$\mathrm{MA}\ 503$

TEST 1

Name:_____

Professor Larsen October 31, 2014

1. Show that if m(A) = 0, then $m^*(A \cup B) = m^*(B)$ for all $B \subset \mathbb{R}$.

2. For $E \subset \mathbb{R}$, $E \neq \emptyset$, and $x \in \mathbb{R}$, define $d(x, E) := \inf\{|x - y| : y \in E\}$. Show that for every $E \subset \mathbb{R}$, $E \neq \emptyset$, the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) := d(x, E) is measurable.

3. Show that if $f: E \to \mathbb{R}$ is measurable with $m(E) < \infty$, then $\forall \varepsilon > 0$, $\exists A \subset E$ with $m(A) < \varepsilon$ such that f is bounded on $E \setminus A$.

4. Define $\delta_0: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ by

$$\delta_0(A) := \left\{ \begin{array}{ll} 1 & \text{if } 0 \in A \\ 0 & \text{if } 0 \notin A. \end{array} \right.$$

Show that δ_0 is a (countably additive) measure on $\mathcal{P}(\mathbb{R})$ (the power set of \mathbb{R}).

5. Prove or give a counterexample: if f^2 is measurable, then f is measurable.