2/2

-1/2

-1/2

2/2

2/2

-1/2

2/2

2/2

-1/2

-1/2

THLR Contrôle (35 questions), Septembre 2016

	_	
Nom et prénom, lisibles : Identifiant (de haut en bas) : □0 □1 ■2 □3 □4 □5 □6 □7 □8 □9		
N	UGEL	
₽	δV9ν·····	
		□0 □1 □2 □3 □4 □5 □6 □7 ∰8 □9
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I j'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +173/1/xx+···+173/5/xx+.		
Q.2 La distance d'édition (avec les opérations lettre à lettre insertion, suppression, substitution) entre les mots chat et chien est de :		
	□ 2 🗵 3 🗆 0	0 📵 5 🗆 1
Q.3	Pour $L_1 = (\{a\}\{b\})^*, L_2 = \{a,b\}^*$:	
	$\square L_1 \ \not\subseteq \atop \not\supseteq \ L_2 \qquad \qquad \boxtimes L_1 \subseteq L_2$	$\Box L_1 \supseteq L_2 \qquad \textcircled{3} L_1 = L_2$
Q.4	Que vaut $\{\varepsilon, a, b\} \cdot \{\varepsilon, a, b\}$?	
	\square {a, b, aa, ab, ba, bb} \square {aa, ab, ba, bb} \square {aa,	\square $\{aa,ab,bb\}$ \blacksquare $\{\varepsilon,a,b,aa,ab,ba,bb\}$
Q.5	Que vaut Suff({ab, c}):	
	\square $\{b,c,\varepsilon\}$ \blacksquare $\{ab,b,c,\varepsilon\}$ \square	$\{b,\varepsilon\}$ \square $\{a,b,c\}$ \square \emptyset
Q.6	Que vaut $(\{a\}\{b\}^*\{a\}^*) \cap (\{a\}^*\{b\}^*\{a\})$	
	\boxtimes {a} \cup {a}{b}*{a} \square {a,b}*{b}{a,b}* \square {a}{b}*	
Q.7	Pour toute expression rationnelle e , on a $\emptyset e \equiv e\emptyset \equiv$	e.
	faux	□ vrai
Q.8	Pour toutes expressions rationnelles e, f , on a (ef)	$^{\star}e\equiv e(ef)^{\star}.$
	faux	□ vrai
Q.9	Pour $e = (a+b)^* + \varepsilon$, $f = (a^*b^*)^*$:	
	$\Box L(e) \stackrel{\not\subseteq}{\supseteq} L(f) \qquad \qquad \boxtimes L(e) = L(f)$	
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, L_1 , $L_2 \subseteq \Sigma^*$, $n > 1$, on a $L_1^n = L_2^n \implies L_1 = L_2$.		
		wrai vrai

Q.11 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :

2/2

- ☐ 'DEADBEEF'
- **(20+3)*3**
- **'0+1+2+3+4+5+7+8+9'**

Q.12 Un automate fini non-déterministe à transitions spontanées peut avoir plusieurs états finaux.

-1/2

-1/2

- faux
- ∨rai

Q.13 &

L'état 1 est

- co-accessible
- ☐ accessible
- 🍘 fini
- ☐ Aucune de ces réponses n'est correcte.

Q.14

Quel est le résultat d'une élimination arrière des transitions spontanées?

-1/2

Q.15 $\xrightarrow{a} \xrightarrow{\epsilon} \xrightarrow{b} \xrightarrow{\epsilon} \xrightarrow{c}$

Quel est le résultat d'une élimination arrière des transitions spontanées?

-1/2

 $\begin{array}{c}
a,b,c \\
 & \longrightarrow \bigcirc \longrightarrow
\end{array}$

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

-1/2

 \boxtimes \longrightarrow $\stackrel{b}{\longleftrightarrow}$ $\stackrel{a}{\longleftrightarrow}$ $\stackrel{b}{\longleftrightarrow}$

☐ Aucune de ces réponses n'est correcte.

Q.17 Le langage $\{\sigma^n \circ n \mid \forall n \in \mathbb{N} : n < 242^{51} - 1\}$ est

- -1/2
- □ vide
- rationnel
- non reconnaissable par automate fini
- infini

- Q.18 A propos du lemme de pompage
- -1/2 ☐ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel

-1/2

Si un langage le vérifie, alors il est rationnel

☑ Si un langage ne le vérifie pas, alors il n'est pas rationnel

Si un automate de n états accepte a^n , alors il accepte. . .

0/2

-1/2

 $\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q \le n \qquad \square \quad a^n$ $\square \quad a^n a^m$ avec $m \in \mathbb{N}^*$ \square $(a^n)^m$ avec $m \in \mathbb{N}^*$

Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle?

Thompson, déterminisation, Brzozowski-McCluskey.

☐ Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation.

☐ Thompson, déterminimisation, évaluation.

☐ Thompson, déterminisation, élimination des transitions spontanées, évaluation.

Déterminiser cet automate.

Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles.

0/2

 \square Rec $\stackrel{\not\subseteq}{\neg}$ Rat \square Rec \subseteq Rat

 \square Rec \supseteq Rat

 \boxtimes Rec = Rat

Q.23 🕏 Quelle(s) opération(s) préserve(nt) la rationnalité?

0.8/2

☑ Union Différence symétrique Complémentaire ☐ Aucune de ces réponses n'est correcte.

Intersection

Différence

Quelle(s) opération(s) préserve(nt) la rationnalité?

1.2/2

Pref

Transpose

Suff ☐ Aucune de ces réponses n'est correcte.

Sous − mot

Fact

Q.25 On peut tester si un automate déterministe reconnaît un langage non vide.

-1/2

□ Non 🛛 Oui

Cette question n'a pas de sens Seulement si le langage n'est pas rationnel

O.26

Si L_1, L_2 sont rationnels, alors:

 $\overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2}$

-1/2

En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il. . .

-1/2

a des transitions spontanées

- accepte un langage infini
- accepte le mot vide

0/2

est déterministe

Si L et L' sont rationnels, quel langage ne l'est pas nécessairement? Q.28

2/2

 $\{u^nv^n \mid u \in L, v \in L', n \in \mathbb{N}\}$

Q.29 Quel mot reconnait le produit de ces automates?

- \Box $(bab)^{22}$ ☐ (bab)4444
- (bab)³³³ ☐ (bab)⁶⁶⁶⁶⁶⁶

Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$? Q.30

2/2

- 1 □ 26
- □ Il en existe plusieurs!
- □ 52

Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

- 0/2
- \square Il existe un DFA qui reconnaisse $\mathcal P$ P ne vérifie pas le lemme de pompage
- \square II existe un NFA qui reconnaisse \mathcal{P}
- \square Il existe un ε -NFA qui reconnaisse \mathcal{P}

Q.32

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

- \Box $(a+b+c)^*$
- a*b*c*
- \Box $a^* + b^* + c^*$
- ☐ (abc)*

O.33 & Quels états peuvent être fusionnés sans changer le langage reconnu.

-1/2

0/2

- 0 avec 1 et avec 2
- 3 avec 4
- 1 avec 2
- □ 1 avec 3
- ☐ 2 avec 4
- ☐ Aucune de ces réponses n'est correcte.

Q.34

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- $\Box (ab^* + (a+b)^*)(a+b)^+$
- $\boxtimes (ab^+ + a + b^+)(a(a + b^+))^*$
- Q.35 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de

-1/2

-1/2

Q.36 Sur $\{a, b\}$, quel est le complémentaire de

-1/2

Fin de l'épreuve.

198

+173/6/33+