INFORMATIKA WE KOMPÝUTER DERSINDEN MESELELER ÝYGYNDYSY

Ýokary okuw mekdepleri üçin okuw gollanmasy

UOK . N

O. Nurgeldiýew, A. Myratlyýew, M. Babaýew Informatika we kompýuter tehnikasy dersinden meseleler ýygyndysy Ýokary okuw mekdepleri üçin okuw gollanmasy – A.: Türkmen döwlet neşirýat gullugy, 2012.

TDKP № 2012 KBK

© O. Nurgeldiýew, A. Myratlyýew, M. Babaýew, 2012.

TÜRKMENISTANYŇ PREZIDENTI GURBANGULY BERDIMUHAMEDOW

TÜRKMENISTANYŇ DÖWLET TUGRASY

TÜRKMENISTANYŇ DÖWLET BAÝDAGY

TÜRKMENISTANYŇ DÖWLET SENASY

Janym gurban saňa, erkana ýurdum, Mert pederleň ruhy bardyr köňülde. Bitarap, garaşsyz topragyň nurdur, Baýdagyň belentdir dünýäň öňünde.

Gaýtalama:

Halkyň guran Baky beýik binasy, Berkarar döwletim, jigerim-janym. Başlaryň täji sen, diller senasy, Dünýä dursun, sen dur, Türkmenistanym!

Gardaşdyr tireler, amandyr iller, Owal-ahyr birdir biziň ganymyz. Harasatlar almaz, syndyrmaz siller, Nesiller döş gerip gorar şanymyz.

Gaýtalama:

Halkyň guran Baky beýik binasy, Berkarar döwletim, jigerim-janym. Başlaryň täji sen, diller senasy, Dünýä dursun, sen dur, Türkmenistanym!

ŞÖZBAŞY

Garaşsyz, baky Bitarap Türkmenistan döwletimizde geljegimiz bolan ýaşlaryň dünýäniň iň ösen talaplaryna laýyk gelýän derejede bilim almagy üçin ähli şertler döredilendir.

Hormatly Prezidentimiz döwlet başyna geçen ilkinji gününden bilime, ylma giň ýol açdy, Türkmenistan ýurdumyzda milli bilim ulgamyny kämilleşdirmek boýunça düýpli özgertmeler geçirmäge girişildi.

Türkmenistanyň Prezidenti Gurbanguly Berdimuhamedowyň «Türkmenistanda bilim ulgamyny kämilleşdirmek hakynda» 2007-nji ýylyň 15-nji fewralyndaky Permany bilim ulgamyndaky düýpli özgertmeleriň başyny başlady.

Häzirki wagtda milli bilim ulgamyndaky döwrebap özgertmeler ýaş nesliň ýokary derejede bilim almagyna we terbiýelenmegine, giň dünýägaraýyşly, edep-terbiýeli, tämiz ahlakly, kämil hünärmenler bolup ýetişmeklerine uly ýardam edýär.

Türkmenistanyň Prezidenti Hormatly Gurbanguly Berdimuhamedowyň baştutanlygynda Berkarar döwletiň bagtyýarlyk döwrüniň halk hojalygynyň ähli pudaklarynda dünýäde iň kämil tehnologiýalar ornaşdyrylýar. Täze tehnologiýalar bolsa ýurdumyzdaky ähli edaradyr kärhanalarda kompýuterleriň giň gerimden ulanylmagyny talap edýär. Geljekki hünärmenler kompýuterler arkaly edaralary dolandyrmagyň usullaryny we ýollaryny bilmelidirler.

Belli bolşy ýaly kompýuterler diňe özleri üçin düzülen programmalary ýerine ýetirip bilýärler. Haýsydyr bir işi kompýuteriň kömegi bilen ýerine ýetirmek islesek, onda biz kompýutede bar bolan algotitmik dilleriniň birinde, onuň ýerine ýetirip bilýän komandalaryny belli bir algoritm esasynda yzygiderli ýazmaklygy başarmalydyrys. Bu işe bolsa kompýuterler üçin programma düzmek diýilýär.

Bir meseläni kompýuteriň kömegi bilen çözmek üçin, ýagny programma düzüp kompýuterde ýerine ýetirmek üçin ilki bile ol meseläni çözmekligiň algoritmini aýdyň göz öňüne getirip bilmelidiris. Beýle diýildigi kompýuteriň kömegi bilen programma düzüp çözjek bolýän meselämize özümiziň köki-damary bilen düşünmegimiz gerek diýildigidir. Biz gowy düşünmeýän meselämizi kompýuteriň kömegi bilen hem çözüp bilmeris. Beýle ýagdaýda kompýuter bize kömek edip bilmeýär.

Şeýlelikde kompýuter üçin programma düzmek özbaşyna ylym hökmünde orta çykdy we bu ylym kem-kemden giň gerim alýar, örän çalt depgin bilen ösýär.

MAGLUMATLARY GIRIZMEK WE ÇYKARMAK, EYE BOLMAK OPERATORY

Bu ýumuşlaryň hemmesinde girizilýän we çykarylýan maglumatlar hakyky tipe degişlidir.

1-nji mysal

```
Berlen iki bitin sanyň jemini we tapawudyny hasaplamaly.
Uses CRT;
var a,b,jem,tapawut : real;
BEGIN
clrscr;
write('a='); read(a);
write('b='); read(b);
jem:=a+b;
tapawut:=a-b;
write('jemi = ',jem, ' tapawudy = ',tapawut:5:2);
readkey;
END.
```

2-nji mysal

Gönüburçly üçburçlygyň katetleri a,b berlen. Onuň gipotenuzasyny we meýdanyny tapmaly.

```
s:=(a*b)/2; {meýdany}
writeln('Gipotenuzasy = ',c:5:2.);
writeln('Meýdany = ',s:5:2);
readkey;
end.
```

3-nji mysal

Üçburçlygyň taraplary berlen. Geronyň formulasyny ulanmak arkaly ol üçburçlygyň meýdanyny tapmaly.

```
uses crt;
var a,b,c,p,s : real;
begin
clrscr;
    write('a='); read(a);
    write('b='); read(b);
    write('c='); read(c);
    p:=(a+b+c)/2;
    s:=sqrt(p*(p-a)*(p-b)*(p-c));
    write('meýdany=',s:5:2);
readkey;
end.
```

- **1.** Kwadratyň tarapy a berlen. Onuň perimetrini (P = 4*a) tapmaly.
 - **2.** Kwadratyň tarapy a berlen. Onuň meýdanyny ($S=a^2$) tapmaly.
- **3.** Gönüburçlygyň taraplary a we b berlen. Onuň meýdanyny (S = a*b) we perimetrini (P = 2*(a+b)) tapmaly.
- **4.** Töweregiň d diametri berlen. Onuň uzynlygyny tapmaly ($L = \pi * d$. π -ululygyň bahasyny 3.14-e deň diýip hasaplamaly).
- **5.** Kubuň gapyrgasynyň uzynlygy a berlen. Kubuň göwrümini $(V=a^3)$ we üstleriniň meýdanyny $(S=6*a^2)$ tapmaly.
- **6.** a, b, c gönüburçly parallellepipediň gapyrgalarynyň uzynlyklary berlen. Onuň V=a*b*c göwrümini we S=2*(a*b+b**c+a*c) üstleriniň meýdanyny tapmaly.
- 7. Berlen R radiusly töweregiň L uzynlygyny we sol radiusly tegelegiň S meýdanyny tapmaly: $L = 2 * \pi * R$, $S = \pi * R^2$.

- **8.** a we b sanlar berlen. Olaryň *orta arifmetiki* bahasyny (a+b/2) tapmaly.
- **9.** Otrisatel bolmadyk a we b sanlar berlen. Olaryň orta geometrik bahasyny $(\sqrt{a*b})$ tapmaly.
- **10.** Nola deň bolmadyk iki san berlen. Olaryň jemini, tapawudyny, köpeltmek hasylyny we olaryň kwadratlarynyň paýyny tapmaly.
- **11.** Nola deň bolmadyk iki san berlen. Olaryň jemini, tapawudyny, köpeltmek hasylyny we olaryň modullarynyň paýyny tapmaly.
- **12.** Gönüburçly üçburçlygyň katetleriniň uzynlygy a we b sanlara deň. Onuň c gipotenuzasyny $(c = \sqrt{a^2 + b^2})$ we P perimetrini (P = a + b + c) tapmaly.
- **13.** Umumy merkezli, R_1 hem-de R_2 ($R_1 > R_2$) radiusly iki sany tegelek berlen. Bu tegelekleriň S_1 we S_2 meýdanlaryny, daşky radiusy R_1 we içki radiusy R_2 bolan halkanyň S_3 meýdanyny tapmaly: $S_1 = \pi * R_1^2$, $S_2 = \pi * R_2^2$, $S_3 = S_1 S_2$.
- **14.** Tegelegiň töwereginiň L uzynlygy berlen. $L=2*\pi*R$, $S=\pi*R^2$ bolýanlygyny göz öňünde tutup ol tegelegiň R radiusyny we S meýdanyny tapmaly.

 π -iň bahasy 3.14-e deň diýip hasaplamaly.

15. Tegelegiň S meýdany berlen, $S = \pi * R^2$ bolýalygyny bolýanlygyny göz öňünde tutup onuň D diametrini we onuň töwereginiň $(L = 2 * \pi R)$ uzynlygyny tapmaly.

 π -iň bahasy 3.14-e deň diýip hasaplamaly.

- **16.** San okundaky x_1 we x_2 koordinatalar bilen berlen nokatlaryň arasyndaky uzaklygy tapmaly: $|x_2 x_1|$.
- **17.** San okunda *A*, *B*, *C* nokatlar berlen. *C* nokat *A* we *B* nokatlaryň aralygynda ýerleşýär. *AC* we *BC* kesimleriň uzynlyklaryny we olaryň jemini tapmaly.
- **18.** San okunda *A*, *B*, *C* nokatlar berlen. *C* nokat *A* we *B* nokatlaryň arasynda ýerleşýär. *AC* we *BC* kesimleriň uzynlyklarynyň köpeltmek hasylyny tapmaly.

- **19.** Gönüburçlugyň iki garşylykly depeleriniň koordinatalary: , (x_1, y_1) , (x_2, y_2) berlen. Gönüburçlugyň taraplary koordinata oklaryna parallel. Gönüburçlygyň perimetrini we meýdanyny tapmaly.
- **20.** Tekizlikde koordinatalary (x_1, y_1) we (x_2, y_2) bolan iki nokadyň arasyndaky uzaklygy tapmaly. Aralyk $\sqrt{(x_2 x_1)^2 (y_2 y_1)^2}$ formula bilen hasaplanylýar.
- **21.** Üçburçlugyň üç depesiniň koordinatalary: (x_1, y_1) , (x_2, y_2) , (x_3, y_3) berlen. Tekizlikde iki nokadyň arasyndaky uzaklygy tapmaklygyň formulasyndan peýdalanyp onuň perimetrini we meýdanyny hasaplamaly. Taraplary a, b, c bolan üçburçlygyň meýdanyny hasaplamak üçin *Geronyň formulasyndan* peýdalanmaly:
- $S = \sqrt{p * (p a) * (p b) * (p c)}$, bu ýerde p = (a + b + c)/2 ýarym perimetr.
- **22.** *A* we *B* üýtgeýän ululyklaryň bahalaryny çalşyrmaly we olaryň täze bahalaryny çapa çykarmaly.
- **23.** *A, B, C A, B, C* üýtgeýän ululyklar berlen. *A*-nyň bahasyny *B* ululygyň, *B*-niň bahasyny *C* ululygyň, *C*-niň bahasyny bolsa *A* ululygyň adyna geçirmeli. *A, B, C* ululyklaryň täze bahalaryny çapa çykarmaly.
- **24.** *A*, *B*, *C* üýtgeýän ululyklar berlen. *A*-nyň bahasyny *C* ululygyň, *C*-niň bahasyny *B* ululygyň, *B*-niň bahasyny bolsa *A* ululygyň adyna geçirmeli. *A*, *B*, *C* ululyklaryň täze bahalaryny çapa çykarmaly.
- **25.** *x*-iň berlen bahasynda $y = 3x^6 6x^2 7$ funksiýanyň bahasyny tapmaly.
- **26.** *x*-iň berlen bahasynda $y = 4(x-3)^6 7(x-3)^3 + 2$ funksiýanyň bahasyny tapmaly.
- **27.** A san berlen. Kömekçi üýtgeýän ululygy we köpeltmek amalyny üç gezek ulanmak arkaly A^8 -i hasaplamaly. Munuň üçin yzygiderli A^2 , A^4 , A^8 ululyklary tapmaly. A ululygyň hemme tapylan derejelerini çapa çykarmaly.
- **28.** A san berlen. Iki sany kömekçi üýtgeýän ululygy we köpeltmek amalyny bäş gezek ulanmak arkaly A^{15} -i hasaplamaly. Munuň

üçin yzygiderli A^2 , A^3 , A^5 , A^{10} , A^{15} ululyklary tapmaly. A ululygyň hemme tapylan derejelerini çapa çykarmaly.

- **29.** α burçuň bahasy gradusda berlen ($0 < \alpha < 2\pi$). $180^{\circ} = \pi$ radianlygyny göz öňünde tutyp bu burçyň bahasyny radianda aňlatmaly. π ululygyň bahasy 3.14-e deň diýip hasaplamaly.
- **30.** α burçuň bahasy radianda berlen (0 < α < 360). 180°= π radianlygyny göz öňünde tutyp bu burçyň bahasyny gradusda aňlatmaly. π ululygyň bahasy 3.14-e deň diýip hasaplamaly.
- **31.** T temperaturanyň bahasy Farengeýtiň gradusynda berlen. Temperaturanyň bu bahasyny Selsiniň gradusynda kesgitlemeli. Selsi boýunça temperatura $T_{\scriptscriptstyle C}$ we Farengeýt boýunça temperatura $T_{\scriptscriptstyle F}$ aşakdaky gatnaşyk boýunça baglanyşýarlar:

$$T_C = (T_E - 32) * 5/9$$

32. T temperaturanyň bahasy Selsiniň gradusynda berlen. Temperaturanyň bu bahasyny Farengeýtiň gradusynda kesgitlemeli. Selsi boýunça temperatura T_C we Farengeýt boýunça temperatura T_F aşakdaky gatnaşyk boýunça baglanyşýarlar:

$$T_C = (T_F - 32) * 5/9$$

- **33.** X kilogram süýjiniň bahasynyň A manatlygy belli. Bu süýjiniň l kilogramynyň we Y kilogramynyň bahasynyň ňäçe boljaklygyny kesgitlemeli.
- **34.** *X* kg şokoladly süýjüniň bahasy *A* manat, *Y* kg maňyzly süýjüniň bahasy bolsa *B* manat. 1 kg şokoladly süýjüniň we 1 kg maňyzly süýjüniň bahalarny kesgitlemeli. Şokoladly süýjiniň maňyzly süýjüden näçe esse gymmatlygyny kesgitlemeli.
- **35.** Gaýygyň ýata suwdaky tizligi V km/s, derýanyň tizligi bolsa U km/s (U < V). Gaýygyň köldäki hereket edýän wagty T_1 sagat, derýadaky hereket edýän wagty (akymyň garşysyna) T_2 sagat. Gaýygyň geçen ýoluny hasaplamaly (geçilen ýol = wagt * tizlik). Gaýyk derýanyň garşysyna hereket edende onuň tizligi derýanyň tizliginiň ululygyça azalýar.
- **36.** Birinji awtomobiliň tizligi V_1 km/s, ikinji awtomobiliň tizligi V_2 km/s, olaryň arasyndaky uzaklyk bolsa S km. Eger awtomobiller

biri-birinden daşlaşýan bolsalar, *T* sagatdan soň olaryň arasyndaky uzaklygy kesgitlemeli. Bu aralyk, başdaky awtomobilleriň arasyndaky uzaklyk bilen iki awtomobiliň bilelikdäki geçen ýollarynyň jemine deňdir;

Bilelikde geçilen ýol = wagt * tizlikleriň jemi.

37. Birinji awtomobiliň tizligi V_1 km/s, ikinji awtomobiliň tizligi V_2 km/s, olaryň arasyndaky uzaklyk bolsa S km. Eger awtomobiller biri-birine tarap hereket edýän bolsalar T sagatdan soň olaryň arasyndaky uzaklygy kesgitlemeli. Bu aralyk, başdaky aralyklaryň we awtomobilleriň bilelikde geçen umumy ýollarynyň tapawudynyň modulyna deňdir.

Bilelikde geçilen ýol = wagt * tizlikleriň jemi.

- **38.** A we B koeffisiýentleri (A koeffisiýent 0-a deň däl) berlen A * x + B = 0 deňlemäni çözmeli.
- **39.** Eger diskriminantynyň položiteldigi belli bolsa, öz *A*, *B*, *C* (*A* nola deň däl) koeffisiýentleri bilen berlen *kwadrat deňlemäniň* köklerini tapmaly. Ilki bilen tapylan kökleriň kiçisini, soňra bolsa ulysyny çapa çykarmaly. Kwadrat deňlemäniň kökleri aşadkady formula boýunça hasaplanylýar:

$$x_{1,2} = (-B \pm \sqrt{D})/(2 * A),$$

bu ýerde $D = B^2 - 4 * A * C$ diskriminant.

40. A_1 , B_1 , C_1 , A_2 , B_2 , C_2 koeffisiýentleri bilen *çyzykly deňlemeler sitemasy* berlen:

$$\begin{cases} A_1 * x + B_1 * y = C_1 \\ A_2 * x + B_2 * y = C_2 \end{cases}$$

Eger berlen sistemanyň ýeke-täk çözüwiniň barlygy belli bolsa, onda aşakdaky formulalardan peýdalanyp bu sistemanyň çözüwini tapmaly:

$$x = (C_1 * B_2 - C_2 * B_1), y = (A_1 * C_2 - A_2 * C_1)/D,$$
 bu ýerde $D = A_1 * B_2 - A_2 * B_1$.

BITIN SANLAR

Ýumuşlaryň bu toparynda girizilýän hem-de çapa çykarylýan hemme maglumatlar bitin sanlardyr. Eger sanlardaky sifrleriň mukdary görkezilen bolsa (ikibelgili san, üçbelgili san we ş.m.) onda olar položitel sanlar hasaplanylýar.

1-nji mysal

```
Ikibelgili san berlen. Ol sanyň sifrleriniň jemini tapmaly.
uses wincrt;
var n,s,s1,s2: word;
begin
clrscr;
      write('n='); read(n);
      s1:=n div 10;
      s2:=n \mod 10;
      s:=s1 + s2;
      write('sifrlerinin jemi = ',s);
readkey;
end
2-nji mysal
Üçbelgili san berlen. Ol sanyň sifrleriniň jemini tapmaly.
uses wincrt:
var n,s,s1,s2,s3 : word;
begin
clrscr;
      write('n='); read(n);
      s1:=n div 100;
      s2:=(n mod 100) div 10;
      s3:=n \mod 10;
      s = s1 + s2 + s3;
      write('sifrlerinin jemi = ',s);
readkey;
end
```

3-nji mysal

Natural n san berlen. Ol sanyň kwadratyny we kubyny hasaplamaly.

```
uses wincrt;
var n,kw,kub: word;
begin
clrscr;
    write('n='); read(n);
    kw:=n*n;
    kub:=n*n*n;
    write('kwadraty=',kw,#10,#13,'kuby=',kub);
readkey;
end.
```

- **1.** L aralyk santimetrde berlen. Bitinleýin bölmek operasiýasyny ulanmak arkaly ondaky doly metrleriň sanyny tapmaly (1 metr = 100 sm).
- **2.** *M* massa kilogramda berlen. Bitinleýin bölmek operasiýasyny ulanmak arkaly ondaky doly tonnanyň sanyny tapmaly (1 tonna = 1000 kg).
- **3.** Faýlyň ölçegi baýt hasabynda berlen. Bitinleýin bölmek operasiýasyny ulanmak arkaly ondaky doly kilobaýtlaryň sanyny tapmaly
 - (1 kilobaýt = 1024 baýt).
- **4.** A we B bitin položitel sanlar berlen (A > B). Bitinleýin bölmek operasiýasyny ulanmak arkaly B kesimiň A kesimde doly (biri-biriniň üstüne düşmezden) näçe gezek ýerleşjekdigini tapmaly.
- **5.** A we B bitin položitel sanlar berlen (A > B). A kesimde biri-biriniň üstüne düşmez ýaly edip B kesimi mümkin bolan iň köp gezek ýerleşdirilipdir. Bitinleýin bölmekde galýan galyndyny kesgitlemek operasiýasyny ulanmak arkaly A kesimiň ulanylmadyk bölegini tapmaly.
- **6.** Ikibelgili san berlen. Ilki ol sanyň çepki sifrini (onlugyny), soňra bolsa sagky sifriny (birligini) çapa çykarmaly. Onluklaryny tapmak üçin bitinleýin bölmek operasiýasyny ulanmaly, birlikleri-

ni tapmak üçin bolsa bitinleýin bölmekden galýan galyndydan peýdalanmaly.

- **7.** Ikibelgili san berlen. Onuň sifrleriniň jemini we köpeltmek hasylyny tapmaly.
- **8.** Ikibelgili san berlen. Onuň sifrleriniň orunlary çalşyrylanda emele gelen sany çapa çykarmaly.
- **9.** Üçbelgili san berlen. Bitinleýin bölmek operasiýasyny bir gezek ulanmak arkaly berlen sanyň ilkinji sifrini (ýüzlüklerini) çapa çykarmaly.
- **10.** Üçbelgili san berlen. İlki onuň iň soňky sifrini (birliklerini), soňra bolsa ortaky sifrini (onluklaryny) çapa çykarmaly.
- **11.** Üçbelgili san berlen. Onuň sifrleriniň jemini we köpeltmek hasylyny tapmaly.
- **12.** Üçbelgili san berlen. Bu sany tersine, ýagny sagdan çepe tarap okanyňda alynýan sany çapa çykarmaly.
- 13. Üçbelgili san berlen. Bu sanyň çep tarapdaky ilkinji sifrini bozdular we ony sag tarapda ýazdylar. Emele gelen sany çapa çykarmaly.
- **14.** Üçbelgili san berlen. Bu sanyň sag tarapdaky ilkinji sifrini bozdular we ony çep tarapda ýazdylar. Emele gelen sany çapa çykarmaly.
- **15.** Üçbelgili san berlen. Bu sanyň ýüzlük sifri bilen onluk sifriniň orunlary çalşyrylanda alnan sany çapa çykarmaly (mysal üçin, 123 san berlen bolsa onda 213 san emele geler).
- **16.** Üçbelgili san berlen. Bu sanyň onluk sifri bilen birlik sifriniň orunlary çalşyrylanda alnan sany çapa çykarmaly (mysal üçin, 123 san berlen bolsa onda 132 san emele geler).
- **17.** 999-dan uly bitin san berlen. Bir gezek bütinleýin bölmek operasiýasyny we bir gezek galyndyny kesgitlemek operasiýasyny ulanmak bilen bu sanyň ýüzlügini görkezýän sifri tapmaly.
- **18.** 999-dan uly bitin san berlen. Bir gezek bütinleýin bölmek operasiýasyny we bir gezek galyndyny kesgitlemek operasiýasyny ulanmak bilen bu sanyň müňlügini görkezýän sifri tapmaly.

- **19.** Sutkanyň başyndan bäri N sekunt geçdi (N bitin san). Sutkanyň başyndan bäri geçen doly minutlaryň sanyny tapmaly.
- **20.** Sutkanyň başyndan bäri N sekunt geçdi (N bitin san). Sutkanyň başyndan bäri geçen doly sagatlaryň sanyny tapmaly.
- **21.** Sutkanyň başyndan bäri N sekunt geçdi (N bitin san). Iň soňky minudyň näçe sekundynyň geçenligini tapmaly.
- **22.** Sutkanyň başyndan bäri N sekunt geçdi (N- bitin san). Iň soňky sagadyň näçe sekundynyň geçenligini tapmaly.
- **23.** Sutkanyň başyndan bäri N sekunt geçdi (N bitin san). Iň soňky sagadyň başlananyndan bäri näçe doly minudyň geçenligini tapmaly.
- **24.** Hepdäniň günleri şeýle belgilenen: 0 ýekşenbe, 1 duşenbe, 2 sişenbe, 3 çarşenbe, 4 penşenbe, 5 anna, 6-şenbe. 1–365 aralykda ýatan bitin *K* san berlen. Eger bu ýylyň ýanwar aýynyň 1-nji gününiň duşenbe günüdigi belli bolsa, onda *K*-njy günüň hepdäniň haýsy gününe düşýänligini tapmaly.
- **25.** Hepdäniň günleri 24-nji meselede görkezilişi ýaly belgilenen. 1-365 aralykda ýatan bitin *K* san berlen. Eger bu ýylyň ýanwar aýynyň 1-nji gününiň penşenbe günüdigi belli bolsa, onda *K*-njy günüň hepdäniň haýsy gününe düşýänligini tapmaly.
- **26.** Hepdäniň günleri 24-nji meselede görkezilişi ýaly belgilenen. 1-365 aralykda ýatan bitin *K* san berlen. Eger bu ýylyň ýanwar aýynyň 1-nji gününiň sişenbe günüdigi belli bolsa, onda *K*-njy günüň hepdäniň haýsy gününe düşýänligini tapmaly.
- **27.** Hepdäniň günleri 24-nji meselede görkezilişi ýaly belgilenen. 1-365 aralykda ýatan bitin *K* san berlen. Eger bu ýylyň ýanwar aýynyň 1-nji gününiň şenbe günüdigi belli bolsa, onda *K*-njy günüň hepdäniň haýsy gününe düşýänligini tapmaly.
- **28.** Hepdäniň günleri 24-nji meselede görkezilişi ýaly belgilenen. 1-365 aralykda ýatan bitin K san we 1-7 aralykda ýatan bitin N berlen. Eger bu ýylyň ýanwar aýynyň 1-nji gününiň hepdäniň N-nji günlügi belli bolsa, onda K-njy günüň hepdäni haýsy gününe düşýänligini tapmaly.

- **29.** A, B, C bitin položitel sanlar berlen. $A \times B$ ölçegli gönüburçlykda tarapy C bolan kwadratyň biri-biriniň üstüne düşmeýän iň köp bolan mukdary ýerleşdirilen. Gönüburçlukda ýerleşen kwadratlaryň sanyny we gönüburçlygyň ulanylman galan böleginiň meýdanyny tapmaly.
- **30.** Käbir ýyl bitin položitel san görnüşinde berlin. Ol ýylyň haýsy asyra degişlidigini kesgitlemeli. Mysal üçin, 20-nji asyryň ilkinji ýylynyň 1901-nji ýyldan başlanýanlygyny hasaba almaly.

LOGIKI AŇLATMALAR

Bu toparyň hemme ýumuşlarynda, eger aýdylan pikir aýtma dogry bolsa TRUE sözüni, galan ýagdaýlarda bolsa FALSE sözüni çapa çykarmak talap edilýär. Sifrleriniň sany görkezilen hemme sanlary (ikibelgili san, üçbelgili san) bitin položitel sanlar hasaplamaly.

1-nji mysal

A we B sanlar berlen. A san B sandan uludyr – diýen piker aýtma dogrymy? Bu soraga jogap berýän programma ýazmaly.

```
uses wincrt;
var a,b: integer;
begin
clrscr;
        write('a='); read(a);
        write('b='); read(b);
        write(a>b);
readkey;
end.
```

2-nji mysal

A we B sanlar berlen. Bu sanlaryň ikisi hem položiteldir – diýen piker aýtma dogrymy? Bu soraga jogap berýän programmany ýazmaly.

```
uses wincrt;
var a,b: real;
begin
```

1-nji mysal

 $ax^2 + bx + c = 0$ kwadrat deňlemäniň koeffisiýentleri berlen (a<0). Bu deňlemäniň çözüwi barmy? – diýen soraga jogap berýän programmany ýazmaly.

```
uses wincrt;
var a,b,c,d: real;
begin
clrscr;
    write('a='); read(a);
    write('b='); read(b);
    write('c='); read(c);
    d:=b*b-4*a*c;
    write(d>=0);
readkey;
end.
```

- **1.** *A* bitin san berlen. «*A* san položiteldir» diýen pikir aýtmanyň dogrulygyny barlamalay.
- **2.** *A* bitin san berlen. «*A* san täkdir» diýen pikir aýtmanyň dogrulygyny barlamalay.
- **3.** A bitin san berlen. «A san jübütdir» diýen pikir aýtmanyň dogrulygyny barlamalay.
- **4.** A, B iki bitin san berlen. «A > 2 we $B \le 3$ deňsizlik ýerine ýetýär» diýen pikir aýtmanyň dogrylugyny barlamaly.
- **5.** A, B iki bitin san berlen. « $A \ge 0$ ýa-da B < -2 deňsizlik ýerine ýetýär» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **6.** A, B, C üç bitin san berlen. «A < B < C ikileýin deňsizlik ýerine ýetýär» diýen pikir aýtmanyň dogrulygyny barlamaly.

- **7.** A, B, C üç bitin san berlen. «B san A we C sanlaryň arasynda ýerleşýär» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **8.** A, B iki bitin san berlen. « A we B sanlaryň ikisi hem täk sanlardyr» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **9.** A, B iki bitin san berlen. «A we B sanlaryň iň bolmanda birisi täk sandyr» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **10.** A, B iki bitin san berlen. «A we B sanlaryň diňe birisi täk sandyr» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **11.** A, B iki bitin san berlen. «A we B sanlaryň ikisi hem täkdir ýa-da ikisi hem jübütdir» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **12.** *A*, *B*, *C* üç bitin san berlen. «*A*, *B*, *C* sanlaryň hemmesi položiteldir» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **13.** *A*, *B*, *C* üç bitin san berlen. «*A*, *B*, *C* sanlaryň iň bolmanda birisi položiteldir» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **14.** *A*, *B*, *C* üç bitin san berlen. «*A*, *B*, *C* sanlaryň diňe birisi položiteldir» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **15.** *A*, *B*, *C* üç bitin san berlen. «*A*, *B*, *C* sanlaryň diňe ikisi položiteldir» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **16.** Bitin položitel san berlen. «berlen san ikibelgili jübüt sandyr» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **17.** Bitin položitel san berlen. «berlen san täk üçbelgili sandyr» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **18.** «Berlen üç sany bitin sanlaryň içinde iň bolmanda ikisi özara deňdir» diýen pikir aýtmanyň dogrulygyny barlamaly.
- 19. «Berlen üç sany bitin sanlaryň içinde iň bolmanda bir jübüt özara garşylykly san bardyr» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **20.** Üçbelgili san berlen. «Berlen sanyň hemme sifrleri biribirinden tapawutlanýarlar» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **21.** Üçbelgili san berlen. «Berlen sanyň sifrleri artýän tertipde ýerleşýär» diýen pikir aýtmanyň dogrulygyny barlamaly.

- **22.** Üçbelgili san berlen. «Berlen sanyň sifrleri artýan ýa-da kemelýän tertipde ýerleşýär» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **23.** Dörtbelgili san berlen. «Berlen san çepden saga we sagdan çepe birmeňzeş okalýar» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **24.** A, B, C (A nula deň däl) sanlar berlen. $D = B^2 4 * A * C$ diskriminanty hasaplamagyň formulasyny ulanmak arkaly: « $A * x^2 + B * x + c = 0$ kwadrat deňlemäniň hakyky köki bardyr» diýen pikir aýtmanyň dogrulygyny barlamaly.
- **25.** x, y sanlar berlen. ((x, y) koordinataly nokat ikinji koordinata çärýeginde ýatýar» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **26.** x, y sanlar berlen. «(x, y) koordinataly nokat dördünji koordinata çärýeginde ýatýar» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **27.** x, y sanlar berlen. «(x, y) koordinataly nokat ikinji ýa-da dördünji koordinata çärýeginde ýatýar» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **28.** x, y sanlar berlen. «(x, y) koordinataly nokat birinji ýa-da üçünji koordinata çärýeginde ýatýar» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **29.** x, y, x_1 , y_1 , x_2 , y_2 sanlar berlen. «(x, y) koordinatly nokat, çep ýokarky depesi (x_1 , y_1) koordinataly nokatda, sag aşaky depesi bolsa (x_2 , y_2) koordinataly nokatda bolan gönüburçlygyň içinde ýerleşýär» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **30.** Üçburçlygyň taraplary bolan *a, b, c* bitin sanlar berlen. «Taraplary *a, b, c* bolan üçburçlyk deňtaraplydyr» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **31°.** Üçburçlygyň taraplary bolan *a*, *b*, *c* bitin sanlar berlen. «Taraplary *a*, *b*, *c* bolan üçburçlyk deňýanlydyr» diýen pikir aýtmanyň dogrylygyny barlamaly.

- **32.** Üçburçlygyň taraplary bolan *a*, *b*, *c* bitin sanlar berlen. «Taraplary *a*, *b*, *c* bolan üçburçlyk gönüburçlydyr» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **33.** *a, b, c* bitin sanlar berlen. «Taraplary *a, b, c* bolan üçburçlyk bolup biler» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **34.** Küşt tagtasynyň bir öýüniň koordinatasy berlen (1-8 aralykda ýatan bitin san). Iň aşaky çep öýüň (1,1) gara reňklidigini nazara almak bilen «görkezilen öýüň reňki ak» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **35.** Küşt tagtasynyn x_1 , y_1 , x_2 , y_2 iki dürli öýleriniň koordinatalary berlen (1-8 aralykda ýatan bitin san). «Bu öýler birmeňzeş reňklidir» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **36.** Küşt tagtasynyn x_1 , y_1 , x_2 , y_2 iki dürli öýleriniň koordinatalary berlen (1–8 aralykda ýatan bitin san). «Ruh bir göçümde birinji öýden ikinji öýe geçip biler» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **37.** Küşt tagtasynyn x_1 , y_1 , x_2 , y_2 iki dürli öýleriniň koordinatalary berlen (1-8 aralykda ýatan bitin san). «Şa bir göçümde birinji öýden ikinji öýe geçip biler» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **38.** Küşt tagtasynyn x_1 , y_1 , x_2 , y_2 iki dürli öýleriniň koordinatalary berlen (1-8 aralykda ýatan bitin san). «Pil bir göçümde birinji öýden ikinji öýe geçip biler» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **39.** Küşt tagtasynyn x_1 , y_1 , x_2 , y_2 iki dürli öýleriniň koordinatalary berlen (1-8 aralykda ýatan bitin san). «Ferz bir göçümde birinji öýden ikinji öýe geçip biler» diýen pikir aýtmanyň dogrylygyny barlamaly.
- **40.** Küşt tagtasynyn x_1 , y_1 , x_2 , y_2 iki dürli öýleriniň koordinatalary berlen (1-8 aralykda ýatan bitin san). «At bir göçümde birinji öýden ikinji öýe geçip biler» diýen pikir aýtmanyň dogrylygyny barlamaly.

ŞERTLI OPERATOR

1-nji mysal

Biri beýlekisinden tapawutlanýan A we B sanlar berlen. Olaryň ulusyny tapmaly.

uses wincrt;

```
var a,b : real;
    begin
    clrscr;
            write('a='); read(a);
            write('b='); read(b);
            if a>b then write('max=',a:3:1)
                 else write('max=',b:3:1);
    readkey;
    end.
    2-nji mysal
    ax^2 + bx + c = 0 kwadrat deňleme berlen (a \neq 0). Bu deňlemäniň
köklerini tapmaly.
    uses wincrt;
    var a,b,c,d,x1,x2: real;
    begin
    clrscr:
           write('a='); read(a);
          write('b='); read(b);
           write('c='); read(c);
           d:=b*b-4*a*c;
           if d \ge 0 then
           begin
              x1 := (-b + sqrt(d))/(2*a);
              x2 := (-b - sqrt(d))/(2*a):
              write(x1=,x1:3:1, x2=,x2:3:1);
             end
                 else write('Diskriminant noldan kiçi...');
    readkey;
    end.
    3-nji mysal
    a, b, c sanlar berlen. Taraplary a, b, c bolan üçburçluk gurup
bolarmy? Bu soraga jogap berýän programmany ýazmaly.
    uses wincrt:
    var a,b,c: real;
```

```
begin
clrscr;
    write('a='); read(a);
    write('b='); read(b);
    write('c='); read(c);
    if (a+b>c) and (a+c>b) and(b+c>a) then write ('Gurup bolar')
        else write('Gurup bolmaz');
    readkey;
    end.
```

- **1.** Bitin tipli *A* we *B* iki sany üýtgeýän ululyk berlen. Eger olaryň bahalary deň däl bolsalar, onda olaryň her biriniň adyna olaryň ulusynyň bahasyny geçirmeli, eger olar özara deň bolsalar onda olarayň adyna nol bahany geçirmeli. *A* we *B* ululyklaryň täze bahalaryny çapa çykarmaly.
- **2.** Bitin san berlen. Eger ol položitel bolsa onda ol sana 1-i goşmaly; galan ýagdaýda ol sandan 2-ni aýyrmaly. Emele gelen sany çapa çykarmaly.
- **3.** Bitin san berlen. Eger ol položitel bolsa onda ol sana 1-i goşmaly; otrisatel bolsa onda ol sandan 2-ni aýyrmaly; eger nola deň bolsa onda onuň bahasyny 10 bilen çalşyrmaly. Emele gelen sany çapa çykarmaly.
- **4.** Üç bitin san berlen. Bu sanlaryň içinde näçe sany položitel sanyň barlygyny kesgitlemeli.
- **5.** Üç sany bitin san berlen. Bu sanlaryň içinde näçe sany položitel, näçe sany otrisatel sanyň barlygyny kesgitlemeli.
- **6.** Özara meňzeş bolmadyk iki san berlen. Olaryň ulusyny çapa çykarmaly.
 - 7. Iki san berlen. Olaryň kiçisiniň tertip belgisini çapa çykarmaly.
- **8.** Özara deň bolmadyk iki san berlen. Ilki olaryň ulusyny, soňra bolsa kiçisini çapa çykarmaly.
- **9.** *A*, *B* hakyky tipli üýtgeýän ululyklar berlen. *A* ululyk olaryň kiçisiniň bahasyny, *B* ululyk bolsa olaryň ulusynyň bahasyny

saklar ýaly edip üýtgeýän ululyklaryň bahalaryny çalşyrmaly. *A* we *B* ululyklaryň täze bahalaryny ekrana çykarmaly.

- **10.** *A* we *B* bitin tipli iki üýtgeýän ululyk berlen. Eger olaryň bahalary meňzeş däl bolsa, onda olaryň her birine olaryň jemini, eger olaryň bahalary meňzeş bolsa, onda olarayň adyna nol bahany geçirmeli. *A* we *B* ululyklaryň täze bahalaryny çapa çykarmaly.
- **11.** *A* we *B* bitin tipli iki üýtgeýän ululyk berlen. Eger olaryň bahalary meňzeş däl bolsa, onda olaryň her birine olaryň ulusynyň bahasyny, eger olaryň bahalary meňzeş bolsa, onda olaryň her biriniň adyna nol bahany geçirmeli. *A* we *B* ululyklaryň täze bahalaryny çapa çykarmaly.
- **12.** Özara meňzeş bolmadyk üç san berlen. Olaryň iň kiçisini tapmaly.
- **13.** Üç san berlen. Olaryň ortakysyny (ýagny iň kiçisi bilen iň ulusynyň aralygynda ýerleşenini) tapmaly.
- **14.** Üç san berlen. İlki olaryň iň kiçisini, soňra bolsa olaryň iň ulusyny çapa çykarmaly.
- **15.** Özara deň bolmadyk üç san berlen. Olaryň iň uly ikisiniň jemini tapmaly.
- **16.** Hakyky tipe degişli *A*, *B*, *C* üýtgeýän ululyklar berlen. Eger olaryň bahalary artýän tertipde ýerleşen bolsalar, onda olaryň bahalaryny iki esse artdyrmaly; galan ýagdaýlarda her bir üýtgeýän ululygyň bahasynyň alamatyny üýtgetmeli. *A*, *B*, *C* ululyklaryň täze bahalaryny çapa çykarmaly.
- 17. Hakyky tipe degişli *A*, *B*, *C* üýtgeýän ululyklar berlen. Eger olaryň bahalary artýän ýa-da kemelýän tertipde bolsalar, onda olaryň bahalaryny iki esse artdyrmaly; galan ýagdaýlarda her bir üýtgeýän ululygyň bahasynyň alamatyny üýtgetmeli. *A*, *B*, *C* ululyklaryň täze bahalaryny çapa çykarmaly.
- **18.** Üç bitin san berlen. Olaryň ikisi özara deň. Üçünji sanyň (özara deň sanlardan tapawutlanýan) tertip belgisini kesgitlemeli.
- **19.** Dört sany bitin san berlen. Ol sanlaryň üçüsi özara deň. Deň sanlardan tapawutly sanyň tertip belgisini kesgitlemeli.

- **20.** San okunda *A*, *B*, *C* nokatlar ýerleşdirilipdir. *B* ýa-da *C* nokatlaryň haýsysynyň *A* nokada has golaý ýerleşenligini kesgitlemeli we ol nokady hem-de ol nokatdan *A* nokada çenli uzaklygy çapa çykarmaly.
- **21.** Tekizlikde nokadyň bitin sanly koordinatasy berlen. Nokat koordinatalar başlangyjy bilen gabat gelýän bolsa, onda 0-y çapa çykarmaly; eger koordinatalar başlangyjy bilen gabat gelmeýän bolsa, ýöne *OX* ýa-da *OY* oklaryň üstünde ýatýan bolsa, onda degişlilikde 1-i ýa-da 2-ni çapa çykarmaly. Eger nokat koordinata okalrynyň üstünde-de ýatmaýan bolsa, onda 3-i çapa çykarmaly.
- **22.** *OX* we *OY* koordinata oklarynyň üstünde ýatmaýan nokadyň koordinatasy berlen. Bu nokadyň ýerleşýän koordinata çärýeginiň tertip belgisini kesgitlemeli.
- **23.** Taraplary koordinata oklaryna parallel bolan dörtburçlygyň üç depesiniň koordinatasy berlen. Onuň dördünji depesiniň koordinatasyny tapmaly.
- **24.** Berlen hakyky *x* san üçin, hakyky bahalary kabul edýän aşakdaky *f* funksiýanyň aljak bahasyny tapmaly:

$$f(x) = \begin{cases} 2 * \sin(x), eger \ x > 0, \\ 6 - x, eger \ x \le 0 \end{cases}$$

25. Berlen bitin *x* san üçin, bitin bahalary kabul edýän aşakdaky *f* funksiýanyň aljak bahasyny tapmaly:

$$f(x) = \begin{cases} 2 * x, eger \ x < -2 \ \text{\'ya-da} \ x > 2, \\ -3x, galan \ \text{\'yagda\'y}larda. \end{cases}$$

26. Berlen hakyky x san üçin, hakyky bahalary kabul edýän aşakdaky f funksiýanyň aljak bahasyny tapmaly:

$$f(x) = \begin{cases} -x, eger \ x \le 0, \\ x^2, eger \ 0 < x < 2; \\ 4, eger \ x \ge 0. \end{cases}$$

27. Berlen hakyky *x* san üçin, bitin bahalary kabul edýän aşakdaky *f* funksiýanyň aljak bahasyny tapmaly:

$$f(x) = \begin{cases} -0, eger \ x < 0, \\ 1, eger \ x[0,1), [2,3), ..., \ aralyga \ deg \ isli \ bolsa; \\ -1, eger \ x[1,2), [3,34), ..., \ aralyga \ deg \ isli \ bolsa. \end{cases}$$

- 28. Ýyl bitin položitel san görnüşinde berlen. Adaty ýylda 365 günüň, uzak ýylda bolsa 366 günüň bardygyny nazara almak bilen bu ýyldaky günleriň sanyny kesgitlemeli. Ýyllary aňladýan sanlaryň içinden 4-e bölünýänleriniň 100-e bölünip 400-e bülünmeýänlerinden başgasy uzak ýyl hasaplanylýar (mysal üçin 300-nji, 1300-nji we 1900-nji ýyllar adaty ýyllar, 1200-nji we 2000-nji ýyllar bolsa uzak ýyllar hasaplanylýar).
- **29.** Bitin san berlen. Bu sany beýan edýän degişli «otrisatel jübüt san», «otrisatel täk san», «nol san», «položitel jübüt san» we ş.m. ýazgyny çapa çykarmaly.
- **30.** 1–999 aralykda ýerleşen bitin san berlen. Bu sany beýan edýän degişli «jübüt ikibelgili san», «täk üçbelgili san» we ş. m. ýazgyny çapa çykarmaly.

SAÝLAW OPERATORY

1-nji mysal

Birbelgili natural san berlen. Ol sanyň harplar bilen ýazylan adyny ekrana çykarýan programmany ýazmaly.

```
uses wincrt;
var n : word;
begin
clrscr;
  write('n='); read(n);
  case n of
  0: write('nol');
  1: write('bir');
  2: write('iki');
  3: write('uc');
```

```
4: write('dort');
5: write('bash');
6: write('alty');
7: write('yedi');
8: write('sekiz');
9: write('dokuz');
else write('Birbelgili san giriz...');
end;
readkey;
end.
```

2-nji mysal

Gündogar kalendary boýunça her ýyl bir haýwanyň ady bilen baglanyşdyrylýar. Biziň eýýamymyzyň 1-nji ýyly «Bijin», 2-nji ýyly «Takyk», 3-nji ýyly «It», 4-nji ýyly «Doňuz», 5-nji ýyly «Syçan», 6-njy ýyl, «Sygyr», 7-nji ýyl «Bars», 8-nji ýyl «Towşan», 9-njy ýyl «Luw», 10-njy ýyl «Ýylan», 11-nji ýyl «Ýylky», 12-nji ýyl «Koý». Soňra bolsa bular gaýtalanýar. Ýylyň tertip belgisi berlen. Ol ýylyň haýsy haýwanyň ady bilen baglanysyklydygyny tapmaly.

```
Uses wincrt;
var n : word:
begin
clrscr:
     write('n='); read(n);
    n = n \mod 12;
     case n of
    0: write('Bijin');
     1: write('Takyk');
    2: write('It');
    3: write('Donuz');
    4: write('Sychan');
    5: write('Sygyr');
    6: write('Bars');
    7: write('Towshan');
    8: write('Luw');
    9: write('Yylan');
```

```
10: write('Yylky');
11: write('Koy');
end;
readkey;
end.
```

- 1. 1-7 aralykda bitin san berlen. Berlen sana gabat gelýän hepdäniň gününiň adyny çapa çykarmaly (1 «duşenbe», «2 sişenbe» we ş.m.).
- **2.** Bitin K san berlen. K sana gabat gelýän bahany beýan edýän sözi çykarmaly (1 «ýaramaz», 2 «kanagatlanarsyz», 3 "kanagatlanarly», 4 «ýagy», 5 «örän ýagşy»). Eger K san 1–5 aralykda ýatmaýan bolsa onda «ýalňyş» diýen ýazgyny ekrana çykarmaly.
- 3. 1–12 aralykda ýatan aýyň *tertip belgisi* berlipdir (1 Ýanwar, 2 Fewral, 3 Mart, 4 Aprel, 5 Maý, 6 Iýun, 7 Iýul, 8 Awgust, 9 Sentýabr, 10 Oktýabr, 11 Noýabr, 12 Dekabr). Bu aýyň ýylyň haýsy paslyna degişlidigini kesgitlemeli we çapa çykarmaly.
- **4.** Aýyň *tertip belgisini* görkezýän 1-12 aralykda ýatan bitin san berlen (1-Ýanwar, 2-Fewral, we ş.m.). Eger adaty ýyl bolsa, onda ol aýdaky günleriň sanyny kesgitlemeli.
- **5.** Sanlaryň üstünden geçirilýän arifmetiki amallar şeýle tertipde sanlar bilen bellenen: 1-goşmak, 2-aýyrmak, 3-köpeltmek, 4-bölmek. Bu amallaryň *tertip belgisini* görkezýän N bitin san (1-4 aralykda) we A , B (B \neq 0) hakyky sanlar berlen. Ol sanlaryň üstünden degişli amallary ýerine ýetiriň we netijäni çapa çykaryň.
- **6.** Uzynlyk ölçegleri şeýle tertipde belgilenipdir: 1-desimetr, 2-kilometr, 3-metr, 4-millimetr, 5-santimetr. Ölçeg belgisi (1-5 aralykdaky bitin san) we şol ölçegdäki kesimiň uzynlygy(hakyky san) berlen. Kesimiň metrdäki uzynlygyny tapmaly.
- 7. Massanyň ölçegleri şeýle tertipde belgilenipdir: 1 kilogram, 2-milligram, 3-gram, 4-tonna, 5-sentner. Ölçeg belgisi (1-5 aralykdaky bitin san) we şol ölçegdäki jisimiň massasy (hakyky san) berlen. Jisimiň kilogramdaky massasyny kesgitlemeli.
- **8.** Adaty ýyldaky güni (G) we aýy (A) görkez**ý**än iki sany bitin san berlen. Görkezilen senäniň öňünden gelýän senäni kesgitlemeli.

- **9.** Adaty ýyldaky güni (G) we aýy (A) görkezýän iki sany bitin san berlen. Görkezilen senäniň yzyndan gelýän senäni kesgitlemeli.
- 10. Robot dört tarapa («Dg» demirgazyk, «Gb» günbatar, «Go» günorta, «Gd» gündogar) hereket edip bilýär we üç sany buýrugy kabul edip bilýär 0 hereketi dowam etdirmeli, 1 çepe öwrülmeli, –1 saga öwrülmeli. Robotyň häzirki hereket edýän ugrunu görkezýän C simwol we oňa berlen täze buýruk N (bitin san) berlen. Bu buýrukdan soň Robotyň hereket etjek ugruny kesgitlemeli.
- 11. Lokator dört tarapa («Dg» demirgazyk, «Gb» günbatar, «Go» günorta, «Gd» gündogar) hereket edip bilýär we üç sany sanly buýrugy ýerine ýetirýär: 1 çepe öwrülmeli, -1 saga öwrülmeli, $2-180^{\circ}$ öwrülmeli. Lokatoryň häzirki ýagdaýyny görkezýän C simwol hem-de N_1 we N_2 iki sany buýruk berlen. Bu buýruklar ýerine ýeteninden soň lokatoryň ugruny kesgitlemeli.
- 12. Töweregiň elementleri şeýle görnüşde belgilenipdir: 1 R radius, 2 D = 2 * R diametr, $3 L = 2 * \pi * R$ uzynlygy, $4 S = \pi * R^2$ şol radiusly tegelegiň meýdany. Bu elementleriň biriniň belgisi we bahasy berlen. Bu töweregiň galan elementleriniň bahalaryny şol tertipde çapa çykarmaly. π sanyň bahasy 3.14-e deň diýip hasaplamaly.
- 13. Gönüburçly, deňýanly üçburçlygyň elementleri şeýle görnüşde belgilenipdir: 1-a katet, $2-c=a*\sqrt{2}$ gipotenuza, 3-h gipotenuza daýanýan beýiklik (h=c/2), 4-S=c*h*2 meýdany. Bu elementleriň biriniň belgisii we bahasy berlen. Bu üçburçlygyň galan elementleriniň bahalaryny şol tertipde çapa çykarmaly.
- **14.** Deň taraply üçburçlygyň elementleri şeýle görnüşde belgilenipdir: 1-a tarapy, 2 içinden çyzylan töweregiň R_1 radiusy $(R_1 = a * \sqrt{3}/6)$ radiusy, 3 daşyndan çyzylan töweregiň R_2 radiusy $(R_2 = 2 * R_1)$, $4-S = a^2 \sqrt{3}$ */4 $S = a^2 * \sqrt{3}/4$ meýdany. Bu elementleriň biriniň belgisi we bahasy berlen. Berlen üçburçlygyň galan elementleriniň bahalaryny şeýle tertipde çapa çykarmaly.
- **15.** 1-den 1000-e çenli aralykdaky natural san berlen. Ol sanyň haýsy ýüzlügiň içinde ýatanlygyny kesgitlemeli.
- **16.** Adamynyň ýaşy bitin san görnüşinde berlen. Ony söz bilen ýazmak üçin programma ýazmaly. Mysal üçin: 17 on ýedi, 44 kyrk dört we ş. m.

- 17. Käbir okuw temasy boýunça ýumuşlaryň mukdaryny görkezýän 10–40 aralykda bitin san berlen. Girizilen san bilen sözleri dogry baglanyşdyryp ol ýumuşlaryň atlaryny ekrana çykarmaly. Mysal ücin: 16 «16-njy ýumuş»;
 - 23 «23-nji ýumus» we s. m.
- **18.** 100–999 aralykda N bitin san berlen. Bu sany sözler bilen **ý**azyp görkez**ý**än programmany düzmeli. Mysal üçin 256 «Iki ýüz elli alty», 814 «sekiz ýüz on dört».
- 19. Gündogar kalendarynda her ýyl bir jandaryň (hawanyň) ady bilen baglanyşdyrylýar: Syçan, Sygyr, Bars, Towşan, Luw, Ýylan, Ýylky, Koý, Bijin, Takyk, It, Doňuz. Mysal üçin 2006-njy ýyl «It» ýyly. Islendik ýyly girizenimizde ol ýylyň degişli adyny görkezýän programmany düzmeli.

PARAMETRLI GAÝTALANMAK

1-nji mysal

N natural san berlen. 1-den n-e çnli natural sanlaryň jemini tapmak üçin programma ýazmaly.

```
uses wincrt;
var i,n,s : word;
begin
clrscr;
    write('n='); read(n);
    s:=0;
    for i:=1 to n do
        s:=s+i;
    write('Ol sanlaryn jemi = ',s);
readkey;
end
```

2-nji mysal

Natural a we b sanlar berlen. Ol sanlaryň arasyndaky ähli jübüt sanlaryň jemini tapmak üçin programma ýazmaly.

```
uses wincrt;
var i,s,a,b : word;
```

```
begin
clrscr;
    write('a='); read(a);
    write('b='); read(b);
    s:=0;
    for i:=a+1 to b-1 do
        if i mod 2=0 then s:=s+i;
        write('Ol sanlaryn jemi = ',s);
readkey;
end
```

3-nji mysal

Berlen natural n sandan kiçi bolan hem-de 2-ä bölünende galyndy-da 1 galýan, 3-e býlünende galyndy-da 2 galýan, 4-e bölünende galyndyda 3 galýan, 5-e bölünende galyndy-da 4 galýan, 6-a bölünende galyndyda 5 galýan we 7-ä galyndysyz bölünýän natural sanlaryň hemmesini tapmaly.

```
uses wincrt;
var i,n: word;
begin
clrscr;
    write('n='); read(n);
    for i:=1 to n do
        if (i mod 2=1) and (i mod 3=2) and
            (i mod 4=3) and (i mod 5=4) and
            (i mod 6=5) and (i mod 7=0) then writeln(i);
readkey;
end
```

- **1.** K we N bitin sanlar berlen (N > 0). N sany K gezek çapa çykarmaly.
- **2.** A we B bitin sanlar berlen (A < B). A sandan başlap B sana çenli (B sanyň özini hem çapa çykarmaly) hemme bitin sanlary artýan tertipde çapa çykarmaly. Çapa çykarylan sanlaryň mukdaryny hem aýratyn setirde görkezmeli.

- **3.** A we B bitin sanlar berlen (A < B). A bilen B sanyň aralygynda ýatan hemme bitin sanlary kemelýän tertipde çapa çykarmaly. Çapa çykarylan sanlaryň mukdaryny hem aýratyn setirde görkezmeli.
- **4.** Bir kilogram süýjiniň bahasyny görkezýän hakyky san berlen. 1, 2, ..., 10 kg süýjiniň bahalaryny kesgitlemeli.
- **5.** Bir kilogram süýjiniň bahasyny görkezýän hakyky san berlen. 0.1, 0.2, ..., 1 kg süýjiniň bahalaryny kesgitlemeli.
- **6.** Bir kilogram süýjiniň bahasyny görkezýän hakyky san berlen. 1.2, 1.4, ..., 2 kg süýjiniň bahalaryny kesgitlemeli.
- 7. A we B bitin sanlar berlen (A < B). A we B sanlaryň hem-de olaryň arasyndaky hemme bitin sanlaryň jemini tapmaly.
- **8.** A we B bitin sanlar berlen (A < B). A we B sanlaryň hemde olaryň arasyndaky hemme bitin sanlaryň köpeltmek hasylyny tapmaly.
- **9.** A we B bitin sanlar berlen (A < B). A we B sanlaryň hemde olaryň arasyndaky hemme bitin sanlaryň kwadratlarynyň jemini tapmaly.
 - **10.** *N* bitin san berlen (N > 0). Aşakdaky jemi hasaplamaly:

$$1 + 1/2 + 1/3 + ... + 1/N$$
.

Bu ýerde jem hakyky san bolar.

11. *N* bitin san berlen (N > 0). Aşakdaky jemi hasaplamaly:

$$N^2 + (N+1)^2 + (N+2)^2 + ... + (2 * N)^2$$

Bu ýerde jem bitin san bolar.

12. N bitin san berlen (N > 0). Aşakdaky köpeltmek hasylyny hasaplamaly:

13. N bitin san berlen (N > 0). Aşakdaky aňlatmanyň bahasyny hasaplamaly:

$$1.1 - 1.2 + 1.3 - \dots$$

Bu aňlatmada N goşulyjy bar, olaryň alamatlary bolsa gaýtalanyp gelýär. Şertli operatory ulanmazdan ýumuşy ýerine ýetirmeli.

14. N bitin san berlen (N > 0). Aşakdaky formulany ulanmak bilen berlen sanyň kwadratyny hasaplamaly:

$$N^2 = 1 + 3 + 5 + ... + (2 * N - 1)$$

Jeme her bir goşulyjyny goşanymyzdan soň onuň bahasyny çapa çykarmaly (netijede 1-den *N*-e çenli hemme bitin sanlaryň kwadratlary çapa çykarylar).

15. Hakyky A san we bitin N san berlen (N > 0). A-nyň N-ji derejesini hasaplamaly:

$$A^N = A * A * * * A$$

A san öz-özüne N gezek köpeldilýär.

- **16.** Hakyky A san we bitin N san berlen (N > 0). Bir gaýtalanmany (for) ulanmak arkaly A sanyň 1-den N-çenli bitin derejelerini çapa çykarmaly.
- 17. Hakyky A san we bitin N san berlen (N > 0). Bir gaýtalanmany (for) ulanmak arkaly aşakdaky jemi hasaplamaly we netijäni çapa çykarmaly:

$$1 + A + A^2 + A^3 + \dots + A^N$$
.

18. Hakyky A san we bitin N san berlen (N > 0). Bir gaýtalanmany (for) ulanmak arkaly aşakdaky jemi hasaplamaly we netijäni çapa çykarmaly:

$$1 - A + A^2 - A^3 + \dots + (-1)^N * A^N$$
.

Bu ýumuşda şertli operatory ulanmaly däl.

19. Bitin N (>0) san berlen. Aşakdaky köpeltmek hasylyny (N!-N faktorialy) hasaplamaly:

$$N! = 1 * 2 * ... * N$$

Bitin sanlaryň gözeneginiň dolmagyndan gaça durmak maksady bilen, bu ýumuşda hasaplamany hakyky üýtgeýän ululykda amala aşyrmak we netijäni hakyky san görnüşinde çapa çykarmak maslahat berilýär. **20.** Bitin N > 0 san berlen. Bir gaýtalanmaklygy (for) ulanmak arkaly aşakdaky jemi hasaplamaly:

$$1! + 2! + 3! + ... + N!$$

(N! aňlatma N faktorialy yagny 1-den N-e çenli bitin sanlaryň köpeltmek hasylyny aňladýär: N! = 1*2*...*N aňladýar). Bitin sanlaryň gözeneginiň dolmagyndan gaça durmak maksady bilen, bu ýumuşda hasaplamany hakyky üýtgeýän ululykda amala aşyrmak we netijäni hakyky san görnüşinde çapa çykarmak maslahat berilýär.

21. Bitin N > 0 san berlen. Bir gaýtalanmany (for) ulanmak arkaly aşakdaky jemi hasaplamaly:

$$1+1/(1!)+1/(2!)+1/(3!)+...+1/(N!)$$
.

(N! aňlatma N faktorialy yagny 1-den N-e çenli bitin sanlaryň köpeltmek hasylyny aňladýär: N! = 1 * 2 * ... * N aňladýar). Alnan netije $\ell = \exp(1)$ sanyň takmyny bahasydyr.

22. Hakyky X we bitin N(>0) san berlen. Bir gaýtalanmany (for) ulanmak arkaly aşakdaky aňlatmanyň bahasyny hasaplamaly:

$$1+X+X^2/(2!)+...+X^N/(N!)$$
.

(N! = 1*2*...*N). Alnan san exp funksiýanyň X nokatdaky takmyny bahasydyr.

23. Hakyky X we bitin N(>0) san berlen. Bir gaýtalanmany (for) ulanmak arkaly aşakdaky aňlatmanyň bahasyny hasaplamaly:

$$X - X^3/(3!) + X^5/(5!) - ... + (-1)^N * X^{2*N}/((2 * N!)).$$

(N! = 1 * 2 * ... * N). Alnan san sin funksiýanyň X nokatdaky takmynan bahasydyr.

24. Hakyky X we bitin N(>0) san berlen. Aşakdaky aňlatmanyň bahasyny hasaplamaly:

$$1 - X^2/(2!) + X^4/(4!) - \dots + (-1)^N * X^{2*N}/((2 * N!)).$$

(N! = 1 * 2 * ... * N). Alnan san cos funksiýanyň X nokatdaky takmynan bahasydyr.

25. Hakyky X san (|X| < 1) we bitin N san (> 0) berlen. Aşakdaky aňlatmanyň bahasyny hasaplamaly:

$$X - X^2/2 + X^3/3 - ... + (-1)^{N-1} * Xn/N.$$

Alnan san h funksiýanyň 1 + X nokatdaky takmynan bahasydyr.

26. Hakyky X san (|X| <1) we bitin N san (>0) berlen. Aşakdaky aňlatmanyň bahasyny hasaplamaly:

$$X - X^3/3 + X^5/5 - ... + (-1)^N * X^{2*N+1}/(2*N+1).$$

Alnan san *arctg* funksiýanyň *X* nokatdaky takmynan bahasydyr.

27. Hakyky X san (|X| <1) we bitin N san (> 0) berlen. Aşakdaky aňlatmanyň bahasyny hasaplamaly:

$$X + 1*X^{3}/(2*3) + 1*3*X^{5}/(2*4*5) + ...$$

$$+1 * 3*...*(2*N-1)* X^{2*N+1}/(2*4*...*(2*N)*(2*N+1)).$$

Alnan san arcsin funksiýanyň X nokatdaky takmynan bahasydyr.

28. Hakyky X san (|X| < 1)we bitin N san (> 0) berlen. Aşakdaky aňlatmanyň bahasyny hasaplamaly:

$$1 + X/2 - 1 * X^2/(2 * 4) + 1*3 * X^3/(2*4*6) - ... +$$

$$+(-1)^{N-1} * 1 * 3 * ... * (2 * N - 3) * X^{N}/(2 * 4 * ... * (2 * N).$$

Alnan san $\sqrt{1+x}$ funksiýanyň Xnokatdaky takmynan bahasydyr.

- **29.** N bitin san (N > 1) we san okunda A we B hakyky nokatlar berlen (A < B). [A, B] kesim N sany özara deň kesimlere bölünen. Her bir kesimiň H uzynlygyny, [A, B] kesimi kesimlere bölýän A, A + H, A + 2 * H, A + 3 * H, ..., B nokatlaryň toplumyny capa cykarmaly.
- **30.** N bitin san (N > 1) we san okunda A we B hakyky nokatlar berlen (A < B). [A, B] kesim N sany özara deň kesimlere bölünen. Her bir kesimiň H uzynlygyny, [A, B] kesimi bölege bölýän nokatdaky $F(x)=1-\sin(X)$ funksiýanyň bahasyny çapa çykarmaly.
- **31.** N (> 0) bitin san berlen. A_k hakyky sanlaryň yzygiderligi aşakdaky ýaly kesgitlenýär:

$$A_0 = 2$$
, $A_K = 2 + 1/A_{K-1}$, $K = 1, 2, ...$

 A_1, A_2, \dots, A_N elementleri çapa çykarmaly.

32. N(>0) bitin san berlen. A_k hakyky sanlaryň yzygiderligi aşakdaky ýaly kesgitlenýär:

$$A_0 = 2$$
, $A_K = (A_{K-1} + 1)/K$, $K = 1, 2, ...$

 A_1, A_2, \dots, A_N elementleri çapa çykarmaly.

33. N(>0) bitin san berlen. Fibonaççiniň sanlarynyň yzygiderligi F_k bitin tipli bolup, ol aşakdaky ýaly kesgitlenýär:

$$F_1 = 1$$
, $F_2 = 1$, $F_K = F_{K-2} + F_{K-1}$, $K = 3,4$, F_1 , F_2 , ..., F_N elementleri çapa çykarmaly.

34. N(>0) bitin san berlen. A_k hakyky sanlaryň yzygiderligi aşakdaky ýaly kesgitlenýär:

$$A_1 = 1$$
, $A_2 = 2$, $A_K = (A_{K-2} + 2 * A_{K-1})/K$, $K = 3,4$, A_1 , A_2 , ... , A_N elementleri çapa çykarmaly.

35. N(>0) bitin san berlen. A_k bitin sanlaryň yzygiderligi aşakdaky ýaly kesgitlenýär:

$$A_1 = 1$$
, $A_2 = 2$, $A_3 = 3$,
 $A_K = A_{K-1} + A_{K-2} - 2 * A_{K-3}$, $K = 4, 5, ...$.
 A_1 , A_2 , ..., A_N elementleri çapa çykarmaly.

BIRNÄCE GATLY GAÝTALANMA

1-nji mysal

```
Hasaplamaly: \sum_{i=1}^{100} \sum_{j=1}^{50} \frac{1}{i+j^2} uses wincrt; var i,j: integer; s: real; begin clrscr; s:=0; for i:=1 to 100 do for j:=1 to 50 do s:=s+1/(i+sqr(j)); write(s:8:5); readkey; end.
```

36. N we K bitin položitel sanlar berlen. Aşakdaky jemi hasaplamaly:

$$1^K + 2^K + \dots + N^K$$
.

Bitin sanlaryň gözeneginiň dolmagyndan gaça durmak maksady bilen, bu ýumuşda hasaplamany hakyky üýtgeýän ululykda amala aşyrmak we netijäni hakyky san görnüşinde çapa çykarmak maslahat berilýär.

37. N > 0 bitin san berlen. Aşakdaky jemi hasaplamaly:

$$1^1 + 2^2 + \dots + N^N$$
.

Bitin sanlaryň gözeneginiň dolmagyndan gaça durmak maksady bilen, bu ýumuşda hasaplamany hakyky üýtgeýän ululykda amala aşyrmak we netijäni hakyky san görnüşinde çapa çykarmak maslahat berilýär.

38. N > 0 bitin san berlen. Aşakdaky jemi hasaplamaly:

$$1^N + 2^{N-1} + \dots + N^1$$
.

Bitin sanlaryň gözeneginiň dolmagyndan gaça durmak maksady bilen, bu ýumuşda hasaplamany hakyky üýtgeýän ululykda amala aşyrmak we netijäni hakyky san görnüşinde çapa çykarmak maslahat berilýär.

- **39.** A we B (A < B) položitel bitin sanlar berlen. A-dan B + 1-e çenli hemme bitin sanlary çapa çykarmaly; her san öz ululygy näçe bolsa şonça gezek çapa çykarylmaly (mysal üçin 3 san 3 gezek çapa çykarylmaly).
- **40.** A we B (A < B) bitin sanlar berlen. A-dan B +1-e çenli hemme bitin sanlary çapa çykarmaly; A bir gezek, A +1 san iki gezek we ş.m. çapa çykarylmaly.

ŞERTLI GAÝTALANMA

1-nji mysal

n natural san berlen. Ol sanyň hemme sifrlerini tapmak üçin programma ýazmaly.

```
uses wincrt;
var s,n : word;
begin
clrscr;
  write('n='); read(n);
  s:=0;
  while n>0 do
```

```
begin
   s:=s+(n mod 10);
   n:=n div 10;
   end;
   write('Sifrlerin jemi = ',s);
readkey;
end.
```

1-nji mysal

Natural a we b sanlar berlen. Ýewklidiň algoritmini ulanmak arkaly ol sanlaryň iň uly umumy bölüjisini (IUUB) tapmak üçin programma ýazmaly.

```
uses wincrt;
var a,b: word;
begin
clrscr;
   write('a='); read(a);
   write('b='); read(b);
   write('IUUB(',a,',',b,')=');
   while a >> b do
   if a >> b then a:=a-b else b:=b-a;
   write(a);
readkey;
end.
```

1-nji mysal

Bitin N(>1) san berlen. 1+2+...+K jem N-den uly ýa-da deň bolar ýaly iň kiçi bitin K sany tapmaly. Tapylan sany we jemi çapa çykarmaly.

```
begin
s:=s+k;
k:=k+1;
    end;
    write('k=',k);
readkey;
end.
```

- **1.** A we B položitel san berlen (A > B). A kesimde biri-biriniň üstüne düşmezden B kesimiň iň köp mukdary ýerleşdirilen. Köpeltmek we bölmek operasiýalaryny ulanmazdan A kesimiň boş galan böleginiň uzynlygyny hasaplamaly.
- **2.** A we B položitel san berlen (A > B). A kesimde biri-biriniň üstüne düşmezden B kesimiň iň köp mukdary ýerleşdirilen. Köpeltmek we bölmek operasiýalaryny ulanmazdan A kesimde doly ýerleşen B kesimiň sanyny hasaplamaly.
- **3.** *N* we *K* bitin položitel sanlar berlen. Diňe goşmek we aýyrmak operasiýalaryny ulanmak arkaly *N*-i *K*-a bölenimizde ýetýän paýy, galýan galyndyny tapmaly.
- **4.** Bitin N(N > 0) san berlen. Eger ol san 3-iň islendik bir derejesi bolup bilýän bolsa onda TRUE, ýogsam FALSE sözlerini çapa çykarmaly.
- **5.** 2-niň haýsydyr bir derejesi bolýan bitin N(N > 0) san berlen: $N = 2^K$. Bu derejäniň görkezijisi bolan K sany tapmaly.
- **6.** Bitin N(N > 0) san berlen. *Ikileýin N faktotialy* hasaplamaly. N!! = N*(N-2)*(N-4)*... (Eger N jübüt bolsa onda iň soňky köpeldiji 2-ä, täk bolsa onda 1-e deň). Bitinleýin san gözeneginiň dolmagyndan gaça durmak maksady bilen bu köpeltmekligi hakyky tipli üýtgeýän ululyk bilen hasaplamaklyk hem-de netijäni hakyky san güşinde çapa çykarmaklyk maslahat berilýär.
- 7. Bitin N(N > 0) san berlen. Kwadraty N-den uly bolan iň kiçi K sany tapmaly $K^2 > N$. Kwardat kökden çykarmak funksiýasyny ulanmaly däl.

- **8**. Bitin N(N > 0) san berlen. Kwadraty N-den uly bolmadyk iň uly K sany tapmaly: $K^2 \le N$. Kwardat kökden çykarmak funksiýasyny ulanmaly däl.
- 9. Bitin N(N > 1) san berlen. $3^K > N$ deňsizlik ýerine ýetýän iň kiçi bitin K sany tapmaly.
- **10**. Bitin N(N > 1) san berlen. $3^K > N$ deňsizlik ýerine ýetýän iň uly bitin K sany tapmaly.
- 11. Bitin N(N > 1) san berlen. 1 + 2 + ... + K jem N-den uly ýa-da deň bolar ýaly iň kiçi bitin K sany tapmaly. Tapylan sany we jemi çapa çykarmaly.
- **12**. Bitin N(N > 1) san berlen. 1 + 2 + ... + K jem N-den kiçi ýa-da deň bolar ýaly iň uly bitin K sany tapmaly. Tapylan sany we jemi çapa çykarmaly.
- **13.** A(A > 1) san berlen. 1 + 1/2 + ... + 1/K jem A-dan uly bolandaky iň kiçi bitin K sany hem-de bu jemi çapa çykamaly.
- **14.** A(A > 1) san berlen. 1 + 1/2 + ... + 1/K jem A-dan kiçi bolandaky iň uly bitin K sany hem-de bu jemi çapa çykamaly.
- **15.** Bankda goýlan başlangyç goýum 1000 manat. Her bir aýda goýumyň möçberi bar bolan goýumyň P göterimiçe artýar (P hakyky san bolup, ol 0 < P < 25 aralykda ýatýar). Berlen P boýunça ýene-de näçe aýdan goýumyň möçberiniň 1100 manatdan köp boljakdygyny, onuň üçin näçe K (bitin san) aýyň gerekdigini we goýumyň köpelenden soň takyk näçe boljaklygyny kesgitlemeli.
- **16.** Lýžaçy türgen ilkinji gün 10 km. ýol geçdi. Ol her güň düýnki güne garanda geçýän ýolunuň uzynlygyny P göterim artdyrdy (P hakyky san bolup, ol 0 < P < 50 aralykda ýatýär). P-niň bahasy boýunça türgen türgenleşip başlanyndan näçe gün geçenden soň onuň umumy geçen ýoly 200 km-den ýokary bolar; gerek boljak K (bitin san) günleriň sanyny we umumy geçilen ýoly tapmaly.
- 17. Bitin N(N > 0) san berlen. Bitinleyin bölmek we bölmekden galýan galyndy amallaryny ulanmak arkaly birinji sifrinden başlap (birliklerden başlap) bu sanyň hemme sifrlerini çapa çykarmaly.

- **18.** Bitin N(N > 0) san berlen. Bitinleyin bölmek we bölmekden galýan galyndy amallaryny ulanmak arkaly ol sanyň sifrleriniň sanyny we jemini tapmaly.
- **19.** Bitin N(N > 0)san berlen. Bitinleyin bölmek we bitinleyin bölmekden galyan galyndy operasiýalaryny ulanmak arkaly ol sany sagdan çepe okanymyzda (tersine okanymyzda) alynjak sany tapmaly.
- **20.** Bitin N(N > 0) san berlen. Bitinleyin bölmek we bölmekden galýan galyndy amallaryny ulanmak arkaly bu sanyň sifrleriniň içinde 2-lik sifriň barlygyna ýa-da ýoklygyny kesgitlemeli. Eger bar bolsa onda TRUE, eger ýok bolsa onda FALSE sözlerini çapa çykarmaly.
- **21.** Bitin N(N > 0)san berlen. Bitinleyin bölmek we bölmekden galýan galyndy amallaryny ulanmak arkaly Bu sanyň sifrleriniň içinde täk sifriň barlygyna ýa-da ýoklygyny kesgitlemeli. Eger bar bolsa onda TRUE, eger ýok bolsa onda FALSE sözlerini çapa çykarmaly.
- **22.** Bitin N(N > 1) san berlen. Eger ol *ýönekeý san* bolsa, ýagny 1-den we özünden başga položitel bölüjileri bolmasa onda TRUE, bolsa onda FALSE sözüni çapa çykarmaly.
- **23.** *A* we *B* bitin položitel sanlar berlen. *Ýewklidiň algoritmini* ulanmak bilen olaruň *iň uly umumy büjisini* (IUUB) tapmaly:

$$IUUB(A, B) = IUUB(B, A \text{ mod } B)$$
, eger $B \neq 0$; $IUUB(A, 0) = A$.

24. Bitin N(N > 1) san berlen. *Fibonaççiniň sanlarynyň* yzygiderligi aşakdaky ýaly kesgitlenýär:

$$F_1 = 1$$
, $F_2 = 1$, $F_K = F_{K-2} + F_{K-1}$, $K = 3, 4, ...$

N sanyň Fibonaççiniň sanydygyny ýa-da däldigini kesgitlemeli. Eger Fibonaççiniň sany bolsa onda TRUE, bolmasa FALSE sözlerini çapa çykarmaly.

- **25.** Bitin N(N > 1) san berlen. Fibonaççiniň N-den uly bolan ilkinji sanyny tapmaly.
- **26.** Fibonaççiniň sany bolan N(N>1) san berlen: $N=F_K$. Fibonaççiniň sanlary bolan F_{K-1} (öňündäki) we F_{K+1} (soňundaky) bitin sanlary tapmaly.
- **27.** Fibonaççiniň sany bolan N(N > 1) san berlen: $N = F_K$. Fibonaççiniň N-nji sanynyň tertip belgisi bolan bitin K sany tapmaly.

28. $\varepsilon(\varepsilon > 0)$ hakyky san berlen. Hakyky A_{κ} sanyň yzygiderligi aşakdaky ýaly kesgitlenýär:

$$A_1 = 2$$
, $A_K = 2 + 1/A_{K-1}$, $K = 2, 3, ...$

 $|A_K - A_{K-1}| < \varepsilon$ şert ýerine ýetýän ilkinji K tertip belgini tapmaly we bu tertip belgini, A_{K-1} we A_K sanlary çapa çykarmaly.

29. $\varepsilon(\varepsilon>0)$ hakyky san berlen. Hakyky $A_{\scriptscriptstyle K}$ sanyň yzygiderligi aşakdaky ýaly kesgitlenýär:

$$A_1 = 1$$
, $A_2 = 2$, $A_K = (A_{K-2} + 2 * A_{K-1})/3$, $K = 3, 4, ...$

 $|A_K - A_{K-1}| < \varepsilon$ şert ýerine ýetýän ilkinji K tertip belgini tapmaly we bu tertip belgini, A_{K-1} we A_K sanlary çapa çykarmaly.

30. *A*, *B*, *C* položitel sanlar berlen. *AxB* ölçegli gönüburçlykda biri-biriniň üstüne düşmeýän tarapay *C* bolan kwadratyň, mümkin bolan iň köp ýerleşdirilipdir. Gönüburçlykda ýerleşen kwadratlaryň sanyny tapmaly. Köpeltmek we bölmek amallaryny ulanmaly däl.

YZYGIDERLIKLER

Bu toparyň hemme ýumuşlarynda elementleriň sany noldan tapawutlanýar diýilip hasplanylýar (umuman N san elmydama noldan uly). Birnäçe san ýygymlaryny işläp taýýarlamaly meselelerde ýygymlaryň K mukdary elmydama noldan tapawutlanýandyr (29–40).

1-nji mysal

N sany hakyky san berlen. Olaryň orta arifmetiki bahasyny tapmaly.

```
uses wincrt;
var n,i : integer;
    s,a : real;
begin
clrscr;
    write('n='); read(n);
    for i:=1 to n do
        begin
        write(i,'-nji sany giriz: ');
```

```
read(a);
s:=s+a;
end;
s:=s/n;
write('Orta arifmetiki bahasy = ',s:5:2);
readkey;
end.
```

2-nji mysal

K, N bitin sanlar we N bitin sandan ybarat toplum berlen. Egerde toplumda K sandan kiçi san bar bolsa FALSE sözüni, bolmasa TRUE sözüni çapa çykarmaly.

```
uses wincrt;
var n,i,k,m: integer;
      b: boolean:
begin
clrscr;
       write('n='); read(n);
       write('k='); read(k);
       b:=true:
       for i:=1 to n do
        begin
           write(i,'-nji sany giriz: ');
           read(m):
           if m<k then b:=false;
        end:
       write(b);
readkey;
end
```

3-nji mysal

N bitin san we iň bolmanda iki sany noly saklaýan N sany bitin sanlaryň toplumy berlen. Ilkinji we iň soňky nollaryň arasyndaky sanlaryň jemini çapa çykarmaly (eger birinji we iň soňky nollar yzlyyzyna gelýan bolsalar onda 0-y çapa çykarmaly).

```
uses wincrt;
var n,s,i,a: integer;
      b: boolean:
begin
clrscr;
        write('n='); read(n);
        i:=1:
        s = 0:
        b:=false;
        while i<=n do
        begin
             write(i,'-nji sany giriz: '); read(a);
             if a=0 then b:=not b;
             if b then s:=s+a:
             inc(i);
        end;
        write('Jemi =',s);
readkey;
end
```

- 1. On sany hakyky san berlen. Olaryň jemini tapmaly.
- **2.** On sany hakyky san berlen. Olaryň köpeltmek hasylyny tapmaly.
- **3.** On sany hakyky san berlen. Olaryň orta arifmetiki bahasyny tapmaly.
- **4.** Bitin N san we N sany hakyky sanlaryň toplumy berlen. Bu toplumdaky sanlaryň jemini we köpeltmek hasylyny hasaplamaly.
- **5.** Bitin *N* san we *N* sany položitel hakyky sanlaryň toplumy berlen. Şol tertipde ol sanlaryň bitin böleklerini (drob bölegi nol bolan hakyky sanlar görnüşinde), şeýle hem ol bitin sanlaryň jemini çapa çykarmaly.
- **6.** Bitin *N* san we *N* sany položitel hakyky sanlaryň toplumy berlen. Şol tertipde ol sanlaryň drob böleklerini (bitin bölegi nol bolan

hakyky sanlar görnüşinde), şeýle hem ol drob sanlaryň köpeltmek hasylyny çapa çykarmaly.

- 7. Bitin N san we N sany hakyky sanlaryň toplumy berlen. Şol tertip boýunça toplumdaky sanlaryň tegeleklenen bahalaryny (bitin san görnüşinde), şeýle hem ol sanlaryň jemini çapa çykarmaly.
- **8.** Bitin N san we N sany bitin sanlaryň toplumy berlen. Yerleşiş tertibini bozman toplumdaky hemme jübüt sanlary, şeýle hem olaryň K (jübüt sanlaryň) mukdaryny çapa çykarmaly.
- **9.** Bitin N san we N sany bitin sanlaryň toplumy berlen. Yerleşiş tertibini bozman toplumdaky hemme täk sanlary, şeýle hem olaryň K (täk sanlaryň) mukdaryny çapa çykarmaly.
- **10.** Bitin N san we N sany bitin sanlaryň toplumy berlen. Eger toplumda položitel sanlar bar bolsa, onda TRUE sözüni, ýok bolsa FALSE sözüni çapa çykarmlay.
- **11.** K, N bitin sanlar we N bitin sandan ybarat toplum berlen. Eger-de toplumda K sandan kiçi san bar bolsa TRUE sözüni, bolmasa FALSE sözüni çapa çykarmaly.
- **12.** Hiç biri nola deň bolmadyk bitin sanlaryň toplumy berlen. Toplumdaky 0 san ol toplumyň tamamlanandygyny görkezýär. Toplumda näçe sanyň bardygyny kesgitlemeli.
- 13. Hiç biri nola deň bolmadyk bitin sanlaryň toplumy berlen. Toplumdaky 0 san ol toplumyň tamamlanandygyny görkezýär. Toplumdaky hemme položitel jübüt sanlaryň jemini hasaplamaly. Eger seýle sanlar toplumda ýok bolsa onda 0-y capa cykarmaly.
- **14.** Bitin san bolan *K* we nola deň bolmadyk bitin sanlaryň toplumy berlen; 0 san toplumyň soňyny görkezýär. Toplumdaky *K*-dan kiçi bolan sanlaryň mukdaryny tapmaly.
- **15.** Bitin san bolan *K* we nola deň bolmadyk bitin sanlaryň toplumy berlen; 0 san toplumyň soňyny görkezýär. Toplumdaky *K*-dan uly bolan ilkinji sanyň tertip belginisini tapmaly. Eger şeýle san ýok bolsa, onda 0-y çapa çykarmaly.
- **16.** Bitin san bolan K we nola deň bolmadyk bitin sanlaryň toplumy berlen; 0 san toplumyň soňyny görkezýär. Toplumdaky K-dan

uly bolan iň soňky sanyň tertip belgisini tapmaly. Eger şeýle san ýok bolsa, onda 0-y çapa cykarmaly.

- **17.** B hakyky san, N bitin san we artýan tertipde ýrleşen N sany hakyky sanlaryň toplumy berlen. Sanlaryň artýan tertibini bozman toplumdaky sanlary B san bilen bilelikde çapa çykarmaly.
- **18.** Bitin *N* san we artýan görnüşinde tertipleşen *N* sandan ybarat bitin sanlaryň toplumy berlen. Bu toplum birmeňzeş elementleri hem saklap biler. Ýerleşiş tertibini bozman bu toplumyň biri-birinden tapawutlanýan elementlerini çapa çykarmaly.
- **19.** N(N > 1) bitin san we N bitin sandan ybarat toplum berlen. Toplumdaky öz çep gapdalyndaky goňşy elementinden kiçi bolan elementleri we seýle elementleriň mukdaryny capa cykarmaly.
- **20.** N(N > 1) bitin san we N bitin sandan ybarat toplum berlen. Toplumdaky öz sag gapdalyndaky goňsy elementinden kiçi bolan elementleri we seýle elementleriň mukdaryny çapa çykarmaly.
- **21.** N(N > 1) bitin san we N hakyky sandan ybarat toplum berlen. Bu toplumyň elementleriniň artýan yzygiderligi emele getirýänligini ýa-da emele getirmeýänligini barlamaly. Eger elementler artýan tertipde ýerleşen bolsalar onda TRUE sözüni, bolmasa FALSE sözüni çapa çykarmaly.
- **22.** N(N > 1) bitin san we N hakyky sandan ybarat toplum berlen. Eger bu toplum kemelýän yzygiderligi emele getirýän bolsa, onda 0-y çapa çykarmaly; bolmasa yzygiderligiň kemelmekligi bozýan ilkinji sanyň tertip belgisini çapa çykarmaly.
- **23.** N(N > 2) bitin san we N hakyky sandan ybarat toplum berlen. Eger toplumyň içki elementleri iki goňsy elementlerinden kiçi ýa-da uly bolsa (byçgynyň dişi) onda bu yzygiderlige *byçgydiş şekilli* toplum diýilýär. Eger bu toplum byçgydiş şekilli toplum bolsa onda 0-y çapa çykarmaly; bolmasa byçgydişligi bozýan ilkinji elementiň tertip belgini çapa çykarmaly.
- **24.** *N* bitin san we iň bolmanda iki sany noly saklaýan *N* sany bitin sanlaryň toplumy berlen. Iň soňundaky iki nolyň arasyndaky sanlaryň jemini çapa çykarmaly (eger nollar yzly-yzyna gelýän bolsa onda 0-y çapa çykarmaly).

25. *N* bitin san we iň bolmanda iki sany noly saklaýan *N* sany bitin sanlaryň toplumy berlen. Ilkinji we iň soňky nollaryň arasyndaky sanlaryň jemini çapa çykarmaly (eger birinji we iň soňky nollar yzly-yzyna gelýän bolsalar onda 0-y çapa çykarmaly).

BIRNÄÇE GATDAN YBARAT GAÝTALANMAK

1-nji mysal

K, N bitin sanlar we N hakyky sandan ybarat toplum berlen: A_p , A_2 , ..., A_N . Bu toplumdaky sanlaryň K-njy derejesini çapa çykarmaly:

$$(A_1)^K$$
, $(A_2)^K$, ..., $(A_N)^K$.

- **26.** K, N bitin sanlar we N hakyky sandan ybarat toplum berlen: $A_1, A_2, ..., A_N$. Bu toplumdaky sanlaryň K-njy derejesini çapa çykarmaly $(A_1)^K$, $(A_2)^K$, ..., $(A_N)^K$.
- **27.** *N* bitin san we *N* hakyky sandan ybarat toplum berlen: A_1, A_2, \ldots, A_N . Aşakdaky sanlary çapa çykarmaly $A_1, (A_2)^2, \ldots, (A_{N-1})^{N-1}, (A_N)^N$.
- **28.** *N* bitin san we *N* hakyky sandan ybarat toplum berlen: $A_1, A_2, \dots A_N$. Aşakdaky sanlary çapa çykarmaly $(A_1)^N, (A_2)^{N-1}, \dots, (A_{N-1})^2, A_N$.

- **29.** K, N bitin sanlar, her biri N element saklaýan bitin sanlaryň K sany toplumy berlen. Bu toplumlara girýän hemme elementleriň jemini hasaplamaly.
- **30.** K, N bitin sanlar, her biri N element saklaýan bitin sanlaryň K sany toplumy berlen. Her bir toplum üçin onuň elementleriň jemini hasaplamaly.
- **31.** *K*, *N* bitin sanlar, her biri *N* element saklaýan bitin sanlaryň *K* sany toplumy berlen. 2-ni saklaýan toplumlaryň mukdaryny kesgitlemeli. Eger şeýle toplumlar ýok bolsa, onda 0-y çapa çykarmaly.
- **32.** *K*, *N* bitin sanlar, her biri *N* element saklaýan bitin sanlaryň *K* sany toplumy berlen. Her bir toplum üçin onuň 2-ä deň bolan ilkinji elementiniň tertip belginisini çapa çykarmaly. Eger toplumda 2 ýok bolsa, onda 0-y çapa çykarmaly.
- **33.** *K*, *N* bitin sanlar, her biri *N* element saklaýan bitin sanlaryň *K* sany toplumy berlen. Her bir toplum üçin onuň 2-ä deň bolan iň soňky elementiniň tertip belgisini çapa çykarmaly. Eger toplumda 2 ýok bolsa, onda 0-y çapa çykarmaly.
- **34.** *K*, *N* bitin sanlar, her biri *N* element saklaýan bitin sanlaryň *K* sany toplumy berlen. Her bir toplum üçin: eger toplumda 2-lik bar bolsa, onda onuň elementleriniň jemini çapa çykarmaly; eger toplumda 2-lik ýok bolsa ona 0-y çapa çykarmaly.
- **35.** Bitin K san, nola deň bolmadyk bitin sanlaryň K sany toplumy berlen. Her bir toplumdaky 0 san onuň soňuny aňladýär. Her bir toplum üçin onuň elementleriniň mukdaryny we ähli toplumlardaky elementleriň umumy sanyny çapa çykarmaly.
- **36.** Bitin K san, nola deň bolmadyk bitin sanlaryň K sany toplumy berlen. Her bir toplum ikiden az bolmadyk elementi saklaýar, 0 bolsa toplumyň soňuny aňladýar. Elementleri artýan tertipde ýerleşen toplumlaryň sanyny kesgitlemeli.
- **37.** Bitin K san, nola deň bolmadyk bitin sanlaryň K sany toplumy berlen. Her bir toplum ikiden az bolmadyk elementi saklaýar, 0 bolsa toplumyň soňuny aňladýar. Elementleri artýan ýa-da kemelýän tertipde ýerleşen toplumlaryň sanyny kesgitlemeli.

- **38.** Bitin K san, nola deň bolmadyk bitin sanlaryň K sany toplumy berlen. Her bir toplum ikiden az bolmadyk elementi saklaýar, 0 bolsa toplumyň soňuny aňladýar. Her bir toplum üçin: eger elementleri artýan bolsa onda 1-i çapa çykarmaly; eger elementleri kemelýän bolsa onda -1-i çapa çykarmaly; eger elementler oşmeýän hem, kemelmeýän hem bolsa onda 0-y çapa çykarmaly.
- **39.** Bitin *K* san we nola deň bolmadyk bitin sanlaryň *K*-sany toplumy berlen. Her bir toplum üçden az bolmadyk elementi saklaýar, 0 bolsa toplumyň soňuny aňladýar. Elementleri byçgydiş şekilli toplumlaryň sanyny kesgitlemeli (Byçgydiş şekilli toplumyň kesgitlemesi 23 ýumuşda berlendir).
- **40.** Bitin *K* san we nola deň bolmadyk bitin sanlaryň *K*-sany toplumy berlen. Her bir toplum üçden az bolmadyk elementi saklaýar, 0 bolsa toplumyň soňuny aňladýar. Her bir toplum üçin: eger toplum byçgydiş şekilli (23 ýumuşa seret) bolsa, onda onuň elementleriniň sanyny çapa çykarmaly; eger toplum byçgydiş şekilli bolmasa, onda toplumyň byçgydişlik şerti bozulýan ilkinji elementini çapa çykarmaly.

PROSEDURALAR WE FUNKSIÝALAR

San parametrli proseduralar

1-nji mysal

 $ax^2 + bx + c = 0$ (a <> 0) kwadrat deňlemüni çözmeklige mümkinçilik berýän kwd(a, b, c, x_1 , x_2) prosedura ýazmaly. Bu ýerde x_1 we x_2 ululyklar gaýtarylyp berilýän ululyklar. Eger berlen kwadrat deňlemäniň çözüwi ýok bolsa, onda prosedura deňlemäniň kökleriniň ornuna nollary bermeli.

```
uses wincrt;
var a,b,c,x1,x2 : real;
{------}
procedura kwd(a,b,c : real; var x1,x2 : real);
var d : real;
begin
```

```
d:=b*b-4*a*c:
     if d \ge 0 then
      begin
          x1 := (-b - sqrt(d))/(2*a);
          x2 := (-b + sqrt(d))/(2*a);
      end
        else begin x1:=0; x2:=0; end;
end:
begin
clrscr;
       write('a='); read(a);
       write('b='); read(b);
       write('c='); read(c);
       kwd(a,b,c,x1,x2);
       write('x1=',x1:3:1,' x2=',x2:3:1);
readkey;
end.
```

- **1.** *A* sanyň üçünji derejesini hasaplaýan we ony *B* ululyk bilen gaýtaryp berýän (*A*-giriş, *B*-çykyş parametr; iki parametr hem hakyky tipli) *PowerA3*(*A*, *B*) prosedurany beýan etmeli. Bu proseduranyň kömegi bilen berlen bäs sanyň üçünji derejesini hasaplamaly.
- **2.** *A* sanyň ikinji, üçünji we dördünji derejesini hasaplaýan we netijäni degişlilikde *B*, *C* we *D* ululyklar bilen yzyna gaýtaryp berýän (*A*-giriş, *B*, *C*, *D* -çykyş parametrler; hemme parametrler hem hakyky tipli) *PowerA*234 (*A*, *B*, *C*, *D*) prosedurany beýan etmeli. Bu proseduranyň kömegi bilen berlen bäş sanyň ikinji, üçünji we dördünji derejelerini hasaplamaly.
- **3.** X we Y iki položitel sanyň AMean = (X + Y)/2 orta arifmetiki we $GMean = \sqrt{X * Y}$ orta geometriki bahalaryny hasaplamaga mümkinçilik berýän Mean (X, Y, AMean, GMean) (X we Y giriş, AMean, we GMean bolsa hakyky tiply çykyş parametrler) prosedurany ýazyp beýan etmeli. Bu proseduranyň kömegi bilen berlen A, B, C, D

- sanlaryň (A, B), (A, C), (A, D) jübütleri üçin orta arifmetiki we orta geometriki bahalary hasaplamaly.
- **4.** Deňtaraply üçburçlygyň a tarapy boýunça onuň P=3*a perimetrini we $S=a^2*\sqrt{3/4}$ meýdanyny hasaplamaga mümkinçilik berýän TrianglePS(a, P, S) prosedurany ýazyp beýan etmeli. Bu prosedurada a giriş, P we S çykyş parametrler; hemme parametrler hakyky tipli. Bu proseduranyň kömegi bilen berlen tarapy boýunça üç sany deňtaraply üçbuçlygyň perimetrini we meýdanyny tapmaly.
- **5.** Taraplary koordinata oklary bilen parallel bolan gönüburçlygyň berlen garşylykly taraplarynyň depeleriniň koordinatalary (x_1, y_1, x_2, y_2) boýunça onuň perimetrini we meýdanyny hasaplaýan prosedura ýazmaly: Re $ctPs(x_1, y_1, x_2, y_2, P, S)$. Bu ýerde (x_1, y_1, x_2, y_2) proseduranyň hakyky tipli giriş, P we S bolsa hakyky tipli çykyş parametrleri). Bu prosedurany ulanmak arkaly berlen üç sany gönüburçlygyň garşylykly depeleriniň koordinatalary boýunça onuň perimetrini we meýdanyny hasaplaň.
- **6.** Bitin položitel K sanyň sifrleriniň sanyny (C) we jemini (S) tapmaga mümkinçilik berýän DigitCountSum(K, C, S) prosedurany beýan etmeli (Bu ýerde K bitin tipli giriş, C, S bolsa bitin tipli çykyş parametrleri). Bu prosedura-niň kömegi bilen berlen bäş sany bitin položitel sanyň sifrleriniň sanyny we jemini tapmaly.
- 7. Berlen *K* bitin položitel sanyň sifrlerini sagdan-çepe tersine öwürýän *InvertDigit*s (*K*) prosedura ýazmaly. Bu ýerde *K* položitel bitin tipli parametr bolup, ol birwagtda giriş hem-de çykyş parametri bolup durýar. Bu prosedura-nyň kömegi bilen berlen bäş sany bitin sanlaryň sifrlerini sagdan-çepe tersine öwürmeli.
- **8.** Bitin položitel K sanyň sag tarapyna D sifri goşýan AddRightDigit (D, K) prosedurany ýazmaly (D 0-9) aralykdan bitin tipli giriş parametr), K bolsa birwagtda hem giriş, hem-de çykyş parametri bolan bitin tipli ululyk). Bu prosedura-nyň kömegi bilen berlen K sanyň sag tarapyna D_1 we D_2 sanlary goşmaly. Her bir san goşulandan soň netijäni çapa çykarmaly.
- 9. Bitin položitel K sanyň çep tarapyna D sifri goşýan $AddLeftDigit\ (D,\ K)$ prosedurany ýazmaly $(D\ 1-9\ aralykda\ ýatan$

- bitin tipli giriş parametr,) K bolsa birwagtda hem giriş, hem-de çykyş parametri bolan bitin tipli ululyk). Bu prosedura-nyň kömegi bilen berlen K sanyň sag tarapyna D_1 we D_2 sanlary goşmaly. Her bir san goşulandan soň netijäni çapa çykarmaly.
- **10.** X we Y üýtgeýän ululyklaryň bahalaryny çalşyrýan Swap (X, Y) prosedurany ýazmaly. Bu ýerde X we Y birwagtda giriş we çykyş parametri bolup durýan hakyky tipli ululyklar. Bu kömekçi programmanyň kömegi bilen A, B, C, D üýtgeýän ululyklaryň bahalaryny şeýle yzygiderlikde çalyşmaly: A bilen B, C bilen D, B bilen C we A, B, C, D ululyklaryň täze bahalaryny çapa çykarmaly.
- **11.** Hakyky tipli *X* we *Y* ululyklaryň adyna geçirýän kiçisiniň bahasyny *X* ululygyň, ulysynyň bahasyny bolsa *Y* ululygyň adyna geçirýän *Minmax*(*X*, *Y*) kömekçi programma ýazmaly. Bu ýerede *X* we *Y* ululyklar hakyky tipli, birwagtda hem giriş, hem-de çykyş parametrler bolup hyzmat edýär. Bu kömekçi programma dört gezek ýüz tutmak bilen *A*, *B*, *C*, *D* sanlaryň iň kiçisini we iň ulusyny tapmaly.
- **12.** A, B, C ululyklaryň bahalayny artýan tertipde tertipleşdirýän SortInc3(A, B, C) kömekçi programmany ýazmaly. Bu proseduradaky A, B, C hakyky tipli parametrler birwagtda giriş hem-de çykyş parametrler bolup durýarlar. Bu kömekçi programmanyň kömegi bilen üç sandan ybarat sanlaryň iki: (A_1, B_1, C_1) we (A_2, B_2, C_2) toplumyny artýan tertipde ýerleşdirmeli.
- 13. A, B, C ululyklaryň bahalaryny kemelýän tertipde tertipleşdirýän SortDec3(A, B, C) kömekçi programmany ýazmaly. Bu proseduradaky A, B, C hakyky tipli parametrler birwagtda giriş hem-de çykyş parametrler bolup durýarlar. Bu kömekçi programmanyň kömegi bilen üç sandan ybarat sanlaryň iki: (A_1, B_1, C_1) we (A_2, B_2, C_2) toplumyny kemelýän tertipde ýerleşdirmeli.
- **14.** Parametrleriniň bahalaryny saga tarap yzygiderli süýşürýän ShiftRight3(A,B,C) prosedurany ýazmaly (A,B,C) parametrler birwagtda giriş hem-de çykyş parametrler bolup durýan hakyky tipli ululyklardyr): A ululygyň bahasy B ululyga, B ululygyň bahasy B ululyga, B ululygyň bahasy B ululyga, B ululygyň bahasy B ululyga, B ululygyň bahasy B ululyga, B ululygyň bahasy B ululyga,

we (A_2, B_2, C_2) toplumynyň elementlerini saga tarap yzygiderli süýşürmeli.

15. Öz parametrleriniň bahalaryny çepe tarap yzygiderli süýşürýän ShiftLeft3(A,B,C) prosedura ýazmaly (A,B,C) parametrler birwagtda giriş hem-de çykyş parametrler bolup durýan hakyky tipli ululyklardyr): A ululygyň bahasy B ululyga, B ululygyň bahasy C ululyga, C ululygyň bahasy bolsa A ululyga ýazylýar. Bu kömekçi programmanyň kömegi bilen üç sandan ybarat iki (A_1, B_1, C_1) we (A_2, B_2, C_2) san toplumynyň elementlerini çepe tarap yzygiderli süýşürmeli.

SAN PARAMETRLI FUNKSIÝALAR

1-nji mysal

Berlen iki hakyky sanyň jemini hasaplaýan jem(a, b) atly Funksiýany ýazmaly.

2-nji mysal

Natural n san berlen. N-den kiçi bolan yönekey sanlary tapmaly. uses wincrt;

```
var n,i: integer;
function vs(k: integer): boolean;
var i : integer;
begin
   for i:=2 to k-1 do
    if k mod i=0 then begin ys:=false; exit; end;
   vs:=true;
end;
{-----}
begin
clrscr;
      write('n='); read(n);
      for i:=2 to n do
      if ys(i) then write(i:4);
readkey;
end.
```

- **16.** *X* hakyky tipli parametri bolan *Sign*(*X*) bitin tipli funksiýa ýazmaly. Bu funksiýa *X* ululygyň bahasyna baglylykda aşakdaky ululyklary gaýdyp bermeli:
 - -1, eger X < 0 bolsa; 0, eger X = 0 bolsa; 1, eger X > 0 bolsa.

Bu funksiýanyň kömegi bilen A we B hakyky sanlar üçin Sign(A) + Sign(b) aňlatmanyň bahasyny hasaplamaly.

- 17. $A * x^2 + B * x + c = 0$ (A, B, C hakyky parametrli, $A \neq 0$) kwadrat deňlemäniň kökleriniň sanyny kesgitleýän bitin tipli RootCount(A,B,C) funksiýany ýazmaly. Bu funksiýanyň kömegi ulanyp koeffisientleri bilen berlen üç sany kwadrat deňlemäniň her biri üçin onuň kökleriniň sanyny kesgitlemeli. Kwadrat deňlemäniň kökleriniň sany $D = B^2 4 * A * C$ diskriminanty bahasy boýunça kesgitlenýär.
- **18.** R (hakyky tipli) radiusly tegelegiň meýdanyny hasaplaýan CircleS(R) hakyky tipli funksiýany ýazmaly. Bu funksiýany ulanmak arkaly berlen radiusly üç sany tegelegiň meýdanyny hasaplamaly. R radiusly tegelegiň meýdany $S = \pi * R^2$ formula bilen hasaplanylýar ($\pi = 3.14$).

- **19.** R_1 we R_2 radiusly (hakyky tipli, $R_1 > R_2$), umumy merkezli iki töweregiň arasynda emele gelýän halkanyň meýdanyny hasaplaýan $RingS(R_1,R_2)$ hakyky tipli funksiýa ýazmaly. Bu funksiýanyň kömegi bilen içki we daşky radiuslary berlen üç sany halkanyň meýdanyny hasaplamaly.
- **20.** *a* easasy we *a* esasyna geçirilen *h* beýikligi (*a* we *h* hakyky tipli ululyklar) bolan deňýanly üçburçlygyň perimetrini hasaplaýan TriangleP(a, h) funksiýany ýazmaly. Bu funksiýanyň kömegi bilen esasy hem-de beýikligi berlen üç sany üçburçlygyň perimetrini hasaplamaly. *b* gapdal tarapynyň uzynlygyny hasaplamak üçin Pifagoryň teoremasyndan ($b^2 = (a/2)^2 + h^2$) peýdalanmaly.
- **21.** A we B sanlaryň (A, B bitin sanlar), şeýle hem olaryň arasyndaky bitin sanlaryň hemmesiniň jemini hasaplaýan bitin tipli SumRange(A, B) funksiýany ýazmaly. Eger A > B bolsa onda funksiýa 0-y yzyna gaýtaryp bermeli. Eger A, B, C sanlar berlen bolsa, bu funksiýany ulanyp A-dan B-e çenli we B-den C-e çenli bitin sanlaryň jemini hasaplamaly.
- **22.** Nola deň bolmadyk A we B hakyky sanlaryň üstünde arifmetiki operasiýalaryň birini geçirip, netijäni hem gaýtaryp berýän hakyky tipli Calc(A, B, Op) funksiýany ýazmaly. Operasiýanyň görnüşini bitin tipli Op parametr kesgitleýär: 1 aýyrmak, 2 köpeltmek, 3 bölmek, galan bahalar bolsa goşmak. Calc funksiýany ulanmak arkaly A we B sanlar üçin N_1 , N_2 , N_3 bitin sanlar bilen kesgitlenýän amallary geçiriň.
- **23.** Nola deň bolmadyk hakyky koordinataly (*x*, *y*) nokadyň ýerleşýän koordinata çärýeginiň tertip belgisini kesgitleýän bitin tipli *Quarter* (*x*, *y*) funksiýany ýazmaly. Bu funksiýany ulanmak arkaly koordinatalary nola deň bolmadyk üç nokadyň ýerleşýän koordinata çärýeklerini tapmaly.
- **24.** Eger bitin tipli K parametr jübüt bolsa TRUE, bolmasa FALSE logiki ululyklary gaýtaryp berýän Even(K) logiki tipli funksiýany ýazmaly. Bu funksiýany ulanmak arkaly özünde 10 sany san saklaýan toplumdaky jübüt sanlaryň mukdaryny kesgitlemeli.

- **25.** Eger bitin tipli K(K > 0) parametr käbir bitin sanyň kwadraty bolýan bolsa onda TRUE, bolmasa FALSE bahany yzyna gaýtarýan logiki tipli IsSquare(K) funksiýany ýazmaly. Bu funksiýany ulanmak arkaly 10 sany bitin sany saklaýan toplumdaky kwadratlaryň mukdaryny kesgitlemeli.
- **26.** Eger bitin tipli K(K > 0) parametr 5-iň derejesi bolýan bolsa onda TRUE, bolmasa FALSE bahany yzyna gaýtarýan logiki tipli *IsPower5(K)* funksiýany ýazmaly. Bu funksiýany ulanmak arkaly özünde 10 sany bitin san saklaýan toplumdaky 5-iň derejesi bolýan sanlaryň mukdaryny kesgitlemeli.
- **27.** Eger bitin tipli K(K > 0) parametr bitin tipli N(N > 1) parametriň derejesi bolýan bolsa onda TRUE, bolmasa FALSE ululygy gaýtaryp berýän logiki tipli IsPowerN(K, N) funksiýany ýazmaly. N(N > 1) we 10 položitel sandan ybarat toplum berlen. IsPowerN(K, N) funksiýany ulanmak arkaly toplumdaky N sanyň derejesiniň mukdaryny tapmaly.
- **28.** Eger bitin položitel N(N > 1) san *ýönekeý san* bolsa onda TRUE, bolmasa FALSE bahany gaýtaryp berýän IsPrime(N) funksiýany ýazmaly (1-den hem-de özünden başga bölüjisi bolmadyk sana *ýönekeý san* diýilýär). 1-den uly bolan 10-sany bitin sany saklaýan toplum berlen. IsPrime(N) funksiýany ulanmak arkaly bu toplumdaky ýönekeý sanlaryň mukdaryny tapmaly.
- **29.** Bitin položitel K sanyň sifrleriniň mukdaryny tapýan DigitCount(K) funksiýany ýazmaly. Bu funksiýany ulanmak bilen berlen bäş sany položitel sanyň her biriniň sifrleriniň mukdaryny tapmaly.
- **30.** Bitin položitel K sanyň N-nji sifrini gaýtaryp berýän (sifrler sagdan çepe belgilenýär), DigitN(K, N) funksiýany ýazmaly. Eger K sandaky sifrleriň sany N-den az bolsa bu funksiýa -1 (minus biri) gaýtaryp bermeli. Berlen $K_1, K_2, ..., K_5$ bäş bitin položitel sanlaryň her biri üçin DigitN funksiýany 1-den 5-e çenli öz bahasyny üýtgetýän N parametr bilen çagyrmaly.
- **31.** Bitin K(K > 0) parametr *palindrom* bolsa onda TRUE, bolmasa FALSE bahany gaýdyp berýän *IsPalindrom*(K) funksiýany ýaz-

maly (eger san sagdan çepe we çepden saga birmeňzeş okalýan bolsa ol sana *palindrom* diýilýär). Bu funksiýany ulanmak arkaly özünde 10-sany bitin položitel sanlary saklaýan toplumdaky palindrom sanlaryň mukdaryny tapmaly. Bu funksiýa 29-njy we 30-njy ýumuşlarda beýan edilen *DigitCount(K)* we *DigitN(K, N)* funksiýalary ulanmak bolar.

- **32.** Eger D burç gradus hasabynda berlen bolsa (Bu ýerde D hakyky tipli, $0 < D < 360^\circ$), ol burçuň radian hasabyndaky bahasyny tapýan hakyky tipli DegToRad(D) funksiýany ýazmaly. $180^\circ = \pi$ radian gatnaşygy ulanmaly. π ululygyň bahasy 3.14-e deň. Bu funksiýany ulanmak bilen gradus hasabynda berlen bäş sany burçyň radiandaky bahasyny tapmaly.
- **33.** Eger R burç radian hasabynda berlen bolsa (R hakyky tipli bolup, $0 < R < 2*\pi$) ol burçuň gradus hasabyndaky bahasyny tapmaga mümkinçilik berýän RadToDeg(R) funksiýany ýazmaly. Bu funksiýa ýazylanda $180^\circ = \pi$ gatnaşykdan peýdalanmaly. π ululygyň bahasy 3.14-e deň. Bu funksiýanyň kömegi bilen radian hasabynda berlen bäş bürçy gradusa geçirmeli.
- **34.** N! = 1 * 2 * ... * N(N > 0 bitin tipli san) *faktorialy* hasaplaýan hakyky tipli *Fact* (N) funksiýany ýazmaly. Bu funksiýanyň hakyky tipli bolmagynyň sebäbi N-iň uly bahalarynda bitinleýin dolmaklykdan gaça durulýar. Bu funksiýany ulanmak bilen bäş sany berlen bitin sanyň faktorialyny hasaplamaly.

35. *Ikileýin faktoriallar*:

N!! = 1 * 3 * 5 * ... * N, eger N -täk bolsa;

N!! = 2 * 4 * 6 * ... * N, eger N – jübüt bolsa.

Hakyky tipli *Fact*2(*N*) funksiýny ýazmaly. Bu funksiýada *N*>0 – bitin tipli parametr; bu funksiýanyň hakyky tipli bolmagynyň sebäbi *N*-iň uly bahalarynda bitinleýin dolmaklykdan gaça durulýar. Bu funksiýany ulanmak arkaly berlen bäş sany bitin sanlaryň ikileýin faktorialyny hasaplamaly.

36. *Fibonaççiniň* F_K *san* yzygiderliginiň N-nji elementini tapýan bitin tipli Fib(N) funksiýany ýazmaly. Fibonaççiniň sany «Şertli gaýtalanma» bölüminiň 24-nji meselesinde düşündirilýär.

Funksiýalar we proseduralar üçin goşmaça ýumuşlar

- **37.** A^B aňlatmanyň bahasyny $A^B = \exp(B*\ln(A))$ formula boýunça tapýan hakyky tipli Power1(A, B) funksiýany ýazmaly (A, B) hakyky tipli parametrler). A parametr otrisatel baha ýa-da 0-a eýe bolan ýagdaýynda funksiýa 0-y gaýtaryp bermeli. Eger P, A, B, C sanlar berlen bolsa bu finksiýany ulanmak arkaly A^P , B^P , C^P derejeleri tapmaly.
 - **38.** *A* hakyky, *N* bolsa bitin tipli parametrler bolanda:

$$A^0 = 1;$$

$$A^{N} = A * A * ... * A (N köpeldiji), eger N > 0;$$

$$A^{N} = 1/(A * A * ... * A)$$
 (| N | köpeldiji), eger $N < 0$;

 A^N ululygyň bahasyny hasaplaýan hakyky tipli Power2(A, N) funksiýany ýazmaly.

Bu funksiýany ulanmak arkaly, A, K, L, M sanlar berlen bolsa, onda A^K , A^L , A^M derejeleri hasaplamaly.

- **39.** 37, 38 ýumuşlarda görkezilen Power1 we Power2 funksiýalary ulanmak arkaly A^B aňlatmanyň bahasyny aşakdaky görnüşde tapýan hakyky tipli, hakyky parametrleri bolan Power3(A, B) funksiýany ýazmaly. Eger B ululygyň drob bölegi nola deň bolsa Power2(A, Round(B)) funksiýa, bolmasa Power1(A, B) funksiýa ýüzlenilýär. Eger P, A, B, C sanlar berlen bolsa bu finksiýany ulanmak arkaly A^P , B^P , C^P derejeleri tapmaly.
- **40.** $\exp(x)$ funksiýanyň bahasyny takmyny hasaplamaga mümkinçilik berýän

$$\exp(x) = 1 + x + x^2/(2!) + x^3/(3!) + \dots + x^n/(n!) + \dots$$

(bu ýerde n! = 1 * 2 * ... * n); hakyky tipli x, ε parametrleri bolan ($\varepsilon > 0$), hakyky tipli $Exp1(x, \varepsilon)$ funksiýany yazmaly. Bu funksiýany ulanmak arkaly berlen x üçin, ε -yň alty sany dürli bahasynda bu funksiýany hasaplamaly.

41. $\sin(x)$ funksiýanyň bahasyny takmynan hasaplaýan, hakyky tipli $\sin 1(x, \varepsilon)$ (x, ε) parametrler hakyky sanlar, $\varepsilon > 0$) $\sin(x) = x - x^3(3!) + x^5(5!) - \dots + (-1)^n \cdot x^{2n+1}((2n+1)! + \dots$ funksiýany ýazmaly.

Jem hasaplanylanda moduly ε -den uly bolan hemme goşulyjylary hasaba almaly. $Sin\ 1$ funksiýanyň kömegi bilen berlen x san üçin ε parametriň berlen dürli alty bahasynda bu funksiýanyň bahalaryny hasaplamaly.

42. $\cos(x)$ funksiýanyň bahasyny takmynan hasaplaýan, hakyky tipli $Cos1(x, \varepsilon)$ (x, ε parametrler hakyky sanlar, $\varepsilon > 0$):

$$\cos(x) = 1 - x^2(2!) + x^4(4!) - \dots + (-1)^n x^{2n}/((2n+1)! + \dots \text{ funksiýany ýazmaly.}$$

Jem hasaplanylanda moduly ε -den uly bolan hemme goşulyjylary hasaba almaly. Cos1 funksiýanyň kömegi bilen berlen x san üçin ε parametriň berlen dürli alty bahasynda bu funksiýanyň bahalaryny hasaplamaly.

43. $\ln(x+1)$ funksiýanyň takmyny bahasyny tapýan hakyky tipli $Ln1(x, \varepsilon)$ parametrler hakyky sanlar, |x| < 1, $\varepsilon > 0$):

$$ln(1+x) = x - x^2/2 + x^3/3 - ... + (-1)^{n+1} * x^{n+1}/(2n+1) + ...$$
 funksiýany ýazmaly.

Jem hasaplanylanda moduly ε -den uly bolan hemme goşulyjylary hasaba alynmaly. Ln1 – funksiýanyň kömegi bilen berlen x san üçin, ε parametriň berlen dürli alty bahasynda $\ln(x+1)$ funksiýanyň takmyny bahalaryny hasaplamaly.

44. arctg(x) funksiýanyň takmyny bahasyny tapýan hakyky tipli $Arctg1(x, \varepsilon)$ (x, ε parametrler hakyky sanlar, |x| < 1, $\varepsilon > 0$):

$$arctg(x) = x - x^3/3 + x^5/5 - ... + (-1)^n * x^{2n+1}/(2n+1) + ...$$
 funksiýany ýazmaly.

Jem hasaplanylanda moduly ε -den uly bolan hemme goşulyjylary hasaba alynmaly. Arctg1 – funksiýanyň kömegi bilen berlen x san üçin, ε parametriň berlen dürli alty bahasynda arctg(x) funksiýanyň takmyny bahalaryny hasaplamaly.

45. Aşakdaky formula boyunça:

$$(1+x)^{\circ} = 1 + ax + a(a-1)x^{2}(2!) + ... + a(a-1)...(a-n+1)x^{n}/(n!) + ...$$

 $(1+x)^a$ funksiýanyň ýakynlaşan bahasyny hasaplaýan hakyky tipli $Power4(x, a, \varepsilon)$ (x, a, ε) parametrler hakyky tipli, özün $|x| < 1, a, \varepsilon > 0$) funksiýany beýan etmeli. Jemde moduly ε -den uly bolan hemme goşulyjylary hasaba almaly. $Power4(x, a, \varepsilon)$ funksiýany ulanmak arkalay berlen x we a ululyklar üçin ε ululygyň alty dürli bahasynda $(1+x)^a$ -iň ýakynlaşan bahalaryny tapmaly.

MINIMUMLAR WE MAKSIMUMLAR

1-nji mysal

Bitin N san we N sandan ybarat sanlaryň toplumy berlen. Bu toplumdaky iň kiçi sany we onuň tertip tertip belginisini tapmaly.

```
uses wincrt;
var x : array[1..1000] of integer;
 n,i,min,t: integer;
begin
clrscr;
        write('n='); read(n);
        for i:=1 to n do
        begin
             write('x[',i,']='); read(x[i]);
        end:
        min:=x[1]; t:=1;
        for i:=2 to n do
        if x[i] < min then begin min:=x[i]; t:=i; end;
        write('min=',min,' tertip belgisi=',t);
readkey;
end.
```

2-nji mysal

N bitin san we N sany bitin sanlaryň toplumy berlen. Iň soňky iň uly elementden yzda ýerleşen elementleriň sanyny tapmaly.

```
for i:=2 to n do
    if x[i]>max then begin max:=x[i]; t:=i; end;
    write('olaryn sany = ',n-t);
readkey;
end.
```

- 1. Bitin N san we N sandan ybarat sanlaryň toplumy berlen. Berlen toplumdaky iň kiçi we iň uly elementleri tapmaly we olary görkezilen tertipde çapa çykarmaly.
- **2.** Bitin N san we taraplary (a, b) bolan N gönüburçlukdan ybarat toplum berlen. Iň kiçi meýdanlygönüburçlygy tapmaly.
- **3.** Bitin N san we taraplary (a, b) bolan N gönüburçlukdan ybarat toplum berlen. Iň uly meýdanlygönüburçlygy tapmaly.
- **4.** Bitin N san we N sandan ybarat toplum berlen. Bu toplumdaky iň kiçi sanyň belgisini tapmaly.
- **5.** Dürli materiallardan taýýarlanan massasy m, göwrümi v bolan N sany san jübüti (m, v) berlen. N bitin san. Iň uly dykyzlykly materialdan taýýarlanan detalyň tertip belgisini hem-de onuň dykyzlygynyň san bahasyny tapmaly. Dykyzlyk $\rho = \frac{m}{v}$ formula boýunça hasaplanylýar.
- **6.** *N* bitin san we *N* sany bitin sanlaryň toplumy berlen. Bu toplumdaky ilkinji iň kiçi we iň soňky iň uly elemntleriň tertip belgilerini kesgitlemeli we olary görkezilen tertipde çäpa çykarmaly.
- **7.** *N* bitin san we *N* sany bitin sanlaryň toplumy berlen. Bu toplumdaky ilkinji iň uly we iň soňky iň kiçi elemntleriň tertip belgilerini kesgitlemeli we olary görkezilen tertipde çäpa çykarmaly.
- **8.** *N* bitin san we *N* sany bitin sanlaryň toplumy berlen. Bu toplumdaky ilkinji we iň soňky iň kiçi elementleriň tertip belgilerini tapmaly we olary görkezilen tertipde çapa çykarmaly.
- **9.** N bitin san we N sany bitin sanlaryň toplumy berlen. Bu toplumdaky ilkinji we iň soňky iň uly elementleriň tertip belgilerini tapmaly we olary görkezilen tertipde çäpa çykarmaly.

- **10.** N bitin san we N sany bitin sanlaryň toplumy berlen. Bu toplumdaky iň soňky *eksteramal* (iň kiçi ýa-da iň uly) elementiň tertip belgilerini tapmaly.
- **11.** N bitin san we N sany bitin sanlaryň toplumy berlen. Bu toplumdaky ilkinji *eksteramal* (iň kiçi ýa-da iň uly) elementiň tertip belgilerini tapmaly.
- **12.** N bitin san we N sany bitin sanlaryň toplumy berlen. Bu toplumdaky iň kiçi položitel sany tapmaly. Eger toplumda položitel san bolmasa, onda noly (0) çapa çykarmaly.
- 13. N bitin san we N sany bitin sanlaryň toplumy berlen. Bu toplumdaky ilkinji iň uly täk sanyň tertip belgilerini tapmaly. Eger toplumda täk san bolmasa, onda noly (0) çapa çykarmaly.
- **14.** B(B > 0) san we on sandan ybarat toplum berlen. Bu toplumdaky elementleriň B-den uly bolanlarynyň iň kiçisini, şeýle hem onuň tertip belgilerini çapa çykarmaly. Eger toplumda B-den uly san bolmasa, onda noly iki gezek (00) çapa çykarmaly.
- **15.** B, C(0 < B < C) sanlar we on sandan ybarat toplum berlen. B, C interwalda ýerleşýän elementleriň içinden iň ulusyny we onuň tertip belgilerini çapa çykarmaly. Eger toplumda şeýle san ýok bolsa, onda noly iki gezek (00) çapa çykarmaly.
- **16.** *N* bitin san we *N* sany bitin sanlaryň toplumy berlen. Ilkinji iň kiçi elementden öňde ýerleşen elementleriň sanyny tapmaly.
- **17.** *N* bitin san we *N* sany bitin sanlaryň toplumy berlen. Iň soňky iň uly elementden yzda ýerleşen elementleriň sanyny tapmaly.
- **18.** N bitin san we N sany bitin sanlaryň toplumy berlen. Ilkinji we iň soňky iň uly elementleriň arasynda ýerleşen elementleriň mukdaryny tapmaly. Eger toplumda ýeke-täk iň uly element bar bolsa, onda noly (0) çapa çykarmaly.
- **19.** N bitin san we N sany bitin sanlaryň toplumy berlen. Bu toplumdaky iň kiçi elementleriň sanyny tapmaly.
- **20.** N bitin san we N sany bitin sanlaryň toplumy berlen. Bu toplumdaky *ekstremal* (ýagny iň kiçi we iň uly) elementleriň umumy sanyny tapmaly.

- **21.** Bitin N(N > 2) san we N gezek tejribe geçirmek netijesinde alnan, käbir ululyklaryň bahalaryny saklaýan -N sandan ybarat toplum berlen. Bu ululyklaryň orta bahalaryny tapmaly. Orta baha hasaplanylanda toplumdaky iň kiçi we iň uly bahalar hasaba alynmaly däl.
- **22.** Bitin N(>2) san we N sandan ybarat toplum berlen. Bu toplumdaky iň kiçi iki elementi tapmaly we bu elementleri bahalarynyň artýan tertibinde çapa çykarmaly.
- **23.** Bitin N (>3) san we N sandan ybarat toplum berlen. Bu toplumdaky iň uly üç elementi tapmaly we bu elementleri bahalarynyň kemelýän tertibinde çapa çykarmaly.
- **24.** Bitin N (>1) san we N sandan ybarat toplum berlen. Bu toplumdan iki goňsy sanlaryň emele getirýän iň uly jemini tapmaly.
- **25.** Bitin N (>1) hasyly iň kiçi bolan iki goňsy elementleriniň tertip belgilerini tapmaly we ilki kiçi tertip belgini, soňra bolsa uly tertip belgini çapa çykarmaly.
- **26°.** Bitin N (>1) san we N sandan ybarat toplum berlen. Toplumdaky yzygider ýerleşýän jübut sanlaryň iň uly sanyny tapmaly. Eger toplumda jübüt sanlar bolmasa, onda noly (0) çapa çykarmaly.
- **27.** Bitin N san we diňe noldan hem-de birden ybarat bolan N bitin san toplumy berlen. Bu toplumdaky birmeňzeş sanlardan ybarat bolan iň uzyn yzygiderligiň başlanýan elementiniň tertip belgilerini we bu yzygiderlikdäki elemetleriň sanyny tapmaly. Eger şeýle yzygiderlikleriň birnäçesi bar bolsa, onda olaryň ilkinjisiniň tertip belgisini çapa çykarmaly.
- **28.** Bitin *N* san we diňe nollardan hem-de birliklerden ybarat bolan *N* bitin san toplumy berlen. Bu toplumdaky birliklerden ybarat bolan iň uzyn yzygiderligiň başlanýan elementiniň tertip belgilerini we bu yzygiderlikdäki elemetleriň sanyny tapmaly. Eger şeýle yzygiderlikleriň birnäçesi bar bolsa, onda olaryň iň soňkusynyň tertip belgisini çapa çykarmaly. Eger bu toplumda birlikler düýbünden ýok bolsalar, onda ikileýin noly (00) çapa çýkarmaly.
- **29.** N bitin san we N bitin sandan ybarat bolan toplum berlen. Bu toplumdaky yzly-yzyna gelýän iň kiçi elemetleriň iň uly mukdaryny tapmaly.

30. N bitin san we N bitin sandan ybarat bolan toplum berlen. Bu toplumdaky yzly-yzyna gelýän iň uly elemetleriň iň kiçi mukdaryny tapmaly.

BIR ÖLÇEGLI MASSIWLER

Massiwi döretmek we onuň elementlerini çapa çykarmak

1-nji mysal

Natural n san berlen. Ilkinji n jübüt sany saklayan massiwi döretmeli.

```
uses wincrt:
var x : array[1..1000] of integer;
 n,i,k,l: integer;
begin
clrscr;
     write('n='); read(n);
     k = 0:
     1:=2:
     while k<n do
      begin
          inc(k);
          x[k]:=1;
          1:=1+2;
     for i:=1 to n do write(x[i],',');
readkey;
end
```

2-nji mysal

Özünde bitin n sany sany saklayan x[n] san massiwi berlen. Bu massiwdäki otrisatel we položitel elementleriň jemlerini aýry-aýrylykda hasaplamaly.

uses wincrt;

```
var x : array[1..1000] of integer;
 n,i,sp,so: integer;
begin
clrscr;
      write('n='); read(n);
      for i:=1 to n do
      begin
          write('x[',i,']='); read(x[i]);
      end:
      sp:=0; so:=0;
      for i:=1 to n do
      if x[i] > 0 then sp:=sp+x[i] else so:=so+x[i];
      writeln('polozitel elementlerin jemi = ',sp);
      writeln('otrisatel elementlerin jemi = ',so);
readkey;
end.
```

- **1.** Bitin N(N > 0) san berlen. Ilkinji N bitin položitel täk sany saklaýan massiwi döretmeli we çapa çykarmaly (mysal üçin: 1,3,5,...).
- **2.** Bitin N(N > 0) san berlen. Elementleri 2-niň birinji derejesinden başlap N-nji derejesine çenli sanlary saklaýan massiwi döretmeli we çapa çykarmaly 2, 4, 8, 16,
- **3.** Bitin N(N > 1) san we arifmetiki progressiýanyň ilkinji agzasy A we tapawudy D berlen. Bu progressiýanyň ilkinji N agzasyny özünde saklaýan N ölçegli massiwi döretmeli we çapa çykarmaly: A, A + D, A + 2*D, A + 3*D, ...
- **4.** Bitin N(N > 1) san we geometriki progressiýanyň ilkinji agzasy A we maýdalawjysy D berlen. Bu progressiýanyň ilkinji N agzasyny özünde saklaýan N ölçegli massiwi döretmeli we çapa çykarmaly: A, A*+D, $A+A*D^2$, $A*D^3$, ...
- **5.** Bitin N(N > 2) san berlen. Fibonaççiniň san hatarynyň ilkinji N elementini özünde saklaýan N ölçegli massiwi döretmeli we çapa çykarmaly. F_{K} aşakdaky ýaly düzgün boýunça hasaplanylýar: $F_{K} = 1$, $F_{K} = F_{K-1} + F_{K-1}$, $K = 3, 4, \dots$

- **6.** N(N > 2), A we B bitin sanlar berlen. Ilkinji elementi A, ikinji elementi B, soňky elementleri bolsa özünden öňündäki elementleriň jemini özünde saklaýan bitin tipli san massiwini döretmeli we çapa çykarmaly.
- 7. N ölçegli massiw berilipdir. Ol massiwiň elementlerini ters tertipde çapa çykarmaly.
- **8.** N ölçegli bitin tipli san massiwi berlen. Bu massiwdäki täk sanlary indeksleriniň artýan tertibinde çapa çykarmaly, iň soňunda bolsa olaryň K sanyny çapa çykarmaly.
- **9.** N ölçegli bitin tipli san massiwi berlen. Bu massiwdäki jübüt sanlary indeksleriniň kemelýän tertibinde çapa çykarmaly, iň soňunda bolsa olaryň K sanyny çapa çykarmaly.
- **10.** *N* ölçegli bitin tipli san massiwi berlen. Ilki bilen bu massiwdäki hemme jübüt sanlary indeksleriniň artýan tertibinde, soňra bolsa, hemme täk sanlary indeksleriniň kemelýän tertibinde çapa çykarmaly.
- **11.** N ölçegli A massiw we bitin K ($1 \le K \le N$) san berlen. Massiwiň elementleriniň tertip belgileriniň K galyndysyz bölünýänlerini (kratnyýlaryny) çapa çykarmaly ($A_k, A_{2k}, A_{3k}, ...$).
- **12.** N(N-jübüt san) ölçegli A massiw berlen. Jübüt orunlarda duran elementleri, olaryň duran orunlary artýan tertipde çapa çykarmaly: $A_2,A_4,A_6,...,A_N$.
- **13.** N(N-täk san) ölçegli A massiw berlen. Täk orunlarda duran elementleri, olaryň duran orunlary kemelýän tertipde çapa çykarmaly: A_N , A_{N-2} , A_{N-1} ,..., A_1 . Şertli operator ulanmaly däl.
- **14.** N ölçegli A massiw berlen. Ilki bilen jübüt orunlarda duran elementleri (orunlary artýän görnüşde), soňra bolsa täk otunlarda duran elementleri (olaryň hem orunlary artýän görnüşde) çapa çykarmaly: A_2 , A_4 , A_6 , ..., A_1 , A_3 , A_5 , ...

Şertli operator ulanmaly däl.

15. N ölçegli A massiw berlen. Ilki bilen bu massiwiň täk orunda duran elementlerini tertip belgilerini artýan görnüşde, soňra bolsa jübüt orunda duran elementlerini tertip belgilerini kemelýän görnüşde çapa çykarmaly: $A_1, A_3, A_5, \ldots, A_6, A_4, A_2$. Şertli operator ulanmaly däl.

- **16.** N ölçegli A massiw berlen. Bu massiwiň elementlerini aşakdaky tertipde çapa çykarmaly: A_1 , A_N , A_2 , A_{N-1} , A_3 , A_{N-2} , ...
- 17. N ölçegli A massiw berlen. Bu massiwiň elementlerini aşakdaky tertipde çapa çykarmaly: A_N , A_{N-1} , A_3 , A_4 , A_{N-2} , A_{N-3} , ...

MASSIWIŇ ELEMENTLERINI DERŇEMEK

1-nji mysal

n natural san we n elementden ybarat bolan x[n] san massiwi berlen. Bu massiwiň elementleri artýan görnüşde tertipleşenmi? Bu soraga jogap berýän programmany ýazmaly.

```
uses wincrt;
var x : array[1..1000] of integer;
 n,i: integer;
 b: boolean;
begin
clrscr;
      write('n='); read(n);
      for i:=1 to n do
      begin
          write('x[',i,']='); read(x[i]);
      end:
      b:=true;
      for i:=1 to n-1 do
      if x[i]>x[i+1] then b:=false;
      if b then write('tertiplesen') else write('tertiplesmedik');
readkey;
end.
```

2-nji mysal

N ölçegli A massiw berlen. Bu massiwiň jübüt tertip belgili elementleriniň iň kiçisini tapmaly: A_{2} , A_{4} , A_{6} , ...

```
uses wincrt;
var x : array[1..1000] of integer;
min,n,i,t : integer;
```

```
begin
clrscr:
      write('n='); read(n);
      for i:=1 to n do
      begin
          write('x[',i,']='); read(x[i]);
      end.
      i:=2; min:=x[i]; t:=2;
      while i<=n do
      begin
          if x[i] < min then begin min:=x[i]; t:=i; end;
          i:=i+2:
      end:
      write('min=',min,' orny=',t);
readkey;
end.
```

- **18.** 10 elementden ybarat, nola deň bolmadyk bitin sanlardan ybarat bolan A massiw berlen. Massiwiň $A_K < A_{10}$ deňsizligi kanagatlandyrýan elementleriniň ilkinjisini çapa çykarmaly. Eger şeýle element ýok bolsa onda 0 çapa çykarylmaly.
- 19. Ölçegi 10-a deň bolan bitin tipli san massiw berlen. Massiwiň elementleriniň içinden $A_1 < A_K < A_{10}$ deňsizligi kanagatlandyrýan iň soňky A_K elementi çapa çykarmaly.
- **20.** *N* ölçegli massiw we bitin *K* we *L* sanlar berlen $(1 \le K \le L \le N)$. *K*-dan *N*-e çeni belgileri bolan elementleriň jemini tapmaly.
- **21.** *N* ölçegli massiw we bitin *K* we *L* sanlar berlen $(1 \le K \le L \le N)$. *K*-dan *N*-e çeni tertip belgileri bolan elementleriň orta arifmetiki bahasyny tapmaly.
- **22.** N ölçegli massiw we bitin K we L sanlar berlen $(1 \le K \le L \le N)$. Bu massiwiň K-dan N-e çeni tertip belgileri bolan elementlerinden beýleki elementleriniň jemini tapmaly.
- **23.** N ölçegli massiw we bitin K we L sanlar berlen $(1 \le K \le L \le N)$. Bu massiwiň K-dan N-e çeni tertip belgileri bolan elementlerinden beýleki elementleriniň orta arifmetiki bahasyny tapmaly.

- **24.** Birmeňzeş elementleri bolmadyk *N* ölçegli bitin tipli san massiwi berlen. Onuň elementleriň arifmetiki progressiýany emele getirýänligini ýa-da däldigini barlamaly. Eger arifmetiki progressiýany emele getirýän bolsa, onda ol progressiýanyň tapawudyny, emele getirmeýän bolsa onda 0 çapa çykarmaly.
- **25.** Birmeňzeş elementleri bolmadyk *N* ölçegli bitin tipli san massiwi berlen. Onuň elementleriň geometriki progressiýany emele getirýänligini ýa-da geirmeýändigini barlamaly. Eger geometriki progressiýany emele getirýän bolsa onda ol progressiýanyň maýdalawjysyny, emele getirmeýän bolsa onda 0 çapa çykarmaly.
- **26.** *N* ölçegli bitin tipli san massiwi berlen. Bu massiwde jübüt we täk sanlaryň gezekleşip gelýänligini ýa-da getirmeýändigini barlamaly. Eger gezekleşip gelýän bolsa onda 0 çapa çykarylmaly, bolmasa bu kanunalaýygy bozýan ilkinji elementi çapa çykarmaly.
- **27.** Nölçegli bitin tipli san massiwi berlen. Bu massiwde položitel we otrisatel sanlaryň gezekleşip gelýänligini ýa-da gelmeýändigini barlamaly. Eger gezekleşip gelýän bolsa onda 0 çapa çykarylmaly, bolmasa bu kanunalaýygy bozýan ilkinji elementiň tertip belgilerini çapa çykarmaly.
- **28.** N ölçegli A massiw berlen. Bu massiwiň jübüt tertip belgili elementleriniň iň kiçisini tapmaly $(A_2, A_4, A_6, ...)$.
- **29.** N ölçegli A massiw berlen. Bu massiwiň täk tertip belgili elementleriniň iň ulusyny tapmaly (A_1, A_3, A_5, \ldots) .
- **30.** *N* ölçegli massiw berlen. Massiwiň öz sag tarapyndaky goňşusyndan uly bolan elementleriniň tertip belgilerini we şeýle elementleriň sanyny tapmaly. Tapylan tertip belgileri artýan tertipde çapa çykarmaly.
- **31.** *N* ölçegli massiw berlen. Massiwiň öz çep tarapyndaky goňşusyndan uly bolan elementleriniň tertip belgilerini we şeýle elementleriň sanyny tapmaly. Tapylan tertip belgileri kemelýän tertipde çapa çykarmaly.
- **32.** *N* ölçegli massiw berlen. Onuň ilkinji lokal minimumynyň tertip belgisini tapmaly (massiwiň iki goňsusyndan hem kiçi bolan elementine *lokal minimum* diýilýär).

- **33.** *N* ölçegli massiw berlen. Onuň ilkinji lokal maksimumynyň tertip belgisini tapmaly (massiwiň iki goňsusyndan hem uly bolan elementine *lokal maksimum* diýilýär).
- **34.** N ölçegli massiw berlen. Onuň lokal minimumlarynyň iň ulusyny tapmaly.
- **35.** *N* ölçegli massiw berlen. Onuň lokal maksimumlarynyň iň kiçisini tapmaly.
- **36.** *N* ölçegli massiw berlen. Bu massiwiň lokal minimum hemde lokal maksimum bolmadyk elementleriniň iň ulusyny tapmaly. Eger massiwde şeýle element ýok bolsa onda 0 çapa çykarmaly.
- **37.** *N* ölçegli massiw berlen. Massiwiň elementleriniň monoton artýan bölekleriniň sanyny tapmaly.
- **38.** *N* ölçegli massiw berlen. Massiwiň elementleriniň monoton kemelýän bölekleriniň sanyny tapmaly.
- **39.** *N* ölçegli massiw berlen. Massiwiň elementleriniň monoton üýtgeýän (ýagny monoton artýän ýa-da monoton kemelýän) bölekleriniň sanyny tapmaly.
- **40.** R san we N ölçegli A massiw berlen. Massiwiň R sana iň ýakyn bolan elementini tapmaly (ýagny massiwiň elementleriniň içinden $A_{\kappa} R$ aňlatma iň kiçi baha eýe bolýan A_{κ} elementi tapmaly).
- **41.** N ölçegli massiw berlen. Jemi iň uly baha (iň uly) bolan iki goňsy elementini tapmaly we ol elemetleri indeksleriniň artýan tertibinde çapa çykarmaly.
- **42.** R san we N ölçegli massiw berlen. Bu massiwiň elemetleriniň içinden jemleri R sana iň golaý bolan yzygider gelýän iki elementi tapmaly we bu elementleri indeksleriniň artýan tertibinde çapa çykarmaly.
- **43.** Hemme elementleri tertipleşen (artýan ýa-da kemelýän) N ölçegli bitin tipli san massiwi berlen. Bu massiwde näçe dürli elemetleriň bardygyny tapmaly.
- **44.** Diňe iki sany özara meňzeş elementleri bolan N ölçegli bitin tipli san massiwi berlen. Bu elementleriň tertip belgilerini tapmaly we olary artýan tertipde çapa çykarmaly.

- **45.** *N* ölçegli massiw berlen. Bu massiwiň ululygy boýunça biri birine iň golaý bolan elementlerini tapmaly (modullarynyň tapawudy iň kiçi bolan elementleri) we olaryň tertip belgilerini artýan tertipde çapa çykarmaly.
- **46.** R san we N ölçegli massiw berlen. Jemleri R sana iň golaý bolan massiwiň dürli iki elementini tapmaly we bu elemetleri indeksleriniň artýan tertibinde çapa çykarmaly.
- 47° . N ölçegli massiw berlen. Massiwde näçe dürli elementiň bardygyny kesgitlemeli.
- **48.** *N* ölçegli massiw berlen. Bu massiwiň birmeňzeş elementleriniň iň köp mukdardakysynyň sanyny kesgitlemeli.
- **49.** *N* ölçegli, bitin tipli san massiw berlen. Eger bu massiw 1-den *N*-e çenli hemme sanlary özünde saklaýan bolsa 0-y çapa çykarmaly, bolmasa bu düzgüni bozýan ilkinji elementi çapa çykarmaly.
- **50.** N ölçegi bolan bitin tipli A massiw berlen. Bu massiw 1-den N-e çenli sanlardan ybarat. Bu massiwdäki inwersiýalaryň, ýagny $N_I > N_J (I < J)$ şerti kanagatlandyrýan elementleriň sanyny tapmaly.

BIRNÄÇE MASSIW BILEN IŞLEMEK

1-nji mysal

Natural n san we n bitin sandan ybarat bolan x[n] massiw berlen. Bu massiwiň položitel elementlerini y massiwe, polozitellerini bolsa z massiwe ýazmaly. x we y massiwlerde näçe elementiň bardygyny kesgitlemeli.

```
uses wincrt;
var x,y,z : array[1..1000] of integer;
pol,otr,i,n : integer;
begin
clrscr;
    write('n='); read(n);
    for i:=1 to n do
    begin
        write('x[',i,']='); read(x[i]);
```

```
end;
for i:=1 to n do begin y[i]:=0; z[i]:=0; end;
otr:=0; pol:=0;
for i:=1 to n do
  begin
  if x[i]<0 then begin inc(otr); y[otr]:=x[i]; end;
  if x[i]>=0 then begin inc(pol); y[pol]:=x[i]; end;
  end;
  writeln('y massiwin elementlerinin sany = ',otr);
  writeln('z massiwin elementlerinin sany = ',pol);
readkey;
end.
```

- **51.** Birmeňzeş N ölçegli A we B massiwler berlen. Olaryň elementleriniň orunlaryny çalşyrmaly we ilki bilen özgerdilen A massiwi, soňra bolsa özgerdilen B massiwi çapa çykarmaly.
- **52.** N ölçegli A massiw berlen. Şol ölçegli B massiwi almaly, onuň elementleri şeýle kesgitlenýär. Eger $A_K < 5$ bolsa, onda $B_K = 2 \cdot A_K$, galan ýagdaýda $B_K = A_K/2$.
- **53.** Birmeňzeş N ölçegli A we B massiwler berlen. A we B massiwleriň şol bir indeksli elementleriniň ulusyndan C (ölçegi N) massiwi döretmeli.
- **54.** N ölçegli bitin A massiw berlen. A massiwdäki hemme jübüt elementleri tertibini bozman täze bitin tipli B massiwe ýazmaly we emele gelen massiwi çapa çykarmaly.
- **55.** $N(N \le 15)$ ölçegli bitin A massiw berlen. A massiwdäki hemme täk orunlarda ýerleşýän elementleri (1,3,...) täze bitin tipli B massiwe ýazmaly we emele gelen massiwi çapa çykarmaly. Şertli operator ulanmaly däl.
- **56.** $N(N \le 15)$ ölçegli bitin A massiw berlen. A massiwdäki tertip tertip belgileri 3-e kratnyý bolan elementleri (3, 6, ...) täze bitin tipli B massiwe ýazmaly we emele gelen massiwi çapa çykarmaly. Şertli operator ulanmaly däl.

- **57.** N ölçegli bitin A massiw berlen. Bitin tipli, N ölçegli B massiwe ilki A massiwdäki jübüt orunlarda duran elementleri, soňra bolsa täk orunlarda duran elementleri ýazmaly $(A_2, A_4, A_6, ..., A_1, A_3, A_5, ...)$. Şertli operator ulanmaly däl.
- **58.** N ölçegli A massiw berlen. Aşakdaky düzgün boýunça N ölçegli B massiwi döretmeli: B_K element A massiwi ilkinji K elementinin jemi.
- **59.** N ölçegli A massiw berlen. Aşakdaky düzgün boýunça N ölçegli B massiwi döretmeli: B_K element A massiwiň ilkinji K elementiniň orta arifmetiki bahasydyr.
- **60.** N ölçegli A massiw berlen. Aşakdaky düzgün boýunça N ölçegli B massiwi döretmeli: B_K element A massiwiň K-njy we ondan soňky elementiniň jemidir.
- **61.** N ölçegli A massiw berlen. Aşakdaky düzgün boýunça N ölçegli B massiwi döretmeli: B_K element A massiwiň K-njy we ondan soňky elementiniň orta arifmetiki bahasydyr.
- **62.** *N* ölçegli *A* massiw berlen. Täze *B* we *C* massiwleri döretmeli: *B* massiwe *A* massiwiň hemme položitel elementlerini, *C* massiwe bolsa hemme otrisatel elementleri (tertibini bozman) ýazmaly. Ilki *B* massiwiň elementleriniň sanyny we elementlerini, soňra bolsa *C* massiwiň elementleriniň sanyny we elementlerini çapa çykarmaly.
- **63.** Elementleri artýan tertipde ýerleşen, ölçegi 5-e deň bolan *A* we *B* massiw berlen. Netijede emele gelen, ölçegi 10-a deň bolan *C* massiwiň elementleri artýan görnüşde ýerleşer ýaly edip bu iki massiwi birlesdirmeli.
- **64.** Elementleri degişlilikde N_A , N_B , N_C bolan, elementleri kemelýän tertipde tertipleşen üc sany bitin tipli A, B, C massiwler berlen. Netijede emele gelen D (ölçegi $N_A + N_B + N_C$) massiwiň elementleri hem kemelýän görnüşde tertipleşen bolar ýaly edip bu massiwleri birleşdirmeli.

Massiwleri özgertmek

1-nji mysal

Natural n san we n sandan ybarat bolan x[n] san massiwi berlen. Bu massiwin in uly elementini tapmaly we ol sany massiwin in sonky elementi bilen çalşyrmaly.

```
uses wincrt:
var x : array[1..1000] of integer;
i,n,max,t,c: integer;
begin
clrscr;
      write('n='); read(n);
      for i=1 to n do
      begin
          write('x[',i,']='); read(x[i]);
      end:
      \max = x[1]; t = 1;
      for i:=1 to n do
       if x[i] > max then begin max:=x[i]; t:=i; end;
       c := x[n];
       x[n]:=max;
       x[t]:=c;
       for i:=1 to n do write(x[i],'');
readkey;
end
```

- **65.** N ölçegli A massiw we bitin K ($1 \le K \le N$) san berlen. Massiwiň her bir A_K elementini özüçe ulaldyp massiwi özgertmeli.
- **66.** *N* ölçegli bitin sanly massiw berlen. Massiwdäki hemme jübüt elementleri, massiwdäki ilkinji gabat gelýän jübüt sana köpeltmek arkaly özgertmeli. Eger massiwde jübüt sanlar ýok bolsa, onda massiwi şol durşuna goýmaly.
- **67.** *N* ölçegli bitin sanly massiw berlen. Massiwdäki hemme täk elementleri, massiwdäki iň soňky gabat gelýän täk sana köpeltmek arkaly özgertmeli. Eger massiwde täk sanlar ýok bolsa, onda massiwi şol durşuna goýmaly.

- **68.** *N* ölçegli massiw berlen. Onuň iň kiçi we iň uly elementleriniň orunlaryny çalşyrmaly.
- **69.** N(N-jübüt san) ölçegli massiw berlen. Birinji bilen ikinji, üçünji bilen dördünji, we ş.m. elementleriň orunlaryny çalşyrmaly.
- **70.** N(N jübüt san) ölçegli massiw berlen. Massiwiň birinji we ikinji ýarymlarynyň orunlaryny çalşyrmaly.
- **71.** *N* ölçegli massiw berlen. Bu massiwiň elementlerini tertibini tersine öwürmeli.
- **72.** N ölçegli A massiw we bitin K we L $(1 \le K \le L \le N)$ sanlar berlen. A_K we A_L elementleriň we olaryň arasynda ýerleşen elementleriň tertibini tersine öwürmeli.
- **73.** N ölçegli A massiw we bitin K we L $(1 \le K \le L \le N)$ sanlar berlen. A_K we A_L elementleriň arasynda ýerleşen elementleriň tertibini tersine öwürmeli.
- **74.** N ölçegli massiw berlen. iň kiçi we iň uly elementleriň arasynda ýerleşen elementlere nol bahany bermeli (nola öwürmeli).
- **75.** *N* ölçegli massiw berlen. iň kiçi we iň uly elementleriň özleriniň hem-de olaryň arasynda ýerleşen elementleriň tertibini tersine öwürmeli.
- **76.** *N* ölçegli massiw berlen. Onuň hemme *lokal maksimum-larynyň* (öz goňsularyndan uly bolan) ýerine 0 (nol) ýazmaly.
- 77. N ölçegli massiw berlen. Onuň hemme lokal minimumlaryny (öz goňsularyndan kiçi bolan) kwadrata götermeli.
- **78.** N ölçegli massiw berlen. Massiwiň her bir elementiniň ornuna özüniň hem-de goňsularynyň orta arifmetiki bahasyny ýazmaly.
- **79.** N ölçegli massiw berlen. Massiwiň elementlerini saga bir orun *süýşürmeli*. Şunlukda A_1 element A_2 -ä geçer, A_2 element A_3 -e, ..., A_{N-1} element bolsa A_N -e geçer. Iň soňky element ýitýär. Massiwiň ilkinji elementine bolsa 0 (nol) ýazmaly.
- **80.** N ölçegli massiw berlen. Massiwiň elementlerini çepe bir orun *süýşürmeli*. Şunlukda A_N element A_{N-1} -e geçer, A_{N-1} element A_{N-2} -ä, ..., A_2 element bolsa A_1 -e geçer. Massiwiň iň soňky elementine 0 (nol) ýazmaly.

- **81.** N ölçegli massiw we bitin K ($1 \le K < N$) san berlen. Massiwiň elementlerini saga K orun *süýşürmeli*. Şunlukda A_1 element A_{K+1} -e geçer, A_2 element A_{K+2} -ä, ..., A_{N-K} element bolsa A_N -e geçer. Massiwiň ilkinji K elementine 0 (nol) ýazmaly.
- **82.** N ölçegli massiw we bitin K ($1 \le K < N$) san berlen. Massiwiň elementlerini çepe K orun $s\ddot{u}\dot{y}\ddot{s}\ddot{u}rmeli$. Şunlukda A_N element A_{N-K} -a geçer, A_{N-1} element A_{K-N-1} -e, ..., A_{K+1} element bolsa A_1 -e geçer. Massiwiň iň soňky K elementine 0 (nol) ýazmaly.
- **83.** N ölçegli massiw berlen. Massiwiň elementlerini bir orun saga *aýlawly süýşürmeli*. Şunukda A_1 element A_2 -ä, A_2 element A_3 -e, ..., A_N element bolsa A_1 -e geçer.
- **84.** N ölçegli massiw berlen. Massiwiň elementlerini bir orun çepe *aýlawly süýşürmeli*. Şunukda A_N element A_{N-1} -e, A_{N-1} element A_{N-2} -ä, ..., A_1 element bolsa A_N -e geçer.
- **85.** N ölçegli A massiw we bitin K $(1 \le K \le 4, K < N)$ san berlen. Massiwiň elementlerini saga K orun süýşürmeli. Şunlukda A_1 element A_{K+1} -e, A_2 element A_{K+2} -ä, ..., A_N element bolsa A_K -a geçer. Bu ýumuşda 4 elementden ybarat bolan goşmaça massiwi ulanmaklyga rugsat edilýär.
- **86.** N ölçegli A massiw we bitin $K(1 \le K \le 4, K < N)$ san berlen. Massiwiň elementlerini çepe K orun *aýlawly süýşürmeli*. Şunlukda A_N element A_{N-K} -a, A_{N-1} element A_{N-K-1} -ä, ..., A_1 element bolsa A_{N-K+1} -a geçer. Bu ýumuşda 4 elementden ybarat bolan goşmaça massiwi ulanmaklyga rugsat edilýär.
- **87.** *N* ölçegli, birinji elementinden galanlary artýan görnüşde tertipleşen massiw berlen. Birinji elementi täze ornuna geçirmek arkaly tutuş massiwi tertipleşdirmeli.
- **88.** *N* ölçegli, ahyrky elementinden galanlary artýan görnüşde tertipleşen massiw berlen. Ahyrky elementi täze ornuna geçirmek arkaly tutuş massiwi tertipleşdirmeli.
- $89.\ N$ ölçegli, bir elementinden galanlary kemelýän görnüşde tertipleşen massiw berlen. Tertipleşmäni bozýan elementi täze ornuna geçirmek arkaly tutuş massiwi tertipleşdirmeli.

Massiwiň elementlerini öçürmek we goýmak

- **90.** N ölçegli massiw we bitin K ($1 \le K \le N$) san berlen. Massiwiň K-njy tertip belgili elementini öçürmeli.
- **91.** N ölçegli massiw we bitin K we L ($1 \le K \le L \le N$) sanlar berlen. Massiwiň K-njy tertip belgili elementinden başlap L-nji tertip belgili elementine çenli hemmesini öçürmeli we emele gelen massiwi çapa çykarmaly.
- **92.** *N* ölçegli bitin san massiwi berlen. Massiwdäki hemme täk sanlary öçürmeli we emele gelen massiwi çapa çykarmaly.
- **93.** N(N > 2) ölçegli bitin san massiwi berlen. Massiwdäki hemme jübüt tertip belgili (2,4,...) elementleri öçürmeli. Şertli operator ulanmaly däl.
- **94.** N(N > 2) ölçegli bitin san massiwi berlen. Massiwdäki hemme täk tertip belgili (1,3,...) elementleri öçürmeli. Şertli operator ulanmaly däl.
- **95.** *N* ölçegli bitin san massiwi berlen. Massiwdäki birmeňzeş elementleriň ilkinji gabat gelýänini goýup galanlaryny aýyrmaly.
- **96.** *N* ölçegli bitin san massiwi berlen. Massiwdäki birmeňzeş elementleriň iň soňkysyny goýup galanlaryny aýyrmaly.
- **97.** *N* ölçegli bitin san massiwi berlen. Massiwdäki meňzeş elementleriň tertip boýunça ikinjisini goýup galanlaryny aýyrmaly.
- **98.** *N* ölçegli bitin san massiwi berlen. Massiwdäki üç gezekden az gabat gelýän elementleriň hemmesini aýyrmaly we emele gelen massiwi hem-de onuň ölçegini çapa çykarmaly.
- **99.** *N* ölçegli bitin san massiwi berlen. Massiwdäki iki gezekden köp gabat gelýän elementleriň hemmesini aýyrmaly we emele gelen massiwi hem-de onuň ölçegini çapa çykarmaly.
- **100.** *N* ölçegli bitin san massiwi berlen. Massiwdäki takyk iki gezek gabat gelýän elementleriň hemmesini aýyrmaly we emele gelen massiwi hem-de onuň ölçegini çapa çykarmaly.
- **101.** N ölçegli masiiw we bitin K ($1 \le K \le N$) san berlen. Massiwiň K-njy elementiniň öňünden 0 (nol) bahaly täze element goşmaly.

- **102.** *N* ölçegli masiiw we bitin K ($1 \le K \le N$) san berlen. Massiwiň K-njy elementiniň yzyndan 0 (nol) bahaly täze element goşmaly.
- **103.** N ölçegli masiiw berlen. Massiwiň iň kiçi elementinden öň we iň uly elementinden soň nol bahaly täze element goşmaly.
- **104.** N ölçegli masiiw we iki sany K we M ($1 \le K \le M$, $1 \le M \le 10$) bitin sanlar berlen. Massiwiň K-njy tertip belgisinden öň, bahalary nola deň bolan M sany täze element goşmaly.
- **105.** N ölçegli masiiw we iki sany K we M ($1 \le K \le M$, $1 \le M \le 10$) bitin sanlar berlen. Massiwiň K-njy tertip belgisinden soň, bahalary nola deň bolan M sany täze element goşmaly.
- **106.** *N* ölçegli masiiw berlen. Bu massiwde şertli operatory ulanmazdan, jübüt orunda (2,4,...) duran elementleri iki gezek gaýtalap ýazmaly.
- **107.** N ölçegli masiiw berlen. Bu massiwde şertli operatory ulanmazdan, täk orunda (1,3,...) duran elementleri üç gezek gaýtalap ýazmaly.
- ${f 108.}\ N$ ölçegli masiiw berlen. Bu massiwiň her bir položitel elementiniň öňüne nol bahaly täze element goşmaly.
- **109.** *N* ölçegli masiiw berlen. Bu massiwiň her bir otrisatel elementiniň soňunda nol bahaly täze element goşmaly.
- **110.** *N* ölçegli bitin san masiiwi berlen. Ondaky hemme jübüt sanlary iki gezek gaýtalamaly.
- **111.** *N* ölçegli bitin san masiiwi berlen. Ondaky hemme täk sanlary üç gezek gaýtalamaly.

MASSIWI TERTIPLEŞDIRMEK

1-nji mysal

n sany hakyky sany saklaýan san massiwi berlen. Ol massiwiň elementlerini «düwmejik» usuly boýunça tertipleşdirmek üçin programma ýazmaly.

```
uses wincrt;
var x : array[1..1000] of integer;
n,i,j,c : integer;
begin
```

```
clrscr;
      write('n='): read(n):
      for i:=1 to n do
      begin
          write('x[',i,']='); read(x[i]);
      end:
          for i:=1 to n do write(x[i], ');
          writeln;
      for i:=n downto 1 do
      for i:=1 to i-1 do
       if x[j]>x[j+1] then
                    begin
                        c := x[i];
                        x[i]:=x[i+1];
                        x[i+1]:=c;
                     end;
      for i:=1 to n do
      write(x[i],'');
readkey:
end.
```

- 112. $N(N \le 6)$ ölçegli A massiw berlen. Tertipleşdirmegiň ýöne-keý çalyşmak («düwmejik») usulyny ulanmak arkaly, bu massiwiň elementlerini görnüşde tertipleşdirmeli. Bu usul şeýle algoritm boýunça işleýär: iki goňşy elementler deňeşdirilýär (A_1 we A_2 , A_2 we A_3 , we ş. m.), eger çepki element uly bolsa, onda olaryň orunlary çalşyrylýar. Bu algoritm N-1 gezek gaýtalanýar. Bu usulyň işleýşine doly göz ýetirmek üçin massiwi her gaýtalanmada massiwi çykarmaly. Her bir gaýtalanmada deňeşdirilmeli elementleriň jübüti 1 san azalýar.
- 113. $N(N \le 6)$ ölçegli A massiw berlen. Ýönekeý saýlamak usulyny ulanmak arkaly bu masiiwi artýan görnüşde tertipleşdirmeli. Bu usul şeýle algoritm boýunça işleýär: iň uly elementi tapmaly we ony iň soňky (N-nji) element bilen çalşyrmaly. Bu algoritmi N-1 gezek gaýtalamaly. Her ädimde seredilmeli elementleri 1 san azalýar we düşnükli bolar ýaly massiwi çapa çykarmaly.

114. $N(N \le 6)$ ölçegli A massiw berlen. Tertipleşdirmegiň ýöne-keý goýmak usulyny ulanyp bu massiwiň elementlerini artýan tertipde ýerleşdirmeli. Bu usul şeýle algoritm boýunça işleýär: A_1 we A_2 elemenler özara deňeşdirilýär, gerek bolsa orunlaryny çalşyrmak arkaly artýan tertipde ýerleşdirilýär; soňra A_3 element massiwiň çep (tertipleşen) bölegine onuň tertibini bozman geçirilýär; galan elementler üçin hem bu algoritmi gaýtalamaly; Algoritmiň işleýşini doly göz öňüne getirmek ücin her bir gaýtalanmakda 2-njiden N-njä çenli) massiwi doly çapa çykarmaly. Bu algoritmde seredilýän saýlanylyp alnan elementi saklar ýaly goşmaça A_0 elementi (barýer) ulanmak amatly bolýar.

IKI ÖLÇEGLI MASSIWLER

Massiwi döretmek we onuň elementlerini çapa çykarmak

1-nji mysal

n we m natural sanlar berlen. Tötänleýin sanlary ulanmak arkaly n setirden we m sütünden ybarat bolan ikiölçegli x[n,m] massiw döretmeli hem-de ol massiwiň her bir setiriniň jemini hasaplamaly.

```
uses wincrt;
var x : array[1..100,1..100] of integer;
n,m,i,j,s : integer;
begin
clrscr;
    write('n='); read(n);
    write('m='); read(m);
    randomize;
    for i:=1 to n do
        for j:=1 to m do x[i,j]:=random(100);
        for i:=1 to n do
        begin
            for j:=1 to m do write(x[i,j]:4);
            writeln;
```

```
end;
for i:=1 to n do
  begin
    s:=0;
    for j:=1 to m do s:=s+x[i,j];
    writeln(i,'-nji setirin elementlerinin jemi = ',s)
    end;
readkey;
end.
```

- **1.** M we N bitin položitel sanlar berlen. I-nji setiriň hemme elementleri $I \cdot 10$ (I = 1, ..., M)baha eýe bolar ýaly edip $M \times N$ matrisany doldurmaly.
- **2.** M we N bitin položitel sanlar berlen. J-nji sütüniň hemme elementleri $5 \cdot J$ (J = 1, ..., M) baha eýe bolar ýaly edip $M \times N$ matrisany doldurmaly.
- **3.** Bitin položitel M, N sanlar we M sandan ybarat toplum berlen. Her bir sütüninde berlen toplumdaky sanlaryň hemmesini saklaýan (tertibini bozman) M, N matrisany döretmeli.
- **4.** Bitin položitel *M*, *N* sanlar we *M* sandan ybarat toplum berlen. Her bir setirinde berlen toplumdaky sanlaryň hemmesini saklaýan (tertibini bozman) *M*, *N* matrisany döretmeli.
- **5.** M, N položitel bitin sanlar, D san we M sandan ybarat toplum berlen. Birinji sütüni berlen toplumdaky sanlardan ybarat bolan, her bir indiki sütünlerindäki elementler bolsa öň ýanyndaky sütüniň degişli elementiniň üstüne D sany goşup alynýan $M \times N$ matrisany döretmeli. Netijede matrisanyň her bir setiri arifmetiki progressiýany elementlerini özünde saklaýar.
- **6.** M, N položitel bitin sanlar, Q san we N sandan ybarat toplum berlen. Birinji setiri berlen toplumdaky sanlardan ybarat bolan, her bir indiki setirindäki elementler bolsa öň ýanyndaky setiriň degişli elementini Q sana köpeldilip alynýan $M \times N$ matrisany döretmeli. Netijede matrisanyň her bir setiri geometriki progressiýany elementlerini özünde saklaýar.

- 7. $M \times N$ ölçegli matrisa we K ($1 \le K \le M$) bitin san berlen. Berlen matrisanyň K-njy setirini çapa çykarmaly.
- **8.** $M \times N$ ölçegli matrisa we K ($1 \le K \le M$) bitin san berlen. Berlen matrisanyň K-njy sütünini çapa çykarmaly.
- $9. M \times N$ ölçegli matrisa berlen. Bu matrisanyň jübüt tertip belgili setirlerindäki (2,4,...) elementleri çapa çykarmaly. Ol elementleri setirme-setir çapa çykarmaly, şertli operator ulanmaly däl.
- $10. M \times N$ ölçegli matrisa berlen. Bu matrisanyň täk tertip belgili sütünlerindäki (1,3,...) elementleri çapa çykarmaly. Ol elementleri sütünme-sütün çapa çykarmaly, şertli operator ulanmaly däl.
- 11. $M \times N$ ölçegli matrisa berlen. Bu matrisanyň elementlerini şeýle tertip boýunça çapa çykarmaly: birinji setirinň elementlerini çepden saga, ikinji setiriň elementlerini sagdan çepe, üçünji setiriň elementlerini çepden saga, dördünji setiriň elementlerini sagdan çepe we ş.m.
- 12. $M \times N$ ölçegli matrisa berlen. Bu matrisanyň elementlerini şeýle tertip boýunça çapa çykarmaly: birinji sütüniň elementlerini ýokardan aşak, ikinji sütüniň elementlerini aşakdan ýokaryk, üçünji sütüniň elementlerini ýokardan aşak, dördünji sütüniň elementlerini aşakdan ýokaryk we ş.m.
- 13. M tertipli kwadrat A matrisa berlen. Bu matrisanyň elementlerini $A_{1,1}$ elementden başlap şeýle tertip boýunça (wburçlaýyn) çapa çykarmaly: birinji setiriň hemme elementlerini; soňky sütüniň birinji elementinden başgasyny (birinji element eýýäm çapa çykarylan); ikinji setiriň çapa çykmadyk elementlerini; yzdan ikinji sütüniň çapa çykmadyk elementlerini we ş.m.; seýlelikde iň soňunda $A_{M,1}$ element çapa çykarylýar.
- **14.** M tertipli kwadrat A matrisa berlen. Bu matrisanyň elementlerini $A_{1,1}$ elementden başlap şeýle tertip boýunça ((burçlaýyn)) çapa çykarmaly: birinji sütüniň hemme elementlerini; iň soňky setiriň çapa çykmadyk elementlerini (birinji elementindaen galanyny); ikinji sütüniň galan elementlerini; yzdan ikinji setiriň çapa çykmadyk elementlerini we ş.m.; şeýlelikde iň soňunda $A_{1,M}$ element çapa çykarylar.

- **15.** M(M täk san) tertipli kwadrat A matrisa berlen. $A_{1,1}$ elementden başlap we sagat peýkamynyň ugry boýunça hereket edip bu matrisanyň hemme elementlerini *spiral* boýunça şeýle görnüşde çapa çykarmaly: birinji setir, iň soňky sütün, iň soňky setir ters tertipde, birinji sütün ters tertipde, ikinji setiriň galan elementlerini we ş.m.; şeýlelikde iň soňunda matrisanyň merkezi elementi çapa çykarylýar.
- **16.** M(M täk san) tertipli kwadrat A matrisa berlen. $A_{1,1}$ elementden başlap we sagat peýkamynyň ters ugry boýunça hereket edip bu matrisanyň hemme elementlerini spiral boýunça şeýle görnüşde çapa çykarmaly: birinji sütün, iň soňky setir, iň soňky sütün ters tertipde, birinji setir ters tertipde, ikinji sütüniň galan elementlerini we ş.m.; şeýlelikde iň soňunda matrisanyň merkezi elementi çapa çykarylýar.

Matrisanyň elemenleriniň derňewi

1-nji mysal

n we m natural sanlar we x[n,m] san massiwi berlen. Bu massiwi in kiçi we in uly elemenlerini hem-de olaryn orunlaryny tapmaly. Eger olar birnäçe bolsalar, onda olaryn birini tapmak ýeterlikdir.

```
uses wincrt;
var x : array[1..100,1..100] of integer;
 n,m,i,j,max,setir,sutun: integer;
begin
clrscr;
      write('n='); read(n);
      write('m='); read(m);
      for i:=1 to n do
      for j:=1 to m do
       begin
            write('x[',i,',',j,']='); read(x[i,j]);
       end:
     for i:=1 to n do
      begin
      for j:=1 to m do write(x[i,j]:4);
      writeln;
```

```
end;
max:=x[1,1]; setir:=1; sutun:=1;
for i:=1 to n do
   for j:=1 to m do
   if x[i,j]>max then begin max:=x[i,j]; setir:=i; sutun:=j; end;
   write('max=',max,' setir=',setir,' sutun=',sutun);
readkey;
end.
```

- 17. $M \times N$ ölçegli matrisa we bitin K $(1 \le K \le M)$ san berlen. Bu matrisanyň K-njy setiriniň elementleriniň jemini we köpeltmek hasylyny tapmaly.
- **18.** $M \times N$ ölçegli matrisa we bitin K $(1 \le K \le M)$ san berlen. Bu matrisanyň K-njy sütüniniň elementleriniň jemini we köpeltmek hasylyny tapmaly.
- **19.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň her bir setiriniň elementleriniň jemini tapmaly.
- **20.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň her bir sütüniniň elementleriniň köpeltmek hasylyny tapmaly.
- **21.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň täk tertip belgili setirleriniň (1,3,...) elementleriniň orta arifmetiki bahasyny tapmaly. Şertli operator ulanmaly däl.
- **22.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň jübüt tertip belgili sütünleriniň (2,4,...) elementleriniň jemini tapmaly. Şertli operator ulanmaly däl.
- **23.** $M \times N$ ölçegli matrisa berlen. Matrisanyň her bir setirindäki iň kiçi elementi tapmaly.
- **24.** $M \times N$ ölçegli matrisa berlen. Matrisanyň her bir sütünindäki iň uly elementi tapmaly.
- **25.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň elementleriniň jemi iň uly bolan setiriniň tertip belgisini tapmaly we bu tertip belgini, şeýle hem bu jemi çapa çykarmaly.

- **26.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň elementleriniň köpeltmek hasyly iň kiçi bolan sütüniniň tertip belgisini tapmaly we bu tertip belgini , şeýle hem ol köpeltmek hasyly çapa çykarmaly.
- **27.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň setirleriniň iň kiçi elementleriniň iň ulusyny tapmaly.
- **28.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň sütünleriniň iň uly elementleriniň iň kiçisini tapmaly.
- **29.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň her bir setirindäki elementleriniň orta arifmetiki bahasyndan kiçi bolanlarynyň mukdaryny tapmaly.
- ${f 30.}~M \times N$ ölçegli matrisa berlen. Bu matrisanyň her bir sütünindäki elementleriniň orta arifmetiki bahasyndan uly bolanlarynyň mukdaryny tapmaly.
- **31.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň hemme elementleriniň orta bahasyna iň ýakyn bilan elementiň ýerleşýän setiriniň we sütüniniň tertip belgisini tapmaly.
- $32. M \times N$ ölçegli bitin sanly matrisa berlen. Bu matrisanyň položitel we otrisatel elementleriniň sany deň bolan ilkinji setiriniň tertip belgisini tapmaly (nol elemenler hasaba alynmaýar). Eger şeýle setir ýok bolsa, onda 0-y (nol) çapa çykarmaly.
- **33.** $M \times N$ ölçegli bitin sanly matrisa berlen. Bu matrisanyň položitel we otrisatel elementleriniň sany deň bolan iň soňky sütüniň tertip belgisini tapmaly (nol elemenler hasaba alynmaýar). Eger şeýle sütün ýok bolsa, onda 0-y (nol) çapa çykarmaly.
- **34.** $M \times N$ ölçegli bitin sanly matrisa berlen. Bu matrisanyň diňe jübüt sanlardan ybarat bolan setirleriniň iň soňkysynyň tertip belgisini tapmaly. Eger şeýle setir ýok bolsa, onda 0-y (noly) çapa çykarmaly.
- **35.** $M \times N$ ölçegli bitin sanly matrisa berlen. Bu matrisanyň diňe täk sanlardan ybarat bolan sütünleriniň ilkinjisiniň tertip belgisini tapmaly. Eger şeýle sütün ýok bolsa, onda 0-y (noly) çapa çykarmaly.
- **36.** Elementleri 0-dan 100-çenli sanlary kabul edip bilýän bitin tipli $M \times N$ matrisa berlen. Matrisanyň dürli iki setirindäki sanlaryň

köplügi gabat gelýän bolsa, onda ol setirlere *meňzeş* setirler diýilýär. Bu matrisanyň birinji setirine meňzeş setirleriň sanyny tapmaly.

- **37.** Elementleri 0-dan 100-çenli sanlary kabul edip bilýän bitin tipli $M \times N$ matrisa berlen. Matrisanyň dürli iki sütünindäki sanlaryň köplügi gabat gelýän bolsa, onda ol sütünlere *meňzeş* sütünler diýilýär. Bu matrisanyň iň soňky sütünine meňzeş süyünleriň sanyny tapmaly.
- **38.** $M \times N$ ölçegli bitin sanly matrisa berlen. Elementleri biribirine meňzeş bolmadyk dürli sanlardan ybarat bolan setirleriniň sanyny tapmaly.
- **39.** $M \times N$ ölçegli bitin sanly matrisa berlen. Elementleri biribirine meňzeş bolmadyk dürli sanlardan ybarat bolan sütünleriniň sanyny tapmaly.
- **40.** $M \times N$ ölçegli bitin sanly matrisa berlen. Bu matrisadaky birmeňzeş elementleriň iň uly mukdaryny saklaýan iň soňky setiriň tertip belgisini tapmaly.
- **41.** $M \times N$ ölçegli bitin sanly matrisa berlen. Bu matrisadaky birmeňzeş elementleriň iň uly mukdaryny saklaýan ilkinji sütüniň tertip belgisini tapmaly.
- **42.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň elementleri artýan tertipde ýerleşen setirleriniň sanyny tapmaly.
- **43.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň elementleri kemelýän tertipde ýerleşen sütünleriniň sanyny tapmaly.
- **44.** $M \times N$ ölçegli matrisa berlen. Elementleri artýan ýa-da kemelýän tertipde ýerleşen setirleriniň elementleriniň arasyndan iň kiçielementi tapmaly. Eger matrisada tertipleşen setirler ýok bolsa, onda 0-y (noly) çapa çykarmaly.
- **45.** $M \times N$ ölçegli matrisa berlen. Elementleri artýan ýa-da kemelýän tertipde ýerleşen sütünleriniň elementleriniň arasyndan iň uly elementi tapmaly. Eger matrisada tertipleşen sütünler ýok bolsa, onda 0-y (noly) çapa çykarmaly.
- **46.** $M \times N$ ölçegli bitin sanly matrisa berlen. Ýerleşýän setirinde iň uly we ýerleşýän sütüninde bolsa iň kiçi bolan elementi tapmaly. Eger matrisada şeýle element ýok bolda, onda 0-y (noly) çapa çykarmaly.

Matrisalary özgertmek

- **47.** $M \times N$ ölçegli matrisa hem-de K_1 we K_2 ($1 \le K_1 \le K_2 \le M$) bitin sanlar berlen. K_1 we K_2 tertip belgili setirleriň orunlaryny çalşyrmaly.
- **48.** $M \times N$ ölçegli matrisa hem-de K_1 we K_2 ($1 \le K_1 \le K_2 \le M$) bitin sanlar berlen. K_1 we K_2 tertip belgili sütünleriň orunlaryny çalşyrmaly.
- **49.** $M \times N$ ölçegli matrisa berlen. Matrisanyň her bir setirindäki iň kiçiwe iň uly elementleriniň orunlaryny çalşyrmaly.
- **50.** $M \times N$ ölçegli matrisa berlen. Matrisanyň her bir sütünindäki iň kiçiwe iň uly elementleriniň orunlaryny çalşyrmaly.
- **51.** $M \times N$ ölçegli matrisa berlen. Matrisanyň iň kiçi we iň uly elementlerini saklaýan setirleriniň orunlaryny çalyşmaly.
- **52.** $M \times N$ ölçegli matrisa berlen. Matrisanyň we iň uly elementlerini saklaýan sütünleriniň orunlaryny çalyşmaly.
- **53.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň diňe položitel elementleri saklaýan sütünlerniiň iň soňkusy bilen, birinji sütüniň orunlaryny çalyşmaly. Eger talap edilýän sütünler ýok bolsa, onda matrisany üýtgetmän çapa çykarmaly.
- **54.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň diňe otrisatel elementleri saklaýan sütünlerniiň ilkinjisi bilen, N-nji sütüniň orunlaryny çalyşmaly. Eger talap edilýän sütünler ýok bolsa, onda matrisany üýtgetmän çapa çykarmaly.
- **55.** $M \times N$ ölçegli matrisa berlen (M jübüt san). Matrisanyň aşaky ýarymynyň we ýokarky ýarymynyň orunlaryny çalşyrmaly.
- **56.** $M \times N$ ölçegli matrisa berlen (N jübüt san). Matrisanyň çepki ýarymynyň we sagky ýarymynyň orunlaryny çalşyrmaly.
- **57.** $M \times N$ ölçegli matrisa berlen (M we N jübüt sanlar). Bu matrisanyň çepki ýokarky we sagky aşaky çarýekleriniň orunlaryny çalşyrmaly.
- **58.** $M \times N$ ölçegli matrisa berlen (M we N jübüt sanlar). Bu matrisanyň çepki aşaky we sagky ýokarky çarýekleriniň orunlaryny çalşyrmaly.

- **59.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň elementleriniň onuň gorizontal (kese) simmetriýa okuna görä serpikmesinesini almaly (şeýlelikde 1-nji we M-nji setirler, 2-nji we M 1-nji setirler we ş.m. orunlaryny çalşyrýarlar).
- **60.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň elementleriniň onuň dik (werikal) simmetriýa okuna görä serpikmesinesini almaly (şeýlelikde 1-nji we N-nji, 2-nji we N 1-nji setirler we ş.m. orunlaryny çalşyrýarlar).
- **61.** $M \times N$ ölçegli matrisa we bitin $K(1 \le K \le M)$ san berlen. Bu matrisanyň K tertip belgili setirini öçürmeli.
- **62.** $M \times N$ ölçegli matrisa we bitin $K(1 \le K \le M)$ san berlen. Bu matrisanyň K tertip belgili sütünini öçürmeli.
- $63. \, M \times N$ ölçegli matrisa berlen. Bu matrisanyň iň kiçi elementi saklaýan setirini öçürmeli.
- **64.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň iň uly elementi saklaýan sütünini öçürmeli.
- **65.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň diňe položitel elementleri saklaýan ilkinji sütünini öçürmeli. Eger talap edilýän sütünler ýok bolsa onda matrisany üýtgetmän çapa çykarmaly.
- $66.\ M \times N$ ölçegli matrisa berlen. Bu matrisanyň diňe otrisatel elementleri saklaýan iň soňky sütünini öçürmeli. Eger talap edilýän sütünler ýok bolsa onda matrisany üýtgetmän çapa çykarmaly.
- **67.** Položitel hem-de otrisatel elementleri saklaýan $M \times N$ ölçegli matrisa berlen. Bu matrisanyň diňe položitel elementleri saklaýan hemme sütünlerini öçürmeli. Eger talap edilýän sütünler ýok bolsa onda matrisany üýtgetmän çapa çykarmaly.
- **68.** $M \times N$ ölçegli matrisa we bitin $K(1 \le K \le M)$ san berlen. K tertip belgili setirden öň nollardan ybarat bolan täze setir goşmaly.
- **69.** $M \times N$ ölçegli matrisa we bitin $K(1 \le K \le M)$ san berlen. K tertip belgili sütünden soň birliklerden ybarat bolan täze sütün goşmaly.
- **70.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň iň uly elementi saklaýan setirini iki gezek ýazmaly (dublirlemeli).

- $71. M \times N$ ölçegli matrisa berlen. Bu matrisanyň iň kiçi elementi saklaýan sütünini iki gezek ýazmaly (dublirlemeli).
- **72.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň diňe položitel elementleri saklaýan ilkinji sütüniniň öňünde birliklerden ybarat bolan sütün goýmaly. Eger talap edilýän sütünler ýok bolsa onda matrisany üýtgetmän çapa çykarmaly.
- **73.** $M \times N$ ölçegli matrisa berlen. Bu matrisanyň diňe otrisatel elementleri saklaýan iň soňky sütüninden soň nollardan ybarat bolan sütün goýmaly. Eger talap edilýän sütünler ýok bolsa onda matrisany üýtgetmän çapa çykarmaly.
- $74.\,M \times N$ ölçegli matrisa berlen. Eger matrisanyň elementi özüni gurşap alan elementleriň hemmesinden kiçi bolsa onda, bu elemente *lokal minimum* diýilýär. Bu matrisanyň hemme lokal minimumlaryny nola çalşyrmaly. Mesele çözülende goşmaça matrisa hem ulanylyp biliner
- **75.** $M \times N$ ölçegli matrisa berlen. Eger matrisanyň elementi özüni gurşap alan elementleriň hemmesinden uly bolsa onda, bu elemente *lokal maksimum* diýilýär. Bu matrisanyň hemme lokal minimumlarynyň alamatlaryny üýtgetmeli. Mesele çözülende goşmaça matrisa hem ulanylyp biliner.
- **76.** $M \times N$ ölçegli matrisa berlen. Ilkinji elementleri artýan yzygiderligi emele getirer ýaly bu matrisanyň setirleriniň orunlaryny çalşyrmaly.
- 77. $M \times N$ ölçegli matrisa berlen. Iň soňky elementleri kemelýän yzygiderligi emele getirer ýaly bu matrisanyň sütünleriniň orunlaryny çalşyrmaly.
- **78.** $M \times N$ ölçegli matrisa berlen. Minimal elementleri kemelýän yzygiderligi emele getirer ýaly bu matrisanyň setirleriniň orunlaryny çalşyrmaly.
- $79.\ M \times N$ ölçegli matrisa berlen. Iň uly elementleri artýan yzygiderligi emele getirer ýaly bu matrisanyň sütünleriniň orunlaryny çalşyrmaly.

Kwadrat matrisanyň diagonallary

1-nji mysal

n tertipli kwadrat matrisa berlen. Bu matrusanyň esasy diagonalyndan ýokarda ýerleşen elementleriniň jemini tapmak üçin programma ýazmaly.

```
uses wincrt;
var x : array[1..100, 1..100] of integer;
 n,i,j,s: integer;
begin
clrscr;
      write('n='); read(n);
      for i=1 to n do
      for i:=1 to n do
       begin
            write('x[',i,',',j,']='); read(x[i,j]);
       end:
     for i:=1 to n do
      begin
      for i:=1 to n do write(x[i,i]:4);
      writeln;
      end;
      s:=0:
      for i:=1 to n do
      for j:=i+1 to n do s:=s+x[i,j];
      write('Soralyan elementlerin jemi = ',s);
readkey;
end
```

80. *M* tertipli *A* kwadrat matrisa berlen. Onuň *baş diagonalyndaky*, ýagny:

```
A_{1,1}, A_{2,2}, A_{3,3}, ..., A_{M,M} elementleriň jemini tapmaly.
```

81. *M* tertipli *A* kwadrat matrisa berlen. Onuň *gapdal diagonal-yndaky*, ýagny:

- $A_{1,\,M},A_{2,\,M\!-\!1},A_{3,\,M\!-\!2},...,A_{M\!,1}$ elementleriň orta arifmetiki bahasyny tapmaly.
- **82.** M tertipli A kwadrat matrisa berlen. Baş diagonala parallel bolan her bir diagonalyň elementleriniň jemini tapmaly (bir elementli $A_{1,M}$ diagonaldan başlap).
- **83.** M tertipli A kwadrat matrisa berlen. Gapdal diagonala parallel bolan her bir diagonalyň elementleriniň jemini tapmaly (bir elementli $A_{1,1}$ diagonaldan başlap).
- **84.** M tertipli A kwadrat matrisa berlen. Baş diagonala parallel bolan her bir diagonalyň elementleriniň orta arifmetiki bahasyny tapmaly (bir elementli $A_{1,M}$ diagonaldan başlap).
- **85.** M tertipli A kwadrat matrisa berlen. Gapdal diagonala parallel bolan her bir diagonalyň elementleriniň orta arifmetiki bahasyny tapmaly (bir elementli A_{++} diagonaldan başlap).
- **86.** M tertipli A kwadrat matrisa berlen. Baş diagonala parallel bolan her bir diagonalyň iň kiçi elementini tapmaly (bir elementli A_{1M} diagonaldan başlap).
- **87.** M tertipli A kwadrat matrisa berlen. Gapdal diagonala parallel bolan her bir diagonalyň iň uly elementini tapmaly (bir elementli $A_{1,1}$ diagonaldan başlap).
- $88.\ M$ tertipli A kwadrat matrisa berlen. Baş diagonaldan aşakda ýerleşen elementleriň hemmesini nollamaly. Şertli operator ulanmaly däl.
- **89.** *M* tertipli *A* kwadrat matrisa berlen. Gapdal diagonaldan ýokarda ýerleşen elementleriň hemmesini nollamaly. Şertli operator ulanmaly däl.
- **90.** *M* tertipli *A* kwadrat matrisa berlen. Gapdal diagonalda we ondan aşakda ýerleşen elementleriň hemmesini nollamaly. Şertli operator ulanmaly däl.
- **91.** *M* tertipli *A* kwadrat matrisa berlen. Baş diagonalda we ondan ýokarda ýerleşen elementleriň hemmesini nollamaly. Şertli operator ulanmaly däl.

- **92.** *M* tertipli *A* kwadrat matrisa berlen. Birwagtda baş hem-de gapdal diagonallardan ýokarda ýerleşen elementleri nollamaly. Şertli operator ulanmaly däl.
- **93.** *M* tertipli *A* kwadrat matrisa berlen. Birwagtda baş diagonaldan ýokarda hem-de gapdal diagonaldan aşakda ýerleşen elementleri nollamaly. Şertli operator ulanmaly däl.
- **94.** *M* tertipli *A* kwadrat matrisa berlen. Birwagtda baş diagonalda we ondan aşakda hem-de gapdal diagonalda we ondan ýokarda ýerleşen elementlerini nollamaly. Şertli operator ulanmaly däl.
- **95.** *M* tertipli *A* kwadrat matrisa berlen. Birwagtda baş diagonalda we ondan aşakda hem-de gapdal diagonalda we ondan aşakda ýerleşen elementleriň ornuna nol goýmaly. Şertli operator ulanmaly däl.
- **96.** M tertipli A kwadrat matrisa berlen. Bu matrisanyň elementlerini baş diagonala görä şeýle düzgün boýunça orunlaryny çalşyrmaly, ýagny $A_{1,2}$ element $A_{2,1}$ element bilen $A_{3,1}$ element $A_{1,3}$ bilen we ş.m. orunlaryny çalşşýarlar. Şunlukda baş diagonalyň elementleri üýtgewsiz galýar. Kömekçi matrisany ulanmaly däl.
- **97.** M tertipli A kwadrat matrisa berlen. Bu matrisanyň elementlerini gapdal diagonala görä şu düzgün boýunça orunlaryny çalşyrmaly; $A_{1,1}$ element $A_{M,M}$ element bilen, $A_{1,2}$ element $A_{M-1,M}$ bilen we ş.m. orunlaryny çalyşýarlar. Şunlukda gapdal diagonalyň elementleri üýtgewsiz galýar. Kömekçi matrisany ulanmaly däl.
- **98.** M tertipli A kwadrat matrisa berlen. Bu matrisany 180° öwürmeli (şunlukda $A_{1,1}$ element $A_{M, M}$ element bilen, $A_{1,2}$ element $A_{M, M-1}$ element bilen we ş.m. orunlaryny çalyşýarlar). Kömekçi matrisany ulanmaly däl.
- **99.** M tertipli A kwadrat matrisa berlen. Bu matrisany položitel tarapa, ýagny sagat peýkamlarynyň hereketiniň ters ugruna 90° öwürmeli (şunlukda $A_{1,1}$ element $A_{M,1}$ elementiň, $A_{M,1}$ element $A_{M,M}$ elementiň ornuna geçer we ş. m.). Kömekçi matrisany ulanmaly däl.
- **100.** M tertipli A kwadrat matrisa berlen. Bu matrisany otrisatel tarapa, ýagny sagat peýkamlarynyň hereketiniň ugruna 90° öwürmeli (şunlukda $A_{1, 1}$ element $A_{1, M}$ elementiň, $A_{1, M}$ element $A_{M, M}$ elementiň ornuna geçer we ş. m.). Kömekçi matrisany ulanmaly däl.

SIMWOLLAR WE SETIRLER

Simwollar we olaryň kodlary

1-nji mysal

Klawiaturadan basylan simwoly we onyň ASCII kodyny ekrana çykarýan programma ýazmaly. Programma "Esc" klawişe basylanda öz işini tamamlamaly.

- **1.** *C* simwol berlen. Onuň kodyny çapa çykarmaly (kodlar tablisasasyndaky tertip belgisini).
- **2.** *N* bitin san berlen ($32 \le N \le 126$). Kody *N*-e deň bolan simwoly çapa çykarmaly.
- **3.** *C* simwol berlen. Kodlar tablisasynda bu simwoluň öňünden we soňundan gelýän simwollary çapa çykarmaly.
- **4.** N bitin san berlen $(1 \le N \le 26)$. Latyn elipbiýiniň ilkinji N uly (baş) harplaryny çapa çykarmaly.
- **5.** N bitin san berlen $(1 \le N \le 26)$. Setir latyn harplarynyň iň soňky N sanysyny (z harpyndan başlap) çapa çykarmaly.
- **6.** *C* simwol berlen. Eger *C* simwol sany görkezýän bolsa onda «san» sözüni, harpy görkezýän bolsa onda «harp» sözüni çapa çykarmaly.
- 7. Boş bolmadyk bir setir berlen. Ol setiriň ilkinji hem-de iň soňky simwollarynyň kodlaryny capa cykarmaly.

- **8.** N(N > 0) bitin san we C simwol berlen. Diñe C simwoldan ybarat bolan, uzynlygy N-e deň bolan setiri çapa çykarmaly.
- **9.** N(N > 0) bitin, jübüt san we C_1 hem-de C_2 simwollar berlen. Uzynlygy N-e deň bolan, C_1 simwoldan başlap C_1 hem-de C_2 simwollar gezekleşip gelýän setiri çapa çykarmaly.
- **10.** Setir berlen. Simwollary ters tertipde ýerleşýän setiri çapa çykarmaly.
- **11.** Boş bolmadyk *S* setir berlen. *S* setiriň simwollaryndan ybarat, ýöne aralarynda bir boşluk goýulyp ýazylan setiri çapa çykarmaly.
- **12.** Boş bolmadyk S setir we bitin N(>0)san berlen. S setiriň her bir simwolynyň arasyna N sany '*' (ýyldyzjyk) goýulyp ýazylan setiri çapa çykarmaly.

SIMWOLLAÝYN DERŇEW WE SETIRI ÖZGERTMEK

Setirler we sanlar

1-nji mysal

Girizilen setirde näçe sany sifriň bardygyny kesgitlemek üçin programma ýazmaly.

```
uses wincrt;
var s : string;
    n,i : word;
begin
clrscr;
    write('s='); readln(s);
    n:=0;
    for i:=1 to length(s) do
        if ord(s[i]) in [48..57] then inc(n);
        write('setirdaki sifrlerin sany = ',n);
readkey;
end.
```

- 13. Setir berlen. Ondaky sifrleriň mukdaryny tapyň.
- **14.** Setir berlen. Ol setirdäki uly latyn harplarynyň mukdaryny tapmaly.
- **15.** Setir berlen. Ol setirdäki kiçi latyn harplarynyň mukdaryny tapmaly.
- **16.** Setir berlen.Ol setirdäki hemme baş harplary setir harplara öwürmeli.
- **17.** Setir berlen.Ol setirdäki hemme setir harplary baş harplara öwürmeli.
- **18.** Setir berlen.Ol setirdäki hemme setir harplary baş harplara, baş harplary bolsa setir harplara öwürmeli.
- 19. Setir berlen. Eger ol bitin sanyň ýazgysyny saklaýan bolsa 1-i, hakyky sanyň ýazgysyny saklaýän bolsa onda 2-ni çapa çykarmaly. Eger setiri sana öwürip bolmaýan bolsa onda 0-y çapa çykarmaly. Hakyky sanyň bitin bölegi bilen drob böleginiň arasynda «.» durýar diýip hasaplamaly.
- **20.** Bitin položitel san berlen. Bu sany emele getirýän simwollary capa cykarmaly (cepden saga).
- **21.** Bitin položitel san berlen. Bu sany emele getirýän simwollary çapa çykarmaly (sagdan çepe).
- **22.** Bitin položitel sany şekillendirýän setir berlen. Bu sanyň sifrleriniň jemini hasaplamaly.
- **23.** « $< san \pm < san > \pm ... < san >$ » görnüşli arifmetiki aňlatmany şekillendirýän setir berlen. Bu ýerde \pm amallarynyň ýerine «+» ýa-da «-» simwol ýerleşýär (mysal üçin, «4+7–2–8»). Berlen aňlatmanyň bahasyny hasaplaň (bitin san).
- **24.** Bitin položitel sanyň ikilik ýazgysyny şekillendirýän setir berlen. Bu sanyň onluk ýazgysyny şekillendirýän setiri çapa çykarmaly.
- **25.** Bitin položitel sanyň onluk ýazgysyny şekillendirýän setir berlen. Bu sanyň ikilik ýazgysyny şekillendirýän setiri çapa çykarmaly.

STANDART FUNKSIÝALARYŇ KÖMEGI BILEN SETIRI IŞLEMEK

Tapmak we çalşyrmak

1-nji mysal

Berlen setirdäki uly latyn harplaryny kiçi latyn harplary bilen çalşyrmak üçin programma ýazmaly.

```
uses wincrt;
var s : string;
    i : word;
begin
clrscr;
    write('s='); readln(s);
    for i:=1 to length(s) do
        if ord(s[i]) in [65..90] then s[i]:=chr(ord(s[i])+32);
        writeln(s);
readkey;
end.
```

- **26.** Bitin N > 0 san we S setir berlen. Şeýle usul bilen S setiriň uzynlygyny N-e dogrulamaly: eger setiriň uzynlygy N-den uly bolsa onda ilkinji simwollaryny aýyrmaly, eger setiriň uzynlygy N-den kiçi bolsa onda setiriň başyna «.» (nokat) simwolyndan geregiçe goşup setiriň uzynlygyny N-e deňlemeli.
- **27.** N_1 we N_2 bitin položitel san we S_1 we S_2 setirler berlen. S_1 setiriň ilkinji N_1 simwolyny we S_2 setiriň iň soňky N_2 simwolyny görkezilen tertipde almak bilen täze setir döretmeli.
- **28.** C simwol we S setir berlen. C simwolyň S setire her bir girmesini iki esse artdyrmaly. Mysal üçin: $ABCD \rightarrow ABCCD$.
- **29.** C simwol we S hem-de S_0 setirler berlen. S setirdäki her bir C simwolyň öňünden S_0 setiri goşmaly.
- **30.** C simwol we S hem-de S_0 setirler berlen. S setirdäki her bir C simwolyň soňundan S_0 setiri goşmaly.

- **31.** S we S_0 setirler berlen. S_0 setiriň S setiriň düzümine girýänligini barlamalay. Eger girýän bolsa TRUE, girmeýän bolsa FALSE sözlerini çapa çykarmaly.
- **32.** S we S_0 setirler berlen. S_0 setiriň S setiriň düzümine näçe gezek girýänligini barlamalay.
- **33.** S we S_0 setirler berlen. S setirde gabat gelýän ilkinji S_0 bölek setiri aýyrmaly. Eger şeýle bölek setir ýok bolsa onda S setiri üýtgewsiz çapa çykarmaly.
- **34.** S we S_0 setirler berlen. S setirde gabat gelýän iň soňky S_0 bölek setiri aýyrmaly. Eger şeýle bölek setir ýok bolsa onda S setiri üýtgewsiz çapa çykarmaly.
- **35.** S we S_0 setirler berlen. S setirde gabat gelýän hemme S_0 bölek setiri aýyrmaly. Eger şeýle bölek setir ýok bolsa onda S setiri üýtgewsiz çapa çykarmaly.
- **36.** S, S_1 we S_2 setirler berlen. S setirdäki ilkinji S_1 bölek setiri S_2 bölek setir bilen çalsyrmaly.
- **37.** S, S_1 we S setirler berlen. S setirdäki iň soňky S_1 bölek setiri S_2 bölek setir bilen çalşyrmaly.
- **38.** S, S_1 we S_2 setirler berlen. S setirdäki hemme S_1 bölek setiri S_2 bölek setir bilen çalşyrmaly.
- **39.** Iň bolmanda bir boşluk saklaýan bir setir berlen. Ol setirdäki birinji we ikinji boşlugyň arasyndaky bölek setiri çapa çykarmaly. Eger setir bir boşluk saklaýan bolsa, onda boş setiri çapa çykarmaly.
- **40.** Iň bolmanda bir boşluk saklaýan bir setir berlen. Ol setirdäki birinji we iň soňky boşlugyň arasyndaky bölek setiri çapa çykarmaly. Eger setir bir boşluk saklaýan bolsa, onda boş setiri çapa çykarmaly.

Setirdäki sözleri derňemek we özgertmek

Bu ýumuşlarda boş bolmadyk setir berilýär, ol setiriň başynda we soňunda boşluklar ýok diýip hasaplamaly.

1-nji mysal

Bir sözlem berlen. Sözlemdäki dyngy belgileriniň sanyny kesgitlemeli.

- **41.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, latyn harplaryndan düzülen sözlerden ybarat setir berlen. Setirdäki sözleriň sanyny kesgitlemeli.
- **42.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, baş latyn harplaryndan düzülen sözlerden ybarat setir berlen. Şol bir harp bilen başlanýan we tamamlanýan sözleriň sanyny kesgitlemeli.
- **43.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, baş latyn harplaryndan düzülen sözlerden ybarat setir berlen. Iň bolmanda bir «A» harpyny saklaýan sözleriň sanyny kesgitlemeli.
- **44.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, baş latyn harplaryndan düzülen sözlerden ybarat setir berlen. Takyk üç sany «A» harpyny saklaýan sözleriň sanyny kesgitlemeli.
- **45.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, latyn harplaryndan düzülen sözlerden ybarat setir berlen. Ondaky iň gysga setiriň uzynlygyny kesgitlemeli.
- **46.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, latyn harplaryndan düzülen sözlerden ybarat setir berlen. Ondaky iň uzyn setiriň uzynlygyny kesgitlemeli.

- **47.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, latyn harplaryndan düzülen sözlerden ybarat setir berlen. Aralary diňe bir «.» bilen bölünen setiri çapa çykarmaly. Ol setiriň soňunda nokat goýmaly däl.
- **48.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, baş latyn harplaryndan düzülen sözlerden ybarat setir berlen. Setirdäki her bir sözüň ilkinji harpynyň soňky gaýtalanmalaryny «.» (nokat) bilen çalşyrmaly. Mysal üçin eger ol setirde MINIMUM sözi bar bolsa, ol söz programma ýerine ýeteninden söň «MINI.U.» bolar. Sözleriň arasyndaky boşluklary üýtgetmeli däl.
- **49.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, baş latyn harplaryndan düzülen sözlerden ybarat setir berlen. Setirdäki her bir sözüň iň soňky harpynyň öňündäki gaýtalanmalaryny «.» (nokat) bilen çalşyrmaly. Mysal üçin: setirde MINIMUM sözi bar bolsa, ol söz programma ýerine ýeteninden sön «.INI.UM» bolar. Sözleriň arasyndaky boşluklary üýtgetmeli däl.
- **50.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, latyn harplaryndan düzülen sözlerden ybarat setir berlen. Setiriň artykmaç boşluklryny aýyrmaly, soňra bolsa ol setiri ters tertipde çapa çykarmaly.
- **51.** Arasy bir ýa-da birnäçe boşluk bilen bölünen, latyn baş harplaryndan düzülen sözlerden ybarat setir berlen. Bu sözleri aralarynda bir boşluk goýup, elipbiý tertibinde ýerleşdirmeli.
- **52.** Latyn harplarynda ýazylan, birnäçe sözlerden ybarat bir sözlem berlen. Bu sözlemdäki her bir söz baş harp bilen başlar ýaly edip sözlemi üýtgetmeli. Söz diýilip içinde boşluklary saklamaýan, setiriň başy ýa-da setiriň soňy boşluklar bilen çäklenen simwollaryň toplumyna (simwola) aýdylýar. Eger söz hardpan başlanmaýan bolsa, onda ony üýtgetmeli däl.
- **53.** Sözlem berlen. Sözlemdäki dyngy belgileriniň sanyny kesgitlemeli.
- **54.** Sözlem berlen. Sözlemdäki çekimli harplaryň sanyny kesgitlemeli.

- 55. Setir-türkmen dilinde bir sözlem berlen. Ol sözlemdäki iň uzyn sözi çapa çykarmaly. Eger şeýle sözler birnäçe bolsa, onda olaryň birinjisini çapa çykarmaly.
- **56.** Setir-türkmen dilinde bir sözlem berlen. Ol sözlemdäki iň gysga sözi çapa çykarmaly. Eger şeýle sözler birnäçe bolsa, onda olaryň birinjisini çapa çykarmaly.
- **57.** Sözleriniň arasynda artykmaç boşluklary saklaýan bir setir berlen. Her bir sözüň arasynda diňe bir boşluk bolar ýaly edip bu setiri özgertmeli.

Setirler bilen işlemek üçin goşmaça ýumuşlar

1-nji mysal

Setir berlen. Ol setirde her bir simwolyň näçe gezek ulanylýandygyny kesgitleýän programmany ýazmaly.

```
uses wincrt;
var s : string;
n,i : word;
x    : array[0..255] of word;
begin
clrscr;
    write('s='); readln(s);
    for i:=0 to 255 do x[i]:=0;
    for i:=1 to length(s) do
        inc(x[ord(s[i])]);
    for i:=0 to 255 do
        if x[i]>0 then writeln(chr(i),'-',x[i]);
readkey;
end.
```

58. Faýlyň doly adyny saklaýan bir setir berlen, ýagny: diskiň ady, kataloglaryň sanawy (ýoly), faýlyň ady we faýlyň giňeltmesi. Bu setirden diňe faýlyň adyny (giňeltmesiz) bölüp almaly.

- **59.** Faýlyň doly adyny saklaýan bir setir berlen, ýagny: diskiň ady, kataloglaryň sanawy (ýoly), faýlyň ady we faýlyň giňeldilmesi. Bu setirden diňe faýlyň giňeldilmesiz bölüp almaly.
- **60.** Faýlyň doly adyny saklaýan bir setir berlen. Bu setirden ilkinji katalogyň adyny bölüp almaly («\» simwoly almaly däl). Eger faýl düýp katalogda ýerleşen bolsa, onda «\» simwoly çapa çykarmaly.
- **61.** Faýlyň doly adyny saklaýan bir setir berlen. Bu setirden iň soňky katalogyň adyny bölüp almaly («\» simwoly almaly däl). Eger faýl düýp katalogda ýerleşen bolsa, onda «\» simwoly çapa çykarmaly.
- **62.** Setir türkmen dilinde bir sözlem berlen. Baş, setir harplary göz önünde tutmak bilen, her bir harpy onun yzyndan gelýän harp bilen çalşyrmak arkaly ol setiri şifrlemeli ($(A) \rightarrow (B), (a) \rightarrow (b), (a)$), we ş.m.). Boşluklary we dyngy belgilerini üýtgetmeli däl.
- **63.** Setir latyn elipbiýinde bir sözlem we bitin K (0 < K < 10) san berlen. Baş, setir harplary göz öňünde tutmak bilen, her bir harpy, elipbiý boýunça şol harpyň yz ýanyndaky K-njy orunda duran harp bilen çalşyrmak arkaly şifrlemeli. Boşluklary we dyngy belgilerini üýtgetmeli däl.
- **64.** 63-nji ýumuşyň şerti boýunça şifrlenen setir we süýşmek kody K ($0 \le K \le 10$) berlen. Setiri açmaly.
- **65.** 63-nji ýumuşyň şerti boýunça şifrlenen setir we onuň açylan ilkinji *C* harpy berlen. *K* süýşme kodyny tapmaly we setiri açmaly.
- **66.** Setir sözlem berlen. Ilkibaşda jübüt orunlarda duran simwollary, soňra bolsa täk orunlarda duran simwollary ters tertipde ýerleşdirmek arkaly berlen setiri şifrlemeli (Mysal üçin «Programma» setiri «rgamamroP»).
- **67.** 66-njy ýumuşda beýan edilen usul boýunça şifrlenen setir berlen. Setiri açmaly.
- **68.** Sifrleri we setir latyn harplaryny özünde saklaýan setir (string) berlen. Egen setirdäki harplar elipbiý boýunça tertipleşen bolsalar 0-y çapa çykarmaly; bolmasa harplaryň elipbiý tertibini tertibini bozýan ilkinji simwolyň tertip belgisini çapa çykarmaly.

- **69.** Latyn harplaryny we ýaýlary (skobkalary) özünde saklaýan setir berlen. Eger ýaýlar dogry goýulan bolsa (her bir açylýan ýaýa degişli ýapylýan ýaý bar bolsa) 0-y çapa çykarmaly; bolmasa ilkinji ýalňyş ýapylýan ýaýyň duran ornunyň tertip belgisini ýa-da ýapylýan ýaýlar ýetmeýän bolsa, onda –1-i (minus 1-i) çapa çykarmaly.
- **70.** Latyn harplaryndan we ýaýlaryň üç görnüşinden («()», «[]», «{}») ybarat bolan setir berlen. Eger ýaýlar dogry goýulan bolsa (her bir açylýan ýaýyň görnüşi üçin degişli ýapylýan ýaý bar bolsa) onda 0-y çapa çykarmaly; bolmasa ilkinji ýalňyş ýapylýan ýaýyň duran ornunyň tertip belgisini ýa-da ýapylýan ýaýlar ýetmeýän bolsa, onda –1-i (minus 1-i) çykarmaly.

FAÝLY DÖRETMEK, FAÝLA ÝAZMAK, FAÝLDAN OKAMAK

1-nji mysal

n berlen (n natural san). Ilkinji n ýönekeý sany tapmak we olary görkezilen q faýla ýazýan programmany düzmeli.

```
uses wincrt:
var
n,i: word;
  s: string;
  f: text:
{-----}
function vs(k: word): boolean;
var i : integer;
begin
   for i:=2 to k-1 do
   if k mod i=0 then begin ys:=false; exit; end;
   ys:=true;
{-----}
begin
clrscr;
     write('Faylyan ady = '); readln(s);
```

```
write('n='); read(n);
assign(f,s); rewrite(f);
for i:=2 to n do
    if ys(i) then write(f,i:4);
    close(f);
readkey;
end.
```

- **1.** *S* setir berlen. Eger *S* ululyk faýlyň dogry adyny saklaýan bolsa onda TRUE sözüni, bolmasa FALSE sözüni çapa çykarmaly.
- **2.** Faýlyň ady we bitin N(N>1) san berlen. Berlen at bilen bitin sanlary saklaýan faýl döretmeli we oňa ilkinji jübüt položitel sanlaryň N sansyny ýazmaly (2, 4, ...).
- **3.** Faýlyň ady hem-de A we D hakyky sanlar berlen. Berlen at bilen hakyky sanlary saklaýan faýl döretmeli we ol faýla başlangyç agzasy A, tapawudy bolsa D bolan *arifmetiki progressiýanyň* ilkinji 10 agzasyny ýazmaly:

$$A, A + D, A + 2 \cdot D, A + 3 \cdot D, \dots$$

- **4.** Dört faýlyň ady berlen. Işjeň katalogdaky görkezilen atly faýllaryň näçe sanysyyň bardygyny kesgitlemeli.
- **5.** Bitin sanlary saklaýan faýlyň ady berlen. Bu faýldaky elementleriň sanyny tapmaly. Eger şeýle at bilen faýl ýok bolsa onda ekrana -1-i çykarmaly.
- **6.** Bitin K san we položitel bitin sanlary saklaýan faýl berlen. Faýlyň K-njy elementini çapa çykarmaly (faýlyň elementleri 1-den başlap belgilenýär). Eger şeýle element ýok bolsa, onda ekrana -1-i çykarmaly.
- 7. Özünde dörtden az bolmadyk elementi saklaýan bitin sanlaryň faýly berlen. Bu faýlyň birinji, ikinji we iň soňkyň öň ýanyndaky, iň soňky elementlerini çapa çykarmaly.
- **8.** Hakyky sanlary saklaýan iki sany faýlyň atlary berlen. Bu faýllaryň ilkinjisiniň barlygy we käbir elementleriň mukdaryny saklaýanlygy belli. Ikinji faýl bolsa bu katalogda ýok. Ikinji faýly döret-

meli we oňa birinji faýlyň ilkinji we iň soňky elementlerini görkezilen tertipde ýazmaly.

- **9.** Hakyky sanlary saklaýan iki sany faýlyň atlary berlen. Ol faýllaryň biri katalogda bar we ol belli bir mukdarda maglumatlary saklaýar. Beýleki faýl bolsa ol işçi katalogda ýok. Ol faýly döretmeli we oňa beýleki faýlyň ilkinji we iň soňky elementini görkezilen tertipde ýazmaly.
- **10.** Bitin sanlarýň faýly berlen. Täze faýl döretmeli we oňa öňden bar bolan faýlyň elementlerini ters tertipde ýazmaly.
- 11. Hakyky sanlarýň faýly berlen. Iki sany faýl döretmeli. Olaryň birine berlen faýlyň täk tertip belgili elementlerini, beýlekisine bolsa jübüt tertip belgili elementlerini ýazmaly.
- 12. Bitin sanlarýň faýly berlen. Iki sany faýl döretmeli. Olaryň birine berlen faýldaky jübüt sanlary beýlekisine bolsa berlen faýldaky täk sanlary şol tertipde ýazmaly. Eger berlen faýlda jübüt ýa-da täk sanlar ýok bolsa, onda döredilen degişli faýly boş goýmaly.
- 13. Bitin sanlarýň faýly berlen. Iki sany faýl döretmeli. Olaryň birine berlen faýldaky položitel sanlary ters tertipde, beýlekisine bolsa tertibini üýtgetmän berlen faýldaky otrisatel elementleri ýazmaly. Eger berlen faýlda položitel ýa-da otrisatel sanlar ýok bolsa, onda döredilen degişli faýly boş goýmaly.
- **14.** Hakyky sanlarýň faýly berlen. Bu faýlyň elementleriniň orta arifmetiki bahasyny tapmaly.
- **15.** Hakyky sanlarýň faýly berlen. Onuň jübüt orunda duran elementleriniň jemini tapmaly.
- **16.** Bitin sanlarýň faýly berlen. Bu faýldaky *seriýalaryň* (yzlyyzyna gelýän birmeňzeş elementleriň) mukdaryny tapmaly. Mysal üçin elementleri 1, 5, 5, 5, 4, 4, 5 bolan faýlyň üçin jogap 4-e deň.
- 17. Bitin sanlarýň faýly berlen. Bu faýldaky hemme seriýalaryň uzynlygyny özünde saklaýan täze faýl döretmeli. (*Seriýäniň uzynlygy* bolsa ondaky elementleriň sany). Mysal üçin faýl 1, 5, 5, 5, 4, 4, 5 elementleri özünde saklaýän bolsa, onda täze döredilen faýl 1, 3, 2, 1 sanlary özünde saklamaly.

- **18.** Hakyky sanlarýň faýly berlen. Onuň ilkinji *lokal minimumyny* tapmaly (Öz goňşularyndan kiçi bolan elemente *lokal minimum* diýilýär).
- **19.** Hakyky sanlarýň faýly berlen. Onuň iň soňky *lokal maksimumyny* tapmaly. (Öz goňşularyndan uly bolan elemente *lokal maksimum* diýilýär).
- **20.** Hakyky sanlarýň faýly berlen. Bu faýlyň *lokal ekstre-mumlarynyň* ýagny lokal minimumlarynyň we lokal maksimumlarynyň umumy sanyny tapmaly.
- **21.** Hakyky sanlarýň faýly berlen. Bu faýlyň hemme lokal maksimumlarynyň tertip belgilerini artýan tertipde özünde saklaýan bitin tipli täze faýl döretmeli.
- **22.** Hakyky sanlarýň faýly berlen. Bu faýlyň hemme lokal ekstremumlarynyň tertip belgilerini kemelýän tertipde özünde saklaýan bitin tipli täze faýl döretmeli.
- **23.** Hakyky sanlarýň faýly berlen. Bu faýldaky kemelýän yzygiderligi emele getirýän elementleriň uzynlygyny özünde saklaýan bitin tipli täze faýl döretmeli. Mysal üçin başdaky faýl özünde 1.7, 4.5, 3.4, 2.2, 8.5, 1.2 elementleri saklaýan bolsa, onda täze döredilen faýl özünde 3, 2 sanlary saklamamaly.
- **24.** Hakyky sanlaryň faýly berlen. Bu faýldaky hemme monoton yzygiderligi emele getirýän elementleriň uzynlygyny özünde saklaýan bitin tipli täze faýl döretmeli. Mysal üçin başdaky faýl özünde 1.7, 4.5, 3.4, 2.2, 8.5, 1.2 elementleri saklaýan bolsa, onda täze döredilen faýl özünde 2, 3, 2, 2 sanlary saklamamaly.

Faýllary özgertmek

- **25.** Hakyky sanlaryň faýly berlen. Bu faýlyň elementlerini olaryň kwadratlary bilen çalşyrmaly.
- **26.** Hakyky sanlaryň faýly berlen. Bu faýldaky iň kiçi we iň uly elementleriň orunlaryny çalşyrmaly.

27. $A_1, A_2, ..., A_N$ (N – faýldaky elementleriň sany) elementleri bolan bitin sanlar faýly berlen. Faýldaky elementleri aşakdaky ýaly edip ýerleşdirmeli:

$$A_1, A_N, A_2, A_{N-1}, A_3, \dots$$

- **28.** Hakyky sanlaryň faýly berlen. Faýldaky elementleriň ilkinjisinden we iň soňkusyndan başgasyny, öňünden hem-de soňundan gelýän elementleriň orta arifmetiki bahasy bilen çalşyrmaly.
- **29.** 50-den köp elementi saklaýan bitin sanlar faýly berlen. Ahyrky elementlerden gerek bolan mukdaryny aýyrmak bilen onuň ölçegini 50 elemente çenli azaltmaly.
- **30.** Elementleriniň sany jübüt bolan bitin sanly faýl berlen. Bu faýlyň elementleriniň ikinji ýarymyny aýyrmaly.
- **31.** 50-den köp elementi saklaýan bitin sanlar faýly berlen. Başdaky elementlerden gerek bolan mukdaryny aýyrmak bilen onuň ölçegini 50 elemente çenli azaltmaly.
- **32.** Elementleriniň sany jübüt bolan bitin sanly faýl berlen. Bu faýlyň elementleriniň ilkinji ýarymyny aýyrmaly.
- **33.** Bitin sanlaryň faýly berlen. Bu faýldan jübüt tertip belgili elementleri aýyrmaly.
- **34.** Bitin sanlaryň faýly berlen. Bu faýldaky otrisatel sanlary aýyrmaly.
- **35.** 50-den az elementi saklaýan bitin sanlar faýly berlen. Faýlyň başyna gerek bolan mukdarda noly goşmak bilen onuň ölçegini 50-ä çenli artdyrmaly.
- **36.** Bitin sanlaryň faýly berlen. Elementlerini faýlyň soňuna (berlen tertipde) gaýtalap ýazmak bilen, bu faýlyň ölçegini iki esse ulaltmaly.
- **37.** Bitin sanlaryň faýly berlen. Elementlerini faýlyň soňuna (ters tertipde) gaýtalap ýazmak bilen, bu faýlyň ölçegini iki esse ulaltmaly.
- **38.** Bitin sanlaryň faýly berlen. Bu faýldaky täk tertip belgili elementleri iki gezekden gaýtalap ýazmaly.
- **39.** Bitin sanlaryň faýly berlen. Bu faýldaky 5–10 aralykda bolan elementleri iki gezekden gaýtalap ýazmaly.

- **40.** Bitin sanlaryň faýly berlen. Bu faýldaky jübüt orunda duran her bir elementi iki sany nol bilen çalşyrmaly.
- **41.** Bitin sanlaryň faýly berlen. Bu faýldaky her bir položitel sany üç nola çalyşmaly.

Tipleşdirilmedik ikilik faýllar bilen işlemek

- **42.** Islendik tipli maglumatlary saklaýan iki sany faýl berlen. Olardaky maglumatlary çalşyrmaly.
- **43.** Islendik tipli maglumatlary saklaýan faýl berlen. Täze at bilen bu faýlyň nusgasyny döretmeli.
- **44.** Şol bir tipli, ýöne dürli ölçegli üç sany faýl berlen. Iň uzyn faýldaky maglumatlaryň ornuna, iň gysga faýldaky maglumatlary ýazmaly.
- **45.** Şol bir tipli, ýöne dürli ölçegli üç sany faýl berlen. Iň gysga faýldaky maglumatlaryň ornuna, iň uzyn faýldaky maglumatlary ýazmaly.
- **46.** S_0 setir, bitin N (\leq 4) san we şol bir tipli S_1, \ldots, S_N atly, N sany faýllar berlen. Bu faýllary geliş tertibinde birleşdirmeli we täze S_0 atly faýla ýazmaly.
- **47.** Şol bir tipli iki sany faýl berlen. Birinji faýla ikinji faýldaky maglumatlary, ikinji faýla bolsa birinji faýldaky maglumatlary birleşdirmeli.

Birnäçe sanly faýllar bilen işlemek. Arhiw - faýllar

- **48.** S_D setir we S_A , S_B , S_C atlar bilen, üç sany, birmeňzeş ölçegli bitin sanlary saklaýan faýllar berlen. S_D at bilen täze faýl döretmeli hem-de oňa ýokardaky faýllaryň şol bir tertipli elementleri aşakdaky ýaly görnüşde gezekleşip geler ýaly edip maglumatlary ýazmaly $(A_1, B_1, C_1, A_2, B_2, C_2, \ldots)$.
- **49.** S_E setir we S_A , S_B , S_C , S_D atly, dürli ölçegli bitin sanlar faýly berlen. S_E at bilen täze faýl döretmeli hem-de oňa ýokardaky faýllaryň

- şol bir tertipli elementlerini gezekleşdirip ýazmaly. Has uzyn faýllaryň «artykmaç» elementlerini täze döredilen faýla ýazmaly däl.
- **50.** Elementleri artýan tertipde ýerleşen, S_1 we S_2 hakyky sanlaryň faýly berlen. S_3 faýl döretmeli. Artýan görnüşde S_1 we S_2 faýllaryň elementlerini täze döredilen faýla ýazmaly.
- **51.** Elementleri kemelýän tertipde ýerleşen hakyky tipli sanlary saklaýan S_1 , S_2 , S_3 atly faýllar berlen. S_4 faýl döretmeli hem-de onuň elementleri kemelýän tertipde ýerleşer ýäly edip ýokardaky berlen faýllardaky maglumatlary täze döredilen faýla ýazmaly.
- **52.** S_0 setir, bitin $N(N \le 4)$ san we $S_1, S_2, ..., S_N$ atlar bilen bitin sanlaryň faýllary berlen. Täze S_0 arhiw-faýl döretmeli we oňa berlen faýllardaky maglumatlary aşakdaky format boýunça ýazmaly: ol faýlyň ilkinji elementi N-i saklanýar, indiki N elemente bolsa her bir faýlyň ölçegleri(elementleriniň sany) ýazylýar, soňra bolsa tertip boýunça ol faýllardaky maglumatlar ýerleşdirilýär.
- **53.** S setir, N(N>0) 52-nji ýumuşda beýan edilen formatda birnäçe faýlyň maglumatlaryny özünde saklaýan *arhiw*-faýl berlen. Arhiw faýldan N tertip belgili faýly dikeltmeli we ony S at bilen saklamaly. Eger faýl-arhiw N faýldan az bolan faýllaryň maglumatyny özünde saklaýan bolsa onda netijeleýji faýly boş goýmaly.
- **54.** *S* setir we 52-nji ýumuşda beýan edilen formatda birnäçe faýlyň (altydan köp bolmadyk) maglumatlaryny özünde saklaýan *ar-hiw*-faýl berlen. Faýlda saklanýan her bir faýlyň elementleriniň orta arifmetiki bahasyny tapmaly (hakyky san) we tapylan sanlary (şol tertipde) hakyky sanlary saklaýan *S* faýly döretmeli we oňa ýazmaly.
- **55.** S_0 setir, bitin $N(N \le 4)$ san we S_1, \ldots, S_N atlar bilen N sany bitin sanlar faýly berlen. Ol faýllardaky maglumatlary täze döredilen S_0 arhiw-faýla aşakdaky yzygiderlikde ýazmaly: birinji faýlyň ölçegini (elementleriniň sanyny) we onuň hemme elementlerini, ikinji faýlyň ölçegini we onuň hemme elementlerini, ..., N-nji faýlyň ölçegini we onuň hemme elementlerini.
- **56.** S setir, bitin N(N > 0) san we 55-nji ýumuşda beýan edilen formatda birnäçe faýlyň maglumatlaryny özünde saklaýan, bitin sanly *arhiw*-faýl berlen. Bu arhiw-faýldan N tertipli faýly dikeltmeli we

- ony S at bilen saklamaly. Eger arhiw-faýl N-den az bolan faýllary özünde saklaýan bolsa, onda onda netijeleýji faýl boş bolmaly.
- **57.** S_1 , S_2 setirler we 55-nji ýumuşa beýan edilen formatda birnäçe faýllaryň maglumatyny özünde saklaýan bitin sanly *arhiw*-faýl berlen. Täze S_1 , S_2 atly bitin sanlar faýlyny döretmeli we olaryň birinjisine arhiwde bar bolan hemme faýllaryň ilkinji elementlerini, ikinjisine bolsa iň soňky elementlerini ýazmaly.

Simwol we setir faýllary

- **58.** Iň bolmanda bir boşluk simwolyny saklaýan simwol faýly berlen. Birinji boşlukdan başlap hemme elementleri öçürmeli.
- **59.** Iň bolmanda bir boşluk simwolyny saklaýan simwol faýly berlen. Iň soňky boşlukdan başlap hemme elementleri öçürmeli.
- **60.** Iň bolmanda bir boşluksimwolyny saklaýan simwol faýly berlen. Birinji boşlugy we ondan öňde ýerleşen hemme elementleri öçürmeli.
- **61.** Iň bolmanda bir boşluk simwolyny saklaýan simwol faýly berlen. Iň soňky boşlugy we ondan öňde ýerleşen hemme elementleri öçürmeli.
- **62.** Simwol faýly berlen. Bu faýlyň elementlerini kodlarynyň artýan tertibinde ýerleşdirmeli.
- **63.** Bitin K(K > 0) san we setir faýly berlen. Iki sany täze faýl döretmeli: olaryň birinjisi setir faýly bolup oňa her bir setiriň ilkinji K simwolyny ýazmaly, ikinjisi bolsa simwiol faýly bolup oňa her setiriň K-njy simwolyny ýazmaly. Eger başdaky faýldaky setirleriň uzynlyklary K-dan kiçi bolsa, onda setir faýla tutuş setir, simwol faýla bolsa boşlugy ýazmaly.
- **64.** Setir faýly berlen. Täze setir faýlyny döretmeli we oňa başdaky faýlyň iň gysga setirlerini (şol tertipde) ýazmaly.
- **65.** Setir faýly berlen. Täze setir faýlyny döretmeli we oňa başdaky faýlyň iň uzyn setirlerini (ters tertipde) ýazmaly.

- **66.** Setir faýly berlen. Täze setir faýlyny döretmeli we oňa başdaky faýlyň setirlerini *leksikografiki* tertipde ýazmaly, ýagny ilkinji simwoldan başlap olaryň kodlaryny artýan tertipde ýerleşdirmeli.
- 67. «Gün/aý/ýyl» formatda seneleri saklaýan setir faýly berlen, gün we aý üçin iki orun, ýyl üçin bolsa dört orun berlen, (mysal ücin «10/05/2008»). Iki sany bitin sanlaryň faýlyny döretmeli. Olatyň birinjisini başda berlen faýldan alyp günleri, ikinji faýla bolsa aýlary ýazmaly (şol tertipde).
- **68.** 67-nji ýumuşda beýan edilen formatda seneleri özünde saklaýan setir faýl berlen. Bitin sanlary özünde saklaýan iki sany faýl döretmeli we olaryň birinjisine başda berlen faýldan alyp aýlaryň bahasyny, ikinjisine bolsa ýyllaryň bahasyny ýazmaly (ters tertipde).
- **69.** 67-nji ýumuşda beýan edilen formatda seneleri özünde saklaýan setir faýl berlen. Täze faýl döretmeli we oňa başdaky faýllarda berlen seneleriň tomus paslyna düşýänlerini ýazmaly (şol tertipde). Eger şeýle sene ýok bolsa, onda netijeleýji faýly boş goýmaly.
- **70.** 67-nji ýumuşda beýan edilen formatda seneleri özünde saklaýan setir faýl berlen. Täze faýl döretmeli we oňa başdaky faýllarda berlen seneleriň gyş paslyna düşýänlerini ýazmaly (ters tertipde). Eger şeýle sene ýok bolsa, onda netijeleýji faýly boş goýmaly.
- **71.** 67-nji ýumuşda beýan edilen formatda seneleri özünde saklaýan setir faýl berlen. Ýaz paslyna düşýän ilkinji senäni özünde saklaýan setiriň tertibini tapmaly. Eger şeýle sene ýok bolsa, onda boş setiri çapa çykarmaly.
- **72.** 67-nji ýumuşda beýan edilen formatda seneleri özünde saklaýan setir faýl berlen. Güýz paslyna düşýän iň soňky senäni özünde saklaýan setiriň tertibini tapmaly. Eger şeýle sene ýok bolsa, onda boş setiri çapa çykarmaly.
- **73.** 67-nji ýumuşda beýan edilen formatda seneleri özünde saklaýan setir faýl berlen. Täze setir faýlyny döretmeli we oňa berlen seneleri kemelýän tertipde ýazmaly.

Faýllary matrisalar bilen işlemek üçin ulanmak

- **74.** I, J bitin sanlar we kwadrat martisanyň elementlerini özünde saklaýan (setir boýunça) hakyky sanlar faýly berlen. I setirde we J sütünde ýerleşen elementi çapa çykarmaly (setirler we sütünler 1-den başlap belgilenýärler). Eger görkezilen element ýok bolsa, onda 0-y (noly) çapa çykarmaly.
- **75.** Kwadrat matrisanyň elementlerini (setir boýunça) özünde saklaýan hakyky sanlaryň faýly berlen. Täze faýl döretmeli we oňa berlen faýdaky matrisanyň transponirlenen görnüsüni ýazmaly.
- **76.** A we B kwadrat matrisalaryň elementlerini (setirler boýunça) özünde saklaýan S_A we S_B atly hakyky sanlary saklaýan faýllar berlen. A we B matrisalaryň elementleriniň köpeltmek hasyllaryny $(A \cdot B)$ özünde saklaýan täze S_C faýl döretmeli. Eger ol matrisalary köpeldip bolmaýan bolsa onda S_C faýly boş goýmaly.
- 77. *I*, *J* bitin sanlar we gönüburçlu matrisanyň elementlerini özünde saklaýan (setirler boýunça) hakyky tipli faýl berlen we faýlyň birinji elementi matrisanyň sütünleriniň mukdaryny görkezýär. *I*-nji setirde *J*-nji sütünde ýerleşen elementi çapa çykarmaly (setirler we sütünler 1-den başlap belgileýärler). Eger görkezilen element ýok bolsa, onda 0-y (noly) çapa çykarmaly.
- **78.** Gönüburçly matrisanyň elementlerini (setirler boýunça) özünde saklaýan hakyky tipli faýl berlen we faýlyň birinji elementi matrisanyň sütünleriniň mukdaryny görkezýär. Berlen matrisanyň transponirlenen görnüşini özünde saklaýan şol bir gurluşly täze faýl döretmeli.
- **79.** A we B gönüburçly matrisanyň elementlerini (setirler boýunça) özünde saklaýan S_A we S_B atly hakyky tipli faýllar berlen we her bir faýlyň ilkinji elementi degişli matrisanyň sütünleriniň sanyny görkezýär. Bu matrisalaryň elementleriniň köpeltmek hasylyny $(A \cdot B)$ özünde saklaýan S_C faýl döretmeli. Eger matrisalary özara köpeldip bolmaýan bolsa, onda S_C faýly boş goýmaly.

- **80.** Matrisanyň esasy diagonaldan ýokarda ýerleşen üçburçlygyny emele getirýän elementlerini (setirler boýunça) özünde saklaýan hakyky tipli san faýly berlen. Bu matrisanyň noldan tapawutlanýan elementlerini (setirler boýunça) özünde saklaýan (setirler boýunça) täze faýl döretmeli.
- **81.** Matrisanyň esasy diagonalyndan aşakda ýerleşen üçburçlygyny emele getirýän (setirler boýunçä) elementlerini (setirler boýunça) özünde saklaýan hakyky tipli san faýly berlen. Bu matrisanyň noldan tapawutlanýan elementlerini (setirler boýunça) özünde saklaýan (setirler boýunça) täze faýl döretmeli.
- **82.** Üç diagonally matrisanyň elementlerini (setirler boýunça) özünde saklaýan hakyky tipli faýl berlen. Bu matrisanyň noldan tapawutlanýan bölegini (setirler boýunça) özünde saklaýan täze faýl döretmeli.

TEKST FAÝLLARYŇ ÜSTÜNDEN GEÇIRILÝÄN ESASY OPERASIÝALAR

- **1.** Faýlyň ady hem-de N we K bitin položitel sanlar berlen. Görkezilen at bilen tekst faýlyny döretmeli we oňa her biri K sany «*» (ýyldyzjyk) simwolyndan ybarat bolan N sany setir ýazmaly.
- **2.** Faýlyň ady we bitin N(0 < N < 27) san berlen. Görkezilen at bilen tekst faýlyny döretmeli we oňa N sany setir ýazmaly. Birinji setire latyn (kiçi) «a» harpyny, ikinji setire «ab», üçünji setire «abc» we ş.m. harplary ýazmaly. Şeýlelikde iň söňky setir, başlangyç latyn setir harplarynyň ilkinji N sanysyny özünde saklamaly.
- **3.** Faýlyň ady we bitin N(0 < N < 27) san berlen. Görkezilen at bilen tekst faýlyny döretmeli we oňa N uzynlykly N sany setir ýazmaly; K(K = 1, ..., N) tertip belgili setir sagyndan «*» (ýyldyzjyk) simwollary bilen doldurylan K sany ilkinji baş latyn harplaryny özünde saklaýar. Mysal üçin N = 4 bolanda faýl aşakdaky setirleri özünde saklamaly: «A***», «AB**», «ABC*», «ABCD».
- **4.** Tekst faýly berlen. Ondaky simwollaryň we setirleriň sanyny çapa çykarmaly.

- **5.** Setir we tekst faýly berlen. Berlen setiri berlen faýlyň soňuna goşmaly.
- **6.** Iki sany tekst faýly berlen. Birinji faýlyň soňuna ikinji faýly goşmaly.
- 7. Setir we tekst faýly berlen. Berlen setiri berlen faýlyň başyna goşmaly.
- **8.** Iki sany tekst faýly berlen. Birinji faýlyň başyna ikinji faýly goşmaly.
- **9.** Bitin *K* san we tekst faýly berlen. Bu faýlyň *K*-njy setiriniň öňünde boş setir goýmaly. Eger şeýle tertip belgili setir faýlda ýok bolsa, onda faýly üýtgetmeli däl.
- **10.** Bitin *K* san we tekst faýly berlen. Bu faýlyň *K*-njy setiriniň soňunda boş setir goýmaly. Eger şeýle tertip belgili setir faýlda ýok bolsa, onda faýly üýtgetmeli däl.
- 11. Tekst faýly berlen. Ondaky hemme boş setirleri iki gezek gaýtalap ýazmaly.
- **12.** *S* setir we tekst faýly berlen. Faýldaky hemme boş setirleriň ýerine berlen *S* setiri ýazmaly.
- **13.** Boş bolmadyk tekst faýly berlen. Ondaky ilkinji setiri aýyrmaly.
- **14.** Boş bolmadyk tekst faýly berlen. Ondaky iň soňky setiri aýyrmaly.
- **15.** Bitin *K* san we tekst faýly berlen. Faýldaky *K*-njy setiri aýyrmaly. Eger faýlda görkezilen setir ýok bolsa, onda faýyly üýtgewsiz goýmaly.
 - **16.** Tekst faýly berlen. Bu faýldaky hemme boş setirleri aýyrmaly.
- 17. Iki sany tekst faýly berlen. Birinji faýlyň her bir setiriniň soňuna ikinji faýlyň degişli setirini goşmaly. Eger ikinji faýl birinji faýldan gysga bolsa, onda birinji faýlyň galan setirlerini şol durşuna goýmaly.
- **18.** Bitin *K* san we tekst faýly berlen. Bu faýlyň her bir setiriniň ilkinji *K* simwolyny öçürmeli (eger setiriň uzynlygy *K*-dan kiçi bolsa, onda hemme simwollary öçürmeli).

- **19.** Tekst faýly berlen. Ondaky hemme baş harplary setir harplar bilen, setir harplary bolsa baş harplar bilen çalşyrmaly.
- **20.** Tekst faýly berlen. Ondaky yzly-yzyna gelýän boşluklary bir boşluk bilen çalşyrmaly.
- **21.** Üçden köp setiri özünde saklaýan tekst faýly berlen. Bu faýlyň iň soňky üç setirini aýyrmaly.
- **22.** Bitin $K(0 \le K \le 10)$ san we özünde K-dan köp setiri saklaýan tekst faýly berlen. Faýlyň iň soňky K setirini aýyrmaly.
- **23.** Bitin $K(0 \le K \le 10)$ san we özünde K-dan köp setiri saklaýan tekst faýly berlen. Berlen faýlyň iň soňky K-njy setirini özünde saklaýan täze faýl döretmeli.

Tekstiň derňewi we formatirlenmegi

- 24. Tekst faýly berlen. Faýldaky abzaslaryň mukdaryny tapmaly.
- **25.** Bitin *K* san we tekst faýly berlen. Bu faýldaky *K*-njy abzasy öçurmeli.
- **26.** Tekst faýly berlen. Eger her bir abzasyň 5-sany boşluk bilen başlanýanlygy belli bolsa, onda faýldaky abzaslaryň mukdaryny kesgitlemeli (diňe boşluklardan ybarat bolan setirleri hasaba almaly däl).
- **27.** Bitin *K* san we tekst faýly berlen. Faýldan *K*-njy tertip belgili abzasy aýyrmaly (bu ýumuşda abzas diýip 5-sany boşluk bilen başlanýan satire düşünilýär). Eger şeýle tertip belgili abzas ýok bolsa, onda faýly üýtgetmeli däl.
- **28.** Içinde boş setirleri saklamaýan tekst faýly berlen. Bu faýldaky her goňşy abzaslaryň arasynda bir boş setir goýmaly (5-sany boşluk bilen başlanýan setire abzas diýilýär). Faýlyň başynda we soňunda boş setir goýmaly däl.
- **29.** Tekst faýly berlen. Bu faýldaky ilkinji iň uzyn sözi çapa çykarmaly. Söz diýilip boşluklar, dyngy belgiler ýa-da setiriň başy hemde ahyry bilen çäklenen simwollaryň toplumyna düşünilýär.
- **30.** Tekst faýly berlen. Bu faýldaky iň soňky iň gysga sözi çapa çykarmaly.

- **31.** Bitin K san we tekst faýly berlen. Täze tekst faýlyny döretmeli we oňa berlen faýldaky uzynlygy K deň bolan sözleri ýazmaly. Eger berlen faýl uzynlygy K deň bolan sözleri saklamaýan bolsa, onda täze döredilen faýly boş goýmaly.
- **32.** Baş ýa-da setir latyn harpy bolan *C* simwol we tekst faýly berlen. Täze tekst faýlyny döretmeli we oňa berlen faýldaky bu harp (baş ýa-da setir) bilen başlanýan hemme sözleri ýazmaly. Eger berlen faýlda şeýle söz ýok bolsa, onda täze faýly boş goýmaly.
- **33.** Baş ýa-da setir latyn harpy bolan *C* simwol we tekst faýly berlen. Täze tekst faýlyny döretmeli we oňa berlen faýldaky bu harpy (baş ýa-da setir) saklaýan hemme sözleri ýazmaly. Eger berlen faýlda şeýle söz ýok bolsa, onda täze faýly boş goýmaly.
- **34.** Saklaýan teksti çep gyra deňlenen tekst faýly berlen. Boş bolmadyk setiriň her biriniň başyna gerek bolan mukdarda boşluklary goşmak bilen, berlen faýldaky teksti sag gyra deňlemeli.
- **35.** Saklaýan teksti çep gyra deňlenen tekst faýly berlen. Boş bolmadyk setirleriň her biriniň başyna gerek bolan mukdarda boşluklary goşmak bilen, berlen faýldaky teksti merkeze görä deňlemeli. Tekstiň ini 50 simwola deň bolmaly.
- **36.** Sag tarapy boýunça deňlenen setirleri saklaýan tekst faýly berlen. Uzynlygy noldan tapawutlanýan we başda boşluklary saklaýan setirlerden başdaky boşluklaryň ýarysyny aýyrmak bilen teksti merkeze görä deňlemeli. Eger başdaky boşluklaryň sany täk bolsa, onda deňlemezden öň başlangyç boşlugyny aýyrmaly.
- **37.** Çep gyrasy boýunça deňlenen setirleri saklaýan tekst faýly berlen. Bu faýlda abzaslarynyň arasy bir boş setir bilen bölünen. Her bir setirde iň uzky boşlukdan başlap, sözleriň arasyndaky boşluklaryň sanyny artdyrmak arkaly faýldaky teksti *iki gyrasy boýunça* deňlemeli. Teksti ini 50 simwola deň bolmaly.
- **38.** Bitin K(K > 25) san we çep gyrasy boýunça deňlenen teksti saklaýan tekst faýly berlen. Abzaslar biri-birinden bir boş setir arkaly bölünipdir. Her bir setirdäki simwollaryň sany K-dan köp bolmaz ýaly edip, çep gyrasy boýunça deňläp, abzaslary öňküligine saklap,

setirleriň soňundaky boşluklary aýryp faýldaky teksti formatirlemeli (özgertmeli) we täze faýlda saklamaly.

39. Bitin K(K > 25) san we çep gyrasy boýunça deňlenen teksti saklaýan tekst faýly berlen. Faýlda abzas 5-sany boşluk bilen berlen, boş setir ýok. Abzaslaryny öňkülügine saklap, çep gyra boýunça deňläp, giňligini bolsa K simwoldan köp bolmaz ýaly edip, setirleriň soňundaky boşluklary aýyrmak arkaly teksti formatirlemeli (özgertmeli) we täze faýlda saklamaly.

San maglumatly tekst faýllar

- **40.** Birmeňzeş ölçegli iki sany bitin sanlar faýly berlen. Her biriniň giňligi 30 simwol bolan, berlen faýllardaky sanlardan döredlen iki sany sütünden ybarat bolan (birinji sütünde birinji faýlda saklanýan sanlar, ikinji sütünde bolsa ikinji faýlda saklanýan sanlar) täze faýl döretmeli. Her bir setiriň başyna we ahyryna bölüji simwoly «|» (kod 124) goşmaly. Sanlar sütüniň sag gyrasy boýunça deňlenilmeli.
- **41.** Birmeňzeş ölçegli bitin sanlary saklaýan üç sany faýl berlen. Her biriniň giňligi 20 simwol bolan, berlen faýllardaky sanlardan döredilen üç sany sütünden ybarat bolan (her sütünde degişli faýldaky sanlar saklanýär) täze faýl döretmeli. Her bir setiriň başyna we ahyryna bölüji simwoly «|» (kod 124) goşmaly. Sanlar sütüniň çep gyrasy boýunça deňlenilmeli.
- **42.** Bitin N san we hakyky A, B sanlar berlen. \sqrt{x} funksiýanyň bahasyny [A, B] aralykda (B A)/N ädim boýunça üýtgände hasaplamaly we netijäni täze tekst faýlyna ýazmaly. Tablisa iki sütünden ybarat bolup, birinji sütünde x argument ýerleşdirilen, oňa jemi 10 öýjük berlip, onuň 4 öýjügi drob bölegi üçin niýetlenendir. Ikinji sütünde bolsa \sqrt{x} funksiýanya, oňa jemi 15 öýjük berlip, onuň 8 öýjügi drob bölegi üçin niýetlenendir. Sütünler sag gyrasy boýunça deňlenen.
- **43.** Bitin N san we hakyky A, B sanlar berlen. Argumenti [A, B] aralykda (B A/N) ädim boýunça üýtgände $\sin(x)$ we $\cos(x)$ funksiýalaryň bahalaryny hasaplamaly we netijäni täze tekst faýla tablisa görnüşinde ýazmaly. Tablisa üç sütünden ybarat bolip birinji sütünde x argumentiň bahasy üçin umuman 8 öýjük berlip onuň

4-isi drob bölegi üçin. Ikinji we üçünji sütunlerde $\sin(x)$ we $\cos(x)$ funksiýalaryň bahalary ýerleşdirilýar (olaryň hersi üçin umumy 12 öýjük berlip, 8-si drob bölegi üçindir).

- **44.** Her bir setiri sagynda we çepinde birnäçe boşluklar ýazylan bitin sany şekillendirýän tekst faýly berlen. Bu sanlaryň mukdaryny we jemini tapmaly.
- **45.** Her bir setiri sagyndan we çepinden birnäçe boşluklar ýazylan bitin ýa-da hakyky sany şekillendirýän tekst faýly berlen (hakyky sanlaryň nola deň bolmadyk drob bölekleri bar). Drob bölegi nola deň bolmadyk sanlaryň mukdaryny we hemme sanlaryň jemini tapmaly.
- **46.** Her bir setiri, boşluklar bilen aralary bölünen birnäçe sany saklaýan tekst faýly berlen (hakyky sanlaryň nola deň bolmadyk drob bölekleri bar). Täze tekst faýlyny döretmeli we oňa başky faýldaky hakyky sanlary tertibini bozman ýazmaly.
- **47.** Her bir setiri çepinden we sagyndan birnäçe boşluklar ýazylan bitin ýa-da hakyky sany saklaýan tekst faýly berlen (hakyky sanlaryň nola deň bolmadyk drob bölekleri bar). Faýldaky bitin sanlaryň mukdaryny we jemini tapmaly.
- **48.** Her bir setiri çepinden we sagyndan birnäçe boşluklar ýazylan bitin ýa-da hakyky sany saklaýan tekst faýly berlen (hakyky sanlaryň nola deň bolmadyk drob bölekleri bar). Bitin tipli faýl döretmeli we oňa berlen faýldaky hemme bitin sanlary (tertibini bozman) ýazmaly.
- **49.** Tekst faýly we bitin tipli faýl berlen. Tekst faýlyň her bir setiriniň soňuna bitin tipli faýldaky degişli sany goşmaly. Eger bitin tipli faýl tekst faýlyndan gysga bolsa, onda tekst faýlyň galan setirlerini şol durşuna goýmaly.
- **50.** Tekst faýly berlen. Onuň her bir setiriniň ilkinji 30 öýjügi tekst üçin, galan bölegi bolsa hakyky san üçin berlen. Iki sany faýl döretmeli: 1) tekst faýlyny döretmeli we oňa berlen faýlyň tekst bölegini; 2) hakyky tipli faýl döretmeli we oňa berlen faýldaky hakyky sanlary tertibini bozman ýazmaly.
- **51.** Hakyky sanlaryň üç sütüninden ybarat bolan tablisany özünde saklaýan tekst faýly berlen. Tablisanyň sütünleriniň giňligi

we gyralarynyň deňligi (çep, sag tarapy boýunça deňlenen) islendik bolup biler, tablisa ýörüte *bölüji simwollary (simwol-razdelitel)* saklamaýar. Üç sany hakyky sanlary saklaýan faýl döretmeli we olara degişli sütüniň sanlaryny şol tertipde ýazmaly.

52. Bitin sanlaryň üç sütüninden ybarat bolan tablisany özünde saklaýan tekst faýly berlen. Her bir setiriň başynda we soňunda, şeýle hem sütünleriň arasynda *bölüji simwol* bar. Tablisanyň sütünleriniň giňligi, gyralarynyň deňligi (çep, sag tarapy boýunça deňlenen) we bölüji simwolyň görnüşi islendik bolup. Tablisanyň her bir setirindäki sanlaryň jemini özünde saklaýan bitin sanlar faýlyny döretmeli.

Tekst faýllar bilen işlemek üçin goşmaça ýumuşlar

- **53.** Tekst faýly berlen. Bu tekst faýlyny gabat gelýän hemme dyngy belgileri (şol tertipde) özünde saklaýan simwol faýl döretmeli.
- **54.** Tekst faýly berlen. Bu faýlda gabat gelýän hemme simwollary, boşluklary we dyngy belgileri (gaýtalaman, diňe birini) özünde saklaýan täze simwol faýly döretmeli. Täze faýlda simwollar asyl tekstde gelis tertibinde ýerlesdirilmeli.
- **55.** Tekst faýly berlen. Bu faýlda gabat gelýän hemme simwollary, boşluklary we dyngy belgileri (gaýtalaman, diňe birini) özünde saklaýan täze simwol faýly döretmeli. Täze faýlda simwollary kodlarynyň artyş tertibinde ýerleşdirilmeli.
- **56.** Tekst faýly berlen. Bu faýlda gabat gelýän hemme simwollary, boşluklary we dyngy belgileri (gaýtalaman, diňe birini) özünde saklaýan täze simwol faýly döretmeli. Täze faýlda simwollary kodlarynyň kemeliş tertibinde ýerleşdirilmeli.
- **57.** Tekst faýly berlen. Bu faýlda her bir setir (kiçi) harpyň näçe gezek gaýtalanýanlygyny hasaplamaly we netijäny täze tekst faýla ýazmaly. Täze faýlyň her bir setiri bir harp baradaky maglumatlary özünde saklamaly. Mysal ücin «a 25». Setirler saklaýan harpynyň kodynyň artýan tertibinde ýerleşdirilmeli.

- **58.** Tekst faýly berlen. Bu faýlda her bir setir harpyň näçe gezek gaýtalanýanlygyny hasaplamaly we netijäny täze tekst faýla ýazmaly. Täze faýlyň her bir setiri bir harp baradaky maglumatlary özünde saklamaly. Mysal ücin «a 25». Setirler saklaýan harpynyň mukdarynyň kemeliş tertibinde, eger harplaryň mukdary deň bolsa, onda harpyň kodynyň artyş tertibinde ýerleşdirilmeli.
- **59.** 10 sifrden ybarat bolan setir we tekst faýly berlen. Faýlyň her bir setiriniň

K-njy ornunda duran harpyny, elipbiýde şol hardpan soň S_K -njy orunda duran simwol bilen çalşyrmak arkaly şifrlemeli (K =11 üçin, täzeden S_1 süýşme, we ş.m. ulanylýär). Boşluklary we dyngy belliklerini üýtgetmeli däl.

60. 59-njy ýumuşda beýan edilen algoritm boýunça şifrlenen tekst faýle we setir berlen. Berlen setir faýlyň ilkinji setiriniň sifrden açylan görnüşidir. Faýldaky beýleki setirleri hem açmaly. Eger şifrlenen teksti açmak üçin maglumatlar ýeterlik bolmasa, onda faýly şol durşuna goýmaly.

PROSEDURALARDAKY WE FUNKSIÝALARDAKY MAGLUMATLARYŇ DÜZME TIPLERI

Birölçegli we ikiölçegli massiwler

- **1.** N ölçegli, bitin tipli A massiwiň iň kiçi elementini tapýan, bitin tipli MinElem(A, N) funksiýany beýan etmeli. Bu funksiýany ulanyp degişlilikde N_A , N_B , N_C ölçegli A, B, C massiwleriň iň kiçi elementlerini tapmaly.
- **2.** N ölçegli, hakyky tipli A massiwiň iň uly elementiniň tertip nömerini tapýan, bitin tipli MaxNum(A, N) funksiýany beýan etmeli. Bu funksiýany ulanyp degişlilikde N_A , N_B , N_C ölçegli A, B, C massiwleriň iň uly elementleriniň tertip belgilerini tapmaly.
- **3.** *N* ölçegli, hakyky tipli *A* massiwiň iň kiçi we iň uly elementleriniň orunlaryny tapmaga mümkinçilik berýän *Min*max*Num*(*AN*, *NMin*, *NMax*) prosedurany beýan etmeli. Bitin tipli

- NMin(iň kiçi elementiň tertip belgisi) we NMax (iň uly elementiň tertip belgisi) ululyklar proseduranyň çykyş parametrleri. Bu funksiýany ulanyp degişlilikde N_A , N_B , N_C ölçegli A, B, C massiwleriň iň kiçi elementlerini tapmaly.
- **4.** N ölçegli hakyky tipli A massiwiň elementleriniň ýerleşiş ornyny tersine öwürýän (massiwi inwertirleýän) Invert(A, N) prosedurany beýan etmeli. A massiw proseduranyň hem giriş, hem çykyş parametri bolup durýar. Bu prosedurany ulanyp degişlilikde N_A , N_B , N_C ölçegli A, B, C massiwleriň iň kiçi elementlerini tapmaly.
- **5.** N ölçegli, hakyky tipli A massiwi aşakdaky görnüşde düzleýän (сглаживание) Smooth1(A,N) prosedurany beýan etmeli: massiwiň A_K elementi ilkinji başlangyç K elementiň orta arifmetiki bahasy bilen çalşyrylýar. A massiw proseduranyň hem giriş, hem çykyş parametridir. Bu proseduranyň kömegi bilen berlen N ölçegli A massiwi bäş gezek düzlemeli, her gezekki netijäni ekrana çykarmaly.
- **6.** N ölçegli, hakyky tipli A massiwi aşakdaky görnüşde düzleýän (сглаживание) Smooth2(A,N) prosedurany beýan etmeli: A_1 element üýtgedilmeýär, $A_K(K=2,...,N)$ element A_{K-1} we A_K başlangyç elementleriň ýarym jemi bilen çalşyrylýär. Bu proseduranyň kömegi bilen berlen N ölçegli A massiwi bäş gezek düzlemeli, her gezekki netijäni ekrana çykarmaly.
- 7. N ölçegli, hakyky tipli A massiwi aşakdaky görnüşde düzleýän (сглаживание) Smooth3(A,N) prosedurany beýan etmeli: massiwiň her bir elementiniň ornuna, onuň we goňşy elementleriniň başlangyç bahalarynyň orta arifmetiki bahasyny ýazmaly. A massiw proseduranyň hem giriş, hem çykyş parametridir. Bu proseduranyň kömegi bilen berlen N ölçegli A massiwi bäş gezek düzlemeli, her gezekki netijäni ekrana çykarmaly.
- **8.** N ölçegli, bitin tipli A massiwiň, bitin X sana deň bolan elementlerini aýyrýan RemoverX(A,N,X) prosedurany beýan etmeli. A massiw we N san proseduranyň hem giriş, hem çykyş parametleridir. Bu proseduranyň kömegi bilen degişlilikde N_A , N_B , N_C ölçegleri bolan A, B, C massiwlerden degişli X_A , X_B , X_C sanlary öçürmeli we emele gelen massiwleri hem-de olaryň ölçeglerini çapa çykarmaly.

- **9.** N ölçegli, hakyky tipli A massiwiň galan elementleri artýan tertipde bolar ýaly edip, «artykmaç» elementleri öçürmeli: ilkinji element öçürilmeýär, eger ikinji element birinji elementden kiçi bolsa ol öçürilýär, üçünji element ikinji elementden kiçi bolsa ol öçürilýär we ş.m. Mysal üçin, massiw 5.5, 2.5, 4.6, 7.2, 5.8, 9.4 şeýle görnüşe getitilýär 5.5, 7.2, 9.4. A massiw we N san proseduranyň hem giriş, hem çykyş parametleridir. Bu proseduranyň kömegi bilen N_A , N_B , N_C ölçegli A, B, C massiwleri özgertmeli we emele gelen massiwleri we olaryň ölçeglerini çapa çykarmaly.
- **10.** N ölçegli, bitin tipli A massiwiň X sana deň bolan elementlerini iki gezek gaýtalap ýazýan (dublirleýän) DoubleX(A,N,X) prosedurany beýan etmeli. A massiw we N san proseduranyň hem giriş, hem çykyş parametridir. Bu proseduranyň kömegi bilen ölçegleri N_A , N_B , N_C bolan A, B, C massiwleriň, degişlilikde X_A , X_B , X_C elementlerini iki gezek gaýtalap ýazmaly. Netijeleýji massiwleri we olaryň ölçeglerini çapa çykarmaly.
- **11.** N ölçegli, hakyky tipli A massiwiň elementlerini artýan tertipde tertipleşdirýan SortArray(A,N) prosedurany ýazmaly. A massiw proseduranyň hem giriş, hem çykyş parametridir. Bu proseduranyň kömegi bilen degişlilikde N_A , N_B , N_C ölçegli bolan A, B, C massiwleri tertipleşdirmeli.
- 12. N ölçegli, hakyky tipli A massiw üçin, onuň elementleriniň artýan tertibindäki belgilerini özünde saklaýan bitin tipli I indeks massiwi döredýän SortIndex(A, N, I) prosedurany ýazmaly (Bu ýerde A massiw üýtgemeýär). I indeks massiw çykyş parametri bolup durýar. Bu prosedurany ulanmak bilen degişlilikde N_A , N_B , N_C ölçegleri bolan A, B, C massiwler üçin indeks massiwlerini döretmeli.
- 13. N ölçegli, hakyky tipli A massiwiň elementleriniň orunlaryny aşakdaky ýaly görnüşde çalşyrýän Bell(A,N) prosedurasyny ýazmaly: massiwiň iň kiçi elementi birinji orunda, galan elementleriniň iň kiçisi iň soňky orunda, galanlarynyň iň kiçisi ikinji orunda, galanlarynyň iň kiçisi yzdan ikinji orunda we ş.m. (netijede elementleriň bahalarynyň grafigi jaň-y ýada salar). A massiw proseduranyň hem giriş, hem çykyş parametridir. Bu prosedurany ulanmak arkaly degişlilikde N_A , N_B , N_C ölçegleri bolan A, B, C massiwleri özgertmeli.

- **14.** N_A ölçegli, hakyky tipli A massiwiň elementlerinden degişlilikde N_B we N_C ölçegleri bolan B we C hakyky tipli massiwleri döredýän $Split1(A, N_A, B, N_B, C, N_C)$ prosedurany ýazmaly B massiw A massiwiň hemme täk tertip belgili elementlerini (1,3,...), a C massiw bolsa A massiwiň hemme jübüt tertip belgili elementlerini özünde saklamaly (2,4,...,). B we C massiw hem-de N_B we N_C sanlar çykyş parametrler bolup durýarlar. Bu prosedurany berlen N_A ölçegli A massiw üçin ulanmaly we döredilen B we C massiwleri hem-de olaryň ölçeglerini çapa çykarmaly.
- **15.** N_A ölçegli, bitin tipli A massiwiň elementlerinden degişlilikde N_B we N_C ölçegleri bolan B we C bitin tipli massiwleri döredýän $Split1(A, N_A, B, N_B, C, N_C)$ prosedurany ýazmaly B mssiw A massiwiň hemme elementlerini, a C massiw bolsa A massiwiň hemme täk elementlerini (şol tertipde) özünde saklamaly. B we C massiw hem-de N_B we N_C sanlar çykyş parametrler bolup durýarlar. Bu prosedurany berlen N_A ölçegli A massiw üçin ulanmaly we döredilen B we C massiwleri hem-de olaryň ölçeglerini çapa çykarmaly.
- **16.** K ölçegli, hakyky tipli A massiwden $M \times N$ ölçegli B matrisny döredýän ArrayToMatrRow(A, K, M, N, B) prosedurany ýazmaly. Matrisanyň her bir setiri A massiwiň elementlerinden ybarat bolup durýar; massiwiň «artykmaç» elementleri taşlanylýar; eger massiwiň elementleri ýetmese, onda matrisanyň galan elementleri nol (0) bilen doldurylýar. Ikiölçegli B massiw çykyş parametric bolup durýar. Bu prosedurany ulanmak bilen berlen K ölçegli A massiwden hem-de berlen bitin M we N sanlardan peýdalanmak arkaly $M \times N$ ölçegli B matrisa almaly.
- 17. K ölçegli, hakyky tipli A massiwden $M \times N$ ölçegli B matrisny döredýän ArrayToMatrCol(A, K, M, N, B) prosedurany ýazmaly. Matrisanyň her bir sütüni A massiwiň elementlerinden ybarat bolup durýar; massiwiň «artykmaç» elementleri taşlanylýar; eger massiwiň elementleri ýetmese, onda matrisanyň galan elementleri nol (0) bilen doldurylýar. Ikiölçegli B massiw çykyş parametri bolup durýar. Bu prosedurany ulanmak bilen berlen K ölçegli A massiwden hem-de berlen bitin M we N sanlardan peýdalanmak arkaly $M \times N$ ölçegli B matrisa almaly.

- **18.** Bitin M we N anlardam «küşt tagtasynyň şekilini» tertibinde 0 ýa-da 1 sanlary saklaýan, $M \times N$ ölçegli A matrisany döredýän Chessboard(M, N, A) prosedurany ýazmaly we $A_{1,1} = 0$ bolmaly. Ikiölçegli, bitin tipli A massiw çykyş parametri bolup durýar. Bu prosedurany ulanmak arkaly, berlen M we N sanlary ulanmak bilen $M \times N$ ölçegli A matrisany döretmeli.
- **19.** $M \times N$ ölçegli, hakyky tipli A matrisanyň tapawudyny hasaplaýan Norm1(A, M, N) funksiýany ýazmaly,

$$Norm1(A, M, N) == \max\{|A_{1,J}| + |A_{2,J}| + ... + |A_{M,J}|\},$$
 bu ýerde J -niň 1-den N -e çenli bahalaryndaky iň uly (iň uly) ululyk alynýar. $M \times N$ ölçegli A massiw üçin $Norm1(A, M, N), K = 1, ..., M$ funksiýanyň bahasyny hasaplamaly.

20. $M \times N$ ölçegli, hakyky tipli A matrisanyň tapawudyny hasaplaýan Norm2(A, M, N) funksiýany ýazmaly

$$Norm2(A, M, N) = \max\{|A_{I,1}| + |A_{I,2}| + ... + |A_{I,N}|\},$$
 bu ýerde I -niň 1-den M -e çenli bahalaryndaky iň uly (iň uly) ululyk alynýar. $M \times N$ ölçegli A massiw üçin $Norm2(A, M, N), K = 1, ..., M funksiýanyň bahasyny hasaplamaly.$

21. $M \times N$ ölçegli, hakyky tipli A matrisanyň K-njy setirinde ýerleşýän (eger K > M bolsa, onda funksiýa nol gaýdyp berýär) elementleriň jemini hasaplaýan SumRow(A, M, N, K) funksiýany ýazmaly. Berlen $M \times N$ ölçegli A matrisa üçin

K-nyň berlen üç bahasynda SumRow(A, M, N, K) funksiýanyň bahalaryny hasaplamaly.

- **22.** $M \times N$ ölçegli, hakyky tipli A matrisanyň K-njy sütüninde ýerleşýän (eger K > N bolsa, onda funksiýa nol gaýdyp berýär) elementleriň jemini hasaplaýan SumCol(A, M, N, K) funksiýany ýazmaly. Berlen $M \times N$ ölçegli A matrisa üçin K-nyň berlen üç bahasynda SumCol(A, M, N, K) funksiýanyň bahalaryny hasaplamaly.
- **23.** $M \times N$ ölçegli, hakyky tipli matrisanyň, K_1 we K_2 tertip belgili setirleriniň orunlaryny çalşyrýan SwapRow (A, M, N, K_1, K_2) prosedurany ýazmaly. A matrisa birwagtda giriş we çykyş parametr bolup hyzmat edýär; eger K_1 ýa-da K_2 M-den uly bolsa, onda matrisa

- üýtgedilmeli däl. Bu prosedurany ulanmak arkaly $M \times N$ ölçegli A matrisanyň K_1 we K tertip belgili setirleriniň orunlaryny çalşyrmaly.
- **24.** $M \times N$ ölçegli, hakyky tipli matrisanyň, K_1 we K_2 tertip belgili sütünleriniň orunlaryny çalşyrýan $SwapCol(A, M, N, K_1, K_2)$ prosedurany ýazmaly. A matrisa birwagtda giriş we çykyş parametr bolup hyzmat edýär; eger K_1 ýa-da K_2N -den uly bolsa, onda matrisa üýtgedilmeli däl. Bu prosedurany ulanmak arkaly $M \times N$ ölçegli A matrisanyň K_1 we K_2 tertip belgili sütünleriniň orunlaryny çalşyrmaly.
- **25.** *M* tertipli, hakyky tipli, kwadrat *A* matrisany *transponir-leýān* (baş diagonala görä zerkal serpikdirme) *Transp* (*A*, *M*) prosedurany ýazmaly. *A* matrisa hem giriş, hem çykyş parametri bolup durýar. Bu prosedurany ulanmak arkaly berlen *M* tertipli *A* matrisany transponirlemeli.
- **26.** $M \times N$ ölçegli, hakyky tipli A matrisanyň K_1 -dan K_2 -çenli tertip belgili setirlerini öçürýän ($1 < K_1 \le K_2$) $RemoverRows(A, M, N, K_1, K_2)$ prosedurany ýazmaly. Eger $K_1 > M$ bolsa, onda matrisa üýtgedilmeli däl. Eger $K_2 > M$ bolsa, onda matrisanyň K_1 -den başlap M-e çenli tertip belgili setirleri öçürilýär. A matrisa we M, N sanlar birwagtda hem giriş, hem-de çykyş paramatrler bolup durýärlar. $RemoverRows(A, M, N, K_1, K_2)$ prosedurany ulanmak bilen $M \times N$ ölçegli A matrisanyň K_1 -nji tertip belgili setirinden başlap K_2 -nji tertip belgili setirine çenli baryny öçürmeli we emele gelen matrisany we onuň ölçeglerini çapa çykarmaly.
- **27.** $M \times N$ ölçegli, hakyky tipli A matrisanyň K_1 -dan K_2 -çenli tertip belgili sütünini öçürýän ($1 < K_1 \le K_2$) $RemoverCols(A, M, N, K_1, K_2)$ prosedurany ýazmaly. Eger $K_1 > N$ bolsa, onda matrisa üýtgedilmeli däl. Eger $K_2 > N$ bolsa, onda matrisanyň K_1 -den başlap M-e çenli tertip belgili sütünleri öçürilýär. A matrisa we M, N sanlar birwagtda hem giriş, hem-de çykyş paramatrler bolup durýärlar. $RemoverCols(A, M, N, K_1, K_2)$ prosedurany ulanmak bilen $M \times N$ ölçegli A matrisanyň K_1 -nji tertip belgili sütünden başlap K_2 -nji tertip belgili sütünine çenli baryny öçürmeli we emele gelen matrisany we onuň ölçeglerini çapa çykarmaly.

- **28.** $M \times N$ ölçegli, hakyky tipli A matrisadan $A_{K,L}$ elementi saklaýan setiri we sütüni öçürýän RemoverRowCol(A, M, N, K, L) prosedurany ýazmaly (M > 1 we N > 1; eger K > M ýa-da L > N bolsa, onda matrisa üýtgedilmeýär). Ikiölçegli A massiw we M, N sanlar birwagtda giriş hem-de çykyş parametrleri bolup durýar. $M \times N$ ölçegli, hakyky tipli A matrisa we K, L sanlar berlen. RemoverRowCol(A, M, N, K, L) prosedurany A matrisa üçin ulanmaly we netijede emele gelen matrisanyň ölçeglerini we elementlerini çapa çykarmaly.
- **29.** $M \times N$ ölçegli, bitin tipli A matrisanyň sütünlerini artýan tertipde tertipleşdirýän SortCols(A, M, N) prosedurany ýazmaly (sütünler leksografik deňeşdirilýär: eger-de sütünleriň birinji elemenleri deň däl bolsalar, onda olaryň kiçi element saklaýany kiçi hasaplanylýar; eger sütünleriň birinji elementleri özara deň bolsalar, onda olaryň ikinji elementleri deňeşdirilýär we ş.m.). Ikiölçegli A massiw birwagtda hem giriş, hem çykyş parametri bolup durýar. SortCols(A, M, N) prosedurany ulanmak arkaly $M \times N$ ölçegli A matrisanyň sütünlerini tertipleşdirmeli.

REKURSIÝA

- **1.** Faktorialy N! = 1*2*...*N hasaplaýan hakyky tipli Fact(N) rekursiw funksiýa ýazmaly (N > 0 bitin tipli parametr). Bu funksiýanyň kömegi bilen berlen bäş sanyň faktorialyny hasaplamaly.
- **2.** *Ikileýin faktorialy* N!! = N * (N-2) * (N-4)* hasaplaýan hakyky tipli Fact2(N) rekursiw funksiýa ýazmaly (N>0 bitin tipli parametr. Eger N jübüt san bolsa, onda iň soňky köpeldiji 2-ä deň, eger täk bolsa iň soňky köpeldiji 1-e deň.). Bu funksiýanyň kömegi bilen berlen bäş sanyň ikileýin faktorlalyny hasaplamaly.
 - **3.** X sanyň N-nji derejesini aşakdaky formulalar boýunça tapýan: $X^0 = 1$.

N > 0, jübüt bolanda $X^N = (X^{N/2})^2$,

N > 0, täk bolanda $X^N = X * X^{N-1}$,

N < 0 bolanda $X^N = 1/X^{-N}$

hakyky tipli, rekursiw PowerN(X, N) funksiýany ýazmaly. Bu ýerde $X \neq 0$ hakyky san, N-bitin san. Jübüt N üçin formulada bitinleýin bölmek operasiýasy ulanylmalydyr. Bu funksiýany ulanmak arkaly berlen X üçin, N-iň berlen bäş bahasynda X^N – hasaplamaly.

4. *Fibonaççiniň sanynyň N*-nji elementini hasaplaýan (*N*-bitin san):

$$F_1 = F_2 = 1$$
, $F_K = F_{K-2} + F_{K-1}$, $K = 3,4$, ...

bitin tipli rekurisiw Fib1(N) funksiýa ýazmaly. Bu funksiýany ulanmak bilen Fibonaççiniň berlen tertip belgili bäş sanyny tapmaly we ol sanlary hem-de ol sanlary almak üçin gerek bolan Fib1(N) funksiýany rekursiw çagyryşlaryň sanyny tapmaly.

5. *Fibonaççiniň sanynyň N*-nji elementini hasaplaýan (*N*-bitin san):

$$F_1 = F_2 = 1$$
, $F_K = F_{K-2} + F_{K-1}$, $K = 3,4$, ...

bitin tipli rekurisiw Fib2(N) funksiýa ýazmaly. N 20-den geçmeýär diýip hasaplamaly. Funksiýany rekursiw çagyrmaklygyň sanyny azaltmak maksady bilen Fibonaççiniň hasaplanan bahalaryny özünde saklaýan massiw döretmeli we funksiýa ýerine ýetende ol massiwe ýüzlenmeli. Fib2(N)-niň kömegi bilen Fibonaççniň berlen tertip belgili bäş sanyny hasaplamaly.

DÜRLI MESELELER

- **1.** K berlen natural sanyň iň soňky sifri berlen M natural san bolar ýaly hasaplaýyş sistemanyň P esasy iň kiçi esasy bolmaly. Meselem, eger K = 17, M = 2, onda jogapda: P = 3 alnar.
- **2.** Ähli sanlary dürli bolan A(m, n) massiw berlen. Her bir setiririň iň kiçi elementini tapmaly, soňra alnan hatardan iň uly elementi saýlamaly. Bu iň uly elementi we onuň ýerleşýän setiriniň we sütüniniň tertip belgisni çap etmeli. Meselem, eger m=3, n=3,

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 7 & 5 & 9 \end{pmatrix}$$
 bolsa, onda gözlenýän element 5 bolup, ol

3-nji setirde, 2-nji sütünde ýerleşýär.

- **3.** M otrisatel däl bitin san berlen. M^M sany ikilik hasaplaýyş sistemasyna geçirmeli. Meselem, eger M=3 bolsa, onda jogap: 11011.
- **4.** Goý, A-natural san; P sol sifrler bilen ters tertipde ýazylan san. A berlen san boýunça S = A + P jemi tapmaly. Meselem, eger A= 5671 bolsa, onda S = 7436.
- **5.** Arifmetiki aňlatma köp gat ýaýlary saklaýar. Birinji ýaylary goýup, ikinjileri kwadrat, üçünjileri we galanlaryny figuraly ýaýlar bilen çalşyp aňlatmany düzetmeli. Ýaýlaryň dogry ulanylandygyny barlamaly. Meselem, $\ln(\sin((a+b)\cdot c-d))$ aňlatmany $\ln\{\sin[(a+b)\cdot c-d]\}$ aňlatma bilen çalyşmaly.
- **6.** Berlen sözlemde ikinji orunda berlen harp bolan sözleriň sanyny hasaplaýan programmany düzüň. Sözler arasy boşluklar bilen açylan. Meselem, eger «A» harp we MARAL ERTIR MAMALARYNA GIDÝÄR sözlem berlen bolsa, onda jogap: 2.
- **7.** Tekizlikde N sany nokatlar X(i), Y(i), i=1,2,...,N, koordinatalary bilen berlen. Meýdany mümkin boldugyça iň uly bolan rombyň depeleri bolar ýaly ol nokatlardan islendik dört nokady saýlamaly. Mysal üçin N=9, X(1)=0, Y(1)=0, X(2)=5, Y(2)=0, X(3)=10, Y(3)=0, X(4)=10, Y(4)=5, X(5)=10, Y(5)=10, Y(6)=5, Y(6)=10, Y(7)=0, Y(7)=10, Y(8)=0, Y(8)=5, Y(9)=5, Y(9)=5 berilse, jogap: Y(1), Y(1), Y(2), Y(3), Y(3), Y(5), Y(5), X(7), Y(7).
- **8.** Ýyl we ýylyň gunüniň tertip belgisi berlen. Degişlilikde kalendar senesini almaly. Meselem, eger 2007-nji ýylyň 40-njy güni berlen bolsa, jogap: 2007-nji yylyn fewral aýynyň 9-y.
- **9.** N sany türkmen sözi berlen. Çepden saga, şeýle hem sagdan çepe birmeňzeş okalýan sözleri (palindrom) tapmaly. Meselem, eger *N*=3 we AHHA, HAP, ATa, bolsa, onda jogap: AHHA, ATa.
- **10.** Aşakdaky arifmetiki rebusyň ähli çözüwlerini berýän programmany ýazmaly. Her bir harpyň ýerine zerur sifrleri goýmaly, bu ýerde birmeňzeş harplar birmeňzeş sifrleri, dürli harplar bolsa dürli sifrleri aňladýarlar. $(\acute{Y} \cdot Y + L)^2 = \acute{Y}YL$
- **11.** A(N) bitin bahaly massiw berlen. Bu massiwde jübüt orunda duran elementleriň jemini tapmaly. Meselem, N = 4, A(1) = -3, A(2) = -12, A(3) = 13, A(4) = 13 bolsa, onda jogap: 1.

12. Paskal san üçburçlygynyň ilkinji *N* setirini gurmaly. Meselem, *N*=5 bolanda jogapda aşakdaky üçburçlyk alnar:

				1				
			1		1			
		1		2		1		
							1	
	1		4		6		4	1

(Paskal üçburçlygynyň birinji setiri 1-den durýar. Indiki setirleriň her bir sany öň ýanyndaky setiriň üstündäki we çepindäki elementlerini jemlemek bilen alynýar.)

- **14.** Sanlaryň we latyn elipbiýiniň harplarynyň yzygiderliginden düzülen tekst berlen. Tekstiň sifrler we harplar gezekleşip gelýän iň uzyn bölegini kesgitlemeli. Meselem: eger $xya^2b^3cXyz^4$ tekst berlen bolsa, onda jogap: a^2b^3c .
- **15.** Tekizlikde öz koordinatalary bilen berlen N sany nokat ýerleşýär. Bu nokatlaryň ählisini özünde saklaýan tegelegiň iň kiçi meýdanyny tapmaly we onuň C merkeziniň koordinatalaryny we R radiusyny görkezmeli. Meselem, eger N = 4, (3; 4), (-5; 0), (0; -5), (2.5; 1.4) bolsa, onda jogap: C(0, 0), R = 5.
- **16.** N natural san berlen. Galan sifrleri iň kiçi san emele getirer ýaly haýsy s sifri aýyrmaly (s-aýrylmaly sifriň sany). Meselem, eger N=2435, s =1 bolsa, onda jogap 4 sifr bolar.
- 17. k, m, n sanlaryň käbir X sany degişlilikde 3-e, 5-e we 7-ä bölünende galýan galyndylardygy belli. X-y tapmaly. Meselem, eger k = 1, m = 2, n = 3 bolsa, onda jogap: X = 52.
- 18. Ekranda diwar şekillendirlen. Merkezinde şarjagaz bar. Islendik düwme basylandan soňra şarjagaz islendik ugra hereketlenip bilýär. Şaryň diwarlardan serpikmesi aýnadan ýagtylygyň serpigişi ýaly, ýagny düşme burçy serpikme burçuna deň. Ekranda şarjagazyň hereketiniň şekilini almaly.
- **19.** Käbir natural N san berlen. N sanyň ýönekeýdigini ýa-da ýönekeý däldigini kesgitlemeli. Mysal üçin N =13 bolsa, jogap: «ýönekeý». Eger N=27 bolsa, jogap: «ýönekeý däl».

- **20.** Baş latyn harplardan ybarat käbir söz berlen. Sözde näçe sany çekimli harp (E,Y,U,I,O,A) bardygyny kesgitlemeli. Mysal üçin *«ASDAFE»* berlen bolsa, jogap: *3*.
- **21.** 2008-nji ýylyň Nowruz aýynyň käbir günuni aňladýan d san berlen. onuň hepdäniň haýsy güni bolýandygyny kesgitlemeli. Mysal üçin d=24 berlen bolsa, onda jogap: Ýekşenbe .
- **22.** Berlen natural N sany 3-lik hasaplaýyş sistemasyna geçirmeli.Mysal üçin N=3 berilse,onda jogap:10.
- **23.** Käbir natural C san berlen. Fibonaççiniň yzygiderligi $f_0=0$, $f_1=1, f_n=f_{n-1}+f_{n-2}, n=2,3,...$ formulalar bilen kesgitlenýär. Fibonaççiniň yzygiderligindäki sanlaryň içinden soňy C san bilen gutarýan ilkinjisiniň tertip belgisini tapmaly. Mysal üçin C=7 bolanda jogap: 14.
- **24.** Natural N san berlen. $S=1+1\cdot2+1\cdot2\cdot3+...+1\cdot2\cdot3\cdot...\cdot N$ jemi tapmaly.Netije bitin san görnüşinde aňladylmaly. Mysal üçin N=3 bolanda jogap: 9.
- **25.** Biri-birlerinden birnäçe boşluklar bilen çäklenen sözlerden ybarat setir berlen. Setiriň birinji sözi iň soňky, ikinjisi iň soňkynyň öň ýanyndakysy we ş.m. bolar ýaly setiri özgertmeli. Mysal üçin «Men su gun yarysha geldim» setir berlen bolsa jogap: «geldim yarysha gun su Men».
- **26.** Natural N we tekizlikdäki nokatlaryň koordinatalaryny kesgitleýän X(1), Y(1), X(2), Y(2), ..., X(N), Y(N) hakyky sanlar berlen. Depeleri ol nokatlarda ýerleşen we beýleki nokatlaryň hemmesini öz içinde saklaýan köpburçlugyň depeleriniň koordinatalaryny tapmaly. Mysal üçin N=5, X(1)=0, Y(1)=0, X(2)=0, Y(2)=2, X(3)=2, Y(3)=2, X(4)=2, Y(4)=0, X(5)=1, Y(5)=1 berlen bolsa, jogap: Depeleri X(1)=0, Y(1)=0, X(2)=0, Y(2)=2, X(3)=2, Y(3)=2, Y(4)=0 bolan dörtburçluk.
- **27.** Natural N we M sanlar berlen $(N \ge M)$. 1,2,3,...,N sanlaryň içinden M sanysyny saýlap alyp bolýan ähli usullaryny tapmaly. Mysal üçin N=3, M=2 berlen bolsa, jogap: 3 usul: 1) 1,2; 2) 1,3; 3) 2,3.
- **28.** Natural N san we tekizlikdäki nokatlaryň koordinatalaryny kesgitleýän X(1), Y(1), X(2), Y(2), ..., X(N), Y(N) hakyky sanlar berlen. Depeleri ol nokatlarda ýerleşen we beýleki hiç bir nokatlary

öz içinde saklamaýan üçburçlugyň haýsy hem bolsa biriniň depeleriniň koordinatalaryny tapmaly. Mysal üçin N=5, X(1)=0, Y(1)=0, X(2)=0, Y(2)=2, X(3)=2, Y(3)=2, X(4)=2, Y(4)=0, X(5)=1, Y(5)=1 berlen bolsa, jogap: Depeleri X(1)=0, Y(1)=0, X(2)=0, Y(2)=2, X(5)=1, Y(5)=1 bolan üçburçluk.

- **29.** Natural N san berlen. $1, 2, 3, ..., N^2$ sanlary N setirli we N sütünli tablisada şu suratdaky ýaly ýerleşdirmeli.
- **30.** Natural N san berlen. $S = 2^{-1} + 2^{-2} + ... + 2^{-N}$ jemiň ähli sifrlerini tapmaly.

Mysal üçin N = 2 berilse, jogap: S = 0.75.

- **31.** Natural N we M sanlar berlen $(N \ge M)$. 1,2,3,..., N sanlaryň içinden M sanysyny saýlap alyp bolýan ähli usullaryny tapmaly. Mysal üçin N=3, M=2 berlen bolsa, jogap: 3 usul:
 - 1) 1,2 2) 1,3 3) 2,3.
- **32.** Deňtaraply üçburçlugyň tarapy N deň bölege bölünipdir. Bölünme nokatlarynda garşylykly taraplara parallel gönüler geçirilipdir. Netijede emele gelen ähli üçburçluklaryň mukdaryny tapmaly. Mysal üçin N=2 bolanda jogap: 5.
- **33.** Berlen natural N sany natural sanlaryň jemi görnüşinde aňladyp bolýan ähli usullaryny tapmaly. Mysal üçin N=3 berlen bolsa, jogap: 3 sany usul bar. Olar 1)3=3, 2)3=2+1, 3)3=1+1+1.
- **34.**Natural M sanberlen. Agramlary 1,2,5,10,20,50,100,200,500,... gram bolan çekiw daşlarynyň iň az mukdaryny ulanyp, terezide agramy M gram bolan ýüki çekmeli (daşlary tereziniň iki tarapynda hem goýup bolýar). Mysal üçin M=9 berlen bolsa, onda jogap: 2 daş ulanyldy, tereziniň bir tarapynda ýük we 1 gramlyk daş, beýleki tarapynda bolsa 10 gramlyk daş goýuldy.
- **35.** Natural N we hakyky X(1), X(2), ..., X(N) sanlar berlen. Hakyky sanlaryň içinden köpeltmek hasyly iň uly bolanlaryny saýlamaly. Meselem N=3, X(1)=1, X(2)=-2, X(3)=3 berlen bolsa, onda jogapda: iň uly köpeltmek hasyly 3-e deň bolan X(1)=1, X(3)=3 alnar.

- **36.** Soňy 23 bilen gutarýan, 23-e galyndysyz bölünýän we sifrleriniň jemi 23-e deň bolan iň kiçi natural sany tapmaly.
- **37.** Natural N we hakyky X san berlen. $1 + X + \frac{X^2}{2!} + \frac{X^3}{2!} + \dots + \frac{X^N}{N!}$ aňlatmanyň bahasyny hasaplamaly. Bu ýerde $N! = 1 \cdot 2 \cdot 3$.
- ... \cdot N. Meselem N=2, X=3 berlen bolsa, onda jogapda: 8.5 alnar.
- **38.** Natural N san berlen. N sandan kiçi bolan ähli natural sanlaryň içinden 8-lik hasaplaýyş sistemasyndaky ýazgysyndaky sifrleriň jemi iň uly bolanyny tapmaly. Eger şeýle sanlaryň birnäçesi bar bolsa, onda olaryň iň ulysyny tapmaly. Meselem N=20 berilse, onda jogapda: 15 alnar.
- **39.** Küşt tagtasynda ähli öýlere perzileriň iň bolmanda biri howp salar ýäly, onda 5 sany perzini ýerleşdirmeli.
- **40.** Natural N san berlen. Ol sany ýönekeý köpeldijilere dagytmaly. Meselem N = 6 berlen bolsa, onda jogapda 6 = 2 * 3 alynmaly.
- **41.** Natural *N* san berlen. *N*-den kiçi bolan we 2, 3, 4, 5, 6, 7, 8, 9 sanlara köpeldende sifrleriniň jemi üýtgemeýän ähli natural sanlary tapmaly.
- **42.** Natural N we M sanlar berlen. $N \times M$ ölçegli küşt tagtasynda at her bir öýjüge diňe bir gezek baryp, hemme öýjüklere aýlanyp biljekdigini ýa-da bilmejekdigini kesgitlemeli. Meselem N=3, M=4 berlen bolsa onda jogap: biler we atyň göçüm belgileri aşakdaky tablisada görkezilýär.

8	11	6	3
1	4	9	12
10	7	2	5

- **43.** A(0), A(1), A(2), A(3), A(4), A(5) bitin sanlar berlen. Eger $A(0) + A(1) \cdot x + A(2) \cdot x^2 + A(3) \cdot x^3 + A(4) \cdot x^4 + A(5) \cdot x^5 = 0$ deňlemäniň bitin sana deň bolan kökleriniň bardygy belli bolsa, onda ol kökleriň ählisini tapmaly.
- **44.** Natural N we M sanlar berlen. Her biri M-den geçmeýän we arifmetiki progressiýany emele getirýän N sany ýönekeý sanlary tap-

- maly. Meselem N=3, M=10 berlen bolsa, onda jogapda: 3, 5, 7 sanlar alnar.
- **45.** Natural N san berlen. $2^{2^1} + 2^{2^2} + ... + 2^{2^{N-1}} + 2^{2^N}$ aňlatmanyň bahasynyň 7-ä bölünende galýan galyndysyny tapmaly. Meselem N = 2 berlen bolsa, onda jogapda: 6 alnar.
- **46.** Natural N we hakyky X(1), Y(1), X(2), Y(2), ..., X(N), Y(N) sanlar berlen. Hakyky sanlar tekizlikdäki käbir nokatlaryň koordinatalaryny aňladýar. Depeleri ol nokatlarda bolan we ähli nokatlary öz içinde saklaýan güberçek köpburçlugyň depeleriniň koordinatalaryny we meýdanyny kesgitlemeli. Meselem N = 4, X(1) = 0, Y(1) = 0, X(2) = 2, Y(2) = 2, X(3) = 2, Y(3) = 0, X(4) = 1, Y(4) = 0,5 berlen bolsa onda jogap: depeleri: (0, 0), (2, 2), (2, 0) koordinataly nokatlarda, meýdany 2-ä deň bolan üçburçluk.
- **47.** Natural N, M we K sanlar berlen. $\frac{M}{N}$ drobyň bahasyny oturdan soň K sifr bolar ýaly takyklykda hasaplamaly. Meselem N = 13, M = 7, K = 5 berlen bolsa, onda jogapda 0,53846 alnar.
- **48.** *A* we *B* natural sanlar berlen $(10^{10} < B < A < 10^{20})$. A+B we A-B aňlatmalaryň bahalarynyň ähli sifrlerini tapmaly. Meselem A=123456789012 we B=98765432109 berlen bolsa, onda jogapda 222222221121 we 24691356903 alnar.
- **49.** Baş latyn harplardan we boşluklardan ybarat setir berlen. Setirdäki şol bir harpdan başlanýan we gutarýan sözleriň iň uzynyny tapmaly. Meselem *«ABA BABA DARD FIREF GERA* " setiri berlen bolsa, onda jogapda *FIREF* alnar.
- **50.** 2009-njy ýylyň käbir senesiniň aýyny aňladýan a we gününi aňladýan g sanlar berlen. Şol senede hepdäniň haýsy güni bolar. Meselem a=3, g=25 berlen bolsa, onda jogapda *carsenbe* alnar.
- **51.** Natural N we hakyky X(1), X(2), X(3),..., X(N) sanlar berlen. Ilki hakyky sanlaryň otrisatellerini artýan tertipde, soňra hakyky sanlaryň položitellerini kemelýän tertipde çap etmeli. Meselem N=5, X(1)=1, X(2)=-1, X(3)=2, X(4)=-2, X(5)=3 sanlar berlen bolsa, onda jogapda: -2; -1; 3; 2; 1 sanlar alnar.

- **52.** Natural N we K sanlar berlen. \sqrt{N} köküň bahasyny oturdan soň K sifr bolar ýaly takyklykda hasaplamaly. Meselem N=13, K=5 berlen bolsa, onda jogapda 3.60555 alnar.
- **53.** A we B natural sanlar berlen ($10^{10} < B < A < 10^{20}$). $A \cdot B$ köpeltmek hasylyň bahasynyň ähli sifrlerini tapmaly. Meselem A=123456789012 we B=98765432109 berlen bolsa, onda jogapda 12193263113559823186308 alnar.
- **54.** Baş latyn harplardan we boşluklardan ybarat setir berlen. Setirdäki her bir sözden bir harp alnyp ýasalan sözleriň içinden palindrom, ýagny çepden saga we sagdan çepe birmeňzeş okalýan sözleri tapyp boljakdygyny ýa-da bolmajakdygyny kesgitlemeli. Meselem *«AB BABA DAR BIREF GERA»* setiri berlen bolsa, onda jogap: bolýar we ol söz *ABDBA* bolar.
- **55.** Natural y, a we g sanlar berlen. 2009-njy ýylyň 1-nji ýanwary penşenbedigi belli bolsa, onda ýenede y ýyldan, a aýdan we g günden soň haýsy sene hem-de hepdäniň haýsy güni boljakdygyny kesgitlemeli. Meselem y=1, a=1, g=1 berlen bolsa, onda jogapda: 2010-njy ýylyň fewral aýynyň 2-si we sişenbe alnar.
- **56.** Natural N we bitin X(1), X(2), X(3),...,X(N) sanlar berlen. Bitin sanlary sifrleriniň jemi artýan görnüşde tertipleşdirmeli. Eger sifrleriniň jemleri gabat gelýän sanlar bar bolsa, onda tertipleşdirmäni olaryň ululyklary boýunça geçirmeli. Meselem N=5, X(1)=19, X(2)=20, X(3)=98, X(4)=100, X(5)=2 sanlar berlen bolsa, onda jogapda: 100; 2; 20; 19; 98 sanlar alnar.
- **57.** Harplardan, sifrlerden, dört sany arifmetiki amaldan we ýaýlardan düzülen adaty görnüşde ýazylan arifmetiki aňlatma berlen. Aňlatmadaky artykmaç ýaýlary aýyrmaly.

Meselem ((6/2)*A+(8-5))/(E) görnüşli aňlatma berlen bolsa, onda jogapda (6/2*A+8-5)/E alnar.

58. Setir şu kada boýunça düzülýär: 1-nji ädimde setir boş; 2-nji ädimde setir ikeldilýär we onuň çepine a harp goşulýar; 3-nji ädimde setir ýene-de ikeldilýär we çepine b harp goşulýar we ş.m. Natural N we M sanlar berlen (N<27). N-ji ädimde emele gelen setiriň M-nji simwolyny tapmaly. Meselem N=4, M=5 berlen bolsa, onda 4-nji

ädimde *cbaabaa* setir emele geler we onuň 5-nji simwoly *b* harp bolýar.

- **59.** Natural N we bitin X(1), Y(1), X(2), Y(2), ..., X(N), Y(N) sanlar berlen. Bitin sanlar tekizlikdäki käbir köpburçlugyň depeleriniň koordinatalaryny aňladýar. Köpburçlugyň taraplarynyň üstünde ýatan näçe sany bitin bahaly koordinataly nokatlaryň bardygyny hasaplamaly. Meselem N=4, X(1)=0, Y(1)=0, X(2)=0, Y(2)=2, X(3)=2, Y(3)=2, X(4)=2, Y(4)=0 berlen bolsa onda jogap: S nokat we olaryň koordinatalary (0,0), (0,1), (0,2), (1,2), (2,2), (2,1), (2,0), (1,0).
- **60.** Agramlary I, 2, ..., N gram bolan çeküw daşlary bar. Her bir jübütdäki daşlaryň jemi agramy ýönekeý san bolar ýaly, ol çeküw daşlary mümkin bolan iň köp mukdardaky jübütlere paýlamaly. Meselem N=7 berlen bolsa, onda jogapda: (1,6), (7,4), (5,2) alnar.
- **61.** Natural N we hakyky X(1), X(2), ..., X(N) sanlar berlen. Hakyky sanlaryň içinden iň uzyn artýan yzygiderligi saýlamaly. Meselem N=4, X(1)=1, X(2)=2, X(3)=-1, X(4)=3 sanlar berlen bolsa, onda jogapda 1, 2 we 3 sanlar alnar.
- **62.** Harplardan, sifrlerden, goşmak, aýyrmak we köpeltmek amallaryndan we ýaýlardan düzülen adaty görnüşde ýazylan iki sany arifmetiki aňlatma berlen. Bu aňlatmalaryň toždestwolaýyn deňdigini ýa-da deň däldigini kesgitlemeli. (Eger aňlatmalar onuň düzümine girýän harplaryň islendik bahalarynda deň bahaly bolsalar, onda olara toždestwolaýyn deň diýilýär). Meselem 1+a+b*(c+d) we b*d+1+a+b*c görnüşli aňlatmalar berlen bolsa, onda jogapda: toždestwolaýyn deň alnar.
- **63.** Setir şu kada boýunça düzülipdir. 1-nji ädimde setir boş. 2-nji ädimde setir ikeldilýär we onuň çepine a harp goşulýar. 3-nji ädimde setir üçeldilýär we çepine b harp goşulýar we ş.m. Natural N we M sanlar berlen (N < 27). N-ji ädimde emele gelen setiriň M-nji simwolyny tapmaly. Meselem N=3, M=2 berlen bolsa, onda
- 3-nji ädimde baaa setir emele geler we onuň 2-nji simwoly a harp bolýar.
- **64.** Natural N we bitin X(1), Y(1), X(2), Y(2), ..., X(N), Y(N) sanlar berlen. Bitin sanlar tekizlikdäki käbir köpburçlugyň depeleriniň

koordinatalaryny aňladýar. Köpburçlugyň taraplarynyň üstünde ýa-da içinde ýatan näçe sany bitin bahaly koordinataly nokatlaryň bardygyny hasaplamaly. Meselem N=4, X(1)=0, Y(1)=0, X(2)=0, Y(2)=2, X(3)=2, Y(3)=2, X(4)=2, Y(4)=0 berlen bolsa onda jogap: 9 nokat we olaryň kordinatalary (0,0), (0,1), (0,2), (1,2), (2,2), (2,1), (2,0), (1,0), (1,1).

- **65.** Agramlary 1, 2, ..., N gram bolan çeküw daşlary bar. Her bir jübütdäki daşlaryň jemi agramy ýönekeý san bolar ýaly, ol çeküw daşlary mümkin bolan iň köp mukdardaky jübütlere paýlamaly. Meselem N=7 berlen bolsa, onda jogapda: (1,6), (7,4), (5,2) alnar.
- **66.** Natural N we hakyky X(1), X(2),..., X(N) sanlar berlen. Hakyky sanlaryň içinden iň uzyn arifmetiki progressiýany saýlamaly. Meselem N=5, X(1)=1, X(2)=2, X(3)=-1, X(4)=3, X(5)=4 sanlar berlen bolsa, onda jogapda 1, 2, 3 we 4 sanlar alnar.
- **67.** n sany $a_1, a_2, ..., a_n$ bitin sanlar berlen. Bu sanlaryň täkleriniň iň ulusy bilen jübütleriniň iň kiçisiniň jemini tapmaly. Meselem, eger n = 5, $a_1 = 3$, $a_2 = 1$, $a_3 = 5$, $a_4 = 2$, jogap: 7.
- **68.** Rim sifrleri bilen ýazylan 5000-den kiçi bolan san berlen. Sanyň söz ýazgysyny çap etmeli. Meselem, MCCCLIX berlen bolsa, jogap: «Bir müň üç ýüz elli dokuz».
- **69.** Käbir *n* natural sanyň sagyndan üç sifrleri ýazdylar. Alnan san 1-den *n*-e cenli ähli natural sanlaryň jemine deň boldy. *n*-i tapmaly.
- **70.** Her setirdäki, her sütündäki we diagonallardaky duran sanlaryň jemi deň bolar ýaly 3 setirli we 3 sütünli tablisany 1, 2, 3 sanlar bilen doldurmaly.
- **71.** Towuklaryň we towşanlaryň aýaklarynyň sany n deň. Olaryň näçesi towuk we näçesi towşan? Hemme mümkin bolan kombinasiýalary tapmaly. Meselem, n = 10 bolsa, jogap: a) 3 towuk, 1 towşan; b) 1 towuk, 2 towşan.
- 72. $\overline{ABC} * \overline{ABC} = \overline{AEFGA}$ san rebusynyň ähli çözüwlerini tapmaly. Bu ýerde, adatça bolşy ýaly, birmeňzeş harplara birmeňzeş sifrler, dürli harplara dürli sifrler degişli, birinji sifr bolsa nol bolup bilmeýär.

- **73.** Soňky sifri n bolan şeýle sanlar bar: n sifr sanyň başyna geçirilse san n esse ulalýar. Meselem, 102564 san, n = 4, 410256 = 102564 · 4 bolanda berlen şerti kanagatlandyrýan iň kiçi natural sanlary tapmaly.
- **74.** p natural san berlen. $p = a_0 + a_1 \cdot 3 + a_2 \cdot 3^2 + ... + a_n \cdot 3^n$ deňlik ýerine ýeter ýaly iň kiçi n natural sany we bahasy -1, 0 ýa-da 1 deň bolan $a_0, a_1, a_2, ..., a_n$ sanlary tapmaly.
- **75.** n setirden we m sütünden durýan bitin sanlaryň tablisasy berlen. Her setirden iň uly element saýlanyp, olaryň içinden hem iň kiçisi alnypdyr. Soňra her sütünden iň kiçi element saýlanyp, olaryň içinden hem iň ulusy alnypdyr. Alnan sanlaryň jemini tapmaly. Meselem, n = 3, m = 4 we aşakdaky tablisa berlen bolsa, jogap: 9.

4	3	2	5
8	6	7	1
9	10	11	12

75. Häzirki döwürde ulanylýan telefonlarda sifrler bilen käbir latyn harplaryň arasynda baglanyşyk bar. Ol 2-nji tablisada görkezilen. Latyn harplaryndan düzülen sözlemi sifrler bilen aňlatmaly. Meselem, «Bu gun asman asuda.» berlen bolsa, jogap: 2288048866027777626602777788321

1	2	3	4	5	6	7	8	9	0
	ABC	DEF	GHI	JKL	MNO	PQRS	TUV	WXYZ	

- **76.** a < 100 hakyky san berlen. Ony gysgalmaýan ady drob görnüşe geçirip, söz bilen ýazmaly. Meselem, 98,25 berlen bolsa, jogap: «Togsan sekiz bitin dortden bir».
- 77. Natural n san berlipdir. Ol sanyň deň sifrlerini barmy? Eger meňzeş sifrler ýok bolsa, onda «Ýok» diýen ýazgyny, eger bar bolsa, onda meňzeş sifrleri aýry-aýry setirlerde ekrana çykarmaly.
 - **78.** Tertip boýunça *n*-nji ýönekeý sany tapmaly.
- **79.** aýy we ýyly aňladýan natural sanlar berlipdir. Ol aýyň kalendaryny tapmaly.

- **80.** n natural san we n sany bitin sanlar berlipdir. Näçe dürli sanyň bardygyny kesgitlemeli.
- **81**. Tekst faýly berlipdir. Bu faýldaky her bir simwolyň sanyny kesgitlemeli
- **82.** «*h* sagat, *m* minut, *s* sekunt» wagtyň pursadyny görkezýän *h*, *m*, *s* (0 < *h* ≤ 23, 0 ≤ *m* ≤ 59, 0 ≤ *s* ≤ 59) bitin sanlar berlipdir. Sagat peýkamynyň sutkanyň başyndan bäri näçe burça guşarandygyny (gradus hasabynda), $\varepsilon = 10^{-2}$ takyklykda kesgitlemeli.

Mysal: üçin h=3, m=0, s=0 bosa onda jogaby: 90.00.

83. Natural *n* san berlipdir. $\varepsilon = 10^{-8}$ takyklykda

$$\sqrt{1+\sqrt{2+\sqrt{3+...+\sqrt{n}}}}$$
 jemi hasaplamaly.

Mysal: üçin n = 2 bolanda jogaby: 1.55377400

84. Aralary bir ýa-da birnäçe boşluk bilen bölünen sözlerden ybarat tekst faýly berlipdir. Ol faýldaky diňe dürli simwollardan ybarat bolan sözleri ekrana çykarmaly.

Mysal: Aman galam kitap. Jogaby: kitap

85. Sanyň onluk ýazgysyndaky sifrleri jemleri deň bolan iki topara bölüp bolýan bolsa, onda ol sana «Şowly» san diýilýär. Berlen natural M sanyň «Şowly» sandygyny ýa-da däldigini kesgitlemeli. Eger M şowly san bolasa, onda toparlara bölmekligiň iň bolmanda bir usulyny görkeziň. Eger M şowly san bolmasa onda «Şowly san däl» – diýen ýazgyny ekrana çykarmaly.

Mysal: M=1234. Jogaby «söwly san», 14; 23

86. Natural *a* we *n* sanlar berlipdir $(a \le 9, n \le 700)$. a^n – has a plantaly.

Mysal: a = 3, n = 20 bolsa, jogaby: 3486784401

87. Natural N san berlipdir. N x N kwadrat matrisany 1-dan N^2 -a çenli sanlar bilen spiral boýunça doldurmaly.

Mysal: N = 3 bolanda, jogaby:

1 2 3

894

765

88. Natural n san we $a_1, a_2, a_3, \ldots a_n$ bitin sanlaryň yzygiderligi berlipdir. Galan sanlar artýan yzygiderligi emela getirer ýaly iň az elementiň üstüni çyzmaly.

Mysal: n=4; {7, 2, 6, 9} bolsa onda jogaby: 3; {2, 6, 9}

89. (Uly sanlary özara köpeltmek) Natural n we m sanlar berlipdir. Olaryň köpeltmek hasylyny tapmaly.

Mysal: n=9876543210, m=1023456789, jogaby: 10108215200126352690

90. Natural m san berlipdir. 1,2,3,4,5,6,7,8,9 yzygiderligiň sifrleriň tertibini bozman käbir sifrleriň arasyna +(plýus), -(minus) alamatlary goýmaly. Netijede emele gelen aňlatmanyň bahasy m-e deň bolamaly. Mümkin bolan wariantlaryň hemmesini tapmaly.

Eger talap edilýän aňlatmany alyp bolmaýan bolsa, onda bu baradaky habary ekrana çykarmaly.

91. San okunda n sany kesim öz kordinatalary bilen berlipdir. Ol kesimleriň umumy nokatlary barmy? Eger bar bolsa ol nokatlaryň islendik birini görkeziň, ýok bolsa «Umumy nokady ýok» – diýen ýazgyny ekrana cykarmaly.

Mysal: n=3, [2,6]; [4,8]; [5,9]; jogaby: 5,5;

92. Tekst faýlyndaky sanlaryň jemini tapmaly.

Mysal üçin: «abçd12jk hjhjh 78 jkj6ds 2mmm 1r1», jogaby: 100.

93. Şäherleriň birinde maşynlaryň belgileri n sifrden ybarat. Eger belgide iň bolmanda k sany birmeňzeş sifr bar bolsa, onda ol belgä owadan belgi diýilýär. Ol şäherde ýaşaýan Ataş Atabaýew öz maşynyndaky belginiň owadan belgi bolmagy üçin ondaky sifrleri çalyşmakçy bolýar. Ýöne n sifriň birini çalyşmak üçin köne hem-de täze sifrleriň tapawutlarynyň modulyna deň bolan pul tölemeli. Iň az çykdajy etmek bilen ol belgini owadan belgä öwürmek üçin Ataşa kömek ediň!

Mysal üçin: n = 4, k = 3, belgi = 1234; jogaby: tölemeli pul = 2, täze belgi = 1333;

Bellik: bärde belgi = 1234; |2 - 3| = 1 we |4 - 3| = 1, 1 + 1 = 2; jogap 1333;

Üns beriň! Eger ýokardaky şertleri kanagatlandyrýan jogap birnäçe bolsa onda ol jogaplaryň iň kiçisini çapa çykarmaly! (2224,1333 iki jogap bar olaryň iň kiçisi 1333)

- **94.** 2 we 5 sanlara kratny däl n (0 <= n <= 10000) san berlipdir. n-e kratny, onluk ýazgysynda diňe 1-likleriň yzygiderligi bolýan san bardyr. Olaryň iň kiçisini tapyň. Mysal üçin n = 3, jogap = 3(birlikleriň sany, ýagny 111); n = 7, jogap = 6; n = 9901, jogap = 12;
- **95.** Erkin san alýarys. Eger ol palindrom däl bolsa, onda ony tersine ýazýarys we berlen san bilen goşýarys, we bu işi palindrom emele gelýänçä dowam etdirýäris. Berlen erkin san üçin palindrom almak üçin edilmeli ädimleriň sanyny kesgitlemeli. Meselem 45 bolsa jogap 1.
- **96.** Ataşyň sanlar bilen bagly şeýle güýmenjesi bar. Ol ikilik hasaplaýyş sistemasynda islendik bir bitin x san alýar. Eger ol san täk bolsa onda onuň üstüne 1-i goşýar, jübüt bolsa ol sany ikä bölýär. Ataş iň soňunda 1 alynýança bu hereketini dowam etdirýär. Berlen x sandan 1-i almak üçin gerek bolan amallaryň sanyny tapmaly.

Meselem: 1001001 girizilse, onda jogap 12 bolar.

97. Berlen köpagzanyň aňlatmasy we *x*-iň bahasy boýunça köpagzanyň bahasyny hasaplamaklyga mümkinçilik berýän programma ýazmaly.

Berlen maglumatlar faýldan girizilýär. Giriş faýlynyň birinji setirinde biragzalaryň jemi görnüşinde köpagza ýazylandyr. Biragzalaryň arasynda «+» ýa-da «-» alamatlar bar. Ilkinji biragzanyň öňünde hem «-» alamaty bolup biler. Biragza aşakdaky ýaly ýazylýar

[<Koeffisiýent>*] x [^<Dereje>]

Bu ýerde <Koeffisiýent> 100-den uly bolmadyk natural san, x – elmydama kiçi latyn harpy bilen ýazylýan üýtgeýän simwol ululyk. <Dereje> 4-den uly bolmadyk natural san. Kwadrat ýaýlaryň içine alnylyp ýazylan parametrler bolman hem bilerler. Ikinji setirde x-iň bahasy bolan bir bitin san ýazylandyr.

Meselem: eger 8*x+5 we x=7 girizilse, onda jogap 61 bolar.

98. Bir million sany «Z» harpdan durýan setir berlipdir. Üç parametr bilen kesgitlenýän, setiriň i-nji ornundan j-nji ornuna çenli harpy α simwol bilen çalyşýan (α, i, j) çalyşma amalyny kesgitläň. Çalyşma amallarynyň berlen n yzygiderligi ýerine ýetenden soň setirde ňäçe dürli simwollaryň boljakdygyny kesgitlemeli.

Meselem, eger n = 3 we (A, 1, 5), (Y, 10, 15), (B, 1, 100) berlen bolsa, onda jogap=2.

99. Eger natural sanyň ýazgysynda ikiden köp dürli sifr duş gelmeýän bolsa, onda ol sana ikihilli diýilýär. Mysal üçin, 3, 23, 33, 100, 12121 – sanlar ikihilli, a 123 we 9980 -ikihilli däl.

Berlen natural N san üçin oňa iň ýakyn bolan ikihilli sany tapmaly(eger şeýle sanlar iki sany bolsa, onda olaryň islendik birini).

Meselem: N=123. Jogap: 122. N=11111. Jogap: 11111.

100. Faýlda simwollaryň setiri berlipdir. Bu setiriň sifrlerinden iň uly sany - faktorialy düzmeli. Hemme sifrleri ulanmak hökman däl. 1-den *N*-e çenli sanlaryň köpeltmek hasylyna N! diýilýär. Başgaça aýdylanda *N*!=1*2*3*...**N*. 0!=1 diýip hasap edilýär. Setirdäki simwollayň sany 100-den köp däldir.

Meselem: eger «Olimpiada. 25-nji noýabr. 4-nji mysal» setir berlen bolsa, onda jogap 24 bolar(sebäbi 24 = 4!).

101. Ataşyň doglan gününe bir gyz elýaglyk sowgat bermekçi bolýar. Ol gyz özüniň sowgat berjek elýaglygyny 0-dan n-e çenli sanlar bilen nagyşlamak isledi. Nagyş romb görnüşinde bolup, rombyň merkezinde iň uly *n* san ýerleşmeli, merkezden daşlaşdygyça ol sanlar kiçelmeli. Netijäni (nagşy) faýla ýazdyrmaly.

Meselem n = 3 bolanda nagyş aşakdaky görnüşde bolar:

			0			
		0	1	0		
	0	1	2	1	0	
0	1	2	3	2	1	0
	0	1	2	1	0	
		0	1	0		
			0			

- n ($2 \le n \le 9$) san berlipdir. Boşluklaryň (probelleriň) sanyna berk gözegçilik edip nagşy takyk gurmaly (bolmasa Ataş öýkelär!).
- **102.** Bitin n sany sanlar berlipdir. Ol sanlaryň içinden köpeltmek hasyly iň uly bolan üç sany tapmaly.

Meselem: *n*=9, {3, 5, 1, 7, 9, 0, 9, -3, 10}; jogaby: 9, 10, 9

103. Natural n san berlipdir $(1 \le n \le 10^9)$. Ol sany iň uly umumy bölüjisi [IUUB(a, b)] iň uly bolar ýaly natural a we b sanlaryň jemi görnüşinde ýazmaly.

Meselem: n = 15; jogaby: 5,10

104. Küşt tagtasynda ak Ferzi (F) we n sany öý öz koordinatalary bilen berlipdir. Ferzi öz göçüm kadasyny bozman görkezilen öýlere iň az göçümde aýlanyp çykmaly. Göçümleriň sanyny we koordinatalaryny tapmaly. Birnäçe çözüwi bar bolsa, olardan birini tapmaklyk ýeterlikdir.

Meselem: F(8,1), barmaly öýleri: (7,6; 5,7) bolsa jogaby: 4 göçümde (8,6; 7,6; 5,6; 5,7);

- **105.** Küşt tagtasynda sekiz sany ferzini biri-birine howp salmaz ýaly edip ýerleşdirmekligiň mümkin bolan hemme wariantlaryny tapmaly. Ol wariantlary belgiläp ekrana çykarmaly.
- **106.** N setireden we M sütünden ybarat bolan matrisa berlipdir (1<=N<=20, 1<=M<=20). Ol matrisanyň ýokarky çep öýünden (1,1) başlap aşaky sag (N, M) öýüne gelmeli. Diňe aşak hem-de saga hereket etmäge rugsat berilýär. Üstünden geçilen öýlerimizdäki sanlaryň jemi iň kiçi (iň kiçi) bolmaly. Jemi hasaplanymyzda (1,1) we (N, M) öýlerdäki sanlary hem hasaba almaly. Şol jemi tapmaly. (Ýoly çapa çykarmak hökman däl).

Gerekli maglumatlar tekst faýlyndan okalýar. Programma faýlyň adyny soraýar. Ol faýlyň birinji setirinde *N*-iň bahasy, ikinji setirinde *M*-iň bahasy, üçünji setirden başlap *N* setirde bolsa matrisanyň elementleri berlipdir. Matrisanyň elementleriniň arasy bir boşluk bilen bölünipdir. Netijäni ekrana çykarmaly.

Meselem: faýlada aşakdaky maglumatlar bolsa:

3

3

111

222

3 3 3 onda jogaby: 8

107. Küşt tagtasynda At (A) hem-de Ferzi(F) bar (Başlangyç ýagdaýda Atyň ýerleşýän öýüni Ferzi urmaýar). At Ferziniň urýan öýlerine barmazdan, iň gysga ýol bilen görkezilen öýe barmaly (görkezilen öýi hem Ferzi urmaýar). Atyň göçüm sanyny we ýöreýän ýoluny tapmaly. Eger barmak mümkin däl bolsa, onda «Baryp bolmaýar» – diýen ýazgyny ekrana çykarmaly.

Meselem: A (1,1), F(2,5), Görkezilen öý(1,3); Jogaby: 2 {3,2; 1,3}

108. Birnäçe setirden ybarat tekst faýly berlipdir. Faýldaky setirleriň sany <=100. Programma faýlyň adyny soraýar. Bu faýlda diňe aýratyn bir setir diňe bir gezek bolup, beýleki setirler iki ýa-da birnäçe gezek gaýtalanýarlar. Şol ýeke täk setiri tapmaly.

Meselem, görkezilen faýlda

Galam Kitap

Mel

Galam

Mel

setirler bar bolsa bolsa, jogaby: Kitap

109. Dekart koordinatalar sistemasynda öz koordinatalary bilen A, B, C, D nokatlar berlipdir. A, B, C nokatlaryň üçburçlygyň depelerini emele getirýänligi belli bolsa, D nokadyň şol üçburçlyga degişlidigini ýa-da däldigini kesgitlemeli.

Meselem: A(0,0), B(4,0), C(0,4), D(4,4) bolsa, onda jogaby: Degişli däl.

110. K hasaplaýyş sistemasynda N razrýadly sanlaryň mukdaryny kesgitlemeli.

Meselem: K = 2, N = 3; Jogaby: 4

111. Periýodik gaýtalanýan drob berilen. Onuň maýdalawjysyny we sanawjysyny tapmaly(maýdalawjy we sanowjy özara ýönekeý bolmaly).

Meselem: 5.(34)=529/99;

(Islendik periýodiki droby 10^{periýodynyň} uzynlygyna köpeltsek we köpeltmek hasyldan drobyň özini aýyrsak, onda bitin san alynýandyr. Goy a=5.(34) diýeliň. Onda *a**10²–a=534.(34)–5.(34)=529 bolar.)

- **112.** Küşt tagtasynda ak şa we ak ferzi hem-de gara şa koordinatalary bilen berliplipdir. Gara şanyň garşysyna oýnamak üçin programma ýazmaly.
- **113.** Bitin tipli x[n,m] matrisa berlipdir (1<=*n*<=20, 1<=*m*<=20). Bu matrisanyň elemetlerinden diňe ikisi özara meňzeş. Şol elemetleriň koordinatalaryny tapmaly. Matrisanyň elemetleri input2_?.txt faýldan okalýar. Faýlyň birinji setirinde n-iň, ikinji setirinde *m*-iň bahasy, üçünji setirden başlap n setirde matrisanyň elemtleri ýerleşýär.
- **114.** Input3_1.txt tekst faýlynda ASCII kody 16-lyk hasaplaýyş sistemasynda bolan tekst berlipdir. Ol teksti simwol görnüşinde ekrana çykarmaly.
- 115. Futbol boýunça Ýewropa çempionatynyň bir saýlama toparynda 5 ýygyndy komandalar topardan saýlamak üçin özara futbol duşuşyklaryny geçiripdirler. Topardan diňe iki ýygyndy komanda saýlanylýar. Her komanda 4 oýun oýnaýar hem-de belli bir ball toplaýar (ýeňiş üçin 3, deňe-deň üçin her biri 1 we utulany üçin 0). Topardaky häzirki ýagdaý aşakdaky ýaly

Orun	Topar	Oýun	Ball	Salnan pökgi	Goýberilen pökgi
1	Rus	4	7	9	5
2	Hol	3	5	10	7
3	Eng	3	4	8	8
4	Spa	3	3	6	9
5	Fra	3	3	6	10

Tablisadan görnüşi ýaly 4 toparyň arasynda ýene iki oýun bar. Oýnamaly toparlar

1) Hol - 2) Eng - Fra -

Şu iki oýun geçirilenden soň, programma awtomatiki iki sany iň netijeli topary ýeňiji diýip yglan etmeli. Yglan ediş olaryň ballary boýunça amala aşyrylýar. Eger ballar deň bolsa onda salnan pökgileriň we goýberilen pökgileriň iň uly aratapawudy boýunça, eger ol deň bolsa onda salnan pökgileriň mukdary boýunça (köp bolmaly), eger ol hem deň bolsa onda goýberilen pökgileriň sany boýunça (az bolmaly).

- 116. Sifrleriniň sany jübüt bolan (n), ilkinji n/2 sany sifrleriň jemi soňky n/2 sany sifrleriniň jemine deň bolan sanlara «bagt» sanlary diýilýär. Çäklendirme ilkinji n/2 sany sifrleriň islendigi soňky n/2 sany sifrlerinde gaýtalanmaly däl. Islendik girizilen sanyň bagt san ýa-da däldigini bilmeli.
 - 117. Robotlaryň jemgyýeti su kanunlar boýunça ýasaýar:
- ýylyň başynda bir gezek olar üç ýa-da bäş robot sany bolan toparlara birleşýärler;
- bir ýylyň dowamynda 3 robotdan ybarat bolan topar 5 sany täze, 5 robotdan ybarat bolan topar bolsa 9 sany täze roboty toplaýar;
 - robotlar bir ýylda köp robot toplanar ýaly toplanylýar;
 - her robot toplanylandan soň 3 ýyl ýasaýar.

Robotlaryň başlangyç K sany berlen hem-de olaryň hemmesi ýaňy toplanylan. N ýyldan näçe robot galar?

- **118.** Natural n san we n belgili a san berlen. Soňy a san bilen gutarýan, a sana galyndysyz bölünýän we sifrleriniň jemi a sana deň bolan iň kiçi natural sany tapmaly.
- **119.** Natural *N* san berlen. *N*-den kiçi bolan we *2*, *3*, *4*, *5*, *6*, *7*, *8*, *9* sanlara köpeldeniň bilen sifrleriniň jemi üýtgemeýän ähli natural sanlary tapmaly.
- **120.** Natural N we M sanlar berlen. $N \times M$ ölçegli küşt tagtasynda at her bir öýjüge diňe bir gezek baryp, hemme öýjüklere aýlanyp biljekdigini ýa-da

8	11	6	3
1	4	9	12
10	7	2	5

bilmejekdigini kesgitlemeli. Meselem N=3, M=4 berlen bolsa onda jogap: biler we atyň göçüm belgileri aşakdaky tablisada görkezilýär. **121.** Natural N san berlen. $2^{2^1} + 2^{2^2} + ... + 2^{2^{N-1}} + 2^{2^N}$ aňlatmanyň

121. Natural N san berlen. $2^{2^1} + 2^{2^2} + ... + 2^{2^{N-1}} + 2^{2^N}$ aňlatmanyň bahasynyň 7-ä bölünende galýan galyndysyny tapmaly. Meselem N = 2 berlen bolsa, onda jogapda: 6 alnar.

- **122.** *M* , *N* we *L* natural sanlar berlen. Jemi *M* sany oýunçy töwerek boýunça ýerleşipdirler. Olar 1-den *M*-e çenli sanlar bilen yzygider belgilenen. *N*-nji oýunçydan başlap 1-den sanap başlanýar. Her L-nji sany aýdan oýunçy oýundan çykýar. Iň soňky galan oýunçynyň tertip belgisini tapmaly.
- **123.** Labirint. *N* we *M* natural sanlar hem-de 0 we 1 sanlardan ybarat *N* x *M* ölçegli matrissa berlen. 0 saklaýan öýjük geçip bolýan öýjük, 1 saklaýan öýjük bolsa geçilmeýän öýjük hasaplanýar. Labirintiň iki sany öýjüginiň koordinatalary berlen. Birinji öýjükden ikinji öýjüge barýan iň ýakyn ýoly tapmaly. Eger ýol ýok bolsa onda ol barada habar bermeli.
 - **124.** n > 30 bitin san berlen. n!-yň siflleriniň jemini tapmaly.
- **125.** Tekizlikde *N* sany nokat öz köördinatalary bilen berlen. Ähli nokady özünde saklaýan iň kiçi meýdanly göniburçlugy tapmaly.
- **126.** Berlen iki senäniň arasynda geçen doly günleriň sanyny tapmaly.
- 127. N x M ölçegli matrissa berlen. Ol martissa 0 we 1 sanlardan düzülen. Şol matrissa degişli tablissanyň öýjükleri aşakdaky görnüşde boýalan: eger degişli san 1 bolsa gara, 0 bolsa ak. Gara reňkli öýjüklerden dürli ýapyk figuralar alynýar. Dürli figuralar taraplary boýunça galtaşyp bilmeýärler, ýöne bir nokarda galtaşyp bilýärler. Berlen matrissa boýunça tablissadaky alnan figuralaryň sanyny kesgitlemeli.
- **128.** *n* natural san we *n* sany ilatly punkt berlen. Punktlaryň käbiriniň arasynda ýol gurlan we ol barada *n* x *n* ölçegli matrissanyň üsti bilen maglumat berilýär. Berlen punktdan ähli punktlara aýlanyp çykmak üçin marşrut görkezmeli. Bir geçilen ýoldan ikinji sapar geçmek bolmaýar.
- **129.** Hakyky sanlardan, dört sany arifmetiki amallardan, derejä götermek belgisinden (^) we ýaýlardan düzülen setir görnüşli arifmetiki aňlatma berlen. Aňlatmanyň bahasyny tapmaly. Meselem (1-1/2)^2 görnüşli aňlatma berlen bolsa, onda jogaby 0,25 alnar.
- **130.** Bitin N san berlen. (((((1?2)?3)?4)?5)?6 aňlatma berlen N sana deň bolmagy üçin her bir ? simwolyň ýerine dört arifmetiki amallaryň (+, -, *, /), derejä götermek belgisiniň (^) haýsy hem bolsa birni goýmaly (bölmek bitinleýin amala aşyrylýar).

EDEBIÝATLAR

- 1. Türkmenistanyň Konstitusiýasy. Aşgabat, 2008.
- Gurbanguly Berdimuhamedow. Türkmenistanyň durmuş-ykdysady ösüşiniň döwlet kadalaşdyrylyşy. I tom. Ýokary okuw mekdepleriniň talyplary üçin okuw gollanmasy. Türkmen döwlet neşirýat gullugy, Aşgabat – 2010.
- Gurbanguly Berdimuhamedow. Türkmenistanyň durmuş-ykdysady ösüşiniň döwlet kadalaşdyrylyşy. II tom (Goşundylar). Ýokary okuw mekdepleriniň talyplary üçin okuw gollanmasy. Türkmen döwlet neşirýat gullugy, Aşgabat – 2010.
- 4. *Gurbanguly Berdimuhamedow*. Ösüşiň täze belentliklerine tarap. Saýlanan eserler.
- 5. I tom. Asgabat, 2008.
- 6. Gurbanguly Berdimuhamedow. Ösüşiň täze belentliklerine tarap. Saýlanan eserler.
- 7. II tom. Aşgabat, 2009.
- 8. Gurbanguly Berdimuhamedow. Garaşsyzlyga guwanmak, Watany, Halky söýmek bagtdyr. Aşgabat, 2007.
- 9. Gurbanguly Berdimuhamedow. Türkmenistan sagdynlygyň we ruhubelentligiň ýurdy. Asgabat, 2007.
- Türkmenistanyň Prezidenti Gurbanguly Berdimuhamedowyň Ministrler Kabinetiniň göçme mejlisinde sözlän sözi. (2009-njy ýylyň 12-nji iýuny). Aşgabat, 2009.
- Türkmenistanyň Prezidentiniň «Obalaryň, şäherleriň, etrapdaky şäherçeleriň we etrap merkezleriniň ilatynyň durmuş-ýaşaýyş şertlerini özgertmek boýunça 2020-nji ýyla çenli döwür üçin» Milli maksatnamasy. Asgabat, 2007.
- 12. «Türkmenistany ykdysady, syýasy we medeni taýdan ösdürmegiň 2020-nji ýyla çenli döwür üçin Baş ugry» Milli maksatnamasy. «Türkmenistan» gazeti, 2003-nji ýylyň, 27-nji awgusty.
- 13. «Türkmenistanyň nebitgaz senagatyny ösdürmegiň 2030-njy ýyla cenli döwür üçin Maksatnamasy». Aşgabat, 2006.
- 14. М.Э. Абрамян. Электронный справочник по программированию Версия 4.5. Ростов на Дону, 2005
- 15. С. А. Абрамов, Г. Ф. Гнездилова, Е. Н. Капустина, М. И. Селюг. Задачи по программированию, Вологда, 200

MAZMUNY

Şözbaşy	7
Yzygiderlikler	44
Birnäçe gatdan ybarat gaýtalanmak	49
Proseduralar we funksiýalar	51
San parametrli proseduralar	51
San parametrli funksiýalar	55
Funksiýalar we proseduralar üçin goşmaça ýumuşlar	60
Minimumlar we maksimumlar	62
Bir ölçegli massiwler	
Massiwi döretmek we onuň elementlerini	66
çapa çykarmak	66
Massiwiň elementlerini derňemek	69
Birnäçe massiw bilen işlemek	73
Massiwleri özgertmek	76
Massiwiň elementlerini öçürmek we goýmak	
Massiwi tertipleşdirmek	80
Iki ölçegli massiwler	82
Massiwi döretmek we onuň elementlerini	
çapa çykarmak	82
Matrisanyň elemenleriniň derňewi	
Matrisalary özgertmek	89
Kwadrat matrisanyň diagonallary	
Simwollar we setirler	95
Simwollar we olaryň kodlary	
Simwollaýyn derňew we setiri özgertmek	
Setirler we sanlar	96
Standart funksiýalaryň kömegi bilen setiri işlemek	98
Tapmak we çalşyrmak	
Setirdäki sözleri derňemek we özgertmek	99
Setirler hilen islemek üçin gosmaça yılmuşlar	102

Faýly döretmek, faýla ýazmak,	104
faýldan okamak	104
Faýllary özgertmek	107
Tipleşdirilmedik ikilik faýllar bilen işlemek	
Birnäçe sanly faýllar bilen işlemek	
Arhiw - faýllar	
Simwol we setir faýllary	
Faýllary matrisalar bilen işlemek üçin	
ulanmak	
Tekst faýllaryň üstünden geçirilýän esasy	114
operasiýalar	
Tekstiň derňewi we formatirlenmegi	116
San maglumatly tekst faýllar	118
Tekst faýllar bilen işlemek üçin	
goşmaça ýumuşlar	
Proseduralardaky we funksiýalardaky	121
maglumatlaryň düzme tipleri	121
Birölçegli we ikiölçegli massiwler	
Rekursiýa	
Dürli meseleler	
Edehiýatlar	149

O. Nurgeldiýew, A. Myratlyýew, M. Babaýew

INFORMATIKA WE KOMPÝUTER DERSINDEN MESELELER

Redaktory Tehredaktory Surat redaktory

O. Nurýagdyýewa

Çap etmäge rugsat edildi .2012. Möçberi $60x90^1/_{16}$. Sany. Sargyt $N_{\rm E}$.

Türkmen döwlet neşirýat gullugy. 744000, Aşgabat, şaýoly Garaşsyzlyk, 100

Türkmen döwlet neşirýat gullugynyň Metbugat merkezi. 744004, Aşgabat, 1995-nji köçe, 20.