Algèbre avancée

Modules sur un anneau

Question 1/28

Sous-module de M engendré par les $(m_i)_{i \in I}$

Réponse 1/28

$$\left\{ \sum_{i \in I} a_i m_i, (a_i)_{i \in I} \in A^{(I)} \right\}$$
 C'est un générateur de M si M est engendré par ces combinaisons

Question 2/28

PU du quotient

Réponse 2/28

Si M et P sont deux modules, et N est un sous-module de M, soit $f:M\to P$ une application A-linéaire telle que $N\subseteq \ker(f)$ alors il existe une unique application A-linéaire \overline{f} telle que $f=\overline{f}\circ\pi$

Question 3/28

Suite exacte de A-modules

Réponse 3/28

Suite
$$M_1 \xrightarrow{u_1} M_2 \xrightarrow{u_2} \cdots \xrightarrow{u_{n-1}} M_n$$
 telle que $\operatorname{im}(u_i) = \ker(u_{i+1})$

Question 4/28

M est un A-module libre de rang fini

Réponse 4/28

M admet une base finie Le cardinal de toute base est le même, c'est le rang de M

Question 5/28

Propriété de $\operatorname{Hom}_A(M,N)$ pour M libre

Réponse 5/28

Si $(m_i)_{i\in I}$ est une base de M alors $\phi: \operatorname{Hom}_A(M,N) \longrightarrow N^I$ est un $u \longmapsto (u(m_i))_{i\in I}$ isomorphisme de A-modules

Question 6/28

Suite de A-modules

Réponse 6/28

Diagramme de la forme $M_1 \xrightarrow{u_1} M_2 \xrightarrow{u_2} \cdots \xrightarrow{u_{n-1}} M_n$ avec u_i des morphismes de A-modules

Question 7/28

Propriétés des quotients d'un module de type fini

Réponse 7/28

Ils sont de type fini

Question 8/28

Application linéaire entre A-modules

Réponse 8/28

$$f: M \to N \text{ telle que}$$

$$f(am) = af(m)$$

$$f(n+m) = f(n) + f(m)$$

Question 9/28

Structure de $\operatorname{Hom}_A(M,N)$

Réponse 9/28

A-module en posant
$$(f+g)(m) = f(m) + g(m)$$

Question 10/28

CNS pour avoir une suite scindée

Réponse 10/28

 $0 \longrightarrow M_1 \xrightarrow{u} M_2 \xrightarrow{v} M_3 \longrightarrow 0$ est scindée si et seulement si v admet une section $s: M_1 \to M_2$, vérifiant $v \circ s = \mathrm{id}_{M_3}$

La suite exacte courte

Question 11/28

M est de présentation finie

Réponse 11/28

Il existe une présentation de la forme $A^{(J)} \xrightarrow{\phi'} A^{(I)} \xrightarrow{\phi} M \longrightarrow 0$ avec I et J finis

Question 12/28

Structure isomorphe à $\operatorname{Hom}_A(A^m,A^n)$

Réponse 12/28

 $\mathcal{M}_{n,m}(A)$ via l'image de la « base canonique »

Question 13/28

Présentation de M

Réponse 13/28

Suite exacte de la forme $A^{(J)} \xrightarrow{\phi'} A^{(I)} \xrightarrow{\phi} M \longrightarrow 0$ C'est une description par générateurs et relations

Question 14/28

Suite exacte courte scindée

Réponse 14/28

Suite exacte telle qu'il existe un isomorphisme de A-modules $\theta: M_2 \to M_1 \oplus M_3$ $0 \longrightarrow M_1 \xrightarrow{u} M_2 \xrightarrow{v} M_3 \longrightarrow 0$ $\downarrow_{\mathrm{id}} \qquad \downarrow_{\theta} \qquad \downarrow_{\mathrm{id}}$ $0 \longrightarrow M_1 \xrightarrow{\iota_1} M_1 \oplus M_3 \xrightarrow{\pi_3} M_3 \longrightarrow 0$

Question 15/28

Complexe de A-modules

Réponse 15/28

Suite
$$M_1 \xrightarrow{u_1} M_2 \xrightarrow{u_2} \cdots \xrightarrow{u_{n-1}} M_n$$
 telle que $\operatorname{im}(u_i) \subseteq \ker(u_{i+1})$

Question 16/28

Suite exacte courte

Réponse 16/28

Suite exacte de la forme
$$0 \longrightarrow M_1 \xrightarrow{u} M_2 \xrightarrow{v} M_3 \longrightarrow 0$$

Question 17/28

$$(m_i)_{i\in I}$$
 est libre

Réponse 17/28

Si
$$\sum_{i \in I} a_i m_i = 0, (a_i)_{i \in I} \in A^{(I)}$$
 alors pour tout $i \in I, a_i = 0$

Question 18/28

M est un A-module de type fini

Réponse 18/28

 ${\cal M}$ admet une famille génératrice finie

Question 19/28

Base de M

Réponse 19/28

Famille libre et génératrice de M

Question 20/28

M est un A-module libre

Réponse 20/28

M admet une base Un tel module est isomorphe à $A^{(I)}$

Question 21/28

$$f: M \to N$$

 $\operatorname{coker}(f)$

Réponse 21/28

 $N/\operatorname{im}(f)$

Question 22/28

PU de la somme directe de A-modules

Réponse 22/28

Si $(M_i)_{i \in I}$ est une famille de A-modules et N est un A-module et $f_i: M_i \to N$ est une famille de A-modules alors il existe une unique application linéaire $f: \bigoplus M_i \to N$ telle que $f_{|M_i} = f_i$

Question 23/28

Premier théorème d'isomorphisme

Réponse 23/28

$$\overline{f}: M/\ker(f) \to \operatorname{im}(f)$$
 est un isomorphisme de
 A -modules

Question 24/28

Sous-module

Réponse 24/28

Sous-groupe stable par l'action de l'anneau

Question 25/28

A-module

Réponse 25/28

Groupe abélien (M, +) muni d'une application $A \times M \to M$ telle que a(m+m') = am + am'(a+a')m = am + a'm(aa')m = a(a'm) $1_A m = m$

Question 26/28

Isomorphisme de A-modules

Réponse 26/28

$$f \in \operatorname{Hom}_A(M, N)$$
 pour laquelle il existe $g \in \operatorname{Hom}_A(N, M)$ telle que $f \circ g = \operatorname{id}_M$ et $g \circ f = \operatorname{id}_N$

Question 27/28

$$M = \bigoplus_{i \in I} M_i \text{ pour } M_i \subseteq M$$

Réponse 27/28

$$f: \bigoplus_{i=1}^{n} M_i \to M$$
 est un isomorphisme

Dans le cas où
$$I = [1, n], M = \bigoplus_{i=1}^{n} M_i$$
 si et

seulement si pour tout $m \in M$, il existe d'uniques $m_i \in M_i$ tels que $m = \sum_{i=1}^n m_i$

Question 28/28

Module M/N

Réponse 28/28

Le groupe quotient d'un A-module par un sous-module peut être muni d'une unique structure de A-module qui rend $\pi:M\to M/N$ A-linéaire