IPv6-Addresses in brief

"My subnet is bigger than your Internet!"

- There are $2^{128} \approx 3.4*10^{35}$ IPv6 addresses!!
- It's about 6.6*10¹⁸ addresses per m² Earth
- started 1999 → It's now 20 years old!!!!

Why IPv6?

- Bigger address-space
- You are not the owner of your IP-address!
- Optmization of the old IPv4 packets
 - Mobile IP
 - Security and encryption
 - Broadcasts are replaced by multicasts
 - Auto-configuration / Privacy extension
 - QoS as a part of protocol
 - Header optimized
 - HEX not Decimal-Numbers
 - No address-wasting (e.g. local-host)

A CAUTION

Legacy IP Only

This product does not support the current generation of the Internet Protocol, IPv6.

IPv6-Header

0 Bit	4 8		12	16	20	24	28	32	
Version	Traffic C	lass	Flowlabel						
Payload Length			Ne	xt Header		Hop Limit	12		
Source IP									
Destination IP									
Vers Traff	ion ic Class		1P-Version-Num Qual ity of Serv		riority Value				

Version	4Bit	1P-Version-Number
Traffic Class	8Bit	Qual ity of Service (QoS): Priority Value
Flow Label	20Bit	also a QoS-Value for time-critical and real-time transmissions
Payload Next	16Bit	Length of Payload-field in Byte
Header Hop	8Bit	Identifier of Header in Payload-Field e.g. TCP (6) / UDP (17)
Limit	8Bit	Identical as Time to Live (TTL) in IPv4.
Src/Dest Address	128Bit	Address of Source / Destination

IPv6-Addresses in detail

- not longer 32 Bit now 128 Bit length
- Prefix and Identifier (Net-part and Host-part)
- 8 Blocks, seperated by ":"
- each with 4 Hexadecimal digits = 16 Bits
- Mask is always written as /0..128 (decimal)

FC00:0000:0000:0001:0000:0000:0000:0001/64

Let's make it shorter

FC00:0000:0000:0001:0000:0000:0000:0001/64

beginning Zeros in a block can be deleted:

FC00:0:0:1:<u>0:0:0</u>:1/64

multiple Zero-blocks can be replaced by "::" ONCE

FC00:0:0:1::1/64

Address-structure

Privacy Extension

"must-know" addresses

```
Not defined = * ::
Loopback (localhost) ::1
IPv4 (e.g. 192.168.1.2) ::FFFF:C0A8:0102
Global public IP 2000:: - 3FFF::
```

• Linklocal / auto-configuration APIPA FE80:: - FEBF::

FC00:: - FDFF::

MulticastFF00:: - FFFF::

IPv4-names in blue

Unique Local Unicast private IP

IPv6-Multicast

Multicast FF00 - FFFF:: all devices (broadcast)

FF01::1, FF02::1

all routers in segment

FF01::2, FF02::2, FF05::2

F	F	0	0								
		Flag									
		0		Permanently definined well-known multicast-addresses (assignend by IANA)							
		1		(T-Bit set) Transient (temporaitlly), or dynamically assigned multicast-addresses							
		3		(P-Bit set, forces the T-Bit) Unicast-Prefix-based multicast-addresses							
		7		(R-Bit set, forces P- and T-Bit) multicast-addresses, which contains the address of Rendezvous Point							
		Va	lid								
			1	Interface-local, the packets never pass the NIC. (Loopback: Computer internally / Operating-system)							
			2	Link-local, will never forwarded by routers. Cannot leave own subnet.							
			4	Admin-local, block or passing must be configured manually on routers							
			5	Site-local, will be forwarded by intern routers but not by border-routers (never passing the firewall)							
		1	8	Organization-local, can also pass the firewall (border-routers) but will never leave "the Company" e.g. VPN							
			е	Global Multicast, no limitation							
		0,	,3,f	Reserved							
		Re	est	unused							