統計データ処理

HI4 45 号 山口惺司

実施日:2024/04/24

2024/05/01

レポート提出日:2024/05/11

1. 実験目的

Rの統計処理に関するプログラミングを理解し,2変量(変数)データまでの統計処理ができる.

2. 課題

2.1. 課題1

Excel の CSV 形式のデータの入力例について,データの一部,スクリプト,実行結果を説明せよ. Excel のデータを表 1 に示す.

JC I Exect / C / / /							
Sex	ht	wt	high				
F	170.4	66.8	high				
F	171.3	66.8	high				
F	159.1	58.1	low				
F	145.9	49	low				
M	171	83.3	high				
M	175.8	78.3	high				
M	170.1	55.2	high				
M	165.7	71	low				

表 1 Excel サンプルデータ

ソースコード:

data <- read.csv("exampledata.csv")
print(data)</pre>

説明:

一行目で Excel のデータを読みこみ,二行目で出力している.

2.2. 課題 2

テキスト 2 の 6 章~9 章の課題 1,2 のそれぞれについて,スクリプト,実行結果を示し,説明せよ.ただし,6 章の課題 1 については,収縮期血圧,拡張期血圧,へモグロビン A1c のヒストグラムとボックスプロットを作成せよ.

6章:

課題 1.

demodata.csv のなかのデータの収縮期血圧: sbp, 拡張期血圧: dbp, ヘモグロビン A1c: ha1c,のヒストグラムとボックスプロットを描け.

ソースコード:

data <- read.csv("demodata.csv")</pre>

hist(data\$sbp)

boxplot(data\$sbp)

hist(data\$dbp)
boxplot(data\$dbp)
hist(data\$ha1c)
boxplot(data\$ha1c)

実行結果:

図 1~6 に示す.

図1 収縮期血圧:sbp のヒストグラム

図2 収縮期血圧:sbp のボックスプロット

図3拡張期血圧:dbpのヒストグラム

図 4 拡張期血圧:dbp のボックスプロット

図 5 ヘモグロビン A1c:ha1c のヒストグラム

図 6 ヘモグロビン A1c:ha1c のボックスプロット

説明:

任意の要素について hist 関数でヒストグラム,boxplot 関数でボックスプロットをしている.

課題 2.

動脈硬化指数(AI)は以下のように定義される.この指数の要約統計量を求め,ヒストグラムとボックスプロットを描け.

動脈硬化指数 =
$$\frac{TC-HDL_C}{HDL_C}$$

ソースコード:

data <- read.csv("demodata.csv")</pre>

tc <- data\$tc

hdlc <- data\$hdlc

ai <- (tc - hdlc) / hdlc

hist(ai)

boxplot(ai)

実行結果:

図 7,8 に示す.

0 2 4 6 8 10 12

図7動脈硬化指数:AIのヒストグラム

図8 動脈硬化指数:AI のボックスプロット

説明:

変数 tc,hdlc に data の tc と hdlc を取り出し,代入している.

hist()関数でヒストグラム,boxplot()関数でボックスプロットをしている.

7章:

課題 1.

x = c(1,2,3,4,5,6)のなかで,以下の条件式を満たす成分を取り出す式と結果を記せ.

(1)3より大きく,5より小さい

式: x[c((3 < x) & (x < 5))]

結果:4

(2) 3 より小さいか.5 より大きい

式: x[c((3>x) | (x>5))]

結果:126

(3) 3以下か,5以上

式: $x[c((x \le 3) \mid (x \ge 5))]$

結果:12356

(4) 2 と 6 でない

式: x[c((x!=2) | (x!=6))]

結果:123456

(5) 3 ではなく,かつ 1 以上 5 以下

式: x[c((x!=3) & (x >= 1) & (x <= 5))]

結果:1245

説明:

<,>,<=,>=,!=,==,&,|などの演算子を用いて,条件式を満たす成分を取り出している.

8章:

課題 1. minidata.csv を使って以下の問いに答えよ.

(1) 身長 150cm 未満の行データのみ抜き出す式を書け.

式: data[ht < 150,]

(2) 身長 150cm 以上, 170cm 未満の行データのみ抜き出す式を書け.

式: data[ht >= 150 & ht < 170,]

(3) 身長 150cm 以上, 170cm 未満で, 女性のデータのみ抜き出す式を書け.

式: data[ht \geq 150 & ht < 170 & sex == 'f'.]

課題 2. demodata.csv を使って、以下の問いに答えよ.

(1) 男性のデータを変数"mdata", 女性のデータを変数"fdata"とするように式を書け、

(2) 男性の身長 ht,体重 wt のヒストグラムを描け.

hist(mdata\$ht)

hist(mdata\$wt)

実行結果:

図 9,10 に示す.

図9 男性の身長 ht のヒストグラム

図 10 男性の身長 wt のヒストグラム

(3) 女性の身長 ht,体重 wt のヒストグラムを描け.

ソースコード:

hist(fdata\$ht)

hist(fdata\$wt)

実行結果:

図 11,12 に示す.

図 11 女性の身長 ht のヒストグラム

図 12 女性の身長 wt のヒストグラム

(4) 男性の身長 ht,体重 wt の要約統計量(平均・標準偏差・メジアン・四分位範囲)を求めよ. ソースコード:

print(summary(mdata\$ht))
print(sd(mdata\$ht))
print(summary(mdata\$wt))
print(sd(mdata\$wt))

実行結果:

Min. 1st Qu. Median Mean 3rd Qu. Max. 151.2 165.8 170.4 170.2 174.4 186.7 [1] 5.942523

Min. 1st Qu. Median Mean 3rd Qu. Max. 43.90 59.42 66.10 66.92 72.80 110.30 [1] 10.25974

(5) 女性の身長 ht,体重 wt の要約統計量(平均・標準偏差・メジアン・四分位範囲)を求めよ. ソースコード:

```
print(summary(fdata$ht))
print(sd(fdata$ht))
print(summary(fdata$wt))
print(sd(fdata$wt))
```

実行結果:

説明:

条件を満たす任意の要素を取り出し,hist()関数や boxplot()関数を用いてグラフにしている. また,summary()関数,sd()関数を用いて要約統計量(平均・標準偏差・メジアン・四分位範囲)を求めている.

9章:

課題 1: demodata.csv のデータについて以下の問いに答えよ. 関数 cut()を使うと、量的変数を質的変数に変換することができる. 収縮期血圧 sbp を質的変数に置き換えて,sbpclass という変数に入れる. sbpclass=cut(data\$sbp, breaks=c(120,130,140,160,180), right=F) 同様に、拡張期血圧も質的変数に置き換えて、dbpclass という変数に入れる. dbpclass=cut(data\$dbp,breaks=c(0,80,85,90,100,110,Inf),right=F)

(1) こうしてできた 2 つの質的変数 sbpclass と dbpclass を要約せよ. ソースコード:

print(table(sbpclass, dbpclass))

実行結果:

dbpclass

sbpclass	[0,80)	[80,85)	[85,90)	[90,100)	[100,110)	[110,Inf)
[120,130)	198	58	11	5	0	0
[130,140)	55	36	21	15	0	0
[140,160)	3	9	4	12	4	0
[160,180)	0	0	0	2	4	3

(2) 変数 sex と sbpclass を要約せよ.

print(table(data\$sex, sbpclass))

実行結果:

Sbpclass

(3) 変数 sex と dbpclass を要約せよ.

print(table(data\$sex, dbpclass))

実行結果:

dbpclass

課題 2: demodata.csv のデータについて以下の問いに答えよ.

(1) BMI (Body Mass Index)を表す新しい変数 bmi を定義する式を書け.

式:bmi <- data\$wt / (data\$ht/100)^2

(2) 変数 bmi と fat の散布図と相関係数を求めよ.

実行結果:

[1] 0.7021726

出力した散布図を図13に示す.

図 13 bmi と fat の散布図

(3) 変数 fat と tc の散布図と相関係数を求めよ.

ソースコード:

plot(data\$fat, data\$tc)
print(cor(data\$fat, data\$tc))

実行結果:

[1] 0.2163313

出力した散布図を図14に示す.

図 14 fat と tc の散布図

(4) 変数 fat と ggt の散布図と相関係数を求めよ.

ソースコード:

plot(data\$fat, data\$ggt)
print(cor(data\$fat, data\$ggt))

実行結果:

[1] 0.01587683

出力した散布図を図15に示す.

図 15 fat と ggt の散布図

説明:

cut()関数で sbp と dbp を区切り,それぞれ新しい変数 sbpclass,dbpclass に入れた. table()関数にて,2つのデータを要約している. cor()関数で,相関係数を求めている.

plot()関数で,散布図を描いている.

2.3. 課題3

R のデータセット iris(教科書 p.104, 105 参照)についてデータの要約を行い,その実行例について, スクリプト,実行結果を示し,説明せよ.

```
ソースコード:
```

```
print(summary(iris))
panel.pearson <- function(x, y, ...) {
   horizontal <- (par("usr")[1] + par("usr")[2]) / 2;
   vertical <- (par("usr")[3] + par("usr")[4]) / 2;
   text(horizontal, vertical, format(abs(cor(x,y)), digits=2))
}
plot(iris[1:4], main = "Edgar Anderson's Iris Data", pch = 21, bg =
   c("red", "green3", "blue")[unclass(iris$Species)], upper.panel=panel.pearson)</pre>
```

実行結果:

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50
```

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50

Median: 5.800 Median: 3.000 Median: 4.350 Median: 1.300 virginica: 50

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800 Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

出力したグラフを図 16 に示す.

Edgar Anderson's Iris Data

図 16 データセット iris の要約

説明:

summary()関数でデータの要約をしている.

グラフではウォーリック大学の「Plotting the Iris Data」という記事を参考にし,右上の方に 相関係数,左下の方に散布図を表示させている.

2.4. 課題 4

demodata.csv の中の収縮期血圧 sbp,拡張期血圧 dbp を図 17 のようにカテゴリー化せよ.その際, 「正常血圧」=bp1,「正常高値血圧」= bp2, 「高値血圧」=bp3,「I 度高血圧」=bp4,「II 度高血圧」=bp5,「III度高血圧」=bp6 と命名し,それぞれのカテゴリーに入る人を数えよ.

図 17 拡張期血圧と収縮期血圧のカテゴリー

```
ソースコード:
   data <- read.csv("demodata.csv")</pre>
   dbp <- data$dbp
   sbp <- data$sbp
   id <- data$id
   bp1 < -id[(dbp < 80) & (sbp < 120)]
   bp2 < -id[(dbp < 80) & (sbp < 130)]
   bp3 <- id[(dbp < 90) & (sbp < 140)]
   bp4 < -id[(dbp < 100) & (sbp < 160)]
   bp5 <- id[(dbp < 110) & (sbp < 180)]
   bp6 < -id[(110 <= dbp) \mid (180 <= sbp)]
   bp5 <- setdiff(bp5, bp4)
   bp4 <- setdiff(bp4, bp3)
   bp3 <- setdiff(bp3, bp2)
   bp2 <- setdiff(bp2, bp1)</pre>
   print(length(bp1))
   print(length(bp2))
   print(length(bp3))
   print(length(bp4))
   print(length(bp5))
   print(length(bp6))
```

実行結果:

- [1] 1180
- [1] 198
- [1] 201
- [1] 48
- [1] 10
- [1] 3

説明:

id をもとにカテゴリー化させた.

setdiff()関数は setdiff(a,b)のような使い方をし、これは a の要素から b の要素を取り除くというものである.

この関数を使い,重複する id を取り除いている.

3. 感想

今まで Python でグラフの作成をしていたが、R を使った方がより簡単にグラフを作成することができるため、驚いた.

データ処理に必要な関数がデフォルトで豊富に入っており、やはり R はデータ処理に適した言語なのだと改めて感じた.

4. 参考文献

University of Warwick Plotting the Iris Data

https://warwick.ac.uk/fac/sci/moac/people/students/peter cock/r/iris plots/