ΑΝΑΦΟΡΑ-ΛΥΣΗ1^{ης} **ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ**(TEM-231)

• ΚΟΥΤΣΟΓΙΑΝΝΑΚΗΣ ΓΕΩΡΓΙΟΣ

A.M: 1618 T.E.M EEAMHNO: 5°

• ΜΟΥΤΑΦΗΣ ΙΩΑΝΝΗΣ

A.M: 1143 T.E.M EEAMHNO: 11°

ΆΣΚΗΣΗ 1

Για την επίλυση της άσκησης 1, δημιουργήσαμε το script Askhsh_1.m το οποίο δέχεται ως ορίσματα, έναν πίνακα Α οποιονδήποτε διαστάσεων και ένα διάνυσμα b, μεγέθους ίσου με το πλήθος των γραμμών του πίνακα A.

Το script αυτό, επιλύει το σύστημα y = A*x - b για x τέτοιο ώστε y = 0 με την μέθοδο οδήγησης Jordan (ljx), αφού πρώτα έχει μετατρέψει τα στοιχεία εισόδου σε μορφή γενικού πίνακα με την χρήση της totbl.

Επιστρέφει τον γενικό πίνακα όλων των βημάτων της επίλυσης καθώς και τον χρόνο εκτέλεσης.

Τα αποτελέσματα της χρήσης του script στους πίνακες της εκφώνησης είναι τα παρακάτω:

1)
$$A = \begin{bmatrix} 2 & -1 & 1 & 1 \\ -1 & 2 & -1 & -2 \\ 4 & 1 & 1 & -1 \end{bmatrix}$$
, $\alpha = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$.

	x1	x2	х3	х4	1
y1 =	2.0000	-1.0000	1.0000	1.0000	-1.0000
y2 =	-1.0000	2.0000	-1.0000	-2.0000	-1.0000
v3 =	4.0000	1.0000	1.0000	-1.0000	-5.0000

<u>Βήμα 2º (ljx):</u>

Bήμα 1° (totbl):

	y1	x2	х3	х4	1
x1 =	0.5000	0.5000	-0.5000	-0.5000	0.5000
y2 =	-0.5000	1.5000	-0.5000	-1.5000	-1.5000
y3 =	2.0000	3.0000	-1.0000	-3.0000	-3.0000

<u>Βήμα 3^º (ljx):</u>

	у1	у2	х3	х4	1
x1 =	0.6667	0.3333	-0.3333	0.0000	1.0000
x2 =	0.3333	0.6667	0.3333	1.0000	1.0000
y3 =	3.0000	2.0000	0.0000	0.0000	0.0000

Καταλήγουμε στο συμπέρασμα ότι έχουμε απειρία λύσεων, αφού προκύπτει ότι y1 = y2 = y3 = 0 όμως μπορούν να προκύψουν για κάθε $\chi3$, $\chi4$.

2)
$$\mathbf{B} = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 1 & 0 & -1 \\ 1 & -3 & 2 & 5 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$.

x2

<u>Βήμα 1^o (totbl):</u>

y1 =	1.0000	-1.0000	1.0000	2.0000	-2.0000			
y2 =	1.0000	1.0000	0.0000	-1.0000	-1.0000			
y3 =	1.0000	-3.0000	2.0000	5.0000	-1.0000			
<u>Βήμα 2</u>	<u>Βήμα 2º (ljx):</u>							
	y1	x2	х3	x4	1			
4 1	4 0000	4 0000	4 0000					
x1 =	1.0000	1.0000	-1.0000	-2.0000	2.0000			

х3

2.0000 -1.0000 -3.0000

1.0000

1

1.0000

1.0000

х4

3.0000

<u>Βήμα 3^ο (ljx):</u>

1.0000

1.0000 -2.0000

y2 = |

y3 = |

	y1	y2	х3	x4	1
x1 =	0.5000	0.5000	-0.5000	-0.5000	1.5000
x2 =	-0.5000	0.5000	0.5000	1.5000	-0.5000
y3 =	2.0000	-1.0000	0.0000	0.0000	2.0000

Μετά από αυτό το βήμα δεν μπορούμε να πάρουμε άλλο οδηγό οπότε καταλήγουμε στο συμπέρασμα ότι το σύστημα δεν έχει λύση, αφού για y1 = y2 = 0 το y3 = 2.

3)
$$C = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ -1 & -1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$
, $c = \begin{bmatrix} 3 \\ 2 \\ 2 \\ -1 \end{bmatrix}$.

<u>Βήμα 1^ο (totbl):</u> ×1 x2

	ΧI	XZ	X3	1
y1 =	1.0000	-1.0000	1.0000	-3.0000
y2 =	2.0000	1.0000	1.0000	-2.0000
y3 =	-1.0000	-1.0000	2.0000	-2.0000
y4 =	1.0000	1.0000	-1.0000	1.0000

<u>Βήμα 2º (ljx):</u>

	ÀΤ	XZ	X3	1
x1 =	1.0000	1.0000	-1.0000	3.0000
y2 =	2.0000	3.0000	-1.0000	4.0000
y3 =	-1.0000	-2.0000	3.0000	-5.0000
y4 =	1.0000	2.0000	-2.0000	4.0000

<u>Βήμα 3º (ljx):</u>

	y1	y2	хЗ	1
x1 =	0.3333	0.3333	-0.6667	1.6667
x2 =	-0.6667	0.3333	0.3333	-1.3333
y3 =	0.3333	-0.6667	2.3333	-2.3333
y4 =	-0.3333	0.6667	-1.3333	1.3333

<u>Βήμα 4º (ljx):</u>

	y1	y2	у3	1
x1 =	0.4286	0.1429	-0.2857	1.0000
x2 =	-0.7143	0.4286	0.1429	-1.0000
x3 =	-0.1429	0.2857	0.4286	1.0000
y4 =	-0.1429	0.2857	-0.5714	-0.0000

Θέτουμε y1 = y2 = y3, άρα η λύση είναι [1; -1; 1] και y4 = 0 ανεξάρτητη μεταβλητή.

ΆΣΚΗΣΗ 2

Για την επίλυση της άσκησης 2, δημιουργήσαμε το script Askhsh_2.m το οποίο δέχεται ως ορίσματα, έναν πίνακα Α οποιονδήποτε διαστάσεων ,ένα διάνυσμα b, μεγέθους ίσου με το πλήθος των γραμμών του πίνακα A και ένα διάνυσμα p, μεγέθους ίσου με το πλήθος των στηλών του A.

Το script αυτό, επιλύει Πρόβλημα Ελαχιστοποίησης Γραμμικού Προγραμματισμού με την χρήση της μεθόδου οδήγησης Jordan (ljx), αφού πρώτα έχει μετατρέψει τα στοιχεία εισόδου σε μορφή γενικού πίνακα με την χρήση της totbl.

Επιστρέφει τον γενικό πίνακα όλων των βημάτων της επίλυσης καθώς και τον χρόνο εκτέλεσης.

Τα αποτελέσματα της χρήσης του script στον πίνακα της εκφώνησης είναι το παρακάτω:

$$A = -\begin{bmatrix} 1 & 3 & 0 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix}, \qquad b = -\begin{bmatrix} 4 \\ 3 \\ 3 \end{bmatrix}, \qquad c(=p) = -\begin{bmatrix} 2 \\ 4 \\ 1 \\ 1 \end{bmatrix}.$$

<u>Bήμα 1^o (totbl):</u>

	x1	x2	х3	х4	1
x5 =	-1.0000	-3.0000	-0.0000	-1.0000	4.0000
x6 =	-2.0000	-1.0000	-0.0000	-0.0000	3.0000
x7 =	-0.0000	-1.0000	-4.0000	-1.0000	3.0000
z =	-2.0000	-4.0000	-1.0000	-1.0000	0.0000

Βήμα	2º ((I)	X)):
------	------	-----	----	----

	x1	x 5	х3	х4	1
x2 =	-0.3333	-0.3333	-0.0000	-0.3333	1.3333
x6 =	-1.6667	0.3333	-0.0000	0.3333	1.6667
x7 =	0.3333	0.3333	-4.0000	-0.6667	1.6667
z =	-0.6667	1.3333	-1.0000	0.3333	-5.3333

<u>Βήμα 3^º (ljx):</u>

	x1	х5	x5 x7 x		1
x2 =	-0.3333	-0.3333	0.0000	-0.3333	1.3333
x6 =	-1.6667	0.3333	0.0000	0.3333	1.6667
x3 =	0.0833	0.0833	-0.2500	-0.1667	0.4167
z =	-0.7500	1.2500	0.2500	0.5000	-5.7500

<u>Βήμα 4º (ljx):</u>

	х6	х5	х7	х4	1		
x2 =	0.2000	-0.4000	0.0000	-0.4000	1.0000		
•			0.0000				
x3 =	-0.0500	0.1000	-0.2500	-0.1500	0.5000		
z =	0.4500	1.1000	0.2500	0.3500	-6.5000		

Παρατηρούμε ότι το min του προβλήματος ΠΓΠ ισούται με -6.5 και η βέλτιστη λύση $X^* = (x1,x2,x3) = [1, 1, 0.5]$.

<u>ΆΣΚΗΣΗ 3</u>

Επιλύσαμε το παρακάτω πρόβλημα μεγιστοποίησης με την μέθοδο Simplex, χωρίς την χρήση υπολογιστή:

Max(x1 - x2)

- x1 + x2 <= 4
- -4*x1 + 2*x2 <= -4
- x1,x2 >= 0

Ακολουθεί η χειρόγραφη επίλυση (κάναμε scan σε pdf για να την εισάγουμε στην αναφορά).

Mouraigns (waruns, AM: (143, Efafmro: 119) Kourrogiawarus (wppros, AM: 1618, Efakmro: 50)

TPAMMIKOZ KAI MH NPOTPAMMATIZMOZ	r _{mi} ,
1º 1EIPA AZKH 1EON	
Aornon 3 (Enimon apolinharos Le Simplex)	
$\max(x_1-x_2)$.
$/x_1+x_2\leq 4$	
-4x1 +2x2 <-4	
X1, X2 Z	
1 E	-
a) Exw ru culties:	-
(ϵ_1) : $\chi_1 + \chi_2 = 4$ (ϵ_2) : $-4\chi_1 + 2\chi_2 = -4$	***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(2)71	
(E) ×2 1	
(ε_2)	
4	-
3 1	
	_
$2 \downarrow \qquad \qquad \backslash \beta (2,2)$	
	_
	-
A(1,0/1 2 3 4 5(4,0)	
-9 #	
	,

And en paperni ancheoviern Brénoupe nos n F Eivou η εφικτή περιοχή η οποία αποτελείται από τα A(1,0) B(2,2), \((4,0)\). To B(2,2) Evou n topin two · To max eivar to all 4 Color Apa x = (4,0) B) Or hopupes tou mobilificatos sivou or A(1,0) B(2,2) $\Gamma(4,0)$ 7) Eniduen rou repoblinharos Le en U-468050 $max(x_1-x_2)$ ×1+×2 ≤4 -4x1 +2x2 =-4 $\chi_1, \chi_2 > 0$ Το φέρνω σε κανονική ψορφή: $max(x_1-x_2)$ 71+ X2 + X3 =4 $-4x_1 + 2x_2 + x_4 = -4$ $x_{i} > 0$, (i = 1, 2, 3, 4)Mapaenpio ou orn britepn eficien Exw aprintito b. Onote Tru noddandasiája pr -1 pia va piva deciró. Αρα το πρόβληρα παίρνη την παρακότω βορβή $max(x_1-x_2)$ X, + X2 + X3 = 4 4x, -2x2 - x4 = 4

xi20 (i=1,2,3,4)

Of nivares now approximation Einal

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 4 & -2 & 0 & -1 & 1 \end{bmatrix}$$

Each $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 4 & -2 & 0 & -1 & 1 \end{bmatrix}$

Each $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 4 & -2 & 0 & -1 & 1 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 4 & -2 & 0 & -1 & 1 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0$

-1/4

-1/4

0

0 1/2

PAZH	$\widehat{\mathbb{L}}$.										
and the state of t	and an angelian	an among mount i nea to man	1	1	κ.	$^{\circ}$ ι	, ~			1.60	- The first of hydride to the state of the s
_ B	CB	Ь	PL	Pa	P ₃	P4	Ps	0	=	ŊР	
← P3	0	3	0	3/2	4	1/4		(12)		Γ, '
Pı	MARKET POPER LIPSURE TO A STEEL MARKET MARK OF THE	1	T	-1/2	0	-1/4	. 	_			Γ2'
	7	1	0	1/2	0>	(-1/4)					ſ3′

pivot=14. Brienw ou jua en daon III finavira n Par con decifa n Ps.

Aroten ou vees produpes [1, [2", [3" nou da supernouve, uno rojaj jourou ws efisis

$$\Gamma_{1}'' = \Gamma_{1}' / (\frac{1}{4})$$

$$\Gamma_{2}'' = \Gamma_{2}' - (-\frac{1}{4}) \Gamma_{1}''$$

$$\Gamma_{3}'' = \Gamma_{3}' - (-\frac{1}{4}) \Gamma_{1}''$$

ФА2H Ш 1 -1 0 0 M

. B	C_{B}	Ь	Pi	P2	P3	Pa	Ps	
Pu	0	12	0	6	4	7	_	Γ''
Pa	1	4	1	1	1	.0	-	[2"
	ヌ	4	0	2	1	0	-	T3"

Oroce, Bdérw de max = 4 cou n aportre dien rou robbin portos eivou n $x^* = [4, 0, 0, 12]$

Σημείωση:

Αξίζει να σημειωθεί ότι ο χρόνος εκτέλεσης των προγραμμάτων, διαφέρει από εκτέλεση σε εκτέλεση καθώς και από υπολογιστή σε υπολογιστή.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- Linear programming with MATLAB, M.C. Ferris, O.L. Mangasarian, S.J. Wright.
- Εισαγωγή στην επιχειρησιακή έρευνα Θεωρία και Ασκήσεις, Δ. Φακίνου, Α.Οικονόμου.
- Σημειώσεις Διαλέξεων και Εργαστηρίων του μαθήματος.

ΕΡΓΑΛΕΙΑ

- Matlab 2012b.
- GitHub.
- Microsoft Word.
- Adobe Acrobat.