Departamento de Engenharia Elétrica - DEE

Disciplina:ELE1717 - Sistemas DigitaisPeríodo:2018.1Aluno:Data: 06/03/2018

1 - Implemente o circuito de um microprocessador que possui um conjunto de instruções apresentados na Tabela 1.

Figura 1: Sugestão inicial para o projeto do processador com três instruções

Operação	Classe	Opcode	3bits	4bits	4bits	Descrição
LDR	Dados	0000	A	addr[74]	addr[30]	$Reg[A] \le Mem_D[addr]$
STR	Dados	0001	A	addr[74]	addr[30]	$\operatorname{Mem}_{D}[\operatorname{addr}] < = \operatorname{Reg}[A]$
ADD	ULA	0010	A	В	С	Reg[A] < = Reg[B] + Reg[C]

Table 1: Conjunto de instruções da CPU.

OBS: Cada instrução possui 16-Bits. As operações de dados envolvem um registrador e uma posição da memória de dados, sendo A o endereço do registrador e addr o endereço da memória de dados. A figura 1 apresenta as principais linhas de dados do processador e uma linha de controle para entre o controlador e o contador PC, assim, cabe ao aluno complementar o que falta no projeto. O processador possui três instruções e é semelhante ao apresentado no livro do Vahid.

Dercrição do sistema:

A implementação será no kit DE2, a memória de instrução será implementada por uma memória ROM de 1 porta, a memória de dados será implementada por uma memória RAM de 2 portas (para ambas as memórias, não utilize registrador na saída). Na memória RAM, uma das portas será destinada apenas para conferência, desta forma, o usuário especificará o endereço que deseja verificar através das entradas SW[7:0] e o valor será exibido nos displays (HEX3, HEX2, HEX1, HEX0). A chave SW[17] quando em nível lógico alto ela suspende o clock do sistema. O sinal de clock da memória será o ckx, o que permitirá consultar a memória quando SW[17]=1. Por fim, a fonte de clock será o relógio de 27MHz do kit.

Observações

- O aluno deverá preencher elaborar uma forma de testar o circuito;
- O aluno deverá apresentar o circuito funcionando corretamente no dia 13/03/2018;