Home ► Electrical Engineering ► Engr17-2016F-Tatro ► Homework ► Homework 4 - Chap 3

Started on Monday, 19 September 2016, 12:02 PM

> State Finished

Completed on Wednesday, 21 September 2016, 11:33 AM

Time taken 1 day 23 hours

> Grade 100.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

P3.16_9ed

The no-load voltage across R₂ in the voltage-divider circuit shown is 8 V. The smallest load resistor that is ever connected to the divider is 3.6 k Ω (kilo Ohm). When the divider is loaded, v_O is not to drop below 7.5V.

a) Design the divider circuit to meet the specifications just mentioned. Specify the numerical values of $\rm R_1$ and $\rm R_2$ when you use a single standard value for each resistor from the textbook's Appendix H. You may use up to two resistors in combination for R₁ and up to another two resistors in combination for R₂.

$$R_1 = \boxed{1200}$$
 \checkmark Ω (Ohms) $R_2 = \boxed{300}$ \checkmark Ω (Ohms)

b) Assume the power ratings of commercially available resistors are 1/16, 1/8, 1/4, 1, and 2 W. What power rating would you specify?

$$P_{R1,rating} = 1$$
 Watt $P_{R2,rating} = .25$ Watt

Numeric Answer

(a)
$$R_1$$
 = 1,200 Ω R_2 = 303 Ω (b) $P_{R1,rating}$ = 1 Watt $P_{R2,rating}$ = 0.25W = 1/4 Watt

Correct

Correct

Mark 10.00 out of 10.00

CQ3.05c

Given:

vs = 51 Volts R1 = 177 Ω (Ohms) R2 = 817 Ω (Ohms)

Find the current i. i = ?? mA (milli A)

Answer: 51.3

Calculated question

The correct answer is: 51.31

Correct

Marks for this submission: 10.00/10.00.

Question 3

Correct

Mark 10.00 out of 10.00

CQ3.05b

Given:

 $vs=95 \mbox{ Volts} \ \ R1=835 \ \Omega \mbox{ (Ohms)} \ \ R2=542 \ \Omega \mbox{ (Ohms)}$

Find the voltage v_2 .

Answer: 37.4

Calculated question

The correct answer is: 37.39

Correct

Correct

Mark 10.00 out of 10.00

CQ3.06c

Given:

 i_s = 88 Amps R_1 = 217 Ω (Ohms) R_2 = 986 Ω (Ohms)

Find the voltage v.

Answer: 15651

Calculated question

The correct answer is: 15651.42

Correct

Marks for this submission: 10.00/10.00.

Question 5

Correct

Mark 10.00 out of 10.00

CQ3.06a

Given:

 $i_s = 73 \text{ Amps}$ $R_1 = 561 \Omega \text{ (Ohms)}$ $R_2 = 327 \Omega \text{ (Ohms)}$

Find the current i_1 .

Answer: 26.88

Calculated question

The correct answer is: 26.88

Correct

Correct

Mark 10.00 out of 10.00

Numeric Answer

 $v_0 = 33.75 \text{ V}$

The correct answer is: 33.75

Correct

Correct

Mark 10.00 out of 10.00

Numeric Answer

$$v_x = 9 \text{ V}$$

The correct answer is: 9

Correct

Correct

Mark 10.00 out of 10.00

P3.24_10ed

a) Use current division to find the current in the 50 Ω (Ohm) resistor..

$$I_{50\Omega} = \boxed{18}$$
 wA

b) Use $I_{50\Omega}$ result from part (a) and current division to find the current in 70 Ω (Ohm) resistor.

$$I_{70\Omega} = \boxed{7.2}$$
 mA

Numeric Answer

a)
$$I_{50W} = 18 \text{ mA}$$

b)
$$I_{70\Omega} = 7.2 \text{ mA}$$

Correct

Correct

Mark 10.00 out of 10.00

P3.30_10ed

Find the voltage v_1 and v_2 using voltage and/or current division.

$$v_I = \boxed{0.56}$$
 Volts

$$v_2 = \boxed{0.33}$$
 Volts

Numeric Answer

$$v_1 = 5/9 \text{ V} = 0.556 \text{ Volts}$$

 $v_2 = 3/9 \text{ V} = 0.333 \text{ Volts}$

Correct

Correct

Mark 10.00 out of 10.00

AP3.04_9ed

a) Use voltage division to determine the voltage \boldsymbol{v}_{Ω} across the 40 Ω (Ohm) resistor.

$$v_0 = 20$$
 Volts

b) Use v_O from part a) to determine the current through the 40 Ω (Ohm) resistor, and use this current and current division to calculate the current in the 30 Ω (Ohm) resistor.

$$I_{300} = \boxed{166.67}$$
 wA (milli A)

c) How much power is absorbed by the 50 Ω (Ohm) resistor?

$$P_{50\Omega} = \boxed{347.22}$$
 wW (milli W)

Numeric Answer

a)
$$v_0 = 20 \text{ V}$$

b)
$$I_{30\Omega} = 166.67 \text{ mA}$$

c)
$$P_{50\Omega} = 347.22 \text{ mW}$$

Correct