NUMBER THEORY

4.1, 4.3

4.1 Divisibility and Modular Arithmetic

DIVISION ALGORITHM

 The quotient remainder theorem states that when an integer is divided by an integer we get one remainder and quotient.

 The value of remainder will either be 0 or less than to number we are divided with.

THEOREM (Quotient-Remainder Theorem)

 Given any integer n and a positive integer d, there exist unique integers q and r such that

$$n = d \cdot q + r$$

where
 $0 \le r < d$.

- What is the quotient and remainder when 54 is divided by 4?
- n = 54 and we divide it with 4 i.e. d = 4

$$n = d \cdot q + r$$

54 = 4 · 13 + 2;

Hence,

Quotient = 13 and Remainder = 2

- What is the quotient and remainder when 11 is divided by 3?
- n = -11 and we divide it with 1 i.e. d = 3

$$n = d \cdot q + r$$

- 11 = 3 \cdot (-4) + 1;

Hence,

Quotient = - 4 and Remainder = 1

- What is the quotient and remainder when 54 is divided by 4?
- n = -54 and we divide it with 4 i.e. d = 4

$$n = d \cdot q + r$$

- 54 = 4 \cdot (- 14) + 2;

Hence,

Quotient = - 14 and Remainder = 2

- What is the quotient and remainder when 54 is divided by 70?
- If we take n = 54 and we divide it with 70 i.e. d = 70
 Here,

divisor > number

$$n = d \cdot q + r$$

 $54 = 70 \cdot (0) + 54$;

Hence,

Quotient = 0 and Remainder = 54

Divisibility and modular arithmetic

In many applications, we only care about the remainder when an integer is divided by a specific positive integer.

Example: On a 12-hour clock, what time is it when it is 52 hours after 11:00?

Divisibility and modular arithmetic

In many applications, we only care about the remainder when an integer is divided by a specific positive integer.

Example: On a 12-hour clock, what time is it when it is 52 hours after 11:00?

Answer: $52 \text{ mod } 12 = 4 \Rightarrow 11:00 + 4 \text{ hrs} = 15:00$

⇒ 15:00 **mod**

12 = 3:00

Example: What day of the week will it be

100 days from today?

Answer:

Divisibility and modular arithmetic

In many applications, we only care about the remainder when an integer is divided by a specific positive integer.

Example: On a 12-hour clock, what time is it when it is 52 hours after 11:00?

Answer: $52 \text{ mod } 12 = 4 \Rightarrow 11:00 + 4 \text{ hrs} = 15:00$

 \Rightarrow 15:00 **mod**

12 = 3:00

Example: What day of the week will it be

100 days from today?

Answer: $100 \mod 7 = 2$

Congruence Relation

Definition: If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a-b.

- The notation $a \equiv b \pmod{m}$ says that a is congruent to b modulo m.
- We say that $a \equiv b \pmod{m}$ is a congruence and that m is its modulus.
- Two integers are congruent mod m if and only if they have the same remainder when divided by m.
- If a is not congruent to b modulo m, we write $a \not\equiv b \pmod{m}$

Congruence Relation

Example: Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6.

Solution:

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12.
- $24 \not\equiv 14 \pmod{6}$ since 6 divides 24 14 = 10 is not divisible by 6.

Examine that 38 mod 5 = 3 and 13 mod 5 = 3, then it can be written that $38 \equiv 13 \pmod{5}$.

Pronounce: 38 is congruent with 13 in modulo 5.

Congruence examples

Example:

- $17 \equiv 2 \pmod{3}$ → 3 divides 17-2 = 15 without remainder
- $= -7 = 15 \pmod{11}$ → 11 divides -7-15 = -22 without remainder
- $12 \not\equiv 2 \pmod{7}$ → 7 cannot divide 12-2 = 10
- $-7 \not\equiv 15 \pmod{3}$ → 3 cannot divide -7-15 = -22

Congruence Theorem 1 & 2

1- Congruence and Divisibility

Suppose a and b are integers and m > 0. If m divides a - b without remainder, then $a \equiv b$ (mod m).

OR

a≡b(modn) if and only if n|a-b

2- Theorem 2: Congruence and Equality

 $a \equiv b \pmod{m}$ can be written as a = b + km (k integer).

1-
$$3x \equiv 5 \pmod{7}$$

 $3x = 5 + 7k$

theorem2:a=b+kn for some integer k divide with 3 on both sides

$$x = (5+7K)/3$$

find min value of k of 3 multiple

$$= (5+7.1)/3$$

$$= 12/3$$

$$x=4$$

Solve the following linear congruence equations.

- (a) $3x \equiv 5 \pmod{7}$ Answer: x = 4 since $3 \cdot 4 = 12 = 5 \pmod{7}$.
- (b) $5x \equiv 4 \pmod{7}$ Answer: x = 5 since $5 \cdot 5 = 25 = 4 \pmod{7}$.
- (c) $2x \equiv 1 \pmod{7}$ Answer: x = 4 since $2 \cdot 1 = 8 = 1 \pmod{7}$.
- (d) $6x \equiv 3 \pmod{7}$ Answer: x = 4 since $6 \cdot 4 = 24 = 3 \pmod{7}$.

Theorem:3

 $a \mod m = r \mod n$ can also be written as $a \equiv r \pmod m$.

Example:

 \blacksquare 23 mod 5 = 3

 \rightarrow 23 \equiv 3 (mod 5)

■ 14 mod 8 = 6

- \rightarrow 14 \equiv 6 (mod 8)
- $-41 \mod 9 = 4$
- \rightarrow -41 \equiv 4 (mod 9)
- $-39 \mod 13 = 0$
- \rightarrow -39 \equiv 0 (mod 13)

Theorem:4 & 5

Congruence and Arithmetic:

Suppose *m* is a positive integer.

If $a \equiv b \pmod{m}$ and c is an arbitrary integer, then

- $(a+c) \equiv (b+c) \pmod{m}$
- $ac \equiv bc \pmod{m}$
- $a^p \equiv b^p \pmod{m}$, p non-negative

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

- $(a+c) \equiv (b+d) \pmod{m}$
- $ac \equiv bd \pmod{m}$

Therorem:4 & 5 Example

Example:

Suppose $17 \equiv 2 \pmod{3}$ and $10 \equiv 4 \pmod{3}$, then according to the Congruence Theorem,

$$17 + 5 \equiv 2 + 5 \pmod{3} \Leftrightarrow 22 \equiv 7 \pmod{3}$$

■
$$17.5 \equiv 2.5 \pmod{3}$$
 \Leftrightarrow $85 \equiv 10 \pmod{3}$

$$17 + 10 \equiv 2 + 4 \pmod{3} \Leftrightarrow 27 \equiv 6 \pmod{3}$$

■
$$17.10 \equiv 2.4 \pmod{3}$$
 \Leftrightarrow $170 \equiv 8 \pmod{3}$

Example: Because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, it follows from Theorem 5 that

$$18 = 7 + 11 \equiv 2 + 1 = 3 \pmod{5}$$

 $77 = 7 \ 11 \equiv 2 + 1 = 3 \pmod{5}$

NOTE:

Dividing a congruence by an integer does *not* always produce a valid congruence.

Example: The congruence $14 \equiv 8 \pmod{6}$ holds. But dividing both sides by 2 does not produce a valid congruence since 14/2 = 7 and 8/2 = 4, but $7 \not\equiv 4 \pmod{6}$.

Arithmetic Modulo m

Definitions: Let \mathbb{Z}_m be the set of nonnegative integers less than $m: \{0,1,...,m-1\}$

- The operation $+_m$ is defined as $a +_m b = (a + b) \mod m$. This is addition modulo m.
- The operation \cdot_m is defined as $a \cdot_m b = (ab) \mod m$. This is multiplication modulo m.
- Using these operations is said to be doing arithmetic modulo m.

Example: Find $7 +_{11} 9$ and $7 \cdot_{11} 9$.

Solution: Using the definitions above:

- $7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$
- $7 \cdot_{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$

4.3 Primes and Greatest Common Divisor

Primes Numbers

A positive integer p (p > 1) is called a **prime number** if its divisors are only 1 and p.

For example, 23 is a prime number, because it can only be divided by 1 and 23 to get no remainder.

Numbers which are not prime numbers are called composite numbers.

For example, 20 is a composite number, because 20 is divisible by 2, 4, 5, and 10, besides by 1 and 20 itself.

Relatively Prime

Two integers a and b are said to be **relatively prime** if they do not have any common factors other than 1, or, GCD(a,b) = 1.

Example:

- 20 and 3 are <u>relatively prime</u>, since GCD(20,3) = 1.
- 7 and 11 are <u>relatively prime</u>, since GCD(7,11) = 1.
- 20 and 5 are not relatively prime, since GCD(20,5) = 5 ≠ 1.

If a and b are relatively prime, then there exist integers m and n such that ma + nb = 1.

Example:

- 20 and 3 are <u>relatively prime</u> because GCD(20,3) = 1, so that it can be written that $2 \cdot 20 + (-13) \cdot 3 = 1$ (m = 2, n = -13).
- 20 and 5 are <u>not relatively prime</u> because GCD(20,5) \neq 1, and thus 20 and 5 cannot be written in the form of $m \cdot 20 + n \cdot 5 = 1$.

Greatest Common Divisor

Suppose a and b are non-zero integers. The **Greatest Common Divisor** (**GCD**) of a and b is the greatest possible integer d such that $d \mid a$ and $d \mid b$. In this case, it can be written as GCD(a,b) = d.

Example: Determine GCD(45,36)!

Divisors of 45: 1, 3, 5, 9, 15, 45.

Divisors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36.

Common divisors of 45 and 36 are 1, 3, 9.

For the enumeration above, it can be concluded that GCD(45,36) = 9.

Greatest Common Divisor and Least Common Multiple GCD, LCM

BY USING PRIME FACTORIZATION:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}$$

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

Example:
$$120 = 2^3 \cdot 3 \cdot 5$$
 $500 = 2^2 \cdot 5^3$ $gcd(120,500) = 2^{min(3,2)} \cdot 3^{min(1,0)} \cdot 5^{min(1,3)} = 2^2 \cdot 3^0 \cdot 5^1 = 20$

Example: $lcm(2^33^57^2, 2^43^3) = 2^{max(3,4)} 3^{max(5,3)} 7^{max(2,0)} = 2^4 3^5 7^2$

The greatest common divisor and the least common multiple of two integers are related by:

Theorem 5: Let a and b be positive integers. Then $ab = \gcd(a,b) \cdot \operatorname{lcm}(a,b)$

Greatest Common Divisor

Suppose m and n are integer, n > 0, such that m = nq + r, $0 \le r < n$. Then GCD(m,n) = GCD(n,r).

Example:

Take the value m = 66, n = 18, 66 = 18.3 + 12 then GCD(66,18) = GCD(18,12) = 6.

Linear Congruence

The linear congruence is in the form of:

$$ax \equiv b \pmod{m}$$
,

where m > 0, a and b are arbitrary integers, and x is any integer.

The solution can be found in the way:

$$ax = b + km \rightarrow x = (b + km) / a$$

Try each value of k = 0, 1, 2, ... and k = -1, -2, ... that delivers integer value for x.

Linear Congruence example

Example:

Determine the solutions for $4x \equiv 3 \pmod{9}$!

$$4x \equiv 3 \pmod{9} \Rightarrow x = (3 + k \cdot 9) / 4$$

 $k = 0 \Rightarrow x = (3 + 0 \cdot 9) / 4 = 3 / 4 \Rightarrow \text{not a solution}$
 $k = 1 \Rightarrow x = (3 + 1 \cdot 9) / 4 = 3 \Rightarrow \text{a solution}$
 $k = 2 \Rightarrow x = (3 + 2 \cdot 9) / 4 = 21 / 4 \Rightarrow \text{not a solution}$
 $k = 3, k = 4 \Rightarrow \text{no solution}$
 $k = 5 \Rightarrow x = (3 + 5 \cdot 9) / 4 = 12 \Rightarrow \text{a solution}$
...
 $k = -1 \Rightarrow x = (3 - 1 \cdot 9) / 4 = -6 / 4 \Rightarrow \text{not a solution}$
 $k = -2 \Rightarrow x = (3 - 2 \cdot 9) / 4 = -15 / 4 \Rightarrow \text{not a solution}$
 $k = -3 \Rightarrow x = (3 - 3 \cdot 9) / 4 = -6 \Rightarrow \text{a solution}$
...
 $k = -7 \Rightarrow x = (3 - 7 \cdot 9) / 4 = -15 \Rightarrow \text{a solution}$

The set of solutions is: $\{3, 12, ..., -6, -15, ...\}$.

Linear Congruence cont..

Example:

Determine the solutions for $2x \equiv 3 \pmod{4}$!

$$2x \equiv 3 \pmod{4} \rightarrow x = (3 + k \cdot 4) / 2$$

Because $k\cdot 4$ is always an even number, then $3+k\cdot 4$ will always be an odd number.

If an odd number is divided by 2, then the result will be a decimal number (never be an integer).

Thus, there is **no value** of x that can be the solution of $2x \equiv 3 \pmod{4}$.

Euclidean Algorithm

The Euclidean algorithm expressed in pseudocode is:

Euclidean algorithm

The Euclidian algorithm is an **efficient** method for computing the greatest common divisor of two integers. It is based on the idea that gcd(a,b) is equal to gcd(a,c) when a > b and c is the remainder when a is divided by b.

Example: Find gcd(287, 91):

•
$$287 = 91 \cdot 3 + 14$$

•
$$91 = 14 \cdot 6 + 7$$

• $14 = 7 \cdot 2 + 0$

•
$$14 = 7 \cdot 2 + 0$$

Stopping condition Divide 287 by 91

Divide 91 by 14

Divide 14 by 7

gcd(287, 91) = gcd(91, 14) = gcd(14, 7) = 7

Euclidean algorithm

Example:

Take m = 80, n = 12, so the condition that $m \ge n$ is fulfilled. 80 = 12.6 + 812 = 8.1 + 4

$$8 = 4.2 + 0$$

 $n = 0 \rightarrow m = 4$ is the last non-zero remainder

GCD(80,12) = 4; Finish.

EUCLIDEAN ALGORITHM

- Use the Euclidean algorithm to find gcd(330, 156)
- Divide 330 by 156: (By Quotient-Remainder Theorem)

 This gives 330 = 156 2 + 18
- Divide 156 by 18:

This gives
$$156 = 18 \cdot 8 + 12$$

Divide 18 by 12:

This gives
$$18 = 12 \cdot 1 + 6$$

Divide 12 by 6:

This gives
$$12 = 6 \cdot 2 + 0$$

Hence gcd(330, 156) = 6 because 6 is last nonzero remainder

STEPS INVOLVING IN FINDING OUT gcd(330, 156)

Note that:

Step 1: we divide 330 by 156

Step 2: we divide 156 by 18

Step 3: we divide 18 by 12

Step 4: we divide 12 by 6

LEMMA

• If a and b are any integers with $b \ne 0$ and q and r are nonnegative integers such that

$$a = q \cdot d + r$$

then

$$gcd(a,b) = gcd(b,r)$$

• Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.

Successive uses of the division algorithm give:

$$662 = 414 \cdot 1 + 248$$
 $414 = 248 \cdot 1 + 166$
 $248 = 166 \cdot 1 + 82$
 $166 = 82 \cdot 2 + 2$
 $82 = 2 \cdot 41 + 0$

 Hence, gcd(414,662) = 2, because 2 is last nonzero remainder

• Find the greatest common divisor of 252 and 198 using the Euclidean algorithm.

Successive uses of the division algorithm give:

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2 + 0$$

Hence, gcd(252, 198) = 18, because 18 is last nonzero remainder

Linear Combination

GCD(a,b) can be expressed as a *linear combination* of a and b with the multiplying coefficients that can be freely chosen.

Example:

GCD(80,12) = 4, then 4 = (-1).80 + (7).12, where -1 and 7 are coefficients that can be freely chosen.

Suppose a and b are positive integers, then there exist integers m and n such that GCD(a,b) = ma + nb.

Linear Combinations Example: 1

Example:

Express GCD(312,70) = 2 as the linear combination of 312 and 70!

Applying Euclidean Algorithm:

$$312 = 4.70 + 32 \tag{1}$$

$$70 = 2.32 + 6 \tag{2}$$

$$32 = 5.6 + 2$$
 (3)

$$6 = 3.2 + 0$$
 (4)

Thus, GDC(312,70) = 2

$$2 = 32 - 5.6 \tag{5}$$

Rearrange (2) to

$$6 = 70 - 2.32 \tag{6}$$

Insert (6) to (5) so that

$$2 = 32 - 5 \cdot (70 - 2 \cdot 32)$$
$$= 1 \cdot 32 - 5 \cdot 70 + 10 \cdot 32$$

$$= 11.32 - 5.70 \tag{7}$$

Rearrange (1) to

$$32 = 312 - 4.70 \tag{8}$$

Insert(8) to (7) so that

$$2 = 11 \cdot 32 - 5 \cdot 70$$
$$= 11 \cdot (312 - 4 \cdot 70) - 5 \cdot 70$$
$$= 11 \cdot 312 - 49 \cdot 70$$

Thus, GCD(312, 70) = 2
=
$$11.312 - 49.70$$

Linear Combinations Example: 2

Finding gcds as Linear Combinations

Example: Express gcd(252,198) = 18 as a linear combination of 252 and 198.

Solution: First use the Euclidean algorithm to show gcd(252,198) = 18

```
252 = 1.198 + 54
```

$$198 = 3.54 + 36$$

iii.
$$54 = 1.36 + 18$$

iv.
$$36 = 2.18$$

- Now working backwards, from iii and i above
 - 18 = 54 1.36
 - 36 = 198 3.54
- Substituting the 2nd equation into the 1st yields:
 - $18 = 54 1 \cdot (198 3.54) = 4.54 1.198$
- Substituting 54 = 252 1.198 (from i)) yields:
 - $18 = 4 \cdot (252 1 \cdot 198) 1 \cdot 198 = 4 \cdot 252 5 \cdot 198$