Métodos Estatísticos Básicos

Aula 5 - Introdução a teoria de probabilidade

Regis A. Ely

Departamento de Economia Universidade Federal de Pelotas

04 de agosto de 2020

Conteúdo

Conceitos introdutórios

Experimento aleatório

Espaço amostral

Eventos

Probabilidade

Definição matemática de probabilidade

Probabilidade clássica

Probabilidade frequentista

Probabilidade geométrica

Probabilidade da união e subconjunto de eventos

Álgebra de eventos aleatórios

Espaço de probabilidades

Experimento aleatório

Experimento aleatório (ϵ): é um experimento em que observamos alguma incerteza sobre o resultado, mas que pode ser repetido indefinidamente sob condições essencialmente inalteradas

- Embora não possamos descrever um resultado particular do experimento, podemos descrever o conjunto de todos os possíveis resultados e as probabilidades associadas a eles, porque ao repetir o experimento um grande número de vezes, uma regularidade surge
- A descrição de um experimento envolve um procedimento a ser realizado e uma observação a ser constatada
 - Às vezes a ação ou a observação está omitida na descrição do experimento

Exemplos de experimento aleatório

Alguns exemplos de experimentos aleatórios são:

- Ex 1: Jogar um dado (observação omitida, mas implícita)
- Ex 2: Jogar uma moeda 4 vezes e observar o número de caras obtido
- Ex 3: Observar o número de gols em uma partida de futebol (ação omitida, mas implícita)

Espaço amostral

Espaço amostral (Ω): é o conjunto de todos os resultados possíveis de um experimento

- Um espaço amostral está sempre associado a um experimento
- O espaço amostral nem sempre é composto de números reais
- O número de elementos de um espaço amostral pode ser finito, infinito enumerável ou infinito não-enumerável
- Todo resultado possível de um experimento corresponde a um, e somente um elemento do espaço amostral, $w \in \Omega$, sendo que resultados distintos correspondem a pontos distintos

Exemplos de espaço amostral

Os espaços amostrais dos exemplos de experimentos aleatórios acima são:

- Ex 1: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Ex 2: $\Omega = \{0, 1, 2, 3, 4\}$
- Ex 3: $\Omega = \mathbb{N}$

Eventos

Evento: um evento $A \subset \Omega$ é um subconjunto de resultados possíveis de um experimento

- O evento Ω , que contém todo o espaço amostral, é chamado evento certo
- O evento ∅, que não contém nenhum resultado, é chamado evento impossível
- O evento $\{\omega\}$, que contém apenas um elemento do espaço amostral, é dito *evento elementar*

Exemplos de eventos

Alguns eventos relativos aos experimentos dos exemplos anteriores são:

- Ex 1: Um número par ocorre, $A = \{2, 4, 6\}$
- Ex 2: Duas caras ocorrem, $A = \{2\}$
- Ex 3: Um empate ocorre na partida, $A = \{0, 2, 4, 6, \ldots\}$

Eventos compostos

Eventos compostos: $A \cup B$ é o evento "A ou B", $A \cap B$ é o evento "A e B" e \overline{A} é o evento "não A"

- Sendo $A_1, ..., A_n$ uma coleção finita qualquer de eventos, então:
 - 1. $\bigcup_{i=1}^{n} A_i$ será o evento que ocorrerá se, e somente se, ao menos um dos eventos A_i ocorrerem
 - 2. $\bigcap_{i=1}^{n} A_i$ será o evento que ocorrerá se, e somente se, todos os eventos A_i ocorrerem
- Os mesmos resultados se estendem para coleções infinitas enumeráveis $A_1, A_2, ..., A_n, ...$, sendo $\bigcup_{i=1}^{\infty} A_i$ e $\bigcap_{i=1}^{\infty} A_i$ os respectivos conjuntos união e intersecção dos eventos

Relações entre eventos

Dependência: $A \subset B$ significa que a ocorrência do evento A implica a ocorrência do evento B

Eventos mutuamente excludentes: $A \cap B = \emptyset$ significa que A e B são eventos que nunca ocorrem juntos, ou seja, são eventos *disjuntos* **Produto cartesiano de eventos**: se executarmos um mesmo experimento duas vezes, então nosso espaço amostral será $\Omega \times \Omega^1$ **Número total de eventos**: se o espaço amostral Ω for finito, com n elementos, então existirá exatamente 2^n subconjuntos de Ω , ou seja, eventos

¹Este conceito pode ser estendido para n vezes.

Exemplo de número de eventos

Podemos calcular o número de eventos possíveis de se construir a partir dos experimentos utilizados nos exemplos anteriores:

- Ex 1: ao jogar um dado, podemos construir $2^6 = 64$ eventos distintos
- Ex 2: ao lançar 4 moedas e calcular o número de caras, podemos construir $2^5 = 32$ eventos distintos
- Ex 3: o número de gols em uma partida a princípio não é limitado, de modo que há infinitos possíveis subconjuntos do espaço amostral (eventos)

Definição matemática de probabilidade

- A probabilidade de um evento $A \subset \Omega$, denotada por P(A), é um número real que satisfaz as seguintes propriedades:
 - 1. $0 \le P(A) \le 1$;
 - 2. $P(\Omega) = 1$;
 - 3. Se $A \cap B = \emptyset$ (eventos mutuamente excludentes), então $P(A \cup B) = P(A) + P(B)$
 - 4. Se $A_1, A_2, ..., A_n, ...$, forem, dois a dois, eventos mutuamente excludentes, então $P(U_{i=1}^{\infty}A_i) = P(A_1) + ... + P(A_n) + ...$

Definição matemática de probabilidade

- A propriedade 3 também vale para um número finito de uniões, $P(U_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$
- Da propriedade 3 decorre que $P(\emptyset)=0$, pois $P(A \cup \emptyset) = P(A) + P(\emptyset) = P(A)$
- Das propriedades 2 e 3 decorre que $P(\bar{A}) = 1 P(A)$, pois $P(A \cup \bar{A}) = P(A) + P(\bar{A}) = P(\Omega) = 1$
- Qualquer definição de probabilidade deve respeitar todas esta propriedades matemáticas
- Quando atribuímos uma probabilidade a um evento A chamamos ele de evento aleatório

Probabilidade clássica

A definição clássica de probabilidade nos diz que podemos calcular a probabilidade de um evento A a partir do número de elementos que ele possui:

$$P(A) = \frac{\mathsf{n}^{\mathsf{o}} \text{ de resultados favoráveis à } A}{\mathsf{n}^{\mathsf{o}} \text{ de resultados possíveis}} = \frac{\mathsf{n}^{\mathsf{o}} \text{ de elementos de } A}{\mathsf{n}^{\mathsf{o}} \text{ de elementos de } \Omega}$$

Esta definição de probabilidade é aplicável apenas se:

- 1. Os resultados do experimento contidos no espaço amostral são igualmente prováveis de acontecer
- 2. O espaço amostral é um conjunto finito

Probabilidade clássica

Ao calcularmos a probabilidade de obter um número par em um lançamento de um dado, utilizamos a definição clássica de probabilidade:

- Jogar um dado $\Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\}$
- Obter um número par $\Rightarrow A = \{2,4,6\}$
- $P(A) = \frac{3}{6} = \frac{1}{2} = 50\%$

Probabilidade frequentista

- Ao repetir um experimento n vezes, podemos calcular a frequência com que ele ocorre como $f_A = \frac{n_A}{n}$, onde n_A é o número de resultados favoráveis ao evento A, e n é o número de realizações do experimento
- A probabilidade frequentista é calculada a partir da frequência com que um evento ocorre:

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

• É necessário realizar o experimento muitas vezes, sendo o resultado suscetível ao número de repetições

Probabilidade geométrica

A probabilidade geométrica nos diz que dois eventos tem a mesma probabilidade se, e somente se, eles têm a mesma área

$$P(A) = \frac{\text{área de A}}{\text{área de }\Omega}$$

Essa probabilidade é utilizada quando temos espaços amostrais infinitos não-enumeráveis

Exemplo de probabilidade geométrica

Um exemplo de utilização da probabilidade geométrica ocorre quando temos o experimento de escolher um ponto ao acaso no círculo unitário:

- Suponha que queremos calcular a probabilidade de selecionar um ponto aleatório em que a 1ª coordenada é maior que a 2ª
- $\Omega = \{(x, y) \in \mathbb{R} | x^2 + y^2 \le 1\}$
- $A = \{(x, y) \in \Omega | x > y\}$
- Como a área de um círculo é $A=\pi\times r^2$, e o raio do círculo unitário é um, então $P(A)=\frac{\pi/2}{\pi}=\frac{1}{2}$

Probabilidade da união e subconjunto de eventos

Se A, B e C forem 3 eventos quaisquer, não necessariamente excludentes, então:

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C)$
- Se $A \subset B$, então $P(A) \leq P(B)$

Álgebra de eventos aleatórios

- Uma álgebra de eventos aleatórios, \mathcal{A} , é uma coleção de todos os subconjuntos do espaço amostral Ω , possuindo as seguinte propriedades:
 - 1. $\Omega \in \mathcal{A}$
 - 2. $B \in \mathcal{A} \Rightarrow \bar{B} \in \mathcal{A}$
 - 3. $A \in \mathcal{A} \in \mathcal{B} \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
 - 4. $\emptyset \in \mathcal{A}$
 - 5. $\forall n \in \forall B_1, B_2, ...B_n \in \mathcal{A}$, temos $\bigcup_{i=1}^n B_i \in \mathcal{A} \in \bigcap_{i=1}^n B_i \in \mathcal{A}$
- Se estas propriedades forem válidas para um número infinito enumerável de aplicações de \cup e \cap , então chamamos $\mathcal A$ de σ álgebra

Espaço de probabilidades

- O nosso modelo probabilístico estará situado dentro de um espaço de probabilidade, (Ω, A, P), constituído de:
 - 1. Um conjunto não-vazio Ω de resultados possíveis do experimento, chamado espaço amostral
 - 2. Uma álgebra de eventos aleatórios \mathcal{A} , composta por todos os subconjuntos de Ω
 - Uma probabilidade P definida sobre os conjuntos de A, e que segue as propriedades matemáticas de uma função de probabilidade