Tesis de Licenciatura en Ciencias de la Computación

Números Muy Normales

Lucas Puterman

Directora: Verónica Becher Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 20 de Noviembre, 2019

Supongamos que tiramos una moneda infinitas veces y anotamos un 1 cada vez que sale cara y 0 cada vez que sale ceca ¿Cuáles de estas secuencias es creíble que sea el resultado de este experimento?

- ► 01001000100001000001000000100000001...

- ► 01001000100001000001000000100000001...
- ► 010101010101010101010101010101010101...

- ► 01001000100001000001000000100000001...
- ► 010101010101010101010101010101010101...
- ► 10000110001010001110010010110011010...

Podemos pensar que en una secuencia aleatoria no hay ningún patrón de ℓ símbolos que sea más frecuente que otro.

Podemos pensar que en una secuencia aleatoria no hay ningún patrón de ℓ símbolos que sea más frecuente que otro.

Definición

Notamos $|u|_v$ a la cantidad de ocurrencias de la palabra v dentro de la palabra u.

Podemos pensar que en una secuencia aleatoria no hay ningún patrón de ℓ símbolos que sea más frecuente que otro.

Definición

Notamos $|u|_v$ a la cantidad de ocurrencias de la palabra v dentro de la palabra u.

Además, notamos u[i,j] a la subsecuencia de u formada tomando todos los símbolos entre el i y el j inclusive.

Podemos pensar que en una secuencia aleatoria no hay ningún patrón de ℓ símbolos que sea más frecuente que otro.

Definición

Notamos $|u|_v$ a la cantidad de ocurrencias de la palabra v dentro de la palabra u.

Además, notamos u[i,j] a la subsecuencia de u formada tomando todos los símbolos entre el i y el j inclusive.

Nos gustaría que para un prefijo de una secuencia aleatoria suficientemente grande, la cantidad de ocurrencias de cada palabra de cierta longitud sea casi la misma.

Definición (Borel, 1909)

Dado un alfabeto A y alguna secuencia infinita $u \in A^\omega$, decimos que u es simplemente normal para la longitud ℓ si cada secuencia v de longitud ℓ verifica que

$$\lim_{n\to\infty}\frac{|u[1,\ell n]|_v}{n}=\frac{1}{|A|^\ell}.$$

Definición (Borel, 1909)

Dado un alfabeto A y alguna secuencia infinita $u \in A^\omega$, decimos que u es simplemente normal para la longitud ℓ si cada secuencia v de longitud ℓ verifica que

$$\lim_{n \to \infty} \frac{|u[1, \ell n]|_v}{n} = \frac{1}{|A|^{\ell}}.$$

Decimos que u es *normal* si es simplemente normal para toda longitud $\ell \in \mathbb{N}$.

Definición (Borel, 1909)

Dado un alfabeto A y alguna secuencia infinita $u \in A^\omega$, decimos que u es simplemente normal para la longitud ℓ si cada secuencia v de longitud ℓ verifica que

$$\lim_{n\to\infty}\frac{|u[1,\ell n]|_v}{n}=\frac{1}{|A|^\ell}.$$

Decimos que u es normal si es simplemente normal para toda longitud $\ell \in \mathbb{N}$.

Problema (Borel, 1909)

Encontrar ejemplos naturales de secuencias normales. Decidir si la representación en base b de π , e ó $\sqrt{2}$ es normal.

La secuencia de Champernowne

Problema

Encontrar algún ejemplo explícito de una secuencia normal.

La secuencia de Champernowne

Problema

Encontrar algún ejemplo explícito de una secuencia normal.

Teorema (Champernowne, 1933)

La secuencia

1234567891011121314151617181920...

es normal sobre el alfabeto $A = \{0, 1, \dots, 9\}.$

champ, La secuencia que usaremos

Teorema (Bugeaud, 2012)

Sea A un alfabeto. Llamamos X(n) a la concatenación de todas las palabras de lomgitud n formadas por símbolos de A en orden lexicográfico.

La palabra infinita $X(1)X(2)\dots$ es normal en el alfabeto A

champ, La secuencia que usaremos

Teorema (Bugeaud, 2012)

Sea A un alfabeto. Llamamos X(n) a la concatenación de todas las palabras de lomgitud n formadas por símbolos de A en orden lexicográfico.

La palabra infinita $X(1)X(2)\dots$ es normal en el alfabeto A

En particular, nosotros vamos a usar el alfabeto $A=\{0,1\}$ Entonces, por ejemplo:

$$X(2) = 00\ 01\ 10\ 11$$

champ, La secuencia que usaremos

Teorema (Bugeaud, 2012)

Sea A un alfabeto. Llamamos X(n) a la concatenación de todas las palabras de lomgitud n formadas por símbolos de A en orden lexicográfico.

La palabra infinita $X(1)X(2)\dots$ es normal en el alfabeto A

En particular, nosotros vamos a usar el alfabeto $A=\{0,1\}$ Entonces, por ejemplo:

$$X(2) = 00\ 01\ 10\ 11$$

Entonces, los primeros símbolos de la secuencia que llamamos *champ* son:

 $champ = 0\ 1\ 00\ 01\ 10\ 11\ 000\ 001\ 010\ 011\ 100\ 101\ 110\ 111\ 0000\ 0001\ \dots$

Supernormalidad

Sea x una secuencia binaria. Sea $A_{k,n}^\lambda(x)$ la frecuencia de ocurrencia de las palabras de longitud n que ocurren exactamente k veces comenzando en las primeras $\lfloor \lambda 2^n \rfloor$ posiciones de x. Es decir:

$$A_{k,n}^{\lambda}(x) = \frac{\#\{w : |w| = n, |x[1...\lfloor \lambda 2^n \rfloor]|_w = k\}}{2^n}$$

Supernormalidad

Sea x una secuencia binaria. Sea $A_{k,n}^\lambda(x)$ la frecuencia de ocurrencia de las palabras de longitud n que ocurren exactamente k veces comenzando en las primeras $\lfloor \lambda 2^n \rfloor$ posiciones de x. Es decir:

$$A_{k,n}^{\lambda}(x) = \frac{\#\{w : |w| = n, |x[1...\lfloor \lambda 2^n \rfloor]|_w = k\}}{2^n}$$

Definición

Sea λ un real mayor a cero. Decimos que la secuencia binaria x es λ -supernormal si para todo entero no negativo k sucede que

$$\lim_{n \to \infty} A_{k,n}^{\lambda}(x) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Decimos que x es supernormal si es λ -supernormal para todo λ .

Veamos como ejemplo de juguete si la secuencia finita x=10011110 es supernormal tomando n=3 y $\lambda=1.$

Veamos como ejemplo de juguete si la secuencia finita x=10011110 es supernormal tomando n=3 y $\lambda=1$. Las palabras de tamaño 3 que ocurren en x son:

100, 001, 011, 111, 111, 110

Veamos como ejemplo de juguete si la secuencia finita x=10011110 es supernormal tomando n=3 y $\lambda=1$. Las palabras de tamaño 3 que ocurren en x son:

Si contamos las cantidad de ocurrencias de cada palabra de tamaño 3 tenemos:

Word	Count
000	0
001	1
010	0
011	1
100	1
101	0
110	1
111	2

Ahora, veamos las cantidad, las frecuencias y el valor esperado para cada k posible si x fuera 1-supernormal.

Ahora, veamos las cantidad, las frecuencias y el valor esperado para cada k posible si x fuera 1-supernormal.

k	Count	Frequency	Expected Frequency
0	3	$\frac{3}{8}$	e^{-1}
1	4	$\frac{1}{2}$	e^{-1}
2	1	$\frac{1}{8}$	$\frac{e^{-1}}{2}$ $\frac{e^{-1}}{3!}$
3	0	0	$\frac{e^{-1}}{3!}$
4	0	0	$\frac{e^{-1}}{4!}$
5	0	0	$\frac{e^{-1}}{5!}$
6	0	0	$\frac{e^{-1}}{6!}$
7	0	0	$\frac{e^{-1}}{7!}$
8	0	0	$\frac{e^{-1}}{8!}$

El resultado de esta tesis

Teorema

La noción de supernormalidad es más fuerte que la noción de normalidad. Es decir, los siguientes enunciados son ciertos:

- 1. Sea x una secuencia infinita. Si x es supernormal, entonces x es normal. (supernormal \Rightarrow normal)
- 2. Sea x una secuencia infinita. Si x es normal, no necesariamente x es supernormal. (normal \Rightarrow supernormal)