

BURTEAM

Ranem

Ranwah

2

Wejdan

INTRODUCTION

What is Fake News Classification?

- With the rise of digital news, fake news has become a major issue.
- The goal of this project is to build an AI model that differentiates between real and fake news.

Why Natural Language Processing (NLP)?

- NLP helps analyze text automatically using Al.
- Understanding linguistic patterns in fake vs. real news.

PROJECT WORKFLOW

DATASET OVERVIEW

	label	title	text	subject	date
0	1	As U.S. budget fight looms, Republicans flip t	WASHINGTON (Reuters) - The head of a conservat	politicsNews	December 31, 2017
1	1	U.S. military to accept transgender recruits o	WASHINGTON (Reuters) - Transgender people will	politicsNews	December 29, 2017
2	1	Senior U.S. Republican senator: 'Let Mr. Muell	WASHINGTON (Reuters) - The special counsel inv	politicsNews	December 31, 2017
3	1	FBI Russia probe helped by Australian diplomat	WASHINGTON (Reuters) - Trump campaign adviser	politicsNews	December 30, 2017
4	1	Trump wants Postal Service to charge 'much mor	SEATTLE/WASHINGTON (Reuters) - President Donal	politicsNews	December 29, 2017

Dataset Description:

- Contains columns: title , text, subject, data, label.
- Label:
- 0 = Fake News
- 1 = Real News
- Total number of samples: [40.000].

DATA PREPROCESSING STEPS

• **Preprocessing:** data was preprocessed by removing punctuation, converting to lowercase, expanding contractions, tokenization, stopword removal, combines the title and text, lemmatization, and generating n-grams.

DATA PREPROCESSING STEPS

• **Feature Extraction:** We used TF-IDF to convert text into numerical features and Word2Vec embeddings to capture word semantics for richer analysis.

DATA PREPROCESSING STEPS

• **Modeling:** Multiple models were trained, including Naïve Bayes, Logistic Regression, Support Vector Machine (SVM).

WORDZVEC?

WORD2VEC?

WORDZVEC?

MULTINOMIAL NAÏVE BAYES MODEL

Multinomial Naïve Bayes Results:

Training Accuracy: 0.9475

Test Accuracy: 0.9452

Classification Report:							
	precision	recall	f1-score	support			
0	0.94	0.95	0.95	3996			
1	0.95	0.94	0.95	3993			
accuracy			0.95	7989			
macro avg	0.95	0.95	0.95	7989			
weighted avg	0.95	0.95	0.95	7989			
weighted avg	0.33	0.93	0.33	7303			

LOGISTIC REGRESSION

Logistic Regression Results:

Training Accuracy: 0.9905

Test Accuracy: 0.9880

Classification Report:

Classification	precision	recall	f1-score	support
0	0.99	0.98	0.99	3996
1	0.98	0.99	0.99	3993
accupacy			0.99	7989
accuracy			0.99	7909
macro avg	0.99	0.99	0.99	7989
weighted avg	0.99	0.99	0.99	7989

SUPPORT VECTOR MACHINE (SVM)

Support Vector Machine (SVM) Results:

Training Accuracy: 0.9986

Test Accuracy: 0.9957

Classification Report:

CIUSSITI		precision	recall	f1-score	support
	0	1.00	0.99	1.00	3996
	1	0.99	1.00	1.00	3993
accur	acy			1.00	7989
macro	avg	1.00	1.00	1.00	7989
weighted	avg	1.00	1.00	1.00	7989

WORDZVEC-BASED WITH CONVID

- Use Pre-trained Word2Vec: Loaded 300dimensional embeddings from Google News.
- Tokenize & Pad Text: Converted text into sequences and applied padding.
- Create Embedding Matrix: Mapped words to their corresponding Word2Vec vectors.
- Build Conv1D Model: Used convolutional layers with dropout and pooling for feature extraction.

Page 14

rain Accuracy: 0.9998

train Loss: 0.0125
Test Accuracy: 0.9987
Test Loss: 0.0148

250/250 1s 3ms/step

Classification Report

CIASSITICACION	precision	recall	f1-score	support
0	1.00	1.00	1.00	3996
1	1.00	1.00	1.00	3993
accuracy			1.00	7989
macro avg	1.00	1.00	1.00	7989
weighted avg	1.00	1.00	1.00	7989

WORDZVEC-BASED WITH CONVID

WORDZVEC WITH LOGISTIC REGRESSION

- Convert Text to Word Vectors: Used pretrained Word2Vec to transform text into numerical vectors by averaging word embeddings.
- Preprocess the Data: Combined title and text, applied preprocessing, and converted text into Word2Vec vectors.
- Train the Model: Split data, converted it into NumPy arrays, and trained a Logistic Regression model.

Training Accuracy: 0.9516							
Test Accuracy: 0.9511							
Classification Report:							
	precision	recall	f1-score	support			
0	0.96	0.95	0.95	3996			
1	0.95	0.96	0.95	3993			
accuracy			0.95	7989			
macro avg	0.95	0.95	0.95	7989			
weighted avg	0.95	0.95	0.95	7989			

MODEL COMPARISON

- Word2Vec + ConvID: Best overall performance, showing excellent generalization.
- **SVM**: Strong results, with a slight drop in testing accuracy.
- **Logistic Regression**: Reliable performance, slightly below SVM.
- Word2Vec + Logistic Regression: Balanced performance, with good generalization.
- Multinomial Naïve Bayes: Lower performance compared to the other models.

OUR STREAMLIT

fake news detection

THANKS YOU

Any Question?