# Deep Learning week 4

# 목차

- 4.1 머신 러닝의 네 가지 분류
- 4.2 머신 러닝 모델 평가
- 4.3 데이터 전처리, 특성 공학, 특성 학습
- 4.4 과대적합과 과소적합
- 4.5 보편적인 머신 러닝 작업 흐름

#### 4.1.1 지도 학습

- 샘플 데이터가 주어지면 알고 있는 타깃에 입력 데이터를 매핑하는 방법 학습
- 크게 분류(classification)와 회귀(regression)이 있다.

# Classification / Regression height classifier output green blue weight classify input into categorical output how tall is he if his weight is 80kg?

#### 4.1.1 분류와 회귀에서 사용하는 용어

- ▶ 샘플 또는 입력: 모델의 주입될 하나의 데이터 포인트
- 예측 또는 출력: 모델로부터 나오는 값
- ▶ 타깃: 정답, 외부데이터 소스에 근거하여 모델이 완벽하게 예측해야 하는 값
- ▶ 예측 오차 또는 손실 값: 모델의 예측과 타깃 사이의 거리를 측정한 값
- ▶ 클래스: 분류 문제에서 선택할 수 있는 가능한 레이블의 집합
- ▶ 레이블: 분류 문제에서 클래스 할당의 구체적인 사례.
- ▶ 참 값(ground-truth) 또는 꼬리표(Annotation): 데이터셋에 대한 모든 타깃. 일반적으로 사람에 의해 수집됨
- ▶ 이진 분류: 각 입력 샘플이 2개의 배타적인 범주로 구분되는 분류 작업
- ▶ 다중 분류: 각 입력 샘플이 2개 이상의 범주로 구분되는 분류 작업
- ▶ 다중 레이블 분류: 각 입력 샘플이 여러 개의 레이블에 할당될 수 있는 분류 작업.
- 스칼라 회귀: 타깃이 연속적인 스칼라 값인 작업.
- ▶ 벡터 회귀: 타깃이 연속적인 값의 집학인 작업
- ▶ 미니 배치 또는 배치: 모델에 의해 동시에 처리되는 소량의 샘플 묶음(일반적으로 8개 ~ 128개 사이), 훈련할 때 미니 배치마다 한 번씩 모델의 가중치에 적용할 경사 하강법 업데이트 값을 계산

# 4.1.1 지도 학습

1. 시퀀스 생성 (sequence generation)

2. 구문 트리 예측(syntax tree)

3. 물체 감지(object detection)

4. 이미지 분할(image segmentation)



#### 4.1.2 비지도 학습

- 타깃을 사용하지 않고 입력 데이터에 대해 규칙성을 찾는 학습 방법
- 데이터 시각화, 데이터 압축, 데이터 노이즈 제거 또는 데이터의 상관관계를 이해하기 위해 사용
- 차원 축소(dimensionality reduction)과 군집(clustering)이 잘 알려져 있음





6 / n

## 4.1.3 자기 지도 학습

- 지도 학습의 특별한 경우.
- 사람이 만든 레이블을 사용하지 않음. 주로 경험적인 알고리즘 (heuristic algorithm)을 사용.

#### Ex) 오토인코더(autoencoder)





## 4.1.4 강화 학습

- 주어진 환경에 대한 정보를 받아 보상을 최대화하는 행동을 선택하도록 학습 방법
- 대부분 연구 영역에 속해 있으며 자율 주행 자동차, 자원 관리, 교육 등에 확대될 것임.



# 4.2.1 훈련, 검증, 테스트 세트

- 모델 평가의 핵심은 가용한 데이터를 <u>후련, 검증, 테스트</u>3개의 세트로 준비하는 것.
- 훈련 세트에서 모델을 훈련하고 검증 세트에서 모델을 평가, 테스트 세트에서 모델을 테스트



## 4.2.1 훈련, 검증, 테스트 세트

- 검증 세트가 필요한 이유?
  - → 모델을 개발할 때 항상 모델의 설정을 튜닝하기 때문 (ex: 층의 수 or 층의 유닛 수)

केशिय चीरीवास

■ 검증 세트도 오버피팅이 될 수 있음

정보 누설 (information leak)

검증 성능에 기반하여 모델의 하이퍼파라미터를 조정할 때마다 검증 데이터에 관한 정보가 모델로 새는 것

# 4.2.1 단순 홀드아웃 검증

- 전체 데이터셋에서 일정량을 테스트셋으로 설정
- 남은 데이터에서 훈련하고 테스트 세트로 평가

▶ 데이터가 적은 경우, 검증 세트와 테스트 세트의 샘플이 너무 적어 주어진 전체 데이터를 통계적으로 대표하지 못할 수 있음.



# 4.2.1 단순 홀드아웃 검증

```
num_validation_samples = 10000
np.random.shuffle(data) -----→ 데이터 셔플링
validation_data = data[:num_validation_samples] -----→ 검증 세트 만들기
data = data[num validation samples:]
training_data = data[:] -----→ 훈련세트 만들기
model = get model()
                                         -----→ 훈련세트에서 모델 훈련
model.train(training_data)
                                                  검증 세트로 평가
validation score = model.evaluate(validation data)
모델 튜닝,
다시 훈련, 평가, 튜닝 반복 …
                                                 하이퍼파라미터 튜닝이 끝나면
model = get_model()
model.traing(np.concatenate([training_data,
                                                  테스트 데이터를 제외한
                                                  모든 데이터를 사용해
                       validation_data]))
                                                  모델을 다시 훈련시킴.
test_score = model.evalutate(test_data)
```



## 4.2.1 K-겹 교차 검증

- 1) 데이터를 동일한 K개 분할로 나눔
- 2) 각 분할 i에 대해 남은 K-1개의 분할로 모델을 훈련
- 3) 분할 i에서 모델을 평가
- 4) K개 점수 평균으로 최종 점수
- ▶ 데이터 분할에 따라 편차가 클 때 도움이 됨.



## 4.2.1 K-겹 교차 검증

```
k = 4
num_validation_samples = len(data) // k
np.random.shuffle(data)
validation_scores = []
for fold in range(k):
   num validation samples * (fold + 1)]
   training data = data[:num_validation_samples * fold] +
                                            data[num_validation_samples * (fold + 1):]
                                                     훈련 데이터로 사용
   model = get_model()
   model.train(training data)
   validation score = model.evaluate(validation data)
   validation_scores.append(validation_score)
validation_score = np.average(validation_scores) -----→ 검증 점수
                                                : K개 폴드의 검증 점수 평균
model = get model()
model.train(data)
test score = model.evaluate(test data)
```



# 4.2.1 셔플링을 사용한 반복 K-겹 교차 검증

- 비교적 가용 데이터가 적고 가능한 정확하게 모델을 평가하고자 할 때 사용
- K-겹 교차 검증을 여러 번 적용하되, K개의 분할로 나누기 전에 매번 데이터를 무작위로 섞음
- 최종 점수는 모든 K-겹 교차 검증(P \* K) 점수의 평균

반복 횟수

▶ 모든 모델을 훈련하고 평가하므로 비용이 많이 든다.

#### 4.2.2 유념 사항

- ✓ 대표성 있는 데이터: 훈련 세트와 테스트 세트가 주어진 데이터에 대한 대표성이 있어야 함.
- ✓ 시간의 방향: 과거로부터 미래를 예측할 때는 훈련 세트는 테스트 세트보다 과거 데이터여야 함.
- ✓ 데이터 중복: 훈련 세트와 검증 세트가 중복되지 않도록 함.

# 4.3.1 신경망을 위한 데이터 전처리

- 목적: 주어진 원본 데이터를 신경망에 적용하기 쉽도록 하는 것
- 벡터화(vectorization), 정규화(normalization), 누락된 값 다루기, 특성 추출 등이 포함

#### 4.3.1 신경망을 위한 데이터 전처리

#### 벡터화

- 신경망에서 모든 입력과 타깃은 부동 소수 데이터로 이루어진 텐서여야 함 (특정 경우 정수 텐서)
- 데이터를 신경망에 넣기 위해서 텐서로 변화하는 것.

#### 값 정규화

- 작은 값. 일반적으로 0~1 사이
- 균일. 모든 특성이 대체로 비슷한 범위를 가져야 함.

#### 누락된 값 다루기

- 데이터셋에서 누락된 값을 다룰수 있어야 함
- 훈련 데이터세트에 누락된 값을 평균(mean), 중간 값(median)으로 대체할 경우 그 값을 저장해야 함
- 훈련 데이터세트, 테스트 데이터세트에 둘다 누락된 값을 동일하게 넣어주어야 함

# 4.3.2 특성 공학

 모델에 데이터를 주입하기 전에 하드코딩된 변환을 적용하여 알고리즘이 더 잘 수행되도록 만들어 줌.



#### 1. 주어진 문제 정의

- 입력 데이터, 예측하는 정보: 가용 훈련 데이터의 유무
- 문제의 유형 : 이진 분류, 다중 분류, 스칼라 회귀 등

#### 2. 성공 지표 선택

- 클래스 분포가 균일한 분류 문제에서는 정확도와 ROC AUC가 일반적인 지표
- 클래스 분포가 균일하지 않은 문제에서는 정밀도와 재현율을 사용할 수 있음
- 랭킹 문제, 다중 레이블 문제에는 평균 정밀도를 사용

#### 3. 평가 방법 선택

- 홀드아웃 검증 세트 분리: 데이터가 풍부할 때 사용
- K-겹 교차 검증: 홀드아웃 검증을 사용하기에 샘플의 수가 너무 적을 때 사용
- 반복 K-겹 교차 검증: 데이터가 적고 매우 정확한 모델 평가가 필요할 때 사용

#### 4. 데이터 준비

- 데이터는 텐서로 구성됨
- 텐서에 있는 값은 일반적으로 작은 값으로 스케일 조정되어 있음 (ex. [-1,1] or [0,1] 범위)
- 특성마다 범위가 다르면(여러 종류의 값으로 이루어진 데이터라면) 정규화해야 함.

#### 5. 기본모다 나은 모델 훈련하기

- -> 통계적 검정력을 달성하는 것.
- ▶ 마지막 층의 활성화 함수 : 네트워크의 출력에 필요한 제한을 가함.
- ▶ 손실 함수: 풀려고 하는 문제의 종류에 적합해야 함.
- 최적화 설정 : 옵티마이저와 학습률을 확인해야 함.

->주로 rmsprop과 기본 학습률 사용

모델에 맞는 마지막 층의 활성화 함수와 손실 함수 선택

| 문제 유형           | 마지막 층의 활성화 함수 | 손실함수                       |
|-----------------|---------------|----------------------------|
| 이진 분류           | 시그모이드         | binary_crossentropy        |
| 단일 레이블 다증 분류    | 소프트맥스         | categorical_crossentropy   |
| 다중 레이블 다중 분류    | 시그모이드         | binary_crossentropy        |
| 임의 값에 대한 회귀     | 없음            | mse                        |
| 0과 1사이 값에 대한 회귀 | 시그모이드         | mse 또는 binary_crossentropy |

#### 6. 몸집 키우기: 과대적합 모델 구축

- 층추가
- 층 크기 키우기
- 더 많은 epoch 동안 훈련

#### 7. 모델 규제와 하이퍼파라미터 튜닝

- 드롭아웃 추가
- 층 추가 또는 제거
- L1이나 L2 또는 두 가지 모두 추가
- 하이퍼파라미터 바꾸기
- 특성 공학 시도

# **Q & A**