

b) Écrire une table de transition d'états;

c) Écrire une table de vérité en utilisant un encodage binaire en ordre pour les états;						
	\	Et-t priset	Etal leto			
tats	Encoder			_		
A	00	S_{l} S_{o} \times	S, S,	2		
B	0 1		0	$\overline{\qquad}$		
< 1	10			O		
\sim	1 \		00	6		
	- S ₁ S ₀	0 1 0	0 1	0		
			1 0	\bigcirc		
		100	/	\bigcirc		
			00	D		
			0 1	\bigcirc		
		1	[()			

d) Simplifier les équations en utilisant la méthode des tables de Karnaugh;

$$S_{1}$$
 S_{1}
 S_{0}
 S_{1}
 S_{0}
 S_{1}
 S_{2}
 S_{3}
 S_{4}
 S_{5}
 S_{5}
 S_{5}

Z= 5,50X

l (

00

GE= B, B + B, A

F B1 B0 00 01 11 10

LT= B, B+ 30 A + AB

Bot ABB,

A.34 Concevoir un <u>FSM de dé</u>tecteur de séquence. La machine doit reconnaître les deux motifs : 011 ou 110.

FSM: Finite State Machine => Diagramme, d'états

A.35 Concevoir un FSM qui prend 2 mots binaires entrés en série, les bits les moins significatifs d'abord, et produit une sortie Z. Z = 1 lorsque X > Y et Z = 0 dans le cas contraire. On présume qu'en démarrage X = Y et Z = 0.

Exts Encodes A 000 B 001 C 010 D 011 E 100 S. S. S.	S ₂ S ₁ S ₂ X S ₃ S ₁ S ₃ Z 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 0001 0011 0100 0101 0101 1000 1001 1010	So Ms
---	---	--	-------

Z

