Deep speech

Vincent Rébiscoul, Stéphane Pouget and Florent Guépin

This document present our project in machine learning. We have implemented a voice recognition system i.e. our program is able to recognize spoken language and translate into text by computers. We use python3, Keras and Tensorflow.

Introduction

We have implemented this article (1) with python3, Keras and Tensorflow. The neuron network used is not common. So we created our own neuron network model.

Model

We have seven layers of neuron. The three first layers are computed by:

$$h_t^{(l)} = g(W^{(l)}h_t^{(l-1)} + b^{(l)})$$

where $g(z)=\min\{\max{\{0,z\}},20\}$ and $W^{(l)},b^l$ are the weight matrix and bias parameters for layers l.

The fourth layer is a bi-directional reccurrent layer. This layer includes two sets of hidden units: a set with forward reccurrence, $h^{(f)}$, and a set with backward recurrence $h^{(b)}$:

$$h_t^{(f)} = g(W^{(4)}h_t^{(3)} + W_r^{(f)}h_{t-1}^{(f)} + b^{(4)})$$

$$h_t^{(b)} = g(W^{(4)}h_t^{(3)} + W_r^{(b)}h_{t+1}^{(b)} + b^{(4)})$$

The fifth (non-recurrent) layer takes both the forward and backward units as inputs $h_t^{(5)}=g(W^{(5)}h_t^{(4)}+b^{(5)})$ where $h_t^{(4)}=h_t^{(f)}+h_t^{(b)}$. The output layer is a standar softmax function that yields the predicted character probabilities for each time slice t and character k in the alphabet:

$$h_{t,k}^{(6)} \equiv \mathbb{P}(c_t = k|x) = \frac{exp(W_k^{(6)}h_t^{(5)} + b_k^{(6)})}{\sum_j exp(W_j^{(6)}h_t^{(5)} + b_j^{(6)})}$$

Figure 1: Structur of our RNN model

Our work

This article (I) create a new model and use a ctc loss function. So to create this model, we have customized our model so that it is like on the article. For that we had to work a lot on the documentation of keras and tensorflow. However our main problem was the ctc loss function but finally everything is good.

References and Notes

1. A. Y. Hannun, et al., CoRR abs/1412.5567 (2014).