Prowadząca: dr Iwona Mróz

Ćwiczenie nr 26

Wyznaczanie ciepła właściwego ciał stałych przy użyciu kalorymetru

Spis treści

1	Wstęp teoretyczny	2
2	Opis doświadczenia	2
3	Opracowanie wyników pomiarów 3.1 Tabele pomiarowe	3 3
4	Ocena niepewności pomiaru	3
5	Wnioski	3
6	Wykresy	3

1 Wstęp teoretyczny

Ciepło właściwe substancji c określa ilość energii potrzebnej do podwyższenia temperatury jednostkowej masy ciała o jednostke temperatury. Jest ono definiowane jako:

$$c = \frac{Q}{m \cdot \Delta T} \tag{1}$$

gdzie Q to dostarczona energia cieplna, m to masa ciała, a ΔT to zmiana temperatury.

W doświadczeniu wykorzystujemy kalorymetr, który pozwala na pomiar ciepła właściwego ciał stałych. Metoda opiera się na zasadzie bilansu cieplnego, zgodnie z którą suma ciepła oddanego i pobranego w układzie izolowanym jest równa zeru:

$$Q_1 + Q_2 = 0 \tag{2}$$

gdzie Q_1 to ciepło oddane przez ciało o wyższej temperaturze (wartość ujemna), a Q_2 to ciepło pobrane przez ciało o niższej temperaturze (wartość dodatnia).

Dla badanego ciała stałego o masie m_c , temperaturze początkowej T_c i cieple właściwym c_p , które zostaje umieszczone w wodzie o masie m_w , temperaturze początkowej T_p i cieple właściwym c_w , przy uwzględnieniu pojemności cieplnej naczynka kalorymetrycznego $K_n = m_n \cdot c_n$, bilans cieplny przyjmuje postać:

$$m_c \cdot c_p \cdot (T_k - T_c) + [m_w \cdot c_w + m_n \cdot c_n] \cdot (T_k - T_p) = 0 \tag{3}$$

gdzie T_k to temperatura końcowa układu.

Przekształcając powyższe równanie, otrzymujemy wzór na ciepło właściwe badanego ciała:

$$c_p = \frac{[m_w \cdot c_w + m_n \cdot c_n] \cdot (T_p - T_k)}{m_c \cdot (T_k - T_c)} \tag{4}$$

Prawo Dulonga-Petita stanowi, że molowe ciepło właściwe pierwiastków stałych w temperaturze pokojowej jest w przybliżeniu stałe i wynosi około $3R\approx 25\,\frac{\rm J}{\rm mol\cdot K}$, gdzie R to stała gazowa. Prawo to jest przybliżeniem i sprawdza się głównie dla metali i prostych substancji krystalicznych w temperaturze pokojowej.

W rzeczywistym przebiegu doświadczenia występuje wymiana ciepła z otoczeniem, co wprowadza błąd systematyczny. Aby go zminimalizować, stosuje się metodę interpolacji do wyznaczenia rzeczywistych temperatur początkowej i końcowej, analizując zmiany temperatury w czasie przed i po osiągnięciu stanu równowagi.

Wstęp teoretyczny został opracowany na podstawie podręcznika Fizyka dla szkół wyższych, Tom 2, Dział Temodynamika, rozdział 1 - Temperatura i Ciepło [1].

2 Opis doświadczenia

- 1. Zważenie badanych ciał oraz naczyńka kalorymetrycznego z mieszadełkiem.
- 2. Napełnienie naczyńka wodą (do 2/3 objętości) i określenie jej masy.
- 3. Ogrzanie badanego ciała w ogrzewaczu elektrycznym z termoparą do temperatury 100- $105\,^{\circ}\mathrm{C}.$
- 4. Rejestracja temperatury początkowej wody w kalorymetrze przez 5 minut (pomiar co 30 sekund).
- 5. Przeniesienie ogrzanego ciała do kalorymetru i pomiar zmian temperatury:

- pierwsze 5 minut: pomiar co 30 sekund
- następnie: pomiar co minutę
- 6. Powtórzenie procedury dla pozostałych badanych ciał.

Doświadczenie pozwala wyznaczyć pojemność cieplną badanych ciał poprzez analizę wymiany ciepła między ogrzanym ciałem a wodą w kalorymetrze.

3 Opracowanie wyników pomiarów

- 3.1 Tabele pomiarowe
- 3.2 ...
- 4 Ocena niepewności pomiaru
- 5 Wnioski
- 6 Wykresy

Literatura

[1] William Moebs, Samuel J. Ling, and Jeff Sanny. Fizyka dla szkół wyższych, Tom 2. Open-Stax, 2018. Dostęp: 14.04.2024.