Piotr Krzyżanowski

Ćwiczenia zdalne

2020-03-11

Spis treści

1.	Poleo	cana literatura	. 1
2. Zadania z rozwiązaniami		. 1	
	2.1.	Przystawki	. 2
	2.2.	Danie główne	. 4
	2.3.	Deser — nieobowiązkowy!	. 9
3.	Kons	sultacje	. 10

1. Polecana literatura

Zajęcia dotyczą rozdziałów 2 i 3 (mniej więcej strony 50...65) skryptu Wykładowcy, P.Kiciaka. Ponadto każdy szanujący się podręcznik z metod numerycznych ma rozdziały o arytmetyce zmiennopozycyjnej (*floating point*), numerycznej poprawności (*backward stability*) algorytmów i o uwarunkowaniu (*conditioning*) zadań obliczeniowych.

Aby się dobrze nastroić przed rozpoczęciem pracy, warto przeczytać bardzo frapujące historyjki z *Lectures 6, 7, 8* w znanej już Państwu książeczce G.W. Stewarta *Afternotes on Numerical Analysis*.

2. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca.

Będę używał następujących skrótów:

- pisząc o arytmetyce fl będę miał na myśli arytmetykę zmiennopozycyjną ("fl", bo "floating point")
- precyzję arytmetyki fl będę oznaczać literką ν ; jak już wiecie Państwo z wykładu, dla pojedynczej precyzji, $\nu \approx 10^{-7}$; w przypadku podwójnej precyzji, $\nu \approx 10^{-16}$.

— Wykładowca używa oznaczenia rd(x) dla operacji reprezentacji liczby x w arytmetyce fl. (Czyli rd(x) jest liczbą maszynową najbliższą x.) Natomiast wynik obliczenia działania $x\diamond y$ w arytmetyce fl oznacza przez $fl(x\diamond y)$. Ja będę tu pisał fl(x) i $fl(x\diamond y)$ w obu przypadkach — nie prowadzi to do nieporozumień.

O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że wszystkie *dane*, a także *wyniki* obliczeń (pośrednie i końcowe) dają się reprezentować jako znormalizowane liczby maszynowe (więc na żadnym etapie obliczeń w fl nie wystąpi ani zjawisko nadmiaru, ani niedomiaru, ani stopniowego niedomiaru). Ponadto będziemy też zakładać, że wyniki działań w fl są zaokrąglane do najbliższej liczby maszynowej.

2.1. Przystawki

- **0.** Najpierw przeczytaj polecaną literaturę!
- **1.** Wykaż, że każde z podstawowych działań arytmetycznych jest algorytmem numerycznie poprawnym.

Rozw. Niech $x, y \in \mathbb{R}$. Wtedy ich reprezentacja w arytmetyce fl jest postaci

$$\tilde{x} := fl(x) = x \cdot (1 + \varepsilon_x), \qquad \tilde{y} := fl(y) = y \cdot (1 + \varepsilon_y),$$

gdzie $|\varepsilon_x|, |\varepsilon_y| \leq v$.

Nasze "algorytmy" polegają na wykonaniu (aż!) *jednego* działania arytmetycznego. Sprawdzimy numeryczną poprawność "algorytmów" dodawania: s = x + y i mnożenia: $p = x \cdot y$. (Pozostałe działania sprawdza się podobnie.)

Ze względu na błąd reprezentacji, nasze "algorytmy" będą pracowały nie na oryginalnych x, y, tylko na ich reprezentacjach \tilde{x}, \tilde{y} . Obliczony wynik też zostanie zaokrąglony do najbliższej liczby maszynowej. Więc jako wyniki dostaniemy odpowiednio

$$\tilde{s} := fl(\tilde{x} + \tilde{y}) = (\tilde{x} + \tilde{y})(1 + \varepsilon_s), \qquad \tilde{p} := fl(\tilde{x} \cdot \tilde{y}) = (\tilde{x} \cdot \tilde{y})(1 + \varepsilon_p),$$

gdzie $|\varepsilon_x|, |\varepsilon_y| \leq v$.

Aby wykazać numeryczną poprawność tych algorytmów musimy pokazać, że wynik ich działania w fl daje się zinterpretować jako *dokładny* wynik na lekko zaburzonych (tzn. zaburzonych na poziomie nieuniknionego błędu reprezentacji) danych. Dla dodawania mamy:

$$\tilde{s} = (\tilde{x} + \tilde{y})(1 + \varepsilon_s) = x \cdot \underbrace{(1 + \varepsilon_x)(1 + \varepsilon_s)}_{=:1 + E_x} + y \cdot \underbrace{(1 + \varepsilon_y)(1 + \varepsilon_s)}_{=:1 + E_y} = x \cdot (1 + E_x) + y \cdot (1 + E_y) = \hat{x} + \hat{y}.$$

Pokazaliśmy więc, że obliczony w fl rezultat to *dokładny* wynik zsumowania dwóch liczb, \hat{x} i \hat{y} . Pozostaje pokazać, że \hat{x} i \hat{y} to są *lekko zaburzone* prawdziwe wartości x i y.

Ponieważ $\hat{x} = x \cdot (1 + E_x)$, znaczy to, że

$$\frac{\hat{x}-x}{x}=E_x,$$

więc wystarczy oszacować $|E_x|$ przez precyzję arytmetyki v pomnożoną przez "niewielką" stałą. Mamy, pomijając na koniec człony rzędu v^2 (zob. też zadanie 9),

$$1 + E_x = (1 + \varepsilon_x)(1 + \varepsilon_s) = 1 + \varepsilon_x + \varepsilon_s + \underbrace{\varepsilon_x \varepsilon_s}_{\text{rzedu } v^2} \approx 1 + \varepsilon_x + \varepsilon_s,$$

skąd $E_x = \varepsilon_x + \varepsilon_s$ (z dokładnością do pominiętych wyrazów rzędu v^2) i w konsekwencji

$$|E_x| \leq |\varepsilon_x| + |\varepsilon_s| \leq 2\nu$$
.

Analogicznie pokazujemy $|E_y| \le 2v$, zatem rzeczywiście pozorne zaburzenia danych: E_x, E_y są na poziomie precyzji arytmetyki. Algorytm jest więc numerycznie poprawny.

Dla mnożenia mamy niemal identycznie

$$\tilde{p} = \hat{x} \cdot \hat{y}$$
,

gdzie tym razem (na przykład, bo mamy tu pewną dowolność)

$$\hat{x} = x(1 + \varepsilon_x)(1 + \varepsilon_p) =: x(1 + E_x), \qquad \hat{y} = y(1 + \varepsilon_y),$$

no i pozorne zaburzenia E_x , ε_y są na poziomie 2v i v odpowiednio — skąd znów numeryczna poprawność.

2. Niech x, y będą liczbami rzeczywistymi. Wykaż, że wyniki obliczenia $x \cdot y$ oraz x/y w arytmetyce fl są obarczone małym błędem względnym. (Porównaj to zadanie z następnym!)

Rozw. Na wejściu algorytmu zamiast x, y dysponujemy ich reprezentacjami w arytmetyce fl:

$$\tilde{x} := fl(x) = x \cdot (1 + \varepsilon_x), \qquad \tilde{y} := fl(y) = y \cdot (1 + \varepsilon_y),$$

gdzie $|\varepsilon_x|, |\varepsilon_y| \leq v$.

Rachunki przeprowadzimy dla dzielenia x/y. (Dla mnożenia $x \cdot y$ jest jeszcze łatwiej.)

Pokażemy, że obliczony w fl wynik dzielenia, \tilde{q} , jest dokładnym wynikiem q := x/y, zaburzonym na (względnym) poziomie precyzji arytmetyki, tzn. pokażemy, że

$$\tilde{q} = q \cdot (1 + \delta),$$

gdzie δ będzie na poziomie ν .

Istotnie, dla pewnego $|\varepsilon_a| \le v$ mamy

$$\tilde{q} = fl(\tilde{x}/\tilde{y}) = \frac{\tilde{x}}{\tilde{y}} \cdot (1 + \varepsilon_q),$$

skąd, podstawiając za \tilde{x} i \tilde{y} ,

$$\tilde{q} = \frac{x}{y} \cdot \underbrace{\frac{(1 + \varepsilon_x)}{1 + \varepsilon_y} (1 + \varepsilon_q)}_{=:1 + E_q} = q \cdot (1 + E_q).$$

Aby więc oszacować błąd względny

$$\frac{\tilde{q}-q}{a}=E_q,$$

wystarczy oszacować $|E_q|$. Ponieważ — pomijając na koniec składniki wyższego rzędu względem v (por. zadanie 10) — mamy

$$1 + E_q = (1 + \varepsilon_x)(1 + \varepsilon_q)\frac{1}{1 + \varepsilon_y} = (1 + \varepsilon_x + \varepsilon_q + \varepsilon_x\varepsilon_q)(1 - \varepsilon_y + \varepsilon_y^2 - \ldots) \approx 1 + \varepsilon_x + \varepsilon_q - \varepsilon_y,$$

to

$$|E_a| \leq |\varepsilon_x| + |\varepsilon_a| + |\varepsilon_v| \leq 3v$$
.

Zatem faktycznie, błąd względny nigdy nie przekracza 3v.

Jak zmieni się odpowiedź, gdy dodatkowo wiemy, że x, y są liczbami maszynowymi?

3. Niech x, y będą liczbami rzeczywistymi. Wykaż, że jeśli $x \approx y$, to wynik obliczenia x - y w fl może być obarczony bardzo dużym błędem względnym. (Porównaj to zadanie z poprzednim! Dodatkowo, przyjrzyj się zadaniom z LABu 2.)

Uwaga. To bardzo ważne zjawisko, noszące potoczną nazwę redukcji cyfr przy odejmowaniu, pokazuje, że w arytmetyce fl wystarczy jedno działanie na specyficznej konfiguracji danych, by całkowicie zdewastować jakość wyniku. Nie trzeba czekać, aż błędy zaokrągleń "skumulują się" po wielkiej liczbie obliczeń.

Rozw. Bez zmniejszenia, a nawet zwiększając ogólność, rozważmy dowolne $x, y \in \mathbb{R}$ i zadanie obliczenia s = x + y. Z zadania 1 mamy, że

$$\tilde{s} = x(1 + E_x) + y(1 + E_y),$$

więc

$$\left|\frac{\tilde{s}-s}{s}\right| = \frac{|\overbrace{x+y}+xE_x+yE_y-s|}{|s|} \le \frac{|x|\cdot|E_x|+|y|\cdot|E_y|}{|x+y|} \le \frac{|x|+|y|}{|x+y|} \cdot 2\nu,$$

bo w zadaniu 1 pokazano, że $|E_x|, |E_y| \le 2v$.

Z tego oszacowania płyną dwa wnioski: optymistyczny i pesymistyczny.

Optymistyczny: Jeśli *x* i *y* są *tego samego* znaku, to

$$\frac{|\tilde{s}-s|}{|s|}\leq 2v.$$

Mamy więc wtedy gwarancję małego błędu względnego.

Pesymistyczny: (I to jest rozwiązanie postawionego zadania.) Jeśli $x \approx -y$, to

$$\frac{|x|+|y|}{|x+y|} \approx +\infty,$$

więc wtedy (potencjalnie) także błąd względny $\frac{|\tilde{s}-s|}{|s|}$ może być bardzo duży. Zgodnie z prawem Murphy'ego zapewne więc *będzie* bardzo duży *naprawdę*. Można to sprawdzić, przeprowadzając eksperyment na komputerze — patrz zestaw ćwiczeń na LAB 2.

2.2. Danie główne

4. Niech a i b będą liczbami maszynowymi. Jak obliczać $a^2 - b^2$ w fl?

Rozw. Wygląda na to, że dla $|a| \approx |b|$ grozi nam redukcja cyfr przy odejmowaniu. Rozważmy dwa algorytmy:

oraz

```
% Algorytm 2

s = a+b; r = a-b;

w = s*r;
```

Oba mają ten sam koszt (3 flopy), a jak będą zachowywać się w fl? Ponieważ (i to jest tutaj kluczowe) założyliśmy, że *a* i *b* są liczbami maszynowymi, więc — z definicji — są *dokładnie* reprezentowane w fl. Wynikiem kolejnych kroków działania Algorytmu 1 w fl są więc:

1.
$$\tilde{x} = fl(a*a) = a^2(1+\varepsilon_1)$$
, gdzie $|\varepsilon_1| \le v$,

2.
$$\tilde{y} = fl(b*b) = b^2(1+\varepsilon_2)$$
, gdzie $|\varepsilon_2| \le v$,

3.
$$\tilde{w} = fl(\tilde{x} - \tilde{y})$$
.

Korzystając z rozwiązania zadania 3 wnioskujemy więc, że

$$\frac{|\tilde{w} - w|}{|w|} = fl(\tilde{x} - \tilde{y}) \le \frac{|a^2| + |b^2|}{|a^2 - b^2|} \cdot 2v,$$

więc faktycznie dla $|a| \approx |b|$ jest ryzyko utraty cyfr przy odejmowaniu.

Dla Algorytmu 2 zrealizowanego w fl mamy analogicznie

1.
$$\tilde{s} = fl(a+b) = (a+b)(1+\varepsilon_3)$$
, gdzie $|\varepsilon_3| \le v$,

2.
$$\tilde{r} = fl(a-b) = (a-b)(1+\varepsilon_4)$$
, gdzie $|\varepsilon_4| \le v$,

3.
$$\tilde{w} = fl(\tilde{s} * \tilde{r}) = \tilde{s}\tilde{r}(1 + \varepsilon_5)$$
, gdzie $|\varepsilon_5| \le v$.

Zatem w tym przypadku

$$\tilde{w} = \tilde{s}\tilde{r}(1+\varepsilon_5) = (a+b)(a-b)(1+\varepsilon_3)(1+\varepsilon_4)(1+\varepsilon_5) = (a^2-b^2)\cdot(1+E),$$

gdzie $|E| \le 3v$ (dlaczego?). A to oznacza, że tym razem błąd względny wyniku nie przekracza 3v — czyli wynik *zawsze* jest doskonałej jakości!

Zachęcam do zastanowienia się, dlaczego nie stoi to w sprzeczności z wynikiem o redukcji cyfr przy odejmowaniu.

- **5.** Oblicz wskaźnik uwarunkowania wartości $a^2 b^2$
 - ze względu na zaburzenie a,
 - ze względu na zaburzenie b.

Kiedy to zadanie jest źle uwarunkowane?

Rozw. Policzymy uwarunkowanie ze względu na zaburzenie a; dla b postępowanie jest całkowicie analogiczne. Definiując

$$f(a) = a^2 - b^2$$
.

mamy (por. wykład), że uwarunkowanie obliczania wartości f w punkcie a wynosi

$$\operatorname{cond}(f, a) = \frac{|a \cdot f'(a)|}{|f(a)|} = \frac{2a^2}{|a^2 - b^2|} = \frac{2}{|1 - (b/a)^2|}.$$

Zadanie jest źle uwarunkowane, gdy $\operatorname{cond}(f,x)\gg 1$. W naszym przypadku tak jest, gdy $|b|\approx |a|$, bo wtedy mianownik ≈ 0 .

6. Niech $x \approx 0$. Przekształć poniższe wyrażenia tak, by uniknąć redukcji cyfr przy odejmowaniu:

1.
$$\sqrt{x+1}-1$$
,
2. $(1-\cos x)/\sin x$,

Rozw. Stosujemy uniwersalną zasadę:

Jak zadanie jest za trudne — to zmień zadanie!

- 1. $\sqrt{x+1} 1 = \frac{x}{\sqrt{x+1} + 1}$ i kłopotliwe odejmowanie znika.
- 2. Jak w poprzednim punkcie, sprytnie rozszerzamy ułamek i dostajemy

$$\frac{1-\cos x}{\sin x} = \frac{1-\cos x}{\sin x} \cdot \frac{1+\cos x}{1+\cos x} = \frac{1-\cos^2 x}{\sin x} \cdot \frac{1}{1+\cos x} = \frac{\sin x}{1+\cos x}$$

i dla $x \approx 0$ suma w mianowniku jest niegroźna.

7. Wykaż, że standardowy algorytm obliczenia sumy n liczb rzeczywistych,

$$s = x_1 + x_2 + \ldots + x_n$$

```
s = x_1;

for i = 2:n

s = s + x_i;

return s;
```

jest numerycznie poprawny.

Rozw. Jeśli przeczytałeś historyjki z książeczki Stewarta, to pewnie zorientowałeś się, że wszystkie szczegóły rozwiązania opisane są w Lecture 7 od początku do Backward stability włącznie... Backward stability to po polsku właśnie numeryczna poprawność.

8. Algorytm Hornera obliczania wartości wielomianu w punkcie. Ponieważ

$$p(x) = a_0 + a_1 x + \dots + a_N x^N = a_0 + x \underbrace{(a_1 + a_2 x + \dots + a_N x^{N-1})}_{\text{wielomian stopnia } N-1},$$

to wyznaczenie wartości wielomianu stopnia N w zadanym punkcie x daje się sprowadzić do wyznaczenia wartości wielomianu stopnia o jeden niższego... Iterując ten pomysł, otrzymujemy tzw. **algorytm Hornera**:

$$p = a_N;$$

for $k = N - 1$ downto: 0
 $p = p \cdot x + a_k;$
end
return p

- 1. Jaki jest koszt tego algorytmu w zależności od N?
- 2. Wykaż, że jest to algorytm numerycznie poprawny.
- 3. Pokaż, że jeśli współczynniki wielomianu oraz *x* są liczbami maszynowymi, to dla dostatecznie silnej arytmetyki błąd bezwzględny wyniku algorytmu spełnia oszacowanie

$$|fl(p(x)) - p(x)| \le \left(\sum_{k=0}^{N} (2k+1)|a_k||x|^k\right) \cdot v.$$

Rozw. Rozwiązanie jest nieco przydługawe, bo chciałem, żeby było w miarę kompletne. Proszę się nie zrażać, tylko najpierw spróbować zrobić to zadanie samodzielnie — przez analogię do zadania 7. W końcu i tu, i tam są i sumy, i liczenie w pętli...

Koszt. Skoro w każdym obrocie pętli wykonuje się dwa działania arytmetyczne, a pętla obróci się *N* razy, to w sumie wykonamy 2*N* flopów (czyli operacji arytmetycznych, *floating point operations*.)

Pozostałe punkty robi się analogicznie, jak zadanie 7, ale na wszelki wypadek dokładnie prześledźmy kolejne kroki.

Numeryczna poprawność. Rachunki przeprowadzimy dla uogólnienia algorytmu Hornera dla przypadku tzw. bazy Newtona — przyda się to nam później, gdy zechcemy wprowadzić efekt działania arytmetyki fl.

Problem w wersji uogólnionej stawiamy następująco:

Dla danych a_0, \ldots, a_N oraz x_0, \ldots, x_N , znaleźć wartość wielomianu zadanego w bazie Newtona^a

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_N(x - x_0) + \dots + a_{N-1}$$

w danym punkcie x. Możemy powyższe skrótowo zapisać w postaci

$$p(x) = \sum_{j=0}^{N} a_j \prod_{s=0}^{j-1} (x - x_s).$$

 a Baza Newtona dla przestrzeni wielomianów składa się z wielomianów coraz wyższego stopnia postaci: 1, $(x-x_0)$, $(x-x_0)(x-x_1)$, $(x-x_0)(x-x_1)(x-x_2)$, ... itd., gdzie x_0,x_1,x_2 ... są ustalonymi węzłami.

I rzeczywiście, gdy $x_0 = \dots = x_N = 0$, nasz problem redukuje się do postawionego oryginalnie w zadaniu, $p(x) = \sum_{j=0}^{N} a_j x^j$.

Uogólniony algorytm Hornera dla tego problemu — wyznaczenia wartości wielomianu zadanego w bazie Newtona — miałby następującą postać:

```
p = a_N;

for k = N - 1 downto: 0

p = p \cdot (x - x_k) + a_k;

end

return p
```

Na użytek analizy będzie nam wygodnie oznaczyć przez p_k wartość p w chwili, gdy licznik pętli jest równy k:

```
p_N = a_N;

for k = N - 1 downto: 0

p_k = p_{k+1} \cdot (x - x_k) + a_k;
```

return p_0

Najpierw sprawdzimy, że faktycznie ten algorytm wyznacza to, co powinien. Prześledźmy kilka pierwszych kroków:

$$\begin{aligned} p_N &= a_N &= a_N, \\ p_{N-1} &= p_N \cdot (x - x_{N-1}) + a_{N-1} &= a_N \cdot (x - x_{N-1}) + a_{N-1}, \\ p_{N-2} &= p_{N-1} \cdot (x - x_{N-2}) + a_{N-2} &= a_N \cdot (x - x_{N-1})(x - x_{N-2}) + a_{N-1} \cdot (x - x_{N-2}) + a_{N-2}, \\ &\text{...itd...} \end{aligned}$$

Przyglądając się powyższym zależnościom możemy zauważyć, a następnie przez prostą indukcję udowodnić, że

$$p_k = \sum_{j=k}^{N} a_j \prod_{s=k}^{j-1} (x - x_s).$$
 (1)

Stąd już wynika, że faktycznie $p_0 = p(x)$ tak, jak tego chcieliśmy.

Teraz prześledzimy wpływ realizacji naszego algorytmu w fl na końcowy wynik. Bez zmniejszenia ogólności założymy, że liczby a_i, x_i oraz x są reprezentowane dokładnie w fl. (Dlaczego tak można?)

Zamiast dokładnych wartości p_k , będziemy więc raczej wyznaczać wartości zaburzone \tilde{p}_k :

$$ilde{p}_N = a_N;$$
for $k = N - 1$ downto: 0

$$ilde{p}_k = fl\bigg(ilde{p}_{k+1} \cdot (x - x_k) + a_k\bigg);$$
end
return $ilde{p}_0$

gdzie obliczenie $fl\bigg(\, \tilde{p}_{k+1} \cdot (x-x_k) + a_k\, \bigg)$ składa się z następujących małych kroczków:

1.
$$\tilde{h}_{k} = fl(x - x_{k}) = (x - x_{k}) \cdot (1 + \varepsilon_{k}),$$

2. $\tilde{q}_{k} = fl(\tilde{p}_{k+1} \cdot \tilde{h}_{k}) = \tilde{p}_{k+1} \cdot \tilde{h}_{k} \cdot (1 + \delta_{k}),$
3. $\tilde{p}_{k} = fl(\tilde{q}_{k} + a_{k}) = (\tilde{q}_{k} + a_{k}) \cdot (1 + \eta_{k}),$

przy czym $|\varepsilon_k|, |\delta_k|, |\eta_k| \le \nu$. Zatem ostatecznie

$$\tilde{p}_k = (\tilde{p}_{k+1} \cdot (1 + \varepsilon_k)(1 + \delta_k) + a_k) \cdot (1 + \eta_k) = \tilde{p}_{k+1} \cdot (x - x_k) \cdot (1 + \mu_k) + a_k \cdot (1 + \eta_k),$$

gdzie $1 + \mu_k = (1 + \varepsilon_k)(1 + \delta_k)(1 + \eta_k)$. Znaczy to, że realizacja w arytmetyce fl algorytmu Hornera z danymi $(x - x_k)$ oraz a_k jest równoważna wykonaniu algorytmu Hornera w arytmetyce *dokładnej*, w którym zamiast $(x - x_k)$ używamy $(x - x_k) \cdot (1 + \mu_k)$, a zamiast a_k bierzemy $a_k \cdot (1 + \eta_k)$.

Nas jednak interesuje, czy wynik ostateczny — to znaczy \tilde{p}_0 — da się zinterpretować jako dokładna wartość wielomianu na lekko zaburzonych danych. Do tego przyda się nam (1), które przecież zachodzi dla *dowolnych* danych. Dostaniemy zeń, że

$$\tilde{p}_k = \sum_{j=k}^{N} a_j (1 + \eta_j) \prod_{s=k}^{j-1} (x - x_s) (1 + \mu_s), \qquad k = N, \dots, 0,$$

więc w szczególności

$$\tilde{p}_{0} = \sum_{j=0}^{N} a_{j} (1 + \eta_{j}) \prod_{s=0}^{j-1} (x - x_{s}) (1 + \mu_{s})$$

$$= \sum_{j=0}^{N} a_{j} \cdot \underbrace{(1 + \eta_{j}) \prod_{s=0}^{j-1} (1 + \mu_{s})}_{=:1 + E_{j}} \cdot \prod_{s=0}^{j-1} (x - x_{s}) = \sum_{j=0}^{N} \tilde{a}_{j} \cdot \prod_{s=0}^{j-1} (x - x_{s}),$$

gdzie $\tilde{a}_j = a_j(1 + E_j)$.

Czyli pokazaliśmy, że faktycznie, wynik obliczony w fl da się zinterpretować jako *dokładny* wynik dla lekko zaburzonych danych \tilde{a}_j i dokładnych x_j i x. (Uważny Czytelnik zwróci zapewne uwagę na to, że pozorne zaburzenia mogliśmy rozdzielić na inne sposoby pomiędzy a_j, x_j oraz x — jest tu pewna dowolność.)

Ale jak duże są pozorne zaburzenia E_i ? Ponieważ

$$1 + E_j = (1 + \eta_j) \prod_{s=0}^{j-1} (1 + \varepsilon_s)(1 + \delta_s)(1 + \eta_s),$$

to (pomijając człony rzędu v^2 i wyższego — zob. zad. 9)

$$|E_j| \le (3j+1)v, \qquad j = 0, \dots, N.$$

Przyjmując, że N nie jest patologicznie wielkie względem v możemy uznać, że zaburzenie E_j pozostaje "na poziomie" v.

Oszacowanie błędu. Po pierwsze zauważmy, że w przypadku zastosowania algorytmu Hornera w przypadku wielomianu zadanego w bazie naturalnej (to niego dotyczy zadanie), zaburzenia pozorne E_j , jakie wyprowadziliśmy powyżej, spełniają ciut lepsze oszacowanie, $|E_j| \le (2j+1)v$ (bo odpada odejmowanie). Dalej już łatwo:

$$|\tilde{p}_0 - p(x)| = |\sum_{j=0}^N (\tilde{a}_j - a_j) \cdot x^j| \le \sum_{j=0}^N |\tilde{a}_j - a_j| \cdot |x|^j = \sum_{j=0}^N |a_j E_j| \cdot |x|^j \le \sum_{j=0}^N (2j+1)|a_j| \cdot |x|^j \cdot v.$$

2.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

Pierwsze dwa zadania uzasadniają, że dla dostatecznie silnej arytmetyki, czynione przez nas przybliżenia $(1+v)^n \approx 1+nv$ i $(1+v)^{-n} \approx 1+nv$ jest rozsądne w sensie takim, że dla wszelkich praktycznie spotykanych n, prowadząc ścisły rachunek musielibyśmy tylko nieco zwiększyć stałą.

9. Wykaż, że jeśli 0 < nu < 1, to

$$(1+u)^n \le 1+\gamma_n, \qquad \text{gdzie } \gamma_n := \frac{nu}{1-nu/2}.$$

9

Przykładowo, jeśli $u = 10^{-16}$, to dla $n \le 10^{15}$ mamy $\gamma_n \le 1.06 \cdot nu$.

10. Wykaż, że jeśli 0 < nu < 1, to

$$\frac{1}{(1-u)^n} \le 1 + \gamma_n, \qquad \text{gdzie } \gamma_n := \frac{nu}{1-nu}.$$

Przykładowo, jeśli $u = 10^{-16}$, to dla $n \le 10^{15}$ mamy $\gamma_n \le 1.12 \cdot nu$.

11. (Trudne) Niech x,y będą dodatnimi liczbami maszynowymi. Wykaż, że używając binarnej arytmetyki standardu IEEE-754 mamy gwarancję (o ile w obliczeniach nie wystąpi nadmiar ani niedomiar), iż obliczona w fl wartość $x/\sqrt{x^2+y^2}$ nie przekroczy 1. (To ważna własność, bo dokładny wynik możemy interpretować jako cosinus wiadomego kąta. Byłoby więc wskazane, żeby wynik w fl też dał się zinterpretować jako cosinus czegos.)

3. Konsultacje

Będę online na czacie w najbliższą środę w standardowym terminie zajęć i potem dodatkową godzinę.

Można też zadawać pytania na czacie offline, najlepiej w grupie mo-cwiczenia-grupa2, abyśmy mogli uczyć się od siebie nawzajem i uniknęli powtarzających się pytań.

Oczywiście, można też użyć maila.

1. Polecana literatura

Zajęcia dotyczą mniej więcej stron 70...80 skryptu Wykładowcy, P. Kiciaka — czyli rozdziału 3 (*Przypomnienia* o normach) i rozdziału 4 (szczegóły wyprowadzenia numerycznej poprawności eliminacji Gaussa można pominąć). Ponadto każdy szanujący się podręcznik z metod numerycznych ma rozdziały o normach, w tym normach macierzowych, rozwiązywaniu układów równań liniowych i ich uwarunkowaniu.

Aby się dobrze nastroić przed rozpoczęciem pracy, warto przeczytać bardzo frapujące historyjki z *Lectures 10, 12* (wstawki o FORTRAN-ie można pominąć) oraz *Lectures 15, 16* w znanej już Państwu książeczce G.W. Stewarta *Afternotes on Numerical Analysis*. Jeśli ktoś potrzebuje, może też przejrzeć *Lecture 9* — takie sympatyczne przypomnienie z GAL-u.

Treści jest dużo i na pewno jeszcze do niej będziemy wracać.

2. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca.

O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że obliczenia są wykonywane w arytmetyce dokładnej.

W przypadku obliczeń w fl, będziemy jak zwykle przyjmować, że wszystkie *dane*, a także *wyniki* obliczeń (pośrednie i końcowe) dają się reprezentować jako znormalizowane liczby maszynowe (więc na żadnym etapie obliczeń w fl nie wystąpi ani zjawisko nadmiaru, ani niedomiaru, ani stopniowego niedomiaru). Ponadto będziemy też zakładać, że wyniki działań w fl są zaokrąglane do najbliższej liczby maszynowej.

2.1. Przystawki

- **0.** Najpierw przeczytaj polecaną literaturę!
- **1.** Wykaż, że dla dowolnego $x \in \mathbb{R}^N$,

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le N||x||_{\infty}.$$

Rozw. To prosta zabawa w szacowania.

2. Wykaż, że dla dowolnej normy macierzowej indukowanej normą wektorową zachodzi

$$||I|| = 1.$$

Rozw. Z definicji,

$$||I|| = \sup_{x \neq 0} \frac{||Ix||}{||x||} = \sup_{x \neq 0} \frac{||x||}{||x||} = 1.$$

3. Jak zmienią się: wyznacznik i współczynnik uwarunkowania macierzy nieosobliwej A rozmiaru $N \times N$, jeśli pomnożymy ją przez stałą $\alpha > 0$?

Rozw. Oczywiście, $\det(\alpha A) = \alpha^N \det(A)$. Natomiast $\|\alpha A\| = \alpha \|A\|$ i analogicznie $\|(\alpha A)^{-1}\| = \alpha^{-1} \|A^{-1}\|$, skąd $\operatorname{cond}(\alpha A) = \operatorname{cond}(A)$.

Zatem: wyznacznik jest czuły na skalowanie macierzy, a współczynnik uwarunkowania — wcale.

2.2. Danie główne

2.2.1. Normy macierzowe

Jak Państwo pamiętacie, definiując pojęcie numerycznej poprawności algorytmów odwoływaliśmy się do interpretacji rozwiązania na "lekko zaburzonych danych". Ale jeśli daną jest *macierz*, jak powinniśmy rozumieć małe zaburzenie macierzy? Jednym z pomysłów jest zmierzenie tego zaburzenia w normie — normie macierzowej.

Zapoznajmy się z tym pojęciem bliżej.

4. Podaj definicję, a następnie scharakteryzuj przez jawny wzór, normy macierzowe $\|\cdot\|_p$ dla p=1 i dla $p=\infty$. Dlaczego norma $\|\cdot\|_1$ nazywa się normą kolumnowq, a norma $\|\cdot\|_{\infty}$ — normą wierszowq?

Rozw. Niech *A* będzie macierzą rzeczywistą $N \times M$. Dla uproszczenia, zamiast $\|\cdot\|_p$ będziemy pisali (dopóki nie będzie to prowadziło do nieporozumień) po prostu $\|\cdot\|$.

Z definicji,

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| = 1} ||Ax||$$

(ostatnia równość wynika z tego, że $\frac{\|Ax\|}{\|x\|} = \|A \cdot \frac{x}{\|x\|}\|$). Również z definicji wynika wprost, że

$$||Ax|| \le ||A|| \cdot ||x|| \qquad \forall x \in \mathbb{R}^M.$$

Zatem: jeśli wskażemy pewną liczbę C taką, że $||Ax|| \le C \cdot ||x||$ dla każdego x i dodatkowo wskażemy x^* takie, że $||x^*|| = 1$ oraz jednocześnie $||Ax^*|| = C \cdot ||x^*||$ (tak, ma zachodzić równość!), to wtedy musi być, że C = ||A|| (no, bo co to jest supremum?).

Zobaczmy, jak to pójdzie dla $||A||_1$ (czyli w treści zadania p=1).

Musimy szacować normę $||y||_1 = \sum_i |y_i|$, gdzie y = Ax. Najpierw przyjrzyjmy się, czym jest y_i : oczywiście,

$$y_i = (Ax)_i = \sum_j A_{ij}x_j,$$
 wiec $|y_i| = |\sum_j A_{ij}x_j| \le \sum_j |A_{ij}| \cdot |x_j|.$

Stąd

$$||Ax||_1 = \sum_i |y_i| \le \sum_i \sum_j |A_{ij}| \cdot |x_j| = \sum_i \sum_i |A_{ij}| \cdot |x_j| = \sum_i |x_j| \sum_i |A_{ij}| \le ||x||_1 \cdot \max_j \sum_i |A_{ij}|.$$

Czy więc udało się nam i faktycznie zachodzi $||A||_1 = \max_j \sum_i |A_{ij}|$? Aby tak było, musimy dodatkowo wskazać $||x^*||_1 = 1$ taki, że $||Ax^*||_1 = \max_j \sum_i |A_{ij}|$.

Niech k będzie indeksem tej kolumny, dla którego przyjmowane jest maksimum, tzn.

$$\max_{j} \sum_{i} |A_{ij}| = \sum_{i} |A_{ik}|.$$

Weźmy teraz za x^* taki wersor, który wyłuskuje k-tą kolumnę z A, czyli niech

$$x^* = (0, \dots, 0, 1, 0, \dots, 0)^T$$

gdzie jedynka jest na k-tej pozycji (oczywiście, $||x^*||_1 = 1$). Wtedy

$$||Ax^*||_1 = \sum_i |\sum_j A_{ij}x_j^*| = \sum_i |A_{ik}|,$$

— co było do okazania. Norma nazywa się *kolumnową*, bo jest równa maksimum z norm $\|\cdot\|_1$ kolumn macierzy A.

Dla normy $||A||_{\infty}$ postępowanie jest podobne:

$$||Ax||_{\infty} = \max_{i} |\sum_{j} A_{ij} x_{j}| \le \max_{i} \sum_{j} |A_{ij}| \underbrace{|x_{j}|}_{\le ||x||_{\infty}} \le ||x||_{\infty} \cdot \max_{i} \sum_{j} |A_{ij}|.$$

Czytelnik zechce dobrać tak znaki w wektorze $x^* = (\pm 1, \dots, \pm 1)^T$, aby zachodziło $||Ax^*||_{\infty} = \max_i \sum_j |A_{ij}|$. Norma nazywa się *wierszową*, bo jest równa maksimum z norm $||\cdot||_1$ wierszy macierzy A.

5. Wyjaśnij, dlaczego norma macierzowa $\|\cdot\|_2$ nazywa się normą spektralną.

Rozw. Norma nazywa się spektralną, bo

$$||A||_2 = \max\{\sqrt{\mu} : \mu \text{ jest wartością własną macierzy } A^T A\},$$

czyli jest określona przez wartości własne, czyli widmo (czyli *spektrum*) pewnej macierzy. Za chwilę udowodnimy, że powyższa równość jest prawdziwa.

Podobnie jak w poprzednim zadaniu pokażemy najpierw oszacowanie, a potem, że jest ono przyjmowane.

Zauważmy, że macierz $B = A^T A$ jest symetryczna (bo $B^T = (A^T A)^T = A^T (A^T)^T = A^T A = B$). Zatem wszystkie jej wartości własne μ_i są rzeczywiste¹, oraz istnieje baza ortogonalna, $\{v_i\}$, złożona z wektorów własnych B. Oznaczmy $\mu_{\max} = \max_i \mu_i$. Niech $x \in \mathbb{R}^M$ będzie dowolnym wektorem. Zapiszmy go w bazie wektorów własnych B,

$$x = \sum_{i} \alpha_{i} v_{i}.$$

¹ Dodatkowo, są też nieujemne: dlaczego?

Będzie nam wygodniej rozważać kwadraty norm; na koniec wszystkie nierówności obłożymy pierwiastkiem. Korzystając z ortogonalności bazy, tzn. $v_i^T v_j = \delta_{ij}$ (\leftarrow delta Kroneckera):

$$\begin{aligned} \|Ax\|_2^2 &= (Ax)^T Axx^T A^T Ax = x^T Bx = (\sum_i \alpha_i v_i^T) B(\sum_j \alpha_j v_j) \\ &= (\sum_i \alpha_i v_i^T) (\sum_j \alpha_j \underbrace{Bv_j}_{=\mu_j v_j}) = \sum_{i,j} \alpha_i \alpha_j \mu_j \underbrace{v_i^T v_j}_{=\delta_{ij}} \\ &= \sum_i \alpha_i^2 \mu_j \le \mu_{\max} \underbrace{\sum_i \alpha_i^2}_{=\|x\|_2^2}. \end{aligned}$$

Równość (bez oszacowań) zachodzi oczywiście na $x^* = v_{\text{max}}$ — wektorze własnym odpowiadającym wartości własnej μ_{max} .

6. Wykaż, że dla dowolnej normy macierzowej indukowanej normą wektorową

$$||AB|| \leq ||A|| \cdot ||B||,$$

gdzie A i B są dającymi się pomnożyć macierzami.

Rozw. Z definicji,

$$||AB|| = \sup_{x \neq 0} \frac{||ABx||}{||x||}$$

oraz $||ABx|| = ||A(Bx)|| \le ||A|| ||Bx|| \le ||A|| ||B|| ||x||$.

2.2.2. Rozwiązywanie układów równań — część pierwsza

7. Algorytm rozkładu LU macierzy *A* symetrycznej i dodatnio określonej jest wykonalny bez wyboru elementu głównego.

Dla takich macierzy na następnym wykładzie zobaczycie Państwo nieco lepszy pomysł na rozkład na iloczyn (innych) dwóch macierzy trójkątnych: to będzie rozkład Cholesky'ego.

Rozw. Na wszelki wypadek przypomnijmy definicję macierzy dodatnio określonej:

$$x^T A x > 0 \quad \forall x \neq 0.$$

W macierzy A wyróżnijmy pierwszy wiersz i pierwszą kolumnę:

$$A = \begin{bmatrix} a_{11} & a_{21}^T \\ a_{21} & A_{22} \end{bmatrix}$$

Zwrócmy uwagę, że

- Element a_{11} jest oczywiście liczbą (dodatnią na mocy założenia, że A jest dodatnio określona);
- Pionowy blok a_{21} w ogólności nie jest liczbą, tylko *jest wektorem* kolumnowym długości N-1,
- Block A_{22} jest macierzą rozmiaru $(N-1) \times (N-1)$.
- Poziomy górny blok jest *wektorem* wierszowym długości N-1, równym a_{21}^T bo A jest symetryczna.

Ponieważ A jest symetryczna i dodatnio określona, to A_{22} — też (dlaczego?).

Interesuje nas algorytm obliczenia rozkładu LU (bez wyboru elemnetu głównego), czyli wyznaczenia

- macierzy górnej trójkątnej U,
- macierzy dolnej trójkątnej L z jedynkami na diagonali

takich, że

$$A = L \cdot U$$
.

Powyższą równość można zapisać, wykorzystując wprowadzony na początku podział macierzy, w postaci

$$\begin{bmatrix}
 a_{11} & a_{21}^T \\
 a_{21} & A_{22}
\end{bmatrix} = \begin{bmatrix}
 1 & 0^T \\
 l_{21} & L_{22}
\end{bmatrix} \cdot \begin{bmatrix}
 u_{11} & u_{12}^T \\
 0 & U_{22}
\end{bmatrix},$$

gdzie L_{22} jest dolna trójkątna z jedynkami na diagonali, a U_{22} jest górna trójkątna. Po wymnożeniu² L przez U i przyrównaniu do A dostajemy zależności³:

$$a_{11} = 1 \cdot u_{11} + 0^{T} \cdot 0 = u_{11} \qquad \Longrightarrow u_{11} = a_{11},$$

$$a_{21} = l_{21} \cdot u_{11} + L_{22} \cdot 0 = l_{21} \cdot u_{11} \qquad \Longrightarrow l_{21} = \frac{1}{u_{11}} a_{21},$$

$$a_{21}^{T} = 1 \cdot u_{12}^{T} + 0^{T} \cdot U_{22} = u_{12}^{T} \qquad \Longrightarrow u_{12} = a_{21},$$

$$A_{22} = l_{21} \cdot u_{12}^{T} + L_{22} \cdot U_{22} \qquad \Longrightarrow L_{22} U_{22} = \underbrace{A_{22} - l_{21} \cdot u_{12}^{T}}_{=:A_{22}}.$$

Widzimy stąd, że fragmenty l_{21}, u_{11}, u_{12} rozkładu jest bardzo łatwo wyznaczyć wprost, a dalej już pozostaje wyznaczyć czynniki L_{22} i U_{22} rozkładu LU macierzy rozmiaru o jeden mniejszego: \tilde{A}_{22} .

Jak go wyznaczymy? Oczywiście *tak samo*! To więc prowadzi do rekurencji, która zatrzyma się w momencie, gdy przyjdzie nam wyznaczyć rozkład macierzy 1×1 . Nietrudno zauważyć, że w rzeczywistości można algorytm zapisać w prostszej postaci, wyłącznie przy użyciu pętli, jak poniżej⁴:

```
\begin{array}{l} \textbf{for } k=1:N-1 \\ \textbf{for } i=k+1:N \\ a_{ik}=a_{ik}/a_{kk} \\ \textbf{end} \\ \textbf{for } i=k+1:N \\ \textbf{for } j=k+1:N \\ a_{ij}=a_{ij}-a_{ik}a_{kj} \\ \textbf{end} \\ \textbf{end} \\ \textbf{end} \\ \textbf{end} \end{array} \hspace{0.5cm} \triangleright \text{wyznaczenie } k\text{-tej kolumny } L
```

² Mnożenie macierzy w postaci blokowej wykonuje się tak samo, jak mnożenie macierzy zwykłych, traktując bloki jak zwykłe elementy, pamiętając o jednym odstępstwie: mnożenie bloków nie jest przemienne. Kto nie wierzy, niech to sobie przeliczy.

³ Pamiętajmy, że a_{21} , l_{21} , u_{12} są wektorami, więc nie zawsze mnożenie przez nie jest przemienne.

⁴ Rozkład wykonujemy w miejscu, nadpisując A czynnikami L i U. Jedynek z diagonali L nie zapisujemy, bo i tak wiemy, że tam są...

Przejdźmy wreszcie do zasadniczego pytania postawionego w zadaniu. Czy nie będzie potrzebny wybór elementu głównego, tzn. czy nie zdarzy się, że na którymś kroku podanego powyżej algorytmu będziemy dzielić przez zero?

Jak już powiedzieliśmy, $a_{11} > 0$, więc pierwszy krok algorytmu na pewno jest wykonalny: nie będziemy dzielić przez zero. Pokażemy więc teraz, że macierz \tilde{A}_{22} też jest symetryczna i dodatnio określona! A skoro tak, to wykonując pierwszy krok jej rozkładu LU też będziemy dzielić przez liczbę dodatnią, itd. — więc na każdym kroku algorytmu będziemy dzielić przez liczbę dodatnią, czyli algorytm nie załamie się — i o to nam właśnie chodziło.

Interesuje nas, czy $x^T \tilde{A}_{22} x > 0$ dla dowolnego $x \neq 0$. Musimy to jakoś wywnioskować z analogicznej własności dla A:

$$\begin{bmatrix} \alpha & x^T \end{bmatrix} \begin{bmatrix} a_{11} & a_{21}^T \\ a_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \alpha \\ x \end{bmatrix} > 0 \qquad \text{dla } \begin{bmatrix} \alpha \\ x \end{bmatrix} \neq 0.$$

Ponieważ

$$egin{bmatrix} lpha & x^T \end{bmatrix} egin{bmatrix} a_{11} & a_{21}^T \ a_{21} & A_{22} \end{bmatrix} egin{bmatrix} lpha \ x \end{bmatrix} = lpha^2 a_{11} + 2lpha a_{21}^T x + x^T A_{22} x,$$

to dla $\alpha = -\frac{a_{21}^T x}{a_{11}}$ dostajemy

$$0 < \begin{bmatrix} \alpha & x^T \end{bmatrix} \begin{bmatrix} a_{11} & a_{21}^T \\ a_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \alpha \\ x \end{bmatrix} = x^T \tilde{A}_{22} x,$$

co należalo wykazać.

2.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

8. Wykaż, że jeśli A jest odwracalna i $||A^{-1}|| \cdot ||\Delta|| < 1$, to $(A + \Delta)^{-1}$ istnieje oraz

$$||(A+\Delta)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}|| ||\Delta||}$$

Z tego faktu korzysta oszacowanie uwarunkowania układu równań liniowych (str. 4.2 skryptu).

Rozw. Rozwiązania poszukaj w Lecture 15 w książeczce Stewarta.

9. Rozważmy układ równań Ax = b dla zadanych A i b. Niech \tilde{x} — wynik obliczony w fl jakimś algorytmem. Udowodnij, że jeśli

$$\frac{\|b - A\tilde{x}\|_2}{\|A\|_2 \|\tilde{x}\|_2 + \|b\|_2} \le \varepsilon,$$

to istnieją Δ , δ t. że

$$(A+\Delta)\tilde{x} = b+\delta$$
 oraz $\frac{\|\Delta\|_2}{\|A\|_2}, \frac{\|\delta\|_2}{\|b\|_2} \leq \varepsilon$.

Powyższy warunek nazywamy numerycznym kryterium "numerycznej poprawności" uzyskanego wyniku.

10. Wyznacz uwarunkowanie (mierzone w normie $\|\cdot\|_1$) macierzy $N \times N$

$$\begin{bmatrix} 1 & \dots & 1 & 1 \\ \varepsilon & & & \\ & \ddots & & \\ & & \varepsilon & \end{bmatrix}$$

w zależności od $\varepsilon \neq 0$ i od N.

W dalszej części zadania przyjmiemy, że $\varepsilon \approx 0$.

- Jak dużym błędem będzie obarczony rozkład LU tej macierzy wyznaczony w arytmetyce fl podwójnej precyzji?
- Czy rozwiązanie układu równań, wyznaczone w arytmetyce fl podwójnej precyzji z wykorzystaniem tego rozkładu LU, może być obarczone dużym błędem względnym?

3. Konsultacje

Będę online na czacie w najbliższą środę w standardowym terminie zajęć i potem dodatkową godzinę.

Można też zadawać pytania na czacie offline, najlepiej w grupie mo-cwiczenia-grupa2, abyśmy mogli uczyć się od siebie nawzajem i uniknęli powtarzających się pytań.

Oczywiście, można też użyć maila.

1. Polecana literatura

Zajęcia dotyczą mniej więcej stron 80...90 skryptu Wykładowcy, P. Kiciaka — czyli dalszego ciągu rozdziału 4 (na razie bez odbić Householdera). Ponadto każdy szanujący się podręcznik z metod numerycznych ma rozdziały o różnych metodach rozwiązywania specjalnych typów układów równań liniowych.

Dla dobrego humoru i lepszego rozeznania warto przeczytać *Lectures 12, 13, 14* z *Afternotes on Numerical Analysis*. Kto jeszcze nie zrobił tego w poprzednim tygodniu, niech też doczyta pozostałe wykłady o rozwiązywaniu równań liniowych z książeczki G.W.Stewarta.

2. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca. O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że obliczenia są wykonywane w arytmetyce dokładnej.

2.1. Przystawki

- **0.** Najpierw przeczytaj polecaną literaturę!
- 1. Dany jest rozkład LU = PA nieosobliwej macierzy A rozmiaru $N \times N$, pochodzący z eliminacji Gaussa z wyborem elementu głównego w kolumnie. Zidentyfikuj macierze P, L i U, a następnie powiedz,
- 1. jaki jest koszt wyznaczenia tego rozkładu,
- 2. jak rozwiązać układ równań Ax = b korzystając z tego rozkładu i ile to kosztuje,
- 3. jak rozwiązać układ równań AX = B, gdzie X, B są macierzami $N \times M$, korzystając z tego rozkładu i ile to kosztuje.

Rozw.

- 1. Koszt rozkładu LU to oczywiście (jeśli nie wykorzystamy jakichś specjalnych własności macierzy) $\mathcal{O}(N^3)$ flopów.
- 2. Gdy znamy już rozkład LU, rozwiązanie układu to seria kroków:
 - a) Oblicz g = Pb (koszt zero flopów, bo to tylko permutacja elementów b)
 - b) Rozwiąż Ly = g (koszt $\mathcal{O}(N^2)$)
 - c) Rozwiąż Ux = y (koszt $\mathcal{O}(N^2)$)
 - (jeśli nie wykorzystamy jakichś specjalnych własności macierzy L, U).
- 3. Dla wersji, gdy B jest macierzą sytuacja jest niemal identyczna: Najpierw przestaw kolumny B zgodnie z permutacją indeksów P, a następnie dla i = 1, ..., M, wykonaj następujące kroki:

a) Rozwiąż $Ly = g_i$ (koszt $\mathcal{O}(N^2)$)

b) Rozwiąż Ux = y (koszt $\mathcal{O}(N^2)$)

Całkowity koszt to więc $O(N^3) + O(MN^2)$. To wyraźnie mniej, niż gdybyśmy M razy "od koszt rozkładu" koszt rozwiazania

zera" rozwiązali serię układów $Ax_i = b_i$, za każdym razem (niepotrzebie) od nowa wyznaczając rozkład LU macierzy A. Takie podejście kosztowałoby nas $\mathcal{O}(MN^3)$.

2. Macierz A rozmiaru $N \times N$ nazywamy diagonalnie dominującą, jeśli zachodzi

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}| \qquad \forall i = 1, \dots, N.$$

Wykaż, że rozkład LU macierzy diagonalnie dominującej można wykonać bez wyboru elementu głównego.

Rozw. Analogicznie jak w zadaniu z poprzednich ćwiczeń korzystamy z postaci blokowej

$$A = \begin{bmatrix} a_{11} & a_{12}^T \\ a_{21} & A_{22} \end{bmatrix}$$

Z warunku diagonalnej dominacji oczywiście $a_{11} > 0$, więc można przezeń dzielić w pierwszym kroku eliminacji Gaussa. Pokażemy, że macierz

$$\tilde{A}_{22} = A_{22} - l_{21} \cdot u_{12}^T = A_{22} - \frac{1}{a_{11}} a_{21} \cdot a_{12}^T$$

też jest diagonalnie dominująca, skąd wykonalność całego algorytmu tak, jak w zadaniu ??. Do pokazania jest więc

$$|a_{ii} - \frac{1}{a_{11}} a_{i1} \cdot a_{1i}| > \sum |a_{ij} - \frac{1}{a_{11}} a_{i1} \cdot a_{1j}|$$
 dla $i = 2, ..., N$,

gdzie — uwaga! — sumujemy po $j \ge 2$ takich, że $j \ne i$. Wystarczy pokazać, że dla i = 2, ..., N

$$|a_{ii}| - |\frac{1}{a_{11}}a_{i1} \cdot a_{1i}| > \sum |a_{ij}| + \sum |\frac{1}{a_{11}}a_{i1} \cdot a_{1j}|$$

$$|a_{ii}| > \sum |a_{ij}| + \sum |\frac{1}{a_{11}}a_{i1} \cdot a_{1j}| + |\frac{1}{a_{11}}a_{i1} \cdot a_{1i}|$$

$$|a_{ii}| > \sum |a_{ij}| + |a_{i1}| \frac{1}{|a_{11}|} \sum_{j \neq 1} |a_{1j}|,$$

na mocy założenia od diagonalnej dominacji w pierwszym wierszu. Zatem wystarczy pokazać, że

$$|a_{ii}| > \sum_{\substack{j \ge 2 \ i \ne i}} |a_{ij}| + |a_{i1}| = \sum_{\substack{j \ne i}} |a_{ij}|,$$

co jest prawdą na mocy diagonalnej dominacji w i-tym wierszu.

3. Niech $u, w \in \mathbb{R}^N$ beda dowolnymi wektorami. Wykaż, że $\det(I - wu^T) = 1 - u^T w$.

Rozw. (Szkic.) Znajdujemy — najlepiej wprost z definicji, a nie jako miejsce zerowe wielomianu charakterystycznego – wartości własne μ_i macierzy wu^T : wiele z nich będzie zerowych, wszak to macierz rzędu 1! Wartości własne naszej macierzy są równe $1 - \mu_i$.

Ponieważ na mocy rozkładu Jordana $\det(A)$ jest równy iloczynowi wartości własnych A, to w naszym przypadku

$$\det(I - wu^T) = (1 - u^T w) \cdot 1 \cdot \dots \cdot 1 = 1 - u^T w.$$

2.2. Danie główne

4. Opracuj algorytm wyznaczania rozkładu LU bez wyboru elementu głównego macierzy trójdiagonalnej, tzn. postaci

$$A = \begin{bmatrix} a_1 & b_1 \\ c_2 & a_2 & \ddots \\ & \ddots & \ddots & b_{N-1} \\ & & c_N & a_N \end{bmatrix}$$

(w pozostałych miejscach są zera).

Następnie opracuj algorytm rozwiązywania układu równań Ax = b z wykorzystaniem otrzymanego rozkładu. Oszacuj koszt obliczeniowy i pamięciowy obu algorytmów.

Rozw. Oczywiście, nie dla każdej macierzy nieosobliwej da się wyznaczyć rozkład LU bez wyboru elementu głównego — my założymy, że dla naszej macierzy tak się *da*.

Analogicznie jak w zadaniu ?? korzystamy z postaci blokowej

$$\underbrace{\begin{bmatrix} a_1 & a_{12}^T \\ a_{12} & A_{22} \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 0^T \\ l_{21} & L_{22} \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} u_{11} & u_{12}^T \\ 0 & U_{22} \end{bmatrix}}_{U},$$

gdzie L_{22} jest dolna trójkątna z jedynkami na diagonali, a U_{22} jest górna trójkątna.

Tym razem w wektorach a_{12} i a_{21} są same zera z wyjątkiem pierwszej pozycji:

$$a_{21} = (c_2, 0, \dots, 0)^T, \qquad a_{12}^T = (b_1, 0, \dots, 0),$$

więc (por. zadanie z **poprzednich** ćwiczeń) w u_{12} i l_{21} też:

$$l_{21} = (c_2/a_1, 0, \dots, 0)^T, \qquad u_{12}^T = (b_1, 0, \dots, 0).$$

Jak więc będzie wyglądać macierz mniejszego rozmiaru \tilde{A}_{22} , w której będziemy prowadzić dalszą eliminację (tzn. której rozkład $\tilde{A}_{22} = L_{22}U_{22}$ należy wyznaczyć, by zakończyć algorytm)? Mamy

$$\tilde{A}_{22} = A_{22} - l_{21}u_{12}^{T} = \begin{bmatrix} a_{2} & b_{2} & & & \\ c_{3} & a_{3} & \ddots & & \\ & \ddots & \ddots & b_{N-1} \\ & & c_{N} & a_{N} \end{bmatrix} - \begin{bmatrix} \star & & & \\ & & & \\ & & \ddots & \ddots & b_{N-1} \\ & & & c_{N} & a_{N} \end{bmatrix},$$

gdzie symbolu \star użyliśmy, by oznaczyć jakieś, być może różne, ale (potencjalnie) niezerowe elementy w macierzy. A więc \tilde{A}_{22} też jest trójdiagonalna, więc przez prostą indukcję macierze L i U będą miały po dwie niezerowe diagonale.

Koszt pamięciowy będzie więc nie większy niż 3N — potrzebujemy miejsca na trzy diagonale A, które następnie nadpiszemy czynnikami rozkładu. Koszt obliczeniowy też będzie liniowy względem N, bo na jednym kroku algorytmu wykonujemy 3 flopy, a kroków do wykonania jest N-1.

Napisanie algorytmu pozostawiam Państwu jako ćwiczenie do samodzielnego wykonania.

5. Opracuj wariant algorytmu rozwiązywania układu równań z macierzą trójdiagonalną z wyborem elementu głównego w kolumnie. Oszacuj jego koszt obliczeniowy i pamięciowy.

Rozw. Pojawi się jedna dodatkowa nad-diagonala w macierzy U. Koszt będzie dalej liniowy.

6. Niech A będzie ustaloną macierzą nieosobliwą $N \times N$ i przypuśćmy, że dysponujemy tanią metodą o koszcie $\mathcal{O}(N^k)$, gdzie k < 3, rozwiązywania układu równań Ax = b dla dowolnego $b \in \mathbb{R}^N$. (Innymi słowy — dysponujemy procedurą x = solve(b), która dla dowolnego b wyznacza x taki, że Ax = b.) Jak rozwiązać układ rozszerzony o jeden dodatkowy wiersz i jedną dodatkową kolumnę:

$$\begin{bmatrix} A & v \\ u^T & \alpha \end{bmatrix} \begin{bmatrix} x \\ \xi \end{bmatrix} = \begin{bmatrix} b \\ \beta \end{bmatrix}.$$

Zapisz w pseudokodzie algorytm. Jaki jest jego koszt w zależności od N?

Rozw. Przede wszystkim, nie wiemy, czy tak stworzona macierz nie będzie czasem osobliwa (a może, np. jeśli v=0 i $\alpha=0...$) Częścią naszego rozwiązania będzie więc sprawdzenie, czy rozwiązywany układ nie jest osobliwy.

Pokażemy dwa sposoby rozwiązania tego zadania:

Sposób I: Eliminacja Zapiszmy układ w postaci naturalnej:

$$Ax + v\xi = b$$
$$u^{T}x + \alpha\xi = \beta.$$

Ponieważ A jest nieosobliwa, to możemy — napisać tylko, na razie — że A^{-1} istnieje, więc z pierwszego równania $x = A^{-1}(b - v\xi)$. Podstawiając do drugiego równania, dostajemy równanie skalarne z jedną niewiadomą, ξ :

$$(\alpha - u^T A^{-1} v) \xi = \beta - A^{-1} b,$$

który ma jednoznaczne rozwiązanie wtw gdy $\alpha - u^T A^{-1} v \neq 0$ — i jest to warunek konieczny i dostateczny (dlaczego?) nieosobliwości macierzy rozszerzonej. Stąd algorytm:

$$c = \operatorname{solve}(b); \ w = \operatorname{solve}(v); \\ \gamma = \alpha - u^T w; \\ \text{if } \gamma == 0 \text{ then} \\ \text{Error} \\ \text{end if} \\ \xi = (\beta - c)/\gamma; \\ x = c - \xi w \\ \\ \triangleright \operatorname{Koszt} \mathscr{O}(N)$$

całkowity koszt to $2\mathcal{O}(N^k) + \mathcal{O}(N)$.

Sposób II: Rozkład blokowy Zapiszmy blokowy rozkład "LU" macierzy rozszerzonej:

$$\begin{bmatrix} A & v \\ u^T & \alpha \end{bmatrix} = \underbrace{\begin{bmatrix} A & 0 \\ u^T & 1 \end{bmatrix}}_{\text{nicosobliwa}} \begin{bmatrix} I & w \\ 0 & \gamma \end{bmatrix}$$

Ten rozkład istnieje, o ile spełnione są zależności:

$$Aw = v \implies w = A^{-1}v$$

 $\alpha = d^T f + \gamma \implies \gamma = \alpha - u^T A^{-1}v.$

A więc istnieje on zawsze. Ponadto macierz po lewej stronie jest nieosobliwa wtw gdy obie macierze po prawej stronie sa nieosobliwe, a tak jest wtw gdy $\gamma \neq 0$. Reszta algorytmu przebiega tak samo. Szczegóły do dopracowania samodzielnie.

2.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

7. Podaj algorytm rozwiązywania układu równań Ax = b kosztem $\mathcal{O}(N^2)$, gdy A jest tzw. macierzą cykliczną o stałych diagonalach:

$$A = \begin{pmatrix} c_1 & c_N & \dots & c_2 \\ c_2 & c_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_N \\ c_N & \dots & c_2 & c_1 \end{pmatrix}.$$

8. Wykaż, że dysponując metodą mnożenia dwóch macierzy kwadratowych $n \times n$ o koszcie $\mathscr{O}(n^{\omega})$, gdzie $\omega \leq 3$, można wyznaczyć rozkład macierzy symetrycznej i dodatnio określonej rozmiaru N kosztem $\mathscr{O}(N^{\omega})$. Przyjmij dla uproszczenia, że N jest potęgą dwójki.

Ten zaskakujący wynik pokazuje, że złożoność rozwiązywania układu równań jest (z dokładnością do stałej) taka sama, jak złożoność mnożenia dwóch macierzy. Algorytm Strassena mnożenia macierzy ma $\omega < 3$, a więc — przynajmniej teoretycznie — *eliminacja Gaussa nie jest optymalna*, jak zatytułował swój słynny artykuł z 1969 roku.

1. Polecana literatura

To kolejne zajęcia, które znów dotyczą mniej więcej stron 80...90 skryptu Wykładowcy, P. Kiciaka — czyli dalszego ciągu rozdziału 4 (tym razem z uwzględnieniem odbić Householdera). Ponadto każdy szanujący się podręcznik z metod numerycznych ma rozdziały o różnych metodach rozwiązywania specjalnych typów układów równań liniowych. Metody Householdera i Givensa zazwyczaj są tam omawiane w kontekście zadania najmniejszych kwadratów (*least squares problem*)

2. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca. O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że obliczenia są wykonywane w arytmetyce dokładnej.

2.1. Przystawki

- **0.** Najpierw przeczytaj polecaną literature!
- **1.** Dany jest rozkład QR nieosobliwej macierzy A rozmiaru $N \times N$. Zidentyfikuj macierze Q, R, a następnie powiedz,
- 1. jak rozwiązać układ równań Ax = b korzystając z tego rozkładu i ile to kosztuje,
- 2. jak rozwiązać układ równań AX = B, gdzie X, B są macierzami $N \times M$, korzystając z tego rozkładu i ile to kosztuje.

Porównaj z zadaniem 5.

Rozw. Q jest macierzą ortogonalną, tzn $Q^TQ = I$. Macierz R jest górna trójkątna (tak, jak U w rozkładzie LU).

Aby rozwiązać AX = B, oznaczmy przez x_i kolumny X i analogicznie b_i — kolumny B. Wtedy wystarczy:

```
\begin{array}{ll} \textbf{for } i=1:M \\ & \text{Oblicz } y=Q^Tb_i \\ & \text{Rozwiąż } Rx_i=y \\ & \text{end} \end{array} \qquad \qquad \triangleright \text{koszt: } \mathscr{O}(N^2) \\ \\ \textbf{end} \end{array}
```

Łączny koszt to $\mathcal{O}(N^2M)$.

Warto zwrócić uwagę na to, że możemy dysponować wyspecjalizowanym solverem, który umie rozwiązywać układy RX = Y z macierzą Y rozmiaru $N \times M$. (Takie solvery istnieją i potrafią — wykorzystując różne tricki — zmniejszyć *czas* potrzebny na rozwiązanie układu.) Wtedy prościej i skuteczniej:

Oblicz $Y = Q^T B$ $ightharpoonup \text{koszt: } \mathscr{O}(N^2 M)$ ho koszt: $\mathscr{O}(N^2 M)$ ho koszt: $\mathscr{O}(N^2 M)$

(Zysk jest na czasie wykonania, a nie na koszcie mierzonym we flopach.)

2. Wykaż, że jeśli Q jest macierzą ortogonalną, to $||Q||_2 = 1$.

 $Rozw. \ \ Z$ definicji, $\|Q\| = \sup_{\|x\|=1} \|Qx\|.$ Ponadto Q jest izometrią, bo

$$||Qx||_2^2 = x^T Q^T Qx = x^T Ix = ||x||_2^2$$

stąd teza. \Box

3. Wykaż, że wartości własne λ rzeczywistej macierzy ortogonalnej Q spełniają $|\lambda|=1$. Czy musi być $\lambda=\pm 1$?

Rozw. Z definicji i z własności izometrii, $|\lambda| = 1$. Oczywiście λ , bo może być zespolona.

4. Przekształcenie Householdera. Koszt wyznaczenia *H* zerującego wszystkie współrzędne zadanego wektora *a* z wyjatkiem pierwszej. Koszt mnożenia *H* przez wektor *x*.

Rozw. Jeśli $||v||_2 = 1$, to przekszt. Householdera zadane przez v to $H = I - 2vv^T$. Koszt wyznaczenia v t. że $Ha = \text{Const} \cdot e_1$ jest liniowy wzgl. N (wiedza z wykładu). Ponieważ

$$Hx = x - 2vv^T x = x - \underbrace{2v^T x}_{\text{liczba}} \cdot v,$$

to koszt też jest liniowy.

5. Realizacja rozkładu QR z wykorzystaniem przekształceń Householdera. Rozwiązanie układu równań z wykorzystaniem tak otrzymanego rozkładu.

Rozw. Było na wykładzie! Por. także zadanie 8. □

2.2. Danie główne

6. Przekształcenie Givensa to

(na diagonali są same jedynki, z wyjątkiem pozycji (i,i) oraz (j,j), gdzie są liczby c; ponadto na pozycji (i,j) jest liczba s, a na (j,i) — liczba (-s); poza tym — same zera). Ponadto zawsze zakładamy, że zachodzi warunek

$$s^2 + c^2 = 1$$
.

Sprawdź, że G_{ij} jest macierzą ortogonalną, tzn. $G_{ij}^TG_{ij} = I$. Wyznacz G_{ij} zerujące j-tą współrzędną zadanego wektora a; ile kosztuje obliczenie odpowiednich c i s? Wyznacz koszt mnożenia G_{ij} przez wektor x.

Rozw. Koszt wyznaczenia i pomnożenia przez G_{ij} (reprezentowane przez parę c,s) jest stały i niezależny od rozmiaru G_{ij} , ani od i,j.

7. Realizacja rozkładu QR macierzy Hessenberga z wykorzystaniem przekształceń Givensa. Koszt.

Rozw. Nasza macierz $A \in \mathbb{R}^{N \times N}$ jest postaci Hessenberga, tzn.

$$A = \begin{bmatrix} * & * & \cdots & * \\ * & * & \cdots & * \\ & \ddots & \ddots & \vdots \\ & * & * \end{bmatrix}.$$

Niech pierwszy krok rozkładu QR polega na wyznaczeniu — kosztem $\mathcal{O}(1)$ — obrotu Givensa G_{12} takiego, że

$$G_{12} \cdot egin{bmatrix} a_{11} \\ a_{21} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = egin{bmatrix} r_{11} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

dla jakiegoś r_{11} . (Skądinąd, zachodzi $r_{11}^2 = a_{11}^2 + a_{21}^2$ — dlaczego?)

Następnie mnożymy A przez G_{12} . Skoro koszt mnożenia wektora przez obrót Givensa jest stały, równy Const, to koszt mnożenia N-1 kolumn macierzy A jest równy Const $\cdot (N-1)$.

Po przemnożeniu $G_{12} \cdot A$, dostajemy

$$G_{12} \cdot A = egin{bmatrix} r_{11} & \star & \cdots & \star \ 0 & \star & \cdots & \star \ & \ddots & \ddots & dots \ & & * & * \end{bmatrix} \equiv egin{bmatrix} r_{11} & r_{12} & r_{13} & \cdots & r_{1N} \ & ilde{a}_{22} & \star & \cdots & \star \ & a_{32} & * & \cdots & * \ & & \ddots & \ddots & dots \ & & & \ddots & \ddots & dots \ & & & * & * \end{bmatrix} = : A_2.$$

W następnym kroku powtórzymy więc to samo postępowanie dla drugiej kolumny macierzy wynikowej A_2 , innymi słowy, użyjemy G_{23} takiego, że

$$G_{23} \cdot egin{bmatrix} r_{12} \ ilde{a}_{22} \ ilde{a}_{32} \ 0 \ ilde{:} \ 0 \end{bmatrix} = egin{bmatrix} r_{12} \ r_{22} \ 0 \ 0 \ ilde{:} \ 0 \end{bmatrix}$$

dla jakiegoś r_{11} . Jak widać, G_{23} *nie zmieni* pierwszej kolumny A_{23} (bo tam gdzie miesza współrzędne, i tak były dwa zera), więc nie musimy w ogóle mnożyć tej kolumny przez G_{23} . Zatem koszt pomnożenia A_2 przez G_{23} będzie równy Const (N-2).

I tak dalej: na i-tym kroku wyznaczymy $G_{i,i+1}$ zerujące element (i+1,i) macierzy A_i , a następnie obliczymy $A_{i+1} = G_{i,i+1} \cdot A_i$, co będzie kosztować Const(N-i) flopów (bo we wcześniejszych kolumnach bedą zera w i-tym i kolejnym wierszu).

Po N-1 iteracjach dostaniemy więc

$$\underbrace{G_{N-1,N}\cdot\ldots\cdot G_{23}\cdot G_{12}}_{=O^T}\cdot A=R$$

i w sumie będzie to nas kosztować:

- $\mathcal{O}(N)$ flopów wyznaczenie kolejnych obrotów,
- plus $\operatorname{Const}((N-1)+(N-2)+\ldots+1)=\mathcal{O}(N^2)$ kolejne mnożenia $G_{i,i+1}\cdot A_i$.

Zatem łączny koszt to $\mathcal{O}(N^2)$.

8. Rozwiązywanie układu równań liniowych z macierzą Hessenberga, z wykorzystaniem rozkładu QR metodą Givensa. Koszt.

Rozw. Aby rozwiązać układ równań Ax = b wykorzystamy obliczone czynniki rozkładu. Mamy

$$G_{N-1,N}\cdot\ldots\cdot G_{23}\cdot G_{12}\cdot\underbrace{Ax}_{=b}=Rx,$$

więc następujący algorytm wyznaczy rozwiązanie kosztem $\mathcal{O}(N^2)$:

$$y = b$$
for $i = 1: N - 1$
 $y = G_{i,i+1} \cdot y$
 \triangleright Koszt: $\mathscr{O}(N)$, bo...
 \triangleright Koszt: $\mathscr{O}(1)$
end
Rozwiąż $Rx = y$

Zauważmy, że nie wyznaczamy wcale Q: byłaby to niepotrzebna rozrzutność!

2.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

9. Niech A będzie diagonalnie dominującą macierzą $N \times N$ o dodatniej diagonali, o strukturze

$$A = \begin{bmatrix} \star & \star & \cdots & \star \\ \star & \star & & \\ \vdots & & \ddots & \\ \star & & & \star \end{bmatrix}$$

(jest to tzw. strzałka Wilkinsona). Wyznacz kosztem $\mathcal{O}(N)$ rozkład $P_1AP_2 = LU$, gdzie P_1, P_2 — macierze permutacji, a L, U — są czynnikami rozkładu LU.

10. Niech $\omega = e^{-2i\pi/N}$ i niech F będzie (zespoloną) macierzą $N \times N$ postaci:

$$F = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(N-1)} \\ & & & \cdots & \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^2} \end{bmatrix}.$$

Wykaż, że F spełnia $F^*F = I$. Znajdź możliwie tani algorytm rozwiązywania układu równań z F w przypadku, gdy N jest całkowitą potęgą liczby 2.

Matematyka obliczeniowa: praca samodzielna 2020-04-15

Piotr Krzyżanowski

Zapewne już tylko wieloletnia tradycja powoduje, że na różnych kolokwiach i egzaminach z tego przedmiotu pojawiają się zadania *mechaniczne* typu poniżej przedstawionych. Rozwiązanie każdego z nich można sprawdzić w MATLAB-ie, dlatego tym razem ich nie podaję, ani też nie będę weryfikować.

Nie chcę, byśmy na to tracili czas podczas ćwiczeń — ale skoro w świetle powyższego taka mechaniczna sprawność rachunkowa może się Państwu przydać w nader stresujących okolicznościach — zamieszczam poniżej **próbkę** tego typu zadań, w części zaproponowanych przez Wykładowcę, do samodzielnego wykonania.

1. Wyznacz (na kartce, krok po kroku) rozkład PA = LU macierzy

$$A = \begin{bmatrix} 2 & -2 & -2 \\ -2 & 0 & 1 \\ 4 & 1 & -2 \end{bmatrix}$$

2. Wyznacz (na kartce, krok po kroku) rozkład PA = LU macierzy

$$A = \begin{bmatrix} 2 & 4 & 8 & 16 \\ 2 & 8 & 24 & 64 \\ 2 & 8 & 24 & 48 \\ 2 & 8 & 16 & 32 \end{bmatrix}$$

3. Za pomocą algorytmu Householdera znajdź (na kartce, krok po kroku) rozkład QR macierzy

$$A = \begin{bmatrix} 0 & -4 \\ 0 & 0 \\ -5 & -2 \end{bmatrix}$$

Wyznacz też (na kartce, krok po kroku) macierz układu równań normalnych dla LZNK z macierzą A.

4. Wyznacz (na kartce, krok po kroku) rozkład Cholesky'ego macierzy

$$A = \begin{bmatrix} 4 & -2 & 0 & -2 \\ -2 & 2 & 1 & 1 \\ 0 & 1 & 5 & 2 \\ -2 & 1 & 2 & 3 \end{bmatrix}$$

1

i następnie wykorzystaj go do rozwiązania układu $Ax = \begin{bmatrix} 8 & -3 & 13 & 2 \end{bmatrix}^T$.

5. Niech

$$A = \begin{bmatrix} -1 & 3 & 162 & 21 \\ -1 & -8 & -261 & -188 \\ 1 & 5 & -81 & 77 \\ -1 & -8 & 18 & 244 \end{bmatrix}, \qquad b = \begin{bmatrix} 185 \\ -458 \\ 2 \\ 253 \end{bmatrix}.$$

Znajdź wektory reprezentujące przekształcenia Householdera H_i takie, że $R = H_3H_2H_1A$ jest górna trójkątna. Korzystając z tego rozkładu rozwiąż układ Ax = b.

Więcej tego typu zadań znajdziecie Państwo nie tylko w skrypcie, a także w niektórych podręcznikach tego przedmiotu.

1. Polecana literatura

Zajęcia dotyczą mniej więcej stron 110...120 skryptu Wykładowcy, P. Kiciaka — czyli liniowego zadania najmniejszych kwadratów i związanych z nim rozkładów macierzy: QR i SVD. Oczywiście, każdy szanujący się podręcznik z metod numerycznych ma rozdziały o (*least squares problem*) i tych rozkładów. O SVD będziemy mówić za tydzień, dziś: LZNK i rozkład QR.

2. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca. O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że

- macierz A jest rozmiaru $M \times N$, przy czym $M \ge N$, oraz A jest pełnego rzędu (równego N);
- obliczenia są wykonywane w arytmetyce dokładnej.

2.1. Przystawki

- **0.** Najpierw przeczytaj polecaną literaturę!
- **1.** Jak znaleźć wielomian postaci $w(\xi) = s + a\xi + b\xi^2 + c\xi^3$, spełniający warunek w(0) = 0 i najlepiej aproksymujący (w sensie średniokwadratowym) wartości y_1, \ldots, y_M w punktach x_1, \ldots, x_M ? Podaj algorytm i oszacuj jego koszt w zależności od M.

Rozw. Formułujemy zadanie najmniejszych kwadratów: $\sum_i (w(x_i) - y_i)^2 \to \min!$, skąd w postaci macierzowej $||b - Ax||_2 \to \min!$, gdzie

$$A = \begin{bmatrix} \xi_1 & \xi_1^2 & \xi_1^3 \\ \xi_2 & \xi_2^2 & \xi_2^3 \\ \vdots & \vdots & \vdots \\ \xi_N & \xi_N^2 & \xi_M^3 \end{bmatrix}, \qquad x = \begin{bmatrix} a \\ b \\ c \end{bmatrix}. \qquad b = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix}.$$

Jeśli węzły x_1, \ldots, x_M są różne, macierz A jest pełnego rzędu. Ponieważ macierz jest stosunkowo mała, można rozwiązać układ równań normalnych $A^TAx = A^Tb$ (o ile węzły są dostatecznie daleko od siebie). Można też zrobić rozkład QR macierzy A na przykład metodą Householdera. Koszt jest rzędu $O(MN^2)$ gdzie N=3, czyli liniowy względem M.

2. Niech $A \in \mathbb{R}^{M \times N}$. Jaki jest związek LZNK z równaniem z (kwadratową) tzw. macierzą rozszerzoną:

$$\begin{bmatrix} \alpha I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}?$$

Przyjmij, że $\alpha \neq 0$.

Rozw. Rozpisując mamy

$$\begin{cases} \alpha r - Ax &= b \\ A^T r &= 0 \end{cases}$$

Wyznaczając z pierwszego równania $\alpha r = b - Ax$ i podstawiając do drugiego mamy (po uproszczeniu przez α) układ równań normalnych dla x. Parametr α może poprawić uwarunkowanie macierzy rozszerzonej.

3. Wykaż, że jeśli $A \in \mathbb{R}^{M \times N}$, a U, V są (kwadratowymi) macierzami ortogonalnymi odpowiedniego rozmiaru, to $||UA||_2 = ||A||_2$ oraz $||AV||_2 = ||A||_2$.

Rozw. Z definicji i faktu, że U jest izometrią,

$$||UA||_2 = \sup_{||x||_2=1} ||UAx||_2 = \sup_{||x||_2=1} ||Ax||_2 = ||A||_2.$$

Podobnie

$$||AV||_2 = \sup_{||x||_2 = 1} ||AVx||_2 = \sup_{||Vx||_2 = 1} ||A\underbrace{Vx}_{=y}||_2 = \sup_{||y||_2 = 1} ||Ay||_2 = ||A||_2.$$

Ponieważ macierz V jest nieosobliwa, $\{y = Vx : x \in \mathbb{R}^N\} = \mathbb{R}^N$.

2.2. Danie główne

4. Niech $\alpha > 0$. Zregularyzowane zadanie najmniejszych kwadratów:

$$||b - Ax||_2^2 + \alpha ||x||_2^2 \to \min!$$

ma jednoznaczne rozwiązanie nawet wtedy, gdy A nie jest pełnego rzędu. Aby to udowodnić, zapisz je jako standardowe zadanie najmniejszych kwadratów dla pewnej macierzy B i prawej strony f i wykaż, że B jest pełnego rzędu.

Dla LZNK z macierzą B sformułuj układ równań normalnych w terminach danych oryginalnego zadania: A, α , b i uzasadnij wprost, że jego macierz jest symetryczna i dodatnio określona.

Rozw.

$$||b - Ax||_2^2 + \alpha ||x||_2^2 = ||b - A \cdot x||_2^2 + ||0 - \sqrt{\alpha}I \cdot x||_2^2 = ||\begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} A \\ \sqrt{\alpha}I \end{bmatrix} \cdot x||_2^2 \equiv ||f - Bx||_2^2 + ||a - A||_2^2 + ||a - A|$$

(ostatnia równość to tw. Pitagorasa wykorzystywane już wcześniej np. w konstrukcji algorytmu rozwiązywania LZNK przez rozkład QR). Macierz *B* jest pełnego rzędu, gdyż jej dolny blok to macierz diagonalna.

Jest to więc zadanie LZNK $||f - Bx||_2 \to \min!$, a jego układ równań normalnych to $B^T Bx = B^T f$, przy czym

$$B^T B = A^T A + \alpha I, \qquad B^T f = A^T b.$$

5. Niech A będzie macierza pełnego rzędu rozmiaru $M \times N$, gdzie $M \ge N$ i przypuśćmy, że znamy jej wąski rozkład QR: $A = Q_1R_1$, gdzie Q_1 jest prostokątna takiego samego rozmiaru jak A oraz $Q_1^TQ_1 = I$ i ponadto R_1 jest kwadratowa $N \times N$ trójkątna górna.

Często statystyków interesuje tzw. macierz kowariancji, $C = (A^T A)^{-1}$. Pokaż, jak kosztem rzędu $4N^3$ obliczyć jej diagonale. *Wskazówka. Nie obliczaj macierzy odwrotnej do* $A^T A$.

Rozw. Zauważmy, że $c_{ii} = e_i^T C e_i = e_i^T w_i$, gdzie $A^T A w_i = e_i$, więc należy N razy rozwiązać układ równań z macierza $A^T A$. Ale na mocy rozkładu, $A^T A = R_1^T Q_1^T Q_1 R_1 = R_1^T R_1$, więc od razu dysponujemy rozkładem Cholesky'ego $A^T A!$ Koszt rozwiązania układu z macierzą trójkątną kosztuje około $2N^2$ flopów (bo na każdy element macierzy R_1 przypada jedno dodawanie i jedno mnożenie). To oznacza, że oba równania (z R_1^T i R_1) rozwiążemy kosztem $\mathcal{O}(4N^2)$, więc koszt rozwiązania z N prawymi stronami będzie N razy większy.

6. Dana jest $Q = H_1 \cdots H_N$, gdzie H_i , $i = 1, \dots, N$, są macierzami Householdera $M \times M$ reprezentowanymi za pomocą wektorów $\tilde{v}_i \in \mathbb{R}^{M-i+1}$, otrzymanych w algorytmie wyznaczania rozkładu QR macierzy $A \in \mathbb{R}^{M \times N}$. Podaj możliwie tani algorytm obliczania Qz, gdzie $z = \begin{bmatrix} z_N \\ 0 \end{bmatrix}$ i $z_N \in \mathbb{R}^N$.

Rozw. Jak pamiętamy, $H_i = I - \gamma_i v_i v_i^T$, gdzie $v_i = \begin{bmatrix} 0 \\ \tilde{v}_i \end{bmatrix}$. Dla *dowolnego* wektora $z \in \mathbb{R}^M$ koszt pomnożenia $H_i z$ jest liniowy w M — dokładniej, $\operatorname{Const} \cdot (M - i + 1)$ (bo musimy działać tylko na ostatnich współrzędnych). Zatem obliczenie $H_1(H_2 \cdots (H_{N-1}(H_N z)) \cdots)$ będzie kosztować $\mathcal{O}(MN)$, a dokładniej

$$\sum_{i=1}^{N} \operatorname{Const} \cdot (M-i+1) = \operatorname{Const} M + (M-1) + \ldots + (M-N+1) = \operatorname{Const} \cdot (MN-N(N-1)/2).$$

7. Wykaż, że wąski rozkład QR macierzy A pełnego rzędu rozmiaru $M \times N$, gdzie $M \ge N$:

$$A = Q_1 R_1$$
,

gdzie Q_1 jest prostokątna takiego samego rozmiaru jak A oraz $Q_1^TQ_1 = I$ i ponadto R_1 jest kwadratowa trójkątna górna i na diagonali ma liczby dodatnie — jest jednoznaczny.

Rozw. Załóżmy przeciwnie, że $A=Q_1R_1=Q_2R_2$, skąd $Q_2^TQ_1=R_2R_1^{-1}$. Macierz po prawej, $R_2R_1^{-1}$, jest górna trójkątna (jako iloczyn górnych trójkątnych) i ortogonalna (bo równa $Q_2^TQ_1$), skąd natychmiast (przez indukcję po kolejnych kolumnach) wynika, że musi być diagonalna. Macierz ortogonalna i diagonalna musi mieć na diagonali ± 1 , oznaczmy ją \mathscr{I} . Stąd $R_2=\mathscr{I}R_1$ więc na diagonali zachodzi $r_{ii}^{(1)}=\pm r_{ii}^{(2)}$. Z założenia stałości znaku wynika więc, że " \pm " = "+" i w konsekwencji $\mathscr{I}=I$, więc $R_1=R_2$. Na koniec dostajemy, że $Q_2^TQ_1=I$, czyli $Q_1=Q_2$.

8. Niech $A^T \in \mathbb{R}^{N \times M}$, przy czym $M \ge N$ (czyli A^T ma więcej kolumn niż wierszy) i przypuśćmy, że A jest pełnego rzędu. Wyznacz rozwiązanie $x \in \mathbb{R}^M$ układu równań

$$A^T x = b$$

o najmniejszej normie $\|\cdot\|_2$. Jaki jest koszt w zależności od N,M?

Rozw. Rząd macierzy A jest równy M. Istnieje więc rozkład QR macierzy A

$$A = QR, \qquad R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix},$$

gdzie $Q \in \mathbb{R}^{M \times M}$ jest ortogonalna, $Q^TQ = I$, natomiast R_1 jest górna trójkątna $N \times N$ i nieosobliwa (bo A^T jest pełnego rzędu). Zatem ma być $R^TQ^Tx = b$ i oznaczając $\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = Q^Tx$ gdzie $z_1 \in \mathbb{R}^N$ mamy

$$\begin{bmatrix} R_1^T & 0^T \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = b \in \mathbb{R}^N,$$

skąd $R_1^T z_1 = b$ (które wystarczy rozwiązać kosztem $\mathcal{O}(N^2)$, przy czym z_2 jest dowolne. Ponieważ Q jest ortogonalna, to $\|x\|_2^2 = \|z\|_2^2 = \|z_1\|_2^2 + \|z_2\|_2^2 = \|R_1^{-T}b\|_2^2 + \|z_2\|_2^2$. Minimum tej wartości jest dla $z_2 = 0$. A więc koszt obliczenia x to standardowy koszt wyznaczenia rozkładu QR macierzy A, równy $\mathcal{O}(MN^2)$ ze stałą zależną od wyboru konkretnego algorytmu, plus koszt rozwiązania $R_1^T z_1 = b$ równy $\mathcal{O}(N^2)$, plus koszt obliczenia $x = Q\begin{bmatrix} z_1 \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}\begin{bmatrix} z_1 \\ 0 \end{bmatrix} = Q_1 z_1$. Gdyby dysponować Q_1 , to ten ostatni krok kosztuje $\mathcal{O}(NM)$.

2.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

9. Rozkładając macierz *A* na dwa mniej więcej równe bloki, można zapisać jej rozkład QR blokowo

$$\begin{bmatrix} A_1 & A_2 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ & R_{22} \end{bmatrix},$$

gdzie Q_1R_{11} to rozkład QR macierzy A_1 . Wykorzystując tę obserwację, sformułuj *rekurencyjny* algorytm wyznaczenia rozkładu QR macierzy A i oszacuj jego koszt. Dla uproszczenia przyjmij, że A ma liczbę kolumn, która jest potęgą dwójki.

10. Wyznacz wskaźnik uwarunkowania w normie $\|\cdot\|_2$ macierzy rozszerzonej z zadania 2 w zależności od $\alpha > 0$ i wartości szczególnych A. Przyjmij, że A jest pełnego rzędu.

1. Polecana literatura

Zajęcia dotyczą mniej więcej stron 110...120 skryptu Wykładowcy, P. Kiciaka — tym razem skupimy się na własnościach i zastosowaniach SVD. Oczywiście, każdy szanujący się podręcznik z metod numerycznych (lub uczenia maszynowego) ma rozdziały o *singular value decomposition*.

2. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca. O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że obliczenia są wykonywane w arytmetyce dokładnej.

2.1. Przystawki

0. Najpierw przeczytaj polecaną literaturę!

1. Niech $U\Sigma V^T$ będzie rozkładem SVD macierzy prostokątnej A rozmiaru $M\times N$, gdzie $M\geq N$. Wykaż, że rząd A jest równy k: liczbie niezerowych wartości szczególnych A, tzn. $\sigma_1\geq \ldots \geq \sigma_k>\sigma_{k+1}=\ldots=\sigma_N=0$. Dokładniej, $\ker(A)=\lim\{v_{k+1},\ldots,v_N\}$ oraz $\operatorname{range}(A)=\lim\{u_1,\ldots,u_k\}$.

Rozw. Rzeczywiście, ponieważ $A = \sum_{i=1}^k \sigma_k u_i v_i^T$, to dla j > k mamy $Av_j = \sum_{i=1}^k \sigma_k u_i \underbrace{(v_i^T v_j)}_{=0} = 0$, a dla $j \le k$ mamy $Av_j = \sum_{i=1}^k \sigma_k u_i \underbrace{(v_i^T v_j)}_{=\delta_{ij}} = \sigma_j u_j$. Stąd teza.

2. Wykaż, że jeśli $A = A^T$ oraz $A = U\Lambda U^T$ jest rozkładem własnym macierzy A przy czym $U^TU = I$, to SVD dla A jest postaci $A = U\Sigma V^T$, gdzie $\sigma_i = |\lambda_i|$ oraz $v_i = \text{sign}(\lambda_i)u_i$.

Rozw. Dowód wynika wprost z definicji SVD.

3. Niech $U\Sigma V^T$ będzie rozkładem SVD macierzy prostokątnej A rozmiaru $M\times N$, gdzie $M\geq N$. Wartości własne A^TA są równe σ_i^2 , a wektory własne A^TA to v_i .

Rozw. $A^TA = V\Sigma^T\Sigma U^TU\Sigma V^T = V\begin{bmatrix} \Sigma_1 & 0^T\end{bmatrix}\begin{bmatrix} \Sigma_1 \\ 0\end{bmatrix}V^T = V\Sigma_1^2V^T$ i to jest rozkład własny macierzy A^TA .

4. Niech $U\Sigma V^T$ będzie rozkładem SVD macierzy prostokątnej A rozmiaru $M\times N$, gdzie $M\geq N$. Wartości własne AA^T to σ_i^2 oraz M-N-krotne zero, a wektory własne AA^T odpowiadające σ_i^2 to u_i .

Rozw.

$$AA^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U_1 & U_2 \end{bmatrix}^T$$

— i to jest rozkład własny macierzy AA^{T} .

5. Niech $U_1\Sigma_1V^T$ będzie wąskim rozkładem SVD macierzy pełnego rzędu A rozmiaru $M\times N$, gdzie $M\geq N$. Rozwiązanie LZNK $\|b-Ax\|_2\to \min!$ jest dane wzorem $x=V\Sigma_1^{-1}U_1^Tb$.

Rozw. Ponieważ $A^TAx = A^Tb$, to podstawiając SVD (zob. zadanie 3) mamy

$$V\Sigma_1^2 V^T x = V \underbrace{\Sigma^T U^T}_{=(U\Sigma)^T = (U_1\Sigma_1)^T = \Sigma_1^T U_1^T} b.$$

Mnożąc stronami kolejno przez V^T (ortogonalną) a potem przez Σ_1^{-1} (nieosobliwą, bo A pełnego rzędu), dostajemy tezę.

2.2. Danie główne

6. Wykaż, że jeśli $A \in \mathbb{R}^{M \times N}$, to $||A||_2 = \sigma_1$ oraz $||A||_F = \sqrt{\sigma_1^2 + \dots \sigma_N^2}$, gdzie $\sigma_1 \ge \dots \sigma_N \ge 0$ są wartościami szczególnymi A.

Rozw. Niech $A = U\Sigma V^T$ będzie rozkładem SVD macierzy A. Ponieważ mnożenie przez macierz ortogonalną nie zmienia ani normy spektralnej macierzy, ani Frobeniusa, to $\|A\|_2 = \|U\Sigma V^T\|_2 = \|\Sigma\|_2 = \max_i \sigma_i = \sigma_1$ i podobnie $\|A\|_F^2 = \|U\Sigma V^T\|_F^2 = \|\Sigma\|_F^2 = \sum_i \sigma_i^2$.

7. Niech A będzie macierzą $M \times N$, gdzie $M \ge N$ i niech $1 \le k \le N$. Wykaż, że najlepsza aproksymacja A w normie $\|\cdot\|_2$ macierzą rzędu co najwyżej k jest postaci

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T,$$

gdzie $A = U\Sigma V^T = \sum_{i=1}^N \sigma_i u_i v_i^T$ jest rozkładem SVD macierzy A oraz $\sigma_1 \ge \sigma_2 \ge \dots \sigma_N \ge 0$.

Rozw. Z definicji, A_k jest rzędu co najwyżej k, bo ma co najwyżej k niezerowych wartości szczególnych. Ponadto

$$||A - A_k||_2 = ||\sum_{i=k+1}^N \sigma_i u_i v_i^T||_2 = ||U| \begin{bmatrix} 0 & & & & \\ & \ddots & & \\ & & \sigma_{k+1} & & \\ & & & \ddots & \\ & & & \sigma_N \end{bmatrix} V^T||_2 = ||\begin{bmatrix} 0 & & & \\ & \ddots & & \\ & & & \sigma_{k+1} & \\ & & & \ddots & \\ & & & & \ddots & \\ & & & & \sigma_N \end{bmatrix}||_2 = \sigma_{k+1}.$$

Wystarczy pokazać, że nie da się lepiej. Niech B będzie dowolną macierzą rzędu co najwyżej k, zatem jej jądro jest przestrzenią liniową wymiaru co najmniej N-k. Ponieważ przestrzeń rozpięta przez

 v_1, \dots, v_{k+1} jest wymiaru k+1, to obie te przestrzenie muszą mieć nietrywialną część wspólną. Niech $h \neq 0$ będzie takim wektorem i załóżmy od razu, że jest unormowany, $||h||_2 = 1$. Wtedy

 $||A - B||_2 = \sup_{\|x\|_2 = 1} ||(A - B)x||_2 \ge ||(A - B)h||_2 = ||Ah||_2 = ||U\Sigma V^T h||_2$ $= ||\Sigma V^T h||_2 > \sigma_{k+1} ||V^T h||_2 = \sigma_{k+1} ||h||_2 = \sigma_{k+1}.$

8. Jak zachowują się rozwiązania zregularyzowanego zadania najmniejszych kwadratów

$$||b - Ax||_2^2 + \lambda ||x||_2^2 \rightarrow \min!$$

gdy $\lambda \to 0$? A gdy $\lambda \to \infty$?

Rozw. Załóżmy, że rząd macierzy A jest równy $k \le N$. Skorzystajmy z rozkładu SVD macierzy $A = U\Sigma V^T$ i podstawmy go do układu równań normalnych dla zadania zregularyzowanego, $(A^TA + \lambda I)x = A^Tb$:

$$(\Sigma^T \Sigma + \lambda I) \underbrace{V^T x}_{=y} = \Sigma^T U^T b$$

skad

$$\begin{bmatrix} \sigma_1^2 + \lambda & & & \\ & \ddots & & \\ & & \sigma_N^2 + \lambda \end{bmatrix} y = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_k & \\ & & & 0 \end{bmatrix} \begin{bmatrix} u_1^T b \\ \vdots \\ u_k^T b \\ u_N^T b \end{bmatrix},$$

czyli

$$x = x(\lambda) = \sum_{i=1}^{k} \left(\frac{\sigma_i}{\sigma_i^2 + \lambda} u_i^T b \right) v_i.$$

W szczególności, gdy $\lambda \to 0$, to $x(\lambda)$ dąży do $\sum_{i=1}^k \left(\sigma_i u_i^T b\right) v_i$ — rozwiązania nieregularnego zadania najmniejszych kwadratów o minimalnej normie (por. Wykład). A gdy $\lambda \to \infty$, to (jak można było się od razu spodziewać) wtedy $x(\lambda) \to 0$.

2.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

9. Niech A będzie macierzą $M \times N$, gdzie $M \ge N$ i niech $1 \le k \le N$. Wykaż, że najlepsza aproksymacja A, w normie $\|\cdot\|_F$, macierzą rzędu co najwyżej k jest postaci

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T,$$

gdzie $A = U\Sigma V^T = \sum_{i=1}^N \sigma_i u_i v_i^T$ jest rozkładem SVD macierzy A oraz $\sigma_1 \ge \sigma_2 \ge \dots \sigma_N \ge 0$.

Matematyka obliczeniowa: ćw. zdalne 2020-04-29

Piotr Krzyżanowski

Zajęcia dotyczą stron 130...145 skryptu Wykładowcy, P. Kiciaka — czyli zagadnienia własnego. Ponadto każdy szanujący się podręcznik z metod numerycznych ma rozdziały o *eigenvalue problem*.

1. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca. O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że obliczenia są wykonywane w arytmetyce dokładnej.

1.1. Przystawki

1. Wykaż, że wszystkie wartości własne macierzy A leżą w kole

$$K = \{ z \in \mathbb{C} : |z| \le ||A|| \},$$

gdzie || · || jest dowolną normą indukowaną.

Rozw. Trywialne. Z definicji $Ax = \lambda x$ i (po unormowaniu) ||x|| = 1, skąd $||Ax|| = |\lambda| \cdot ||x|| = |\lambda|$, a z drugiej strony $||Ax|| \le ||A|| \cdot ||x|| = ||A||$.

2. (Twierdzenie Gerszgorina). Wartości własne macierzy A leżą w $\bigcup_{i=1}^{N} K_i$, gdzie

$$K_i = \{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j \ne i} |a_{ij}| \}.$$

Rozw. Niech $\lambda \in \mathbb{C}$ będzie wartością własną i niech x taki, że $||x||_{\infty} = 1$, będzie odpowiadającym jej wektorem własnym. Z definicji normy maksimum istnieje współrzędna, x_i , wektora x taka, że $||x||_{\infty} = \max_i |x_i| = |x_i|$. Mamy $Ax = \lambda x$, więc na i-tej współrzędnej zachodzi

$$\sum_{j} a_{ij} x_j = \lambda x_i \qquad \iff (a_{ii} - \lambda) x_i = \sum_{j \neq i} a_{ij} x_j.$$

Obkładając modułami, $|a_{ii}-\lambda|\underbrace{|x_i|}_{=1} \leq \sum_{j \neq i} |a_{ij}|\underbrace{|x_j|}_{\leq 1}$, czyli $\lambda \in K_i$.

3. Wartości własne A i XAX^{-1} są takie same. W szczególności dla macierzy ortogonalnej Q wartości własne A i QAQ^T są takie same.

Rozw. Niech (λ, x) będzie parą własną A, tzn. $Ax = \lambda x$. Jest tak wtedy i tylko wtedy, gdy $AX^{-1}Xx = \lambda X^{-1}Xx$, a to wtw, gdy $XAX^{-1}y = \lambda y$ dla $y = X^{-1}x$. Zatem wartości własne są takie same, a odpowiadające im wektory własne spełniają zależność $y = X^{-1}x$.

4. Wyznacz wartości własne i wartość wyznacznika przekształcenia Householdera $I - 2vv^T/v^Tv$.

Rozw. Skoro jest to przekształcenie ortogonalne, to wszystkie wartości własne mają moduły równe 1, a skoro jest symetryczne rzeczywiste, to są też rzeczywiste. A tak w ogóle, to to zadanie wcześniej już robiliśmy — w ogólniejszej postaci.

1.2. Danie główne

5. Sprowadź serią przekształceń ortogonalnych Q_2,Q_3,\ldots macierz kwadratową A rozmiaru $N\times N$ do postaci Hessenberga:

$$A \rightarrow Q_2 A Q_2^T =: A_2 \rightarrow Q_3 A_2 Q_3^T =: A_3 \rightarrow \cdots \rightarrow \mathbf{Hessenberga}.$$

Oszacuj koszt w zależności od N. Taka macierz będzie miała to samo spektrum, co A. A jakie wektory własne?

 $\it Rozw.$ Niech $\it Q_2$ będzie oparta na przekształceniu Householdera i taka, że

$$Q_2a_1=Q_2egin{bmatrix} a_{11}\ a_{21}\ a_{31}\ dots\ a_{N1} \end{bmatrix} = egin{bmatrix} a_{11}\ \star\ 0\ dots\ 0 \end{bmatrix}$$

Innymi słowy, jeśli weźmiemy "standardowe" przekształcenie Householdera H_1 rozmiaru $(N-1) \times (N-1)$ takie, że

$$H_1 \begin{bmatrix} a_{21} \\ a_{31} \\ \vdots \\ a_{N1} \end{bmatrix} = \begin{bmatrix} \star \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \text{to wtedy} \quad Q_2 = \begin{bmatrix} 1 \\ H_1 \end{bmatrix}.$$

Oczywiście,

$$Q_{2}A = \begin{bmatrix} a_{11} & \star & \cdots & \star \\ \star & \star & \cdots & \star \\ 0 & \star & \cdots & \star \\ \vdots & \star & \cdots & \star \end{bmatrix}, \quad \text{skad} \quad A_{2} = Q_{2}AQ_{2}^{T} = Q_{2}AQ_{2} = \begin{bmatrix} a_{11} & \tilde{\star} & \cdots & \tilde{\star} \\ \star & \tilde{\star} & \cdots & \tilde{\star} \\ 0 & \tilde{\star} & \cdots & \tilde{\star} \\ \vdots & \tilde{\star} & \cdots & \tilde{\star} \end{bmatrix},$$

czyli mnożenie przez Q_2^T z *prawej* strony nie rusza pierwszej kolumny. Dalej powtarzamy ten sam schemat dla podmacierzy $A_2(2:N,2:N)$, tzn. konstruujemy $H_3 \in \mathbb{R}^{(N-2)\times (N-2)}$ takie, że

$$H_3 \begin{bmatrix} a_{32}^{(2)} \\ a_{43}^{(2)} \\ \vdots \\ a_{N3}^{(2)} \end{bmatrix} = \begin{bmatrix} \star \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \text{i bierzemy} \quad Q_3 = \begin{bmatrix} I_2 \\ H_3 \end{bmatrix},$$

itd.

Jeśli chodzi o koszt, to konstrukcja Q_i oraz ich pomnożenie przez A z lewej strony kosztuje w zasadzie tyle samo, co w algorytmie rozkładu QR (nie przykładamy tylko pierwszego przekszt. Householdera i ostatniego) — czyli $\mathcal{O}(\frac{4}{3}N^3)$ flopów. Dodatkowo, musimy jeszcze pomnożyć macierz A z prawej strony, co mnoży główną część kosztu przez dwa.

6. Sprowadź macierz *A* symetryczną przekształceniami jak w zadaniu 5 do postaci trójdiagonalnej. Jaki będzie koszt tego algorytmu?

Rozw. Było na wykładzie! Zastosujmy algorytm z poprzedniego zadania, który sprowadza dowolną macierz do postaci Hessenberga. Ale zauważmy, że jeśli $A = A^T$, to także QAQ^T jest symetryczna. W konsekwencji wynik działania algorytmu: macierz Hessenberga, też jest symetryczna — jak to zrobić dobrze, proszę zobaczyć w skrypcie. Koszt będzie z grubsza o połowę niższy niż w zadaniu 5, bo wystarczy prowadzić działania w jednym (np. górnym) trójkącie macierzy A (bo z symetrii $a_{ij} = a_{ji}$) — czyli $\mathcal{O}(\frac{4}{3}N^3)$ flopów.

7. Macierz stowarzyszona z wielomianem $p(x) = a_N x^N + \dots + a_1 x + a_0$ to macierz

$$C = \begin{bmatrix} -\frac{a_{N-1}}{a_N} & -\frac{a_{N-2}}{a_N} & \cdots & -\frac{a_0}{a_N} \\ 1 & & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

Udowodnij, że $\{\lambda \in \mathbb{C} : \lambda \text{ jest w. wł } C\} = \{x \in \mathbb{C} : p(x) = 0\}$. Jak ten fakt wykorzystać do wyznaczenia wszystkich pierwiastków p?

Rozw. Załóżmy, że wielomian już podzieliliśmy przez $a_N \neq 0$, więc jest on już postaci $p(x) = x^N + a_{N-1}x^{N-1} + \dots + a_1x + a_0$, więc macierz stowarzyszona upraszcza się do

$$C = \begin{bmatrix} -a_{N-1} & -a_{N-2} & \cdots & -a_0 \\ 1 & & & \\ & & \ddots & & \\ & & & 1 \end{bmatrix}.$$

Liczba $x \in \mathbb{C}$ jest wartością własną C wtedy i tylko wtedy, gdy $\det(C - xI) = 0$, więc istnieje niezerowy wektor v taki, że (C - xI)v = 0:

$$\begin{bmatrix} -a_{N-1} - x & -a_{N-2} & \cdots & -a_0 \\ 1 & -x & & & \\ & \ddots & \ddots & & \\ & & 1 & -x \end{bmatrix} \begin{bmatrix} v_{N-1} \\ \vdots \\ v_1 \\ v_0 \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}.$$

Zauważmy, że w szczególności musi zachodzić

$$v_{i+1} = xv_i$$
, dla $i = 0, ..., N-1$,

skąd $v_0 \neq 0$. Unormujmy więc v w taki sposób, by $v_0 = 1$. Wtedy $v_i = x^i$ i pierwsze równanie daje nam zależność

$$(-a_{N-1}-x)x^{N-1}-a_{N-2}x^{N-2}-\ldots-a_0=0$$
 \iff $-p(x)=0.$

Zatem x jest wartością własną $C \iff \text{gdy jest miejscem zerowym } p$.

Oczywiście, pomysł na wyznaczenie pierwiastków p polega na wyznaczeniu wszystkich wartości własnych C, np. jakąś mocną wersją metody QR. Skądinąd MATLAB właśnie tak implementuje polecenie **roots**.

8. Wykaż, że jeżeli u, v są niezerowymi wektorami, to metoda potęgowa dla $A = uv^T$ zbiegnie (pod pewnym drobnym warunkiem) w jednej iteracji (do czego?).

Rozw. Jak wiadomo, macierz uv^T jest rzędu co najwyżej 1 i pokazaliśmy wcześniej, że jej wartościami własnymi są: zero, krotności geometrycznej (N-1) (przestrzeń własna jej odpowiadająca, nazwijmy ją Z, jest rozpięta przez wektory prostopadłe do v), oraz $\lambda_1 = v^T u$ (z wektorem własnym u). Jeśli $v^T u \neq 0$, to λ_1 jest krotności 1. Zakładając więc, że

- $\lambda_1 = v^T u \neq 0$ (i to jest ów "drobny warunek" z treści zadania),
- x_0 ma niezerową składową w kierunku u,

dostajemy, że baza Z i u rozpinają całą przestrzeń, więc $x_0 = \alpha z + \beta u$ i $\beta \neq 0$, skąd

$$Ax_0 = \alpha \underbrace{Az}_{=0} + \beta \underbrace{Au}_{=\lambda_1 u} = \text{Const } u.$$

Czyli zbieżność w jednej iteracji do (kierunku) wektora własnego u, odpowiadającego (dominującej, jako jedynej niezerowej!) wartości własnej $\lambda_1 = v^T u \neq 0$.

9. Co zrobić, jeśli przesunięcie μ w metodzie Wielandta jest *dokładną* wartością własną, a tym samym macierz $A - \mu I$ nie jest odwracalna?

Rozw. Wystarczy ją ciutkę zaburzyć, $\tilde{\mu} = \mu(1+\varepsilon)$. Wtedy dalej jesteśmy najbliżej wartości własnej (no, chyba, że jest inna, patologicznie bliska μ), więc iteracja szybko zbiegnie.

1.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

10. "Numeryczne kryterium numerycznej poprawności". Wykaż, że dla każdej pary λ , ν ("kandydatów na parę własną macierzy A") (przy czym zakładamy $\|\nu\|_2 = 1$) istnieje macierz E taka, że

$$(A+E)v = \lambda v$$
 oraz $||E||_2 < ||r||_2$,

gdzie $r = Av - \lambda x$.

11. Niech będą dane współczynniki $b_0, \ldots, b_N \in \mathbb{R}$ wielomianu p w bazie Newtona związanej z (parami różnymi) węzłami $x_0, \ldots, x_N \in \mathbb{R}$. Wskaż macierz, której współczynniki zależą wprost od $\{b_i\}$ i której spektrum jest tożsame ze zbiorem wszystkich pierwiastków (być może zespolonych) wielomianu p.

Zajęcia dotyczą stron 145...160 skryptu Wykładowcy, P. Kiciaka — czyli interpolacji wielomianowej. Ten temat jest też omówiony w znanej już Państwu książeczce G.W. Stewarta *Afternotes on Numerical Analysis* (której tak bardzo nam brakowało przez ostatnie tygodnie...) Ponadto każdy szanujący się podręcznik z metod numerycznych ma rozdziały o *polynomial interpolation*.

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca. O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że obliczenia są wykonywane w arytmetyce dokładnej.

2.1. Przystawki

2. Zadania z rozwiązaniami

· · · · · · · · · · · · · · · · · · ·
0. Najpierw przeczytaj polecaną literaturę!
1. Ile kosztuje algorytm Hornera wyznaczania wartości wielomianu w punkcie <i>x</i> , gdy wielomian jest zadany w bazie Newtona?
<i>Rozw.</i> Koszt jest liniowy. Wyprowadzenie jest identyczne jak w przypadku standardowego Hornera: $p(x) = b_0 + (x - x_0)$ (wielomian stopnia $n - 1$) — skąd rekurencja, którą możemy rozwinąć .
2. Na ilu węzłach należy oprzeć wielomian interpolacyjny Lagrange'a stopnia co najwyżej n?
<i>Rozw.</i> Oczywiście $n+1$, żeby zadanie miało jednoznaczne rozwiązanie.
3. Ile kosztuje wyznaczenie wielomianu interpolacyjnego w bazie Lagrange'a?
Rozw. Koszt jest zerowy.
4. Wyznacz wielomian, który interpoluje tabelkę:

Rozw. Sformułowanie zadania to oczywiście slang. Chodzi o wyznaczenie wielomianu interpolacyjnego Lagrange'a, interpolującego wartości f_i w węzłach x_i . Wyznaczymy go w bazie Newtona. Różnice dzielone:

Stąd $p(x) = 0 \cdot 1 + 2 \cdot (x+1) + 1 \cdot (x+1)(x-1) - \frac{3}{2} \cdot (x+1)(x-1)x$. Kto chce, może rozpisać go w bazie naturalnej.

5. Zapisz pseudokod, wyznaczający wielomian interpolacyjny Lagrange'a w bazie Newtona.

Rozw. Na wejściu mamy tablicę węzłów $x_0, ..., x_N$ i wartości $y_0 = f(x_0), ..., y_N = f(x_N)$. Na pozycji ij, gdzie j = 0, ..., N oraz i = j, ..., N, w tabelce jest $T_{ij} = f[x_{i-j}, ..., x_i]$ i z definicji

$$T_{ij} = \frac{f[x_{i-j}, \dots, x_{i-1}] - f[x_{i-j+1}, \dots, x_i]}{x_{i-j} - x_i} = \underbrace{\frac{f[x_{(i-1)-(j-1)}, \dots, x_{(i-1)}]}{f[x_{(i-1)-(j-1)}, \dots, x_{(i-1)}]} - \underbrace{\frac{T_{i,j-1}}{f[x_{i-(j-1)}, \dots, x_i]}}_{x_{i-j} - x_i},$$

skąd algorytm:

for
$$j=1:N$$
 $ightharpoonup$ wyznaczamy kolejne kolumny tabelki **for** $i=N:-1:j$ $patrz opis powyżej$ end $patrz opis powyżej end $patrz opis powyżej$ end$

Jeśli będziemy wyznaczać tabelkę *T* różnic dzielonych kolumna po kolumnie jak powyżej, to wystarczy, że będziemy pamiętać jedynie ostatnio wyznaczoną. Jeśli w elementy w ustalonej kolumnie będziemy obliczać od ostatniego — jak już zrobiliśmy przewidująco powyżej — to będziemy mogli go zapisywać w tamtej komórce — jej stara wartość nie przyda się już do obliczania wyrazów w tej kolumnie.

for
$$j = 1:N$$
 \triangleright wyznaczamy kolejne kolumny tabelki **for** $i = N:-1:j$ \triangleright elementy kolumny od dołu o góry $y_i = (y_{i-1} - y_i)/(x_{i-j} - x_i)$ \triangleright w chwili j po wykonaniu instrukcji jest $y_i = T_{ij}$ **end**

I już! Na wyjściu y_i to współczynniki wielomianu w bazie Newtona, czyli $p(x) = \sum_{i=0}^{N} y_i \phi_i(x)$.

6. Wyznacz wielomian interpolacyjny Hermite'a, który interpoluje tabelkę:

x_i	$\int f(x_i)$	$f'(x_i)$	$f''(x_i)$	$\frac{f'''(x_i)}{6}$
0	0	1	2	
1	0	2	0	6

Rozw.

Pamiętając, że
$$f(\underbrace{x_0,\dots,x_0}_{k+1 \text{ razy}})=f^{(k)}(x_0)/k!$$
, wypełniamy danymi tabelkę różnic dzielonych:

x_i	$f(x_i)$			
0	0			
0	0	1/1!		
0	0	1/1!	2/2!	
1	0			
1	0	2/1!		
1	0	2/1!	0/2!	
1	0	2/1!	0/2!	6/3!

a następnie uzupełniamy brakujące pola stosując standardowy algorytm różnic dzielonych:

x_i	$f(x_i)$						
0	0						
0	0	1/1!					
0	0	1/1!	2/2!				
1	0	0	-1	-2			
1	0	2/1!	2	3	5		
1	0	2/1!	0/2!	-2	-5	10	
1	0	2/1!	0/2!	6/3!	3	8	-2

Zatem wielomian jest postaci $w(x) = 0 + x + x^2 - 2x^3 + 5x^3(x-1) + 10x^3(x-1)^2 - 2x^3(x-1)^3$.

2.2. Danie główne

7. Wyprowadź wzór na błąd aproksymacji funkcji $f \in C^{N+1}[a,b]$ wielomianem interpolacyjnym opartym na N+1 *równoodległych* węzłach w [a,b]:

$$||f-p||_{\infty} \le \frac{h^{N+1}}{4(N+1)} ||f^{N+1}||_{\infty},$$

gdzie h jest odległością między sąsiednimi węzłami.

Rozw. Ponumerujmy węzły tak, że $a = x_0 < x_1 < ... < x_N = b$. Ze wzoru na błąd interpolacji, dla dowolnego $x \in [a,b]$

$$|f(x) - p(x)| \le \frac{\|f^{N+1}\|_{\infty}}{(N+1)!} \sup_{x \in [a,b]} |\phi_{N+1}(x)|,$$

gdzie $\phi_{N+1}(x)=(x-x_0)\cdots(x-x_N)$ jest kolejnym wielomianem bazy Newtona. Pokażemy więc, że $|\phi_{N+1}(x)|\leq \frac{h^{N+1}}{4}N!$, skąd teza. W tym celu użyjemy indukcji po N. Gdy N=1 to prawda, bo

$$\max_{x \in [a,b]} |x - x_0||x - x_1| = \frac{|x_1 - x_0|^2}{2} = \frac{h^2}{2}.$$

Zróbmy krok indukcyjny z N-1 do N. Nasz x leży albo w $[x_0,x_{N-1}]$, albo w $[x_1,x_N]$. Rozważmy ten pierwszy przypadek (drugi jest identyczny); z założenia indukcyjnego,

$$|\phi_{N+1}(x)| = \underbrace{|x-x_0|\cdots|x-x_{N-1}|}_{\leq N \cdot h} \cdot \underbrace{|x-x_N|}_{\leq N \cdot h} \leq \frac{h^{N+1}}{4} N!,$$

co kończy dowód.

8. Ile *równoodległych* węzłów wystarczy, by wielomian interpolacyjny Lagrange'a (na nich oparty) aproksymował funkcję $f(x) = \sin(2x)$ na odcinku [-1,1] z błędem bezwzględnym nie przekraczającym ε ?

Rozw. Zauważmy, że $f^{(k)}(x) = 2^k G(x)$, gdzie G(x) to albo $\pm \sin(x)$, albo $\pm \cos(x)$ (czyli zawsze $||G|| \le 1$). Dla węzłów równoodległych

$$||f-w|| \le \frac{||f^{(n+1)}||}{4(n+1)} \left(\frac{2}{n}\right)^{n+1} = \frac{4^n}{(n+1)n^{n+1}}.$$

Wystarczy więc, że

$$\frac{4^n}{(n+1)n^{n+1}} \le \varepsilon.$$

9. Podaj oszacowanie błędu ||f-p|| interpolacji funkcji $f \in C^{n+1}(a,b)$ wielomianem interpolacyjnym Lagrange'a p opartym na węzłach $a=x_0<\cdots< x_n=b$, jeśli wartości funkcji wykorzystywane do wyznaczenia p są znane z błędem bezwzględnym nie przekraczającym ε .

Rozw. Zatem p jest interpolantem nie dla f, tylko $\tilde{f} = f + h$, oraz $|h(x_i)| \le \varepsilon$. Niech p^* będzie interpolantem dla dokładnej f.

$$||f - p|| = ||f - p^* + p^* - p|| \le ||f - p^*|| + ||p^* - p||.$$

Zauważmy, że

$$||p^* - p|| = ||\sum_{i} f(x_i)l_i(x) - \sum_{i} (f + h)(x_i)l_i(x)|| = ||\sum_{i} h(x_i)l_i(x)|| = \sup_{x \in [a,b]} |\sum_{i} h(x_i)l_i(x)| \le \varepsilon \cdot \sup_{x \in [a,b]} \sum_{i} |l_i(x)| = \varepsilon \cdot \Lambda_n,$$

gdzie Λ_n — stała Lebesgue'a. Stąd

$$||f-p|| \leq ||f-p^*|| + \varepsilon \cdot \Lambda_n$$
.

10. Dla jakich x > 0 sensowne jest korzystanie z interpolacji liniowej by wyznaczyć $f(x) = \ln(x)$, mając do dyspozycji stablicowane wartości $y_i \approx \ln(x_i)$ z dokładnością do 10^{-5} dla $x_i = ih$, i = 1, 2, ..., gdzie $h = 10^{-3}$?

Rozw. Co to znaczy: "sensowne"? Oznaczmy $\varepsilon = 10^{-5}$, więc wiemy, że $|y_i - f(x_i)| \le \varepsilon$. Chciałoby się, by tak (z grubsza) samo było w dowolnym x, powiedzmy, $|p_i(x) - f(x)| \le 5\varepsilon = 5 \cdot 10^{-5}$.

Dla $x \in [x_i, x_{i+1}]$, ze wzoru na interpolację dla równoodległych, dla p_i^* interpolującego prawdziwe wartości f,

$$|f(x) - p_i^*(x)| \le ||f''||_{\infty, [x_i, x_{i+1}]} h^2 / 8.$$

Łatwo policzyć, że $f''(x)=(1/x)'=-1/x^2$, skąd $\|f''\|_{\infty,[x_i,x_{i+1}]}=1/x_i^2$. Z zadania 9 wiemy, że wtedy $\|f-p_i\|\leq \|f-p_i^*\|+\varepsilon\Lambda_1$. Reszta to rachunki. Ponieważ funkcje bazy Lagrange'a stopnia 1 są bardzo proste, $l_i(x)=\frac{x-x_i}{x_1-x_0}$, to

$$\Lambda_1 = \max_{x \in [[x_i, x_{i+1}]} |l_0(x)| + |l_1(x)| = 1.$$

Zatem warunek wystarczający na x_i jest taki, że

$$\frac{h^2}{8x_i^2} + \varepsilon \cdot 1 \le 5\varepsilon.$$

Jak widać, x_i nie może być zbyt mały — co, mam nadzieję, wiedzieliśmy intuicyjnie od początku... \Box

11. Niech będą dane (dowolnie wybrane) x_0, \ldots, x_N i y_0, \ldots, y_N . Wykaż, że istnieje co najmniej jeden wielomian p stopnia co najwyżej N taki, że

$$p(x_0) = y_0, \quad p'(x_1) = y_1, \quad \dots, \quad p^{(N)}(x_N) = y_N.$$

Rozw. Zapiszmy to jako układ równań liniowych na współczynniki i sprawdźmy, że ta macierz jest nieosobliwa. Stąd wynika, że jest dokładnie jeden taki wielomian.

2.3. Deser — nieobowiązkowy!

Dziś deseru nie ma: trzeba uczyć się do kolokwium!

1. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca. O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że obliczenia są wykonywane w arytmetyce dokładnej.

1.1. Przystawki

1.	Jal	k reprezentować	sp	lajny	liniowe?	Kubiczne?
----	-----	-----------------	----	-------	----------	-----------

Rozw. Zasadniczo dwie opcje reprezentacji splajnu stopnia *k*:

- 1. PP (*piecewise polynomial*), czyli splajn na każdym odcinku $[x_i, x_{i+1})$ zadajemy przez współczynniki a_{i0}, \ldots, a_{ik} rozwinięcia w (jakiejś ustalonej) bazie wielomianowej. Wygodnie może być w bazie Newtona z wielokrotnym węźle x_i , czyli $1, (x x_i), \ldots, (x x_i)^k$, ale są też inne opcje, opisane na wykładzie.
- 2. w B-bazie.

Zauważmy, że pierwszy sposób nadaje się do reprezentowania dowolnej funkcji kawałkami wielomianowej (bez żadnych wymagań regularności). Ale ponieważ splajny mają dodatkowy warunek bycia funkcją klasy C^{k-1} , reprezentacja PP jest nieco nadmiarowa. Reprezentacja w B-bazie (skoro jest to baza!) jest zaś minimalna.

2. Wyznacz układ równań jaki ma spełniać interpolacyjny splajn liniowy w B-bazie splajnowej.

Rozw. Ponieważ $s(x) = \sum_{i=-1}^{n-1} c_i B_i^1(x)$, gdzie $c_i = f(x_i)$ (dlaczego?), to układ jest trywialny (z macierzą jednostkową) i naprawdę nic nie trzeba rozwiązywać!

3. Wykaż, że splajn liniowy s_1 interpolujący $f \in C^2[a,b]$ w n+1 węzłach równoodległych $x_i = a + i \cdot h$, i = 0, ..., n przy czym h = (b-a)/n, spełnia oszacowanie błędu aproksymacji:

$$||f - s_1||_{\infty} \le \frac{||f''||_{\infty}}{8}h^2.$$

Wykaż ponadto, że $||s_1||_{\infty} \leq ||f||_{\infty}$.

Rozw. Wystarczy na każdym odcinku $[x_i, x_i + h]$ skorzystać z oszacowania błędu interpolacji wielomianowej na węzłach "równoodległych". Oszacowanie normy wynika stąd, że dla splajnu liniowego interpolacyjnego $||s||_{\infty} = \max |s(x_i)| = \max |f(x_i)| \le \max_{x \in [a,b]} |f(x)| = ||f||_{\infty}$.

4. Jeśli splajn kubiczny s klasy C^2 i oparty na węzłach $x_0 < x_1 < x_2 < x_3$ jest taki, że s = 0 w $[x_0, x_1] \cup [x_2, x_3]$, to $s \equiv 0$.

Rozw. Ponieważ s ma być klasy C^2 , wielomian p, który reprezentuje s na odcinku $[x_1, x_2]$ musi spełniać następujące warunki zgodności:

$$p(x_1) = 0 = p(x_2)$$

 $p'(x_1) = 0 = p'(x_2)$
 $p''(x_1) = 0 = p''(x_2)$

Jak wiadomo istnieje dokładnie jeden wielomian interpolacji Hermite'a (stopnia ≤ 5) oparty na dwóch węzłach o krotności 3 każdy. Z drugiej strony $p \equiv 0$ spełnia wszystkie te warunki — zatem to musi być on i tylko on.

Można też sprokurować tabliczkę różnic dzielonych (z samymi zerami) i stwierdzić, że wypełni się też zerami.

1.2. Danie główne

5. Jeśli węzły, na ktorych oparta jest przestrzeń splajnów stopnia k, są równoodległe (tzn. $x_{i+1} - x_i = h$ dla każdego i), to funkcje B-bazy są identyczne z dokładnością do przesunięcia argumentu: $B_i^k(x) = B_0^k(x - ih)$.

Rozw. Rekurencyjna definicja B-bazy przekłada się w nauralny sposób na dowód indukcyjny. Dla funkcji $B_i^0(x)$ teza w oczywisty sposób zachodzi. Następnie korzystamy z definicji B-bazy:

$$B_i^k(x) = V_i^k(x) \cdot B_i^{k-1}(x) + (1 - V_{i+1}^k(x)) \cdot B_{i+1}^{k-1}(x)$$

gdzie

$$V_i^k(x) = \frac{x - x_i}{x_{i+k} - x_i}, \qquad B_i^0(x) = \begin{cases} 1 & \text{dla } x \in [x_i, x_{i+1}) \\ 0 & \text{w p.p.} \end{cases}$$

Zakładając, że dla k-1 teza jest prawdziwa mamy:

$$B_i^{k-1}(x) = B_0^{k-1}(x-ih) \qquad \text{oraz} \qquad B_{i+1}^{k-1}(x) = B_0^{k-1}(x-(i+1)h) = B_0^{k-1}(x-ih-h) = B_1^{k-1}(x-ih).$$

Ponadto

$$V_i^k(x) = \frac{x - x_i}{x_{i+k} - x_i} = \frac{x - x_0 - ih}{x_0 + ih + kh - x_0 - ih} = \frac{(x - ih) - x_0}{x_0 + kh - x_0} = V_0^k(x - ih)$$

i w konsekwencji także

$$V_{i+1}^k(x) = V_0^k(x - (i+1)h) = V_0^k(x - ih - h) = V_1^k(x - ih),$$

skąd teza. \Box

1.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

6. Wykaż, że każdy splajn $s \in S_k$ oparty na węzłach $x_0 < \ldots < x_n$ można jednoznacznie reprezentować na $[x_0, x_n]$ w postaci

$$s(x) = \sum_{i=0}^{k} a_i x^i + \sum_{j=1}^{n-1} b_j (x - x_i)_+^j, \qquad x \in [x_0, x_n],$$

gdzie

$$(x - x_i)_+^j = \begin{cases} (x - x_i)^j & \text{dla } x \ge x_i, \\ 0 & \text{dla } x < x_i. \end{cases}$$

1. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca. O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że obliczenia są wykonywane w arytmetyce dokładnej.

1.1. Przystawki

Zostały z zeszłego tygodnia, więc — szanowni Państwo wybaczą — nie podajemy...

1.2. Danie główne

1. Wyznacz układ równań, jaki ma spełniać interpolacyjny splajn kubiczny w B-bazie splajnowej.

Rozw. Dla S_3 opartych na węzłach $x_0 < \ldots < x_n$, B-baza to $B_{-3}^3, \ldots, B_{n-1}^3$. Tych funkcji jest n+3.

Szukany splajn to

$$s(x) = \sum_{i=-3}^{n-1} c_i B_i^3(x).$$

Ma być z warunków interpolacji

$$s(x_j) = \sum_{i=-3}^{n-1} c_i B_i^3(x_j) = f(x_j), \qquad j = 0, \dots, n.$$

Można liczyć $B_i^3(x_j)$ (i ewentualnie pochodne do warunków brzegowych) z wzoru de Boora, ale prościej kazać to zrobić komputerowi i w efekcie dostać tabelę 1.

X	x_i	x_{i+1}	x_{i+3}	x_{i+3}	x_{i+4}
$B_i^3(x)$	0	1/6	4/6	1/6	0
$(B_i^3(x))'$	0	1/2h	0	-1/2h	0
$(B_i^3(x))^{\prime\prime}$	0	$1/h^2$	$-2/h^2$	$1/h^2$	0

Tabela 1. Tabela wartości splajnu bazowego B_i^3 (w węzłach równoodległych o h)

Ponieważ nośnik B_i^3 jest zawarty w (x_i, x_{i+4}) , to suma się skraca do trzech składników

$$s(x_j) = \sum_{i=j-3}^{j-1} c_i B_i^3(x_j) = f(x_j), \qquad j = 0, \dots, n.$$

Skąd wyznaczamy warunki interpolacji w każdym z węzłów x_i :

$$\frac{1}{6}(c_{j-3}+4c_{j-2}+c_{j-1})=f(x_j), \qquad j=0,\ldots,n.$$

Odpowiada mu macierz "trójdiagonalna" o n+1 wierszach i n+3 kolumnach:

$$\begin{bmatrix} 1 & 4 & 1 \\ & \ddots & \ddots & \ddots \\ & & 1 & 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{-3} \\ c_{-2} \\ \vdots \\ c_{n-2} \\ c_{n-1} \end{bmatrix} = 6 \begin{bmatrix} f(x_0) \\ \vdots \\ f(x_n) \end{bmatrix}$$

dlatego m.in. potrzebujemy jeszcze dwóch dodatkowych warunków, np. brzegowych.

2. Wyznacz układ równań, jaki ma spełniać interpolacyjny splajn $s \in S_k$, $k \ge 1$, reprezentowany w B-bazie splajnowej i określony na $[x_0, x_n]$.

Rozw. To uogólnienie zadania 1. Mamy $s = \sum_{j=-k}^{n-1} c_j B_j^k$ i warunki interpolacji

$$s(x_i) = \sum_{j=-k}^{n-1} c_j B_j^k(x_i) = f(x_i), \qquad i = 0, \dots, n.$$

Ponieważ nośnik B_j^k jest zawarty w (x_j, x_{j+k+1}) — przedział otwarty! — więc w punkcie x_i nie zerują się jedynie $B_{i-k}, B_{i-k+1}, \dots, B_{i-2}, B_{i-1}$. Zatem warunki interpolacji upraszczają się do

$$c_{i-k}B_{i-k}^k(x_i) + \ldots + c_{i-1}B_{i-1}^k(x_i) = f(x_i), \qquad i = 0, \ldots, n$$

Odpowiada mu macierz pasmowa o szerokości pasma k, n+1 wierszach i n+k kolumnach:

$$\begin{bmatrix} \star & \cdots & \star & \\ & \ddots & \cdots & \star \\ & & \star & \cdots & \star \end{bmatrix} \cdot \begin{bmatrix} c_{-k} \\ c_{-k+1} \\ \vdots \\ c_{n-2} \\ c_{n-1} \end{bmatrix} = \begin{bmatrix} f(x_0) \\ \vdots \\ f(x_n) \end{bmatrix}$$

3. Algorytm de Boora wyznaczania wartości splajnu kubicznego zadaniego w B-bazie. Splajn kubiczny oparty na węzłach $x_0 < ... < x_N$ jest zadany przez współczynniki rozwinięcia w B-bazie, $s(x) = \sum_{i=-3}^{N-1} c_i B_i^3(x)$. Sformułuj algorytm obliczania wartości s(x) w zadanym $x \in [x_0, x_N]$. Wskazówka. Skorzystaj z rekurencyjnej definicji B-bazy.

Rozw. Punkt x należy do pewnego przedziału $[x_j, x_{j+1}]$ (który to, możemy rozstrzygnąć metodą wyszukiwania binarnego w czasie $\mathcal{O}(\log_2 N)$). Skoro funkcje bazowe mają ograniczony nośnik (patrz zadanie 1), to suma w punkcie x się skraca do czterech składników

$$s(x) = \sum_{i=j-3}^{j} c_i^3 B_i^3(x).$$

Dalszy ciąg rozwiązania przedstawimy w ogólniejszym przypadku — splajnów k-tego stopnia. Wtedy dla wartości w x mamy co najwyżej k+1 niezerowych składników

$$s(x) = \sum_{i=j-k}^{j} c_i^k B_i^k(x).$$

Następnie korzystamy z definicji B-bazy:

$$B_i^k(x) = V_i^k(x) \cdot B_i^{k-1}(x) + (1 - V_{i+1}^k(x)) \cdot B_{i+1}^{k-1}(x)$$

gdzie

$$V_i^k(x) = \frac{x - x_i}{x_{i+k} - x_i}, \qquad B_i^0(x) = \begin{cases} 1 & \text{dla } x \in [x_i, x_{i+1}) \\ 0 & \text{w p.p.} \end{cases}$$

i zapisujemy nasz splajn w terminach bazy niższego stopnia (pomijając argument x):

$$s(x) = s = \sum_{i=j-k}^{j} c_i^k B_i^k = \sum_{i=j-k}^{j} c_i^k \left(V_i^k \cdot B_i^{k-1} + (1 - V_{i+1}^k) \cdot B_{i+1}^{k-1} \right) = \sum_{i=j-k}^{j} c_i^k V_i^k \cdot B_i^{k-1} + \sum_{i=j-k}^{j} c_i^k (1 - V_{i+1}^k) \cdot B_{i+1}^{k-1}.$$

Zmieniając indeksowanie w ostatniej sumie tak, że nowe i jest równe staremu i+1 mamy

$$\sum_{i=j-k}^{j} c_i^k (1-V_{i+1}^k) \cdot B_{i+1}^{k-1} = \sum_{i=j-k+1}^{j+1} c_{i-1}^k (1-V_i^k) \cdot B_i^{k-1}$$

zatem

$$\begin{split} s &= \sum_{i=j-k}^{j} c_i^k V_i^k \cdot B_i^{k-1} + \sum_{i=j-k+1}^{j+1} c_{i-1}^k (1-V_i^k) \cdot B_i^{k-1} \\ &= \underbrace{c_{j-k}^k V_{j-k}^k \cdot B_{j-k}^{k-1}}_{=0} + \underbrace{\sum_{i=j-(k-1)}^{j} \underbrace{\left(c_i^k V_i + c_{i-1}^k (1-V_{i-1}^k)\right)}_{=:c^{k-1}} \cdot B_i^{k-1} + \underbrace{c_j^k (1-V_{j+1}^k) \cdot B_{j+1}^{k-1}}_{=0}, \end{split}$$

gdyż wśród funkcji bazowych stopnia k-1, jedyne niezerowe nośniki w $[x_j, x_{j+1}]$ mają $B_j^{k-1}, B_{j-1}^{k-1}, \dots, B_{j-(k-1)}^{k-1}$. Dostajemy więc zależność rekurencyjną

$$s = \sum_{i=j-k}^{j} c_i^k B_i^k = \sum_{i=j-k+1}^{j} c_i^{k-1} B_i^{k-1},$$

gdzie

$$c_i^{k-1} = c_i^k V_i + c_{i-1}^k (1 - V_{i-1}^k), \qquad i = j - k + 1, \dots, j.$$

Iterując ten pomysł, należy wyznaczyć kolejne kolumny tabelki

Wartość splajnu to $s(x) = c_i^0$

4. Jakim algorytmem wyznaczać naturalny splajn kubiczny interpolacyjny? Jakie są własności macierzy układu równań (symetria, dodatnia określoność, struktura, uwarunkowanie)? A jeśli szukamy okresowego splajnu? A Hermitowskiego?

Rozw. To ciąg dalszy zadania 1. Dokładamy naturalne warunki brzegowe,

$$s''(x_0) = s''(x_n) = 0,$$

które po zapisaniu s w B-bazie i zróżniczkowaniu redukują się do

$$c_{-3}\underbrace{B''_{-3}(x_0)}_{=1/h^2} + c_{-2}\underbrace{B''_{-2}(x_0)}_{=-2/h^2} + c_{-1}\underbrace{B''_{-1}(x_0)}_{=1/h^2} = 0$$

i analogicznie w x_n . Dokładając te warunki (pomnożone uprzednio przez h^2) do układu równań jako pierwsze i ostatnie równanie mamy

$$\begin{bmatrix} 1 & -2 & 1 & & & \\ 1 & 4 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 4 & 1 \\ & & 1 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{-3} \\ c_{-2} \\ \vdots \\ c_{n-2} \\ c_{n-1} \end{bmatrix} = 6 \begin{bmatrix} 0 \\ f(x_0) \\ \vdots \\ f(x_n) \\ 0 \end{bmatrix}.$$

Dopieśćmy ten układ tak, by wystarczyło rozwiązać układ równań z macierzą trójdiagonalną. Odejmując pierwszy wiersz od drugiego (i analogicznie ostatni od przedostatniego) dostajemy układ równoważny

$$\begin{bmatrix} 1 & -2 & 1 & & & & \\ 0 & 6 & 0 & & & & \\ & 1 & 4 & 1 & & & \\ & & \ddots & \ddots & \ddots & & \\ & & & 1 & 4 & 1 & \\ & & & 0 & 6 & 0 \\ & & & 1 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{-3} \\ c_{-2} \\ c_{-1} \\ \vdots \\ c_{n-3}s \\ c_{n-2} \\ c_{n-1} \end{bmatrix} = 6 \begin{bmatrix} 0 \\ f(x_0) \\ f(x_1) \\ \vdots \\ f(x_{n-1}) \\ f(x_n) \\ 0 \end{bmatrix},$$

więc jak widać wystarczy najpierw rozwiązać układ równań rozmiaru n+1 z macierzą trójdiagonalną:

$$\begin{bmatrix} 6 & 0 & & & \\ 1 & 4 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 4 & 1 \\ & & & 0 & 6 \end{bmatrix} \cdot \begin{bmatrix} c_{-2} \\ c_{-1} \\ \vdots \\ c_{n-3} \\ c_{n-2} \end{bmatrix} = 6 \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_{n-1}) \\ f(x_n) \end{bmatrix},$$

a na koniec wyznaczyć z warunków brzegowych c_{-3} i c_{n-1} . Ale ten układ dalej się upraszcza, bo $6c_{-2} = 6f(x_0)$ i podobnie c_{n-2} , więc ostatecznie wystarczy rozwiązać

$$\begin{bmatrix} 4 & 1 \\ \ddots & \ddots & \ddots \\ & 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} c_{-1} \\ \vdots \\ c_{n-3} \end{bmatrix} = \begin{bmatrix} 6f(x_1) - f(x_0) \\ \vdots \\ 6f(x_{n-1}) - f(x_n) \end{bmatrix}.$$

Koszt całkowity oczywiście jest liniowy. Macierz jest faktycznie symetryczna. Jej uwarunkowanie w normie spektralnej łatwo oszacować z twierdzenia Gerszgorina. Rzeczywiście, wartości własne są rzeczywiste, bo macierz jest symetryczna i dodatkow0 siedzą w kołach

$${z:|z-4|\leq 2}\cup{z:|z-4|\leq 1}$$

skąd
$$\operatorname{cond}_2(A) = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|} \le 6/2 = 3.$$

- **5.** Wyznacz naturalny splajn kubiczny *s* oparty na węzłach: $0, \pm h, \pm 2h$ taki, że $s(0) = 1, s(\pm 2h) = 0, s(\pm h) = 1/4$
- (a) w bazie kawalkami wielomianowej
- (b) w B-bazie

rozwiązując odpowiednie układy równań.

Rozw. Zróbmy to w B-bazie. Na podstawie zadania 4 mamy do rozwiązania układ równań

$$\begin{bmatrix} 1 & -2 & 1 & & & & \\ 1 & 4 & 1 & & & & \\ & 1 & 4 & 1 & & & \\ & & 1 & 4 & 1 & & \\ & & & 1 & 4 & 1 & \\ & & & 1 & 4 & 1 & \\ & & & 1 & -2 & 1 & \\ \end{bmatrix} \begin{bmatrix} c_{-3} \\ c_{-2} \\ c_{-1} \\ c_{-0} \\ c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = 6 \cdot \frac{1}{4} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \\ 4 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

Ponieważ prawa strona to pomnożona przez 3/2 czwarta kolumna macierzy układu, to rozwiązaniem jest

$$\begin{bmatrix} c_{-3} \\ c_{-2} \\ c_{-1} \\ c_{-0} \\ c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \frac{3}{2} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix},$$

czyli szukany splajn to po prostu bazowa funkcja B_2^3 pomnożona przez 3/2.

6. Podaj algorytm obliczania $A \cdot f$, gdzie A jest tzw. macierzą cykliczną o stałych diagonalach:

$$A = \begin{bmatrix} c_0 & c_{N-1} & \dots & c_1 \\ c_1 & c_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_{N-1} \\ c_{N-1} & \dots & c_1 & c_0 \end{bmatrix}.$$

Rozw.

Pokażemy, że

$$A = F_N \Lambda F_N^{-1},\tag{1}$$

gdzie F_N jest macierzą FFT, natomiast Λ jest macierzą diagonalną:

$$\Lambda = \operatorname{diag}(F_N c),$$

gdzie $c = [c_0, \dots, c_{N-1}]^T$. Wtedy obliczenie Ax sprowadza się do obliczenia $x = F_N(\Lambda(F_N^{-1}b))$.

Niech N będzie potęgą dwójki. Mnożenie przez F_N i odwrotną do niej kosztuje $\mathcal{O}(N\log_2 N)$, a mnożenie przez macierz diagonalną kosztuje $\mathcal{O}(N)$. Wcześniej trzeba jeszcze obliczyć F_Nc , co kosztuje kolejne $\mathcal{O}(N\log_2 N)$. Ostateczny koszt jest więc $\mathcal{O}(N\log_2 N)$.

Gdy zaś N jest liczbą pierwszą, to FFT nie można użyć i wtedy mnożenie przez F_N kosztuje $\mathcal{O}(N^2)$, więc ostatecznie tyle też kosztuje wyznaczenie x.

Aby pokazać (1), musimy pokazać, że

$$AF_N = F_N \Lambda$$
.

innymi słowy — że wektory własne A to kolumny macierzy F_N , a wartości własne to λ_k . A to jest tylko rachunek! Rzeczywiście, k-ta kolumna F_N jest postaci

$$v_k = egin{bmatrix} 1 \ (oldsymbol{\omega}_N^k)^1 \ dots \ (oldsymbol{\omega}_N^k)^{N-1} \end{bmatrix}$$

oraz

$$\lambda_k = (F_N c)_k = \sum_{i=0}^{N-1} \omega_N^{kj} \cdot c_j,$$

więc *m*–ta współrzędna iloczynu $\lambda_k v_k$ jest równa

$$(\lambda_k v_k)_m = \underbrace{\sum_{j=0}^{N-1} \omega_N^{kj} \cdot c_j}_{\lambda_k} \cdot \omega_N^{km} = \sum_{j=0}^{N-1} (\omega_N^k)^{j+m} \cdot c_j$$

natomiast m-ta współrzędna iloczynu Av_k to (sumę warto rozbić na "do diagonali A" i "od diagonali A")

$$(Av_k)_m = \sum_{i=0}^{m-1} c_{N-m+j} \omega_N^{kj} + \sum_{i=m}^{N-1} c_{j-m} \omega_N^{kj}.$$

Zmieniając indeksy tak, że w pierwszej sumie nowy indeks s = N - m + j, a w drugiej sumie nowy indeks s = j - m dostajemy

$$(Av_k)_m = \sum_{s=N-m}^{N-1} c_s(\omega_N^k)^{s+m-N} + \sum_{s=0}^{N-m-1} c_s(\omega_N^k)^{s+m} = \sum_{s=0}^{N-1} (\omega_N^k)^{s+m} \cdot c_s,$$

bo
$$(\omega_N^k)^{s+m-N} = (\omega_N^k)^{-N} \cdot (\omega_N^k)^{s+m} i (\omega_N^k)^{-N} = \omega_N^N)^{-k} = 1^{-k} = 1.$$

1.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

- 7. Wyprowadź algorytmy obliczania w punkcie $x \in [x_0, x_n]$ pierwszej i drugiej pochodnej splajnu kubicznego zadanego w B-bazie i oszacuj ich koszt w zależności od n.
- **8.** Niech N będzie potęgą dwójki. Podaj algorytm rozwiązywania układu równań Ax = b kosztem $\mathcal{O}(N\log N)$, gdy A jest tzw. cykliczną macierzą Toeplitza:

$$A = \begin{vmatrix} c_1 & c_N & \dots & c_2 \\ c_2 & c_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_N \\ c_N & \dots & c_2 & c_1 \end{vmatrix}.$$

Uwaga. Na ćwiczeniach dwa miesiące temu pojawiło się identyczne zadanie, ale wtedy trzeba było rozwiązać je kosztem $\mathcal{O}(N^2)$. Dzisiaj podnoszę poprzeczkę, chociaż... naprawdę jest chyba łatwiej?

1. Zadania z rozwiązaniami

Namawiam Państwa do próby samodzielnego rozwiązania każdego z zadań, a dopiero potem do przeczytania gotowca. O ile nie będzie powiedziane inaczej, zawsze będziemy zakładać, że obliczenia są wykonywane w arytmetyce dokładnej.

1.1. Przystawki

1. Wykaż, że wielomianem stopnia co najwyżej N, najlepiej aproksymującym w sensie jednostajnym na [-1,1] wielomian $p(x) = x^{N+1}$ jest $p^*(x) = x^{N+1} - 2^{-N}T_{N+1}(x)$, gdzie $T_n(x) = \cos(n \arccos(x))$. Uzasadnij, że p^* to na pewno wielomian, w dodatku stopnia N.

Rozw. Musimy sprawdzić, czy dla p i p^* jest alternans. Po pierwsze zauważmy, że p^* jest faktycznie wielomianem stopnia N, a nie N+1, bo wyrazy z x^{N+1} się zniosą. Ponadto, $p-p^*=2^{-N}T_{N+1}$ ma dokładnie N+2 równe sobie ekstrema na przemian: $2^{-N}T_{N+1}(y_i)=(-1)^i$, gdzie $y_i=\cos(i\pi/(N+1))$ — ekstrema wielomianu Czebyszewa. Zatem mamy alternans.

2. Wykaż, że wielomianem p^* stopnia co najwyżej N, który najlepiej aproksymuje funkcję $f(x) = x^N$ w sensie średniokwadratowym na [-1,1] (tzn. w przestrzeni $L^2(-1,1)$ z normą $||f||_2 = (\int_{-1}^1 f^2(x) \, dx)^{1/2}$) jest

$$p^*(x) = x^{N+1} - \alpha \cdot L_{N+1},$$

gdzie L_{n+1} to wielomian Legendre'a stopnia N+1, natomiast stała α jest tak dobrana, by współczynnik przy najwyższej potędze wielomianu $\alpha \cdot L_{N+1}$ był równy 1.

Rozw. Oczywiście tak zdefiniowany p^* jest stopnia nie wyższego niż N (najwyższe potęgi się uproszczą). Jak wiadomo, musi zachodzić $(f-p^*,L_j)=0$ dla $j=0,\ldots,N$. No i mamy $f-p^*=x^{N+1}-x^{N+1}+aL_{N+1}=aL_{N+1}$, więc

$$(f - p^*, L_i) = a(L_{N+1}, L_i) = 0$$

dla j = 0, ..., N, z ortogonalności.

3. Wykaż, że wielomian w stopnia N, najlepiej aproksymujący (w sensie jednostajnym) na przedziale [a,b] zadaną funkcję ciągłą f, musi być dla niej wielomianem interpolacyjnym Lagrange'a opartym na pewnych (niekoniecznie równoodległych) N+1 punktach. Wskazówka. $Dla\ f\ i\ w\ musi\ istnie\'e\ alternans;\ skorzystaj\ z\ tego\ faktu$.

Rozw. Z twierdzenia o alternansie, w [a,b] różnica f-w musi mieć na przemian ekstrema w N+2 punktach alternansu. Z ciągłości musi się więc zerować gdzieś pomiędzy punktami alternansu.

1.2. Danie główne

4. Zygmunt chwali się: "Jeśli podacie mi wartości funkcji sinus w 10 wybranych przeze mnie punktach, będę mógł tanio obliczyć jej wartość dla dowolnego $x \in \mathbb{R}$ z błędem nieprzekraczającym 10^{-8} ". Czy ma rację i dlaczego? I co to znaczy: "tanio"? (Przyjmij, że jedyne dopuszczalne działania to podstawowe cztery działania arytmetyczne, a arytmetyka jest dokładna.)

Rozw. Po pierwsze, wystarczy, że Zygmunt będzie znał te wartości $f(x) = \sin(x)$ w punktach przedziału $[0, \pi/2]$, bo każdą inną wyznaczy sobie korzystając albo z symetrii, albo okresowości. Na $[0, \pi/2]$ oprzyjmy wielomian interpolacyjny p na n+1=10 węzłach Czebyszewa. Zgodnie z teorią, błąd interpolacji w n+1 węzłach Czebyszewa na [a,b] szacuje się następująco:

$$||f-p||_{\infty} \le \frac{||f^{(n+1)}||_{\infty}}{(n+1)!} ||\phi_{n+1}||_{\infty} \le \frac{||f^{(n+1)}||_{\infty}}{2^n(n+1)!} \left(\frac{b-a}{2}\right)^{n+1},$$

skad w naszym przypadku

$$||f-p||_{\infty} \le \frac{1}{2^n(n+1)!} \left(\frac{\pi}{4}\right)^{n+1} = \frac{1}{2^9 10!} \left(\frac{\pi}{4}\right)^{10} \approx 4.8069 \cdot 10^{-11}.$$

Już dla n+1=9 błąd jest grubo poniżej 10^{-8} . Notabene, w naszym szczególnym przypadku, dla węzłów równoodległych jest tylko ciutkę gorzej...

Na koniec zastanówmy się, jaki to koszt? Trzeba najpierw zredukować x do przedziału $[0,\pi/2]$, co kosztuje kilka flopów i prawdopodobnie parę instrukcji **if**, a następnie obliczyć jedną wartość wielomianu stopnia 10 (co kosztuje około $3\cdot 10$ flopów). W sumie — to nie jest jakoś *bardzo* tanio... Koszt obliczenia sinusa w *podwójnej* precyzji w standardowej bibliotece matematycznej jest rzędu kilkunastu flopów. \square

5. Znajdź funkcję liniową najlepiej aproksymującą na $[x_0, x_2]$ w sensie jednostajnym wypukłą funkcję różniczkowalną f.

Rozw. Szukany wielomian to w(x) = Ax + B. Gdyby to był interpolant przez x_0, x_2 , to wtedy $A = (f(x_2) - f(x_0))/(x_2 - x_0)$, ale jednak wtedy wszystkie ekstrema błędu będą tego samego znaku: cięciwa funkcji wypukłej nie może leżeć pod wykresem samej funkcji.

Ekstremum błędu x_1 wypadające wewnątrz (x_0, x_2) musi spełniać $f'(x_1) - w'(x_1) = 0$. Weźmy więc x_1 taki, że $f'(x_1) = A$. (Oczywiście istnieje na mocy twierdzenia Cauchy'ego. Możemy go znaleźć, rozwiązując równanie nieliniowe $f'(x_1) = A$.)

Aby był alternans, w trzech punktach musi być ekstremum, ze znakami na przemian. Załóżmy, że dwa z nich to krańce odcinka, a trzeci to x_1 . Z warunku alternansu musi być

$$f(x_0) - Ax_0 - B = -f(x_1) + Ax_1 + B$$
,

skąd możemy już wyznaczyć B:

$$B = \frac{f(x_0) + f(x_1)}{2} - A \frac{x_0 + x_1}{2}.$$

Jest alternans, więc tak wyznaczony w = Ax + B musi być optymalny.

6. Pokaż, że wielomiany *ortogonalne* w $L^2_{\rho}(a,b)$ postaci $p_n(x) = x^n + \dots$ niższe potęgi \(...\) spełniają

$$p_{n+1}(x) = (x - \beta_n)p_n(x) - \gamma_n p_{n-1}(x),$$

przy czym $\gamma_n > 0$.

Rozw. Formuła trójczłonowa — oczywiste (wykład!). Mnożąc skalarnie przez p_{n-1} mamy

$$\underbrace{(p_{n+1}, p_{n-1})}_{=0} = (x \cdot p_n, p_{n-1}) - \beta_n \underbrace{(p_n, p_{n-1})}_{=0} - \gamma_n (p_{n-1}, p_{n-1}),$$

skąd (wykład!)

$$\gamma_n = \frac{(x \cdot p_n, p_{n-1})}{(p_{n-1}, p_{n-1})}$$

Ale z tej samej formuły 3-członowej — wszak prawdziwej dla dowolnego k — dostajemy, że $(p_{k+1}, p_{k+1}) = (x \cdot p_k, p_{k+1}) = (x \cdot p_{k+1}, p_k)$, skąd (dla k = n - 1)

$$\gamma_n = \frac{(x \cdot p_n, p_{n-1})}{(p_{n-1}, p_{n-1})} = \frac{(p_n, p_n)}{(p_{n-1}, p_{n-1})} > 0.$$

7. Niech $\{p_n\}$ będą rodziną wielomianów ortogonalnych w $L^2_{\rho}(-a,a)$, gdzie waga ρ jest funkcją parzystą, $\rho(-x) = \rho(x)$. Wykaż, że dla n parzystych p_n są funkcjami parzystymi, a dla n nieparzystych p_n są funkcjami nieparzystymi.

Rozw. Skorzystajmy z powyższej formuły 3-członowej i działajmy przez indukcję. Zauważmy, że $p_0 = 1$ jest oczywiście funkcją parzystą, natomiast $p_1(x) = \operatorname{Const} \cdot x$ (aby $(p_1, p_0) = 0$), więc jest nieparzystą. Załóżmy więc, że dla stopni mniejszych od n jest to prawda. Pokażemy, że w formule 3-członowej musi wtedy być zawsze $\beta_n = 0$: mnożąc skalarnie formułę przez p_n mamy

$$\underbrace{(p_{n+1},p_n)}_{=0} = (x \cdot p_n,p_n) - \beta_n(p_n,p_n) - \gamma_n\underbrace{(p_{n-1},p_n)}_{=0},$$

skad

$$\beta_n = \frac{(x \cdot p_n, p_n)}{(p_n, p_n)} = 0,$$

bo $(x \cdot p_n, p_n) = \int_{-a}^{a} x \underbrace{p_n^2(x)\rho(x)}_{\text{parz.}} dx$ no i funkcja podcałkowa jest nieparzysta.

Jeśli więc teraz n jest parzyste, to n+1 jest nieparzyste i z założenia indukcyjnego

$$p_{n+1}(x) = \underbrace{xp_n(x)}_{\text{nieparz.}} -\beta_n p_n(x) - \underbrace{\gamma_n p_{n-1}(x)}_{\text{nieparz.}}.$$

Identyczne rozumowanie przeprowadzamy dla nieparzystego n.

8. Niech będą dane współczynniki α_n , β_n formuły trójczłonowej, definiującej ciąg wielomianów ortogonalnych:

$$P_{n+1}(x) = (x - \alpha_n)P_n(x) + \beta_n P_{n-1}(x).$$

Podaj algorytm obliczania wartości $w(x) = c_0 P_0(x) + ... + c_N P_N(x)$ w zadanym punkcie x kosztem $\mathcal{O}(N)$. Wskazówka. Zastosuj algorytm Clenshaw'a.

Rozw. "Naturalny" pomysł to iterowanie od najniższego stopnia do najwyższego, zaczynając od $P_{-1}(x) = 0$ i $P_0(x) = 1$:

$$w = c_0; P_{-1} = 0; P_0 = 1$$

for $n = 0: N - 1$
 $P_{n+1} = (x - \alpha_n)P_n + \beta_n P_{n-1}$
 $w = w + c_{n+1}P_{n+1}$

 \triangleright wartość kolejnego wielomianu bazowego w x

end return w

Ten algorytm kosztuje $\mathcal{O}(3N)$ mnożeń i $\mathcal{O}(3N)$ dodawań — ale można taniej (i to właśnie będzie robić algorytm Clenshaw'a).

Idąc od najwyższych potęg x, daje się zmniejszyć liczbę mnożeń. Ponieważ (dla uproszczenia zapisu pomijamy oznaczenie, że rzecz dzieje się w punkcie x i wprowadzamy oznaczenie $a_n = x - \alpha_n$):

$$w = c_N P_N + \dots + c_0 P_0$$

= $c_N (a_{N-1} P_{N-1} + \beta_{N-1} P_{N-2})$
+ $c_{N-1} P_{N-1}$
+ $c_{N-2} P_{N-2} + \dots + c_0 P_0$,

to, porządkując, dostajemy

$$w = \underbrace{(c_N a_{N-1} + c_{N-1})}_{A_{N-1}} P_{N-1} + \underbrace{(c_{N-2} + \beta_{N-2})}_{B_{N-2}} P_{N-2} + c_{N-3} P_{N-3} + \dots + c_0 P_0,$$

czyli w jest wartością wielomianu stopnia N-1 o zmienionych dwóch współczynnikach. Z tej rekurencji wynika prosta iteracja:

Algorytm Clenshaw'a (wersja beta)

for
$$n = N - 1 : -1 : 2$$

$$\begin{bmatrix} c_n \\ c_{n-1} \end{bmatrix} = \begin{bmatrix} c_{n+1}(x - \alpha_n) + c_n \\ c_{n-1} + \beta_{n-1} \end{bmatrix}$$
end

> modyfikujemy dwa współczynniki jednocześnie

return $w = c_0 + (x - \alpha_0)c_1$ $\triangleright P_1 = (x - \alpha_0)$ Koszt całości to tym razem $\mathcal{O}(3 \cdot N)$ dodawań i tylko $\mathcal{O}(1 \cdot N)$ mnożeń!. Na deser możemy użyć zmiennych pomocniczych, by nie zamazywać wektora c:

Algorytm Clenshaw'a (wersja finalna)

$$A = c_N; B = c_{N-1}$$
for $n = N - 1: -1: 2$

$$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} A(x - \alpha_n) + B \\ c_{n-1} + \beta_{n-1} \end{bmatrix}$$
end
return $w = B + A \cdot (x - \alpha_0)$

 $\triangleright P_1 = (x - \alpha_0)$

9. Wyznacz wielomian p^* stopnia $n \le 2$ najlepiej aproksymujący funkcję f(x) = |x| na przedziale [-2,2] w sensie aproksymacji jednostajnej. Ile wynosi błąd tej aproksymacji? Wska-

zówka. Punktów alternansu będzie więcej, niż minimalna potrzebna liczba. Szukaj wielomianu, który (tak jak f) jest funkcją parzystą.

Rozw. Potrzebujemy co najmniej n+2=4 węzły alternansu. Z symetrii zadania, postulujemy $-x_1, -x_0, x_0, x_1$, w których różnica e(x)=p(x)-f(x) przyjmuje wartość ekstremalną. Ponadto postulujemy (też z symetrii), że $p(x)=ax^2+c$. Te ekstrema mogą znaleźć się w punktach -2,0,2 (krańce oraz punkt nieróżniczkowalności) oraz w takich $x \in (0,2)$, że e'(x)=0:

$$e'(x) = (ax^2 + c - x)' = 2ax - 1 = 0,$$

stąd $x_0 = 1/2a$ i musi być $x_0 \in [0,2]$. Zatem drugim punktem musi być koniec przedziału, $x_1 = 2$. Stąd $e(2) = -e(x_0)$, czyli $4a + c - 2 = -(a/4a^2 + c - 1/2a)$, skąd

$$4a + 2c - 2 = 1/4a$$
.

Jak widać, zostaje nam jeszcze jeden stopień swobody, a tymczasem wiemy, że element najlepszej aproksymacji jest jedyny. Stąd wniosek, że musi być jeszcze jeden punkt alternansu, w zerze:

$$e(2) = -e(x_0) = e(0).$$

Czyli e(2) = e(0), czyli 4a + c - 2 = c - 0, skąd a = 1/2. Podstawiając dalej dostajemy $x_0 = 1$ i w konsekwencji b = 1/4. Poszukiwaną funkcją jest $p(x) = \frac{1}{2}x^2 + \frac{1}{4}$, a alternansem dla f i p są punkty -2, -1, 0, 1, 2.

10. Niech $f \in C[a,b]$ oraz

- $p^* \in P_N$ będzie wielomianem najlepszej aproksymacji jednostajnej dla f na [a,b],
- $p \in P_N$ będzie wielomianem interpolacyjnym dla f, opartym na węzłach $a \le x_0 < \cdots < x_N \le b$.

Wtedy

$$||f - p^*||_{\infty} < ||f - p||_{\infty} < (1 + \Lambda_N) \cdot ||f - p^*||_{\infty},$$

gdzie $\Lambda_N = \|\lambda_N\|_{\infty}$ (stała Lebesgue'a), gdzie

$$\lambda_N(x) := \sum_{i=0}^N |l_i(x)| \leftarrow l_i$$
: funkcje bazy Lagrange'a.

Rozw. Lewa nierówność jest oczywista (wszak p^* jest optymalny). Prawa nierówność:

$$||f - p||_{\infty} \le ||f - p^* + p^* - p||_{\infty} \le ||f - p^*||_{\infty} + ||p^* - p||_{\infty},$$

więc wystarczy udowodnić, że $||p^* - p||_{\infty} \le \Lambda_N \cdot ||f - p^*||_{\infty}$. Ponieważ interpolant stopnia N wielomianu p^* to on sam, to

$$|p^{*}(x) - p(x)| = |\sum_{i} p^{*}(x_{i})l_{i}(x) - \sum_{i} f(x_{i})l_{i}(x)| = |\sum_{i} (p^{*}(x_{i}) - f(x_{i})) \cdot l_{i}(x)|$$

$$\leq \sum_{i} \underbrace{|(p^{*}(x_{i}) - f(x_{i}))|}_{\leq ||f - p^{*}||_{\infty}} \cdot \lambda_{N}(x).$$

1.3. Deser — nieobowiązkowy!

To są zadania o tematyce nieco pobocznej, dla chętnych i zainteresowanych.

- 11. Wanda upiera się, że wielomianem interpolacyjnym Lagrange'a opartym na 65 równoodległych węzłach w przedziale $[-\pi/2,\pi/2]$ można aproksymować funkcję sinus (w tym przedziale) z błędem względnym 10^{-64} . Klaus twierdzi, że to nie ma sensu. Rozstrzygnij ich spór wiedząc, że implementacja kodu Wandy odbędzie się w MATLAB-ie w wersji takiej, jaką mamy w labie. Kod będzie uruchamiany na biznesowym ultrabooku Klausa z procesorem Core i5, wyświetlaczem 13.3 cala w białej obudowie, pamięcią RAM 8GB i dyskiem SSD o pojemności 256GB, pracującym pod kontrolą Linuxa z najnowszej dystrybucji Ubuntu.
- **12.** Wykaż, że jeśli s_1^* jest splajnem liniowym optymalnie aproksymującym w sensie jednostajnym funkcję ciągłą f opartym na węzłach $a = x_0 < x_1 < ... < x_n = b$, a s_1 splajnem liniowym interpolującym f w tychże węzłach, to wtedy

$$||f - s_1^*||_{\infty} \le ||f - s_1||_{\infty} \le 2||f - s_1^*||_{\infty}.$$

13. Czy zadanie wyznaczenia elementu najlepszej aproksymacji w podprzestrzeni sk. wymiaru V przestrzeni unitarnej X jest dobrze uwarunkowane w normie tej przestrzeni? Wskazówka. $Chodzi~o~współczynnik~uwarunkowania~bezwzględnego.~Zadaniem~obliczeniowym~jest~wynik~odwzorowania~<math>X\ni f\mapsto w^*\in V\subset X$.