Mathematics I — Problem Set 1

Adam Altmejd

2014-09-04

Due: September 11, 2014 at 12.00. Remember to always use clear arguments, in the form of proofs or counter-examples (unless you are asked not to). If you find any typos, or think that something is unclear, please email me at adam@altmejd.se. Good luck!

Exercise 1 Drawing sets

Draw diagrams of the following sets in \mathbb{R}^2 :

$$A = \left\{ x : x_1^2 + x_2^2 \ge 1 \right\} \cap [0, 1]^2$$

$$B = \left\{ x \in \mathbb{R}^2 : x_1 \in [0, x_2] \right\}$$

$$C = \{0, 1, 2, 3\}^2$$

Exercise 2 Upper and lower bounds

Identify the (possibly empty) sets A and B in $\mathbb R$ of lower and upper bounds to the following sets (in $\mathbb R$):

- (a) \mathbb{Z}
- (b) N
- (c) $[0,1] \cup \{4,5\}$
- (d) $]0,1[\cup\{4,5\}]$
- (e) $\{x \in \mathbb{R} : x = 1/n \text{ for some } n \in \mathbb{N}\}.$

Exercise 3 Supremum and infimum

Identify the supremum and infimum, if such exists, for each of the sets in Exercise 2.

Exercise 4 Proof of equivalence

Prove the following equivalence (where X is the universal set). Hint: De Morgan's laws can be useful! (P^{\complement} is here the complement of the set P, i.e. $P^{\complement} = \{x \in X : x \notin P\}$)

$$P \subset Q \Leftrightarrow P^{\complement} \cup Q = X$$

Exercise 5 Bijection of a composite function (ex. 2.6.10)

Let $f: X \to Y$ and $g: Y \to Z$. Show that $g \circ f: X \to Z$ is a bijection if g and f are bijections.

Exercise 6 Correspondences (ex. 2.6.16)

Let $X=Y=\mathbb{R}^2_+$, and consider the correspondences φ and ψ from X to Y defined by $\varphi(x)=\{y\in\mathbb{R}^2:y_1\geq x_1\text{ and }y_2\geq x_2\}$ and $\psi(x)=\{y\in\mathbb{R}^2:y_1y_2\geq x_1x_2\}$. Draw pictures of the images of x=(0,0), x=(1,2) under φ and ψ . Note that ψ is the weak-preference correspondence of a consumer with Cobb-Douglas utility $u(x)=(x_1)^{1/2}(x_2)^{1/2}; \ \psi(x)$ is the set of consumption bundles y that he or she weakly prefers to x.

Exercise 7 Open and closed sets

Which of the following sets in \mathbb{R}^2 are open and/or closed? Find the closure and interior of each set. You do not need to provide formal proofs, short clear arguments are enough.

- (a) $]0,1[\times]1,2[$
- (b) $[0,1] \times [1,2]$
- (c) $]0,1[\times[1,2]$
- (d) a straight line through the origin
- (e) its complement
- (f) $]0,1[\times\{1,2,3\}]$
- (g) $[0,1] \times \{1,2,3\}$

Exercise 8 The open ball

Prove that $\forall x \in \mathbb{R}^n$ and any $\delta \in \mathbb{R}_{++}$, $B_{\delta}(x)$ is an open set.

Exercise 9 More set properties

For each of the following three sets, all in \mathbb{R}^2 , decide which, if any, of the following properties each set has; finite, bounded, convex, open, closed, compact, connected. You do not have to provide formal proofs, drawing the sets and/or providing short comments is enough.

- (a) $A =]1, 2[\times \{1, 2\}]$
- (b) $B = \{x \in \mathbb{R}^2_+ : x_1 \le (2 x_2)^2\}$
- (c) $C = \bigcap_{x \in \mathbb{N}} \{x \in \mathbb{R}^2 : 0 < ||x|| < 1/n \}$

Exercise 10 Convexity under cartesian products

Suppose the sets $A_1, A_2 \subset \mathbb{R}$ are convex. Is then also $A = A_1 \times A_2$ convex?