Symmetric Key Ciphers

Intro and Classification
Part I: Substitution Ciphers

Priyank Kalla
Professor
Electrical & Computer Engineering

- Ciphers: Encryption and Decryption Algorithms
- Plaintext P, Ciphertext C, key k, Encryption algorithm $E_k(P)$, Decryption algorithm $D_k(C)$
 - $C = E_k(P)$, $D_k(C) = P$
 - $D_k(E_k(x)) = E_k(D_k(x)) = x$: Encryption/Decryption are inverses of each other
- Need a "secure" key exchange mechanism will study later
- Symmetric: same key for E_k, D_k and also for two-way communication between Alice \Longleftrightarrow Bob
- Need a separate key for each channel
- Key is the secret, E_k, D_k may be known to the public (adversary): Kerchoff's principle

Classification of Symmetric Key Ciphers (SKC)

- Traditional Ciphers versus Modern Ciphers (study later)
- Substitution Ciphers versus Transposition Ciphers
 - Substitution: Substitute one symbol with another
 - Transpose: Reorder the symbols
- Stream versus Block Ciphers
 - Stream: encipher/decipher one symbol (char or bit) at a time
 - $P = P_1 P_2 P_3, K = (k_1, k_2, k_3), C = C_1 C_2 C_3$
 - Block: encipher a block/group of plaintext symbols creating a block/group of ciphertext of the same size. Same key for the whole block.
 - $\{D, P, V\} = E_k(i, n, t)$

Examples

- Substitution ciphers:
 - Monoalphabetic: one-to-one correspondence between P and C. Ex: P = hello, C = KHOOR
 - Examples: Additive Ciphers (Caeser cipher), Multiplicative Ciphers and Affine Ciphers (modulo n)
 - Not very secure today, susceptible to attacks
 - Polyalphabetic: each occurrence of a character may have a different substitute (one-to-many)
 - Ex: Vigenere cipher, Hill Cipher, Rotor Cipher, ...
 - We'll study: Add/Mult and affine ciphers, and Hill Cipher
 - These are traditionally modulo arithmetic based \pmod{n} , often n = 26

Additive Cipher

- P = consists of symbols (say, lower case)
- C = say, upper case symbols
- Assign an integer (modulo 26) to each symbol: arithmetic in \mathbb{Z}_{26} note this is NOT a finite field, but a ring!
- In \mathbb{Z}_{26} every element has an additive inverse, but only some elements have multiplicative inverses
- Implications on key selection

Additive Cipher:

• Example k = 15

Plaintext: $h \rightarrow 07$	Encryption: $(07 + 15) \mod 26$	Ciphertext: $22 \rightarrow W$
Plaintext: $e \rightarrow 04$	Encryption: $(04 + 15) \mod 26$	Ciphertext: $19 \rightarrow T$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 + 15) \mod 26$	Ciphertext: $00 \rightarrow A$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 + 15) \mod 26$	Ciphertext: $00 \rightarrow A$
Plaintext: $o \rightarrow 14$	Encryption: $(14 + 15) \mod 26$	Ciphertext: $03 \rightarrow D$
Ciphertext: $W \rightarrow 22$	Decryption: $(22-15) \mod 26$	Plaintext: $07 \rightarrow h$
Ciphertext: $T \rightarrow 19$	Decryption: $(19-15) \mod 26$	Plaintext: $04 \rightarrow e$
Ciphertext: A \rightarrow 00	Decryption: $(00-15) \mod 26$	Plaintext: $11 \rightarrow 1$
Ciphertext: A \rightarrow 00	Decryption: $(00-15) \mod 26$	Plaintext: $11 \rightarrow 1$
Ciphertext: D \rightarrow 03	Decryption: $(03 - 15) \mod 26$	Plaintext: $14 \rightarrow 0$

Julius Caesar used k = 3: Caeser cipher Additive Cipher susceptible to brute-force attacks key space = 25 (k = 0 is useless)

Multiplicative Cipher

- What can you say about the choice of *k*?
- ullet Can only select those values of k s.t. multiplicative inverse exists
- \mathbb{Z}_{26} * = {1,3,5,7,9,11,15,17,19,21,23,25} = set of k for which $\exists k^{-1}$ s.t. $k \cdot k^{-1} = 1 \pmod{26}$
- Example: P = "e" = 4. $k = 7, k^{-1} = 15 \pmod{26}$
- $C = 4 \cdot 7 = 2 \pmod{26}$
- $P = 2 \cdot 7^{-1} = 2 \cdot 15 = 30 = 4 \pmod{26}$

Affine Cipher

$$C = (P \times k_1 + k_2) \mod 26$$

$$P = ((C - k_2) \times k_1^{-1}) \mod 26$$
where k_1^{-1} is the multiplicative inverse of k_1 and $-k_2$ is the additive inverse of k_2

- Let's try an example of cryptanalysis using "chosen plaintext attack"
- Suppose Eve can access Alice's cryptosystem, and create (P,C) pairs. Can she guess k_1,k_2 ?

Chosen Plaintext Attack Cryptanalysis

Eve tries P = "et", obtains C = "WF"

Plaintext: et ciphertext: → WF

$$e \to W$$
 $04 \to 22$ $(04 \times k_1 + k_2) \equiv 22 \pmod{26}$
 $t \to F$ $19 \to 05$ $(19 \times k_1 + k_2) \equiv 05 \pmod{26}$

Solve the system of Linear Congruences:

$$4k_1 + k_2 \equiv 22 \pmod{26}$$

- $19k_1 + k_2 \equiv 05 \pmod{26}$
- How to solve a system of Linear Congruences (mod n)?
- Need Matrix Algebra of residue classes \pmod{n} : Need matrix inversion algorithms \pmod{n}
- Solution: $k_1 = 11, k_2 = 4$

Linear Congruences

- Inverse of matrix A exists \pmod{n} if $\det(A)$ has an inverse in \mathbb{Z}_{26} : GCD($\det(A)$, n) = 1
- In our case above, det(A) = 4 -19 = 11 (mod 26).
- GCD(11, 26) = 1, so inverse exists
- Now how to compute Inverse of the matrix (mod n)? Next class!