

FUNDAMENTALS OF INFORMATION SCIENCE

PART 4 INFORMATION TRANSMISSION VIII

—— SPREAD SPECTRUM

Shandong University 2025 Spring Hailiang Xiong

§ 21.2 Spread Spectrum

扩展频谱获取信噪比增益

——理论依据: 香农信道容量公式

信道容量和带宽关系

结论:

- ▶ 信道容量 C依赖于 B、S 和 n₀
- 增大 S 可增加 C, 若S → ∞, 则 C → ∞;
- $▶ 减小 <math>n_0$ 可增加 C,若 $n_0 \rightarrow 0$,则 $C \rightarrow \infty$;
- > 增大 B 可增加 C, 但不能使 C无限制增大。 当 $B\to\infty$ 时, C 将趋向一个定值:

$$\lim_{B \to \infty} C = \lim_{B \to \infty} B \log_2(1 + \frac{S}{n_0 B}) \approx 1.44 \frac{S}{n_0}$$

$$C = B \log_2 \left(1 + \frac{S}{n_0 B} \right) \text{ (b/s)}$$

应用:

- C一定时,信道带宽B、信噪比S/N、传输时间*t* 三者之间可以互相转换。
- 增加B,可以换取S/N的降低;反之亦然。
- 若S/N不变,增加B,可以换取 t 的减少。

【例如】

$$C = 12 \times 10^3 \text{ b/s}$$
 互换前: 若 $B_1 = 3 \text{ KHz}$, 则 $\frac{S_1}{N_1} = 15$ 互换后: 若 $B_2 = 4 \text{ KHz}$, 则 $\frac{S_2}{N_2} = 7$

■扩谱(扩频)的好处

- ◆提高抗窄带干扰的能力,特别是敌对电台的有意干扰。
- ◆ 防止窃听。扩谱信号的发射功率谱密度可小于噪声的功率谱密度,将发射信号隐藏在背景噪声中,使侦听者很难发现。
 此外,由于采用了伪码,窃听者不能方便地听懂发送的消息。
- ◆提高抗多径传输效应的能力。由于扩谱调制采用了扩谱伪码, 它可以用来分离多径信号,所以有可能提高其抗多径的能力。
- ◆ 多 个 用 户 可 以 共 用 同 一 频 带 。 在 同 一 扩 谱 频 带 内 , 不 同 用 户 采 用 互 相 正 交 的 不 同 扩 谱 码 , 就 可 以 区 分 各 个 用 户 的 信 号 , 从 而 按 照 码 分 多 址 的 原 理 工 作 。
- ◆ **提供测距能力。**通过测量扩谱信号的自相关特性的峰值出现时刻,可以从信号传输时间的大小计算出传输距离。

■扩谱(扩频)技术的分类

◆直接序列(DS)扩谱:

用一段伪随机序列(又称为伪码)表示一个信息码元,对载波进行调制。 伪码的一个单元称为一个**码片**。由于码片的速率远高于信息码元的速率, 所以已调信号的频谱得到扩展。

◆跳频(FH)扩谱:

使发射机的载频在一个信息码元的时间内,按照预定的规律,离散地快速 跳变,从而达到扩谱的目的。载频跳变的规律一般也是由伪码控制的。

◆线性调频:

载频在一个信息码元时间内在一个宽的频段中线性地变化,从而使信号带宽得到扩展。由于此线性调频信号若工作在低频范围,则它听起来像鸟声,故又称"鸟声"调制。

■直接序列(DS)扩谱

◆ 原理

用一组**伪码**代表信息码元去调制**载波**。最常用的是2PSK。这种信号的典型功率谱密度曲线示于下图中。

图中,所示主瓣带宽是伪码时钟速率 R_c 的两倍。每个旁瓣的带宽等于 R_c 。例如,若所用码片的速率为 5 Mb/s,则主瓣带宽将为10 MHz,每个旁瓣宽为 5 MHz。

◆ 系统原理框图

◆信号和干扰信号在频域中的变化

(a) 在接收机输入端

(b) 在接收机中放输出端

卫星导航定位系统是最典型的扩频系统

北斗 "GEO+IGSO+MEO" 混合星座

北斗卫星导航系统

轨道类型	卫星数量/颗	轨道高度/km
地球静止轨道卫星 (GEO)	3	35786
倾斜地球轨道卫星(IGSO)	3	35786
地球中圆轨道卫星(MEO)	24	21528

卫星	发射	轨道	卫星	发射	轨道
工生	日期	类型		日期	类型
第1颗北斗导航实验卫星	2000.10.31	GEO	第 22 颗北斗导航卫星	2016.03.30	IGSO
第2颗北斗导航实验卫星	2000.12.21	GEO	第 23 颗北斗导航卫星	2016.06.12	GEO
第3颗北斗导航实验卫星	2003.05.25	GEO	第 24、25 颗北斗导航卫星	2017.11.05	MEO
第4颗北斗导航实验卫星	2007.02.03	GEO	第 26、27 颗北斗导航卫星	2018.01.12	MEO
第1颗北斗导航卫星	2007.04.14	MEO	第 28、29 颗北斗导航卫星	2018.02.12	MEO
第2颗北斗导航卫星	2009.04.15	GEO	第 30、31 颗北斗导航卫星	2018.03.30	MEO
第3颗北斗导航卫星	2010.01.17	GEO	第 32 颗北斗导航卫星	2018.07.10	IGSO
第4颗北斗导航卫星	2010.06.02	GEO	第 33、34 颗北斗导航卫星	2018.07.29	MEO
第5颗北斗导航卫星	2010.08.01	IGSO	第 35、36 颗北斗导航卫星	2018.08.25	MEO
第6颗北斗导航卫星	2010.11.01	GEO	第 37、38 颗北斗导航卫星	2018.09.19	MEO
第7颗北斗导航卫星	2010.12.18	IGSO	第 39、40 颗北斗导航卫星	2018.10.15	MEO
第8颗北斗导航卫星	2011.04.11	IGSO	第 41 颗北斗导航卫星	2018.11.01	GEO
第9颗北斗导航卫星	2011.07.27	IGSO	第 42、43 颗北斗导航卫星	2018.11.19	MEO
第 10 颗北斗导航卫星	2011.12.02	IGSO	第 44 颗北斗导航卫星	2019.04.20	IGSO
第 11 颗北斗导航卫星	2012.02.25	GEO	第 45 颗北斗导航卫星	2019.05.17	GEO
第12、13颗北斗导航卫星	2012.04.30	MEO	第 46 颗北斗导航卫星	2019.06.25	IGSO
第14、15颗北斗导航卫星	2012.09.19	MEO	第 47、48 颗北斗导航卫星	2019.09.23	MEO
第 16 颗北斗导航卫星	2012.10.25	GEO	第 49 颗北斗导航卫星	2019.11.05	IGSO
第 17 颗北斗导航卫星	2015.03.30	IGSO	第 50、51 颗北斗导航卫星	2019.11.23	MEO
第18、19颗北斗导航卫星	2015.07.25	MEO	第 52、53 颗北斗导航卫星	2019.12.16	MEO
第 20 颗北斗导航卫星	2015.09.30	IGSO	第 54 颗北斗导航卫星	2020.03.09	GEO
第 21 颗北斗导航卫星	2016.02.01	MEO	第 55 颗北斗导航卫星	2020.06.23	GEO

§ 21.3

正交编码

- ——在数字通信技术中具有十分重要的地位
- ——可用作纠错编码,实现码分多址通信等

21.3.1 正交编码的基本概念

■信号间的正交性

◆ 若两个周期为T的模拟信号 $s_1(t)$ 和 $s_2(t)$ 互相正交,则有:

$$\int_0^T s_1(t)s_2(t)dt = 0$$

◆ 若M个周期为T的模拟信号 $s_1(t)$, $s_2(t)$, ..., $s_M(t)$ 构成一个正交信号集合,则有:

$$\int_{0}^{T} s_{i}(t) s_{j}(t) dt = 0 \qquad i \neq j; \quad i, j = 1, 2, ..., M$$

■码组间的正交性

——可用**互相关系数**来描述。

①设长为 n 的编码中码元只取值 +1和 -1,以及 x 和 y是其中两个码组:

$$x = (x_1, x_2, x_3, \dots, x_n)$$
 $y = (y_1, y_2, y_3, \dots, y_n)$

其中 $x_i, y_i \in (+1,-1),$ $i = 1,2,\dots,n$

则x和y间的互相关系数定义为

$$\rho(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - 1 \le \rho \le +1$$

若 $\rho(x, y) = 0$,则 x和 y 正交。

如图所示的4个数字信号

可以看作是如下4个码组:

$$\begin{cases} s_1(t): (+1,+1,+1,+1) \\ s_2(t): (+1,+1,-1,-1) \\ s_3(t): (+1,-1,-1,+1) \\ s_4(t): (+1,-1,+1,-1) \end{cases}$$

按照

$$\rho(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

计算得知:

这4个码组中任意两者间的相关系数都为0,即这4个码组两两正交。 我们把这种两两正交的编码称为——正交编码。

①设长为 n 的编码中码元只取值 +1和 -1,以及 x 和 y是其中两个码组:

$$x = (x_1, x_2, x_3, \dots, x_n)$$
 $y = (y_1, y_2, y_3, \dots, y_n)$

其中
$$x_i, y_i \in (+1,-1),$$
 $i = 1,2,\dots,n$

则x和y间的互相关系数定义为

$$\rho(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i -1 \le \rho \le +1$$

若 $\rho(x, y) = 0$,则 x和 y 正交。

②若用二进制数字 "0和1"分别代替上述码组中的 "+1和-1",则

$$\rho(x,y) = \frac{A-D}{A+D}$$

A ---x 和 y中对应码元相同的个数; D ---x 和 y中对应码元**不同**的个数。

例

按照上式规定,上面例子:

可以改写成:

按照

$$\rho(x,y) = \frac{A-D}{A+D}$$

计算出的互相关系数仍为0。

$$(s_1(t): (+1,+1,+1,+1))$$

 $(s_2(t): (+1,+1,-1,-1))$

$$s_3(t)$$
: (+1,-1,-1,+1)

$$s_4(t): (+1,-1,+1,-1)$$

■自相关系数

一个长为*n*的码组*x*,其自相关系数定义为:

$$\rho_x(j) = \frac{1}{n} \sum_{i=1}^n x_i x_{i+j}, \qquad j = 0, 1, \dots, (n-1)$$

式中,X的下标按模n运算,即有 $X_{n+k} \equiv X_k$ 。

例)设
$$x = (x_1, x_2, x_3, x_4) = (+1, -1, -1, +1)$$
,则有:

$$\rho_{x}(0) = \frac{1}{4} \sum_{i=1}^{4} x_{i}^{2} = 1 \qquad \rho_{x}(1) = \frac{1}{4} \sum_{i=1}^{4} x_{i} x_{i+1} = \frac{1}{4} (x_{1}x_{2} + x_{2}x_{3} + x_{3}x_{4} + x_{4}x_{1}) = 0$$

$$\rho_{x}(2) = \frac{1}{4} \sum_{i=1}^{4} x_{i} x_{i+2} = \frac{1}{4} (x_{1}x_{3} + x_{2}x_{4} + x_{3}x_{1} + x_{4}x_{2}) = -1$$

$$\rho_{x}(3) = \frac{1}{4} \sum_{i=1}^{4} x_{i} x_{i+3} = \frac{1}{4} (x_{1}x_{4} + x_{2}x_{1} + x_{3}x_{2} + x_{4}x_{3}) = 0$$

§ 21.4

伪随机序列

- ——在数字通信技术中具有十分重要的地位。
- ——在误码率测量、时延测量、扩谱通信、密码 及分离多径等方面都有着十分广泛的应用。

21.4.1 基本概念

■伪随机序列

◆ 又称伪随机噪声, 伪随机信号, 伪随机码。

■ 什么是伪随机噪声?

- ◆ 具有类似于随机噪声的某些统计特性,同时又能够重复产生。
- ◆ 它具有随机噪声的优点,又避免了随机噪声的缺点,因此获得了日益广泛的实际应用。

■如何产生伪随机噪声?

- ◆ 通常,由周期性数字序列经过滤波等处理后得到。
- ◆ 因此,将这种周期性数字序列称为伪随机序列。

21.4.2 m序列

1. m序列的产生

- ◆ m序列是伪随机序列中最重要的一种。
- ◆ m序列是最长线性反馈移位寄存器序列的简称。
- ◆ 它是由带线性反馈的移存器产生的周期最长的一种序列。
- 例 下图中示出一个4级线性反馈移存器。

设其初始状态(a_3 , a_2 , a_1 , a_0) = (1, 0, 0, 0), 则在移位1次时,由 a_3 和 a_0 模2相加产生新的输入 a_4 = 1 \oplus 0 = 1,新的状态变为(a_4 , a_3 , a_2 , a_1) = (1, 1, 0, 0)。这样移位15次后又回到初始状态(1, 0, 0, 0)。

若初始状态为全 "0", 即(0,0,0,0), 则移位后得到的仍为全 "0" 状态。应该避免出现全 "0"状态, 否则移存器的状态将不 会改变

4级 移存器共有2⁴ = 16种可能的状态。除全 "0"状态外,只剩15种状态可用。这就是说,由任何4级反馈移存器产生的序列的周期最长为15。

一般来说,一个**n** 级线性反馈移存器可能产生的最长周期等于(2ⁿ - 1)。

1	0	0	0)	
1	1	0	0	
1	1	1	0	
1	1	1	1	
0	1	1	1	
1	0	1	1	
0	1	0	1	
1	0	1	0 >	$2^4-1=15(^)$
1	1	0	1	
0	1	1	0	
0	0	1	1	
1	0	0	1	
0	1	0	0	
0	0	1	0	
0	0	0	1)	
	- • • • • • • •			
1	0	0	0	

核心: 反馈电路如何连接才能使移存器产生的序列周期最长?

■一般的线性反馈移存器原理方框图

图中各级移存器的状态用 a_i 表示, $a_i = 0$ 或 1, i =整数。

反馈线的连接状态用 c_i 表示, c_i = 1 表示此线接通(参加反馈); c_i = 0 表示此线断开。

反馈线的连接状态不同,就可能改变此移存器输出序列的周期p。

■基本关系式 ——与产生m序列有关的三个方程

1) 递推方程

设一个n 级移存器的初始状态为: $a_{-1}a_{-2}...a_{-n}$

1 次移位后: $a_0 a_{-1} ... a_{-n+1} n$ 次移位后: $a_{n-1} a_{n-2} ... a_0$

如图:

再移位1次时,移存器左端新得到的输入 a_n ,按图中线路连接关系,可写为:

$$a_n = c_1 a_{n-1} \oplus c_2 a_{n-2} \oplus \cdots \oplus c_{n-1} a_1 \oplus c_n a_0 = \sum_{i=1}^n c_i a_{n-i}$$
 (模 2)

$$a_n = c_1 a_{n-1} \oplus c_2 a_{n-2} \oplus \cdots \oplus c_{n-1} a_1 \oplus c_n a_0 = \sum_{i=1}^n c_i a_{n-i}$$
 (模 2)

一般说来,对于任意一个输入 a_k ,有

$$a_k = \sum_{i=1}^n c_i a_{k-i} \qquad --- 称为递推方程$$

它给出了移位输入 a_k 与移位前各级状态的关系。

按照递推方程计算,可以用软件产生**m序列**。

2) 特征方程 (特征多项式)

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n = \sum_{i=0}^{n} c_i x^i$$

它决定了移存器的反馈连接和序列的结构。

式中, x_i 仅指明其系数(1或0)代表反馈线的连接状态 c_i 的值,x本身的取值并无实际意义。

 $c_i = 1$ 表示此线接通(参加反馈); $c_i = 0$ 表示此线断开。

若特征方程为: $f(x) = 1 + x + x^4$

则它仅表示 x_0 , x_1 和 x_4 的系数 $c_0 = c_1 = c_4 = 1$, 其余的 c_i 为0,即 c_2 = $c_3 = 0$ 。按照这一特征方程构成的反馈移存器就是上图所示的。

3) 母函数

$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{k=0}^{\infty} a_k x^k$$

它表示反馈移存器的输出序列 $\{a_k\}$ 。

送推方程 以上 特征方程 ——与产生m序列有关的三个基本方程 母函数

下面 【 几个定理 】 —— 将给出它们与线性反馈移存器及其 产生的序列之间的关系。

■几个定理

——有关m序列和m序列产生器性质

【定理12.1】

$$f(x) \cdot G(x) = h(x)$$

式中,h(x)为次数低于f(x)的次数的多项式。

$$h(x) = \sum_{i=1}^{n} c_i x^i \left(a_{-i} x^{-i} + a_{-(i-1)} x^{-(i-1)} + \dots + a_{-1} x^{-1} \right)$$

可见,当电路给定后,h(x)仅决定于初始状态 $(a_i \dots a_1)$ 。

【定理12.<mark>2</mark>】

一个**n**级线性反馈移存器之相继状态具有周期性,

周期为 *p* ≤ **2**ⁿ - **1**。

【**定理12.3**】 若序列 $A = \{a_k\}$ 具有最长周期 $(p = 2^n - 1)$,则其特征多项式 f(x) 应为既约多项式。

【定理12.4】

一个n 级移存器的特征多项式f(x) 若为既约的,则由其产生的序列 $A = \{a_k\}$ 的周期等于使f(x) 能整除的 $(x^p + 1)$ 中最小正整数 p。

■本原多项式

- ◆ 若一个 n 次多项式 f(x) 满足下列条件:
 - □ f(x)为既约的;
 - f(x)可整除 $(x^m + 1)$, $m = 2^n 1$;
 - f(x)除不尽(x^q + 1), q < m;</p>

则称 f(x)为本原多项式。

◆ 由【**定理12.4**】可以简单写出一个线性反馈移存器能产生 **m序列**的充要条件为:

反馈移存器的 特征多项式 为本原多项式。

例

要求用一个<mark>4级</mark>反馈移存器产生*m*序列,试求其特征多项式。

解

n = 4, 故此移存器产生的m序列的长度 $m = 2^n - 1 = 15$ 。

特征多项式 f(x) 应可整除 $(x^m + 1) = (x^{15} + 1)$,或者说,应该是 $(x^{15} + 1)$ 的一个因子,而且还应该是一个4次本原多项式。

$$(x^{15}+1) = (x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)(x^2+x+1)(x+1)$$

上式表明, $(x^{15}+1)$ 可以分解为 5个既约因子,其中3个是4次多项式。可以证明,前2个是本原多项式,由其中任何一个都可产生 m 序列。用 (x^4+x+1) 作为特征多项式构成的4级反馈移存器见上图。

第3个不是,因为
$$(x^4 + x^3 + x^2 + x + 1)(x+1) = (x^5 + 1)$$

这就是说,它不仅可整除($x^{15}+1$),还可整除($x^{5}+1$),故它不是本原的。

■本原多项式表

由上述可见,只要找到了**本原多项式**,我们就能由它构成**m序列** 产生器。下表中列出了部分已经找到的**本原多项式**:

n	本原多项式			本原多项式	
	代数式	8进制表示法	n	代数式	8进制表示法
2	$x^2 + x + 1$	7	14	$X^{14} + x^{10} + x^6 + x + 1$	42103
3	$x^3 + x + 1$	13	15	$x^{15} + x + 1$	100003
4	$x^4 + x + 1$	23	16	$x^{16} + x^{12} + x^3 + x + 1$	210013
5	$x^5 + x^2 + 1$	45	17	$x^{17} + x^3 + 1$	400011
6	$x^{6}+x+1$	103	18	$x^{18} + x^7 + 1$	1000201
7	$x^7 + x^3 + 1$	211	19	$x^{19} + x^5 + x^2 + x + 1$	2000047
8	$x^8 + x^4 + x^3 + x^2 + 1$	435	20	$x^{20} + x^3 + 1$	4000011
9	$x^9 + x^4 + 1$	1021	21	$x^{21} + x^2 + 1$	10000005
10	$x^{10} + x^3 + 1$	2011	22	$x^{22} + x + 1$	20000003
11	$x^{11} + x^2 + 1$	4005	23	$x^{23} + x^5 + 1$	40000041
12	$x^{12} + x^6 + x^4 + x + 1$	10123	24	$x^{24} + x^7 + x^2 + x + 1$	100000207
13	$x^{13} + x^4 + x^3 + x + 1$	20033	25	$x^{25} + x^3 + 1$	200000011

本原多项式也可用 8进制 数字表示。

例如,对于 n = 4 表中给出 "23",它表示

2

010 011

 $c_5 c_4 c_3$ $c_2 c_1 c_0$

21.4.2 m序列

1. m序列的产生

2. m序列的性质

1) 均衡性

在 **m序列**的一个周期中,"1"和"0"的数目基本相等。准确地说, "1"的个数比"0"的个数多一个。

2) 游程分布

游程——指一个序列中取值相同的那些连在一起的元素合。

游程长度——指一个游程中元素的个数。

在前例中给出的 m序列可以重写如下:

m = 15 $\cdots 10001111010110010 \cdots$

在其一个周期(*m*个元素)中,共有8个游程,其中长度为4的游程有1个,即<u>1111</u>,长度为3的游程有1个,即<u>000</u>,长度为2的游程有2个,即<u>11和00</u>,长度为1的游程有4个,即两个<u>1</u>和两个<u>0</u>。

一般说来,在**m序列**中,长度为1的游程占游程总数的1/2;长度为2的游程占游程总数的1/4;长度为3的游程占1/8;...。

严格地讲,长度为 k 的游程数目 占 游程总数 的 $1/2^k$,其中 $1 \le k \le (n-1)$ 。而且在长度为 k $[1 \le k \le (n-2)]$ 的游程中 ,连 "1" 的游程 和 连 "0"的游程 各占一半。

3)移位相加特性

一个m序列 M_p 与其经过任意次延迟移位产生的另一个不同序列 M_r 模2相加,得到的仍是 M_p 的某次延迟移位序列 M_s ,即

$$M_p \oplus M_r = M_s$$

现在分析一个m = 7的 m序列 M_p 作为例子。设 M_p 的一个周期为 **1110010**,将其向**右移位一次**得到另一个序列 M_r 的一个相应周期 为 **0111001**。这两个序列的**模2和**为

 $1110010 \oplus 0111001 = 1001011$

得出的为M_s的一个相应的周期,它与M_p向右移位5次的结果相同。

4) 自相关函数

m序列的自相关函数为

$$\rho(j) = \begin{cases} 1, & \stackrel{\cong}{=} j = 0 \\ \frac{-1}{m}, & \stackrel{\cong}{=} j = 1, 2, \dots, m-1 \end{cases}$$

可见: $\rho(j)$ 只有两种取值: **1**和**-1/m**,所以有时也把这类序列称为**双值自相关**序列。

由于m序列有周期性,故其自相关函数也有周期性,周期也是m,即

$$\rho(j) = \rho(j - km), \quad \stackrel{\mathcal{L}}{=} \quad j \ge km, \quad k = 1, 2, \dots$$

且
$$\rho(j)$$
是**偶函数**:
$$\rho(j) = \rho(-j), \qquad j = 整数$$

若把 *m***序列** 当作 周期性 连续函数 求其 自相关函数,则从周期 函数的自相关函数的定义:

$$R(\tau) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} s(t) s(t+\tau) dt$$
 [T₀ 为s(t)的周期]

可以求出其自相关函数*R(z*)的表示式:

$$R(\tau) = \begin{cases} 1 - \frac{m+1}{T_0} \left| \tau - iT_0 \right|, & 0 \le \left| \tau - iT_0 \right| \le \frac{T_0}{m}, & i = 0,1,2,\cdots \\ -1/m, & 其他处 \end{cases}$$

按照上面的公式画出的 $\rho(j)$ 和 $R(\tau)$ 的曲线如下图所示。

图中的**圆点**表示 j 取整数时的 $\rho(j)$ 取值,折线是 R(t) 的连续曲线。可以看出,两者是重合的。由图还可以看出,当周期 T_0 非常长和码元宽度 T_0/m 极小时, R(t) 近似于冲激函数 $\delta(t)$ 的形状。

由上述可知,**m序列**的**自相关函数**只有**两种取值**:1和(-1/m)。有时 把这类序列称为<mark>双值自相关</mark>序列。

5) 功率谱密度

信号的自相关函数与功率谱密度构成一对傅里叶变换。

因此,对m序列的自相关函数作傅里叶变换可得其功率谱密度

$$P_s(\omega) = \frac{m+1}{m^2} \left[\frac{\sin(\omega T_0 / 2m)}{(\omega T_0 / 2m)} \right]^2 \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \delta \left(\omega - \frac{2\pi n}{T_0} \right) + \frac{1}{m^2} \delta(\omega)$$

 $P_s(\omega)$ 的特性趋于白噪声的功率谱密度特性。

6) 伪噪声特性

负 "-"

对一正态分布白噪声取样,若取样值为**正**,则记为"+"。将每次取样所得极性排成序列,例如:

这是一个<mark>随机序列</mark>,它具有如下**3个基本性质**:

- ◆ 序列中"+"和"-"的出现概率相等。
- ◆ 序列中长度为 k 的游程约占 $1/2^k$ 。而且在长度为 k 的游程中,"+"游程和"-"游程约各占一半。
- ◆ 白噪声的功率谱密度为常数,自相关函数为一冲激函数 $\delta(\tau)$ 。 当 $\tau \neq 0$ 时, $\delta(\tau) = 0$ 。仅当 $\tau = 0$ 时, $\delta(\tau)$ 是个面积为1的脉冲。

由于**m序列**的均衡性、游程分布和自相关特性与上述随机序列的基本性质极为相似,所以将 **m序列** 称为 **伪噪声(PN)序列**,或称为 **伪随机序列**。

但是,具有或部分具有上述基本性质的 PN序列 不仅只有 m序列 一种。m序列只是其中最常见的一种。除 m序列 外,M序列、二次剩余序列(或称为Legendre序列)、霍尔(Hall)序列和双素数序 列等都是 PN序列。

21.5.3 其他伪随机序列简介

1. M序列

■ 定义 由非线性反馈移存器产生的周期最长的序列称为M序列

· 其周期可达 **2**"

■ M序列的产生:

下面介绍一种利用 m序列 产生器构成 M序列产生器的方法。

仍以前面介绍的 n = 4级的 **m序列** 产生器为例。下图中给出了它的15种状态。

$$2^4-1=15(\uparrow \uparrow)$$

若使它增加一个"0000"状态, 就可变成 **M序列**产生器了。

因为移存器中后级状态必须是由其前级状态移入而得,故此"0000"状态必须处于初始状态"1000"之前和"0001"状态之后

这就是说,需将其递推方程修改为**非线性**方程,使"**0001**"状态代入新的递推方程后,产生状态"**0000**"(而不是"1000"),且在"0000"状态代入后产生状态"**1000**"(而不是保持"0000"不变)。

修改前的递推方程为

$$a_k = \sum_{i=1}^n c_i a_{k-i} = a_{k-1} \oplus a_{k-4}$$

修改后的递推方程应为:

$$\begin{split} a_k &= a_{k-1} \oplus a_{k-4} \oplus \overline{a}_{k-1} \overline{a}_{k-2} \overline{a}_{k-3} a_{k-4} \oplus \overline{a}_{k-1} \overline{a}_{k-2} \overline{a}_{k-3} \overline{a}_{k-4} \\ &= a_{k-1} \oplus a_{k-4} \oplus \overline{a}_{k-1} \overline{a}_{k-2} \overline{a}_{k-3} = \sum_{i=1}^4 c_i a_{k-i} \oplus \overline{a}_{k-1} \overline{a}_{k-2} \overline{a}_{k-3} \end{split}$$

对于**n级 m序列产生器**也一样。为使 **n级 m序列产生器**变成**M序 列产生器**,也只需使其<mark>递推方程</mark>改为

$$a_{k} = \sum_{i=1}^{4} c_{i} a_{k-i} \oplus \overline{a}_{k-1} \overline{a}_{k-2} \cdots \overline{a}_{k-n+1} = \sum_{i=1}^{n} c_{i} a_{k-i} \oplus \prod_{j=1}^{n-1} \overline{a}_{k-i}$$

有了递推方程,就不难构造出此M序列产生器。

一个 4级 M序列 产生器如下图所示:

■ M序列的性质:

*M*序列与*m*序列类似,也在一定程度上具有噪声特性。它满足*m*序列的前两个性质:

- (1)在 M序列的一个周期中,出现"1"和"0"的数目相等。
- (2)在n级M序列的一个周期中,游程共有 2^{n-1} 个,其中长度为k的游程占 $1/2^k$, $1 \le k \le n-2$;长为n的游程有两个,没有长为(n-1)的游程。在同长游程中,"0"游程和"1"游程各占一半。

但是,**M**序列 不再具有 **m**序列 的移位相加特性及双值自相关特性。

■ M序列的优点:

M序列与m序列相比,最主要的**优点**是数量大,即同样级数n的移存器能够产生的平移不等价M序列总数比m序列的大得多,且随n的增大迅速增加。

下表给出了级数 n与可能产生的两种序列数目的比较:

n	1	2	3	4	5	6	7	8	9	10
加序列 数目	1	1	2	2	6	6	18	16	48	60
M序列 数目	1	1	2	16	2048	6.71088	1.44115	1.32922	2.26156	1.30935
						$\times 10^7$	$\times 10^{17}$	$\times 10^{36}$	$\times 10^{74}$	$\times 10^{151}$

谢谢!