Teste de Hipóteses Hipótese Estatística Teste *Z* Teste *t*

Teste de Hipóteses

Para populações

Prof.: Wagner Pinheiro

wagner2235@gmail.com

Sumário

- Teste de Hipóteses
- 2 Hipótese Estatística
 - Hipótese Nula (H₀)
 - Hipótese alternativa (H_1 ou H_a)
 - Região Crítica
- 3 Teste Z
- 4 Teste t

Introdução

O teste de Hipóteses é uma regra decisória que nos permite reajustar ou não uma hipótese estatística com base nos resultados de uma amostra

De outro modo: são suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.

i) Parâmetro: em função de valores populacionais, é desconhecido.

Ex.: Parâmetros da distribuição Normal

$$\begin{cases} \mu = E(X) \\ \sigma^2 = V(X) \end{cases}$$

i) Estimador: Em função das observações da amostra aleatória. Representa uma forma de cálculo que fornecerá valores diferentes conforme a amostra selecionada.

Ex.:

• Estimador da média:
$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$
• Estimador da variância: $s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1}$

iii) Estimativa: valor obtido pelo estimador.

Ex.:
$$\bar{X} = 10,42$$
; $s^2 = 4,67$

É uma suposição quanto ao valor de um parâmetro populacional que será verificada para um teste paramétrico.

- **1** A média populacional da altura dos brasileiros adultos é 1,65m, isto é, $\mu=1,65m$;
- 2 A distribuição dos pesos dos alunos do CEFET-MG é normal;
- 3 A proporção de indivíduos com doença X é 3%, ou seja, p = 0,03.

Hipótese Nula (H_0) : a ser validada pelo teste. Hipótese Alternativa $(H_1 \text{ ou } H_a)$: complementar a H_0 .

Assim, o teste poderá aceitar ou rejeitar a hipótese nula, sendo que no último caso implicaria na aceitação da hipótese alternativa.

Hipótese Nula

A hipótese H_0 é formulada com o "expresso propósito de ser rejeitada" e os teste são construídos sob a pressuposição de H_0 ser verdadeira.

Ex.: O fabricante afirma que a durabilidade média de suas lâmpadas é de 6.000h, para esse caso a hipótese nula seria formulada da seguinte maneira: $H_0: \mu = 6000$.

Hipótese alternativa

É contrária à H_0 , formulada com base no conhecimento prévio do problema.

Ex.: A durabilidade média das lâmpadas é diferente da afirmativa do fabricante, para esse caso a hipótese alternativa seria formulada da seguinte maneira: H_a : $\mu \neq 6000$.

Para o caso onde se busca comparar a média, a H_a fica

$$H_{\mathsf{a}_1}:\mu_1<\mu_2$$
 ou $H_{\mathsf{a}_2}:\mu_1>\mu_2$ ou $H_{\mathsf{a}_3}:\mu_1
eq\mu_2$

nesse caso H_{a_1} e H_{a_2} são unilaterais e H_{a_3} é bilateral.

Região Crítica

É a faixa de valores que nos leva à rejeição de H_0 . Isto é, caso o valor observado da estatística de teste (Z, t, χ^2, F) pertença a região crítica, rejeita-se H_0 , caso contrário não rejeita-se H_0 .

Qualquer decisão implica na possibilidade de cometer basicamente dois tipos de erros, são eles:

DECISÃO	REALIDADE	
	H ₀ Verdadeira	H₀ Falsa
Aceita H ₀	Decisão Correta	Erro Tipo II
	(1- α)	β
Rejeita H ₀	Erro Tipo I	Decisão Correta
	α	(1 - β)

Região Crítica

Unilateral à direita:

Ho:
$$\mu = 50$$

H1::
$$\mu > 50$$

Unilateral à esquerda:

Ho: :
$$\mu = 50$$

$$H1:: \mu < 50$$

Bilateral:

Ho: :
$$\mu = 50$$

H1::
$$\mu \neq 50$$

Região Crítica

Procedimento para realização do teste de hipótese

- 1 Enunciar as hipóteses H_0 e H_a .
- 2 Fixar o nível de significância α e identificar a estatística de teste.
- **3** determinar a região crítica e a região de aceitação em função do nível α pelas tabelas estatísticas.
- 4 Com base na amostra, calcular a estatística do teste.
- \odot concluir pela rejeição ou não de H_0 .

Para uma média

Caso em que X é normalmente distribuída e com variância conhecida.

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

Usando a variável padronizada Z, temos

$$Z = \frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

De uma população normal com variância 36, toma-se um amostra aleatória de tamanho 16, obtendo-se $\bar{X}=43$. Ao nível de 10%. Pede-se: testar as seguintes hipóteses,

$$H_0: \mu = 45$$
 versus $H_0: \mu \neq 45$

Uma instituição de ensino alega que a média de seus alunos em provas de vestibulares de universidades de primeira linha é igual a 7,60. Uma amostra aleatória formada por 60 alunos revelou uma média igual a 6,80. Sabendo que o desvio padrão populacional é igual a 2,40 e assumindo $\alpha=5\%$, teste a alegação da instituição.

Para duas médias

Usaremos o teste t para duas sitações:

1. Para variâncias homogêneas

$$t = \frac{\bar{X} - \bar{Y}}{\sqrt{s^2 \left(\frac{1}{n_x} + \frac{1}{n_y}\right)}} \sim t_{(n_x + n_y - 2)} g.I$$

onde

$$s^{2} = \frac{(n_{x} - 1)s_{x}^{2} - (n_{y} - 1)s_{y}^{2}}{(n_{x} + n_{y} - 2)}$$

Para duas médias

2. Variâncias não homogêneas

$$t = \frac{\bar{X} - \bar{Y}}{\sqrt{\left(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}\right)}} \sim t_{n^*} g.I$$

onde

$$n^* = \frac{\left(\frac{s_{n_x}^2}{n_x} + \frac{s_{n_y}^2}{n_y}\right)^2}{\frac{\left(\frac{s_x^2}{n_x}\right)^2}{n_x - 1} + \frac{\left(\frac{s_y^2}{n_y}\right)^2}{n_y - 1}}$$

Suponhamos que um pesquisador diante de duas técnicas de memorização X e Y tenha o interesse de compará-las, medindo-se a eficiência pelo tempo exigido para decorar certo tipo de material. O mesmo material foi apresentado a $n_x = 18$ e $n_y = 13$ pessoas que o decoraram através das técnicas X e Y, respectivamente. O pesquisador pretende verificar se há diferença significativa entre as duas técnicas de memorização, para isso adotou $\alpha = 5\%$. Os resultados foram: $\bar{X} = 20 min$, $\sigma_x^2 = 20 min^2$, $n_x = 18$, $\bar{Y} = 17 min$, $\sigma_x^2 = 15 \text{min}^2$, $n_x = 13$. O pesquisador considerou, por meio do teste F, as variâncias estatisticamente iguais. Pede-se: verifique se a suspeita do pesquisador confirma a diferenca entre os métodos de memorização.

Deseja-se saber se duas rações alimentares A e B para determinada raça de suíno, são equivalentes. Ou se a ração A é superior a ração B no sentido de causar maior aumento de peso nos suínos. Para 11 animais sorteados ao acaso foi dada a ração A, e a outros 19 a ração B. Os resultados foram: $\bar{A}=66kg$, $\sigma_A^2=17kg^2$, $n_A=11$, $\bar{B}=63kg$, $\sigma_B^2=16kg^2$, $n_B=19$. As variâncias foram consideradas homogêneas. A que conclusão podemos chegar se adotarmos um nível de significância $\alpha=2\%$?