

Figure 4-101. Visualizing a Möbius strip

Combining all of these techniques, it is possible to create and display a wide variety of three-dimensional objects and patterns in Matplotlib.

Geographic Data with Basemap

One common type of visualization in data science is that of geographic data. Matplotlib's main tool for this type of visualization is the Basemap toolkit, which is one of several Matplotlib toolkits that live under the mpl_toolkits namespace. Admittedly, Basemap feels a bit clunky to use, and often even simple visualizations take much longer to render than you might hope. More modern solutions, such as leaflet or the Google Maps API, may be a better choice for more intensive map visualizations. Still, Basemap is a useful tool for Python users to have in their virtual toolbelts. In this section, we'll show several examples of the type of map visualization that is possible with this toolkit.

Installation of Basemap is straightforward; if you're using conda you can type this and the package will be downloaded:

```
$ conda install basemap
```

We add just a single new import to our standard boilerplate:

```
In[1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
```

Once you have the Basemap toolkit installed and imported, geographic plots are just a few lines away (the graphics in Figure 4-102 also require the PIL package in Python 2, or the pillow package in Python 3):

```
In[2]: plt.figure(figsize=(8, 8))
 m = Basemap(projection='ortho', resolution=None, lat_0=50, lon_0=-100)
 m.bluemarble(scale=0.5);
```


Figure 4-102. A "bluemarble" projection of the Earth

The meaning of the arguments to Basemap will be discussed momentarily.

The useful thing is that the globe shown here is not a mere image; it is a fully functioning Matplotlib axes that understands spherical coordinates and allows us to easily over-plot data on the map! For example, we can use a different map projection, zoom in to North America, and plot the location of Seattle. We'll use an etopo image (which shows topographical features both on land and under the ocean) as the map background (Figure 4-103):

Figure 4-103. Plotting data and labels on the map

This gives you a brief glimpse into the sort of geographic visualizations that are possible with just a few lines of Python. We'll now discuss the features of Basemap in more depth, and provide several examples of visualizing map data. Using these brief examples as building blocks, you should be able to create nearly any map visualization that you desire.

Map Projections

The first thing to decide when you are using maps is which projection to use. You're probably familiar with the fact that it is impossible to project a spherical map, such as that of the Earth, onto a flat surface without somehow distorting it or breaking its continuity. These projections have been developed over the course of human history, and there are a lot of choices! Depending on the intended use of the map projection, there are certain map features (e.g., direction, area, distance, shape, or other considerations) that are useful to maintain.

The Basemap package implements several dozen such projections, all referenced by a short format code. Here we'll briefly demonstrate some of the more common ones.

We'll start by defining a convenience routine to draw our world map along with the longitude and latitude lines: