Data Analysis and Credit Risk Modelling - Loan Classification

PROBLEM STATEMENT:

Understand and apply machine learning techniques to classify loan applicants based on their likelihood of loan repayment.

import necessary libararies

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
from sklearn.impute import SimpleImputer
from \ sklearn.preprocessing \ import \ Standard Scaler, \ One HotEncoder, \ Label Encoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from \ sklearn.model\_selection \ import \ train\_test\_split, \ GridSearchCV, \ RandomizedSearchCV \ and \ GridSearchCV \ and \ GridSea
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
import xgboost as xgb
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from scipy.stats import zscore
import warnings
warnings.filterwarnings("ignore")
```

Step 1: load the dataset

```
data = pd.read_csv('/loan_detection.csv')
```

→ Step 2: Initial Inspection

```
print("Data Head:")
print(data.head())
→ Data Head:
                       pdays
                               previous
        age
             campaign
     0
         57
                          999
                                                                            0
     2
         37
                          999
                                       0
                                                                            0
     3
         40
                          999
                                       0
                                                                            0
     4
                          999
                                       0
                                                                            0
         56
                     job_blue-collar
        job admin.
                                       iob entrepreneur
                                                          job housemaid
     0
                  0
                                                                       1
     1
                  0
                                    0
                                                       a
                                                                       a
     2
                  0
                                    0
                                                        0
                                                                       0
                                                                           . . .
     3
                                    0
                                                        0
                                                                       0
     4
                  0
                                                        0
                    day_of_week_fri
        month sep
                                      day_of_week_mon
                                                        day of week thu
     0
                                                                       0
                 0
                                   0
                                                                       0
     1
                                                     1
     2
                 a
                                   a
                                                     1
                                                                       a
     3
                 0
                                   0
                                                     1
                                                                       0
     4
                 0
                                   0
                                                     1
                                                                       0
                          day_of_week_wed
                                            poutcome_failure
     0
                       0
                                          0
     1
                                                                                     1
                       0
                                          0
                                                                                     1
     3
                       0
                                         0
                                                             0
                                                                                     1
     4
                                                                                     1
                       0
        poutcome_success
                            Loan_Status_label
     0
     1
                        0
                                             0
                                             0
     3
                        0
                                             0
     [5 rows x 60 columns]
```

```
data.shape
→ (41188, 60)
print("\nData Info:")
print(data.info())
                                        41188 non-null
         not_working
                                        41188 non-null
         job_admin.
          job_blue-collar
                                        41188 non-null
                                                        int64
         job_entrepreneur
                                        41188 non-null
                                                       int64
         job_housemaid
                                        41188 non-null
                                                       int64
      10
        job management
                                        41188 non-null
                                                       int64
         job_retired
                                        41188 non-null
                                                       int64
      11
         job_self-employed
                                       41188 non-null
      12
                                                       int64
      13
         job_services
                                       41188 non-null int64
      14
          job_student
                                        41188 non-null
                                                       int64
      15
         job_technician
                                        41188 non-null
                                                       int64
          job_unemployed
                                        41188 non-null
      16
                                        41188 non-null
         job_unknown
      18
         marital_divorced
                                       41188 non-null
                                                       int64
      19
        marital_married
                                       41188 non-null
                                                       int64
                                       41188 non-null
      20
         marital single
                                                       int64
      21 marital unknown
                                       41188 non-null
                                                       int64
                                                       int64
                                       41188 non-null
      22 education_basic.4y
      23 education_basic.6y
                                        41188 non-null
                                                       int64
      24
         education_basic.9y
                                        41188 non-null
                                                       int64
      25
         education_high.school
                                        41188 non-null
                                                        int64
     26
         education_illiterate
                                        41188 non-null
         education_professional.course 41188 non-null
         education_university.degree
                                       41188 non-null
                                                       int64
      29
         education_unknown
                                        41188 non-null
      30
        default no
                                        41188 non-null
                                                       int64
                                       41188 non-null
         default_unknown
                                                       int64
      31
      32 default_yes
                                       41188 non-null int64
      33
         housing_no
                                       41188 non-null int64
      34
         housing_unknown
                                       41188 non-null
                                                       int64
      35
         housing_yes
                                       41188 non-null int64
      36
         loan_no
                                       41188 non-null
                                                       int64
      37
         loan_unknown
                                       41188 non-null int64
                                       41188 non-null
      38
         loan_yes
        contact_cellular
                                       41188 non-null int64
      40
        contact_telephone
                                       41188 non-null
                                                       int64
     41 month_apr
                                       41188 non-null
                                                       int64
     42 month aug
                                       41188 non-null
                                                       int64
                                       41188 non-null
                                                       int64
      43 month dec
      44 month_jul
                                        41188 non-null
                                                       int64
      45
        month_jun
                                        41188 non-null
                                                       int64
      46 month_mar
                                        41188 non-null int64
         month_may
      47
                                        41188 non-null
                                                       int64
                                        41188 non-null
      48 month_nov
      49
         month_oct
                                        41188 non-null
                                       41188 non-null int64
      50
        month sep
      51 day of week fri
                                       41188 non-null int64
      52 day_of_week_mon
                                       41188 non-null int64
         day_of_week_thu
                                       41188 non-null
                                                       int64
      53
      54 day_of_week_tue
                                       41188 non-null
                                                       int64
      55
         day_of_week_wed
                                        41188 non-null int64
      56
         poutcome_failure
                                        41188 non-null
                                                       int64
      57
         {\tt poutcome\_nonexistent}
                                        41188 non-null int64
         poutcome_success
                                        41188 non-null
                                                       int64
                                        41188 non-null int64
      59 Loan_Status_label
    dtypes: int64(60)
    memory usage: 18.9 MB
    None
data.describe()
```


	age	campaign	pdays	previous	no_previous_contact	not_working	job_admin.	job_blue- collar	job_entrepr
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.0
mean	40.02406	2.567593	962.475454	0.172963	0.963217	0.087623	0.253035	0.224677	0.0
std	10.42125	2.770014	186.910907	0.494901	0.188230	0.282749	0.434756	0.417375	0.1
min	17.00000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
25%	32.00000	1.000000	999.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.0
50%	38.00000	2.000000	999.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.0
75%	47.00000	3.000000	999.000000	0.000000	1.000000	0.000000	1.000000	0.000000	0.0
max	98.00000	56.000000	999.000000	7.000000	1.000000	1.000000	1.000000	1.000000	1.0
8 rows × 60 columns									
4									>

check for missing values

print("\nMissing Values:") print(data.isnull().sum()) previous no_previous_contact not_working 0 job_admin. 0 job_blue-collar 0 0 job_entrepreneur job_housemaid 0 0 job_management 0 job_retired job_self-employed 0 job_services 0 job_student 0 job_technician job_unemployed 0 job_unknown 0 marital_divorced marital_married 0 marital_single marital_unknown 0 0 0 ${\tt education_basic.4y}$ 0 ${\tt education_basic.6y}$ education_basic.9y 0 education_high.school 0 education_illiterate education_professional.course education_university.degree education_unknown 0 default_no 0 ${\tt default_unknown}$ 0 ${\tt default_yes}$ 0 0 ${\tt housing_no}$ $\verb|housing_unknown|$ 0 housing_yes 0 loan_no 0 loan_unknown 0 loan_yes contact_cellular 0 0 ${\tt contact_telephone}$ 0 month apr 0 month_aug 0 $month_dec$ month_jul 0 0 month_jun month_mar 0 month_may 0 month_nov 0 month_oct month_sep 0 0 day_of_week_fri 0 0 day_of_week_mon 0 day_of_week_thu 0 day_of_week_tue day_of_week_wed 0 poutcome_failure 0 poutcome_nonexistent poutcome_success 0 Loan_Status_label dtype: int64

Conclusion:

- We can see that their are 60 different coloumns in the dataset.
- · The datset has values of type int64 only.
- Their are no missing values in the dataset

Step 3: Explorartory Data Analysis

Outlier Detection using Boxplots, Z-Score and Quartiles

```
numerical_features = data.select_dtypes(include=[np.number])
print("Numerical Features:")
print(numerical_features)
     41184
             46
                              999
                                                                 1
                                                                               0
     41185
                              999
                                           0
                                                                 1
                                                                               1
     41187
            job admin.
                         job_blue-collar
                                           job_entrepreneur
                                                              job_housemaid
     0
                      0
                                                           0
                      0
                                        0
                                                                          0
     1
                                                           0
     2
                      0
                                        0
                                                           0
                                                                          0
     3
                      1
                                        0
                                                           0
                                                                          0
     4
                      0
                                        0
                                                           0
                                                                          0
                                                                              . . .
     41183
                                                                              . . .
     41184
                                        1
                                                           0
                                                                             . . .
     41185
                      0
                                        0
                                                           0
                                                                          0
                                                                              . . .
     41186
                      0
                                        0
                                                           0
                                                                          0
     41187
                      0
                                        0
            month_sep
                        day_of_week_fri day_of_week_mon
                                                            day_of_week_thu
     0
                     a
                                       0
     1
                     0
     2
                     0
                                       0
                                                                          0
     3
                                                                          0
     4
                     0
                                       0
                                                        1
                                                                          0
     41183
                     0
                                                         0
                                                                          0
                                       1
     41184
                     0
                                                         0
                                                                          0
                                       1
     41185
                     0
                                       1
                                                         0
                                                                          0
                                                                          0
     41186
                     0
                                       1
                                                         0
     41187
            day_of_week_tue day_of_week_wed
                                               poutcome_failure
     0
     2
     3
                           0
                                             0
                                                                0
     4
                                             0
                                                                0
                           0
     41183
                           0
                                             0
                                                                0
     41184
                           0
                                             0
                                                                0
     41185
                           0
                                                                0
     41186
                           0
                                             0
                                                                0
     41187
            poutcome_nonexistent
                                  poutcome_success
     0
                                                                       0
     1
                                                   0
                                1
     2
                                                                       0
                                                   0
     3
                                                   0
                                                                       0
     4
                                1
                                                   0
                                                                       a
     41183
     41184
                                                   0
     41185
     41186
     41187
     [41188 rows x 60 columns]
```

Visualize the distribution of numerical features

```
numerical_features.hist(figsize=(15, 10), bins=20)
plt.tight_layout()
plt.show()
```


Z-Score method to detect outliers

```
z_scores = np.abs(zscore(numerical_features))
outliers = np.where(z_scores > 3)
print(f"Outliers detected at using zscore: \n{outliers}")

Outliers detected at using zscore:
   (array([ 0,  1,  2, ..., 41187, 41187]), array([ 9, 13, 13, ..., 5, 11, 48]))
```

given solutuion tells us that these are the rows and coloumns where outliers were detected.

Boxplots

```
# Calculate the number of rows and columns needed to fit all features
num_features = numerical_features.shape[1]
nrows = int(np.ceil(np.sqrt(num_features)))  # Calculate rows for a roughly square layout
ncols = int(np.ceil(num_features / nrows))  # Calculate columns
print(f"\n Rows: {nrows}, Columns: {ncols}")
# Plot the boxplots
numerical_features.plot(kind='box', subplots=True, layout=(nrows, ncols), figsize=(15,10))
print("\n Boxplot of dataset")
plt.tight_layout()
plt.show()
```


Rows: 8, Columns: 8

Interquartile Range (IQR) Method

```
Q1 = numerical_features.quantile(0.25)
Q3 = numerical_features.quantile(0.75)
IQR = Q3 - Q1

outliers_iqr = (numerical_features < (Q1 - 1.5 * IQR)) | (numerical_features > (Q3 + 1.5 * IQR))

# Print IQR outliers
print("\nOutliers detected using IQR method:")
for col in numerical_features.columns:
    outliers = numerical_features[outliers_iqr[col]]
    if not outliers.empty:
        print(f"\nOutliers in {col}:\n{outliers}")
```

```
411/8
                И
                                  И
                                                     И
                                                                    и ...
41181
                1
                                  0
                                                     0
                                                                    0
41183
                0
                                  0
                                                     0
                                                                    0
41186
                0
                                  0
                                                     0
                                                                    0
       month_sep
                  day_of_week_fri day_of_week_mon day_of_week_thu
75
               0
83
               0
                                 0
                                                                    0
                                                   1
88
                                 0
                                                                    0
               0
                                                   1
129
               0
                                 0
                                                                    0
                                                   1
139
               0
                                 0
                                                   1
                                                                    0
41174
               0
                                 0
                                                   0
41178
               0
                                 0
                                                   0
                                                                    1
41181
               0
                                 1
                                                   0
                                                                    0
41183
41186
               0
       day_of_week_tue day_of_week_wed poutcome_failure
75
83
                                       0
                     0
                                                          0
88
                     0
                                       0
                                                          0
129
                     0
                                       a
                                                          a
139
                     0
                                       0
                                                          0
41174
                     0
                                       0
                                                          0
41178
41181
                     0
                                       0
41183
                     0
                                       0
                                                          0
                                       0
41186
                                                          0
                     0
       poutcome_nonexistent poutcome_success Loan_Status_label
75
83
                           1
                                             0
                                                                 1
88
                                             0
                                                                 1
129
139
                          1
                                             0
                                                                 1
41174
                           0
                                             1
41178
                           0
                                             1
                                                                 1
41181
                                             0
                           1
                                                                 1
41183
                           1
                                             0
                                                                 1
41186
                           1
[4640 rows x 60 columns]
```

Handling of outliers-capping of outliers

```
# Define the capping thresholds (1st and 99th percentiles)
lower_cap = numerical_features.quantile(0.01)
upper_cap = numerical_features.quantile(0.99)
# Apply capping
data_capped = data.copy() # Make a copy of the dataset to cap outliers
for col in numerical_features.columns:
    data_capped[col] = np.where(data_capped[col] < lower_cap[col], lower_cap[col], data_capped[col])</pre>
    data_capped[col] = np.where(data_capped[col] > upper_cap[col], upper_cap[col], data_capped[col])
# Show the number of capped values for each feature
capped_values_count = (data_capped != data).sum()
print("Number of capped values per feature:\n", capped_values_count)
# Check the distribution after capping
print("\nData after capping outliers:")
print(data_capped.describe())
```

 $\overrightarrow{\exists}$

```
mın
               טטטטטטט.ט
                               0.000000
                                                   טטטטטט.ט
                                                                     טטטטטט.ט
                                                                     0.000000
                                                   0.000000
25%
               0.000000
                               0.000000
                                         . . .
50%
               0.000000
                               0.000000
                                                   0.000000
                                                                     0.000000
75%
               0.000000
                               0.000000
                                                   0.000000
                                                                     0.000000
                                          . . .
               1.000000
                               1.000000
                                                   1.000000
                                                                     1.000000
max
       day_of_week_mon day_of_week_thu day_of_week_tue day_of_week_wed
          41188.000000
                            41188.000000
                                              41188.000000
                                                               41188.000000
count
              0.206711
                                                  0.196416
                                                                    0.197485
                                0.209357
mean
                                                  0.397292
                                                                    0.398106
std
              0.404951
                                0.406855
              0.000000
                                0.000000
                                                  0.000000
                                                                    0.000000
min
                                                                    0.000000
25%
              0.000000
                                0.000000
                                                  0.000000
50%
              0.000000
                                0.000000
                                                  0.000000
                                                                    0.000000
75%
              0.000000
                                0.000000
                                                  0.000000
                                                                    0.000000
              1.000000
                                1.000000
                                                  1.000000
                                                                    1.000000
max
       poutcome_failure
                         poutcome_nonexistent
                                                 poutcome_success
                                                     41188.000000
count
           41188.000000
                                  41188.000000
                                      0.863431
                                                         0.033335
               0.103234
mean
                                                         0.179512
               0.304268
                                      0.343396
std
               0.000000
                                      0.000000
                                                         0.000000
min
25%
               0.000000
                                      1.000000
                                                         0.000000
50%
               0.000000
                                      1.000000
                                                         0.000000
75%
               0.000000
                                      1.000000
                                                         0.000000
               1.000000
                                       1.000000
                                                         1.000000
       Loan_Status_label
count
            41188.000000
                0.112654
mean
                0.316173
std
                0.000000
min
25%
                0.000000
50%
                0.000000
75%
                0.000000
max
                1.000000
[8 rows x 60 columns]
```

Step 4: Model Building

Encode Categorical Variables and Scale Numerical Features

```
X = data.drop('Loan_Status_label', axis=1)
y = data['Loan_Status_label']
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)
categorical_cols = X.select_dtypes(include=['object']).columns
numerical_cols = X.select_dtypes(include=[np.number]).columns
numerical_transformer = Pipeline(steps=[
    ('scaler', StandardScaler())
])
categorical transformer = Pipeline(steps=[
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
1)
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numerical_transformer, numerical_cols),
        ('cat', categorical_transformer, categorical_cols)
    1)
X_preprocessed = preprocessor.fit_transform(X)
```

Split the Data

```
X_train, X_test, y_train, y_test = train_test_split(X_preprocessed, y, test_size=0.3, random_state=42)
```

Model Selection

```
logistic_model = LogisticRegression(random_state=42)
random_forest_model = RandomForestClassifier(random_state=42)
```

```
xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='mlogloss', random_state=42)
```

```
Model Training
```

logistic_model.fit(X_train, y_train)

```
LogisticRegression
     LogisticRegression(random_state=42)
random_forest_model.fit(X_train, y_train)
₹
               {\tt RandomForestClassifier}
     RandomForestClassifier(random state=42)
xgb_model.fit(X_train, y_train)
\overline{2}
                                        XGBClassifier
     XGBClassifier(base_score=None, booster=None, callbacks=None,
                    {\tt colsample\_bylevel=None,\ colsample\_bynode=None,}
                    \verb|colsample_bytree=None|, device=None|, early_stopping_rounds=None|,
                    enable_categorical=False, eval_metric='mlogloss',
                    feature_types=None, gamma=None, grow_policy=None,
                    importance_type=None, interaction_constraints=None,
                    learning\_rate=None, \ max\_bin=None, \ max\_cat\_threshold=None,
                    max cat to onehot=None, max delta step=None, max depth=None,
                    max_leaves=None, min_child_weight=None, missing=nan,
                    monotone_constraints=None, multi_strategy=None, n_estimators=None,
                    n_jobs=None, num_parallel_tree=None, random_state=42, ...)
Model Evaluation
y_pred_logistic = logistic_model.predict(X_test)
y_pred_rf = random_forest_model.predict(X_test)
y_pred_xgb = xgb_model.predict(X_test)
print("Logistic Regression Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred_logistic))
print(classification_report(y_test, y_pred_logistic))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_logistic))
→ Logistic Regression Performance:
     Accuracy: 0.8981144290685441
                                recall f1-score
                   precision
                                                    support
                a
                        0.91
                                  0.99
                                             0.95
                                                      10968
                        0.66
                                  0.19
                                             0.30
                                                       1389
                                             0.90
                                                      12357
         accuracy
                        0.78
                                  0.59
                                             0.62
                                                      12357
        macro avg
     weighted avg
                                   0.90
                                             0.87
                                                      12357
     Confusion Matrix:
      [[10829 139]
      [ 1120
               269]]
print("\nRandom Forest Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred_rf))
print(classification_report(y_test, y_pred_rf))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
₹
     Random Forest Performance:
     Accuracy: 0.8887270373067897
                                recall f1-score
                   precision
                                                    support
                0
                                  0.97
                        0.91
                                             0.94
                                                      10968
                1
                        0.51
                                  0.25
                                             0.34
                                                       1389
         accuracy
                                             0.89
                                                      12357
                        0.71
                                  0.61
                                             0.64
                                                      12357
        macro avg
                                             0.87
                                                      12357
     weighted avg
                        0.87
                                   0.89
     Confusion Matrix:
```

```
[[10630 338]
[1037 352]]
```

```
print("\nXGBoost Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred_xgb))
print(classification_report(y_test, y_pred_xgb))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_xgb))
```

```
\overline{2}
    XGBoost Performance:
    Accuracy: 0.8943109168892126
                   precision
                                recall f1-score
                                                     support
                0
                        0.91
                                   0.98
                                             0.94
                                                       10968
                        0.57
                                   0.24
                                             0.33
        accuracy
                                             0.89
                                                       12357
                        0.74
                                   0.61
                                             0.64
                                                       12357
       macro avg
    weighted avg
                        0.87
                                   0.89
                                             0.87
                                                       12357
    Confusion Matrix:
     [[10724
               244]
     [ 1062 327]]
```

Analysis

Based on Accuracy:

- Logistic Regression has the highest accuracy at 0.90, slightly higher than XGBoost (0.89) and Random Forest (0.89).
- · This suggests that Logistic Regression correctly predicts the overall outcome slightly more often.

Based on Precision:

- For Class 1 (the minority class), Logistic Regression has the highest precision at 0.66, followed by XGBoost at 0.57, and Random Forest at 0.51.
- This indicates that when Logistic Regression predicts a positive case (Class 1), it is more likely to be correct compared to the other models.

Based on Recall:

- Class 1 recall is highest with Random Forest and XGBoost at 0.25 and 0.24, respectively.
- · Logistic Regression has a recall of only 0.19 for Class 1, meaning it misses more actual positives.
- · Class 0 recall is highest with Logistic Regression at 0.99, meaning it correctly identifies almost all negatives.

Based on F1-Score:

- The F1-score for Class 1 is highest for Random Forest at 0.34, slightly better than XGBoost (0.33) and Logistic Regression (0.30).
- F1-Score balances precision and recall, making it a good metric when dealing with imbalanced classes.

Based on Confusion Matrix:

Class 1:

- · Logistic Regression has the highest number of false negatives (1,120), meaning it misses many actual positives.
- XGBoost has a slightly lower number of false negatives (1,062) compared to Random Forest (1,037).

Class 0:

· Logistic Regression has the lowest number of false positives (139), indicating better performance in correctly identifying negatives.

From the above given results, *Random Forest* might be the best option for this problem, especially if *correctly identifying as many positives as possible* is crucial. However, if you need *higher precision and overall accuracy*, we can opt for *Logistic Regression*.

Fine Tuning of model developed using XGBoost

```
# Define the hyperparameter space
param_dist = {
    'learning_rate': [0.01, 0.05, 0.1, 0.15, 0.2],
    'n_estimators': np.arange(100, 500, 50),  # Randomly select from 100 to 500 estimators
    'max_depth': np.arange(3, 10, 1),  # Randomly select from depths 3 to 10
    'subsample': [0.6, 0.7, 0.8, 0.9, 1.0],  # Different subsample ratios
    'colsample_bytree': [0.6, 0.7, 0.8, 0.9, 1.0],  # Different feature subsample ratios
    'gamma': [0, 0.1, 0.2, 0.3, 0.4],  # Range of gamma values for regularization
    'reg_alpha': [0, 0.01, 0.05, 0.1],  # L1 regularization
    'reg_lambda': [0.5, 1, 1.5, 2]  # L2 regularization
}
```

using RandomizedSerchCV because the dataset is large

```
# Set up the RandomizedSearchCV
random\_search = Randomized Search CV (estimator=xgb\_model, param\_distributions=param\_dist, param\_distributions=param\_dist, param\_distributions=param\_dist, param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_distributions=param\_dis
                                                              n_iter=100, cv=5, scoring='accuracy', n_jobs=-1,
                                                              verbose=2, random state=42)
# Fit the RandomizedSearchCV to the data
random_search.fit(X_train, y_train)
 Fitting 5 folds for each of 100 candidates, totalling 500 fits
                                                                                           RandomizedSearchCV
                                             param_distributions={'colsample_bytree': [0.6, 0.7, 0.8, 0.9,
                                                                                                                        1.0],
                                                                                    'gamma': [0, 0.1, 0.2, 0.3, 0.4],
                                                                                   'learning_rate': [0.01, 0.05, 0.1, 0.15,
                                                                                                                  0.2],
                                                                                   'max_depth': array([3, 4, 5, 6, 7, 8, 9]),
                                                                                    'n_estimators': array([100, 150, 200, 250, 300, 350, 400, 450]),
                                                                                   'reg_alpha': [0, 0.01, 0.05, 0.1],
'reg_lambda': [0.5, 1, 1.5, 2],
                                                                                   'subsample': [0.6, 0.7, 0.8, 0.9, 1.0]},
                                             random_state=42, scoring='accuracy', verbose=2)
                                                                                      estimator: XGBClassifier
                                  XGBClassifier(base_score=None, booster=None, callbacks=None,
                                                           colsample_bylevel=None, colsample_bynode=None,
                                                           colsample_bytree=None, device=None, early_stopping_rounds=None,
                                                           enable_categorical=False, eval_metric='mlogloss',
                                                           feature_types=None, gamma=None, grow_policy=None,
                                                           importance_type=None, interaction_constraints=None,
                                                           learning_rate=None, max_bin=None, max_cat_threshold=None,
                                                           max_cat_to_onehot=None, max_delta_step=None, max_depth=None,
max_leaves=None, min_child_weight=None, missing=nan,
                                                           \verb|monotone_constraints=None, multi\_strategy=None, n_estimators=None, \\
                                                           n_jobs=None, num_parallel_tree=None, random_state=42, ...)
                                                                                                XGBClassifier
                                   XGBClassifier(base_score=None, booster=None, callbacks=None,
                                                            \verb|colsample_bylevel=None|, \verb|colsample_bynode=None|, \\
                                                            colsample_bytree=None, device=None, early_stopping_rounds=None,
                                                            enable_categorical=False, eval_metric='mlogloss',
                                                            feature_types=None, gamma=None, grow_policy=None,
                                                            importance_type=None, interaction_constraints=None,
                                                            learning_rate=None, max_bin=None, max_cat_threshold=None,
                                                            max_cat_to_onehot=None, max_delta_step=None, max_depth=None,
                                                            max_leaves=None, min_child_weight=None, missing=nan,
                                                            monotone_constraints=None, multi_strategy=None, n_estimators=None,
                                                            n_jobs=None, num_parallel_tree=None, random_state=42, ...)
# Get the best parameters
best_params = random_search.best_params_
print("Best Parameters:", best_params)
      Best Parameters: {'subsample': 0.6, 'reg_lambda': 0.5, 'reg_alpha': 0.1, 'n_estimators': 450, 'max_depth': 5, 'learning_rate': 0.01,
# Train the XGBoost model with the best parameters
best_xgb_model = random_search.best_estimator_
# Predict on the test set
y_pred_best_xgb = best_xgb_model.predict(X_test)
# Evaluate the tuned model
print("\nTuned XGBoost Performance:")
print("Accuracy:", accuracy_score(y_test, y_pred_best_xgb))
print(classification_report(y_test, y_pred_best_xgb))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_best_xgb))
         Tuned XGBoost Performance:
         Accuracy: 0.8990046127700898
                                  precision
                                                        recall f1-score
                                                                                           support
                             0
                                                            0.99
                                                                              0.95
                                           0.67
                                                            0.20
                                                                              0.31
                                                                                                1389
                                                                              0.90
                                                                                              12357
                accuracy
                                           0.79
                                                            0.59
              macro avg
                                                                              0.63
                                                                                              12357
         weighted avg
                                           0.88
                                                            0.90
                                                                              0.87
                                                                                              12357
         Confusion Matrix:
```

```
[[10831 137]
[1111 278]]
```

Conlsuion:

- 1. Slight Improvement in Accuracy
- 2. Improved Precision, Decreased Recall
- 3. Trade-Off Between Precision and Recall
- 4. The reduction in false positives suggests the model is better at correctly classifying negatives, which could be valuable if the cost of a false positive is high.

Comparison

1. Accuracy:

Tuned XGBoost: 0.8990 Original XGBoost: 0.8943

2. Precision (Class 1):

Tuned XGBoost: 0.67
Original XGBoost: 0.57

3. Recall (Class 1):

Tuned XGBoost: 0.20
Original XGBoost: 0.24

4. F1-Score (Class 1):

Tuned XGBoost: 0.31
Original XGBoost: 0.33

5. Confusion Matrix:

Tuned XGBoost:

True Negatives (Class 0): 10,831
False Positives (Class 0): 137
False Negatives (Class 1): 1,111
True Positives (Class 1): 278

Original XGBoost:

True Negatives (Class 0): 10,724 False Positives (Class 0): 244