Midterm 2

MATH 211 (A01), Spring 2015 (Siefken)

	Date:
Name: _	
ID Number:	

This is a 50 minute test. It has 6 pages including this cover page.

Q1	/10
Q2	/10
Q3	/10
Q4	/10
Q5	/10
Total	/50

1 (10pts) Com	aplete each of the following sentences with a mathematically precise definition.
(a) (2pts)	A non-empty subset $V \subseteq \mathbb{R}^n$ is a subspace if
(b) (2mtg)	A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if
(b) (2pts)	A function $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation if
(c) (2pts)	The null space of a matrix M is
(1) (2 +)	
(d) (2pts)	The inverse of a matrix A is (Hint: you will get no points if all you write is A^{-1})

(e) (2pts) The **range** (or **image**) of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is

2 (10pts) Given

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix} \qquad C^{-1} = \begin{bmatrix} 9 & -3/2 & -5 \\ -5 & 1 & 3 \\ -2 & 1/2 & 1 \end{bmatrix}$$

(a) (2pts) Compute AB.

(b) (2pts) Compute A^{-1} .

(c) (2pts) Compute C^T .

(d) (4pts) Solve the equation $C\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

3 (10pts) For each of the following, indicate **true** or **false**. You do not need to explain how you arrived at your answer.

Let M be an $n \times n$ matrix. If M is invertible, then we must have

- (i) $\operatorname{row}(M) = \{\vec{0}\}$
- (ii) $\operatorname{col}(M) = \mathbb{R}^n$
- (iii) $\operatorname{null}(M) = \{\vec{0}\}\$
- (iv) rank(M) = n
- (v) $M = M^T$

- 4 (10pts) Let $\mathcal{F}: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects vectors across the line with direction vector \vec{e}_2 . Let $\mathcal{P}: \mathbb{R}^2 \to \mathbb{R}^2$ be projection onto the vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
 - (a) (4pt) Compute $\mathcal{F}\begin{bmatrix} 7 \\ -3 \end{bmatrix}$ and $\mathcal{P}\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
 - (b) (6pts) Find a matrix for $\mathcal{F} \circ \mathcal{P}$.

(10pts) For each of the following transformations, either prove that the transformation is linear or provide an example that shows it is not linear.

(a) (5pts)
$$U: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $U \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ x+y \end{bmatrix}$.

(b) (5pts) $V: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $V \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ x-1 \end{bmatrix}$.