Manual for Package: root Revision 6:11M

Karl Kästner

March 28, 2020

Contents

1	\mathbf{root}	1
	1.1	ROOTFOLDER
	1.2	addpath_recursive
2	lib/au	
	2.1	Expanding_Double
3	lib/au	xiliar/adaptor 2
	3.1	Keller
	3.2	MMesh
	3.3	SMesh
	3.4	Slg
4	lib/au:	xiliar 3
	4.1	arabic2roman
	4.2	autocat
	4.3	bplus
	4.4	btimes
	4.5	centre_axis
	4.6	circshift_fractional
	4.7	cmap_rolling
	4.8	colormap3
	4.9	colormap_byr
	4.10	copy_fields
	4.11	copyfields_deep
	4.12	count_occurence
	4.13	cummax
	4.14	cummean
	4.15	cumstd

	4.16	cumvar	4
	4.17	cvec	5
	4.18	$diag3 \dots \dots \dots \dots \dots \dots$	5
	4.19	down	5
	4.20	dspace	5
	4.21	field_range	5
	4.22	finite	5
	4.23	flat	5
	4.24	frac	5
	4.25	getfield_deep	5
	4.26		5
	4.27	-	6
	4.28	$imagesc_{-}$	6
	4.29	innerspace	6
		•	
5	lib/au	<i>'</i>	6
	5.1	IniFile	6
_			_
6	,	,	6
	6.1		6
	6.2		6
	6.3		6
	6.4	filewrite	6
7	lih/au	xiliar/io/netcat	7
•	7.1	<i>,</i> ,	7
	7.2		7
	7.3		7
	7.4	1	7
	7.5	1	7
	7.6		7
	•••	The will contribute the second contribute to t	•
8	lib/au:	xiliar/io	7
	8.1	parseXML	7
	8.2	printdef	7
	8.3		7
	8.4		8
	8.5		8
9	lib/au		8
	9.1	1	8
	9.2		8
	9.3		8
	9.4	iterate_cell	8

	9.5	jmemory	8
	9.6	leftdiff	8
	9.7	leftmean	8
	9.8	limits	9
	9.9	linspace_man	9
	9.10	linspace_man2	9
	9.11	logspace_trimmed	9
	9.12	matlab_messages	9
	9.13	maxid	9
	9.14		9
	9.15	mlint_all	9
	9.16	myhot	9
	9.17	none	0
	9.18	objcopy	0
10	•	xiliar/plot 1	
	10.1	addx	_
	10.2	addy	
	10.3	adjust_quiver_arrowhead_size	
	10.4	area_man	
	10.5	arrow	
	10.6	axis_equal_man	
	10.7	candlestick_man	
	10.8	circle	1
	10.9	cmap	
	10.10	colormap_man	
	10.11	$colormap_man2$	
	10.12	colormap_man_old	1
	10.13	column legend 1	
	10.14	copyaxes	1
	10.15	$datetick_man \dots 1$	1
	10.16	daytick	1
	10.17	dcolormap	1
	10.18	dots	
	10.19	errorarea	
	10.20	errorarea2	2
	10.21	$errorbar_man \dots 1$	
	10.22	errorlines	
	10.23	fetch subplot 1	2
	10.24	$fillmarker \dots \dots$	
	10.25	freeze Colors 1	2
	10.26	$get_coordinates 1$	3
	10.27	$hatch \ \dots \ \dots \ \ 1$	3
	10.28	hline	3

10.29	hold_color
10.30	hourspace
10.31	hourtick
10.32	interpplot
10.33	legendtitle
10.34	line_fewer_markers
10.35	monthspace
10.36	monthtick
10.37	mycolourmap
10.38	namedfigure
10.39	nansurf
10.40	nmcolormap
10.41	patch_man
10.42	pdfprint
10.43	percenttick
10.44	plot2svg
10.45	plot_ellipse
10.46	plot_style
10.47	plotshaded
10.48	ploty4
10.49	plotyyy
10.50	quadsurf
10.51	quadsurf2
10.52	quadsurf3
10.53	quiver3_man
10.54	quiver_man
10.55	quiver_man2
10.56	quiver_man3
10.57	rectangles
10.58	scaleplot
10.59	setfontsize
10.60	shade_night
10.61	splitfigure
10.62	turtle
10.63	velplot
10.64	vline
10.65	vline_man
10.66	weekspace
10.67	weektick
10.68	xtick
10.69	xticklabel
10.70	ytick
	yticklabel

11 lib/au 11.1	relpos
11.1	rightdiff
11.2 11.3	rmfield_optional
11.3 11.4	rvec
$11.4 \\ 11.5$	select
11.6	setfield_deep
11.0 11.7	setfields
11.7	sign2str
11.9	signs
11.3 11.10	simplifyignore
11.10	str_cell_reverse_index
	ıxiliar/strings
12.1	chomp
12.2	chomp1
12.3	num2str_log10
12.4	num2str_power_10
12.5	strjoin
12.6	strsplit_man
12.7	suffix
13 lib/aı	ıxiliar
13.1	struct2obj
13.2	$struct_avg$
13.3	$struct_flat \dots $
13.4	$structcopy_deep \dots \dots$
13.5	$structfun_deep \dots \dots$
13.6	$\operatorname{sub2ind_man}$
13.7	subsall
13.8	swap
14 lib/aı	ıxiliar/system
14.1	alloc
14.2	basename
14.3	cbrt
14.4	dirname
14.5	head
14.6	head_str
14.7	tail
14.8	tail_str
15 lib/aı	ıxiliar

	15.2	unique_columnwise	23
	15.3	-	23
	15.4	1	23
	15.5	1 1	23
	15.6	1	23
16	lib/gis	2	3
	16.1	GPX 2	23
	16.2	batavia_zero	23
17	. –	<i>'</i>	3
	17.1		23
	17.2	1 0	23
	17.3	T I	24
	17.4	-8 ·F	24
	17.5		24
	17.6		24
	17.7		24
	17.8		24
	17.9	export_cross_section	24
	17.10	export_node	24
	17.11	export_shp	24
	17.12	find_nearest_segment	24
	17.13	from_polygon	25
	17.14	from_shp	25
	17.15	get	25
	17.16	init	25
	17.17	init_connect	25
	17.18	init_node_D	25
	17.19	link_centreline	25
	17.20	plot	25
	17.21	plot_connection	25
	17.22	prune	25
	17.23		26
	17.24		26
	17.25	-	26
	17.26	remove_duplicate_points	26
	17.27	1 1	26
	17.28	*	26
	17.29	6	26
	17.30	9	26
	17.31	1 1	26
	17.32		26
	17.33	1	7

	17.34 17.35	weighed_connection_matrix	27 27
18	lib/gis	/centreline/@Segment	27
	18.1	Segment	27
	18.2	$build_inverse_index . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	27
	18.3	$connectivity_matrix \ \dots $	27
	18.4	$init_seg_id \dots \dots \dots \dots \dots \dots \dots \dots \dots $	27
19	lih/øis	/centreline	27
10	19.1	$\operatorname{sn2xy_quadratic}$	27
	19.2	thalweg	27
	19.3	xy2sn_quadratic	28
	10.0	Ay 2511-quadratic	20
20	lib/gis		28
	20.1	gpx_export_csv	28
	20.2	$\operatorname{hgt-plot}$	28
	20.3	$\label{eq:hgt_read} \text{hgt_read} \ \dots $	28
	20.4	hgt_read_all	28
	20.5	hgt_resample	28
	20.6	$nmeatime \dots \dots$	28
21	lib/gig	/shapefile/@Shp	28
4 1	21.1	Shp	28
	21.1	area	28
	21.3	buffer	29
	21.4	cat	29
	21.4	clip	29
	21.6	clip_rect	29
	21.7	•	29
	21.7	close_polygon	29
		concat	
	21.9		29
	21.10 21.11	contour	29
		cp	29
	21.12	create	30
	21.13	curvature	30
	21.14	cut	30
	21.15	diameter	30
	21.16	edges	30
	21.17	export_geo	30
	21.18	export_gpx	30
	21.19	export_gpx_track	30
	21.20	export_ldb	30
	21.21	export_poly	30

21.22	export_sdf	1
21.22	export_spline	
21.24	extract_coastline	
21.24 21.25	first_point	
21.26	flat	
21.27	generate_four_colour_index	
21.28	import_geo	
21.29	import_poly	
21.30	join_lines	
21.30 21.31	last_point	
21.31 21.32	length	
21.33	length2	
21.34	line2point	
21.34 21.35	link_lines	
21.36	make_clockwise	
21.37	merge	
21.38	merge2	
21.39	padd_nan	
21.40	plot	
21.40	points	
21.41	polygon_boundary	
21.42	read	
21.43	readZ	
21.45	remove_duplicate_points	
21.46	remove_leaves	
21.47	remove_nan	
21.48	remove_polygon_closure	
21.49	remove_short_elements	
21.49	renumber	
21.50	resample	
21.51 21.52	resample_2	
21.52 21.53	resample_min	
21.53 21.54	resample_quick	
21.54 21.55	scale	
21.56	segment	
21.57	select_for_refinement	
21.58	set_geometry	
21.59	set_resolution	
21.60	skip	
21.61	smooth	
21.62	split_jump	
21.63	split_line	
21.64	split_nan	
21.65	swap_hemisphere	
$\Delta \mathbf{T} \cdot \mathbf{U} \mathbf{U}$	\mathbf{b}	J

	21.66	translate
	21.67	write
22	lih/gis	/shapefile 35
	22.1	astar_multi
	22.1	astar_recursive
	22.3	edge_chain
	22.4	edge_from_bnd
	22.4	preload_shp
	22.6	1
	22.7	01
	•	1
	22.8	shapewrite_man
	22.9	shp2geo
	22.10	shp2kml
	22.11	shp_plot_attribute
	22.12	split_section
	22.13	write_polygon
23	lib/ins	trumentation/adcp/@ADCP 39
	23.1	ADCP
	23.2	Ds
	23.3	Dt
	23.4	R
	23.5	adc_current_slope
	23.6	adc_voltage_slope
	23.7	assign_file
	23.8	assign_water_level
	23.9	average_profile
	23.10	backscatter2ssc
	23.11	binsize
	23.12	blnk
	23.13	btrange
	23.14	calc_backscatter
	23.15	clock_offset_STATIC
	23.16	convert_raw_binprops_STATIC
	23.17	convert_raw_serial_STATIC
	23.18	convert_raw_time_STATIC
	23.19	convert_raw_velocity
		v
	23.20	a de la companya de l
	23.21	10
	23.22	distmidbin1
	23.23	file_ensemble_index
	23.24	file_index
	23.25	filetime_min

	23.26	fill_coordinate_gaps	42
	23.27	filter_range	43
	23.28	heading_rad	43
	23.29	$instrument_depth_m\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	43
	23.30	instrument_to_ship_STATIC	43
	23.31	lngthtranspulse	43
	23.32	load_RSSI_values_STATIC	43
	23.33	nbins	44
	23.34	near_field_correction	44
	23.35	nens	44
	23.36	pitch_rad	44
	23.37	pressure_bar	44
	23.38	range2binid	44
	23.39	roll_rad	44
	23.40	rotate_velocity	45
	23.41	rotate_velocity_sw	45
	23.42	ship_to_earth_STATIC	45
	23.43	sort_STATIC	45
	23.44	squeeze_STATIC	45
	23.45	temperature_offset_C	45
	23.46	to_abs	46
	23.47	$transducer_temperature_C \dots \dots \dots \dots \dots$	46
	23.48	$\label{eq:continuous_problem} verify_pc_time $	46
	/-		
24	•	trumentation/adcp/@Ensemble	46
	24.1	Ensemble	46
	24.2	$calc_beam coords \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	46
)5	lib/ins	${ m trumentation/adcp/@HADCP}$	46
	25.1	HADCP	46
	25.2	beam_to_instrument_STATIC	
	25.3	bootstrap_backscatter	47
	25.4	calc_beam_spreading_cone	47
	25.5	calc_bin_coordinates	47
	25.6	calibrate_backscatter	47
	25.7	filter_velocity	48
	25.8	firmware_fix_STATIC	48
	25.9	fixnan	48
	25.10	instrument_to_beam_STATIC	48
	25.11	reorder_velocity_STATIC	48
	25.12	to_beam_STATIC	49
	25.13	to_earth_STATIC	49
	25.14	to_instrument_STATIC	49

26	lib/ins	$ m trumentation/adcp/@RDI_mmt$	49
	26.1	RDI_mmt	49
	26.2	$\operatorname{read} \ldots \ldots$	49
	26.3	write	49
27	lib/ins	${ m trumentation/adcp/@VADCP}$	50
	27.1	VADCP	50
	27.2	assign_transect	50
	27.3	backscatter_report	50
	27.4	beam_to_instrument_STATIC	50
	27.5	bottom_track_STATIC	50
	27.6	bscalibrate	51
	27.7	bsgrid	51
	27.8	bsinvert	51
	27.9	bsjackknife	51
	27.10	bsjointcalibration	51
	27.11	btvel_from_position	51
	27.12	calc_ssc	52
	27.13	cdf	52
	27.14	convert_nFiles	52
	27.15	correct_coordinates	52
	27.16	correct_for_platform_velocity_STATIC	52
	27.17	depth_average_velocity	52
	27.18	depth_integrate	52
	27.19	depth_integrate_sediment_discharge	52
	27.20	filter_velocity	53
	27.21	fit_sediment_concentration_profile	53
	27.22	fit_velocity_profile	53
	27.23	map_z	53
28	lih/ins	${ m trumentation/adcp/@VADCP/old}$	53
_0	28.1	assign_crossing	53
	20.1	assign_crossing	00
2 9	lib/ins	${ m trumentation/adcp/@VADCP}$	53
	29.1	optstr	53
	29.2	$plot_track \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	53
	29.3	plot_velocity_components	54
	29.4	process	54
	29.5	${\rm range 2 depth} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	54
	29.6	${\rm rangemask} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	54
	29.7	to	54
	29.8	to_beam_STATIC	54
	29.9	$to_cs \dots \dots \dots \dots \dots \dots \dots \dots \dots $	54
	29.10	to_earth_STATIC	54

	29.11	to_sw	55
	29.12	velocity_near_bed	55
	29.13	xy2nts	55
20	1:1- /:		
30	30.1	trumentation/adcp	55
		ADCP_Bin	55 50
	30.2	SPADCP	56
31	lib/ins	trumentation/adcp/backscatter/@Backscatter	56
	31.1	Backscatter	56
	31.2	backscatter2ssc	56
	31.3	backscatter2ssc_implicit	56
	31.4	$backscatter 2 ssc_implicit_sample $	56
	31.5	backscatter2ssc_sample	56
	31.6	backscatter2ssc_sassi	57
	31.7	$backscatter 2 ssc_s assi_s ample \ \dots \dots \dots \dots \dots \dots$	57
	31.8	$\mathrm{fit} \ \ldots \ldots$	57
	31.9	$\operatorname{regmat} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	57
32	lib/ins	trumentation/adcp/backscatter	57
_	32.1	attenuation_coefficient	57
	32.2	backscatter_coefficient	58
	32.3	backscatter_coefficient_2	58
	32.4	backscatter_form_function	58
	32.5	backscatter_to_concentration	58
	32.6	backscatter_to_concentration2	58
	32.7	derive_attenuation_coefficient	58
	32.8	normalized_particle_radius	59
	32.9	scattering_cross_section_general	59
	32.10	sigma_geometric	59
	32.11	sigma_rayleigh	59
	32.12	ssc2backscatter	59
	101 /0		
33	•	trumentation/adcp/cross-section/@ADCP_Transect	59
	33.1	ADCP_Transect	59
	33.2	assign_to_transect	60
	33.3	compare	60
	33.4	detect_crossings	60
	33.5	detect_crossings_circling	60
	33.6	detect_crossings_returning	60
	33.7	detect_rounds	61
	33.8	export_mmt	61
	33.9	extrapolate_to_bank	61
	33.10	fit	61

	33.11	integrate_discharge	31
	33.12	plot	31
	33.13	plot2d	32
	33.14		32
34	lib/ins	trumentation/adcp/cross-section/@CrossSection	32
	34.1	·	32
	34.2		32
	34.3		32
	34.4	determine_time_slots	32
	34.5		32
	34.6	extrapolate_S	33
	34.7	extrapolate_backscatter	33
	34.8	extrapolate_backscatter_2d_STATIC	33
	34.9	extrapolate_bed_profile	33
	34.10		33
	34.11	_	33
	34.12		33
	34.13		33
	34.14		34
	34.15		64
	34.16		34
	34.17		34
	34.18		35
	34.19		35
	34.20	_	35
	34.21		35
	34.22		35
	34.23		35
	34.24		35
	34.25		35
	34.26		36
	34.27		36
	34.28		36
	34.29	process_backscatter_tnz	36
	34.30	process_discharge	36
	34.31	process_velocity_tn	36
	34.32	-	36
	34.33	summarise	67
	34.34		67
	34.35	var_t	67
	34.36	var_tn	67
	34.37		37

35	lib/ins	strumentation/adcp/cross-section	67
	35.1	complete_profiles	67
	35.2	define_transect	67
	35.3	$discharge_division \ \dots $	68
	35.4	discharge_summary	68
	35.5	load_vadcp_discharge	68
	35.6	split_transect2	68
36	lib/ins	${ m strumentation/adcp/hadcp/@HADCP_Discharge}$	68
	36.1	HADCP_Discharge	68
	36.2	fit	68
37	lib/ins	strumentation/adcp/hadcp/@HDischarge	69
	37.1	Hbin	69
	37.2	calc_specific_discharge_weights	69
	37.3	$estimate_discharge \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	69
38	lib/ins	strumentation/adcp/hadcp/@HIVM	69
	38.1	HIVM	69
39	lib/ins	${ m strumentation/adcp/hadcp/@IVM}$	69
	39.1	IVM	69
40	lib/ins	strumentation/adcp/hadcp	69
	40.1	ESM	69
	40.2	ESM_individual	69
	40.3	SDM	70
	40.4	VPM	70
	40.5	hadcp_homogenize_profile	70
	40.6	hadcp_homogenize_profile2	70
	40.7	wavg	70
	40.8	wavg_mean	70
	40.9	wopt	71
41	lib/ins	strumentation/adcp	71
	41.1	$smooth_track \dots \dots \dots \dots \dots \dots \dots \dots$	71
	41.2	streawise_velocity	71
42	lib/ins	strumentation/adcp/test	72
	42.1	$example_backscatter_coefficient_2 \dots \dots \dots$	72
	42.2	$test_backscatter_coefficient \ \dots \dots \dots \dots \dots$	72
	42.3	$test_bedslope \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	72
	42.4	test_delta_z_correction	72
	42.5	test_depth_range	72
	42.6	test_linearisation	72

	42.7	test_procTrans_vele	72
	42.8	test_rotvel	72
	42.9	test_sanggau_load_bed_level_2016	72
	42.10	test_sanggau_rc	
43	•	trumentation/adcp 7	
	43.1	zztransform	'3
44	lib/ins	trumentation/pressure-gauge/@PressureGauge 7	'4
	44.1	PressureGauge	' 4
	44.2	apply_corrections	7 4
	44.3	assign_upstream_km	7 4
	44.4	check_filetime	7 4
	44.5	estimate_altitude_transducer	7 4
	44.6	export_csv	74
	44.7	filter	' 4
	44.8		74
	44.9	9	75
	44.10	readTxt	
	44.11		75
	44.12	-	75
	44.13	wavelet_transform	75
45	•	trumentation/sonar/@Sonar 7	
	45.1	Sonar	
	45.2	cat	
	45.3	compare	
	45.4	1	75
	45.5	*	76
	45.6	1 1	76
	45.7	export_table	
	45.8	export_xyz	
	45.9		76
	45.10	from_dep	76
	45.11		76
	45.12	from_slg	76
	45.13	9	76
	45.14		76
	45.15		7
	45.16	to_metric	7
46	lib/ins	trumentation/sonar 7	7
-	46.1	,	7
	16.2		· ~~

	46.3 46.4	sortfiles .	
47	•	athematics/calendar 7	
	47.1	days_per_month	
	47.2	isnight	7
48	lib/ma	athematics 7	8
	48.1	cast_byte_to_integer	8
49	lib/ma	thematics/complex-analysis 7	8
	49.1	complex_exp_product_im_im	8
	49.2	complex_exp_product_im_re	8
	49.3	complex_exp_product_re_im	8
	49.4	complex_exp_product_re_re	9
	49.5	croots	9
	49.6	root_complex	0
	49.7	test_imroots	0
50	lib/ma	athematics/derivation 80	0
	50.1	derive_acfar1	0
	50.2	derive_ar2param	
	50.3	derive_arc_length	0
	50.4	derive_fourier_power	0
	50.5	derive_fourier_power_exp	0
	50.6	derive_laplacian_curvilinear	0
	50.7	derive_laplacian_fourier_piecewise_linear 8	
	50.8	derive_logtripdf	
	50.9	derive_smooth1d_parametric	
51	lib/ma	athematics/derivation/master 8	1
	51.1	derive_bc_one_sided	
	51.2	derive_convergence	
	51.3	derive_error_fdm	
	51.4	derive_fdm_poly	
	51.5	derive_fdm_power	
	51.6	derive_fdm_taylor	
	51.7	derive_fdm_vargrid	
	51.8	derive_fem_2d_mass	
	51.9	derive_fem_error_2d	
	51.10	derive_fem_error_3d	
	51.11	derive_fem_sym_2d	
	51.12	derive_grid_constants	
	51.13	derive_interpolation	

	51.14	derive_laplacian	82
	51.15	$ derive_limit \dots \dots$	82
	51.16	derive_nc_1d	82
	51.17	derive_nc_1d	82
	51.18	derive_nc_2d	83
	51.19	derive_nonuniform_symmetric	83
	51.20	derive_richardson	83
	51.21	derive_sum	83
	51.22	nn	83
	51.23	test_derive	83
	51.24	test_derive_fdm_poly	83
	51.25	test_filter	83
	51.26	$test_vargrid \dots \dots$	83
52	lih/ma	thematics/derivation	84
0 2	52.1	simplify_atan	84
۲0	1:1- /	414	0.4
53	,	thematics	84
	53.1	exp10	84
$\bf 54$	lib/ma	thematics/finance	84
	54.1	$derive_skewrnd_walsh_paramter \dots \dots \dots \dots \dots \dots$	84
	54.2	$gbm_cdf\dots$	84
	54.3	$gbm_fit \ldots \ldots \ldots \ldots \ldots \ldots$	84
	54.4	$gbm_fit_old \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	84
	54.5	gbm_inv	84
	54.6	gbm_mean	85
	54.7	$gbm_median \dots \dots$	85
	54.8	$gbm_pdf \dots \dots \dots \dots \dots \dots \dots \dots \dots $	85
	54.9	gbm_simulate	85
	54.10	$gbm_skewness \dots \dots \dots \dots \dots \dots \dots \dots \dots $	85
	54.11	$gbm_std \dots $	85
	54.12	$gbm_transform_time_step \ \dots \dots \dots \dots \dots \dots \dots$	85
	54.13	put_price_black_scholes	85
	54.14	skewgbm_simulate	85
	54.15	$skewrnd_walsh \ \dots $	85
55	lib/ma	thematics/finance/test	86
	55.1	test_gbm	86
	55.2	test_gbm_pdf	86
	55.3	test_skewrnd_walsh	86
56	lib/ma	thematics/fourier/@STFT	86
	56 1	,	86

	56.2	itransform
	56.3	$stft_{-}\dots$
	56.4	stftmat
	56.5	$transform \dots \dots$
	101 /	
57	•	thematics/fourier 87
	57.1	amplitude_from_peak
	57.2	dftmtx_man
	57.3	example_fourier_window
	57.4	fft_derivative
	57.5	fft_man
	57.6	fftsmooth
	57.7	fix_fourier
	57.8	fourier_axis
	57.9	fourier_cesaro_correction
	57.10	$fourier_coefficient_piecewise_linear \ \dots \ \dots \ 89$
	57.11	$fourier_coefficient_piecewise_linear_1 \ \dots \ \dots \ 90$
	57.12	$fourier_coefficient_ramp3 $
	57.13	$fourier_coefficient_ramp_pulse \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	57.14	$fourier_coefficient_ramp_step $
	57.15	$fourier_coefficient_square_pulse~.~.~.~.~.~.~.~.~90$
	57.16	$fourier_cubic_interaction_coefficients \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	57.17	fourier_derivative $\dots \dots \dots$
	57.18	$fourier_expand \ \dots \ \dots \ \dots \ 91$
	57.19	$fourier_fit \ldots \ldots$
	57.20	fourier_interpolate
	57.21	fourier_matrix
	57.22	fourier_matrix2
	57.23	fourier_matrix3
	57.24	fourier_matrix_exp
	57.25	fourier_multiplicative_interaction_coefficients 92
	57.26	fourier_power
	57.27	fourier_power_exp
	57.28	fourier_predict
	57.29	fourier_quadratic_interaction_coefficients
	57.30	fourier_range
	57.31	fourier_regress
	57.32	fourier_resampled_fit
	57.33	fourier_resampled_predict
	57.34	fourier_signed_square
	57.35	fourier_transform
	57.36	hyperbolic_fourier_box
	57.37	idftmtx_man
	57.38	laplace_2d_pwlinear
	JJU	10p1000=0=pm1111001

57.39	nanfft	95
57.40	peaks	95
57.41	roots_fourier	95
57.42	spectral_density	95
57.43	$test_complex_exp_product \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	95
57.44	$test_fourier_filter \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	96
57.45	$test_idftmtx $	96
$58~{ m lib/m}$	athematics/geometry/@Geometry	96
58.1	Geometry	96
58.2	arclength	96
58.3	$arclength_old$	96
58.4	$arclength_old2$	96
58.5	base_point	96
58.6	base_point_limited	97
58.7	centroid	97
58.8	cosa_min_max	97
58.9	cross2	97
58.10	curvature	97
58.11	ddot	97
58.12	distance	97
58.13	distance2	97
58.14	dot	98
58.15	edge_length	98
58.16	enclosed_angle	98
58.17	enclosing_triangle	98
58.18	hexagon	98
58.19	inPolygon	98
58.20	inTetra	98
58.21	inTetra2	98
58.22	inTriangle	99
58.23	intersect	99
58.24	lineintersect	99
58.25	lineintersect1	99
58.26	minimum_distance_lines	99
58.27	mittenpunkt	99
58.28	nagelpoint	99
58.29	onLine	99
58.30	orthocentre	100
58.31	plumb_line	100
58.32	poly_area	100
58.33	poly_edges	100
58.34	poly_set	
58.35		100

58.36	nolumnolu 100
	polyxpoly
58.37 58.38	project_to_curve
	quad_isconvex
58.39	random_disk
58.40	random_simplex
58.41	sphere_volume
58.42	tetra_volume
58.43	tobarycentric
58.44	tobarycentric1
58.45	tobarycentric2
58.46	tobarycentric3
58.47	tri_angle
58.48	tri_area
58.49	tri_centroid
58.50	$tri_distance_opposit_midpoint \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
58.51	tri_edge_length
58.52	tri_edge_midpoint
58.53	tri_excircle
58.54	tri_height
58.55	tri_incircle
58.56	tri_isacute
58.57	tri_isobtuse
58.58	$tri_semiperimeter $
58.59	$tri_side_length \dots \dots$
 101 /	
•	thematics/geometry 104
59.1	Polygon
59.2	bounding_box
59.3	curvature_1d
59.4	cvt
59.5	deg_to_frac
59.6	ellipse
59.7	ellipseX
59.8	$ellipseY \dots \dots$
59.9	$first_intersect \dots \dots$
59.10	golden_ratio
59.11	hypot3
59.12	meanangle
59.13	$meanangle 2 \dots $
59.14	$meanangle 3 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
59.15	$meanangle 4 \dots $
59.16	$median angle \dots \dots$
59.17	medianangle2
59.18	pilim

	59.19	$streamline_radius_of_curvature \ \dots \dots \dots \dots \dots \dots \dots \dots$	106
60	lib/ma	thematics/histogram/@Histogram	106
	60.1	2x	106
	60.2	Histogram	107
	60.3	bimodes	107
	60.4	$\operatorname{cdf} \ \ldots \ldots$	107
	60.5	cdfS	107
	60.6	chi2test	107
	60.7	cmoment	107
	60.8	cmomentS	107
	60.9	entropy	
	60.10	entropyS	
	60.11	iquantile	
	60.12	kstest	
	60.13	kurtosis	
	60.14	kurtosisS	
	60.15	mean	
	60.16	meanS	
	60.17	median	
	60.18	medianS	
	60.19	mode	
	60.20	modeS	
	60.21	moment	
	60.22	momentS	
	60.23	pdf	
	60.24	quantile	
	60.25	quantileS	
	60.26	setup	
	60.20	skewness	
	60.28	skewnessS	
	60.29	stairs	
	60.30		
	60.31	stairsS	
	60.32	std	
	60.33		
	60.34		
	00.54	varS	110
61	lib/ma	thematics/histogram	110
	61.1	hist_man	110
	61.2	histadapt	110
	61.3	histconst	
	61.4	pdf_poly	
	61.5	plotcdf	

	61.6	$test_histogram \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	110
62	lib/ma	thematics/linear-algebra	111
	62.1	averaging_matrix_2	111
	62.2	colnorm	111
	62.3	$condest \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	111
63	lib/ma	thematics/linear-algebra/coordinate-transformation	111
	63.1	barycentric2cartesian	111
	63.2	barycentric2cartesian3	
	63.3	cartesian2barycentric	111
	63.4	cartesian_to_unit_triangle_basis	
	63.5	ellipsoid2geoid	
	63.6	example_approximate_utm_conversion	
	63.7	latlon2utm	
	63.8	latlon2utm_simple	
	63.9	lowrance_mercator_to_wgs84	
	63.10	nmea2utm	
	63.11	$\mathrm{sn}2\mathrm{xy}$	
	63.12	unit_triangle_to_cartesian	
	63.13	utm2latlon	
	63.14	xy2nt	
	63.15	xy2sn	
	63.16	xy2sn_java	
	63.17	xy2sn_old	
	05.11	Ay 2511_01Q	110
64	,	thematics/linear-algebra	113
	64.1	$det2x2 \dots $	113
	64.2	det3x3	113
	64.3	$det4x4 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	114
	64.4	$diag2x2 \dots $	114
	64.5	eig2x2	114
65	lib/ma	thematics/linear-algebra/eigenvalue	114
	65.1	eig_bisection	114
	65.2	eig_inverse	
	65.3	eig_inverse_iteration	
	65.4	eig_power_iteration	
66	•	thematics/linear-algebra/eigenvalue/jacobi-davidson	
	66.1	afun_jdm	
	66.2	davidson	
	66.3	jacobi_davidson	
	66.4	$jacobi_davidson_qr\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	115

	66.5	jacobi_davidson_qz
	66.6	jacobi_davidson_simple
	66.7	jdqr
	66.8	jdqr_sleijpen
	66.9	jdqr_vorst
	66.10	jdqz
	66.11	mfunc_jdm
	66.12	mgs
	66.13	minres
	66.14	$mv_jacobi_davidson $
67	lib/ma	thematics/linear-algebra 130
	67.1	first
	67.2	gershgorin_circle
	67.3	haussdorff
	67.4	ieig2x2
	67.5	inv2x2
	67.6	inv3x3
	67.7	$inv4x4 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
68	lib/ma	athematics/linear-algebra/lanczos 131
	68.1	arnoldi
	68.2	arnoldi_new
	68.3	eigs_lanczos_man
	68.4	lanczos
	68.5	lanczos
	68.6	lanczos_biorthogonal
	68.7	lanczos_biorthogonal_improved
	68.8	lanczos_ghep
	68.9	mv_lanczos
	68.10	reorthogonalise
	68.11	test_lanczos
69	lib/ma	athematics/linear-algebra/linear-systems 132
	69.1	gmres_man
	69.2	minres_recycle
70	lib/ma	thematics/linear-algebra 132
	70.1	lpmean
	70.2	lpnorm
	70.3	matvec3
	70.4	max2d
	70.5	mpoweri
	70.6	mtimes2x2

	70.7	mtimes3x3	133
	70.8	nannorm	133
	70.9	$nanshift \dots \dots$	133
	70.10	nl	133
	70.11	normalise	134
	70.12	normalize1	134
	70.13	normrows	134
	70.14	orth2	134
	70.15	orth_man	134
	70.16	orthogonalise	134
	70.17	paddext	134
	70.18	paddval1	135
	70.19	paddval2	135
71	•	thematics/linear-algebra/polynomial	135
	71.1	chebychev	
	71.2	piecewise_polynomial	
	71.3	roots1	
	71.4	roots2	
	71.5	roots2poly	
	71.6	roots3	
	71.7	roots4	
	71.8	test_roots4	
	71.9	vanderi_1d	136
79	lib/mo	thematics/linear-algebra	136
1 4	72.1	randrot	
	72.1	right	
	72.3	rot2	
	72.3	rot2dir	
	72.4	rot3	
	72.6	$\operatorname{rot} R$	
	72.7	rownorm	
	72.8	simmilarity_matrix	
	72.9	spnorm	
	72.10	spzeros	
	72.10	test_roots3	
	72.11	transform_minmax	
	72.12	transpose3	
	72.13	transposeall	
	14.14	напъроссан	191
73	lib/ma	thematics/logic	138
	•	hiter man	190

7 4	lib/ma	thematics/master/plot	138
	74.1	attach_boundary_value	138
	74.2	$cartesian_polar \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	138
	74.3	$img_vargrid \dots \dots$	138
	74.4	plot_basis_functions	138
	74.5	$plot_convergence \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	138
	74.6	$\operatorname{plot_dof}$	138
	74.7	$plot_eigenbar \dots \dots$	138
	74.8	plot_error_estimation	139
	74.9	$plot_error_estimation_2 $	139
	74.10	$plot_error_fem $	139
	74.11	$plot_fdm_kernel $	139
	74.12	$plot_fdm_vs_fem \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	139
	74.13	plot_fem_accuracy	139
	74.14	$plot_function_and_grid \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	139
	74.15	$plot_hat \dots \dots$	139
	74.16	$plot_hydrogen_wf \dots \dots \dots \dots \dots \dots \dots$	139
	74.17	plot_mesh	139
	74.18	plot_mesh_2	140
	74.19	$plot_refine $	140
	74.20	$plot_refine_3d \dots \dots \dots \dots \dots \dots \dots \dots \dots$	140
	74.21	$plot_runtime \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	140
	74.22	plot_spectrum	140
	74.23	$plot_wave function \ \dots $	140
	1•1 /		1 40
75	,	thematics/master/ported	140
	75.1	assemble_2d_dphi_dphi	
	75.2	assemble_2d_phi_phi	
	75.3	assemble_3d_dphi_dphi	
	75.4	assemble_3d_phi_phi	
	75.5	dV_2d	
	75.6	derivative_2d	
	75.7	derivative_3d	
	75.8	element_neighbour_2d	
	75.9	prefetch_2d	
	75.10	promote_2d_3_10	
	75.11	promote_2d_3_15	
	75.12	promote_2d_3_21	
	75.13	promote_2d_3_6	
	75.14	promote_3d_4_10	
	75.15	promote_3d_4_20	
	75.16	promote_3d_4_35	
	75.17	vander_2d	
	75.18	vander_3d	142

76	lib/ma	athematics/master/sandbox	142
	76.1	adapt	142
	76.2	assoclaguerre	142
	76.3	assoclegendre	142
	76.4	c23	142
77	lib/ma	athematics/master/sandbox/cg	143
	77.1	cg	143
	77.2	cg_coef_to_poly	143
	77.3	errmat	143
	77.4	lanczos	143
	77.5	laplacian_2d	143
	77.6	test_cg_eigs	143
	77.7	test_lanczos	143
7 8	lib/ma	athematics/master/sandbox	143
	78.1	condition_number_higher_order	143
	78.2	$confinement_dat \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	143
	78.3	$convergence_2d_3d\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	144
	78.4	convergence_matrix_powers	144
	78.5	cut_out	144
	78.6	$\label{lem:derivative_2d} derivative_2d \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	144
	78.7	derivative_3d	144
	78.8	dummy	144
	78.9	eig_error	144
	78.10	eigs_fix	144
	78.11	energy_level	144
	78.12	equalise	144
	78.13	$example_int64 \dots \dots$	145
7 9	lib/ma	athematics/master/sandbox/fem-matlab	145
	79.1	boundary_circle	145
	79.2	boundary_rectangle	
	79.3	$geometry_circle_with_hole \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	145
	79.4	geometry_rectangle	145
80	lib/ma	athematics/master/sandbox	145
	80.1	$fem_2d_estimate_error\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	145
	80.2	$fem_assemble_scratch \ \dots $	145
	80.3	$fem_s \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	146
	80.4	$fourier_h \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
	80.5	$\operatorname{grad}_2d\ \dots$	146
	80.6	$\operatorname{grad}_{-3}d \ \dots $	146
	80.7	gradient	146

80.8	harmonic_oscillator
80.9	hydrogen_2d_analytic
80.10	hydrogen_boxed
80.11	hydrogen_boxed_old
80.12	hydrogen_wave
80.13	hydrogen_wf
80.14	ichol_man
80.15	known_eigenvalue
80.16	kron_man
80.17	laguerre
80.18	laplacian_arbitrary_order_old
80.19	laplacian_convergence
80.20	laplacian_cut_out
80.21	laplacian_cylindrical
80.22	laplacian_non_uniform_old
80.23	laplacian_polar
80.24	laplacian_simple
80.25	lderivative_3d
80.26	list_dat
80.27	matlab-horner
80.28	mesh_to_grid_2d_3
80.29	mg_mat
80.30	mv
80.31	orth2
80.32	partial_derivative_2d
80.33	partition_function
80.34	partition_function_old
80.35	poisson
80.36	poisson_fem
80.37	potential
80.38	powerc
80.39	quick_newihbour
80.40	radial
80.41	radial_convergence
80.42	radial_wafefunction
80.43	refine_2d
80.44	refine_3d
80.45	relerr
80.46	restore_cw
80.47	runtime_bm
80.48	rydberg
80.49	s_old
80.50	snorm
80.51	spherical_harmonic

	80.52	split_eig	60
	80.53	sum1	1
	80.54	sum3	1
81	lib/ma	thematics/master/sandbox/summation 15	1
_	81.1	acc	
	81.2	add	
	81.3	ape	
	81.4	mmul_accurately	
	81.5	sum_kahan	
	81.6	sum_pairwise	
	81.7	test_sum	
82	lih/ma	athematics/master/sandbox 15	2
02	82.1	test_convergence_ill_conditioned	
	82.2	test_fem_1d	
	82.3	test_fem_2d	
	82.4	test_fem_3d	
	82.5	test_increase	
	82.6	test_lanczos_shift	
	82.7	test_ldl	
	82.8	test_power	
	82.9	trefethen_p8_fdm	
	82.10	wavefunc	
	82.11	xgrid	
0.0	1•1 /		
83	,	thematics/number-theory 15	
	83.1	ceiln	
	83.2	digitsb	
	83.3	floorn	
	83.4	iseven	
	83.5	multichoosek	
	83.6	nchoosek_man	
	83.7	pythagorean_triple	
	83.8	roundn	4)
84	lib/ma	the matics/numerical-methods/differentiation 15	4
	84.1	derivative1	4
	84.2	derivative2	4
85	lib/ma	thematics/numerical-methods/finite-difference 15	4
	85.1	cdiff	
	85.2	cdiffb	
	85.3	cmean	

85.	4 derivative_matrix_1_1d	155
85.		
85.		
85.		
85.		
85.		
85.		
85.		
85.	0 1	
85.	•	
85.		
85.		
86 lib	/mathematics/numerical-methods/finite-difference/mast	er157
86.	fdm_adaptive_grid	157
86.		
86.	$\frac{1}{3}$ fdm_assemble_d1_2d	157
86.	4 fdm_assemble_d2_2d	157
86.	$5 \text{fdm_confinement} \dots \dots \dots \dots \dots \dots \dots \dots$	157
86.	6 fdm_d_vargrid	157
86.	$7 \text{fdm_h_unstructured} \dots \dots \dots \dots \dots \dots \dots \dots$	157
86.	8 fdm_hydrogen_vargrid	157
86.	9 fdm_mark_unstructured_2d	157
86.	10 fdm_plot	158
86.	11 fdm_plot_series	158
86.		
86.	13 fdm_refine_3d	158
86.	14 fdm_refine_unstructured_2d	158
86.	15 fdm_schroedinger_2d	158
86.	16 fdm_schroedinger_3d	158
86.	17 relocate	158
87 lib	/mathematics/numerical-methods/finite-difference	158
87.	$1 \mod \ldots \ldots \ldots \ldots \ldots$	158
87.	1	
87.		
87.	1 0	
87.	1	
87.		
87.		
87.	8 test_difference_kernel	159
00 111	/ 11 / / 1 1 1 / 0 * 1	1 20
	/mathematics/numerical-methods/finite-element	159
88.	$1 \text{Mesh_2d_java} \dots \dots \dots \dots \dots \dots \dots \dots$	159

	88.2	Tree_2d_java
	88.3	$assemble_1d_dphi_dphi \dots \dots$
	88.4	$assemble_1d_phi_phi \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	88.5	$assemble_2d_dphi_dphi_java \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	88.6	assemble_2d_phi_phi_java
	88.7	assemble_3d_dphi_dphi_java
	88.8	assemble_3d_phi_phi_java
	88.9	boundary_1d
	88.10	boundary_2d
	88.11	boundary_3d
	88.12	check_area_2d
	88.13	circmesh
	88.14	cropradius
	88.15	display_2d
	88.16	display_3d
	88.17	distort
	88.18	$err_2d \ldots \ldots$
	88.19	estimate_err_2d_3
	88.20	example_1d
	88.21	$example_2d \ldots \ldots$
	88.22	explode
	88.23	fem_2d
	88.24	$fem_2d_heuristic_mesh \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	88.25	$fem_get_2d_radial $
	88.26	fem_interpolation
	88.27	$fem_plot_1d \ldots \ldots$
	88.28	$fem_plot_1d_series \ \dots \ $
	88.29	$fem_plot_2d \ldots \ldots$
	88.30	$fem_plot_2d_series \ \dots \ $
	88.31	$fem_plot_3d\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$
	88.32	$fem_plot_3d_series \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	88.33	$fem_plot_confine_series $
	88.34	$fem_radial \ldots \ldots$
	88.35	$\label{eq:flip_2d} flip_2d $
	88.36	get_mesh_arrays
	88.37	hashkey
	/	
89	•	thematics/numerical-methods/finite-element/int 163
	89.1	int_1d_gauss
	89.2	int_1d_gauss_1
	89.3	int_1d_gauss_2
	89.4	int_1d_gauss_3
	89.5	int_1d_gauss_4
	89.6	int_1d_gauss_5

	89.7	int_1d_gauss_6
	89.8	int_1d_gauss_lobatto
	89.9	int_1d_nc_2
	89.10	int_1d_nc_3
	89.11	int_1d_nc_4
	89.12	int_1d_nc_5
	89.13	int_1d_nc_6
	89.14	int_1d_nc_7
	89.15	int_1d_nc_7_hardy
	89.16	int_2d_gauss_1
	89.17	int_2d_gauss_12
	89.18	int_2d_gauss_13
	89.19	int_2d_gauss_16
	89.20	int_2d_gauss_25
	89.21	int_2d_gauss_3
	89.22	int_2d_gauss_33
	89.23	int_2d_gauss_6
	89.24	int_2d_gauss_7
	89.25	int_2d_gauss_9
	89.26	int_2d_nc_10
	89.27	int_2d_nc_15
	89.28	int_2d_nc_21
	89.29	int_2d_nc_3
	89.30	int_2d_nc_6
	89.31	int_3d_gauss_1
	89.32	int_3d_gauss_11
	89.33	int_3d_gauss_14
	89.34	int_3d_gauss_15
	89.35	int_3d_gauss_24
	89.36	int_3d_gauss_4
	89.37	int_3d_gauss_45
	89.38	int_3d_gauss_5
	89.39	int_3d_nc_11
	89.40	int_3d_nc_4
	89.41	int_3d_nc_6
	89.42	int_3d_nc_8
90	•	thematics/numerical-methods/finite-element 168
	90.1	interpolation_matrix
	90.2	mark
	90.3	mark_1d
	90.4	mesh_1d_uniform
	90.5	mesh_3d_uniform
	90.6	mesh_interpolate

	90.7	neighbour_1d
	90.8	old
	90.9	pdeeig_1d
	90.10	pdeeig_2d
	90.11	pdeeig_3d
	90.12	polynomial_derivative_1d
	90.13	potential_const
	90.14	potential_coulomb
	90.15	potential_harmonic_oscillator
	90.16	project_circle
	90.17	project_rectangle
	90.18	promote_1d_2_3
	90.19	promote_1d_2_4
	90.20	promote_1d_2_5
	90.21	promote_1d_2_6
	90.22	quadrilaterate
	90.23	recalculate_regularity_2d
	90.24	refine_1d
	90.25	refine_2d_21
	90.26	refine_2d_structural
	90.27	regularity_1d
	90.28	regularity_2d
	90.29	regularity_3d
	90.30	relocate_2d
	90.31	test_circmesh
	90.32	test_hermite
	90.33	tri_assign_points
	90.34	triangulation_uniform
	90.35	vander_1d
	90.36	vanderd_1d
	90.37	vanderi_1d
91	,	the matics/numerical-methods/finite-volume/@Advection 172
	91.1	Advection
	91.2	dot_advection
വാ	lib/mo	thematics/numerical-methods/finite-volume/@Burgersl72
34	92.1	burgers_split
	92.1	dot_burgers_fdm
	92.2	dot_burgers_fft
	<i>34</i> .0	dot_butgets_nt
93	lib/ma	$the matics/numerical-methods/finite-volume/@Finite_Volume172$
	93.1	Finite_Volume
	93.2	apply_bc

93.3	solve	173
93.4	step_split_strang	173
93.5	step_unsplit	173
04.19./		DI . I''1179
•	nathematics/numerical-methods/finite-volume/@instruction = 0.0000000000000000000000000000000000	
94.1	Flux_Limiter	
94.2	beam_warming	
94.3	fromm	
94.4	lax_wendroff	
94.5	minmod	
94.6	monotized_central	174
94.7	muscl	
94.8	superbee	174
94.9	upwind	174
94.10	vanLeer	175
05 lib/n	nathematics/numerical-methods/finite-volume/@i	KDV175
95.1	dot_kdv_fdm	
$95.1 \\ 95.2$	dot_kdv_fft	
95.3	kdv_split	179
96 lib/n	nathematics/numerical-methods/finite-volume/@	Reconstruct_Average_Evolvel75
96.1	Reconstruct_Average_Evolve	175
96.2	advect_highres	176
96.3	advect_lowress	176
07 11 /		150
,	nathematics/numerical-methods/finite-volume	176
97.1	Godunov	
97.2	Lax_Friedrich	
97.3	Measure	
97.4	Roe	
97.5	fv_swe	
97.6	$staggered_euler \dots \dots \dots \dots \dots$	177
97.7	$staggered_grid \dots \dots \dots \dots \dots$	177
98 lib/n	nathematics/numerical-methods	177
98.1	grid2quad	
00.111./		
•	nathematics/numerical-methods/integration	177
99.1	cumintL	
99.2	cumintR	
99.3	$int_trapezoidal \dots \dots \dots \dots \dots$	177
100ih/n	${ m nathematics/numerical-methods/interpolation/@} 1$	Kriging178
100.1	Kriging	
100.1		

100.0	170	
100.2	estimate_semivariance	
100.3	$interpolate_{-}$	
101lib/ma	${ m athematics/numerical-methods/interpolation/@RegularizedInterpolator1}$	1
101.1	RegularizedInterpolator1	_
101.2	init	
101.2		
10 2 lib/ma	${ m athematics/numerical\text{-}methods/interpolation/@RegularizedInterpolator2}$	27
102.1	RegularizedInterpolator2	_
102.2	init	
102.2		
10 3 lib/ma	${ m athematics/numerical-methods/interpolation/@RegularizedInterpolator3}$	1
103.1	RegularizedInterpolator3	
103.2	init	
10 4 ib/ma	athematics/numerical-methods/interpolation 179	
104.1	IDW	
104.2	IPoly	
104.3	IRBM	
104.4	ISparse	
104.5	Inn	
104.6	Interpolator	
104.7	fixnan	
104.8	idw1	
104.9	idw2	
104.10	inner2outer	
104.11	inner2outer2	
104.12	interp1_limited	
104.13	interp1_man	
	interp1_save	
	interp1_slope	
	interp1_smooth	
	interp1_unique	
	interp2_man	
	interp_angle	
104.20	interp_fourier	
104.21	•	
104.22	interp_sn	
104.23	interp_sn2	
	interp_sn3	
104.25	interp_sn	
104.26	limit_by_distance_1d	
	resample1	
	recomple d min 183	

]	104.29	resample_vector	3
]	104.30	test_interp1_limited	3
105	lib/ma	thematics/numerical-methods 18	
]	105.1	inverse_complex	34
10 d	lib/ma	thematics/numerical-methods/ode 18	4
	106.1	bvp2_check_arguments	
]	106.2	bvp2c	
]	106.3	bvp2c2	
]	106.4	bvp2fdm	
1	106.5	bvp2wavetrain	
]	106.6	bvp2wavetwopass	35
]	106.7	ivp_euler_forward	35
]	106.8	ivprk2	36
]	106.9	ode2_matrix	36
]	106.10	ode2characteristic	36
]	106.11	step_trapezoidal	36
]	106.12	test_bvp2	36
	•	thematics/numerical-methods/optimisation 18	
	107.1	armijo_stopping_criterion	
	107.2	astar	
	107.3	binsearch	
	107.4	bisection	
	107.5	box1	
	107.6	box2	
	107.7	cauchy	
	107.8	cauchy2	
	107.9	directional_derivative	
	107.10	dud	
	107.11	extreme3	
	107.12	extreme_quadratic	
	107.13	ftest	
	107.14	fzero_bisect	
	107.15	fzero_newton	
	107.16	grad	
	107.17	hessian	
	107.18	hessian_from_gradient	
	107.19	hessian_projected	
	107.20	line_search	
	107.21	line_search2	
	107.22	line_search_polynomial	
	ロロケンス	THE SERVED MARMANIELS	41 I

107.24	line_search_quadratic
107.25	line_search_quadratic2
107.26	line_search_wolfe
107.27	ls_bgfs
107.28	ls_broyden
107.29	ls_generalized_secant
107.30	nlcg
107.31	nlls
107.32	picard
107.33	poly_extrema
107.34	quadratic_function
107.35	quadratic_programming
107.36	quadratic_step
107.37	rosenbrock
107.38	sqrt_heron
107.39	test_directional_derivative
107.40	test_dud
107.41	test_fzero_newton
107.42	test_line_search_quadratic2
107.43	test_ls_generalized_secant
107.44	test_nlcg_6_order
107.45	test_nlls
,	athematics/numerical-methods/pde 193
108.1	laplacian2d_fundamental_solution
10 0 ib/m	athematics/numerical-methods/piecewise-polynomials194
109.1	Hermite1
109.1 109.2	hp2_fit
109.2 109.3	hp2_predict
109.4	hp_predict
109.4 109.5	hp_regress
109.6	lp_count
109.7	lp_predict
109.8	lp_regress
109.9	lp_regress
100.0	1P10810002
$110 \mathrm{ib/ma}$	m athematics/regression/@PolyOLS 195
110.1	PolyOLS
110.2	coefftest
110.3	detrend
110.4	defrend
110.4	fit
110.4 110.5	

110.7	predict
110.8	slope
1111 /	100
11 шъ/ ma 111.1	athematics/regression/@PowerLS 196 PowerLS
111.1 111.2	
111.2 111.3	fit
	predict
111.4	predict
11 2 ib/ma	athematics/regression/@Theil 197
112.1	Theil
112.2	detrend
112.3	fit
112.4	predict
112.5	slope
Al-1 /	11 / / 1
•	athematics/regression 197
113.1	Theil_Multivariate
113.2	areg
113.3	ginireg
113.4	hessimplereg
113.5	l1lin
113.6	lsq_sparam
113.7	polyfitd
113.8	regression_method_of_moments
113.9	robustlinreg
113.10	theil2
113.11	theil_generalised
113.12	total_least_squares
113.13	weighted_median_regression
11/lib/ms	athematics/set-theory 200
•	issubset
11111	18545550
$115 \mathrm{lib/ma}$	athematics/signal-processing 200
115.1	acf_effective_sample_size
115.2	acf_genton
115.3	acfar1
115.4	acfar1_2
115.5	acfar2
115.6	acfar2.2
115.7	ar1_cutoff_frequency
115.8	ar1_effective_sample_size
115.9	arl_mse_mu_single_sample

115.10	ar1_mse_pop
115.11	ar1_mse_range
115.12	ar1_spectrum
115.13	ar1_to_tikhonov
115.14	ar1_var_factor
115.15	ar1_var_factor
115.16	ar1_var_range2
115.17	ar1delay
115.18	ar1delay_old
115.19	ar2conv
115.20	ar2dof
115.21	ar2param
115.22	asymwin
115.23	autocorr_fft
115.24	bandpass
115.25	bandpass2
115.26	bartlett
115.27	bartlett_spectrogram
115.28	bin1d
115.29	bin2d
115.30	binormrnd
115.31	conv1_man
115.32	conv2_man
115.33	conv2z
115.34	$conv30 \dots \dots$
115.35	conv
115.36	conv_centered
115.37	convz
115.38	cosexpdelay
115.39	csmooth
115.40	daniell_window
115.41	danielle_window
115.42	db2neper
115.43	db2power
115.44	derive_danielle_weight
115.45	derive_limit_0_acfar
115.46	detect_peak
115.47	digital_low_pass_filter
115.48	doublesum_ij
115.49	effective_sample_size_to_ar1
115.50	filt_hodges_lehman
115.51	filter1
115.52	filter2
115.53	$filter_{-}$

115.54	filteriir	7
115.54 115.55	filterp	
115.56	filterp1	
115.57	filterstd	
115.58	firls_man	
115.59	flattopwin	
115.60	frequency_response_boxcar	
115.61	freqz_boxcar	
115.62	gaussfilt1	
115.63	hanchangewin	-
115.64	hanchangewin2	
115.65	hanwin	
115.66	hanwin	
115.67	highpass	0
115.68	kaiserwin	0
115.69	kalman	0
115.70	lanczoswin	
115.71	last	0
115.72	lowpass	0
115.73	lowpass2	0
115.74	lowpass_iir	
115.75	lowpass_iir_symmetric	1
115.76	lowpassfilter2	
115.77	maxfilt1	1
115.78	meanfilt1	1
115.79	medfilt1_man	1
115.80	medfilt1_man2	1
115.81	$medfilt1_padded \dots 21$	1
115.82	medfilt1_reduced	1
115.83	mid_term_single_sample	2
115.84	minfilt1	2
115.85	mu2ar1	2
115.86	mysmooth	2
115.87	nanautocorr	2
115.88	nanmedfilt1	2
115.89	neper2db	2
115.90	peaks_man	2
115.91	polyfilt1	3
115.92	qmedfilt1	3
115.93	randar1	3
115.94	randar1_dual	3
115.95	randar2	3
115.96	randarp	
115.97	range_window	3

115.98 rectwin
115.99 recursive_sum
115.100 select_range
115.101 smooth1d_parametric
115.102 smooth2
115.103 smooth_man
115.104 smooth_parametric
115.105 smooth_parametric2
115.106 smooth_with_splines
115.107 smoothfft
115.108 spectrogram
115.109 std_window
115.110 sum_i_lag
115.111 sum_ii
115.112 sum_ii
115.113 sum_ij
115.114 sum_ij
115.115 sum_ij_partial
115.116 sum_multivar
115.117 test_acfar1
115.118 test_acfar1_2
115.119 test_acfar1_3
115.120 test_acfar1_4
115.121 test_acfar2
115.122 test_ar1_var_factor
115.123 test_ar1_var_factor_2
115.124 test_ar1_var_mu_single_sample
115.125 test_ar1_var_pop
115.126 test_ar1_var_pop_1
115.127 test_ar1delay
115.128 test_bivariate_covariance_term
115.129 test_convexity
115.130 test_lanczoswin
115.131 test_madcorr
115.132 test_randar1
115.133 test_randar1_multivariate
115.134 test_randar2
115.135 test_sum_ij
115.136 test_sum_multivar
115.137 test_trifilt1
115.138 test_wautocorr
115.139 test_wavelet_transform
115.140 test_wordfilt
115.141 test var1 mid term 218

	115.142	$tikhonov_to_ar1$	8
	115.143	trapwin	8
	115.144	trifilt1	9
	115.145	triwin	9
	115.146	triwin2	9
	115.147	varar1	9
	115.148	welch_spectrogram	9
	115.149	wfilt	9
		winbandpass	
	115.151	window_make_odd	9
	115.152	0.00000000000000000000000000000000000	20
		winlength	
	115.154	wmeanfilt	20
	115.155	wmedfilt	20
	115.156	wordfilt	20
		wordfilt_edgeworth	
		$3 \times 2 \times 1 \times 1$	
		xcorr_man	
11	dib/ma	thematics/sorting 22	_
	116.1	sort2	!1
	116.2	sort2d	!1
	=- 1 /		
LT	•	thematics/special-functions 22	_
	117.1	bessel_sphere	
	117.2	digamma_man	
	117.3	hankel_sphere	
	117.4	hermite	
	117.5	legendre_man	"
	117.6	neumann_sphere	
11.		neumann_sphere	22
11	&lib/ma	neumann_sphere	22 2 2
11	&ib/ma 118.1	neumann_sphere	22 22 22
11	8lib/ma 118.1 118.2	neumann_sphere 22 athematics/statistics 22 atan_s2 22 beta_mode_to_parameter 22	22 22 22 22
L1:	8lib/ma 118.1 118.2 118.3	neumann_sphere 22 athematics/statistics 22 atan_s2 22 beta_mode_to_parameter 22 coefficient_of_determination 22	22 22 22 22
11	8ib/ma 118.1 118.2 118.3 118.4	neumann_sphere 22 athematics/statistics 22 atan_s2 22 beta_mode_to_parameter 22 coefficient_of_determination 22 conditional_expectation_normal 22	22 22 22 22 22
11	8lib/ma 118.1 118.2 118.3	neumann_sphere 22 athematics/statistics 22 atan_s2 22 beta_mode_to_parameter 22 coefficient_of_determination 22	22 22 22 22 22
	8ib/ma 118.1 118.2 118.3 118.4 118.5	neumann_sphere 22 athematics/statistics 22 atan_s2 22 beta_mode_to_parameter 22 coefficient_of_determination 22 conditional_expectation_normal 22 correlation_confidence_pearson 22	22 22 22 22 23
	8ib/ma 118.1 118.2 118.3 118.4 118.5	neumann_sphere 22 atan_s2 22 beta_mode_to_parameter 22 coefficient_of_determination 22 conditional_expectation_normal 22 correlation_confidence_pearson 22 athematics/statistics/distributions 22	22 22 22 22 23 23
	8ib/ma 118.1 118.2 118.3 118.4 118.5 9ib/ma	neumann_sphere 22 athematics/statistics 22 atan_s2 22 beta_mode_to_parameter 22 coefficient_of_determination 22 conditional_expectation_normal 22 correlation_confidence_pearson 22 athematics/statistics/distributions 22 PDF 22	22 22 22 22 23 23
	8ib/ma 118.1 118.2 118.3 118.4 118.5 9ib/ma 119.1	neumann_sphere 22 atan_s2 22 beta_mode_to_parameter 22 coefficient_of_determination 22 conditional_expectation_normal 22 correlation_confidence_pearson 22 athematics/statistics/distributions 22	22 22 22 23 23 23
	8ib/ma 118.1 118.2 118.3 118.4 118.5 9ib/ma 119.1 119.2	neumann_sphere 22 atan_s2 22 beta_mode_to_parameter 22 coefficient_of_determination 22 conditional_expectation_normal 22 correlation_confidence_pearson 22 athematics/statistics/distributions 22 pDF 22 binorm_separation_coefficient 22	22 22 22 22 23 23 23

	119.6	edgeworth_cdf	23
	119.7	edgeworth_pdf	24
	119.8	logn_mode2param	24
	119.9	logn_param2mode	24
	119.10	$lognpdf_{-}$	24
	119.11	pdfsample	24
	119.12	t2cdf	24
	119.13	t2inv	24
12	(l ib/ma	thematics/statistics 22	25
	120.1	example_standard_error_of_sample_quantiles	25
	120.2	f_var_finite	
	120.3	gamma_mode_to_parameter	25
	120.4	gaussfit3	25
	120.5	gaussfit_quantile	
	120.6	hodges_lehmann_correlation	25
	120.7	hodges_lehmann_dispersion	
12	1lih/ma	athematics/statistics/information-theory 22	26
	121.1	akaike_information_criterion	
	121.2	bayesian_information_criterion	
19	Jih/ma	athematics/statistics 22	26
14	122.1	kurtnedf	
	122.1 122.2	kurtnpdf	
	122.2 122.3	kurtosis_bias_corrected	
	122.3 122.4	limit	
	122.4 122.5	logfactorial	
	122.6	loglogpdf	
	122.0 122.7		
		lognfit_quantile	
	122.8 122.9	logskewordf	
	122.9	logskewpdf	۱ د
12	3 lib/ma	athematics/statistics/logu 22	27
	123.1	lambertw_numeric	27
	123.2	logtrialtcdf	27
	123.3	logtrialtinv	28
	123.4	logtrialtmean	28
	123.5	logtrialtpdf	28
	123.6	logtrialtrnd	28
	123.7	logtricdf	28
	102.0	9	
	123.8	logtriinv	40
	123.8 123.9	logtrimean	

	123.11	logtrirnd)
	123.12	logucdf)
	123.13	logucm)
	123.14	loguinv)
	123.15	logumean)
	123.16	logupdf)
	123.17	logurnd)
	123.18	loguvar)
	123.19	medlogu)
	123.20	test_logurnd)
	123.21	tricdf)
	123.22	triinv)
	123.23	trimedian)
	123.24	tripdf)
	123.25	trirnd	L
12	4ib/ma	thematics/statistics 231	
	124.1	maxnnormals	Ĺ
	124.2	midrange	Ĺ
	124.3	minavg	Ĺ
	124.4	mode_man	Ĺ
12	,	thematics/statistics/moment-statistics 231	
	125.1	autocorr_man3	
	125.2	autocorr_man4	
	125.3	autocorr_man5	
	125.4	blockserr	
	125.5	comoment	
	125.6	corr_man	
	125.7	cov_man	
	125.8	dof	
	125.9	edgeworth_quantile	
	125.10	effective_sample_size	
	125.11	f_correlation	
	125.12	f_finite	
	125.13)
		lmean	
	125.14	Imoment	1
	125.15	Imoment	1
	125.15 125.16	Imoment maskmean masknanmean	1 1 1
	125.15 125.16 125.17	lmoment 234 maskmean 234 masknanmean 234 mean1 234	1 1 1
	125.15 125.16 125.17 125.18	lmoment 234 maskmean 234 masknanmean 234 mean1 234 mean_man 234	1 1 1
	125.15 125.16 125.17 125.18 125.19	Imoment 234 maskmean 234 masknanmean 234 mean1 234 mean_man 234 mse 234	1 1 1 1
	125.15 125.16 125.17 125.18 125.19 125.20	lmoment 234 maskmean 234 masknanmean 234 mean1 234 mean_man 234	1 1 1 1 1

125.22	nanautocorr_man4	. 235
125.23	nancorr	. 235
125.24	nancumsum	. 235
125.25	nanlmean	. 235
125.26	nanr2	. 235
125.27	nanrms	. 235
125.28	nanrmse	. 235
125.29	nanserr	. 236
125.30	nanwmean	. 236
125.31	nanwstd	. 236
125.32	nanwvar	. 236
125.33	nanxcorr	. 236
125.34	pearson	. 236
125.35	pearson_to_kendall	. 236
125.36	pool_samples	. 237
125.37	qmean	. 237
125.38	$range_mean \dots \dots$. 237
125.39	$rmse\ \dots$. 237
125.40	serr	. 237
125.41	serr1	. 237
125.42	$test_qskew \dots \dots$. 237
125.43	$test_qstd_qskew_optimal_p $. 237
125.44	wautocorr	. 238
125.45	wcorr	. 238
125.46	wcov	. 238
125.47	wdof	. 238
125.48	wkurt	. 238
125.49	wmean	. 238
125.50	wrms	. 239
125.51	wserr	. 239
125.52	wskew	. 239
125.53	wstd	. 239
125.54	wvar	. 239
,	athematics/statistics	239
126.1	nangeomean	. 239
126.2	nangeostd	. 239
127lih/ms	athematics/statistics/nonparametric-statistics	240
127.1	kernel1d	
127.2	kernel2d	
•		
128 ib/ma	athematics/statistics	240
199 1	nommoment	240

128.2	normpdf2	. 240
$129 \mathrm{ib/ma}$	athematics/statistics/order-statistics	240
129.1	hodges_lehmann_location	. 240
129.2	$kendall \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 241
129.3	$kendall_to_pearson \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 241
129.4	mad2sd	. 241
129.5	madcorr	. 241
129.6	$median 2_holder $. 241
129.7	$\mathrm{median_ci} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $. 241
129.8	$median_man \dots \dots$. 241
129.9	mediani	. 242
129.10	nanmadcorr	. 242
129.11	nanwmedian	. 242
129.12	nanwquantile	. 242
129.13	oja_median	. 242
129.14	qkurtosis	. 242
129.15	qmoments	. 243
129.16	gskew	. 243
129.17	qskewq	
129.18	qstdq	
129.19	quantile1_optimisation	
129.20	quantile2_breckling	
129.21	quantile2_chaudhuri	
129.22	quantile2_projected	
129.23	quantile2_projected2	
129.24	quantile_envelope	
129.25	quantile_regression_simple	
129.26	ranking	
129.27	spatial_median	
129.28	spatial_quantile	
129.29	spatial_quantile2	
129.30	spatial_quantile3	
129.31	spatial_rank	. 245
129.32	spatial_sign	
129.33	spatial_signed_rank	
129.34	spearman	
129.35	spearman_rank	
129.36	spearman_to_pearson	
129.37	wmedian	
129.38	wquantile	
	•	
,	athematics/statistics	246
130.1	qstd	. 246

130.2	quantile_extrap	246
131lib/ma	athematics/statistics/random-number-generation	246
131.1	laplacernd	246
131.2	randc	246
131.3	skewness2param	246
131.4	skewpdf_central_moments	246
131.5	skewrnd	246
131.6	skewrnd2	247
13 2 ib/ma	athematics/statistics	247
132.1	range	247
132.2		
13 3 lib/ma	athematics/statistics/resampling-statistics/@Jackkni	fe247
133.1	Jackknife	
133.2	estimated_STATIC	
133.3	matrix1_STATIC	
133.4	matrix2	
134ib/ma	athematics/statistics/resampling-statistics	248
134.1	block_jackknife	248
134.2	jackknife_moments	248
134.3	moving_block_jackknife	248
134.4	randblockserr	249
134.5	resample	249
13 5 lib/ma	athematics/statistics	249
135.1	scale_quantile_sd	249
135.2	sd_sample_quantiles	
135.3	skewpdf	250
135.4	trimmed_mean	250
135.5	ttest2_man	250
135.6	ttest_man	250
135.7	$ttest_paired \dots \dots$	250
135.8	wgeomean	250
135.9	wgeovar	
135.10	wharmean	251
135.11	wharstd	251
135.12	wharvar	251
13 d ib/ma	athematics	251
136.1	ternary_diagram	251
137lib/ma	athematics/test/master	251

137.1	dat_test_lanczos_3d_k_20_n_40
137.2	poisson2d_blk
137.3	qr_implicit_givens_2
137.4	spectral_derivative_2d
137.5	test_2d_eigensolver_hydrogen
137.6	test_2d_refine
137.7	test_3d_eigensolver_hydrogen
137.8	test_FEM
137.9	test_Mesh_3d
137.10	test_arnoldi
137.11	test_arpackc
137.12	test_assemble
137.13	test_assembly_performance
137.14	test_bc_one_sided
137.15	test_compare_solvers
137.16	test_complete
137.17	test_convergence
137.18	test_convergence_b
137.19	test_df_2d
137.20	test_eig_algs
137.21	test_eig_inverse
137.22	test_eigs_lanczos
137.23	test_eigs_lanczos_1
137.24	test_eigs_lanczos_2
137.25	test_eigs_lanczos_performance
137.26	test_fdm
137.27	test_fdm_d_vargrid
137.28	test_fdm_spectral
137.29	test_fem
137.30	test_fem_1d
137.31	test_fem_1d_higher_order
137.32	test_fem_2d_adaptive
137.33	test_fem_2d_higher_order
137.34	test_fem_3d_higher_order
137.35	test_fem_3d_refine
137.36	test_fem_b
137.37	test_fem_derivative
137.38	test_fem_quadrature
137.39	test_final
137.40	test_fix_substitution
137.41	test_forward
137.42	test_get_sparse_arrays
137.43	test_harmonic_oscillator
137.44	test_high_order_fdm_periodic_bc

137.45	test_hydrogen_wf
137.46	test_ichol
137.47	test_interpolation
137.48	test_inverse_problem
137.49	test_it_vs_exact
137.50	test_jama
137.51	test_jd
137.52	test_jdqz
137.53	test_lanczos_2
137.54	test_lanczos_biorthogonal
137.55	test_laplacian
137.56	test_laplacian_non_uniform
137.57	test_laplacian_simple
137.58	test_mesh_2d_uniform
137.59	test_mesh_2d_uniform_2
137.60	test_mesh_circle
137.61	test_mesh_generation
137.62	test_mesh_interpolate
137.63	test_mg
137.64	test_minres_recycle
137.65	test_multigrid
137.66	test_nc
137.67	test_nonuniform_symmetric
137.68	test_pde
137.69	test_permutation
137.70	test_poison_fem
137.71	test_polar
137.72	test_potential
137.73	test_powers
137.74	test_precondition
137.75	test_project_rectangle
137.76	$\operatorname{test_qr}$
137.77	test_quantum_well
137.78	test_radial_adaptive
137.79	test_radial_confinement
137.80	test_radial_fixes
137.81	test_refine_2d
137.82	test_refine_2d_b
137.83	test_refine_3d
137.84	test_refine_structural
137.85	test_regularisation
137.86	test_round_off
137.87	test_schrdinger_potentials
137.88	test_uniform_mesh

137.89	$test_vargrid \dots \dots$
138lib/ma	athematics/test 260
138.1	,
138.2	test_mtimes3x3
•	athematics/wavelet 261
139.1	contiuous_wavelet_transform
139.2	cwt_man
139.3	example_wavelets
139.4	phasewrap
139.5	$test_cwt_man \dots \dots$
139.6	$test_phasewrap \dots \dots$
139.7	$test_wavelet \dots \dots \dots \dots \dots \dots \dots \dots \dots $
139.8	$test_wavelet2 \ldots \ldots$
139.9	test_wavelet_analysis
139.10	test_wavelet_reconstruct
139.11	test_wtc
139.12	wavelet
139.13	wavelet_reconstruct
139.14	wavelet_transform
$140 \mathrm{ib/ma}$	athematics 262
140.1	wrapphase
1 411:15 /200	esh/@StructuredMesh 263
•	esh/@StructuredMesh 263 StructuredMesh
141.1	apply_boundary_condition
141.2	apply_boundary_condition
141.3	
	bc_from_shp
141.4	bc_from_shp
141.5	bc_from_shp
141.5 141.6	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263
141.5 141.6 141.7	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263
141.5 141.6 141.7 141.8	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264
141.5 141.6 141.7 141.8 141.9	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264 boundary_indices 264
141.5 141.6 141.7 141.8 141.9 141.10	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264 boundary_indices 264 cat 264
141.5 141.6 141.7 141.8 141.9 141.10 141.11	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264 boundary_indices 264 cat 264 centreline 264
141.5 141.6 141.7 141.8 141.9 141.10 141.11 141.12	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264 boundary_indices 264 cat 264 centreline 264 child 264
141.5 141.6 141.7 141.8 141.9 141.10 141.11 141.12 141.13	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264 boundary_indices 264 cat 264 centreline 264 child 264 copy 264
141.5 141.6 141.7 141.8 141.9 141.10 141.11 141.12 141.13	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264 boundary_indices 264 cat 264 centreline 264 child 264 copy 264 corner_indices 264
141.5 141.6 141.7 141.8 141.9 141.10 141.11 141.12 141.13 141.14 141.15	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264 boundary_indices 264 cat 264 centreline 264 child 264 copy 264 corner_indices 264 cut_from_domain 264
141.5 141.6 141.7 141.8 141.9 141.10 141.11 141.12 141.13 141.14 141.15 141.16	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264 boundary_indices 264 cat 264 centreline 264 child 264 copy 264 corner_indices 264 cut_from_domain 264 export_delft3d_bnd 265
141.5 141.6 141.7 141.8 141.9 141.10 141.11 141.12 141.13 141.14 141.15	bc_from_shp 263 bc_index 263 bc_isinvalid 263 block 263 boundary_chain 263 boundary_direction 264 boundary_indices 264 cat 264 centreline 264 child 264 copy 264 corner_indices 264 cut_from_domain 264

141.19	export_delft3d_ini
	export_shp
141.21	
141.22	9
141.23	flip_dimension
141.24	-
141.25	
141.26	generate_disk
141.27	generate_from_centreline
	generate_rectangle
141.29	
141.30	grid_block
141.31	_
141.32	
141.33	
141.34	orthogonality
	orthogonalize
141.36	_
141.37	
141.38	plot_coupling
141.39	plot_orthogonality
141.40	quiver
141.41	read_delft3d_dep
141.42	read_delft3d_grd
141.43	smooth_cubic
141.44	smooth_curvilinear
141.45	smooth_laplacian
141.46	smooth_simple
141.47	smooth_sn
141.48	snap
141.49	statistic
141.50	to_unstructured_mesh
	transpose_dimension
141.52	vertex_connection_matrix
1.40191 /	
•	$\cosh/$ @UnstructuredMesh 270
142.1	UnstructuredMesh
142.2	add_element
142.3	add_vertex
142.4	angle
142.5	assign_1d
142.6	assign_2d
142.7	assign_3d
1/1/8	2/1

142.9	boundary_1d
142.10	boundary_chain2
142.11	boundary_length_and_direction
142.12	cat
142.13	chain_1d
142.14	check_dublicate_elements
142.15	check_edge_intersection
142.16	clip
142.17	compute_elem2elem
142.18	connect_1d_2d
142.19	convert_2d_to_1d
142.20	copy
142.21	cross_section
142.22	delete_element
142.23	derivative_matrix_1d
142.24	derivative_matrix_2d
142.25	derivative_matrix_2d_2
142.26	derivative_matrix_3d
142.27	distance
142.28	dual_mesh
142.29	edge_length
142.30	edge_midpoint
142.31	edges_from_elements
142.32	eigs
142.33	$elem2edge_{-}$
142.34	elem2elem_matrix
142.35	element_area
142.36	element_centroid
142.37	element_midpoint
142.38	elements_from_edges
142.39	eval2pval
142.40	export_delft3d_net
142.41	export_msh
142.42	export_pos
142.43	export_shp
142.44	facing_element
142.45	filter_neighbour
142.46	find_encroached_edges
142.40 142.47	flip
142.48	flip_global
142.49	flip_quality
142.49	gaussmat_2d
142.50	generate_chews_first
142.51 142.52	generate_from_centreline_1d
144.04	gonorano_nom_commenue_na

142.53	generate_from_centreline_2d
142.54	generate_frontal
142.55	generate_ghost_elements
142.56	generate_gmsh
142.57	generate_hierarchical
142.58	generate_triangle
142.59	generate_uniform_1d
142.60	generate_uniform_quadrilateral
142.61	generate_uniform_tetra
142.62	generate_uniform_triangulation
142.63	get_facing_and_shared_vertices
142.64	grid2tri
142.65	import_delft3d_net
142.66	import_msh
142.67	import_triangle
142.68	improve_iterative_relocate_insert
142.69	improve_iterative_relocate_uniform
142.70	improve_relocate_global1
142.71	improve_relocate_global2
142.72	improve_relocate_global_3
142.73	improve_relocate_local
142.74	improve_relocate_local_old
142.75	improve_topology
142.76	insert_mid_points
142.77	insert_steiner_points
142.78	integrate_1d
142.79	integrate_discharge
142.80	interp_1d
142.81	interp_2d
142.82	interp_fourier
142.83	interp_tikhonov_1d
142.84	interp_tikhonov_2d
142.85	interp_tikhonov_3d
142.86	interpolate_from_boundary
142.87	interpolate_point
142.88	interpolation_error_1d
142.89	interpolation_error_2d
142.90	interpolation_error_3d
142.91	interpolation_matrix_1d
142.92	interpolation_matrix_2d
142.93	interpolation_matrix_3d
142.94	isacute
142.95	isobtuse
142.96	iterate_smooth2

142.97 limit_by_distance
142.98 make_elements_ccw
142.99 merge_duplicate_points
142.100 merge_facing_blunt_triangles
142.101 mesh1
142.102 mesh_1d
142.103 mesh_2d
142.104 mesh_junctions
142.105 nearest_boundary
142.106 nedge
142.107 nonobtuse_refinement
142.108 objective_A
142.109 objective_T
142.110 objective_angle
142.111 optimum_angle
142.112 orthogonality_quadrilaterals
142.113 path
142.114 plot
142.115 plot1d
142.116 plot3
142.117 plotes
142.118 project_to_boundary
142.119 pval2eval
142.120 quad2tri
142.121 raster_boundary
142.122 recover_edges
142.123 refine
142.124 refine_edge_halving
$142.125 \text{ remove_empty_triangles} \dots \dots 287$
142.126 remove_isolated_vertices
142.127 remove_points
142.128 remove_quartered_triangles
142.129 remove_small_islands
142.130 remove_triply_connected_boundary_vertices 288
142.131 remove_trisected_triangles
142.132 renumber_point_indices
142.133 resolve_8_vertices
142.134 restore_acuteness
142.135 retriangulate
142.136 ruppert
142.137 scale_to_boundary
142.138 scatterplot
142.139 section
142.140 segment

142.14	1 smooth2
	$2 \operatorname{smooth_1d}$
	$3 \operatorname{smooth_val}$
	4 smoothness
	$5 \mathrm{split3} \ldots \ldots \ldots \ldots \ldots \ldots 290$
	$^{-1}$ 6 split_edge
	7 split_edge_perpendicular
	$8\mathrm{split_elem_1d}$
	9 split_encroached_edges
	$0 \mathrm{split}$ _obtuse
	1 split_unsmooth_edges
	2 statistics
142.15	3 streamwise_derivative_matrix
142.15	4 thalweg
	5 to_single
142.15	6 uncross_elements
142.15°	7 uncross_quadrilaterals
142.15	8 vertex_distance
142.15	9 vertex_to_edge
142.16	0 vertex_to_element
142.16	1 vertex_to_vertex
142.16	2 vertices_1d
142.16	$3 ext{ weighed_laplacian_smoothing } \ldots \ldots \ldots \ldots \ldots 292$
142.16	4 xy2xys
142.16	5 xys 2 xy
•	esh/grid/@Grid1 293
143.1	
143.2	1
143.3	build_index
143.4	fit
143.5	predict
144:b/m	esh/grid/@Grid2
144.1	$rac{\mathrm{esh/grid/@Grid2}}{\mathrm{Grid2}}$ 293
144.1 144.2	binop
144.2 144.3	build_index
144.5 144.4	plot
144.4 144.5	predict
144.0	predict
145lib/m	esh/grid/@Grid3 294
145.1	Grid3
	build index

14 d ib/me	esh/mesh1d	294
146.1	dxspace	294
146.2	dxspace2	. 295
146.3	dzmesh	295
146.4	$\operatorname{mesh} 1 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	295
146.5	mesh1d	. 295
146.6	nlogstep	. 295
- 4 /		~~~
•	esh/optimization	295
147.1	improve_smooth_insert	
147.2	objective0_angle1_barycentric	
147.3	objective0_angle2_barycentric	
147.4	objective0_angle2_barycentric9	
147.5	objective0_angle_2_cartesian	
147.6	objective0_angle_inf_cartesian	
147.7	objective0_barycentric9	
147.8	objective0_pythagoras1_barycentric9	
147.9	objective0_pythagoras1_cartesian	
147.10	objective0_pythagoras2_barycentric9	
147.11	objective0_pythagoras2_cartesian	. 296
147.12	objective_3_angle	
147.13	objective_A_bnd	. 296
147.14	objective_P_angle	. 296
147.15	objective_P_angle_scaled	. 297
147.16	objective_P_angle_scaled_area	. 297
147.17	objective_P_midpoint	. 297
147.18	objective_angle	. 297
147.19	objective_angle2_barycentric	. 297
147.20	objective_angle_p	. 297
147.21	objective_angle_scaled_area	. 297
147.22	objective_angle_scaled_circumference	. 297
147.23	objective_cosa	. 297
147.24	objective_cosa_p	. 297
147.25	objective_cosa_scaled_side_length	. 298
147.26	objective_distance_edge_centre	. 298
147.27	objective_distance_edge_centre_perpendicular	. 298
147.28	objective_distance_orthocentre_excentre	. 298
147.29	objective_incentre_excentre	. 298
147.30	objective_length_min_max	
147.31	objective_length_var	
147.32	objective_thales	
147.33	objective_thales_difference	
147.34	test_objective_cosa_p	

148 ib/me	esh	299
148.1	preload_msh	. 299
149lib/me	esh/sparsemesh/@SparseMesh1	299
149.1	SparseMesh1	. 299
149.2	assign	
149.3	assignS	
149.4	init	
149.5	interp	
149.6	interpS	
149.7	rmse_interp	
15(lib/me	${ m esh/sparsemesh/@SparseMesh2}$	300
150.1	SparseMesh2	
150.2	assign	
150.3	assignS	
150.4	init	
150.5	interp	
150.6	interpS	
150.7	rmse_interp	
151lib/me	esh/sparsemesh	301
151.1	SparseMesh	
101.1	Sparsoniosi	. 002
152 ib/me	$\mathrm{esh/test}$	302
152.1	test_MMesh_segment	. 302
152.2	test_derivative_matrices_curvilinear	. 302
15 3 ib/me	esh	302
153.1	test_nxfun	
153.2	$trimesh_fast $. 302
154ib/on	en-channel-flow/@Backwater1D	302
. –	Backwater1D	
154.2	backwater_approximation	
154.3	backwater_curve_iterative	
154.4	backwater_length	
154.5	dh_dx	
154.6	dh_dx	
154.7	dzs_dx	
154.8	gvf_x_chow	
154.9	invert	
154.3 154.10	solve	
154.10 154.11	solve_analytic	
	solve_matrix	. 304

155lib/op	en-channel-flow/bifurcations-and-weirs/@Lateral_Diversion_Finite_Width304
155.1	Jb
155.2	Lateral_Diversion_Finite_Width
155.3	$dR \dots \dots 305$
155.4	derive
155.5	evalk
155.6	lateral_outflow_finite_width1
155.7	load_functions
155.8	stagnation_point
155.9	streamline
155.10	streamline_radius_of_curvature
155.11	u_far
155.12	v_far
	velocity
155.14	velocity_near_bed
1501 /	
156.1	${ m en ext{-}channel-flow/bifurcations-and-weirs/@Lateral_Diversion_Finite_Width_Gradual}$
156.1 156.2	Jb
156.2 156.3	coefficients
156.5 156.4	condA
156.4 156.5	dR
156.6	derive
156.0 156.7	evalk
156.7 156.8	evalk
156.9	lateral_outflow_finite_width1
	load_functions
156.10	load_functions
157lib/op	$en\text{-}channel\text{-}flow/bifurcations\text{-}and\text{-}weirs/@Lateral_Diversion_Finite_Width_Gradual$
157.1	coefficients_old
158ib/op	$en\text{-}channel\text{-}flow/bifurcations\text{-}and\text{-}weirs/@Lateral_Diversion_Finite_Width_Gradual$
	stagnation_point
158.2	streamline
158.3	streamline_radius_of_curvature
158.4	u_far
158.5	uv1
158.6	uv_side_branch
158.7	v_far
158.8	velocity
158.9	velocity_linear
158.10	velocity_near_bed
158.11	xp

159lib/or	${ m cen ext{-}channel ext{-}flow/bifurcations ext{-}and ext{-}weirs/@Lateral_Diversion_Wide_Channer}$
159.1	Lateral_Diversion_Wide_Channel
159.2	derive_lateral_outflow
159.3	derive_lateral_outflow_finite_width
159.4	lateral_outflow
159.5	lateral_outflow_finite_width
160lib/op	${f pen-channel-flow/bifurcations-and-weirs/@Lateral_Diversion_Wide_Channel-flow}$
160.1	Lateral_Diversion_Wide_Channel_Map 309
160.2	streamline
161lib/or	pen-channel-flow/bifurcations-and-weirs/@Side_Weir 309
161.1	Side_Weir
161.2	dzs_dx
161.3	$surface_elevation \dots \dots$
16 2 lib/or	pen-channel-flow/bifurcations-and-weirs 310
162.1	Lateral_Diversion_Finite_Width_Map
163lib/or	pen-channel-flow 310
163.1	hfilter
164ib/or	pen-channel-flow/kinematik-and-diffusion-wave 311
164.1	diffusion_wave
164.2	flood_wave_diffusion_coefficient
164.3	linear_wave
165lib/or	pen-channel-flow/meander-bend/@Equilibrium_Bend 311
165.1	Equilibrium_Bend
165.2	bed_profile
165.3	bed_profile_uniform
165.4	calibrate
165.5	dD_dr
165.6	dh_dr
165.7	dh_dr_uniform
165.8	grain_size_profile
16 d ib/or	pen-channel-flow/meander-bend 312
166.1	Kinoshita
166.2	bend_transverse_velocity
166.3	bend_velocity_near_bed
166.4	kinoshita
166.5	random_meander
166.6	test rozovskii 313

167lib/o _l	pen-channel-flow/potential-flow/@Potential_Flow	313
167.1	Potential_Flow	313
167.2	apply_boundary_potential_old	313
167.3	$assemble_discretization_matrix_rectilinear \ . \ . \ . \ . \ .$	313
167.4	assemble_potential_matrix	314
167.5	$bc_dirichlet \dots \dots \dots \dots \dots$	314
167.6	boundary_condition_side_outflow	314
167.7	boundary_condition_side_outflow_1	
167.8	contour	314
167.9	$\operatorname{cut_boundary}$	314
167.10	cut_rectangle	314
167.11		
167.12	$infer_bed_level2 \dots \dots \dots \dots \dots$	315
167.13	infer_bed_level3	315
167.14	infer_bed_level_loop	315
167.15	objective_bed_level	316
167.16		
167.17	plot	316
167.18		
167.19		
167.20		
167.21	streamline	316
167.22	surface_elevation	316
167.23	test	316
167.24	velocity_near_bed	317
167.25	vertical_velocity	317
	${ m pen ext{-}channel ext{-}flow/potential ext{-}flow/@Potential ext{-}Flow_A}$	-
168.1	σ	
168.2	streamline	317
10011		015
	pen-channel-flow/rating-curve	317
169.1 169.2	ChezyRatingCurve	
	v	
169.3	DynamicManningRC	
169.4	DynamicPowerRC	
169.5	KeuleganRatingCurve	
169.6	ManningRatingCurve	
169.7	PolyRatingCurve	
169.8	PowerRatingCurve	
169.9	PowerRatingCurveOffset	
169.10	0	
169.11		
-169.12	csdischarge	319

169.13	csperimeter	. 319
169.14	csradius	. 319
169.15	cswidth	. 319
169.16	test_PowerRatingCurve	. 319
169.17	wfunc	. 319
17flib/op	en-channel-flow/shallow-water/@SWE	319
170.1	SWE	
170.1 170.2	bc_incoming_non_reflecting	
170.2	bc_inflow	
170.4	bc_inflow_low_pass	
170.4 170.5	bc_inflow_non_reflecting	
170.6	bc_level	
170.7	bc_level_sommerfeld	
170.8	bc_nonreflecting	
170.9	bc_reflecting	
170.10	9	
170.11		
170.12	energy	
170.13		
170.14	flux_lin	. 321
170.15	fluxmateig	. 321
170.16	jacobian	. 322
170.17	lindot	. 322
170.18	roe_average	. 322
170.19	solve_analytic	. 322
170.20	solve_stationary	. 322
170.21		
170.22	source_friction	
170.23		
	swe_geometry	
170.25	swe_ic	. 323
171lib/op	en-channel-flow/shallow-water/@SWE_2d	323
171.1	SWE_2d	. 323
171.2	apply_boundary_condition_stationary	. 323
171.3	assemble_stationary	
171.4	solve_stationary	. 323
179lih/op	en-channel-flow/shallow-water	324
172.1	sw_reflection	
172.1 172.2	sw_reflection_stepwise	
	${ m en}$ -channel-flow/test/test_Backwater1D	324

173.1	test_bw1d_solve_matrix
1 74 ib/op	en-channel-flow/test 324
174.1	test_inverse_backwater_curve
174.2	test_normal_flow
174.3	test_nse_nz
17 5 lib/op	en-channel-flow/uniform-stationary-flow 324
175.1	chezy2drag
175.2	chezy2f
175.3	chezy2manning
175.4	chezy2z0
175.5	critical_flow_depth
175.6	drag2chezy
175.7	f2chezy
175.8	ks2z0
175.9	manning2chezy
175.10	manning2drag
	manning2z0
	normal_flow_depth
	normal_flow_depth
	normal_flow_discharge
	normal_flow_slope
	normal_flow_velocity
	normal_shear_velocity
	shear_velocity
	z02chezy
	z02ks
	z0tochezy
17 а 16/ор 176.1	en-channel-flow/velocity-profile/@Log_profile 327
	Log_profile
176.2	df_dh
176.3	df_dh
176.4	df_dln_z0
176.5	df_dln_z0
176.6	profile
176.7	profile
176.8	profile_bias
176.9	regmtx
176.10	ubar
177lib/op	en-channel-flow/velocity-profile/@Log_profile_with_bend_correction3:
177.1	Log_profile_with_bend_correction
~ ! ! ! +	

177.2	df_dc
177.3	df_dc
177.4	du_dz
177.5	fit
177.6	profile
177.7	regmtx
177.8	u
177.9	u
1 78 lib/or	pen-channel-flow/velocity-profile/@Log_profile_with_cubic_wake330
178.1	Log_profile_with_cubic_wake
178.2	df_dc
178.3	dfdc
178.4	profile
178.5	regmtx
1 70li b/or	pen-channel-flow/velocity-profile/@Log_profile_with_dip330
179.1	Log_profile_with_dip
179.1 179.2	fit
110.2	10
18 0 ib/op	${\tt ben-channel-flow/velocity-profile/@Log_profile_with_linear_bend_correction}$
180.1	Log_profile_with_linear_bend_correction
180.2	df_dc
180.3	$df_{-}dc_{-}\dots 331$
180.4	du_dz
180.5	$profile_{-} \dots \dots 331$
180.6	regmtx
181lib/or	pen-channel-flow/velocity-profile/@Log_profile_with_wake32
181.1	Log_profile_with_wake
181.2	df_dc
181.3	$df_{-}dc_{-}$
181.4	du_dz
181.5	$profile_{-}$
181.6	regmtx
189lib/or	pen-channel-flow/velocity-profile/@VP 332
182.1	VP
182.1	process_joint
182.2	process_transverse_profile
182.4	process_vertical_profile
182.5	profile_prediction_error
18 3 ib/op	pen-channel-flow/velocity-profile/@Vertical_profile 334
183.1	Vertical_profile

	183.2	fit
	183.3	u
18	4ib/op	en-channel-flow/velocity-profile 334
10	184.1	fit_displacement_profile
	184.2	lateral_division_method
	184.3	test_law_of_the_wall_fit
	184.4	transverse_profile_parameter
	184.5	transverse_velocity_profile
	184.6	transverse_velocity_profile_olesen
	184.7	transverse_velocity_profile_rozovskii
	184.8	transverse_velocity_profile_shiono_knight
	184.9	transverse_velocity_profile_tidal_channel
	184.10	transverse_velocity_profile_with_slope
	184.11	vertical_profile_of_velocity_vriend
	184.12	vertical_profile_or_velocity_vriend
	184.13	z2s_rational
	104.13	Z25_1ational
18	dib/op	en-channel-flow/wrapper 336
	185.1	discharge2stage
	185.2	stage2discharge
	, .	
18	, -	ysics/@Constant 337
	186.1	Constant
	186.2	celsius_to_kelvin
	186.3	depth_to_pressure
	186.4	kelvin_to_celsius
	186.5	optical_attenuation
	186.6	pressure_to_depth
	186.7	saturation_vapor_pressure
	186.8	sound_absorption_air
	186.9	sound_absorption_water
	186.10	sound_velocity_water
	186.11	viscosity_dynamic_water
	186.12	viscosity_kinematic_water
10	=- 1 / 1	•
18	7lib/ph;	
	187.1	beam_bending_deflection
	187.2	beam_bending_moment
	187.3	beam_bending_strain
	187.4	beam_bending_stress
	187.5	bolt_stress
	187.6	drag_force

188lib/ph	ysics/hydrogen-spectrum	339
188.1	hydrogen_spectrum_1d	339
188.2	hydrogen_spectrum_2012_12_02	340
188.3	hydrogen_spectrum_2d	340
188.4	$hydrogen_spectrum_3d . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	340
189lib/ph	vsics	340
189.1	minimum_cable_diameter	
189.2	moment_of_inertia_rectangle	
189.3	moment_of_inertia_ring	
189.4	parabolic_reflector_gain	
19Ոih/ph	ysics/salinity	340
190.1	Salinity	
190.2	Salinity78	
190.2	canter_cremer_number	
190.4	density2salinity	
190.5	dispersion_hws_savenije	
190.6	dispersion_tda_burgh	
190.7	richardson_number	
190.8	salinity	
190.9	salinity_intrusion_length	
190.10	sea_water_density	
190.11		
	tidal_excursion	
190.13	tidal_prism_channel	
190.14	-	
	tidal_velocity	
191lib/ph	vroies	343
, –	test_sound_absorption_air	
191.1	test_sound_absorption_air	343
19 2 lib/ph	ysics/turbulence	343
192.1	keps2nu	343
193lib/ph	ysics/wind-wave	343
193.1	short_wave_length	343
193.2	short_wave_shear_velocity	
193.3	wave_height_from_wind_speed	
194ib/sec	diment-transport/@GrainSizeDistribution	344
194.1	GrainSizeDistribution	
194.2	assign_channel	
194.3		
	overport again	2//

19	94.5	export_shp
19	94.6	group_channels
19	94.7	group_curvature
19	94.8	group_histograms
19	94.9	$load_coordinates \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
19 5 il	$\mathrm{b/sed}$	$liment-transport/@Hermite_profile$ 345
	05.1	Hermite_profile
19	05.2	fit
19	05.3	predict
19	05.4	regmtx
19	05.5	transform
19 d il	$\mathrm{b/sed}$	$liment-transport/@Nodal_Point$ 345
19	06.1	Adot
19	06.2	Nodal_Point
19	06.3	Qs_in
19	06.4	Qs_out
19	06.5	derive_jacobian
19	06.6	discharge
	06.7	geometry
	06.8	jacobian
	96.9	phase_diagram
	96.10	phase_diagram_wang
	96.11	solve
19	06.12	stability_analysis
1971il	$\mathrm{b/sed}$	$liment-transport/@Parabolic_Constant_Profile$ 347
19	97.1	Parabolic_Constant_Profile
19	07.2	fit
19	07.3	predict
19	07.4	regmtx
19	7.5	transform
19 8 il	$\mathrm{b/sed}$	liment-transport/@Rouse_Profile 348
19	08.1	Rouse_Profile
19	08.2	fit
19	08.3	mean_concentration
19	08.4	predict
	08.5	regmtx
_	08.6	rouse_number
19	08.7	$rouse_number_to_grain_diameter \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
19	8.8	set_parameters
19	98.9	transform

400	7.	<u> </u>
,	diment-transport	349
199.1	Exponential_SSC_Profile	
199.2	adaptation_length_bed	
199.3	adaptation_length_flow	
199.4	bar_mode_crosato	
199.5	bed_layer_thickness	
199.6	bed_load_einstein	
199.7	bed_load_engelund_fredsoe	
199.8	bed_load_transport_mpm	
199.9	$bed_load_transport_rijn \dots \dots \dots \dots \dots \dots \dots \dots$	
199.10	bed_load_transport_wu	
199.11	bedform_dimension_rijn	
	bedform_roughness_rijn	
199.13	bedform_roughness_rijn_2007	350
199.14	bedload_direction	350
199.15	bedload_layer_thickness_mclean	351
199.16	$bifurcation_critical_aspect_ratio$	351
199.17	$chezy_einstein \dots \dots$	351
199.18	$chezy_roughness_engelund_fredsoe $	351
199.19	chezy_to_manning	351
199.20	critical_grain_size	351
199.21	critical_shear_stress	351
199.22	critical_shear_stress_ratio	
199.23	critical_shear_stress_wu	352
199.24	critical_shear_velocity	352
199.25	$derive_mpm_foramtive_discharge \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	352
199.26	$\label{limin_dimensionless_grain_size} \ \dots \ $	
199.27	$\operatorname{dune_celerity} \ \ldots \ \ldots$	352
199.28	dynamic_shear_stress	352
199.29	$fractional_transport_engelund_hansen . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	352
199.30	grain_roughness_mpm	352
199.31	grain_roughness_rijn	352
199.32	grain_roughness_wu	353
199.33	hiding_exposure_wu	353
199.34	hydraulic_radius	353
199.35	manning_to_chezy	353
199.36	mobility_parameter_rijn	353
199.37	mpm2diameter	353
199.38	$mpm_solve_for_dm \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	353
199.39	reference_concentration_rijn	353
199.40	$reference_concentration_smith_lean \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	353
199.41	reference_height_rijn	354
199.42	reference_to_flux_averaged_concentration_rijn	354
199 //3	saltation layer thickness	35/

	199.44	sediment_transport_directed
	199.45	sediment_transport_engelund_hansen_2 354
	199.46	sediment_transport_relation_fit
	199.47	sediment_transport_relation_predict
	199.48	sediment_transport_scale
	199.49	sediment_transport_waves
	199.50	settling_velocity
	199.51	settling_velocity_to_diameter
	199.52	shields_number
	199.53	$skin_2_total_friction_eh $
	199.54	suspended_grain_size
	199.55	suspended_grain_size_non_linear
	199.56	suspended_grain_size_rijn
	199.57	$suspended_transport_mclean \ldots \ldots \ldots 356$
	199.58	$suspended_transport_rijn \dots \dots$
	199.59	suspended_transport_wu
	199.60	suspension_parameter_rijn
20	,	diment-transport/test 357
	200.1	$test_adaptation_length_bed \dots \dots$
	200.2	test_critical_shear_stress
	200.3	test_settling_velocity_to_diameter
ഹ	11:b /god	liment-transport 357
4 0	201.1	diment-transport 357 test_sediment_transport_relation 357
	201.1	total_roughness_engelund_fredsoe
	201.2	total_roughness_rijn
	201.3	
		total_transport_ackers_white
	201.5	total_transport_ackers_white
	201.5 201.6	total_transport_ackers_white
	201.5 201.6 201.7	total_transport_ackers_white
	201.5 201.6 201.7 201.8	total_transport_ackers_white
	201.5 201.6 201.7 201.8 201.9	total_transport_ackers_white357total_transport_bagnold358total_transport_eh_distribution358total_transport_engelund_hansen358total_transport_rijn358total_transport_wu358
	201.5 201.6 201.7 201.8 201.9 201.10	total_transport_ackers_white357total_transport_bagnold358total_transport_eh_distribution358total_transport_engelund_hansen358total_transport_rijn358total_transport_wu358total_transport_yang358
	201.5 201.6 201.7 201.8 201.9 201.10 201.11	total_transport_ackers_white357total_transport_bagnold358total_transport_eh_distribution358total_transport_engelund_hansen358total_transport_rijn358total_transport_wu358total_transport_yang358total_transport_stage_mclean358
	$201.5 \\ 201.6 \\ 201.7 \\ 201.8 \\ 201.9 \\ 201.10 \\ 201.11 \\ 201.12$	total_transport_ackers_white 357 total_transport_bagnold 358 total_transport_eh_distribution 358 total_transport_engelund_hansen 358 total_transport_rijn 358 total_transport_wu 358 total_transport_yang 358 total_transport_stage_mclean 358 transport_stage_rijn 358
	201.5 201.6 201.7 201.8 201.9 201.10 201.11	total_transport_ackers_white357total_transport_bagnold358total_transport_eh_distribution358total_transport_engelund_hansen358total_transport_rijn358total_transport_wu358total_transport_yang358total_transport_stage_mclean358
20	201.5 201.6 201.7 201.8 201.9 201.10 201.11 201.12 201.13	total_transport_ackers_white 357 total_transport_bagnold 358 total_transport_eh_distribution 358 total_transport_engelund_hansen 358 total_transport_rijn 358 total_transport_wu 358 total_transport_yang 358 transport_stage_mclean 358 transport_stage_rijn 358 vertical_ssc_profile_mclean 359
20	201.5 201.6 201.7 201.8 201.9 201.10 201.11 201.12 201.13	total_transport_ackers_white 357 total_transport_bagnold 358 total_transport_eh_distribution 358 total_transport_engelund_hansen 358 total_transport_rijn 358 total_transport_wu 358 total_transport_yang 358 transport_stage_mclean 358 transport_stage_rijn 358 vertical_ssc_profile_mclean 359
20	201.5 201.6 201.7 201.8 201.9 201.10 201.11 201.12 201.13	total_transport_ackers_white 357 total_transport_bagnold 358 total_transport_eh_distribution 358 total_transport_engelund_hansen 358 total_transport_rijn 358 total_transport_wu 358 total_transport_yang 358 transport_stage_mclean 358 transport_stage_rijn 358 vertical_ssc_profile_mclean 359 le/@T_Tide 359 T_Tide 359
20	201.5 201.6 201.7 201.8 201.9 201.10 201.11 201.12 201.13 2ib/tid 202.1	total_transport_ackers_white 357 total_transport_bagnold 358 total_transport_eh_distribution 358 total_transport_engelund_hansen 358 total_transport_rijn 358 total_transport_wu 358 total_transport_yang 358 transport_stage_mclean 358 transport_stage_rijn 358 vertical_ssc_profile_mclean 359 le/@T_Tide 359 build_index 359
20	201.5 201.6 201.7 201.8 201.9 201.10 201.11 201.12 201.13 2ib/tid 202.1 202.2	total_transport_ackers_white 357 total_transport_bagnold 358 total_transport_eh_distribution 358 total_transport_engelund_hansen 358 total_transport_rijn 358 total_transport_wu 358 total_transport_yang 358 transport_stage_mclean 358 transport_stage_rijn 358 vertical_ssc_profile_mclean 359 le/@T_Tide 359 build_index 359

202.6	select
202.7	shift_time_zone
203ib/tid	le/@Tidal_Envelope 360
203.1	Tidal_Envelope
203.2	init
204ib/tid	$ m le/@Tide_wft$ 360
204.1	Tide_wft
204.2	transform
2051b/tid	le/@Tidetable 361
205.1	Tidetable
205.1 205.2	analyze
205.2 205.3	export_csv
205.4	generate
205.4 205.5	generate_tpxo_input
205.6	import_tpxo
205.0 205.7	plot_neap_spring
200.7	plot_neap_spring
206ib/tid	le 362
206.1	constituents
206.2	doodson
206.3	envelope_amplitude
206.4	envelope_slack_water
206.5	interval_extrema
206.6	interval_extrema2
206.7	interval_zeros
206.8	lunar_phase
206.9	rayleigh_criterion
207lib/tid	$ m le/river-tide/@River_Tide$ 363
•	River_Tide
207.2	bc_transformation
207.2 207.3	befun
207.4	check_continuity
207.4 207.5	check_momentum
207.6	d2au1_dx2
207.0 207.7	$\frac{d2az_1 dx_2}{d2az_1 dx_2} \dots \dots$
207.8	decompose
207.8 207.9	discharge2level
207.9	9
207.10	1
207.12	even_overtide_analytic

207.13	$friction_coefficient_dronkers \dots \dots \dots \dots \dots$	368
207.14	friction_coefficient_godin	368
207.15	friction_coefficient_lorentz	369
207.16	$friction_dronkers \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	369
207.17	friction_exponential_dronkers	369
207.18	friction_godin	369
207.19	friction_lorentz	369
207.20	friction_quadratic	370
207.21	friction_trigonometric_dronkers	370
207.22	friction_trigonometric_godin	370
207.23	friction_trigonometric_lorentz	370
207.24	$generate_delft3d \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	370
207.25	init	370
207.26	$mwl_offset \dots $	371
207.27	$mwl_offset_2 \dots \dots \dots \dots \dots \dots$	371
207.28	$mwl_offset_analytic \dots \dots \dots \dots \dots$	371
207.29	odefun	371
207.30	odefun 0	371
207.31	$odefun_advective_acceleration . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	371
207.32	$odefun_friction \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	371
207.33	odefun_ghof	371
207.34	odefun_swe_jacobian	372
207.35	$odefun_width \dots \dots$	372
207.36	odefunk	372
207.37	solve	372
207.38	solve_swe	372
207.39		
207.40	wave_number_analytic	373
207.41	wave_number_approximation	373
00d!! //: 1		0=0
•		373
$208.1 \\ 208.2$	Gamma	
208.3 208.4	river_tide_cai	
208.4	rt_quantities	3/4
209lib/tid	le/river-tide/@River_Tide_Empirical	374
209.1	River_Tide_Empirical	
209.2	fit_amplitude	
209.3	-	374
209.4		374
209.5	*	375
209.6	predict_amplitude	375
209.7	predict_mwl	

	209.8	predict_phase
	209.9	predict_range
	209.10	rt_model
21	alib/tid	$ ho$ e/river-tide/@River_Tide_JK 375
	210.1	River_Tide_JK
	210.2	damping_modulus
	210.3	mean_level
	210.4	rivertide_predict
	210.5	rivertide_regress
	210.6	tidal_discharge
	210.7	tidal_range
21	1lib/tid	$ ho$ e/river-tide/@River_Tide_Map 377
	211.1	River_Tide_Map
	211.2	fun
	211.3	key
	211.4	plot
21	2 ib/tid	e/river-tide/@River_Tide_Network 377
	212.1	River_Tide_Network
	212.2	discharge_amplitude
	212.3	mean_water_level
	212.4	plot_mean_water_level
	212.5	plot_water_level_amplitude
	212.6	solve
	212.7	water_level_amplitude
21	3lib/tid	le/river-tide 379
	213.1	damped_wave_bvp
	213.2	damped_wave_ivp
	213.3	damping_modulus_river
	213.4	rdamping_to_cdrag_tide
	213.5	river_tide_godin
	213.6	rt_celerity
	213.7	rt_quasi_stationary_complex
	213.8	rt_quasi_stationary_trigonometric
	213.9	rt_reflection_coefficient_gradual
	213.10	rt_wave_equation
	213.11	$rt_z2q\ \dots\ \dots\ 381$
21	4 ib $/ ext{tid}$	e/river-tide/test/test 381
	214.1	test_bvp2c_sym
	214.2	test_celerity

	214.3	$test_characteristic_rate_of_change \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	214.4	test_dronkers_compound
	214.5	test_friction_dronkers
	214.6	test_friction_dronkers2
	214.7	test_fv_compare_schemes
	214.8	test_fv_convergence
	214.9	test_power_series
	214.10	test_reflection_coefficient_gradual
	214.11	test_ricatti
	214.12	test_river_tide_models
	214.13	test_rt_reflection
	214.14	test_rt_zs0
	214.15	test_swe
	214.16	test_utm2latlon
	214.17	
		-
21	,	e/river-tide/test 383
	215.1	$test_bvp2c2 \dots $
	215.2	test_complex_even_overtide
	215.3	test_fourier_power_exp
	215.4	test_friction
	215.5	test_reflection
	215.6	$test_rt_wave_number \dots \dots 383$
	215.7	test_tidal_river_network
	215.8	$test_tidal_river_network_z0$
	215.9	test_tide_slack_exp
	215.10	test_wave_number_godin
	215.11	$test_wave_numer_aproximation \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
21	,	e/river-tide 384
	216.1	tidal_ellipse
	216.2	tide_slack_exp
	216.3	wave_number_tide
	216.4	wavetrainz
	216.5	wavetwopassz
ว 1	71:b /+:d	e/test/river-tide 385
<i>4</i> 1	217.1	e/test/river-tide
	217.1 217.2	-
	217.2 217.3	example_river_tide_map
	217.3	river_tide_test_01
	217.4 217.5	river_tide_test_01
	217.5 217.6	river_tide_test_02
	217.0 217.7	river_tide_test_04 286

217.8	river_tide_test_05	86
217.9	river_tide_test_06	86
217.10	river_tide_test_07	86
217.11	river_tide_test_08	86
217.12	river_tide_test_09	86
217.13	river_tide_test_10	37
217.14	river_tide_test_11	37
217.15	river_tide_test_12	
217.16	river_tide_test_13	37
217.17	river_tide_test_plot	37
218lib/tic	le/test 38	7
	test_tidal_harmonic_analysis	37
219lib/tic	de 38	7
219.1	tidal_constituents	
219.2	tidal_energy_transport_1d	
219.3	tidal_envelope	
219.4	tidal_envelope2	
219.5	tidal_harmonic_analysis	
219.6	tidal_range_exp	
219.7	tidal_range_tri	
	9	
ood:L/4:	1. // 1	_
•	le/tide-savenije 38	
220.1	savenije_phase_lag	39
220.1 220.2	savenije_phase_lag	39 39
220.1 220.2 220.3	savenije_phase_lag	39 39 00
220.1 220.2 220.3 220.4	savenije_phase_lag38savenije_tidal_range38savenije_tidal_range139savenije_timing_hw_lw39	39 39 00 00
220.1 220.2 220.3	savenije_phase_lag	39 39 00 00
220.1 220.2 220.3 220.4	savenije_phase_lag	39 39 00 00
220.1 220.2 220.3 220.4 220.5	savenije_phase_lag	39 39 00 00 00
220.1 220.2 220.3 220.4 220.5	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39	39 39 00 00 00
220.1 220.2 220.3 220.4 220.5 221lib/tid 221.1 221.2	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 tide_low_high_tri 39	39 39 00 00 00 00
220.1 220.2 220.3 220.4 220.5 221lib/tio 221.1 221.2 222root	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 39 39	39 39 00 00 00 00 00 00
220.1 220.2 220.3 220.4 220.5 221lib/tid 221.1 221.2	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 tide_low_high_tri 39	39 39 00 00 00 00 00 00
220.1 220.2 220.3 220.4 220.5 221lib/tid 221.1 221.2 222root 222.1 222.2	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 load_svn_externals 39 quick_data_download 39	39 39 00 00 00 00 00 00 00 00 00 00 00
220.1 220.2 220.3 220.4 220.5 221lib/tic 221.1 221.2 222root 222.1 222.2 223sangg	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 load_svn_externals 39 quick_data_download 39 au 39	39 39 00 00 00 00 00 00 00 02 02
220.1 220.2 220.3 220.4 220.5 221lib/tio 221.1 221.2 222root 222.1 222.2 223sangg 223.1	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 load_svn_externals 39 quick_data_download 39 sanggau_align_transect 39	39 39 00 00 00 00 00 00 02 02 02
220.1 220.2 220.3 220.4 220.5 221lib/tid 221.1 221.2 222root 222.1 222.2 223sangg 223.1 223.2	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 load_svn_externals 39 quick_data_download 39 au 39 sanggau_align_transect 39 sanggau_backscatter_coefficient 39	39 39 00 00 00 00 00 00 00 02 02 02
220.1 220.2 220.3 220.4 220.5 221lib/tic 221.1 221.2 222root 222.1 222.2 223sangg 223.1 223.2 223.3	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 load_svn_externals 39 quick_data_download 39 au 39 sanggau_align_transect 39 sanggau_backscatter_coefficient 39 sanggau_batch 39	39 39 30 00 00 00 00 00 00 00 00 00 00 00 00
220.1 220.2 220.3 220.4 220.5 221lib/tid 221.1 221.2 222root 222.1 222.2 223sangg 223.1 223.2 223.3 223.4	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_rangel 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 load_svn_externals 39 quick_data_download 39 sanggau_align_transect 39 sanggau_backscatter_coefficient 39 sanggau_batch 39 sanggau_boat_velocity 39	39 39 30 00 00 00 00 00 00 00 00 00 00 00 00
220.1 220.2 220.3 220.4 220.5 221lib/tic 221.1 221.2 222root 222.1 222.2 223sangg 223.1 223.2 223.3	savenije_phase_lag 38 savenije_tidal_range 38 savenije_tidal_range1 39 savenije_timing_hw_lw 39 tide-savenije 39 tide_low_high_exp 39 tide_low_high_tri 39 load_svn_externals 39 quick_data_download 39 au 39 sanggau_align_transect 39 sanggau_backscatter_coefficient 39 sanggau_batch 39	39 39 30 00 00 00 00 00 00 00 00 00 00 00 00

223.7	sanggau_compare_hadcp2rc
223.8	sanggau_compare_hadcp2rc_2
223.9	sanggau_compare_hadcp2rc_3
223.10	sanggau_compare_models
223.11	sanggau_critical_flow_depth
223.12	sanggau_cs_area
223.13	sanggau_dgps_bt_comparison
223.14	sanggau_energy_slope
223.15	sanggau_error_correlation
223.16	sanggau_error_h_u
223.17	sanggau_error_in_area
223.18	sanggau_export_coordinates
223.19	sanggau_gsd
223.20	sanggau_hadcp_calibration
223.21	sanggau_hadcp_correction_data
223.22	sanggau_hadcp_velocity_variation
223.23	sanggau_instationary_rating_curve
223.24	sanggau_ivm
223.25	sanggau_load_bed_level_2016
223.26	sanggau_load_gsd
223.27	sanggau_load_hadcp
223.28	sanggau_load_pilot
223.29	sanggau_maximum_vs_average_velocity 395
223.30	sanggau_mean_discharge
223.31	sanggau_metadata
223.32	sanggau_optimal_filter_length
223.33	sanggau_photmoetric_level_2016_11
223.34	sanggau_plot_backscatter
223.35	sanggau_plot_backscatter_flux
223.36	sanggau_plot_bathymetry_2d
223.37	sanggau_plot_bathymetry_2d_1
223.38	sanggau_plot_bathymetry_curvature
223.39	sanggau_plot_bed_profile_1d
223.40	sanggau_plot_bed_profile_1d_2 396
223.41	sanggau_plot_bed_profile_1d_3
223.42	sanggau_plot_bottom_track
223.43	sanggau_plot_cross_section
223.44	sanggau_plot_discharge_bart
223.45	sanggau_plot_error
223.46	sanggau_plot_hadcp_discharge
223.47	sanggau_plot_rating_curve
223.48	sanggau_plot_rc_mcmc
223.49	sanggau_plot_stage_change
223.50	sanggau_plot_surface_slope

223.51	sanggau_plot_transverse_velocity_profile
223.52	sanggau_plot_velocity_nz
223.53	sanggau_plot_vertical_profile
223.54	sanggau_plot_vertical_profile_parameter
223.55	sanggau_plot_z0_2d
223.56	sanggau_plots
223.57	sanggau_process_discharge
223.58	sanggau_process_discharge_bart
223.59	sanggau_quick_plot
223.60	sanggau_rating_curve
223.61	sanggau_rc_mcmc
223.62	sanggau_rc_vs_ivm
223.63	sanggau_redistribution_by_bathymetry
223.64	sanggau_rouse_profile
223.65	sanggau_sdm_scale_vs_depth
223.66	sanggau_stage_acf
223.67	sanggau_std_u_and_z
223.68	sanggau_test_discharge
223.69	sanggau_theoretic_sediment_transport
223.70	sanggau_transverse_velocity_profile
223.71	sanggau_velocity_direction
223.72	sanggau_velocity_profile
223.73	sanggau_veloctiy_profile_rozovskii
223.74	sanggau_z_0_campaigns
223.75	sanggau_z_0_convergence
223.76	sanggau_z_0_optimal_R
224root	400
224.1	startup

1 root

Root folder of the source code belonging to the doctoral thesis:

"Multi-Scale Monitoring and Modelling of the Kapuas River Delta", Karl K\"aster, 2019, $\,$

and master thesis:

"Computing the Spectrum of the Confined Hydrogen Atom", Karl K\" astner, 2012.

Copyright (C) 2010-2019 Karl K\"astner

Installation instructions:

- 1) Install Matlab
- Install subversion (svn) and add subversion to the search path, so that
 - it can be called from Matlab
- 3) Checkout this umbrella-project: svn checkout https://github.com/karlkastner/root/trunk root/
- 4) Start Matlab
- 5) Change into this directory ('root/')
- 6) Run the Matlab script "startup" located in this directory

The script then fetches the sub-repositories and adds them to the Matlab search path $\,$

Note:

The code upload is work in progress, more parts will be subsequently documented, added and tested.

This is experimental code. Use it wisely and at your own risk.

Licence:

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/>.

1.1 ROOTFOLDER

1.2 addpath_recursive

recursively add a directory and sub-directories to the Matlab search path call restoredefaultpath to undo this

0	1.1	/ • 1	•
ソ	lib/	'auxi	lıar
_	110/	auzri.	u

2.1 Expanding_Double

3 lib/auxiliar/adaptor

adators for backward compatibility for renamed files

- 3.1 Keller
- 3.2 MMesh
- 3.3 SMesh
- 3.4 Slg
- 4 lib/auxiliar
- 4.1 arabic2roman
- 4.2 autocat
- 4.3 bplus

4.5	centre_axis
4.6	$circshift_fractional$
4.7	$\operatorname{cmap_rolling}$
4.8	colormap3
4.9	${\bf colormap_byr}$
4.10	$\operatorname{copy_fields}$
4.11	${\rm copyfields_deep}$
4.12	$\operatorname{count}_{\operatorname{-}\!\operatorname{occurence}}$

4.13 cummax

4.4 btimes

4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

cummean cumstd cumvar

 \mathbf{cvec}

diag3

 down

dspace

 $field_range$

4.22 finite

4.23 flat

4.24	frac
4.25	${f getfield_deep}$
4.26	getout
4.27	hashcode
4.28	$imagesc_{-}$
4.29	innerspace
	b/auxiliar/io/@IniFile IniFile
	b/auxiliar/io Stream
6.2	$\mathrm{cat}\mathrm{XML}$

6.3 csv2cell 6.4 filewrite lib/auxiliar/io/netcat 7.1 nc 7.2 nc_read_row 7.3 nc_read_sequential 7.4 nc_read_sequential_column 7.5 nc_readall 7.6 nc_writeall

lib/auxiliar/io

8.1 parseXML

8.5	xml2struct	
9.1	lib/auxiliar isfield_deep	
9.2	$isprop_deep$	
9.3	issym	
9.4	$iterate_cell$	
9.5	jmemory	

8.2 printdef

8.3 printf

 $8.4 \quad save_{-}$

9.6	leftdiff
9.7	leftmean
9.8	limits
9.9	$linspace_man$
9.10	linspace_man2
9.11	${\bf logspace_trimmed}$
9.12	$ m matlab_messages$
9.13	maxid
if v	x of maximum alue is not required (e.g. use in other functions such as accummarray)

9.14 memsize

9.15	${f mlint}_{-}{f all}$
9.16	myhot
9.17	none
9.18	objcopy
10	lib/auxiliar/plot
10.1	addx
10.2	addy
10.3	$adjust_quiver_arrowhead_size$
10.4	area_man

- 10.6 axis_equal_man
- 10.7 candlestick_man
- 10.8 circle
- 10.9 cmap
- 10.10 colormap_man
- 10.11 colormap_man2
- $10.12 \quad colormap_man_old$
- 10.13 columnlegend
- 10.14 copyaxes
- 10.15 datetick_man

10.16 daytick

10.17 dcolormap

10.18 dots

10.19 errorarea

10.20 errorarea2

10.21 errorbar_man

10.22 errorlines

10.23 fetchsubplot

10.24 fillmarker

10.25 freezeColors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%
getCDataHandles get handles of all descendents with indexed CData	
CData %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%
getParentAxes return handle of axes object to which a given	
object belongs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%
checkArgs Validate input arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%
10.26 get_coordinates	
10.27 hatch	
10.28 hline	
$10.29 \mathrm{hold_color}$	
10.30 hourspace	

10.31	hourtick
10.32	interpplot
10.33	legendtitle
10.34	line_fewer_markers
input a a) once b) last c) once con 'x' -> 1	arker spec in varargin and remove it; extract special params: ockOnMax,Spacing size check e only the line with all points with the style t time the markers, using fewer points with style with a visible handle, only the first point, using the aplete style you specified marker delta-x constant; 'curve': spacing constant along the tree length
10.35	monthspace

10.36 monthtick

10.37 mycolourmap

10.38 namedfigure

```
10.39 nansurf
```

```
10.40 nmcolormap
```

10.41 patch_man

10.42 pdfprint

10.43 percenttick

10.44 plot2svg

Octave keeps s, d, p and h in the HandleGraphics object, for the square, diamond, pentagram, and hexagram markers, respectively -- Jakob Malm

Octave keeps s, d, p and h in the HandleGraphics object, for the square, diamond, pentagram, and hexagram markers, respectively -- Jakob Malm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10.45 plot_ellipse

10.46 plot_style

10.47 plotshaded

- 10.48 ploty4
- 10.49 plotyyy
- 10.50 quadsurf
- 10.51 quadsurf2
- 10.52 quadsurf3
- $10.53 \quad quiver 3_man$
- $10.54 \quad quiver_man$
- 10.55 quiver_man2
- $10.56 \quad quiver_man3$
- 10.57 rectangles

10.58 scaleplot

10.59 setfontsize

 $10.60 \quad shade_night$

10.61 splitfigure

10.62 turtle

10.63 velplot

10.64 vline

10.65 vline_man

10.66 weekspace

10.67 weektick

10.68 xtick

10.69 xticklabel

10.70 ytick

10.71 yticklabel

11 lib/auxiliar

11.1 relpos

11.2 rightdiff

11.3 rmfield_optional

11.4 rvec

11.5 select

11.6	${f setfield_deep}$
11.7	setfields
11.8	sign2str
11.9	signs
11.10	${f simplifyignore}$
11.11	$str_cell_reverse_index$
12 :	lib/auxiliar/strings
	chomp
12.2	chomp1
12.3	num2str_log10

- $12.4 \quad num2str_power_10$
- 12.5 strjoin
- $12.6 \quad strsplit_man$
- 12.7 suffix
- 13 lib/auxiliar
- 13.1 struct2obj
- 13.2 struct_avg
- 13.3 struct_flat
- 13.4 structcopy_deep
- 13.5 structfun_deep

13.6	sub2ind_man
13.7	subsall
13.8	swap
14	lib/auxiliar/system
	se POSIX and BASH functions ${ m alloc}$
	basename
14.3	cbrt
14.4	dirname
14.5	head

 $14.6 \quad head_str$

- 14.7 tail
- 14.8 tail_str
- 15 lib/auxiliar
- 15.1 toInt32
- ${\bf 15.2} \quad {\bf unique_columnwise}$
- 15.3 unpack_struct
- 15.4 unwrap_periodic
- 15.5 up
- 15.6 zoomaxis
- 16 lib/gis
- 16.1 GPX

16.2 batavia_zero lib/gis/centreline/@Centreline **17** 17.1 Centreline 17.2 channel_planimetry 17.3 clip 17.4 connect_graph 17.5 curvature 17.6 cut 17.7 determine_width

17.8 distance

- $17.9 \quad export_cross_section$
- $17.10 \quad export_node$
- 17.11 export_shp
- 17.12 find_nearest_segment
- 17.13 from_polygon
- 17.14 from_shp
- 17.15 get
- 17.16 init
- obj.seg_S(id(end)) = NaN;
- 17.17 init_connect
- 17.18 init_node_D

17.19	$link_centreline$
17.20	plot
17.21	${\bf plot_connection}$
17.22	prune
17.23	$prune_leaves$
17.24	prune_manually
17.25	reachable
17.26	$remove_duplicate_points$
17.27	resample

17.28 routing

17.29	routing2
17.30	$shp_resample_simple$
17.31	snmesh
17.32	squeeze
17.33	$ ext{trim_ends}$
17.34	$weighed_connection_matrix$
17.35	xy2sn
10 1	ib/gis/centreline/@Segment
18.1	Segment

18.2 build_inverse_index

- $18.3 \quad connectivity_matrix$
- 18.4 init_seg_id
- 19 lib/gis/centreline
- $19.1 \quad sn2xy_quadratic$
- 19.2 thalweg
- 19.3 xy2sn_quadratic
- 20 lib/gis
- $20.1 \quad gpx_export_csv$
- $20.2 \quad hgt_plot$
- $20.3 \ hgt_read$
- % [floor(mednan(z(kk))) meannan(z(kk)) min(z(kk)) max(z(kk))]
- $20.4 \;\; hgt_read_all$

- 20.5 hgt_resample
 20.6 nmeatime
- $21 \quad lib/gis/shapefile/@Shp$
- 21.1 Shp
- 21.2 area
- 21.3 buffer
- 21.4 cat
- 21.5 clip
- 21.6 clip_rect
- 21.7 close_polygon

21.8 concat

21.9 connect_network

TODO make unique attach segments to XY = [cvec(shp.X),shp.; knnsearch for nearest n neighbours for each segment

21.10 contour

- 21.11 cp
- **21.12** create
- 21.13 curvature
- 21.14 cut
- 21.15 diameter
- 21.16 edges

- $21.17 \quad export_geo$
- $21.18 \quad export_gpx$
- $21.19 \quad export_gpx_track$
- $21.20 \quad export_ldb$
- 21.21 export_poly
- $21.22 \quad export_sdf$
- 21.23 export_spline
- 21.24 extract_coastline
- 21.25 first_point
- 21.26 flat

21.27	$generate_four_colour_index$
21.28	${f import_geo}$
21.29	${f import_poly}$
21.30	join_lines
21.31	${ m last_point}$
21.32	length
21.33	length2
21.34	line2point
21.35	link_lines

21.36 make_clockwise

21.37	merge
21.38	merge2
21.39	padd₋nan
21.40	plot
21.41	points
21.42	$\mathbf{polygon_boundary}$
21.43	read
21.44	$\operatorname{read} \mathbf{Z}$

 ${\bf 21.45} \quad {\bf remove_duplicate_points}$

21.46 remove_leaves

21.47	remove_nan
21.48	$remove_polygon_closure$
21.49	$remove_short_elements$
21.50	renumber
21.51	resample
21.52	${ m resample_2}$
21.53	${ m resample_min}$
21.54	${ m resample_quick}$
21.55	scale

21.56 segment

- 21.57 select_for_refinement
- 21.58 set_geometry
- 21.59 set_resolution
- 21.60 skip
- 21.61 smooth
- $21.62 \quad split_jump$
- $21.63 \quad split_line$
- 21.64 split_nan
- 21.65 swap_hemisphere
- 21.66 translate

21.67 write

- 22 lib/gis/shapefile
- 22.1 astar_multi
- 22.2 astar_recursive

astar path finding algorithm

- 22.3 edge_chain
- 22.4 edge_from_bnd
- 22.5 preload_shp
- $22.6 \quad read_gpx$
- 22.7 shapewrite__

Copyright (C) 2014,2015 Philip Nienhuis

This program is free software; you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/>.

-*- texinfo -*-

@deftypefn {Function File} {@var{status} =} shapewrite (@var{shpstr }, @var{fname})

Write contents of map- or geostruct to a GIS shape file.

@var{shpstr} must be a valid mapstruct or geostruct, a struct array
 with an

entry for each shape feature, with fields Geometry, BoundingBox, and \boldsymbol{X} and \boldsymbol{Y}

(mapstruct) or Lat and Lon (geostruct). For geostructs, Lat and Lon field

data will be written as X and Y data. Field Geometry can have data values

of 'Point', 'MultiPoint', 'Line', or 'Polygon', all caseinsensitive. For

each shape feature, field BoundingBox should contain the minimum and maximum

(X,Y) coordinates in a 2x2 array [minX, minY; maxX, maxY]. The X
and Y

fields should contain X (or Latitude) and Y (or Longitude) coordinates for

each point or vertex as row vectors; for polylines and polygons vertices of

each subfeature (if present) should be separated by NaN entries.

@var{fname} should be a valid shape file name, optionally with a '.
 shp'

suffix.

shapewrite produces 2 or 3 files, i.e. a .shp file (the actual shape file),

a .shx file (index file), and if @var{shpstr} contained additional fields,

a .dbf file (dBase type 3) with the contents of those additional fields.

@var{status} is 1 if the shape file set was written successfully, 0
otherwise.

@seealso{shaperead, shapeinfo}

@end deftypefn

Author: Philip Nienhuis oprnienhuis@users.sf.net>

Created: 2014-12-30 Input validation

Assess shape variable type (oct or ml/geo ml/map)

Yep. Find out what type

Assume it is an Octave-style struct read by shaperead

Assume it is a Matlab-style mapstruct Assume it is a Matlab-style geostruct

Not a supported struct type

Check file name

Later on bname.shx and bname.dbf will be read

Prepare a few things

Change Lat/Lon fields into X/Y

Only now (after input checks) open .shp and .shx files & rewind just to be sure

Write headers in .shp & .shx (identical). First magic number 9994 + 5 zeros

In between here = filelength in 16-bit words (single). For .shx it'
 s known

Next, shp file version

Shape feature type

Bounding box. Can be run later for ML type shape structs. Fill with zeros

Skip to start of first record position

Write shape features one by one

Write record start pos to .shx file

Write record contents

 ${\tt Point}$

Record index number

Record length (fixed)

Shape type

Simply write XY cordinates

 ${\tt MultiPoint}$

Record index number

Record length

Shape type

Bounding box

Nr of points

Polyline/-gon

Record index number

Prepare multipart polygons

Augment idx for later on, & this trick eliminates trailing NaN rows

Record length

Shape type

Bounding box

Number of parts, number of points, part pointers

Write file length into .shp header

Close files

Check for dbfwrite function
Write rest of attributes
Attributes + shp data in mapstruct
Attributes + shp data in geostruct

- 22.8 shapewrite_man
- 22.9 shp2geo
- $22.10 \quad shp2kml$
- ${\bf 22.11 \quad shp_plot_attribute}$
- 22.12 split_section
- 22.13 write_polygon
- 23 lib/instrumentation/adcp/@ADCP
- 23.1 ADCP

ADCP superclass converts ADCP fixed integer raw data to floats with SI units provides functions for ADCP data manipulation calculated from the water temperature and sound frequency

23.2 Ds

```
depth of bin, distance between water surface (z_s) and (z_i) Ds = z_s - z_bin does not correct for tilts
```

23.3 Dt

projected distance from transducer to cell centres
if the instrument is not tilted, this is the vertical distance (
 depth)
between the transducer and cell centres
does not account for transducer depth

23.4 R

unprojected (slanted) distance between the transducer and cell centres

23.5 adc_current_slope

instrument type specific slope for converting raw current to Ampere c.f WorkHorse Commands and Output Data Format, March 2014 c.f. XMT Voltage and Current Channels originally undoccumented by RDI, and taken from Shields 2010

23.6 adc_voltage_slope

instrument series specific conversion factors for voltage c.f. WorkHorse Commands and Output Data Format, March 2014 c.f. XMT Voltage and Current Channels originally undoccumented by RDI, and taken from Shields 2010

23.7 assign_file

ensemble indices of each file

23.8 assign_water_level

assign water level to adcp ensembles (combine gauge with boat data)

23.9 average_profile

average backscatter for each sample within an specific interval

23.10 backscatter2ssc

wrapper for backscatter conversion

23.11 binsize

bin size (vertical distance between two bins)

23.12 blnk

blanking range, range from transduce to centre of first bin

23.13 btrange

convert raw btrange to vertical distance (projected distance) of
 the bed
level below the transducer, when the transducer is looking
 vertically down
this is the depth less the transducer depth

23.14 calc_backscatter

backscatter from echo intensity

23.15 clock_offset_STATIC

 ${\tt dt}$: median difference between adcp clock and UTC ${\tt sd_dt}$: standard error of ${\tt dt}$

23.16 convert_raw_binprops_STATIC

convert the raw bin properties to si-units

23.17 convert_raw_serial_STATIC

convert bytes of serial number into single number big endian system

23.18 convert_raw_time_STATIC

convert measurement time stamps into matlab internal format

23.19 convert_raw_velocity

convert scaled integer raw velocity to float SI (m/s)

23.20 convert_raw_velocity_STATIC

convert raw velocity to SI units (m/s)

23.21 copy

copy constructor

23.22 distmidbin1

convert raw distance to first bin centre to SI

23.23 file_ensemble_index

ensemble index eid_f with respect to file for ensemble eid

23.24 file_index

first and last ensemble index of of a file

23.25 filetime_min

start time of each file

$23.26 \quad fill_coordinate_gaps$

fill gaps in ensemble coordinates

23.27 filter_range

filter HADCP velocity by detecting the last valid bin if the bacscatter does not decreas over 10 bins, than obtstacle or intersection

23.28 heading_rad

convert raw instrument heading angle to [rad]

$23.29 \quad instrument_depth_m$

depth of instrument (for submerged deployments)

23.30 instrument_to_ship_STATIC

transform velocities from instrument reference to ship reference by correcting for pitch_rad and roll_rad

input

vel : float [arbitrary unit] instrument reference
btvel : float [arbitrary unit] instrument reference

pitch_rad : float [radians] true pitch_rad, not measured pitch_rad

roll_rad : float [radians]

output

vel and btvel [input unit] ship reference

23.31 lngthtranspulse

convert raw transmit pulse length to SI units (m)

23.32 load_RSSI_values_STATIC

load instrument specific backscatter conversion parameters

23.33 nbins

number of bins for each file

23.34 near_field_correction

new fiel correction of the acoustic backscatter

c.f. wall 2006

Psi : (nr,1) near field correction factor

23.35 nens

number of ensembles

23.36 pitch_rad

convert raw pitch to radians

23.37 pressure_bar

convert raw pressure to bar

23.38 range2binid

convert distance to transducer to bin index

23.39 roll_rad

convert raw instrument roll angle to [rad]

23.40 rotate_velocity

rotate the velocity in the horizontal plane with respect to the
 directional
vector dir

 dir : direction of the transect

23.41 rotate_velocity_sw

rotate velocity to local streamwise reference input velocity can have arbitrary reference

$23.42 ext{ ship_to_earth_STATIC}$

converts velocity from ship to earth coordinate reference expects input arguments informat:

vel : float arbitrary unit
btvel : float same unit as vel
heading_rad: float [radians]

23.43 sort_STATIC

sort files by start time

23.44 squeeze_STATIC

cut ensembles, skip ensembles or average ensembles in time

adcp : adcp structure

dt : time between output ensembles in seconds

mode : {'average', 'skip'}

mask : selection of ensembles to keep (computed from dt if not

provided)

fprintf(1,'Progress: %g\n\% %gs\n',idx/
 nt,tlast);

23.45 temperature_offset_C

instrument specific temperature offset

23.46 to_abs

velocity magnitude

23.47 transducer_temperature_C

convert raw transducer temperature to SI units [Celsius] T : (1,nt) water temperature

23.48 verify_pc_time

verify the time stored in the data file

24 lib/instrumentation/adcp/@Ensemble

24.1 Ensemble

container for ADCP ensemble data and properties

24.2 calc_beamcoords

claculate positions in world coordinates where the individual beams $\mbox{ hit the bottom }$

25 lib/instrumentation/adcp/@HADCP

25.1 HADCP

coverts raw data of horizontal ADCPs into physical quantities and provides functions for data processing

25.2 beam_to_instrument_STATIC

```
transform the 3 beam velocities into a set of 2 orthogonal velocities
and 1 error velocity
This uses always three beams (no two beam solutions)

input
vel : float [arbitrary unit] beam reference system
btvel : float [arbitrary unit] beam reference system
beamangle : float [radians]

output
vel and btvel [input unit] instrument reference system
```

25.3 bootstrap_backscatter

bootstrap uncertainty of the backscatter parameters

25.4 calc_beam_spreading_cone

beam spreading
Note: beams spread in the form of bessel functions
 this is the engineering approach as cones, which is however
 not
 a good approximation, it is better to approximate it as a
 gaussian

25.5 calc_bin_coordinates

get the cartesian (world) coordinates of the ${\tt HADCP}$ central beam bins

25.6 calibrate_backscatter

calibrate backscatter to sediment concentration by the method of Sassi

25.7 filter_velocity

filter outliers in velocity data

25.8 firmware_fix_STATIC

25.9 fixnan

interpolate invalid bin-samples from last and next ensemble

25.10 instrument_to_beam_STATIC

transform the 3 beam velocities into a set of 2 orthogonal
velocities
and 1 error velocity
This uses always three beams (no two beam solutions)

input
vel : float [arbitrary unit] beam reference system
btvel : float [arbitrary unit] beam reference system
beamangle : float [radians]

output
vel and btvel [input unit] instrument reference system

mode : beams used for all transformations
123, 12, 23, 13

25.11 reorder_velocity_STATIC

reorder the HADCP velocity data into the first three slots, the HADCP has just three beams, but the software stores data for four beams, similar to the four beam VADCPs

25.12 to_beam_STATIC

wrapper for conversion to beam velocity

Note that back-conversion to beam velocity is not unique in case of
3 beam

solutions (as RDI instruments doe not store which beams were used)
and
if instrument internal bin-mapping is used (whichs precise
algorithm remains
an RDI secret)

25.13 to_earth_STATIC

wrappter to transform velocities to world coordinate reference

25.14 to_instrument_STATIC

wrapper to convert velocity to instrument coordinate reference

25.15 to_ship_STATIC

wrapper for conversion to ship velocity

26 lib/instrumentation/adcp/@RDI_mmt

26.1 RDI_mmt

26.2 read

26.3 write

27 lib/instrumentation/adcp/@VADCP

27.1 VADCP

coverts raw data of vertical ADCPs into physical quantities

27.2 assign_transect

assign transect index to ensembles

27.3 backscatter_report

human readable output of calibration properties

fprintf(['Parameters and uncertainty with respect to 95%% confidence\n']);

27.4 beam_to_instrument_STATIC

transform the 4 beam velocities into a set of 3 orthogonal velocities
and 1 error velocity

input
vel : float [arbitrary unit] beam reference system
btvel : float [arbitrary unit] beam reference system
beamangle : float [radians]

output
vel and btvel [input unit] instrument reference system

TODO account for NaNs either by three beam solution or
interpolation

27.5 bottom_track_STATIC

compute bottom track coordinates

27.6 bscalibrate

backscatter to sediment calibration

```
calibtation subroutine
```

M_ref : sediment concentration calibration values

d_k : depth of virtual reference value K

(choose close to receiver, but out of near field, e.g.

within 2m .. 4m)

 ${\tt TODO}$: better documentation of input values

 ${\tt TODO}$: rename nk into ik, bacause it is an index and not a length

TODO rename r_ref and d_k into r_1 and r_2

27.7 bsgrid

evaluate the objective function at the selected points

27.8 bsinvert

backscatter inversion

27.9 bsjackknife

compute the jackknife estimates of the parameters and their covariances $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

27.10 bsjointcalibration

calibrate backscatter

27.11 btvel_from_position

determine boat velocity from bottom track, inverse of bottom track

27.12 calc_ssc

calculate the backscatter

27.13 cdf

compute and plot cumulative distribution (cdf) of the velocity components $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac$

27.14 convert_nFiles

convert coordinates of NMEA-nFiles

27.15 correct_coordinates

correct the bottom coordinates for pitch and roll

27.16 correct_for_platform_velocity_STATIC

correct for platform (boat) velocity, this is the negative bed velocity

27.17 depth_average_velocity

average the velocity over depth

27.18 depth_integrate

depth integrate the velocity to obtain specific discharge

27.19 depth_integrate_sediment_discharge

depth integrated sediment discharge

27.20 filter_velocity

filter the velocity data

27.21 fit_sediment_concentration_profile

27.22 fit_velocity_profile

fit velocity profile to the streamwise velocity

27.23 map_z

z-mapping, i.e. correct for roll and pitch of instrument

28 lib/instrumentation/adcp/@VADCP/old

28.1 assign_crossing

$29 \quad lib/instrumentation/adcp/@VADCP$

29.1 optstr

string of arguments, for file name generation

29.2 plot_track

plot the boat track

$29.3 \quad plot_velocity_components$

plot the velocity components

29.4 process

process VADCP data

29.5 range2depth

depth below transducer for individual bins of the beams

29.6 rangemask

mask all bins in range

29.7 to

transform velocity to given reference

29.8 to_beam_STATIC

convert velocity data to beam reference

$29.9 ext{ to_cs}$

transform velocity to cross section references cs-velocity is here defined as the velocity orthogonal to the cs % [0 1][c -s]=[-s c] % [1 0][s c] [c s]

29.10 to_earth_STATIC

transform coordinates to cartesian world reference system (earth)

29.11 to_sw

transform velocity with respect to depth averaged streamwise velocity $\boldsymbol{\theta}$

29.12 velocity_near_bed

velocity near the bed

29.13 xy2nts

project coordinates onto a single cross section and assign them nzcoordinates at a single cross section TODO this should be part of transect

30 lib/instrumentation/adcp

adcp : processing of Acoustic Doppler Current Profiler (ADCP) data

Processing in 3 Levels:

Level 1 : VADCP, HADCP, SPADCP

- convert raw data to CI units (m,s,kg)
- transform velocities to arbitrary coordinate references

- depth averaging and integration
- fit velocity profiles
- convert backscatter to suspended sediment concentration

Level 2 : CrossSection

- interpolate and integrate for cross sections

Instruction

see and run saggau/sanggau_process_discharge for a working
 example
to process VADCP discharge at a non-tidal station

30.1 ADCP_Bin

ADCP bin (single velocity values)

30.2 SPADCP

stream pro acoutic current doppler profiler

31 lib/instrumentation/adcp/backscatter/@Backscatter

31.1 Backscatter

acoustic backscatter processing

31.2 backscatter2ssc

convert backscatter to suspended sediment concentration
c.f lee hanes / sassi, with linear relation for reference
 concentration

31.3 backscatter2ssc_implicit

 ${\tt convert\ backscatter\ to\ suspended\ sediment\ concentration}$

this is the methog called "implicit" by hanes, though it is here still $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

implemented in an explicit way, as "explicit/imlicit" in hanes only mean euler forward or trapezoidal integration ${\sf var}$

31.4 backscatter2ssc_implicit_sample

convert backscatter to suspended sediment concentration, implicit method

31.5 backscatter2ssc_sample

convert backscatter 2 suspended sediment concentration

31.6 backscatter2ssc_sassi

convert backscatter to suspended sediment concentration ${\tt c.f. \ sassi}$

31.7 backscatter2ssc_sassi_sample

convert backscatter to suspended sediment concentration ${\tt c.f. \ sassi}$

31.8 fit

31.9 regmat

regression matrix

32 lib/instrumentation/adcp/backscatter

32.1 attenuation_coefficient

accoustic attenuation coefficient of suspended particles
hanes 2012

[d_mm] = mm
[f] = Hz = 1/s
[as] = 1/m (neper)
for db : chi_db = 8.7 chi_neper
[M] = kg/m^3 = mg/l

for normalization : chis = as(M=2650)

function [as,asnu,ass,X,chi] = attenuation_coefficient(d_mm,f,M,mode)

32.2 backscatter_coefficient

analytic determination of the backscatter coefficient

32.3 backscatter_coefficient_2

analytic basckatter coefficient thorne 2002 thorne 2012

32.4 backscatter_form_function

acoustic backscatter form function

32.5 backscatter_to_concentration

convert acoustic backscatter to suspended sediment mass concentration backscatter S has to be corrected for attenuation

32.6 backscatter_to_concentration2

convert acoustic backscatter to sediment concentration

32.7 derive_attenuation_coefficient

32.8 normalized_particle_radius

normalized particle radius

32.9 scattering_cross_section_general

acoustic cross sectin ? of sediment particles Medwin, ch. 7.5.3
Axially Symmetric Spherical Mode Solutions

32.10 sigma_geometric

differential cross section
geometrical backscattering for spherical bodies
ka >> 1, large particles or high frequencies
k : wave number

a : radius of the particle

32.11 sigma_rayleigh

Rayleigh scattering for a sphere (ka << 1) small particles or low frequencies
Medwin 7.5.2 Rayleigh Scatter From a Sphere (ka << 1)

32.12 ssc2backscatter

```
convert suspended sediment concentration to backscatter
function bs = ssc2backscatter(ssc,d_mm,f,varargin)

ssc : mass concentration of sediment [ssc] = g/1 = kg/m^3
d_mm : grain size diameter [d_mm] = mm
f : frequency [f] = Hz = 1/2
```

33 lib/instrumentation/adcp/cross-section/@ADCP_Transect

33.1 ADCP_Transect

zero dimensional processing of ADCP data no resampling, meshing or gridding

33.2 assign_to_transect

assign ensemble to respective transects
this has a side-effect (writes to) the adcp object,
but values of induvidial cross sections remain unaffected by each
other

33.3 compare

discharge summary

33.4 detect_crossings

detect consecutive navigation of transects (channel crossings)

33.5 detect_crossings_circling

separatate individual navigation of transects, for cases when the boat goes in circles and crosses the branches one after the other before returning to the original cross section, thus the boat does not turn at the other bank to return across the same section $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

and always navigates the cross section in the same direction

33.6 detect_crossings_returning

groups the ensembles into transects,

one transect is defined as all ensembles recorded during the time the boat $% \left(1\right) =\left(1\right) \left(1\right)$

moved from one bank to the other (return is defined as separate transect)

33.7 detect_rounds

detect rounds, i.e. when boat returns to initial position

33.8 export_mmt

export RDI mmt

33.9 extrapolate_to_bank

extrapolate values to bank

33.10 fit

33.11 integrate_discharge

integrate discharge

```
Q = sum q
q = A_n*u_s = h dn us
= h * [dx, dy]*[-v; u]
= h * dt * [-ub, -vb] * [-v; u]
```

note that uvb * dt is usually more accurate than dx of GPS position
,
if uvb determined by doppler shift of ADCP bottom echo,
except when the GPS position (or velocity) is determined from the
 carrier frequency

note that projection can be left out, if cs is defined with
 transect individual end points,
but not recommended, if there are strong secondary currents as
 encountered at
bends or bifurcations

33.12 plot

plot the transect as a line in cartesian coordinates

33.13 plot2d

plot transects

33.14 plot_rounds

plot rounds (consecutiver transects) navigated with the boat

34 lib/instrumentation/adcp/cross-section/@CrossSection

34.1 CrossSection

Level-3 ADCP data processing, projection to cross section and integration/averaging

34.2 calc_auxiliary_quant

compute auxiliary quantities

34.3 compare

interpolate for all cross-sections the values to the same time-slot for comparison $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

34.4 determine_time_slots

split data set into specific time slots

34.5 discharge

integrate the discharge over all finite elements of the cross section

34.6 extrapolate_S

extrapolate missing values along the vertical

34.7 extrapolate_backscatter

extrapolate the backscatter

34.8 extrapolate_backscatter_2d_STATIC

extrapolate backscatter to bed, surface and banks

34.9 extrapolate_bed_profile

extrapolate bed profile to channel banks

34.10 extrapolate_n

extrapolate value beyond end of cross section

34.11 extrapolate_velocity

extrapolate the velocity to the bank, bed, and surface

34.12 extrapolate_velocity_1d_STATIC

extrapolate depth averaged velocity

34.13 extrapolate_velocity_2d_STATIC

extrapolate velocity to banks, surface and bottom TODO, this is only applicable for Grid2

34.14 fit_bathymetry_2d

34.15 fit_bed_profile

fit the bed profile, has to precede n-z meshing of the cross-section

34.16 fit_cross_section

fit the optimal cross section as the main axis of the transect by regressing a line through the measurement points in the x-y plane

y = c0 + c1 x

34.17 fit_vertical_profile_of_velocity

fit vertical profile of the streamwise velocity

this function will work with both ensemble data, eg. U_bin taken from ensembles,

as well as gridded data, (U_bin taken from the velocity grid)

input

cs : struct : cross section averaged data

 $U_{\rm bin}$: [nrow x ncol] : vertical profiles of stream wise velocity $Z_{\rm bin}$: [nrow x ncol] : positions of bin above bottom for each

element in U_bin

ens.N : [ncolx1] : position of each column of U in along the

cross section

 $\begin{array}{lll} \mbox{ens.H} : [\mbox{ncolx1}] & : \mbox{depth of each column of U} \\ \mbox{ens.sH} : [\mbox{ncolx1}] & : \mbox{std of depth at each colum of U} \end{array}$

ens.ldx: [ncolx1] : last valid sample in column of U

 dw_z0 : scalar : grid cell size for grid_n

obj.roughnessmethod : method to use for the computation

output:

grid_n : struct : function of u_s and z_0 along cross section
us_ens, ln_z0_ens, U_ens : local estimates for input ensembles/grid
columns

not returned by every obj.roughnessmethod

34.18 fit_water_level

fit water level from depth measurement this works only if the ADCP is stationary

34.19 generate_mesh_tn

generate 1+1D mesh over time and across section

34.20 generate_mesh_tnz

generate a t-n-z mesh

34.21 optstr

string of options, for file name generation

34.22 plot_n_quiver

plot quiver across section

34.23 plot_nz

plot along n and z

34.24 plot_nz_quiver

quiver plot of velocity across section

34.25 plot_tn

plot over time and across channel

34.26 plot_xyz

plot values in "val" in the 2D cross section, where the cartesian rather than the local coordinates of the cross-section are used

34.27 process_backscatter

process backscatter, i.e. fit to cross-section grid from bin-values

34.28 process_backscatter_tn

process depth integrated backscatter over time t and acrross section $\ensuremath{\mathtt{N}}$

note: backscatter is processed as flux

due to high concentration and backscatter near the bottom, the inner rpoduct of the discharge and concentration \bar u \bar c_s is not a good estimate of the depth averaged sediment flux \bar{u c_s}

34.29 process_backscatter_tnz

process the backscatter in 2+1D (time, across channel and along vertical)

34.30 process_discharge

process the discharge

34.31 process_velocity_tn

process the velocity data

34.32 process_velocity_tnz

process velocity data in 2+1D (time, across-section and along vertical)

34.33 summarise

summarize discharge of cross section

$34.34 \quad var_n$

return value stored in field "fieldname" at position "N" in the cross section $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

$34.35 \quad var_t$

return value stored in filed "fieldname" at time t cross sectionally integrated or averaged value

34.36 var_tn

return values of field "fieldname" at time t and position N along cross section typically depth integrated or averaged values

$34.37 \quad var_tnz$

generically return value stored in field "fieldname" at time t and position $\ensuremath{\mathtt{N}}$

35 lib/instrumentation/adcp/cross-section

35.1 complete_profiles

```
fill gaps in profiles assumes profile to be constant in time, this is not true for tidal flow in compound cross sections and near banks
```

35.2 define_transect

gui user selection of cross-section end points

35.3 discharge_division

discharge division ratio

35.4 discharge_summary

```
compute and store discharge summary
    q_tn = cs.q_tn(ti);
    ndx = abs(N)<=Nlim;
    Qi = cs.dw*sum(q_tn)';
    Qi_centre = cs.dw*sum(q_tn(ndx,:))';
    Q = [Q; Qi];
    Q_centre = [Q_centre; Qi_centre];</pre>
```

35.5 load_vadcp_discharge

load previously computed vadcp discharge (auxiliary function for
 plotting)
this function stacks data from several vadcp reference measurements
 into one structure

This assumes that all data sets where processed with the same settings

35.6 split_transect2

36 lib/instrumentation/adcp/hadcp/@HADCP_Discharge

36.1 HADCP_Discharge

superclass for HADCP discharge estimation methods

36.2 fit

fit the model parameter for HADCP discharge prediction, estimate errors with the Jacknife method

37 lib/instrumentation/adcp/hadcp/@HDischarge

37.1 Hbin

37.2 calc_specific_discharge_weights

calculate unite discharge weights

37.3 estimate_discharge

integrate and scale specifc discharge to total discharge for each ensemble $% \left(1\right) =\left(1\right) \left(1\right)$

38 lib/instrumentation/adcp/hadcp/@HIVM

38.1 HIVM

Index velocity method of Horizontal ADCP data

$39 \quad lib/instrumentation/adcp/hadcp/@IVM$

39.1 IVM

index velocity method

40 lib/instrumentation/adcp/hadcp

40.1 ESM

40.2 ESM_individual

40.3 SDM

Specific Discharge Method
upscale specific discharge to cross sectionally integrate discharge
,
than average
this method is provenly less accurate than averaging before
upscaling

40.4 VPM

velocity profile method
correct individual bin velocities for vertical velocity profile
 variation,
then averagem, then upscale to cross sectionally integrated
 discharge

40.5 hadcp_homogenize_profile

homogenize the hadcp profile

40.6 hadcp_homogenize_profile2

homogenise the horizontal velocity profile

40.7 wavg

weighted average ?

40.8 wavg_mean

weighted average

40.9 wopt

optimal weights for averaging (lumped) velocities that are each associated with error variance s2

41 lib/instrumentation/adcp

adcp : processing of Acoustic Doppler Current Profiler (ADCP) data

Processing in 3 Levels:

Level 0 : Read in of raw-data (externally provided by ADCPtools, Vermeulen et al.)

Level 1: VADCP, HADCP, SPADCP

- convert raw data to CI units (m,s,kg)
- transform velocities to arbitrary coordinate references
- depth averaging and integration
- fit velocity profiles
- convert backscatter to suspended sediment concentration

Level 2 : CrossSection

- interpolate and integrate for cross sections

Instruction:

see and run saggau/sanggau_process_discharge for a working
 example
to process VADCP discharge at a non-tidal station

41.1 smooth_track

smooth a repeatedly navigated (circular) track to produce and
 idealized
average track

41.2 streawise_velocity

rotate ensembles in stream direction (transverse velocity integrates to zero)

42 lib/instrumentation/adcp/test

42.1 example_backscatter_coefficient_2

42.2 test_backscatter_coefficient

42.3 test_bedslope

42.4 test_delta_z_correction

42.5 test_depth_range

- 42.6 test_linearisation
- 42.7 test_procTrans_vele
- 42.8 test_rotvel
- $42.9 \quad test_sanggau_load_bed_level_2016$
- 42.10 test_sanggau_rc

43 lib/instrumentation/adcp

adcp : processing of Acoustic Doppler Current Profiler (ADCP) data

Processing in 3 Levels:

Level 0 : Read in of raw-data (externally provided by ADCPtools, Vermeulen et al.)

Level 1 : VADCP, HADCP, SPADCP

- convert raw data to CI units (m,s,kg)
- transform velocities to arbitrary coordinate references
- depth averaging and integration
- fit velocity profiles
- convert backscatter to suspended sediment concentration

Level 2 : CrossSection

- interpolate and integrate for cross sections

Instruction:

see and run saggau/sanggau_process_discharge for a working example

to process VADCP discharge at a non-tidal station

43.1 zztransform

```
non-linear mapping for bin coordinates when depth averages between
   ensembles
for avaraging several ensembles
      preserve discharge w int u_avg dz = int int u dz dn = Q
      perserve shear stress is the same (u_avg)^2_s = mean((u_s)^2)
      preserve sediment transport w int u_avg c_avg dz = int int u
          c dz dn
    preserve rouse number
      alternative : correct parameters for effects of averaging
several approaches :
s-transform : z_1' = HO/H1 z_1, perserves u_bar
                             does not preserve u_* (du/dz|_0)
clipping : z_1' = z_1, z_1 < HO, does not preserve u_bar
                                  unclear if HO>H1
                                perserves (du/dz)_0 (u_*)
zz-transform : perserve both u_bar and u_
TODO this is non-monotoneous when difference in HO and H1 is large
```

44 lib/instrumentation/pressure-gauge/@PressureGauge

44.1 PressureGauge

44.2 apply_corrections

```
obj.time(fdx) = NaN;
```

44.3 assign_upstream_km

44.4 check_filetime

44.5	estimate_altitude_transducer
44.6	${\rm export_csv}$
44.7	filter
44.8	merge
44.9	$\operatorname{readIDC}$
44.10	${ m readTxt}$
44.11	resample
44.12	${f stft}$

44.13 wavelet_transform

45	lib/instrumentation/sonar/@Sonar
45.1	Sonar
45.2	cat
45.3	compare
45.4	complete
45.5	equalise_echo
45.6	$\operatorname{export_shp}$
45.7	$export_table$
45.8	$\mathbf{export_xyz}$
45.9	from data

45.10	$from_dep$
45.11	$from_sl2$
45.12	from_slg
45.13	${ m from_slg2txt}$
45.14	remove
45.15	select
45.16	to_metric
46 l	ib/instrumentation/sonar DEP

46.2 DGPS

46.3 sortfiles

46.4 test_loadSLG

47 lib/mathematics/calendar

47.1 days_per_month

47.2 isnight

48 lib/mathematics

mathematical functions of various kind

48.1 cast_byte_to_integer

cast byte to integer

49 lib/mathematics/complex-analysis

operations on complex numbers

$49.1 \quad complex_exp_product_im_im$

product of the imaginary part of two complex exponentials the product has two frequency components

input :

 ${\tt c} \; : \; {\tt complex} \; {\tt amplitudes} \;$

o : frequencies

output :

cp : amplitude of the product
op : frequencies of the product

49.2 complex_exp_product_im_re

```
product of the imaginary part of one and the real part of a second
 complex exponential
the product has two frequency components
input :
      c : complex amplitudes
      o : frequencies
output :
      cp : amplitude of the product
       op : frequencies of the product
      complex_exp_product_re_im
49.3
the product has two frequency components
 product of the imaginary part of one and the real part of a second
 complex exponential
 input :
      c : complex amplitudes
      o : frequencies
output :
       cp : amplitude of the product
       op : frequencies of the product
49.4 complex_exp_product_re_re
 product of the real part of two complex exponentials
re(c1 exp(io1x))*re(c2 exp(io2x)) =
              real(c1*c2*exp(i*(n1+n2)*o*x)) ...
       1/2*(
             + real(conj(c1)*c2*exp(i*(n2-n1)*o*x)) )
the product has two frequency components
input:
      c : complex amplitudes
      o : frequencies
```

output :

cp : amplitude of the product
op : frequencies of the product

49.5 croots

nth-roots of a complex number

input:

c : complex number
n : order of root
 n must be rational, to obtain n solutions
 otherwise no finite set of solutions exists

 $\ensuremath{\mathtt{r}}$: roots of the complex number

49.6 root_complex

root of a complex number

49.7 test_imroots

50 lib/mathematics/derivation

derivation of several functions by means of symbolic computation

50.1 derive_acfar1

50.2 derive_ar2param

50.3 derive_arc_length

50.4	${\bf derive_fourier_power}$
50.5	$derive_fourier_power_exp$
50.6	derive_laplacian_curvilinear
50.7	derive_laplacian_fourier_piecewise_linear
50.8	${\bf derive_logtripdf}$
50.9	$derive_smooth1d_parametric$
51	lib/mathematics/derivation/master
51.1	$derive_bc_one_sided$
51.2	${\bf derive_convergence}$
51.3	$ ext{derive_error_fdm}$

 $51.4 \quad derive_fdm_poly$ $51.5 \quad derive_fdm_power$ 51.6 derive_fdm_taylor $51.7 \quad derive_fdm_vargrid$ 51.8 derive_fem_2d_mass 51.9 derive_fem_error_2d 51.10 derive_fem_error_3d 51.11 derive_fem_sym_2d

 ${\bf 51.13}\quad {\bf derive_interpolation}$

51.12 derive_grid_constants

51.14	derive_laplacian
51.15	$\operatorname{derive_limit}$
51.16	$derive_nc_1d$
51.17	$ m derive_nc_1d_$
51.18	$ m derive_nc_2d$
51.19	${\bf derive_nonuniform_symmetric}$
%	
51.20	$derive_richardson$
51.21	$derive_sum$
51.22	nn

51.23 test_derive

- 51.24 test_derive_fdm_poly
- 51.25 test_filter
- 51.26 test_vargrid

52 lib/mathematics/derivation

derivation of several functions by means of symbolic computation

 $52.1 \quad simplify_atan$

symbolic simplification of the arcus tangent

53 lib/mathematics

mathematical functions of various kind

 $53.1 \quad \exp 10$

- 54 lib/mathematics/finance
- $54.1 \quad derive_skewrnd_walsh_paramter$
- $54.2 \quad gbm_cdf$

- $54.3 \ gbm_{i}$
- $54.4 \quad gbm_fit_old$
- $54.5 \quad \mathrm{gbm_inv}$
- 54.6 gbm_mean
- 54.7 gbm_median
- $54.8 \quad gbm_{-}pdf$
- $54.9 \quad gbm_simulate$
- 54.10 gbm_skewness
- $54.11 \quad gbm_std$
- $54.12 \quad gbm_transform_time_step$

- 54.13 put_price_black_scholes
- 54.14 skewgbm_simulate
- 54.15 skewrnd_walsh
- 55 lib/mathematics/finance/test
- 55.1 test_gbm
- 55.2 test_gbm_pdf
- 55.3 test_skewrnd_walsh
- $156 \quad lib/mathematics/fourier/@STFT$
- 56.1 STFT

class for short time fourier transform

Note: the interval Ti should be set to at leat 2*max(T), as
 otherwise coefficients
 tend to oscillate in the presence of noise
Note: for convenience, the independent variable is labeled as time
 (t),
 but the independent variable is arbitrary, so it works
 likewise in space

56.2 itransform

inverse of the short time fourier transform

56.3 stft_

static wrapper for STFT

56.4 stftmat

transformation matrix for the short time fourier transform

56.5 transform

short time fourier transform

57 lib/mathematics/fourier

support and analysis functions both for the discrete (fast) fourier
 transform (dft/fft)
and continuous fourier analysis (fourier series)

57.1 amplitude_from_peak

amplitude and standard deviation of the amplitude of a frequency
 component
represented by a peak in the fourier domain
input :
h : peak height
w : peak width at half height

output:
a : amplitude in real space
s : standard deviation of the frequency (!)

57.2 dftmtx_man

fourier matrix in matlab style with a limited number of rows, columns of higher frequencies are omitted $% \left(1\right) =\left(1\right) \left(1\right$

input :

n : number of samples
nr : number of columns

output :

F : fourier matrix

57.3 example_fourier_window

57.4 fft_derivative

derivative by fourier transform exponential convergence for periodic functions results in spurious oscillations for aperiodic functions

input:

 ${\bf x}$: data, sampled in equal intervals

k : order of the derivative

dx : kth-derivative of x

57.5 fft_man

fast fourier transform for complex input data

input:

F : data in real space

output :

F: fourier transformation of F

57.6 fftsmooth

```
smooth the fourier transform and determine upper and lower bound
    confidence intervals

input :
f :
sfunc : a smoothing function (for example fir convolution with
    rectangular window)
        returns filtered (mean) value and normalized fir window

nf : window length
nsigma : number of standard deviations for confidnce intervals

output :
ff : filtered fourier transform
l : lower bound
u : upper bound
```

57.7 fix_fourier

```
fill gaps (missing data) by means of fourier extrapolation

fix periodic data series with fourier interpolation
longest gap should not exceed 1/2 of the shortest time span of
  interest (1/cutoff frequency)
note: this limit equals the position of first side lobe of the ft
  of a rectangular window with gap length
```

57.8 fourier axis

```
return axis of frequencies and periods for the discrete fourier
    transform
as computed by fft (matlab-style)

input:
X : sample locations (equal interval)
L : length of samples
n : number of samples

output :
f : frequencies
T : periods
mask : mask for 1/2 of the fourier transform
```

(as both halves are complex conjugates)

N : frequency id

57.9 fourier_cesaro_correction

57.10 fourier_coefficient_piecewise_linear

fourier series coefficients of a piecewise linear function (not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input :

l,r : end points of piecewise linear function

lval, rval : values at end points

L : length of domain

 ${\tt n}$: number of samples/highest frequency

output :

a, b : coefficients for frequency components

57.11 fourier_coefficient_piecewise_linear_1

fourier series coefficients of a piecewise linear function (not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input :

 ${\tt X}$: end points of piecewise linear function

Y : values at end points

output :

ab : coefficients for frequency components

57.12 fourier_coefficient_ramp3

fourier series coefficient of a ramp

57.13 fourier_coefficient_ramp_pulse

fourier series coefficient of a ramp pules

57.14 fourier_coefficient_ramp_step

fourier coefficient of a ramp-step

57.15 fourier_coefficient_square_pulse

fourier series coefficients of a square pulse

57.16 fourier_cubic_interaction_coefficients

57.17 fourier_derivative

coefficients of the derivative of a fourier series not of discrete fourier transform (fft)

57.18 fourier_expand

expand values of fourier series

57.19 fourier_fit

fit a fourier series to a set of sample points that are not spaced
 in
equal intervals

57.20 fourier_interpolate

interpolate samples y sampled at moments (location) t to locations $\ensuremath{\text{ti}}$

57.21 fourier_matrix

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

57.22 fourier_matrix2

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

57.23 fourier_matrix3

transformation matrix for the continous fourier transform this is a matrix with (2*n+1) real columns

57.24 fourier_matrix_exp

transformation matrix for a continuous fourier series
(not for the discrete dft/fft)

57.25 fourier_multiplicative_interaction_coefficients

57.26 fourier_power

powers of a continuous fourier series in sin/cos form

powers of a^p = (ur + u1 sin(ot) + u2 sin(ot+dp))^p phase of first component assumed 0

frequencies higher than 2-omega ignored in input frequencies higher than 3-omega not computed

57.27 fourier_power_exp

57.28 fourier_predict

expand a continous fourier series at times t

57.29 fourier_quadratic_interaction_coefficients

57.30 fourier_range

approximate range of a continous Fourier series with 2 components range(y) = max(y) - min(y)

57.31 fourier_regress

fit a continous fourier series to a set of sample points not
 sampled
at equal intervals

57.32 fourier_resampled_fit

fits coefficients of a continuous fourier transform, but stores them as resampled values

57.33 fourier_resampled_predict

```
interpolates a continuous fourier series that has been stored as values at their support points  \\
```

57.34 fourier_signed_square

```
coefficients of the fourier series of | cos a + cos t | (cos a +
    cos t)
in general
    cos a is midrange
    cos t is tidal variation
c.f Dronkers
```

57.35 fourier_transform

```
continuous fourier transformation of y
(not discrete fourier transformation dft/fft)

input:
    b : data sampled at equal intervals
    T : length of data in time or space, i.e. position of last
        sample if
        position of first sample is 0
    T_max : maximum period to include

output :
    A : fourier matrix
    p : fourier transformation of b
    tt : TODO
```

57.36 hyperbolic_fourier_box

57.37 idftmtx_man

inverse matrix for the discrete fourier transform in matlab style with a limited number of columns, thus ignoring higher frequencies keep 2nc+1 columns (mean and conj-complex pairs of nc frequencies)

57.38 laplace_2d_pwlinear

```
solution to the Laplacian in two dimensions for a finite
    rectangular domain
with piecewise constant boundary conditions
 linear system with 4 unknowns per freqency component
 these are coefficients of s,c,sh,ch
       (pu*(s + c) + qu*(s' + c'))*(shu + chu) = ru
                                                         % upper bc
       (pd*(s + c) + qd*(s' + c'))*(shd + chd) = rd
                                                         % lower bc
       ( (sl + cl)*( pl*(shl + chl) + ql*(shl' + chl')) = rl % left
       ((sr + cr)*(pr*(shr + chr) + qr*(shr' + chr')) = rr % right
 least squares with piecewise integration
 [x0,p,q,r] piecewise linear polynomials at the boundaries
57.39
       nanfft
discrete fourier transform of a data series with gaps
57.40 peaks
peaks of the power spectrum of a disctrete fourier transform
rule for peaks: there is no higher value left or right of the "peak
               until the signal drops to p*y_peak, p = 0.5
works best, when spectrum has been smoothened
input :
f : frequency
y : absolute value of fourier transform (power spectrum)
L : length in space or time of series
output :
a0 : amplitude
s0 : standard deviation (error?) of amplitude
w0 : width of peak
lambda = wave length (period?)
pdx : index of peak
f : frequency (if not given as input)
```

57.41 roots_fourier

zeros of continuous fourier series series

$$f = a_0 + sum_j = n a_i cos(j x) + b_i sin(j x)$$

57.42 spectral_density

spectral density

57.43 test_complex_exp_product

57.44 test_fourier_filter

57.45 test_idftmtx

58 lib/mathematics/geometry/@Geometry

58.1 Geometry

58.2 arclength

```
arc length of a two dimensional curve
```

8th order accurate

does not require the segments length to vary smoothly

note: the curve can be considered parametric, e.g. x = x(t), y=y(t)

and t = t(s), but the error term contains derivatives of t, thus a non smooth t (strongly varying distance between points) requires the scaling as done below

58.3 arclength_old

arc length of a two dimensional function

58.4 arclength_old2

arc length of a two dimensional function

58.5 base_point

base point (fusspunkt), i.e. point on a line with shortest distance to another point $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

58.6 base_point_limited

base point (Fusspunkt) of a point on a line

58.7 centroid

centroid pf a polygone

58.8 cosa_min_max

58.9 cross2

cross product in two dimensions

58.10 curvature

curvature of a function in two dimensions

58.11 ddot

sum of squares of cos of inner angles of triangle

58.12 distance

equclidan distance between two points

58.13 distance2

euclidean distance between two points
this function requires a and be of equal dimensions, or the least
the first pair or second pair to be a scalar

58.14 dot

dot product

58.15 edge_length

edge length

58.16 enclosed_angle

angle enclosed between two lines

58.17 enclosing_triangle

smallest enclosing equilateral triangle with bottom site paralle to $\ensuremath{\mathtt{X}}$ axis

58.18 hexagon

coordinates of a hexagon, scaled and rotated

58.19 inPolygon

flag points contained in a polygon much faster than matlab internal function

58.20 inTetra

flag points contained in tetrahedron

58.21 inTetra2

flag points contained in tetrahedron

58.22 inTriangle

flag points contained in triangle
function [flag, c] = inTriangle(P1,P2,P3,P0)

58.23 intersect

intersect between two lines

58.24 lineintersect

intersect of two lines

58.25 lineintersect1

intersect of two lines

58.26 minimum_distance_lines

minimum distance of two lines in three dimensions

58.27 mittenpunkt

mittenpunkt of a triangle

58.28 nagelpoint

nagelpoint of a triangle

58.29 onLine

58.30 orthocentre

orthocentre of triangle

58.31 plumb_line

58.32 poly_area

area of a polygon
function A = poly_area(x,y)

58.33 poly_edges

edges of a polygon

58.34 poly_set

associate point at arbitary location with a polygon it is contained in and assign the value of the polygon to it

58.35 poly_width

width of polygon width holes by surface normals
holes / islands separated with NaN
order of points of outer boundary must be cw
order of points of holes must be ccw
note that this function does not give the true width for expanding
sections
use voronoi polygons for this

58.36 polyxpoly

intersections of two polygons

58.37 project_to_curve

closest point on a curve with respect to a point at distance to the $\ensuremath{\text{curve}}$

58.38 quad_isconvex

58.39 random_disk

 ${\tt draw} \ {\tt random} \ {\tt points} \ {\tt on} \ {\tt the} \ {\tt unit} \ {\tt disk}$

58.40 random_simplex

random point inside of a triangle

58.41 sphere_volume

volume of a sphere

58.42 tetra_volume

volume of a tetrahedron

58.43 tobarycentric

cartesian to barycentric coordinates

58.44 tobarycentric1

cartesian to barycentric coordinates

58.45 tobarycentric2

cartesian to barycentric coordinates

58.46 tobarycentric3

cartesian to barycentric coordinates

58.47 tri_angle

cos of angles of a triangle

58.48 tri_area

angle of a triangle

58.49 tri_centroid

centroid of a triangle

$58.50 \quad tri_distance_opposit_midpoint$

distance between corner of a triangle and its opposing mid-point

58.51 tri_edge_length

edge length of a triangle

58.52 tri_edge_midpoint

mid point of a triangle

58.53 tri_excircle

excircle of a triangle

58.54 tri_height

height of a triangle

58.55 tri_incircle

incircle of a triangle

58.56 tri_isacute

flag acute triangles

58.57 tri_isobtuse

flag obntuse triangles

58.58 tri_semiperimeter

semiperimeter of a triangle

58.59 tri_side_length

edge lenght of triangle

59 lib/mathematics/geometry

59.1 Polygon

Simple 2D polygon class

Polygon properties:

x - x coordinates of polygon
y - y coordinates of polygon
nnodes - number of nodes in the polygon

Polygon methods:

in - checks whether given points lie inside, on the edge, or
 outside of the polygon
area - returns the area of the polygon
centerline - computes the centerline of the river
iscw - check whether polygon is clockwise
reverse - reverse the order of the polygon

59.2 bounding_box

bounding box of X

59.3 curvature_1d

curvature of a sampled parametric curve in two dimensions

59.4 cvt

centroidal voronoi tesselation

$59.5 \quad deg_to_frac$

degree, minutes and seconds to fractions $% \left(1\right) =\left(1\right) \left(1\right$

59.6 ellipse

n-points on an ellipse

59.7 ellipseX

x-coordinates of y-coordinates of an ellipse

59.8 ellipseY

59.9 first_intersect

get first intersection between lines in ${\tt A}$ and ${\tt B}$

59.10 golden_ratio

golden ratio

59.11 hypot3

hypothenuse in 3D

59.12 meanangle

weighted mean of angles

59.13 meanangle 2

```
mean angle
```

59.14 meanangle3

mean angle

59.15 meanangle4

mean angle

59.16 medianangle

```
{\tt median} angle angle, that has the smallest squared distance to all others
```

59.17 medianangle 2

```
median angle
input
alpha : x*m, [rad] angle

ouput
ma : 1*m, [rad] median angle
sa : 1*m, [rad] standard error of median angle for uncorrelated
    error
```

59.18 pilim

```
limit to +- pi
```

59.19 streamline_radius_of_curvature

```
streamline radius of curvature
simplifies when rotatate to streamwise coordinates to R = 1/dv/ds *
     lib/mathematics/histogram/@Histogram
60
60.1
      2x
60.2
     Histogram
60.3 bimodes
60.4 cdf
60.5 cdfS
60.6 chi2test
60.7 cmoment
60.8 cmomentS
```

60.9 entropy

60.10 entropyS

60.11 iquantile

60.12 kstest

60.13 kurtosis

60.14 kurtosisS

60.15 mean

60.16 meanS

60.17 median

60.18 medianS

- 60.19 mode
- $60.20 \mod S$
- 60.21 moment
- 60.22 momentS
- 60.23 pdf
- 60.24 quantile
- 60.25 quantileS
- 60.26 setup
- 60.27 skewness
- 60.28 skewnessS

60.29	stairs
60.30	stairsS

 $60.31 ext{ std}$

60.32 stdS

60.33 var

60.34 varS

 $61 \quad lib/mathematics/histogram$

61.1 hist_man

61.2 histadapt

61.3 histconst

61.4	$\operatorname{pdf-poly}$
61.5	plotcdf
61.6	${\it test_histogram}$
	$ m lib/mathematics/linear-algebra$ $ m averaging_matrix_2$
62.2	colnorm
norms	of columns
62.3	$\mathrm{condest}_{-}$
estima	ation of the condition number
63	${ m lib/mathematics/linear-algebra/coordinate-transformation}$
63.1	barycentric2cartesian
baryce	entric to cartesian coordinates
63.2	barycentric2cartesian3

convert barycentric to cartesian coordinates

63.3 cartesian2barycentric

cartesian to barycentric coordinates

$63.4 \quad cartesian_to_unit_triangle_basis$

transform coodinates into unit triangle

63.5 ellipsoid2geoid

63.6 example_approximate_utm_conversion

63.7 latlon2utm

transform latitude and longitude to WGS84 UTM

63.8 latlon2utm_simple

63.9 lowrance_mercator_to_wgs84

convert lowrance coordinates to wgs84 based on spreadsheet by D Whitney King and Patty B at Lowrance

63.10 nmea2utm

convert nmea messages to utm coordinates

$63.11 \quad sn2xy$

convert sn to xy coordinates

63.12 unit_triangle_to_cartesian

transform coordinates in unit triangle to cartesian coordinates

63.13 utm2latlon

convert wgs84 utm to latitute and longitude

63.14 xy2nt

project all points onto the cross section and assign them nz-coordinates

transform coordinate into N-T reference rotate coordinate, so that cross section goes along x-axis then x and y are n and t respectively scaled by width N and T coordinates

$63.15 \quad xy2sn$

convert cartesian to streamwise coordiantes

$63.16 \text{ xy}2\text{sn_java}$

use java port for speed up

$63.17 \text{ xy}2\text{sn_old}$

transform points from cartesian into streamwise coordinates

 $\ensuremath{\mathsf{NOTE}}$: prefer the java version, this has some problems with round off

64 lib/mathematics/linear-algebra

$64.1 \quad det2x2$

2x2 matrix inverse of 2x2 matrices stacked along dim 3

$64.2 \det 3x3$

determinant of stacked 3x3 matrices

$64.3 \det 4x4$

determinant of stacked 4x4 matrices

64.4 diag2x2

diagonal of stacked 2x2 matrices

$64.5 \quad eig2x2$

eigenvalues of stacked 2x2 matrices

65 lib/mathematics/linear-algebra/eigenvalue

65.1 eig_bisection

65.2 eig_inverse

65.3 eig_inverse_iteration

65.4 eig_power_iteration

- 66 lib/mathematics/linear-algebra/eigenvalue/jacobidavidson
- $66.1 \quad afun_{jdm}$
- 66.2 davidson
- 66.3 jacobi_davidson
- 66.4 jacobi_davidson_qr
- 66.5 jacobi_davidson_qz
- 66.6 jacobi_davidson_simple
- 66.7 jdqr

[%] Read/set parameters

[%] Initiate global variables

[%] Return if eigenvalueproblem is trivial

[%] Initialize V, W:

[%] V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular

[%] The JD loop (Standard)

```
V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V, *W
%
% Compute approximate eigenpair and residual
%
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   V W AV.
   Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
```

```
V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
%
   M=W,*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
  _____
```

```
%====== END ARNOLDI
% not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
   _____
% compute vectors and matrices for skew projection
% solve preconditioned system
% O step of bicgstab eq. 1 step of bicgstab
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
\% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Q explicitly
\% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
\% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
\% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1];
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
```

66.8 jdqr_sleijpen

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
% V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V'*W
% Compute approximate eigenpair and residual
%
%
%
\% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
\% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
```

```
(A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%
\mbox{\ensuremath{\mbox{\%}}} Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
\% The JD loop (Harmonic Ritz values)
   V W AV.
%
   Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
%
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
\% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
```

```
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
   _____
%===== END ARNOLDI
   _____
% not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
   % compute vectors and matrices for skew projection
% solve preconditioned system
% 0 step of bicgstab eq. 1 step of bicgstab
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
\% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
\% Do the orth to Q explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
```

```
%-----
\% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
% transform real schur form to complex schur form
%----- find order eigenvalues -----
%----- reorder schur form ------
%----- compute qz form ------
%----- sort eigenvalues ------
%----- sort qz form ------
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
%% 'v'
```

66.9 jdqr_vorst

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
%    V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
%    V orthogonal, V orthogonal to Qschur
%    V*V=eye(j), Qschur'*V=0,
```

```
%
   W=A*V, M=V*W
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
  V W AV.
%
  Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
```

```
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
%
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
   M=W'*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
  _____
%====== END ARNOLDI
  % not accurate enough M=Rw'\(M/Rv);
```

```
%====== COMPUTE SORTED JORDAN FORM
% accepted separation between eigenvalues:
% no preconditioning
% solve left preconditioned system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
% no preconditioning
% solve two-sided expl. precond. system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
% "unprecondition" solution
\%\%\% u(:,j+1)=Atilde*u(:,j)
%%%% r(:,j+1)=Atilde*r(:,j)
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues -----
%----- reorder schur form -----
%----- compute qz form ------
%----- sort eigenvalues -----
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
```

66.10 jdqz

```
% Read/set parameters
% Return if eigenvalueproblem is trivial
% Initialize target, test space and interaction matrices
% V=RepGS(Qschur,V); [AV,BV]=MV(V); %%% more stability??
% W=RepGS(Zschur,eval(testspace)); %%% dangerous if sigma~lambda
% Solve the preconditioned correction equation
% Expand the subspaces and the interaction matrices
% Check for stagnation
% Solve projected eigenproblem
% Compute approximate eigenpair and residual
\%=== an alternative, but less stable way of computing z =====
% display history
% save history
% check convergence
% EXPAND Schur form
% Expand preconditioned Schur matrix MinvZ=M\Zschur
% check for conjugate pair
```

```
% To detect whether another eigenpair is accurate enough
% restart if \dim(V) > \max
% Initialize target, test space and interaction matrices
% additional stabilisation. May not be needed
% V=RepGS(Zschur,V); [AV,BV]=MV(V);
% end add. stab.
% Solve the preconditioned correction equation
% expand the subspaces and the interaction matrices
% Check for stagnation
% compute approximate eigenpair
\mbox{\ensuremath{\mbox{\%}}} Compute approximate eigenpair and residual
% display history
% save history
% check convergence
% expand Schur form
% ZastQ=Z'*Q0
% the final Qschur
\% check for conjugate pair
% t perp Zschur, t in span(Q0,imag(q))
% To detect whether another eigenpair is accurate enough
% restart if dim(V)> jmax
%===== END JDQZ
%-----
%====== PREPROCESSING
  _____
%====== ARNOLDI (for initial spaces)
  _____
%% then precond=I and target = 0: apply Arnoldi with A
%===== END ARNOLDI
  %====== POSTPROCESSING
  %====== SORT QZ DECOMPOSITION INTERACTION MATRICES
  ===========
%====== COMPUTE SORTED JORDAN FORM
  %===== END JORDAN FORM
  _____
%===== OUTPUT
  _____
```

```
%-----
%====== UPDATE PRECONDITIONED SCHUR VECTORS
  %====== SOLVE CORRECTION EQUATION
  _____
% solve preconditioned system
%====== LINEAR SOLVERS
  % [At,Bt]=MV(x); At=theta(2)*At-theta(1)*Bt;
% xtol=norm(r-At+Z*(Z'*At))/norm(r);
%===== Iterative methods
% 0 step of bicgstab eq. 1 step of bicgstab
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
\% but, do the orth to Z implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Z explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
\mbox{\ensuremath{\mbox{\%}}} Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
```

```
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow
%===== END SOLVE CORRECTION EQUATION
 _____
Y______
%====== BASIC OPERATIONS
 y(1:5,1), pause
%====== COMPUTE r AND z
 % E*u=Q*sigma, sigma(1,1)>sigma(2,2)
%======== END computation r and z
 %====== Orthogonalisation
 _____
%====== END Orthogonalisation
 ______
%====== Sorts Schur form
 kappa=max(norm(A,inf)/max(norm(B,inf),1.e-12),1);
 kappa=2^(round(log2(kappa)));
\%----- compute the qz factorization ------
%----- scale the eigenvalues -----
%----- sort the eigenvalues -----
%----- swap the qz form ------
% repeat SwapQZ if angle is too small
\% i>j, move ith eigenvalue to position j
% compute q s.t. C*q=(t(i,1)*S-s(i,1)*T)*q=0
C*P=Q*R
check whether last but one diag. elt r nonzero
% end computation q
```

```
\%====== END sort QZ decomposition interaction matrices
%====== INITIALIZATION
% defaults
          %%%% search for 'xx' in fieldnames
%% 'ma'
%% 'sch'
%% 'to'
%% 'di'
% jmin=nselect+p0 %%%% 'jmi'
% jmax=jmin+p1 %%%% 'jma'
%% 'te'
%% 'pai'
%% 'av'
%% 'tr'
%% 'fix'
%% 'ns'
%% 'ch'
%% 'lso'
%% 'ls_m'
%% 'ls_t'
%% 'ls_e'
%% 'ty'
%% '1_'
%% 'u_'
%% 'p_'
%% 'sca'
%% 'v0'
initiation
'standard'
'harmonic'
'searchspace'
% or Operator_Form=3 or Operator_Form=5???
%====== DISPLAY FUNCTIONS
  _____
```

<i>'</i> 0
%======================================
$66.11 \mathrm{mfunc_jdm}$
66.12 mgs
$66.13 \mathrm{minres}_{-}$
$66.14 mv_jacobi_davidson$
67 lib/mathematics/linear-algebra 67.1 first
67.2 gershgorin_circle
range of eigenvalues determined by the gershgorin circle theorem
67.3 haussdorff
haussdorf dimension box counting: count cectangles passed through by line (covered by polygon)
Koch snow flake 3:4 -> 1.2619 Kantor set 2:3, (4:9) -> 0.6309 quadrat 4:2, 9:3, 16:4 -> 2

67.4 ieig2x2

reconstruct matrix from eigenvalue decomposition

67.5 inv2x2

2x2 inverse of stacked matrices

67.6 inv3x3

67.7 inv4x4

inverse of stacked 4x4 matrices

$68 \quad lib/mathematics/linear-algebra/lanczos$

- 68.1 arnoldi
- 68.2 arnoldi_new
- 68.3 eigs_lanczos_man
- 68.4 lanczos
- 68.5 lanczos_

68.6	$lanczos_biorthogonal$
68.7	$lanczos_biorthogonal_improved$
68.8	$lanczos_ghep$
68.9	mv_lanczos
68.10	reorthogonalise
68.11	${ m test_lanczos}$
69	lib/mathematics/linear-algebra/linear-systems
69.1	gmres_man
break	on convergence
69.2	minres_recycle
70	${ m lib/mathematics/linear-algebra}$
70.1	lpmean
mean o	of pth-power of a

70.2 lpnorm

norm of 1th-power of a

70.3 matvec3

matrix-vector product of stacked matrices and vectors

$70.4 \quad \text{max2d}$

 $\hbox{\tt maximum value and i-j index for matrix}$

70.5 mpoweri

approximation of A^p, where p is not integer by quadtratic interpolation

$70.6 \quad \text{mtimes} 2x2$

$70.7 \quad \text{mtimes} 3x3$

product of stacked 3x3 matrices

70.8 nannorm

norm of a vector, skips nan-values

70.9 nanshift

shift vector, but set out of range values to NaN

70.10 nl

```
number rows (lines) of a matrix analogue to unix nl command
```

70.11 normalise

```
normalise a vector or the columns of a matrix
note that the columns are independently normalised, and hence not
   necessarily
orthogonal to each other use the gram schmidt algorithm for this (
   qr or orth)
```

70.12 normalize1

```
normalize columns in x to [-1,1]
```

70.13 normrows

70.14 orth2

make matrix A orhogonal to B

70.15 orth_man

orthogonalize the columns of ${\tt A}$

70.16 orthogonalise

make x orthogonal to Y

70.17 paddext

```
padd values to vactor
not suitable for noisy data
order = 0 : constant extrapolation (hold)
order = 1 : linear extrapolation
```

70.18 paddval1

padd values at end of \boldsymbol{x}

70.19 paddval2

padd values to x

71 lib/mathematics/linear-algebra/polynomial

71.1 chebychev

chebycheff polynomials

71.2 piecewise_polynomial

evaluate piecewise polynomial

71.3 roots1

roots of linear functions

71.4 roots2

```
roots of quadratic function c1 x^2 + c2 x + c3 = 0
```

71.5 roots2poly

71.6 roots3

71.7 roots4

71.8 test_roots4

71.9 vanderi_1d

vandermonde matrix of an integral

72 lib/mathematics/linear-algebra

72.1 randrot

random rotation matrix

72.2 right

get right column by shifting columns to left extrapolate rightmost column $\,$

72.3 rot2

rotation matrix from angle

72.4 rot2dir

rotation matrix from direction vector

72.5 rot3

$72.6 \quad rotR$

72.7 rownorm

72.8 simmilarity_matrix

72.9 spnorm

frobenius norm

72.10 spzeros

allocate a sparze matrix of zeros

$72.11 \quad test_roots3$

72.12 transform_minmax

72.13 transpose3

transpose stacked 3x3 matrices

72.14 transposeall

73 lib/mathematics/logic

bitwise operations on integers

73.1 bitor_man

bitwise OR of the numbers of the columns of A
input:
 A (positive integer)

74 lib/mathematics/master/plot

74.1 attach_boundary_value

74.2 cartesian_polar

74.3 img_vargrid

74.4 plot_basis_functions

74.5 plot_convergence $74.6 \quad plot_dof$ 74.7 plot_eigenbar 74.8 plot_error_estimation 74.9 plot_error_estimation_2 74.10 plot_error_fem 74.11 plot_fdm_kernel $74.12 \quad plot_fdm_vs_fem$

74.13 plot_fem_accuracy

74.14 plot_function_and_grid

 $74.15 \quad plot_hat$

 $74.16 \quad plot_hydrogen_wf$

74.17 plot_mesh

 $74.18 \quad plot_mesh_2$

74.19 plot_refine

 $74.20 \quad plot_refine_3d$

74.21 plot_runtime

 $74.22 \quad plot_spectrum$

74.23 plot_wavefunction

- 75 lib/mathematics/master/ported
- $75.1 \quad assemble_2d_dphi_dphi$
- 75.2 assemble_2d_phi_phi
- $75.3 \quad assemble_3d_dphi_dphi$
- 75.4 assemble_3d_phi_phi
- $75.5 \quad dV_-2d_-$
- 75.6 derivative_2d
- 75.7 derivative_3d
- 75.8 element_neighbour_2d
- 75.9 prefetch_2d_

- $75.10 \quad promote_2d_3_10$
- $75.11 \quad promote_2d_3_15$
- $75.12 \quad promote_2d_3_21$
- $75.13 \quad promote_2d_3_6$
- $75.14 \quad promote_3d_4_10$
- $75.15 \quad promote_3d_4_20$
- $75.16 \quad promote_3d_4_35$
- 75.17 vander_2d
- 75.18 vander_3d

76	lib/mathematics/master/sandbox
76.1	adapt
76.2	assoc_laguerre
76.3	assoc_legendre
76.4	c23
77	lib/mathematics/master/sandbox/cg
77.1	
77.2	$cg_coef_to_poly$
77.3	errmat
77.4	lanczos
77.5	laplacian_2d

77.6	${ m test_cg_eigs}$
77.7	test_lanczos
	lib/mathematics/master/sandbox condition_number_higher_order
78.2	${f confinement_dat}$
78.3	$convergence_2d_3d$
78.4	$convergence_matrix_powers$
78.5	$\operatorname{cut_out}$
78.6	${\bf derivative_2d}$
78.7	$ m derivative_3d$

79.1	boundary_circle
79]	${ m lib/mathematics/master/sandbox/fem-matlab}$
Matrix Timing	multiplication
Basic	operations
78.13	$ m example_int64$
78.12	equalise
78.11	$\mathrm{energy_level}$
78.10	eigs_fix
78.9	${ m eig_error}$
78.8	dummy

79.2	${\bf boundary_rectangle}$
79.3	${\bf geometry_circle_with_hole}$
79.4	${\bf geometry_rectangle}$
80	lib/mathematics/master/sandbox
	fem_2d_estimate_error
80.2	$fem_assemble_scratch$
80.3	$\mathbf{fem}_{-}\mathbf{s}$
80.4	fourier_h
80.5	${ m grad}_{-}2{ m d}$
80.6	${ m grad}_3{ m d}$

- 80.7 gradient
- 80.8 harmonic_oscillator
- 80.9 hydrogen_2d_analytic
- 80.10 hydrogen_boxed
- 80.11 hydrogen_boxed_old
- 80.12 hydrogen_wave
- % Hydrogen atom
- 80.13 hydrogen_wf
- 80.14 ichol_man
- 80.15 known_eigenvalue
- 80.16 kron_man

80.17	laguerre
80.18	laplacian_arbitrary_order_old
80.19	$laplacian_convergence$
80.20	$laplacian_cut_out$
80.21	${\bf laplacian_cylindrical}$
80.22	laplacian_non_uniform_old
80.23	laplacian_polar
80.24	$laplacian_simple$
80.25	$lderivative_3d$

80.26 list_dat

- 80.27 matlab-horner
- $80.28 \quad mesh_to_grid_2d_3$
- $80.29 \quad mg_mat$
- 80.30 mv
- 80.31 orth2
- 80.32 partial_derivative_2d
- 80.33 partition_function
- 80.34 partition_function_old
- 80.35 poisson
- 80.36 poisson_fem

80.37 potential

80.38 powerc

80.39 quick_newihbour

80.40 radial

80.41 radial_convergence

80.42 radial_wafefunction

80.43 refine_2d

80.45 relerr 80.46 restore_cw

80.44 refine_3d

80.47	${f runtime_bm}$
80.48	rydberg
80.49	s_old
80.50	snorm
80.51	spherical_harmonic
80.52	$\operatorname{split}_{=}\operatorname{eig}$
80.53	sum1
80.54	sum3
81 l	${ m ib/mathematics/master/sandbox/summation}$
	acc
01.1	acc

81.2	add
81.3	ape
81.4	mmul _accurately
81.5	sum_kahan
81.6	$\operatorname{sum}_{ ext{-}}\operatorname{pairwise}$
81.7	$\mathbf{test_sum}$
റെ	lib/mathamatica/mastan/sandhar
	lib/mathematics/master/sandbox test_convergence_ill_conditioned
	test_convergence_in_conditioned test_fem_1d
82.3	${ m test_fem_2d}$

- 82.4 $test_fem_3d$ 82.5 test_increase 82.6 test_lanczos_shift 82.7 test_ldl $82.8 test_power$ $82.9 \quad trefethen_p8_fdm$ 82.10 wavefunc 82.11 xgrid
- 83 lib/mathematics/number-theory
- 83.1 ceiln

floor to leading n-digits

83.2 digitsb

number of digits with respect to specified base

83.3 floorn

floor to n-digits

83.4 iseven

true for even numbers in X

83.5 multichoosek

```
all combinations of lenght {\bf k} from set values with repetitions c.f. nchoosek, combinations without repetition
```

input :

x : scalar integer or vector of arbitrary numbers

k : length of subsets

output :

if x scalar : number of combinations if x vector : the exact combinations

83.6 nchoosek_man

```
vecotrised binomial coefficient b = N!/K!(N-K)!
```

83.7 pythagorean_triple

pythagorean triple

83.8 roundn

round to n digits

84 lib/mathematics/numerical-methods/differentiation

84.1 derivative1

first derivative on variable mesh second order accurate

84.2 derivative2

second derivative on a variable mesh

85 lib/mathematics/numerical-methods/finite-difference

85.1 cdiff

```
differences of columns of X
degree = 1 : central first order differences
degreee = 2 : central second order differences
```

85.2 cdiffb

```
differences of columns of X degree = 1 : central first order differences degreee = 2 : central second order differences TODO use difference matrix function for simplicity
```

85.3 cmean

single gaussian smoothing step with kernel 1/4*[1,2,1]

85.4 derivative_matrix_1_1d

finite difference matrix of first derivative in one dimensions

85.5 derivative_matrix_2_1d

finite derivative matrix of second derivative in one dimension

85.6 derivative_matrix_2d

finite difference derivative matrix in two dimensions

85.7 derivative_matrix_curvilinear

derivative matrix on a curvilinear grid

85.8 derivative_matrix_curvilinear_2

derivative matrix on a two dimensional curvilinear grid the grid has not necessarily to be orthogonal

85.9 difference_kernel

```
difference kernels for equispaced grids c.f. Computing the Spectrum of the Confined Hydrogen Atom, Kastner, 2012
```

85.10 distmat

distance matrix for a 2 dimensional rectangular matrix

85.11 gradpde2d

```
objective function gradiend on two dimensional regular grid numeric gradient for non-linear least squares optimisation of a PDE on a rectangular grid x_* = \min(f(x)) f = (v(x) - v(x_*))^2 = f(x) + A dx + O(dx^2) a_ij = df_i/dx_j
```

85.12 laplacian

85.13 laplacian_fdm

finite difference matrix of the laplacian ${\tt BC}$

85.14 left

left element of vector, leftmost column is extrapolated

85.15 lrmean

mean of the left and right element

- 86 lib/mathematics/numerical-methods/finite-difference/maste
- 86.1 fdm_adaptive_grid
- 86.2 fdm_adaptive_refinement_old
- 86.3 fdm_assemble_d1_2d
- 86.4 fdm_assemble_d2_2d

86.5	${f fdm_confinement}$
86.6	${ m fdm_{-}d_{-}vargrid}$
86.7	$fdm_h_unstructured$
86.8	$fdm_hydrogen_vargrid$
86.9	$fdm_mark_unstructured_2d$
86.10	$\rm fdm_plot$
86.11	${ m fdm_plot_series}$
86.12	${ m fdm_refine_2d}$
86.13	${ m fdm_refine_3d}$

 $86.14 \quad fdm_refine_unstructured_2d$

86.15 fdm_schroedinger_2d

$86.16 \quad fdm_schroedinger_3d$

86.17 relocate

$87 \quad lib/mathematics/numerical-methods/finite-difference$

87.1 mid

mid point between neighbouring vector elements

87.2 pwmid

segment end point to segment mid point transformation for regular 1 $\,$ d grids $\,$

87.3 ratio

ratio of two subsequent values

87.4 steplength

step length of a vector if it were equispaced

87.5 swapoddeven

swap odd and even elements in a vector

87.6	$test_derivative_matrix_2d$
87.7	$test_derivative_matrix_curviline ar$
87.8	$test_difference_kernel$
88	lib/mathematics/numerical-methods/finite-element
88.1	Mesh_2d_java
88.2	Tree_2d_java
88.3	$as semble_1d_dphi_dphi$
88.4	$assemble_1d_phi_phi$
88.5	assemble_2d_dphi_dphi_java
88.6	assemble_2d_phi_phi_java

- $88.7 \quad assemble_3d_dphi_dphi_java$
- $88.8 \quad assemble_3d_phi_phi_java$
- 88.9 boundary_1d
- $88.10 \quad boundary_2d$
- 88.11 boundary_3d
- 88.12 check_area_2d
- 88.13 circmesh
- 88.14 cropradius
- 88.15 display_2d
- 88.16 display_3d

88.17 distort

 $88.18 \quad err_{-}2d$

88.19 estimate_err_2d_3

 $88.20 \quad example_1d$

 $88.21 \quad example_2d$

88.22 explode

 88.23 fem_2d

88.24 fem_2d_heuristic_mesh

88.25 fem_get_2d_radial

88.26 fem_interpolation

 $88.27 \quad fem_plot_1d$

 $88.28 \quad fem_plot_1d_series$

 $88.29 \quad fem_plot_2d$

 $88.30 \quad fem_plot_2d_series$

 $88.31 \quad fem_plot_3d$

 $88.32 \quad fem_plot_3d_series$

 $88.33 \quad fem_plot_confine_series$

88.34 fem_radial

adaptive grid constant grid

88.35 flip_2d

88.36	${ m get_mesh_arrays}$
88.37	hashkey
	$lib/mathematics/numerical-methods/finite-element/int\\int_1d_gauss$
89.2	$int_1d_gauss_1$
89.3	$int_1d_gauss_2$
89.4	$int_1d_gauss_3$
89.5	$int_1d_gauss_4$
89.6	$int_1d_gauss_5$
89.7	$int_1d_gauss_6$

- $89.8 \quad int_1d_gauss_lobatto$
- $89.9 \quad int_1d_nc_2$
- $89.10 \quad int_1d_nc_3$
- $89.11 \quad int_1d_nc_4$
- 89.12 int_ $1d_nc_5$
- $89.13 \quad int_1d_nc_6$
- $89.14 \quad int_1d_nc_7$
- 89.15 int_1d_nc_7_hardy
- $89.16 \quad int_2d_gauss_1$
- $89.17 \quad int_2d_gauss_12$

- $89.18 \quad int_2d_gauss_13$
- $89.19 \quad int_2d_gauss_16$
- $89.20 \quad int_2d_gauss_25$
- $89.21 \quad int_2d_gauss_3$
- 89.22 int_2d_gauss_33
- $89.23 \quad int_2d_gauss_6$
- $89.24 \quad int_2d_gauss_7$
- $89.25 \quad int_2d_gauss_9$
- 89.26 int_2d_nc_10
- $89.27 \quad int_2d_nc_15$

- $89.28 \quad int_2d_nc_21$
- $89.29 \quad int_2d_nc_3$
- $89.30 \quad int_2d_nc_6$
- $89.31 \quad int_3d_gauss_1$
- 89.32 int_3d_gauss_11
- $89.33 \quad int_3d_gauss_14$
- $89.34 \quad int_3d_gauss_15$
- 89.35 int_3d_gauss_24
- $89.36 \quad int_3d_gauss_4$
- 89.37 int_3d_gauss_45

89.38	$ m int_3d_gauss_5$
89.39	$ m int_3d_nc_11$
89.40	$ m int_3d_nc_4$
89.41	$int_3d_nc_6$
89.42	$ m int_3d_nc_8$
90	lib/mathematics/numerical-methods/finite-element
90.1	$interpolation_matrix$
90.2	mark
90.3	$ m mark_1d$

 $90.4 \quad mesh_1d_uniform$

- $90.5 \quad mesh_3d_uniform$
- 90.6 mesh_interpolate
- 90.7 neighbour_1d
- 90.8 old
- 90.9 pdeeig_1d
- $90.10 \quad pdeeig_2d$
- 90.11 pdeeig_3d
- 90.12 polynomial_derivative_1d
- 90.13 potential_const
- 90.14 potential_coulomb

- $90.15 \quad potential_harmonic_oscillator$
- 90.16 project_circle
- 90.17 project_rectangle
- $90.18 \quad promote_1d_2_3$
- 90.19 promote_ $1d_2_4$
- $90.20 \quad promote_1d_2_5$
- $90.21 \quad promote_1d_2_6$
- 90.22 quadrilaterate
- $90.23 \quad recalculate_regularity_2d$
- 90.24 refine_1d

```
90.25 \quad refine\_2d\_21
```

```
90.26 refine_2d_structural
```

$$90.27$$
 regularity_1d

$$90.28$$
 regularity_2d

$$90.29 \quad regularity_3d$$

```
T = [1 \ 2 \ 3 \ 4];
```

90.30 relocate_2d

90.31 test_circmesh

90.32 test_hermite

90.33 tri_assign_points

90.34 triangulation_uniform

90.35 vander_1d

van der Monde matrix

90.36 vanderd_1d

90.37 vanderi_1d

- 91 lib/mathematics/numerical-methods/finite-volume/@Advection
- 91.1 Advection

FVM treatment of the Advection equation

91.2 dot_advection

advection equation

- $92 \quad lib/mathematics/numerical-methods/finite-volume/@Burgers$
- 92.1 burgers_split

viscous Burgers' equation, mixed analytic and numerical derivative in frequency space by splitting sheme $u_t = -(0.5*u^2)_x + c*u_xx$

92.2 dot_burgers_fdm

```
viscous burgers' equation

u_t = -d/dx (1/2*u^2) + c d^2/dx^2 u_xx
```

92.3 dot_burgers_fft

```
viscous Burgers' equation in frequency space u_t + (0.5*u^2)_x = c*u_xx
```

93 lib/mathematics/numerical-methods/finite-volume/@Finite

93.1 Finite_Volume

```
finite volume method for partial differential equations 1+1
    dimensions
(time and space)
```

93.2 apply_bc

apply boundary conditions

93.3 solve

93.4 step_split_strang

step in time, treat inhomogeneous part by Strang splitting this scheme is not suitable for stationary solutions, for example steady shallow water flow

93.5 step_unsplit

step in time, without splitting the inhomogeneous term

$94 \quad lib/mathematics/numerical-methods/finite-volume/@Flux_Limiter$

94.1 Flux_Limiter

class of flux limiters

94.2 beam_warming

beam warming sheme
low resolution
note: works only if sign of eigenvalues point into the same
direction according to RL

94.3 fromm

fromme limiter
low res

$94.4 lax_wendroff$

lax wendroff scheme second order accurate, but no tvd this is effectively not a limiter eq. 6.39 in randall, leveque

94.5 minmod

min-mod schock limiter

94.6 monotized_central

monotonized central flux limiter

94.7 muscl

muscl flux limiter

94.8 superbee

superbee limiter

94.9 upwind

godunov scheme
godunov, first order accurate

94.10 vanLeer

van Leer limiter

95 lib/mathematics/numerical-methods/finite-volume/@KDV

$95.1 ext{ dot_kdv_fdm}$

korteweg de vries equation $u_t + (0.5*u^2)_x = c*u_xxx$

$95.2 \quad dot_kdv_fft$

korteweg de vries equation compute derivatives in frequency space $u_t + (0.5*u^2)_x = c*u_xxx$

95.3 kdv_split

korteweg de vries equation in frequency space, derivative treated by splitting scheme

96 lib/mathematics/numerical-methods/finite-volume/@Reconstruct_

96.1 Reconstruct_Average_Evolve

96.2 advect_highres

single time step for the reconstruct evolve algorithm

96.3 advect_lowress

single time step
low resolution

97 lib/mathematics/numerical-methods/finite-volume

97.1 Godunov

Godunov, upwind method for systems of pdes

97.2 Lax_Friedrich

Lax-Friedrich-Method for hyperbolic conservation laws err = O(dt) + O(dx)|a dt/dx| < 1

97.3 Measure

97.4 Roe

non linear roe solver for the SWE (randall, leveque 15.3.1)

The roe solver guarantess:

- A is diagonalisable with real eigenvalues (15.12)
- can be determined by a closed formula
- is an efficient replacement for true Rieman solver

97.5 fv_swe

wrapper for solving SWE

97.6 staggered_euler

forward euler method with staggered grid

97.7 staggered_grid

staggered grid approximation to the SWE

98 lib/mathematics/numerical-methods

98.1 grid2quad

extract rectangular elements of a structured grid in form of an unstructured quad-mesh format

99 lib/mathematics/numerical-methods/integration

99.1 cumintL

cumulative integral from left to right

99.2 cumintR

cumulative integral from right to left

99.3 int_trapezoidal

integrate y along x with the trapezoidal rule

100 lib/mathematics/numerical-methods/interpolation/@Kriging

100.1 Kriging

class for Kriging interpolation

100.2 estimate_semivariance

estimate the parameter of the semivariance model for Kriging interpolation

 $\mbox{\ensuremath{\mbox{\%}}}$ set up the regression matrix and solve for parameters

100.3 interpolate_

interpolate with Krieging method

this function may interpolate several quantities per coordinate, using the same variogram, if the semivariance of the quantities differs,

the user may prefer to estimate the semivariance and interpolate each quantity individually

Xs : source point coordinates
Vs : value at source points
Xt : targe point coordinates
Vt : value at target points

E2t : squared interpolation error at target points

101 lib/mathematics/numerical-methods/interpolation/@Regu

101.1 RegularizedInterpolator1

class for regularized interpolation (Thikonov) on a 1D mesh

101.2 init

initialize the interpolator with a set of sampling points

$102 \quad lib/mathematics/numerical-methods/interpolation/@Regularity and the properties of the properti$

102.1 RegularizedInterpolator2

class for regularized interpolation on an unstructures mesh (
 interpolation)

102.2 init

initialize the interpolator with a set of point samples

103 lib/mathematics/numerical-methods/interpolation/@Regu

103.1 RegularizedInterpolator3

class for regularized interpolation (Tikhonov) on a triangulation (unstructured mesh)

103.2 init

initialize the interpolator with a set of sampling points

$104 \quad lib/mathematics/numerical-methods/interpolation$

104.1 IDW

spatial averaging by inverse distance weighting

104.2 IPoly

polynomial interpolation class

104.3 IRBM

104.4 ISparse

sparse interpolation class

104.5 Inn

nearest neighbour interpolation

104.6 Interpolator

104.7 fixnan

fill nan-values in vector with gaps

104.8 idw1

spatial average ny inverse distance weighting

104.9 idw2

spatial average by inverse distance weighting

104.10 inner2outer

linear interpolation of segment mit point to grid points at segment ends assumes equal grid spacing

104.11 inner2outer2

interpolate from element (segment) centres to edge points

104.12 interp1_limited

interpolate values, but not beyond a certain distance
this function is idempotent, i.e. it will not extrapolate over into
 gaps
exceedint the limit and thus not spuriously extend the series when
 called a second time on the same data

104.13 interp1_man

interpolate

104.14 interp1_save

make interpolation save to round off errors
the matlab internal interpolation suffers from rounding errors,
 which
are unacceptable when values of X and Y are large (for example UTm
 coordinates)
this normalization prevents this

104.15 interp1_slope

quadratic interpolation returning value and derivative(s)

104.16 interp1_smooth

104.17 interp1_unique

matlab fails to interpolate, when x values are not unique this function makes the values unique before use

104.18 interp2_man

nearest neighbour interpolation in two dimensions

104.19 interp_angle

interpolate an angle

104.20 interp_fourier

interpolation by the fourier method

104.21 interp_fourier_batch

batch interpolation by the fourier interpolation

104.22 interp_sn

```
interpolate along streamwise coordinates
This gives similar result to setting aspect ratio for sN to
   infinity,
but not quite,as the input point set is not dense (scale for sN to
   infinity does not work)
       sdx = sdx(sdx_);
```

104.23 interp_sn2

interpolation in streamwise coordinates

104.24 interp_sn3

104.25 interp_sn_

104.26 limit_by_distance_1d

```
smooth subsequent values along a curve such that v(x0+dx) < v(x0) + (ratio-1)*dx if v is the edge length in a resampled polygon, then v_i/v_i+1) < ratio ratio^1 = exp(a*1)
```

104.27 resample1

interpolation along a parametric curve with variable step width

104.28 resample_d_min

resample a function

104.29 resample_vector

resample a track so that velocity vectors do not run into each other $% \left(1\right) =\left(1\right) \left(1\right)$

104.30 test_interp1_limited

- 105 lib/mathematics/numerical-methods
- 105.1 inverse_complex
- 106 lib/mathematics/numerical-methods/ode
- 106.1 bvp2_check_arguments

106.2 bvp2c

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
   c_1 y" + c_2 y' + c_3 y + c_4 = c_4

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
```

```
+ q(x,2)*(p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)
where q weighs the waves travelling from left to right and right to left (default [1 1])
```

106.3 bvp2c2

```
solve second order boundary value problem via roots of the
    characteristic
polynomial

input:

x : [nx1] discretized domain
    n : number of vertices
    nxc = n-1 : number of segments

bc : struct : boundary condition
    bc.p(1)*y(0) + bc.pd(2)*y'(0) = bc.val(1)
    bc.p(2)*y(L) + bc.pd(2)*y'(L) = bc.val(2)

output:

A : [2*nxc x 2*ns] disrcretisation matrix
rhs : [2*nxc x 1] right hand size
```

106.4 bvp2fdm

 $y = A^-1 rhs$

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems by the finite difference method

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
c_1 y" + c_2 y' + c_3 y + c_4 = 0

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
   + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)

where q weighs the waves travelling from left to right and right to
   left (default [1 1])
```

106.5 bvp2wavetrain

solve second order boundary value problem by repeated integration

106.6 bvp2wavetwopass

two pass solution for the linearised wave equation solve first for the wave number ${\tt k}$, and then for y

106.7 ivp_euler_forward

solve intial value problem by the euler forward method

106.8 ivprk2

solve initial value problem by the two step runge kutta method

106.9 ode2_matrix

transformation matrix of second order ode to left and right going wave

```
c = odefun(x)
c1 y'' + c2' y + c3 y == 0
y = y_p + y_m, left and right going wave
d/dx [y_p, y_m] = A*[y_m, y_p]
```

106.10 ode2characteristic

second order odes transmittded and reflected wave

106.11 step_trapezoidal

single trapezoidal step

106.12 $test_bvp2$

107 lib/mathematics/numerical-methods/optimisation

107.1 armijo_stopping_criterion

armijo stopping criterion for optimizations

107.2 astar

astar path finding alforithm

107.3 binsearch

binary search on a line

107.4 bisection

bisection

107.5 box1

test objective function for optimisation routines

107.6 box2

107.7 cauchy

107.8 cauchy2

107.9 directional_derivative

```
directional (projected) derivative
d : derivative, highest first
p : series expansion around x0
```

107.10 dud

optimization by the dud algorithm

107.11 extreme3

```
extract maxima by quadratic approximation from sampled function val
    (t)
intended to be called after [mval, mid] = max(val) for refinement
    of
locatian and maximum

input
t    : sampling time (uniformly spaced)
v    : values at sampling times
ouput:
tdx    : index where extremum should be computed
t0     : location of the extremum
val0    : value of extremum

v'(dt0) = 0 and v''(dt0) determines type of extremum
```

107.12 extreme_quadratic

107.13 ftest

107.14 fzero_bisect

107.15 fzero_newton

107.16 grad

numerical gradient

107.17 hessian

numerical hessian

107.18 hessian_from_gradient

numerical hessian from gradient

107.19 hessian_projected

 ${\tt numerical\ hessian\ projected\ to\ one\ dimenstion}$

107.20 line_search

bisection routine

107.21 line_search2

bisection method

fun : objective funct
x0 : start value

f0: objective function value at x0

g : gradient at x0

p : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

lb : lower bound for x
up : upper bound for x

107.22 line_search_polynomial

polynomial line search fun : objective funct

x0 : start value

f0: objective function value at x0

g : gradient at x0

dir : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

lb : lower bound for x
up : upper bound for x

107.23 line_search_polynomial2

cubic line search
fun : objective funct
x0 : start value

f0: objective function value at x0

g : gradient at x0

 dir : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

 $\begin{array}{lll} \mbox{1b} & : \mbox{lower bound for } x \\ \mbox{up} & : \mbox{upper bound for } x \end{array}$

107.24 line_search_quadratic

quadratic line search
fun : objective funct
x0 : start value

f0: objective function value at x0

g : gradient at x0

dir : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

lb : lower bound for x
up : upper bound for x

107.25 line_search_quadratic2

quadratic line search

107.26 line_search_wolfe

line search by wolfe method
c.f.: OPTIMIZATION THEORY AND METHODS - Nonlinear Programming, Sun,
 Yuan

107.27 ls_bgfs

least squares by the bgfs method

107.28 ls_broyden

Shanno 1970

107.29 ls_generalized_secant

least squares by the secant method Barnes, 1965 Wolfe, 1959 Fletcher 1980, 6.3 seber 2003 gerber

107.30 nlcg

non-linear conjugate gradient
input:

x : nx1 start vectort
opt : struct options
fdx : gradient constraint

107.31 nlls

non-linear least squares

107.32 picard

picard iteration

$107.33 \quad poly_extrema$

extrema of a polynomial

107.34 quadratic_function

evaluate quadratic function in higher dimensions

107.35 quadratic_programming

optimize by quadratic programming

107.36 quadratic_step

single step of the quadratic programming

107.37 rosenbrock

rosenbrock test function

$107.38 ext{ sqrt_heron}$

Heron's method for the square root

107.39 test_directional_derivative

107.40 test_dud

107.41 test_fzero_newton

107.42 test_line_search_quadratic2

 $107.43 \quad test_ls_generalized_secant$

107.44 test_nlcg_6_order

107.45 test_nlls

```
f = w'*(p*abs(x-1).^4) + w'*(1-p)*abs(x-1).^2;
```

- 108 lib/mathematics/numerical-methods/pde
- 108.1 laplacian2d_fundamental_solution

109 lib/mathematics/numerical-methods/piecewise-polynomials

109.1 Hermite1

hermite polynomial interpolation in 1d

109.2 hp2_fit

```
fit a hermite polynomial
coefficients are derivative free
x0 : left point of first segment
x1 : right point of last segment
n : number of segments
x : sample x-value
val : sample y-value
c : coefficients (values at points, no derivatives)
```

109.3 hp2_predict

```
prediction with pw hermite polynomial
c are values at support points
```

109.4 hp_predict

predict with piecewise hermite polynomial

109.5 hp_regress

fit piecewise hermite polynomial coefficients are values and derivatives

109.6 lp_count

lagrangian basis for interpolation count number of valid samples

109.7 lp_predict

lagrangian basis piecwie interpolation, predicor

109.8 lp_regress

 $109.9 \ lp_regress_$

110 lib/mathematics/regression/@PolyOLS

110.1 PolyOLS

class for polynomial least squares

110.2 coefftest

110.3 detrend

 $\hbox{\tt detrending by polynomial regression}$

110.4 fit

fit a polynomial function like polyfit, but returns parameter error estimates TODO automatically activate scaleflag

110.5 fit_

fit a polynomial function

110.6 predict

predict polynomial function values

110.7 predict_

110.8 slope

slope by linear regression

$111 \quad lib/mathematics/regression/@PowerLS$

111.1 PowerLS

class for power law regression

111.2 fit

fit a power law like polyfit, but returns parameter error estimates

111.3 predict

```
predict with power law
    S2 = diag((A*obj.C)*A');
    L = Y - S;
    U = Y + S;
```

111.4 predict_

112 lib/mathematics/regression/@Theil

112.1 Theil

Kendal-Theil-Sen robust regression

112.2 detrend

linear detrending of a set of samples by the Theil-Senn Slope

112.3 fit

```
fit slope and intercept to a set of sample with the Theil-Sen \ensuremath{\mathsf{method}}
```

```
c : confidence interval c = 2*ns*normcdf(1) for ns-sigma
   intervals
param : itercept and slope
P : confidence interval
```

112.4 predict

predict values and confidence intervals with the Theil-Sen method

112.5 slope

fit the slope with the Theil-Sen method

113 lib/mathematics/regression

linear and non-linear regression

113.1 Theil_Multivariate

extension of the Theil-Senn regression to higher dimensions by means of the ${\tt Gauss-Seidel}$ iteration

113.2 areg

regression using the pth-fraction of samples with smallest residual

113.3 ginireg

gini regression

113.4 hessimplereg

hessian, gradient and objective function value of the simple regression

rhs = $p(1) + p(2) \times + eps$

113.5 l1lin

solve ||Ax - b||_L1 by means of linear programming

113.6 lsq_sparam

parameter covariance of the least squares regression

fun : model function for predtiction

b : sample values

f(p) = b

p : parameter at point of evaluation (preferably optimum)

113.7 polyfitd

fit a polynomial of order \boldsymbol{n} to a set of sampled values and sampled values

of the derivative

 $\ensuremath{\mathtt{x0}}$ must contain at least for conditioning as otherwise the intercept

cannot be determined

113.8 regression_method_of_moments

fit linear function $||a b x = y||_L2$ by the method of moments y+eps = alpha + beta*x

113.9 robustling

113.10 theil2

Theil senn-estimator for two dimensions (glm)

113.11 theil_generalised

generalization of the Theil-Senn operator to higher dimensions,
for arbitrary functions such as polynomials and multivariate
 regression
either higher order polynomials or glm
c.f. "On theil's fitting method", Pegoraro, 1991

113.12 total_least_squares

total least squares

113.13 weighted_median_regression

weighted median regression c.f. Scholz, 1978

114 lib/mathematics/set-theory

114.1 issubset

test if set B is subset of A in O(n)-runtime

A : first set
B : second set

P : set of primes (auxiliary)

115 lib/mathematics/signal-processing

115.1 acf_effective_sample_size

effective sample size from acf

115.2 acf_genton

autocorrelation function

115.3 acfar1

Autocorrelation function of the finite AR1 process

$$a_k = 1/(n-k)sum x_ix_i+1 + (xi + xi+k)mu + mu^2$$

= $r^k + 1/n sum_ij + 1/n$
pause

$115.4 \quad acfar1_2$

autocorrelation of the ar1 process

115.5 acfar2

impulse response of the ar2 process

$115.6 \quad acfar2_2$

autocorrelation of the ar2 process $X_i + a1 X_{i-1} + a2 X_{i-2} = 0$

115.7 ar1_cutoff_frequency

115.8 ar1_effective_sample_size

effective sample size correction for autocorrelated series

115.9 ar1_mse_mu_single_sample

standard error of a single sample of an ar1 correlated process

$115.10 \quad ar1_mse_pop$

variance of the population mean of a single realisation around zero ${\tt E[(mu_N-0)^2] = E[mu_N^n]}$

115.11 ar1_mse_range

mean standard error of the mean of a range of values taken from an $\operatorname{ar1}$ process

115.12 ar1_spectrum

spectrum of the ar1 process

115.13 ar1_to_tikhonov

convert ar1 correlation to tikhonovs lambda

115.14 ar1_var_factor

```
variance correction factor for an autocorrelated finite process n: [1 .. inf] population size m: [1 .. n] samples size rho: [-1 < rho < 1 (for convergence)] correlation of samples
```

115.15 ar1_var_factor_

variance of an autocorrelated finite process

$115.16 \quad ar1_var_range2$

variance of sub sample starting at the end of the series from the finite length first order autocorrelated process $s2 = 1/m^2 \ sum_i^m \ sum_j^m \ rho^-|i-j|$

115.17 ar1delay

115.18 ar1delay_old

autocorrelation of the residual

115.19 ar2conv

```
coefficients of the ar2 process determined from the two leading
   correlations
of the acf [1,r1,r2,...]
```

115.20 ar2dof

effective samples size for the ar2 process

115.21 ar2param

```
ar2 parameter estimation from first two terms of acf
acf = [1 a1 a2 ...]
```

115.22 asymwin

creates asymmetrical filter windows filter will always have negative weights

115.23 autocorr_fft

autocorrelation function

115.24 bandpass

bandpass filter

115.25 bandpass2

bandpass filter

115.26 bartlett

```
Effective sample size factor for bartlett window c.f. thiebaux c.f spectral analysis-jenkins, eq. (6.3.27) c = acf note: results seams always to be 1 tac too low T : reduction factor for dof for ar1 with a = rho^k = \exp(-k/L), T = 2L
```

115.27 bartlett_spectrogram

bartlet spectrogramm TODO sliding window

115.28 bin1d

bin values of \boldsymbol{v} sampled at \boldsymbol{x} into bins bounded by "edges" apply function \boldsymbol{v} to it

115.29 bin2d

```
bin values of V sampled at X and Y into the grid structured grid ex
    ,ey
apply function func to all walues in the bin
func = mean : default
func = sum : non-normalized frequency histogram in 2D
```

115.30 binormrnd

generate two correlated normally distributed vectors

$115.31 \quad conv1_man$

convolutions with padding

$115.32 \quad conv2_man$

convolution in 2d

115.33 conv2z

115.34 conv30

convolve with rectangular window of length \boldsymbol{n} circular boundaries

115.35 conv₋

convolution of a with b

115.36 conv_centered

convolve x with filter window f
when length of f is even, this guarantees a symmetric result (no
 off by on
displacement) by making the length of f odd at first

115.37 convz

115.38 cosexpdelay

115.39 csmooth

smooth recursively with [1,2,1]/4 kernel

115.40 daniell_window

Daniell window for smoothing the power spectrum c.f. Daniell 1946
Bloomfield 2000
meko 2015

115.41 danielle_window

danielle fourier window

115.42 db2neper

convert decibel to neper

115.43 db2power

power ratio from db

115.44 derive_danielle_weight

115.45 derive_limit_0_acfar

115.46 detect_peak

detect peaks in a vector
requires function value to fall to p*max before new value is
 allowed

115.47 digital_low_pass_filter

design coefficients of a low pass filter with specified cut of
 frequency
and sampling period
alalogue low pass with pole at s=-omega_c=1/tau=1/RC
Ha = tau/(tau + s) = 1/(1 + omega_c*s)

115.48 doublesum_ij

double sum of r^i

115.49 effective_sample_size_to_ar1

convert effective sample size to ar1 correlation

115.50 filt_hodges_lehman

115.51 filter1

filter along one dimension

115.52 filter2

filter columns of x (matlab does only support vector input)

115.53 filter_

invalidate values that exceed n-times the robust standard deviation

115.54 filteriir

```
filter adcp t-n data over time
v : nz,nt : values to be filtered
H : nt,1 : depth of ensemble
last : \operatorname{nt,1} : last bin above bottom that can be sampled without
   side lobe interference
nf : scalar : number of reweighted iterations
when samples
- distance to bed is reference (advantageous for near-bed suspended
    transport)
TODO for wash load: distance to surface is more relevant
interpolate depending on z
when depth changes, neighbouring indices do not correspond to same
   relative position in the water column
relative poisition in the colum (s-coordinate) smoothes values
near the bed: absolute distance to bed is chosen
near surface: absolute distance to surface is chosen
-> cubic transformation of index
faster and avoid alising (smoothing along z)
      resample ensemble to same number of bins in S -> filter ->
          resample back
      use nonlinear transform z-s coordinates
-> resampling has to be local (Hi -> H-filtered)
filtered profile coordinates to sample coordinates
      zf -> zi (special transform)
corresponding indices and fractions
filtration step (update of hf and vf)
sample coordinates to updated profile coordinates
(the inverse step is actually not necessary)
write filtered value
```

115.55 filterp

115.56 filterp1

fir filter with some fancy extras

115.57 filterstd

115.58 firls_man

design finite impulse response filter by the least squares method

115.59 flattopwin

the flat top window

115.60 frequency_response_boxcar

frquency response of a boxcar filter

115.61 freqz_boxcar

frequncy response of a boxcar filter

115.62 gaussfilt1

filter data series with a gaussian window

115.63 hanchangewin

hanning window for change point detection

115.64 hanchangewin2

nanning window for chage point detection

115.65 hanwin

hanning filter window

115.66 hanwin_

hanning filter window

115.67 highpass

high pass filter

115.68 kaiserwin

kaiser filter window

115.69 kalman

Kalman filter

115.70 lanczoswin

Lanczos window

115.71 last

lake tail, but for matrices

115.72 lowpass

low pass filter

115.73 lowpass2

 ${\tt design \ low \ pass \ filter \ with \ cutoff-frequency \ f1}$

115.74 lowpass_iir

iir-low pass

115.75 lowpass_iir_symmetric

two-sided iir low pass filter (for symmetry)

115.76 lowpassfilter2

low-pass filter of data

115.77 maxfilt1

115.78 meanfilt1

moving average filter with special treatment of the boundaries

$115.79 \quad medfilt1_man$

moving median filter, supports columnwise operation

$115.80 \quad medfilt1_man2$

moving median filter with special treatment of boundaries

115.81 medfilt1_padded

median filter with padding

115.82 medfilt1_reduced

median filter with padding

115.83 mid_term_single_sample

variance of single sample, mid term

115.84 minfilt1

115.85 mu2ar1

error variance of the mean of the finite length ar1 process

 $(mu)^2 = (sum epsi)^2 = sum_i sum_j eps_i eps_j = sum_ii(rho,n)/n^2$ this has the limit s^2 for rho->1

115.86 mysmooth

115.87 nanautocorr

autocorrelation with nan-values

115.88 nanmedfilt1

medfilt1, skipping nans

115.89 neper2db

convert neper to db

115.90 peaks_man

peaks of a periodogram

115.91 polyfilt1

polynomial filter, can be achieved by iteratively processing the data with a mean (zero-order) filter

115.92 qmedfilt1

medfilt1, after fitting a quadratic polynomial

115.93 randar1

generate random ar1 process
e1 = randar1(sigma,p,n,m)

115.94 randar1_dual

draw random variables of two corrlated ar1 processes

115.95 randar2

generate ar2 process

115.96 randarp

randomly generate the instance of an ar-p process

115.97 range_window

range of values within a certain range of indices (window)

115.98 rectwin

rectangular window

115.99 recursive_sum

115.100 select_range

115.101 smooth 1d_parametric

smooth position of p0=x0,y0 between p1=x1,y1 and p2=x2,y2, so that distance to p1 and p2 becomes equal and the chord length remains the same

115.102 smooth2

smooth vectos of X

$115.103 \quad smooth_man$

115.104 smooth_parametric

smooth a parametric function given in x-y coordinates
 matvec2x2(R,[dxc;dyc])

115.105 smooth_parametric2

parametrically smooth the curve

115.106 smooth_with_splines

115.107 smoothfft

filter with fast fourier transform

115.108 spectrogram

spectrogram

$115.109 \quad std_window$

moving block standard deviation

115.110 sum_i_lag

sum of ar1 matrix with lag
sum_i=1^n rho^|i-k|

115.111 sum_ii

sum of ar1 matrix
sum_i=1^n sum_j=1^n rho^|i-j|
this is for the variance, take square root for the standard
 deviation factor

 $115.112 \quad sum_ii_-$

115.113 sum_ij

 $115.114 \quad sum_ij_$

 $115.115 \quad sum_ij_partial_$

115.116 sum_multivar

sum of matrix entries of bivariate ar1 process

115.117 test_acfar1

115.118 test_acfar1_2

115.119 test_acfar1_3

115.120 test_acfar1_4

- 115.121 test_acfar2
- 115.122 test_ar1_var_factor
- 115.123 test_ar1_var_factor_2
- $115.124 \quad test_ar1_var_mu_single_sample$
- $115.125 \quad test_ar1_var_pop$
- $115.126 \quad test_ar1_var_pop_1$
- 115.127 test_ar1delay
- 115.128 test_bivariate_covariance_term
- 115.129 test_convexity
- 115.130 test_lanczoswin

- 115.131 test_madcorr
- 115.132 test_randar1
- 115.133 test_randar1_multivariate
- 115.134 test_randar2
- 115.135 test_sum_ij
- 115.136 test_sum_multivar
- 115.137 test_trifilt1
- 115.138 test_wautocorr
- 115.139 test_wavelet_transform
- 115.140 test_wordfilt

115.141 test_xar1_mid_term

115.142 tikhonov_to_ar1

convert coefficient of the tikhonov regularization to correlatioon of the ar1 process

115.143 trapwin

trapezoidal filter window

115.144 trifilt1

filter with triangular window

115.145 triwin

triangular filter window

115.146 triwin2

triangular filter window

115.147 varar1

error variance of a single sample of a finite length ar1 process with respect to the mean, averaged over the population

115.148 welch_spectrogram

welch spectrogram

115.149 wfilt

filter with window

115.150 winbandpass

filter with bandpass

115.151 window_make_odd

115.152 winfilt0

filter with window

115.153 winlength

window length for desired cutoff frequency
power at fc is halved
H(wf) = 1/sqrt(2) H(f)
if the filter window were used as a low pass filter
note: the user should prefer a windowed ideal low pass filter
TODO, relate this to DOF

115.154 wmeanfilt

mean filter with window

115.155 wmedfilt

median filter with window

115.156 wordfilt

weighted order filter

115.157 wordfilt_edgeworth

weighed order filter

115.158 xar1

115.159 xcorr_man

cross correlation of two sampled ar1 processes

116 lib/mathematics/sorting

116.1 sort2

sort two numbers

$116.2 \quad sort2d$

sort elements of matrix in ${\tt X}$ returns row and column index of sorted values

117 lib/mathematics/special-functions

117.1 bessel_sphere

spherical Bessel function of the first kind

117.2 digamma_man

117.3 hankel_sphere

spherical Hankel function for the far field (incident plane wave) first ${\rm kind}$

117.4 hermite

probabilistic's hermite polynomial by recurrence relation

input :
n : order
x : value

output:
f : H_n(x)

 $df : d/dx H_n(x)$

117.5 legendre_man

legendre polynomials

117.6 neumann_sphere

spherical Neumann function
Bessel function of the second kind

118 lib/mathematics/statistics

$118.1 \quad atan_s2$

stadard deviation of the arcus tangens by means of taylor expansion

118.2 beta_mode_to_parameter

transform modes (mean and sd) to paramets of the beta function

118.3 coefficient_of_determination

118.4 conditional_expectation_normal

118.5 correlation_confidence_pearson

confience intervals of the correlation coefficient c.f. Fischer 1921

119 lib/mathematics/statistics/distributions

119.1 PDF

class for quasi-distributions from a set of sampling points

119.2 binorm_separation_coefficient

separation coefficient of a bimodal normal distribution

119.3 binormcdf

bio-modal gaussian distribution

119.4 binormfit

fit sum of to normal distribution to a histogram

119.5 binormpdf

119.6 edgeworth_cdf

edgeworth expansion of an unknown cumulative distribution with mean mu, standard deviation sigma, and third and fourth cumulants c.f. Rao 2010

119.7 edgeworth_pdf

probability density of and unknown distribution
with mean mu, standard deviation sigma, and third and fourth
 cumulants
c.f. Rao 2010

119.8 logn_mode2param

transform modes (mu,sd) to parameters of the log normal distribution

119.9 logn_param2mode

transform parameters to mode (mu, sd) for the log normal distribution $% \left(1\right) =\left(1\right) \left(1$

$119.10 \quad lognpdf_{-}$

log normal distribution called by modes rather than parameters

119.11 pdfsample

pdf from sample distribution
Note: better use kernal density estimates

119.12 t2cdf

Hotelling's T-squared cumulative distribution

119.13 t2inv

inverse of Hotelling's T-squared cumulative distribution

120 lib/mathematics/statistics

$120.1 \quad example_standard_error_of_sample_quantiles$

120.2 f_var_finite

reduction of variance when sampling from a finite population without replacement

120.3 gamma_mode_to_parameter

transform modes (mu,sd) to parameters of the gamma distribution

120.4 gaussfit3

120.5 gaussfit_quantile

120.6 hodges_lehmann_correlation

hodges_lehmann correlatoon coefficient

- c.f. Shamos 1976
- c.f. Bickel and Lehmann 1976
- c.f. rousseeuw 1993
- c.f. Shevlyakov 2011

120.7 hodges_lehmann_dispersion

121 lib/mathematics/statistics/information-theory

121.1 akaike_information_criterion

```
akaike information criterion
serr : rmse of model prediction
n : effective sample size
k : number of parameters
c.f. akaike (1974)
c.f. sugiura 1978
```

121.2 bayesian_information_criterion

bayesian information criterion

122 lib/mathematics/statistics

122.1 kurtncdf

122.2 kurtnpdf

122.3 kurtosis_bias_corrected

bias corrected kurtosis

122.4 limit

limit a by lower and upper bound

122.5 logfactorial

approximate log of the factorial

122.6 loglogpdf

122.7 lognfit_quantile

122.8 logskewcdf

122.9 logskewpdf

123 lib/mathematics/statistics/logu

123.1 lambertw_numeric

lambert-w function

123.2 logtrialtcdf

pdf of a logarithmic triangular distribution

123.3 logtrialtiny

```
inverse of the logarithmic triangular distribution
= (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/
    log(a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b
    ) + d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c)
    + b log(c) - d F log(a) log(c)))/(log(a) - log(b)))
x = (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/log
    (a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b) +
    d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c) + b
    log(c) - d F log(a) log(c)))/(log(a) - log(b))))
```

123.4 logtrialtmean

mean of the logarithmic triangular distribution

123.5 logtrialtpdf

density of the logarithmic triangular distribution

123.6 logtrialtrnd

123.7 logtricdf

cumulative distribution of the logarithmic triangular distribution

123.8 logtriinv

invere of the logarithmic triangular distribution

123.9 logtrimean

 $\hbox{\it mean of the logarithmic triangular distribution}\\$

123.10 logtripdf

probability density of the logarithmic triangular distribution

123.11 logtrirnd

123.12 logucdf

probability density of the logarithmic uniform distribution

123.13 logucm

central moments of the log-uniform distribution

123.14 loguiny

inverse of the log-uniform distribution

123.15 logumean

mean of the log-uniform distribution

123.16 logupdf

pdf of the log uniform distribution

123.17 logurnd

random numbers following a log-uniform distribution

123.18 loguvar

variance of the log-uniform distribution

123.19 medlogu

median of the log-uniform distribution

123.20 test_logurnd

123.21 tricdf

cumulative distribution of the log-triangular distribution

123.22 triinv

inverse of the triangular distribution

123.23 trimedian

median of the triangular distribution

123.24 tripdf

probability density of the triangular distribution

123.25 trirnd

random numbers of the triangular distribution

124 lib/mathematics/statistics

124.1 maxnnormals

expected maximum of n normal variables c.f. Wolperts this is the median, not the mean of the maximum! see median of gumbel

124.2 midrange

 $\label{eq:mid_range} \mbox{mid range of columns of } X$

124.3 minavg

solution of the minimum variance problem minimise the variance of the weighted sum of n-independent random variables with equal mean and individual variance

124.4 mode_man

125 lib/mathematics/statistics/moment-statistics

125.1 autocorr_man3

autoccorrelation of the columns of X

125.2 autocorr_man4

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix

c.f. box jenkins 2008 eq. 2.1.12

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

125.3 autocorr_man5

autocorrellation of the columns of X

125.4 blockserr

estimate the standard error of potetially sequentilly correlated data $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

by blocking

block length should be sufficiently larger than correlation length and sufficiently smaller than data length

this uses a sliding block approach, which reduces the variation of the error estimate

125.5 comoment

non-central higher order moments of the multivariate normal distribution

 $\ensuremath{\mathsf{c.f.}}$ Moments and cumulants of the multivariate real and complex Gaussian distributions

note : there seem to be some typos in the original paper,

for $x^4 cii^2$, the square seems to be missing

 ${\tt mu}$: ${\tt nx1}$ mean vector

C : nxn covariance matrix

k : nx1 powers of variables in moments

125.6 corr_man

correlation of two vectors

125.7 cov_man

covariance matrix of two vectors

125.8 dof

mininum number of support points for a polynomial of degree order in dim dimensions

125.9 edgeworth_quantile

inverse edgeworth expansion c.f. cornis fisher 1937 c.f. Rao 2010 c.f. 2.50 in hall CHERNOZHUKOV 3.3

125.10 effective_sample_size

effective sample size of the weighted mean of uncorrelated data ${\tt c.f.}$ Kish

125.11 f_correlation

correction factor for standard error of the mean of n ar1-correlated iid samples

125.12 f_finite

reduction factor of standard error for sampling from a finite
 distribution
without replacement

125.13 lmean

mean of x.^l, not of abs

125.14 lmoment

1-moment of vector x

125.15 maskmean

mean of the masked values of X

125.16 masknanmean

$125.17 \quad \text{mean} 1$

mean of x

125.18 mean_man

mean and standard error of X

125.19 mse

mean squared error of residual vector res this is de-facto the std for an unbiased residual

125.20 nanautocorr_man1

autocorrelation of a vector with nan-values

125.21 nanautocorr_man2

autocorrelation of a vector with nan-values

125.22 nanautocorr_man4

compute autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix box jenkins 2008 eq. 2.1.12 TODO nan is problematic!

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

125.23 nancorr

(co)-correlation matrix when samples a NaN

125.24 nancumsum

cumulative sum, setting nan values to zero

125.25 nanlmean

mean of the 1-th power of the absolute value of \boldsymbol{x}

125.26 nanr2

coefficient of determination when samples are invalid

125.27 nanrms

root mean square value when sample contains nan-values

125.28 nanrmse

root mean square error from vector of residuals this is de-facto the std for an unbiased residual

125.29 nanserr

standard error of \boldsymbol{x} with respect to mean when \boldsymbol{x} contains nan values

125.30 nanwmean

```
weighted mean
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = nanwmean(w,x)
```

125.31 nanwstd

weighed standard deviation

125.32 nanwvar

```
weighted variance of columns, corrected for degrees of freedom (
    bessel)

s^2 = sum(w*(x-sum(wx)/sum(w))^2)/sum(w)
```

125.33 nanxcorr

125.34 pearson

pearson correlation coefficient

125.35 pearson_to_kendall

conversion of pearson to kendall correlation coefficient c.f. Kruskal 1958

125.36 pool_samples

pooled mean and standard deviation of several groups of different size, mean and standard deviation

125.37 qmean

trimmed mean

$125.38 \quad range_mean$

$125.39 \quad rmse_{-}$

root mean square error computed from a residual vector this is de-facto the std for an unbiased residual

125.40 serr

standard error of the mean of a set of uncorrelated samples

125.41 serr1

125.42 test_qskew

125.43 $test_qstd_qskew_optimal_p$

125.44 wautocorr

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix samples can be weighted

c.f. box jenkins 2008 eq. 2.1.12

c.f. autocorr_man4

Note that it is faster to compute the acf in frequency space as done in the matlab internal function ${\bf r}$

125.45 wcorr

correlation of two vectors when samples are weighted

125.46 wcov

covariance of two vectors when samples are weighted

125.47 wdof

effective degrees of freedom for weighted samples

125.48 wkurt

kurtosis with weighted samples

125.49 wmean

```
weighted mean
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = wmean(w,x)
```

125.50 wrms

weighted root mean square error

125.51 wserr

weighted root mean square error

125.52 wskew

skewness of a weighted set of samples

125.53 wstd

weighed standard deviation

125.54 wvar

```
weighted variance of columns, corrected for degrees of freedom (
    bessel)
variance of the weighted sample mean of samples with same mean (but
    not necessarily same variance)
s^2 = sum (w^2(x-sum(wx)^2))
s2_mu : error of mean, s2_mu : sd of prediction
```

126 lib/mathematics/statistics

126.1 nangeomean

126.2 nangeostd

geometric standard deviation ignoring nan-values

127 lib/mathematics/statistics/nonparametric-statistics

127.1 kernel1d

X : ouput x axis bins
xi : samples along x
m : number of bins in X
fun : kernel function

pdf : propability density of xi

127.2 kernel2d

kernel density estimate in two dimensions

128 lib/mathematics/statistics

128.1 normmoment

expected norm of $x.^n$, when values x in x are iid normal with mu and sigma

128.2 normpdf2

pdf of the bivariate normal distribution

129 lib/mathematics/statistics/order-statistics

129.1 hodges_lehmann_location

```
hodges lehman location estimator

Asymptotic rms efficency of location estimate:
    mean: 1 s/sqrt(n)
    hodges lehman: sqrt(pi/3)*s ~ 1.0233 s/sqrt(n)
    median: pi/2 s/sqrt(n) ~ 1.25 s / sqrt(n)
```

129.2 kendall

kendall correlation coefficient

129.3 kendall_to_pearson

convert kendall rank correlation coefficient to the person product
 moment
correlation coefficient

c.f. Kruska, 1985

129.4 mad2sd

transform median absolute deviation to standard deviation for normal distributed values

129.5 madcorr

proxy correlation by median absolute deviation

129.6 median2_holder

129.7 median_ci

median and its confidence intervals under assumption of normality $se_me = sqrt(1/2 pi) 1.25331 * sd/sqrt(n)$

129.8 median_man

median and confidence intervals c is a P value for the confidence interval, default is 0.95 (2-sigma) median of the colums of X

129.9 mediani

index of median, if median is not unique, any of the values is chosen

129.10 nanmadcorr

proxy correlation by median absolute deviation

129.11 nanwmedian

weighted median, skips nan-values

129.12nanwquantile

weighted quantile, skips nan values

129.13 oja_median

two dimensional oja median note: the multivariate median is not unique

oja 1983, for extension to multivariate function, see chaudhri

129.14 qkurtosis

kurosis computed for quantiles

Note : this is a measurement of shape-tailedness and yields the same value for the normal distribution as "kurtosis"

However, this is a separate statistic and hence requires different

methods for calculating P-values and hypothesis testing

129.15 qmoments

moments estimated from quantiles

129.16 qskew

skewness estimated from quantiles

Note: this is a measurement of shape-symmetry and yields the same value for the skew-normal distribution as "skewness"

However, this is an own statistic and hence requires different methods for calculating P-values and hypothesis testing

129.17 qskewq

skewness estimated by quantiles

129.18 qstdq

proxy standard deviation determined by quantiles

129.19 quantile1_optimisation

129.20 quantile2_breckling

qunatile regression

129.21 quantile2_chaudhuri

quantile regression

129.22 quantile2_projected

quantile in two dimensions

129.23 quantile2_projected2

spatial qunatile for chosen direction

129.24 quantile_envelope

129.25 quantile_regression_simple

simple quantile regression

129.26 ranking

ranking for spearman statistics

129.27 spatial_median

c.f. Oja 2008
is this the same as the oja simplex median (c.f. small 1990)?

129.28 spatial_quantile

spatial quantile

129.29 spatial_quantile2

spatial quantile

129.30 spatial_quantile3

spatial quantile

129.31 spatial_rank

unsigned rank

129.32 spatial_sign

spatial sign

129.33 spatial_signed_rank

signed rank

Note: this is only a true rank if ${\tt X}$ is normal with zero mean, abitrary variance

129.34 spearman

spearman's product moment coefficient

129.35 spearman_rank

$129.36 \quad spearman_to_pearson$

conversion of spearman rank to person product moment correlation coefficient $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

129.37 wmedian

weighted median

129.38 wquantile

weighted quantile

130 lib/mathematics/statistics

130.1 qstd

130.2 quantile_extrap

$131 \quad lib/mathematics/statistics/random-number-generation$

131.1 laplacernd

random number of laplace distribution

131.2 randc

correlate to correlated standard normally distributed vectors

131.3 skewness2param

$131.4 \quad skewpdf_central_moments$

131.5 skewrnd

random numbers of the skew normal distribution

131.6 skewrnd2

random numbers of the skew normal distribution

132 lib/mathematics/statistics

132.1 range

mid range

132.2 resample_with_replacement

133 lib/mathematics/statistics/resampling-statistics/@Jackkni

133.1 Jackknife

class for leave out 1 (delete 1) Jackknife estimates

note 1 : the 1-delete jackknife does not yield consistend estimates for all functions,

in particular it will perform poorly on robust estimation functions

this is overcome by the d-delete jacknife, where d has to exceed the breakdown point

of the estimating function, for example $\operatorname{sqrt}(n)$ for the median

as this leads to unreasonably large number of repetitions, bootstrap

is recommended for large sample cases (or blocking for sequential data)

note 2 : as a linearisation, jackknife underestimates the error variance in case of

dependence in the data

note 3 : studentisation and the leave out 1 jackknife are related note 4 : the double 1 sample jacknife performs iferior to the d1 jacknife $\,$

133.2 estimated_STATIC

```
jacknife estimate of mean, bias and standard error
theta0 : estimate from all samples
thetad : set of estimates obtained by leaving out one data point
    each
        last dimension of theta is assumed to be the jackknife
        dimension
```

133.3 matrix1_STATIC

matrix of estimation for leaving out two samples at a time

133.4 matrix2

matrix of estimations for jacknive with two samples left out

134 lib/mathematics/statistics/resampling-statistics

134.1 block_jackknife

134.2 jackknife_moments

134.3 moving_block_jackknife

blocked Jacknfife for autocorrelated data
sliding block, statistically more efficient but computationally
 expensive
note, number of blocks must be sufficiently large h ~ sqrt(n)? << n</pre>

134.4 randblockserr

standard error of sequentilly correlated data by blocking block length should be sufficiently larger than correlation length and sufficiently smaller than data length this uses a sliding block approach, which reduces the variation of the error estimate
TODO this does not work, randomly picking samples does not reveal the correlation

134.5 resample

resample a vector and apply function to it TODO, should be with replacement

n : number of samples
m : number of subsamples

cx : maximum number of combinations

135 lib/mathematics/statistics

135.1 scale_quantile_sd

scale factor for the standard deviation of the asymtpotic distibution of sample quantiles (for normal distribution) see cadwell, 1952

135.2 sd_sample_quantiles

135.3 skewpdf

skew-normal distribution c.f. Azzalini 1985

135.4 trimmed_mean

trimmed mean

135.5 $ttest2_man$

```
two-sample t-test here posix return value standard: h=0 accepted, h=1 failed note: the matlab logic is inverse : h=1 accepted, h=0 failed two sided univariate t-test
```

135.6 ttest_man

two-sample t-test
unequal sample size
equal variance

135.7 ttest_paired

```
paired t-test unequal sample size equal variance more powerfull than unpaired test, as long as correlation between \rm x1 and \rm x2\,>\,0
```

135.8 wgeomean

```
weighted geometric mean
function mu = wgeomean(w,x)
```

135.9 wgeovar

variance of the weighted geometric mean

135.10 wharmean

weighted harmonic mean

135.11 wharstd

135.12 wharvar

136 lib/mathematics

mathematical functions of various kind

136.1 ternary_diagram

137 lib/mathematics/test/master

137.1 dat_test_lanczos_3d_k_20_n_40

137.2 poisson $2d_blk$

137.3 qr_implicit_givens_2

- $137.4 \quad spectral_derivative_2d$
- 137.5 test_2d_eigensolver_hydrogen
- 137.6 test_2d_refine
- 137.7 test_3d_eigensolver_hydrogen
- 137.8 test_FEM
- 137.9 test_Mesh_3d
- 137.10 test_arnoldi
- 137.11 test_arpackc
- 137.12 test_assemble
- 137.13 test_assembly_performance

- 137.14 test_bc_one_sided
- 137.15 test_compare_solvers
- 137.16 test_complete
- 137.17 test_convergence
- 137.18 test_convergence_b
- 137.19 test_df_2d
- 137.20 test_eig_algs
- 137.21 test_eig_inverse
- 137.22 test_eigs_lanczos
- 137.23 test_eigs_lanczos_1

- $137.24 \quad test_eigs_lanczos_2$
- $137.25 \quad test_eigs_lanczos_performance$
- 137.26 test_fdm
- $137.27 \quad test_fdm_d_vargrid$
- 137.28 test_fdm_spectral
- 137.29 test_fem
- 137.30 test_fem_1d
- 137.31 test_fem_1d_higher_order
- $137.32 \quad test_fem_2d_adaptive$
- $137.33 \quad test_fem_2d_higher_order$

- $137.34 \quad test_fem_3d_higher_order$
- 137.35 test_fem_3d_refine
- 137.36 test_fem_b
- 137.37 test_fem_derivative
- 137.38 test_fem_quadrature
- 137.39 test_final
- 137.40 test_fix_substitution
- 137.41 test_forward
- 137.42 test_get_sparse_arrays
- 137.43 test_harmonic_oscillator

 $137.44 \quad test_high_order_fdm_periodic_bc$

137.45 test_hydrogen_wf

137.46 test_ichol

 $137.47 \quad test_interpolation$

137.48 test_inverse_problem

137.49 test_it_vs_exact

137.50 $test_jama$

137.51 test_jd

137.52 test_jdqz

137.53 test_lanczos_2

- $137.54 \quad test_lanczos_biorthogonal$
- 137.55 test_laplacian
- 137.56 test_laplacian_non_uniform
- 137.57 test_laplacian_simple
- 137.58 test_mesh_2d_uniform
- 137.59 test_mesh_2d_uniform_2
- 137.60 test_mesh_circle
- 137.61 test_mesh_generation
- 137.62 test_mesh_interpolate
- 137.63 test_mg

 $137.64 \quad test_minres_recycle$

137.65 test_multigrid

137.66 test_nc

 $137.67 \quad test_nonuniform_symmetric$

137.68 test_pde

137.69 test_permutation

137.70 test_poison_fem

137.71 test_polar

137.72 test_potential

137.73 test_powers

- 137.74 test_precondition
- 137.75 test_project_rectangle
- 137.76 $test_qr$
- 137.77 test_quantum_well
- 137.78 test_radial_adaptive
- 137.79 test_radial_confinement
- 137.80 test_radial_fixes
- 137.81 test_refine_2d
- 137.82 test_refine_2d_b
- 137.83 test_refine_3d

$$137.85$$
 test_regularisation

$$137.86$$
 test_round_off

$137.87 \quad test_schrdinger_potentials$

137.88 test_uniform_mesh

137.89 test_vargrid

138 lib/mathematics/test

$138.1 \quad test_gauss fit 3$

138.2 test_mtimes3x3

139 lib/mathematics/wavelet

139.1 contiuous_wavelet_transform

continuous wavelet transform
follows "The Illustrated Wavelet Transform Handbook: Introductory
 Theory and ..."

139.2 cwt_man

continuous fourier transform as of time of implmentation, the matlab interal cwt is affected by serious round-off errors and has issues with the scaling, which is not the case here

139.3 example_wavelets

139.4 phasewrap

wrap the phase to +/- pi

139.5 test_cwt_man

139.6 test_phasewrap

139.7 test_wavelet

139.8 test_wavelet2

139.9 test_wavelet_analysis

139.10 test_wavelet_reconstruct

139.11 test_wtc

139.12 wavelet

wavelet windows

139.13 wavelet_reconstruct

iverses wavelet transform for single frequency (reconstruction of time series) n: window lengths in multiples of filter period 1/f0

139.14 wavelet_transform

wavelet transform for single frequency n: window lengths in multiples of filter period 1/f0

140 lib/mathematics

mathematical functions of various kind

140.1 wrapphase

$141 \quad lib/mesh/@StructuredMesh$

141.1 StructuredMesh

structured mesh processing compatible with Delft3D also provides set-up of discretisation matrices

141.2 apply_boundary_condition

apply boundary condition and the four sides of the domain TODO: allow for interior boudaries

141.3 bc_from_shp

read boundary condition from shape file

141.4 bc_index

TODO this is deprecated generate indices for boundary edges

141.5 bc_isinvalid

check boundary conditions for stacked domains

141.6 block

stack multiple meshes to complex domain

141.7 boundary_chain

return chain of boundary points

141.8 boundary_direction

return direction of boundary segment

$141.9 \quad boundary_indices$

indices of boundary segments
id : index of boundary point

jd : index of

141.10 cat

141.11 centreline

domain (channel) centreline along chosen dimension

141.12 child

hierarchical mesh generation (for bifurcations)

141.13 copy

141.14 corner_indices

indices of domain corners

141.15 cut_from_domain

cut subdomain

$141.16 \quad export_delft3d_bnd$

export the boundary in delft3d compatible format

$141.17 \quad export_delft3d_dep$

export bathymetry data in Delft3D dep-format

141.18 export_delft3d_grd

export mesh in deltares delft3D grd file format

141.19 export_delft3d_ini

export delft3D compatible initial condition file

$141.20 \quad export_shp$

export mesh elements as shape file

141.21 extend_straight_reach

141.22 extract_elements

element indices from grid

141.23 flip_dimension

flip left and right or top and down

141.24 from $_1$ d mesh

convert a 1D mesh to 2D mesh consisting of quadrilaterals

141.25 generate_bifurcation

```
creates a mesh for bifurcation with bluff, which is required for
   delft3d grids
TODO do not fix indices
TODO determine p individually
bank : bankline shapefile
nn : number of points across branches
ds: spacing along s
p : fraction of right side branch
level : generate hierarchical mesh,
        grid points in each branch will be 2^n+1,
        and sub meshes until level 1 will be generated
for lower levels the connecting volumes remain narrow,
as the two volumes left and right of the division line are not
   scaled
-> post smoothing required
nn: n=6; for idx=1:5; n(end+1) = 2*(n(end)-3)+3, end
ns: n=18; for idx=1:5; n(end+1) = 2*(n(end)-2)+2, end (should be
   improved to 2*(n-1)+1
```

141.26 generate_disk

generate semicircular domain

141.27 generate_from_centreline

```
generate a mesh from a given centreline TODO : avoid crossing of inner bed points in sharp bends
```

141.28 generate_rectangle

discretize a rectangular domain

141.29 generate_structured_grid

generate a structured mesh consisting of several sub-meshes

$141.30 \quad grid_block$

mesh a subdomain

141.31 improve

improve (smooth) the mesh

141.32 interp_elem2point

interpolate values sampled at element centres to element corners $\ensuremath{\texttt{TODO}}$ allow also interpolation to u and v points

141.33 mesh_polygon

mesh a 1D channel, where boundaries are given as polygon
TODO, this should better use voronoi-tesselation (see centreline
 class)

141.34 orthogonality

orthogonality of elements

141.35 orthogonalize

orthogonalize mesh set x of point coordinates to 1/2

141.36 plot

plot the mesh

141.37 plot_boundary

plot the mesh boundary

141.38 plot_coupling

plot connected vertices, see vertex_connection_matrix.m

141.39 plot_orthogonality

plot mesh with edges colored by orthogonality condition

141.40 quiver

quiver plot of velocity

$141.41 \quad read_delft3d_dep$

depth in dat file is defined at volume centres (water leve point) first row, first column and last column are buffer but nast colum is not (only when outflow?)

141.42 read_delft3d_grd

read mesh in delft3D grd format

141.43 smooth_cubic

cubically smooth the mesh coordinates

141.44 smooth_curvilinear

```
smooth the mesh
relax = (10+relax)/11;
relax = min(0.5,relax);
```

141.45 smooth_laplacian

```
smooth the mesh coordinates
```

```
better than before, but causes dn in inner bends to be narrower
        than in outer bends
(straightens the lines)
better smooth p: i.e. fractional distance from left to right,
this is complicated at the bif
better: two neighbour smooth: smooth dn and ds with left/right, top
        bottom only
```

141.46 smooth_simple

smooth the mesh coordinates

$141.47 \quad smooth_sn$

smooth the mesh coordinates

141.48 snap

snap two meshes that connect at their domain boundaries

141.49 statistic

compute mesh statistics

141.50 to_unstructured_mesh

convert to unstructured mesh

141.51 transpose_dimension

transpose dimensions

141.52 vertex_connection_matrix

connectivity of neighbouring vertices TODO same for elements

142 lib/mesh/@UnstructuredMesh

142.1 UnstructuredMesh

class containing some meshing functionality complementary to Mesh_2d, Mesh_3d, Tree_2d and Tree_3d

142.2 add_element

add an element with vertex indices, vertices already exist

142.3 add_vertex

add a vertex

142.4 angle

interior angles of each element

142.5 assign_1d

assign coordinatex (x0,y0) to containing element TODO this can fail, if triangulation is not delaunay

142.6 assign_2d

assign coordinatex (x0,y0) to containing element

142.7 assign_3d

assign coordinatex (P0,y0) to containing element

142.8 bnd_1d

left and right end points for 1D meshes

142.9 boundary_1d

convert 1D mesh to 2D mesh

142.10 boundary_chain2

get chained indices of boundary segments, used for setting up higher order polynomials along the boundary

142.11 boundary_length_and_direction

edge length and direction of boundary segments TODO, this should be just edge length and direction

142.12 cat

concatenate two meshes

142.13 chain_1d

chain 1D elements (segments)

142.14 check_dublicate_elements

check if elements are duplicate elements
TODO, this does not check if elements cover each other, for example
hierarchical meshes or ABC+BCD and ABD+ACD
TODO check overlap by computation of area

142.15 check_edge_intersection

142.16 clip

clip mesh to polygonal domain TODO only works for triangles

142.17 compute_elem2elem

set up element2element neighbourhood relation

142.18 connect_ $1d_2d$

auto merge 1d and 2d mesh
this silently requires that 1d segments consist at least of 3
elements
TODO only implemented for triangles

142.19 convert_ $2d_{to}_{1d}$

142.20 copy

copy constructor

142.21 cross_section

get cross-sections for 1D elements

142.22 delete_element

delete an element

142.23 derivative_matrix_1d

first order first derivative discretisation matrix on the 1d mesh

142.24 derivative_matrix_2d

first order first derivative discretisation matrix on the mesh

142.25 derivative_matrix_2d_2

second order derivative matrix on a triangulation

142.26 derivative matrix 3d

first order first derivative discretisation matrix on the mesh

142.27 distance

distance along edges from a point set to all other points

open : id of start point(s)

countflag : if set use number of hops as distance not the euclidean distance

142.28 dual_mesh

dual mesh formed by the centre of cicumference the dual mesh consists not only of triangles TODO rename in generate dual mesh

142.29 edge_length

euclidean edge length

142.30 edge_midpoint

edge mid-points

142.31 edges_from_elements

edges and boundaries from elements

142.32 eigs

eigenvalues of the lapalcian on the mesh

$142.33 \quad elem2edge_$

pointer of element to edge

142.34 elem2elem_matrix

matrix with neighbourhood relations for each element

142.35 element_area

area of elements 1d elements have zero area and are not processed

142.36 element_centroid

centroids of lements

142.37 element_midpoint

barymetric centre of elements

$142.38 \quad elements_from_edges$

2D elements from edges

142.39 eval2pval

element (centroid) value to vertex value TODO, use dual mesh or triangulation

142.40 export_delft3d_net

export into DFLOWFM delft3d net.nc file

$142.41 \quad export_msh$

export mesh in GMSH msh format

$142.42 \quad export_pos$

export triangles and vertex values to gmsh pos-file format (x,y,z,
 val)
intended for re-meshing with values representing local mesh size

142.43 export_shp

```
export edges to GIS shapefile each element as separate polygon with one z-value
```

142.44 facing_element

get triangle ndx that is opposit, e.g. "facing" the vertex vdx of triangle tdx

142.45 filter_neighbour

apply a function on the values on connected vertices

142.46 find_encroached_edges

```
find encroached edges in a triangulation,
i.e. edges for which on of the two facing point false into their
   enclosing
circle
```

142.47 flip

```
flip edges between two triangles
    flip
    for each side
        if (connection between opposit points shorter than
            between edges, swap edge)
        this-> flip
        that-> flip
    end
```

142.48 flip_global

```
recursively flip edges, i.e ABC+BCD -> ABD+ADC,
when new edge (diagonal) is shorter
TODO this is buggy, it cannot be always swapped, only if abcd is
   convex!
```

142.49 flip_quality

flip edges, when mesh quality constraint improves

142.50 gaussmat_2d

matrix for gauss integration on a triangulation

142.51 generate_chews_first

triangulate domain with chew's first algorithm

142.52 generate_from_centreline_1d

generate a mesh from centreline

142.53 generate_from_centreline_2d

```
generate mesh from centreline
TODO allow number of segments to change
sets up a simple quadrilateral mesh in S-N coordinates
centreline (must be sorted in streamwise direction)
input variables:
cS : S (streamwise) coordinates of centreline
cL : N (spanwise) coordinate of left bank
cR : N (spanwise) coordinate of right bank
input variables controlling ouptut resolution:
S : S coordinate of slices in S-direction (diff(S) is element
    width)
      must be sorted in s-direction
{\tt n} : {\tt n} number of points per cross section
      (n-1) is number of elements per cross section
output variables:
mesh.\{X,Y,S,N\} : point coordinates
             : point indices of elements (corners of the
    quadrilaterals)
-> make it orthogonal to banks by using a spline along n
```

142.54 generate_frontal

142.55 generate_ghost_elements

```
generate ghost elements, i.e. elements at the domain boundary,
these
elements can overlap
when the project flag set, ghost points are porjected to the
boundary,
the project flag is set for dual mesh generation
the project flag is unset for application of the boundary condition
```

142.56 generate_gmsh

generate a mesh from a polygon using gmsh

inshp : file name of shape file of preloaded shape file
 containing a polygon

obase : base of output file name

resolution : struct containing default mesh resolution settings resfile_C : file names of shape files, defining local resolution in $\bar{\ }$

polygonal regions

opt : options, see below

this is a Static function

142.57 generate_hierarchical

generate a hierachical mesh by recursively splitting elements containing boundary points

142.58 generate_triangle

generate a mesh from a polygon using the programme "Triangle"

142.59 generate_uniform_1d

generate a uniformly spaced 1D mesh

142.60 generate_uniform_quadrilateral

generate a uniform 2D mesh

142.61 generate_uniform_tetra

uniformly tesselate a rhombic domain in 3D into tetrahedra

142.62 generate_uniform_triangulation

uniformly tesselate a rectangular (2d) domain into triangles

142.63 get_facing_and_shared_vertices

for a pairwise list (array) of triangles, determine there common and facing edges

142.64 grid2tri

topologically split a uniform mesh on a rectangular domain into triangles

142.65 import_delft3d_net

import mesh from Delft3d file ({filanme}_net.nc)

$142.66 \quad import_msh$

import mesh from {filename}.msh files as generated by GSMH

142.67 import_triangle

import a mesh generated with triangle (ele and node)

142.68 improve_iterative_relocate_insert

142.69 improve_iterative_relocate_uniform

142.70 improve_relocate_global1

iteratively improve angles to remove obtuse triangles

142.71 improve_relocate_global2

improve mesh globally

142.72 improve_relocate_global_3

improve mesh quality globally

142.73 improve_relocate_local

iteratively improve angles to remove obtuse triangles

142.74 improve_relocate_local_old

iteratively improve angles to remove obtuse triangles

142.75 improve_topology

improve mesh topology

142.76 insert_mid_points

insert mid points into the mesh
the new mesh is of much lower quality, but if all edges are flipped
 ,
this leads to the sqrt(2) refinement

142.77 insert_steiner_points

refine mesh by inserting steiner points (centre of circumference) for elements specified by $\ensuremath{\mathsf{tdx}}$

142.78 integrate_1d

integrate a quantity val across the mesh

142.79 integrate_discharge

integrate discharge

142.80 interp_1d

interpolate on a 1D mesh

$142.81 \quad interp_2d$

interpolate on a 2D mesh

142.82 interp_fourier

interpolate values on the mesh using fourier methods

142.83 interp_tikhonov_1d

interpolation with Tikhonov regularisation

142.84 interp_tikhonov_2d

interpolation wiht Tikhonov regularisation in 2D

142.85 interp_tikhonov_3d

142.86 interpolate_from_boundary

interpolate interior values from the boundary

142.87 interpolate_point

interpolate from samples to mesh points by IDW method

142.88 interpolation_error_1d

estimate interpolation error in 1D

142.89 interpolation_error_2d

interpolate error in 2D

142.90 interpolation_error_3d

estimate interpolation error in 3D

142.91 interpolation_matrix_1d

linear interpolation matrix from mesh points to arbitrary coordinates $\ensuremath{\text{PO}}$

142.92 interpolation_matrix_2d

142.93 interpolation_matrix_3d

interpolation matrix for interpolation in 3D

142.94 isacute

determine acute triangles

142.95 isobtuse

determine obtuse triangles

142.96 iterate_smooth2

iteratively improve the mesh by smoothing

142.97 limit_by_distance

max edge length
minimum distance
TODO, this will always be zero

142.98 make_elements_ccw

make all 2D elements clock wise (such that their area is positive)

142.99 merge_duplicate_points

merge duplicate points

$142.100 \quad merge_facing_blunt_triangles$

merge blunt triangles that face each other

$142.101 \quad \text{mesh}1$

mesh in 1D

$142.102 \quad mesh_1d$

extract the 1d mesh

$142.103 \quad \text{mesh_2d}$

extract the 1d mesh

142.104 mesh_junctions

 $\begin{array}{c} \text{mesh junctions of a channel network} \\ & \text{hold on} \end{array}$

142.105 nearest_boundary

determine nearest boundary segment for each input coordindate

142.106 $nedge_{-}$

142.107 nonobtuse_refinement

nonobtuse refinement according to Korotov not feasible for most obtuse triangles

142.108 objective_A

one objective function value per angle

142.109 objective_T

wrapper for mesh optimisation objective functions univariate in triangles

142.110 objective_angle

objective function for iterative angle improvement

142.111 optimum_angle

optimum angle for each vertex = 360^{deg} / number of connected edges

142.112 orthogonality_quadrilaterals

 $orthogonality\ condition\ for\ quadrilaterals$

142.113 path

path along edges

142.114 plot

plot the mesh (and a discretised function) as a surface and net

142.115 plot1d

plot 1D mesh

$142.116 \quad plot 3$

plot mesh and values

142.117 plotcs

plot cross section

142.118 project_to_boundary

project a point to the boundary

142.119 pval2eval

vertex to element value

142.120 quad2tri

quadrilaterals to triangles

142.121 raster_boundary

142.122 recover_edges

recover (boundary) edges

142.123 refine

refine by splitting marked triangles

142.124 refine_edge_halving

mesh refinement by longest edge bisection

142.125 remove_empty_triangles

remove degenerated triangles with zero area

142.126 remove_isolated_vertices

remove points that are not part of the mesh (gmsh leaves sometimes spurious points in the msh file)

142.127 remove_points

remove points and associated elements

142.128 remove_quartered_triangles

point has connectivity $\boldsymbol{4}$ and is not on the boundary

142.129 remove_small_islands

delft3D requires islands to have at least 7 edges this functions splits edges surrounding small islands

142.130 remove_triply_connected_boundary_vertices

remove boundary vertices that are connected only to three vertices

142.131 remove_trisected_triangles

remove trisected trianges point has connectivity 3 and is not on the boundary

142.132 renumber_point_indices

renumber vertex indices

142.133 resolve_8_vertices

improve mesh by removing one edge from vertices with 8-edges
(an interior vertex in a regular triangulation has 6 neighbours,
and unstructured meshes with local refinement are possible with
5 and 7 neighbours, 4,3, or 8 and more connected vertices are not
necessary

142.134 restore_acuteness

restore acuteness
Laplacian smoothing may at some places decrease the mesh quality, this locally restores acute elements

142.135 retriangulate

retriangulate the mesh

142.136 ruppert

refine the mesh using ruppert's algorithm

142.137 scale_to_boundary

scale hierarchical mesh to match boundary coordinates experimental $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right$

142.138 scatterplot

scatterplot of data on mesh

142.139 section

142.140 segment

segment the mesh into parts according to laplacian eigenvalues

142.141 smooth2

Laplacian smoothing of vertex coordinates, replace every point by the average coordinate of its neibghbours

142.142 smooth_1d

smoothes values in each reach does not smooth the values at the connection points

$142.143 \quad smooth_val$

smooth values on the mesh
TODO allow for smooting boundary only along boundary

142.144 smoothness

142.145 split3

split those triangles that contain a boundary point in three pieces , for hierarchical mesh generation

142.146 split_edge

split an edge

$142.147 \quad split_edge_perpendicular$

split edge perpendicularly

142.148 split_elem_1d

split a 1d element

$142.149 \quad split_encroached_edges$

recursively split encroached edges

142.150 split_obtuse

split obtuse elements

142.151 split_unsmooth_edges

split unsmooth edges

142.152 statistics

compute mesh statistics

142.153 streamwise_derivative_matrix

streamwise derivative matrix

142.154 thalweg

thalweg (deepest point along channel)

142.155 to_single

TODO, also with indices

142.156 uncross_elements

make sure, that 4 point elements span an area, and do not form a
 cross
a call to this function should be succeeded by make_ccw
this operator is idempotent

142.157 uncross_quadrilaterals

make sure, that 4 point elements span an area, and do not form a
 cross
a call to this function should be succeeded by make_ccw
this operator is idempotent

142.158 vertex_distance

connectivity of directly connected vertices

$142.159 \quad vertex_to_edge$

connectivity matrix between vertices and adjacent edges

142.160 vertex_to_element

connectivity matrix between vertices and elements

$142.161 \quad vertex_to_vertex$

connectivity matrix between vertices

142.162 vertices_1d

142.163 weighed_laplacian_smoothing

weighed Laplacian smoothing

142.164 xy2xys

for boundary points: convert XY coordinate into a 1Dparametric coordinate, applied in mesh optimization, where movement of boundary points is constrained on the boundary

$142.165 \quad xys2xy$

convert parametric 1D coordinate of boundary point back to cartesian XYc oordinate

143 lib/mesh/grid/@Grid1

143.1 Grid1

lump spatiotemporal data into a 1-dimensional grid

143.2 binop

operate function fun on data val within the context of a grid cell (for fitting grid cell values from sampled values)

143.3 build_index

compute the grid-cell index for samples sampled at points X1

name : name of the index field
X1 : coordinate of source points

R : cut off radius (if not supplied ident to mesh width)

143.4 fit

lump (fit) sampled values into the corresponding grid cell

143.5 predict

interpolate from lumped data to specified location

144 lib/mesh/grid/@Grid2

144.1 Grid2

lump spatiotemporal data into a 2-dimensional grid

144.2 binop

operate function fun on data val within the context of a grid cell (for fitting grid cell values from sampled values)

144.3 build_index

compute the grid-cell index for samples sampled at points ${\tt X1}$ X1 : coordinate along first dimension

X2 : coordinate along second dimension

144.4 plot

144.5 predict

interpolate from lumped data to specified location

145 lib/mesh/grid/@Grid3

145.1 Grid3

lump spatiotemporal data into a 3-dimensional grid

145.2 build_index

compute the grid-cell index for samples sampled at points X1

X1 : coordinate along first dimension
X2 : coordinate along second dimension
X3 : coordinate along third dimension

146 lib/mesh/mesh1d

146.1 dxspace

146.2	dxspace2
146.3	dzmesh
146.4	mesh1
146.5	mesh1d
146.6	nlogstep
147	lib/mesh/optimization
147.1	$improve_smooth_insert$

147.2 objective0_angle1_barycentric

 $147.3 \quad objective 0_angle 2_barycentric$

147.4 objective0_angle2_barycentric9

- $147.5 \quad objective 0_angle_2_cartesian$
- $147.6 \quad objective 0_angle_inf_cartesian$
- 147.7 objective0_barycentric9
- $147.8 \quad objective 0_pythagoras 1_barycentric 9$
- 147.9 objective0_pythagoras1_cartesian
- $147.10 \quad objective 0_pythagoras 2_barycentric 9$
- $147.11 \quad objective 0_pythagoras 2_cartesian$
- 147.12 objective_3_angle
- 147.13 objective_A_bnd
- 147.14 objective_P_angle

- $147.15 \quad objective_P_angle_scaled$
- $147.16 \quad objective_P_angle_scaled_area$
- 147.17 objective_P_midpoint
- 147.18 objective_angle
- 147.19 objective_angle2_barycentric
- 147.20 objective_angle_p
- $147.21 \quad objective_angle_scaled_area$
- 147.22 objective_angle_scaled_circumference
- 147.23 objective_cosa
- 147.24 objective_cosa_p

147.25	$objective_cosa_scaled_side_length$
147.26	$objective_distance_edge_centre$
147.27	$objective_distance_edge_centre_perpendicular$
147.28	$objective_distance_orthocentre_excentre$
147.29	$objective_incentre_excentre$
147.30	$objective_length_min_max$
147.31	$objective_length_var$
147.32	$objective_thales$
147.33	$objective_thales_difference$

147.34 test_objective_cosa_p

148 lib/mesh

mesh generation, manipulation, analysis, refinement and optimization

148.1 preload_msh

149 lib/mesh/sparsemesh/@SparseMesh1

149.1 SparseMesh1

lump time series of sampled spatial data in one dimension (
 projected)

149.2 assign

assign (lump) data "v0" sampled at sample times/location to field "field"

149.3 assignS

lump sequentially sampled data "v0" and assign to field "field"

149.4 init

initialize, segment sampling locations/times into blocks the
 sampled
data is lumped to

149.5 interp

interpolate data stored in field "field" to coordinates Xi ingnore invalid data TODO, check if convex

149.6 interpS

interpolate data stored in field "field" to coordinates ${\tt Xi}$, do not ignore invalid data

149.7 rmse_interp

```
interpolation part of the error :
e ~ 1/2*d^2v/dx^2 * dx^2 + higher order terms
  ~ 1/2*d^2 v
the other part of the error is the sampling error (gaussian noise)
the mesh is optimal, when e_nois ~ e_interp
```

150 lib/mesh/sparsemesh/@SparseMesh2

150.1 SparseMesh2

```
lump time series of sampled spatial data (track recordings) along
    two dimensions,
e.g 1 projected spatial dimension and one for time time
TODO : better blocks (all neighbours within mahalanobis distance)
TODO : do not use simple mean, but allow for least squares
    regression
TODO : precompute the least squares weights for accummarray
```

150.2 assign

assign (lump) data "v0" sampled at sample times/location to field " field"

150.3 assignS

lump sequentially sampled data "v0" and assign to field "field"

150.4 init

initialize, segment sampling locations/times into blocks the
 sampled
data is lumped to

150.5 interp

interpolate data stored in field "field" to coordinates Xi
ingnore data outside of the domain (convex interpolation)

150.6 interpS

interpolate data stored in field "field" to coordinates \mbox{Xi} , extrapolate beyond domain

150.7 rmse_interp

```
interpolation part of the error :
e ~ 1/2*d^2v/dx^2 * dx^2 + higher order terms
  ~ 1/2*d^2 v
the other part of the error is the sampling error (gaussian noise)
the mesh is optimal, when e_nois ~ e_interp
TODO this is e ~ f', not f''
```

151 lib/mesh/sparsemesh

lumping and interpolation of spatio-temporal data into a "mesh" that
 is spaced
optimally for the local density of sample points

allows for processing of large data sets with lower memory consumption and run time $% \left(1\right) =\left(1\right) +\left(1\right)$

intended for ADCP data processing

Overcomes the limitation of gridding, where some grid cells can have an insufficient number of samples

151.1 SparseMesh

SparseMesh superclass

- 152 lib/mesh/test
- $152.1 \quad test_MMesh_segment$
- 152.2 test_derivative_matrices_curvilinear

153 lib/mesh

 ${\tt mesh\ generation,\ manipulation,\ analysis,\ refinement\ and\ optimization}$

153.1 test_nxfun

153.2 trimesh_fast

$154 \quad lib/open-channel-flow/@Backwater1D$

154.1 Backwater1D

solve the gradually varied flow equation (backwater equation) in one dimension $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}$

c.f. Chow, Bresse

154.2 backwater_approximation

approximation of the backwater curve by an exponential function note: this is not necessarily a good approximation in the case of tide, $\mathbb{Q}t$ can be given

154.3 backwater_curve_iterative

analytic solution of the gradually varied flow equation ${\tt c.f.}$ Bresse, Chow

154.4 backwater_length

backwater length

$154.5 \, \mathrm{dh_{-}dx}$

change of depth along channel for the backwater equation beta : momentum coefficient this is effectively an equation in h^3

154.6 dh₋dx₋

$154.7 dzs_dx$

change of surface elevation along channel

154.8 gvf_x_chow

analytical solution to the gradually varied flow equation (
 backwater equation)
c.f. Chow, Bresse

154.9 invert

```
determine bed level from surface elevation
(inverse backwater equation)
this is ill conditioned, as the surface is smooth for subcritical
    flow,
even if the bed is not smoth

C : chezy
W : width
Q : discharge
S : bed slope
y0 : surface elevation at outflow
lateral inflow
```

154.10 solve

```
solve the gradually varied flow equation (backwater equation) C : chezy W : width Q : discharge S : bed slope y0 : surface elevation at outflow
```

154.11 solve_analytic

```
analytical solution to the gradually varied flow equation (bresse method)  u\_.^{\hat{}}(n-m)./(1-u\_.^{\hat{}}n)
```

154.12 solve_matrix

155.1 Jb

$155 \quad lib/open-channel-flow/bifurcations-and-weirs/@Lateral_Diversion$

155.2	Lateral_Diversion_Finite_Width
155.3	dR
155.4	derive
155.5	evalk
155.6	$lateral_outflow_finite_width1$
155.7	$load_functions$
	$\operatorname{stagnation_point}$
	fdx = isnan(x);
155.9	streamline
155.10	$streamline_radius_of_curvature$

155.11 u_far

155.12	${f v}_{f -}{f far}$
155.13	velocity
155.14	velocity_near_bed
156	$lib/open-channel-flow/bifurcations- and-weirs/@Lateral_Diversion$
156.1	Jb
156.2	$Lateral_Diversion_Finite_Width_Gradual$
156.3	coefficients
156.4	$\mathrm{cond}\mathbf{A}$
156.5	dR
156.6	derive

156.7 evalk
$156.8 \mathrm{evalk}_{-}$
156.9 lateral_outflow_finite_width1
156.10 load_functions
157 lib/open-channel-flow/bifurcations-and-weirs/@Lateral_D 157.1 coefficients_old
158 lib/open-channel-flow/bifurcations-and-weirs/@Lateral_D 158.1 stagnation_point
fdx = isnan(x); 158.2 streamline
158.3 streamline_radius_of_curvature
158.4 u_far

158.5 uv1

158.6 uv_side_branch

158.7 v_far

158.8 velocity

158.9 velocity_linear

158.10 velocity_near_bed

158.11 xp

- $159 \quad lib/open-channel-flow/bifurcations- and-weirs/@Lateral_Diversion. \\$
- 159.1 Lateral_Diversion_Wide_Channel
- 159.2 derive_lateral_outflow

derive potential flow solution to lateral outlfow from an
 infinitely
wide main channel

159.3 derive_lateral_outflow_finite_width

derive coefficients for lateral outflow in the case of potential flow

159.4 lateral_outflow

potential flow solution to the case of lateral outflow from an
 infinitely
wide channel

159.5 lateral_outflow_finite_width

analytical potential flow solution to lateral outflow from an
 infinitely
wide channel

160 lib/open-channel-flow/bifurcations-and-weirs/@Lateral_Div

160.1 Lateral_Diversion_Wide_Channel_Map

wrapper to store precomputed streamlines of potential flows

160.2 streamline

$161 \quad lib/open-channel-flow/bifurcations-and-weirs/@Side_Weir$

161.1 Side_Weir

side weir, analytical solution to (critical) lateral outflow

$161.2 dzs_dx$

side weir, along channel surface gradient

161.3 surface_elevation

along-channel surface elevation for (critical) lateral outflow over a side-weir

162 lib/open-channel-flow/bifurcations-and-weirs

162.1 Lateral_Diversion_Finite_Width_Map

163 lib/open-channel-flow

```
functions for open channel flow, sub modules:
@Backwater1D
       gradually varied flow in 1D (backwater)
@Potential_Flow
       depth averaged potential flow, numerical solution
@Potential_Flow_Analytic
       depth averaged potential flow, analytical solution
rating-curve
       empirical rating curves
@Side_Weir
       analytical solution to lateral outflow over a side weir
@SWE
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 1D
@SWE_2d
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 2D
velocity-profile
       vertical and transverse velocity profiles of the streamwise
           velocity
```

163.1 hfilter

164 lib/open-channel-flow/kinematik-and-diffusionwave

164.1 diffusion_wave

```
propagation of a diffusion wave (flood wave), c.f. ponce advection diffusion where is the bed slope? friction slope eddy slope chow 1988 d(A+AO)/dt + dQ/dx = q dQ/dt + d/dx \ betaQ^2/A + gA(dh/dx + Sf + Se) - beta \ q_i \ v_i + Wf \ B = 0 A0 ignored inflow and wind shear ignored
```

164.2 flood_wave_diffusion_coefficient

164.3 linear_wave

linear wave routing (linearised kinematic wave)

165 lib/open-channel-flow/meander-bend/@Equilibrium_Bend

165.1 Equilibrium_Bend

Transverse profile of the bed level and bed material grain size in an equilibrium (infintely long) meander bend

165.2 bed_profile

predict transverse bed profile of an equilibrium meander bend

165.3 bed_profile_uniform

transverse profile of the bed level of an equilibrium meander bend with uniform grain size

165.4 calibrate

calibrate bend geometry to given profile

$165.5 dD_dr$

165.6 dh_dr

across channel derivative of flow depth for a meandering river

165.7 dh_dr_uniform

transverse gradient of the bed level of an equilibrium meander bend for the case of uniform bed material

165.8 grain_size_profile

transverse (across channel) profile of the bed material grain size in a river meander $\,$

166 lib/open-channel-flow/meander-bend

166.1 Kinoshita

- % Public properties
- % Public get properties
- % Private properties
- % Constructor
- $\mbox{\ensuremath{\mbox{\%}}}$ Setters and getters
- % generic methods

166.2 bend_transverse_velocity

transverse velocity profile in a meander bend

166.3 bend_velocity_near_bed

near-bed-velocity in a meander bend

166.4 kinoshita_

166.5 random_meander

generate a pseudo random meander

166.6 test_rozovskii

167 lib/open-channel-flow/potential-flow/@Potential_Flow

167.1 Potential_Flow

numerical solution of the potential flow on a curvilinear grid (not necessarilly curvilinear) $\$

167.2 apply_boundary_potential_old

167.3 assemble_discretization_matrix_rectilinear

assemble the discretisation matrix

167.4 assemble_potential_matrix

assemble the discretisation matrix for potential flow

167.5 bc_dirichlet

apply Dirichlet boundary conditions

167.6 boundary_condition_side_outflow

```
apply boundary conditions for side outflow
p*phi + (1-p)*d/db phi = rhs
y : along channel coordinate
```

167.7 boundary_condition_side_outflow_1

```
apply boundary conditions
p*phi + (1-p)*d/db phi = rhs
```

167.8 contour

contour plot of the potential flow solution

167.9 cut_boundary

```
cut the boundary from the domain
wa : width of inlet to side channel
wb : width of side channel
```

167.10 cut_rectangle

```
cut a rectangle from the domain
TODO, this requires also an adaptation of the derivative matrices
    -> step over to semi-unstructured mesh
```

167.11 infer_bed_level

note: this is pretty much a broken function for the inference of stationary morphology

Missing:

- rolling down of transverse slope to balance secondary flow in bends $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($
- quasi time steippong

at stationary state:

- changes of discharge along the streamlines of discharge are balanced
 - by a change in depth, to keep the velocity and sediment transport constant along the streamline

167.12 infer_bed_level2

infer the bed level

167.13 infer_bed_level3

167.14 infer_bed_level_loop

the bed level does not completely converge but starts to oscillate, this is presumably due to the non-compact kernel implementation of the laplacian oberator

167.15 objective_bed_level

objective function for determining the bed level

167.16 old

167.17 plot

surface plot

167.18 quiver

167.19 sediment_transport

compute the sediment transport

167.20 solve_potential

solve for the flow potential

167.21 streamline

compute a streamline

167.22 surface_elevation

compute surface elevation according to Bernoulli's law

167.23 test

167.24 velocity_near_bed

determine the velocity near the bed

167.25 vertical_velocity

determine the vertical velocity from continuity

168 lib/open-channel-flow/potential-flow/@Potential_Flow_Ana

168.1 Potential_Flow_Analytic

analytical solutions to various depth-averaged potential flow problems

168.2 streamline

numerically follow path along streamline by integrating the velocity $% \left(1\right) =\left(1\right) \left(1\right)$

169 lib/open-channel-flow/rating-curve

169.1 ChezyRatingCurve

rating curve, Chezy formalism

169.2 DynamicKeuleganRC

Dynamic Rating Curve, Keulegan roughness formulation (dynamic = correction for hysteresis loop)

169.3 DynamicManningRC

Dynamic Rating Curve, Manning roughness formulation (dynamic = correction for hysteresis loop)

169.4 DynamicPowerRC

Dynamic Power Law Rating curve
(dynamic = correction for hysteresis loop)

169.5 KeuleganRatingCurve

169.6 ManningRatingCurve

169.7 PolyRatingCurve

169.8 PowerRatingCurve

stationary rating curve, power law

$169.9 \quad Power Rating Curve Offset$

stationary rating curve, stage-discharge follows power law

169.10 RatingCurve

Fri Feb 13 10:02:52 CET 2015 rating curve superclass

169.11 csarea

predict cross sectional area from transverse bed level profile and surface elevation

169.12 csdischarge

compute discharge

169.13 csperimeter

compute wetted perimeter

169.14 csradius

compute hydraulic radius of the cross section

169.15 cswidth

determine cross section width

169.16 test_PowerRatingCurve

169.17 wfunc

determine channel width

170 lib/open-channel-flow/shallow-water/@SWE

170.1 SWE

Class to solve the (cross sectionally averaged) shallow water equation (st venant equation)

170.2 bc_incoming_non_reflecting

set non-reflecting boundary condition for the 1D SWE $\,$

170.3 bc_inflow

inflow boundary condition

170.4 bc_inflow_low_pass

set low frequency Dirichlet, high frequency pass boundary condition

170.5 bc_inflow_non_reflecting

set non-reflecting boundary condition

170.6 bc_level

set surface level as Dirichlet boundary condition

170.7 bc_level_sommerfeld

set surface level as boundary condition by sommerfeld method

170.8 bc_nonreflecting

set non-reflecting boundary condition extrapolate $0\text{-}\mathrm{order}$

170.9 bc_reflecting

set reflecting boundary condition extrapolate $0\text{-}\mathrm{order}$ and invert v

170.10 dot

```
time derivative (only for matlab internal ode-solver) TODO this is not swe specific continuity dA/dt + dQ/dx = I

momentum dQ/dt + d/dx(Qu + 1/2 gh^2) = gA(S_f - S_b)
S_b = dz_b/dx
S_f = tau_x/rho_w = C_f u|u|
```

170.11 dt_cfl

determine time step required by cfl

170.12 energy

determine total energy as sump of potential and kinetic energy this is preserved for fricitionless flows $\,$

170.13 flux

st venant's shallow water equation fluw

170.14 flux_lin

linearised st-venant equation

170.15 fluxmateig

eigenvalues und vectors of the swe

170.16 jacobian

```
Jacobian of the SWE dq/dt + J dq/dx = sourceterm note: d/dx(A*q) = J dq/dx
```

170.17 lindot

170.18 roe_average

roe average for the ${\tt SWE}$

170.19 solve_analytic

linearised analytic solution of the swe

170.20 solve_stationary

stationary solution to the SWE

170.21 source_bed_level

source term of the SWE caused by a change of the bed level

Note: this term causes splitting and averaging methods to fail to give accurate predictions of the smooth surface at steps of the bed

170.22 source_friction

friction source term of the SWE

170.23 source_width

source term (reaction term) for channels with variable width

170.24 swe_geometry

predefined functions to set up channel geometry

170.25 swe_ic

predefined functions of channel geometries

$171 \quad lib/open-channel-flow/shallow-water/@SWE_2d$

$171.1 \quad SWE_2d$

Dynamic solution of the shallow water equation (depth average, 2D)

171.2 apply_boundary_condition_stationary

apply boundary condition for stationary flow

171.3 assemble_stationary

TODO, g should be replaced by gx,gy,gz, see chaudhri assemble discretisation matrix for stationary flow

171.4 solve_stationary

solve SWE for statinary flow (dU/dt = dQ/dt = 0)

172 lib/open-channel-flow/shallow-water

172.1 sw_reflection

reflection coefficients of shallow water waves at a sudden change of the cross section (sudden change of admittance) c.f. lighthill, ippen-harleman

172.2 sw_reflection_stepwise

time passes and phase shifts transmission and reflection coefficient depend on direction ! iterative (recursive) reflection and transmission

173 lib/open-channel-flow/test/test_Backwater1D

173.1 test_bw1d_solve_matrix

174 lib/open-channel-flow/test

174.1 test_inverse_backwater_curve

174.2 test_normal_flow

174.3 test_nse_nz

175 lib/open-channel-flow/uniform-stationary-flow

175.1 chezy2drag

```
175.2 chezy2f
```

175.3 chezy2manning

175.4 chezy2z0

175.5 critical_flow_depth

critical flow depth in uniform stationary flow

175.6 drag2chezy

```
convert drag coefficient to chezy coefficient g dz_s/dx + cd w u^2/h = 0 (swe formalism) - S + 1/C^2 U^2/H = 0 (chezy formalism)
```

175.7 f2chezy

175.8 ks2z0

175.9 manning2chezy

175.10 manning2drag

175.11 manning2z0

175.12 normal_flow_depth

normal flow depth for uniform stationary flow function $H = normal_flow_depth(Q,W,C,S)$

175.13 normal_flow_depth_

normal flow depth in uniform stationary flow

175.14 normal_flow_discharge

normal flow discharge for uniform stationary flow

175.15 normal_flow_slope

energy slope (surface slope) for uniform stationary flow normal flow slope in uniform stationary flow

175.16 normal_flow_velocity

normal flow velocity in uniform stationary flow

175.17 normal_shear_velocity

175.18 shear_velocity

175.19 z02chezy

 $175.20 \quad z02ks$

175.21 z0tochezy

176 lib/open-channel-flow/velocity-profile/@Log_profile

$176.1 \quad Log_{-profile}$

logarithmic profile of the streamwise velocity

$176.2 df_dh$

sensitivity of profile with respect to depth

176.3 df_dh_

sensitivity of profile with respect to depth

176.4 df_dln_z0

sensitivity of velocity profile with respect to roughness length

$176.5 df_dln_z0_$

sensitivity of profile with respect to roughness length

176.6 profile

vertical profile of the streamwise velocity

176.7 profile_

scale of velocity at instrument depth to depth average velocity roughness length and associated standard error can change in time, i.e. may be passed as vectors

```
: [1xn] water surface level
     : [1x1] bottom level
zb
     : [1xn] or [1x1]
       level of velocity measurement,
       i.e. level of HADCP beam bin centre, coincides with
           instrument level,
       if the {\tt HADCP} is horizontally aligned
       only needs to be passed as vector if instrument is
           redeployed or
       becomes misaligned
ln_z0 : [1xn] or [1x1]
       natural logarithm of the roughness length
     : [1xn] or [1x1]
       standard error of ln_z0
function [fz_mu fz_s fz_sp fz_bias fz_eps] = log_profile(zs,zb,za,
   ln_z0,s,sp,e)
```

176.8 profile_bias

176.9 regmtx

regression matrix

176.10 ubar

depth averaged velocity

$177 \quad lib/open-channel-flow/velocity-profile/@Log_profile_with_b$

177.1 Log_profile_with_bend_correction

vertical velocity profile corrected for bend flow

$177.2 ext{df_dc}$

 $177.3 ext{ df}_{-} ext{dc}_{-}$

$177.4 du_dz$

177.5 fit

fit the vertical velocity profile

177.6 profile_

vertical velocity profile

177.7 regmtx

regression matrix

177.8 u

streamwise velocity

177.9 u₋

streamwise velocity

178 lib/open-channel-flow/velocity-profile/@Log_profile_with_cubic_wa

 $178.1 \quad Log_profile_with_cubic_wake$

log profile with cubic wake

$178.2 ext{df_dc}$

sensitivity of profile with respect to wave parameter

$178.3 ext{df_dc_}$

sensitivity of profile with respect to wake parameter

178.4 profile_

vertical velocity profile

178.5 regmtx

regression matrix

179 lib/open-channel-flow/velocity-profile/@Log_profile_with_dip

179.1 Log_profile_with_dip

Logarithmic profile with dip

179.2 fit

fit the vertical velocity profile

$180 \quad lib/open-channel-flow/velocity-profile/@Log_profile_with_liveled and the profile_with_liveled a$

$180.1 \quad Log_profile_with_linear_bend_correction$

log profile with linear bend correction

$180.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wake parameter

$180.3 ext{ } ext{df}_{-} ext{dc}_{-}$

sensitivity of velocity profile with respect to wave parameter

$180.4 du_dz$

velocity shear along vertical

180.5 profile_

velocity profile

180.6 regmtx

regression matrix

$181 \quad lib/open-channel-flow/velocity-profile/@Log_profile_with_wake$

181.1 Log_profile_with_wake

```
logarithmic velocity profile with wake correction {\tt c.f.} coles
```

181.2 df_dc

sensitivity of profile with respect to wake parameter

181.3 df_dc_

sensitivity of velocity profile with respect to wake parameter

$181.4 du_dz$

velocity shear

181.5 profile_

predict velocity profile

181.6 regmtx

```
log law with wake u = us/k \ln(z) - us/k \ln(z0) + us/k (2/H^2 z - 3/H^3 z^2)
```

182 lib/open-channel-flow/velocity-profile/@VP

182.1 VP

velocity profile

182.2 process_joint

182.3 process_transverse_profile

process the transverse velocity profile

182.4 process_vertical_profile

predict vertical profile error distribution parameter for HADCP error estimate

182.5 profile_prediction_error

```
input :
      : [nbin x nens]
        - values for each bin (or across section) and ensemble (or
           reference measurement)
        this are estimates estimates of the discharge or the cross
            sectional averaged
        velocity from the raw values
        - the profile should be limited to the effective profiling
        abobj 75-100m for a 600kHz ADCP
     : distance between HADCP bins
width : cross section width
objput:
      sd_n : expected standard deviation for increasing profiling
function [s_rel s_err s_dat rho res m2 u_pred fdx] =
   velocity_variation(U)
hadcp_prediction_error
TODO take scales and unscaled velocity to do combine with harmmean
    estimate
note: previus versions:
       residual was computed with respect to the predicted local
       mse was not upscaled to cs, as profile was expected to cover
           entire cs
       finite width of cs was not considered
```

parametric estimate from moments, objliers should be filtered beforehand

Note that the median absolute deviation is not a good estimate, because it may excludes rare events like reverse flow of floods thus, the only acceptible more robust estimate would be mean absolute deviation

183 lib/open-channel-flow/velocity-profile/@Vertical_profile

183.1 Vertical_profile

vertical profile of the streamwise velocity, superclass

183.2 fit

```
fit vertical velocity profile parameter
function obj = fit(obj,U,S,h,binmask)
```

183.3 u

predict velocity along the vertical based on profile

184 lib/open-channel-flow/velocity-profile

184.1 fit_displacement_profile

fit the \log profile to the vertical profile of the streamwise velocity

184.2 lateral_division_method

```
transverse (across channel) profile of the streamwise velocity
in a straight channel
numerical solution
the eps seems incorrect, use better stationary_1d_swe

rho g h S - beta q^2 f / (8 h^2) + d/dy(eps_t dq/dy) = 0
rho g h S - beta q^2 g / (C^2 h^2) + d/dy(eps_t dq/dy) = 0
```

184.3 test_law_of_the_wall_fit

184.4 transverse_profile_parameter

184.5 transverse_velocity_profile

transverse profile of the streamwise velocity c.f. shiono knight

184.6 transverse_velocity_profile_olesen

transverse profile of the streamwise velocity in a meander bend

184.7 transverse_velocity_profile_rozovskii

```
transversal velocity distribution in a bend
Rososkii,
as in the book central differences along the radius and euler
    forward in space
are used, note that since the advent of the computer more advanced
    schemes
could be used (see build in solvers)
cfl condition is not explicitely checked
Rosovsky assumes a constant water level, e.g. does not consider
    superelevation

I_theta = -1/r dz/d_theta (p. 22)
d_theta = 1/R ds|_R
=> I_theta = -R/r dz/ds = -R/r I_0
It : (1.32) drop of level per unit angle, identical across section
```

184.8 transverse_velocity_profile_shiono_knight

```
transverse profile of the streamwise velocity, determined
    analytically
by the method of shiono and knight
shape of velocity profile only dependent on lambda, f, H, not slope
```

184.9 transverse_velocity_profile_tidal_channel

184.10 transverse_velocity_profile_with_slope

```
stationary 1D shallow water equation across a river section 0 = -g \ h \ S0 - tau_b/rho + d/dn \ (nu \ h \ du/dn) 0 = -g \ h \ S0 + g \ u^2/C^2 + d/dn \ (nu \ h \ du/dn) includes tranvese gradient term
```

note that shiono/knight 1991 provide an _analytic_ solution, which takes the form of an expontially decaying side wall effect

184.11 vertical_profile_of_velocity_vriend

vertical profile of the streamwise velocity, method of de vriend

184.12 vertical_velocity_profile

vertical profile of the streamwise velocity in non-uniform flow

184.13 z2s_rational

185 lib/open-channel-flow/wrapper

185.1 discharge2stage

wrapper function

185.2 stage2discharge

186 lib/physics/@Constant

186.1 Constant

Constant and physical standard quantities

186.2 celsius_to_kelvin

convert temperature from degree Celsius to Kelvin function t_K = celsius_to_kelvin(t_C)

186.3 depth_to_pressure

convert depth to pressure in fresh water at standard temperature

$$z = (p - p0)/(rho g)$$

=> $p = rho g z + p0$

input

 ${\tt p0}$: nx1 or scalar, pressure at water surface in BAR

d : depth in metre

output :

 ${\tt p}\,\,$: nx1, pressure at measurement depth in BAR

186.4 kelvin_to_celsius

convert temperature degree Kelvin to Celsius

186.5 optical_attenuation

186.6 pressure_to_depth

convert pressure to depth in fresh water at standard temperature

$$z = (p - p0)/(rho*g)$$

```
input:
p : nx1, pressure at measurement depth in BAR
p0 : nx1 or scalar, pressure at water surface in BAR
output:
d : depth in metre
```

186.7 saturation_vapor_pressure

186.8 sound_absorption_air

186.9 sound_absorption_water

```
sound absrobption in water
following Francois and Garrison, 1982

function alpha = sound_absorption(f,S,D,T)

input:
f : frequency (Hz)
S : salinity
D : depth (m)
T : temperature (degree C)

output:
alpha = sound attenuation in dB/m (not dB/km)

function alpha = sound_absorption(f,S,D,T,model)
```

186.10 sound_velocity_water

```
sound velocity in water
following Lubbers and Graaff (1998)
this formula does not include depth and salinity effects
```

- $186.11 \quad viscosity_dynamic_water$
- 186.12 viscosity_kinematic_water
- 187 lib/physics
- 187.1 beam_bending_deflection
- 187.2 beam_bending_moment
- 187.3 beam_bending_strain
- 187.4 beam_bending_stress
- 187.5 bolt_stress
- 187.6 drag_force
- 188 lib/physics/hydrogen-spectrum
- 188.1 hydrogen_spectrum_1d

- $188.2 \quad hydrogen_spectrum_2012_12_02$
- $188.3 \quad hydrogen_spectrum_2d$
- $188.4 \quad hydrogen_spectrum_3d$
- 189 lib/physics
- 189.1 minimum_cable_diameter
- $189.2 \quad moment_of_inertia_rectangle$
- 189.3 moment_of_inertia_ring
- 189.4 parabolic_reflector_gain
- 190 lib/physics/salinity
- 190.1 Salinity
- 190.2 Salinity 78

190.3 canter_cremer_number

Canter Cremer Number

ratio of fresh water to sea water that flows into the estuary

Qf : fresh water discharge

T : tidal period Pt : tidal prism

Savenije, Salinity and tides, eq. 1.1, 2.35 and 5.67

190.4 density2salinity

190.5 dispersion_hws_savenije

Dispersion at river mouth during high water slack

v0 : tidal velocity scale
E0 : tidal excursion

h0 : depth

a : convergence length
Nr : Richargson Number

Savenije 1993c, Savenije, Salinity and Tides, eg. 5.70

190.6 dispersion_tda_burgh

190.7 richardson_number

Estuarine Richardson Number

potential energy due to mixing the entire fresh water with sea water

ratio of potential energy and buoyancy Savenije, Salinity and Tides, 2.36

drho : difference of sea water and fresh water density

rho : fresh water density

h : depth

v : tidal velocity scale

N : Cramer number

190.8 salinity

190.9 salinity_intrusion_length

190.10 sea_water_density

190.11 tidal_discharge

specific tidal discharge (discharge per unit width)

190.12 tidal_excursion

Tidal excursion length

Pt : tidal prism

h0 : depth w0 : width

190.13 tidal_prism_channel

Tidal prism

Pt = int_lsw^hws Q_t dt \sim A E

z1 : tidal amplitude

w0 : width of estuary at mouth
b : length of width convergence
dH_dx = rate of damping of H
c.f. Savenije 2.34, 2.64

190.14 tidal_prism_estuary

Tidal prism

Pt = int_lsw^hws Q_t dt ~ A E

z1 : tidal amplitude

w0 : width of estuary at mouth
b : length of width convergence
dH_dx = rate of damping of H
c.f. Savenije 2.34, 2.64

190.15 tidal_velocity

- 191 lib/physics
- 191.1 test_sound_absorption_air
- 192 lib/physics/turbulence
- 192.1 keps2nu
- 193 lib/physics/wind-wave
- $193.1 \quad short_wave_length$
- 193.2 short_wave_shear_velocity
- 193.3 wave_height_from_wind_speed

194	lib/sediment-transport/@Grain Size Distribution
194.1	GrainSizeDistribution
194.2	$assign_channel$
10/3	bimodality
104.0	biniodancy
194.4	${ m export_csv}$
194.5	$\operatorname{export_shp}$
1046	$\operatorname{group_channels}$
194.0	group_channels
194.7	${ m group_curvature}$
194.8	${ m group_histograms}$
194.9	$load_coordinates$

$195 \quad lib/sediment-transport/@Hermite_profile$

195.1 Hermite_profile

suspended sedimen profile in form of a hermite polynomial

195.2 fit

fit suspended sediment profile

195.3 predict

predict suspended sediment concentration

195.4 regmtx

regression matrix

195.5 transform

hermite profile

$196 \quad lib/sediment-transport/@Nodal_Point$

196.1 Adot

ODE of the nodal point relation (time-derivative of branch cs-area)

196.2 Nodal_Point

Nodal point relation for bifurcations, according to Wang

196.3 Qs_in

sediment entering branches

196.4 Qs_out

sediment leaving branches

196.5 derive_jacobian

derive Jacobian of the nodal point relation

196.6 discharge

discharge through branches

196.7 geometry

cross section geometry of branches

196.8 jacobian

jacobian of the nodal point relation ${\tt semi-autogenerated}$

196.9 phase_diagram

phase diagram

196.10 phase_diagram_wang

phase diagram of Nodal point relation

196.11 solve

solve the nodal point relation for critical points

196.12 stability_analysis

staility analysis for a given configuration

$197 \quad lib/sediment-transport/@Parabolic_Constant_Profile$

197.1 Parabolic_Constant_Profile

parabolic-constant profile

197.2 fit

fit the suspended sediment concentration profile

197.3 predict

predict suspended sediment concentration

197.4 regmtx

regression matrix

197.5 transform

transformation of vertical coordinate

$198 \quad lib/sediment-transport/@Rouse_Profile$

198.1 Rouse_Profile

suspended sediment concentration profile

198.2 fit

fit the suspended sediment concentration profile

198.3 mean_concentration

198.4 predict

predict the suspended sediment concentration

198.5 regmtx

regression matrix

198.6 rouse_number

rouse number (suspension number) for given grain siye and shear velocity

198.7 rouse_number_to_grain_diameter

convert known rous number (suspension parameter) to grain size $\mbox{\tt diameter}$

198.8 set_parameters

198.9 transform

transform the vertical coordinate

199 lib/sediment-transport

analysis and prediction of fluvial sediment transport and $\tt morphodynamics$

$199.1 \quad Exponential_SSC_Profile$

199.2 adaptation_length_bed

adaptatoion lenght of bed morphology

199.3 adaptation_length_flow

adaption length of the flow

199.4 bar_mode_crosato

bar mode of a river according to crosato

199.5 bed_layer_thickness

199.6 bed_load_einstein

bed load transport according to einstein jr.

$199.7 \quad bed_load_engelund_fredsoe$

bed load transport according to engelund and fredsoe

199.8 bed_load_transport_mpm

bed load transport rate according to meyer-peter-mueller

199.9 bed_load_transport_rijn

```
bed load transport
method of van Rijn (1984)

function [Q_b q_b Phi_b] = bed_load_transport_rijn(C,d50,d90,U,d,b)

d50 [mm] (converted to m)
d90 [mm] (converted to m)

d : depth
b : width
```

199.10 bed_load_transport_wu

bed load transport according to Wu

199.11 bedform_dimension_rijn

```
bed form dimensions
cf. rijn 1984 iii
```

199.12 bedform_roughness_rijn

form drag according to van Rijn

199.13 bedform_roughness_rijn_2007

199.14 bedload_direction

bedload transport direction

199.15 bedload_layer_thickness_mclean

199.16 bifurcation_critical_aspect_ratio

critical aspect ratio of a bifurcation c.f. redolfi and pittaluga $\,$

199.17 chezy_einstein

chezey coefficient according to Einstein

199.18 chezy_roughness_engelund_fredsoe

chezy rougness according to engelund and fredsoe

199.19 chezy_to_manning

convert chezy to manning

199.20 critical_grain_size

critical grain size for a given shear velocity

199.21 critical_shear_stress

critical shear Stress

199.22 critical_shear_stress_ratio

critical shields parameter aka critical shear stress ratio aka shields curve

199.23 critical_shear_stress_wu

critical shear stress, according to wu

199.24 critical_shear_velocity

critical shear velocity

199.25 derive_mpm_foramtive_discharge

199.26 dimensionless_grain_size

dimensionless grain size

199.27 dune_celerity

199.28 dynamic_shear_stress

dynamic shear stress

$199.29 \quad fractional_transport_engelund_hansen$

fractional sediment transport according to engelund and hansen

199.30 grain_roughness_mpm

199.31 grain_roughness_rijn

grain roughness (skin friction) according to van Rijn

199.32	grain_	roug	${f hness}$.	\mathbf{w}

199.33 hiding_exposure_wu

199.34 hydraulic_radius

199.35 manning_to_chezy

manning to chezy conversion

199.36 mobility_parameter_rijn

199.37 mpm2diameter

 $199.38 \quad mpm_solve_for_dm$

199.39 reference_concentration_rijn

199.40 reference_concentration_smith_lean

reference concentration according to smith and mclean

199.41	${\bf reference_height_rijn}$
199.42	$reference_to_flux_averaged_concentration_rijn$
199.43	$saltation_layer_thickness$
199.44	${\bf sediment_transport_directed}$
directed	sediment transport
199.45	$sediment_transport_engelund_hansen_2$
sediment	transport according to engelund and hansen
199.46	$sediment_transport_relation_fit$
199.47	$sediment_transport_relation_predict$
199.48	${\bf sediment_transport_scale}$

 $199.49 \quad sediment_transport_waves$

sediment transport by waves

199.50 settling_velocity

Settling velocity
5.23d in julien-2010
settling velocity in water
settling velocity according to cheng
stokes settling velocity
d: [mm] diameter of sediment particle
ws: [m/s] settling velocity
signed ws < 0: falling
(Note: was R, radius in m)
valid for small particles

199.51 settling_velocity_to_diameter

invert settling velocity to diameter

199.52 shields_number

normalized shear stress, shear stress ratio

199.53 skin_2_total_friction_eh

skin friction to total friction conversion according to engelund
 and hansen
function [theta,C] = skin_2_total_friction_eh(theta_t,Ct)

199.54 suspended_grain_size

suspended grain size distribution based on bed material grain size distribution $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

assumes that probability of suspension is inverse proportional to grain diameter as in Engelund-Hansen transport relation

- no hiding offects considered

- no hiding effects considered $% \left(1\right) =\left(1\right) \left(1\right) \left$
- no threshold for large grains applied
- no flocking considered

note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)

h_bed : [nsxnd] fractions of sediment of size d

199.55 suspended_grain_size_non_linear

suspended grain size distribution based on bed material grain size distribution $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

assumes that probability of suspension is inverse proportional to grain diameter

as in Engelund-Hansen transport relation

- no hiding effects considered
- no threshold for large grains applied
- no flocking considered

note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)

h_bed : [nsxnd] fractions of sediment of size d

199.56 suspended_grain_size_rijn

grain size of the suspended sediment according to van rijn, empirical

199.57 suspended_transport_mclean

```
vertical profile of the suspended sediment according to McLean u := us/kappa*log(z/z0);
I = 1/(int_a^h c dz int_a^h u dz) int_a^h c u dz
```

199.58 suspended_transport_rijn

suspended load transport according to van Rijn

199.59 suspended_transport_wu

suspended sediment transport according to widthu

100 00	•	• •
199.60	suspension_parameter	r riin
100.00	Suspension parameter	

200 lib/sediment-transport/test

200.1 test_adaptation_length_bed

200.2 test_critical_shear_stress

200.3 test_settling_velocity_to_diameter

201 lib/sediment-transport

analysis and prediction of fluvial sediment transport and $\operatorname{morphodynamics}$

201.1 test_sediment_transport_relation

201.2 total_roughness_engelund_fredsoe

roughness lenght according to engelund and fredsoe

201.3 total_roughness_rijn

total roughness according to van rijn

201.4 total_transport_ackers_white

201.5 total_transport_bagnold

total sediment transport accoding to bagnold

201.6 total_transport_eh_distribution

total sediment transport according to engelund hansen for a given graqin size distribution

$201.7 \quad total_transport_engelund_hansen$

total sediment transport according to Engelund and Hansen

201.8 total_transport_rijn

total sediment transport according to van rijn

201.9 total_transport_wu

total sediment transport according to wu 2000b

201.10 total_transport_yang

201.11 transport_stage_mclean

transport stage according to McLean

$201.12 \quad transport_stage_rijn$

transport stage as defined by van Rijn

$201.13 \quad vertical_ssc_profile_mclean$

vertical profile of the suspended sediment according to McLean

$202 \quad lib/tide/@T_Tide$

202.1 T_Tide

 $\hbox{wrapper for TPXO generated tidal time series}\\$

202.2 build_index

build a structure whose field names contain the index

202.3 from_tpxo

read TPXO output into tidetable object

202.4 get_constituents

extract constituents of tpxo object

202.5 reorder

order constituents as specified by "name" $\,$

202.6 select

select a subsect of constituents

202.7 shift_time_zone

shift phase according to time zone $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) ^{2}$

203 lib/tide/@Tidal_Envelope

203.1 Tidal_Envelope

process tidal data to extrac the tidal envelope

203.2 init

initialize with data

$204 \quad lib/tide/@Tide_wft$

wavelet analysis of tidal data

204.1 Tide_wft

wavelet transform of tidal time series

204.2 transform

```
wavelet transform tidal time series
     : [1xn] abszissa of input vector, for example time, must be
   equally spaced
      : [1xn] signal, input data series (e.g water level or
   velocity)
      : [1xm] base frequencies, 1, 1, 2, ... for mean level,
   diurnal, semidirunal ...
             base periods from base frequencies T=1/F
      : [1xm] wavelet window length in multiple of periods
fc, nc : [scalar] low frequency cutoff and window length in periods
winstr : [char] fourier windows (kaiser (recommended), hanning, box
dt_max : [scalar] maximum time to fill gaps in input data series (
   recommended 3/24 for tide)
output:
tide : struct with fields
        w_coeff : [1xn] wavelet coefficients (complex)
        amplitude : amplitude
                : phase
        phase
        range
```

h_tide :
h_low :
h

$205 \quad lib/tide/@Tidetable$

class for generating tidetable data

205.1 Tidetable

Tide table

205.2 analyze

extract tidal envelope from time series

205.3 export_csv

export tide table to csv file

205.4 generate

run TPXO to generate time series

205.5 generate_tpxo_input

generate tpxo input table Note: superseeded by perl script

$205.6 \quad import_tpxo$

import TPXO data into tidetable object

205.7 plot_neap_spring

plot average neap and spring tide

206 lib/tide

analysis prediction of tides in rivers and estuaries by empirical and theoretical methods $\,$

206.1 constituents

206.2 doodson

frequency of tidal constituents method of doodson source: wikipedia

206.3 envelope_amplitude

compute envelopes of hw and low water

206.4 envelope_slack_water

slack water envelope of the tide

206.5 interval_extrema

times and evelations for high and low water

206.6 interval_extrema2

mimimum and maximum within intervals of constant length, intended for periodic functions

206.7 interval_zeros

times of slack water determined frim velocity u

206.8 lunar_phase

lunar phase

206.9 rayleigh_criterion

raleigh criterion for resolving tidal constituents T > 1/|f1-f2|

207 lib/tide/river-tide/@River_Tide

predict tide in a backwater affected river with a sloping/varying

Assumptions and capabilities:

- tidal dynamics follow the 1D-Shallow-Water-Equation (depth and cross-sectionally averaged Navier-Stokes-Equation)
- rectangular cross section
- width can vary along the channel
- friction coefficient (cd) constant along channel and over time (Chezy)
- advective accelleration term is considered, but can be deactivated
- vertical profile of streamwise velocity is constant (Boussinesq coefficient is unity (1))

Limitations / TODO list:

- single channel dynamics only (no tidal networks)
- no wind-shear stress (no storm surges)
- no tidal flats / intertidal areas (width constant in time)
- no flood-plain during high-river flow
- no stratification or along-channel salinty gradient
- negligible head loss in channel bends
- negligible feed-back of the sediment concentration on the propagation of the tide
- low Froude Number (no hydraulic jumps due to cataracts or tidal bores)

- At present, only two tidal components are supported (either D1 with D2 or D2 with D4, in addition to the mean water level z0),
 - for mixed diurnal-semidiurnal cases with dominant semidiurnal component,
 - the class has to be extended to support three components (D1, D2 and D4) $\,$
- At present, the tripel overtide is not computed (D3 for diurnal, D6 for semindiurnal tide),
 - note that this is the main overtide for the case of low river flow
- At present, the 1/h non-linearity is only included in the approximations of
 - the backwater curve, but not it's influence on the tidal frequency components

Method:

This class calls numerical solvers for second order ordinary differential $% \left(1\right) =\left(1\right) +\left(1\right) +$

equation boundary value problems

Tides is represented as exponential series in form of total discharge $Q = \sup Q_i = Q_0 + Q_1 + Q_2$,

as discharge is conserved (balanced), the equations are simpler than for level z and velocity u,

and the frequency components of \boldsymbol{z} are straight forward determined by differentiation of \boldsymbol{Q}

Class and function structure:

River_Tide :

computes river tide, provides the ode coefficients to the boundary value solver

bvp2c, bvp2fdm :

solve the underlying second order boundary value $\ensuremath{\operatorname{problem}}$

River_Tide_Map :

provides convenient batch runs and processing of River_Tide instances

Minimum working example, c.f. example_rive_tide.m and example_river_tide_map.m

input:

QO : scalar, river discharge (m^3/s)

omega : scalar, angular frequency main tidal species in (1/

```
seconds)
    : 2x1 vector, left and right end of computational
   domain of the river (m)
w(x) : function of width along the river (m)
cd(x): function of drag coefficient along the river (1)
zb(x) : function of bed level along the river (m)
opt : structure with options
opt.model_str = 'wave' (other solver are not supported at the
    moment)
opt.solver = @bvp2c or @bvp2fdm
opt.nx : number of grid points along channel
opt.ns : base for logarithmic spacing of grid points, 1 :
   linear spacing
bc : structure array of boundary conditions
       r, row 1..2 : left and right end, respectively
       c, column 1 : mean (river) component
                2..n : condition form column-1 frequency
                    component
              q(1)*(p(1) y^-(x0) + p(2) dy^-/dx(x0) ...
           + q(2)*(p(1) y^+(x0) + p(2) dy^+/dx(x0)) = bc(c
               ,r).val
                 = val(0)
bc(c,r).var : Quantity, either 'z' or 'Q'
bc(c,r).val: complex amplitude of chosen variable
            (c.f. (1 + 0i) [m] for surface elevation
                amplitude of 1m)
             (value has to be real for mean component)
            mean component requires z and Q to be specified
                at opposit ends
bc(c,r).p : factor for Dirichlet p(1) or Neumann p(2)
   condition
            p = [1,0] : pure Dirichlet
            p = [0,1] : pure Neumann
            sum of abs(p) must be nonzero for each end and
                each frequency component
bc(c,r).q : factor for left and right going wave, only
   available for bvp2c
            q = [1,1] : total water level / discharge
            q = [1,0] : only left going wave
            q = [0,1] : only right going wave
            q has no meaning for the mean component and is
                ignored
            q is only supported by bvp2c,
            bvpfdm uses default q = [1,1]
            sum of abs(q) for each frequency component must
```

be zero

207.1 River_Tide

```
river tide in a single 1D channel
TODO split in two classes:
one that stores data (RT_Solve), one that provides equations (
    RT_Analytic)
```

207.2 bc_transformation

207.3 bcfun

```
Robin (mixed) boundary conditions for the river tide,
supplied for each frequency component,
wrapper that copies values are from the member struct "bc"
     q*(p*Q_1^- + (1-p)*dQ_1^-/dx
input :
              : coordinate (left or right end)
      id,ccdx : frequency component index
              (1 = 0 \text{ omega (mean}), 2 : 1 \text{ omega}, 3 : 2 \text{ omega}, ...
columns of bc : frequency
rows of bc, left, right boundary
output :
      p : [2x1] linear combination of Dirichlet and Neumann
          boundary condition
        p(1) -> weight Dirichlet boundary condition
          p(2) -> weight Neumann boundary condition
    q linear combination of left and right travelling (incoming and
         outgoing) wave
          q(1) weight left going wave
        q(2) weight right going wave
      rhs = 0 -> homogeneous boundary condition
function [rhs, p, q, obj] = bcfun(obj,x,y,ccdx)
```

207.4 check_continuity

207.5 check_momentum

207.6 $d2au1_dx2$

```
second derivative of the tidal velocity magnitude note: this is for finding zeros,  \qquad \qquad \text{the true derivative has to be scaled up by z}
```

$207.7 d2az1_dx2$

```
second derivative of the tidal surface elevation note: this is for finding zeros,  \qquad \qquad \text{the true derivative has to be scaled up by z}
```

207.8 decompose

```
decompose the tide into a right and left travelling wave, i.e. into incoming and reflected wave
TODO subtract forcing term
```

207.9 discharge2level

```
tidal component of surface elevation determined from tidal
    discharge

by continuity :

dz/dt + dq/dx = 0
=> i o z = - dq/dx
=> z = -1/(io) dq/dx
=> z = 1i/o dq/dx

TODO allow Q as input
TODO rename into Q1_to_z1
Mon 7 Oct 19:04:14 PST 2019 : added correction for change of width
```

$207.10 \quad dkq_{-}dx$

along-channel derivative of the wave number of the discharge neglects width variation

TODO, rederive with g as variable

$207.11 dkz_dx$

along channel derivative of the wave number of the tidal surface elevation ignores width variation dh/dx and second order depth variation (d^2 h/dx^2) TODO rederive with g symbolic

207.12 even_overtide_analytic

207.13 friction_coefficient_dronkers

```
friction coefficient according to Dronkers

the coefficients are semi-autogenerated

c.f. dronkers 1964
c.f. Cai 2016

p = [p0,p1,p2,p3];
alpha = Ur/Ut = river velocity / tidal velocity amplitude = (umax+ umin)/(umax-umin)

function p = friction_coefficient_dronkers(alpha,order)
```

207.14 friction_coefficient_godin

```
friction coefficient according to Godin
these coefficients are identical to Dronker's for U_R = phi = 0
function G = friction_coefficient_godin(obj,phi)
```

207.15 friction_coefficient_lorentz

```
friction coefficient according to Lorent'z
identical to Dronker's coefficient for zero river flow
and a single frequency component
c.f. Cai
c.f. Dronkers

function L = friction_coefficient_lorentz(obj,phi)
```

207.16 friction_dronkers

```
friction determined by Dronker's method
```

input :

u : velocity time series

Umid: arithmetic mean of mininmum and maximum velocity (not the mean of the velocity, usually non-zero even without river flow)

Uhr : half-range of the velocity, less than the sum of the frequency amplitudes, except at perigean spring tides

function [uau_sum uau p] = friction_dronkers(u,Umid,Uhr,order)

207.17 friction_exponential_dronkers

```
friction coefficients for the frequency components computed by
    Dronkers method
c.f. Dronker's 1964 eq 8.2 and 8.4
Note: Cai dennominates alpha as phi

function [c uau uau_ p] = friction_trigonometric_dronkers(u,dp,Umid,Uhr,order,psym)
```

207.18 friction_godin

compute friction with the method of Godin

207.19 friction_lorentz

207.20 friction_quadratic

friction determined by Dronker's method

207.21 friction_trigonometric_dronkers

friction computed by the method of Dronkers expressed as coefficients for the frequency components c.f. dronkers 1964 eq 8.2 and 8.4 Note: Cai dennominates alpha as phi

207.22 friction_trigonometric_godin

```
friction computed by the method of Godin
expressed as coefficients of the frequency components (
    trigonometric form)

function [c, uau] = friction_trigonometric_godin(obj,u,dp,Umax)
```

207.23 friction_trigonometric_lorentz

friction computed by the method of Lorent'z
expressed as coefficients of the frequency components (
 trigonometric form)

207.24 generate_delft3d

207.25 init

```
provide initial condition by solving the backwater equation for
    surface level
TODO this should not be solved as a ivp but included in the bvp
    iteration
TODO generate the mesh here and precompute fixed values instead of
    passing functions
TODO QO should not be a function
function obj = init(obj, Xi)
```

$207.26 \quad mwl_offset$

offset of the tidally averaged surface elevation caused by tidal friction

Linear estimate of the mean water level offset (ignoring feed-back of tide)

 $207.27 \quad mwl_offset_2$

 $207.28 \quad mwl_offset_analytic$

207.29 odefun

coefficients of the backwater and wave equation for river-tides

207.30 odefun0

coefficients of the backwater equation for the river tide $\ensuremath{\texttt{TODO}}$ merge with backwater

207.31 odefun_advective_acceleration

207.32 odefun_friction

 $207.33 \quad odefun_ghof$

207.34 odefun_swe_jacobian

207.35 odefun_width

207.36 odefunk

```
coefficients of the ordinary differential equation of the k-th
    frequency
component of the tide

f1 Q'' + f2 Q' + f3 Q + f4 = 0

TODO rename f into c
TODO better pass dzb_dx instead of dzO_dx
TODO aa, oh and gh terms are not tested for width ~= 1
```

207.37 solve

```
call stationary or non-stationary solver respectively
function obj = solve(obj)
```

207.38 solve_swe

determine river tide by the fully non-stationary FVM and then extract the tide this is experimental and not yet fully working

207.39 solve_wave

```
solve for the oscillatory (tidal) componets
function obj = solve_wave(obj)
```

207.40 wave_number_analytic

analytic expression of the wave number

valid for both tidally, river dominated and low friction conditions and converging channels $\,$

 ${\tt k}$: complex wave number in a reach with constant width and bed ${\tt slope}$

im(k) : damping modulus (rate of amplitude change)
re(k) : actual wave number (rate of phase change)

c.f. derive_wave_number

207.41 wave_number_approximation

approximate wave number of the left and right traveling wave for variable coefficients

TODO merge with wave_number_analytic

function [k, k0, dk0_dx_rel, obj] = wave_numer_aproximation(obj)

208 lib/tide/river-tide/@River_Tide_Cai

Prediction of river tide by the method of Cai c.f. Cai 2013, Cai 2015

208.1 Gamma

Gamma parameter for tidal propagation c.f. Cai 2014

208.2 River_Tide_Cai

prediction of river tide by the method of Cai (2014)

208.3 river_tide_cai_

determine the surface amplitude of the river-tide ${\tt c.f.}$ Cai

208.4 rt_quantities

determine the quantities that determine the tidal propagation ${\tt c.f.}$ Cai

Note: this computes 4 unknowns following Cai, however, lambda, mu and epsilon can be substituted making it an equation in one unknown (delta) only

209 lib/tide/river-tide/@River_Tide_Empirical

Empirical fit to measurement and prediction (from tide at sea and river discharge)
of the river tide

209.1 River_Tide_Empirical

class for fitting models to at-a-station time series of tidal elevation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

209.2 fit_amplitude

fit the oscillatory components

209.3 fit_mwl

fit the tidally averaged water level

209.4 fit_phase

fit the phase of the oscillatory components

209.5 fit_range

fit the tidal range

209.6 predict_amplitude

predict the oscillatory components

209.7 predict_mwl

predict the mean water level

209.8 predict_phase

predict tidal phase

209.9 predict_range

predict the tidal range

209.10 rt_model

select the model for fitting

$210 \quad lib/tide/river-tide/@River_Tide_JK$

empirical analysis and prediction of river tides by the method of $\mbox{\tt Jay}$ and $\mbox{\tt Kukulka}$

210.1 River_Tide_JK

$210.2 \quad damping_modulus$

```
damping modulus of the river tide
c.f. Jay and Kukula
function r = damping_modulus(obj,h0,b,Qr)
```

210.3 mean_level

tidally averaged surface elevation c.f. Jay and Kukulka

210.4 rivertide_predict

predict river tide by the method of jay and kukulka TODO rename $\,$

210.5 rivertide_regress

Regression of tidal coefficients according to Jay & Kulkulka coefficients of the r-regression factor 2 apart for specis (jay C7) this can be repeated for each tidal species (diurnal, semidiurnal)

210.6 tidal_discharge

```
tidal discharge
c.f. Jay and Kukulka
function Qt = tidal_discharge(obj,x,R0,h0,b,Qr)
```

210.7 tidal_range

predict tidal range

211 lib/tide/river-tide/@River_Tide_Map

hash container for a set of River_Tide predictions for different boundary conditions

211.1 River_Tide_Map

container class to store individual river tide scenarios

211.2 fun

compute river tide for a scenario with specific boundary conditions
 and store it in the hash,
or retrive the scenario, if it was already computed

211.3 key

```
key for storing a scenario
function [key obj] = key(obj,varargin)
```

211.4 plot

```
quick plot of scenario result
function obj = plot(obj,Xi,Q0,W0,S0,z1_downstream,cd,zb_downstream,
    omega,q,opt)
```

212 lib/tide/river-tide/@River_Tide_Network

predict tides in a fluvial channel network

212.1 River_Tide_Network

tide in a fluvial delta channel network, extension of 1D river tide the network is a directed graph TODO convert from trig-to exponential form

212.2 discharge_amplitude

discharge amplitude

212.3 mean_water_level

predict the mean water level

212.4 plot_mean_water_level

plot tidally averaged water level

${\bf 212.5 \quad plot_water_level_amplitude}$

plot surface elevation amplitude

212.6 solve

solve for the tide in a fluvial chanel network

boundary condition at end points not connected to junctions
 [channel 1 id, endpoint id (1 or 2), s0, c0
 ...
 channel n id, endpoint id (1 or 2), s0, c0]

conditions at junctions are specified as cells
 each cell contains an nx2 array
 n : number of connecting channels
 [channel id1, endpoint id (1 or 2), ...
 channel idn, endpoint id (1 or 2)]

every tidal species for each channel has 4 unknowns these are 2x2 unknowns for the sin + cos of left and right going wave

212.7 water_level_amplitude

predict the surface elevation amplitude

213 lib/tide/river-tide

analysis and prediction of river tides

Sub-Classes:

@River_Tide

- prediction of river tide in a backwater affected river with a sloping bed

@River_Tide_Cai

- prediction of river tide, method of Cai

@River_Tide_Empirical

- prediction of river tide, empirical

@River_Tide_JK

- prediction of river tide, empirical after Jay and Kukulka ${\tt QRiver_Tide_Map}$

- mulitple-scenaria container for River_Tide

@River_Tide_Network

- extension of River_Tide to networks

213.1 damped_wave_bvp

```
solved damped wave equation z'' + a z = 0

z(0) = z0, z(L) = 0
```

213.2 damped_wave_ivp

linearly damped wave in rectangular channel solve tide as initial value problem damped wave approximation

```
z'' + a z = 0
x_t = Ax + b
```

213.3 damping_modulus_river

damping modulus of the tidal wave for river flow only

213.4 rdamping_to_cdrag_tide

converts damping rate to drag coefficient c.f. friedrichs, ippen harleman

213.5 river_tide_godin

analytic solution to the river tide formulated as boundary value
 problem
in a river with finite length

c.f. Godin 1986

213.6 rt_celerity

celerity of the tidal wave

213.7 rt_quasi_stationary_complex

quasi-stationary solution of the SWE TODO staggered grid does not help: q1' needed

213.8 rt_quasi_stationary_trigonometric

quasi statinary form of the SWE

213.9 rt_reflection_coefficient_gradual

reflection coefficient for gradual varying cross section geometry without damping

213.10 rt_wave_equation

solve river tide as boundary value problem

input:

omega : [nfx1] angluar frequency of tidal component, zero for mean

flow

reach : [nrx1] struct

.L : [1x1] length of reaches

.width(x,h) width
.bed(x,h) bed level

.surface(x,h) surface elevation
.Cd(x,h) drag coefficient

.bc : [nd,nf] boundary/junction conditions

bc(id,if).type : {surface, velocity, discharge} (dirichlet)

bc(id,if).val : value

opt : [1x1] struct

- constant surface elevation

- deactivative advective acceleration

.dx : spatial resolution

dimensions:

nr : nurmber or reaches

nd : upstream/downstream index

nf : frequency index

$213.11 \text{ rt}_{z}2q$

determine tidal discharge from water level for tidal wave

214 lib/tide/river-tide/test/test

214.1 test_bvp2c_sym

214.2 test_celerity

$214.3 \quad test_characteristic_rate_of_change$

214.4 test_dronkers_compound

214.5	test_friction_dronkers
214.6	$test_friction_dronkers2$
214.7	$test_fv_compare_schemes$
214.8	$test_fv_convergence$
214.9	$test_power_series$
214.10	$test_reflection_coefficient_gradual$
214.11	${ m test_ricatti}$
214.12	$test_river_tide_models$

 ${\bf 214.13 \quad test_rt_reflection}$

 $214.14 \quad test_rt_zs0$

- 214.15 test_swe
- 214.16 test_utm2latlon
- $214.17 \quad test_wave_two pass$
- $215 \quad lib/tide/river-tide/test$
- $215.1 \quad test_bvp2c2$
- ${\bf 215.2 \quad test_complex_even_overtide}$
- 215.3 test_fourier_power_exp
- 215.4 test_friction
- 215.5 test_reflection
- $215.6 \quad test_rt_wave_number$

215.7 test_tidal_river_network

215.8 test_tidal_river_network_z0

215.9 test_tide_slack_exp

215.10 test_wave_number_godin

$215.11 \quad test_wave_numer_aproximation$

216 lib/tide/river-tide

analysis and prediction of river tides

Sub-Classes:

@River_Tide

- prediction of river tide in a backwater affected river with a sloping bed

@River_Tide_Cai

- prediction of river tide, method of Cai

@River_Tide_Empirical

- prediction of river tide, empirical

@River_Tide_JK

- prediction of river tide, empirical after Jay and Kukulka

@River_Tide_Map

- mulitple-scenaria container for River_Tide

@River_Tide_Network

- extension of River_Tide to networks

216.1 tidal_ellipse

tidal ellipse, numerical ode solution

$216.2 \quad tide_slack_exp$

216.3 wave_number_tide

216.4 wavetrainz

determine river tide by iterated integration of the surface elevation $\ensuremath{\text{elevation}}$

216.5 wavetwopassz

two pass solution for the linearised wave equation, for surface elevation $% \left(1\right) =\left(1\right) +\left(1\right) +$

217 lib/tide/test/river-tide

217.1 example_river_tide

$217.2 \quad example_river_tide_map$

217.3 river_tide_test

- 217.4 river_tide_test_01
- 217.5 river_tide_test_02
- 217.6 river_tide_test_03
- 217.7 river_tide_test_04
- 217.8 river_tide_test_05
- $217.9 \quad river_tide_test_06$
- 217.10 river_tide_test_07
- $217.11 \quad river_tide_test_08$

```
hold on;
plot(x,abs(z),'--');
hold on;
plot(x,angle(z),'--');
```

217.12 river_tide_test_09

- 217.13 river_tide_test_10
- 217.14 river_tide_test_11
- 217.15 river_tide_test_12
- 217.16 river_tide_test_13
- $217.17 \quad river_tide_test_plot$
- 218 lib/tide/test
- $218.1 \quad test_tidal_harmonic_analysis$

219 lib/tide

analysis prediction of tides in rivers and estuaries by empirical and theoretical methods $\,$

- 219.1 tidal_constituents
- 219.2 tidal_energy_transport_1d

energy transport of a tidal wave

219.3 tidal_envelope

envelope of the tide

```
input : t time in days
       f surface elevation
 ouput : tl time of low water
        vl surface elevation at low water
        ldx index of low water
        th time of high water
        vh surface elevation at high water
        hdx index of high water
        ndx neap index
        sdx spring index
        dmax:
        drange: range per day
219.4
        tidal_envelope2
surface levelation envelope of the tide
low water, high water and tidal range for lunar each day
 input:
       time :
       L : surface elevation
       order: interpolation order (default 2)
ouput:
       timei : vector eqispaced
       lmini : minimum level
       lmaxi : maximum level
       rangei : range
       midrangei : (min + max)/2, usually different from mean
       phii : pseudo phase
Note: the pseudo phase phi jumps, this is because if the tide is
    semidiurnal,
      sometimes the lower hw becomes the next day higher then than
       current high water, e.g. there is no smooth transition by
      51min but a jump by 12h
```

219.5 tidal_harmonic_analysis

```
tidal_harmonic analysis
```

219.6 tidal_range_exp

219.7 tidal_range_tri

220 lib/tide/tide-savenije

220.1 savenije_phase_lag

```
phase lag of high and low water
phi : u_river/u_tide < 1
delta_eps_hw = omega*(t_hws - t_hw)
delta_eps_hw = omega*(t_lws - t_lw)
c.f. savenije</pre>
```

220.2 savenije_tidal_range

220.3 savenije_tidal_range1

tidal range

based on Horrevoets/Savenije, 2004

HO : tidal range at river mouth

h0 : initial water depth
v : velocity scale
b : convergence length

sine : phase lag

K : Mannings coefficient Q_r : river discharge

$220.4 \quad savenije_timing_hw_lw$

time of high water and low water c.f. savenije 2012

220.5 tide-savenije

221 lib/tide

analysis prediction of tides in rivers and estuaries by empirical and theoretical methods $\,$

$221.1 \quad tide_low_high_exp$

$221.2 \quad tide_low_high_tri$

222 root

Root folder of the source code belonging to the doctoral thesis:

"Multi-Scale Monitoring and Modelling of the Kapuas River Delta", Karl K\"aster, 2019,

and master thesis:

"Computing the Spectrum of the Confined Hydrogen Atom", Karl K\" astner, 2012.

Copyright (C) 2010-2019 Karl K\"astner

Installation instructions:

- 1) Install Matlab
- Install subversion (svn) and add subversion to the search path, so that

it can be called from Matlab

- 3) Checkout this umbrella-project: svn checkout https://github.com/karlkastner/root/trunk root/
- 4) Start Matlab
- 5) Change into this directory ('root/')
- 6) Run the Matlab script "startup" located in this directory

The script then fetches the sub-repositories and adds them to the ${\tt Matlab}$ search path

Note:

The code upload is work in progress, more parts will be subsequently documented, added and tested.

This is experimental code. Use it wisely and at your own risk.

Licence:

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/>.

222.1	load	syn	_exterr	als
444.1	TOAL.	_O V 11.		ICLLO.

script emulating svn:external, which is not supported by GitHub

$222.2 \quad quick_data_download$

223 sanggau

processing of sanggau water level, adcp and hadcp measurements processing of measurements of Sanggau station, Kapuas River km 290, Kalimantan Barat, Indonesia

223.1 sanggau_align_transect

223.2 sanggau_backscatter_coefficient

223.3 sanggau_batch

223.4 sanggau_boat_velocity

223.5 sanggau_calib_table

223.6 sanggau_check_error

$223.7 \quad sanggau_compare_hadcp2rc$

223.8 sanggau_compare_hadcp2rc_2

```
ytick(-15:5:15); ylim([-20 15]); yticklabel(sprintf('%d%%\n
   ',(-15:5:15)'))
```

223.9 sanggau_compare_hadcp2rc_3

yticklabel(sprintf('%d%%\n',(-15:5:15)'))

$223.10 \quad sanggau_compare_models$

${\bf 223.11 \quad sanggau_critical_flow_depth}$

- 223.12 sanggau_cs_area
- 223.13 sanggau_dgps_bt_comparison
- 223.14 sanggau_energy_slope

223.15 sanggau_error_correlation

% mode 2 : direct residuals of f_z and not those given by lienarisation are used

223.16	sanggau_error_h_u
223.17	sanggau_error_in_area
223.18	$sanggau_export_coordinates$
223.19	$ m sanggau_gsd$
223.20	$sanggau_hadcp_calibration$
223.21	$sanggau_hadcp_correction_data$
223.22	$sanggau_hadcp_velocity_variation$
223.23	$sanggau_instationary_rating_curve$
223.24	sanggau_ivm

 $223.25 \quad sanggau_load_bed_level_2016$

 $223.26 \quad sanggau_load_gsd$ 223.27 sanggau_load_hadcp $223.28 \quad sanggau_load_pilot$ 223.29 sanggau_maximum_vs_average_velocity 223.30 sanggau_mean_discharge $223.31 \quad sanggau_metadata$ ${\bf 223.32 \quad sanggau_optimal_filter_length}$ $223.33 \quad sanggau_photmoetric_level_2016_11$ $223.34 \quad sanggau_plot_backscatter$

 $223.35 \quad sanggau_plot_backscatter_flux$

- $223.36 \quad sanggau_plot_bathymetry_2d$
- $223.37 \quad sanggau_plot_bathymetry_2d_1$
- ${\bf 223.38 \quad sanggau_plot_bathymetry_curvature}$
- ${\bf 223.39 \quad sanggau_plot_bed_profile_1d}$
- $223.40 \quad sanggau_plot_bed_profile_1d_2$
- ${\bf 223.41 \quad sanggau_plot_bed_profile_1d_3}$
- 223.42 sanggau_plot_bottom_track
- $223.43 \quad sanggau_plot_cross_section$
- ${\bf 223.44} \quad sanggau_plot_discharge_bart$
- ${\bf 223.45 \quad sanggau_plot_error}$

223.40	sanggau_piot_nadcp_discnarge
223.47	$sanggau_plot_rating_curve$
223.48	$sanggau_plot_rc_mcmc$
223.49	$sanggau_plot_stage_change$
223.50	$sanggau_plot_surface_slope$
223.51	$sanggau_plot_transverse_velocity_profile$
223.52	$sanggau_plot_velocity_nz$
223.53	${\bf sanggau_plot_vertical_profile}$
223.54	$sanggau_plot_vertical_profile_parameter$
% split	
223.55	$sanggau_plot_z0_2d$

223.56	$ m sanggau_plots$
223.57	$sanggau_process_discharge$
223.58	$sanggau_process_discharge_bart$
223.59	${\bf sanggau_quick_plot}$
223.60	${\bf sanggau_rating_curve}$
223.61	sanggau_rc_mcmc
223.62	$sanggau_rc_vs_ivm$
223.63	${\bf sanggau_redistribution_by_bathymetry}$
223.64	sanggau_rouse_profile

 ${\bf 223.65} \quad sanggau_sdm_scale_vs_depth$

- 223.66 sanggau_stage_acf
- $223.67 \quad sanggau_std_u_and_z$
- ${\bf 223.68} \quad {\bf sanggau_test_discharge}$
- ${\bf 223.69} \quad {\bf sanggau_theoretic_sediment_transport}$
- $223.70 \quad sanggau_transverse_velocity_profile$
- ${\bf 223.71 \quad sanggau_velocity_direction}$
- 223.72 sanggau_velocity_profile
- $223.73 \quad sanggau_veloctiy_profile_rozovskii$
- $223.74 \quad sanggau_z_0_campaigns$
- $223.75 \quad sanggau_z_0_convergence$

223.76 sanggau_z_0_optimal_R

fprintf('progress: %d%%\n',round(100*(idx-1)/length(R)));

224 root

Root folder of the source code belonging to the doctoral thesis:

"Multi-Scale Monitoring and Modelling of the Kapuas River Delta", Karl K\"aster, 2019,

and master thesis:

"Computing the Spectrum of the Confined Hydrogen Atom", Karl K\" astner, 2012.

Copyright (C) 2010-2019 Karl K\"astner

Installation instructions:

- 1) Install Matlab
- Install subversion (svn) and add subversion to the search path, so that

it can be called from Matlab

- 3) Checkout this umbrella-project: svn checkout https://github.com/karlkastner/root/trunk root/
- 4) Start Matlab
- 5) Change into this directory ('root/')
- 6) Run the Matlab script "startup" located in this directory

The script then fetches the sub-repositories and adds them to the Matlab search path $\,$

Note:

The code upload is work in progress, more parts will be subsequently documented, added and tested.

This is experimental code. Use it wisely and at your own risk.

Licence:

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/>.

224.1 startup