

ANNUAL TECHNICAL CONFERENCE AND EXHIBITION

San Antonio, Texas, USA
9-11 October 2017
Henry B. Gonzalez Convention Center
www.spe.org/atce/2017

Sensitivity study and Assisted History Matching in a shale gas reservoir

Tianwei Li, Mahammad Valiyev

12.01.2021

Contents

- Problem statement
- Overview of workflow
- Results
- Discussion and conclusion

Problem statement

1. Problem:

low permeability in unconventional reservoirs & unknown physics

Solution:

horizontal wells & hydraulic fracturing

2. New problems:

 non-optimal production and nonreliable predictive models due to a lot of uncertainty in reservoir, fracture geometry and properties

Potential solution(s):

 Targeted data acquisition, systematic reservoir modeling, sensitivity analysis and history matching

Sensitivity analysis and History matching basics

Sensitivity analysis -

- Study of how the **uncertainty** in the **output of a mathematical model** can be divided and allocated to **different sources of uncertainty** in its inputs (Wikipedia)
- Determines which parameters have an effect on results and how much
- Single variable (one parameter at a time) and multivariate (multiple parameters) approaches

History matching

- The act of adjusting a reservoir model until it closely reproduces the past behavior of a reservoir (SLB oilfield glossary)
- The accuracy of the history matching depends on the quality of the reservoir model and the quality and quantity of field data.
- Once a model has been history matched, it can be used to simulate future reservoir behavior with a higher degree of confidence
- A range of approaches (manual, assisted, automated), still an open research area

Workflow overview

 Fracture modeling scenarios for Cartesian 55x55x10 shale gas (CH4 gas, 2-phase, GEM, CMG) model, penetrated by single horizonal well

Base case: No fractures

2nd scenario: 4 equally sized and spaced planar fractures

3rd scenario: 10 equally spaced but differently sized fractures

Simulated and observed flow data for the base case (no fractures)

Simulated and observed gas production rates for the base case

<u>Simulated and observed well bottomhole pressure</u> data for the base case

Simulated and observed flow data for the 2nd scenario (4 planar fractures)

<u>Simulated and observed gas production rates for</u> the base case and 2nd scenario

<u>Simulated and observed well bottomhole pressure</u> data for the base case and 3rd scenario

Simulated and observed flow data for the 3rd scenario (10 planar fractures)

<u>Simulated and observed gas production rates for</u> the base case and 3rd scenario

<u>Simulated and observed well bottomhole pressure</u> data for the base case and 3rd scenario

• Sensitivity analysis (both independent single variable and multivariate variation) study of the effect of rock and fracture parameters on gas production and well bottomhole pressure for 2nd scenario (most representative scenario in terms of field data match)

Sensitivity analysis outcome for gas production rate

Sensitivity analysis outcome for bottomhole pressure data

 Having identified the most sensitive parameters to production performance data from sensitivity analysis, the history matching workflow, has been applied to a 3rd scenario (most representative scenario in terms of field data match)

History matching realizations for the gas production rate

History matching realizations for the well bottomhole pressure

Discussion and conclusion

- Structured workflow for reservoir, well, fracture modeling, sensitivity analysis and history matching for a shale gas reservoir has been presented
- Almost perfect matches for the gas production rate, but not quite a perfect one for bottomhole pressure have been obtained.
- To further increase the quality of match we can do one or combination of the following:
- 1. Build a new fracture model, possibly with different number of fracture or more complex fracture network
- 2. Select different or more reservoir and fracture parameters with possibly larger range of values to sample from
- 3. Run history matching algorithm for large number of cases with different optimization algorithms/approaches

San Antonio, Texas, USA 9-11 October 2017 Henry B. Gonzalez Convention Center www.spe.org/atce/2017

Thank You

Questions???

Appendix

Model inputs

 $Table\ 2.\ Relative\ permeability\ model\ input\ parameters\ and\ their\ values$

Table 1. Parameters and their values for reservoir geometry and rock properties

Grid type, number, size of each grid	Cartesian, 55x55x10, 50 ft x 50 ft x 30 ft
Units	field
Matrix porosity	0.0344
Fracture porosity	0.001
Fracture spacing: x, y, z directions	50 ft x 0 ft x30 ft
Matrix permeability: x, y, z directions	0.0001 md, 0.0001 md, 0.00001 md
Fracture permeability: x, y, z direction	0.001 md, 0.001 md, 0.002 md
Rock compressibility	10 ⁻⁶ 1/psi

SWCON	0.2
SWCRIT	0.2
SOIRW	0.2
SORW	0.2
SOIRG	0.05
SORG	0.05
SGCON	0.05
SGCRIT	0.05
KROCW	0.8
KRWIRO	0.8
KRGCL	0.8
Exponent for Krw	2.0
Exponent for Krow	2.0
Exponent for Krog	2.0
Exponent for Krgcl	2.0

Appendix

Model inputs

Table 3. Reservoir initiliazation data		
Reference pressure	2500 psi	
Depth	1050 ft	
Water-gas contact	1500 ft	

Table 4. Well data		
Horizontal		
200 ft (horizontal section)		
0.25 ft		

Table 5. Fracture properties		
Fracture width	0.001 ft	
Fracture permeability	10000 md	
Orientation	Y axis	
Number of refinements in x, y, z directions	7, 7, 1	
Fracture half length	350 ft	
Fracture height	150 ft	
Fracture depth	180 ft	

