0.1 Proof for equilibrium

Claim 0.1.0.1. For $|Ex_{I_i^{m,t}} \cup I_i^{m,t}| \ge s$, where m is a period in reporting period. If i report $\langle 2 \rangle$ or $\langle 1 \rangle$, then i will know $|[H]| \ge s$ or |[H]| < s after reporting period, and thus the coordination can be either initiated in t-block or be never initiated.

Proof. By directly checking the equilibrium path, we have

the equilibrium path is approaching efficient.

- 1. if $\#I_i^{|RP^t|,t} \ge s$, then the coordination can be initiated by such *i*.
- 2. if $\#I_i^{|RP^t|,t} = s 1$, and if there is one more node who reported $\langle 1 \rangle$, then the coordination can be initiated by i.
- 3. if $\#I_i^{|RP^t|,t} = s 1$, and if there are no nodes who reported in current period, then $\#I_i^{|RP^t|,t} = \#I_i^t = s 1$. We now check the conditions guiding i to **POST-CHECK**.
 - If *i* is coming from the conditions in **MAIN**, it means that there is no further *H*-node outside I_i^{t-1} , and thus outside $\bigcup_{k \in I_i^{t-1}} N_k$.
 - If *i* is coming from the conditions in **CHECK.0**, it means that there is no further *H*-node outside $\bigcup_{k \in I_i^{t-1}} N_k \cap [H]$, and thus outside $\bigcup_{k \in I_i^{t-1}} N_k$.
 - If *i* is coming from the conditions in **CHECK.m**, it means that there is no further *H*-node outside $\bigcup_{k \in I_i^{t-1}} N_k \cap [H]$, and thus outside $\bigcup_{k \in I_i^{t-1}} N_k$.

Then $\#I_i^t < k$, but $I_i^t = \bigcup_{k \in I_i^{t-1}} N_k \cap R^0$, and hence $\#R^0 < k$, and thus the coordination can never happen.

Lemma 0.1.1. If the state has strong connectivity, then for all n-person repeated k-Threshold game with parameter $1 \le k \le n$ played in any finite connected undirected network without circle,

Proof. We want to show that when θ satisfying $\#[Rebels](\theta) \ge k$, all the Rebels play **revolt** eventually; when θ satisfying $\#[Rebels](\theta) < k$, all the Rebels play **stay** eventually.

1. If all the Rebels only play $\langle I^{t-1} \rangle$ or $\langle \mathbf{stay} \rangle$ in reporting period for all $t \geq 1$ block, then by the equilibrium path, those nodes played $\langle I^{t-1} \rangle$ are R^t -node, and those nodes played $\langle \mathbf{stay} \rangle$ are not- R^t nodes.

If there are some Rebels play $\langle \mathbf{stay} \rangle$ in the first division in *t*-block, then all the Rebels play \mathbf{stay} eventually; If R^t Rebels play $\langle \mathbf{stay} \rangle$ in the first sub-block in second division in *t*-block, then all the Rebels will play \mathbf{stay} after third division in this block. Otherwise, all the Rebels go to the next reporting period.

By Theorem ??, there is a t^* such that there is a R^{t^*} node knows θ , and therefore he knows if θ satisfying $\#[Rebels](\theta) \ge k$ or $\#[Rebels](\theta) < k$. In equilibrium path, such node play $\langle stay \rangle$ either in the first sub-block in first division or in the first sub-block in second division in coordination period. Thus the equilibrium path is approaching efficient.

2. If there are some Rebels play $\langle 1 \rangle$ in reporting period for a $t \geq 1$ block, then by Claim 0.1.0.1, such nodes will knows if θ satisfying $\#[Rebels](\theta) \ge k$ or $\#[Rebels](\theta) < k$ after reporting period in this t-block. $\langle stay \rangle$ either in the first sub-block in first division or in the first sub-block in second division in coordination period. Thus the equilibrium path is approaching efficient.

Main claims in reporting period 0.1.1

We show the main claims here. The details of the other claims in equilibrium path will be in appendix.

Claim 0.1.1.1. For $|Ex_{I_i^{m,t}} \cup I_i^{m,t}| \ge s$. Denote D be the set of H-neighbours who detect i's deviation. If $|I_i^{m,t}| < s$, and if $D \neq \emptyset$, then there is a $M < \infty$ and an event E such that i's expected continuation pay-off is less than that in equilibrium path by at least

$$\delta^M \frac{\beta_i(E|h_{N_i}^m)}{1-\delta}$$

, where $\beta_i(E|h_{N_i}^m) > 0$

Proof. Denote D be the set of $j \in \bar{G}_i$ who detect i's deviation. Let the event E be

$$E = \{\theta : \#[Rebels](\theta) = k\}$$

Contingent on E, I claim that there are at least #D Rebels will play stay forever if $i \in \mathbb{R}^t$ where $t \ge 1$. Due to the off-path belief, a Rebel $j \in D$ who detect i's deviation have the belief of

$$\beta_{j}(\{\theta:\theta_{l}=Inert,l\in I_{i}^{t-1}\backslash G_{j}\}|h_{N_{j}}^{m})=1 \text{ for all } t\geq 1, \text{ for all } m'\geq m$$

Since $\#[Rebels](\theta) = k$, $\#I_{j}^{t'}$ at most k for all $t' \ge 1$ if i did not deviate. Since $i \in R^t$ for some $t \ge 1$, $I_i^0 \setminus G_j \ne \emptyset$. Since $I_i^0 \subset I_i^{t'}$ for all $t' \ge 1$, and hence

$$\beta_j(\{\theta: \#I_j^{t'} < k\} | h_{N_j}^m) = 1$$

for all $t' \geq 1$, for all $m' \geq m$ if i's deviation detected by $j \in D$. Next, I claim that if $I_j^{t-1} = k-1$, then $I_l^{t-1} < k-1$ if $l \in R^t$ and $l \in \bar{G}_j$ but $l \notin \bar{G}_i$. If not, then $I_j^{t-1} \cup I_l^{t-1} \ge k \text{ since } l \in R^t \text{ and therefore } I_l^{t-1} \setminus I_j^{t-1} \ne \emptyset$

Next, I claim that $I_i^{t-1} \cup I_l^{t-1} < k$.

In equilibrium path, there are periods t^s (t^f) such that if θ satisfying #[Rebels](θ) $\geq k$ ($\#[Rebels](\theta) < k$) then Rebels play **revolt** (stay) forever. If i follows the equilibrium path, the expected static pay-off after max $\{t^s, t^f\}^1$ is

$$\beta_i(E_2|h_{N_i}^m) + \beta_i(E_3|h_{N_i}^m)$$

¹There is t^s or t^f for each θ . The maximum is among those possible θ .

If *i* deviate, the expected static pay-off after $\max\{t^s, t^f\}$ is

$$\beta_i(E_3|h_{N_i}^m)$$

Therefore there is a loss in expected static pay-off of

$$\beta_i(E_2|h_{N_i}^m)$$

Thus, there is a loss in expected continuation pay-off contingent on E by

$$\delta^{\max\{t^s,t^f\}} \frac{\beta_i(E_2|h_{N_i}^m)}{1-\delta}$$

Claim 0.1.1.2. For $|Ex_{I_i^{m,t}} \cup I_i^{m,t}| \ge s$. If $|I_i^{m,t}| < s$, there is a δ such that i will not deviate by reporting $\overline{I}_i^{t-1} \ne I_i^{t-1}$ if such deviation is not detected by i's neighbour.

Proof. Assume $\bar{I}_i^{t-1} \neq I_i^{t-1}$. Since a detection of deviation has not occur, it must be the case that there is a non-empty set $F = \{j \in \bar{I}_i^{t-1} : \theta_j = Inerts\}^2$.

Let the set

$$E_1 = \{\bar{\theta} : \bar{\theta}_j = Rebel \text{ if } j \in F \text{ and } \bar{\theta}_j = \theta_j \text{ if } j \notin F\}$$

be the set of pseudo events by changing θ_i where $j \in F$. And let

$$E_2 = \{\theta : \theta_j = Inert \text{ if } j \in F \text{ and } \bar{\theta}_j = \theta_j \text{ if } j \notin F\}$$

be the set of true event.

Then consider the event

$$E = \{\bar{\theta} \in E_1 : \#[Rebels](\bar{\theta}) \ge k\}$$

= $\{\theta \in E_2 : \#[Rebels](\theta) \ge k - \#F\}$

Partition E as sub events

$$E_3 = \{\theta \in E_2 : \#[Rebels](\theta) \ge k\}$$

$$E_4 = \{\theta \in E_2 : k > \#[Rebels](\theta) \ge k - \#F\}$$

By Lemma and following the strategies in equilibrium path (since i have not been detected), there is a block \bar{t}^s with respect to $\bar{\theta}$ such that if $\bar{\theta} \in E$ then there some $R^{\bar{t}^s}$ Rebel js, says J, will initiate the coordination, and then Rebels play **revolt** forever after \bar{t}^s -block. Note that such j is with $\#I_i^{\bar{t}^s} \ge k$ by Claim.

We have several cases:

²Otherwise, there is a detection of deviation. Recall the definition in information hierarchy: $I_i^{-1} \subset I_i^0 \subset ... \subset I_i^{t-1}$ for all $i \in R^0$

- 1. Case 1: If $i \in J$, his own initiation will only depends on $\#I_i^{\overline{t}^s}$ by Claim, which is the same as he has reported $\langle I_i^{t-1} \rangle$. It is strictly better by not deviating since playing $\langle \overline{I}_i^{t-1} \rangle$ is more costly than $\langle \overline{I}_i^{t-1} \rangle$ $(X_{I_i^{t-1}} > X_{I_i^{t-1}})$.
- 2. Case 2: If there is another j who $\bar{I}_i^{t-1} \not\subset \bar{I}_j^{\bar{r}^3}$, then such j's initiation of coordination dependent of his own information about θ , $\subset \bar{I}_j^{\bar{r}^3}$, by Claim and i's deviation did not change j's information. It is strictly better by not deviating since playing $\langle \bar{I}_i^{t-1} \rangle$ is more costly than $\langle \bar{I}_i^{t-1} \rangle$.
- 3. Case 3: If there is another j who $\bar{I}_i^{t-1} \subset \bar{I}_j^{\bar{r}^s}$ such that $\#I_i^{\bar{t}^s} \geq k$. If i did not follow j's initiation of coordination, then there is a detection of deviation by checking the equilibrium path. Such detection will let i's continuation expected pay-off down to zero, and therefore i should follow this initiation as Claim shows. If i follows, and $\#I_i^{\bar{t}^s} \geq s$, we are in the Case 1. If i follows, but $\#I_i^{\bar{t}^s} < s$, then i's expected static pay-off after \bar{t}^s is at most

$$\max\{\beta_i(E_3|h_{N_i}^m)\times 1+\beta_i(E_4|h_{N_i}^m)\times (-1),0\}$$

However, if i follow the equilibrium path, there is are t^s , t^f such that the expected static pay-off after max $\{t^s, t^f\}$ is

$$\max\{\beta_i(E_3|h_{N_i}^{m'}),0\}$$

Thus, there is a loss in expected continuation pay-off contingent on E by

$$\delta^{\max\{t^s,t^f\}} \frac{\min\{\beta_i(E_3|h_{G_i}^m),\beta_i(E_4|h_{G_i}^m)\}}{1-\delta}$$

Claim 0.1.1.3. For $\#Ex_{I_i^{m,t}} \cup I_i^{m,t} \ge s$. If $\#I_i^{m,t} \le s-1$, and if $i \notin C$ or i did not satisfy the condition to play $\langle 1 \rangle$, i will not play $\langle 1 \rangle$.

Proof. Let

$$E' = \{\theta : \#I_i^{RP^t, t} \le k - 1\}$$

The event is not empty by checking the timing where *i* deviated. We have two case:

- 1. If i has a neighbour $j \in C$, then $j \notin O_i^{RP^t,t}$, and then suppose all other neighbour are not in R^t .
- 2. If

$$\exists j \in R^{t-1} \cap \bar{G}_i \text{ such that } \exists k_1, k_2 \in Tr_{ij}[[k_1 \in N_j^{t-1} \setminus I_i^{t-1}] \land [k_2 \in \bar{G}_{k_2}]]$$

, then just let $E = \{\theta : N_i^t \cap R^0 \le k - 1\} = \{\theta : I_i^t \le k - 1\} = E^{'4}$.

³Recall that

⁴note that $I_i^t = I_i^{RP^t, t}$

Next, let

$$E_1 = \{\theta : \#[Reble](\theta) < k\} \cap E'$$

$$E_2 = \{\theta : \#[Reble](\theta) \ge k\} \cap E'$$

be the event contingent on i's information $I_i^{RP^t,t}$. Since i deviate to play $\langle 1 \rangle$ and note that this deviation can not be detected, his behaviour, $\langle \mathbf{stay} \rangle$ and $\langle \mathbf{1}_i \rangle$, in the first sub-block at first division in coordination period will decide his neighbours' belief as if his neighbours think he is still on the path. In that sub-block, we have two case:

- 1. If *i* play $\langle stay \rangle$, then the coordination to stay starts.
- 2. If i play $\langle \mathbf{1}_i \rangle$, then the coordination to **revolt** starts.

But due to E_1 and E_2 still have positive probability (due to his own prior and others' strategies), i's expected static pay-off after the coordination period in this t-block is at most

$$\max\{\beta_i(E_2|h_{N_i}^m)\times 1+\beta_i(E_1|h_{N_i}^m)\times (-1),0\}$$

However, if he stay in the equilibrium, there is a t^s (t^f) such that Rebels play **revolt** (**stay**) contingent on E_2 (E_1), and thus after $t^* = \max\{t^s, t^f\}$ he get the expected pay-off as

$$\max\{\beta_i(E_2|h_{N_i}^m)\times 1,0\}$$

After some calculation, after t^* , there is a loss of

$$\delta^{t^*} \frac{\min\{\beta_i(E_2|h_{G_i}^m), \beta_i(E_1|h_{G_i}^m)\}}{1 - \delta}$$

Claim 0.1.1.4. For $|Ex_{I_i^{m,t}} \cup I_i^{m,t}| \ge s$. If $\beta_i(|[H]| \ge s|h_{N_i}^{||RP^t-|1|+1|}) > 0$, then if i can report $\langle 1 \rangle$, then i will not report $\langle l \rangle$ when δ is high enough.

Proof. There are two cases when i play $\langle 1 \rangle$.

• Case 1: If $\#I_i^{||RP^t|,t} \ge k$, let the event E be

$$E = \{\theta : \#[Rebel](\theta) = \#I_i^{||RP^t - |2| + 1|,t}\}$$

That is, the event that no more Rebels outside i's information about Rebels. Contingent on E, there is no more Rebel can initiate the coordination. This is because for all $j \in O_i^{|RP^t|,t}$, j is with $|I_j^{t-1}| < k-1$, and for all $j \in \bar{G}_i$ who have not yet reported, $j \notin R^t$ since all the Rebels are in $|I_i^{|RP^t|,t}|$. Since only i can initiate the coordination, if i deviated, compared to equilibrium, there is a loss in expected continuation pay-off as

$$\delta^t \frac{\beta_i(E|h_{N_i}^m)}{1-\delta}$$

• Case 2: If $\#I_i^{|RP^t|,t} = k-1$, since $\beta_i(\#[Rebels](\theta) \ge s|h_{G_i}^{|RP^t|}) > 0$, the following event E_1 must have positive probability; otherwise, since no neighbours can report after current period, and thus $\beta_i(\#[Rebels](\theta) \ge s|h_{G_i}^{|RP^t|}) = 0$.

Let

$$E_1 = \{ \theta : \exists j \in \bar{G}_i, j \notin O_i^{|RP^t|,t} [\#I_i^{|RP^t|,t} \ge s - 1] \}$$

Let sub-events $E_1' \subset E_1$ as

$$E_{1}^{'} = \{\theta: \text{ exist a unique } j \in \bar{G}_{i}, j \notin O_{i}^{|RP^{t}|,t}[\#I_{j}^{|RP^{t}|,t} \geq s-1]\}$$

Note that this E_1' can be constructed since the network is tree. If there is θ admits 2 or more js in the definition E_1 , these js must be not each others' neighbour. Suppose there are two js, says j, j', there must be at least one node in $I_j^{|RP'|,t}$ but outside of $I_j^{|RP'|,t}$. We then pick a j, and suppose those nodes outside of $I_j^{|RP'|,t}$ are Inert.

Now, dependent on such j, let

$$E = \{\theta : \#[Rebel](\theta) = \#I_j^{|RP^l|,t} \cup I_i^{|RP^l|,t}\}$$

If *i* report $\langle l \rangle$, there are following consequences.

- i will be consider as $\notin R^i$ by j, and thus i can not initiate the coordination.
- Such j will have $\#I_j^{|RP^t|} = \#I_j^t < s$. Since there is no more H-nodes outside $I_j^{||RP^t-|2|+1|,t} \cup I_i^{||RP^t-|2|+1|,t}$, contingent on E, such j will then play stay forever after coordination period in t-block.
- Without the extra Rebels in $I_j^{|RP^t|}$, only $\#I_i^{||RP^t|,t} = k-1$ may play **revolt**, and therefore there is no coordination to success.

However, if i play $\langle 1 \rangle$, coordination can be initiated by himself in the following coordination period. Thus, there is a loss in expected continuation pay-off by

$$\delta^{|t|} rac{eta_i(E|h_{N_i}^m)}{1-\delta}$$

0.1.2 Main claims in coordination period

We show the main claims here. The details of the other claims in equilibrium path will be in appendix.

Claim 0.1.2.1. In **COORDINATION**. Suppose there is no $j \in G_i$ has played $\langle 1 \rangle$ in reporting period, Suppose $|I_i^t| < s$, Suppose $\beta_i(\#[Rebel](\theta)|h_{G_i}^m) > 0$. Then

- if i has not observed $\langle stay \rangle$ played by $j \in G_i$ in the first sub-block at second division, or
- if i has not observed $\langle \mathbf{1}_i \rangle$ played by $j \in G_i$ after first sub-block at second division

, then i will not play

- (stay) in the first sub-block at second division and
- $\langle \mathbf{1}_i \rangle$ after first sub-block at second division

Proof. Since $|I_i^t| < s$ and due to the equilibrium strategies played by i's neighbours, we have

$$0 < \beta_i(\#[Rebel](\theta)| \ge s|h_{G_i}^m) < 1$$

If *i* deviate, all *i*'s neighbour who did not detect the deviation will play **revolt** after coordination period in this block; if *i*'s deviation is detected by some neighbours, we are in the case of Claim and so that *i* will not deviate. We then check if *i* deviate but no neighbour detect it. Let

$$E' = \{\theta : \#I_i^t \le k - 1\}$$

and let

$$E_1 = \{\theta : \#[Reble](\theta) < k\} \cap E'$$

$$E_2 = \{\theta : \#[Reble](\theta) > k\} \cap E'$$

 E_1 and E_2 have positive probability (due to his own prior and others' strategies). Since after i deviated, all the Rebels will play **revolt** after this block, i's expected static pay-off after the

$$\max\{\beta_i(E_2|h_{N_i}^m)\times 1 + \beta_i(E_1|h_{N_i}^m)\times (-1), 0\}$$

However, if he stay in the equilibrium, there is a t^s (t^f) such that Rebels play **revolt** (**stay**) contingent on E_2 (E_1), and thus after $t^* = \max\{t^s, t^f\}$ he get the expected pay-off as

$$\max\{\beta_i(E_2|h_{N_i}^m)\times 1,0\}$$

After some calculation, after t^* , there is a loss of

coordination period in this t-block is at most

$$\delta^{t^*} \frac{\min\{\beta_i(E_2|h_{G_i}^m), \beta_i(E_1|h_{G_i}^m)\}}{1-\delta}$$

A Proof

A.1 Proof for Lemma ??

Proof. The proof is by induction. We first show that the statement is true for t = 1.

Claim A.1.0.2. *Base*: $i \in R^1 \Leftrightarrow [i \in R^0] \land [\exists k_1, k_2 \in (R^0 \cap N_i \setminus i)].$

Proof. \Rightarrow : Since $i \in R^1$, then $i \in R^0$ and $\forall j \in N_i \setminus i[I_i^0 \nsubseteq N_j^0]$ by definition. Since $I_i^0 = N_i \cap R^0$ and $i \in N_j^0$, then $\forall j \in N_i \setminus i[\exists k \in (R^0 \cap N_i \setminus i)[k \notin N_j^0]]$. Since the $j \in N_i \setminus i$ is arbitrary, we then have a pair of $k_1, k_2 \in (R^0 \cap N_i \setminus i)$ such that both $k_1 \notin N_{k_2}^0$ and $k_2 \notin N_{k_1}^0$.

 \Leftarrow : Pick $k \in \{k_1, k_2\} \subseteq N_i \cap R^0$, and pick an arbitrary $j \in (N_i \setminus \{i, k\})$. Note that $k \notin D_j^0$, otherwise there is a circle from i to i since $i \in N_j^0 \subseteq D_j^0$. Hence $[k \in N_i \cap R^0] \wedge [k \notin D_j^0]$, and therefore $[k \in I_i^0] \wedge [k \notin N_j^0]$. Then we have $I_i^0 \nsubseteq N_j^0$ for arbitrary $j \in N_i \setminus i$, and thus $i \in R^1$. \square

Induction hypothesis: the statement is true up to t and $t \ge 1$.

Claim A.1.0.3. If the hypothesis is true, then

$$i \in R^{t+1} \Leftrightarrow [i \in R^t] \land [\exists k_1, k_2 \in R^t \cap N_i \setminus i]$$

Proof. ⇒: since $i \in R^{t+1}$, then $i \in R^t$ and $\forall j \in N_i \setminus i[I_i^t \nsubseteq N_j^t]$ by definition. Recall Equation (??) and Equation (??), then for every $m \in I_i^{t-1}$, we can find a path connecting i to m (the existence of such path is by the induction hypothesis). If $j \in N_i \setminus i$, then we can find a path connecting j to m by connecting j to i, and then connecting i to m. Thus, if $m \in I_i^{t-1}$ then $m \in N_J^t$, and hence $I_i^{t-1} \subseteq N_j^t$ if $j \in N_i \setminus i$.

Further note that $I_i^t = \bigcup_{k \in N_i \cap R^t} I_k^{t-1}$, then we must have $\forall j \in N_i \setminus i [\exists k \in (R^t \cap N_i \setminus i)[I_k^{t-1} \nsubseteq N_j^t]]$, since $I_i^{t-1} \subseteq N_j^t$. Since the $j \in N_i \setminus i$ is arbitrary, we then have a pair of $k_1, k_2 \in (R^t \cap N_i \setminus i)$ such that both $k_1 \notin N_{k_2}^t$ and $k_2 \notin N_{k_1}^t$.

 \Leftarrow : By the induction hypothesis, we have a chain $k_{1_0},...,k_1,i,k_2,...,k_{2_0}$ with $k_{1_0} \in R^0,...,k_1 \in R^t$, $i \in R^t$, $k_2 \in R^t$,...,and $k_{1_0} \in R^0$. Note that $k_{1_0} \notin D^t_j$ whenever $j \in N_i \setminus i$, otherwise there is a circle from i to i since $\{i,k_2,...,k_{2_0}\} \in N^t_j \subseteq D^t_j$. Hence $[k_{1_0} \in I^{t-1}_{k_1}] \wedge [k_{1_0} \notin D^t_j]$, and therefore $[I^{t-1}_{k_1} \in I^t_i] \wedge [I^{t-1}_{k_1} \notin N^t_j]$. Then we have $I^t_i = \bigcup_{k \in N_i \cap R^t} I^{t-1}_k \nsubseteq N^t_j$ for arbitrary $j \in N_i \setminus i$, and thus $i \in R^1$.

We can then conclude that the statement is true by induction.

A.2 Proof for Lemma ??

- *Proof.* 1. The proof is by induction, and by Lemma ??. Since the state has strong connectivity, all the R^0 nodes are connected, and thus we have a R^0 -path connecting each pair of R^0 nodes. Since all pairs of R^0 nodes are connected by a R^0 -path, then for all pairs of R^1 nodes must be in some of such paths by Lemma ??, and then connected by a R^0 -path. But then all the R^0 -nodes in such path are all R^1 nodes by Lemma ?? again and by $R^t \subseteq R^{t-1}$. Thus, for all pairs of R^1 nodes has a R^1 -path connecting them. The similar argument holds for t > 1, we then get the result.
 - 2. The uniqueness is by the fact that the network is a tree, and therefore the path connecting all distinguish nodes is unique.

A.3 Proof for Lemma ??

Proof. We have to show that $R^{t-1} \supseteq \bigcup_{i \in R^t} N_i \cap [H]$ and $R^{t-1} \subseteq \bigcup_{i \in R^t} N_i \cap [H]$.

- \supseteq : Since R^t is not empty, we can pick a node $m \in \bigcup_{i \in R^t} N_i \cap [H]$. By Lemma ??, $m \in R^t \cup R^{t-1} = R^{t-1}$, and therefore $m \in R^{t-1}$.
- \subseteq : Since both R^{t-1} and R^t are not empty, we can pick nodes $m_1 \in R^{t-1}$ and $m_2 \in R^t$. Since the state has strong connectivity, there is a R^{t-1} path connecting them by Lemma ??. But then the nodes (expect for m_1, m_2) in this path are all R^t nodes by Lemma ??, and then there is $m_1' \in N_{m_1} \cap R^t$. Since the $m_1 \in R^{t-1}$ we picked is arbitrary, therefore it means for all $m \in R^{t-1}$ there is a $m' \in N_m \cap R^t$, and hence $m \in N_{m'} \cap [H]$ while $m' \in R^t$. We then get the result.

A.4 Proof for Lemma ??

Proof. 1. If $1 \le |R^t| \le 2$, then by Lemma ?? and by Lemma ??, we have a spanning tree consisting the nodes in $R^{t-1},...,R^0$. Since the state has strong connectivity, all the H-nodes are in this tree. By Lemma ??, we have

$$R^{0} = \bigcup_{k_{1} \in R^{1}} N_{k_{1}} \cap [H] = \bigcup_{k_{1} \in N_{k_{2}} \cap R^{1}} \bigcup_{k_{2} \in N_{k_{3}} \cap R^{2}} \dots \bigcup_{k_{t-1} \in N_{k_{t}} \cap R^{t}} N_{k_{t}} \cap [H]$$

Then by Equation (14), if $i \in R^t$ we have

$$I_i^t = \bigcup_{k_0 \in N_i \cap R^t} \bigcup_{k_1 \in N_{k_0} \cap R^{t-1}} \dots \bigcup_{k_{t-1} \in N_{k_{t-2}} \cap R^1} N_{k_{t-1}} \cap R^0$$

Now note that $R^0 = [H]$, and compare the above two equations, we got $[H] = I_i^t$ if $i \in R^t$.

2. For a given *t*-block, in the case when $R^t \neq \emptyset$ and $R^{t+1} \neq \emptyset$, the proof is a direct application of Lemma ??, and we continue taking the union of nodes' information set. Since the network is finite, the [H] will be a subset of some nodes' information set eventually.

We then only consider the case when $R^t \neq \emptyset$ and $R^{t+1} = \emptyset$. But in such case, it means that there is no R^t node which has more than two distinguish R^t neighbours by Lemma ??, and then $1 \leq |R^t| \leq 2$ since all pairs of R^t nodes are connected by R^t -path by Lemma ??. The first part of this Lemma ?? then shows the result.

A.5 Proof for Lemma ??

Proof. Suppose there are three or more R^t -nodes in C, then pick any three nodes of them, and denote them as i_1, i_2, i_3 . Let's say i_2 is in the (i_1i_3) -path, and therefore $i_2 \in Tr_{i_1i_2}$ and $i_3 \in Tr_{i_2i_3}$. First we show that $i_1 \in N_{i_2}$ (or $i_3 \in N_{i_2}$). Suppose $i_1 \notin N_{i_2}$, since $i_1, i_2 \in R^t$, then the (i_1i_2) -path is a R^t -path by Lemma ??. Let this (i_1i_2) -path be $(i_1, j_1, ..., j_n, i_2)$. Since $i_1, j_1, ..., j_n, i_2 \in R^t$, we then have $I_{i_1}^{t-1} \nsubseteq N_{j_1}^{t-1}, ..., I_{j_n}^{t-1} \nsubseteq N_{i_2}^{t-1}$ and $I_{j_1}^{t-1} \nsubseteq N_{i_1}^{t-1}, ..., I_{i_2}^{t-1} \nsubseteq N_{j_n}^{t-1}$. Since $I_{i_1}^{t-1} \subseteq N_{i_1}^{t-1}, ..., I_{i_2}^{t-1} \subseteq N_{i_2}^{t-1}$ by Lemma ??, we further have $\exists k_1 \in [H][k_1 \in N_{j_1}^{t-1} \setminus I_{i_1}^{t-1}], ..., \exists k_n \in [H][k_n \in N_{j_n}^{t-1} \setminus I_{i_2}^{t-1}]$. Since the state has Strong Connectivity, such $k_1, ..., k_n$ are connected. But then we have already found k_1, k_2 such that $k_1 \in N_{j_1}^{t-1} \setminus I_{j_1}^{t-1}$ and $k_2 \in N_{k_1} \setminus k_1$. It is a contradiction that $i_1 \in C$.

Now, i_1, i_2, i_3 will form a R^t -path as (i_1, i_2, i_3) . With the same argument as the above, we then have $\exists k_1 \in [H][k_1 \in N_{i_2}^{t-1} \setminus I_{i_1}^{t-1}]$ and $\exists k_2 \in [H][k_2 \in N_{i_3}^{t-1} \setminus I_{i_2}^{t-1}]$, and thus i_1 is not in C.

A.6 Proof for Lemma ??

Proof. Since $i \in R^t$, there is a $j \in R^{t-1}$ and $j \in N_i \setminus i$ by Lemma ??. Given any $j \in R^{t-1} \cap (N_i \setminus i)$, first note that $N_j^{t-1} \subseteq \bigcup_{k \in N_i^{t-1}} N_k$ by $N_j^{t-1} \equiv \bigcup_{k \in I_j^{t-2}} N_k$, and $I_j^{t-2} \subseteq I_i^{t-1} \subseteq N_i^{t-1}$. If there is another node outside $\bigcup_{k \in N_i^{t-1}} N_k$ in Tr_{ij} , then there must be another node connected to N_j^{t-1} since the network is connected. It is a contradiction that $i \in C$.