A/D Converter

Note: (1) AD has no built-in S/H circuit. Even it can operate much faster, but without S/H, the sampling speed should not exceed 100 Hz:

(2) CPU pin 83,84,85 must have external compensation Caps 10nF as in Fig 2;

(3) Problem 1 of the ADC: ADCCON's ADC state flag off by 1 right after the conversion starts and right before the conversion ends;

PSR	Prescaler register: define sample speed	
ADCCON	ADC control register	
ADCDAT	ADC data register	
SAR	Successive approximation register	

$$f_{Conv} = \frac{CLK_{CPU}}{2*(N_{PSP} + 1)} \dots (1)$$
 $T_{Conv} = 1/f_{Conv} \dots (2)$

(4) Problem 2 of the ADC: No S/H therefore ADC error can be large, need to reduce the output impedance of the analog signal source.

Example: For a given signal, we have $f_{Sampling} = 98.2$ KHz, find N_{PSR} to realize this AD design requirement. Ans: $N_{PSR} = 20$

ADC Theoretical Background

ADC voltage resolution Q calculation

$$Q = \frac{E_{FSR}}{N}$$

Where
$$E_{FSR} = V_{R,High} - V_{R,Low}$$

and $N = 2^{\times}$

- * Coding scheme as in figure 3
- * Full scale measurement range = 0 to 10 volts
- * ADC resolution is 12 bits: 212 = 4096 quantization levels (codes)
- * ADC voltage resolution, Q = (10V 0V) / 4096 = 10V / 4096 \approx 0.00244 V \approx 2.44 mV.

http://en.wikipedia.org/wiki/File:ADC_voltage_r esolution.svg

Fig 3

DFT (FFT: fast Fourier Transform) based AD conversion validation.

ADC Characterization

Introduction To DFT For Data Validation

