x_{n+1})$$

$$= \sum_{x_{n+1} \in S} \mathbb{P}(X_{n+k+1} = y | X_{n+1} = x_{n+1}, X_n = x_n) \cdot \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n) \quad [(*), \, \cancel{y}$$
 纳法假设]
$$\stackrel{\text{(1.2)}}{=} \sum_{x_{n+1} \in S} \mathbb{P}(X_{n+k+1} = y, X_{n+1} = x_{n+1}, X_n = x_n) / \mathbb{P}(X_n = x_n)$$

$$= \mathbb{P}(X_{n+k+1} = y, X_n = x_n) / \mathbb{P}(X_n = x_n)$$

$$= \mathbb{P}(X_{n+k+1} = y | X_n = x_n)$$

即 m = k + 1 得证

证明 (Step 2) 时如果在 x_{n+k} 处展开而不是在 x_{n+1} , 也是可以的. 实际上在 x_{n+j} , $\forall j, 1 \leq j \leq k$ 展开都可以, 关键在于用性质14和全概公式5凑出乘法公式(1.2), 消元即可.

Remark 4. 三种写法的直觉

- 1. M1: 未来"下一步"跟过去"每一步"都无关
- 2. M2: 未来"下一步"跟过去的"任意若干步"都无关
- 3. M3: 未来"下 m 步" 跟过去"每一步" 都无关

可以推出,由 (2)(3),下式也成立:

対 $\forall m \geq 1, n \geq 0, \{y, x_i, 0 \leq i \leq n\} \subseteq S$

$$\mathbb{P}(X_{n+m} = y | X_{n_1} = x_{n_1}, \cdots, X_{n_k} = x_{n_k}) = \mathbb{P}(X_{n+m} = y | X_{n_k} = x_{n_k})$$

Corollary 5

若 X 是马氏链, 则 $\forall n \geq 1, \{x_i, n \geq i \geq 0, y\} \subseteq S$, 有

$$\mathbb{P}(X_{n+1} = y | X_0 = x_0, \dots, X_n = x_n) = \mathbb{P}(X_{n+1} = y | X_n = x_n, X_{n-1} = x_{n-1})$$

补充记号:

• 乘积空间

$$S^n := \underbrace{S \times \cdots \times S}_{n \uparrow \uparrow}$$

乘积 σ 代数

$$\bigotimes_n 2^S := \underbrace{2^S \times \cdots \times 2^S}_{\text{n } \uparrow \text{-}}$$

Property 16 (马氏性的等价条件)

下列三个命题等价

- 1. 马氏性 (M₁)
- 2. 对 $\forall n \geq 1, m \geq 1, A \in \otimes_n 2^S, B \in \otimes_m 2^S,$ 即 $(A \subset S^n, B \subset S^m), 有$

$$\mathbb{P}_{\{X_n = x_n\}}((X_0, \dots, X_{n-1}) \in A, (X_{n+1}, \dots, X_{n+m}) \in B)$$

$$= \mathbb{P}_{\{X_n = x_n\}}((X_0, \dots, X_{n-1}) \in A) \cdot \mathbb{P}_{\{X_n = x_n\}}((X_{n+1}, \dots, X_{n+m}) \in B)$$
(2.3)

即 $(X_0, \dots, X_{n-1}) \perp_{\{X_n = x_n\}} (X_{n+1}, \dots, X_{n+m})$ 的定义

3.
$$\mathbb{P}_{\{X_n=x_n\}}((X_{n+1},\cdots,X_{n+m})\in B|(X_0,\cdots,X_{n-1})\in A)=\mathbb{P}_{\{X_n=x_n\}}((X_{n+1},\cdots,X_{n+m})\in B)$$

证明: $(2) \Leftrightarrow (3)$, 独立的定义和定理, 显然

 $(3) \to (1)$, 取 k = 0 显然

只需证 $(1) \rightarrow (3)$

只需证 (3) 对简单事件 A, B (单点集合) 成立, 即 $\forall n \ge 1, m \ge 1, \{x_0, x_1, \cdots, x_{n+m} \subseteq S\}$, 有

$$\mathbb{P}_{\{X_n=x_n\}}((X_{n+1},\cdots,X_{n+m})=x_{n+1}^{n+m}|(X_0,\cdots,X_{n-1})=x_0^{n-1})=\mathbb{P}_{\{X_n=x_n\}}((X_{n+1},\cdots,X_{n+m})=x_{n+1}^{n+m})$$

其中 $x_{n+1}^{n+m} = (x_{n+1}, \dots, x_{n+m}), x_0^{n-1} = (x_0, \dots, x_{n-1})$

*只要对单点集合成立,对一般情况也成立,证明见定理1

令

$$\widetilde{\mathbb{P}}_n(\cdot) := \mathbb{P}_{\{X_n = x_n\}}(\cdot | (X_0, \dots, X_{n-1}) = x_0^{n-1}) = \mathbb{P}(\cdot | (X_0, \dots, X_n) = x_0^n)$$

只证 m=2, 即由

$$\tilde{\mathbb{P}}_n(X_{n+1} = x_{n+1}) = \mathbb{P}_{\{X_n = x_n\}}(X_{n+1} = x_{n+1})$$

证得

$$\tilde{\mathbb{P}}_{n}(X_{n+1} = x_{n+1}, X_{n+2} = x_{n+2}) = \mathbb{P}_{\{X_{n} = x_{n}\}}(X_{n+1} = x_{n+1}, X_{n+2} = x_{n+2})$$

$$\tilde{\mathbb{P}}_{n}((X_{n+1}, X_{n+2}) = (x_{n+1}, x_{n+2})) = \tilde{\mathbb{P}}_{n}(X_{n+1} = x_{n+1}) \cdot \tilde{\mathbb{P}}_{n}(X_{n+2} = x_{n+2} | X_{n+1} = x_{n+1})$$

$$\stackrel{(M_{1})}{=} \mathbb{P}(X_{n+1} = x_{n+1} | X_{n} = x_{n}) \cdot \mathbb{P}(X_{n+2} = x_{n+2} | X_{n+1} = x_{n+1})$$

$$\stackrel{\text{Cor}(5)}{=} \mathbb{P}(X_{n+1} = x_{n+1} | X_{n} = x_{n}) \cdot \mathbb{P}(X_{n+2} = x_{n+2} | X_{n+1} = x_{n+1}, X_{n} = x_{n})$$

$$= \mathbb{P}_{\{X_{n} = x_{n}\}}(X_{n+1} = x_{n+1}) \cdot \mathbb{P}_{\{X_{n} = x_{n}\}}(X_{n+2} = x_{n+2} | X_{n+1} = x_{n+1})$$

$$\stackrel{(1.2)}{=} \mathbb{P}_{\{X_{n} = x_{n}\}}((X_{n+1}, X_{n+2}) = (x_{n+1}, x_{n+2}))$$

Corollary 6

设 X 为马氏链,则对每一个 $n \ge 1, m \ge 1, u_k < u_{k+1}, 0 \le k \le n+m-1,$ 有

$$(X_{u_0}, \cdots, X_{u_{n-1}}) \perp \!\!\! \perp_{\{X_{u_n} = x_{u_n}\}} (X_{u_{n+1}}, \cdots, X_{u_{n+m}})$$

2.2 时齐马氏链与转移概率

Definition 30 (时间齐次马氏链)

称马氏链 $X: \{X_n, n \ge 0\}$ 为时齐的或时间齐次马氏链, 若对 $\forall n \ge 0, i, j \in S$

$$\mathbb{P}(X_{n+1} = j | X_n = i) = \mathbb{P}(X_1 = j | X_0 = i)$$

Definition 31

X 是时齐马氏链, 称

$$p_{ij} := p_{i,j} = \mathbb{P}(X_1 = j | X_0 = i)$$
 $i, j \in S$

为X从状态i到j的(一步)转移概率,并称矩阵

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & \cdots \\ p_{21} & p_{22} & p_{23} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

为(一步)转移(概率)矩阵

若不加说明, 则默认讨论的马氏链都是时齐的

注:

$$\mathbb{P}(x_{n+1} = y) = \sum_{x \in S} \mathbb{P}(X_{n+1} = y | X_n = x) \cdot \mathbb{P}(X_n = x)$$
$$= \sum_{x \in S} p_{xy} \cdot \mathbb{P}(X_n = x)$$

Theorem 15 (转移矩阵的刻画)

转移矩阵是一个随机矩阵,即

- 1. $\forall i, j \in S, p_{ij} \geqslant 0$
- 2. $\forall i \in S, \sum_{j \in S} p_{ij} = 1$

即转移矩阵的每一行 $(p_{ij})_{j\in S}$ 为 S 上的一个概率分布

注:另一种随机矩阵是指元素为随机变量的矩阵,和这里讲的没有关系

证明:

$$\sum_{i \in S} \mathbb{P}(X_1 = j | X_0 = i) = \mathbb{P}(X_1 \in S | X_0 = i) = \mathbb{P}(\Omega | X_0 = i) = 1$$

Definition 32 (时齐马氏链)

设 $X = \{X_n, n \ge 0\}$ 为一随机过程, 若

- 1. 初值 X_0 满足分布 $\mu = (\mu_i)_{i \in S}$, 即 $\mathbb{P}(X_0 = i) = \mu_i, i \in S$
- 2. 存在一个随机矩阵 $P=(p_{ij})_{i,j\in S}$ 使得 $\forall n\geqslant 1,i_0,\cdots,i_{n-1},i,j\in S$

$$\mathbb{P}(X_{n+1}=j|X_0=i_0,\cdots,X_{n-1}=i_{n-1},X_n=i)=p_{ij}$$

则称 X 具有初始分布 μ 和转移矩阵 P 的(时齐)马氏链, 记作 $X \sim \text{Markov}(\mu, P)$

上述定义与 (M_1) 马氏链定义28等价证明: $(2) \rightarrow (M_1)$

$$\mathbb{P}(X_{n+1} = j | X_n = i) = \sum_{(i_0, \dots, i_{n-1}) \in S^n} \mathbb{P}(X_{n+1} = j | X_n = i, X_0 = i_0, \dots, X_{n-1} = i_{n-1}) \mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1})$$

$$= \sum_{(i_0, \dots, i_{n-1}) \in S^n} p_{ij} \cdot \mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = p_{ij}$$

所以 $\mathbb{P}(X_{n+1}=j|X_0=i_0,\cdots,X_{n-1}=i_{n-1},X_n=i)=\mathbb{P}(X_{n+1}=j|X_n=i)$ 即然有 (M_1) ,为什么还要定义32? 因为该定义决定了马氏链的有限维分布

Example 16 (Gambler's Ruin)

[Durrett [2],P1]

Example 1.1 (Gambler's Ruin). Consider a gambling game in which on any turn you win \$1 with probability p = 0.4 or lose \$1 with probability 1 - p = 0.6. Suppose further that you adopt the rule that you quit playing if your fortune reaches \$N. Of course, if your fortune reaches \$0 the casino makes you stop.

Let X_n be the amount of money you have after n plays. Your fortune, X_n has the "Markov property." In words, this means that given the current state, X_n , any other information about the past is irrelevant for predicting the next state X_{n+1} . To check

图 2: Gambler's Ruin

Claim 1. $\{X_n, n \ge 0\}$ 为(时齐)马氏链

1. 对于 $0 < i_0, \dots, i_{n-1} < N, n \ge 0$ 有

2.
$$\mathbb{P}(X_{n+1} = 0 | X_n = 0, X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = 1 = \mathbb{P}(X_{n+1} = 0 | X_n = 0)$$

 $\mathbb{P}(X_{n+1} = N | X_n = N, X_0 = i_0, \dots, X_{n-1} = i_{n-1}) = 1 = \mathbb{P}(X_{n+1} = N | X_n = N)$

最后一个等号是由题目设定得到, 从 $0 \to 0$ 或 $N \to N$ 的概率都为 1, 因为游戏结束综上, p(i,i+1) = 0.4, 0 < i < N, p(i,i-1) = 0.6, 0 < i < N, p(0,0) = p(N,N) = 1 e.g.

When N = 5 the matrix is

图 3: N=5

Example 17 (Two-Stage Markov Chains)

[Durrett [2], P7]

Example 1.10 (Two-Stage Markov Chains). In a Markov chain the distribution of X_{n+1} only depends on X_n . This can easily be generalized to case in which the distribution of X_{n+1} only depends on (X_n, X_{n-1}) . For a concrete example consider a basketball player who makes a shot with the following probabilities:

1/2 if he has missed the last two times

2/3 if he has hit one of his last two shots

3/4 if he has hit both of his last two shots

图 4: Two-Stage Markov Chains

1.
$$\mathbb{P}(X_{n+1} = H | X_n = M, X_{n-1} = M) = 1/2$$

2.
$$\mathbb{P}(X_{n+1} = H | X_n = M, X_{n-1} = H) = \mathbb{P}(X_{n+1} = H | X_n = H, X_{n-1} = M) = 2/3$$

3.
$$\mathbb{P}(X_{n+1} = H | X_n = H, X_{n-1} = H) = 3/4$$

Claim 2. $Y_n=(X_n,X_{n-1}), n\geqslant 1$ 则 $\{Y_n,n\geqslant 1\}$ 是(时齐)马氏链, $Y_n:\Omega\to\{HH,HM,MH,MM\}$

证明:

$$\mathbb{P}(Y_{n+1} = HH|Y_n = HH, Y_j = (x_j, x_{j-1}), 1 \leqslant j \leqslant n-1)$$

$$= \mathbb{P}(X_{n+1} = H, X_n = H|X_n = H, X_{n-1} = H, X_j = x_j, X_{j-1} = x_{j-1}, 0 \leqslant j \leqslant n-1)$$

$$= \mathbb{P}(X_{n+1} = H|X_n = H, X_{n-1} = H)$$

$$= 3/4 \qquad [3.]$$

对 1.2. 同理

Proposition 1 (初见马氏链的有限维分布)

设 $P=(p_{ij})_{i,j\in S}$ 为随机矩阵, $\mu=(\mu_i)_{i\in S}$ 为概率分布, $X=\{X_n,n\geqslant 0\}$ 为 S 值离散时间随机过程. 则过程 $X\sim \operatorname{Markov}(\mu,P)$ 当且仅当对任意的 $n\geqslant 0, i_0,i_1,\cdots,i_n\in S,X$ 有有限维分布:

$$\mathbb{P}(X_0 = i_0, X_1 = i_1, \cdots, X_n = i_n) = \mu_{i_0} \prod_{k=0}^{n-1} p_{i_k i_{k+1}}$$
(2.4)

证明: ⇒

$$\mathbb{P}(X_0 = i_0, X_1 = i_1, \cdots, X_n = i_n)$$

$$= \mathbb{P}(X_0 = i_0) \mathbb{P}(X_1 = i_1 | X_0 = i_0) \cdots \mathbb{P}(X_n = i_n | X_0 = i_0, \cdots X_{n-1} = i_{n-1}) \quad [乘法公式(1.2)]$$

$$= \mathbb{P}(X_0 = i_0) \mathbb{P}(X_1 = i_1 | X_0 = i_0) \cdots \mathbb{P}(X_n = i_n | X_{n-1} = i_{n-1}) \quad [Markov]$$

$$= \mu_{i_0} p_{i_0, i_1} \cdots p_{i_{n-1}, i_n}$$

严格地讲, $\mathbb{P}(\cdot|A)$ 需保证 $\mathbb{P}(A)>0$. 对 $\mathbb{P}(A)=0$ 情况的分类讨论, 见 Resnick [4], prop 2.1.1 \Leftarrow

1.
$$n = 0, \mathbb{P}(X_0 = i_0) = \mu_{i_0} \Rightarrow X_0 \sim (\mu_i)_{i \in S}$$

 $2. n \geqslant 1$

$$\mathbb{P}(X_{n+1} = i_{n+1} | X_0 = i_0, \cdots, X_n = x_n) = \frac{\mathbb{P}(X_0 = i_0, \cdots, X_{n+1} = i_{n+1})}{\mathbb{P}(X_0 = i_0, \cdots, X_n = i_n)} = p_{i_n, i_{n+1}}$$

由时齐马氏链定义,初始分布和转移矩阵都符合定义32

$$X \sim \operatorname{Markov}(\mu, P) \square$$

对于 $\mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n)$, 如果我们想把 X_1 挖掉, 即

$$\mathbb{P}(X_0 = i_0, X_2 = i_2, \cdots, X_n = i_n) = \sum_{i_1 \in S} \mathbb{P}(X_0 = i_0, X_1 = i_1, \cdots, X_n = i_n)$$
$$= \mu_{i_0} \sum_{i_1 \in S} (P_{i_0, i_1} P_{i_1, i_2}) \cdots P_{i_{n-1}, i_n}$$

2.3 多步转移概率与矩阵乘法

Definition 33

设 $X = \{X_n, n \ge 0\}$ 为马氏链, 称

$$p_{ij}(m, m+n) := \mathbb{P}(X_{n+m} = j | X_m = i) \quad (i, j \in S, m, n \geqslant 0)$$

为 X 的 n 步转移概率, 并称 $P(m,m+n)=(p_{ij}(m,m+n))_{i,j\in S}$ 为 X 的 n 步转移 (概率) 矩阵, 其中

$$p_{i,j}(0,0) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

当 X 时齐, $P(m, m+1) = (p_{ij}(m, m+1))_{i,j \in S} = (p_{ij}(0,1))_{i,j \in S} = (p_{ij})_{i,j \in S}$ 可见 n=1 时, P(m, m+1) 与 m 无关. 那 n>1 时呢?

2.3.1 Chapman-Kolmogorov 方程

Theorem 16 (C-K 方程)

设 $\{X_n, x \ge 0\}$ 为马氏链

$$p_{ij}(m, m+n+r) = \sum_{k \in S} p_{ik}(m, m+n) p_{kj}(m+n, m+n+r)$$
(2.5)

其中 $i, j \in S, m, n, r \geqslant 0$, 即

$$P(m, m + n + r) = P(m, m + n)P(m + n, m + n + r)$$

图 5: Multi-steps

证明:

$$\begin{split} p_{ij}(m,m+n+r) &= P(X_{m+n+r} = j | X_m = i) \\ &= \sum_{k \in S} P(X_{m+n+r} = j, X_{m+n} = k | X_m = i) \\ &= \sum_{k \in S} \mathbb{P}_{\{X_m = i\}}(X_{m+n+r} = j | X_{m+n} = k) \mathbb{P}_{\{X_m = i\}}(X_{m+n} = k) \quad [乘法公式(1.2)] \\ &= \sum_{k \in S} p_{ik}(m,m+n) p_{kj}(m+n,m+n+r) \quad [\mathrm{Markov}] \end{split}$$

Corollary 7

设X为具有(-步)转移矩阵P的时齐马氏链,则

1. $\forall m, n \geq 0$, 有 $P(m, m + n) = P(0, n) = P^n$. 其中, 约定 $P^0 = I$ (单位矩阵) 从而, 可记 X 的 n 步转移概率为 $p_{ij}(n)$ 或 $p_{ij}^{(n)}$, n 步转移概率矩阵为 P(n), 且有

$$P(n) = P^n = (p_{ij}^{(n)})_{i,j \in S}$$

2. C-K 方程可改写为

$$p_{ij}(m+n) = \sum_{k \in S} p_{ik}^{(m)} p_{kj}^{(n)}$$

$$P(m+n) = P(m)P(n), \ \mathfrak{P}^{n} P^{m+n} = P^{m}P^{n}$$

证明:

$$P(m, m+n) = P(m, m+1) \cdot P(m+1, m+n)$$
 [C-K]
= $P \cdot P(m+1, m+n)$ [时齐]
= P^n □

Proposition 2

 $\forall n \geq 0, P(n) = P^n$ 仍是一个随机矩阵(定理15)

证明: n=2 时, $P^2=(p_{ij}(2))_{i,j\in S}$

 \Rightarrow

$$\sum_{j \in S} p_{ij}(2) = \sum_{j \in S} \sum_{k \in S} p_{ik} p_{kj} \quad [\text{C-K}, \ \ \sharp \ \&p_{ik}(1) = p_{ik}]$$

$$= \sum_{k \in S} \sum_{j \in S} p_{ik} p_{kj}$$

$$= \sum_{k \in S} p_{ik} \cdot (\sum_{j \in S} p_{kj})$$

$$= \sum_{k \in S} p_{ik} = 1 \quad \square$$

第二个等号, 级数可交换是因为非负, 要么有限(收敛)、要么 $+\infty$ (发散)

2.3.2 马氏链的任意有限维分布

Proposition 3

 $X \sim \text{Markov}(\mu, P)$, 其中 $\mu = (\mu_i)_{i \in S}, P = (p_{ij})_{i,j \in S}$, 则

$$\mathbb{P}(X_{u_1} = i_1, \cdots, X_{u_n} = i_n) = \mu_{i_1}^{(u_1)} \prod_{k=1}^{n-1} p_{i_k, i_{k+1}}^{(u_{k+1} - u_k)}$$

其中, $0 < u_1 < u_2 < \dots < u_n, i_1, i_2, \dots, i_n \in S, \mu^{(u_1)} = (\mu_i^{(u_1)})_{i \in S}$ 为 X_{u_1} 的有限维分布

证明:

$$\mathbb{P}(X_{u_1} = i_1, \dots, X_{u_n} = i_n) = \mathbb{P}(X_{u_1} = i_1) \cdot \mathbb{P}(X_{u_2} = i_2 | X_{u_1} = i_1) \cdots \mathbb{P}(X_{u_n} = i_n | X_{u_1} = i_1, \dots, X_{u_{n-1}} = i_{n-1}) \\
= (\mu_{i_1}^{(u_1)}) p_{i_1, i_2}^{(u_2 - u_1)} \cdots p_{i_{n-1}, i_n}^{(u_n - u_{n-1})} \quad [Markov] \\
= \mu_{i_1}^{(u_1)} \prod_{k=1}^{n-1} p_{i_k, i_{k+1}}^{(u_{k+1} - u_k)}$$

用概率表示不够直观, 尝试用转移矩阵来表示

Lemma 3

 $\mu^{(m+n)} = \mu^{(n)} P^m(\forall m, n \geqslant 0), \ \mathfrak{P}$

$$\mu_j^{(m+n)} = (\mu^{(n)} P^m)_j = \sum_{i \in S} \mu_i^{(n)} p_{ij}^{(m)}$$

特别地, 取 n=0, 则 $\mu^{(m)}=\mu\cdot P^m$ (μ 看成行向量),即 $\mu_j^{(m)}=(\mu P^m)_j=\sum_{i\in S}\mu_i\cdot p_{ij}^{(m)}$

证明:

$$\mu_j^{(n+m)} = \mathbb{P}(X_{n+m} = j) = \sum_{i \in S} \mathbb{P}(X_{n+m} = j | X_n = i) \mathbb{P}(X_n = i)$$

$$= \sum_{i \in S} p_{ij}(m) \mu_i^{(n)}$$

$$= (\mu^{(n)} P^m)_i \quad \Box$$

 $\Rightarrow \mu^{(m+n)} = \mu^{(n)} P^m$

Theorem 17 (任意有限维分布 II)

 $\forall 0 \leqslant u_1 < u_2 < \dots < u_n, i_1, \dots, i_n \in S$

$$\mathbb{P}(X_{u_1} = i_1, \dots, X_{u_n} = i_n) = (\mu P_{i_1}^{u_1}) \prod_{k=1}^{n-1} P_{i_k, i_{k+1}}^{u_{k+1} - u_k}$$

其中,
$$P_{i,j}^m =: (P^m)_{i,j} =: p_{i,j}^{(m)}$$

讨论随机过程地存在性:

抽象地, μ , P $\xrightarrow{\mathbb{ZP}(14)}$ 有限维分布族 $\to X \sim \mathrm{Markov}(\mu,P)$, μ , P 可以刻画具备对称性、相容性的有限维分布具体地, 参考 Resnick [4], P62, Section 2.1

2.4 (从固定点出发的)马氏链

固定 $i \in S$, 定义 $\mathbb{P}_i(\cdot) = \mathbb{P}(\cdot|X_0=i)$, $\mathbb{E}_i(X) = \mathbb{E}(X|X_0=i) = \sum_{x \in S} x \mathbb{P}_i(X=x)$

2.4.1 链的状态: 常返和暂留

Definition 34

称状态i为常返的,若

$$\mathbb{P}_i(X_n = i \forall \ \ x \land n \geqslant 1) = 1$$

如果上面的概率 < 1, 则称为暂留的/非常返的

注: i 常返 $\Leftrightarrow \mathbb{P}_i(\bigcup_{n\geqslant 1}\{X_n=i\})=1$

思考: i 常返 \Leftrightarrow "不停地/无数次回到 i"

 $\Leftrightarrow \mathbb{P}_i(\omega|\omega\in\mathcal{E}) \Leftrightarrow \mathbb{P}_i(\omega|\omega\in\mathcal{E})$

 $\Leftrightarrow \mathbb{P}_i(\omega|\omega\in\cap_{k\geqslant 1}\cup_{n\geqslant k}\{X_n=i\},\forall k)$

 $\Leftrightarrow \mathbb{P}_i(X_n = i, i.o.)$ (infinitely often)

无数多次返回i可严格定义为:

$$\bigcap_{k\geqslant 1}\bigcup_{n\geqslant k}\{X_n=i\}$$

集合的语言中, ∪即∃, ∩即∀, 因此

- $\bigcup_{n \geq k} \{X_n = i\}$ 表示 $\exists n_0 \geq k$ 使得 $X_{n_0} = i$
- 对 $\forall k$ 取交集 $\bigcap_{k\geq 1}$, 即无论 k 多大, 总存在更大的 n 满足 $X_n=i$, 从而保证无限次返回

即 $\forall k, \exists n_k, \text{s.t. } \{X_{n_k} = i\}$ 发生

$$k = 1, n_1 \ge k$$

 $k = n_1 + 1, n_2 \ge n_1 + 1 > n_1$

. . .

Remark 5 (如何进一步理解). 无界和 ∞ 的区别是什么?

无界: $\forall M > 0, \exists k, s.t. |x_k| > M$

Example 18

 $1, 2, 3, 4, \cdots$ 为 $\infty/$ 无界

 $1,0,2,0,3,0,4,\cdots$ 并非 ∞ , 但是无界的

迁移到 $\bigcap_{k\geq 1}\bigcup_{n\geq k}$ 的例子

Example 19

$$A_1 = \{0, 1\}, A_2 = \{2\}, A_3 = \{0, 3\}, \cdots, \mathbb{N}$$

$$\bigcap_{k=1}^{\infty} \bigcup_{n \ge k} A_n = \{0\}, \qquad \bigcap_{k=1}^{\infty} A_k = \emptyset$$

其中 $\bigcap_{k=1}^{\infty} \bigcup_{n \geqslant k}$ 也即 \limsup

但我们推理得到的"常返"和定义里的并不等价

$$\bigcap_{k\geqslant 1}\bigcup_{n\geqslant k}\{X_n=i\} \Leftrightarrow \bigcup_{n\geqslant 1}\{X_n=i\}$$

且 LHS 是 RHS 的子集, 因此由定义的 $\mathbb{P}(RHS) = 1$ 不能推出 $\mathbb{P}(LHS) = 1$. 于是我们疑惑为什么会叫它常返. 这里要用到高阶知识"停时", 我们最后会回到这个问题. 下面给出几种判断常返/暂留的方法.

2.4.2 从数学角度:并改写成不交并

i 常返 $\Leftrightarrow \mathbb{P}_i(\cup_{n\geqslant 1}\{X_n=i\})=1$

 $\Leftrightarrow \mathbb{P}_i(有限步到达i) = 1$

 $\Leftrightarrow \mathbb{P}(\mathcal{M}_i)$ 出发条件下,有限时间内回到i) = 1

$$B_1(i) = \{X_1 = i\}, B_2(i) = \{X_2 = i\} \setminus \{X_1 = i\} = \{X_2 = i, X_1 \neq i\}, \dots, B_n(i) = \{X_n = i, X_{n-1} \neq i, \dots, X_1 \neq i\}$$

由练习2,

$$\Rightarrow \sum_{n\geqslant 1} B_n(i) = \bigcup_{n\geqslant 1} \{X_n = i\}$$

i 常返 $\Leftrightarrow 1 = \mathbb{P}_i(\sum_{n\geqslant 1} B_n(i)) = \sum_{n\geqslant 1} \mathbb{P}_i(B_n(i))$,第二个等号由可列可加性得到(定义5)

$$\mathbb{P}_{i}(B_{n}(j)) = \mathbb{P}_{i}(X_{n} = j, X_{n-1} \neq j, \cdots, X_{1} \neq j)$$

$$= \mathbb{P}_{i}(\text{首次访问}j\text{的时刻为}n)$$

$$= \mathbb{P}_{i}(\text{走n步首次到达}j)$$

故

$$\mathbb{P}_i\left(\sum_{n\geq 1}B_n(j)\right)=\mathbb{P}_i($$
首次访问 j 的时刻为有限时间 $)=\mathbb{P}_i($ 有限时间内首次访问 $j)$

记号

$$\begin{cases} f_{ij} := \mathbb{P}_i \left(\sum_{n \geqslant 1} B_n(j) \right) = \sum_{n \geqslant 1} \mathbb{P}_i (B_n(j)) = \mathbb{P}_i (\, \check{a} \, \dot{x} \, \check{n} \,) \, \check{n} \, \check{n$$

Proposition 4

(不交并视角下) 常返和暂留的等价命题

1. i 常返 \iff

$$1 = f_{ii} = \sum_{n \geqslant 1} f_{ii}(n) \tag{2.7}$$

2. i 暂留 \iff

$$1 > f_{ii} = \sum_{n \geqslant 1} f_{ii}(n) \tag{2.8}$$

证明:由可列可加性, $f_{ii} = \sum_{n \geqslant 1} f_{ii}(n)$ 总是成立.而 $f_{ii} = \mathbb{P}_i(\sum_{n \geqslant 1} B_n(i)) = \mathbb{P}_i(\bigcup_{n \geqslant 1} \{X_n = i\})$,即 i 常返的定义,因此 $f_{ii} = 1$.若 i 暂留,则 $f_{ii} \neq 1$,由概率测度的定义, f_{ii} 不能大于 1,所以 $f_{ii} < 1$.

2.4.3 从"多步转移概率"角度判别

定义新记号 (P 不是转移矩阵)

$$P_{ij}(s) := \sum_{n \geqslant 0} s^n p_{ij}(n)$$
 $F_{ij}(s) := \sum_{n \geqslant 0} s^n f_{ij}(n)$

其中, $p_{ij}(0) = \delta_{ij}$, $f_{ij}(0) = 0$

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

注: 当 |s| < 1 时, $P_{ij}(s)$, $F_{ij}(s)$ 绝对收敛

由 Abel 连续性定理,

$$\lim_{s \uparrow 1} F_{ij}(s) = \sum_{n \ge 1} f_{ij}(n) = f_{ij} \in [0, 1]$$

$$\lim_{s\uparrow 1} P_{ij}(s) = \sum_{n\geqslant 0} p_{ij}(0) = \text{finite}/+\infty$$

Lemma 4 (Grimmett [3], Thm 6.3.3)

设 |s| < 1, 则

$$P_{ij}(s) = \delta_{ij} + P_{jj}(s)F_{ij}(s) \tag{2.9}$$

其中

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

证明: 构造不交并, $B_m(i) = \{X_m = i, X_{m-1} \neq i, \dots, X_1 \neq i\}, m \ge 1$

 $\sum_{m\geq 1} B_m(i) = \bigcup_{n\geqslant 1} \{X_n = i\}, B_m(i) \subseteq \{X_n \neq i\}, m \geqslant n+1$

$$p_{ij}(n) = \mathbb{P}_i(X_n = j) = \mathbb{P}_i(\{X_n = j\} \cap \sum_{m \ge 1} B_m(j))$$

$$= \sum_{m \ge 1} \mathbb{P}_i(\{X_n = j\} \cap B_m(j)) = \sum_{m=1}^n \mathbb{P}_i(\{X_n = j\} \cap B_m(j))$$
(2.10)

最后一个等号成立是因为 $m \ge n+1$ 时 $\{X_n = j\} \cap B_m(j)$ 为空集

$$\sum_{m=1}^{n} \mathbb{P}_{i}(\{X_{n}=j\} \cap B_{m}(j)) = \sum_{m=1}^{n} \mathbb{P}_{i}(X_{n}=j|B_{m}(j))\mathbb{P}_{i}(B_{m}(j))$$
(2.11)

其中 $X_m = j, X_{n-1} \neq j, \dots, X_1 \neq j, X_{n-1} \in S \setminus \{j\}$ 用一般而非单点的马氏性(2.2)

$$\sum_{m=1}^{n} \mathbb{P}_{i}(X_{n} = j | B_{m}(j)) \mathbb{P}_{i}(B_{m}(j)) = \sum_{m=1}^{n} \mathbb{P}(X_{n} = j | X_{m} = j) \cdot f_{ij}(m)$$

$$= \sum_{m=1}^{n} p_{jj}(n - m) \cdot f_{ij}(m)$$
(2.12)

整合(2.10), (2.11), (2.12),

$$p_{ij}(n) = \sum_{m=1}^{n} p_{jj}(n-m) \cdot f_{ij}(m)$$
(2.13)

当 $n \ge 1$ 时,

$$\begin{split} P_{ij}(s) &= s^0 p_{ij}(0) + \sum_{n \geqslant 1} s^n \cdot p_{ij}(n) \\ &= \delta_{ij} + \sum_{n \geqslant 1} s^n \sum_{m=1}^n p_{jj}(n-m) f_{ij}(m) \\ &= \delta_{ij} + \sum_{n \geqslant 1} \sum_{m=1}^n s^n p_{jj}(n-m) f_{ij}(m) \\ &= \delta_{ij} + \sum_{n \geqslant 1} \sum_{m=1}^n (s^{n-m} p_{jj}(n-m)) (s^m f_{ij}(m)) \\ &= \delta_{ij} + \sum_{n \geqslant 1} \sum_{m=1}^\infty \sum_{m=1}^\infty \mathbb{I}_{\{1 \leqslant m \leqslant n\}} (s^{n-m} p_{jj}(n-m)) (s^m f_{ij}(m)) \end{split}$$

【重要技巧】把 $\mathbb{I}_{\{1 \leq m \leq n\}}(s^{n-m}p_{jj}(n-m))(s^mf_{ij}(m))$ 看作 $a_{n,m}$, 由推论1考察绝对收敛 $0 \leq s < 1, |s| = s$

正向级数一定有意义, 就看是有限/∞

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mathbb{I}_{\{1 \leqslant m \leqslant n\}} s^{n-m} p_{jj}(n-m) s^m f_{ij}(m)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathbb{I}_{\{1 \leqslant m \leqslant n\}} s^{n-m} p_{jj}(n-m) s^m f_{ij}(m)$$

$$= \sum_{m=1}^{\infty} (\sum_{n=m}^{\infty} s^{n-m} p_{jj}(n-m)) s^m f_{ij}(m)$$

$$= (\sum_{n=0}^{\infty} s^n p_{jj}(n)) (\sum_{m=1}^{\infty} s^m f_{ij}(m)) < \infty \quad [变量代換n \leftarrow n-m]$$

因为 $s^0 f_{ij}(0) = 0$,则 $\sum_{m=0}^{\infty} s^m f_{ij}(m) = \sum_{m=1}^{\infty} s^m f_{ij}(m)$. 代回原式

$$P_{ij}(s) = \delta_{ij} + P_{jj}(s) \cdot F_{ij}(s)$$

Proposition 5

(多步转移概率视角下) 常返和暂留的等价命题

1. j 常返 \iff

$$1 = f_{jj} \Leftrightarrow \sum_{n \ge 0} p_{jj}(n) = \infty \tag{2.14}$$

2. j 暂留 \iff

$$1 > f_{jj} \Leftrightarrow \sum_{n \geqslant 0} p_{jj}(n) < \infty$$

$$\Rightarrow \sum_{n \geqslant 0} p_{ij}(n) < \infty, \forall i \in S$$

$$\Rightarrow \lim_{n \to \infty} p_{ij}(n) = 0, \forall i \in S$$

$$(2.15)$$

证明: 只证 (1). |s| < 1 时, $P_{ij}(s) = \delta_{ij} + P_{jj}(s)F_{ij}(s)$ 令 i = j, $P_{jj}(s) = 1 + P_{jj}(s)F_{jj}(s)$

$$P_{jj}(s) = \frac{1}{1 - F_{ij}(s)} \tag{2.16}$$

由(2.7),
$$j$$
 常返 \iff $1 = f_{jj} = F_{jj}(1) \stackrel{\text{Abel}}{=} \lim_{s \uparrow 1} F_{jj}(s)$ 对(2.16), 令 $s \to 1$, 有 $\sum_{n \geqslant 0} p_{jj}(n) = +\infty$

Problem 6 (作业 5-1)

证明: j 暂留 $\Rightarrow \sum_{n\geq 0} p_{ij}(n) < \infty, \forall i \in S$

2.4.4 从"首次回访时间"角度判别

$$j$$
常返 \iff $1 = \mathbb{P}_{j}(X_{n} = j \text{ 对某} \land n \geqslant 1) = \mathbb{P}_{j}(有限时间内回访j)$ \iff $1 = f_{jj} = \mathbb{P}_{j}(\underbrace{\text{首次回访j} \text{的时刻}}_{T_{j} < \infty} \text{ 有限})$
$$1 = \sum_{n \geqslant 1} f_{jj}(n) = \sum_{n \geqslant 1} \mathbb{P}_{j}(\underbrace{\text{首次回访j} \text{的时刻}}_{T_{i} = n} \mathbb{R})$$

Definition 35 (首次回访时间)

首次回访 j 的时刻

$$T_i = \min\{n \geqslant 1 | X_n = j\} \tag{2.17}$$

约定 $\min \emptyset = +\infty$

注:
$$\{T_j = \infty\} \iff \{\omega | \{n \ge 1 | X_n(\omega) = j\} = \emptyset\}$$

 $\iff \{\omega | X_n(\omega) \ne j, \forall n \ge 1\} = \cap_{n \ge 1} \{X_n \ne j\}$
 $\{T_j < \infty\} = (\{T_j = \infty\})^c = (\cap_{n \ge 1} \{X_n \ne j\})^c = \cup_{n \ge 1} (\{X_n \ne j\})^c = \cup_{n \ge 1} \{X_n = j\}$
 这个式子串联起常返的定义和 T_j 的关系,于是有以下性质.

Property 17

$$f_{jj} = \mathbb{P}_j(T_j < \infty), f_{jj}(n) = \mathbb{P}_j(T_j = n)$$

由(2.6)知, f_{ij} , $f_{ij}(n)$ 是由不交并定义的, 对于"首次回放时间"这一角度, 定义新的符号

$$\rho_{ij} := \mathbb{P}_i(T_j < \infty) \tag{2.18}$$

Proposition 6

(首次回放时间视角下) 常返和暂留的等价命题

1. j 常返 ⇔

$$1 = \rho_{ij} = \mathbb{P}_i(T_i < \infty) \iff 0 = \mathbb{P}_i(T_i = \infty)$$
 (2.19)

2. j 暂留 \iff

$$1 > \rho_{ij} = \mathbb{P}_i(T_i < \infty) \iff 0 < \mathbb{P}_i(T_i = \infty)$$
 (2.20)

证明: 由(2.14), (2.15), j常返 \iff $1 = f_{ij} = \rho_{ij} \iff 0 = 1 - \rho_{ij}$, 其余同理.

Definition 36 (平均回访时间)

j 的平均回访时间

$$m_j := \mathbb{E}_j T_j = \mathbb{E}(T_j | X_0 = j) \tag{2.21}$$

Theorem 18

$$m_{j} = \mathbb{E}_{j} T_{j} = \begin{cases} \sum_{n \geqslant 1} n f_{jj}(n) & j 常 \mathcal{E} \\ \infty & j 暫 \end{cases}$$
 (2.22)

证明:

$$(1)$$
 j $\mathfrak{A} \cong \mathbb{P}_i(T_i = \infty) > 0$

$$T_j = T_j \mathbb{I}_{\{T_j = \infty\}} + T_j \mathbb{I}_{\{T_j < \infty\}}$$

$$\mathbb{E}T_j = \mathbb{E}T_j \mathbb{I}_{\{T_i = \infty\}} + \mathbb{E}T_j \mathbb{I}_{\{T_i < \infty\}} \geqslant \mathbb{E}T_j \mathbb{I}_{\{T_i = \infty\}} = \infty \cdot \mathbb{P}_j(T_j = \infty) = \infty$$

(2) j 常返 $\Rightarrow \mathbb{P}_i(T_i = \infty) = 0$

取期望时不起作用, 因为 $0.\infty$ 是不定形

$$\mathbb{E}_j T_j = \mathbb{E}_j T_j \mathbb{I}_{\{T_j < \infty\}} = \mathbb{E}_j T_j \mathbb{I}_{\sum_{n \geqslant 1} \{T_j = n\}} \stackrel{\text{(1.1)}}{=} \mathbb{E}_j \sum_{n \geqslant 1} T_j \mathbb{I}_{\{T_j = n\}} = \sum_{n \geqslant 1} n \mathbb{P}_j (T_j = n) = \sum_{n \geqslant 1} n f_{jj}(n)$$

Definition 37 (正常返/零常返)

j 常返时

- 1. $\mathbb{E}_i T_i < \infty$ 称 j 是正常返
- 2. $\mathbb{E}_i T_i = \infty$ 称 j 是零常返 (平均意义上再也不回来)

$$j$$
 常返 $\Leftrightarrow 1 = f_{jj} \Leftrightarrow \sum_{n \geq 0} p_{jj}(n) = \infty$
 $\Leftrightarrow 1 = \rho_{jj} = \mathbb{P}_j(T_j < \infty) \Leftrightarrow 0 = \mathbb{P}_j(T_j = \infty)$

$$\mathbb{P}_{j}(T_{j} < \infty) = \mathbb{P}(\mathcal{M}_{j}$$
出发条件下,首次回到 j 的时刻有限)
$$= \mathbb{P}(\mathcal{M}_{j}$$
出发条件下,有限时间内至少访问 j 有 1 次)
$$= \mathbb{P}(\mathcal{M}_{j}$$
出发条件下,有限时间内回访 j 的次数 \geqslant 1)

Definition 38 (访问次数)

链在时刻0之后,访问j的次数

$$N(j) := \#\{n \geqslant 1 | X_n = j\} = \sum_{n \geqslant 1} \mathbb{I}_{\{X_n = j\}}$$
 (2.24)

注:
$$N(j): \Omega \to \{0,1,2,\cdots\} \cup \{+\infty\}$$

至此, 我们已经从四个角度表示了常返

- 1. 常返的定义
- 2. 不交并
- 3. 多步转移概率
- 4. 首次访问时间

做个阶段性小结, 回顾 i 常返的几种等价表示

$$i$$
常遂 $\stackrel{\text{Def}}{\iff} 1 = \mathbb{P}_i(\bigcup_{n\geqslant 1} \{X_n = i\})$

$$\iff 1 = f_{ii} := \sum_{n\geqslant 1} f_{ii}(n) = \sum_{n\geqslant 1} \mathbb{P}_i(X_1 \neq i, \cdots, X_{n-1} \neq i, X_n = i)$$

$$\iff \sum_{n\geqslant 1} p_{ii}(n) = \infty$$

$$\iff 1 = \rho_{ii} = \mathbb{P}_i(T_i^{(1)} := T_i < \infty)$$

由(2.23), $\mathbb{P}_i(T_i < \infty) = \mathbb{P}_i(N(i) \ge 1)$, 因此可得"回访次数"视角下 i 常返的条件

Proposition 7

(回访次数视角下) 常返和暂留的等价命题

1. i 常返 ⇔

$$\mathbb{P}_i\{N(i)\geqslant 1\} = 1\tag{2.25}$$

2. i 暂留 ⇔

$$\mathbb{P}_i\{N(i) \geqslant 1\} < 1 \tag{2.26}$$

另一方面, 我们从"常返"的文字含义推理.

无数次地回访 \leftrightarrow 访问次数 $= \infty \leftrightarrow$

$$\mathbb{P}_i(N(i) = \infty) = 1$$

两种表述的等价条件互相等价吗?即

$$\mathbb{P}_i(N(i) \geqslant 1) \stackrel{?}{\Leftrightarrow} \mathbb{P}_i(N(i) = \infty)$$

需要 Strong Markov Property (SMP) 使上面 \Leftrightarrow 成立. 这里先补充一些关于 N(j) 的内容, 然后再回到证明. 考察 $\{N(y)=\infty\}=\cap_{k\geqslant 1}\{N(y)\geqslant k\}$

由概率测度的连续性(性质3)

$$\mathbb{P}_x(N(y) = \infty) = \lim_{k \to \infty} \mathbb{P}_x(N(y) \geqslant k)$$

其中,

$$\mathbb{P}_x(N(y) \geqslant k) = \mathbb{P}(\mathcal{M}x$$
出发条件下,访问 y 的次数 $\geqslant k$)
$$= \mathbb{P}(\mathcal{M}x$$
出发条件下,至少访问 y 有 k 次)
$$= \mathbb{P}(\mathcal{M}x$$
出发条件下,第 k 次访问 y 的时刻有限)

Definition 39 (第 k 次访问时间)

由
$$T_y^{(1)}:=T_y:=\min\{n\geqslant 1|X_n=y\}, T_y^{(2)}:=\min\{n>T_y^{(1)}|X_n=y\},\cdots,$$
 得到

$$T_y^{(k)} := \min\{n > T_y^{(k-1)} | X_n = y\}, \quad \forall k \geqslant 2$$
 (2.27)

Claim 3. $N(y) \ge k$ 与"第 k 次访问 y 的时刻有限"等价,

$$\mathbb{P}_x(N(y) \geqslant k) = \mathbb{P}_x(T_y^{(k)} < \infty) \tag{2.28}$$

Definition 40

(1) 第 k 次访问概率

$$\rho_{xy}^{(k)} := \mathbb{P}_x(T_y^{(k)} < \infty) \tag{2.29}$$

其中, $\rho_{xy}^{(1)} = \rho_{xy}$, rf.(2.18)

(2) 第 k 次回访概率

$$\rho_{yy}^{(k)} := \mathbb{P}_y(T_y^{(k)} < \infty) \tag{2.30}$$

注: $\rho_{yy}^{(2)} \stackrel{?}{=} \rho_{yy} \cdot \rho_{yy}$

直观上是这样, 但严格证明要求 SMP

这是因为不同时间对应的是不同的随机过程, 如

- t = 0 时, 过程是 $\{X_n, n \ge 0\}$
- $t = T_i$ 时, 过程是 $\{X_{T_i+n}, n \ge 0\}$

SMP 是一个使得 $X_{T_i+n} = X_n, \forall T_j$ 的性质, 之后会详细说. 以上结论可总结成下面引理.

Lemma 5

(由 SMP 知)
$$\rho_{xy}^{(k)} = \rho_{xy} \rho_{yy}^{(k-1)}$$
 特別地, $\rho_{yy}^{(k)} = \rho_{yy}^{k}$

接着我们回到证明

$$\mathbb{P}_i(N(i) \geqslant 1) = 1 \Leftrightarrow \mathbb{P}_i(N(i) = \infty) = 1 \tag{2.31}$$

证明: \Leftarrow 显然, 因为 $\{N(i) = \infty\}$ 相对 $N(i) \geqslant 1$ 是小集合

 \Rightarrow

$$\mathbb{P}_{i}(N(i) = \infty) = \lim_{k \to \infty} \mathbb{P}_{i}(N(i) \geqslant k) \stackrel{\text{SMP}}{=} \lim_{k \to \infty} \rho_{ii}^{k} = 1$$

暂留的证明同理:

$$i$$
暂留 $\Leftrightarrow 1 > \rho_{ii}$
$$\Leftrightarrow \mathbb{P}_i(N(i) = \infty) = \lim_{k \to \infty} \rho_{ii}^k = 0$$

2.4.5 从"平均回访次数"角度判别

回顾(2.24)

$$N(y) = \sum_{n \geqslant 1} \mathbb{I}_{\{X_n = y\}} = \sum_{k \geqslant 1} \mathbb{I}_{\{N(y) \geqslant k\}}$$

Lemma 6 (Durrett [2], lem 1.11)

$$\mathbb{E}_{y}N(y) = \begin{cases} \infty & y \, \text{常} \mathcal{E} \\ \frac{\rho_{yy}}{1 - \rho_{yy}} & y \, \text{ff} \, \mathcal{B} \end{cases}$$
 (2.32)

证明:

$$\mathbb{E}_y N(y) = \mathbb{E}_y \sum_{k \geqslant 1} \mathbb{I}_{\{N(y) \geqslant k\}} \overset{\text{Exa}(6)}{=} \sum_{k \geqslant 1} \mathbb{P}_y (N(y) \geqslant k) = \sum_{k \geqslant 1} \mathbb{P}_y (T_y^{(k)} < \infty) = \sum_{k \geqslant 1} \rho_{yy}^{(k)} \overset{\text{SMP}}{=} \sum_{k \geqslant 1} \rho_{yy}^{k}$$

$$\rho_{yy} = 1 \Rightarrow \mathbb{E}_y N(y) = \infty$$

$$\rho_{yy} < 1 \Rightarrow \mathbb{E}_y N(y) = \rho_{yy} / (1 - \rho_{yy})$$

Proposition 8

(平均回访次数视角下) 常返和暂留的等价命题

1. i 常返 ⇔

$$\mathbb{E}_i N(i) = \infty \tag{2.33}$$

2. i 暂留 \iff

$$\mathbb{E}_i N(i) < \infty \tag{2.34}$$

证明 (1): \Rightarrow 由(2.32), 显然

 $\Leftarrow N(y)$ 为非负 r.v., 有当 $k \to \infty$ 时, $\forall \omega, \sum_{n=1}^k \mathbb{I}_{\{X_n=y\}}(\omega) \uparrow \sum_{n=1}^\infty \mathbb{I}_{\{X_n=y\}}(\omega)$

$$\mathbb{E}_{y}N(y) := \lim_{k \to \infty} \mathbb{E}_{y} \sum_{n=1}^{k} \mathbb{I}_{\{X_{n} = y\}} = \lim_{k \to \infty} \sum_{n=1}^{k} \mathbb{E}_{y} \mathbb{I}_{\{X_{n} = y\}} = \lim_{k \to \infty} \sum_{n=1}^{k} \mathbb{P}_{y}(X_{n} = y) = \sum_{n=1}^{\infty} p_{yy}(n) = \infty$$

由(2.14), y 常返

将上面几个角度总结成下面定理

Theorem 19 (链的状态:等价表述)

$$\begin{split} i \mbox{ \begin{tikzpicture}(20,0) \put(0,0){\line(1,0){1.5}} \put(0,0$$

2.4.6 停时与强马氏性

Definition 41 (停时/Stopping time)

随机变量 $\tau:\Omega\to\{0,1,2,\cdots\}\cup\{+\infty\}$, 满足 $\forall\infty>n\geqslant 0, \{\tau=n\}\in\sigma(X_0,\cdots,X_n)$, 称 τ 是关于 $(X_n)_{n\geqslant 0}$ 的停时

Example 20

首次回访时刻是一个停时

 $T_y^{(1)} := T_y := \min\{n \geqslant 1 | X_n = y\}$

$$\{T_y^{(1)} = n\} = \{X_1 \neq y, \dots, X_{n-1} \neq y, X_n = y\} \quad n \geqslant 1$$

$$= \{(X_0, X_1, \dots, X_n) \in S \times (S \setminus \{y\}) \times \dots \times (S \setminus \{y\}) \times \{y\}\}$$

$$\in \sigma(X_0, \dots, X_n) = (X_0, \dots, X_n)^{-1}(\bigotimes_{n+1} 2^S)$$

Definition 42 (停止 σ 代数)

 τ 是关于 $(X_n)_{n\geq 0}$ 的停时, 定义

$$\mathcal{F}_{\tau} := \{ A | A \cap \{ \tau = n \} \in \sigma(X_0, \cdots, X_n), \forall n \}$$

 $i: B \in \mathcal{F}_{\tau} \Leftrightarrow B$ 是由 X_0, \dots, X_{τ} 决定的事件(这是直观上的解释, 因为 τ 是随机的, 我们不知道"…"是什么) $\Leftrightarrow B \cap \{T = n\} \in \sigma(X_0, \dots, X_n), \forall n$

停止 σ -代数的定义是为了形式化"到随机时间 τ 为止的信息". 因为 τ 本身是随机的, 我们不能直接写 $\sigma(X_0, \dots, X_\tau)$ (因为 τ 不确定),所以需要通过对所有可能的 $\tau = n$ 进行分解.

Problem 7 (作业 5-2)

设 τ 为关于 $(X_n)_{n\geq 0}$ 的停时, 即对任意的 $\infty > n \geq 0$, 有

$$\{\tau=n\}\in\sigma(X_0,\cdots,X_n)$$

证明:

- 1. (停止 σ 代数的定义) $\mathcal{F}_{\tau} := \{A | A \cap \{\tau = n\} \in \sigma(X_0, \dots, X_n), \forall n \geq 1\}$ 是一个 σ -代数
- 2. $\sigma(X_{\tau}) \in \mathcal{F}_{\tau}$

以下内容来自强马氏性讲义 [1].

Lemma 7 (马氏性的小推广)

若 X 为马氏链, 则对任意 $n,m\geqslant 0, x_n\in S, A\in \otimes_{n+1}2^S, B\in \otimes_{m+1}2^S$ (即 $A\subset S^{n+1}, B\subset S^{m+1}$), 有

$$\mathbb{P}_{\{X_n = x_n\}}((X_0, \dots, X_n) \in A, (X_n, \dots, X_{n+m}) \in B)$$

$$= \mathbb{P}_{\{X_n = x_n\}}((X_0, \dots, X_n) \in A) \times \mathbb{P}_{\{X_n = x_n\}}((X_n, \dots, X_{n+m}) \in B)$$
(2.35)

即 $(X_0, \dots, X_n) \perp_{\{X_n = x_n\}} (X_n, \dots, X_{n+m})$ 的定义, rf.(1.3)

证明:回顾马氏性, rf.(2.3)

不妨设 $A = A_0 \times \cdots \times A_n, B = B_n \times \cdots \times B_{n+m}$

(Case 1) 若 $x_n \notin A_n$ 或 $x_n \notin B_n$, 则

$$\mathbb{P}_{\{X_n=x_n\}}((X_0,\cdots,X_n)\in A)=0 \ \, \text{ } \text{ } \text{ } \text{ } \mathbb{P}_{\{X_n=x_n\}}((X_n,\cdots,X_{n+m})\in B)=0$$

且

$$\mathbb{P}_{\{X_n=x_n\}}((X_0,\cdots,X_n)\in A,(X_n,\cdots,X_{n+m})\in B)=0$$

从而, (2.35) 得证

(Case 2) 设 $x_n \in A_n$, 且 $x_n \in B_n$. 若 n = 0, m = 0, 则显然有

$$\mathbb{P}_{\{X_n = x_n\}}((X_0, \dots, X_n) \in A) = \mathbb{P}_{\{X_n = x_n\}}((X_n, \dots, X_{n+m}) \in B) = 1$$

$$\mathbb{P}_{\{X_n=x_n\}}((X_0,\cdots,X_n)\in A,(X_n,\cdots,X_{n+m})\in B)=1$$

此时, 显然有 (2.35) 成立. 若 $n \ge 1, m \ge 1$, 则

$$\mathbb{P}_{\{X_n=x_n\}}((X_0,\cdots,X_n)\in A) = \mathbb{P}_{\{X_n=x_n\}}\{X_j\in A_j, 0\leqslant j\leqslant n-1\}$$

$$\mathbb{P}_{\{X_n=x_n\}}((X_n,\dots,X_{n+m})\in B) = \mathbb{P}_{\{X_n=x_n\}}\{X_j\in B_j, n+1\leqslant j\leqslant n+m\}$$

且

$$\mathbb{P}_{\{X_n = x_n\}}((X_0, \dots, X_n) \in A, (X_n, \dots, X_{n+m}) \in B)$$

$$= \mathbb{P}_{\{X_n = x_n\}} \{X_j \in A_j, 0 \leqslant j \leqslant n - 1, X_k \in B_k, n + 1 \leqslant k \leqslant n + m\}$$

$$\stackrel{\text{(2.3)}}{=} \mathbb{P}_{\{X_n = x_n\}} \{X_j \in A_j, 0 \leqslant j \leqslant n - 1\} \mathbb{P}_{\{X_n = x_n\}} \{X_k \in B_k, n + 1 \leqslant k \leqslant n + m\}$$

故而 (2.35) 得证. 对于其他情形 $n \ge 1, m = 0$ 或 $n = 0, m \ge 1$, 可类似证明.

Proposition 9 (强马氏性)

 $X := \{X_n, n \ge 0\} \sim \operatorname{Markov}(\mu, P), \tau$ 是关于 $(X_n)_{n \ge 0}$ 的停时, 则

1. 在 $\{\tau < \infty\}$ 和 $\{X_{\tau} = x\}$ 条件下

$$(X_{\tau+n})_{n\geqslant 0} \sim \operatorname{Markov}(\delta_x, P)$$

其中 $\delta_x = (\delta_{xy})_{y \in S}$, 记号

$$\delta_{xy} = \begin{cases} 1 & y = x \\ 0 & y \neq x \end{cases}$$

注: $(X_{\tau+n})_{n\geqslant 0} \sim \operatorname{Markov}(\delta_x, P)$ under $\mathbb{P}(\cdot|\tau<\infty, X_{\tau}=x)$. 在原先的概率测度 \mathbb{P} 下, $(X_{\tau+n})_{n\geqslant 0}$ 不是马氏链

 $2. \forall J \subseteq \mathbb{N}_0, \#J < \infty, 有$

$$\sigma(X_{\tau+n}, n \in J) \perp \!\!\! \perp_{\{\tau < \infty, X_{\tau} = x\}} \mathcal{F}_{\tau}$$

注:

- (a) $(X_{\tau+n})_{n\geq 0}$ 与 X_0, \dots, X_{τ} 独立
- (b) $(X_{\tau+n})_{n\geq 0} \perp \mathcal{F}_{\tau}$ under $\mathbb{P}(\cdot|\tau<\infty,X_{\tau}=x)$

证明: (1) 回顾马氏链的有限维分布, rf.(2.4),

根据此结论, 我们只需考察链 $\{X_{\tau+n}, n \geq 0\}$ 的有限维分布.

(Step 1) 设 $j_0 \neq x$. 则对任意的 $n \geq 1, m \geq 0$, 有

$$\mathbb{P}(X_{\tau+0} = j_0, \cdots, X_{\tau+n} = j_n, \tau = m, X_{\tau} = x) = 0$$

关于 $m \ge 0$ 求和, 并注意到 $\{\tau < \infty\} = \sum_{m=0}^{\infty} \{\tau = m\}$, 得:

$$\mathbb{P}(X_{\tau+0} = j_0, \cdots, X_{\tau+n} = j_n, \tau < \infty, X_{\tau} = x) = 0$$

两边同除 $P(\tau < \infty, X_{\tau} = x)$, 有

$$\mathbb{P}(X_{\tau+0} = j_0, \dots, X_{\tau+n} = j_n | \tau < \infty, X_{\tau} = x) = 0 = \delta_{xj_0} \prod_{k=0}^{n-1} p_{j_k j_{k+1}}$$

(Step 2) 设 $j_0 = x$. 注意到, 对任意的 $m \ge 0$, 有

$$\{\tau=m\}\in\sigma(X_0,\cdots,X_m)$$

故而, 由(2.35): 对任意的 $n \ge 1, m \ge 0$, 有

$$\{\tau = m\} \perp \!\!\! \perp_{\{X_m = x\}} \{X_m = j_0, X_{m+1} = j_1, \cdots, X_{m+n} = j_n\}$$

从而, 对任意的 $m \ge 0$, 有

$$\mathbb{P}(X_{\tau+0} = j_0, \tau = m, X_{\tau} = x) = \mathbb{P}(X_{m+0} = j_0, \tau = m, X_m = x)$$

$$\stackrel{(1.2)}{=} \mathbb{P}(X_{m+0} = j_0, \tau = m | X_m = x) \times \mathbb{P}(X_m = x)$$

$$\stackrel{(M_1)}{=} \mathbb{P}(X_{m+0} = j_0 | X_m = x) \times \mathbb{P}(\tau = m | X_m = x) \times \mathbb{P}(X_m = x)$$

$$\stackrel{(1.2)}{=} 1 \times \mathbb{P}(\tau = m, X_m = x)$$

$$= \delta_{xx} \mathbb{P}(\tau = m, X_m = x)$$

以及, 对任意的 $n \ge 1, m \ge 0$, 有

$$\mathbb{P}(X_{\tau+0} = j_0, X_{\tau+1} = j_1, \cdots, X_{\tau+n} = j_n, \tau = m, X_{\tau} = x) \\
= \mathbb{P}(X_{m+1} = j_1, \cdots, X_{m+n} = j_n, \tau = m, X_m = x) \\
\stackrel{\text{(1.2)}}{=} \mathbb{P}(X_{m+1} = j_1, \cdots, X_{m+n} = j_n, \tau = m | X_m = x) \times \mathbb{P}(X_m = x) \\
\stackrel{\text{(M_1)}}{=} \mathbb{P}(X_{m+1} = j_1, \cdots, X_{m+n} = j_n | X_m = x) \times \mathbb{P}(\tau = m | X_m = x) \times \mathbb{P}(X_m = x) \\
= \frac{\mathbb{P}(X_{m+1} = j_1, \cdots, X_{m+n} = j_n, X_m = x)}{\mathbb{P}(X_m = x)} \times \mathbb{P}(\tau = m | X_m = x) \times \mathbb{P}(X_m = x) \\
\stackrel{\text{(2.4)}}{=} \frac{\mu_x^{(m)} p_{x,j_1} p_{j_2,j_3} \cdots p_{j_{n-1},j_n}}{\mu_x^{(m)}} \times \mathbb{P}(\tau = m, X_m = x) \\
= \delta_{xx} p_{x,j_1} p_{j_2,j_3} \cdots p_{j_{n-1},j_n} \times \mathbb{P}(\tau = m, X_m = x)$$

其中, $\mu_x^{(m)}:=P(X_m=x)$. 综上,关于 $m\geqslant 0$ 求和(注意到 $\{\tau<\infty\}=\sum_{m=0}^\infty\{\tau=m\}$),再两边同除以 $P(\tau<\infty,X_\tau=x)$,得:当 $j_0=x$,对任意的 $n\geqslant 0$,有

$$\mathbb{P}(X_{\tau+0} = j_0, \cdots, X_{\tau+n} = j_n | \tau < \infty, X_{\tau} = x) = \delta_{xj_0} \prod_{k=0}^{n-1} p_{j_k j_{k+1}}.$$

(Step 3) 综上, 链的 $(X_{\tau+n})_{n\geq 0}$ 的有限维分布为

$$\mathbb{P}(X_{\tau+0} = j_0, \cdots, X_{\tau+n} = j_n | \tau < \infty, X_{\tau} = x) = \delta_{xj_0} \prod_{k=0}^{n-1} p_{j_k j_{k+1}}.$$

即有 $(X_{\tau+n})_{n\geq 0}$ ~ Markov (δ_x, P) under $\mathbb{P}(\cdot|\tau<\infty, X_{\tau}=x)$. (2) 作业.

Problem 8 (作业 5-3)

 $\forall J \subseteq \mathbb{N}_0, \#J < \infty, \ \mathsf{f}$

$$\sigma(X_{\tau+n}, n \in J) \perp \!\!\!\perp_{\{\tau < \infty, X_{\tau} = x\}} \mathcal{F}_{\tau}$$

注:

- 1. $(X_{\tau+n})_{n\geq 0}$ 与 X_0, \dots, X_{τ} 独立
- 2. $(X_{\tau+n})_{n\geq 0} \perp \mathcal{F}_{\tau}$ under $\mathbb{P}(\cdot|\tau<\infty,X_{\tau}=x)$

用下面方法表述两次返回之间的等待时间 $S_u^{(k)}$

$$T_y^{(0)} := 0, T_y^{(1)} := T_y, \; \text{Aff} \; k \geqslant 2, T_y^{(k)} := \min\{n \geqslant T_{y+1}^{(k-1)} | X_n = y\}$$

注意到 $T_y^{(k)} = T_y^{(k-1)} + \min\{n \geqslant 1 | X_{T_y^{(k-1)} + n} = y\}$

$$\Rightarrow S_y^{(k)} = \min\{n \geqslant 1 | X_{T_y^{(k-1)} + n} = y \}, \text{if } T_y^{(k-1)} < \infty$$

即 $(X_{T_y^{(k-1)}+n})_{n\geqslant 0}$ 的首次回访时刻 $S_y^{(k)}$

Lemma 8

对 $k \geqslant 2$,有 $\sigma(S_y^{(k)}) \perp_{\{T_n^{(k-1)} < \infty\}} \mathcal{F}_{T_n^{(k-1)}}$,且

$$\mathbb{P}(S_y^{(k)} < \infty | T_y^{(k-1)} < \infty) = \mathbb{P}(T_y^{(1)} < \infty | X_0 = y) =: \rho_{yy}$$
(2.36)

Corollary 8

对 $k\geqslant 0$ 有 $\rho_{yy}^{(k)}=\rho_{yy}^{k}$, 即

$$\mathbb{P}_y(N(y) \geqslant k) = \mathbb{P}_y(T_y^{(k)} < \infty) = \rho_{yy}^k$$

证明: 第 k 次访问 y 的时刻有限, 即第 k-1 次访问 y 的时刻有限且时间间隔有限, 即

$$\begin{split} \mathbb{P}_y(T_y^{(k)} < \infty) &= \mathbb{P}_y(S_y^{(k)} < \infty, T_y^{(k-1)} < \infty) \\ &= \mathbb{P}_y(S_y^{(k)} < \infty | T_y^{(k-1)} < \infty) \mathbb{P}_y(T_y^{(k-1)} < \infty) \end{split}$$

递归

$$\mathbb{P}_y(T_y^{(k)} < \infty) = \mathbb{P}_y(S_y^{(k)} < \infty | T_y^{(k-1)} < \infty) \cdots \mathbb{P}_y(S_y^{(2)} < \infty | T_y^{(1)} < \infty) \mathbb{P}_y(T_y^{(1)} < \infty)$$

$$\stackrel{(2.36)}{=} \rho_{yy}^k \quad \Box$$

2.5 类结构

2.5.1 状态 i 间的关系: 可达与互通

Definition 43 (可达)

 $i,j\in S$, 若 $\exists n\geqslant 0, \mathrm{s.t.}$ $p_{ij}(n)>0$, 则称 i 可达 j, 记作 $i\to j$ 注: $i\to i, p_{ii}(0)=1>0$ 包括在内

Definition 44 (互通)

若 $i \rightarrow j, j \rightarrow i$ 称 $i \rightarrow j$ 互通, 记作 $i \leftrightarrow j$

Theorem 20

对不同的i与j,下面命题等价

- 1. $i \rightarrow j$
- 2. $0 < f_{ij} = \rho_{ij} = \mathbb{P}_i(T_j < \infty)$ [Durrett [2], Def1.1]
- 3. \exists 某些状态, $i_0 = i, i_1, \dots, i_{n-1}, i_n = j, \text{s.t. } p_{i_0, i_1} \dots p_{i_{n-1}, i_n} > 0$
- 4. $\mathbb{P}_i(\exists n \ge 0, X_n = j) > 0$

Problem 9 (作业 6-1)

证明: 定理20命题的等价性, 即 $1 \Leftrightarrow 2, 1 \Leftrightarrow 3, 1 \Leftrightarrow 4$

Problem 10 (作业 6-2)

定义 first hitting time

$$H^j := \min\{n \geqslant 0 | X_n = j\}$$

- 1. 证明: H^j 是一个关于 $(X_n)_{n\geq 0}$ 的停时
- 2. 利用 H^j 定义"可达",并且证明该新定义与原定义等价

Property 18 (Durrett [2], Lem1.4)

证明: $i \to j \Leftrightarrow \exists n \geqslant 0, \text{s.t. } p_{ij}(n) > 0$ $j \to k \Leftrightarrow \exists n \geqslant 0, \text{s.t. } p_{jk}(n) > 0$

$$p_{ik}(n+m) \stackrel{\text{C-K}}{=} \sum_{r \in S} p_{ir}^{(n)} p_{rk}^{(m)} \geqslant p_{ij}^{(n)} p_{jk}^{(m)} > 0, \quad \therefore i \to k$$

Property 19

互通关系 (\leftrightarrow) 在 S 上是等价关系, 即

- 1. (自反的) $i \leftrightarrow i$
- 2. (对称的) $i \leftrightarrow j$, 则 $j \leftrightarrow i$
- 3. (传递的) $i \leftrightarrow j, j \leftrightarrow k$, 则 $i \leftrightarrow k$

2.5.2 常返与暂留是类性质

Lemma 9 (Durrett [2], Thm1.5&Lem1.6)

设 $i \rightarrow j, \rho_{ij} > 0$, 则

- 1. i 常返的 $\Rightarrow \rho_{ji} = 1 (> 0 \Rightarrow j \rightarrow i)$
- 2. $\rho_{ii} < 1 \Rightarrow i$ 非常返/暂留的
- 注: 直观上 $(2)i \rightarrow j \xrightarrow{\text{prob}>0} i$, 则 i 暂留

证明: $i \neq j, \rho_{ji} < 1 \Rightarrow 0 < 1 - \rho_{ji} = 1 - \mathbb{P}_j(T_i < \infty) = \mathbb{P}_j(T_i = \infty)$

为了证 i 暂留, 即证 $\rho_{ii} < 1$, 即 $\mathbb{P}_i(T_i = \infty) > 0$

(Step 1) $\rho_{ij} > 0, i \to j \Rightarrow \exists k \geqslant 1, \text{s.t. } p_{ij}(k) > 0$

$$K := \min\{k \geqslant 1 | p_{ij}(k) > 0\}$$

由 C-K 方程(2.5), \exists 与 i, j 不同的状态 $i_1, \dots, i_{K-1}, \text{s.t.}$

$$p_{i,i_1}p_{i_1,i_2}\cdots p_{i_{K-1},j}>0$$

(Step 2)

$$\begin{split} \mathbb{P}_{i}(T_{i} = \infty) &= \mathbb{P}_{i}(\bigcap_{n \geqslant 1} \{X_{n} \neq i\}) \\ &\geqslant \mathbb{P}_{i}(\bigcap_{k=0}^{K-1} \{X_{k} = i_{k}\}, X_{K} = j, \bigcap_{n \geqslant K+1} \{X_{n} \neq i\}) \\ &= \mathbb{P}(\bigcap_{k=0}^{K-1} \{X_{k} = i_{k}\}, X_{K} = j, \bigcap_{n \geqslant K+1} \{X_{n} \neq i\}) / \mathbb{P}(X_{0} = i) \\ &= \mathbb{P}(\bigcap_{k=0}^{K-1} \{X_{k} = i_{k}\} | X_{K} = j) \cdot \mathbb{P}(\bigcap_{n \geqslant K+1} \{X_{n} \neq i\} | X_{K} = j, \bigcap_{k=0}^{K-1} \{X_{k} = i_{k}\}) \cdot \mathbb{P}(X_{K} = j) / \mathbb{P}(X_{0} = i) \\ &\stackrel{\text{Markov}}{=} \mathbb{P}(\bigcap_{k=0}^{K-1} \{X_{k} = i_{k}\} | X_{K} = j) \cdot \mathbb{P}(\bigcap_{n \geqslant K+1} \{X_{n} \neq i\} | X_{K} = j) \cdot \mathbb{P}(X_{K} = j) / \mathbb{P}(X_{0} = i) \\ &= \mathbb{P}(\bigcap_{k=0}^{K-1} \{X_{k} = i_{k}\}, X_{K} = j) \cdot \mathbb{P}(\bigcap_{n \geqslant K+1} \{X_{n} \neq i\} | X_{K} = j) / \mathbb{P}(X_{0} = i) \\ &= \frac{\mu_{i}^{(0)} \cdot p_{i,i_{1}} \cdot p_{i_{1},i_{2}} \cdots p_{i_{K-1},j}}{\mu_{i}^{(0)}} \cdot \lim_{m \to \infty} \mathbb{P}(\bigcap_{n = K+1}^{K+m} \{X_{n} \neq i\} | X_{K} = j) / \mathbb{P}(X_{0} = i) \end{split}$$

由 (Step 1), $p_{i,i_1} \cdot p_{i_1,i_2} \cdots p_{i_{K-1},j} > 0$, 因此只需证明后面概率的极限也为正,即可证明 $\mathbb{P}_i(T_i = \infty) > 0$. 假设 $(X_n)_{n \geqslant 0} \sim \operatorname{Markov}(\mu, P)$

 $\tau_1 = 0, \tau_2 = K$ 为关于 $(X_n)_{n \ge 0}$ 的停时, 则由 SMP 知

1. 在
$$\tilde{\mathbb{P}}(\cdot) := \mathbb{P}(\cdot|X_K = j)$$
 下, $(X_{K+n})_{n \geq 0} \sim \operatorname{Markov}(\delta_i, P)$

2. 在
$$\mathbb{P}_j(\cdot) := \mathbb{P}(\cdot|X_0 = j)$$
 下, $(X_n)_{n\geqslant 0} \sim \operatorname{Markov}(\delta_j, P)$

发现在测度 $\tilde{\mathbb{P}}(\cdot)$ 下的 $(X_{K+n})_{n\geq 0}$, 与测度 $\mathbb{P}_j(\cdot)$ 下的 $(X_n)_{n\geq 0}$ 遵循同样的有限维分布

$$\mathbb{P}(\bigcap_{n=K+1}^{K+m} \{X_n \neq i\} | X_K = j)$$

$$= \tilde{\mathbb{P}}(X_{K+n} \neq i, 1 \leqslant n \leqslant m)$$

$$\stackrel{\text{SMP}}{=} \mathbb{P}_j(X_n \neq i, 1 \leqslant n \leqslant m) \xrightarrow{m \to \infty} \mathbb{P}_j(\bigcap_{n \geqslant 1} \{X_n \neq i\}) = \mathbb{P}_j(T_i = \infty) = 1 - \rho_{ji} > 0$$

因此 $\mathbb{P}_i(T_i = \infty) > 0$

Corollary 9

 $i \rightarrow j$, i 常返 $\Rightarrow j$ 常返

证明: $i \neq j, i \rightarrow j, i$ 常返,由推论9,知 $\rho_{ji} = 1 > 0$,所以 $j \rightarrow i, i \leftrightarrow j$ $\exists m, n \geq 0$, s.t. $p_{ij}(m) > 0, p_{ji}(n) > 0$ $\forall r \geq 0, p_{jj}(n+r+m) \stackrel{\text{C-K}}{\geqslant} p_{ji}(n) p_{ii}(r) p_{ij}(m)$

两边同时求和

$$\sum_{r\geqslant 0} p_{jj}(n+r+m) \geqslant p_{ji}(n) \left(\sum_{r\geqslant 0} p_{ii}(r)\right) p_{ij}(m) = \infty$$

其中 $p_{ji}(n) > 0, p_{ij}(m) > 0, \sum_{r \geqslant 0} p_{ii}(r) = \infty (i 常返)$

$$\therefore \sum_{r>0} p_{jj}(r) = \infty \quad \Rightarrow j \, \mathring{\pi} \, \mathring{\mathcal{L}} \quad \Box$$

Corollary 10

 $i \leftrightarrow j$, 则 i 常返 $\Leftrightarrow j$ 常返

Definition 45 (集合的不可约)

Definition 46 (链的不可约)

若 S 不可约, 则称链不可约

Theorem 21

若 $C \subseteq S$ 不可约,则 C 中状态要么全是常返的,要么全是暂留的

2.5.3 状态空间分解

Definition 47 (闭集)

 $C \subseteq S$, 若 $i \in C$, $j \notin C \Rightarrow p_{ij} = 0$, 则称 C 为闭集

Problem 11 (作业 6-3)

证明 $C \subseteq S$ 闭集等价于

$$i \in C, i \to j \Rightarrow j \in C \quad (j \notin C \Rightarrow i \nrightarrow j)$$

Example 21

若 $\{i\}$ 闭,则 $\forall j \neq i, p_{ij} = 0 \Leftrightarrow p_{ii} = 1$,称i为吸收态

Theorem 22

每一个有限的不可约闭集都是常返的

证明之前先介绍一个引理

Lemma 10

每一个有限闭集中都至少有一个常返态

(反证法) 设 C 为有限闭集, 非常返的 $\forall i \in C \Rightarrow i$ 暂留 $\Rightarrow \sum_{n \geq 1} p_{ji}(n) < \infty, \forall j \in S$

$$\infty \stackrel{C \not = \mathbb{R}}{>} \sum_{i \in C} \sum_{n \geqslant 1} p_{ji}^{(n)} = \sum_{n \geqslant 1} \sum_{i \in C} p_{ji}^{(n)}$$

这里不是 $i \in S$ 而是 $i \in C$, 所以还要考虑 $i \in C^c$ $\forall i \in C^c, j \in C \stackrel{C \wr l}{\Rightarrow} j \rightarrow i \Rightarrow \forall n \geqslant 0, p_{ii}(n) = 0$

$$\infty > \sum_{n \geqslant 1} \sum_{i \in C} p_{ji}^{(n)} = \sum_{n \geqslant 1} \left(\sum_{i \in S} p_{ji}^{(n)} \right) = \sum_{n \geqslant 1} 1 = \infty$$

矛盾

在一个不可约闭集 C 中, 至少有一个常返态 $i \in C$, 由不可约定义和推论 10, $\forall j \in C, j \leftrightarrow i, j$ 常返

Corollary 11

状态空间 S 有限,则 S 中必存在一个常返态

Theorem 23 (分解定理)

状态空间 S 可分解为

$$S = T + R_1 + R_2 + \cdots$$

其中T中所有状态非常返、 R_r 为常返不可约闭集

证明: (Step 1) 首先把所有暂留态拿出来

$$T := \{j \in S | j$$
暂留}

(Step 2) $i_1 \in S \setminus T \neq \emptyset$ (若 $S \setminus T = \emptyset$, 则在 Step 1 结束)

 i_1 常返, 定义 $R_1 = \{j \in S | j \leftrightarrow i_1\}$

 $R_1 \subseteq S \backslash T$, R_1 常返互通类

(Step 3) $i_2 \in S \setminus (T \cup R_1), R_2 = \{j \in S | i_2 \leftrightarrow j\} \Rightarrow R_2 \subseteq S \setminus (T \cup R_1)$

若 $j \in R_2, j \in R_1 \Rightarrow j \leftrightarrow i_2, j \leftrightarrow i_1 \Rightarrow i_1 \leftrightarrow i_2 \Rightarrow i_2 \in R_1, 矛盾$

(Step 4) 迭代

2.6 平稳分布与特殊例子

$$(X_n)_{n\geqslant 0} \sim \operatorname{Markov}(\mu^{(0)}, P)$$

初始分布 $\mu^{(0)}=(\mu_i^{(0)})_{i\in S}$, 其中 $\mu_i^{(0)}=\mathbb{P}(X_0=i)$ 在 n 时刻的分布, $\mu^{(n)}=(\mu_i^{(n)})_{i\in S}$, 其中 $\mu_i^{(n)}=\mathbb{P}(X_n=i)$

$$\mu^{(n)} = \mu^{(0)} P^n$$

Definition 48 (平稳分布)

称概率分布 $\pi = (\pi_i)_{i \in S}$ 是转移矩阵 P 的平稳分布, 若

$$\pi P = \pi \tag{2.37}$$

注: $\mu^{(n+1)} = \pi P^{n+1} = \pi P \cdot P^n = \pi P^n = \pi P = \pi = \mu^{(0)}$

Problem 12 (作业 6-4)

设 $(X_n) \sim \operatorname{Markov}(\pi, P)$, π 是 P 的平稳分布, 证明: 对固定 $m \geqslant 0$, 有 $(X_{m+n})_{n \geqslant 0} \sim \operatorname{Markov}(\pi, P)$

2.6.1 双随机链 (Doubly Stochastic Chain)

回顾随机矩阵定义15, 现在由行和为 1, 拓展到列和也为 1.

Definition 49

称转移矩阵 $(p_{xy})_{x,y\in S}$ 是双随机的, 若 $\sum_{x\in S} p_{xy} = 1$

Theorem 24

设 $P=(p_{xy})_{x,y\in S}$ 为具有 $N<\infty$ 个状态的马氏链的转移概率矩阵,则均匀分布 $\pi_x=\frac{1}{N},x\in S$ 是 P 的平稳分布 $\Leftrightarrow P$ 双随机

证明: $\forall y \in S, \pi_y = \frac{1}{N}$

$$(\pi P)_y = \sum_{x \in S} \pi_x p_{xy} = \frac{1}{N} \sum_{x \in S} p_{xy}$$

1.
$$P$$
 双随机, $(\pi P)_y = \frac{1}{N} = \pi_y, (\forall y \in S) \Rightarrow \pi P = \pi$

$$2. \ (\pi P)_y = \pi_y, \forall y \in S, \frac{1}{N} \sum_{x \in S} p_{xy} = \frac{1}{N} \Rightarrow \sum_{x \in S} p_{xy} = 1 \Rightarrow P$$
 双随机

2.6.2 细致平衡条件 (Detailed Balance Condition)

Definition 50

称概率分布 π 满足 DBC, 若

$$\pi_x p_{xy} = \pi_y p_{yx} \quad (\forall x, y \in S) \tag{2.38}$$

注: DBC $\rightleftarrows \pi P = \pi$

证明: $\pi P=\pi\Leftrightarrow (\pi P)_y=\pi_y, \forall y\Leftrightarrow \sum_{x\in S}\pi_y p_{yx}\pi_y=\sum_{x\in S}\pi_x p_{xy}, \forall y.$ 因此

$$\sum_{x \neq y} \pi_x p_{xy} = \sum_{x \neq y} \pi_y p_{yx} \tag{2.39}$$

由 (2.38) 可以推出 (2.39), 但反之不然

Example 22 (DBC 反例)

$$S = \{1, 2, 3\}, N = 3$$

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.2 & 0.4 & 0.4 \end{bmatrix}$$

P 双随机, $\pi = (1/3, 1/3, 1/3)$ 是 P 的平稳分布

Claim 4. π 不满足 DBC

反证: π 满足 DBC $\Rightarrow \pi_x p_{xy} = \pi_y p_{yx}$ 与 $p_{12} = 0.5 \neq p_{21} = 0.3$ 矛盾

Example 23 (生灭链)

状态空间 $S = \{l, l+1, \cdots, r-1, r\} \subseteq N_0$, 设 P 满足

- 1. 一步转移不超过 1, 当 $|x-y| \ge 2$ 时, $p_{xy} = 0$
- 2. $p_{x,x+1} = p_x(\forall x < r)$
- 3. $p_{x,x-1} = q_x(\forall x > l)$
- 4. $p_{x,x} = 1 p_x q_x (\forall x \in S)$

问: P 的满足 DBC 的平稳分布 π ? rf.(2.38)

- 1. $|x-y| \ge 2$ H, $p_{xy} = p_{yx} = 0$
- 2. $x = y \, \text{st}, \, p_{xy} = p_{yx}, \, \pi_x = \pi_y$
- 3. y = x + 1 \forall , $(x < r), \pi_x p_{x,x+1} = \pi_{x+1} p_{x+1,x}$

$$\pi_{x+1} = \frac{\pi_x p_{x,x+1}}{p_{x+1,x}} = \pi_x \frac{p_x}{q_{x+1}}$$

$$\pi_{l+n} = \underbrace{\pi_{l} \frac{p_{l}}{q_{l+1}} \frac{p_{l+1}}{q_{l+2}} \cdots \frac{p_{l+n-1}}{q_{l+n}}}_{\pi_{l+1}} \cdots \frac{p_{l+n-1}}{q_{l+n}}$$

$$\Leftrightarrow a_0=1, a_1=\frac{p_l}{q_{l+1}}, a_2=\frac{p_l p_{l+1}}{q_{l+1} q_{l+2}}, \cdots, a_{r-l}=\frac{p_l p_{l+1} \cdots p_{r-1}}{q_{l+1} q_{l+2} \cdots q_r}, \ \mathbb{M} \ \pi=(\pi_l a_0, \pi_l a_1, \cdots, \pi_l a_{r-l})$$

又
$$\sum_{x \in S} \pi_x = 1$$
,则

$$\pi_l \sum_{0 \leqslant n \leqslant r-l} a_n = 1 \Rightarrow \pi_l = \frac{1}{\sum_{0 \leqslant n \leqslant r-l} a_n}$$

记
$$a:=\sum_{0\leqslant n\leqslant r-l}a_n$$
,则 $\pi=(\frac{a_0}{a},\frac{a_1}{a},\cdots,\frac{a_{r-l}}{a})$

2.6.3 可逆性

Theorem 25

设 $(X_n)_{n\geqslant 0} \sim \operatorname{Markov}(\pi, P)$, 其中 π 是 P 的平稳分布. 固定 n, 令 $Y_m := X_{n-m} (0 \leqslant m \leqslant n)$, 则

$$(Y_m)_{0 \leqslant m \leqslant n} \sim \operatorname{Markov}(\pi, \hat{P})$$

其中
$$\hat{P} = (\hat{p}_{ij})_{i,j \in S}$$

$$\hat{p}_{ij} = \frac{\pi_j p_{ji}}{\pi_i}$$

这里 \hat{p}_{ij} 称为对偶 (dual) 转移概率

证明: 先验证 $(Y_m)_{0 \leqslant m \leqslant n} \sim \operatorname{Markov}(\pi, \hat{P})$, 用定义/有限维分布用定义验证

(Step 1) 验证 \hat{P} 是随机矩阵

1. 元素非负 $\hat{p}_{ij} \ge 0$

2. $\sum_{j \in S} \hat{p}_{ij} = \sum_{j \in S} \frac{\pi_j \hat{p}_{ij}}{\pi_i} = \frac{\pi_i}{\pi_i} = 1$, rf.(2.37)

(Step 2) 验证初始分布. 由 (2.37), 初始分布 $Y_0 = X_n \sim \pi$

(Step 3) 验证马氏性

$$\begin{split} \mathbb{P}(Y_{m+1} = i_{m+1} | Y_m = i_m, \cdots, Y_1 = i_1, Y_0 = i_0) &= \frac{\mathbb{P}(Y_{m+1} = i_{m+1}, \cdots, Y_0 = i_0)}{\mathbb{P}(Y_m = i_m, \cdots, Y_0 = i_0)} \\ &= \frac{\mathbb{P}(X_{n-m-1} = i_{m+1}, \cdots, X_{n-1} = i_1, X_n = i_0)}{\mathbb{P}(X_{n-m} = i_m, \cdots, X_n = i_0)} \\ &= \frac{\pi_{i_{m+1}} P_{i_{m+1}, i_m} \cdots P_{i_1, i_0}}{\pi_{i_m} P_{i_m, i_{m-1}} \cdots P_{i_1, i_0}} \\ &= \frac{\pi_{i_{m+1}} P_{i_{m+1}, i_m}}{\pi_{i_m}} = \hat{p}_{i_m, i_{m+1}} \quad \Box \end{split}$$

Corollary 12 (可逆性)

若 P 的平稳分布为 π , 满足 DBC 条件(2.38), 则 $\hat{P} = P$. 即原来的链 $\stackrel{(d)}{=}$ 逆向链 (记号 $\stackrel{(d)}{=}$ 表示同分布)

证明:

$$\hat{p}_{ij} = \frac{\pi_j p_{ji}}{\pi_i} \stackrel{\text{DBC}}{=} \frac{\pi_i p_{ij}}{\pi_i} = p_{ij} \quad \Box$$

2.6.4 求 P 的平稳分布(若唯一)

$$\begin{cases} \pi P = \pi \\ \sum_{x} \pi_{x} = 1 (\pi_{x} \ge 0, \forall x) \end{cases} \Rightarrow \begin{cases} \pi (P - \mathbb{I}) = 0 \\ \sum_{x} \pi_{x} = 1 \end{cases}$$

Example 1.19 (Brand Preference (Continuation of 1.5)).

1 2 3

1.8.1.1

2 .2 .6 .2

3 .3 .4

Example 24 (Durrett, 1.19)

$$P - \mathbb{I} = \begin{bmatrix} -0.2 & 1 & 1 \\ 0.2 & -0.4 & 0.2 \\ 0.3 & 0.3 & -0.6 \end{bmatrix}$$

$$\begin{cases} \pi P = \pi \\ \sum_{x} \pi_{x} = 1(\pi_{x} \geqslant 0, \forall x) \end{cases} \Rightarrow \begin{cases} -0.2\pi_{1} + 0.2\pi_{2} + 0.3\pi_{3} = 0 \\ \pi_{1} - 0.4\pi_{2} + 0.3\pi_{3} = 0 \\ \pi_{1} + 0.2\pi_{2} - 0.6\pi_{3} = 0 \\ \pi_{1} + \pi_{2} + \pi_{3} = 1 \end{cases}$$

前三个等式是线性相关的, 删去一个等式

$$A = \begin{bmatrix} -0.2 & 1 & 1\\ 0.2 & -0.4 & 1\\ 0.3 & 0.3 & 1 \end{bmatrix}, \quad b = [0, 0, 1]$$

 $\pi A = b \Rightarrow \pi = bA^{-1}$, PA^{-1} 的最后一行

2.7 极限行为与平稳分布的存在唯一性

研究 $\lim_{n \to \infty} p_{ij}^{(n)}$

1. j 暂留 $\Rightarrow \sum_n p_{ij}^{(n)} < \infty, \forall i \in S \Rightarrow \lim_{n \to \infty} p_{ij}^{(n)} = 0, \forall i \in S$. 下面可以把注意力放在常返上

2. $\lim_{n\to\infty} p_{ij}^{(n)}$ 不存在的反例

$$S = \{1, 2\}, P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, P^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$P^{2n} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, P^{2n+1} = P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $p_{ij}^{(2n)} \neq p_{ij}^{(2n+1)}, \forall i,j \in S,$ 所以 $p_{ij}^{(n)}$ 不收敛

Definition 51 (周期)

令 $I_x:=\{n\geqslant 1|P_{xx}^{(n)}>0\},$ 定义 x 的周期 $d(x)=\gcd(I_x)$

- 1. d(x) > 1, 称 x 周期的
- 2. d(x) = 1, 称 x 非周期的
- 3. $I_x = \emptyset$, 称 x 周期为 ∞

Definition 52

称链是周期的, 若所有状态是周期的

Theorem 26 (收敛定理)

马氏链不可约, 非周期, 且存在平稳分布 π, 则

$$\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j \quad (\forall i, j \in S)$$

注:找到周期不是件容易的事,我们通常讨论非周期的链

Problem 13 (作用 7-1)

设 S 有限, $\exists i \in S$, s.t. $\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j (\forall j \in S)$. 证明: $\pi = (\pi_j)_{j \in S}$ 是 $P = (p_{ij})_{i,j \in S}$ 的平稳分布

Theorem 27 (渐进频率)

马氏链不可约, 常返, 则

$$\lim_{n \to \infty} \frac{N(y)}{n} = \frac{1}{\mathbb{E}_y T_y}$$

注:

- 1. $N_n(y) = \sum_{k=1}^n \mathbb{I}_{\{X_k = y\}}(n$ 时刻前, 访问 y 的总次数)
- $2. \frac{N_n(y)}{n}, n$ 时刻前, 访问 y 的频率/时间比例, 因此 $\lim_{n \to \infty} \frac{N(y)}{n}$ 为在状态 y 上花费的时间比例的极限

3.
$$\mathbb{E}_y T_y = \begin{cases} < \infty & \text{y正常返} \\ \infty & \text{y暂留/零常返} \end{cases}$$
, rf.37

Theorem 28

马氏链不可约

1. (平稳分布唯一性, Durrett, Thm 1.21) 若平稳分布存在, 则

$$\pi_y = \frac{1}{\mathbb{E}_y T_y}$$

则π唯一

2. (平稳测度存在性) 若马氏链常返, 则 \exists 平稳测度, $\mu = (\mu_x)_{x \in S}$, 且 $\mu_x > 0, \forall x$

注: $\mu = (\mu_x)_{x \in S}$ 是一个平稳测度

- 1. (测度) $\mu_x \geqslant 0, \forall x \in S$
- 2. $\mu^{P} = \mu$

相对于上面的大定理, 下面的推论对我们更有用

Corollary 13

马氏链具有有限状态, 不可约, 则

- 1. 存在唯一平稳分布 $\pi=(\pi_x)_{x\in S},$ 且 $\pi_x=\frac{1}{\mathbb{E}_xT_x}>0, \forall x\in S$
- 2. $\lim_{n\to\infty} \frac{N_n(y)}{n} = \frac{1}{\mathbb{E}_x T_x} = \pi_x$

证明:

- 1. S 有限不可约, 闭集 \Rightarrow 不可约, 常返
 - (a) 由定理28(2) 知,存在 $\mu = (\mu_x)_{x \in S}, \mu_x \geqslant 0, \mu P = \mu$. 令 $\pi_x = \frac{\mu_x}{\sum_{x \in S} \mu_x}$ (正则化 μ), $\pi_x > 0$,且 $\pi P = \frac{1}{\sum_{x \in S} \mu_x} \mu P = \frac{1}{\sum_{x \in S} \mu_x} \mu = \pi$
 - (b) 由定理28(1) 知, π 唯一且 $\pi_x = \frac{1}{\mathbb{E}_x T_x}$
- 2. 由定理²⁷ □

参考文献

- [1] 强马氏性 v2. 03 2025. [Link].
- [2] Rick Durrett. Essentials of Stochastic Processes. 01 1999. doi:10.1007/978-1-4614-3615-7.
- [3] Geoffrey Grimmett and David Stirzaker. <u>Probability and random processes</u>. Oxford University Press, Oxford; New York. doi:10.1017/mag.2022.154.
- [4] Sidney I. Resnick. Adventures in stochastic processes. Birkhauser Verlag, CHE, 1992. [Link].
- [5] 菲赫金哥尔茨. 微积分学教程, volume 2. 高等教育出版社, 北京, 8 edition, 2006.