Image Analysis, Classification and Change Detection in Remote Sensing, Fourth Revised Edition: Errata

Page 35, Equation (2.9)

$$\langle Z \rangle = \int_{-\infty}^{\infty} z \cdot_z(z) dz$$

Page 61, after Definition 2.6

 \dots that is at least as extreme as the one observed, given the null hypothesis, for example,

$$P = \Pr(Q < q|H_0)$$

Page 187, first line

the Central Limit Theorem 2.4 imply ...

Page 265, last line

This greatly simplifies ...

Page 298, First line in Section 7.2.2

Not surprisingly \dots

Page 402, Equation (9.32)

$$\frac{L_0(\hat{x})}{L_1(\hat{x}_1, \hat{x}_2)} = \frac{(g_1/m)^m (g_2/m)^m}{\left(\frac{g_1 + g_2}{2m}\right)^{2m}} = 2^{2m} \frac{g_1^m g_2^m}{(g_1 + g_2)^{2m}} \le t.$$