Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba¹

2013

¹Uniwersytet im. Adama Mickiewicza, kalmar@amu.edu.pl

Wykład 5

Powierzchnie w \mathbb{R}^3

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

112ykiady powierzciiii

r urumen yzueju monge u

Powierzchnie w R³ Podstawowe definicje Przykłady powierzchni

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

rrzykiady powierzchn

, , ,

Danisanskais aanstalasila

$$x: U \to \mathbb{R}^3$$

nazywamy **gładkim**, jeśli wszystkie pochodne cząstkowe (dowolnego rzędu) *x* istnieją oraz są odwzorowaniami ciągłymi.

Definicja

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym. Odwzorowanie gładkie

$$x: U \to \mathbb{R}^3$$

nazywamy **lokalnym układem współrzędnych** jeśli jest injekcją, oraz

$$\frac{\partial x}{\partial s}(s,t) \times \frac{\partial x}{\partial t}(s,t) \neq 0$$

dla wszystkich $(s, t) \in U$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni

Parametryzacja Monge'a

Powierzchnie prostokreślne

$$x: U \to \mathbb{R}^3$$

nazywamy **gładkim**, jeśli wszystkie pochodne cząstkowe (dowolnego rzędu) *x* istnieją oraz są odwzorowaniami ciągłymi.

Definicja

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym. Odw
zorowanie gładkie

$$x: U \to \mathbb{R}^3$$

nazywamy **lokalnym układem współrzędnych** jeśli jest injekcją, oraz

$$\frac{\partial x}{\partial s}(s,t) \times \frac{\partial x}{\partial t}(s,t) \neq 0$$

dla wszystkich $(s, t) \in U$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

i oustawowe definicje

Przykłady powierzchni

r urumen yzueju monge u

Powierzchnie prostokreślne

Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów $x, y \in M$ istnieje krzywa α : $[0, 1] \to M$ taka, że $\alpha(0) = x$ i $\alpha(1) = y$.

Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni

Parametryzacja Monge a

i owierzcinne prostokresine

 Powierzchnie gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów $x, y \in M$ istnieje krzywa $\alpha:[0,1]\to M$ taka, że $\alpha(0)=x$ i $\alpha(1)=y$.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Podstawowe definicje

4 D > 4 P > 4 E > 4 E > 9 Q P

Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów x, y ∈ M istnieje krzywa α:[0, 1] → M taka, że α(0) = x i α(1) = y.

Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w R³

Podstawowe definicje

Przykłady powierzchi

Parametryzacja Monge a

rowierzennie prostokresine

Lokalnym układem współrzędnych jest np. $x^{\pm}(u, v) = (\pm \sqrt{1-u^2-v^2}, u, v)$ jak na następującym rysunku

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchr

- urumen yzacja monge a

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

112ykiady powierz

Powierzchnie prostokreślne

Poziomice funkcji

Uwaga

UWAGA! Zakładamy, że wszystkie powierzchnie które będzie my rozważać dalej są gładkie i łukowo spójne.

Definicia

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ i $y: V \to M$ będą lokalnymi układami współrzędnych wokół punktu $p \in M$. Wtedy złożenie

$$\Phi_{x,y} \stackrel{\text{def.}}{=} y^{-1} \circ x : x^{-1}(x(U) \cap y(V)) \to y^{-1}(x(U) \cap y(V))$$

nazywamy funkcją zmiany układu współrzędnych.

Niech M \subset \mathbb{R}^3 *będzie powierzchnią gładką. Wówczas:*

- 1. Jeśli $x: U \to M$ jest lokalnym układem współrzędnych wtedy x jest dyfeomorfizmem U na obraz x(U).

$$y \stackrel{def.}{=} x \circ f: V \to \Lambda$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Podstawowe definicje

Lemat

Niech M \subset \mathbb{R}^3 *będzie powierzchnią gładką. Wówczas:*

- 1. Jeśli $x: U \to M$ jest lokalnym układem współrzędnych wtedy x jest dyfeomorfizmem U na obraz x(U).
- 2. Niech $V \subset \mathbb{R}^2$ bedzie zbiorem otwartym i niech $f: V \to U$ będzie dyfeomorfizmem. Wtedy

$$y \stackrel{\textit{def.}}{=} x \circ f: V \to M$$

jest lokalnym układem współrzędnych i f jest funkcją zmiany układu współrzędnych $\Phi_{v.x}$.

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Dowód:

- - rząd pochodnej x na U jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne,
- 2) wystarczy sprawdzić dla lokalnego układu współrzędnych dla $y = x \circ f$

Parametryzacja Monge'a

Danisandonia acceptatorilea

Powierzchnie prostokresine

Poziomice funkcji

Dowód:

- 1) ► *x* injekcja, więc jest bijekcją na obraz.
 - rząd pochodnej x na U jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne,
- 2) wystarczy sprawdzić dla lokalnego układo współrzędnych dla $y = x \circ f$

Dowód:

- 1) ► x injekcja, więc jest bijekcją na obraz.
 - ► rząd pochodnej x na U jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne,
- 2) wystarczy sprawdzić dla lokalnego układu współrzędnych dla $y = x \circ f$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

112ykiady powietzi

Parametryzacja Monge a

r owierzeinne prostokresine

Dowód:

- 1) ► *x* injekcja, więc jest bijekcją na obraz.
 - ► rząd pochodnej *x* na *U* jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne,
- 2) wystarczy sprawdzić dla lokalnego układu współrzędnych dla $y = x \circ f$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w R³

Podstawowe definicje

112ykiady powietz

Powierzchnie prostokreślne

Powierzchnie prostokreślne

Poziomice funkcji

Dowód:

- 1) ► *x* injekcja, więc jest bijekcją na obraz.
 - rząd pochodnej x na U jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne,
- 2) wystarczy sprawdzić dla lokalnego układu współrzędnych dla $y = x \circ f$

$$\frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} =$$

$$= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) =$$

$$= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) =$$

$$= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right)$$

- ► $\left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \neq 0$ (lokalny układ współrzędnych)
- ▶ $\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$ (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funkcj przejścia.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzch

Parametryzacja Monge a

Danisandonia acceptatorilea

Powierzchnie prostokresine

$$\frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} = \\
= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\
= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\
= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right)$$

- ightharpoons $\left(\frac{\partial x}{\partial f_1} imes \frac{\partial x}{\partial f_2}\right) \neq 0$ (lokalny układ współrzędnych)
- ▶ $\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$ (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funkcji przejścia.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzch

rarametryzacja wionge a

Powierzchnie prostokreślne

$$\frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} =$$

$$= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) =$$

$$= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) =$$

$$= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right)$$

- ightharpoons $\left(\frac{\partial x}{\partial f_1} imes \frac{\partial x}{\partial f_2}\right)
 eq 0$ (lokalny układ współrzędnych)
- ▶ $\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$ (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funkcji przejścia.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchi

rarametryzacja wionge a

Powierzchnie prostokreślne

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

►
$$\left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \neq 0$$
 (lokalny układ współrzędnych)

•
$$\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$$
 (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funkci przejścia.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchi

i aramen yzacja monge a

Powierzchnie prostokreślne

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

- $\left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2} \right) \neq 0$ (lokalny układ współrzędnych)

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Podstawowe definicje

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

- $\left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2} \right) \neq 0$ (lokalny układ współrzędnych)

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Podstawowe definicje

Powierzchnie obrotowe

Powierzchnie prostokreślne

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

- $\left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \neq 0$ (lokalny układ współrzędnych)
- ▶ $\left(\frac{\partial f_1}{\partial s}\frac{\partial f_2}{\partial t} \frac{\partial f_1}{\partial t}\frac{\partial f_2}{\partial s}\right) \neq 0$ (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funkcji przejścia.

Gładkość funkcji na powierzchni

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Podstawowe definicje

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f: M \to \mathbb{R}$ będzie funkcją. Funkcję f nazywamy gładką jeśli dla każdego punktu $p \in M$ i dla każdego lokalnego układu współrzednych $x: U \to M$ takiego, że $p \in x(u)$ funkcja

$$f \circ x: U \stackrel{x}{\to} M \stackrel{f}{\to} \mathbb{R}$$

jest gładka jako funkcja z \mathbb{R}^2 do \mathbb{R} .

W praktyce są dwie metody na definiowanie funkcji określonej na powierzchni.

- ▶ Jeśli $F: \mathbb{R}^3 \to \mathbb{R}$ jest gładka, wtedy jej obcięcie $F|_M: M \to \mathbb{R}$ będzie również gładkie.
- ▶ Załóżmy że $x: U \to M \subset \mathbb{R}^3$ jest lokalnym układem współrzędnych. Jeśli $f: U \to \mathbb{R}$ jest funkcją gładką, to funkcję na powierzchni M możemy określić jako

$$F = f \circ x^{-1} \colon x^{-1}(U) \to U \to \mathbb{R},$$

gdzie $x^{-1}(U) \subset M$. Jest to funkcja gładka jako złożenie dwóch funkcji gładkich.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzci

rarametryzacja wionge a

Powierzchnie prostokreślne

W praktyce są dwie metody na definiowanie funkcji określonej na powierzchni.

- ▶ Jeśli $F: \mathbb{R}^3 \to \mathbb{R}$ jest gładka, wtedy jej obcięcie $F|_{\mathcal{M}}: \mathcal{M} \to \mathbb{R}$ będzie również gładkie.
- ▶ Załóżmy że $x: U \to M \subset \mathbb{R}^3$ jest lokalnym układem współrzędnych. Jeśli $f: U \to \mathbb{R}$ jest funkcją gładką, to funkcję na powierzchni M możemy określić jako

$$F = f \circ x^{-1} \colon x^{-1}(U) \to U \to \mathbb{R}$$

gdzie $x^{-1}(U) \subset M$. Jest to funkcja gładka jako złożenie dwóch funkcji gładkich.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w R³

Podstawowe definicje

rrzykiady powierzcini

Parametryzacja Monge a

- ▶ Jeśli $F: \mathbb{R}^3 \to \mathbb{R}$ jest gładka, wtedy jej obcięcie $F|_{\mathcal{M}}: \mathcal{M} \to \mathbb{R}$ będzie również gładkie.
- ▶ Załóżmy że $x: U \to M \subset \mathbb{R}^3$ jest lokalnym układem współrzędnych. Jeśli $f: U \to \mathbb{R}$ jest funkcją gładką, to funkcję na powierzchni M możemy określić jako

$$F = f \circ x^{-1} \colon x^{-1}(U) \to U \to \mathbb{R},$$

gdzie $x^{-1}(U) \subset M$. Jest to funkcja gładka jako złożenie dwóch funkcji gładkich.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

rrzykiady powierzchi

Parametryzacja Mong

rowierzennie prostokresine

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2)$$

$$(s, t) \mapsto \sin(s + t)$$

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Podstawowe definicje

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f: \mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t)$$

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stąd $f \circ x^{-1}: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchn

Parametryzacja Monge'

B 1 1 1 1 1 1 1

.

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f:\mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t).$$

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stąd $f \circ x^{-1}: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni

Parametryzacja Monge'

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

Niech M będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f: \mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t).$$

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stad $f \circ x^{-1}: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Podstawowe definicje

Podstawowe definicje

Definicja

Niech $M, N \subset \mathbb{R}^3$ będą powierzchniami gładkimi i niech $f: M \to N$ będzie odwzorowaniem. Mówimy, że f jest odwzorowaniem gładkim jeśli jest gładkie jako odwzorowanie $M \to N \hookrightarrow \mathbb{R}^3$. Mówimy, że f jest **dyfeomorfizmem powierzchni** jeśli f jest gładką bijekcją, której odwzorowanie odwrotne jest również gładkie.

Lemat

Niech M, $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi i niech

$$f:M\to N$$

będzie odwzorowaniem ciągłym. f jest odwzorowaniem gładkim (a wiec gładkim jako odwzorowanie $f: M \to \mathbb{R}^3$) wtedy i tylko wtedy gdy dla każdego punktu p ∈ M istnieje wokół niego lokalny układ współrzednych $x: U \to M$ oraz istnieje lokalny układ współrzędnych $y: V \to N$ wokół $f(p) \in N$ takie, że złożenie

$$y^{-1} \circ f \circ x: U \to V$$

jest gładkie jako odwzorowanie $\mathbb{R}^2 \to \mathbb{R}^2$ (tam, gdzie to złożenie ma sens).

Definicja

Niech $f: U \to \mathbb{R}$ będzie funkcją określoną na zbiorze otwartym $U \subset \mathbb{R}^2$. Powierzchnię $M \subset \mathbb{R}^3$ nazywamy **powierzchnią Monge'a** jeśli jej parametryzacja jest wykresem funkcji f:

$$x(s, t) = (s, t, f(s, t)).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

roustawowe definicje

Przykłady powierzchn

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślr

Poziomice fun

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Uwaga

Parametryzacja Monge'a spełnia naszą definicję powierzchni (Definicja 5.3), ponieważ

$$\frac{\partial x}{\partial s}(s,t) \times \frac{\partial x}{\partial t}(s,t) = \det \begin{bmatrix} i & j & k \\ 1 & 0 & \frac{\partial f}{\partial s}(s,t) \\ 0 & 1 & \frac{\partial f}{\partial t}(s,t) \end{bmatrix} = \\ = \left(-\frac{\partial f}{\partial s}(s,t), -\frac{\partial x}{\partial t}(s,t), 1 \right) \neq 0.$$

- Paraboloida $(x(u, v) = (u, v, u^2 + v^2))$
- Powierzchnia siodłowa (x(u, v) = (u, v, uv))

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

roustawowe definicji

Przykłady powierzchni

Parametryzacja Monge'a

wierzchnie obrotowe

rowierzchnie prostökreśln

- Paraboloida $(x(u, v) = (u, v, u^2 + v^2))$
- Powierzchnia siodłowa (x(u, v) = (u, v, uv))

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni

Parametryzacja Monge'a

r owierzennie prostokresin

- Paraboloida $(x(u, v) = (u, v, u^2 + v^2))$
- Powierzchnia siodłowa (x(u, v) = (u, v, uv))

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Parametryzacja Monge'a

Definicja

Powierzchnia obrotowa powstaje poprzez obrócenie krzywej $\alpha(t)$ wokół pewnej ustalonej prostej l. Postać ogólna to

$$x(t, \phi) = \alpha(t) \cdot Rot_l(\phi),$$

gdzie $Rot_l(\phi)$ to macierz 3×3 obrotu o kąt ϕ wokoł prostej l.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni

Powierzchnie obrotowe

ouriorzehnio proetokroélno

Najczęściej używane macierze obrotu to obroty wokół osi współrzędnych *x*, *y*, *z*:

$$Rot_{\mathbf{x}}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix}$$

$$Rot_{y}(\phi) = \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix}$$

$$Rot_{z}(\phi) = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

W przypadku obrotu $lpha(t)=(lpha_1(t),lpha_2(t),lpha_3(t))$ wokół osi Oxotrzymamy

$$x(t, \phi) = (\alpha_1(t), \alpha_2(t) \cos \phi - \alpha_3(t) \sin \phi, \alpha_2(t) \sin \phi + \alpha_3(t) \cos \phi$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne

$$Rot_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix}$$

$$Rot_{y}(\phi) = \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix}$$

$$Rot_{z}(\phi) = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

W przypadku obrotu $\alpha(t)=(\alpha_1(t),\alpha_2(t),\alpha_3(t))$ wokół osi Ox otrzymamy

$$x(t, \phi) = (\alpha_1(t), \alpha_2(t)\cos\phi - \alpha_3(t)\sin\phi, \alpha_2(t)\sin\phi + \alpha_3(t)\cos\phi)$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchn

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

r ousiawowe demineje

112ykiady powierzeiiii

Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Uwaga

Aby powierzchnia w ten sposób uzyskana była gładka musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie

7adanie

Parametryzacja Monge'a

Powierzchnie obrotowe

i owierzennie prostokresin

Poziomice funkcji

Uwaga

Aby powierzchnia w ten sposób uzyskana była gładka musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie

Zadanie

Powierzchnie obrotowe

Powierzchnie prostokreślne

oziomice funkcji

Uwaga

Aby powierzchnia w ten sposób uzyskana była gładka musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- ▶ oś obrotu nie przecinała naszej krzywej w żadnym punkcie.

Zadanie

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Uwaga

Aby powierzchnia w ten sposób uzyskana była gładka musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie.

Zadanie

$$(0,\cos t,\sin t)$$

$$(-\cos ts)$$

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie obrotowe

► Sfera – obrót okręgu $\alpha(t) = (0, \cos t, \sin t)$ wokół osi z:

$$\begin{aligned} (0,\cos t,\sin t)\cdot \left[\begin{array}{ccc} \cos\varphi & \sin\varphi & 0 \\ -\sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{array} \right] = \\ &= (-\cos t\sin\varphi,\cos t\cos\varphi,\sin t). \end{aligned}$$

Hiperboloida jednopowłokowa (katenoida)

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie obrotowe

► Sfera – obrót okręgu $\alpha(t) = (0, \cos t, \sin t)$ wokół osi z:

$$(0,\cos t,\sin t)\cdot\begin{bmatrix}\cos\varphi&\sin\varphi&0\\-\sin\varphi&\cos\varphi&0\\0&0&1\end{bmatrix}=\\=(-\cos t\sin\varphi,\cos t\cos\varphi,\sin t).$$

Hiperboloida jednopowłokowa (katenoida)

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie obrotowe

$$x(t,\varphi) = ((R + r\cos t)\cos\varphi, (R + r\cos t)\sin\varphi, r\sin t).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w R³

roustawowe definicje

..., amay powerstilli

Powierzchnie obrotowe

Powierzchnie prostokreślni

Definicja

Powierzchnią prostokreślną nazywamy powierzchnię o parametryzacji

$$x(s, t) = \alpha(s) + t\beta(s),$$

gdzie α i β są krzywymi w przestrzeni \mathbb{R}^3 . α nazywa się potocznie kierownicą, β - ruletą.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

- Lauran Swe dennie,

rrzykłady powierzchn

urumeryzueja monge a

Powierzchnie prostokreślne

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- ▶ Powierzchnia śrubowa
- ▶ Powierzchnia siodłowa
- ► Katenoida.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Przykłady powierzchi

, ,

nerzennie obrotowe

Powierzchnie prostokreślne

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- ▶ Powierzchnia śrubowa
- ► Powierzchnia siodłowa
- ► Katenoida.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

....

rrzykiady powierzchi

r urumen yzueju monge u

nerzennie obrotowe

Powierzchnie prostokreślne

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ► Walec, Stożek
- Powierzchnia śrubowa
- ▶ Powierzchnia siodłowa
- Katenoida.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

_

, ...,

Pouriorzehnio obrotowo

Powierzchnie prostokreślne

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- Powierzchnia siodłowa
- Katenoida.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

_

, , ,

wierzchnie obrotowe

Powierzchnie prostokreślne

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ► Walec, Stożek
- Powierzchnia śrubowa
- Powierzchnia siodłowa
- Katenoida.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

_

wierzchnie obrotowe

Powierzchnie prostokreślne

 $F: V \to \mathbb{R}$

będzie gładką funkcją.

▶ Punkt p ∈ V nazywamy punktem krytycznym funkcji F ieśli

$$\left(\frac{\partial F}{\partial x_1}(p), \frac{\partial F}{\partial x_2}(p), \frac{\partial F}{\partial x_3}(p)\right) = 0$$

▶ Liczbę $a \in \mathbb{R}$ nazywamy wartością krytyczną odwzorowania F jeśli wewnątrz zbioru $F^{-1}(a)$ leży przynajmniej jeden punkt krytyczny.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

roustawowe definite

Przykłady powierzch

, , , , , ,

rowierzchnie prostokresine

$$F:V\to\mathbb{R}$$

będzie gładką funkcją.

▶ Punkt $p \in V$ nazywamy **punktem krytycznym** funkcji *F* jeśli

$$\left(\frac{\partial F}{\partial x_1}(p), \frac{\partial F}{\partial x_2}(p), \frac{\partial F}{\partial x_3}(p)\right) = 0.$$

► Liczbę $a \in \mathbb{R}$ nazywamy wartością krytyczną

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

$$F: V \to \mathbb{R}$$

będzie gładką funkcją.

▶ Punkt $p \in V$ nazywamy **punktem krytycznym** funkcji *F* jeśli

$$\left(\frac{\partial F}{\partial x_1}(p), \frac{\partial F}{\partial x_2}(p), \frac{\partial F}{\partial x_3}(p)\right) = 0.$$

Liczbę $a \in \mathbb{R}$ nazywamy wartością krytyczną odwzorowania F jeśli wewnątrz zbioru $F^{-1}(a)$ leży przynajmniej jeden punkt krytyczny.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

rarametryzacja wionge a

Powierzchnie prostokreślne

Poziomice funkcii

Poziomice funkcji

Definicja

▶ Punkt $p \in V$ nazywamy **punktem regularnym** odwzorowania F jeśli dla pewnego i = 1, 2, 3

$$\frac{\partial F}{\partial x_i}(p) \neq 0$$

▶ Liczbę $a \in \mathbb{R}$ nazywamy wartością regularną odwzorowania F jeśli zbiór $F^{-1}(a)$ składa się tylko z punktów regularnych.

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Poziomice funkcji

Podstawowe definicje

Definicja

▶ Punkt $p \in V$ nazywamy **punktem regularnym** odwzorowania F jeśli dla pewnego i = 1, 2, 3

$$\frac{\partial F}{\partial x_i}(p) \neq 0.$$

▶ Liczbę $a \in \mathbb{R}$ nazywamy wartością regularną odwzorowania F jeśli zbiór $F^{-1}(a)$ składa się tylko z punktów regularnych.

Powiorzchnia obrotowa

Powierzchnie prostokreślne

Poziomice funkcji

Poziomice funkcji

Definicja

▶ Punkt $p \in V$ nazywamy **punktem regularnym** odwzorowania F jeśli dla pewnego i = 1, 2, 3

$$\frac{\partial F}{\partial x_i}(p) \neq 0.$$

Liczbę $a \in \mathbb{R}$ nazywamy wartością regularną odwzorowania F jeśli zbiór $F^{-1}(a)$ składa się tylko z punktów regularnych.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Poziomice funkcii

Twierdzenie

Niech $V \subset \mathbb{R}^3$ *będzie zbiorem otwartym, zaś* $F: V \to \mathbb{R}$ *funkcją* gładką. Jeśli $a \in F(V) \subset \mathbb{R}$ jest wartością regularną, wtedy $F^{-1}(a)$ jest powierzchnią gładką (o ile jest to zbiór niepusty).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Poziomice funkcii

Twierdzenie

Niech $V \subset \mathbb{R}^3$ *będzie zbiorem otwartym, zaś* $F: V \to \mathbb{R}$ *funkcją* gładką. Jeśli $a \in F(V) \subset \mathbb{R}$ jest wartością regularną, wtedy $F^{-1}(a)$ jest powierzchnią gładką (o ile jest to zbiór niepusty).

Dowód:

Dowód jest dosyć techniczny i wynika z twierdzenia o funkcji uwikłanej. Pomijamy.

▶ elipsoida (w szczególności sfera o promieniu R jako przeciwobraz $f^{-1}(R)$, gdzie $f(x, y, z) = x^2 + y^2 + z^2$).

- ▶ paraboloida ($F(x, y, z) = x^2 + y^2 z$)
- hiperboloida (jedno i dwu-powłokowa:

$$f(x) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2}.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w R³

Podstawowe definicj

Przykłady powierzchn

Powierzchnie obrotowe

Powierzchnie prostokreślne

▶ elipsoida (w szczególności sfera o promieniu R jako przeciwobraz $f^{-1}(R)$, gdzie $f(x, y, z) = x^2 + y^2 + z^2$).

- ▶ paraboloida ($F(x, y, z) = x^2 + y^2 z$)
- hiperboloida (jedno i dwu-powłokowa:

$$f(x) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicj

Przykłady powierzchn

Powierzchnie obrotowe

Powierzchnie prostokreśln

▶ elipsoida (w szczególności sfera o promieniu R jako przeciwobraz $f^{-1}(R)$, gdzie $f(x, y, z) = x^2 + y^2 + z^2$).

- ▶ paraboloida ($F(x, y, z) = x^2 + y^2 z$)
- hiperboloida (jedno i dwu-powłokowa: $f(x) = \frac{x^2}{x^2} + \frac{y^2}{t^2} \frac{z^2}{x^2}.$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Powierzchnie w \mathbb{R}^3

Podstawowe definicj

...,....., powierzenni

Powierzchnie obrotowe

Powierzchnie prostokreśln