COMP229: Introduction to Data Science Lecture 18: statistical significance

Vitaliy Kurlin, vitaliy.kurlin@liverpool.ac.uk Autumn 2018, Computer Science department University of Liverpool, United Kingdom

Statistical inference again

In the past lecture confidence intervals were used to estimate a population parameter, e.g. a mean by using a standard deviation and a data sample.

Another common type of inference (tests of significance) aims to test a claim about a population parameter again by using a sample.

Example. Someone claims that they solve on average 70% of problems in any exam and then gets 40% in COMP229. Was the claim disproved? We'll estimate the significance of the mark 40.

Hypothesis: null vs alternative

Definition 18.1. A claim to be checked by a statistical test is called the *null hypothesis* H_0 .

Usually, the null hypothesis is a statement of "no new effect", e.g. new data confirms an old trend.

The alternative hypothesis H_a is a claim about the population that we are trying to confirm by data.

Often an alternative hypotehsis H_a claims a new effect and is easier to state before formulating H_0 .

Hypotheses: for parameters, not data

Both types of hypotheses (null and alternative) should be stated in terms of parameters of a (very large) population, e.g. the mean of all exam marks, not for a usually small sample outcome.

A good hypothesis: the mean mark is 60 across all outcomes for many students over several years.

A bad hypothesis: the mean mark in January 2019 is 60 (only one data sample for one exam).

Hypotheses: 1-sided vs 2-sided

Let the null hypothesis say that the mean of exam marks (the population parameter) is $\mu = 60$.

An alternative hypothesis H_a may say $\mu \neq 60$ and is called 2-sided in this case, so H_a is the union of the two hypotheses: 1) $\mu < 60$ and 2) $\mu > 60$.

An alternative hypothesis H_a may not be complementary (exactly opposite) to H_0 , e.g.

 H_a may say that $\mu > 60$ and is called 1-sided.

The *p*-value of a data sample

Assume that a null hypothesis H_0 is true.

A test statistic (a numerical measurement of a sample) estimates how far an actual measurement diverges from an expected value for H_0 .

Definition 18.2. The *p-value* is the probability

(assuming the null hypothesis) to obtain a result equal to or more extreme than what was observed. If H_0 is $\mu=60$ and we get $\bar{x}=\frac{1}{n}\sum_{i=1}^n x_i=40$, then the 1-sided p-value is $P(\bar{x}\leq 40)$, while the 2-sided p-value is $P(|\bar{x}-60|\geq 20)$.

One sample test for a mean

Let x_1, \ldots, x_n be sample values drawn from a normal distribution with an unknown mean μ and a known standard deviation σ .

To test the null hypothesis H_0 that $\mu = \mu_0$ (a given value), we find the *test statistic* $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$.

The *p*-value to test $H_a = \{\mu > \mu_0\}$ against H_0 is $P(Z \ge z)$, where $Z \sim N(0,1)$ is the standard normal variable, the same for $H_a = \{\mu < \mu_0\}$.

The 2-sided *p*-value against H_0 is $P(|Z| \ge |z|)$.

Reject or not to reject?

Assuming that the standard deviation of exam marks is $\sigma = 15$ and we get n = 25 sample marks with the sample mean $\bar{x} = 69$, shall we reject (or not) the hypothesis that the mean mark $\mu = 60$?

Step 1. Compute the z statistic as follows:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{69 - 60}{15 / \sqrt{25}} = \frac{9}{3} = 3.$$

Step 2. Compute the 2-sided *p*-value P(|Z| > 3) = 0.3% by the 68-95-99.7 rule.

 $\bar{x}=69$ seems unlikely for the hypothesis $\mu=60$.

Significance level α

Definition 18.3. If the *p*-value is (non-strictly) smaller than a specified significance level α , the data are called statistically significant at level α .

The *p*-value of 0.3% for the null hypothesis $H_0 = \{\mu = 60\}$ means that the actual marks are statistically significant at level 1%, but are not statistically significant at 0.1%. What if $\bar{x} = 66$?

z statistic	1.645	1.96	2.326	2.576		
2-sided <i>p</i> -value	10%	5%	2%	1%		
1-sided <i>p</i> -value	5%	2.5%	1%	0.5%	= 4	0 a Q

Revision: *p*-levels vs *z*-scores

For $\bar{x}=66$, the z-statistic is z=2 and 2-sided p-value is $P(|Z| \ge 2) \approx 5\%$, so the statistic is significant at level 5%, but not at smaller levels.

$$P(|Z| > 1.65) = 10\%,$$

 $P(Z > 1.65) = 5\%,$
 $P(|Z| > 1.96) = 5\%,$
 $P(Z > 1.96) = 2.5\%,$
 $P(|Z| > 2.32) = 2\%,$
 $P(Z > 2.32) = 1\%,$
 $P(|Z| > 2.58) = 1\%.$

Your questions and the quiz

To benefit from the lecture, now you could

- ask or submit your anonymous questions to the COMP229 folder after the lecture;
- write down your summary in 2-3 phrases,
 e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

Question. Let n = 16, $\sigma = 20$, $\bar{x} = 47.5$. Should we reject (or not reject) the null hypothesis H_0 that $\mu = 60$ at the significance level 1%?

Answer to the quiz and summary

Answer.
$$z=\frac{47.5-60}{20/\sqrt{16}}=-\frac{12.5}{5}=-2.5$$
. The 2-sided *p*-value $=P(|Z|\geq 2.5)$ is a bit more than 1%, hence we don't reject the null hypothesis H_0 .

- The p-value is the probability (assuming the null hypothesis) to obtain a result equal to or more extreme than what was observed.
- If the p-value is (non-strictly) smaller than a specified significance level α , the data are called *statistically significant at level* α .

