AIL 862

Lecture 21

Code – Sam

```
class Sam(nn.Module):
    mask_threshold: float = 0.0
    image_format: str = "RGB"
    def __init__(
        self,
        image_encoder: ImageEncoderViT,
        prompt_encoder: PromptEncoder,
        mask_decoder: MaskDecoder,
        pixel_mean: List[float] = [123.675, 116.28, 103.53],
        pixel_std: List[float] = [58.395, 57.12, 57.375],
    ) -> None:
        SAM predicts object masks from an image and input prompts.
        Arguments:
          image_encoder (ImageEncoderViT): The backbone used to encode the
            image into image embeddings that allow for efficient mask prediction.
          prompt_encoder (PromptEncoder): Encodes various types of input prompts.
          mask_decoder (MaskDecoder): Predicts masks from the image embeddings
            and encoded prompts.
          pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
          pixel_std (list(float)): Std values for normalizing pixels in the input image.
```

```
def forward(
    self,
   batched_input: List[Dict[str, Any]],
   multimask_output: bool,
) -> List[Dict[str, torch.Tensor]]:
    Predicts masks end-to-end from provided images and prompts.
   If prompts are not known in advance, using SamPredictor is
   recommended over calling the model directly.
    Arguments:
      batched_input (list(dict)): A list over input images, each a
       dictionary with the following keys. A prompt key can be
        excluded if it is not present.
          'image': The image as a torch tensor in 3xHxW format,
            already transformed for input to the model.
          'original_size': (tuple(int, int)) The original size of
           the image before transformation, as (H, W).
          'point_coords': (torch.Tensor) Batched point prompts for
            this image, with shape BxNx2. Already transformed to the
            input frame of the model.
          'point_labels': (torch.Tensor) Batched labels for point prompts,
            with shape BxN.
          'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
            Already transformed to the input frame of the model.
          'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
            in the form Bx1xHxW.
      multimask_output (bool): Whether the model should predict multiple
        disambiguating masks, or return a single mask.
```

```
Returns:

(list(dict)): A list over input images, where each element is
as dictionary with the following keys.

'masks': (torch.Tensor) Batched binary mask predictions,
with shape BxCxHxW, where B is the number of input prompts,
C is determined by multimask_output, and (H, W) is the
original size of the image.

'iou_predictions': (torch.Tensor) The model's predictions
of mask quality, in shape BxC.

'low_res_logits': (torch.Tensor) Low resolution logits with
shape BxCxHxW, where H=W=256. Can be passed as mask input
to subsequent iterations of prediction.
```

```
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
image embeddings = self.image encoder(input images)
outputs = []
for image_record, curr_embedding in zip(batched_input, image_embeddings):
    if "point_coords" in image_record:
        points = (image_record["point_coords"], image_record["point_labels"])
    else:
        points = None
    sparse_embeddings, dense_embeddings = self.prompt_encoder(
        points=points,
        boxes=image_record.get("boxes", None),
        masks=image_record.get("mask_inputs", None),
    low_res_masks, iou_predictions = self.mask_decoder(
        image_embeddings=curr_embedding.unsqueeze(0),
        image_pe=self.prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        multimask_output=multimask_output,
    masks = self.postprocess_masks(
       low_res_masks,
       input_size=image_record["image"].shape[-2:],
        original_size=image_record["original_size"],
    masks = masks > self.mask_threshold
    outputs.append(
            "masks": masks,
            "iou_predictions": iou_predictions,
            "low_res_logits": low_res_masks,
return outputs
```

Code – image encoder

Code – prompt encoder

If it is point (works similarly for box)

```
def _embed points(
   self.
   points: torch.Tensor,
   labels: torch.Tensor,
   pad: bool,
) -> torch.Tensor:
    """Embeds point prompts."""
   points = points + 0.5 # Shift to center of pixel
   if pad:
       padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
        padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
        points = torch.cat([points, padding point], dim=1)
       labels = torch.cat([labels, padding_label], dim=1)
   point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
   point embedding[labels == -1] = 0.0
   point embedding[labels == -1] += self.not a point embed.weight
   point_embedding[labels == 0] += self.point_embeddings[0].weight
   point_embedding[labels == 1] += self.point_embeddings[1].weight
   return point_embedding
```

Code – prompt encoder

If it is mask

```
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
    """Embeds mask inputs."""
    mask_embedding = self.mask_downscaling(masks)
    return mask_embedding
```

```
self.mask_downscaling = nn.Sequential(
    nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
    LayerNorm2d(mask_in_chans // 4),
    activation(),
    nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
    LayerNorm2d(mask_in_chans),
    activation(),
    nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
)
```

Code - decoder

```
class MaskDecoder(nn.Module):
       3c11.10u_prediction_nedu = ner(
           transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
   def forward(
       self,
       image_embeddings: torch.Tensor,
       image_pe: torch.Tensor,
       sparse_prompt_embeddings: torch.Tensor,
       dense_prompt_embeddings: torch.Tensor,
       multimask output: bool,
   ) -> Tuple[torch.Tensor, torch.Tensor]:
       Predict masks given image and prompt embeddings.
       Arguments:
         image_embeddings (torch.Tensor): the embeddings from the image encoder
         image pe (torch.Tensor): positional encoding with the shape of image embeddings
         sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
         dense prompt embeddings (torch.Tensor): the embeddings of the mask inputs
         multimask_output (bool): Whether to return multiple masks or a single
           mask.
       Returns:
         torch.Tensor: batched predicted masks
         torch. Tensor: batched predictions of mask quality
```

```
image_embeddings=image_embeddings,
  image_pe=image_pe,
  sparse_prompt_embeddings=sparse_prompt_embeddings,
  dense_prompt_embeddings=dense_prompt_embeddings,
)

# Select the correct mask or masks for output
if multimask_output:
   mask_slice = slice(1, None)
else:
   mask_slice = slice(0, 1)
masks = masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]

# Prepare output
```

masks, iou_pred = self.predict_masks(

return masks, iou_pred

```
def predict_masks(
    self,
    image_embeddings: torch.Tensor,
    image_pe: torch.Tensor,
    sparse_prompt_embeddings: torch.Tensor,
    dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Predicts masks. See 'forward' for more details."""
    # Concatenate output tokens
    output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
    output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
    tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
    # Expand per-image data in batch direction to be per-mask
   src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
    src = src + dense_prompt_embeddings
    pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
    b, c, h, w = src.shape
    # Run the transformer
    hs, src = self.transformer(src, pos_src, tokens)
    iou_token_out = hs[:, 0, :]
    mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
    # Upscale mask embeddings and predict masks using the mask tokens
   src = src.transpose(1, 2).view(b, c, h, w)
    upscaled_embedding = self.output_upscaling(src)
    hyper_in_list: List[torch.Tensor] = []
    for i in range(self.num_mask_tokens):
       hyper in list.append(self.output hypernetworks mlps[i](mask tokens out[:, i, :]))
    hyper_in = torch.stack(hyper_in_list, dim=1)
    b, c, h, w = upscaled_embedding.shape
    masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
```

Generate mask quality predictions

iou_pred = self.iou_prediction_head(iou_token_out)

```
self.iou_prediction_head = MLP(
    transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
)
```

Application - Zero shot edge detection

One Example Semantic Segmentation

• Just one example image of target class.

No training phase involved.

Potential uses.

What We Have?

• One example image

One query/test image

• SAM model

Use SAM for our problem (ideal version)

Stitch/concatenate the example and the query/test image.

Treat the concatenated image as a single image and feed to SAM.
 Generate prompts using the example image.

And SAM produces output for the entire concatenated image.

Use SAM for our problem (ideal version)

• Does not work.

• Spatial bias.

How to Solve

• Generate some positive prompts in the query/test half of the concatenated image as well.

• But how? We do not know the segmentation mask of the concatenated image at all!

Run Many Times and Filter by Confidence

Four Prompt Design Techniques

Building Detection Example

Numerical result

Method	loU
Prompt 1 / SAM	0.002
Prompt 2	0.693
Prompt 3	0.393
Prompt 4	0.480

Vehicle Detection Example

