Dipolo en el bin 1 $\rm EeV$ - 2 $\rm EeV$

Evelyn G. Coronel Tesis de Maestría en Ciencias Físicas Instituto Balseiro

(27 de mayo de 2020)

A. Ajuste a orden 0 de la variación de hexágonos

1.015 Ajuste: a cos(w·x-b) + c 1.01 Pesos Hexagonos 1.005 0.995 0.99 0.985 0 135 180 225 315 360 90 270 RA [°]

Fig. 1: Pesos de los hexágonos para la frecuencia sidérea en el periodo 2014-2020

Fig. 2: Hexágonos para la frecuencia sidérea en el periodo $2014\hbox{--}2020$

B. Anisotropías

	Con Peso	Sin peso
Frecuencia:	366.25	366.25
Fase:	329.865	292.312
P_{99} :	0.76398%	26.6838%
r_{99} :	0.004676	0.00243515

Tabla I: Fase, r_{99} y P_{99} del análisis de anisotropía entre en 1 de Enero del 2014 y el 1 de Enero del 2020

Fig. 3: Anisotropía para el intervalo 2014-2020

En la Fig.4 se muestra el pico que se presenta en el intervalo de energía entre 1 EeV - 2 EeV, cercano a la frecuencia sidérea. El pico tiene un máximo para un período de 366.21. En la Tabla. Il se muestran los valores de la fase, r_{99} y P_{99} para el periodo anterior.

Fig. 4: Zoom en el pico de anisotropía cercana para la frecuencia sidérea para el intervalo 2014-2020

	Con Peso	Sin peso	Con Peso	Sin peso
Frecuencia:	366.21	366.21	$\sim \! 366.505$	366.506
Fase:	151.032	121.695	~ 190	73.8188
P_{99} :	0.289882%	46.9691%	$\sim 96 \%$	0.24013%
r_{99} :	0.00512146	0.0018417	~ 0.0006	0.00520328

Tabla II: Fase, r_{99} y P_{99} del análisis de anisotropía entre en 1 de Enero del 2014 y el 1 de Enero del 2020