# Problem: Inorganic Compound – Bài Tập Hợp Chất Vô Cơ

## Nguyễn Quản Bá Hồng\*

### Ngày 25 tháng 4 năm 2023

#### Tóm tắt nội dung

[en] This text is a collection of problems, from easy to advanced, about *inorganic compound*, which is also a supplementary material for my lecture note on Elementary Chemistry, which is stored & downloadable at the following link: GitHub/NQBH/hobby/elementary chemistry/grade 9/lecture<sup>1</sup>. The latest version of this text has been stored & downloadable at the following link: GitHub/NQBH/hobby/elementary chemistry/grade 9/inorganic compound<sup>2</sup>.

Keyword. Inorganic compound.

[vi] Tài liệu này là 1 bộ sưu tập các bài tập chọn lọc từ cơ bản đến nâng cao về phản ứng hóa học, cũng là phần bài tập bổ sung cho tài liệu chính – bài giảng GitHub/NQBH/hobby/elementary chemistry/grade 9/lecture của tác giả viết cho Hóa Học Sơ Cấp. Phiên bản mới nhất của tài liệu này được lưu trữ & có thể tải xuống ở link sau: GitHub/NQBH/hobby/elementary chemistry/grade 9/inorganic compound.

Từ khóa. Hợp chất vô cơ.

## Mục lục

| 1  | Oxide                                         | 2 |
|----|-----------------------------------------------|---|
|    | 1.1 Qualitative Problem – Bài tập định tính   | 2 |
|    | 1.2 Quantitative Problem – Bài tập định lượng | 2 |
| 2  | Acid                                          |   |
|    | 2.1 Qualitative Problem – Bài tập định tính   | 2 |
|    | 2.2 Quantitative Problem – Bài tập định lượng | 2 |
| 3  | Base                                          | 9 |
|    | 3.1 Qualitative Problem – Bài tập định tính   | : |
|    | 3.2 Quantitative Problem – Bài tập định lượng |   |
| 4  | Salt – Muối                                   |   |
|    | 4.1 Qualitative Problem – Bài tập định tính   |   |
|    | 4.2 Quantitative Problem – Bài tập định lượng |   |
| Te | i liau                                        | ٠ |

<sup>\*</sup>Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

<sup>&</sup>lt;sup>1</sup>URL: https://github.com/NQBH/hobby/blob/master/elementary\_chemistry/grade\_9/NQBH\_elementary\_chemistry\_grade\_9.pdf.

 $<sup>^2 \</sup>text{URL: https://github.com/NQBH/hobby/blob/master/elementary\_chemistry/inorganic\_compound/NQBH\_inorganic\_compound.pdf.}$ 

## 1 Oxide

#### 1.1 Qualitative Problem – Bài tập định tính

Bài toán 1 ([An23], 1., p. 5). Nêu các base & acid tương ứng của các oxide: SO<sub>2</sub>, SO<sub>3</sub>, N<sub>2</sub>O<sub>5</sub>, CaO, K<sub>2</sub>O, CuO, Mn<sub>2</sub>O<sub>7</sub>.

Bài toán 2 ([An23], 2., p. 5). Trong các oxide: CaO,  $Al_2O_3$ , NO,  $N_2O_5$ ,  $CO_2$ ,  $SO_2$ , MgO, CO,  $Fe_2O_3$ , oxide nào là oxide tạo  $mu\acute{o}i$ .

Bài toán 3 ([An23], 3., p. 5). Cho các oxide: Na<sub>2</sub>O, Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4</sub>, SO<sub>3</sub>, CaO. Viết phương trình phản ứng (nếu có) khi cho các oxide này lần lượt tác dụng với nước, dung dịch NaOH, dung dịch HCl.

Bài toán 4 ([An23], 4.a, p. 6). Cho các chất sau: CaCl<sub>2</sub> (khan), P<sub>2</sub>O<sub>5</sub>, H<sub>2</sub>SO<sub>4</sub> (đặc), Ba(OH)<sub>2</sub> (rắn), chất nào được dùng để làm khô khí CO<sub>2</sub>? Giải thích bằng PTHH.

Bài toán 5 ([An23], 4.b, p. 6). Có 4 oxide riêng biệt: Na<sub>2</sub>O, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, MgO. Làm thế nào để có thể nhận biết được mỗi oxide bằng phương pháp hóa học với điều kiện chỉ được dùng thêm 2 chất?

#### 1.2 Quantitative Problem – Bài tập định lượng

Bài toán 6 ([An23], 5.a, p. 6). Cho a g Na tác dụng với p g nước thu được dung dịch NaOH nồng độ x%. Cho b g Na<sub>2</sub>O tác dụng với p g nước cũng thu được dung dịch NaOH nồng độ x%. Lập biểu thức tính p theo a,b.

Bài toán 7 ([An23], 5.b, p. 6). Khử hoàn toàn 3.2 g hỗn hợp CuO, Fe<sub>2</sub>O<sub>3</sub> bằng H<sub>2</sub> tạo ra 0.9 g H<sub>2</sub>O. Tính khối lượng hỗn hợp kim loại thu được.

Bài toán 8 ([An23], 6., p. 7). (a) Cho 2.24 L CO<sub>2</sub> (đktc) tác dụng hoàn toàn với 25 g dung dịch NaOH 20%. Tính khối lượng muối tạo thành. (b) Làm thế nào để nhận ra sự có mặt của mỗi khí trong hỗn hợp gồm CO, CO<sub>2</sub>, SO<sub>3</sub> bằng phương pháp hóa học. Viết các PTHH (nếu có).

Bài toán 9 ([An23], 7., pp. 8–9). (a) Nung m g hỗn hợp chất rắn A gồm Fe<sub>2</sub>O<sub>3</sub> & FeO với lượng thiếu khí CO thu được hỗn hợp chất rắn B có khối lượng 47.84 g & 5.6 L CO<sub>2</sub>. Tính m. (b) Cho 11.6 g hỗn hợp Fe<sub>2</sub>O<sub>3</sub> & FeO có tỷ lệ số mol là 1:1 vào 300 mL dung dịch HCl 2M được dung dịch A. Tính nồng độ mol của các chất trong dung dịch sau phản ứng (thể tích dung dịch thay đổi không đáng kể).

Bài toán 10 ([An23], 8., p. 9). (a) Nung nóng kim loại M trong không khố đến khối lượng không đổi thu được chất rắn N. Khối lượng của M bằng  $\frac{7}{10}$  khối lượng của N. Tìm CTPT của N. (b) Cho 1 oxide base tác dụng với dung dịch  $H_2SO_4$  24.5% thu được dung dịch 1 muối có nồng độ 32.2%. Tìm CTPT của oxide base.

Bài toán 11 ([An23], 9., p. 11). (a) Dẫn V L khí CO<sub>2</sub> (đktc) qua 250 mL dung dịch Ca(OH)<sub>2</sub> 1M thấy có 12.5 g kết tủa. Tính V. (b) Dùng khí H<sub>2</sub> để khử a g oxide sắt. Sản phẩm hơi tạo ra cho qua 100 g acid H<sub>2</sub>SO<sub>4</sub> 98% thì nồng độ acid giảm đi 3.405%. Chất rắn thu được sau phản ứng trên cho tác dụng hết với dung dịch HCl thấy thoát ra 3.36 L H<sub>2</sub> (đktc). Xác định CTPT oxide sắt.

Bài toán 12 ([An23], 10., p. 13). (a) Để xác định CTPT oxide sắt người ta làm thí nghiệm như sau: Hòa tan a g oxide sắt thì cần 300 mL dung dịch HCl 3M. Cho toàn bộ a g oxide sắt nung nóng tác dụng với CO dư thư được 16.8 g sắt. Xác định CTPT oxide sắt. (b) 1 loại đá vôi chứa 80% CaCO<sub>3</sub> & 20% tạp chất không bị phân hủy bởi nhiệt. Khi nung a g đá vôi trên thư được chất rắn có khối lượng bằng 75% khối lượng đá trước khi nung. (1) Tính hiệu suất phản ứng phân hủy CaCO<sub>3</sub>. (2) Tính thành phần % khối lượng CaO trong chất rắn sau khi nung.

Bài toán 13 ([An23], 11., p. 14). (a) Khử hoàn toàn 5.8 g 1 oxide sắt bằng CO ở nhiệt độ cao. Sản phẩm sau phản ứng cho qua dung dịch nước vôi trong dư tạo 10 g kết tủa. Xác định CTPT oxide sắt. (b) Nung 1.5 tấn đá vôi chứa 85% CaCO<sub>3</sub> thì có thể thu được bao nhiêu kg vôi sống? Biết hiệu suất phản ứng là 90%.

Bài toán 14 ([An23], 12., p. 15). (a) Cho 7.84 g CaO tan hoàn toàn vào nước được dung dịch A. Dẫn 2.24 L khí CO<sub>2</sub> (đktc) vào dung dịch A. Tính khối lượng các chất sau phản ứng. (b) Nung 1 tấn đá vôi thì thu được 428.4 kg vôi sống CaO. Hiệu suất quá trình nung vôi là 85%, tính tỷ lệ % khối lượng tạp chất có trong đá vôi.

## 2 Acid

#### 2.1 Qualitative Problem – Bài tập định tính

#### 2.2 Quantitative Problem – Bài tập định lương

Bài toán 15 ([An23], 13., p. 16). (a) Lấy 4.2 g bột sắt cho tác dụng với 50 mL dung dịch H<sub>2</sub>SO<sub>4</sub> 1M đến khi kết thúc phản ứng thu được V L khí H<sub>2</sub> bay ra ở đktc: (1) Cho biết chát nào còn dư sau phản ứng? (2) Tính V.

Bài toán 16 ([An23], 10., p. 13).

Bài toán 17 ([An23], 10., p. 13).

- 3 Base
- 3.1 Qualitative Problem Bài tập định tính
- 3.2 Quantitative Problem Bài tập định lượng
- 4 Salt Muối
- 4.1 Qualitative Problem Bài tập định tính
- 4.2 Quantitative Problem Bài tập định lượng

## Tài liệu

[An23] Ngô Ngọc An. 350 Bài Tập Hóa Học Chọn Lọc & Nâng Cao Lớp 9. Tái bản lần thứ 13. Nhà Xuất Bản Giáo Dục, 2023, p. 183.