Parallel programming: Introduction to GPU architecture

Sylvain Collange Inria Rennes – Bretagne Atlantique sylvain.collange@inria.fr

GPU internals

• What makes a GPU tick?

NVIDIA GeForce GTX 980 Maxwell GPU. Artist rendering!

Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

The free lunch era... was yesterday

- 1980's to 2002: Moore's law, Dennard scaling, micro-architecture improvements
 - Exponential performance increase
 - Software compatibility preserved

Do noi revy, lie solity are Archiecture, a quantitative approach. 4th Ed. 2006

Computer architecture crash course

- How does a processor work?
 - Or was working in the 1980s to 1990s: modern processors are much more complicated!
 - An attempt to sum up 30 years of research in 15 minutes

Machine language: instruction set

- Registers
 - State for computations

Keeps variables and temporaries

Example

R0, R1, R2, R3... R31

- Instructions
 - Perform computations on registers, move data between register and memory, branch...
- Instruction word
 - Binary representation of an instruction

01100111

- Assembly language
 - Readable form of machine language

ADD R1, R3

- Examples
 - Which instruction set does your laptop/desktop run?
 - Your cell phone?

The Von Neumann processor

Let's look at it step by step

Step by step: Fetch

- The processor maintains a Program Counter (PC)
- Fetch: read the instruction word pointed by PC in memory

Decode

- Split the instruction word to understand what it represents
 - Which operation? → ADD
 - Which operands? → R1, R3

Read operands

Get the value of registers R1, R3 from the register file

Execute operation

Compute the result: 42 + 17

Write back

Write the result back to the register file

Increment PC

Load or store instruction

Can read and write memory from a computed address

Branch instruction

Instead of incrementing PC, set it to a computed value

What about the state machine?

 The state machine controls everybody

- Sequences the successive steps
 - Send signals to units depending on current state
 - At every clock tick, switch to next state
 - Clock is a periodic signal (as fast as possible)

Recap

- We can build a real processor
 - As it was in the early 1980's

• How did processors become faster?

Reason 1: faster clock

 Progress in semiconductor technology allows higher frequencies

But this is not enough!

Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Going faster using ILP: pipeline

- Idea: we do not have to wait until instruction n has finished to start instruction n+1
- Like a factory assembly line
 - Or the bandeijão

Pipelined processor

Program

```
1: add, r1, r3
2: mul r2, r3
3: load r3, [r1]
```


- Independent instructions can follow each other
- Exploits ILP to hide instruction latency

Pipelined processor

Program

```
1: add, r1, r3
2: mul r2, r3
3: load r3, [r1]
```


- Independent instructions can follow each other
- Exploits ILP to hide instruction latency

Pipelined processor

Program

```
1: add, r1, r3
2: mul r2, r3
3: load r3, [r1]
```


- Independent instructions can follow each other
- Exploits ILP to hide instruction latency

Superscalar execution

- Multiple execution units in parallel
 - Independent instructions can execute at the same time

Exploits ILP to increase throughput

Locality

- Time to access main memory: ~200 clock cycles
- One memory access every few instructions
- Are we doomed?
- Fortunately: principle of locality
 - ~90% of memory accesses on ~10% of data
 - Accessed locations are often the same
- Temporal locality
 Access the same location at different times
- Spacial locality
 Access locations close to each other

Caches

- Large memories are slower than small memories
 - The computer theorists lied to you: in the real world, access in an array of size n costs O(log n), not O(1)!
 - Think about looking up a book in a small or huge library
- Idea: put frequently-accessed data in small, fast memory
 - Can be applied recursively: hierarchy with multiple levels of cache

Branch prediction

- What if we have a branch?
 - We do not know the next PC to fetch from until the branch executes
- Solution 1: wait until the branch is resolved
 - Problem: programs have 1 branch every 5 instructions on average
 - We would spend most of our time waiting
- Solution 2: predict (guess) the most likely direction
 - If correct, we have bought some time
 - If wrong, just go back and start over
- Modern CPUs can correctly predict over 95% of branches
 - World record holder: 1.691 mispredictions / 1000 instructions
- General concept: speculation

Example CPU: Intel Core i7 Haswell

- Up to 192 instructions in flight
 - May be 48 predicted branches ahead
- Up to 8 instructions/cycle executed out of order
- About 25 pipeline stages at ~4 GHz
 - Quizz: how far does light travel during the 0.25 ns of a clock cycle?
- Too complex to explain in 1 slide, or even 1 lecture

David Kanter, Intel's Haswell CPU architecture, RealWorldTech, 2012 http://www.realworldtech.com/haswell-cpu/

256KB L2 Cache (8 way)

Recap

- Many techniques to run sequential programs as fast as possible
 - Discovers and exploits parallelism between instructions
 - Speculates to remove dependencies
- Works on existing binary programs, without rewriting or re-compiling
 - Upgrading hardware is cheaper than improving software
- Extremely complex machine

Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Technology evolution

Memory wall

- Memory speed does not increase as fast as computing speed
- More and more difficult to hide memory latency

Power wall

- Power consumption of transistors does not decrease as fast as density increases
- Performance is now limited by power consumption

ILP wall

- Law of diminishing returns on Instruction-Level Parallelism
- → Pollack rule: cost ≃ performance²

Usage changes

- New applications demand parallel processing
 - Computer games : 3D graphics
 - Search engines, social networks...
 "big data" processing
- New computing devices are power-constrained
 - Laptops, cell phones, tablets...
 - Small, light, battery-powered
 - Datacenters
 - High power supply and cooling costs

Latency vs. throughput

- Latency: time to solution
 - CPUs
 - Minimize time, at the expense of power
- Throughput: quantity of tasks processed per unit of time
 - GPUs
 - Assumes unlimited parallelism
 - Minimize energy per operation

Amdahl's law

Bounds speedup attainable on a parallel machine

- S Speedup
- P Ratio of parallel portions
- N Number of processors

G. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. AFIPS 1967.

Why heterogeneous architectures?

Time to run sequential portions $S = \underbrace{\frac{1}{(1-P)+(P)}}_{N}$ Time to run parallel portions

- Latency-optimized multi-core (CPU)
 - Low efficiency on parallel portions: spends too much resources

- Low performance on sequential portions
- Heterogeneous multi-core (CPU+GPU)
 - Use the right tool for the right job
 - Allows aggressive optimization for latency or for throughput

Example: System on Chip for smartphone

Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

The (simplest) graphics rendering pipeline

How much performance do we need

... to run 3DMark 11 at 50 frames/second?

Element	Per frame	Per second
Vertices	12.0M	600M
Primitives	12.6M	630M
Fragments	180M	9.0G
Instructions	14.4G	720G

- Intel Core i7 2700K: 56 Ginsn/s peak
 - We need to go 13x faster
 - Make a special-purpose accelerator

Beginnings of GPGPU

Microsoft DirectX

7.x	8.0	8.1	9.0 a	9.0b	9.0c	10.0	10.1	11
						Unified shade	ers	

NVIDIA

NV10	NV20	NV30	NV40	G70	G80-G90	GT200	GF100
FP 16	Programmable shaders	FP 32	Dynamic control flow	SIMT	CUDA		

Today: what do we need GPUs for?

1. 3D graphics rendering for games

Complex texture mapping, lighting computations...

Complex geometry

3. GPGPU

- Complex synchronization, data movements
- One chip to rule them all
 - Find the common denominator

Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Little's law: data=throughput×latency

J. Little. A proof for the queuing formula $L=\lambda$ W. JSTOR 1961.

Hiding memory latency with pipelining

- Memory throughput: 190 GB/s
- Memory latency: 350 ns
- Data in flight = 66 500 Bytes
- At 1 GHz: 190 Bytes/cycle, 350 cycles to wait

Consequence: more parallelism

- GPU vs. CPU
 - 8× more parallelism to feed more units (throughput)
 - 8× more parallelism to hide longer latency
 - 64× more total parallelism
- How to find this parallelism?

Sources of parallelism

- ILP: Instruction-Level Parallelism
 - Between independent instructions in sequential program

add
$$r3 \leftarrow r1$$
, $r2$
mul $r0 \leftarrow r0$, $r1$
sub $r1 \leftarrow r3$, $r0$

- TLP: Thread-Level Parallelism
 - Between independent execution contexts: threads

- DLP: Data-Level Parallelism
 - Between elements of a vector: same operation on several elements

vadd r
$$\leftarrow$$
 a, b $a_1 \ a_2 \ a_3 \ b_1 \ b_2 \ b_3 \ \hline r_1 \ r_2 \ r_3$

Example: $X \leftarrow a \times X$

In-place scalar-vector product: X ← a×X

Sequential (ILP) For
$$i = 0$$
 to $n-1$ do:
 $X[i] \leftarrow a * X[i]$

Threads (TLP) Launch n threads: $X[tid] \leftarrow a * X[tid]$

Vector (DLP) $X \leftarrow a * X$

Or any combination of the above

Uses of parallelism

- "Horizontal" parallelism for throughput
 - More units working in parallel

- "Vertical" parallelism for latency hiding
 - Pipelining: keep units busy when waiting for dependencies, memory

How to extract parallelism?

	Horizontal	Vertical
ILP	Superscalar	Pipelined
TLP	Multi-core SMT	Interleaved / switch-on-event multithreading
DLP	SIMD / SIMT	Vector / temporal SIMT

- We have seen the first row: ILP
- We will now review techniques for the next rows: TLP, DLP

Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Sequential processor

```
for i = 0 to n-1
  X[i] ← a * X[i]

  Source code

move i ← 0
loop:
  load t ← X[i]
  mul t ← a×t
  store X[i] ← t
  add i ← i+1
  branch i<n? loop</pre>
```

Machine code

- Focuses on instruction-level parallelism
 - Exploits ILP: vertically (pipelining) and horizontally (superscalar)

The incremental approach: multi-core

Several processors
 on a single chip
 sharing one memory space

Intel Sandy Bridge

- Area: benefits from Moore's law
- Power: extra cores consume little when not in use
 - e.g. Intel Turbo Boost

Source: Intel

Homogeneous multi-core

Horizontal use of thread-level parallelism

Threads: T0 T1

Improves peak throughput

Example: Tilera Tile-GX

- Grid of (up to) 72 tiles
- Each tile: 3-way VLIW processor,
 5 pipeline stages, 1.2 GHz

Tile (9,1)

Interleaved multi-threading

Vertical use of thread-level parallelism

Threads: T0 T1 T2 T3

 Hides latency thanks to explicit parallelism improves achieved throughput

Example: Oracle Sparc T5

- 16 cores / chip
- Core: out-of-order superscalar, 8 threads
- 15 pipeline stages, 3.6 GHz

Clustered multi-core

- For each individual unit, select between
 - Horizontal replication
 - Vertical time-multiplexing
- Examples
 - Sun UltraSparc T2, T3
 - AMD Bulldozer
 - IBM Power 7

- Area-efficient tradeoff
- Blurs boundaries between cores

Implicit SIMD

- Factorization of fetch/decode, load-store units
 - Fetch 1 instruction on behalf of several threads
 - Read 1 memory location and broadcast to several registers

- In NVIDIA-speak
 - SIMT: Single Instruction, Multiple Threads
 - Convoy of synchronized threads: warp
- Extracts DLP from multi-thread applications

Explicit SIMD

- Single Instruction Multiple Data
- Horizontal use of data level parallelism

```
loop:
    vload T ← X[i]
    vmul T ← a×T
    vstore X[i] ← T
    add i ← i+4
    branch i<n? loop

Machine code
```


- Examples
 - Intel MIC (16-wide)
 - AMD GCN GPU (16-wide×4-deep)
 - Most general purpose CPUs (4-wide to 8-wide)

Quizz: link the words

Parallelism

- ILP
- TLP
- DLP

Use

- Horizontal: more throughput
- Vertical: hide latency

Architectures

- Superscalar processor
- Homogeneous multi-core
- Multi-threaded core
- Clustered multi-core
- Implicit SIMD
- Explicit SIMD

Quizz: link the words

Quizz: link the words

Parallelism

- ILP
- TLP
- DLP

Use

- Horizontal: more throughput
- Vertical: hide latency

Architectures

- Superscalar processor
- Homogeneous multi-core
- Multi-threaded core
- Clustered multi-core
- Implicit SIMD
- Explicit SIMD

Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Hierarchical combination

- Both CPUs and GPUs combine these techniques
 - Multiple cores
 - Multiple threads/core
 - SIMD units

Example CPU: Intel Core i7

- Is a wide superscalar, but has also
 - Multicore
 - Multi-thread / core
 - SIMD units
- Up to 117 operations/cycle from 8 threads

Example GPU: NVIDIA GeForce GTX 580

- SIMT: warps of 32 threads
- 16 SMs / chip
- 2×16 cores / SM, 48 warps / SM

Up to 512 operations per cycle from 24576 threads in flight

Taxonomy of parallel architectures

	Horizontal	Vertical
ILP	Superscalar / VLIW	Pipelined
TLP	Multi-core SMT	Interleaved / switch-on- event multithreading
DLP	SIMD / SIMT	Vector / temporal SIMT

Classification: multi-core

Classification: GPU and many small-core

Takeaway

- All processors use hardware mechanisms to turn parallelism into performance
- GPUs focus on Thread-level and Data-level parallelism

Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

Computation cost vs. memory cost

Power measurements on NVIDIA GT200

	Energy/op (nJ)	Total power (W)
Instruction control	1.8	18
Multiply-add on a 32-wide warp	3.6	36
Load 128B from DRAM	80	90

- With the same amount of energy
 - Load 1 word from external memory (DRAM)
 - Compute 44 flops
- Must optimize memory accesses first!

External memory: discrete GPU

Classical CPU-GPU model

- Split memory spaces
- Highest bandwidth from GPU memory
- Transfers to main memory are slower

Ex: Intel Core i7 4770, Nvidia GeForce GTX 780

External memory: embedded GPU

Most GPUs today

- Same memory
- May support memory coherence
 - GPU can read directly from CPU caches
- More contention on external memory

GPU: on-chip memory

- Conventional wisdom
 - Cache area in CPU vs. GPU according to the NVIDIA CUDA Programming Guide:

But... if we include registers:

GPU	Register files + caches
NVIDIA GM204 GPU	8.3 MB
AMD Hawaii GPU	15.8 MB
Intel Core i7 CPU	9.3 MB

Figure 1-2. The GPU Devotes More Transistors to Data Processing

GPU/accelerator internal memory exceeds desktop CPUs

Registers: CPU vs. GPU

- Registers keep the contents of local variables
- Typical values

	CPU	GPU
Registers/thread	32	32
Registers/core	256	65536
Read / Write ports	10R/5W	2R/1W

GPU: many more registers, but made of simpler memory

Internal memory: GPU

- Cache hierarchy
 - Keep frequently-accessed data
 - Reduce throughput demand on main memory
 - Managed by hardware (L1, L2) or software (shared memory)

Caches: CPU vs. GPU

	CPU	GPU
Latency	Caches, prefetching	Multi-threading
Throughput		Caches

- On CPU, caches are designed to avoid memory latency
 - Throughput reduction is a side effect
- On GPU, multi-threading deals with memory latency
 - Caches are used to improve throughput (and energy)

GPU: thousands of cores?

Computational resources

4

SIMD-CU

NVIDIA GPUs	G80/G92 (2006)	GT200 (2008)	GF100 (2010)	GK104 (2012)	GK110 (2012)	GM204 (2014)
Exec. units	128	240	512	1536	2688	2048
SM	16	30	16	8	14	16
AMD GPUs	R600 (2007)	R700 (2008)	Evergreer (2009)	NI (2010)	SI (2012)	VI (2013)
Exec. Units	320	800	1600	1536	2048	2560

20

Number of clients in interconnection network (cores) stays limited

10

40

32

24

Takeaway

- Result of many tradeoffs
 - Between locality and parallelism
 - Between core complexity and interconnect complexity
- GPU optimized for throughput
 - Exploits primarily DLP, TLP
 - Energy-efficient on parallel applications with regular behavior
- CPU optimized for latency
 - Exploits primarily ILP
 - Can use TLP and DLP when available

Next time

- Next Tuesday, 1:00pm, room 2014 CUDA
 - Execution model
 - Programming model
 - API
- Thursday 1:00pm, room 2011
 Lab work: what is my GPU and when should I use it?
 - There may be available seats even if you are not enrolled