Spatial Reasoning and Motion Graphs

Michael van Lent, Fred Pighin, Randy Hill, Changee Han USC ICT

Motivation

- Two common problems
 - Spatial Reasoning
 - "Secure a Landing Zone"
 Identify a landing zone
 Identify the avenues of approach
 Position troops to block avenues of approach
 - Realistic human figure animation
 - "Secure a Landing Zone"
 Explore to find a landing zone
 Avoid windows, doorways...
 Position yourself to protect an avenue of approach
- Related: Need to understand the space to move in it

Related Work

• Path planning:

- One-time path by path-planning basis techniques (e.g., cell decomposition, weighted region, skeleton)
- Motion capture/generation
 - Little Incremental movement research
 - Little control of movement 'style' alongside incremental movement
- Spatial representation
 - Absolute Space Representations (ASR)

Objective

Reactive incremental movement planning by motion graph and cognitive map

Spatial Mapping (Changhee Han)

• Use edge detection to generate a 2 ½ D map

Spatial Mapping (Changhee Han)

- Use edge detection to generate a 2 ½ D map
- Use 2 ½ D map to generate local ASRs

Spatial Mapping (Changhee Han)

- Use edge detection to generate a 2 ½ D map
- Use 2 ½ D map to generate local ASRs
- Also generate residual ASRs

Spatial Mapping Movie

Motion Graphs (Fred Pighin)

Motion Graphs (Fred Pighin)

System of Reactive Incremental Movement Planning ...

Soar (a cognitive map related part) interaction with Motion Graph

- Motion Graph API to accept
 - line-segment-based paths
 - Motion style information

Motion Graph interaction with World

- Smooth motion along intelligent paths
- Appropriate stylistically-varying motion along said paths

(In Summary from previous 2 slides)

A structure of Interfaces (Input-link / Output-link) in Soar

Input-link data received from CoMap

- -Exit
- -Surface
- -Type of place

Output-link data to give to MoGraph

- -Motion style info
- :e.g., decreasing run, crawl, cautious walk
- -line segment-based path

Nuggets and Coal

Nuggets

- Spatial mapping module is ready
- Motion graph module is ready
- MRE provides lots of infrastructure

Coal

- Need to define the interfaces:
 - Spatial mapping <-> Soar
 - Soar <-> Motion graphs
 - Spatial mapping <-> Motion graphs
- Need to put it all together