

Membri del team (Gruppo 38):

- Alessandro Foglia (0000801918)
- Mattia Forcellese (0000788898)
- Federico Pomponii (0000803024)

INDICE

Abstract	pag. 4
Descrizione del progetto	pag. 4
Analisi dei requisiti	pag. 5
Raccolta requisiti	pag. 5
Requisiti del sistema	pag. 5
Analisi del dominio	pag. 8
Vocabolario	pag. 8
Sistemi Esterni	pag. 9
Analisi dei requisiti	pag. 10
Casi d'uso	pag. 10
Analisi del rischio	pag. 14
Valutazione dei beni	pag. 14
Analisi minacce e controlli	pag. 14
Analisi della tecnologia dal punto di vista della sicurezza	pag. 15
Security use case e Misuse case	pag. 16
Requisiti di protezione	pag. 19
Interfacce grafiche	pag. 20
Struttura	pag. 20
Homepage	pag. 20
Vista città	pag. 21
Analisi del problema	pag. 23
Analisi del documento dei requisiti	pag. 23
Analisi delle funzionalità	pag. 23
Analisi dei vincoli	pag. 25
Analisi delle interazioni	pag. 26
Analisi dei ruoli e delle responsabilità	pag. 27
Creazione modello del dominio	pag. 28
Architettura logica	pag. 30
Struttura	pag. 30
Diagramma dei package	pag. 30
Diagramma delle classi	pag. 31
Interazione	pag. 33
Diagramma di sequenza: Lettura dati dai diversi sensori	pag. 33
Diagramma di sequenza: Trasmissione dei dati	pag. 34

Diagramma di sequenza: Gestione dell'evento	pag. 35
Diagramma di sequenza: Proiezione	pag. 36
Comportamento	pag. 37
Diagramma di stato: Trasmissione	pag. 37
Piano del Lavoro	pag. 38
Sviluppi futuri	pag. 38
Piano di Collaudo	pag. 39
Progetto	pag. 41
Progettazione architetturale	pag. 41
Requisiti non funzionali	pag. 41
Scelta dell'architettura	pag. 41
Architettura del sistema	pag. 42
Considerazioni sulla sicurezza relative alle tecnologie utilizzate	pag. 43
Database	pag. 43
Trasmissione remota dei dati	pag. 43
Progettazione di dettaglio	pag. 44
Struttura	pag. 44
Trasmissione	pag. 44
Log	pag. 44
GestioneEvento	pag. 45
Proiezioni	pag. 46
Diagrammi di dettaglio	pag. 47
Diagramma di dettaglio - Homepage	pag. 47
Diagramma di dettaglio - ViewCitta	pag. 49
Diagramma di dettaglio - ViewStatistiche	pag. 50
Interazione	pag. 51
Comportamento	pag. 51
Persistenza	pag. 53
Diagramma ER - Event Driven persistence	pag. 53
Scelte progettuali	pag. 53
Diagramma ER - Proiezioni	pag. 56
Scelte progettuali	pag. 56
Formato del file di log	pag. 58
Protezione dei file di log	pag. 58
Progettazione del collaudo	pag. 59
Deployment	pag. 63
Artefatti	pag. 63
Deployment-type Level	pag. 63

Abstract

Descrizione del progetto

WeatherMent.IO nasce con l'idea di creare un database con informazioni raccolte da diverse stazioni metereologiche.

Il progetto è strutturato in modo tale da permettere la consultazione e la visualizzazione delle informazioni grazie ad una interfaccia web che espone all'utente finale grafici dettagliati di dati relativi ad un preciso luogo ed in base a determinati intervalli temporali.

L'architettura è quella di un sistema ad eventi, distruibuito su diversi server e database per avere una maggiore efficienza, scalabilità e affidabilità. Nello specifico i dati finali esposti all'utente sono organizzati rispetto all'evento che rappresentano su opportune proiezioni. I dati raccolti direttamente dalle stazioni, invece, vengono processati ed immagazzinati da un altro database in modo dedicato e maggiormente efficace nella gestione di grandi moli di dati. In questo modo viene garantita una maggiore efficienza su grandi quantità di informazioni, in quanto principali operazioni di lettura e scrittura avvengono in modo del tutto scorrelato.

Il progetto mira ad essere facilmente scalabile sia orizzontalmente che verticalmente ed espandibile sia dal punto di vista di nuove stazioni che di nuovi tipi di dato.

Analisi dei requisiti

Raccolta Requisiti

- Tramite l'applicazione gli utenti devono poter visualizzare i dati metereologici relativi alla località cercata
- La visualizzazione dei dati, relativi alla città cercata, prevede due tipi di viste: la prima mostra all'utente dati in tempo reale e dei grafici filtrabili sia per dato metereologico, sia per un determinato intervallo temporale, la seconda offre all'utente la possibilità di visualizzare un report generale, riguardo i dati raccolti nel tempo (sono presenti anche report nazionali)
- Tutti gli utenti possono accedere a tutti i dati presenti nel sistema, non sono previste limitazioni
- Qualsiasi stazione può inviare al sistema, tramite eventi specifici, i dati raccolti attraverso gli appositi sensori di cui dispone
- La stazione dovrà emettere l'evento solo quando viene registrato un cambiamento rispetto al dato (dello stesso sensore) precedentemente inviato al server, includendo la sua posizione tramite Zip Code
- Gli eventi emessi dalla scheda devono rispettare i parametri definiti dal sistema, in caso contrario tali verranno scartati. Non saranno presi in considerazione, inoltre, dati relativi ad un sensore per cui il sistema non è predisposto
- Tutte le specifiche riguardanti la formattazione degli eventi vengono messe a disposizione degli utenti
- Ogni evento dovrà specificare il topic, il type e la revision di riferimento. I dati raccolti saranno opportunatamente racchiusi sotto la voce payload, il cui schema, potrà variare per ogni evento generato

Requisiti del sistema

ID	Requisito	Tipo
F.1	La stazione invia i dati al server solo quando avvengono cambiamenti nei valori letti dai sensori; così facendo non si generano eventi ridondanti	Funzionale
F.2	Nel momento in cui si genera un evento da inviare al server, la stazione provvederà a determinare la sua posizione e aggiungerà lo ZIP Code prima di inoltrarlo	Funzionale
F.3	I dati raccolti dalle stazioni vengono validati dal server prima dell'inserimento sul database, assicurandone la correttezza all'utente finale	Funzionale
F.4	Attraverso il client è possibile visualizzare i dati in tempo reale o in un intervallo di tempo definito dall'utente di una specifica città (dati di più stazioni aventi lo stesso cap)	Funzionale
F.5	L'interfaccia deve permettere la consultazione attraverso filtri e criteri di ricerca	Funzionale
F.6	L'interfaccia deve permettere la consultazione di grafici e report riassuntivi	Funzionale
F.7	Ogni evento generato dalla stazione meteo appartiene ad uno specifico topic	Funzionale
F.8	Per ogni topic ci sono determinati tipi di evento	Funzionale
F.9	Per ogni topic, tipo e revisione di un evento è definito un preciso schema che il payload di quest'ultimo deve rispettare	Funzionale
F.10	Ogni volta che viene aggiunto un evento sul database si notifica alle componenti del sistema che si occupano di creare le proiezioni	Funzionale

ID	Requisito	Tipo
D.1	La temperatura inviata dai sensori deve essere misurata in <i>gradi Celsius</i> (°C)	Dominio
D.2	La pressione inviata dai sensori deve essere misurata in ettopascal (hPa)	Dominio
D.3	La velocità del vento inviata dai sensori deve essere misurata in <i>chilometri orari (km/h)</i> . Inoltre viene indicata anche la direzione	Dominio
D.4	L'umidità inviata dai sensori deve essere misurata in percentuale (%)	Dominio
D.5	La quantità di CO\$_2\$ inviata dai sensori deve essere misurata in parti per milione (ppm)	Dominio
D.6	Dalla stazione viene rilevato l'attuale stato metereologico	Dominio

F.1: La stazione invia i dati al server solo quando avvengono cambiamenti nei valori letti dai sensori; così facendo non si generano eventi ridondanti.

Da questo requisito possiamo evincere che:

- Abbiamo bisogno, internamente alla stazione meteo, di memorizzare gli eventi letti dai sensori e poter quindi andare ad analizzare se un evento è più o meno significativo.
- Così facendo possiamo limitare il numero di eventi da inviare al server e ridurre il numero sia di chiamate che la quantità di dati persistenti.
- **F.2**: Nel momento in cui si genera un evento da inviare al server, la stazione provvederà a determinare la sua posizione e aggiungerà lo ZIP Code prima di inoltrarlo.

Possiamo quindi dire che:

- La stazione meteo dovrà essere in grado di calcolare la sua posizione tramite sensori GPS, ricavarne lo ZIP Code per poter poi trasmettere gli eventi, così facendo si potrà aggregare il dato in baso a quest'ultimo.
- Potrebbe essere necessario utilizzare un sistema esterno per la geolocalizzazione.
- **F.3**: I dati raccolti dalle stazioni vengono validati dal server prima dell'inserimento sul database, assicurandone la correttezza all'utente finale.

Quindi:

- Il server dovrà validare l'evento inviato dalla stazione meteo, attraverso uno schema definito per quello specifico tipo di evento. Quindi una volta validato (ad esempio, che un evento di cambio temperatura porti con sè dei dati strettamente legati alla temperatura e sensati) provvederà a scriverlo in maniera persistente.
- **F.4**: Attraverso il client è possibile visualizzare i dati in tempo reale o in un intervallo di tempo definito dall'utente di una specifica città (dati di più stazioni aventi lo stesso cap).

Questo requisito è stato in parte spiegato nella versione preliminare dell'analisi dei requisiti e condivide parte della spiegazione del **F.2**, per quanto riguarda lo zipCode. Si aggiunge però che:

• Il sistema deve poter permettere la visualizzazione di dati in tempo reale, che verranno aggregati in un certo modo, e dati storici relativi ad una città cercata.

Accorpiamo i requisiti **F.5** e **F.6** in quanto riferiscono le interfacce utente:

- F.5: L'interfaccia deve permettere la consultazione attraverso filtri e criteri di ricerca.
- **F.6**: L'interfaccia deve permettere la consultazione di grafici e report riassuntivi.

Si evince quanto segue:

- L'interfaccia necessita di poter filtrare e visualizzare determinati dati, scegliendo diversi criteri.
- Si possono visualizzare dei report sia specifici che generali, a livello nazionale.
- **F.7**: Ogni evento generato dalla stazione meteo appartiene ad uno specifico topic.
 - Il topic permette di differenziare diversi tipi di evento, come possono essere ad esempio legati alle condizioni meteo (i dati di cui ci occuperemo in questa prima versione) e altri come azione di utenti, registrazioni di nuovi sensori che potranno essere liberamente aggiunte senza dover alterare la struttura di base del sistema.
 - E' necessario poter distinguere i topic degli eventi registrati in quanto, lavorando su grandi moli di dati, bisogna essere il più efficienti e specifici possibili nel salvarli in modo persistente per poterli poi riutilizzare.

F.8: Per ogni topic ci sono determinati tipi di evento.

Questo tipo di requisito ci porta a:

- Dover gestire, a seconda del topic di un evento ricevuto, i vari tipi che possono rappresentarlo; ad esempio, nel caso di un evento di topic meteorologico, i tipi possono essere diversi a seconda del sensore che ha registrato il cambiamento. Permette un'ulteriore suddivisione dei dati a livello di persistenza che rende ulteriormente efficace la ricerca e il filtraggio.
- **F.9**: Per ogni topic, tipo e revisione di un evento è definito un preciso schema che il payload di quest'ultimo deve rispettare.

Quindi si ha che:

- A seconda del topic, del tipo e della revisione di un evento, ci sarà uno schema che il dato ricevuto dovrà rispettare per poter essere considerato valido dal sistema.
- Le stazioni meteo dovranno quindi seguire un "formato" standard nell'inviare gli eventi, altrimenti essi saranno considerati invalidi e scartati.

F.10: Ogni volta che viene aggiunto un evento sul database si notifica alle componenti del sistema che si occupano di creare le proiezioni.

Abbiamo quindi dedotto che:

Per migliorare ulteriormente le prestazioni del sistema, invece di creare le proiezioni su richiesta dell'utente
o di aggregare i dati in un modo diverso, conviene andare ad aggiornarle o crearle ogni volta che viene
ricevuto un evento, notificando quindi le componenti del sistema che si occupano di trasformarlo in una
proiezione.

Analisi del dominio

Vocabolario

Voce	ce Definizione	
Architettura	Definisce l'organizzazione e la comunicazione dei diversi componenti all'interno dell'ecosistema	
Autenticazione	Sistema di riconoscimento necessario per permettere ad una stazione di poter inviare i dati al sistema	Registrazione
Append-Only	Tipologia di database che permette soltanto l'inserimento dei dati e non la modifica o l'eliminazione	
Barriera	Sistema di validazione dei dati inviati da una stazione secondo uno schema ben definito. Necessario per evitare di scrivere sul database dati non validi	Validazione
Buffer	Memoria dedicata nella stazione meteo per il salvataggio dei dati nel caso in cui il server non fosse pronto a riceverli o se ci dovesse essere qualche problema nel sistema	
Database relazionale	Modello logico di rappresentazione o strutturazione dei dati di un database implementato su sistemi di gestione di basi di dati	
Evento	La stazione emette un evento per notificare all'intero sistema dei cambiamenti, necessari per la ricostruzione della vista città	Cambiamento, Event
Frequenza di campionamento	Numero di volte al secondo in cui un segnale analogico viene misurato e memorizzato in forma digitale	
Notifica PostgreSQL	Viene segnalata l'immissione di una nuova riga all'interno del database relazionale postgres	Notify
Payload	Pacchetto contenente tutti i dati raccolti dalla stazione	Carico
Proiezione	Aggregazione degli eventi che permettono di creare delle "viste" su determinati dati	
Scalabilità	In informatica, la caratteristica di un sistema software o hardware facilmente modificabile nel caso di variazioni notevoli della mole o della tipologia dei dati trattati	Espandibilità
Scheda	Unisce tutti i componenti elettrici ed i sensori e ne permette il funzionamento	
Schema	Definisce per ogni tipo di evento delle regole e dei formati necessari per la validazione	
Sensore	Dispositivo elettronico in grado di rilevare una grandezza fisica e di trasmettere le variazioni a un sistema di misurazione o di controllo	Strumento di misura

Voce	Definizione	Sinonimi	
Stazione	L'insieme dei sensori collegati alla scheda principale, situata in un determinato luogo, capace di comunicare con il sistema		
Vista città	L'insieme di tutti i dati raccolti dalle diverse stazioni organizzati in base agli eventi a cui fanno riferimento	Stroico	
Туре	Definisce nello specifico il tipo di evento che riferisce il topic	Tipo evento	
Торіс	Definisce l'argomento a cui l'evento fa riferimento	Argomento	
Version	Indica la versione della stazione		

Sistemi Esterni

Ogni stazione meteo è in grado di acquisire dati da più sensori esterni, ognuno adibito alla lettura di uno specifico dato. I sensori, comunicano con la stazione attraverso una porta seriale.

Analisi dei requisiti

Casi D'uso

La stazione viene considerata un attore in quanto è un sistema esterno con un ruolo attivo. Interviene nell'applicativo generando continuamente dati in ingresso che verranno utilizzati da Gestione Eventi solo nel caso in cui vengano rilevati dei cambiamenti.

L'utente ha la possibilità di consultare la vista città di tutti i dati meteo e le Statistiche. Entrambe le schermate dispongono di appositi filtri per la consultazione.

Scenari d'uso

Titolo	Gestione Evento	
Descrizione	Lettura dati dalla stazione meteo, validazione dei dati, scrittura su sistema	
Attori	Event, Stazione Meteo	
Relazioni		
Precondizioni	Si è verificato un evento registrato dalla stazione meteo (i.e. un cambio di temperatura, di pressione atmosferica etc)	
Postcondizioni	Il sistema ha rilevato l'evento, controllato la sua validità e scritto in maniera persistente sul sistema	
1. La stazione meteo invia i dati dell'evento a Gestione Evento 2. Gestione Evento controlla che l'evento ricevuto sia valido secondo uno sche definito internamente al sistema 3. Gestione Evento registra in maniera persistente l'evento sul sistema 4. Il sistema prosegue la sua normale esecuzione, in attesa di ricevere altri eve		
La connessione con la stazione meteo viene persa o è molto lenta: 1. La stazione meteo nel caso in cui il server smetta di rispondere riempie un buffer Scenari 2. Appena il server torna a rispondere la stazione svuota il buffer inviando gli eventi memorizzati 3. La stazione meteo elimina localmente in via definitiva l'evento solo ed esclusivan il server ne conferma la ricezione, per evitare una perdita di eventi		
Requisiti non funzionali	Integrità dei dati letti dal sensore Velocità nella validazione dell'evento Efficienza nella scrittura persisente sul sistema Ef-ficienza della stazione meteo nell'invio dei dati e nell'utilizzo di memoria cache	

Punti aperti

Titolo	Vista Citta	
Descrizione	Il sistema permette all'utente di visualizzare l'elenco degli eventi registrati	
Attori	Utente	
Relazioni	Filtro Grafici	
Precondizioni		
Postcondizioni	Il sistema ha mostrato all'utente gli eventi registrati	
Scenario principale	 L'utente ricerca la città di cui vuole visualizzare i dati Viene mostrata una schermata contenente tutti gli eventi relativi a quella città (registrati in base al cap della stazione meteo) L'utente può decidere di filtrare attraverso Filtro Grafici per decidere la visualizzazione secondo criteri di tempo e di dato 	
Scenari alternativi	La città ricercata non ha eventi: 1. Il sistema notifica all'utente e ridireziona alla schermata di ricerca	
Requisiti non funzionali	Integrità dei dati Semplicità nell'utilizzo e immediatezza nella lettura Velocità in lettura	

Punti aperti

Titolo	Filtro Grafici	
Descrizione	Il sistema permette all'utente di filtrare gli eventi da visualizzare	
Attori	Utente	
Relazioni		
Precondizioni		
Postcondizioni	Il sistema ha mostrato all'utente gli eventi registrati filtrati a seconda dei criteri specificati	
Scenario principale	 L'utente imposta i criteri secondo cui filtrare gli eventi: temporali, oppure legati al dato da visualizzare: pressione, inquinamento aria, temperatura, vento e l'umidità Il sistema effettua la ricerca e mostra all'utente gli eventi risultanti 	
Scenari alternativi	La ricerca effettuata non ha eventi: 1. Il sistema notifica all'utente	
Requisiti non funzionali	Rapidità ricerca	

Punti aperti

Titolo	Statistiche	
Descrizione	Il sistema permette all'utente di visualizzare dei rapporti statistici sugli eventi relativi alle varie località	
Attori	Utente	
Relazioni	Filtro Statistiche	
Precondizioni		
Postcondizioni Il sistema ha mostrato all'utente statistiche dettagliate sugli eventi registr		
Scenario princip	 L'utente seleziona la schermata relativa alle statistiche Il sistema mostra all'utente un report annuo generale di tutte le località L'utente può decidere di filtrare le statistiche temporalmente e/o geograficamente 	
Scenari alternativi Non vi sono statistiche da mostrare: 1. Il sistema notifica all'utente di non poter proseguire l'azione		
Requisiti non funzionali	Integrità dei dati Velocità in lettura Immediatezza e semplicità di utilizzo e di consultazione	
Punti aperti		
Titolo	Filtro Statistiche	
Descrizione	Il sistema permette all'utente di filtrare i rapporti statistici sugli eventi relativi alle varie località a seconda di diversi criteri	
Attori	Utente	
Relazioni	Statistiche	
Precondizioni		
Postcondizioni	oni Il sistema ha mostrato all'utente statistiche dettagliate sugli eventi registrati nel sistema che soddisfano i criteri di ricerca	
Scenario principale	1. L'utente imposta i criteri secondo cui filtrare le statistiche: temporalmente o geograficamente può impostare un'area di grandezza variabile che comprenda diverse località 2. Il sistema mostra all'utente un report che soddisfi i criteri impostati	

Punti aperti

funzionali

Scenari

alternativi

Requisiti non

Rapidità ricerca

Non vi sono statistiche che soddisfino i criteri da mostrare:

1. Il sistema notifica all'utente di non poter proseguire l'azione

Analisi del rischio

Valutazione dei beni

Bene	Valore	Esposizione
Event	Alto La perdita di un evento non permette la ricostruzione esatta dei dati, e comporta una vera e propria perdita di informazioni	Alta Danni d'immagine: mancato inserimento nei database di un evento più o meno significativo.
Informazioni relative alla stazione meteo	Alto Impossibilità di determinare la località dell'evento registrato; dati quindi inutilizzabili	Media/Alta A seconda del motivo per il quale la stazione non è riuscita a comunicare la sua posizione; un errore interno, facilmente risolvibile o errori di comunicazione più gravi
Sistema informativo	Alto Il sistema informativo essendo il componente principale per l'utente finale deve sempre essere funzionante, pena l'impossibilità di visualizzare dati e grafici	Alta Sito totalmente non funzionante, danni d'immagine e alti costi di ripristino di sistema
Stazione meteo	Basso Nel caso di malfunzionamento o di una perdita di una stazione meteo, non si riceveranno più eventi	Bassa Data l'architettura del sistema, si possono rimuovere e aggiungere stazioni senza danneggiare il sistema stesso

Analisi minacce e controlli

Minaccia	Probabilità	Controllo	Fattibilità
Alterazione dei dati remoti	Bassa	Utilizzo di protocolli sicuri di comunicazione (HTTPS)	Costo basso/medio
DDoS (Distributed Denial of Service)	Media	Limitazione degli accessi	Costo basso in quanto difficile difendersi da questo tipo di attacchi
Invio di dati fake	Media	Autenticazione della stazione prima di poter comunicare	Costo alto, necessità di definire un sistema di accesso/registrazione per le varie stazioni. Perdita inoltre del concetto di sistema aperto a tutti
Man in the middle	Bassa	Utilizzo di certificati di autenticità delle parti comunicanti	Costo basso/medio a seconda dell'utilizzo di un protocollo di comunicazione più o meno sicuro

	Minaccia	Probabilità	Controllo	Fattibilità
•			Nessun controllo dato che ogni	
	Manomissione		tipo di hardware capace di	
	delle stazioni	Media	utilizzare dei sensori e	-
	meteo		trasmettere dati può essere una	
			stazione	

Analisi della tecnologia dal punto di vista della sicurezza

Tecnologia	Vulnerabilità
Architettura Client/Server	Attacco DDoSMan in the middle
Cifratura delle comunicazioni	Utilizzo di cifratura simmetrica e asimmetrica. Non strettamente necessaria in quanto i dati trasmessi non sono dati sensibili.
Stazione meteo	 Alterazione dei sensori Alterazione della posizione geografica della stazione Manomissione e blocco delle trasmissioni

Caso d'uso: integrità

Percorso del caso d'uso: integrità nella trasmissione dei dati un sensore

Misuse case: Man in the middle

Rischi alla sicurezza: Un malintenzionato può modificare i dati inviati da una stazione remota prima che arrivino al server

Precondizioni: L'hacker attaccante può intercettare i dati e modificarli, per poi ritrasmetterli al server

Interazioni	Interazioni	zioni Requisiti del sistema		
dell'utente	dell'attaccante	Interazioni del sistema	Azioni del sistema	
		La stazione meteo dovrebbe inviare i dati corretti al server	Il sistema deve impedire che i dati vengano manomessi da qualcuno senza che l'utente se ne accorga	
	L'attaccante intercetta e modifica i dati per poi ritrasmetterli al server			
L'utente riceve dei dati corrotti			Il sistema rileva la corruzzione da parte dell'attaccante	
		Il sistema dovrebbe notificare all'utente la <i>non</i> correttezza dei dati e provvedere ad invalidare o sospendere la ricezione dati dalla stazione meteo		

Postcondizioni: Il sistema deve aver notificato all'utente l'accaduto e deve aver bloccato la stazione

Caso d'uso: integrità

Percorso del caso d'uso:Corretto funzionamento del sistema

Misuse case: Attacco DDoS

Rischi alla sicurezza:Un malintenzionato potrebbe tentare di sovraccaricare le risorse del sistema con conseguente malfunzionamento dello stesso

Precondizioni: Il sistema non può gestire un numero molto elevato di richieste in contemporanea

Interazioni	Interazioni	Requisiti del sistema		
dell'utente	dell'attaccante	Interazioni del sistema	Azioni del sistema	
	L'attaccante effettua un numero molto alto di richieste al sistema in modo da sovraccaricarlo			
			Il sistema deve bloccare l'attaccante nel caso in cui rilevi un numero molto elevato di tentativi di trasmissione o di richieste	
		Il sistema dovrebbe registrare l'attacco avvenuto per poter poi essere analizzato dall'amministratore		

Postcondizioni: Il sistema deve aver notificato nei log l'avvenuto

Caso d'uso: Integrità

Percorso del caso d'uso: integrità dei dati salvati dal sistema

Misuse case: Operazione vietata

Rischi alla sicurezza: Un malintenzionato può modificare i dati già salvati sul database, modificando lo storico degli eventi

Precondizioni: Il sistema ha in memoria dei dati che non possono e non devono essere modificati in quanto invaliderebbero lo storico degli eventi

Interazioni	Interazioni	Requisiti del sistema		
dell'utente	dell'attaccante	Interazioni del sistema	Azioni del sistema	
	L'attaccante tenta di modificare i dati salvati dal sistema			
			Il sistema deve impedire che i dati vengano manomessi una volta memorizzati	
		Il sistema dovrebbe registrare il tentativo di attacco per poter poi essere analizzato dall'amministratore		

Postcondizioni: Il sistema deve verificare la correttezza dei dati memorizzati

Requisiti di Protezione

Dopo l'analisi dei rischi, vi è quindi il bisogno di nuovi requisiti riguardanti la protezione del sistema e dei dati:

- 1. Un sistema di log che permetta all'amministratore di visualizzare tutte le azioni avvenute sul sistema, registrate in modo permanente; nel caso di attacchi esterni come ManInTheMiddle, DDoS o di tentativi di corruzione dei dati, è possibile risalire alla causa e analizzare nel dettaglio quanto avvenuto. I log verranno visualizzati e gestiti con un editor di testo esterno, non rilevante e non implementato per il progetto.
- 2. I dati sismici trasmessi in remoto devono essere protetti da attacchi di tipo man in the middle, eventualmente adottando una cifratura dei dati in transito.

Interfacce grafiche

Struttura

Il sistema presenta due sezioni principali navigabili senza dover effettuare alcun tipo di registrazione/autenticazione. Una sezione, permette la visualizzazone dei dati meteorologici legati ad una specifica città, fornendo informazioni in tempo reale e grafici storici. L'altra sezione permette invece di visualizzare dei report statistici nazionali o specifici di una città, legati ad un intervallo temporale definito dall'utente.

Homepage

Questa è la sezione di partenza del sistema; permette di spostarsi nelle due sezioni principali attraverso un form di ricerca per città e un bottone per le statistiche.

Una volta che viene utilizzato il tasto di ricerca:

Vista città

In questa sezione del sistema visualizziamo i dati in tempo reale della città cercata (a destra del nome della città stessa) e a sinistra le varie icone che permettono di visualizzare i grafici dettagliati per ogni singolo tipo di dato.

La barra di ricerca, presente anche in questa schermata, che permette di cercare altre città

Vi è inoltre la possibilità di evidenziare nel grafico, uno specifico punto di nostro interesse

Analisi del problema

Analisi del documento dei requisiti

Analisi delle funzionalità

Tabella Funzionalità

Funzionalità	Tipo	Grado Complessità
Gestione Eventi	Gestione e memorizzazione dei dati, interazione con l'esterno	Complessa
Scrittura Log	Memorizzazione dati	Semplice
Statistiche	Visualizzazione report generali filtrabili	Semplice
Storico	Visualizzazione eventi filtrabili	Semplice

Gestione Evento: Tabella Informazioni/ Flusso

Informazione	Tipo	Livello Protezione/ Privacy	Input/ Oputput	Vincoli
Dato sensore Hardware	Semplice	Media	Input	
Event	Composto	Alta	Output	
Data	Semplice	Media	Input	
Ora	Semplice	Media	Input	
Stazione D'origine	Composto	Media	Input	

Scrittura Log: Tabella Informazioni/ Flusso

Informazione	Tipo	Livello Protezione/ Privacy	Input/ Oputput	Vincoli
IP	Semplice	Alta	Input	
Azione	Semplice	Alta	Input	
Ora	Semplice	Media	Input	
Data	Semplice	Media	Input	

Statistiche: Tabella Informazioni/ Flusso

Informazione	Tipo	Livello Protezione/ Privacy	Input/ Oputput	Vincoli
Event composto da:	Composto	Alta	Input	_
Topic	Semplice	Media	Input	Stringa
Туре	Semplice	Media	Input	Stringa

Informazione	Tipo	Livello Protezione/ Privacy	Input/ Oputput	Vincoli
Payload	Composto	Media	Input	

VistaCitta: Tabella Informazioni/ Flusso

Informazione	Tipo	Livello Protezione/ Privacy	Input/ Oputput	Vincoli
Event composto da:	Composto	Alta	Input	
Topic	Semplice	Media	Input	Stringa
Туре	Semplice	Media	Input	Stringa
Payload	Composto	Media	Input	

Analisi dei vincoli

Tabella dei vincoli

Requisito	Categorie	Impatto	Funzionalità
Integrità	Integrità	Rallentamento nella fase di scrittura e di validazione del dato; correttezza del dato assicurata dalla barriera	Gestione Evento, Statistiche, VistaCitta
Efficienza scrittura	Performance	Maggiore efficienza nella fase di scrittura persistente del dato ed un tempo di risposta ridotto	Gestione Evento
Velocità validazione	Performance	Maggiore efficienza nella validazione del dato ed un tempo di risposta ridotto	Gestione Evento
Efficienza stazione meteo	Sistema esterno	Impatto sul sistema nullo; possibilità di elaborare velocemente i dati letti dai sensori	
Rapidità di ricerca	Tempo di risposta	Maggiore efficienza nella fase di fetch dei dati all'interno del database	VistaCitta, Statistiche
Velocità di lettura	Tempo di risposta	Maggiore efficienza nella fase di lettura del dato ed un tempo di risposta ridotto	VistaCitta, Statistiche
Semplicità ed immediatezza nell'utilizzo	Usabilità	Migliore usabilità da parte dell'utente finale; interfacce grafiche intuitive	VistaCitta, Statistiche

Analisi delle interazioni

Tabella maschere

Maschera	Informazioni	Funzionalità
Homepage	Pagina iniziale con logo, barra di richerca della località d'interesse e relativo bottone per le statistiche generali	VistaCitta, Statistiche
VistaCitta	Dati in tempo reale filtrabili e grafici degli eventi relativi alla località cercata	VistaCitta
Schermata statistiche	Dati in tempo reale e report filtrabili relativi alla località cercata	Statistiche

Tabella sistemi esterni

Sistema	Descrizione	Protocollo di interazione	Livello di sicurezza
	Insieme di sensori e	La stazione invia al server gli eventi	Medio; la stazione può
Stazione	componenti hardware	seguendo lo schema di default. Il sistema	subire attacchi esterni sia
meteo	che formano una	li convalida e li scrive in modo persistente	dal punto di vista software
	stazione meteo	sul database	che hardware

Analisi dei ruoli e delle responsabilità

Ruolo	Responsabilità	Maschere	Riservatezza	Numerosità
Utente	Consulta i dati in tempo reale delle stazioni meteo utilizzando i filtri offerti dall'applicazione e il relativo storico	Homepage, VistaCitta, Schermata statistiche	Bassa	Il numero di utenti non è limitato. Dipende dalla scalabilità del sistema

Utente: Tabella ruolo-informazioni

Informazione	Tipo di accesso
VistaCitta	Lettura
Statistiche	Lettura

Creazione modello del dominio

Direction:

N; NNE; NE; ENE; E; ESE; SE; SSE; S; SSO; SO; OSO; O; ONO; NO; NNO

State:

SUNNY; CLOUDY; RAINY; SNOWY

Architettura logica

Struttura

Diagramma dei package

Diagramma delle classi

ViewHomePage interroga la VistaCittàController per quanto riguarda la visualizzazione di una città specifica; altrimenti StatisticheController per avere dei report nazionali o della specifica città cercata.

ViewCitta oltre alla visualizzazione specifica della località cercata mostra all'utente i relativi dati in tempo reale.

VistaCittaController filtra per un determinato tipo di evento e per un determinato lasso di tempo.

StatisticheController filtra per città cercata e un determinato intervallo di tempo.

LogController scrive dei file di log a seconda delle azioni avvenute sul sistema.

TrasmissioneController si occupa della trasmissione dei dati dalla stazione meteo al server.

EventoController scrive in maniera persistente gli eventi dopo aver effettuato la validazione secondo lo schema predefinito.

ProiezioniPresenter aggrega gli eventi letti da EventoController creando delle proiezioni a seconda degli eventi ricevuti. Le proiezioni così create verranno poi utilizzate da VistaCittaController e da StatisticheController.

Interazione

Diagramma di sequenza: Lettura dati dai diversi sensori

In maniera ciclica e parallela i sensori acquisiscono i dati che vengono poi inoltrati alla stazione meteo.

Diagramma di sequenza: Trasmissione dei dati

I dati ricevuti dai sensori vengono elaborati da **StazioneController** il quale, se verifica un cambiamento, crea un evento da trasmettere all'apposito controller. In caso di errori nella trasmissione è previsto un sistema di backup e reinvio di dati per garantire l'integrità di tutti gli eventi.

Diagramma di sequenza: Gestione dell'evento

EventoController si occupa della validazione dell'evento ricevuto, superato tale controllo provvede alla scrittura persistente dell'evento.

Diagramma di sequenza: Proiezione

Il **ProiezioniPresenter** viene notificato [notify()] della scrittura di un nuovo evento, che subisce un ulteriore elaborazione per creare le diverse proiezioni del dato.

Comportamento

Diagramma di stato Trasmissione

Il seguente diagramma mostra l'algoritmo di reinvio e backup dei dati in caso di erorri di trasmissione.

Piano del Lavoro

Il lavoro di progettazione e di sviluppo è stato suddiviso tra i vari membri del team come segue:

Package	Progetto	Sviluppo
InterfaceUtente	Foglia, Forcellese, Pomponii	Forcellese
VistaCitta	Foglia, Forcellese	Pomponii
Statistiche	Foglia, Forcellese	Forcellese, Pomponii
Proiezioni	Foglia, Forcellese, Pomponii	Foglia, Forcellese, Pomponii
Log	Pomponii	Pomponii
GestioneEvento	Foglia, Forcellese, Pomponii	Foglia, Forcellese, Pomponii
Trasmissione	Foglia, Forcellese, Pomponii	Pomponii
Dominio (*Records, Event, WeatherNow)	Foglia, Forcellese, Pomponii	Foglia, Forcellese, Pomponii

Dopo aver valutato attentamente la mole di lavoro richiesta, i tempi previsti sono i seguenti:

- Progettazione: 3 settimane circa.
- Sviluppo dei vari package: entro 1/2 settimane dalla fine della progettazione.
- Test unitari e testing totale del sistema: entro una settimana dallo sviluppo di tutti i package.

Sviluppi futuri

Il sistema è progettato in modo da permettere un'ampia espansione: in qualsiasi momento, senza alcuna difficoltà, si possono aggiungere nuovi tipi di sensori, eventi registrabili e proiezioni da mostrare all'utente. Inoltre il sistema permette grazie alla sua natura distribuita di essere espanso anche a livello di risorse, senza dover modificare in alcun modo l'architettura.

Piano di Collaudo

Per garantire il corretto funzionamento del sistema sono necessari diversi test unitari che permettono di verificare il corretto funzionamento delle diverse parti che lo compongono.

```
public class TestValidationEvent {
      @Test
      public void validationEventTest() {
           // TEST OF A NOT VALID EVENT
           ObjectMapper mapper = new ObjectMapper();
           JsonNode payload = null;
           String json = {\boardId\ensuremath{": \cafebafe-cafebabe-cafebabe\", \boardOffset\ensuremath{": \cafebafe-cafebabe\", \cagebafe-cafebabe\", \cagebafe-ca
\"zipcode\": \"\40125, \"emittedAt\": 857671257612 }";
           payload = mapper.readTree(json);
           try {
                 Event sut = Event.fromJson(UUID.fromString("cafebabe-cafebabe-cafebabe-
cafebabe"),"eventType",0, payload);
           } catch (EventNotValidException e) {
                 Assertions.fail("Event is not valid");
           }
           // TEST OF A VALID EVENT
           try {
                 Event validEvent = Event.fromJson(UUID.fromString("0000-0000-0000-
0000"),"validType",1,payload)
                 Assert.assertEquals(true, validEvent.isValid());
           } catch (EventNotValidException e) {
                  e.printStackTrace();
           Assert.assertEquals(validEvent.getUUID(),"0000-0000-0000");
           Assert.assertEquals(validEvent.getType(),"validType");
           Assert.assertEquals(validEvent.getVersion(),1);
           Assert.assertEquals(validEvent.isValidPayload(), true);
     }
}
```

```
public class TestBoard() {
 @Test
 public void testBoardValues() {
   // TEST VALUES OF THE BOARD
   Board board = new Board();
   board.setZipCode("40125");
   board.setBoardId(UUID.fromString("0000-0000-0000"));
   WeatherNow wNow = new WeatherNow();
   Pressure pressure = new Pressure(5,new Date().getTime());
   Temperature temperature = new Temperature(18, new Date().getTime());
   wNow.setPressure(pressure);
   wNow.setTemperature(temperature);
   board.setWeatherNow(wNow);
   Assert.assertEquals(board.getBoardId(),UUID.fromString("0000-0000-0000"));
   Assert.assertEquals(board.getZipCode(),"40125");
   Assert.assertEquals(board.getWeatherNow.getPressure().getValue(),5);
   Assert.assertEquals(board.getWeatherNow.getTemperature().getValue(),18);
 }
}
```

Progetto

Progettazione architetturale

Requisiti non funzionali

Dall'analisi dei requisiti non funzionali sono emersi i seguenti requisiti:

- Efficienza scrittura
- Efficienza stazione meteo
- Integrità
- Rapidità di ricerca
- Semplicità ed immediatezza nell'utilizzo
- Velocità di lettura
- Velocità validazione

L'efficienza del sistema è estremamente importante nonchè il suo punto di forza; avendo una grande mole di dati da ricevere e processare, è necessario garantire delle performance elevate per poter permetterne la fluidità. Essendo il sistema in grado di determinare quando un evento si è verificato, la quantità di dati trasmessa sulla rete può essere ridotta al minimo indispensabile. La comunicazione può anche avvenire in maniera più rapida a discapito della sicurezza e dell'integrità del dato, in quanto esso stesso non è sensibile e non necessita una forte protezione.

Per quanto riguarda la rapidità di ricerca, anch'esso è un requisito abbastanza importante per permettere una fruizione rapida ed efficace da parte dell'utente. Il sistema inoltre deve riuscire a validare gli eventi letti dai sensori senza fare da *collo di bottiglia* alle prestazioni generali.

Per garantire una buona performance a livello di persistenza, e per permettere l'utilizzo di alcune funzioni che riducono i tempi di sviluppo software (in quanto già predisposto), viene utilizzato un database *PostgreSQL* che permette l'invio asincrono di funzioni di notifica tra vari componenti del sistema.

La stazione meteo non è legata ad uno specifico hardware, così come i sensori non sono necessariamente ristretti a quelli descritti nell'analisi dei requisiti; data la flessibilità del sistema è possibile in versioni future aggiungere facilmente nuovi tipi di sensori e di dati letti.

Scelta dell'architettura

Il sistema prevede un'architettura client/server a tre livelli, distribuita su più server e su più layer di persistenza. Si utilizzano diversi pattern architetturali: il primo, per la ricezione, registrazione e gestione degli eventi è un event driven architecture, mentre nella seconda parte client/server viene utilizzato un pattern MVP (Model View Presenter).

Un utente (client) può connettersi ad un servitore tramite l'utilizzo del protocollo http, dato che sulla piattaforma non vi sono dati sensibili da proteggere. Inoltre la fruizione dei dati non è vincolata ad una fase di autenticazione, infatti l'utente può accedere liberamente a tutti i contenuti che il sito mette a disposizione.

Il server delegato alla gestione degli eventi comunica in modo sicuro tramite l'utilizzo di TLS con la stazione meteo, per evitare possibili casi di attacco esterno e non è direttamente accessibile dall'utente finale. Il server delle proiezioni invece comunica tramite chiamate http con il cliente, inviando i dati che si vogliono visualizzare letti direttamente dal layer di persistenza.

Il sistema si basa su più database, la persistenza avviene su di un database postgreSQL, adibito alla sola scrittura dei dati provenienti dalle diverse stazioni. Gli altri database sono generati a partire dalle proiezioni del dato per consentire una maggiore facilità di utilizzo nella fase di aggregazione.

Architettura del sistema:

Considerazioni sulla sicurezza relative alle tecnologie utilizzate

Dopo aver effettuato l'analisi del sistema, le vulnerabilità tecnologiche principali sono legate alla trasmissione del dato e alla persistenza.

Database

Rischio	Accesso al database non autorizzato e alterazione dei dati	
Descrizione	L'accesso al database, sebbene protetto da password, può essere forzato da un possibile attaccante in diversi modi. Se un malintenzionato dovesse ottenere l'accesso al database, potrebbe modificare, cancellare i dati persistenti su tutto il sistema.	
Possibili soluzioni	 Una possibile soluzione al problema è la cifratura dei dati che renderebbe illeggibile il contenuto ad un possibile attaccante. PostgreSQL ha un supporto nativo sia alla crittografazione della comunicazione tramite protocollo SSL, sia alla criptazione del dato attraverso criptazione simmetrica e asimmetrica, rendendo di fatto l'intero database più sicuro. Un altra possibile soluzione, che non esclude la precedente, è l'utilizzo di alcune meccaniche di log fornite da PostgreSQL per poter analizzare i vari tentativi di intrusione. L'alterazione dei dati inoltre può essere controllata con backup periodici e controlli di integrità. 	

Trasmissione remota dei dati

Per rendere sicura una trasmissione remota dei dati sismici dalle stazioni meteo al sistema, è necessario creare una connessione sicura su cui operare. Questo canale deve garantire uno standard di qualità di servizio e sicurezza, per evitare una possibile lettura o corruzione dei dati in transito; questo avviene implementando il protocollo SSL TLS.

Progettazione di Dettaglio

Struttura

Trasmissione

• **TrasmissioneController**: si occupa della trasmissione dei dati letti dalla stazione all'EventoController. Il metodo trasmetti serializza ed invia l'evento in formato JSON. Il metodo connetti apre una connessione con l'indirzzo e la porta specificati.

Nel caso in cui la connessione non dovesse andare a buon fine, viene lanciata una eccezione *ConnectionFailed*.

Implementa l'interfaccia StazioneInterface che permette la lettura dei sensori e la verifica dei cambiamenti del dato, andando quindi ad inviare un evento solo nel caso in cui esso rappresenti una variazione.

Log

LogController: si occupa della scrittura dei log di tutto il sistema, include quindi tutte le interazioni da
parte dell'utente e tutte le interazioni da parte della stazione. Il metodo scriviLog permette di scrivere
su file a partire da un JSON, che sarà formattato a seconda del log come specificato nel capitolo dedicato
successivamente.

Dopo un'attenta riflessione, sono stati apportati dei cambiamenti rispetto alla struttura dei package definiti nella fase di analisi. I due controller, **VistaCittaController** e **StatisticheController**, sono stati ritenuti superflui e sono stati accorpati in **ProiezioniPresenter**. Questo per permettere di mantenere la logica di business in un unico posto, non dovendo così definire più controller per la lettura e la scrittura dei dati. Inoltre, utilizzando un repository pattern, non è necessario specificare come sia effettivamente l'implementazione, che può utilizzare diversi approcci (DAO etc..).

GestioneEvento

• **EventoController**: questo controller agisce da tramite tra la trasmissione della stazione meteo (TrasmissioneController) e il presenter delle proiezioni. È un componente fondamentale del sistema in quanto gestisce la validazione degli eventi attraverso Validator e, tramite il repository pattern, delega la persistenza degli eventi all'EventoRepository.

A differenza della fase di analisi non abbiamo più bisogno del meodo notify per comunicare con

ProiezioniPresenter in quanto per scelte tecnologiche si utilizza il DBMS PostrgreSQL che fornisce l'apposita funzione standard notify ().

- **Validator**: si occupa della validazione del payload, facendo riferimento al JSON Schema relativo al tipo di evento ricevuto. In caso di evento malformato o non valido lancia una eccezione *InvalidEvent*.
- **EventoRepository**: attraverso il repository pattern viene disaccoppiata la logica di business e la logica di accesso ai dati; l'EventoRepository quindi permette la lettura e la scrittura degli eventi sulla persistenza. Per farlo implementa l'interfaccia EventoRepositoryInterface che definisce esattamente come salvare, trovare e filtrare gli eventi interfacciandosi direttamente con il DB.

I metodi find e filter servono per recuperare degli eventi avvenuti in passato nel caso in cui si voglia generare una nuova proiezione da zero, in quanto la funzione di notifica dell'EventoController viene richiamata solo una volta, appena ricevuto il dato.

Non espone, a differenza di un generico repository pattern, tutti i metodi CRUD (Create, Read, Update, Delete) per ogni entità del modello, in quanto la persistenza degli eventi viene gestita in APPEND-ONLY e quindi non può per nessun motivo permettere la modifica o l'eliminazione dei dati.

Proiezioni

- ProiezioniPresenter: si occupa della creazione e dell'aggiornamento delle proiezioni attraverso il
 DataRepository a partire dalle notifiche degli eventi ricevuti dall'EventoController.
 Il metodo gestisciEvento, dato l'evento in input, lo trasforma a seconda del tipo dell'evento in una classe specifica.
- **DataRepository**: è un componente fondamentale del sistema; sempre attraverso il repository pattern, permette di separare la business logic dall'accesso ai dati, permettendo inoltre di poter avere diverse implementazioni a seconda del caso d'uso.

Essendo l'unico responsabile della persistenza delle proiezioni, viene utilizzato sia in scrittura, in quanto permette di creare ed aggiornare le proiezioni, sia in lettura poichè viene utilizzato direttamente dalle interfacce utente.

Implementa un numero di interfacce pari al numero di proiezioni di cui il sistema ha bisogno; proprio per questo motivo il repository pattern è facilmente mantenibile ed espandibile nel futuro. Ogni interfaccia quindi espone i metodi per la scrittura e la lettura del dato a seconda di come esso è definito nel DB. I metodi save di ogni interfaccia consentono la scrittura permanente del dato, mentre i vari metodi get permettono di recuperare i dati compresi in un certo intervallo temporale dato un detterminato zipCode.

Diagrammi di Dettaglio

Diagramma di dettaglio - Homepage

Nel diagramma sopra rappresentato, vengono evidenziate tutte le interfacce disponibili riguardanti la homepage. Nella schermata iniziale non vengono mostrati dati all'utente. Le uniche funzioni esposte sono: la possibilità di cercare una città e visualizzarne i suoi dettagli, oppure avere accesso ad un report nazionale.

Diagramma di dettaglio - ViewCitta

Nel diagramma sopra rappresentato, vengono evidenziate tutte le interfacce disponibili riguardanti la vista città. Nello specifico verrà mostrato all'utente una situazione real-time ed un grafico relativo alla località cercata. Tale grafico può mostrare diversi dati in base alle scelte effettuate attraverso un opportuno filtro.

Tramite questa interfaccia è possibilie accedere anche al report della città cercata in precedenza.

Diagramma di dettaglio - ViewStatistiche

Nel diagrama sopra rappresentato, vengono evidenziate tutte le interfacce disponibili riguardanti la vista statistiche. Tale vista offre all'utente un report annuo, il quale può essere nazionale o della località cercata, riguardo tutti i dati raccolti. Inoltre attraverso un opportuno filtro è possibile cambiare l'intervallo di tempo di cui si vuole avere il report.

Tramite questa view è possibile accedervi alla vista città per avere dei grafici più dettagliati della città cercata in precedenza.

Nel caso si sta visualizzando il report nazionale, tale grafico, mostrerà un report mese per mese dell'evento selezionato.

Interazione

Comportamento

Come nella parte di analisi del problema, non è stato necessario descrivere entità con uno stato o diagrammi di interazione specifici; ciononostante si è deciso di riportare il diagramma di interazione del controllo e della validazione di un evento, a partire dai sensori della stazione meteo alla scrittura persistente effettuata dal server.

Persistenza

Diagramma ER - Event Driven persistence

Scelte progettuali

Sono state applicate diverse selte progettuali che, seppur aumentando la complessità della persistenza, permettono una ricostruzione per stazione meteo temporalmente corretta e garantiscono l'integrità degli eventi anche solo grazie al modo in cui essi sono modellati. Per questo motivo invece di ricostruirla tramite data (timestamp) necessitiamo di una sequenza numerica *gapless* che identifichi gli eventi temporalmente nel momento in cui vengono salvati.

La tabella TopicHeight identifica per ogni singolo topic la lista di eventi registrati nell'ordine in cui essi vengono scritti.

Inoltre ogni evento inviato da una stazione meteo, ha nel suo payload un *numero incrementale* (boardOffset) che permette di avere una sequenza corretta per tale scheda.

Per quanto rigurda invece la tabella Revision, nell fase di validazione dei dati, si fa riferimento allo schema definito per quella version. La tabella TypeRevision invece serve a tenere traccia dell'ultima version relativa ad ogni Type. Inoltre l'intera persistenza del sistema è stata progettata in modo da poter essere adattiva a nuovi tipi di dato (nuovi event di type diversi, o nuovi event di topic diversi) senza dover rimodellare l'intero schema.

Il seguente diagramma ER rappresenta le entità e le relazioni appartenenti alla persistenza degli eventi.

Entità:

- Topic: ogni topic è identificato da un ID (primary key) e presenta un solo attributo, il nome. Tale coppia deve essere unica all'interno del sistema.
- Type: ogni type è identificato da un ID (primary key) e presenta un solo attributo, il nome. La coppia name e chiave esterna che riferisce l'ID della tabella topic devono essere univoci all'interno del sistema.
- Revision: ogni revision è identificata da un ID (primary key) e presenta l'attributo version, il quale identifica il numero di versione e, l'attributo schema di tipo JSON. La coppia version e chiave esterna che riferisce l'ID della Type devono essere univoci all'interno del sistema.
- TopicHeight: tiene traccia del numero di eventi relativi a quel topic, la primary key è rappresentata dalla chiave esterna che riferisce l'ID della tabella Topic.
- TypeRevision: tiene traccia dell'ultima version per ogni type, la primary key è data dalla chiave esterna che riferisce l'ID della tabella Type.
- Event: rappresenta l'evento emesso dalla stazione, la primary key viene identificata dalla coppia topicHeight e dalla Foreign Key del topic relativo all'evento scritto. Inoltre abbiamo l'attributo receivedAt il quale indica in formato timestamp il momento in cui è stata scritta la riga sul database e l'attributo Payload.

Gli ID (primary key e non) sono degli interi AUTO-INCREMENT.

Relazioni:

- Topic (1..1) (1..N) Type: ogni type riferisce un solo Topic; un Topic può riferire da 1 ad N Type.
- Type (1..1) (1..N) Revision: ogni Revision riferisce un solo Type; un Type può riferire da 1 ad N Revision.
- TopicHeight (1..1) (1..N) Topic: ogni Topic riferisce un solo TopicHeight; un TopicHeight può riferire da 1 ad N Topic.
- TypeRevision (1..1) (1..N) Type: ogni Type riferisce un solo TypeRevision; un TypeRevision può riferire da 1 ad N Type.
- Event (0..N) (1..1) Topic: ogni Event riferisce un solo Topic; un Topic può riferire da 0 ad N Event.
- Event (0..N) (1..1) Type: ogni Event riferisce un solo Type; un Type può riferire da 0 ad N Event.
- Event (0..N) (1..1) Revision: ogni Event riferisce un solo Revision; un Revision può riferire da 0 ad N Event.

Diagramma ER - Proiezioni

Scelte progettuali

Utilizzando un sistema ad eventi si definisce una tabella per ogni proiezione che si vuole utilizzare nel sistema. In questo modo il DB così strutturato è facilmente espandibile a nuovi tipi di proiezioni.

Il seguente diagramma ER rappresenta le entità e le relazioni appartenenti alla persistenza delle proiezioni.

Entità

- WeatherNow: zipCode rappresenta la primary key della tabella in questione, la quale espone all'utente i relativi attributi in tempo reale.
- WindRecords: raccoglie tutti gli eventi inerenti alla velocità e direzione del vento, i cui valori sono espressi dall'attributo speed per quanto riguarda la velocità e dalla chiave esterna per quanto riguarda la direzione. L'attributo emittedAt è dato dalla scheda che ha registrato il cambiamento, in formato timestamp. La primary key è data dallo zipCode.
- WeatherState: raccoglie tutti gli eventi inerenti allo stato del meteo, il cui valore viene espresso dalla chiave esterna. L'attributo emittedAt è dato dalla scheda che ha registrato il cambiamento, in formato timestamp. La primary key è data dallo zipCode.

- PollutionRecords: raccoglie tutti gli eventi inerenti all'inquinamento atmosferico, il cui valore viene espresso dall'attributo CO2. L'attributo emittedAt è dato dalla scheda che ha registrato il cambiamento, in formato timestamp. La primary key è data dallo zipCode.
- UmidityRecords: raccoglie tutti gli eventi inerenti all'umidità presente nell'aria, il cui valore viene espresso dall'attributo umidity. L'attributo emittedAt è dato dalla scheda che ha registrato il cambiamento, in formato timestamp. La primary key è data dallo zipCode.
- TemperatureRecords: raccoglie tutti gli eventi inerenti alla temperatura ambientale, il cui valore viene espresso dall'attributo temperature. L'attributo emittedAt è dato dalla scheda che ha registrato il cambiamento, in formato timestamp. La primary key è data dallo zipCode.
- WeatherState: è una tabella di dettaglio dove, attraverso l'attributo state, vengono espressi tutti i possibili stati.
- WindDirection: è una tabella di dettaglio dove, attraverso l'attributo direction, vengono espresse tutte le possibili direzioni del vento.

Gli zipCode (primary key e non) sono delle stringhe composte da 5 caratteri.

Relazioni

- WeatherNow (0..N) (1..1) WeatherState: ogni WeatherNow riferisce un solo WeatherState; un WeatherState può riferire da 0 ad N WeatherNow.
- WeatherNow (0..N) (1..1) WindDirection: ogni WeatherNow riferisce un solo WindDirection; un WindDirection può riferire da 0 ad N WeatherNow.
- WindRecords (0..N) (1..1) WindDirection: ogni WindRecords riferisce un solo WindDirection; un WindDirection può riferire da 0 ad N WindDirection.
- WeatherStateRecords (0..N) (1..1) WeatherState: ogni WeatherStateRecords riferisce un solo WeatherState; un WeatherState può riferire un solo WeatherStateRecords.

Formato del file di log

Il file di log degli eventi deve contenere gli eventi che avvengono nelle componenti del sistema che si occupano di ricevere e salvare gli eventi, per le ragioni di sicurezza discusse nelle sezioni precedenti. Il file è formato in questo modo:

```
log: {
    "timestamp": "<timestamp>",
    "level": "<level>",
    "ip": "<ip>",
    "message": "<message>",
    "tag": "<tag>"
}
```

Il file di log relativo alle proiezioni visualizzate dagli utenti è così composto:

```
log: {
    "timestamp": "<timestamp>",
    "status": "<status>",
    "method": "<method>",
    "level": "<level>",
    "endpoint": "<endpoint>"
}
```

Protezione dei file di log

I file di log possono essere crittografati per avere una maggiore sicurezza nel caso in cui un attaccante riesca ad accedervi, non potendo ottenere quindi informazioni. Questo influisce in modo abbastanza significativo sulle performance del sistema, quindi a seconda dell'esigenza può essere abilitata o meno. Vengono inoltre eseguiti backup periodici in un server remoto in maniera da garantirne la disponibilità anche dopo molto tempo.

Progettazione del collaudo

Partendo dal piano di collaudo, sono stati implementati, dei nuovi test. Lo scopo di questi test è la verifica del corretto funzionamento delle parti del sistema. Qui di seguito sono riportati soltanti alcuni dei principali test.

```
public class TestPostgresNotification {
 public static void main(String args[]) throws Exception {
   Class.forName("org.postgresql.Driver");
   String url = "jdbc:postgresql://localhost:5432/test";
   Connection | Conn = DriverManager.getConnection(url, "test", "");
   Connection nConn = DriverManager.getConnection(url, "test", "");
   ListenerTest listener = new ListenerTest(lConn);
   NotifierTest notifier = new NotifierTest(nConn);
   listener.start();
   notifier.start();
}
class ListenerTest extends Thread {
 private Connection conn;
 private org.postgresql.PGConnection pgconn;
 ListenerTest(Connection conn) throws SQLException {
   this.conn = conn;
   this.pgconn = (org.postgresql.PGConnection) conn;
   Statement stmt = conn.createStatement();
   stmt.execute("LISTEN mymessage");
   stmt.close();
 public void run() {
   while (true) {
     try {
       Statement stmt = conn.createStatement();
       ResultSet rs = stmt.executeQuery("SELECT 1");
       rs.close();
       stmt.close();
       org.postgresql.PGNotification notifications[] = pgconn.getNotifications();
       if (notifications != null) {
```

```
for (int i = 0; i < notifications.length; i++) {
            System.out.println("Got notification: " + notifications[i].getName());
       }
       Thread.sleep(500);
     } catch (SQLException sqle) {
        sqle.printStackTrace();
     } catch (InterruptedException ie) {
        ie.printStackTrace();
   }
}
class NotifierTest extends Thread {
  private Connection conn;
  public NotifierTest(Connection conn) {
   this.conn = conn;
 }
  public void run() {
   while (true) {
     try {
        Statement stmt = conn.createStatement();
        stmt.execute("NOTIFY mymessage");
       stmt.close();
       Thread.sleep(2000);
     } catch (SQLException sqle) {
        sqle.printStackTrace();
     } catch (InterruptedException ie) {
        ie.printStackTrace();
```

Qui di seguito sono riportati i test per la REST API. I test eseguono delle chiamate HTTP per testare il corretto funzionamento delle proiezioni

```
@Test
describe('/GET mock boardstate', () => {
it('it should get the BoardState', (done) => {
  server
   .get('/mock/boardState')
   .end((err, res) => {
    res.should.have.status(200);
   res.body.zipCode.should.equal(64100);
    res.body.wind.speed.should.equal(10);
    res.body.pollution.CO2.should.equal(10);
    res.body.pressure.pressure.should.equal(10);
    res.body.weatherState.state.should.equal("STATE_ENUM");
    done();
  });
});
});
```

```
describe('/GET mock temperature', () => {
  it('it should get the temperatures of 64100 zipCode', (done) => {
    server
    .get('/mock/temperatures')
    .end((err, res) => {
      res.should.have.status(200);
      res.body.temperatures.should.be.a('array');
      res.body.zipCode.should.equal(64100);
      res.body.temperatures[0].value.should.equal(18);
      done();
    });
});
});
```

```
describe('/GET generic error', () => {
  it('it should return response with status 500', (done) => {
    server
    .get('/mock/error')
    .end((err, res) => {
      res.should.have.status(500);
      done();
    });
});
```

```
describe('/GET unauthorized error', () => {
  it('it should return response with status 500', (done) => {
    server
    .get('/mock/unauthorized')
    .end((err, res) => {
      res.should.have.status(401);
      done();
    });
});
});
```

Deployment

Artefatti

Deployment-type Level

Di seguito il diagramma di deployment fisico nel quale sono indicati su quali nodi fisici sono allocate le diverse parti del sistema. **Proiezioni Server** e **Proiezioni DBMS** possono essere replicati e distribuiti, a seconda delle esigenze. Ad esempio, si può pensare ad una soluzione dove per ogni tipo di proiezioni vi sia un server dedicato, in modo tale da ottimizzare e partizionare lettura e scrittura, rendendo di fatto tutto il sistema più performante.

