Partial translation of JP2000-50212 A

...omitted...

[0009]

[Means for Solving the Problems] According to the present invention, an image display device for converting an input image signal of an interlace system into an image signal of a non-interlace system and displaying the image signal of a non-interlace system, which is characterized by comprising inter-field interpolation means for interpolating pixel data using pixel data at the same position in the preceding field as the pixel data to be interpolated, in-field interpolation means for interpolating pixel data using pixel data on upperand lower lines in the same field, median interpolation means for interpolating pixel data at a median among pixel data on upper and lower lines in the same field and pixel data at the same position in the preceding field as the pixel data to be interpolated, inter-frame difference calculation means for calculating a difference value D1 from pixel data in the 20 preceding frame, in-field difference calculation means for calculating a difference value D2 between upper and lower lines in the same field, interpolation system selection means for subjecting each of the difference values D1 and D2 to threshold processing and alternatively introducing outputs of the inter-field interpolation means, the in-field

interpolation means, and the median interpolation means depending on the result of the threshold processing, and threshold control means for adaptively controlling a threshold used in the interpolation system selection means depending on the motion vector found for each block of the input image signal.

[0010] The present invention is characterized by comprising motion compensation type coded image decoding means using the input image signal as an input, and in that the motion vector detection means takes the motion vector for each block obtained by the motion compensation type coded image decoding means as a motion vector detection output, and is characterized in that the threshold control means produces first and second thresholds T1 and T2 which are changed in inverse proportion to the motion vector, and the interpolation system selection means selects an output of the median interpolation means in a case where D2 > T2, while selecting the output of the in-field interpolation means and the output of the inter-field interpolation means,

20 respectively, if D1 > T1 and D1 \leq T1 in a case where D2 \leq T2.

[0011] According to the present invention, an image display method for converting an input image signal of an interlace system into an image signal of a non-interlace system and displaying the image signal of a non-interlace system is

obtained, which is characterized by comprising an inter-frame difference calculating step for calculating a difference value D1 from pixel data in the preceding frame, an in-field difference calculating step for calculating a 5 difference value D2 between upper and lower lines in the same field, an interpolation system selecting step for subjecting each of the difference values D1 and D2 to threshold processing and selecting any one of the inter-field interpolation system, the in-field interpolation system, and the median interpolation system depending on the result of the threshold processing, and a threshold controlling step for adaptively controlling a threshold used in the interpolation system selecting step depending on the motion vector found for each block of the input image signal. [0012] The present invention is characterized by comprising a motion compensation type coded image decoding step taking the input image signal as an input, and in that the motion vector is a motion vector for each block obtained by the motion compensation type coded image decoding step, and in that the threshold controlling step comprises a step of 20 generating first and second thresholds T1 and T2 which are changed in inverses proportion to the motion vectors, and the interpolation system selecting step comprises a step of selecting the median interpolation system in a case where D2 > T2, and a step of selecting the inter-field interpolation

system and the in-field interpolation system, respectively, if D1 > T1 and D1 \leq T1 in a case where D2 \leq T2. The function of the present invention will be described. In the present invention, a threshold in interpolation system judgment is adaptively controlled depending on the magnitude of a motion vector. specifically, when it is judged that a motion is large by the motion vector obtained by the result of motion vector calculation, a threshold in interpolation system selection 10 is changed such that in-field interpolation is easy to In subjecting a motion amount for each pixel to threshold processing to select an interpolation system, the threshold is adaptively controlled for each block depending on the magnitude of the motion vector. Therefore, the interpolation system can be more accurately selected. Further, the threshold is controlled for each block. Accordingly, continuity occurs in selection of the interpolation system, thereby making it possible to restrain degradation caused by frequent switching, as compared with

...omittéd...

judgment only by a motion amount for each pixel.

(11)Publication number:

2000-050212

(43)Date of publication of application: 18.02.2000

(51)Int.CI.

H04N 7/01

(21)Application number: 10-213383

(71)Applicant:

NEC CORP

(22)Date of filing:

29.07.1998

(72)Inventor:

MURATA HIDEMICHI

(54) IMAGE DISPLAY DEVICE AND IMAGE DISPLAY METHOD THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a converted image with high image quality when converting an interlace signal into a non-interlaced signal. SOLUTION: An interpolation system selection section 4 applies threshold level processing to an inter-frame difference for each pixel calculated by an inter-frame difference calculation section 2 and to an in-frame difference for each pixel calculated by an in-frame difference calculation section 3 respectively, and selects one system among three interpolation systems as inter-field interpolation 7, in-field interpolation 8 and median interpolation 9 depending on the processing result. A motion vector calculation section ${\bf 5}$ calculates a motion vector in unit of blocks and provides an output of it to a threshold level control section 6. The threshold level control section 6 controls the threshold level used by an interpolation system selection section 4, depending on a magnitude of the motion vector in unit of blocks. A scanning line conversion section 10 uses the interpolation system selected by the interpolation system selection section 4 to interpolate the image and provides the output of a non-interlaced signal.

LEGAL STATUS

[Date of request for examination]

29.07.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] [Date of registration] 3293561

05.04.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-50212

(P2000-50212A)

(43)公開日 平成12年2月18日(2000.2.18)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H04N 7/01

H04N 7/01

G 5C063

審査請求 有 請求項の数6 OL (全 7 頁)

(21)出願番号

特願平10-213383

(22)出願日

平成10年7月29日(1998.7.29)

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 村田 英理

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100088812

弁理士 ▲柳▼川 信

Fターム(参考) 50063 BA04 BA09 BA10 BA12 CA01

CA05 CA07 CA23

(54) 【発明の名称】 画像表示装置及び画像表示方法

(57)【要約】

【課題】 インターレース信号をノンインターレース信号に変換する際に高画質な変換画像を得る。

【解決手段】 補間方式選択部4では、フレーム間差分算出部2で算出した画素毎のフレーム間差分とフィールド内差分算出部3で算出したフィールド内差分をそれぞれ関値処理し、その結果に応じてフィールド間補間7、フィールド内補間8、中央値補間9の3つの補間方式の中から1つの方式を選択する。動ベクトル算出部5ではブロック単位に動ベクトルを算出し関値制御部6に出力する。関値制御部6では動ベクトルの大きさに応じて補間方式選択部4で用いる関値をブロック単位に制御する。走査線変換部10では補間方式選択部4で選択された補間方式を用いて補間を行ないノンインターレース信号を出力する。

【特許請求の範囲】

【請求項1】 インターレース方式の入力画像信号をノ ンインターレース方式の画像信号に変換して表示する画 像表示装置であって、前フィールドの同一位置の画素デ ータで補間するフィールド間補間手段と、同一フィール ドの上下ラインの画素データで補間するフィールド内補 間手段と、同一フィールドの上下ラインの画素データと 前フィールドの同一位置の画素データの中央値で補間す る中央値補間手段と、前フレームの画素データとの差分 値D1を計算するフレーム間差分算出手段と、同一フィ 10 ールドの上下ラインの差分値D2を計算するフィールド 内差分算出手段と、前記差分値 D1, D2の各々を閾値 処理し、その結果に応じて前記フィールド間補間手段及 び前記フィールド内補間手段並びに前記中央値補間手段 の各出力を択一的に導出する補間方式選択手段と、前記 補間方式選択手段で用いる閾値を前記入力画像信号のブ ロック単位に求めた動ベクトルに応じて適応的に制御す る閾値制御手段とを含むことを特徴とする画像表示装 置.

【請求項2】 前記入力画像信号を入力とする動き補償 20 型符号化画像復号手段を含み、前記動ベクトル検出手段 は前記動き補償型符号化画像復号手段で得られたブロッ ク単位の動ベクトルを動ベクトル検出出力とすることを 特徴とする請求項1記載の画像表示装置。

【請求項3】 閾値制御手段は、前記動ベクトルに反比 例して変化する第一及び第二の閾値T1, T2を生成す るよう構成されており、前記補間方式選択手段は、D2 >T2の場合に前記中央値補間手段の出力を選択し、D 2≦T2の場合において、D1>T1であれば前記フィ ールド内補間手段の出力を、D1≦T1であれば前記フ 30 ィールド間補間手段の出力を夫々選択するよう構成され ていることを特徴とする請求項1または2記載の画像表 示装置。

【請求項4】 インターレース方式の入力画像信号をノ ンインターレース方式の画像信号に変換して表示する画 像表示方法であって、前フレームの画素データとの差分 値D1を計算するフレーム間差分算出ステップと、同一 フィールドの上下ラインの差分値D2を計算するフィー ルド内差分算出ステップと、前記差分値D1, D2の各 々を閾値処理し、その結果に応じてフィールド間補間方 40 式及びフィールド内補間方式並びに中央値補間方式のい ずれかを選択する補間方式選択ステップと、前記補間方 式選択ステップで用いる閾値を前記入力画像信号のブロ ック単位に求めた動ベクトルに応じて適応的に制御する 閾値制御ステップとを含むことを特徴とする画像表示方 法。

【請求項5】 前記入力画像信号を入力とする動き補償 型符号化画像復号ステップを含み、前記動ベクトルは前 記動き補償型符号化画像復号ステップで得られたブロッ

載の画像表示方法。

【請求項6】 関値制御ステップは、前記動ベクトルに 反比例して変化する第一及び第二の関値T1, T2を生 成するステップと、前記補間方式選択ステップは、D2 > T2の場合に前記中央値補間方式を選択するステップ と、D2≦T2の場合において、D1>T1であれば前 記フィールド内補間方式を、D1≦T1であれば前記フ ィールド間補間方式を夫々選択するステップとを有する ことを特徴とする請求項4または5記載の画像表示方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は画像表示装置及び画 像表示方法に関し、特にインターレース方式の画像信号 をノンインターレース方式に変換して表示するための画 像表示方式に関するものである。

[0002]

【従来の技術】図5はインターレース画像の構成を示す 図である。テレビ等の画像信号はインターレース走査と 呼ばれる飛び越し走査を行なっており、奇数フィール ド、偶数フィールドの組で1枚のフレームを構成してい る。TV (テレビジョン) モニタ上では1/60秒毎に 奇数フィールドと偶数フィールドとを交互に走査し、フ レーム画像は1/30秒毎に変化している。それに対し て、PC(パーソナルコンピュー)等の情報処理システ ムにおける表示用モニタは、図6に示す様に、ノンイン ターレース走査によるフレーム構造を持つ。

【0003】そとで、TV画像やMPEG2等で符号化 されたインターレース画像をPC等のモニタ上に表示す る場合には、インターレースからノンインターレースへ 変換する必要がある。インターレースからノンインター レースに変換する最も単純な方式は、図5に示す2つの フィールドを組み合わせて1枚のフレームとするフィー ルド間補間方式である。とれは、図7に示す様に、補間 したい画素 (被補間画素) Yを一フィールド前の画素値 X24で置換える方式である。

【0004】また、同一フィールド内の上下ラインの画 素値で補間するフィールド内補間方式も知られている。 とれは、図8に示す様に、被補間画素Yを同一フィール ドの上のラインの画素値X33と下のラインの画素値X 35との平均値で置き換える方式である。図9は中央値 補間を示している。とれは、被補間画素Yを、同一フィ ールドの上下ラインの画素値X33とX35、前フィー ルドの画素値X24の中央値で置き換える方式である。 【0005】また、幾つかの補間方式を適応的に選択す るインターレース/ノンインターレース変換方式が特開 平6-315140号公報に記載されている。図10に 示す様に、このインターレース/ノンインターレース変 換方式では、現フィールドと前フィールドの動きを検出 ク単位の動ベクトルであることを特徴とする請求項4記 50 する第1の動き検出手段12と、現フィールドと後フィ

3

ールドの動きを検出する第2の動き検出手段13と、二つの動き検出信号を受けて予め決めた静止画レベル及び動画レベルと比較して制御信号を出力する比較手段14と、比較手段で得られた制御信号に基づいて補間方式を選択し補間する補間手段15とが設けられている。

【0006】かかる構成を有する従来のインターレース //ンインターレース変換方式は次のように動作する。 すなわち、前フィールド、後フィールドどちらかからの フィールド間補間、前フィールドと後フィールドの画素 平均値による補間、現フィールドの上下2ラインからの 10 画素平均値からの補間という3つの補間方式を、動き検 出結果に応じて適応的に選択している。

[0007]

【発明が解決しようとする課題】従来方式の問題は補間方式を適応的に選択する方式を用いると、補間方式の切替えにより劣化が生じることである。その理由は画素毎の動き量から画素毎に独立して補間方式を選択しているために、補間方式の決定に連続性がないことである。もう一つの理由は、切替えの判定基準となる関値の決め方が難しく、関値付近で誤った判定がなされることで、適 20 切な補間方式を選択できないことである。

【0008】本発明の目的は、補間方式の切替えにより 劣化を生じることなく、また適切な補間方式を選択可能 な画像表示装置及び画像表示方法を提供することである。

[0009]

【課題を解決するための手段】本発明によれば、インタ ーレース方式の入力画像信号をノンインターレース方式 の画像信号に変換して表示する画像表示装置であって、 前フィールドの同一位置の画素データで補間するフィー 30 ルド間補間手段と、同一フィールドの上下ラインの画素 データで補間するフィールド内補間手段と、同一フィー ルドの上下ラインの画素データと前フィールドの同一位 置の画素データの中央値で補間する中央値補間手段と、 前フレームの画素データとの差分値D1を計算するフレ ーム間差分算出手段と、同一フィールドの上下ラインの 差分値D2を計算するフィールド内差分算出手段と、前 記差分値D1, D2の各々を閾値処理し、その結果に応 じて前記フィールド間補間手段及び前記フィールド内補 間手段並びに前記中央値補間手段の各出力を択一的に導 出する補間方式選択手段と、前記補間方式選択手段で用 いる閾値を前記入力画像信号のブロック単位に求めた動 ベクトルに応じて適応的に制御する閾値制御手段とを含 むことを特徴とする画像表示装置が得られる。

【0010】そして、前記入力画像信号を入力とする動き補償型符号化画像復号手段を含み、前記動ベクトル検出手段は前記動き補償型符号化画像復号手段で得られたブロック単位の動ベクトルを動ベクトル検出出力とすることを特徴とし、また関値制御手段は、前記動ベクトルに反比例して変化する第一及び第二の関値T1, T2を 50

生成するよう構成されており、前記補間方式選択手段は、D2>T2の場合に前記中央値補間手段の出力を選択し、 $D2\leq T2$ の場合において、D1>T1であれば前記フィールド内補間手段の出力を、 $D1\leq T1$ であれば前記フィールド間補間手段の出力を夫々選択するよう構成されていることを特徴とする。

[0011] 本発明によれれば、インターレース方式の入力画像信号をノンインターレース方式の画像信号に変換して表示する画像表示方法であって、前フレームの画素データとの差分値D1を計算するフレーム間差分算出ステップと、同一フィールドの上下ラインの差分値D2を計算するフィールド内差分算出ステップと、前記差分値D1、D2の各々を関値処理し、その結果に応じてフィールド間補間方式及びフィールド内補間方式並びに中央値補間方式のいずれかを選択する補間方式選択ステップと、前記補間方式選択ステップと、前記補間方式選択ステップと、前記補間方式選択ステップと、前記補間方式選択ステップとを含むことを特徴とする画像表示方法が得られる。

[0012] そして、前記入力画像信号を入力とする動き補償型符号化画像復号ステップを含み、前記動ベクトルは前記動き補償型符号化画像復号ステップで得られたブロック単位の動ベクトルであることを特徴とし、また関値制御ステップは、前記動ベクトルに反比例して変化する第一及び第二の関値T1、T2を生成するステップと、前記補間方式選択ステップは、D2>T2の場合に前記中央値補間方式を選択するステップと、D2≦T2の場合において、D1>T1であれば前記フィールド間補間方式を大々選択するステップとを有することを特徴とする。

【0013】本発明の作用を述べる。本発明では、動べクトルの大きさにより補間方式判定関値を適応制御するものであり、より具体的には、動ベクトル算出結果により得られた動ベクトルによって動きが大きいと判定された時には、フィールド内補間を選択し易くなるように、補間方式選択の関値を変化せしめる。画素毎の動き量を関値処理し補間方式を選択する際、この関値を動ベクトルの大きさによってブロック毎に適応制御するため、より正確な選択ができる。また、ブロック単位に関値を制御するため、画素単位の動き量だけによる判定よりも補間方式の選択に連続性が生じ、切替えが頻繁に行なわれることによる劣化を抑えることができる。

[0014]

【発明の実施の形態】次に、本発明の実施の形態について図面を参照して詳細に説明する。図1を参照すると、本発明の第1の実施の形態は、フレームメモリ1と、前フレームとの差分を計算するフレーム間差分算出部2と、同一フィールド内の上下ラインの差分を計算するフィールド内差分算出部3と、フレーム内差分値とフィー

ルド間差分値を基に画素単位に補間方式を選択する補間方式選択部4と、画素を予め定められた複数画素からなるブロック単位に動ベクトルを算出する動ベクトル算出部5と、動ベクトルの大きさに応じて補間方式選択部4で用いる関値をブロック単位に適応制御する関値制御部6と、1フィールド前の同一位置の画素データで補間するフィールド間補間部7と、同一フィールドの上下ラインの平均値で補間するフィールド内補間部8と、同一フィールドの上下ラインの画素と1フィールド前の画素値の中央値で補間する中央値補間部9と、選択された補間10方式を用いて走査線変換を行なう走査線変換部10と含む。

【0015】補間方式選択部4では、フレーム間差分算 出部2で算出したフレーム間差分とフィールド内差分算 出部3で算出したフィールド内差分をそれぞれ関値処理 し、その結果に応じてフィールド間補間7、フィールド 内補間8、中央値補間9の3つの補間方式の中から1つ を選択する。

【0016】いま、フレーム間差分算出部2で算出したフレーム間差分をD1、フィールド内差分算出部3で算20出したフィールド内差分をD2、補間方式選択部4で用いる関値をT1、T2とすると、D1≦T1でありかつD2≦T2の場合には静止領域と判定し、フィールド間補間7を選択する。D1≦T1でありかつD2>T2の場合には静止領域であるが境界が存在している可能性があるので、中央値補間9を選択する。D1>T1でありかつD2≦T2の場合には動領域としてフィールド内補間8を選択する。D1>T1でありかつD2>T2の場合には動領域でありかつ境界が存在する可能性があるので中央値補間を選択する。30

【0017】動ベクトル算出部5では、画像を、例えば8×8画素等の複数の画素からなるブロック単位に分割し、当該ブロック単位に動ベクトルを夫々算出し、閾値制御部6に出力する。入力画像信号であるインタレース信号がMPEG2の様な動き補償型画像圧縮を行った画像を復号したものである場合には、復号の過程で得られる動ベクトルを用いても良い。

【0018】関値制御部6では、動ベクトルの大きさに応じて補間方式選択部4で用いる関値T1, T2をブロック毎に決定する。関値T1, T2の決定方法としては、例えば動ベクトルと関値T1との関係を図2(a)に示す様に反比例の関係になるように定め、動ベクトルの大きさに応じて補間方式選択部4で用いる関値T1を決定する。すなわち、動ベクトルの大きさが大きい場合にはT1の関値を下げるようにする。また、関値T1とT2との関係を図2(b)に示す様に定め、関値T1の値に応じて関値T2の値を決定する。これにより、動ベクトルが大きいときには、関値T1, T2が小さくなる様に制御されるので、動ベクトルが大きい場合には、フィールド内補間を選択しやすくなる。

【0019】動ベクトル、閾値T1,T2の関係は、動ベクトルが大きい場合にはフィールド内補間を選択しやすくなる様に定めるものとすれば、図2(a),(b)以外の関係を使用しても良いものである。また、具体的な閾値T1,T2の算出方法としては、関係式から算出することもでき、また動ベクトルの値に応じて、予め準備されている閾値T1,T2のテーブルを索引することで、閾値T1,T2を決定しても良い。

【0020】次に、図3のフローチャートを参照しつつ本発明の実施の形態の動作を説明する。ステップS1では、動ベクトル算出部5において、入力画像信号を複数画素からなるブロックに分割してブロック単位に動ベクトルを算出する。との算出された動ベクトルの値を閾値制御部6へ送出する。閾値制御部6では、まずステップS2で、図2(a)に示した動ベクトルと閾値T1との関係から、ステップS1で算出された動ベクトルの値に応じて閾値T1を求める。次に、ステップS3において、図2(b)で示した閾値T1とT2との関係から、ステップS2で求めた閾値T1と応じて閾値T2を定める

【0021】そして、ステップS4において、フレーム間差分値D1を、ステップS5でフィールド内差分値D2を、夫々フレーム間差分算出部2及びフィールド内差分算出部3で夫々算出する。補間方式選択部4では、ステップS2~S4で算出された関値T1、T2、フレーム間差分値D1、フィールド内差分値D2を基に、補間方式を決定する。

【0022】すなわち、先ず、ステップS6において、フィールド内差分値D2と閾値T2とを比較し、D2がT2以下であれば、ステップS7へ進む。ステップS7では、フレーム間差分値D1と閾値T1とを比較し、D1がT1より大であれば、ステップS9へ進みフィールド内補間を行う。D1がT1以下であれば、ステップS8へ進みフィールド間補間を行う。また、ステップS6で、D2がT2より大であれば、ステップS10へ進み中央値補間を行う。

【0023】ステップS11では、プロック単位の処理が終了したかどうかを調べ、終了していなければ、ステップS4へ戻り、ステップS4~S11のブロック単位の処理を繰り返すのである。

【0024】図4は本発明の他の実施の形態を示すブロック図であり、図1と同等部分は同一符号にて示している。本例では、図1の動ベクトル算出部5のかわりに、動き補償型符号化画像復号部11で得られた動ベクトルを利用する。とれによって動ベクトル算出の演算量を大幅に削減するととができる。

[0025]

【発明の効果】第1の効果は、動物体の輪郭が二重になったり、解像度が低下したり、細線が消えるといった、50 補間方式による劣化を抑えて高画質な変換画像を得られ

ることである。その理由は、フィールド間補間、フィールド内補間、中央値補間の中から適した補間方式を選択しているためである。

【0026】第2の効果は、補間方式がばらついたり、適切でなかったりすることによる劣化を生じないことである。その理由は動静判定の手段として、画素単位のフレーム間差分値とフィールド内差分値だけでなく、ブロック単位の動ベクトルの大きさを考慮して動領域においてフィールド内補間を選択し易く関値を制御しているためである。また、画素単位の差分値以外にブロック単位 10の動ベクトルの大きさに応じた制御を行なうことで、補間方式に領域毎の連続性が生じるためである。

【図面の簡単な説明】

【図1】本発明の一実施の形態の構成を示すブロック図である。

【図2】関値制御部6における関値T1及びT2の動べクトルに対する制御態様の例を示す図である。

【図3】図1のブロックの動作を示すフローチャートである。

【図4】本発明の他の実施の形態の構成を示すブロック*20

*図である。

- 【図5】インターレース走査を示す図である。
- 【図6】 ノンインターレース走査を示す図である。
- 【図7】フィールド間補間を示す図である。
- 【図8】フィールド内補間を示す図である。
- 【図9】中央値補間を示す図である。
- 【図10】従来方式の構成を示すブロック図である。 【符号の説明】
- 1 フレームメモリ
- 0 2 フレーム間差分算出部
 - 3 フィールド内差分算出部
 - 4 補間方式選択部
 - 5 動ベクトル算出部
 - 6 閾値制御部
 - 7 フィールド間補間部
 - 8 フィールド内補間部
 - 9 中央値補間部
 - 10 走査線変換部
 - 11 動き補償型符号化画像復号部

[図10]

