Kapitel 4

Massenpunktsysteme mit eingeschränkter Bewegungsfreiheit

4.1 D'Alembertsches Prinzip und Lagrange-Gleichungen I. Art

• Für Massenpunktsysteme (mit N Massenpunkten der Massen m_n) hängen Zwangsbedingungen g_{α} potentiell von allen Koordinaten x_n^i , $i = 1, \ldots, 3; n = 1, \ldots, N$, ab,

$$g_{\alpha} = g_{\alpha}(x_n^i; t) = g_{\alpha}(x_1^1, x_1^2, x_1^3, \dots, x_N^1, x_N^2, x_N^3; t) \stackrel{!}{=} 0$$
 (4.1)

Hierbei sind wieder die x_n^i Koordinaten in einem Inertialsystem \mathcal{S} .

- Jeder Zwangsbedingung g_{α} kann ein Satz von Zwangskräften $\{\vec{Z}_{\alpha,n}\}_{n=1}^{N}$ zugeordnet werden, wobei die Zwangskraft $\vec{Z}_{\alpha,n}$ auf den n-ten Massenpunkt wirkt.
- Die Kräfte $\vec{Z}_{\alpha,n}$ "sorgen" dafür, dass die Bedingung $g_{\alpha}=0$ eingehalten wird.
- D'Alembertsches Prinzip: $Die Zwangskräfte \{\vec{Z}_{\alpha,n}\}_{n=1}^{N} leisten bei einer beliebigen virtuellen Verrückung \{\delta \vec{r}_{\alpha,n}\}_{n=1}^{N} des Massenpunktsystems, die mit der Zwangsbe-$

dingung $g_{\alpha} = 0$ verträglich ist, keine Arbeit:

$$\sum_{n=1}^{N} \vec{Z}_{\alpha,n} \cdot \delta \vec{r}_{\alpha,n} = 0.$$

• Analyse:

- 1. In einem 3N-dimensionalen Konfigurationsraum, der durch die 3N Koordinaten x_n^i aufgespannt wird, wird die Gesamtheit aller Ortskoordinaten der Massenpunkte durch einen Punkt beschrieben.
- 2. Durch (4.1) wird zum festen Zeitpunkt t in diesem Konfigurationsraum eine (3N-1)-dimensionale Hyperfläche \mathcal{H} beschrieben.
- 3. Jede virtuelle Verrückung $\{\delta \vec{r}_{\alpha,n}\}_{n=1}^{N}$ liegt tangential in \mathcal{H} . Sie besteht aus infinitesimalen Verschiebungen aller Massenpunkte des Systems.
- 4. Das d'Alembertsche Prinzip ist äquivalent zur Aussage, dass der Vektor aller Zwangskräfte $\{\vec{Z}_{\alpha,n}\}_{n=1}^{N}$ im Konfigurationsraum senkrecht steht auf \mathcal{H} .
- 5. Damit ist dieser Vektor parallel zum Gradienten von g_{α} an \mathcal{H} , d.h. :

$$Z_{\alpha,n}^i = \lambda_\alpha \frac{\partial g_\alpha}{\partial x_n^i}$$
 oder $\vec{Z}_{\alpha,n} = \lambda_\alpha \operatorname{grad}_n g_\alpha$

mit einem von n und i unabhängigen Lagrangeschen Multiplikator λ_{α} .

• Lagrange-Gleichungen I. Art:

- 1. Falls wieder N_Z Zwangsbedingungen beachtet werden müssen (also $\alpha = 1, \ldots, N_Z \leq 3N$), sind die Zwangskräfte $\vec{Z}_{\alpha,n}$ vektoriell zu addieren.
- 2. Somit folgen die Lagrange-Gleichungen I. Art:

$$m_n \ddot{\vec{r}}_n = \vec{F}_n + \sum_{\alpha=1}^{N_Z} \vec{Z}_{\alpha,n} = \vec{F}_n + \sum_{\alpha=1}^{N_Z} \lambda_\alpha \operatorname{grad}_n g_\alpha$$
 (4.2)

oder in Komponenten:

$$m_n \ddot{x}_n^i = F_n^i + \sum_{\alpha=1}^{N_Z} \lambda_\alpha \frac{\partial g_\alpha}{\partial x_n^i}$$

3. Diese sind gemeinsam zu lösen mit den N_Z Zwangsbedingungen

$$g_{\alpha}(x_n^i;t) = 0. \tag{4.3}$$

4. (4.2) und (4.3) ergeben $(3N+N_Z)$ Gleichungen für die $(3N+N_Z)$ Unbekannten (x_n^i, λ_α) .

4.2 Schwerpunkt-, Drehimpuls- und Energiesatz

- Aufteilung der Kräfte:
 - 1. innere eingeprägte Kräfte $\vec{F}_{nm}(m \neq n), \vec{F}_{mn} = -\vec{F}_{nm}$
 - 2. äußere eingeprägte Kräfte $\vec{F}_n^{(\mathrm{a})}$
 - 3. innere Zwangskräfte $\vec{Z}_{\alpha,nm}(m \neq n), \ \vec{Z}_{\alpha,mn} = -\vec{Z}_{\alpha,nm}$
 - 4. äußere Zwangskräfte $\vec{Z}_{\alpha,n}^{(\mathrm{a})}$
- Innere Zwangskräfte rühren von inneren Zwangsbedingungen g_{α} her, die nur Funktionen von $(\vec{r}_n \vec{r}_m)$ sind, für die also gilt:

$$\vec{Z}_{\alpha,nm} = \lambda_{\alpha} \operatorname{grad}_{n} g_{\alpha} = -\lambda_{\alpha} \operatorname{grad}_{m} g_{\alpha} = -\vec{Z}_{\alpha,mn}$$

Oft ist

$$g_{\alpha} = g_{\alpha}(|\vec{r_n} - \vec{r_m}|) \quad \Rightarrow \quad \operatorname{grad}_n g_{\alpha} = \frac{\partial g_{\alpha}(|\vec{r_n} - \vec{r_m}|)}{\partial |\vec{r_n} - \vec{r_m}|} \frac{\vec{r_n} - \vec{r_m}}{|\vec{r_n} - \vec{r_m}|} = -\operatorname{grad}_m g_{\alpha}$$

Dann liegen die Zwangskräfte in Richtung des Verbindungsvektors $(\vec{r}_n - \vec{r}_m)$.

• Äußere Zwangskräfte werden auf das System durch die Umgebung ausgeübt. Sie "sorgen" dafür, dass das System äußeren Zwangsbedingungen folgt.

• Schwerpunktsatz:

Wegen $\vec{Z}_{\alpha,mn} = -\vec{Z}_{\alpha,nm}$ gilt:

$$M\ddot{\vec{s}} = \vec{F} + \sum_{n=1}^{N} \sum_{\alpha} \vec{Z}_{\alpha,n}^{(a)}$$

Hier ist nur über solche α zu summieren, für die $g_{\alpha} = 0$ einer äußeren Zwangsbedingung entspricht.

• Drehimpulssatz:

Für innere Zwangsbedingungen der Form $g_{\alpha}=g_{\alpha}(|\vec{r}_n-\vec{r}_m|)$ gilt:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{L} = \sum_{n=1}^{N} \left[\vec{r}_n \times \left(\vec{F}_n^{(\mathrm{a})} + \sum_{\alpha} \vec{Z}_{\alpha,n}^{(\mathrm{a})} \right) \right]$$

• Energiesatz

Multiplikation mit $\dot{\vec{r}}_n$ und Summation über alle n liefert in der bekannten Weise:

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=1}^{N} \sum_{i=1}^{3} \frac{1}{2} m_n (\dot{x}_n^i)^2 = \sum_{n=1}^{N} \sum_{i=1}^{3} F_n^i \dot{x}_n^i + \sum_{n=1}^{N} \sum_{i=1}^{3} \sum_{\alpha=1}^{N_Z} \lambda_\alpha \frac{\partial g_\alpha}{\partial x_n^i} \dot{x}_n^i$$

Falls die eingeprägten Kräfte ein Potential aufweisen, folgt:

$$\sum_{n=1}^{N} \sum_{i=1}^{3} F_n^i \dot{x}_n^i = -\frac{\mathrm{d}}{\mathrm{d}t} U(x_n^i)$$

Ferner ist:

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} g_{\alpha}(x_n^i; t) = \sum_{n=1}^{N} \sum_{i=1}^{3} \frac{\partial g_{\alpha}}{\partial x_n^i} \dot{x}_n^i + \frac{\partial g_{\alpha}}{\partial t},$$

und somit folgt:

$$\frac{\mathrm{d}}{\mathrm{d}t}(T+U) = -\sum_{\alpha=1}^{N_Z} \lambda_\alpha \frac{\partial g_\alpha}{\partial t}$$

Wenn die eingeprägten Kräfte ein Potential haben, ist die zeitliche Änderung der Energie gleich der Leistung der Zwangskräfte.

- Für skleronome (zeitunabhängige) Zwangsbedingungen verschwindet diese Leistung. Dann gilt Energieerhaltung, T + U = E.
- Bei zeitabhängigen Bindungen kann Energie übertragen werden. Dann ist zwar die *virtuelle* Arbeit gemäß des d'Alembertschen Prinzips Null, nicht aber die *reale* Arbeit bei der Bewegung.

4.3 Um eine Achse frei drehbarer starrer Körper

4.3.1 Modell des starren Körpers

- sehr große (im Grenzfall unendliche) Anzahl von Massenpunkten
- starr miteinander verbunden: konstante gegenseitige Abstände (zeitunabhängige innere Zwangsbedingungen)
- Innere Zwangskräfte wirken entlang der Verbindungsvektoren der Massenpunkte.
- Näherungsmodell für reale Körper.
- Insgesamt 6 Freiheitsgrade: 3 Rotations- und 3 Translationsfreiheitsgrade.
- \bullet Behandlung mit Lagrange I-Formalismus ist unzweckmäßig (N sehr groß, viele Nebenbedingungen).
- Betrachten hier zunächst Rotation um feste z-Achse (in einem IS); dann gibt es nur einen Rotationsfreiheitsgrad (allgemeine Behandlung kommt später).

4.3.2 Energie, Drehimpuls und Trägheitsmoment

• Starrheit des Körpers bedeutet, dass man ein mitbewegtes und mitrotierendes Koordinatensystem Σ' finden kann, in dem die Koordinaten $\{x_n^{i'}\} = \{x_n', y_n', z_n'\}$ sämtlicher Massenpunkte fest, also zeitlich konstant sind.

• Für Drehung um die z-Achse ist (siehe Abb.):

$$x_{n} = x'_{n}\cos\varphi - y'_{n}\sin\varphi, \quad \dot{x}_{n} = -\dot{\varphi}(x'_{n}\sin\varphi + y'_{n}\cos\varphi) = -\dot{\varphi}y_{n}$$

$$y_{n} = y'_{n}\cos\varphi + x'_{n}\sin\varphi, \quad \dot{y}_{n} = \dot{\varphi}(-y'_{n}\sin\varphi + x'_{n}\cos\varphi) = \dot{\varphi}x_{n},$$

$$z_{n} = z'_{n}.$$

$$(4.4)$$

Offenbar gilt: $x_n^2 + y_n^2 = (x_n')^2 + (y_n')^2$.

• Damit folgen für kinetische Energie und Drehimpuls:

$$T = \frac{1}{2} \sum_{n=1}^{N} m_n (\dot{x}_n^2 + \dot{y}_n^2) = \frac{\dot{\varphi}^2}{2} \sum_{n=1}^{N} m_n \left[(x'_n)^2 + (y'_n)^2 \right]$$

$$L^z = \sum_{n=1}^{N} m_n (x_n \dot{y}_n - y_n \dot{x}_n) = \dot{\varphi} \sum_{n=1}^{N} m_n \left[(x'_n)^2 + (y'_n)^2 \right]$$

also:

$$T = \frac{\Theta}{2}\dot{\varphi}^2 \tag{4.5}$$

$$L^z = \Theta\dot{\varphi} \tag{4.6}$$

$$L^z = \Theta \dot{\varphi} \tag{4.6}$$

mit dem konstanten Trägheitsmoment:

$$\Theta = \sum_{n=1}^{N} m_n \left[(x'_n)^2 + (y'_n)^2 \right]$$

- Für einen ausgedehnten Körper müssen wir von der Summe zum Integral übergehen (d.h. $N \to \infty$):
 - 1. die Massen m_n sind durch das Produkt der (möglicherweise ortsabhängigen) Massendichte μ mit dem Volumenelement $dV = d^3\vec{r}'$ zu ersetzen, $m_n \to \mu(x', y', z') d^3\vec{r}'$
 - 2. Koordinaten x'_n und y'_n sind nun kontinuierliche Größen x', y' innerhalb des vom Körper eingenommenen dreidimensionalen Gebietes K.
 - 3. Damit:

$$\Theta = \int_{K} \mu(x', y', z') (x'^{2} + y'^{2}) d^{3}\vec{r}',$$

und die Gleichungen (4.5) und (4.6) behalten ihre Form.

- 4. Beispiele für Trägheitsmomente ausgedehnter homogener Körper (M: Masse):
 - Hohlzylinder, der um seine Symmetrieachse rotiert (Radien R_1, R_2): $\Theta = \frac{1}{2}M(R_1^2 + R_2^2)$
 - Vollzylinder (mit Radius R), der um seine Symmetrieachse rotiert: $\Theta = \frac{1}{2}MR^2$
 - Vollzylinder (mit Länge ℓ und Radius R), der um eine Querachse rotiert: $\Theta = \frac{1}{4}MR^2 + \frac{1}{2}M\ell^2$
 - Massive Kugel (mit Radius R), die um eine Achse durch den Mittelpunkt rotiert: $\Theta = \frac{2}{5}MR^2$
- Falls die äußeren Kräfte ein Potential aufweisen, kann wegen (4.4) einfach $U = U(\varphi)$ geschrieben werden.
- Der Energiesatz lautet dann:

$$\frac{\Theta}{2}\dot{\varphi}^2 + U(\varphi) = E,$$

und das Bewegungsproblem kann wie ein eindimensionales Problem durch Quadratur gelöst werden:

$$t = \int_{\varphi_0}^{\varphi} \frac{\mathrm{d}\tilde{\varphi}}{\sqrt{\frac{2}{\Theta} \left[E - U(\tilde{\varphi}) \right]}}$$

• Beispiel *physisches Pendel* (siehe Abb.):

1. Legen die x'-Achse durch Schwerpunkt; dann ist:

$$s^{y'} = \frac{1}{M} \sum_{n=1}^{N} m_n y'_n = 0$$
 bzw. $s^{y'} = \frac{1}{M} \int_K \mu y' d^3 \vec{r} = 0$.

2. Potentielle Energie im homogenen Erdschwerefeld:

$$U(\varphi) = -\sum_{n=1}^{N} m_n g x_n = -g \sum_{n=1}^{N} m_n (x_n' \cos \varphi - y_n' \sin \varphi) = -Mg s^{x'} \cos \varphi$$

(für einen ausgedehnten Körper folgt der gleiche Ausdruck).

3. Es folgt:

$$\frac{\Theta}{2}\dot{\varphi}^2 - gMs^{x'}\cos\varphi = E$$

Das physische Pendel schwingt wie ein mathematischen Pendel der Fadenlänge

$$\ell = \frac{\Theta}{Ms^{x'}}.$$

Kapitel 5

Lagrange-Gleichungen II. Art

5.1 Aufgabenstellung

- Betrachten ein System mit sehr vielen Massenpunkten.
- Behandlung mittels Lagrange-I-Gleichungen sehr kompliziert: viele Gleichungen für relativ wenige Freiheitsgrade
- Idealisiert: starrer Körper: $N \to \infty$, aber nur 6 Freiheitsgrade (3 Schwerpunkts- und drei Rotationsfreiheitsgrade)
- Erhaltungssätze liefern gesamte Lösung nur in Spezialfällen (z.B. Energiesatz für einen verbleibenden Freiheitsgrad)
- Daher Aufgabenstellung:
 - Man finde Bewegungsgleichungen, die nach Art und Anzahl genau den Freiheitsgraden des Systems entsprechen und in denen Zwangskräfte und Nebenbedingungen nicht mehr vorkommen.
- Diese Überlegungen führen zu den Lagrange-Gleichungen II. Art.

5.2 Generalisierte Koordinaten

• Betrachten Massenpunktsystem bestehend aus N Massenpunkten, das N_Z (holonomen) Zwangsbedingungen unterliegt:

$$g_{\alpha}(x_n^i;t) = 0, \qquad \alpha = 1, \dots, N_Z, \quad i = 1, \dots, 3, \quad n = 1, \dots, N.$$

Hierbei sind die x_n^i die kartesischen Koordinaten der Massenpunkte in einem IS \mathcal{S} .

- Einführung von $N_F = 3N N_Z$ generalisierten Koordinaten q_A , $(A = 1, ..., N_F)$ derart, dass die Zwangsbedingungen für beliebige Wahl der q_A (innerhalb deren Definitionsbereich) immer erfüllt sind:
 - 1. die kartesischen Koordinaten x_n^i des IS S schreiben sich als bekannte Funktionen der q_A :

$$x_n^i = x_n^i(q_A; t), \qquad A = 1, \dots, N_F, \quad N_F = 3N - N_Z$$

für alle
$$i = 1, ..., 3, n = 1, ..., N$$
.

2. Setzen wir diese Funktionen in die Zwangsbedingungen ein, so verschwinden diese identisch:

$$g_{\alpha}\Big(x_n^i(q_A;t);t\Big) \equiv 0$$

• Beispiel:

Räumliches Pendel für einen Massenpunkt,

$$q_1(x, y, z; t) = x^2 + y^2 + z^2 - \ell^2 = 0$$
 (ℓ fest vorgegeben)

Generalisierte Koordinaten ϑ,φ (Kugelkoordinaten auf der Kugelschale):

$$x = \ell \sin \theta \cos \varphi, \quad y = \ell \sin \theta \sin \varphi, \quad z = \ell \cos \theta.$$

Damit ist die Zwangsbedingung $g_1 = 0$ für eine beliebige Wahl der Winkel ϑ, φ identisch erfüllt.

• Damit erübrigt sich die Betrachtung der Zwangsbedingungen nach Einführung angepasster generalisierter Koordinaten; sie sind dann automatisch erfüllt.

5.3 Ableitung der Lagrange-Gleichungen II. Art

• Wegen

$$0 \equiv \tilde{g}_{\alpha}(q_A; t) = g_{\alpha} \Big(x_n^i(q_A; t); t \Big)$$

folgt auch für alle $A = 1, \dots N_F$:

$$0 \equiv \frac{\partial \tilde{g}_{\alpha}}{\partial q_{A}} = \sum_{i=1}^{3} \sum_{n=1}^{N} \frac{\partial g_{\alpha}}{\partial x_{n}^{i}} \frac{\partial x_{n}^{i}}{\partial q_{A}}$$
 (5.1)

• Multiplizieren nun die Lagrange-Gleichungen I. Art,

$$m_n \ddot{x}_n^i = F_n^i + \sum_{\alpha=1}^{N_Z} \lambda_\alpha \frac{\partial g_\alpha}{\partial x_n^i}$$

mit $\frac{\partial x_n^i}{\partial q_A}$ und summieren über *i* und *n*:

$$\sum_{i=1}^{3} \sum_{n=1}^{N} m_n \ddot{x}_n^i \frac{\partial x_n^i}{\partial q_A} = \sum_{i=1}^{3} \sum_{n=1}^{N} F_n^i \frac{\partial x_n^i}{\partial q_A} + \sum_{\alpha=1}^{N_Z} \lambda_\alpha \left(\sum_{i=1}^{3} \sum_{n=1}^{N} \frac{\partial g_\alpha}{\partial x_n^i} \frac{\partial x_n^i}{\partial q_A} \right)$$

• Wegen (5.1) verschwindet der Klammerterm, und es folgt für alle $A=1,\ldots,N_F$:

$$\sum_{i=1}^{3} \sum_{n=1}^{N} \left(m_n \ddot{x}_n^i \frac{\partial x_n^i}{\partial q_A} - F_n^i \frac{\partial x_n^i}{\partial q_A} \right) = 0$$
 (5.2)

• Nun ist die kinetische Energie gegeben durch:

$$T = \sum_{i=1}^{3} \sum_{n=1}^{N} \frac{m_n}{2} \left(\dot{x}_n^i \right)^2$$

Wegen $x_n^i = x_n^i(q_A; t)$ ist

$$\dot{x}_n^i = \dot{x}_n^i(q_A, \dot{q}_A; t) = \sum_{B=1}^{N_F} \frac{\partial x_n^i}{\partial q_B} \dot{q}_B + \frac{\partial x_n^i}{\partial t},$$

und damit:

$$\frac{\partial \dot{x}_{n}^{i}}{\partial q_{A}} = \sum_{B=1}^{N_{F}} \frac{\partial^{2} x_{n}^{i}}{\partial q_{A} \partial q_{B}} \dot{q}_{B} + \frac{\partial^{2} x_{n}^{i}}{\partial q_{A} \partial t}$$

$$\frac{\partial \dot{x}_{n}^{i}}{\partial \dot{q}_{A}} = \frac{\partial x_{n}^{i}}{\partial q_{A}}$$

Mit diesen Beziehungen folgt:

$$\frac{\partial T}{\partial q_A} = \sum_{i=1}^{3} \sum_{n=1}^{N} m_n \dot{x}_n^i \frac{\partial \dot{x}_n^i}{\partial q_A} = \sum_{i=1}^{3} \sum_{n=1}^{N} m_n \dot{x}_n^i \left(\sum_{B=1}^{N_F} \frac{\partial^2 x_n^i}{\partial q_A \partial q_B} \dot{q}_B + \frac{\partial^2 x_n^i}{\partial q_A \partial t} \right)$$

$$\frac{\partial T}{\partial \dot{q}_A} = \sum_{i=1}^{3} \sum_{n=1}^{N} m_n \dot{x}_n^i \frac{\partial \dot{x}_n^i}{\partial \dot{q}_A} = \sum_{i=1}^{3} \sum_{n=1}^{N} m_n \dot{x}_n^i \frac{\partial x_n^i}{\partial q_A},$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}_A} = \sum_{i=1}^{3} \sum_{n=1}^{N} \left[m_n \ddot{x}_n^i \frac{\partial x_n^i}{\partial q_A} + m_n \dot{x}_n^i \left(\sum_{B=1}^{N_F} \frac{\partial^2 x_n^i}{\partial q_B \partial q_A} \dot{q}_B + \frac{\partial^2 x_n^i}{\partial t \partial q_A} \right) \right]$$

$$= \sum_{i=1}^{3} \sum_{n=1}^{N} m_n \ddot{x}_n^i \frac{\partial x_n^i}{\partial q_A} + \frac{\partial T}{\partial q_A}$$

• Damit ist der erste Term in (5.2) gleich:

$$\sum_{i=1}^{3} \sum_{n=1}^{N} m_n \ddot{x}_n^i \frac{\partial x_n^i}{\partial q_A} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}_A} - \frac{\partial T}{\partial q_A}$$

• Definieren wir die generalisierten Kräfte

$$Q_A := \sum_{i=1}^{3} \sum_{n=1}^{N} F_n^i \frac{\partial x_n^i}{\partial q_A},$$

so ergibt sich als Vorstufe zu den Lagrange-Gleichungen II. Art:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial T}{\partial \dot{q}_A} - \frac{\partial T}{\partial q_A} = Q_A \tag{5.3}$$

1. Die sind Bewegungsgleichungen, in denen Zwangskräfte und Zwangsbedingungen nicht mehr explizit vorkommen.

- 2. Gültig für Probleme mit und ohne Zwangsbedingungen.
- 3. Liefern für $N_Z=0$ (und Wahl der kartesischen Koordinaten x_n^i als generalisierte Koordinaten q_A) genau die Newtonschen Gleichungen

$$m_n \ddot{x}_n^i = F_n^i$$

- Übergang zu den eigentlichen Lagrange-Gleichungen II. Art:
 - 1. Kräfte F_n^i weisen ein Potential $U=U(x_n^i)$ auf:

$$F_n^i = -\frac{\partial U}{\partial x_n^i}.$$

2. Wegen $x_n^i = x_n^i(q_A;t)$ ist:

$$U(q_A;t) = U(x_n^i(q_A;t)),$$

mit:

$$\frac{\partial U}{\partial q_A} = \sum_{i=1}^{3} \sum_{n=1}^{N} \frac{\partial U}{\partial x_n^i} \frac{\partial x_n^i}{\partial q_A}$$

3. Somit folgt:

$$Q_A = \sum_{i=1}^{3} \sum_{n=1}^{N} F_n^i \frac{\partial x_n^i}{\partial q_A} = -\sum_{i=1}^{3} \sum_{n=1}^{N} \frac{\partial U}{\partial x_n^i} \frac{\partial x_n^i}{\partial q_A} = -\frac{\partial U}{\partial q_A}$$

4. Ferner hängt das Potential nicht von den generalisierten Geschwindigkeiten ab,

$$\frac{\partial U}{\partial \dot{q}_A} = 0,$$

und damit folgt aus (5.3):

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}_A} - \frac{\partial T}{\partial q_A} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial U}{\partial \dot{q}_A} - \frac{\partial U}{\partial q_A},$$

oder die Lagrange-Gleichungen II. Art:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_A} - \frac{\partial L}{\partial q_A} = 0 \tag{5.4}$$

mit der Lagrange-Funktion L des Systems, die sich schreibt

- (a) als Differenz von kinetischer und potentieller Energie und
- (b) als Funktion der generalisierten Koordinaten q_A und Geschwindigkeiten \dot{q}_A sowie der Zeit t:

$$L(q_A, \dot{q}_A; t) = T(q_A, \dot{q}_A; t) - U(q_A; t)$$

- Anmerkungen:
 - 1. Die Lagrange-Gleichungen II. Art sind ein System von N_F gewöhnlichen Differentialgleichungen zweiter Ordnung zur Bestimmung der N_F Funktionen $q_A(t)$.
 - 2. Zwangsbedingungen und -kräfte sind eliminiert.
 - 3. Gleichungen sind anwendbar auf Systeme mit holonomen Zwangsbedingungen (in denen keine explizite Geschwindigkeitsabhängigkeit vorliegt) und eingeprägten Kräften, die ein Potential aufweisen.
 - 4. Gleichungen geben die einfachste und übersichtlichste Formulierung der Bewegungsgleichungen; sie sollten bevorzugt für Probleme der Punktmechanik benutzt werden.

5.4 Energiesatz im Lagrange-II-Formalismus

Berechnung der zeitlichen Änderung der Lagrange-Funktion:

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \sum_{A=1}^{N_F} \frac{\partial L}{\partial q_A} \dot{q}_A + \sum_{A=1}^{N_F} \frac{\partial L}{\partial \dot{q}_A} \ddot{q}_A + \frac{\partial L}{\partial t}$$

$$= \sum_{A=1}^{N_F} \dot{q}_A \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_A} + \sum_{A=1}^{N_F} \frac{\partial L}{\partial \dot{q}_A} \ddot{q}_A + \frac{\partial L}{\partial t}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{A=1}^{N_F} \frac{\partial L}{\partial \dot{q}_A} \dot{q}_A \right) + \frac{\partial L}{\partial t},$$

also:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{A=1}^{N_F} \frac{\partial L}{\partial \dot{q}_A} \dot{q}_A - L \right) = -\frac{\partial L}{\partial t}$$
 (5.5)

Gleichung (5.5) ist die Energiebilanzgleichung in der Sprache der Lagrange-Funktion:

- 1. Für skleronome Zwangsbedingungen hängen die x_n^i nicht explizit von der Zeit ab (nur von den generalisierten Koordinaten q_A), $x_n^i = x_n^i(q_A)$.
- 2. Dann sind auch T und U und mithin L nicht explizit zeitabhängig,

$$\frac{\partial L}{\partial t} = 0. ag{5.6}$$

3. Es folgt

$$\sum_{A=1}^{N_F} \frac{\partial L}{\partial \dot{q}_A} \dot{q}_A - L = \text{const.}$$
 (5.7)

(Erinnerung: nur zeitabhängige Bindungen können Energie des Systems ändern.)

- 4. Größe auf der linken Seite von (5.7) ist tatsächlich Gesamtenergie:
 - Wegen $x_n^i = x_n^i(q_A)$ (nicht explizit zeitabhängig), folgt:

$$T = \sum_{i=1}^{3} \sum_{n=1}^{N} \frac{m_n}{2} \left(\dot{x}_n^i \right)^2 = \sum_{i=1}^{3} \sum_{n=1}^{N} \frac{m_n}{2} \left(\sum_{A=1}^{N_F} \frac{\partial x_n^i}{\partial q_A} \dot{q}_A \right)^2$$
$$= \sum_{A,B=1}^{N_F} \dot{q}_A \dot{q}_B \left(\sum_{i=1}^{3} \sum_{n=1}^{N} \frac{m_n}{2} \frac{\partial x_n^i}{\partial q_A} \frac{\partial x_n^i}{\partial q_B} \right).$$

• Die kinetische Energie T ist somit eine positiv homogene Funktion vom $Grad\ 2$ in den \dot{q}_A (siehe Kapitel (2.9), Virialsatz). Es gilt daher der $Eulersche\ Satz$:

$$\sum_{A=1}^{N_F} \frac{\partial T}{\partial \dot{q}_A} \dot{q}_A = 2T$$

• Weil aber $U = U(q_A)$, also $\frac{\partial U}{\partial \dot{q}_A} = 0$, folgt:

$$\sum_{A=1}^{N_F} \frac{\partial L}{\partial \dot{q}_A} \dot{q}_A = \sum_{A=1}^{N_F} \frac{\partial T}{\partial \dot{q}_A} \dot{q}_A = 2T$$

und somit:

$$\sum_{A=1}^{N_F} \frac{\partial L}{\partial \dot{q}_A} \dot{q}_A - L = 2T - (T - U) = T + U = E$$

- 5. Folgerung: Die Energie ist eine Erhaltungsgröße, wenn die Lagrange-Funktion L invariant gegenüber zeitlichen Translationen ist, also (5.6) gilt.
- 6. Andere Formulierung: Man kann bei Kenntnis des Kraftgesetzes durch Beobachtung von Bahnkurven nicht auf den Zeitnullpunkt schließen.
- 7. Zusammenhang zwischen Symmetrieeigenschaften und Erhaltungssätzen spielt in allen Gebieten der modernen Physik eine große Rolle (Noether-Theorem).

5.5 Zyklische Koordinaten

• Falls die Lagrange-Funktion nicht explizit von einer bestimmten generalisierten Koordinate q_B abhängt, so gilt ein zugehöriger Erhaltungssatz:

$$\frac{\partial L}{\partial q_B} = 0 \quad \Rightarrow \quad \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_B} = 0 \quad \Rightarrow \quad \frac{\partial L}{\partial \dot{q}_B} = \mathrm{const.}$$

- Damit ist ein erstes Integral der Bewegungsgleichungen gegeben.
- Die zugehörige Koordinate q_B wird zyklisch genannt.
- Man wird immer versuchen, möglichst viele zyklische Koordinaten einzuführen.
- Beispiel:

Freier Massenpunkt im Zentralkraftfeld (Potential $U, \vec{F} = -\operatorname{grad} U$), mit Kugelkoordinaten (r, ϑ, φ) um das Kraftzentrum als generalisierte Koordinaten:

$$L = T - U = \frac{m}{2}(\dot{r}^2 + r^2\dot{\vartheta}^2 + r^2\sin^2\vartheta\dot{\varphi}^2) - U(r)$$

5.6. BEISPIEL 111

Lagrange-Funktion hängt offenbar nicht von φ ab:

$$\frac{\partial L}{\partial \varphi} = 0 \quad \Rightarrow \quad \frac{\partial L}{\partial \dot{\varphi}} = \text{const.}, \quad mr^2 \sin^2 \vartheta \dot{\varphi} = m\varrho^2 \dot{\varphi} = L^z = \text{const.}$$

mit der Zylinderkoordinate $\varrho=r\sin\vartheta.$ Damit entspricht der zyklischen Koordinate φ die Erhaltung der z-Komponente des Drehimpulses.

- Ein System kann mehr Symmetrien haben als es zyklische Koordinaten gibt:
 - Im obigen Beispiel sind auch L^x und L^y konstant; diesen entsprechen bei unserer Wahl der generalisierten Koordinaten keine zyklischen Koordinaten.
 - Der Konstanz der Drehimpulskomponenten L^x , L^y , L^z entspricht die Symmetrie bezüglich dreiparametriger räumlicher Drehungen; L^z : Drehung um die z-Achse (φ -Invarianz).
 - Maximale Anzahl der zyklischen Koordinaten ist gegeben durch die Maximalzahl vertauschbarer Symmetrieoperationen (die Drehungen sind nicht vertauschbar; deshalb gibt es im Beispiel nur eine zyklische Koordinate).

5.6 Beispiel: Massenpunkt auf einem Kreiskegel im Erdschwerefeld

Lösungsschritte im Lagrange-II-Formalismus:

- 1. Man führe geeignete generalisierte Koordinaten ein, die die Zwangsbedingungen erfüllen und den Symmetrien des Problems angepasst sind:
 - Kegelgleichung: $x^2 + y^2 z^2 \tan^2 \alpha = 0$
 - Generalisierte Koordinaten: Kugelkoordinaten (r, φ) ,

$$x = r \sin \alpha \cos \varphi,$$
 $y = r \sin \alpha \sin \varphi,$ $z = r \cos \alpha$

Es ist $\vartheta = \alpha = \text{const.}$; Bewegung ist durch die beiden Koordinaten (r, φ) festgelegt.

2. Man schreibe kinetische und potentielle Energie sowie die Lagrange-Funktion L als Funktionen der generalisierten Koordinaten und Geschwindigkeiten:

$$T = \frac{m}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{m}{2}(\dot{r}^2 + r^2\dot{\varphi}^2\sin^2\alpha)$$

$$U = mgz = mgr\cos\alpha$$

$$L = T - U = \frac{m}{2}(\dot{r}^2 + r^2\dot{\varphi}^2\sin^2\alpha) - mgr\cos\alpha$$

3. Man schreibe die Lagrange-Gleichungen II. Art auf, stelle die zyklischen Koordinaten fest und formuliere geltende Erhaltungssätze (einschließlich Energieerhaltung, falls geltend):

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{r}} - \frac{\partial L}{\partial r} = \frac{\mathrm{d}}{\mathrm{d}t}(m\dot{r}) - mr\dot{\varphi}^2 \sin^2 \alpha + mg\cos \alpha = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{\varphi}} - \frac{\partial L}{\partial \varphi} = \frac{\mathrm{d}}{\mathrm{d}t}(mr^2\dot{\varphi}\sin^2 \alpha) = 0$$

Einzige zyklische Koordinate ist φ , zugeordneter Erhaltungsgröße ist

$$L^z = mr^2 \dot{\varphi} \sin^2 \alpha. \tag{5.8}$$

Wegen $\frac{\partial L}{\partial t} = 0$ gilt Energieerhaltung:

$$E = T + U = \frac{m}{2}(\dot{r}^2 + r^2\dot{\varphi}^2\sin^2\alpha) + mgr\cos\alpha \qquad (5.9)$$

5.6. BEISPIEL 113

4. Man löse die Lagrange-Gleichungen II. Art unter Ausnutzung der Erhaltungssätze und diskutiere die Ergebnisse:

Einsetzen von (5.8) in (5.9) liefert:

$$\frac{m}{2}\dot{r}^2 + \frac{(L^z)^2}{2mr^2\sin^2\alpha} + mgr\cos\alpha = E.$$

Lösung wie beim eindimensionalen Bewegungsproblem im Ersatzpotential

$$\bar{U}(r) = \frac{(L^z)^2}{2mr^2\sin^2\alpha} + mgr\cos\alpha$$

durch Trennung der Variablen,

$$t = \operatorname{sign}(\dot{r}_0) \int_{r_0}^{r(t)} \frac{\mathrm{d}\xi}{\sqrt{\frac{2}{m} \left[E - \bar{U}(\xi) \right]}}$$

Anschauliche Diskussion:

- Für $L^z=0$ rollt der Massenpunkt mit der Beschleunigung $g\cos\alpha$ in die Kegelspitze hinein.
- Für $L^z \neq 0$ geht die Bewegung ständig zwischen zwei festen Werten r_1 und r_2 hin und her.
- Der Massenpunkt rollt dann in auf- und absteigenden Spiralen zwischen den Kreisen der Höhe $z_{1/1} = r_{1/2} \cos \alpha$ mit gleichbleibendem Umlaufsinn auf dem Kegelmantel.
- Massenpunkt kann Spitze nie erreichen (keine Reibung).

