Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

\wedge Funções elementares

- 1. Classique cada função como uma função afim, função potência, função raiz, função polinomial (estabeleça seu grau), função racional, função algébrica, função trigonométrica, função exponencial ou função logarítmica.
 - (a) $f(x) = x^9 + x^4 + 2$ (e) $s(x) = \tan 2x$
- (i) $h(x) = 10^x$

- (b) $g(x) = \sqrt[5]{x}$ (f) $t(x) = \log_{10} x$ (j) $r(x) = x^{10}$ (c) $h(x) = \sqrt{1 x^2}$ (g) $f(x) = \frac{x 6}{x + 6}$ (k) $s(t) = 2t + \pi$ (d) $r(x) = \frac{x^2 + 3x 1}{x^3 + x}$ (h) $g(x) = x + \frac{x^2}{\sqrt{x 1}}$ (l) $t(\theta) = \cos \theta + \sin \theta$

∧ Composição de funções

- **2.** Encontre as funções $f \circ g$, $g \circ f$, $f \circ f$ e $g \circ g$ e seus domínios.

 - (a) $f(x) = 2x^2 x$, g(x) = 3x + 2 (c) $f(x) = x + \frac{1}{x}$, $g(x) = x^3 + 2x$
 - (b) $f(x) = \sqrt{x-1}$, $g(x) = x^2$ (d) $f(x) = \cos x$, $g(x) = 1 \sqrt{x}$
- **3.** Encontre uma fórmula para $(f \circ g \circ h)(x) = f(g(h(x)))$.
 - (a) f(x) = 3x 2, $g(x) = \sin x$, $h(x) = x^2$
 - (b) f(x) = |x 4|, $q(x) = 2^x$, $h(x) = \sqrt{x}$
 - (c) $f(x) = \sqrt{x-3}$, $g(x) = x^2$, $h(x) = x^3 + 2$
 - (d) $f(x) = \tan x$, $g(x) = \frac{x}{x-1}$, $h(x) = \sqrt[3]{x}$
- **4.** Dada a função $f(x) = \frac{1+x}{1-x}$, mostre que $f(-x) = \frac{1}{f(x)}$ e $f(f(x)) = -\frac{1}{x}$.

∧ Inversão de funções

- 5. Seja f uma função bijetora, isto é, uma função um a um (injetora) e sobrejetora.
 - (a) Se f(3) = 7, encontre $f^{-1}(7)$.
 - (b) Se $f(x) = 3 + x^2 + \tan\left(\frac{\pi x}{2}\right)$, onde -1 < x < 1, encontre $f^{-1}(3)$.
 - (c) Se $f(x) = 3 + x + e^x$, determine $f^{-1}(4)$.
 - (d) Se $f(x) = 2x + \ln x$, encontre $f^{-1}(2)$.
- 6. Em cada item, esboce o gráfico das funções dadas usando os mesmos eixos coordenados. Qual é a relação entre essas funções?

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 26/09/2024 até 14:00 horas

Ciência da Computação

Prof. Tiago J. Arruda

- (a) $y = e^x$; $y = \ln x$; y = x
- (b) $y = x^2 \text{ (com } x \ge 0); \quad y = \sqrt{x}; \quad y = x$
- (c) $y = \operatorname{sen} x \pmod{-\pi/2} \le x \le \pi/2$; $y = \operatorname{arc} \operatorname{sen} x$; y = x
- (d) $y = \tan x \text{ (com } -\pi/2 < x < \pi/2); \quad y = \arctan x; \quad y = x$
- 7. Dada a função bijetora y = f(x), encontre uma fórmula para f^{-1} .
 - (a) $f(x) = x^2 + 1$, $x \ge 0$
- (c) $f(x) = x^2 2x + 1$, $x \ge 1$

(b) $f(x) = x^3 - 1$

(d) $f(x) = x^{2/3}, x \ge 0$

- 8. Escreva uma fórmula para a função inversa f^{-1} fornecendo o domínio e o conjunto imagem. [Observação: lembre-se de que $\text{Im}(f^{-1}) = \text{Dom}(f)$ e $\text{Dom}(f^{-1}) = \text{Im}(f)$.]

- (a) $f(x) = 1 + \sqrt{2 + 5x}$ (d) $y = 2^{10^x}$ (g) $y = \frac{1 + e^x}{1 e^x}$ (b) $f(x) = \frac{4x 1}{2x + 3}$ (e) $y = \ln(x + 3)$ (f) $f(x) = \frac{1 + 3x}{5 2x}$ (h) $y = \frac{e^x}{1 + 2e^x}$

∧ Aplicação das funções inversas

- 9. Resolva cada equação em x.
 - (a) $e^x = 16$
- (d) $\ln x = -1$
- (g) $\ln(\ln x) = 1$

(b) $e^{e^x} = 2$

- (c) $e^{2x+3} 7 = 0$
- (e) $\ln(2x-1) = 3$ (h) $2^{x-5} = 3$ (f) $\ln x + \ln(x-1) = 0$ (i) $1 + \arctan x = \sqrt{3}$
- 10. Mostre que $\cos(\arcsin x) = \sqrt{1-x^2}$ para $-1 \le x \le 1$. Use este resultado para calcular $\sin(2 \arcsin x), \cos(2 \arccos x) = \tan(\arcsin x).$