实验二 二阶系统阶跃响应特性实验

一、实验目的

- 1. 学习二阶系统阶跃响应特性测试方法。
- 2. 了解系统参数对阶跃响应特性的影响。

二、实验设备和仪器

KJ82-3 型控制系统学习机 双通数字存储示波器 双通道任意波形信号发生器 数字万用表

三、实验系统图和电路图

四、方块图

$$G(S) = \frac{U_{sc}(s)}{U_{sr}(s)} = \frac{K_3}{T_1 S(T_2 S + K_3 K_4 \alpha) + K_3} = \frac{1}{\frac{T_1 T_2 S^2}{K_3} + K_4 \alpha T_1 S + 1} = \frac{1}{T^2 S^2 + 2\xi T S + 1}$$

式中:
$$T = \sqrt{\frac{T_1 T_2}{K_3}}$$
时间常数; $\omega_n = \frac{1}{T}$ 为无阻尼自然频率;

$$\xi = \frac{K_4 \alpha T_1}{2T} = \frac{K_4 \alpha}{2} \sqrt{\frac{T_1 T_2}{K_3}}$$
为阻尼比;

根据T及E的值则依下述公式可求其它参量。

无阻尼自然角频率 $\omega_n = \frac{1}{T}$; 无阻尼自然频率 $f = \frac{1}{2\pi T}$;

阻尼自然频率 $\omega_d = \omega_n \sqrt{1 - \xi^2}$;衰减系数 $\sigma = \omega_n \xi$;

超调量
$$M_P = e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}} \times 100\%$$
;峰值时间 $t_p = \frac{\pi}{\omega_d}$;

调整时间
$$t_s = \frac{3}{\sigma}$$
;阻尼振荡周期 $t_T = \frac{2\pi}{\omega_s}$;

上升时间
$$t_r = \frac{\pi - \beta}{\omega_d}$$
; $\beta = \arccos \xi = \arctan \frac{\omega_d}{\sigma}$

五、实验操作过程方法

- 1. 将各运放接成比例状态(反馈电阻调到最大)仔细调零。
- 2. 在 KJ82-3 自控学习机信号源中,调整好阶跃信号幅值,建议电压调到 1V 左右。
- 3. 断开电源按图接线, 经检查无误后再闭合电源, 按以下步骤进行实验记录:
- 1)令 $C_1=C_2=1\mu$, $K_4=1$, $K_3=10$,按表 2-1 所列 α 的变化值逐次改变 α ,记录表内所列各项参数。
- 2)当 $C_1=C_2=1\mu$, $K_4=1$, $K_3=10$, $\alpha=0.13$ 输入阶跃信号,记录 $U_{sc}(t)$ 的瞬态响应曲线,并与理论曲线比较。用表 2-2 记录,并画出瞬态响应曲线,要求在 U-t 图中标出各指标参数的位置即具体数值。
- 3)令 $C_1=C_2=1\mu$, $K_4=1$, $K_3=1$ 观察在相同 ξ 值的情况下, ω_n 变化后,阶跃响应曲线的动态变化。以第二组参数中, $\alpha=0.13$ 时的 ξ 值,比较两个不同 ω_n 的响应变化。

六、实验数据及其处理

1. 完成表 2-1 中的理论值计算,根据表 2-1 的实验测量值,完成表中的其它参数计算。要求简单说明计算依据,并且分析实验结果,实验误差等。

	α	阻尼比	wn	f	wd	sigma	Usc	Mp (%)	tp	tr	ts
0	理论			5. 032921				<u>——</u>			
	实验			4. 72					<u> (21 - 141 - 14</u> 1)		
0.10	理论	0. 205548048	31. 62278	5. 032921	30. 94754	6. 5	1	51. 69352	101. 5135	57. 44625	461. 5385
0. 13	实验	0. 168749105	30. 75756	4. 895218	30. 31647	5. 190311	5. 16	58. 4	102	54	578
0, 33	理论	0. 521775814	31. 62278	5. 032921	26. 97684	16.5	1	14. 63857	116. 4552	78. 57582	181. 8182
0. 33	实验	0. 520947542	33. 09619	5. 267422	28. 25053	17. 24138	5. 16	14. 7	122	78	174
0. 44	理论	0. 695701085	31. 62278	5. 032921	22. 71563	22	1	4. 770973	138. 3009	103. 0212	136. 3636
	实验	0. 671551012	26. 27806	4. 182283	19. 47095	17.64706	5. 12	5. 8	126	99	170
0. 63	理论	0. 996117463	31. 62278	5. 032921	2. 783882	31.5	1			106	150
	实验						5. 14			104	144
0. 41	理论	0. 205	10	1. 591549	9. 78762	2.05	1	51. 78855	320. 9762	181. 5825	1463. 415
0.41	实验	0. 198083679	10. 37337	1.650972	10. 16782	2.054795	5. 12	53	350	200	1460

表 2-1

通过上述公式可以由 α 求得其理论值,其中 α 为0.63时,为临界阻尼状态。

而在 MATLAB 中可根据临界阻尼响应曲线求得其理论值。

根据表 2-1 的数据计算与比较,可以发现除去 t_s 以外,实验值与理论值基本相近,误差并不是太大,因此实验数据可以验证二阶系统响应特性。

误差表如下:

绝对误差	Mp (%)	tp	tr	ts	β误差值
	6. 7064792	0. 4865022	-3. 4462533	116. 4615385	-0. 037463244
	0.0614287	-5. 5448322	0. 5758246	7. 8181818	-0.000970628
	1. 0290270	12. 3009050	4. 0211977	-33. 6363636	-0. 033095373
	#VALUE!	#VALUE!	2. 0000000	6. 0000000	0. 088148193
	1. 2114519	-29. 0238342	-18. 4175435	3. 4146341	-0.007061234
相对误差					
5.00 Hz 5.20	0. 129735393	0.004792488	-0.059990915	0. 252333333	-0. 0274703
	0. 004196357	-0. 047613449	0. 007328267	0.043	-0. 000949859
	0. 215684923	0. 088943055	0. 039032722	-0. 24666667	-0. 0412969
	#VALUE!	#VALUE!	0. 018867925	0.04	1
	0. 023392273	-0. 090423643	-0. 10142799	0. 002333333	-0. 005175596

而在实验中造成误差的情况可能多种多样,例如:

- 1) 示波器测量偏差。
- 2)信号发生器的输出存在偏差。
- 3)人工读数可能存在误差。
- 4) 电子器件参数的误差会造成实验误差+
- 5) 电磁场的干扰
- 2. 用表格形式列出理论计算传递函数与实验得到的传递函数。

$\alpha = 0.13$	理论 $G(s) = \frac{1}{1.000 \times 10^{-3} s^2 + 0.013 s + 1}$
	实验 $G(s) = \frac{1}{1.057 \times 10^{-3} s^2 + 0.01097 s + 1}$
$\alpha = 0.33$	理论 $G(s) = \frac{1}{1.000 \times 10^{-3} s^2 + 0.033 s + 1}$
	实验 $G(s) = \frac{1}{9.13 \times 10^{-4} s^2 + 0.03148s + 1}$
$\alpha = 0.44$	理论 $G(s) = \frac{1}{1.000 \times 10^{-3} s^2 + 0.044 s + 1}$
	实验 $G(s) = \frac{1}{1.448 \times 10^{-3} s^2 + 0.05111s + 1}$
$\alpha = 0.63$	理论 $G(s) = \frac{1}{1.000 \times 10^{-3} s^2 + 0.063 s + 1}$
	实验 $G(s) = \frac{1}{2.304 \times 10^{-3} s^2 + 0.096s + 1}$

3. 根据表 2 记录。画出瞬态响应曲线,要求在U-t 图上标出各指标参数的位置及具体数值。并将实验曲线与理论曲线进行比较。

t (ms)	38	57	102	142	170	210	245	272
Usc(t)	2.98	5.18	7.9	6.4	4.74	3,72	4.42	5.24
t (ms)	314	356	383	427	479	52)	576	626
$\mathit{Usc}(t)$	5.86	5.42	5.02	4.76	5.14	5.38	5.18	5.04
t (ms)	728	784			•			
$\mathit{Usc}(t)$	5.18	5.18						

瞬态响应曲线:

理论曲线:

可看出,两者相差不大。

4. 结合实验数据进一步从物理意义上分析改变系统参数对 M_P 、 t_P 、 t_s 等系统瞬态响应指标的影响。

根据上述实验,可以发现,对于实验中的系统参数自变量 α ,增加 α 会减小最大超调

量,增大峰值时间和上升时间,但会一定程度上减小调整时间,这说明,增大 α 可以增加系统的稳定性。

同时,由实验数据 1-5 可得相同 ω_n 时, ξ 越大, M_p 越大、 t_p 越大、 t_s 越小由 2 和 6 可得相同 ξ 时, ω_n 越大, M_p 变化不大、 t_p 越小、 t_s 越小

5. 为满足一般控制系统瞬态响应的性能指标,分析各参量的一般取值范围,并说明理由。

根据实验,取不同值 ξ 时对应的单位阶跃响应的稳定性等特征不同, ξ 越大,系统稳定性越好,超调量越小; ξ 越小,输出响应的震荡越强,震荡频率越高。 ξ =1 时,属于临界稳定值。当 ξ =0.4-0.8, M_P =25.4%-1.5%, M_P 较小,可认为系统较稳定。

对于 ω_n 而言, ω_n 越大, t_s 越小,系统响应越快,因此理论上来说 ω_n 越大越好,但是还是要结合实际情况和 ξ 来调节。

6. 通过实验总结出测量一个实际系统的阶跃响应的方法。

对于实际系统,由相似系统的知识可知,给予一个方波产生的近似阶跃信号,可得到一个响应曲线,并可使用示波器观察其阶跃响应。如果可以知道此系统是二阶系统,可利用一个二阶电路,寻找一个与之相同的响应曲线,即可通过电路中各参数得到实际系统的完整阶跃响应。