Adopted Levels, Gammas

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,1807 (2010)	15-Jun-2010

 $Q(\beta^{-})=-1677.4 \ 19$; $S(n)=7771.31 \ 12$; $S(p)=7999 \ 6$; $Q(\alpha)=551.0 \ 12$ 2012Wa38

Note: Current evaluation has used the following Q record \$ $-1678.9 \ 197771.32 \ 127999$ 5551.6 12 2003Au03,2009AuZZ. Q(β ⁻): From 2009AuZZ; 1679.1 19 from 2003Au03.

See 1983Pf01, 1985Be34, 1985Ne09, 1987Ah03, 1987Ok03, 1990Ji07, 1992Kr06, 2000As04 for recent hfs and/or isotope shift data. Muonic x-ray data: see 1970Hi03 (deduced B(E2)↑=6.00 *12*).

For detailed discussion of band properties and interactions see, e.g., 2000Gr33, 2001Gu12, 2002Gr12.

¹⁶⁸Er Levels

E(j),J(j) From 168 Er(γ , γ), (γ , γ').

 264.0888^{i} 14 4^{+d}

Cross Reference (XREF) Flags

```
^{171} Yb(n,\alpha)
         ^{168}Ho β^- decay
                                                    Н
                                                              ^{168}Er(\gamma, \gamma'), (\gamma, pol \gamma')
A
                                                             ^{168}\mathrm{Er}(\mathrm{e,e'})
                                                                                                               <sup>168</sup>Er(pol p,p), (pol p,p')
         ^{168}Tm \varepsilon decay
                                                    Ι
                                                                                                     P
В
         ^{165}\text{Ho}(\alpha,\text{p}\gamma)
                                                                                                               ^{168}Er(d,d), (d,d')
C
                                                    J
                                                              Coulomb excitation
                                                                                                     Q
         ^{166}Er(t,p)
                                                              ^{168}Er(n,n'\gamma)
                                                                                                               ^{168}Er(^{238}U,^{238}U'\gamma)
D
                                                                                                               ^{170}Er(^{136}Xe,X\gamma)
         ^{167}Er(n,\gamma) E=thermal
                                                              ^{168}Er(\alpha,\alpha')
E
                                                    L
                                                              ^{169}Tm(pol t,\alpha), (t,\alpha)
         ^{167}Er(n,\gamma) E=2, 24 keV
F
                                                    M
         ^{167}Er(d,p), (t,d)
                                                              <sup>170</sup>Er(p,t)
```

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	
0.0 ⁱ	0^{+d}	stable	ABCDEF HIJKLMNOP	S
79.804 ⁱ 1	2^{+d}	1.853 ns 25	ABCDEFG JKLMN P	S

114 ps 3

Comments

 μ =+0.642 12

μ: value adopted by 1989Do12; based on +0.54 6 (IPAC, revision of datum from 1962Bo18), 0.69 6 (recoil into gas/vacuum; 1967Ku07), 0.666 16 (Mössbauer, 1968Mu01), +0.610 20 (recoil into gas/vacuum, 1970Be36). Others: 0.66 4 if g(166Er, 81)=0.312 10 (Mössbauer, 1967St17), +0.62 6 (IPAC, 1980Fu03).

 $< r^2 > 1/2$ (charge)=5.267 4 (2004An14).

J^{π}: E2 80 γ to 0⁺ g.s..

 $T_{1/2}$: unweighted average of 1.84 ns 6 (B(E2) in Coulomb excitation), 1.85 ns 3 (pulsed-beam in Coulomb excitation), 1.79 ns 6 (muonic x-ray data (see 1970Hi03)), and the following from 168 Tm ε decay: 1.72 ns 6, 1.92 ns 2, 1.92 ns 2, 1.90 ns 20, and 1.88 ns 20.

 μ : From g(166 Er 81)/g=0.960 *13* (1968Mu01; Mössbauer effect) if g(166 Er 81)=+0.641 *10*, the mean of +0.649 *10* (1981Ho31) and +0.632 *10* (1968Mu01). Other: +0.62 *6* (1980Fu03; IPAC) relative to 166 Er(265).

ABCDEFG JKLMN P S

 μ =+1.17 *12*; Q=-2.2 *10*

μ: From 1996Br09 (transient field). Other: +1.26 *16* (1968De28; IMPAC), relative to ¹⁶⁶Er(265).

Q: Coul. ex. reorientation (1989Ra17 from 1970McZQ).

 J^{π} : E2 intraband 184 γ to 2⁺ 80.

 $T_{1/2}$: weighted average of 117 ps 7 from B(E2) in Coulomb excitation and the following from 168 Tm ε decay: 106 ps 6,

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	KREF		Comments
						μ =+1.17 <i>12</i> ; Q=-2.2 <i>10</i> μ : From 1996Br09 (transient field). Other: +1.26 <i>16</i> (1968De28; IMPAC), relative to ¹⁶⁶ Er(265). Q: Coul. ex. reorientation (1989Ra17 from 1970McZQ). J^{π} : E2 intraband 184 γ to 2 ⁺ 80. $T_{1/2}$: weighted average of 117 ps 7 from B(E2) in Coulomb excitation and the following from ¹⁶⁸ Tm ε decay: 106 ps 6, 113 ps <i>13</i> , 121 ps <i>8</i> , and 119 ps 7.
548.7470 [†] 20	6 ⁺ <i>d</i>	12.0 ps 5	ABCDEFG	JKLMN P	S	 μ=+1.81 12 μ: From 1996Br09 (transient field). Others: +2.0 3 (1989Do12; transient field IPAC) from g/g(¹⁶⁸Er, 549 level)=0.92 7; +2.10 12 (1992Br07; transient field). J^π: E2 intraband 285γ to 4⁺ 264; g.s. band member. 1⁺,6⁺ from average resonance capture. T_{1/2}: weighted average of 11.6 ps 7 (recoil distance) and 12.3 ps 7 (B(E2) and adopted 285γ properties) in Coulomb excitation.
821.1685 ^j 16	2+e	2.80 ps 9	AB DEFG	JKLMN P	S	μ =+0.72 14; Q=2.25 23 μ : transient field IPAC (1989Do12); g/g(¹⁶⁸ Er, 548.7 level)=1.10 14. Q: Coulomb excitation reorientation (1989Ra17 from 183hu01). J ^{π} : E2 821 γ to 0 ⁺ g.s T _{1/2} : from B(E2)(0+g to 2+ γ) in Coulomb excitation. Other values: 3.5 ps 7 (recoil distance), 2.91 ps +12-25 and 3.9 ps +4-5 from measured B(E2) and adopted γ properties for 741 γ and 557 γ , respectively, in Coulomb excitation.
895.7947 ^j 17	3 ^{+e}	3.2 ps +9-2	AB EFG	JK MNO	S	J ^{π} : M1+E2 632 γ to 4 ⁺ 264; M1+E2 816 γ to 2 ⁺ 80. T _{1/2} : from B(E2)(2+ _g -3+ γ) in Coulomb excitation and adopted 816 γ properties. Others: \leq 120 ps from $\gamma\gamma$ (t) in ¹⁶⁸ Tm ε decay (1991De24); 2.9 ps 13 and 3.3 ps +11-8, respectively, from adopted properties for 632 γ and 75 γ and measured B(E2) in Coulomb excitation.
928.3029 ⁱ 25	8+ <i>d</i>	3.56 ps <i>13</i>	CEG	JKL	S	 μ=+2.44 21 μ: From 1996Br09 (transient field). Others: +2.7 5 (1989Do12; transient field) from g/g(¹⁶⁸Er, 549 level)=1.01 13 and adopted μ(549 level); +2.40 16 (1992Br07, superseded by 1996Br09). J^π: E2 intraband 379γ to 6⁺ 549; 8⁺ member of g.s. band expected at 926.6, based on energies of 2⁺ and 6⁺ members. T_{1/2}: weighted average of 3.42 ps 26 (Doppler broadening), 3.67 ps 21 (recoil distance) and 3.53 ps 21 (B(E2) and adopted 380γ properties) in Coulomb excitation.
994.7474 ^j 16	4 ⁺ <i>e</i>	3.5 ps 7	AB DEFG	JKLMN P	S	J^{π} : E2 173 γ to 2 ⁺ 821; M1+E2 731 γ to 4 ⁺ 264; 446 γ to 6 ⁺ ; member of γ band. 3 ⁺ ,4 ⁺ from average resonance capture. $T_{1/2}$: recoil distance in Coulomb excitation. However, adopted properties and measured B(E2) for 915 γ , 731 γ , 445 γ and 174 γ imply $T_{1/2}$ =2.82 ps 18, 2.89 ps 16, 4.4 ps +8-24 and 1.92 ps 15, respectively, if 99 γ branch is negligible.
1094.0383 ^k 16	4- <i>f</i>	109.0 ns 7	AB EFG	JK M	RS	μ =+0.96 4 μ : From TDPAC (1989Ra17 from 1980Fu03).

E(level) [†]	${\rm J}^{\pi \ddagger}$	T _{1/2} #	Х	KREF		Comments
		, , , , , , , , , , , , , , , , , , ,				Q/Q(2 ⁺ 80 level)=0.69 3 (2002Th14) from TDPAC. J ^{π} : M2+E3 1014 γ to 2 ⁺ 80; E1+M2 830 γ to 4 ⁺ 264. T _{1/2} : weighted average of data from ¹⁶⁸ Tm ε decay: 108.9 ns 7, 120 ns 20, 110 ns 15, 107 ns 10, 115.7 ns 33, and 107.3 ns 22. Other (from ¹⁶⁷ Er(n, γ) E=thermal): 89 ns (1974Iv02).
1117.5703 ^{<i>j</i>} 16	5+ e	2.4 ps +8-2	AB EF	JK		J ^{π} : M1+E2 853 γ to 4+ 264; E1 75 γ from 5 ⁻ 1193; β band member. 2+,5+ from average resonance capture. T _{1/2} : from measured B(E2)(853 γ) in Coulomb excitation and adopted γ properties; measured B(E2) values for 222 γ and 123 γ imply similar T _{1/2} (2.0 ps +3-7 and 2.2 ps 6).
1193.0251 ^k 17	5- f	0.70 ns 7	AB DEFG	JKLMN	RS	J^{π} : E1 644 γ to 6 ⁺ 549; E1 929 γ to 4 ⁺ 264. $T_{1/2}$: $\gamma\gamma$ (t) in ¹⁶⁷ Er(n, γ) E=thermal (1991Pe12). Other value: 0.6 ns <i>I</i> (1988Pe06; probably superseded by 1991Pe12).
1217.169 ^h <i>14</i>	0^{+}		B DE	JK N		J^{π} : L=0 in ¹⁶⁶ Er(t,p).
1263.9047 ^{<i>j</i>} 19	6 ⁺ e	3.63 ps 26	Е	JKL		J^{π} : M1+E2 146 γ to 5 ⁺ 1118; M1+E2 715 γ to 6 ⁺ 548; 336 γ to 8 ⁺ 928. $T_{1/2}$: from measured B(E2)(1000 γ) and adopted γ properties. Others: 4.4 ps 9 from recoil distance in Coulomb excitation; 3.7 ps 4, 5.2 ps +14–39, 4.5 ps +15–10, 2.65 ps 21, respectively, from measured B(E2)
≈1266.07 ^a			F			for 715γ , 336γ 146γ and 269γ .
1276.2716^{h} 20	2+	2.0 ps +21-7	AB DEFG	JK N		J^{π} : E2 1276 γ to 0^{+} g.s $T_{1/2}$: from lineshape broadening in (n,γ) (1998Le03).
1311.4606 ^k 17	6^{-f}		A E G	JK M	RS	J^{π} : E2 217 γ to 4 ⁻ 1094; E2 118 γ to 5 ⁻ 1193; band
1358.899 ^m 5	1-		B DE G	KL N		assignment. J^{π} : E1 1279 γ to 2 ⁺ 80; E2 469 γ from 3 ⁻ 1828; 1359 γ to 0 ⁺ g.s
1396.826 ⁱ 5	10 ⁺ d	1.45 ps 6	СЕ	J	S	$\mu = +3.1 \ 4$
1370.020		1.45 ps 0	CL	J	3	μ: From 1996Br09 (transient field). Others: +3.2 8 (1989Do12; transient field IPAC) from g/g(168 Er, 548.7 level)=0.98 20; +3.0 4 (1992Br07; transient field). J ^π : intraband 469γ to 8+ 928. T _{1/2} : weighted average of 1.42 ps 8 (Doppler broadening), 1.66 ps 14 (recoil distance), 1.41 8 (from B(E2)) in Coulomb excitation.
1403.7357 ^m 23	(2)-		B EFG	K		J^{π} : E1 1324y to 2 ⁺ 80; 508y to 3 ⁺ 896; 2 ⁻ ,5 ⁻ from average resonance capture.
1411.0959 ^h 18	4+	>0.83 ps	B dEFG	JK		J^{π} : M1+E2 294 γ to 5 ⁺ 1118; E2 589 γ to 2 ⁺ 821. $T_{1/2}$: from lineshape broadening in (n, γ) (1998Le03).
1422.12 ⁿ 3	0^{+}		B dE	K N		J^{π} : L=0 in 170 Er(p,t).
1431.466 ^m 4	3-	41 ps	B dEFG	KL N		J^{π} : E1 1167γ to 4^{+} 264; E1 1352γ to 2^{+} 80. T _{1/2} : from 1987Me04 (see ¹⁶⁸ Tm ε decay).
1432.9508 ^j 23	7+ e		E	JK		T _{1/2} : values deduced from measured B(E2) in Coulomb excitation and adopted properties for 169γ, 315γ and 884γ range from 0.6 ps 4 to 2.1 ps +9-2. J ^π : M1+E2 884γ to 6 ⁺ 549; M1 505γ to 8 ⁺ 928.
1448.9555 ^k 17	7- <i>f</i>		DE G	K N	RS	J^{π} : E2 137 γ to 6 ⁻ 1311; E2 256 γ to 5 ⁻ 1193; 520 γ to 8 ⁺ 928. Member of established K^{π} =4 ⁻ band.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	REF		Comments
1493.133 ⁿ 5	2+		B DEFG	K MN		J^{π} : E2 1493 γ to 0 ⁺ g.s
1541.5564 ^l 18	3-	8 ps	AB EfG	KL		J ^{π} : E1 547 γ to 4 ⁺ 995; E1 720 γ to 2 ⁺ 821. T _{1/2} : from 1987Me04 (see ¹⁶⁸ Tm ε decay).
1541.7094 ^m 24	(4)		EfG	K		J^{π} : E1 1278 γ to 4 ⁺ 264; E2 138 γ to (2) ⁻ 1404; M1 213 γ from 3 ⁻ 1828.
1569.4527° 25	(2)-	0.43 ps +11-8	AB dEFG	K N		J^{π} : E1 748 γ to 2 ⁺ 821; E1 674 γ to 3 ⁺ 896; 1695 γ
1574.117111	-		- 1			to 0^+ g.s.; 2^- ,5 $^-$ from average resonance capture. $T_{1/2}$: from γ -induced broadening (GRID technique) in (n,γ) E=thermal (2000Ge14).
1574.117 ^m 4	5- o-f		B dEFG	KL N	_	J^{π} : E1 1025 γ to 6 ⁺ 549; E1 1310 γ to 4 ⁺ 264.
1605.8503 ^k 23	8 ⁻ f		E	K	R	J^{π} : E2 294 γ to 6 ⁻ 1311; 157 γ to 7 ⁻ 1449.
1615.3420 ^l 18	4-		AB EFG	K		J^{π} : M1 422 γ to 5 ⁻ 1193; M1+E2 74 γ to 3 ⁻ 1542.
1616.8060 ^h 19	6+	>1.7 ps	E	K		J ^π : E2 206γ to 4 ⁺ 1411; M1 1068γ to 6 ⁺ 549; 689γ to 8 ⁺ 928.
	2+0		_			$T_{1/2}$: from lineshape broadening in (n,γ) (1998Le03).
1624.507 ^j 4	8+ e	3.4 ps 7	E	J		J^{π} : E2 361 γ to 6 ⁺ 1264; γ to 10 ⁺ ; member of established β band.
						$T_{1/2}$: recoil distance in Coulomb excitation. Note that $T_{1/2}$ values from B(E2) in Coulomb excitation and adopted properties for 1076 γ and 361 γ are inconsistent with this, however.
1629.698 <i>6</i>	4-,5-,6-		E			J^{π} : M1 437 γ to 5 ⁻ 1193.
1633.4627° 23	3-	0.35 ps +11-8	B DEFG	JKLMN P		J^{π} : E1 639 γ to 4 ⁺ 995; E1 738 γ to 3 ⁺ 896;
						excitation in Coulomb excitation. $T_{1/2}$: from γ -induced broadening (GRID technique) in (n,γ) E=thermal (2000Ge14).
1653.5486 ^p 21	3+ g		AB dEF	K		J^{π} : E1 560 γ to 4 ⁻ 1094; M1 758 γ to 3 ⁺ 896; E1 84 γ to (2) ⁻ 1569; member of band with established J^{π} .
1656.274 ⁿ 5	$(4)^{+}$		B dEF	K N		J^{π} : M1 1392 γ to 4 ⁺ 264; E2 1107 γ to 6 ⁺ 549; 835 γ to 2 ⁺ 821.
1707.9929 ^l <i>17</i>	5-		DEFG	K M		J^{π} : M1 614 γ to 4 ⁻ 1094; M1 397 γ to 6 ⁻ 1311.
1719.1786° 24	4-		EFG	K		J^{π} : E1 602 γ to 5 ⁺ 1118; E1 823 γ to 3 ⁺ 896.
1736.6881 ^p 20	4+8		DEF	KL N		J^{π} : E1 544 γ to 5 ⁻ 1193; E2 841 γ to 3 ⁺ 896; member of band with established J^{π} .
1760.760 ^m 3	(6)-		E	K		J^{π} : E1 643 γ to 5 ⁺ 1118; E1 1212 γ to 6 ⁺ 549; band assignment.
1764.0 <i>4</i>			G			
≈1768.17 ^a			F			
1773.205 ^q 3	(6)		E G	K	S	J^{π} : M1 580 γ to 5 ⁻ 1193; M1 462 γ to 6 ⁻ 1311; band assignment.
1780.00^{k} 15	9- 1				RS	
1786.123 ^r 14	1-	3.5 fs 4	DE GH	KL N		J ^π : E1 1786 γ to 0 ⁺ g.s T _{1/2} : other value: 13 fs +9-8 from from γ -induced broadening (GRID technique) in (n, γ) E=thermal (2000Ge14).
1795.325 ^m 11	(7-)		DE G	K		J^{π} : 1247 γ to 6 ⁺ 549; 867 γ to 8 ⁺ 928; band assignment.
1812.5 ^b 16	(2+,3,4+)		Е			J^{π} : 991 γ to 2 ⁺ 821; 818 γ to 4 ⁺ 995. E(level): level reported only in two-photon cascade data in (n,γ) E=thermal. One would expect such a low-lying level to have been observed in other experiments also.

E(level) [†]	$J^{\pi \ddagger}$	${T_{1/2}}^{\#}$		X	REF		Comments
1820.1321 ¹ 18 1820.476 ⁰ 3 1828.0639 ^s 20	6 ⁻ 5 ⁻ 3 ⁻	0.82 ps +32-19		E g EFg EFG	K mN K mn KLmn		J^{π} : M1+E2 112 γ to 5 ⁻ 1708; M1 371 γ to 7 ⁻ 1449. J^{π} : E1 557 γ to 6 ⁺ 1264; E1 826 γ to 4 ⁺ 995. J^{π} : E1 1007 γ to 2 ⁺ 821; E1 833 γ to 4 ⁺ 995. $T_{1/2}$: from γ -induced broadening (GRID technique) in (n, γ) E=thermal (2000Ge14).
1833.54 ^t 11 1839.3474 ^p 20 1848.354 ^u 4 1881.82 3 1892.9346 ^s 20	0^{+} $5^{+}g$ 2^{+} $(4)^{-}$	177 fs + <i>17</i> - <i>15</i>	A	DE EF DEF E EFg	K mN K K N		J ^π : L=0 in ¹⁶⁶ Er(t,p). J ^π : M1 845γ to 4 ⁺ 995; E1 528γ to 6 ⁻ 1311. J ^π : E2 1848γ to 0 ⁺ g.s J ^π : 689γ to 5 ⁻ 1193. J ^π : M1 700γ to 5 ⁻ 1193; M1 799γ to 4 ⁻ 1094; 3 ⁻ ,4 ⁻ from average resonance capture. T _{1/2} : from γ-induced broadening (GRID technique) in
1893.100 ^t 6 1896.379 ^q 3 1902.696 ⁿ 7 1905.0922 ^v 25	2 ⁺ (7) ⁻ (6 ⁺) (4) ⁻			E g E g DE EFG	K mN m K m K m	S	(n,γ) E=thermal (2000Ge14). J ^π : E2 676γ to 0 ⁺ 1217. J ^π : M1+E2 123γ to (6) ⁻ 1773; band assignment. J ^π : 246γ to 4 ⁺ 1656; 974γ to 8 ⁺ 928. J ^π : M1 712γ to 5 ⁻ 1193; M1 811γ to 4 ⁻ 1094; 3 ⁻ ,4 ⁻ from average resonance capture.
1913.92 ^r 3	3-	<11 fs		EfG	KL N		J ^{π} : E1 1650 γ to 4 ⁺ 264; E1 1834 γ to 2 ⁺ 80. T _{1/2} : from γ -induced broadening (GRID technique) in (n, γ) E=thermal (2000Ge14).
1915.502 ^u 4	(3) ⁺		A	Ef	K		J^{π} : 1836y to 2 ⁺ 80; E2 921y to 4 ⁺ 995; 798y to 5 ⁺ 1118; 346y to (2) ⁻ 1569.
1930.391 ^w 4 1936.596 ^x 10 1947.3 ⁱ 5	2 ⁺ 1 ⁻ 12 ⁺ <i>d</i>	0.24 ps <i>3</i> 0.60 ps <i>3</i>	A	EF E GH	K N K J		J^{π} : E2 1930 γ to 0 ⁺ g.s J^{π} : E1 1936 γ to 0 ⁺ g.s E(level): from Coulomb excitation.
1747.3	12	0.00 рз 3			,		J^{π} : γ to 10^+ ; 12^+ member of established g.s. band. $T_{1/2}$: weighted and unweighted average of 0.62 ps 4 (Doppler broadening), 0.62 ps 14 (recoil distance), 0.58 ps 4 (B(E2) and adopted 547 γ properties), all from Coulomb excitation.
1949.636° 3	(6)-			E	K		J^{π} : 230 γ to 4 ⁻ 1719; 517 γ to 7 ⁺ 1433; band assignment.
1950.8067 ^l 20 1952.2 ^c 7	7 ⁻ 2 ⁺			E G	N		J^{π} : M1 131 γ to 6 ⁻ 1820; M1+E2 345 γ to 8 ⁻ 1606. J^{π} : L(p,t)=2.
1961.3992 ^p 20	6 ⁺ 8			DE	K N		J^{π} : continuation of established band; 225 γ to 4 ⁺ 1737; 337 γ to 8 ⁺ 1625.
1972.314 ^x 14	(2)	0.13 ps +8-4		EF	K		 J^π: E1 1077γ to 3⁺ 896; 2⁻,5⁻ from average resonance capture. T_{1/2}: from γ-induced broadening (GRID technique) in (n,γ) E=thermal (2000Ge14).
1975.75 ^k 20 1983.0398 ^s 24	10 ⁻ <i>f</i> 5 ⁻	0.29 ps +8-5		DEFG	K M	RS	J ^{π} : M1 889 γ to 4 ^{$-$} 1094; 672 γ to 6 ^{$-$} 1311. T _{1/2} : from γ -induced broadening (GRID technique) in (n, γ) E=thermal (2000Ge14).
1994.821 ^w 4	(3) ⁺		A	EF	K		J^{π} : E2 1915 γ to 2 ⁺ 80; E2 1731 γ to 4 ⁺ 264; band assignment.
1999.2239 ^y 22	(3)-	0.44 ns +12-8	A	dEFg	KL		J^{π} : M1 430 γ to (2) ⁻ 1569; M1 384 γ to 4 ⁻ 1615. $T_{1/2}$: $\gamma \gamma$ (t) in ¹⁶⁷ Er(n, γ) E=thermal (1991Pe12).
2001.953 ^v 4 2002.465 ^u 4	5 ⁻ (4) ⁺			dEfg dEfg	K m K m		J^{π} : M1 690 γ to 6 ⁻ 1311; M1 908 γ to 4 ⁻ 1094. J^{π} : M1 1008 γ to 4 ⁺ 995; (E2) 1923 γ to 2 ⁺ 80; 163 γ to 5 ⁺ 1839; band assignment.
2022.358 ^x 21	(3)-	105 fs +37-25		dEFG	K		J^{π} : E1 1942 γ to 2 ⁺ 80; 264 γ to 4 ⁺ 264; band

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	REF		Comments
						assignment. $T_{1/2}$: from γ -induced broadening (GRID technique) in (n, γ) E=thermal (2000Ge14).
2031.097 ^t 7	(4) ⁺		dEFG	K M		J^{π} : M1 1767 γ to 4 ⁺ 264; 1951 γ to 2 ⁺ 80; band assignment.
2038.66 ^q 20 2055.914 ^z 8	(8 ⁻) (4) ⁺	0.32 ps <i>16</i>	G EF	JKL	S	J ^π : E1 962γ to 4 ⁻ 1094; E2 1235γ to 2 ⁺ 80; 863γ to 5 ⁻ 1193. 3 ⁺ ,4 ⁺ from average resonance capture. T _{1/2} : γ-ray-induced Doppler broadening in ¹⁶⁷ Er(n,γ) E=thermal (1991Bo18).
2059.9751 ¹ 20	(4)-		EFG	K		J ^π : M1 352γ to 5 ⁻ 1708; M1 966γ to 4 ⁻ 1094; 3 ⁻ ,4 ⁻ from average resonance capture.
2070.0 ^j 10 2080.457 ^w 3	10 ⁺ e (4) ⁺		DEF	J K N		E(level): from Coulomb excitation. J ^π : M1 1816γ to 4 ⁺ 264; E2 1259γ to 2 ⁺ 821; band assignment.
2089.348 ^y 3 2091.272 ^s 5	4 ⁻ (6) ⁻		EFg dE g	K m		J^{π} : M1 548 γ to 3 ⁻ 1542; M1 381 γ to 5 ⁻ 1708. J^{π} : M1 898 γ to 5 ⁻ 1193; 658 γ to 7 ⁺ 1433; band
2097.571 ^x 6	4-	0.21 ps +6-4	dEF	K		assignment. J^{π} : E1 979 γ to 5 ⁺ 1118; E1 1202 γ to 3 ⁺ 896. $T_{1/2}$: from γ -induced broadening (GRID technique) in
2100.361 ^p 4	7 ⁺ 8		E G			(n,γ) E=thermal (2000Ge14). J^{π} : 261 γ to 5 ⁺ 1839; 494 γ to 8 ⁻ 1606; continuation of
2108.987 ^u 4	(5) ⁺		EFG	K		established band. J^{π} : E2 991 γ to 5 ⁺ 1118; 194 γ to 3 ⁺ 1916; 148 γ to 6 ⁺ 1961; 2 ⁺ ,5 ⁺ from average resonance capture.
2114.1 ^c 4 2118.791 ^v 5	0 ⁺ (6) ⁻		E g	N K m		J ^π : L(p,t)=0. J ^π : M1 926γ to 5 ⁻ 1311; M1 807γ to 6 ⁻ 1311; band assignment.
2122.428 3	(5,6,7)		E g	m		XREF: g(2127.6). J^{π} : M1 349 γ to (6) ⁻ 1773; 226 γ to (7) ⁻ 1896. Possible
2125.424 7			E g			bandhead for $K^{\pi}=7^{-}$ band (1991Da12, 1985Bu12). XREF: g(2127.6). J^{π} : 472 γ to 3 ⁺ 1654.
2129.246 ^r 21	(5)-		EFg	KL		XREF: g(2127.6). J ^π : E1 1865γ to 4 ⁺ 264; 2 ⁻ ,5 ⁻ from average resonance capture.
2133.767 ² <i>15</i>	(1+)		E g			XREF: g(2136). J^{π} : 2133 γ to 0^{+} g.s.; 641 γ to 2^{+} 1493; band assignment.
2135.9 7 2137.08 ³ 9	1 ⁻ (2) ⁺	57 fs <i>14</i>	H EFg	k k		J^{π} : E1 2136 γ to 0 ⁺ g.s XREF: g(2136). J^{π} : M1 2057 γ to 2 ⁺ 80; 2137 γ to 0 ⁺ g.s.; 2 ⁺ ,(3 ⁺),(4 ⁺),5 ⁺ from average resonance capture.
2144.53 <i>3</i> 2148.3685 ¹ 23	5-		E EFG	КМ		J^{π} : 539 γ to 8 ⁻ 1606. J^{π} : M1+E2 1054 γ to 4 ⁻ 1094; M1 955 γ to 5 ⁻ 1193;
2169.516 ^z 12	(5) ⁺	0.21 ps <i>14</i>	EF	JK		2^- ,5 ⁻ from average resonance capture. J^{π} : E1 976 γ to 5 ⁻ 1193; E2 1274 γ to 3 ⁺ 896; 737 γ to 7 ⁺ 1433; band assignment.
2174.59 8			D	K N		$T_{1/2}$: γ -ray-induced Doppler broadening in 167 Er(n, γ) E=thermal (1991Bo18). XREF: N(2174.0).
2177.79 ² 8	(2 ⁺)		E	K		J^{π} : 2095 γ to 2 ⁺ 80. J^{π} : 2178 γ to 0 ⁺ g.s.; band assignment.
2182.80 ^k 25	11-f				RS	

E(level) [†]	${\rm J}^{\pi \ddagger}$	${T_{1/2}}^{\#}$		y	KREF	Comments
2185.11 ^x 3	(5)-	44 fs +25–16		dEfg	K	XREF: g(2186). J ^π : E1 1637γ to 6 ⁺ 549; 271γ to 3 ⁻ 1914; 2,3,4,5 from average resonance capture.
4						$T_{1/2}$: from γ -induced broadening (GRID technique) in (n,γ) E=thermal (2000Ge14).
2186.741 ⁴ 4	(3) ⁺			dEfg	K	XREF: g(2186). J^{π} : M1 450 γ to 4 ⁺ 1737, M1 533 γ to 3 ⁺ 1654; band assignment.
2188.408 ^w 10	(5 ⁺)			dE g	K	XREF: g(2186). J^{π} : 1640 γ to 6 ⁺ 549; 1924 γ to 4 ⁺ 264; 535 γ to 3 ⁺ 1654; band assignment.
2188.74 11	$(2^+,3,4^+)$			E	K	J^{π} : 1194 γ to 4 ⁺ 995; 2109 γ to 2 ⁺ 80.
2193.19 ⁵ 4	2+		Α	dE	k N	J^{π} : L(p,t)=2; M1 1372 γ 2 ⁺ 821; log ft=5.27 from 3 ⁺ .
2200.4193 ^y 23	(5)-			EFg	k	XREF: g(2204). J^{π} : 2 ⁻ ,5 ⁻ from average resonance capture; M1 585 γ to 4 ⁻ 1615; M1 380 γ to 5 ⁻ 1820.
2200.5 ^q 3	(9-)					S IT I () O
2200.6 ^c 4 2210.016 ^s 6	0 ⁺ (7 ⁻)			Еg	N	J^{π} : L(p,t)=0. XREF: g(2204).
2218.5 ^b 16	(7)					J^{π} : 227 γ to 5 ⁻ 1983; 259 γ to 7 ⁻ 1951; band assignment.
2218.5° 16 2221&				E		
2230.30 ⁶ 4	(2)=			d G	17	VDEE: C(2220.7()
	(2)			dEFG	K	XREF: G(2230.76). J^{π} : M1 661 γ to (2) ⁻ 1569; 2 ⁻ ,5 ⁻ from average resonance capture.
2238.179 ⁷ <i>3</i>	(4) ⁺			EFG	K N	XREF: G(2239.5). J^{π} : E1 1144 γ to 4 ⁻ 1094; gammas to 5 ⁻ and 5 ⁺ ; band assignment.
2243.514 ² <i>19</i>	(3)+			EFG	K	XREF: G(2244.3). J^{π} : E2 1979 γ to 4 ⁺ 264; 3 ⁺ ,4 ⁺ from average resonance capture; 2163 γ to 2 ⁺ 80; band assignment.
2246.530 ^t 9 2249.68 5	(6) ⁺			E E	K	J^{π} : M1 1698 γ to 6 ⁺ 549; band assignment. J^{π} : 938 γ to 6 ⁻ 1311.
2254.754 24	(2^{+})		A	E		J^{π} : 1038 γ to 0 ⁺ 1217; gammas to 3 ⁺ 896 and 3 ⁻ 1828.
2254.84 ⁵ 5	(3)+		A	E g	K m	J^{π} : 1434 γ to 2 ⁺ 821; log ft =5.8 from 3 ⁺ ; band assignment.
2255.343 ¹ <i>3</i>	(6)-			Εg	K m	J^{π} : M1 944 γ to 6 ⁻ 1311; band assignment.
2262.691 ⁸ 7	(3)-			E	K mn	J^{π} : E2 647 γ to 4 ⁻ 1615; 1441 γ to 2 ⁺ 821; band assignment.
2264 4	(0^+)			D	n	E(level): from 166 Er(t,p). J^{π} : L=(0) in 166 Er(t,p).
2267.632 8	$(3,4,5)^+$		A	E g	K	J^{π} : E1 1174 γ to 4 ⁻¹ 1094; band assignment. Suggested bandhead for a K^{π} =5 ⁺ band (1991Da12).
2269 5	3-			g	Ln	E(level): from 168 Er(α, α'). J^{π} : angular distribution and isoscalar transition strength in 168 Er(α, α').
2270.46 5			A	E		J^{π} : 1176 γ to 4 ⁻ 1094.
2273.67 9	$(2^+,3,4^+)$			E g	JK	J^{π} : 1453 γ to 2 ⁺ 821; 2010 γ to 4 ⁺ 264.
2279.630 ⁴ 5	(4) ⁺			E g	K N	J^{π} : M1 543 γ to 4 ⁺ 1737; M1 626 γ to 3 ⁺ 1654; band assignment.
2286 5					M	E(level): from 169 Tm(pol t, α), (t, α).
2294.0 ^{&} 10	(4.5.0)+			G	17	VII. E1 1105 5= 1102 C
2298.260 <i>4</i>	$(4,5,6)^+$			E	K	J^{π} : E1 1105 γ to 5 ⁻ 1193. Suggested as bandhead for a

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				$K^{\pi}=5^{+}$ band (1991Da12).
2302.666 ⁶ 4	(3)-		Eg K	XREF: g(2302.0). J^{π} : M1 733 γ to (2) ⁻ 1569; M1 669 γ to 3 ⁻ 1633; 154 γ to 5 ⁻ 2148.
2303.10 ^x 3	(6)-		E g	XREF: g(2302.0). J^{π} : 1039 γ to 6 ⁺ 1264; 729 γ to 5 ⁻ 1574; band assignment.
2306.882 ^z 24	(6^+)		E J	J^{π} : 1042 γ to 6 ⁺ 1264; 1114 γ to 5 ⁻ 1193; band assignment.
2311.07 ³ <i>3</i>	(4)+		DE G K	J^{π} : E2 2047 γ to 4 ⁺ 264; 1762 γ to 6 ⁺ 549; band assignment.
2322.2 ^c 2	2+		g N	J^{π} : L(p,t)=2.
2323.01 ⁹ 5	3-		E g KL N	J^{π} : 1501 γ to 2 ⁺ 821; 1328 γ to 4 ⁺ 995; $\sigma(\theta)$ and isoscalar transition strength in ¹⁶⁸ Er(α,α').
2331.987 ^y 3	6-		E G m	XREF: G(2330). J^{π} : M1 382 γ to (6) ⁻ 1950; 381 γ to 7 ⁻ 1951; 624 γ to 5 ⁻ 1708; band assignment.
2336.26 ⁵ <i>10</i>	4+		dE g m	XREF: g(2336.7). J^{π} : 1440 γ to 3 ⁺ 896; 1118 γ to 5 ⁺ 1118; band assignment.
2337.100 [!] 20	3-		dE g K m	XREF: g(2336.7). J^{π} : M1 1243 γ to 4 ⁻ 1094; 1516 γ to 2 ⁺ 821; band
2341.78 24	1	0.11 ps <i>3</i>	н к	assignment. J^{π} : D 2342 γ to 0 ⁺ g.s $T_{1/2}$: from (γ, γ') .
2346.20 9	1-,2-,3-		dE g K	$XREF: g(2347.1).$ $J^{\pi}: E1 1524\gamma \text{ to } 2^{+} 821.$
2348.581 ⁸ <i>18</i>	4-		dE g K	XREF: g(2347.1). J ^{π} : possible M1 1156 γ to 5 ⁻ 1193; 695 γ to 3 ⁺ 1654; band assignment.
2349.3 3			MN	E(level): from 170 Er(p,t). J^{π} : L(p,t)=2.
2361.40 19	1	108 fs 22	н к	XREF: H(2363). $T_{1/2}$, J^{π} : from (γ, γ') .
2365.196 14	(5)-		E g K	XREF: g(2364.7). J^{π} : M1 1271 γ to 4 ⁻ 1094; M1 1172 γ to 5 ⁻ 1193; band assignment.
2365.33 12	(1+)	94 fs 22	E gH K	XREF: g(2364.7). J ^{π} : (1) from ¹⁶⁸ Er(γ , γ), (γ , γ'); π =+ from band
2366.2 ^c 2	0+		N	assignment. J^{π} : $L(p,t)=0$.
2368.585 ⁷ 9	(5 ⁺)		E K	J^{π} : γ' s to 4^{-} and $(5)^{+}$; band assignment.
2373.657 18	2,3		E G	J^{π} : 1553 γ to 2 ⁺ 821; 401 γ to (2) ⁻ 1972.
2378.12 <i>8</i> 2382.587 <i>4</i>	(2) ⁺		E	J^{π} : 1284 γ to 4 ⁻ 1094. J^{π} : E1 383 γ to (3) ⁻ 1999; 2382 γ to 0 ⁺ g.s
2392.1° 2	(0^+)		EGK g N	J^{π} : L(p,t)=(0).
2392.118 7	$(5,6^+)$		E g	J^{π} : 655 γ to (4) ⁺ 1737; 1080 γ to 6 ⁻ 1311; 1128 γ to 6 ⁺ 1264. If 1298 γ is correctly placed, J^{π} =6 ⁺ is very
2392.927 9	(3 ⁻ ,4 ⁺)		Eg Km	unlikely. J^{π} : 1200 γ to 5 ⁻ 1193; 900 γ to 2 ⁺ 1493. Level proposed by 1991Da12 as J=4 member of a K^{π} =2 ⁻ band built on the 2230 level. This is incompatible with placement (supported by $\gamma\gamma$ coin data) of the M1 362 γ from this level but consistent with placement of the E2 1200 γ from the level.
2393.71 <i>9</i> 2398.52 <i>9</i>	(2^+) $(3^+,4,5^+)$		Eg Km Eg Km	J^{π} : 2393 γ to 0 ⁺ g.s.; 2129 γ to 4 ⁺ 264. XREF: g(2400.1).
				(6 , , , , , , 1 , 6 , 11)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		X	REF		Comments
2401.94 24	(1-)			E g	K m		J^{π} : 1281 γ to 5 ⁺ 1118; 1503 γ to 3 ⁺ 896. XREF: g(2400.1). J^{π} : 1581 γ to 2 ⁺ 821 is probably E1; 2402 γ to 0 ⁺ g.s
2402.29 ⁹ 7	(4)-			E g	K m		XREF: g(2400.1). J^{π} : E1 1506 γ to 3 ⁺ 896; E1 1408 γ to 4 ⁺ 995; band
2411.795 25	(5)+			dE G	K		assignment. J^{π} : M1 1417 γ to 4 ⁺ 995; 1100 γ to 6 ⁻ 1311. Proposed by 1991Da12 as J=4 member of a possible K^{π} =3 ⁻ band built on 2337 level but, if placement and multipolarity of 1417 γ are correct, that band assignment is untenable.
2417.02 20	1 ⁽⁻⁾	20 fs 4		d H	K		D γ to 0 ⁺ g.s.; π based on K=0 (1996Ma18) from (γ, γ') .
2419.0 ^k 3	12^{-f}				17	RS	III. 21504- 4+ 264
2423.25 9 2424.91 6	(2)+		٨	E	K n		J^{π} : 2159 γ to 4 ⁺ 264.
2427.2 6	(2) ⁺		A	dE dE	K n lm		J^{π} : log $ft < 5.9$ from 3^+ ; 2425 γ to 0^+ g.s
2434.659 <i>5</i> 2440.054 <i>20</i>	$(4^+,5^+)$			E g E G	lm K		XREF: $g(2434.9)$. J^{π} : 1176 γ to 6 ⁺ 1264; 445 γ to (3) ⁺ 1995.
2440.46 5	(2^{+})			E	K		J^{π} : 1446 γ to 4 ⁺ 995; 1223 γ to 0 ⁺ 1217.
2450.5? ^C 3	2+			g	N		XREF: g(2450).
2451.165 ⁸ 24	(5-)			_			J^{π} : L(p,t)=2.
2451.165° <i>24</i>	(5 ⁻)			E g	K		XREF: g(2450.5). J ^π : 195γ to (6) ⁻ 2255; 1456γ to 4 ⁺ 995; 909γ to (4) ⁻ 1542; band assignment.
2455.96 <i>6</i>	$(3^+,4,5^+)$			E g	K M		XREF: g(2458).
2458.7 <i>4</i>	1	0.17 ps 5		gH	K		J ^π : 1339γ to 5 ⁺ 1118; 1560γ to 3 ⁺ 896. XREF: g(2458).
2461.8° 2	2+	0.17 ps 5		911	N		J^{π} : L(p,t)=2.
2468.8 9				dE g			XREF: g(2458).
2474.10 6	(6-)			dE g			XREF: $g(2476.4)$. J^{π} : 1041 γ to 7 ⁺ 1433; 472 γ to 5 ⁻ 2002; band assignment.
2477.20 6	(5)-			dE g	K m		XREF: g(2476.4). J^{π} : M1 1166 γ to 6 ⁻ 1311; 1383 γ to 4 ⁻ 1094; possible
2478.08 7	(3)-			dE g	K m		bandhead for a $K^{\pi}=5^-$ band. XREF: g(2476.4).
	· ·						J^{π} : 1657 γ to 2 ⁺ 821; E1 1484 γ to 4 ⁺ 995. Proposed by 1991Da12 as J=3 member of a possible K^{π} =1 ⁺ band built on 2365 level but, if placement and multipolarity of 1484 γ are correct, that band assignment is untenable.
2484.52/6	(3+)		A	dE g	K m		XREF: g(2484.8). J^{π} : log ft =5.91 from 3 ⁺ ; 2405 γ to 2 ⁺ 80; 2221 γ to 4 ⁺ 264;
2486 5	3-			d g	Lm		band assignment. XREF: g(2484.8). E(level): from $^{168}\text{Er}(\alpha,\alpha')$. J^{π} : angular distribution and isoscalar transition strength in $^{168}\text{Er}(\alpha,\alpha')$.
2493.5 <i>3</i>	1+	37 fs 4		gH	K		XREF: g(2497.8). K=1 (1996Ma18) from (γ, γ') .
2494.528 <i>15</i> 2499.1 <i>5</i>	(3)-			E E g	K		J^{π} : E1 1673 γ to 2 ⁺ 821; 512 γ to 5 ⁻ 1983. XREF: g(2497.8).
2510.72 24	1 ⁽⁻⁾	59 fs <i>18</i>		GH	K		π based on K=0 (1996Ma18) from (γ, γ') .
2513.67 5	(4)-			E G	K		XREF: G(2510.8). J^{π} : E1 1618 γ to 3 ⁺ 896; E1 1519 γ to 4 ⁺ 995; 1396 γ to 5 ⁺ 1118. Proposed by 1991Da12 as J=5 member of a K^{π} =3 ⁻ band, but multipolarity of 1519 γ and 1618 γ rule this out.
2517.48 20	$(3^+,4^+)$			E G	K		XREF: G(2517.6).

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #	X	REF		Comments
						J^{π} : 1696 γ to 2 ⁺ 821; 408 γ to 5 ⁺ 2109.
2526.583 [!] 12	(5)-		DE g	K		XREF: g(2527.2). J^{π} : E2 1433 γ to 4 ⁻ 1094; 1532 γ to 4 ⁺ 995; band
2527.78 7			E g			assignment. XREF: $g(2527)$. J^{π} : 1434 γ to 4 ⁻ 1094.
2528.80 <i>10</i> 2538.1 <i>5</i>	(5) ⁻ 2 ⁺		E E g	K LM		J^{π} : E1 1534 γ to 4 ⁺ 995; 1265 γ to 6 ⁺ 1264. XREF: g(2539.3).
2540.22 5	$(3,4,5)^+$		E g	K		J ^π : L(p,t)=2. XREF: g(2539.3). J ^π : E2 1644γ to 3 ⁺ 896; 1423γ to 5 ⁺ 1117.
2547.25 7	(4 ⁺)		E			J ^π : 1651γ to 3 ⁺ 896; 1998γ to 6 ⁺ 549; band assignment.
2551.48 7 2552.7 <i>4</i>	(4,5) ⁻ 2 ⁺		E E G	K N		J^{π} : E1 1557 γ to 4 ⁺ 995; 443 γ to 5 ⁺ 2109. XREF: G(2553.1). J^{π} : L(p,t)=2.
2558.66 5	(5)-		dE	K		J ^{π} : E1 γ from 3 ⁺ ,4 ⁺ in ¹⁶⁷ Er(n, γ) E=thermal; 984 γ to 5 ⁻ 1574; 1294 γ to 6 ⁺ 1264; 235 γ to 3 ⁻ 2323.
2561.56 [/] 5	(4 ⁺)		dE g	K		XREF: g(2562.2). J ^π : 2297γ to 4 ⁺ 264; 2012γ to 6 ⁺ 549; band
2563.5 5			dE g			assignment. XREF: g(2562.2).
2571.31 5			E G			XREF: G(2569.0). J^{π} : 1577 γ to 4 ⁺ 995; 1675 γ to 3 ⁺ 896, so J^{π} =(2 ⁺ ,3,4,5 ⁺).
2571.9 ^{@i} 5	14 ⁺ <i>d</i>	0.248 ps +24-14		J		$T_{1/2}$: from B(E2) in Coulomb excitation and adopted 625 γ properties.
2572.0 [@] j calc 2572.5 ^c 2	(12 ⁺) ^e 0 ⁺			J N		J^{π} : from band assignment in Coulomb excitation. J^{π} : $L(p,t)=0$.
2578.8 <i>5</i> 2586.2 <i>6</i> 2594.4 <i>10</i>			E E G G			XREF: G(2584.8).
2601.2 4			E G	M		XREF: G(2603.7). J^{π} : π =– from E1 5170 γ from 3 ⁺ ,4 ⁺ in 167 Er(n, γ) E=thermal; however, 2522 γ to 2 ⁺ 80
2617.4 2	0^{+}		D	N		and 2052γ to 6 ⁺ 549 favor 4 ⁺ . E(level): from 166 Er(p,t). J ^{π} : L(p,t)=0.
2626.3 10			G			
2628.57 22 2629.2 4	$(3^+,4,5^+)$		E E	K Kl		J^{π} : 1733 γ to 3 ⁺ 896; 1511 γ to 5 ⁺ 1118. J^{π} : γ to 4 ⁺ 264.
2637.2 ^{&} 10 2643.71 13	1(+)	70 fs <i>15</i>	G E H	1 K		K=1 (1996Ma18) from (γ, γ') .
2644.1 6	(0+)	70 13 13	E G	N		XREF: G(2646.2). E(level): from (p,t). J^{π} : L(p,t)=(0).
2651.9 5			E g			υ. Δ(p,ι)=(υ).
2653.8 ^k 4	13^{-f}				RS	VDEE(2656.2)
2656.86 5			E g			XREF: g(2656.3). J^{π} : gammas to 2^+ 821 and 3^+ 896, so J^{π} =(1 ⁺ ,2,3,4 ⁺).
2657.66 4	(2,3,4)		E g	m		XREF: g(2656.3).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XI	REF	Comments
2660.59 7	(3,4)+		E	K m	J^{π} : 1226 γ to 3 ⁻ 1431; 1004 γ to 3 ⁺ 1654; 1042 γ to 4 ⁻ 1615. J^{π} : M1 1666 γ to 4 ⁺ 995; 2580 γ to 2 ⁺ 80; 1542 γ to 5 ⁺ 1118.
2663.229 < 20	$(4)^{+}$		E G	K m	XREF: G(2663.1). J^{π} : E2 1010 γ to 3 ⁺ 1654; 1193 γ to 5 ⁻ 1193; band
2672.1 <i>5</i> 2676.3 <i>4</i>	(4 ⁺ ,5,6 ⁺) 1 ⁺	27 fs 3	E GH	K K	assignment. J^{π} : 1677 γ to 4 ⁺ 995; 1409 γ to 6 ⁺ 1264. J^{π} : M1 2676 γ to 0 ⁺ g.s K=1 (1996Ma18) from (γ, γ') .
2683.8 <i>3</i> 2689.0 <i>4</i>	(2^+) $(1,2^+)$		E E G	K N K	J^{π} : 2420 γ to 4 ⁺ 264; 2684 γ to 0 ⁺ g.s XREF: G(2691.8). J^{π} : 2689 γ to 0 ⁺ g.s.; 2609 γ to 2 ⁺ 80.
2694 2700.60 <i>20</i> 2703.2 <i>10</i>	1 ⁽⁺⁾		H E G		$T_{1/2}$: 0.24 ps 5 if level deexcites to g.s. only. J^{π} : 2436 γ to 4 ⁺ 264.
2713.2 6			E G		XREF: G(2711.9).
2716.0 ^b 16	$(2^+,3,4^+)$		E	17	J^{π} : 2636 γ to 2 ⁺ 80; 2452 γ to 4 ⁺ 264.
2727.77 5	(4,5)	12.0.5.24	E g	K	XREF: $g(2727.9)$. J^{π} : M1+E2 1112 γ to 4 ⁻ 1615; 1611 γ to 5 ⁺ 1118.
2728.43 22	1+	13.9 fs 24	gH	K	XREF: $g(2727.9)$. J^{π} : M1 2729 γ to 0^{+} g.s
2733.0 12			E		J^{π} : 1837 γ to 3 ⁺ 896, 2469 γ to 4 ⁺ 264, so $J^{\pi} = (2^+, 3, 4, 5^+)$.
2738.56 4			E g		XREF: g(2739.6). J^{π} : 1031 γ to 5 ⁻ 1708, 1123 γ to 4 ⁻ 1615, so J^{π} =(3 ⁻ ,4,5,6 ⁻).
2740.16 <i>15</i>	$(4,5,6)^+$		E g	K	XREF: g(2739.6). J ^π : 1476γ to 6 ⁺ 1264; E2 1746γ to 4 ⁺ 995.
2740.9 3	1	38 fs 6	gH	K	XREF: $g(2739.6)$. J^{π} : D γ to 0^{+} .
2741.9 ^c 4	2+			N	J^{π} : L(p,t)=2.
2746.6 3	(≤4)		E G	K N	XREF: G(2746.3). J ^π : 2667γ to 2 ⁺ 80.
2751.9 6			E		
2757.3 4	$(1,2^+)$		G	K	J^{π} : gammas to 0^+ g.s. and 2^+ 80.
2763.9 <i>8</i> 2768.55 <i>6</i>	$(1,2^+)$		E E	K	J^{π} : gammas to 0 ⁺ g.s. and 2 ⁺ 80. J^{π} : 1060 γ to 5 ⁻ 1708, 1153 γ to 4 ⁻ 1615, so J^{π} =(3 ⁻ ,4,5,6 ⁻).
2769.81 ^{<} 15	(5 ⁺)		E	K	J^{π} : 1675 γ to 4 ⁻ 1094; 1458 γ to 6 ⁻ 1311; band assignment.
2778.03 20			E		J^{π} : 2229 γ to 6 ⁺ 549.
2782.9 6	$(1,2^+)$		_	K	J^{π} : 2783 γ to 0 ⁺ g.s.; 2703 γ to 2 ⁺ 80 level.
2786.80 7	$(3,4^+)$		E	m	J^{π} : 2523 γ to 4 ⁺ 264; 1965 γ to 2 ⁺ 821; 385 γ to (4) ⁻ 2402.3.
2788.1 <i>16</i>	0+		E	m	J^{π} : 2524 γ to 4 ⁺ 264.
2789.2 ^c 6 2792.0 4	0 ⁺ 1 ⁺	24.5 fs 17	Н	N K m	J^{π} : L(p,t)=0. J^{π} : M1 2792 γ to 0 ⁺ g.s
					$K=1 (1996Ma18) \text{ from } (\gamma, \gamma').$
2798.1 <i>3</i>	1+	25.6 fs 21	Н	K	J^{π} : M1 2798 γ to 0 ⁺ g.s K=1 (1996Ma18) from (γ, γ') .
2806.5 6			E		
2810.9 ^b 4	(4. 6 ±)		E		J^{π} : 2547 γ to 4 ⁺ 264.
2817.0? 4	$(1,2^+)$		_	K	J^{π} : 2817 γ to 0 ⁺ g.s.; 2737 γ to 2 ⁺ 80.
2819.7 ^b 4 2825.0 ^c 4	2+		E	M	J^{π} : 2556 γ to 4 ⁺ 264.
2825.0° 4 2826.4 <i>3</i>	1 ⁽⁺⁾	38 fs 6	ц	N K	J^{π} : L(p,t)=2. J^{π} : D, $\Delta \pi$ =(no) γ to 0 ⁺ .
		JU 13 U	11	K	K=1 (1996Ma18) from (γ, γ') .
2833.7 5	1 ⁽⁻⁾		Н	K	J^{π} : D, $\Delta \pi = (yes) \gamma$ to 0^+ .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
2842.1 ^c 3 2849.60 5 2850.3 4 2852.0 5 2854.6 ^b 4	0 ⁺ (4 ⁺) 1 ⁻	31 fs 4	E N E H K	$T_{1/2}$: 127 fs 18 if level deexcites to g.s. only. J^{π} : $L(p,t)=0$. J^{π} : 2770 γ to 2 ⁺ 80; 2301 γ to 6 ⁺ 549. J^{π} : E1 2851 γ to 0 ⁺ g.s
2854.6° 4 2856.5 6 2863.6? 5 2872.2 3	(2 ⁺) (1,2 ⁺) 0 ⁺	28 fs 5	E H K K E mN	J^{π} : (Q) 2856 γ to 0 ⁺ in (γ, γ') . J^{π} : 2864 γ to 0 ⁺ g.s.; 2783 γ to 2 ⁺ 80. E(level): from (p,t). J^{π} : L(p,t)=0.
2874.61 <i>3</i> 2878.9 ^c <i>4</i> 2880.6 ^b <i>3</i>	(3,4,5) 2 ⁺		E m N E m	J^{π} : 2611 γ to 4 ⁺ 264; 1781 γ to 4 ⁻ 1094. J^{π} : L(p,t)=2.
2890.65 <i>24</i> 2896.7 <i>3</i> 2901.6 ^b <i>3</i>	(3,4+)		E E E	J^{π} : 2342 γ to 6 ⁺ 549. J^{π} : 2815 γ to 2 ⁺ 80; 2631 γ to 4 ⁺ 264; 1281 γ to 4 ⁻ 1615.
2906.0 ^c 4 2907.8 ^b 3 2920.00 ^b 24	2+		N E E	J^{π} : L(p,t)=2. J^{π} : 2656 γ to 4 ⁺ 264.
2929.9 <i>4</i> 2933.44 <i>18</i>	1 ⁽⁺⁾ 2 ⁺	77 fs <i>12</i>	E H K E N	J ^π : D, $\Delta \pi$ =(no) γ to 0 ⁺ . K=1 (1996Ma18) from (γ , γ'). J ^π : L(p,t)=2.
2934.0 ^k 4 2942.9 5 2946.6 4 2947.4 ^c 4	14 ^{-f} 1(-) 0 ⁺	10.0 fs <i>16</i>	E H K N	J^{π} : D γ to 0^+ ; π from K=0 (1996Ma18) in (γ, γ') . J^{π} : L(p,t)=0.
2950.7 ^b 3 2955.6 8	1		E H K	J^{π} : 2686 γ to 4 ⁺ 264. J^{π} : D γ to 0 ⁺ . $T_{1/2}$: 0.20 ps 3 if level deexcites to g.s. only.
2959.1 <i>10</i> 2961.2 ^c 6 2969.93 6	2 ⁺ 3 ⁺ ,4 ⁺ ,5 ⁺		E N E K	J^{π} : L(p,t)=2. J^{π} : E1 1876γ to 4 ⁻ 1094. Possible 2421γ to 6 ⁺ 549 disfavors J=3.
2972.6 ^b 7 2974.3 5 2979.3 ^b 3	(≤4) 1 (≤4)	30 fs 6	E H K E	J^{π} : 2893 γ to 2 ⁺ 80. J^{π} : D γ to 0 ⁺ . J^{π} : 2158 γ to 2 ⁺ 821.
2982.53 <i>10</i> 2984.03 ^b 23 2991.33 ^b 23 2998.2 4	(3,4,5) (≤4) 0 ⁺		E E E N	J^{π} : 1988 γ to 4 ⁺ 995; 1367 γ to 4 ⁻ 1615. J^{π} : 2911 γ to 2 ⁺ 80. E(level): from (n, γ) E=thermal.
3002.4? <i>4</i> 3009.0° <i>3</i>	(1,2 ⁺) 2 ⁺		E K	J^{π} : L(p,t)=0. J^{π} : 3002 γ to 0 ⁺ g.s.; 2923 γ to 2 ⁺ 80. J^{π} : L(t,p)=2.
3011.77 ^b 23 3019.6 5	(4 ⁺) 2 ⁺		E E N	J ^{π} : 2932 γ to 2 ⁺ 80; 2462 γ to 6 ⁺ 549. E(level): weighted average of 3019.1 4 from (n, γ) E=thermal and 3020.0 5 from (p,t). J ^{π} : L(p,t)=2.
3026.02 ^b 19 3028.6 ^c 6 3030.7 ^b 5	0+		E N	J^{π} : 2477 γ to 6 ⁺ 549. J^{π} : L(p,t)=0. J^{π} : 2769 γ to 4 ⁺ 264.
3033.9 5	(≤4)		E	J^{π} : 2213 γ to 2 ⁺ 821.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XRE	F		Comments
3042.3 ^c 4	2+				N		$\overline{J^{\pi}}$: L(p,t)=2.
3042.8 <i>3</i>	3-,4-,5-		E				J^{π} : M1 1949 γ to 4 ⁻ 1094.
3044	1	69 fs 17		H			K=1 (1996Ma18) from (γ, γ') .
3049.6 <i>4</i> 3049.9 ^c 5	1 ⁺ 2 ⁺	25 fs <i>3</i>	E	H K	N		J^{π} : M1 γ to 0 ⁺ . J^{π} : L(p,t)=2.
3055.95^{b} 23	2 ⁺		E		N		E(level): other E: 3055.1 5 from (p,t).
	2				N		J^{π} : L(p,t)=2.
3063.6 ^b 3			E				
3065.0° 7	(0^+)				N		J^{π} : L(p,t)=(0).
3068.8 ^b 3			E				J^{π} : 2520 γ to 6 ⁺ 549.
3078.0 <i>14</i> 3081.3 ^c 6	2+		E		N		J^{π} : L(p,t)=2.
3081.5	1	35 fs 6		Н	IN		J : L(p,t)=2.
3082.8 5	(4 ⁺)		E				J^{π} : 3003 γ to 2 ⁺ 80; 2533 γ to 6 ⁺ 549.
3087.8 ^b 4			E				
3095.9 6	1(-)	27 fs 3		н к			J^{π} : D, $\Delta \pi = (yes) \gamma$ to 0^+ .
							K=1 (1996Ma18) from (γ, γ') .
3098.4° 6	2+				N		J^{π} : L(p,t)=2.
3099.42 8	(3-)		E				J^{π} : (E1) 2205 γ to 3 ⁺ 896; 2278 γ to 2 ⁺ 821; 2105 γ to 4 ⁺ 995.
3106.0 ^b 6 3111.24 <i>15</i>	$(2^+,3,4^+)$		E E				J^{π} : 3031 γ to 2 ⁺ 80; 2116 γ to 4 ⁺ 995.
3116.4? 5	$(2^+,3,4^-)$ (2^+)		E	K			J^{π} : 3037 γ to 0 ⁺ g.s.; 2853 γ to 4 ⁺ 264.
3116.8 ^c	(-)				N		J^{π} : possibly 0^+ based on forward-peaking of $\sigma(\theta)$ in (p,t).
3118.1 ^b 5			E				
3124.40 20	(4^{+})		E				J^{π} : 2575 γ to 6 ⁺ 549; 2303 γ to 2 ⁺ 821.
3124.5 7	1+	31 fs 4		H K			J^{π} : M1 3124 γ to 0 ⁺ g.s
2127.02 h 25	(4+ 5 6+)		_				K=1 (1996Ma18) in (γ, γ') .
3127.93^{b} 25	$(4^+,5,6^+)$		E				J^{π} : 2579 γ to 6 ⁺ 549; 2864 γ to 4 ⁺ 264.
3131.9 ^b 5 3137.6 ^b 6			E				
3137.6° 6 3139.6° 6	2+		E		N		J^{π} : L(p,t)=2.
3142.7 ^b 5	2		E		IN		\mathbf{J} . $\mathbf{L}(\mathbf{p},t)-2$.
3147.2 ^c			E		N		J^{π} : possibly 0^+ based on forward-peaking of $\sigma(\theta)$ in (p,t).
3151.9 ^b 16	(≤4)		E		-		J^{π} : 2331 γ to 2^{+} 821.
3157.5° 7	0+		_		N		J^{π} : L(p,t)=0.
3158.3 ^b 16			E				
3172.5° 7	2+				N		J^{π} : L(p,t)=2.
3181.1 6	1-	77 fs <i>11</i>		H K			J^{π} : E1 3181 γ to 0 ⁺ g.s
3183.7° 8	2+				M		K=0 (1996Ma18) in (γ, γ') .
3183.7 6 3187.9 ^k 4	$\frac{2}{15^{-f}}$				N	DC	J^{π} : $L(p,t)=2$.
3187.9 4	15 5	21 fs <i>3</i>		Н		RS	
3194.4 ^c 8	2+	-1.100			N		J^{π} : L(p,t)=2.
3198.0 ^b 16	(≤4)		E				J^{π} : 3118 γ to 2 ⁺ 80.
3205.2 ^b 16			E				J^{π} : 2941 γ to 4 ⁺ 264.
3208.0 8	1(+)			н к			J^{π} : D, $\Delta \pi = (no) \gamma$ to 0^+ .
							$T_{1/2}$: 152 fs 25 if level deexcites to g.s. only.
3220	1			H			$T_{1/2}$: 175 fs 34 if level deexcites to g.s. only.
3223.2 ^b 16	(4 ⁺)		E		37		J^{π} : 2402 γ to 2 ⁺ 821; 2675 γ to 6 ⁺ 549.
3237.2 ^c 8	2+				N		J^{π} : $L(p,t)=2$.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
3238.0 ^b 16			E	J^{π} : 2974 γ to 4 ⁺ 264.
3242.6 8	1		H K	$T_{1/2}$: 0.18 ps 4 if level deexcites to g.s. only.
3259.5 ^{@i} 10	16 ⁺ <i>d</i>	0.195 ps +59–16	J	$T_{1/2}$: from B(E2) in Coulomb excitation and adopted 688 γ properties.
3269.4 ^c 8	2+		N	J^{π} : $L(p,t)=2$.
3285.1 ^b 16	(4^{+})		E	J^{π} : 3205 γ to 2 ⁺ 80; 2736 γ to 6 ⁺ 549.
3286.8 ^c 8	2+		N	J^{π} : L(p,t)=2.
3300.0 <i>7</i> 3312.8 ^c	1		H K N	$T_{1/2}$: 0.17 ps 4 if level deexcites to g.s. only. J^{π} : possibly 0^+ based on forward-peaking of $\sigma(\theta)$ in (p,t).
3327.3 ^b 16	(≤4)		E	J^{π} : 3248 γ to 2 ⁺ 80, so J^{π} =1,2,3,4 ⁺ .
3335.0 ^b 16	$(4^+,5^+)$		E	J^{π} : 2439 γ to 3 ⁺ 896; 2786 γ to 6 ⁺ 549.
3338.2 6	(2^{+})	73 fs 25	H K	J^{π} : (Q) γ to 0^+ in (γ, γ') .
3342.0 10	1(+)		н к	J^{π} : D, $\Delta \pi = (\text{no}) \gamma \text{ to } 0^+$.
				$T_{1/2}$: 123 fs 30 if level deexcites to g.s. only.
3342.9° 10	2+		N	J^{π} : L(p,t)=2.
3347.7 ^b 16			E	J^{π} : 2353 γ to 4 ⁺ 995.
3358.7 6	1+	5.4 fs <i>4</i>	HI K	J^{π} : M1 3359 γ to 0 ⁺ g.s
3361.9 ^c 10	2+		N	J^{π} : L(p,t)=2.
3370.9 7	(2^{+})	55 fs <i>11</i>	н к	J^{π} : (Q) γ to 0^+ in (γ, γ') .
3376.6 ^b 16	(4^{+})		E	J^{π} : 3297 γ to 2 ⁺ 80; 2828 γ to 6 ⁺ 549.
3391 <i>I</i>	1+	2.79 fs 22	HI	K=1 (1996Ma18).
3394.5 ^b 16			E	J^{π} : 2300 γ to 4 ⁻ 1094.
3399.3 ^b 16	(≤4)		E	J^{π} : 3320 γ to 2 ⁺ 80.
3409.7,9	1+	9.3 fs <i>12</i>	H K	J^{π} : M1 γ to 0^+ .
3415.5 ^b 16	(≤4)		E	J^{π} : 3336 γ to 2 ⁺ 80.
3429.2° 10	2+		N	J^{π} : L(p,t)=2.
3432.0 ^b 16	(4^{+})		E	J^{π} : 23352 to 2 ⁺ 80; 2883 γ to 6 ⁺ 549.
3439.6 9	1 ⁽⁻⁾	19 fs 4	H K	J^{π} : D, $\Delta \pi = (yes) \gamma$ to 0^+ .
2441.76.10	2+		M	K=0 (1996Ma18) from (γ, γ') .
3441.7 ^c 10 3449	1		N H	J ^{π} : L(p,t)=2. T _{1/2} : 43 fs 9 if level deexcites to g.s. only.
3451.6 ^c 10	2+		n N	J^{π} : L(p,t)=2.
3458 2	1 ⁺	5.9 fs 5	HI	$K=1$ (1996Ma18) from (γ, γ') .
3459.9 ^c 10	2+		N	J^{π} : L(p,t)=2.
3469 2	1-	10.2 fs <i>13</i>	Н	$K=(1) (1996Ma18) in (\gamma, \gamma').$
3471.6 ^c 10	2+		N	J^{π} : $L(p,t)=2$.
3475.7 ^b 16	(≤4)		E	J^{π} : 3396 γ to 2 ⁺ 80.
3481 2	1-	3.0 fs 4	Н	K=0 (1996Ma18) in (γ, γ') .
3482.6° 10	2+		N	J^{π} : L(p,t)=2.
3487.3 ^b 16			E	J^{π} : 2592 γ to 3 ⁺ 896.
3493.3 ^c 10	2+		N	J^{π} : L(p,t)=2.
3496.4 ^b 16	(4^{+})		E	J^{π} : 3417 γ to 2 ⁺ 80; 2950 γ to 6 ⁺ 549.
3499.3 ^b 16			E	J^{π} : 2405 γ to 4 ⁻ 1094.
3504.2 9	1-	22 fs 8	H K	D γ to 0 ⁺ ; π =- based on K=0 (1996Ma18) in (γ, γ') .
3506.3° 10	2+		N	J^{π} : L(p,t)=2.
3507.8 ^b 16	(≤4)		E	J^{π} : 3428 γ to 2 ⁺ 80.
3513.9 ^b 16			E	J^{π} : 2965 γ to 6 ⁺ 549.
3515.7 ^c 12	2+	10.1.6.04	N	J^{π} : L(p,t)=2.
3516	1-	13.1 fs 24	Н	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREI	F	Comments
3521.1 ^b 16	(≤4)		E			J^{π} : 3441 γ to 2 ⁺ 80.
3529	1			H		$T_{1/2}$: 120 fs 25 if level deexcites to g.s. only.
3529.0 ^c					N	J^{π} : possibly 0^+ based on forward-peaking of $\sigma(\theta)$ in (p,t).
3560.0 ^b 16	2+		E		17	J^{π} : 3011 γ to 6 ⁺ 549.
3561.9 ^c 12 3566	2 ⁺ 1			Н	N	J^{π} : L(p,t)=2. T _{1/2} : 0.14 ps 3 if level deexcites to g.s. only.
3569.4 ^c 10	0+			11	N	J^{π} : L(p,t)=0.
3570.9 ^b 16	(4^{+})		E			J^{π} : 2750 γ to 2 ⁺ 821; 3022 γ to 6 ⁺ 549.
3581.1 ^c	()				N	J^{π} : possibly 0^+ based on forward-peaking of $\sigma(\theta)$ in (p,t).
3586.3° 10	0_{+}				N	J^{π} : $L(p,t)=0$.
3588.0 ^b 16			E			J^{π} : 2593 γ to 4 ⁺ 995.
3591	1(+)	33 fs 6		H		K=1 (1996Ma18) from (γ, γ') .
3598	1	17 fs 3		H		$K=(1) (1996Ma18) \text{ from } (\gamma, \gamma').$
3606.8 ^b 16	(≤4)		E			J^{π} : 3527 γ to 2 ⁺ 80.
3617.6 ^c 12 3627	2 ⁺ 1		E	Н	N	J^{π} : L(p,t)=2. T _{1/2} : 152 fs 25 if level deexcites to g.s. only.
3629.9 ^c 12	2+			п	N	J^{π} : L(p,t)=2.
3634	1(-)			Н	.,	$T_{1/2}$: 76 fs 16 if level deexcites to g.s. only.
3643.1 ^b 16	(≤4)		Е			J^{π} : 2822 γ to 2 ⁺ 821.
3657	1(+)	8.9 fs 11		Н		$K=1 (1996Ma18) \text{ from } (\gamma, \gamma').$
3660.9 ^b 16	(≤4)		Е			J^{π} : 2840 γ to 2 ⁺ 821.
3663.9 ^c 10	0+				N	J^{π} : L(p,t)=0.
3680.1 ^b 16	$(2^+,3,4^+)$		E			J^{π} : 2859 γ to 2 ⁺ 821; 2685 γ to 4 ⁺ 995.
3682.5 ^c					N	J^{π} : possibly 0^+ based on forward-peaking of $\sigma(\theta)$ in (p,t).
3696	1	35 fs 8		H		$K=(1) (1996Ma18) \text{ from } (\gamma, \gamma').$
3696.7 ^c					N	J^{π} : possibly 0^+ based on forward-peaking of $\sigma(\theta)$ in (p,t).
3702.5 ^b 16	(≤4)	5 1 f- 0	E			J^{π} : 3623 γ to 2 ⁺ 80.
3703 3714.9 ^c 10	$1^ (0^+)$	5.1 fs 9		Н	N	π =- based on K=0 (1996Ma18) in (γ, γ') . J^{π} : L(p,t)=(0).
3715.2 ^b 16	(0')		E			J^{π} : 2819 γ to 3 ⁺ 896.
3719.2 10	1(-)	9.3 fs 24		Н		J . 2017 to 5 670.
3720.0° 15	2+).5 IS 21			N	J^{π} : L(p,t)=2.
3725.2 ^c 15	2+				N	J^{π} : L(p,t)=2.
3734.4 ^c 10	0_{+}				N	$J^{\pi}: L(p,t)=0.$
3737	1			Н		$T_{1/2}$: 60 fs 17 if level deexcites to g.s. only.
3739.0 ^b 16	$(2^-,3,4^+)$		E			J^{π} : 2918 γ to 2 ⁺ 821; 2645 γ to 4 ⁻ 1094.
3740.4 ^c 15 3745	2 ⁺ 1 ⁽⁻⁾	5 2 fa 0			N	J^{π} : L(p,t)=2.
3755.4 ^b 16	100	5.3 fs 8		Н		$K=(0) (1996Ma18) \text{ from } (\gamma, \gamma').$ J^{π} : 2860 γ to 3 ⁺ 896.
3760.1° 10	0+		E		N	J^{π} : 28007 to 3° 890. J^{π} : $L(p,t)=0$.
3760.1 16	(≤4)		E			J^{π} : 2940 γ to 2 ⁺ 821.
3776	1 ⁽⁺⁾	27 fs 5		Н		$K=1$ (1996Ma18) from (γ, γ') .
3781.7 ^b 16	$(4^+,5,6^+)$	27 10 0	E			J^{π} : 3518 γ to 4 ⁺ 264; 3233 γ to 6 ⁺ 549.
3789	1		_	Н		$T_{1/2}$: 29 fs 7 if level deexcites to g.s. only.
3789.5 ^c 15	2+				N	J^{π} : $L(p,t)=2$.
3799.4 ^b 16			E			J^{π} : 3251 γ to 6 ⁺ 549.
3800	1 ⁽⁻⁾	12 fs <i>3</i>		H		K=0 (1996Ma18) from (γ, γ') .
3806	1+	7.0 fs <i>11</i>		H		K=1 (1996Ma18).
3808.5 ^c 15	2+	10.2.6.10			N	J^{π} : $L(p,t)=2$.
3814	1(-)	10.3 fs 19		H		

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XRE	EF	Comments
3817.0 ^b 16	(≤4)		Е			J^{π} : 2996 γ to 2 ⁺ 821.
3819.4 ^c 15	2+				N	J^{π} : L(p,t)=2.
3835.2 ^b 16			E			J^{π} : 3571 γ to 4 ⁺ 264.
3861.9 ^c 15	2+				N	J^{π} : L(p,t)=2.
3868.7 ^c 15	2+				N	J^{π} : L(p,t)=2.
3869	1			H		$T_{1/2}$: 48 fs 9 if level deexcites to g.s. only.
3876.3 ^c 15	2+				N	J^{π} : $L(p,t)=2$.
3888.4 ^b 16			E			J^{π} : 2993 γ to 3 ⁺ 896.
3895.2 ^b 16			E			J^{π} : 3631 γ to 4 ⁺ 264.
3908.3 ^b 16			E			J^{π} : 3644 γ to 4 ⁺ 264.
3912	1			H		$T_{1/2}$: 44 fs 9 if level deexcites to g.s. only.
3921	$1^{(-)}$	22 fs 5		H	N	$K=1 (1996Ma18) \text{ from } (\gamma, \gamma').$
3928.9 ^c 10	0^{+}				N	J^{π} : L(p,t)=0.
3933.0° 15	2+				N	J^{π} : L(p,t)=2.
3960 ^c					N	E(level): from (p,t).
3964.9 ^c 15	2+				N	J^{π} : L(p,t)=2.
3993 ^c					N	E(level): from (p,t).
4033.5° 15	2+				N	J^{π} : L(p,t)=2.
4055.9 ^c 15	2+				N	J^{π} : L(p,t)=2.
4069 ^c					N	E(level): from (p,t).
4075.6 ^c 15	2+				N	J^{π} : L(p,t)=2.

 $[\]dagger$ From least-squares fit to E γ , except where noted, omitting questionably- or multiply-placed transitions unless all gammas deexciting a given level are of that character. The 154.120y, 511.8y, 1029.45y and 1875.69y were also excluded because their Ey fits their placement particularly poorly. Nevertheless, 24 of the remaining Ey data differ from their expected values by at least 3σ (5 of those by at least 5σ), so presumably some incorrect placements remain. The reduced χ -squared for the fit is 2.4.

[‡] Nilsson analysis of angular distributions and configuration strengths in ¹⁶⁷Er(d,p), (t,d), except where noted.

[#] From radiative widths in 168 Er(γ,γ), (γ,γ'), except where noted. $T_{1/2}$ for E(level)=2363 and higher may be upper limits since Γ_{20}/Γ includes only the branch to the 79.8 level in addition to the g.s. branch.

 $^{^{@}}$ From Coulomb excitation. $^{\&}$ From 167 Er(d,p), (t,d).

^a From 167 Er(n, γ) E=2, 24 keV.

^b From Ey for primary y feeding level in (n,y) E=thermal.

^c From (p,t).

^d Based on established $J^{\pi}=0^+$ for the bandhead, mult=E2 for the 80 γ connecting the J=2 and J=0 band members and the uniform progression of level energies, definite J^{π} is assigned to members of the 0^+ g.s. band.

^e Based on established $J^{\pi}=2^{+}$ for the bandhead, mult=M1+E2 for the 75 γ connecting the J=3 and J=2 band members and the uniform progression of level energies, definite J^{π} is assigned to J \leq 10 members of the K+2 γ vibration band.

^f Based on established $J^{\pi}=5^{-}$ for the J=5 member, mult=E2 for the 217 γ connecting the J=6 and J=4 band members and the uniform progression of level energies, definite J^{π} is assigned to all members of the $K^{\pi}=4^{-}$ band built on the 1094 level.

^g Based on established $J^{\pi}=5^+$ for the J=5 member, mult=E2 for the 186y connecting the J=5 and J=3 band members and the uniform progression of level energies, definite J^{π} is assigned to all members of the $K^{\pi}=3^{+}$ band built on the 1654 level.

^h Band(A): $K^{\pi}=0^{+}$ band (2). A=9.9, B=-8.3 (J=0, 2, 4, 6 levels).

ⁱ Band(B): $K^{\pi}=0^{+}$ g.s. band. A=13.3, B=-6.3 (J=0, 2, 4, 6 levels).

^j Band(C): $K^{\pi}=2^{+}$ K+2 γ -vibration band. A=12.5, B=-4.9 (J=2, 3, 4, 5 levels).

^k Band(D): $K^{\pi}=4$ - 2-quasineutron band (2003Wu07). Primarily (ν 7/2[633])+(ν 1/2[521]) with 25% admixture of (π $7/2[523]+(\pi 1/2[411])$ (1985Bu18). A=9.9, B=-1.6 (J=4, 5, 6, 7 levels).

¹ Band(E): $K^{\pi}=3^{-}$ band (1). A=9.2, B=3.1 (J=3, 4, 5, 6 levels). Configuration: (v 7/2[633])-(v 1/2[521]) (1985Bu12).

```
<sup>m</sup> Band(F): K^{\pi}=1^{-} band (1). Octupole. A=7.0 (J=1, 2, 3 levels). Configuration: (v 7/2[633])-(v 5/2[512]) (1985Bu12); probably
 heavily mixed with K^{\pi}=3^{-} (\nu 7/2[633])-(\nu 1/2[521]).
<sup>n</sup> Band(G): K^{\pi}=0^{+} band (3). A=12.0, B=-12.0 (J=0, 2, 4, 6 levels).
<sup>o</sup> Band(H): K^{\pi}=2^{-} octupole band. A=11.0, B=-19.9 (J=2, 3, 4, 5 levels). Configuration: principal contributions from (\nu
 7/2[633])-(v 3/2[521]) and (v 7/2[523])-(v 3/2[411]) (1987Me04).
<sup>p</sup> Band(I): K^{\pi}=3^{+} band (1). A=10.5, B=-5.3 (J=3, 4, 5, 6 levels).
<sup>q</sup> Band(J): K^{\pi}=6^{-} band (1) (2010Dr02). A=8.70, B=+3.5 (J=6, 7, 8 levels). Configuration: (v 7/2[633)]+(v 5/2[512]) (1985Bu12).
<sup>r</sup> Band(K): K^{\pi}=0^{-} band (1). Octupole vibration. A=12.8 (J=1, 3 levels). Configuration: principal contributions from (\nu
 7/2[633])-(v 7/2[514]) and (v 7/2[523])-(v 7/2[404]) (1987Me04).
<sup>s</sup> Band(L): K^{\pi}=3^{-} band (2). A=8.1, B=19.3 (J=3, 4, 5, 6 levels). Configuration: (\nu 7/2[633]) - (\nu 1/2[510]) (1985Bu12).
<sup>t</sup> Band(M): K^{\pi}=0^{+} (\pi 1/2[411])-(\pi 1/2[411]) band. A=9.9 (J=0, 2, 4 levels).
<sup>u</sup> Band(N): K^{\pi}=2^{+} band (2). A=11.0 (J=2, 3, 4 levels).
^{\nu} Band(O): K^{\pi}=4^{-} (\pi 7/2[523]) +(\pi 1/2[411]) band. A=9.7 (J=4, 5 levels).
<sup>w</sup> Band(P): K^{\pi}=2^{+} band (3). A=10.7 (J=2, 3, 4 levels).
<sup>x</sup> Band(Q): K^{\pi}=1^{-} band (2). A=8.2, B=35.5 (J=1, 2, 3, 4 levels).
<sup>y</sup> Band(R): K^{\pi}=3^{-} (\pi 7/2[523]) -(\pi 1/2[411]) band. A=11.2 (J=3, 4, 5 levels).
<sup>z</sup> Band(S): K^{\pi}=4^{+} \gamma \gamma band. A=11.4 (J=4, 5 levels).
<sup>1</sup> Band(T): K^{\pi}=4^{-} band (3). A=8.8 (J=4, 5 levels). Configuration: (v 7/2[633])+(v 1/2[510]) (1985Bu12).
<sup>2</sup> Band(U): K^{\pi}=1^{+} band (1). A=11.0 (J=1, 2 levels).
<sup>3</sup> Band(V): K^{\pi}=0^{+} band (5). Bandhead undetermined.
<sup>4</sup> Band(W): K^{\pi}=(3)^{+} band (2).
<sup>5</sup> Band(X): K^{\pi}=(2)^{+} (\pi 3/2[411])+(\pi 1/2[411]) band. A=10.3 (J=2, 3 levels).
<sup>6</sup> Band(Y): K^{\pi}=2^{-} band (2). A=12.1 (J=2, 3 levels).
<sup>7</sup> Band(Z): K^{\pi}=4^{+} band (2).
<sup>8</sup> Band(b): K^{\pi} = (3)^{-} band (4). A=10.7 (J=3, 4 levels).
<sup>9</sup> Band(c): K^{\pi}=3^{-} band (5) ?. A=9.9 (J=3, 4 levels).
! Band(d): K^{\pi}=3^{-} band (6). A=9.3 (J=3, 4 levels).
  Band(a): K^{\pi} = (5)^{-} band (1).
Band(f): K^{\pi}=(1^+) (\pi 3/2[411])-(\pi 1/2[411]) band. A=9.5 (J=1, 2 levels).
<sup>/</sup> Band(g): K^{\pi}=2^{+} band (5). A=9.9 (J=2, 3 levels).
< Band(e): K^{\pi}=(4)^{+} band (3).
```

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}{\ddagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. [†]	δ^{\dagger}	α^f	Comments
79.804	2+	79.804 <i>1</i>	100	$0.0 0^{+}$	E2		7.04	B(E2)(W.u.)=213 4
264.0888	4+	184.285 <i>1</i>	100	79.804 2+	E2		0.331	B(E2)(W.u.)=319 9
548.7470	6+	284.655 2	100	264.0888 4+	E2		0.0811	B(E2)(W.u.)=424 18
821.1685	2+	557.079 <i>3</i>	1.74 ^d 8	264.0888 4+	E2 ^c		0.01252	B(E2)(W.u.)=0.61 4
		741.356 <i>3</i>	100^{d} 2	79.804 2+	E2+M1 ^b	>25 ^{b#}	0.00639 9	$B(M1)(W.u.) < 1.6 \times 10^{-5}$; $B(E2)(W.u.) > 8.0$
		821.164 5	93.6 <mark>d</mark> 4	$0.0 0^{+}$	E2		0.00510 8	B(E2)(W.u.)=4.68 16
895.7947	3+	74.626 3	0.04 1	821.1685 2+	M1+E2	+1.42 +4-5	8.35 13	B(M1)(W.u.)=0.0018 +5-7; B(E2)(W.u.)= 3.1×10^2 +8-12 δ: sign from $\gamma\gamma(\theta)$ (1996Al31) in ε decay; magnitude from L1/L3 in (n, γ) E=thermal (1980Sc15).
		631.703 <i>3</i>	18.1 ^d 2	264.0888 4+	M1+E2	-4.8 [@] 2	0.00965 14	B(M1)(W.u.)=0.000172 +18-51; B(E2)(W.u.)=4.6 +3-14
		815.990 <i>4</i>	$100^{d} 2$	79.804 2 ⁺	M1+E2	+17.7 <mark>&</mark> 23	0.00518 8	$B(M1)(W.u.)=3.4\times10^{-5} +9-13$; $B(E2)(W.u.)=7.4 +5-21$
928.3029	8+	379.545 <i>3</i>	100	548.7470 6+	E2		0.0346	B(E2)(W.u.)=354 13
994.7474	4+	(98.95)		895.7947 3+				B(E2)(W.u.)=505 +122-40
								B(E2)(W.u.): From measured B(E2) in Coulomb excitation. E_{γ} : from level energy difference. Existence implied in Coulomb excitation; possibly obscured in (n,γ) E=thermal by 99 γ from 1193 level.
		173.577 <i>1</i>	0.80^{d} 5	821.1685 2+	E2		0.406	B(E2)(W.u.)=92 20
		445.995 <i>4</i>	1.1 <mark>d</mark> 1	548.7470 6+	[E2]		0.0222	B(E2)(W.u.)=1.13 25
		730.660 2	100 ^d 2	264.0888 4+	M1+E2	+13 +16-3	0.00664 10	B(M1)(W.u.)=6.E-5 +15-6; B(E2)(W.u.)=8.6 18 Mult.,δ: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ from ce data in (n,γ) .
		914.944 6	59.1 ^d 3	79.804 2 ⁺	E2		0.00404 6	B(E2)(W.u.)=1.7 4
1094.0383	4-	99.289 2	7.77 ^d 8	994.7474 4+	E1+M2 ^b	-0.06^{b} 5	0.43 23	$B(E1)(W.u.)=1.2\times10^{-7}$ 3; $B(M2)(W.u.)=0.20 +34-20$
		198.241 <i>I</i>	100 ^d 2	895.7947 3+	E1+M2 ^b	-0.12 ^b 3	0.084 18	$B(E1)(W.u.)=1.94\times10^{-7} 8$; $B(M2)(W.u.)=0.33 17$
		272.876 2	0.17 ^d 1	821.1685 2+	M2		0.754	B(M2)(W.u.)=0.0079 6
		829.958 7	12.8 ^d 1	264.0888 4+	E1+M2 ^b	-0.05^{b} 3	0.00201 10	$B(E1)(W.u.)=3.43\times10^{-10}\ 10;\ B(M2)(W.u.)=6\times10^{-6}\ +7-6$
		1014.11 4	0.135^{d} 5	79.804 2 ⁺	M2+E3 ^b	-0.55^{b} 2	0.01304 21	$B(M2)(W.u.)=6.8\times10^{-6} 4$; $B(E3)(W.u.)=0.00142 11$
1117.5703	5 ⁺	122.821 <i>I</i>	0.38 6	994.7474 4+	M1+E2	1.57 +7-9	1.434 21	$B(M1)(W.u.)=0.0044 +9-17; B(E2)(W.u.)=3.4\times10^2 +7-13$
		221.775 2	3.6 <i>3</i>	895.7947 3+	E2		0.179	$B(E2)(W.u.)=2.4\times10^2 + 4-9$
		568.821 6	16.2 8	548.7470 6 ⁺	E2+M1	3.6 <i>3</i>	0.01284 25	B(M1)(W.u.)=0.00047 +10-18; $B(E2)(W.u.)=8.9 +11-31$
		853.473 <i>6</i>	100 9	264.0888 4+	M1+E2	3.6 +24-8	0.00500 21	B(M1)(W.u.)=0.0009 +11-9; B(E2)(W.u.)=7.2 +13-27
1193.0251	5-	75.466 7	0.28 8	1117.5703 5+	E1		0.682	$B(E1)(W.u.)=4.4\times10^{-7} 15$
		98.982 2	100 15	1094.0383 4	E2		3.06	Mult.: from $\alpha(K)$ exp in ε decay. B(E2)(W.u.)=330 80 E _{γ} ,I _{γ} : possibly includes contribution from an expected γ from 995 level.

γ (168Er) (continued)

					/(Li) (commuca)		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. [†]	δ^{\dagger}	α^f	Comments
1193.0251	5-	644.277 5	11.0 13	548.7470 6+	E1		0.00324 5	B(E1)(W.u.)= $2.8 \times 10^{-8} 6$ Other Iy: 8.2 14 in ε decay.
		928.935 5	53.0 20	264.0888 4+	E1		1.57×10^{-3}	B(E1)(W.u.)= $4.5 \times 10^{-8} 8$ Other Iy: 41.8 II in ε decay, 40 5 in β^- decay.
1217.169	0+	1137.357 <i>16</i>	100		E2 E0		0.00259 4	E_{γ} , Mult.: from ε decay.
1263.9047	6+	146.331 7	0.78 16		M1+E2	1.9 +4-3	0.784 19	B(M1)(W.u.)=0.0019 8; B(E2)(W.u.)=1.5×10 ²
		269.161 2 335.589 3 715.163 6	17.8 <i>13</i> 0.77 <i>14</i> 100 <i>4</i>	928.3029 8+	E2 [E2] M1+E2	3.0 +16-6	0.0964 0.0494 0.00720 <i>19</i>	B(E2)(W.u.)=202 22 B(E2)(W.u.)=2.9 6 B(M1)(W.u.)=0.0009 9; B(E2)(W.u.)=7.7 11 Other δ : -1.7 +3-9 or -50 +150-20 from
1276.2716	2+	999.827 <i>11</i> (59.17)	54 <i>3</i> 0.15 <i>8</i>		E2 [E2]		0.00336 <i>5</i> 24.4	$(n,n'\gamma)$. B(E2)(W.u.)=0.87 9 E _{γ} ,I _{γ} : E γ from level energy difference. Unobserved γ needed for intensity balance at the 1217 level in ε decay.
		380.479 <i>5</i> 455.096 <i>3</i>	2.7 <i>6</i> 5.4 <i>8</i>	821.1685 2+	E2		0.00328.5	B(E2)(W.u.)=2.2 +8-22
		1196.513 20	57 3		M1+E2(+E0)	-5.0 +19-26	0.00328 3	B(E2)(W.u.)=2.2 +6-22 B(M1)(W.u.)=0.0016 +6-16 Other Iy: 38 10 from β^- decay. Mult., δ : D+Q with δ =-5.0 +19-26 from (n,n' γ). α (K)exp in (n, γ) and ε decay is consistent with pure M1 but allows small E0 component; 1999Wo07 estimate ρ^2 =0.8×10 ⁻³ 8.
1311.4606	6-	1276.27 <i>3</i> 118.437 <i>I</i>	54 <i>7</i> 27.8 <i>13</i>	1193.0251 5	E2 E2		0.00208 <i>3</i> 1.568	B(E2)(W.u.)=0.37 +14-37 I _γ : weighted average of 28.7 19 from 170 Er(136 Xe,Xγ), 28.2 22 from 1991DaZT in (n,γ) E=thermal and 25 3 from (n,n'γ). Other: 20.6 8 (2007ChZX, Budapest data) in (n,γ) E=thermal.
1070.005		217.422 <i>1</i> 762.75 <i>4</i>	100 <i>4</i> 0.50 <i>17</i>	1094.0383 4 ⁻ 548.7470 6 ⁺	E2		0.191	
1358.899	1-	1279.100 23	100 ^d 6	79.804 2+	E1			E_{γ},I_{γ} : from ε decay. E_{γ},I_{γ} : from ε decay.
1396.826	10 ⁺	1358.904 <i>14</i> 468.529 <i>5</i>	28.8 <i>15</i> 100		[E2]		0.0195	E_{γ},I_{γ} : from ε decay. B(E2)(W.u.)=308 13
	1193.0251 1217.169 1263.9047 1276.2716 1311.4606	1193.0251 5 ⁻ 1217.169 0 ⁺ 1263.9047 6 ⁺ 1276.2716 2 ⁺ 1311.4606 6 ⁻	1193.0251 5 644.277 5 928.935 5 1217.169 0+ 1137.357 16 1217.1 1263.9047 6+ 146.331 7 269.161 2 335.589 3 715.163 6 1276.2716 2+ (59.17) 380.479 5 455.096 3 1012.190 10 1196.513 20 1311.4606 6- 1276.27 3 118.437 1 1358.899 1- 537.76 6 1279.100 23 1358.904 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1193.0251 5 ⁻ 644.277 5 11.0 13 548.7470 6 ⁺ 928.935 5 53.0 20 264.0888 4 ⁺ 1217.169 0 ⁺ 1137.357 16 100 79.804 2 ⁺ 1263.9047 6 ⁺ 146.331 7 0.78 16 1117.5703 5 ⁺ 269.161 2 17.8 13 994.7474 4 ⁺ 3355.589 3 0.77 14 928.3029 8 ⁺ 715.163 6 100 4 548.7470 6 ⁺ 1276.2716 2 ⁺ (59.17) 0.15 8 1217.169 0 ⁺ 380.479 5 2.7 6 895.7947 3 ⁺ 455.096 3 5.4 8 821.1685 2 ⁺ 1012.190 10 100 4 264.0888 4 ⁺ 1196.513 20 57 3 79.804 2 ⁺ 1311.4606 6 ⁻ 118.437 1 27.8 13 1193.0251 5 ⁻ 193.888 1 1.8 3 1117.5703 5 ⁺ 217.422 1 100 4 1094.0383 4 ⁻ 762.75 4 0.50 17 548.7470 6 ⁺ 1358.899 1 ⁻ 537.76 6 0.88 18 821.1685 2 ⁺ 1279.100 23 100 d 6 79.804 2 ⁺ 1279.100 23 100 d 6 79.804 2 ⁺ 1279.100 23 100 d 6 79.804 2 ⁺ 1358.904 14 28.8 15 0.0 0 ⁺	1193.0251 5 644.277 5 11.0 13 548.7470 6 ⁺ E1 928.935 5 53.0 20 264.0888 4 ⁺ E1 1217.169 0 ⁺ 1137.357 16 100 79.804 2 ⁺ E2 1217.1 0.0 0 0 ⁺ E0 1217.1 0.0 0 0 ⁺ E0 1217.1 263.9047 6 ⁺ 146.331 7 0.78 16 1117.5703 5 ⁺ M1+E2 269.161 2 17.8 13 994.7474 4 ⁺ E2 335.589 3 0.77 14 928.3029 8 ⁺ [E2] 715.163 6 100 4 548.7470 6 ⁺ M1+E2 1276.2716 2 ⁺ (59.17) 0.15 8 1217.169 0 ⁺ [E2] 380.479 5 2.7 6 895.7947 3 ⁺ 455.096 3 5.4 8 821.1685 2 ⁺ 1012.190 10 100 4 264.0888 4 ⁺ E2 1196.513 20 57 3 79.804 2 ⁺ M1+E2(+E0) 1311.4606 6 ⁻ 1276.27 3 54 7 0.0 0 ⁺ E2 1196.513 20 57 3 79.804 2 ⁺ M1+E2(+E0)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

19

γ (168Er) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f \qquad J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^f	Comments
1403.7357	(2)	507.936 <i>3</i>	3.2 4	895.7947 3+				
		582.567 <i>3</i>	31.9 20	821.1685 2+	E1		0.00401 6	
		1323.913 20	100 4	$79.804 2^+$	E1			$\delta(D,Q) = +0.05 + 11 - 6$ from $(n,n'\gamma)$.
1411.0959	4+	134.824 <i>I</i>	5.8 13	1276.2716 2+				
		293.523 2	1.05 21	1117.5703 5 ⁺	M1+E2	1.4 + 14 - 5	0.097 16	B(M1)(W.u.)<0.0030; B(E2)(W.u.)<23
		416.352 <i>4</i>	14.1 <i>11</i>	994.7474 4+	M1+E2	1.7 + 11 - 5	0.034 5	B(M1)(W.u.)<0.0089; B(E2)(W.u.)<47
		515.303 2	19.7 23	895.7947 3+	E2		0.01522	B(E2)(W.u.)<23
		589.913 8	3.2 5	821.1685 2+	E2		0.01088	B(E2)(W.u.)<1.9
		862.355 11	81 4	548.7470 6+	E2		0.00459 7	B(E2)(W.u.)<7.2
		1146.998 9	67 <i>4</i>	264.0888 4+	M1		0.00443 7	B(M1)(W.u.) < 0.0040
		1331.324 <i>15</i>	100 8	79.804 2+	E2		0.00193 <i>3</i>	B(E2)(W.u.)<1.0
1422.12	0_{+}	205.1		1217.169 0+	E0			E_{γ} ,Mult.: from ε decay.
		1342.44 7	100	79.804 2+	E2		0.00190 <i>3</i>	
		1422.2		$0.0 0^+$	E0			E_{γ} , Mult.: from ε decay.
1431.466	3-	535.642 <mark>8</mark> 21	<0.41 <mark>8</mark>	895.7947 3+	[E1]		0.00480 7	$B(E1)(W.u.)=3.62\times10^{-8}$
		1167.396 <i>15</i>	100 8	264.0888 4+	E1		1.04×10^{-3}	$B(E1)(W.u.)=1.70\times10^{-6}$
		1351.54 <i>4</i>	99 <i>4</i>	79.804 2 ⁺	E1		8.93×10^{-4}	$B(E1)(W.u.)=1.09\times10^{-6}$
		1431.7 ^d 4	0.50 ^d 18	$0.0 0^{+}$	[E3]		0.00328 5	B(E3)(W.u.)=3.58
					1			B(E3)(W.u.)=3.75 from measured $B(E3)=0.0436$
								in Coulomb excitation (1978Mc02).
1432.9508	7+	169.043 <i>3</i>	1.07 21	1263.9047 6+	M1+E2	1.5 + 4 - 2	0.505 20	B(E2)(W.u.)=198 +87-183
								δ : estimate from (n,γ) E=thermal based on Alaga
								rule.
								B(E2)↓: From measured B(E2) in Coulomb
								excitation.
		315.383 <i>3</i>	37.2 24	1117.5703 5 ⁺	E2		0.0594	B(E2)(W.u.)=380 +14-176
								B(E2)↓: From measured B(E2) in Coulomb
								excitation.
		504.644 <i>4</i>	14.1 <i>17</i>	928.3029 8+	M1+E2	< 0.22	0.0337 7	B(E2)(W.u.)=17 +14-7
								Mult., δ : $\alpha(K)$ exp in (n,γ) E=thermal implies
								δ <0.22, but measured B(E2) requires nonzero E2
								component.
								$B(E2)\downarrow$: From measured $B(E2)$ in Coulomb
								excitation.
		884.219 9	100 10	548.7470 6+	M1+E2	1.3 + 8 - 4	0.0058 8	B(E2)(W.u.)=12 +7-5
								B(E2)↓: From measured B(E2) in Coulomb
								excitation.
1448.9555	7-	137.494 <i>I</i>	14.0 22	1311.4606 6	E2		0.916	I_{γ} : unweighted average of 11.5 14 from 1991DaZ7
								in (n,γ) E=thermal and 16.1 13 from
								$^{170}\text{Er}(^{136}\text{Xe,X}\gamma)$. Other Iy: 16.2 25
								(2007ChZX) from (n,γ) E=thermal for probable
								(2007CHZA) from (ii, y) E-mermar for probable

20

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\perp}^{\ddagger}$	E_f J_f^π	Mult. [†]	δ^{\dagger}	α^f	Comments
1448.9555	7-	185.056 <i>5</i> 255.929 <i>1</i> 520.667 9	0.72 <i>16</i> 100 <i>4</i> 1.6 <i>3</i>	1263.9047 6 ⁺ 1193.0251 5 ⁻ 928.3029 8 ⁺	E2		0.1130	
1493.133	2+	900.206 <i>15</i> 70.9 498.46 <i>6</i> 597.327 <i>7</i>	13.5 <i>18</i> 1.4 5 5.5 <i>10</i>	548.7470 6 ⁺ 1422.12 0 ⁺ 994.7474 4 ⁺ 895.7947 3 ⁺	(E2)		11.35	E_{γ} ,Mult.: from L2/L3 in ε decay.
		671.961 <i>9</i> 1229.080 <i>15</i> 1413.317 <i>23</i>	6.7 <i>12</i> 100 <i>7</i> 84 <i>6</i>	821.1685 2 ⁺ 264.0888 4 ⁺ 79.804 2 ⁺	E2 M1+E2	+0.7 4	0.00223 <i>4</i> 0.00241 <i>25</i>	Mult., δ : $\alpha(K)$ exp consistent with M1 in (n,γ) ; D+Q from $(n,n'\gamma)$ with δ =+0.7 4.
1511 554	2-	1493.09 8	22 4	0.0 0+	E2		1.59×10^{-3}	
1541.5564	3-	110.2 ⁱ 348.523 2	1.48^{d} 3	1431.466 3 ⁻ 1193.0251 5 ⁻	M1(+E2) E2		2.10 7 0.0442	E_{γ} ,Mult.: from ε decay. B(E2)(W.u.)=2.02
		447.515 <i>3</i> 546.802 <i>5</i>	$100^{d} \ 2$ $11.1^{d} \ 2$	1094.0383 4 ⁻ 994.7474 4 ⁺	$M1+E2^{b}$ $E1(+M2)^{b}$	-0.09^{b} 1 +0.007 b 23	0.0463 0.00460 <i>10</i>	B(M1)(W.u.)=0.0167; B(E2)(W.u.)=0.31 7 B(E1)(W.u.)=1.03×10 ⁻⁵ ; B(M2)(W.u.)=0.008 +51-8
		645.775 <i>15</i>	6.26 ^d 6	895.7947 3+	E1		0.00323 5	B(E1)(W.u.)= 3.53×10^{-6} Other I γ : 8.2 II from β^- decay, 17 3 from (n, γ) E=thermal.
		720.392 5	51.0 ^d 5	821.1685 2+	E1+M2 ^b	-0.012 ^b 10	0.00259 4	B(E1)(W.u.)= 2.07×10^{-5} ; B(M2)(W.u.)= 0.03 + $5-3$
		1277.451 ^d 5	7.04 ^d 7	264.0888 4+	E1+M2 ^b	-0.040 ^b 18	9.47×10 ⁻⁴ 19	$B(E1)(W.u.)=5.1\times10^{-7};$ B(M2)(W.u.)=0.0023 21
		1461.750 ^d 4	1.03^{d} 1	79.804 2+	[E1]		8.66×10 ⁻⁴ <i>13</i>	$B(E1)(W.u.)=5.0\times10^{-8}$
1541.7094	(4)	1541.46 25 110.245 <i>4</i> 137.974 <i>4</i>	0.0096^{d} 5 0.31 6 1.6 3	0.0 0 ⁺ 1431.466 3 ⁻ 1403.7357 (2) ⁻	[E3] E2		0.00282 <i>4</i> 0.904	B(E3)(W.u.)=0.230
		546.960 <i>5</i> 645.939 <i>11</i>	28 <i>6</i> 17 <i>3</i>	994.7474 4 ⁺ 895.7947 3 ⁺	[E1] [E1]		0.504	
1569.4527	(2)-	1277.592 <i>20</i> 27.80	100 13	264.0888 4 ⁺ 1541.5564 3 ⁻	E1 M1,E2		9.35×10 ⁻⁴ <i>13</i> 5×10 ² <i>5</i>	E_{γ} , Mult.: from ε decay.
		165.3 673.666 <i>4</i> 748.281 <i>4</i>	$38^{d} 2$ $100^{d} 2$	1403.7357 (2) ⁻ 895.7947 3 ⁺ 821.1685 2 ⁺	M1(+E2) E1 E1		0.58 <i>11</i> 0.00296 <i>5</i> 0.00239 <i>4</i>	E _{γ} ,Mult.: from ε decay. B(E1)(W.u.)=0.00046 +9-13 B(E1)(W.u.)=0.00089 +17-23
1574.117	5-	1489.66 ^d 3 1569.5 ^d 4 1025.377 11	$0.50^{d} \ 3$ $0.005^{d} \ 2$ $58 \ 4$	79.804 2 ⁺ 0.0 0 ⁺ 548.7470 6 ⁺	[M2] E1		1.31×10^{-3}	B(M2)(W.u.)=0.009 +4-5

			.a.		д.	.a.	C	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^f	Comments
1574.117	5-	1310.030 8	100 4	264.0888 4+	E1		9.14×10 ⁻⁴ 13	
1605.8503	8-	156.884 <i>4</i>	7.1 8	1448.9555 7				I _{γ} : weighted average of 7.4 9 from $^{170}\text{Er}(^{136}\text{Xe}, X\gamma)$ and 4.9 24 from (n, γ) E=thermal.
		294.390 2	100	1311.4606 6-	E2		0.0731	
1615.3420	4-	73.784 3	3.6 8	1541.5564 3	M1+E2	0.11 + 3 - 2	6.87	
	-	303.878 4	0.93 15	1311.4606 6				
		422.318 <i>4</i>	100 4	1193.0251 5	M1		0.0540	
		497.768 6	17.9 23	1117.5703 5+	E1		0.00564 8	
		521.303 3	13.9 19	1094.0383 4	M1+E2	1.1 +9-5	0.022 5	
		620.590 17	3.6 5	994.7474 4+		1.1 . , ,	0.022	
		719.550 5	72 8	895.7947 3+	E1+M2	-0.0074	0.00259 4	δ : from $\gamma\gamma(\theta)$ in ε decay.
		1351.2^{d}	$\approx 3.9^{\mathbf{d}}$	264.0888 4+	<u>_</u>			11(4)
1616.8060	6 ⁺	205.710 <i>I</i>	~3.9 27 <i>4</i>	1411.0959 4 ⁺	E2		0.229	
1010.0000	U	352.900 <i>3</i>	7.7 9	1263.9047 6 ⁺	M1+E2		0.065 22	
		499.233 3	15.2 18	1117.5703 5 ⁺	M1+E2	1.0 +9-5	0.003 22	B(M1)(W.u.)<0.0072; B(E2)(W.u.)<13
		622.059 5	7.0 9	994.7474 4 ⁺	E2	1.0 +9-3	0.026 6	B(E2)(W.u.)<2.2
		688.538 20	8.0 23	928.3029 8 ⁺			0.00936 14	B(E2)(W.u.)<2.2 B(E2)(W.u.)<1.5
		1068.079 <i>13</i>	8.0 23 100 <i>16</i>	548.7470 6 ⁺	[E2] M1		0.00526 8	B(M1)(W.u.)<0.0050
		1352.53 13	≈38	264.0888 4 ⁺	E2		0.00320 8	B(E2)(W.u.)<0.04
								I _{γ} : estimate from I γ (1351.2 γ)/I γ (422.3 γ) for 1615.3 level in ¹⁶⁸ Tm ε decay and I γ (1352.5 γ)/I γ (1068.1 γ) for 1616.8 level in ¹⁶⁷ Er(n, γ) E=thermal.
1624.507	8+	191.555 <i>10</i>	1.4 7	1432.9508 7+	[M1,E2]		0.37 9	B(E2)(W.u.)=27 +15-27 B(E2)(W.u.) from measured B(E2) in Coulomb excitation.
		227.705 10	3.9 10	1396.826 10+	[E2]		0.1643	B(E2)(W.u.)=120 50
								Other B(E2)(W.u.): 1.7 +7-17 from measured B(E2) in Coulomb excitation.
		360.599 <i>4</i>	24 5	1263.9047 6+	E2		0.0401	B(E2)(W.u.)=70 30
		696.132 28	32 10	928.3029 8+	[M1,E2]		0.011 4	B(E2)(W.u.)=7.0 +5-9 B(E2)(W.u.) from measured B(E2) in Coulomb
		1075.64 8	100 31	548.7470 6+	[E2]		0.00290 4	excitation. B(E2)(W.u.)=1.3 6 Other B(E2)(W.u.): 0.43 +4-3 from measured B(E2) in Coulomb excitation.
1629.698	4-,5-,6-	436.672 5	100 22	1193.0251 5-	M1		0.0495	· /
	,-· ,	535.642 ⁸ 21	<30 ⁸	1094.0383 4				
1633.4627	3-	64.0		1569.4527 (2)	(E2)		17.36	E_{γ} : from ε decay. Mult.: from L2/L3 in ε decay.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
1633.4627	3-	638.710 8	79 9	994.7474 4+	E1	0.00330 5	B(E1)(W.u.)=0.00072 +19-25
		737.686 4	100 5	895.7947 3+	E1	0.00246 4	B(E1)(W.u.)=0.00059 +15-19
		812.287 11	89 11	821.1685 2+			
		1553.5 ^d 7	0.4 ^d 2	79.804 2+			
		(1633.46)	0.1 2	$0.0 0^{+}$			B(E3)↓=4.3 9
		()					$B(E3)\downarrow$: From measured $B(E3)=0.050$ 10 in Coulomb excitation.
1653.5486	3+	84.096 <i>3</i>	0.69 19	1569.4527 (2)-	E1	0.514	(),•
		111.985 <i>13</i>	0.070 25	1541.5564 3			
		249.809 <i>3</i>	0.26 5	1403.7357 (2)-			
		559.510 <i>4</i>	100 4	1094.0383 4	E1	0.00437	
		757.84 <i>3</i>	0.94 25	895.7947 3+	M1	0.01220	
		832.36 4	10.1 <i>19</i>	821.1685 2+			
1656.274	$(4)^{+}$	163.137 <mark>8</mark> 2	<1.06 ^g	$1493.133 2^+$			
		538.68 ⁸ 3	<1.9 ⁸	1117.5703 5 ⁺			Mult.: E2 from $\alpha(K)$ exp in (n,γ) E=thermal for doubly-placed γ .
		661.523 7	2.8 5	994.7474 4+	M1	0.01713	
		760.54 9	1.4 3	895.7947 3+			
		835.14 <i>3</i>	2.3 9	821.1685 2+			
		1107.495 <i>19</i>	37 <i>3</i>	548.7470 6+	E2	0.00273 4	
		1392.209 <i>13</i>	100 5	264.0888 4+	M1	0.00283 4	
		1576.58 ⁸ 8	<11.3 ^g	79.804 2+			
1707.9929	5-	92.652 <i>1</i>	14.0 21	1615.3420 4-	M1	3.54	
		166.434 <i>I</i>	3.1 6	1541.5564 3			
		259.034 5	0.50 10	1448.9555 7	3.61	0.0625	
		396.530 <i>3</i>	100 6	1311.4606 6	M1	0.0637	
		444.086 <i>4</i>	11.5 17	1263.9047 6 ⁺			
		514.970 2	18.1 19	1193.0251 5			
		590.415 <i>12</i> 613.951 <i>4</i>	3.1 <i>6</i> 16.0 25	1117.5703 5 ⁺ 1094.0383 4 ⁻	M1	0.0207	
		713.257 6	95 5	994.7474 4 ⁺	E1	0.0207	
1719.1786	4-	601.603 5	56 5	1117.5703 5 ⁺	E1	0.00203 4	
1/1/.1/00	т	724.432 5	38 <i>3</i>	994.7474 4+	E1	0.00374 0	
		823.386 8	100 7	895.7947 3 ⁺	E1	0.00233 4	
1736.6881	4+	83.138 2	1.6 3	1653.5486 3 ⁺	E2	5.99	
1,20.0001	•	103.228 4	0.89 22	1633.4627 3		,	
		194.992 8	0.09 3	1541.7094 (4)			
		305.219 5	0.46 6	1431.466 3			
		543.667 7	100 4	1193.0251 5-	E1	0.00465 7	
		642.629 20	2.0 6	1094.0383 4-			
		741.0 <i>16</i>		994.7474 4+			
		840.890 8	1.11 22	895.7947 3+	E2	0.00484 7	
		1472.81 11	6.7 15	264.0888 4+			

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^f	Comments
1736.6881	4+	1656.848 9	<7.4 <mark>8</mark>	79.804 2+				
1760.760	$(6)^{-}$	186.644 <i>3</i>	1.5 3	1574.117 5				
		219.050 2	17.4 23	1541.7094 (4)				
		496.858 <i>4</i>	11.9 <i>16</i>	1263.9047 6+				
		643.181 8	37 4	1117.5703 5 ⁺	E1		0.00325 5	
		1212.045 20	100 <i>13</i>	548.7470 6 ⁺	E1		9.92×10^{-4} 14	
1773.205	$(6)^{-}$	324.256 <i>14</i>	1.39 <i>21</i>	1448.9555 7-				
		461.739 <i>3</i>	33 5	1311.4606 6-	M1		0.0429	
		580.176 <i>4</i>	100 6	1193.0251 5-	M1		0.0239	
		679.180 <i>5</i>	73 7	1094.0383 4				
1780.00	9-	173.9 2	<10	1605.8503 8-				E_{γ} , I_{γ} : from 170 Er(136 Xe, X_{γ}).
		331.3 2	100	1448.9555 7-				E_{γ}, I_{γ} : from ¹⁷⁰ Er(¹³⁶ Xe, X γ).
1786.123	1-	1706.37 8	100 14	79.804 2+	E1		8.86×10 ⁻⁴ 13	B(E1)(W.u.)=0.0091 20
1700.123	1	1786.20 8	41 9	$0.0 0^{+}$	E1		9.06×10^{-4} 13	B(E1)(W.u.)=0.0031 20 B(E1)(W.u.)=0.0032 9
1795.325	(7^{-})	867.014 <i>11</i>	88 12	928.3029 8+	EI		9.00×10 13	B(E1)(w.u.)=0.0032 9
1793.323	(7)	1246.70 <i>5</i>	100 29	548.7470 6 ⁺				
1812.5	$(2^+,3,4^+)$	817.7 ^e	100 29	994.7474 4 ⁺				
1012.3	(2 ,3,4)	916.7 ^e		895.7947 3 ⁺				
		991.3 ^e		821.1685 2 ⁺				
1820.1321	6-	112.139 <i>I</i>	28 3	1707.9929 5 ⁻	M1+E2		1.98 8	
1620.1321	U	204.790 <i>1</i>	11 3	1615.3420 4 ⁻	WII+EZ		1.90 0	
		371.173 <i>3</i>	100 8	1448.9555 7 ⁻	M1		0.0757	
		387.191 6	7.5 17	1432.9508 7 ⁺	IVI 1		0.0737	
		508.679 5	13.9 23	1311.4606 6 ⁻				
		627.104 6	32 5	1193.0251 5				
		702.576 6	50 8	1193.0231 3 1117.5703 5 ⁺	E1		0.00271 4	
		726.16 <i>4</i>	4.1 12	1094.0383 4	EI		0.00271 4	
1820.476	5-	187.01 <i>3</i>	0.27 7	1633.4627 3				
1620.470	3	556.571 4	40 7	1263.9047 6 ⁺	E1		0.00442 7	
		702.914 6	21.3 25	1117.5703 5 ⁺	EI		0.00442 /	
		825.729 7	100 8	994.7474 4 ⁺	E1		0.00197 3	
1828.0639	3-	212.720 2	2.4 4	1615.3420 4 ⁻	M1		0.339	B(M1)(W.u.)=0.030 +9-13
1020.0039	3	286.509 <i>4</i>	21.2 17	1541.5564 3 ⁻	M1		0.339	B(M1)(W.u.)=0.030+9-13 B(M1)(W.u.)=0.11+3-5
		424.329 ⁸ 4	<7.98	1403.7357 (2)	IVI 1		0.1309	B(W11)(W.u.)=0.11+3-3
		469.168 5	13.2 13		E2		0.0194	B(E2)(W.u.)=32 +9-13
		833.294 9	13.2 <i>1</i> 3 59 9	1358.899 1 ⁻ 994.7474 4 ⁺	E2 E1		0.0194 0.00193 <i>3</i>	B(E2)(W.u.)=32 +9-13 B(E1)(W.u.)=0.00012 +4-6
							$1.56 \times 10^{-3} 2$	
		932.269 9	100 5	895.7947 3+	E1			B(E1)(W.u.)=0.00015 +4-6
	- 1	1006.91 3	22 4	821.1685 2+	E1		$1.35 \times 10^{-3} 2$	$B(E1)(W.u.)=2.6\times10^{-5} +8-12$
1833.54	0+	1753.73 11	100	79.804 2+	E2		1.30×10^{-3} 2	
1839.3474	5 ⁺	102.659 <i>1</i>	3.8 7	1736.6881 4 ⁺	M1+E2	1.3 + 10 - 5	2.65	

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	Mult. [†]	δ^{\dagger}	α^f	Comments
1839.3474	5+	120.170 8	1.28 20	1719.1786 4				
		185.797 2	4.5 8	1653.5486 3+	E2		0.322	
		265.233 6	0.22 7	1574.117 5				
		297.640 3	0.83 15	1541.7094 (4)	Г1		0.00406.7	
		527.884 3	100 <i>5</i> 4.7 <i>13</i>	1311.4606 6	E1		0.00496 7	
		721.71 <i>3</i> 745.293 <i>10</i>	4.7 13 9.8 15	1117.5703 5 ⁺ 1094.0383 4 ⁻				
		844.614 <i>15</i>	11.0 12	994.7474 4 ⁺	M1		0.00933 13	
		1575.11 <i>17</i>	8 3	264.0888 4+	1111		0.00933 13	
1848.354	2+	194.821 7	0.62 17	1653.5486 3 ⁺				
1010.551	_	214.865 17	0.67 17	1633.4627 3				
		278.860 23	0.88 21	1569.4527 (2)				
		355.215 8	2.0 3	1493.133 2+				
		572.068 <i>14</i>	4.6 13	1276.2716 2 ⁺				
		952.611 <i>15</i>	29 6	895.7947 3+	M1+E2	0.8 + 9 - 6	0.0057 12	
		1027.11 7	17 <i>3</i>	821.1685 2+				
		1768.49 7	92 13	79.804 2+	E2		$1.29 \times 10^{-3} 2$	
		1848.31 7	100 <i>21</i>	$0.0 0^{+}$	E2		1.24×10^{-3} 2	
1881.82		688.79 ⁸ 3	100 <mark>8</mark>	1193.0251 5				
1892.9346	$(4)^{-}$	277.589 <i>3</i>	0.49 9	1615.3420 4-				
		699.921 6	7.9 9	1193.0251 5	M1		0.01487	B(M1)(W.u.)=0.026 4
		775.378 13	1.4 5	1117.5703 5+	3.54		0.040=0	D. G. F. V. W. V. O. 200 . 20 . 27
1002 100	2+	798.890 7	100 4	1094.0383 4	M1		0.01070	B(M1)(W.u.)=0.220 +23-25
1893.100	2+	616.827 <i>5</i> 675.96 <i>3</i>	26 <i>5</i> 3.2 <i>7</i>	1276.2716 2 ⁺ 1217.169 0 ⁺	M1		0.0204 0.00788 <i>11</i>	
		997.24 <i>3</i>	13.6 23	1217.169 0 ⁺ 895.7947 3 ⁺	E2 E2		0.00788 11	
		1071.74 <i>13</i>	5.5 16	821.1685 2 ⁺	EZ		0.00336 3	
		1813.29 5	100 10	79.804 2 ⁺	M1		1.74×10^{-3} 3	
1896.379	$(7)^{-}$	123.174 <i>I</i>	100 10	1773.205 (6)	M1+E2	0.25 2	1.556	
1902.696	(6^{+})	246.422 4	33 5	$1656.274 (4)^+$	1011 112	0.23 2	1.550	
	(-)	974.42 <i>4</i>	100 22	928.3029 8+				
		1353.7 ⁱ 3		548.7470 6 ⁺				Ey and placement from $(n,n'\gamma)$.
1905.0922	$(4)^{-}$	289.72 3	0.14 3	1615.3420 4				by the precenent from (ii,ii y).
1703.0722	(1)	363.540 <i>6</i>	0.31 7	1541.5564 3				
		712.079 7	6.0 10	1193.0251 5	M1		0.01425	
		811.043 8	100 8	1094.0383 4-	M1		0.01031	
1913.92	3-	1018.33 <i>17</i>	5.0 14	895.7947 3+				
		1649.77 <i>6</i>	100 12	264.0888 4+	E1		8.75×10^{-4} 13	B(E1)(W.u.)>0.0022
		1834.05 9	95 19	79.804 2+	E1		9.21×10^{-4} 13	B(E1)(W.u.)>0.0016
1915.502	$(3)^{+}$	178.829 <i>23</i>	0.34 9	1736.6881 4+				
		282.043 <i>4</i>	0.43 13	1633.4627 3-				

$E_i(level)$	\mathbf{J}_i^{π}	$\mathbb{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^f	Comments
1915.502	$(3)^{+}$	346.054 10	0.94 21	1569.4527					
		797.94 <i>10</i>	4.3 13	1117.5703					
		920.78 <i>4</i>	21 9	994.7474		E2		0.00399 6	
		1019.57 7	11.3 17	895.7947					
		1094.43 10	>23	821.1685	2+				I_{γ} : from I_{γ} =27 4 relative to 1835 γ doublet in (n,γ) E=thermal.
		1651.37 <i>21</i>	14.7 22	264.0888	4+	[M1]		0.00202 3	E_{γ}, I_{γ} : from β^- decay.
		1835.4 5	100 4	79.804	2+			1.24×10^{-3}	E_{γ}, I_{γ} : from β^- decay.
									Mult.: E2 from $\alpha(K)$ exp in (n,γ) E=thermal for doubly-placed γ .
1930.391	2+	276.843 <i>3</i>	2.5 6	1653.5486	3+				doubly placed /.
1,00,0,1	_	1034.49 4	19 4	895.7947		E2		0.00314	
		1109.36 8	16 5	821.1685					
		1850.46 <i>10</i>	100 13		2+	E2		1.23×10^{-3}	
		1930.49 <i>12</i>	69 8	0.0	0+	E2		1.20×10^{-3}	
1936.596	1-	150.480 10	0.30 10		1-	22		1.20/10	
1730.370	1	577.690 9	1.7 5	1358.899	1-				
		1936.40 <i>13</i>	100 10	0.0	0+	E1		9.56×10 ⁻⁴ 14	B(E1)(W.u.)=0.000125 24
1947.3	12 ⁺	551.1 ^a 7	100 10		10 ⁺	[E2]		0.01309	B(E2)(W.u.)=345 18
1747.5	12	331.1 /	100	1370.020	10	[L2]		0.0130)	E_{γ} : from level-energy difference. E_{γ} =547.1 5 reported in Coulomb excitation.
1949.636	$(6)^{-}$	230.461 4	0.90 25	1719.1786	4-				iii Couloilib excitation.
1747.050	(0)	516.683 2	37 5	1432.9508					
		685.760 <i>15</i>	14.0 25	1263.9047					
		832.05 4	100 20	1117.5703					
1950.8067	7-	130.675 <i>1</i>	26 5	1820.1321		M1		1.326	
1,50.0007	,	242.811 3	21 5	1707.9929		1,11		1.520	
		344.954 3	58 11	1605.8503		M1+E2	1.9 +22-6	0.056 8	
		639.24 4	100 24	1311.4606			1.,	0.000	
1961.3992	6 ⁺	122.049 2	7.2 14	1839.3474					
		140.929 6	1.2 4		5-				
		224.712 <i>1</i>	20 3	1736.6881	4 ⁺				
		336.881 <i>14</i>	3.5 6		8+				
		512.441 2	100 12	1448.9555	7-				
		768.368 11	36 7	1193.0251					
				1117.5703					
		843.83 5	9 4	1111.5705					
1972.314	(2)		9 <i>4</i> 0.44 <i>15</i>	1541.5564	3-				
1972.314	(2)	843.83 5				E1		1.19×10^{-3}	B(E1)(W.u.)=0.00040 +16-27
1972.314	(2)-	843.83 <i>5</i> 430.731 <i>20</i> 1076.524 <i>23</i>	0.44 <i>15</i> 52 <i>11</i>	1541.5564 895.7947	3 ⁺	E1		1.19×10^{-3}	B(E1)(W.u.)=0.00040 +16-27
1972.314	(2)-	843.83 <i>5</i> 430.731 <i>20</i>	0.44 15	1541.5564 895.7947 821.1685	3 ⁺	E1		1.19×10 ⁻³	B(E1)(W.u.)=0.00040 +16-27

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
1983.0398	5-	90.1048 5	<0.60 <mark>g</mark>	1892.9346 (4)-			
		275.046 <i>3</i>	0.90 15	1707.9929 5			
		671.589 8	12.9 <i>17</i>	1311.4606 6	M1	0.01649	B(M1)(W.u.)=0.025 +6-8
		719.17 10	2.6 13	1263.9047 6 ⁺			
		790.001 <i>5</i>	100 5	1193.0251 5	M1	0.01100	B(M1)(W.u.)=0.117 +22-34
		889.006 <i>10</i>	13.5 26	1094.0383 4-	M1	0.00822 12	B(M1)(W.u.)=0.011 +3-4
1994.821	$(3)^{+}$	146.472 5	1.29 24	$1848.354 2^{+}$			
		258.130 <i>3</i>	2.2 6	1736.6881 4+			
		338.547 17	1.21 24	$1656.274 (4)^+$			
		718.57 8	3.5 15	1276.2716 2+			
		1730.89 7	62 9	264.0888 4+	E2	0.00132 2	
1000 2220	(2)	1914.97 8	100 9	79.804 2+	E2	0.00120 2	
1999.2239	$(3)^{-}$	171.158 2	1.3 3	1828.0639 3-	[M1,E2]	0.52 10	
		280.048 6	1.17 22	1719.1786 4	[M1,E2]	0.12 4	D(T4)(T4) (10 40 8 40 8
		345.669 7	0.95 16	1653.5486 3 ⁺	[E1]	0.01312	$B(E1)(W.u.) = 6.2 \times 10^{-8} + 16 - 20$
		365.763 2	14.5 13	1633.4627 3-	M1	0.0787	$B(M1)(W.u.) = 8.0 \times 10^{-5} + 17 - 23$
							I_{γ} : weighted average from β^- decay and (n,γ) E=thermal.
		383.875 <i>6</i>	16.5 <i>13</i>	1615.3420 4	M1	0.0693	$B(M1)(W.u.) = 7.8 \times 10^{-5} + 16 - 23$
							I_{γ} : weighted average from β^- decay and (n,γ) E=thermal.
		429.779 5	42 3	1569.4527 (2)	M1	0.0516	B(M1)(W.u.)=0.00014 +3-4
		157 664 5	100 0 26	1541 5564 2-	3.61	0.0420	I_{γ} : weighted average from β^- decay and (n,γ) E=thermal.
		457.664 <i>5</i>	100.0 26	1541.5564 3-	M1	0.0438	B(M1)(W.u.)=0.00028 +6-8
2001.052	<i>-</i> -	600 404 6	11 2 22	1211 4606 6=	3.61	0.01520	I_{γ} : weighted average from β^- decay and (n,γ) E=thermal.
2001.953	5-	690.494 <i>6</i> 808.910 <i>13</i>	11.3 <i>23</i> 100 <i>9</i>	1311.4606 6 ⁻ 1193.0251 5 ⁻	M1 M1	0.01539 0.01038	
		907.927 25	19.4 25	1094.0383 4	M1	0.01038	
2002.465	$(4)^{+}$	163.137 ⁸ 2	$<2.8^{g}$	1839.3474 5 ⁺	IVII	0.00781 11	
2002.403	(4)	346.197 8	1.7 3	1656.274 (4) ⁺			
		348.94 ⁸ 3	<2.0 ^g	1653.5486 3 ⁺			
		369.006 8	2.7 6	1633.4627 3			
		591.402 20	6.1 9	1411.0959 4 ⁺			
		1007.57 6	23 5	994.7474 4+	M1	0.00606 9	
		1106.65 5	21 6	895.7947 3+	1411	0.00000	
		1738.34 6	100 12	264.0888 4+	E2	0.00131 2	
		1922.64 9	82 15	79.804 2 ⁺	(E2)	0.00120 2	
2022.358	$(3)^{-}$	236.216 18	0.23 8	1786.123 1	` /		
	` /	480.619 ⁸ 5	5.8 <mark>8</mark> 8	1541.7094 (4)			
		1758.47 8	31 4	264.0888 4+			
		1942.69 8	100 7	79.804 2+	E1	9.58×10^{-4}	B(E1)(W.u.)=0.00021 +6-8
2031.097	$(4)^{+}$	619.990 8	55 7	1411.0959 4+	M1	0.0202	
		1036.38 6	8 3	994.7474 4+	E2	0.00312 5	

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{^{\ddag}}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	α^f	Comments
2031.097	$\frac{i}{(4)^{+}}$	1135.39 7	5.0 21	895.7947 3+			
2031.077	(+)	1766.99 5	100 12	264.0888 4+	M1	0.00180 <i>3</i>	
		1950.94 <i>15</i>	14 5	79.804 2 ⁺	1111	0.00100 5	
2038.66	(8^{-})	142.3 2	100	1896.379 (7)			$E_{\gamma}I_{\gamma}$: from ¹⁷⁰ Er(¹³⁶ Xe,X γ).
2030.00	(0)	(265.4)	<25	1773.205 (6)			E_{γ} : rounded value from level energy difference; γ expected but not
		(203.1)	123	1775.205 (0)			observed.
							I_{γ} : from 170 Er(136 Xe,X γ).
2055.914	$(4)^{+}$	792.11 <mark>8</mark> 6	<8.6 <mark>8</mark>	1263.9047 6 ⁺	[E2]	0.00551 8	B(E2)(W.u.)=1.5 + 17-15
2033.71	(1)	862.98 6	26.7	1193.0251 5	[E1]	0.00181 3	$B(E1)(W.u.) = 9 \times 10^{-5} 6$
		938.22 <mark>8</mark> 5	<6.0 <mark>8</mark>	1117.5703 5 ⁺	[M1,E2]	0.0055 17	B(E1)(W.u.)=7/10 0
		961.875 8	100 9	1094.0383 4	E1	0.00147 2	B(E1)(W.u.)=0.00026 14
		1061.13 5	23 5	994.7474 4+	[M1,E2]	0.0042 12	_()()
		1160.077 20	46 10	895.7947 3 ⁺	E2	0.00249 4	B(E2)(W.u.)=2.4 13
		1234.760 <i>23</i>	93 8	821.1685 2 ⁺	E2	0.00221 3	B(E2)(W.u.)=3.5 18
2059.9751	$(4)^{-}$	154.884 2	4.2 9	1905.0922 (4)-	E2	0.602	
		167.040 <i>1</i>	5.1 7	1892.9346 (4)	M1	0.664	
		231.911 <i>1</i>	3.5 7	1828.0639 3-			
,		351.970 7	1.14 18	1707.9929 5	M1	0.0871	
)		444.638 5	4.6 9	1615.3420 4-			
		518.405 9	2.3 5	1541.5564 3			
		965.937 6	100 5	1094.0383 4	M1	0.00671 <i>10</i>	
2070.0	10 ⁺	445.5 ^a	100	1624.507 8 ⁺	[E2]	0.0223	B(E2)(W.u.)=225 +44-13
2000 455	. n. ±	450 000 10	0.4.0	1000 001 01			$B(E2)\downarrow$: From measured $B(E2)$ in Coulomb excitation.
2080.457	$(4)^{+}$	150.083 18	0.21 8	1930.391 2 ⁺			
		241.109 2	1.8 <i>3</i> 8.3 <i>17</i>	1839.3474 5+			
		669.34 4	8.3 17 25 5	1411.0959 4+			
		986.40 <i>4</i> 1259.27 <i>5</i>	25 5 52 10	1094.0383 4 ⁻ 821.1685 2 ⁺	E2	0.00213 3	
		1816.34 <i>6</i>	100 11	264.0888 4 ⁺	M1	0.00213 3	
		2000.56 15	40 11	79.804 2 ⁺	1111	0.00173 3	
2089.348	4-	90.104 ^g 5	<1.158	1999.2239 (3)			
2007.540		196.409 6	1.4 3	1892.9346 (4)			
		268.880 7	2.0 3	1820.476 5			
		370.170 <i>6</i>	26 4	1719.1786 4 ⁻	M1	0.0763	
		381.349 <i>3</i>	20 3	1707.9929 5	M1	0.0705	
		455.899 8	35 4	1633.4627 3-			
		474.004 5	100 10	1615.3420 4-	M1	0.0400	
		547.805 7	75 12	1541.5564 3-	M1	0.0276	
		1825.0 <i>16</i>		264.0888 4+			
2091.272	$(6)^{-}$	140.457 8	1.2 4	1950.8067 7-			
		642.324 18	17 5	1448.9555 7-			
		642.324 18	17 5	1448.9555 7			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
2091.272	(6)	658.393 24	12 3	1432.9508	7+			
	(-)	779.806 6	100 14	1311.4606				
		898.32 <i>3</i>	47 8	1193.0251		M1	0.00802 12	
		973.70 <i>3</i>	27 6	1117.5703				
2097.571	4-	523.480 18	0.97 18	1574.117				
		555.866 17	2.1 8	1541.7094				
		666.10 <i>4</i>	2.1 8	1431.466	3-			
		979.996 <i>6</i>	66 9	1117.5703	5 ⁺	E1	0.00142 2	B(E1)(W.u.)=0.00029 +8-10
		1102.80 5	16 <i>4</i>	994.7474	4+			
		1201.757 21	68 8	895.7947	3+	E1	1.00×10^{-3}	B(E1)(W.u.)=0.00016 +4-6
		1833.43 10	100 <i>21</i>	264.0888	4+			
2100.361	7+	138.956 8	9 3	1961.3992	6+			
		261.017 <i>3</i>	45 12	1839.3474	5 ⁺			
		494.480 10	100 <i>17</i>	1605.8503	8-			
2108.987	$(5)^{+}$	106.524 3	1.3 4	2002.465	$(4)^{+}$			
		147.583 10	0.28 8	1961.3992				
		193.502 7	1.5 4	1915.502	$(3)^{+}$			
		288.497 11	2.5 5	1820.476	5-			
		389.804 <i>4</i>	1.8 4	1719.1786				
		991.388 <i>21</i>	35 6	1117.5703		E2	0.00342 5	
		1844.75 <i>7</i>	100 12	264.0888				
2118.791	$(6)^{-}$	669.835 11	12.0 <i>17</i>	1448.9555				
		807.30 4	100 11	1311.4606		M1	0.01043	
		925.762 <i>15</i>	29 5	1193.0251		M1	0.00745 11	
2122.428	$(5,6,7)^{-}$	226.048 <i>1</i>	100 16	1896.379	$(7)^{-}$			
		349.229 <i>3</i>	40 8	1773.205	(6)-	M1	0.0890	
2125.424		471.874 ⁸ 6	100 ^g	1653.5486				
2129.246	(5)	215.35 3	0.29 9	1913.92	3-			
		865.329 23	19.3 26	1263.9047				
		1580.72 ⁸ 8	<117 ⁸	548.7470				Mult.: E1 from $\alpha(K)$ exp for doubly-placed γ .
2122 767	(4 ± \	1865.10 <i>10</i>	100 9	264.0888		E1		
2133.767	(1^+)	240.658 14	1.7 4	1893.100	2+			
		640.567 ⁸ 20	<15 ⁸	1493.133	2+			
		711.666 24	15 5	1422.12	0+			
2125.0	1 -	2133.94 10	100 20	0.0	0^{+}			
2135.9	1-	2056	82 12	79.804	2+	F-1	1.02.12-3	D/F1)/HI) 0.00022 (
		2136	100	0.0	0+	E1	1.03×10^{-3}	B(E1)(W.u.)=0.00022 6
2137.08	$(2)^{+}$	1873.12 <i>13</i>	100 30	264.0888		[E2]	1.22×10^{-3}	B(E2)(W.u.)=129
		2057.20 20	70 20	79.804	2+	M1	$1.50 \times 10^{-3} 2$	B(M1)(W.u.)=0.04 4
		2136.89 <i>16</i>	100 <i>30</i>	0.0	0_{+}	[E2]	1.13×10^{-3}	B(E2)(W.u.)=5.5

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^f	Comments
2144.53		538.68 ^g 3	100 ^g	1605.8503 8-				Mult.: E2 from $\alpha(K)$ exp in (n,γ) E=thermal for doubly-placed γ .
2148.3685	5-	88.392 <i>3</i>	1.9 5	2059.9751 (4)	M1+E2	1.2 + 7 - 4	4.45 15	
		146.420 5	7.4 15	2001.953 5	M1		0.961	
		165.326 2	2.3 6	1983.0398 5				
		255.436 2	11.9 <i>19</i>	1892.9346 (4)	M1		0.206	
		440.391 <i>12</i>	5.2 7	1707.9929 5				
		955.339 11	100 11	1193.0251 5	M1		0.00689 10	
		1054.297 19	41 9	1094.0383 4	M1+E2	1.1 + 8 - 4	0.0041 6	
		1883.47 <i>14</i>	26 7	264.0888 4+				
2169.516	$(5)^{+}$	736.56 6	9 3	1432.9508 7+	[E2]		0.00648 9	B(E2)(W.u.)=7.6
		858.063 <i>23</i>	25 5	1311.4606 6	[E1]		0.00183 <i>3</i>	B(E1)(W.u.)=0.00015 11
		905.30 15	6 2	1263.9047 6+	[M1,E2]		0.0060 19	
		976.498 <i>14</i>	65 12	1193.0251 5-	E1		1.43×10^{-3} 2	B(E1)(W.u.)=0.00026 19
		1051.86 7	27 12	1117.5703 5 ⁺	[M1,E2]		0.0042 13	B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=1.8 15
		1174.56 7	51 <i>13</i>	994.7474 4+	E2		0.00243 4	B(E2)(W.u.)=43
		1273.74 9	100 47	895.7947 3 ⁺	E2		0.00209 3	B(E2)(W.u.)=5.5
2174.59		2094.77 8	100	$79.804 2^{+}$				E_{γ} : from $(n,n'\gamma)$.
2177.79	(2^{+})	684.654 ⁸ 15	<30 ⁸	1493.133 2 ⁺				
	,	755.66 8	21 5	1422.12 0+				Other Iy: 65 15 from $(n,n'\gamma)$.
		2177.80 <i>15</i>	100 25	$0.0 0^{+}$, , , , , ,
2182.80	11-	402.8 2	100	1780.00 9-				E_{γ} : from 170 Er(136 Xe, X_{γ}).
2185.11	$(5)^{-}$	271.189 <i>4</i>	1.6 3	1913.92 3-				<i>y</i>
	(-)	424.329 ⁸ 4	<15 <mark>8</mark>	1760.760 (6)				
		1636.60 <i>10</i>	43 7	548.7470 6 ⁺	E1		8.7×10^{-4}	B(E1)(W.u.)=0.00033 +14-20
		1921.11 10	100 18	264.0888 4+	Li		0.7710	B(E1)(a.) 0.00033 117 20
2186.741	$(3)^{+}$	450.048 3	8.1 15	1736.6881 4+	M1		0.0458	
2100.711	(3)	533.202 5	100 8	1653.5486 3 ⁺	M1		0.0296	
		571.428 <i>19</i>	1.8 6	1615.3420 4	1411		0.0270	
		645.21 3	6.2 12	1541.5564 3				
		1192.7 5	15 4	994.7474 4+				
2188.408	(5^+)	226.98 ⁸ 3	<0.70 ^g	1961.3992 6 ⁺				
2100.100	(5)	348.94 ⁸ 3	<1.9 ⁸	1839.3474 5 ⁺				
		451.68 <i>3</i>	1.1 4	1736.6881 4+				
		534.793 <i>15</i>	3.6 6	1653.5486 3 ⁺				
		877.072 <i>17</i>	12.7 27	1311.4606 6				
		995.306 25	36 5	1193.0251 5				
		1639.73 <i>10</i>	32 9	548.7470 6 ⁺				
		1924.36 <i>13</i>	100 23	264.0888 4 ⁺				
	$(2^+,3,4^+)$	1194.08 <i>16</i>	42 13	994.7474 4 ⁺				
2188.74	(7) 3 /1 1							

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\ddagger}$	\mathbf{E}_f	J_f^{π}	Mult. [†]	α^f	Comments
2193.19	2+	1297.32 6	23.0 9	895.7947	3+			I _γ : from $β$ ⁻ decay. Other I(1297 $γ$):I(1372 $γ$)=44 <i>13</i> :100 <i>14</i> from (n, $γ$) E=thermal.
		1372.05 4	100 4	821.1685	2+	M1	0.00292 4	I_{γ} : from β^- decay.
2200.4193	$(5)^{-}$	111.068 9	7.4 13	2089.348	4-	M1	2.11	, , ,
		201.160 <i>17</i>	0.9 3	1999.2239	$(3)^{-}$			
		250.784 <i>4</i>	2.8 6	1949.636	$(6)^{-}$			
		307.481 5	2.3 5	1892.9346	$(4)^{-}$			
		379.954 8	27 4	1820.476	5-	M1	0.0712	
		380.286 <i>6</i>	20 4	1820.1321	6-			
		481.239 <i>3</i>	34 5	1719.1786		M1	0.0385	
		492.427 <i>3</i>	62 8	1707.9929				
		585.066 5	100 10	1615.3420		M1	0.0234	
		1651.5 <i>16</i>		548.7470				
		1936.4 <i>16</i>		264.0888	4+			
2200.5	(9^{-})	161.8 2	100	2038.66	(8^{-})			E_{γ}, I_{γ} : from 170 Er(136 Xe, X γ).
		(304.1)	<31	1896.379	$(7)^{-}$			E_{γ} : rounded value from level energy difference; γ expected
								but not observed.
								I_{γ} : from 170 Er(136 Xe,X γ).
2210.016	(7^{-})	226.98 ⁸ 3	<5.2 ⁸	1983.0398	5-			
		259.209 5	100 24	1950.8067	7-			
2218.5		1322.7 ^e	100	895.7947	3 ⁺			
2230.30	$(2)^{-}$	614.996 ⁸ 24	<26 ^g	1615.3420	4-			
		660.85 4	15 <i>3</i>	1569.4527	$(2)^{-}$	M1	0.01718	
		688.79 ⁸ <i>3</i>	<20 ⁸	1541.5564				
		1409.15 <i>8</i> 4	100 ^g 31	821.1685	2+			
2238.179	$(4)^{+}$	333.086 4	33 5	1905.0922	$(4)^{-}$			
		345.247 7	25 5	1892.9346				
		398.829 <i>3</i>	16 <i>3</i>	1839.3474				
		501.506 <i>10</i>	100 <i>13</i>	1736.6881				
		1045.31 7	76 26	1193.0251	5-			
		1144.112 ⁱ 11	$1.11 \times 10^3 18$	1094.0383	4-	E1		
2243.514	$(3)^{+}$	587.253 19	1.7 8	1656.274	$(4)^{+}$			
		1979.36 9	67 14	264.0888	4+	E2	1.18×10^{-3}	
		2163.44 9	100 15	79.804	2+			
2246.530	$(6)^{+}$	629.724 9	50 9	1616.8060	6+			
		813.46 5	42 9	1432.9508	7+			
		982.64 <i>4</i>	18 5	1263.9047	6+			
		1697.86 <i>7</i>	100 <i>16</i>	548.7470		M1	0.00192 3	
2249.68		938.22 ⁸ 5	100 <mark>8</mark>	1311.4606	6-			
	(2^{+})	426.66 <i>3</i>	10.2 13	1828.0639	3-			
2254.754	(2)	120.00 5						

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
2254.754	(2+)	1358.99 4	100 33	895.7947	3+			E_{γ} : from β^- decay. I_{γ} : doublet in (n,γ) E=thermal; intensity suitably divided.
2254.84	$(3)^{+}$	1137.2 3	25 8	1117.5703	5+			E_{γ} . Goublet in (n, γ) E=thermal, intensity suitably divided. E_{γ} , I_{γ} : from β^- decay.
223 1.01	(3)	1260.09 5	100 7	994.7474				I_{γ} : from β^- decay.
		1433.67 7	84 19	821.1685				E_{γ} , I_{γ} : from β^- decay. Other I_{γ} : 60 16 from (n,γ)
								E=thermal for doubly-placed γ . Mult.: $\alpha(K)\exp[0.0013] 4$, mult=E2 for doubly-placed γ .
2255.343	$(6)^{-}$	106.974 <i>3</i>	8.0 16	2148.3685	5-			intain w(iz)enp croote i, mais 22 for deadly placed /.
	,	136.552 <i>4</i>	8.0 20	2118.791	$(6)^{-}$			
		253.387 4	2.7 7	2001.953	5-			
		272.306 <i>3</i>	20 4	1983.0398	5-			
		943.892 25	100 16	1311.4606		M1	0.00710 10	
2262.691	$(3)^{-}$	263.421 18	3.0 6	1999.2239				
	. /	609.164 9	22 3	1653.5486				
		629.184 20	40 10	1633.4627				
		647.344 15	34 6	1615.3420		E2	0.00872 13	
		1267.83 10	100 30	994.7474	4+			
		1366.914 ⁸ 20	<289 <mark>8</mark>	895.7947				
		1441.41 <mark>8i</mark> 7	<210 ⁸	821.1685				
2267.632	$(3,4,5)^+$	362.547 15	5.7 8	1905.0922		E1	0.01170	
	(=, -,=)	374.683 ⁸ 4	<6.0 <mark>8</mark>	1892.9346				
		428.295 13	1.9 4	1839.3474				
		1074.50 17	12 4	1193.0251				
		1173.557 20	100 6	1094.0383		E1	1.04×10^{-3}	
2270.46		1176.42 <mark>8</mark> 5	100 <mark>8</mark>	1094.0383				Mult.: $\alpha(K)$ exp=0.0039 5, mult=M1 for doubly-placed γ .
2273.67	$(2^+,3,4^+)$	1452.50 11	70 30	821.1685				
	, ,-,-,	2009.56 16	100 20	264.0888				
2279.630	$(4)^{+}$	219.63 <i>3</i>	1.0 3	2059.9751				
		440.264 16	11.5 23	1839.3474	. ,			
		542.939 6	92 11	1736.6881		M1	0.0283	
		626.086 7	40 7	1653.5486	3 ⁺	M1	0.0197	
		1086.62 <i>3</i>	100 24	1193.0251				
2298.260	$(4,5,6)^+$	458.910 <i>3</i>	5.8 10	1839.3474	5 ⁺	M1	0.0435	
		986.94 <i>5</i>	16.6 <i>3</i>	1311.4606	6-			
		1105.260 <i>16</i>	100 8	1193.0251	5-	E1	1.14×10^{-3}	
		1304.1 <i>3</i>	10 <i>3</i>	994.7474				
2302.666	$(3)^{-}$	154.120 <i>6</i>	1.7 5	2148.3685	5-			
		474.636 17	4.9 9	1828.0639				
		649.087 9	16 <i>4</i>	1653.5486				
		669.221 20	41 7	1633.4627		M1	0.01664	
		687.30 <i>3</i>	68 12	1615.3420				

		4	4		. 4	£	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
2302.666	$(3)^{-}$	733.231 10	34 8	1569.4527 (2)	M1	0.01324	
		761.11 5	21 5	1541.5564 3-			
		1309.0 ⁱ 16	150 <i>45</i>	994.7474 4+			E_{γ},I_{γ} : seen only in (n,γ) E=thermal two-photon cascade data. Placement shown as uncertain because such a strong branch should have been seen in other studies but was not.
		1406.93 7	70.0 20	895.7947 3+			
		1481.71 <i>13</i>	100 20	821.1685 2+			
2303.10	$(6)^{-}$	542.35 <i>4</i>	18 <i>6</i>	1760.760 (6)-			
		729.00 5	50 21	1574.117 5			
		1038.73 16	100 35	1263.9047 6 ⁺			
2306.882	(6^+)	995.420 25	100 16	1311.4606 6-			
	, ,	1042.35 <mark>8</mark> 21	<38 <mark>8</mark>	1263.9047 6+			
		1113.84 7	96 <i>17</i>	1193.0251 5-			
2311.07	$(4)^{+}$	654.79 <i>3</i>	1.00 20	$1656.274 (4)^{+}$			
		1762.19 ⁸ 18	<38 <mark>8</mark>	548.7470 6 ⁺			
		2047.03 10	100 10	264.0888 4+	E2	1.15×10^{-3}	
2323.01	3-	1328.57 21	92 38	994.7474 4+			
		1427.40 11	100 50	895.7947 3+			
		1501.92 <i>18</i>	<450	821.1685 2+			
2331.987	6-	131.566 2	9.0 20	2200.4193 (5)			
		381.181 <i>14</i>	10.3 12	1950.8067 7			
		382.346 9	13.3 26	1949.636 (6)	M1	0.0701	
		624.005 5	38 5	1707.9929 5			
		1020.70 8	100 13	1311.4606 6-			
2336.26	4+	1218.68 <mark>8</mark> 7	<64 <mark>8</mark>	1117.5703 5+			
		1341.58 <i>14</i>	100 27	994.7474 4+			
		1440.41 12	91 27	895.7947 3+			
2337.100	3-	1243.072 20	93.5 23	1094.0383 4-	M1	0.00366 6	
		1441.41 <mark>8</mark> 7	<131 <mark>8</mark>	895.7947 3+			
		1515.98 <mark>8</mark> 6	<341 <mark>8</mark>	821.1685 2+			
		2256.73 12	100 18	79.804 2 ⁺			
2341.78	1	2262.0 <i>3</i>	67 11	79.804 2 ⁺			E_{γ}, I_{γ} : from $(n, n'\gamma)$.
		2341.7 <i>4</i>	100 18	$0.0 0^{+}$	D		E_{γ}, I_{γ} : from $(n, n'\gamma)$.
2346.20	$1^{-},2^{-},3^{-}$	1449.26 <i>12</i>	97 22	895.7947 3+			
		1524.18 <i>13</i>	100 33	821.1685 2+	E1	8.63×10^{-4} 12	
2348.581	4-	612.0 5	100 71	1736.6881 4+			
		629.397 20	70 <i>17</i>	1719.1786 4			
		640.567 <mark>8</mark> 20	<338	1707.9929 5			
		695.04 <i>4</i>	13 4	1653.5486 3 ⁺			
		1155.56 ⁱ 3	89 20	1193.0251 5	M1	0.00435 6	
		1231.04 9	57 <i>3</i>	1193.0231 5 1117.5703 5 ⁺	1411	0.00+33 0	

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	αf	Comments
2348.581	4-	1353.78 10	<600	994.7474	4 ⁺			E_{γ} , I_{γ} , Mult.: for doubly-placed γ . Undivided I_{γ} given. Mult=E2 for doublet.
2361.40	1	2281.5 5	21 7	79.804	2+			I_{γ} : from $(n, n'\gamma)$. Other 25 16 in (γ, γ') .
		2361.4 2	100 14	0.0	0^{+}	D		Mult.: from (γ, γ') .
2365.196	$(5)^{-}$	460.100 <i>15</i>	1.8 4	1905.0922	$(4)^{-}$			
	. ,	472.218 <mark>8</mark> 12	<3.2 <mark>8</mark>	1892.9346	$(4)^{-}$			
		1172.30 8	14 6	1193.0251	5-	M1	0.00420 6	
		1247.78 <i>13</i>	8 <i>3</i>	1117.5703	5+			
		1271.13 <i>4</i>	100 10	1094.0383	4-	M1	0.00347 5	
2365.33	(1^+)	2285.6 <i>3</i>	54 <i>15</i>	79.804	2+	[M1,E2]	0.00125 14	
		2365.30 12	100 23	0.0	0^{+}	[M1]	1.37×10^{-3}	B(M1)(W.u.)=0.011 5
2368.585	(5^+)	100.953 5	1.3 3	2267.632	$(3,4,5)^+$			
	. ,	220.27 4	0.37 16	2148.3685				
		463.485 <i>14</i>	1.5 3	1905.0922				
		1175.53 7	41 11	1193.0251				
		1274.53 12	100 37	1094.0383	4-			
2373.657	2,3	401.343 11	4.2 10	1972.314	$(2)^{-}$			
		480.619 <mark>8</mark> 5	<67 <mark>8</mark>	1893.100	2+			
		1552.55 25	100 <i>33</i>	821.1685	2+			
2378.12		1284.08 ^g 8	100 ^g	1094.0383				Mult.: M1,E2 from $\alpha(K)$ exp in (n,γ) E=thermal for doubly-placed γ .
2382.587	$(2)^{+}$	351.422 <i>14</i>	1.8 <i>3</i>	2031.097	$(4)^{+}$			
		383.366 <i>3</i>	44 4	1999.2239	$(3)^{-}$	E1	0.01025	
		1486.78 8	100 27	895.7947	3+			
		2303.22 20	<104	79.804	2+			E_{γ} , I_{γ} : for doubly-placed γ ; intensity not divided.
		2382.22 24	40 13	0.0	0^{+}			
2392.118	$(5,6^+)$	552.771 6	58 9	1839.3474	5 ⁺			
		655.39 <i>3</i>	22 4	1736.6881	4+			
		1080.4 2	53 13	1311.4606				
		1128.27 8	100 22	1263.9047	6+			
		1298.40 ⁱ 9	163 <i>51</i>	1094.0383	4-			
2392.927	$(3^-,4^+)$	361.834 5	7.8 17	2031.097	$(4)^{+}$			Mult.: M1 from $\alpha(K)$ exp in (n, γ) E=thermal, however, see comment on 1200γ .
		684.654 <mark>8</mark> 15	<13.3 <mark>8</mark>	1707.9929	5-			•
		899.85 <i>5</i>	12 5	1493.133	2+			
		1199.61 4	43 11	1193.0251				Note that mult=E2 from (n,γ) E=thermal is in conflict with placement of the M1 362 γ from the same level.
		1275.32 9	100 39	1117.5703	5+			,
		1398.05 6	88 14	994.7474	4+			
2393.71	(2^{+})	1497.94 22	36 14	895.7947				
		1572.41 <i>15</i>	29 7	821.1685				

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
2393.71	(2 ⁺)	2129.46 20	43 14	264.0888	4+			
	\ - /	2314.49 20	100 21	79.804	2 ⁺			
		2393.47 18	57 14	0.0	0^{+}			
2398.52	$(3^+,4,5^+)$	1281.03 ⁸ 7	100 ⁸ 30	1117.5703				$\alpha(K)$ exp for doubly-placed γ consistent with $\alpha(K)(M1)$.
20,0102	(5,.,5)	1302.0 16	100 00	1094.0383				a(11)out for deadly placed / consistent with a(12)(1111).
		1502.73 9	<220	895.7947				I_{γ} : for 1501.9 γ +1502.7 γ .
		1850.0 16	1220	548.7470				14. 161 160115 / 1 160217 /
2401.94	(1^{-})	1580.72 ⁸ 8	100 ^g 8	821.1685				Mult.: E1 from $\alpha(K)$ exp for doubly-placed γ .
2101.71	(1)	2401.92 24	21 5	0.0	0^{+}			E _{γ} : absent in $(n.n'\gamma)$.
2402.29	$(4)^{-}$	1308.0 16	48 13	1094.0383	-			Branching from two-photon cascade data in (n,γ) E=thermal.
_ 102.27	(1)	1407.67 9	39 7	994.7474		E1		Branching from two-photon cascade data in (n,γ) E=thermal.
		1506.49 12	100 20	895.7947		E1		E _{γ} : for doubly-placed γ .
		1500.17 12	100 20	5,5.17 11	2	L 1		Branching from two-photon cascade data in (n,γ) E=thermal.
2411.795	$(5)^{+}$	1100.11 <i>15</i>	11 4	1311.4606	6-			Branching from two photon cascade data in (11,7) D-thermal.
11.,,,,	(5)	1218.68 ⁸ 7	<82 <mark>8</mark>	1193.0251				
		1294.053 ⁸ 25	<171 ⁸	1117.5703				
		1317.56^{i} 10	<41					E. I., for undivided doublet
		1317.56° 10 1417.053 25		1094.0383		M/1	0.00272 4	E_{γ},I_{γ} : for undivided doublet.
			100 14	994.7474		M1	0.00272 4	
		1515.98 ^{gi} 6	<285 ⁸	895.7947				
		2147.34 20	44 13	264.0888				
2417.02	1 ⁽⁻⁾	2337.2 2	100 10	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
								I_{γ} : from (γ, γ') .
		2417	56	0.0	0_{+}	D		$\dot{E}_{\gamma}, I_{\gamma}, Mult.$: from (γ, γ') .
2419.0	12-	443.2 2	100	1975.75	10^{-}			E_{γ} : from 170 Er(136 Xe,X γ).
2423.25		2159.15 9	100	264.0888	4+			Mult.: $\alpha(K) \exp = 0.00053 \ 13$, mult=E1,E2.
2424.91	$(2)^{+}$	511.860 7	17 <i>3</i>	1913.92	3-			
		1208.30 ⁸ 9	<39 <mark>8</mark>	1217.169	0_{+}			
		1529.12 <i>13</i>	19.1 20	895.7947	3 ⁺			From β^- decay. Other E γ (I γ): 1530.1 3 (22 3) from (n,n' γ), 1529.67 17 (20 7) from (n, γ) E=thermal.
								Placement questioned in (n,γ) E=thermal but branching is consistent with that in β^- decay and $(n,n'\gamma)$.
		1603.72 8	56 <i>3</i>	821.1685				From β^- decay. Other E γ (I γ): 1603.8 2 (58 13)from (n,n' γ), 1604.09 18 (34 14) from (n, γ) E=thermal.
		2345.08 12	100 3	79.804	2+			From β^- decay. Other E γ (I γ): 2345.6 4 (100 25) from (n,n' γ), 2345.58 17 (100 20) from (n, γ) E=thermal.
								Placement questioned in (n,γ) E=thermal but branching is consistent with that in β^- decay and $(n,n'\gamma)$.
		2424.92 <i>14</i>	44.2 20	0.0	0+			$E_{\gamma}I_{\gamma}$: from β^- decay. Other $E_{\gamma}(I_{\gamma})$: 2425.1 2 (44 2) from $(n,n'\gamma)$, but 2425.35 20 (100 18) from (n,γ) E=thermal. Possibly transition is a doublet in (n,γ) E=thermal.

								•
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
2440.054	$(4^+,5^+)$	445.234 20	11.5 25	1994.821	$(3)^{+}$			
	, , ,	1029.45 5	50 11	1411.0959				
		1176.42 <mark>8</mark> 5	<146 <mark>8</mark>	1263.9047	6+			Mult.: M1 from $\alpha(K)$ exp in (n,γ) E=thermal for
								doubly-placed γ .
		1322.6 2	100 50	1117.5703	5 ⁺			<i>3</i> 1
		1445.26 8	50 25	994.7474				
2440.46	(2^{+})	1223.00 7	100 40	1217.169	0^{+}			
	,	1446.00 7	80 40	994.7474	4+			
2451.165	(5^{-})	195.836 25	0.9 3	2255.343	$(6)^{-}$			
2.01.100	(5)	909.41 9	15 5	1541.7094				
		1333.44 ⁸ 15	<149 ⁸	1117.5703				
		1358.0 16	(11)	1094.0383				
		1456.15 <i>12</i>	100 23	994.7474				
2455.96	$(3^+,4,5^+)$	1338.67 15	20 10	1117.5703				
2433.70	(5,7,5)	1461.13 8	37 9	994.7474				
		1560.16 8	100 11	895.7947				
			100 11					
2450.7	1	2189.7 ⁱ 3	10.6	264.0888				E_{γ} : from $(n,n'\gamma)$ alone; possibly misplaced.
2458.7	1	2378.6 7	12 6	79.804	2+	ъ		E_{γ},I_{γ} : from $(n,n'\gamma)$.
		2458.8 5	100 16	0.0	0_{+}	D		$E_{\gamma}, I_{\gamma}, Mult.$: from $(n, n'\gamma)$.
2474.10	(6-)	472.218 ⁸ 12	<28 ⁸	2001.953	5			
		653.88 7	9 4	1820.1321				
		1041.35 <i>11</i>	100 <i>31</i>	1432.9508				
2477.20	$(5)^{-}$	1165.65 10	33 11	1311.4606		M1	0.00426 6	
		1284.08 <mark>8</mark> 8	<63 ⁸	1193.0251	5-	M1,E2		Mult.: M1,E2 from $\alpha(K)$ exp in (n,γ) E=thermal for
								doubly-placed γ . Other E γ : 1283.5 2 from (n,n' γ).
		1383.36 9	31 <i>13</i>	1094.0383	4-			
		1928.21 <i>12</i>	100 19	548.7470	6+	(E1)		
2478.08	$(3)^{-}$	1484.46 8	100 <i>13</i>	994.7474	4+	E1	8.64×10^{-4}	
		1582.95 20	55 18	895.7947				
		1656.84 ⁸ 9	<61 <mark>8</mark>	821.1685				
		2214.47 20	79 18	264.0888				
		2398.25^{i} 15	94 15	79.804	2+			
2484.52	(3 ⁺)	1208.30 ^g 9	<43 ⁸	1276.2716				
2464.32	(3.)							
		1489.8 2	31 15	994.7474				
		1588.75 10	33 15	895.7947				
		1663.21 10	38 15	821.1685				
		2220.70 21	100 23	264.0888				
2402.5		2404.84 20	62 15	79.804	2+			
2493.5	1+	2414.4 5	34 5	79.804	2+			E_{γ} : from $(n,n'\gamma)$ for doublet. I_{γ} : from (γ,γ') .
								γ . Hom (γ, γ) .

								·
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
								E_{γ} : from $(n,n'\gamma)$. I_{γ} ,Mult.: from (γ,γ') .
2494.528	(3)	511.504 <i>15</i>	8.4 16	1983.0398	5-			I_{γ} , whith it follows I_{γ} , I_{γ} is the second of I_{γ} , I_{γ} is the second of I_{γ} in I_{γ} is the second of I_{γ} in I_{γ} is the second of I_{γ} in I_{γ} i
2171.320	(5)	1672.84 9	100 16	821.1685		E1	8.79×10^{-4}	
		2229.278 20	<37 <mark>8</mark>	264.0888		LI	0.77/10	
		2414.33 19	42 11	79.804	2 ⁺			
2510.72	1(-)	2430.9 <i>3</i>	100 25	79.804	2 ⁺			E_{γ},I_{γ} : from $(n,n'\gamma)$.
2310.72	1	2510.7 <i>4</i>	63	0.0	0+	(E1)		B(E1)(W.u.)=9.E-5 4
		2310.7 7	03	0.0	O	(L1)		Mult.: D from $\gamma(\theta)$ in $(n,n'\gamma)$; $\pi=(-)$ from K=0 in (γ,γ')
								E_{γ},I_{γ} : from $(n,n'\gamma)$.
2513.67	$(4)^{-}$	1396.13 <i>6</i>	96 <i>35</i>	1117.5703	5+			27,17 11011 (1.,11 7).
	()	1518.95 <i>16</i>	79 26	994.7474		E1	8.62×10^{-4}	
		1617.75 10	100 16	895.7947		E1	8.70×10^{-4}	
2517.48	$(3^+,4^+)$	408.457 <i>8i</i> 8	8.7 <mark>8</mark> 20	2108.987	$(5)^{+}$		0.707.10	
2317.40	(5,+)	1696.30 20	100 22	821.1685				
2526.583	(5)	466.603 12	4.3 10	2059.9751				
2320.303	(3)	1333.44 ⁸ 15	<1418	1193.0251				
		1432.64 7	100 38	1094.0383		E2	1.70×10^{-3}	
		1532.18 <i>21</i>	38 13	994.7474		22	1.70/10	
2527.78		1433.74 7	100	1094.0383				Mult.: $\alpha(K)$ exp=0.0013 4, mult=E2 for doubly-placed γ .
2528.80	$(5)^{-}$	614.996 ⁸ 24	<16 ^g	1913.92	3-			main a(11)emp energy, main 22 for deadly placed y.
	(-)	1265.0 ⁱ 2	8 4	1263.9047	6+			
		1534.05 10	100 19	994.7474		E1		
2540.22	$(3,4,5)^+$	1422.58 8	31 15	1117.5703				
	(- / /- /	1644.45 6	100 23	895.7947		E2	1.40×10^{-3}	
2547.25	(4^{+})	1651.49 7	≤225	895.7947		[M1]	0.00202 3	Ey and undivided Iy for doubly-placed γ .
	` /	1997.9 <i>3</i>	75 52	548.7470		. ,		, , , , , , , , , , , , , , , , , , , ,
		2282.8 5	100 52	264.0888	4+			
2551.48	$(4,5)^{-}$	313.420 ⁱ 14	0.78 19	2238.179	$(4)^{+}$			
	. , ,	442.593 ⁱ 20	2.2 7	2108.987	$(5)^{+}$			
		814.77 7	5.9 <i>19</i>	1736.6881				
		1556.84 <i>15</i>	100 15	994.7474		E1		
2558.66	$(5)^{-}$	235.652 18	1.5 5	2323.01	3-			
	` /	984.42 8	15 <i>3</i>	1574.117	5-			
		1294.053 <mark>8</mark> 25	<182 <mark>8</mark>	1263.9047	6+			γ not reported in $(n,n'\gamma)$, so branching probably small.
		1441.41 <mark>8</mark> 7	<156 ^g	1117.5703	5 ⁺			- · · · · · · · · · · · · · · · · · · ·
		1563.85 9	100 16	994.7474				
	(4^{+})	944.79 <i>6</i>	10 <i>3</i>	1616.8060	6^{+}			
2561.56	(+)	1444.06 <i>14</i>	17 9	1117.5703				

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α^f	Comments
2561.56	(4 ⁺)	2012.34 21	22 9	548.7470 6 ⁺			
		2297.43 10	100 <i>13</i>	264.0888 4+			
2571.31		1576.58 ^h 8	100 ^h 36	994.7474 4+			
		1675.49 <mark>8</mark> 6	<138 <mark>8</mark>	895.7947 3+			
2571.9	14 ⁺	624.6 7	100	1947.3 12 ⁺	[E2]	0.00961 14	B(E2)(W.u.)=432 +25-42
							$B(E2)\downarrow$: From measured $B(E2)$ in Coulomb excitation.
							E_{γ} : from level energy difference. γ seen in Coulomb
							excitation but $E\gamma$ not stated.
2572.0	(12^{+})	502	100	$2070.0 10^+$	[E2]	0.01628	B(E2)(W.u.)=336 +20-69
							$B(E2)\downarrow$: From measured $B(E2)$ in Coulomb excitation.
2601.2		2052.0 16		548.7470 6+			
		2337.1 4	100 25	264.0888 4+			
		2522.0 16		79.804 2+			
2628.57	$(3^+,4,5^+)$	1511.1 <i>3</i>	100 67	1117.5703 5+			
		1633.7 3	100 33	994.7474 4+			
2620.2		1732.76 ⁸ 16	<400 ^g	895.7947 3+			
2629.2	(1)	2365.1 4	100	264.0888 4+			E_{γ} : from $(n,n'\gamma)$.
2643.71	1 ⁽⁺⁾	2564.0 2	27 7	$79.804 2^+$	[M1]		B(M1)(W.u.)=0.0040 14
							E_{γ} : from $(n,n'\gamma)$.
							I _{γ} : weighted average of 47 <i>14</i> from (γ, γ') and 24 <i>5</i> from $(n, n'\gamma)$.
		2643.62 <i>16</i>	100	$0.0 0^{+}$	(M1)	1.34×10^{-3}	B(M1)(W.u.)=0.013 3
							E_{γ} : from $(n,n'\gamma)$.
							Mult.: $\Delta \pi = (\text{no}) (1996\text{Ma}18) \text{ from } (\gamma, \gamma') \text{ for D } \gamma.$
2653.8	13-	471.0 2	100	2182.80 11			E_{γ} : from 170 Er(136 Xe,X γ).
2656.86		1762.19 ⁸ 18	30 ⁸ 4	895.7947 3+			
		1835.68 <i>5</i>	100 13	821.1685 2+			$Ε$ γ and undivided $Ι$ γ are for doubly-placed γ .
2657.66	(2,3,4)	1004.11 4	100 22	1653.5486 3 ⁺			
		1042.35 ⁸ 21	<93 <mark>8</mark>	1615.3420 4			
2660.50	(2 t)±	1226.0 5	16.8	1431.466 3			
2660.59	$(3,4)^{+}$	471.874 ⁸ 6	<15 ⁸	2188.408 (5 ⁺)			
		1542.94 25	75 25	1117.5703 5+	M1	0.00199 3	
		1665.74 8	100 25	994.7474 4+	M1		I F 17(2.4 117(5.0 1.1' ()
		1765.02 12	<150	895.7947 3+	E2	1.29×10^{-3}	I_{γ}, E_{γ} : 1763.4 γ and 1765.0 γ unresolved in (n, γ) .
		2395.0 16	39 15	264.0888 4 ⁺ 79.804 2 ⁺			
2662 220	(4)±	2580.0 <i>16</i> 408.457 ⁸ 8	89 <i>15</i> <4.6 ⁸				
2663.229	$(4)^{+}$	408.45 / 8 537.76 6	<4.6° 0.6 9	2254.754 (2 ⁺) 2125.424			E γ is for doubly-placed γ ; I γ has been suitably divided.
		11//00	0.09	Z1ZJ.4Z4			TOV IS TOLL OCHOIVED LACED BY TWO HAS DEED SHIHADIV (11V10EQ.)
		1009.675 21	100 14	1653.5486 3 ⁺	E2	0.00329 5	27 is for dodoly placed 7, 17 has even suitably divided.

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^f	Comments
2663.229	(4) ⁺	1569.30 <i>11</i>	43 10	1094.0383	4-				Other Iy: 76 19 in $(n,n'y)$.
2672.1	$(4^+,5,6^+)$	1409.15 ⁸ 4	<810 ⁸	1263.9047					0 3.2.2. 2/1 1 0 0 5 2.2. (23,2.2 /).
	. , , ,	1677.2 5	100 <i>33</i>	994.7474					
		2410.0 <i>16</i>							
2676.3	1+	2596.5 4	30 <i>3</i>	79.804	2+				E_{γ} : from $(n,n'\gamma)$.
									I_{γ} : from (γ, γ') .
		2676 <i>4</i>	100	0.0	0_{+}	M1		1.34×10^{-3}	B(M1)(W.u.)=0.033 4
									$E_{\gamma}, I_{\gamma}, Mult.$: from (γ, γ') .
2683.8	(2^{+})	2420.0 <i>16</i>							E_{γ} : absent in $(n,n'\gamma)$.
		2604.0 <i>3</i>	100 20	79.804	2+				E_{γ}, I_{γ} : from $(n, n'\gamma)$.
• (00 0	(4.54)	2684.0 ⁸ 4	<1418	0.0	0_{+}				E_{γ}, I_{γ} : from $(n, n'\gamma)$.
2689.0	$(1,2^+)$	2608.9 5	100 25	79.804	2+				E_{γ}, I_{γ} : from $(n, n'\gamma)$.
2604	1(+)	2689.3 5	70 15	0.0	0+	(1.11)		1 2510-3	E_{γ}, I_{γ} : from $(n, n'\gamma)$.
2694	1 ⁽⁺⁾	2694	100	0.0	0+	(M1)		1.35×10^{-3}	E_{γ} ,Mult.: from (γ, γ') ; D, $\Delta \pi$ =(no) γ (1996Ma18).
2700.60	(2+ 2 4+)	2436.49 <i>20</i> 2451.9 ^e	100		4 ⁺ 4 ⁺				
2716.0	$(2^+,3,4^+)$	2431.9 ^e 2636.2 ^e		264.0888 79.804	2+				
2727.77	$(4,5)^{-}$	1112.41 5	100 20	1615.3420		M1+E2	1.2 +14-5	0.0036 6	
2121.11	(4,3)	1611.4 5	53 27	1117.5703		WIITEZ	1.2 +14-3	0.0030 0	
		1732.76 ⁸ 16	<160 ^g						
2728.43	1+	2648.4 3	91 4	79.804	2+				E_{γ} : from $(n,n'\gamma)$.
2720.13	1	2010.15	<i>71 '</i>	75.001	-				I_{γ} : from (γ, γ') ; other I_{γ} : 125 20 in $(n, n'\gamma)$.
		2728.6 <i>3</i>	100	0.0	0^{+}	M1		1.35×10^{-3}	B(M1)(W.u.)=0.041 7
		2720.00	100	0.0	Ü	1,11		1.007.10	E_{γ} : from $(n, n'\gamma)$.
									I_{γ} ,Mult.: from (γ, γ') .
2733.0		1837.0 <i>16</i>	56 <i>21</i>	895.7947	3 ⁺				7.
		2469.0 <i>16</i>	100 23	264.0888	4+				
2738.56		1030.50 5	95 20	1707.9929					
		1123.30 6	100 20	1615.3420					
2740.16	$(4,5,6)^+$	1476.0 <i>3</i>	9 4	1263.9047					
		1622.0 5	29 14	1117.5703				2	
		1745.58 <i>18</i>	100 29			E2		1.30×10^{-3}	
27.40.0		2475.0 16	100 7 1	264.0888					
2740.9	1	2661.2 <i>3</i>	100 14	79.804	2+				E_{γ} : from $(n,n'\gamma)$.
		2740 5 5	0.1	0.0	0+	D			I_{γ} : from (γ, γ') .
		2740.5 5	91	0.0	U.	D			E_{γ} : from $(n, n'\gamma)$.
2746.6	(≤4)	1925.0 <i>16</i>		821.1685	2+				I_{γ} ,Mult.: from (γ, γ') . Other I_{γ} : 51 9 in (n, n'_{γ}) . E_{γ} : absent in (n, n'_{γ}) .
∠/ 4 0.0	(24)	2666.8 3		79.804	2+				E_{γ} : absent in (n,n' γ). E_{γ} : from (n,n' γ).
2757.3	$(1,2^+)$	2678.1 <i>4</i>	<263	79.804	2 ⁺				E_{γ} . From $(n,n'\gamma)$. $E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ for doubly-placed γ .
2131.3	(1,2)	2756.0 6	100 21	0.0	0^{+}				$E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ for doubly-placed γ .
ı		2,30.00	100 21	0.0	O				Σγ, εγ. 110 m (11,11 γ).

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult. [†]	$lpha^f$	Comments
2763.9	$(1,2^+)$	2684.0 <mark>8</mark> 4	<390 <mark>8</mark>	79.804	2+			E_{γ},I_{γ} : from $(n,n'\gamma)$.
	())	2763.9 8	100 33	0.0	0^{+}			E_{γ}, I_{γ} : from $(n, n'\gamma)$.
2768.55		1060.06 <i>13</i>	100 38	1707.9929				
		1153.31 6	100 29	1615.3420				
2769.81	(5^{+})	1458.34 <i>15</i>	38 16	1311.4606	6-			
	(-)	1576.58 <mark>8</mark> 8	<53 <mark>8</mark>	1193.0251				
		1675.49 <mark>8</mark> 6	100 <mark>8</mark> 11	1094.0383				
2778.03		2229.27 <mark>8</mark> 20	100 <mark>8</mark>	548.7470				
2782.9	$(1,2^+)$	2703.1 6	100 27	79.804	2+			E_{γ}, I_{γ} : from $(n, n'\gamma)$.
	() /	2783.0 ⁸ 5	<91 <mark>8</mark>	0.0	0^{+}			E_{γ},I_{γ} : from $(n,n'\gamma)$.
2786.80	$(3,4^+)$	384.510 9	2.3 5	2402.29	$(4)^{-}$			
	(-,.)	1890.9 <i>4</i>	18 9	895.7947				
		1965.19 <i>15</i>	32 9	821.1685				
		2523.2 4	100 18	264.0888				
2788.1		2524.0 16	100	264.0888				
2792.0	1+	2712	24 3	79.804	2+			E_{γ}, I_{γ} : from (γ, γ') .
		2792.0 4	100	0.0	0^{+}	M1	1.35×10^{-3}	B(M1)(W.u.)=0.0333 25
								E_{γ} : from $(n,n'\gamma)$.
								I_{γ} , Mult.: from (γ, γ') .
2798.1	1+	2719.9 8	10.1 18	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
								I_{γ} : from (γ, γ') . Other I_{γ} : 15 7 in $(n, n'\gamma)$.
		2797.8 <i>3</i>	100	0.0	0^{+}	M1	1.35×10^{-3}	B(M1)(W.u.)=0.036 3
								E_{γ} : from $(n,n'\gamma)$.
								I_{γ} , Mult.: from (γ, γ') .
2810.9		2547.0 16	100	264.0888	4+			<i>y</i> ,
2817.0?	$(1,2^+)$	2737.0 9	80 40	79.804	2+			E_{γ},I_{γ} : from $(n,n'\gamma)$.
	. , ,	2817.0 4	100 30	0.0	0^{+}			E_{γ}, I_{γ} : from $(n, n'\gamma)$.
2819.7		2556.0 16	100	264.0888	4+			
2826.4	1(+)	2745.7 5	51 6	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
								I_{γ} : from (γ, γ') . Other I_{γ} : 32 11 in $(n, n'\gamma)$.
		2826.7 3	100	0.0	0^{+}	(M1)	1.36×10^{-3}	B(M1)(W.u.)=0.017 3
						, ,		E_{γ} : from $(n,n'\gamma)$.
								I _{γ} ,Mult.: from (γ, γ') : D, $\Delta \pi$ =(no) γ (1996Ma18).
2833.7	1(-)	2833.7 5	100	0.0	0^{+}	(E1)	1.33×10^{-3}	E_{γ} : from $(n,n'\gamma)$.
	_					()		Mult.: D, $\Delta \pi = (\text{yes})$ (1996Ma18) from (γ, γ') .
2849.60	(4^{+})	1141.47 <i>7</i>	10 4	1707.9929	5-			(1)1).
	` /	1585.89 24	15 6	1263.9047				
		1756.0 16	31 8	1094.0383				
		1855.6 <i>3</i>	9 3	994.7474				
		1954.0 <i>16</i>	21 7	895.7947				

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
2849.60	(4 ⁺)	2300.63 9	100 18	548.7470	6+			
	()	2586.0 16	20 4	264.0888				
		2770.0 16	10 4	79.804	2+			
2850.3	1-	2769	71.8	79.804	2+			E_{γ},I_{γ} : from (γ,γ') .
		2850.5 4	100	0.0	0^{+}	E1	1.34×10^{-3}	B(E1)(W.u.)=0.000181 25
		2030.3 7	100	0.0	Ü	D1	1.5 1/(10	E_{γ} : from $(n,n'\gamma)$.
								I_{γ} , Mult.: from (γ, γ') .
2852.0		792.11 <mark>8</mark> 6	<65 <mark>8</mark>	2059.9751	$(4)^{-}$			27,3,222.00
		1734.4 5	100 50	1117.5703				Possible multiplet.
2856.5	(2^{+})	2776.8 6	100 11	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
	()							I_{γ} : from (γ, γ') .
		2856	40	0.0	0^{+}	(Q)		$E_{\gamma}, I_{\gamma}, Mult.:$ from (γ, γ') .
2863.6?	$(1,2^+)$	2783.0 ⁸ 5	<83 <mark>8</mark>	79.804	2+			$E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$.
	. , ,	2863.6 5	100 25	0.0	0^{+}			E_{γ},I_{γ} : from $(n,n'\gamma)$.
2874.61	(3,4,5)	969.51 <i>3</i>	47 11	1905.0922				
		1780.51 8	100 29	1094.0383	4-			
		1880.47 20	43 14	994.7474	4+			
		2611.0 <i>16</i>	54 <i>14</i>	264.0888	4+			
2890.65		2341.89 <i>24</i>	100	548.7470	6+			
2896.7	$(3,4^+)$	1281.03 ⁸ 7	<19 <mark>8</mark>	1615.3420	4^{-}			$\alpha(K)$ exp for doubly-placed γ consistent with $\alpha(K)(M1)$.
		1355.3 <i>3</i>	100 12	1541.5564				
		2631.0 <i>16</i>		264.0888	4+			
		2815.0 <i>16</i>		79.804	2+			
2920.00		2656.0 <i>16</i>	100	264.0888	4+			
2929.9	1(+)	2850.5 4	46 7	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
								I_{γ} : from (γ, γ') .
		2929.2 5	100	0.0	0_{+}	(M1)	1.37×10^{-3}	B(M1)(W.u.)=0.0078 13
								E_{γ} : from $(n,n'\gamma)$.
								I_{γ} ,Mult.: from (γ, γ') ; D, $\Delta \pi$ =(no) γ (1996Ma18).
2933.44	2+	1839.0 ⁱ <i>16</i>	260 50	1094.0383	4-			May Be misplaced; placement requires mult=M2.
		1938.69 <i>18</i>	90 <i>36</i>	994.7474				
		2669.0 <i>16</i>	100 20	264.0888				
		2853.0 <i>16</i>	54 <i>24</i>	79.804	2+			
2934.0	14-	515.0 2	100	2419.0	12^{-}			E_{γ} : from 170 Er(136 Xe,X γ).
2946.6	1(-)	2866.7 5	100 6	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
								I_{γ} : from (γ, γ') .
		2946.7 <i>6</i>	57	0.0	0_{+}	D		E_{γ} : from $(n,n'\gamma)$.
								I_{γ} , Mult.: from (γ, γ') . Other I_{γ} : 108 23 in (n, n'_{γ}) .
2950.7		2686.0 <i>16</i>	100	264.0888				•
2955.6	1	2955.6 8	100	0.0	0_{+}	D		E_{γ} : from $(n,n'\gamma)$.
								I_{γ} , Mult.: from (γ, γ') .

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	J_f^{π} N	⁄Iult.†	α^f	Comments
2969.93	3+,4+,5+	1317.42 6	<40	1653.5486	3 ⁺			I_{γ} : undivided I_{γ} for doublet from (n,γ) E=thermal.
		1875.69 <i>12</i>	56 <i>13</i>	1094.0383	4- E	1	9.35×10^{-4}	
		1975.1 <i>3</i>	56 <i>13</i>	994.7474				
		2420.71 ⁱ 24	100 25	548.7470	6+			
2972.6	(≤4)	2893.0 16	100		2+			
2974.3	1	2895	100 14		2+			I_{γ}, E_{γ} : from (γ, γ') .
,		2974.2 5	78		0+ D)		E{γ} : from $(n,n'\gamma)$.
								I_{γ} , Mult.: from (γ, γ') .
2979.3	(≤4)	2158.0 <i>16</i>		821.1685	2+			
2982.53	(3,4,5)	1366.914 ⁸ 20	<580 <mark>8</mark>					
	· / /-/	1987.77 10	100 40					
2991.33	(≤4)	2911.0 <i>16</i>	100		2+			
2998.2	0+	2734.0 16	100		4+			
3002.4?	$(1,2^+)$	2922.6 5	100 20		2+			E_{γ},I_{γ} : from $(n,n'\gamma)$.
		3002.3 4	73 20		0^{+}			E_{γ}, I_{γ} : from $(n, n'\gamma)$.
3011.77	(4^{+})	2189.0 <i>16</i>	28 12	821.1685	2+			
		2462.0 <i>16</i>	100 20	548.7470	6+			
		2747.0 16	80 14	264.0888	4+			
		2932.0 16	58 <i>14</i>		2+			
3026.02		2477.3 16	100	548.7470				
3030.7		2769.0 <i>16</i>	100	264.0888				
3033.9	(≤4)	2212.7 5	100	821.1685	2+			
3042.8	3-,4-,5-	1948.73 25	100		4 N	1 1		
3044	1	2964	60 15		2+			
		3044	100	0.0	0+ D)		
3049.6	1+	2229.27 ^h 20	55 ^h 20	821.1685	2+			E_{γ} : for multiply-placed γ .
								I_{γ} : from $I(2229\gamma)$: $I(2970\gamma)$ in two-photon cascade experiment in (n,γ)
								E=thermal and 2970γ branching here.
		2969.8 5	70 <i>6</i>	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
							_	I_{γ} : from (γ, γ') . Other I_{γ} : 106 22 in (n, n'_{γ}) .
		3049.5 7	100	0.0	0^+ N	1 1	1.39×10^{-3}	B(M1)(W.u.)=0.0138 21
								E_{γ} : from $(n,n'\gamma)$.
								I_{γ} , Mult.: from (γ, γ') .
3068.8		2520.0 <i>16</i>	100	548.7470				
3082	1	3002	81 11		2+			
		3082	100		0+ D)		
3082.8	(4^{+})	2533.0 16	74 28		6+			
		2819.0 <i>16</i>	100 35		4 ⁺			
****	1 (-)	3003.0 16	60 35		2+			
3095.9	1 ⁽⁻⁾	3015.1 7	55 6	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
					- 1			Other Iy: 62 23 in $(n,n'\gamma)$.
		3096.6 <i>6</i>	100	0.0	0^{+} (E	E1)	1.44×10^{-3}	B(E1)(W.u.)=0.000179 21

$E_i(level)$	$\underline{\mathbf{J}_{i}^{\pi}}$	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
								E_{γ} : from $(n,n'\gamma)$.
2000 42	(2=)	2104 67 15	10.11	004.7474	4+			Mult.: D, $\Delta \pi$ =(yes) (1996Ma18) from (γ, γ') .
3099.42	(3 ⁻)	2104.67 15	42 11	994.7474		(E1)		
		2203.65 9	100 21	895.7947		(E1)		
2111 24	(2+ 2 4+)	2277.97 22	32 <i>11</i> 69 <i>15</i>	821.1685				
3111.24	$(2^+,3,4^+)$	2116.48 <i>15</i> 2214.47 ⁸ 20	100 ⁸ 23	994.7474				
		2214.478 20 2290.0 16	53 14	895.7947 821.1685				
		3031.0 16	41 <i>11</i>	79.804	2 ⁺			
3116.4?	(2^{+})	2853.0 7	100 20	264.0888				E_{γ},I_{γ} : from $(n,n'\gamma)$.
3110.4:	(2)	3036.5 7	40 15	79.804	2+			E_{γ},I_{γ} . Holl (I,I,I,γ) . E_{γ},I_{γ} : from (I,I,I,γ) .
		3115.4 9	60 15	0.0	0+			E_{γ},I_{γ} . Holl (I,I,I,γ) . E_{γ},I_{γ} : from (I,I,I,γ) .
3124.40	(4^{+})	2303.22 20	50 10	821.1685				$E_{\gamma}I_{\gamma}$: for doubly-placed γ ; divided I γ given.
3121.10	(1)	2575.0 <i>16</i>	100 62	548.7470				by, sy. for doubly placed y, divided ly given.
3124.5	1+	3045	46 5	79.804	2+			
0120	•	3124.2 10	100	0.0	0+	M1	1.40×10^{-3}	B(M1)(W.u.)=0.0159 22
		3121.2 10	100	0.0	Ü	.,,,	1.10/(10	E_{γ} : from $(n,n'\gamma)$.
3127.93	$(4^+,5,6^+)$	2579.0 16	100 27	548.7470	6+			2/1 110111 (11,111 /)1
0127.50	(. ,5,5)	2864.0 16	61 7	264.0888				
3151.9	(≤4)	2330.7 <mark>e</mark>	100	821.1685				
3158.3	(— <i>)</i>	3077.6 <mark>e</mark>	100	79.804	2+			
3181.1	1-	3102.3 6	100 6	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
		3181	56	0.0	0_{+}	E1	1.48×10^{-3}	$B(E1)(W.u.)=3.2\times10^{-5}$ 5
3187.9	15-	534.1 2	100	2653.8	13-			E_{γ} : from 170 Er(136 Xe,X γ).
3190	1-	3110	62 6	79.804	2+			2/1 110111 21(110,11/).
		3190	100	0.0	0^{+}	E1	1.48×10^{-3}	B(E1)(W.u.)=0.00020 3
3198.0	(≤4)	3118.2 ^e	100	79.804	2+	21	11.07.10	2(21)(**********************************
3205.2	(-)	2941.1 ^e	100	264.0888				
3208.0	1(+)	3208.0 8	100	0.0	0+	(M1)	1.42×10^{-3}	E_{γ} : from $(n,n'\gamma)$.
2200.0	•	2200.0	100	0.0	Ü	(1111)	11.12/110	Mult.: D, $\Delta \pi = (no)$ (1996Ma18) from (γ, γ') .
3220	1	3220	100	0.0	0_{+}	D		(1,1)
3223.2	(4^{+})	2402.0 ^e		821.1685				
	. ,	2674.5 <mark>e</mark>		548.7470				
		2959.1 ^e		264.0888				
3238.0		2973.9 <mark>e</mark>	100	264.0888				
3242.6	1	3242.6 8	100	0.0	0_{+}	D		E_{γ} : from $(n,n'\gamma)$.
3259.5	16 ⁺	687.6 11	100	2571.9	14 ⁺	[E2]		$B(E2)(W.u.)=3.4\times10^2 +3-11$
								E_{γ} : from level energy difference. Other E_{γ} : 687.6 from level energy
								difference in Coulomb excitation.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	J_f^{π}	Mult. [†]	α^f	Comments
3285.1	(4 ⁺)	2736.4 ^e		548.7470	6+			
	,	3021.0 <mark>e</mark>		264.0888				
		3205.3 ^e		79.804	2+			
3300.0	1	3300.0 7	100	0.0	0_{+}	D		E_{γ} : from $(n,n'\gamma)$.
3327.3	(≤4)	3247.5 <mark>e</mark>	100	79.804	2+			
3335.0	$(4^+,5^+)$	2439.2 <mark>e</mark>		895.7947				
	, , ,	2786.3 ^e		548.7470				
3338.2	(2^{+})	3258.4 6	100 27	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
		3338.0 10	67	0.0	0_{+}	(Q)		E_{γ} : from $(n,n'\gamma)$.
								Other Iy: 89 45 in $(n,n'\gamma)$.
3342.0	1 ⁽⁺⁾	3342.0 10	100	0.0	0_{+}	(M1)	1.45×10^{-3}	E_{γ} : from $(n,n'\gamma)$.
								Mult.: D, $\Delta \pi$ =(no) (1996Ma18) from (γ, γ') .
3347.7		2352.9 <mark>e</mark>	100	994.7474				· · · · · · · · · · · · · · · · · · ·
3358.7	1+	3278	66.9 19	79.804	2+			
		3358.7 6	100	0.0	0_{+}	M1	1.46×10^{-3}	B(M1)(W.u.)=0.064 5
								E_{γ} : from $(n,n'\gamma)$.
3370.9	(2^{+})	3291.9 9	100 <i>16</i>	79.804	2+			E_{γ} : from $(n,n'\gamma)$.
		3370.9 7	87	0.0	0_{+}	(Q)		E_{γ} : from $(n,n'\gamma)$.
								Other Iy: 89 33 in $(n.n'\gamma)$.
3376.6	(4^{+})	2555.4 <mark>e</mark>		821.1685				
		2827.9 <mark>¢</mark>		548.7470				
		3296.8 <mark>¢</mark>		79.804	2+			
3391	1+	3311	44.7 9	79.804	2+			
		3391	100	0.0	0_{+}	M1	1.46×10^{-3}	B(M1)(W.u.)=0.140 11
								Other B(M1)(W.u.): 0.30 7 from (e,e').
3394.5		2300.2 ^e	100	1094.0383	4-			
3399.3	(≤4)	3319.5 <mark>e</mark>	100	79.804	2+			
3409.7	1+	3330	62 <i>4</i>	79.804	2+			E_{γ},I_{γ} : from (γ,γ') .
		3409.7 9	100	0.0	0_{+}	M1	1.47×10^{-3}	B(M1)(W.u.)=0.037 5
								E_{γ} : from $(n,n'\gamma)$.
								Mult., I_{γ} : from (γ, γ') .
3415.5	(≤4)	3335.7 ^e	100	79.804	2+			
3432.0	(4^{+})	2883.3 ^e		548.7470				
		3352.2 ^e		79.804	2+			
3439.6	1(-)	3361	100 17	79.804	2+			E_{γ},I_{γ} : from (γ,γ') .
		3439.6 9	56	0.0	0_{+}	(E1)	1.57×10^{-3}	B(E1)(W.u.)=0.000103 25
								E_{γ} : from $(n,n'\gamma)$.
								I_{γ} : from (γ, γ') .
								Mult.: D, $\Delta \pi = (\text{yes})$ (1996Ma18) from (γ, γ') .
3449	1	3449	100	0.0	0^{+}	D		E_{γ} , Mult.: from (γ, γ') .

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
3458	1+	3378	48.7 19	79.804	2+			E_{γ}, I_{γ} : from (γ, γ') .
		3458	100	0.0	0^{+}	M1	1.48×10^{-3}	B(M1)(W.u.)=0.061 6
								$E_{\gamma}, I_{\gamma}, Mult.:$ from (γ, γ') .
3469	1-	3389	61 7	79.804	2+			E_{γ},I_{γ} : from (γ,γ') .
		3469	100	0.0	0_{+}	E1	1.58×10^{-3}	B(E1)(W.u.)=0.00032 5
					- 1			E_{γ} , I_{γ} , $Mult.$: from (γ, γ') .
3475.7	(≤4)	3395.9 ^e	100	79.804	2+			
3481	1-	3401	100 5	79.804	2+			E_{γ},I_{γ} : from (γ,γ') .
		3481	54	0.0	0_{+}	E1	1.59×10^{-3}	B(E1)(W.u.)=0.00062 9
3487.3		2591.5 <mark>e</mark>	100	895.7947	2+			E_{γ} , I_{γ} , $Mult.:$ from (γ, γ') .
	(4^{+})	2947.7 ^e	100	548.7470				
3496.4	(4)	3416.6 ^e		79.804	0 2 ⁺			
3499.3		2405.3 ^e	100	1094.0383				
3504.2	1-	3424.4 9	100 29	79.804	2 ⁺			E_{γ} : from $(n,n'\gamma)$.
3304.2	1	3424.4 9	100 29	79.004	2			I_{γ} : from (γ, γ') .
		3505	59	0.0	0^{+}	D		E_{γ} , I_{γ} , $Mult.:$ from (γ, γ') .
3507.8	(≤4)	3428.0 ^e	100	79.804	2+	D		$L_{\gamma,1\gamma,\text{ividit.}}$ from (γ,γ) .
3513.9	(37)	2965.2 ^e	100	548.7470				
3516	1-	3436	75 8	79.804	2+			E_{γ}, I_{γ} : from (γ, γ') .
3310	•	3516	100	0.0	0+	E1	1.60×10^{-3}	B(E1)(W.u.)=0.00022 5
		3310	100	0.0	U	Li	1.00×10	E_{γ} , I_{γ} , Mult.: from (γ, γ') .
3521.1	(≤4)	3441.3 <mark>e</mark>	100	79.804	2+			— y,-y, (,,,,).
3529	1	3529	100	0.0	0^{+}	D		E_{γ} , Mult.: from (γ, γ') .
3560.0		3011.3 <mark>e</mark>	100	548.7470	6+			
3566	1	3566	100	0.0	0_{+}	D		E_{γ} , Mult.: from (γ, γ') .
3570.9	(4^{+})	2675.1 ^e		895.7947	3 ⁺			
		2749.7 <mark>e</mark>		821.1685	2+			
		3022.2 <mark>e</mark>		548.7470	6+			
3588.0		2593.2 <mark>e</mark>	100	994.7474	4+			
3591	1(+)	3511	48 8	79.804	2+			E_{γ},I_{γ} : from (γ,γ') .
		3591	100	0.0	0^{+}	(M1)	1.51×10^{-3}	B(M1)(W.u.)=0.0097 19
						,		E_{γ}, I_{γ} : from (γ, γ') .
								Mult.: D, $\Delta \pi = (no)$ (1996Ma18) in (γ, γ') .
3598	1	3518	62 9	79.804	2+			E_{γ}, I_{γ} : from (γ, γ') .
		3598	100	0.0	0_{+}	D		$E_{\gamma}, I_{\gamma}, Mult.: from (\gamma, \gamma').$
3606.8	(≤4)	3527.0 ^e	100	79.804	2+			
3617.6	2+	2623.0 ^e		994.7474				
		2796.6 <mark>e</mark>		821.1685	2+			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	α^f	Comments
3617.6	2+	3538.0 ^e		79.804 2+			
3627	1	3627	100	$0.0 0^{+}$	D	2	E_{γ} , Mult.: from (γ, γ') .
3634	1 ⁽⁻⁾	3634	100	$0.0 0^{+}$	(E1)	1.65×10^{-3}	E_{γ} : from (γ, γ') .
25121		2024.00	400	004.450# 0+			Mult.: D, $\Delta \pi$ =(yes) (1996Ma18) in (γ, γ') .
3643.1	(≤4)	2821.9 ^e	100	821.1685 2+			
3657	1 ⁽⁺⁾	3577	40 3	79.804 2+		1 50 10-3	E_{γ}, I_{γ} : from (γ, γ') .
		3657	100	$0.0 0^{+}$	(M1)	1.53×10^{-3}	B(M1)(W.u.)=0.036 5
							E_{γ},I_{γ} : from (γ,γ') . Mult.: D, $\Delta\pi$ =(no) (1996Ma18) in (γ,γ') .
3660.9	(≤4)	2839.7 <mark>e</mark>	100	821.1685 2+			Mult. D, $\Delta \lambda = (10) (1990 \text{Ma16}) \text{ iii } (\gamma, \gamma)$.
3680.1	$(2^+,3,4^+)$	2685.3 ^e	100	994.7474 4 ⁺			
3000.1	(2 ,5,4)	2858.9 ^e		821.1685 2 ⁺			
3696	1	3616	75 <i>15</i>	79.804 2 ⁺			E_{γ}, I_{γ} : from (γ, γ') .
		3696	100	$0.0 0^{+}$	D		$E_{\gamma}, I_{\gamma}, Mult.: from (\gamma, \gamma').$
3702.5	(≤4)	3622.7 <mark>e</mark>	100	79.804 2+			
3703	1-	3623	100 9	79.804 2 ⁺			E_{γ},I_{γ} : from (γ,γ') .
		3703	44	$0.0 0^{+}$	E1	1.67×10^{-3}	B(E1)(W.u.)=0.00026 5
							$E_{\gamma}, I_{\gamma}, Mult.:$ from (γ, γ') .
3715.2	.()	2819.4 ^e	100	895.7947 3+			
3719	1(-)	3639	100 18	79.804 2+		2	E_{γ}, I_{γ} : from (γ, γ') .
		3719	84	$0.0 0^{+}$	(E1)	1.68×10^{-3}	B(E1)(W.u.)=0.00021 6
							$E_{\gamma}I_{\gamma}$: from (γ, γ') .
3737	1	3737	100	$0.0 0^{+}$	D		Mult.: D, $\Delta \pi$ =(yes) (1996Ma18) from (γ, γ') . E_{γ} , Mult.: from (γ, γ') .
3739.0	$(2^-,3,4^+)$	2645.0 ^e	100	1094.0383 4	D		L_{γ} , which is the first probability of the state of
3737.0	(2 ,5,1)	2917.8 ^e		821.1685 2 ⁺			
3745	1(-)	3665	100 6	79.804 2 ⁺			E_{γ},I_{γ} : from (γ,γ') .
		3745	64	$0.0 0^{+}$	(E1)	1.69×10^{-3}	B(E1)(W.u.)=0.00031 5
					,		E_{γ},I_{γ} : from (γ,γ') .
							Mult.: D, $\Delta \pi$ =(yes) (1996Ma18) in (γ, γ') .
3755.4		2859.6 ^e	100	895.7947 3+			
3761.6	(≤4)	2940.4 ^e	100	821.1685 2+			
3776	1 ⁽⁺⁾	3696	47 8	79.804 2+		2	E_{γ}, I_{γ} : from (γ, γ') .
		3776	100	$0.0 0^{+}$	(M1)	1.56×10^{-3}	B(M1)(W.u.)=0.0103 20
							E_{γ}, I_{γ} : from (γ, γ') .
2701 7	(1+ 5 6+)	2706 06		994.7474 4+			Mult.: D, $\Delta \pi$ =(no) (1996Ma18) in (γ, γ') .
3781.7	$(4^+,5,6^+)$	2786.9 ^e 3233.0 ^e		548.7470 6 ⁺			
		3517.6 ^e		264.0888 4+			
		3311.0		207.0000 7			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^f	Comments
3789	1	3789	100	0.0	0+	D		E_{γ} , Mult.: from (γ, γ') .
3799.4		3250.7 ^e	100	548.7470	6+			
3800	$1^{(-)}$	3720	190 40	79.804	2+			E_{γ}, I_{γ} : from (γ, γ') .
		3800	100	0.0	0_{+}	(E1)	1.71×10^{-3}	B(E1)(W.u.)=0.00012 4
								E_{γ},I_{γ} : from (γ,γ') .
								Mult.: D, $\Delta \pi$ =(yes) (1996Ma18) in (γ, γ') .
3806	1+	3726	53 4	79.804	2+		2	E_{γ},I_{γ} : from (γ,γ') .
		3806	100	0.0	0_{+}	M1	1.57×10^{-3}	B(M1)(W.u.)=0.037 6
								$E_{\gamma},I_{\gamma},Mult.:$ from (γ,γ') .
3814	$1^{(-)}$	3734	74 10	79.804	2+			E_{γ},I_{γ} : from (γ,γ') .
		3814	100	0.0	0_{+}	(E1)	1.72×10^{-3}	B(E1)(W.u.)=0.00022 5
								E_{γ}, I_{γ} : from (γ, γ') .
					- 1			Mult.: D, $\Delta \pi$ =(yes) (1996Ma18) in (γ, γ') .
3817.0	(≤4)	2995.8 ^e	100	821.1685				
3835.2		3571.1 ^e	100	264.0888		_		
3869	1	3869	100	0.0	0+	D		E_{γ} , Mult.: from (γ, γ') .
3888.4		2992.6 ^e	100					
3895.2		3631.1 ^e	100	264.0888				
3908.3	1	3644.2 ^e	100			D		
3912	1(-)	3912	100	0.0	0+	D		E_{γ} , Mult.: from (γ, γ') .
3921	1(-)	3841	42 8	79.804	2+	(F11)	1.55 10-3	$E_{\gamma}I_{\gamma}$: from (γ,γ') .
		3921	100	0.0	0_{+}	(E1)	1.75×10^{-3}	B(E1)(W.u.)=0.00012 3
								$E_{\gamma}I_{\gamma}$: from (γ,γ') .
								Mult.: D, $\Delta \pi = (\text{yes})$ (1996Ma18) in (γ, γ') .

[†] From $^{167}\text{Er}(n,\gamma)$ E=thermal, except where noted.

[‡] Relative photon branching from each level; values are from 167 Er(n, γ) E=thermal, except where noted. Upper limits are given for photon branchings affected by multiple placement.

^{# &}lt;-91 or >+200, or +32 +24-9 (1998A115), -28 +6-12 (1981Iw04), -28 +9-23 (1975Be43), +64 +135-26 (1971La11 from $\gamma\gamma(\theta)$) in ε decay; ≥29 (1972Do01) and ≤-25 (1978Mc02) from Coulomb excitation; +26 +27-8 from (n,n' γ). Data are inconsistent, but M1 admixture (if any) clearly is small. Evaluator adopts a magnitude of 25 as a lower limit for δ(741).

[®] From $\gamma\gamma(\theta)$ (1981Iw04) in ¹⁶⁸Tm ε decay. Other δ : δ =5.1 +56–13 from ce data in Er(n, γ) E=thermal; -4.9 3 (1975Be43) in ε decay; however δ >71 (1975Ab06) in ε decay and δ =-12.0 +16–23 from $\gamma(\theta)$ in (n,n' γ).

[&]amp; Weighted average of +20 4 (1981Iw04), +17 3 (1975Be43), +13 +9-3 (1975Ab06) from $\gamma\gamma(\theta)$ in ¹⁶⁸Tm ε decay. Other δ: 1/(+0.005 15) (i.e., δ<-100 or δ>+50) (1998Al15) from 816γ-80γ(θ) in ε decay; 5.1 +12-7 from sub-shell ratios in Er(n,γ) E=thermal; -70 +40-570 from $\gamma(\theta)$ in (n,n'γ).

^a From Coulomb excitation.

^b From $\gamma\gamma(\theta)$ in ¹⁶⁸Tm ε decay.

- c From ce data in $^{168}{\rm Tm}~\varepsilon$ decay. d From $^{168}{\rm Tm}~\varepsilon$ decay.
- ^e From level energy difference in (n,γ) E=thermal.
- f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^g Multiply placed with undivided intensity.
- Multiply placed with intensity suitably divided.
 Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

@ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- → γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

- ► γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

----- γ Decay (Uncertain)

83

Band(M): $\mathbf{K}^{\pi} = \mathbf{0}^{+}$ (π 1/2[411])- $(\pi 1/2[411])$ band

 $(6)^{+}$ 2246.530

Band(L): $K^{\pi}=3^-$ band

Band(P): $K^{\pi}=2^+$ band (3)

 (5^{+}) 2188.408

2080.457

1994.821

1930.391

Band(O): $K^{\pi}=4^{-}$ (π 7/2[523]) +(π 1/2[411])

band Band(N): $K^{\pi}=2^{+}$ band **(2)**

(4)⁻

1905.0922

2+ 1848.354

1915.502

1833.54 1828.0639

1786.123

 $^{168}_{\ 68}\mathrm{Er}_{100}$

Band(R): $K^{\pi}=3^{-}$ (π 7/2[523]) -(π 1/2[411]) band

Band(S): $K^{\pi}=4^+ \gamma \gamma$ band

Band(V): $K^{\pi}=0^+$ band (5)

 $(5)^{+}$

(6)-

(2⁺) 2177.79

2133.767

Band(U): $K^{\pi}=1^+$ band

(1)

2243.514

 $(2)^{+}$

2137.08

 $(3)^{+}$

 (1^{+})

(3)

1999.2239

111

(4)+ 2055.914

Band(T): $K^{\pi}=4^-$ band (3)

2255.343

(2)- 1972.314

(5)⁻

2185.11

1- 1936.596

 $^{168}_{68}\mathrm{Er}_{100}$

Band(b): $K^{\pi}=(3)^{-}$ band (4)

(5⁻) 2451.165

Band(c): $K^{\pi}=3^{-}$ band (5) ?

(4)- 2402.29

Band(Z): K^{π} =4⁺ band (2)

(5⁺) 2368.585

Band(X): K^{π} =(2)⁺ (π 3/2[411])+(π 1/2[411]) band

4 2348.581

4+ 2336.26

3- 2323.01

Band(Y): $K^{\pi}=2^{-}$ band (2)

(3) 2302.666

Band(W): \mathbf{K}^{π} =(3)⁺ band (2)

(4)⁺ 2279.630

(3)- 2262.691

(3)+ 2254.84

(4)+ 2238.179

(2) 2230.30

2+ 2193.19

(3)+ 2186.741

 $^{168}_{\ 68}\mathrm{Er}_{100}$

Band(e): $K^{\pi}=(4)^{+}$ band (3)

(5⁺) 2769.81

(4)+ 2663.229

Band(g): $K^{\pi}=2^+$ band (5)

(4⁺) 2561.56

Band(d): $K^{\pi}=3^-$ band (6)

(5) 2526.583

Band(a): $K^{\pi}=(5)^{-}$ band (1)

(6-) 2474.10

(3+) 2484.52

(2)⁺ 2424.91

 (2^+) 2393.71

Band(f): K^{π} =(1⁺) (π 3/2[411])-(π 1/2[411]) band

2547.25

 (4^{+})

 $\begin{array}{cccc} \underline{(5)^{-}} & \underline{2365.196} & \underline{(1^{+})} & \underline{2365.33} \\ \end{array}$

3- 2337.100

 $^{168}_{68}\mathrm{Er}_{100}$