Chapitre 5 : Eléments de la couche réseau

Couche réseau

Principaux objectifs de la couche réseau

- Adressage logique ✓
- Routage ✓
- Gestion de la connexion réseau
- Contrôle et gestion des erreurs
- Contrôle et gestion de flux

Historique

1969 :

☐ ARPA (Advanced Research Project Agency) a crée un réseau de commutation de paquets expérimental ARPANET.

1975 :

☐ ARPANET passe du stade expérimental au stade opérationnel

1983 :

- ☐ TCP/IP a été adopté comme norme militaire
- □ DARPA (Defence Advenced Research Projects Agency) implante TCP/IP dans la version BSD d'Unix.
- □ La même année, ARPANET a été scindé en deux réseaux : MILNET et ARPANET.
- ☐ ARPANET + MILNET = INTERNET.

But:

- Acheminement des datagrames d'une machine à une autre par des intermédiaires .
- Adressage logique, indépendant du matériel (distribution supervisée des adresses)
- □ Routage (comment ces adresses sont elles traitées?)
- ☐ Correspondance entre adresse physique et adresse logique (DNS et DHCP)

Le protocole IP définie

- ☐ La taille de l'unité de donnée, sa structure.
- La fonction de routage, comment les machines et les passerelles doivent traiter les paquets.
- ☐ Les messages d'erreur et leurs traitement.

L'entête IP contient

- Version, longueur, priorité, durée de vie, @ source et @ destination.
- Options de routage, de traçage, ...

protocole IP définie dans le RFC 791

Fonctionnalités:

- définir les datagrammes IP
- définir le système d'adressage
- router les datagrammes vers les sites distants
- fragmentation et réassemblage des datagrammes
- faire transiter les datagrammes entre la couche transport et la couche réseau

Caractéristiques d'IP:

protocole en mode non connecté : IP n'échange pas des informations de contrôle

protocole non fiable : pas de détection de pêrtes de datagrammes, pas de garantie de bonne livraison

Introduction

Architecture Internet

Introduction

Architecture Internet

Que fait IP (Internet Protocol RFC 791)?

- IP réalise essentiellement deux fonctions:
- 1.-Fournit une adresse à chaque point terminal.
- 2.-Remet les paquets à leurs destinataires en donnant l'impression d'un lien non-fiable, de meilleur effort et point à point.

Internet Protocol

- Lien **non fiable** car IP <u>ne garantit pas</u> que le paquet arrivera à destination.
- Lien de **meilleur effort** car il n'y a <u>aucune</u> garantie de QoS.
- Lien **point à point** car IP <u>transporte le paquet de son origine à sa destination</u> en consultant des tables de routage.

Internet Protocol

• Puisque IP est indépendant de la couche physique ou liaison, il peut fonctionner sur Ethernet, FDDI, SONET, SDH, CSMA/CA, ALOHA, X25 et ISDN. On verra même que IP peut considérer ATM comme un protocole de la couche liaison (IP sur ATM).

IP Internet Protocol

- Acheminement des datagrammes d'une machine à une autre par des intermédiaires .
- Adressage logique, indépendant du matériel (distribution supervisée des adresses)
- Routage (comment ces adresses sont elles traitées?)
- Correspondance entre adresse physique et adresse logique (ARP, DNS et DHCP: voir plus loin)

0 4	8		16	19	24	4 3·	1
VERS	HLEN	Type de service	Longueur totale				
	Indi- cateurs	Décalage de fragment					
Durée d	e vie	Protocole	Somme de contrôle d'en-			_	
Adresse IP source							
Adresse IP de destination							
Options IP (s'il y a lieu) Remplis						3-	
Données							
•••							

- Entête + Données
- Entête
 - Version : 4 et IHL
 5 mots de 4 octets en général
 - ID, Flags, FO 00 00 si pas de fragmentation
 - Protocol (niveau 4)6 TCP, 17 UDP, ...
 - Habituellement l'entête débute par : 45 00
 - @Source / @Destination

Champ TOS: Type Of Service (rfc 1340; 1349)

Application	Minimise le délai	Maximise le débit	Maximise la fiabilité	Minimise le coût monétaire	Valeur	0
Telnet/Rlogin	1	0	0	0	0x10	
FTP						تت ا
contrôle	1	0	0	0	0x10	
données	0	1	0	0	0x08	1
toute donnée brute	0	1	0	0	0x10	
TFTP	1	0	0	0	0x10	
SMTP						
Phase de commande	1	0	0	0	0x10	سىمل س
Phase de données	0	1	0	0	0x08	
DNS						L_
question UDP	1	0	0	0	0x10	
question TCP	0	0	0	0	0x00	
transfert de zone	0	1	0	0	0x08	
ICMP						
erreur	0	0	0	0	0x00	
question	0	0	0	0	0x00	
tout IGP	0	0	1	0	0x04	
SNMP	0	0	1	0	0x04	
BOOTP	0	0	0	0	0x00	
NNTP	0	0	0	1	0x02	

Anatomie du Datagramme IPv4

Identification: identifie à quel paquet le fragment qui vient d'arriver appartient. Tous les fragments d'un même datagramme ont le même numéro dans ce champ.

Anatomie du Datagramme IPv4

Fanion.- Est composé d'un bit non-utilisé et des bits D (don't fragment), M (more fragment). Si D est allumé il ne faudra pas fragmenter le paquet. Si M est allumé, cela indique qu'il y a d'autres fragments (si =0, c'est le dernier fragment).

Anatomie du Datagramme IPv4

Position relative: indique la position relative du fragment dans le datagramme. Ce champ servira à réassembler le datagramme.

Identification et Fragmentation

- Fragmentation = f(mtu)
- Jamais réassemblé avant l'arrivée
- Identification recopié dans les datagrammes fragmentés

- Fla (X/DF/MF):
 - 1 bit : more fragment (tous sauf le dernier)
 - 1 bit : don't fragment
- OF : OffSet de chaque fragment par rapport au début
- Taille du fragment est recalculée(multiple de 8 octets)

Anatomie du Datagramme IPv4

Temps de vie: ce champs indique quand un paquet devient trop vieux et doit être détruit. Ceci est fait pour éviter des loops qui se forment et causent des problèmes de routage.

TTL

- Time To Live:
 - A quoi sert ce champs?

Anatomie du Datagramme IPv4

ce champ indique le protocole à qui IP va passer le paquet (typiquement TCP ou UDP)

Champ protocole

Démultiplexage

17 UDP

6 TCP

1 ICMP

8 EGP

89 OSPF

Anatomie du Datagramme IPv4

Vérification: une vérification de l'entête est faite pour trouver les paquets corrompus.

Anatomie du Datagramme IPv4

Origine/Destination: ces champs sont utilisés pour déterminer l'adresse de l'origine et de la destination, respectivement.

Anatomie du Datagramme IPv4

Champs d'options: ils ont été créés pour permettre au protocole de traiter des cas spéciaux. Chaque option commence avec un byte qui indique l'option. Options Données

Communication entre les réseaux

Comment établir une communication ?

De quoi a-t-on besoin pour acheminer les données?

- 1- Adresse / Nom de la machine
- 2- Route

2 types d'adresses IP?

Adresses privées
Attribuées par
l'administrateur,
usage interne
seulement!

Adresses publiques

Délivrées par une structure mondiale (ICANN :Internet Corporation for Assigned Names and Numbers), Unicité garantie!

Principe d'adressage IP

Les échanges se basent sur la consultation continue des adresses source et destination de chaque Datagramme.

Adresses sources et de destination

Adresse de destination	Adresse source
32 bits	32 bits

Structure d'une adresse IP

Principales formes d'adresses

Classe A Un octet réseau, trois octets d'hôtes.

Classe B Deux octets réseau, deux octets d'hôtes.

Classe C Trois octets réseau, un octet d'hôte.

Classes d'adresses

Afin de convertir des adresses IP décimales en nombres binaires, vous devez connaître la valeur décimale de chacun des 8 bits de chaque octet. Le bit le plus à gauche de l'octet représente la valeur 128. Cette valeur diminue de moitié à chaque déplacement vers la droite jusqu'à la valeur de 1 à l'extrême droite de l'octet. La conversion ci-dessous n'illustre que le premier octet.

Exemple:

Convertissez le premier octet de 192.57.30.224 au format binaire.

Exemples

```
    Classe A [1.x.x.x; 126.x.x.x]
```

```
2^7 - 1 = 127 \text{ réseaux}
```

$$2^{24}$$
 - 2 = 16,7 millions d'hôtes / réseau

Classe B [128.x.x.x; 191.x.x.x]

```
2^{14} = 16384 réseaux
```

$$2^{16} - 2 = 65534 \text{ hôtes / réseau}$$

• Classe C [192.x.x.; 223.x.x.x]

2²¹ = 2 millions de réseaux

 $2^{8} - 2 = 254 \text{ hôtes / réseau}$

Classe D : spéciale utilisée pour le multicast (RFC 1112)

Classe E: expérimentale, RFC 1700

Exemples

Nombre d'hôtes adressables théoriquement

254 x 16777212 + 16384 x 65534 + 2097152 x 254

 $=3737091588^{-10}$

Adresses particulièrres

0.0.0.0 : Hôte inconnu, sur le réseau

255.255.255 : Tous les hôtes

127. 0.0.1 : boucle locale (machine elle même)

Exemple : Donner le masque de chacune des adresses ?

- 222.11.25.50
- 10.255.14.18
- 192.14.231.0
- 140.14.12.56
- 200.34.45.256
- 24.254.14.28

Adresses spéciales

- Host-Id = 00000...000 -> Réseau
- Host-Id = 11111...111 -> Broadcast
- 127.x.x.x -> loopback

Selon la RFC 1918 les plages d'adresses :

- 10.0.0.0 à 10.255.255.255 -> privé
- 172.16.0.0 à 172.31.255.255 -> privé
- 192.168.0.0 à 192.168.255.255 -> privé

Sous-réseaux et masques?

Un sous-réseau est une subdivision logique d'un réseau de taille plus importante.

Le masque de sous-réseau permet de distinguer la partie de l'adresse utilisée pour le routage de celle utilisée pour la segmentation du réseau.

