Interim Decisions in Adaptive Clinical Trials with Time-to-event Surrogate and Primary Endpoints

Matthias Brückner, Werner Brannath

Competence Center for Clinical Trials, FB3, University of Bremen

Apr. 29, 2016

Introduction

- Overall survival (OS) is often used as primary endpoint in phase 3 oncology trials
- ▶ Progression-free survival (PFS) is used
 - surrogate for OS
 - ▶ in phase 2 trials to inform the phase 3 go/no-go decision
 - make decisions in interim analyses in adaptive trials
- Surrogacy of PFS for OS usually not established
- Risk of false positives (effect in PFS, but no effect in OS)
- Evaluation of decision rules: Model of PFS and OS required

Modelling PFS and OS

Several approaches:

- Model for treatment effects only: Bivariate normal distribution for log-HRs of PFS and OS
- 2. Bivariate survival distributions (e.g. copula approach)
- 3. Multi-state models

Multi-state model

Illness-death model without recovery:

 $\mathsf{P} = \mathsf{Progression}, \, \mathsf{D} = \mathsf{Death}$

General illness-death models

- Assume independent and non-informative censoring
- ▶ Likelihood for transition $0 \rightarrow I$ (I = P, D):

$$L_{0I} \propto \prod_{i=1}^{n} f_{0I}(T_{1i})^{D_{0Ii}} S_{0I}(T_{1i})^{1-D_{0Ii}}$$

$$= \prod_{i=1}^{n} \lambda_{0I}(T_{1i})^{D_{0Ii}} \exp\left(-\int_{0}^{T_{1i}} \lambda_{0I}(t)dt\right)$$

▶ Likelihood for transition P → D:

$$L_{PD} \propto \prod_{i=1}^{n} \lambda_{PD} (T_{2i} \mid T_{1i})^{D_{PDi}} \exp \left(-1\{s_{1i}=1\} \int_{T_{1i}}^{T_{2i}} \lambda_{PD}(t \mid T_{1i}) dt
ight)$$

► Complete Likelihood (e.g. Hougaard (2012))

$$L \propto L_{0P}L_{0D}L_{PD}$$

Joint survival function of PFS and OS

Marginal survival function of PFS:

$$P_{00}(t) = P(PFS > t) = \exp\left(-\int_0^t \left\{\lambda_{0P}(s) + \lambda_{0D}(s)\right\} ds\right)$$

Theorem

$$\begin{split} S(t_1, t_2) &= P(PFS > t_1, OS > t_2) \\ &= \begin{cases} P_{00}(t_2) + \int_{t_1}^{t_2} \exp\left\{-\int_0^s \lambda_{0D}(u) du\right\} \int_{t_2 - s}^{\infty} f(s, u) du ds & t_1 < t_2 \\ P_{00}(t_1) & t_1 \ge t_2 \end{cases} \end{split}$$

where f(s, u) is the joint density of TTP and PPS

Cox illness-death model

We assume a Cox proportional hazards models for each transition:

$$\lambda_{ml}(t \mid Z_i) = \lambda_{0;ml}(t \mid T_{mi}) \exp(\beta_{ml}Z_i)$$

Each factor of the likelihood can be written as a partial likelihood

$$L_{ml}(\beta_{ml}) = \prod_{i=1}^{n} \left\{ \frac{\exp(\beta_{ml}Z_i)}{\sum_{j \in R_{ml}(T_{m+1;i})} \exp(\beta_{ml}Z_j)} \right\}^{D_{ml}}$$

where $R_{ml}(t) = \{i : T_{mi} \le t \le T_{m+1,i}\}$ is the risk set at time t $(T_{0i} = 0)$.

Combination of PFS and OS information

- ▶ Standardize log-rank (score) test statistics Z_{0P} , Z_{0D} and Z_{PD}
- ▶ Likelihood factorization \Rightarrow Z_{0P}, Z_{0D} and Z_{PD} asymptotically independent
- Weights: $w_{0P}^2 + w_{0D}^2 + w_{PD}^2 = 1$
- $Z_w = w_{0P} Z_{0P} + w_{0D} Z_{0D} + w_{PD} Z_{PD}$
- ▶ Asymptotically standard normal if $H_0: \beta_{ml} = 0 \quad \forall m, l$
- ▶ In the absence of prior knowledge about the treatment effects, we set all three weights to $1/\sqrt{3}$

Adaptive enrichment design with subgroup selection

- ▶ Subgroup S, complementary subgroup S^c
- We expect $HR_S < HR_{S^c}$
- ▶ Standardized effects Z_S and Z_{S^c}
- ▶ At interim analysis: Decision thresholds c_1 and c_2 :

$$Z_{S^c} < c_2 \qquad Z_{S^c} \ge c_2$$
 $Z_S < c_1 \quad ext{co-primary} \quad ext{subgroup S only}$ $Z_S \ge c_1 \quad ext{ full only} \quad ext{stop for futility}$

Adaptive enrichment design with subgroup selection

 Z_S and Z_{S^c} are either

- 1. the standardized score from a Cox model for PFS or
- 2. the standardized score from a Cox model for OS or
- 3. the multi-state based score Z_w with all weights equal to $1/\sqrt{3}$

We will also consider Decision rule 1 from Jenkins et al. (2011):

$$HR_F < 0.9$$
 $HR_F \ge 0.9$

$$HR_S < 0.7$$
 co-primary subgroup S only

$$HR_S \ge 0.7$$
 full only stop for futility

Adaptive enrichment design with subgroup selection

- ▶ S only: Reject H_S if $C(pS_1, pS_2) < c_\alpha$ and $C(pSF_1, pS_2) < c_\alpha$
- ▶ F only: Reject H_F if $C(pF_1, pF_2) < c_\alpha$ and $C(pSF_1, pF_2) < c_\alpha$
- ► Co-primary:
 - ▶ Reject H_S if $C(pS_1, pS_2) < c_\alpha$ and $C(pSF_1, pSF_2) < c_\alpha$
 - ▶ Reject H_F if $C(pF_1, pF_2) < c_\alpha$ and $C(pSF_1, pSF_2) < c_\alpha$

Simulations

Setup similar to Jenkins et al. (2011):

- Exponential survival times (Cor(PFS, OS) = 0.7)
- ► Subgroup incidence 40%
- Interim analysis after 200 PFS events
- Patient-wise splitting
- ▶ Final analysis after 250 OS events in Stage 1 and
 - ▶ 200 OS events in stage 2 in case of S only decision
 - ▶ 500 OS events in case of full and co-primary decision
- Inverse-normal combination test + log-rank test of OS at final analysis ($\alpha = 0.025$)

PFS: $HR_S = 1$, $HR_{S^c} = 1$, $HR_F = 1$

OS: $HR_S=1$, $HR_{S^c}=1$, $HR_F=1$

	Selection Probability				Power			
Rule	stop	S only	F only	co-primary	H_S	H_F	Any	
Jenkins	0.76	0.01	0.19	0.04	0.005	0.014	0.017	
MS	0.79	0.10	0.10	0.01	0.009	0.007	0.016	
PFS	0.81	0.09	0.09	0.01	0.007	0.008	0.014	
OS	0.81	0.09	0.09	0.01	0.007	0.007	0.013	

PFS: $HR_S = 0.6$, $HR_{S^c} = 1$, $HR_F = 0.8$

OS: $HR_S = 0.6$, $HR_{S^c} = 1$, $HR_F = 0.8$

	Selection Probability				Power		
Rule	stop	S only	F only	co-primary	H_S	H_F	Any
Jenkins	0.17	0.10	0.13	0.59	0.69	0.61	0.80
MS	0.22	0.68	0.03	0.08	0.75	0.09	0.77
PFS	0.20	0.70	0.02	0.07	0.78	0.09	0.80
OS	0.37	0.53	0.04	0.06	0.59	0.09	0.62

PFS: $HR_S = 0.7$, $HR_{S^c} = 0.7$, $HR_F = 0.7$

OS: $HR_S = 0.7$, $HR_{S^c} = 0.7$, $HR_F = 0.7$

	Selection Probability				Power		
Rule	stop	S only	F only	co-primary	H_S	H_F	Any
Jenkins	0.05	0.00	0.48	0.46	0.43	0.94	0.95
MS	0.14	0.17	0.30	0.40	0.53	0.70	0.86
PFS	0.12	0.18	0.29	0.41	0.54	0.70	0.87
OS	0.26	0.20	0.31	0.24	0.41	0.55	0.74

PFS: $HR_S = 0.7$, $HR_{S^c} = 0.7$, $HR_F = 0.7$

OS: $HR_S=1$, $HR_{S^c}=1$, $HR_F=1$

	Selection Probability				Power			
Rule	stop	S only	F only	co-primary	H_S	H_F	Any	
Jenkins	0.14	0.01	0.54	0.32	0.008	0.018	0.023	
MS	0.56	0.17	0.21	0.06	0.012	0.012	0.023	
PFS	0.25	0.20	0.30	0.24	0.016	0.015	0.025	
OS	0.81	0.09	0.09	0.01	0.008	0.006	0.014	

Discussion

- ▶ Our method is more robust than relying on either PFS or OS only
- Choice of thresholds and weights could be improved using prior information about the treatment effects
- Proportional hazards assumption is not essential
- ▶ Dependent censoring of OS is no problem, when censoring is independent of OS conditional on TTP

References

M. Jenkins, A. Stone, and C. Jennison (2011) An adaptive seamless phase II/III design for oncology trials with subpopulation selection using correlated survival endpoints. Pharmaceutical Statistics (4):0 347–356

Hougaard, P. (2012) Analysis of Multivariate Survival Data. Springer Science & Business Media.

Hsieh, F. Y., Crowley, J., Tormey, D. C. (1983) Some test statistics for use in multistate survival analysis. Biometrika. 70:111–119.

Booth, C.M., Eisenhauer, E.A. (2012) Progression-Free Survival: Meaningful or Simply Measurable? Journal of Clinical Oncology, 30:1030–1033.

Andersen PK (1993) Statistical models based on counting processes. Springer