CS-603: COMPILER DESIGN

Teaching and Examination Scheme:

Teac	ching S	cheme	Credits		Marks		Duration of End
L	T	P/D	C	Sessional	End Semester	Total	Semester
					Exams		Examination
3	1	0	4	40	60	100	3Hrs

COURSE OBJECTIVE:

The course should enable the students to understand the basic principles of compiler, compiler construction tools, context free grammars and various parsing techniques.

COURSE CONTENT:

UNIT	CONTENT					
		Hrs.				
I	Introduction to compliers: A simple traditional modular compiler, compiler architecture, frontend and backend of compiler, compiler writing tools, properties of good compiler, translators, types of compilers, bootstrapping, regular expressions, finite automata, closure algorithm.					
П	Parsing: Context free grammar, derivation & parse trees, bottom-up parsers: shift reduce, operator precedence, top-down parsers: prediction and backtracking, recursive decent and predictive parser, efficient parsers; LR parsers: LR(0), SLR, LALR, implementation of parsers	10				
Ш	Syntax Directed Translation: Syntax directed program evaluation, different schemes & implementation, immediate code generation, syntax-trees, three address code generation, quadruples triple, translation of assignment statements.	10				
	Code Optimization: Sources of optimization, optimizing transformations: compile time evaluation, common sub expression elimination, dead code elimination, loop optimization, strength reduction, DAG representation of basic blocks, value number & algebraic laws, global data-flow analysis, dominators, reducible flow graphs.					
IV	Code Generation: Major tasks, issues in designing code generators, object programs, basic blocks and flow graphs, a simple code generator, register allocation & assignment code generation from DAG's., peephole optimization.	9				

Text Books:

- 1. Alfred V. Aho, J.D. Ullman, "Principles of Compiler", Narosa Publishing Design.
- 2. Rajesh K. Maurya, "Compiler Design", Dreamtech Press.

Reference Book:

1. D.M. Dhamdhere, "Compiler Construction", Macmillan India Ltd.