- S. D. Abbott and M. Richey. Take a walk on the Boardwalk. *College Mathematics Journal*, 28(3):162–171, 1997.
- D. Aldous and P. Diaconis. Shuffling cards and stopping times. American Mathematical Monthly, 93:333–348, 1986.
- D. Aldous and J. A. Fill. Reversible Markov Chains and Random Walks on Graphs, 2002. Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.edu/ aldous/RWG/book.html.
- K.B. Athreya and P.E. Ney. Branching Processes. Springer-Verlag, Berlin, 1972.
- N. Bartolomeo, P. Trerotoli, and G. Serio. Progression of liver cirrhosis to HCC: an application of hidden Markov model. *BMC Medical Research Methodology*, 11(38):1–8, 2011. http://www.biomedcentral.com/1471-2288/11/38. Open access.
- D. Bayer and P. Diaconis. Trailing the dovetail shuffle to its lair. *Annals of Applied Probability*, 2(2):294–313, 1992.
- N. Becker. On parametric estimation for mortal branching processes. *Biometrika*, 61:393–399, 1974.
- R. Benzi. Stochastic resonance: from climate to biology. *Nonlinear Processes in Geophysics*, 17:431–441, 2010.
- G. Blom and L. Holst. Embedding procedures for discrete problems in probability. Mathematical Scientist, 16:29–40, 1991.
- M. C. Bove et al. Effect of El Niño on U.S. landfalling hurricanes, revisited. Bulletin of the American Meteorological Society, 79(11):2477–2482, 1998.
- S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. *Computer Networks and ISDN Systems*, 30(1–7):107–117, 1998.

M. Broadie and D. Joneja. An application of Markov chain analysis to the game of squash. *Decision Sciences*, 24(5):1023–1035, 1993.

- G. Casella and E. I. George. Explaining the Gibbs sampler. *The American Statistician*, 46:167–174, 1992.
- G. W. Cobb and Y.-P. Chen. An application of Markov chain Monte Carlo to community ecology. *American Mathematical Monthly*, 110(4):265–288, 2003.
- S. L. Dans et al. Effects of tour boats on dolphin activity examined with sensitivity analysis of Markov chains. *Conservation Biology*, 26:708–716, 2012. doi: 10.1111/j.1523-1739.2012.01844.x.
- P. Diaconis. Dynamical bias in coin tossing. SIAM Review, 49(2):211–235, 2007.
- P. Diaconis. The Markov chain Monte Carlo revolution. *Bulletin of the American Mathematical Society*, 46(2):179–205, 2009.
- P. Diaconis and F. Mosteller. Methods for studying coincidences. *Journal of the American Statistical Association*, 84(408):853–861, 1989.
- P. M. Dixon. Nearest neighbor methods, 2012. http://www.public.iastate.edu/pdixon/ stat406/NearestNeighbor.pdf, visited 2014-08-11.
- R. Dobrow. Probability with Applications and R. John Wiley & Sons, Inc., 2013.
- J. Dongarra and F. Sullivan. Top ten algorithms of the century. Computing in Science & Engineering, 2:22–23, 2000.
- R. Durrett. Probability Models for DNA Sequence Evolution. Springer-Verlag, 2002.
- A. Einstein. On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. *Annalen der Physik*, 17:549–560, 1905.
- C. P. Farrington and A. D. Grant. The distribution of time to extinction in subcritical branching processes: applications to outbreaks of infectious disease. *Journal of Applied Probability*, 36:771–779, 1999.
- W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons, Inc., 1968.
- S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6:721–741, 1984.
- D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. *Fundamentals of Queueing Theory*. John Wiley & Sons, Inc., 2008.
- P. Guttorp. Stochastic Modeling of Scientific Data. Chapman and Hall, 1995.
- J. C. Hendricks et al. Use of immunological markers and continuous-time Markov models to estimate progression of HIV infection in homosexual men. *AIDS*, 10:649–656, 1996.
- P. Hoel, S. Port, and C. Stone. Introduction to Stochastic Processes. Waveland Press, 1986.
- F. M. Hoppe. Branching processes and the effect of parlaying bets on lottery odds. In *Optimal Play: Mathematical Studies of Games and Gambling*, pages 361–373. University of Nevada, 2007.
- R. Horn and C. Johnson. *Matrix Analysis*. Cambridge University Press, 1990.
- J. S. Horne et al. Analyzing animal movements using Brownian bridges. *Ecology*, 88(9): 2354–2363, 2007.
- D. M. Hull. A reconsideration of Lotka's extinction probability using a bisexual branching process. *Journal of Applied Probability*, 38(3):776–780, 2001.

M. A. Jones. Win, lose or draw: a Markov chain analysis of overtime in the National Football League. *College Mathematics Journal*, 35(5):330–336, 2004.

- R. H. Jones et al. Tree population dynamics in seven South Carolina mixed-species forests. *Bulletin of the Torrey Botanical Club*, 121:360–368, 1994.
- S. Karlin and H.M. Taylor. A First Course in Stochastic Processes. Academic Press, 1975.
- F. P. Kelly. Reversibility and Stochastic Networks. John Wiley & Sons, Inc., 1994.
- K. P. Kimou et al. An efficient analysis of honeypot data based on Markov chain. *Journal of Applied Sciences*, 10:196–202, 2010.
- G. Kolata. In shuffling cards, 7 is winning number. New York Times, January 9, 1990.
- G.-Y. Lin. Simple Markov chain model of smog probability in the South Coast Air Basin of California. *Professional Geographer*, 33(2):228–236, 1981.
- J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag, 2001.
- A. J. Lotka. The extinction of families. Journal of the Washington Academy of Sciences, 21:377–380, 1931.
- B. Mann. How many times should you shuffle a deck of cards? *UMAP Journal*, 15(4): 303–331, 1994.
- R. Mansuy. The origins of the word "martingale". *Electronic Journal for History of Probability and Statistics*, 5(1), 2009. http://www.jehps.net/juin2009/Mansuy.pdf.
- D. L. Martell. A Markov chain model of day to day changes in the Canadian Forest Fire Weather Index. *International Journal of Wildland Fire*, 9(4):265–273, 1999.
- D. G. Morrison. On the optimal time to pull the goalie: a Poisson model applied to a common strategy used in ice hockey. *TIMS Studies in Management Science*, 4:67–68, 1976.
- J. R. Norris. Markov Chains. Cambridge University Press, 1998.
- P. K. Newton, J. Mason, K. Bethel, L. A. Bazhenova, J. Nieva, et al. A stochastic Markov chain model to describe lung cancer growth and metastasis. *PLoS ONE*, 7(43):e34637, 2012. http://doi:10.1371/journal.pone.0034637. Open access.
- H. Poincaré. Calcul des Probabilités. Gauthier Villars, Paris, 1912.
- J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains and applications to statistical mechanics. *Random Structures and Algorithms*, 9:223–252, 1996.
- H. J. Ryser. Combinatorial properties of matrices of zeros and ones. Canadian Journal of Mathematics, 9:371–377, 1957.
- C. Robert and G. Casella. A short history of Markov chain Monte Carlo: subjective recollections from incomplete data. *Statistical Science*, 26:102–115, 2011.
- J. S. Rosenthal. Convergence rates for Markov chains. SIAM Review, 37:387–405, 1995.
- S. Ross. Stochastic Processes. John Wiley & Sons, Inc., 1996.
- A. D. Sahin and Z. Sen. First-order Markov chain approach to wind speed modeling. *Journal of Wind Engineering and Industrial Aerodynamics*, 89:263–269, 2001.
- Z. Schechner et al. A Poisson process model for hip fracture risk. *Medical and Biological Engineering and Computing*, 48(8):799–810, 2010.
- S. H. Sellke et al. Modeling and automated containment of worms. *IEEE Transactions on Dependable and Secure Computing*, 5(2):71–86, 2008.
- B. Sinclair. Discrete-time Markov chains: state classifications, 2005 http://cnx.org/content/m10852/latest/.
- H. S. Stern. A Brownian motion model for the progress of sports scores. *Journal of the American Statistical Association*, 89(427):1128–1134, 1994.

- I. Stewart. Monopoly revisited. *Scientific American*, pages 116–119, October 1996.
- I. Stewart. The mathematical equation that caused the banks to crash. http://www.theguardian.com/science/2012/feb/12/black scholes equation credit crunch, 2012. [The Guardian/The Observer online; posted 11-February-2012].
- N. Strigul et al. Modelling of forest stand dynamics using Markov chains. *Environmental Modelling and Software*, 31:64–75, 2012.
- D. Teets and K. Whitehead. The discovery of Ceres: how Gauss became famous. *Mathematics Magazine*, 72:83–93, 1999.
- H. Tsai. Estimates of earthquake recurrences in the Chiayi-Tainan area, Taiwan. *Engineering Geology*, 63:157–168, 2002.
- G. K. Vallis. Mechanisms of climate variability from years to decades. In T. Palmer and P. Williams, editors, *Stochastic Physics and Climate Modelling*. Cambridge University Press, Cambridge, 2010.
- B. S. Van der Laan and A. S. Louter. A statistical model for the costs of passenger car traffic accidents. *Journal of the Royal Statistical Society, Series D*, 35(2):163–174, 1986.
- N. Wiener. I am a Mathematician. MIT Press, 1956.
- Wolfram Alpha LLC. 2015. Wolfram Alpha. http://www.wolframalpha.com/input/? i=MatrixExp%5Bt%7B%7B3r%2Cr%2Cr%2Cr%7D%2C%7Br%2C3r%2Cr%2Cr%7D%2C%7Br%2C3r%7D%7D%5D+%2F%2F+Simplify (access Sept. 30, 2015).
- R. Zhang et al. Using Markov chains to analyze changes in wetland trends in arid Yinchuan Plain, China. *Mathematical and Computer Modelling*, 54:924–930, 2011.