

NORMAL PROCESSES

Why

Definition

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space. Let I be an index set. A normal process (or gaussian process)¹ $x: I \to (\Omega \to \mathbf{R})$ on I is a family of real-valued random variables with the property that any subset of the range of this family has a multivariate normal density. There exists a $m: I \to \mathbf{R}$ and positive definite $k: I \times I \to \mathbf{R}$ with the property that if $J \subset I$, |J| = d, then $x_J \sim \mathcal{N}(m(J), k(J \times J))$. In other words, for each $i \in I$, $x_i: \Omega \to \mathbf{R}$ is a random variable And $x_J: \Omega \to \mathbf{R}^d$ is a Gaussian random variable. We call m is the mean function and k is the covariance function

¹The choice of "normal" is a result of the Bourbaki project's convention to eschew historical names. Though here, as in Multivariate Normals the language of the project is nonstandard. The community would seem to prefer Gaussian.

