Recajo: > LRTs for Composite Stypothesis.

16th Feb 2024

The memaining Deckiops of Ch-4 suefer to the three LRT's for frequency tabled data ("Chi-square tests" in general)

L) Goodness of fit (G.O.F) tests.

L) Jests of Homogeneity.

L) Jests for Independence.

Section 4.5 : Goodness of fit (G.O.F) tests

A G.O.F test is parformed with one variable and a single population

Events | A, Az Aa total fore x, x2 Xa n

Ho: The model is a good fit.

$$\mathcal{D} = 2 \left[l(\hat{Q}) - l(\tilde{Q}_{0}) \right] \approx \chi_{(\kappa-q)}^{2}$$

Basic Model: (x1, x2, ..., xa) ~ Moltinomial (n; k1, k2, ..., ka),

$$\begin{array}{cccc}
& & & & & & \\
& & & & & \\
\hat{p}_i &= & & \\
\hat{p}_i &= & & \\
& & & \\
& & & \\
\end{pmatrix}, & & & & \\
& & & \\
& & & \\
\end{pmatrix} = \frac{\alpha}{2} \chi_i \ln \left(\hat{p}_i \right) = \frac{\alpha}{2} \chi_i \ln \left(\frac{\chi_i}{\eta} \right)$$

$$\begin{array}{cccc}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
\end{array}$$

this; let's use this woof.

Section 4.4 : Test of Homogeneity.

We Consider one Sociable across Deveral populations (indep).

Data in this test is provided in a Contingency table.

populations

							1
		Pops 1	pop2		Bobb	Total	
•	A	×II	×12	,	XID	×1.	
T	\mathcal{A}_2	×21	×22	;	X2b	×2.	Mangizal
S	1	`. :		:			Jonequencies.
	Aa	×ai	×a2	:	Xab	Xa.	
	intra l	n,	າ		Nb		1

Sample Sizes

	16001	pop 2		popb	Total
A	·	X12	* * * * * *	طابح	×1.
	X21	×22	~~~~	The second secon	×2.
Total		72		76	1 7

Here,
$$(2-1) = b$$

 $(2 + b - 1) = b$

Q $(2 + b - 1) = b$

are Homogenenous.

Intuitively, this is like a G.O.F test.

A Camabis lesalifation Example in Sec 4.4 and news writte in Supplementary Material (Ch-4)