

MATHEMATICS EXTENSION 2

4 UNIT MATHEMATICS

GEOMETRY and TRIGONOMETRY

Essential Background Topic

The topics of geometry and trigonometry are essential in the study of most of mathematics and is a fundamental topic in mathematics, physics, chemistry, engineering etc.

- 1. CIRCLE
- 2. TRIANGLE
- 3. TRIGONOMETRIC FUNCTIONS
- 4. TRIGONOMETRIC IDENTITIES and EQUATIONS

Double Angle Formulae

5. SINE and COSINE FUNCTIONS

1 CIRCLE

Equation of a circle: centre (x_C, y_C) and radius a $(x-x_C)^2 + (y-y_C)^2 = a^2$

Circumference $C = 2\pi a$

Area
$$A = \pi a^2$$

In many scientific and engineering calculations **radians** are used in preference to degrees in the measurement of angles. An angle of one radian is subtended by an arc having the same length as the radius.

1 revolution = $360^{\circ} = 2\pi$ rad

The **length of an arc** s of a circle which subtends an angle θ is

$$s = a \theta$$

The ratio of the area of the sector to the area of the full circle is the same as the ratio of the angle θ to the angle in a full circle. The full circle has area $\pi\,a^2$. Therefore

$$\frac{\text{area of sector}}{\text{area of circle}} = \frac{\theta}{2\pi}$$

$$\text{area of sector} = \frac{a^2}{2}\theta$$

2 TRIANGLE

The Theorem of Pythagoras

$$c^2 = a^2 + b^2$$

Trigonometrical ratios in a right-angled triangle

$$\sin(\theta) = \frac{a}{c}$$

Cosine ratio
$$\cos(\theta) = \frac{b}{c}$$

Tangent ratio
$$\tan(\theta) = \frac{a}{b}$$

Cosecant ratio
$$\csc(\theta) = \frac{1}{\sin(\theta)} = \frac{c}{a}$$

Scant ratio
$$\sec(\theta) = \frac{1}{\cos(\theta)} = \frac{c}{b}$$

Cotangent ratio
$$\cot(\theta) = \frac{1}{\tan(\theta)} = \frac{b}{a}$$

$$\theta + \phi = \frac{\pi}{2} \operatorname{rad}$$

opposite side *a*

θ or ϕ	0	30° $\pi/6$ rad	45° $\pi/4$ rad	60° $\pi/3$ rad	90° $\pi/2$ rad
sin	0	1/2	$1/\sqrt{2}$	$\sqrt{3}/2$	1
cos	1	$\sqrt{3}/2$	$1/\sqrt{2}$	1/2	0
tan	0	$1/\sqrt{3}$	1	$\sqrt{3}$	8

Law of Sines

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \qquad \frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

Law of Cosines

$$c^{2} = a^{2} + b^{2} - 2ab\cos(C) \quad \cos(C) = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$
$$a^{2} = b^{2} + c^{2} - 2bc\cos(A) \quad \cos(A) = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$a^{2} = b^{2} + c^{2} - 2b c \cos(A)$$
 $\cos(A) = \frac{b^{2} + c^{2} - a^{2}}{2b c}$

$$b^{2} = a^{2} + c^{2} - 2ac\cos(B) \quad \cos(B) = \frac{a^{2} + c^{2} - b^{2}}{2ac}$$

Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan\left(\frac{a-b}{2}\right)}{\tan\left(\frac{a+b}{2}\right)}$$

Area

$$A = \frac{1}{2} (base) (height)$$
$$A = \frac{1}{2} b h$$

3 TRIGONOMETRIC FUNCTIONS

Knowledge of the trigonometric functions is vital in very many fields of engineering, mathematics and physics.

Sine function $y = \sin(\theta)$

Cosine function $y = \cos(\theta)$

EVEN FUNCTION $\cos(-\theta) = \cos(\theta)$

spacing between blue dots is 30°

Tangent function $y = \tan(\theta)$

ODD FUNCTION $tan(-\theta) = -tan(\theta)$

 $\begin{array}{c} \text{angle} \ \theta \\ \text{[degrees / radians]} \end{array}$

4 TRIGONOMETRIC IDENTITIES and EQUATIONS

$$\sin^{2}(\theta) + \cos^{2}(\theta) = 1$$
$$\sec^{2}(\theta) = 1 + \tan^{2}(\theta)$$

$$\csc^2(\theta) = 1 + \cot^2(\theta)$$

$$\sin(x) = \sqrt{1 - \cos^2(x)} \qquad \cos(x) = \sqrt{1 - \sin^2(x)}$$
$$\tan^2(x) + 1 = \frac{\sin^2(x)}{\cos^2(x)} + 1 = \frac{\sin^2(x) + \cos^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)}$$

$$\sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)$$

$$\sin(\theta - \phi) = \sin(\theta)\cos(\phi) - \cos(\theta)\sin(\phi)$$

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$

$$\cos(\theta - \phi) = \cos(\theta)\cos(\phi) + \sin(\theta)\sin(\phi)$$

$$\tan(\theta + \phi) = \frac{\tan(\theta) + \tan(\phi)}{1 - \tan(\theta)\tan(\phi)}$$

$$\tan(\theta - \phi) = \frac{\tan(\theta) - \tan(\phi)}{1 + \tan(\theta)\tan(\phi)}$$

$$\sin(\theta) - \sin(\phi) = 2\sin\left(\frac{\theta - \phi}{2}\right)\cos\left(\frac{\theta + \phi}{2}\right)$$

$$\cos(\theta) - \cos(\phi) = -2\sin\left(\frac{\theta - \phi}{2}\right)\sin\left(\frac{\theta + \phi}{2}\right)$$

Double angle formulae

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^{2}(x) - \sin^{2}(x) = 2\cos^{2}(x) - 1 \quad \cos^{2}(x) = \frac{1}{2}(1 + \cos(2x))$$

$$\tan(2x) = \frac{\sin(2x)}{\cos(2x)} = \frac{2\sin(x)\cos(x)}{\cos^{2}(x) - \sin^{2}(x)} \quad \div \cos^{2}(x)$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^{2}(x)}$$

$$\cos(2x) = \cos^{2}(x) - \sin^{2}(x) = \cos^{2}(x) \left(1 - \frac{\sin^{2}(x)}{\cos^{2}(x)} \right) = \left(\frac{1}{\sec^{2}(x)} \right) (1 - \tan^{2}(x))$$

$$\cos(2x) = \frac{1 - \tan^{2}(x)}{1 + \tan^{2}(x)}$$

$$\sin(2x) = 2\sin(x)\cos(x) = \frac{2\sin(x)\cos^{2}(x)}{\cos(x)} = \frac{2\tan x}{\sec^{2}(x)}$$

$$\sin(2x) = \frac{2\tan x}{1 + \tan^{2}(x)}$$

The substitution $t = \tan(x/2)$ is often a useful one for integration of trigonometric functions because we can express

$$\sin(x) = \frac{2t}{1+t^2}$$
 $\cos(x) = \frac{1-t^2}{1+t^2}$ $dx = \frac{2 dt}{1+t^2}$

5 SINE and COSINE FUNCTIONS

$\sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)$

$$\phi = 90^\circ = \pi/2 \text{ rad} \quad \sin(\theta + \pi/2) = \cos(\theta)$$

$$\phi = -90^{\circ} = -\pi/2 \text{ rad } \sin(\theta - \pi/2) = -\cos(\theta)$$

$$\phi = 180^{\circ} = \pi \text{ rad } \sin(\theta + \pi) = -\sin(\theta)$$

$$\phi = -180^\circ = -\pi \text{ rad } \sin(\theta - \pi) = -\sin(\theta)$$

 \Rightarrow sine curve shifted to left through $\pi/2$ rad

 \Rightarrow sine curve shifted to right through $\pi/2$ rad

 \Rightarrow sine curve shifted to left through π rad

 \Rightarrow sine curve shifted to right through π rad

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$

$$\phi = 90^{\circ} = \pi/2 \text{ rad } \cos(\theta + \pi/2) = -\sin(\theta)$$

$$\phi = -90^{\circ} = -\pi/2 \text{ rad } \cos(\theta - \pi/2) = \sin(\theta)$$

$$\phi = 180^{\circ} = \pi \text{ rad } \cos(\theta + \pi) = -\cos(\theta)$$

$$\phi = -180^{\circ} = -\pi \text{ rad } \cos(\theta - \pi) = -\cos(\theta)$$

- \Rightarrow cosine curve shifted to left through $\pi/2$ rad
- \Rightarrow cosine curve shifted to right through $\pi/2$ rad
- \Rightarrow cosine curve shifted to left through π rad
- $\Rightarrow \mbox{ cosine}$ curve shifted to right through π rad