

FIGURE 1

GGGGCTTCGGCGCCAGCGGCCAGCGCTAGTCGGTCTGGTAAGGATTACAAAAGGTGCAGGTATG
AGCAGGTCTGAAGACTAACATTGTGAAGTTGTAAACAGAAAACCTGTTAGAAATGTGGTGGT
TTCAGCAAGGCCTCAGTTCCCTCAGCCCTGTAATTGGACATCTGCTGCTTCATATTT
TCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTACCTTATATCAGTGACACTGG
TACAGTAGCTCCAGAAAAATGCTTATTGGGCAATGCTAAATATTGCGGCAGTTTATGCATTG
CTACCATTATGTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAAGAGAAACGTTATCATCAA
TTAAACAAGGCTGGCCTTGTACTTGAATACTGAGTTGTTAGGACTTCTATTGTCGAAACTT
CCAGAAAACAACCCCTTTGCTGCACATGTAAGTGGAGCTGTGCTTACCTTGGTATGGCTCAT
TATATATGTTGTCAGACCATCCTTCTACCAAATGCAGCCAAAATCCATGGCAAACAAGTC
TTCTGGATCAGACTGTTGGTTATCTGGTGTGGAGTAAGTCACCTAGCATGCTGACTTGCTC
ATCAGTTTGACAGTGGCAATTGGGACTGATTTAGAACAGAAACTCCATTGGAACCCCGAGG
ACAAAGGTTATGTGCTTCACATGATCACTACTGCAGCAGAATGGCTATGTCATTTCTTCTT
GGTTTCTGACTTACATTGCTGATTTCAAGAAAATTCTTACGGGTGGAAGCCAATTAC
TGGATTAACCCCTATGACACTGCACCTGCCCTATTAACAATGAACGAACACGGCTACTTCCA
GAGATATTGATGAAAGGATAAAATTTCTGTAATGATTATGATTCTCAGGGATTGGGAAAGG
TTCACAGAAGTTGCTTATTCTCTGAAATTCAACCACTTAATCAAGGCTGACAGTAACACT
GATGAATGCTGATAATCAGGAAACATGAAAGAAGCCATTGATAGATTATTCTAAAGGATATCAT
CAAGAAGACTATTAACACCTATGCCTATACCTTATCTCAGAAAATAAGTCAAAAGACT
ATG

FIGURE 2

<subunit 1 of 1, 266 aa, 1 stop

<MW: 29766, pI: 8.39, NX(S/T): 0

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNIAAV
LCIATIYVRYKQVHALSPEENVIIKLNKAGLVLGILSCLGLSIVANFQKTLFAAHVSGAVLTFG
MGSLYMFVQTILSYQMOPKIHGKQFWIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDLHQKLHW
NPEDKGYVLHMITTAAEWSMSFSFFGFLTYIRDQKISLRVEANLHGLTLYDTAPCPINNERTR
LLSRDI

Important features:

Type II transmembrane domain:

amino acids 13-33

Other Transmembrane domains:

amino acids 54-73, 94-113, 160-180, 122-141

N-myristylation sites.

amino acids 57-63, 95-101, 99-105, 124-130, 183-189

FIGURE 3

CGGACGCGTGGCGGACCGTGGGGAGAGCCGCAGTCGGCTGCAGCACCTGGAGAAGGCAGACC
GTGTAGGGGGCCTGTGGCCCCAGCGTGTGGCTGGGAGTGGAAAGTGGAGGCAGGAGCCTC
CTTACACTTCGCCATGAGTTCTCATCGACTCCAGCATCATGATTACCTCCAGATACTATTTTG
GATTTGGGTGGCTTCTTATGGCCAATTGTTAAAGACTATGAGATACTGAGTATGTTGACAG
GTGATCTTCTCGTGTACGTTGCATTTCACCATGTTGAGCTCATCATCTTGAAATCTTAGG
AGTATTGAATAGCAGCTCCGTTATTTCACTGGAAAATGAACCTGTGTAAATTGCTGATCTGG
TTTCATGGTGCCTTACATGGCTATTGTTATTGAGCAATATCCGACTACTGCATAAACAGA
CTGCTTTTCCTGTCTTATGGCTGACCTTATGTTATGTTCTGGAAACTAGGAGATCCCTTCC
CATTCTCAGCCAAAACATGGATCTTATCCATAGAACAGCTCATGCCGGTTGGTGTGATTGGAG
TGACTCTCATGGCTTCTTCTGGATTGGTGTCACTGCCATACACTTACATGTCTTACTTC
CTCAGGAATGTGACTGACACGGATTCTAGCCCTGGAACGGGACTGCTGCAAACCATGGATATGAT
CATAAAGAAAAAGAAAAGGATGGCAATGGCACGGAGAACATGTTCCAGAAGGGGAAAGTGCATAACA
AACCATCAGGTTCTGGGAATGATAAAAAGTGTACCACTTCAGCATCAGGAAGTGAAGAAATCTTA
CTTATTCAACAGGAAGTGGATGTTGGAGAATTAAGCAGGAGCTTTCTGGAAACAGCTGATCT
ATATGCTACCAAGGAGAGAATAGAATACTCCAAAACCTCAAGGGAAATATTTAATTCTGGTT
ACTTTTCTTATTTACTGTGTTGGAAAATTTCATGGCTACCATCAATATTGTTTGATCGAGTT
GGGAAAACGGATCTGTCAACAGAGGATTGAGATCACTGTGAATTATCTGGAAATCCAATTGATGT
GAAGTTTGGTCCAACACATTCTCTCATCTGTGGAGAATCATCGTCACATCCATCAGAGGAT
TGCTGATCACTTACCAAGTTCTTATGCCATCTAGCAGTAAGTCTCCAATGTCATTGCTCTG
CTATTAGCACAGATAATGGCATGTACTTGTCTCTGTGCTGATCCGAATGAGTATGCCTT
AGAATACCGCACCATATACTGAAGTCCTGGAGAACTGCAGTTCAACTTCTATCACCCTGGTTG
ATGTGATCTCCTGGTCAGCGCTCTCTACGATACTCTCTCATTTGGCTCACAAACAGGCACCA
GAGAAGCAAATGGCACTGAACTTAAGCCTACTACAGACTGTTAGAGGCCAGTGGTTCAAATT
GATATAAGAGGGGGAAAATGGAACCAGGGCTGACATTATAAACAAACAAATGCTATGGTAGC
ATTTTACCTTCATAGCATACTCTTCCCCGTAGGTGATACTATGACCATGAGTAGCATCAGCCAG
AACATGAGAGGGAGAGAATCAACTCAAGACAATACTCAGCAGAGAGCATCCGTGTGGATATGAGGCTGG
TGTAGAGGCGGAGAGGAGCCAAGAAACTAAAGGTGAAAATACACTGGAACCTGGCAAGACATGT
CTATGGTAGCTGAGCCAACACGTAGGATTCCGTTAAGGTTCACATGGAAAGGTTAGCTT
CCTTGAGATTGACTCATTAAATCAGAGACTGTAACAAAAAAAAAAAAAGGGCGCCGCG
ACTCTAGAGTCGACCTGCAGAAGCTTGGCCCATGGCCAACCTGTTATTGCAGCTATAATG

FIGURE 4

MSFLIDSSIMITSQLFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVDFAFSCTMFELIIFEILGV
LNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTMYFFWKLGD
FPILSPKGILSIEQLISRVGIVGVTLMALLSGFGAVNCPTYMSYFLRNVTDIDILALERRLLQ
TMDMIISKKKRMMARRTMFQKGEVHNKPSPFWGMIKSVTTSASGSENLTLIQQEVDALEELSRO
LFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGTDPVTRGIEI
TVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNVIVLLAQMIMGY
FVSSVLLIRMSMPLERYRTIITEVLGELOQNFYHRWFDVIFLVSALSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398,
425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

FIGURE 5

AGCAGGGAAATCCGGATGTCTCGGTTATGAAGTGGAGCAGTGAGTGTGAGCCTCAACATAGTTCC
AGAACTCTCATCCGACTAGTTATTGAGCATCTGCCTCTCATATCACCACTGGCCATCTGAGGT
GTTTCCCTGGCTCTGAAGGGTAGGCACGATGGCAGGTGCTCAGGCTGGTGTGCTTCTCACT
TCCATCTGGACCACGAGGCTCTGGTCCAAGGCTTTGCTGAGAAGAGCTTCCATCCAGGT
GTCATGCAGAATTATGGGATCACCCCTGTGAGCAAAAAGGCAACCCAGCAGCTGAATTTCACAG
AAGCTAAGGAGGCCCTGTAGGCTGCTGGACTAACGTTGGCCGGCAAGGACCAAGTTGAAACAGCC
TTGAAAGCTAGCTTGAAACTTGCAGCTATGGCTGGGTGGAGATGGATTGTGCTCATCTTAG
GATTAGCCCAACCCCAAGTGTGGAAAAATGGGTGGGTCTGATTGGAAAGGTTCCAGTGA
GCCGACAGTTGCAGCCTATTGTTACAACCTCATCTGATACTTGGACTAACCTGTGATTCCAGAA
ATTATCACCAACAAAGATCCCATTCAACACTCAAACCTGCAACACAAACAACAGAATTATTGT
CACTGACAGTACCTACTCGGTGGCATCCCCACTCTACAATACCTGCCCTACTACTCCTC
CTGCTCCAGCTTCCACTTCTATTCCACGGAGAAAAAAATTGATTGTGTCACAGAAGTTTATG
GAAACTAGCACCAGTCTACAGAAACTGAACCATTTGTGAAAATAAGCAGCATTCAAGAATGA
AGCTGCTGGTTGGAGGTGTCCCCACGGCTCTGCTAGTGCTCTCCCTTCTGGTCTG
CAGCTGGCTTGGATTGCTATGTCAAAAGGTATGTCAAGGCCCTCCCTTACAACACAAGAAT
CAGCAGAAGGAAATGATCGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCTAA
TGAGGAATCAAAGAAAATGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAACACTACCGTGC
GATGCCCTGGAAAGCTGAAGTTAGATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTCTT
CATGCTCCCTACCCCTGCCAGCTGGGAAATCAAAGGCCAAAGAACCAAAGAACAGTCCA
CCCTGGTTCTTAACGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCAACAAAGAGAAT
GCCCTCTCTTATTGTAACCCCTGTCTGGATCCTATCCTCTACCTCAAAGCTCCACGCCCT
TTCTAGCCTGGCTATGCTTAATAATATCCCCTGGAGAAAGGAGTTTGCAAAGTGCAGGAC
CTAAAACATCTCATCGTATCCAGTGGTAAAAGGCCCTGGCTGTGAGGCTAGGTGGTTG
AAAGCCAAGGAGTCACTGAGACCAAGGCTTCTACTGATTCCGAGCTCAGACCCCTTCTCA
GCTCTGAAAGAGAACACGTATCCACCTGACATGTCCTCTGAGGCCGTAAGAGCAAAGAAT
GGCAGAAAAGTTAGCCCTGAAAGCCATGGAGATTCTCATAAACTTGAGACCTAATCTGTAAA
GCTAAAATAAGAAATAGAACACAGGCTGAGGATACGACAGTACACTGTCAGCAGGACTGTAAAC
ACAGACAGGGTCAAAGTGTCTCTGAACACATTGAGTGGAAACTCTGTTAGAACACACACA
CTTACTTTCTGGTCTCTACCACTGCTGATATTCTCTGAGAAATATACTTTACAAGTAACA
AAAATAAAAATCTTATAAAATTCTATTCTGAGTACAGAAATGATTACTAAGGAAGGATT
ACTCAGTAATTGTTAAAAAGTAATAAAATTCAACAAACATTGCTGAATAGCTACTATATGTC
AAAGTGTGCAAGGTATTACACTCTGTAATTGAATATTATTCTCAAAAATTGCACATAGTAG
AACGCTATCTGGGAAGCTATTTCAGTTGATATTCTAGCTTATCTACTTCAAACACTAAT
TTTATTCTGAGACTAATCTTATTCAATTCTCTAATATGCCAACATTATAACCTTAATT
TATTATAACACCTAACAGAAGTACATTGTTACCTATATACCAAGCACATTAAAGTGC
ATTAACAAATGTATCACTAGCCCTCTTTCAACAAAGAAGGACTGAGAGATGCAGAAATATT
TGTGACAAAAAATTAAAGCATTTAGAAAACCTT

FIGURE 6

MARCFSLVLLLTSIWTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNTEAKEACRLLG
LSLAGKDQVETALKASFETCSYGVGDGFVVISRISPNNPKCGKNGVGVLIWKPVSQFAAYCYN
SSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTPPAPASTSIPR
RKKLICVTEVMETSTMSTETEPFVENKAASKNEAAGFGGVPALLVLALLFFGAAAGLGFCYVK
RYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKTDKNPEESKSPSKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

FIGURE 7

CGCCGCGCTCCCGCACCGCGGGCCGCCACCGCGCCGCTCCGCATCTGCACCCGAGCCCCGG
GGCCTCCGGCGGGAGCGAGCAGATCCAGTCCGGCCCGAGCGAACCTCGTCCAGTCGGGGCG
CGGCTGCGGGCGCAGAGCGGAGATCGAGCGGCTTGGGCCACCCCTGCTGTGCTGCTGGCG
CGGCGGTCCCCACGGCCCCCGGCCGCTCCGACGGCACCTCGGCTCCAGTCAGCCCAGGGCG
GCTCTCAGTACCCGAGGAGGCCACCCCTCAATGAGATGTTCCGAGGGTTGAGGAACGTGAT
GGAGGACACGCAGCACAAATTGCGCAGCGGGTGAAGAGATGGAGGCAGAAGAAGCTGCTGTA
AAGCATCATCAGAAAGTGAACCTGGAAACTAACCTCCAGCTATACAATGAGACCAACACAGAC
ACGAAGGTTGAGAAATAATACCATCCATGTGACCGAGAAATTACAAGATAACCAACACAGAC
TGGACAAATGGTCTTTCAGAGACAGTTACACATCTGTGGAGACGAAGAAGGCAGAAGGAGCC
ACGAGTGCATCATCGACGAGGACTGTGGGCCAGCATGTAUTGCCAGTTGCCAGCTTCCAGTAC
ACCTGCCAGCCATGCCGGGGCCAGAGGATGCTCTGCACCCGGGACAGTGAGTGTGAGGACCA
GCTGTGTCTGGGGTCACTGACCAAAATGGCCACCAAGGGGAGCAATGGGACCATCTGTGACA
ACCAGAGGGACTGCCAGCCGGGCTGTGCTGTGCTTCCAGAGAGGCCGCTGTGTTCCCTGTG
ACACCCCTGCCGTGGAGGGCGAGCTTGCATGACCCGCCAGCCGGCTCTGGACCTCATCAC
CTGGGAGCTAGAGCCTGATGGAGCCTGGACCGATGCCCTGTGCCAGTGGCTCCCTGCGCAGC
CCCACAGCCACAGCCTGGTGTATGAGTGAAGGTTGAGGAGCTGAGGAGGAGGAGGAGGAGG
GAGATCTGCTGCCAGAGAGGGTCCCCGATGAGTGAAGGTTGAGGAGCTGAGGAGGAGGAGG
CCAGGGACTGGAGGACCTGGAGGGCCTGACTGAAGAGATGGCCTGGGGAGGCCGCTGCGCTG
CCGCCGCTGCACTGCTGGGAGGGAGAGAATTTAGACTGGACCAGGCTGTGGTAGATGTGCAA
TAGAAAATAGCTAATTATTTCCCCAGGTGTGCTTAGGGCTGGGCTGACCAGGCTTCTCCTA
CATCTCTCCCAGTAAGTTCCCTCTGCTTGACAGCATGAGGTGTGCAATTGTTCACT
CCCCCAGGCTGTTCTCCAGGCTTACAGTCTGGCTGGGAGAGTCAGGCAGGGTAAACTGCA
GGAGCAGTTGCCACCCCTGTCAGATTATTGGCTGCTTGCCTTACCAAGTGGCAGACAGCCG
TTTGTCTACATGGCTTGTATAATTGTTGAGGGAGGAGATGGAAACAATGTTGAGTCTCCCTC
TGATTGGTTGGGAAATGTGGAGAAGAGTGCCTGTTGCAAACATCAACCTGGAAAAATG
CAACAAATGAATTTCACGCACTTCTTCATGGCATAGGTAAGCTGTGCTTCAGCTGTTGC
AGATGAAATGTTCTGTTACCCCTGCATTACATGTGTTATTCACTCCAGCAGTGTGCTCAGCTCC
TACCTCTGTGCCAGGGCAGCATTTCATATCCAAGATAATTCCCTCTCAGCACAGCCTGGG
AGGGGGCATTGTTCTCTCGTCATCAGGGATCTCAGAGGCTCAGAGACTGCAAGCTGCTGCC
CAAGTCACACAGCTAGTGAAGACCAGAGCAGTTCATCTGGTTGACTCTAAGCTCAGTGCCT
CTCCACTACCCACACCAGCCTTGGGCCACAAAAGTGCCTCCAAAAGGAAGGGAGAATGGGAT
TTTCCTGAGGCATGCACATCTGGAAATTAGGTCAAACATAATTCTCACATCCCTCTAAAAGTAAA
CTACTGTTAGGAACAGCAGTGTCTCACAGTGTGGGAGCCGTCTTAATGAAGACAATGAT
ATTGACACTGTCCTTGGCAGTTGCAATTAGTAACCTTGAAAGGTATATGACTGAGCGTAGCA
TACAGGTTAACCTGCAGAAACAGTACTTAGGTAAATTGTTAGGGCGAGGATTATAATGAAATTG
AAAATCACTTAGCAGCAACTGAAGACAATTATCAACCACTGGAGAAAATCAAACCGAGCAGGG
TGTGTGAAACATGGTTGTAATATGCGACTGCGAACACTGAACACTCACGCCACTCCACAAATGAT
TTTCAGGTGTATGGACTGTTGCCACCATGTATTCACTCCAGAGTCTTAAAGTTAAAGTTGCA
CATGATTGTATAAGCATGCTTCTTGTGAGTTAAATTATGTATAAACATAAGTTGCATTAGAA
ATCAAGCATAAAATCACTCAACTGCAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 8

MQRLGATLLCLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQHKL
RSAVEEMEAAAAKASSEVNLANLPPSYHNETNTDKVGNNTIHVRREIHKITNNQTGQMFSE
TVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRQRMCLTRDSECCGDQLCVWGHCT
TKMATRGSGNTICDNQRDCQPGLCCAFQRGLFPVCTPLPVEGELCHDPASRLLLITWELEPDG
ALDRCPASCAGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEVGSFMEEVRQELEDLE
RSLTEEMALGEPAAAAALLGSEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316,
327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

FIGURE 9

CGGACGCGTGGCGGACCGTGGGGCTGTGAGAAAGGCCAATAAACATCATGCAACCCAC
GGCCCACCTTGTGAACTCCTCGCCAGGGCTGATGTGCGTCTCCAGGGCTACTCATCCAAG
GCCTAATCCAACGTTCTGTCTCAATCTGCAAATCTATGGGTCTGGGCTCTCTGGACCCTT
AACTGGGTACTGGCCCTGGCCAATGCGTCCTCGCTGGAGCCTTGCCTCCTACTGGCCTT
CCACAAGCCCCAGGACATCCCTACCTCCCCTTAATCTGCCTCATCCGCACACTCCGTTACC
ACACTGGGTCAATTGGCATTGGAGCCCTACCTGACCTTGCAAGATAGCCCAGGTACCTTG
GAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCTGTAGCCCCTGCATCATGTGCTGTTT
CAAGTGCCTGGTGTCTGGAAAAATTATCAAGTCTAAACCGCAATGCATACATCATGA
TCGCCATCTACGGGAAGAATTCTGTCTCAGCCAAAATGCGTCATGCTACTCATGCGAAC
ATTGTCAAGGTGGTCGTCTGGACAAAGTCACAGACCTGCTGCTGTTCTTGGGAAGCTGCTGGT
GGTCGGAGGCGTGGGGCTCTGCTTCTTCTCCGGTCGATCCGGGCTGGTAAAG
ACTTTAAGAGCCCCCACCTCAACTATTACTGGCTGCCATCATGACCTCCATCTGGGGCCTAT
GTCATGCCAGCGGCTCTCAGCTTCCGGATGTGTGGACACGCTCTCCTGCTTCC
GGAAGACCTGGAGCGGAACAACGGCTCCCTGGACCGGCTACTACATGTCAAAGAGCCTCTAA
AGATTCTGGCAAGAAGAACGAGGCGCCCCGGACAACAAGAAGAGGAAGAAGTGAAGCTCCGG
CCCTGATCCAGGACTGCACCCCACCCCAACGTCCAGGCATCCAACCTCACTTCGCTTACAGGT
CTCCATTTGTGGTAAAAAAAGGTTTAGGCCAGGCGCCGTGGCTACGCCTGTAATCCAACACT
TTGAGAGGCTGAGGCCGGCGGATCACCTGAGTCAGGAGCTCGAGACCAGCCTGCCAACATGGTG
AAACCTCCGTCTTATTAAAAACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCACTCCCA
GCTACTCGGGAGGCTGAGGCAGGAGAACGCTGAACCCGGAGGCAGAGGTTGCAGTGAGCCGA
GATCGGCCACTGCACTCCAACCTGGGTGACAGACTCTGTCTCCAAAACAAAACAAAACAAA
AAGATTTATTAAAGATATTGTAACTC

FIGURE 10

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKG LIQRSVFNLQIYGVGLFWTL
NWVLALGQCVLAGAFASFYWAFHKPQDIPFPLISAFIRTLRYHTGSLAFGALILTLVQIARVIL
EYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLRNAYIMIAIYGKNFCVSAKNAFMILLMRN
IVRVVVLDKVTDLLLFFGKLLVVGVGVLSSFFFSGRI PGLGKDFKSPHLYWLPIMTSILGAY
VIASGFFSVFGMCVDTLFLCFLEDLERNNNGSLDRPYYMSKSLLKILGKKNEAPPDNKKRKK

Important features:

Transmembrane domains:

amino acids 57-80 (type II), 110-126, 215-231, 254-274

N-glycosylation sites.

amino acids 16-20, 27-31, 289-293

Hypothetical YBR002c family proteins.

amino acids 276-288

Ammonium transporters proteins.

amino acids 204-231

N-myristoylation sites.

amino acids 60-66, 78-84

Amidation site.

amino acids 306-310

FIGURE 11

GCCCCGGCGCCGGCGCCGGCGCCCAGGCCGGGAGCCACCGCCATGGGGGCCTGCCTGGGAGCCTGC
TCCCTGCTCAGCTGGCGTCCTGCCTCTGCGCTCTGCCCCCTGCATCTGTGCAGCTGCTGCCCGC
CAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTCCTCTTCCCTGGGGTGCTGGTGTCCA
TCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTACAAGCTGCCCTGGGTGTGAGGAGGGGCC
GGGATCCCCACCGCTGCAGGCCACATCGACTGTGGCTCCCTGCTGGCTACCGCGCTGTACCG
CATGTGCTCGCCACGGCGGCCTCTTCTTACCCCTGCTCATGCTCGGTGAGCAGCA
GCCGGGACCCCCGGGCTGCCATCCAGAATGGTTTGGTTCTTAAGTCTGATCCTGGTGGCCTC
ACCGTGGGTGCCTTACATCCCTGACGGCTCCCTCACCAACATCTGGTCTACTTCGGCGTCGTGGG
CTCCTTCCCTTCATCCTCATCCAGCTGGTGTGCTCATCGACTTGCACACTCTGGAAACCAGCGGT
GGCTGGGCAAGGCCGAGGAGTGCGATTCCCGCTGGTACGCAGGCCCTTCTTCACTCCTC
TTCTACTTGCTGTCGATCGCGCCGTGGCGCTGATGTTCATGTAACACTGAGGCCAGCGGCTGCCA
CGAGGGCAAGGTCTTCATCAGCCTAACCTCACCTCTGTGTCTGCGTGTCCATCGCTGCTGTCC
CCAAGGTCCAGGACGCCAGCCCCAACCTGGGTCTGCTGCAGGCCCTCGGTACACCCATG
TTTGTACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCAACCCCCATTGCCAACCCAGCT
GGGCAACGAGACAGTTGGCAGGCCCGAGGGCTATGAGACCCAGTGGTGGGATGCCCGAGCATTG
TGGGCCCTCATCATCTCCCTCTGTGCACCCCTTCATCAGTCTGCGCTCTCAGACCAACCGGCAGGTG
AACAGCCTGATGCAACGGAGGAGTGCACCTATGCTAGACGCCACACAGCAGCAGCAGCAG
GGCAGCCTGTGAGGCCGGCCTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCC
ACTTCTGCCCTGGTGTGGCTCACTGCACGTACATGATGACGCTACCAACTGGTACAAGCCGGTGAG
ACCCGGAAGATGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGAGGGCTGCT
CCTCTACCTGTGGACCCCTGGTAGCCCCACTCCTCTGCCAACCTGGTGCCTCTGGCTCGGTACAGCC
CAGCCTGCCATCTGGTGCCTCTGCCAACCTGGTGCCTCTGGCTCGGTACAGCCACCTGCC
CCCCACACCAATCAGGCCAGGCTGAGCCCCAACCCCTGCCAACCTGGCTCCAGGACCTGCC
CTTCTAGTCGTAGTGCCTTCAGGGTCCGAGGAGCATCAGGCTCTGCAGAGCCCCATCCCCCGCCAC
ACCCACACGGTGGAGGCTGCCCTTCCTCCCTCCCTGGTGTGGCCATACAGCATCTGGATGAA
AGGGCTCCCTGTCCCTCAGGCTCCACGGGAGCGGGGCTGCTGGAGAGAGCGGGGAACTCCCAC
TGGGGCATCCGGCACTGAAGCCCTGGTGTTCCTGGTCACGTCCCCCAGGGACCCCTGCC
GACTTCGTGCCTTACTGAGTCTAAGACTTTCTAATAACAAAGCCAGTGCCTGTAAAAAAA

FIGURE 12

MGACLGACSLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVESQL
YKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFTLLMLCVSSSRDPRAAIQ
NGFWFFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQVLVLLIDFAHAWNQRWLGKAE
ECDSRAWYAGLFFFLLFYLLSIAAVALMFYYTEPSGCHEGKVFISLNLTFCVCVSIAAVLPKV
QDAQPNSGLLQASVITLYTMFTWSALSSIPEQKCNPHLPTQLGNETVVAGPEGYETQWWDAPSI
VGLIIFLLCFLFISLRSSDHRQVNSLMQTECAPPMLDATQQQQQQVAACEGRAFDNEQDGVTYSY
SFFHFCLVLASLHVMMTLTNWYKPGTRKMISTWTAVWVKICASWAGLLLWTLVAPLLLNRD
FS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257,
272-283, 324-340, 391-406, 428-444

FIGURE 13

CGGGCCAGCCTGGGGCGGCCAGGAACCACCCGTTAAGGTGTCTCTCTTAGGGATGGTGA
GGTTGGAAAAAGACTCCTGTAACCCCTCCTCCAGGATGAACCACCTGCCAGAAGACATGGAGAACG
CTCTCACCGGGAGCCAGAGCTCCATGCTCTGCAGAATATCCATTCCATCAACCCCACACAA
CTCATGCCAGGATTGAGTCCTATGAAGGAAGGGAAAAGAAAGGCATATCTGATGTCAGGAGGAC
TTTCTGTTGTTGTCACCTTGACCTCTTATTGTAACATTACTGTGGATAATAGAGTTAAATG
TGAATGGAGGCATTGAGAACACATTAGAGAAGGAGGTGATGCAGTATGACTACTATTCTTCATAT
TTTGATATATTCTCTGGCAGTTTCGATTTAAAGTGTAAACTTGCATATGCTGTCAG
ACTGCGCCATTGGTGGCAATAGCGTTGACAACGGCAGTGACCAGTGCCTTTACTAGCAAAG
TGATCCTTCGAAGCTTTCTCTCAAGGGGCTTTGGCATGTGCTGCCATCATTTCATTTCATC
CTTGCCTGGATTGAGACGTGGTCCTGGATTCAAAGTGTACCTCAAGAACAGAGAAGAAAA
CAGACTCCTGATAGTCAGGATGCTTCAGAGAGGGCAGCACTTACCTGGTGGCTTCTGATG
GTCAGTTTATTCCCCCTCTGAATCCGAAGCAGGATCTGAAGAACGCTGAAGAAAAACAGGACAGT
GAGAAACCACTTAGAACATGATCACTTTGTTAAATGTGAAAAACCCACAGAACAGTC
ATCGAGGCAAAAGAGGCAGGCAGTGGAGTCTCCCTGTCGACAGTAAAGTTGAATGGTGAAGTC
CACTGCTGGTTTATTGAACAGCTAAAGATTATTGTAATACCTCACAAACGTTGTAC
CATATCCATGCACATTAGTGCCTGCCTGGCTGGTAAGGTAATGTCATGATTCACTCTCT
TCAGTGAGACTGAGCCTGATGTGTTAACAAATAGGTGAAGAACAGTCTGTGCTGTATTCTAAC
AAAAGACTTAATATATTGAAGTAACACTTTTTAGTAAGCAAGAACCTTTTATTCAATTCAAC
AGAATGGAATTTTTGTTCATGTCAGATTATTTGTTATTCTTTAACACTCTACATT
TCCCTGTTTTAACATGCACATGTGCTTTGACAGTTAAAAAGTGTAAATAAAACTG
ACATGTCAATGTGGCTAGTTTATTCTGTTGCATTATGTGTATGGCTGAAGTGTGGA
CTTGCAAAAGGGGAAGAAAGGAATTGCGAACATGTAAAATGTCACCAGACATTGTATTATT
TTATCATGAAATCATGTTCTGATTGTTCTGAAATGTTCTAAATACTCTTATTGAAATGC
ACAAAATGACTTAAACCATTCAATCATGTTCTTGCAGCCAATTCAATTAAAATGAA
CTAAATTAAAAA

FIGURE 14

MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVTFDLLF
VTLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLRHWAIALT
AVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPOEAEENRLLIVQDASER
AALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 54-72, 100-118, 130-144, 146-166

N-myristoylation sites.

amino acids 14-20, 78-84, 79-85, 202-208, 217-223

FIGURE 15

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCCCTGGGCCGACCCGCCAGGAAAGACTGAGG
CCGC GG CCTGCCCGGGCTCCCTGCCGCCGCCCTCCCGACAGAAGATGTGCTCAG
GGTCCCCTCTGCTGCTGCCGCTGCTCTGCTACTGGCCCTGGGCCCTGGGTGCAAGGGCTGCCCAT
CCGGCTGCCAGTGCAGCCACAGACAGTCTTCTGCACTGCCGCCAGGGGACCACGGTGCCC
CGAGACGTGCCACCCGACACGGTGGGCTGTACGTCTTGAGAACGGCATCACCATGCTGACGC
AGGCAGCTTGCCTGGCTGCCGGCTGAGCTCCTGGACCTGTACAGAACCGAGATGCCAGCC
TGCCCAGC GG GTCTTCCAGCACTGCCAACCTCAGAACCTGGACCTGACGCCAACAGGCTG
CATGAATACCAATGAGACCTCCGTGGCTGCGGCCCTCGAGGCCCTACCTGGCAAGAA
CCGCATCCGCCACATCCAGCTGGTGCCCTGACACGCTGACCGCCTCTGGAGCTCAAGCTGC
AGGACAACGAGCTGCCGGACTGCCCTGGCTGCGCTGCCGCCCTGCTGCTGCTGGACCTCAGC
CACAAACAGCCTCTGGCCCTGGAGCCCGCATCTGGACACTGCCAACGTGGAGGCCCTGCCGCT
GGCTGGCTGGGGCTGCAAGCAGCTGGACGAGGGGCTCTCAGCCGCTTGCACACCTCCACGACC
TGGATGTGTCCGACAACCAGCTGGAGCGAGTGCCACCTGTATCCGAGGCCCTCCGGGGCTGACG
CGCCTGCCGCTGGCGGCAACACCCGATTGCCAGCTGCCGCCAGGCCCTGGCCGGCTGGC
TGCCCTGCCAGGAGCTGGATGTGAGCAACCTAAGCCTGCCAGGCCCTGCCGCCCTCGGGCC
TCTTCCCCCGCTGCCGCTGCTGGCAGCTGCCGCAACCCCTCAACTGCGTGTGCCCTGAGC
TGGTTGGCCCTGGGTGCGCGAGAGCCACGTACACTGCCAGCCCTGAGGAGACGCCGTGCCA
CTTCCCCCCAAGAACGCTGCCGGCTGCTCTGGAGCTTGACTACGCCACTTGGCTGCCAG
CCACCACCACGCCACAGTGCCACCCACGAGGCCCTGGTGCAGGGAGCCACGCCCTTGCT
TCTAGCTTGGCTCTACCTGGCTTAGCCCCACAGGCCGGCAACTGAGGCCAGGCCCTGCC
CACTGCCCAACCGACTGTAGGCCCTGTCCTCCAGGCCAGACTGCCACCGTCCACTGCC
ATGGGGCACATGCCACCTGGGACACGGACCCACTGGCTGCTTGCTGCCAGGCTTCAAG
GCCCTGACTGTGAGAGCCAGATGGGCAGGGACACGCCAGGCCCTACACCGTACGCCAG
GCCACCACGGTCCCTGACCCCTGGCATGCCGGTGAAGGCCACCTGCCGTGGCTGCC
AGCGCTACCTCCAGGGAGCTCCGTGCAGCAGCTGCCCTCACCTATGCCAACCTATCG
GGCCCTGATAAGCGCTGGTGAAGCTGCCACTGCTGCCCTGCCGTGAGTACACGGTCA
GCTGCCGCCAACGCCACTTACTCCGTCTGTGTCATGCCCTTGGGCCGGGCGGGTGC
GCGAGGAGGCCCTGGGGGAGGCCATACACCCCAAGCCGCTCCACTCCAACCACGCC
CAGGCCGCCAGGCCACCTGCCGCTCCTATTGCCGCCCTGGCGCGGTGCTCTGCC
GCTGCCGTGGTGGGGCAGCTACTGTGTCGGCGGGGCCATGGCAGCAGGCC
ACAAAGGGCAGGTGGGGCAGGGGCTGGGCCCTGGAACCTGGAGGGAGTGAAGGT
CCAGGCCGAAGGCAACAGAGGGCGGTGGAGAGGCCCTGCCAGGGCTGAGTGTGAG
ACTCATGGCTTCCCTGGACCTCCAGTCACCCCTCCACGCAAAGCCCTACATCTAAGCCA
GAGAGAGACAGGGCAGCTGGGGGGCTCAGCCAGTGAAGATGCCAGGCCCTCCTG
ACACCACTGAAGTTCTCAGTCCCAACCTGGGGATGTGTCAGACAGGGCTGTG
GGGCCCTGTTCCCTGGACCTGGCTCCTCATCTGTGAGATGCTGTGGCCAGCTG
CTAACGTCCTCCAGAACCGAGTGCCTATGAGGACAGTGTGCCCTGCC
CCTGGGCACGGCGGGCCCTGCCATGTGCTGGTAACGCCATGCC
TCCAGGGGCCACCTGGGGGCCAGTGAAGGAAGCTCCGGAAAGAGCAGAGGG
GGCTGTGTGACTCTAGTCTTGGCCCCAGGAAGCGAACAAAAGAAACTGG
TTTAGGAACATGTTTGTCTTTAAATATATATTTATAAGAGATC
GGGAAGATGTTTCAAAACTCAGAGACAAGGACTTGGTTTGTAAG
GGCTTTGTAAGAAAAAATAAAAGATGAAGTGTAAA

FIGURE 16

MCSRVPLLLPLLLALGPGVQGCPSCQCSPQTVFCTARQGTTVPRDVPPDTVGLYVFENGIT
MLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLRRLERLY
LGKNRIRHIQPGAFDTLDRLLKLQDNELRALPPLRPRLLLLDLHSNSLLALEPGILDGTANVE
ALRLAGLGLQQLDEGLFSRLRNLDLVDSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLPEDL
AGLAALQELDVSNLSQLPGDLSGLFPRLLAARNPFCNCVCPLSWFGPWVRESHVTLASPEE
TRCHFPKNAQRLLLEDYADFGCPATTTATVPTTRPVREPTALSSSLAPTWLSPTAPATEAP
SPPSTAPPTVGPVPPQPDCCPSTCLNGGTCHLGTRHHACLCPEGFTGLYCESQMGOGTRPSPTP
VTPRPPRSLTGLIEPVSPSTSRLVGLQRYLQGSSVQLRSRLTYRNLSGPDKRLVTLRLPASIAEY
TVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPAVHSNHAPVTQAREGNLPLLIAPALAAV
LLAALAAVGAAYCVRGRAMAAAQDKGQVGPAGPLELEGVKVPLEPGPKATEGGEALPSGE
CEVPLMGFPGPGLQSPHLAKPYI

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 579-599

EGF-like domain cysteine pattern signature.

amino acids 430-442

Leucine zipper pattern.

amino acids 197-219, 269-291

N-glycosylation sites.

amino acids 101-105, 117-121, 273-277, 500-504, 528-532

Tyrosine kinase phosphorylation sites.

amino acids 124-131, 337-345

N-myristoylation sites.

amino acids 23-29, 27-33, 70-76, 142-148, 187-193, 348-354,

594-600, 640-646

FIGURE 17

GCAGCGCGAGGCGCGGTGGTGGCTGAGTCGTGGCAGAGCGAAGGCACAGCTCATGCG
GGTCCGGATAGGGCTGACGCTGCTGTGCGGTGCTGAGCTTGGCCTGGCGTCCTCGG
ATGAAGAAGGCAGCAGGATGAATCCTAGATTCCAAGACTACTTGACATCAGATGAGTCAGTA
AAGGACCATACTACTGCAGGCAGAGTAGTTGCTGGTCAAATATTCTTGATTCAAAGAAATCTGA
ATTAGAACCTCTATTCAAGAACAGGAAAGACAGCCTCAAGAGCCAAGAGGGGGAAAGTGTACAG
AAGATATCAGCTTCTAGAGTCCTCAAATCCAGAAAACAAGGACTATGAAGAGCCAAGAAAGTA
CGGAAACCAGCTTGACGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTTCCCTTCT
TTTCCTAGATAAGGAGTATGATGAATGTACATCAGATGGAGGGAAAGATGGCAGACTGTGGTGTG
CTACAACTATGACTACAAAGCAGATGAAAAGTGGGGCTTTGTGAAACTGAAGAACAGGCTGCT
AAGAGACGGCAGATGCAGGAAGCAGAAATGATGTATCAAACCTGGATGAAAATCCTTAATGAAAG
CAATAAGAAAAGCCAAAAAAGAGAACATATCGGTATCTCCAAAAGGCAGCAAGCATGAACCATA
CCAAAGCCCTGGAGAGAGTGTATGCTCTTTATTGGTGTATTACTGCCACAGAATATCCAG
GCAGCGAGAGAGATTTGAGAACGCTGACTGAGGAAGGCTCCCAAGGGACAGACTGCTCTGG
CTTCTGTATGCCCTGGACTTGGTGTAAATTCAAGTCAGGCAAAGGCTTGTATATTACAT
TTGGAGCTTGGGGCAATCTAATAGCCCACATGGTTGGTAAGTAGACTTTAGTGGAGGCT
AATAATATTAACATCAGAAGAATTGTGGTTATAGCGGCCACAACCTTTCAGCTTCATGATC
CAGATTGCTTGTATTAAGACCAAATATTCAAGTGAACCTCCTCAAATTCTGTAAATGGATAT
AACACATGGAATCTACATGAAATGAAAGTGGTGGAGTCCACAATTCTTAAATGATTAG
TTTGGCTGATTGCCCTAAAAAGAGAGATCTGATAAAATGGCTCTTTAAATTCTGTAGTTG
GAATTGTCAGAATCATTTCACATTAGATTATCATAATTAAAAATTCTTAGTTCA
AAATTGTAAATGGTGGCTATAGAAAAACACATGAAATATTACAAATATTGCAACATGC
CCTAAGAACATTGTTAAACATGGAGTTATTGTGCAGAATGACTCCAGAGAGCTACTTCTG
TTTTTACTTTCATGATTGGCTGTCTCCATTATTCTGGTCAATTGCTAGTGACACTGT
GCCTGCTTCCAGTAGTCTCATTTCCATTGGTCAATTGCTACTTTCTTGCTAATTGG
AAGATTAACTCATTAAATAAAATTATGCTAAAGATAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA

FIGURE 18

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLSKTTLTSDESVKDHTTAGRVVAGQIFLDSEEESEL
ESSIQEEDSLKSQEGERVTEDISFLESPNPNENKDYEPPKKVRKPALTAIEGTAHGEPCCHFPFLFLDK
EYDECTSDGREDGRILWCATTYDYKADEKWGFCETEEEAKRRQMQEAEMMYQTGMKILNGSNKSQKR
EAYRYLQKAASMNHHTKALERVSYALLFGDYLQPQNIQAAREMFEKLTEEGSPKGQTALGFLYASGLGVN
SSQAKALVYYTFGALGGNLIAHMVLVSRL

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 195-199, 217-221, 272-276

Tyrosine kinase phosphorylation site.

amino acids 220-228

N-myristoylation sites.

amino acids 120-126, 253-259, 268-274, 270-274, 285-291, 289-295

Glycosaminoglycan attachment site.

amino acids 267-271

Microbodies C-terminal targeting signal.

amino acids 299-303

Type II fibronectin collagen-binding domain protein.

amino acids 127-169

Fructose-bisphosphate aldolase class-II protein.

amino acids 101-119

FIGURE 19

AATTCAAGATTTAAGCCCATTCTGCAGTGGAAATTGATGAACATAGCAAGAGGACACCATTCTT
GTATTATAACAAGAAAGGAGTGTAACCTATCACACACAGGGGGAAAAATGCTCTTGGGTGCTAGG
CCTCCTAATCCTCTGGTTCTGGACTCGTAAAGGAAAACTAAAGATTGAAGACATCACTG
ATAAGTACATTTTATCACTGGATGTGACTCGGGCTTGGAAACTTGGCAGCCAGAACTTTGAT
AAAAAGGGATTCATGTAATCGCTGCCGTGACTGAATCAGGATCAACAGCTTAAAGGCAGA
AACCTCAGAGAGACTCGTACTGTGCTTCTGGATGTGACCGACCCAGAGAATGTCAGAGGACTG
CCCAGTGGTGAAGAACCAAGTGGGAGAAAGGTCTCTGGGTCTGATCAATAATGCTGGTGT
CCCGCGTGTGGCTCCACTGACTGGCTGACACTAGAGGACTACAGAGAACCTATTGAAGTGAA
CCTGTTGGACTCATCAGTGTGACACTAAATATGCTCCTTGGTCAAGAAAGCTCAAGGGAGAG
TTATTAATGTCTCCAGTGTGGAGGTGCCCTGCAATCGTGGAGGGGCTATACTCCATCCAAA
TATGCAGTGGAAAGGTTCAATGACAGCTTAAGACGGACATGAAAGCTTGGTGTGCACGTCTC
ATGCATTGAACCAGGATTGTTCAAAACAAACTGGCAGATCCAGTAAAGGTAAATTGAAAAAAAC
TCGCCATTGGGAGCAGCTGTCTCCAGACATCAAACAACATGGAGAACGTTACATTGAAAAA
AGTCTAGACAAACTGAAAGGCAATAATCTATGTGAACATGGACCTCTCCGGTGGTAGAGTG
CATGGACCACGCTCTAACAGTCTTCCCTAAGACTCATTATGCCCTGGAAAAGATGCCAAA
TTTCTGGATACCTCTGTCTCACATGCCAGCAGCTTGCAAGACTTTTATTGTTAAACAGAAA
GCAGAGCTGGCTAACCCAGGCAGTGTGACTCAGCTAACCAATGTCCTCCAGGCTATGA
AATTGGCCATTCAAGAACACATCTCCTTCAACCCATTCTTATCTGCTCCAACCTGGACT
CATTTAGATCGTGTATTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGTATCCAGGGT
CCCTGCTCAAGTTCTTGAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCTGCCCT
GTATTTAGGCTTGGCTGCTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCTTCAAAATGA
TCTTACCGTGGCCTGCCCATGCTTATGGCCCCAGCATTACAGTAACCTGTGAATGTTAAGT
ATCATCTTATCTAAATATTAAAGATAAGTCAACCCAAAAAA
AAAAAAAAAAAAAA

FIGURE 20

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLTESG
STALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDWLTLEDY
REPIEVNLFGlisVTLNMLPLVKKAQGRVINSSVGGRLAIVGGGYTPSKYAVEGFNDSLRRDMK
AFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEFYIEKSLDKLKGKNSYVNMD
LSPVVECMDHALTSLFPKTHYAAKGDAKIFWIPLSHMPAALQDFLLLQKAE LANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

FIGURE 21

CTGAGGC GGCGGTAGCATGGAGGGGGAGAGTACGTCGGCGGTGCTCTCGGGCTTGTGCTCGCG
CACTCGTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTCTTCTTGGGAAGTAAAA
GGTGAAGCCAAGAACAGCATTACTGATTCCAAATGGATGATGTTGAAGTTGTTATAAATTGA
CATTCAAGAAATATAATTCCATGCTATCAGTTTAGCTTATAATTCTTCAGGCGAAGTAAATG
AGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAGAATGTGGTAGGTTGGTACAAATTCCGT
CGTCATTCAAGATCAGATCATGACGTTAGAGAGAGGCTGCTTCACAAAAACTTGCAAGGAGCATT
TTCAAACCAAGACCTGTTTCTGCTATTAACACCAAGTATAATAACAGAAAGCTGCTACTC
ATCGACTGGAACATTCTTATATAAACCTCAAAAGACTTTACAGGGTACCTTAGTGGTT
GCCAATCTGGCATGCTGAACAACGGGTATAAAACTGTATCAGGTTCTGTATGTCCACTGG
TTTAGCCGAGCAGTACAAACACACAGCTCTAAATTGGAGAAGATGGATCCTTAAAGGAGG
TACATAAGATAAAATGAAATGTATGCTTCAAGAGGAATTAAAGAGTATATGCAAAAAAGTG
GAAGACAGTGAACAAGCAGTAGATAAACTAGTAAAGGATGTAACAGATTAAACGAGAAATTGA
GAAAAGGAGAGGAGCACAGATTAGGCAGCAAGAGAGAAGAACATCCAAAAGACCCTCAGGAGA
ACATTTCCTTGTCAAGCATTACGGACCTTTCCAAATTCTGAATTCTTCATTGATGTGTT
ATGTCTTAAAAAATAGACATGTTCTAAAAGTAGCTGTAACATACACCACATCTGATGTAGT
AGACAATCTGACCTTAATGGTAGAACACACTGACATTCTGAAGCTAGTCCAGCTAGTACACCAC
AAATCATTAAGCATAAAGCCTAGACTTAGATGACAGATGGCAATTCAAGAGATCTGGTTGTTA
GATACACAAGACAAACGATCTAAAGCAAATACTGGTAGTAGTAACCAAGATAAAAGCATCCAAAAT
GAGCAGCCCAGAAACAGATGAAGAAATTGAAAAGATGAAGGGTTGGTGAATATTACGGTCTC
CTACATTTGATCCTTAACCTTACAAGGAGATTTTTATTGGCTGATGGTAAAGCCAAAC
ATTCTATTGTTTACTATGTTGAGCTACTTGCAGTAAGTCATTGTTTACTATGTCACC
TGTTGCAGTAATACACAGATACTCTTAGTGCATTACTTCACAAAGTACTTTCAAACATCA
GATGCTTTATTCCAAACCTTTTACCTTCACTAAGTGTGAGGGGAAGGCTACACAG
ACACATCTTAAAGATACTGGAAAAGTGAGCAGCAGGACAGTGGCTCACACCTGTATCCAGCACT
TAGGGAAGACAAGTCAGGAGGATTGATTGAAGCTAGGAGTTAGAGACCAGCCTGGCAACGTATT
GAGACCAGTCTATTAAAAAATGGAAAAGCAAGAATAGCCTTATTTCAAAATATGGAAA
GAAATTATATGAAAATTATCTGAGTCATTAAATTCTCCTTAAGTGTGATACTTTTAAAGTA
CATTATGGCTAGAGTTGCCAGATAAAATGCTGGATATCATGCAATAATTGCAAAACATCATCT
AAAATTAAAAAAAAAAAAAAAAAAAAA

FIGURE 22

MEGESTSAVLSGFVLGALAFQHLNTDSDEGFLGEVKGEAKNSITDSQMDDVEVVYTIDIQKYI
PCYQLFSFYNSSGEVNEQALKKILSNVKKNVGWYKFRRHSDQIMTRERLLHKNLQEHSNQDL
VFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSCMSTGFSRAV
QTHSSKFFeedGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVNRLKREIEKRRGA
QIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHSVSKSCNYNHLDVVDNLTL
MVEHTDIPEASPASTPQIIKHKA
LDLDDRWFQFKRSRLLDTQDKRSKANTGSSNQDKASKMSSPET
DEEIEKMKGFGEYSRSPTF

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation sites.

amino acids 75-79, 322-326

N-myristoylation site.

amino acids 184-154

Growth factor and cytokines receptors family.

amino acids 134-150

FIGURE 23

GGCACAGCCGCGCGGGGAGGGCAGAGTCAGCCGAGCCGAGTCCAGCCGGACGAGCGGACCAGCGCAGGGCAGCCCAA
GCAGCGCGCAGCGAACGCCGCCGCCACACCCCTCGCGTCCCGCGCGCCACCCCTCCCTCCCTCCCC
GCGTCCCCGCCCTCGCCGCCAGTCAGCTTGCCGGTTGCTGCCCGCGAAACCCCGAGGTCAACCAGCCCGGCCCT
GCTTCCCTGGGCCGCGGCCCTCACGCCCTCCTCTCCCGGCCGCGCTGGCACCGGGGACCGTTGCGCTGA
CGCGAGGCCAGCTACTTTGCCCGCTCTCCGCCCTGCGCTTCCACCAACTCCAACCTCTTCTCCC
TCCAGCTCCACTCGCTAGTCCCCGACTCCGCCAGCCCTCGGCCGCTGCCGTAGGCCGCTTCCCGTCCGGTCCAAA
GGTGGGAACCGCTCCGCCCGCCCGACCATGGCACGGTCGGCTGCCGCTCTCGCACCCGGCAGTGC
AGGCCGCGCTGCTGGCTGCCGAGCTCAAGTCGAAAAGTGCTCGGAAGTGCAGCTTTACGTGCTCAAAGGCTC
AACAGAACGATGCCCTCCACGAGATCAACGGTGTCAATTGAAAGATCTGCTCCCAGGGTCTACCTGCTGCT
CAAGAGATGGAGGAGAAGTACAGCCTGCAAAGTAAAGATGATTCAAAAGTGTGGTCAGCGAACAGTGAATCATTTG
CAAGCTGTCTTGCTTCACTACAAGAGTTGATGAATTCTTCAAAGAACTACTTGAAAATGCAGAGAAATCCCTG
AATGATATGTTGTGAAGACATATGGCCATTATACATGCAAATTCTGAGCTATTAAAGATCTTCGTAGAGTTG
AAACGTTACTACGGGGAAATGTGAACACTGGAAGAAATGCTAAATGACTTCTGGCTGCCCTGGAGCGGATG
TTCCGCCCTGGTAACCTCCAGTACCACTTACAGATGAGTATCTGGATGTGTGAGCAAGTATAACGGAGCAGCTGAAG
CCCTTCGGAGATGTCCCTCGAAATTGAGGCTCAGGTTACTCGTGTGTTGTAGCAGCCGTACTTCGCTCAAGG
TTAGCGGTTGCCGGAGATGTCTGAGCAAGGTCTCCGTGGTAAACCCCACGCCAGTGTACCCATGCCCTGTTGAAG
ATGATCTACTGCTCCACTGCCGGGCTCGTGAAGCCATGTTACAACACTGCTCAAACATCATGAGAGGC
TGTTTGGCCAACCAAGGGGATCTGATTTGAATGGAACATTCTAGATGCTATGCTGATGGTGGCAGAGAGGCTA
GAGGGTCTTCACACATTGAATCGGTATGGATCCATCGATGTGAAGATTCTGATGCTATTATGAACATGCAGGAT
AAATAGTGTCAAGTGTCTCAGAAGGTTTCCAGGGATGTGGACCCCCAAGCCCCTCCAGCTGGACGAATTCTCGT
TCCATCTGAAAGTCCCTCAGTGTCTCGTCAACCCAGGAACACAGCCAAACCACAGCAGCTGGCACT
AGTTGGACCGACTGGTACTGATGTCAGGAGAACGAAACAGGCAAGAAATTCTGGCTCCCTCGAGCAAC
GTTTGCAACGATGAGAGGATGGCTCAGGAAACGGCAATGAGGATGACTGTTGGATGGAAAGGCAAAGCAGGTAC
CTGTTGCACTGACAGGAAATGGATTAGCCAACCAGGGCAACAAACCCAGAGGTCCAGGTTGACACCAGCAAACAGAC
ATACTGATCTCGTCAAATCATGGCTTCTCGAGTGTGACCGAGCAAGATGAAGAATGCAATGCAATGGAACGACGTG
GACTTCTTGATATCAGTGTGAAAGTAGTGGAGAAGGAAGTGGAGTGGCTGTGAGTATCAGCAGTGCCCTCAGAG
TTTGACTACAATGCCACTGACCATGCTGGGAAGAGTGCCATGAGAAAGGCCAGCTGCTGGTGTCCCTGGGCA
CAGGCCTACCTCCTACTGCTCTGCATCTGGTTATGAGAGAGGGAGATTAATTCTCAAACTCTGAG
AAAAAGTGTCTACAAAAGTTAAAGGCACCGATTATCACTTTTACCATCTAGTGAACCTTGCTTTTTAAATGAA
TGGACAAACATGTACAGTTTACTATGTGGCACTGGTTAAGAAGTGTGACTTGTGTTCTCATTGAGTTGG
AGGAAAAGGGACTGTGATTGAGTTGGTCTGCCCTGGCAACCCAAACCATGTTAACAGTGGCTAACAGTGTAGGTACAGAA
CTATAGTTAGTGTGCTTGTGATTTCACCTCTATTATTTGTTGATGTTTTCTCATTGCTTGTGGTT
TTTTTTCCAACGTGTGATCTGCCCTGGTCTTACAAGCAAACCAAGGGTCCCTTGGCACGTAACATGTACGTT
TCTGAAATATTAAGTGTACAGAAGCAGGTTTATTTATGTTATCTTATTAAGAAAAAGCCAAAAGC

FIGURE 24

MARFGLPALLCTLAVLSAALLAAELKS KSCSEVRRLYVSKGF NKN DAPLHEINGDHLKICPOGST
CCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKS LNDMFVKTYGH
LYMQNSELFKDLFVELKRYYVG NVNLEEMLNDFWARLLERMFR LVNSQYHFTDEYLECVSKYTE
QLKPGFDVPRKLKLQVTRAFVAARTFAQGLAVAGDV VSKV SVNPTAQCTHALLKMIYCSHC RGL
VTVKPCNYCSNIMRGCLANQGDLD FEWNNFIDAMLMVAERLEGPFNIESVMDPIDVKISDAIMN
MQDNSVQVSQKV FQGC GPPKPLPAGRISRSI SEAFSARFRPHHPEERPTTAAGTSLDRLVTDVK
EKLKQAKKFWSLPSNV CNDERMAAGNGNE DCWNGKGK SRYLF A VTGNG LANQGN NPEV QV DTS
KPDILILRQIMALRVMTSKMKNAYNGNDV DFFDISDESSGE GSGSGCEYQQCPSEFDYNATDHAG
KSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

Important features:

Signal peptide:

amino acids 1-22

ATP/GTP-binding site motif A (P-loop).

amino acids 515-524

N-glycosylation site.

amino acids 514-518

Glycosaminoglycan attachment sites.

amino acids 494-498, 498-502

N-myristoylation sites.

amino acids 63-69, 224-230, 276-282, 438-444, 497-503, 531-537

Glypicans proteins.

amino acids 54-75, 105-157, 238-280, 309-346, 423-460, 468-506

FIGURE 25

CTCGCCCTCAAATGGGAACGCTGGCCTGGACTAAAGCATAGACCACCAGGCTGAGTATCCTGAC
CTGAGTCATCCCCAGGGATCAGGAGCCTCAGCAGGGAACCTCCATTATATTCTCAAGCAACT
TACAGCTGCACCGACAGTTGCGATGAAAGTTCTAATCTTCCCTCCTGTTGCTGCCACTAA
TGCTGATGTCCATGGCTCTAGCAGCCTGAATCCAGGGGTGCCAGAGGCCACAGGGACCGAGGC
CAGGCTCTAGGAGATGGCTCCAGGAAGGCGCCAAGAATGTGAGTGCAAAGATTGGTTCTGAG
AGCCCCGAGAAGAAAATTCTAGACAGTGTCTGGGCTGCCAAAGAAGCAGTGCCCCTGTGATCATT
TCAAGGGCAATGTGAAGAAAACAAGACACCAAAGGCACCACAGAAAGCCAACAAGCATTCCAGA
GCCTGCCAGCAATTCTCAAACAAATGTCAGCTAAGAAGCTTGCTCTGCCTTGTAGGAGCTCTG
AGCGCCCACTCTTCAATTAAACATTCTCAGCCAAGAAGACAGTGAGCACACCTACCAAGACACTC
TTCTCTCCCACCTCACTCTCCACTGTACCCACCCCTAAATCATTCCAGTGCTCTCAAAAGCA
TGTTTTCAAGATCATTGTTGTTGCTCTCTAGTGTCTCTCGTCAGTCTTAGCCT
GTGCCCTCCCTACCCAGGCTAGGCTTAATTACCTGAAAGATTCCAGGAAACTGTAGCTTCC
AGCTAGTGTCAATTAAACCTTAAATGCAATCAGGAAAGTAGCAAACAGAAGTCAATAAATATTTT
AAATGTCAAAAAAAAAAAAAAAA

FIGURE 26

MKVLISSLLLLPLMILMSMVSSSLNPGVARGHDRGQASRRWLQEGGQECECKDWFLRAPRRKFM
TVSGLPKKQCPDCDFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL

Important features:

Signal peptide:

amino acids 1-22

N-myristoylation sites.

amino acids 27-33, 46-52

FIGURE 27

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCAGTCCCCAGCGGAAGCACAGCTCAG
AGCTGGTCTGCCATGGACATCCTGGTCCCACCTCCTGCAGCTGCTGGTCTGCTTCTTACCTGCC
CCTGCACCTCATGGCTCTGCTGGCTGCTGGCAGCCCCGTGCAAAAGCTACTTCCCCTACCTGA
TGGCCGTGCTGACTCCCAAGAGCAACCGAAGATGGAGAGCAAGAACGGGAGCTTCAGCCAG
ATAAAGGGCTTACAGGAGCCTCCGGAAAGTGGCCCTACTGGAGCTGGCTGCCAACCGGAGC
CAACTTCAGTTCTACCCACCAGGCTGCAGGGCACCTGCCTAGACCCAATCCCCACTTGAGA
AGTTCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATATGAGCGGTTGTGGTGGCTCCT
GGAGAGGACATGAGACAGCTGGTGTGGCTCCATGGATGTGGTGGCTGCACACTGGTGCTGTG
CTCTGTGCAGAGCCAAGGAAGGTCTGCAGGGAGGTCCGGAGAGTACTGAGACCGGGAGGTGTG
TCTTTTCTGGGAGCATGTGGCAGAACCATATGGAAGCTGGCCTTCATGTGGCAGCAAGTTTC
GAGCCCACCTGAAACACATTGGGGATGGCTGCTGCCTCACCAGAGAGACCTGGAAGGGATCTTGA
GAACGCCAGTTCTCGAAATCAAATGGAACGACAGCCCCCTCCCTGAAGTGGCTACCTGTTG
GGCCCCACATCATGGGAAAGGCTGTCAAACAATCTTCCAAGCTCCAAGGCACTCATTGCTCC
TTCCCCAGCCTCAAATTAGAACAGCCACCCACCAGCCTATCTATCTTCACTGAGAGGGACCTA
GCAGAAATGAGAGAACATTGATGTACCACTACTAGTCCCTCTCCCAACCTCTGCCAGGGC
AATCTCTAACTCAATCCGCCTCGACAGTGA~~AAAAGCTCTACTTCTACGCTGACCCAGGGAGG~~
AAACACTAGGACCCGTGTATCCTCAACTGCAAGTTCTGGACTAGTCTCCCAACGTTGCCTC
CCAATGTTGCCCTTCCCTCGTTCCATGGTAAAGCTCCTCTCGCTTCCCTGAGGCTACAC
CCATGCGTCTCTAGGAACTGGTCACAAAGTCATGGTGCCTGCATCCCTGCCAACGCCCCCTGAC
CCTCTCTCCCACTACCACCTTCCCTGAGCTGGGGGACCAGGGAGAATCAGAGATGCTGGGG
ATGCCAGAGCAAGACTCAAAGAGGCAGAGGTTTGTCTCAAATATTTTAATAATAGACGAA
ACCACG

FIGURE 28

MDILVPLLQLLVLLTLPLHIMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQIKGL
TGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDM
RQLADGSMDVVVCTLVLCVQSPRKVLQEVRVRLPGGVLFWEHVAEPYGSWAFMWQQVFEPTW
KHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPGPHIMGKAVKQSFPSSKALICSFPSL
QLEQATHQPIYLPLRGT

Important features:

Signal peptide:

amino acids 1-23

Leucine zipper pattern.

amino acids 10-32

N-myristoylation sites.

amino acids 64-70, 78-84, 80-86, 91-97, 201-207

FIGURE 29

CAATGTTGCCTATCCACCTCCCCAAGCCCCTTACCTATGCCTGCTGCTAACGCTGCTGCTGCT
GCTGCTGCTGCTTAAAGGCTCATGCTGGAGTGGGACTGGTCGGTGCCAGAAAGTCTCTCTG
CCACTGACGCCCCCATCAGGGATTGGGCCTCTTCCCCCTTCCTGTGTCTCCTGCCTCAT
CGGCCTGCCATGACCTGCAGCCAAGCCCAGCCCCGTGGGAAGGGGAGAAAGTGGGGATGGCTA
AGAAAGCTGGGAGATAGGGAACAGAACAGGGTAGTGGGTGGCTAGGGGGCTGCCCTATTAAA
GTGGTTTTATGATTCTATACTAATTACAAAGATATTAAGGCCCTGTTCATTAAGAAATT
GTTCCCTTCCCTGTGTTCAATGTTGAAAGATTGTTCTGTGTAATATGTCTTATAATAAAC
AGTTAAAAGCTGAAAAAAAAAAAAAAA

FIGURE 30

MLLLTLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTC SQAQPRG
EGEKVGDG

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

FIGURE 31

GTTCGAATTCTTCAACTATACCCACAGTCAAAAGCAGACTCACTGTGTCCCAGGCTACCAGTT
CCTCCAAGCAAGTCATTCCCTATTTAACCGATGTGTCCCTAAACACCTGAGTGCTACTCCCT
ATTTGCATCTGTTGATAAATGATGTTGACACCCCTCCACCGAATTCTAAGTGGAAATGTCGG
GAAGAGATAACAATCCTGGCCTGTGTATCCTCGCATTAGCCTGTCTTGCCATGATGTTACC
TTCAGATTCATCACCAACCCCTCTGGTTCACATTTCATGGTTATTTGGGATTGTTGTT
TGTCTGCGGTTTATGGTGGCTGTATTATGACTATACCAACGACCTCAGCATAGAATTGGACA
CAGAAAGGGAAAATATGAAGTGCCTGCTGGGTTGCTATCGTATCACAGGCATCACGGCAGTG
CTGCTCGTCTGATTTGTTCTCAGAAAGAGAATAAAATTGACAGTTGAGCTTTCAAATCAC
AAATAAAGCCATCAGCAGTGCTCCCTCCTGCTGTTCCAGCCACTGTGGACATTGCCATCCTCA
TTTCTCTGGTCTCTGGTGGCTGTGCTGAGCCTGGAACTGCAGGAGCTGCCAGGTT
ATGGAAGGCGGCCAAGTGGAAATATAAGCCCCTTCGGGATTGGTACATGTGGTGTACCATTT
AATTGGCCTCATCTGGACTAGTGAATTCATCCTGCGTGCCAGCAAATGACTATAGCTGGGCAG
TGGTTACTTGTATTCAACAGAAGTAAAAATGATCCTCTGATCATCCCATCCTTCGTCTCTC
TCCATTCTCTCTTCTACCATCAAGGAACCGTTGTGAAAGGGTCACTTAAATCTGTGGTGAG
GATTCCGAGAATCATTGTCATGTACATGCAAACGCACTGAAAGAACAGCAGCATGGTGCATTGT
CCAGGTACCTGTTGATGCTGACTGCTGTTCTGGTGTCTGACAAATACCTGCTCCATCTC
AACCGAGATGCATATACTACAACGTCTATTAAATGGACAGATTCTGTACATCAGCAAAGATGC
ATTCAAAATCTTGTCCAAGAACATCAAGTCACCTTACATCTATTAAACTGCTTGAGACTTCATAA
TTTTCTAGGAAAGGTGTTAGTGGTGTGTTCACTGTTTGAGGACTCATGGCTTTAACTAC
AATCGGGCATTCCAGGTGTGGCAGTCCTCTGTTATTGGTAGCTTTTGCTACTTAGTAC
CCATAGTTTTATCTGTGTTGAAACTGTGCTGGATGCACCTTCTGTGTTTGCTGTTGATC
TGGAAACAAATGATGGATCGTCAGAAAGCCCTACTTATGGATCAAGAACATTCTGAGTTCGTA
AAAAGGAGCAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGAATGAGGA
GGGAACAGAACCTCCAGGCCATTGTGAGAATGATACCCATTAGTACATGTACCTGGAAAACATT
TCCTCTAAGAGCCATTACAGAATAGAAGATGAGACCACTAGAGAAAAGTTAGTGAATT
TTAAAGACCTAATAAACCTATTCTCTCAAAA

FIGURE 32

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVLGILGLLFVCGLWWLYDYTNDSLIE
LDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPLLLQPLWTFA
ILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFILACQOMTIA
GAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVMMQNALKQQHG
ALSRYLFRCYCFCWCLDKYLLHLNQAYTTAINGTDFTSAKDAFKILSKNSHFTSINCQGD
IIIFLGKVLVVCFVFGLMAFNYNRAFQWAVPLLLVAFFAYLVAHSFLSVFETVLDALFLCFA
VDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNAQAQDKHSLRNEEGTELOQAIVR

Important features:

Signal peptide:

amino acids 1-20

Putative transmembrane domains:

amino acids 35-54, 75-97, 126-146, 185-204, 333-350, 352-371

N-glycosylation sites.

amino acids 204-208, 295-299, 313-317

N-myristoylation sites.

amino acids 147-153, 178-184, 196-202, 296-275, 342-348

FIGURE 33

GTTCGATTAGCTCCTCTGAGAAGAAGAGAAAAGGTTCTGGACCTCTCCCTGTTCTCCCTAGA
ATAATTGTATGGGATTGTGATGCAGGAAGCCTAACGGAAAAAGAATATTCAATTCTGTGTGGT
GAAAATTTTGAAAAAAATGCCCTCTCAAACAAGGGTGTCAATTCTGATATTATGAGGAC
TGTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTCCTGTTTGCTGGTACTGGAGTAC
ATTCAAACAAAGAACGGCAAAGAAGATTAAAGGCCAACGTTCACTGTGCCCTCAGATCAACTGC
GATGTCAAAGCGGAAAGATCATCGATCCTGAGTTCAATTGAAATGTCAGCAGGATGCCAAGA
CCCCAAATACCATGTTATGGCACTGACGTGATGCATCCTACTCCAGTGTGTGGCGTCCCG
TACACAGTGGTGTGTTGATAATTCAACGGGAAATACTGTTGGAAGGTTGCTGGACAGTCT
GGTTACAAAGGGAGTTATTCCAACGGTGTCAATTGTTATCCCTACACGATGGAGAGAAATCCTT
TATCGTCTAGAAAGTAAACCAAAAGGGTGTAAACCTACCCATCAGCTTACATACTCATCAT
CGAAAAGTCCAGCTGCCAACGAGGTGAGACCACAAAGCCTATCAGAGGCCACCTATTCCAGGG
ACAAC TGCA CAGCGG TCA CTGATGCAGCTCTGGCTGTCACTGTAGCTGTGCCACCCCCAC
CACCTTGCCAAGGCCATCCCCTCTGCTGCTTCTACCACCGATCCCCAGACCAACATCAGTGG
GCCACAGGAGCCAGGAGATGGATCTGGTCCACTGCCACCTACACAAGCAGCCAAAAGGCC
AGAGCTGATCCAGGTATCCAAAGGCAAGATCCTCAGGAGCTGCCTCCAGAAACCTGTTGGAGC
GGATGTCA CGCCTGGGACTTGTCCAAAAGAAGAATTGAGCACACAGTCTTGGAGCCAGTATCCC
TGGGAGATCCAAACTGCAAATGACTTGTGTTTAATTGATGGGAGCACCAGCATTGGCAAA
CGGCGATTCCGAATCCAGAAGCAGCTCCTGGCTGATGTGCCAAGCTTGTGACATTGGCCCTGC
CGGTCCACTGATGGGTGTTGTCAGTATGGAGACAACCTGCTACTCACTTAAACCTCAAGACAC
ACACGAATTCTCGAGATCTGAAGACAGCCATAGAGAAAATTACTCAGAGAGGAGGACTTCTAAT
GTAGGTCGGGCCATCCTTTGTGACCAAGAACTTCTTCCAAAGCAATGGAACAGAAGCGG
GGCTCCAAATGTGGTGGTGTGGATGGCTGGCCACGGACAAAGTGGAGGGAGGCTTCAA
GACTTGCAGAGAGTCAGGAATCACATTCTCATCACCATTGAAGGTGCTGTTGAAAATGAG
AAGCAGTATGTGGTGGAGGCCAACTTGCACAAACAAGGCCGTGTCAGAACAAACGGCTTCACTC
GCTCCACGTGCAGAGCTGGTTGGCCTCCACAAGACCCCTGCAGCCTCTGGTGAAGCGGGTCTGC
ACACTGACCCGCTGCCCTGCAAGAACCTGCTTGAACCTGGCTGACATTGGCTCGTCATCGAC
GGCTCCACCGTAGTGGGGACGGCAACTTCCGCACCGTCTCCAGTTGTGACCAACCTCACCAA
AGAGTTGAGATTTCCGACACGGGACACGGCATCGGGGGCTGTGAGTACACCTACGAACAGCGG
TGGAGTTGGGTTGCAAGTACAGCAGCAAGCCTGACATCCTCAACGCCATCAAGAGGGTGGG
TACTGGAGTGGTGGCACAGCACGGGGCTGCCATCAACTTCCGCCCCTGGAGCAGCTTCAAGAA
GTCCAAGCCCAACAAAGAGGAAGTTAATGATCCTCATCACCGAGGGAGGTCTACGACGACGTCC
GGATCCCAGCCATGGCTGCCATCTGAAGGGAGTGTACACCTATGCGATAGGCCTGGCCTGGCT
GCCCAAGAGGAGCTAGAAGTCAATTGCCACTACCCCGCAGAGACCACTCCTCTTGTGGACGA
GTTTGACAAACCTCATCAGTATGTCCCCAGGATCATCCAGAACATTGATCAGAGTTCAACTCAC
AGCCTCGGAACTGAATTCAAGAGCAGGCAGAGCACCAGCAAGTGTGCTTTACTAACTGACGTGTT
GGACCAACCCACCGCTTAATGGGGACGCACGGTGCATCAAGTCTGGCAGGGCATGGAGAAC
AAATGTCTTGTATTATTCTTGCATCATGCTTTTCAATTCCAAAATGGAGTTACAAGA
TGATCACAAACGTATAGAATGAGCCAAAGGCTACATCATGTTGAGGGTGTGGAGATTTACAT
TTTGACAATTGTTTCAAAATAATGTTGGAATACAGTGCAGCCCTACGACAGGCTTACGTAG
AGCTTTGTGAGATTTAAGTGTATTCTGATTTGAACTCTGTAACCCCTCAGCAAGTTTCA
TTTGTCATGACAATGTAGGAATTGCTGAATTAAATGTTAGAAGGATGAAAATAAAAAAAA
AA
AAG

FIGURE 34

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCPAG
CQDPKYHVTYDGYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGYSNGVQSLSLPRWR
ESFIVLESKPCKGVTVPSALTYSSSKPAAQAGETTKAYQRPPIPGTTAQPVTLMQLLAVTVAVA
TPPTLPRPSPSAASTTSIPRQPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQQRQDPSGAFAQKP
VGADVSLGLVPKEELSTQSLEPVSLGDPNCIDLSFLIDGSTSIGKRRFRIQKQLLADVAQALDI
GPAGPLMGVVQYGDNPATHFNLKHTNSRDLKTAIEKITQRGGLSNVGRAISFVTKNFFSKANGN
RSGAPNCCCCMVWDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVVEPNFANKAVCRTNG
FYSLHVQSWFGLHKTQPLVKRVCCTDRCLACSKTCLNSADIGFVIDGSSSGTGNFRTVLQFVTN
LTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDILNAIKRVGYWSGGTSTGAIAFAEQQL
FKKSCKPNKRKLMILITDGRSYDDVRIPAMA AHLKGVITYAIGVAWAQEELEVIATHPARDHSFF
VDEFNDLHQYVPRIQNICTEFNSQPRN

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 181-200

N-glycosylation sites.

amino acids 390-394, 520-524

N-myristoylation sites.

amino acids 23-29, 93-99, 115-121, 262-268, 367-373, 389-395,
431-437, 466-472, 509-515, 570-576, 571-577, 575-581, 627-633

Amidation site.

amino acids 304-308

FIGURE 35

CCGAGCACAGGAGATTGCCTGCCTTAGGAGGTGGCTGCCTGGAAAAGCTATCAAGGAAGAAATTGC
CAAACCATGTTTCTGTTTCAGAGTAGTCACAACAGATCTGAGTGTTAATTAAAGCATGGAAT
ACAGAAAACAACAAAAACTTAAGCTTAATTTCATCTGGAATTCCACAGTTCTTAGCTCCCTGGACCC
GGTTGACCTGTTGGCTCTCCCGCTGGCTGCTATCACGTGGTGCCTCGACTACTCACCCGAGTGTA
AAGAACCTCGGCTCGCGTCTGAGCTGCTGGATGGCCTCGGCTCTGGACTGCTCCCTGGAGTA
GGATGTCACTGAGATCCCTCAAATGGAGCCTCGCTGCTGTCACCTCTGAGTTCTTGATGTGGTAC
CTCAGCCTCCCCACTACAATGTGATAGAACCGTGAACGGATGACTCTATGAGTATGAGCCGATTAA
CAGACAAGACTTCACACTCACACTCGAGAGCATTCAAACACTGCTCTCATCAAATCCATTCTGGTCATT
TGGTGACCTCCCACCCCTCAGATGTGAAAGGCCAGGCCATTAGAGTTACTTGGGGTGAAGAAAAGCT
TGGTGGGATATGAGGTCTTACATTTCTTATTAGGCCAAGAGGCTGAAAAGGAAGACAAAATGTTGC
ATTGTCCTTAGAGGATGAAACACCTCTTTATGGCACATAATCCGACAAGATTTTAGACACATATAATA
ACCTGACCTGAAAACCATTATGGCATTCAAGGTGGTAACGTGAGTTTGCCTAACGTAATG
AAGACAGACACTGATGTTTCATCAAACTGGCAATTAGTGAAGTATCTTAAACCTAAACCAACTCAGA
GAAGTTTCACAGGTTATCCTCTAATTGATAATTATTCCCTATAGAGGATTTACCAAAAACCCATATT
CTTACCAAGGAGTATCCTTCAAGGTGTTCCCTCATACTGCAGTGGGTGGTTATATAATGTCAGAGAT
TTGGTGCCAAGGATCTATGAAATGATGGTCACGTAACCTCAAGTTGAAGATGTTATGTCGGAT
CTGTTGAATTATTAAAAGTGAACATTCAATTCCAGAAGACACAAATCTTCTTCTATATAGAATCC
ATTGGATGTCGTCAACTGAGACGTGATTGCAGGCCATGGCTTCTCCAAGGAGATCATCACTTT
TGGCAGGTCATGCTAAGGAACACCATGCCATTTAACTCACATTCTACAAAAGCCTAGAGGACAG
GATACCTGTGAAAGTGTAAATAAGTAGGACTGTGGAAAATTCACTGGGAGGTCACTGTGCTGGCT
ACACTGAACCTCATGAAAACCCAGACTGGAGACTGGAGGGTTACACTTGTGATTTAGTCAGG
CCCTTCAAAGATGATATGTGGAGGAATTAAATAAGGAATTGGAGGTTTGCTAAAGAAATTAAATAGG
ACCAAACAAATTGGACATGTCACTGTAGACTAGAATTCTTAAAGGTGTTACTGAGTTATAAGCTCA
CTAGGCTGAAAAACAAACATGTAGAGTTATTGAAACAATGTAGTCACCTGAAGGTTTGCTGTA
TATCTTATGTGGATTACCAATTAAAAATATGTAGTTCTGTGTCAAAAAACTTCTTCACTGAAGTTATA
CTGAACAAAATTTCACCTGTGTTGGTCATTATAAAAGTACTTCAGTCAAGATGTTGCAGTATTTCACAGTTATT
ATTATTAAAATTACTTCACATTGTGTTAAATGTTGACGATTCAACAGATAAAAGGATAG
TGAATCATTCTTACATGCAAACATTCCAGTTACTTAACGTGATCAGTTATTATTGATAACATCACTCCA
TTAATGTAAGTCATAGGTCAATTGCAATATCAGTAATCTTGGACTTGTAAATTTACTGTGGT
AATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

FIGURE 36

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQDFHF
TLREHSNCNSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEKEDKMLA
LSLEDEHLLYGDIIHQDFLDTYNNLTAKTMAFRWVTEFCPNAKYVMKTDVDINTGNLVKYLL
NLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRDLVPRIYEMMGHV
KPIKFEDVYVGICLNLLKVNIHIPEDTNLFPLYRIHLDVCQLRRVIAAHGFSSKEIITFWQVMLR
NTTCHY

Important features:

Type II transmembrane domain:

amino acids 20-39

N-glycosylation sites.

amino acids 72-76, 154-158, 198-202, 212-216, 326-330

Glycosaminoglycan attachment site.

amino acids 239-243

Ly-6 / u-PAR domain proteins.

amino acids 23-37

N-myristoylation site.

amino acids 271-277

FIGURE 37

FIGURE 38

MELGCWTQLGLTFLQLLISSLPREYTVINEACPGAEWNIMCRECCYEYDQIECVCPEGKREVVGYT
IPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGDCMRCGQ
VLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRGDNDGQII
KRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDGTCVLDKAGSYKC
ACLAGYTQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTVVSFFCNNSYVLSGNE
KRTCQQNGEWSGKQPIKACREP KISDLVRRRVLPMQVSRETPLHOLYSAAFSKQKLQSAPTK
KPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRTCLRTGKWSGRAPSCIPICGKIENTAP
KTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNERTVVVAHCVTDLGKVTMIKTADL
KVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLDADIAILKLLDKARISTRVQPICLAASR
DLSTS FQESHITVAGWNVLADVRSPGFKN DTLRGVVSVVDSLLCEEQHEDHGIPVSVDNMFCA
SWEPTAPS DICTAETGGIAAVSFPGRASPEPRWHLMGLVWSYDKTC SHRLSTAFTKVLPFKDWI
ERNMK

Important features of the protein:

Signal peptide:

amino acids 1-23

EGF-like domain cysteine pattern signature.

amino acids 260-272

N-glycosylation sites.

amino acids 96-100, 279-283, 316-320, 451-455, 614-618

N-myristoylation sites.

amino acids 35-41, 97-103, 256-262, 284-290, 298-304, 308-314,
474-480, 491-497, 638-644, 666-672

Amidation site.

amino acids 56-60

Serine proteases, trypsin family.

amino acids 489-506

CUB domain proteins profile.

amino acids 150-167

FIGURE 39

GGTTCCATACCTCTCATCTGAGAACATCAGAGAGCATAATCTTCTACGGGCCGTGATTATTAAACGTGGCTTAATC
TGAAGGTCTCACTCAAATTCTTGATCTACTGATTCTGGGGCATGGCAAGGTTGCTTAAGGAGCTTGGCTGG
TTGGGCCCTGTAGCTGACAGAAGGTGGCCAGGGAGAATGCAGCACACTGCTCGAGAATGAAGGCGCTCTGTG
TGGTCTGCGCTTGGCTCAGTCGTAACATGACAATGTGGCAACCTGCACCTCTGTATTCAAACACTGT
AAGGTGCGTCCCACACGGCCTGACCAAAGAGATAGGAAGAGGCCTCACAAAGATGGCTGTCAGACGGCTGTGCGAGCC
TCACAGCCACGGCTCCCCCCCCAGAGGTTCTGCAGCTGCCACCATCTCTTAATGACAGACGAGCCTGGCTAGACA
ACCTGCCTACGTGCTCGGCAGAGGACGGCAGGCCAGCAATCAGCCCAGTGGACTCTGGCCGGAGCAACCGAAGTA
GGGCACGGCCCTTGAGAGATCCACTATTAGAAGCAGATCATTTAAAAAAATTCAGAGCTTGGTGTCTCGAA
GGACAAAGAGCGGGAGTGCAGTTGCAACCAGCCGACAGGGCAGGGAAAATTCTGAAAACACCACTGCCCTGAAG
TCTTCCAAGGTTGACACCTGATTCAGATGGTGAATTACAGCATCAAGATCAATCGAGTAGATCCAGTGA
GCCTCTTATTAGGCTGGTGGAGGTAGCAGAACCCACTGGCCATATCATTATCAAACACATTATCGTGTGGG
TGATGCCAGAGACGCCGGCTACTGCCAGGAGACATCATCTAAAGGTAACGGATGGACATCAGCAATGTCCCTC
ACAACATACGCTGTGCGCTCTCGCCAGCCCTGCCAGGTGCTGCGCTGACTGTGATGCGTGAACAGAAGTCCGCA
GCAGGAACAATGGACAGGCCCGGATGCCCTACAGACCCCGAGATGACAGCTTCATGTGATTCTCAACAAAAGTAGCC
CCGAGGACAGCTTGAATAAAACTGTCGGAGGTGGATGAGCTGGGTTTCATCTCAATGTGCTGGATGGCG
GTGTGGCATATCGACATGGTCAGCTTGAGGAGAATGACCGTGTGTTAGCCATCAATGGACATGATCTCGATATGGCA
GCCAGAAAGTGCAGCTCATCTGATTCAGGCCAGTGAAGACAGTGTTCACCTCGTGTGTCAGGTCGGCAGC
GGAGCCCTGACATCTTCAGGAAGCCGGCTGGAACAGCAATGGCAGCTGGTCCCAGGGCAGGGAGAGGAGCAACA
CTCCCAAGCCCTCCATCTACAATTACTGTCATGAGAACGGTGTAAATCTAAAAAGACCCCGTGAATCTCTG
GCATGACCGTGCAGGGGAGCATCACATAGAGAACGGTGTGTTAGCCATCTATGTCATCAGTGTGAGCCGGAGGAG
TCATAAGCAGAGATGGAAGAATAAAACAGGTGACATTGGTGAATGTGGATGGGTCGAACAGAGGTGACCC
GGAGTGAGGCAGTGGATTATGAAAAGAACATCCTCGATAGTACTCAAGCTTGGAAAGTCAAAGAGTATGAGC
CCCAGGAAGACTGCAGCAGCCCAGCAGCCCTGGACTCCAACCACACATGGCCCACCCAGTGAATGGTCCCCT
GGGTCAATGTGGCTGGAAATTACACGGTGTGTATAACTGTAAGAGATTGTGTTACAGAAGAAACACAGTGGAAAGTC
TGGGCTTCTGCAATTGAGGAGTTATGAGAACATCAATGGAAACAAACCTTTTCTCAAAATCATTGTGAAGGAA
CACCAAGCATACAATGATGGAAGAATTAGATGTGGTGAATTCTCTGCTGTCATGGTAGAAGTACATCAGGAATGA
TACATGCTGCTGGCAAGACTGCTGAAAGAACTTAAAGGAAGAATTACTCTAAACTATTGTTCTGGCTGGCACTT
TTTTTAGAATCAATGATGGTCAAGAGGAAACAGAAAATCAAATAGGCTAAGAAGTGAACACTATATTAC
TTGTCAGTTTATTTAAAGAAAGAACATGTAAAATGTCAAGGAAAGTATGATCATCTAAATGAAAGCCAGTT
ACACCTCAGAAAATGATCCAAAAAAATAAAACACTAGTTTTCTGATGTGGAGGATTCTCATTAACACTAC
AACATTGTTATTTTCTATTCAAAAGCCCTAAACAAACTAAAATGATTGATTTGATACCCACTGAATT
CAAGCTGATTAAATTTAAATTGGTATATGCTGAAGTCTGCCAAGGGTACATTATGCCATTAAATTACAGCT
AAAATTTTAAATGCATTGCTGAGAACAGTGTGTTCATCAAACAAAGAATAATTTTCAAGAGTTAA

FIGURE 40

MKALLLVLWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDCASLTATAPS
PEVSAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDGRSNRTRARPFERSTIRSRSFKKINR
ALSVLRRTKSGAVANHADQGRESENTTAPEVFPRLYHLIPDGEITSIKINRVDPSESLSIRLV
GGSETPLVHIQHRYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLLRQPCQVLWLTVM
REQKFRSRNNNGQAPDAYPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGVIFNVLDGGVAYRHG
QLEENDRVLAINGHDLRYGSPEAAHLIQASERRVHLVVSRQRSPDIFQEAGWNSNGSWSPG
PGERSNTPKPLHPTITCHEVNNIQKDGPESLGMTVAGGASHREWDLPIYVISVEPGGVISRDRG
IKTGDILLNVDGVELTEVSERSEAVALLKRTSSSIVLKALEVKEYEPQEDCSSPAALDSNHNMAPP
SDWSPSWVMWLELPRLYNCKDIVLRRNTAGSLGFCIVGGYEYNGNKPFFIKSIVEGTPAYNDG
RIRCGDILLAVNGRSTSGMIHACLRLLKELKGRITLTIVSWPGTFL

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-112, 157-161, 289-293, 384-388

Tyrosine kinase phosphorylation sites.

amino acids 433-441, 492-500

N-myristoylation sites.

amino acids 51-57, 141-147, 233-239, 344-350, 423-429, 447-453,
467-473, 603-609

FIGURE 41

ACCAAGGCATTGTATCTTCAGTTGTCATCAAGTCGCAATCAGATTGGAAAAGCTCAACTTGAAGCTTT
CTTGCCTGCAGTGAAGCAGAGAGATAGATATTATTACACGTAATAAAAACATGGGCTTCAACCTGACT
TTCCACCTTCCTACAAATTCCGATTACTGTTGCTGTTGACTTTGCGCTGACAGTGGTGGGGC
CACCAAGCTAAGAGATTCTAAAGCAAAGGAGTTCATGGCTAATTCC
ATAAGACCCCTCATTTGGGAAAGGGAAAAACTCTGACTAATGAAGCATTCCACGAAGAAGGTAGAACTT
GACAACGTCCCTCTGTGTCCTTACCTCAGAGGCCAGAGCAAGCTCATTTCAAACCAGATCTCAC
TTTGGAAAGAGGTACAGGCAGAAAATCCCAAAGTGTCCAGAGGCCGGTATGCCCTCAGGAATGTAAG
CTTTACAGAGGGTGCACCTCGTCCCCACCGGAACAGAGAGAAAACACCTGATGTACCTGCTGGAA
CATCTGCATCCCTCCTGCAGAGGCAGCAGCTGGATTATGGCATCTACGTCACTCCACCAGGCTGAAGG
TAAAAAGTTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAACCCCTCAAGGAAGAAAATTGGG
ACTGCTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTACAAGTGTGAGGAG
CATCCCAAGCATCTGGTGGTGGCAGGAACAGCACTGGTACAGTTACAGTGGATATTGG
GGGTGTACTGCCCTAACAGAGAGCAGTTTCAAGGTGAATGGATTCTCTAACAACTACTGGGAT
GGGGAGGCGAAGACCGATGACCTCAGACTCAGGGTTGAGCTCCAAAAGAATGAAAATTCCCGGCCCTG
CCTGAAGTGGTAAATATACAATGGTCTTCCACACTAGAGACAAAGGCAATGAGGTGAACGCAGAACG
GATGAAGCTTACACCAACTGTCACGAGTCAGCTGGAGAACAGATGGTTGAGTAGTTGTTCTTATAAAT
TAGTATCTGTGGAACACAATCCTTATATACACATCACAGTGGATTCTGGTTGGTGCATGACCC
TGGATCTTTGGTGTGTTGGAAGAACTGATTCTTGTGCAATAATTGGCTAGAGACTTCAA
ATAGTAGCACACATTAAGAACCTGTTACAGCTCAATTGTTGAGCTGAATTTCCTTTGTATTTCT
TAGCAGAGCTCTGGTGTAGAGTATAAAACAGTTGTAACAAGACAGCTTCTTAGTCATTTGAT
CATGAGGGTTAAATATTGTAATATGGATACTTGAGGACTTTATATAAAAGGATGACTCAAAGGATAA
AATGAACGCTTTGAGGACTCTGGTGAAGGAGATTATTAAATTGAGTAATATATTATGGGAT
AAAAGGCCACAGGAAATAAGACTGCTGAATGTCTGAGAGAACAGAGTTGCTCGCCAAGGTAGAA
AGGTACGAAGATAACAATACTGTTATTCAATTCTGTACAATCATCTGTAAGTGGTGGTGTAGG
GAGAAGCGTCCACAAAGAGGGAGAAAAGGCGACGAATCAGGACACAGTGAACCTGGGAATGAAGA
GGTAGCAGGAGGGTGGAGTGTGGCTGCAAAGGCAGCAGTAGCTGAGCTGGTGCAGGTGCTGATAGC
CTTCAGGGGAGGACCTGCCAGGTATGCCCTCAGTGATGCCACCAGAGAAATACATTCTTATTAGT
TTTAAAGAGTTTGAAATGATTTGTACAAGTAGGATATGAATTAGCAGTTACAAGTTACAT
ATTAACATAATAATATGTCTATCAAATACCTCTGTAGTAAATGTGAAAAGCAAAA

FIGURE 42

MGFNLTFHLSYKFRLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKTLTN
EASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGGRYRPQECKALQRVAILVPH
RNREKHILMYLLEHLHPFLQRQQLDYGIYVIHQAEKKFNRAKLLNVGYLEALKEENWDCFIHDV
DLVPENDFNLYKCEEHPKHLVGRNSTGYRLRYSGYFGGVTAALSREQFFKVNGFSNNYWGWGGED
DDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQSVRVWRTDGLSSCSYKLV
SVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.

amino acids 191-202

FIGURE 43

GCTCAAGACCCAGCAGTGGGACAGCCAGACAGACGGCACGATGGACTGAGCTCCCAGATCTGGG
CCGCTTGCCTCCTGCTCCTCCTCGCAGCCTGACCAGTGGCTCTGTTTCCCACAACAG
ACGGGACAACCTGCAGAGCTGCAACCCCAGGACAGAGCTGGAGGCCAGGGCCAGCTGGATGCCAT
GTTCCAGAGGCAGAAGGAGGCAGACACCCACTTCCCCATCTGCATTTCGCTGCCGGCTGCTGTC
ATCGATCAAAGTGTGGATGTGCTGCAAGACGTAGAACCTACCTGCCCTGCCCGTCCCCTCCC
TTCCCTTATTATTCCCTGCTGCCAGAACATAGGTCTTGAATAAAATGGCTGGTTCTTTGTT
TCCAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 44

MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRDTHFPI
CIFCCGCCHRSKCGMCKT

Important features:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 58-59

N-myristoylation site.

amino acids 44-50

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 1-12

FIGURE 45

GTGGCTTCATTCAGTGGCTGACTTCCAGAGAGCAATATGGCTGGTCCCCAACATGCCTCACCC
TCATCTATATCCTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGTCGGT
TCCGTTGGTGGGCCGTGACTTCCCCCTGAAGTCAAAGTAAAGCAAGTTGACTCTATTGTCTG
GACCTTCAACACAACCCCTCTTGTACCACAGCCAGAAGGGGGCACTATCATAGTGACCCAAA
ATCGTAATAGGGAGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACGTGAAG
AAGAATGACTCAGGGATCTACTATGTGGGATATAACAGCTCATCACTCCAGCAGCCCTCCACCCA
GGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCTAAAGTCACCATGGGTCTGCAGAGCA
ATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGAAGAGGATGTGATT
TATACTGGAAGGCCCTGGGCAAGCAGCCAATGAGTCCCATAATGGTCCATCCTCCCCATCTC
CTGGAGATGGGAGAAAGTGTATGACCTTCATCTGCGTTGCCAGGAACCTGTCAAGCAGAACT
TCTCAAGCCCCATCCTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCCTCCATG
GTCCTCCTGTGTCTCCTGTTGGTCCCCCTCTGCTCAGTCTTTGACTGGGCTATTCTTG
GTTTCTGAAGAGAGAGACAAGAAGAGTACATTGAAGAGAAGAAGAGTGGACATTGTCGGG
AAACTCCTAACATATGCCCTGAGAACACAGAGTACGACACAATCCCTCACACTAAT
AGAACAACTCTAAAGGAAGATCCAGCAAATACGGTTACTCCACTGTGAAATACCGAAAAAGAT
GGAAAATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGTATTCCTATGAGAATGTTA
TCTAGACAGCAGTGCACTCCCCTAAGTCTGCTCA

FIGURE 46

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLSKVKQVDSIVWTFTTPLVTIQP
EGGTIIVTQNRNRERVDFPDGGYSLKLSKKNDSGIYYVGIYSSSLQQPSTQEVVLHVYEHLSK
PKVTMGLQSNKNGTCVTNLTCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFIC
VARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLFLVGLFLWFLKRERQEYIE
EKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIPKKMENPHSLLMPDT
PRLFAYENVI

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 224-250

Leucine zipper pattern.

amino acids 229-251

N-glycosylation sites.

amino acids 98-102, 142-146, 148-152, 172-176, 176-180, 204-208,
291-295

FIGURE 47

GGCTCGAGCGTTCTGAGCCAGGGTGACCATGACCTGCTGCGAAGGATGGACATCCTGCAATGG
ATTCAGCCCTGCTGGTCTACTGCTGTTAGGAGTAGTTCATGCGATACCTCTAATGTCAGC
TAGTTGAGGAAGACCAATTTCTCAAACCCCATCTTGCTTGAGTGGTGGTCCCAGGAATT
ATAGGAGCAGGTCTGATGCCATTCCAGCAACAAATGTCCTTGACAGCAAGAAAAAGAGCGTG
CTGCAACAACAGAACGAACTGGAATGTTCTTCATCATTTCAGTGTGATCACAGTCATTGGTGCTC
TGTATTGCATGCTGATATCCATCCAGGCTCTTAAAGGTCCTCTCATGTGTAATTCTCCAAGC
AACAGTAATGCCATGTGAATTTCATGGAAAACATCAGTGACATTCATCCAGAATCTCAA
CTTGCAGTGGTTTCAATGACTCTTGGCACCTCCACTGGTTCAAAACCCACCGTAACG
ACACCATGGGGAGTGGCGGAGGACTCTAGTTCACTTCGATTTCGAAGAAAAACACATAGG
CTTATCCACTTCTCAGTATTTTAGGCTATTGCTTGGAATTTGGAGGTCCTGTTTGGGCT
CAGTCAGAGTAGTCATCGGTTCCTTGGGCTGTGTGGAGTCTAAGGCGAAAGTCAAATTG
TGTAGTTATGGAAAAAATGTAAGTATCAGTAGTTGAAAAAAAAAAAAAAAA

FIGURE 48

MTCCEGWTSCNGFSLLVLLLGVVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAIPA
TTMSLTARKRACCNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANCEFSL
KNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHFSVFLGL
LLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

Important features:

Transmembrane domains:

amino acids 10-31 (type II), 50-72, 87-110, 191-213

N-glycosylation sites.

amino acids 80-84, 132-136, 148-152, 163-167

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 223-227

N-myristoylation sites.

amino acids 22-28, 54-60, 83-89, 97-103, 216-222

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 207-218

TNFR/NGFR family cysteine-rich region protein.

amino acids 4-12

FIGURE 49

ATCCGTTCTCGCGCTGCCAGCTCAGGTGAGCCCTGCCAAGGTGACCTCGCAGGACACTGGTGA
AGGAGCAGTGAGGAACCTGCAGAGTCACACAGTTGCTGACCAATTGAGCTGTGAGCCTGGAGCAG
ATCCGTGGGCTGCAGACCCCCGCCAGTGCCTCTCCCCCTGCAGCCCTGCCCTCGAACTGTGA
CATGGAGAGAGTGACCCTGGCCCTCTCCTACTGGCAGGCCTGACTGCCCTGGAAGCCAATGACC
CATTTGCCAATAAGACGATCCCTCTACTATGACTGGAAAAACCTGCAGCTGAGCGGACTGATC
TGC GGAGGGCTCCTGGCATTGCTGGATCGCGGAGTTCTGAGTGGCAAATGCAAATACAAGAG
CAGCCAGAACGAGCACAGTCCTGTACCTGAGAAGGCCATCCCACACTCATCACTCCAGGCTCTGCCA
CTACTTGCT**GAGCACAGGACTGGCCTCCAGGGATGGCCTGAAGCCTAACACTGGCCCCCAGCACC**
TCCTCCCTGGGAGGCCTTATCCTCAAGGAAGGACTTCTCTCCAAGGGCAGGCTGTTAGGCCCCCT
TTCTGATCAGGAGGCTTCTTATGAATTAAACTCGCCCCACCCACCCCTCA

FIGURE 50

MERVTLALLLLAGLTALLEANDPFANKDDPFYYDWKNLQLSGLICGGLAIAGIAAVLSGKCKYKS
SQKQHSPVPEKAIPPLITPGSATTC

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 36-59

N-myristoylation sites.

amino acids 41-47, 45-51, 84-90

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7.

amino acids 54-67

FIGURE 51

GTGGACTCTGAGAAGCCCAGGCAGTTGAGGACAGGGAGAGAAGGCTGCAGACCCAGAGGGAGGG
AGGACAGGGAGTCGGAAGGAGGAGCACAGAGGAGGGCACAGAGACGCAGAGCAAGGGCGGCAAGG
AGGAGACCCTGGTGGGAGGAAGACACTCTGGAGAGAGAGGGGCTGGCAGAGATGAAGTTCCAG
GGGCCCTGGCCTGCCTCCTGCTGGCCCTCTGCCTGGGAGTGGGAGGCTGGCCCTGCAGAG
CGGAGAGGAAAGCACTGGACAAATATTGGGAGGCCCTGGACATGGCTGGAGACGCCCTGA
GCGAAGGGTGGAAAGGCCATTGGCAAAGAGGCCGGAGGGCAGCTGGCTCAAAGTCAGTGAG
GCCCTGGCCAAGGGACCAGAGAAGCAGTGGCACTGGAGTCAGGCAGGTTCCAGGCTTGGCG
AGCAGATGCTTGGCAACAGGGTCGGGAAGCAGCCATGCTCTGGAAACACTGGCACGAGA
TTGGCAGACAGGCAGAAGATGTCATTGACACGGAGCAGATGCTGTCGCCGGCTCTGGCAGGG
GTGCCTGGCCACAGGGTGGCTGGAAACTCTGGAGGCCATGGCATCTTGGCTCTCAAGGTGG
CCTTGGAGGCCAGGGCAGGGCAATCCTGGAGGTCTGGGACTCCGTGGGTCCACGGATAACCCG
GAAACTCAGCAGGCAGCTTGGATGAATCCTCAGGGAGCTCCCTGGGTCAAGGAGGCAATGGA
GGGCCACCAAACCTGGGACCAACACTCAGGGAGCTGGCCAGCCTGGCTATGGTCAGTGAG
AGCCAGCAACCAGAATGAAGGGTGCAGCAATCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCA
ACTCTGGGGAGGCAGCGGCTCACAGTCGGCAGCAGTGGCAGTGGCAGCAATGGTACAACAAC
AATGGCAGCAGCAGTGGTGGCAGCAGCAGTGGCAGCAGCAGTGGCAGCAGCAGTGGCGGCAGCAG
TGGCGGCAGCAGTGGTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGA
CCTCCTGGGATCCAGCACGGCTCCTCCGGCAACCACGGTGGAGCGGGCGAGGAAATGGA
CATAAACCCGGGTGTGAAAGCCAGGGATGAAGCCCGGGAGCAGGGAAATCTGGGATTCAAGGG
CTTCAGAGGACAGGGAGTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATGCCCTCTTG
GAGGCTGGAGACAATTATCGGGGCAAGGGTCAGCTGGGAGTGGAGGAGGTGACGCTGTT
GGTGGAGTCATACTGTGAACTCTGAGACGTCCCTGGATGTTAACCTTGACACTTCTGGAA
GAATTTAAATCCAAGCTGGTTTCATCAACTGGGATGCCATAAACAGGACCAGAGCTCTC
GCATCCCGTGACCTCCAGACAAGGAGCCACAGATTGGATGGAGGCCACACTCCCTCTAA
AACACCAACCCCTCTCATCACTAAATCTCAGCCCTGCCCTGAAATAACCTTAGCTGCCCAACAAA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 52

MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGAAGSKVS
EALGQGTREAVGTGVRQVPGFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHGADAVRGSWQGVP
GHSGAWETSGGHGIFGSQGGLGGQQGQNPGGLGTPWVHGYPGNSAGSGMNPQGAPWGQGGNGPPNF
GTNTQGAVAQPGYGSVRASNQNEGCTNPPPSGSGGSSNSGGSGSQGSSGSGSNGDNNNGSSSGS
SSGSSSSGSSGGSSGGSSGNSGGSRGDGSESSWGSSSTGSSSGNHGSGGGNGHKGCEKPGNE
ARGSGESGIQGFRGQGVSSNMREISKEGNRLGGSGDNYRGQGSSWGGDAVGGVNTVNSETSPGM
FNFDTFWKNFKSKLGFINWDAINKDQRSSRIP

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80,
90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161,
159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224,
236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252,
253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285,
283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301,
298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329,
325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389,
387-393, 389-395, 395-401

Cell attachment sequence.

amino acids 301-304

FIGURE 53

GGAGAAGAGGTTGTGGGACAAGCTGCTCCGACAGAAGGATGTCGCTGCTGAGCCTGCCCTGG
CTGGGCCTCAGACCGGTGGCAATGTCCTGGCTACTCCCTGCTGCTGGTGTGGGCTCCTGGCT
ACTCGCCCGCATCTGGCTTGACCTATGCCCTCTATAACAACGCGCCGGCTCCAGTGTTC
CACAGCCCCAAAACGGAACCTGGTTGGGTACCTGGGCTGATCACTCCTACAGAGGAGGGC
TTGAAGGACTCGACCCAGATGTCGCCACCTATTCCCAGGGCTTACGGTATGGCTGGTCCC
CATCCCCCTCATCGTTTATGCCACCCTGACACCATCCGGCTATCACCAATGCCCTCAGCTGCC
TTGCACCCAAGGATAATCTCTCATCAGGTTCTGAAGCCCTGGCTGGAGAAAGGAACTGCTG
AGTGGCGGTGACAAGTGGAGCCGCCACCGTCGGATGCTGACGCCCTTCCATTCAACATCC
GAAGTCCTATATAACGATCTCAACAAGAGTCGAAACATCATGCTGACAAGTGGCAGCACCTGG
CCTCAGAGGGCAGCAGTCGCTGGACATGTTGAGCACATGCCCTCATGACCTGGACAGTCTA
CAGAAATGCATCTCAGCTTGACAGCCATTGTCAGGAGAGGCCAGTGAATATATTGCCACCAT
CTTGGAGCTCAGTGCCCTGTAGAGAAAAGAGCCAGCATATCCTCCAGCACATGGACTTCTGT
ATTACCTCTCCATGACGGCGCGCTTCCACAGGGCCTGCCGCTGGTGCATGACTTCACAGAC
GCTGTCATCCGGAGCGCGTGCACCCCTCCCCACTCAGGGTATTGATGATTTTCAAAGACAA
AGCCAAGTCCAAGACTTGGATTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGAAAGG
CATTGTCAGATGAGGATATAAGAGCAGAGGCTGACACCTCATGTTGGAGGCCATGACACCACG
GCCAGTGGCCTCTCCTGGTCTGTACAAACCTTGCAGGCACCCAGAATACCAGGAGCGTGCC
ACAGGAGGTGCAAGAGCTCTGAAGGACCGCGATCCTAAAGAGATGAAATGGGACGACCTGCC
AGCTGCCCTCCTGACCATGTGCGTGAAGGAGAGCCTGAGGTTACATCCCCAGCTCCCTCATC
TCCCAGTGCACCCAGGACATTGTTCTCCAGATGCCGAGTCATCCCCAAAGGCATTACCTG
CCTCATCGATATTATAGGGTCCATCACAAACCAACTGTGTGGCCGGATCCTGAGGTCTACGACC
CCTTCCGTTGACCCAGAGAACAGCAAGGGAGGTACCTCTGGCTTTATTCCCTTCTCCGCA
GGGCCAGGAAC TGCA CGGGCAGGCGTCCGCATGGGGAGATGAAAGTGGCCTGGCGTTGAT
GCTGCTGCACTCCGGTTCTGCCAGACCAACTGAGCCCCGCAGGAAGCTGAAATTGATCATGC
GCGCCGAGGGCGGGCTTGGCTGCGGGTGGAGGCCCTGAATGTAGGCTTGCAG**T**A**T**T**T**C**G**
CCATCCACCTGTTTTGCAATTGTCATGAATAACGGTGCTGTCAAA

FIGURE 54

MSLLSLPWLGRLPVAMSPWLLLLLVGSWLLARILAWTYAFYNNCRLQCFPQPPKRNWFWGHLG
LITPTEEGLKDSTQMSATYSQGFTVWLGPPIIPFIVLCHPTIRSITNASAAIAPKDNLFIRFLKP
WLGEGLLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGSSRLDMFEHI
SLMTLDSLQKCIFSFDSHCQERPEYIATILELSALVEKRSQHILQHMDFLYYLSDGRRFHAC
RLVHDFTDAVIREERRTLPTQGIDDDFKDKAKSKTLDFIGVLLSKDEDGKALSDEDIRAEADTF
MFGGHDTTASGLSWVLYNLRHPEYQERCRCQEVQELLKDRDPKEIEWDDLAQLPFLTMCVKESLR
LHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPVTWPDPVEVDPFRFPENSKGRSP
LAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLELIMRAEGGLWLRVEPLN
VGLQ

Important features:

Transmembrane domains:

amino acids 13-32 (type II), 77-102

Cytochrome P450 cysteine heme-iron ligand signature.

amino acids 461-471

N-glycosylation sites.

amino acids 112-116, 168-172

FIGURE 55

ATCGCATCAATTGGGAGTACCATCTTCCTCATGGGACCAGTGAAACAGCTGAAGCGAATGTTGA
GCCTACTCGTTGATTGCAACTATCATGGTGTGTTGCACTTACCCGTGTTCTGCCT
TTGGTGGCATAACAAGGGACTTGCACTTATCTCTGCATTTGCAGTCTTGCATTGACGTGG
TACAGCCTTCCTTCATACCAATTGCAAGGGATGCTGTGAAGAAGTGTGTTGCCGTGTCTGC
ATAATTCATGGCCAGTTATGAAGCTTGGAAAGGCACTATGGACAGAACAGCTGGTGGACAGTTT
GTAACATCTCGAAACCTCTGTCTTACAGACATGTGCCTTTATCTTGCAAGCAATGTGTTGCTT
GTGATTGAAACATTGAGGGTTACTTTGGAAAGCAACAATACATTCTCGAACCTGAATGTCAGTA
GCACAGGATGAGAAGTGGTTCTGTATCTTGAGTGGAAATCTTCCTCATGTACCTGTTCCCTC
TCTGGATGTTGTCCCCACTGAATTCCCATGAATAACAAACCTATTCAACAGCAACAGCAAAAAAAA
AAA

FIGURE 56

MGPVKQLKRMFEPTRLIATIMVLLCFALTLCASFWWHNKGALIFCILQSLALTWYSLSFIPFAR
DAVKKCFAVCLA

Important features:

Signal peptide:

amino acids 1-33

Type II fibronectin collagen-binding domain protein.

amino acids 30-72

FIGURE 57

CGGCTCGAGCTCGAGCCGAATCGGCTCGAGGGGCAGTGGAGCACCCAGCAGGCCAACATGCTCTGTCTGCCCCGCTG
TACGTGCCGTATCGGGAAAGCCCAGCCAGTTCACTTTCAGTCACTTTCAGTCAAGGGCTCCCTGCCAGCTGAAGTCC
ATTTCAACTCATGTTCTCATCCCTCCAGGAATTCTCCACCTACCGCCAGTGGAAAGCAGAAAATTGACAACCT
GGAGATAAGGACCTTGATGGCAGCTAGACTTGAAGAATTGTCATTATCTCAAAGATCATGAGAAGAAGACTGGAGG
CTGGTTTAAGATTTGCAAAAGATAATGTCAGGCCATTGAGCCAGGAGATCATGCTCCTGCCGGACTG
GGAGTCAGATACTGAAACAGCAGGAGAAAAATTCTCAAGAGCATGGATAAAACCGCAGCATGACCATTCGACTGG
AACGAGTGGAGAGACTACCACCTCCTCACCCCGTGGAAAACATCCCGAGATCATCTACTGAAAGCATTCCACG
ATCTTGATGTTGGGTGAGAACTAACGGTCCCGATGATTCAAGCTGGAGGAGGAGCAGACGGGATGTTGGAGA
CACCTGGTGGCAGGGGGTGGGGCAGGGGGCTATCCAGAACCTCAGCAGGGGGCTTGACAGCTCAAGGTGCTCATG
CAGGTCTCATGCCCGAACACATGGCATCTGGTGTGCTTCACTCAGATGATTGAGAAGGAGGGGCCAG
TCACTCTGCCGGGCAATGGCATCAAGCTCTTAAATTGCCCCGATCATGAGCATTAACATTGCTGAGACAG
ATCAAGCGCCTTGTGGTAGTGAACAGGAGACTCTGAGGATTCAAGAGAGGCTTGCGCAGGGTCTTGCAGGGCC
ATCGCCCAAGAGCAGCATCTACCAATGGAGGTCTGAAGACCCGGATGGCCTGCCAGAACAGCCAGTACTCAGGA
ATGCTGGAGATGCCAGGGAGGATCTGGCAGAGGAGGGGGTGGCCGCTTCAACAGGCTATGTCACCAACATGCTG
GGCATCATCCCTATGCCCGCATGACCTTGAGCTCAAGAGACGCTCAAGAATGCCCTGGCTGCCAGACTATGCCAG
AACAGCGGGGACCCGGCTTGTGCTCTGCCCTGGCCTGGCAGCATCTGGAGCTACCTGGCTGCCAGCTAC
CCCCCTGGCCCTAGTCAGGACCCGGATGCCAGGCCAGGCTTCAATTGAGGGCGCTCCGGAGGTGACCATGAGCACCTC
TTCAAACATATCTGCCGACCGAGGGGGCTTGGGCTGTACAGGGGCTGGCCCCAACATTCAAGGTCATCCCA
GCTGTGAGCATCACCTGTCTAGAGAACCTGAGATCACCTGGGCTGCACTGCCGTGAGCTGGGGAGGGC
CGGGCCAGGAGCTGGAGCTGCCATCTGGGCCCCAGCTGGGCTGCAAGGCCACTCTACCTTGTGAATGCCAACACT
AAGCTGTCTCGAGCAAGCTGTGAAACCCCTAGCGCAGGCCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
GTCCTGTCACCCAGCAGACCCCTCTGGTTGGCTTCAAGGAGACCCAGGCTTCACTTCTAGGGCTTCAAGGTGAGCAGG
CTCAGGCTCACATGTGAAAGACAGGACATTTCAGCTGAGTGCCTGCCAATAGTGAGCTGGAGCTGGAGGCCGGCT
TAGTTCTTCATTTCACCTTGCAGGAGCTGTGGCACGGCCCTGCCCCCTGCCCCCTGCTGCCGTGCACTCCCTGTG
CTCTCTGCTGCCCTGCTGTAGGTAAGTGGAGGGGGCTACAGCCCACATCCCAACCCCTGCTCAATCCC
ATAATCCATGATGAAAGGTGAGGTGAGCTACGGCTGGCCCTCCAGGCTGACTCTCCAAACCTACAGCATGAGGCCAACCTG
TGTGAAGGAAAGAGGAAAGGAGCTGGCTTGTGCTACTGGCATCTGAGGCCCTGGCTGACTGAGCTGGGCTCTGGGCT
CTTGGGAGTGCAGGGGGCTGGGCTGCCCTGGCTGCCAGAAGGCAAGTGTGGGCTCATGGCTCTGAGCT
GCCCTGGACCTGTCAAGGATGGGCCAACCTCAGAACCAAACACTGTCCTTCACTGTGGCATGAGGGAGTGGAGCA
CCATGTTGAGGGCGAAGGCCAGGGCTTGTGTTGAGGGGGAGGAAAGGCTGGAGGGCTTAATTATGG
ACTGTTGGGAAAAGGGTTGTGCTCAGAGTGTGCTGAGCTGGCTGCCCTGGGCTCTGTCACCCAGAGGGGGGGGG
GAGCAGGAGCTGGCTGACTGTCAGGTTGCTGAGCTGGCTGCCCTGGGCTCTGTCACCCAGAGGGGGGGGG
GGGACCCAGCCCCACATTCACTTGTGCACTGCTGGAACCTATTATTTGATTATTTAACAGAGCTTATGCT
AACTATTTTATAGATTGTTAATTATAGCTGTCAATTTCAGTTCAATTATTTATCATATTATGTTATGTT
GATTGACCTTCCCAAGCCGGGCACTGGGATGGGAGGAGGAGGAGAAGGGGGGCTTGGCGCTGAGTCACATCT
GTCCAGAGAAAATTCTTGGGACTGGGAGGCAAAAGCCGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
GTGGGGAGGGCTTGGCCCGAGCTTGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
AACCTTGAGGTGAACTCAGTTATTCTGGCTGCCAGGGGTTCTTCTTCACTTCTGAGATGCAAGGCC
TGAGGTGCCCTCACTGTGAAATTGTTGGTGGCGGGGGCTGGAGGAGGGTGGGGGCTGGCTCCGCTCCAGC
CTTCTGCTGCCCTGCTAACATGCCGCAACTGGGACCTCACGGTTGCACCTCCATTCCACCAAGATGACCTGA
TGAGGAAATTCTCAATAGGATGCAAGAGCATTAAGGAAATTGTTGATGCAACATATAACTGGAGTCGTC
AAATTAAAGGAAATTGGACGTTAGAGTGTGCTATTAAAGCAGCCTCTAATAAGGAGGAGGAGGAGGAGGAG
AAA

FIGURE 58

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSYSTYRQWKQKIVQAGDKDLDG
QLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILKSMDKNG
TMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTEERQTGMWWRHLVAGGG
AGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGINVLKIAPESAIK
FMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMALRKTGQYSGMILDCARR
ILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNSADPGVFVLLACGTMSSC
GQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFGLYRGLAPNFMKVIPAVSISYV
VYENLKITLGVQSR

Important features:

Signal peptide:

amino acids 1-16

Putative transmembrane domains:

amino acids 284-304, 339-360, 376-394

Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

N-glycosylation sites.

amino acids 129-133, 169-173

Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

FIGURE 59

GGAAGGCAGCGGCAGCTCCACTCAGCCAGTACCCAGATA CGCTGGAACCTCCCCAGCCATGGC
TTCCCTGGGGCAGATCCTCTCTGGAGCATAATTAGCATCATCATTATTCTGGCTGGAGCAATTG
CACTCATCATTGGCTTGGTATTCAGGGAGACACTCCATCACAGTCACACTGTGCCTCAGCT
GGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTGAACCTGACATCAAACTTCTGATAT
CGTGATACAATGGCTGAAGGAAGGTGTTTAGGCTTGGCATGAGTTCAAAGAAGGCAAAGATG
AGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTGCTGATCAAAGTGTAGTT
GGCAATGCCCTTTGGCTGAAAACGTGCAACTCACAGATGCTGGCACCTACAAATGTTATAT
CATCACCTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATAAAACTGGAGCCTCAGCATGCCGG
AAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTGCGGTGTGAGGCTCCCCGATGGTCCCC
CAGCCCACAGTGGCTGGCATCCCAAGTTGACCAGGGAGCCAACCTCTCGGAAGTCTCCAATAC
CAGCTTGAGCTGAACTCTGAGAAATGTGACCATGAAGGTTGTCTGTGCTCTACAATGTTACGA
TCAACAAACACATACTCCTGTATGATTGAAAATGACATTGCCAAGCAACAGGGATATCAAAGTG
ACAGAACGAGATCAAAGGGAGTCACCTACAGCTGCTAAACTCAAAGGCTCTGTGT
CTCTTCTTCTTGCCATCAGCTGGCACTCTGCCCTCACCTGATGCTAAATTAAT
GTGCCCTGGCCACAAAAAAGCATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTCAC
CACCAGATATGACCTAGTTTATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTG
AGCAAACAAGAGCAAGAAACAAAAGAAGCCAAGCAGAAGGCTCCAATATGAACAAGATAAT
CTATCTCAAAGACATATTAGAAGTTGGAAAATAATTATGTGAACTAGACAAGTGTGTTAAGA
GTGATAAGTAAATGCACGTGGAGACAAGTGCATCCCCAGATCTCAGGGACCTCCCCCTGCCTGT
CACCTGGGGAGTGGAGGACAGGGATAGTGCATGTTCTGTGCTGAAATTAGTTATATGTG
TGTAATGTTGCTCTGAGGAAGCCCCTGAAAGTCTATCCAAACATATCCACATCTTATATTCCAC
AAATTAAAGCTGTAGTATGTACCCCTAAAGACGCTGCTAATTGACTGCCACTCGCAACTCAGGGCG
GCTGCATTTAGTAATGGGTCAAATGATTCACTTTATGATGCTTCAAAGGTGCCTGGCTTC
TCTTCCAACTGACAAATGCCAAGTTGAGAAAAATGATCATAATTAGCATAAACAGAGCAGT
CGGGGACACCGATTAAATAAAACTGAGCACCTTCTTTAAACAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA

FIGURE 6o

MASLGQILFWSIISIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIKLS
DIVIQWLKEGVILGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRKNVQLTDAGTYKC
YIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFQOPTVVWASQVDQGANFSEVS
NTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRRSHLQLLNSKASL
CVSSFFAISWALLPLSPYLMLK

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 258-281

N-glycosylation sites.

amino acids 112-116, 160-164, 190-194, 196-200, 205-209, 216-220,
220-224

N-myristoylation sites.

amino acids 52-58, 126-132, 188-194

FIGURE 61

TGACGTAGAACATCACCATGGCCAGCTATCCTTACCGCAGGGCTGCCAGGAGCTGCAGGACAAG
CACCAAGGAGCCCCCTCGGGTAGCTACTACCCCTGGACCCCCAATAGTGGAGGGCAGTATGGTAGT
GGGCTACCCCCCTGGTGGTTATGGGGTCTGCCCTGGAGGGCTTATGGACCACAGCTGG
TGGAGGGCCCTATGGACACCCCAATCCTGGATGTTCCCTCTGGAACCTCCAGGAGGACCATATG
GCGGTGCAGCTCCGGGGCCCTATGGTCAGCCACCTCAAGTTCTACGGTGCCAGCAGCCT
GGGCTTTATGGACAGGGTGGGCCCTCCAAATGTGGATCCTGAGGCCTACTCCTGGTTCCAGTC
GGTGGACTCAGATCACAGTGGCTATATCTCCATGAAGGAGCTAAAGCAGGCCCTGGTCAACTGCA
ATTGGTCTTCATTCAATGATGAGACCTGCCATGATGATAAACATGTTGACAAGACCAAGTCA
GGCCGCATCGATGTCACGGCTCTCAGCCCTGTGGAAATTCATCCAGCAGTGGAAAGAACCTCTT
CCAGCAGTATGACCGGGACCGCTCGGGCTCATTAGCTACACAGAGCTGCAGCAAGCTCTGTCCC
AAATGGGCTACAACCTGAGCCCCAGTTACCCAGCTTCTGGTCTCCCGCTACTGCCACGCTCT
GCCAATCCTGCCATGCAGCTTGACCGCTTCATCCAGGTGTGCACCCAGCTGCAGGTGCTGACAGA
GGCCTTCCGGGAGAAGGACACAGCTGTACAAGCAACATCCGGCTCAGCTCGAGGACTTCGTCA
CCATGACAGCTCTCGGATGCTTGACCCAAACCATCTGTGGAGAGTGGAGTGCACCAGGGACCTT
TCCTGGCTTCTTAGAGTGAGAGAAGTATGTGGACATCTTCTTTCTGTCCCTCTAGAAGAAC
ATTCTCCCTTGCTTGTGCAACACTGTTCCAAAAGAGGGTGGAGAGTCCTGCATCATGCCACCA
AAATAGTGAGGACCAGGGCTGAGGCCACACAGATAGGGGCTGATGGAGGAGAGGATAGAAGTTGA
ATGTCCTGATGGCCATGAGCAGTTGAGTGGCACAGCCTGGCACCCAGGAGCAGGTCTGTAAATGG
AGTTAGTGTCCAGTCAGCTGAGCTCCACCCGTATGCCAGTGGTGAATGTTCATCGGCCTGTTACC
GTTAGTACCTGTGTTCCCTCACCAAGGCCATCTGTCAAACAGAGCCATTCTCCAAAGTGGAAAT
CTGACCAAGCATGAGAGAGATCTGTCTATGGGACCAAGTGGCTGGATTCTGCCACACCCATAAAT
CCTTGTGTGTTAACCTCTAGCTGCCTGGGGCTGGCCCTGCTCAGACAAATCTGCTCCCTGGGCAT
CTTGGCCAGGCTCTGCCCTGCAGCTGGACCCCTCACTGCCTGCCATGCTCTGCTCGGCT
TCAGTCCTCAGGAGACAGTGGTCACCTCTCCCTGCCAATACTTTTTAATTGATTTTTTC
ATTGGGCCAAAGTCCAGTGAATTGTAAGCTCAATAAAAGGATGAAACTCTGA

FIGURE 62

MASYPYRQGCPGAAGQAPGAPPGSYPGPPNSGGQYGSGLPPGGGYGGPAPGGPYGPPAGGGPYG
HPNPGMFPSTPGGGPYGGAAPGGPYGQPPPSSYGAQQPGLYGQGGAPPNVDPEAYSWFQSVDSDH
SGYISMKELQALVNCNWSSFNDETCLMMINMFDKTSGRIDVYGFSAWKFIQQQWKNLFQQYDR
DRSGSISYTELQQALSQMGYNLSPQFTQLLVSRYCPRSANPAMQLDRFIQVCTQLQLTEAFREK
DTAVQGNIRLSFEDFVTMTASRML

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 147-150

Casein kinase II phosphorylation sites.

amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites.

amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-66, 70-75, 78-83, 83-88, 87-92, 110-115

FIGURE 63

CAGGATGCAGGGCCCGTGGCAGGGAGCTGGCTCCTCTGGGCCTGCTCCTGGTCTGTCTTCATC
TCCCAGGCCCTTTGCCCGGAGCATCGGTGTTGGAGGAGAAAGTTCCAAAACCTCGGGACC
AACTTGCCCTAGCTCGAACACCTCCACTGGCCCTCTAACACTGAACATCCGAGCCCCGC
TCTGGACCCTAGGTCTAATGACTGGCAAGGGTCTGAAGCTCAGCGTGCCTCCATCAGATG
GCTTCCCACCTGCAGGAGGTTCTGCAGTGCAAGGGTGCCTCCATCGTGGGGCTGCCTGCCATG
GATTCCCTGGCCCCCTGAGGATCCTGGCAGATGATGGCTGCTGCCGTGAGGACGCCCTGGGGGA
AGCGCTGCCCTGAAGAACTCTTACCTCTCCAGTGCTGCCGTCCGGCAGTGGCCCTT
TGCCTGGGAGTCTCTCCGATGCCACAGGCCTCTCACCTGAGGCTTCACTCCTCCACCAGGAC
TCGGAGTCCAGACGACTGCCCGTCTAATTCACTGGAGCCGGGGAAAAATCCTTCCCAACG
CCCTCCCTGGTCTCTCATCCACAGGGTCTGCCTGATCACCCCTGGGTACCTGAATCCCAAGT
TGTCCCTGGGAGGTGGAGGCCCTGGACTGGTGGGAACGAGGCCATGCCACACCTGAGGG
ATCTGGGGTATCAATAATCAACCCCCAGGTACAGCTGGGAAATATTAATCGGTATCCAGGAGG
CAGCTGGGGAAATATTAATCGGTATCCAGGAGGAGCTGGGAAATATTAATCGGTATCCAGGAG
GCAGCTGGGGAAATATTCTATACCCAGGTATCAATAACCCATTCCCTGGAGTTCTCCGC
CCTCCTGGCTTCTGGAACATCCCAGTGGCTCCCTAATCTCCAAGCCCTAGGTGCACTG
GGGCTAGAGCACGATAGAGGGAAACCCAACATTGGAGTTAGAGTCTGCTCCGCCCTTGCTG
TGTGGGCTCAATCCAGGCCCTGTTAACATGTTCCAGCACTATCCCCACTTTCAGTGCCTCCCC
TGCTCATCTCCAATAAAATAAAGCACTTATGAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA

FIGURE 64

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQPAL
DPRSNDLARVPLKLSVPPSDGFPAGGSQRWPPSWGLPAMDSWPEDPWQMMAAAAEDRLGEA
LPEELSYLSSAAALAPGSGPLPGESSPDATGLSPEASLLHQDSESRRLPRSNSLGAGGKILSQRP
PWSLIHRVLPDHPWGTLNPSVSWGGGGPGTGWGTRPMPHPEGIWGINNQPPGTWGNINRYPGGS
WGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPFGVLRPPGSSWNIPAGFPNPPSPRLQWG

Important features of the protein:

Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites.

amino acids 56-59, 155-158

N-myristoylation sites.

amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263,
259-264, 269-274, 270-275, 280-285, 281-286, 305-310

FIGURE 65

AAGGAGAGGCCACCGGGACTTCAGTGTCTCCATCCCAGGAGCGCAGTGGCCACTATGGGGTC
TGGGCTGCCCTTGCTCCTCTTGACCCCTCTGGCAGCTCACATGGAACAGGGCCGGGTATGA
CTTGCAACTGAAGCTGAAGGAGCTTTCTGACAAATTCCCTCATGAGTCCAGCTTCCGGAA
TTGCTTGAAAAGCTCTGCCTCCCTCCATCTCCCTCAGGGACCAGCGTCACCCCTCACCATGC
AAGATCTAACACCATGTTGTCTGCAACACATTGACAGCCATTGAAGCCTGTGTCCTTGGCCC
GGGCTTTGGGCCGGGATGCAGGAGGCAGGCCCCGACCCTGTCTTCAGCAGGCCCCCACCTC
CTGAGTGGCAATAAATAAATTCTGGTATGCTG

FIGURE 66

MGSGLPLVLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSVTL
HHARSQHHVVCNT

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 37-41

N-myristoylation sites.

amino acids 15-21, 19-25, 60-66

FIGURE 67

ACGGACCGAGGGTTCGAGGGAGGGACACGGACCAGGAACCTGAGCTAGGTCAAAGACGCCCGGGC
CAGGTGCCCGTCGCAGGTGCCCTGGCCGGAGATGCGTAGGGAGGGCGAGCGCGAGAACCCCC
TTCCTCGCGCTGCCAACCGCCACCCAGCCCATGGCGAACCCGGGCTGGGCTGCTTCTGGCG
CTGGGCCTGCCGTTCTGCTGGCCGCTGGGCGAGGCTGGGGCAAAATACAGACCACCTCTGC
AAATGAGAATAGCACTGTTGCCCTCATCCACCAGCTCCAGCTCCGATGGCACCTGCGTCCGG
AAGCCATCACTGCTATCATCGTGGTCTTCTCCCTCTGGCTGCCTGCTCCTGGCTGTGGGCTG
GCACTGTTGGTGCAGGCTCGGGAGAAGCGGCAGACGGAGGGCACCTACCGGCCAGTAGCGA
GGAGCAGTTCTCCCATGCAGCCGAGGCCGGGCCCCCTCAGGACTCCAAGGAGACGGTGCAGGGCT
GCCTGCCCATCTAGGTCCCCCTCTGCATCTGTCTCCCTCATTGCTGTGACCTTGGGAAA
GGCAGTGCCCTCTGGGAGTCAGATCCACCCAGTGCTTAATAGCAGGGAGAAGGTACTTCAA
AGACTCTGCCCTGAGGTCAAGAGAGGATGGGGCTATTCACTTTATATTTATATAAAATTAG
TAGTGAGATGTAAAAAAAAAAAAAA

FIGURE 68

MANPGLGLLLALGLPFLARWGRAWGQIQTTSANENSTVLPSSSSDGTLRPEAITAIIVVFS
LLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQF~~SHAAE~~ARAPQDSKETVQGCLPI

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 56-80

N-glycosylation site.

amino acids 36-40

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 86-90

Tyrosine kinase phosphorylation site.

amino acids 86-94

N-myristoylation sites.

amino acids 7-13, 26-32

FIGURE 69

GCCAGGAATAACTAGAGAGGAACAATGGGTTATTCAAGAGGTTTGTCTCTAGTTCTGCTGCTGACCAG
TCAAATACCTCCTCATTAAGCTGAATAATAATGCCCTGAAGATATTGTATTGTTAGATCTAGTGTGCCAGAA
GATGAAAAAATAATTGAACAAATAGAGGATATGGTACTACAGCTCTACGTACCTGTTGAAGCCACAGAAAAAAGA
TTTTTTTCAAAAATCTATCTATTAAATTCTGAAGATTGAGAAATCCTCAGTACAAAAGGCCAAAACATGAA
AACCATAAACATGCTGATGTTATAGTTGCACCCACACTCCAGGTAGAGATGAACCATACCCAAGCAGTTACA
GAATGAGAGAGAAAGGGAAATACATTCACTCACCCTGACCTCTACTTGGAAGAAAACAAAATGAATATGGACCA
CCAGGCAACTGTTGTCATGAGTGGGCTCACCTCGGTGGGAGTGTGATGAGTACAATGAAGATCAGCTTC
TACCGTCTAAGTCAAAAAAATCGAAGCAACAAGGTGTTCCGAGGTATCTGGTAGAAATAGAGTTATAAGTGT
CAAGGAGGCAGCTGTCTTAGAGCATGCAGAATTGATTCTACAACAAAATCTGTTAAAGGATTTGTCATTCTTT
CCTGATAAAGTACAAACAGAAAGGATCCATAATGTTTATGCAAAAGTATTGTTCTGTTGAATTGTAACGAA
AAAACCCATAATCAAGAAGCTCAAGGCTACAAAACATAAAAGTCAATTTAGAAGTACATGGGAGGTGATTGCAAT
TCTGAGGATTAAACACATACCCATGTCACCCACTCTCCACCTGTCATTCTCATTGCTAAGATCAGTCAA
AGAATTGTTGCTTAGTCTGATAAGTCTGGAAGCATGGGGGTAAGGACGCCAAATCGAATGAATCAAGCAGCA
AAACATTCTGCTGCAGACTGTTGAAATGGATCTGGGTGGGATGTTCACTTGTAGTACTGCCACTATGTA
AATAAGCTAATCCAAATAAAAGCAGTATGAAAGAACACACTCATGCCAGGATACCCACATATCTCTGGGAGGA
ACTTCCATCTGCTGGAATTAAATATGCAATTCTCAGGTGATTGGAGAGCTACCTTCAACTCGATGGATCCGAAGTA
CTGCTGCTGACTGATGGGAGGATPAACACTGCAAGTTCTGATTGATGAAGTGAACAAAGTGGGCATTGTCAT
TTTATTGCTTGGGAAAGAGCTGCTGATGAAGCAGTAATAGAGATGAGCAAGATAACAGGAGGAAGTCATTGTTGTT
TCAGATGAAGCTCAGAACAAATGGCCTCATGATGCTTGGGCTTACATCAGGAATACTGATCTCTCCAGAAG
TCCCTCAGCTGCAAAGTAAAGGATTAACACTGAATGTAATGCCCTGATGAACGACACTGTCATAATTGATAGTACA
GTGGGAAAGGACACGTTCTTCATCATGGAAACAGTCTGCCCTCCAGTATTCTCTGGGATCCCAGTGGAAACA
ATAATGAAATTTCACAGTGGATGCAACTTCCAAAATGGCTATCTCAGTATTCCAGGAACGCAAGGTGGCACT
TGGGCATACAATCTCAAGCCAAGCGAACCCAGAACATTAACTATTACAGTAACCTCTGAGCAGCAAATTCTCT
GTGCCCTCAATCACAGTGAATGCTAAATGAATAAGGACGTAACAGTCTCCCGAGCCAATGATTGTTACGAGAA
ATTCTACAAAGGATATGACCTGTTCTGGAGCCAATGACTGCTTCTATTGATACAGAACATGGACATACAGAAGTT
TTGGAACCTTGGATAATGGTGCAGGGCTGATTCTCAGGAATGATGGAGTCTACTCCAGGTATTACAGCATAT
ACAGAAAATGGCAGATATGCTTAAAGTCTGGGCTCATGGAGGAGCTCAGGCCAACAGCATCCGGAGGTGCAATTGAT
GAGGATACTCAGACCACCTGGAGGATTCTGCCGAACAGCATCCGGAGGTGCAATTGTTACAGTCCAAGC
CTTCCCTGCTGACCAATACCCACCAAGTCAAATCACAGACCTTGATGCCACACTTCAGGATAAGTATTCTT
ACATGGACAGCACCAGAGATAATTGATGTTGAAAAGTCAACGTTATATCATAGAATAAGTCAAGTCCAAGTATTCTT
GATCTAAGAGACAGTTGATGCTCTCAAGTAATACTGATCTGTCACCAAGGAGGCCAACTCCAAGGAA
AGCTTGCATTAAACAGAAAATATCTCAGAAGAAATGCAACCCACATATTATTGCTTAAAGTATGATAAA
AGCAATTGACATCAAAGTATCCAACATTGCAACAGTAACCTTGTATTCCCTCAAGCAAATCTGATGACATTGAT
CCTCACACTCTACTCCACTCTGATAAAAGTCATAATTCTGGAGTTAATATTCTACGCTGGTATTG
TCTGTGATTGGGCTGTTGAACTTGTGATTGATGCAACAGTTCTGAATTGACGAAACGTTGAACTTAAAGGAGGAA
AAGTAGACCTAGAGAGACTTTAAAACAAAATCAATGTAAGTAAGGATACTTGTGATTAAATAAAACACTCATGGATA
GTGAAAAACTGTCAAGATTAAATTAAGATGTCGGAAAAGGATACTTGTGATTAAATAAAACACTCATGGATA
ATCCTTTTCAACTGATACCTGGTTGATATTGATGCAACAGTTCTGAATGATATTCAAAATTGCACTCAA
GAAATTAAAATCATCTGAGTAGTCAAAATACAAGTAAAGGAGGAGCAATAACAAACATTTGGAAAAAAA
AAA

FIGURE 70

MGLFRGFVFLVLCLLHQSNSTFIKLNNGFEDIVIDPSVPEDEKIIEQIEDMVTASTYLFE
ATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGEKEY
IHFTPDLGGKKQNEYGPPGKLFWHEWAHLRGVFDEYNEDQPFYRAKS KIEATRC SAGISGRN
RVYKCQGGSCLS RACRIDSTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVEFCNEKTHNQEAP
SLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPVSLLKISQRIVCLVLDKSGSMGGKDRLNR
MNQAAKHFLLOQTENG SWGMVHF DSTATIVNKLIQIKSSDERNTLMAGLPTYPLGGTSICSGIK
YAFQVIGELHSQLDGSEVLLTDGEDNTASSCIDEVKQSGAIVH FIALGRAADEAVIEMSKITGG
SHFYVSDEAQNNGLIDA FGALTSGNTDLSQKSLQLESKGTLNSNAWMNDVIIDSTVGKDTFFL
ITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSR
AANSSVPPITVNAKM NDKVNSFPSPMIVYAEILQGYVVLGANVTAFIESQNGHTEVLELLDNA
GADSFKNDGVYSRYFTAYTENGRYSLKVRAGGANTARLKLRRPLNRAAYIPGWVVNGEIEANPP
RPEIDEDTQTTLED FSRTASGGAFVVSQVPSLPLDQYPPSQTDL DATVHEDKIILTWTAPGDN
FDVGKVQRYIIRISASILDLRDSFDDALQVN TDLSPKEANSKESFAFKPENISEENATHIFIAI
KSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPDKSHNSGVNISTLVLSVIGSVVI
VN FILSTTI

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592,
628-632, 811-815, 832-836, 837-841, 852-856, 896-900

FIGURE 71

CTCCTTAGGTGAAACCTGGGAGTAGAGTACTGACAGCAAAGACCGGAAAGACCATACTGCCCGGGCAGGGGTGA
CAACAGGTGTCATCTTTGATCTCGTGTGGCTGCCCTCTATTCAAGGAAGACGCCAAGGTAATTGACCCA
GAGGAGCAATGATGTAGCCACCTCTAACCTCCCTCTTGAAACCCCCAGTTAGGCCAGGATTACTAGAGAGTGTCA
ACTCAACCAGCAAGCGCTCCCTCGCTTAACCTGTGGTTGGAGGAGAACCTTGTGGGCTGCCCTCTTAGCA
GTGCTCAGAACTGACTTGCCTGAGGGTGGAGCAGAAAGAAAAGGTCCCTCTTGCTGTGGCTGCACATCAGGAA
GGCTGTGATGGGATGAAGGTGAAACATGGGAGATTCACTTCAGTCATTGCTCTGCCCTGCAAGGATCATCCTTAA
AGTAGAGAAGCTGCTCTGTGTGGCTTAACCTCAAGGGCAGAACCTCTAGAAGGAATGGATGCAAGCAGCTC
CGGGGCCCAAACGCATGCTCTGTGGCTAGGCCAGGGAAAGCCCTCCGTGGGGCCCGGTTGAGGGATGCC
ACCGGTTCTGGACGCATGGCTGATTCTGAAATGATGATGGTTGCCGGGCTGCTGCGTGGATTTCCGGGTGGT
GTTTGCTGGTCTCTCTGCTGTGCTATCTGCTGTGATCATGTTGGCTGCCACCCAAAAGGTGACGGAGGCAG
CTGGCAGTCCCAGGGCACAGGCCAACGGGAAGGGGATCAGGGCTCCTCAGGAGTGGAGGAGCAGCAC
CGCAACTACGTAGCAGCCTGAAGGGCAGATCGCAGACTCAAGGAGGAGCTGAGGAGAGGAGTGAGCAGCTAGG
AATGGCAGTACCAAGGCAGCGATGCTGCTGGCTGGCTGGACAGGAGCCCCCAGAGAAAACCCAGGCCACCTC
CTGGCCTCCCTGCACTCGCAGGTGGACAAGGCAGAGGTGAATGCTGGCTCAAGTGGCCACAGAGTATGCAGCAGTG
CCCTTGATAGCTTACTACAGAGGTGACCTGGAGACTGGCTTACCCCGACGGGAGAGCTGTG
AGGAAGGACAAGGGATGAGTTGGAGACCTGAATCAGCCTTGGAGACCTGAAACATCTGCAGGAGAACAGC
CCCAATCACCCTCTAACGGCTCTGATTCTAGAAGGGATCTACCGAACAGAAAGGGACAAGGACATTGTAT
GAGCTCACCTCAAAGGGACCAAAACAGAATTCAAACGGCTCATTTGACCATTCAGCCCCATCATGAAA
GTGAAAAATGAAAGCTAACATGGCAACACGTTATCAATGTTATGTCCTAGCAAAAGGGTGGACAAGTTC
CGGCACTCATGAGAAATTCAAGGGAGATGTCAGTGGAGACTGGCTGACGAGTGGAGACTGGCT
AAAGAAGAAATAATGAAGTCAAAGGAATACTTGAACACTTCCAAGTGCACACTCAGGAACCTTACCTC
CAGCTGAATGGAAATTCTCGGGAAAGGACTGATGTTGGAGCCCTCTCGAAGGGAGCAACGTCTTCTC
TTTTCTGTGATGTGGACATCTACTTCACATCTGAATTCTCAATACGTGAGGCTGAATACACAGCAGGGAGAAG
GTATTTATCCAGTTCTTCAGTCAGTACAATCTGGCATATAACGGCCACCATGATGCACTCCCTCCCTGGAA
CAGCACTGGTATTAAGAGGAACTGGATTGGAGAGACTTGGGATGACGAGTGTCACTGGTCAAGAC
TTCATCAATATAGGTGGTTGATCTGGACATCAAAGGCTGGGGAGAGATGTCACCTTATGCAAGTATCTC
CACAGCAACCTCATGTCAGGACGGCTGCGAGGACTCTCACCTCTGGCATGAGAACGGCTGCATGGAGG
CTGACCCCGACAGTACAAGATGTCAGTCAGGCTGAACAGGAGCATCCACGCCAGCTGGCATGCTG
GTGTTCAAGGACAGATAGGGCTCACCTCGCAAACAGAAACAGAACAGAACAGTAGCAAAACATGACTCCCA
GAAGGATGTGGAGACACTTTCTCTCTGGCAATTACTGAAAGTGGCTGACACAGAGAAAAGACTTCAATAA
GGACGACAAAAGAATTGGACTGATGGGTCAAGAGATGAGAAAGCTCCGATTCTCTGTTGGGTTTACAACAGA
AATCAAAATCTCGCTTCTGCAAAGTAACCGATGTCACCTCTGAAGTGTGACAAAGGAGAATGCTGTG
AGATTATAAGCTTAATGGTGTGGAGTTGATGGTTTACAATACACTGAGACCTGTTGTTGTCATTG
AATATTGATTAAGAGCAGTTTGTAAAAATTCAATTAGCATGAAAGGCAAGCATATTCTCTCATATGAATGA
GCCATCAGCAGGGCTAGTTCTAGGAATGCTAAATATCAAGAAGCAGGAGGAGATGAGCTTATTGACT
AGTGAGTACATTAAGTAAATAAAATGGACAGAAAAGAACATTAATGTCATATTCTCCAAAG
TAACCAAAAATCTGTTATCTTGGTCTCTTTAACTGTCCTTTTCTCTTATTAAAATGCACT
TTTTCTCCCTGTGAGTTAGTCCTTAAATTACCACTTGCACGCCCTAACAGAGACACAATTGGCTAC
ATTTTATATTAAAGAAGATACTTGAGATGCAATTGAGACCTTCAGTCACAGCATCAAATTGATGCCATAT
CCAAGGACATGCCAAATGCTGATTCTGCAAGCAGTAAATGCAAGGCTGAGACATAGGGAGGAATGTTTGTACT
AATACAGACGTACAGACTTCTGTAAGAGTATTTCGAAGAGTATTGCAAGAGGAGAACACTGGAGGAAAAGAAATGAC
ACTTTCTGCTTACAGAAAAGGAACTCATTCAAGACTGGTGAATCTGTCAGTACCTAAAGTCAGAACACATTT
CTCCTCAGAAGTAGGGACGGCTTCTACCTGTTAAATAACCAAGTATACCGTGTGAACCAAACATCTTT
AAAACAGGGTGTCTCTGGCTTCTGCTTCCATAAGAAGAAATGGAGAAAATATATATATATATATATTGT
GAAAGATCAATCCATCTGCCAGAATCTAGTGGGATGGAAGTTTGCTACATGTTATCCACCCAGGCCAGGGAG
TAACTGAAATTTTAAATAACAGTTAACATAGGTTCTTCACTCATGAAATTTGCACTTATTACCATTT
CAAACATTTTAAATAACAGTTAACATAGGTTCTTCACTCATGAAATTTGCACTTATTACCATTT
ATTCAAGCTGTTGGTGTGTTAAAATGCAATTGATTGATTGACTGGTAGTTATGAAATTAAACACAGG
CCATGAATGGAAGGTGGATTGCAAGCTAATAAAATGATTGATGGATATGAA

FIGURE 72

MMMVRRGLLAWISRVVVLLVLLCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQEWE
EQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFLHSQVDK
AEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIESALETLNNA
ENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKEFKRLILFRPFSPIMKVKNEKLNM
TLININVPLAKRVDKFQFMQNPREMCIEQDGRVHLTVVYFGKEEINEVKGILENTSKAANFRNF
TFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLNTQPGKKVFYPVLF
NPGIIYGHDAVPPLEQQLVVIKKETGFWRDFGFGMTQYRSDFINIGGFDLIDKGWGGEDVHLYR
KYLHSNLIVVRTPVRLFHLWHEKRCMDELTPEQYKCMQSKAMNEASHGQLGMLVFRHEIEAH
RKQKQKTSSKKT

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 315-319, 324-328

N-myristoylation sites.

amino acids 96-102, 136-142, 212-218, 311-317, 339-345, 393-399

Amidation site.

amino acids 377-381

FIGURE 73

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGCAGCAAGAGATTGTCTGGGATCCA
GAAACCCATGATAACCTACTGAACACCGAATCCCCTGGAAGGCCACAGAGACAGACAGCAAGA
GAAGCAGAGATAAAATACACTCACGCCAGGAGCTCGCTCGCTCTCTCTCTCACTCCTC
CCTCCCTCTCTCTGCCCTGTCCTAGTCCTAGTCCTAAATTCCAGTCCCTGCACCCCTC
CTGGGACACTATTGTTCTCCGCCCTCCTGCTGGAGGTGATTGGATCTGGCTGCAGATGGG
GTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGCCAGCCTTACCTGAGTGT
GGAAACAATGCCAGTCGCCATCGATATTCAAGACAGACAGTGTGACATTGACCCCTGATTGCC
TGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGCCTTGGACCTGCACAACAATGCC
ACACAGTGCAACTCTCTGCCCTCACCCCTGTATCTGGGTGGACTTCCCGAAAAATATGTAGCT
GCCAGCTCCACCTGCACTGGGTCAAGAAAGGATCCCCAGGGGGTCAGAACACCAAGATCAACAG
TGAAGCCACATTGAGAGCTCCACATTGTACATTGTACTCTGATTCTATGACAGCTTGAGTGT
AGGCTGCTGAGAGGCCCTAGGGCTGGCTGCCTGGCATCCTAATTGAGGTGGTGAGACTAAG
AATATAGCTTATGAACACATTCTGAGTCAC TGATGAAGTCAGGCATAAAGATCAGAACACCTC
AGTGCCTCCCTCAACCTAACAGAGAGCTGCTCCCCAACAGCTGGGCAGTACTCCGCTACAATG
GCTCGCTCACAACTCCCCCTTGCTACCAGAGTGTGCTGGACAGTTTTATAGAAGGTCCAG
ATTCAATGGAACAGCTGGAAAAGCTTCAGGGACATTGTCACAGAGGATCTGGCTTCTAA
GCTTCTGGTACAGAACTACCGAGCCCTCAGCCTCTCAATCAGCGCATGGCTTGCTTCTTCA
TCCAAGCAGGATCCTCGTATACCACAGGTGAAATGCTGAGTCTAGGTGTTAGGAATCTGGTTGGC
TGTCTGCTCTGGCTTCTGGCTGTTATTCAATTGCTAGAAAGATTGGAAGAAGAGGCTGGAAAA
CCGAAAGAGTGTGGCTTCACCTCAGCACAGCCACGACTGAGGCATAAATTCTTCTCAGATA
CATGGATGTGGATGACTCCCTCATGCCATCAGGAAGCCTCTAAATGGGTGTTAGGATCTGG
CCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCCTGGACATCTCTTAGAGAGGAAT
GGACCCAGGCTGTCAATTCCAGGAAGAACTGCAGAGCCTCAGCCTCTCAAACATGTAGGAGGAA
ATGAGGAAATCGCTGTGTTATGCAGAGANAAACTCTGTTAGTTGCAGGGGAAGTTGG
ATATAACCCAAAGTCTCTACCCCCCTCACTTTATGGCCCTTCCCTAGATATACTGCGGGATCT
CTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTGATCAATATAATTGGAAATTAAAG
TTTCTGACTTT

FIGURE 74

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPLPALQ
PHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGGLPRKYVAAQLHLHWGQKGSPPGSEHQINSEAT
FAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRHKDQKTSVPP
FNLRELLPKQLGQYFRYNGSLTPPCYQSVLWTVFYRRSQISMEQLEKLQGTLFSTEEEPSKLLV
QNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYFIARKIRKKRLENRKS
VVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 75

TGCCGCTGCCGCCGCTGCTGCTGTTGCTCCTGGCGGCCCTGGGACGGGCAGTCCCTGTGTC
TCTGGGGTTGCCCTAAACCTGCAAACATCACCTTATCCATCAACATGAAGAATGCCTACA
ATGGACTCCACCAGAGGGCTTCAAGGAGTTAAAGTTACTACACTGTGAGTATTCCATCACAA
ATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAACGTCATTCTGTGCTGACAGCTCC
AGAGAAAGTGGAAAGAAAATCCAGAAGACCTCCTGTTCCATGCAACAAATAACTCCAATCTGA
AGTATAACGTGTCTGTGTTGAATACTAAATCAAACAGAACGTGGTCCAGTGTGACCAACCAC
ACGCTGGTGTGTCACCTGGCTGGAGGCCAACACTCTTACTGCGTACACGTGGAGTCCTCGTCCC
AGGGCCCCCTGCCGTGCTCAGCCTCTGAGAACAGCAGTGTGCCAGGACTTGAAAGATCAATCAT
CAGAGTCAAGGCTAAATCATCTTGTGGTATGTTGCCATATCTATTACCGTGTGTTCTTT
TCTGTGATGGGCTATTCCATCTACCGATATATCCACGTGGAAAGAGAAACACCCAGCAAATT
GATTTGATTTATGAAATGAATTGACAAAAGATTCTTGTGCCTGCTGAAAAAAATCGTGATTA
ACTTTATCACCCCTCAATATCTCGGATGATTCTAAATTCTCATCAGGATATGAGTTACTGGGA
AAAAGCAGTGTATCCAGCCTTAATGATCCTCAGCCCAGGGAACCTGAGGCCCTCAGGAA
GGAAGAGGAGGTGAAACATTAGGGTATGCTTCGCAATTGATGGAAATTGGTGA
AAAACACGGAAGGTACTTCTCACCCAGCAAGAGTCCTCAGCAGAACAAACCCCGGATAAA
ACAGTCATTGAATATGAATATGATGTCAGAACACTGACATTGTGCGGGGCCTGAAGAGCAGGA
GCTCAGTTGCAGGAGGGTGTCCACACAAGGAACATTATTGGAGTCGCAGGCAGCGTGGCAG
TCTTGGGCCGAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCTGGC
CAGGAGCACACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATGACGACCCGGTGCAGGG
TCCCCAAACTGGCAGGCTGTATTCCCTCGCTGTCCAGCTCGACCAGGATTAGGAGGGCTGCG
AGCCTTCTGAGGGGATGGGCTCGAGAGGAGGGCTTCTATCTAGACTCTAGGAGGCCG
CCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTGAGGAATGGGGTTATA
TGTGCAGATGGAAAACTGATGCCAACACTTCTTTGCCCTTGTGCTGAAACAAGTGAG
TCACCCCTTGATCCCAGCATAAAAGTACCTGGGATGAAAGAAGTTTCCAGTTGTCA
CTGTGAGAATTACTTATTCTTCTATTCTCATAGCACGTGTGATTGGTCATGCATGTA
GGTCTCTAACATGATGGTGGGCCTCTGGAGTCCAGGGCTGGCCGGTGTCTATGCAGAGAA
AGCAGTCATAAATGTTGCCAGACTGGGTGCAGAATTATTAGGTGGGTGT

FIGURE 76

MSYNGLHQRFKELKLLTLCISISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIY
SNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNLTYCVHVESFVPGPPRRAQPSEKQCARTLK
DQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILLYGNEFDKRFFVPAEK
IVINFITLNISDDSKISHQDMSSLGKSSDVSSLNDPQPSGNLRPPQEEEVKHTMLGYASHLMEIFC
DSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQLSLQEEVSTQGTLLESQA
ALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWDPQTGRLCIPSLSFDQDS
EGCEPSEGDLGEEGLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQmen

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

FIGURE 77

GAGGAGCGGGCCGAGGACTCCAGCGTGCCAGGTCTGGCATCCTGCAC TTGCTGCCCTTGACAC
CTGGGAAGATGGCCGGCCCGTGGACCTTCACCCCTCTGTGGTTGCTGGCAGCCACCTTGATC
CAAGCCACCCCTCAGTCCCCTGCAGTTCTCATCCTCGGCCAAAAGTCATCAAAGAAAAGCTGAC
ACAGGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGCCATGC
GGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGCAGCCTGGTAACACCGTCTGAAGCACATC
ATCTGGCTGAAGGTCACTACAGCTAACATCCTCCAGCTGCAGGTGAAGGCCCTGGCCAATGACCA
GGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCAACACGCCCTGGTCAAGACCA
TCGTGGAGTTCCACATGACGACTGAGGCCAAGCCACCATCCGCATGGACACCAGTGCAAGTGGC
CCCACCCCGCCTGGTCCTCAGTGACTGTGCCACCAGCCATGGGAGCCTGCGCATCCAACTGCTGTA
TAAGCTCTCCTTCCTGGTGAACGCCCTAGCTAAGCAGGTCACTGAACCTCTAGTGCCTACCCCTGC
CCAATCTAGTGAAAAACCAGCTGTGTCCTGATCGAGGCTCTCAATGGCATGTATGCAAGAC
CTCCTGCAGCTGGTGAAGGTGCCATTCCCTCAGCATTGACCGTCTGGAGTTGACCTTCTGTA
TCCTGCCATCAAGGGTGAACCCATTCAAGCTCACCTGGGGCCAAGTGTGACTCACAGGGAA
AGGTGACCAAGTGGTCAATAACTCTGCAGCTCCCTGACAATGCCACCCTGGACAACATCCCG
TTCAGCCTCATCGTAGTCAGGACGTGGTGAAGAGCTGCAGTGGCTGCTGTGCTCTCCAGAAGA
ATTCACTGGCCTGTGGACTCTGTGCTTCTGAGAGTGCCCCTGCGCTGAAGTCAGCATCGG
TGATCAATGAAAAGGCTGCAGATAAGCTGGATCTACCCAGATCGTAAGATCTTAACCTCAGGAC
ACTCCCCAGTTTTATAGACCAAGGCCATGCAAGGTGGCCAAGTGTGCTGGAGCT
TCCCTCCAGTGAAGGCCCTCCGCCCTTGTTCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCCA
CTCCATCCTGCTGCCGAACCAGAAATGGCAAATTAAAGATCTGGGTCCCAGTGTGCTTGTGAAGG
CCTTGGGATTGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTGTGCTTACTCCAGCCTCC
TTGTGGAAACCCAGCTCTCCTGTCTCCAGTGAAGACTTGGATGGCAGCCATCAGGGAAAGGCTGG
GTCCCAGCTGGAGTATGGGTGTGAGCTCTAGACCATCCCTCTGCAATCAATAAACACTTG
CCTGTGAAAAAA

FIGURE 78

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQPLLSAMREK
PAGGIPVLGSLVNTVLKHIWLKVITANILOLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVE
FHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMNLLVPSLPNL
VKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLDSQGKVT
KWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPESAHLKSSIGLIN
EKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEASSEAQFYT
KGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSILLPNQNGKLRSGVPVSLVKALG
FEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

FIGURE 79

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAGAGC
TTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTCTACTGAGAGGTCTGCCATGGCCTCT
CTTGGCCTCCA~~ACT~~TGTGGGCTACATCCTAGGCCTCTGGGCTTTGGGACACTGGTGCCT
GCTGCTCCCAGCTGGAAAACAAGTTCTATGTCGGTGCAGCATTGTACAGCAGTTGGCTCT
CCAAGGGCCTCTGGATGGAATGTGCCACACACAGCACAGGCATCACCCAGTGTACATCTATAGC
ACCCCTCTGGGCCTGCCCGCTGACATCCAGGCTGCCAGGCCATGATGGTACATCCAGTGCAT
CTCCTCCCTGGCCTGCATTATCTCTGTGGTGGCATGAGATGCACAGTCTCTGCCAGGAATCCC
GAGCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTCATCCTGGAGGCCTCTGGGATTC
ATTCCCTGCTGGAATCTCATGGGATCCTACGGGACTCTACTCACCACGTGCCTGACAG
CATGAAATTGAGATTGGAGAGGCTCTTACTGGGCAATTATTCTCCCTGTTCTCCCTGATAG
CTGGAATCATCCTCTGCTTTCCCTGCTCATCCAGAGAAATCGCTCCA~~ACT~~TACGATGCCTAC
CAAGCCCAACCTCTGCCACAAGGAGCTCCAAGGCCGGTCAACCTCCAAAGTCAAGAGTGA
GTTCAATTCTACAGCCTGACAGGGTATGTGTGAAAGAACCAAGGGGCCAGAGCTGGGGGTGGCTG
GGTCTGTAAAAACAGTGGACAGCACCCGAGGGCCACAGGTGAGGGACACTACCACGGATCGT
GTCAGAAGGTGCTGCTGAGGATAGACTGACTTTGGCATTGGATTGAGCAAAGGCAGAAATGGG
GCTAGTGTAAACAGCATGCAGGTGAATTGCCAAGGATGCTGCCATGCCAGCCTCTGTTTCC
TCACCTTGCTGCTCCCTGCCCTAAGTCCCCAACCTCAACTTGAAACCCATTCCCTTAAGCCA
GGACTCAGAGGATCCCTTGCCCTCTGGTTTACCTGGACTCCATCCCCAACCCACTAATCACA
TCCCAC TGACTGACCCCTGTGATCAAAGACCCCTCTCTGGCTGAGGTTGGCTTAGCTCATT
GCTGGGGATGGGAAGGAGAAGCAGTGGCTTGCTCTAACCTACTTCTCAAGCTTC
CCTCCAAAGAAA~~CT~~GATTGGCCCTGGAACCTCCATCCACTCTTGTATGACTCCACAGTGTCCA
GACTAATTGTGATGA~~ACT~~GAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATG
CAGGATGGGAGGACAGGAAGGCAGCCTGGACATTAAAAAAATA

FIGURE 80

MASLGLQLVGYILGLLGLLGTIVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGITQCD
IYSTLLGLPADIQAAQAMMVTSIASSIACIISVVGMRCTVFCQESRAKDRVAVAGGVFFILGGL
LGFIPVAWNLHGILRDFYSPLVPSMKFEIGEALYLGISSLFSLIAGIILCFSCSSQRNRSNYY
DAYQAQPLATRSSPRPGQPPKVKEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 81

CCACACGCGTCCGCGCCTCTCCCTCTGCTGGACCTTCCTCGTCTCCATCTCTCCCTCCTTC
CCCGCGTTCTCTTCCACCTTCTCTTCCACCTAGACCTCCCTGCCCTCCCT
GCCCACCGCTGCTTCCTGGCCCTCTCGACCCCGCTAGCAGCAGACCTCCCTGGGTCTGTGG
GTTGATCTGTGGCCCTGTGCCCTCGTCTCCCTCCGACTCCGCTCCCG
ACCAGCGGCCTGACCCGGGGAAAGGATGGTCCCGAGGTGAGGGCCTCTCCCTGCTGGGA
CTCGCGTCTGGTCCCCCTGGACTCCCACGCTCGAGCCGCCAGACATGTTCTGCCTTT
CCATGGGAAGAGATACTCCCCCGCGAGAGCTGGCACCCCTACTGGAGCCACAAGGCCTGATGT
ACTGCCCTGCGCTGTACCTGCTCAGAGGGCCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCT
GTCCACTGCCCTGGACTCCGGGCCCCACCAAAGTCCCTGCCAGCACAACGGGACCATGTACCAACACGGAG
TCCCTCTGGACTCCGGGCCCCACCAAAGTCCCTGCCAGCACAACGGGACCATGTACCAACACGGAG
AGATCTCAGTCCCCATGAGCTGTTCCCTCCGCCCTGCCAACCGAGTGTGCTCTGCAGCTGC
ACAGAGGGCCAGATCTACTGCCCTCACAACTGCCCGAACCGAGCTGCCAGCACCCCTCCC
ACTGCCAGACTCCCTGCTGCCAACGCTGCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGACA
GTGTGCAGTCGCTCCATGGGGTAGACATCCTCAGGATCCATGTTCCAGTGTGCTGGAGAAAG
AGAGGCCGGCACCCAGCCCCACTGCCCTAGC GCCCTCTGAGCTTCCATGCCACT
CAGACCCAAGGGAGCAGGCAGCACAACGTCAAGATCGCCTGAAGGAGAAACATAAGAAAGCCT
GTGTGCATGGGGAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCTTCCGTGCCTCGGC
CCCTGCCCTGCATCCTATGCACCTGTGAGGATGGCCAGGACTGCCAGCGTGTGACCTGTCC
CACCGAGTACCCCTGCCGTACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTGCCAGAGG
ACAAAGCAGACCCCTGGCCACAGTGAGATCAGTTCTACCAAGGTGTCCAAGGCACCGGGCCGGGTC
CTCGTCCACACATCGGTATCCCAAGCCCAGACAACCTGCCGTGCTTGCCTGGAACACGAGGC
CTCGGACTGGTGGAGATCTACCTCTGGAAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAGAGAG
GTGAAGTACCTGGCCAAGGCCACAGCAGAATCTTCACTTGACTCAGATCAAGAAAGTCAG
GAAGCAAGACTCCAGAAAGAGGCACAGCAGTCCGACTGCTCGTGGCCCCACGAAGGTCACT
GGAACGTCTCCTAGCCCAGACCCCTGGAGCTGAAGGTACGCCAGTCCAGACAAAGTGACCAAG
ACATAACAAAGACCTAACAGTTGCAGATATGAGCTGTATAATTGTTATTATATATTAATAAA
TAAGAAGTTGCATTACCCCTCAAAAAAAAAAAAAAA

FIGURE 82

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTCSE
GAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIFSAHELF
PSRLPNQCVLCSCTEGQIYCGLTCPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQSLHGVR
HPQDPCSSDAGRKRKGPGTPAPTGLSAPLSFIPRHFRPKAGSTTVKIVLKEKKACVHGGKYS
HGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKCKICPEDKADPGHSE
ISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDEETEAQRGEVPGPRPH
SQNLPLSDQESQEARNPERGTALPTARWPPRSLERLPSDPGAEGHGQSRQSDQDITKT

Signal peptide:

amino acids 1-25

FIGURE 83

GACAGCTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTGCCCTCGCTCACGCAGAGCCTCTCC
GTGGCTTCCGCACCTTGAGCAATTAGGCCAGTTCTCTCTCTAATCCATCCGTACACCTCTCGTCA
TCCGTTCCATGCCGTGAGGTCCATTACAGAACACATCCATGGCTCTCATGCTCAGTTGGTCTGAGTC
TCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTGGGCCAGACAAGCCTGTCCAGGCCTGGTGGGGAG
GACGCAGCATTCTCTGTTCTGCTCCTAAAGACCAATGCAGAGGCCATGAAAGTGCCTTCAAGGG
CCAGTTCTCTAGCGTGGTCCACCTCTACAGGGACGGGAAGGACCAGCCATTATGCAGATGCCACAGTATC
AAGGCAGGACAAAATGGTGAAGGATTCTATTGGGAGGGCGCATCTCTGAGGCTGGAAAACATTACT
GTGTTGGATGCTGGCTCTATGGGTGCAGGATTAGTCCCAGTCTTAACCAGAAGGCATCTGGAGCT
ACAGGGTGCAGCACTGGGCTCAGTTCTCTCATTTCCATCACGGGATATGTTGATAGAGACATCCAGCTAC
TCTGTCAGTCCTCGGGCTGGTCCCCGGCCACAGCGAAGTGGAAAGGTCCACAAGGACAGGATTGTCC
ACAGACTCCAGGACAAACAGAGACATGCATGGCTGTTGATGTGGAGATCTCTGACCGTCCAAGAGAA
CGCCGGGAGCATATCTGTTCCATGCGGCATGCTCATCTGAGCCGAGGGTGAATCCAGGGTACAGATAG
GAGATACCTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGAATACTCTGCTGTGGCTA
TTTTTGGCATTGTTGACTGAAGATTTCTCTCAAATCCAGTGGAAATCCAGGGGAACGGACT
GAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCGGAAACACGCACTGGAGGTGACTCTGGATCCAG
AGACGGCTACCCGAAGCTCTGCGTTCTGATCTGAAAAGTGTAAACCCATAGAAAAGCTCCCAGGAGGTG
CCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCTCTCAGAGTTCCAAGCAGGGAAACATTA
CTGGGAGGTGGACGGAGGACACAATAAAAGGTGGCGCTGGGAGTGTGCCGGGATGATGTGGACAGGAGGA
AGGAGTACGTGACTTGTCTCCGATCATGGTACTGGTCTCAGACTGAATGGAGAACATTGTATTTC
ACATTAAATCCCGTTTATCAGGTCTCCCCAGGACCCACCTACAAAATAGGGTCTCTGGACTA
TGAGTGTGGGACCATCCTCTTCAACATAATGACCAAGTCCCTTATTTATACCCGACATGTCGGTTG
AAGGCTTATTGAGGCCCTACATTGAGTATCCGCTCTAAATGAGCAAATGGAACCTCCATAGTCATCTGC
CCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTGGCAAAGGGCTCTCAATCCCAGAGACAAGCAACAG
TGAGTCCTCTCACAGGCAACCACGCCCTCCCTCCCCAGGGTGAATGTAGGATGAATCACATCCCACAT
TCTTCTTAGGGATATTAAGGTCTCTCTCCAGATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCA
GATGAAGGGGACTGCCGTGCCACATGGGAGTCAGGTGTATGGCTGCCCTGAGCTGGAGGGAAAGAAGG
CTGACATTACATTAGTTGCTCTCACTCCATGGCTAAGTGTGATCTTGAATACCACCTCTCAGGTGAAG
AACCGTCAGGAATTCCCATCTCACAGGCTGTGGTGAAGTAAAGTAGACAAGGAATGTGAATAATGCTTAG
ATCTTATTGATGACAGAGTGTATCTAATGGTTGTCATTATATTACACTTCAGTAAAAAA

FIGURE 84

MALMLSVLSSLKLGSQWQVFGPDKPVQALVGEDAASFCLSPKTNAEAMEVRFFRGQFSSVH
LYRDGKDQPFMQMPOYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAIWELQ
VSALGSVPPLISITGYVDRDIQLLCQSSGWPRPTAKWKGPGQDLSRTNRDMHGLFDVEISL
TVQENAGSISCSMRRAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLFFGIVGLKIFFSK
FQWKIQAEQELDWRRKHGQAEQELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAQEVPHSEKRF
TRKSVVASQSFQAGKHYWEVDGGHNKRWRGVCRDDVDRKEYVTLSPDHGYWVRLNGEHLYFT
LNPRFISVFPPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTCRFEGLLRPYIEYPSYNEQNGT
PIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLPRGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

FIGURE 85

AACAGACGTTCCCTCGGGCCCTGGCACCTCAACCCCAGACATGTGCTGCTGCTGCTGCCCT
GCTCTGGGGGAGGGAGAGGGCGAAGGACAGACAAGTAAACTGCTGACGATGCAGAGTCCGTGA
CGGTGCAGGAAGGCCTGTGTCCATGTGCCCTGCTCCTCTCCTACCCCTCGCATGGCTGGATT
TACCTGGCCCAGTAGTCATGGCTACTGGTCCGGAAAGGGGCAATAACAGACCAGGATGCTCC
AGTGGCCACAAACAACCCAGCTGGCAGTGTGGAGGAGACTGGGACCGATTCCACCTCCTG
GGGACCCACATACCAAGAATTGCACCCCTGAGCATCAGAGATGCCAGAAGAAGTGATGCCGGAGA
TACTTCTTCGTATGGAGAAAGGAAGTATAAAATGAAATTATAAACATCACCGGCTCTGTGAA
TGTGACAGCCTTGACCCACAGGCCAACATCCTCATCCCAGGCACCCCTGGAGTCCGGCTGCC
AGAATCTGACCTGCTCTGTGCCCTGGCCTGTGAGCAGGGACACCCCTATGATCTCCTGGATA
GGGACCTCCGTGTCCCCCTGGACCCCTCCACCACCCGCTCTCGGTGCTCACCTCATCCCACA
GCCCCAGGACCATTGGCACCAGCCTCACCTGTCAGGTGACCTCCCTGGGCCAGCGTGACCACGA
ACAAGACCGTCCATCTCAACGTGCTCACCCGCTCAGAACATTGACCATGACTGTCTCCAAGGA
GACGGCACAGTATCCACAGTCTGGAAATGGCTATCTGTCACTCCCAGAGGGCAGTCT
GCGCCTGGTCTGTGCAAGTTGATGCAAGCAATCCCCGCCAGGCTGAGCTGAGCTGGAG
GAGGCCTGACCCCTGTGCCCTCACAGCCCTAAACCCGGGGTGCTGGAGCTGCCCTGGGTGCAC
CTGAGGGATGCAGCTGAATTCAACCTGCAGAGCTCAGAACCCCTCTCGGTCTCAGCAGGTCTACCT
GAACGTCCTCCCTGCAGAGCAAAGCCACATCAGGAGTGA
CTCAGGGGGTGGTCGGGGAGCTGGAG
CCACAGCCCTGGTCTTCTGTCCCTGCCTCATCTCGGTGACTCAGGGGGTGGTCGGGGAGCTGGAG
TCGGCAAGGCCAGCAGCGGGCGTGGGAGATACGGG
CATAGAGGATGCAAACGCTGTCAGGGGTTCA
AGCCTCTCAGGGGCCCTGACTGAACCTGGG
CAGAAGACAGTCCCCAGACCAGCCTCCCCAG
CTTCTGCCCGCTCTCA
GAGGAGAGCTCCAGTATGCATCCCTCAGCTTCCAGATGGTGA
AAGCCTTGGGACTCGCGGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCCACAG
ATGAGAAACTGCAGAGACTCACCC
TGCAGAGTGA
GAGGCTGATTCTGAGAATTAA
CAGCC
CTCAACGTGATGAGCTATGATA
AACACTATGAATTATG
TGCAGAGTGA
AAAAGCACACAGGCTT
AGAGTCAAAGTATCT
AAACCTGAATCC
CACACTGTGCC
TCCCTTT
TTTTTA
ACTAAAAGACAGACAAATT
CCTA

FIGURE 86

MLLLLLPLLWGRERAEQTSKLLTMQSSVTVQEGLCVHPCFSYPSHGWIYPGPVVHGYWFREG
ANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLISRARRSDAGRYFFRMEKGSIKWNY
KHHRLSVNVNTALTHRPNILIPGTLESGCPQNLTCSVWACEQGTPPMISWIGTSVSPLDPSTTRS
SVTLIPIPQPDHGTSLTCQVTFPGASVTTNKTVHLNVSYPQNLTMVFQGDGTSTVLGNSSL
SLPEGQSLRLVCADVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWVHLRDAEFTCRAQNP
LGSQQVYLNVSLSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRKKSARPAAGVGDTGIE
DANAVRGSAQGPLTEPWAEDSPPDQPPPASARSSVGEGELOQYASLSFQMVKPWDSRGQEATDTE
YSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 351-370

FIGURE 87

AGAAAGCTGCACTCTGTTGAGCTCCAGGGCGCAGTGGAGGGAGGTGAAGGAGCTCTGTAC
CCAAGGAAAAGTGCAGCTGAGACTCAGACAAGATTACAATGAACCAACTCAGCTTCTGCTGTTTC
TCATAGCGACCACCAGAGGATGGAGTACAGATGAGGCTAATACTTACTTCAGGAATGGACCTGT
TCTTCGTCTCCATCTCTGCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCCTAGTGCATTGA
TGGCCTGTATTTCTCCGCACTGAGAATGGTTATCTACCAAGACCTCTGTGACATGACCTCTG
GGGGTGGCGGCTGGACCCCTGGTGGCCAGCGTGCATGAGAATGACATGCGTGGAGTGCACGGTG
GGCGATCGCTGGTCAGTCAGCAGGGCAGCAAAGCAGACTACCCAGAGGGGACGGCAACTGGGC
CAACTACAACACCTTGGATCTGCAGAGGCCAGAGCGATGACTACAAGAACCTGGCTACT
ACGACATCCAGGCCAAGGACCTGGCATCTGGCACGTGCCAATAAGTCCCCATGCAGCACTGG
AGAAACAGCTCCCTGCTGAGGTACCGCACGGACACTGGCTCTCCAGACACTGGACATAATCT
GTTGGCATCTACCAGAAATATCCAGTGAAATATGGAGAAGGAAAGTGGTGGACTGACAACGGCC
CGGTGATCCCTGTGGCTATGATTTGGCACGCCAGAAAACAGCATCTTATTACTCACCCAT
GGCAGCGGAATTCACTGCGGATTGTTAGTTCACTGAGAGAGCAGCCAA
CGCCTTGTGTGCTGGAATGAGGGTACCGGATGTAACACTGAGCATCACTGCATTGGTGGAGGAG
GATACTTCCAGAGGCCAGTCCCAGCAGTGTGGAGATTTCTGGTTTGATTGGAGTGGATAT
GGAACACTCATGTTGGTACAGCAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTCTATTCTATCG
TTGAGAGTTTGTGGAGGGAACCCAGACCTCTCCCAACCAGAGATCCAAAGGATGGAGAA
CAACTACCCAGTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAATCATATTGACTCAAGA
AAAAAA

FIGURE 88

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCS...PLPRSCKEIKDECPSAFDGLYFLRTEN...
YQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFGS...
SDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLRYRTDTGFLQTLGHNLFGIYQKYPVKYG
EGKCWT...DNGPVI...PVYDFGDAQKTASYYSPY...GOREFTAGFVQFRVFN...ERAANALCAGMRVTGCN
TEHHCIGGGGYFPEASPQQCGDFSGFDWSGY...GTHVGY...SSREITEAAVLLFYR

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation site.

amino acids 163-167

Glycosaminoglycan attachment sites.

amino acids 74-78, 289-293

N-myristoylation sites.

amino acids 76-82, 115-121, 124-130, 253-259, 292-298

FIGURE 89

CTAGATTGTCGGCTTGC~~GGGG~~GACTTCAGGAGTCGCTGTCTGAACCTCCAGCCTCAGAGAC
CGCCGCCCTTGTCCCCGAGGGCCATGGGCGGGTCTCAGGGCTTGTGCCCTCTCGCTTCTGACG
CTCCTGGCGCATCTGGTGGTCGTACACCTTATTCTGGTCCC~~GGG~~ACAGCAACATA~~CAGG~~CTG
CCTGCCTCTCACGTTCACCCCCGAGGAGTATGACAAGCAGGACATT~~CAG~~TGGTGGCCGCGCTCT
CTGTCACCCTGGGCCTTTGCAGTGGAGCTGGCGGTTCTCAGGAGTCTCCATGTTAAC
AGCACCCAGAGCCTCATCTCCATTGGGCTACTGTAGTGCATCCGTGGCCCTGTCCTTCTCAT
ATTCGAGC GTTGGGAGTGCACTACGTATTGGTACATTTGTCTTGTCACTGCCCTTCCAGCTG
TCACTGAAATGGCTTATT~~CGT~~CACCGTCTTGGGCTGAAAAAGAAACCC~~CT~~TGATTACCTTCA
TGACGGAAC~~CTA~~AGGACGAAGCCTACAGGGCAAGGGCCGCTCGTATTCC~~TG~~GAAGAAGGAAG
GCATAGGCTTCGGTTTCCCCTCGAAACTGCTTCTGCTGGAGGATATGTGTTGAATAATTACG
TCTTGAGTCTGGGATTATCCGCATTGTATTAGTGCCTTGTAAATAATGTTTAGTAACA
TTAAGACTTATACAGTTAGGGACAATTAAAAAAAAAAA

FIGURE 90

MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLGLFA
VELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFC SALPAVTEMALFV
TVFGLKKPF

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 91

CTGGGACCCCGAAAAGAGAAGGGGAGAGCGAGGGGACGAGAGCGGAGGAAGATGCAACTGAC
TCGCTGCTGCTCGTGTTCCTGGTGCAGGGTAGCCTATCTGGTATCTGTGCCAGGATGATG
GTCCTCCCGGCTCAGAGGACCCGTAGCGTGATGACCACGAGGGCAGCCCCGGCCGGTGCCT
CGGAAGCGGGGCCACATCTCACCTAACGTCAGTCCCAGGGCATGGCAATTCCACTCTCCTAGGGCTGCT
GGCCCCCGCTGGGAGGCTTGGGCATTCTGGCAGCCCCCAACGCCGAACCACAGCCCC
CACCTCAGCCAAGGTGAAGAAAATCTTGGCTGGGCAGTTCTACTCCAACATCAAGACGGTG
GCCCTGAACCTGCTCGTACAGGGAAAGATTGTGGACCATGGCAATGGACCTTCAGCGTCCACTT
CCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCCTCGTCCCCCAGTAAAGCTGTAG
AGTTCCACCAGGAACAGCAGATCTCATCGAAGCCAAGGCCTCCAAAATCTTCAACTGCCGGATG
GAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTCGCTTGCACCCACGACCCAGCAAGATCTG
CTCCCGAGACCACGCTCAGAGCTCAGCCACCTGGAGCTGCTCCAGGCCCTCAAAGTCGTCTGTG
TCTACATCGCCTTCTACAGCACGGACTATCGGCTGGTCCAGAAGGTGTGCCAGATTACAACATAC
CATAGTGATAACCCCCACTACCCATCTGGGTGACCCCCGGGCAGGCCACAGAGGCCAGGGC
TGGAAGGACAGGCCTGCCATGCAGGAGACCATCTGGACACCGGGCAGGGAAAGGGTTGGCCTC
AGGCAGGGAGGGGGGTGGAGACGAGGAGATCCAAGTGGGCAGGGCAAGTCTCAAGTGGCAG
AGAAAGGGTCCAAGTGTGGTCCAACCTGAAGCTGTGGAGTGAAGTACAGGAGCACTGG
AGGAGGAGTGGCTCTGTGCAGCCTCACAGGGCTTGCACGGGCCACAGAGAGATGCTGGG
TCCCCGAGGCCTGTGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGAGGAAGCTAAC
CCTTGGTTCTGCCATCCTGAGGAAAGATAGCAACAGGGAGGGGAGATTTCATCAGTGTGGACA
GCCGTCAACTTAGGATGGATGGCTGAGAGGGCTCCTAGGAGCCAGTCAGCAGGGTGGGGTGG
GCCAGAGGAGCTCCAGCCCTGCCTAGTGGCGCCCTGAGCCCCCTGTCGTGTGAGCATGG
CATGAGGCTGAAGTGGCAACCCCTGGGTCTTGATGTCTTGACAGATTGACCATCTGTCTCCAGC
CAGGCCACCCCTTCAAATCCCTCTTGCCAGTACTCCCCCTGTACCACCCATTGCTGATG
GCACACCCATCCTAACGTAAGACAGGACGATTGTGGCTCCACACTAACGGCCACAGCCCAC
CGCGTGTGTGTGTCCCTCTCCACCCCAACCCCTGCTGGCTCCTGGAGCATCCATGTCCCG
GAGAGGGTCCCTAACAGTCAGCCTCACCTGTCAGACCGGGTTCTCCGGATCTGGATGGC
CGCCCTCTCAGCAGCGGGCACGGGTGGGGCGGGCCGGCAGAGCATGTGCTGGATCTGTT
TGTGTGTCTGTGTGGTGGGGAGGGAGGGAGGGAAAGTCTTGTGAAACCGCTGATTGCTGACTTT
TGTGTGAAGAATCGTGTCTGGAGCAGGAATAAGCTTGGCCGGGCA

FIGURE 92

MQLTRCCFVFLVQGSILVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMANSTL
LGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVANLLVTGKIVDHGNGTFS
SVHFQHNATGQGNISISLVPPSKAVEFHQQQIFIEAKASKIFNCRMEWEKVERGRTSLCTHDPA
AKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCVDNYHSDTPYYPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

FIGURE 93

CGGTGGCC**ATG**ACTGC~~GGCC~~GTTCTCGGCTGC~~GC~~CTTCATTGCCTTCGGGCTGCGCTGCC
CTTTATGTCTCACCATGCCATCGAGCCGTTGCGTATCATCTTCCTCATGCCGGAGCTTCTT
CTGGTTGGTGTCTACTGATTGTCGCCCTGTTGGTTCATGGCAAGAGTCATTATTGACAACA
AAGATGGACCAACACAGAAATATCTGCTGATCTTGAGC~~GT~~TGTCTGTATATCCAAGAA
ATGTTCCGATTTGCATATTATAAACTCTTAAAAAAAGCCAGTGAAGGTTGAAGAGTATAACCC
AGGTGAGACAGCACCCTCTATGCGACTGCTGCCATGTTCTGGCTTGGGCTTGGAACATGA
GTGGAGTATTTCCCTTGTGAATACCC~~T~~ACTGACTCCTGGGGCCAGGCACAGTGGGCATT~~CAT~~
GGAGATTCTCCTCAATTCTCC~~TT~~TATT~~C~~AGCTTCATGACGCTGGCATTATCTGCTGCATGT
ATTCTGGGCATTGTATTTTGATGGCTGTGAGAAGAAAAGTGGGCATCCTCCTTATCGTTC
TCCTGACCCACCTGCTGGTGTCA~~GCCC~~AGACCTTCATAAGTTCTTATTATGGAATAACCTGGCG
TCAGCATTATAATCCTGGTGC~~T~~CATGGGCACCTGGCATTCTAGCTGC~~GGG~~AGGCAGCTGCC
AAGCCTGAAACTCTGCCTGCTGCCAAGACAAGAACTTCTTACAACCAGCGCTCCAG**A**
AACCTCAGGGAAC~~C~~AGCACTCCCAAACCGCAGACTACATCTTAGAGGAAGCACAAC~~T~~GTGCCT
TTTCTGAAAATCCCTTTCTGGTGAATTGAGAAAGAAATAAAACTATGCAGATA

FIGURE 94

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNKDG
PTQKYLIFGAFVSVYIQEMFRFAYYKLLKASEGLKSINPGETAPSMRLLAYVSGLGFGIMSGV
FSFVNTLSDSLGPVTGVIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKWGILLIVLLT
HLLVSAQTFISSYYGINLASAFIILVLMGTWAAGGCRSLKLCLLCQDKNFLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

FIGURE 95

AATTTTCACCAGAGTAAACTTGAGAACCAACTGGACCTTGAGTATTGTACATTTGCCTCGTG
GACCCAAAGGTAGCAATCTGAAACATGAGGAGTACGATTCTACTGTTGTCTTAGGATCAC
TCGGTCATTACCACAGCTAAACCTGTTGGACTCCCTCCCACAAAACTGGCTCCGGATCAGG
GAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTCCTTAAGTCAGTCTGATACCATTAA
CAGATGCTCACACTGGGCCAGATCTGCATCTGTTAAACCTGCTGCAGGAATGACACCTGGTAC
CCAGACCCACCCATTGACCCTGGGAGGGTGAATGTACAACAGCAACTGCACCCACATGTGTTAC
CAATTTTGTACACAACTTGGAGCCCAGGGCACTATCCTAAGCTCAGAGGAATTGCCACAAATC
TTCACGAGCCTCATCATCCATTCTGTTCCCGGGAGGCATCCTGCCACCAGTCAGGCAGGGC
TAATCCAGATGTCCAGGATGGAAGCCTCCAGCAGGAGGAGCAGGTGTAATCTGCCACCCAGG
GAACCCCAGCAGGCCGCTCCCAACTCCCAGTGGCACAGATGACGACTTGCAGTGACCACCCCT
GCAGGCATCCAAAGGAGCACACATGCCATCGAGGAAGCCACCACAGAATCAGCAAATGGAATTCA
GTAAGCTGTTCAAATTTCAACTAAGCTGCCTCGAATTGGTGATACATGTGAATCTTATC
ATTGATTATATTATGGAATAGATTGAGACACATTGGATAGTCTTAGAAGAAATTAATTCTTAATT
TACCTGAAATATTCTGAAATTTCAGAAATATGTTATGTAGAGAATCCCAACTTTAAAAAA
CAATAATTCAATGGATAAAATCTGTCTTGAATATAACATTATGCTGCCTGGATGATATGCATAT
TAAAACATATTGGAAAACTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 96

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSSLIPLTQM
LTLPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE
LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG
TDDDFAVTTPAGIQQRSTHAIEEATTESANGIQ

Signal peptide:

amino acids 1-16

FIGURE 97

FIGURE 98

MVPAWLWLLCVSVQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDGKAT
EGPFAMDPDSGFLLVTRALDREEQAQEYQLQVTLEMQDGHVLWGPQPVLVHKDENDQVPHFSQAI
YRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQSPDMFQLEPRLGALALSPKG
STS LDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAENLKVLYPHHMAQ
VHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQEYLLQVRAQNSHGEDYAAPPLEHVL
VMDENDNVPICPPRDPPTVSIPELSPPGTEVTRLSAEDADAPGSPNSHVYQLLSPEPEDGVEGRA
FQVDPTSGSVTLGVLPPLRAGQNILLVLAMDLAGAEGGSSTCEVEVAVTINDHAPEFITSQIG
PISLPEDVEPGTLVAMLTAIDALEPAFRIMDFAIERGDTEGTFGLDWEPSGHVRLRLCKNLSY
EAAPSHEVVVVVQSVAKLGVPGPGPGATATVTLVERVMPPPQLDQESYEASVPISAPAGSFLLT
IQPSDPISRTLRFSLVNDSEGWLICIEKFSGEVHTAQSLQGAQPGDTYTVLVEAQDTALTLPVPS
QYLCTPRQDHGLIVSGPSKDPDLASGHGPYSFTLGPNPVQRDWRLQTLNGSHAYLTLALHWVEP
REHIIPVVVSHNAQMWMQLLVRVIVCRCNVEGQCMRKVGRMKGMPTKLSAVGILVGTVAIGIFLI
LIFTHWTMSRKDKDPQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

FIGURE 99

GGCTGACCGTGTACATTGCCTGGAGGAAGCCTAACGGAAACCCAGGCATCCAGTCCCCACGCCCTG
AGTCCAAGATTCTTCCCAGGAACACAAACAGTAGGAGACCCAGGCTCTGGAAGCACCAGCCTTTA
TCTCTTCACCTTCAAGTCCCCTTCTCAAGAACCTCTGTCTTGCCTCTAAAGTCTTGGTAC
ATCTAGGACCCAGGCATCTTGCTTCCAGGCACAAAGAGACAGA**TGAGATGCAGAAAGGAAATG**
TTCTCCTTATGTTGGTCTACTATTGCATTAGAAGCTGCAACAAATTCAATGAGACTAGCACC
TCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACAGCCACCAACTCTGGTCCAG
TGTGACTCCAGTGGGTTCAGCACAGCCACCATCTCAGGGTCCAGCGTGCACCTCCATGGGTCA
GCATAGTCACCAACTCTGAGTCCATACAACCTCCAGTGGGATCAGCACAGCCACCAACTCTGAG
TTCAGCACAGCGTCAGTGGGATCAGCATAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGG
GGCCAGCACAGCCACCAACTCTGAGTCCAGCACACCCCTCAGTGGGCCAGCAGTCACCAACT
CTGGTCCAGTGTGACCTCCAGTGGAGCCAGCAGTGGGACACTCTGAGTCCAGCAGTCAGTGTCC
AGTAGGGCCAGCAGTGCACCAACTCTGAGTCTAGCAGACTCTCCAGTGGGCCAGCACAGCCAC
CAACTCTGACTCCAGCACAACCTCCAGTGGGCTAGCACAGCCACCAACTCTGAGTCCAGCACA
CCTCCAGTGGGCCAGCACAGCCACCAACTCTGAGTCCAGCACAGTCAGTGTCCAGTGGGCCAGCAG
GCCACCAACTCTGAGTCCAGCACAACTCCAGTGGGCCAGCACAGCCACCAACTCTGAGTCCAG
AACGACCTCAATGGGCTGGCACAGCCACCAACTCTGAGTCCAGCACAGCAGCAGCTCCAGTGGGCC
GCACAGCCACCAACTCTGACTCCAGCACAGTGTCCAGTGGGCCAGCACAGCCACCAACTCTGAG
TCCAGCACGACCTCCAGTGGGCCAGCACAGCCACCAACTCTGAGTCCAGCACAGCAGCTCCAGTGG
GGCTAGCACAGCCACCAACTCTGACTCCAGCACAACTCCAGTGGGCCAGCACAGCCACCAACT
CTGAGTCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACTGAGTCCAGCACAGCAGCTCCAGTGGGCC
AGTGGGCCAACACAGCCACCAACTCTGAGTCAGTACGACACTCCAGTGGGCCAACACAGCCAC
CAACTCTGAGTCCAGCACAGTGTCCAGTGGGCAGCACAGCCACCAACTCTGAGTCCAGCACA
CCTCCAGTGGGTCAAGCACAGCCACCAACTCTGAGTCCAGCACAAACCTCCAGTGGGCCAG
GCCACCAACTCTGACTCCAGCACAACTCCAGTGGAGCCAGCACAGCCACCAACTCTGAGTCTAG
CACAGTGTCCAGTGGGATCAGCACAGTCACTGAGTCCAGCACAAACCTCCAGTGGGCC
ACACAGCCACCAACTCTGGGTCAGTGTGACCTCTGCAGGCTCTGGAACAGCAGCTCTGACTGG
ATGCACACAACCTCCATAGTCATCTACTGCACTGAGTGGAGGCAAAGCCTGGTGGTCCCTGGT
GCCGTGGGAAATCTCCATCACCCCTGGCTCGGTTGTGGCGGGCGTGGGCTCTTGTGGC
TCTTCTCTGTGAGAACAGCCTGCCCAGAACACCTTAAACACAGCTGTCTACCACCC
CATGGCCTCAACCATGGCCTGGTCCAGGCCCTGGAGGGAAATCATGGAGCCCCACAGGGCAG
GTGGAGTCTTAACCTGGTCTGGAGGAGACCACTATCATGGAGTGGAGATGGAGGAGGGAGGA
ACAGCGGGCCCT**TGAGCAGCCCCGGAGACCACTATCATGGAGTGGAGGAGACCTGGCA**
CCCAAGACCTGGTTCCCTTCATCCAGGAGACCCCTCCAGCTTGTGGAGATCCTGAA
AATCTGAAGAAGGTATTCTCACCTTCTGCTTTACAGACACTGGAAAGAGAAATACTATAT
TGCTCATTAGCTAAGAAATAACATCTCATCTAACACACAGCACAAAGAGAAAGCTGTGCTTG
CCCCGGGTGGGTATCTAGCTGAGATGAACCTAGTTATAGGAGAAAACCTCCATGCTGGACTC
CATCTGGCATTCAAAATCTCCACAGTAAATCCAAAGACCTCAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA

FIGURE 100

MKMOKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNGSSVTSSGVSTATISGS
SVTSNGSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSESSTPSS
GASTVTNGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNDSSTTSSGASTA
TNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTTSNGAGTATNSES
STTSSGASTATNDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSSGASTATNDSSTTSS
GAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGANTATNSESSTVSSGASTA
TNSESSTTSSGVSTATNSESSTTSSGASTATNDSSTTSEASTATNSESSTVSSGISTVTNSES
STTSSGANTATNGSSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGLVPWEIFLITLVVVA
AVGLFAGLFFCVRNLSLRNTFNTAVYHPHGLNHGLGPGPGENHGAPHRPRWSPNWFWRPVSSI
AMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 101

GGCCGGACGCCCTCCCGTACGGGATGAATTAAACGGCGGGTCCGCACGGAGGTGTGACCCCTA
CGGAGCCCCAGCTTGCCCACGCACCCCCACTCGCGTGCACGGCGGTGCGCTGCTGTACAGGTG
GGAGGCTGGAACATCAGGCTGAAAAACAGAGTGGTACTCTCTGGAAAGCTGGCAACAAAT
GGATGATGTGATATATGCATTCCAGGGGAGGGAAATTGTGGTGCTCTGAACCCATGGTCAATT
AACGAGGCAGTTCTAGCTACTGCACGTACTTCATAAAGCAGGACTCTAAAAGCTTGAAATCAT
GGTGTCAGGAAAGGGATTTACTTACTGACTCTGTTGGGAAGCTTTGGAAAGCATT
TCATGCTGAGTCCCTTTACCTTGATGTTGTAACCCATCTGGTATCGCTGGATCAACAAAC
CGCCTTGTGGCAACATGGCTCACCTACCTGTGGCATTATTGGAGACCATGTTGGTGTAAAAGT
GATTATAACTGGGGATGCATTGTTCTGGAGAAAGAAGTGTCAATTATCATGAACCACCGGACAA
GAATGGACTGGATGTTCTGTGGAATTGCCGTGCGATAGCTACCTCAGATTGGAGAAAATT
TGCCTCAAAGCGAGCTCAAAGGTGTTCTGGATTGGTGGCCATGCGAGCTGCTGCCTATAT
CTTCATTCAAGGAAATGGAAGGATGACAAGAGCCATTGCAAGACATGATTGATTACTTTGTG
ATATTCAACGAACCACTCAACTCCTCATATTCCCAGAAGGGACTGATCTCACAGAAAACAGCAAG
TCTCGAAGTAATGCATTGCTGAAAAAAATGGACTTCAGAAATATGAATATGTTTACATCCAAG
AACTACAGGCTTACTTGTGGTAGACCGTCAAGAGAAGGTAAGAACCTTGATGCTGTCCATG
ATATCACTGTGGGTATCCTCACAAACATTCCCTCAATCAGAGAAGCACCTCCTCCAAGGAGACTTT
CCCAGGGAAATCCACTTCACGTCCACCGGTATCCAATAGACACCCCTCCCCACATCCAAGGAGGA
CCTTCAACTCTGGTGCACAAACGGTGGGAAGAGAAGAGAGGCTGCGTCCCTCATCAAG
GGGAGAAGAATTTATTTACCGGACAGAGTGTCAATTCCACCTTGCAGTCTGAACCTCAGGGTC
CTTGTGGTCAAATTGCTCTCTATACTGTATTGGACCCCTGTTGAGCCCTGCAATGTCCTACTCAT
ATATTGTACAGTCTGTTAAGGGTATTATAATCACCATTGAAATCTTGTGCTGCAAGAGA
GAATATTGGTGGACTGGAGATCATAGAACTTGCATGTTACCGACTTTACACAAAACAGCCACAT
TTAAATTCAAAGAAAATGAGTAAGATTATAAGGTTGCCATGTGAAAACCTAGAGCATATTG
GAAATGTTCTAAACCTTCAAGCTCAGATGCACTTGCATGACTATGTCGAATATTCTTACT
GCCATCATTATTGTTAAAGATATTGCACTTAATTGTTGGGAAAAATATTGCTACAATT
TTAATCTCTGAATGTAATTGATACTGTGTACATAGCAGGGAGTGTGATCGGGGTGAAATAACTT
GGGCCAGAATATTAAACAAATCATCAGGCTTTAAA

FIGURE 102

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIFYFILTLFWGSFFGSIFMLSP
FLPLMFVNPSWYRWINNRLVATWLTPVALLETMFGVKVIITGDAFVPGERSVIIMNHRTRMDWM
FLWNCLMRYSYLRLIKEICLKLASKGVPGFWAMQAAAYIFIHRKWKDDKSHFEDMIDYFCDIHEP
LQLLIFPEGTDLTENSRSNAFAEKNGLQKYEYVLHPRTTGFTFVVDRLREGKNLDLVHDIRVA
YPHNIPQSEKHLLQGDFPREIHFHVRYPIDTLPTSKEDLQLWCHKRWEEKERLRSFYQGEKNF
YFTGQSIPPCKSELRVLVVKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITIVIFVLQERIFGG
LEIIELACYRLLHKQPHLNSKKNE

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

FIGURE 103

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCCACGGCTCTGCGCCTGAGACAGCTGGCTGACC
TCCAAATCATCCATCCACCCCTGCTGTCACTGTTCTAGTGTGAGATCAACCCACAGGAATA
TCCATGGCTTTGTGCTCATTGGTTCTCAGTTCTACGAGCTGGTGTAGGACAGTGGCAAGT
CACTGGACCGGGCAAGTTGTCAAGGCCCTGGTGGGGAGGACGCCGTGTCCTGCTCCCTCT
TTCCCTGAGACCAGTGCAGAGGCATGGAAGTGCAGGTTCTCAGGAATCAGTTCCATGCTGTGGTC
CACCTCTACAGAGATGGGGAAAGACTGGGAATCTAAGCAGATGCCACAGTATCGAGGGAGAACTGA
GTTTGTGAAGGACTCCATTGCAGGGGGCGTGTCTCTAAGGCTAAAAAACATCACTCCCTCGG
ACATCGGCCTGTATGGGTGCTGGTTCAAGTCCAGATTACGATGAGGAGGCCACCTGGGAGCTG
CGGGTGGCAGCACTGGGCTCACTTCCCTCATTTCCATCGTGGGATATGTTGACGGAGGTATCCA
GTTACTCTGCCTGCCTCAGGCTGGTCCCCCAGCCCACAGCCAAGTGGAAAGGTCACAAGGAC
AGGATTGTCTCAGACTCCAGAGCAAATGCAGATGGGTACAGCCTGTATGATGTGGAGATCTCC
ATTATAGTCCAGGAAAATGCTGGGAGCATATTGTGTTCCATCCACCTTGCTGAGCAGAGTCATGA
GGTGGAAATCCAAGGTATTGATAGGAGAGACGTTTCCAGCCCTCACCTGGCCTGGCTTCTA
TTTACTCGGGTTACTCTGTTGCCCCCTGTTGTTGATGGGATGATAATTGTTCTC
AAATCCAAGGGAAATCAGGGCAACTGGACTGGAGAAGAAAAGCACGGACAGGCAGAAATTGAG
AGACGCCCGGAAACACGCACTGGAGGTGACCTCTGGATCCAGAGACGGCTACCCGAAGCTCTGC
TTTCTGATCTGAAACTGTAACCATAGAAAGCTCCCAGGAGGTGCTCACTCTGAGAAAGAGA
TTTACAAGGAAGAGTGTGGTGGCTCTAGGGTTCCAAGCAGGGAGACATTACTGGGAGGTGGA
CGTGGGACAAATGTAGGGTGGTATGTGGAGTGTGTCGGGATGACGTAGACAGGGGAAAGAAC
ATGTGACTTGTCCCCAACATGGGTATTGGTCTCAGACTGACAACAGAACATTGTATTTC
ACATTCAATCCCCATTATCAGCCTCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTCC
GGACTATGAGGGTGGGACCATCTCCTTCTCAATACAAATGACCAGTCCCTTATTATACCCCTGC
TGACATGTCAAGTTGAAGGCTTGTGAGACCCCTATATCAGCATGGATGACGAGGAAAG
GGGACTCCCATATTCAATGTCCAGTGTCTGGGGAT**TGAGACAGAGAACCCCTGTTAAAGGGC**
CCCACACCACAGACCCAGACACAGCCAAGGGAGAGTGTCTCCGACAGGTGGCCCCAGCTTCC
CCGGAGCCTGCGCACAGAGTACGCCCTTACTCTCTTAGGGAGCTGAGGTTCTCTGCC
TGAGGCCCTGCAGCAGGGCAGTCACAGCTTCCAGATGAGGGGGATTGGCCTGACCTGTGGAG
TCAGAAGGCCATGGCTGCCCTGAAGTGGGAGCGGAATAGACTCACATTAGGTTAGTTGTGAAAA
CTCCATCCAGCTAACAGCAGTCTGAAGAACAGTCAACACCTCCAGGCTCTCATTTGCTAGTCACGG
ACAGTGAATTCTGCCCTCACAGGTGAAGATTAAAGAGAACAGAACATGTAATCATGCTGCAGGTT
TGAGGGCACAGTGTGCTAATGATGTTTATATTATACATTTCACCCATAAACTCTGTT
TGCTTATTCCACATTAATTACTTTCTATACAAATCACCCATGGAATAGTTATTGAAACACC
TGCTTGTGAGGCTAAAGAATAAAGAGGGAGTAGGATTTCACTGATTCTATAAGCCAGCAT
TACCTGATACCAAAACAGGCAAGAAAACAGAAGAAGAGGAAACTACAGGTCCATATCC
CTCATTAAACACAGACACAAAAATTCTAAATAAAATTAAACTAAACAATATAATTAA
AAGATGATATATAACTACTCAGTGTGGTTGTCCACAAATGCAGAGTTGGTTAATATTAAAT
ATCAACCAGTGAATTCAAGCACATTAATAAGTAAAAAGAAAACCATAAAAAAAAAAAAAA

FIGURE 104

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHAVVH
LYRDGEDWESKQMPQYRGRTEFKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEATWELR
VAALGSLPLISIVGYVDGGIQLLCLSSGWFPPQPTAKWKGPGQDLSRANADGYSLYDVEISI
IVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCALCGVVMGMIIIVFFK
SKGKIQAELDWRRKHGQAEELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAQEVPHSEKRF
TRKSVVASQGFQAGRHYWEVDVGQNVGVYVGVCRDDVDRGKNNVTLSPNNGYWVRLTTTEHLYFT
FNPHFISLPPSTPPTRGVFLDYEGGTISFFNTNDQSLIYTLLTCQFEGLLRPYIQHAMYDEEKG
TPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

FIGURE 105

CCTTCACAGGACTCTCATTGCTGGTTGGCAATGATGTATCGGCCAGATGTTGAGGGCTAGGAAAAGAG
TTTGTGGAACCTGGTTATGCCCTCGTCATCTCATATCCCTGATTGTCCTGGCAGTGTGCATTGGA
CTCACTGTTCAATTATGTGAGATATAATCAAAGAACCTACAATTACTATAGCACATTGTCAATTACAC
TGACAAACTATATGCTGAGTTGGCAGAGAGGCTCTAACAAATTACAGAAATGAGCCAGAGACTTGAAT
CAATGGTAAAAATGCATTATAAATCTCCATTAGGAAAGAATTGTCAAGTCTCAGGTTATCAAGTTC
AGTCAACAGAACATGGAGTGTGGCTCATATGCTGTTGATTGAGATTCACTCTACTGAGGATCCTGA
AACTGTAGATAAAATTGTTCAACTTGTACATGAAAGCTGCAAGATGCTGTAGGACCCCTAAAGTAG
ATCCTCACTCAGTTAAATTAAAAAAATCAACAAAGACAGAAACAGACAGCTATCTAAACCAATTGCTGCCA
ACACGAAGAAGTAAAACCTCTAGGTCAAGACTCAGGATCGTTGGGGACAGAAGTAGAAGAGGGTGAATG
GCCCTGGCAGGCTAGCCTGCAGTGGATGGAGTCATCGCTGTGGAGCAACCTTAATTATGCCACATGGC
TTGTGAGTGCTGCTCACTGTTACAACATATAAGAACCTGCCCCAGATGGACTGCTTCCCTGGAGTAACA
ATAAAACCTCGAAAATGAAACGGGTCTCCGGAGAATAATTGTCCATGAAAATACAAACACCCATCACA
TGACTATGATATTCTCTTGCAGAGCTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTGTC
TCCCTGATGCATCCTATGAGTTCAACCAGGTGATGTGATGTTGACAGGATTGGACACTGAAAAT
GATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACCTGCAATGAACC
TCAAGCTTACAATGACGCCATAACTCTAGAATGTTATGTGCTGGCTCTAGAAGGAAAACAGATGCAT
GCCAGGGTACTCTGGAGGACCCTGGTTAGTTCAAGCTGGTGTGACTAGAGATATCTGGTACCTTGTGGAATAGTG
AGCTGGGGAGATGAATGTGCGAAACCCAAACAAGCCTGGTGTGACTAGAGTTACGCCCTGGGACTG
GATTACTCAAAACTGGTATCTAAGAGACAAAGCCTCATGGAACAGATAACATTTTTTGTTTTG
GGTGTGGAGGCCATTAGAGATACAGAATTGGAGAAGACTTGCACAAACAGCTAGATTGACTGATCTCA
ATAAAACTGTTGCTTGATGCATGTTCTCCAGCTGTTCCGACGTAAGCATTGCTTGTGCCA
GATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATAATACAATTAC
ATTACAGCCTGTATTCAATTGTTCTCTAGAAGTTGTCAGAAATTGACTGTTGACATAATTGTAAT
GCATATATACAATTGAAGCACTCCTTCTCAGTCTCAGCTCTCATTCTCAGCAAATATCCATT
TCAAGGTGCAGAACAAAGGAGTGAAGAAAATATAAGAAGAAAAAAATCCCCTACATTATTGGCACAGAA
AAAGTATTAGGTGTTCTTAGGAAATTAGAAATGATCATATTGAAAGGTCAAGCAAAGACA
GCAGAACATCAACTTCACTATTAGGAAGTATGGAACTAAGTTAAGGAAGTCCAGAAAGAAGCCAAG
ATATATCCTTATTTCATTCCAAACAACTACTATGATAATTGTGAAGAAGATTCTGTTTTGTGACCT
ATAATAATTATACAAACTTCATGCAATGTAATTGTTCTAAGCAAATTAAAGCAAATTATTACATTG
TTACTGAGGATGTCAACATATAACAATAAAATATAACATCACCA

FIGURE 106

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTWHYVRYNQKKTYNYYSTLSFTTDKLY
AEFGREASNNFTEMSRQLESVKNAFYKSPLREFVKSQVIKFSSQQKHGVLAHMLLICRFHSTED
PETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQSLRIVGG
TEVEEGEWPWQASLQWDGSHRCATLINATWLVSAAHCFTTYKNPARWTASFGVTIKPSKMKGRL
RRIIVHEKYKHPHSHDYDISLAELSSPVPTNAVHRVCLPDASYEFQPGDVMFVTGFGALKNDGYS
QNHLRQAQVTLIDATTNEPQAYNDAITPRMLCAGSLEGKTDACQGDSGGPLVSSDARDIWYLAG
IVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

FIGURE 107

AGAGAAAAGCGCTCCAGCTGAAGCCAATGCAGCCCCCTCGGCTCTCCGCGAAGAAGTCCCTG
CCCCGATGAGCCCCCGCGTCCGCTCCCGACTATCCCCAGGGGGCGTGGGGCACCGGGCCCAGC
GCCGACGATCGCTGCCGTTGCCCTGGGAGTAGGATGTGGTAAAGGATGGGGCTCTCCCTT
ACGGGGCTCACAA**TG**CCAGAGAAAGATTCCGTGAAGTGTCTCGCCTGCTACGCCCTCAA
TCTGCTCTTGTTAATGTCATCAGTGTGTTGGCAGTTCTGCTGGATGAGGGACTACCTAA
ATAATGTTCTCACTTAAC TG CAGAACAGGGTAGAGGAAGCAGTCATTTGACTTACTTCT
GTGGTTCATCCGGTCTGATTGCTGTTGCTGTTCCCTATCATTGTTGGATGTTAGGATATTG
TGGAACGGTGAAAGAAATCTGTTGCTTCTGCTGGACATATGAACAGGAACCTATGGTCCAGTACAATGGTCA
GATATGGTCACTTGAAAGCCAGGATGACAATTATGGATTACCTAGATATCGGTGGCTTACTCA
TGCTTGAATTTCAGAGAGATTAAAGTGTGTTGGAGTAGTATATTCACTGACTGTTGG
AAATGACAGAGATGGACTGGCCCCAGATTCTGCTGTTAGAGAATTCCAGATGTCACAA
CAGGCCACCAGGAAGATCTCAGTGACCTTATCAAGAGGGTTGTGGGAAGAAAATGATTCCCT
TTTGAGAGGAACCAAACAAC TG CAGGTGCTGAGGTTCTGGGAATCTCCATTGGGTGACACAA
TCCTGGCCATGATTCTCACCATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCTGGG
ACAGACCAAATGATGTCCTGAAGAATGACAACCTCAGCACCTGCTGATGTCCTCAGTAGA
GTTGAAACCAAGCCTGTCAAGAATCTTGAAACACACATCCATGGAACACAGCTTAA
TACACACTTTGAGATGGAGGAGTT**A**AAAAGAAATGTCAACAGAAGAAAACCACAAACTTGT
TGTGAATTGGAGTACATACTATGTGTTAGAAATATGTAGAAAATAAAATGTTGCCAAAA
TAACACCTAACGATATACTATTCTATGCTTAAATGAGGATGGAAAAGTTCTGATGTCATAAGTC
ACCACCTGGACAATAATTGATGCCCTTAAATGCTGAAGACAGATGTCATACCCACTGTG
TGTGATGACTTTACTGAACACAGTTATGTTTGAGGCAAGCAGTGGTTGATTGCA
TCCATGCAAACGAGTCACATATGGTGGACTGGAGCCATAGTAAAGGGTGA
CTAGTATATAAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTA
CTCAGCGATCTATTCTCTGATGCTAAATAATTATATCAGAAA
ACTTAAATGTGATTGGTACTAAATATTCTTACCACTTAAAGAGCAAGCTAACACAT
TGTCTTAAGCTGATCAGGGATTGGTATATAAGTCTGTTAAATCTGATAATT
TTCAGTCTGATAATGTTAGAATAACCATTATGAAAAGGAAAATTGCTGTT
ACCTTAAATACCTAACACTAATTGAAAATTACAGTGTGATA
AGAATGTAGTCTGGCTTTAGGAAGTTAAAGAAAATTGCA
AAGGACTTGTATGCTGTTCTCCAAATGAAGACTCTTGG
GCTTATCTTGCCTCTCAGAAAATGCTGAGAATCTTAC
TAGTGTCTTTCTCAGAAAATGCTGAGAATCTTAC
CTTGTGTTATTCACTGATTAAATACTGTG
GAGTATGTTATTGAAATGGAAAAGTC
TTCTCAGAATATG
GAAAGAAAATTAAATGTG
CAATAAATATT
CTAGAGAGTAA

FIGURE 108

MAREDSVKCLRCLLYALNLLFWLMSISVLAWSAWMRDYLNNVLTLTAETRVEEAVILTYFPVVHP
VMIAVCCFLIIVGMLGYCGTVKRNLNLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWSDMVT
LKARMNTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMWDPPDSCCVREFPGCSKQAHQ
EDLSDLYQEGCGKKMYSFLRGTKQLQVLRFGLSIGVTQILAMILTITLLWALYYDRREPDTDQM
MSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 109

CCAAGGCCAGAGCTGGACACCTTATCCACTCATCCTCATCCTCTTCCCTGATAAAGCCCCACCAGTGCT
GATAAAGTCTTCCTCGTGAGGCCTAGAGCCCTTAAAAAAAAGTCTTGAAAGAGAAGGGGACAAGGAACA
CCAGTATAAGAGGATTTCAGTGTTCCTGGCAGTTGGTCCAGAAGGATGCCTCATTCCCTGCTTCACCTG
CCTCTCATCACAGGCCACCTCGTGTCAACCGTGGCCCTAGATCCTGTTCTGCTTACATCAGCCTGAATGAGC
CCTGGAGGAACACTGACCACAGTGGATGAGTCAGGTCTCTATGTACAACCATGTAATGGGAG
TGGTACCACTTCACGGCATGGCGAGATGCCATGCCTACCTTCTGCATACCAAGAAAACACTGTGGAACCCA
CGCACCTGCTGGCTCAATGGCAGGCCACCCCTAGAAGGCAGGGATTGTGCAACGCCAGGCTGTGCCAGCT
TCAATGGGAACACTGCTCTGGAACACACACGGTGGAAAGTCAAGGCTTGCCTGGAGGCTACTATGTGTATG
CTGACCAAGCCCAGCGCTGCTTCCACGCTACTGTGGTCATTATGACATCTGCGACGAGGACTGCCATGG
CAGCTGCTCAGATAACCAGCGAGTGCACATGGCCTCAGGAACACTGTGCTAGGCCATGACAGGAGACATGCTTG
ATGAAAATGAATGTGAGCAAACACCGTGGCTGCACTGAGATCTGTGTGAAACCTCAAAACTCCTACCGCTG
GAGTGTGGGTTGGCGTGTGCTAAGAAGTGTGCAAGACTTGTGAAGACGTTGAAGGATGCCACAATAACAA
TGGTGGCTGCAGCCACTTGCCTTGGATCTGAGAAAGGCTACAGTGTGAATGTCCCCGGGCCTGGTGTGT
CTGAGGATAACCACACTTGCAAGTCCCTGTGTTGTGCAATCAAATGCCATTGAAAGTGAACATCCCCAGGGAG
CTGGTTGGTGGCCTGGAGCTTCTGACCAACACCTCTGCCAGGGACTGTCCAACGGCACCCATGTCAACAT
CCTCTCTCTCAAGACATGTGGTACAGTGGTCATGTGGTAATGACAAGATTGTGGCAGCAACCTCGTGA
CAGGTCTACCCAAGCAGACCCCCGGGAGCAGCAGGGACTCATCATCCGAACCAAGCAGTGTGATCCCC
ACCTCGCAGTTCCACGCCGTACACCATTCTGAAGGATACGTTCCAACCTCAGAAACTCCCCACTGGAAAT
CATGAGCCGAAATCATGGGATCTTCCCACTCTGAGATCTTCAAGGACAATGAGTTGAAGAGCCTTAC
GGGAAGCTCTGCCACCCCAAGCTCGTGAETCCCTACTTGGCATTGAGCCGTGGTGCACGTGAGCGGC
TTGGAAGCTTGGTGGAGAGCTGCTTGCCACCCCACTTCAAGATGACGAGGTCTGAAATACTACCTCAT
CCGGGATGGCTGTTCAAGATGACTCGTAAAGCAGTACACATCCCGGATCACCTAGCAAAGCACTTCCAGG
TCCCTGCTTCAAGTTGTGGCAAAGACCACAAGGAAGTGTCTGCACTGCCGGTTCTGTGTGGAGTG
TTGGACGAGCGTCTCCCGTGTGCCACCCAGGGTGTGCCACCGGGAATGGCTGTGGCCAGGAGGAGACTCAGC
CGGTCTACAGGGCCAGCCTAACAGGCGGCCGATCCGCATCAGTGGAGGACTAGTTCGTAGCCATACCTC
GAGTCCCTGCATTGGACGGCTCTGCTCTTGGAGCTCTCCCCCACCAGGCTCTAAAGAACATCTGCCAACAGC
TGGGTCAGACTCACACTGTGAGTCAGACTCCACGACCAACTCACTCTGATTCTGGTCATTCAAGTGGCA
CAGGTACAGCACTGCTGAACAATGTGGCTGGGTTTCATCTTCTAGGGTTGAAAACAACTAAACTGTCCA
CCCAGAAAGACACTACCCCAATTCCCTCAATTCTTCCACTAAATACCTCGTGTATGGTCAATCAGAC
CACAAAATCAGAAGCTGGGTATAATATTCAAGTTACAAACCCATGAAAATTAACAGTTACTGAAATTATGA
CTTAAATACCAATGACTCCTAAATATGTAATATAGTTACCTGAAATTCAATTCAAATGCAAGACTAA
TTATAGGAATTGGAAGTGTATCAATAAACAGTATATAATT

FIGURE 110

MPPFLLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFTGMAGDAMP
TFCIPEHCGTHAPVWLNGSHPLEGDGIVQRQACASFNGNCCLWNTTVEVKACPGGYYVRLTKPSVCFHV
YCGHFYDICDEDCHGCSDTSECTCAPGTVLGPDRQTCFDENECEQNNGGCSEICVNLKNSYRCECGVGRV
LRSDGKTCEDVEGCHNNNGCASHCLGSEKGYQCECPRLVLSEDNHTCQVPVLCKSNAIEVNIPRELVGG
LELFFLTNTSCRGVSNGTHVNILFSLKTCGTVVVNDKIVASNLVTGLPKQTPGSSGDFIIRTSKLLIPVT
CEFPRLYTISEGYVPNLRNSPLEIMSRNHGIFPFTLEIFKDNEFEPPYREALPTLKLRSLSYFGIEPVVHV
SGLESLVESCFAATPTSKIDEVLKYLYIRDGCVSDDSVKQYTSRDHLAKHFQPVFKFVGKDHKEVFLHCRV
LVCGVLDERSRCAQGCHRRMRRGAGGEDSAGLQQQLTGGLPIRIDWED

Important features of the protein:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306,
522-528, 531-537

Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

ZP domain proteins.

amino acids 431-457

Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

FIGURE 111

GAGAGAGGCAGCAGCTGCTCAGCGGACAAGGATGCTGGCGTGAGGGACCAAGGCCTGCCCTGCACACTCGG
GCCCTCCAGCCAGTGTGACCAGGGACTTCTGACCTGCTGGCAGCCAGGACCTGTGTGGGAGGCC
CCTGCTGCCCTGGGGTACAATCTCAGCTCCAGGCTACAGGGAGACCGGGAGGATCACAGAGCCAGCATGT
TACAGGATCCTGACAGTGAACCTCTGAACAGCCTCGATGTCAAACCCCTGCGCAAACCCGTATCCCC
ATGGAGACCTTCAGAAAGTGGGATCCCATCATAGCACTACTGAGCCTGGCAGGTATCATCATTGT
GGTTGTCCATCAAGGTATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCGA
GGAAGCAGCTGTGTGACGGAGAGCTGGACTGTCCTTGGGGAGGACGAGGAGCACTGTCAAGAGCTTC
CCCGAAGGGCCTGCAGTGGCAGTCGCCTCTCCAAGGACCGATCACACTGCAAGGTGCTGGACTCGGCCAC
AGGGAACCTGGTCTCTGCCTGTTGACAACACTCAGAGCTCGCTGAGACAGCCTGTAGGCAGATGG
GCTACAGCAGAGCTGTGGAGATTGCCAGACCAAGGATCTGGATGTTGAAATCACAGAAAAGCCAG
GAGCTTCGATCGGAAACTCAAGTGGCCCTGTCCTCAGGCTCCCTGGTCTCCCTGCACGTCTGCC
TGGGAAGAGCCTGAAGACCCCCCGTGTGGTGGTGGGAGGAGGAGCCTCTGTGGATTCTTGGCCTTGGCAGG
TCAGCATCCAGTACGACAAACAGCACGTCTGTGGAGGGAGCATCCTGGACCCCCACTGGCCTCACGGCA
GCCCACTGCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGCAG
CTTCCCATCCCTGGCTGTGGCAAGATCATCATCATTGAATTCAACCCATGTACCCCAAAGACAATGACA
TCGCCCTCATGAAGCTGCAGTCCCACACTCACTTCAGGCACAGTCAGGCCATCTGTCTGCCCTTCTT
GATGAGGAGCTCACTCCAGGCCACCCACTCTGGATCATTGGATGGGCTTACGAAGCAGAATGGAGGGAA
GATGTCTGACATACTGCTGCAGGCGTCAGTCAGGCTATTGACACGACACCGGTGCAATGCAAGCAG
ACCAGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGGAAGGGGTGTGGACACCTGCCAGGGT
GACAGTGGTGGGCCCTGATGTACCAATCTGACAGTGGCATGTGGTGGGATCGTTACGTGGGCTATGG
CTGGGGGGCCCGAGCACCCAGGGAGTACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCT
GGAAGGTGAGCTGTAATGCTGCTGCCCTTGCAGTGCTGGAGCCCTCCCTGCCCTGCCACCT
GGGATCCCCAAAGTCAGACACAGCAAGACTCCCTGGTACACCCCTCTGCCACAGCCTCAGCAT
TTCTGGAGCAGCAAAGGCCCTCAATTCTGTAAGAGACCCCTCGCAGGCCAGAGGCGCCAGAGGAAGTCA
GCAGCCTAGCTCGGCCACACTGGTGTCCAGCATCCAGGGAGAGACACAGCCCACTGAAACAAGGTCT
CAGGGTATTGCTAAGCAAGAAGGAACCTTCCACACTACTGAATGGAAGCAGGCTGTCTGTAAAAGCC
CAGATCACTGTGGCTGGAGAGGAGAAGGAAAGGGTCTGCGCCAGGCCCTGCCGTCTCACCCATCCCCAA
GCCTACTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTTACCT
ACTGTTGTCATTGTTATTACAGCTATGCCACTATTATAAGAGCTGTGTAACATCTGGCAAAAAAAA
AAAA

FIGURE 112

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLKVILDKYFLCG
QPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDLSATGNWFSACFDN
FTEALAAETACRQMGYSRAVEIGPDQDLDVVETENSQELRMNRNSSGPCLSGSLVSLHCLACGKSL
KTPRVVGGEAASVDSWPWQVSIQYDKQHVC CGSILDPHWLTAAHCFRKHTDVFNWKVRAGSDKL
GSFPSLA VAKIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPPFDEELTPATPLWIIGWG
FTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDT CQGDGGPLMYQS
DQWHVVGIVSWG YGC GGPSTPGVYTKV SAYLNWIYNVWK AEL

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 113

GGCTGGACTGGAACCTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGATTA
TAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACCTTTCAGCAACTAAAAAGCCACAGGAGT
TGAACTGCTAGGATTCTGACTATGCCTGGCTAGTGCTCCTACTCCTACCTACATTAAAATC
TGTCCCCCTCTGTAACTAGCCTTACCTCCTAACACAGAGGATCTGTCACTGTGGCT
GGCCCAAACCTGACCTCACTCTGGAACGAGAACAGAGGTTCTACCCACACCGTCCCCTGAAG
CCGGGGACAGCCTCACCTGCTGGCCTCTCGCTGGAGCAGTGCCTCACCAACTGTCTACGTCT
GGAGGCCACTGACTCGGGCAGTGCAAGGTAGCTGAGCCTCTGGTAGCTGCGGTTCAAGGTGGC
CTTGCCCTGGCGTAGAAGGGATTGACAAGCCGAAGATTTCATAGGCATGGCTCCACTGCC
AGGCATCAGCCTGCTGTAGTCATCACTGCCCTGGGCCAGGACGGGCCGTGGACACCTGCTCA
GAAGCAGTGGGTGAGACATCACGCTGCCGCCATCTAACCTTTCATGTCCTGCACATCACCTG
ATCCATGGGCTAACCTGAACCTGTCCCAGGAACCCAGAGCTTGAGTGAGCTGTGGCTCAGACC
CAGAAGGGGCTGCTTAGACCACCTGGTTATGTGACAGGACTTGCAATTCTCTGGAACATGAGG
GAACGCCGGAGGAAAGCAAAGTGGCAGGGAAAGGAACCTGTGCCAAATTATGGGTAGAAAAGATG
GAGGTGTTGGTTATCACAAGGCATCGAGTCTCTGCATTCACTGGACATGTGGGGAAAGGCTG
CCGATGGCGCATGACACACTCGGGACTCACCTCTGGGCCATCAGACAGCCGTTCCGCCCGAT
CCACGTACCAAGCTGCTGAAGGGCAACTGCAGGCCATGCTCTCATCAGCCAGGCCAGCAGCCAAA
TCTGCGATCACCAGCCAGGGCAGCCGTCTGGAAAGGAGCAAGCAAAGTGACCAATTCTCTCCC
CTCCTCCCTCTGAGAGGCCCTCTATGTCCCTACTAAAGCCACCAAGAACATAGCTGACAGG
GGCTAACGGCTCAGTGTGGCCAGGAGGTCAAGCAAGGCCATGAGAGCTGATCAGAAGGGCTGCT
GTGCGAACACGGAAATGCCCTCAGTAAGCACAGGCTGCAAATCCCCAGGCAAAGGACTGTGTGG
CTCAATTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAGGAGCTAGAGCTGGTT
CAAATGATCTCAAGGGCCCTTATACCCAGGAGACTTGATTTGAATTGAAACCCCAAATCCA
AACCTAAGAACCAAGGTGCATTAAGAACATCAGTTATTGCCGGTGTGGCTGTAATGCCAACAT
TTTGGGAGGCCAGGGCGGTAGATCACCTGAGGTCAAGGACTGAGGCTGGCCATGGCCAAACATGG
TGAAACCCCTGTCTACTAAAAAATACAAAAAAACTAGCCAGGCTGGTGTGTGCCTGTATC
CCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAAACCTGGAGGTGAAGGAGGCTGAGACA
GGAGAACATTCAGCCTGAGCAACACAGCGAGACTCTGTCTCAGAAAAAATAAAAAAGAATT
TGGTTATTGTAA

FIGURE 114

MLWWLVLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTASPC
WPLAGAVPSPTVSRLAELTRAVQVAEPLGSCGFQGGPCPGRRD

Signal peptide:

amino acids 1-15

FIGURE 115

CAGCAGTGGCTCTCAGCCTCTCAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACCATGGCAA
AGAATCCTCCAGAGAATTGTGAAGACTGTACATTCTAAATGCAGAAGCTTTAAATCCAAGAAA
ATATGTAAATCACTTAAGATTGTGGACTGGTGTGTTGCTGGCCCTAACTCTAATTGTCT
GTTTGCCCCAGCAAGCACCTCTGGCCGGAGGTACCCAAAAAGCCTATGACATGGAGCACACTT
TCTACAGCAATGGAGAGAAGAAGAAGATTACATGAAATTGATCCTGTGACCAGAACTGAAATA
TTCAGAACGGAAATGGCACTGATGAAACATTGAAAGTGCACGACTTAAAAACGGATACACTGG
CATCTACTCGTGGGTCTCAAAATGTTTATCAAACACTCAGATTAAGTGAATTCTGAATT
CTGAACCAGAAGAGGAAATAGATGAGAATGAAGAAATTACCAACTTCTTGAACAGTCAGTG
ATTGGGTCCCAGCAGAAAGCCTATTGAAACCCGAGATTCTTCTTAAATTCCAAAATTCTGGA
GATTTGTGATAACGTGACCATGTATTGGATCAATCCACTCTAATATCAGTTCTGAGTTACAAG
ACTTTGAGGAGGGAGGAGAAGATCTTCACTTCCCTGCCAACGAAAAAAAGGGATTGAACAAAAT
GAACAGTGGTGGTCCCTCAAGTAGAAAGTAGAGAAGACCCGTACGCCAGACAAGCAAGTGAGGA
AGAACTCCAATAATGACTATACTGAAATGAAATTGATCCCATGCTGGATGAGAGAG
GTTATTGTTGATTACTGCCGTCAGGCAACCGCTATTGCCGCCGCTGTGAACCTTACTA
GGCTACTACCCATATCCACTGCTACCAAGGAGGACGAGTCATCTGCGTGTACATGCCCTG
TAACTGGTGGTGGCCCGCATGCTGGGAGGGCTTAATAGGAGGTTGAGCTAAATGCTTAAAC
TGCTGGCAACATATAATAATGCTATTCAATGAATTCTGCCTATGAGGCATCTGGCCCT
GGTAGGCCAGCTCTCCAGAATTACTGTAGGTAATTCTCTCTCATGTTCTAATAAAACTCTACA
TTATCACCAAAAAAAAAAAAAAA

FIGURE 116

MAKNPPENCEDCHILNAEAFSKKICKSLKICGLVFGILALTLLIVLFWGSKHFWPEVPKKAYDME
HTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKTQIKVIP
EFSEPEEEIDENEETTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWINPTLISVSE
LQDFEEEGEDLHF PAN EKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDYTENGIEFDPMED
ERGYCCIYCRRGNRYCRRVCEPLLGGYPYPYCYQGGRVICRVIMPCNWWVARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-
242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 117

GAGCTCCCTCAGGAGCGCGTAGCTTCACACCTCGCAGCAGGAGGGCGGCAGCTTCTGCAGGGCA
GGCGGGCGGCCAGGATCATGTCCACCACATGCCAAGTGGTGGCGTCCCTCCTGTCCATCCTGGGCT
GGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCCAGGACCTGTACGACAACCCCGTCACCT
CCGTGTTCCAGTACGAAGGGCTGGAGGAGCTGCGTGAGGCAGAGTCAGGCTTCACCGAATGCAGGCC
TATTTACCATCCTGGACTTCAGCCATGCTGCAGGCAGTGCAGCCCTGATGATGTAGGCATCGCCT
GGGTGCCATTGGCCTCTGGTATCCATCTTGGCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTG
CCAAAGCCAACATGACACTGACCTCGGGATCATGTTCATTGTCAGGTCTTGTCAGGCAATTGCTGGAGTG
TCTGTGTTGCCAACATGCTGGTACTAATTCTGGATGTCCACAGTAACATGTACACCGCATGGTGG
GATGGTGCAGACTGTTCAGACCAGGTACACATTGGTGCAGGCTGTTCTGGCTGGCTGGCTGGAGGCC
TCACACTAATTGGGGGTGTGATGATGTGCATGCCCTGCCGGGCTGGCACCAAGAAGAACCAACTACAAA
GCCGTTCTTATCATGCCCTCAGGCCACAGTGGTGCCTACAAGCCTGGAGGCTCAAGGCCAGCACTGGCTT
TGGGTCCAACACCAAAAAACAAGAAGATATACTGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATC
CTTCCAAGCAGCACTATGTGTAATGCTCTAACAGACCTCTCAGCACGGCGGAAGAAACTCCGGAGAGCTCA
CCCCAAAAACAAGGAGATCCCACATCTAGATTCTCTGCTTTGACTCACAGCTGAAAGTTAGAAAGCCT
CGATTTCATCTTGGAGAGGCCAATGGTCTTAGCCTCAGTCTGTCTCAAATATTCCACCATAAAACA
GCTGAGTTATTATGAATTAGAGGTATAGCTCACATTCAATCCTCTATTCTTTAAATATAACT
TTCTACTCTGATGAGAGAATGTGTTTAATCTCTCTCACATTGATGATTAGACAGACTCCCCCTC
TTCCCTCTAGTCATAAAACCCATTGATGATCTATTCCAGCTTATCCCCAACAAAACCTTTGAAAGGAAA
GAGTAGACCCAAAGATGTTATTCTGCTGTTGAATTGCTCTCCCCACCCCAACTGGCTAGTAATAA
ACACTTACTGAAGAAGAAGCAATAAGAGAAAGATATTGTAATCTCCAGGCCATGATCTGGTTTCTT
ACACTGTGATCTTAAAGTTACCAACCAAGTCATTTCAGTTGAGGCAACCAAACCTTCTACTGCTG
TTGACATCTCTTATTACAGCAACACCATTCTAGAGTTCTGAGCTCCACTGGAGTCTCTTCTGT
CGCGGGTCAGAAATTGCTCTAGATGAATGAGAAAATTATTCTTAATTAAAGTCCTAAATATAAGTTAA
AATAAAATAATGTTAGAATGATACTATCTGTGAAATAGCCTCACCCCTACATGTGGATAGAAG
GAAATGAAAAAATAATTGCTTGCATTGTCATATGGTACTTTGTAAGTCATGCTTAAGTACAATTCC
ATGAAAAGCTCACACCTGTAATCTGACTTTGGAGGCTGAGGAGGAAGGATCACTTGAGGCCAGAAGT
TCGAGACTAGCCTGGCAACATGGAGAAGCCCTGCTCACAAATACAGAGAGAAAAATCAGCCAGTCA
TGGTGGCATACACCTGTAAGTCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGGCCAGGGAGGT
TGGGGCTGCAGTGAGCCATGATCACACCACTGCACTCCAGCCAGGTGACATAGCGAGATCCTGTCTAAAAAA
AATAAAATAATGAAACACAGCAAGTCCTAGGAAGTAGGTTAAACTAATTCTTTAA

FIGURE 118

MSTTCQVVAFLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTECRP
YFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIMFIVSGL
CAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTLIGGVMMCIA
CRGLAPEETNYKAVSYHASGHSVAYKPGGFKA
STGFGSNTKNKKIYDGGARTEDEVQSYP SKHDY
V

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

FIGURE 119

GGAAAAACTGTTCTTCTGTGGCACAGAGAACCTGCTCAAAGCAGAAGTAGCAGTCCGGAGTCC
AGCTGGCTAAACATCCCAGAGGATAATGGCAACCCATGCCTAGAAATCGCTGGCTGTTCTTG
GTGGTGTGGAATGGTGGCACAGTGGCTGTCACTGTCACTGCCTCAGTGGAGAGTGTGCGCCTTCATT
GAAAACAACATCGTGGTTTGAAAACCTCTGGAGGACTGTGGATGAATTGCGTGAGGCAGGCTAA
CATCAGGATGCAGTGCACAAATCTATGATCCCTGCTGGCTCTTCTCCGGACCTACAGGCAGGCCAGAG
GACTGATGTGTGCTGCTCCGTGATGTCCTCTGGCTTCATGATGCCATCCTGGCATGAAATGC
ACCAGGTGCACGGGGACAATGAGAAGGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTCAT
CATCACGGGCATGGTGGCTCATCCCTGTGAGCTGGGTGCCAATGCCATCATCAGAGATTTCTATA
ACTCAATAGTGAATGTTGCCAAAAACGTGAGCTGGAGAAGCTCTACTTAGGATGGACCACGGCA
CTGGTGCCTGATTGTTGGAGGAGCTCTGTTCTGCGTTTTGTTGCAACGAAAAGAGCAGTAGCTA
CAGATACTCGATACCTCCATCGCACACCCAAAAAGTTATCACACCGAAAGAAGTCACCGAGCG
TCTACTCCAGAAGTCAGTATGTTAGTTGTATGTTTTTAACTTACTATAAACCCATGCAAATG
ACAAAAATCTATATTACTTCTCAAATGGACCCCCAAGAAAACCTTGATTTACTGTTCTTAACGCCT
AATCTTAATTACAGGAACTGTGCATCAGCTATTATGATTCTATAAGCTATTCAGCAGAATGAGATA
TTAACCCAATGCTTGATTGTTAGAAAGTATAGTAATTGTTCTAAGGTGGTCAAGCATA
CTCTTTTATCAATTACTTCAAATGACATTGCTAAAGACTGCATTATTTACTACTGTAATTCTCC
ACGACATAGCATTATGTACATAGATGAGTGTAAACATTATCTCACATAGAGACATGCTTATATGGT
TTTATTAAATGAAATGCCAGTCCATTACACTGAATAAAATAGAAACTCAACTATTGCTTTCAGGGAA
ATCATGGATAGGGTGAAGAAGGTTACTATTAAATTGTTAAAACAGCTIAGGGATTATGTCTCCA
TTTATAATGAAGATTAAATGAAGGCTTAATCAGCATTGTAAGAAAATTGAATGGCTTCTGATAT
GCTGTTTTAGCCTAGGAGTTAGAAATCCTAACATTCTTATCCTCTCCAGAGGCTTTTT
CTTGTGTATTAAATTAAACATTAAACGAGATAATTGTCAGGCTTGCATTCAAACGTCT
TTCCAGGGCTATACTCAGAAGAAGATAAAAGTGTGATCTAAGAAAAGTGTGTTAGGAAAGTG
AAAATTTTTGTTTGATTGAAGAAGAATGATGCATTGACAAGAAATCATATATGTATGGAT
ATATTAAATAAGTATTGAGTACAGACTTGAGGTTCATCAATAAATAAAAGAGCAGAAAATA
TGTCTGGTTTCATTGCTTACCAAAAAACACAACAAAAAAAGTGTCTTGTGAGAAACTCACCT
GCTCCTATGTGGTACCTGAGTCACATTGTCATTGTTCTGTGAAAATAATTCTTCTGTA
CCATTCTGTTAGTTACTAAATCTGAAACTGTATTGTTCTGTTATTCAAATTGATGAA
ACTGACAATCCAATTGAAAGTTGTGTCGACGTCTGTCTAGCTTAAATGAATGTGTTCTATTGCTT
TATACATTATTAATAAAATTGTACATTCTAATT

FIGURE 120

MATHALEIAGLFLGGVGMVGTAVTVMPQWRVSIFIENNIVVFENFWEGLWMNCVRQANIRMQCK
IYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRGTGDNEVKAHILLTAGIIFIITG
MVVLIPSWVANAIIRDYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCNEKSSSY
RYSIPSHRTTQKSYHTGKKSPSVYRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

FIGURE 121

GGAGAGAGGCGCGCGGGTGAAGGCATTGATGCAGCCTGCCGCGCCTCGGAGCGCGCGAG
CCAGACGCTGACCACGTTCCCTCCCTCGGTCTCCGCCCTCCAGCTCCCGCTGCCGGCAGCC
GGGAGCCATGCACCCCAGGGCCCCGCCCTCCCGCAGCGGCTCCGCGGCCCTGCTGCTCC
TGCTGCTGCAGCTGCCCGCCGTGAGCGCCTCTGAGATCCCAAGGGGAAGCAAAGGCCAG
CTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGGGCCAGCAGGAGTGC
TGGTCGAGACGGGAGCCCTGGGCCAATGTTATTCCGGTACACCTGGATCCCAGGTGGGATG
GATTCAAAGGAGAAAAGGGGGAAATGTCGAGGGAAAGCTTGAGGGAGTCTGGACACCCAACATAC
AAGCAGTGTTCATGGAGTTCATTAATTGGCATAGATCTGGAAAATTGCGGAGTGTACATT
TACAAAGATGCGTCAAATAGTGTCTAAGAGTTGTCAGTGGCTCACTTCGGCTAAATGCA
GAAATGCATGCTGTCAGCGTTGGTATTCAATTCAATGGAGCTGAATGTTCAAGGACCTCTCCC
ATTGAAGCTATAATTATTGGACCAAGGAAGCCCTGAAATGAATTCAACAATTAAATTATCG
CACTTCTCTGTGGAAGGACTTGTGAAGGAATTGGTGGATTAGTGGATGTTGCTATCTGG
TTGGCACTGTTAGATTACCCAAAAGGAGATGCTTCACTGGATGGAATTCAAGTCTCGCATC
ATTATTGAAGAACTACCAAATAAATGCTTAATTTCATTGCTACCTCTTTTATTATGCC
TTGGAATGGTTCACTTAAATGACATTTAAATAAGTTATGTATACATCTGAATGAAAAGCAAAG
CTAAATATGTTACAGACCAAAAGTGTGATTTCACACTGTTTAAATCTAGCATTATTCAATTG
CTTCAATCAAAAGGGTTCAATATTTTTAGTTGGTTAGAATACTTCTTCATAGTCACATT
CTCTCAACCTATAATTGGAATATTGTTGGTCTTTGTTCTCTTAGTATAGCATTAA
AAAAAAATATAAAAGCTACCAATTTGTACAATTGTAATGTTAAGAATTTTTTATATCTGT
TAAATAAAAATTATTCCAACA

FIGURE 122

MRPQGPAAASPQRRLRGLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVPGR
DGSPGANVIPGTPGIPGRDGFGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTK
MRSNSALRVLFGSLLRKCRNACCQRWYFTFNGAECSGPLPIEAIYYLDQGSPEMNSTINIHRTS
SVEGLCEGIGAGLVDVIAIWVGTCSDYPKGDASTGWNSVSRIIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 123

GCTGAGCGTGTGCGCGGTACGGGCCTCCTGCCCTGGGCTCCAACGCAGCTGTGGCTGAA
CTGGGTGCTCATCACGGGAAC TGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAGCCCCAA
ATTGCCCTGGAAGAATACATCATGTTTCGATAAGAAGAAAATTGTTAGGATCCAGTTTTTTTA
ACCGCCCCCTCCCACCCCCCAAAAAACTGTAAGAGTGCAAAACGTAATATCCATGAAGATCC
TATTACCTAGGAAGATTGATTTGCTGCGAATGCCGTGTTGGGATTATTGTTCTGGAG
TGGTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCTCCAAAGGGTCCAATT
TCTTCTGGGTGTCAGCGAGCCTGACTCACAGTGACGTGACAGGGCTGTCATGCAACTG
GCCCTAAGCCAAGCAAAGACCTAACGGACGACCTTGAACAATACAAAGGATGGTTCAATG
TAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTTAGCCCCACTGCTTACTGACAATG
CTTTCTCTGCCAACGAGGATGCCCTAACGGCTGTAGGTGTGAAGGCAAATGGTATATTGTA
ATCTCAGAAATTACAGGAGATACCCCTAACGTTAGTATCTGCTGGTTAGGTTGCTTCCCTCGCT
ATAACAGCCTCAAAAACCTAACGTTAGTATAATCAATTAAAGGGCTCAACCAGCTCACCTGGCTATAC
CTTGACCATAACCATATCAGCAATTAGACGAAAATGCTTTAATGGAATACGCAACTCAAAGA
GCTGATTCTTAGTCCAATAGAATCTCTATTCTTAACAATACCTTCAGACCTGTGACAATT
TACGGAACCTGGATCTGCCCTATAATCAGCTGCATTCTGGGATCTGAACAGTTGGGGCTTG
CGGAAGCTGCTGAGTTACATTACGGCTAACCTCCCTGAGAACCATCCCTGTGCGAATATTCCA
AGACTGCCAACCTGGAACCTTGGACCTGGGATATAACGGATCCGAAGTTAGCCAGGAATG
TCTTGCTGGCATGACTAACAGAACCTCACCTGGAGCACAATCAATTCCAAGCTCAAC
CTGGCCCTTTCCAAGGTTGGCAGCCTCAGAACCTTACTTGCACTGGAATAAAATCAGTGT
CATAGGACAGACCATGTCCTGGACCTGGAGCTCTAACAAAGGCTGATTATCAGGAATGAGA
TCGAAGCTTCAGTGGACCCAGTTTCCAGTGTGTCCGAATCTGCAGCGCTAACCTGGAT
TCCAACAAGCTCACATTATTGGTCAAGAGATTGGATTCTGGATATCCCTCAATGACATCAG
TCTTGCTGGGAATATGGGAATGCAAGCAGAAATATTGCTCCCTGTAAACTGGCTAAAAGTT
TTAAAGGTCAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGACTGCAAGGGAGTAAATG
ATCGATGCAAGAAACTACAGCATCTGGGCAAAGACTACAGAGAGGTTGATCTGGCAG
GGCTCTCCCAAAGCCGACGTTAACGCCCAGAGGCCAGAGACCGATGTCAGCGCAGCACATCT
TGCCCCCGAGGTGGAGCCACAGAGGCCAGAGACCGATGTCAGCGCAGCACATCT
TTCCATAAAAATCATCGGGGAGCGTGGCCTTCTGTCCGTGTCATCTGCTGGTTAT
CTACGTGTCATGGAGCGGCTACCTGCGAGCATGAAGCAGCTGCGAGCGCTCCCTCATGCGAA
GGCACAGGAAAAAGAAAAGACAGTCCCCTAACGAAATGACTCCCAGCAGGAAATTATGTA
GATTATAAACCCACCAACACGGAGACCAGCGAGATGCTGCAATGGGACGGGACCCCTGCACCTA
TAACAAATCGGGCTCCAGGGAGTGTGAGGTATGAACCATTGATAAAAAGAGCTTAAAAGCT
GGGAAATAAGTGGTCTTATTGAACTCTGGTGAATCAAGGGAAACGCGATGCCCCCCCCTCCCC
TTCCCTCTCCCTCACTTGGTGGCAAGATCCTCTGTGCGTTAGTGCATTCAATAACT
GGTCATTTCTCTCATACATAATCAACCCATTGAAATTAAATACCAACATGTAAGGCTT
GAACTCGGTTAATATAATACATTGTATAAGACCCCTTACTGATTCCATTATGCGCATTT
GTTTAAGATAAAACTCTTCTAGGTAAAAAAAAAA

FIGURE 124

MGFNVIRLLSGSAVALVIAPTVLMLSSAERGCPKGCRCEGKMYCESQKLQEIPSSISAGCLG
LSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYFLNNTR
PVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIQDCRNLELLDLGYNRIRS
LARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLQWNKISVIGQTMSTWSSLQRLDL
SGNEIEAFSGPSVFQCVPNLQRLNLDNSNKLFIGQEILDWSWISLNDISLAGNIWECSRNICSLVN
WLKSFKGLRENTIICASPKELOQGVNVIDAVKNYSICGKSTTERFDLARALPKTFKPKLPRKHE
SKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVLIVYVSWKRYPASMKQIQR
SLMRRHRKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLNGBTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 125

CCGTTATCGTCTTCGCTACTGCTGAATGTCCGTCCCGGAGGAGGGAGGGCTTTGCCGCTG
ACCCAGAGATGGCCCCGAGCAGCAAATTCTACTGTCCGGCTGC~~CG~~GGCTACCGTGGCCAGCT
AGCAACCTTCCCCTGGATCTCACAAAAACTCGACTCCAATGCAAGGAGAAGCAGCTTGTCTC
GGTGGGAGACGGTGAAGAGAAATCTGCCCTATAGGGGAATGGTGCACAGCCCTAGGATC
ATTGAAGAGGAAGGCTTCTAAAGCTTGGCAAGGAGTGACACCCGCCATTACAGACACGTAGT
GTATTCTGGAGGTCAATGGTCACATATGAACATCTCCGAGAGGTTGTGTTGGCAAAAGTGAAG
ATGAGCATTATCCCCTTGGAAATCAGTCATTGGAGGGATGATGGCTGGTATTGGCCAGTT
TTAGCCAATCCAACTGACCTAGTGAAGGTTCAGATGCAAATGGAAGGAAAAGGAACTGGAAGG
AAAACCATTGCGATTCTGTGGTGTACATCATGCATTGCAAAATCTTAGCTGAAGGAGGAATAC
GAGGGCTTGGCAGGCTGGTACCCAAATATACAAAGAGCAGCACTGGTGAATATGGGAGATT
ACCACTTATGATAACAGTGAAACACTACTTGGTATTGAAATACACCACTTGAGGACAATATCATGAC
TCACGGTTATCAAGTTATGTTCTGGACTGGTAGCTCTATTCTGGAACACCAGCCGATGTCA
TCAAAAGCAGAATAATGAATCAACCACGAGATAACAGGAAGGGACTTTGATAAAATCATCG
ACTGACTGCTTGATTCAGGCTGTTCAAGGTGAAGGATTCATGAGTCTATATAAAAGGCTTTACC
ATCTTGGCTGAGAATGACCCCTTGGTCAATGGTGTCTGGCTTACTTATGAAAAATCAGAGAGA
TGAGTGGAGTCAGTCCATTTAA

FIGURE 126

MSVPEEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMGEAALARLGDGARES
APYRGMVRTALGIIEEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEHYPLWKS
VIGGMAGVIGQFLANPTDLVKVQMMEGKRKLEGKPLRFRGVHAFAKILAEGGIRGLWAGWVP
NIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCGLVASILGTPADVIKSrimnQP
RDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRTPWMSMVFWLTYEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 127

CGCGGATCGGACCAAGCAGGTGGCGCGCGCAGGAGAGCGGCCGGCGTCAGCTCCTCGAC
CCCCGTGTCGGGCTAGTCCAGCGAGGCAGGGCGTGGGCCATGGCCAGGCCGGCATGG
AGCGGTGGCGCACCGCTGGCCTGGTACGGGGCCTCGGGGGCATCGGCAGGCCGTGGCC
CGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGCTGCGCCGCACTGTGGCAACATCGAGGA
GCTGGCTGCTGAATGTAAGAGTCAGGCTACCCCAGGACTTTGATCCCCTACAGATGTGACCTAT
CAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGCGGTGTAGACATC
TGCATCAACAATGCTGGCTTGGCCGGCCTGACACCCCTGCTCTCAGGCAGCACCCAGTGGTTGGAA
GGACATGTTCAATGTAACGTGCTGGCCCTCAGCATCTGCACACGGGAAGCCTACCAGTCCATGA
AGGAGCGGAATGTGGACGATGGCACATCATTAACATCAATAGCATGTCGGCCACCGAGTGTAA
CCCCTGTCGTGACCCACTTCTATAGGCCACCAAGTATGCCGTACTGCCGTGACAGAGGGACT
GAGGCAAGAGCTCGGGAGGCCAGACCCACATCCGAGGCCACGTGCATCTCCAGGTGTGGTGG
AGACACAATTGCCCTCAAACCTCCACGACAAGGACCTGAGAAGGCAGCTGCCACCTATGAGCAA
ATGAAGTGTCTCAAACCGAGGATGTGGCGAGGCTGTATCTACGTCCTCAGCACCCCCGACA
CATCCAGATTGGAGACATCCAGATGAGGCCACGGAGCAGGTGACACTGTGGAGCTCC
TCCTTCCTCCCCACCCCTCATGGCTGCCCTGCCTCTGGATTTAGGTGTTGATTCTGGAT
CACGGGATAACCACTCCGTCCACACCCCGACCAGGGCTAGAAAATTGTTGAGATTTTATA
TCATCTGTCAAATTGCTTCAGTTGTAATGTGAAAAATGGCTGGGAAAGGAGGTGGTGTCCC
TAATTGTTTACTTGTAACTTGTCTTGCCCTGGCACTTGGCTTGTCTGCTCTCAGTG
TCTTCCTTGACATGGAAAGGAGTTGTGCCAAAATCCCCATCTTGCACCTCAACGTCTG
TGGCTCAGGGCTGGGCTGGCAGAGGGAGGCCTCACCTATATCTGTGTTGTTACCGGGCTCC
AGACTTCCCTCTGCCTGCCCACTGCACCCCTCTCCCCCTATCTATCTCCTCTGGCTCCCC
AGCCCAGTCTGGCTTGTCCCCTGGGTCATCCCTCCACTCTGACTCTGACTATGGCAG
CAGAACACCAGGGCTGGCCAGTGGATTGATGGTGCATTAAAAAGAAAAATCGCAACCAA
AAAAAAAAAA

FIGURE 128

MARPGMERWRDRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIEELAAECKSAGYPGTLI
PYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVNLALSICTR
EAYQSMKERNVDDGHIININMSGHRVLPLSVTHFYSATKYAVTALTEGLRQEELREAQTHIRATC
ISPGVVETQFAFKLHDKDPEKAAATYEQMCKLPEDVAEAVIYVLSTPAHIQIGDIQMRPTEQVT

Important features of the protein:

Signal peptide:

amino acids 1-17

N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115,
199-205

Short-chain alcohol dehydrogenase.

amino acids 30-42, 104-114

FIGURE 129

AACTTCTACATGGGCCTCCTGCTGCTGGTGCTTCCTCAGCCTCCTGCCGGTGGCCTACACCAT
CATGTCCCTCCCACCCCTTGACTGCAGGCGTCAGGTGCAGAGTCAGTGCCCCGGAGC
ACCTCCCTCCCAGGGCAGTCTGCTCAGAGGGCCTCGGCCAGAATTCCAGTTCTGGTTCATGC
CAGCCTGAAAAGGCCATGGAACTTGGGTGAATCACCGATGCCATTAAAGAGGGTTTCTGCCA
GGATGGAAATGTTAGGTCGTTCTGTCTGCGCTGTTCATTCAGTCAGTAGCCACCAGCCACCTGTGG
CCGTTGAGTGCTTGAAAATGAGGAAACTGAGAAAATTAATTCTCATGTATTTCTCATTATTAA
TTAATTAATTTAACTGATAGTTGACATATTGGGGTACATGTGATATTGGATACATGTATACAA
TATATAATGATCAAATCAGGGTACTGGATATCCATCACATCAAACATTTTATTCTTT
TTAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGTGCCATCTCAGCTTACTGCAAC
CTCTGCCTGCCAGGTTCAAGCGATTCTCATGCCTCCACCTCCAAAGTAGCTGGACTACAGGCAT
GCACCACAATGCCCAACTATTTGATTTAGTAGAGACGGGTTTGCCATGTTGCCAGG
CTGGCCTTGAACTCCTGGCCTCAAACAACCATTGCCTCGGCCTCCAAAGTGTATGATTACA
GGCGTGAGCCACCGTGCCTGGCTAAACATTTATCTTGTGTTGGAAACTTTGAAATTAT
ACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTGCTATGGAAACACTGGACTTCTCCCTCT
ATCTAACTGTATATTGTACCAGTTAACCAACCGTACTTCATCCCACCTCTCTATCCTTCCC
AACCTGTATCACCTCATTCTACTCTCACCTCCATGAGATCCACTTTTAGCTCCACATGTG
AGTAAGAAAATGCAATATTGTCTTCTGTGCTGGCTTATTCACTTAACATAATGACTCCTG
TTCCCATCCATGTTGCTGCAAATGACAGGATTCGTCTTAATTCAATTAACATAACCACACATG
GCAAAAA

FIGURE 130

MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRSVAREHLPSPRGSSLRGPRPRIPVLVSCQPV
KGHGTLGESPMFKRVFCQDGTVRSFCVCAVFSSHQPPVAVECLK

Important features of the protein:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature.

amino acids 68-79

FIGURE 131

TTCTGAAGTAACGGAAGCTACCTGTATAAAGACCTAACACTGCTGACCATGATCAGCGCAGCCTGGAGC
ATCTTCCCATCGGGACTAAAATTGGGCTGTCCTCAAGTAGCACCTCTATCAGTTATGGCTAAATCCTG
TCCATCTGTGTCGCTCGCATGGGTTTCATTTACTGTAATGATCGCTTCTGACATCCATTCCAACAG
GAATACCAGAGGATGCTACAACTCTACCTCAGAACAAACAAATAATGCTGGATTCTTCAGAT
TTGAAAAACTTGCTGAAAGTAGAAAGAATATACTACCTACACAAACAGTTAGATGAATTCTACCAACCT
CCCCAAAGTATGTAAGAGTACATTGCAAGAAAATAACATAAGGACTATCACTTATGATTCACTTCAA
AAATTCCCTATCTGGAAGAATTACATTAGATGACAACACTGTCCTGCAGTTAGCATAGAAGAGGGAGCA
TTCCGAGACAGCAACTATCTCGACTGCTTTCTGTCCTCGTAATCACCTAGCACAATTCCCTGGGTT
GCCAGGACTATAGAAGAACTACGCTGGATGATAATCGCATATCCACTATTCATCACCATCTCTCAAG
GTCTCACTAGTCTAAACGCTGGTCTAGATGAAACACTGTCCTGCAGTTAGGTGACAAGATT
TTCTTCAACCTAGTTAATTGACAGAGCTGTCCTGGTGCAGAATTCCCTGACTGCTGCACAGTAAACCT
TCCAGGGACAAACCTGAGGAAGCTTATCTCAAGATAACCACATCAACGGGTGCCCTAAATGCTTTT
CTTATCTAAGGCAGCTATCGACTGGATATGTCATAAAACCTAAGTAATTACCTCAGGGTATCTT
GATGATTGGACAATATAACACAACGATTCTCGAACAACTCCCTGGTATTGCGGGTGCAAGATGAAATG
GGTACGTGACTGGTACAATCACTACCTGTGAAGGTCAACGTGCGTGGGTCATGTGCCAAGCCCCAGAAA
AGGTTGGTGGGATGGCTATTAAGGATCTCAATGCAGAACTGTTGATTGTAAGGACAGTGGGATTGTAAGC
ACCATTCAAGATAACCACCTGCAAAACACAGTGTATCTGCCAAGGACAGTGGCCAGCTCAGTGAC
CAAACAGCCAGATATTAAGAACCCAAAGCTCAACTAGGATCAACAAACACAGGGAGTCCCTCAAGAAAAAA
CAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCTATCTGGAAACTGCTTACCTATG
ACTGTTGAGACTCAGCTGGTAAACTGGGCAATGCCCGCATTTGATCTATAACAGAAACAATTG
AACAGGGGAAACGCAACCTCTACCTATTGATGAAACTCCTGTTGATTGAGACTGAAACTGCAACCCCT
CCATGGAAACAGCAACCTCTACCTATTGATGAAACTCCTGTTGATTGAGACTGAAACTGCAACCCCT
CGAATGTACAACCCCTACAACCACCCCTCAATCGAGAGCAAGAGAAAGAACCTTACAAAACCCCAATTAC
TTGGCTGCCATCATTGGTGGGCTGTGGCCCTGGTTACCATGGCCCTTCTGCTTAGTGTGTTGGTATG
TTCATAGGAATGGATCGCTTCTCAAGGAACCTGTGCATATAGCAAAGGGAGGAGAAGAAAGGATGACTAT
GCAGAAGCTGGCACTAAGAAGGACAACCTATCCTGGAAATCAGGGAAACCTTCTTCAAGATGTTACCAAT
AAGCAATGAACCCATCTGAAGGAGGAGTTGTAATACACCCATATTCTCTCAATGGAATGAATCTGT
ACAAAAAACAAATCACAGTGAAGCAGTAGTAACCGAAGCTACAGAGACAGTGGTATTCCAGACTCAGATCAC
TCACACTCATGATGCTGAAGGACTCACAGCAGACTTGTGTTGGGTTTTAACCTAAGGGAGGTGATG
GT

FIGURE 132

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRC DAGFIYCNDRFLTSIPTGIPEDATTLYL
QNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHQENNIRTITYDSSLKIPYL
EELHLDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLS TIPWGLPRTIEELRLDDNRISTISSPSL
QGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAA PVNLPGTNLRKLYLQDNHIN
RVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQLILRNNPWYCGCKMKWVDWLQSLPV
KVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQTTAIPNTVPAQGQWPAPVTKQPD
IKNPKLTKDQQTTGSPSRKTITITVKS VTS DTIHISWKLALPMTALRLS WLKLGHSPAFGSITET
IVTGERSEYLVTALEPDSPYKCMVPMETS NLYLFDETPVC IETETAPLRMYNPTTLNREQEKE
PYKNPNLPLAAIIGGAVALVTIALLALVCWYVHRNGSLFSRNCAYSKGRRKDDYAEAGTKKD NS
ILEIRETSFQMLPISNEPISKEE FVIHTIFPPNGMNLYKNNHSESSSNRSYR DSGIPDSDHS HS

Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636

Tyrosine kinase phosphorylation site.

amino acids 515-522

N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561,
640-645

Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

FIGURE 133

CCGTCATCCCCCTGCAGCCACCCCTCCCAGAGTCCTTGCCCAGGCCACCCAGGCTTCTGGCA
GCCCTGCCGGGCCACTTGTCTTCATGTCTGCCAGGGGAGGTGGGAAGGAGGTGGGAGGGCG
TGCAGAGGCAGTCTGGCTTGGCCAGAGCTCAGGGTGTGAGCGTGTGACCAGCAGTGAGCAGAG
GCCGGCCATGGCCAGCCTGGGCTGCTGCTCTGCTTAAGTACAGCAGTGCACCCAGCTGTGGT
CCTCCTCACTGCCCTGGCTGGACACTGCTGAAAGTAAAGCCACCATGAGACCTGATCCTGTCT
GCGCTGGAGAGAGGCCACCGTCTCCTAGAACAGAGGCTGCCTGAAATCAACCTGGATGGCATGGT
GGGGGTCCGAGTGTGGAAGAGCAGCTAAAAGTGTCCGGAGAAGTGGGCCAGGAGCCCCCTGC
TGCAGCCGCTGAGCCTGCGCGTGGGATGCTGGGGAGAAGCTGGAGGCTGCCATCCAGAGATCC
CTCCACTACCTCAAGCTGAGTGATCCAAAGTACCTAACAGAGAGTCCAGCTGACCCCTCCAGCCCCG
GTTTGAAAGCTCCCACATGCCCTGGATCCACACTGATGCCCTTGGTGTACCCACGTTGGG
CCCAGGACTCATTCTCAGAGGAGAGAAGTGACGTGTGCCTGGTGCAGCTGCTGGGAACCGGGACG
GACAGCAGCGAGCCCTGCGGCCTCTCAGACCTCTGCAGGAGCCTCATGACCAAGCCGGCTGCTC
AGGCTACTGCCCTGCCCCACCAACTGCTCTTCTCTGGGCCAGAATGAGGGATGCACACAGG
GACCACCTCAAACAGAGCCAGGACTATATCAACCTCTTCTGCGCCAACATGATGGACTTGAACCGC
AGAGCTGAGGCCATGGATAACGCCCTACCCGGACATCTTCATGGAAAACATCATGTTCTG
TGGAAATGGGGGGCTCTCCGACTTCTACAAGCTCCGGTGGCTGGAGGCCATTCTCAGCTGGCAGA
AACAGCAGGAAGGATGCTCGGGGAGCCTGATGCTGAAGATGAAGAATTATCTAAAGCTATTCAA
TATCAGCAGCATTTCGAGGGAGGTGAAGAGGCCAGAAAAACAATTCCAGATTCTCGCTCTGT
TGCTCAGGCTGGAGTACAGTGGCGCAATCTGGCTCACTGCAACCTTGCCTCTGGTTCAAGC
AATTCTTGCCTCATCTCCCAGTAGCTGGACTACAGGAGCGTGCACCATACCTGGCTAAT
TTTATATTTTTAGTAGAGACAGGGTTCATCATGTTGCTCATGCTGGTCTCGAACACTCTGAT
CTCAAGAGATCCGCCACCTCAGGCTCCAAAGTGTGGGATTATAGGTGTGAGCCACCGTGTCTG
GCTGAAAAGCACTTCAAAGAGACTGTGTTGAATAAAGGGCAAGGTTCTGCCACCCAGCACTC
ATGGGGCTCTCCCTAGATGGCTGCTCTCCACACAGCCACAGCAGTGGCAGCCCTGG
GTGGCTCCTATACTCCTGGCAGAAATACCCCCCAGCAAAACAGAGAGGCCACACCCATCCACACCG
CCACCAAGCAGCCGCTGAGACGGACGGTCCATGCCAGCTGCCCTGGAGGAGGAACAGACCC
TTAGTCCTCATCCCTAGATCCTGGAGGGCACGGATCACATCTGGGAAGAAGGCATCTGGAGG
ATAAGCAAAGCCACCCGACACCCAATCTTGAAGCCCTGAGTAGGCAGGGCCAGGGTAGGTGGG
GGCCGGGGAGGGACCCAGGTGTGAACGGATGAATAAAGTCAACTGCAACTGAACTGAAAAAAA

FIGURE 134

MSARGRWEGGGRRACRGSGLARAQGAERVTSSERPMASLGLLLLLTLAPPLWSSSLPGLD
TAESKATIADLILSALERATVFLERQLPEINLDGMVGVRVLEEQLKSVREKWAQEPLLQPLSLRV
GMLGEKLEAAIQRSLHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQDSFSEE
RSDVCLVQLLGTGTDSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQGPLQQSQD
YINLFCAANMMDLNRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILSWQKQQEGCFG
EPDAEDEELSKAIQYQQHFSRRVKREKQFPDSRSVAQAGVQWRNLGSLQPLPPGFQFSCLILP
SSWDYRSVPYLANFYIFLVETGFHHVAHAGLELLISRDPPPTSGSQVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

FIGURE 135

GGTCTGAGTGCAGAGCTGCTGTCATGGCGGCCGCTCTGTGGGGCTTCTTCCCGCTGCTGCTG
CTGCTGCTATCGGGGATGTCCAGAGCTCGGAGGTGCCGGGGCTGCTGCTGAGGGATCGGGAGG
GAGTGGGGTCGGCATAGGAGATCGCTCAAGATTGAGGGCGTGAGTTGTCAGGGGTGAAGC
CTCAGGACTGGATCTCGCGGCCGAGTGCCTGGTAGACGGAGAACGACGTCGGTTCTTAAG
ACAGATGGGAGTTTGTGGTTCATGATATACTCTGGATCTTATGAGTTGAAAGTTGATCTCC
AGCTTACAGATTTGATCCCGTCAGTGGATATCACTTCGAAAGAAAAATGAGAGCAAGATAG
TGAATTACATCAAACATCAGAGGTTGTCAGACTGCCATCCTCTCCAAATGAAATCTTCAGGT
CCACCTTCTTACTTTATTAAAAGGAATCGTGGGGCTGGACAGACTTCTAATGAACCCAATGGT
TATGATGATGGTTCTCCTTATTGATATTGTGCTCTGCCCTAAAGTGGTCAACACAAGTGATC
CTGACATGAGACGGAAATGGAGCAGTCATGAATATGCTGAATTCCAACCAGTGGCTGAT
GTTTCTGAGTTCATGACAAGACTCTCTCTCAAATCATCTGGCAAATCTAGCAGCGCAGCAG
TAAAACAGGCAAAGTGGGCTGGCAAAGGGAGGTAGTCAGGCCGTCAGAGCTGGCATTGCAC
AAACACGGCAACACTGGGTGGCATCCAAGTCTGGAAAACCGTGTGAAGCAACTACTATAAATT
GAGTCATCCCACGTTGATCTTACAACGTGTATGTT
AACTTTTAGCACATGTTGTACTTGGTACACGAGAAAACCCAGCTTCATCTTGCTGTAT
GAGGTCAATATTGATGTCACTGAATTAAATTACAGTGTCTATAGAAAATGCCATTAATAATTAT
ATGAACTACTATACTATTATGTATATTAAACATCTTAATCCAGAAATCAAAAAAAAAAAAA
AAAAAAAAAAAAAA

FIGURE 136

MAAALWGFFPVLLLLLSDVQSEVPGAAEGSGSGVGIGDRFKIEGRAVPGVKPQDWISAA
RVLVDGEEHVGFLLKTDGSFVVHDIPSGSYVVEVVSPAYRFDPVRVDITSKGKMRARYVNYIKTSE
VVRLPYPLQMSSGPPSYFIKRESWGWTDFLMNPVMMMVLPLLIFVLLPKVVNTSDPDMRREME
QSMNMLNSNHELPDVSEFMTRLFSSKSSGKSSSGSSKTGKSGAGKRR

Important features of the protein:

Signal sequence:

amino acids 1-23

Transmembrane domain:

amino acids 161-182

N-glycosylation site.

amino acids 184-187

Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

Amidation site.

amino acids 238-241

ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

FIGURE 137

GATGGCGCAGCCACAGCTCTGTGAGATTGATTCGATTCTCCCCAGTTCCCCTGTGGGTCTGAGGGGA
CCAGAAGGGT GAGCTACGTTGGCTTCTGAAAGGGGAGGCATATTCGCTCAATTCCCCAAACAA
GTTTGACATTCCCTGAAATGTCATTCTATCTATTCACTGCAAGTGCCTGCTGTTCCAGGC
CTTACCTGCTGGCACTAACGGCGAGCCAGGATGGGACAGAATAAAGGAGCCACGACCTGTGC
CACCAACTCGCACTCAGACTCTGAACCTCAGACCTGAAATCTCTCTCACGGGAGGCTGGCAGT
TTTCTTACTCCTGTTGCTCCAGATTCAGGCCTAAGATGAAAGCCTAGTCTTGCTTCAGC
CTTCTCTGCTGCGTTTATCTCTATGGACTCCTTCACTGGACTGAAGACACTCAATTGGG
AAGCTGTGTGATGCCACAAACCTCAGGAAATACGAAATGGATTCTGAGATA CGGGGCAGTG
TGCAAGCCAAGATGAAACATTGACATCAGAAATCTTAAGGAGGACTGAGTCTTGCAAGACACA
AAGCCTGCGAATCGATGCTGCCCTGCGCCATTGCTAAGACTCTATCTGGACAGGGTATTAA
AAACTACCAGACCCCTGACCATTATACTCTCCGGAAAGATCAGCAGCCTCGCCAATTCTTCTTA
CCATCAAGAAGGACCTCCGGCTCTCATGCCACATGACATGCCATTGTPGGGAGGAAGCAATG
AAGAAATACAGCCAGATTGACTGCACTTAAAAGCTGGAACCTCAGGCAGCAGTGTGAAGGC
TTTGGGGAACTAGACATTCTCTGCAATGGATGGAGGAGACAGAATAGGAGGAAAGTGTGCTG
CTGCTAAGAATATTGAGGTCAAGAGCTCCAGTCTCAATACCTGAGAGGAGCATGACCCAA
ACCACCATCTTTACTGTACTAGTCTTGTGCTGGTCACAGTGTATCTTATTTATGCATTACTG
CTTCCTGCTGATGATTGCTTTATGCATCCCCATCTAATTGAGACCATCTGTATAAGATTT
TGTAATATCTTCTGCTATTGGATATATTATTTAGTTAATATTTATTTATTTGCTATT
ATGTATTTATTTTACTTGGACATGAAACTTAAAAAAATTCAACAGATTATTTATAACCTG
ACTAGAGCAGGTGATGTATTTTATACAGTAAAAAAAAACCTTGTAAATTCTAGAAGAGTGG
CTAGGGGGTTATTCACTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTGTGAGAT
ATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTGATGTGGAATTGCAC
ATCTACCTTACAATTACTGACCACCCAGTAGACTCCCCAGTCCCATAATTGTGTATCTTCCAG
CCAGGAATCCTACACGGCCAGCATGTATTCTACAAATAAAGTTTCTTGCTACCAAAAAAAA
AAAAAAAAAAA

FIGURE 138

MRQFPKTSFDISPMSFSIYSLQVPAVGLTCWALTAEPGWGQNKGATTCATNSHSDSELRPEIF
SSREAWQFFLLLWSPDFRPKMASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQEIRNG
FSEIRGSVQAKDGNIDIRILRRTESLQDTK PANRCCLRHLLRLYLDdrvFKNYQTPDHYTLRKIS
SLANSFLTICKDLRLSHAHMTCHC GEEAMKKYSQILSHFEKLEPQAAVVKALGELDILLQMEET
E

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 139

CCTGGAGCCGGAAGCGCGGCTGCAGCAGGGCGAGGCTCAGGTGGGTCGGTCCGCATCCAGCC
TAGCGTGTCCACGATGCGGCTGGGCTCCGGACTTCGTACCTGTGCGTAGCGATCGAGGTGC
TAGGGATCGCGGCTTCCTCGGGATTCTCCCGCTCCCGTGGAGCCAGTTCTAAGTGGACCACGCTGCC
CACGGAGCGGAGGCCCGAGCGCCGAACCCCTGGCTGGAGCCAGTTCTAAGTGGACCACGCTGCC
ACCACCTCTTCAGTAAAGTTGTTATGTCAGTAAAGTGGAGAGATGATTGTGTTTG
GGTCAAAGGGTGTGAAATTATGGCCACACAACCTAACCTTGAGAGATGAAACCTGGGTAAATTAA
TTTGTGGCTGAAGCAAAGCCACCTACAGTTACTATGCCATCAAGGCATTGACGGGGAG
CCTTCCTGGCTTGTGACGTCATCAGGAACCTCAATTCTCTGCACTGCTGGAGACAGTGTGA
TAAGACAAGCAAAGCAGCTGGAAAAGAATAGTCTTTATGGAGATGAAACCTGGGTAAATTAA
TTCCCAAAGCATTGTGGAATATGATGGACAAACCTCATTTCTGTCAGATTACACAGAGGT
GGATAATAATGTACGAGGCATTGGATAAAGTATTAAAAAGAGGAGATTGGACATATTAATCC
TCCACTACCTGGGCTGGACCACATTGCCACATTCAAGGGCCAACAGCCCCCTGATGGCAG
AAGCTGAGCGAGATGGACAGCGTGCTGATGAAGATCCACACCTCACTGCACTGCAAGGAGAGAGA
GACGCCCTTACCCATTGCTGGTTCTTGTGGTGCACATGGCATGTCAGTAAACAGGAAGTCACG
GGGCCTCCTCCACCGAGGGAGGTGAATACACCTCTGATTTAATCAGTTCTGCGTTGAAAGGAAA
CCCGGTGATATCCGACATCCAAAGCACGTCAAAGCACGTCATAGACGGATGTGGCTGCACACTGGCAGTAGC
ACTTGGCTTACCGATTCCAAAAGACAGTGTAGGGAGCCTCTATTCCAGTTGTGGAAGGAAGAC
CAATGAGAGAGCAGTTGAGATTTCACATTGAATACAGTGCAGCTAGTAAACTGTTGCAAGAG
AATGTGCCGTATGAAAAAGATCCTGGTTGAGCAGTTAAAGTCAAGAAAGATTGCATGG
GAACGTGATCAGACTGTACTTGGAGGAAAAGCATTCAAGACGCTCTATTCAACCTGGGCTCCAAGG
TTCTCAGGCAGTACCTGGATGCTCTGAAGACGCTGAGCTGTGCCCAGTGCACAAGTGGCCAG
TTCTCACCCCTGCTCTGTCAGCGTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGTCCCA
CTGTCATCTCCTGGTTCTGCTCTTTATTGGTGAATCTGGTCTCTGGCTTCTTCGGCGTTCACT
CATTGTGTGCACCTCAGCTGAAAGTCTGCTACTCTGTGGCTCTGTCAGGCTGGCAGGCT
GCCCTTCGTTACCAAGACTCTGTTGAACACCTGGTGTGTCAGTGGCAGTGCCTGGAC
AGGGGCCCTCAGGGAGGACGTGGAGCAGCCTTATCCCAGGCCTCTGGGTGTCCGACACAGGTG
TTCACATCTGTGCTGTCAGGTCAAGTGCCTCAGTTCTGGAAGCTAGGTCTCGCAGTGTAC
CAAGGTGATTGTAAGAGCTGGCGGTACAGAGGAACAGGCCAGCTGAGGGGGTGTGAA
TCGGACAGCCTCCCAGCAGAGGTGTGGGAGCTGCACTGAGCTGAGGAAGAGACAATCGGCCAG
CACTCAGGAGGGTCAAAAGGAGACTTGGTCGCACACTCATCTGCCACCCAGAATGCATCCT
GCCTCATCAGGTCCAGATTCTTCCAAGGGCGACGTTCTGGAATTCTAGTCCTGGCC
TCGGACACCTTCTTCGTTAGCTGGGAGTGGTGGTGAAGGCACTGAAGAAGAGGGGATGGTCAC
ACTCAGATCCACAGAGGCCAGGATCAAGGGACCCACTGCAGTGGCAGCAGGACTGTTGGCCCC
ACCCCAACCCCTGCACGCCCTCATCCCCCTTGGCTTGAAGCCAGGCTGAGGCCAGGATGATCTGT
CTGACCGAGACACTCACAGCTTGTCAAGGCACAGGCTCTCGGAGGCCAGGATGATCTGT
CCACGCTTGCACCTCGGGCCCATCTGGCTCATGCTCTCTGCTATTGAATTAGTACCTAG
CTGCACACAGTATGTAGTACCAAAAGAATAAACGGCAATAATTGAGAAAAAAA

FIGURE 140

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEGAEPPAPEPSAGASSNWTTLPPPLF
SKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGSLPGF
VDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFVSDYTEVDNNV
TRHLDKVLKRGDWDLILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQSKERETPLP
NLLVLCGDHGMSETGSHGASSTEEVNTPLLISSAFERKPGDIRHPKHQ

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 58-76

N-glycosylation sites.

amino acids 56-60, 194-198

N-myristoylation sites.

amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276,
275-281, 278-284

Amidation site.

amino acids 154-158

Cell attachment sequence.

amino acids 205-208

FIGURE 141

GGCACGAGGAAGCCTTCCAGGTATCGTACGCACCTGAAAGTCTGAGAGCTACTGCCCTACA
GAAAGTTACTAGTGCCCTAACAGCTGGCGTGGCACTGATGTTACTGCTGCTGGAGTACA
TCCCTATAGAAAACA
CTGCCAGCACCTTAAGACC
ACTCACACCTTCAGAGTGAAGAACTTAAAC
CCGAAGAAATT
CAGCATT
CATGACCAGGATCACAAAGTACTGGTCTGGACTCTGGGAA
CTCTCAT
AGCAGTTCCAGATA
AAA
ACTACATACGCCAGAGATCTT
TGCA
TTAGCCTCATCCTTGAGCT
CAGCCTCTCGGGAGAAAGGAAGTCCGATTCTCTGGGGTCTCTAAAGGGGAGTTTGCTCTAC
TGTGACAAGGATA
AAAGGACAAAGT
CATCC
ATCC
TCAGCTGAAGAAGGAGAA
ACTGATGAAGCT
GGCTGCCAAAAGGAATCAGCACGCCGGCC
CTCATCTTT
TAGGGCTCAGGTGGGCTCCTGG
ACATGCTGGAGTCGGCGCTCACCCGGATGGT
CATCTGCACCT
CCTGC
AATTGTAATGAGCCT
GTTGGGGT
GACAGATA
AATTG
GAGAACAGGAA
ACATTG
AATTTC
ATTCAACCAGTTGCAA
AGCTGAAATGAGCCCCAGTGAGGTCAGCGATTAGGAAACTGCC
CATTGAACGCC
TTCC
TCGCT
CACT
ATT
TTG
AACT
ATTG
TATA
AAA
ACCCA
AACCT
GCT
CACT

FIGURE 142

MLLLLLEYNFPIENNQHLKTTHTFRVKNLNPKKFSIHQDHKVLVLDGNLIAVPDKNYIRPEI
FFALASSLSSASAEGSPILLGVSKGEFCLYCDKDKGQSHPSLQLKKEKLMKLAQKESARRPFI
FYRAQVGWSNMLESAHPGWFIGTSCNCNEPVGVTDFENRKHIEFSFQPVCKAEMSPSEVSD

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 33-36

N-myristoylation site.

amino acids 50-55, 87-92

Interleukin-1

amino acids 37-182

FIGURE 143

CTAGAGAGTATAGGGCAGAAGGATGGCAGATGAGTGACTCCACATCCAGAGCTGCCTCCCTTAA
TCCAGGATCCTGTCCCTGCTCTGTAGGAGTGCCTGTCAGTGTGGGTGAGACAAGTTG
TCCCACAGGGCTGCTGAGCAGATAAGATTAAGGGCTGGGTCTGCTCAATTAACTCCTGTGGG
CACGGGGCTGGGAAGAGCAAAGTCAGCGGTGCCAACAGTCAGCACCATGCTGGCCTGCCGTGG
AAGGGAGGTCTGCTCTGGCGCTGCTGCTCTTAGGCTCCAGATCCTGCTGATCTATGC
CTGGCATTCACGAGCAAAGGGACTGTGATGAACACAATGTCATGGCTCGTTACCTCCCTGCCA
CAGTGGAGTTGCTGTCACACATTCAACCAACAGAGCAAGGACTACTATGCCTACAGACTGGGG
CACATCTGAATTCTGGAAAGGAGCAGGTGGAGTCCAAGACTGTATTCTCAATGGAGCTACTGCT
GGGGAGAACTAGGTGTGGGAAATTGAAGAGCAGACATTGACAACACTGCCATTCCAAGAAAGCACAG
AGCTGAACAAACTTACCTGCTTCAACCATCAGCACCAGGCCCTGGATGACTCAGTCAGC
CTCCTGAACAAAGACCTGCTGGAGGGATTCCACTGAGTGAAACCCACTCACAGGCTGTCCATGT
GCTGCTCCCACATTCCGTGGACATCAGCACTACTCTCCTGAGGACTCTCAGTGGCTGAGCAGCT
TTGGACTTGTGTTGTTGATCCTATTGATGTGTTGAGATCTCAGATCAGTGTGTTAGAAAATCC
ACACATCTGAGCTAATCATGTAGTGTAGATCATTAAACATCAGCATTAAAGAAAAAAAAAAAAA
AAA

FIGURE 144

MLGLPWKGGLSWALLLGSQILLIYAWHFHEQRDCDEHNVMARYLPATVEFAVHTFNQQSKDY
YAYRLGHILNSWKEQVESKTVFSMELLGRTRCGKFEDDIDNCHFQESTELNNFTCFFTISTRP
WMTQFSLLNKTCLEGFH

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 117-121, 139-143

N-myristoylation site.

amino acids 9-15

FIGURE 145

CTGTGCAGCTCGAGGGCTCCAGAGGCACACTCCAGAGAGGCCAAGGTTCTGACCGGATGAGGAAG
CACCTGAGCTGGTGGCTGGCACTGTGATGCTGCTTCAGCCACCTCTGCGGTCCA
GACGAGGGGCATCAAGCACAGAATCAAGTGGAACCGGAAGGCCCTGCCAGCACTGCCAGATCA
CTGAGGGCCAGGTGGCTGAGAACCGCCGGAGCCTCATCAAGCAAGGCCGCAAGCTGACATT
GACTTCGGAGCCAGGGCAACAGGTACTACGAGGCCACTACTGGCAGTTCCCCGATGGCATCCA
CTACAACGGCTGCTTGAGGCTAATGTGACCAAGGAGGCATTGTACCGGCTGCATCAATGCCA
CCCAGGCCGGAACCAGGGGGAGTTCCAGAAAGCCAGACAACAAGCTCCACCAGCAGGTGCTCTGG
CGGCTGGTCCAGGAGCTCTGCTCCCTCAAGCATTGCGAGTTGGAGAGGGCGCAGGACT
TCGGGTCAACCATGCACCAGCCAGTGCCTCTGCCTTGGCTTGATCTGGCTCATGGTGAAAT
AAGCTTGCAGGAGGCTGGCAGTACAGAGGCCAGCGAGCAAATCCTGCAAGTGACCCAGCT
CTTCTCCCCAAACCCACGCGTGTCTGAAGGTGCCAGGAGCGGCATGCACTCGCACTGCAA
TGCCGCTCCCACGTATGCGCCCTGGTATGTGCCTGCCTGATAAGATGGGGACTGTGGCTTCT
CCGTCACTCCATTCTCAGCCCTAGCAGAGCGTCTGGCACACTAGATTAGTAGTAAATGCTTGAT
GAGAAGAACACATCAGGCACTGCGCCACCTGCTCACAGTACTTCCAACAACTCTAGAGGTAG
GTGTATTCCCCTTACAGATAAGGAAACTGAGGCCAGAGAGCTGAAGTACTGCACCCAGCATC
ACCAGCTAGAAAGTGGCAGAGCCAGGATTCAACCCCTGGCTTGTCTAACCCAGGTTTCTGCTCT
GTCCAATTCCAGAGCTGTCTGGTGTACTTATGTCTCACAGGGACCCACATCCAAACATGTAT
CTCTAAATGAAATTGTGAAAGCTCCATGTTAGAAATAATGAAAACACCTGA

FIGURE 146

MRKHLSSWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRK
LDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNLHQQ
VLWRLVQELCSLKHCFWLERGAGLRVTMHQPVLLCLLALIWLVMVK

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

FIGURE 147

GCCTTGGCCTCCAAAGGGCTGGGATTATAGCGTGACCAACATGTCAGGTCCAGAGTCTCATTT
CCTGATGATTTATAGACTCAAAGAAAACTCATGTTCAGAAGCTCTCTCTGGCCTCCTCT
CTGTCTCTTCCCTCTTCTTATTAAATTAGTAGCATCTACTCAGAGTCATGCAAGCTGG
AAATCTTCATTTGCTTGTCACTGGGGTAGGTCACTGAGTCTTAGTTTATTGGAAATTT
CAACTTCAGATTCAAGGGGTACATGTGAAGGTTGTTATGAGTATATTGCATGATGCTGAGG
TTTGGGGT

FIGURE 148

MFRSSLLFWPPLCLLSLFLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGTCE
GLFYEYIA

Important features of the protein:

Signal peptide:

amino acids 1-25

N-myristoylation site.

amino acids 62-68

FIGURE 149

GTCTCCGCGTCACAGGAACCTCAGCACCCACAGGGCGGACAGCGCTCCCCTACCTGGAGACTGAC
TCCC CGCGCCCCAACCCCTGTTATCCCTGACCGTCAGAGATCCTGCAGCCGCCAGTCC
CGGCCCCCTCTCCGCCACACCCACCCCTCTGGCTCTTCTGTTTACTCCTCTTCAATTATA
ACAAAAAGCTACAGCTCCAGGAGCCAGCGCCGGCTGTGACCCAAGCCGAGCGTGGAAAGAATGGGTT
CCTCGGGACCGGCACCTGGATTCTGGTGTAGTGCCTCCGATTCAAGCTTCCCAAACCTGGAGGAA
GCCAAGACAAATCTACATAATAGAGAATTAGTGAGAAAGACCTTGAATGAACAGATTGCTGAA
GCAGAAGAAGACAAGATTAACATATCCTCCAGAAAACAAGCCAGGTAGAGCAACTATTCTT
TGTTGATAACTTGAACCTGCTAAAGCAATAACAGAAAAGGAAAAATTGAGAAAGAAAGACAATCTA
TAAGAAGCTCCCCACTTGATAATAAGTTGAATGTGGAGATGTTGATTCAACCAAGAATCGAAAATG
ATCGATGATTATGACTCTACTAAGAGTGGATTGGATCATAAATTCAAGATGATCCAGATGGTCTCA
TCAACTAGACGGGACTCCTTAACCGCTGAAGACATTGTCATAAAATCGTGCAGGATTATGAAG
AAAATGACAGAGCCGTGTTGACAAGATTGTTCTAAACTACTTAATCTGGCCTTATCACAGAAAGC
CAAGCACATACACTGGAAGATGAAGTAGCAGAGTTTACAAAATTAACTCAAAAGGAAGCCAAACAA
TTATGAGGAGGATCCAATAAGCCACAAGCTGGACTGAGAATCAGGCTGGAAAATACCAGAGAAAG
TGACTCCAATGGCAGCAATTCAAGATGGTCTGCTAAGGGAGAAAAGATGAAACAGTATCTAACACA
TTAACCTTGACAAATGGCTGGAAAGGAGAACTAAAACCTACAGTGAAGACAACTTGAGGAACCTCA
ATATTCCCAAATTCTATGCGCTACTGAAAAGTATTGATTCAAGAAAAGAAGCAAAAGAGAAAGAAA
CACTGATTACTATCATGAAAACACTGATTGACTTGTGAAGATGATGGTGAATATGGAACAATATCT
CCAGAAGAAGGTGTTCTACCTTGAAACTGGATGAAATGATTGCTCTTCAGACCAAAACAAGCT
AGAAAAAAATGCTACTGACAATATAAGCAAGCTTCCAGCACCCTAGAGAAGATCATGAAGAAA
CAGACAGTACCAAGGAAGAAGCAGCTAAGATGGAAAGGAATATGGAAGCTGAAAGGATTCCACAAAA
GATGATAACTCCAACCCAGGAGGAAAGACAGATGAACCCAAAGGAAAACAGAAGCCTATTGGAAGC
CATCAGAAAAAATATTGAATGGTGAAGAAACATGACAAAAGGAAATAAAGAAGATTATGACCTT
CAAAGATGAGAGACTTCATCAATAAAACAAGCTGATGCTTATGTGGAGAAAGGCATCCTGACAAGGAA
GAAGCCGAGGCCATCAAGCGCATTAGCAGCCTGTAAAATGGCAAAGATCCAGGAGTCTTCAA
CTGTTTCAGAAAACATAATATAGCTTAAACACTTCAATTCTGTGATTAAAATTGGACCCAAGG
GTTATTAGAAAGTGTGAATTACAGTAGTTAACCTTACAAGTGGTTAAAACATAGCTTCTCCC
GTAAAAACTATCTGAAAGTAAAGTTGTATGTAAGCTGAAAAAAAAAAAAAAAAAAA

FIGURE 150

MGFLGTGTWILVLVLPIQAFPKPGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTPPENKPG
QSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLDHK
FQDDPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQAHTLEDEVAE
VLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTMMAIQDGIAKGENETVSNTLTNTGLE
RRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFVKMMVKYGTISPEEGV
SYLENLDEMIALQTKNKLEKNATDNISKLFPAPEKSHEETDSTKEEAAKMEKEYGSLKDSTKDD
NSNPGGKTDEPKGTEAYLEAIRKNIEWLKKHDKGKGNKEDYDLSKMRDFINKQADAYVEKGILDK
EEAEAIIKRIYSSL

N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-
220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-
341, 369-372, 382-385, 386-389, 387-390

N-myristoylation sites:

amino acids 143-148, 239-244

FIGURE 151

CGGCTCAGGGCTCCGCCAGGAGAAAGAACATTCTGAGGGGAGTCTACACCCGTGGAGCTCAA
GATGGTCCTGAGTGGGGCGCTGCTTCCGATGAAGGACTCGCATTGAAGGTGCTTTATCTGC
ATAATAACCAGCTTCTAGCTGGAGGCTGATCGAGGAAGGTCAATTAAAGGTGAAGAGATCAGC
GTGGTCCCCATCGTGGCTGGCATGCGAGCTGTCAGGGCTCATCCTGGGTGTCAGGGTGAAG
CCAGTGGCTGTCATGTGGGTGGCAGGAGCAGCTAACAAGTAGAGCCAGTGAACATCATGG
AGCTCTATCTGGTGCAGGAACTCAAGAGCTCACCTCTACCCGGGGACATGGGCTCACC
TCCAGCTTGCAGTCGGCTGCCTACCCGGGTGGTCTGTGCACGGTGCCTGAAGCCGATCAGCC
TGTCACTACCCAGCTCCCAGAATGGTGGCTGGAAATGCCCATCACAGACTTCACTTCC
AGCAGTGTGACTAGGGCAACGTGCCCCAGAACCTCCGGCAGAGCCAGCTGGTGAGGGT
GAGTGGAGGAGACCCATGGCGGACAATCACTCTCTGCTCTCAGGACCCCCACGTCTGACTTAG
TGGGCACCTGACCACTTGTCTCTGGTCCCCAGTTGGATAAAATTCTGAGATTGGAGCTCAGT
CCACGGCTCTCCCCACTGGATGGTGCCTACIGCTGTGAACTTGATAAAACCATGTGGGTAAA
CTGGGAATAACATGAAAAGATTCTGTGGGGTGGGGAGTGGTGGGAATCATTCTGCT
TAATGGTAACGTACAAGTGTACCCCTGAGCCCCGAGGCCAACCCATCCCCAGTTGAGCCTATA
GGGTCACTAGCTCCACATGAAGTCTGCACTCAACACTGTGCAAGGAGAGGGAGGTGGTCATA
GAGTCAGGGATCTATGGCCCTTGGCCAGGCCACCCCTCCCTTAATCCTGCCACTGTCATA
TGCTACCTTCTATCTCTCCCTCATCATCTGTGTGGCATGAGGAGGTGGTGTGAGTGTGAGAA
GAAATGGCTCAGCTCAGAAGATAAGTAGAGGTATGCTGATCCTCTTTAAAAACCCAA
GATACAATCAAATCCCAGATGCTGGTCTTATTCCATGAAAAGTGTCTGACATATTGAGA
AGACCTACTTACAAGTGGCATATAATTGCAATTATTAAATTAAGATACCTATTATATT
TCTTTATAGAAAAAAGTCTGGAAGAGTTACTTCATTGTAGCAATGTCAAGGGTGGCAGTAT
AGGTGATTTCTTTAATTCTGTTAATTATCTGTATTTCTAATTCTACAATGAAGATGA
ATTCCCTGTATAAAATAAGAAAAGATAATTCTGAGGTAAAGCAGAGCACATCATCTGAA
TTGTCCTCAGCCTCCACTTCCAGAGTAAATTCAAAATTGAATCGAGCTCTGCTCTGGTTGG
TTGTAGTAGTGTGATCAGGAAACAGATCTCAGCAAAGCCACTGAGGAGGAGGCTGTGAGTTGT
GTGGCTGGAATCTCTGGTAAGGAACCTAAAGAACAAAAATCATCTGGAATTCTTCTAGAAG
GATCACAGCCCCCTGGGATTCCAAGCCATTGGATCCAGCTCTAAGAAGGCTGCTGTACTGGTTGA
ATTGTGCCCCCTCAAATTCAACATCCTCTGGAAATCTCAGCTGTGAGTTATTGGAGATAAG
GTCTCTGAGATGTAGTTAGTTAAAGACAAGGTATGCTGGATGAAGGTAGACCTAAATTCAATAT
GACTGGTTCTTGTATGAAAAGAGGAGAGGACACAGAGACAGAGGAGACGCGGGGAAGACTATGTA
AAGATGAAGGCAGAGATCGGAGTTGCAGGCCAAAGCTAAGAAAACCCAAGGATTGTGGCAACC
ATCAGAAAGCTTGGAGAGGCAAAGAAGAATTCTCCCTAGAGGTTAGAGGGATAACGGCTCTG
CTGAAACCTTAATCTGAGCTTCCAGCCTCTGAACGAAGAAAGATAAAATTCCGCTGTTTAA
GCCACCAAGGATAATTGGTTACAGCAGCTTAGGAAACTAATACAGCTGCTAAATGATCCCTGT
CTCCTCGTGTTCATTCTGTTGCTCTGCCCCACATGTACCAAAGTTGTCTTGTGACCAA
TAGAATATGGCAGAAGTGTGATGGCATGCCACTTCAAGAATTAGGTATAAAAGACACTGCACTTC
TACTTGAGCCCTCTCTGCCCCACCGCCCCAATCTATCTGGCTCACTCGCTCTGGGG
AAGCTAGCTGCCATGCTATGAGCAGGCCATAAAGAGACCTACGTGGAAAAATGAAGTCTCCT
GCCACAGCCACATTAGTGAACCTAGAAGCAGAGACTCTGTGAGATAATCGATGTTGTTGTTT
AAGTTGCTCAGTTGGCTAACCTGTTATGCAGCAATAGATAAAATATGCAGAGAAAGAG

FIGURE 152

MVLSGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEELSVVPNRWLDASLSPVILGVQGGS
QCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFLCTVPEADQP
VRLTQLPENGGWNAPITDFYFQQCD

N-myristoylation sites.

amino acids 29-34, 30-35, 60-65, 63-68, 73-78, 91-96, 106-111

Interleukin-1 signature.

amino acids 111-131

Interleukin-1 proteins.

amino acids 8-29, 83-120, 95-134, 64-103

FIGURE 153

CTTCAGAACAGGTTCTCCTCCCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCAATGGCCGC
CCTGCAGAAATCTGTGAGCTTTCTTATGGGGACCTGGCCACCAGCTGCCTCCTCTTTGG
CCCTCTGGTACAGGGAGGAGCAGCTGCCCATCAGCTCCACTGCAGGCTTGACAAGTCAAAC
TTCCAGCAGCCCTATATCACCAACCGCACCTCATGCTGGCTAAGGAGGCTAGCTTGGCTGATAA
CAACACAGACGTTCGTCTCATGGGAGAAACTGTTCCACGGAGTCAGTATGAGTGAGCGCTGCT
ATCTGATGAAGCAGGTGCTGAACCTCACCTGAAGAAAGTGTGTTCCCTCAATCTGATAGGTT
CAGCCTATATGCAGGAGGTGGTGCCTCTGGCCAGGCTCAGCAACAGGCTAAGCACATGTCA
TATTGAAGGTGATGACCTGCATATCCAGAGGAATGTGCAAAAGCTGAAGGACACAGTGAAAAGC
TTGGAGAGAGTGGAGAGATCAAAGCAATTGGAGAACTGGATTGCTGTTATGTCTCTGAGAAAT
GCCTGCATTTGACCAGAGCAAAGCTGAAAAATGAATAACTAACCCCCCTTCCCTGCTAGAAATAA
CAATTAGATGCCCAAAGCGATTTTTAACAAAAGGAAGATGGGAAGCCAAACTCCATCATG
ATGGGTGGATTCCAAATGAACCCCTGCGTTAGTTACAAAGGAAACCAATGCCACTTTGTTATA
AGACCAGAAGGTAGACTTCTAAGCATAGATATTATTGATAAACATTCAATTGTAACTGGTGTTC
TATACACAGAAAACAATTATTTAAATAATTGTCTTTCCATAAAAAAGATTACTTCCAT
TCCTTAGGGAAAAAACCCCTAAATAGCTCATGTTCCATAATCAGTACTTATATTTATAAA
TGTATTATTATTATTATAAGACTGCATTATTTATATCATTATTAATATGGATTATTAT
AGAAACATCATTGATATTGCTACTTGAGTGTAAAGGCTAATATTGATATTATGACAATAATTAT
AGAGCTATAACATGTTATTGACCTCAATAAACACTTGGATATCCC

FIGURE 154

MAALQKVSSFLMGTLATSCLLLALLVQGGAAPISSHCRLDKSNFQQPYITNRTFMLAKEASL
ADNNNTDVRILIGEKLFHGVMSERCYLMQVLNFTLEEVLFQSDRFQPYMQEVVPFLARLSNRLS
TCHIEGDDLHIQRNVQKLKDTVKKLGESGEIKAIGELDLLFMSLRNACI

Important features of the protein:

Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 54-58, 68-72, 97-101

N-myristoylation sites.

amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 10-21

FIGURE 155

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGCTTCCACGAGGCCTGT
CAAGTCAGTGCCCGACTTGTGACTGAGTGACTGCCAGCATGTACCAGGTCAAGTGCAGAGGGC
TGCCCTGAGGGCTGTGCTGAGAGGGAGAGGAGCAGAGATGCTGCTGAGGGTGGAGGGAGGCAAGC
TGCCAGGTTGGGCTGGGGCCAAGTGGAGTGAGAACTGGGATCCCAGGGGAGGGTGCAGAT
GAGGGAGCGACCCAGATTAGGTGAGGACAGTTCTCTCATTAGCCTTCCTACAGGTGGTTGCAT
TCTTGGCAATGGTATGGAACCCACACCTACAGCCACTGGCCAGCTGCTGCCAGCAAAGGG
CAGGACACCTCTGAGGAGCTGAGGTGGAGCACTGTGCTGTGCCCTCCCTAGAGCCTGCTAG
GCCCAACCGCCACCCAGAGTCTGTAGGGCAGTGAAGATGGACCCCTAACAGCAGGGCCATCT
CCCCCTGGAGATATGAGTTGGACAGAGACTTGAACCGGCTCCCCCAGGACCTGTACCACGCCGT
TGCCTGTGCCCGACTGCCCTACAGACAGGCTCCACATGGACCCCCGGGCAACTCGGA
GCTGCTCTACCACAACCAGACTGTCTCTACAGGCGGCCATGCCATGGCGAGAAGGGCACCCACA
AGGGCTACTGCCCTGGAGCGCAGGCTGTACCGTGTTCCTAGCTTGTGTGTGCGGGCCCGT
GTGATGGGCTAGCCGGACCTGCTGGAGGCTGGCCCTTTGGAAACCTGGAGGCCAGGTGTACA
ACCACTGCCATGAAGGGCAGGATGCCAGATGCTTGGCCCTGTGAAGTGCTGTGAGCAG
CAGGATCCGGGACAGGATGGGGCTTGGGAAACCTGCACTCTGCACATTGAAAGAG
CAGCTGCTGCTAGGGCCGCCGAAGCTGGTGTCTGCTATTTCTCTCAGGAAAGGTTTCAA
GTTCTGCCCTTCTGGAGGCCACCACTCTGTCTCTCTTCCATCCCTGCTACCCCTG
GCCCAAGCACAGGCACTTCTAGATATTCCCCCTTGCTGGAGAAGAAAGGCCCTGGTTTATT
TGTTTGTACTCATCACTCAGTGACCATCTACTTGGTGCAATTCTAGTGTAGTTACTAGTCTT
TTGACATGGATGATTCTGAGGAGAAGCTGTTATTGAATGTATAGAGATTATCCAAATAATAT
CTTTATTTAAAAATGAAAAA

FIGURE 156

MRERPRLGEDSSLISLFLQVVAFLAMVMGHTYSHWPSCCPKGQDTSEELLRWSTVPVPPLEPA
RPNRHPESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNS
ELLYHNQTVFYRRPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Important features of the protein:

Signal peptide:

amino acids 1-32

N-glycosylation site.

amino acids 136-140

Tyrosine kinase phosphorylation site.

amino acids 127-135

N-myristoylation sites.

amino acids 44-50, 150-156

FIGURE 157

CCGGCGATGTCGCTCGTGTGCTAAGCCTGGCCGCGTGTGCAGGAGCGCCGTACCCGAGAGCC
GACC GTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAACCC
CCGGAGACTTGAGGGACCTCCGAGTAGAACCTGTTACAACACTAGTGTGCAACAGGGACTATTCA
ATTTGATGAATGTAAGCTGGGTACTCCGGCAGATGCCAGCATCCGTTGTTGAAGGCCACCAA
GATTTGTGACGGGCAAAAGCAACTTCCAGTCCTACAGCTGTGAGGTGCAATTACACAGAGG
CCTTCCAGACTCAGACCAGACCCCTGGTGGTAAATGGACATTTCCTACATCGGCTTCCCTGTA
GAGCTGAACACAGTCTATTCATTGGGCCATAATATTCTAATGCAAATATGAATGAAGATGG
CCCTTCCATGTCTGTGAATTTCACCTCACCAAGGCTGCCTAGACCACATAATGAAATATAAAAAAA
AGTGTGTCAAGGCCGGAAAGCCTGTGGGATCCGAACATCACTGCTTGTAAAGAAGAATGAGGAGACA
GTAGAAAGTGAACCTCACAAACACTCCCCTGGAAACAGATACTGGCTCTTATCCAACACAGCAC
TATCATGGGTTTCTCAGGTGTTGAGCCACACCAGAAAGAAACAAACGCGAGCTTCAGTGGTGA
TTCCAGTGAETGGGATAGTGAAGGTGCTACGGTGCAGCTGACTCCATATTTCCTACTTGTGGC
AGCGACTGCATCCGACATAAAGGAACAGTGTGCTCTGCCACAAACAGCGTCCCTTCCCT
GGATAACAAACAAAAGCAAGCCGGAGGCTGGCTGCCTCTCCTGCTGTCTGCTGGTGGCCA
CATGGGTGCTGGTGGCAGGGATCTATCTAATGTGGAGGACAGAAAGGATCAAGAAGACTTCTT
TCTTACCAACCACACTACTGCCCTTCAATTAGGTTCTTACCCATCTGAAATATGTTCCA
TCACACAATTGTTACTTCACTGAATTCTCAAAACATTGCAGAAGTGAGGTGATCCTTGAA
AGTGGCAGAAAAGAAAATAGCAGAGATGGGTCCAGTGCAGTGGCTGCCACTAAAAGAAGGCA
GCAGACAAAGTCGCTTCCCTTTCAATTAGGTTCTTACCCATCTGAAATATGTTCCA
GAGCGAGGGCAGTCCAGTGAGAACTCTCAAGACCTCTCCCCCTGCCTTAACCTTCTGCA
GTGATCTAAGAAGCCAGATTCTGACAAATACGTGGTGGTCTACTTAGAGAGATTGATACA
AAAGACGATTACAATGCTCTCAGTGTCTGCCCAAGTACCCATGAAGGATGCCACTGCTT
CTGTGCAGAACATTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAGATCACAAGCCTGCCACG
ATGGCTGCTGCCCTTGTAG

FIGURE 158

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYSILMNVS梧
LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP
NANMNEGDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKNEETVEVNFTTPLGNRYMALIQH
STIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNK
SKPGGWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTLLPPIKVLVYPSEICFHHTICYFTEFL
QNHCRCSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA
FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCVPKYHLMKDATAFCAELLHVVKQQVSAGKRSQACHD
GCCSL

Important features of the protein:

Signal peptide:

amino acids 1-14

Transmembrane domain:

amino acids 290-309

N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201 and 283
- 287

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 228 - 232 and 319 - 323

Casein kinase II phosphorylation sites.

amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

N-myristoylation site.

amino acids 116-122

Amidation site.

amino acids 488-452

FIGURE 159

AGCCACCAGCGAACATGACAGTGAAGACCTGCATGCCAGCCATGGTCAAGTACTTGCTGCT
GTCGATATTGGGGCTTGCCTTCTGAGTGAGGCGGCAGCTCGAAAATCCCCAAAGTAGGACATA
CTTTTTCCAAAAGCCTGAGAGTTGCCGCCTGTGCCAGGAGGTAGTATGAAGCTTGACATTGGC
ATCATCAATGAAAACCAGCGCTTCCATGTCACGTAACATCGAGAGCCGCTCCACCTCCCCCTG
GAATTACACTGTCACTGGGACCCCAACGGTACCCCTCGGAAGTTGTACAGGCCAGTGTAGGA
ACTTGGGCTGCATCAATGCTCAAGGAAAGGAAGACATCTCCATGAATTCCGTTCCATCCAGCAA
GAGACCCCTGGTCGTCCGGAGGAAGCACCAAGGCTGCTCTGTTCTTCCAGTTGGAGAAGGTGCT
GGTGACTGTTGGCTGCACCTGCGTCACCCCTGTCCACCATGTGCAGTAAGAGGTGCATATCC
ACTCAGCTGAAGAAG

FIGURE 160

MTVKTLHGPAMVKYLLSILGLAFLSEAARKIPKGHTFFQKPESCPPPGGSMKLDIGIINEN
QRVSMSRNIESRSTSPWNYTWTWDPNRPSEVVQAQCRLGCINAQKEDISMNSVPPIQQETLVV
RRKHQGCSVFQLEKVLVTVGCTCVTPVIHHVQ

Signal sequence:

amino acids 1-30

N-glycosylation site.

amino acids 83-87

N-myristoylation sites.

amino acids 106-111, 136-141

FIGURE 161

ACACTGGCCAAACAAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGAGTCAGGACTCCCAGG
ACAGAGAGTGACAAAATACCCAGCACAGCCCCCTCGCCCCCTCTGGAGGCTGAAGAGGGATT
CAGCCCCCTGCCACCCACAGACACGGGCTGACTGGGGTGTCTGCCCCCTTGGGGGGGGCAGCAC
AGGGCCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAGATGCTGTGCCCTGGTTCTTGCTGTCC
TGGCACTGGGCCGAAGCCCAGTGGTCTTCTCTGGAGAGGCTGTGGGCCCTAGGACGCTACC
CACTGCTCTCCGGCCTCTCTGCCGCTCTGGACAGTGACATACTCTGCCCTGCCCTGGGACAT
CGTGCCTGCTCCGGGCCCTGCTGGCCTACGCACCTGCAGACAGAGCTGGTGTGAGGTGCC
AGAAGGAGACCGACTGTGACCTCTGTCTGCGTGTGGCTGTCCACTGGCGTGCATGGGACTGG
GAAGAGCCTGAAGATGAGGAAAAGTTGGAGGAGCAGCTGACTCAGGGTGAGGAGCCTAGGAA
TGCCTCTCTCCAGGCCAAGTCGTGCTCTCTCCAGGCCTACCCACTGCCCCCTGCGTCTGC
TGGAGGTGCAAGTGCCTGCTGCCCTGTGCAAGTTGGTCAGTGTGGCTCTGGTATATGAC
TGCTTCAGGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTCTTACTCAGCCAGGTACGAGAA
GGAACATCAACCACACACAGCAGCTGCCCTGCCCTGGCTAACGTGTCAAGCAGATGGTACA
ACGTGCATCTGGTCTGAATGTCTTGAGGAGCAGCACTCGGCCCTCCCTGTACTGGAATCAG
GTCCAGGGCCCCCAAAACCCGGTGCACAAAAACCTGACTGGACCGCAGATATTACCTGAA
CCACACAGACCTGGTCTCTGCTCTGTATTAGGTGTGGCCTCTGGAACCTGACTCCGTAGGA
CGAACATCTGCCCTTCAGGGAGGACCCCGCGCACACCAGAACCTCTGGCAAGCCGCCACTG
CGACTGCTGCCCTGCAGAGCTGGCTGGACGCCAGCTGCTGCCCTGGCGCAGAGCGGCACT
GTGCTGGCGGGCTCCGGTGGGACCCCTGCCAGCCACTGGTCCCACCGCTTCTGGAGAACG
TCACTGTGGACAAGGTTCTCGAGTCCCATTGCTGAAAGGCCACCTAACCTCTGTGTTCAAGGTG
AACAGCTGGAGAACGCTGCAGCTGCAAGGAGTGTGACTCCCTGGGCTGACTCCCTGGGCTCTAAAGA
CGATGTGCTACTGGAGACAGGAGGCCAGGACAACAGATCCCTGTGCGCTTGGAACCCA
GTGGCTGTAACCTCACTACCCAGCAAAGCCTCACGAGGGCAGCTGCCCTGGAGAGTACTTACTA
CAAGACCTGCAGTCAGGCCAGTGTGCAAGCTATGGGACGATGACTTGGAGCGCTATGGGCTG
CCCCATGGACAAATACATCCACAGCGCTGGGCCCTCGTGTGGCTGGCCTGCCACTCTTGGCG
CTGCGCTTCCCTCATCCTCTCTCAAAAAGGATCACCGAAAGGGTGGCTGAGGCTCTGGAA
CAGGACGTCGCTGGGGCGGCCAGGGGCCGGCTCTGCTCTACTCAGCCGATGA
CTCGGGTTTCAGGCCCTGGGGCGCCCTGGCTGGCCCTGTGGCTGGCCAGCTGCCGCTGCGCTGG
CCGTAGACCTGTGGAGCGCTGTAACTGAGGCGCAAGGGGGCGTGGCTTGGTTACCGCCAG
CGGCCAGACCCCTGCAAGGGGGCGCTGGCTGGCTGGCTGGCGCT
GTGCAGCGAGTGGCTACAGGATGGGGTGTGCGGCCAGGGGCCACGGCCGACAGACGCCCTCC
GCCCTCGCTCAGCTGCGTGTGCCGACTTCTGCAAGGGGCCGGCGCAGCTACGTGGGG
GCCTGCTTCAGGAGCTGCTCCACCCGGACGCCGTACCGCCCTTTCCGCAACCGTGCCGTCTT
CACACTGCCCTCCAACTGCCAGACTTCTGGGGGCCCTGCAAGCAGCCCTGCCGCTTCCG
GGCGGCTCCAAGAGAGAGCGGAGCAAGTGTCCGGGCCCTCAAGCAGCCCTGGATAGCTACTTC
CATCCCCCGGGGACTCCCGCCGGACGCCGGTGGGACCGGGGCGGACCTGGGGGGGA
CGGGACTTAAATAAAGGCAGACGCTGTTTCTAAAAAA

FIGURE 162

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRIWDSIDLCLPGDIVPAPGPVLAPTHLQTELVLRCQKETDCDLCLRVAVHLAVGHWEEPEDEEKFGGAADSGVEEPRNASIQAQVVLFSQAYPTARCVLLEVQVPAALVQFGQSVGSVSYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNVSADGDNVHLVLNVEEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQNLWQAARLRLLTQSWLLDAPCSLPAEAALCWRAPIGGDPCQPLVPPLSWENVTVDKLEFPPLLKGHPNLCVQVNSSEKLQLQECWLADSLGPLKDVLLETRGPQDNRSILCALEPSGCTSPLSKASTRAARLGEYLLQDLQSQCQLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLLLLKKDHAKGWLRLLKQDVRSGAAARGRAALLLYSADDSGFERLVLGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRRTLQEGGVVLLFSPGAVALCSEWLQDGVSAGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTPVVFPLSQLPDFLGALQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPAGPGAGDGT

Signal sequence:

amino acids 1-20

Transmembrane domain.

amino acids 453-475

N-glycosylation sites.

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251, 334-337, 357-360, 391-394

Glycosaminoglycan attachment site.

amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 552-555

N-myristoylation sites.

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617, 692-697, 696-701, 700-705

FIGURE 163

GGGAGGGCTGTGCCAGCCCCATGAGGACGCTGCTGACCATCTGACTGTGGGATCCCTGGCT
GCTCACGCCCTGAGGACCCCTCGGATCTGCTCAGCACGTGAAATTCCAGTCAGCAACTTGA
AAACATCCTGACGTGGGACAGGGCCAGAGGGCACCCCAGACACGGTCTACAGCATCGAGTATA
AGACGTACGGAGAGAGGGACTGGGAGAAGAAGGGTGTCAAGGGATCACCCGAAGTCTGC
AACCTGACGGTGGAGACGGCAACCTCACGGAGCTACTATGCCAGGTACCGCT
GTCAGTGCGGGAGGCCGGTCAGCCAACAGATGACTGACAGGTTCACTCTGCAGCACACTAC
CCTCAAGCCACCTGATGTGACCTGATCTCAAAGTGAGATGATTCAAGATGATTGTCATCCTA
CCCCCACGCCAACCGTGCAGGCATGGCACCGGCTAACCTGGAAGACATCTTCATGACCTG
TTCTACCACTTAGAGCTCCAGGTCAACCGCACCTACCAAATGCACCTTGGAGGAAAGCAGAGAGA
ATATGAGTTCTCGGCTGACCCCTGACACAGAGTCTGGCACCATCATGATTGCGTTCCA
CCTGGGCCAGGGAGGTGCCCCCTACATGTGCCAGTGAAAGACACTGCCAGACGGACATGGACC
TAACCTCTCCGGAGCCTCTGTTCTCATGGGCTCCTGTCAGTACTCTGCTACCTGAG
CTACAGATATGTCAACCAAGCCCTGCACCTCCAACTCCCTGAAACGTCCAGCGAGTCTGACTT
TCCAGCCGCTGCCCTCATCCAGGAGCACGTCTGATCCCTGTTGACCTCAGGGCCCCAGC
AGTCTGGCCCAGCCTGCACTTCCAGATCAGGGTGTGGACCCAGGGAGGCCAGGAGC
TCCACAGCGGCATAGCCTGTCGAGATCACCTACTTACGGCAGCCAGACATCTCATCCTCCAGC
CCTCCAACGTGCCACCTCCCCAGATCTCTCCCCACTGTCCTATGCCCAAAACGCTGCCCTGAG
GTCGGGCCCCATCCTATGACCTCAGGTGACCCCCGAAGCTCAATTCCATTCTACGCCCA
GGCCATCTCTAAGGTCAGCCTCCTCTATGCCCTCAAGCCACTCCGGACAGCTGGCCTCCCT
CCTATGGGTATGCAAGGTTCTGGCAAAGACTCCCCACTGGGACACTTCTAGTCTAA
CACCTTAGGCTAAAGGTCAAGCTCAGAAAGAGCCACCAAGCTGGAAGCTGCAATTGAGG
TTCTCTGCAGGAGGTGACCTCCCTGGCTATGGAGGAATCCAAGAAGCAAATATTGCA
CCCTGGGATTGACAGACAGAACATCTACCCAAATGTGCTACACAGTGGGAGGAAGGGACA
CCACAGTACCTAAAGGGCAGCTCCCCCTCTCTCAGTCCAGATCGAGGGCACCCATGTC
CCTCCCTTGTCAACCTCCCTGGTCACTGGGCTCAGGCTGACAGTCCCTGGG
TGCTGGAGTCCCTGTGTGCTCCAGGATGAAGCCAAGGCCCAGCCCTGAGACCTCAGACCTG
GAGCAGCCCCACAGAAGTCTGGATTCCTTCAAGAGGCTGGCCCTGACTGTGCA
AGGGGAATGGGAAAGGCTGGTCTCTCCCTGTCCTACCCAGTGTCACTCCCTGGCTGTCA
ATCCCAGCCTGCCCATGCCACACTCTCGCATCTGGCCTCAGACGGGTGCCCTTGAGAGAAC
AGAGGGAGTGGCATGAGGGGGAGCTGGGAGCAGCTGGAGGAAATGCAAGGGAAACTCCCAG
CAAGGAGAAAATGACAGTGCAGGAGGAAATGCAAGGGAAACTCCCAGGCTCAGAGCCCCACCTC
CTAACACCATGGATTCAAAGTGTCAAGGAAATTGCTCTCCTGGCCCTTGTCAATTGTT
ACAATCTAGCTGACAGAGCATGAGGCCCTGCCTTCTGTCAATTGTTCAAAGGTGGGAGAGA
GCCTGGAAAAAGAACAGGCTGGAAAAGAACCAAGAGAACAGAAGGGCTGGCAGAACCA
ACTTCTGCAAGGCCAGGGCAGGGCAGCAGGACTCTAGGGAGGGTGTGGCCTGAGCTCA
TTCCCAAGGCCAACTGCTGACGTTGACGATTCTAGCTTCAATTCTCTGTATAGAACAAAGC
GAAATGCAAGGTCACCAGGGAGGGAGACACACAAGCCTTTCTGCAGGAGGTTCA
ATCCTGAGAAATGGGGTTGAAAGGAAGGTGAGGGCTGTGGCCCTGGACGGTACAATAACAC
TGTACTGATGTCACAACCTTCAAGCTCTGCTTGGGCTCAGGCCATCTGGCTCAAATTCCAGC
CTCACCACTACAAGCTGTGTCACTCAAAATGAAATCAGTGCCAGAACCTCGGTTCC
ATCTGTAATGTGGGGATCATAACACTCATGGAGTTGTGGTGAAGATGAAAGTCA
TCTTAAAGTGTCTTAATAGTGTCTGTCACTGGCAGGCCAATAACGGTAGCTATTAAAAA
AAAAAAAAA

FIGURE 164

MRTLLTILTVGSLAAHAPEDPSDLLQHVKFQSSNFENILTWDSGPEGTPDTVYSIEYKTYGERDW
VAKKGCCRITRKSCNLTVETGNLTEYYARVTAVSAGGRSATKMTDRFSSLQHTTLKPPDVT CIS
KVRSIQMIVHPTPTPIRAGDGHRLTLEDIFHDLFYHLELQVNRTYQMHLGGKQREYEFFGLTPDT
EFLGTIMICVPTWAKESAPYMCRVKTLPDRTWTYSFGAFLFSMGFLAVLCYLSYRYVTKPPAP
PNSLNQQRVLTFQPLRFIQEHLVLI PVFDLSPSSLAQPVQYSQIRVSGPREPAGAPQRHSLSEIT
YLGQPDISILQPSNVPPPQI LSPLSYAPNAAPEVGPPSYAPQVTPEAQFPFYAPQAISKVQPSSY
APQATPDSWPPSYGVCMEGSGKDSPTGTLSSPKHLRPKGQLQKEPAGSCMLGGLSLQEVTS LAM
EESQEAKSLHQPLGICTDRTSDPNVLHSGEEGTPQYLKQQLPLLSSVQIEGHPM SLPLQPPSGPC
SPSDQGPSPWGLLESLVCPKDEAKSPAPETS DLEQPTELDSLFRGLALT VQWES

Signal sequence.

amino acids 1-17

Transmembrane domain.

amino acids 233-250

N-glycosylation sites.

amino acids 80-83, 87-90, 172-175

N-myristoylation sites.

amino acids 11-16, 47-52, 102-107, 531-536, 565-570

FIGURE 165

TGGCCTACTGGAAAAAAAAAAAAAGTCACCCGGGCCGCGGTGCCACAACATGG
CTGGCGGCCGGGCTGCTCTGGCTGGCTGGCGCTCTGGTGGTCCCAG
TCGGATCTCAGCACGGACGGCTTCTGGACCTCAAAGTGTGGGGACGAAGAGTGCAGCAT
GTTAATGTACCGTGGGAAAGCTCTGAAGACTTCACGGGCCGTATTGTCGTTGTGAATTAA
AAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGGGGATCCCTGAACCTGGCTGGA
AGTGTGAACACAGTTGGATATTTCAAAAGATTGATCAAGGTACTTCATAAATACACGGA
AGAAGAGCTACATATTCCAGCAGATGAGACAGACTTTGTCGTTGAAGGAGGAAGAGATGATT
TTAATAGTTATAATGTAGAAGAGCTTTAGGATCTTGGAACTGGAGGACTCTGTACCTGAAGAG
TCGAAGAAAGCTGAAGAACGAGCTTCAGCACAGAGAGAAATCTCCTGAGGAGTCTCGGGGGCGTGA
ACTTGACCTGTGCTGAGCCGAGGCATTAGAGCTGATTAGAGGATGGAGAACGGTCTTCT
CAGAGAGCACCGAGGGGCTGCAGGGACAGCCCTCAGCTCAGGAGAGCCACCCTCACACCAGCGGT
CCTGCCTAACGCTCAGGGAGTGCAGTCTCGTTGGACACTTTGAAGAAATTCTGCACGATAA
ATTGAAAGTGCCGGAAAGCGAAAGCAGAACTGGCAATAGTTCTCCTGCCTCGTGGAGCGGGAGA
AGACAGATGCTTACAAAGTCTGAAAACAGAAATGAGTCAGAGAGGAAGTGGACAGTGCCTTATT
CATTACAGCAAAGGATTCGTTGGCATAAAATCTAAGTTGTTTACAAAGATTGTTTTAGTA
CTAAGCTGCCTTGGCAGTTGCATTTGAGCAAACAAAAATATTATTCCCTTAAGTA
AAAAAAAAAAAAAAA

FIGURE 166

MAAAPGLLFWLFWLGALWWVPGQSDLSHGRRFSDLKVCGLDEECMMLMYRGKALEDFTGPDCRFVN
FKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADETDFVCFEGGRD
DFNSYNVEELLGSLELEDSPVEESKKAAEVSQHREKSPEESRGRELDPVPEPEAFRADSEDGEGA
FSESTEGLQQQPSAQESHPTSGPAANAQGVQSSLDTFEEILHDKLKVGSESRTGNSSPASVER
EKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSFYKDCF

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34

Tyrosine kinase phosphorylation site.

amino acids 67-76

N-myristoylation sites.

amino acids 205-211, 225-231, 277-283

Amidation site.

amino acids 28-32

FIGURE 167

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAAGAGGCCGGGAAGAGAAGCAAAGCGC
AACGGTGTGGTCCAAGCCGGGCTCTGCTTCGCCTCTAGGACATACACGGGACCCCTAACTTC
AGTCCCCAAACCGCGACCCCTCGAAGTCTTGAACCTCCAGCCCCGACATCCACCGCGGGCACAGG
CGCGGCAGGCGCAGGTCCCGCGAAGGCGATGCGCGCAGGGGGTCGGGCAGCTGGCTCGGGC
GGCAGGGAGTAGGGCCCAGGGAGGCAGGGAGGCTGCATATTCAAGAGTCGGGCTGCGCCCTG
GGCAGAGGCCGCCCCCTCGCTCACGCAACACCTGCTGCTGCCACCGCGCGCATGAGCCGCGTG
TCTCGCTGCTGCTGGCGCCGCGCTGCTCTGCGGCCACGGAGCCTCTGCCCGCGCTGGTCAGC
GCCAAAAGGTGTGTTTGTGACTTCAAGCATCCCTGCTACAAAATGGCTACTTCCATGAAC
GTCCAGCCGAGTGAAGCTTCAGGAGGCACGCCCTGGCTGTGAGAGTGAAGGAGGAGTCCTCCTCA
GCCTTGAGAATGAAGCAGAACAGAACAGTTAATAGAGAGCATGTTGAAAACCTGACAAAACCGGG
ACAGGGATTCTGATGGTGAATTCTGGATAGGGCTTGAGGAATGGAGATGGCAAAACATCTGG
TGCCTGCCAGATCTCTACCAAGTGGCTGATGGAAGCAATTCCAGTACCGAAACTGGTACACAG
ATGAACCTTCCTCGGAAGTGAAAAGTGTGATGATCACCAACCAACTGCCAATCCTGGC
CTTGGGGTCCCTACCTTACCAAGTGGATGATGACAGGTGTAACATGAAGCACAATTATATTG
CAAGTATGAACCAGAGATTAATCCAACAGCCCTGAGAAAAGCCTTATCTACAAATCAACCAG
GAGACACCCATCAGAATGTGGTTGTTACTGAAGCAGGTATAATTCCAATCTAATTATGTGTT
ATACCAACAATACCCCTGCTCTACTGATACTGGTTGCTTTGGAACCTGTTGAGATGCT
GCATAAAAGTAAAGGAAGAACAAAAACTAGTCACCCAGTCTACACTGTGGATTCAAAGAGTA
CCAGAAAAGAAAGTGGCATGGAAGTATAAACTCATTGACTTGGTCCAGAATTGTAATTCT
GGATCTGTATAAGGAATGGCATCAGAACAAATAGCTGGATGGCTGAAATCACAAAGGATCTGC
AAGATGAACTGTAAGCTCCCCCTGAGGCAAATATTAAAGTAATTGTTATGTTGCTATTATTC
TTTAAAGAATATGCTGTGCTAATAATGGAGTGAGACATGCTTATTGCTAAAGGATGCACCCAA
ACTTCAAACCTCAAGCAAATGAAATGGACAATGAGATAAAAGTTGTTATCAACACGTCGGAGTA
TGTGTGTTAGAAGCAATTCTTTATTCTTCACCTTCATAAGTGTATCTAGTCAATGTAA
TGTATATTGTTGAAATTACAGTGTGCAAAGTATTACCTTGCATAAGTGTGATAAAA
ATGAACGTGTTCTAATATTATTATGGCATCTCATTTCATAACATGCTTTGATTAAAG
AAACTTATTACTGTTGTCACTGAATTCAACACACACAAATATAGTACCATAGAAAAGTTGT
TTCTCGAAATAATTCAATTCTCAGCTCTGCTTTGGTCAATGTCTAGGAAATCTTCAGA
AATAAGAAGCTATTCTATTAAAGTGTGATAAAACCTCCCAAACATTTACTTAGAGGCAAGGAT
TGTCTAATTCAATTGTGCAAGACATGTGCCTATAATTATTAGCTTAAATAAACAGATT
TTGTAATAATGTAACCTGTTAATAGGTGCATAAACACTAATGCAATTGAAACAAAAGAAG
TGACATACACAATATAATCATATGCTTCACACGTTGCCATATAATGAGAACAGCAGCTCTGA
GGGTTCTGAAATCAATGTGGCCCTCTTGCCCCTAAACAAAGATGGTTGTTGGGGTTGGG
ATTGACACTGGAGGCAGATAGTGCAAAGTTAGTCTAAGGTTCCCTAGCTGTATTAGCCTCTG
ACTATATTAGTATACAAAGAGGTATGTGGTTGAGACCAGGTGAATAGTCACATCAGTGTGGAG
ACAAGCACAGCACACAGACATTAGGAAGGAAAGGAACATCGAAATCGTGTGAAAATGGGTTGG
AACCCATCAGTGTGATCGCATATTGATGAGGGTTGCTTGAGATAGAAAATGGTGGCTCCTT
CTGCTTATCTCTAGTTCTCAATGCTACGCCCTGTTCAAGAGAAAAGTTGTAAC
CTGGTCTTCATATGTCCTGCTCCTTTAACCAAATAAAGAGTTCTGTTCTGGGGAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 168

MSRVVSLLLGAALLCGHGFRRVSGQKVCADFKHPCYK MAYFHELSSRVS FQE ARLACESE
GGVLLSLENEAEQKLIESMLQNLT KPGTG ISDGDFWIGLWRNGDGQTSGACPDLYQWS DGSNSQ
YRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINPTAPVEK
PYLTNQPGDTHQNVVVTEAGIIPNL IYVVIPTIPLLLLILVAFGTCCFQMLHKSKGRTKTSPNQ
STLWISKSTRKESGM EV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 214-235

N-glycosylation sites.

amino acids 86-89, 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 266-269

N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-
145, 212-217