Model Ideal Code ▼ **Load Libraries** Hide library(glmnet) # create model library(caret) # ml library library(tidyverse) # common libraries **Load Data** Hide df<-read.csv("rent-amount-clear-preprocesing.csv")</pre> Hide attach(df) **Split Data** Hide set.seed(2018) # random state training.ids<-createDataPartition(rent.amount,p=0.7,list = F)</pre> train_data<-df[training.ids,] # select train data index</pre> test_data<-df[-training.ids,] # select test data index</pre> Hide X_train<- train_data %>% select(-rent.amount) X_train<-as.matrix(X_train)# transform to matrix</pre> Y_train<-train_data\$rent.amount X_test<- test_data %>% select(-rent.amount) X_test<-as.matrix(X_test) # transform to matrix</pre> Y_test<-test_data\$rent.amount **Model Creation** Hide lm_ridge<-glmnet(x=X_train, y=Y_train, alpha = 0.01, lambda = 0.001)</pre> We assign the same parameters of the best model, which we had previously estimated. Hide predict_model<-function(data){</pre> y_pred<-predict(lm_ridge,newx =data)</pre> y_pred<-as.vector(y_pred)</pre> Hide pred_train<-predict_model(X_train)</pre> pred_test<-predict_model(X_test)</pre> Hide train_data<- train_data %>% mutate(predictions=pred_train) test_data<- test_data %>% mutate(predictions=pred_test) **MSE** Measures the average error between the predicted value and the original. Train Hide train_data %>% summarise(mse=RMSE(predictions, rent.amount)) mse <dbl> 0.1915118 1 row Hide Test Hide test_data %>% summarise(mse=RMSE(predictions,rent.amount)) mse <dpl> 0.2210363 1 row R^2 It measures the degree of fit of the model. The higher the value, the better the model fit. Hide train_data %>% summarise(mse=R2(predictions, rent.amount)) mse <dpl> 0.9392662 1 row Hide test_data %>% summarise(mse=R2(predictions, rent.amount)) mse <dpl> 0.9176224 1 row Both metrics are very similar. Therefore, it indicates that our model is not overtrained. This means that the model is only good for the training data but it is unable to generalize with new data that it has never seen. **Exponential transformation** Hide test_data<-test_data %>% mutate(rent.amount=exp(rent.amount)) %>% mutate(predictions=exp(predictions)) Let us remember that the rent.amount variable is in logarithmic scale and we perform the exponential transformation because it is its opposite operation. Hide test_data %>% ggplot(aes(x=rent.amount,y=predictions))+ geom_point(color="green",alpha=0.15) + geom_abline(intercept = 0, slope = 1, color="red", lwd=2) + $theme_bw() +$ labs(title = "True Values vs Predicted Values", x="True values", y="Predicted Values") True Values vs Predicted Values 15000 -Predicted Values 5000 5000 10000 15000 True values

The value		
		Hid
test_data %>% select(rent.amount	,predictions) %>% head(50)	
	rent.amount	predictions
	<qpl></qpl>	<qpi><qpi><</qpi></qpi>
7	5000	4578.1800
10	2900	2905.8427
11	720	833.7263
15	3950	4048.1007
17	3010	3235.8558
18	3500	3670.0866
19	7800	7240.4806
23	3500	3564.3342
27	6500	5467.9499
29	1800	1881.6973
1-10 of 50 rows		Previous 1 2 3 4 5 Next

In most predictions, it gives predictions very close to the original value.

Save Model