Amendments to the Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

Listing of the Claims:

1-16. (Cancelled).

17. (Currently Amended) A compound of formula (I),

$$\mathbb{R}^4$$
 \mathbb{R}^2
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb

the N-oxide forms, the addition pharmaceutically acceptable salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-:

R1 is C1-6alkvl;

R2 is hydrogen, hydroxy, C1-6alkyl, or C3-6alkynyl;

R3 is a radical selected from

$$-(CH_2)_s$$
- NR^8R^9 (a-1),
 $-O$ -H (a-2),
 $-O$ - R^{10} (a-3),
 $-S$ - R^{11} (a-4), or
 $-C$ $\equiv N$ (a-5).

wherein

s is 0, 1, 2 or 3:

R⁸, R¹⁰ and R¹¹ are each independently selected from –CHO, C_{1.6}alkyl, hydroxyC_{1.6}alkyl, C_{1.6}alkyl, carbonyl, amino, C_{1.6}alkylamino.

$$\begin{split} & \operatorname{di}(C_{1-6}alkyl)\operatorname{amino}C_{1-6}alkyl, \, C_{1-6}alkyl\operatorname{carbonyl}, \, C_{1-6}alkyl\operatorname{carbonylamino}C_{1-6}alkyl, \\ & \operatorname{piperidinyl}C_{1-6}alkyl\operatorname{aminocarbonyl}, \, \operatorname{piperidinyl}C_{1-6}alkyl, \\ & \operatorname{piperidinyl}C_{1-6}alkyl\operatorname{aminocarbonyl}, \, C_{1-6}alkyl\operatorname{oxy}, \, \operatorname{thiophenyl}C_{1-6}alkyl, \\ & \operatorname{pyrrolyl}C_{1-6}alkyl, \, \operatorname{aryl}C_{1-6}alkyl\operatorname{piperidinyl}, \, \operatorname{arylcarbonyl}C_{1-6}alkyl, \\ & \operatorname{arylcarbonylpiperidinyl}C_{1-6}alkyl, \, \operatorname{haloindozolylpiperidinyl}C_{1-6}alkyl, \\ & \operatorname{aryl}C_{1-6}alkyl(C_{1-6}alkyl)\operatorname{amino}C_{1-6}alkyl, \, \operatorname{and} \\ & \operatorname{R}^9 \text{ is hydrogen or } C_{1-6}alkyl; \\ & \operatorname{or } R^3 \text{ is a group of formula} \end{split}$$

$$-(CH_2)_t-Z$$
 (b-1),

wherein

t is 0, 1, 2 or 3:

-Z is a heterocyclic ring system selected from

$$HN$$
 R^{12}
 R^{13}
 $(c-1)$
 R^{12}
 R^{12}

$$R^{12}$$
 HN NH R^{12} R^{12}

$$\mathbb{R}^{13}$$
 \mathbb{R}^{12}
 \mathbb{R}^{12}
 \mathbb{R}^{12}
 \mathbb{R}^{12}
 \mathbb{R}^{12}
 \mathbb{R}^{12}
 \mathbb{R}^{12}
 \mathbb{R}^{12}

wherein R12 is hydrogen, halo, C1-6alkyl, aminocarbonyl, amino, hydroxy, aryl,

$$-C_{16}$$
alkanediyl N $-C_{16}$ alkanediyl N O

$$\begin{split} &C_{16} alkylamino C_{16} alkyloxy, C_{16} alkyloxy C_{16}$$

$$\begin{split} &C_{3\text{-10}} \text{cycloalkyl}, C_{3\text{-10}} \text{cycloalkyl} C_{1\text{-}6} \text{alkyl}, \text{aryloxy(hydroxy)} C_{1\text{-}6} \text{alkyl}, \text{haloindazolyl,} \\ &\text{aryl} C_{1\text{-}6} \text{alkyl}, \text{aryl} C_{2\text{-}6} \text{alkenyl, aryl} C_{1\text{-}6} \text{alkylamino, morpholino, } C_{1\text{-}6} \text{alkylimidazolyl,} \\ &\text{pyridinyl} C_{1\text{-}6} \text{alkylamino;} \text{ and} \end{split}$$

R13 is hydrogen, piperidinyl or aryl;

R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C₁₋₆alkyl, C₁₋₆alkyloxy, amino, aminoC₁₋₆alkyl, di(C₁₋₆alkyl)amino, di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy or C₁₋₆alkyloxycarbonyl, or C₁₋₆alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, C₁₋₆alkyloxy, or aminoC₁₋₆alkyloxy; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

wherein R14 is C1-6alkyl;

and aryl is phenyl, phenyl substituted with halo, C1-6alkyl or C1-6alkyloxy.

18. (Previously Presented) A compound as claimed in claim 17 wherein R³ is a radical selected from the group consisting of (a-1), (a-2), (a-3) (a-5), and (b-1) wherein -Z is a heterocyclic ring system selected from (c-1), (c-6), (c-8), (c-9), or (c-11); s is 0, 1 or 2; R³ and R¹⁰ are each independently selected from -CHO, C₁6alkyl, hydroxyC₁6alkyl, di(C₁6alkyl)aminoC₁6alkyl, C₁6alkylcarbonylaminoC₁6alkyl, piperidinylC₁6alkyl.

piperidinyl C_{1-6} alkylaminocarbonyl, C_{1-6} alkyloxy, thiophenyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl, C_{1-6} alkyl, or or 2; R^{12} is hydrogen,

$$C_{1.6} alkyl, aminocarbonyl, \\ di(phenylC_{2.6} alkenyl), piperidinylC_{1.6} alkyl, C_{3.10} cycloalkyl, \\ C_{3.10} cycloalkylC_{1.6} alkyl, haloindazolyl, or arylC_{2.6} alkenyl; R^4, R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, \\ C_{1.6} alkyl, C_{1.6} alkyloxy, di(C_{1.6} alkyl)amino, di(C_{1.6} alkyl)aminoC_{1.6} alkyloxy or \\ C_{1.6} alkyloxycarbonyl; and when R^5 and R^6 are on adjacent positions they may taken together form a bivalent radical of formula (d-1) or (d-2).$$

- 19. (Previously Presented) A compound according to claim 17 wherein n is 0; X is CH; R² is hydrogen; Z is a heterocyclic ring system selected from (c-1); t is 2; R¹² is hydrogen; R¹³ is hydrogen; and R⁵ and R⁶ are on adjacent positions and taken together form a bivalent radical of formula (d-2).
- (Currently Amended) A compound selected from the group consisting of empounds No. 16, compound No. 144, and compound No. 145:

Docket No. PRD2120USPCT Serial No. 10/595,891

- 21. (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 17.
- 22. (Cancelled).