最適化手法 講義資料(平成24年冬学期)

準 Newton 法の概要

連続微分可能な関数 $f:\mathbb{R}^n \to \mathbb{R}$ の無制約最小化問題を考える.簡単のために,記号

$$f_k \equiv f(x_k), \quad \nabla f_k \equiv \nabla f(x_k), \quad \nabla^2 f_k \equiv \nabla^2 f(x_k)$$

を用いる.

Newton 法では, Newton 方程式

$$\nabla^2 f_k \mathbf{d} = -\nabla f_k \tag{1}$$

の解として探索方向 d_k を定義する.一方,準 Newton 法では,(1) の $\nabla^2 f_k$ を適当な正定値行列 B_k で近似する.つまり,準 Newton 法における探索方向 d_k は,線形方程式

$$B_k \mathbf{d} = -\nabla f_k \tag{2}$$

の解として定められる.準 Newton 法の概要は,次の通りである.

アルゴリズム 1 (準 Newton 法のプロトタイプ).

Step 0: 初期点 x_0 および $B_0 \succ O$ を選ぶ、十分小さい $\epsilon > 0$ を定め,k = 0 とおく、

Step 1: 停止条件 $\|\nabla f_k\| < \epsilon$ が満たされていれば, x_k を解として終了.

Step 2: 線形方程式 (2) を解いて探索方向 d_k を求める.

Step 3: 直線探索により α_k を定める (Wolfe の条件などを用いる).

Step 4: $x_{k+1} = x_k + \alpha_k d_k$ と更新する.

Step 5: $B_{k+1} \succ O$ を生成する(後述). $k \leftarrow k+1$ とおいて Step 1 へ .

アルゴリズム 1 の Step~5 では, $B_k,~x_k,~x_{k+1},~\nabla f_k,~\nabla f_{k+1}$ を用いて $\nabla^2 f_{k+1}$ の近似行列 B_{k+1} を生成する.簡単のために

$$oldsymbol{s}_k \equiv oldsymbol{x}_{k+1} - oldsymbol{x}_k = lpha_k oldsymbol{d}_k, \quad oldsymbol{y}_k \equiv
abla f_{k+1} -
abla f_k, \quad oldsymbol{p}_k \equiv rac{1}{oldsymbol{y}_k^{
m T} oldsymbol{s}_k}, \quad oldsymbol{
ho}_k \equiv rac{1}{oldsymbol{y}_k^{
m T} oldsymbol{s}_k}$$

とおく、 B_{k+1} を生成する方法として,次の二つの公式がよく知られている:

1. BFGS 公式

$$B_{k+1} = B_k - \frac{B_k \boldsymbol{s}_k \boldsymbol{s}_k^{\mathrm{T}} B_k}{\boldsymbol{s}_k^{\mathrm{T}} B_k \boldsymbol{s}_k} + \rho_k \boldsymbol{y}_k \boldsymbol{y}_k^{\mathrm{T}}$$
(3)

2. DFP 公式

$$B_{k+1} = (I - \rho_k \boldsymbol{y}_k \boldsymbol{s}_k^{\mathrm{T}}) B_k (I - \rho_k \boldsymbol{s}_k \boldsymbol{y}_k^{\mathrm{T}}) + \rho_k \boldsymbol{y}_k \boldsymbol{y}_k^{\mathrm{T}}$$

$$\tag{4}$$

- (3) や (4) で定められる B_{k+1} は,次の性質を満たすことが確認できる.
 - (a) B_{k+1} はセカント条件 $B_{k+1}s_k = y_k$ を満たす.
 - (b) B_k が対称行列ならば B_{k+1} も対称行列である.
 - (c) $B_k \succ O$ かつ $s_k^{\mathrm{T}} \boldsymbol{y}_k > 0$ ならば $B_{k+1} \succ O$ である.

このうち,性質(c)の仮定に注目する.実は,Step 3 において α_k を Wolfe の条件を満たすように選ぶと,条件 $s_k^{\mathrm{T}}y_k>0$ は自動的に満たされる.というのも,まず, s_k の定義および Wolfe の条件 $\nabla f(x_k+\alpha_k d_k)^{\mathrm{T}}d_k \geq c_2 \nabla f_k^{\mathrm{T}}d_k$ より $\nabla f_{k+1}^{\mathrm{T}}s_k \geq c_2 \nabla f_k^{\mathrm{T}}s_k$ が得られる.このことと y_k の定義より

$$\boldsymbol{y}_{k}^{\mathrm{T}}\boldsymbol{s}_{k} = (\nabla f_{k+1} - \nabla f_{k})^{\mathrm{T}}\boldsymbol{s}_{k} \ge (c_{2} - 1)\nabla f_{k}^{\mathrm{T}}\boldsymbol{s}_{k} = (c_{2} - 1)\alpha_{k}\nabla f_{k}^{\mathrm{T}}\boldsymbol{d}_{k}$$
 (5)

が得られる. $B_k\succ O$ ならば, d_k は降下方向である(つまり, $\nabla f_k^{\rm T}d_k<0$ を満たす).このことと $c_2<1$ より,(5) の最右辺は正である.従って, $s_k^{\rm T}y_k>0$ が成り立つことが分かる.

 B_k の更新公式 (3) や (4) に対して Sherman-Morrison-Woodbury の公式 1 を適用すると, B_{k+1} の 逆行列 $H_{k+1}\equiv B_{k+1}^{-1}$ を陽に求めることができる.このようにして得られる H_k の更新公式を,H 公式と呼ぶ.これに対して,(3) および (4) は B 公式と呼ばれることもある.

1. BFGS 公式の H 公式

$$H_{k+1} = (I - \rho_k \mathbf{s}_k \mathbf{y}_k^{\mathrm{T}}) H_k (I - \rho_k \mathbf{y}_k \mathbf{s}_k^{\mathrm{T}}) + \rho_k \mathbf{s}_k \mathbf{s}_k^{\mathrm{T}}$$

$$\tag{6}$$

2. DFP 公式の H 公式

$$H_{k+1} = H_k - \frac{H_k \boldsymbol{y}_k \boldsymbol{y}_k^{\mathrm{T}} H_k}{\boldsymbol{y}_k H_k \boldsymbol{y}_k} + \rho_k \boldsymbol{s}_k \boldsymbol{s}_k^{\mathrm{T}}$$

$$(7)$$

アルゴリズム 2 (BFGS 公式の H 公式を用いた準 Newton 法).

Step 0: 初期点 x_0 および $H_0 \succ O$ を選ぶ、十分小さい $\epsilon > 0$ を定め,k = 0 とおく、

Step 1: 停止条件 $\|\nabla f_k\| < \epsilon$ が満たされていれば, x_k を解として終了.

Step 2: 探索方向を $d_k = -H_k \nabla f_k$ により求める.

Step 3: 直線探索により Wolfe の条件を満たすように α_k を定める.

Step 4: $x_{k+1}=x_k+lpha_k$ d $_k$ と更新する .また , $s_k=x_{k+1}-x_k,$ $y_k=
abla f_{k+1}abla f_k,$ $ho_k=1/y_k^{\mathrm{T}}s_k$ とおく .

Step 5: (6) により H_{k+1} を計算する . $k \leftarrow k+1$ とおいて $Step 1 \land$.

アルゴリズム 2 では, $Step\ 2$ において探索方向 d_k は行列にベクトルを乗じることで求められる.従って,アルゴリズム 2 を実行するには,1 回の反復あたり $O(n^2)$ の計算で済む.つまり,探索方向を求めるために(2)のような線形方程式を解く必要がないことが,H 公式の利点である.

(November 14, 2012, 寒野)