US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

Bate of Patent

August 19, 2025

Inventor(s)

Bate of Patent

August 19, 2025

Flores, II; Roman et al.

Integrated probe structure

Abstract

According to various embodiments, there is provided a probe structure. The probe structure includes a probe configured to emit acoustic energy. The probe structure further includes a load cell underneath and aligned with the probe. The probe structure further includes a probe hub including a cavity for receiving the probe and the load cell.

Inventors: Flores, II; Roman (Los Angeles, CA), Hutter; Matthew (Los Angeles, CA),

Salinas; Gerard (Los Angeles, CA), Costa; Michael (Los Angeles, CA), Sylvester;

Matthew (Los Angeles, CA)

Applicant: Neurasignal, Inc. (Los Angeles, CA)

Family ID: 1000008767178

Assignee: Neurasignal, Inc. (Los Angeles, CA)

Appl. No.: 17/894765

Filed: August 24, 2022

Prior Publication Data

Document IdentifierUS 20230050717 A1

Publication Date
Feb. 16, 2023

Related U.S. Application Data

continuation parent-doc US 16847247 20200413 US 11452500 child-doc US 17894765 continuation parent-doc US 15399440 20170105 US 10617388 20200414 child-doc US 16847247 us-provisional-application US 62332133 20160505 us-provisional-application US 62275192 20160105

Publication Classification

Int. Cl.: A61B8/00 (20060101); **A61B8/08** (20060101)

U.S. Cl.:

CPC **A61B8/4444** (20130101); **A61B8/0808** (20130101); **A61B8/4209** (20130101);

A61B8/488 (20130101);

Field of Classification Search

CPC: A61B (8/4444); A61B (8/4209); A61B (8/0808); A61B (8/488)

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
3841308	12/1973	Tate	N/A	N/A
3872858	12/1974	Hudson et al.	N/A	N/A
4204547	12/1979	Allocca	N/A	N/A
4205687	12/1979	White et al.	N/A	N/A
4413629	12/1982	Durley, III	N/A	N/A
4483344	12/1983	Atkov et al.	N/A	N/A
4559952	12/1984	Angelsen et al.	N/A	N/A
4759374	12/1987	Kierney et al.	N/A	N/A
4815705	12/1988	Kasugai et al.	N/A	N/A
4819648	12/1988	Ko	N/A	N/A
4841986	12/1988	Marchbanks	N/A	N/A
4930513	12/1989	Mayo et al.	N/A	N/A
4951653	12/1989	Fry et al.	N/A	N/A
4984567	12/1990	Kageyama et al.	N/A	N/A
5040540	12/1990	Sackner	N/A	N/A
5074310	12/1990	Mick	N/A	N/A
5094243	12/1991	Puy et al.	N/A	N/A
5156152	12/1991	Yamazaki et al.	N/A	N/A
5197019	12/1992	Delon-Martin et al.	N/A	N/A
5348015	12/1993	Moehring et al.	N/A	N/A
5379770	12/1994	Van Veen	N/A	N/A
5388583	12/1994	Ragauskas et al.	N/A	N/A
5409005	12/1994	Bissonnette et al.	N/A	N/A
5409010	12/1994	Beach et al.	N/A	N/A
5411028	12/1994	Bonnefous	N/A	N/A
5421565	12/1994	Harkrader et al.	N/A	N/A
5514146	12/1995	Lam et al.	N/A	N/A
5522392	12/1995	Suorsa et al.	N/A	N/A
5526299	12/1995	Coifman et al.	N/A	N/A
5617873	12/1996	Yost et al.	N/A	N/A
5840018	12/1997	Michaeli	N/A	N/A

5860929	12/1998	Rubin et al.	N/A	N/A
5871445	12/1998	Bucholz	N/A	N/A
5899864	12/1998	Arenson et al.	N/A	N/A
5919144	12/1998	Bridger et al.	N/A	N/A
5951477	12/1998	Ragauskas et al.	N/A	N/A
5993398	12/1998	Alperin	N/A	N/A
6027454	12/1999	Low	N/A	N/A
6117089	12/1999	Sinha	N/A	N/A
6120446	12/1999	Ji et al.	N/A	N/A
6129682	12/1999	Borchert et al.	N/A	N/A
6135957	12/1999	Cohen-Bacrie et al.	N/A	N/A
6139499	12/1999	Wilk	N/A	N/A
6200267	12/2000	Burke	N/A	N/A
6231509	12/2000	Johnson et al.	N/A	N/A
6261231	12/2000	Damphousse et al.	N/A	N/A
6309354	12/2000	Madsen et al.	N/A	N/A
6358239	12/2001	Rake et al.	N/A	N/A
6364869	12/2001	Bonaldo	N/A	N/A
6387051	12/2001	Ragauskas et al.	N/A	N/A
6403056	12/2001	Unger	N/A	N/A
6413227	12/2001	Yost et al.	N/A	N/A
6423003	12/2001	Ustuner et al.	N/A	N/A
6425865	12/2001	Salcudean et al.	N/A	N/A
6454715	12/2001	Teo	N/A	N/A
6488717	12/2001	Mccoll et al.	N/A	N/A
6491647	12/2001	Bridger et al.	N/A	N/A
6503202	12/2002	Hossack et al.	N/A	N/A
6547731	12/2002	Coleman et al.	N/A	N/A
6547734	12/2002	Madsen et al.	N/A	N/A
6547737	12/2002	Njemanze	N/A	N/A
6589189	12/2002	Meyerson et al.	N/A	N/A
6618493	12/2002	Torp et al.	N/A	N/A
6627421	12/2002	Unger et al.	N/A	N/A
6653825	12/2002	Munniksma	N/A	N/A
6656125	12/2002	Misczynski et al.	N/A	N/A
6682488	12/2003	Abend	N/A	N/A
6702743	12/2003	Michaeli	N/A	N/A
6716412	12/2003	Unger	N/A	N/A
6740048	12/2003	Yost et al.	N/A	N/A
6746422	12/2003	Noriega et al.	N/A	N/A
6875176	12/2004	Mourad et al.	N/A	N/A
6887199	12/2004	Bridger et al.	N/A	N/A
6955648	12/2004	Mozayeni et al.	N/A	N/A
7122007	12/2005	Querfurth	N/A	N/A
7128713	12/2005	Moehring et al.	N/A	N/A
7147605	12/2005	Ragauskas	N/A	N/A
7302064	12/2006	Causevic et al.	N/A	N/A
7338450	12/2007	Kristoffersen et al.	N/A	N/A
7403805	12/2007	Abreu	N/A	N/A

7452551	12/2007	Unger et al.	N/A	N/A
7534209	12/2008	Abend et al.	N/A	N/A
7537568	12/2008	Moehring	N/A	N/A
D594127	12/2008	Causevic et al.	N/A	N/A
7547283	12/2008	Mourad et al.	N/A	N/A
D603051	12/2008	Causevic et al.	N/A	N/A
7674229	12/2009	Hynynen et al.	N/A	N/A
7720530	12/2009	Causevic	N/A	N/A
7771358	12/2009	Moehring et al.	N/A	N/A
7815574	12/2009	Mourad et al.	N/A	N/A
7854701	12/2009	Stergiopoulos et al.	N/A	N/A
7857763	12/2009	Tai	N/A	N/A
7904144	12/2010	Causevic et al.	N/A	N/A
7912269	12/2010	Ikeda et al.	N/A	N/A
7938780	12/2010	Ragauskas et al.	N/A	N/A
7942820	12/2010	Njemanze	N/A	N/A
D641886	12/2010	Causevic et al.	N/A	N/A
7998075	12/2010	Ragauskas et al.	N/A	N/A
RE42803	12/2010	Lipson et al.	N/A	N/A
8036856	12/2010	Pan et al.	N/A	N/A
8041136	12/2010	Causevic	N/A	N/A
8062224	12/2010	Ragauskas et al.	N/A	N/A
8075488	12/2010	Burton	N/A	N/A
8109880	12/2011	Pranevicius et al.	N/A	N/A
8162837	12/2011	Moehring et al.	N/A	N/A
8206303	12/2011	Ragauskas et al.	N/A	N/A
8211023	12/2011	Swan et al.	N/A	N/A
8235907	12/2011	Wilk et al.	N/A	N/A
8254654	12/2011	Yen et al.	N/A	N/A
8265291	12/2011	Bridger et al.	N/A	N/A
8353853	12/2012	Kyle et al.	N/A	N/A
8364254	12/2012	Jacquin et al.	N/A	N/A
8364255	12/2012	Isenhart et al.	N/A	N/A
8366627	12/2012	Kashif et al.	N/A	N/A
8391948	12/2012	Causevic et al.	N/A	N/A
8394024	12/2012	Miyama et al.	N/A	N/A
8394025	12/2012	Ragauskas et al.	N/A	N/A
8414539	12/2012	Kuracina et al.	N/A	N/A
8453509	12/2012	Oberdorfer et al.	N/A	N/A
8473024	12/2012	Causevic et al.	N/A	N/A
8603014	12/2012	Alleman et al.	N/A	N/A
8613714	12/2012	Alleman et al.	N/A	N/A
8622912	12/2013	Chin et al.	N/A	N/A
8647278	12/2013	Ji et al.	N/A	N/A
8706205	12/2013	Shahaf et al.	N/A	N/A
8834376	12/2013	Stergiopoulos et al.	N/A	N/A
8905932	12/2013	Lovoi et al.	N/A	N/A
8926515	12/2014	Ragauskas et al.	N/A	N/A

8998818	12/2014	Pranevicius et al.	N/A	N/A
9005126	12/2014	Beach et al.	N/A	N/A
9028416	12/2014	De Viterbo	N/A	N/A
9042201	12/2014	Tyler et al.	N/A	N/A
9066679	12/2014	Beach et al.	N/A	N/A
9125616	12/2014	Bredno et al.	N/A	N/A
9138154	12/2014	Weinberg et al.	N/A	N/A
9192359	12/2014	Flynn et al.	N/A	N/A
9196037	12/2014	Jung	N/A	N/A
9630028	12/2016	Browning et al.	N/A	N/A
RE46614	12/2016	Lipson et al.	N/A	N/A
10617388	12/2019	Flores, II	N/A	A61B 8/488
10709417	12/2019	O'Brien et al.	N/A	N/A
11090026	12/2020	Hamilton et al.	N/A	N/A
11129587	12/2020	Thorpe et al.	N/A	N/A
11154273	12/2020	O'Brien et al.	N/A	N/A
11190677	12/2020	Costa et al.	N/A	N/A
11207054	12/2020	Flores et al.	N/A	N/A
11452500	12/2021	Flores, II	N/A	A61B 8/488
2001/0053879	12/2000	Mills et al.	N/A	N/A
2002/0103436	12/2001	Njemanze	N/A	N/A
2003/0050607	12/2002	Gagnieux et al.	N/A	N/A
2004/0267127	12/2003	Abend et al.	N/A	N/A
2005/0004457	12/2004	Moilanen et al.	N/A	N/A
2005/0004468	12/2004	Abend et al.	N/A	N/A
2005/0015009	12/2004	Mourad et al.	N/A	N/A
2005/0049515	12/2004	Misczynski et al.	N/A	N/A
2005/0119573	12/2004	Vilenkin et al.	N/A	N/A
2005/0124901	12/2004	Misczynski et al.	N/A	N/A
2005/0147297	12/2004	Mclaughlin et al.	N/A	N/A
2005/0148895	12/2004	Misczynski et al.	N/A	N/A
2006/0025801	12/2005	Lulo et al.	N/A	N/A
2006/0030777	12/2005	Liang et al.	N/A	N/A
2006/0049721	12/2005	Kuehnicke	N/A	N/A
2006/0173307	12/2005	Amara et al.	N/A	N/A
2006/0173337	12/2005	Chen et al.	N/A	N/A
2006/0184070	12/2005	Hansmann et al.	N/A	N/A
2006/0206037	12/2005	Braxton	N/A	N/A
2006/0241462	12/2005	Chou et al.	N/A	N/A
2007/0016046	12/2006	Mozayeni et al.	N/A	N/A
2007/0016050	12/2006	Moehring et al.	N/A	N/A
2007/0078345	12/2006	Mo et al.	N/A	N/A
2007/0161891	12/2006	Moore et al.	N/A	N/A
2007/0232918	12/2006	Taylor	N/A	N/A
2007/0239019	12/2006	Richard et al.	N/A	N/A
2007/0244398	12/2006	Lo et al.	N/A	N/A
2008/0015478	12/2007	Bose	N/A	N/A
2008/0058861	12/2007	Cooper et al.	N/A	N/A
2008/0065099	12/2007	Cooper et al.	N/A	N/A
2008/0132790	12/2007	Burton	N/A	N/A

2008/0208060 12/2007 Murkin N/A 2008/0262350 12/2007 Unger N/A 2009/0062813 12/2008 Prisco et al. N/A 2009/0074151 12/2008 Henderson et al. N/A 2009/0198137 12/2008 Ragauskas et al. N/A 2009/0264786 12/2008 Jacquin N/A 2009/0275836 12/2008 Fujii et al. N/A	N/A
2009/0062813 12/2008 Prisco et al. N/A 2009/0074151 12/2008 Henderson et al. N/A 2009/0198137 12/2008 Ragauskas et al. N/A 2009/0264786 12/2008 Jacquin N/A 2009/0275836 12/2008 Fujii et al. N/A	N/A N/A N/A N/A N/A N/A N/A
2009/0074151 12/2008 Henderson et al. N/A 2009/0198137 12/2008 Ragauskas et al. N/A 2009/0264786 12/2008 Jacquin N/A 2009/0275836 12/2008 Fujii et al. N/A	N/A N/A N/A N/A N/A N/A N/A
2009/0198137 12/2008 Ragauskas et al. N/A 2009/0264786 12/2008 Jacquin N/A 2009/0275836 12/2008 Fujii et al. N/A	N/A N/A N/A N/A N/A
2009/0264786 12/2008 Jacquin N/A 2009/0275836 12/2008 Fujii et al. N/A	N/A N/A N/A N/A
2009/0275836 12/2008 Fujii et al. N/A	N/A N/A N/A N/A
y	N/A N/A N/A N/A
2009/0287084 12/2008 Ragauskas et al. N/A	N/A N/A
2009/0306515 12/2008 Matsumura et al. N/A	N/A
2009/0326379 12/2008 Daigle et al. N/A	
2010/0016707 12/2009 Amara et al. N/A	N/A
2010/0069757 12/2009 Yoshikawa et al. N/A	
2010/0081893 12/2009 Jarvik et al. N/A	N/A
2010/0087728 12/2009 Jarvik et al. N/A	N/A
2010/0121192 12/2009 Nogata et al. N/A	N/A
2010/0125206 12/2009 Syme N/A	N/A
2010/0130866 12/2009 Main et al. N/A	N/A
2010/0274303 12/2009 Bukhman N/A	N/A
2010/0298821 12/2009 Garbagnati N/A	N/A
2011/0112426 12/2010 Causevic N/A	N/A
2011/0137182 12/2010 Bellezza et al. N/A	N/A
2011/0144518 12/2010 Causevic N/A	N/A
2011/0251489 12/2010 Zhang et al. N/A	N/A
2011/0275936 12/2010 Cho et al. N/A	N/A
2011/0301461 12/2010 Anite N/A	N/A
2012/0108967 12/2011 Weng et al. N/A	N/A
2012/0108972 12/2011 Miyama et al. N/A	N/A
2012/0123272 12/2011 Lam et al. N/A	N/A
2012/0123590 12/2011 Halsmer N/A	N/A
2012/0153580 12/2011 Soma N/A	N/A
2012/0157840 12/2011 Syme N/A	N/A
2012/0165675 12/2011 Syme N/A	N/A
2012/0165676 12/2011 Njemanze N/A	N/A
2012/0226163 12/2011 Moehring et al. N/A	N/A
2012/0238875 12/2011 Savitsky et al. N/A	N/A
2013/0006106 12/2012 O'Reilly et al. N/A	N/A
2013/0018277 12/2012 Liu N/A	N/A
2013/0047452 12/2012 Mcmurtry et al. N/A	N/A
2013/0080127 12/2012 Shahaf et al. N/A	N/A
2013/0197401 12/2012 Sato et al. N/A	N/A
2013/0239687 12/2012 Nakabayashi N/A	N/A
2013/0274607 12/2012 Anand et al. N/A	N/A
2014/0031690 12/2013 Toji et al. N/A	N/A
2014/0031693 12/2013 Solek N/A	N/A
2014/0081142 12/2013 Toma et al. N/A	N/A
2014/0081144 12/2013 Moehring et al. N/A	N/A
2014/0094701 12/2013 Kwartowitz et al. N/A	N/A
2014/0163328 12/2013 Geva et al. N/A	N/A
2014/0163379 12/2013 Bukhman N/A	N/A
2014/0171820 12/2013 Causevic N/A	N/A

2014/0194740	12/2013	Stein et al.	N/A	N/A
2014/0276059	12/2013	Sheehan	N/A	N/A
2014/0316269	12/2013	Zhang et al.	N/A	N/A
2014/0323857	12/2013	Mourad et al.	N/A	N/A
2014/0343431	12/2013	Vajinepalli et al.	N/A	N/A
2015/0051489	12/2014	Caluser et al.	N/A	N/A
2015/0065871	12/2014	Konofagou et al.	N/A	N/A
2015/0065916	12/2014	Maguire et al.	N/A	N/A
2015/0094582	12/2014	Tanaka et al.	N/A	N/A
2015/0151142	12/2014	Tyler et al.	N/A	N/A
2015/0157266	12/2014	Machon et al.	N/A	N/A
2015/0190111	12/2014	Env	600/438	A61B
2015/0190111	12/2014	Fry	000/430	8/4209
2015/0216500	12/2014	Mano et al.	N/A	N/A
2015/0245771	12/2014	Wang et al.	N/A	N/A
2015/0245776	12/2014	Hirohata et al.	N/A	N/A
2015/0245820	12/2014	Tamada	N/A	N/A
2015/0250446	12/2014	Kanayama	N/A	N/A
2015/0250448	12/2014	Tamada	N/A	N/A
2015/0297176	12/2014	Rincker et al.	N/A	N/A
2015/0297177	12/2014	Boctor et al.	N/A	N/A
2015/0302584	12/2014	Brauner et al.	N/A	N/A
2015/0351718	12/2014	Vollmer et al.	N/A	N/A
2015/0356734	12/2014	Ooga et al.	N/A	N/A
2015/0359448	12/2014	Beach	N/A	N/A
2016/0000367	12/2015	Lyon	N/A	N/A
2016/0000411	12/2015	Raju et al.	N/A	N/A
2016/0000516	12/2015	Cheng et al.	N/A	N/A
2016/0030001	12/2015	Stein et al.	N/A	N/A
2016/0094115	12/2015	Okawa et al.	N/A	N/A
2016/0151618	12/2015	Powers et al.	N/A	N/A
2016/0256130	12/2015	Hamilton et al.	N/A	N/A
2016/0278736	12/2015	Hamilton et al.	N/A	N/A
2016/0310006	12/2015	Aguero Villarreal	N/A	N/A
2010/0510000	12/2015	et al.	14/11	
2016/0310023	12/2015	Chachisvilis	N/A	A61B
				5/0261
2016/0317129	12/2015	Seip et al.	N/A	N/A
2016/0324585	12/2015	Noonan et al.	N/A	N/A
2016/0367217	12/2015	Flores et al.	N/A	N/A
2017/0119347	12/2016	Flores et al.	N/A	N/A
2017/0188992	12/2016	O'Brien et al.	N/A	N/A
2017/0188993	12/2016	Hamilton et al.	N/A	N/A
2017/0188994	12/2016	Flores et al.	N/A	N/A
2017/0196465	12/2016	Browning et al.	N/A	N/A
2017/0307420	12/2016	Flores et al.	N/A	N/A
2018/0021021	12/2017	Zwierstra et al.	N/A	N/A
2018/0093077	12/2017	Harding et al.	N/A	N/A
2018/0103927	12/2017	Chung et al.	N/A	N/A
2018/0103928	12/2017	Costa et al.	N/A	N/A

2018/0177487	12/2017	Deffieux et al.	N/A	N/A
2018/0214124	12/2017	O'Brien et al.	N/A	N/A
2018/0220991	12/2017	O'Brien et al.	N/A	N/A
2019/0150895	12/2018	Tian et al.	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
104605889	12/2014	CN	N/A
0 403 807	12/1989	EP	N/A
1 750 804	12/2006	EP	N/A
2 034 901	12/2008	EP	N/A
2 111 787	12/2008	EP	N/A
2 858 619	12/2014	EP	N/A
2606625	12/1987	FR	N/A
S52-126979	12/1976	JP	N/A
H02-114008	12/1989	JP	N/A
H05-143161	12/1992	JP	N/A
H571763	12/1992	JP	N/A
07-299066	12/1994	JP	N/A
H07-299066	12/1994	JP	N/A
10-328189	12/1997	JP	N/A
H10-328189	12/1997	JP	N/A
2003-225239	12/2002	JP	N/A
2003-230558	12/2002	JP	N/A
2003-245280	12/2002	JP	N/A
2004-237082	12/2003	JP	N/A
2006-025904	12/2005	JP	N/A
2007-143704	12/2006	JP	N/A
2010-500084	12/2009	JP	N/A
2010-200844	12/2009	JP	N/A
2013-503681	12/2012	JP	N/A
2015-533299	12/2014	JP	N/A
WO-95/02361	12/1994	WO	N/A
WO-99/56625	12/1998	WO	N/A
WO-2009/138882	12/2008	WO	N/A
WO-2010/042146	12/2009	WO	N/A
WO-2013/155537	12/2012	WO	N/A
WO-2014/070993	12/2013	WO	N/A
WO-2015/073903	12/2014	WO	N/A
WO-2015/092604	12/2014	WO	N/A
WO-2016/001548	12/2015	WO	N/A

OTHER PUBLICATIONS

Aaslid, R., et al., "Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries", Journal of Neurosurgery, 1982, 57(6): p. 769-774. cited by applicant Baldwin, K., et al., "Subpeak Regional Analysis of Intracranial Pressure Waveform Morphology based on Cerebrospinal Fluid Hydrodynamics in the Cerebral Aqueduct and Prepontine Cistern", 34th Annual International Conference of the IEEE EMBS, 2012, p. 3935-3938. cited by applicant Bashford, G., et al., "Monitoring Cerebral Hemodynamics with Transcranial Doppler Ultrasound

during Cognitive and Exercise Testing in Adults following Unilateral Stroke", 34th Annual International Conference of the IEEE EMBS, 2012, p. 2310-2313. cited by applicant Chatelain et al. "Confidence-Driven Control of an Ultrasound Probe: Target-Specific Acoustic Window Optimization." IEEE ICRA May 16-21, 2016, pp. 3441-3446. cited by applicant Chatelain et al. "Optimization of ultrasound image quality via visual servoing." IEEE INCRA May 26-30, 2015, pp. 5997-6002. cited by applicant

Chen, W., et al., "Intracranial Pressure Level Prediction in Traumatic Brain Injury by Extracting Features from Multiple Sources and Using Machine Learning Methods", 2010 IEEE International Conference on Bioinformatics and Biomedicine, 2010, p. 510-515. cited by applicant Cheng, Y. & Zhao, R., "Self-training classifier via local learning regularization", Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, 2009, p. 454-459. cited by applicant

Chinese Office Action dated Aug. 18, 2020, from application No. 201780005508.2. cited by applicant

Chinese Office Action dated Aug. 27, 2020, from application No. 201780005528.X. cited by applicant

Chinese Office Action dated Jun. 30, 2020, from application No. 201780005447.X. cited by applicant

Chinese Office Action dated Mar. 24, 2020, from application No. 201680034144.6. cited by applicant

Chinese Office Action dated Sep. 23, 2020, from application No. 201780005865.9. cited by applicant

Ekroth, R., et al., "Transcranial Doppler-estimated versus thermodilution estimated cerebral blood flow during cardiac operations. Influence of temperature and arterial carbon dioxide tension." Journal Thoracic Cardiovascular Surgery, 1991, 102(1): p. 95-102. cited by applicant European Office Action dated Sep. 24, 2021, from application No. 17735919.7. cited by applicant European Office Action dated Sep. 28, 2021, from application No. 17736375.1. cited by applicant Extended European Search Report dated Jan. 4, 2019, from application No. 16812644.9. cited by applicant

Extended European Search Report dated Jul. 16, 2019, from application No. 17736353.8. cited by applicant

Extended European Search Report dated Jul. 19, 2019, from application No. 17736375.1. cited by applicant

Extended European Search Report dated Jul. 24, 2019, from application No. 17735919.7. cited by applicant

Extended European Search Report dated Nov. 12, 2019, from application No. 17736371.0. cited by applicant

Extended European Search Report dated Nov. 21, 2019, from application No. 17790294.7. cited by applicant

Final Office Action dated Apr. 23, 2021, from U.S. Appl. No. 15/187,397. cited by applicant Final Office Action dated Aug. 2, 2019, from U.S. Appl. No. 15/399,648. cited by applicant Final Office Action dated Aug. 28, 2019, from U.S. Appl. No. 15/399,440. cited by applicant Final Office Action dated Jan. 28, 2019, from U.S. Appl. No. 15/942,368. cited by applicant Final Office Action dated Jan. 30, 2020, from U.S. Appl. No. 15/497,039. cited by applicant Final Office Action dated Jun. 15, 2020, from U.S. Appl. No. 15/399,735. cited by applicant Final Office Action dated Jun. 9, 2020, from U.S. Appl. No. 15/399,648. cited by applicant Final Office Action dated Sep. 18, 2020, from U.S. Appl. No. 15/399,710. cited by applicant Gomez, C., et al., Transcranial Doppler Ultrasonographic Assessment of Intermittent Light Stimulation at Different Frequencies, Stroke, 1990, 21, p. 1746-1748. cited by applicant Harrison, M. & Markus, H., "Estimation of cerebrovascular reactivity using transcranial Doppler,

including the use of breath-holding as the vasodilatory stimulus", Stroke, 1992, 23(5) p. 668-73. cited by applicant

International Preliminary Report on Patentability dated Dec. 28, 2017, from international application No. PCT/US2016/038433. cited by applicant

International Preliminary Report on Patentability dated Jul. 19, 2018, from application No. PCT/IB2017/050349. cited by applicant

International Preliminary Report on Patentability dated Jul. 19, 2018, from application No. PCT/US2017/012365. cited by applicant

International Preliminary Report on Patentability dated Jul. 19, 2018, from application No. PCT/US2017/012395. cited by applicant

International Preliminary Report on Patentability dated Jul. 19, 2018, from application No. PCT/US2017/012402. cited by applicant

International Preliminary Report on Patentability dated Nov. 8, 2018, from application No. PCT/US2017/029483. cited by applicant

International Search Report and Written Opinion dated Aug. 14, 2017, from international application No. PCT/US2017/029483. cited by applicant

International Search Report and Written Opinion dated May 4, 2017, from application No. PCT/US2017/012395. cited by applicant

International Search Report and Written Opinion dated Oct. 13, 2016, from related international application No. PCT/US2016/038433. cited by applicant

International Search Report and Written Opinion mailed Jun. 1, 2017, from application No. PCT/IB2017/050349. cited by applicant

International Search Report and Written Opinion mailed Jun. 8, 2017, from application No. PCT/US2017/012402. cited by applicant

Jaffres, P., et al., "Transcranial Doppler to detection admission patients at risk for neurological deterioration following mild and moderate brain trauma", Intensive Care Med, 2005, 31 (6): p. 785-790. cited by applicant

Japanese Decision of Rejection dated Dec. 18, 2018, from application No. 2016-554529. cited by applicant

Japanese Office Action dated Apr. 24, 2018, from application No. 2016-554529. cited by applicant Japanese Office Action dated Aug. 28, 2018, from application No. 2016-554529. cited by applicant Japanese Office Action dated Dec. 10, 2020, from application No. 2018-534916. cited by applicant Japanese Office Action dated Jan. 27, 2020, from application No. 2018-534127. cited by applicant Japanese Office Action dated Mar. 11, 2021, from application No. 2018-555541. cited by applicant Japanese Office Action dated Nov. 5, 2020, from application No. 2018-534904. cited by applicant Japanese Office Action dated Oct. 22, 2020, from application No. 2018-534131. cited by applicant Len, T.K., et al., "Cerebrovascular reactivity impairment after sport-induced concussion", Med Sci Sports Exerc, 2011, 43(12): p. 2241-2248. cited by applicant

M.H. Raibert et al., "Hybrid Position/Force Control of Manipulators", Journal of Dynamic Systems, Measurement, and Control, vol. 102, Jun. 1981, pp. 126-133, abstract. cited by applicant Mackinnon et al. "Long-Term Ambulatory Monitoring for Cerebral Emboli Using Transcranial Doppler Ultrasound." Stroke(35), 2004; pp. 73-78. cited by applicant

Nadeau et al. "Intensity-Based Ultrasound Visual Servoing: Modeling and Validation with 2-D and 3-D Probes." IEEE Trans on Robotics (29:4), Aug. 2013, pp. 1003-1015. cited by applicant Ni, et al., "Serial Transcranial Doppler Sonography in Ischemic Strokes in Middle Cerebral Artery Territory", Journal of Neruoimaging, Oct. 1, 1994, pp. 232-236. cited by applicant

Non-Final Office Action dated Apr. 2, 2019, from U.S. Appl. No. 15/399,440. cited by applicant Non-Final Office Action dated Aug. 14, 2019, from U.S. Appl. No. 15/497,039. cited by applicant Non-Final Office Action dated Dec. 11, 2019, from U.S. Appl. No. 15/399,710. cited by applicant Non-Final Office Action dated Dec. 8, 2021, from U.S. Appl. No. 15/399,735. cited by applicant

Non-Final Office Action dated Jul. 16, 2020, from U.S. Appl. No. 15/497,039. cited by applicant Non-Final Office Action dated Jun. 27, 2018, from U.S. Appl. No. 15/942,368. cited by applicant Non-Final Office Action dated Jun. 28, 2018, from U.S. Appl. No. 15/940,925. cited by applicant Non-Final Office Action dated Mar. 19, 2019, from U.S. Appl. No. 15/399,648. cited by applicant Non-Final Office Action dated Nov. 19, 2019, from U.S. Appl. No. 15/399,735. cited by applicant Non-Final Office Action dated Oct. 1, 2019, from U.S. Appl. No. 15/399,735. cited by applicant Non-Final Office Action dated Oct. 28, 2020, from U.S. Appl. No. 15/187,397. cited by applicant Non-Final Office Action dated Sep. 17, 2018, from U.S. Appl. No. 15/156,175. cited by applicant Notice of Allowance dated Aug. 24, 2021, from U.S. Appl. No. 15/399,440. cited by applicant Notice of Allowance dated Dec. 9, 2019, from U.S. Appl. No. 15/399,440. cited by applicant Notice of Allowance dated Mar. 19, 2021, from U.S. Appl. No. 15/399,710. cited by applicant Notice of Allowance dated Mar. 4, 2020, from U.S. Appl. No. 15/942,368. cited by applicant Qiu et al, "A Robotic Holder of Transcranial Doppler Probe for CBFV Auto-Searching." Proc of IEEE ICIA, Aug. 2013, pp. 1284-1289. cited by applicant

Qiu, et al., "A Robotic Holder of Transcranial Doppler Probe for CBFV Auto-Searching", 2013 IEEE International Conference on Information and Automation (ICIA), IEEE, Aug. 26, 2013, pp. 1284-1289. cited by applicant

Souza-Daw et al. "Towards Ultrasonic Detection of Acoustic Windows for Transcranial Doppler Ultrasound and related Procedures." IEEE Proc INDS'11 & ISTET'11. Jul. 25-27, 2011. 6 pages. cited by applicant

Tatasurya, Samuel Radiant, "Multimodal Graphical User Interface for Ultrasound Machine Control via da Vinci Surgeon Console: Design, Development, and Initial Evaluation," The University of British Columbia, Vancouver, Aug. 2015, p. 33, paragraph 1. cited by applicant

Uguz, H., "A hybrid system based on information gain and principal component analysis for the classification of transcranial Doppler signals", Computer Methods and Programs in Biomedicine, 2010, 107(2012) p. 598-609. cited by applicant

US Notice of Allowance dated May 27, 2022, from U.S. Appl. No. 16/847,247. cited by applicant Zhu, X., "Semi-supervised Learning Literature Survey", Computer Sciences TR 1530, University of Wisconsin—Madison, 2008. cited by applicant

US Final Office Action dated Aug. 16, 2022, from U.S. Appl. No. 15/399,735. cited by applicant US Notice of Allowance dated Nov. 9, 2022, from U.S. Appl. No. 15/399,735. cited by applicant

Primary Examiner: Holmes; Rex R

Attorney, Agent or Firm: Polygon IP, LLP

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS (1) This application is a continuation of U.S. application Ser. No. 16/847,247, filed Apr. 13, 2020, now U.S. Pat. No. 11,452,500, granted Sep. 27, 2022, which is a continuation of U.S. application Ser. No. 15/399,440, filed Jan. 5, 2017, now U.S. Pat. No. 10,617,388, granted Apr. 14, 2020, which claims the benefit of and priority to U.S. Provisional Application No. 62/332,133, filed May 5, 2016, and U.S. Provisional Application No. 62/275,192, filed Jan. 5, 2016, the contents of which are incorporated herein by reference in their entireties.

BACKGROUND

- 1. Field
- (1) Subject matter described herein relates generally to medical devices, and more particularly to a

probe for diagnosing medical conditions.

- 2. Background
- (2) For devices utilizing a probe (e.g., an automated Transcranial Doppler (TCD) device), there exist patient safety concerns related to the placement and alignment of TCD probes against a human being's skull. This safety concern exists within the structure of an automated robotic headset or manual operation of TCD probes. In existing solutions, either manual placement of the TCD probe or the complexity of the TCD probe mechanism may not be optimal. Currently there is no method to observe the amount of pressure or force exerted on a patient's temporal window or skull and thus there are no mediums to monitor patient discomfort during an automated or manual TCD probe placement.

SUMMARY

- (3) In general, various embodiments relate to systems and methods for providing an integrated probe structure incorporating a probe integrated with a gimbal structure or probe hub.
- (4) According to various embodiments, there is provided a probe structure. The probe structure includes a probe configured to emit acoustic energy. The probe structure further includes a load cell underneath and aligned with the probe. The probe structure further includes a probe hub including a cavity for receiving the probe and the load cell.
- (5) In some embodiments, the probe structure further includes a probe seat interposed between the probe and the load cell.
- (6) In some embodiments, the probe hub includes a lengthwise slot.
- (7) In some embodiments, the lengthwise slot is configured to align and retain a cable connected to the probe and a wire connected to the load cell.
- (8) In some embodiments, the wire connected to the load cell is held statically within the lengthwise slot while the cable of the probe is configured to move along the lengthwise slot.
- (9) In some embodiments, the probe structure further includes an adhesive layer between the load cell and a bottom of the cavity of the probe hub.
- (10) In some embodiments, the load cell further includes a probe seat interposed between the probe and the load cell and an adhesive layer between the probe and the probe seat.
- (11) In some embodiments, the adhesive layer includes epoxy.
- (12) In some embodiments, the load cell includes a protrusion and the probe includes a hollow for receiving the protrusion for securing the load cell and the probe together.
- (13) In some embodiments, the probe structure further includes a probe seat interposed between the probe and the load cell, wherein the probe seat has a through hole such that the protrusion of the load cell threads through the through hole and the hollow of the probe.
- (14) In some embodiments, the probe hub is configured to house the load cell and a portion of the probe.
- (15) In some embodiments, the cavity of the probe hub includes an inner diameter that is substantially equal to an outer diameter of the portion of the probe.
- (16) In some embodiments, the cavity of the probe hub includes a first inner diameter corresponding to a location of the portion of the probe housed within the cavity and a second inner diameter corresponding to a location of the load cell housed within the cavity, the first inner diameter being different from the second inner diameter.
- (17) In some embodiments, the first inner diameter is greater than the second inner diameter.
- (18) In some embodiments, the first inner diameter is substantially equal to an outer diameter of the portion of the probe and the second inner diameter is substantially equal to an outer diameter of the load cell.
- (19) In some embodiments, the probe structure further includes a probe seat interposed between the probe and the load cell, wherein the first inner diameter further corresponds to a location of the probe seat housed within the cavity.
- (20) In some embodiments, the load cell is configured to detect forces exerted against the probe

along a plurality of axes.

- (21) In some embodiments, the probe includes a transcranial Doppler (TCD) probe.
- (22) According to various embodiments, there is provided a method of manufacturing a probe structure. The method includes providing a probe configured to emit acoustic energy. The method further includes aligning a load cell underneath the probe. The method further includes providing a probe hub including a cavity for receiving the probe and the load cell.
- (23) According to various embodiments, there is provided a system for detecting neurological conditions of a subject. The system includes automated robotics configured to position a probe structure with respect to the subject. The probe structure includes a probe configured to emit acoustic energy. The probe structure further includes a load cell underneath and aligned with the probe. The probe structure further includes a probe hub including a cavity for receiving the probe and the load cell.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) FIG. **1** illustrates a perspective view of a TCD probe previously known in the art.
- (2) FIG. 2 illustrates a robotic headset for incorporating a TCD probe.
- (3) FIG. **3** illustrates a perspective view of an integrated TCD probe structure according to various embodiments.
- (4) FIG. **4** is an exploded view of an integrated TCD probe structure according to various embodiments.
- (5) FIG. **5** illustrates a side cross-sectional view of an integrated TCD probe structure according to various embodiments.
- (6) FIG. **6** illustrates a perspective view of an integrated gimbal probe structure according to various embodiments.
- (7) FIG. **7** illustrates a side view of an integrated gimbal probe structure according to various embodiments.
- (8) FIG. **8** illustrates a perspective view of a TCD probe adapted for use with an integrated gimbal probe structure with a cover according to various embodiments.
- (9) FIG. **9** illustrates a perspective view of an integrated force center probe according to various embodiments.
- (10) FIG. **10** illustrates a side cross-sectional view of a TCD probe adapted for use with a three piece integrated gimbal probe structure according to various embodiments.
- (11) FIG. **11** illustrates a perspective exploded view of a TCD probe adapted for use with an integrated gimbal probe structure integrated with a cover according to various embodiments.
- (12) FIG. **12**A illustrates a perspective view of an integrated probe structure according to various embodiments.
- (13) FIG. **12**B illustrates an exploded view of the integrated probe structure shown in FIG. **12**A according to various embodiments.
- (14) FIG. **12**C illustrates a perspective cross-sectional view of the integrated probe structure shown in FIG. **12**A according to various embodiments.
- (15) FIG. **13**A illustrates a perspective view of an integrated probe structure according to various embodiments.
- (16) FIG. **13**B illustrates a transparent perspective view of the integrated probe structure shown in FIG. **13**A according to various embodiments.
- (17) FIG. **13**C illustrates an exploded view of the integrated probe structure shown in FIG. **13**A according to various embodiments.

DETAILED DESCRIPTION

- (18) The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
- (19) FIG. **1** illustrates a side view of a prior art TCD probe **102** pressed against a human being's skull **104**. In the prior art, when a TCD probe **102** was manipulated by a human operator (e.g., a skilled sonographer operating a TCD probe), it was not critical to reduce the size of the TCD probe **102**.
- (20) FIG. **2** illustrates a robotic headset **106** mounted on a human being's skull **104**. To facilitate automated TCD scans without the use of a human operator manipulating a TCD probe, it would be advantageous to reduce the size of a TCD probe so that it would fit within a reasonably sized headset **106**.
- (21) FIG. 3 illustrates a perspective view of a TCD probe 202 mounted in a gimbal 204 for use in a robotic headset 106. While this specification frequently discusses TCD probes, in general, the techniques and devices discussed herein specifically described as using TCD can also be employed in various embodiments using probes for methods such as ultrasound, transcranial color-coded sonography (TCCS), phased arrays, as well as other known ultrasound energy modalities. Additionally, other techniques that use probes that emit or receive energy in the electromagnetic spectrum such as functional Near-Infrared Spectroscopy (fNIRS) or EEG can also be employed. In some embodiments, the gimbal 204 includes a pivoted support that allows for rotation of an object (e.g., the probe 202), about an axis (e.g., about a single axis). In some embodiments, the gimbal 204 is a probe hub. Further disclosure regarding the probe hub is described below. A data/power cable 206 allows for the flow of electricity to power the TCD probe 202 and the flow of data from the TCD probe 202. The gimbal 204 allows the TCD probe 202 to pan and tilt.
- (22) FIG. 4 illustrates an exploded view of the TCD probe 202 connection to the gimbal 204. To allow for connection of the TCD probe **202** to the gimbal **204**, the TCD probe **202** is fastened, typically with glue, to a thrust plate **208**. The thrust plate **208** has a plurality of legs **210***a*, **210***b*, **210***c*, **210***d* designed to mount in and align with corresponding receiving holes **212***a*, **212***b* (other holes **212***c*, **212***d* not shown). The thrust plate **208** is secured to the gimbal **204** by snap rings (not shown) on the bottom of the gimbal **204**. Other methods of fastening known to those of skill in the art may also be employed, such as, but not limited to, interfacing (e.g., counter sunk features). A load cell **214** is fastened, typically with a form to fit counter sunk feature for initial alignment and with glue for stabilization, to the gimbal **204**, and is designed to fit between the gimbal **204** and thrust plate **208**. As is known in the art, a load cell **214** is a transducer that is used to translate physical phenomenon into an electrical signal whose magnitude is proportional to, in this case, the force being measured. Wires 216 extending from the load cell 214 provide electrical signals (e.g., data and power signals) emanating from the load cell **214** responsive to the force on the load cell **214**. In operation, when the TCD probe **202** is pressed against a human being's skull **104**, a force will also be imparted through the interfacing thrust plate **208** to the load cell **214**, which will result in an electrical signal which can be measured.
- (23) FIG. **5** illustrates a perspective cross-sectional view of the of the TCD probe **202** connected to the thrust plate **208**, which is in turn in contact with the load cell **214** connected to the gimbal **204**. (24) FIG. **6** illustrates a perspective view of a preferred embodiment of an integrated gimbal TCD probe **300** and FIG. **7** illustrates an elevation view of the integrated gimbal TCD probe **300**. The integrated gimbal TCD probe **300** reduces the number of components compared to the embodiment of FIG. **4**. The integrated gimbal TCD probe **300** has a TCD probe **302** capable of transmitting ultrasound waves into a human being's skull **104**. The ultrasound waves are transmitted through the

- transducer face **303** which is pressed against the skin of a human being's skull **104**. The TCD probe **302**, rather than being cylinder shaped, has a tapered portion **304** adapted to receive a cover (as shown in FIG. **8**). Beyond the tapered portion **304**, the TCD probe **302** probe body **306** extends to a gimbal mount **314**. The gimbal mount **314** has a plurality of tapped holes **310***a*, **310***b*, designed to mount with and allow for fastening of the gimbal mount **314** to a gimbal interface. A data/power cable **312** extends from the gimbal mount **314** of the integrated gimbal TCD probe **300** such that it has proper clearance from the gimbal.
- (25) FIG. **8** illustrates a TCD probe **402** having a shape similar to the integrated gimbal TCD probe **300** shown in FIG. **6**. The TCD probe **402** has a tapered portion **404** adapted to receive a cover **406**. The cover **406** mounts snugly to the tapered portion **404** to prevent a patient's skin from being pinched between the TCD probe **402** and any other mechanism of the robotic headset **106**. Further, in operation, gel is typically placed on a transducer face **408** of the TCD probe **402** to provide improved conductivity between the skin of the patient and the transducer face **408**. Employing a cover **406** snugly mounted with the tapered portion **404** will act to help prevent gel from moving past the tapered portion into the rest of the mechanism of the robotic headset **106**. If gel were to move into the mechanism of the robotic headset **106**, the gel may degrade operation of the robotic headset **106** or may require that the robotic headset **106** be cleaned from time to time to remove unwanted gel.
- (26) FIG. **9** illustrates a perspective view of an integrated force center probe **500**. The integrated force center probe **500** includes a TCD probe **502** capable of transmitting ultrasound waves into a human being's skull **104**. The TCD probe **502** has a tapered portion **504** adapted to receive a cover (as shown in FIG. **8**). Below the tapered portion **504**, the TCD probe **502** probe body **506** extends to a gimbal mount **514**. Between the gimbal mount **514** and the probe body **506**, an overmold piece **516** connects the gimbal mount **514** and the probe body **506**. The gimbal mount **514** has a plurality of tapped holes **510** designed to mount with and allow for fastening of the gimbal mount **514** to a gimbal. A data/power cable **512** extends from the gimbal mount **514** of the integrated gimbal TCD probe **500** such that it has proper clearance from the gimbal.
- (27) FIG. **10** illustrates a cross-sectional side view of the integrated force center probe **500**. A load cell **508** is molded into the bottom of TCD probe **502** having a probe body **506**. The assembly of the load cell **508** and TCD probe **502** is then molded to gimbal mount **514** such that when the load cell **508** contacts the gimbal mount **514** a specific pre-defined preload is applied to a button **518** on the load cell **508**. The gimbal mount **514** and probe body **506** are then molded together with an overmold piece **516**. A data/power cable **512** extends from the gimbal mount **514** of the integrated force center probe **500** such that it has proper clearance from the gimbal.
- (28) FIG. **11** illustrates a perspective view of an exploded portion of the integrated force center probe **500** oriented in a direction opposite that of FIG. **10**. This view does not show the gimbal mount **514** or the data/power cable **512**. Load cell **508** is mounted within a recess or countersink **520** of the probe body **506**. Wires **522** extending from the load cell **508** provide electrical signals emanating from the load cell **508** responsive to the force on the load cell **508**. The wires **522** exit the probe body **506** through a recess **524** in the probe body **506**.
- (29) FIG. **12**A illustrates a perspective view of an integrated probe structure **1200** according to various embodiments. FIG. **12**B illustrates an exploded view of the integrated probe structure **1200** shown in FIG. **12**A according to various embodiments. FIG. **12**C illustrates a perspective cross-sectional view of the integrated probe structure **1200** shown in FIG. **12**A according to various embodiments.
- (30) Referring to FIGS. **12**A-**12**C, the probe structure **1200** includes a probe **1202**, a probe hub or gimbal **1204**, a probe seat **1206**, and a load cell **1208**. In some embodiments, the probe **1202** includes a first end (e.g., the end that is free and facing empty space) and a second end that is opposite to the first end. In some embodiments, the first end includes a concave surface that is configured to be adjacent to or contact a scanning surface. The concave surface is configured with

- a particular pitch to focus generated energy towards the scanning surface. In some embodiments, the probe structure is a Transcranial Doppler (TCD) apparatus such that the first end of the probe is configured to be adjacent to or contact and align along a human head (e.g., a side of the human head), and the first end of the probe **1202** is configured to provide ultrasound wave emissions from the first end and directed into the human head (e.g., towards the brain). In other embodiments, the probe **1202** is configured to emit other types of waves during operation, such as, but not limited to, infrared waves, x-rays, or the like.
- (31) In some embodiments, the second end of the probe 1202 is coupled to the probe seat 1206. The probe 1202 includes a hollow 1202A extending though the center of the probe 1202. In some embodiments, the hollow 1202A includes a threaded cavity-type interface. The hollow 1202A allows for alignment amongst the probe 1202, the probe seat 1206, and the load cell 1208. For example, the probe seat 1206 includes a circular ridge 1206A defining a through hole 1206B and the circular ridge 1206A extending upwards into the hollow 1202A of the probe 1202. The circular ridge 1206A includes a lip defining or housing a through hole, and the lip is fitted to extend upwards from the probe seat 1206. While the probe 1202 is coupled or attached to the probe seat 1206 at one side of the probe seat 1206, the load cell 1208 is coupled or attached to the opposite side of the probe seat 1206 such that the probe seat 1206 is interposed between the probe 1202 and the load cell 1208. Accordingly, in some embodiments, the probe seat 1206 is made from any suitable material for transferring the full or almost full force applied to the first end of the probe 1202 to the load cell 1208, such as, but not limited to, a non-metal material (e.g., polyurethane) and the like. In some embodiments, the probe structure 1200 does not include the probe seat 1206 such that the probe 1202 and the load cell 1208 contact each other.
- (32) In some embodiments, the probe seat **1206** is affixed to the probe **1202** through an adhesive layer. The adhesive layer may be any suitable material for securely coupling the probe seat **1206** and the probe **1202** together, such as, but not limited to, an epoxy. In other embodiments, the probe **1202** is secured in the probe seat **1206** by any other suitable connecting means, such as, but not limited to, welding, potting, one or more hooks and latches, one or more separate screws, press fittings, or the like.
- (33) In some embodiments, the load cell **1208** is coupled to the probe seat **1206**. Accordingly, the probe seat **1206** may also function as a load cell register. In some embodiments, the load cell **1208** is configured to take measurements of pressure or force exerted on the probe **1202**. In some embodiments, the load cell **1208** is assembled so as to exhibit a preload. For example, the load cell **1208** may be designed to exhibit and include a preload in a range from about 2 Newtons to about 3 Newtons. In some embodiments, because the load cell **1208** is aligned with and proximate the probe **1202** (e.g., coupled to the probe **1202** via the probe seat **1206**), a force exerted against the concave surface of the first end of the probe **1202** (e.g., caused by the concave surface being pressed against a human head), is registered and measured at the load cell **1208**.
- (34) In some embodiments, the load cell **1208** is a transducer that is used to create an electrical signal whose magnitude is proportional to the force being measured. In some embodiments, a wire **1212** extending from the load cell **1208** provides electrical signals generated from the load cell **1208**, responsive to the force on the load cell **1208** caused by the probe **1202**. During operation, in some embodiments, when the probe **1202** is pressed against a human skull, a force will also be imparted through the probe seat **1206** to the load cell **1208**, which can be measured and transmitted by the load cell **1208**.
- (35) Accordingly, in some embodiments, the probe structure **1200** utilizes the measurements of the load cell **1208** to adjust the pressure exerted by the probe **1202** (e.g., by a robotic apparatus attached to the probe structure **1200**). For example, in some embodiments, the probe structure **1200** decreases the force exerted against a human head by the probe **1202** when the pressure measured by the load cell **1208** is determined to be relatively high (e.g., the pressure measurement exceeds a predetermined threshold). In some embodiments, the predetermined threshold is user-defined and

can be adjusted as desired.

- (36) In some embodiments, the load cell **1208** includes a cylindrical protrusion **1208**A extending upwards from the load cell **1208**. The protrusion **1208** passes through the through hole **1206**B of the probe seat **1206** and extends into the hollow **1202**A (or the threaded cavity-type interface of the hollow **1202**A) of the probe **1202**. Accordingly, the probe **1202**, the probe seat **1206**, and the load cell **1208** are capable of remaining aligned such that a maximum amount of forced is transferred from the probe **1202** to the load cell **1208**. In some embodiments, the load cell **1208** is affixed to a bottom inner surface of the probe hub (or gimbal) **1204** through an adhesive layer. The adhesive layer may be any suitable material for securely coupling the load cell **1208** and the probe hub **1204** together, such as, but not limited to, an epoxy, potting, and the like.
- (37) In some embodiments, the probe hub **1204** provides a plurality of single axis pivoted supports and interfaces with links and motors to provide a pan and tilt about respective Y and X axes. In some embodiments, the probe hub **1204** is a gimbal as described above. In some embodiments, the probe hub **1204** has a fitted cavity for receiving and housing a portion of the probe **1202**, the probe seat **1206**, and the load cell **1208** to provide further security and alignment of the probe structure **1200**. The cavity of the probe hub (or gimbal) **1204** includes a counter sunk first inner diameter D**1** that corresponds to a location of the load cell **1208** when the load cell **1208** is housed within the probe hub **1204**. The first diameter D**1** is substantially equal to (e.g., slightly larger than) an outer diameter of the load cell **1208** such that the load cell **1208** does not shift radially while housed in the probe hub (or gimbal) **1204**. Accordingly, the load cell **1208** remains axially aligned with the probe seat **1206** and a shaft end of the probe **1202**.
- (38) Similarly, the cavity of the probe hub **1204** includes a second inner diameter D**2** that corresponds to a location of the probe **1202** and the probe seat **1206** when the probe **1202** and the probe seat **1206** are housed within the probe hub **1204**. The second inner diameter D**2** is substantially equal to (e.g., slightly larger than) an outer diameter of the shaft end of the probe **1202** and the probe seat **1206** such that the probe **1202** and the probe seat **1206** do not shift radially while housed in the probe hub **1204**. Accordingly, the probe **1202** and the probe seat **1206** remains axially aligned with the load cell **1208**. In some embodiments, the second inner diameter D**2** is greater than the first inner diameter D**1**.
- (39) In some embodiments, the probe hub (or gimbal) **1204** has a length long enough to encompass and house the load cell 1208 (e.g., entirely), the probe seat 1206 (e.g., entirely), and a portion (e.g., a substantial portion) of the probe **1202**. In some embodiments, the probe hub **1204** is long enough to house approximately 50% of the length of the body of the probe **1202**. In other embodiments, the probe hub **1204** is long enough to house more than 50% of the length of the body of the probe **1202** (e.g., about 55%, 60%, 65%, or more). In other embodiments, the probe hub **1204** houses less than 50% of the length of the body of the probe **1202** (e.g., about 45%, 40%, 35%, or less). In particular embodiments, the probe hub **1204** house about 33% of the length of the body of the probe **1202**. (40) In some embodiments, the probe hub **1204** includes a lengthwise slot **1204**A. The slot **1204**A may extend along the full length of the body of the probe hub **1204**. In other embodiments, the slot **1204**A extends along less than the full length of the body of the probe hub **1204**. The slot **1204**A is configured to receive and retain wires and cables originating from the components housed within the probe hub **1204**. For example, the slot **1204**A receives and retains the wire **1212** originating from the load cell **1208** and a cable **1210** originating from the probe **1202**. Accordingly, the wire **1212** and the cable **1210** can be aligned and secured (e.g., during assembly and outside of the probe hub or gimbal 1204) so that they do not become an obstacle during assembly or operation of the probe structure **1200**. In some embodiments, the wire **1212** remains static in the slot **1204**A, while the cable **1210** is configured to move within the slot **1204**A (e.g., flex or otherwise move along the length of the slot **1204**A). In some embodiments, the probe hub **1204** further includes a gimbal interface **1214** for attaching to gimbal linkages that can control the probe structure **1200**. (41) FIG. **13**A illustrates a perspective view of an integrated probe structure **1300** according to

- various embodiments. FIG. **13**B illustrates a transparent probe housing in a perspective view of the integrated probe structure **1300** shown in FIG. **13**A according to various embodiments. FIG. **13**C illustrates an exploded view of the integrated probe structure **1300** shown in FIG. **13**A according to various embodiments.
- (42) The probe structure **1300** includes a probe housing **1302**, a probe **1304**, an interconnection structure **1306**, and a load cell **1308**. In some embodiments, the probe structure **1300** includes an end effector, for example, used in conjunction with a robot arm (e.g., a 6-axis robot arm). The probe housing **1302** covers and houses the probe **1304**, the interconnection structure **1306**, and the load cell **1308**. The probe **1304** extends through a top opening of the probe housing **1302**. The interconnection structure **1306** provides the framework of the probe structure **1300** for securing the components together. The load cell **1308** is located adjacent to the probe **1304** (e.g., directly underneath the probe **1304**). The probe structure **1300** can be used in connection with a robotic arm (e.g., a robotic arm including multiple degrees of freedom, such as, but not limited to, six degrees of freedom).
- (43) Although the present disclosure illustrates and describes an integrated probe system including a load cell for detecting force exerted against a probe in a single axis (e.g., along an axis that is perpendicular to the upper surface of the probe facing a scanning surface), in some embodiments, the load cell and the integrated probe system may be configured to detect forces in a plurality of axes. For example, the integrated probe system may be configured to detect force exerted against the probe along two axes, three axes, four axes, five axes, or six axes. In some embodiments, the probe is continuously adjusted to maintain a normal position along a scanning surface using a load cell that detects force along a plurality of axes (e.g., along six different axes).
- (44) As used herein, the terms "approximately," "substantially," "substantial" and "about" are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation. For example, when used in conjunction with a numerical value, the terms can refer to a range of variation less than or equal to $\pm 10\%$ of that numerical value, such as less than or equal to $\pm 5\%$, less than or equal to $\pm 4\%$, less than or equal to $\pm 3\%$, less than or equal to $\pm 2\%$, less than or equal to $\pm 10\%$, or less than or equal to $\pm 0.05\%$. For example, two numerical values can be deemed to be "substantially" the same or equal if a difference between the values is less than or equal to $\pm 10\%$ of an average of the values, such as less than or equal to $\pm 5\%$, less than or equal to $\pm 4\%$, less than or equal to $\pm 3\%$, less than or equal to $\pm 2\%$, less than or equal to $\pm 2\%$, less than or equal to $\pm 1\%$, less than or equal to $\pm 0.5\%$, less than or equal to $\pm 0.1\%$, or less than or equal to $\pm 0.05\%$.
- (45) The above used terms, including "attached," "connected," "secured," and the like are used interchangeably. In addition, while certain embodiments have been described to include a first element as being "coupled" (or "attached," "connected," "fastened," etc.) to a second element, the first element may be directly coupled to the second element or may be indirectly coupled to the second element via a third element.
- (46) The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean "one and only one" unless specifically so stated, but rather "one or more." Unless specifically stated otherwise, the term "some" refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout the previous description that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims.

Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase "means for."

(47) It is understood that the specific order or hierarchy of steps in the processes disclosed is an example of illustrative approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged while remaining within the scope of the previous description. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented. (48) The previous description of the disclosed implementations is provided to enable any person skilled in the art to make or use the disclosed subject matter. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of the previous description. Thus, the previous description is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims

- 1. A system, comprising: a probe configured to emit acoustic energy and comprising a hollow cavity disposed within a center portion of the probe; a sensor configured to output a signal indicating an amount of force exerted against the probe when the probe is against a surface of a subject and comprising a cylindrical protrusion extending into the hollow cavity to align the probe and the sensor; and a probe hub, wherein the probe, the sensor, and the probe hub are aligned through an axis.
- 2. The system of claim 1, wherein the sensor further comprises a load cell.
- 3. The system of claim 1, wherein the sensor is configured to detect the amount of force exerted against the probe along a plurality of axes.
- 4. The system of claim 1, wherein the probe further comprises a Transcranial Doppler (TCD) probe.
- 5. The system of claim 1, wherein the probe hub comprises at least one motor.
- 6. The system of claim 1, wherein the probe hub comprises an opening through which the probe extends, the opening and the probe align along the axis.
- 7. The system of claim 1, wherein the probe hub encloses at least 50% of a body of the probe.