1. (8 points) Let N be a positive integer. Consider the following MATLAB script:

$$y = 0;$$

for $i = 1 : N$
 $y = y + (1/N);$
end
 y

- (a) What would the result of the computation be in exact arithmetic?
- (b) When the script was actually run with $N=100,000(=10^5)$ the result was y=.9999999999808. When it was run with $N=131,072(=2^{17})$ the result was y=1. Explain these results.
- 2. (17 points) Let

$$A = \begin{pmatrix} 9 & -3 \\ -3 & 5 \end{pmatrix}$$

- (a) Compute the Choleski factorization of A ($A = LL^T$ with L lower triangular) and use it to solve $A\mathbf{x} = \mathbf{b}$ with $\mathbf{b} = (9, 9)^T$.
- (b) Find an approximate solution to $A\mathbf{x} = \mathbf{b}$ by doing two Jacobi iterations starting at $\mathbf{x}^{(0)} = (1, 2)^T$.
- (c) Find an approximate solution to $A\mathbf{x} = \mathbf{b}$ by doing two Gauss-Seidel iterations starting at $\mathbf{x}^{(0)} = (1, 2)^T$.
- (d) Which method gives a better approximation to the exact solution?
- 3. (12 points)
 - (b) Find a polynomial p(x) of degree ≤ 2 satisfying p(0) = 0, p(1) = 1, p'(1/4) = 2.
 - (b) There is a number c, 0 < c < 1 such that there is no polynomial p(x) of degree ≤ 2 satisfying p(0) = 0, p(1) = 1, p'(c) = 2. Find c.
- 4. (12 points)
 - (a) Find the node x_1 and the weight w_1 such that the integration rule

$$\int_0^1 \sqrt{x} f(x) \, dx \approx w_1 f(x_1)$$

is exact if f(x) is any linear polynomial. (This is <u>not</u> a hard computation.)

(b) Use this rule to compute an approximation to

$$\int_0^1 \sqrt{x}e^{-x} \, dx = 0.3789447.$$

5. (10 points) It is desired to fit a data set $\{(x_1, y_1, z_1), (x_2, y_2, z_2), \dots, (x_m, y_m, z_m)\}$ (where m may be very large) to a model of the form

$$z = c_1 + c_2 x + c_3 y + c_4 x y$$

in the sense of least-squares. Write a MATLAB script which will find the coefficients c_1, c_2, c_3, c_4 .

- 6. (12 points)
 - (a) What are the solutions α , if any, of the equation $x = \sqrt{6x 8}$?
 - (b) Does the iteration $x_{n+1} = \sqrt{6x_n 8}$ converge to any of these solutions (assuming x_0 is chosen sufficiently close to α)? Explain. (We need some analysis, not just numerical evidence.)
- 7. (15 points) Consider the system

$$x^2 + y^2 - 25 = 0, \qquad x^2 - y - 3 = 0$$

- (a) By graphing these equations, show that this system has two solutions, one in the first quadrant and one in the second.
- (b) By eliminating x^2 between the two equations, find the solution of the system lying in the first quadrant.
- (c) Let $(x_0, y_0) = (3, 4)$. Apply Newton's method for systems to compute (x_1, y_1) . If you do this correctly, you will find that (x_1, y_1) is quite close to the solution found in (b).
- 8. (14 points) Consider the initial value problem

$$\frac{dy}{dt} = y - t, \qquad y(0) = 2.$$

(a) Verify that the solution is $Y(t) = e^t + t + 1$.

Find approximations to Y(0.2) by using

- (b) two steps of the Euler method with h = .1.
- (c) one step of the Improved Euler method with h = .2.

In (b) and (c) compare your answers with the exact solution.