Notes and Figures

https://www.ppic.org/data-set/ppic-sacramento-valley-and-delta-surface-water-availability/

chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ucanr.edu/sites/RiceTestSite/files/328501.pdf

https://ca.water.usgs.gov/projects/central-valley/sacramento-valley.html#:~:text=Valley%20Facts&text=The%20predominate%20crop%20types%20are,table%20grapes%2C%20and%20wine%20grapes.

Well_Max = total well (subsurface + surface)

Well_sur = distance subsurface

CWL = Current water level

ROOM = Distance till top of well from current surface of water.

Histogram of Depths

March Water Levels

October Water Levels

Years

```
> summary(water_level_mar_97)
  Min. 1st Qu. Median Mean 3rd Qu.
                                          мах.
  71.47 108.16 124.89 119.69 132.32 160.43
> summary(water_level_mar_98)
  Min. 1st Qu. Median
                          Mean 3rd Qu.
  71.36 103.13 117.10 113.16 127.64
                                        141.00
> summary(water_level_mar_99)
 Min. 1st Qu. Median Mean 3rd Qu.
63.87 107.76 120.28 115.09 130.91
                                          мах.
                                        156.00
> summary(water_level_mar_10)
  Min. 1st Qu. Median
                        Mean 3rd Qu.
  59.16 98.30 114.67 113.47 130.50
                                        171.06
> summary(water_level_mar_11)
  Min. 1st Qu. Median
                          Mean 3rd Qu.
 64.46 101.55 120.34 117.73 134.70
                                        163.29
> summary(water_level_mar_15)
  Min. 1st Qu. Median
                        Mean 3rd Qu.
                                          мах.
  66.36
         97.14 119.98 115.08 134.44
                                        160.36
> summary(water_level_mar_16)
  Min. 1st Qu. Median
                          Mean 3rd Qu.
  66.76 97.03 120.89 118.85 135.83 163.09
```

```
> summary(water_level_oct_97)
  Min. 1st Qu. Median Mean 3rd Qu.
 68.46 109.62 123.63 115.73 127.60 160.00
> summary(water_level_oct_98)
 Min. 1st Qu. Median Mean 3rd Qu. Max. 70.36 98.93 114.04 114.06 130.91 157.24
> summary(water_level_oct_99)
  Min. 1st Ou. Median Mean 3rd Ou.
 66.96 93.73 112.08 110.82 124.80 161.00
> summary(water_level_oct_10)
  Min. 1st Qu. Median Mean 3rd Qu.
  72.3 107.8 120.0 120.2 142.8
                                  162.3
> summary(water_level_oct_11)
  Min. 1st Qu. Median Mean 3rd Qu.
                                   Max.
 64.06 96.94 114.14 114.54 133.57 166.36
> summary(water_level_oct_15)
  Min. 1st Qu. Median Mean 3rd Qu.
 58.06 93.16 114.34 115.60 135.00 162.46
> summary(water_level_oct_16)
  Min. 1st Qu. Median Mean 3rd Qu.
 59.56 95.93 125.03 116.63 136.20 156.76
> describe(water_level_mar_97)
 vars n mean sd median trimmed mad min max range skew kurtosis se
> describe(water_level_mar_98)
  vars n mean sd median trimmed mad min max range skew kurtosis se
-0.52 3.86
> describe(water_level_mar_99)
  vars n mean sd median trimmed mad min max range skew kurtosis se
> describe(water_level_mar_10)
 vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 25 113.47 26.1 114.67 113.34 23.57 59.16 171.06 111.9 -0.06
> describe(water_level_mar_11)
 vars n mean
              sd median trimmed mad min
                                       max range skew kurtosis se
> describe(water_level_mar_15)
 vars n mean sd median trimmed mad min max range skew kurtosis se
x1 1 25 115.08 25.3 119.98 115.61 32.8 66.36 160.36 94 -0.05 -1.08 5.06
> describe(water_level_mar_16)
 vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 25 118.85 27.09 120.89 119.52 28.67 66.76 163.09 96.33 -0.16 -1 5.42
```

> describe(water_level_oct_97) vars n mean sd median trimmed mad min max range skew kurtosis se > describe(water_level_oct_98) vars n mean sd median trimmed mad min max range skew kurtosis se > describe(water_level_oct_99) vars n mean sd median trimmed mad min max range skew kurtosis se > describe(water_level_oct_10) vars n mean sd median trimmed mad min max range skew kurtosis se > describe(water_level_oct_11) vars n mean sd median trimmed mad min max range skew kurtosis se > describe(water_level_oct_15) vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 25 115.6 28.24 114.34 116.19 30.63 58.06 162.46 104.4 -0.17 -0.95 5.65 > describe(water_level_oct_16) vars n mean sd median trimmed mad min max range skew kurtosis se

If Skewness value is less than 1 we consider that normally distributed.

> summary(precip									
Min. 1st Qu.	Median	Mean	3rd Qu.	Max.	NA'S				
0.070 0.650	1.395	4.260	3.475	19.150	13				
> summary(precip98)									
Min. 1st Qu.		Mean	3rd Qu.	Max.	NA's				
0.000 1.157	4.425	6.273	7.803	20.260	13				
> summary(precip99)									
Min. 1st Qu.	Median	Mean	3rd Qu.	Max.	NA'S				
0.0000 0.3425	2.2500	3.3267	4.3100	11.2000	13				
> summary(precip10)									
Min. 1st Qu.	Median	Mean	3rd Qu.	Max.	NA'S				
0.0100 0.1275									
> summary(precip11)									
Min. 1st Qu.		Mean	3rd Qu.	Max.	NA'S				
0.0000 0.9725									
> summary(precip15)									
Min. 1st Qu.		Mean	3rd Ou.	Max.	NA'S				
0.0600 0.2175									
> summary(precip16)									
Min. 1st Qu.		Mean	3rd Qu.	Max.	NA'S				
0.0000 0.3925									
. 1									

```
> describe(precip97)
  vars n mean sd median trimmed mad min max range skew kurtosis se
> describe(precip98)
  vars n mean sd median trimmed mad min max range skew kurtosis
X1 1 12 6.27 6.66 4.42 5.5 5.14 0 20.26 20.26 0.95
                                                  -0.49 1.92
> describe(precip99)
  vars n mean sd median trimmed mad min max range skew kurtosis se
    1 12 3.33 3.86 2.25 2.87 2.91 0 11.2 11.2 0.95
> describe(precip10)
  vars n mean sd median trimmed mad min max range skew kurtosis se
  1 12 3.66 3.9 2.88 3.1 4.08 0.01 12.99 12.98 0.99 0.08 1.13
> describe(precip11)
  vars n mean sd median trimmed mad min max range skew kurtosis
X1 1 12 4.77 4.77 3.76 4.38 4.55 0 13.34 13.34 0.7
                                                   -0.97 1.38
> describe(precip15)
  vars n mean sd median trimmed mad min max range skew kurtosis se
> describe(precip16)
  vars n mean sd median trimmed mad min max range skew kurtosis se
  1 12 3.75 5.15 1.46 3.05 2.15 0 14.46 14.46 1.11 -0.46 1.49
> cor(gwl)
      March_97 Oct_97 March_98
                         Oct_98 March_99
                                     Oct_99 March_10
                                                  Oct_10 March_11
```

```
Pearson's product-moment correlation
```

```
data: gwl$March_97 and gwl$WY_97
t = -1.9924, df = 10, p-value = 0.07432
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.84765327 0.05881841
sample estimates:
       cor
-0.5330778
> cor.test(gwl$0ct_97,gwl$WY_97)
        Pearson's product-moment correlation
data: gwl$Oct_97 and gwl$WY_97
t = -1.3201, df = 10, p-value = 0.2162
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.7854824 0.2422063
sample estimates:
       cor
-0.3852454
> cor.test(gwl$March_98,gwl$WY_98)
        Pearson's product-moment correlation
data: gwl$March_98 and gwl$WY_98
t = -0.64216, df = 10, p-value = 0.5352
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.6936827 0.4232322
sample estimates:
       cor
-0.1990069
> cor.test(gwl$0ct_98,gwl$WY_98)
        Pearson's product-moment correlation
data: gwl$Oct_98 and gwl$WY_98
t = -1.3659, df = 10, p-value = 0.2019
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.7905330 0.2296231
sample estimates:
       cor
-0.3965343
```

```
> cor.test(gwl$March_99,gwl$WY_99)
        Pearson's product-moment correlation
data: gwl$March_99 and gwl$WY_99
t = -1.9781, df = 10, p-value = 0.07612
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.84656640 0.06265282
sample estimates:
       cor
-0.5303172
> cor.test(gwl$0ct_99,gwl$WY_99)
        Pearson's product-moment correlation
data: gwl$oct_99 and gwl$WY_99
t = -1.6237, df = 10, p-value = 0.1355
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.8166021 0.1587559
sample estimates:
       cor
-0.4567614
> cor.test(gwl$March_10,gwl$WY_2010)
        Pearson's product-moment correlation
data: gwl$March_10 and gwl$WY_2010
t = -0.75403, df = 10, p-value = 0.4682
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.7111781 0.3944669
sample estimates:
       cor
-0.2319432
> cor.test(gwl$0ct_10,gwl$WY_2010)
        Pearson's product-moment correlation
data: gwl$oct_10 and gwl$wY_2010
t = -1.0673, df = 10, p-value = 0.3109
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.7551074 0.3112328
sample estimates:
       cor
-0.3197884
```

```
> cor.test(gwl$March_11,gwl$WY_2011)
        Pearson's product-moment correlation
data: gwl$March_11 and gwl$WY_2011
t = -2.9073, df = 10, p-value = 0.01564
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.9008126 -0.1682547
sample estimates:
       cor
-0.6768031
> cor.test(gwl$Oct_11,gwl$WY_2011)
        Pearson's product-moment correlation
data: gwl$Oct_11 and gwl$WY_2011
t = -2.3176, df = 10, p-value = 0.04295
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.86991156 -0.02606737
sample estimates:
       cor
-0.5911257
> cor.test(gwl$March_15,gwl$WY_2015)
        Pearson's product-moment correlation
data: gwl$March_15 and gwl$WY_2015
t = -0.60885, df = 10, p-value = 0.5562
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.6882841 0.4316761
sample estimates:
       cor
-0.1890643
> cor.test(gwl$0ct_15,gwl$WY_2015)
        Pearson's product-moment correlation
data: gwl$Oct_15 and gwl$WY_2015
t = -0.46853, df = 10, p-value = 0.6495
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.6645655 0.4665852
sample estimates:
       cor
-0.1465618
```

```
> cor.test(gwl$March_16,gwl$WY_2016)
        Pearson's product-moment correlation
data: gwl$March_16 and gwl$WY_2016
t = -1.4146, df = 10, p-value = 0.1876
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.7957617 0.2162265
sample estimates:
       cor
-0.4083482
> cor.test(gwl$0ct_16,gwl$WY_2016)
        Pearson's product-moment correlation
data: gwl$Oct_16 and gwl$WY_2016
t = -1.835, df = 10, p-value = 0.09639
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.8352200 0.1011413
sample estimates:
       cor
-0.5018928
```

```
> gwlreg
call:
lm(formula = gwl\$March_97 \sim gwl\$WY_97)
Coefficients:
(Intercept) gwl$WY_97
    112.752
                -1.722
> gwlreg1
call:
lm(formula = gwl\$oct_97 \sim gwl\$wY_97)
Coefficients:
(Intercept)
             gwl$WY_97
                -1.353
    110.216
> gwlreg2
lm(formula = gwl\$March_98 \sim gwl\$WY_98)
Coefficients:
(Intercept) gwl$WY_98
108.3258 -0.6318
> gwlreg3
call:
lm(formula = gwl$oct_98 ~ gwl$wY_98)
Coefficients:
(Intercept) gwl$WY_98
                  -1.33
     111.42
> gwlreg4
lm(formula = gwl\$March_99 \sim gwl\$WY_99)
Coefficients:
(Intercept) gwl$WY_99
116.485 -3.221
> gwlreg5
lm(formula = gwl\$oct_99 \sim gwl\$wY_99)
Coefficients:
(Intercept) gwl$WY_99
    107.471
                -2.458
```

```
> gwlreg6
call:
lm(formula = gwl\$March_10 \sim gwl\$WY_2010)
Coefficients:
(Intercept) gwl$WY_2010
    103.058 -1.312
> gwlreg7
call:
lm(formula = gwl\$oct\_10 \sim gwl\$wy\_2010)
Coefficients:
(Intercept) gwl$WY_2010
    110.969
              -1.915
> gwlreg8
call:
lm(formula = gwl$March_11 ~ gwl$WY_2011)
Coefficients:
(Intercept) gwl$WY_2011
    114.326
                -2.909
> gwlreg9
call:
lm(formula = gwl\$oct\_11 \sim gwl\$wY\_2011)
Coefficients:
(Intercept) gwl$WY_2011
    109.303
                -2.432
```

```
> gwlreg10
call:
lm(formula = gwl$March_15 ~ gwl$WY_2015)
Coefficients:
(Intercept) gwl$WY_2015
99.2008 -0.7821
> gwlreg11
call:
lm(formula = gwl\$oct_15 \sim gwl\$wY_2015)
Coefficients:
(Intercept) gwl$WY_2015
    94.9992
              -0.6849
> gwlreg12
call:
lm(formula = gwl\$March_16 \sim gwl\$WY_2016)
Coefficients:
(Intercept) gwl$WY_2016
    102.187
                 -1.348
> gwlreg13
lm(formula = gwl\$oct\_16 \sim gwl\$wy\_2016)
Coefficients:
(Intercept) gwl$WY_2016
                -2.136
    105.232
```

```
> summary(gwlreg)
call:
lm(formula = qwl\$March_97 \sim qwl\$WY_97)
Residuals:
   Min
           1Q Median
                           3Q
-31.948 -9.835 1.807 12.950 21.154
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 112.7519 6.4686 17.431 8.19e-09 ***
                      0.8644 -1.992 0.0743 .
gwl$WY_97 -1.7223
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 18.42 on 10 degrees of freedom
  (13 observations deleted due to missingness)
Multiple R-squared: 0.2842, Adjusted R-squared: 0.2126
F-statistic: 3.97 on 1 and 10 DF, p-value: 0.07432
> summary(gwlreg1)
lm(formula = gwl\$oct_97 \sim gwl\$wY_97)
Residuals:
            1Q Median
                          3Q
   Min
                                Max
-38.265 -4.948 6.466 11.733 26.792
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        7.670 14.37 5.28e-08 ***
(Intercept) 110.216
                        1.025 -1.32 0.216
gwl$WY_97 -1.353
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 21.84 on 10 degrees of freedom
 (13 observations deleted due to missingness)
Multiple R-squared: 0.1484, Adjusted R-squared: 0.06326
```

F-statistic: 1.743 on 1 and 10 DF, p-value: 0.2162

> summary(gwlreg2) call: lm(formula = gwl\$March_98 ~ gwl\$WY_98) Residuals: 1Q Median Min 3Q -33.150 -15.593 9.302 15.048 26.294 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 108.3258 8.7995 12.310 2.3e-07 *** 0.9838 -0.642 gwl\$WY_98 -0.6318 0.535 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 21.73 on 10 degrees of freedom (13 observations deleted due to missingness) Multiple R-squared: 0.0396, Adjusted R-squared: -0.05644 F-statistic: 0.4124 on 1 and 10 DF, p-value: 0.5352 > summary(gwlreg3) call: $lm(formula = gwl\$oct_98 \sim gwl\$wY_98)$ Residuals: Min 1Q Median 3Q Max -33.03 -16.24 -0.74 14.97 28.98 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 111.4225 8.7078 12.796 1.59e-07 *** 0.9736 -1.366 0.202 gwl\$WY_98 -1.3298 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 21.5 on 10 degrees of freedom (13 observations deleted due to missingness) Multiple R-squared: 0.1572, Adjusted R-squared: 0.07296

F-statistic: 1.866 on 1 and 10 DF, p-value: 0.2019

```
> summary(gwlreg4)
call:
lm(formula = qwl\$March_99 \sim qwl\$WY_99)
Residuals:
   Min
           1Q Median
                            3Q
-32.930 -12.552 4.239 11.595 32.553
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 116.485 8.099 14.382 5.23e-08 ***
                        1.628 -1.978 0.0761 .
gwl$WY_99
            -3.221
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 20.86 on 10 degrees of freedom
  (13 observations deleted due to missingness)
Multiple R-squared: 0.2812, Adjusted R-squared: 0.2094
F-statistic: 3.913 on 1 and 10 DF, p-value: 0.07612
> summary(gwlreg5)
lm(formula = gwl\$oct_99 \sim gwl\$wY_99)
Residuals:
            1Q Median
                          3Q
                                Max
-30.900 -10.805 -0.050 7.954 32.419
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                       7.530 14.273 5.63e-08 ***
(Intercept) 107.471
                        1.514 -1.624 0.136
          -2.458
gwl$WY_99
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 19.39 on 10 degrees of freedom
 (13 observations deleted due to missingness)
Multiple R-squared: 0.2086, Adjusted R-squared: 0.1295
```

F-statistic: 2.636 on 1 and 10 DF, p-value: 0.1355

```
> summary(qwlreq6)
call:
lm(formula = gwl\$March_10 \sim gwl\$WY_2010)
Residuals:
           1Q Median
   Min
                           3Q
-38.705 -10.102 7.968 14.620 28.017
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 103.058 9.102 11.322 5.04e-07 ***
gwl$WY_2010 -1.312
                        1.739 -0.754
                                        0.468
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 22.51 on 10 degrees of freedom
  (13 observations deleted due to missingness)
Multiple R-squared: 0.0538, Adjusted R-squared: -0.04082
F-statistic: 0.5686 on 1 and 10 DF, p-value: 0.4682
> summary(gwlreg7)
lm(formula = qwl\$oct_10 \sim qwl\$wY_2010)
Residuals:
   Min
           1Q Median
                           3Q
-34.623 -14.305 3.831 15.355 32.050
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 110.969
                        9.391 11.817 3.38e-07 ***
gwl$WY_2010 -1.915
                        1.794 -1.067
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 23.23 on 10 degrees of freedom
  (13 observations deleted due to missingness)
Multiple R-squared: 0.1023, Adjusted R-squared: 0.01249
F-statistic: 1.139 on 1 and 10 DF, p-value: 0.3109
```

```
> summary(gwlreg8)
call:
lm(formula = gwl\$March_11 \sim gwl\$WY_2011)
Residuals:
    Min
           1Q Median
                           3Q
-26.885 -9.643 -2.175 14.855 20.574
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 114.326 6.601 17.320 8.72e-09 ***
                         1.000 -2.907 0.0156 *
gwl$WY_2011 -2.909
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.81 on 10 degrees of freedom
  (13 observations deleted due to missingness)
Multiple R-squared: 0.4581, Adjusted R-squared: 0.4039
F-statistic: 8.452 on 1 and 10 DF, p-value: 0.01564
> summary(gwlreg9)
call:
lm(formula = gwl\$oct_11 \sim gwl\$wy_2011)
Residuals:
           1Q Median
   Min
                           3Q
-21.873 -13.805 -2.165 14.814 19.018
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                      6.924 15.787 2.14e-08 ***
(Intercept) 109.303
                        1.049 -2.318
                                       0.043 *
gwl$WY_2011 -2.432
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 16.59 on 10 degrees of freedom
  (13 observations deleted due to missingness)
Multiple R-squared: 0.3494, Adjusted R-squared: 0.2844
```

F-statistic: 5.371 on 1 and 10 DF, p-value: 0.04295

```
> summary(gwlreg10)
call:
lm(formula = gwl\$March_15 \sim gwl\$WY_2015)
Residuals:
   Min
            1Q Median
                          3Q
-32.387 -5.071 2.651 6.899 25.790
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 99.2008 5.9487 16.676 1.26e-08 ***
gwl$WY_2015 -0.7821
                       1.2845 -0.609
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17.54 on 10 degrees of freedom
  (13 observations deleted due to missingness)
Multiple R-squared: 0.03575, Adjusted R-squared: -0.06068
F-statistic: 0.3707 on 1 and 10 DF, p-value: 0.5562
> summary(gwlreg11)
lm(formula = gwl$oct_15 \sim gwl$wY_2015)
Residuals:
           1Q Median
                          3Q
                                 Max
-36.542 -11.361 0.144 17.007 27.449
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 94.9992 6.7692 14.034 6.62e-08 ***
gwl$WY_2015 -0.6849
                       1.4617 -0.469 0.649
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 19.95 on 10 degrees of freedom
 (13 observations deleted due to missingness)
Multiple R-squared: 0.02148, Adjusted R-squared: -0.07637
```

F-statistic: 0.2195 on 1 and 10 DF, p-value: 0.6495

```
> summary(gwlreg12)
call:
lm(formula = gwl\$March_16 \sim gwl\$WY_2016)
Residuals:
            1Q Median
                              3Q
    Min
-27.294 -11.553 2.177 10.593 21.569
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 102.1872 5.9017 17.315 8.74e-09 *** gwl$wY_2016 -1.3483 0.9531 -1.415 0.188
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 16.27 on 10 degrees of freedom
  (13 observations deleted due to missingness)
Multiple R-squared: 0.1667, Adjusted R-squared: 0.08342
F-statistic: 2.001 on 1 and 10 DF, p-value: 0.1876
> summary(gwlreg13)
call:
lm(formula = gwl\$oct_16 \sim gwl\$wY_2016)
Residuals:
Min 1Q Median 3Q Max -26.895 -18.302 3.652 15.267 29.388
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        7.207 14.600 4.53e-08 ***
(Intercept) 105.232
                          1.164 -1.835 0.0964 .
gwl$WY_2016 -2.136
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 19.87 on 10 degrees of freedom
 (13 observations deleted due to missingness)
Multiple R-squared: 0.2519, Adjusted R-squared: 0.1771
F-statistic: 3.367 on 1 and 10 DF, p-value: 0.09639
```

> stat.desc(gw	SMarch 07 has	ic-E)							
median	mean	SE.mean	CI.mean.0.95	var	std.dev	coef.var			
			9.2223081						
> stat.desc(gwl	\$oct_97,basic	=F)							
median			CI.mean.0.95			coef.var			
123.6300000 1			8.9345321	468.4971333	21.6447946	0.1870284			
> stat.desc(gwl						-			
median			CI.mean.0.95		std.dev				
			7.9723776	3/3.025935/	19.3138794	0.1706812			
> stat.desc(gwl median	mean	FF MOOD	CI.mean.0.95	var	std dov	coef.var			
114.0400000 1				538.9666190	23.2156546				
> stat.desc(gw]			5. 5025512	330.3000130	23.2130340	0.2033347			
median	mean	SE.mean	CI.mean.0.95	var	std.dev	coef.var			
120.2800000 1			9.3434460		22.6354293				
> stat.desc(gwl	\$oct_99,basic	=F)							
median			CI.mean.0.95		std.dev				
112.0800000 1			9.3508710	513.1773090	22.6534172	0.2044082			
> stat.desc(gwl	\$March_10,bas	ic=F)				-			
median			CI.mean.0.95			coef.var			
114.6700000 1			10.7737259	681.2321//3	26.1004248	0.2300254			
> stat.desc(gwl median			CI.mean.0.95	var	std.dev	coef var			
			10.9805650		26.6015132				
> stat.desc(gwl			10.3003030	707.0403027	20.0013132	0.2212/14			
median	mean	SE.mean	CI.mean.0.95	var	std.dev	coef.var			
			10.9885857		26.6209442				
> stat.desc(gwl	\$oct_11, basic	=F)							
median	mean	SE.mean	CI.mean.0.95	var	std.dev	coef.var			
114.1400000 1			10.9655260	705.7034690	26.5650799	0.2319235			
> stat.desc(gwl						_			
median			CI.mean.0.95			coef.var			
			10.4447119	640.25981/3	25.3033559	0.2198846			
> stat.desc(gwl median		-	CI.mean.0.95	var	std.dev	coof var			
			11.6571168		28.2405276				
> stat.desc(gwl			11.05/1100	7 37 1 32 7 337 7	2012403270	0.2442003			
median	mean	SE.mean	CI.mean.0.95	var	std.dev	coef.var			
120.8900000 1	18.8472000	5.4170689	11.1802807	733.6158793	27.0853444	0.2279006			
> stat.desc(gwl									
median			CI.mean.0.95			coef.var			
			10.8152434	686.4926723	26.2010052	0.2246537			
> stat.desc(gwl			0.05			5			
median 1.395000	mean 4.260000		CI.mean.0.95 4.082839		std.dev 6.425926	coef.var 1.508433			
> stat.desc(gwl			4.082839	41.292527	0.423920	1.308433			
> stat.desc(gw)	mean		CI.mean.0.95	var	std.dev	coef.var			
	6.273333	1.922198		44.338133	6.658689	1.061428			
> stat.desc(gwl									
median	mean		CI.mean.0.95	var	std.dev	coef.var			
2.250000	3.326667	1.114798	2.453654	14.913297	3.861774	1.160854			
> stat.desc(gwl									
median	mean		CI.mean.0.95	var	std.dev	coef.var			
2.880000	3.664167	1.126569	2.479561	15.229881	3.902548	1.065057			
> stat.desc(gwl median	\$WY_2011,basi		CI.mean.0.95	var	std.dev	coef.var			
3.765000	4.765833	1.375790		22.713572	4.765876	1.000009			
31, 03000	71703033	1.3/3/30	5.020055	22.,133,2	41,03070	2.00000			
> stat.desc(gwl\$WY_2015,basic=F)									
median	mean		n CI.mean.0.95	var	std.dev	coef.var			
0.435000	2.432500	1.188176	2.615158	16.941148	4.115963	1.692071			
> stat.desc(gwl	\$wY_2016,basi	C=F)							
median	mean		n CI.mean.0.95						
1.455000	3.748333	1.486037	7 3.270746	26.499688	5.147785	1.373353			
-									

```
> t.test(gwl$March_97,gwl$WY_97)
        Welch Two Sample t-test
data: gwl$March_97 and gwl$WY_97
t = 23.858, df = 30.978, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
105.5619 125.2973
sample estimates:
mean of x mean of y
 119.6896 4.2600
> t.test(gwl$Oct_97,gwl$WY_97)
        Welch Two Sample t-test
data: gwl$Oct_97 and gwl$WY_97
t = 23.668, df = 31.319, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
101.8685 121.0715
sample estimates:
mean of x mean of y
   115.73
               4.26
> t.test(gwl$March_98,gwl$WY_98)
        Welch Two Sample t-test
data: gwl$March_98 and gwl$WY_98
t = 24.773, df = 32.95, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  98.10561 115.66292
sample estimates:
mean of x mean of y
           6.273333
113.157600
> t.test(gwl$Oct_98,gwl$WY_98)
        Welch Two Sample t-test
data: gwl$Oct_98 and gwl$WY_98
t = 21.449, df = 30.948, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  97.53923 118.03890
sample estimates:
mean of x mean of y
114.062400
           6.273333
```

```
Welch Two Sample t-test
data: gwl$March_99 and gwl$WY_99
t = 23.972, df = 26.784, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
102.1954 121.3352
sample estimates:
mean of x mean of y
115.092000
           3.326667
> t.test(gwl$0ct_99,gwl$WY_99)
       Welch Two Sample t-test
data: gwl$Oct_99 and gwl$WY_99
t = 23.039, df = 26.78, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  97.92058 117.07489
sample estimates:
mean of x mean of y
110.824400
           3.326667
> t.test(gwl$March_10,gwl$WY_2010)
       Welch Two Sample t-test
data: gwl$March_10 and gwl$WY_2010
t = 20.561, df = 26.164, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  98.8297 120.7772
sample estimates:
mean of x mean of y
113.467600
           3.664167
> t.test(gwl$0ct_10,gwl$WY_2010)
       Welch Two Sample t-test
data: gwl$Oct_10 and gwl$WY_2010
t = 21.433, df = 26.086, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
105.3803 127.7338
sample estimates:
mean of x mean of y
120.221200
           3.664167
```

> t.test(gwl\$March_99,gwl\$WY_99)

```
> t.test(gwl$March_11,gwl$WY_2011)
        Welch Two Sample t-test
data: gwl$March_11 and gwl$WY_2011
t = 20.543, df = 27.049, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
101.6857 124.2501
sample estimates:
mean of x mean of y
117.733720 4.765833
> t.test(gwl$0ct_11,gwl$WY_2011)
        Welch Two Sample t-test
data: gwl$Oct_11 and gwl$WY_2011
t = 20.002, df = 27.061, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  98.51679 121.03635
sample estimates:
mean of x mean of y
114.542400 4.765833
> t.test(gwl$March_15,gwl$WY_2015)
        Welch Two Sample t-test
data: gwl$March_15 and gwl$WY_2015
t = 21.669, df = 26.543, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
101.9685 123.3177
sample estimates:
mean of x mean of y
115.0756
            2.4325
> t.test(gwl$0ct_15,gwl$WY_2015)
        Welch Two Sample t-test
data: gwl$Oct_15 and gwl$WY_2015
t = 19.608, df = 26.06, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
101.3081 125.0333
sample estimates:
mean of x mean of y
 115.6032
            2.4325
```

> t.test(gwl\$March_16,gwl\$WY_2016)

Welch Two Sample t-test

```
data: gwl$March_16 and gwl$WY_2016
t = 20.49, df = 27.409, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
103.5814 126.6164
sample estimates:
mean of x mean of y
118.847200 3.748333</pre>
```

> t.test(gwl\$0ct_16,gwl\$WY_2016)

Welch Two Sample t-test

```
data: gwl$oct_16 and gwl$wY_2016
t = 20.724, df = 27.626, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
101.7159 124.0442
sample estimates:
mean of x mean of y
116.628400 3.748333</pre>
```