Petrucci • Harwood • Herring • Madura

Ninth GENERAL CHEMISTRY

Principles and Modern Applications

Chapter 19: Spontaneous Change: Entropy and Free Energy

Philip Dutton
University of Windsor, Canada
Prentice-Hall © 2007

Contents

19-1	Spontaneity: The Meaning of Spontaneous Change
19-2	The Concept of Entropy
19-3	Evaluating Entropy and Entropy Changes
19-4	Criteria for Spontaneous Change:
	The Second Law of Thermodynamics
19-5	Standard Free Energy Change, ΔG°
19-6	Free Energy Change and Equilibrium
19-7	ΔG° and $K_{\rm eq}$ as Functions of Temperature
19-8	Coupled Reactions

> Focus On Coupled Reactions in Biological Systems

19-1 Spontaneity: The Meaning of Spontaneous Change

Spontaneous Process

- ◆ A process that occurs in a system left to itself.
 - Once started, no external actions is necessary to make the process continue.
- ◆ A non-spontaneous process will not occur without external action continuously applied.

$$4 \text{ Fe(s)} + 3 \text{ O}_2(g) \rightarrow 2 \text{ Fe}_2 \text{O}_3(s)$$

$$H_2O(s) \rightleftharpoons H_2O(l)$$

Spontaneous Process

- Potential energy decreases.
- ◆ For chemical systems the internal energy *U* is equivalent to potential energy.
- Berthelot and Thomsen 1870's.
 - Spontaneous change occurs in the direction in which the enthalpy of a system decreases.
 - Mainly true but there are exceptions.

19-2 The Concept of Entropy

(a) Initial condition

$$\Delta U = \Delta H = 0$$

(b) After expansion into vacuum

♦ Entropy, S.

• The greater the number of configurations of the microscopic particles among the energy levels in a particular system, the greater the entropy of the system.

 $\Delta S > 0$ spontaneous

The Boltzmann Equation for Entropy

$$S = k \ln W$$

- Entropy, S
- ♦ States.
 - The microscopic energy levels available in a system.
- ◆ Microstates, W.
 - The particular way in which particles are distributed amongst the states. Number of microstates = W.
- ♦ The Boltzmann constant, *k*.
 - Effectively the gas constant per molecule = R/N_A .

Boltzmann Distribution

Entropy Change

$$\Delta S = \frac{q_{\rm rev}}{T}$$

For changes occurring at constant temperature

General Chemistry: Chapter 19

19-3 Evaluating Entropy and **Entropy Changes**

- Phase transitions.
 - Exchange of heat can be carried out reversibly.

$$\Delta S = \frac{\Delta H}{T_{\rm tr}}$$

$$H_2O(s, 1 \text{ atm}) \rightleftharpoons H_2O(l, 1 \text{ atm})$$
 $\Delta H_{fus}^{\circ} = 6.02 \text{ kJ at } 273.15 \text{ K}$

$$\Delta H_{\text{fus}}^{\circ} = 6.02 \text{ kJ at } 273.15 \text{ K}$$

$$\Delta S_{\text{fus}} = \frac{\Delta H_{\text{fus}}^{\circ}}{T_{\text{tr}}} = \frac{6.02 \text{ kJ mol}^{-1}}{273.15 \text{ K}} = 2.20 \times 10^{-2} \text{ kJ mol}^{-1} \text{ K}^{-1}$$

Trouton's Rule

$$\Delta S = \frac{\Delta H_{\text{vap}}}{T_{\text{bp}}} \approx 87 \text{ kJ mol}^{-1} \text{ K}^{-1}$$

Raoult's Law

$$P_{\rm A} = \chi_A P_{\rm A}^{\circ}$$

Absolute Entropies

- ◆ Third law of thermodynamics.
 - The entropy of a pure perfect crystal at 0 K is zero.
- Standard molar entropy.
 - Tabulated in Appendix D.

$$\Delta S = [\Sigma v_p S^{\circ}(\text{products}) - \Sigma v_r S^{\circ}(\text{reactants})]$$

Entropy as a Function of Temperature

Vibrational Energy and Entropy

19-4 Criteria for Spontaneous Change: The Second Law of Thermodynamics.

$$\Delta S_{\text{total}} = \Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

The Second Law of Thermodynamics:

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} > 0$$

All spontaneous processes produce an increase in the entropy of the universe.

Free Energy and Free Energy Change

- Hypothetical process:
 - only pressure-volume work, at constant *T* and *P*.

$$q_{\text{surroundings}} = -q_{\text{p}} = -\Delta H_{\text{sys}}$$

- Make the enthalpy change reversible.
 - large surroundings, infinitesimal change in temperature.
- Under these conditions we can calculate entropy.

Free Energy and Free Energy Change

For the universe:

$$T\Delta S_{\rm univ.} = T\Delta S_{\rm sys} - \Delta H_{\rm sys} = -(\Delta H_{\rm sys} - T\Delta S_{\rm sys})$$

 $-T\Delta S_{\rm univ.} = \Delta H_{\rm sys} - T\Delta S_{\rm sys}$

For the system:

$$G = H - TS$$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G_{\rm sys} = - T \Delta S_{\rm universe}$$

Criteria for Spontaneous Change

 $\Delta G_{\rm sys} < 0$ (negative), the process is spontaneous.

 $\Delta G_{\rm sys} = 0$ (zero), the process is at equilibrium.

 $\Delta G_{\rm sys} > 0$ (positive), the process is non-spontaneous.

J. Willard Gibbs 1839-1903

TABLE 19.1		Criteria for Spontaneous Change: $\Delta G = \Delta H - T$		taneous Change: $\Delta G = \Delta H - T\Delta S$	
Case	ΔΗ	ΔS	ΔG	Result	Example
1.	_	+	_	spontaneous at all temp.	$2 N_2 O(g) \longrightarrow 2 N_2(g) + O_2(g)$
2.	_	_	$\left\{\begin{matrix} -\\ +\end{matrix}\right.$	spontaneous at low temp. nonspontaneous at high temp.	$H_2O(1) \longrightarrow H_2O(s)$
3.	+	+	{+ -	nonspontaneous at low temp. spontaneous at high temp.	$NH_3(g) \longrightarrow N_2(g) + 3 H_2(g)$
4.	+	_	+	nonspontaneous at all temp.	$3 O_2(g) \longrightarrow 2 O_3(g)$

19-5 Standard Free Energy Change, ΔG°

- The standard free energy of formation, $\Delta G_{\rm f}^{\circ}$.
 - The change in free energy for a reaction in which a substance in its standard state is formed from its elements in reference forms in their standard states.
- The standard free energy of reaction, ΔG° .

$$\Delta G^{\circ} = [\Sigma v_{p} \Delta G_{f}^{\circ} (\text{products}) - \Sigma v_{r} \Delta G_{f}^{\circ} (\text{reactants})]$$

19-6 Free Energy Change and Equilibrium

Temperature, K

Free Energy Change and Equilibrium

 H_2O (g, 23.76 mmHg) $H_2O(1)$ **(b)**

Condensation

Equilibrium

Vaporization

Relationship of ΔG° to ΔG for Non-standard Conditions

$$2 N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

For ideal gases $\Delta H = \Delta H^{\circ}$

$$\Delta G = \Delta H^{\circ} - T\Delta S$$

Relationship Between S and S°

$$q_{\text{rev}} = -w = RT \ln \frac{V_{\text{f}}}{V_{\text{i}}}$$

$$\Delta S = \frac{q_{\text{rev}}}{T} = R \ln \frac{V_{\text{f}}}{V_{\text{i}}}$$

$$\Delta S = S_{\rm f} - S_{\rm i} = R \ln \frac{V_{\rm f}}{V_{\rm i}} = R \ln \frac{P_{\rm i}}{P_{\rm f}} = -R \ln \frac{P_{\rm f}}{P_{\rm i}}$$

$$S = S^{\circ} - R \ln \frac{P}{P^{\circ}} = S^{\circ} - R \ln \frac{P}{1} = S^{\circ} - R \ln P$$

$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$

$$S_{N_2} = S_{N_2} - R \ln P_{N_2}$$

$$S_{\text{H}_2} = S_{\text{H}_2} - \text{Rln } P_{\text{H}_2}$$

$$S_{N_2} = S_{H_2} = S_{NH_3} = S_{N_2} - R \ln P_{N_2}$$
 $S_{H_2} - R \ln P_{H_2}$ $S_{NH_3} - R \ln P_{NH_3}$

$$\Delta S_{\rm rxn} = 2 \times (S_{\rm NH_3} - {\rm Rln} \ P_{\rm NH_3}) - (S_{\rm N_2} - {\rm Rln} \ P_{\rm N_2}) - 3 \times (S_{\rm H_2} - {\rm Rln} \ P_{\rm H_2})$$

$$\Delta S_{\text{rxn}} = 2 S_{\text{NH}_3} - S_{\text{N}_2} - 3S_{\text{H}_2} + \text{Rln} \frac{P_{\text{N}_2} P_{\text{H}_2}^3}{P_{\text{NH}_3}^2}$$

$$\Delta S_{\text{rxn}} = \Delta S_{\text{rxn}}^{\circ} + \text{Rln} \frac{P_{\text{N}2} P_{\text{H}2}^{3}}{P_{\text{NH}3}^{2}}$$

ΔG Under Non-standard Conditions

$$\Delta G = \Delta H^{\circ} - T\Delta S$$

$$\Delta S_{\text{rxn}} = \Delta S_{\text{rxn}}^{\circ} + \text{Rln} \frac{P_{\text{N}_2}^2 P_{\text{H}_2}^3}{P_{\text{NH}_3}^2}$$

$$\Delta G = \Delta H^{\circ} - T \Delta S^{\circ}_{rxn} - TR \ln \frac{P_{N_2}^2 P_{H_2}^3}{P_{NH_3}^2}$$

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{P_{\text{NH}_3}^2}{P_{\text{N}_2}^2 P_{\text{H}_2}^3}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

ΔG and the Equilibrium Constant $K_{\rm eq}$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

If the reaction is at equilibrium then:

$$\Delta G = \Delta G^{\circ} + RT \ln K_{\text{eq}} = 0$$

$$\Delta G^{\circ} = -RT \ln K_{\rm eq}$$

Criteria for Spontaneous Change

Every chemical reaction consists of both a forward and a reverse reaction.

The direction of spontaneous change is the direction in which the free energy decreases.

Slide 29 of 44

General Chemistry: Chapter 19

Prentice-Hall © 2007

Significance of the Magnitude of ΔG

+200 kJ/mol	9.1×10^{-36}	No reaction
+100	3.0×10^{-18}	
+50	1.7×10^{-9}	
+10	1.8×10^{-2}	
+1.0	6.7×10^{-1}	Equilibrium
	1.0	calculation
0	1.0	is
-1.0	1.5	necessary
-10	5.6×10^{1}	
-50	5.8×10^{8}	
-100	3.3×10^{17}	Reaction goes
-200	1.1×10^{35}	to completion

The Thermodynamic Equilibrium Constant: Activities.

For ideal gases at 1.0 bar:

$$S = S^{\circ} - R \ln \frac{P}{P^{\circ}} = S^{\circ} - R \ln \frac{P}{1}$$

PV=nRT or P=(n/V)RT, pressure is an effective concentration

Therefore, in solution:

$$S = S^{\circ} - R \ln \frac{c}{c^{\circ}} = S^{\circ} - R \ln a$$

The effective concentration in the standard state for an ideal solution is $c^{\circ} = 1$ M.

Activities

- ◆ For pure solids and liquids:
 - \circ a = 1
- ♦ For ideal gases:
 - \circ a = P (in bars, 1 bar = 0.987 atm)
- ◆ For ideal solutes in aqueous solution:
 - \circ a = c (in mol L⁻¹)

The Thermodynamic Equilibrium Constant, K_{eq}

- ◆ A dimensionless equilibrium constant expressed in terms of *activities*.
- Often $K_{eq} = K_c$ or K_P , but not always.
- Must be used to determine ΔG .

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{a_{g} a_{h} \dots}{a_{a} a_{b} \dots}$$

19-7 ΔG° and $K_{\rm eq}$ as Functions of Temperature

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta G^{\circ} = -RT \ln K_{\text{eq}}$$

$$\ln K_{\rm eq} = \frac{-\Delta G^{\circ}}{RT} = \frac{-\Delta H^{\circ}}{RT} + \frac{T\Delta S^{\circ}}{RT}$$

$$\ln K_{\rm eq} = \frac{-\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$

Van't Hoff Equation

If we evaluate this equation for a change in temperature:

$$ln \frac{K_{\text{eq2}}}{K_{\text{eq1}}} = \frac{\left[-\Delta H^{\circ}}{RT_{2}} + \frac{\Delta S^{\circ}}{R}\right] - \left[\frac{-\Delta H^{\circ}}{RT_{1}} + \frac{\Delta S^{\circ}}{R}\right]$$

$$ln \frac{K_{\text{eq2}}}{K_{\text{eq1}}} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

TABLE 19.3 Equilibrium Constants, K_p , for the Reaction $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$ at Several Temperatures

T, K	$1/T, K^{-1}$	Kp	In K _p
800	12.5×10^{-4}	9.1×10^{2}	6.81
850	11.8×10^{-4}	1.7×10^{2}	5.14
900	11.1×10^{-4}	4.2×10^{1}	3.74
950	10.5×10^{-4}	1.0×10^{1}	2.30
1000	10.0×10^{-4}	3.2×10^{0}	1.16
1050	9.52×10^{-4}	1.0×10^{-4}	0.00
1100	9.09×10^{-4}	3.9×10^{-1}	-0.94
1170	8.5×10^{-4}	1.2×10^{-1}	-2.12

Temperature Dependence of $K_{\rm eq}$

Assume ΔH° and ΔS° do not vary significantly with temperature.

$$\ln K_{\rm eq} = \frac{-\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$

$$slope = \frac{-\Delta H^{\circ}}{R}$$

$$-\Delta H^{\circ} = R \times slope$$

$$= -8.3145 \text{ J mol}^{-1} \text{ K}^{-1} \times 2.2 \times 10^4 \text{ K}$$

$$= -1.8 \times 10^2 \text{ kJ mol}^{-1}$$

Slide 37 of 44

General Chemistry: Chapter 19

Prentice-Hall © 2007

19-8 Coupled Reactions

- ◆ In order to drive a non-spontaneous reactions we changed the conditions (i.e. temperature or electrolysis).
- Another method is to couple two reactions.
 - One with a positive ΔG and one with a negative ΔG .
 - Overall spontaneous process.

Smelting Copper Ore

$$Cu_2O(s) \xrightarrow{\Delta} 2 Cu(s) + \frac{1}{2} O_2(g)$$

$$\Delta G^{\circ}_{673K} = +125 \text{ kJ}$$

Non-spontaneous reaction:

$$Cu_2O(s) \rightarrow 2 Cu(s) + \frac{1}{2}O_2(g) + 125 kJ$$

Spontaneous reaction:
$$C(s) + \frac{1}{2}Q_2(g) \rightarrow CO(g)$$

-175 kJ

$$Cu_2O(s) + C(s) \rightarrow 2 Cu(s) + CO(g)$$

-50 kJ

Spontaneous reaction!

Focus On Coupled Reactions in Biological Systems

The Biological Standard State

ADP³⁻ + HPO₄²⁻ + H⁺
$$\rightarrow$$
 ATP⁴⁻ + H₂O

$$\Delta G^{\circ} = -9.2 \text{ kJ mol}^{-1}$$

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{a_{\text{ATP}} a_{\text{H}_2\text{O}}}{a_{\text{ADP}} a_{\text{Pi}} a_{\text{H}_3\text{O}^+}}$$

But
$$[H_3O^+] = 10^{-7} M \text{ not } 1.0 M.$$

$$\Delta G = -9.2 \text{ kJ mol}^{-1} + 41.6 \text{ kJ mol}^{-1}$$

= +32.4 kJ mol $^{-1} = \Delta G^{\circ}$

ADP to ATP is not spontaneous and biological systems use glucose.

Focus On Coupled Reactions in Biological Systems

Glucose
$$\rightarrow$$
 2 lactate + 2 H⁺

$$2 \text{ ADP}^{3-} + 2 \text{ HPO}_4^{2-} + 2 \text{ H}^+ \rightarrow 2 \text{ ATP}^{4-} + 2 \text{ H}_2\text{O}$$

$$+64 \text{ kJ}$$

$$2 \text{ ADP}^{3-} + 2 \text{ HPO}_4^{2-} + \text{glucose} \rightarrow 2 \text{ ATP}^{4-} + 2 \text{ H}_2\text{O} + 2 \text{ lactate}$$
 -153 kJ

End of Chapter Questions

 Work a problem from both ends to find the key log.

End of Chapter Questions

 Work a problem from both ends to find the key log.

