IEEE POWER ENGINEERING SOCIETY **Power System Analysis, Computing and Economics Committee**

MARTIN L. BAUGHMAN **Professor Emeritus** The University of Texas at Austin 5703 Painted Valley Drive Austin, TX 78759 Vox: 512-345-8255

Fax: 512-345-9880 baughman@mail.utexas.edu Vice Chair

CHEN-CHING LIU Dept. of Electrical Eng. University of Washington Box 352500

Seattle, WA 98195 Vox: 206-543-2198 Fax: 206-543-3842 liu@ee.washington.edu Secretary

ROGER C. DUGAN Sr. Consultant Electrotek Concepts, Inc. 408 N Cedar Bluff Rd Knoxville, TN 37923 Vox: 865-470-9222 Fax: 865-470-9223

r.dugan@ieee.org

Distribution System Analysis Subcommittee

IEEE 123 Node Test Feeder

Subcommittee Chairs

Computer & Analytical Methods EDWIN LIU, Chair Nexant, Inc. 101, 2nd street, 11F San Francisco CA 94105 Vox: 415-369-1088 Fax: 415-369-0894 exliu@nexant.com

Distribution Systems Analysis SANDOVAL CARNEIRO, JR, Chair Dept. of Electrical Engineering Federal Univ. of Rio de Janeiro Rio de Janeiro, RJ, Brazil Vox: 55-21-25628025 Fax: 55-21-25628628 sandoval@coep.ufrj.br

Intelligent System Applications DAGMAR NIEBUR, Chair Department of ECE Drexel University 3141 Chestnut Street Philadelphia, PA 19104 Vox: (215) 895 6749

Fax: (215) 895 1695 niebur@cbis.ece.drexel.edu

Reliability, Risk & Probability Applications JAMES D. MCCALLEY, Chair Iowa State University Room 2210 Coover Hall Ames, Iowa 50011 Vox: 515-294-4844

Fax: 515-294-4263 jdm@iastate.edu

Systems Economics ROSS BALDICK, Chair ECE Dept., ENS 502 The University of Texas at Austin Austin, TX 78712

Vox: 512-471-5879 Fax: 512-471-5532 baldick@ece.utexas.edu

Past Chair JOANN V. STARON Nexant Inc/ PCA 1921 S. Alma School Road Suite 207

Mesa, AZ 85210 Vox: 480-345-7600 Fax: 480-345-7601 joann.staron@pca-corp.com

IEEE 123 Node Test Feeder

Line Segment Data

Node A	Node B	Length (ft.)	Config.
1	2	175	10
1	3	250	11
1	7	300	1
3	4	200	11
3	5	325	11
5	6	250	11
7	8	200	1
8	12	225	10
8	9	225	9
8	13	300	1
9	14	425	9
13	34	150	11
13	18	825	2
14	11	250	9
14	10	250	9
15	16	375	11
15	17	350	11
18	19	250	9
18	21	300	2
19	20	325	9
21	22	525	10
21	23	250	2
23	24	550	11
23	25	275	2
25	26	350	7
25	28	200	2
26	27	275	7
26	31	225	11
27	33	500	9
28	29	300	2
29	30	350	2
30	250	200	2
31	32	300	11
34	15	100	11
35	36	650	8
35	40	250	1
36	37	300	9
36	38	250 10	
38	39	325	10
40	41	325	11
40	42	250	1
42	43	500	10

42	44	200	1	
44	45	200	9	
44	47	250	1	
45	46	300	9	
47	48	150	4	
47	49	250	4	
49	50	250	4	
50	51	250	4	
52	53	200	1	
53	54	125	1	
54	55	275	1	
54	57	350	3	
55	56	275	1	
57	58	250	10	
57	60	750	3	
58	59	250	10	
60	61	550	5	
60	62	250	12	
62	63	175	12	
63	64	350	12	
64	65	425	12	
65	66	325	12	
67	68	200	9	
67	72	275	3	
67	97	250	3	
68	69	275	9	
69	70	325	9	
70	71	275	9	
72	73	275	11	
72	76	200	3	
73	74	350	11	
74	75	400	11	
76	77	400	6	
76	86	700	3	
77	78	100	6	
78	79	225	6	
78	80	475	6	
80	81	475	6	
81	82	250	6	
81	84	675	11	
82	83	250	6	
84	85	475	11	
86	87	450	6	
87	88	175	9	
87	89	275	6	
			•	

Line Segment Data (cont.)

90	225	10
91	225	6
92	300	11
93	225	6
94	275	9
95	300	6
96	200	10
98	275	3
99	550	3
100	300	3
450	800	3
102	225	11
105	275	3
103	325	11
104	700	11
106	225	10
108	325	3
107	575	10
109	450	9
300	1000	3
110	300	9
111	575	9
112	125	9
113	525	9
114	325	9
35	375	4
1	400	1
52	400	1
67	350	6
101	250	3
	91 92 93 94 95 96 98 99 100 450 102 105 103 104 106 108 107 109 300 110 111 112 113 114 35 1 52 67	91 225 92 300 93 225 94 275 95 300 96 200 98 275 99 550 100 300 450 800 102 225 103 325 104 700 106 225 108 325 107 575 109 450 300 1000 110 300 111 575 112 125 113 525 114 325 35 375 1 400 52 400 67 350

Three Pha	se Switche	es .
Node A	Node B	Normal
13	152	closed
18	135	closed
60	160	closed
61	610	closed
97	197	closed
150	149	closed
250	251	open
450	451	open
54	94	open
151	300	open
300	350	open

Overhead Line Configurations (Config.)

Config.	Phasing	Phase Cond.	Neutral Cond.	Spacing
		ACSR	ACSR	ID
1	ABCN	336,400 26/7	4/0 6/1	500
2	CABN	336,400 26/7	4/0 6/1	500
3	BCAN	336,400 26/7	4/0 6/1	500
4	CBAN	336,400 26/7	4/0 6/1	500
5	BACN	336,400 26/7	4/0 6/1	500
6	ACBN	336,400 26/7	4/0 6/1	500
7	ACN	336,400 26/7	4/0 6/1	505
8	ABN	336,400 26/7	4/0 6/1	505
9	ΑN	1/0	1/0	510
10	BN	1/0	1/0	510
11	CN	1/0	1/0	510

Underground Line Configuration (Config.)						
Config.	Phasing	Cable	Spacing ID			
12	ABC	1/0 AA, CN	515			

Transformer Data					
	kVA	kV-high	kV-low	R-%	X - %
Substation	5,000	115 - D	4.16 Gr-W	1	8
XFM - 1	150	4.16 - D	.480 - D	1.27	2.72

Shunt			
Node	Ph-A	Ph-B	Ph-C
	kVAr	kVAr	kVAr
83	200	200	200
88	50		
90		50	
92			50
Total	250	250	250

Regulator Data

	•	•
Regulator ID:	1	
Line Segment:	150 - 149	
Location:	150	
Phases:	A-B-C	
Connection:	3-Ph, Wye	
Monitoring Phase:	Α	
Bandwidth:	2.0 volts	
PT Ratio:	20	
Primary CT Rating:	700	
Compensator:	Ph-A	
R - Setting:	3	
X - Setting:	7.5	
Voltage Level:	120	
Regulator ID:	2	
Line Segment:	9 - 14	
Location:	9	
Phases:	Α	
Connection:	1-Ph, L-G	
Monitoring Phase:	Α	
Bandwidth:	2.0 volts	
PT Ratio:	20	
Primary CT Rating:	50	
Compensator:	Ph-A	
R - Setting:	0.4	
X - Setting:	0.4	
Voltage Level:	120	

Regulator ID:	3		
Line Segment:	25 - 26		
Location:	25		
Phases:	A-C		
Connection:	2-Ph,L-G		
Monitoring Phase:	A & C		
Bandwidth:	1		
PT Ratio:	20		
Primary CT Rating:	50		
Compenator:	Ph-A	Ph-C	
R - Setting:	0.4	0.4	
X - Setting:	0.4	0.4	
Voltage Level:	120	120	
Regulator ID:	4		
Line Segment:	160 - 67		
Location:	160		
Phases:	A-B-C		
Connection:	3-Ph, LG		
Monitoring Phase:	A-B-C		
Bandwidth:	2		
PT Ratio:	20		
Primary CT Rating:	300		
Compensator:	Ph-A	Ph-B	Ph-C
R - Setting:	0.6	1.4	0.2
X - Setting:	1.3	2.6	1.4
Voltage Level:	124	124	124

Spo	t Loa	ds					
Upu							
Node	Load	Ph-1	Ph-1	Ph-2	Ph-2	Ph-3	Ph-4
	Model	kW	kVAr	kW	kVAr	kW	kVAr
1	Y-PQ	40	20	0	0	0	0
2	Y-PQ	0	0	20	10	0	0
4	Y-PQ	0	0	0	0	40	20
5	Y-I	0	0	0	0	20	10
6	Y-Z	0	0	0	0	40	20
7	Y-PQ	20	10	0	0	0	0
9	Y-PQ	40	20	0	0	0	0
10	Y-I	20	10	0	0	0	0
11	Y-Z	40	20	0	0	0	0
12	Y-PQ	0	0	20	10	0	0
16	Y-PQ	0	0	0	0	40	20
17	Y-PQ	0	0	0	0	20	10
19	Y-PQ	40	20	0	0	0	0
20	Y-I	40	20	0	0	0	0
22	Y-Z	0	0	40	20	0	0
24	Y-PQ	0	0	0	0	40	20
28	Y-I	40	20	0	0	0	0
29	Y-Z	40	20	0	0	0	0
30	Y-PQ	0	0	0	0	40	20
31	Y-PQ	0	0	0	0	20	10
32	Y-PQ	0	0	0	0	20	10
33	Y-I	40	20	0	0	0	0
34	Y-Z	0	0	0	0	40	20
35	D-PQ	40	20	0	0	0	0
37	Y-Z	40	20	0	0	0	0
38	Y-I	0	0	20	10	0	0
39	Y-PQ	0	0	20	10	0	0
41	Y-PQ	0	0	0	0	20	10
42	Y-PQ	20	10	0	0	0	0
43	Y-Z	0	0	40	20	0	0
45	Y-I	20	10	0	0	0	0
46	Y-PQ	20	10	0	0	0	0
47	Y-I	35	25	35	25	35	25
48	Y-Z	70	50	70	50	70	50
49	Y-PQ	35	25	70	50	35	20
50	Y-PQ	0	0	0	0	40	20
51	Y-PQ	20	10	0	0	0	0
52	Y-PQ	40	20	0	0	0	0
53	Y-PQ	40	20	0	0	0	0
55	Y-Z	20	10	0	0	0	0
56	Y-PQ	0	0	20	10	0	0

58	Y-I	0	0	20	10	0	0
59	Y-PQ	0	0	20	10	0	0
60	Y-PQ	20	10	0	0	0	0
62	Y-Z	0	0	0	0	40	20
63	Y-PQ	40	20	0	0	0	0
64	Y-I	0	0	75	35	0	0
65	D-Z	35	25	35	25	70	50
66	Y-PQ	0	0	0	0	75	35
68	Y-PQ	20	10	0	0	0	0
69	Y-PQ	40	20	0	0	0	0
70	Y-PQ	20	10	0	0	0	0
71	Y-PQ	40	20	0	0	0	0
73	Y-PQ	0	0	0	0	40	20
74	Y-Z	0	0	0	0	40	20
75	Y-PQ	0	0	0	0	40	20
76	D-I	105	80	70	50	70	50
77	Y-PQ	0	0	40	20	0	0
79	Y-Z	40	20	0	0	0	0
80	Y-PQ	0	0	40	20	0	0
82	Y-PQ	40	20	0	0	0	0
83	Y-PQ	0	0	0	0	20	10
84	Y-PQ	0	0	0	0	20	10
85	Y-PQ	0	0	0	0	40	20
86	Y-PQ	0	0	20	10	0	0
87	Y-PQ	0	0	40	20	0	0
88	Y-PQ	40	20	0	0	0	0
90	Y-I	0	0	40	20	0	0
92	Y-PQ	0	0	0	0	40	20
94	Y-PQ	40	20	0	0	0	0
95	Y-PQ	0	0	20	10	0	0
96	Y-PQ	0	0	20	10	0	0
98	Y-PQ	40	20	0	0	0	0
99	Y-PQ	0	0	40	20	0	0
100	Y-Z	0	0	0	0	40	20
102	Y-PQ	0	0	0	0	20	10
103	Y-PQ	0	0	0	0	40	20
104	Y-PQ	0	0	0	0	40	20
106	Y-PQ	0	0	40	20	0	0
107	Y-PQ	0	0	40	20	0	0
109	Y-PQ	40	20	0	0	0	0
111	Y-PQ	20	10	0	0	0	0
112	Y-I	20	10	0	0	0	0
113	Y-Z	40	20	0	0	0	0
114	Y-PQ	20	10	0	0	0	0
Total		1420	775	915	515	1155	635

IEEE 123 Node Test Feeder Impedances

Configuration 1:

```
Z (R + jX) in ohms per mile
       1.0780
                 0.1560 0.5017
0.4576
                                  0.1535
                                          0.3849
                 0.4666 1.0482
                                  0.1580
                                         0.4236
                                  0.4615 1.0651
        B in micro Siemens per mile
                   -1.8319
           5.6765
                             -0.6982
                     5.9809
                              -1.1645
                               5.3971
```

Configuration 2:

```
Z (R + jX) in ohms per mile
0.4666
        1.0482
                 0.1580 0.4236
                                  0.1560
                                          0.5017
                 0.4615 1.0651
                                  0.1535 0.3849
                                  0.4576 1.0780
         B in micro Siemens per mile
           5.9809
                    -1.1645
                              -1.8319
                     5.3971
                              -0.6982
                               5.6765
```

Configuration 3:

```
Z(R + jX) in ohms per mile
0.4615
       1.0651
                 0.1535 0.3849
                                  0.1580
                                          0.4236
                 0.4576 1.0780
                                  0.1560 0.5017
                                  0.4666 1.0482
         B in micro Siemens per mile
           5.3971
                    -0.6982
                              -1.1645
                     5.6765
                              -1.8319
                               5.9809
```

Configuration 4:

```
Z (R +jX) in ohms per mile
0.4615 1.0651 0.1580 0.4236 0.1535 0.3849
0.4666 1.0482 0.1560 0.5017
0.4576 1.0780
B in micro Siemens per mile
5.3971 -1.1645 -0.6982
5.9809 -1.8319
5.6765
```


Configuration 5:

```
Z (R +jX) in ohms per mile
0.4666 1.0482 0.1560 0.5017 0.1580 0.4236
0.4576 1.0780 0.1535 0.3849
0.4615 1.0651
B in micro Siemens per mile
5.9809 -1.8319 -1.1645
5.6765 -0.6982
5.3971
```

Configuration 6:

```
Z (R +jX) in ohms per mile
0.4576
       1.0780
                 0.1535 0.3849
                                  0.1560
                                          0.5017
                 0.4615 1.0651
                                  0.1580
                                         0.4236
                                  0.4666 1.0482
         B in micro Siemens per mile
           5.6765
                    -0.6982
                              -1.8319
                     5.3971
                              -1.1645
                               5.9809
```

Configuration 7:

```
Z (R + jX) in ohms per mile
                 0.0000 0.0000
0.4576
                                  0.1535 0.3849
       1.0780
                 0.0000
                         0.0000
                                          0.0000
                                  0.0000
                                  0.4615
                                          1.0651
         B in micro Siemens per mile
           5.1154
                     0.0000
                              -1.0549
                     0.0000
                               0.0000
                               5.1704
```

Configuration 8:

```
Z(R + jX) in ohms per mile
         0.1535 0.3849
                           0.0000
                                  0.0000
1.0780
         0.4615 1.0651
                           0.0000
                                  0.0000
                           0.0000 0.0000
 B in micro Siemens per mile
   5.1154
            -1.0549
                       0.0000
             5.1704
                       0.0000
                       0.0000
```


Configuration 9:

```
Z(R + jX) in ohms per mile
1.3292
        1.3475
                 0.0000 0.0000
                                   0.0000
                                           0.0000
                 0.0000
                         0.0000
                                           0.0000
                                   0.0000
                                   0.0000
                                           0.0000
         B in micro Siemens per mile
           4.5193
                     0.0000
                                0.0000
                     0.0000
                               0.0000
                                0.0000
```

Configuration 10:

```
Z (R +jX) in ohms per mile
                 0.0000 0.0000
0.0000
        0.0000
                                   0.0000
                                           0.0000
                 1.3292 1.3475
                                   0.0000
                                           0.0000
                                   0.0000
                                           0.0000
         B in micro Siemens per mile
           0.0000
                     0.0000
                                0.0000
                     4.5193
                                0.0000
                                0.0000
```

Configuration 11:

```
Z (R +jX) in ohms per mile
0.0000
                 0.0000 0.0000
                                   0.0000
                                           0.0000
        0.0000
                 0.0000
                         0.0000
                                   0.0000
                                           0.0000
                                   1.3292 1.3475
         B in micro Siemens per mile
           0.0000
                     0.0000
                                0.0000
                     0.0000
                               0.0000
                                4.5193
```

Configuration 12:

Power-Flow Results

R A D I A L F L O W S U M M A R Y - DATE: 6-24-2004 AT 16:54:14 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 ______ PHASE SYSTEM PHASE PHASE INPUT -----(A)-----|----(B)------|----(C)------|------
 kW :
 1463.861 |
 963.484 |
 1193.153 |
 3620.498

 kVAr :
 582.101 |
 343.687 |
 398.976 |
 1324.765

 kVA :
 1575.351 |
 1022.947 |
 1258.092 |
 3855.257

 PF :
 .9292 |
 .9419 |
 .9484 |
 .9391
 LOAD --(A-N)----(A-B)-|--(B-N)----(B-C)-|--(C-N)----(C-A)-|---WYE-----DELTA-kW : 1242.8 182.3 822.8 108.1 1026.3 142.6 3091.9 433.0 TOT: 1425.022 | 930.965 | 1168.900 | 3524.887 kVAr: 651.0 126.7 447.3 77.2 535.9 101.8 1634.3 305.8 524.544 | 637.773 | 1940.083 TOT: 777.767 kVA : 1403.0 222.0 936.6 132.9 1157.8 175.2 3497.3 530.1 TOT: 1623.455 | 1068.570 | 1331.571 | 4023.524 PF : .8858 .8210 .8786 .8137 .8864 .8137 .8841 .8168 TOT : .8778 .8778 .8761 LOSSES -----(A)------|-----(B)------|-----(C)------|-----50.540 | 10.134 | 34.937 | 95.611 102.653 | 38.837 | 52.237 | 193.727 kW : kVAr : 114.420 | 40.137 62.844 216.036 CAPAC --(A-N)----(A-B)-|--(B-N)----(B-C)-|--(C-N)----(C-A)-|---WYE-----DELTA--R-kVA: 250.0 .0| 250.0 .0| 250.00 | 750.00 .0| 750.000 A-kVA: 271.3 .0 268.0 .0 269.7 .0 809.0 TOT: 271.290 268.023 269.733 809.046 . 0

--- V O L T A G E P R O F I L E ---- DATE: 6-24-2004 AT 16:54:32 HOURS ---- SUBSTATION: IEEE 123; FEEDER: IEEE 123

NODE | MAG ANGLE | MAG ANGLE | MAG ANGLE | mi.to SR C-N _ B-N _ A-N _ .00 150 1.0000 at 1.0000 at -120.00 1.0000 at 120.00 .000 .00 RG1 1.0437 at 1.0438 at -120.00 1.0438 at 120.00 .000 149 1.0436 at - .02 1.0437 at -120.02 1.0436 at 119.98 .000 1 1.0311 at -.66 1.0412 at -120.33 1.0348 at 119.60 .076 2 1.0410 at -120.33 .109 3 1.0331 at 119.57 | .123 4 1.0326 at 119.56 I .161 5 1.0318 at 119.55 | .185 6 1.0311 at 119.53 .232 7 1.0218 at -1.13 1.0395 at -120.57 1.0291 at 119.35 | .133 8 1.0158 at -1.44 1.0382 at -120.74 1.0253 at 119.18 | .171 1.0379 at -120.74 12 .213 -1.87 1.0196 at 118.90 13 1.0079 at 1.0360 at -120.97 . 227 1.0078 at -1.88 1.0196 at 118.89 152 1.0360 at -120.98 .227 -2.26 1.0348 at -121.22 1.0164 at 118.64 1.0018 at 52 .303 118.51 .9991 at -2.43 1.0340 at -121.34 1.0148 at 53 .341 -2.53 54 .9976 at 1.0334 at -121.41 1.0138 at 118.43 .365 118.43 l -2.54 1.0334 at -121.42 1.0139 at 55 .9974 at .417 .9974 at -2.53 1.0332 at -121.43 56 1.0140 at 118.43 .469 57 .9945 at -2.83 1.0306 at -121.61 - 1 1.0113 at 118.21 .431 1.0300 at -121.63 58 .478 1.0296 at -121.63 59 .526 1.0256 at -122.00 60 .9880 at -3.51 1.0052 at 117.76 .573 .9880 at -3.52 1.0256 at -122.01 1.0052 at 117.75 160 .573 1.0374 at -3.52 RG4 1.0320 at -122.01 1.0366 at 117.75 .573 1.0355 at -3.77 1.0311 at -122.19 1.0345 at 67 117.61 .640 1.0340 at -3.79 68 .677 69 1.0322 at -3.83 .730 -3.85 70 1.0310 at .791 71 1.0303 at -3.86 .843 72 1.0359 at -3.86 1.0302 at -122.29 1.0343 at 117.50 .692 1.0321 at 73 117.46 .744 74 1.0303 at 117.42 .810 117.40 | 75 1.0293 at .886 1.0297 at -122.38 117.45 | 76 1.0358 at -3.92 1.0349 at .730 1.0370 at 1.0308 at -122.46 77 -3.99 1.0358 at 117.37 .805 78 1.0373 at -4.01 1.0312 at -122.48 1.0360 at 117.35 .824 79 1.0370 at -4.02 1.0313 at -122.48 1.0359 at 117.36 .867 -4.07 1.0329 at -122.54 80 1.0394 at 1.0368 at 117.24 .914 81 1.0415 at -4.14 1.0352 at -122.57 1.0374 at 117.14 1.004 82 1.0424 at -4.18 1.0364 at -122.60 1.0382 at 117.11 1.052 83 1.0436 at -4.20 1.0375 at -122.63 1.0390 at 117.07 1.099 84 1.0348 at 117.09 1.132 117.07 85 1.0336 at 1,222 1.0279 at -122.55 1.0349 at -3.95 1.0364 at 117.42 .862 86 1.0342 at -3.97 1.0272 at -122.63 1.0369 at 117.39 .947 87 1.0342 at -4.00 88 .980 89 1.0338 at -3.96 1.0270 at -122.68 1.0373 at 117.38 .999 1.0269 at -122.72 90 1.042

--- V O L T A G E P R O F I L E ---- DATE: 6-24-2004 AT 16:54:32 HOURS ---- SUBSTATION: IEEE 123; FEEDER: IEEE 123

SUBSTA	IION: IEEE 1	123; FEI	EDER: IEEE 123		
NODE	MAG	ANGLE	MAG ANGLE	MAG	ANGLE mi.to SR
91	1.0336 at	-3.96	1.0266 at -122.69	1.0376 at 1	.17.36 1.042
92	İ		j i	1.0375 at 1	17.31 1.099
93	1.0333 at	-3.97	1.0265 at -122.71	1.0377 at 1	17.37 1.085
94	•		i i		1.137
95	1.0332 at		1.0261 at -122.73	1.0378 at 1	.17.37 1.141
96			1.0258 at -122.73		j 1.179
97	1.0345 at	-3.82		1.0338 at 1	.17.60 .687
197	1.0345 at				.17.59 .687
101	1.0337 at		1.0303 at -122.22		.17.59 .734
102			i i		.17.56 .777
103	· 		i i		.17.53 .838
104			i i		.17.49 .971
105	1.0323 at	-3.90	1.0301 at -122.27		17.61 .786
106			1.0290 at -122.29		.829
107			1.0275 at -122.32		.938
108	1.0309 at	-3.97	1.0308 at -122.28	1.0334 at 1	.17.65 .848
109	1.0267 at	-4.05			.933
110	1.0248 at	-4.09	i		.990
111	1.0240 at	-4.10	i i		1.099
112	1.0241 at	-4.10	i		1.014
113	1.0220 at	-4.14	i		1.113
114	1.0216 at	-4.15	i		1.175
300	1.0309 at	-3.97	 1.0308 at -122.28	1.0334 at 1	17.65 1.037
98	1.0343 at	-3.83	1.0303 at -122.22		.17.59 .739
99	1.0346 at	-3.82	1.0295 at -122.23		.17.55 .843
100	1.0348 at	-3.82	1.0294 at -122.21		.17.53 .900
450	1.0348 at	-3.82	1.0294 at -122.21		17.53 1.052
61	.9880 at	-3.51	1.0256 at -122.00		.17.76 .677
XF1	.9880 at	-3.51	1.0256 at -122.00		.17.76 .677
610	.9880 at	-3.51	1.0256 at -122.00		.17.76 .677
62	.9872 at	-3.50	1.0245 at -121.98		17.75 .620
63	.9866 at	-3.49	1.0236 at -121.97		.17.74 .654
64	.9863 at	-3.47			.17.70 .720
65	.9856 at	-3.48			17.70 .800
66	.9858 at	-3.51			17.70 .862
18	.9988 at	-2.29	1.0319 at -121.22		.18.83 .384
135	.9988 at	-2.29	1.0318 at -121.23		18.83 .384
35	.9960 at	-2.38	1.0293 at -121.31		18.77 .455
36	.9951 at	-2.40	1.0288 at -121.36		.578
37	.9943 at	-2.41			.635
38			1.0282 at -121.37		.625
39			1.0278 at -121.38		.687
40	.9945 at	-2.42	1.0282 at -121.36	1.0101 at 1	.18.72 .502
41		· -			.18.71 .564
42	.9929 at	-2.45	1.0270 at -121.41		.18.68 .549
43			1.0257 at -121.43	-	.644
44	.9918 at	-2.48	1.0263 at -121.44	1.0084 at 1	18.65 .587
		-	' '		,

--- V O L T A G E P R O F I L E ---- DATE: 6-24-2004 AT 16:54:32 HOURS ---- SUBSTATION: IEEE 123; FEEDER: IEEE 123

NODE	MAG	ANGLE	MAG	ANGLE	MAG	ANGLE	mi.to SR
45	.9913 at	-2.49			 		.625
	.9909 at		1				.682
	.9908 at				1.0074 at		
	.9905 at	-2.51	1.0250 a	t -121.47	1.0072 at	118.60	.663
	.9905 at	-2.51	1.0247 a	t -121.48	1.0071 at	118.58	.682
	.9905 at	-2.52	1.0247 a	t -121.47	1.0067 at	118.57	.729
	.9903 at	-2.53	1.0248 a	t -121.47	1.0067 at		.777
	.9903 at		1.0248 a	t -121.47	1.0067 at	118.58	.871
	.9975 at		ļ				.431
	.9967 at		ļ				.493
21	.9983 at	-2.34	•		1.0111 at	118.81	•
22			1.0305 a				.540
23	.9979 at	-2.39	1.0323 a	t -121.20	•		
24					1.0085 at		.592
25	.9972 at				1.0091 at		.540
28	9968 at				1.0087 at		
29	9967 at				1.0083 at		
30	.9969 at		•		1.0078 at		.701
250	9969 at		1.0331 a	t -121.18	•		
RG3 26	.9972 at .9970 at		1		1.0028 at 1.0023 at		•
26 27	.9966 at		 		1.0023 at		•
33	.9953 at] 		1.0022 at	110.79	753
33 31	.9955 at	-2.52] 		 1.0017 at	118.77	
32] [I I		1.0017 at		
34] [I I		1.0013 at		•
15] [] 		1.0187 at		•
16	! !		 		1.0183 at		•
10 17	! !		 		1.0173 at		
9	ı 1.0144 at	-1 47	I I		Ι 1.01/0 αι	110.00	.213
RG2	1.0080 at		! 				.213
	1.0063 at		! 				.294
10	1.0060 at		! 		1		.341
11	1.0057 at	-1.51	i				.341

SUBSTA		OLTAGE R EEE 123;					-24-2004 A	AT 16:54:	35 H	IOURS
[NODE]	[VRFG]	[SF	G1	- [NOI)F]	MOD	FI		OPT	BNDW
150	[VKLO]	1/0	0]	1/0	Dha	ς Δ Λ 2 D	hase Gange			
130	NOI	143		143	i iia	3C A, 3 I	nase dange	a wyc	11/1	2.00
	PHASE	LDCTR	VOLT H	IOLD	R-VOLT	X-V0LT	PT RATIO	CT RATE		TAP
	1		120.0	000	3.000	7.500	20.00	700.00		7
[NODE]	[VREG]	[SE	G]	- [NOE	 DE]	MOD	EL		OPT	BNDW
							& C, Wye		RX	2.00
	PHASE	LDCTR					PT RATIO	CT RATE		TAP
	1						20.00			
	2						20.00			1
	3		124.0	000	. 200	1.400	20.00	300.00		5
[NODE]	[VREG]	[SE	G1	- [NOE	DE1	MOD	EL		OPT	BNDW
25	RG3	26	-	26	Pha	se A & C,	Wye		RX	1.00
	PHASE	LDCTR	VOLT F	IOLD	R-VOLT	X-V0LT	PT RATIO	CT RATE		TAP
	1		120.0	000	. 400	. 400	20.00 20.00	50.00		0
	3		120.0	000	. 400	. 400	20.00	50.00		-1
[NODE]	[VREG]	[SE	G]	- [NOE	 DE]	MOD	EL		OPT	BNDW
9	RG2	14	-	14	Pha	se A, Wye			RX	2.00
	DUACE	LDCTD			D VOLT		DT DATTO			 TAD
		LUCIK					PT RATIO 20.00			
	_		120.0	, 5 0	. 400	. 400	20.00	55.00		_

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L<
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE -----B-----*-----*-----* NODE: 150 VOLTS: 1.000 .00 1.000 -120.00 1.000 120.00 MAG/ANG NO LOAD OR CAPACITOR REPRESENTED AT SOURCE NODE kVll 4.160 TO NODE RG1 <VRG>...: 655.91 -21.69 425.91 -139.63 523.82 101.51 AMP/DG < < RG1 > LOSS = .000: (.000) (.000) (.000) kW-----A-----* -----B----*----C-----* NODE: RG1 VOLTS: 1.044 .00 1.044 -120.00 1.044 120.00 MAG/ANG -LD: .00 .00 .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 150 <VRG>: 628.42 -21.69 408.06 -139.63 501.86 101.51 AMP/DG < (.000) kW 501.86 101.51 AMP/DG < <RG1 > LOSS= .000: (.000) (.000) 408.06 -139.63 TO NODE 149: 628.42 -21.69 (.000) (.000) kW (.000) <149 > LOSS= .000: ------*-----* -----B-----*-----C------*-----1.044 -.02 .00 .00 NODE: 149 VOLTS: 1.044 -120.02 1.044 119.98 MAG/ANG .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: . 00 . 00 .00 kVR FROM NODE RG1: 628.42 -21.69 408.06 -139.63 501.86 101.51 AMP/DG < <149 > LOSS= .000: (.000) (.000) (.000) kW TO NODE 1: 628.42 -21.69 408.06 -139.63 501.86 101.51 AMP/DG < (11.176) (.429) (7.554) kW <1 > LOSS= 19.159: ----*-1.031 -.66 NODE: 1 VOLTS: 20.00 .00 .00 .00 kW/kVR 40.00 Y-LD: kVll 4.160 Y CAP: . 00 . 00 .00 kVR FROM NODE 149: 628.42 -21.69 408.06 -139.63 501.86 101.51 AMP/DG < (.429) (7.554)<1 > LOSS= 19.159: (11.176) 8.94 -146.89 TO NODE 2: AMP/DG (.004) <2 > LOSS= .004: kW TO NODE 3: 46.54 92.99 AMP/DG <3 > LOSS= .136: (.136) TO NODE 7: 610.45 -21.52 399.19 -139.47 455.89 102.38 AMP/DG < <7 > LOSS= 13.090: (8.408) (.167) (4.515) kW 1.041 -120.33 NODE: 2 VOLTS: MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: . 00 kVR 8.94 -146.89 FROM NODE 1 : AMP/DG <2 > LOSS= .004: (.004)kW

- RADIAL SUBSTATION: IE	EE 123;		IEEE :	123		04 AT 16	ô:54:45	HOURS
NODE VA					В В В) *	PHAS	SE C NE C)	UNT 0/L< 60.%
NODE: 3 kVLL 4.160	VOLTS: -LD:	/				1.033	119.57 .00 .00	MAG/ANG kW/kVR
FROM NODE 1 <3 > LOSS= TO NODE 4 <4 > LOSS= TO NODE 5 <5 > LOSS=	.136: : .016: :	^	*	B	**	(18.03 (28.51	92.98 .136) 93.00 .016) 92.98	kW AMP/DG kW AMP/DG kW
NODE: 4	VOLTS: Y-LD:					1.033	119.56 20.00 .00	MAG/ANG kW/kVR
FROM NODE 3 <4 > LOSS=	: .016:	Δ	*	R	*		93.00 .016)	
NODE: 5	VOLTS: Y-LD:	^		J		1.032 20.64	119.55 10.32 .00	MAG/ANG kW/kVR
FROM NODE 3 <5 > LOSS= TO NODE 6 . <6 > LOSS=	.066:	Δ	*	R	*	(19.20	92.97 .066) 92.97 .023)	kW AMP/DG
NODE: 6	VOLTS: Y-LD:	^		J		1.031	119.53 21.27 .00	MAG/ANG kW/kVR
FROM NODE 5 <6 > LOSS=	.023:	A	*	D	*	(92.97 .023)	kW
NODE: 7 kVll 4.160	VOLTS: Y-LD:	1.022 - 20.00 1	1.13	1.039	-120.57	1.029 .00	119.35	MAG/ANG kW/kVR
FROM NODE 1 <7 > LOSS= TO NODE 8 <8 > LOSS=	13.090:	(8.408 601.39 -2	3) 21.43	(.3	167) -139.47	(4 455.89	.515) 102.38	kW AMP/DG <

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE B (LINE B) PHASE C (LINE C) NODE VALUE PHASE A (LINE A) -----B-----*-----*-----*-----* -1.44 VOLTS: 1.016 .00 .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 7: 601.39 -21.43 399.19 -139.47 455.89 102.38 AMP/DG < <8 > LOSS= 8.583: (5.420) (.184) (2.979) kW TO NODE 12: 8.97 -147.31 AMP/DG <12 > LOSS= .005: (.005) kW TO NODE 13: 555.51 -20.88 390.31 -139.29 455.89 102.38 AMP/DG < (6.704) 46.22 -28.05 <13 > LOSS= 11.745: (.700) (4.341)TO NODE 9: AMP/DG <9 > LOSS= .122: (.122) kW NODE: 12 MAG/ANG VOLTS: 1.038 -120.74 Y-LD: 20.00 10.00 kW/kVR kV11 4.160 Y CAP: .00 kVR FROM NODE 8 8.97 -147.31 AMP/DG : (.005) <12 > LOSS= .005: -----A-----*-----B------*------*-----VOLTS: 1.008 1.036 -120.97 1.020 118.90 MAG/ANG NODE: 13 -1.87 .00 .00 .00 -LD: .00 . 00 .00 kW/kVR kV11 4.160 CAP: .00 .00 .00 kVR FROM NODE 8: 555.51 -20.88 390.31 -139.29 455.89 102.38 AMP/DG < (.700) <13 > LOSS= 11.745: (4.341) kW (6.704) TO NODE 152: 332.01 -14.31 244.34 -129.30 265.02 112.07 AMP/DG <152 > LOSS= .000: (.000) (.000) (.000) kW 228.85 -30.43 TO NODE 18: 153.35 88.61 AMP/DG 155.56 -155.10 (2.436) (.341) <18 > LOSS= 4.907: (2.131) kW TO NODE 34: 46.42 92.30 AMP/DG (.081) kW <34 > LOSS= .081: -----A-----*----B------*-----C------*----VOLTS: 1.008 -1.88 1.036 -120.98 1.020 118.89 MAG/ANG NODE: 152 .00 .00 kW/kVR .00 -LD: .00 .00 .00 kV11 4.160 CAP: .00 . 00 .00 kVR FROM NODE 13: 332.01 -14.31 244.34 -129.30 265.02 112.07 AMP/DG <152 > LOSS= .000: (.000) (.000) (.000) kW TO NODE 52: 332.01 -14.31 244.34 -129.30 265.02 112.07 AMP/DG < <52 > LOSS= 5.621: (3.538) (.363) (1.719) kW

- RADIAL SUBSTATION: IE	EE 123;					04 AT 16	:54:45 H	HOURS
NODE VA			\ \ \) *	PHAS (LIN	SE B NE B) 3*	PHAS	E C)	UNT 0/L< 60.%
NODE: 52 kVll 4.160	VOLTS:	1.002 -	2.26	1.035	-121.22	1.016	118.64	MAG/ANG
FROM NODE 152 <52 > LOSS= TO NODE 53 . <53 > LOSS=	5.621:	(3.538 314.05 -1	3) L3.46	(244.34	.363) -129.30	(1.° 265.02	719) 112.07	kW AMP/DG
NODE: 53 kVll 4.160	VOLTS:	999 -	2 43	1 034	-121 34	1 015	118 51	MAG/ANG
FROM NODE 52 <53 > LOSS= TO NODE 54 . <54 > LOSS=	2.663:	(1.555 296.14 -1	5) L2.50	(244.34	.271) -129.30	(.: 265.02	837) 112.07	kW AMP/DG
NODE: 54 kVll 4.160	VOLTS:	. 998 -	2.53	1.033	-121.41	1.014	118.43	MAG/ANG
FROM NODE 53 <54 > LOSS= TO NODE 55 . <55 > LOSS= TO NODE 57 . <57 > LOSS=	1.580: : .003: : 4.240:	(.846 9.28 -2 (.003 287.25 -1 (1.543	6) 29.09 3) 1.97	9.01 (235.82 (1,	.226) -147.98 .000) -128.60	(.00 (265.02 (1	.00 .00 000) 112.07 369)	kW AMP/DG kW AMP/DG kW
NODE: 55 kVll 4.160	VOLTS:	.997 -	2.54	1.033	-121.42	1.014	118.43	MAG/ANG
FROM NODE 54 <55 > LOSS= TO NODE 56 . <56 > LOSS=	.003:	(.003 .00	3) .00	(9.01	.000) -147.99	(.00	000) .00	kW AMP/DG
NODE: 56	VOLTS: Y-LD:	.997 .00	2.53	1.033 20.00	-121.43	1.014 .00	118.43	MAG/ANG kW/kVR
FROM NODE 55 <56 > LOSS=					-147.99 .002)		.00 000)	

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 VOLTS: .994 -2.83 1.031 -121.61 1.011 118.21 MAG/ANG .00 .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: .00 .00 .00 kVR: 287.25 -11.97 235.82 -128.60 265.02 112.07 AMP/DG FROM NODE 54 <57 > LOSS= 4.240: (1.543) (1.328) (1.369) TO NODE 58: 18.35 -148.19 AMP/DG <58 > LOSS= .021: (.021) TO NODE 60: 287.25 -11.97 218.62 -126.99 265.02 112.07 AMP/DG <60 > LOSS= 8.780: (3.190) (2.296) (3.294) kW VOLTS: NODE: 58 1.030 -121.63 MAG/ANG Y-LD: 20.60 10.30 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 57 18.35 -148.19 AMP/DG <58 > LOSS= .021: (.021) kW TO NODE 59: 9.04 -148.19 AMP/DG <59 > LOSS= .005: (.005) -----B-----*-----*-----* NODE: 59 VOLTS: 1.030 -121.63 20.00 10.00 Y-LD: kW/kVR kVll 4.160 Y CAP: .00 kVR FROM NODE 58 9.04 -148.20 AMP/DG : <59 > LOSS= .005: (.005) kW VOLTS: .988 -3.51 1.026 -122.00 1.005 117.76 MAG/ANG Y-LD: 20.00 10.00 .00 .00 .00 .00 kW/kVR kVll 4.160 Y CAP: . 00 . 00 .00 kVR FROM NODE 57: 287.25 -11.97 218.62 -126.99 265.02 112.07 AMP/DG <60 > LOSS= 8.780: (3.190) (2.296) (3.294) kW 191.06 120.31 AMP/DG TO NODE 160: 240.09 -5.95 172.00 -120.02 (.000) (.000) .00 .00 .00 .00 (.000) (.001) 45.37 -41.35 52.24 -150.54 <160 > LOSS= .000: (.000) kW .00 .00 AMP/DG (.000) kW 80.73 92.22 AMP/DG TO NODE 61: <61 > LOSS= .000: TO NODE 62: <62 > LOSS= .565: (.072) (.151) (.341) kW .988 -3.52 1.026 -122.01 VOLTS: 1.005 117.75 MAG/ANG .00 .00 .00 .00 -LD: .00 .00 kW/kVR kVll 4.160 CAP: . 00 .00 .00 kVR: 240.09 -5.95 172.00 -120.02 191.06 120.31 AMP/DG FROM NODE 60 <160 > LOSS= .000: (.000) (.000) (.000) kW TO NODE RG4 .<VRG>.: 240.09 -5.95 172.00 -120.02 191.06 120.31 AMP/DG < <RG4 > LOSS= .000: (.000) (.000) (.000) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L<
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE NODE: RG4 VOLTS: 1.037 -3.52 1.032 -122.01 1.037 117.75 MAG/ANG -LD: .00 .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 160 <VRG>: 228.66 -5.95 170.93 -120.02 185.27 120.31 AMP/DG <RG4 > LOSS= .000: (.000) (.000) (.000) kW TO NODE 67: 228.66 -5.95 170.93 -120.02 185.27 120.31 AMP/DG <67 > LOSS= 2.371: (.940) (.429) (1.001) kW -----B-----*-----*-----*-----* NODE: 67 VOLTS: 1.036 -3.77 .00 .00 kW/kVR -LD: .00 .00 .00 .00 kVll 4.160 CAP: . 00 . 00 .00 kVR FROM NODE RG4: 228.66 -5.95 170.93 -120.02 185.27 120.31 AMP/DG <67 > LOSS= 2.371: (.940) (.429) (1.001)TO NODE 68: 54.15 -30.40 AMP/DG <68 > LOSS= .148: (.148) kW TO NODE 72: 126.10 -108.04 132.91 134.06 AMP/DG 118.75 22.68 <72 > LOSS= .769: (.117) (.396) (.256) kW TO NODE 97: 82.68 -30.60 54.30 -148.83 64.43 90.97 AMP/DG (.094) <97 > LOSS= .206: (.035) (.077) -----B-----*-----C------ - - - - - A - - - - - - * NODE: 68 VOLTS: 1.034 -3.79 MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 67: 54.15 -30.40 AMP/DG <68 > LOSS= .148: (.148) kW TO NODE 69: 45.14 -30.41 AMP/DG (.141) <69 > LOSS= .141: ------*-----*-----* ----*-NODE: 69 VOLTS: 1.032 -3.83 MAG/ANG 40.00 20.00 Y-LD: kW/kVR kVll 4.160 Y CAP: kVR FROM NODE 68 45.14 -30.41 : AMP/DG <69 > LOSS= .141: (.141) 27.10 -30.42 kW TO NODE 70: AMP/DG <70 > LOSS= .060: (.060) kW VOLTS: 1.031 -3.85 MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: .00 kVR 27.10 -30.42 FROM NODE 69 : AMP/DG <70 > LOSS= .060: (.060) kW TO NODE 71: 18.07 -30.43 AMP/DG <71 > LOSS= .023: (.023) kW

- RADIAL SUBSTATION: IE	EE 123;	FEEDER:	IEEE	123				HOURS
NODE VA	LUE	PHASE	Α	PHAS	ЕВ	PHAS	E C	UNT 0/L< 60.%
NODE: 71 kVll 4.160	VOLTS:	1.030	-3.86	D			,	MAG/ANG kW/kVR kVR
FROM NODE 70 <71 > LOSS=	:	18.07 (.0	-30.43 23)	D	*			AMP/DG kW
NODE: 72	VOLTS: -LD:	1.036 .00	-3.86 .00	1.030 .00	-122.29	1.034 .00	117.50 .00	MAG/ANG kW/kVR
FROM NODE 67 <72 > LOSS= TO NODE 73 . <73 > LOSS= TO NODE 76 .	.769: : .212:	(.1 118.75	17) 22.68	126.10	396)	(. 55.31 (. 100.03	256) 90.86 212) 156.30	kW AMP/DG kW AMP/DG
<76 > LOSS= NODE: 73 kVLL 4.160	VOLTS: Y-LD:	(.1	68) *	(. B	284) *	1.032		MAG/ANG kW/kVR
FROM NODE 72 <73 > LOSS= TO NODE 74 . <74 > LOSS=	.212:		*		*	(. 37.27	90.86 212) 90.85 122)	kW AMP/DG
NODE: 74	VOLTS: Y-LD:					1.030		MAG/ANG kW/kVR
FROM NODE 73 <74 > LOSS= TO NODE 75 . <75 > LOSS=	.122: : .033:	٨		D	*	(. 18.09 (.	90.85 122) 90.84 033)	kW AMP/DG kW
	VOLTS: Y-LD: Y CAP:	A-	^	В	[^]	1.029	117.40 20.00	MAG/ANG
FROM NODE 74 <75 > LOSS=	:						90.84 033)	AMP/DG kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) UNT 0/L< NODE VALUE (LINE A) -----B-----*-----*-----*-----* VOLTS: 1.036 -3.92 NODE: 76 72.97 52.12 kW/kVR 72.32 51.66 D-LD: 107.59 81.97 kV11 4.160 Y CAP: .00 . 00 .00 kVR FROM NODE 72: 118.75 22.68 126.10 -108.04 100.03 156.30 AMP/DG <76 > LOSS= .473: (.168) (.284) (.020) kW TO NODE 77: 77.82 60.48 77.40 -57.30 77.45 -177.48 AMP/DG <77 > LOSS= .418: (.101) (.151) (.166) kW 32.69 5.55 57.67 -129.86 21.03 157.54 AMP/DG TO NODE 86: (.191) (-.036) kW (.075) <86 > LOSS= .229: ----* ----*--NODE: 77 VOLTS: 1.037 -3.99 1.031 -122.46 1.036 117.37 MAG/ANG .00 . 00 40.00 20.00 .00 .00 kW/kVR Y-LD: Y CAP: .00 .00 kVR kVll 4.160 .00 FROM NODE 76 77.82 60.48 77.40 -57.30 77.45 -177.48 AMP/DG : <77 > LOSS= .418: (.151) (.101) (.166) kW 77.82 60.48 TO NODE 78: 80.01 -44.26 77.45 -177.48 AMP/DG <78 > LOSS= .108: (.034) (.043) kW (.031) -----*----- - - - - - A - - - - - - [,] ----*-NODE: 78 VOLTS: 1.037 -4.01 1.031 -122.48 1.036 117.35 MAG/ANG .00 .00 .00 .00 -LD: .00 .00 kW/kVR kV11 4.160 CAP: . 00 .00 .00 kVR FROM NODE 77 80.01 -44.26 77.45 -177.48 AMP/DG 77.82 60.48 : <78 > LOSS= .108: (.034) (.031) (.043) kW TO NODE 79: .00 .00 .00 .00 AMP/DG 19.31 -30.58 (.000) kW (.000) <79 > LOSS= .007: (.008) 80.52 74.35 80.01 -44.26 77.45 -177.48 AMP/DG TO NODE 80: (.126) (.139) (.259) kW <80 > LOSS= .524: ----* -----*--------* 1.031 -122.48 NODE: 79 1.037 -4.02 1.036 117.36 MAG/ANG VOLTS: .00 .00 Y-LD: 43.01 21.51 .00 .00 kW/kVR Y CAP: kV11 4.160 . 00 .00 .00 kVR .00 .00 .00 .00 AMP/DG FROM NODE 78 : 19.31 -30.59 .007: (.000) (.000) kW <79 > L0SS= (.008) *---* -----A-----*----B------*-----C------*-----NODE: 80 1.039 -4.07 1.033 -122.54 1.037 117.24 MAG/ANG VOLTS: .00 .00 kW/kVR Y-LD: .00 .00 40.00 20.00 .00 kVR kVll 4.160 Y CAP: .00 .00 80.01 -44.26 80.52 74.35 77.45 -177.48 AMP/DG FROM NODE 78 : <80 > LOSS= .524: (.126) (.139) (.259) kW TO NODE 81: 80.52 74.35 86.40 -32.63 77.45 -177.48 AMP/DG <81 > LOSS= .562: (.175) (.120) (.267) kW

SUBSTATION: IE	EE 123;	FEEDER: IEEE 1	DATE: 6-24-200 L23		
NODE VA	LUE	PHASE A	PHASE B (LINE B)	PHASE C	UNT O/L<
NODE: 81 kVll 4.160	VOLTS: -LD: CAP:	1.042 -4.14 .00 .00 .00	1.035 -122.57 .00 .00 .00	1.037 117.14 .00 .00 .00	MAG/ANG kW/kVR kVR
<pre><81 > LOSS= TO NODE 82 . <82 > LOSS= TO NODE 84 .</pre>	.562: : .304:	(.175) 80.52 74.35 (.091)	86.40 -32.63 (.120) 86.40 -32.63 (.112)	(.267) 82.90 -158.48 (.100) 27.01 90.52	kW AMP/DG kW AMP/DG
NODE: 82	VOLTS:	1 042 -4 18	1.036 -122.60 .00 .00	1 038 117 11	MAG/ANG
<82 > LOSS= TO NODE 83 .	.304:	(.091) 86.90 85.80	86.40 -32.63 (.112) 86.40 -32.63 (.102)	(.100) 82.90 -158.48	kW AMP/DG
NODE: 83	VOLTS:	1.044 -4.20	1.038 -122.63 .00 .00 215.30	1.039 117.07	MAG/ANG
FROM NODE 82 <83 > LOSS=	:	86.90 85.80 (.081)	86.40 -32.63 (.102)	82.90 -158.48 (.135)	AMP/DG kW *
NODE: 84	VOLTS: Y-LD:		B	1.035 117.09 20.00 10.00 .00	MAG/ANG kW/kVR
FROM NODE 81 <84 > LOSS= TO NODE 85 . <85 > LOSS=	.124: : .039:		*-	27.01 90.52 (.124) 18.01 90.51 (.039)	kW AMP/DG kW
	VOLTS: Y-LD:	-	-	1.034 117.07 40.00 20.00	MAG/ANG
FROM NODE 84 <85 > LOSS=	:			18.01 90.51 (.039)	

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE B PHASE C (LINE B) (LINE C) NODE VALUE PHASE A UNT 0/L< (LINE A) -----B-----*-----*-----*-----* 1.035 -3.95 NODE: 86 VOLTS: 20.00 10.00 .00 .00 kW/kVR .00 Y-LD: .00 kVll 4.160 Y CAP: .00 . 00 .00 kVR FROM NODE 76 : 32.69 5.55 57.67 -129.86 21.02 157.54 AMP/DG <86 > LOSS= .229: (.075) (.191) (-.036) kW TO NODE 87: 32.69 5.55 49.21 -126.38 21.02 157.54 AMP/DG <87 > LOSS= .116: (.066) (-.009) kW (.059) *----* ----³ NODE: 87 VOLTS: 1.034 -3.97 1.027 -122.63 1.037 117.39 MAG/ANG .00 kW/kVR Y-LD: .00 .00 40.00 20.00 .00 kVll 4.160 Y CAP: .00 . 00 .00 kVR FROM NODE 86 32.69 5.55 49.21 -126.39 21.02 157.54 AMP/DG : <87 > LOSS= .116: (.059) (.066) (-.009) kW TO NODE 88: 21.00 35.93 AMP/DG <88 > LOSS= .019: (.019) kW TO NODE 89: 18.03 -30.54 33.25 -114.18 21.02 157.54 AMP/DG (.019) (.031) (-.009) <89 > LOSS= .040: -----B----*----C---------* NODE: 88 VOLTS: 1.034 -4.00 MAG/ANG 40.00 20.00 kW/kVR Y-LD: kV11 4.160 Y CAP: 53.48 kVR FROM NODE 87 21.00 35.93 AMP/DG : <88 > LOSS= .019: (.019) -----A-----*-----B------*-----C------* NODE: 89 1.027 -122.68 1.037 117.38 MAG/ANG VOLTS: 1.034 -3.96 .00 .00 .00 .00 .00 -LD: .00 kW/kVR kVll 4.160 CAP: .00 .00 .00 kVR 21.02 157.53 AMP/DG FROM NODE 87 33.25 -114.19 : 18.03 -30.54 <89 > LOSS= .040: (.019) (.031) (-.009) TO NODE 90: 21.16 -84.64 AMP/DG <90 > LOSS= .025: (.025) kW 18.15 -149.29 18.03 -30.54 TO NODE 91: 21.02 157.53 AMP/DG <91 > LOSS= .018: NODE: 90 1.027 -122.72 VOLTS: MAG/ANG Y-LD: 41.08 20.54 kW/kVR kVll 4.160 Y CAP: 52.72 kVR 21.16 -84.64 FROM NODE 89 : AMP/DG <90 > LOSS= .025: (.025) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L<
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE PHASE A VOLTS: 1.034 -3.96 1.027 -122.69 1.038 117.36 MAG/ANG .00 .00 .00 .00 .00 kW/kVR .00 -LD: kVll 4.160 CAP: .00 .00 .00 kVR: 18.03 -30.54 FROM NODE 89 18.15 -149.29 21.02 157.53 AMP/DG (.001) kW <91 > LOSS= .018: (.009) (.008) TO NODE 92: 21.02 157.53 AMP/DG (.033) kW <92 > LOSS= .033: TO NODE 93: 18.03 -30.54 18.15 -149.29 .00 .00 AMP/DG (.000) kW (.010) (.001) <93 > LOSS= .011: NODE: 92 VOLTS: 1.037 117.31 MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVLL 4.160 Y CAP: 53.82 kVR FROM NODE 91 21.02 157.53 AMP/DG <92 > LOSS= .033: (.033) kW -----A-----*-----B------*------* 1.026 -122.71 NODE: 93 VOLTS: 1.033 -3.97 1.038 117.37 MAG/ANG .00 .00 .00 .00 .00 kW/kVR -LD: . 00 kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 91: <93 > LOSS= .011: FROM NODE 91 18.03 -30.54 18.15 -149.29 .00 .00 AMP/DG (.001) (.000) (.010) TO NODE 94: 18.03 -30.55 AMP/DG (.023) .00 .00 <94 > LOSS= .023: kW TO NODE 95: 18.15 -149.29 . 00 .00 AMP/DG (.000) (.000) <95 > LOSS= .009: (.008) -----B-----*----C---------A----1.033 -3.98 NODE: 94 VOLTS: MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVll 4.160 Y CAP: kVR : FROM NODE 93 18.03 -30.55 AMP/DG <94 > LOSS= .023: (.023) -----A-----*----*----B------*-----C------*----1.026 -122.73 VOLTS: 1.033 -3.96 1.038 117.37 MAG/ANG NODE: 95 .00 kW/kVR .00 .00 Y-LD: 20.00 10.00 .00 .00 kVll 4.160 Y CAP: .00 .00 kVR .00 .00 .00 .00 AMP/DG FROM NODE 93 : 18.15 -149.29 (.000) <95 > LOSS= .009: (.000) (.008) kW TO NODE 96: 9.08 -149.29 AMP/DG <96 > LOSS= .004: (.004) -----B-----*-----*-----*

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L<
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE 1.026 -122.73 VOLTS: MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 95 9.08 -149.30 AMP/DG : <96 > LOSS= .004: (.004) NODE: 97 VOLTS: 1.035 -3.82 1.031 -122.21 1.034 117.60 MAG/ANG .00 .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: .00 . 00 .00 kVR FROM NODE 67: 64.43 90.97 AMP/DG 82.68 -30.60 54.30 -148.83 (.035) (.077) kW 45.20 90.96 AMP/DG <97 > LOSS= .206: (.094) 36.21 -148.86 TO NODE 197: 64.68 -30.66 (.000) kW 19.23 90.98 AMP/DG <197 > LOSS= .000: (.000) (.000) TO NODE 98: 18.00 -30.38 18.08 -148.77 (.004) (.007) (.005) kW <98 > LOSS= .016: ----* ----B-----*-----C-----* NODE: 197 VOLTS: 1.034 -3.82 1.031 -122.21 1.034 117.59 MAG/ANG .00 .00 .00 .00 kW/kVR .00 .00 -LD: kVll 4.160 CAP: .00 .00 kVR FROM NODE 97: <197 > LOSS= .000: 64.68 -30.66 36.21 -148.86 45.20 90.96 AMP/DG (.000) kW 45.20 90.96 AMP/DG (.000) 36.21 -148.86 (.000) TO NODE 101: 64.68 -30.66 (.060) (.010) (.044) kW <101 > LOSS= .114: -----B----*-----C-----* ----*------* 1.034 -3.86 1.030 -122.22 NODE: 101 VOLTS: 1.033 117.59 MAG/ANG .00 .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: . 00 . 00 .00 kVR FROM NODE 197: 64.68 -30.66 36.21 -148.86 45.20 90.96 AMP/DG (.044) kW <101 > LOSS= .114: (.060) (.010) TO NODE 102: 45.20 90.96 AMP/DG <102 > LOSS= .116: (.116) kW TO NODE 105: 64.68 -30.66 36.21 -148.86 .01 .00 AMP/DG <105 > LOSS= .114: (.133) (-.019) (.000) kW -----B-----* ----*-----*----VOLTS: NODE: 102 1.032 117.56 MAG/ANG 20.00 10.00 kW/kVR Y-LD: kVLL 4.160 Y CAP: .00 kVR FROM NODE 101 45.20 90.96 AMP/DG .116: <102 > LOSS= (.116) kW TO NODE 103: 36.18 90.95 AMP/DG <103 > LOSS= .107: (.107) kW -----B-----*-----*-----*

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT 0/L
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE -----B-----*-----*-----* VOLTS: 1.030 117.53 MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVLL 4.160 Y CAP: .00 kVR FROM NODE 102 36.18 90.95 AMP/DG : <103 > LOSS= .107: (.107) kW TO NODE 104: 18.11 90.93 AMP/DG <104 > LOSS= .058: (.058) kW -----*------A-----*-----B------*-----C------*-----1.028 117.49 MAG/ANG NODE: 104 VOLTS: Y-LD: 40.00 20.00 kW/kVR kVLL 4.160 Y CAP: .00 kVR FROM NODE 103: 18.11 90.93 AMP/DG (.058) kW <104 > LOSS= .058: -----A-----*----B------*-----*-----NODE: 105 VOLTS: 1.032 -3.90 1.030 -122.27 1.034 117.61 MAG/ANG .00 .00 .00 kW/kVR -LD: .00 .00 .00 kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 101: 64.68 -30.66 36.21 -148.86 .00 .00 AMP/DG <105 > LOSS= .114: (.133) (.000) (-.019) kW TO NODE 106: 36.22 -148.87 AMP/DG (.074) <106 > LOSS= .074: kW .00 .00 AMP/DG `.00 ´.00 TO NODE 108: 64.68 -30.66 (.000) ----* (.000) <108 > LOSS= .119: (.119) NODE: 106 VOLTS: 1.029 -122.29 MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 105 36.22 -148.87 AMP/DG : <106 > LOSS= .074: (.074) kW TO NODE 107: 18.12 -148.88 AMP/DG <107 > LOSS= .048: (.048) ----B-----*-----C-----NODE: 107 VOLTS: 1.028 -122.32 MAG/ANG 40.00 Y-LD: 20.00 kW/kVR .00 kV11 4.160 Y CAP: kVR FROM NODE 106: 18.12 -148.88 AMP/DG <107 > LOSS= .048: (.048) -----B----*----C----*----*----

SUBSTATION: TE	FF 123:	FFEDER: TEFE	DATE: 6-24-200 123		HOURS
NODE VA	LUE	PHASE A	PHASE B (LINE B) B*	PHASE C	60 %
NODE: 108	VOLTS: -LD:	1.031 -3.97 .00 .00	1.031 -122.28 .00 .00 .00	1.033 117.65 .00 .00	MAG/ANG kW/kVR
TO NODE 109 . <109 > LOSS= TO NODE 300 . <300 > LOSS=	.119:	(.119) 64.68 -30.66 (.474) .00 .00	.00 .00 (.000) .00 .00 (001)	.00 .00 (.001)	kW AMP/DG kW AMP/DG kW
NODE: 109	VOLTS: Y-LD:	1.027 -4.05 40.00 20.00 .00	J	Ü	MAG/ANG kW/kVR kVR
<109 > LOSS= TO NODE 110 . <110 > LOSS=	.474: : .164:	46.54 -30.69 (.164)	*	C	AMP/DG kW AMP/DG kW
	VOLTS: -LD:	1.025 -4.09 .00 .00 .00			MAG/ANG kW/kVR kVR
<111 > LOSS= TO NODE 112 . <112 > LOSS=	.164: : .012: :	(.164) 9.09 -30.66 (.012) 37.45 -30.69 (.044)	*		AMP/DG kW AMP/DG kW AMP/DG kW
NODE: 111 kVll 4.160	VOLTS: Y-LD:				MAG/ANG kW/kVR kVR
FROM NODE 110 <111 > LOSS=	.012:	(.012)	*	C	AMP/DG kW *
	VOLTS: Y-LD:	1.024 -4.10 20.48 10.24	J	J	MAG/ANG kW/kVR kVR
FROM NODE 110 <112 > LOSS= TO NODE 113 . <113 > LOSS=	: .044: : .105:	37.45 -30.69 (.044) 28.14 -30.70 (.105)			AMP/DG kW AMP/DG kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE VOLTS: 1.022 -4.14 MAG/ANG Y-LD: 41.78 20.89 kW/kVR kVll 4.160 Y CAP: . 00 kVR: 28.14 -30.70 FROM NODE 112 AMP/DG <113 > LOSS= .105: (.105) kW TO NODE 114: 9.11 -30.71 AMP/DG <114 > LOSS= .007: (.007) -----A-----*-----B------*-----C------VOLTS: 1.022 -4.15 NODE: 114 MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: .00 kVR 9.11 -30.71 AMP/DG FROM NODE 113: <114 > LOSS= .007: (.007) ------*-----* 1.031 -3.97 .00 .00 1.033 117.65 MAG/ANG NODE: 300 VOLTS: 1.031 -122.28 .00 .00 kW/kVR -LD: .00 .00 .00 .00 kVll 4.160 CAP: .00 .00 kVR : FROM NODE 108 .00 .00 .00 .00 AMP/DG (.000) <300 > LOSS= (.001) kW .000: (-.001) -----* ----*---NODE: 98 VOLTS: 1.034 -3.83 1.030 -122.22 1.034 117.59 MAG/ANG .00 .00 .00 .00 kW/kVR 40.00 20.00 Y-LD: kVll 4.160 Y CAP: .00 .00 .00 kVR 18.00 -30.38 FROM NODE 97 18.08 -148.78 19.23 90.98 AMP/DG : <98 > LOSS= .016: (.004) (.007) (.005) kW 19.23 90.98 AMP/DG TO NODE 99: .00 .00 18.08 -148.78 (.000) (.028) <99 > LOSS= .028: (.000) kW ----B-----*--------* NODE: 99 1.035 -3.82 1.029 -122.23 1.033 117.55 MAG/ANG VOLTS: Y-LD: .00 . 00 40.00 20.00 .00 .00 kW/kVR Y CAP: .00 kV11 4.160 . 00 .00 kVR .00 .00 19.23 90.97 AMP/DG FROM NODE 98 : 18.08 -148.78 (.028) .028: (.000) kW 19.23 90.97 AMP/DG (.000) <99 > LOSS= .00 .00 TO NODE 100: .00 .00 (.000) (.010) kW <100 > LOSS= .010: (.000) -----*--------* 1.029 -122.21 1.033 117.53 MAG/ANG NODE: 100 VOLTS: 1.035 -3.82 Y-LD: . 00 .00 .00 .00 42.67 21.33 kW/kVR kVll 4.160 Y CAP: .00 .00 .00 kVR 19.23 90.97 AMP/DG .00 .00 .00 .00 FROM NODE 99 : (.000) (.000) <100 > LOSS= .010: (.010) kW .00 .00 TO NODE 450: .00 .00 .00 .00 AMP/DG <450 > LOSS= .000: (.000) (-.001) (.001) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE PHASE A VOLTS: 1.035 -3.82 1.029 -122.21 1.033 117.53 MAG/ANG .00 .00 .00 .00 .00 kW/kVR -LD: .00 kVll 4.160 CAP: .00 .00 .00 kVR .00 .00 FROM NODE 100 : .00 .00 .00 .00 AMP/DG (.000) (-.001) <450 > LOSS= .000: (.001) kW VOLTS: 1.005 117.76 MAG/ANG NODE: 61 .988 -3.51 1.026 -122.00 .00 kW/kVR .00 .00 -LD: .00 .00 .00 kVll 4.160 CAP: . 00 . 00 .00 kVR .00 .00 FROM NODE 60 : .00 .00 .00 .00 AMP/DG (.000) kW (.001) (.000) <61 > LOSS= .000: .00 .00 AMP/DG `.00 ´.00 .00 .00 TO NODE XF1: (.000) (.000) <XF1 > LOSS= .000: (.000) kW ----*--------A----* ----* .988 -3.51 .00 .00 NODE: XF1 VOLTS: 1.005 117.76 MAG/ANG 1.026 -122.00 -LD: .00 .00 .00 .00 kW/kVR .00 kVll .480 CAP: .00 .00 kVR FROM NODE 61 : .00 .00 .00 .00 AMP/DG <XF1 > LOSS= .000: (.000) (.000) (.000) kW TO NODE 610: .00 .00 AMP/DG .00 .00 .00 .00 <610 > LOSS= .000: (.000) (.000) (.000) kW ----A----* -----* ----C----*----VOLTS: .988 -3.51 1.026 -122.00 1.005 117.76 MAG/ANG NODE: 610 . 00 .00 .00 .00 -LD: .00 .00 kW/kVR kVll .480 CAP: .00 .00 .00 kVR FROM NODE XF100 .00 .00 .00 .00 .00 AMP/DG (.000) (.000) (.000) kW -----* ----* -----C-----*-----VOLTS: .987 -3.50 1.024 -121.98 1.003 117.75 MAG/ANG NODE: 62 .00 .00 .00 .00 40.25 Y-LD: 20.13 kW/kVR Y CAP: .00 kVll 4.160 . 00 .00 kVR: .565: 45.37 -41.36 80.73 92.21 AMP/DG FROM NODE 60 52.24 -150.55 (.072) 45.37 -41.36 (.151) 52.24 -150.55 (.341) kW 62.06 92.52 AMP/DG <62 > LOSS= TO NODE 63: (.125) kW (.106) (.065) <63 > LOSS= .295: -----*---------* ----*-VOLTS: .987 -3.49 1.024 -121.97 1.002 117.74 MAG/ANG NODE: 63 .00 .00 40.00 20.00 Y-LD: .00 .00 kW/kVR kVll 4.160 Y CAP: .00 .00 .00 kVR 62.06 92.52 AMP/DG: 45.37 -41.36 52.25 -150.56 FROM NODE 62 <63 > LOSS= .295: (.065) (.106)(.125) kW TO NODE 64: 27.12 -49.20 52.25 -150.56 62.06 92.52 AMP/DG

(.256) kW

<64 > LOSS= .533: (.032) (.245)

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---

SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE B PHASE C UNT O/L
(LINE B) (LINE C) 60.% NODE VALUE PHASE A (LINE A) VOLTS: .986 -3.47 .00 .00 76.63 35.76 .00 .00 kW/kVR Y-LD: kVll 4.160 Y CAP: .00 . 00 .00 kVR: 27.13 -49.22 FROM NODE 63 52.25 -150.57 62.06 92.51 AMP/DG <64 > LOSS= .533: (.032) (.245) (.256) kW TO NODE 65: 27.13 -49.22 17.99 -157.50 62.06 92.51 AMP/DG (.031) > LOSS= .452: (.024) (.398) kW - - - - - - A - - - - - * ------*--------* NODE: 65 .986 -3.48 VOLTS: .997 117.70 MAG/ANG 1.021 -121.89 D-LD: 34.68 24.77 35.79 25.57 69.60 49.72 kW/kVR kVll 4.160 Y CAP: .00 .00 .00 kVR 62.07 92.50 AMP/DG FROM NODE 64 27.14 -49.24 18.00 -157.54 : <65 > LOSS= .452: (.024) (.031) (.398) kW TO NODE 66: .01 .00 .01 .00 34.61 92.69 AMP/DG (.000) (.000) (.112) kW <66 > LOSS= .112: ----*-----*--------* ----* 1.022 -121.87 .996 117.70 MAG/ANG NODE: 66 VOLTS: .986 -3.51 .00 .00 Y-LD: .00 .00 75.00 35.00 kW/kVR kVll 4.160 Y CAP: .00 .00 .00 kVR FROM NODE 65 .00 .00 .00 .00 34.62 92.68 AMP/DG .112: .000 (.000) ^ ----* (.112) kW (.000) <66 > LOSS= ----*-----* ----*----. 999 VOLTS: -2.29 1.032 -121.22 1.012 118.83 MAG/ANG NODE: 18 .00 .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: .00 .00 .00 kVR 155.56 -155.10 FROM NODE 13: 228.85 -30.43 153.36 88.61 AMP/DG <18 > LOSS= 4.907: (2.436) (2.131) kW (.341) TO NODE 135: 135.82 -31.42 136.56 -156.13 98.12 86.58 AMP/DG <135 > LOSS= .000: (.000) (.000) (.000) kW TO NODE 19: 37.29 -28.89 AMP/DG (.087) 55.79 -29.05 <19 > LOSS= .087: kW TO NODE 21: 19.19 -147.79 55.41 92.21 AMP/DG <21 > LOSS= .125: (.011) (-.002) (.116) kW -----*-----* -----*-----* VOLTS: .999 -2.29 NODE: 135 1.032 -121.23 1.012 118.83 MAG/ANG .00 .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 18: 135.82 -31.42 136.56 -156.13 <135 > LOSS= .000: (.000) (.000) 98.12 86.58 AMP/DG (.000) kW TO NODE 35: 135.82 -31.42 136.56 -156.13 98.12 86.58 AMP/DG <35 > LOSS= 1.026: (.555) (.397) (.074) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE VOLTS: .996 -2.38 1.029 -121.31 1.011 118.77 MAG/ANG D-LD: 40.00 20.00 .00 .00 .00 kW/kVR kVll 4.160 Y CAP: . 00 . 00 .00 kVR FROM NODE 135: 135.82 -31.42 136.56 -156.13 98.12 86.58 AMP/DG <35 > LOSS= 1.026: (.555) (.397) (.074) TO NODE 36: 18.51 -28.97 18.37 -147.93 AMP/DG <36 > LOSS= .032: (.030) (.003) TO NODE 40: 108.64 -34.95 108.47 -155.43 98.12 86.58 AMP/DG <40 > LOSS= .482: (.246) (.126) (.110) -----B-----*-----*-----* NODE: 36 VOLTS: .995 -2.40 1.029 -121.36 MAG/ANG -LD: .00 .00 .00 .00 kW/kVR kVLL 4.160 . 00 CAP: . 00 kVR 18.37 -147.94 FROM NODE 35 : 18.51 -28.98 AMP/DG <36 > LOSS= .032: (.003) (.030) kW 18.51 -28.98 TO NODE 37: AMP/DG <37 > LOSS= .026: (.026) kW TO NODE 38: 18.37 -147.94 AMP/DG <38 > LOSS= .021: (.021) NODE: 37 VOLTS: .994 -2.41 MAG/ANG Y-LD: 39.55 19.77 kW/kVR Y CAP: kVll 4.160 . 00 kVR: 18.51 -28.98 FROM NODE 36 AMP/DG <37 > LOSS= .026: (.026) NODE: 38 1.028 -121.37 VOLTS: MAG/ANG Y-LD: 20.56 10.28 kW/kVR

TO NODE 39 . <39 > LOSS=	:	9.06 -147.94 (.007)	AMP/DG kW
		·A*B*C	
NODE: 39	VOLTS:	1.028 -121.38	MAG/ANG
	Y-LD:	20.00 10.00	kW/kVR
kVll 4.160	Y CAP:	.00	kVR
FROM NODE 38	:	9.06 -147.94	AMP/DG
<39 > LOSS=	.007:	(.007)	kW

18.37 -147.94

(.021)

kVR

kW

AMP/DG

kVll 4.160 Y CAP:

<38 > LOSS= .021:

. :

FROM NODE 36

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L<
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE PHASE A VOLTS: .994 -2.42 1.028 -121.36 1.010 118.72 MAG/ANG .00 .00 .00 .00 .00 kW/kVR -LD: . 00 kVll 4.160 CAP: .00 . 00 .00 kVR: 108.64 -34.95 108.47 -155.43 FROM NODE 35 98.12 86.58 AMP/DG <40 > LOSS= .482: (.246) (.126) (.110) kW TO NODE 41: 9.22 92.15 AMP/DG <41 > LOSS= .007: (.007) kW TO NODE 42: 108.64 -34.95 108.47 -155.43 88.95 86.00 AMP/DG <42 > LOSS= .459: (.265) (.110) (.083) kW NODE: 41 V0LTS: 1.010 118.71 MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVLL 4.160 Y CAP: .00 kVR FROM NODE 40 9.22 92.15 AMP/DG <41 > LOSS= .007: (.007) kW -----A-----*----B------*-----*---------*-1.027 -121.41 NODE: 42 VOLTS: .993 -2.45 1.009 118.68 MAG/ANG 20.00 10.00 .00 .00 .00 .00 kW/kVR Y-LD: kVll 4.160 Y CAP: .00 .00 .00 kVR FROM NODE 40: <42 > LOSS= .459: 108.64 -34.95 108.47 -155.43 88.95 86.00 AMP/DG (.265) (.110) 19.10 -148.00 (.083) TO NODE 43: AMP/DG (.046) <43 > LOSS= .046: kW 89.57 -157.01 TO NODE 44: 99.32 -35.51 88.95 86.00 AMP/DG (.151) <44 > LOSS= .299: (.063) (.086) ----* -----*----A----------*----NODE: 43 1.026 -121.43 VOLTS: MAG/ANG Y-LD: 42.08 21.04 kW/kVR kVll 4.160 Y CAP: kVR FROM NODE 42 19.10 -148.00 AMP/DG <43 > LOSS= .046: (.046) -----B-----*-----*-----* VOLTS: .992 -2.48 NODE: 44 1.026 -121.44 1.008 118.65 MAG/ANG .00 .00 kW/kVR .00 .00 .00 .00 -LD: .00 .00 kVR kVll 4.160 CAP: .00 99.32 -35.51 FROM NODE 42 : 89.57 -157.01 88.95 86.00 AMP/DG <44 > LOSS= .299: (.151) (.063) (.086) kW 18.71 -29.06 TO NODE 45: AMP/DG (.018) 80.76 -37.00 <45 > LOSS= .018: kW TO NODE 47: 89.57 -157.01 88.95 86.00 AMP/DG <47 > LOSS= .327: (.125) (.117) (.085) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE UNT O/L< VOLTS: .991 -2.49 MAG/ANG Y-LD: 19.83 9.91 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 44 : 18.71 -29.06 AMP/DG <45 > LOSS= .018: (.018) kW TO NODE 46: 9.40 -29.06 AMP/DG <46 > LOSS= .007: (.007) -----A-----*-----B------*-----C------.991 -2.50 NODE: 46 VOLTS: MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: .00 kVR 9.40 -29.06 AMP/DG FROM NODE 45 : (.007) <46 > LOSS= .007: ------* -----*-----* NODE: 47 1.025 -121.47 1.007 118.61 MAG/ANG VOLTS: .991 -2.50 Y-LD: 34.68 24.77 35.88 25.63 35.26 25.18 kW/kVR kVll 4.160 Y CAP: .00 . 00 .00 kVR FROM NODE 44 : 80.76 -37.00 89.57 -157.01 88.95 86.00 AMP/DG <47 > LOSS= .327: (.117) (.125) (.085) kW TO NODE 48: 35.48 -38.05 36.71 -157.01 36.07 83.06 AMP/DG (.012) 27.40 -34.98 (.007) kW 35.15 90.51 AMP/DG (.015) <48 > LOSS= .034: TO NODE 49: 34.95 -157.01 (.010) (.030) (.007) kW <49 > LOSS= .047: ----B-----*-----* ----*-----* NODE: 48 VOLTS: .990 -2.51 1.025 -121.47 1.007 118.60 MAG/ANG 68.68 49.05 73.54 52.53 71.01 50.72 kW/kVR Y-LD: kVll 4.160 Y CAP: . 00 .00 kVR . 00 FROM NODE 47 36.71 -157.01 35.48 -38.05 36.07 83.06 AMP/DG (.012) (.015) (.007) kW <48 > LOSS= .034: -----C-----*------ - - - - - A - - - - - - * -----* NODE: 49 .991 -2.51 1.025 -121.48 1.007 118.58 MAG/ANG VOLTS: 35.00 70.00 50.00 Y-LD: 25.00 35.00 20.00 kW/kVR kV11 4.160 Y CAP: .00 .00 .00 kVR FROM NODE 47 27.40 -34.98 34.95 -157.01 35.15 90.51 AMP/DG : (.030) (.007) kW <49 > LOSS= (.010) .047: .00 .00 TO NODE 50: 9.40 -29.08 18.49 92.02 AMP/DG (-.002) (.000) <50 > LOSS= .008: (.010) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE B) (LINE C) NODE VALUE (LINE A) -----B-----*-----*-----*-----* NODE: 50 1.025 -121.47 VOLTS: .990 -2.52 1.007 118.57 MAG/ANG 40.00 20.00 kW/kVR Y-LD: . 00 .00 .00 .00 kVll 4.160 Y CAP: .00 .00 .00 kVR 9.40 -29.08 FROM NODE 49 : .00 .00 18.49 92.01 AMP/DG <50 > LOSS= .008: (.000) (-.002) (.010) kW TO NODE 51: 9.40 -29.08 .00 .00 .00 .00 AMP/DG <51 > LOSS= .002: (.002) (.000) (.000) kW ----A---------* ----*---NODE: 51 VOLTS: .990 -2.53 1.025 -121.47 1.007 118.58 MAG/ANG Y-LD: 20.00 10.00 .00 .00 .00 .00 kW/kVR kVll 4.160 Y CAP: .00 .00 .00 kVR .00 .00 .00 .00 AMP/DG FROM NODE 50 : 9.40 -29.09 (.000) <51 > LOSS= .002: (.002) (.000) kW TO NODE 151: .00 .00 .00 .00 .00 .00 AMP/DG (.000) <151 > LOSS= .000: (.000) (.001) kW -----B----*----C-----* NODE: 151 VOLTS: .990 -2.53 1.025 -121.47 1.007 118.58 MAG/ANG .00 .00 kW/kVR .00 . 00 -LD: .00 .00 CAP: .00 kV11 4.160 .00 .00 kVR .00 .00 .00 .00 FROM NODE 51 .00 .00 AMP/DG : .00 .00 .00 .00 (.000) (.001) .000 (.000) .000: <151 > LOSS= ------*-----* .998 -2.31 NODE: 19 VOLTS: MAG/ANG 40.00 20.00 kW/kVR Y-LD: .00 kVll 4.160 Y CAP: kVR 37.29 -28.89 FROM NODE 18 : AMP/DG <19 > LOSS= .087: (.087) kW TO NODE 20: 18.62 -28.89 AMP/DG > LOSS= .028: (.028) .997 -2.33 VOLTS: NODE: 20 MAG/ANG Y-LD: 39.87 19.93 kW/kVR kV11 4.160 Y CAP: kVR FROM NODE 19: 18.62 -28.90 AMP/DG > LOSS= .028: (.028) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C
(LINE A) (LINE B) (LINE C) NODE VALUE -----B-----*-----*-----* VOLTS: .998 -2.34 NODE: 21 .00 .00 .00 .00 .00 kW/kVR -LD: . 00 kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 18 : 55.80 -29.06 19.19 -147.80 55.41 92.21 AMP/DG <21 > LOSS= .125: (.011) (-.002) (.116) TO NODE 22: 19.19 -147.81 AMP/DG <22 > LOSS= .049: (.049) kW TO NODE 23: .00 .00 55.41 92.21 AMP/DG 55.80 -29.06 (-.006) (.000) (.117) kW <23 > LOSS= .112: NODE: 22 VOLTS: 1.031 -121.25 MAG/ANG 42.48 21.24 Y-LD: kW/kVR kVll 4.160 Y CAP: .00 kVR FROM NODE 21 19.19 -147.81 AMP/DG FROM NODE 21: <22 > LOSS= .049: (.049) -----B-----*-----*-----* VOLTS: .998 -2.39 1.032 -121.20 1.010 118.79 MAG/ANG NODE: 23 .00 .00 .00 .00 .00 -LD: .00 kW/kVR .00 kVll 4.160 CAP: .00 .00 kVR: 55.80 -29.06 .112: (-.006) .00 .00 (.000) FROM NODE 21 55.41 92.21 AMP/DG (.117) kW (-.006) (.000) <23 > LOSS= TO NODE 24: 18.46 92.21 AMP/DG <24 > LOSS= .047: (.047) kW TO NODE 25: .00 .00 55.80 -29.06 36.95 92.21 AMP/DG (.021) (.000) <25 > LOSS= .091: (.070) kW ----*--------B-----VOLTS: NODE: 24 1.009 118.77 MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVLL 4.160 Y CAP: .00 kVR FROM NODE 23 18.46 92.20 AMP/DG <24 > LOSS= .047: NODE: 25 1.009 118.80 MAG/ANG VOLTS: .997 -2.45 1.033 -121.20 -LD: .00 .00 .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: .00 .00 kVR . 00 .00 .00 36.95 92.21 AMP/DG 55.80 -29.06 FROM NODE 23 : (.000) <25 > LOSS= .091: (.021) 37.18 -29.05 (.070) kW 18.47 92.21 AMP/DG TO NODE 28: .00 .00 <28 > LOSS= .026: (.011) (.000) (.015) kW TO NODE RG3 .<VRG>.: 18.62 -29.08 18.47 92.21 AMP/DG <RG3 > LOSS= .000: (.000) (.000) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE C (LINE C) PHASE A NODE VALUE PHASE B (LINE A) (LINE B) -----B-----*-----*-----*-----* NODE: 28 .997 -2.48 VOLTS: .00 Y-LD: 39.87 19.94 .00 .00 .00 kW/kVR kVll 4.160 Y CAP: . 00 .00 .00 kVR FROM NODE 25 : 37.18 -29.05 .00 .00 18.47 92.21 AMP/DG (.000) <28 > LOSS= .026: (.011) (.015) kW TO NODE 29: 18.56 -29.05 .00 .00 18.47 92.21 AMP/DG (-.001) -----* (.000) <29 > LOSS= .015: (.015) kW ----B---------*---NODE: 29 VOLTS: .997 -2.50 1.033 -121.19 1.008 118.79 MAG/ANG Y-LD: 39.73 19.87 .00 .00 .00 .00 kW/kVR kV11 4.160 Y CAP: .00 .00 .00 kVR .00 .00 FROM NODE 28 18.56 -29.06 18.47 92.21 AMP/DG : <29 > LOSS= .015: (-.001) (.000) (.015) kW TO NODE 30: .00 .00 .00 .00 18.47 92.21 AMP/DG (.010) kW (.000) (.000) <30 > LOSS= .010: -----*---------A-----* ----* .997 -2.50 1.008 118.77 MAG/ANG NODE: 30 1.033 -121.18 VOLTS: .00 Y-LD: . 00 .00 .00 40.00 20.00 kW/kVR Y CAP: .00 kV11 4.160 .00 .00 kVR 18.47 92.21 AMP/DG .00 .00 FROM NODE 29 .00 .00 : (.010) kW (.000) (.000) > LOSS= .010: .00 .00 .00 .00 .00 .00 AMP/DG TO NODE 250: (.000) <250 > LOSS= .000: (.000) kW (.000) ----* ----*---1.008 118.77 MAG/ANG NODE: 250 VOLTS: .997 -2.50 1.033 -121.18 .00 . 00 .00 .00 .00 kW/kVR -LD: .00 kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 30 .00 .00 .00 AMP/DG (.000) (.000) kW <250 > LOSS= .000: .997 NODE: RG3 VOLTS: -2.45 1.003 118.80 MAG/ANG .00 -LD: . 00 . 00 .00 kW/kVR kV11 4.160 CAP: .00 .00 kVR FROM NODE 25 <VRG>: 18.62 -29.08 18.59 92.21 AMP/DG <RG3 > LOSS= .000: (.000) (.000) kW TO NODE 26: 18.62 -29.08 18.59 92.21 AMP/DG <26 > LOSS= .017: (.001) (.016) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L<
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE VOLTS: .997 -2.48 1.002 118.79 MAG/ANG .00 .00 -LD: .00 .00 kW/kVR kVll 4.160 CAP: .00 .00 kVR: 18.62 -29.08 FROM NODE RG3 18.59 92.21 AMP/DG <26 > LOSS= .017: (.001) (.016) kW TO NODE 27: 18.62 -29.08 .00 .00 AMP/DG (.009) <27 > LOSS= .008: (.000) kW TO NODE 31: 18.59 92.21 AMP/DG <31 > LOSS= .020: (.020) kW -----B-----*-----*-----* VOLTS: .997 -2.49 NODE: 27 1.002 118.79 MAG/ANG -LD: .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: .00 .00 kVR .00 .00 AMP/DG FROM NODE 26: 18.62 -29.08 <27 > LOSS= .008: (.009) (.000) kW TO NODE 33: 18.62 -29.08 AMP/DG <33 > LOSS= .044: (.044) -----B-----*-----*-----* NODE: 33 VOLTS: .995 -2.52 19.91 Y-LD: 39.81 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 27 18.62 -29.08 AMP/DG : (.044) <33 > L0SS= .044: -----B-----*----*----* NODE: 31 VOLTS: 1.002 118.77 MAG/ANG 20.00 10.00 kW/kVR Y-LD: kVLL 4.160 Y CAP: .00 kVR FROM NODE 26 18.59 92.21 AMP/DG : <31 > LOSS= .020: (.020) kW TO NODE 32: 9.30 92.20 AMP/DG <32 > LOSS= .007: (.007) kW -----*---1.001 118.77 MAG/ANG NODE: 32 VOLTS: Y-LD: 20.00 10.00 kW/kVR .00 kVR kVLL 4.160 Y CAP: 9.30 92.20 AMP/DG FROM NODE 31 : <32 > LOSS= .007: (.007) kW

SUBSTATION:	IEEE 123;	R F L O W FEEDER: IEEE 1	.23	004 AT 16:54:45 H	HOURS
		PHASE A (LINE A) 		PHASE C (LINE C)	UNT 0/L< 60.%
NODE: 34 kVLL 4.160	VOLTS: Y-LD:	7	, and the second	1.019 118.88 41.51 20.75	MAG/ANG kW/kVR
FROM NODE 13 <34 > LOSS TO NODE 15	: = .081: :	*-	D	46.42 92.30 (.081) 27.45 92.30	AMP/DG kW AMP/DG
NODE: 15 kVLL 4.160	VOLTS: -I D:	A	В	1.018 118.87 .00 .00	MAG/ANG
FROM NODE 34 <15 > LOSS TO NODE 16 <16 > LOSS TO NODE 17 <17 > LOSS	= .019: : = .032: : = .007:	*-	D	27.45 92.30 (.019) 18.30 92.29 (.032) 9.15 92.30 (.007)	kW AMP/DG kW AMP/DG kW
NODE: 16 kVLL 4.160	VOLTS: Y-LD:		В	1.017 118.85 40.00 20.00 .00	MAG/ANG kW/kVR
FROM NODE 15 <16 > LOSS	= .032:	*-	B	18.30 92.29 (.032)	kW
NODE: 17 kVLL 4.160	VOLTS: Y-LD:	,		1.018 118.86 20.00 10.00 .00	MAG/ANG kW/kVR
FROM NODE 15 <17 > LOSS	= .007:	*-	D	9.15 92.30 (.007)	kW
	VOLTS: Y-LD:	1.014 -1.47 40.00 20.00 .00	В	·	MAG/ANG kW/kVR kVR
	= .122: . <vrg>.:</vrg>	46.22 -28.05 (.122) 27.86 -28.07 (.000)			AMP/DG kW AMP/DG kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE -----B-----*-----*-----*-----VOLTS: 1.008 -1.47 MAG/ANG . 00 -LD: .00 kW/kVR kVll 4.160 CAP: .00 kVR <VRG>: 28.03 -28.07 FROM NODE 9 AMP/DG <RG2 > LOSS= .000: (.000) kW TO NODE 14: 28.03 -28.07 AMP/DG <14 > LOSS= .084: (.084) NODE: 14 VOLTS: 1.006 -1.50 MAG/ANG .00 -LD: .00 kW/kVR kVll 4.160 CAP: .00 kVR FROM NODE RG2: 28.04 -28.07 AMP/DG <14 > LOSS= .084: (.084) kW TO NODE 10: 9.31 -28.07 AMP/DG <10 > LOSS= .005: (.005) kW TO NODE 11: 18.73 -28.07 AMP/DG <11 > LOSS= .022: (.022) 1.006 -1.50 NODE: 10 VOLTS: MAG/ANG Y-LD: 20.12 10.06 kW/kVR kVll 4.160 Y CAP: kVR . 00 9.31 -28.07 FROM NODE 14 AMP/DG : NODE: 11 VOLTS: 1.006 -1.51 MAG/ANG Y-LD: 40.45 20.23 kW/kVR kVll 4.160 Y CAP: kVR . 00 FROM NODE 14: 18.73 -28.08 AMP/DG <11 > LOSS= .022: (.022) kW