Example Sheet 06

What is set?

Georg Cantor (1845-1918)

"A set is a collection into whole of definite, distinct objects of our intuition or our thought. The objects are called the elements of the set."

- * Sets can be finite or infinite.
- * Every well-defined object can be member/element of a set

Exercise 1: Writing down sets

```
=> four ways to describe sets:
```

1-list notation

only applicable to finite sets
A = {the Volga, Emmanuel Macron, 16}

2- separation notation

```
\{ \ variable \in domain \ | \ sentence \ that \ contains \ the \ variable \ \}  or \{ \ variable \in domain \ : \ sentence \ that \ contains \ the \ variable \ \}
```

3-recursive definition

e.g. $=> \{x \in N | x \text{ is even} \}$

consists of three components:

1 a finite list of objects that definitely belong to the set to be defined 2 rules that allow to generate new elements from existing elements 3 statement, that all elements of the set in question can be generated via finitely many application of the rule from (2) to the objects from (1)

=> e.g.

1 4∈E

2 If $x \in E$, then $x+2 \in E$.

3 Nothing else is in E.

Recursive definition of set of natural numbers?

4-set theoretic operations later in ex 03

5-Venn diagram

See examples on board.

Exercise 2: Elements and subsets: member, subset, proper subset

. Given the following sets:

$$A = \{a, b, c, 2, 3, 4\}$$
 $E = \{a, b, \{c\}\}$
 $B = \{a, b\}$ $F = \emptyset$
 $C = \{c, 2\}$ $G = \{\{a, b\}, \{c, 2\}\}$
 $D = \{b, c\}$

classify each of the following statements as true or false

- (a) $c \in A$ (g) $D \subset A$ (m) $B \subseteq G$
- (b) $c \in F$ (h) $A \subseteq C$ (n) $\{B\} \subseteq G$
- (c) $c \in E$ (i) $D \subseteq E$ (o) $D \subseteq G$
- (d) $\{c\} \in E$ (j) $F \subseteq A$ (p) $\{D\} \subseteq G$
- (e) $\{c\} \in C$ (k) $E \subseteq F$ (q) $G \subseteq A$
- (f) $B \subseteq A$ (l) $B \in G$ (r) $\{\{c\}\}\subseteq E$
- . For any arbitrary set S,
 - (a) is S a member of $\{S\}$?
 - (b) is $\{S\}$ a member of $\{S\}$?
 - (c) is $\{S\}$ a subset of $\{S\}$?
 - (d) what is the set whose only member is $\{S\}$?

Exercise 3: Set Operations

Given the sets A, \ldots, G as in Exercise 1, list the members of each of the following:

- (a) $B \cup C$ (g) $A \cap E$ (m) B A
- (b) $A \cup B$ (h) $C \cap D$ (n) C D
- (c) $D \cup E$ (i) $B \cap F$ (o) E F
- (d) $B \cup G$ (j) $C \cap E$ (p) F A
- (e) $D \cup F$ (k) $B \cap G$ (q) G B
- (f) $A \cap B$ (l) A B

-Power set:

set of all subsets A.

If A is finite and has n elements, then $\wp(A)$ always has 2n elements.

For all sets A: $\emptyset \in \wp(A)$ and $A \in \wp(A)$.

-Cardinality of sets:

|A| is the number of elements of A

-Identity of sets

Two sets are identical if and only if they have the same elements.

Set theoretic laws

- idempotence laws:

 - $A \cap A = A$
- commutativity laws:
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- associativity laws:
 - $\bullet \quad (A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C)$
- distributivity laws:
 - $\bullet A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- identity laws:

 - $A \cup U = U$
 - $A \cap \emptyset = \emptyset$
 - $A \cap U = A$
- 2 complement laws:
 - $\bullet \quad A \cup A' = U$
 - (A')' = A
 - $A \cap A' = \emptyset$
 - $A B = A \cap B'$
- O De Morgan's laws:

 - $(A \cap B)' = A' \cup B'$
- consistency principle:

 - $A \subseteq B \text{ iff } A \cap B = A$