METHOD FOR FORMING CERAMIC COIL SPRING

Patent Number:

JP1110909

Publication date:

1989-04-27

Inventor(s):

NAKATANI MASAHIKO; others: 04

Applicant(s):

NHK SPRING CO LTD

Requested Patent:

□ JP1110909

Application Number: JP19870268332 19871026

Priority Number(s):

IPC Classification:

B28B1/40

EC Classification:

Equivalents:

JP2558748B2

Abstract

PURPOSE:To make it possible to prevent wire from breaking, deforming and the like and, in addition, reduce the ununiformity in shape by a method wherein wire, from which first solvent is removed and which is shrunk on drying, is immersed in second solvent.

CONSTITUTION: Wire is formed by kneading ceramic powder, first and second binders, the solubilities of which are different from each other, plasticizer and first solvent, which dissolves the first binder, and, after that, dried. Next, the wire is immersed in second solvent, which dissolves the second binder, so as to give plasticity. The wire, to which plasticity is given, is coiled round a mandrel and, after that, dried, resulting in obtaining enough shape retention in the coil-shaped formed body.

Data supplied from the esp@cenet database - 12

⑩ 日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

平1-110909

@Int_Cl_1

識別記号

庁内整理番号

每公開 平成1年(1989)4月27日

B 28 B 1/40

B-6865-4G

審査請求 未請求 発明の数 1 (全5頁)

国発明の名称 セラミックスコイルばねの成形方法

②特 願 昭62-268332

②出 願 昭62(1987)10月26日

②発 明 者 中 谷 雅 彦 神奈川県横浜市磯子区新磯子町1番地 株式会社日発グループ中央研究所内②発 明 者 佐 藤 繁 美 神奈川県横浜市磯子区新磯子町1番地 株式会社日発グループ中央研究所内

②発 明 者 東 野 豊 之 神奈川県横浜市磯子区新磯子町1番地 株式会社日発グループ中央研究所内

⑫発 明 者 埜 村 秀 神奈川県横浜市磯子区新磯子町1番地 株式会社日発グル ープ中央研究所内

①出 願 人 日本発条株式会社 神奈川県横浜市磯子区新磯子町1番地 ②代 理 人 弁理士 鈴江 武彦 外2名

最終頁に続く

呀 細 瘛

発明の名称

セラミックスコイルばねの成形方法

2. 特許請求の範囲

(1) セラミックス粉体と、互いに溶解性の異なる第1及び第2の結合剤、可塑剤並びに上記第1の結合剤を溶解する第1の溶媒とを混練して線材を成形した後、乾燥する工程と、鉄線材を上記第2の結合剤を溶解する第2の溶媒に浸漉して可塑性を付与する工程と、鉄線材をコイリングする工程とを具備したことを特徴とするセラミックスコイルばねの成形方法。

(2) 第 1 の結合剤が水溶性の結合剤、第 1 の溶 媒が水、第 2 の結合剤が有機溶媒に溶解する結合 剤、第 2 の溶媒が有機溶媒であることを特徴とす る特許請求の範囲第 1 項記載のセラミックスコイ ルばねの成形方法。

3 . 発明の詳細な説明

〔産業上の利用分野〕

本発明はセラミックスコイルばねの成形方法に

関する.

〔従来の技術〕

コイルばねは各種機械にとって重要な部品として用いられている。 こうしたコイルばねは金属材料から成形されてきたが、金属製コイルばねは耐熱性、耐食性、耐摩耗性等の特性に劣るため、近年、これらの特性を改善し得るセラミックス製のコイルばねの製造が試みられている。

セラミックスコイルばねの製造方法としては、 セラミックス粉体原料に成形性を付与する有機材料とその溶剤とを混練し、この混練物を押し出し て得られるセラミックス線材を用いて目的とする コイル形状のコイルばねを得る方法が行なわれて いる。

成形性を付与する有機材料として水溶性のものを、その溶剤として水を使用してコイルばねを製造した場合、以下の問題が生じる。

① 線材に含まれる水分が多い場合(高含水率の 線材)

コイリング自体は容易であるが、コイリング用

特開平1-110909 (2)

の 芯 棒 に 巻きつけるとコイリング時に内側(内径)がつぶれやすい。また、この状態で乾燥させると、水分の 蒸発に伴う乾燥収縮で線切れ、及び 更にコイル内径のつぶれが生じる。なお、高合水平の銀 材を用いてコイリングした場合、コイリング直接に 芯 棒 から成形体を取り外すと、保形性がなくコイル形状を保持しない。

②逆に銀材に含まれる水分が少ない場合

般に約3%以下の値まで低下させることにより、セラミックスコイルばねの成形が可能なように線材の可塑性を調整している。なお、線材の可塑性が乾燥後(水分調整後)においても有利に保持し得るように界面活性剤、多価アルコールを多添加している。

〔 発明が解決しようとする問題点〕

しかし、従来の方法には以下のような問題があ る。

① コイリング 後の 銀切れ等を発生させない ような 銀材を 得るために、 乾燥による水分調整に 微妙なコントロールを必要とする。

② 級 材の 可塑性 が 乾燥後においても有利に保持 し得るため、コイリング後の保形性に乏しい。 し たがって、 誤線材と 同様な熱収縮特性を有する芯 核に造いたまま焼結する必要がある。

③ 芯 棒と して線材 と同様な熱収縮特性 を有する ものを用いているため、線切れやコイルの内側の 変形をある 程度防止することができるが、 仮焼結 まで行なうため再使用することができず、 芯棒に そこで、一般的に考えられるセラミックスコイルばねの製造方法としては、例えば以下のような 方法が知られている。

① セラミックス粉体原料と、メチルセルロース、界面活性剤、多価アルコール及び水とを混練し、押出成形して線材を得た後、芯棒にコイリングし、そのまま仮焼着し、その後芯棒を取り外して木焼着する方法(特別昭82-7858号公報)。

②上記方法を改良して等ピッチのコイルばねを 得るために、セラミックス粉体を主原料とする押 出加工された線材を水分調整し、鉄線材と同様な 熱収縮特性を有する芯棒に、間隔保持用コイル材 とともに巻き付け、アルミナ粉末中に埋め込んで 仮焼結を行ない、仮焼結された線材を芯棒から取 り外して太焼結する方法(特開昭82-25013 号公

なお、これらの方法をブロック図で示すと第2 図のようになる。第2図に示すように、これらの方法では原料の器練物を押出成形して線材を得た後、乾燥操作により線材を所定の水分率まで、一

要するコストが高くなる。

以上のように従来の方法はコスト、歩留り等の 観点から量産性の乏しい方法である。

本発明は上記問題点を解決し、特に線材の線径が太い場合でも、線 材の線切れ、変形等を防止でき、形状ばらつきも小さくすることができる量産性のあるセラミック スコイルばねの成形方法を提供することを目的とする。

(問題点を解決するための手段と作用)

本発明のセラミックスコイルばねの成形方法は、セラミックス粉体と、互いに溶解性の異なる第1及び第2の結合剤、可塑剤並びに上記第1の結合剤を溶解する第1の溶媒とを混練して線材を 成形した後、乾燥する工程と、該線材を上記第2 の結合剤を溶解する第2の溶媒に投液して可塑性 を付与する工程と、該線材をコイリングする工程 とを具備したことを特徴とするものである。

本発明において、原料となるセラミックス粉体は、酸化物系セラミックスでもよいし、非酸化物系セラミックスでもよい。酸化物系セラミックス

特開平1-110909 (3)

としては、例えばアルミナ、ムライト、部分安定化ジルコニア等が挙げられる。また、非酸化物系セラミックスとしては、例えば窒化ケイ素、皮化ケイ素、サイアロン等が挙げられる。なお、非酸化物系セラミックスを用いる場合、ぬれ性を改善するために、シラン系カップリング剤、アルミ系カップリング剤、チタン系カップリング剤等を用いて表面処理してもよい。

本発明において、添加する有機材料(一般にバインダーとも呼ばれる)は、セラミックス粉体のような非可塑性原料の成形において可塑性、保形性を付与し、しかも焼結により分解、飛散して焼結体に不純物などの残渣を残さないという特長を有している。

使用される有機材料には結合剤、可塑剤、分散剤などがある。これらは一般的に以下の機能を持つことが知られている。

結合剤はグリーン成形体の強度保持として機能 し、可塑剤は可塑性、柔軟性を付与する機能、分 散剤はセラミックス粉体と有機材料を混練したと

個の変形を招くことなく、短時間でコイリングができ、形状ばらつきも非常に小さくずることができる。また、線材を保管しておき、必要に応じて 随意にコイリングすることができるので、多品種 少量生産に適している。

(実施例)

以下、本発明方法を実施例に基づいてより詳細に説明する。

実施例 1

 きの均一分散及び有機材料の溶剤の添加量を低減 させる機能をもつ。

本気明においては、第1の結合剤が水溶性は、第1の結合剤が水溶性が、第1の結合剤が有機溶媒に溶解する結合剤が有機溶媒に溶解する結合剤が、が、ボリアクリル酸エステル等、ののののが、カリングのもので、カリングリールののでは、が、サービングリールのでは、が、サービングリールのでは、が、サービングリールのでは、が、サービングリールのでは、が、サービングリールのでは、が、サービングリールのでは、が、サービングリールのでは、が、サービングリールのでは、から、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加して、カルボン酸塩等を添加を含き、カルボン酸塩等を添加を含き、カルボン酸塩等を添加を含き、カルボン酸塩等を添加を含き、カルボン酸塩等を添加を含き、カルボン酸塩等を添加を含き、カルボン酸塩等を添加を含き、カルボンは、カルボンのは、カルボン

本発明方法では、第1の溶媒(例えば水)を除去して乾燥収縮させた線材を第2の溶媒に浸透すると、線材中の第2の結合剤に第2の溶媒が吸収され、コイリングに必要な可塑性が付与される。 そして、線材の乾燥後には保形性が得られる。 したがって、線径の大い線材でも線切れやコイル内

よい。この数、添加したポリビニルブチラールの粒子径が大きいと線材が膨調するが、ポリビニルガチラールの粒子径が小さいと線材は膨調 はなかった。このようにして可塑性を付与した線 材をなった。このようにして可塑性を付与した線 なんだった。これが大成形体は充分な保形性を有していた。その後、芯棒から取り外して脱バイングで、たったの後、芯棒から取り外して脱びイングでは、ないで、ないでは、有効地き数 5のセラミックスコイルばれを製造した。 得られたセラミックスコイルばれを製造した。 得られたセラミックスコイルばれを製造した。 得られたセラミックスコイルばれの特性は、焼結体密度 d = 8.03g/cm²、バネに数 k = 2.40 kgf/mm²、せん断強度τ = 46 kgf/mm² (平均値)であった。

第 1 表

原	#	配合比(重量部)
セラミックス粉体	部分安定化ジルコニア	100
第1の結合剤	メチルセルロース	4
可塑剤	ポリエチレングリコール (Mn = 400)	3
可塑剤	グリセリン	3
分散剤	ポリカルボン酸アンモニウム塩	0.5
第1の溶媒	*	16
第2の結合剤	ポリビニルブチラール	3

実施例2

第2 表に示すように第2 の結合剤としてポリメタクリル酸エステルを用いた以外は、上記実施例1 と同様にして線径 3.0mm、コイル径20mm、有効逆き数 6のセラミックスコイルばねを製造することができた。得られたセラミックスコイルばねの特性は焼結体密度 d = 6.09g/cm²、バネ定数 k=1.52 kgf/mm²、せん断強度で=39 kgf/mm²(平均値)であった。

実施例3

第 3 衷に示す原料を用いた以外は上記実施例 1 と同様にして、コイル状成形体を得た後、N $_2$ ガス中、1850 $^{\circ}$ で焼結することにより、線径 3.8 $^{\circ}$ $^{\circ}$

(発明の効果)

本発明方法によれば、線径の大い線材でも線切れやコイル内側の変形を招くことなく、 短時間でコイリングができ、形状ばらつきも非常に小さいセラミックスコイルばねを得ることができる。 また、線材を保管しておき、随意にコイリングすることができるので、 多品種少量生産に適している

4 . 図面の簡単な説明

第 1 図は本発明の実施例におけるセラミックスコイルばねの成形方法を示すプロック図、第 2 図は従来のセラミックスコイルばねの成形方法を示すプロック図である。

出願人代理人 弁理士 鈴紅武彦

第 2 表

ЕX	料	配合比(重量部)
セラミックス粉体	部分安定化ジルコニア	100
第1の結合剂	メチルセルロース	3
ण शारा	ポリエチレングリコール (Mn = 400)	3
可控剂	グリセリン	3
分散剂	ポリカルボン酸アンモニウム塩	0.5
第1の溶媒	*	16
第2の結合剂	ポリメタクリル酸エステル	3

郭 3 装

原	料	配 合 比 (重量部)
セラミックス粉体	窒化ケイ楽(焼結助剤含む)	100
第1の結合剂	メチルセルロース	8
可似胡	ポリエチレングリコール (Mn = 400)	6 .
可塑剂	グリセリン	6
分散剤	ポリカルボン酸アンモニウム塩	0.5
第1の裕煤	*	27
第2の結合剂	ポリアクリル酸エステル	4

第 1 図

第 2 図

第1頁の続き ②発 明 者 安 違 隆 介 神奈川県横浜市磯子区新磯子町1番地 株式会社日発グル ープ中央研究所内