Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 1

Abgabe: 6.11.2019, 14 Uhr Gruppennummer angeben!

Aufgabe 1 (6 Punkte).

Gib (ohne Wahrheitstafeln zu benutzen) aussagenlogische Formeln sowohl in KNF als auch in DNF an, welche logisch äquivalent zu den folgenden aussagenlogischen Formeln sind.

(a)
$$(P \longrightarrow Q) \longrightarrow (R \land Q)$$

(b)
$$\left(\neg(P \longrightarrow Q) \lor (P \longrightarrow R)\right)$$

Aufgabe 2 (3 Punkte).

Sind die Aussagen $\neg(P\longrightarrow Q)$ und $(\neg P\longrightarrow \neg Q)$ logisch äquivalent? (Ohne Wahrheitstafeln zu benutzen!)

Aufgabe 3 (5 Punkte).

Entscheide mit Hilfe der Tableau Methode, ob folgende Aussagen Tautologien sind.

(a)
$$(\neg (P \longrightarrow Q) \lor (Q \longrightarrow P))$$

(b)
$$((P \longrightarrow R) \land (R \longrightarrow Q)) \longrightarrow (P \longrightarrow Q)$$

(c)
$$((P \lor Q) \longrightarrow (R \land S)) \longrightarrow ((P \land Q) \longrightarrow (R \lor S))$$

(d)
$$((P \land Q) \longrightarrow R) \longrightarrow ((P \lor Q) \longrightarrow R)$$

(e)
$$(P \longrightarrow (Q \longrightarrow \neg P)) \longrightarrow (P \longrightarrow \neg Q)$$

Aufgabe 4 (6 Punkte).

- (a) In der Sprache $\mathcal{L} = \{c, <\}$ seien c ein Konstantenzeichen und < ein zweistelliges Relationszeichen. Betrachte die \mathcal{L} -Struktur \mathcal{R}_1 mit Universum \mathbb{R} und den Interpretationen $c^{\mathcal{Z}_1} = \pi$ sowie $<^{\mathcal{Z}_1}$ als die übliche lineare Ordnung. Ferner sei \mathcal{R}_2 die \mathcal{L} -Struktur mit Universum \mathbb{R} und Interpretationen $c^{\mathcal{Z}_2} = -\sqrt{2}$ sowie $<^{\mathcal{Z}_2}$ als die übliche lineare Ordnung. Zeige, dass \mathcal{R}_1 und \mathcal{R}_2 isomorphe \mathcal{L} -Strukturen sind.
- (b) Sei d ein weiteres Konstantenzeichen. Wir betrachten nun die Sprache $\mathcal{L}' = L \cup \{d\}$ und erweitern die obigen beiden Strukturen zu \mathcal{L}' -Strukturen \mathcal{R}'_1 und \mathcal{R}'_2 , indem wir d wie folgt interpretieren:

$$d^{\mathcal{R}_1'} = 0 = d^{\mathcal{R}_2'}.$$

Sind \mathcal{R}_1' und \mathcal{R}_2' isomorphe \mathcal{L}' -Strukturen?

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.

LOGIK FÜR STUDIERENDE DER INFORMATIK WS 19/20

BLATT 1

Aufgabe 1 (6 Punkte).

Gib (ohne Wahrheitstafeln zu benutzen) aussagenlogische Formeln sowohl in KNF als auch in DNF an, welche logisch äquivalent zu den folgenden aussagenlogischen Formeln sind.

(a)
$$(P \longrightarrow Q) \longrightarrow (R \land Q)$$

(b)
$$\left(\neg(P \longrightarrow Q) \lor (P \longrightarrow R)\right)$$

a)
$$(P \rightarrow Q) = (\neg P \vee Q)$$

 $(R \wedge Q) = \neg(\neg R \vee \neg Q)$
also ist $((P \rightarrow Q) \rightarrow (R \wedge Q)) \sim (\neg (\neg P \vee Q) \vee \neg(\neg R \vee \neg Q))$
 $\sim ((P \wedge \neg Q) \vee \neg(\neg R \vee \neg Q))$
 $\sim ((P \wedge \neg Q) \vee (R \wedge Q)) \wedge (\neg Q \vee (R \wedge Q))$
 $\sim ((P \vee (R \wedge Q)) \wedge (\neg Q \vee R) \wedge (\neg Q \vee Q))$

b)
$$(\neg(P \rightarrow Q) \lor (P \rightarrow R)) \lor \neg(\neg P \lor Q) \lor (\neg P \lor R)$$

$$\lor (P \lor (\neg P \lor R)) \lor (\neg P \lor R)$$

$$\lor (P \lor (\neg P \lor R)) \lor (\neg Q \lor (\neg P \lor R))$$

$$\lor (P \lor \neg P \lor R) \lor (\neg Q \lor \neg P \lor R) \lor KNF$$

$$\lor \neg Q \lor \neg P \lor R$$

~ (PUR) ~ (PUQ) ~ (~QUR) KNF

Aufgabe 2 (3 Punkte).

Sind die Aussagen $\neg(P\longrightarrow Q)$ und $(\neg P\longrightarrow \neg Q)$ logisch äquivalent? (Ohne Wahrheitstafeln zu benutzen!)

$$\begin{array}{c}
\gamma(P \to Q) & \gamma(\gamma P \vee Q) \\
 & \gamma & P \wedge \gamma Q
\end{array}$$

$$\begin{array}{c}
(P \wedge \gamma Q) \not \sim (P \vee \gamma Q) \\
 & (P \wedge \gamma Q) & (P \vee \gamma Q)
\end{array}$$

Aufgabe 3 (5 Punkte).

Entscheide mit Hilfe der Tableau Methode, ob folgende Aussagen Tautologien sind.

(a)
$$(\neg(P \longrightarrow Q) \lor (Q \longrightarrow P))$$

(b)
$$((P \longrightarrow R) \land (R \longrightarrow Q)) \longrightarrow (P \longrightarrow Q)$$

(c)
$$((P \lor Q) \longrightarrow (R \land S)) \longrightarrow ((P \land Q) \longrightarrow (R \lor S))$$

(d)
$$((P \land Q) \longrightarrow R) \longrightarrow ((P \lor Q) \longrightarrow R)$$

(e)
$$(P \longrightarrow (Q \longrightarrow \neg P)) \longrightarrow (P \longrightarrow \neg Q)$$

$$\alpha) (\gamma(P \rightarrow Q) \vee (Q \rightarrow P)) : 0$$

b)
$$(((P \rightarrow R) \land (R \rightarrow Q)) \rightarrow (P \rightarrow Q)) : 0$$

$$((P \rightarrow R) \land (R \rightarrow Q)): 1$$

$$(P \rightarrow Q): 0$$

$$P: 1 \qquad P: 1$$

$$R: 1 \qquad Q: 0$$

$$schließt$$

c)
$$((PVQ) \longrightarrow (RNS)) \longrightarrow ((PNQ) \longrightarrow (RVS))):0$$

$$((P \vee Q) \longrightarrow (R \wedge S)) : 1$$

$$((P \wedge Q) \longrightarrow (R \vee S)) : 0$$

$$\downarrow$$

$$P : 1$$

$$Q : 1$$

$$S = S$$

d)
$$(((P \land Q) \rightarrow R) \rightarrow ((P \lor Q) \rightarrow R)) : 0$$

$$(P \land Q) \rightarrow R : 1$$

$$(P \lor Q) \rightarrow R : 0$$

$$P : 1 \quad Q : 0 \Rightarrow 1 \text{ keine } T \text{ contrologie}$$

$$P : 1 \quad Q : 0 \Rightarrow 1 \text{ contrologie}$$

$$P \Rightarrow 1 \quad Q : 0 \Rightarrow 1 \text{ contrologie}$$

$$P \Rightarrow 1 \quad Q : 0 \Rightarrow 1 \text{ contrologie}$$

$$P \Rightarrow 1 \quad Q : 0 \Rightarrow 1 \text{ contrologie}$$

$$Q \Rightarrow 1 \quad Q : 1$$

Aufgabe 4 (6 Punkte).

- (a) In der Sprache $\mathcal{L}=\{c,<\}$ seien c ein Konstantenzeichen und < ein zweistelliges Relationszeichen. Betrachte die \mathcal{L} -Struktur \mathcal{R}_1 mit Universum \mathbb{R} und den Interpretationen $c^{\mathcal{Z}_1}=\pi$ sowie $<^{\mathcal{Z}_1}$ als die übliche lineare Ordnung. Ferner sei \mathcal{R}_2 die \mathcal{L} -Struktur mit Universum \mathbb{R} und Interpretationen $c^{\mathcal{Z}_2}=-\sqrt{2}$ sowie $<^{\mathcal{Z}_2}$ als die übliche lineare Ordnung. Zeige, dass \mathcal{R}_1 und \mathcal{R}_2 isomorphe \mathcal{L} -Strukturen sind.
- (b) Sei d ein weiteres Konstantenzeichen. Wir betrachten nun die Sprache $\mathcal{L}' = L \cup \{d\}$ und erweitern die obigen beiden Strukturen zu \mathcal{L}' -Strukturen \mathcal{R}'_1 und \mathcal{R}'_2 , indem wir d wie folgt interpretieren:

$$d^{\mathcal{R}_1'} = 0 = d^{\mathcal{R}_2'}.$$

Sind \mathcal{R}'_1 und \mathcal{R}'_2 isomorphe \mathcal{L}' -Strukturen?

a)
$$\mathcal{L} = \{ c, c \}$$
 $F: \mathcal{R}_1 \rightarrow \mathcal{R}_2 \text{ ist bijetchiv} \quad c=> a < b$
 $\times \mapsto (\pi - \sqrt{2}) - \times \quad c=> F(a) > F(b)$
 $f(c^2 - 1) = f(\pi) = -\sqrt{2} \quad c=> F(b) \quad c^{2} = F(a) \quad v$
 $\Rightarrow \mathcal{R}_1 \simeq \mathcal{R}_2$