18-660: Numerical Methods for Engineering Design and Optimization

Xin Li Department of ECE Carnegie Mellon University Pittsburgh, PA 15213

Slide 1

Outline

- Project 1: 2-D Thermal Analysis
 - ▼ Project overview
 - Thermal analysis review
 - ▼ Project details

Project Overview

- In this project you are required to write a MATLAB program to simulate a 2-D steady-state thermal problem
- The program mainly consists of the following two steps:
 - ▼ Formulate and discretize thermal PDEs
 - Solve the resulting linear systems by both Gaussian elimination and Cholesky factorization

Slide 3

Project Overview

- You will be given 3 test cases
- In each test case, you will be provided with:

Power density within the medium

Temperature at the boundary

Project Overview

■ Your program will generate:

Temperature plot within the medium

Slide 5

2-D Heat Equation

■ Heat equation is a 2nd-order linear PDE

Density Laplace operator $\begin{array}{c}
\downarrow \\
\rho \cdot C_p \cdot \frac{\partial T(x, y, t)}{\partial t} = \kappa \cdot \nabla^2 T(x, y, t) + f(x, y, t)
\end{array}$

Thermal capacity Thermal conductivity Heat source

- We assume that heat conduction has reached a steady state
 - Heat equation can be simplified as

$$\kappa \cdot \nabla^2 T(x, y) + f(x, y) = 0$$

Equation Discretization

■ Discretize 2-D space into a number of small panels

$$\kappa \cdot \nabla^2 T(x, y) + f(x, y) = 0$$

$$\kappa \cdot \left[\frac{\partial^2 T(i,j)}{\partial x^2} + \frac{\partial^2 T(i,j)}{\partial y^2} \right] = -f(i,j)$$

$$\frac{\partial^{2}T(i,j)}{\partial x^{2}} = \frac{T_{i+1,j} + T_{i-1,j} - 2T_{i,j}}{\Delta x^{2}}$$
$$\frac{\partial^{2}T(i,j)}{\partial y^{2}} = \frac{T_{i,j+1} + T_{i,j-1} - 2T_{i,j}}{\Delta y^{2}}$$

Slide 7

Boundary Condition

- We assume a given temperature at the boundary
 - ▼You need to move the constant term to RHS of the equation

System of Linear Equations

■ Combine all linear equations

$$\kappa \cdot \left[\frac{T_{i+1,j} + T_{i-1,j} - 2T_{i,j}}{\Delta x^2} + \frac{T_{i,j+1} + T_{i,j-1} - 2T_{i,j}}{\Delta y^2} \right] = -f(i,j)$$

$$(1 \le i \le N \quad 1 \le j \le M)$$

■ We get a system of linear equations

$$A \cdot X = B$$

$$X = \begin{bmatrix} T_{1,1}, T_{1,2}, ..., T_{N,M} \end{bmatrix}^T$$

- The matrix A is symmetric and positive definite
 - The linear system can be solved by using either Gaussian elimination or Cholesky factorization

Slide 9

Project Files

- All files for this project can be found from the distributed package
 - ▼ A report template: Proj1.doc
 - A MATLAB function to generate thermal plot: thermalplot.m
 - Two templates: thermalsimGauss.m, thermalsimCholesky.m
 - Three sets of test data: case1.mat, case2.mat, case3.mat (use "load casex.mat" in MATLAB to import test data)
- **■** Each mat file contains the following variables:
 - ▼ mediumX: x-dimension of the medium
 - mediumY: y-dimension of the medium
 - p: discretized power density p(i,j) means the power density at x = i, y = j size(p,1) is the number of panels in x-direction size(p,2) is the number of panels in y-direction

Project Data (cont'd)

- leftBound: temperature at the left boundary (x = 0) leftBound(j) means the temperature at T(0, j)
- ▼ rightBound: temperature at the right boundary (x = N+1)
- ▼ topBound: temperature at the top boundary (y = M+1)
- **▼** bottomBound: temperature at the bottom boundary (y = 0)

■ Thermal conductivity constant: κ = 157 W / m • K

Slide 11

Project Requirements

- You are required to implement MATLAB functions with the following format (templates included in the project package)
 - ▼[Temperature] = thermalsimGauss(p, mediumX, mediumY, leftBound, rightBound, topBound, bottomBound);
 - ▼[Temperature] = thermalsimCholesky(p, mediumX, mediumY, leftBound, rightBound, topBound, bottomBound);
 - Temperature is a matrix with the same dimension as p
- Your program must work on Windows or Linux computer without any modification
- You must implement Gaussian elimination and Cholesky factorization by yourself
 - It is not allowed to use MATLAB functions such as chol or backslash

Temperature Plot

■ For each test case, you should generate the temperature plot using the following function

thermalplot(Temperature);

Please include the generated thermal plots in your report

Slide 13

Project Submission

- You should zip the MATLAB code into a single file and submit it to the course web site
- You should also submit a PDF report (at most 4 pages) to the course web site, including the following items
 - A high level description of your implementation
 - ▼ Your approach for formulating the linear equation
 - ▼ Your approach for solving the linear equation
 - Temperature plot of each benchmark
 - Anything else that will make your program unique
 - A WORD template is provided for your project report

Grading Criteria

- The total points will be distributed as the follows
- 75% for MATLAB code and results
 - We will compare your results to our "golden solution" for accuracy where the accuracy will be evaluated by:

Error =
$$\sqrt{\frac{\sum_{i} \sum_{j} [T * (i, j) - T(i, j)]^{2}}{\sum_{i} \sum_{j} [T * (i, j)]^{2}}}$$

where T^* is the golden solution and T is your solution. This error value must be less than 0.01

- 25% for project report
 - ▼ You should complete all sections in the report template and clearly address all required points mentioned in the previous slide

Slide 15