Lógica Computacional

Teoria dos conjuntos

Você sabia que seu material didático é interativo e multimídia? Isso significa que você pode interagir com o conteúdo de diversas formas, a qualquer hora e lugar. Na versão impressa, porém, alguns conteúdos interativos ficam desabilitados. Por essa razão, fique atento: sempre que possível, opte pela versão digital. Bons estudos!

Nesta webaula, você compreenderá o conceito de conjunto e verá mais detalhes sobre o Diagrama de Venn.

Álgebra de conjuntos

A Álgebra de conjuntos é um importante ramo da Matemática e com aplicações em diferentes áreas de conhecimento, entre elas a Computação. A linguagem de conjuntos se caracteriza por ser uma linguagem clara, concisa, rigorosa e que não dá margens a interpretações equivocadas. Por apresentar essas características, ela é utilizada na organização de informações e resolução de problemas ligados a várias áreas, como a computação.

O livro de Benzecry e Rangel (2008), inteiramente dedicado à Álgebra de Conjuntos, traz em sua primeira parte, nas páginas 1 a 6, um resumo com os principais tipos de conjuntos e as diferentes formas de representá-los. É uma ótima oportunidade para aprofundamento dos estudos. BENZECRY, V. S. J.; RANGEL, K. A. **Como desenvolver o raciocínio lógico**: soluções criativas na teoria dos conjuntos. Rio de Janeiro: LTC, 2008.

Conjuntos

Conjuntos podem ser definidos como coleções não ordenadas de objetos que podem ser, de alguma forma, relacionados (FERREIRA, 2001). Em geral, objetos de um mesmo conjunto gozam de uma propriedade em comum. Costuma-se utilizar letras maiúsculas do nosso alfabeto para representar os conjuntos.

Para descrever determinado conjunto, é necessário identificar seus elementos. Para tanto, pode-se proceder de três maneiras distintas:

- 1. Listar todos os elementos do conjunto.
- 2. Indicar os primeiros elementos do conjunto (presumindo que os elementos do conjunto possam ser ordenados) que denotem um padrão para uma listagem indefinida.
- 3. Escrever uma propriedade que caracterize os elementos que constituem o conjunto. Por exemplo: C = $\{x|x \in \mathbb{R}\}$ um número inteiro e $4 < x \le 9\}$. Escrever a propriedade característica dos elementos de um conjunto por meio de palavras é a maneira mais usual de descrever um conjunto. Isso porque, muitas vezes, ao se trabalhar com conjuntos que possuem um número muito grande de elementos (ou até mesmo conjuntos infinitos), a listagem de todos os elementos do conjunto não se torna viável.

Há ainda uma maneira alternativa de representar conjuntos com forte apelo visual. Trata-se dos Diagramas de Venn.

Diagrama de Venn

John Venn (1834-1923) foi um matemático inglês, tendo-se licenciado na Universidade de Cambridge onde, depois, ensinou Lógica e Teoria das Probabilidades. Venn introduziu os diagramas em seus trabalhos baseado nos círculos eulerianos, por isso, alguns autores referem-se aos diagramas de Venn como diagramas de Euler-Venn (NOVAES, 2014).

Fonte: Wikipédia.

John Venn introduziu os diagramas em um trabalho de lógica formal publicado em 1880, na *Philosophical Magazine and Journal of Science*, intitulado *On the Diagrammatic and Mechanical Representation of Propositions and Reasonings* (Da representação mecânica e diagramática de proposições e raciocínios).

Na introdução desse trabalho, Venn afirmou:

Esquemas de representação diagramática têm sido tão familiarmente introduzidos nos tratados de Lógica durante o último século, que se pode supor que muitos leitores, mesmo aqueles que não fizeram nenhum estudo profissional de Lógica, possam ter familiaridade com a noção geral de tais objetos.

— (VENN, 1880, p. 13, tradução nossa)

99

Porém, a primeira referência escrita conhecida do termo Diagrama de Venn surgiu apenas em 1918, no livro *A Survey of Symbolic* Logic, do lógico Clarence Irving Lewis (NOVAES, 2014).

VENN, J. On the Diagrammatic and Mechanical Representation of Propositions and Reasonings. **Philosophical Magazine and Journal os Science**, Londres, v. 9, p. 1-18, 1880.

Os diagramas de Venn consistem em círculos (que podem estar intersectados), os quais representam os conjuntos. No interior dos círculos são listados os elementos do conjunto. Por exemplo, o conjunto C = $\{x|x \text{ \'e} \text{ um n\'umero inteiro e } 4 < x \leq 9\}$ pode ser representado pelo diagrama em destaque:

Conjunto C representado pelo Diagrama de Venn

Fonte: elaborado pelo autor.

Um conjunto é chamado de finito quando sua cardinalidade é um número inteiro, caso contrário, é chamado de infinito. Um conjunto é chamado de conjunto vazio quando sua cardinalidade é igual a zero, ou seja, é um conjunto desprovido de elementos.

Os conceitos estudados nesta webaula também são apresentados de forma bastante didática por Souza (2016) na Unidade 1 de seu livro, nas páginas 1 a 12. São abordadas as diferentes formas de notação e representação de conjuntos. Vale a pena conferir!

SOUZA, J. A. L. Lógica matemática. São Paulo: Pearson Education do Brasil, 2016.

Lógica Computacional

Álgebra de conjuntos

Você sabia que seu material didático é interativo e multimídia? Isso significa que você pode interagir com o conteúdo de diversas formas, a qualquer hora e lugar. Na versão impressa, porém, alguns conteúdos interativos ficam desabilitados. Por essa razão, fique atento: sempre que possível, opte pela versão digital. Bons estudos!

Em Matemática, quando nos referimos a operações, automaticamente nos recordamos das operações numéricas fundamentais (adição, subtração, multiplicação e divisão), porém, em Teoria de Conjuntos, várias operações podem ser realizadas. Podemos, por exemplo, somar ou multiplicar os elementos de conjuntos, reuni-los, considerar apenas os elementos comuns, enfim, há uma série de operações que podem ser feitas. Entre essas operações, as mais fundamentais são denominadas **união** (\cup) e **interseção** (\cap). Nesta webaula, focaremos esses dois tipos de operações.

Diagrama de Venn

Os diagramas de Venn podem ser utilizados para ilustrar as operações binárias de união e interseção de conjuntos. Na figura, a seguir, visualizamos a imagem mental dessas operações:

Diagrama de Venn: união e interseção

Fonte: elaborado pelo autor.

A região sombreada no primeiro diagrama representa $A \cup B$; já a região sombreada no segundo diagrama representa $A \cap B$.

Sejam os conjuntos $A=\{10,11,12,13,14,15\}$ e $B=\{13,14,15,16,17,18,19\}$, o conjunto $A\cup B$ consiste no conjunto formado por todos os elementos de A e de B.

$$A \cup B = \{10,11,12,13,14,15,16,17,18,19\}$$

Repare que há elementos pertencentes a ambos os conjuntos, porém, ao efetuarmos a operação união, esses elementos são contabilizados uma única vez.

Já o conjunto $A \cap B$ consiste no conjunto formado pelos elementos comuns aos conjuntos A e B.

$$A \cap B = \{13,14,15\}$$

Confira a representação desse exemplo pelo diagrama de Venn:

Diagrama de Venn: exemplo

Fonte: elaborado pelo autor.

Você sabia que é impossível criar um diagrama de Venn para quatro conjuntos A, B, C e D utilizando apenas círculos? Um diagrama de Venn para n conjuntos consiste basicamente de *n* curvas simples e fechadas no plano que determinam uma região conexa para cada uma das interseções que os conjuntos formam (CERIOLI, 2004).

Por meio de círculos, é possível fazer o diagrama para 1, 2 ou 3 conjuntos. Entretanto, é possível desenhar diagramas de Venn para mais de 3 conjuntos, desde que sejam utilizadas outras formas geométricas, diferentes do círculo. Para quatro conjuntos, podemos utilizar o diagrama representado a seguir:

Diagrama de Venn para quatro conjuntos

Fonte: Clubes de matemática da OBMEP (2019, [s.p.]).

O livro de Barbosa, em seu segundo capítulo, páginas 48 a 57, trata da Álgebra de Conjuntos e destaca o tratamento das relações entre conjuntos ilustradas com Diagramas de Venn. Lá, você encontrará exemplos e exercícios já resolvidos, bem como poderá colocar o conhecimento em prática resolvendo os problemas propostos.

BARBOSA, M. A. Introdução à lógica matemática para acadêmicos. Curitiba: InterSaberes, 2017.

Lógica Computacional

Aplicações de teoria dos conjuntos

Você sabia que seu material didático é interativo e multimídia? Isso significa que você pode interagir com o conteúdo de diversas formas, a qualquer hora e lugar. Na versão impressa, porém, alguns conteúdos interativos ficam desabilitados. Por essa razão, fique atento: sempre que possível, opte pela versão digital. Bons estudos!

Nesta webaula, vamos estudar como o diagrama de Venn pode ser utilizado para demonstrar relações arbitrárias entre conjuntos.

Já sabemos que os diagramas de Venn também podem ser usados para resolver problemas sobre cardinalidade de conjuntos, isto é, problemas que envolvem a contagem do número de elementos de conjuntos finitos. Mas, segundo Novaes (2014), o Diagrama de Venn não é apenas um esquema para ajudar o raciocínio. Ele foi concebido como uma representação diagramática capaz de atender a todas as possíveis relações lógicas entre as classes em estudo, sendo úteis, inclusive, para demonstrar relações arbitrárias entre conjuntos.

Relação arbitrária entre conjuntos

Considere os conjuntos A e B, em que os compartimentos do diagrama representam as partes disjuntas do universo: utilizaremos uma numeração binária, composta apenas pelos algarismos 0 e 1, em que o primeiro algarismo é 0 ou 1, conforme um objeto desse compartimento pertença ou não ao conjunto A, enquanto o segundo algarismo é 0 ou 1, conforme um objeto desse compartimento pertença ou não ao conjunto B.

Representação diagramática de uma relação arbitrária entre dois conjuntos

Fonte: adaptado de Novaes (2014).

A numeração binária mostra que $2^2=4$ compartimentos esgotam todas as possibilidades lógicas para um objeto do universo. O número 10 (lê-se: um, zero) representa objetos que pertençam exclusivamente ao conjunto A. O número 01 (zero, um) representa objetos que pertençam exclusivamente ao conjunto B. Já o número 11 (um, um) representa objetos que pertençam simultaneamente aos conjuntos A e B (interseção de A e B). Por fim, o número 00 (zero, zero) representa objetos que não pertencem a nenhum dos conjuntos A e B.

Tabelas-verdade

Uma maneira equivalente de representar essa relação arbitrária é a utilização de tabelas-verdade. Confira a tabela-verdade para a relação arbitrária entre dois conjuntos:

	$x\in A$	$x \in B$	$x\in A\cap B$
00	F	F	F
01	F	V	F
10	V	F	F
11	V	V	V

Na primeira coluna da tabela, indicamos os $2^2=4$ compartimentos que compõem o Diagrama de Venn para dois conjuntos, representados por números binários. Na segunda coluna anotamos V (verdadeiro) ou F (falso) conforme o objeto representado pelo seu respectivo número binário pertença, ou não, ao conjunto A. Na terceira coluna anotamos V (verdadeiro) ou F (falso) conforme o objeto representado pelo seu respectivo número binário pertença, ou não, ao conjunto B. Finalmente, na última coluna, anotamos V (verdadeiro) ou F (falso) conforme o objeto representado pelo seu respectivo número binário pertença, ou não, ao conjunto $A \cap B$.

Esperamos que você tenha compreendido a utilização de diagrama de Venn tanto na representação de operações quanto na representação de relações arbitrárias entre conjuntos. Compreender a natureza dessas operações é componente importante no desenvolvimento do raciocínio computacional.

Para visualizar o vídeo, acesse seu material digital.

