Zaawansowane systemy baz danych – projekt

Case study: Firma transportowa Eltrans

Eltrans to prężnie działająca firma transportowa, operująca zarówno na rynku krajowym, jak i międzynarodowym. Firma dysponuje zróżnicowaną flotą liczącą około 300 pojazdów, z czego większość stanowią tiry, uzupełnione o samochody osobowe i vany. Eltrans zatrudnia kilkuset pracowników, w większości kierowców, lecz także personel administracyjny, mechaników oraz specjalistów ds. logistyki.

Głównym wyzwaniem dla Eltrans jest efektywne zarządzanie zróżnicowaną flotą pojazdów i licznym personelem. Firma potrzebuje narzędzia do monitorowania wydajności, optymalizacji tras, kontroli kosztów oraz wykrywania nadużyć (fraudów). Dodatkowo, Eltrans chce wzmocnić swoje możliwości analityczne, aby podejmować trafniejsze decyzje biznesowe oparte na danych.

Baza danych, która ma usprawnić działanie firmy, będzie centralnym punktem gromadzenia i analizy informacji o pracownikach, pojazdach (z uwzględnieniem ich typów), trasach i historycznym stanie pojazdów podczas całego cyklu ich eksploatacji. Dzięki niej, Eltrans będzie w stanie:

- Analizować pracę kierowców
- Monitorować wykorzystanie pojazdów
- Analizować opłacalność poszczególnych tras i zleceń, z uwzględnieniem specyfiki różnych typów pojazdów
- Generować raporty i analizy wspierające podejmowanie decyzji strategicznych
- Wykrywać nadużycia, których dopuszczają się pracownicy firmy

Wdrożenie tego systemu pozwoli Eltrans na zwiększenie efektywności operacyjnej, redukcję kosztów oraz poprawę jakości świadczonych usług. To z kolei przełoży się na wzmocnienie pozycji firmy na konkurencyjnym rynku transportowym, umożliwiając jej lepsze wykorzystanie zróżnicowanej floty pojazdów i efektywniejsze zarządzanie zasobami ludzkimi, oraz oczywiście zwiększenie zysków.

RDBMS

Na potrzeby tego projektu do zarządzania relacyjną bazą danych wykorzystany zostanie system **PostgreSQL**. Używałem tego systemu już wcześniej i nie miałem z nim problemu. Postgres ma ogromną społeczność, więc nawet jeśli napotkam jakiś problem, to na pewno szybko znajdę jego rozwiązanie w internecie. Korzystanie z Postgresa jest darmowe (open source), a instalacja jest dziecinnie prosta. Korzystam z helm (chart od Bitnami) do utworzenia instancji Postgresa na moim klastrze k3s, do którego dostęp mam przez WireGuard (Tailscale).

Screenshoty z działającego Postgresa:

Name	Owner	Encoding	Locale Provider	List of data Collate	oases Ctype	Locale	ICU Rules	Access p	rivileges
postgres template0 template1	postgres postgres postgres	+	libc libc libc	en_US.UTF-8 en_US.UTF-8 en_US.UTF-8	en_US.UTF-8 en_US.UTF-8 en_US.UTF-8	+ 	+ 	 =c/postgres postgres=C =c/postgres	Γc/postgres 5 -
(3 rows)	l	I		1		l	'	postgres=C	rc/postgres
kub	ectl	get p	ods						
NAME			READY	STATUS		RESTARTS		AGE	
postgres-postgresgl-0				1/1	Runn:	ina	0		11m

Projekt bazy danych ERD

Implementacja bazy danych

Schemat logiczny

Wszystkie tabele są w jednym schemacie bazodanowym.

Tabele niezależne

1. measurement

Zawiera pomiary poziomu paliwa podczas jazdy samochodu.

2. trip

Zawiera informacje o trasach pokonanych przez samochody.

3. card

Zawiera informacje o kartach flotowych, których używają kierowcy podczas transakcji na stacjach paliw.

$4.\ {\tt vendor}$

Zawiera informacje o dostawcach paliwa, z którymi firma ma podpisane umowy.

$5.\ {\tt vehicle}$

Zawiera informacje o samochodach, którymi operuje firma.

6. trailer

Zawiera informacje o naczepach, którymi operuje firma.

7. driver

Zawiera informacje o kierowcach zatrudnionych w firmie.

8 sale

Zawiera informacje o transakcjach zakupu paliwa dokonanych przez kierowców.

Tablice słownikowe

- $1. \ {\tt vehicle_type}$
- $2. fuel_type$

Odstępstwa od 3NF

Istotne decyzje projektowe

Generowanie danych

Użytkownicy

Przykładowe zapytania

Którzy kierowcy wykonali najwięcej tras w danym miesiącu?

#	A-Z first_name ↓↑	A-Z last_name 👫	123 trips_taken ↓↑
1	Zbigniew =	Nowak	3
2	Adam	Kowalczyk	3
3	Łukasz	Szymański	3
4	Joanna	Wiśniewska	3
5	Marcin	Kwiatkowski	3
6	Marcin	Woźniak	2
7	Adam	Kowalski	2
8	Andrzej	Lewandowski	2
9	Grzegorz	Wójcik	2
10	Katarzyna	Zielińska	2

Jaka jest średnia cena oleju napędowego w Polsce?

W tym zapytaniu wykorzystane zostało **podzapytanie**.

Perspektywy

Wykrywanie fraudów

TODO: drugi view

Indeksy

W bazie stworzyłem indeksy aby przyspieszyć niektóre zapytania. Tam, gdzie zapytania mają formę przyrównania do konkretnej wartości (na przykład numer rejestracyjny) wykorzystany został indeks typu hash. W przeciwnym wypadku, oraz w indekach złożonych z kilku kolumn, wykorzystałem indeks btree.

trip

Utworzone zostały indeksy typu hash na kolumnach source i destination aby przyspieszyć zapytania o miejsca, gdzie jeżdżą pojazdy.

vendor

Utworzony został indeks typu hash na kolumnie country aby przyspieszyć zapytania o kraje w których zarejestrowane są działaności dostawców paliwa.

sale

Utworzony został indeks btree na kolumnie cost zawierający wartości cost, fuel_amount i vendor_id aby przyspieszyć zapytania o średnie ceny paliwa u dostawców.

driver

Utworzony został indeks złożony typu btree na kolumnach first_name i last_name aby przyspieszyć zapytania o kierowców przy użyciu ich imion (w przeciwieństwie do ich id).

vehicle i trailer

W obu tabelach utworzono indeksy typu hash na kolumnach z numerami rejestracyjnymi.