Divisibility

 $d \mid a$ and $d \mid b \implies d$ divides any linear combination of a, b

Euclid Theorem: there are an infinite number of primes

Division Algorithm: Let $a, b \in Z$ with b > 0. Then there exists unique $q, r \in Z$ such that a = bq + r with $0 \le r < b$

Ways of finding gcd(a, b)

- List all prime factors and take the largest factor
- Take a linear combination of a, b to find possible factors
- Euclidean Algorithm

Any common divisor of a, b divides gcd(a, b)

Bezout Theorem: gcd(a, b) = ax + by

If n is composite then $2^n - 1$ is composite

If m is NOT a power of 2, then $2^m + 1$ is composite

Linear Diophantine Equations

We want to be able to find integer solutions (x, y) to ax + by = c

• Solutions exist if and only if $gcd(a, b) \mid c$

General steps for solving Linear Diophantine problems

- 1. Verify $gcd(a, b) \mid c$
- 2. Divide the equation by $d = \gcd(a, b) \implies a'x + b'y = c'$ where $\gcd(a', b') = 1$
- 3. Use Extended Euclidean Algorithm to solve (x, y) for a'x + b'y = 1. Then multiply the solution by c'
- 4. If a solution variable (e.g. x) is negative, perform Extended Euclidean Algorithm with positive x then flip the sign at the end
- 5. General solutions will be $(x_0 + \frac{b}{d}t, y_0 \frac{a}{d}t)$

For relatively prime a, b and $a, b \ge 0$, there are no non-negative solutions to ax + by = ab - a - b

For relatively prime $a, b, a, b \ge 0$, and any n > ab - a - b, there is a non-negative solution to ax + by = n

Unique Factorization

Theorem 4.1: Let p be prime and $a, b \in Z$ such that $p \mid ab$. Then $p \mid a$ or $p \mid b$

Fundamental Theorem of Arithmetic: any positive integer greater than 1 can be uniquely factored into a product of primes

$$gcd(a,b) = 2^{d_2}3^{d_3}\cdots$$
 where $d_p = min(a_p,b_p)$

$$\operatorname{lcm}(a,b) = 2^{e_2} 3^{e_3} \cdots \text{ where } e_p = \max(a_p,b_p)$$

Applications of Unique Factorization

Proposition 5.1: n is a kth power if and only if all exponents in its prime factorization are multiples of k

Exercise 5.1.1.b: Find n such that n/2 is a square, n/3 is a cube, n/5 is a fifth power

Exercise 5.4: Show that any n with exponents > 1 in prime factorization can be written as $n = x^2y^3$

Example: Show that $\sqrt{3}$ is irrational

Theorem 5.3: *n* is not a perfect kth power $\implies \sqrt[k]{n}$ is irrational

Exercise 5.2.9: For which positive integers is $\sqrt[n]{64}$ rational?

Theorem 5.4: If $r = \frac{u}{v}$ is a root of P(x) where gcd(u, v) = 1, then $u \mid a_0$ and $v \mid a_n$

Lemma 5.6: For relatively prime $a, b, ab = n^k \implies a, b$ are both kth powers

Lemma 5.7: Square of an odd integer is $\equiv 1 \pmod{8}$. Square of an even integer is a multiple of 4

Theorem 5.5: For a PPT (a, b, c), c is odd and $a \not\equiv b \pmod{2}$ and

$$a=n^2-m^2$$
 $b=2mn$ $c=m^2+n^2$ $\gcd(m,n)=1, n\not\equiv m\pmod 2$

Theorem 5.8: m is a difference of 2 squares if and only if m is odd or $4 \mid m$

• Factorize m into 2 factors with the same parity and set $m=\frac{v-u}{2}$ and $n=\frac{v+u}{2}$

Theorem 5.9: $n! = p^b c$ with $p \nmid c \implies b = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \cdots$

Riemann Zeta Function: $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p (1-p^{-s})^{-1}$

Linear Congruence

 $a \equiv b \pmod{m} \implies m \mid a - b \text{ AND } a = b + km \text{ AND } \gcd(a, n) = \gcd(b, n)$

• Example: gcd(1234, 10) = gcd(4, 10) since $1234 \equiv 4 \pmod{10}$

Proposition 6.7: gcd(c, m) = 1 and $ac \equiv bc \pmod{m} \implies a \equiv b \pmod{m}$

Proposition 6.8: gcd(c, m) = d and $ac \equiv bc \pmod{m} \implies a \equiv b \pmod{\frac{m}{d}}$

Proposition 6.10: For a prime p, $ab \equiv 0 \pmod{p} \implies a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$

• Corollary 6.11: For a prime $p, x^2 \equiv 1 \pmod{p} \implies x \equiv \pm 1 \pmod{p}$

Exercise 6.1.9: Find all positive n such that $123 \equiv 234 \pmod{n}$

Exercise 6.1.26: For twim primes, show that $p, q \ge 5 \implies 3 \mid p + q \qquad p, q \implies 4 \mid p + q \qquad 12 \mid p + q$

Example: Compute 3³⁸⁵ (mod 479) using repeated squaring

Division/Congruence Tests: $a \equiv a_0 \pmod{10,5,2}$ $a \equiv \sum_{i=0}^n a_i \pmod{3,9}$ $\sum_{i=0}^n (-1)^i a_i \pmod{11}$ where $0 \le a_i \le a_n$

Linear Congruence problem $ax \equiv b \pmod{m}$ can be reduced to a Diophantine Problem with (-m, a, b) - mx + ay = b

• Let $d = \gcd(g, m)$. Then $d \mid b \implies$ the congruence problem has d distinct solutions mod m

Exercise 6.4.60: Find all $0 \le n \le 23$ such that $10x \equiv n \pmod{24}$ has solutions

Exercise 6.4.65: Find $83x \equiv 1 \pmod{100}$ $83x \equiv 2 \pmod{100}$

Exercise 6.4.69: Show that $x^2 - 2y^2 = 10$ has no integer solutions

Chinese Remainder Theorem: Given $x \equiv a_i \pmod{m_i}$ for relatively pairwise prime m_i then

$$x \equiv \sum_{i=1}^{n} a_i n_i u_i \qquad n_i = \prod_{j \neq i} m_j \qquad u_i = n_i^{-1} \pmod{m_i}$$

• Example: $x^2 \equiv 1 \pmod{275} = 5^2 * 11$

TODO Supplementary 14, 16