Amendments to the Claims:

The listing of claims below will replace all prior versions and listings of claims in the application:

Listing of Claims:

1. (Original) Nucleoside derivatives, of the general formula I,

$$R_5$$
 R_6
 R_7
 R_8
 R_7
 R_8
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9

wherein

R₁ represents a nucleobase or a nucleobase provided with at least one protective group,

R₂ indicates an H atom or a diisopropylamino-(2-cyanoethoxy)phosphinyl group of the formula IV

R₃ is an H atom or an alkyl residue with up to 4 C atoms,

R₄ represents an H atom, a nitro group or an alkyl residue with up to 4 C atoms,

R₅ and R₆, independently of one another, represent an H atom, an alkyl residue with up to 4 C atoms, or an alkoxy residue with up to 4 C atoms or together represent a methylenedioxy group,

 R_7 is an H atom or an alkyl residue with up to 4 C atoms.

- 2. (Original) The nucleoside derivatives according to claim 1, further characterized in that R₁ is adenine, cytosine, guanine, thymine, uracil or hypoxanthine, which optionally bear a protective group.
- 3. (Previously presented) The nucleoside derivatives according to claim 1, further characterized in that R_3 is an H atom, a methyl or an ethyl group.
- 4. (Previously presented) The nucleoside derivatives according to claim 1, further characterized in that R_4 is an H atom, a nitro group or a methyl group.
- 5. (Original) The nucleoside derivatives according to one of the preceding claims, further characterized in that R₅ and R₆, independently of one another, represent an H atom, or a methyl, ethyl, methoxy or ethoxy group or together form a methylenedioxy group.
- 6. (Currently amended) A method for the production of a nucleoside derivative of the general formula I

$$R_5$$
 R_6
 R_7
 R_8
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9

wherein the residues R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and R_7 have the meaning given in claim 1, wherein a compound of the general formula II, which is known in and of itself

wherein the residues R_3 , R_4 , R_5 , R_6 and R_7 as well as n [sie] have the meaning indicated in claim 1, is reacted with thiophospene and the thus-obtained thiocarbonyl chlorides are reacted with a compound of the general formula III

wherein the residues R₁, and R₂ have the meaning indicated in claim 1.

- 7. (Currently amended) Use of A method of synthesizing an oligonucleotide comprising loading the nucleoside derivatives according to claim 1—for the automatic synthesis—of oligonucleotides into at least one of an automatic oligonucleotide synthesizer and a pipetting robot and then operating said automatic oligonucleotide synthesizer and/or pipetting robot to synthesize an oligonucleotide using said nucleoside derivatives.
- 8. (Currently amended) A kit for the automatic synthesis of oligonucleotides comprising at least one nucleoside derivative according to claim 1, optionally together with other nucleoside derivatives according to claim 1 and suitable reagents, and adjuvants, as well as solvents and operating instructions for the automatic synthesis of oligonucleotides.