Описание программы «Network Fourier 2.1»

Для исследования качества передачи исходного сообщения (сигналов) по каналу связи используется программа «Network Fourier 2.1».

Назначение программы. Программа «Network Fourier 2.1» предназначена для моделирования процесса передачи дискретного сообщения с ограниченным спектром с учетом влияния шумов, рассинхронизации и уровня граничного напряжения.

Описание интерфейса. На рисунке показан пользовательский интерфейс (окно) программы.

Рисунок. Интерфейс пользователя

Элементы интерфейса имеют следующие значения.

- 1. Кнопка выхода.
- 2. Кнопка вывода окна «о программе».
- 3. График закодированного сообщения.

Компьютерные сети

- 4. График физического представления сигнала с учетом ограниченного спектра и шумов.
- 5. График принятого и дешифрованного сигнала.
- 6. Панель состояния.
- 7. Поле редактирования для ввода кодируемого сообщения.

Сообщение может быть представлено либо в виде символов ASCII, либо в виде шестнадцатеричных чисел.

Для ввода шестнадцатеричных чисел следует перед сообщением поставить символ «\». Например, «\123AB» будет соответствовать шестнадцатеричному числу 123AB.

Для ввода текстового сообщения, начинающегося с символа «\», следует ввести символ «\» два раза. Например, «\\хуz» будет представлено как «\хуz».

- 8. Кнопка пересылки сообщения.
- 9. Счетчик высшей гармоники ряда Фурье, диапазон [0...255].
- 10. Счетчик низшей гармоники ряда Фурье, диапазон [0..255].
- 11. Переключатель физического кодирования.
- 12. Переключатель логического кодирования.
- 13. Счетчик установки уровня шума, диапазон [0..2].
- 14. Счетчик установки степени рассинхронизации, диапазон [0..1].
- 15. Счетчик установки граничного напряжения, диапазон [0..1].
- 16. Информация о передаваемом сообщении, ASCII и шестнадцатеричное представление сигнала, длина, скорость передачи (бит/с).
- 17. Информация о принятом сообщении, количестве принятых бит, ошибочных бит и процентное количество ошибок.
- 18. Кнопка сброса статистики.
- 19. Флажковый переключатель отображаемой информации на графике физического представления сигнала.

Примечание: для ускорения выбора требуемого значения в элементе управления «счётчик» можно использовать клавиши «вправо/влево».

Описание алгоритма. Считается, что сообщение является периодическим, например, начальное сообщение «АВСD» будет представлено во времени как «...АВСDАВСDАВСDABCD...». Приложение постоянно осуществляет пересылку сообщения длиной в один период примерно 50 раз в секунду и производит сбор статистики об ошибках.

Компьютерные сети

Ряд Фурье для функции периодической на интервале длиной 2m имеет вид:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos \frac{k\pi x}{m} + b_k \sin \frac{k\pi x}{m}),$$

где коэффициенты ряда рассчитываются по формулам:

$$a_k = \frac{1}{m} \int_{-m}^{m} f(x) \cos \frac{k\pi x}{m} dx; \quad b_k = \frac{1}{m} \int_{-m}^{m} f(x) \sin \frac{k\pi x}{m} dx, \quad (k = 0, 1, 2, ...).$$

Шум представляет собой функцию вида:

$$N(x,t) = \frac{a}{2} \sum_{i=1}^{\infty} \frac{\sin(ix+i^4t)}{i},$$

где a— амплитуда, x— значение сигнала (напряжение), t— системное время (это дает практически случайный сдвиг фаз при имитации случайного шума).

Уровень рассинхронизации Δx задается шириной интервала, в пределах которого распознается значение уровня сигнала (напряжения). Расчёт значения уровня сигнала осуществляется следующим образом:

$$x = x_0 + rand(\Delta x) - \frac{\Delta x}{2},$$

где rand(a) — функция, которая возвращает случайное вещественное значение в интервале [0;a].

Процесс моделирования. При моделировании передачи сообщения по каналу связи в имитационной модели каждые 20 мс выполняются следующие повторяющиеся шаги.

- 1. Проверка элементов управления и установка начальных параметров.
- 2. Формирование незакодированного сигнала на основе введённого сообщения.
- 3. Логическое кодирование сообщения.
- 4. Физическое кодирование сообщения.
- 5. Построение ряда Фурье с учетом выбранного спектра.
- 6. Наложение функции шума.
- 7. Семплирование сигнала с учетом граничного напряжения и рассинхронизации.
- 8. Физическое декодирование сигнала.
- 9. Логическое декодирование сигнала.
- 10.Подсчёт ошибок и сбор статистики.

Компьютерные сети

Порядок работы с программой. Для выполнения экспериментов с помощью имитационной модели необходимо выполнить следующие шаги:

- 1. Установить требуемые параметры передачи сигнала: спектр, уровень шума (Noise), степень рассинхронизации (Desync) и граничное напряжение (Voltage).
- 2. Установить нижнюю (lowest) и верхнюю (highest) границу спектра (Spectrum harmonics) передаваемого сигнала.
 - 3. Выбрать метод кодирования (NRZ, RZ, AMI, Manchester).
- 4. Ввести заданное сообщение в поле "Enter Message" и нажать клавишу "Transmit!".
 - 5. Сбросить статистику (клавиша "Reset stats").
- 6. Дождаться выполнения требуемого количества пересылок (порядка 100 000 бит) и зафиксировать процент ошибок (error %).
- 7. Пункты 1-6 при необходимости выполняются для других параметров и разных методов кодирования.

Системные требования. Для корректного функционирования имитационной модели необходимо наличие не менее 32 МБ ОЗУ, а также операционная система Win98, WinXP или выше. Видеокарта должна иметь 3Dбыстрого отображения ускоритель ДЛЯ элементов пользовательского интерфейса. Графический пользовательский интерфейс создан использованием библиотеки OpenGL.