QUÍMICA NIVEL SUPERIOR PRUEBA 1

Viernes 7 de noviembre de 2003 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

883-158 16 páginas

2			- <u>L</u>	Tabla perió	periód	dica						ဇ	4	w	9	٢	0
Número atómico	Número atómico	Número atómico	Número atómico	atómico anto							·						2 He 4,00
4 Be 9,01 Masa atómica	Masa atómica	Masa atómica	Masa atómica	tómica								5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
12 Mg 24,31												13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 CI 35,45	18 Ar 39,95
20 21 22 23 24 Ca Sc Ti V Cr 40,08 44,96 47,90 50,94 52,00	22 23 Ti V 47,90 50,94	23 V 50,94		24 Cr 52,00		25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
38 39 40 41 42 Sr Y Zr Nb Mo 87,62 88,91 91,22 92,91 95,94	40 41 42 Zr Nb Mo 91,22 92,91 95,94	41 42 Nb Mo 92,91 95,94	42 Mo 95,94			43 Tc 98,91	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
56 57 † 72 73 74 Ba La Hf Ta W 137,34 138,91 178,49 180,95 183,85 18	72 73 74 Hf Ta W 178,49 180,95 183,85	73 74 Ta W 180,95 183,85	74 W 183,85		18	75 Re 186,21	76 Os 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 T1 204,37	82 Pb 207,19	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)
88 89 ‡ Ra Ac (226) (227)	89 ‡ Ac (227)																
† 58 59 60 Ce Pr Nd 140,12 140,91 144,24 1	58 59 60 Ce Pr Nd 140,12 140,91 144,24	59 60 Pr N d 140,91 144,24	60 Nd 144,24		_	61 Pm 146,92	62 Sm 150,35	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,04	71 Lu 174,97	
† 90 91 92 Th Pa U 232,04 231,04 238,03 (90 91 92 Th Pa U 232,04 231,04 238,03	91 92 Pa U 231,04 238,03	92 U 238,03			93 N p (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

- 1. ¿Qué solución contiene menor cantidad de iones H⁺?
 - A. 10,0 cm³ de solución de HCl 0,250 mol dm⁻³
 - B. 20,0 cm³ de solución de HCl 0,250 mol dm⁻³
 - C. 10,0 cm³ de solución de HCl 0,500 mol dm⁻³
 - D. 10.0 cm^3 de solución de $H_2SO_4 0.250 \text{ mol dm}^{-3}$
- 2. Un hidrocarburo contiene 90 % de carbono en masa. ¿Cuál es su fórmula empírica?
 - A. CH₂
 - B. C_3H_4
 - $C. C_7H_{10}$
 - D. C_9H_{10}
- 3. El hidróxido de litio reacciona con dióxido de carbono de acuerdo con la siguiente ecuación:

$$2\text{LiOH} + \text{CO}_2 \rightarrow \text{Li}_2\text{CO}_3 + \text{H}_2\text{O}$$

¿Qué masa (expresada en gramos) de hidróxido de litio se necesita para reaccionar con 11 g de dióxido de carbono?

- A. 6
- B. 12
- C. 24
- D. 48

- 4. ¿Qué enunciado es correcto con respecto al espectro de emisión del átomo de hidrógeno?
 - A. Las líneas convergen a baja energía.
 - B. Las líneas se producen cuando los electrones se desplazan desde niveles de baja energía a niveles de mayor energía.
 - C. Las líneas de la región visible comprenden transiciones electrónicas en los niveles energéticos cercanos al núcleo.
 - D. La línea que corresponde a la emisión de mayor energía, está en la región ultravioleta.
- 5. ¿Cuál es la secuencia correcta para el proceso que ocurre en un espectrómetro de masas?
 - A. vaporización, ionización, aceleración, deflección
 - B. vaporización, aceleración, ionización, deflección
 - C. ionización, vaporización, aceleración, deflección
 - D. ionización, vaporización, deflección, aceleración
- **6.** ¿Qué par reaccionaría entre sí con mayor vigor?
 - A. Li y Cl₂
 - B. Li y Br₂
 - C. KyCl₂
 - D. KyBr₂
- 7. ¿Qué propiedades de los elementos del periodo 3 aumentan desde el sodio al argón?
 - I. Carga nuclear
 - II. Radio atómico
 - III. Electronegatividad
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

- 8. ¿Qué tendencias generales son correctas para los óxidos de los elementos del periodo 3 (desde el Na_2O al Cl_2O)?
 - I. El carácter ácido disminuye.
 - II. La conductividad eléctrica (en estado fundido) disminuye.
 - III. El enlace cambia de iónico a covalente.
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- 9. ¿Cuál es la descripción correcta de la polaridad de las moléculas de F₂ y HF?
 - A. Ambas moléculas contienen un enlace polar.
 - B. Ninguna de las moléculas contiene un enlace polar.
 - C. Ambas moléculas son polares.
 - D. Sólo una de las moléculas es polar.
- 10. ¿Qué tipos de enlaces están presentes en el CH₃CHO en estado líquido?
 - I. Enlace covalente simple
 - II. Enlace covalente doble
 - III. Enlace de hidrógeno
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

11.	¿Cuál(es) de las siguientes aumenta(n) para el enlace entre los átomos de carbono en la secuencia de
	moléculas C ₂ H ₆ , C ₂ H ₄ y C ₂ H ₂ ?

- I. Número de enlaces
- II. Longitud de los enlaces
- III. Fuerza del enlace
- A. Sólo I
- B. Sólo I y III
- C. Sólo III
- D. I, II y III

12. ¿Cuál de las siguientes especies presenta un ángulo de enlace de 90°?

- I. PCl₄⁺
- II. PCl₅
- III. PCl₆
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

13. ¿Qué alótropos presentan átomos de carbono con hibridación sp²?

- I. Diamante
- II. Grafito
- III. C₆₀ fulereno
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

14. ¿Qué variación en las condiciones producirá un aumento de volumen de una masa fija de gas?

	Presión / kPa	Temperatura / K
A.	Duplicación	Duplicación
B.	Reducción a la mitad	Reducción a la mitad
C.	Duplicación	Reducción a la mitad
D.	Reducción a la mitad	Duplicación

15. La entalpía de enlace media para los enlaces O—O y O—O son respectivamente 146 y 496 kJ mol⁻¹. ¿Cuál es la variación de entalpía, expresada en kJ, para la siguiente reacción?

$$H - O - O - H(g) \rightarrow H - O - H(g) + \frac{1}{2}O = O(g)$$

- A. -102
- B. +102
- C. +350
- D. +394
- 16. ¿Qué reacción tiene mayor variación de entropía positiva?

A.
$$CH_4(g) + 1\frac{1}{2}O_2(g) \rightarrow CO(g) + 2H_2O(g)$$

B.
$$CH_4(g) + 1\frac{1}{2}O_2(g) \rightarrow CO(g) + 2H_2O(l)$$

C.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

D.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

- 17. ¿Cuál es la variación de energía (expresada en kJ) que se produce cuando se aumenta la temperatura de 20 g de agua en 10°C?
 - A. $20 \times 10 \times 4{,}18$
 - B. $20 \times 283 \times 4{,}18$
 - C. $\frac{20 \times 10 \times 4,18}{1000}$
 - D. $\frac{20 \times 283 \times 4,18}{1000}$
- **18.** A continuación se indica la entalpía de red del fluoruro de litio y del fluoruro de calcio:

$$LiF(s) \quad \Delta H^{\ominus} = +1022 \text{ kJ mol}^{-1}$$

$$CaF_2(s)$$
 $\Delta H^{\ominus} = +2602 \text{ kJ mol}^{-1}$

¿Cuál(es) de los siguientes enunciados es(son) útil(es) para explicar por qué el valor del fluoruro de litio es menor que el del fluoruro de calcio?

- I. El radio iónico del litio es menor que el del calcio.
- II. La carga iónica del litio es menor que la del calcio.
- A. Sólo I
- B. Sólo II
- C. I y II
- D. Ninguno
- 19. La velocidad de una reacción entre dos gases aumenta cuando se incrementa la temperatura y se añade un catalizador. ¿En qué opción ambos enunciados son correctos cuando se refieren al efecto de dichos cambios sobre la reacción?

	Aumento de temperatura	Agregado de catalizador
A.	Aumento de la frecuencia de las colisiones	Aumento de la energía de activación
B.	Aumento de la energía de activación	La energía de activación no varía
C.	La energía de activación no varía	Disminución de la energía de activación
D.	Aumento de la energía de activación	Aumento de la frecuencia de las colisiones

20. La expresión de velocidad para una reacción es la siguiente:

$$velocidad = k[A]^{2}[B]^{2}$$

¿Cuál(es) de los siguientes enunciados es(son) correctos para esta reacción?

- I. La reacción es de segundo orden respecto de A y de B.
- II. El orden total de la reacción es 4.
- III. Duplicar la concentración de A tendría el mismo efecto sobre la velocidad de la reacción que duplicar la concentración de B.
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III
- **21.** La velocidad de una reacción reversible se altera al agregar un catalizador heterogéneo. ¿Qué enunciado describe correctamente la función del catalizador?
 - A. Modifica la variación de entalpía de la reacción.
 - B. Disminuye la energía de activación de la reacción directa.
 - C. Aumenta la energía de activación de la reacción inversa.
 - D. Aumenta la velocidad de la reacción directa pero disminuye la velocidad de la reacción inversa.
- **22.** ¿Qué sucederá a la posición de equilibrio y al valor de la constante de equilibrio al aumentar la temperatura en la siguiente reacción?

$$Br_2(g) + Cl_2(g) \rightleftharpoons 2BrCl(g)$$
 $\Delta H = +14 \text{ kJ}$

	Posición de equilibrio	Valor de la constante de equilibrio
A.	Se desplaza hacia los reactivos	Disminuye
B.	Se desplaza hacia los reactivos	Aumenta
C.	Se desplaza hacia los productos	Disminuye
D.	Se desplaza hacia los productos	Aumenta

883-158 Véase al dorso

- **23.** Un líquido y su vapor se encuentran en equilibrio en el interior de un recipiente sellado. ¿Cuál de los siguientes cambios alterará la presión de vapor de equilibrio del líquido en el recipiente?
 - A. Agregado de más líquido
 - B. Agregado de más vapor
 - C. Disminución del volumen del recipiente
 - D. Disminución de la temperatura
- 24. ¿Qué compuesto(s) se forma(n) cuando un óxido metálico reacciona con un ácido diluido?
 - I. Una sal metálica
 - II. Agua
 - III. Hidrógeno gaseoso
 - A. Sólo I
 - B. Sólo I y II
 - C. Sólo II y III
 - D. I, II y III
- 25. ¿Cuál es un par ácido-base conjugado en la siguiente reacción?

$$HNO_3 + H_2SO_4 \rightleftharpoons H_2NO_3^+ + HSO_4^-$$

- A. HNO₃ y H₂SO₄
- B. HNO_3 y $H_2NO_3^+$
- C. HNO₃ y HSO₄
- D. $H_2NO_3^+$ y HSO_4^-

- **26.** ¿Qué ecuación representa una reacción ácido-base según la teoría de Lewis **pero** no según la teoría de Brønsted-Lowry?
 - A. $NH_3 + HC1 \rightleftharpoons NH_4C1$
 - B. $2H_2O \rightleftharpoons H_3O^+ + OH^-$
 - C. NaOH + HCl \rightleftharpoons NaCl + H₂O
 - D. $\operatorname{CrCl}_3 + 6\operatorname{NH}_3 \rightleftharpoons [\operatorname{Cr}(\operatorname{NH}_3)_6]^{3+} + 3\operatorname{Cl}^{-1}$
- **27.** Si las siguientes soluciones acuosas de concentración 1,0 mol dm⁻³ se disponen en orden de pH **creciente**, ¿cuál es el orden correcto?
 - I. Cloruro de amonio
 - II. Etanoato de amonio
 - III. Etanoato de sodio
 - A. I, II, III
 - B. II, I, III
 - C. III, I, II
 - D. III, II, I

28. Un indicador ácido-base, HIn, se disocia de acuerdo con la siguiente ecuación:

$$HIn(aq) \rightleftharpoons H^{+}(aq) + In^{-}(aq)$$

color A

color B

¿Qué enunciado sobre este indicador es correcto?

- I. En una solución fuertemente ácida se vería el color B.
- II. En una solución neutra, las concentraciones de HIn(aq) y de In⁻(aq) deben ser iguales.
- III. Es adecuado para titulaciones de ácidos débiles y bases débiles.
- A. Sólo I
- B. Sólo II
- C. Sólo III
- D. Ninguno de los anteriores
- 29. El magnesio es más reactivo que el cobre metálico. ¿Cuál es el agente oxidante más fuerte?
 - A. Mg
 - B. Mg^{2+}
 - C. Cu
 - D. Cu^{2+}
- **30.** ¿En qué reacción el cromo sufre un cambio de número de oxidación?

A.
$$Cr_2O_3 + 3H_2SO_4 \rightarrow Cr_2(SO_4)_3 + 3H_2O_4$$

B.
$$\operatorname{Cr}_2(\operatorname{SO}_4)_3 + 6\operatorname{NaOH} \rightarrow 2\operatorname{Cr}(\operatorname{OH})_3 + 3\operatorname{Na}_2\operatorname{SO}_4$$

C.
$$K_2Cr_2O_7 + 4H_2SO_4 + 6HCl \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O + 3Cl_2$$

$$\mathrm{D.} \hspace{0.5cm} 2\mathrm{K_2CrO_4} + \mathrm{H_2SO_4} \rightarrow \mathrm{K_2Cr_2O_7} + \mathrm{K_2SO_4} + \mathrm{H_2O}$$

Cuando se ajusta la siguiente ecuación, ¿cuál es el coeficiente del Ce⁴⁺? 31.

$$_{SO_{3}^{2-}} + _{H_{2}O} + _{Ce^{4+}} \rightarrow _{SO_{4}^{2-}} + _{H^{+}} + _{Ce^{3+}}$$

- A. 1
- B. 2
- C. 3
- D. 4
- 32. A continuación se indican los potenciales estándar de electrodo para dos semiceldas que contienen hierro:

$$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$$
 $E^{\ominus} = -0.44 \text{ V}$

$$E^{\oplus} = -0.44 \text{ V}$$

$$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$$
 $E^{\Theta} = +0.77 \text{ V}$

$$E^{\oplus} = +0.77 \text{ V}$$

¿Cuál es la ecuación y el potencial de la celda para la reacción espontánea que se produce cuando se conectan las dos semiceldas?

A.
$$3Fe^{2+}(aq) \rightarrow Fe(s) + 2Fe^{3+}(aq)$$

$$E^{\ominus} = +1,21 \text{ V}$$

B.
$$Fe^{2+}(aq) + Fe^{3+}(aq) \rightarrow 2Fe(s)$$

$$E^{\oplus} = +0.33 \text{ V}$$

C.
$$Fe(s) + 2Fe^{3+}(aq) \rightarrow 3Fe^{2+}(aq)$$

$$E^{\oplus} = +0.33 \text{ V}$$

D.
$$Fe(s) + 2Fe^{3+}(aq) \rightarrow 3Fe^{2+}(aq)$$

$$E^{\ominus} = +1.21 \text{ V}$$

- El estaño metálico se puede obtener por electrólisis de una sal fundida que contenga iones Sn²⁺. ¿Qué 33. cambio(s) hará(n) que se duplique la cantidad de estaño producido?
 - I. Duplicar la corriente que circula durante la electrólisis
 - II. Duplicar el tiempo de electrólisis
 - Usar iones Sn⁴⁺ en lugar de iones Sn²⁺ III.
 - A. Sólo I
 - B. Sólo II
 - C. Sólo I y II
 - D. I, II y III

- **34.** ¿Qué fórmulas representan al butano o su isómero?
 - I. $CH_3(CH_2)_2CH_3$
 - II. CH₃CH(CH₃)CH₃
 - III. (CH₃)₃CH
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **35.** ¿Qué compuesto presenta isómeros ópticos?
 - A. CH₃CHBrCH₃
 - B. CH₂BrCHBrCH₃
 - C. CH₂BrCHBrCH₂Br
 - D. CHBr₂CHBrCHBr₂
- **36.** ¿Cuál es la descripción correcta de la siguiente reacción?

$$C_2H_4 + H_2O \rightarrow C_2H_5OH$$

- A. Adición
- B. Condensación
- C. Deshidratación
- D. Hidrogenación

- 37. ¿Qué isómero del C₃H₆O₂ presenta un espectro de ¹H RMN con distinto número de picos que los otros?
 A. HCOOCH₂CH₃
 - B. CH₃COOCH₃
 - C. CH₃OCH₂CHO
 - D. CH₃CH₂COOH
- 38. ¿Cuáles de los siguientes enunciados confirma la idea de que el benceno contiene enlaces deslocalizados?
 - I. Sufre reacciones de sustitución con preferencia a las de adición.
 - II. Su variación de entalpía de combustión es mayor que su variación de entalpía de hidrogenación.
 - III. Todos sus enlaces carbono-carbono tienen igual longitud.
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **39.** ¿Qué enunciado sobre las reacciones de los halógenoalcanos con solución acuosa de hidróxido de sodio es correcto?
 - A. Los halógenoalcanos primarios reaccionan preferentemente por un mecanismo $S_N 1$.
 - B. Los cloroalcanos reaccionan más rápido que los yodoalcanos.
 - C. Los halógenoalcanos terciarios reaccionan más rápido que los halógenoalcanos primarios.
 - D. La velocidad de una reacción $S_{\rm N} 1$ depende de la concentración de la solución acuosa de hidróxido de sodio.

883-158 Véase al dorso

- **40.** ¿Qué alqueno se puede obtener por deshidratación del 2-pentanol?
 - A. $CH_2CHCH(CH_3)_2$
 - B. $CH_2C(CH_3)CH_2CH_3$
 - C. CH₃CHCHCH₃
 - D. CH₂CH(CH₂)₂CH₃