DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH2140 Mathematics on the Computer

Assignment 3

17 August 2015

(1) Projectile Motion:

A projectile is fired with initial speed v_0 from the top of a tower, at an angle theta with respect to the horizontal (x) direction. The tower is at a height y = h above the ground. The equations describing the motion of the projectile are therefore, with (x, y) = (0, h) being the co-ordinates of the top of the tower,

$$x = v_0 t \cos \theta$$
, $y = h + v_0 t \sin \theta - \frac{1}{2}gt^2$.

- (i) Set $g = 9.8 \, m/s^2$. For $v_0 = 5m/s$, h = 10m, and, $\theta = 15^{\circ}$, make a parametric plot of the trajectory of the projectile (y versus x). Change the values of h and θ and convince yourself that the trajectories look reasonable.
- (ii) Solve the equation y(t) = 0 for the time when the projectile hits the ground. Use this time to find the range x(t). Make a plot of (a) the range versus θ for a fixed h, and, (b) range versus h for a fixed θ .

(2) Infinite series for π :

The Madhava-Leibniz formula for π states that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \dots + (-1)^n \frac{1}{2n+1},$$

where we have indicated the general form for the $n^{\rm th}$ term in the sum. Evaluate the sum of the first 10 terms in the series. To how many decimal places is the resultant value of Π accurate?

This is infact an extremely slowly convergent series, and you may check that adding the first 50 terms only gives Π accurate to the first decimal place! One approach to improve the convergence properties of the series is to add end correction terms:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \dots + (-1)^n \frac{1}{2n+1} + (-1)^{n+1} \frac{1}{a_n}.$$

To what extent is the accuracy improved if we include the following end-correction terms after summing the first 10 terms?

(i)
$$a_n = 4(n+1)$$
.

(ii)
$$a_p = \frac{(2n+2)^2+1}{n+1}$$

(iii)
$$a_n = (n+1)\frac{(2n+2)^2+5}{(n+1)^2+1}$$

Here, a_n denotes the correction term to be added after summing the series to n terms.