Конспекты по математике

2 семестр

ИКТ 2021 — 2022

Автор: Даниил Швалов

Оглавление

Глава 1	1. Инте	гралы	3
1.1	Неопр	еделенный интеграл	3
	1.1.1	Непосредственное интегрирование	3
	1.1.2	Свойства неопределенного интеграла	3
	1.1.3	Полезные тригонометрические тождества	3
		Таблица основных интегралов	
	1.1.5	Замена переменной в неопределенном интеграле	4
	1.1.6	Интегрирование по частям	5

Глава 1. Интегралы

1.1. Неопределенный интеграл

1.1.1 Непосредственное интегрирование

Определение.

Функция F(x) называется первообразной для функции f(x), если выполняется следующее:

$$F'(x) = f(x)$$
 или $dF(x) = f(x)dx$

Если функция f(x) имеет первообразную F(x), то она имеет **бесконечное множество первообразных**, причем все они содержатся в выражении:

$$F(x) + C$$
, $C = const$

Неопределенным интегралом от функции f(x) (или от выражения f(x)dx) называется совокупность всех ее первообразных:

$$\int f(x)dx = F(x) + C$$

1.1.2 Свойства неопределенного интеграла

- 1. $(\int f(x)dx)' = f(x)$
- 2. $d(\int f(x)dx) = f(x)dx$
- 3. $\int dF(x) = F(x) + C$
- 4. $\int af(x)dx = a \int f(x)dx, a = const$
- 5. $\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx$

6.
$$\begin{cases} \int f(x)dx = F(x) + C \\ u = \varphi(x) \end{cases} \implies \int f(u)du = F(u) + C$$

1.1.3 Полезные тригонометрические тождества

1.
$$\sin^x + \cos^2 x = 1$$

2.
$$\operatorname{tg} x \cdot \operatorname{ctg} x = 1$$

3.
$$1 + tg^2 x = \frac{1}{\cos^2 x} = \sec^2 x$$

4.
$$1 + \operatorname{ctg}^2 x = \frac{1}{\sin^2 x} = \operatorname{cosec}^2 x$$

1.1.4 Таблица основных интегралов

1.
$$\int dx = x + C$$

2.
$$\int x^m dx = \frac{x^{m+1}}{m+1} + C, m \neq -1$$

$$3. \int \frac{dx}{x} = \ln|x| + C$$

4.
$$\int \frac{dx}{1+x^2} = \operatorname{arctg} x + C$$

5.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

$$6. \int e^x dx = e^x + C$$

7.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

8.
$$\int \sin x dx = -\cos x + C$$

9.
$$\int \cos x dx = \sin x + C$$

10.
$$\int \sec^2 x dx = \operatorname{tg} x + C$$

11.
$$\int \csc^2 x dx = -\operatorname{ctg} x + C$$

12.
$$\int \operatorname{sh} x dx = \operatorname{ch} x + C$$

13.
$$\int \operatorname{ch} x dx = \operatorname{sh} x + C$$

$$14. \int \frac{dx}{\cosh^2 x} = \tanh x + C$$

$$15. \int \frac{dx}{\sinh^2 x} = -\coth x + C$$

16.
$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$$

17.
$$\frac{f'(x)}{\sqrt{f(x)}}dx = 2\sqrt{f(x)} + C$$

18.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

19.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

20.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

21.
$$\int \frac{dx}{\sqrt{x^2 + \lambda}} = \ln|x + \sqrt{x^2 + \lambda}| + C$$

22.
$$\int \frac{dx}{\sin x} = \ln \left| \operatorname{tg} \frac{x}{2} \right| + C$$

23.
$$\int \frac{dx}{\cos x} = \ln \left| \operatorname{tg}(\frac{x}{2} + \frac{\pi}{4}) \right| + C$$

24.
$$\int \operatorname{tg} x dx = -\ln|\cos x| + C$$

25.
$$\int \operatorname{ctg} x dx = \ln|\sin x| + C$$

1.1.5 Замена переменной в неопределенном интеграле

Замена переменной производится с помощью подстановок 2-х типов:

1. Если $x=\varphi(t)$, где $\varphi(t)$ — монотонная, непрерывно дифференцируемая функция новой переменной t, то формула замены переменной:

$$\int f(x)dx = \int f[\varphi(t)] \cdot \varphi'(t)dt$$

2. Если $u=\psi(x)$, где u — новая переменная, то формула замены переменной:

$$\int f[\psi(x)] \cdot \psi'(x) dx = \int f(u) du$$

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$$

где f — табличная функция, а F — первообразная для f.

1.1.6 Интегрирование по частям

Пусть $u = \varphi(x)$, $v = \psi(x)$ — непрерывно дифференцируемы от x. Тогда:

$$\int u dv = u \cdot v - \int v du$$

Целесообразность. В качестве u берется такая функция, которая упрощается при дифференцировании. В качестве dv берется такая функция, что интеграл ее либо известен, либо может быть найден. Например:

- 1. Если $\int P(x)e^{ax}dx$, $\int P(x)\sin(ax)dx$, $\int P(x)\cos(ax)dx$, $\int P(x)$ многочлен, то в качестве u используется P(x), а в качестве $dv-e^{ax}dx$, $\sin(ax)dx$, $\cos(ax)dx$ соответственно.
- 2. Если $\int P(x) \ln x dx$, $\int P(x) \arcsin x dx$, $\int P(x) \arccos x dx$ многочлен, то в качестве u используется $\ln x$, $\arcsin x$, $\arccos x$ соответственно, а в качестве dv многочлен P(x)dx.