12. Mintavételes szabályozások tervezése stabilis folyamatok irányítására

- 1. Egy merev visszacsatolású zárt körben G(z) diszkretizált szabályozott szakaszt és C(z) soros diszkrét idejű szabályozót feltételezve definiálja a Q(z) YOULAparamétert!
- 2. Egy merev visszacsatolású zárt körben G(z) diszkretizált szabályozott szakaszt és C(z) soros diszkrét idejű szabályozót feltételezve írja fel a $T_{\rm r}(z)$ kiegészítő érzékenységi függvényt és az $S_{\rm n}(z)$ érzékenységi függvényt a Q(z) YOULA paraméter segítségével!
- 3. Egy merev visszacsatolású zárt körben G(z) diszkretizált szabályozott szakaszt és C(z) soros diszkrét idejű szabályozót, továbbá r alapjelet és y_n additív kimeneti zavarást feltételezve írja fel a beavatkozójel, a hibajel és a kimenőjel kifejezését a Q(z) YOULA -paraméter segítségével!
- 4. Mutassa be az IMC elven működő szabályozás blokkvázlatát, amely a következő átviteli függvényekkel adott elemeket tartalmazza: Q(z), $G_{\text{folyamat}}(z)$, $G_{\text{modell}}(z)$. A zárt szabályozási rendszer jelei közül tüntesse fel az alapjelet és a zavarójelet is.
- 5. Feltételezve, hogy a diszkretizált folyamat $G = G_+ G_- z^{-d}$ alakú, határozza meg egy 2DOF mintavételes szabályozási rendszerben az F előszűrő és a C soros szabályozó értékét úgy, hogy $\frac{Y(z)}{Y_{\rm n}(z)} = 1 R_{\rm n} G_- z^{-d}$ és $\frac{Y(z)}{Y_{\rm r}(z)} = R_{\rm r} G_- z^{-d}$ teljesüljön. Írja fel az y kimenőjel kifejezését az $y_{\rm r}$ alapjel és az $y_{\rm n}$ zavarójel függvényében!
- 6. Feltételezve, hogy a diszkretizált folyamat $G = G_+ z^{-d}$ alakú, vázolja fel a SMITH szabályozó hatásvázlatát!