In [1]: # @title Importing Required Libraries
 #In this task we are performing EDA, these are the required libraries to pers
 import pandas as pd
 import numpy as np
 import seaborn as sns

In [2]: # @title Reading The Indian Agriculture Dataset.
 # Reading the csv file
 Agriculture_Indian = pd.read_csv("ICRISAT-District Level Data.csv")
 # Here we are displaying the top 5 rows.
 Agriculture Indian.head(5)

Out[2]:

	Dist Code	Year	State Code	State Name	Dist Name	RICE AREA (1000 ha)	RICE PRODUCTION (1000 tons)	RICE YIELD (Kg per ha)	WHEAT AREA (1000 ha)	WH PRODUCT (1000 to
0	1	1966	14	Chhattisgarh	Durg	548.0	185.0	337.59	44.0	
1	1	1967	14	Chhattisgarh	Durg	547.0	409.0	747.71	50.0	
2	1	1968	14	Chhattisgarh	Durg	556.3	468.0	841.27	53.7	
3	1	1969	14	Chhattisgarh	Durg	563.4	400.8	711.40	49.4	
4	1	1970	14	Chhattisgarh	Durg	571.6	473.6	828.55	44.2	

5 rows × 80 columns

In [3]: # Here we are displaying the last 5 rows.
Agriculture_Indian.tail(5)

Out[3]:

:		Dist Code	Year	State Code	State Name	Dist Name	RICE AREA (1000 ha)	RICE PRODUCTION (1000 tons)	RICE YIELD (Kg per ha)	WHEAT AREA (1000 ha)	ţ
	16141	917	2013	15	Jharkhand	Singhbhum	267.06	579.70	2170.67	1.53	
	16142	917	2014	15	Jharkhand	Singhbhum	256.33	586.63	2288.57	5.36	
	16143	917	2015	15	Jharkhand	Singhbhum		1.99			
	16144	917	2016	15	Jharkhand	Singhbhum	224.05	319.01	1423.84	0.38	
	16145	917	2017	15	Jharkhand	Singhbhum	386.91	669.97	1731.62	0.00	

5 rows × 80 columns

In [4]: # @title Checking The DataTypes
Using the dtypes command we are checking the types of data.
Agriculture_Indian.dtypes

```
Dist Code
                                                    int64
Out[4]:
        Year
                                                    int64
        State Code
                                                   int64
        State Name
                                                   object
        Dist Name
                                                  object
                                                   . . .
                                                  float64
        VEGETABLES AREA (1000 ha)
        FRUITS AND VEGETABLES AREA (1000 ha)
                                                  float64
                                                  float64
        POTATOES AREA (1000 ha)
                                                  float64
        ONION AREA (1000 ha)
                                                  float64
        FODDER AREA (1000 ha)
        Length: 80, dtype: object
In [5]: # @title Checking The Missing Values
        # Using the isnull() command i am checking the missing values in the dataset
        Agriculture_Indian.isnull().sum()
        Dist Code
                                                  0
Out[5]:
        Year
                                                  0
        State Code
                                                  0
        State Name
                                                  0
        Dist Name
                                                  0
        VEGETABLES AREA (1000 ha)
                                                  0
        FRUITS AND VEGETABLES AREA (1000 ha)
        POTATOES AREA (1000 ha)
        ONION AREA (1000 ha)
                                                  0
        FODDER AREA (1000 ha)
                                                  0
        Length: 80, dtype: int64
In [6]: # @title Printing the Columns For The Agriculture Data
        # Printing the columns of Data Agriculture
        print(Agriculture_Indian.columns)
```

```
'RICE YIELD (Kg per ha)', 'WHEAT AREA (1000 ha)',
                'WHEAT PRODUCTION (1000 tons)', 'WHEAT YIELD (Kg per ha)',
                'KHARIF SORGHUM AREA (1000 ha)',
                'KHARIF SORGHUM PRODUCTION (1000 tons)',
                'KHARIF SORGHUM YIELD (Kg per ha)', 'RABI SORGHUM AREA (1000 ha)',
                'RABI SORGHUM PRODUCTION (1000 tons)', 'RABI SORGHUM YIELD (Kg per h
        a)',
                'SORGHUM AREA (1000 ha)', 'SORGHUM PRODUCTION (1000 tons)',
                'SORGHUM YIELD (Kg per ha)', 'PEARL MILLET AREA (1000 ha)'
                'PEARL MILLET PRODUCTION (1000 tons)', 'PEARL MILLET YIELD (Kg per h
        a)',
                'MAIZE AREA (1000 ha)', 'MAIZE PRODUCTION (1000 tons)',
                'MAIZE YIELD (Kg per ha)', 'FINGER MILLET AREA (1000 ha)',
                'FINGER MILLET PRODUCTION (1000 tons)',
                'FINGER MILLET YIELD (Kg per ha)', 'BARLEY AREA (1000 ha)', 'BARLEY PRODUCTION (1000 tons)', 'BARLEY YIELD (Kg per ha)',
                'CHICKPEA AREA (1000 ha)', 'CHICKPEA PRODUCTION (1000 tons)',
                'CHICKPEA YIELD (Kg per ha)', 'PIGEONPEA AREA (1000 ha)',
                'PIGEONPEA PRODUCTION (1000 tons)', 'PIGEONPEA YIELD (Kg per ha)',
                'MINOR PULSES AREA (1000 ha)', 'MINOR PULSES PRODUCTION (1000 ton
        s)',
                'MINOR PULSES YIELD (Kg per ha)', 'GROUNDNUT AREA (1000 ha)', 'GROUNDNUT PRODUCTION (1000 tons)', 'GROUNDNUT YIELD (Kg per ha)',
                'SESAMUM AREA (1000 ha)', 'SESAMUM PRODUCTION (1000 tons)',
                'SESAMUM YIELD (Kg per ha)', 'RAPESEED AND MUSTARD AREA (1000 ha)',
                'RAPESEED AND MUSTARD PRODUCTION (1000 tons)',
                'RAPESEED AND MUSTARD YIELD (Kg per ha)', 'SAFFLOWER AREA (1000 h
        a)',
                'SAFFLOWER PRODUCTION (1000 tons)', 'SAFFLOWER YIELD (Kg per ha)',
                'CASTOR AREA (1000 ha)', 'CASTOR PRODUCTION (1000 tons)',
                'CASTOR YIELD (Kg per ha)', 'LINSEED AREA (1000 ha)',
                'LINSEED PRODUCTION (1000 tons)', 'LINSEED YIELD (Kg per ha)',
                'SUNFLOWER AREA (1000 ha)', 'SUNFLOWER PRODUCTION (1000 tons)',
                'SUNFLOWER YIELD (Kg per ha)', 'SOYABEAN AREA (1000 ha)',
                'SOYABEAN PRODUCTION (1000 tons)', 'SOYABEAN YIELD (Kg per ha)',
                'OILSEEDS AREA (1000 ha)', 'OILSEEDS PRODUCTION (1000 tons)',
                'OILSEEDS YIELD (Kg per ha)', 'SUGARCANE AREA (1000 ha)',
                'SUGARCANE PRODUCTION (1000 tons)', 'SUGARCANE YIELD (Kg per ha)',
                'COTTON AREA (1000 ha)', 'COTTON PRODUCTION (1000 tons)',
                'COTTON YIELD (Kg per ha)', 'FRUITS AREA (1000 ha)', 'VEGETABLES AREA (1000 ha)', 'FRUITS AND VEGETABLES AREA (1000 ha)',
                'POTATOES AREA (1000 ha)', 'ONION AREA (1000 ha)',
                'FODDER AREA (1000 ha)'],
               dtype='object')
In [7]: # @title Dataset Statistics
         # Shape of our dataset
        Agriculture_Indian.shape
        # Info our dataset
        Agriculture_Indian.info()
        # Describe our dataset
        Agriculture_Indian.describe()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16146 entries, 0 to 16145
Data columns (total 80 columns):

#	Column	Non-Null Count	Dtype
0	Dist Code	16146 non-null	int64
1	Year	16146 non-null	
2	State Code	16146 non-null	
3	State Name	16146 non-null	
4	Dist Name	16146 non-null	
5	RICE AREA (1000 ha)	16146 non-null	float64
6	RICE PRODUCTION (1000 tons)	16146 non-null	float64
7	RICE YIELD (Kg per ha)	16146 non-null	
8	WHEAT AREA (1000 ha)	16146 non-null	
9	WHEAT PRODUCTION (1000 tons)	16146 non-null	
10	WHEAT YIELD (Kg per ha)	16146 non-null	
11	KHARIF SORGHUM AREA (1000 ha)	16146 non-null	float64
12	KHARIF SORGHUM PRODUCTION (1000 tons)		
13	KHARIF SORGHUM YIELD (Kg per ha)	16146 non-null	
14	RABI SORGHUM AREA (1000 ha) RABI SORGHUM PRODUCTION (1000 tons)	16146 non-null	
15 16	RABI SORGHUM YIELD (Kg per ha)	16146 non-null	
17	SORGHUM AREA (1000 ha)	16146 non-null	
18	SORGHUM PRODUCTION (1000 tons)	16146 non-null	
19	SORGHUM YIELD (Kg per ha)	16146 non-null	
20	PEARL MILLET AREA (1000 ha)	16146 non-null	
21	PEARL MILLET PRODUCTION (1000 tons)		
22	PEARL MILLET YIELD (Kg per ha)		
23	MAIZE AREA (1000 ha)		
24	MAIZE PRODUCTION (1000 tons)	16146 non-null	float64
25	MAIZE YIELD (Kg per ha)	16146 non-null	float64
26	FINGER MILLET AREA (1000 ha)	16146 non-null	float64
27			
28	FINGER MILLET YIELD (Kg per ha)	16146 non-null	
29	BARLEY AREA (1000 ha)	16146 non-null	
30	BARLEY PRODUCTION (1000 tons)	16146 non-null	
31	BARLEY YIELD (Kg per ha)	16146 non-null	
32		16146 non-null	
33	CHICKPEA YIELD (Kg nos ha)	16146 non-null	
35	CHICKPEA YIELD (Kg per ha) PIGEONPEA AREA (1000 ha)	16146 non-null 16146 non-null	
36	PIGEONPEA PRODUCTION (1000 tons)	16146 non-null	
37	PIGEONPEA YIELD (Kg per ha)	16146 non-null	
38	MINOR PULSES AREA (1000 ha)	16146 non-null	
39	MINOR PULSES PRODUCTION (1000 tons)	16146 non-null	
40	MINOR PULSES YIELD (Kg per ha)	16146 non-null	
41	GROUNDNUT AREA (1000 ha)	16146 non-null	float64
42	GROUNDNUT PRODUCTION (1000 tons)	16146 non-null	float64
43	GROUNDNUT YIELD (Kg per ha)	16146 non-null	float64
44	SESAMUM AREA (1000 ha)	16146 non-null	
45	SESAMUM PRODUCTION (1000 tons)	16146 non-null	
46	SESAMUM YIELD (Kg per ha)	16146 non-null	
47	RAPESEED AND MUSTARD AREA (1000 ha)	16146 non-null	
48	RAPESEED AND MUSTARD PRODUCTION (1000 tons)		float64
49	RAPESEED AND MUSTARD YIELD (Kg per ha)	16146 non-null	float64
50 51	SAFFLOWER AREA (1000 ha)	16146 non-null	
51 52	SAFFLOWER PRODUCTION (1000 tons) SAFFLOWER YIELD (Kg per ha)	16146 non-null 16146 non-null	float64 float64
53	CASTOR AREA (1000 ha)	16146 non-null	
54	CASTOR AREA (1000 Ha) CASTOR PRODUCTION (1000 tons)	16146 non-null	
55	CASTOR YIELD (Kg per ha)	16146 non-null	
56	LINSEED AREA (1000 ha)	16146 non-null	
57	LINSEED PRODUCTION (1000 tons)	16146 non-null	
58		16146 non-null	

59	SUNFLOWER AREA (1000 ha)	16146 non-null	float64
60	SUNFLOWER PRODUCTION (1000 tons)	16146 non-null	float64
61	SUNFLOWER YIELD (Kg per ha)	16146 non-null	float64
62	SOYABEAN AREA (1000 ha)	16146 non-null	float64
63	SOYABEAN PRODUCTION (1000 tons)	16146 non-null	float64
64	SOYABEAN YIELD (Kg per ha)	16146 non-null	float64
65	OILSEEDS AREA (1000 ha)	16146 non-null	float64
66	OILSEEDS PRODUCTION (1000 tons)	16146 non-null	float64
67	OILSEEDS YIELD (Kg per ha)	16146 non-null	float64
68	SUGARCANE AREA (1000 ha)	16146 non-null	float64
69	SUGARCANE PRODUCTION (1000 tons)	16146 non-null	float64
70	SUGARCANE YIELD (Kg per ha)	16146 non-null	float64
71	COTTON AREA (1000 ha)	16146 non-null	float64
72	COTTON PRODUCTION (1000 tons)	16146 non-null	float64
73	COTTON YIELD (Kg per ha)	16146 non-null	float64
74	FRUITS AREA (1000 ha)	16146 non-null	float64
75	VEGETABLES AREA (1000 ha)	16146 non-null	float64
76	FRUITS AND VEGETABLES AREA (1000 ha)	16146 non-null	float64
77	POTATOES AREA (1000 ha)	16146 non-null	float64
78	ONION AREA (1000 ha)	16146 non-null	float64
79	FODDER AREA (1000 ha)	16146 non-null	float64
dtvn	es: $float64(75)$, $int64(3)$, $ohiect(2)$		

dtypes: float64(75), int64(3), object(2)

memory usage: 9.9+ MB

Out[7]:

	Dist Code	Year	State Code	RICE AREA (1000 ha)	RICE PRODUCTION (1000 tons)	RICE YIEL (Kg per ha
count	16146.000000	16146.000000	16146.000000	16146.000000	16146.000000	16146.00000
mean	269.769231	1991.496841	9.568562	128.593192	224.889565	1486.92478
std	278.309125	15.011185	4.988538	160.078825	326.629828	956.18528
min	1.000000	1966.000000	1.000000	-1.000000	-1.000000	-1.00000
25%	78.000000	1978.000000	6.000000	10.400000	9.460000	800.00000
50%	156.000000	1991.000000	10.000000	66.800000	95.840000	1333.21000
75%	241.000000	2005.000000	12.000000	191.390000	315.715000	2113.51750
max	917.000000	2017.000000	20.000000	1154.230000	3215.010000	5653.83000

8 rows × 78 columns

```
In [10]: # @title Reading The Global Country Information Dataset.
         # Reading the csv file
         Country_Global = pd.read_csv("Global_Country.csv")
         # Here we are displaying the top 5 rows.
         Country_Global.head(5)
```

Out[10]:

	Rank	State	Capital	Population	% of Total Population	Males	Females	Sex Ratio	Li
0	1	Uttar Pradesh	Lucknow	199,812,341	16.50	104,480,510	95,331,831	912	
1	2	Maharashtra	Mumbai	112,374,333	9.28	58,243,056	54,131,277	929	
2	3	Bihar	Patna	104,099,452	8.60	54,278,157	49,821,295	918	
3	4	West Bengal	Kolkata	91,276,115	7.54	46,809,027	44,467,088	950	
4	5	Andhra Pradesh	Hyderabad	84,580,777	6.99	42,442,146	42,138,631	993	

In [11]: # Here we are displaying the last 5 rows.
Country_Global.tail(5)

Out[11]:

		Rank	State	Capital	Population	% of Total Population	Males	Females	Sex Ratio	Literacy Rate (%)
	30	31	Sikkim	Gangtok	610,577	0.05	323,070	287,507	890	81.42
	31	32	Andaman and Nicobar Islands	Port Blair	380,581	0.03	202,871	177,710	876	86.63
	32	33	Dadra and Nagar Haveli	Silvassa	343,709	0.03	193,760	149,949	774	76.24
	33	34	Daman and Diu	Daman	243,247	0.02	150,301	92,946	618	87.10
	34	35	Lakshadweep	Kavaratti	64,473	0.01	33,123	31,350	946	91.85

In [12]: # @title Checking The DataTypes
Using the dtypes command we are checking the types of data.
Country_Global.dtypes

Out[12]:

Rank int64 State object Capital object Population object % of Total Population float64 Males object Females object Sex Ratio object Literacy Rate (%) float64 Rural Population object Urban Population object Area (km*km) object Density (1/km*km) object Decadal Growth (%) object dtype: object

```
Rank
                                    0
Out[13]:
          State
                                    0
                                    1
          Capital
          Population
                                    0
          % of Total Population
                                    0
         Males
                                    0
          Females
                                    0
          Sex Ratio
                                    0
                                    0
          Literacy Rate (%)
          Rural Population
                                    0
          Urban Population
                                    0
          Area (km*km)
                                    0
          Density (1/km*km)
                                    0
          Decadal Growth (%)
                                    0
          dtype: int64
```

```
In [14]: # @title Printing the Columns For The Agriculture Data
# Printing the columns of Data Agriculture
print(Country_Global.columns)
```

```
In [15]: # @title Dataset Statistics
# Shape of our dataset
Country_Global.shape

# Info our dataset
Country_Global.info()

# Describe our dataset
Country_Global.describe()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35 entries, 0 to 34
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype					
0	Rank	35 non-null	 int64					
1	State	35 non-null	object					
2	Capital	34 non-null	object					
3	Population	35 non-null	object					
4	% of Total Population	35 non-null	float64					
5	Males	35 non-null	object					
6	Females	35 non-null	object					
7	Sex Ratio	35 non-null	object					
8	Literacy Rate (%)	35 non-null	float64					
9	Rural Population	35 non-null	object					
10	Urban Population	35 non-null	object					
11	Area (km∗km)	35 non-null	object					
12	Density (1/km∗km)	35 non-null	object					
13	Decadal Growth (%)	35 non-null	object					
dtyp	dtypes: float64(2), int64(1), object(11)							

memory usage: 4.0+ KB

Out[15]:

Rank % of Total Population Literacy Rate (%)

		•	. ,
count	35.000000	35.000000	35.000000
mean	18.000000	2.856857	77.940286
std	10.246951	3.671943	8.598837
min	1.000000	0.010000	61.800000
25%	9.500000	0.115000	71.235000
50%	18.000000	1.390000	78.030000
75%	26.500000	5.020000	85.950000
max	35.000000	16.500000	94.000000

```
In [16]: # @title Plotting The Histogram For the Rice Area, Production And Wheat Area, import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

```
In [17]: # Here we are plotting rice area distribution utlizing histogram
         plt.subplot(2, 2, 1)
         sns.histplot(Agriculture_Indian["RICE AREA (1000 ha)"], bins=30, kde=True, d
         plt.title("Distribution Of Area For Rice")
         # Here we are plotting rice production distribution utlizing histogram
         plt.subplot(2, 2, 2)
         sns.histplot(Agriculture_Indian["RICE PRODUCTION (1000 tons)"], bins=30, kd€
         plt.title("Distribution of Production for Rice")
         # Here we are plotting wheat area distribution utlizing histogram
         plt.subplot(2, 2, 3)
         sns.histplot(Agriculture Indian["WHEAT AREA (1000 ha)"], bins=30, kde=True,
         plt.title("Distribution Of Area For Wheat")
         # Here we are plotting wheat production distribution utlizing histogram
         plt.subplot(2, 2, 4)
         sns.histplot(Agriculture_Indian["WHEAT PRODUCTION (1000 tons)"], bins=30, kc
         plt.title("Distribution of Production for Wheat")
         plt.tight_layout()
         plt.show()
```



```
In [18]: # @title Plotting The BoxPlot For the Rice, Sugarcane, Wheat Area across diffe
         # Here we are setting the colors
         colors = ["#FF9247", "#1E40FF", "#12DD42"]
         # Here we are setting the seaborn as style
         sns.set style("whitegrid")
         # Plot the box plots with for the rice area and different states
         # Here we are setting the figure size
         plt.figure(figsize=(12, 8))
         sns.boxplot(x='State Name', y='RICE AREA (1000 ha)', data=Agriculture_Indian
         plt.title('Distribution of Rice Area across Different States')
         plt.xticks(rotation=90)
         plt.ylabel('Rice Area (1000 ha)')
         plt.xlabel('State Name')
         plt.show()
         # Plot the box plots with for the rice area and different states
         # Here we are setting the figure size
         plt.figure(figsize=(12, 8))
         sns.boxplot(x='State Name', y='WHEAT AREA (1000 ha)', data=Agriculture_India
         plt.title('Distribution of Wheat Area across Different States')
         plt.xticks(rotation=90)
         plt.ylabel('Wheat Area (1000 ha)')
         plt.xlabel('State Name')
         plt.show()
         # Plot the box plots with for the sugarcane area and different states
         # Here we are setting the figure size
         plt.figure(figsize=(12, 8))
         sns.boxplot(x='State Name', y='SUGARCANE AREA (1000 ha)', data=Agriculture_1
         plt.title('Distribution of Sugarcane Area across Different States')
         plt.xticks(rotation=90)
         plt.ylabel('Sugarcane Area (1000 ha)')
         plt.xlabel('State Name')
         plt.show()
```


State Name

```
In [19]: # @title Plotting The HistPlot For The RICE, PEARL MILLET Area, Production for
         # Here We are defining the parameters to plot
         Agriculture Indian parameters = ['RICE AREA (1000 ha)', 'RICE PRODUCTION (10
                                          'PEARL MILLET AREA (1000 ha)', 'PEARL MILLET
         # Here we are creating subplots for every parameter
         fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 8))
         # Here we are flatten the axes array to perform easy iteration
         axes = axes.flatten()
         # Here we are plotting the histograms for each parameter
         for i, Parameters_Agriculture in enumerate(Agriculture_Indian_parameters):
             ax = axes[i]
             ax.hist(Agriculture_Indian[Parameters_Agriculture], bins=40, color='vio'
             ax.set_title(Parameters_Agriculture)
             ax.set_xlabel('Value')
             ax.set_ylabel('Frequency')
         # Adjust layout
         plt.tight_layout()
         plt.show()
```



```
# @title Plotting The Scatterplot For The Rice, Wheat, Maize, Sugarcane Area, Pl
In []:
         # Here We are defining the parameters to plot
         Agriculture_Indian_parameters = [('RICE AREA (1000 ha)', 'RICE PRODUCTION (1
                              ('WHEAT AREA (1000 ha)', 'WHEAT PRODUCTION (1000 tons)') ('MAIZE AREA (1000 ha)', 'MAIZE PRODUCTION (1000 tons)')
                              ('SUGARCANE AREA (1000 ha)', 'SUGARCANE PRODUCTION (1000
         # Here we are creating subplots for every parameter
         fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 8))
         # Here we are flatten the axes array to perform easy iteration
         axes = axes.flatten()
         # Here we are plotting the scatterplot for each parameter
         for i, pair in enumerate(Agriculture_Indian_parameters):
             ax = axes[i]
             ax.scatter(Agriculture_Indian[pair[0]], Agriculture_Indian[pair[1]], co
             ax.set_title(f"{pair[1]} vs {pair[0]}")
             ax.set_xlabel(pair[0])
             ax.set_ylabel(pair[1])
         # Adjust layout
         plt.tight_layout()
         plt.show()
```



```
In []:
        # @title Plotting The Histogram For The Minor Pulses, Wheat, GroundNut, Sugarca
        # Here We are defining the parameters to plot the histogram
        Agriculture_Indian_parameters = ['MINOR PULSES AREA (1000 ha)', 'WHEAT AREA
        # Here we are creating subplots for every parameter
        fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 8))
        # Here we are flatten the axes array to perform easy iteration
        axes = axes.flatten()
        # Here we are plotting the scatterplot for each parameter
        for i, Parameters_Agriculture in enumerate(Agriculture_Indian_parameters):
            ax = axes[i]
            ax.hist(Agriculture_Indian[Parameters_Agriculture], bins=20, color='blue
            ax.set_title(f"Distribution of {Parameters_Agriculture}")
            ax.set_xlabel(Parameters_Agriculture)
            ax.set_ylabel("Frequency")
        # Adjust layout
        plt.tight_layout()
        plt.show()
```


@title Plotting The Trends For The Minor Pulses, Wheat, Ground Nut, Sunflower In []: # # Here We are defining the parameters to plot the histogram # Here We are defining the parameters to plot the treds for the production Agriculture_Indian_parameters = ['MINOR PULSES PRODUCTION (1000 tons)', 'WHÉ # Group the data by year and calculate the total production for each year Agriculture_Indian_Production_Over_Time = Agriculture_Indian.groupby('Year') # Here we are plotting the trends for year plt.figure(figsize=(12, 8)) for Parameters Agriculture in Agriculture Indian parameters: plt.plot(Agriculture_Indian_Production_Over_Time.index, Agriculture_Ind: plt.title("Agricultural Production Trends Over Time") plt.xlabel("Year") plt.ylabel("Production (1000 tons)") plt.legend() plt.grid(True) plt.show()

In []: # @title Plotting The BarChart for Male, Female ratio across different states # Here We are analyzing the sex ratio across different states

```
plt.figure(figsize=(12, 8))
# In the column of sex ratio there are commas so i am removing he commas and
Country_Global['Sex Ratio'] = Country_Global['Sex Ratio'].str.replace(',',

# Utilizing The Bar Chart We are Plotting the sex ratio average across diffe
Country_Global.groupby('State')['Sex Ratio'].mean().sort_values().plot(kind-
plt.title("Average Sex Ratio Across Different States")
plt.xlabel("Sex Ratio")
plt.ylabel("State")
plt.show()
```



```
In []: # @title Plotting The BarChart for density of population across states which
# Explore the population density across different states
plt.figure(figsize=(12, 8))
# In the column of Population Density there are commas so i am removing he of
Country_Global['Density (1/km*km)'] = Country_Global['Density (1/km*km)'].st
# Utilizing The Bar Chart We are Plotting the population density across difficulty
Country_Global.groupby('State')['Density (1/km*km)'].mean().sort_values().p]
plt.title("Average Population Density Across Different States")
plt.xlabel("Density (1/km*km)")
plt.ylabel("State")
plt.show()
```


In []: # @title Plotting The BarChart for growth decade percentage across states w/
Here we are exploring the decadal growth percentage across different state
plt.figure(figsize=(12, 8))
In the column of Decadal Growth we are removing special characters and cc/
Country_Global['Decadal Growth (%)'] = Country_Global['Decadal Growth (%)']

Utilizing The Bar Chart We are Plotting the average decadal growth across
Country_Global.groupby('State')['Decadal Growth (%)'].mean().sort_values().pplt.title("Average Decadal Growth Percentage Across Different States")
plt.xlabel("Decadal Growth Percentage")
plt.ylabel("State")
plt.show()

In []: # @title Plotting The Corelaion Matrix for the data which is global country
 # In this case we are exclude non-numeric columns and calculating the correl
 Country_Global_Numeric_Columns = Country_Global.select_dtypes(include=['floacorrelation_matrix = Country_Global[Country_Global_Numeric_Columns].corr()

Utilizing the Heat Map we are plotting the correlation matrix
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", line
plt.title("Correlation Matrix For the Global Country Data")
plt.show()

In []: # @title Merging The Both Agriculture and Global Country Data
 # Here performing inner join and merging the both the datasets on the column
Agriculture_Global_Merged = pd.merge(Agriculture_Indian, Country_Global, le:
 # Here We are Displaying the first rows of the dataset which is merged
 print(Agriculture_Global_Merged.head())

```
Dist Code Year
                    State Code
                                     State Name Dist Name RICE AREA (1000 ha)
\
0
               1966
                                                                            548.0
            1
                              14
                                  Chhattisgarh
                                                      Durg
1
            1
               1967
                                  Chhattisgarh
                                                      Durg
                                                                            547.0
2
            1
               1968
                              14
                                  Chhattisgarh
                                                      Durg
                                                                            556.3
3
            1
               1969
                              14
                                  Chhattisgarh
                                                                            563.4
                                                      Durg
4
            1
               1970
                              14
                                  Chhattisgarh
                                                      Durg
                                                                            571.6
                                  RICE YIELD (Kg per ha)
   RICE PRODUCTION (1000 tons)
                                                             WHEAT AREA (1000 h
a)
0
                           185.0
                                                    337.59
                                                                              44.
0
1
                           409.0
                                                    747.71
                                                                              50.
0
2
                           468.0
                                                    841.27
                                                                              53.
7
3
                                                                              49.
                           400.8
                                                    711.40
4
4
                           473.6
                                                    828.55
                                                                              44.
2
   WHEAT PRODUCTION (1000 tons)
                                         % of Total Population
                                                                        Males
                                    . . .
0
                                                                  12,832,895
                             20.0
                                                            2.11
1
                             26.0
                                                                  12,832,895
                                                            2.11
2
                             30.0
                                                            2.11
                                                                  12,832,895
                                    . . .
3
                             26.5
                                                            2.11
                                                                  12,832,895
4
                                                                  12,832,895
                             29.0
                                                            2.11
                                    . . .
      Females
                Sex Ratio
                            Literacy Rate (%)
                                                 Rural Population \
0
   12,712,303
                      991
                                         70.28
                                                       19,603,658
   12,712,303
                      991
                                         70.28
                                                       19,603,658
1
2
                      991
   12,712,303
                                         70.28
                                                       19,603,658
3
   12,712,303
                      991
                                         70.28
                                                       19,603,658
   12,712,303
                      991
                                         70.28
                                                       19,603,658
                                      Density (1/km*km)
   Urban Population
                      Area (km∗km)
                                                           Decadal Growth (%)
0
          5,936,538
                            135,191
                                                     189
                                                                          22.6
                                                                          22.6
1
                            135,191
                                                     189
          5,936,538
2
          5,936,538
                            135,191
                                                     189
                                                                          22.6
3
                            135,191
                                                     189
                                                                          22.6
           5,936,538
4
           5,936,538
                            135,191
                                                     189
                                                                          22.6
```

[5 rows x 94 columns]

```
Out[]: Index(['Dist Code', 'Year', 'State Code', 'State Name', 'Dist Name', 'RICE AREA (1000 ha)', 'RICE PRODUCTION (1000 tons)',
                  'RICE YIELD (Kg per ha)', 'WHEAT AREA (1000 ha)',
                  'WHEAT PRODUCTION (1000 tons)', 'WHEAT YIELD (Kg per ha)',
                  'KHARIF SORGHUM AREA (1000 ha)',
                  'KHARIF SORGHUM PRODUCTION (1000 tons)',
                  'KHARIF SORGHUM YIELD (Kg per ha)', 'RABI SORGHUM AREA (1000 ha)',
                  'RABI SORGHUM PRODUCTION (1000 tons)', 'RABI SORGHUM YIELD (Kg per h
         a)',
                  'SORGHUM AREA (1000 ha)', 'SORGHUM PRODUCTION (1000 tons)',
                  'SORGHUM YIELD (Kg per ha)', 'PEARL MILLET AREA (1000 ha)'
                  'PEARL MILLET PRODUCTION (1000 tons)', 'PEARL MILLET YIELD (Kg per h
         a)',
                  'MAIZE AREA (1000 ha)', 'MAIZE PRODUCTION (1000 tons)',
                  'MAIZE YIELD (Kg per ha)', 'FINGER MILLET AREA (1000 ha)',
                  'FINGER MILLET PRODUCTION (1000 tons)',
                  'FINGER MILLET YIELD (Kg per ha)', 'BARLEY AREA (1000 ha)', 'BARLEY PRODUCTION (1000 tons)', 'BARLEY YIELD (Kg per ha)',
                  'CHICKPEA AREA (1000 ha)', 'CHICKPEA PRODUCTION (1000 tons)',
                  'CHICKPEA YIELD (Kg per ha)', 'PIGEONPEA AREA (1000 ha)',
                  'PIGEONPEA PRODUCTION (1000 tons)', 'PIGEONPEA YIELD (Kg per ha)',
                  'MINOR PULSES AREA (1000 ha)', 'MINOR PULSES PRODUCTION (1000 ton
         s)',
                  'MINOR PULSES YIELD (Kg per ha)', 'GROUNDNUT AREA (1000 ha)', 'GROUNDNUT PRODUCTION (1000 tons)', 'GROUNDNUT YIELD (Kg per ha)',
                  'SESAMUM AREA (1000 ha)', 'SESAMUM PRODUCTION (1000 tons)',
                  'SESAMUM YIELD (Kg per ha)', 'RAPESEED AND MUSTARD AREA (1000 ha)',
                  'RAPESEED AND MUSTARD PRODUCTION (1000 tons)',
                  'RAPESEED AND MUSTARD YIELD (Kg per ha)', 'SAFFLOWER AREA (1000 h
         a)',
                  'SAFFLOWER PRODUCTION (1000 tons)', 'SAFFLOWER YIELD (Kg per ha)',
                  'CASTOR AREA (1000 ha)', 'CASTOR PRODUCTION (1000 tons)',
                  'CASTOR YIELD (Kg per ha)', 'LINSEED AREA (1000 ha)',
                  'LINSEED PRODUCTION (1000 tons)', 'LINSEED YIELD (Kg per ha)',
                  'SUNFLOWER AREA (1000 ha)', 'SUNFLOWER PRODUCTION (1000 tons)',
                  'SUNFLOWER YIELD (Kg per ha)', 'SOYABEAN AREA (1000 ha)',
                  'SOYABEAN PRODUCTION (1000 tons)', 'SOYABEAN YIELD (Kg per ha)',
                  'OILSEEDS AREA (1000 ha)', 'OILSEEDS PRODUCTION (1000 tons)',
                  'OILSEEDS YIELD (Kg per ha)', 'SUGARCANE AREA (1000 ha)',
                  'SUGARCANE PRODUCTION (1000 tons)', 'SUGARCANE YIELD (Kg per ha)',
                  'COTTON AREA (1000 ha)', 'COTTON PRODUCTION (1000 tons)',
                  'COTTON YIELD (Kg per ha)', 'FRUITS AREA (1000 ha)', 'VEGETABLES AREA (1000 ha)', 'FRUITS AND VEGETABLES AREA (1000 ha)', 'POTATOES AREA (1000 ha)', 'ONION AREA (1000 ha)',
                  'FODDER AREA (1000 ha)', 'Rank', 'State', 'Capital', 'Population', '% of Total Population', 'Males', 'Females', 'Sex Ratio',
                  'Literacy Rate (%)', 'Rural Population', 'Urban Population',
                  'Area (km*km)', 'Density (1/km*km)', 'Decadal Growth (%)'],
                 dtype='object')
```

In []: # @title Checking The DataTypes
 # Using the dtypes command we are checking the types of merged data.
 Agriculture_Global_Merged.dtypes

```
Dist Code
                                  int64
Out[]:
         Year
                                  int64
        State Code
                                  int64
        State Name
                                 object
        Dist Name
                                 object
        Rural Population
                                 object
        Urban Population
                                 object
        Area (km*km)
                                 object
        Density (1/km*km)
                                  int64
        Decadal Growth (%)
                                float64
        Length: 94, dtype: object
```

In []: # @title Plotting The BarChart for disturbution of population across states
Here We are Converting the population related columns to types which are
Agriculture_Global_Merged['Population'] = Agriculture_Global_Merged['Populat
Agriculture_Global_Merged['Males'] = Agriculture_Global_Merged['Females'].
Agriculture_Global_Merged['Females'] = Agriculture_Global_Merged['Females']
Agriculture_Global_Merged['Urban Population'] = Agriculture_Global_Merged['Females']
Utilizing the Barchart we are plotting the across state population disture
plt.figure(figsize=(12, 8))
Agriculture_Global_Merged.groupby('State Name')['Population'].sum().sort_vai
plt.title("Population Distribution Across States")
plt.xlabel("Population")
plt.ylabel("State")
plt.show()


```
In []: # @title Plotting The ScatterPlot for disturbution of population across stat
# Here we are calculating total agricultural production
Agriculture_Global_Merged['Total Crop Area (1000 ha)'] = Agriculture_Global_
Agriculture_Global_Merged['Total Crop Production (1000 tons)'] = Agriculture_Agriculture_Global_Merged['Average Crop Yield (Kg per ha)'] = Agriculture_G'
# Utilizing the scatterplot we are plotting the across state population dist
plt.figure(figsize=(12, 8))
plt.scatter(Agriculture_Global_Merged['Population'], Agriculture_Global_Merged['Population'], Agriculture_Global_Merged['Populatio
```

```
plt.title('Population Distribution Across States vs. Agricultural Production
plt.legend()
plt.show()
```



```
# @title Plotting The ScatterPlot for land usage for agriculture and trends
In []:
        # Here we are setting the Figure Size
        plt.figure(figsize=(12, 8))
        plt.scatter(Agriculture_Global_Merged['Urban Population'], Agriculture_Global
        plt.scatter(Agriculture_Global_Merged['Urban Population'], Agriculture_Global
        plt.scatter(Agriculture_Global_Merged['Urban Population'], Agriculture_Globat
        # Here we are setting xlabel
        plt.xlabel('Urban Population')
        # Here we are setting ylabel
        plt.ylabel('Agricultural Land Usage')
        #Here we are setting the title utilizing the title command
        plt.title('Urbanization Trends vs. Agricultural Land Usage')
        #Here we are setting the legend
        plt.legend()
        #Utilizing the show command we are displaying the plot
        plt.show()
```


In []: # @title Plotting The ScatterPlot for productivity of agriculture and density
Here we are setting the Figure Size
plt.figure(figsize=(12, 8))
plt.scatter(Agriculture_Global_Merged['Density (1/km*km)'], Agriculture_Global_Merged['Density (1/km*km)'], Agriculture_Global_Merged['Density (1/km*km)'], Agriculture_Global_Merged['Population Density (1/km*km)')
plt.xlabel('Population Density (1/km*km)')
plt.ylabel('Agricultural Productivity Metrics')
plt.title('Population Density vs. Agricultural Productivity')
plt.legend()
plt.show()

