NASA Technical Memorandum 100682

Crustal Dynamics Project Data Analysis—1987

Volume 1—Fixed Station VLBI Geodetic Results 1979-86

J. W. Ryan and C. Ma Goddard Space Flight Center Greenbelt, Maryland

1987

Table of Contents

I. Introduction	1
<pre>II. Observations A. Instrumentation B. Observing Sessions</pre>	1 1 1
III. Data Analysis Methods A. Processing and Data Handling	2 2
B. Models	3
IV. Data Analysis Results A. The GLOBL Analysis System	4 4
B. The GLB122 Solution	4
C. The GLB121 Solution D. Formal Errors	5 6
V. Differences from the 1986 CDP-DIS Submission	6
VI. References	7
Tables.	
1. VLBI Observing Stations	8
2. Summary of VLBI Experiments	10
3.1 Source Coordinates from GLB122 Solution	22
3.2 Source Coordinates from GLB121 Solution	24
4. Station Coordinates from Solution GLB121	26
5. Eccentricity Data for Mobile Antennas	27
6. VLBI Baseline Length Evolution 6.1 ALGOPARK TO GILCREEK	0.0
6.2 ALGOPARK TO HRAS 085	28 28
6.3 ALGOPARK TO MOJAVE12	28
6.4 ALGOPARK TO PENTICTN	29
6.5 ALGOPARK TO WESTFORD 6.6 ALGOPARK TO YELLOWKN	29
6.7 CHLBOLTN TO HAYSTACK	29 30
6.8 CHLBOLTN TO HRAS 085	30
6.9 CHLBOLTN TO ONSALA60	31
6.10 CHLBOLTN TO OVRO 130	31
6.11 EFLSBERG TO HAYSTACK 6.12 EFLSBERG TO HRAS 085	3 2 3 2
6.13 EFLSBERG TO NRAO 140	33
6.14 EFLSBERG TO ONSALA60	33
6.15 EFLSBERG TO OVRO 130	34
6.16 EFLSBERG TO ROBLED32	34

6.17	EFLSBERG	TO	WESTFORD	34
6.18	GILCREEK		HATCREEK	35
	GILCREEK		HAYSTACK	35
	GILCREEK		HRAS 085	36
6.21	GILCREEK		KASHIMA	37
	GILCREEK		KAUAI	38
	GILCREEK		KWAJAL26	39
			MOJAVE12	40 41
			ONSALA60	41
			OVRO 130	42
			PENTICTN	42
	GILCREEK			42
	GILCREEK			43
	GILCREEK			44
	GILCREEK			44
	GILCREEK		WETTZELL	45
	GILCREEK			45
	HARTRAO		ONSALA60	46
	HARTRAO		RICHMOND	46
	HARRRAO		WESTFORD WETTZELL	47
	HARTRAO		HAYSTACK	47
	HATCREEK		HRAS 085	48
	HATCREEK HATCREEK		KASHIMA	48
	HATCREEK		KAUAI	49
	HATCREEK		MOJAVE12	49
	HATCREEK			50
	HATCREEK		PLATTVIL	50
	HATCREEK			51
	HATCREEK			51
	HAYSTACK		HRAS 085	52
	HAYSTACK		KASHIMA	61
	HAYSTACK		MARPOINT	61
	HAYSTACK		MOJAVE12	62
	HAYSTACK			63
				64
	HAYSTACK		OVRO 130	67
	HAYSTACK	TO	PLATTVIL	69
	HAYSTACK	то	ROBLED32	69
	HAYSTACK		WESTFORD	70
6.57		TO	WETTZELL	71
6.58		TO	MARPOINT	77
6.59		TO	MOJAVE12	77
6.60		TO	NRAO 140	78
6.61		TO	ONSALA60	79
6.62		TO	ovro 130	81
6.63		TO		82
6.64		TO		82
6.65		TO		83
6.66	HRAS 085	TO		87
6.67				88
6.68	HRAS 085	TO	WETTZELL	96

6.69	HRAS 085	то	YELLOWKN	101
	KASHIMA		KAUAI	102
	KASHIMA	то	KWAJAL26	103
6.72	KASHIMA	то	MOJAVE12	104
6.73	KASHIMA	TO	ONSALA60	105
6.74	KASHIMA	то	SHANGHAI	105
6.75	KASHIMA	TO	VNDNBERG	105
6.76	KASHIMA	то	WESTFORD	106
			WETTZELL	106
6.78	KAUAI	TO	KWAJAL26	107
6.79	KAUAI	TO	MOJAVE12	108
6.80	KAUAI	TO	VNDNBERG	109
6.81	KWAJAL26	TO	MOJAVE12	110
6.82	KWAJAL26	TO	VNDNBERG	111
6.83	MARPOINT	TO	ONSALA60	112
6.84	MARPOINT	TO	OVRO 130	112
6.85	MARPOINT	то	WESTFORD	113
6.86	MOJAVE12	TO	ONSALA60	113
6.87	MOJAVE12	TO	OVRO 130	114
6.88	MOJAVE12	TO	PLATTVIL	114
6.89	MOJAVE12	TO	RICHMOND	115
6.90	MOJAVE12	TO	VNDNBERG	115
6.91	MOJAVE12	TO	WESTFORD	116
6.92	MOJAVE12	TO	WETTZELL	117
6.93	NRAO 140	TO	ONSALA60	117
6.94	NRAO 140	TO	OVRO 130	118
6.95	NRAO 140	TO	WESTFORD	118
6.96	ONSALA60	TO	OVRO 130	119
6.97	ONSALA60	TO	RICHMOND	120
6.98	ONSALA60	TO	ROBLED32	120
6.99	ONSALA60	TO	WESTFORD	121
6.100	ONSALA60) T(WETTZELL	123
6.103	L OVRO 130) T	PLATTVIL	125
6.102	2 OVRO 130) T	WESTFORD	126
6.103	3 OVRO 130) T	WETTZELL	127
6.104	PLATTVII	TO	WESTFORD	127
	RICHMONI		WESTFORD	128
6.106	RICHMONI	TO	WETTZELL	133
6.107	7 ROBLED32	2 TC	WESTFORD	137
6.108	3 WESTFORI) TC	WETTZELL	138
VLI	BI Earth ()rie	ntation Results f	rom
	ution GLE			144

154

Nutation Adjustments from Solution GLB121

7.

8.

CRUSTAL DYNAMICS PROJECT DATA ANALYSIS - 1987

Volume 1. Fixed Station VLBI Geodetic Results

I. INTRODUCTION

This report to the Crustal Dynamics Project Data Information System (CDP-DIS) documents the results obtained by the Goddard VLBI Data Analysis Team in analyzing the CDP VLBI observing sessions using only fixed stations between 1979 and the end of 1986. Also included are results from: 1) earth orientation observing sessions of the IRIS Program (formerly the POLARIS Project) coordinated by the National Geodetic Survey (NGS) from 1980 until the end of 1986 and 2) data acquired between fixed stations and the mobile VLBI sites at Platteville, CO, Penticton, B.C., and Yellowknife, N-W.T. These sites were occupied for the measurement of continental plate stability.

Results from CDP mobile sessions and special purpose experiments such as source surveys will be discussed in later volumes of this report.

The results presented here are complete in that they include all available relevant data and supersede results given in previous submissions. The values presented are the results from two new least-squares adjustments using most of the Mark III geodetic data acquired with fixed stations between 1979 and 1986. These solutions, designated GLB121 and GLB122, are discussed below.

II. OBSERVATIONS

A. Instrumentation

The Mark III instrumentation is described in detail in Rogers et al. (1983) and Its salient characteristic is the ability to record up to 28 Clark et al. (1985). channels simultaneously, each 2 MHz in bandwidth. The current standard CDP practice is to record 14 channels in the forward direction and the remaining 14 in the backward direction with 8 channels applied to X-band (8.4 GHz) and 6 channels to S-band (2.3 GHz). This procedure is repeated twelve times on a single tape, moving the record heads slightly for each pair of passes, at the stations equipped with high density heads. Observations run from 100 to 800 seconds. logging of pressure, temperature, relative humidity, and cable length calibrations is an integral part of the Mark III system. Hydrogen masers provide both time and frequency for all observing sessions. The receivers have 400 MHz bandwidth at X-band and 80 MHz at S-band. A single phase calibration frequency is used in each recorded channel to remove instrumental dispersion.

Table 1 describes the radio telescopes employed in the observing sessions. The 8-character station names are used throughout this report.

B. Observing Sessions

Table 2 is a summary of the observing sessions discussed here. Each line corresponds to one observing session and contains the data base name of the session, the purpose of the session, and the stations which participated.

The purposes of the various session types are as follows:

North American Plate Stability, US transcontinental sessions designed to measure the internal stability of the North American Plate.

<u>Transatlantic</u>, US to Europe sessions designed to measure motion between North America and Europe.

IRIS and POLARIS, NGS sessions designed to measure earth rotation. These sessions began in November 1980 with HAYSTACK and HRAS 085 and were scheduled every seven days. ONSALA60 participated when possible on a monthly basis. In August 1983 operations were increased to once every five days. In late 1983 two new stations, RICHMOND and WETTZELL, were brought on line and became fully operational in 1984. Currently IRIS is undertaking one 24-hour session every five days with WESTFORD, HRAS 085, RICHMOND, and WETTZELL. Whenever possible, ONSALA60 continues to observe monthly. The IRIS intensive UT1 measurement sessions are not included here.

<u>Pacific Basin</u>, sessions involving KASHIMA and stations in California. Only two sessions are so designated in Table 2 and they occur in early 1984 when KASHIMA was first used operationally.

East Pacific, sessions designed to measure baselines in the Pacific Basin with emphasis on the baselines in the east.

West Pacific, sessions designed to measure baselines in the Pacific Basin with emphasis on the baselines in the west.

<u>Polar</u>, sessions involving stations in Europe, the conterminous US, Alaska, and Japan. These sessions are undertaken to link the global VLBI reference frame.

North Atlantic, sessions designed to measure baselines between Europe and stations on the east and west of the North American Plate.

North Pacific, sessions designed to measure baselines in the Pacific Basin with emphasis on the northern baselines.

South Africa, a series of six observing sessions carried out in January and February 1986 by the NGS using HARTRAO and stations in Europe and the U.S.

<u>Transpacific</u>, a series of monthly (when possible) experiments which began in early 1986 involving KAUAI, GILCREEK, and KASHIMA. These sessions are designed to densify the interplate measurements in the Pacific Basin.

III. DATA ANALYSIS METHODS

A. Processing and Data Handling

Nearly all the Mark III data discussed here were correlated by the Haystack Mark III correlator. Some IRIS data were correlated at the Max Planck Institute for Radio Astronomy in Bonn (FRG), and beginning in 1986 most IRIS data were processed at the new Washington correlator located at the US Naval Observatory. The Bonn

correlator is a copy of the Haystack correlator and the Washington correlator is a improved version of the Haystack correlator. Some data involving the Kashima station were correlated at Kashima using the Japanese K-3 correlator. purposes of this report the output of the four Mark III-compatible correlators can be considered indistinguishable. The output of these correlators is sent either to the analysis center at the Goddard Space Flight Center or to a similar center at the NGS in Rockville, MD, where the data are organized by session and frequency band into Mark III data bases. Calibration data, solar system ephemerides, a priori parameter values, partial derivatives, and theoretical delays and rates are added to each data base prior to actual data analysis. In the analysis process information about editing, ambiguity resolution, solution parametrization, and data-variance-modification is added to the data bases. The final data base files are available to investigators from the CDP-DIS. The Mark III Data Base System utilities required to read the files have been implemented on HP 1000 and VAX 11/780 computer systems.

B. Models

The models adhere generally to the MERIT standards (Melbourne et al., 1983). The precession and nutation models used in the data analysis are the J2000.0 and IAU The a priori earth orientation parameters from BIH 1980 models, respectively. Circular D are interpolated to each observation epoch then modified by the standard MERIT model for short-period tidal variations in UT1. The tidal potential used to compute the effect of solid earth tides is calculated using the MIT PEP ephemeris; the values of the Love numbers are 0.60967 for Love h, 0.085 for Love 1, and zero for the phase lag. General relativistic solar deflection is modeled using Einstein's value for gamma. An axis offset model is applied for each antenna where the pointing axes do not intersect. Clocks are modeled with a combination of polynomials and diurnal sinusoids. The value of the speed of light is 299,792,458. The models are described in greater detail in NASA TM-79582 and are m/sec. embodied in the program CALC developed by the Goddard VLBI group. CALC Version 6.0 was used for this analysis and includes a pole tide model.

Mark III observations are calibrated for the delay caused by charged particles in the line of sight (ionosphere and solar corona) by generating new observables which are linear combinations of the X-band and S-band observations. To the extent that the delay effects of charged particles have an inverse frequency-squared dependence these new observables are free of charged particle effects.

In general the effects of tropospheric refraction are calibrated using the Marini model; this model requires surface measurements of pressure, temperature, and relative humidity. In some cases valid meteorological measurements were not available and the Chao model, which requires only an average zenith-path-delay for each station, was used. The formulation of the Marini model was presented in our 1984 report to the CDP-DIS. Water vapor radiometer data, which can be used to calibrate the wet portion of the tropospheric delay, were either unavailable or deemed not operational for the data presented here. During 1986 water vapor radiometers were operated extensively at some stations to monitor the troposphere.

Cable calibration, i.e., corrections for variations in the electrical length of the cable carrying timing signals from the maser frequency standard to the receiver, was applied where available and useful.

IV. DATA ANALYSIS RESULTS

A. The GLOBL analysis system

The GLOBL analysis system, developed at Goddard by W. E. Himwich, permits the adjustment of parameters using an arbitrarily large set of data within the memory limits of the Goddard VLBI group's minicomputer facility. GLOBL is an extension of the interactive SOLVE system developed by the Goddard VLBI group and used for all routine VLBI data analysis. After a data base for one observing session has been fully updated using SOLVE, a superfile retaining the necessary information is The complete set of superfiles is the potential input to GLOBL. GLOBL processes the selected superfiles sequentially, in each step applying arc parameter elimination and carrying the global parameters forward. Arc parameters are those relevant only to a single data base, e.g., clock and atmosphere parametrization for a single session, UT1 and polar motion, and daily nutation adjustments. parameters are those whose estimated values may be affected by more than one Coefficients of the nutation series, observing session, e.g., source positions. the precession constant, and Love numbers of the solid earth tide are other Depending on the purpose of the GLOBL solution, possible global parameters. station coordinates can be either global or arc parameters.

Since at each step GLOBL handles only the global parameters and arc parameters required for a single data base, large data sets can be analyzed. Current program and machine size constraints limit the maximum number of parameters to 384 at one time. Sequential processing does entail two passes through the data. After the forward pass the values of the global parameters are known. The backward pass is necessary to recover the arc parameter values and the solution statistics. The two passes give a solution which is identical to a conventional one-step least-squares estimation of the entire ensemble of estimated parameters.

B. The GLB122 solution

The purpose of the GLB122 solution was to produce tables of baseline evolution from the ensemble of CDP fixed station data in a manner which made no a priori The station coordinates were therefore assumptions about tectonic plate motion. treated as arc parameters, i.e., they were allowed to vary from session to session subject only to the constraint of being estimated with a global set of source The GLB122 solution used 177,095 delay/delay rate pairs to coordinate values. estimate 105 global parameters and 12,800 arc parameters. 466 separate sessions, listed in Table 2, were included. The overall weighted rms fit of the solution was 85 ps for delay and 75 fs/s for delay rate, and the reduced chi-square was 0.97. The coordinates of the observed extragalactic radio sources except for the right ascension of 3C273B, which was fixed to define the right ascension origin, made up the 105 global parameters. The source positions are given in Table 3.1. parameters included the positions of the stations for each session (except for the reference station for that session), the parametrizations for the station clocks and atmospheres, and daily offsets in obliquity and longitude.

Tables 6.1-6.108 present the baseline lengths and formal errors of the baselines measured in these sessions. With the exception of the three mobile sites (PENTICTN, PLATTVIL, and YELLOWKN), the lengths presented are the chord distances between the VLBI reference points of the two antennas involved. For an antenna

with intersecting axes the VLBI reference point is located at the intersection of axes. For an offset axis antenna the VLBI reference point is located at the point of intersection of the fixed axis with the plane perpendicular to the fixed axis containing the moving axis. In the case of the baselines involving mobile sites, the baseline lengths are the chord distances from the fixed station VLBI reference points to a ground survey monument near the mobile antenna. The eccentricity data used to map the VLBI results to the monuments are presented in Table 5.

For the purposes of geodetic interpretation, the HAYSTACK and WESTFORD antennas, which are only 1.24 km apart, can be considered to be identical. In the tables for HAYSTACK the results from the WESTFORD antenna have been mapped to HAYSTACK. The mapping used the geodetic tie between the antennas given in CDP: Catalog of Site Information (NASA TM 86218) which was derived from an NGS ground survey. An asterisk indicates a mapped value.

Tables 6.1-6.108 also show the weighted mean baseline values, the weighted rms scatter about the mean values, and, where a useful value could be computed, the rate of change of baseline length. In general the rate of change is not presented if there were too few observing sessions or if the sessions did not span more than one year. The least-squares mean and rate estimates were based on the formal standard errors of the individual baseline length values. The listed error for each mean and rate value was computed by scaling the formal error from the least-squares estimate by the reduced chi-square of the fit. The weighted rms fit of the data about the best-fit line is also given where relevant.

C. The GLB121 solution

The purpose of the GLB121 solution was to produce a time series of earth orientation (polar motion and universal time) from the ensemble of CDP and IRIS data. In such a solution it is necessary to estimate the coordinates of the fixed stations as global parameters. The GLB121 solution used the same data as the GLB122. There were 168 global parameters (source and station positions) and 10,543 arc parameters. The right ascension of 3C273B and the coordinates of HAYSTACK were held fixed to define the celestial and terrestrial reference frames, respectively. The source catalog is given in Table 3.2 and the fixed station catalog in Table 4. The weighted rms fit was 88 ps for delay and 75 fs/s for delay rate. The reduced chi-square was 1.00. As in solution GLB122, the arc parameters included clock and atmosphere parametrization and daily nutation offsets. (The nutation offsets from solution GLB121 are not significantly different from those of solution GLB122.)

Earth orientation results are presented in Table 7 together with their correlations. No a priori model of global plate motion was applied. Because VLBI cannot measure absolute earth orientation, a reference day was selected to fix the geographic pole and UT1 angle. The reference day is 17 October 1980, a date which is a BIH tabular day and for which a 5-station network was used. The geographic pole is defined by the values of pole position from the nearest four Circular D tabular points quadratically interpolated and applied as a priori parameters for each observation in the data set spanning 0 hr UT 17 October 1980. The rotation about the pole is defined similarly except that to each interpolated value the short period terms from the standard MERIT model of UT1 tidal variation were added. The values for 17 October 1980 in Table 7 are identical to the Circular D values, however. In order to make the UT1 values from this solution identical in origin to

those in Circular D, the tidal effect at the reference epoch has been removed from all the estimated UT1 values.

For the single-baseline sessions only UT1 and one component of polar motion were estimated. Since single North American baselines are predominant because of POLARIS, the x-component is generally the single pole component estimated. In a single baseline solution the correlation between UT1 and the adjusted polar motion component is large, and both adjustments depend on the <u>a priori</u> value of the unadjusted component.

The tabular values are the unmodified results from the GLB121 solution except for the UT1 rotation described above. In particular, no smoothing has been applied, and no corrections have been made to the UT1 values to account for known tidal variations. For comparison with BIH Circular D values, the tidal terms should be removed from the values in Table 7.

The nutation offsets from the IAU 1980 nutation series, estimated in solution GLB121 for each session, are tabulated in Table 8. These offsets are with respect to the reference day 17 October 1980.

D. Formal Errors

The formal errors for the cartesian coordinates of the stations, the baseline lengths, the earth orientation values, and the nutation offsets are computed from the covariance matrix of the relevant solution. The weights applied to each observation are composed of three terms: 1) SNR measurement error, 2) ionosphere calibration error from the SNR of X and S- band observations, and 3) normalizing white noise root-sum-squared added for each baseline. The last term is computed for each baseline for each session such that the reduced chi-square of the observations for each baseline is reduced to unity in a standard baseline solution in which only the data from that session are included and a good a priori source catalog is used. The true uncertainties will be larger because of unmodeled systematic effects.

V. DIFFERENCES FROM THE 1986 CDP-DIS SUBMISSION

The 1987 CDP-DIS submission is a straightforward extension of the 1986 submission. The analysis techniques used to produce it are identical to those of the previous year. The principal differences are: 1) the data extend an additional year, 2) new stations in South Africa and China have been added, 3) entirely new solutions have been produced. There are some changes in the contents of the tables. The table of a priori station positions (Table 4.1) and the tables of station positions by experiment (Table 6.1-6.22) have been deleted, but they are available in machine-readable form from the DIS. Correlations between the geocentric components are also available. The number of observations used and the total number of observations for each baseline determination have been eliminated. The units and number of digits for some tables have been changed.

VI. REFERENCES

Rogers, A. E. E., Cappallo, R. J., Hinteregger, H. F., Levine, J. I., Nesman, E. F., Webber, J. C., Whitney, A. R., Clark, T. A., Ma, C., Ryan, J., Corey, B. E., Counselman, C. C., Herring, T. A., Shapiro, I. I., Knight, C. A., Shaffer, D. B., Vandenberg, N. R., Lacasse, R., Mauzy, R., Rayhrer, B., Schupler, B. R., and Pigg, J C (1983). Science 219, 51.

Melbourne, W., Anderle, R., Feissel, M., King, R., McCarthy, D., Smith, D., Tapley, B., Vicente, R. (1983). US Naval Observatory Circular No. 167, Washington, D.C.

Clark, T. A., Corey, B. E., Davis, J. L., Elgered, G., Herring, T. A., Hinteregger, H. F., Knight, C. A., Levine, J. I., Lundqvist, G., Ma, C., Nesman, E. F., Phillips, R. B., Rogers, A. E. E., Ronnang, B. O., Ryan, J. W., Schupler, B. R., Shaffer, D. B., Shapiro, I. I., Vandenberg, N. R., Webber, J. C., and Whitney, A. R. (1985). *IEEE Trans. Geoscience and Remote Sensing* GE-23, 438.

Table 1

VLBI Observing Stations

ALGOPARK, 46-m-diameter antenna at the Algonquin Radio Observatory near Lake Traverse, Ontario, Canada.

CHLBOLTN, 26-m-diameter antenna located in Chilbolton, England and operated by the Appleton Laboratories. (No longer in use for VLBI.)

EFLSBERG, 100-m-diameter antenna of the Max Planck Institute for Radio Astronomy located near Effelsberg, FRG.

GILCREEK, 26-m-diameter antenna operated by the CDP and located at the NOAA/NESDIS facility at Gilmore Creek, Alaska.

HARTRAO, 26-m-diameter antenna at the Hartebeesthoek Radio Astronomy Observatory near Johannesburg, South Africa.

HATCREEK, 26-m-diameter antenna at the Hat Creek Radio Observatory, Hat Creek, CA.

HAYSTACK, 37-m-diameter antenna at the Haystack Observatory, Westford, MA.

HRAS 085, 26-m-diameter antenna at the George R. Agassiz Station operated by the Harvard College Observatory and located near Fort Davis, TX.

KASHIMA, 26-m-diameter antenna at the Kashima Space Research Center, Kashima, Japan.

KAUAI, 9-m-diameter antenna of NASA's Spaceflight Tracking and Data Network located near Kokee Park on Kauai in the state of Hawaii.

KWAJAL26, 26-m-diameter TRADEX antenna operated for the US Air Force by Lincoln Laboratory in the Marshall Islands.

MARPOINT, 26-m-diameter antenna of the US Naval Research Laboratory located near Maryland Point, MD.

MOJAVE12, 12-m-diameter antenna located at the NASA Goldstone complex near Barstow, CA and operated by the NGS.

NRAO 140, 43-m-diameter antenna at the National Radio Astronomy Observatory, Green Bank, WV.

ONSALA60, 20-m-diameter antenna at the Onsala Space Observatory, Onsala, Sweden.

OVRO 130, 40-m-diameter antenna at the Owens Valley Radio Observatory, Big Pine, CA.

PENTICTN, the site of occupation by CDP mobile VLBI systems located near Penticton, B.C., Canada.

PLATTVIL, the site of occupation by CDP mobile VLBI systems located near Platteville, CO.

RICHMOND, 18-m-diameter antenna of the NGS near Miami, FL.

ROBLED32, 32-m-diameter antenna located at the NASA Madrid complex in Spain and operated by the Deep Space Network.

SHANGHAI, 6-m-diameter antenna at the Shanghai Astronomical Observatory in Shanghai, China.

VNDNBERG, 9-m-diameter MV1 antenna operated by the CDP and permanently located at the Vandenberg Air Force Base near Lompoc, CA.

WESTFORD, 18-m-diameter antenna at the Haystack Observatory, Westford, MA.

WETTZELL, 20-m-diameter antenna located in Bavaria, FRG and operated by the German Institute for Applied Geodesy (IFAG).

YELLOWKN, the site of occupation by CDP mobile VLBI systems located near Yellowknife, N-W.T., Canada.

Table 2
Summary of VLBI Experiments

DATABASE NAME	EXPERIMENT PURPOSE	L G O P A R	H L B O L T		I C R E	A R T R	A T C R E	A Y S T A	R A S O 8	A S H I	K A U A	W A J A L 2	M A P O I N	M O J A V E 1	N R A O	N S A L A	V R O 1 3	E N T C T	L A T T V I	I C H M O N	O B L E D 3	H A N G H A	N D N B E	E S T F O R	W E T T Z E L	E L O W K
	N. Am. Pl. Stab.																									
79NOV25X	N. Am. Pl. Stab.																									
-	N. Am. Pl. Stab.																									
80JUL26X	Transatlantic		•																						•	
80JUL27X	Transatlantic		•																							
80SEP26X	Transatlantic																								•	
80SEP27X 80SEP28X	Transatlantic Transatlantic	•	•																						•	
80SEP28X	Transatlantic																									
80SEP30X	Transatlantic																									
800CT01X	Transatlantic																									
800CT02X	Transatlantic																									
800CT16X	Transatlantic																									
800CT17X	Transatlantic																									
800CT18X	Transatlantic																									
800CT19X	Transatlantic																									
800CT20X	Transatlantic																									
800CT21X	Transatlantic																								•	
800CT22X	Transatlantic																									
	Polaris/Iris																								•	
	Polaris/Iris																									
	Polaris/Iris																									
	Polaris/Iris																								•	
	Polaris/Iris																								•	
81FEB12X	Polaris/Iris																								•	
81FEB27X 81MAR16X	Polaris/Iris Polaris/Iris																								•	
81MAY13X	Polaris/Iris																									
81JUN16X	N. Am. Pl. Stab.																									
	Polaris/Iris																								•	
81JUL01X	Polaris/Iris																								•	
81JUL08X	Polaris/Iris			•																						
81JUL15X	Polaris/Iris																									
81JUL22X	Polaris/Iris								X															X		
81JUL29X	Polaris/Iris								X															X		
81AUG05X	Polaris/Iris																									
81AUG26X	Polaris/Iris																									
81SEP02XA	Polaris/Iris								X			•						•						X		

DATABASE	EXPERIMENT										•	STA	۵т-	t O t	70											
NAME	PURPOSE	Α	C	E	G	н	н	н	н	K						Λ	0	D	D	D	D	c	7.7	7.7	T.7	v
	_																V								E	
		G	Τ.	Ť.	т.	R	т	v	Δ	6	II.	Δ	D	T	٨	G 74	R	M	^		D	П	IA IA	S		
																	0								T	
			0						3			A			U	L	U							T	T	
			L						^		T				1		,					G			Z	-
			T														1								E	
			N					K		A							3									
		K	14	G	ľ		K	K	5			О	1	2	U	U	0	N	L	D	2	Τ	G	D	L	N
81SEPO9X	Polaris/Iris								v																	
81SEP16X	Polaris/Iris	•	•	•	•	•	•	•	A V	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	Х.	•	•
81SEP23X	Polaris/Iris								A V	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	X	٠	•
81SEP30X	Polaris/Iris	•	•	•	•	•	•	•	A.	•	•	•	•	٠	•	•		•	•	•	•	•	•	X	•	•
810CT15X	Polaris/Iris	•	•	•	•	•	•	•	X	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	X	•	•
	Polaris/Iris	•	•	•	•	•	•	•	X	•	•	•	•	•	•	•		•	•	•	•	•	•	X	•	
810CT28X		•	•	•	•	•	•	•	X	•	•	•	•	•	•	X		•	•	•	•		•	X	•	
	Polaris/Iris Polaris/Iris																									
81NOV10X																										
81NOV10X	Polaris/Iris																									
81NOV18X	Transatlantic	•	•	•	•	•	•	X	X	•	•	•	•		X.	X	X							X		
	Transatlantic	•	•	•	•	•	•	X	X						X :	X	X							X		
OINUVZ4XA	Polaris/Iris	•	•	•	•	•	•	•	X		•													X		
	Polaris/Iris	•	•	•	•	•	•		X		•													X		
81DEC16X	Polaris/Iris	•	•	•	•				X		•													X		
81DEC22X	Polaris/Iris	•	•	•		•			X														. :	X		
81DEC29XA	Polaris/Iris	•						. :	X														. :	X		
82JANO6X	Polaris/Iris	•	•			•		. :	X														. :	X		
82JAN13X	Polaris/Iris	•	•					. :	X														. :	X		
82JAN20X	Polaris/Iris							. :	X														. :	X		
82JAN27X	Polaris/Iris	•		•				. 2	X														. :	X		
82FEB01X	Polaris/Iris	•	•		•			. 2	X						•								. :	X		_
82FEB10X	Polaris/Iris							. 2	X															X.		
82FEB17X	Polaris/Iris	•	•		•	•		. 2	X														. 3	Κ.		_
82FEB24X	Polaris/Iris	•				•	•	. 2	X		•												. 2	Κ.		_
82MARO3X	Polaris/Iris	•	• .		•			. 2	X														. 7	ζ.		
82MAR10X	Polaris/Iris	•	•					. 2	X	•													. 3	ζ.		_
82MAR17X	Polaris/Iris	•			•			. 2	K.	•		•			. 3	ζ							. 2	Κ.		
82MAR24X	Polaris/Iris	•				•		. 2	K.		•												. 2	Κ.		
82MAR29X	Polaris/Iris	•						. 2	K.												_		. 3	ζ.		
82APRO7X	Polaris/Iris	•		, ,				. }	ζ.		. ,			. ,									. 3	ζ.		
82APR13X	Polaris/Iris							. }	ζ,							i							. 3	ζ.		
82APR19XA	,							. }	ζ,						. 3	ζ.							. }	ζ.		
82APR26X	Polaris/Iris							. 3	ζ,							. ,		. ,					. }	ζ.		
82MAY03X	Polaris/Iris							. 3	ζ.														. 3	ζ.		
	Polaris/Iris							X	ζ.														. 3	ζ.		
82MAY17X	Polaris/Iris							Х	Ι.														3	Ι.		
82JUNO2X	Polaris/Iris																									
82JUN07X	Polaris/Iris							X	١.															΄.	•	
82JUN16X	Transatlantic														Х		Ι.									
82JUN18X	Transatlantic						X										٠.									
	Transatlantic						X					Х			X	X					•	į	X		•	
82JUN20XA	Transatlantic						X	X							X	X							X			
																	_	,		•	•	-		-	•	

DATABASE NAME	EXPERIMENT PURPOSE	L G O P A R	H L B O L T	F L S B E	I C R E	A R T R	A T C R E	A Y S	R A S O 8	A S H I	K A U A	K W A J A L	A R P O I N	M O J A V E 1	N R A O	N S A L A	V R O 1	E N T C T	L A T V I	I C H M O N	O B L E D 3	H A N G H	N D N B E	T	E T T Z E L	E L O W K
82JUN21X	Transatlantic								x							x	x							X	_	
82JUN28X	Polaris/Iris																							X		
	Polaris/Iris																							X		
82JUL12X	Polaris/Iris																							X		
82JUL19X	Polaris/Iris																							X		
82JUL26X	Polaris/Iris																							X		
82AUG04X	Polaris/Iris																							X		
82AUG09X	Polaris/Iris																							X		
82AUG16X	Polaris/Iris																							X		
82AUG23X	Polaris/Iris																							X		
82AUG30X	Polaris/Iris																							X		
82SEP07X	Polaris/Iris																							Х		
82SEP13X	Polaris/Iris								X							Х								Х		
82SEP2OX	Polaris/Iris								X							Х								X		
82SEP27X	Polaris/Iris								X															Х		
820CT04X	Polaris/Iris																							X		
820CT13X	Polaris/Iris																							X		
820CT18X	N. Am. Pl. Stab.																							Х		
820CT25X	Polaris/Iris																							X		
	Polaris/Iris																							X		
	Polaris/Iris																							X		
82NOV15X	Polaris/Iris	•																						X		
	Polaris/Iris	•																						X		
	Polaris/Iris	•																						X		
	Polaris/Iris	•																						X		
82DEC15X	Transatlantic																							X		
82DEC16X	Transatlantic																							X		
	Polaris/Iris																							X		
82DEC27X	Polaris/Iris																							X		
83JAN03X	Polaris/Iris																							X		
83JAN10X	Polaris/Iris																							X		
83JAN17X	Polaris/Iris																							X		
	Polaris/Iris																							X		
	Polaris/Iris																							X		
83FEB07X	Polaris/Iris																							X		
	Polaris/Iris																							X		
83FEB28X	Polaris/Iris																							X		
83MARO7X	Polaris/Iris																							X		
83MAR14X	Polaris/Iris																							X		
83MAR21X	Polaris/Iris																							X		
83MAR28X	Polaris/Iris																							X		
83APRO4X	Polaris/Iris							•	Х															X		

DATABASE NAME	EXPERIMENT PURPOSE	L G O P A R	H L B O L T	F	I C R E	A R T R	A T C R E	A Y S T A	R A S O 8	A S H I	K A U A	K W A J A L 2	M A P O I N	O J A V E 1	N R A O	N S A L A	V R O 1 3	E N T I C	L A T T V I	I C H M O N	O B L E D 3	H A N G H A	N D N B E R	E S T F O R	W E T T Z E L	E L O W K
83APR11X	Polaris/Iris								¥															Y		
83APR18X	Polaris/Iris	•	•	•	•	•	•	•	Λ	•	•	•	•	•	•	· Y	•	•	•	•	•	•	•	Y	:	•
83APR25X	Polaris/Iris																								:	
83MAY02X	Polaris/Iris																									
83MAY05X	Transatlantic																								•	
83MAY09X																									•	
83MAY16X	Polaris/Iris																									
83MAY23X	Polaris/Iris																									
83MAY31X	Polaris/Iris																								•	
83JUNO6X	Polaris/Iris																								•	
83JUN07X	N. Am. Pl. Stab. N. Am. Pl. Stab.																								•	
	Polaris/Iris	•	•	•	•	•	X.	•	•	٠	•	٠	•	٠	•	•	Х	•	Х	•	•	•	•	•		•
83JUN09X	N. Am. Pl. Stab.																									
83JUN13X																									•	
83JUN2OX	Polaris/Iris																								•	
	Polaris/Iris Polaris/Iris	•	•	•	•	•	•	•	X V	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	X	•	•
83JUL05X	•																								•	
83JUL11X	Polaris/Iris Polaris/Iris	•	•	•	•	•	•	•	X V	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
83JUL25X	Polaris/Iris	•	•	•	•	•	•	•	A.	•	•	•	•	•	•	•	•	•	•	•	•		•		•	
83AUG01X	Polaris/Iris																								•	
83AUG08X	Polaris/Iris																								•	
83AUG15X	Polaris/Iris																									
83AUG22XP	Polaris/Iris																									
83AUG29X	Polaris/Iris																									
83AUG30X	Transatlantic																								•	
83SEP02X	Polaris/Iris																									
83SEP07X	Polaris/Iris																									
83SEP12X	Polaris/Iris																								•	
83SEP17X	Polaris/Iris																					-	-			-
83SEP22X	Polaris/Iris																									
83SEP23XA																									•	
83SEP27X	Polaris/Iris																								•	
830CT02X	Polaris/Iris																									
830CT07X	Polaris/Iris																									
830CT12X	Polaris/Iris			•																					•	
830CT17X	Polaris/Iris			•																						-
830CT22X	Polaris/Iris			•																					•	
830CT27X	Polaris/Iris			•																						
830CT28X	Transatlantic																									
83NOV01X	Polaris/Iris																								•	
83NOV01X	Polaris/Iris																								•	
83NOV11X	Polaris/Iris																									
	/ 4113	•	•	•	•	•	•		a	•	•	•	•											Λ		

DATABASE NAME	EXPERIMENT PURPOSE	L G O P A R	H L B O L T	F L S B E	I C R E	A R T R	A T C R E	A Y S T A	R A S 0 8	A S H I	K A U A	K W A J A L 2	A R P O I	M O J A V E 1	N R A O 1 4	N S A L A	V R O 1 3	E N T C T	L A T V I	I C H M O N	O B L E D 3	S H A N G H A	N D N B E	E S T F O R	E T Z E L	E L O W K
0.0170	D 1 . /= .								37							v								v	v	
83NOV16X	Polaris/Iris																					٠				
83NOV17X	Transatlantic	•																				•	•	x		
83NOV21X	Polaris/Iris	•	٠	•	•															•			•	X		
83NOV26X	Polaris/Iris	•	٠	•	•	•																•		X		
83DECO1X	Polaris/Iris	•	•	•	•	•																•	•	X		
83DEC06X	Polaris/Iris	•	٠	٠	•	•														•		•	•			
83DEC11X	Polaris/Iris	•	٠	•	•	•														•			•	X		
83DEC16X	Polaris/Iris	•	٠	٠	•	٠																•		X X		
83DEC21X	Polaris/Iris	٠	٠	•	•	•																		Λ	Λ	٠
83DEC22X	Transatlantic	•	•																				•	Ÿ		•
83DEC26X	Polaris/Iris	•	•	٠																•						
83DEC31X	Polaris/Iris IRIS	•	•	٠	•		•																			
84JAN04X 84JAN09X	IRIS	•	•	•	•		•																	X		
84JAN14X	IRIS	•	•	•	•	-																				
84JAN24X	IRIS	•	•	•	•																				X	
	Pacific Basin	•	•	•	•		•			X								:			•					
84JAN29X	IRIS	•	•	٠	•	•	•														•			X	X	
84FEB03X	IRIS	•	•	•	•	•	•																		X	
84FEBO8X	IRIS	•	•	•	•	•																			Х	
84FEB13X	IRIS								X															Х		
84FEB18X	IRIS																							X	X	
84FEB23XA																										
	Pacific Basin						X			X				X												
84FEB24X	Transatlantic																									
84FEB28XP																								X	X	
84MAR04XP																				X				Х	Х	
84MAR09XP																								Х	Х	
84MAR14X	IRIS																							Х		
84MAR19X	IRIS								X											X				Х	X	
84MAR25X	IRIS								X											Х				Х	Х	
84MAR30X	IRIS								X																X	
84APRO3X	IRIS								X											Х				Х	X	
84APRO8X	IRIS								X											Х				X	X	
84APR13X	IRIS								X											Х				X	Х	
84APR18X	IRIS								X							X				X				X	X	
84APR19X	Transatlantic							X								X										
84APR23X	IRIS								X											X				X	X	
84APR26X	N. Am. Pl. Stab.						X	X						X												
84APR28X	IRIS								X											X				X	X	
84MAY03X	IRIS								X															X	X	
84MAY08X	IRIS							•	X	•	•			•			•				•			X	X	•

DATABASE NAME	EXPERIMENT PURPOSE	L G O P A R	H L B O L T	F	I L C R E	A R T R	A T C R E	A Y S T A	R A S O 8	A S H I	K A U A	K W A J A L	A R P O I N	M O J A V E 1	N R A O	N S A L A	V R O 1 3	E N T C T	L A T V I	I C H M O N	O B L E D 3	H A N G H	N D N B E	E S T F O R	T	E L O W K
84MAY13X	IRIS								x															x	Х	
84MAY18X	IRIS	•	•	•	•	•	•						•												X	
84MAY19X	Transatlantic	•	•	•	•	•	•		•		•					X						:		1	11	•
84MAY23X	IRIS	•	•	•	•	•	•	Λ									•				:	•		· Y	X	•
84MAY28X	IRIS	•	•	•	•	•	•	•	X									•		x		•	•		X	
84JUNO2X	IRIS	•	•	•	•	•	•	•	X	•					•			•			:	•	-		X	
84JUN07X	IRIS	•	•	•	•	•	•	•	X		•	•	•	•		•	•	•			•	•	•		X	
84JUN12XI		•	•	•	•	•	•	•	X	•			•			· Y	•					:	•		X	-
84JUN17X	IRIS	•	•	•	•	•	•	•	X	•		•			•	Λ	•	•	•	X	•		•		X	
84JUN22XI		•	•	•	•	•	•	•	X	•					•	•	•	•	•	X	•		•		X	-
84JUN27XI		•	•	•	•	•	•	•	X	•			•		•	•	•	•	•	X	:	•	•		X	•
84JUL02XI		·	·	Ī		•	•	•	Х	•	•	٠	•					•			•	Ċ	•		X	-
84JUL07X	East Pacific 1	•	•	•	X	•	•	•			X	x	Ċ	X	•	•	•	•	•		•	•	X			•
84JUL07XI		·	•	·	-	•	•	•	X	•	•		:	•	•	•	•	•	•	X	•	•		x	x	•
84JUL12XI									X				•		•			•		X		•	•		X	•
84JUL17XI		•	•		•	•	•					•	•		•	•		•				·	•		x	
84JUL21X	East Pacific 2				X						X	X		X									X			
84JUL22X	East Pacific 2				X						X												X			
84JUL22XA	IRIS								X															X		
84JUL27XI	IRIS																			X				X		
84JUL28X	West Pacific 1													X												
84JUL29X	West Pacific 1				X																					
84AUG01X	IRIS																	•		X				Х	Х	
84AUG04X	West Pacific 2				X					X	Х	Х		X												
84AUG05X	West Pacific 2																									
84AUG06X	IRIS								X											x				х	X	
84AUG11X	IRIS																			X				X	X	
84AUG16X	IRIS								X											Х				X	Х	
84AUG21X	IRIS								X											X				Х	X	
84AUG24X	N. Am. Pl. Stab.1	Х			X				X									X								X
84AUG26XI									X											X				X	X	
84AUG28X	N. Am. Pl. Stab.2	X			X				X															X		
84AUG30X	Polar 1				X			X		X				X											X	
84AUG31XI	IRIS	•							X											X				X	Х	
84SEP02X	Polar 2				X					X				X											X	
84SEP05XI			•						X											X				X	X	
84SEP10XI									X		•									X				X	X	
84SEP15XI									X											X				X	X	
84SEP2OXI									X															X	X	
84SEP25XI									X											X				X	X	
84SEP30XI									X											X				X	X	
840CT05XI	IRIS								X											X					X	

DATABASE NAME	EXPERIMENT PURPOSE	L G O P A R	H L B O L	F L S B E R	I C R E	A R T R	A T C R E	A Y S T A	R A S O 8	A S H I	K A U A	K W A J A L	A R P O I N	M O J A V E 1	N R A O	N S A L A	V R O 1 3	E N T C T	L A T T V I	I C H M O N	O B L E D 3	H A N G H A	N D N B E	S	E T T Z E L	E L O W K
840CT10XI 840CT15XI 840CT20XI 840CT25XB 840CT26X 840CT30XI 84NOV04XI 84NOV09XI 84NOV14XI 84NOV15X 84NOV19XI 84NOV24XI 84NOV29XI	IRIS IRIS IRIS N. Am. Pl. Stab. IRIS IRIS IRIS IRIS IRIS IRIS IRIS IRI								$\begin{matrix} x\\x\\x\\x\\x\\x\\x\\x\end{matrix}$	•					•	. x x x	. X	•	•	х х х х		•	•	x x x x x x	X X	
84DEC04XI 84DEC09XI 84DEC14XI 84DEC19XI 84DEC23XI 84DEC29XI 85JAN03XI 85JAN08XI 85JAN13XI 85JAN18XA	IRIS IRIS IRIS IRIS IRIS IRIS IRIS IRIS								X			• • • • • • • • • • • • • • • • • • • •								X		•	•	X X X X X X X X X	X X X X X X X X X	
85JAN23XI 85JAN24X 85JAN28XA 85FEB02XI 85FEB12XI 85FEB12XI 85FEB17XI 85FEB22XI 85FEB27XI 85MAR04XI	IRIS Transatlantic IRIS IRIS IRIS IRIS IRIS IRIS IRIS IRI			•			•	:	X X X X X X X		•		•			•	•			x x x x x x	•			X X X X X	х х х х х х	•
85MAR04XI 85MAR05X 85MAR14XI 85MAR14XI 85MAR24XI 85MAR24XI 85MAR29XI 85APR03XI 85APR08XI 85APR13XI	North Atlantic 1 IRIS IRIS IRIS IRIS IRIS IRIS IRIS IRI							x	X X X X X X				•	x		x	x					•	•		x x x x x x x	

DATABASE EXPERIMENT NAME PURPOSE	-	H : L : B : C : T :	F L S B E R	I A L I C ' R I E A	A R T R A	A T C R E	A Y S T A	R A S O 8	A S H I	K A U	K W A J	A R P O I N	M O J A V E 1	N R A O	N S A L A	V R O 1 3	E N T C T	L A T V I	I C H M O N	O B L E D 3	H A N	N D N B E R	E S T F O R	E T Z E L	E L O W K
85APR18XI IRIS 85APR23XI IRIS 85APR24X Transatlantic 85APR28XI IRIS 85MAY03XI IRIS 85MAY07XA N. Am. Pl. Stab. 85MAY08XI IRIS 85MAY09X North Atlantic 2 85MAY13XI IRIS 85MAY15XG North Pacific 1 85MAY18XI IRIS 85MAY23XI IRIS 85MAY23XI IRIS 85MAY23XI IRIS 85JUN02XI IRIS 85JUN02XI IRIS 85JUN02XI IRIS 85JUN12XI IRIS 85JUN12XI IRIS 85JUN12XI IRIS 85JUN19X Transatlantic 85JUN19X Polar 1 85JUN22XI IRIS 85JUN27XI IRIS 85JUL02XI IRIS 85JUL02XI IRIS 85JUL02XI IRIS 85JUL02XI IRIS 85JUL02XI IRIS 85JUL02XI IRIS 85JUL07XI IRIS 85JUL17XI IRIS 85JUL12XI IRIS 85JUL17XI IRIS 85JUL12XI IRIS 85JUL2XI IRIS 85JUL2XI IRIS 85JUL2XI IRIS 85JUL2XI IRIS 85JUL2XI IRIS 85JUL27X East Pacific 1 85JUL27X East Pacific 2 85JUL27XI IRIS 85AUG01XI IRIS 85AUG06XI IRIS	K :	N	G	K		K	K X	5		· · · · · · · · · · · · · · · · · · ·	6	T	· · · · · x · x · x · · · · x · · · x · · · x · · · x · · · x		· x x · · · x x · · · · · · x x x · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			xx . x x . x x x x x x x x x x . x . x x x x x x x x			· · · · · · · · · · · · · · · · · · ·	xx · xxxxx · xxxxxxxxx · xxx · xxxxxxxx	xxxxx ·xxx ·xxxxxxxxx ·xxx ·x ·x ·x ·x ·	
85AUG10X West Pacific 2 85AUG11XI IRIS 85AUG16X IRIS 85AUG21XI IRIS 85AUG24X N. Am. Pl. Stab.C 85AUG26XI IRIS 85AUG28X N. Am. Pl. Stab.B 85AUG31XI IRIS 85SEP04X N. Am. Pl. Stab.B 85SEP05XI IRIS	. X . X . X			X				X X X X X X							x		x x		x x x x				х х х х х	х х х х	

DATABASE	EXPERIMENT												ςт.	ΔΤ	IOI	P.V											
NAME	PURPOSE	1	A	С	E	G	н	н	Н	н	K				M		O	0	р	P	R	R	S	v	W	IJ	v
															0										E	E	
			_		_										J						Ċ		A		S	Т	_
)			C	T	Ċ	S		Н							0			-	L		N	т	т	T.
				_	_		_	R	_	_					V	Ŭ	L	Ŭ	Ī	_				В	F	7.	0
								E		0	M	-				1	_	1	_	_	0	_	Н	_	Ô	E	_
								E			A				1			3	T	İ				_	R	_	
					G				K																		
																		-					_	_	_		-
85SEP10XI	IRIS									X							X				Х				Х	X	
85SEP11X	Transatlantic																X								Х	Х	
85SEP15XI			,							X	•	٠									Х				X	X	
85SEP20XI			,	•						Х				•							Х				Х	X	
85SEP25XI										X											Х				Х	X	
85SEP30X	North Pacific	2.		•		X		X			Х	Х			X									Х			
85SEP30XI										Х											X				Х	X	
850CT05XI										X											X				X	X	
850CT10XI										X											X				Х	X	
850CT15XI	IRIS									X											X				Х	X	
850CT20XI	IRIS									X											X				X	Х	
850CT25XI										Х							X				Х				X	Х	
850CT29X	North Atlantic	3.								X					Х		X	Х							Х	X	
850CT30XI										X															X	X	
85NOV04XI										X															X	X	
85NOVO9XI										X											X				Х	X	
85NOV14XI	IRIS									X											Х				X	X	
85NOV19XI	IRIS									X							X								X	X	
85NOV20X	Transatlantic																X								Х	X	
85NOV21X	Polar 2				. :	X					X				Х		X								X	X	
85NOV24XI										X															X.	X	
85NOV29XI										X											X				X :	X	
85DEC04XI										X															X :	X	
85DEC09XI	IRIS																X				X				X :	X	
85DEC10X	Transatlantic	•															X								X :	X	
85DEC14XI									. :	X										. :	X				X :	X	
85DEC19XI									. :	X											X				X :		
85DEC23XI							•																	. :	X :	X	
85DEC29XI									. :	X															X X	K	
86JAN03XI									. :	X														. :	X X	ζ.	
86JAN08XI							•	•	. 3	X										. 2	K			. :	X X	ζ.	
86JAN09XH	South Africa					. 2	X	•								•				. 2	K			. 2	K 3	ζ,	
86JAN13XI									. 2	K	•									. 2	Z.		•	. 2	K 3	ζ.	
86JAN14X	Transatlantic										•					. 2	K							. 2	K 3	ζ.	
86JAN15XH	South Africa					. 3	ζ.									. 2	ζ.			. 3	ζ.			. 2	ζ.		
86JAN18XI		•							. 2	K										. 3	ζ.			. 2	ζ 3	Ι.	
	South Africa					. }	ζ,													. 3	ζ.			. 2	()	Ι,	,
86JAN23XI								. ,	. 2	ζ.										. }	ζ.			. 3	ζ }	Ι.	,
86JAN28XI															•												
	South Africa	•		•																							
86FEBO2XI		•	•						. 3	ζ.				•						. 3	ζ.			. 3	K	Ι.	
86FEB03XH	South Africa																										

DATABASE EXPERIMENT NAME PURPOSE	STATIONS A C E G H H H H K K K M M N O O P P R R S V W W Y L H F I A A A R A A W A O R N V E L I O H N E E E G L L L R T Y A S U A R J A S R N A C B A D S T L O B S C T C S S H A J P A O A O T T H L N N T T L P O B R R R T
86FEB07XI IRIS 86FEB11XH South Africa 86FEB12XI IRIS 86FEB17XI IRIS 86FEB22XI IRIS 86FEB27XI IRIS 86FEB27XI IRIS 86MAR04XI IRIS 86MAR09XI IRIS 86MAR13X Transpacific 86MAR14XI IRIS 86MAR19XI IRIS 86MAR19XI IRIS 86MAR20X Transatlantic 86MAR24XI IRIS 86MAR29XI IRIS 86APR01X N. Am. Plt. Stab 86APR03XI IRIS 86APR03XI IRIS 86APR04X North Atlantic 86APR08X North Pacific 86APR08XI IRIS 86APR13XI IRIS 86APR13XI IRIS	
86APR23XI IRIS 86APR28XI IRIS	
86MAY02XT Transpacific 86MAY03XI IRIS 86MAY08XI IRIS 86MAY13XI IRIS 86MAY13XI IRIS 86MAY14X North Atlantic 86MAY17XI IRIS 86MAY23XI IRIS 86MAY23XI IRIS 86JUN02XI IRIS 86JUN02XI IRIS 86JUN12XI IRIS 86JUN12XI IRIS 86JUN13X Transpacific 86JUN15X Transatlantic 86JUN16X Transatlantic 86JUN17XI IRIS 86JUN12XI IRIS 86JUN12XI IRIS 86JUN22XI IRIS 86JUN27XI IRIS 86JUL02XI IRIS 86JUL05X East Pacific	X X

DATABASE NAME	EXPERIMENT PURPOSE	L G O P A R	H L B O L T	F L S B E	I C R E	A R T R	A T C R E	H A Y S T A C K	R A S O 8	A S H I	K A U A	K W A J A L	A R P O I N	M O J A V E 1	N R A O	N S A L A	V R O 1 3	E N T I C	L A T V I	I C H M O N	O B L D 3	H A N G H	N D N B E R	E S T F O R	E T Z E L	E L O W K
86JUL07XI 86JUL12XI 86JUL12XI 86JUL12XI 86JUL22XI 86JUL26X 86JUL27XI 86AUG01XI 86AUG06XI 86AUG06XI 86AUG1XI 86AUG1XI 86AUG25X 86AUG25XI 86AUG25XI 86SEP05XI 86SEP05XI 86SEP10XI 86SEP15XI 86SEP10XI 86SEP15XI 86SEP15XI 86SEP15XI 86SEP15XI 86SEP15XI 86SEP15XI 86SEP15XI 86SEP15XI 86SEP20XI 86SEP25XI 86SEP25XI 86OCT05XI 86OCT10XI 86OCT15XI 86OCT15XI 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT23X 86OCT25XI 86OCT23X 86OCT25XI	West Pacific IRIS IRIS IRIS East Pacific IRIS IRIS West Pacific IRIS IRIS IRIS IRIS IRIS IRIS IRIS IRI				· x · · · x · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		x . x x x . x x x x . x x x . x x x x x	$\mathbf{x} \cdot \cdot \cdot \mathbf{x} \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{x} \cdot	$\mathbf{x} \cdot \cdot \cdot \mathbf{x} \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \mathbf{x} \cdot \cdot \cdot \cdot \mathbf{x}$. x x		$\begin{matrix} \cdot & \mathbf{x} & \cdot & \cdot & \mathbf{x} & \cdot & \cdot & \cdot \\ \mathbf{x} & \cdot & \cdot & \mathbf{x} & \cdot & \cdot \\ \mathbf{x} & \cdot & \cdot & \mathbf{x} & \cdot \\ \mathbf{x} & \cdot & \mathbf{x} & \cdot \\ \mathbf{x} & \cdot & \mathbf{x} & \cdot \\ \end{matrix}$		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			X · XXX · XX · X · · · · · XX · XX · X			· x · · · x · · · x · · · · · · · · · ·	X · XXX · XX · XXXXXXXX · XXXXXXXXXXX · XXXXXX	X · XXX · XX · XXXXXXX · XXXXXXXXXXXX · XX · XXX · X	
86NOV14XI 86NOV19XI 86NOV24XI 86NOV29XI	IRIS IRIS						•	•	X X		•		•	•	•			•	•	Х •	•	•	•	X X	X X	•

DATABASE	EXPERIMENT										5	ST	AT:	[0]	NS											
NAME	PURPOSE	Α	С	E	G	Н	Н	Н	Н	K	K	K	M	M	N	0	0	P	P	R	R	S	V	W	W	Y
		L	Н	F	I	A	Α	Α	R	Α	Α	W	Α	0	R	N	V	E	L	Ι	0	Н	N	E	E	E
		G	L	L	L	R	T	Y	Α	S	U	Α	R	J	Α	S	R	N	Α	С	В	Α	D	S	T	L
		0	В	S	С	T	С	S	S	Н	Α	J	P	Α	0	Α	0	T	T	Н	L	N	N	T	T	L
		P	0	В	R	R	R	T		I	I	Α	0	V		L		I	T	М	E	G	В	F	Z	0
		Α	L	E	E	A	E	Α	0	M		L	Ι	E					V	0	D	Н	E	0	E	W
		R	T	R	E	0	E	С	8	Α		2	N	1	4	6	3	T	I	N	3	Α	R	R	L	K
		K	N	G	K		K	K	5			6	T	2	0	0	0	N	L	D	2	I	G	D	L	N
86DECO4XI	IRIS					•			Х											X				Х	X	
86DEC05X	Transpacific				X					X	Х															
86DEC08X	Transatlantic															Х								Х	X	
86DEC09XI	IRIS								X							X				X				Х	X	
86DEC14XI	IRIS								X											X				Х	Х	
86DEC19XI	IRIS								X											X				Х	Х	
86DEC23XI	IRIS								X											X				X	X	
86DEC29XT	IRIS								X			_		_	_	_	_			X	_	_	_	X	Х	

Table 3.1

Source Coordinates from GLB122 Solution (Values from GLOBL Solution with Stations as Arc Parameters)

		_		_		
Source	_	nt Ascensio	n	De o	clination	
Name	h n	n s		· ·	, "	
0106+013	1 8	38.77108	±.00001	1 3	5 ±.3198	±.0003
0212+735	2 17		±.00005	73 4		±.0003
4C67.05	2 28		±.00004		1 3.0299	±.0003
0229+131		45.89410	±.00001		2 54.7178	±.0003
0234+285	2 37		±.00001		8 8.9908	±.0003
0235+164	2 38		±.00001	16 3	6 59.2760	±.0004
0300+470	3 3		±.00002	47 1	6 16.2765	±.0003
3C84	3 19		±.00002	41 3	0 42.1038	±.0003
NRAO150	3 59		±.00002	50 5	7 50.1616	±.0003
0420-014	4 23		±.00001	-1 2	0 33.0638	±.0003
3C120	4 33		±.00003	5 2	1 15.6157	±.0016
0454-234	4 5		±.00003	-23 2	4 52.0181	±.0005
0528+134	5 30		±.00001	13 3	1 55.1492	±.0003
0552+398	5 5	5 30.80567	±.00002	39 4	8 49.1642	±.0002
0727-115	7 30	0 19.11251	±.00001	-11 4	1 12.6001	±.0003
0742+103	7 45	5 33.05953	±.00010	10 1	1 12.6885	±.0028
OJ287	8 54	4 48.87491	±.00001	20	6 30.6398	±.0002
4C39.25	9 2	7 3.01384	±.00001	39	2 20.8506	±.0002
OK290	9 50	6 49.87540	±.00002	25 1	.5 16.0476	±.0008
1034-293	10 37	7 16.07994	±.00004	-29 3	4 2.8099	±.0006
1144+402	11 46	58.29782	±.00001	39 5	8 34.3042	±.0003
1219+285	12 23	1 31.69049	±.00002	28 1	.3 58.4993	±.0008
3C273B	12 29	9 6.6997	*	2	3 8.5990	±.0003
3C279	12 5	6 11.16659	±.00004		7 21.5285	±.0023
1308+326	13 10	28.66377	±.00001		0 43.7829	±.0003
1354+195	13 57	7 4.43659	±.00001		.9 7.3728	±.0003
0Q208	14	7 ±.39431	±.00001	28 2	7 14.6901	±.0003
1418+546	14 19	9 46.59719	±.00003	54 2	23 14.7874	±.0003
1502+106	15	4 24.97974	±.00001	10 2	9 39.2007	±.0003
1548+056	15 50		±.00001		7 10.4511	±.0003
CTD93	16 9	9 13.32024	±.00033		1 28.9583	±.0092
1633+38	16 3	5 15.49282	±.00004	38	8 4.5026	±.0006
1637+574	16 38	8 13.45613	±.00003		23.9809	±.0003
1642+690	16 42	2 7.84824	±.00005		6 39.7577	±.0002
3C345	16 42	2 58.80985	±.00001		8 36.9955	±.0002
NRA0530	17 33	3 2.70580	±.00001		4 49.5444	±.0004
1741-038	17 43		±.00001		0 4.6125	±.0003
1749+701	17 48	8 32.84029	±.00020	70	5 50.7677	±.0007
1749+096	17 5		±.00001		9 ±.7319	±.0003
1803+784		0 45.68346	±.00009		8 4.0198	±.0002
3C390.3	18 43		±.00042		6 17.1282	±.0009
1921-293	19 24		±.00003		.4 30.1155	±.0006
1923+210	19 2	5 59.60535	±.00002	21	6 26.1625	±.0009

```
73 58 1.5726
                                                      ±.0009
1928+738
           19 27 48.49471 ±.00015
                                                      ±.0004
           20 38 37.03474
                                      51 19 12.6659
3C418
                           ±.00004
                                                      ±.0003
2134+00
           21 36 38.58632
                           ±,00001
                                       0 41 54.2172
                                       6 57 38.6074
                                                      ±.0003
2145+067
           21 48 5.45867
                           ±.00001
VR422201
           22 2 43.29138
                           ±.00002
                                      42 16 39.9824
                                                      ±.0003
                                      31 45 38.2737
                                                      ±.0008
2201+315
           22 3 14.97579
                           ±.00004
2216-038
           22 18 52.03773
                           ±.00001
                                      -3 35 36.8756
                                                     ±.0003
                                      28 28 57.4161
2234+282
           22 36 22,47089
                           \pm.00001
                                                      ±.0003
3C454.3
           22 53 57.74796
                           ±.00001
                                      16 8 53.5637
                                                      ±.0003
2345-167
           23 48 2.60850
                           ±.00002
                                      -16 31 12.0178
                                                     ±.0005
```

^{*} The right ascension origin of the CDP celestial reference frame is fixed by the adopted value of 3C273B given above.

Table 3.2

Source Coordinates from GLB121 Solution (Values from GLOBL Solution with Fixed Stations as Global Parameters)

					_			
Source		_	: Ascensio	n	I 0		lination	
Name	h	m	S		U	,	11	
0106.012	,	٥	20 77100	±.00001	1	35	.3196	±.0003
0106+013	1		38.77108	±.00001	1 73		32.6223	±.0003
0212+735	2	17	30.81373		73 67	21	3.0299	±.0003
4067.05	2	28	50.05177	±.00004		22	54.7177	±.0003
0229+131	2	31		±.00001	13 28	48	8.9908	±.0003
0234+285	2	37	52.40575	±.00001			59.2766	±.0003
0235+164	2	38	38.93013	±.00001	16	36	16.2764	±.0004
0300+470	3	3	35.24236	±.00002	47 41	16 30		±.0003
3C84	3	19	48.16019	±.00002	41		50.1617	±.0003
NRAO150	3	59	29.74740	±.00002	50 -1	57 20		±.0003
0420-014	4	23	15.80072	±.00001			15.6167	±.0016
3C120	4	33	11.09557	±.00003	5	21	52.0185	±.0005
0454-234	4	57	3.17926	±.00003	-23			±.0003
0528+134	5	30	56.41678	±.00001	13	31		±.0003
0552+398	5	55	30.80567	±.00002	39 -11	41	49.1642 12.6005	±.0004
0727-115	7	30	19.11250	±.00001	10	11	12.6870	±.0028
0742+103	7	45	33.05957	±.00010	20	6	30.6397	±.0028
OJ287	8	54	48.87491	±.00001	39	2	20.8506	±.0003
4C39.25	9	27	3.01384	±.00001		15	16.0476	±.0003
OK290	9	56	49.87541	±.00002	25 -29		2.8105	±.0006
1034-293	10	37	16.07991	±.00004	39	34 58	34.3041	±.0003
1144+402	11	46	58.29782	±.00001	28	13	58.4987	±.0008
1219+285	12	21	31.69050	±.00002	28	3	8.5988	±.0003
3C273B	12	29	6.6997		- 5	47		±.0023
3C279	12	56	11.16659	±.00004	32		43.7828	±.0023
1308+326	13	10	28.66379	±.00001	32 19	19	7.3725	±.0003
1354+195	13	57	4.43660	±.00001				±.0003
0Q208	14	7	±.39432	±.00001	28	27	14.6900	±.0003
1418+546	14	19	46.59713	±.00003	54	23	14.7878	
1502+106	15	4	24.97975	±.00001	10	29	39.2006	±.0003
1548+056	15	50	35.26920	±.00001	5	27	10.4507	±.0003
CTD93	16	9	13.32036	±.00034	26	41	28.9617	±.0093
1633+38	16	35	15.49282	±.00004	38	8	4.5025	±.0006
1637+574	16	38	13.45615	±.00003	57	20	23.9809	±.0003
1642+690	16	42	7.84823	±.00005	68	56	39.7577	±.0003
3C345		42	58.80985	±.00002			36.9955	±.0002
NRAO530		33	2.70579	±.00001	-13		49.5448	±.0004
1741-038	17	43	58.85612	±.00001	-3	50	4.6127	±.0003
1749+701	17	48	32.84029	±.00019	70	5	50.7675	±.0007
1749+096	17	51	32.81853	±.00001	9	39	±.7319	±.0003
1803+784	18	0	45.68346	±.00009	78	28	4.0198	±.0002
3C390.3	18	42	8.98959	±.00042		46	17.1279	±.0008
1921-293	19		51.05601	±.00003	-29	14	30.1160	±.0005
1923+210	19	25	59.60535	±.00002	21	6	26.1622	±.0009

1928+738	19 27	48.49471	±.00015	73	58	1.5726	±.0009
3C418	20 38	37.03476	±.00004	51	19	12.6657	±.0004
2134+00	21 36	38.58632	±.00001	0	41	54.2170	±.0003
2145+067	21 48	5.45867	±.00001	6	57	38.6072	±.0003
VR422201	22 2	43.29139	±.00002	42	16	39.9825	±.0003
2201+315	22 3	14.97585	±.00004	31	45	38.2738	±.0008
2216-038	22 18	52.03773	±.00001	- 3	35	36.8758	±.0003
2234+282	22 36	22.47090	±.00001	28	28	57.4160	±.0003
3C454.3	22 53	57.74797	±.00001	16	8	53.5636	±.0003
2345-167	23 48	2.60849	±.00002	-16	31	12.0183	±.0005

 $[\]star$ The right ascension origin of the CDP celestial reference frame is fixed by the adopted value of 3C273B given above.

Table 4

Station Coordinates from Solution GLB121
(Fixed Stations Estimated Globally)

Station	X-Componer	nt	Y-Componer	nt	Z-Component			
Name	Value	Formal	Value	Formal	Value	Formal		
	(mm)	Error	(mm)	Error	(mm)	Error		
	, ,							
ALGOPARK	918036721.8	±2.2	-4346133075.1	±6.5	4561971564.6	±6.8		
CHLBOLTN	4008312027.6	±9.4	-100651833.6	±5.4	4943794766.0	±14.3		
EFLSBERG	4033949454.4	±9.1	486989438.6	±5.9	4900430747.7	±15.5		
GILCREEK	-2281545161.1	±3.8	-1453645798.6	±6.7	5756993709.7	±13.0		
HARTRAO	5085444323.3	±37.7	2668262213.0	±22.1	-2768697219.7	±23.1		
HAYSTACK	1492406691.0	*	-4457267330.0	*	4296882102.0	*		
HATCREEK	-2523968045.4	±2.3	-4123507186.1	±7.4	4147753187.1	±10.3		
HRAS 85	-1324209137.4	±1.9	-5332023972.7	±6.1	3232118948.2	±7.0		
KASHIMA	-3997890415.5	±14.9	3276580453.3	±9.8	3724118780.4	±25.7		
KAUAI	-5543844199.2	±9.4	-2054565129.4	±13.8	2387814366.2	±19.6		
KWAJAL26	-6143534842.1	±19.3	1363996204.9	±16.9	1034707939.4	±26.5		
MARPOINT	1106631222.4	±3.8	-4882907986.4	±10.7	3938087338.2	±9.5		
MOJAVE12	-2356169133.2	±1.8	-4646756730.3	±7.1	3668471195.3	±9.4		
NRAO 140	882881810.7	±1.6	-4924483118.8	±5.5	3944131065.4	±5.0		
ONSALA60	3370608091.4	±6.6	711916486.7	±4.7	5349830799.0	±13.1		
OVRO 130	-2409598873.6	±1. 7	-4478350384.5	±6.9	3838603790.0	±9.4		
RICHMOND	961259853.0	±2.7	-5674090918.6	±4.9	2740534208.0	±4.0		
ROBLED32	4849247132.8	±45.3	-360279284.9	±14.2	4114884511.7	±41.1		
SHANGHAI	-2847695786.95	129.1	4659871662.0	±110.6	3283958888.6	£103.6		
VNDNBERG	-2678095536.8	±2.9	-4525456374.4	±8.0	3597414393.9	±10.5		
WETTZELL	4075541953.3	±7.8	931734215.6	±4.9	4801629397.3	±14.0		
WESTFORD	1492208550.8	±0.8	-4458131341.8	±1.6	4296015878.6	±1.8		

^{*} The CDP terrestrial reference frame is fixed by the adopted value of the coordinates of HAYSTACK given above and the BIH Circular D earth orientation parameters of the reference date 17 October 1980 modified by the MERIT standard UT1 tidal model.

Table 5

Eccentricity Data for Mobile Antennas

Vector from Monument to Mobile VLBI Reference Point

MONUMENT	to STATION	-				Date H MM:	EAST	NORTH (m)	UP
83JUN06X 7258	PLATTVIL	83	6	7	00	00	2.715	-0.082	4.181
83JUN07X 7258	PLATTVIL	83	6	8	00	00	2.715	-0.082	4.181
83JUN09X 7258	PLATTVIL	83	6	10	00	00	2.715	-0.082	4.181
84APR26X 7258	PLATTVIL	84	4	27	00	00	-0.051	-0.005	2.751
84AUG24X									
7283	PENTICTN	84	8	25	00	00	-0.007	0.063	2.871
7285	YELLOWKN	84	8	25	00	00	0.051	0.075	4.243
85MAY07XA 7258	PLATTVIL	85	5	Q	00	00	0.050	-0.034	2.854
, 230	12211412	05	,	0	00	00	0.030	-0.034	2.654
85AUG28X 7283	PENTICTN	85	8	29	00	00	-0.071	0.031	2.853
85SEP04X									
7283	PENTICTN	85	9	5	00	00	-0.071	0.031	2.853
7285	YELLOWKN	85	9		00		0.046	0.074	4.224
86APR01X 7258	PLATTVIL	86	4	2	00	00	-0.010	-0.004	4.250

Except for 85AUG28X, all values are taken from eccentricity file "ECCDAT" maintained by the National Geodetic Survey. The values for PLATTVILL for 85AUG28X were assumed to be identical to those for 85SEP04X.

Table 6.1 VLBI BASELINE LENGTH EVOLUTION ALGOPARK TO GILCREEK

	DAT	ΓE	Length (cm)	Formal	Error
84	8	24	447569934.4	.7	
84	8	28	447569936.8	.4	
85	8	24	447569934.7	. 6	
85	9	4	447569941.2	.7	

LENGTH:

Mean = 447569936.6 ± 1.3 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.2 cm Slope = 1.4 ± 2.5 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.1 cm

Table 6.2 VLBI BASELINE LENGTH EVOLUTION ALGOPARK TO HRAS 085

	DA'	ΓE	Length (cm)	Formal	Error
84	8	24	278714107.6	.5	
84	8	28	278714107.6	.4	
85	8	24	278714105.3	.7	
85	8	28	278714104.1	1.2	
85	9	4	278714107.7	.5	

LENGTH:

Mean = $278714107.2 \pm .5$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.0 cm Slope = $-.9 \pm .9$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .9 cm

Table 6.3 VLBI BASELINE LENGTH EVOLUTION ALGOPARK TO MOJAVE12

		h		
	DATE	(cm)	Formal	Error
85	8 24	340721901.0	. 6	

Table 6.4 VLBI BASELINE LENGTH EVOLUTION ALGOPARK TO PENTICTN(7283)

	DA'	re.	Length (cm)	Formal	Error
			, ,	TOTMAL	DITOI
84	8	24	307423464.0	1.8	
85	8	28	307423463.3	2.6	
85	9	4	307423467.9	. 6	

LENGTH:

Mean = 307423467.3 ± 1.0 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.4 cm

Table 6.5 VLBI BASELINE LENGTH EVOLUTION ALGOPARK TO WESTFORD

	DATE	Length (cm)	Formal Erro	Error
84	8 28	64261133.0	.5	
85	8 24	64261134.0	.4	

LENGTH:

Mean = $64261133.7 \pm .5$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .5 cm

Table 6.6 VLBI BASELINE LENGTH EVOLUTION ALGOPARK TO YELLOWKN(7285)

DATE			Length (cm)	Formal	Error
	8 9		291229600.1 291229604.0	1.2 .9	

LENGTH:

Mean = 291229602.5 ± 1.9 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.9 cm

Table 6.7
VLBI BASELINE LENGTH EVOLUTION
CHLBOLTN TO HAYSTACK

DATE			Length (cm)	Formal	Error
80	10	16	507231449.7	1.1	
80	10	17	507231445.1	1.4	
80	10	18	507231449.9	1.6	
80	10	19	507231445.7	.9	
80	10	20	507231447.2	1.3	
80	10	21	507231435.0	1.9	
80	10	22	507231445.5	.9	

LENGTH:

Mean = 507231446.2 ± 1.3 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.2 cm

Table 6.8

VLBI BASELINE LENGTH EVOLUTION
CHLBOLTN TO HRAS 085

			Length		
	DAT	ΓE	(cm)	Formal	Error
80	10	16	766373733.5	2.8	
80	10	17	766373746.7	3.2	
80	10	18	766373745.7	3.9	
80	10	19	766373730.4	2.6	
80	10	20	766373740.5	2.9	
80	10	21	766373718.8	3.8	
80	10	22	766373737.9	2.1	

LENGTH:

Mean = 766373736.5 ± 3.0 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 7.3 cm

Table 6.9

VLBI BASELINE LENGTH EVOLUTION
CHLBOLTN TO ONSALA60

			Length		
	DATE		(cm)	Formal	Error
80	10	16	110986432.4	.7	
80	10	17	110986435.1	1.1	
80	10	18	110986432.2	2.1	
80	10	19	110986432.0	. 6	
80	10	20	110986432.5	.9	
80	10	21	110986431.0	1.5	
80	10	22	110986433.1	. 5	

LENGTH:

Mean = $110986432.7 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .9 cm

Table 6.10

VLBI BASELINE LENGTH EVOLUTION
CHLBOLTN TO OVRO 130

	DA.	ΓE	Length (cm)	Formal	Error
80	10	16	784699125.4	2.0	
80	10	17	784699129.6	2.5	
80	10	18	784699130.9	3.0	
80	10	19	784699128.5	4.5	
80	10	20	784699131.1	2.3	
80	10	21	784699108.0	3.3	
80	10	22	784699124.5	1.8	

LENGTH:

Mean = $784699125.9 \pm 2.4 \text{ cm}$ (scaled 1 sigma) Weighted RMS scatter about the mean = 5.9 cm

Table 6.11
VLBI BASELINE LENGTH EVOLUTION
EFLSBERG TO HAYSTACK

Length						
DATE			(cm)	Formal	Error	
79	11	25	559190352.0	2.5		
80	7	26	559190368.5	1.5		
80	7	27	559190357.9	1.8		
80	9	26	559190348.0	1.5		
80	9	27	559190352.8	1.2		
80	9	28	559190354.9	.9		
83	5	5	559190360.6	1.3		
83	5	5	559190353.7	1.8	*	

LENGTH:

Mean = 559190356.2 ± 2.1 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 5.6 cm Slope = $.8 \pm 1.8$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 5.5 cm

* WESTFORD - EFLSBERG results mapped to HAYSTACK - EFLSBERG

Table 6.12
VLBI BASELINE LENGTH EVOLUTION
EFLSBERG TO HRAS 085

			Length		
DATE			(cm)	Formal	Error
80	7	26	808418494.4	3.3	
80	7	27	808418478.8	3.9	
80	9	26	808418481.1	5.4	
80	9	27	808418490.7	3.9	
80	9	28	808418489.5	3.4	
83	5	5	808418489.8	1.8	

LENGTH:

Mean = 808418489.0 ± 1.9 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 4.3 cm Slope = $.6 \pm 1.4$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 4.2 cm

Table 6.13 VLBI BASELINE LENGTH EVOLUTION EFLSBERG TO NRAO 140

Length

	Donger	•
DATE	(cm)	Formal Error
79 11 25	633464843.0	2.9

Table 6.14 VLBI BASELINE LENGTH EVOLUTION EFLSBERG TO ONSALA60

DATE			Length (cm)	Formal	Error
80	7	26	83221052.6	.9	
80	7	27	83221050.8	.9	
80	9	26	83221050.1	.6	
80	9	27	83221052.3	. 5	
80	9	28	83221050.9	. 5	
83	5	5	83221050.9	.7	

LENGTH:

Mean = $83221051.2 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .9 cm Slope = $-.1 \pm .4$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .9 cm

Table 6.15
VLBI BASELINE LENGTH EVOLUTION
EFLSBERG TO OVRO 130

DATE			Length (cm)	Formal	Error
79	11	25	820374246.3	3.1	
80	7	26	820374262.1	2.3	
80	7	27	820374239.5	2.4	
80	9	26	820374243.9	3.0	
80	9	27	820374250.6	2.5	
80	9	28	820374250.4	1.7	

Mean = $820374249.6 \pm 3.1 \text{ cm}$ (scaled 1 sigma) Weighted RMS scatter about the mean = 7.0 cm

Table 6.16

VLBI BASELINE LENGTH EVOLUTION EFLSBERG TO ROBLED32

	DATE		Length (cm)	Formal	Error
83	5	5	141409245.8	1.1	

Table 6.17
VLBI BASELINE LENGTH EVOLUTION
EFLSBERG TO WESTFORD

Length
DATE (cm) Formal Error

83 5 5 559285106.2 1.8

Table 6.18

VLBI BASELINE LENGTH EVOLUTION
GILCREEK TO HATCREEK

		Length		
	DATE	(cm)	Formal	Error
85	5	7 312675289	.3 .9	
85	5 1	5 312675291	.5 .4	
85	9 3	0 312675291	.1 .4	
86	4	1 312675292	.7 .7	
86	4	8 312675290	.3 .5	
86	10 2	3 312675289	.6 .5	
86	10 3	1 312675288	.3 .9	
85 85 86 86	5 1 9 3 4 4 10 2	5 312675291 0 312675291 1 312675292 8 312675290 3 312675289	.5 .4 .1 .4 .7 .7 .3 .5 .6 .5	

Mean = $312675290.7 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.1 cm Slope = $-1.1 \pm .7$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .9 cm

Table 6.19
VLBI BASELINE LENGTH EVOLUTION
GILCREEK TO HAYSTACK

			Length		
	DA'	ΓE	(cm)	Formal	Error
•	•		500010000	_	
84	8	28	503948220.0	. 8	*
84		30	503948225.9	1.1	
84	9	2	503948225.0	1.2	
85	5	7	503948217.6	. 6	*
85	6	19	503948221.1	1.0	*
85	8	24	503948222.6	.7	*
85	11	21	503948222.7	. 9	*
86	4	1	503948218.5	. 9	*
86	6	18	503948221.4	1.0	*
86	10	31	503948220.4	. 5	*
86	11	5	503948220.4	.7	*

LENGTH:

Mean = $503948220.8 \pm .7$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.1 cm Slope = $-.6 \pm .8$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.0 cm

^{*} WESTFORD - GILCREEK results mapped to HAYSTACK - GILCREEK

Table 6.20
VLBI BASELINE LENGTH EVOLUTION
GILCREEK TO HRAS 085

DATE			Length (cm)	Formal	Error
84	8	24	472581234.3	. 5	
84	8	28	472581231.5	. 5	
85	5	7	472581232.3	.7	
85	8	24	472581230.5	1.1	
85	9	4	472581235.5	.7	
86	4	1	472581236.2	. 8	
86	10	31	472581230.0	. 6	

Mean = $472581232.8 \pm .9$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.1 cm Slope = $-.6 \pm 1.0$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.0 cm

Table 6.21
VLBI BASELINE LENGTH EVOLUTION
GILCREEK TO KASHIMA

DATE			Length (cm)	Formal	Error
84	7	29	542710439.1	1.3	
84	8	4	542710436.5	. 8	
84	8	5	542710441.0	1.2	
84	8	30	542710447.0	1.3	
84	9	2	542710438.8	1.3	
85	5	15	542710437.6	.7	
85	6	19	542710435.9	1.6	
85	7	6	542710442.5	1.6	
85	7	20	542710436.3	. 7	
85	7	27	542710438.2	1.1	
85	8	10	542710443.4	.7	
85	9	30	542710438.5	. 6	
85			542710436.4	1.3	
86	3	13	542710437.2	.7	
86				.9	
86				.7	
			542710431.2	2.8	
86		18	542710436.0	1.2	
86		5		1.1	
86			•	. 7	
86				. 8	
86			542710437.8	. 5	
86		_	542710438.1	. 9	
	10		542710435.5	. 8	
	11	5		. 8	
	11	7		.7	
86	12	5	542710435.2	.7	

Mean = $542710437.8 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.2 cm Slope = $-1.3 \pm .6$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.0 cm

Table 6.22
VLBI BASELINE LENGTH EVOLUTION
GILCREEK TO KAUAI

DATE			Length (cm)	Formal	Error
٠,	-	_	/70011/75 /	1.0	
84		7		1.0	
84		21		1.2	
84	7	22		1.0	
84	7	29	472811477.7	1.1	
84	8	4	472811477.7	1.0	
84	8	5	472811479.1	1.0	
85	5	15	472811473.2	. 6	
85	7	6	472811473.1	.9	
85	7	20	472811473.3	.7	
85	7	27	472811470.9	1.0	
85		10	472811478.1	.7	
85		30		.6	
86	3			.8	
86	4			. 8	
86		2		.7	
86		13		1.4	
86	7	5	472811464.6	.8	
86				.7	
86	7	26		.7	
86	8	2	472811467.4	. 6	
86	9	5	472811466.6	.8	
86		23		. 6	
86	11	7	472811464.0	.8	
86	12	5	472811463.6	. 8	
00			,, 2022 10010		

Mean = $472811469.4 \pm .9$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 4.5 cm Slope = $-5.3 \pm .6$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.1 cm

Table 6.23
VLBI BASELINE LENGTH EVOLUTION
GILCREEK TO KWAJAL26

			Length		
	DA.	ΓE	(cm)	Formal	Error
84	7	7	671967667.9	1.7	
84	7	21	671967660.5	2.1	
84	7	22	671967660.4	1.9	
84	7	29	671967665.9	2.2	
84	8	4	671967666.0	1.0	
84	8	5	671967667.2	1.8	
85	7	6	671967659.5	1.9	
85	7	20	671967659.4	1.4	
85	7	27	671967663.7	1.6	
85	8	10	671967661.8	1.2	
86	7	5	671967657.2	1.3	
86	7	12	671967656.9	1.9	
86	7	26	671967659.5	1.7	
86	8	2	671967659.0	1.3	

Mean = 671967661.8 ± 1.0 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.5 cm Slope = $-3.5 \pm .7$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.0 cm

Table 6.24
VLBI BASELINE LENGTH EVOLUTION
GILCREEK TO MOJAVE12

	DAT	ΓE	Length (cm)	Formal	Error
84	7	7	381620920.0	. 8	
84	7	21	381620923.4	. 8	
84	7	22	381620917.4	.7	
84	7	29	381620922.3	.9	
84	8	4	381620922.1	.9	
84	8	5	381620915.6	1.0	
84	8	30	381620920.7	.7	
84	9	2	381620918.6		
85	5	7	381620916.4	.7	
85	5	15	381620917.9	.4	
85	6	19	381620918.2	. 6	
85	7	6		. 7	
85	7	20	381620918.7		
85	7	27		. 7	
85				. 5	
85	8			.7	
85	9			. 4	
85	11	21			
86	4	1		.7	
86	4			. 5	
86	6	18		. 6	
86	7	5	381620916.1	. 5	
86	7			. 6	
86	7	26		. 4	
86	8	2	381620917.5	. 4	
86	10	23		. 4	
86	10	31		.4	
86	11	5	381620915.3	. 5	

Mean = $381620917.4 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.8 cm Slope = $-1.8 \pm .3$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.3 cm

Table 6.25 VLBI BASELINE LENGTH EVOLUTION GILCREEK TO ONSALA60

DATE			Length (cm)	Formal	Error
85	6	19	606648812.8	1.6	
85	11	21	606648810.9	1.2	
86	6	18	606648811.6	1.7	

LENGTH:

Mean = $606648811.6 \pm .6$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .8 cm

Table 6.26 VLBI BASELINE LENGTH EVOLUTION GILCREEK TO OVRO 130

DATE			Length (cm)	Formal	Error
85 86	5 4		358405572.3 358405575.5	.6	
	•	_	358405571.5	.7 .9	

LENGTH:

Mean = 358405573.2 ± 1.2 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.6 cm

Table 6.27 VLBI BASELINE LENGTH EVOLUTION GILCREEK TO PENTICTN(7283)

	DATE	Length (cm)	Formal	Error
84 85	-	237417571.6 237417572.7	1.7 .7	

LENGTH:

Mean = $237417572.5 \pm .4 \text{ cm} \text{ (scaled 1 sigma)}$ Weighted RMS scatter about the mean = .4 cm

Table 6.28 VLBI BASELINE LENGTH EVOLUTION GILCREEK TO PLATTVIL(7258)

DATE			Length (cm)	Formal Error	
85	-	7	381042431.7	.8	
86		1	381042434.7	.8	

LENGTH:

Mean = 381042433.2 ± 1.5 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.5 cm

Table 6.29 VLBI BASELINE LENGTH EVOLUTION GILCREEK TO SHANGHAI

Length DATE (cm)		•			
86	6	13	661902735	; q	7.8

Table 6.30
VLBI BASELINE LENGTH EVOLUTION
GILCREEK TO VNDNBERG

	DA	тг	Length (cm)	Formal	E
	Dii		(CIII)	rormar	FLICE
84	7	7	377585165.7	1.2	
84	7	21	377585168.5	1.1	
84	7	22	377585166.4	. 8	
84	5	15	377585161.6	. 6	
85	7	6	377585158.9	. 8	
85	7	20	377585162.4	. 6	
85	7	27	377585160.7	.8	
85	8	10	377585163.2	.6	
85	9	30	377585160.2	.4	
86	7	5	377585156.5	. 6	
86	7	12	377585154.8	. 6	
86	7	26	377585156.0	.4	
86	8	2	377585157.2	. 4	
86	10	23	377585156.7	. 5	

Mean = $377585159.1 \pm .9$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.4 cm Slope = $-4.8 \pm .5$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.2 cm

Table 6.31
VLBI BASELINE LENGTH EVOLUTION
GILCREEK TO WESTFORD

			Length		
	DAT	ΓE	(cm)	Formal	Error
84	8	28	504009986.0	. 8	
85	5	7	504009983.7	.6	
85	6	19	504009987.1	1.0	
85	8	24	504009988.6	.7	
85	11	21	504009988.8	.9	
86	4	1	504009984.6	.9	
86	6	18	504009987.5	1.0	
86	10	31	504009986.5	.5	
86	11	5	504009986.4	.7	

Mean = $504009986.4 \pm .6$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.6 cm Slope = $.3 \pm .8$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.6 cm

Table 6.32

VLBI BASELINE LENGTH EVOLUTION

GILCREEK TO WETTZELL

	DA'	ГE	Length (cm)	Formal	Error
84	8	30	685677151.2	2.0	
84	9	2	685677150.6	1.8	
85	6	19	685677145.7	1.5	
85	11	21	685677151.8	1.2	
86	6	18	685677146.3	1.7	
86	11	5	685677154.0	1.4	

LENGTH:

Mean = $685677150.3 \pm 1.4 \text{ cm}$ (scaled 1 sigma) Weighted RMS scatter about the mean = 3.1 cm Slope = $1.1 \pm 1.7 \text{ cm/yr}$ (scaled 1 sigma) Weighted RMS scatter about the line = 2.9 cm

Table 6.33 VLBI BASELINE LENGTH EVOLUTION GILCREEK TO YELLOWKN(7285)

	DATE	Formal	Error	
		163119364.8	.8	
85	94	163119366.2	. 6	

LENGTH:

Mean = $163119365.7 \pm .7$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .7 cm

Table 6.34 VLBI BASELINE LENGTH EVOLUTION HARTRAO TO ONSALA60

	DATE	Length (cm)	Formal	Error
86 86		852516560.2 852516567.7	3.5 3.6	

LENGTH:

Mean = 852516563.8 ± 3.8 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.8 cm

Table 6.35

VLBI BASELINE LENGTH EVOLUTION

HARTRAO TO RICHMOND

	DAT	ΓE	Length (cm)	Formal	Error
86	1	9	1081459113.	5.6	
86	1	15	1081459136.	4.7	
86	1	19	1081459130.	4.8	
86	1	29	1081459128.	3.3	
86	2	3	1081459138.	4.1	
86	2	11	1081459120.	5.6	

Mean = 1081459129.1 ± 3.5 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 7.7 cm

Table 6.36

VLBI BASELINE LENGTH EVOLUTION

HARTRAO TO WESTFORD

			Length		
	DAT	Έ	(cm)	Formal	Error
86	1	9	1065865829.	4.8	
86	1	15	1065865846.	4.5	
86	1	19	1065865838.	4.5	
86	1	29	1065865839.	2.9	
86	2	3	1065865851.	3.4	
86	2	11	1065865841.	4.6	

LENGTH:

Mean = $1065865841.6 \pm 3.0 \text{ cm}$ (scaled 1 sigma) Weighted RMS scatter about the mean = 6.6 cm

Table 6.37
VLBI BASELINE LENGTH EVOLUTION
HARTRAO TO WETTZELL

DATE			Length (cm)	Formal	Error
86	1	9	783232246.1	3.3	
86	1	19	783232261.7	2.6	
86	1	29	783232263.8	2.0	
86	2	3	783232265.6	2.2	

Mean = 783232261.6 ± 3.6 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 6.2 cm

Table 6.38 VLBI BASELINE LENGTH EVOLUTION HATCREEK TO HAYSTACK

			Length		
DATE			(cm)	Formal	Error
83	6	6	403297673.4	.6	*
83	6	9	403297674.0	1.4	*
84	4	26	403297673.3	.6	
85	5	7	403297668.2	1.0	*
86	4	1	403297674.4	.7	*
86	10	31	403297672.5	. 8	*

LENGTH:

Mean = $403297672.9 \pm .8$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.7 cm Slope = $-.1 \pm .6$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.7 cm

^{*} WESTFORD - HATCREEK results mapped to HAYSTACK - HATCREEK

Table 6.39
VLBI BASELINE LENGTH EVOLUTION
HATCREEK TO HRAS 085

DATE			Length (cm)	Formal	Error
83	6	6	193347361.2	. 5	
83	6	9	193347363.4	1.6	
84	4	26	193347363.2	. 6	
85	5	7	193347363.9	. 6	
86	4	1	193347366.6	. 4	
86	10	31	193347364.2	. 6	

Mean = $193347364.1 \pm .9$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.0 cm Slope = $1.3 \pm .4$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.1 cm

Table 6.40

VLBI BASELINE LENGTH EVOLUTION

HATCREEK TO KASHIMA

DA'	ſΈ	Length (cm)	Formal	Error
2	24	755732823.5	2.0	
5	15	755732827.7	.9	
9	30	755732828.3	1.0	
4	8	755732828.2	1.2	
10	23	755732820.6	1.3	
	2 5 9 4	5 15 9 30 4 8	DATE (cm) 2 24 755732823.5 5 15 755732827.7 9 30 755732828.3 4 8 755732828.2	DATE (cm) Formal 2 24 755732823.5 2.0 5 15 755732827.7 .9 9 30 755732828.3 1.0 4 8 755732828.2 1.2

LENGTH:

Mean = 755732826.6 ± 1.4 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.8 cm Slope = -1.5 ± 2.0 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.6 cm

Table 6.41

VLBI BASELINE LENGTH EVOLUTION

HATCREEK TO KAŲAI

			Length		_
	DATE		(cm)	Formal	Error
85	5	15	406171860.2	.6	
85	9	30	406171858.3	.6	
86	4	8	406171859.0	.7	
86	10	23	406171859.3	. 6	

Mean = $406171859.3 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .7 cm Slope = $-.4 \pm .7$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .7 cm

Table 6.42 VLBI BASELINE LENGTH EVOLUTION HATCREEK TO MOJAVE12

	DAS	ne	Length	Ti 1	E
	DA'	ľE	(cm)	rormal	Error
84	2	24	72914865.6	.9	
84	4	26	72914866.9	. 5	
85	5	7	72914866.7	. 5	
85	5	15	72914867.7	.3	
85	9	30	72914867.6	.3	
86	4	1	72914867.0	.5	
86	4	8	72914867.4	. 5	
86	10	23	72914866.2	.4	
86	10	31	72914867.1	.5	

LENGTH:

Mean = $72914867.1 \pm .2$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .6 cm Slope = $-.1 \pm .3$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .5 cm

Table 6.43
VLBI BASELINE LENGTH EVOLUTION
HATCREEK TO OVRO 130

DATE			Length (cm)	Formal	Error
83	6	6	48432153.2	. 6	
83	6	7	48432151.5	1.6	
84	4	26	48432153.1	. 5	
85	5	7	48432153.1	. 5	
86	4	1	48432153.9	.5	
86	10	31	48432152.5	.6	

Mean = $48432153.2 \pm .2$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .5 cm Slope = $.1 \pm .2$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .5 cm

Table 6.44 VLBI BASELINE LENGTH EVOLUTION HATCREEK TO PLATTVIL(7258)

DATE			Length (cm)	Formal	Error
			()		
83	6	6	141631409.1	2.1	
83	6	7	141631403.9	. 9	
83	6	9	141631404.9	1.4	
84	4	26	141631402.9	.7	
85	5	7	141631404.2	.6	
86	4	1	141631407.3	.4	

LENGTH:

Mean = $141631405.7 \pm .8$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.8 cm Slope = $1.3 \pm .6$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.2 cm

Table 6.45
VLBI BASELINE LENGTH EVOLUTION
HATCREEK TO VNDNBERG

	DAT	ΓE	Length (cm)	Formal	Error
85	5	15	69870683.9	.4	
85	9	30	69870683.6	.3	
86	10	23	69870679.3	.4	

Mean = 69870682.8 ± 1.3 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.8 cm

Table 6.46 VLBI BASELINE LENGTH EVOLUTION HATCREEK TO WESTFORD

DATE			Length (cm)	Formal	Error
83	6	6	403281906.9	.6	
83	6	9	403281907.4	1.4	
85	5	7	403281901.7	1.0	
86	4	1	403281907.8	.7	
86	10	31	403281906.0	. 8	

LENGTH:

Mean = 403281906.3 ± 1.0 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.0 cm Slope = $-.1 \pm .7$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.9 cm

Table 6.47
VLBI BASELINE LENGTH EVOLUTION
HAYSTACK TO HRAS 085

	DA'I	ſΈ	Length (cm)	Formal Error
80	/.	11	313564101.2	1.1
80	7			1.4
80	7			1.7
80	9			2.3
80	9			2.0
80	9	28		1.4
80	9			1.8
80				1.8
80		1	313564099.6	2.0
80				1.3
80				1.1
80				1.3
80				1.4
80			313564101.8	1.1
80			313564099.7	1.0
80		21		1.3
80		22		. 8
80	11	3	313564099.6	2.0
80	12	1	313564100.3	1.8
80	12			1.4
81	1	7		1.0
81	1	22	313564096.1	2.2
81	2	12	313564097.6	.9
81	2	27	313564097.2	3.2
81	3	16	313564099.3	1.0
81	5	13	313564101.4	1.7
81	5	13	313564100.5	1.7 *
81	6	16	313564098.5	1.2
81	6			1.2 *
	6			2.0 *
81	7			1.5 *
81	7			1.5 *
81	7			3.2 *
81	7		313564103.6	.9 *
81	7	29	313564104.3	1.3 *
81	8	5	313564104.0	1.9 *
81	8	26	313564101.8	1.2 *
81	9	2	313564104.5	1.7 *
81	9	9	313564103.2	1.4 *
81	9	16	313564103.0	1.5 *
81	9	23	313564101.2	1.7 *
81	9		313564102.3	1.4 *
81	10	15	313564110.9	2.3 *
81	10	21	313564102.6	2.2 *
81	10	28	313564099.9	1.4 *

			Length		
	DA'	TE	(cm)	Formal	Error
81	11	4	313564102.3	1.7	*
81	11			1.0	
81	11				
81	11				
81	11		313564099.9		
81	11		313564099.4		
81		24		1.3	
81	12	2	313564102.0	1.7	*
81	12	16	313564100.9	1.1	*
81	12	22	313564103.1	1.0	*
81	12	29	313564100.7		*
82	1	6	313564102.3		*
82	1	13	313564100.9	1.3	*
82	1	20	313564102.8	1.0	*
82	1	27	313564102.5	1.2	*
82	2	1	313564102.0		
82	2	10	313564102.3	.9	*
82		17	313564101.1	1.0	*
82			313564100.6		
82			313564101.7	1.3	
82			313564101.6	1.7	*
82			313564102.0	2.1	*
82			313564103.7	1.4	
82	3	29	313564098.7	1.4	*
82		7		1.8	*
82	4	13	313564102.8	2.3	*
82			313564105.0	3.4	
82		26		2.3	
82		3		1.2	
82				1.3	
82			313564100.4	1.3	
82	6	2		1.5	
82		7		1.5	*
82	6			1.1	
82	6	20	313564100.2	1.1	*
82	6	21	313564102.9	1.4	*
82	6	28	313564100.4	1.5	*
82	7	6	313564104.3	1.6	*
82	7	12	313564100.5	2.1	*
82	7	19	313564100.3	1.7	*
82	7	26	313564102.7	1.8	*
82	8	4	313564099.6	1.8	*
82 82	8	9	313564097.4	1.7	*
82	8 8	16	313564092.7	4.2	*
82 82	8	23 30	313564103.7 313564101.3	2.5	*
82	9	30 7	313564101.3	1.7 1.8	*
82	9	13	313564101.6	4.1	*
02	7	13	J1JJ041UZ.Z	4,1	^

			Length		
	DAT	ſΕ	(cm)	Formal	Error
	•	•	01056/105 0	0.7	
82	9	20	313564105.0	9.7	
82	9	27	313564105.4	1.5	*
82	10	4	313564100.5	2.0	
82	10	13	313564101.0		*
82	10	18	313564100.1	1.0	
82	10	25	313564100.0	1.8	
82	11	1	313564101.2	1.4	
82		8	313564099.2	1.3	
82			313564101.8	2.4 1.2	
82			313564101.1		
82		29	313564101.9	1.1	
82		6	313564098.0	1.2	
82	12		313564099.8	. 9	
82	12		313564098.9	.9	
82	12	20	313564099.5	1.0	
82	12	27	313564101.6	1.2	
83	1	3	313564099.3	.8	
83	1	10	313564098.5	1.0	
83	1	17	313564101.8	.8	
83		24	313564099.9	. o . 9	
83		31	313564099.9	. 8	
83		7	313564102.8	. o . 9	
83		14	313564101.8	1.3	
83		28		.7	
83		7	313564099.8	2.0	
83		14	313564102.6	2.0	
83	3	21	313564100.6	1.2	
83	3	28	313564098.1		
83		4	313564100.2	1.2 1.0	
83		11	313564099.0		
83		25	313564099.8	.8	*
83		2	313564100.4	1.1	*
83	5	5	313564097.7	1.1	a.t.
83	5	5	313564110.2	2.2	
83	5	9	313564100.5	1.0	
83	5			1.9	
83		23		1.4	
83		31		1.7	
83		6	313564101.6	.7	*
83	6	7	313564100.5	.9	*
83	6	9	313564102.5	2.1	*
83	6	13		2.0	*
83	6	20		1.1	*
83	6	28		1.5	
83	7	5	313564101.5	1.7	
83	7	11		1.2	
83	7	25		1.3	
83	8	1	313564104.3	1.7	*

		Length		
D	ATE	(cm)	Formal	Error
83	8 8	313564101.1	1.4	*
83	8 15	313564101.2	1.4	*
	8 22	313564100.8	1.4	*
	8 29	313564097.9	2.3	
	9 2	313564102.2	1.4	*
	9 7	313564102.9	1.3	
	9 12	313564100.2	2.1	*
	9 17	313564100.9	1.3	
	9 22	313564101.0	1.4	
	9 27	313564101.5	1.1	*
83 1		313564101.8	1.4	
83 1		313564101.5	1.3	
83 1		313564101.4	1.1	*
83 1		313564103.3	1.7	*
83 1		313564101.3	1.5	*
83 1		313564099.7	1.1	
83 1		313564098.8	1.3	
83 1		313564100.1	1.1	*
83 1		313564099.8	1.3	
83 1		313564100.0	1.0	
83 1		313564100.6	.9	
83 1		313564100.6	.9	
83 1		313564099.3	.9	*
83 1		313564098.0	1.4	*
83 1		313564099.6	.8	*
83 1		313564100.8	.8	*
83 1		313564101.6	1.6	*
83 1		313564099.8	.8	*
83 1		313564098.7	.9	*
	1 4	313564100.0	.8	*
	1 9	313564100.0		*
	1 14	313564100.5	.8	*
	1 24	313564101.9	1.1	 *
	1 29	313564100.5	1.0	*
	2 3	313564100.6	1.1	*
	2 8	313564102.1		*
	2 13	313564100.7		*
	2 18	313564101.6		*
	2 23	313564102.2		*
	2 28	313564099.7		*
	3 4	313564103.3		*
	9	313564101.4		*
	3 14	313564102.1		*
84 3		313564099.2		*
84 3		313564101.0		 *
84 4		313564105.2		 *
84 4		313564100.9		 *
84 4		313564103.5		 *
~ ~ ~		J_JJJJT_UJ.J	1.0	

HAVSTACK TO HRAS 085

	HAY	STACK TO HRAS	085
		Length	
	DATE	(cm)	Formal Error
84	4 18	313564101.7	2.0 *
84	4 23	313564103.6	2.2 *
84	4 26	313564100.9	.7
84	4 28	313564099.7	2.0 *
84	5 3	313564092.7	5.3 *
84	5 8	313564100.7	2.1 *
84	5 13	313564095.3	2.6 *
84	5 18		1.5 *
84			2.4 *
84			1.2 *
84		313564100.6	1.9 *
84		313564101.0	3.4 *
84		313564104.3	1.9 *
84		313564101.3	1.2 *
84		313564101.3	
84			2.0 *
		313564094.8	1.7 *
84		313564102.6	1.7 *
84		313564100.5	1.6 *
84 07		313564103.9	1.4 *
84	7 17	313564099.8	1.5 *
84	7 22	313564098.4	2.1 *
84		313564099.2	2.4 *
84	8 1	313564099.0	1.5 *
84	8 6	313564103.9	1.3 *
84	8 11	313564105.0	1.5 *
84	8 16		1.7 *
84	8 21	313564102.3	1.5 *
84	8 26		1.6 *
84		313564098.9	.5 *
84		313564099.3	1.5 *
84	9 5	313564098.1	1.4 *
84	9 10		1.3 *
	9 15	01000.000.0	1.7 *
84	9 20	313564096.3	1.9 *
		313564099.2	1.5 *
		313564098.6	1.5 *
		313564102.1	1.3 *
84	10 10	313564102.4	1.7 *
84	10 15	313564099.1	1.3 *
84	10 20	313564101.7	1.4 *
84	10 25	313564102.3	1.3 *
84	10 30	313564100.6	1.2 *
84	11 4	313564103.4	1.5 *
	11 9		1.2 *
		313564100.8	1.3 *
		313564098.6	1.0 *
		313564099.8	1.2 *
		313564101.9	1.1 *

		Length		
DA'	ΓE	(cm)	Formal	Error
12	4	313564098.3	1.1	*
				*
				*
				*
				*
3	19	313564098.8	1.2	*
3	24	313564097.6		
3	29	313564099.7	.9	*
4	3	313564096.8	.7	*
4	8	313564098.6	. 7	*
4	13	313564099.4	1.1	*
4	18	313564103.0	. 9	*
4	23			
4	28	313564097.7	1.0	*
5	3	313564096.6	1.1	*
5				
5				
5		313564099.3		
5	23	313564101.5	1.2	*
				*
				*
				*
				*
				*
				*
				*
				*
				*
′	21	J1JJU4U70.0	1.1	•
	12212121211111122222233333334444444555555556666667	121412191219121212131312141215161616171717181818191810181018101811181218131813181318131814181518161817171718181819181018101810181018101810181018101810181018111812181218131814181518161817181818191810181018111812181318141815181618171818181818181818181818181818181818 </td <td>DATE (cm) 12 4 313564098.3 12 9 313564098.5 12 14 313564100.1 12 23 313564098.2 12 29 313564101.7 1 3 313564098.4 1 8 313564098.2 1 18 313564097.6 1 28 313564097.8 2 2 313564097.8 2 2 313564099.8 2 22 313564099.8 2 22 313564099.8 2 22 313564099.8 3 24 313564099.6 3 14 313564099.6 3 14 313564099.6 3 14 313564099.6 3 14 313564099.6 3 14 313564099.6 3 14 313564099.7 4 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.4 1 8 313564099.4 1 8 313564099.4 1 8 313564099.7 5 3 313564099.4 1 8 313564099.7 5 3 313564099.4 1 8 313564099.7 5 3 313564099.4 1 8 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.2 5 18 313564099.2 5 18 313564099.2 5 18 313564099.2 5 18 313564099.2 5 18 313564099.7 7 3 313564099.7 7 3 313564099.7 7 3 313564099.7 7 3 313564099.7 7 7 313564098.0 7 12 313564098.0 7 12 313564098.0</td> <td>DATE (cm) Formal 12 4 313564098.3 1.1 12 9 313564098.5 1.1 12 14 313564100.9 1.2 12 19 313564100.1 1.5 12 23 313564098.2 .9 12 29 313564101.7 1.5 1 3 313564098.4 .7 1 8 313564098.2 .8 1 18 313564097.6 .8 1 28 313564097.8 .7 2 2 313564099.3 1.2 2 7 313564099.8 .9 2 12 313564099.8 .9 2 12 313564099.8 .9 2 22 313564099.8 .9 2 17 313564099.8 .9 2 22 313564099.8 .9 2 32 313564099.6 1.1 3 3 3 3564099.6 1.1 4 3 13564099.6 .4 3 14 313564099.6 .4 3 14 313564099.6 .7 4 3 313564099.7 .9 4 3 313564099.7 .9 4 3 313564099.7 .9 4 3 313564099.7 .9 4 3 313564099.7 .9 5 3 313564099.4 1.1 4 18 313564099.4 1.1 4 18 313564099.4 1.1 5 7 313564099.4 1.1 5 8 313564099.4 1.1 5 9 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 2 313564099.7 1.0 5 3 313564099.4 1.5 5 9 313564099.7 1.0 5 13 313564099.4 1.5 5 28 313564099.7 1.0 6 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 12 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 3 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.0 1.2</td>	DATE (cm) 12 4 313564098.3 12 9 313564098.5 12 14 313564100.1 12 23 313564098.2 12 29 313564101.7 1 3 313564098.4 1 8 313564098.2 1 18 313564097.6 1 28 313564097.8 2 2 313564097.8 2 2 313564099.8 2 22 313564099.8 2 22 313564099.8 2 22 313564099.8 3 24 313564099.6 3 14 313564099.6 3 14 313564099.6 3 14 313564099.6 3 14 313564099.6 3 14 313564099.6 3 14 313564099.7 4 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.4 1 8 313564099.4 1 8 313564099.4 1 8 313564099.7 5 3 313564099.4 1 8 313564099.7 5 3 313564099.4 1 8 313564099.7 5 3 313564099.4 1 8 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.7 5 3 313564099.2 5 18 313564099.2 5 18 313564099.2 5 18 313564099.2 5 18 313564099.2 5 18 313564099.7 7 3 313564099.7 7 3 313564099.7 7 3 313564099.7 7 3 313564099.7 7 7 313564098.0 7 12 313564098.0 7 12 313564098.0	DATE (cm) Formal 12 4 313564098.3 1.1 12 9 313564098.5 1.1 12 14 313564100.9 1.2 12 19 313564100.1 1.5 12 23 313564098.2 .9 12 29 313564101.7 1.5 1 3 313564098.4 .7 1 8 313564098.2 .8 1 18 313564097.6 .8 1 28 313564097.8 .7 2 2 313564099.3 1.2 2 7 313564099.8 .9 2 12 313564099.8 .9 2 12 313564099.8 .9 2 22 313564099.8 .9 2 17 313564099.8 .9 2 22 313564099.8 .9 2 32 313564099.6 1.1 3 3 3 3564099.6 1.1 4 3 13564099.6 .4 3 14 313564099.6 .4 3 14 313564099.6 .7 4 3 313564099.7 .9 4 3 313564099.7 .9 4 3 313564099.7 .9 4 3 313564099.7 .9 4 3 313564099.7 .9 5 3 313564099.4 1.1 4 18 313564099.4 1.1 4 18 313564099.4 1.1 5 7 313564099.4 1.1 5 8 313564099.4 1.1 5 9 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 13 313564099.4 1.1 5 2 313564099.7 1.0 5 3 313564099.4 1.5 5 9 313564099.7 1.0 5 13 313564099.4 1.5 5 28 313564099.7 1.0 6 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 12 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 3 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.7 1.0 7 2 313564099.0 1.2

			Length		
	DAT	Œ	(cm)	Formal	Error
85	8	1	313564099.0	.9	
85	8	6	313564100.4	1.0	
85	8	11	313564100.0	1.5	
85	8	16	313564098.2	1.0	
85	8	21	313564099.4	1.0	
85	8	24	313564099.8	. 8	
85	8	26	313564098.7	1.0	
85	8	31	313564100.4	.9	
85	9	5	313564099.2	1.2	*
85	9	10	313564098.6	1.0	*
85	9	15	313564099.0	. 9	*
85	9	20	313564101.3	1.1	*
85	9	25	313564101.6	1.1	*
85	9	30	313564102.9	1.0	*
85	10	5	313564099.8	1.0	*
85	10	10	313564095.5	1.1	
85	10		313564100.9	1.0	
85	10		313564096.4	. 9	
85	10		313564097.2	.6	
85	10			.7	
85			313564096.8	1.1	
85		4	313564099.3	1.2	
85		9	313564097.7	.7	
85			313564101.2	1.0	
85			313564099.1	.8	
85			313564097.3	.7	
85	11	29	313564096.9	.8	*
85	12		313564099.1	.9	
85	12		313564100.6	.8	*
85	12		313564096.6	.8	
85	12		313564098.2	.6	*
85	12		313564098.9	.8	
86	1		313564098.0	.9	
86	1		313564098.0		
		13	313564098.8	.7	
86	1	18	313564097.2	.9	*
86	1	23		1.2	*
86	1	28	313564099.6	.9	
86	2	2	313564097.3	.7	*
86	2	7	313564098.6	.8	*
86	2	12	313564098.6	.8	*
86	2	17	313564098.6	.9	*
86	2	22	313564097.9	.8	*
86	2	27	313564098.8	.7	*
	3	4	313564097.6	. 8	*
86	3	9	313564097.0	.8	*
86	3	14	313564098.5	1.1	*
86	3			.9	*
86	3	19	313304030.0	.9	••

HAYSTACK TO HRAS 085

		Length		
	DATE	(cm)	Formal	Error
0.6	2 0/	2125(/000 0	•	
86	3 24	313564099.2	. 8	*
86	3 29	313564097.5	1.0	*
86	4 1	313564102.1	. 7	
86	4 3	313564099.5	.7	*
86	4 4	313564098.7	. 6	*
86	4 8	313564098.6	. 8	
86	4 13	313564096.8	. 8	*
86	4 18	313564096.8	1.1	
86	4 23		. 8	
86	4 28		.7	*
86	5 3	313564096.8	1.3	*
86	5 8		1.0	
86	5 13		. 8	
86	5 14		. 5	
86	5 17		1.0	
86	5 23		1.0	
86	5 28	·	. 9	*
86	6 2	313564099.0	1.0	*
86	6 7		1.1	*
86	6 12		1.2	*
86	6 17		1.0	*
86	6 22		1.0	*
86	6 27	313564099.2	1.1	*
86	7 2	313564099.4	. 8	*
86	77	313564104.3	1.3	*
86	7 12	313564097.9	1.1	*
86	7 17	313564099.4	1.1	*
86	7 22	313564098.8	1.2	*
86	7 27	313564098.5	1.0	*
86	8 1	313564098.0	1.2	*
86	8 6	313564098.0		*
86	8 11	313564098.2	1.3	*
86	8 16	313564100.1	1.3	*
86	8 21	313564098.1	1.2	*
86	8 26	313564096.5	1.3	*
86	8 31	313564100.7	1.5	*
86	9 5	313564096.0		*
86	9 10	313564099.1		*
86	9 15	313564096.2		*
86	9 20	313564103.6	1.2	*
86	9 25	313564098.9		*
86	9 30	313564100.2		*
	10 5	313564098.2	.8	*
	10 10	313564094.4		*
	10 15	313564098.9	.8	*
86	10 16	313564098.9	.4 :	k
86	10 20	313564099.0	1.1 :	k
86	10 25	313564097.8		k

HAYSTACK TO HRAS 085

			Length		
	DAT	Έ	(cm)	Formal	Error
86	10	30	313564098.6	. 8	*
86	10	31	313564098.9	.4	*
86	11	4	313564099.3	.8	*
86	11	9	313564098.9	1.3	*
86	11	14	313564100.4	.7	*
86	11	19	313564096.2	.9	*
86	11	24	313564097.4	.9	*
86	11	29	313564099.9	.7	*
86	12	4	313564097.8	1.0	*
86	12	9	313564099.8	.8	*
	12		313564097.0	.8	*
86	12	19	313564100.2	.7	*
86	12	23	313564099.6	.9	*
86	12	29	313564098.3	.8	*

LENGTH:

Mean = $313564099.6 \pm .1$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.9 cm Slope = $-.6 \pm .1$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.6 cm

 $[\]star$ WESTFORD - HRAS 085 results mapped to HAYSTACK - HRAS 085

Table 6.48

VLBI BASELINE LENGTH EVOLUTION

HAYSTACK TO KASHIMA

	DATE		Length (cm)	Formal	Error
84	8	30	950178016.3	2.6	
84	9	2	950178006.9	2.5	
85	6	19	950177992.6	2.8	*
85	11	21	950177993.9	2.1	*
86	6	18	950178001.0	2.2	*
86	11	5	950177996.0	1.4	*

Mean = 950177999.6 ± 3.2 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 7.2 cm Slope = -5.7 ± 2.8 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 5.3 cm

* WESTFORD - KASHIMA results mapped to HAYSTACK - KASHIMA

Table 6.49
VLBI BASELINE LENGTH EVOLUTION
HAYSTACK TO MARPOINT

		Length		
DATE		(cm)	Formal	Error
			_	
6	18	67729341.2	. 5	
6	18	67729341.8	. 6	*
6	19	67729340.2	.8	
6	19	67729339.7	.9	*
10	18	67729340.3	.8	*
8	29	67729337.0	2.4	*
	6 6 6 10	DATE 6 18 6 19 6 19 10 18 8 29	DATE (cm) 6 18 67729341.2 6 18 67729341.8 6 19 67729340.2 6 19 67729339.7 10 18 67729340.3	DATE (cm) Formal 6 18 67729341.2 .5 6 18 67729341.8 .6 6 19 67729340.2 .8 6 19 67729339.7 .9 10 18 67729340.3 .8

LENGTH:

Mean = $67729340.9 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .9 cm Slope = -2.9 ± 1.7 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .7 cm

* WESTFORD - MARPOINT results mapped to HAYSTACK - MARPOINT

Table 6.50
VLBI BASELINE LENGTH EVOLUTION
HAYSTACK TO MOJAVE12

	DA.	ΓE	Length (cm)	Formal	Error
83	6	28	390414429.8	2.0	*
83	7	25	390414426.1	1.2	*
83	8	8	390414423.3	1.3	*
83	9	27	390414426.8	1.1	*
83	10	12	390414425.8	1.1	*
83	10	27	390414428.1	1.1	*
83	11	21	390414425.9	. 9	*
83	12	1	390414424.9	.7	*
84	1	4	390414427.2	. 7	*
84	4	26	390414425.5	. 6	
84	8	30	390414429.3	. 8	
84	9	2	390414429.7	. 9	
85	3	5	390414425.3	. 4	
85	5	7	390414422.4	. 8	*
85				.7	*
85				1.9	*
85	6			.7	
85				. 6	
85	10	29		. 5	
85	11			. 6	
86	4	1	390414427.7	.7	
86	4	4	390414425.2	. 6	
86	5	14	390414427.2	. 6	
86	6	18	390414427.2	.7	
86	10	16	390414425.4	. 4	*
86	10	31	390414424.0	. 4	
86	11	5	390414425.2	. 5	*

Mean = $390414426.1 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.5 cm Slope = $-.3 \pm .3$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.4 cm

^{*} WESTFORD - MOJAVE12 results mapped to HAYSTACK - MOJAVE12

Table 6.51
VLBI BASELINE LENGTH EVOLUTION
HAYSTACK TO NRAO 140

	DA'	ΓE	Length (cm)	Formal	Error
79	8	3	84512987.0	.7	
79	11	25	84512982.9	. 8	
80	4	11	84512985.3	. 3	
81	11	18	84512984.8	. 3	
81	11	18	84512984.5	. 3	*
81	11	19	84512986.0	. 5	
81	11	19	84512985.3	. 5	*
82	12	15	84512984.5	.9	*
82	12	16	84512984.6	. 5	*

Mean = $84512985.0 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .7 cm Slope = $-.2 \pm .3$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .7 cm

^{*} WESTFORD - NRAO 140 results mapped to HAYSTACK - NRAO 140

Table 6.52

VLBI BASELINE LENGTH EVOLUTION

HAYSTACK TO ONSALA60

	DAT	ГE	Length (cm)	Formal	Error
80	7	26	559971455.2	1.6	
80	7	27	559971452.5	1.9	
80	9	26	559971443.4	1.3	
80	9	27	559971443.7	1.3	
80	9	28	559971450.0	1.0	
80	9			1.8	
80	9	30	559971446.2	1.5	
-	10	1	559971440.5	4.3	
		2	559971445.7	1.4	
		16		.9	
		17		1.4	
		18	559971449.0	1.3	
		19		.7	
	10	20	559971447.5	. 8	
	10	21	559971452.6	1.5	
	10			.6	
		1	559971449.3	1.3	
80		19		1.0	
81	1	22	559971448.6	1.1	
81	2			1.9	
R1	10	21	559971450.2	2.3	*
81			559971450.0	2.4	
			559971450.3	2.4	*
81			559971453.8	1.3	
			559971454.6	1.3	*
82			559971450.6	1.4	
82			559971449.1	2.2	
82			559971454.8	2.2	
82	6		559971453.4	1.1	
82	6		559971454.5		*
82			559971453.3	1.5	
82			559971453.4		*
82			559971453.6	1.2	
82	6		559971455.0	1.3	*
82	6	21	559971454.6	2.3	*
82	9	13	559971446.5	3.5	*
82		20		5.2	*
82		18	559971455.2	1.6	*
82	11	15	559971454.6	2.5	*
82	12	15	559971456.9	2.5	*
82	12	16	559971449.4	1.9	*
83	2	7	559971446.9	1.9	*
83	2	28	559971447.6	1.5	*
83		14		1.9	*
83	4	18	559971454.7	1.6	*
	•				

HAYSTACK TO ONSALA60 Length

	Length	
DATE		Formal Error
83 5 5	559971454.8	1.3
83 5 5	559971448.6	1.8 *
83 5 16	559971453.5	3.7 *
83 6 13		3.2 *
83 8 29		4.9 *
83 8 30	559971453.6	1.5
83 9 22	559971454.2	2.8 *
83 9 23		2.1
83 10 27		3.0 *
83 10 28	559971449.6	1.4
83 11 16	559971457.7	1.7 *
83 11 17	559971451.1	1.1
83 12 21	559971451.9	2.5 *
83 12 22	559971453.3	1.4
84 1 24		1.6 *
84 2 23	559971456.2	1.5 *
84 2 24		.8
84 3 14		1.4 *
84 4 18		1.6 *
84 4 19		.8
84 5 18	559971457.2	1.9 *
84 5 19		1.1
84 6 12		2.6 *
84 10 25		1.9 *
84 11 14	559971458.3	1.9 *
84 11 15	559971454.2	1.2
84 12 19	559971459.3	2.9 *
85 1 23	559971452.5	1.3 *
85 1 24	559971453.5	.9
85 2 27	559971454.4	1.1 *
85 3 4	559971458.2	1.6 *
85 3 5	559971455.2	.5
	559971455.2	1.3 *
	559971456.1	1.1
85 5 8		1.3 *
85 5 9	559971457.9	.8 *
	559971454.2	2.2 *
85 6 18	559971454.7	1.0 *
85 6 19	559971457.9	1.3 *
85 8 16	559971455.1	2.9 *
85 9 10	559971462.0	2.2 *
85 9 11	559971455.8	.9 *
85 10 25	559971454.0	.9 *
85 10 29	559971457.3	.8 *
85 11 19	559971453.9	1.1 *
85 11 20	559971458.6	1.0 *
85 11 21	559971455.4	.9 *
85 12 9	559971454.8	.9 *

HAYSTACK TO ONSALA60

Length							
	DATE			(cm)	Formal	Error	
	85	12	10	559971455.6	.7	*	
	86	1	14	559971456.3	. 9		
	86	1	15	559971451.8	1.2	*	
	86	2	11	559971458.1	1.5	*	
	86	3	19	559971455.8	1.3	*	
	86	3	20	559971455.6	. 8	*	
	86	4	3	559971459.1	1.0	*	
	86	4	4	559971456.5	.7	*	
	86	5	13	559971456.9	1.1	*	
	86	5	14	559971459.1	. 8		
	86	6	16	559971458.6	.9	*	
	86	6	17	559971460.5	1.6	*	
	86	6	18	559971461.1	1.4	*	
	86	8	25	559971459.0	. 8	*	
	86	8	26	559971456.5	1.8	*	
	86	9	15	559971455.0	1.3	*	
	86	9	16	559971455.7	. 5		
	86	9	16	559971456.5	. 5	*	
	86	10	15	559971459.2	1.2	*	
	86	10	16	559971457.3	. 4	*	
	86	11	3	559971456.9	.7	*	
	86	11	4	559971452.2	1.1	*	
	86	12		559971455.7	.7	*	
	86		9	559971452.7	1.1		

LENGTH:

Mean = $559971454.1 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.9 cm Slope = $1.5 \pm .1$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.4 cm

^{*} WESTFORD - ONSALA60 results mapped to HAYSTACK - ONSALA60

Table 6.53
VLBI BASELINE LENGTH EVOLUTION
HAYSTACK TO OVRO 130

	DA	TE	Length (cm)	Formal	Error
79	8	3	392888165.1	1.2	
79				1.6	
80				.5	
80				1.1	
80				1.1	
	9			1.6	
	9			1.9	
		28		. 8	
80	9	29	392888159.4	1.2	
80	9	30	392888158.5	.9	
80	10	1	392888157.0	1.0	
80	10	2	392888161.1	.9	
80	10	16	392888163.8	.7	
80			392888163.1	1.0	
80			392888163.9	. 8	
80		19		2.3	
80			392888161.2	. 8	
80			392888164.0		
80	10		392888162.2		
81	6		392888161.7	. 8	
81	6			. 8	*
81	11			. 6	
81	11			. 6	*
81		19		. 6	
81	11			.6	*
82	6	16	392888161.3	2.5	*
82	6	18		1.0	
82	6	18		1.0	*
82	6	19		1.4	
82		19		1.8	*
82		20		1.3	_
82		20	392888163.0	1.3	*
82			392888163.4	1.9	
82			392888164.0	1.3	
		25	392888161.6	1.5	
82			392888163.9	1.1	*
82	12	16	392888162.8	.7	* *
83	6	6	392888165.1	.9	*
84 84	4	19	392888161.1	.9	
84	4 10	26 26	392888164.1 392888162.6	.6	
85	3	∠6 5	392888165.1	1.0	
85	5	7	392888161.7	_	*
85	5	9	392888164.1		*
85	10	29	392888167.0		*
00	ΤO	47	727000T0/.U	. 5	^

HAYSTACK TO OVRO 130

	DAT	ΓE	Length (cm)	Formal	Error
86	4	1	392888166.8	.7	*
86	4	4	392888164.3	.8	*
86	5	14	392888169.7	.7	*
86	10	16	392888163.0	4	*
86	10	31	392888165.8	1.0	*

LENGTH:

Mean = $392888163.8 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.2 cm Slope = $.4 \pm .1$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.0 cm

^{*} WESTFORD - OVRO 130 results mapped to HAYSTACK - OVRO 130

Table 6.54

VLBI BASELINE LENGTH EVOLUTION

HAYSTACK TO PLATTVIL(7258)

	DA'	ГE	Length (cm)	Formal	Error
	,	_	075200520 5	2 (
83	_	_	275320538.5	3.4	
83	6	9	275320539.5	2.1	*
84	4	26	275320535.7	1.3	
85	5	7	275320535.5	. 8	*
86	4	1	275320539.5	.7	*

Mean = 275320537.6 ± 1.0 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.0 cm Slope = 1.1 ± 1.0 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.8 cm

* WESTFORD - PLATTVIL results mapped to HAYSTACK - PLATTVIL

Table 6.55 VLBI BASELINE LENGTH EVOLUTION HAYSTACK TO ROBLED32

DATE	(cm)	Formal	Error
	529969925.5 529969917.8	2.4 2.7	*

LENGTH:

Mean = 529969922.1 ± 3.8 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.8 cm

* WESTFORD - ROBLED32 results mapped to HAYSTACK - ROBLED32

Table 6.56

VLBI BASELINE LENGTH EVOLUTION
HAYSTACK TO WESTFORD

or

Mean = 123939.4 \pm .3 cm (scaled 1 sigma) Weighted RMS scatter about the mean = .8 cm Slope = -.0 \pm .1 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .8 cm

Table 6.57

VLBI BASELINE LENGTH EVOLUTION

HAYSTACK TO WETTZELL

	DATE		Length (cm)	Formal	Error
83	11	16	599739071.0	1.7	*
83	12	21	599739065.6	2.5	
84	1	9	599739069.6	1.8	
84	1		599739072.6	1.4	
84	1	29		1.7	
84	2	3	599739071.4	2.9	
84	2	8		2.2	*
84	2	18	599739075.2	1.4	*
84	2	23	599739072.7	1.5	*
84	2	28	599739071.8	2.2	*
84	3	4	599739071.4	2.0	*
84	3	9	599739072.8	2.1	*
84	3	14	599739065.6	1.4	*
84	3	19	599739070.6	1.4	*
84	3	25	599739071.8	1.5	*
84	4	3	599739071.3	2.1	*
84	4	8	599739069.2	2.7	*
84	4	13	599739072.1	1.7	*
84	4	18	599739071.1	1.6	*
84	4	23	599739069.1	2.7	*
84	4	28	599739069.3	2.1	*
84	5	3	599739070.1	2.6	*
84	5	8	599739073.1	2.5	*
84	5	13	599739070.4	2.7	*
84	5	18	599739072.7	1.8	*
84	5	23	599739077.0	2.6	*
84	5	28	599739073.7		*
84	6	2	599739070.4		*
84	6		599739072.0	2.8	*
84	6		599739073.1	2.3	
84	6		599739075.3	1.6	
84	6		599739068.2		*
84	6		599739069.6	2.1	*
84	7	2	599739068.8	2.1	*
84	7	7	599739073.2	3.2	*
84 84	7 7	12 17	599739074.8		*
84	8		599739075,6		*
84	8	1 6	599739064.3		*
84	8	11	599739078.9 599739073.3		* *
84	8	16	599739068.8		*
84	8	21	599739079.5		*
84	8	26	599739073.1		*
84	8	30	599739076.1	1.7	
84	8	31	599739071.7		*
J- +	J	7 I	JJJIJJUII.I	2.5	••

		11171	, 1110K 10 W1111	
			Length	
	DATE		(cm)	Formal Error
	_	•	500720077 0	1.5
84	9	2	599739077.8	
84		5	599739070.6	
84		10		
84		15	599739070.5	
84		20		3.0 *
84	9	25	599739072.3	2.6 *
84	9	30	599739072.6	2.6 *
84	10	5	599739070.1	2.3 *
84	10	10	599739070.2	2.2 *
84	10	15	599739067.6	2.3 *
84	10	20	599739071.8	2.3 *
84	10		599739073.7	1.9 *
84	10		599739074.2	1.9 *
84	11	4	599739079.6	2.2 *
84	11	9	599739073.9	2.0 *
84	11	14	599739077.4	1.9 *
84	11	19	599739068.3	1.7 *
84	11	24	599739074.1	2.1 *
84	11	29	599739074.4	1.8 *
84	12	4	599739072.8	1.7 *
84	12	9	599739070.8	2.2 *
84	12	14	599739070.3	2.2 *
84	12	19	599739076.5	2.5 *
84	12	23	599739076.5	1.6 *
84	12	29	599739073.3	2.4 *
85		3	599739072.5	1.2 *
85		.8	599739069.7	1.5 *
85		13	599739069.4	1.9 *
85		18	599739072.5	1.5 *
85		23	599739069.3	1.3 *
85		24	599739071.0	.9
85		28		1.1 *
85			599739075.0	1.4 *
85			599739070.7	1.2 *
85	_		599739069.6	1.5 *
85			599739070.8	1.3 *
85			599739071.9	1.5 *
85			599739068.9	1.0 *
85			599739074.8	1.6 *
85			599739071.7	.5
85			599739072.5	1.1 *
85			599739073.7	1.5 *
85			599739071.4	1.0 *
85			599739070.1	1.4 *
85			599739070.9	1.3 *
85			599739071.1	1.4 *
85			599739073.8	1.5 *
85			599739076.1	1.6 *

HAYSTACK TO WETTZELL					
	Length				
DATE	(cm)	Formal Error			
85 4 23	599739070.4	1.4 *			
85 4 24	599739073.5	1.1			
85 4 28	599739071.6	1.5 *			
85 5 3	599739071.8	1.6 *			
85 5 8	599739069.8	1.3 *			
85 5 9	599739074.3	.8 *			
85 5 13	599739073.4	2.0 *			
85 5 18	599739069.7	1.7 *			
85 5 23	599739073.4				
	599739074.1	1.6 *			
85 6 2	599739072.5	1.8 *			
85 6 7		1.4 *			
85 6 12		2.5 *			
85 6 17		2.3 *			
85 6 18	599739072.2	1.0 *			
85 6 19	599739071.3	1.3 *			
85 6 22	599739077.1	1.9 *			
85 6 27		1.7 *			
85 7 2	599739072.7	1.4 *			
85 7 7		1.7 *			
85 7 12		2.1 *			
	599739073.0				
		1.5 *			
	599739064.2	1.9 *			
· , _ ,	599739079.1	2.0 *			
85 8 1	599739072.3	1.7 *			
85 8 6	599739078.8	2.1 *			
	599739070.6	2.7 *			
85 8 16	599739077.7	1.7 *			
85 8 21	599739074.3	1.8 *			
85 8 26	599739066.4	1.7 *			
85 8 31	599739082.1	2.2 *			
85 9 5	599739078.3	2.4 *			
85 9 10	599739077.0	1.6 *			
85 9 11	599739072.0	.9 *			
85 9 15	599739075.8				
		1.7 *			
	599739078.7	1.8 *			
85 9 25	599739076.2	1.8 *			
85 9 30	599739074.4	1.5 *			
85 10 5	599739074.5	1.4 *			
85 10 10	599739074.0	1.5 *			
85 10 15	599739075.0	1.7 *			
85 10 20	599739076.9	1.3 *			
85 10 25	599739071.6	.9 *			
85 10 29	599739075.7	.8 *			
85 10 30	599739072.5	1.7 *			
85 11 4	599739075.0	2.3 *			
85 11 9	599739070.0	1.4 *			
85 11 14	599739075.5	1.4 *			
00 II I4	377139013.3	1.4 *			

		Length		
	DATE	(cm)	Formal	Error
0.5	11 10	E00720071 E	1.0	.1.
	11 19		1.2	
85		599739075.7	1.0	
85	11 21	599739075.7	.9	
85	11 24	599739075.1	1.1	*
85	11 29		1.5	
85	12 4	599739074.5	1.4	
85	12 9	599739071.9	1.0	
85	12 10		.8	
85	12 14	599739073.5	1.1	
85	12 19		1.0	
85	12 23		1.7	
85	12 29		1.1	*
86	1 3	599739073.6	1.4	
86	1 8	599739073.3	1.4	
86	1 9		1.6	
86		599739074.3	1.3	
86	1 14	599739073.8	.9	
86	1 18		1.5	
86	1 19		1.9	
86		599739072.3	1.3	
86	1 28		1.0	
86	1 29	599739071.9	.9	*
86	2 2	599739071.5	.9	*
86	2 3	599739074.9	1.2	
86	2 7	599739070.9	1.2	*
86	2 12	599739072.4	1.1	*
86	2 17	599739074.5	1.2	*
86	2 22	599739073.3	1.2	*
86	2 27	599739076.1	1.0	
86	3 4	599739073.3	1.4	
86	3 9	599739071.6	1.0	
86	3 14	599739068.8	1.7	*
86	3 19	599739071.8	1.3	
86	3 20	599739070.3	.9	*
86	3 24	599739074.3	1.2	*
86	3 29	599739076.2	1.5	*
86	4 3	599739075.1	1.0	*
86	4 4	599739072.7	.7	*
86	4 8	599739074.3		*
86	4 13	599739073.6		*
86	4 18	599739073.2		*
86	4 23	599739076.3		*
86	4 28	599739076.3		*
86	5 8	599739075.2		*
86	5 13	599739075.5		*
86	5 14	599739074.6		*
86	5 17	599739074.3		*
86	5 23	599739074.7	1.7	*

		HA	YSTACK TO WETT	ZELL
	DA'	TE	Length (cm)	Formal Error
86	5	28	599739075.1	1.3 *
86	6	2	599739076.4	1.3 *
86	6	7	599739071.6	1.4 *
86	6			1.8 *
86	6	16		1.0 *
86	6	17		1.5 *
86	6	18		1.4 *
86	6	22		1.5 *
86	6		599739078.7	1.9 *
86	7	2	599739072.3	1.3 *
86	7		599739075.7	2.2 *
86	7		599739076.1	1.4 *
86	7		599739077.1	1.6 *
86			599739072.1	2.3 *
86			599739075.9	1.5 *
86	8		599739075.3	2.0 *
86			599739076.6	1.9 *
86	8		599739076.0	2.1 *
86	8		599739075.6	1.8 *
86	8		599739080.3	2.0 *
86	8	25	599739075.7	.8 *
86	8	26	599739072.5	2.0 *
86	8		599739077.5	1.9 *
86	9		599739074.7	2.2 *
86	9		599739074.3	1.6 *
86	9	15	599739073.9	1.4 *
86	9	16	599739073.0	. 5
86	9	16	599739073.9	.6 *
86	9	20		1.5 *
86	9	25		1.6 *
86	9	30	599739079.0	2.1 *
	LO	5	599739075.5	1.6 *
	10	10	599739073.4	1.3 *
86 1			599739075.2	1.1 *
		16		.4 *
		20	599739074.1	1.6 *
		25	599739076.3	1.3 *
	.0	30	599739075.4	1.5 *
	.1	3	599739074.5	.7 *
	.1	4	599739072.4	1.1 *
	.1	5	599739078.8	1.0 *
	.1	9	599739076.6	1.4 *
		14	599739076.3	1.0 *
		19	599739072.8	1.1 *
		24	599739073.6	1.5 *
		29	599739073.8	.9 *
	2	4	599739077.3	1.2 *
90 T	_	8	599739073.4	.6 *

	DAT	ſΈ	Length (cm)	Formal	Error
86	12	9	599739070.1	1.1	*
86	12	14	599739072.7	1.2	*
86	12	19	599739072.3	1.0	*
86	12	23	599739076.1	1.3	*
86	12	29	599739075.3	1.1	*

LENGTH:

Mean = $599739073.4 \pm .1$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.3 cm Slope = $1.1 \pm .2$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.1 cm

^{*} WESTFORD - WETTZELL results mapped to HAYSTACK - WETTZELL

Table 6.58 VLBI BASELINE LENGTH EVOLUTION HRAS 085 TO MARPOINT

DATE	Length (cm)	Formal	Error
	257081338.1 257081339.9	1.0 1.7	

LENGTH:

Mean = $257081338.6 \pm .8$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .8 cm

Table 6.59 VLBI BASELINE LENGTH EVOLUTION HRAS 085 TO MOJAVE12

			Length		
DATE		TE	(cm)	Formal	Error
02		20	121227015 /	0	
83	_	28		. 9	
83	7	25	131336815.8	.7	
83	8	8	131336814.0	.7	
83	9	27	131336814.4	. 5	
83	10	12	131336815.1	. 5	
83	10	27	131336815.6	. 6	
83	11	21	131336815.6	. 5	
83	12	1	131336815.3		
84	1	4	131336815.0	.5	
84	4	26	131336814.5	. 5	
85	3	5	131336816.6	. 3	
85	5	7	131336816.2	. 3	
85	5	9	131336816.1	.4	
		24		.4	
85	10	29	131336816.5	.4	
86	4	1	131336818.1	.3	
86	4	4	131336818.2	.6	
86	5	14	131336817.4	. 5	
86	10	16	131336817.8	.4	
86	10	31	131336815.1	. 3	

LENGTH:

Mean = 131336816.1 \pm .3 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.2 cm Slope = .5 \pm .2 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.0 cm

Table 6.60 VLBI BASELINE LENGTH EVOLUTION HRAS 085 TO NRAO 140

	DAT	ΓE	Length (cm)	Formal	Error
80	4	11	235463400.8	.9	
81	11	18	235463401.0	.4	
81	11	19	235463398.9	. 9	
82	12	15	235463400.8	.9	
82	12	Ì6	235463399.0	.7	

LENGTH:

Mean = $235463400.4 \pm .5$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .9 cm Slope = $-.5 \pm .5$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .8 cm

Table 6.61
VLBI BASELINE LENGTH EVOLUTION
HRAS 085 TO ONSALA60

	DA	TE	Length (cm)	Formal	Frror
	DAIL		(Cm)	roimai	EIIOI
80	7		794073222.5	3.2	
80				3.8	
80				5.2	
80				3.9	
80				3.4	
80 80			794073213.1 794073217.5	4.6 4.5	
80			794073217.3	5.6	
80			794073213.3	2.9	
80			794073217.0	2.7	
80		17	794073236.2	3.1	
80		18	794073225.5	3.3	
80		19		2.5	
80	10	20	794073220.7	2.5	
80		21	794073225.8	3.3	
80			794073221.0	1.9	
80			794073229.7	4.6	
80				3.5	
81	1			5.4	
81	2		794073211.6	7.9	
81			794073225.0	5.2	
81			794073239.3	5.4	
81			794073221.9	2.6	
82 82	3		794073225.3	5.2	
82		19 20	794073227.2 794073223.6	8.4 2.8	
82		21	794073228.5	3.2	
82	9		794073236.8	11.	
82		20	794073253.4	25.	
	10		794073221.5	2.4	
		15	794073242.5	7.1	
82	12	15	794073233.8	3.9	
82	12	16	794073220.0	2.7	
83	2	7	794073226.6	3.2	
83		28	794073218.9	3.3	
83	3	14	794073218.2	5.1	
83	5	5	794073228.9	1.7	
83		16	794073218.7	7.0	
83	6	13	794073234.3	6.4	
83 83	8	29 22	794073188.8	6.6	
83	9 10	27	794073228.8 794073218.1	5.1 4.2	
83	11	16	794073218.1	2.4	
83	12		794073223.4	4.5	
84	1	24	794073229.1	2.9	

HRAS 085 TO ONSALA60

			Length		
	DAT	ľE	(cm)	Formal	Error
84	2	23	794073220.4	3.9	
84	3	14	794073225.6	3.3	
84	4	18	794073228.6	5.0	
84	5	18	794073227.7	4.1	
84	6	12	794073238.5	5.5	
84	10	25	794073229.2	3.6	
84	11	14	794073229.8	3.7	
84	12	19	794073224.3	5.3	
85	1	23	794073221.4	2.3	
85	2	27	794073223.8	2.1	
85	3	4	794073221.6	2.7	
85	3	5	794073226.4	.9	
85	4	23	794073227.4	2.2	
85	5	8	794073219.0	3.7	
85	5	9	794073225.0	1.2	
85	6	17	794073224.2	3.1	
85	8	16	794073223.7	4.6	
85	9	10	794073232.0	3.4	
85	10	25	794073218.0	1.4	
85	10	29	794073226.3	1.5	
85	11	19	794073228.9	2.1	
85	12	9	794073231.2	1.9	
86	3	19	794073227.4	2.1	
86	4	3	794073229.4	1.7	
86	4	4	794073227.6	1.4	
86	5	13	794073222.9	2.0	
86	5	14	794073225.7	1.4	
86	6	17	794073224.6	2.9	
86	8	26	794073223.7	3.2	
86	9	15	794073223.6	2.2	
86	10	15	794073231.5	2.1	
86	10	16		.9	
86	11	4	794073217.5	1.8	
86	12	9	794073231.9	1.8	

LENGTH:

Mean = $794073225.1 \pm .5$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 4.6 cm Slope = $.8 \pm .2$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 4.4 cm

Table 6.62
VLBI BASELINE LENGTH EVOLUTION
HRAS 085 TO OVRO 130

			Length		
	DATE		(cm)	Formal	Error
80	4			. 6	
80	7			1.1	
80	7	27	150819535.3	1.1	
80	9	26	150819537.3	1.5	
80	9			1.1	
80	9	28	150819537.2	. 8	
80	9	29	150819534.6	1.2	
80	9	30	150819535.4 150819536.7 150819537.1	1.1	
80	10	1	150819536.7	1.2	
80	10		150819537.1	. 8	
80	10		150819537.1	.7	
80	10		150819537.1 150819539.5	. 8	
80	10	18	150819538.4	. 9	
80	10	19	150819535.4	1.8	
80	10	20	150819535.6 150819537.3 150819537.1	. 7	
80	10		150819537.3	. 8	
80	10	22	150819537.1	. 6	
81	6		150819537.2	.7	
81	11		150819538.5	.4	
81	11	19	150819537.5		
82	6	20	150819537.7	. 8	
82	6	71	150819538 3	.8 1.0	
82	10	18	150819538.3	.7	
82	10	25	150819539.3	1.2	
82	12	15	150819539.4	.6	
82	12	16	150819537.6	. 6	
83	6	6	150819536.9	.4	
84	4	26	150819538.5	. 5	
85	3	5	150819541.1	. 3	
85	5	7	150819540.6	. 3	
85	5	9	150819539.1	.4	
85	10	29	150819541.3		
86	4	1	150819542.1	.4	
86	4	4	150819542.9		
	5		150819542.4	. 6	
86	10	16	150819542.0	.4	
86	10	31	150819541.3	. 6	

Mean = $150819539.4 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.0 cm Slope = $.8 \pm .1$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.0 cm

Table 6.63 VLBI BASELINE LENGTH EVOLUTION HRAS 085 TO PENTICTN(7283)

DATE			Length (cm)	Formal	Error
84	8	24	244335456.9	1.4	
85	8	28	244335455.0	2.2	
85	9	4	244335456.7	.7	

LENGTH:

Mean = $244335456.6 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .4 cm

Table 6.64 VLBI BASELINE LENGTH EVOLUTION HRAS 085 TO PLATTVIL(7258)

DATE			Length (cm)	Formal	Error
83	6	6	106049963.5	3.3	
83	6	9	106049963.3	1.8	
84	4	26	106049965.3	1.0	
85	5	7	106049964.9	. 8	
86	4	1	106049965.8	.5	

LENGTH:

Mean = $106049965.4 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .6 cm Slope = $.6 \pm .2$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .3 cm

Table 6.65

VLBI BASELINE LENGTH EVOLUTION

HRAS 085 TO RICHMOND

	DATE		Length	Faren a 1	E
			(cm)	Formal	FILOI
83	12	21	236263259.7	6.8	
84			236263281.8	1.0	
84	1	14	236263282.8	1.2	
	1		236263282.1	1.5	
84	2	3	236263284.9	2.1	
84	2	13	236263282.8	1.7	
84	2	18	236263288.5	1.3	
84	3	4	236263284.1	1.4	
84	3		236263282.0	1.3	
84	3	25	236263282.5	1.3	
84	4	3	236263288.7	2.3	
		8	236263282.7	1.7	
	4		236263287.6	1.6	
	4		236263282.3	1.7	
84	4	23	236263283.9	1.9	
84	4	28	236263280.0	1.8	
84	5	28	236263282.0	1.2	
84	6	2	236263284.3	1.5	
84	6	7	236263276.7	3.3	
84	6	12	236263282.5	1.8	
84	6	17	236263283.9		
			236263285.2	2.0	
			236263280.5		
			236263280.1	1.5	
			236263283.0	1.3	
			236263282.8		
			236263279.8		
			236263278.3 236263280.8		
			236263282.6		
			236263282.4		
			236263285.9		
			236263285.6		
84					
84		26	236263282.2	1.4	
84	8	31	236263282.1	1.4	
84	9	5	236263281.9	1.3	
84	9	10	236263280.6	1.0	
84	9	15	236263282.8	3.5	
84	9	25	236263283.1	1.4	
84	9	30	236263283.2	1.2	
84	10	5	236263284.7	1.3	
84	10	10	236263285.1	1.7	
84	10	15	236263279.6	1.3	
84	10	20	236263283.8	1.2	

HRAS 085 TO RICHMOND Length

			Length		
	DA'	ΤE	(cm)	Formal	Error
84	10	25	236263283.4	1.2	
	10			1.2	
84			236263282.0	1.2	
84		19		.9	
84		24		1.0	
84	11	29		1.0	
84		4	236263284.3	1.1	
84	12	9	236263281.6	1.0	
84	12	14	236263283.5	1.2	
84	12	19	236263282.8	1.6	
84	12	23	236263280.3	1.0	
85		3	236263283.9	. 8	
85	1	8	236263281.9	.7	
85	1	18		1.1	
85	1	28	236263281.6	. 7	
85	2	2	236263281.3	1.0	
85	2	7		. 8	
85			236263281.1	.7	
85			236263282.6	.7	
85			236263281.1	. 9	
85			236263281.5	. 7	
85			236263281.6	. 9	
85			236263283.1	. 8	
85			236263281.2	. 6	
85			236263282.8	. 8	
85			236263282.2	1.0	
85			236263284.6	. 8	
85			236263282.4	. 7	
85		28		1.0	
85		13		1.0	
85			236263281.9	1.1	
85			236263284.0	1.1	
85			236263281.7	.9	
85			236263282.5	1.1	
85	_	7	236263280.6	.8	
85	6	17	236263281.5	1.0	
85	6	22	236263283.8	1.1	
85	6	27	236263283.7	1.1	
85	7	2	236263282.9	. 8	
85	7	7	236263282.1	1.1	
85	7	12	236263281.3	1.0	
85	7	17	236263281.1	.8	
85 85	7	22	236263281.9	1.8	
85 85	7	27	236263282.9	.9	
85 05	8	1	236263283.7	. 8	
85 85	8	6	236263281.2	.9	
	8	11	236263282.2	1.2	
85	8	16	236263280.2	. 9	

HRAS 085 TO RICHMOND

Length (cm) Formal Error DATE

	DAT	Έ	(cm)	Formal	Error
85	8	21	236263282.0	1.2	
85	8	26	236263285.2	. 8	
85	8	31	236263284.2	1.0	
85	9	5	236263280.5	1.1	
85	9	10	236263280.0	1.0	
85	9	15	236263280.3	.9	
85	9	20	236263283.1	1.0	
85	9	25	236263282.4	.9	
85	9	30		.9	
85	10	5	236263280.1	1.0	
85	10	10	236263281.9	1.1	
85	10	15	236263284.0	.8	
85	10	20		1.1	
85	10	25	236263281.6	.6	
85	11	9	236263282.3	.7	
85	11	14	236263282.6	.9	
85	11			.9	
85	12	4	236263282.1	.9	
85	12	9	236263283.5	1.1	
85	12		236263279.5	.9	
85	12			.5	
86		8	236263282.3	.6	
86	1	13		.6	
86	1	18		.9	
86	1	23		1.2	
86	i	28		.9	
86	2	20	236263283.0	.9	
86	2	7	236263283.4	.8	
86	2	12	236263282.9	.0	
86	2	17		.9	
86		22	236263280.3	1.0	
86	2	27		.8	
86	3	4	236263281.2	.9	
86	3	9		.7	
86	3	14		.9	
86	3	19	236263279.7	1.0	
86		24	236263284.0	.8	
86	3	29	236263280.1	.9	
86	4	3	236263281.0	.9	
	4	8	236263282.7	.8	
86	4		236263281.7	.8	
86	4	13	236263280.2	1.0	
86		18		.8	
86 86	4	23 28	236263281.6 236263282.7	. 8 . 8	
	4 5	20 3	236263273.4	. 6 1. 7	
86	5 5	8	236263273.4	1.7	
86		13	236263280.2	.9	
86	5 5			.9	
86)	17	236263282.3	. 9	

HRAS 085 TO RICHMOND

			Length		
	TAG	E	(cm)	Formal	Error
86	5	23	236263280.8	. 9	
86	5	28	236263282.2	.8	
86	6	2	236263282.6	1.0	
86	6	7	236263278.3	1.1	
86	6	12	236263283.8	1.0	
86	6	17		1.0	
86	6	22	236263280.0	. 8	
86	6	27		. 9	
86	7	2	236263281.5	. 9	
86	7	7	236263282.6	1.0	
86	7	12		1.0	
86	7	17	236263282.8	1.0	
86	7	22	236263280.2	1.1	
86	7	27	236263283.0	. 9	
86	8	1	236263282.8	1.4	
86	8	6	236263280.7	1.2	
86	8	31	236263275.7	5.4	
86	9	5	236263282.9	1.6	
86	9	10		1.1	
86	9	15		1.2	
86	9	20		1.2	
86	9	25		1.3	
86	9	30	236263278.2	1.6	
86	10	5	236263280.7	1.0	
86	10	10		1.5	
86	10	15	236263280.0	3.4	
86	10	20		1.6	
86	10			1.2	
86	10			.9	
86	11	4	236263283.1	1.8	
86	11	9	236263277.2	1.4	
86	11	14		1.0	
86	11	19		1.0	
86	11	29		. 9	
86	12	4	236263280.2	1.0	
86	12	9	236263282.6	.9	
86	12	14	236263281.3	1.0	
86	12	19	236263283.1	. 8	
86	12	23	236263282.1	1.1	
86	12	29	236263282.9	.8	

LENGTH:

Mean = $236263282.0 \pm .1$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.6 cm Slope = $-.6 \pm .2$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.5 cm

Table 6.66

VLBI BASELINE LENGTH EVOLUTION

HRAS 085 TO ROBLED32

DATE		E	Length (cm)	Formal	Error
83	5	5	797553026.8	3.6	

Table 6.67
VLBI BASELINE LENGTH EVOLUTION
HRAS 085 TO WESTFORD

	DATE		Length (cm)	Formal	Error
01	5 13		212402001 6	1.7	
81				1.7	
81	6 6		313492799.2	2.0	
81	7	1		1.5	
81 81				1.5	
			313492804.3	3.2	
81	7		313492806.4	.9	
81	7	29	313492804.7	1.3	
81 81	7 8	5	313492805.4	1.9	
01		26	313492803.1	1.2	
81	9	20	313492802.9	1.7	
	9		313492803.8	1.7	
	9		313492004.3	1.4	
	9			1.7	
81			313492802.3		
81			313492803.4		
	10				
			313492803.7		
	11				
	11				
	11				
	11				
81	11			1.3	
81	12			1.7	
81	12			1.1	
81		22		1.0	
81	12	29			
82	1	6	313492803.4	.9	
82	1	13		1.3	
82		20		1.0	
82		27		1.2	
82		1			
82					
82	2		313492803.4 313492802.2	1.0	
82			313492802.2		
		24		1.5	
82	3	3	313492802.8	1.3	
82	3	10		1.7	
82	3	17	313492803.0	2.1	
82	3	24	313492804.8	1.4	
82	3	29	313492799.7	1.4	
82	4	7	313492805.1	1.8	
82	4	13	313492803.9	2.3	
82	4	19		3.4	
82	4	26		2.3	
82	5	3	313492802.7	1.2	

HRAS 085 TO WESTFORD Length

			Length		
DATE		ΓĒ	(cm)	Formal	Error
82	5	10	313492802.6	1.3	
82			313492801.5		
82			313492801.2		
82			313492803.1		
			313492801.3		
82					
82		21			
82					
82					
82			313492801.6		
82	7		313492801.4		
82	7	26	313492803.8	1.8	
82	8	4	313492800.8	1.8	
			313492798.5		
	8		313492793.8		
	8		313492804.8		
	8		313492802.4		
			313492802.4		
	9				
	9				
82			313492806.5		
		4			
82	10	13	313492802.1	1.6	
82	10	18	313492801.2	1.0	
82	10	25	313492801.1	1.8	
82	11	1	313492802.3	1.4	
		8			
		15			
82					
82	11		313492803.0	1.1	
82	12		313492799.1		
82			313492800.9		
82					
82		70	313492800.0	1.0	
82	10	20	313492800.6		
		21	313492802.7	1.2	
83	1	3	313492800.4	.8	
83	1		313492799.6	1.0	
83	1	17	313492802.9	.9	
83	1	24		. 8	
83	1	31	313492801.0	.9	
83	2	7	313492803.9	. 8	
83	2	14	313492802.9	.9	
83	2	28	313492803.9	1.3	
83	3	7	313492800.9	.7	
83	3	14	313492803.7	2.0	
83	3	21	313492801.7	2.4	
83	3	28	313492799.2	1.2	
83	4	4	313492801.3	1.2	
	4				
83	4	11	313492800.1	1.0	

HRAS 085 TO WESTFORD Length

			Length		
	DA'	CE	(cm)	Formal	Error
83	4	25	313492800.9	.8	
83	5	2	313492801.5	1.1	
83	5	5	313492811.3	2.2	
83	5	9	313492801.6	1.0	
83	5	16	313492804.6	1.9	
83	5	23	313492797.9	1.4	
83	5	31	313492802.1	1.7	
83	6	6	313492802.7	.7	
83	6	7	313492801.6	.9	
83	6	9	313492803.6	2.1	
83	6	13	313492805.6	2.0	
83	6	20	313492803.4	1.1	
83	6	28	313492803.4	1.5	
83	7	5	313492802.6	1.7	
83	7	11	313492800.2	1.2	
83	7	25	313492803.8	1.3	
83	8	1	313492805.4	1.7	
83	8	8	313492802.2	1.4	
83	8	15	313492802.2	1.4	
83	8	22		1.4	
				2.3	
83	8	29			
83	9	2	313492803.3	1.4	
83	9	7	313492804.1	1.3	
83	9	12	313492801.3	2.1	
83	9	17		1.3	
83	9	22	313492802.1	1.4	
83	9	27	313492802.6	1.1	
83		2	313492802.9	1.4	
83	10	7	313492802.6	1.3	
83	10		313492802.5	1.1	
83	10	17	313492804.5	1.7	
83	10	22	313492802.4	1.5	
83	10	27	313492800.8	1.1	
83	11	1	313492799.9	1.3	
83	11	6	313492801.2	1.1	
		11	313492800.9	1.3	
	11		313492801.1	1.0	
		21		.9	
83			313492801.7	.9	
83				.9	
83			313492799.1	1.4	
83			313492800.7	.8	
83			313492801.9	.8	
83			313492802.7	1.6	
83			313492800.9	.8	
			313492799.8	.0	
83				.8	
84			313492801.1		
٥4	1	9	313492801.1	.9	

HRAS 085 TO WESTFORD

cor

HRAS 085 TO WESTFORD Length

		Length	
DATE			Formal Error
84 9		313492800.7	1.7
84 9	20	313492797.4	1.9
84 9	25	313492800.3	1.5
84 9	30	313492799.7	1.5
84 10	5	313492803.2	1.3
84 10	10	313492803.5	1.7
84 10	15	313492800.2	1.3
84 10	20	313492802.8	1.4
	25	313492803.4	1.3
84 10	30	313492801.7	1.2
84 11	4	313492804.5	1.5
84 11	9	313492801.2	1.2
84 11			1.3
		313492799.7	1.0
		313492800.9	1.2
84 11	29	313492803.0	1.1
84 12	4	313492799.4	1.1
84 12	9	313492799.6	1.1
		313492802.0	1.2
84 12	19	313492801.2	1.5
84 12	23	313492799.3	.9
84 12			
85 1			
	8		. 8
	18		1.1
85 1			.8
85 1	28		.7
85 2	2		1.2
			.8
	12		1.0
85 2			.9
85 2			1.1
	27		.8
		313492802.6	1.3
	14	313492797.1	1.1
85 3			1.2
	24		.9
	29	313492800.8	.9
	3	313492797.9	.7
			.7
85 4	8	313492799.7	
85 4	13	313492800.5	1.1 .9
85 4	18	313492804.1	
85 4	23	313492800.0	.8
85 4	28		1.0
85 5	3	313492797.7	1.1
85 5			.8
85 5			1.5
85 5	9	313492800.5	.7

HRAS 085 TO WESTFORD

	Length		
DATE	(cm)	Formal	Error
85 5 13	313492800.3	1.3	
85 5 18	313492800.4	1.0	
85 5 23		1.2	
85 5 28	313492799.8	1.0	
85 6 2	313492798.3	1.2	
85 6 7	313492798.8	.9	
85 6 17	313492796.5	1.4	
85 6 22	313492799.9	1.1	
85 6 27	313492797.8	1.0	
85 7 2	313492800.8	.8	
85 7 7 85 7 12	313492799.2	1.2	
	313492799.3	1.1	
85 7 17 85 7 22	313492798.8 313492799.1	.9 1.1	
85 7 27	313492799.1	1.1	
85 8 1	313492799.9	.9	
85 8 6	313492800.1	1.0	
85 8 11	313492801.1	1.5	
85 8 16	313492799.3	1.0	
85 8 21	313492800.5	1.0	
85 8 24	313492800.9	.8	
85 8 26	313492799.8	1.0	
85 8 31	313492801.5	.9	
85 9 5	313492800.3	1.2	
85 9 10		1.0	
85 9 15		.9	
85 9 20		1.1	
85 9 25		1.1	
85 9 30		1.0	
85 10 5	313492800.9	1.0	
85 10 10		1.1	
85 10 15		1.0	
85 10 20		.9	
85 10 25	313492798.3		
85 10 29	313492801.7	.7	
85 10 30	313492797.9	1.1	
85 11 4	313492800.4	1.2	
85 11 9	313492798.8	.7	
85 11 14	313492802.3	1.0	
85 11 19	313492800.2	.8	
85 11 24	313492798.4	.7	
85 11 29	313492798.0	. 8	
85 12 4	313492800.2	. 9	
85 12 9	313492801.7	.8	
85 12 14	313492797.7	. 8	
85 12 19	313492799.3	. 6	
85 12 29	313492800.0	. 8	
86 1 3	313492799.1	.9	

HRAS 085 TO WESTFORD Length

			Length		
	DA'	ΓE	(cm)	Formal	Error
06	1	o	313492799.1	.7	
86	1	8		.7	
86	1	13	313492799.9	.7	
86	1	18	313492798.3		
86	1	23	313492798.9	1.2	
86	1	28	313492800.7	. 9	
86	2	2	313492798.4	. 7	
86	2	7	313492799.8	. 8	
86	2	12	313492799.7	. 8	
86	2	17	313492799.7	. 9	
86	2	22	313492799.0	. 8	
86	2	27	313492799.9	. 7	
86	3	4	313492798.7	. 8	
86	3	9	313492800.1	. 8	
86	3	14	313492799.6	1.1	
86	3	19	313492797.1	. 9	
86	3	24	313492800.3	. 8	
86	3	29	313492798.6	1.0	
86	4	1	313492803.2	. 7	
86	4	3	313492800.7	.7	
86	4	4	313492799.8	. 6	
86	4	8	313492799.7	. 8	
86	4	13	313492797.9	.8	
86	4	18		1.1	
86	4	23		.8	
86	4	28		.7	
86	5	3	313492797.9	1.3	
86	5	8		1.0	
86	5	13	313492797.6	. 8	
86	5	14	313492800.5	. 5	
86	5	17	313492797.7	1.0	
86	5	23	313492798.7	1.0	
86	5	28	313492801.2	.9	
86	6	2	313492800.1	1.0	
86	6	7	313492797.5	1.1	
86	6	12	313492800.0	1.2	
86	6	17	313492798.0	1.0	
86	6	22		1.0	
86	6	27		1.1	
86	7	2	313492800.5	. 8	
86	7	7		1.3	
86	7	12		1.1	
86	7	17		1.1	
86	7	22		1.2	
86	7	27		1.0	
86	8	1	313492799.1	1.2	
86	8	6		1.2	
86	8	11		1.3	
86	8	16		1.3	
00	O	TO	JIJ49200I.Z	1.5	

HRAS 085 TO WESTFORD

DATE (cm) Formal Error 86 8 21 313492799.2 1.2 86 8 26 313492797.6 1.3 86 8 31 313492801.8 1.5 86 9 5 313492797.1 1.5 86 9 10 313492800.2 1.1 86 9 15 313492797.3 1.1 86 9 20 313492804.7 1.2 86 9 25 313492800.0 1.3 86 9 30 313492801.3 1.4 86 10 5 313492799.3 .8 86 10 10 313492799.3 .8 86 10 15 313492800.0 .8 86 10 20 313492800.0 .4 86 10 30 313492798.9 1.1 86 10 31 313492800.0 .4 86 11 4 313492800.0 .8 86 11 14 313492800.0 .8 86 11 29 313492801.5 .7 86 11 29 313492801.0 .7				Length		
86 8 26 313492797.6 1.3 86 8 31 313492801.8 1.5 86 9 5 313492797.1 1.5 86 9 10 313492800.2 1.1 86 9 15 313492797.3 1.1 86 9 20 313492800.0 1.3 86 9 25 313492800.0 1.3 86 9 30 313492799.3 .8 86 10 5 313492799.3 .8 86 10 10 313492799.3 .8 86 10 10 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492798.9 1.1 86 10 31 313492800.0 .4 86 10 31 313492800.0 .4 86 11 9 313492800.0 1.3 86 11 19 313492800.0 .7 86		DA	TE		Formal	Error
86 8 26 313492797.6 1.3 86 8 31 313492801.8 1.5 86 9 5 313492797.1 1.5 86 9 10 313492800.2 1.1 86 9 15 313492797.3 1.1 86 9 20 313492800.0 1.3 86 9 25 313492800.0 1.3 86 9 30 313492799.3 .8 86 10 5 313492799.3 .8 86 10 10 313492799.3 .8 86 10 10 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492798.9 1.1 86 10 31 313492800.0 .4 86 10 31 313492800.0 .4 86 11 9 313492800.0 1.3 86 11 19 313492800.0 .7 86						
86 8 31 313492801.8 1.5 86 9 5 313492797.1 1.5 86 9 10 313492800.2 1.1 86 9 15 313492797.3 1.1 86 9 20 313492800.0 1.3 86 9 25 313492800.0 1.3 86 9 30 313492799.3 .8 86 10 5 313492799.3 .8 86 10 10 313492795.5 1.4 86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492798.9 1.1 86 10 31 313492800.0 .4 86 11 4 313492800.0 .4 86 11 9 313492800.0 1.3 86 11 19 313492800.0 1.3 86 11 19 313492800.0 .7 86			21			
86 9 5 313492797.1 1.5 86 9 10 313492800.2 1.1 86 9 15 313492797.3 1.1 86 9 20 313492804.7 1.2 86 9 25 313492800.0 1.3 86 9 30 313492801.3 1.4 86 10 5 313492799.3 .8 86 10 10 313492795.5 1.4 86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492800.0 1.1 86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 14 313492800.0 1.3 86 11 19 313492800.0 1.3 86 11 19 313492800.0 1.3 86 11 24 313492798.5 .9 86	86				1.3	
86 9 10 313492800.2 1.1 86 9 15 313492797.3 1.1 86 9 20 313492804.7 1.2 86 9 25 313492800.0 1.3 86 9 30 313492801.3 1.4 86 10 5 313492799.3 .8 86 10 10 313492799.5 1.4 86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492800.0 1.1 86 10 31 313492800.0 .4 86 10 31 313492800.0 .4 86 11 4 313492800.0 .8 86 11 19 313492800.0 1.3 86 11 19 313492801.5 .7 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86						
86 9 15 313492797.3 1.1 86 9 20 313492804.7 1.2 86 9 25 313492800.0 1.3 86 9 30 313492801.3 1.4 86 10 5 313492799.3 .8 86 10 10 313492799.5 1.4 86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492798.9 1.1 86 10 25 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.0 .4 86 11 19 313492800.0 1.3 86 11 19 313492797.3 .9 86 11 29 313492801.5 .7 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86	86	9	5	313492797.1	1.5	
86 9 20 313492804.7 1.2 86 9 25 313492800.0 1.3 86 9 30 313492801.3 1.4 86 10 5 313492799.3 .8 86 10 10 313492795.5 1.4 86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492800.0 1.1 86 10 25 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.0 .4 86 11 9 313492800.0 1.3 86 11 19 313492800.0 1.3 86 11 29 313492801.5 .7 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 4 313492800.9 .8 86				313492800.2	1.1	
86 9 25 313492800.0 1.3 86 9 30 313492801.3 1.4 86 10 5 313492799.3 .8 86 10 10 313492795.5 1.4 86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492800.0 1.1 86 10 25 313492798.9 1.1 86 10 30 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.0 1.3 86 11 19 313492800.0 1.3 86 11 19 313492797.3 .9 86 11 29 313492801.0 .7 86 12 4 313492801.0 .7 86 12 4 313492800.9 .8 86 12 14 313492800.9 .8 86	86	9	15	313492797.3	1.1	
86 9 30 313492801.3 1.4 86 10 5 313492799.3 .8 86 10 10 313492795.5 1.4 86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492800.0 1.1 86 10 25 313492798.9 1.1 86 10 30 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 19 313492800.0 1.3 86 11 19 313492801.5 .7 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 4 313492800.9 .8 86 12 14 313492798.1 .8 86 12 14 313492798.1 .8 86	86	9	20	313492804.7	1.2	
86 10 5 313492799.3 .8 86 10 10 313492795.5 1.4 86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492800.0 1.1 86 10 25 313492798.9 1.1 86 10 30 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 9 313492800.0 1.3 86 11 19 313492801.5 .7 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 14 313492798.1 .8 86 12 14 313492798.1 .8 86 12 14 313492801.3 .7	86	9	25	313492800.0	1.3	
86 10 10 313492795.5 1.4 86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492800.0 1.1 86 10 25 313492798.9 1.1 86 10 30 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 9 313492800.0 1.3 86 11 19 313492801.5 .7 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 14 313492798.1 .8 86 12 14 313492798.1 .8 86 12 14 313492801.3 .7	86	9	30	313492801.3	1.4	
86 10 15 313492800.0 .8 86 10 16 313492800.0 .4 86 10 20 313492800.0 1.1 86 10 25 313492798.9 1.1 86 10 30 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 9 313492800.0 1.3 86 11 19 313492801.5 .7 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 14 313492798.1 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	10	5	313492799.3	. 8	
86 10 16 313492800.0 .4 86 10 20 313492800.0 1.1 86 10 25 313492798.9 1.1 86 10 30 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 9 313492800.0 1.3 86 11 14 313492801.5 .7 86 11 19 313492797.3 .9 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492800.9 .8 86 12 14 313492798.1 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	10	10	313492795.5	1.4	
86 10 20 313492800.0 1.1 86 10 25 313492798.9 1.1 86 10 30 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 9 313492800.0 1.3 86 11 14 313492801.5 .7 86 11 19 313492797.3 .9 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 14 313492798.1 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	10	15	313492800.0	. 8	
86 10 25 313492798.9 1.1 86 10 30 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 9 313492800.0 1.3 86 11 14 313492801.5 .7 86 11 19 313492797.3 .9 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 14 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	10			. 4	
86 10 30 313492799.7 .8 86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 9 313492800.0 1.3 86 11 14 313492801.5 .7 86 11 19 313492797.3 .9 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	10	20	313492800.0	1.1	
86 10 31 313492800.0 .4 86 11 4 313492800.4 .8 86 11 9 313492800.0 1.3 86 11 14 313492801.5 .7 86 11 19 313492797.3 .9 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	10	25	313492798.9	1.1	
86 11 4 313492800.4 .8 86 11 9 313492800.0 1.3 86 11 14 313492801.5 .7 86 11 19 313492797.3 .9 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	10	30	313492799.7	. 8	
86 11 9 313492800.0 1.3 86 11 14 313492801.5 .7 86 11 19 313492797.3 .9 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	10	31	313492800.0	. 4	
86 11 14 313492801.5 .7 86 11 19 313492797.3 .9 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7					. 8	
86 11 19 313492797.3 .9 86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	11	9	313492800.0	1.3	
86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	11	14	313492801.5	.7	
86 11 24 313492798.5 .9 86 11 29 313492801.0 .7 86 12 4 313492798.9 1.0 86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	11	19	313492797.3	.9	
86 12 4 313492798.9 1.0 86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7						
86 12 9 313492800.9 .8 86 12 14 313492798.1 .8 86 12 19 313492801.3 .7	86	11	29	313492801.0	.7	
86 12 14 313492798.1 .8 86 12 19 313492801.3 .7					1.0	
86 12 19 313492801.3 .7					. 8	
					. 8	
					.7	
86 12 23 313492800.7 .9					. 9	
86 12 29 313492799.4 .8	86	12	29	313492799.4	. 8	

LENGTH:

Mean = $313492800.6 \pm .1$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.9 cm Slope = $-.7 \pm .1$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.6 cm

Table 6.68

VLBI BASELINE LENGTH EVOLUTION

HRAS 085 TO WETTZELL

	DAT	E	Length (cm)	Formal Error
83	11	16	841756142.8	2.4
83			841756143.8	4.6
84			841756148.0	2.9
84			841756150.5	2.6
84		29	841756152.4	2.9
84		3	841756148.4	4.4
84		8	841756151.5	4.9
84		18	841756153.3	2.5
84		23	841756143.5	4.1
84		28	841756149.8	4.5
84		4	841756161.2	4.4
84		9	841756149.1	5.1
84		14	841756148.0	3.4
84		19	841756141.9	3.4
84		25	841756148.1	3.3
84	-	30		12.
84		3	841756158.0	5.9
84		8	841756146.2	5.3
84			841756154.8	4.0
84			841756150.7	5.2
84			841756147.7	5.3
84	4			5.2
84	5	3	841756137.9	13.
84		8	841756147.8	5.0
84	5	13	841756137.7	6.8
84	5	18	841756149.5	4.1
84	5	23	841756147.8	6.3
84	5	28	841756146.4	3.1
84	6	2	841756151.8	4.8
84	6	7	841756138.4	8.9
84	6		841756156.1	5.2
84			841756154.5	3.3
84	6		841756151.6	5.6
84			841756142.3	4.6
84		2	841756158.1	4.6
84		7		4.9
84	7	12		4.1
84		17	841756148.1	4.4
84		1	841756152.1	4.1
84		6	841756156.2	4.5
84		11	841756152.2	4.3
84		16		4.4
84		21	841756161.0	4.3
84		26		4.6
84	8	31	841756153.4	4.2

HRAS 085 TO WETTZELL

			Length		
	DA'	ГЕ	(cm)	Formal	Error
			` ,		
84	9	5	841756142.1	4.0	
84	9			3.5	
84			841756147.5	4.7	
84				5.5	
84				4.4	
84				3.8	
	10	5	841756154.0	3.9	
		10		4.8	
		15		3.8	
		20		3.8	
		25		3.6	
	10			3.4	
	11	4	841756151.9	3.9	
	11	9		3.4	
		14		3.8	
	11			2.9	
	11			3.5	
	11			3.2	
84	12	4	0/175/1/5 0	3.2	
84				3.5	
84		14			
84	12			3.6	
84		23		4.7	
84	12	29		2.8	
85	1	3	841756144.3	4.0	
85	1	_		2.0	
85	1	8 18	841756147.6	2.3	
85	1		841756144.5	3.1	
85	1	23	841756146.1	2.4	
		28	841756148.7	2.1	
85	2	2	841756147.8	3.0	
85	2	7	841756146.1	2.2	
85 85	2 2	12	841756145.0	2.2	
85		17 22	841756144.1	2.4	
			841756141.7	2.8	
85 85	2	27	841756145.0	2.1	
85 85	3	4	841756145.1	2.7	
85 85	3	5	841756150.0	.9	
85 05	3	9	841756157.0	5.2	
85	3	14	841756143.9	2.9	
85	3	19	841756146.3	3.2	
85 05	3	24	841756145.8	2.2	
85 85	3	29	841756150.0	2.7	
85 85	4 4	3 8	841756147.8	2.2	
85	4	13	841756151.1	2.3	
85	4	13 18		3.1	
85		23		2.6	
				2.2	
85	4	28	841756148.3	2.8	

HRAS 085 TO WETTZELL

Length

			Length		
	DA'	ľΕ	(cm)	Formal	Error
85	5	2	841756145.4	3.2	
85	5		841756144.4	4.0	
85			841756148.3	1.2	
			841756150.2	3.3	
85			841756150.2	3.1	
85					
85			841756151.7 841756139.3	2.7	
85					
85			841756139.7	2.4	
85	6		841756147.0		
85	6		841756144.1		
85	6		841756157.4		
85	6		841756151.3		
85			841756152.2	2.3	
85			841756152.3	3.1	
85			841756154.2	3.3	
85		17		2.6	
85		22		3.3	
85	7	27		3.0	
85	8	1	841756152.6	2.7	
85	8	6	841756157.8	3.2	
85	8	11		4.0	
85	8	16		2.8	
85	8	21	841756154.4	3.0	
85	8	26	841756158.4	2.7	
85	8	31		3.3	
85	9	5	841756142.7	3.6	
85	9	10		2.6	
85	9	15		2.9	
85	9	20		3.2	
85	9	25	841756148.2	3.0	
85		30		2.6	
85		5	841756153.1	2.7	
85	10			2.8	
85	10	15	841756154.4	2.6	
85	10	20	841756142.3	2.5	
85	10	25	841756142.6	1.5	
85	10	29		1.5	
85	10	30	841756146.4	3.3	
85	11	4	841756140.3	3.7	
85	11	9	841756146.6	2.3	
85	11	14	841756153.6	2.4	
85	11	19	841756153.0	2.2	
85	11	24	841756150.6	2.1	
85	11	29	841756144.7	2.5	
85	12	4	841756151.6	2.4	
85	12	9	841756155.5	2.0	
85	12	14	841756148.3	2.5	
85	12	19	841756151.2	1.9	

HRAS 085 TO WETTZELL Length

		Length		
	DATE	(cm)	Formal	Error
85	12 29	841756153.2	2.3	
86	1 3	841756152.1	2.4	
86		841756150.5	2.3	
86			2.1	
86		841756148.8	2.7	
86			3.2	
86			2.4	
86		841756144.5	1.8	
86			2.4	
86			2.1	
86			2.4	
86			2.2	
86			2.0	
86			2.5	
86			2.2	
86			2.8	
86			2.0	
86			2.2	
86			2.7	
86	4 3		1.7	
86		841756149.6	1.5	
86	4 8		2.2	
86	4 13		2.1	
86	4 18		2.9	
86	4 23		2.5	
86	4 28		2.3	
86	5 8		2.5	
86	5 13		2.4	
86	5 14		1.4	
86	5 17		2.9	
86	5 23		2.9	
86	5 28		2.3	
86	6 2	841756151.6	2.3	
86	6 7	841756140.3	2.8	
86	6 12	841756152.7		
86	6 17	841756147.5		
86	6 22	841756149.1	2.7	
86	6 27	841756156.1	2.6 2.9	
86	7 2	841756148.3	2.3	
86	7 7	841756151.2	3.3	
86		841756147.8		
86			2.9	
86		841756153.9	3.0	
	7 22	841756146.9	3.5	
86	7 27	841756150.4	2.7	
86 86	8 1	841756153.3	3.3	
86	8 6	841756148.1	3.2	
86	8 11	841756155.9	3.6	
86	8 16	841756149.8	3.5	

HRAS 085 TO WETTZELL

		Length	
DA	TE	(cm)	Formal Error
86 8	21	841756150.0	3.6
86 8	26	841756145.5	3.4
86 8	31	841756146.6	3.9
86 9	5	841756153.1	4.0
86 9	10	841756149.8	3.1
86 9	15	841756149.6	2.4
86 9	20	841756161.2	3.3
86 9	25	841756147.2	3.4
86 9	30	841756150.1	3.5
86 10	5	841756148.1	2.7
86 10	10	841756137.5	3.8
86 10	15	841756154.0	2.0
	16		.9
86 10	20	841756144.2	3.0
86 10			2.7
86 10			2.6
86 11		841756145.9	1.9
86 11		841756145.2	2.8
		841756150.9	2.0
		841756141.3	2.4
86 11			2.7
86 11			1.8
86 12		841756151.3	2.6
86 12			1.8
86 12			2.1
86 12			2.0
	2 23		2.4
86 12	2 29	841756147.2	2.3

LENGTH:

Mean = $841756149.4 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 4.2 cm Slope = $.2 \pm .4$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 4.2 cm

Table 6.69 VLBI BASELINE LENGTH EVOLUTION HRAS 085 TO YELLOWKN(7285)

	DATE	Length (cm)	Formal Error
84	8 24	357206988.4	1.4
85	94	357206987.8	1.1

LENGTH:

Mean = $357206988.0 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .3 cm

Table 6.70

VLBI BASELINE LENGTH EVOLUTION

KASHIMA TO KAUAI

	DAT	ΓE	Length (cm)	Formal	Error
84	7	28	570936048.7	2.1	
84	7		570936049.1	1.2	
84	8	4	570936046.3	1.2	
84	8	5	570936049.3	1.2	
85	5	15	570936044.8	. 8	
85		6	570936046.7	1.4	
85	7	20	570936035.0	.8	
85	7	27	570936041.9	1.1	
85	8	10	570936045.7	.7	
85	9	30	570936038.4	.8	
86	3	13	570936034.0	. 8	
86	4	8	570936037.8	1.0	
86	5	2	570936034.3	.7	
86	6	13	570936029.8	2.7	
86	7	5	570936032.4	1.3	
86	7	12	570936030.6	.8	
86	7	26	570936037.5	1.0	
86	8	2	570936032.5	. 6	
86	9	5	570936031.3	.9	
86	10	23	570936029.3	. 8	
86	11	7	570936030.4	.9	
86	12	5	570936030.3	. 9	

Mean = 570936036.6 ± 1.4 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 6.2 cm Slope = $-8.4 \pm .9$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.7 cm

Table 6.71
VLBI BASELINE LENGTH EVOLUTION
KASHIMA TO KWAJAL26

	DA'	ГE	Length (cm)	Formal	Error
			, ,		
84	7	28	393633075.1	1.8	
84	7	29	393633077.8	1.4	
84	8	4	393633077.8	1.0	
84	8	5	393633079.7	1.2	
85	7	6	393633073.4	1.7	
85	7	20	393633064.3	.9	
85	7	27	393633070.7	1.2	
85	8	10	393633069.4	.9	
86	7	5	393633062.8	1.2	
86	7	12	393633061.2	1.3	
86	7	26	393633065.7	1.3	
86	8	2	393633060.8	. 8	

Mean = 393633068.7 ± 2.0 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 6.6 cm Slope = -7.9 ± 1.0 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.5 cm

Table 6.72

VLBI BASELINE LENGTH EVOLUTION

KASHIMA TO MOJAVE12

			Length		
DATE			(cm)	Formal	Error
•		۰,	000100/10 0	2.6	
84		24	809182413.2	3.6	
84	2	24	809182411.1	1.9	
84	7	28	809182414.1	2.8	
84	7	29	809182417.2	1.7	
84	8	4	809182414.6	1.6	
84	8	5	809182410.6	1.8	
84	8	30	809182426.3	2.1	
84	9	2	809182414.2	2.1	
85	5	15	809182413.8	.9	
85		19	809182411.4	2.3	
85	7	6	809182419.9	2.0	
85	7	20	809182403.8	1.1	
85	7	27	809182413.7	1.4	
85	8	10	809182416.5	1.1	
85	9	30	809182415.9	. 9	
85	11	21	809182408.8	1.8	
86	4	8	809182413.9	1.1	
86	6	18	809182413.9	1.7	
86	7	5	809182409.4	1.5	
86	7	12	809182405.3	1.1	
86	7	26	809182412.0	1.0	
86	8	2	809182410.7	.7	
86	10	23	809182408.5	1.1	
86	11	5	809182410.7	1.2	

Mean = $809182412.1 \pm .8$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 4.0 cm Slope = -2.3 ± 1.0 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 3.6 cm

Table 6.73 VLBI BASELINE LENGTH EVOLUTION KASHIMA TO ONSALA60

	DATE	Length (cm)	Formal	Error
85	6 19	796964308.3	2.8	
85	11 21	796964305.4	1.8	
86	6 18	796964313.7	2.5	

LENGTH:

Mean = 796964308.3 ± 2.5 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.5 cm

Table 6.74 VLBI BASELINE LENGTH EVOLUTION KASHIMA TO SHANGHAI

		Length		
	DATE	(cm)	Formal	Error
86	6 13	185207529.9	4.2	

Table 6.75 VLBI BASELINE LENGTH EVOLUTION KASHIMA TO VNDNBERG

			Length	
	DA'	ΓE	(cm)	Formal Error
0.5	_	1.	701300000	
85	5	15	791389232.8	1.1
85	7	6	791389235.1	2.1
85	7	20	791389223.5	1.1
85	7	27	791389232.4	1.5
85	8	10	791389236.6	1.0
85	9	30	791389231.2	.9
86	7	5	791389225.7	1.5
86	7	12	791389220.3	1.1
86	7	26	791389227.4	1.1
86	8	2	791389226.9	. 8
86	10	23	791389225.4	1.2

LENGTH:

Mean = 791389228.4 ± 1.5 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 4.7 cm Slope = -5.6 ± 2.2 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 3.7 cm

Table 6.76 VLBI BASELINE LENGTH EVOLUTION KASHIMA TO WESTFORD

DATE			Length (cm)	Formal	Error
85	6	19	950231651.6	2.8	
85	11	21	950231652.8	2.1	
86	6	18	950231659.9	2.2	
86	11	5	950231655.0	1.4	

LENGTH:

Mean = 950231655.1 ± 1.5 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.7 cm Slope = 2.6 ± 2.6 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.3 cm

Table 6.77 VLBI BASELINE LENGTH EVOLUTION KASHIMA TO WETTZELL

			Length		
	DA'	ľE	(cm)	Formal	Error
84	8	30	847582715.0	2.9	
84	9	2	847582710.5	2.6	
85	6	19	847582691.1	2.7	
85	11	21	847582697.6	1.8	
86	6	18	847582699.8	2.4	
86	11	5	847582704.0	1.7	

LENGTH:

Mean = 847582702.3 ± 3.0 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 6.7 cm Slope = -3.1 ± 3.5 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 6.2 cm

Table 6.78

VLBI BASELINE LENGTH EVOLUTION

KAUAI TO KWAJAL26

			Length		
	DA	ΤE	(cm)	Formal	Error
84	7	7	372519631.9	1.2	
84	7	21	372519626.1	1.5	
84	7	22	372519629.3	1.4	
84	7	28	372519628.7	1.8	
84	7	29	372519634.3	1.5	
84	8	4	372519633.2	1.1	
84	8	5	372519632.0	1.2	
85	7	6	372519629.7	1.3	
85	7	20	372519627.3	. 9	
85	7	27	372519635.2	1.1	
85	8	10	372519630.7	. 8	
86	7	5	372519628.8	1.4	
86	7	12	372519627.1	1.2	
86	7	26	372519632.7	1.2	
86	8	2	372519630.1	. 8	

Mean = $372519630.5 \pm .7$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.4 cm Slope = $-.6 \pm .8$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.4 cm

Table 6.79

VLBI BASELINE LENGTH EVOLUTION

KAUAI TO MOJAVE12

			Length		
	DAT	ΓE	(cm)	Formal	Error
84	7	7	430358123.3	. 8	
84	7	21	430358118.5	. 8	
84	7	22	430358123.1	.7	
84	7	28	430358124.2	1.6	
84	7	29	430358124.5	1.0	
84	8	4	430358125.0	1.1	
84	8	5	430358122.7	1.1	
85	5	15	430358125.7	. 6	
85	7	6	430358127.0	.6	
85	7	20	430358122.8	.9	
85	7	27	430358126.6	.7	
85	8	10	430358128.9	.8	
85	9	30	430358124.2	. 6	
86	4	8	430358124.9	.7	
86	7	5	430358123.8	. 6	
86	7	12	430358122.6	1.0	
86	7	26	430358126.3	. 6	
86	8	2	430358125.4	.7	
86	10	23	430358127.0	. 5	

Mean = $430358125.0 \pm .5$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.1 cm Slope = $1.2 \pm .5$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.8 cm

Table 6.80

VLBI BASELINE LENGTH EVOLUTION
KAUAI TO VNDNBERG

			Length		
	DA'	ΓE	(cm)	Formal	Error
84	7	7	397252457.3	1.1	
84	7	21	397252452.4	.9	
84	7	22	397252455.1	. 8	
85	5	15	397252455.2	.7	
85	7	6	397252455.4	.7	
85	7	20	397252450.9	. 9	
85	7	27	397252456.0	.7	
85	8	10	397252458.2	. 8	
85	9	30	397252451.7	. 6	
86	7	5	397252451.8	.6	
86	7	12	397252449.6	1.0	
86	7	26	397252453.7	.6	
86	8	2	397252452.8	.7	
86		23	397252454.7	.5	
-0		~ >	371232734.1		

Mean = $397252453.9 \pm .6$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.1 cm Slope = $-.9 \pm .7$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.9 cm

Table 6.81

VLBI BASELINE LENGTH EVOLUTION

KWAJAL26 TO MOJAVE12

			Length		
	DA?	ſΕ	(cm)	Formal	Error
84	7	7	757693864.5	1.6	
84	7	21	757693854.7	1.9	
84	7	22	757693858.9	1.8	
84	7	28	757693853.7	2.9	
84	7	29	757693862.6	2.3	
84	8	4	757693862.3	1.4	
84	8	5	757693856.9	2.1	
85	7	6	757693859.0	1.8	
85	7	20	757693852.0	1.6	
85	7	27	757693865.6	1.5	
85	8	10	757693856.9	1.4	
86	7	5	757693860.4	1.2	
86	7	12	757693854.5	2.1	
86	7	26	757693863.3	1.8	
86	8	2	757693861.9	1.3	

Mean = 757693859.7 ± 1.0 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.9 cm Slope = $.2 \pm 1.3$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 3.9 cm

Table 6.82

VLBI BASELINE LENGTH EVOLUTION

KWAJAL26 TO VNDNBERG

DATE			Length (cm)	Formal	Error
84	7	7	729810843.6	1.9	
84	7	21	729810833.8	2.0	
84	7	22	729810838.1	1.8	
85	7	6	729810831.8	1.8	
85	7	20	729810828.1	1.5	
85	7	27	729810841.3	1.6	
85	8	10	729810834.1	1.3	
86	7	5	729810834.4	1.3	
86	7	12	729810827.7	2.0	
86	7	26	729810836.5	1.8	
86	8	2	729810836.0	1.3	

Mean = 729810835.0 \pm 1.4 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 4.3 cm Slope = -1.7 \pm 1.7 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 4.1 cm

Table 6.83

VLBI BASELINE LENGTH EVOLUTION

MARPOINT TO ONSALA60

DATE			Length (cm)	Formal	Error
82	6	18	619844105.1	1.4	
82	6	19	619844111.6	2.0	
82	10	18	619844108.1	2.2	
83	8	29	619844089.9	5.8	

Mean = 619844106.8 ± 2.3 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.9 cm Slope = -9.3 ± 8.2 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 3.3 cm

Table 6.84 VLBI BASELINE LENGTH EVOLUTION MARPOINT TO OVRO 130

DATE			Length (cm)	Formal	Error
82 82 82	6	19	354082446.2 354082448.6 354082447.5	1.0 1.6 1.3	

LENGTH:

Mean = $354082447.1 \pm .7$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .9 cm

Table 6.85
VLBI BASELINE LENGTH EVOLUTION
MARPOINT TO WESTFORD

	DA.	ГЕ	Length (cm)	Formal	Error
82	6	18	67617892.8	. 6	
82	6	19	67617890.7	. 9	
82	10	18	67617891.2	. 8	
83	8	29	67617887.9	2.4	

Mean = $67617891.8 \pm .6$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.1 cm Slope = -3.3 ± 2.0 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .8 cm

Table 6.86

VLBI BASELINE LENGTH EVOLUTION

MOJAVE12 TO ONSALA60

			Length		
	DA'	ΓE	(cm)	Formal	Error
0.2	10	07	000111750 0	, ,	
0.3	10	21	802111750.8	4.1	
85	3	5	802111749.8	.9	
85	5	9	802111753.1	.8	
85	6	19	802111755.6	1.8	
85	10	29	802111753.2	1.1	
85	11	21	802111749.1	1.2	
86	4	4	802111752.7	1.3	
86	5	14	802111752.4	1.4	
86	6	18	802111755.1	1.9	
86	10	16	802111752.7	. 8	

LENGTH:

Mean = $802111752.2 \pm .6$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.7 cm Slope = $.8 \pm .9$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.6 cm

Table 6.87

VLBI BASELINE LENGTH EVOLUTION

MOJAVE12 TO OVRO 130

DATE			Length (cm)	Formal	Error
84	4	26	24527644.8	. 3	
85	3	5	24527645.0	. 3	
85	5	7	24527644.7	. 4	
85	5	9	24527644.6	. 4	
85	10	29	24527645.0	. 2	
86	4	1	24527643.9	. 4	
86	4	4	24527645.3	.7	
86	5	14	24527644.0	. 6	
86	10	16	24527645.2	. 3	
86	10	31	24527646.2	. 5	

Mean = $24527644.9 \pm .2$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .5 cm Slope = $.2 \pm .2$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .4 cm

Table 6.88 VLBI BASELINE LENGTH EVOLUTION MOJAVE12 TO PLATTVIL(7258)

	DA'	ſΈ	Length (cm)	Formal	Error
84	4	26	119631694.0	.7	
85	5	7	119631694.8	.6	
86	4	1	119631696.4	.4	

LENGTH:

Mean = $119631695.6 \pm .7$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.0 cm

Table 6.89

VLBI BASELINE LENGTH EVOLUTION

MOJAVE12 TO RICHMOND

DATE			Length (cm)	Formal	Error
84	1	4	359469298.8	1.2	
85	6	12	359469291.8	1.6	

Mean = 359469296.4 ± 3.3 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.3 cm

Table 6.90
VLBI BASELINE LENGTH EVOLUTION
MOJAVE12 TO VNDNBERG

			Length		
	DA'	ΓE	(cm)	Formal	Error
84	7	7	35128253.2	1.2	
84	•	21	35128253.5	.8	
84	-	22	35128257.0	.6	
85		15	35128257.9	.4	
85	7	6	35128256.7	.5	
85	7	20	35128260.8	1.0	
85	7	27	35128258.1	.7	
85	8	10	35128259.7	.8	
85	9	30	35128258.7	. 3	
86	7	5	35128259.5	.4	
86	7	12	35128260.4	. 8	
86	7	26	35128259.4	. 2	
86	8	2	35128260.6	. 6	
86	10	23	35128260.6	. 3	

LENGTH:

Mean = $35128259.0 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.5 cm Slope = $1.9 \pm .3$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .8 cm

Table 6.91
VLBI BASELINE LENGTH EVOLUTION
MOJAVE12 TO WESTFORD

			Length		
	DAT	ſΕ	(cm)	Formal	Error
83	6	28	390376779.5	2.0	
			_		
83		25		1.2	
83	_	8		1.3	
83	9	27	390376776.5	1.1	
83	10	12	390376775.4	1.1	
83	10	27	390376777.8	1.1	
83	11	21	390376775.6	. 9	
83	12	1	390376774.6	.7	
84	1	4	390376776.9	.7	
85	5	7	390376772.1	. 8	
85	5	9	390376776.8	.7	
85	6	12	390376779.2	1.9	
85	6	19	390376776.7	. 7	
85	8	24	390376776.2	. 6	
85	10	29	390376776.9	. 5	
85	11	21	390376776.1	. 6	
86	4	1	390376777.4	.7	
86	4	4	390376774.8	. 6	
86	5	14	390376776.9	. 6	
86	6	18	390376776.9	.7	
86	10	16	390376775.1	.4	
86	10	31	390376773.7	.4	
86	11	5	390376774.9	.5	

Mean = $390376775.7 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.4 cm Slope = $-.3 \pm .3$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.3 cm

Table 6.92

VLBI BASELINE LENGTH EVOLUTION

MOJAVE12 TO WETTZELL

			Length		
	DA?	ſΕ	(cm)	Formal	Error
84	8	30	858897645.5	2.3	
84	9	2	858897646.4	2.2	
85	3	5	858897640.6	.9	
85	5	9	858897644.0	.6	
85	6	12	858897639.3	3.5	
85	6	19	858897641.6	1.7	
85	10	29	858897645.7	1.0	
85	11	21	858897644.7	1.1	
86	4	4	858897642.0	1.3	
86	5	14	858897641.1	1.4	
86	6	18	858897643.8	1.9	
86	10	16	858897644.0	.9	
86	11	5	858897648.1	1.5	
		_		_ • -	

Mean = $858897643.6 \pm .6$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.9 cm Slope = $.8 \pm .9$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.9 cm

Table 6.93 VLBI BASELINE LENGTH EVOLUTION NRAO 140 TO ONSALA60

	DAT	E	Length (cm)	Formal Erro	Error
81	11	18	631931755.7	3.1	
81	11	19	631931756.4	1.6	
82	12	15	631931761.3	2.9	
82	12	16	631931751.3	2.0	

LENGTH:

Mean = 631931755.5 ± 1.8 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 3.2 cm Slope = -1.6 ± 3.3 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 3.0 cm

Table 6.94
VLBI BASELINE LENGTH EVOLUTION
NRAO 140 TO OVRO 130

			Length		_
DATE		ľE	(cm)	Formal	Error
79	8	3	332424415.6	1.3	
79	11	25	332424420.2	1.7	
80	4	11	332424419.9	. 5	
81	11	18	332424418.5	. 5	
81	11	19	332424418.8	.8	
82	12	15	332424421.3	1.1	
82	12	16	332424418.5	. 6	

Mean = $332424419.0 \pm .4$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.1 cm Slope = $-.1 \pm .4$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 1.1 cm

Table 6.95 VLBI BASELINE LENGTH EVOLUTION NRAO 140 TO WESTFORD

DATE	Length (cm)	Formal	Error
81 11 18	84414808.3	.3	
81 11 19	84414809.1	.5	
82 12 15	84414808.3	.9	
82 12 16	84414808.4	. 5	

LENGTH:

Mean = $84414808.5 \pm .2$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = .3 cm Slope = $-.1 \pm .4$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .3 cm

Table 6.96
VLBI BASELINE LENGTH EVOLUTION
ONSALA60 TO OVRO 130

	DATE		Length (cm)	Formal	Error
80	7	26	791413103.6	2.2	
80	7	27		2.2	
80		26	791413095.5	2.7	
80	9	27	791413094.7	2.6	
80	9	28	791413102.2	1.7	
80	9	29	791413087.8	3.1	
80	9	30	791413097.0	2.4	
80	10	1	791413081.1	3.5	
80	10	2	791413097.3	1.7	
80	10	16	791413097.2	1.5	
80	10	17	791413106.7	2.2	
80	10	18	791413099.0	1.8	
80	10		791413100.7	4.4	
80			791413099.8	1.6	
80			791413103.6	2.4	
80	10	22	791413095.6	1.4	
81	11		791413121.4	7.1	
81	11		791413103.5	1.7	
82	6		791413092.2	4.9	
82			791413100.6	1.8	
	6			3.1	
82	6			2.7	
82	6		791413100.1	4.0	
82				2.8	
82				4.3	
82				2.2	
84	4			1.8	
85	3		791413103.8	. 6	
85	5	9		1.1	
85				1.0	
86	4	4	791413104.0	1.7	
86	5	14		1.6	
86	10	16	791413100.7	. 9	

Mean = 791413101.6 \pm .7 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 4.2 cm Slope = 1.0 \pm .3 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 3.5 cm

Table 6.97 VLBI BASELINE LENGTH EVOLUTION ONSALA60 TO RICHMOND

	DAT	ſΈ	Length (cm)	Formal	Error
83	12	21	730715258.7	16.	
84	1	24	730715257.5	4.1	
84	4	18	730715252.2	2.9	
84	6	12	730715260.7	4.6	
84	10	25	730715247.7	3.3	
			730715250.3		
85	2	27	730715254.1	1.6	
85	4	23	730715256.3	1.9	
85	6	17	730715253.4	2.6	
85	8	16	730715254.2	4.1	
85	9	10	730715260.6	3.1	
85	10	25	730715253.1	1.5	
85	12	9	730715256.8	2.5	
86	1	15	730715254.2	1.6	
86	2	11	730715254.9	2.6	
86	3	19	730715252.9	2.7	
86	4	3	730715254.0		
86	5	13	730715253.6	2.3	
86	6	17	730715254.8	2.5	
86	9	15	730715253.7	2.5	
86			730715248.9		
86	11	4	730715246.1	4.5	
86	12	9	730715255.4	2.0	

LENGTH:

Mean = $730715254.2 \pm .5$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.3 cm Slope = $-.1 \pm .7$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.3 cm

Table 6.98 VLBI BASELINE LENGTH EVOLUTION ONSALA60 TO ROBLED32

DATE			Length (cm)	Formal Erro	
83	5	5	220478331.4	1.4	

Table 6.99
VLBI BASELINE LENGTH EVOLUTION
ONSALA60 TO WESTFORD

	DATE		Length (cm)	Formal	Error
81	10	21	560074144.4	2.3	
81				2.4	
81				1.3	
82	3			1.4	
82				2.2	
82		16		2.2	
82				1.2	
82		19		1.8	
	6	20		1.3	
82		21		2.3	
82				3.5	
82				5.2	
82				1.6	
82				2.5	
82	12			2.5	
82			560074131.1	1.9	
83		7	560074143.3	1.9	
83			560074141.8	1.5	
83			560074141.8	1.9	
	4	18	560074144.8	1.6	
		5		1.8	
	5		560074147.6	3.7	
	6		560074148.1	3.7	
83			560074136.6	4.9	
83			560074148.3	2.8	
83			560074142.4	3.0	
83			560074151.8	1.7	
83			560074146.1	2.5	
84			560074152.1	1.6	
84			560074150.3	1.5	
84			560074144.0	1.4	
			560074150.0	1.6	
84			560074151.3	1.9	
84		12		2.6	
84	10	25	560074148.3	1.9	
84	11	14	560074152.4	1.9	
84	12	19	560074153.5	2.9	
85	1	23	560074146.6	1.3	
85	2	27	560074148.5	1.1	
85	3	4	560074152.3	1.6	
85	4	23	560074149.3	1.3	
85	5	8	560074145.9	1.3	
85	5	9	560074152.0	.8	
85	6	17	560074148.3	2.2	
85	6	18	560074148.8	1.0	

ONSALA60 TO WESTFORD

			Length		
	DAT	ΓE	(cm)	Formal	Error
85	6	19		1.3	
85	8	16		2.9	
85	9			2.2	
85	9			. 9	
85	10	25		.9	
85	10	29	560074151.5	. 8	
85	11	19	560074148.0	1.1	
85	11	20	560074152.8	1.0	
85	11	21	560074149.6	. 9	
85	12	9	560074149.0	.9	
85	12	10	560074149.8	.7	
86	1	14	560074150.4	.9	
86	1	15	560074145.9	1.2	
86	2	11	560074152.2	1.5	
86	3	19	560074149.9	1.3	
86	3	20	560074149.7	.8	
86	4	3	560074153.2	1.0	
86	4	4	560074150.7	.7	
86	5	13	560074151.0	1.1	
86	5	14	560074153.2	.8	
86	6	16	560074152.7	.9	
86	6	17	560074154.6	1.6	
86	6	18	560074155.2	1.4	
86	8	25	560074153.1	. 8	
86	8	26	560074150.6	1.8	
86	9	15	560074149.1	1.3	
86	9	16	560074150.6	. 5	
86	10	15	560074153.3	1.2	
86	10	16	560074151.4	.4	
86	11	3	560074151.0	.7	
86	11	4	560074146.3	1.1	
86	12	8	560074149.9	.7	
86	12	9	560074146.8	1.1	

LENGTH:

Mean = $560074150.0 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.6 cm Slope = $1.0 \pm .2$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.2 cm

Table 6.100

VLBI BASELINE LENGTH EVOLUTION

ONSALA60 TO WETTZELL

	DATE		Length (cm)	Formal	Error
83	11	16	91966100.4	.5	
83			91966098.5	.8	
84			91966099.9	.7	
84			91966100.3	.5	
84			91966100.1	.8	
	4			.5	
	5			.6	
84				1.2	
84				.9	
84			91966101.6	.8	
84	12			.9	
85	1			.5	
85	1			.4	
85			91966100.4	. 3	
85		4	91966101.1	.4	
85	3	5	91966099.7	. 2	
85	4	23		.4	
85	4	24	91966099.6	.4	
85	5	8	91966100.0	. 5	
85	5	9	91966100.9	. 3	
85	6	17	91966099.5	.5	
85	6	18	91966099.9	.4	
85	6	19	91966099.9	.7	
85	8	16	91966101.0	1.2	
85	9	10	91966103.1	1.2	
85	9	11	91966099.6	.4	
85	10	25	91966100.0	. 3	
85	10	29	91966100.8	. 3	
85	11	19	91966101.0	. 5	
85	11	20	91966100.3	.4	
85	11	21	91966101.1	. 3	
85	12	9	91966100.4	. 5	
85	12	10	91966100.7	. 3	
86	1	14	91966099.6	. 5	
86	3	19	91966101.1	.7	
86	3	20	91966100.7	. 4	
86	4	3	91966100.8	. 5	
86	4	4	91966100.9	.4	
86 86	5 5	13 14	91966100.4	.6	
86	6	16	91966100.2 91966100.3	. 5	
86	6	17	91966099.9	. 4 . 8	
86	6	18	91966099.6	. 8 . 7	
86	8	25	91966100.2	.7	
86	8	26	91966099.9	.7	
55	U	20	71700077.7	. ,	

ONSALA60 TO WETTZELL

			Length		
	DA?	ſΈ	(cm)	Formal	Error
86	9	15	91966100.6	. 5	
	9		91966100.3	. 3	
86	10	15	91966100.8	.6	
86	10	16	91966099.9	. 2	
86	11	3	91966100.6	. 3	
86	11	4	91966099.0	. 5	
86	12	8	91966100.2	. 4	
86	12	9	91966100.4	.4	

LENGTH:

Mean = 91966100.3 \pm .1 cm (scaled 1 sigma) Weighted RMS scatter about the mean = .6 cm Slope = .0 \pm .1 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .6 cm

Table 6.101
VLBI BASELINE LENGTH EVOLUTION
OVRO 130 TO PLATTVIL(7258)

	DA ^r	ΓE	Length (cm)	Formal	Error
83	6	6	122081878.7	2.3	
83	6	7	122081874.4	1.5	
84	4	26	122081873.2	.7	
85	5	7	122081875.5	. 5	
86	4	1	122081877.9	. 4	

Mean = 122081876.4 \pm .9 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 1.7 cm Slope = 1.8 \pm .5 cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = .9 cm

Table 6.102 VLBI BASELINE LENGTH EVOLUTION OVRO 130 TO WESTFORD

DATE		ГE	Length (cm)	Formal	Error
81	6	16	392857933.8	.8	
81	11	18	392857934.3	. 6	
81	11	19	392857936.3	. 6	
82	6	16	392857933.6	2.5	
82	6	`18	392857939.3	1.0	
82	6	19	392857932.5	1.8	
82	6	20	392857935.3	1.3	
82	6	21	392857935.7	1.9	
82	10	18	392857936.3	1.3	
82	10	25	392857933.9	1.5	
82	12	15	392857936.2	1.1	
82	12	16	392857935.2	.7	
83	6	6	392857937.4	.9	
85	5	7	392857934.1	. 6	
85	5	9	392857936.4	.7	
85	10	29	392857939.4	. 5	
86	4	1	392857939.1	.7	
86	4	4	392857936.7	. 8	
86	5	14	392857942.0	.7	
86	10	16	392857935.3	.4	
86	10	31	392857938.1	1.0	

LENGTH:

Mean = $392857936.5 \pm .5$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.2 cm Slope = $.5 \pm .2$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.0 cm

Table 6.103
VLBI BASELINE LENGTH EVOLUTION
OVRO 130 TO WETTZELL

DATE			Length (cm)	Formal	Error
85	3	5	850020501.4	.6	
85	5	9	850020499.3	1.0	
85	10	29	850020505.0	1.0	
86	4	4	850020500.0	1.8	
86	5	14	850020505.5	1.7	
86	10	16	850020498.4	.9	

Mean = 850020501.3 ± 1.0 cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.3 cm Slope = $-.8 \pm 1.6$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.2 cm

Table 6.104 VLBI BASELINE LENGTH EVOLUTION PLATTVIL(7258) TO WESTFORD

DATE			Length (cm)	Formal	Error
83	6	6	275286267.8	3.4	
83	6	9	275286268.8	2.1	
85	5	7	275286264.7	.8	
86	4	1	275286268.8	.7	

LENGTH:

Mean = $275286267.2 \pm 1.1 \text{ cm}$ (scaled 1 sigma) Weighted RMS scatter about the mean = 2.0 cm Slope = $.8 \pm 1.3 \text{ cm/yr}$ (scaled 1 sigma) Weighted RMS scatter about the line = 1.9 cm

Table 6.105

VLBI BASELINE LENGTH EVOLUTION
RICHMOND TO WESTFORD

	DAT	ΓE	Length (cm)	Formal	Error
02	10	21	204450177 5	7.0	
83	12	21 4	204450177.5	1.2	
84	1			1.4	
84				1.4	
84				2.3	
84		3 13		1.5	
	2	18		1.7	
84	2	4		1.1	
	3			1.4	
84		25		1.3	
84		3		1.9	
		8		1.8	
	4			1.7	
	4			1.4	
84				1.8	
84				1.7	
		28		1.3	
84		2		1.4	
84		7		3.0	
84				1.8	
	6			1.1	
84				1.8	
84				1.4	
84				1.3	
84		7	204450176.4	1.4	
84	7	12	204450176.0	1.4	
84	7	17	204450178.9	1.4	
84	7	22	204450175.2	1.8	
84	7	27	204450172.8	2.5	
84	8	1	204450172.9	1.6	
84	8	6	204450177.8	1.3	
84		11		1.5	
84		16		1.4	
84	8	21	204450175.8	1.5	
84	8	26	204450177.9	1.4	
84	8	31	204450174.6	1.5	
84	9	5	204450174.7	1.3	
84	9	10	204450174.4	1.2	
84	9	15	204450175.9	3.0	
84	9	25	204450175.7	1.5	
84	9	30	204450174.7	1.4	
84	10	5	204450175.0	1.3	
84	10	10	204450176.2	1.4	
84	10	15	204450172.8	1.4	
84	10	20	204450173.5	1.2	

			Length		
	DA'	ΓE	(cm)	Formal	Error
84	10	25	204450174.1	1.3	
	10	30		1.2	
84	11	9	204450174.4	1.2	
84	11	19	204450173.9	.9	
84	11	24	204450172.2	.9	
84	11	29	204450174.8	1.0	
84	12	4	204450176.5	1.3	
84	12	9	204450175.2	1.1	
84	12	14	204450173.9	1.3	
84	12	19	204450174.7	1.9	
84	12	23	204450174.8	1.4	
85	1	3	204450174.8	1.0	
85	1	8	204450175.7	1.0	
85	1	13		1.9	
85	1	18	204450177.6	1.2	
85	1	28		. 6	
85		2	204450176.0	1.0	
85		7	204450174.0	.9	
85		12		1.0	
85		17		.7	
85	2	22		1.0	
85	2	27		.6	
85	3	24	204450176.2	.8	
85	3	29		.9	
85	4	3	204450175.0	.7	
85	4	8	204450176.5	.8	
85	4	13	204450176.3	.8	
85	4	18	204450179.0	.9	
85	4	23	204450175.2	.6	
85	4	28	204450175.4	1.0	
85		13		1.2	
85		18		1.0	
85				.8	
85		28		.9	
85		2	204450178.4	1.0	
85	6	7	204450177.6	.8	
85	6	12		1.6	
85	6	17		1.3	
85	6	22		1.2	
85	6	27		1.2	
85	7	2	204450176.1	.7	
85	7	7	204450176.1	1.1	
85	7	12		1.1	
85	7	17	204450175.1	.8	
85	7	22	204450175.0	1.5	
85	7	27	204450175.4	1.0	
85	8	1	204450175.6	1.0	
85	8	6	204450174.8	1.1	
	-	-			

Length

			Length		
DATE		ΓE	(cm)	Formal	Error
85	8	11	204450175.6	1.2	
85	8	16	204450175.2	1.0	
85	8	21	204450173.4	1.4	
85	8	26	204450174.8	1.0	
85	8	31	204450177.5	.9	
85	9	5	204450176.4	1.2	
85	9	10	204450175.2	1.1	
85	9	`15	204450175.2	1.0	
85	9	20	204450178.5	1.0	
85	9	25	204450174.1	1.0	
85	9	30	204450175.4	1.1	
85		5	204450174.7	1.1	
85			204450175.3	1.2	
85			204450176.9	.9	
85			204450177.2	1.1	
85			204450177.2	.7	
				.8	
85			204450175.1		
85			204450176.3	1.0	
85			204450173.1	1.2	
85			204450175.5	1.2	
85			204450178.0	1.2	
85			204450176.7	.9	
85	12		204450175.4	. 6	
86	1	8	204450177.0	. 8	
86	1	9	204450176.5	1.2	
86	1	13	204450175.0	. 6	
86	1	15	204450177.8	. 8	
86	1	18	204450176.7	1.0	
86	1	19	204450174.2	1.2	
86	1	23	204450176.3	.9	
86	1	28	204450175.3	.8	
86	1	29	204450176.8	.8	
86	2	2	204450178.7	.9	
86	2	3	204450179.7	1.1	
86	2	7	204450177.9	.9	
86	2	11	204450175.5	1.2	
86	2	12	204450175.8	1.1	
86	2	17		1.0	
	2	22	204450170.2	1.2	
86	2			.9	
86		27	204450173.8		
86	3	4	204450176.2	1.0	
86	3	9	204450175.8	.7	
86	3	14	204450176.1	1.2	
86	3	19	204450174.0	1.1	
86	3	24	204450178.3	.9	
86	3	29	204450174.8	1.0	
86	4	3	204450175.3	.9	
86	4	8	204450176.8	. 8	

Length

			Length		
	DA	ATE	(cm)	Formal	Error
86	5 4	4 13	204450175.1	1.0	
86	5 4	4 18	204450174.9	1.1	
86	5 4	4 23	204450175.1	. 9	
86	5 4	4 28	204450177.7	.8	
86	5 5	5 3	204450169.5	2.2	
86	5 5	5 8	204450179.7	1.1	
86	5 5	5 13	204450175.8	1.0	
86	5 5	5 17	204450174.3	. 8	
86	5 5		204450175.3	1.0	
86	5	28	204450174.9	. 9	
86	ϵ	5 2	204450177.5	. 9	
86	ϵ	5 7	204450172.3	1.1	
86	6	12	204450175.8	1.0	
86			204450175.1	. 9	
86	6		204450176.0	. 9	
86		27	204450175.8	1.1	
86	7	2	204450175.3	. 9	
86	7	7	204450175.0	1.2	
86		12	204450176.8	1.0	
86		17	204450176.3	.9	
86				1.1	
86			204450177.1	. 8	
86			204450174.6	1.3	
86			204450177.1	1.3	
86			204450173.0	6.5	
86	9		204450173.2	1.9	
86	9		204450179.3	1.2	
86	9		204450174.6	1.3	
86	9		204450175.6	1.1	
86	9		204450175.3	1.4	
86	9		204450173.7	1.5	
86	10	5	204450177.7	1.0	
86	10	10	204450179.4	1.2	
86	10	15	204450173.9	3.3	
86	10	20	204450173.7	1.4	
86			204450177.7	1.5	
86	10	30	204450176.2	1.0	
86	11	4	204450173.2	1.7	
86	11	9	204450176.0	1.3	
86	11	14	204450176.9	.9	
86	11	19	204450175.5	1.0	
86	11	29	204450174.8	1.0	
86	12	4	204450176.0	. 9	
86	12	9	204450174.9	1.1	
86	12	14	204450175.8	. 9	
86	12	19	204450174.6	1.0	
86	12	23	204450175.3	1.1	
86	12	29	204450176.8	. 9	

LENGTH:

Mean = $204450175.8 \pm .1 \text{ cm} \text{ (scaled 1 sigma)}$ Weighted RMS scatter about the mean = 1.5 cmSlope = $.2 \pm .1 \text{ cm/yr} \text{ (scaled 1 sigma)}$ Weighted RMS scatter about the line = 1.4 cm

Table 6.106

VLBI BASELINE LENGTH EVOLUTION
RICHMOND TO WETTZELL

DATE	Length (cm)	Formal Error
83 12 21		17.
	758839852.1	4.0
	758839855.8	6.1
	758839862.4	3.3
	758839851.7	2.7
	758839851.2	2.6
	758839851.8	3.0
	758839853.6 758839847.6	3.7
94 4 0	758839854.6	4.2
	758839847.1	3.3
	758839847.1	2.8
	758839845.6	4.3
84 5 28	758839851.9	3.3 2.8
	758839856.6	3.0
	758839836.5	
	758839851.6	
	758839854.0	
	758839856.4	
	758839856.9	3.5
	758839846.8	3.2
	758839853.9	4.0
	758839848.3	3.8
	758839856.7	3.7
84 8 1	758839841.3	3.7
84 8 6	758839851.8	3.9
84 8 11	758839850.3	3.9
84 8 16	758839843.9	3.3
84 8 21	758839857.7	3.5
84 8 26	758839853.2	3.5
84 8 31		3.6
84 9 5	758839851.0	3.4
84 9 10		2.9
84 9 15	758839851.6	5.1
84 9 25	758839853.7	3.8
84 9 30	758839854.2	3.2
84 10 5	758839852.0	3.7
84 10 10	758839845.7	3.5
84 10 15	758839836.5	3.3
84 10 20	758839848.7	3.3
84 10 25	758839847.4	3.3
84 10 30	758839853.1	3.0
84 11 9	758839848.8	2.7
84 11 19		2.4
84 11 24	758839846.1	2.8

RICHMOND TO WETTZELL

T	en	σ	th
		-	

			Length		
	DA'	ΓE	(cm)	Formal	Error
0 /.	11	20	758839854.3	2.7	
84 84		4		2.7	
84				2.7	
			758839848.1	3.3	
84 84			758839847.9	3.9	
84				2.6	
	12	3	758839855.6 758839850.8	2.0	
85	1		758839849.6	2.1	
85	1	8		3.3	
85	1	13		2.8	
85	1		758839859.6	1.6	
85	1		758839855.9	2.2	
85	2	2	758839857.5		
85	2	7	758839845.9	2.1	
85	2		758839849.6	1.7	
85	2	17		1.8	
85	2		758839845.2	2.3	
85	2	27	758839848.4	1.6	
85	3	24		1.8	
85	3	29		2.1 1.9	
85	4	3	758839849.5		
85	4	8		2.3	
85	4			2.4	
85	4	18		2.3	
85	4	23		1.9	
85	4	28		2.2	
85	5	13		2.6	
85	5	18		2.9	
85	5		758839851.4	2.7	
85	5		758839852.7	2.4	
85	6		758839853.8	2.7	
85	6		758839854.4		
85			758839840.4		
85			758839846.5		
85			758839860.2	3.1	
85	6		758839861.7		
85	7	2	758839853.1	1.9	
85	7	7	758839854.6	2.4	
85	7	12	758839857.5	2.7	
85	7	17	758839851.8	2.0	
85	7	22		4.8	
85	7	27	758839855.9	2.5	
85	8	1	758839855.0	2.3	
85	8	6	758839856.7	2.6	
85	8	11	758839852.5	3.1	
85	8	16	758839858.8	2.6	
85	8	21	758839853.1	2.9	
85	8	26	758839857.4	2.2	
85	8	31	758839864.7	3.3	

RICHMOND TO WETTZELL

	Length		
DATE	(cm)	Formal	Error
05 O E	7500200/0 7	2.1	
85 9 5	758839849.7		
85 9 10 85 0 15		2.4	
85 9 15	758839854.5	2.4	
85 9 20		2.4	
85 9 25		2.3	
85 9 30		2.3	
85 10 5		2.3	
85 10 10	758839856.7	2.6	
85 10 15		2.0	
85 10 20	758839854.7	2.5	
85 10 25		1.5	
85 11 9		1.9	
85 11 14	758839849.7	2.0	
85 11 29	758839853.0	2.3	
85 12 4		2.4	
85 12 9	758839853.7	2.5	
85 12 14	758839857.5	2.0	
85 12 19		1.4	
86 1 8		2.1	
	758839850.1		
	758839853.5	2.6	
86 1 18		1.8	
		2.3	
86 1 19		2.5	
86 1 23		2.0	
86 1 28		2.0	
86 1 29		1.6	
86 2 2	758839856.1	2.0	
86 2 3	758839858.3	2.2	
86 2 7	758839854.4	2.2	
	758839850.6	2.1	
	758839854.3	2.0	
	758839842.2	2.6	
86 2 27	758839848.8	1.9	
	758839849.3	2.5	
86 3 9	758839850.5	1.7	
86 3 14	758839854.9	2.1	
86 3 19	758839848.5	2.7	
86 3 24	758839859.8	1.9	
86 3 29	758839854.4	2.5	
86 4 3	758839849.1	2.4	
86 4 8	758839856.3	2.0	
86 4 13	758839853.7	1.9	
86 4 18	758839850.9	2.1	
86 4 23	758839851.1	2.2	
86 4 28	758839862.1	2.3	
86 5 8	758839859.2	2.4	
86 5 13	758839852.3	2.6	
86 5 17	758839856.2	2.5	
J J 1/	, 50059050, 4	2.5	

RICHMOND TO WETTZELL

				Length		
DATE		Έ	(cm)	Formal	Error	
					0.7	
	86	5	23	758839851.3	2.7	
	86	5	28	758839854.1	2.0	
	86	6	2	758839862.4	2.0	
	86	6	7	758839844.2	2.6	
	86		12	758839856.6	2.3	
	86	6	17	758839850.8	2.4	
	86	6	22	758839852.9	2.0	
	86	6	27		2.4	
	86	7	2	758839848.1	2.2	
	86	7	7		2.8	
	86	7			2.1	
	86				2.1	
	86	7			3.0	
	86	7	27		2.0	
	86	8	1	758839854.2	3.9	
	86	8	6			
	86	8	31		14.	
	86	9	5		3.4	
	86			758839860.1	2.6	
	86	9	15	758839852.8	2.7	
	86	9	20	758839852.1	2.7	
	86	9	25	758839848.8	2.9	
	86	9	30			
	86	10	5		2.6	
	86	10	10	758839860.2	3.2	
	86	10	15	758839844.0	8.8	
	86	10			4.0	
	86	10	25	758839860.7	3.3	
	86	10			2.6	
	86	11	4	758839847.4	4.6	
	86	11	9	758839846.8	2.9	
	86				2.3	
	86		19	758839847.3	2.4	
	86	11		758839847.8	2.2	
	86				1.9	
	86					
	86	12	14	758839852.4	2.2	
	86	12	19	758839852.5	2.1	
	86	12	23	758839850.6		
	86	12			1.9	

LENGTH:

Mean = $758839852.7 \pm .3$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 4.3 cm Slope = $1.4 \pm .4$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 4.2 cm

Table 6.107 VLBI BASELINE LENGTH EVOLUTION ROBLED32 TO WESTFORD

Length

DATE (cm) Formal Error

83 5 5 530046293.4 2.7

Table 6.108

VLBI BASELINE LENGTH EVOLUTION WESTFORD TO WETTZELL

	DATE		Length (cm)	Formal Error
83	11 16		599832534.8	1.7
83	12	21	599832529.5	2.5
84	1	9	599832533.5	1.8
84	1	24	599832536.4	1.4
84		29	599832535.6	1.7
84		3	599832535.2	2.9
84		8	599832533.8	2.2
84			599832539.1	1.4
84			599832536.5	1.5
84			599832535.7	2.2
84			599832535.2	2.0
84		9	599832536.7	2.1
84		14	599832529.4	1.4
84			599832534.4	1.4
84	3	25	599832535.6	1.5
84			599832535.1	2.1
84	4	8	599832533.1	2.7
84	4	13	599832536.0	1.7
84	4		599832535.0	1.6
84	4	23	599832532.9	2.7
84	4	28	599832533.2	2.1
84	5	3	599832533.9	
84	5	8	599832536.9	
84	5	13	599832534.3	
84	5	18	599832536.6	
84	- 5		599832540.8	
84	. 5		599832537.5	
84	6		599832534.2	
84	. 6		599832535.9	
84	. 6		599832537.0	
84	- 6		599832539.1	
84	. 6		599832532.0	
84	. 6	27	599832533.5	2.1
84	. 7	2	599832532.6	2.1
84	. 7	7	599832537.0	3.2
84	. 7	12		2.5
84	. 7	17		2.6
84	. 8	1	599832528.1	2.7
84	. 8	6	599832542.8	2.9
84	. 8	11	599832537.1	2.4
84	. 8	16		2.3
84	. 8	21		2.5
84	. 8	26		
84	. 8	31		2.5
84		5	599832534.4	2.4

WESTFORD TO WETTZELL

Length

			Length		
	DA	TE	(cm)	Formal	Error
84	9	10	599832539.8	2.3	
84	9	15	599832534.3	2.7	
84	9	20	599832533.0	3.0	
84	9	25	599832536.1	2.6	
84	9	30	599832536.5	2.6	
84	10	5	599832533.9	2.3	
84	10	10		2.2	
84	10	15	599832531.4	2.3	
84	10	20		2.3	
84	10	25	599832537.6	1.9	
84	10	30	599832538.0	1.9	
84	11	4	5998325 <u>4</u> 3 4	2.2	
84	11	9	599832537.7	2.0	
84	11	14	599832541.2	1.9	
84	11	10	500837537 1	1.7	
84	11	24	500832538 A	2.1	
84	11	\sim	E000000E00 0	1 0	
84	12	4	599832538.2 599832536.7 599832534.6 599832540.3 599832540.4	1.7	
84	12	9	599832534.6	2.2	
84	12	14	599832534.1	2.2	
84	12	19	599832540.3	2.5	
84	12	23	599832540.4	1.6	
84	12	29	599832537.1	2.4	
85	1	3	599832536.4	1.2	
85	1	8	599832533.5		
85	1	13	599832533.2	1.9	
85	1	18	599832536.4	1.5	
85	1	23	599832533.2	1.3	
85	1	28	599832537.2	1.1	
85	2	2	599832538.8		
85	2	7	599832534.5	1.2	
85			599832533.5		
85	2	17	599832534.6	1.3	
85		22	599832535.7	1.5	
85	2	27	599832532.7	1.0	
85	3	4	599832538.7	1.6	
85	3	14	599832536.3	1.1	
85	3	19	599832537.5	1.5	
85	3	24	599832535.3	1.0	
85	3	29	599832534.0	1.4	
85	4	3	599832534.8	1.3	
85	4	8	599832534.9	1.4	
85	4	13	599832537.7	1.5	
85	4	18	599832540.0	1.6	
85	4	23	599832534.2	1.4	
85	4	28	599832535.4	1.5	
85	5	3	599832535.6	1.6	
85	5	8	599832533.6	1.3	

WESTFORD TO WETTZELL

			Length		
DATE		ſΕ		Formal	Error
85	5	9		. 8	
	5			2.0	
	5			1.7	
	5			1.8	
	5			1.6	
85		2		1.8	
85		7		1.4	
85				2.5	
85				2.3	
	6			1.0	
	6		599832535.1	1.3	
			599832540.9	1.9	
			599832537.0	1.7	
			599832536.5	1.4	
			599832537.9	1.7	
			599832538.9	2.1	
			599832536.8	1.5	
			599832528.1	1.9	
			599832542.9		
			599832536.1		
85			599832542.7		
85			599832534.4		
85			599832541.5	1.7	
85			599832538.2	1.8	
85			599832530.3	1.7	
85			599832545.9	2.2	
85		5		2.4	
85		10		1.6	
85		11		.9	
85		15		1.7	
85		20		1.8	
85		25		1.8 1.5	
85		30	599832538.2 599832538.3		
85		5		1.4	
	10			1.5 1.7	
85				1.7	
85 85	10 10			.9	
85	10			.8	
			599832536.3	1.7	
85	10 11	30 4	599832538.8	2.3	
85	11	9	599832533.9	1.4	
85				1.4	
85	11 11		599832539.3 599832535.3	1.4	
85 85			599832539.5	1.2	
85 85	11 11		599832539.5	.9	
85 85				1.1	
85 85			599832535.7	1.1	
03	ΤŢ	49	J770JZJJJ./	1.5	

WESTFORD TO WETTZELL

Length

	DATE	Ξ		(cm)		Form	al	Error
85	12	4	5998	325	38.3	1	.4	
85			5998				.0	
85	12 1	LO	5998	325	36.9		. 8	
85	12 1	4	5998	325	37.4	1	.1	
85	12 1	9	5998	325	35.9	1	.0	
85	12 2	23	5998	325	38.6	1	.7	
85	12 2	29	5998	325	36.1	1	. 1	
86			5998			1	.4	
			5998			1	.4	
	1	9	5998	325	35.0	1	. 6	
86	1 1	.3	5998	325	38.1	1	. 3	
86	1 1	4	5998	325	37.7		. 9	
86	1 1	8	5998	325	36.2	1	. 5	
86	1 1	9	5998	325	32.1	1	. 9	
86		3	5998	325	36.1	1	. 3	
86	1 2	8	5998	325	37.2		. 0	
86	1 2	9	5998	325	35.8		. 9	
86	2	2	5998	325	35.3		. 9	
86	2	3	5998	325	38.7	1	. 2	
86	2	7	5998	325	34.7	1	. 2	
86	2 1	2	5998	325:	36.3	1	. 1	
86	2 1	7	5998	3253	38.3	1.	. 2	
86	2 2	2	5998	3253	37.2	1.	. 2	
			5998			1.	. 0	
86			5998			1.	4	
86			59983			1.		
86	3 1	4	59983	3253	32.7	1.		
86	3 19	9	59983	3253	35.7	1.	3	
86			59983					
86	3 24	4	59983	3253	88.1			
86			59983			1.		
86	4 :	3	59983	3253	8.9	1.	0	
86	4 4	+	59983	3253	36.5			
	4 8	5	59983	3253	8.2	1.		
86	4 13	5	59983					
86 86	4 18		59983			1.		
86	4 23		59983			1.		
86	5 8		59983			1.		
86	5 13		59983			1.		
86	5 14		59983 59983			1.		
86	5 17		59983				8	
86	5 23		59983			1.		
86	5 28		59983			1.		
86	6 2		59983			1.		
86	6 7		59983			1. 1.		
86	6 12		59983			1.		
86	6 16		59983			1.		
-	- 10	•	5,,00	2.54	J.J	T.	J	

WESTFORD TO WETTZELL Length

			Length		
	DAT	E	(cm)	Formal	Error
	_				
86	6		599832540.2	1.5	
86	6	18		1.4	
86	6	22		1.5	
86	6	27		1.9	
86	7	2		1.3	
86	7	7	599832539.6	2.2	
86	7	12		1.4	
86	7	17		1.6 2.3	
86	7	22	599832536.0	1.5	
86	7	27			
86	8	1	599832539.2	2.0	
86	8	6	599832540.5	1.9	
86	8	11	599832539.9	2.1	
86	8	16	599832539.4	1.8	
86	8	21	599832544.1	2.0	
86	8	25		.8	
86	8	26		2.0	
86	8	31	599832541.4	1.9	
86	9	5		2.2	
86	9			1.6	
86	9			1.4	
86	9			.6	
86	9	20		1.5	
86	9			1.6	
86	9			2.1	
86	10		599832539.3	1.6	
86	10			1.3	
86	10			1.1	
86	10			. 4	
86	10			1.6	
86	10			1.3	
86	10			1.5	
86		3	599832538.3	.7	
86	11	4	599832536.3	1.1	
86	11	5	599832542.6	1.0	
86	11		599832540.4	1.4	
86			599832540.1	1.0	
86			599832536.6	1.1	
86	11		599832537.5	1.5	
86	11	29	599832537.6	. 9	
86			599832541.2	1.2	
86			599832537.3	. 6	
86			599832534.0	1.1	
86			599832536.5	1.2	
86			599832536.2	1.0	
86			599832539.9	1.3	
86	12	29	599832539.2	1.1	

WESTFORD TO WETTZELL

LENGTH:

Mean = $599832537.3 \pm .2$ cm (scaled 1 sigma) Weighted RMS scatter about the mean = 2.3 cm Slope = $1.2 \pm .2$ cm/yr (scaled 1 sigma) Weighted RMS scatter about the line = 2.2 cm

Table 7
VLBI Earth Orientation Results
from Solution GLB121

				Values*		Form	nal Er	rors	Cor	relat	ions
г	ate		X-pole		UT1-TAI	X	Y			X-U	Y-U
L	ale	=	x-pore	1-pore	OII-IAI	Λ		011	X-1	A · O	1 0
79	8	4	-361.0	3969.8 -1	798498 6	14 6	59.2	11.5	117	. 826	. 310
79	11		1455.4	3162.6 -1			13.6	8.1	476		
80		12	53.3	1903.9 -1			22.0	4.9	.035		.306
80		27	-263.0	3029.1 -1		7.7	8.4	3.8	009		
80	7		-270.8	3047.3 -1		8.4	9.2	4.0	004		
80	9		-152.9	3388.7 -1		10.3	9.1	3.9			311
80	9		-152.9	3388.9 -1		9.1	8.3	3.9			335
80	9		-130.1	3401.5 -1		7.2	7.3	3.2			342
	9	30		3362.1 -1			11.3	4.7			253
80			-85.7								
80		1	-155.3	3398.1 -1			10.4	4.1	091		
80		2	-213.2	3342.7 -1		12.7		7.8	336		
80		3	-137.4	3437.8 -1			9.7	4.5	294	. /93	541
80			-40.0	3510.0 -1			erence	_	1.5.5	700	006
80			-35.4	3529.8 -1		7.7	8.4	3.5			236
80			-25.7	3557.2 -1		7.5	8.5	3.6			278
80			-45.8	3548.1 -1		8.1	7.2	3.2			263
	10		-24.7	3541.7 -1		6.6	6.7	2.9			290
80			-49.1	3560.9 -1		7.7	8.9	3.8			246
	10		-3.7	3535.8 -1		5.9	6.3	2.6	.162		240
	11	4	22.6		905687.9	15.7		11.4		.914	
	12	2	460.8	3644.8 -1		11.2	9.2	5.0			364
	12		676.6	3591.1 -1		9.2	7.8		.152		309
81		8	840.9		921222.7	16.0		12.8		.929	
81		23	894.2	3305.7 -1		11.7	8.5		.140		305
81		13	1034.1		929699.8	15.1		11.8		.929	
81		28	995.7	3013.8 -1			13.7		.091		399
81		17	973.5		937923.4	19.3		15.4		.930	
81		14	1088.2		953117.0	24.1		19.3		.916	
81		17	838.4	2163.5 -1			23.0		057	.816	.193
81	6	25	780.4	-1	961985.3	41.4		35.4		.961	
81	7	2	777.9	-1	963127.0	30.9		27.0		.931	
81	7	9	784.8		964069.2	31.2		26.2		.956	
81	7	16	915.7	-1	964801.0	90.5		53.6		. 798	
81	7	23	699.1	-1	965593.8	18.4		14.5		. 947	
81	7	30	661.7	-1	966747.4	25.6		21.2		. 945	
81	8	6	515.6	-1	967916.5	35.7		30.8		. 948	
81	8	27	155.3	-1	971123.6	27.1		21.8		.957	
81	9	3	-51.0	-1	972089.4	35.6		29.2		.958	
81	9	10	-101.1		973119.5	26.0		20.3		.942	
81	9	17	-147.0		974590.6	28.3		22.1		.950	
81		24	-276.4		976121.9	32.1		24.9		.948	
81		1	-504.0		977786.0	28.1		19.6		.932	
81			-639.7		981271.8	27.2		21.1		.947	
81			-735.3		982644.3	16.6	13.4	7.0	. 091		363
81			-747.4		984425.4	22.0	~	17.8		.948	
OI	TO	27	-//,-	-1:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22.0		17.0		. , +0	

				*		_			_	_	
				Values*				rrors			ions
ļ	Dat	е	X-pole	Y-pole	UT1-TAI	X	Y	UT1	X-Y	X-U	Y-U
21	11	5	-775.7		-1985892.3	27.1		20.9		.927	
		11	-942.2		-1987308.9	16.3		12.8		.930	
		19			-1989119.4		17 0				257
81		20	-975.4		-19893119.4	7.2					.357
_		25	-975.4 -970.1	2//8./		6.2	8.3		094		378
	12		-970.1 -984.3		-1990506.8	27.7		23.5		.964	
		17			-1991988.1	31.0		25.3		.954	
		23	-955.9		-1995272.5	21.3		16.8		.945	
		30	-887.1 -825.0		-1996712.2	20.5		16.2		.936	
82	1		-823.0 -731.2		-1997956.6	15.5		11.9		.933	
82					-1999850.3	17.3		13.5		.938	
82		14	-602.4		-2001359.6	21.8		16.2		.940	
82		21	-493.8		-2002838.9	17.5		13.9		.945	
82	2	28 2	-429.3		-2003932.5	25.7		21.1		.964	
82		11	-349.7 -41.2		-2005009.3	28.2		24.2		.967	
82		18	37.1		-2006921.3	16.7		13.3		.939	
82		25	242.7		-2008463.9	21.1 28.7		18.3		.958	
82	3		471.9		-2009925.1 -2011836.5	27.7		24.9		.969	
82		11	744.6		-2011636.3	33.9		24.2 29.5		.972	
82		18	858.3		-2013327.2	11.2	0 6	4.7	000	.965	227
82		25	1000.2		-2015055.2	25.3	9.0	19.8		.767 .957	337
82	3		1096.7		-2018008.5	34.5		29.7		.978	
82	4	8	1294.9		-2020396.2	33.6		27.1		.963	
82		14	1290.2		-2021873.1	45.6		38.7		.973	
82		20	1548.1		-2023300.1	14.9	13 /		055		442
82	4		1610.4		-2025282.5	46.5	13.4	40.6		.967	-,442
82	5	4	1842.2		-2027210.3	21.9		17.8		.947	
82		11	1951.0		-2028941.7	24.7		20.0		.947	
82	5		2035.1		-2030208.2	23.3		18.9		.951	
82	6	3	2218.4		-2033955.8	26.8		22.0		.949	
82	6	8	2429.4		-2035066.4	27.5		23.0		.946	
82	6				-2036647.1	13.3	12.9		.124		- 278
82	6	19	2415.6		-2037082.9	9.8			133		
82	6	20	2369.0		-2037269.9				.054		
82	6	21	2394.8	2594.2	-2037473.3		7.7				310
82		22	2391.6	2589.4	-2037633.1	9.9	11.3	4.8	062	. 809	337
82		29	2403.0		-2038870.5	25.9		21.1		. 959	
82		7	2296.8		-2039875.2	32.5		27.8		. 974	
82		13	2247.2		-2040668.9	41.8		36.6		. 970	
82		20	2284.3		-2041875.4	33.9		27.2		. 957	
82		27	2199.9		-2042962.2	31.8		25.6		. 947	
82	8	5	1979.4		-2043839.6	37.0		31.4		. 968	
82		10	1999.6		-2044557.3	36.3		30.8		.976	
82		17	1744.4		-2045547.6	92.4		79.6		. 921	
82		24	1678.6		-2047084.4	51.0		43.9		. 946	
82	8	31	1434.1		-2048224.5	33.6		29.3		. 970	
82	9	8	1205.0		-2049987.8	38.3		32.9		. 972	
82		14	1159.4		-2051405.5	17.1					532
82	9	21	939.9	812.9	-2053161.2	49.0	31.3	16.4	. 048	.718	354

			Values*		Form	nal E	rrors	Cor	relat	ions
Date	•	X-pole	Y-pole	UT1-TAI	Х	Y	UT1	X-Y	X-U	Y-U
82 9	28	511.7	-	-2054465.7	26.9		21.1		.954	
82 10	5	305.3	_	2056220.8	38.8		32.8		.968	
82 10		-105.7	-	2058227.9	27.3		21.7		.962	
82 10		-231.5	712.0 -	2059525.2	8.1	9.2	4.0	029	.803	308
82 10		-515.4	798.2 -	2060825.6	16.9	51.9	14.2	.186	.913	.339
82 11	2	-728.0	-	2062486.2	21.0		16.7		.950	
82 11	9	-949.3	-	-2064067.8	27.0		22.8		.970	
82 11	16	-1089.1	1088.2 -	2065986.6	14.1	15.0	8.3	035	. 847	275
82 11	23	-1319.3	` -	-2067495.7	19.5		15.1		. 944	
82 11	30	-1518.7	-	-2069352.5	25.0		20.7		.967	
82 12	7	-1727.7	-	2071062.4	22.4		17.4		. 943	
82 12	16	-1800.6	1908.6 -	2073395.4	8.4	11.6		147		221
82 12	17	-1814.1	1959.2 -	2073605.1	7.1	9.9		206		425
82 12	21	-1907.0		-2074431.4	19.4		15.8		.952	
82 12				2076672.6	25.8		20.8		.963	
83 1	4	-2012.1		2078134.0	16.0		12.9		. 945	
	11			2080024.9	21.4		17.5		.951	
		-1981.7		2081684.9	17.1		13.8		.915	
		-1920.9		2083981.8	17.8		14.6		.952	
83 2		-1872.5		2086110.0	19.4		15.9		.953	
83 2		-1780.9		2088360.4	8.9	10.8		091		393
		-1663.6		2090175.0	18.7		15.2		.953	
83 3		-1508.2		2094392.6	10.5	9.6	4.8	.049		341
83 3		-1432.8		2096466.0	14.2		11.2		.935	
		-1194.8		2098394.2		10.8		. 046		349
		-1010.8		2100461.5	48.4		38.5		.954	
	29	-685.8		2102663.9	25.2		20.7		.963	
83 4	5	-404.2		2104783.3	24.6		20.0		.957	
	12	-74.0		2106722.5	22.1	10 5	18.5		. 959	00/
	19	161 7		2108665.0	16.2	18.5	6.5		.947	894
	26	461.7		2110677.6	16.3		13.5 20.6		.947	
83 5 83 5	3	766.8			24.1 7.7	0 1	4.0	033		542
	6 10	861.6 1086.3		2112966.6	19.0	0.1	15.6	055	.957	542
		1254.6		2114041.5		18 5		134		- 255
	17 24	1664.0		2117586.9		10.5	25.7	134	.973	-,255
83 6	1	1966.7		2117300.3	37.7		32.7		.974	
83 6	7	2137.4		2120548.4	8.5	14 1		153		.070
83 6	8	2354.8	5038.4	2120540.4	197.13		3.0	846	., 13	.0,0
83 6	8	2122.1		2120742.4	17.3		13.7		. 945	
	10	2195.5		2121213.2		28.5	10.6	.092		. 307
	14	2299.0		2121997.3	12.6				.782	321
	21	2613.4		2123689.1	21.5	,	17.2		.948	
	29	2716.7		2124809.2		46.8		.145		. 246
83 7	6	2975.0		2126000.0	34.5		27.2		.950	
	12	3041.8		2126658.9	22.7		17.6		.929	
	26	3213.1		2128532.3		35.3		037	. 846	.224
83 8	2	3318.0	-	2129661.1	35.7		30.6		.942	•
83 8	9	3340.9	2563.7 -	2130703.1	13.2	29.7	10.9	038	. 845	.226

				Values	*	E	.1 E.		Con	relations	
,	\	_	v1-				ar E			X-U Y-U	T
,	Date	Е	X-pole	1-bore	UT1-TAI	Х	1	OII	X-1	X-0 1-0	,
83	Q	16	3376.6		-2132175.2	27.6		23.4		. 954	
83		23	3256.5		-2132173.2	29.2		23.8		.952	
83	8		3131.1	1827 8	-2134359.2	21.9 2	28 /			.808545	
83	8		3131.1		-2134560.0			6.4	171	905	
83	9		3147.1	1//4.0	-2135119.5	24.5	10.,	19.4		.940	•
83	9		2990.6		-2135993.8	23.3		18.2		.943	
83		13	2784.8		-2136981.4	38.0		31.2		.956	
83		18	2707.8		-2137752.6	22.2		17.1		.930	
83		23	2535.7	829 1	-2138633.6	14.9	20 8			.819565	;
83		24	2000.		-2138872.0		20.2			890	
83		28	2371.8		-2139639.0	11.9					
	10		2231.9		-2140622.5	24.7		19.0		.930	
	10		2065.2		-2141939.2	25.1		19.7		.940	
	10		1822.0	321.6	-2142911.5	11.4	27.9		127		
83	10	18	1633.7		-2143832.8	37.9	_,,,	23.1		.788	
	10		1443.8		-2144982.0	25.9		19.6		.923	
	10		1144.6	169.0	-2145941.2	10.3	15.7			.832308	}
	10				-2146160.8		15.8			899	
	11		1028.8		-2147305.6	21.7		16.7		.919	
	11	7			-2148722.4	18.6		14.5		.928	
	11		489.3		-2149755.0	21.9		17.0		.919	
	11		306.9	109.1		8.9 1	10.6		120	.718478	ì
	11				-2151247.3		12.6	5.0		873	
	11		60.2		-2152192.3	13.2 2			.069		
83	11	27	-105.1		-2153261.2	16.8		13.3	,	.927	
83	12	2	-355.4	252.2		9.8 2	27.6		.148		٠
83	12	7	-512.6		-2155488.4	23.5		18.6		.923	
83	12	12	-686.3		-2156342.7	15.1		11.5		.919	
83	12	17	-820.0		-2157434.9	14.0		10.6		. 906	
83	12	22	-980.4	610.0	-2158344.7	14.4 1	12.8	5.9	.047	.727381	
83	12	23		735.7	-2158481.0	1	15.3	6.2		870	ļ
83	12	27	-1136.5		-2159421.3	15.0		11.7		. 927	
84	1		-1236.0		-2160557.9	16.3		12.4		. 905	
84	1		-1382.3	972.8	-2161147.2	9.5 2	23.5	7.0	.086		
84			-1496.2		-2162025.0	10.5				.722320	
84			-1585.6		-2162900.2	18.1 3			.637	.940 .603	
84		25			-2164328.1		12.6	7.0		.777	
84			-1831.8		-2164533.9	10.3				.695370	
84	1		-1945.6		-2165192.0	10.6 1				.720332	
84	2		-2056.7		-2165736.1	11.4 1		6.1		.703339	
84	2		-2091.9		-2166575.9	12.4 1		5.9		.792329	
84			-2164.4		-2167346.6	22.0 5				.963 .726	
84			-2254.8		-2168210.5	9.4 1		4.8		.795204	
84			-2289.0		-2169285.2	12.6	9.7	4.8	.121	.738386	
84		25			-2169403.9		9.2	3.4		825	
84	2		-2365.5		-2169399.6	31.7 1		5.3	559		
84	2		-2341.9		-2169856.7	17.2 1		7.0		.767370	
84	3		-2393.2		-2170745.6	10.2 1		5.5		.739371	
84	3	10	-2357.0	3206.6	-2171739.7	13.2 1	L2.8	6.6	040	.771410	

				Values'	r	Form	nal Ei	rore	Cor	relations
Τ.		_	X-pole	Y-pole		X	Y	UT1	X-Y	
ע	ate	=	v-bore	1-pore	UII-IMI	11	•	011		. 0 _ 2 0
84	2	15	-2296.6	3408 7	-2172576.8	9.1	8.4	3.9	.021	.776394
84			-2240.7		-2173871.6	9.9	9.3	4.7		.748371
84			-2179.3		-2174866.6	8.9	8.5	4.3		.749386
84	3		-21/9.5		-2175717.0	0.,		13.3	.055	896
84	4		-1993.7		-2176778.3	12.3		5.7	097	.748404
84	4		-1843.7		-2177605.7		14.1	6.9		.789337
84			-1746.4		-2178638.3	10.8	9.7	5.3		.747399
84			-1600.7		-2179852.3	10.2	8.9	4.5		.731380
84			-1600.4		-2180018.5	8.1	6.9	3.4		.799345
84			-1471.5		-2180704.2	12.7		6.2	.120	.664485
84			-1352.9		-2181296.4		19.3	4.0		.615 .344
84	4		-1315.7		-2181708.0	11.6		5.1		.676403
84	5		-1073.5		-2182682.2	41.5		8.9	.660	.609108
84	5	9	-892.3		-2183422.3	16.7		7.0		.749401
84		14	-764.0		-2184544.6	16.6		7.1		.745377
84		19	-546.8		-2185289.6		9.6	5.1		.773412
84	5		0,000		-2185396.6		12.4	4.9		887
84	5		-345.5		-2185945.1	15.8		6.5	.179	.772346
84	5		-145.8		-2186728.6	8.7	8.4	4.0		.713385
84	6	3	90.1		-2187273.0	11.0	10.9	5.6	.128	.689460
84	6	8	291.9	5550.2	-2187961.6	16.7	12.6	7.1		.722501
84	6	13	526.3	5519.5	-2188655.3	10.9	9.9	4.9		.717442
84	6	18	711.8	5501.4	-2189008.2	8.3	8.2	4.2		.719430
84	6	23	898.4		-2189575.9		10.8	5.7		.711474
84	6	28	1101.4		-2190105.8		10.3	5.2		.716474
84	7	3	1337.7		-2190439.0		10.0	5.2		.717474
84	7	8	1558.4		-2190978.7		11.8	6.1	.023	
84	7	8	1536.3		-2190966.3	8.0	7.9	4.6	.026	
84		13	1749.5		-2191177.8	9.6	9.7	5.1		.730484
84		18	1946.6		-2191398.1		10.6	5.8	003	
84		22	2071.4		-2191734.5	8.7	8.6	5.1	089	
84		23	2103.7		-2191809.5	7.9	7.5	4.2	031	.467 .406
84		23	2032.3		-2191738.5		50.7		.449	
84		28	2346.2		-2192091.0		82.4		.721	
84		29	2381.5		-2192167.1		10.1	8.0	.185	
84	7	30	2405.3		-2192257.7		7.8		.067	
84	8	2	2489.2		-2192719.8		10.6			.735494
84	8	5	2617.9		-2193116.2		7.1		.022	
84	8	6	2645.3		-2193189.5	8.0	7.6			.411 .489
84	8	7	2659.3		-2193261.4		10.2			.749450
84	8		2790.0		-2193545.5	10.2	9.9			.735445
84		17	2928.8		-2194212.4		11.1	5.4		.675480
84	8		3025.5		-2194822.2		10.7	5.5		.718453
84	8	25	2982.9		-2195032.6	11.0				.892288
84	8	27	3053.6		-2195346.8		10.7	5.4		.697451
84	8	29	3063.6		-2195754.6	8.5		4.0 2.3		.857211
84	8	31	3072.7		-2196153.3	5.5	5.6 10.8	5.9		.740199 .733493
84	9	1	3100.4		-2196350.9					.732210
84	9	3	3084.8	3304.9	-2196626.0	5.5	5.5	2.3	. 143	./32210

Nate Nate National Nation			Values*	Formal Errors	Correlations
84 9 6 3120.5 3381.4 -2196946.8 9.8 10.5 5.2 .066 .695492 84 9 11 3176.1 3191.6 -2197546.6 8.9 9.6 4.9 .046 .709475 84 9 16 3196.5 2976.1 -2198326.5 12.5 12.1 6.4 .029 .730500 84 9 21 3221.9 2814.3 -2198813.5 14.8 12.8 6.9009 .794518 84 9 26 3230.4 2593.3 -2199887.5 10.0 10.3 5.3 .053 .717480 84 10 1 3224.1 2402.3 -2201578.0 9.6 10.2 5.2004 .738490 84 10 1 3088.4 2019.3 -2201578.0 9.6 10.2 5.2004 .738490 84 10 10 3088.4 2019.3 -2202531.7 10.8 9.9 5.3 .047 .722497 84 10 11 3088.4 2019.3 -2202531.7 10.8 9.9 5.3 .047 .722497 84 10 21 2903.1 1703.8 -2204068.8 9.5 10.3 5.1 .075 .704484 84 10 26 2840.0 1526.2 -2205309.0 9.9 9.2 2 4.7 .112 .735413 84 10 27 2768.0 -2205499.9 14.9 9.5 84 11 5 2587.6 1225.9 -2206075.1 9.3 9.4 4.7 .055 .732460 84 11 1 20 2226.7 843.6 -2209486.8 11.2 9.3 4.8 .031 .794379 84 11 16 913.5 -2208585.5 14.2 5.5 -877 84 11 15 2341.6 944.7 -2208464.8 11.2 9.3 4.8 .031 .794379 84 11 20 2226.7 843.6 -2209449.4 8.4 8.6 4.5 .081 .734406 84 11 20 2266.7 843.6 -2210457.1 8.6 9.9 9.6 5.0 .108 .734406 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .734406 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .734406 84 12 20 1015.4 -275.6 -2214355.7 11.7 11.8 6.5029 .732466 84 12 20 105.4 -275.6 -2214355.7 11.7 11.8 6.5029 .780459 84 12 20 855.4 -2212589.6 14.3 12.6 6.7 .095 .732462 85 1 4 429.2 188.9 -221468.4 8.8 8.8 4.7 .075 .794 .345 85 1 9 193.6 219.7 -22121821.3 16.0 13.3 6.8 .210 .587651 85 1 9 -126.5 319.5 -2219829.2 31.0 14.7 5.4 .770 .795 .32462 85 1 4 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .200 .732462 85 1 2 -295.9 422.3 -221408.3 8.4 8.3 4.7 .075 .704358 85 2 8 -726.0 621.7 -2212595.6 14.3 12.6 6.7 .095 .738402 85 1 2 -496.7 477.4 -2220457.7 6.8 7.8 5.9 9.00 .746386 85 1 2 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .200 .745358 85 2 8 -726.0 621.7 -2221598.6 7.7 7.7 9.3 8.00 .745358 85 3 5 -1500.3 1187.5 -2225469.3 8.4 8.3 4.1 1.52 .777378 85 2 8 -726.0 621.7 -2221598.6 7.7 7.7 7.8 3.9 .065 .7384	Date	Y-nole			
84 9 16 3196.5 2976.1 -2198326.5 12.5 12.1 6.4 .029 .730 500 84 9 21 3221.9 2814.3 -2198913.5 14.8 12.8 6.9 090 .794 518 84 9 26 3230.4 2593.3 -2199887.5 10.0 10.3 5.3 .053 .717 480 84 10 1 3224.1 22020578.0 10.5 10.2 5.3 .047 .722 .490 84 10 1 3088.4 2019.3 -2202531.7 10.8 9.9 5.3 .047 .722 .497 84 10 21 2993.1 1703.8 -2203030.0 9.9 9.2 2.4 7 .112 .735 468 84 10 27 2768.0 12205936.0 13.0 10.9 5.9 .055 .732 .460 84 11 5	Date	n pore	1-poie oil ini	n i oii	n i n o i o
84 9 16 3196.5 2976.1 -2198326.5 12.5 12.1 6.4 .029 .730 500 84 9 21 3221.9 2814.3 -2198913.5 14.8 12.8 6.9 090 .794 518 84 9 26 3230.4 2593.3 -2199887.5 10.0 10.3 5.3 .053 .717 480 84 10 1 3224.1 22020578.0 10.5 10.2 5.3 .047 .722 .490 84 10 1 3088.4 2019.3 -2202531.7 10.8 9.9 5.3 .047 .722 .497 84 10 21 2993.1 1703.8 -2203030.0 9.9 9.2 2.4 7 .112 .735 468 84 10 27 2768.0 12205936.0 13.0 10.9 5.9 .055 .732 .460 84 11 5	84 9 6	3120.5	3381.4 -2196946.8	9.8 10.5 5.2	.066 .695492
84 9 16 3196.5 2976.1 -2198913.5 14.8 12.18 6.4 .029 .730 500 84 9 26 3230.4 2593.3 -2199887.5 10.0 10.3 5.3 .053 .717 -480 84 10 1 3224.1 2402.3 -2201578.0 9.6 10.2 5.3 .171 .731 -392 84 10 16 2960.6 1836.8 -220317.7 10.8 9.9 5.3 .047 .722 -497 84 10 26 2840.0 1526.2 -2203309.0 9.9 9.2 4.7 .112 .735 -418 84 10 2768.0 1525.9 -2206936.0 13.0 10.9 9.9 9.5 8.72 84 10 31 2696.4 1225.9 -2206936.0 13.0 10.9 5.9 .059 .761 -441 84 11 10 2478.8 <td></td> <td></td> <td></td> <td></td> <td></td>					
84 9 21 3221.9 2814.3 -2199887.5 10.0 10.3 5.3 .053 .717 .480 84 10 1 3224.1 2402.3 -2200863.7 10.5 10.2 5.3 .171 .731 -392 84 10 6 3155.3 2231.4 -2201578.0 9.6 10.2 5.2 -004 .738 490 84 10 16 2960.6 1836.8 -2203312.8 10.4 10.4 5.6 .035 .740 458 84 10 22 2903.1 1703.8 -2206309.0 9.9 9.2 2.7 .112 .735 418 84 10 27 2768.0 1387.4 -2205499.9 14.9 9.5 1.12 .735 460 84 11 5 2587.6 1225.9 -2206949.0 13.0 10.9 9.9 .5 .72 .460 84 11 20					
84 9 26 3230.4 2593.3 -2199887.5 10.0 10.3 5.3 .053 .717 480 84 10 6 3155.3 2231.4 -2201578.0 9.6 10.2 5.2 004 .738 490 84 10 11 3088.4 22019.3 -2202531.7 10.8 9.9 5.3 .047 .722 497 84 10 11 3088.4 2203312.8 10.4 10.4 5.6 .035 .740 .458 84 10 21 2903.1 1703.8 -2206060.8 9.5 10.3 5.1 .075 .704 488 84 10 21 2680.0 1526.2 -2205399.9 14.9 9.5 .872 .841 84 10 21 2587.6 1225.9 -2206936.0 13.0 10.9 5.9 .059 .761 441 84 11 5 2587.6 1225.					
84 10 6 3155.3 2231.4 - 2201578.0 9.6 10.2 5.2 004 .738490 84 10 11 3088.4 2019.3 - 2202531.7 10.8 9.9 5.3 .047 .722497 84 10 12 2960.6 1836.8 - 2203402.8 10.4 10.4 5.6 .035 .740458 84 10 21 2903.1 1703.8 - 2204068.8 9.5 10.3 5.1 .075 .704484 84 10 27 2768.0 1526.2 - 2205309.0 9.9 9.2 4.7 .112 .735413 84 10 31 2696.4 1387.4 - 2206075.1 9.3 9.4 4.7 .055 .732460 84 11 15 23841.6 1944.7 - 2208646.8 11.2 9.3 4.8 .062 .740428 84 11 15 2341.6 944.7 - 2208646.8 11.2 9.3 4.8 .031 .794379 84 11 20 2226.7 843.6 - 2210427.1 8.6 9.2 4.7 .052 .726454 84 11 20 125.6 357.9 - 221210427.1 8.6 9.2 4.7 .052 .726454 84 12 10 1507.6 406.1 - 2212731.4 9.2 10.2 5.3 .029 .732466 84 12 20 1507.6 240.4 - 2214686.4 8.8 8.8 8.4 .7 .	84 9 26		2593.3 -2199887.5		
84 10 11 3088.4 2019.3 -2202531.7 10.8 9.9 5.3 .047 .722497 84 10 16 2906.6 1836.8 -2203312.8 10.4 10.4 5.6 .035 .740458 84 10 21 2903.1 1703.8 -2203509.0 9.9 9.2 4.7 .112 .735413 84 10 26 2840.0 1526.2 -2205309.0 9.9 9.2 4.7 .112 .735413 84 10 31 2696.4 1387.4 -2206075.1 9.3 9.4 4.7 .055 .732460 84 11 5 2587.6 1225.9 -2206936.0 13.0 10.9 5.9 .059 .761441 84 11 10 2478.8 1076.1 -2207857.8 9.5 9.0 4.8 .082 .740428 84 11 15 2341.6 944.7 -2208464.8 11.2 9.3 4.8 .031 .794379 84 11 20 2226.7 843.6 594.7 -2208464.8 11.2 9.3 4.8 .031 .794379 84 11 30 1871.4 626.3 -2211116.3 8.6 8.9 4.7 .052 .726454 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .0108 .716419 84 12 15 1272.6 357.9 -2213428.3 9.4 10.3 5.3 .024 .735462 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 -029 .780 .459 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 -029 .780 .459 85 1 1 9 126.5 319.5 -2219043.4 8.7 8.5 4.2 .107 .722 .327 85 1 2 -496.7 47.4 -2228468.4 8.8 8.8 8.8 4.7 .037 .792 .327 84 12 5 1609.6 500.7 -2212014.6 50.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	84 10 1	3224.1	2402.3 -2200863.7	10.5 10.2 5.3	.171 .731392
84 10 16 2960.6 1836.8 -2203312.8 10.4 10.4 5.6 .035 .740458 84 10 21 2903.1 1703.8 -2204068.8 9.5 10.3 5.1 .075 .704484 84 10 27 2768.0 -2205499.9 14.9 9.5 .872 84 10 31 2696.4 1387.4 -2206075.1 9.3 9.4 4.7 .055 .732460 84 11 5 2587.6 1225.9 -2206936.0 13.0 10.9 5.9 .059 .761441 84 11 15 2341.6 944.7 -2208446.8 11.2 9.3 4.8 .031 .794379 84 11 12 20 226.7 843.6 -2209449.4 8.4 8.6 4.5 .081 .734406 84 11 25 2064.4 745.8 -2210427.1 8.6 8.9 4.5 .072 .743 .405 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .716419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732466 84 12 20 1015.4 275.6 -2214686.4 8.8 8.8 8.8 4.7 .037 .792327 84 12 20 1015.4 275.6 -2214686.4 8.8 8.8 8.8 4.7 .037 .792 .327 85 1 1 4 429.2 188.9 -2216494.2 7.7 .7 .7.9 3.8 .089 .746 .452 85 1 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .746 .045 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 .029 .726	84 10 6	3155.3	2231.4 -2201578.0	9.6 10.2 5.2	004 .738490
84 10 21 2903.1 1703.8 -2204068.8 9.5 10.3 5.1 .075 .704484 84 10 26 2840.0 1526.2 -2205309.9 9.9 9.2 4.7 .112 .735413 84 10 27 2768.0 -2205499.9 9.4 9.9 9.5 .872 84 10 31 2696.4 1387.4 -2206075.1 9.3 9.4 4.7 .055 .732460 84 11 5 2587.6 1225.9 -2206936.0 13.0 10.9 5.9 .059 .761441 84 11 15 2341.6 944.7 -2208446.8 11.2 9.3 4.8 .031 .794379 84 11 16 913.5 -2208585.5 14.2 5.5 .897 84 11 20 2226.7 843.6 -2209449.4 8.8 4.8 6.4 5. .081 .734 -406 84 11 25 2064.4 745.8 -2210427.1 8.6 9.2 4.7 .052 .726454 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .072 .743405 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732466 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 -0.09 .732458 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 -0.09 .732458 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 7.0 3.5 .099 .746382 85 1 1 9 193.6 29.7 22217167.2 7.7 7.7 9.3 8.8 8.8 4.7 .007 .792327 85 1 1 2 1 -26.5 319.5 -2219043.4 8.7 8.5 4.2 100 .587561 85 1 2 2 3 -3619.0 54.2 222469.2 3.221823.3 16.0 14.7 5.4			2019.3 -2202531.7		
84 10 26 2840.0 1526.2 -2205399.0 9.9 9.2 4.7 .112 .735413 84 10 27 2768.0 1387.4 -2206495.1 9.3 9.4 4.7 .055 .732460 84 11 5 2587.6 1225.9 -2206936.0 13.0 10.9 5.9 .059 .761441 84 11 10 2478.8 1076.1 -2207857.8 9.5 9.0 4.8 .082 .740428 84 11 15 2341.6 944.7 -2208446.8 11.2 9.3 4.8 .031 .794379 84 11 20 2226.7 843.6 -2209449.4 8 8.4 8.6 4.5 .081 .734406 84 11 25 2064.4 745.8 -2210427.1 8.6 9.2 4.7 .052 .726454 84 11 30 1871.4 626.3 -2211116.3 8.6 8.9 4.5 .072 .743405 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .716419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732466 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5029 .780459 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .735462 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746382 85 1 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729402 85 1 2 -295.9 422.3 -221829.2 31.0 14.7 5.4 .787 .704 .202 85 1 2 -295.9 422.3 -2216494.2 7.5 7.0 3.5 .099 .746382 85 1 2 -406.7 477 4.2224586.4 8 8.8 8.8 8.8 4.7 .037 .792420 85 1 2 -406.7 477 4.7 -22215595.6 14.3 12.6 6.7 .045 .762442 85 1 2 -406.7 477 4.7 -2221598.6 7.7 5.7 0.3 3.5 .099 .746382 85 1 2 -406.7 477 4.2224586.4 8					
84 10 27 2768.0 -2205499.9 14.9 9.5 .872 84 10 31 2696.4 1387.4 -2206075.1 9.3 9.4 4.7 .055 .732460 84 11 5 2587.6 1225.9 -2206936.0 13.0 10.9 5.9 .059 .761441 84 11 10 2478.8 1076.1 -2207857.8 9.5 9.0 4.8 .082 .740428 84 11 15 2341.6 944.7 -2208585.5 14.2 5.5 .873897 84 11 20 2226.7 843.6 -2209449.4 8.4 8.6 4.5 .081 .734406 84 11 25 2064.4 745.8 -22110427.1 8.6 9.2 4.7 .052 .726454 84 11 25 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .716419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732466 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 029 .780459 84 12 24 850.0 224.4 -2214686.4 8.8 8.8 4.7 0.37 .792 .327 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 0.45 .762442 85 1 9 -126.5 319.5 -2219043.4 8.7 8.5 4.2 10.587 .999 .746382 85 1 1 9 -126.5 319.5 -2219667.8 8.7 8.5 4.2 10.587 .999 .746382 85 1 29 -306.7 308.8 .2219667.8 8.7 8.5 4.2 10.588 .999 .746382 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
84 10 31 2696.4 1387.4 -2206075.1 9.3 9.4 4.7 .055 .732460 84 11 1 5 2587.6 1225.9 -2206936.0 13.0 10.9 5.9 .059 .761441 84 11 10 2478.8 1076.1 -2207857.8 9.5 9.0 4.8 .082 .740428 84 11 15 2341.6 944.7 -2208446.8 11.2 9.3 4.8 .031 .794379 84 11 16 913.5 -2208585.5 14.2 5.5					
84 11 5 5 2587.6 1225.9 -2206936.0 13.0 10.9 5.9 .059 .761 424 84 11 10 2478.8 1076.1 -2207857.8 9.5 9.0 4.8 .082 .740 428 84 11 16 913.5 -2208585.5 14.2 5.5 897 84 11 20 2226.7 843.6 -2209449.4 8.4 8.6 4.5 .081 .734 406 84 11 20 2064.4 745.8 -2210427.1 8.6 9.2 4.7 .052 .726 454 84 11 20 1507.6 600.7 -2212014.6 9.9 9.6 5.0 .072 .743 405 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732 466 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 029 .80 459 84 12 30 554.2 172.6 -2214355.7 11.7 11.8 6.5 029 .780 452 85 1 4 20					
84 11 10 2478.8 1076.1 -2207857.8 9.5 9.0 4.8 .082 .740 428 84 11 15 2341.6 944.7 -2208446.8 11.2 9.3 4.8 .031 .794 379 84 11 20 2226.7 843.6 -2209449.4 8.4 8.6 4.5 .081 .734 406 84 11 25 2064.4 745.8 -2210427.1 8.6 9.2 4.7 .052 .726 454 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .716 -419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732 466 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 029 .780 -459 84 12 20 105.4 225.6 -2214355.7 11.7 11.8 6.5 029 .780 -459 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045					
84 11 15 2341.6 944.7 -2208446.8 11.2 9.3 4.8 .031 .794 379 84 11 16 913.5 -2208585.5 14.2 5.5 897 84 11 20 2226.7 843.6 -2209449.4 8.4 8.6 4.5 .081 .734 406 84 11 30 1871.4 626.3 -2211116.3 8.6 8.9 4.5 .072 .743 405 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .716 -419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732 -466 84 12 20 1015.4 275.6 -2213428.3 9.4 10.3 5.3 .029 .780 459 84 12 20 1015.4 275.6 -2213428.3 9.4 10.3 5.3 .029 .780 459 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762 .442 85 1 4 4230.8					
84 11 16 913.5 -2208585.5 14.2 5.5 897 84 11 20 2226.7 843.6 -2209449.4 8.4 8.6 4.5 .081 .734406 84 11 25 2064.4 745.8 -2210427.1 8.6 9.2 4.7 .052 .726454 84 11 30 1871.4 626.3 -2211116.3 8.6 8.9 4.5 .072 .743405 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .716419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732466 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 -029 .780459 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 -029 .780459 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762442 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746382 85 1 19 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729402 85 1 19 -126.5 319.5 -2219043.4 8.7 8.5 4.2 .107 .720420 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788380 85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 2 8 -726.0 621.7 -2221598.6 7.3 7.2 3.6 .089 .762351 85 2 2 8 -1362.3 106.5 .28.2224793.4 6.5 6.5					
84 11 20 2226.7 843.6 -2209449.4 8.4 8.6 4.5 .081 .734406 84 11 25 2064.4 745.8 -2210427.1 8.6 9.2 4.7 .052 .726454 84 11 30 1871.4 626.3 -2211116.3 8.6 8.9 4.5 .072 .743405 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .716419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732466 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5029 .780459 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5029 .780459 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762442 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746382 85 1 19 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729402 85 1 14 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .210 .587561 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788380 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746376 85 2 3 -619.0 541.8 .2220990.7 8.1 8.0 3.9 .154 .711378 85 2 13 -860.8 752.8 -2222480.3 8.4 8.3 8.4 8.3 4.1 .152 .727378 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734339 85 3 5 -1500.3 1187.5 -2225560.9 7.0 6.7 3.3 .115 .738404 85 3 20 -1865.4 173					
84 11 25 2064.4 745.8 -2210427.1 8.6 9.2 4.7 .052 .726454 84 11 30 1871.4 626.3 -2211116.3 8.6 8.9 4.5 .072 .743405 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 1.08 .716419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732466 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 -029 .780459 84 12 24 850.0 224.4 -2214686.4 8.8 8.8 4.7 .037 .792327 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762442 85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729402 85 1 1 4 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .210 .587561 85 1 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788380 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788380 85 2 3 -619.0 541.8 -2220457.7 6.8 7.2 3.5 .070 .746376 85 2 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711378 85 2 2 8 -1362.3 1069.5 -2224480.3 8.4 8.3 4.1 .152 .727378 85 2 2 8 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734339 85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .729 .300 85 3 2 -1890.6 1939.4 -2223963.0 8.2 8.5 4.1 .130 .706411 85 3 3 0 -1910.1 2157.6 -2223493.1 7.7 7.6 3.9 .065 .					
84 11 30 1871.4 626.3 -2211116.3 8.6 8.9 4.5 .072 .743405 84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .716419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732466 84 12 20 1015.4 275.6 -2213428.3 9.4 10.3 5.3 .024 .735462 84 12 24 850.0 224.4 -2214686.4 8.8 8.8 4.7 .037 .792327 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762442 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746382 85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729402 85 1 19 -126.5 319.5 -2219043.4 8.7 8.5 4.2 .100 .720420 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788380 85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711378 85 2 2 8 -726.0 621.7 -2221598.6 7.3 8.1 8.0 3.9 .154 .711378 85 2 2 8 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734339 85 2 2 8 -1362.3 1069.5 -2224793.4 6.5 6.5 5.0 3.0 .142 .734339 85 3 5 -1500.3 1187.5 -22255416.3 10.9 9.0 4.3 .219 .755330 85 3 3 0 -1910.1 1258.4 -222396.9 9.7 0.6.7 3.3 .115 .738 .365 <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
84 12 5 1699.6 500.7 -2212014.6 9.9 9.6 5.0 .108 .716 419 84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732 466 84 12 15 1272.6 357.9 -2213428.3 9.4 10.3 5.3 .024 .735 462 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 -029 .780 -459 84 12 24 850.0 224.4 -2214686.4 8.8 8.4 4.7 .037 .792 .327 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762 .442 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746 .382 85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .7					
84 12 10 1507.6 406.1 -2212731.4 9.2 10.2 5.3 .029 .732466 84 12 15 1272.6 357.9 -2213428.3 9.4 10.3 5.3 .024 .735462 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 029 .780459 84 12 24 850.0 224.4 -2214686.4 8.8 8.8 4.7 .037 .792327 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762442 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746382 85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729402 85 1 14 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .210 .587561 85 1 24 -308.6 390.8 -2219643.4 8.7 8.5 4.2 .107 .720420 85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746336 85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711378 85 2 18 -1017.5 859.4 -2223072.5 7.4 7.8 3.9 .065 .738 .404 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734339 85 3 5 -1500.3 1187.5 -2225580.9 5.5 5.4 2.4 .113 .775255 85 3 20 -1865.4 1736.0 -2228494.5 9.2 8.1 4.1 .084 .765367 85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078 .744392 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
84 12 15 1272.6 357.9 -2213428.3 9.4 10.3 5.3 .024 .735 462 84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 029 .780 459 84 12 24 850.0 224.4 -2214686.4 8.8 8.8 4.7 .037 .792 327 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762 .442 85 1 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746 .382 85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729 .402 85 1 14 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .210 .587 .561 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
84 12 20 1015.4 275.6 -2214355.7 11.7 11.8 6.5 029 .780 459 84 12 24 850.0 224.4 -2214686.4 8.8 8.8 4.7 .037 .792 327 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762 442 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746 382 85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729 -402 85 1 14 -17.4 255.0 -22182133 16.0 13.3 6.8 .210 .587 561 85 1 19 -126.5 319.5 -2219043.4 8.7 8.5 4.2 .107 .720 420 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .7					
84 12 24 850.0 224.4 -2214686.4 8.8 8.8 4.7 .037 .792327 84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762442 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746382 85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729402 85 1 14 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .210 .587561 85 1 19 -126.5 319.5 -2219043.4 8.7 8.5 4.2 .107 .720420 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788380 85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746376 85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711 .378 85 2 8 -726.0 621.7 -2221598.6 7.3 7.2 3.6 .089 .762351 85 2 13 -860.8 752.8 -2222480.3 8.4 8.3 4.1 .152 .727378 85 2 23 -1193.3 955.4 -2223072.5 7.4 7.8 3.9 .065 .738404 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734339 85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .759300 85 3 3 5 -1764.6 1528.4 -2227568.1 8.0 7.2 3.5 .129 .721376 85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078 .744392 85 4 4 -1932.4 2334.2 -2231312.9 7.0 7.1 3.4 .080 .732387 85 4 9 -1917.1 2528.1 -2232443.7 7.3 7.1 3.5 .075 .753364 85 4 14 -1899.5 2734.5 -2233166.7 7.9 7.9 3.8 .133 .701420					
84 12 30 554.2 172.6 -2215595.6 14.3 12.6 6.7 .045 .762 442 85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746 382 85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729 402 85 1 14 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .210 .587 561 85 1 19 -126.5 319.5 -2219043.4 8.7 8.5 4.2 .107 .720 420 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788 380 85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746 376 85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711 .378 85 2 13 -860.8 752.8 -2222480.3 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
85 1 4 429.2 188.9 -2216494.2 7.5 7.0 3.5 .099 .746 382 85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729 402 85 1 14 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .210 .587 561 85 1 19 -126.5 319.5 -2219043.4 8.7 8.5 4.2 .107 .720 420 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788 -380 85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746 .376 85 2 3 -619.0 541.8 -2220499.7 8.1 8.0 3.9 .154 .711 <td></td> <td></td> <td></td> <td></td> <td></td>					
85 1 9 193.6 219.7 -2217167.2 7.7 7.9 3.8 .089 .729 402 85 1 14 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .210 .587 561 85 1 19 -126.5 319.5 -2219043.4 8.7 8.5 4.2 .107 .720 420 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788 380 85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746 -376 85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711 -378 85 2 13 -860.8 752.8 -2222480.3 8.4 8.3 4.1 .152 .727 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
85 1 14 -17.4 255.0 -2218213.3 16.0 13.3 6.8 .210 .587 561 85 1 19 -126.5 319.5 -2219043.4 8.7 8.5 4.2 .107 .720 420 85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788 380 85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746 -376 85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711 -378 85 2 8 -726.0 621.7 -2221598.6 7.3 7.2 3.6 .089 .762 -351 85 2 18 -1017.5 859.4 -2223072.5 7.4 7.8 3.9 .065 .738<	85 1 9				
85 1 24 -308.6 390.8 -2219667.8 8.5 7.5 3.9 .010 .788 380 85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746 376 85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711 378 85 2 8 -726.0 621.7 -2221598.6 7.3 7.2 3.6 .089 .762 351 85 2 13 -860.8 752.8 -2222480.3 8.4 8.3 4.1 .152 .727 378 85 2 18 -1017.5 859.4 -2223072.5 7.4 7.8 3.9 .065 .738 .404 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .7	85 1 14	-17.4	255.0 -2218213.3		
85 1 25 -295.9 422.3 -2219829.2 31.0 14.7 5.4 .787 .704 .207 85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746 376 85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711 .378 85 2 8 -726.0 621.7 -2221598.6 7.3 7.2 3.6 .089 .762 -351 85 2 13 -860.8 752.8 -2222480.3 8.4 8.3 4.1 .152 .727 -378 85 2 18 -1017.5 859.4 -2223072.5 7.4 7.8 3.9 .065 .738 -404 85 2 23 -1193.3 955.4 -2223963.0 8.2 8.5 4.1 .130 .706 -411 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734<	85 1 19	-126.5	319.5 -2219043.4	8.7 8.5 4.2	.107 .720420
85 1 29 -496.7 477.4 -2220457.7 6.8 7.2 3.5 .070 .746 376 85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711 378 85 2 8 -726.0 621.7 -2221598.6 7.3 7.2 3.6 .089 .762 351 85 2 13 -860.8 752.8 -2222480.3 8.4 8.3 4.1 .152 .727 378 85 2 18 -1017.5 859.4 -2223072.5 7.4 7.8 3.9 .065 .738 -404 85 2 23 -1193.3 955.4 -2223963.0 8.2 8.5 4.1 .130 .706 -411 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734 -339 85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .7	85 1 24	-308.6		8.5 7.5 3.9	.010 .788380
85 2 3 -619.0 541.8 -2220990.7 8.1 8.0 3.9 .154 .711 378 85 2 8 -726.0 621.7 -2221598.6 7.3 7.2 3.6 .089 .762 351 85 2 13 -860.8 752.8 -2222480.3 8.4 8.3 4.1 .152 .727 378 85 2 18 -1017.5 859.4 -2223072.5 7.4 7.8 3.9 .065 .738 404 85 2 23 -1193.3 955.4 -2223963.0 8.2 8.5 4.1 .130 .706 411 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734 339 85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .759 -300 85 3 6 -1529.9 1253.3 -2225580.9 5.5 5.4 2.4 .143 <td< td=""><td></td><td></td><td></td><td></td><td>.787 .704 .207</td></td<>					.787 .704 .207
85 2 8 -726.0 621.7 -2221598.6 7.3 7.2 3.6 .089 .762 351 85 2 13 -860.8 752.8 -2222480.3 8.4 8.3 4.1 .152 .727 378 85 2 18 -1017.5 859.4 -2223072.5 7.4 7.8 3.9 .065 .738 404 85 2 23 -1193.3 955.4 -2223963.0 8.2 8.5 4.1 .130 .706 411 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734 339 85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .759 300 85 3 6 -1529.9 1253.3 -2225580.9 5.5 5.4 2.4 .143 .775 255 85 3 15 -1764.6 1528.4 -2227568.1 8.0 7.2 3.5 .129					
85 2 13 -860.8 752.8 -2222480.3 8.4 8.3 4.1 .152 .727 378 85 2 18 -1017.5 859.4 -2223072.5 7.4 7.8 3.9 .065 .738 404 85 2 23 -1193.3 955.4 -2223963.0 8.2 8.5 4.1 .130 .706 411 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734 339 85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .759 .300 85 3 6 -1529.9 1253.3 -2225580.9 5.5 5.4 2.4 .143 .775 255 85 3 15 -1764.6 1528.4 -2227568.1 8.0 7.2 3.5 .129 .721 376 85 3 20 -1865.4 1736.0 -2228494.5 9.2 8.1 4.1 .084					
85 2 18 -1017.5 859.4 -2223072.5 7.4 7.8 3.9 .065 .738 404 85 2 23 -1193.3 955.4 -2223963.0 8.2 8.5 4.1 .130 .706 411 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734 339 85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .759 .300 85 3 6 -1529.9 1253.3 -2225580.9 5.5 5.4 2.4 .143 .775 255 85 3 15 -1764.6 1528.4 -2227568.1 8.0 7.2 3.5 .129 .721 376 85 3 20 -1865.4 1736.0 -2228494.5 9.2 8.1 4.1 .084 .765 367 85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078					
85 2 23 -1193.3 955.4 -2223963.0 8.2 8.5 4.1 .130 .706 411 85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734 339 85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .759 300 85 3 6 -1529.9 1253.3 -2225580.9 5.5 5.4 2.4 .143 .775 255 85 3 15 -1764.6 1528.4 -2227568.1 8.0 7.2 3.5 .129 .721 376 85 3 20 -1865.4 1736.0 -2228494.5 9.2 8.1 4.1 .084 .765 367 85 3 25 -1890.6 1939.4 -2229569.9 7.0 6.7 3.3 .115 .738 365 85 4 4 -1932.4 2334.2 -2230381.1 7.7 7.6 3.9 .078					
85 2 28 -1362.3 1069.5 -2224793.4 6.5 6.5 3.0 .142 .734 339 85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .759 300 85 3 6 -1529.9 1253.3 -2225580.9 5.5 5.4 2.4 .143 .775 255 85 3 15 -1764.6 1528.4 -2227568.1 8.0 7.2 3.5 .129 .721 376 85 3 20 -1865.4 1736.0 -2228494.5 9.2 8.1 4.1 .084 .765 367 85 3 25 -1890.6 1939.4 -2229569.9 7.0 6.7 3.3 .115 .738 365 85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078 .744 392 85 4 4 -1932.4 2334.2 -2231312.9 7.0 7.1 3.4 .080					
85 3 5 -1500.3 1187.5 -2225416.3 10.9 9.0 4.3 .219 .759 300 85 3 6 -1529.9 1253.3 -2225580.9 5.5 5.4 2.4 .143 .775 255 85 3 15 -1764.6 1528.4 -2227568.1 8.0 7.2 3.5 .129 .721 376 85 3 20 -1865.4 1736.0 -2228494.5 9.2 8.1 4.1 .084 .765 367 85 3 25 -1890.6 1939.4 -2229569.9 7.0 6.7 3.3 .115 .738 365 85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078 .744 392 85 4 4 -1932.4 2334.2 -2231312.9 7.0 7.1 3.4 .080 .732 387 85 4 9 -1917.1 2528.1 -2232443.7 7.3 7.1 3.5 .075					
85 3 6 -1529.9 1253.3 -2225580.9 5.5 5.4 2.4 .143 .775 255 85 3 15 -1764.6 1528.4 -2227568.1 8.0 7.2 3.5 .129 .721 376 85 3 20 -1865.4 1736.0 -2228494.5 9.2 8.1 4.1 .084 .765 367 85 3 25 -1890.6 1939.4 -2229569.9 7.0 6.7 3.3 .115 .738 365 85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078 .744 392 85 4 4 -1932.4 2334.2 -2231312.9 7.0 7.1 3.4 .080 .732 387 85 4 9 -1917.1 2528.1 -2232443.7 7.3 7.1 3.5 .075 .753 364 85 4 14 -1899.5 2734.5 -2233166.7 7.9 7.9 3.8 .133					
85 3 15 -1764.6 1528.4 -2227568.1 8.0 7.2 3.5 .129 .721 376 85 3 20 -1865.4 1736.0 -2228494.5 9.2 8.1 4.1 .084 .765 367 85 3 25 -1890.6 1939.4 -2229569.9 7.0 6.7 3.3 .115 .738 365 85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078 .744 392 85 4 4 -1932.4 2334.2 -2231312.9 7.0 7.1 3.4 .080 .732 387 85 4 9 -1917.1 2528.1 -2232443.7 7.3 7.1 3.5 .075 .753 364 85 4 14 -1899.5 2734.5 -2233166.7 7.9 7.9 3.8 .133 .701 420					
85 3 20 -1865.4 1736.0 -2228494.5 9.2 8.1 4.1 .084 .765 367 85 3 25 -1890.6 1939.4 -2229569.9 7.0 6.7 3.3 .115 .738 365 85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078 .744 392 85 4 4 -1932.4 2334.2 -2231312.9 7.0 7.1 3.4 .080 .732 387 85 4 9 -1917.1 2528.1 -2232443.7 7.3 7.1 3.5 .075 .753 364 85 4 14 -1899.5 2734.5 -2233166.7 7.9 7.9 3.8 .133 .701 420					
85 3 25 -1890.6 1939.4 -2229569.9 7.0 6.7 3.3 .115 .738 365 85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078 .744 392 85 4 4 -1932.4 2334.2 -2231312.9 7.0 7.1 3.4 .080 .732 387 85 4 9 -1917.1 2528.1 -2232443.7 7.3 7.1 3.5 .075 .753 364 85 4 14 -1899.5 2734.5 -2233166.7 7.9 7.9 3.8 .133 .701 420					
85 3 30 -1910.1 2157.6 -2230381.1 7.7 7.6 3.9 .078 .744 392 85 4 4 -1932.4 2334.2 -2231312.9 7.0 7.1 3.4 .080 .732 387 85 4 9 -1917.1 2528.1 -2232443.7 7.3 7.1 3.5 .075 .753 364 85 4 14 -1899.5 2734.5 -2233166.7 7.9 7.9 3.8 .133 .701 420					
85 4 4 -1932.4 2334.2 -2231312.9 7.0 7.1 3.4 .080 .732387 85 4 9 -1917.1 2528.1 -2232443.7 7.3 7.1 3.5 .075 .753364 85 4 14 -1899.5 2734.5 -2233166.7 7.9 7.9 3.8 .133 .701420					
85 4 9 -1917.1 2528.1 -2232443.7 7.3 7.1 3.5 .075 .753364 85 4 14 -1899.5 2734.5 -2233166.7 7.9 7.9 3.8 .133 .701420					
85 4 14 -1899.5 2734.5 -2233166.7 7.9 7.9 3.8 .133 .701420					
				8.0 7.7 3.8	.134 .742367

Values* Formal Errors Correlations X-pole Y-pole UT1-TAI X Y UT1 X-Y X-U Y- 85 4 24 -1857.4 3084.2 -2235143.3 6.7 7.0 3.3 .078 .73041 85 4 25 -1859.8 3142.0 -2235286.3 32.3 16.0 5.5 .780 .636 .09 85 4 29 -1861.7 3263.2 -2235859.4 7.9 7.5 3.8 .146 .73034 85 5 4 -1799.8 3433.2 -2237032.6 9.0 8.3 4.1 .056 .76840 85 5 8 -1747.0 3595.0 -2237796.5 7.9 7.4 3.9081 .81503 85 5 9 -1711.6 3627.4 -2237931.4 8.5 7.3 3.7 .046 .77339 85 5 10 -1700.0 3646.6 -2238070.9 6.2 6.1 2.5 .251 .76716 85 5 14 -1603.9 3804.2 -2238697.7 8.9 8.4 4.4 .092 .74142 85 5 16 -1584.6 3858.9 -2239058.3 6.1 5.9 2.8 .119 .645 .06 85 5 19 -1528.7 3937.6 -2239552.9 7.9 7.8 3.8 .099 .72640	1 19 19 19 138 17
85 4 24 -1857.4 3084.2 -2235143.3 6.7 7.0 3.3 .078 .730 41 85 4 25 -1859.8 3142.0 -2235286.3 32.3 16.0 5.5 .780 .636 .09 85 4 29 -1861.7 3263.2 -2235859.4 7.9 7.5 3.8 .146 .730 34 85 5 4 -1799.8 3433.2 -2237032.6 9.0 8.3 4.1 .056 .768 40 85 5 8 -1747.0 3595.0 -2237796.5 7.9 7.4 3.9 081 .815 03 85 5 9 -1711.6 3627.4 -2237931.4 8.5 7.3 3.7 .046 .773 39 85 5 10 -1700.0 3646.6 -2238070.9 6.2 6.1 2.5 .251 .767 16 85 5 14 -1603.9 3804.2 -2238697.7 8.9 8.4 4.4 .092 .741 42 85 5 16 -1584.6 3858.9 -2239058.3 6.1 5.9 2.8 .119 .645 .06	.1 99 19 01 38
85 4 25 -1859.8	9 19 11 38 97
85 4 25 -1859.8	9 19 11 38 97
85	19 11 138 197 154
85 5 4 -1799.8 3433.2 -2237032.6 9.0 8.3 4.1 .056 .76840 85 5 8 -1747.0 3595.0 -2237796.5 7.9 7.4 3.9081 .81503 85 5 9 -1711.6 3627.4 -2237931.4 8.5 7.3 3.7 .046 .77339 85 5 10 -1700.0 3646.6 -2238070.9 6.2 6.1 2.5 .251 .76716 85 5 14 -1603.9 3804.2 -2238697.7 8.9 8.4 4.4 .092 .74142 85 5 16 -1584.6 3858.9 -2239058.3 6.1 5.9 2.8 .119 .645 .06)1 38 97 54
85 5 8 -1747.0 3595.0 -2237796.5 7.9 7.4 3.9081 .81503 85 5 9 -1711.6 3627.4 -2237931.4 8.5 7.3 3.7 .046 .77339 85 5 10 -1700.0 3646.6 -2238070.9 6.2 6.1 2.5 .251 .76716 85 5 14 -1603.9 3804.2 -2238697.7 8.9 8.4 4.4 .092 .74142 85 5 16 -1584.6 3858.9 -2239058.3 6.1 5.9 2.8 .119 .645 .06	38 97 54
85 5 9 -1711.6 3627.4 -2237931.4 8.5 7.3 3.7 .046 .77339 85 5 10 -1700.0 3646.6 -2238070.9 6.2 6.1 2.5 .251 .76716 85 5 14 -1603.9 3804.2 -2238697.7 8.9 8.4 4.4 .092 .74142 85 5 16 -1584.6 3858.9 -2239058.3 6.1 5.9 2.8 .119 .645 .06	97 54
85 5 10 -1700.0 3646.6 -2238070.9 6.2 6.1 2.5 .251 .76716 85 5 14 -1603.9 3804.2 -2238697.7 8.9 8.4 4.4 .092 .74142 85 5 16 -1584.6 3858.9 -2239058.3 6.1 5.9 2.8 .119 .645 .06	54
85 5 14 -1603.9 3804.2 -2238697.7 8.9 8.4 4.4 .092 .74142 85 5 16 -1584.6 3858.9 -2239058.3 6.1 5.9 2.8 .119 .645 .06	
85 5 16 -1584.6 3858.9 -2239058.3 6.1 5.9 2.8 .119 .645 .06	23
05 5 10 2501.0 000011 ============================	
85 5 19 -1528.7 3937.6 -2239552.9 7.9 7.8 3.8 .099 .72640)9
85 5 24 -1340.1 4072.8 -2240094.5 8.1 8.5 4.2 .055 .72145	
85 5 29 -1212.9 4198.2 -2240831.5 7.9 8.0 3.9 .140 .70141	
85 6 3 -1089.4 4312.9 -2241846.8 8.7 8.5 4.4 .102 .70045	
85 6 8 -972.3 4423.6 -2242428.3 7.3 7.3 3.5 .107 .72241	
85 6 13 -881.3 4522.0 -2243171.2 9.1 9.5 4.2 .058 .78539	
85 6 18 -758.8 4628.4 -2243698.4 9.1 9.0 4.2 .213 .68639	
85 6 19 -739.6 4634.7 -2243773.4 24.3 12.7 4.8 .699 .63100	
85 6 20 -708.0 4635.0 -2243845.8 5.4 5.6 2.3 .143 .74621	
85 6 23 -621.6 4683.1 -2244101.2 8.7 8.8 4.3 .112 .72841	
85 6 28 -471.7 4742.2 -2244922.9 8.1 7.8 3.8 .131 .73638	
85 7 3 -324.5 4788.2 -2245356.9 7.3 7.3 3.6 .107 .72239	
85 7 7 -225.0 4816.1 -2245539.6 7.7 7.0 4.0 .047 .560 .33	
85 7 8 -166.3 4829.4 -2245638.5 8.7 8.3 4.2 .118 .72939	98
85 7 13 27.2 4846.1 -2245962.8 8.9 9.2 4.7 .120 .71840	
85 7 18 209.3 4880.9 -2246061.6 7.9 7.7 3.9 .085 .7304C	
85 7 21 293.5 4908.5 -2246224.3 6.8 6.2 3.2 .113 .531 .20	
85 7 23 350.7 4926.8 -2246456.5 8.3 8.5 4.1 .056 .72045	
85 7 28 517.9 4898.0 -2246910.9 7.2 6.6 3.7 .089 .570 .28	
85 7 28 529.2 4920.5 -2246924.3 9.0 8.5 4.4 .118 .73738	
85 8 2 664.9 4926.9 -2247086.7 8.4 7.8 3.9 .100 .73938	
85 8 7 846.6 4881.4 -2247551.8 9.3 9.5 4.9 .040 .74939	
85 8 11 979.8 4875.0 -2247770.5 6.7 6.2 3.3 .122 .541 .20	8(
85 8 12 1029.1 4860.5 -2247784.6 10.2 10.1 5.5 .131 .71541	L1
85 8 17 1177.8 4799.3 -2247990.1 8.6 8.4 4.3 .131 .73437	74
85 8 22 1329.0 4760.4 -2248675.2 9.2 8.8 4.3 .113 .73939) 2
85 8 25 1423.9 4720.9 -2248918.4 7.3 7.9 3.7018 .824 .03	
85 8 27 1482.5 4725.9 -2249000.7 8.3 8.3 4.1 .124 .72139	
85 8 29 1687.2 -2249640.5 22.9 17.0 .909	
85 9 1 1626.3 4602.1 -2249464.7 8.5 9.6 5.1 .007 .77234	10
85 9 5 1709.0 4549.2 -2249986.6 10.8 8.5 5.1226 .87911	L5
85 9 6 1757.0 4530.5 -2250091.8 9.5 9.8 5.2 .064 .73844	1
85 9 11 1902.7 4445.8 -2250434.7 8.9 9.0 4.5 .140 .71141	L9
85 9 12 1917.0 4450.5 -2250506.9 27.8 13.9 4.7 .793 .657 .15	
85 9 16 1964.9 4338.2 -2251152.8 8.1 8.4 4.2 .095 .72239	
85 9 21 2042.9 4210.1 -2251970.1 8.6 8.2 4.2 .118 .71740	
85 9 26 2144.0 4107.0 -2252541.8 8.7 8.6 4.3 .164 .70040	
85 10 1 2203.6 3979.9 -2253448.6 6.1 6.0 2.8 .126 .650 .07	
85 10 1 2197.5 3978.3 -2253448.5 8.5 8.2 4.1 .133 .71439	
85 10 6 2256.9 3807.5 -2254170.8 8.6 7.9 3.9 .119 .70243	32

		Values*	Formal Err	ore	Correlations
Data	V nala	Y-pole UT1-TAI	X Y	UT1	X-Y X-U Y-U
Date	X-pole	1-pole Ull-IAI	Λ 1	011	K-1 K O 1 O
85 10 11	2340.4	3712.0 -2254907.8	8.6 8.3	3.8	.151 .709407
85 10 16	2327.4	3539.0 -2256119.5		4.2	.080 .706468
85 10 21	2374.8	3396.3 -2256938.8		3.7	.194 .716343
85 10 26	2392.9	3247.9 -2257946.6		2.9	.128 .746346
85 10 30	2411.8	3118.6 -2258809.8		2.6	.147 .790244
85 10 31	2379.5	3126.8 -2258964.5		4.8	.041 .773396
85 11 5	2378.0	2967.0 -2259638.7		5.5	034 .768481
85 11 10	2372.2	2859.0 -2260596.5		3.4	.111 .738369
85 11 15	2360.4	2727.9 -2261594.1		3.8	.211 .693380
85 11 20	2354.8	2605.3 -2262374.5		3.6	.064 .758409
85 11 21	2357.3	2571.7 -2262585.0		5.0	.727 .603013
85 11 22	2377.3	2527.8 -2262806.6		2.2	.152 .754228
85 11 25	2377.0	2466.5 -2263406.5		3.4	.076 .762360
85 11 30	2347.1	2365.1 -2264119.7		3.6	.144 .738320
85 12 5	2277.2	2247.8 -2264850.7		3.7	.190 .721352
85 12 10	2239.0	2144.4 -2265966.7		3.6	.055 .759432
85 12 11	2214.8	2103.5 -2266151.0		4.4	.743 .653 .086
85 12 15	2153.6	2021.3 -2266673.5		3.4	.131 .702402
85 12 20	2136.5	1923.4 -2267497.9		3.1	.109 .752323
85 12 24		1810.7 -2268055.6		6.5	719
85 12 30	1988.0	1718.2 -2268609.3		3.4	.064 .755382
86 1 4	1893.1	1597.2 -2269308.6		3.7	.112 .753365
86 1 9	1793.0	1533.0 -2269976.3		3.7	.031 .723355
86 1 10	1767.7	1483.2 -2270065.8		4.9	.073 .588352
86 1 14	1687.8	1412.8 -2270575.7		3.4	.103 .736361
86 1 15	1722.0	1397.7 -2270771.6		5.3	.855 .690 .282
86 1 16	1662.6	1361.5 -2270948.6		4.0	.065 .724350
86 1 19	1605.2	1322.7 -2271441.2	8.3 8.0	3.9	.174 .703377
86 1 20	1551.5	1299.4 -2271570.3	7.5 6.3	4.6	.113 .562326
86 1 24	1450.7	1267.7 -2271990.9	8.2 7.6	3.7	.098 .711427
86 1 29	1316.0	1233.8 -2272676.0	7.7 7.7	3.6	.060 .689495
86 1 30	1295.3	1206.6 -2272885.4	7.2 6.2	3.7	.102 .680342
86 2 3	1160.9	1185.0 -2273720.6	7.0 6.8	3.1	.119 .745357
86 2 4	1131.8	1164.5 -2273881.9	7.6 6.3	4.2	.111 .598363
86 2 8	1033.7	1161.8 -2274386.6	8.0 8.1	4.0	.118 .713398
86 2 12	941.2	1095.9 -2275097.4		4.4	003 .663432
86 2 13	928.2	1114.8 -2275289.4		3.6	.132 .706399
86 2 18	811.1	1106.1 -2276041.9		3.5	.122 .741347
86 2 23	662.5	1109.8 -2276488.0		3.7	.120 .733388
86 2 28	484.7	1118.6 -2277329.0		3.3	.086 .730397
86 3 5	350.1	1118.6 -2278047.7		4.0	.087 .740386
86 3 10	195.6	1145.4 -2278679.0		3.4	.088 .730384
86 3 14	40.1	1161.7 -2279350.7		3.9	032 .111 .424
86 3 15	51.4	1146.1 -2279458.6		4.7	.181 .721364
86 3 20	-48.7	1190.1 -2279806.9		3.8	.139 .729383
86 3 21	-144.5	1136.9 -2279869.9		4.9	.787 .725 .229
86 3 25	-169.6	1249.9 -2280381.4		3.6	.082 .741379
86 3 30	-290.3	1296.9 -2281408.1		4.1	.085 .727404
86 4 2	-354.6	1328.6 -2281808.1	7.8 8.1	4.2	.023 .812 .160

			. .		
			Values*	Formal Errors	Correlations
D	ate	X-pole	Y-pole UT1-TAI	X Y UT1	X-Y X-U Y-U
86	4 4	-387.1	1366.2 -2282051.7	7.2 7.0 3.2	.113 .749363
86	4 5	-423.1	1374.6 -2282202.9	6.1 5.7 2.6	.094 .790285
86	49	-506.2	1440.4 -2282976.0	6.4 6.3 3.0	.102 .599 .162
86	4 9	-494.9	1452.1 -2282975.3	7.5 7.0 3.4	.142 .738348
86	4 14	-552.8	1567.4 -2283758.5	7.7 7.4 3.6	.060 .750377
86	4 19	-619.0	1659.1 -2284381.8	8.2 7.5 3.8	.108 .721393
86	4 24	-698.2	1751.5 -2285401.5	7.4 8.7 3.8	.104 .727353
86	4 29	-739.0	1855.0 -2286207.4	7.4 7.3 3.7	.065 .759357
86	5 3	-780.2	1953.7 -2286818.9	8.6 6.7 3.5	.036 .225 .336
86	5 4	-856.8	1780.1 -2286937.6	27.0 55.2 21.0	.660 .957 .636
86	5 9	-833.6	2069.3 -2287992.6	8.2 7.7 3.8	.090 .743397
86	5 14	-854.6	2156.3 -2288586.2	7.5 7.2 3.5	.066 .753405
86	5 15	-846.2	2157.6 -2288691.4	5.9 5.8 2.7	.090 .790279
86	5 18	-882.3	2255.3 -2288886.3	8.0 8.2 4.4	.050 .740413
86	5 24	-916.1	2361.0 -2290044.1	8.3 8.1 4.3	.061 .730422
86	5 29	-939.9	2489.5 -2290470.1	7.3 7.3 3.5	.113 .719405
86	6 3	-932.0	2574.6 -2291068.9	8.3 7.6 3.8	.147 .729354
86	6 8	-920.5	2711.5 -2291347.7	8.6 7.8 4.0	.073 .742423
86	6 13	-893.6	2812.6 -2291409.6	8.9 8.8 4.5	.127 .703419
86	6 14	-968.4	2792.6 -2291490.2	14.1 7.5 4.1	.186 .074 .384
86	6 17	-849.8	2852.2 -2291791.0	25.3 12.9 4.8	.713 .654 .034
86	6 18	-827.6	2888.7 -2291911.6	7.9 7.8 3.7	.092 .739401
86	6 19	-812.7	2908.4 -2292035.4	5.5 5.5 2.3	.147 .740201
86	6 23	-754.9	2995.5 -2292303.2	7.9 8.0 4.0	.113 .709417
86	6 28	-669.1	3139.8 -2292710.6	9.1 9.0 4.7	.080 .739428
86	7 3	-604.8	3234.5 -2293173.9	7.6 7.2 3.6	.083 .747385
86	76	-582.4	3276.1 -2293267.0	6.7 6.4 3.4	.103 .613 .226
86	7 8	-533.1	3310.5 -2293315.9	9.8 9.9 4.9	.097 .724417
86	7 13	-474.5	3418.0 -2293677.9	6.9 6.3 3.4	.086 .470 .237
86	7 13	-482.3	3418.4 -2293667.2	8.3 7.5 3.8	.137 .740350
86	7 18	-400.7	3490.6 -2294125.3	8.6 7.9 4.0	.115 .728392
86	7 23	-260.0	3553.5 -2294334.7	9.7 9.8 5.1	.071 .751377
86	7 27	-247.9	3584.2 -2294741.5	6.2 6.0 2.9	.141 .678 .094
86	7 28	-202.8	3625.3 -2294836.7	8.0 7.9 3.8	.078 .722413
86	8 2	-129.3	3645.2 -2294994.9	9.4 9.3 4.7	.067 .717451
86	8 3	-144.0	3669.8 -2294992.1	6.2 5.9 2.9	.096 .551 .101
86	8 7	-73.8	3717.1 -2295103.4	9.8 9.4 4.8	.099 .727418
86	8 12	-31.5	3752.2 -2295696.6	11.9 9.7 4.9	.077 .750407
86	8 17	57.3	3784.1 -2295999.6	10.6 8.8 4.3	.130 .742377
86	8 22	148.8	3839.4 -2296423.5	11.0 9.5 4.9	.038 .751442
86	8 26	218.8	3863.1 -2296832.9	22.5 11.5 4.2	.728 .641 .056
86	8 27	277.6	3875.6 -2296895.1	12.9 10.4 5.6	.030 .768440
86	9 1	315.1	3903.2 -2297039.1	12.0 9.6 5.1	.043 .766429
86	9 6	401.2	3964.0 -2297497.8	12.1 10.9 5.4	.051 .748413
86	9 6	351.5	3935.0 -2297518.1	9.3 7.4 4.0	.011 .165 .455
86	9 11	471.0	3917.5 -2298161.3	9.5 8.5 4.4	.065 .745421
86	9 16	548.3	3945.4 -2298597.8	9.5 8.4 4.0	.133 .769365
86	9 17	550.6	3950.9 -2298737.7	19.8 10.0 3.4	.760 .702 .197
86	9 21	602.9	3928.5 -2299473.2	9.4 8.4 4.1	.129 .736379
		- • -		· · · · · · · · · · · · · · · · · · ·	

		Values*		Form	nal Er	rors	Cor	relat	ions
Date	X-pole		UT1-TAI	X	Y	UT1	X-Y	X-U	Y-U
	•	•							
86 9 26	648.6	3899.8 -23	300067.7	10.3	8.9	4.3	.163	. 735	364
86 10 1	721.4	3887.2 -23	300704.0	10.2	9.9	4.7	.037	.725	488
86 10 6	774.7	3885.3 -23	301759.9	8.5	8.0	4.1	.076	. 747	389
86 10 11	834.0	3869.7 -23	302455.1	8.9	7.6	3.7	.126	.736	368
86 10 16	892.5	3859.4 -23	303296.9	8.7	7.5	3.6	.091	. 754	375
86 10 17	908.7	3842.1 -23	303502.3	5.5	5.4	2.4	.122	. 786	267
86 10 21	994.4	3836.6 -23	304185.8	9.3	8.2	4.2	. 035	. 740	440
86 10 24	981.9	3811.5 -23	304535.5	6.1	6.0	2.9	. 143	. 674	.099
86 10 26	1039.7	3823.2 -23	304799.5	9.5	8.3	4.0	.163	.708	403
86 10 31	1078.2	3815.7 -23	305650.9	7.7	7.2	3.7	.118	.743	331
86 11 1	1099.9	3811.9 -23	305878.1	6.0	6.4	3.0	. 094	.803	016
86 11 4	1041.7	3740.1 -23	306379.7	27.2	13.3	4.3	. 816		.236
86 11 5	1146.4	3779.7 -23	306500.8	8.3	7.2	3.4	.165	.754	329
86 11 6	1157.5	3735.6 -23	306599.4	5.3	5.4	2.3	. 143		224
86 11 8	1128.6	3733.3 -23	306813.7	8.6	6.8	3.6	000	.178	. 341
86 11 10	1241.8	3721.9 -23	307061.1	10.7	8.8	4.4	. 147		395
86 11 15	1313.9	3668.5 -23	307950.7	7.6	7.0	3.3			367
86 11 20	1322.9	3600.0 -23		7.9	7.2	3.5	.128		379
86 11 25	1321.1	3546.7 -23	309051.5	9.3	8.2	4.0	.099	. 747	
86 11 30	1348.8	3476.0 -23		7.2	6.6	3.1			331
86 12 5	1416.9	3411.0 -23		8.5	7.5	3.5			308
86 12 6	1354.8	3405.2 -23		8.4	6.8	3.6	007		
86 12 9	1454.4	3357.3 -23			11.2	3.7		.621	.101
86 12 10	1477.1	3348.3 -23		8.4	7.5	3.5	.186		323
86 12 15	1494.0	3260.9 -23		8.2	7.4	3.6			331
86 12 20	1523.6	3220.0 -23		7.2	6.8	3.2			347
86 12 24	1556.6	3189.1 -23		8.8	8.4	4.0	.098		381
86 12 30	1556.7	3107.9 -23	313734.6	8.2	7.5	3.6	.125	.728	377

^{*} Units are 0.0001 for X- and Y-pole and 0.00001 seconds for UT1.

Table 8
Nutation Adjustments from Solution GLB121*

Data	Nutstism im	Nutation in
Date	Nutation in	Nutation in
	Longitude	Obliquity 0"001
	0"001	0.001
79 8 4	3.39 ±1.86	-1.89 ±.66
79 11 26	5.13 ±1.45	.88 ±.51
80 4 12	9.97 ±1.07	-2.28 ±.37
80 7 27	-1.51 ±.99	06 ±.30
80 7 28	3.92 ±1.11	.08 ±.34
80 9 27	3.11 ±1.03	1.51 ±.35
80 9 28	62 ±.98	46 ±.32
80 9 29	1.40 ±1.06	-1.18 ±.34
80 9 30	3.06 ±1.21	4.27 ±.43
80 10 1	-4.18 ±1.47	48 ±.45
80 10 2	3.32 ±1.80	-3.84 ±.61
80 10 3	99 ±1.33	01 ±.51
80 10 17	0.0	0.0 Reference Day
80 10 17	6.36 ±1.06	-1.03 ±.34
80 10 18	6.05 ±1.09	51 ±.35
80 10 19	.72 ±.99	.28 ±.28
80 10 20	2.86 ±.98	32 ±.28
80 10 21		
	3.06 ±1.17	
80 10 23	1.19 ±.93	
80 11 4	-1.79 ±2.18	.22 ±.69
80 12 2	5.60 ±1.55	-1.48 ±.49
80 12 20	2.83 ±1.26	1.12 ±.42
81 1 8	4.13 ±1.91	1.06 ±.64
81 1 23	1.95 ±1.61	2.16 ±.54 1.61 ±.74
81 2 13	3.51 ±1.91	
81 2 28	4.40 ±1.84	.82 ±.69
81 3 17	5.43 ±2.20	40 ±.84 -1.83 ±1.17
81 5 14	5.73 ±2.92 .37 ±1.46	-1.65 ±1.17 -2.49 ±.49
81 6 17		-4.27 ±1.43
81 6 25	2.76 ±4.15 94 ±3.29	-4.27 ±1.45 -5.19 ±1.46
81 7 2 81 7 9	-3.92 ±3.58	-2.62 ±1.11
	-8.10 ±6.74	-16.03 ±6.32
	.50 ±1.94	12 ±.67
81 7 23 81 7 30	-6.23 ±3.12	-2.51 ±1.03
	-3.97 ±4.50	-2.31 ±1.03 -2.21 ±1.59
81 8 6 81 8 27	-2.43 ±2.92	-3.30 ±.96
	-3.69 ±3.91	-3.06 ±1.26
81 9 10	-2.76 ±3.01	-2.12 ±1.09
81 9 17	-11.81 ±3.10	-1.13 ±1.13
81 9 24	-3.01 ±3.68	34 ±1.30
81 10 1	-4.05 ±2.95	-2.68 ±1.44
81 10 16	-8.76 ±3.22	-3.00 ±1.07
81 10 22	-4.08 ±1.99	-1.10 ±.59

Da	te	Nutation in Longitude 0"001	Nutation in Obliquity 0"001
81 1: 81 1:	1 11	-5.40 ±2.48 9.84 ±3.45 1.19 ±2.10	.95 ±.85 2.17 ±1.42 1.09 ±.67
81 1: 81 1: 81 1:	l 20 l 25	88 ±1.11 -1.83 ±.97 .82 ±2.55	2.19 ±.35 2.12 ±.31 2.14 ±.83
81 12 81 12 81 12	2 17	-3.30 ±3.64 25 ±2.41 -4.43 ±2.12	.33 ±1.28 2.03 ±.81 1.56 ±.95
	2 30 L 7 L 14	4.90 ±1.90 1.86 ±1.97 2.94 ±2.78	1.67 ±.62 2.79 ±.67 4.43 ±.92
	L 21 L 28	-1.36 ±1.96 1.94 ±2.18 .53 ±2.41	1.26 ±.66 3.82 ±.87
82 2 82 2 82 2	2 11 2 18	.27 ±1.93 -1.75 ±2.09	3.09 ±.82 2.90 ±.67 1.15 ±.71
82 3 82 3	3 4 3 11	-3.50 ±2.48 87 ±2.31 3.92 ±3.18	4.99 ±.94 1.82 ±.81 .21 ±1.30
82 3 82 3 82 3	25 30	.81 ±1.57 .12 ±2.59 -2.74 ±2.44	1.97 ±.48 44 ±1.00 3.06 ±.95
82 4 82 4 82 4	14 20	1.22 ±2.88 4.23 ±3.72 98 ±2.39	-1.42 ±1.22 25 ±1.36 -1.58 ±.70
82 4 82 5 82 5	4	16.80 ±4.21 1.37 ±1.37 -8.26 ±2.70	-2.74 ±1.51 .09 ±.60 -1.98 ±1.04
82 5 82 6 82 6	3	2.57 ±2.41 -3.63 ±2.16 -1.39 ±2.96	-1.87 ±.87 .38 ±.81 -2.96 ±1.15
82 6 82 6 82 6	19	-4.57 ±2.31 -2.89 ±1.02 2.64 ±1.83	.02 ±.69 28 ±.38 -1.12 ±.54
82 6 82 6 82 6		-5.17 ±1.24 -1.99 ±1.82 88 ±2.56	93 ±.42 65 ±.56 2.44 ±.87
82 7 82 7 82 7	7 13 20	-9.80 ±2.68 -5.50 ±3.69 .64 ±3.61	-1.30 ±.97 22 ±1.37 -1.69 ±1.31
82 7 82 8 82 8	27 5 10	-12.46 ±3.59 -9.53 ±3.53 -13.04 ±2.82	.24 ±1.31 .06 ±1.16
82 8 82 8	17 24 31	-11.10 ±0.50 -16.04 ±5.96	1.79 ±1.02 -4.38 ±4.27 3.08 ±1.47
82 8 82 9	8	12 ±1.77 -8.11 ±3.06	-3.06 ±.87 42 ±1.12

82 9 14 -4,86 ±1.80 -1.04 ±.75 82 9 21 -17.35 ±6.35 2.94 ±1.89 82 9 28 -6.03 ±2.31 .04 ±.96 82 10 5 -8.85 ±2.65 2.57 ±1.06 82 10 14 -3.27 ±2.18 3.19 ±.92 82 10 16 -2.43 ±2.18 2.77 ±.82 82 11 2 -2.29 ±2.28 2.02 ±.81 82 11 2 -2.29 ±2.28 2.02 ±.81 82 11 2 -2.29 ±2.28 2.02 ±.81 82 11 16 -2.43 ±2.22 1.33 ±.92 82 11 16 -2.43 ±2.22 1.33 ±.92 82 12 7 2.50 ±2.58 4.51 ±.94 82 12 7 2.50 ±2.58 4.51 ±.94 82	Date	Nutation in Longitude 0"001	Nutation in Obliquity 0"001
82 12 7 2.50 ±2.58 4.51 ±.94 82 12 16 .84 ±1.29 4.05 ±.47 82 12 17 -1.20 ±.98 2.53 ±.34 82 12 21 -4.79 ±1.90 4.83 ±.67 82 12 28 -1.44 ±2.14 1.97 ±.91 83 1 4 -1.11 ±1.59 5.27 ±.59 83 1 11 1.12 ±2.08 3.01 ±.80 83 1 18 .09 ±2.32 2.08 ±.83 83 1 25 -1.58 ±1.69 3.61 ±.63 83 2 1 .96 ±1.90 3.68 ±.69 83 2 1 .96 ±1.90 3.68 ±.69 83 2 1 .96 ±1.93 2.16 ±.50 83 3 1 2.60 ±1.53 2.16 ±.50 83 3	82 9 21	-17.35 ±6.35	2.94 ±1.89
	82 9 28	-6.03 ±2.31	.04 ±.96
	82 10 5	-8.85 ±2.65	2.57 ±1.06
	82 10 14	-3.27 ±2.18	3.19 ±.92
	82 10 19	-5.12 ±1.19	2.57 ±.42
	82 10 26	-1.98 ±2.18	2.77 ±.82
	82 11 2	-2.29 ±2.28	2.02 ±.81
	82 11 9	-6.02 ±2.18	4.76 ±.77
	82 11 16	-2.43 ±2.22	1.33 ±.92
	82 11 23	1.35 ±2.18	3.96 ±.78
83 1 4 11 ±1.59 5.27 ±.59 83 1 11 1.12 ±2.08 3.01 ±.80 83 1 18 .09 ±2.32 2.08 ±.83 83 1 25 -1.58 ±1.69 3.61 ±.63 83 2 1 .96 ±1.90 3.68 ±.69 83 2 1 .96 ±1.90 3.68 ±.69 83 2 1 .96 ±1.90 3.68 ±.69 83 2 1 .96 ±1.90 3.68 ±.69 83 2 1 .50 ±8 ±.66 83 2 1 .40 ±1.43 ±.51 ±.51 83 3 1 2.60 ±1.53 2.16 ±.50 83 3 1.47 ±1.39 2.22 ±.55 83 3 2.9 -1.60 ±2.37 1.84 ±.84 83 4 1.2 2.04 ±1.98	82 12 7	2.50 ±2.58	4.05 ±.47
	82 12 16	.84 ±1.29	2.53 ±.34
	82 12 17	-1.20 ±.98	4.83 ±.67
	82 12 21	-4.79 ±1.90	1.97 ±.91
83 2 15 51 ±1.78 3.85 ±.66 83 3 1 2.60 ±1.53 2.16 ±.50 83 3 8 -1.72 ±1.47 1.24 ±.56 83 3 15 1.47 ±1.39 2.22 ±.55 83 3 22 .96 ±4.96 3.60 ±1.96 83 29 -1.60 ±2.37 1.84 ±.84 83 4 5 1.26 ±2.34 1.50 ±.88 83 4 12 2.04 ±1.98 1.43 ±.76 83 4 19 6.73 ±2.18 .30 ±.80 83 4 26 02 ±1.57 13 ±.56 83 5 3 3.09 ±2.03 72 ±.78 83 5 10 5.30 ±1.68 15 ±.59 83 5 17 1.87 ±2.13 -3.57 ±1.16 83 6 1	83 1 4	11 ±1.59	3.01 ±.80
	83 1 11	1.12 ±2.08	2.08 ±.83
	83 1 18	.09 ±2.32	3.61 ±.63
	83 1 25	-1.58 ±1.69	3.68 ±.69
83 3 29 -1.60 ±2.37 1.84 ±.84 83 4 5 1.26 ±2.34 1.50 ±.88 83 4 12 2.04 ±1.98 1.43 ±.76 83 4 19 6.73 ±2.18 .30 ±.80 83 4 26 02 ±1.57 13 ±.56 83 5 3 3.09 ±2.03 72 ±.78 83 5 6 1.37 ±.83 .31 ±.28 83 5 10 5.30 ±1.68 15 ±.59 83 5 17 1.87 ±2.13 -3.57 ±1.16 83 5 17 1.87 ±2.13 -3.57 ±1.16 83 5 17 1.87 ±2.10 75 ±.68 83 6 1 2.99 ±2.87 82 ±1.02 83 6 7 -3.17 ±1.47 .48 ±.43 83 6	83 2 15 83 3 1 83 3 8	51 ±1.78 2.60 ±1.53 -1.72 ±1.47 1.47 ±1.39	3.85 ±.66 2.16 ±.50 1.24 ±.56 2.22 ±.55
83 5 3 3.09 ±2.03 72 ±.78 83 5 6 1.37 ±.83 .31 ±.28 83 5 10 5.30 ±1.68 15 ±.59 83 5 17 1.87 ±2.13 -3.57 ±1.16 83 5 24 -5.51 ±2.10 75 ±.68 83 6 1 2.99 ±2.87 82 ±1.02 83 6 7 -3.17 ±1.47 .48 ±.43 83 6 8 -25.38 ±0.22 -16.78 ±8.47 83 6 10 -5.32 ±1.80 1.67 ±.63 83 6 10 -5.32 ±1.80 1.67 ±.69 83 6 14 3.35 ±1.74 -1.18 ±.78 83 6 21 -2.02 ±2.28 46 ±.83 83 6 29 -2.24 ±3.26 .18 ±1.14 83 7	83 3 29 83 4 5 83 4 12	-1.60 ±2.37 1.26 ±2.34 2.04 ±1.98	1.84 ±.84 1.50 ±.88 1.43 ±.76 .30 ±.80
83 5 24 -5.51 ±2.10 75 ±.68 83 6 1 2.99 ±2.87 82 ±1.02 83 6 7 -3.17 ±1.47 .48 ±.43 83 6 8 -25.38 ±0.22 -16.78 ±8.47 83 6 10 -5.32 ±1.80 1.67 ±.63 83 6 14 3.35 ±1.74 -1.18 ±.78 83 6 21 -2.02 ±2.28 46 ±.83 83 6 29 -2.24 ±3.26 .18 ±1.14 83 7 6 -12.16 ±3.92 .02 ±1.41	83 5 3	3.09 ±2.03	72 ±.78
	83 5 6	1.37 ±.83	.31 ±.28
	83 5 10	5.30 ±1.68	15 ±.59
83 6 10 -5.32 ±1.80 1.67 ±.69 83 6 14 3.35 ±1.74 -1.18 ±.78 83 6 21 -2.02 ±2.28 46 ±.83 83 6 29 -2.24 ±3.26 .18 ±1.14 83 7 6 -12.16 ±3.92 .02 ±1.41	83 5 24	-5.51 ±2.10	75 ±.68
	83 6 1	2.99 ±2.87	82 ±1.02
	83 6 7	-3.17 ±1.47	.48 ±.43
	83 6 8	-25.38 ±0.22	-16.78 ±8.47
83 7 12 -9.67 ± 2.92 -2.13 ± 1.00	83 6 10 83 6 14 83 6 21 83 6 29 83 7 6	-5.32 ±1.80 3.35 ±1.74 -2.02 ±2.28 -2.24 ±3.26	1.67 ±.69 -1.18 ±.78 46 ±.83 .18 ±1.14

Date	Nutation in Longitude	Nutation in Obliquity
	0"001	0.001
83 7 26	-13.10 ±2.28	.67 ±.68
83 8 2	-26.30 ±3.86	1.46 ±1.32
83 8 9	-5.83 ±2.04	32 ±.67
83 8 16	-4.88 ±1.77	-1.43 ±.90
83 8 23	-8.27 ±2.91	.71 ±1.14
83 8 30	-6.91 ±3.15	-1.65 ±1.13
83 8 31	-9.23 ±1.88	.29 ±.65
83 9 3	-1.89 ±1.79	93 ±.94
83 9 8	-5.86 ±2.61	1.06 ±.98
83 9 13	-19.99 ±3.87	02 ±1.43
83 9 18	-7.38 ±2.74	1.22 ±1.05
83 9 23	-10.30 ±1.85	2.44 ±.67
83 9 24	-7.74 ±2.39	2.58 ±.70
83 9 28	-9.93 ±1.88	.61 ±.67
83 10 3	-1.46 ±2.29	.52 ±.97
83 10 8	-13.29 ±2.51	3.28 ±1.05
83 10 13	-1.26 ±1.58	1.04 ±.59
83 10 18	-9.42 ±7.81	2.10 ±1.60
83 10 23	-12.21 ±3.57	3.22 ±1.29
83 10 28	-2.18 ±1.18	.79 ±.43
83 10 29	-2.57 ±1.69	2.64 ±.53
83 11 2	-6.32 ±2.95	3.17 ±1.13
83 11 7	-7.21 ±2.27	2.97 ±.85
83 11 12	-11.71 ±2.58	2.02 ±.74
83 11 17	-5.01 ±1.52	3.14 ±.51
83 11 18	-7.57 ±1.53	4.37 ±.47
83 11 22	-3.85 ±2.71	2.79 ±.63
83 11 27	22 ±2.05	5.63 ±.77
83 12 2 83 12 7 83 12 12 83 12 17 83 12 22 83 12 23	-2.57 ±1.56 -2.03 ±3.08 79 ±1.89 -2.82 ±1.90 .27 ±1.40	3.99 ±.51 2.87 ±1.21 4.36 ±.71 5.88 ±.72 4.58 ±.51
83 12 27 84 1 1 84 1 5 84 1 10	3.65 ±1.30 31 ±1.77 .84 ±1.40 .96 ±1.33 83 ±1.31	3.81 ±.48 3.61 ±.67 .80 ±.55 5.09 ±.42 3.54 ±.46
84 1 15	78 ±1.58	5.37 ±.63
84 1 25	1.99 ±1.35	4.76 ±.57
84 1 25	.86 ±1.49	4.92 ±.47
84 1 30	54 ±1.84	4.90 ±.56
84 2 4	3.71 ±2.24	4.83 ±.74
84 2 9	-2.13 ±1.78	4.17 ±.77
84 2 14	2.03 ±1.95	4.17 ±.64
84 2 19	2.73 ±1.51	4.09 ±.59
84 2 24	-2.31 ±1.67	2.92 ±.48
84 2 25	1.28 ±1.16	4.17 ±.37

D	ate	Nutation in Longitude 0"001	Nutation in Obliquity 0"001
84 84	2 25 2 29	1.84 ±1.21 .75 ±1.58	3.16 ±.44 1.66 ±.46
84	3 5	4.70 ±1.41	$3.72 \pm .50$
84	3 10	1.73 ±1.60	$3.13 \pm .64$
84	3 15	15 ±1.33	$2.13 \pm .44$
84	3 20	1.14 ±1.25	.89 ±.42
84	3 26	72 ±1.20	$1.30 \pm .44$
84	3 31	3.24 ± 2.96	1.29 ±1.50
84	4 4	-2.73 ± 1.49	2.21 ±.43
84	4 9	5.59 ±1.19	1.80 ±.53
84	4 14	7.55 ±1.34	.88 ±.40
84	4 19	3.13 ±1.01	1.57 ±.37
84	4 20	3.33 ±1.16	.90 ±.37
84	4 24	8.81 ±1.62	20 ±.44 1.27 ±.37
84	4 27	2.72 ±1.17	1.27 ±.37 1.15 ±.41
84 84	4 29 5 4	6.45 ±1.28 6.47 ±1.97	1.74 ±.61
84	5 9	.12 ±1.25	.52 ±.59
84	5 14	2.51 ±1.53	.97 ±.45
84	5 19	3.18 ±1.23	1.04 ±.38
84	5 20	1.06 ±1.01	.53 ±.39
84	5 24	.94 ±1.38	07 ±.55
84	5 29	2.20 ±1.10	.40 ±.37
84	6 3	58 ±1.22	1.53 ±.43
84	6 8	-2.18 ±1.65	42 ±.57
84	6 13	-1.55 ±1.17	.70 ±.43
84	6 18	.62 ±1.12	07 ±.39
84	6 23	-3.55 ±1.56	$1.15 \pm .54$
84	6 28	-2.73 ± 1.32	$.20 \pm .48$
84	7 3	44 ±1.07	.75 ±.44
84	78	-6.35 ±1.23	.68 ±.53
84	7 8	-3.88 ±.84	1.38 ±.27
84	7 13	-4.36 ±1.25	24 ±.48
84	7 18	-6.90 ±1.12	1.34 ±.49
84	7 22	-8.18 ±.90	.16 ±.30
84	7 23	-9.32 ±.83	$2.44 \pm .27$
84	7 23	-6.88 ±2.23	89 ±.94 .56 ±1.06
84	7 28	-1.19 ±2.63	08 ±.53
84	7 29	-7.08 ±1.52	.24 ±.30
84	7 30	-4.19 ±.98	.71 ±.48
84 84	8 2 8 5	-5.08 ±1.37 -4.34 ±.94	1.05 ±.29
84 84	8 5 8 6	-4.34 ±.94 -12.09 ±.99	1.03 ±.23 1.17 ±.32
84	8 7	-8.23 ±1.40	1.41 ±.47
84	8 12	-7.60 ±1.32	1.17 ±.46
84	8 17	-7.96 ±1.32	.91 ±.52
84	8 22	-5.84 ±1.36	.80 ±.44
84	8 25	$-5.51 \pm .96$.68 ±.29

	Dat	е	Nutation in	Nutati	
			Longitude 0"001	0:0	uity 101
			0.001	0.0	
84	8	27	-9.88 ±1.60	1.83	±.48
84	8	29	-11.28 ±1.02	. 58	±.31
84	8	31		1.52	±.26
84	9	1	-13.17 ±1.45	1.07	±.48
84	9	3	-11.24 ±.85	. 57	±.26
84	9	6	-8.71 ±1.25	.86	±.41
84	9	11	-9.24 ±1.22	1.60	±.41
84	9	16	-11.02 ±1.49	2.35	±.50
84	9	21	-5.54 ±1.64	1.46	±.68
84	9	26	-9.62 ±1.23	2.01	±.40
84	10	1	-6.21 ±1.15	2.04	±.35
84	10	6	-8.91 ±1.34	2.41	±.48
84	10	11	-6.45 ±1.34	2.26	±.40
84	10	16	-8.24 ±1.44	1.66	±.45
84 84	10 10	21 26	-5.82 ±1.31 -10.34 ±1.28	2.92 2.60	±.43
84	10	27	-10.34 ±1.28 -13.13 ±2.04	1.13	±.34 ±.78
84	10	31	-5.91 ±1.29	2.67	±.44
84	11	5	-6.92 ±1.54	3.33	±.51
84	11	10	-4.38 ±1.19	2.49	±.42
84	11	15	-4.29 ±1.36	2.84	±.49
84	11	16	-3.40 ±1.35	2.97	±.47
84	11		-4.16 ±1.24	3.50	±.41
84	11		-5.99 ±1.27	3.47	±.41
84	11	30	-2.49 ±1.22	5.19	±.43
84	12	5	-6.07 ±1.31	4.73	±.44
84	12	10	-6.14 ±1.36	2.84	±.44
84	12	15	-4.10 ±1.44	4.18	±.46
84	12		-4.31 ±1.53	3.97	±.57
84	12		-3.52 ±1.19	3.54	±.43
84	12		-2.48 ±1.36	4.57	±.53
85	1	4	82 ±1.01	4.03	±.31
85	1	9	.08 ±.95	4.32	±.36
85	1	14	-3.79 ±1.13	5.23	±.52
85 85	1	19	-3.60 ±.95	4.54	±.38
85	1 1	24 25	-1.85 ±.93 -2.21 ±1.32	5.15 5.55	±.35
85	1	29	-2.21 ±1.32 -1.07 ±.96	4.18	±.42
85	2	3	66 ±.90	3.98	±.33 ±.37
85	2	8	-1.75 ±1.00	4.15	±.37
85	2	13	-2.33 ±1.03	3.47	±.36
85	2	18	1.22 ±1.03	4.23	±.37
85	2	23	.17 ±1.05	4.01	±.36
85	2	28	78 ±.85	2.95	±.27
85	3	5	74 ±1.06	2.56	±.35
85	3	6	1.05 ±.80	2.95	±.24
85	3	10	2.56 ±1.66	2.43	±.57
85	3	15	2.15 ±1.03	3.23	±.35

Da	ate	Nutation in Longitude 0"001	Nutation in Obliquity 0"001	
85 85 85	3 20 3 25 3 30	1.44 ±1.14 01 ±.89 3.31 ±1.01	2.42 ±.40 1.75 ±.30 1.40 ±.37	
85	4 4	1.94 ±.98	$1.61 \pm .31$	
85	49	1.93 ±1.06	$.50 \pm .35$	
85	4 14	2.74 ±.97	$1.55 \pm .34$	
85	4 19	2.27 ±1.00	1.45 ±.33	
85	4 24	$1.34 \pm .88$	1.37 ±.28	
85	4 25	8.53 ±1.24	.90 ±.44	
85	4 29	1.04 ±1.02	03 ±.36	
85	5 4	2.86 ±1.09	$1.03 \pm .41$	
85	5 8	-1.03 ±.96	.10 ±.29 .89 ±.34	
85	5 9	2.69 ±1.04 1.59 ±.87	.28 ±.26	
.85 .85	5 10 5 14	2.45 ±1.23	1.34 ±.36	
.85	5 16	.12 ±.74	1.60 ±.23	
85	5 19	.79 ±.97	.17 ±.35	
85	5 24	1.15 ±1.14	.69 ±.37	
85	5 29	2.52 ±1.02	.46 ±.34	
85	6 3	1.24 ±1.16	$.83 \pm .37$	
85	6 8	24 ±.88	.66 ±.30	
85	6 13	-1.57 ±.94	.83 ±.29	
85	6 18	$-1.39 \pm .94$	41 ±.30	
85	6 19	-2.34 ±.94	63 ±.36	
85	6 20	-2.17 ±.81	.15 ±.24	
85	6 23	01 ±.96	1.75 ±.36 1.12 ±.33	
85	6 28	-3.87 ±1.03 -1.47 ±.99	.81 ±.33	
85 85	7 3 7 7	$-2.63 \pm .79$	1.80 ±.25	
85	7 8	-2.11 ±1.08	33 ±.37	
85	7 13	-6.48 ±1.12	1.12 ±.42	
85	7 18	-3.06 ±1.13	.31 ±.36	
85	7 21	$-3.31 \pm .78$.17 ±.25	
85	7 23	-3.20 ±1.13	49 ±.39	
85	7 28	$-8.61 \pm .80$.65 ±.25	
85	7 28	-7.73 ±1.13	.47 ±.40	
85	8 2	-5.34 ±1.13	.85 ±.37	
85	8 7	-10.21 ±1.32	02 ±.50	
85	8 11	-6.55 ±.79	1.37 ±.25 .77 ±.47	
85 85	8 12 8 17	-8.19 ±1.32 -5.70 ±1.11	.66 ±.37	
85	8 22	-7.55 ±1.22	.31 ±.39	
85	8 25	-7.33 ±1.22 -9.15 ±.91	.37 ±.28	
85	8 27	-6.33 ±1.08	1.06 ±.36	
85	8 29	-14.15 ±2.27	1.93 ±.77	
85	9 1	-3.83 ±1.30	1.75 ±.44	
85	9 5	$-8.17 \pm .92$	1.77 ±.28	
85	9 6	-11.03 ±1.15	1.69 ±.38	

Date	Nutation in Longitude 0"001	Nutation in Obliquity 0"001
85 9 11 85 9 12 85 9 16 85 9 21 85 9 26 85 10 1 85 10 1 85 10 16 85 10 21 85 10 26 85 10 30 85 10 31 85 11 5 85 11 10 85 11 15 85 11 20	-5.46 ±1.13 -5.79 ±.91 -9.66 ±1.14 -10.76 ±1.09 -6.92 ±1.07 -12.57 ±.78 -9.75 ±1.13 -5.78 ±1.08 -5.43 ±1.09 -8.39 ±1.15 -4.74 ±1.03 -5.56 ±.88 -8.76 ±.76 -3.70 ±1.34 -6.44 ±1.42 -5.38 ±1.02 -6.12 ±1.08 -4.18 ±.95	1.14 ±.37 1.94 ±.32 .90 ±.38 1.58 ±.34 1.34 ±.35 2.40 ±.24 2.03 ±.38 1.42 ±.35 1.73 ±.37 .91 ±.39 .26 ±.30 1.94 ±.25 3.45 ±.23 .77 ±.39 3.20 ±.47 2.79 ±.32 2.27 ±.34 3.64 ±.34
85 11 21	-3.40 ±.97	2.59 ±.32
85 11 22	-5.12 ±.78	3.78 ±.23
85 11 25	-5.41 ±1.00	3.39 ±.34
85 11 30	-3.75 ±1.11	3.91 ±.34
85 12 5	-1.55 ±1.03	3.45 ±.33
85 12 10	-3.01 ±.87	3.47 ±.30
85 12 11	-1.84 ±1.08	4.90 ±.35
85 12 15	-2.72 ±1.00	3.92 ±.32
85 12 20	-4.28 ±.92	4.60 ±.30
85 12 24	-4.55 ±1.85	1.51 ±1.36
85 12 30	-2.04 ±1.03	4.38 ±.34
86 1 4	-3.26 ±.93	4.52 ±.33
86 1 9	-2.42 ±1.03	3.20 ±.42
86 1 10	-1.40 ±.94	5.79 ±.31
86 1 14	-1.27 ±.96	5.02 ±.32
86 1 15	-2.44 ±.91	4.78 ±.29
86 1 16	-1.27 ±.88	5.09 ±.29
86 1 19	-5.31 ±1.15	4.39 ±.35
86 1 20	-2.40 ±.84	5.96 ±.28
86 1 24	-2.77 ±1.04	4.33 ±.34
86 1 29	48 ±.97	3.93 ±.35
86 1 30	-2.41 ±.78	4.89 ±.24
86 2 3	68 ±.91	3.66 ±.31
86 2 4	-1.07 ±.85	6.14 ±.28
86 2 8	.35 ±.95	4.06 ±.30
86 2 12	.08 ±1.14	5.04 ±.35
86 2 13	-3.76 ±1.04	4.04 ±.38
86 2 18	-3.77 ±1.12	4.16 ±.35
86 2 23	90 ±.92	3.16 ±.33
86 2 28	-3.54 ±1.01	3.14 ±.33

86 3 5 -1.39 ±1.01 3.37 ±.40 86 3 10 98 ±1.03 3.73 ±.36 86 3 14 87 ±.84 3.42 ±.28 86 3 15 -3.96 ±1.17 2.45 ±.40 86 3 20 88 ±1.05 2.09 ±.35 86 3 21 -1.01 ±1.12 3.24 ±.35 86 3 25 2.37 ±1.06 2.73 ±.37 86 3 20 -1.96 ±1.16 2.93 ±.39 86 4 2 .26 ±.94 .76 ±.28 86 4 2 .26 ±.94 .76 ±.28 86 4 2 .26 ±.94 .76 ±.28 86 4 1.64 ±.95 1.99 ±.32 86 4 9 1.83 ±.97 3.33 ±.24 86 4 9 1.83 ±.97 1.28 ±.33 86 4 9 1.83 ±.97 1.28 ±.33 86 4 19 .36 ±1.11 .56 ±.38 86 4 19 .36 ±1.11 .56 ±.	Date	Nutation in Longitude 0"001	Nutation in Obliquity 0"001
86 4 24 .63 ±1.16 .93 ±.42 86 4 29 2.22 ±1.05 .76 ±.37 86 5 3 2.81 ±.83 1.30 ±.26 86 5 4 .88 ±2.02 1.17 ±.92 86 5 9 1.45 ±1.09 .51 ±.37 86 5 14 4.14 ±.93 42 ±.29 86 5 15 .51 ±.86 1.28 ±.26 86 5 18 4.38 ±1.09 03 ±.39 86 5 18 4.38 ±1.09 03 ±.39 86 5 29 3.29 ±.96 01 ±.32 86 6 3 2.07 ±1.07 1.13 ±.39 86 6 13 .41 ±1.20 .15 ±.40 86 6 14 -4.88 ±.84 .56 ±.30 86 6 18	86 3 1 86 3 1 86 3 2 86 3 2 86 3 2 86 3 3 86 4 86 4 86 4 86 4 86 4	5 -1.39 ±1.01 98 ±1.03 487 ±.84 5 -3.96 ±1.17 088 ±1.05 1 -1.01 ±1.12 5 2.37 ±1.06 0 -1.96 ±1.16 2 2.6 ±.94 4 1.64 ±.95 5 1.17 ±.82 989 ±.79 9 1.83 ±.97 4 3.24 ±1.13	3.37 ±.40 3.73 ±.36 3.42 ±.28 2.45 ±.40 2.09 ±.35 3.24 ±.35 2.73 ±.37 2.93 ±.39 .76 ±.28 1.99 ±.32 2.61 ±.25 3.33 ±.24 1.28 ±.33 .68 ±.37
86 5 24 .12 ±1.23 1.54 ±.40 86 5 29 3.29 ±.96 01 ±.32 86 6 3 2.07 ±1.07 1.13 ±.39 86 6 8 .33 ±1.10 23 ±.38 86 6 13 .41 ±1.20 .15 ±.40 86 6 14 -4.88 ±.84 .56 ±.30 86 6 17 -1.63 ±1.12 .92 ±.36 86 6 18 -2.89 ±1.06 .58 ±.37 86 6 19 -5.31 ±.82 1.64 ±.25 86 6 23 83 ±1.12 1.04 ±.38 86 6 23 83 ±1.12 1.04 ±.38 86 6 23 83 ±1.12 2.06 ±.40 86 7 3 -4.97 ±1.02 .98 ±.34 86 7	86 4 2 86 4 2 86 5 86 5 86 5 86 5 1 86 5 1	4 .63 ±1.16 9 2.22 ±1.05 3 2.81 ±.83 4 .88 ±2.02 9 1.45 ±1.09 4 .14 ±.93 5 .51 ±.86	$\begin{array}{cccc} .93 & \pm .42 \\ .76 & \pm .37 \\ 1.30 & \pm .26 \\ 1.17 & \pm .92 \\ .51 & \pm .37 \\42 & \pm .29 \\ 1.28 & \pm .26 \end{array}$
86 6 18 -2.89 ±1.06 .58 ±.37 86 6 19 -5.31 ±.82 1.64 ±.25 86 6 23 83 ±1.12 1.04 ±.38 86 6 28 -3.49 ±1.26 2.06 ±.40 86 7 3 -4.97 ±1.02 .98 ±.34 86 7 6 -5.64 ±.80 1.17 ±.26 86 7 8 -3.27 ±1.35 .05 ±.49 86 7 13 -4.73 ±.79 1.64 ±.25 86 7 13 -4.85 ±1.10 1.05 ±.36 86 7 18 -5.94 ±1.10 01 ±.39 86 7 23 -3.38 ±1.23 .59 ±.53 86 7 27 -7.94 ±.76 1.67 ±.23 86 7 28 -7.74 ±1.07 .57 ±.40 86 8 2 -3.35 ±1.17 .87 ±.42 86 8 3 -10.88 ±.75 .57 ±.22	86 5 2 86 5 2 86 6 86 6 86 6 1 86 6 1	4 .12 ±1.23 9 3.29 ±.96 3 2.07 ±1.07 8 .33 ±1.10 3 .41 ±1.20 4 -4.88 ±.84	1.54 ±.40 01 ±.32 1.13 ±.39 23 ±.38 .15 ±.40 .56 ±.30
86 7 13 -4.85 ±1.10 1.05 ±.36 86 7 18 -5.94 ±1.10 01 ±.39 86 7 23 -3.38 ±1.23 .59 ±.53 86 7 27 -7.94 ±.76 1.67 ±.23 86 7 28 -7.74 ±1.07 .57 ±.40 86 8 2 -3.35 ±1.17 .87 ±.42 86 8 3 -10.88 ±.75 .57 ±.22	86 6 1 86 6 2 86 6 2 86 7 86 7 86 7	8 -2.89 ±1.06 9 -5.31 ±.82 383 ±1.12 8 -3.49 ±1.26 3 -4.97 ±1.02 6 -5.64 ±.80 8 -3.27 ±1.35	.58 ±.37 1.64 ±.25 1.04 ±.38 2.06 ±.40 .98 ±.34 1.17 ±.26 .05 ±.49
86 8 12 -9.12 ±1.32 .99 ±.52	86 7 1 86 7 2 86 7 2 86 7 2 86 7 2 86 8 86 8	3 -4.85 ±1.10 8 -5.94 ±1.10 3 -3.38 ±1.23 7 -7.94 ±.76 8 -7.74 ±1.07 2 -3.35 ±1.17 3 -10.88 ±.75 7 -6.95 ±1.19	1.05 ±.36 01 ±.39 .59 ±.53 1.67 ±.23 .57 ±.40 .87 ±.42 .57 ±.22 .27 ±.49

Date	Nutation in Longitude 0"001	Nutation in Obliquity 0"001
86 8 22 86 8 26 86 8 27 86 9 1 86 9 6 86 9 11 86 9 16 86 9 17	-7.26 ±1.25 -11.23 ±.94 -8.79 ±1.36 -6.64 ±1.39 -8.06 ±1.32 -10.87 ±.88 -9.75 ±1.19 -5.71 ±1.06 -9.74 ±.87	2.23 ±.47 .56 ±.34 .77 ±.52 1.53 ±.48 1.18 ±.63 1.70 ±.27 1.28 ±.41 1.08 ±.38 2.00 ±.26
86 9 21	-9.49 ±1.21	1.41 ±.40
86 9 26	-10.06 ±1.24	1.36 ±.43
86 10 1	-6.23 ±1.27	.99 ±.47
86 10 6	-8.37 ±1.13	2.77 ±.35
86 10 11	-6.36 ±1.08	1.59 ±.39
86 10 16	-7.42 ±1.06	2.38 ±.36
86 10 17	-9.69 ±.75	3.24 ±.22
86 10 21	-8.44 ±1.26	1.43 ±.40
86 10 24	-10.48 ±.78	2.70 ±.24
86 10 26	-6.25 ±1.09	2.15 ±.37
86 10 31	-7.52 ±1.03	3.81 ±.41
86 11 1	-6.48 ±.78	4.01 ±.24
86 11 4	-7.03 ±.97	1.95 ±.33
86 11 5	-4.74 ±.94	1.26 ±.28
86 11 6	-8.91 ±.75	2.50 ±.23
86 11 8	-5.48 ±.83	2.40 ±.27
86 11 10	-2.85 ±1.31	3.75 ±.40
86 11 15	-6.24 ±1.00	2.42 ±.33
86 11 20	-6.44 ±1.07	2.42 ±.33
86 11 25	.95 ±1.15	3.48 ±.41
86 11 30	-4.70 ±.95	3.00 ±.30
86 12 5	-3.73 ±1.05	3.66 ±.38
86 12 6	-6.98 ±.86	3.29 ±.27
86 12 9	-3.43 ±.91	3.17 ±.28
86 12 10	-2.74 ±.99	3.77 ±.32
86 12 15	-5.03 ±1.01	3.01 ±.34
86 12 20	35 ±.96	3.04 ±.33
86 12 24	.26 ±1.13	5.09 ±.43
86 12 30	88 ±.94	1.95 ±.33

^{*} Adjustments to nutation in longitude and obliquity are corrections to IAU 1980 nutation model, which is the MERIT standard.

NASA	Report Docume	entation Page		
Space Administration 1. Report No.	2. Government Accession		3. Recipient's Catalog	ı No.
NASA TM-100682				
4. Title and Subtitle			5. Report Date	
Crustal Dynamics Project Da		70.06	September 19	87
Volume 1 - Fixed Station V	LBI Geodetic Results 19	79-86	6. Performing Organia	zation Code
			Code 621	
7. Author(s)			8. Performing Organia	zation Report No.
J. W. Ryan and C. Ma			87B0480	
			10. Work Unit No.	
9. Performing Organization Name and A	ddress			
Code 621			11. Contract or Grant	No.
Goddard Space Flight Center	r			
Greenbelt, Maryland 20771			13. Type of Report an	d Period Covered
12. Sponsoring Agency Name and Addre	SS		Technical Men	
National Aeronautics and Sp	ace Administration			
Washington, DC 20546-000			14. Sponsoring Agenc	y Code
,				
The contents are available in Data Information System (Content of the Goddard VLBI group resolvent observatories through the enfrom POLARIS/IRIS are incomediated to the study of plate stability rotation parameters and bar globally while nutation offs 108 baselines.	eports the results of and d of 1986 and available cluded. The mobile VL, Northwest Territories at two large solutions, respectively.	alyzing 466 Mark leto the Crustal Dyr BI sites at Platteviare also included so GLB121 and GLB	III data sets acquinamics Project. Al ille, Colorado; Pen since these occupa 122, were used to ource positions w	Il full-day data aticton, British ations bear on bo obtain earth were estimated
17. Key Words (Suggested by Author(s)) Geodesy Crustal Dynamics Earth Rotation		18. Distribution Statem Unclassified - Subject Catego	Unlimited	
19. Security Classif. (of this report)	20. Security Classif. (of the	nis page)	21. No. of pages	22. Price
Unclassified	Unclassified			