

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

# NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**MATHEMATICS P2** 

**NOVEMBER 2010** 

**MEMORANDUM** 

**MARKS: 150** 

This memorandum consists of 33 pages.

#### **NOTE:**

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in **ALL** aspects of the marking memorandum.

#### **QUESTION 1**



and 1.2 in conjunction with one another), max 5 / 6 marks for question 1.1 and 1.2

If candidate writes numbers randomly in 1.1 and draws the box and whisker diagram correctly but without indicating the numbers on the diagram, then max 5 / 6 marks for question 1.1 and 1.2

If candidate just draws the box and whisker in 1.2 and does not indicate values on it or answers 1.1, the max 2 / 6 marks

If the candidate draws two diagrams (one in the answer book and one on the diagram sheet), mark the one on the **DIAGRAM SHEET**.

| Class B                                                                                 | ✓ Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class B performed better because half of the learners got above 60%                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u> </u>                                                                                | ✓✓ median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                                                                                       | Class B >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| whilst half of Class A got less than 55%.                                               | Median Class A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median of Class B > Median of Class A                                                   | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OR                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Class B                                                                                 | ✓ Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Class B is skewed more to the left than Class A is.                                     | ✓✓ Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                         | skewed more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                         | left than A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OR                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Class A                                                                                 | ✓ Class A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25% of class scored 75% or more in Class A while 25% of the class                       | ✓ highest A >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| scored 70% or more in Class B.                                                          | highest B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Highest Mark in Class A > Highest Mark in Class B.                                      | 25% of A above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                         | 75% and 25% of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                         | B above 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Note:                                                                                   | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| If candidate answers:                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cannot determine the class that does better because we have                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| insufficient information as we do not know where the marks are                          | [9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| clustered. Max 1/3                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Note:                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| If candidate just answers Class A or Class B and there are no reasons, then 0 / 3 marks |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                         | Class B performed better because half of the learners got above 60% whilst half of Class A got more than 55%.  Class B performed better because half of the learners got above 60% whilst half of Class A got less than 55%.  Median of Class B > Median of Class A  OR  Class B  Class B is skewed more to the left than Class A is.  OR  Class B  Class A  25% of class scored 75% or more in Class A while 25% of the class scored 70% or more in Class B.  Highest Mark in Class A > Highest Mark in Class B.  Note:  If candidate answers:  Cannot determine the class that does better because we have insufficient information as we do not know where the marks are clustered. Max 1 / 3  Note: |

| 2.1 | EXAMINATION      | FREQUENCY | <b>CUMULATIVE</b> |                  |
|-----|------------------|-----------|-------------------|------------------|
|     | SCORE (x)        |           | FREQUENCY         |                  |
|     | $30 \le x < 40$  | 12        | 12                |                  |
|     | $40 \le x < 50$  | 18        | 30                | ✓ first 3 values |
|     | $50 \le x < 60$  | 55        | 85                |                  |
|     | $60 \le x < 70$  | 57        | 142               | ✓ last 4 values  |
|     | $70 \le x < 80$  | 43        | 185               | (2)              |
|     | $80 \le x < 90$  | 11        | 196               |                  |
|     | $90 \le x < 100$ | 4         | 200               |                  |
| 2.2 |                  |           |                   | Vshape (points   |



- ✓ shape (points must not be joined a straight line with a ruler)
- ✓ grounding point (30; 0)
- ✓ using the upper limit
- ✓ using cumulative frequencies
- ✓ if 4 or more points plotted correctly

(5)

#### Note:

If learners plot the midpoint of the interval and the cumulative frequency **max 1 / 5 marks** for shape

If the candidates plot the lower limit and the cumulative frequency max 1/5 marks

OR  $\frac{142 + 185}{2} = 163,5$ 200 - 163,5 = 36,5

Note:

Accept any one of 34, 35 or 36

✓ answer

(1) [**8**]

### NSC – Memorandum

# **QUESTION 3**

| 3.1 | Mean $= \frac{217 + 211 + 221 + 239 + 144 + 161 + 168 + 185 + 265 + 249 + 160 + 184}{200 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 10$ |                           |            |                                |      |                            |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|--------------------------------|------|----------------------------|---|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |            |                                |      |                            |   |
|     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |            |                                | 2404 |                            |   |
|     | $=\frac{2404}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |            | $\checkmark \frac{2404}{12}$   |      |                            |   |
|     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |            | Note:                          |      | ✓ answer                   |   |
|     | = 200,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |            | Penalty 1 for incorrect        |      | (2)                        | ) |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |            | rounding                       |      | Answer only:               | , |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | _          |                                |      | Full marks                 |   |
| 3.2 | By means of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | calculator:               | Г          |                                |      |                            |   |
|     | $\sigma = 37,37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |            | Note:                          |      |                            |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |            | No penalty for incorrect       |      | ✓✓✓ answer                 |   |
|     | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |            | decimal places                 |      | (3)                        | ) |
|     | Pen and pape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r method:                 |            | Accept 37                      |      |                            |   |
|     | mean $(\bar{x}) = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | L          | 1                              |      |                            |   |
|     | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $x-\overline{x}$          |            | $(x-\overline{x})^2$           |      |                            |   |
|     | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16,67                     |            | 277,889                        |      |                            |   |
|     | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,67                     |            | 113,848                        |      |                            |   |
|     | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20,67                     |            | 427,248                        |      |                            |   |
|     | 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38,67                     |            | 1495,368                       |      |                            |   |
|     | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -56,33                    |            | 3173,0689                      |      |                            |   |
|     | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -39,33                    |            | 1546,848                       |      |                            |   |
|     | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -32,33                    |            | 1045,228                       |      |                            |   |
|     | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -15,33                    |            | 235,008                        |      |                            |   |
|     | 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64,67                     |            | 4182,208                       |      |                            |   |
|     | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48,67                     |            | 2368,768                       |      |                            |   |
|     | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -40,33                    |            | 1626,508                       |      |                            |   |
|     | 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -16,33                    |            | 266,668                        |      |                            |   |
|     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SUM                       |            | 16758,666                      |      | ✓total                     |   |
|     | $\sigma = \sqrt{\frac{16758.6}{12}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\overline{6668} = 37,37$ |            |                                |      | ✓ substitution<br>✓ answer | ) |
| 3.3 | 200,33+1(37,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7)                        | <b>1</b> 7 | -4                             |      | ✓method                    | _ |
|     | = 237,70  litres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                         |            | ote:<br>candidate answers      |      | ✓answer                    |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |            | 00,33 - 1(37,37) = 162,96  lit | res  |                            |   |
|     | Accept any nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |            | [ax 1 / 2 marks                | 105  | (2)                        | ) |
|     | and including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 237 and 238 litres.       | 141        | iaa 1 / 2 mai ny               |      | [7]                        | ] |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |            |                                |      |                            |   |

| 4.1 | Fly High                                                                                                                                   | ✓ answer (1)                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 4.2 | $ \frac{5120}{1000} \times 7.9 \\ = 40,45 $ <b>OR</b> $ \frac{5120}{1000} \times 8 \\ = 40,96 $ <b>OR</b> $ \frac{8 \times 5}{= 40} $      | ✓ calculation that leads to 40    |
|     | Yes                                                                                                                                        | (1)                               |
| 4.3 | Yes. The data points suggest a straight line fit with negative gradient but Fly-High will have to be an outlier.                           | ✓Yes<br>✓ negative<br>gradient    |
|     | OR                                                                                                                                         | (2)                               |
|     | Yes. Weak negative correlation. $(r = -0.2128075984)$                                                                                      | ✓Yes<br>✓ negative<br>correlation |
|     | Note: If the candidate indicates "Best Air" and/or "Best Fly" and/or "Alpha" have high on time arrivals and low lost luggage max 1/2 marks | (2)                               |
| 4.4 | Alpha, 70% on-time arrival and least luggage loss  OR  Post Air, best on time arrival                                                      | ✓ Name of company ✓ correct       |
|     | Best Air, best on time arrival                                                                                                             | justification (2) [6]             |



|       |                                                                                                                                | B(1; -6)                                                 |                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 5.1.1 | $m_{AD} = m_{AC}$ $m_{AD} = m_{AC}$ $= \frac{7-4}{3-(-3)} = \frac{4-7}{-3-(3)}$ $= \frac{3}{6} = \frac{-3}{-6}$                | <b>Note:</b> If candidate gives $m_{AD} = \frac{7}{3-x}$ | ✓ substitution of A and C into correct formula |
|       | $=\frac{1}{2} \qquad \qquad =\frac{1}{2}$                                                                                      | then 1/2 marks                                           | ✓ answer (2)                                   |
| 5.1.2 | $=\frac{-10}{4}$ <b>OR</b>                                                                                                     | $= \frac{4 - (-6)}{-3 - (1)}$ $= \frac{10}{-4}$          |                                                |
| 5.2   | $= \frac{-5}{2}$ $m_{AD} = \frac{1}{2} = \tan \hat{\text{CDO}}$                                                                | $=\frac{-4}{2}$                                          | ✓ answer (1)                                   |
|       | CDO = 26,56505°                                                                                                                |                                                          | ✓ 26,57°                                       |
|       | $m_{BC} = \frac{-5}{2} = \tan \alpha$<br>$\alpha = 111,814095^{\circ}$<br>$\hat{DCB} = 111,8014095^{\circ} - 26,56505^{\circ}$ |                                                          | ✓ 111,80°                                      |
|       | = 85,236359°<br>= 85,24°<br>≈ 85,2°                                                                                            |                                                          | ✓answer (3)                                    |
|       | OR                                                                                                                             |                                                          |                                                |

Copyright reserved

$$\tan \hat{CDO} = \frac{1}{2}$$

$$\hat{CDO} = 26,56505....^{\circ}$$

$$\tan (180^{\circ} - \alpha) = \frac{5}{2}$$

$$180^{\circ} - \alpha = 68,19859051...^{\circ}$$

$$D\hat{CB} = 180^{\circ} - (26,56505....^{\circ} + 68,19859051...^{\circ})$$

$$= 85,236359^{\circ}$$

$$= 85,24^{\circ}$$

OR
$$D\hat{CB} = \alpha - \hat{CDO}$$

$$\tan \hat{DCB} = \frac{m_{cm} - m_{cD}}{1 + m_{ce} m_{cD}}$$

$$= \frac{-\frac{5}{2} + \frac{1}{2}}{1 + (-\frac{5}{2})(\frac{1}{2})}$$

$$= 12$$

$$D\hat{CB} = 85,24^{\circ}$$

OR
$$AC = \sqrt{45} \quad BC = \sqrt{116} \quad AB = \sqrt{173}$$

$$\cos \hat{ACB} = \frac{AC^{2} + BC^{2} - AB^{2}}{2AC.BC}$$

$$= \frac{45 + 116 - 173}{2(\sqrt{45})(\sqrt{116})}$$

$$= -0,083045...$$

$$\hat{ACB} = 94,76...^{\circ}$$

$$= 85,24^{\circ}$$

OR
$$D(-11:0)$$

$$DC = \sqrt{80} \quad BC = \sqrt{116} \quad DB = \sqrt{180}$$

$$\cos \hat{DCB} = \frac{DC^{2} + BC^{2} - DB^{2}}{2DC.BC}$$

$$= \frac{80 + 116 - 180}{2(\sqrt{80})(\sqrt{116})}$$

$$= 0,08304547985...$$

$$D\hat{CB} = 85,24^{\circ}$$

OR
$$D\hat{CB} = 85,24^{\circ}$$

(3)

OR
$$(3)$$

Validation into cosine rule

Equation AC: 
$$2y = x + 11$$
  
D(-11; 0)  
C(-3; 4)  
DC<sup>2</sup> =  $(x_C - x_D)^2 + (y_C - y_D)^2$   
=  $(-3 + 11)^2 + (4 - 0)^2$   
=  $80$   
Equation BC:  $2y = -5x - 7$   
P( $-\frac{7}{5}$ ;0)  
PC<sup>2</sup> =  $(-3 + \frac{7}{5})^2 + (4 - 0)^2$   
=  $\frac{464}{25}$   
DP<sup>2</sup> =  $(-\frac{7}{5} + 11)^2$   
=  $\frac{2304}{25}$   
In  $\triangle$ DCP: DP<sup>2</sup> = DC<sup>2</sup> + CP<sup>2</sup> - 2DC.CP.cos DĈP  
 $\frac{2304}{25} = \frac{2000}{25} + \frac{464}{25} - 2\left(\frac{\sqrt{2000}}{5}\right)\left(\frac{\sqrt{464}}{5}\right)$ .cos DĈP  
DĈP =  $85,23635...$   
DĈP =  $85,23635...$   
DĈP =  $85,24^\circ$ 

#### 10 NSC – Memorandum

| 5.3 | $y - 7 = \frac{1}{2}(x - 3)$ $y = \frac{1}{2}x + \frac{11}{2}$              |                                                                                                      | ✓ substitution of<br>(3; 7) into<br>$y - y_1 = m(x - x_1)$  |
|-----|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|     | x - 2y + 11 = 0                                                             |                                                                                                      | ✓ answer in any form (2)                                    |
|     | OR<br>$y-4 = \frac{1}{2}(x+3)$<br>$y = \frac{1}{2}x + \frac{11}{2}$         |                                                                                                      | ✓ substitution of<br>(-3; 4) into<br>$y - y_1 = m(x - x_1)$ |
|     | x - 2y + 11 = 0 <b>OR</b>                                                   | Note:<br>If candidate leaves answer as $y-7 = \frac{1}{2}(x-3) \text{ or } y-4 = \frac{1}{2}(x+3) :$ | ✓ answer in any form (2)                                    |
|     | $y = \frac{1}{2}x + c$ $(7) = \frac{1}{2}(3) + c$                           | max 1/3 marks                                                                                        | ✓ substitution of (3; 7) into $y = mx + c$                  |
|     | $c = \frac{11}{2}$ $y = \frac{1}{2}x + \frac{11}{2}$                        |                                                                                                      | ✓ answer in any                                             |
|     | x - 2y + 11 = 0                                                             |                                                                                                      | form (2)                                                    |
| 5.4 | $M(x; y) = \left(\frac{-3+1}{2}; \frac{4-6}{2}\right)$ $M(x; y) = (-1; -1)$ |                                                                                                      | ✓ substitution<br>✓ answer (2)                              |

Copyright reserved

Note:

If the candidate does not conclude

b = 2a + 1 from y = 2x + 1:

max 3 / 4 marks

5.5  $m_{AM} = \frac{7 - (-1)}{3 - (-1)} = 2$ 

$$y = 2x + c$$

$$-1 = 2(-1) + c$$

$$\therefore c = 1$$

$$y = 2x + 1$$

G(a; b) lies on the line  $\therefore b = 2a + 1$ 

OR

$$\frac{7-b}{3-a} = \frac{b+1}{a+1}$$
$$(7-b)(a+1) = (b+1)(3-a)$$

$$7a + 7 - ab - b = 3b - ab + 3 - a$$

$$8a - 4b = -4$$

$$2a - b = -1$$

$$b = 2a + 1$$

OR

Using the point (-1; -1)

$$\frac{b+1}{a+1} = \frac{8}{4}$$

$$\frac{b+1}{a+1} = 2$$

$$b + 1 = 2a + 2$$

$$b = 2a + 1$$

OR

Using the point (3; 7)

$$\frac{7-b}{3-a} = \frac{8}{4}$$

$$\frac{7-b}{3-a} = 2$$

$$7 - b = 6 - 2a$$

$$b = 2a + 1$$

✓ gradient = 2

✓ substitution

$$(-1;-1)$$

$$\checkmark c = 1$$

**✓** conclusion

**(4)** 

$$\checkmark \frac{b+1}{a+1}$$

✓ equating

✓ simplification leading to 2a - b = -1**(4)** 

✓ substitution of (-1;-1) into gradient

✓ gradient = 2

✓ equating

✓ simplification leading to b+1 = 2a + 2

**(4)** 

✓ substitution of (3;7) into gradient

✓ gradient = 2

✓ equating

✓ simplification leading to 7 - b = 6 - 2a

**(4)** 

5.6  $GC = \sqrt{17}$   $GC^{2} = 17$   $(a+3)^{2} + (b-4)^{2} = 17$   $(a+3)^{2} + (2a+1-4)^{2} = 17$   $a^{2} + 6a + 9 + 4a^{2} - 12a + 9 - 17 = 0$   $5a^{2} - 6a + 1 = 0$  (5a-1)(a-1) = 0  $a = \frac{1}{5} \text{ or } a = 1$   $\therefore b = \frac{7}{5} \text{ or } b = 3$ 

Note:

If candidate swops *a* and *b* around: max 2 / 6 marks

✓ distance formula in terms of a and b✓ substitution of b = 2a + 1

✓ standard form ✓ factors or correct substitution into formula

✓ values of a ✓ values of b

(6)

OR

$$a = \frac{b-1}{2}$$

$$17 = (a+3)^{2} + (b-4)^{2}$$

$$17 = \left(\frac{b-1}{2}\right) + 3\right)^{2} + (b-4)^{2}$$

$$17 = \left(\frac{b+5}{2}\right)^{2} + (b-4)^{2}$$

$$17 = \frac{b^{2} + 10b + 25 + 4b^{2} - 32b + 64}{4}$$

$$68 = 5b^{2} - 22b + 89$$

$$0 = 5b^{2} - 22b + 21$$

$$0 = (5b-7)(b-3)$$

$$\therefore b = \frac{7}{5} \text{ or } b = 3$$

 $\checkmark a = \frac{b-1}{2}$ 

✓ distance formula in terms of *a* and *b* 

✓ substitution b-1

of 
$$a = \frac{b-1}{2}$$

✓ standard form

✓ factors or correct substitution into formula

✓ values of b

(6) [**20**]

Copyright reserved



6.1 
$$y = -x + 2$$

$$m_{LP} = -1$$

$$\therefore m_{LN} = \frac{-1}{-1} = 1$$

$$y = x + c$$

$$4 = -4 + c$$

$$\therefore c = 8$$

$$y = x + 8$$
OR

$$y - 4 = 1(x+4)$$
$$y = x+8$$

Note:

If candidate leaves it as y - 4 = x + 4 max 2 / 3 marks

Answer only: Full marks

 $\checkmark m_{LP} = -1$ 

 $\checkmark m_{LN} = 1$ 

✓ equation

(3)

 $\checkmark m = 1$ 

✓ substitution of  $y - y_1 = m(x - x_1)$ 

✓ answer

(3)

Note:

No penalty for not leaving in coordinate form

✓ x-value ✓ y-value

Equations leading to these values must be used
(2)

Copyright reserved

 $(x+4)^2 + (y-4)^2 = r^2$  $(-3+4)^2 + (5-4)^2 = r^2$ 

$$r^2 = 2$$

$$(x+4)^2 + (y-4)^2 = 2$$

Equation can be left as:  $x^{2} + 8x + y^{2} - 8y + 30 = 0$  Note:

If the candidate only uses the distance formula to determine the radius

$$(-3+4)^2 + (5-4)^2 = r^2$$
  
$$\therefore r^2 = 2$$

then 
$$2/3$$
 marks

 $(x+4)^2 + (y-4)^2 = r^2$ ✓ substitution of (-3;5)

$$\checkmark r^2 = 2 \tag{3}$$

6.4 Let N(x, y). Since M(-4; 4) is the midpoint of LN and L(-3; 5)

$$\frac{x-3}{2} = -4; \quad \frac{y+5}{2} = 4$$
  
 
$$\therefore x = -5; \quad y = 3$$

OR

v = x + 8

$$(x+4)^2 + (y-6)^2 = 2$$

$$(x+4)^2 + (x+8-4)^2 - 2 = 0$$

$$x^2 + 8x + 16 + x^2 + 8x + 16 - 2 = 0$$

$$2x^2 + 16x + 30 = 0$$

$$x^2 + 8x + 15 = 0$$

$$(x+5)(x+3) = 0$$

$$x = -3$$
 or  $x = -5$   
 $y = 5$   $y = 3$ 

$$\therefore$$
 N(-5;3)

that M is the midpoint of LN ✓ x = -5

✓ using the fact

$$\checkmark x = -3$$
 $\checkmark y = 3$ 

**Note:** Answer only:

**Full marks** 

$$(x+4)^2 + (x+8-4)^2 - 2 = 0$$

✓ x = -5 $\checkmark v = 3$ 

(3)

(3)

 $6.5 \mid m_{NO} = -1$ 

$$y = -x + c$$

$$3 = -(-5) + c$$

$$c = -2$$

$$y = -x - 2$$

Note:

Answer only: Full marks

mx + c

(3)

OR

$$m_{\rm NO} = -1$$

$$y-3=-(x+5)$$

$$y = -x - 2$$

OR

Equation of LP is x + y = 2

NQ || LP

 $\therefore$  equation of NQ is x + y = k for some  $k \in R$ 

But N(-5;3) lies on NQ

$$\therefore x + y = -5 + 3 = -2$$

✓ gradient

✓ substitution of (-5;3) into y =

 $\checkmark c = -2$ 

✓ gradient

✓ substitution of (-5; 3)

into

 $y - y_1 = m(x - x_1)$ 

**✓** equation

(3)

 $\checkmark x + y = k$ 

✓ substitution of

(-5;3)

✓ equation

(3)

| NSC – Memorandum                                                                                                                                                                                  |                                                                       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| OR<br>NQ is a reflection of LP $(y + x = 2)$ in the line $y = x$<br>$\therefore$ equation of NQ is $x + y = -2$                                                                                   |                                                                       |  |  |
| 6.6 Let new radius of circle be R and centre be M'. $M'(-4+6;4)$ $= (2;4)$ $R = 2r$ $R^2 = 4r^2$ $= 4(2)$ $= 8$ $\therefore (x-2)^2 + (y-4)^2 = (2\sqrt{2})^2$ $\therefore (x-2)^2 + (y-4)^2 = 8$ | ✓ $M'(2;4)$ ✓ $r = 2\sqrt{2}$ ✓ equation (3)                          |  |  |
| OR  Let R = new radius of circle  R <sup>2</sup> = $(2r)^2 = 4(2) = 8$ $(x - 6 + 4)^2 + (y - 4)^2 = 8$ $\therefore (x - 2)^2 + (y - 4)^2 = 8$                                                     | $ √ (x-2)^{2} $ √ (y-4) <sup>2</sup> √8 or $(2\sqrt{2})^{2}$ (3) [17] |  |  |



2 marks for each diagram of the transformation (6)

#### OR

If candidate works out the general rule first  $(x; y) \rightarrow$ (2x - 8; -2y - 4) $\checkmark A'(-4; 0)$  $\checkmark B'(0; 2)$  $\checkmark C'(-6; 4)$ 1 mark per each correct point plotted and joined (6)

**Note:** • If the candidate only draws the correct triangle with labels, **full marks** 

- If they plot the points correctly and do not draw the triangle, max 5 / 6 marks
- In the 3 sketches, if one vertex of the three is wrong, then 1 / 2 marks for the incorrect sketch, then CA applies.
- If they write down the points and do not plot the points and draw the triangle max 3 / 6 marks
- If the vertices are correct but not labelled and the points are joined max 5 / 6 marks
- If the vertices are correct, not labelled and not joined max 4 / 6 marks
- If a candidate finds a formula first and gets it wrong

Max 1 mark for the formula

Max 2 marks for the calculation of A', B', C' coordinates (CA)

1 mark for plotting 3 vertices

1 mark for completing the triangle and labelling

Copyright reserved Please turn over

\_

7.2  $(x; y) \rightarrow (x; -y)$ 

$$(x;-y) \rightarrow (x-4;-y-2)$$

$$(x-4; -y-2) \rightarrow (2x-8; -2y-4)$$

Note:

Answer only: Full marks

 $(x;y) \rightarrow (x;-y)$ 

$$\checkmark x-4$$

$$\sqrt{-y-2}$$

$$(2x-8;-2y-4)$$

OR

$$(x; y) \rightarrow (2x - 8; -2y - 4)$$

Note:

• If the candidate writes  $(x; y) \rightarrow (x; -y)$ 

$$(x;y) \to (x-4;y-2)$$

 $(x; y) \rightarrow (2x; 2y)$ 

then 2/4 marks

• If the candidate writes  $(x; y) \rightarrow (x; -y)$ 

$$(x;y) \rightarrow (x-4;-y-2)$$

 $(x; y) \rightarrow (2x - 8; -2y - 4)$ 

then 4/4 marks

• If candidate writes  $(x; y) \rightarrow 2(x-4; -y-2)$  then 3 / 4 marks

**(4)** 

7.3



Area  $\triangle$  ABC = area of rectangle – sum of 3 triangle areas

$$= 6 - \left(1 + \frac{3}{2} + 1\right)$$

 $=\frac{5}{2}$ 

Area  $\Delta A'B'C' = 2^2 \left(\frac{5}{2}\right)$ 

 $=10 \text{ units}^2$ 

 $\checkmark 6 - \left(1 + \frac{3}{2} + 1\right)$ 

 $\checkmark \frac{3}{2}$ 

**✓** ✓ 10

(4)

OR

NSC - Memorandum



$$\left( \left( \frac{1}{2} \cdot 6.2 \right) + \frac{1}{2} (4)(2) + \frac{1}{2} (2)(4) \right)$$

Area  $\Delta A'B'C' = 24 - \left(\left(\frac{1}{2}.6.2\right) + \frac{1}{2}(4)(2) + \frac{1}{2}(2)(4)\right)$ =24-6-4-4 $=10 \text{ units}^2$ 

$$\checkmark 24$$

$$\checkmark 10$$
(4)

$$m_{AC} = 2$$
 and  $m_{AB} = -\frac{1}{2}$ : product = -1

$$AC = \sqrt{5}$$

$$\checkmark \frac{5}{2}$$

 $\checkmark$  AB =  $\sqrt{5}$  and

$$\therefore \hat{CAB} = 90^{\circ}$$
$$AB = \sqrt{5}$$

$$AC = \sqrt{5}$$

$$7 \checkmark 10 \tag{4}$$

$$\therefore$$
 Area  $\triangle$ ABC is  $\frac{1}{2}(\sqrt{5})^2 = \frac{5}{2}$ 

$$\therefore$$
 Area  $\triangle$  A'B'C' is  $4 \times \frac{5}{2} = 10$  square units

$$\checkmark$$
 A'B' =  $\sqrt{20}$   
 $\checkmark$  A'C' =  $\sqrt{20}$ 

$$m_{A'C'} = -2$$
 and  $m_{A'B'} = \frac{1}{2}$ : product = -1  
::  $C'\hat{A}'B' = 90^{\circ}$ 

$$A'B' = \sqrt{20}$$

$$A'C' = \sqrt{20}$$

 $\therefore$  Area  $\triangle A'B'C'$  is  $\frac{1}{2}(\sqrt{20})^2 = 10$  square units

✓ AB = 
$$\sqrt{5}$$
 and AC =  $\sqrt{5}$ 

OR

$$AB = \sqrt{5}$$

$$AC = \sqrt{5}$$

$$BC^2 = 10$$

$$BC = \sqrt{10}$$

$$\perp$$
height =  $\sqrt{\frac{10}{4}}$ 

Area of 
$$\triangle ABC = \frac{1}{2} \cdot \sqrt{\frac{10}{4}} \cdot \sqrt{10} = \frac{5}{2}$$

Area 
$$\Delta A'B'C' = 4 \times \frac{5}{2} = 10$$
 square units

$$\checkmark \frac{5}{2}$$
 $\checkmark \checkmark$  answer

✓ AB = 
$$\sqrt{5}$$
 and AC =  $\sqrt{5}$ 

(4)

Copyright reserved

OR

$$AB = \sqrt{5}$$

$$AC = \sqrt{5}$$

$$BC^2 = 10$$

$$BC = \sqrt{10}$$

$$BC = \sqrt{10}$$

$$AC^2 + AB^2 = BC^2$$

Area 
$$\triangle ABC = = \frac{1}{2} \cdot (\sqrt{5})^2 = \frac{5}{2}$$

Area 
$$\Delta A'B'C' = 4 \times \frac{5}{2} = 10$$
 square units

✓ AB = 
$$\sqrt{5}$$
 and  
AC =  $\sqrt{5}$ 

OR

Area 
$$\triangle ABC = \frac{1}{2}.bc \sin A$$

$$= \frac{1}{2} \left( \sqrt{5} \right) \left( \sqrt{5} \right) \sin 90$$
$$= \frac{5}{2}$$

Area 
$$\Delta A'B'C' = 4 \times \frac{5}{2} = 10$$
 square units

(4)

OR



Reflect  $\Delta ABC$  about CB and get the square  $ABA^{\prime\prime}C$  of side  $\sqrt{5}$ Area square =  $(\sqrt{5})(\sqrt{5}) = 5$ 

Area 
$$\triangle ABC = \frac{5}{2}$$

Area 
$$\Delta A'B'C' = 4 \times \frac{5}{2} = 10$$
 square units

OR

$$\checkmark$$
 AB =  $\sqrt{5}$  and AC =  $\sqrt{5}$ 

✓ reflection to get square **√** √ 10

**(4)** 

Copyright reserved





Reflect  $\Delta A'B'C'$  about C'B' and get the square A'B'A''C' of side  $\sqrt{20}$ 

Area square =  $(\sqrt{20})(\sqrt{20})$  = 20

Area 
$$\Delta A'B'C' = \frac{1}{2} \times 20 = 10$$
 square units

 $\checkmark$  A'B'= $\sqrt{20}$  and A'C' =  $\sqrt{20}$ 

✓ reflection to get square

√√ 10

(4) [**14**]

| 8.1 | $x' = x \cos \alpha - y \sin \alpha$                                                                                                                |                                        | (14:44:                                         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
|     | $=2\cos 75^{\circ}-4\sin 75^{\circ}$                                                                                                                |                                        | ✓ substitution using anti clockwise             |
|     | $= 2\cos(30^{\circ} + 45^{\circ}) - 4\sin(30^{\circ} + 45^{\circ})$                                                                                 |                                        | formula                                         |
|     | $= 2\cos 30^{\circ}\cos 45^{\circ} - 2\sin 30^{\circ}\sin 45^{\circ} - 4\sin 30^{\circ}\cos 4$                                                      | ,                                      |                                                 |
|     | $=2.\frac{\sqrt{3}}{2}.\frac{\sqrt{2}}{2}-2.\frac{1}{2}.\frac{\sqrt{2}}{2}-4.\frac{1}{2}.\frac{\sqrt{2}}{2}-4\frac{\sqrt{3}}{2}.\frac{\sqrt{2}}{2}$ |                                        | ✓ 75 = 30 + 45                                  |
|     | $=2.\frac{1}{2}.\frac{1}{2}-2.\frac{1}{2}.\frac{1}{2}-4.\frac{1}{2}.\frac{1}{2}-4\frac{1}{2}.\frac{1}{2}$                                           | Note:                                  | ✓ cos expansion                                 |
|     | $2\sqrt{6} - 2\sqrt{2} - 4\sqrt{2} - 4\sqrt{6}$                                                                                                     | If the candidate uses a                | ✓ sin expansion                                 |
|     | 4                                                                                                                                                   | calculator i.e. gives a decimal answer | ✓ substitution of                               |
|     | $= \frac{2\sqrt{6} - 2\sqrt{2} - 4\sqrt{2} - 4\sqrt{6}}{4}$ $= \frac{-2\sqrt{2} - 6\sqrt{6}}{4}$                                                    | max 5 / 6 marks                        | special angles                                  |
|     | •                                                                                                                                                   |                                        |                                                 |
|     | $=\frac{-\sqrt{6}-3\sqrt{2}}{2}$ or $-\frac{1}{\sqrt{2}}(3+\sqrt{3})$                                                                               | Incorrect formula:                     |                                                 |
|     | $-\frac{2}{2}$ or $-\frac{1}{\sqrt{2}}(3+\sqrt{3})$                                                                                                 | max 5 / 6 marks                        | Vaimplified anguar                              |
|     |                                                                                                                                                     |                                        | $\checkmark$ simplified answer for $x^{\prime}$ |
|     |                                                                                                                                                     |                                        |                                                 |
|     |                                                                                                                                                     |                                        | (6)                                             |
|     | OR                                                                                                                                                  |                                        |                                                 |
|     | $x' = x \cos \alpha + y \sin \alpha$                                                                                                                |                                        | ✓ substitution using                            |
|     | $=2\cos(-75^\circ)+4\sin(-75^\circ)$                                                                                                                | clockwise formula                      |                                                 |
|     | $= 2\cos(75^\circ) - 4\sin(75^\circ)$                                                                                                               | ✓ 75 = 30 + 45                         |                                                 |
|     | $= 2\cos(30^{\circ} + 45^{\circ}) - 4\sin(30^{\circ} + 45^{\circ})$                                                                                 | 75 50 1 45                             |                                                 |
|     | $= 2\cos 30^{\circ}\cos 45^{\circ} - 2\sin 30^{\circ}\sin 45^{\circ} - 4\sin 30^{\circ}\cos 4$                                                      | ✓ cos expansion                        |                                                 |
|     | $=2.\frac{\sqrt{3}}{2}.\frac{\sqrt{2}}{2}-2.\frac{1}{2}.\frac{\sqrt{2}}{2}-4.\frac{1}{2}.\frac{\sqrt{2}}{2}-4\frac{\sqrt{3}}{2}.\frac{\sqrt{2}}{2}$ | ✓ sin expansion ✓ substitution of      |                                                 |
|     |                                                                                                                                                     | special angles                         |                                                 |
|     | $= \frac{2\sqrt{6} - 2\sqrt{2} - 4\sqrt{2} - 4\sqrt{6}}{2\sqrt{6}}$                                                                                 |                                        |                                                 |
|     | 4                                                                                                                                                   |                                        |                                                 |
|     | $=\frac{-2\sqrt{2}-6\sqrt{6}}{4}$                                                                                                                   |                                        |                                                 |
|     | 4                                                                                                                                                   |                                        | ✓ simplified answer                             |
|     | $= \frac{-\sqrt{6} - 3\sqrt{2}}{2}  \text{or}  -\frac{1}{\sqrt{2}}(3 + \sqrt{3})$                                                                   |                                        | for $x^{\prime}$                                |
|     | $\frac{1}{\sqrt{2}}$                                                                                                                                |                                        | (6)                                             |
|     |                                                                                                                                                     |                                        | (0)                                             |
|     |                                                                                                                                                     |                                        |                                                 |
|     | OR                                                                                                                                                  |                                        |                                                 |
|     |                                                                                                                                                     |                                        |                                                 |
|     |                                                                                                                                                     |                                        |                                                 |
|     |                                                                                                                                                     |                                        |                                                 |
|     |                                                                                                                                                     |                                        |                                                 |
|     |                                                                                                                                                     |                                        |                                                 |
|     |                                                                                                                                                     |                                        |                                                 |
|     |                                                                                                                                                     |                                        |                                                 |

| Mathematics/P2                                    | 22<br>NSC – Memorandum                  | DBE/November 2010   |
|---------------------------------------------------|-----------------------------------------|---------------------|
| First compute                                     | 1.00                                    | ✓ 75 = 30 + 45      |
| $\cos 75^\circ = \cos(30^\circ +$                 | - 45°)                                  | ✓ cos expansion     |
|                                                   | os 45° – sin 30°.sin 45°                | ✓ substitution of   |
|                                                   |                                         | special angles      |
| $=\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2}$      | $-\frac{1}{2} \cdot \frac{\sqrt{2}}{2}$ | in the first        |
|                                                   | 2 2                                     | expansion           |
| $=\frac{\sqrt{6}-\sqrt{2}}{4}$                    |                                         |                     |
| and 4                                             |                                         |                     |
| $\sin 75^\circ = \sin(30^\circ +$                 | 45°)                                    | ✓ sin expansion     |
|                                                   | os 45° + cos 30°.sin 45°                |                     |
| $=\frac{1}{2}\cdot\frac{\sqrt{2}}{2}+\frac{1}{2}$ | $\sqrt{3}$ $\sqrt{2}$                   |                     |
| $=\frac{1}{2}\cdot\frac{1}{2}$                    | 2.2                                     |                     |
| $=\frac{\sqrt{2}+\sqrt{6}}{4}$                    |                                         |                     |
| = 4                                               |                                         |                     |
| $x' = 2\cos 75^\circ - 4\sin 75^\circ$            | in 75°                                  | ✓ substitution      |
| $\sqrt{6-\sqrt{2}}$                               | $\left(\sqrt{2}+\sqrt{6}\right)$        | • substitution      |
| $=2\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)$      |                                         |                     |
| $=\frac{-2\sqrt{6}-6\sqrt{2}}{4}$                 |                                         | ✓ simplified answer |
| 4                                                 | -                                       | for $x'$            |
| $=\frac{-\sqrt{6}-3\sqrt{2}}{2}$                  |                                         | (6)                 |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |
|                                                   |                                         |                     |

DBE/November 2010

 $x' = x \cos \beta - y \sin \beta$  $3\cos\beta - \sin\beta = \frac{3 - \sqrt{3}}{2} \qquad \dots (1)$ 

 $y' = y\cos\beta + x\sin\beta$ 

 $\cos \beta + 3\sin \beta = \frac{1+3\sqrt{3}}{2} \qquad \dots (1^*)$ 

8.2

 $10\cos\beta = 3\left(\frac{3-\sqrt{3}}{2}\right) + \frac{(1+3\sqrt{3})}{2}$  $= \frac{1}{2} \left( 9 - 3\sqrt{3} + 1 + 3\sqrt{3} \right)$ OR  $=10\left(\frac{1}{2}\right)$ 

 $\therefore \cos \beta = \frac{1}{2}$ 

 $\therefore \beta = 60^{\circ}$ 

(1) - 3(1)\*:

 $-10\sin\beta = 3\left(\frac{1}{2}\right) - \left(\frac{3-\sqrt{3}}{2}\right)$  $=\frac{3-\sqrt{3}-3(1+3\sqrt{3})}{2}$  $=\frac{-10\sqrt{3}}{2}$ 

 $\therefore \sin \beta = \frac{\sqrt{3}}{2}$ 

 $\therefore \beta = 60^{\circ}$ 

✓ substitution into  $x^{\prime}$ 

✓ substitution into v'

√ simplification

✓ solving simultaneously

 $\checkmark \frac{\sqrt{3}}{2}$  or  $\frac{1}{2}$ 

✓answer

OR

 $3\cos\beta - \sin\beta = \frac{3 - \sqrt{3}}{2} \qquad \dots (1)$ 

 $\cos \beta = \frac{1+3\sqrt{3}}{2} - 3\sin \beta \qquad \dots (2)$ 

Substitute (2) into (1)

$$3\left(\frac{1+3\sqrt{3}}{2}-3\sin\beta\right)-\sin\beta=\frac{3-\sqrt{3}}{2}$$

 $\frac{3+9\sqrt{3}}{2}-9\sin\beta-\sin\beta=\frac{3-\sqrt{3}}{2}$ 

$$-10\sin\beta = \frac{3 - \sqrt{3} - 3 - 9\sqrt{3}}{2}$$

 $-10\sin\beta = \frac{-10\sqrt{3}}{2}$ 

$$\sin \beta = \frac{\sqrt{3}}{2}$$

 $\beta = 60^{\circ}$ 

 $\checkmark$  equation (1)

 $\checkmark$  equation (2)

✓ substitution

✓ simplification

 $\checkmark \sin \beta = \frac{\sqrt{3}}{2}$ 

(6)

(6)

Copyright reserved

OR

$$3\cos\beta - \sin\beta = \frac{3 - \sqrt{3}}{2}$$

and  $\cos \beta + 3\sin \beta = \frac{1 + 3\sqrt{3}}{2}$ 

Try 
$$\beta = 60^{\circ}$$

$$3\cos\beta - \sin\beta = 3\left(\frac{1}{2}\right) - 3\left(\frac{\sqrt{3}}{2}\right) = \frac{3 - \sqrt{3}}{3}$$

$$\cos \beta + 3\sin \beta = \frac{1}{2} + 3\left(\frac{\sqrt{3}}{2}\right) = \frac{1 + 3\sqrt{3}}{2}$$

$$\therefore \beta = 60^{\circ}$$

Note:

Answer only:

max 2 / 6 marks

$$\checkmark$$
  $\beta = 60^{\circ}$ 

- ✓ substitution
- ✓ simplification
- ✓ substitution
- ✓ simplification

(6)

OR

$$\tan \alpha = \frac{1}{3}$$

$$\alpha = 18,43^{\circ}$$

$$\tan \theta = \frac{\frac{1+3\sqrt{3}}{2}}{\frac{3-\sqrt{3}}{2}}$$

$$=\frac{1+3\sqrt{3}}{3-\sqrt{3}}$$

$$\theta = 78,43^{\circ}$$

$$\beta = 78,43^{\circ} - 18,43^{\circ}$$
 $= 60^{\circ}$ 

$$\left(\frac{3-\sqrt{3}}{2};\frac{1+3\sqrt{3}}{2}\right)$$

OR



$$\checkmark \tan \alpha = \frac{1}{3}$$

$$\checkmark \alpha = 18,43^{\circ}$$

$$\checkmark \alpha = 18,43^{\circ}$$

$$\checkmark \tan \theta = \frac{1 + 3\sqrt{3}}{3 - \sqrt{3}}$$

$$\checkmark \theta = 78.43^{\circ}$$

✓ simplification

✓answer

(6)

Copyright reserved

| NSC – Memorandum                                                                                                                                                                             |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| $x' = x \cos \beta - y \sin \beta$ $\frac{3 - \sqrt{3}}{2} \cos \beta - \frac{1 + 3\sqrt{3}}{2} \sin \beta = 3$                                                                              | ✓ substitution                                                   |
| $\frac{2}{2}\cos\beta - \frac{1}{2}\sin\beta = 3$ $3\cos\beta - \sqrt{3}\cos\beta - \sin\beta - 3\sqrt{3}\sin\beta = 6$ $\frac{1+3\sqrt{3}}{2}\cos\beta + \frac{3-\sqrt{3}}{2}\sin\beta = 1$ | ✓substitution                                                    |
| $\cos \beta + 3\sqrt{3}\cos \beta + 3\sin \beta - \sqrt{3}\sin \beta = 2$                                                                                                                    | ✓simplification                                                  |
| $3\cos\beta + 9\sqrt{3}\cos\beta + 9\sin\beta - 3\sqrt{3}\sin\beta = 6$ $3\cos\beta - \sqrt{3}\cos\beta - \sin\beta - 3\sqrt{3}\sin\beta = 6$                                                |                                                                  |
| $10\sqrt{3}\cos\beta + 10\sin\beta = 0$ $\sin\beta = -\sqrt{3}\cos\beta$                                                                                                                     | $\checkmark \sin \beta = -\sqrt{3} \cos \beta$                   |
| $\cos \beta + 3\sqrt{3}\cos \beta + 3(-\sqrt{3}\cos \beta) - \sqrt{3}(-\sqrt{3}\cos \beta) = 2$ $4\cos \beta = 2$                                                                            | 1                                                                |
| $\cos \beta = \frac{1}{2}$ $\beta = 60^{\circ}$                                                                                                                                              | $\checkmark \cos \beta = \frac{1}{2}$ $\checkmark \text{answer}$ |
|                                                                                                                                                                                              | (6)                                                              |
|                                                                                                                                                                                              | [12]                                                             |

| 9.1 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                       | ✓ any one of the diagram                                                              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|     | $r = \sqrt{16 + 9} = 5 \qquad \text{(Pyth)}$ $\sin \alpha = \frac{3}{5}$                                                                                                    | ✓ value of $r$                                                                        |
| 0.2 | Accept: 0,6                                                                                                                                                                 | ✓answer (3)                                                                           |
| 9.2 | $\cos^{2}(90^{\circ} - \alpha) - 1$ $= \sin^{2}\alpha - 1$ $= \cos^{2}(90^{\circ} - \alpha) - 1$ $= \sin^{2}\alpha - (\sin^{2}\alpha + \cos^{2}\alpha)$ $= -\cos^{2}\alpha$ | $\checkmark \cos(90^{\circ} - \alpha) = \sin \alpha$                                  |
|     | $= \left(\frac{3}{5}\right)^{2} - \frac{25}{25}$ $= \frac{-16}{25}$ $= -0.64$ $= -0.64$ $= -0.64$ $= -0.64$ $= -0.64$ $= -0.64$                                             | ✓ substitution of $\sin \alpha = \frac{3}{5}$ (2)                                     |
| 9.3 | $1-\sin 2\alpha$                                                                                                                                                            | ( )                                                                                   |
|     | $= 1 - 2\sin\alpha\cos\alpha$ $= 1 - 2\left(\frac{3}{5}\right)\left(\frac{4}{5}\right)$ $= 1 - \frac{24}{25}$                                                               | $\sqrt{\sin 2\alpha} = 2\sin \alpha . \cos \alpha$ $\sqrt{\frac{24}{25}}$             |
|     | $=\frac{1}{25}$                                                                                                                                                             | ✓answer (3)                                                                           |
|     | $OR$ $1-\sin 2\alpha$                                                                                                                                                       |                                                                                       |
|     | $= \sin^2 \alpha - 2\sin \alpha \cos \alpha + \cos^2 \alpha$                                                                                                                | $\int \sin^2 \alpha + \cos^2 \alpha = 1$                                              |
|     | $= (\sin \alpha - \cos \alpha)^2$                                                                                                                                           |                                                                                       |
|     | $= \left( \left( \frac{3}{5} \right) - \left( \frac{4}{5} \right) \right)^2$                                                                                                | $\checkmark \left( \left( \frac{3}{5} \right) - \left( \frac{4}{5} \right) \right)^2$ |
|     | $=\left(-\frac{1}{5}\right)^2$                                                                                                                                              |                                                                                       |
|     | $=\frac{1}{25}$                                                                                                                                                             | ✓answer (3)                                                                           |
|     |                                                                                                                                                                             | [8]                                                                                   |

| 10.1 | $\sin(90^{\circ} + \theta) + \cos(180^{\circ} + \theta)\sin(-\theta)$                                           |                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|      | $\frac{1}{\sin 180^{\circ} - \tan 135^{\circ}}$                                                                 | ,                                                                     |
|      | $-\frac{\cos\theta + (-\cos\theta)(-\sin\theta)}{\cos\theta}$                                                   | $\sqrt{\cos\theta}$                                                   |
|      | $={0+1}$                                                                                                        | $\sqrt{-\cos\theta}$                                                  |
|      | $=\cos\theta + \cos\theta.\sin\theta$                                                                           | $\sqrt{-\sin\theta}$                                                  |
|      | $=\cos\theta(1+\sin\theta)$                                                                                     | ✓ 0 + 1<br>✓ answer                                                   |
|      | = coso(1 + sin o)                                                                                               | (5)                                                                   |
| 10.2 | $4\sin A\cos A\cos 2A.\sin 15^{\circ}$                                                                          | (3)                                                                   |
| 10.2 | $\frac{4\sin A\cos A\cos 2A \sin A}{\sin 2A(1-2\sin^2 A)}$                                                      | $\checkmark 2 \sin A \cos A$                                          |
|      | $4\sin A\cos A\cos 2A.\sin 15^{\circ}$                                                                          | $\checkmark 1 - 2\sin^2 A = \cos 2A$                                  |
|      | $= \frac{1}{2\sin A \cos A(1-2\sin^2 A)}$                                                                       | $V = 2 \sin A = \cos 2A$                                              |
|      | 2 cos 2 A. sin 15°                                                                                              |                                                                       |
|      | $=\frac{2\cos 2ABBAT}{\cos 2A}$                                                                                 | ✓ 2 sin 15°                                                           |
|      | $= 2\sin 15^{\circ}$                                                                                            | $\sqrt{15} = 45 - 30$ or                                              |
|      | $= 2\sin(45^{\circ} - 30^{\circ})$                                                                              | 15 = 60 - 45                                                          |
|      | $= 2[\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}]$                                        | ✓ substitution                                                        |
|      |                                                                                                                 | Succession                                                            |
|      | $=2\left[\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}.\frac{1}{2}\right]$                           | $\checkmark 2 \left[ \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} \right]$ |
|      | $=2\left\lceil\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}\right\rceil$                                                | (6)                                                                   |
|      | $=\frac{\sqrt{6}-\sqrt{2}}{2}$                                                                                  |                                                                       |
|      | 2                                                                                                               |                                                                       |
|      | OR                                                                                                              |                                                                       |
|      | Left Hand Side = $\frac{4 \sin A \cos A \cos 2A \cdot \sin 15^{\circ}}{2 \sin A \cos A \cdot (1 - 2 \sin^2 A)}$ |                                                                       |
|      | Left Hand Side = $\frac{2\sin A \cos A(1 - 2\sin^2 A)}{2\sin A \cos A(1 - 2\sin^2 A)}$                          | $\checkmark 2 \sin A \cos A$                                          |
|      | $-\frac{2\cos 2A.\sin 15^{\circ}}{}$                                                                            |                                                                       |
|      | $\cos 2A$                                                                                                       | $\checkmark 1 - 2\sin^2 A = \cos 2A$                                  |
|      | $=2\sin 15^{\circ}$                                                                                             |                                                                       |
|      | $=2\sin(60^\circ-45^\circ)$                                                                                     | ✓ 2 sin 15°                                                           |
|      | $= 2[\sin 60^{\circ} \cos 45^{\circ} - \cos 60^{\circ} \sin 45^{\circ}]$                                        | $\sqrt{15} = 45 - 30$ or                                              |
|      | $\begin{bmatrix} \sqrt{3} & \sqrt{2} & 1 & \sqrt{2} \end{bmatrix}$                                              | 15 = 60 - 45                                                          |
|      | $=2\left  \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} \right $           | ✓ substitution                                                        |
|      |                                                                                                                 | - Substitution                                                        |
|      | $=2\left\lceil\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}\right\rceil$                                                | $\sqrt{2}\sqrt{6}$ $\sqrt{2}$                                         |
|      |                                                                                                                 | $\sqrt{2} \left[ \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} \right]$     |
|      | $=\frac{\sqrt{6}-\sqrt{2}}{2}=RHS$                                                                              | (6)                                                                   |
|      | 2                                                                                                               |                                                                       |
|      |                                                                                                                 |                                                                       |
|      |                                                                                                                 |                                                                       |
|      |                                                                                                                 |                                                                       |

Copyright reserved

DBE/November 2010

OR

Left Hand Side =  $\frac{4 \sin A \cos A \cos 2A \cdot \sin 15^{\circ}}{2 \sin A \cos A (1 - 2 \sin^2 A)}$ 

 $= \frac{2\sin 2A\cos 2A.\sin 15^{\circ}}{\sin 2A\cos 2A}$ 

 $= 2 \sin 15^{\circ}$ 

 $=2\sin(45^\circ-30^\circ)$ 

 $= 2[\sin 45^{\circ}\cos 30^{\circ} - \cos 45^{\circ}\sin 30^{\circ}]$ 

$$= 2\left[\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right]$$
$$= 2\left[\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}\right]$$

 $=\frac{\sqrt{6}-\sqrt{2}}{2}=RHS$ 

10.3

 $6\cos x - 5 = \frac{4}{\cos x}$ 

 $6\cos^2 x - 5\cos x = 4$ 

 $6\cos^2 x - 5\cos x - 4 = 0$ 

 $(3\cos x - 4)(2\cos x + 1) = 0$ 

 $\cos x = \frac{4}{3} \quad or \quad \cos x = \frac{-1}{2}$ 

no solution or  $x = 120^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$ 

or  $x = 240^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$ 

Alternative solution for  $\cos x = \frac{-1}{2}$ 

 $x = k.360^{\circ} \pm 120^{\circ} \ k \in Z$ 

**Note:** 

If candidate puts  $\pm k.360$  then  $k \in \mathbb{N}_0$ 

✓ standard form

√ factors

✓ both equations

✓ 240° + k.360° ✓ 120° + k.360°

 $\checkmark k \in Z$ 

[17]

(6)

Copyright reserved



11.1 
$$\cos 64,75^{\circ} = \frac{50}{AC}$$

AC  $= \frac{50}{\cos 64,75^{\circ}}$ 
 $= 117,21 \,\text{m}$ 

OR

AC  $= \frac{50}{\cos 64,75^{\circ}}$ 
 $\therefore AC = 117,2144026 \,\text{m}$ 
 $\therefore AC = 117,21 \,\text{m}$ 

OR

OR

$$\frac{50}{\sin 25,25^{\circ}} = \frac{AC}{\sin 90^{\circ}}$$

$$\therefore AC = 117,21 \,\text{m}$$

Correction of the formula of the f



$$\tan P\hat{A}C = \frac{32}{117,21}$$

$$\theta = 15,27^{\circ} \quad (15,27042173...)$$

**Note:** If the candidate takes the unrounded answer for AC, then the answer is 15,27° (15,26987495...)

$$\checkmark \frac{32}{117,21}$$

✓ answer

(3)

Mathematics/P2 30 DBE/November 2010 NSC – Memorandum  $CD^2 = 117,21^2 + 40^2 - 2(117,21)(40)\cos 25,25$ 11.3 ✓ cos rule =6857,289092Note: ✓✓ substitution If don't use the rounded off  $\therefore$  CD = 82,81 m **✓** answer then CD = 82.81 m. Accept **(4)** this answer. OR



AM = ACsin 64,75° **OR** AM = CM tan 64,75° **OR** AM = AC cos 25,25° 
$$\checkmark$$
 AM = 106,01 = 106,0111876 = 50 tan 64,75° = 117,21.cos25,25°

$$= 106,01$$

$$= 106,01$$

$$= 106,01$$

$$= 106,01$$

$$= 106,01$$

DM = 
$$106,01 - 40$$
  
=  $66,01$   
 $CD^2 = CM^2 + DM^2$   
 $\checkmark$  DM =  $66,01$   
 $\checkmark$  Pythagoras

**(4)** 

$$CD = 82,81 \text{ metres}$$

OR

$$AM = AC \sin 64,75^{\circ} OR AM = CM \tan 64,75^{\circ} OR AM = AC \cos 25,25^{\circ}$$
  $\checkmark AM = 106,01$ 

$$= 106,0111876 \qquad = 50 \tan 64,75^{\circ} \qquad = 117,21.\cos 25,25^{\circ}$$

$$= 106,01$$
  $= 106,01$   $= 106,01$ 

$$DM = 106,01 - 40$$

$$= 66,01$$

$$DM = 66,01$$

$$V = 66,01$$

$$DC^{2} = (50)^{2} + (66,01)^{2} - 2(50)(66,01) \cos 90^{\circ}$$
= 6857,3201

$$CD = 82,81 \text{ metres}$$
  $\checkmark$  answer (4)

OR

$$\sin 64,75^\circ = \frac{40+x+32}{117,21}$$
 [10]

$$x = 34,01$$

$$CD^{2} = CM^{2} + DM^{2}$$

$$= (50)^{2} + (32 + 34,01)^{2}$$

$$= 6857,3201$$

$$CD = 82,81 \text{ metres}$$



NSC - Memorandum

For these values of x,  $\cos 2x \neq 0$  $\checkmark \frac{\sin 2x}{\cos 2x}$  $2\cos x = \frac{\sin 2x}{\cos 2x}$  $\checkmark 2\sin x\cos x$  $=\frac{2\sin x\cos x}{1-2\sin^2 x}$  $\checkmark 1 - 2\sin^2 x$  $1 - 2\sin^2 x = \sin x \text{ or } \cos x = 0$  $\checkmark \cos x = 0$  $2\sin^2 x + \sin x - 1 = 0 \quad \text{or } \cos x = 0$ ✓ factors  $(\sin x + 1)(2\sin x - 1) = 0$ ✓ equations  $\sin x = -1 \text{ or } \sin x = \frac{1}{2} \text{ or } \cos x = 0$ ✓±90° **√**30<sup>0</sup>  $x = \pm 90^{\circ}$  or  $x = 30^{\circ}$ (8)OR For these values of x,  $\cos 2x \neq 0$  $2\cos x = \frac{\sin 2x}{\cos 2x}$  $\checkmark \frac{\sin 2x}{\cos 2x}$  $\checkmark 2 \sin x \cos x$  $\checkmark 2\cos^2 x - 1$  $2\cos x(2\cos^2 x - 1) = 2\sin x \cos x$  $2\cos x(2(1-\sin^2 x)-1) = 2\sin x\cos x$  $\checkmark \cos x = 0$  $2\cos x(1-2\sin^2 x) - 2\sin x\cos x = 0$  $2\cos x(2\sin^2 x + \sin x - 1) = 0$ ✓ factors ✓ equations  $2\sin^2 x + \sin x - 1 = 0 \quad \text{or } \cos x = 0$ √ + 90°  $(\sin x + 1)(2\sin x - 1) = 0$  $\checkmark 30^{0}$  $\sin x = -1$  or  $\sin x = \frac{1}{2}$  or  $\cos x = 0$ (8) $x = \pm 90^{\circ}$  or  $x = 30^{\circ}$ OR  $\checkmark \frac{\sin 2x}{\cos 2x}$  $2\cos x = \frac{\sin 2x}{\cos 2x}$  $\checkmark 2 \sin x \cos x$  $2\cos x \cdot \cos 2x = \sin 2x$  $\sqrt{1-2\sin^2 x}$  $2\cos x \cdot \cos 2x - 2\sin x \cdot \cos x = 0$  $2\cos x(\cos 2x - \sin x) = 0$  $\checkmark \cos x = 0$  $\cos 2x = \sin x$  or  $2\cos x = 0$  $1 - 2\sin^2 x = \sin x$ ✓ factors  $2\sin^2 x + \sin x - 1 = 0$ ✓ equations ✓ ±90°  $(\sin x + 1)(2\sin x - 1) = 0$ **√**30<sup>0</sup>  $\sin x = -1 \text{ or } \sin x = \frac{1}{2} \text{ or } \cos x = 0$ (8) $x = \pm 90^{\circ}$  or  $x = 30^{\circ}$ 

NSC – Memorandum

| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $2\cos x = \frac{\sin 2x}{\cos 2x}$ $2\cos x \cdot \cos 2x = \sin 2x$ $2\cos x \cdot \cos 2x - 2\sin x \cdot \cos x = 0$ $2\cos x(\cos 2x - \sin x) = 0$ $\cos 2x = \sin x  \text{or} \qquad 2\cos x = 0$ $\cos 2x = \cos(90^{\circ} - x) \qquad x = 90^{\circ}$ $2x = \pm(90^{\circ} - x) + k.360^{\circ}  k \in \mathbb{Z}$ $3x = 90^{\circ} + k.360^{\circ}$ $x = 30^{\circ} + k.120^{\circ}$ $x = -90^{\circ}  \text{or}  x = 30^{\circ}$ $\sigma = -90^{\circ}  \text{or}  x = -90^{\circ}$ | $\sqrt{\frac{\sin 2x}{\cos 2x}}$ $\sqrt{2} \sin x \cos x$ $\sqrt{\sin x} = \cos(90^{\circ} - x)$ $\sqrt{\cos x} = 0$ $\sqrt{\text{factors}}$ $\sqrt{\text{equations}}$ $\sqrt{\pm 90^{\circ}}$ $\sqrt{30^{\circ}}$ (8) |
| 12.3 0° < x < 45°<br>Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ✓ ✓ critical points ✓ ✓ notation                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (4)  ✓ answer                                                                                                                                                                                                          |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                                                                                                                                                                                                                    |
| 12.5 $x = -45^{\circ} + 25^{\circ} = -20^{\circ}$<br>$x = 45^{\circ} + 25^{\circ} = 70^{\circ}$ Note:<br>Answer only: full mark $2(x - 25^{\circ}) = -90^{\circ}$ $2x - 50^{\circ} = -90^{\circ}$ $2x = -40^{\circ}$ and $2x = 140^{\circ}$                                                                                                                                                                                                                                                      | $\checkmark x = -20^{\circ}$ $\checkmark x = 70^{\circ}$                                                                                                                                                               |
| $x = -20^{\circ} \qquad \qquad x = 70^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [22]                                                                                                                                                                                                                   |

**TOTAL: 150**