Pontificia Universidad Católica de Chile

Facultad de Matemáticas

 \odot

Profesor: Ricardo Menares Curso: Teoría de Números

Fecha: 22 de agosto de 2025

Ayudante: José Cuevas Barrientos

Sigla: MAT2814

Más sobre DFUs

1. Números de Fermat

1. Sea p un número primo.

a) Pruebe que, dado un natural $n = n_0 + n_1 p + \cdots + n_d p^d$ en base p, se cumple que

$$(x+y)^n \equiv (x+y)^{n_0} (x^p + y^p)^{n_1} \cdots (x^{p^d} + y^{p^d})^{n_d} \pmod{p}.$$

b) Teorema de Lucas: Sea $m=m_0+m_1p+\cdots+m_dp^d\leq n$ otro natural en base p. Pruebe que

$$\binom{n}{m} \equiv \binom{n_0}{m_0} \binom{n_1}{m_1} \cdots \binom{n_d}{m_d} \pmod{p}.$$

- 2. Pruebe que si un número de la forma 2^m+1 es primo, entonces necesariamente m es una potencia de dos. Los números de la forma $F_n := 2^{2^n} + 1$ se llamarán de Fermat.
- 3. Pruebe que los números de Fermat son coprimos dos a dos y, con ello, dé una nueva demostración de la infinitud de los primos.

2. Más sobre DFUs

- ●● 4. Un criterio excéntrico de primalidad: Sea $p = a_d b^d + \cdots + a_1 b + a_0$ un primo p > b en base $b \ge 3$ y sea $f(x) = a_d x^d + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$.
 - a) Supongamos que f(x) fuese reducible. Pruebe que existe una raíz $\alpha \in \mathbb{C}$ de f tal que $|b-\alpha| \leq 1$.
 - b) Sea α como en el inciso anterior. Pruebe que $\text{Re}(1/\alpha) > 0$, pero que $\text{Re}(1/\alpha^j) < 0$ para algún j.

c) Pruebe que

$$\operatorname{Re}\left(\frac{f(\alpha)}{\alpha^d}\right) \ge \frac{b-3}{b-2} + a_{d-1}\operatorname{Re}(1/\alpha),$$

y concluya, por contradicción, que f debía ser irreducible.

PISTA: Dé una cota inferior para $a_{d-n} \operatorname{Re}(1/\alpha^n)$ cuando $n \geq 2$.

5. Diremos que un número algebraico $\gamma \in \mathbb{C}$ es un *entero algebraico* si su polinomio minimal tiene coeficientes en \mathbb{Z} . Demuestre, empleando el postulado de Bertrand, que para todo $n \geq 2$ existe un entero algebraico irracional $\gamma \in \mathbb{C} \setminus \mathbb{Q}$ de grado n tal que $\gamma \in \mathbb{Z}[\gamma]$ es irreducible.

Teorema 2.1 (postulado de Bertrand): Para todo entero $n \ge 2$ existe un primo p tal que n/2 .

6. Sea $\gamma \in \mathbb{C} \setminus \mathbb{Q}$ un entero algebraico cuadrático. Pruebe que existen infinitos $n \in \mathbb{Z}$ tales que $n\gamma \in \mathbb{Z}[n\gamma]$ es irreducible y...

REFERENCIAS Y LECTURAS ADICIONALES

 Granville, A. Number Theory Revealed. A Masterclass (American Mathematical Society, 2020). Correo electrónico: josecuevasbtos@uc.cl