Exercise 1.23

Nolan Hauck

Last updated Monday 11th March, 2024 at 21:17

Let \mathcal{A} be the collection of finite unions of sets of the form $(a, b] \cap \mathbb{Q}$ where $-\infty \leq a < b < \infty$.

- **a.** \mathcal{A} is an algebra on \mathbb{Q} .
- **b.** The σ -algebra generated by \mathcal{A} is $\mathcal{P}(\mathbb{Q})$.
- **c.** Define μ_0 on \mathcal{A} by $\mu_0(\emptyset) = 0$ and $\mu_0(A) = \infty$ for $A \neq \emptyset$. Then μ_0 is a premeasure on \mathcal{A} , and there is more than one measure on $\mathcal{P}(\mathbb{Q})$ whose restriction to \mathcal{A} is μ_0 .

Solution. a. We would like to show the collection $\mathcal{E} = \{(a,b] \cap \mathbb{Q} | -\infty \leq a < b \leq \infty\}$ is an elementary family. This, however, is impossible since $\emptyset \notin \mathcal{E}$ (since a < b, there is always at least one rational number in (a,b]. Boohoo.). Instead, we will show that $\mathcal{E}_1 = \{(a,b] \cap \mathbb{Q} | -\infty \leq a \leq b \leq \infty\}$ is an elementary family which generates the same algebra by finite unions. In fact, we could just allow a and b to line up at single point to get the empty set in our collection. Now $\emptyset \in \mathcal{E}_1$ clearly. Let $(a_1,b_1] \cap \mathbb{Q}$ and $(a_2,b_2] \cap \mathbb{Q}$ be in \mathcal{E}_1 . Then without loss of generality, we can assume $(a_2,b_2]$ is "to the right" of $(a_1,b_1]$ i.e. $a_1 \leq a_2$ and $a_1 \leq b_2$. Note this includes the possibility that $(a_2,b_2] \subseteq (a_1,b_1]$, and that

$$((a_1, b_1] \cap \mathbb{Q}) \cap ((a_2, b_2] \cap \mathbb{Q}) = (a_1, b_1] \cap (a_2, b_2] \cap \mathbb{Q}$$
(1)

no matter what. Then there are several cases to handle:

- 1. $b_1 < a_2$ means that $(a_1, b_1] \cap (a_2, b_2] \cap \mathbb{Q} = \emptyset$.
- 2. $b_1 = a_2$ means that $(a_1, b_1] \cap (a_2, b_2] \cap \mathbb{Q} = (a_1, b_2] \cap \mathbb{Q}$.
- 3. $a_2 < b_1 \le b_2$ means that $(a_1, b_1] \cap (a_2, b_2] \cap \mathbb{Q} = (a_2, b_1] \cap \mathbb{Q}$.
- 4. $a_1 \le a_2 < b_2 \le b_1$ means that $(a_1, b_1] \cap (a_2, b_2] \cap \mathbb{Q} = (a_2, b_2] \cap \mathbb{Q}$.

Now suppose $-\infty \le a \le b \le \infty$ and consider $(a, b] \cap \mathbb{Q}$. Then note that we are considering these as subsets of \mathbb{Q} , so the complements we are taking are relative to \mathbb{Q} . Then

$$((a,b] \cap \mathbb{Q})^c = (\mathbb{Q} \setminus (a,b]) \cup (\mathbb{Q} \setminus \mathbb{Q}) = ((-\infty,a] \cap \mathbb{Q}) \cup ((b,\infty) \cap \mathbb{Q})$$
 (2)

So \mathcal{E}_1 is an elementary family on \mathbb{Q} , as a collection of subsets of \mathbb{Q} . By Proposition 1.7, the collection of finite disjoint unions of sets in \mathcal{E}_1 is an algebra on \mathbb{Q} , call it \mathcal{A}_1 .

Suppose $A \in \mathcal{A}$. Then A is a finite union of sets from \mathcal{E} , say $A = \bigcup_{j=1}^{N} (a_j, b_j]$ where $-\infty \leq a_j < b_j \leq \infty$ for all $j = 1, \ldots, N$. Let $(a_{j_1}, b_{j_1}], (a_{j_2}, b_{j_2}]$ be two intervals in this finite union. Then we can assume that $a_{j_1} \leq a_{j_2}$ and $a_{j_1} \leq b_{j_2}$, as we did above (the first to "to the left" of the second). If the two intervals intersect, their intersection is either $(a_{j_1}, b_{j_2}], (a_{j_2}, b_{j_1}],$ or $(a_{j_2}, b_{j_1}],$ all still elements of \mathcal{E} . So we can rewrite the union A as a disjoint union of elements of \mathcal{E}_1 , so $A \subseteq A_1$.

On the other hand, if $A \in \mathcal{A}_1$ with the same expression, we can throw out any intervals with $a_{j_0} = b_{j_0}$ since those will be the empty set. Then A is a union of sets in \mathcal{E} , so $\mathcal{A}_1 \subseteq \mathcal{A}$. Note that the empty set is in \mathcal{A} as an empty (finite) union.

- **b.** Let $b \in \mathbb{Q}$. Then since $\sigma(\mathcal{A})$ is a σ -algebra, it is closed under countable unions and intersections. For every $n \in \mathbb{N}$, $b \frac{1}{n} \in \mathbb{Q}$, so $(b \frac{1}{n}, b] \cap \mathbb{Q} \in \mathcal{A}$. Then $\bigcap_{n=1}^{\infty} (b \frac{1}{n}, b] \cap \mathbb{Q} = \{b\}$. Since \mathbb{Q} is countable, every subset of \mathbb{Q} can be written as a countable union of these singeltons, so $\sigma(\mathcal{A}) = \mathcal{P}(\mathbb{Q})$.
- **c.** We already know $\mu_0(\emptyset) = 0$ so all that remains is to show that μ_0 is additive where it is defined. Let $\{A_j\} \subset \mathcal{A}$ be disjoint so that $\bigcup_{1}^{\infty} A_j \in \mathcal{A}$. Then $\bigcup_{1}^{\infty} A_j = \emptyset \iff A_j = \emptyset$ for all j, so $\mu_0(\bigcup_{1}^{\infty} A_j) = 0 \iff \mu_0(A_j) = 0$ for all j. This proves that μ_0 is a premeasure.

Let μ_1 the measure generated by μ_0 , which agrees with μ_0 on $\sigma(\mathcal{A}) = \mathcal{P}(\mathbb{Q})$ by the HKC theorem (1.11,1.13,1.14 in the book).

Let μ_c be the counting measure on $\mathcal{P}(\mathbb{Q})$. This is certainly a different measure, since finite sets will have finite measure, but any set in \mathcal{A} (other than the empty set) contains infinitely many rationals, by density of rationals. Essentially if there is any space between a and b, then $(a, b] \cap \mathbb{Q}$ is countably infinite. So $\mu_c = \mu_0$ on \mathcal{A} .

Note these measures are not unique because μ_0 is not σ -finite.