

Date:01/04/2021 Record No.: **ZCOER-ACAD/R/16M** Revision: 00

Unit Wise Question Bank

Department: FY BTech Semester: I Academic Year: 2024-25

Class: FY COMP Div.:A,B,C Date: 20.12.2024

Course: Basic Electrical And Electronics Engineering

Unit No name	Q. No.	Question	Marks	СО	Blooms Level
	1.	With the help of neat diagram, explain an Intrinsic Semiconductor	5	4	Understand ing
Unit 4: Semiconduc tor Basics and applications	The rigerma	er: crinsic semiconductor is a pure semiconductor in most common examples of intrinsic semiconduium (Ge). pure intrinsic semiconductor, each atom for poring atoms, sharing electrons.	ductors and	ent bo	1 Marks onds with its

In a crystal lattice, each germanium atom shares one electron with each of its four

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

nearest neighboring silicon atoms, forming strong covalent bonds.

This creates a stable structure where each silicon atom is surrounded by four other silicon atoms, each sharing one of its electrons.

1 Marks

At absolute zero temperature, no electrons have enough energy to jump from the valence band to the conduction band, so the material behaves as an insulator.

When temperature is increased, some electrons gain sufficient energy to jump to the conduction band resulting flow of current.

1 Marks

2.	With the help of neat diagram, explain P	5	4	Understand
	type Semiconductor			ing

Answer:

It is an impure form of semiconductor.

Here a Trivalent which has 3 valence electrons impurity is added with pure semiconductor material

1 Marks

These impurities are also called as Acceptor Impurities.

An example of Trivalent impurity is Gallium, Boron and etc.

1 Marks

1 Marks

Due to addition of Trivalent impurity, three of the valence electrons get attached with the Ge atoms, to form three covalent bonds.

But, one more electron in germanium remains without forming any bond.

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

As there is no electron in boron remaining to form a covalent bond, the space is treated as a hole.

1 Marks

Here, hole is a positive charge carrier and hence this type of semiconductor is called as P type semiconductor.

In P type semiconductor, Holes are majority carriers and electrons are minority carriers.

1 Marks

	With the help of neat diagram, explain N	5	4	Understand
3	type Semiconductor.			ing

Answer:

It is an impure form of semiconductor.

Here a Pentavalent which has 5 valence electrons impurity is added with pure semiconductor material

1 Marks

These impurities are also called as Donar Impurities.

An example of Trivalent impurity is Arsenic, Antimony and etc.

1 Marks

Due to addition of Pentavalent impurity, four of the valence electrons get attached with the Ge atoms, to form three covalent bonds.

But, one more electron in an impurity remains without forming any bond.

This is called as a free electron.

1 Marks

Here, electron is a negative charge carrier and hence this type of semiconductor is called as N type semiconductor.

In N type semiconductor, electrons are majority carriers and holes are minority

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

Answer: P Type Semiconductor When a trivalent impurity is added to an intrinsic semiconductor, the obtained semiconductor is known as P-type obtained semiconductor. Example of trivalent impurity: Example of pentavalent impurity aluminum, gallium, indium, etc Impurity added creates a vacancy of electron in the structure, known as hole. Trivalant impurities are also called as acceptor impurity Holes are the majority carriers Each Point carries 01 Marks (At least 05 Points is expected) Praw and explain construction of PN P Type Semiconductor P Type Semiconductor O an intrinsic semiconductor, obtained semiconductor is known as to an intrinsic semiconductor. Example of trivalent impurity: Example of pentavalent impurity aluminum, gallium, indium, etc Arsenic, Antimony, etc. Impurities added creates an example of pentavalent impurities are also called as acceptor impurity Blectrons are the majority carriers Electrons are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected)	carriers.				1 Marl
P Type Semiconductor When a trivalent impurity is added to an intrinsic semiconductor, the obtained semiconductor is known as P-type obtained semiconductor is known as semiconductor. Example of trivalent impurity: Example of pentavalent impurity aluminum, gallium, indium, etc Impurity added creates a vacancy of electron in the structure, known as hole. Trivalent impurities are also called as acceptor impurity Holes are the majority carriers Electrons are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected) Praw and explain construction of PN To an intrinsic semiconductor, obtained semiconductor is known as to an intrinsic semiconductor, obtained semiconductor is known as semiconductor. Example of trivalent impurity: Example of pentavalent impurity aluminum, gallium, indium, etc Impurities added creates an example of pentavalent impurity and explain construction of PN Electrons are the minority carriers Electrons are the minority carriers Electrons are the minority carriers	4. Compare P type and N type sem	conductor	5	4	Analyzing
When a trivalent impurity is added to an intrinsic semiconductor, the obtained semiconductor is known as P-type obtained semiconductor. Example of trivalent impurity: Example of pentavalent impurity aluminum, gallium, indium, etc Impurity added creates a vacancy of electron in the structure, known as hole. Trivalant impurities are also called as acceptor impurity Holes are the majority carriers Electrons are the majority carriers Electrons are the minority carriers Electrons are the minority carriers Electrons are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected) Draw and explain construction of PN To an intrinsic semiconductor, obtained semiconductor is known as type semiconductor. Example of pentavalent impurity Arsenic, Antimony, etc. Impurities added creates an explain construction of PN Trivalant impurities are also called as a donor impurity Holes are the majority carriers Electrons are the minority carriers	Answer:				
an intrinsic semiconductor, the obtained semiconductor is known as P-type obtained semiconductor is known as semiconductor. Example of trivalent impurity: Example of pentavalent impurity aluminum, gallium, indium, etc Impurity added creates a vacancy of electron in the structure, known as hole. Trivalant impurities are also called as acceptor impurity Holes are the majority carriers Electrons are the majority carriers Electrons are the minority carriers Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected) Draw and explain construction of PN 5 4 Undersity of the obtained to an intrinsic semiconductor, obtained semiconductor, obtained semiconductor is known as type semiconductor. Example of pentavalent impurity Arsenic, Antimony, etc. Impurities added creates an explector in the structure, known as hole. Electrons Pentavalant impurities are also call as donor impurity Holes are the majority carriers Electrons are the minority carriers	P Type Semiconductor	PT	'ype Sem	icondı	ıctor
semiconductor is known as P-type obtained semiconductor is known as semiconductor. Example of trivalent impurity: Example of pentavalent impurity aluminum, gallium, indium, etc Arsenic, Antimony, etc. Impurity added creates a vacancy of electron in the structure, known as hole. Trivalant impurities are also called as acceptor impurity as donor impurity. Holes are the majority carriers Electrons are the majority carriers Electrons are the minority carriers Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected)	When a trivalent impurity is added to	When a pe	ntavalent	impu	rity is added
semiconductor. Example of trivalent impurity: Example of pentavalent impurity aluminum, gallium, indium, etc Impurity added creates a vacancy of electron in the structure, known as hole. Trivalant impurities are also called as acceptor impurity Holes are the majority carriers Electrons are the majority carriers Electrons are the minority carriers Holes are the minority carriers Electrons are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected)	an intrinsic semiconductor, the obtained	to an int	rinsic se	emicor	ductor, the
Example of trivalent impurity: Example of pentavalent impurity aluminum, gallium, indium, etc Impurity added creates a vacancy of electron in the structure, known as hole. Trivalant impurities are also called as acceptor impurity Holes are the majority carriers Electrons are the minority carriers Electrons are the minority carriers Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected) Draw and explain construction of PN 5 4 Understance of pentavalent impurity Arsenic, Antimony, etc. Impurity added creates an expecter and explain construction of PN Arsenic, Antimony, etc. Impurity added creates an expecter and expected are also called as acceptor impurity Electrons Electrons are the majority carriers Fach Point carries 01 Marks (At least 05 Points is expected)	semiconductor is known as P-type	obtained se	miconduc	ctor is	known as N-
aluminum, gallium, indium, etc Arsenic, Antimony, etc. Impurity added creates a vacancy of Impurities added creates an exelectron in the structure, known as hole. Trivalant impurities are also called as Pentavalant impurities are also called as acceptor impurity Holes are the majority carriers Electrons are the majority carriers Electrons are the minority carriers Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected)	semiconductor.	type semice	onductor.		
Impurity added creates a vacancy of Impurities added creates an exelectron in the structure, known as hole. Trivalant impurities are also called as Pentavalant impurities are also called as acceptor impurity Holes are the majority carriers Electrons are the majority carriers Electrons are the minority carriers Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected) Draw and explain construction of PN 5 4 Underst	Example of trivalent impurity :	Example of	of penta	valent	impurity
electron in the structure, known as hole. Trivalant impurities are also called as acceptor impurity Holes are the majority carriers Electrons are the majority carriers Electrons are the minority carriers Holes are the minority carriers Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected) Draw and explain construction of PN 5 4 Underst	aluminum, gallium, indium, etc	Arsenic, Ar	ntimony,	etc.	
Trivalant impurities are also called as acceptor impurity Holes are the majority carriers Electrons are the minority carriers Holes are the minority carriers Holes are the minority carriers Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected)	Impurity added creates a vacancy of	Impurities	added	create	s an extra
acceptor impurity Holes are the majority carriers Electrons are the majority carriers Holes are the minority carriers Holes are the minority carriers Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected)	electron in the structure, known as hole.	electrons			
Holes are the majority carriers Electrons are the minority carriers Holes are the minority carriers Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected) Draw and explain construction of PN 5 4 Underst	Trivalant impurities are also called as Pentavalant impurities are also c			also called	
Electrons are the minority carries Holes are the minority carriers Each Point carries 01 Marks (At least 05 Points is expected) Draw and explain construction of PN 5 4 Underst	acceptor impurity	as donor im	purity		
Each Point carries 01 Marks (At least 05 Points is expected) Draw and explain construction of PN 5 4 Underst	Holes are the majority carriers	Electrons as	re the ma	jority (carriers
Draw and explain construction of PN 5 4 Underst	Electrons are the minority carries	Holes are the minority carriers			
Draw and explain construction of PN 5 4 Underst	Each Point carries 01 Marks	At least 05 l	Points is	expect	ed)
	5 -	f PN	5	4	Understar
junction diode ing Answer:	junction diode				ing
	Depletion Layer	electrons	i		
Holes electrons	p n	••			
Holes p n electrons		4.			
Holes p n electrons	Amode (A)	O • Cathode (i		de	Cathode
Anode (A) Holes P n electrons Anode (K) Anode (K) Anode (K)					•
Anode (A) Anode (A) Anode (B) Anode (Cathode				Symb	ol
Anode (A) Anode (A) Anode (A) Anode (B) Anode (Cathode (Cathod	' ' - -				

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

2 Marks

Diode is an abbreviation of Di-Electrode.

It consists of two electrodes which are connected to two types of semiconductor materials.

The electrodes are named as Anode (A) and cathode (K).

1 Marks

When a p type and n type semiconductor is placed near to each other, it forms a junction.

Thus diode is a Uni junction device.

1 Marks

Due to immobile ions, a depletion layer is formed near junction.

1 Marks

	With the help of neat diagram, explain	5	4	Understand
6.	working principle of PN Junction Diode			ing

Answer:

Based on the voltage applied to anode and cathode terminals, diode is operated into two different conditions.

- 1) Forward Bias Condition
- 2) Reverse Bias Condition

1 Marks

1) Forward Bias Condition

The p-n junction is said to be forward-biased when the p-type is connected to the positive terminal of the battery and the n-type to the negative terminal as shown in figure

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

When external DC voltage is applied, due to positive plate of supply, majority carriers (holes) from P type material gets repelled towards junction.

Similarly due to negative plate, electrons from N type material gets repelled towards junction.

When the supply voltage becomes sufficiently large, junction barrier breaks and diode turns ON.

1 Marks

2) Reverse Bias Condition

The p-n junction is said to be reverse-biased when the p-type is connected to the negative terminal of the battery and the n-type to the positive terminal as shown in figure

1 Marks

When external DC voltage is applied, due to negative plate of supply, majority carriers (holes) from P type material gets attracted towards source.

Similarly due to negative plate, an electron from N type material gets attracted towards source.

Due to this, the depletion layer width is increased.

When an applied voltage is increased sufficiently large, an existing covalent bond will break and heavy current flows through diode.

1 Marks

1	Draw and explain V-I characteristics of PN	5	4	Understandi
7.	junction diode			ng

Answer:

We know that diode is operated into two conditions

- 1) Forward Bias Condition
- 2) Reverse Bias Condition

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

Using this a V-I characteristics will be drawn which represents the relation between voltage across diode and current flowing though diode both in forward bias and reverse bias condition

2 Marks

Forward Bias Condition

Here, the p-type is connected to the positive terminal of the battery and the n-type to the negative terminal.

When external DC voltage is applied, due to positive plate of supply, majority carriers (holes) from P type material gets repelled towards junction.

Similarly due to negative plate, electrons from N type material gets repelled towards junction.

When the supply voltage becomes sufficiently large, junction barrier breaks and diode turns ON.

The voltage at which junction breaks is called as Break over voltage

1.5 Marks

Reverse Bias Condition

Here, the p-type is connected to the negative terminal of the battery and the n-type to the positive terminal.

When external DC voltage is applied, due to negative plate of supply, majority carriers (holes) from P type material gets attracted towards source.

Similarly due to negative plate, an electron from N type material gets attracted towards source.

Due to this, the depletion layer width is increased.

When an applied voltage is increased sufficiently large, an existing covalent bond will break and heavy current flows through diode.

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

The voltage at which reverse bias junction breaks called as reverse breakdown voltage.

1.5 Marks

	Define Rectifier. Draw and explain working	5	4	Applying
8.	of Half Wave Rectifier. Also sketch input output waveforms			
	output waverorms			

Answer:

Rectifier is a device which converts bi directional AC input to uni directional DC output.

1 Marks

Here, a diode is connected in series with load as shown in figure.

Figure shown input output waveforms of half wave rectifier

1 Marks

For positive half cycle of applied AC input, Diode becomes forward biased. And thus it turns ON.

Current flows in the circuit as (A-D1-B-RL-C-D).

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

Let us assume, if current flowing through RL is from B to C, it generated positive output.

1 Marks

For negative half cycle of applied AC input, Diode becomes reverse biased. And thus it turns OFF.

No current flows in the circuit.

9. Rectifier		5 4 Analyzing
Parameter	Half wave rectifier	Full wave rectifier
Circuit Diagram	A.C. SUPPLY 0000000 $v = V_m \sin \theta$ R_L	AC. SUPPLY STORE IN
Output Waveform	V _{out} 0	Vout
No of Diodes	01	02 OR 04
Output Frequency	$f_{o} = f_{in}$	$f_o = 2 f_{in}$
PIV	Vm	Vm (for Center Tap FV 2Vm (for Bridge FWR
DC or Avg Load Current	$rac{I_m}{\pi}$	$\frac{2 I_m}{\pi}$
DC or Avg Load Voltage`	$\frac{V_m}{\pi}$	$\frac{2 V_m}{\pi}$

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

RMS Load Current	$\frac{I_m}{2}$	$\frac{I_m}{\sqrt{2}}$
RMS Load Voltage`	$\frac{V_m}{2}$	$\frac{V_m}{\sqrt{2}}$
Rectifier Efficiency	40.6 %	81.2

Each Point carries 01 Marks (At least 05 Points is expected)

10	With neat diagram, explain working of Zener	5	4	Applying
10.	Diode as a Regulator.			

2 Marks

Regulator is a device which provides constant output voltage irrespective of change in input voltage and or load current.

1 Marks

Here, Zener diode is connected in reverse bias condition.

It is connected across the load resistance.

Rs is a series resistance used as a current limiting resistance.

1 Marks

Since the Zener diode is connected across load resistance,

 $V_0 = V_2$

When input voltage is increases, due to the property of Zener diode, its output voltage remains constant.

Thus the voltage across load resistance remains constant.

And we get constant output voltage.

1 Marks

				1 14101179
11.	An a.c. supply of 230V is applied to a half	5	4	Evaluating
	wave rectifier circuit through transformer of			
	turns ratio 10: 1. The diode used is assumed			
	to be ideal and having zero internal resistance			
	Determine • Output DC voltage and PIV			
	Solution:	ı		·

 $V_{RMS1} = 230 V$

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

	$V_{m1} = 2V_{RMS1} = 46$	60 V		1 Marks
	$V_{m2} = V_{m1} \frac{N_2}{N_1} = 46$	5 <i>V</i>		1 Marks
	$V_{dc} = \frac{V_{m2}}{\pi} = 14.64$	1 <i>V</i>		1 Mark
	During the negative half cycle of a.c. supply, thence there is no current flowing. Therefore voltage appears across diode is PIV = 46 V			ım secondar
	For the circuit shown below,	5	4	2 Mark Evaluating
12.	$5K\Omega$ $120V$ $50V$ $10K\Omega$ Determine			
	The output voltageVoltage drop across series resistance			
Soluti	on:			
From	figure,			
	Given Zener voltage is 50	V		1 Mark
And h	ence Maximum voltage across Zener will be 50V ∴ V _O = 50 V	I		1 Mair
				1.5 Mark
	$V_{in} = V_S + V_Z$			1 Mark
	$\therefore V_s = 70 V$			1.5 Mark

Course Faculty

Dr. Mahesh Navale