









Dada la función f con regla de correspondencia  $f(x) = (x-2)^2$ , definida en el intervalo  $[2; +\infty[$ . Halle la regla de correspondencia de  $f^{-1}$  e indique su dominio y su rango. Esboce la gráfica.











### **FUNCIÓN EXPONENCIAL**



Toda función de la forma  $f(x) = b^x$ ; donde b y x son números reales tal que b > 0 y diferente de uno, se denomina función exponencial, con base b.

Ejemplo:

$$f(x) = 2^x$$

| x  | f(x) |
|----|------|
| -3 |      |
| -2 |      |
| -1 |      |
| 0  |      |
| 1  |      |
| 2  |      |
| 3  |      |



| f | (x)  | = | $2^x$ |
|---|------|---|-------|
| J | (00) |   | _     |

Intersección con el eje x:\_\_\_\_\_

Intersección con el eje y:\_\_\_\_\_

Monotonía:

Asíntota: \_\_\_\_\_

6.1

FUNCIÓN EXPONENCIAL





**DOMINIO: Dom** *f* = \_\_\_\_\_

INTERSECCIÓN CON EL EJE X:

**RANGO:** Ran *f* =\_\_\_\_\_

INTERSECCIÓN CON EL

EJE Y: \_\_\_\_\_

(1)

ASÍNTOTA:

### FUNCIÓN EXPONENCIAL NATURAL

Cualquier número no negativo se puede usar como base para una función exponencial. Sin embargo, uno de los más utilizados es el número irracional e (constante de Euler), cuyo valor aproximado a 14 decimales es e = 2,71828182845905.

La función exponencial natural es la función exponencial con base e.

$$f(x)=e^x$$

$$Dom f = \underline{\hspace{1cm}} Ran f = \underline{\hspace{1cm}}$$

Asíntota: \_\_\_\_\_ Monotonía:

Intersección con el eje y: \_\_\_\_\_

Intersección con el eje x:



6.1

#### PE | FUNCIÓN LOGARITMO

Toda función de la forma  $f(x) = \log_b x$ ; donde b y x son números reales tal que b > 0 y diferente de uno, se denomina función logaritmo con base b, y se cumple que:

$$\log_{\mathbf{b}} x = y \Leftrightarrow \mathbf{b}^y = x$$

En consecuencia,

log<sub>b</sub> x es el \_\_\_\_\_ al cual hay que elevar la base \_\_\_\_ para obtener \_\_\_\_.

**Ejemplos:** 

Halle (sin calculadora) cada uno de los siguientes logaritmos:

$$log_416 = \underline{\hspace{1cm}} log_327 = \underline{\hspace{1cm}}$$

$$\log_{10} 1\,000 =$$
\_\_\_\_\_  $\log_5 5 =$ \_\_\_\_

# FUNCIÓN LOGARITMO



### Ejemplo:

$$f(x) = \log_2 x$$

| <b>3</b> ( ) | 82   |
|--------------|------|
| x            | f(x) |
| 0,125        |      |
| 0,25         |      |
| 0,5          |      |
| 1            |      |
| 2            |      |
| 4            |      |
| 8            |      |
|              |      |



$$f(x) = \log_2 x$$

$$\operatorname{Ran} f = \underline{\hspace{1cm}}$$

Intersección con el eje x:

Intersección con el eje y: \_\_\_\_\_

Monotonía:

Asíntota: \_\_\_\_\_

# **FUNCIÓN LOGARITMO**





**DOMINIO: Dom** *f* = \_\_\_\_\_

RANGO: Ran f = \_\_\_\_\_

INTERSECCIÓN

**CON EL EJE X:** 

**CON EL EJE Y:** 

ASÍNTOTA: \_\_\_\_\_

INTERSECCIÓN

# LOGARITMO COMÚN Y LOGARITMO NATURAL



La función logaritmo con base 10 se llama logaritmo común.

$$f(x) = \log x$$

**Ejemplos:** 

$$\log x = 2 \Rightarrow x = \underline{\hspace{1cm}}$$

$$\log x = 2 \Rightarrow x = \underline{\qquad} \qquad \log x = -3 \Rightarrow x = \underline{\qquad} \qquad \log x = a \Leftrightarrow x = \underline{\qquad}$$

$$\log x = a \Leftrightarrow x = \underline{\hspace{1cm}}$$

La función logaritmo con base e se llama logaritmo natural.



$$f(x) = \ln x$$

**Ejemplos:** 

$$\ln x = 2 \Rightarrow x =$$

$$\ln x = 2 \Rightarrow x = \underline{\qquad} \qquad \ln x = -3 \Rightarrow x = \underline{\qquad} \qquad \ln x = a \Leftrightarrow x = \underline{\qquad}$$

$$\ln x = a \Leftrightarrow x =$$

### **EJERCICIO**





# Complete el cuadro adjunto:

| $\log_b x = a \Rightarrow x =$       | $\log_3 x = 2 \Rightarrow x =$  | $\ln x = -1 \Rightarrow x =$ |
|--------------------------------------|---------------------------------|------------------------------|
| $\mathbf{b}^{x} = a \Rightarrow x =$ | $5^x = 7 \Rightarrow x =$       | $e^x = 9 \Rightarrow x =$    |
| $\log_4 x = 3 \Rightarrow x =$       | $\log_7 x = -2 \Rightarrow x =$ | $\ln x = 8 \Rightarrow x =$  |
| $8^x = 4 \Rightarrow x =$            | $3^{x}=6\Rightarrow x=$         | $e^x = 2 \Rightarrow x =$    |

#### PROPIEDADES DE LOGARITMOS

PROPIEDAD 1:  $\log_{h}(m) + \log_{h}(n) = \log_{h}(m \cdot n)$ 

- a)  $\log_7 4 + \log_7 8 =$  \_\_\_\_\_
- b)  $\log_3 21 =$ \_\_\_\_\_

PROPIEDAD 2:  $\log_b(m) - \log_b(n) = \log_b(\frac{m}{n})$ 

- a)  $\log_7 4 \log_7 8 =$
- b)  $\log_2(\frac{8}{9}) =$  \_\_\_\_\_\_

# PROPIEDADES DE LOGARITMOS



PROPIEDAD 3:  $\log_b(m)^k = k \log_b(m)$ 

- a)  $\log_3(x)^5 =$  \_\_\_\_\_\_ b)  $9\log_4(x) =$  \_\_\_\_\_

### **LOGARITMOS USUALES**

$$\log_b b = 1$$

$$\log_b 1 = 0$$

- a)  $\log_4 4 =$ \_\_\_\_\_
- b)  $\log 10 =$  \_\_\_\_\_ c)  $\ln e =$  \_\_\_\_\_

- d)  $\log_5 5 =$ \_\_\_\_\_
  - e) ln 1 = \_\_\_\_\_

# **CONTROL DE APRENDIZAJE**



De las proposiciones que se indican determine cuáles son correctas o incorrectas.

- A) La función  $f(x) = 3^{-x}$  es creciente.
- B) La función  $f(x) = \ln(x)$  es negativa en  $]-\infty; 1[$
- C) Si  $2^x = 3$  entonces  $x = \log_3 2$
- D) Si  $\log_4 x = 0.5$  entonces x = 2





### CONJUNTO DE VALORES ADMISIBLES (CVA)



Conjunto de valores admisibles, son aquellos valores para los cuales una expresión matemática está definida.

**Ejemplos:** 

A) 
$$\sqrt{x+3} = 2 \rightarrow \text{CVA} =$$
 \_\_\_\_\_\_ CVA = \_\_\_\_\_

B) 
$$\sqrt{x+3} = \log x \rightarrow \text{CVA} =$$
 \_\_\_\_\_

C) 
$$\log_2 x = \log(x - 4) \rightarrow \text{CVA} =$$
\_\_\_\_\_\_CVA = \_\_\_\_\_

### **ECUACIONES EXPONENCIALES**



Son igualdades de la forma:  $\mathbf{b}^{f(x)} = \mathbf{N}$ , donde x es la variable. El conjunto solución está determinado por los valores que verifican la igualdad y pertenecen al CVA.

Para resolver se aplica la definición de logaritmo:  $f(x) = \log_h N$ 

Ejemplo:

Resuelva la ecuación  $3^{x+1} - 4 = 0$ 

### **EJERCICIO**





Resuelva las siguientes ecuaciones

$$5^{3x-2} + 3 = 9$$

$$e^{\frac{x+1}{2}}-3=2$$

FDE

# ECUACIONES LOGARÍTMICAS



Son igualdades de la forma:  $\log_b f(x) = N$ , donde x es la variable. El conjunto solución está determinado por los valores que verifican la igualdad y pertenecen al CVA.

Para resolver se aplica la definición de logaritmo:  $f(x) = b^{N}$ 

Ejemplo:

Resuelva la ecuación  $log_2(2x+3) - 5 = 0$ 

# **EJERCICIO**





Resuelva las siguientes ecuaciones

$$3 + \log_3(2x - 5) = 5$$

$$6+5\ln(4x-3)=2$$







Halle el conjunto solución de:  $(4-3^x)(2^x+3)=0$ 

# **EJERCICIO**





Halle el conjunto solución de:  $e^{2x} - e^x - 6 = 0$ 

ш

SPE

# **EJERCICIO**





Halle el conjunto solución de:  $\log_2(2x-3) + \log_2(x+1) = 2 + \log_2 x$ 



# DOMINIO DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS



| FUNCIÓN           | DOMINIO | RANGO   |
|-------------------|---------|---------|
| $f(x) = b^x$      | R       | ]0; +∞[ |
| $f(x) = \log_b x$ | ]0; +∞[ | R       |

Ejemplos: Halle el dominio en cada uno de los siguientes casos

$$f(x) = \log_2(4x - 12)$$

$$g(x) = 2^{x-4} + 3$$

# DOMINIO DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS



Ejemplos: Halle el dominio en cada uno de los siguientes casos

$$f(x) = \ln(3 - 2x)$$

$$g(x)=\frac{5}{2^x-8}$$

0.1

PE

# **EJERCICIO**





Halle el dominio en cada uno de los siguientes casos

$$a) f(x) = \log_3(4x - 6)$$

b) 
$$g(x) = \ln(9 - x) + \ln(x - 2)$$

### **EJERCICIO**





Halle el dominio en cada uno de los siguientes casos

c) 
$$f(x) = \frac{\sqrt{9-x}}{\log_2 x - 3}$$

# CONTROL DE APRENDIZAJE





- B) El dominio de la función  $g(x) = e^x$  es  $]-\infty$ ;  $+\infty$ [
- C) La base de la función  $g(x) = 2^{-x}$  es 2.
- D) El conjunto solución de la ecuación  $3^x = 5$  es  $\{\log_3 5\}$
- E) El conjunto solución de la ecuación  $log_4(2x-3) = 0$  es  $\{2\}$





**BIBLIOGRAFÍA** 

STEWART, James (2012).

PRECÁLCULO: MATEMÁTICAS PARA EL CÁLCULO.

Sexta edición. México, D.F. Cengage Learning.

F. exponencial, F. logaritmo, Ecuaciones exponencial y logaritmo: Pág. 302 - 356



18

# ACTIVIDADES DE LA SEMANA 6



ASESORÍA 5, clase programada con el AAD

CONTROL DE RECUPERACIÓN 4, se evalúa en la asesoría 5

**EVALUACIÓN VIRTUAL 2** 

# **CONSULTAS**



EPE

PRÓXIMA CLASE ANÁLISIS DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS EN SU FORMA GENERAL DOMINIO, RANGO Y GRÁFICAS

