An asymptotic expansion for the Stieltjes constants

R. B. Paris

Division of Computing and Mathematics, University of Abertay Dundee, Dundee DD1 1HG, UK

Abstract

The Stieltjes constants γ_n appear in the coefficients in the Laurent expansion of the Riemann zeta function $\zeta(s)$ about the simple pole s=1. We present an asymptotic expansion for γ_n as $n\to\infty$ based on the approach described by Knessl and Coffey [Math. Comput. 80 (2011) 379–386]. A truncated form of this expansion with explicit coefficients is also given. Numerical results are presented that illustrate the accuracy achievable with our expansion.

Mathematics Subject Classification: 30E20, 34E05, 41A60, 11M06

Keywords: Stieltjes constants, Laurent expansion, asymptotic expansion

1. Introduction

The Stieltjes constants γ_n appear in the coefficients in the Laurent expansion of the Riemann zeta function $\zeta(s)$ about the point s=1 given by

$$\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-)^n}{n!} \gamma_n (s-1)^n,$$

where $\gamma_0 = 0.577216...$ is the well-known Euler-Mascheroni constant. Some historical notes and numerical values of γ_n for $n \leq 20$ are given in [3]. Recent high-precision evaluations of γ_n based on numerical integration have been described in [5, 8]. In [5], Keiper lists various γ_n up to n = 150, whereas in [8], Kreminski has computed values to several thousand digits for $n \leq 10^4$ and for further selected values (accurate to 10^3 digits) up to $n = 5 \times 10^4$. All values up to $n = 10^5$ have been computed by Johansson in [4] to about 10^4 digits.

Upper bounds for $|\gamma_n|$ in the form

$$|\gamma_n| \le \{3 + (-)^n\} \frac{\lambda_n \Gamma(n)}{\pi^n},$$

have been obtained by Berndt [1] with $\lambda_n = 1$, and by Zhang and Williams [13] with $\lambda_n = (2/n)^n \pi^{-\frac{1}{2}} \Gamma(n + \frac{1}{2}) \sim \sqrt{2(2/e)^n}$ for $n \to \infty$. On the other hand, Matsuoka [9] has shown that

$$|\gamma_n| \le 10^{-4} e^{n\log\log n} \qquad (n \ge 10).$$

However, all these bounds grossly overestimate the growth of $|\gamma_n|$ for large values of n. An asymptotic approximation for γ_n has recently been given by Knessl and Coffey [6] in the form

$$\gamma_n \sim \frac{Be^{nA}}{\sqrt{n}}\cos(na+b) \qquad (n \to +\infty),$$
 (1.1)

where A, B, a and b are functions that depend weakly on n; see Section 2 for the definition of these quantities. Knessl and Coffey have verified numerically that for $n \leq 3.5 \times 10^4$ the above formula accounts for the asymptotic growth and oscillatory pattern of γ_n , with the exception of n = 137 where the cosine factor in (1.1) becomes very small.

The aim in this note is to extend the analysis in [6] to generate an asymptotic expansion for γ_n as $n \to +\infty$. The coefficients in this expansion are determined numerically by application of Wojdylo's formulation [14] for the coefficients in the expansion of a Laplace-type integral. An explicit evaluation of the coefficients is obtained in the case of the expansion truncated after three terms. This approximation is extended to the more general Stieltjes constants $\gamma_n(\alpha)$ appearing in the Laurent expansion of the Hurwitz zeta function $\zeta(s,\alpha)$. Numerical results are presented in Section 3 to demonstrate the accuracy of our expansion compared to that in (1.1).

2. Asymptotic expansion for γ_n

We start with the integral representation for $n \geq 1$ given in [13]

$$\gamma_n = \int_1^\infty B_1(x - [x]) \frac{\log^{n-1} x}{x^2} (n - \log x) dx,$$

where $B_1(x-[x]) = -\sum_{j=1}^{\infty} \frac{\sin 2\pi jx}{\pi j}$ is the first periodic Bernoulli polynomial. With the change of variable $t = \log x$, we obtain [6, Eq. (2.3)]

$$\gamma_n = -\Im\left\{\sum_{k=1}^{\infty} \frac{1}{\pi k} \int_0^{\infty} \exp\left[2\pi i k e^t + n \log t - t\right] \left(\frac{n}{t} - 1\right) dt\right\}.$$

Following the approach used in [6], we define

$$\psi_k(t) \equiv \psi_k(t;n) = -\frac{2\pi i k}{n} e^t - \log t, \qquad f(t) \equiv f(t;n) = \frac{e^{-t}}{t} \left(1 - \frac{t}{n}\right)$$
 (2.1)

and write

$$\gamma_n = -\Im \sum_{k=1}^{\infty} J_k, \qquad J_k := \frac{n}{\pi k} \int_0^{\infty} e^{-n\psi_k(t)} f(t) dt.$$
(2.2)

We employ the method of steepest descents to estimate the integrals J_k for large values of n. Saddle points of the exponential factor occur at the zeros of $\psi'_k(t) = 0$; that is, they satisfy

$$te^t = \frac{ni}{2\pi k}. (2.3)$$

There is an infinite string of saddle points, which is approximately parallel to the imaginary t-axis, given by [6]

$$t_m = \log \frac{n}{2\pi k} - \log \log n + (2m + \frac{1}{2})\pi i + O\left(\frac{\log \log n}{\log n}\right)$$

Figure 1: Paths of steepest descent and ascent through the saddles t_0 and t_1 when n = 100 and k = 1. The steepest paths through the saddle t_{-1} (not shown) in the lower half-plane are similar to those through t_1 . The arrows indicate the direction of integration.

for $m = 0, \pm 1, \pm 2, \ldots$ and large n. For fixed k and m, the value of $\Re \psi_k(t_m)$ is then

$$-\Re \psi_k(t_m) = \log \log n - \frac{1}{\log n} (1 + \log (2\pi k \log n)) + O((\log n)^{-2})$$

as $n \to \infty$, where the dependence on m is contained in the order term. This shows that the heights of the saddles corresponding to $k \ge 2$ are exponentially smaller as $n \to \infty$ than the saddle with k = 1, so that to within exponentially small correction terms we may neglect the contribution in (2.2) arising from k values corresponding to $k \ge 2$; but see the discussion in Section 3. From hereon, we shall drop the subscript k and write $\psi_1(t) \equiv \psi(t)$.

Typical paths of steepest descent and ascent through the saddles t_0 and t_1 are shown in Fig. 1. Steepest descent and ascent paths terminate at infinity in the right-half plane in the directions $\Im(t) = (2j + \frac{1}{2})\pi$ and $\Im(t) = (2j + \frac{3}{2})\pi$ $(j = 0, \pm 1, \pm 2, \ldots)$, respectively. The steepest descent paths through t_0 and t_1 emanate from the origin and pass to infinity in the directions $\Im(t) = \frac{1}{2}\pi$ and $\frac{5}{2}\pi$, respectively. Similarly, the steepest descent path through t_{-1} (not shown) emanates from the origin and passes to infinity in the direction $\Im(t) = -\frac{3}{2}\pi$. The integration path in (2.2) can then be deformed to pass through the saddle t_0 as shown in Fig. 1.

Application of the method of steepest descents (see, for example, [10, p. 127] and [11, p. 14]) then yields

$$J_1 \sim \frac{n}{\pi} \frac{\sqrt{2\pi} e^{-n\psi(t_0) - t_0}}{t_0(-\psi''(t_0))^{1/2}} \left(1 - \frac{t_0}{n}\right) \sum_{s=0}^{\infty} \frac{\hat{c}_{2s}(\frac{1}{2})_s}{n^{s+1/2}},\tag{2.4}$$

where $(a)_s = \Gamma(a+s)/\Gamma(a)$ is the Pochhammer symbol and $\hat{c}_0 = 1$. The normalised coefficients \hat{c}_{2s} can be obtained by an inversion process and are listed for $s \leq 4$ in [2, p. 119] and for $s \leq 2$ in [11, p. 13]; see below. Alternatively, they can be obtained by an

expansion process to yield Wojdylo's formula [14] given by

$$\hat{c}_s = \alpha_0^{-s/2} \sum_{k=0}^s \frac{\beta_{s-k}}{\beta_0} \sum_{j=0}^k \frac{(-)^j (\frac{1}{2}s + \frac{1}{2})_j}{j! \ \alpha_0^j} \mathcal{B}_{kj};$$
(2.5)

see also [12, p. 25]. Here $\mathcal{B}_{kj} \equiv \mathcal{B}_{kj}(\alpha_1, \alpha_2, \dots, \alpha_{k-j+1})$ are the partial ordinary Bell polynomials generated by the recursion¹

$$\mathcal{B}_{kj} = \sum_{r=1}^{k-j+1} \alpha_r \mathcal{B}_{k-r,j-1}, \qquad \mathcal{B}_{k0} = \delta_{k0},$$

where δ_{mn} is the Kronecker symbol, and the coefficients α_r and β_r appear in the expansions

$$\psi(t) - \psi(t_0) = \sum_{r=0}^{\infty} \alpha_r (t - t_0)^{r+2}, \qquad f(t) = \sum_{r=0}^{\infty} \beta_r (t - t_0)^r$$
 (2.6)

valid in a neighbourhood of the saddle $t = t_0$.

Following [6], we put $t_0 = u + iv$, where u, v are real, and write $-\psi(t_0) = A + ia$, where

We put
$$t_0 = u + iv$$
, where u , v are real, and write $-\psi(t_0) = A + iu$,
$$A: = \Re(\log t_0 - 1/t_0) = \frac{1}{2}\log(u^2 + v^2) - \frac{u}{u^2 + v^2},$$

$$a: = \Im(\log t_0 - 1/t_0) = \arctan\left(\frac{v}{u}\right) + \frac{v}{u^2 + v^2}.$$

$$(2.7)$$

We have $\psi''(t_0) = (1+t_0)/t_0^2$ and accordingly define²

$$B := 2\sqrt{2\pi} \left| \frac{t_0}{\sqrt{1+t_0}} \right|, \qquad b := \frac{1}{2}\pi - v - \arctan\left(\frac{v}{1+u}\right).$$
 (2.8)

A simple calculation using (2.3) with k = 1 shows that

$$\tan v = \frac{u}{v}, \qquad e^{-u} = \frac{2\pi |t_0|}{n}.$$
 (2.9)

Then, from (2.2) with k = 1, (2.4) and the second relation in (2.9), we find upon incorporating the factor $1 - t_0/n$ into the asymptotic series that

$$\gamma_n \sim \frac{Be^{nA}}{\sqrt{n}} \Re \left\{ e^{i(na+b)} \sum_{s=0}^{\infty} \frac{c'_{2s}(\frac{1}{2})_s}{n^s} \right\},\,$$

where

$$c'_{2s} = \hat{c}_{2s} - \frac{2t_0}{2s - 1} \, \hat{c}_{2s - 2} \qquad (s \ge 1). \tag{2.10}$$

If we now introduce the real and imaginary parts of the coefficients \hat{c}_{2s} by

$$c'_{2s} := C_s + iD_s (s \ge 1), C_0 = 1, D_0 = 0,$$
 (2.11)

where we recall that C_s and D_s contain an n-dependence, then we have the expansion of γ_n given by the following theorem.

¹For example, this generates the values $\mathcal{B}_{41} = \alpha_4$, $\mathcal{B}_{42} = \alpha_3^2 + 2\alpha_1\alpha_3$, $\mathcal{B}_{43} = 3\alpha_1^2\alpha_2$ and $\mathcal{B}_{44} = \alpha_1^4$.

²In [6], the quantity $\frac{1}{2}\pi - v$ appearing in the definition of b is written as $\arctan(v/u)$ by virtue of the first relation in (2.9).

Theorem 1. Let the quantities A, B, a and b, and the coefficients C_s , D_s , be as defined in (2.7), (2.8) and (2.11). Then, neglecting exponentially smaller terms, we have

$$\gamma_n \sim \frac{Be^{nA}}{\sqrt{n}} \left\{ \cos(na+b) \sum_{s=0}^{\infty} \frac{C_s(\frac{1}{2})_s}{n^s} - \sin(na+b) \sum_{s=1}^{\infty} \frac{D_s(\frac{1}{2})_s}{n^s} \right\}$$
(2.12)

as $n \to \infty$.

We note that to leading order $A \sim \log \log n$ and $B \sim (8\pi \log n)^{1/2}$ for large n.

A simpler form of the expansion (2.12) can be given by truncating the above series at s = 2 and use of the form of the normalised coefficients \hat{c}_{2s} in (2.4) expressed in the form

$$\hat{c}_2 = \frac{1}{2\psi''(t_0)} \{ 2F_2 - 2\Psi_3 F_1 + \frac{5}{6}\Psi_3^2 - \frac{1}{2}\Psi_4 \},$$

$$\hat{c}_4 = \frac{1}{(2\psi''(t_0))^2} \{ \frac{2}{3}F_4 - \frac{20}{9}\Psi_3 F_3 + \frac{5}{3}(\frac{7}{3}\Psi_3^2 - \Psi_4)F_2 - \frac{35}{9}(\Psi_3^3 - \Psi_3\Psi_4 + \frac{6}{35}\Psi_5)F_1 + \frac{35}{9}(\frac{11}{24}\Psi_3^4 - \frac{3}{4}(\Psi_3^2 - \frac{1}{6}\Psi_4)\Psi_4 + \frac{1}{5}\Psi_3\Psi_5 - \frac{1}{35}\Psi_6) \}$$

where, for brevity, we have defined

$$\Psi_m := \frac{\psi^{(m)}(t_0)}{\psi''(t_0)} \quad (m \ge 3), \qquad F_m := \frac{f^{(m)}(t_0)}{f(t_0)} \quad (m \ge 1);$$

see [2, p. 119], [11, pp. 13–14].

From (2.1) and (2.10), use of *Mathematica* shows that

$$c_2' = \frac{\wp_2(t_0)}{12(1+t_0)^3} + \frac{(4+3t_0)t_0^2}{n(1+t_0)^2} + O(n^{-2}), \qquad c_4' = \frac{\wp_4(t_0)}{864(1+t_0)^6} + O(n^{-1}),$$

where

$$\wp_2(t_0) = 2 - 18t_0 - 20t_0^2 - 3t_0^3 + 2t_0^4,$$

$$\wp_4(t_0) = 4 - 72t_0 - 332t_0^2 - 8028t_0^3 - 19644t_0^4 - 20280t_0^5 - 9911t_0^6 - 1884t_0^7 + 4t_0^8.$$

Then we obtain the following result.

Theorem 2. Let the quantities A, B, a and b be as defined in (2.7) and (2.8). Then, with

$$c_1 + id_1 = \frac{\wp_2(t_0)}{24(1+t_0)^3}, \qquad c_2 + id_2 = \frac{\wp_4(t_0)}{1152(1+t_0)^6} + \frac{(4+3t_0)t_0^2}{2(1+t_0)^2}$$

where c_s , d_s (s = 1, 2) are real (and independent of n) and t_0 is the saddle point given by the principal solution of (2.3) with k = 1, we have the asymptotic approximation

$$\gamma_n \sim \frac{Be^{nA}}{\sqrt{n}} \left\{ \cos(na+b) \left(1 + \frac{c_1}{n} + \frac{c_2}{n^2} \right) - \sin(na+b) \left(\frac{d_1}{n} + \frac{d_2}{n^2} \right) \right\}$$
 (2.13)

as $n \to \infty$.

We remark that the expansion of the integrals J_k for fixed $k \geq 2$ follows the same procedure. If we still refer to the real and imaginary parts of the contributory saddle t_0 (when $k \geq 2$) as u and v, the second relation in (2.9) is now replaced by $e^{-u} = 2\pi k |t_0|/n$. It then follows that the form of the expansion for $-\Im J_k$ is given by (2.12), provided the quantities A, B, a and b, and the coefficients C_s , D_s , are interpreted as corresponding to the saddle t_0 with the k-value under consideration.

3. Numerical results and concluding remarks

We discuss numerical computations carried out using the expansions given in Theorems 1 and 2. For a given value of n the saddle t_0 is computed from (2.3) with k = 1 to the desired accuracy. Mathematica is used to determine the coefficients α_r and β_r in (2.6) for $0 \le r \le 2s_0$, where in the present computations $s_0 = 6$. The coefficients C_s and D_s can then be calculated for $0 \le s \le s_0$ from (2.5), (2.10) and (2.11).

We display the computed values of C_s and D_s for two values of n in Table 1. We repeat that these coefficients contain an n-dependence and so have to be computed for each value of n chosen. In Table 2, the values of the absolute relative error in the computation of γ_n from the expansion (2.12) are presented as a function of the truncation index s for several values of n.

	n = 100		n = 1000	
s	C_s	D_s	C_s	D_s
1 2 3	$\begin{array}{c} -0.3158578918 \\ -2.9096870797 \\ -0.3804847598 \end{array}$	+0.1626819326 -2.1947177121 -3.3953890569	$\begin{array}{c} -0.0885061806 \\ -6.5840165991 \\ -9.4682639154 \end{array}$	+0.1958085240 -2.6459812815 -10.09635962642
4 5 6	$\begin{array}{c} +1.4820479884 \\ -0.2630549338 \\ -0.3783700609 \end{array}$	$-0.1130053628 \\ +0.9253656779 \\ -0.3119889058$	$\begin{array}{c} -1.3074432243 \\ +4.9469591967 \\ +0.8180579543 \end{array}$	$\begin{array}{c} -11.31040992292 \\ -1.67819725309 \\ +3.98701271605 \end{array}$

Table 1: Values of the coefficients C_s and D_s (to 10 dp) for $1 \le s \le 6$ for two values of n.

The case n=137 has been included in Table 2 since this corresponds to the factor $\cos(na+b)$ possessing the very small value $\simeq 1.69881 \times 10^{-4}$. The leading term approximation in (1.1), and (2.12) (with s=0), yields an incorrect sign, namely $+3.89874 \times 10^{27}$ when $\gamma_{137}=-7.99522199\ldots\times 10^{27}$. According to [4], this is the only instance for $n\leq 10^5$ when the leading approximation produces the wrong sign. It is seen that inclusion of the higher order correction terms with $s\leq 6$ yields a relative error of order 10^{-10} in this case. When $n=10^5$, [4] gives the value

 $\gamma_{100000} = 1.99192730631254109565822724315... \times 10^{83432}$.

The expansion (2.12) for this value of n with truncation index s = 6 is found to yield a relative error of order 10^{-30} ; that is, the expansion correctly reproduces all the digits displayed above.

s	n = 75	n = 100	n = 137	n = 1000
0	1.759×10^{-3}	1.412×10^{-3}	_	1.597×10^{-4}
1	6.503×10^{-4}	3.226×10^{-4}	2.701×10^{-1}	2.649×10^{-6}
2	1.244×10^{-5}	4.472×10^{-6}	8.775×10^{-2}	4.125×10^{-9}
3	3.063×10^{-7}	9.370×10^{-8}	3.811×10^{-5}	7.711×10^{-11}
4	2.535×10^{-9}	7.850×10^{-10}	2.183×10^{-6}	2.026×10^{-13}
5	5.101×10^{-10}	9.022×10^{-11}	1.248×10^{-8}	6.157×10^{-16}
6	1.850×10^{-11}	1.982×10^{-12}	9.415×10^{-10}	2.743×10^{-18}

Table 2: Values of the absolute relative error in the computation of γ_n from (2.12) as a function of the truncation index s for different n.

Table 3: Values of the absolute relative error in the computation of γ_n from (2.12) with k = 1 and $k \le 2$ as a function of the truncation index s for n = 25.

$ \begin{array}{ c c c c c c c } \hline 0 & 1.051 \times 10^{-2} & 1.052 \times \\ 1 & 2.909 \times 10^{-3} & 2.894 \times \\ 2 & 2.608 \times 10^{-4} & 2.460 \times \\ \hline \end{array} $	2
$ \begin{vmatrix} 3 & 2.390 \times 10^{-6} \\ 4 & 1.518 \times 10^{-5} \\ 5 & 1.495 \times 10^{-5} \\ 6 & 1.482 \times 10^{-5} \end{vmatrix} 1.160 \times $	$ \begin{array}{c} 10^{-3} \\ 10^{-4} \\ 10^{-5} \\ 10^{-7} \\ 10^{-7} \end{array} $

For the smallest value n=75 presented in Table 2, it is found numerically that the contribution to (2.2) corresponding to k=2 is about 11 orders of magnitude smaller than the dominant term with k=1. For the larger n values, this contribution is even smaller and the terms with $k\geq 2$ can be safely neglected. However, for smaller n this is no longer the case and a meaningful approximation has to take into account the contribution from other $k\geq 2$ values.

In Table 3, we illustrate this situation by taking n=25. The second column shows the absolute relative error in the computation of γ_n with k=1 for different truncation index s; that is, with the approximation $\gamma_n \simeq -\Im J_1$. For $4 \le s \le 6$, this error is seen to remain essentially constant at $O(10^{-5})$. The contribution with k=2 is about 5 orders of magnitude smaller than the k=1 contribution, so that this additional contribution needs to be included for larger index s. The absolute relative error including the contribution with k=2 is shown in the third column; that is, with the approximation $\gamma_n \simeq -\Im(J_1 + J_2)$. The expansion with k=3 is about 8 orders of magnitude smaller than the k=1 contribution, so this would only begin to make a significant contribution for $s \ge 6$. This problem becomes even more acute for smaller n values, say n=10,

n	Eq. (1.1)	Eq. (2.13)	Exact γ_n
10 50 80 100 137	$+2.105395 \times 10^{-4}$ $+1.275493 \times 10^{2}$ $+2.514857 \times 10^{10}$ -4.259408×10^{17} $+3.898740 \times 10^{27}$	$+2.04713213 \times 10^{-4}$ $+1.26823798 \times 10^{2}$ $+2.51633995 \times 10^{10}$ $-4.25340036 \times 10^{17}$ $-7.99377883 \times 10^{27}$	$+2.05332814 \times 10^{-4}$ $+1.26823602 \times 10^{2}$ $+2.51634410 \times 10^{10}$ $-4.25340157 \times 10^{17}$ $-7.99522199 \times 10^{27}$
200 500	$ \begin{array}{r} -7.060244 \times 10^{55} \\ -1.165662 \times 10^{204} \end{array} $	$-6.97465335 \times 10^{55} -1.16550527 \times 10^{204}$	$-6.97464971 \times 10^{55} -1.16550527 \times 10^{204}$

Table 4: Values for γ_n obtained from (1.1) and (2.13) compared with the exact value.

where higher k values need to be retained. However, the chief interest in the asymptotic expansion in (2.12) is for large n, where this problem is of no real concern.

In Table 4 we show some examples of the asymptotic approximation given in (2.13). We compare these with the values produced by the leading approximation (1.1) and the exact value of γ_n obtained from *Mathematica* using the command StieltjesGamma[n]. It will be observed that for n=500 the approximation (2.13) yields nine significant figures.

Finally, we remark that the analysis in Section 2 is immediately applicable to the more general Stieltjes constants $\gamma_n(\alpha)$ appearing in the Laurent expansion for the Hurwitz zeta function $\zeta(s,\alpha)$ about the point s=1. These constants are defined by

$$\zeta(s,\alpha) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-)^n}{n!} \gamma_n(\alpha) (s-1)^n,$$

where $\gamma_0(\alpha) = -\Gamma'(\alpha)/\Gamma(\alpha)$ and $\gamma_n(1) = \gamma_n$. It is shown in [7, Eq. (2.9)] that

$$C_n(\alpha) := \gamma_n(\alpha) - \frac{1}{\alpha} e^{n \log \log \alpha} = -\Im \sum_{k=1}^{\infty} e^{-2\pi i k \alpha} J_k.$$

Then it follows that the expansions in Theorems 1 and 2 are modified only in the argument of the trigonometric functions appearing therein, which become $na + b - 2\pi\alpha$. Thus, for example, from (2.13) we have

$$C_n(\alpha) \sim \frac{Be^{nA}}{\sqrt{n}} \left\{ \cos(na+b-2\pi\alpha) \left(1 + \frac{c_1}{n} + \frac{c_2}{n^2}\right) - \sin(na+b-2\pi\alpha) \left(\frac{d_1}{n} + \frac{d_2}{n^2}\right) \right\}$$

as $n \to \infty$, where the quantities A, B, a, b and the coefficients c_s , d_s (s = 1, 2) are as specified in Theorem 2. The leading approximation agrees with that obtained in [7, Eq. (2.4)].

References

[1] B.C. Berndt, On the Hurwitz zeta-function. Rocky Mountain J. Math. 2 (1972) 151–157.

- [2] R.B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, London, 1973.
- [3] J. Bohman and C.E. Fröberg, The Stieltjes function definition and properties. Math. Comput. 51 (1988) 281–289.
- [4] F. Johansson, Rigorous high-precision computation of the Hurwitz zeta function and its derivatives. Numer. Algor. **69** (2015) 253–270.
- [5] J.B. Keiper, Power series expansions of Riemann's \(\xi\$-function. Math. Comput. 58 (1992) 765-773.
- [6] C. Knessl and M.W. Coffey, An effective asymptotic formula for the Stieltjes constants. Math. Comput. 80 (2011) 379–386.
- [7] C. Knessl and M.W. Coffey, An asymptotic form for the Stieltjes constants $\gamma_k(a)$ and for a sum $S_{\gamma}(n)$ appearing under the Li criterion. Math. Comput. **80** (2011) 2197–2217.
- [8] R. Kreminski, Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants. Math. Comput. 72 (2003) 1379–1397.
- [9] Y. Matsuoka, Generalized Euler constants associated with the Riemann zeta function. In Number Theory and Combinatorics (ed. J. Akiyama et al.), World Scientific, pp. 279–295, 1985.
- [10] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York 1974. Reprinted in A. K. Peters, Massachusets, 1997.
- [11] R.B. Paris, Hadamard Expansions and Hyperasymptotic Evaluation: An Extension of the Method of Steepest Descents, Cambridge University Press, Cambridge, 2011.
- [12] N.M. Temme, Asymptotic Methods for Integrals, World Scientific, Singapore, 2015.
- [13] N.-Y. Zhang and K.S. Williams, Some results on the generalized Stieltjes constants. Analysis 14 (1994) 147–162.
- [14] J. Wojdylo, On the coefficients that arise in Laplace's method. J. Comp. Appl. Math. 196 (2006) 241–266.