Subspaces

1. Let
$$v_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 4 \\ -4 \\ 5 \\ 7 \end{bmatrix}$, $v_3 = \begin{bmatrix} 5 \\ -3 \\ 6 \\ 5 \end{bmatrix}$, and $u = \begin{bmatrix} -1 \\ -7 \\ -1 \\ 2 \end{bmatrix}$. Determine if u is in the subspace of \mathbb{R}^4 generated by $\{v_1, v_2, v_3\}$.

2. Let
$$u = \begin{bmatrix} -5\\5\\3 \end{bmatrix}$$
 and $A = \begin{bmatrix} -2 & -2 & 0\\0 & 3 & -5\\6 & 3 & 5 \end{bmatrix}$.
Is u in Nul A ?

3. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ -5 & -1 & 0 \\ 2 & 7 & 11 \\ 3 & 3 & 4 \end{bmatrix}$. Find a nonzero vector in Nul A and a nonzero vector in Col A.

4. Do
$$\begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} 16 \\ -3 \end{bmatrix}$ form a basis for \mathbb{R}^2 ?

5. Do
$$\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ -4 \\ 10 \end{bmatrix}$ form a basis for \mathbb{R}^3 ? How about just the first two vectors?

- 6. True or false?
 - (a) A subset H of \mathbb{R}^n is a subspace if the zero vector is in H.
 - (b) Let H be a subspace of \mathbb{R}^n . If x is in H, and y is in \mathbb{R}^n , then x + y is in H.
 - (c) The solution set to Ax = b, where A is an $m \times n$ matrix, forms a subspace of \mathbb{R}^n .
- 7. Find a basis for the column space and null space of the matrix.

$$A = \begin{bmatrix} 3 & 4 & 0 & 7 \\ 1 & -5 & 2 & -2 \\ -1 & 4 & 0 & 3 \\ 1 & -1 & 2 & 2 \end{bmatrix}.$$

- 8. Suppose F is a 5×5 matrix whose column space is not equal to \mathbb{R}^5 . What can be said about F's nullspace?
- 9. What can be said about the shape of an $m \times n$ matrix A when the columns of A form a basis for \mathbb{R}^m ?
- 10. If B is a 6×6 matrix and Nul B is not the zero subspace, what can be said about Col B?