

FIRST SEMESTER 2021-2022

Course Handout Part II

Date: 07-08-2021

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : EEE G591

Course Title : Optical Communication

Instructor-in-charge: Prasant Kumar Pattnaik

Course Description:

Basic concepts of optical Communication systems, linear and non-linear optical fibre characteristics, optical sources and transmitters (design, performance), modulator (direct/indirect), optical coupling/distribution, optical amplifiers, coherent light wave system, long-haul and distribution optical communication systems, WDM & TDM light wave system, soliton based communication system and new advances in optical communication.

Scope and objective of the course:

This course is intended for a specialized degree of communication engineering/Science students at senior levels. This course covers a detailed discussion on optical communication concepts, components, system and applications. The goal of this course is to enhance the basics and concepts of optical communication system design

1. Text Book:

Govind P. Agrawal, "Fiber-optic Communication Systems" Third Edition, John Wiley 2002.

2. Reference Books:

- i) RB1: Harold Kolimbris, "Fiber Optic Communications", Pearson Education, 2008.
- ii) RB2: Gerd Keiser, "Optical Fiber Communications", McGraw Hill Education (India) Pvt. Ltd., Fifth Ed., 2013
- iii) RB3: Rajiv Ramaswami, Kumar N. Sivarajan, "Optical Networks-A Practical Perspective", Morgan Kaufmann Pub. Second Ed.,2004

3. Course Plan:

L No.	Learning Objective	Topic to be Covered	Ref*.Chap/ Sec./ (Book)
1.	Introduction; Concept of field	Optical Confinement, cutoff	1,2(T)
	propagation in optical fibres	condition, single	

		mode/multimode concept.			
2.	Concept of field absorption, scattering, loss	2(T)			
3.	Concept of pulse broadening and bandwidth limitation	Dispersion in fibers	2(T)		
4.	Concept of dispersion reduction and B.L optimization.	Zero dispersion concepts, DSF, DFF	Class discussions Ch.3 (R2)		
5.	Nonlinear effects in optical fibers	SRS,SBS,SPM,XPM,FWM	Class, 12 (R2)		
6.	Concepts of dispersion compensation	Dispersion management, FWM Tech.	3.3 (R2)		
7.	Concept of semiconductors sources	LED & ILD	5.3 (R1), 3 (T)		
8.	Concepts of optical gain	-			
9.	Concept of high speed S.C lasers	Chirping control, mode selection	Class, 6.6 (R2)		
10.	Concept of Electo-Optic effect Pockel effect & Kerr effect based devices		17 (R3)		
11.	Concept of Acousto-Optic effect	Raman & Bragg modulators, deflectors	17 (R3)		
12.	Concepts of Transmitter design.	oncepts of Transmitter design. Coherent light wave Transmitters			
13.	Concept of performance issues of transmitters Reliability, Testing, chirping and performance study		Class notes		
14.	Concept of photo detection	PIN,APD, MSM.	6(R1),4(T)		
15.	Concept of optical receiver	Receiver design, S/N Estimation, Digital optical receivers	10(T) Class		
16.	Do	Digital receiver sensitivity (Coherent receivers)	6.3-6.4(R1) 10(T)		
17.	Concept of receivers performance				
18.	Concept of receivers overview	Practical receiver discussion	Class,10(T)		
19.	Concept of Semiconductor laser amplifier	SLA	6(T)		
20.	Concept of active fiber amplifiers	SRA, SBS	6(T)		
21.	Concepts of Doped fiber amplifiers	EDFA	6(T), Class notes		
22.	Concept of light wave amplifier systems.	Design and application of amplifiers	6 (T)		
23.	Concept of light wave communication systems	Design issues of communication systems	Class		
24.	Concept of design Power penalty	Power penalty estimation and reduction approaches.	5.4 (T)		
25.	Concept and design guide-lines for optical link	Power penalty considerations and link budget.	5.4 (T)		
26.	Concept of optical network and system architectures	Different topologies used in optical network	8 (R1),6(R3)		

27	Concept of Optical Networks	Optical LAN , WANS, SONET/SDH	8 (R1),6(R3)
28.	Concept WDM light wave system	Channel spacing decision, multipliers, design issues	8(T)
29.	Concept of WDM system components	couplers/routers/switches	8(T)
30.	Do	Optical filters	Class, 10 (R2)
31.	Concepts of WDM Transmitters/Receivers	Practical Transmitters /Receivers	Class,11 (R1)
32.	Concept of WDM system performance	Linear and Nonlinear effects	8(T)
3335	Concepts of WDM Networking	WDM Network routing/management	8(R3)
36	Concept of time division multiplexing	Optical TDM techniques.	7.4 (R1)
37	Concept of soliton communication	Soliton Generation	19 (R2), 9(T) 7.10 (T)
38	Do	Soliton Interaction	9(T)
39	Do	High capacity soliton systems and jitter reduction	9(T)
40	Concept of WDM soliton system	Soliton Multiplexing techniques	Class notes
41	To learn new development in optical communication	New trends in optical communication	R3,Class notes
42	Do	Networking, communication	R3,Class notes

3. List of Experiments

S. No	Experiment/ Activity Name			
1.	Modes in Multimode fiber			
2.	Single Mode Fiber - Dispersion Effects			
3.	Non-linear effects in Single Mode fiber			
4.	LASER Characteristics			
5.	PIN and Avalanche Photodiode Characteristics			
6.	Power Budget of Fiber Optic Link			
7.	Rise Time / Dispersion Budget of Fiber Optic Link			
8.	Optical Amplifiers - EDFA - Characteristics			
9.	Design of Fully compensated OOK link			
10.	WDM and OTDM Link Design and Demultiplexing			

4. Evaluation Scheme:

Component	Duration	Percentage	Marks	Date & Time	Evaluation type
Midsem	90 min	30%	60	To be announced	Open Book
Quiz	20 mins each	5 %	10	During class hour	Open Book
Regular Labs		15%	30		Open Book

Project		15%	30		Open Book
Compre. Exam.	2 hours	35%	70	27/12 AN	Open Book
Total			200		

5. Chamber Consultation Hour: To be announced in the class

email: pkpattnaik@hyderabad.bits-pilani.ac.in

6. **Notices:** All course related notice will be displayed in **CMS**

7. **Make-up Examination:**

No make-up will be given for project work. However, for Test and Comprehensive Examination, make-up examination will be given only in **extremely genuine cases** for which prior permission of the instructor-in-charge is required.

Dr. Prasant Kumar Pattnaik Instructor-in-charge EEE G591