Applied Stochastic Processes

Exercise sheet 11

Exercise 11.1 Recurrence and stationarity.

Consider the Markov chain $(X_n)_{n\in\mathbb{N}}$ with state space $\mathbb{N}:=\{1,2,\ldots\}$, and transition probability

$$p_{i,j} = \begin{cases} \pi(j) & \text{if } i = 1, \ j \ge 1, \\ 1 & \text{if } i > 1, \ j = i - 1, \\ 0 & \text{else,} \end{cases}$$

where π denotes a probability distribution on \mathbb{N} with $\sum_{i\in\mathbb{N}} i\pi(i) < \infty$.

- (a) Determine the positive recurrent, null recurrent, and transient states.
- (b) Find a stationary distribution ν for this Markov chain. Is this the unique stationary distribution?

Exercise 11.2 Let $(X_n)_{n\geq 0}$ a Markov chain on a countable state space E. Let $x,y\in E$ such that $x\longleftrightarrow y$. Prove that x is positive recurrent if and only if y is positive recurrent.

Exercise 11.3 Simple Random Walk on \mathbb{Z}^d and Fourier Analysis.

Let $(X_n)_{n\geq 0}$ be the simple random walk on \mathbb{Z}^d , $d\geq 1$. Suppose that $X_0=0$ and let V_0 be the total number of returns to 0. For $\xi\in [-\pi,\pi]^d$, we denote the characteristic function X_1 by $\varphi(\xi)=\mathbf{E}_0[\exp(i\xi\cdot X_1)]$.

(a) Show that

$$\mathbf{P}_0[X_n = 0] = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \varphi(\xi)^n d\xi.$$

(b) Show that

$$\mathbf{E}_{0}[V_{0}] = \frac{1}{(2\pi)^{d}} \int_{[-\pi,\pi]^{d}} \frac{\varphi(\xi)}{1 - \varphi(\xi)} d\xi.$$

(c) Calculate explicitly $\varphi(\xi)$ and show that

$$\frac{1}{4d}|\xi|^2 \le 1 - \varphi(\xi) \le \frac{1}{2d}|\xi|^2.$$

(d) Conclude that 0 is a recurrent state if and only if $d \in \{1, 2\}$.

Solution 11.1

(a) First, note that the state $1 \in \mathbb{N}$ is recurrent. Indeed.

$$\rho_{1,1} := \mathbf{P}_1 \left[\bigcup_{n=1}^{\infty} \{ X_n = 1 \} \right] = \sum_{i \in \mathbb{N}} \pi(i) = 1.$$
 (1)

Moreover, if the Markov chain jumps to state i starting from 1, then it will return to state 1 in exactly i steps. Hence $\mathbf{E}_1[H_1] = \sum_{i \in \mathbb{N}} i\pi(i) < \infty$ by assumption. This implies that the state 1 is positive recurrent.

On the other hand, let us define $m := \sup \{i \in \mathbb{N} : \pi(i) > 0\}$. We have two cases:

- If $m = \infty$, then all states $i \in \mathbb{N}$ are in the communicating class of 1 and thus they are positive recurrent (see Exercise 11.2).
- If $m < \infty$, then all states $i \in \{1, 2, ..., m\}$ are in the communicating class of 1 and thus positive recurrent. The states $i \in \mathbb{N} \setminus \{1, 2, ..., m\}$ are transient, since for all $i \in \mathbb{N} \setminus \{1, 2, ..., m\}$ (defining $\rho_{i,j}$ similarly to (1)),

$$\rho_{i,i} = p_{i,i-1} \cdot \ldots \cdot p_{2,1} \rho_{1,i} = \rho_{1,i} = 0 < 1.$$

(b) Let X be an integer-valued random variable with distribution π . By assumption,

$$E[X] = \sum_{i \in \mathbb{N}} i\pi(i) < \infty.$$

We define a distribution $(\nu_i)_{i\in\mathbb{N}}$ by

$$\nu_i := \frac{P[X \ge i]}{E[X]}, \quad i \in \mathbb{N}.$$

To show that $(\nu_i)_{i\in\mathbb{N}}$ is a stationary distribution, we observe that

$$\begin{split} \sum_{i \in \mathbb{N}} \nu_i p_{i,j} &= \nu_1 p_{1,j} + \nu_{j+1} p_{j+1,j} \\ &= \frac{P\left[X \geq 1\right]}{E[X]} \pi\left(j\right) + \frac{P\left[X \geq j+1\right]}{E[X]} \\ &= \left(1 \cdot P\left[X = j\right] + P\left[X \geq j+1\right]\right) / E[X] \\ &= P\left[X \geq j\right] / E[X] \\ &= \nu_j. \end{split}$$

Since the Markov chain is irreducible, conclude that ν is its unique stationary probability distribution.

Solution 11.2 Assume that x is positive recurrent. Since

$$\frac{1}{n} \sum_{i=1}^{n} 1_{\{X_i = x\}} \xrightarrow[n \to \infty]{} \frac{1}{\mathbf{E}_x[H_x^+]}, \quad \mathbf{P}_x\text{-a.s.}$$

we have by the dominated convergence theorem, that

$$\frac{1}{n} \sum_{i=1}^{n} p_{x,x}^{(i)} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{P}_{x}[X_{i} = x] \xrightarrow[n \to \infty]{} \frac{1}{\mathbf{E}_{x}[H_{x}^{+}]}.$$

Since $x \longleftrightarrow y$, we can find k, ℓ such that $p_{y,x}^{(k)}, p_{x,y}^{(\ell)} > 0$. By the Chapman-Kolmogorov equation, for all integer $j \ge 0$ we have that $p_{y,y}^{(k+j+\ell)} \ge p_{y,x}^{(k)} \cdot p_{x,x}^{(j)} \cdot p_{x,y}^{(\ell)}$. Hence

$$\underbrace{\frac{1}{n} \sum_{i=1}^{n} p_{y,y}^{(i)}}_{n \to \infty} \geq \frac{1}{n} \sum_{j=1}^{n-k-\ell} p_{y,y}^{(k+j+\ell)} \geq p_{y,x}^{(k)} \underbrace{\left(\frac{1}{n} \sum_{j=1}^{n-k-\ell} p_{x,x}^{(j)}\right)}_{n \to \infty} p_{x,y}^{(\ell)}.$$

Therefore, $\mathbf{E}_y[H_y^+] < \infty$ and y is positive recurrent.

Solution 11.3

(a) Let us denote by φ_n the characteristic function of X_n . Since X_n is the sum of n i.i.d. random variables with distribution X_1 , we have that $\varphi_n(\xi) = \varphi(\xi)^n$. Then, by the Fourier inversion formula we obtain that

$$\mathbf{P}_{0}[X_{n}=0] = \frac{1}{(2\pi)^{d}} \int_{[-\pi,\pi]^{d}} \exp(i\xi \cdot 0) \varphi_{n}(\xi) d\xi = \frac{1}{(2\pi)^{d}} \int_{[-\pi,\pi]^{d}} \varphi(\xi)^{n} d\xi.$$

(b) Notice that

$$\mathbf{E}_{0}[V_{0}] = \sum_{n\geq 1} \mathbf{P}_{0}[X_{n} = 0]$$

$$= \sum_{n\geq 1} \frac{1}{(2\pi)^{d}} \int_{[-\pi,\pi]^{d}} \varphi(\xi)^{n} d\xi$$

$$= \frac{1}{(2\pi)^{d}} \lim_{\alpha \to 1^{-}} \sum_{n\geq 1} \alpha^{n} \int_{[-\pi,\pi]^{d}} \varphi(\xi)^{n} d\xi$$

$$= \frac{1}{(2\pi)^{d}} \lim_{\alpha \to 1^{-}} \sum_{n\geq 1} \int_{[-\pi,\pi]^{d}} (\alpha \varphi(\xi))^{n} d\xi$$

$$= \frac{1}{(2\pi)^{d}} \lim_{\alpha \to 1^{-}} \int_{[-\pi,\pi]^{d}} \left(\sum_{n\geq 1} (\alpha \varphi(\xi))^{n} \right) d\xi$$

where the exchange of the series and the integral is justified by the dominated convergence theorem (domination by the convergent series $\sum_{n} \alpha^{n}, \alpha < 1$). Then

$$\mathbf{E}_{0}[V_{0}] = \frac{1}{(2\pi)^{d}} \lim_{\alpha \to 1^{-}} \int_{[-\pi,\pi]^{d}} \frac{\alpha \varphi(\xi)}{1 - \alpha \varphi(\xi)} = \frac{1}{(2\pi)^{d}} \int_{[-\pi,\pi]^{d}} \frac{\varphi(\xi)}{1 - \varphi(\xi)}.$$

This time the exchange of the limit and the integral is justified by the monotone convergence theorem, applied separately over the sets $\{\varphi < 0\}$ and $\{\varphi \ge 0\}$.

(c) Let us denote $\xi = (\xi_1, \dots, \xi_d)$. If e_1, \dots, e_d is the canonical base of \mathbb{Z}^d and we denote $e_{-k} = -e_k$, we see that

$$\varphi(\xi) = \sum_{k \in \{-d, \dots, d\}} \exp(i\xi \cdot e_k) \mathbf{P}_0[X_1 = e_k] = \frac{1}{2d} \sum_{j=1}^d (e^{i\xi_j} + e^{-i\xi_j}) = \frac{1}{d} \sum_{i=1}^d \cos(\xi_i).$$

Using the Taylor expansion of $\cos(x) = 1 - x^2/2 + O(x^4)$ we can prove that $x^2/2 \le 1 - \cos(x) \le x^2$. Applying this to $x = \xi_j$, summing over j and using $|\xi|^2 = \xi_1^2 + \dots + \xi_d^2$, we obtain

$$\frac{1}{4d}|\xi|^2 \le 1 - \varphi(\xi) \le \frac{1}{2d}|\xi|^2.$$

(d) Now, notice that the transience or recurrence of 0 depends on the convergence or not of the integral $\int_{[-\pi,\pi]^d} \frac{\varphi(\xi)}{1-\varphi(\xi)} d\xi$. Using the previous inequality this question translates in the convergence or not of the integral $\int_{[-\pi,\pi]^d} \frac{d\xi}{|\xi|^2}$, which we know is equal to $+\infty$ if $d \in \{1,2\}$ and that is $<+\infty$ if $d \geq 3$. This concludes the proof.