YaleNUSCollege

YSC2239 Lecture 11

Recap

- Center and Spread
- Central Limit Theorem (CLT)

Python command: np.std, np.average

Today's class

- Linear regression
- Method of least squares
- Residuals

• Reading: Chapter 15

Linear Regression

Linear Regression

A statement about x and y pairs

- Measured in standard units
- Describing the deviation of x from 0 (the average of x's)
- And the deviation of y from 0 (the average of y's)

On average, y deviates from 0 less than x deviates from 0

Regression Line $y_{(su)} = r \times x_{(su)}$ Not true for all points — a statement about averages

Slope & Intercept

Regression Line Equation

In original units, the regression line has this equation:

$$\frac{\text{estimate of } y - \text{average of } y}{\text{SD of } y} = r \times \frac{\text{the given } x - \text{average of } x}{\text{SD of } x}$$

estimated y in standard units

x in standard units

Lines can be expressed by slope & intercept

$$y = \text{slope} \times x + \text{intercept}$$

Regression Line

Slope and Intercept

estimate of y = slope * x + intercept

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

Least Squares

Error in Estimation

- error = actual value estimate
- Typically, some errors are positive and some negative
- To measure the rough size of the errors
 - square the errors to eliminate cancellation
 - take the mean of the squared errors
 - take the square root to fix the units
 - root mean square error (rmse)

Least Squares Line

- Minimizes the root mean squared error (rmse) among all lines
- Equivalently, minimizes the mean squared error (mse) among all lines
- Names:
 - "Best fit" line
 - Least squares line
 - Regression line

Numerical Optimization

- Numerical minimization is approximate but effective
- Lots of machine learning uses numerical minimization
- If the function mse (a, b) returns the mse of estimation using the line "estimate = ax + b",
 - \circ then minimize (mse) returns array [a₀, b₀]
 - a₀ is the slope and b₀ the intercept of the line that minimizes the mse among lines with arbitrary slope a and arbitrary intercept b (that is, among all lines)

Regression Diagnostics

Residuals

- Error in regression estimate
- One residual corresponding to each point (x, y)
- residual
 - = observed y regression estimate of y
 - = observed y height of regression line at x
 - = vertical distance between the point and the best line

Residual Plot

A scatter diagram of residuals

- Should look like an unassociated blob for linear relations
- But will show patterns for non-linear relations
- Used to check whether linear regression is appropriate
- Look for curves, trends, changes in spread, outliers, or any other patterns

Properties of residuals

- Residuals from a linear regression always have
 - Zero mean
 - (so rmse = SD of residuals)
 - Zero correlation with x
 - Zero correlation with the fitted values

- These are all true no matter what the data look like
 - Just like deviations from mean are zero on average

A Measure of Clustering

Correlation, Revisited

 "The correlation coefficient measures how clustered the points are about a straight line."

We can now quantify this statement.

SD of Fitted Values

SD of fitted values
 ----- = |r|
 SD of y

• SD of fitted values = |r| * (SD of y)

Variance of Fitted Values

- Variance = Square of the SD= Mean Square of the Deviations
- Variance has weird units, but good math properties
- Variance of fitted values
 ----- = r^2 Variance of y

A Variance Decomposition

By definition,

y = fitted values + residuals

Tempting (but wrong) to think that:

SD(y) = SD(fitted values) + SD(residuals)

But it is true that:

Var(y) = Var(fitted values) + Var(residuals)

(a result of the Pythagorean theorem!)

A Variance Decomposition

Var(y) = Var(fitted values) + Var(residuals)

```
    Variance of fitted values
    ----- = r²
    Variance of y
```

• Variance of residuals
----- = $1 - r^2$ Variance of y

Residual Average and SD

- The average of residuals is always 0
- Variance of residuals

Variance of
$$y$$
 = 1 - r^2

• SD of residuals = $\sqrt{(1-r^2)}$ SD of y

End of midterm coverage

To-do

Assignment 5