MATO2014 - Planejamento de Experimentos II Experimentos com fatores aleatórios

Rodrigo Citton P. dos Reis rodrigocpdosreis@gmail.com

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística Porto Alegre, 2018

Introdução

Modelos de efeitos aleatórios

- Quando o objetivo do experimento é estudar a variância na resposta causada pela variação dos níveis de dois fatores independentes, o delineamento é similar ao delineamento fatorial de dois fatores que discutimos anteriormente.
- No entanto, no delineamento apresentado anteriormente, os níveis dos fatores seriam selecionados pelo pesquisador porque este estaria interssado na comparação de respostas médias entre estes níveis.
- Nos modelos de efeitos aleatórios os níveis dos fatores são apenas uma amostra representativa ou aleatória dos níveis possíveis.
 - O objetivo é determinar quanto da variância na resposta pode ser atribuída à variação dos níveis dos fatores.

Efeitos fixos vs efeitos aleatórios

Duas situações:

- 1. Uma indústria de parafusos adquiriu 5 máquinas de uma determinada marca para produzir parafusos, e está interessada em realizar um experimento para verificar se as 5 máquinas são homogêneas com relação a resistência média dos parafusos por elas produzidos.
- 2. A indústria de máquinas do exemplo anterior está interessada em realizar um experimento para verificar se as máquinas produzidas por ela são homogêneas com relação à resistência média dos parafusos que estas máquinas irão produzir. Como a população de máquinas produzidas pela indústria é muito grande o pesquisador quer realizar o experimento com uma amostra de máquinas (5, por exemplo), mas a conclusões devem ser estendidas para a população de máquinas.

- Gage: (Gauge?), "bitola" ou "medidor".
- *R* & *R*: repetibilidade e reprodutibilidade.
- Estudos *Gage R & R* são comuns nos departamentos de qualidade das indústrias.
- Nestes estudos o objetivo é classificar a variabilidade em características medidas de produtos fabricados ou componentes de produtos.
- Assumindo que o medidor, ou o instrumento de medida está devidamente calibrado, um valor medido determinado durante uma inspeção de qualidade pode ser considerado uma função da verdadeira dimensão da característica, a repetibilidade do medidor, e a reprodutibilidade do medidor.

- A repetibilidade do medidor é a habilidade de um único operador obter o mesmo valor medido múltiplas vezes usando o mesmo instrumento de medida (medidor).
- A reprodutibilidade do medidor é a habilidade de diferentes operadores de obter o mesmo valor medido múltiplas vezes usando o mesmo medidor na mesma parte.
 - Se a variabilidade nas medidas causadas pela repetibilidade do medidor mais a reprodutibilidade é maior que 10% variação tolerada, as medições não devem ser precisas (acuradas) o suficiente para serem usadas no monitoramento da qualidade do produto.

TUBOS ESTRUTURAIS VALLOUREC: QUALIDADE ASSEGURADA PARA DIFERENTES APLICAÇÕES.

A Vallourec é líder na produção de tubos de aço sem costura no país e está presente nos setores de energia, petrolífero, automotivo e construção civil, além de abastecer a indústria de bens de capital nos segmentos ferroviário, máquinas e equipamentos, naval e offshore. Possui usina integrada com alto-forno, aciaria, laminações e unidades de tratamento que produz tubos laminados a quente, nas seções circular e retangular. Nos setores naval e offshore, a empresa oferece soluções customizadas para as necessidades do cliente, não apenas em tubos para extração e condução de petróleo, mas também em estruturas para navios, plataformas, torres do flare, helicopter decks, containers e outros.

CONTATOS

VALLOUREC

USINA BARREIRO

Av. Olinto Meireles, 65 - Barreiro de Baixo 30640-010 - Belo Horizonte - MG Caixa Postal: 1453-30161-970 Telefone: + (31) 3328-2121 E-mail: contato.vallourectubos-bra@vallourec.com vallourec.com/br

VENDAS:

E-mail: vendas.estrutural-bra@vallourec.com Telefone: + (31) 3328-2874

Table	5.5 Da	ita from	Gage .	$R \mathcal{B} R$	Study		
	Operator						
	Part	1	2	3			
	1	0.71	0.56	0.52			
		0.69	0.57	0.54			
	2	0.98	1.03	1.04			
		1.00	0.96	1.01			
	3	0.77	0.76	0.81			
		0.77	0.76	0.81			
	4	0.86	0.82	0.82			
		0.94	0.78	0.82			
	5	0.51	0.42	0.46			
		0.51	0.42	0.49			
	6	0.71	1.00	1.04			
		0.59	1.04	1.00			
	7	0.96	0.94	0.97			
		0.96	0.91	0.95			
	8	0.86	0.72	0.78			
		0.86	0.74	0.78			
	9	0.96	0.97	0.84			
		0.96	0.94	0.81			
	10	0.64	0.56	1.01			
		0.72	0.52	1.01			

- O estudo Gage R & R consiste na seleção de um conjunto de partes (ou componentes) manufaturadas que são representativas da variabilidade "parte-a-parte" da fabricação normal.
 - No exemplo, 10 partes foram selecionadas e estas partes representam os níveis do primeiro fator no experimento.
- A seguir, uma amostra aleatória ou representativa de inspetores (operadores) é selecionado.
 - Os inspetores representam os níveis do segundo fator no experimento.
- Por fim, cada inspetor mede cada parte duas vezes.

Exemplo (Gage R & R) Das model

Das model

$$y_{ijk} = \mu + au_i + eta_j + (aueta)_{ij} + \epsilon_{ijk}, i = 1, \ldots, a, j = 1, \ldots,$$

Das model

• A diferença para o modelo que especificamos para delineamento fatorial de *efeitos fixos* é que assume-se que τ_i, β_j e $(\tau\beta)_{ij}$ são variáveis aleatórias independentes e normalmente distribuídas com médias zero e variâncias $\sigma_{\tau}^2, \sigma_{\beta}^2$ e $\sigma_{\tau\beta}^2$.

$$\Rightarrow Var(y) = \sigma_y^2 = \sigma_ au^2 + \sigma_eta^2 + \sigma_{ aueta}^2 + \sigma^2$$

Das model

- σ_{τ}^2 representa a porção da variância total devida a diferenças nas partes.
- σ_{β}^2 é a porção da variância causada pelas diferenças entre operadores.
- $\sigma_{\tau\beta}^2$ é a porção da variância causada pela interação operador e parte.
- σ^2 é a porção da variância causada pela medidas replicadas ou **repetibilidade do medidor**.
- A soma $\sigma_{\beta}^2 + \sigma_{\tau\beta}^2$ é a reprodutibilidade do medidor.
- A repetibilidade mais a reprodutibilidade, $\sigma_{\beta}^2 + \sigma_{\tau\beta}^2 + \sigma^2$, é uma medida da variância atribuível ao erro de medição.

Estimando os componentes de variância

 Para o caso com número igual de replicações por subclasse é conveniente usar o método dos momentos ou máxima verossimilhança restrita (REML).

Table 5.6	$\frac{Expected}{Source}$	Mean Squares in df	Two-Factor Sampling Desi	gn
	A B	$a - 1 \\ b - 1$	$\sigma^2 + r\sigma_{AB}^2 + rb\sigma_A^2$ $\sigma^2 + r\sigma_{AB}^2 + ra\sigma_B^2$	
_	AB Error	(a-1)(b-1) $(r-1)ab$	$\frac{\sigma^2 + r\sigma_{AB}^2}{\sigma^2}$	

Estimando os componentes de variância

```
library(daewr)
head(gagerr)
```

Estimando os componentes de variância

```
## part 9 1.4489 0.16099 214.18 < 2e-16 ***

## oper 2 0.0297 0.01485 19.76 3.35e-06 ***

## part:oper 18 0.4839 0.02689 35.77 1.87e-15 ***

## Residuals 30 0.0225 0.00075

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Estimando os componentes de variância Método dos momentos

```
sigma2 <- .000752
sigma2po <- (0.026885 - sigma2) / 2
sigma2o <- (0.014852 - sigma2 - 2 * sigma2po ) / 20
sigma2p <- (.160991 - sigma2 - 2 * sigma2po ) / 6
cat("Method of Moments Variance Component Estimates", "\n",
    "Var(error)=", sigma2, "\n", "Var(part x oper)=", sigma2po, "\n",
    "Var(oper)=", sigma2o, "\n", "Var(part)=", sigma2po, "\n")</pre>
```

```
## Method of Moments Variance Component Estimates
## Var(error) = 0.000752
## Var(part x oper) = 0.0130665
## Var(oper) = -0.00060165
## Var(part) = 0.022351
```

Estimando os componentes de variância Método dos momentos

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: y \sim 1 + (1 \mid part) + (1 \mid oper) + (1 \mid part:oper)
##
     Data: gagerr
##
## REML criterion at convergence: -133.9
##
## Scaled residuals:
## Min 1Q Median 3Q
                                        Max
## -2.43502 -0.36558 -0.01169 0.38978 1.94190
##
## Random effects:
## Groups Name Variance Std.Dev.
## part:oper (Intercept) 0.0124650 0.11165
## part (Intercept) 0.0225515 0.15017
## oper (Intercept) 0.000000 0.00000
## Residual
                        0.0007517 0.02742
## Number of obs: 60, groups: part:oper, 30; part, 10; oper, 3
##
```

Estimando os componentes de variância Exemplo (Gage R & R)

- Dos resultados, podemos ver que $94.3\%=100\times[0.01247/(0.01247+0.0007517)]~\text{do}$ erro de medição é devido a reprodutibilidade.
- Assim, para reduzir o erro de medição, os esforços devem se concentrar em treinamentos para os operadores ao invés de investir em medidores (gages) mais precisos.

Para casa (para aula)

 Discuta outras aplicações que você considera que o delineamento de fatores aleatórios é apropriado.

