MIKROKONTROLER

Arsitektur Mikrokontroler AT89S51

Ringkasan Pendahuluan Mikrokontroler

- Mikrokontroler = μP + Memori (RAM & ROM) +
 I/O Port + Programmable IC
- Mikrokontroler digunakan sebagai komponen pengendali
- Mikrokontroler digunakan untuk 1 tujuan (single purpose)
- Aplikasi mikrokontroler: dunia industri, kontrol proses, instrumentasi, home applications, robotika, dll
- Materi Mikrokontroler 8051 → Atmel 89S51

Perkuliahan 2

- Spesifikasi Mikrokontroler AT89S51
- Diagram Blok
- Deskripsi Pin
- Port I/O

Spesifikasi Mikrokontroler AT89S51

- Kompatibel dengan produk MCS-51.
- 4K Byte flash memori yang dapat diprogram dan dihapus.
- Catu tegangan sebesar 4V 5,5V.
- Frekuensi operasi dari 0 Hz 33 MHz.
- 128 Byte RAM internal.
- 32 jalur I/O yang dapat diprogram (P0-P3).
- Dua buah Timer/Counter 16 bit.
- Lima vektor interupsi.
- Port serial (UART) full duplex.

Diagram Blok

Diagram Pin

Control Bus

PSEN	Program Store Enable, digunakan untuk mengakse program memori eksternal. Biasanya pin ini dikoneksikan dengan pin OE pada EPROM.					
ALE/PROG	Pin ini berfungsi untuk me- <i>latch low</i> byte alamat pada saat mengakses memori eksternal. Sedang saat <i>flash programming</i> (PROG) berfungsi sebagai pulsa input.					
EA / VPP	Jika EA=1 maka mikrokontroler akan melaksanakan instruksi dari ROM internal					
	Jika EA=0 maka mikrokontroler akan melaksanakan instruksi dari ROM eksternal					
RST Merupakan pin untuk memberikan sinyal reset p mikrokontroler. Pulsa dari low ke high akan mere mikrokontroler						

Port I/O

Port 0	Port 0 merupakan port paralel 8 bit dua arah (bi-directional yang dapat digunakan untuk berbagai keperluan. Port 0 juga memultipleks alamat dan data jika digunakan untuk mengakses memori eksternal				
Port 1	Port 1 merupakan port paralel 8 bit bi-directional dengan internal pull-up. Port 1 juga digunakan dalam proses pemrograman (In System Programming) → P1.5 MOSI; P1.6 MISO; P1.7 SCK				
Port 2	Port 2 merupakan port paralel 8 bit bi-directional dengan internal pull-up. Port 2 akan mengirim byte alamat jika digunakan untuk mengakses memori eksternal.				
Port 3	Port 3 merupakan port paralel 8 bit bi-directional dengan internal pull-up. Port 3 juga bisa difungsikan untuk keperluan khusus				

Fungsi Khusus Port 3

PIN	FUNGSI ALTERNATIF				
P1.0	RXD (port input serial)				
P1.1	TXD (port output serial)				
P1.2	INT0 (interrupt eksternal 0)				
P1.3	INT1 (interrupt eksternal 1)				
P1.4	T0 (input eksternal timer 0)				
P1.5	T1 (input eksternal timer 1)				
P1.6	WR (strobe penulisan data eksternal)				
P1.7	RD (strobe pembacaan data eksternal)				

Fungsi Pin Lain

VCC	Sumber tegangan, dapat menggunakan sumber tegangan dari +2,5 V – 6 V, biasanya menggunakan sumber tegangan +5 V
GND	Ground
XTAL1	Merupakan input untuk <i>amplifier osilator</i> inverting dan input untuk rangkaian <i>clock</i> internal
RST	Merupakan keluaran dari <i>amplifier osilator inverting.</i>

Perancangan Rangkaian Minimum

- Rangkaian minimal yang harus ada agar mikrokontroler dpt bekerja.
- Komponen Yg Harus Ada
 - CPU
 - Memori Program (ROM)
 - Memori Data (RAM)
 - Port I/O
 - Pewaktuan CPU (Crystal 4-24 MHz)
 - Reset
 - Power Supply (5 Volt)
 - EA, VPP dihubungkan ke VCC

Internal (Sudah Ada Dalam Mikrokontroler)

Eksternal

Pewaktuan CPU (Crystal)

- Mikrokontroler 8951 memiliki osilator internal bagi sumber clock CPU.
- Untuk menggunakan osilator internal diperlukan kristal antara XTAL1 dan XTAL 2 dan sebuah kapasitor ground.
- Untuk kristalnya dapat digunakan frekuensi dari 4 sampai 24 MHZ.
- Sedang untuk kapasitor dapat bernilai 20 pF sampai 40 pF.
- Bila menggunakan clock eksternal rangkaian dihubungkan seperti berikut :

Rangkaian Oscilator

Siklus Mesin

 Dalam mikrokontroler dikenal istilah Machine Cycle (MC) / Siklus Mesin, dimana :

1 MC = 6 state = 12 periode clock

 Jika frekuensi crystal yang digunakan adalah 12 MHz maka 1 MC = 12/frekuensi crystal = 12/12 MHz =1uS

Waktu Eksekusi

- Waktu eksekusi sebuah instruksi oleh mikrokontroler tergantung dari jenis instruksi dan frekuensi clock yang digunakan.
- Setiap instruksi memiliki panjang byte dan jumlah siklus yang berbeda.
- Byte instruksi (*Byte*) menandakan jumlah lokasi memori yang dipakai
- Siklus instruksi (*Cycle*) menandakan jumlah machine cycle yang dibutuhkan.
- Waktu eksekusi dapat dihitung dengan rumus :

Waktu Eksekusi

$$Tinst = \frac{C \times 12}{frekuensi\ crystal}$$

Dimana:

Tinst: Waktu yang dibutuhkan untuk mengeksekusi

1 instruksi (Secon)

C : Jumlah machine cycle

Waktu Eksekusi

Contoh:

Diketahui sebuah mikrokontroler dengan frekuensi crystal 12 MHz. Berapakah waktu yang diperlukan untuk mengeksekusi perintah berikut ini?

Mov A,#30h

Jawab:

Dari lembaran data 8051 Operational Code Mnemonics diketahui bahwa instruksi dengan format

Mov A,#n adalah instruksi dengan Byte = 1 dan Cycle = 1

Maka : Tinst = (1x12)/12MHz=1uS

Contoh Opcode (Operational Code Mnemonics)

MNEMONICS		BYTE	CYCLE	MNEMONICS		BYTE	CYCLE
ADD	A,Rr	1	1	MOV	add,#n	3	2
ADD	A,add	2	1	MOV	add,@Rp	2	2
ADD	A,@Rp	1	1	MOV	@Rp,A	1	1
ADD	A,#n	2	1	MOV	@Rp,add	2	2
DEC	A	1	1	MOV	@Rp,#n	2	1
DEC	Rr	1	1	MOV	DPTR,#nn	3	2
DEC	add	2	1	CJNE	A,#n,radd	3	2
DEC	@Rp	1	1	DJNZ	Rr.radd	2	2
DIV	AB	1	4	DJNZ	add,radd	3	2
INC	Α	1	1	ACALL	sadd	2	2
INC	Rr	1	1	LCALL	ladd	3	2
INC	add	2	1	SJMP	radd	2	2
INC	DPTR	1	2	AJMP	sadd	2	2
MUL	AB	1	4	LJMP	ladd	3	2
SUBB	A,Rr	1	1	JB	b,radd	3	2
SUBB	A,add	2	1	JZ	radd	2	2
SUBB	A,@Rp	1	1	JNZ	radd	2	2
SUBB	A,#n	2	1	RET		1	2
CLR	Α	1	1	RETI		1	2
NOP		1	1	SETB	b	2	1
RL	Α	1	1	ANL	A,Rr	1	1
RR	Α	1	1	ANL	A,add	2	1
SWAP	A	1	1	ANL	A,@Rp	1	1
MOV	A,#n	2	1	ORL	A,Rr	1	1
MOV	Rr,A	1	1	ORL	A,add	2	1
MOV	add,Rr	2	2	ORL	A,@Rp	1	1

Reset

Mengapa Perlu Reset?

- Saat power dinyalakan, instruksi yang pertamakali dieksekusi oleh mikrokontroler adalah instruksi yang tersimpan pada address 0000h.
- Agar Program Counter (PC) dapat menunjuk address 0000h pada saat awal maka mikrokontroler perlu di-reset.
- Caranya adalah dengan memberikan pulsa high pada pin Reset selama minimal 2 machine cycle (jika f crystal = 12 MHz maka 2MC = 2uS).
- Setelah itu baru diberikan pulsa low. Kondisi ini dapat dipenuhi dengan memasang rangkaian RC yang akan mensuplai tegangan Vcc ke pin 9 selama kapasitor mengisi muatan / charging.
- Konstanta waktu pengisian dapat dihitung dengan mengalikan nilai R dan C.
- Pada rangkaian dibawah adalah : T=R.C = (8K2).(10uF) = 82mS.
 Setelah kapasitor terisi, maka pin 9 akan low.

Rangkaian Reset

FIGURE 2-15

Two circuits for system reset.

- (a) Manual Reset
- (b) Power-on Reset

(a) Manual reset

(b) Power-on reset

Rangkaian Minimum

