Machine Learning Foundations

(機器學習基石)

Lecture 2: Learning to Answer Yes/No, Extended

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Handling $sign(\cdot) = 0$

Perceptron Learning Algorithm

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

When $\mathbf{w}_0 = \mathbf{0}$, technically sign $(\mathbf{w}_0^T \mathbf{x}_{n(0)}) = 0$, shall we update?

- convention -1: sign(0) = -1 (update if $y_{n(0)} = +1$)
- convention +1: sign(0) = +1 (update if $y_{n(0)} = +1$)
- convention 0: sign(0) = 0 (always update)
- convention r: sign(0) = random flip (50% chance of update)

—usually does not matter much, as long as w₁ often becomes non-zero

 $\mathbf{w}_t^T \mathbf{x}_{n(t)} = 0$ rarely happens in practice

Updating *w*₀

Perceptron Learning Algorithm

For t = 0, 1, ...

- 1 find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$: sign $(\mathbf{w}_t^\mathsf{T} \mathbf{x}_{n(t)}) \neq y_{n(t)}$
- (try to) correct the mistake by

$$W_{t+1,0}$$
 $\begin{bmatrix} W_{t,0} \\ W_{t+1} \end{bmatrix}$ $\begin{bmatrix} X_0 (= \text{what?}) \\ X_{0}(= \text{what?}) \end{bmatrix}$

 $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}, \text{i.e.,}$

$$\begin{bmatrix} w_{t+1,0} \\ w_{t+1,1} \\ \dots \\ w_{t+1,d} \end{bmatrix} = \begin{bmatrix} w_{t,0} \\ w_{t,1} \\ \dots \\ w_{t,d} \end{bmatrix} + y_{n(t)} \begin{bmatrix} x_0 (= \text{what?}) \\ x_{n(t),1} \\ \dots \\ x_{n(t),d} \end{bmatrix}$$

... until no more mistakes return last w (called \mathbf{w}_{PLA}) as g

each update changes $w_{t,0}$ by $y_{n(t)}$

PLA Mistake Bound

inner product grows fast

$$\mathbf{w}_{t}^{T}\mathbf{w}_{t+1} \geq \mathbf{w}_{t}^{T}\mathbf{w}_{t} + \underbrace{\min_{n} y_{n}\mathbf{w}_{t}^{T}\mathbf{x}_{n}}_{\rho}$$

length² grows slowly

$$\|\mathbf{w}_{t+1}\|^2 \le \|\mathbf{w}_t\|^2 + \underbrace{\max_{n} \|\mathbf{x}_n\|^2}_{B^2}$$

Magic Chain!

$$\begin{array}{cccc} \mathbf{w}_{t}^{T}\mathbf{w}_{1} & \geq & \mathbf{w}_{t}^{T}\mathbf{w}_{0} + \rho \\ \mathbf{w}_{t}^{T}\mathbf{w}_{2} & \geq & \mathbf{w}_{t}^{T}\mathbf{w}_{1} + \rho \\ \mathbf{w}_{t}^{T}\mathbf{w}_{3} & \geq & \mathbf{w}_{t}^{T}\mathbf{w}_{2} + \rho \\ & \cdots \end{array}$$

 $\mathbf{w}_{t}^{T}\mathbf{w}_{T} > \mathbf{w}_{t}^{T}\mathbf{w}_{T-1} + \rho$

Magic Chain!

$$\begin{aligned} \|\mathbf{w}_{1}\|^{2} & \leq & \|\mathbf{w}_{0}\|^{2} + R^{2} \\ \|\mathbf{w}_{2}\|^{2} & \leq & \|\mathbf{w}_{1}\|^{2} + R^{2} \\ \|\mathbf{w}_{3}\|^{2} & \leq & \|\mathbf{w}_{2}\|^{2} + R^{2} \\ & \cdots \\ \|\mathbf{w}_{T}\|^{2} & \leq & \|\mathbf{w}_{T-1}\|^{2} + R^{2} \end{aligned}$$

start from $\boldsymbol{w}_0 = \boldsymbol{0},$ after T mistake corrections,

$$1 \ge \frac{\mathbf{w}_{f}^{T}}{\|\mathbf{w}_{f}\|} \frac{\mathbf{w}_{T}}{\|\mathbf{w}_{T}\|} \ge \frac{T\rho}{1\sqrt{T}R} \Longrightarrow T \le \left(\frac{R}{\rho}\right)^{2}$$