Kvantno masinsko ucenje

Milan Bojic

Jun 2022

Sadrzaj

1	Kvantno racunarstvo													3						
	1.1	Osnovni pojmovi																		3
	1.2	Kvantno racunarstvo																		5
	1.3	Kvantna inforamcija																		٦

1 Kvantno racunarstvo

Pre nego sto se pocne pricati o Kvantnom masinskom ucenju, treba objasniti neki osnovni pojmovi da bi lakse razumeli ostatak rada

1.1 Osnovni pojmovi

Potrebni pojmovi su:

- Kubit (eng. Qubit)
- Kvantna kola (eng. Quantum Gates)
- Kvantna uvezanost (eng. Quantum entanglement)
- Kvantan memorija, Kvantni registri

Kubit

Kubit (eng. Qubit) je najmanja jedinica informacije u kvantnom računarstvu, slično bit-u u klasičnom računarstvu. Razlika od bita jeste u tome što kubit pored stanja 1 i 0, može da se nalazi i u superpoziciji između oba. Oni se mogu predstaviti formulom (koristeci "bra-ket" notaciju):

$$\langle \gamma \rangle = \alpha \langle 0 \rangle + \beta \langle 1 \rangle$$

Ovde su $\langle 0 \rangle$ i $\langle 1 \rangle$ zapravo stanja kao i kod klasičnog bita, a α i β su kompleksni brojevi koji predstavljaju aplitude zadatih stanja i za njih važi:

$$|\alpha|^2 + |\beta|^2 = 1$$

Posto stanje kubita ima dva stepena slobode sto dovodi do toga da amplitude se mogu zapisati kao:

$$\alpha = \cos\frac{\Theta}{2}$$

$$\beta = e^{i\phi} \sin \frac{\Theta}{2}$$

Takodje mozemo da vidimo da je $|\alpha|^2$ verovatnoca da se kubit nalazi u stanju 0, isto vazi i za $|\beta|^2$ i 1. Saznanje o tomo u kom stanju se nalazi kubit ce se dobiti merenjem kubita, tade ce da kubit izadje iz superpozicije i "pasce" u

stanje 1 ili stanje 0. U tom slucaku kubit ce imati ponasanje kao i obican bit, ali ovako gubimo predjasnje kvantno stanje kubita. U fizičkom svetu kubit se moze predstaviti kao polarizovani fotoni, pre cemu se dva stanje se uzimaju kao vertikalna i horizontalna polarizacija.

Kvantna kapija

Kvantna kapije (eng. Quantum Gates) su logički predstavljaju matricama i oni rade na određenom broju kubita. Matrice su unitarne sa oblikom $2^n \times 2^n$, gde je n broj qubita na kojim radimo . Neke od poznatih kola su: Hademardovo kolo (stavalja kubit u superpoziciju), bit flip kolo (zamenjuje aplitude na kubitu), ali nas najviše zanima rotaciono kolo:

$$R = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix}$$

Ovo kolo rotira kubite u prostoru, odnosno menja njihove amplitude za Θ radiana.

Kvantna uvezanost

Kvantna uvezanost (eng. Quantum entanglement) je fizički pojam gde su dva ,ili više, kubita povezana tako da zajedno prave novo kvantno stanje. U čistim stanjima oni su matematički zapravo proizvodi tenzora amplituda:

$$\langle \gamma \rangle \otimes \langle \delta \rangle = \alpha_1 \alpha_2 \langle 00 \rangle + \alpha_1 \beta_2 \langle 01 \rangle + \beta_1 \alpha_2 \langle 10 \rangle + \beta_1 \beta_2 \langle 11 \rangle$$

I ovako napisano kvantno stanje se moze razdvojiti na dva kubita. Ali postoje i kvanta stanja koja se ne mogu razdvojiti npr.

$$\frac{1}{\sqrt{2}} \langle 00 \rangle + \frac{1}{\sqrt{2}} \langle 11 \rangle$$

Zanimljiva stvar kod uvazanih kubita jeste u tome što dele informacije. Ako bi jedan kubit iz para odneli u neko veoma daleko mesto (na primer druga galaksija), i tamo bi ga izmerili mi bi smo dobili 0 ili 1, međutim drugi kubit bi takođe upao u određeno stanje i to u istom trenutni kad smo izmerili prvi daleki kubit. Ovo je zapravno gde se nalazi glavan različitost između klasičnog i kvantnog računarstva, ova pojava ne postoji u klasičnom računarstvu i ne može se "lako" simulirati.

Kvantni registri

Kvantni registri se sastoje od kvantnog stanja od m uvezanih kubita i moze da se predstavlja do 2^m vrednosti stanja istovremeno. Kvantan memorija su uredjaji koji cuvaju kvantna stanja fotona, bez da unistavaju kvanten informacije koja se nalazi u fotonu. Ovakva memorija zahteva koherentni sistem materije, jer bi u suprotnom kvantna informacija unitar uredjaja bila izgubljena zbog nekoherentnosti.

1.2 Kvantno racunarstvo

Kvantno racunarstvo je vrsta racunarstva gde se koriste kolekcije fizickih osobina kvantne mehanike kao sto su superpozicija i kvantna uvezanost, tako da se izvrsi neka kalkulacija. Uredjaja koji izvrsava kvante kalkulacije zovu se **kvantni racunari**. Kvantni racunari se sastoje od kvantnih kola i elemntarnih kvantnih kapija koje sluze za prenosenje i manipulisanje kvantnih inforamcija. [1]

Jedna od glavnih primena Kvantnih racunara jeste simulacija fizickih sistema, bili oni kvantne ili klasince prirode.

1.3 Kvantna inforamcija

Kvantan informacija je informacija o stanju kvantnog sistema. O njihovim svojstvima bavi se **kvantna teorija informacije**. Takodje, kvantan informacija mogu izmeriti na isti nacin kao i klasicna informacija koristeci se Šenononvoj metodi. Odnosno, postoji jednistveno merilo to jest funkcija nad kvantnim stanjem, koje je funkcija verovatnoce, kontinuiteta i sumiranja.[2] Ova funkcija se zove **von Neumann entropy** i za neki ulazni kubit ϱ postoji ekvivalent u **Shannon entropy** H za neku slucajnu promenljivu X

$$S(\rho) = H(X)$$

Jos jedna od merila za kvantno stanje jeste merenje "istinitosti" (eng. Fidelity) izmedju dva kvantna stanja $\langle \phi \rangle$ i $\langle psi \rangle$. Neka je F funkcija koja meri osobinu, ona meri verovatnocu da merenjem stanja $\langle \phi \rangle$ dobijemo stanje $\langle \psi \rangle$. Izlaz funkcije je izmedju 0 i 1, gde ako je izlaz 0 onda su dva stanja ortogonalna jedna od drugog, a ako je izlaz 1 onda su dva stanja jednaka.[2]

Odnost kvantne i klasicne informacije

References

- [1] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.
- [2] Vlatko Vedral. Introduction to Quantum Information Science. Oxford University Press, 2006.