(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 October 2001 (04.10.2001)

PCT

(10) International Publication Number WO 01/72778 A2

(51) International Patent Classification⁷: C07K 14/00

(21) International Application Number: PCT/US01/08853

(22) International Filing Date: 20 March 2001 (20.03.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/192,920

29 March 2000 (29.03.2000) US

(71) Applicant (for all designated States except US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen, Rheinland-Pfalz (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BUMP, Nancy, J. [US/US]; 376 Andover Street, Lowell, MA 01852 (US). ARNOLD, Lee, D. [CA/US]; 216 Ruggles Street, Westborough, MA 01581 (US). DIXON, Richard, W. [US/US]; 6 Samuel Drive, North Grafton, MA 01536 (US). HOEFFKEN, Hans, Wolfgang [DE/DE]; Caro-Bosch-Strasse 38, 67056 Ludwigshafen (DE). ALLEN, Karen [US/US]; 80 East Concord Street, Boston, MA 02118 (US). BELLAMACINA, Cornelia [US/US]; 80 East Concord Street, Boston, MA 02118 (US).

(74) Agents: ELMORE, Carolyn, S. et al.; Hamilton, Brook, Smith & Reynolds, P.C., Two Militia Drive, Lexington, MA 02421 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

 \triangleleft

(54) Title: METHOD OF IDENTIFYING INHIBITORS OF TIE-2

(57) Abstract: The present invention relates to polypeptides which comprise the ligand binding domain of Tie-2, crystalline forms of these polypeptides and the use of these crystalline forms to determine the three dimensional structure of the catalytic domain of Tie-2. The invention also relates to the use of the three dimensional structure of the Tie-2 catalytic domain both alone, or in complex with inhibitors, in methods of designing and/or identifying potential inhibitors of Tie-2 activity, for example, compounds which inhibit the binding of a native substrate to the Tie-2 catalytic domain.

-1-

METHOD OF IDENTIFYING INHIBITORS OF TIE-2

RELATED APPLICATION

5

10

15

20

25

30

This application claims the benefit of U.S. Provisional Application No. 60/192,920, filed on March 29, 2000. The entire teachings of the above application is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Angiogenesis is a fundamental process by which new blood vessels are formed through sprouting, branching, proliferation, and tubule formation by endothelial cells from existing vasculature. In healthy humans, this neovascularization is under stringent control, normally occurring only during embryonic development, endometrial regulation, breast lactation and wound repair. However, in many pathological conditions, such as rheumatoid arthritis, solid tumors, Kaposi's sarcoma, blindness due to ocular neovascularization, psoriasis and atherosclerosis, disease progression is dependent upon persistent angiogenesis. The vasculature, which is the conduit for drug delivery, is one of the most accessible tissues in the body. Each endothelial cell of tumor vessels is estimated to support 100 to 1,000 neighboring cells, yet in the absence of an angiogenic stimulus endothelial cells typically divide only once every thousand days.

A number of polypeptide growth factors and their associated endothelial cell specific receptors have been discovered which are primarily responsible for the stimulation of endothelial cell growth, differentiation and the establishment of new vasculature. These growth factor receptors include the vascular endothelial growth factor receptors (VEGFR) Flk-1 (mouse), KDR/VEG-FR-2 (human), Flt-1/VEGFR-1, and Flt-4/VEGFR-3. Receptors which are responsible for neovascularization also include the receptor tyrosine kinases Tie-1 and Tie-2.

Due to its role in regulating new vascular development, Tie-2 is a potential target for therapies aimed at controlling diseases which depend upon persistent angiogenesis. The development of biochemical assays for Tie-2 has enabled drug

discovery to proceed along the pathways of identifying lead Tie-2 inhibitors by high-throughput screening of compound libraries and by testing compounds that mimic substrate structure; however, rational, structure-based design has not been possible up to this point because of the lack of accurate three-dimensional structural data for Tie-2 receptors.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

The present invention relates to a polypeptide which comprises the catalytic domain of Tie-2, a crystalline form of this polypeptide and the use of structural information derived from the crystalline form of the polypeptide for designing and/or identifying potential inhibitors of the binding of one or more native ligands to the catalytic domain of Tie-2.

In one embodiment, the present invention relates to a polypeptide comprising the catalytic domain of TIE-2 and having the amino acid sequence set forth in SEQ ID NO: 2. In another embodiment, the invention relates to a crystalline form of this polypeptide or the polypeptide complexed with a ligand.

In another embodiment, the invention provides a method of determining the three dimensional structure of a crystalline polypeptide comprising the Tie-2 catalytic domain. In one embodiment, the method comprises the steps of (1) obtaining a crystal of the polypeptide comprising the catalytic domain of Tie-2; (2) obtaining x-ray diffraction data for said crystal; and (3) solving the crystal structure of said crystal. The method optionally comprises the additional step of obtaining the polypeptide, with the three dimensional structure to be determined, prior to obtaining the crystal of said peptide.

In another embodiment, the method comprises the steps of (1) obtaining a crystal of the polypeptide comprising the catalytic domain of Tie-2; (2) obtaining x-ray diffraction data for said crystal; and (3) solving the crystal structure of said crystal by using said x-ray diffraction data and the atomic coordinates for the Tie-2 catalytic domain of a second polypeptide. The method optionally comprises the additional step of obtaining the polypeptide, with the three dimensional structure to be determined, prior to obtaining the crystal of said peptide.

5

10

15

20

25

30

The invention further relates to a method for identifying a compound which inhibits the catalytic activity of Tie-2 by, for example, inhibiting the binding of natural substrates such as a tyrosyl polypeptide or protein or ATP, to the catalytic domain of Tie-2. Such a compound is referred to herein as a "Tie-2 inhibitor". The method comprises the steps of (1) using a three-dimensional structure of Tie-2 as defined by the atomic coordinates of the cataytic domain of Tie-2; (2) employing the three dimensional structure to design or select a potential inhibitor; and (3) assessing the ability of the selected compound to inhibit the catalytic activity of Tie-2. The method can also include the step of providing the compound designed or selected in step 2, for example, by synthesizing the compound or obtaining the compound from a compound library. In addition, the method can include the step of assessing the ability of the identified compound to bind to the catalytic domain of Tie-2 and/or assessing the ability of the identified compound to inhibit the binding of a natural ligand of Tie-2.

In another embodiment, the method for identifying a compound which inhibits the catalytic activity of Tie-2, comprises the step of determining the ability of one or more functional groups and/or moieties of the compound, when present in, or bound to, the Tie-2 catalytic domain, to interact with one or more subsites of the Tie-2 catalytic domain. Generally, the Tie-2 catalytic domain is defined by the conserved homologous sequences when compared to other known tyrosine kinases. If the compound is able to interact with a preselected number or set of subsites, or has a calculated interaction energy within a desired or preselected range, the compound is identified as a potential inhibitor of Tie-2.

The invention further provides a method of designing a compound which is a potential inhibitor of the catalytic activity of Tie-2. The method includes the steps of (1) identifying one or more functional groups capable of interacting with one or more subsites of the Tie-2 catalytic domain; and (2) identifying a scaffold which presents the functional group, or functional groups, identified in step 1 in a suitable orientation for interacting with one or more subsites of the Tie-2 catalytic domain. The compound which results from attachment of the identified functional groups or moieties to the identified scaffold is a potential inhibitor of Tie-2. The Tie-2 catalytic

domain is, generally, defined by the atomic coordinates of a polypeptide comprising the Tie-2 catalytic domain.

In yet another embodiment, the invention provides compounds which inhibit the catalytic activity of Tie-2 and which fit, or bind to, the Tie-2 catalytic domain. Such compounds typically comprise one or more functional groups which, when the compound is bound in the Tie-2 catalytic domain, interact with one or more subsites of the catalytic domain. Generally, the Tie-2 catalytic domain is defined by the conserved homologous sequence when compared to other known tyrosine kinases. In a particular embodiment, the Tie-2 inhibitor is a compound which is identified or designed by a method of the present invention.

The present invention further provides a method for treating a condition mediated by Tie-2 in a patient. The method comprises administering to the patient a therapeutically or prophylactically effective amount of a compound which inhibits the catalytic activity of Tie-2, such as a Tie-2 inhibitor of the invention, for example, a compound identified as a Tie-2 inhibitor or designed to inhibit Tie-2 by a method of the present invention.

The present invention provides several advantages. For example, the invention provides the first detailed three dimensional structures of the ligand binding domain of a Tie-2 protein. The methods described herein can be used to facilitate formation of Tie-2 crystals which diffract at high resolution. These structures enable the rational development of inhibitors of Tie-2 by permitting the design and/or identification of molecular structures having features which facilitate binding to the Tie-2 binding domain. The methods of use of the structures disclosed herein, thus, permit more rapid discovery of compounds which are potentially useful for the treatment of conditions which are mediated, at least in part, by Tie-2 activity.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

Fig. 1 presents the amino acid sequence of human Tie-2 (SEQ ID NO: 1).

Fig. 2 presents the amino acid sequence which includes the catalytic domain of human Tie-2 from amino acid 802 to amino acid 1124, and has a catalytically inactive point mutation at amino acid 964 (SEQ ID NO: 2).

Fig. 3A-3OO present the atomic coordinates for SEQ ID NO 2/inhibitor I complex.

Fig. 4A-4OO present the atomic coordinates for SEQ ID NO 2/inhibitor II complex.

Fig. 5A-5RR present the atomic coordinates for SEQ ID NO 2/inhibitor III complex.

Fig. 6A-6NN present the atomic coordinates for SEQ ID NO 2/inhibitor IV complex.

Fig. 7 shows the structure of a prototypical kinase, insulin receptor kinase.

Fig. 8 shows identifies regions of a pyrrolopyrimidine inhibitor (i.e., inhibitor I) which interact with the catalytic domain of Tie-2.

Fig. 9 shows a model of the catalytic domain of Tie-2 bound to inhibitor I. Subsites are shown in different colors.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

The present invention relates to the x-ray crystallographic study of polypeptides comprising the catalytic domain of Tie-2. The atomic coordinates which result from this study are of use in identifying compounds which fit in the catalytic domain and are, therefore, potential inhibitors of Tie-2. These Tie-2 inhibitors are of use in methods of treating a patient having a condition which is modulated by or dependent upon Tie-2 activity, for example, a condition dependent on persistant angiogenesis.

There are at least 400 enzymes identified as protein kinases. These enzymes catalyze the phosphorylation of target protein substrates. The phosphorylation is usually a transfer reaction of a phosphate group from ATP to the protein substrate. The specific structure in the target substrate to which the phosphate is transferred is a tyrosine, serine or threonine residue. Since these amino acid residues are the target structures for the phosphoryl transfer, these protein kinase enzymes are commonly referred to as tyrosine kinases or serine/threonine kinases.

The phosphorylation reactions, and counteracting phosphatase reactions, at the tyrosine, serine and threonine residues are involved in countless cellular processes that

5

10

15

20

25

30

underlie responses to diverse intracellular signals (typically mediated through cellular receptors), regulation of cellular functions, and activation or deactivation of cellular processes. A cascade of protein kinases often participate in intracellular signal transduction and are necessary for the realization of these cellular processes. Because of their ubiquity in these processes, the protein kinases can be found as an integral part of the plasma membrane or as cytoplasmic enzymes or localized in the nucleus, often as components of enzyme complexes. In many instances, these protein kinases are an essential element of enzyme and structural protein complexes that determine where and when a cellular process occurs within a cell.

Protein Tyrosine Kinases. Protein tyrosine kinases (PTKs) are enzymes which catalyse the phosphorylation of specific tyrosine residues in cellular proteins. This post-translational modification of these substrate proteins, often enzymes themselves, acts as a molecular switch regulating cell proliferation, activation or differentiation (for review, see Schlessinger and Ulrich, 1992, Neuron 9:383-391). Aberrant or excessive PTK activity has been observed in many disease states including benign and malignant proliferative disorders as well as diseases resulting from inappropriate activation of the immune system (e.g., autoimmune disorders), allograft rejection, and graft vs. host disease. In addition, endothelial-cell specific receptor PTKs such as KDR and Tie-2 mediate the angiogenic process, and are thus involved in supporting the progression of cancers and other diseases involving inappropriate vascularization (e.g., diabetic retinopathy, choroidal neovascularization due to age-related macular degeneration, psoriasis, rheumatoid arthritis, retinopathy of prematurity, infantile hemangiomas, psoriasis and atherosclerosis.

Tyrosine kinases can be of the receptor-type (having extracellular, transmembrane and intracellular domains) or the non-receptor type (being wholly intracellular).

Receptor Tyrosine Kinases (RTKs). The RTKs comprise a large family of transmembrane receptors with diverse biological activities. At present, at least nineteen (19) distinct RTK subfamilies have been identified. The receptor tyrosine kinase (RTK) family includes receptors that are crucial for the growth and differentiation of a variety of cell types (Yarden and Ullrich, Ann. Rev. Biochem.

5

10

15

20

25

30

57:433-478, 1988; Ullrich and Schlessinger, *Cell* 61:243-254, 1990). The intrinsic function of RTKs is activated upon ligand binding, which results in phosphorylation of the receptor and multiple cellular substrates, and subsequently in a variety of cellular responses (Ullrich & Schlessinger, 1990, *Cell* 61:203-212). Thus, receptor tyrosine kinase mediated signal transduction is initiated by extracellular interaction with a specific growth factor (ligand), typically followed by receptor dimerization, stimulation of the intrinsic protein tyrosine kinase activity and receptor transphosphorylation. Binding sites are thereby created for intracellular signal transduction molecules and lead to the formation of complexes with a spectrum of cytoplasmic signaling molecules that facilitate the appropriate cellular response. (e.g., cell division, differentiation, metabolic effects, changes in the extracellular microenvironment) see Schlessinger and Ullrich, 1992, *Neuron* 9:1-20.

Proteins with SH2 (src homology -2) or phosphotyrosine binding (PTB) domains bind activated tyrosine kinase receptors and their substrates with high affinity to propagate signals into cell. Both of the domains recognize phosphotyrosine. (Fantl et al., 1992, Cell 69:413-423; Songyang et al., 1994, Mol. Cell. Biol. 14:2777-2785; Songyang et al., 1993, Cell 72:767-778; and Koch et al., 1991, Science 252:668-678; Shoelson, Curr. Opin. Chem. Biol. (1997), 1(2), 227-234; Cowburn, Curr. Opin. Struct. Biol. (1997), 7(6), 835-838). Several intracellular substrate proteins that associate with receptor tyrosine kinases (RTKs) have been identified. They may be divided into two principal groups: (1) substrates which have a catalytic domain; and (2) substrates which lack such a domain but serve as adapters and associate with catalytically active molecules (Songyang et al., 1993, Cell 72:767-778). The specificity of the interactions between receptors or proteins and SH2 or PTB domains of their substrates is determined by the amino acid residues immediately surrounding the phosphorylated tyrosine residue. For example, differences in the binding affinities between SH2 domains and the amino acid sequences surrounding the phosphotyrosine residues on particular receptors correlate with the observed differences in their substrate phosphorylation profiles (Songyang et al., 1993, Cell 72:767-778). Observations suggest that the function of each receptor tyrosine kinase is determined

not only by its pattern of expression and ligand availability but also by the array of

5

10

15

20

25

30

downstream signal transduction pathways that are activated by a particular receptor as well as the timing and duration of those stimuli. Thus, phosphorylation provides an important regulatory step which determines the selectivity of signaling pathways recruited by specific growth factor receptors, as well as differentiation factor receptors.

Several receptor tyrosine kinases such as FGFR-1, PDGFR, TIE-2 and c-Met, and growth factors that bind thereto, have been suggested to play a role in angiogenesis, although some may promote angiogenesis indirectly (Mustonen and Alitalo, *J. Cell Biol.* 129:895-898, 1995).

Tie-2 (TEK) is a member of a recently discovered family of endothelial cell specific receptor tyrosine kinases which is involved in critical angiogenic processes, such as vessel branching, sprouting, remodeling, maturation and stability. Tie-2 is the first mammalian receptor tyrosine kinase for which both agonist ligand(s) (e.g., Angiopoietin1 ("Ang1"), which stimulates receptor autophosphorylation and signal transduction), and antagonist ligand(s) (e.g., Angiopoietin2 ("Ang2")), have been identified. Knock-out and transgenic manipulation of the expression of Tie-2 and its ligands indicates tight spatial and temporal control of Tie-2 signaling is essential for the proper development of new vasculature. The current model suggests that stimulation of Tie-2 kinase by the Angl ligand is directly involved in the branching, sprouting and outgrowth of new vessels, and recruitment and interaction of periendothelial support cells important in maintaining vessel integrity and inducing quiescence. The absence of Ang1 stimulation of Tie-2 or the inhibition of Tie-2 autophosphorylation by Ang2, which is produced at high levels at sites of vascular regression, may cause a loss in vascular structure and matrix contacts resulting in endothelial cell death, especially in the absence of growth/survival stimuli. The situation is however more complex, since at least two additional Tie-2 ligands (Ang3 and Ang4) have recently been reported, and the capacity for heterooligomerization of the various agonistic and antagonistic angiopoietins, thereby modifying their activity, has been demonstrated. Targeting Tie-2 ligand-receptor interactions as an antiangiogenic therapeutic approach is thus less favored and a kinase inhibitory strategy preferred.

5

10

15

20

25

30

-9-

The soluble extracellular domain of Tie-2 ("ExTek") can act to disrupt the establishment of tumor vasculature in a breast tumor xenograft and lung metastasis models and in tumor-cell mediated ocular neovasculatization. By adenoviral infection, the *in vivo* production of mg/ml levels ExTek in rodents may be achieved for 7-10 days with no adverse side effects. These results suggest that disruption of Tie-2 signaling pathways in normal healthy animals may be well tolerated. These Tie-2 inhibitory responses to ExTek may be a consequence of sequestration of ligand(s) and/or generation of a nonproductive heterodimer with full-length Tie-2.

Recently, significant upregulation of Tie-2 expression has been found within the vascular synovial pannus of arthritic joints of humans, consistent with a role in the inappropriate neovascularization. This finding suggests that Tie-2 plays a role in the progression of rheumatoid arthritis. Point mutations producing constitutively activated forms of Tie-2 have been identified in association with human venous malformation disorders. Tie-2 inhibitors are, therefore, useful in treating such disorders, and in other situations of inappropriate neovascularization.

The Examples herein describe the preparation and crystallization of polypeptides comprising the catalytic domain of human Tie-2. As used herein, the term "catalytic domain" refers to a specific module common to all kinases which bind ATP, such as the tyrosyl binding site, the site where ATP binds including the metal-ion binding region, and the site where the phosphoryl transfer occurs. For Tie-2, the catalytic domain is defined by amino acid residues from about residue 828 to about residue 985 of SEQ ID NO: 1, with residues 828-840, 853-855, 872, 873, 876, 879, 880, 885-888, 900, 902-909, 912, 954, 955, 960, 964, 968-971, and 980-985 included in the catalytic domain.

The amino acid sequences of native human Tie-2 (SEQ ID NO: 1) is taken as defined in SWISS-PROT (Ziegler, et al. *Oncogene*, 8:663 (1993)). As described in the Examples, certain of these crystals were examined by x-ray crystallography and atomic coordinates for the peptide were obtained. In certain cases, the polypeptide was unligated, that is, not complexed with a ligand. In other cases, the polypeptide was complexed with a ligand and the atomic coordinates of the ligand bound to the Tie-2 catalytic domain were also obtained.

5

10

15

20

25

30

Tie-2 is subject to autophosphorylation and transphosphorylation by other proteins. Phosphorylation state is a particularly important posttranslational modification to consider. A wild-type construct (i.e., without the D964N mutation) having residues 802-1124 of SEQ ID NO 1 was isolated from an expression system as a singly- or a multiply-phosphorylated species. One singly-phosphorylated species has its phosphate on either Y897 or Y899. In multiply phosphorylated species, phosphorylation can be on combinations of many Y residues on the protein. A diphosphorylated species crystallized in the space group P2(1)2(1)2(1) with the unit cell dimensions of a = 54.320 Å, b = 75.872 Å, c = 78.143 Å, and $\alpha = \beta = \gamma = 90.0^{\circ}$. The term "space group" is a term of art which refers to the collection of symmetry elements of the unit cell of a crystal. Other phosphorylation sites are described in Jones, N., *et al.*, *J. Biol. Chem.* (1999), 274(43):30896.

A catalytically inactive mutant of human Tie-2 (SEQ ID NO 2) was also crystallized. The catalytically inactive mutant had the same sequence as residues 802 to 1124 of human Tie-2 except that residue 964 which is aspartic acid in wild type human Tie-2 was replaced with asparagine. This substitution rendered the mutant catalytically inactive. SEQ ID NO 2 crystallized in the space group C222(1) which had the unit cell dimensions a = 75.195 Å, b = 116.287 Å, c = 95.060 Å, and $\alpha = \beta = \gamma = 90.0^{\circ}$

The atomic coordinates for four crystals of Tie-2/ligand complexes examined by x-ray crystallography are presented in Figs. 3A-3OO, 4A-4OO, 5A-5RR and 6A-6NN. The term "atomic coordinates" (or "structural coordinates") refers to mathematical coordinates derived from mathematical equations related to the patterns obtained on diffraction of x-rays by atoms (scattering centers) of a crystalline polypeptide comprising a Tie-2 catalytic domain molecule. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are used to establish the positions of the individual atoms within the unit cell of the crystal. Atomic coordinates can be transformed as is known in the art to different coordinate systems without affecting the relative positions of the atoms.

In particular, four high resolution crystal structures were obtained for SEQ ID NO 2) complexed with one of four different inhibitors shown below:

5

Inhibitor I

10

Inhibitor II

-12-

Inhibitor III

5

10

Inhibitor IV

The results of the x-ray crystal structure determination for SEQ ID NO 2, the catalytic domain of human Tie-2, showed the following features:

WO 01/72778 PCT/US01/08853 -13-

The overall structure adopted a recognizable kinase fold with an N-terminal lobe and a somewhat larger C-terminal lobe. ATP binding was at the interface of the two lobes with inhibitors also binding in this region. The major secondary structural elements of the N-terminal lobe were a five strand beta sheet and a long alpha helix. The C-terminal lobe was primarily a bundle of alpha helices with a short, two-strand beta sheet near the interface with the N-terminal lobe. Fig. 7 shows a prototypical receptor tyrosine kinase, insulin receptor kinase which highlights the structural features associated with known kinases. The structure of the catalytic domain of Tie-2, shown in Fig. 9 has similar features to this

5

10

15

20

25

30

The hinge region connects the N-terminal and C-terminal lobes. The portion of the hinge which forms part of the ATP/inhibitor binding region presents several hydrogen bonding partners. The carbonyl oxygen atoms of E903, A905 and P906 and the backbone amide protons of A905, H907 and G908 were presented into the pocket. The sidechains of L900, I902, Y904 and A905 helped to define the size, shape and nature of the binding pocket.

The purine core binding region was the region where the N-terminal and C-terminal lobes of the protein cooperate to form a flat, predominantly hydrophobic binding region which is the traditional location for the purine ring of ATP in other kinase structures. The residues which contribute to this region included: I830, A853, V838, I886, L971 and A981. Sidechains of residues in the hinge region, I902, Y904 and A905 also contributed hydrophobic character to this region. The carbonyl oxygen of I830 and the amide proton of V838 also presented an interaction site within this region.

By analogy to known kinase structures, the ribose ring of ATP would traditionally occupy an area between G831 in the N-terminal lobe and N909 in the C-terminal lobe called the extended sugar pocket. The backbone amide protons of G831, E832 and N909, the carbonyl oxygen of R968 and the sidechains of E832, N909 and D912 presented hydrogen bond partners.

By analogy to known kinase structures, the γ -phosphate of ATP would occupy an area around the sidechains of residues D964 (N964 in the catalytically inactive mutant, SEQ ID NO 2). The sidechain of R968 also contributes to this

WO 01/72778 PCT/US01/08853 -14-

5

10

15

20

25

30

region. The predominant available interaction type was hydrogen bonding, with quite complex coordination possible.

The nucleotide binding loop, or glycine-rich loop, was a flap like loop in the N-terminal lobe which covered the front portion of the ATP binding region. Residues not already described in other binding areas include D828, V829, G833, N834, F835, G836, Q837, L839, and K840. Residues I830, G831, E832 and V838 were also part of this structural element, but have already been included in other binding regions described above. This loop is usually considered to be very flexible and is capable of altering the shape and size of the ATP binding region. Carbonyl oxygen atoms, N834 sidechain atoms and backbone amide protons of G833, N834 and F835 were potentially available for hydrogen bonding. The sidechain atoms of D828 and K840 were available for ionic/hydrogen bonding interactions. The sidechain atoms of V829, I830, F835 and L839 can contribute to hydrophobic interactions.

The early activation loop was a long flexible loop containing at least one residue, the phosphorylation of which, is generally believed to determine the activation state of the protein. The loop begins in the ATP binding site and ends in the C-terminal lobe in the area which most likely corresponds to substrate binding. Residues F983, G984, and L985 form part of the ATP binding site and were also on the N-terminal side of the activation loop. The carboxyl oxygen and amide protons of F983 and G984 and the amide proton of L985 were available for hydrogen bonding and the sidechains of F983 and L985 can contribute to hydrophobic interactions.

K855, by homology to known kinases, is part of the catalytic mechanism of the kinase. The amino group can participate in ionic or hydrogen bond interactions and the methylene groups can contribute to hydrophobic interactions. The sidechain is very mobile.

The distal hydrophobic pocket is is characterized by a buried hydrophobic cavity. This portion of the ATP binding region is not occupied by any ATP atoms in known kinase structures. Residues which contribute to this pocket include L873, L876, L879, I885, L888, Y954, L955, F960 and I980. I886, A981 and F983 from regions already described also contribute hydrophobic interactions to this region. In addition, there was a number of backbone hydrogen bond partners available in this

WO 01/72778 PCT/US01/08853 -15-

area. These partners included the carbonyl oxygen atoms of I886, L879, and G880. With the apparent disruption of the alpha-C helix, carbonyl oxygen atoms of E872, L873 and L876 may also be available. The backbone amide proton of residues, I886 and L888 were also available in this region.

5

Several residues contributed to the ATP/inhibitor binding site but do not seem to be part of definable subregion. These residues are I854, E872, N887, I970 and I980. E872 often forms an ionic interaction with the catalytic lysine in known kinase structures. N887 may contribute to the distal hydrophobic pocket. The sidechains of I854, and I970 face away from the ATP pocket, however carbonyl oxygen atoms from these residues as well as I980 were presented towards the binding region.

10

The structure of the SEQ ID NO 2/inhibitor I complex had the following features:

Final resolution of the structure was 2.8 Å in space group C2221, with final coordinates determined for backbone atoms of residues 818-857, 864-995, 1001-1116.

15

The pyrrolopyrimidine ring of inhibitor I formed hydrogen bonds to residues in the hinge region and interacts with purine core region. The core of the inhibitor presented a hydrogen bond donor in the form of the amino proton of the 4-NH₂ substituent to the carbonyl oxygen of E903. Atom N3 of the pyrimidine ring accepted a hydrogen bond from the backbone N-H of A905. The ring system of the core presented a planar face to residues of both the C-terminal and N-terminal lobes. The residues in these areas present a hydrophobic surface which "sandwiches" the planar core of the inhibitor. Residues involved in this hydrophobic sandwich region include I830, V838, I86, I902 and L971. Atoms N1 and N7 of the inhibitor core faced the solvent exposed mouth of the binding pocket. Atom C6 of the inhibitor faced the long axis of the nucleotide binding loop of the N-terminal lobe of the protein.

25

20

The N7 cyclopentane ring of Inhibitor I was directed towards solvent but was still within the protein cavity. This region was described above as the extended sugar pocket. This region was characterized by hydrophobic interactions with primarily I830 and L971. Methylene groups of E832 may also contribute in this fashion.

30

The phenyl ring attached to C5 of the pyrrolopyrimidine ring was in a predominantly hydrophobic area, generated by residues from the purine core region,

the distal hydrophobic pocket and methylene groups from the catalytic lysine, K855. The hydrophobic contacts were with residues V838, I886, I902, L971 and A981. Lysine 855 was highly mobile, so it is also possible that the chlorine atom meta to the pyrrolopyrimidine ring was receiving a hydrogen bond.

-16-

The sulfonamide linker made a clear hydrogen bond with an amide proton of D982 and may also make a hydrogen bond to the amide proton of F983.

The terminal phenyl ring was located in the distal hydrophobic pocket. Primary contacts were with L876, I886, L888 and F983.

5

10

15

20

25

30

The structure of the SEQ ID NO 2/inhibitor II, SEQ ID NO 2/inhibitor III and SEQ ID NO 2/inhibitor IV complexes had the following features:

Residues 818-857, 864-995, 1001-1116 have been modeled into the solved structure. A space group P42212 was observed. The overall fold is still a standard kinase catalytic domain fold and the binding regions described above for SEQ ID NO 2/inhibitor I still pertain.

The pyrrolopyrimidine core, B-ring, linker and C-ring of inhibitor II in the SEQ ID NO 2/inhibitor II complex was bound the same way as inhibitor I. In addition, the N-7 cyclohexyl N-methyl piperazinyl group occupied the extended sugar pocket and made a strong ionic interaction with D912.

The pyrrolopyrimidine of inhibitor III binds was bound the same way in the SEQ ID NO 2/inhibitor III complex as inhibitor I. The N-7 cyclohexyl N-methy piperazinyl group occupied the extended sugar pocket and made a strong ionic interaction with D912 as in the SEQ ID NO 2/inhibitor II complex. The B-ring was bound in a similar fashion to inhibitor I, however, the hydrogen bond between halogens, fluorine in this case, and K855 was more clear. The sulfonyl oxygens of the sulfonamide linker made two clear hydrogen bonds to backbone amide protons of D983 and F983. The C-ring occupied the distal hydrophobic pocket with main interactions coming from L876, I886, L888, L900, I902 and F983.

The pyrrolopyrimidine core of inhibitor IV in the SEQ ID NO 2/inhibitor IV complex was bound the same way as inhibitor I. The N-7 cyclohexyl N-methyl piperazinyl group occupies the extended sugar pocket and makes a strong ionic interaction with D912 as in SEQ ID NO 2/inhibitor II. The B-ring binds in a similar

WO 01/72778 PCT/US01/08853 -17-

fashion to inhibitor I, however there is no halogen atom to act as a potential hydrogen bond partner in inhibitor IV. The oxygen atom of the linker accepted a hydrogen bond from the catalytic lysine, K855. The C-ring of inhibitor IV occupied the distal hydrophobic pocket with main interactions coming from L876, I886, I902 and F983.

5

10

15

20

25

Analysis of the three dimensional structure of the Tie-2 catalytic domain has indicated the presence of a number of subsites, each of which includes molecular functional groups capable of interacting with complementary moieties of an inhibitor. Subsites 1 through 9 of the Tie-2 catalytic domain are defined below. A summary of the properties of the chemical moieties present at each subsite is given below. Subsites are characterized below according to the properties of chemical moieties with which they are complementary, or with which they can interact. Such moieties can include hydrogen bond acceptors, such as hydroxyl, amino, ether, thioether, carboxyl, P=O, and carbonyl groups, halogen atoms, such as fluorine, chlorine, bromine and iodine atoms; and other groups including a heteroatom having at least one lone pair of electrons, such as groups containing trivalent phosphorous, di- and tetravalent sulfur, oxygen and nitrogen atoms; hydrogen bond donors, such as hydroxyl, thiol, an amide proton, amine protons, carboxylic acid groups and any of the groups listed under hydrogen atom acceptors to which a hydrogen atom is bonded; hydrophobic groups, such as linear, branched or cyclic alkyl, ether or thioalkyl groups; linear, branched or cyclic alkenyl groups; linear, branched or cyclic alkynyl groups; aryl groups, such as mono- and polycyclic aromatic hydrocarbyl groups and mono- and polycyclic heterocyclic or heteroaryl groups; positively charged groups, such as primary, secondary, tertiary and quaternary ammonium groups, imidazolium and other protonated heteroalkyl and heteroaryl moieties, substituted and unsubstituted guanidinium groups, sulfonium groups and phosphonium groups; and negatively charged groups, such as carboxylate, phenolate, thiolate, sulfonamide, sulfamate, boronate, vanadate, sulfonate, sulfinate, phosphinate, tetrazolate and other heteroaryl anions, heterocyclic N-oxides, and phosphonate groups. A given chemical moiety can contain one or more of these groups.

30

Subsite 1: Hinge Region

Hydrogen Acceptors: The the backbone carbonyl oxygen of residues E903, A905 and P906 present proton acceptors.

Hydrogen Donors: The backbone amide protons of residues A905, H907 and G908

5 present proton donors.

Hydrophobic Groups: The sidechains of L900, I902, Y904 and A905 present hydrophobic groups.

Subsite 2: The Purine Core Binding Region

Hydrophobic Groups: Residues I830, A853, V838, I886, L971, A981 and the sidechains of residues I902, Y904, and A905 present hydrophobic groups. Hydrogen Acceptors: The carbonyl oxygen of I830 presents a proton acceptor. Hydrogen Donors: The amide proton of V838 presents a proton donor.

15 Subsite 3: The Extended Sugar Pocket

Hydrogen Acceptors: The backbone carbonyl oxygen of R968 and the sidechain carbonyl oxygen of E832, N909 and D912 present proton acceptors.

Hydrogen Donors: The backbone amide protons of G831, E832 and N909 present proton donors.

20

Subsite 4: The Extended γ-Phosphate Region

Hydrogen Bonding Groups: Residues D964 (N964 in the catalytically inactive mutant), N969 and D982 present both proton donor and proton acceptor groups.

25 Subsite 5: The Nucleotide binding Loop

Hydrogen Acceptors: The carbonyl oxygen of the sidechain of residue N834 presents a proton acceptor.

Hydrogen Donors: The backbone amide protons of residues G833, N834 and F835 present proton donors.

Positively Charged Group: The sidechain of K840 presents a positively charged site.

Negatively Charged Group: The sidechain of D828 presents a negatively charged site.

Hydrophobic Groups: The sidechains of V829, I830, F835 and L839 present hydrophobic groups.

Subsite 6: The Early Activation Loop

5 Hydrogen Acceptors: The backbone carbonyl oxygens of residues F983 and G984 presents a proton acceptor.

Hydrogen Donors: The backbone amide protons of residues F983, G984 and L985 present proton donors.

Hydrophobic Groups: The sidechains of F983 and L985 present hydrophobic groups.

10

Subsite 7: The Catalytic Lysine

Positively Charged Group: The sidechain of K855 presents a positively charged site. Hydrophobic Group: The methylene groups of the sidechain of K855 presents a

hydrophobic group.

15

Subsite 8: The Distal Hydrophobic Pocket

Hydrophobic Groups: Residues L873, L876, L879, I885, L888, Y954, L955, F960, I980, I886, A981 and F983 present hydrophobic groups.

Hydrogen Acceptors: The backbone carbonyl oxygens of residues I886, L879, G880,

E872, L873 and L876 present proton acceptors.

Hydrogen Donors: The backbone amide protons of residues I886 and L888 present proton donors.

Subsite 9: Miscellaneous interaction sites which contribute to the ATP binding site.

Hydrogen Acceptors: The backbone carbonyl oxygens of residues I854, I970 and I980 present proton acceptors in the ATP binding region.

Negatively Charged Groups: E872 presents a negatively charged group which often forms an ionic bond with the catalytic lysine residue K855.

30

25

Fig. 9 provides a model of the catalytic domain of Tie-2 bound to inhibitor I. Subsites 1-9 of the catalytic domain are each depicted in a different color as follows:

5

10

15

20

25

30

the hinge region (dark blue), the purine core (light blue), the extended sugar pocket (light purple), the γ-phosphate region (dark yellow), the nucleotide binding loop (red), the early activation loop (dark green), the catalytic lysine (light green), the distal hydrophobic pocket (dark purple), and miscellaneous interaction sites (brown). The inhibitor is depicted in light yellow.

-20-

In one embodiment, the present invention provides polypeptides comprising the catalytic domain of Tie-2, crystalline forms of these polypeptides, optionally complexed with a ligand, and the three dimensional structure of the polypeptides, including the three dimensional structure of the Tie-2 catalytic domain. In general, these three dimensional structures are defined by atomic coordinates derived from x-ray crystallographic studies of the polypeptides. The catalytic domain can be unphosphorylated, monophosphorylated or multiply phosphorylated. Phosphorylization typically occurs at tyrosine residues. One monophosphorylated species has a phosphate group on Y897 or Y899.

The polypeptides can include the catalytic domain of Tie-2 from any species, such as a yeast or other unicellular organism, an invertebrate or a vertebrate. Preferably, the polypeptide includes the catalytic domain of a mammalian Tie-2, such as murine Tie-2. More preferably, the polypeptide includes the catalytic domain of human Tie-2. The polypeptides of the invention also includes polypeptides comprising single nucleotide polymorphisms of the catalytic domain of human Tie-2 or murine Tie-2. In one embodiment, the polypeptides of the invention, and crystalline forms thereof, include a sequence which has at least 80% identity to the catalytic domain of human Tie-2 or murine Tie-2.

To determine the percent identity of two amino acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment, and non-homologous (dissimilar) sequences can be disregarded for comparison purposes). In a preferred embodiment, the length of a first sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, or 90% of the length of the second sequence. The amino acid

WO 01/72778 PCT/US01/08853 -21-

5

10

15

20

25

30

residues at corresponding amino acid positions are then compared. When a position in the first sequence is occupied by the same amino acid residue as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The invention also encompasses polypeptides having a lower degree of identity but having sufficient homology so as to perform one or more of the same functions performed by Tie-2 polypeptides described herein by amino acid sequence. Homology for a polypeptide is determined by conservative amino acid substitution. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Conservative substitutions are likely to be phenotypically silent. Typically seen as conservative substitutions are the replacements, one for another, for example, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gln, exchange of the basic residues Lys and Arg or replacements among the aromatic residues Phe, Tyr and Trp. Guidance concerning which amino acid changes are likely to be phenotypically silent is found in Bowie *et al.*, *Science 247*:1306-1310 (1990).

The comparison of sequences and determination of percent identity and homology between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A.M.,ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereaux, J., eds., M. Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in

5

10

15

20

25

30

the GCG software package (available on March 29, 2000 at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of, for example, 16, 14, 12, 10, 8, 6, or 4 and a length weight of, for example, 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available on March 29, 2000 at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of, for example, 40, 50, 60, 70, or 80 and a length weight of, for example, 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using, for example, a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The protein sequences of the present invention, for example, amino acids 802-1124 of human Tie-2 (SEQ ID NO 1), can further be used as a "query sequence" to perform a search against databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, *et al.* (*J. Mol. Biol. 215*:403-10 (1990)). BLAST protein searches can be performed with the XBLAST program, for example, score = 50, word length = 3, to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, gapped BLAST can be utilized as described in Altschul *et al.*, (Nucleic Acids Res. 25(17):3389-3402 (1997)). When utilizing BLAST and gapped BLAST programs, the default parameters of the respective programs (*e.g.*, XBLAST and NBLAST) can be used as given on March 29, 2000 at http://www.ncbi.nlm.nih.gov.

Homology for amino acid sequences can be defined in terms of the parameters set by the Advanced Blast search available from NCBI (the National Center for Biotechnology Information; see, for Advanced BLAST, www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-newblast?Jform=1 (on March 29, 2000)). These default parameters, recommended for a query molecule of length greater than 85 amino acid residues or nucleotides have been set as follows: gap existence cost, 11, per residue gap cost, 1;

lambda ratio, 0.85. Further explanation of version 2.0 of BLAST can be found on related website pages and in Altschul, S.F. *et al.*, *Nucleic Acids Res.* 25:3389-3402 (1997).

5

10

15

20

25

30

In one embodiment, the polypeptide includes amino acids 802 to 1124 of SEQ ID NO: 1. Polypeptides can also have amino acids 792 to 1124, 782 to 1124, 772 to 1124, 812 to 1124, 822 to 1124, 832 to 1124, 802 to 1114, 802 to 1104, or 802 to 1094 of SEQ ID NO 1. In another embodiment, the polypeptide can be a catalytically inactive mutant of Tie-2, such as SEQ ID NO 2, wherein the asparagine amino acid at 964 is replaced with an aspartic acid amino acid (designated D964N mutant). Other catalytically inactive mutants include substitution of the asparagine amino acid at 964 with alanine, serine, threonine, or glycine.

In another embodiment, the catalytic domain which is crystallized can have deletions of amino acids from the native sequence. For example, a polypeptide which is suitable for crystallization can include amino acids 802 to 918 of SEQ ID NO 1 fused to amino acids 934 to 1124 of SEQ ID NO 1 or other related "kinase-insert domain" deletions.

The crystalline polypeptide, preferably, further includes a ligand bound to the Tie-2 catalytic domain. The ligand is, preferably, a small (less than about 1500 molecular weight) organic molecule, for example, inhibitor I, II, III, or IV.

In one embodiment, the invention relates to a method of determining the three dimensional structure of a first polypeptide comprising the catalytic domain of a Tie-2 protein. The method includes the steps of (1) obtaining a crystal comprising the first polypeptide; (2) obtaining x-ray diffraction data for said crystal; and (3) using the x-ray diffraction data and the atomic coordinates of a second polypeptide comprising the catalytic domain of a Tie-2 protein to solve the crystal structure of the first polypeptide, thereby determining the three dimensional structure of the first polypeptide. The second polypeptide can include the same Tie-2 catalytic domain as the first polypeptide, or a different Tie-2 catalytic domain. Either or both of the first and second polypeptides can, optionally, be complexed with a ligand. That is, the crystal of the first polypeptide can comprise a complex of the first polypeptide with a ligand. The atomic coordinates of the second polypeptide can, optionally, include the

5

10

15

20

25

30

atomic coordinates of a ligand molecule bound to the second polypeptide. The atomic coordinates of the second polypeptide, generally, have been previously obtained, for example, by x-ray crystallographic analysis of a crystal comprising the second polypeptide or a complex of the second polypeptide with a ligand. The atomic coordinates of the second polypeptide can be used to solve the crystal structure using methods known in the art, for example, molecular replacement or isomorphous replacement. Preferably, the second polypeptide comprises the catalytic domain of a mammalin Tie-2, more preferably, human Tie-2. For example the atomic coordinates which can be used include the atomic coordinates presented herein, preferably the atomic coordinates presented in Figures 3-7.

-24-

The invention also provides a method of identifying a compound which is a potential inhibitor of Tie-2. The method comprises the steps of (1) obtaining a crystal of a polypeptide comprising the catalytic domain of Tie-2; (2) obtaining the atomic coordinates of the polypeptide by x-ray diffraction studies using said crystal; (3) using said atomic coordinates to define the catalytic domain of Tie-2; and (4) identifying a compound which fits the catalytic domain. The method can further include the steps of obtaining, for example, from a compound library, or synthesizing the compound identified in step 4, and assessing the ability of the identified compound to inhibit Tie-2 enzymatic activity.

The polypeptide preferably comprises the catalytic domain of a mammalian Tie-2. More preferably the polypeptide comprises the catalytic domain of human Tie-2. In a preferred embodiment, the polypeptide is a polypeptide of the present

invention, as described above.

The polypeptide can be crystallized using methods known in the art, such as the methods described in the Examples, to afford polypeptide crystals which are suitable for x-ray diffraction studies. A crystalline polypeptide/ligand complex can be produced by soaking the resulting crystalline polypeptide in a solution including the ligand. Preferably, the ligand solution is in a solvent in which the polypeptide is insoluble.

The atomic coordinates of the polypeptide (and ligand) can be determined, for example, by x-ray crystallography using methods known in the art. The data obtained

from the crystallography can be used to generate atomic coordinates, for example, of the atoms of the polypeptide and ligand, if present. As is known in the art, solution and refinement of the x-ray crystal structure can result in the determination of coordinates for some or all of the non-hydrogen atoms. The atomic coordinates can be used, as is known in the art, to generate a three-dimensional structure of the Tie-2 catalytic domain. This structure can then be used to assess the ability of any given compound, preferably using computer-based methods, to fit into the catalytic domain.

5

10

15

20

25

30

-25-

A compound fits into the catalytic domain if it is of a suitable size and shape to physically reside in the catalytic domain, that is, if it has a shape which is complementary to the catalytic domain and can reside in the catalytic domain without significant unfavorable steric or van der Waals interactions. Preferably, the compound includes one or more functional groups and/or moieties which interact with one or more subsites within the catalytic domain. Computational methods for evaluating the ability of a compound to fit into the catalytic domain, as defined by the atomic coordinates of the polypeptide, are known in the art, and representative examples are provided below.

In another embodiment, the method of identifying a potential inhibitor of Tie-2 comprises the step of determining the ability of one or more functional groups and/or moieties of the compound, when present in the Tie-2 catalytic domain, to interact with one or more subsites of the Tie-2 catalytic domain. Preferably, the Tie-2 catalytic domain is defined by the atomic coordinates of a polypeptide comprising the Tie-2 catalytic domain. If the compound is able to interact with a preselected number or set of subsites, the compound is identified as a potential inhibitor of Tie-2.

A functional group or moiety of the compound is said to "interact" with a subsite of the Tie-2 catalytic domain if it participates in an energetically favorable, or stabilizing, interaction with one or more complementary moieties within the subsite. Two chemical moieties are "complementary" if they are capable, when suitably positioned, of participating in an attractive, or stabilizing, interaction, such as an electrostatic or van der Waals interaction. Typically, the attractive interaction is an ion-ion (or salt bridge), ion-dipole, dipole-dipole, hydrogen bond, pi-pi or hydrophobic interaction. For example, a negatively charged moiety and a positively

WO 01/72778 PCT/US01/08853 -26-

5

10

15

25

30

charged moiety are complementary because, if suitably positioned, they can form a salt bridge. Likewise, a hydrogen bond donor and a hydrogen bond acceptor are complementary if suitably positioned.

Typically, an assessment of interactions between the test compound and the Tie-2 catalytic domain may employ computer-based computational methods, such as those known in the art, in which possible interactions of a compound with the protein, as defined by atomic coordinates, are evaluated with respect to interaction strength by calculating the interaction energy upon binding the compound to the protein. Compounds which have calculated interaction energies within a preselected range or which otherwise, in the opinion of the computational chemist employing the method, have the greatest potential as Tie-2 inhibitors, can then be provided, for example, from a compound library or via synthesis, and assayed for the ability to inhibit Tie-2. The

compound to interact with one or more subsites within the protein catalytic domain.

interaction energy for a given compound generally depends upon the ability of the

In one embodiment, the atomic coordinates used in the method are the atomic coordinates set forth in Figs. 3A-3OO, 4A-4OO, 5A-5RR and 6A-6NN. It is to be understood that the coordinates set forth in Figs. 3-6 can be transformed, for example, into a different coordinate system, in ways known to those skilled in the art without substantially changing the three dimensional structure represented thereby.

In certain cases, a moiety of the compound can interact with a subsite via two

strength of these individual interactions.

or more individual interactions. A moiety of the compound and a subsite can interact if they have complementary properties and are positioned in sufficient proximity and in a suitable orientation for a stabilizing interaction to occur. The possible range of distances for the moiety of the compound and the subsite depends upon the distance dependence of the interaction, as is known in the art. For example, a hydrogen bond typically occurs when a hydrogen bond donor atom, which bears a hydrogen atom, and a hydrogen bond acceptor atom are separated by about 2.5 Å and about 3.5 Å. Hydrogen bonds are well known in the art (Pimentel *et al.*, *The Hydrogen Bond*, San Francisco: Freeman (1960)). Generally, the overall interaction, or binding, between the compound and the Tie-2 catalytic domain will depend upon the number and

The ability of a test compound to interact with one or more subsites of the catalytic domain of Tie-2 can be determined by computationally evaluating interactions between functional groups, or moieties, of the test compound and one or more amino acid side chains in a particular protein subsite, such as subsites 1 to 9 above. Typically, a compound which is capable of participating in stabilizing interactions with a preselected number of subsites, preferably without simultaneously participating in significant destabilizing interactions, is identified as a potential inhibitor of Tie-2. Such a compound will interact with one or more subsites, preferably with two or more subsites and, more preferably, with three or more subsites.

5

10

15

20

25

30

The invention further provides a method of designing a compound which is a potential inhibitor of Tie-2. The method includes the steps of (1) identifying one or more functional groups capable of interacting with one or more subsites of the Tie-2 catalytic domain; and (2) identifying a scaffold which presents the functional group or functional groups identified in step 1 in a suitable orientation for interacting with one or more subsites of the Tie-2 catalytic domain. The compound which results from attachment of the identified functional groups or moieties to the identified scaffold is a potential inhibitor of Tie-2. The Tie-2 catalytic domain is, generally, defined by the conserved homolohous sequence when compared to other known tyrosine kinases, for example, the atomic coordinates set forth in Figs. 3A-3OO, 4A-4OO, 5A-5RR and 6A-6NN.

Suitable methods, as are known in the art, can be used to identify chemical moieties, fragments or functional groups which are capable of interacting favorably with a particular subsite or set of subsites. These methods include, but are not limited to: interactive molecular graphics; molecular mechanics; conformational analysis; energy evaluation; docking; database searching; pharmacophore modeling; de novo design and property estimation. These methods can also be employed to assemble chemical moieties, fragments or functional groups into a single inhibitor molecule. These same methods can also be used to determine whether a given chemical moiety, fragment or functional group is able to interact favorably with a particular subsite or set of subsites.

WO 01/72778 PCT/US01/08853 -28-

In one embodiment, the design of potential human Tie-2 inhibitors begins from the general perspective of three-dimensional shape and electrostatic complementarity for the catalytic domain, encompassing subsites 1-9, and subsequently, interactive molecular modeling techniques can be applied by one skilled in the art to visually inspect the quality of the fit of a candidate inhibitor modeled into the binding site. Suitable visualization programs include INSIGHTII (Molecular Simulations Inc., San Diego, CA), QUANTA (Molecular Simulations Inc., San Diego, CA), SYBYL (Tripos Inc., St Louis, MO), RASMOL (Roger Sayle *et al.*, *Trends Biochem. Sci.* 20: 374-376 (1995)), GRASP (Nicholls *et al.*, *Proteins* 11: 281-289 (1991)), and MIDAS (Ferrin *et al.*, *J. Mol. Graphics* 6:13-27 (1988)).

5

10

15

20

25

30

A further embodiment of the present invention utilizes a database searching program which is capable of scanning a database of small molecules of known threedimensional structure for candidates which fit into the target protein site. Suitable software programs include CATALYST (Molecular Simulations Inc., San Diego, CA), UNITY (Tripos Inc., St Louis, MO), FLEXX (Rarey et al., J. Mol. Biol. 261: 470-489 (1996)), CHEM-3DBS (Oxford Molecular Group, Oxford, UK), DOCK (Kuntz et al., J. Mol. Biol 161: 269-288 (1982)), and MACCS-3D (MDL Information Systems Inc., San Leandro, CA). It is not expected that the molecules found in the search will necessarily be leads themselves, since a complete evaluation of all interactions will necessarily be made during the initial search. Rather, it is anticipated that such candidates might act as the framework for further design, providing molecular skeletons to which appropriate atomic replacements can be made. Of course, the chemical complimentary of these molecules can be evaluated, but it is expected that the scaffold, functional groups, linkers and/or monomers may be changed to maximize the electrostatic, hydrogen bonding, and hydrophobic interactions with the enzyme. Goodford (Goodford J Med Chem 28:849-857 (1985)) has produced a computer program, GRID, which seeks to determine regions of high affinity for different chemical groups (termed probes) on the molecular surface of the binding site. GRID hence provides a tool for suggesting modifications to known ligands that might enhance binding.

A range of factors, including electrostatic interactions, hydrogen bonding, hydrophobic interactions, desolvation effects, conformational strain or mobility,

chelation and cooperative interaction and motions of ligand and enzyme, all influence the binding effect and should be taken into account in attempts to design bioactive

inhibitors.

5

10

15

20

25

30

Yet another embodiment of a computer-assisted molecular design method for identifying inhibitors comprises searching for fragments which fit into a binding region subsite and link to a predefined scaffold. The scaffold itself may be identified in such a manner. Programs suitable for the searching of such functional groups and monomers include LUDI (Boehm, *J Comp. Aid. Mol. Des.* 6:61-78 (1992)), CAVEAT (Bartlett *et al.* in "Molecular Recognition in Chemical and Biological Problems", special publication of *The Royal Chem. Soc.*, 78:182-196 (1989)) and MCSS (Miranker *et al. Proteins* 11: 29-34 (1991)).

Yet another embodiment of a computer-assisted molecular design method for identifying inhibitors of the subject phosphatase comprises the *de novo* synthesis of potential inhibitors by algorithmic connection of small molecular fragments that will exhibit the desired structural and electrostatic complementarity with the active site of the enzyme. The methodology employs a large template set of small molecules with are iteratively pieced together in a model of the Tie-2 active site. Programs suitable for this task include GROW (Moon *et al. Proteins* 11:314-328 (1991)) and SPROUT (Gillet *et al. J Comp. Aid. Mol. Des.* 7:127 (1993)).

In yet another embodiment, the suitability of inhibitor candidates can be determined using an empirical scoring function, which can rank the binding affinities for a set of inhibitors. For an example of such a method see Muegge *et al.* and references therein (Muegge *et al.*, *J Med. Chem.* **42**:791-804 (1999)).

Other modeling techniques can be used in accordance with this invention, for example, those described by Cohen et al. (J. Med. Chem. 33: 883-894 (1994)); Navia et al. (Current Opinions in Structural Biology 2: 202-210 (1992)); Baldwin et al. (J. Med. Chem. 32: 2510-2513 (1989)); Appelt et al. (J. Med. Chem. 34: 1925-1934 (1991)); and Ealick et al. (Proc. Nat. Acad. Sci. USA 88: 11540-11544 (1991)).

WO 01/72778 PCT/US01/08853 -30-

A compound which is identified by one of the foregoing methods as a potential inhibitor of Tie-2 can then be obtained, for example, by synthesis or from a compound library, and assessed for the ability to inhibit Tie-2 *in vitro*. Such an *in vitro* assay can be performed as is known in the art, for example, by contacting Tie-2 in solution with the test compound in the presence of a substrate for Tie-2. The rate of substrate transformation can be determined in the presence of the test compound and compared with the rate in the absence of the test compound. Suitable assays for Tie-2 biological activity are described in Example 4.

5

10

15

20

25

30

An inhibitor identified or designed by a method of the present invention can be a competitive inhibitor, an uncompetitive inhibitor or a noncompetitive inhibitor. A "competitive" inhibitor is one that inhibits Tie-2 activity by binding fully or partially within the same region of Tie-2, as ATP, thereby directly competing with ATP for the active site of Tie-2. An "uncompetitive" inhibitor inhibits Tie-2 by binding to a different region of the enzyme than ATP. Such inhibitors bind to Tie-2 already bound with ATP and not to the free enzyme. A "non-competitive" inhibitor is one that can bind to either the free or ATP bound form of Tie-2. In some instances, an inhibitor may inhibit the enzymes catalytic activity by impeding the binding of multiple substrates (e.g., ATP and tyrosyl substrates). this may be accomplished by fully or partially occluding multiple substrate binding sites, or by occupying a site which allosterically or conformationally reduces affinities for substrates or blocks product release.

In another embodiment, the present invention provides Tie-2 inhibitors, and methods of use thereof, which are capable of binding to the catalytic domain of Tie-2, for example, compounds which are identified as inhibitors of at least one biological activity of Tie-2 or which are designed by the methods described above to inhibit at least one biological activity of Tie-2. For example, the invention includes compounds which interact with one or more, preferably two or more, and more preferably, three or more of Tie-2 subsites 1 to 9.

In one embodiment, the Tie-2 inhibitor of the invention comprises a moiety or moieties positioned to interact with subsite 1, subsite 2 and, optionally, with at least one other subsite, when present in the Tie-2 catalytic domain. For example, a

functional group which can interact with subsite 1 can be a hydrogen bond donor, a hydrogen bond acceptor, or a hydrophobic moiety. A functional group which can interact with subsite 2 can be a hydrophobic group, hydrogen bond donor, or a hydrogen bond acceptor.

In another embodiment, the Tie-2 inhibitor of the invention comprises functional groups positioned to interact with subsites 1, 2 and 3, and, optionally, one or more additional subsites.

5

10

15

20

25

30

The Tie-2 inhibitors of the invention also include compounds having functional groups positioned to interact with subsite 1, subsite 2, subsite 8 and, optionally, one or more additional subsites. In another embodiment, the inhibitor has functional groups positioned to interact with subsite 1, subsite 2, subsite 3, subsite 8, and, optionally, one or more additional subsites.

In other embodiments, the Tie-2 inhibitors of the invention include compounds which have functional groups positioned to interact with the following groups of subsites, each of which can, optionally, include one or more additional subsites: subsites 1, 4, and 5; subsites 1, 2, 7 and 8; subsites 1, 2, 3, 7 and 8; subsites 1, 2, 3, 4, 6 and 8; subsites 1, 2, 3, 4, 6 and 8.

A moiety of the inhibitor compound is "positioned to interact" with a given subsite, if, when placed within the Tie-2 catalytic domain, as defined by the atomic coordinates presented in Figs. 3-6, the moiety is proximal to, and oriented properly relative to, the appropriate amino acid side chains within the subsite.

As indicated in the description of the subsites above, several of subsites 1-9 can potentially interact with two or more types of moieties. For each of the subsites listed below the preferred type of interacting moiety possessed by the potential inhibitor is indicated.

Subsite 1: hydrogen bond donor (E903) and hydrogen bond acceptor (A905).

Subsite 2: hydrophobic, preferably aromatic, moiety (I830, V838, I886, I902 and L971).

Subsite 3: hydrophobic, preferably alkyl, moiety (I830 and L971) and a positively charged moiety (D912).

Subsite 4: hydrogen acceptor moiety (D982 and F938).

5

10

15

20

25

30

Subsite 8: hydrophobic, preferably aromatic, moiety (L876, I886, L888 and F983)

A preferred Tie-2 inhibitor of the invention inhibits Tie-2 enzymatic activity with a Ki of at least about 1 mM, preferably at least about 100 μ M and more preferably at least about 10 μ M. In another embodiment, a Tie-2 inhibitor binds selectively to a Tie-2 receptor over other tyrosine kinase receptors, such as insulin receptor or Csk, KDR, lck, or zap. In a preferred embodiment, the inhibitor has a K_i 0.1 fold or less for a Tie-2 receptor than for an insulin receptor or Csk. In a more preferred embodiment, the inhibitor has K_i 0.01 fold or less for a Tie-2 receptor than for an insulin receptor or Csk. In a most preferred embodiment, the inhibitor has an K_i 0.001 fold less or less for a Tie-2 receptor than for an insulin receptor or Csk.

In a preferred embodiment, the Tie-2 inhibitor of the invention comprises two or more of the following when present at, or bound to, the Tie-2 catalytic domain:

(a) a hydrogen bond donor positioned to interact with Glu 903 of human Tie-2; (b) a hydrogen bond acceptor positioned to interact with Ala 905 of human Tie-2; (c) a hydrogen bond donor positioned to interact with Ala 905 of human Tie-2; (d) a hydrophobic moiety positioned to interact with one or more of Ile 830, Val 838, Ala 853, Ile 886, Ile 902, Tyr 904, Ala 905 and Leu 971 of human Tie-2; (e) a hydrogen bond donor or positively charged functional group positioned to interact with Asp 912 of human Tie-2; (f) a hydrogen bond donor or hydrogen bond acceptor postioned to interact with Asn 909 of human Tie-2; (g) a hydrophobic moiety positioned to interact with one or more of Val 838, Lys 855, Ile 886, Ile 902, Leu 971 and Ala 981 of human Tie-2; (h) a hydrogen bond acceptor or negatively charged functional group positioned to interact with Lys 855 of human Tie-2; (i) a hydrogen bond acceptor positioned to interact with Asp 982 of human Tie-2; (j) a hydrogen bond acceptor

WO 01/72778

positioned to interact with Phe 983 of human Tie-2; (k) a hydrophobic moiety positioned to interact with one or more of Leu 873, Leu 876, Ile 885, Ile 886, Leu 888, Leu 900, Ile 902, Ala 981 and Phe 983 of human Tie-2; (l) a hydrogen bond donor or positively charged functional group positioned to interact with Asp 982 of human Tie-2; (m) a hydrogen bond donor positioned to interact with Ile 886 of human Tie-2; (n) a hydrogen bond acceptor positioned to interact with Gly 831 of human Tie-2; (p) a hydrogen bond donor or positively charged functional group positioned to interact with Glu 832 of human Tie-2; (q) a hydrogen bond acceptor or negatively charged functional group positioned to interact with Lys 840 of human Tie-2; (r) a hydrogen bond acceptor or negatively charged functional group positioned to interact with Lys 916 of human Tie-2; (s) a hydrogen bond acceptor or negatively charged functional group positioned to interact with Arg 968 of human Tie-2; (t) a hydrogen bond donor positioned to interact with Arg 968 of human Tie-2; (t) a hydrogen bond donor positioned to interact with Arg 968 of human Tie-2.

15

10

5

In preferred embodiments, the Tie-2 inhibitors of the invention comprise (b) and (d); (d) and at least one of (a), (b) and (c); (d) and at least two of (a), (b) and (c); (d) and at least two of (a), (b) and (c), and at least one of (e) and (f); (d) and (g), and at least two of (a), (b) and (c); (d), (g), at least two of (a), (b) and (c) and at least one of (e) and (f); (d), (g), (k), and at least two of (a), (b) and (c); (d), (g), (k), at least one of (e) and (f), at least two of (a), (b), and (c); (d), at least one of (i) and (j), and at least two of (a), (b) and (c), at least one of (e) and (f), and at least two of (a), (b) and (c), at least one of (i) and (j), and at least two of (a), (b) and (c); and (d), (g), (k), at least one of (e) and (f), and at least two of (a), (b) and (c).

25

30

20

Preferred Tie-2 inhibitors of the invention comprise a molecular scaffold or framework, to which the moieties and/or functional groups which interact with the Tie-2 subsites are attached, either directly or via an intervening moiety. The scaffold can be, for example, a peptide or peptide mimetic backbone, a cyclic or polycyclic moiety, such as a monocyclic, bicyclic or tricyclic moiety, and can include one or more hydrocarbonyl or heterocyclic rings. The molecular scaffold presents the

PCT/US01/08853

attached interacting moieties in the proper configuration or orientation for interaction with the appropriate residues of Tie-2.

Pyrrolopyrimidines, such as inhibitor, I, II, III or IV, are preferred Tie-2 inhibitors. Methods for synthesizing pyrrolopyrimidines are described in PCT application number WO99/21560, the teachings of which are incorporated herein by reference in their entirety. In one embodiment, the inhibitors of the invention do not include the pyrrolopyrimidines represented by structural formula V:

10

5

WO 01/72778

$$R_2$$
 R_3
 R_2
 R_3

15

and pharmaceutically acceptable salts thereof, wherein:

20

25

30

Ring A is a six membered aromatic ring or a five or six membered heteroaromatic ring which is optionally substituted with one or more substituents selected from the group consisting of a substituted or unsubstituted aliphatic group, a halogen, a substituted or unsubstituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, cvano, nitro, -NR₄R₅, -C(O)₂H₁, -OH₂, a substituted or unsubstituted alkoxycarbonyl, -C(O)₂-haloalkyl, a substituted or unsubstituted alkylthio ether, a substituted or unsubstituted alkylsulfoxide, a substituted or unsubstituted alkylsulfone, a substituted or unsubstituted arylthio ether, a substituted or unsubstituted arylsulfoxide, a substituted or unsubstituted arylsulfone, a substituted or unsubstituted alkyl carbonyl, -C(O)-haloalkyl, a substituted or unsubstituted aliphatic ether, a substituted or unsubstituted aromatic ether, carboxamido, tetrazolyl, trifluoromethylsulphonamido,

aromatic group, substituted or unsubstituted heteroaromatic group, substituted substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, 5

10

15

20

25

trifluoromethylcarbonylamino, a substituted or unsubstituted alkynyl, a substituted or unsubstituted alkyl amido, a substituted or unsubstituted aryl amido, $-NR_{95}C(O)R_{95}$, a substituted or unsubstituted styryl and a substituted or unsubstituted aralkyl amido, wherein R_{95} is an aliphatic group or an aromatic group;

L is -O-; -S-; -S(O)-; -S(O)₂-; -N(R)-; -N(C(O)OR)-; -N(C(O)R)-; -N(SO₂R); -CH₂O-; -CH₂S-; -CH₂N(R)-; -CH(NR)-; -CH₂N(C(O)R))-; -CH₂N(C(O)OR)-; -CH₂N(SO₂R)-; -CH(NHR)-; -CH(NHC(O)R)-; -CH(NHSO₂R)-; -CH(NHC(O)OR)-;-CH(OC(O)NHR)-; -CH=CH-; -C(=NOR)-; -C(O)-; -CH(OR)-; -N(R)C(O)-; -N(R)S(O)-;-N(R)S(O)₂-; -OC(O)N(R)-;-N(R)C(O)N(R)-; -NRC(O)O-;-S(O)N(R)-;-S(O)₂N(R)-; N(C(O)R)S(O)-; N(C(O)R)S(O)₂-; -N(R)S(O)N(R)-; -N(R)S(O)₂N(R)-; -C(O)N(R)C(O)-; -S(O)N(R)C(O)-; -S(O)N(R)C(O)-; -OS(O)N(R)-;

-OS(O)₂N(R)-; -N(R)S(O)O-; -N(R)S(O)₂O-; -N(R)S(O)C(O)-; -N(R)S(O)₂C(O)-; -SON(C(O)R)-; -SO₂N(C(O)R)-; -N(R)SON(R)-; -N(R)SO₂N(R)-; -C(O)O-; -N(R)P(OR')O-; -N(R)P(OR')-; -N(R)P(O)(OR')O-; -N(R)P(O)(OR')-;

-N(C(O)R)P(OR')O-; -N(C(O)R)P(OR')-; -N(C(O)R)P(O)(OR')O- or -N(C(O)R)P(OR')-, wherein R and R' are each, independently, -H, an acyl group, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted or unsubstituted heteroaromatic group, or a substituted or unsubstituted cycloalkyl group; or

L is $-R_bN(R)S(O)_2$ -, $-R_bN(R)P(O)$ -, or $-R_bN(R)P(O)O$ -, wherein R_b is an alkylene group which when taken together with the sulphonamide, phosphinamide, or phosphonamide group to which it is bound forms a five or six membered ring fused to ring A; or

L is represented by one of the following structural formulas:

25

30

wherein R_{85} taken together with the phosphinamide, or phophonamide is a 5-, 6-, or 7-membered, aromatic, heteroaromatic or heterocycloalkyl ring system;

 R_1 is a substituted aliphatic group, a substituted cycloalkyl, a substituted bicycloalkyl, a substituted cycloalkenyl, an optionally substituted aromatic group, an optionally substituted heteroaromatic group, an optionally substituted heterocycloalkyl, an optionally substituted heterocycloalkyl, an optionally substituted heterobicycloalkyl, an optionally substituted alkylamindo, and optionally substituted arylamido, an optionally substituted - $S(O)_2$ -alkyl or optionally substituted - $S(O)_2$ -cycloalkyl, a -C(O)-alkyl or an optionally substituted -C(O)-alkyl, provided that when R_1 is an aliphatic group or cycloalkyl group, R_1 is not exclusively substituted with one or more substitutent selected from the group consisting of hydroxyl and lower alkyl ethers, provided that the heterocycloalkyl is not 2-phenyl-1,3-dioxan-5-yl and

10

15

20

25

30

provided that an aliphatic group is not substituted exclusively with one or more aliphatic groups, wherein one or more substituent is selected from the group consisting of a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic, a substituted or unsubstituted aralkyl, a substituted or unsubstituted heteroaralkyl, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted aromatic ether, a substituted or unsubstituted aliphatic ether, a substituted or unsubstituted alkoxycarbonyl, a substituted or unsubstituted alkylcarbonyl, a substituted or unsubstituted arylcarbonyl, a substituted or unsubstituted heteroarylcarbonyl, substituted or unsubstituted aryloxycarbonyl, -OH, a substituted or unsubstituted aminocarbonyl, an oxime, a substituted or unsubstituted azabicycloalkyl, heterocycloalkyl, oxo, aldehyde, a substituted or unsubstituted alkyl sulfonamido group, a substituted or unsubstituted aryl sulfonamido group, a substituted or unsubstituted bicycloalkyl, a substituted or unsubstituted heterobicycloalkyl, cyano, -NH₂, an alkylamino, ureido, thioureido and -B-E;

B is a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted aromatic, a substituted or unsubstituted heteroaromatic, an alkylene, an aminoalkyl, an alkylenecarbnonyl, or an aminoalkylcarbonyl;

E is a substituted or unsubstituted azacycloalkyl, a substituted or unsubstituted azacycloalkylcarbonyl, a substituted or unsubstituted azacycloalkylsulfonyl, a substituted or unsubstituted azacycloalkylalkyl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted heteroarylcarbonyl, a substituted or unsubstituted heteroarylsulfonyl, a substituted or unsubstituted or unsubstituted alkyl sulfonamido, a substituted or unsubstituted aryl sulfonamido, a substituted or unsubstituted or unsubstituted ureido, a substituted or unsubstituted thioureido or a substituted or unsubstituted aryl;

R₂ is –H, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted cycloalkyl, a halogen, -OH, cyano, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, a substituted or unsubstituted heterocycloalkyl, a substituted or unsubstituted aralkyl, a substituted or unsubstituted heteroaralkyl, -NR₄R₅, or -C(O)NR₄R₅;

R₃ is a substituted or unsubstituted aliphatic group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heterocycloalkyl;

provided that L is -SN(R)-, -S(O)N(R)-, $-S(O)_2N(R)$ -, -N(R)S-, -N(R)S(O)-, $-N(R)S(O)_2$ -, -N(R)SN(R')-, -N(R)S(O)N(R')-, or $-N(R)S(O)_2N(R')$ -when R_3 is a substituted or unsubstituted aliphatic group, a substituted or unsubstituted alkenyl group;

provided that j is 0 when L is -O-, $-CH_2NR$ -, -C(O)NR- or -NRC(O)and R_3 is azacycloalkyl or azaheteroaryl; and

provided that j is 0 when L is -O- and R₃ is phenyl;

R₄, R₅ and the nitrogen atom together form a 3, 4, 5, 6 or 7-membered, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterobicycloalkyl or a substituted or unsubstituted heteroaromatic; or

R₄ and R₅ are each, independently, -H, azabicycloalkyl, heterocycloalkyl, a substituted or unsubstituted alkyl group or Y-Z;

Y is selected from the group consisting of -C(O)-, -(CH₂)_p-,-S(O)₂-, -C(O)O-, -SO₂NH-, -CONH-, (CH₂)_pO-, -(CH₂)_pNH-, -(CH₂)_pS-, -(CH₂)_pS(O)-, and -(CH₂)_pS(O)₂-;

p is an integer from 0 to 6;

Z is –H, a substituted or unsubstituted alkyl, substituted or unsubstituted amino, substituted or unsubstituted aryl, substituted or unsubstituted heterocycloalkyl group; and

j an integer from 0 to 6.

As used herein, aromatic groups include carbocyclic ring systems (e.g. phenyl

10

5

15

20

25

_

5

10

15

20

25

30

and cinnamyl) and fused polycyclic aromatic ring systems (e.g. naphthyl and 1,2,3,4-tetrahydronaphthyl). Arromatic groups are also referred to as aryl groups herein.

Heteroaromatic groups, as used herein, include heteroaryl ring systems (e.g., thienyl, pyridyl, pyrazole, isoxazolyl, thiadiazolyl, oxadiazolyl, indazolyl, furans, pyrroles, imidazoles, pyrazoles, triazoles, pyrimidines, pyrazines, thiazoles, isoxazoles, isothiazoles, tetrazoles, or oxadiazoles) and heteroaryl ring systems in which a carbocyclic aromatic ring, carbocyclic non-aromatic ring or heteroaryl ring is fused to one or more other heteroaryl rings (e.g., benzo(b)thienyl, benzimidazole, indole, tetrahydroindole, azaindole, indazole, quinoline, imidazopyridine, purine, pyrrolo[2,3-d]pyrimidine, pyrazolo[3,4-d]pyrimidine) and their N-oxides.

An aralkyl group, as used herein, is an aromatic substituent that is linked to a compound by an aliphatic group having from one to about six carbon atoms.

An heteroaralkyl group, as used herein, is a heteroaromatic substituent that is linked to a compound by an aliphatic group having from one to about six carbon atoms.

A heterocycloalkyl group, as used herein, is a non-aromatic ring system that has 3 to 8 atoms and includes at least one heteroatom, such as nitrogen, oxygen, or sulfur.

An acyl group, as used herein, is an $-C(O)NR_xR_z$, $-C(O)OR_x$, $-C(O)R_x$, in which R_x and R_z are each, independently, -H, a substituted or unsubstituted aliphatic group or a substituted or unsubstituted aromatic group.

As used herein, aliphatic groups include straight chained, branched or cyclic C_1 - C_8 hydrocarbons which are completely saturated or which contain one or more units of unsaturation. A "lower alkyl group" is a saturated aliphatic group having form 1-6 carbon atoms.

Inhibitor I bound to the catalytically inactive mutant of Tie-2 (see Fig. 2 for sequence and Fig. 3 for atomic coordinates) crystallized in the space group C2221. The x-ray crystallographic structure reveiled the following interactions:

The pyrrolopyrimidine ring of the inhibitor I forms hydrogen bonds to residues in the hinge region and interacts with purine core region. The core of the inhibitor presents a hydrogen bond donor in the form of the amino proton of the $4-NH_2$

10

15

20

25

30

substituent to the carbonyl oxygen of E903. Atom N3 of the pyrimidine ring accepts a hydrogen bond from the backbone N-H of A905. The ring system of the core presents a planar face to residues of both the C-terminal and N-terminal lobes. The residues in these areas present a hydrophobic surface which "sandwiches" the planar core of the inhibitor. Residues involved in this hydrophobic sandwich region include I830, V838, I86, I902 and L971. Atoms N1 and N7 of the core face the solvent exposed mouth of the binding pocket. Atom C6 faces the long axis of the nucleotide binding loop of the N-terminal lobe of the protein.

The N7 cyclopentane ring is directed towards solvent but is still within the protein cavity. This region was described above as the extended sugar pocket after the binding mode of the ribose ring of ATP observed in other kinase structures. This region is characterized by hydrophobic interactions with primarily I830 and L971. Methylene groups of E832 may also contribute in this fashion.

The phenyl ring attached to C5 of the pyrrolopyrimidine ring is in a predominantly hydrophobic area, generated by residues from the purine core region, the distal hydrophobic pocket and methylene groups from the catalytic lysine, K855. The hydrophobic contacts are with residues V838, I886, I902, L971 and A981. Lysine 855 is highly mobile, so it is also possible that the Cl atom meta to the pyrrolopyrimidine ring is receiving a hydrogen bond.

The sulfonamide linker makes a clear hydrogen bond with an amide proton of D982 and may also make a hydrogen bond to the amide proton of F983.

The terminal phenyl ring (labelled ring C) is located in the distal hydrophobic pocket. Primary contacts are with L876, I886, L888 and F983.

Inhibitor II bound to the catalytically inactive mutant of Tie-2 (see Fig. 2 for sequence and Fig. 4 for atomic coordinates) crystallized in the space group P42212. The x-ray crystallographic structure reveiled the following additional interactions:

The pyrrolopyrimidine core, B-ring, linker and C-ring bind the same way as inhibitor I. The N-7 cyclohexyl N-methy piperazinyl group occupies the extended sugar pocket and makes a strong ionic interaction with D912.

Inhibitor III bound to the catalytically inactive mutant of Tie-2 (see Fig. 2 for sequence and Fig. 4 for atomic coordinates) crystallized in the space group P42212.

5

10

15

20

25

30

The x-ray crystallographic structure reveiled the following additional interactions:

-41-

The pyrrolopyrimidine core binds the same way as inhibitor I. The N-7 cyclohexyl N-methy piperazinyl group occupies the extended sugar pocket and makes a strong ionic interaction with D912 as in Tie-2/inhibitor II. The B-ring binds in a similar fashion to inhibitor I, however, the hydrogen bond between a halogen, fluorine in this case, and K855 is more clear. The linker makes two clear hydrogen bonds to backbone amide protons of D983 and F983. The C-ring occupies the distal hydrophobic pocket with main interactions coming from L876, I886, L888, L900, I902 and F983.

Inhibitor IV bound to the catalytically inactive mutant of Tie-2 (see Fig. 2 for sequence and Fig. 4 for atomic coordinates) crystallized in the space group P42212. The x-ray crystallographic structure reveiled the following additional interactions:

The pyrrolopyrimidine core binds the same way as inhibitor I. The N-7 cyclohexyl N-methy piperazinyl group occupies the extended sugar pocket and makes a strong ionic interaction with D912 as in Tie-2/inhibitor II. The B-ring binds in a similar fashion to inhibitor I, however there is no chlorine atom to act as a potential hydrogen bond partner. The linker in this case is an oxygen atom which accepts a hydrogen bond from the catalytic lysine, K855. The C-ring occupies the distal hydrophobic pocket with main interactions coming from L876, I886, I902 and F983.

In one embodiment, the present invention relates to a method of treating a Tie-2-dependent condition in a patient. The method comprises the step of administering to the patient a therapeutically effective amount of a Tie-2 inhibitor as described above. The patient can be any animal, and is, preferably, a mammal and, more preferably, a human.

A "Tie-2-dependent condition" is a disease or medical condition in which the catalytic activity of Tie-2 plays a role, for example, in the development of the disease or condition. For example, in one embodiment, the condition is characterized by excessive vascular proliferation. Tie-2 inhibitors are useful in treating angiogenesis dependent disorders, and disorders involving aberrant endothilial-pereindothelial interactions (e.g., restenosis).

WO 01/72778 PCT/US01/08853 -42-

Tie-2 dependent conditions include hyperproliferative disorders, cancer, a cardiovascular condition, an ocular condition, von Hippel Lindau disease, pemphigoid, psoriasis, Paget's disease, polycystic kidney disease, fibrosis, sarcoidosis, cirrhosis, thyroiditis, Osler-Weber-Rendu disease, chronic inflammation, synovitis, inflammatory bowel disease, Crohn's disease, rheumatoid arthritis, osteoarthritis, psoriatic arthritis, an ulcer and sepsis. In addition a Tie-2 inhibitor can be used to decrease fertility in a patient.

5

10

15

20

25

30

Preferred methods of treatment are where the cancer is a solid tumor, a sarcoma, fibrosarcoma, osteoma, melanoma, retinoblastoma, a rhabdomyosarcoma, glioblastoma, neuroblastoma, teratocarcinoma, an hematopoietic malignancy, malignant ascites, Kaposi's sarcoma, Hodgkin's disease, lymphoma, myeloma or leukemia.

Another preferred method of treatment is where the cardiovascular condition, atherosclerosis, restenosis, ischemia/reperfusion injury, chronic occlusive pulmonary disease, vascular occlusion, carotid obstructive disease, Crow-Fukase (POEMS) syndrome, anemia, ischemia, infarct, vascular leakage disorders.

Yet another preferred method of treatment is where the ocular condition is ocular or macular edema, ocular neovascular disease, scleritis, radial keratotomy, uveitis, vitritis, myopia, optic pits, chronic retinal detachment, post-laser treatment complications, conjunctivitis, Stargardt's disease, Eales disease, retinopathy, macular degeneration or microangiopathy.

A Tie-2 inhibitor can also be used in a method of promoting angiogenesis or vasculogenesis. In addition, a Tie-2 inhibitor can be administered with a proangiogenic growth factor.

A therapeutically effective amount, as this term is used herein, is an amount which results in partial or complete inhibition of disease progression or symptoms. Such an amount will depend, for example, on the size and gender of the patient, the condition to be treated, the severity of the symptoms and the result sought, and can be determined by one skilled in the art.

The compound of the invention can, optionally, be administered in combination with one or more additional drugs or therapies which, for example, are

5

10

15

20

25

30

known for treating and/or alleviating symptoms of the condition mediated by Tie-2. The additional drug can be administered simultaneously with the compound of the invention, or sequentially. For example, the Tie-2 inhibitor can be administered in combination with another anticancer agent, as is known in the art. Additional therapies which may be coadministered would include, for example, radiation therapy, ultraviolet irradiation, hyperthermia, laser irradiation, targeted radionuclides and neutron bombardment.

-43-

The invention further provides pharmaceutical compositions comprising one or more of the Tie-2 inhibitors described above. Such compositions comprise a therapeutically (or prophylactically) effective amount of one or more Tie-2 binding inhibitors, as described above, and a pharmaceutically acceptable carrier or excipient. Suitable pharmaceutically acceptable carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The carrier and composition can be sterile. The formulation should suit the mode of administration.

Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions (e.g., NaCl), alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylose or starch, cyclodextrin, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxymethylcellulose, polyvinyl pyrolidone, etc. The pharmaceutical preparations can be sterilized and if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.

The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, polyvinyl pyrrolidinone, sodium saccharine, cellulose, magnesium carbonate, etc.

5

10

15

20

25

30

-44-

The composition can be formulated in accordance with the routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection.

Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachet indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water, saline or dextrose/water. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

The pharmaceutical compositions of the invention can also include an agent which controls release of the Tie-2 inhibitor compound, thereby providing a timed or sustained release composition.

The Tie-2 inhibitor can be administered subcutaneously, intravenously, parenterally, intraperitoneally, intradermally, intramuscularly, intraocularly, topically, enteral (e.g., orally), rectally, nasally, buccally, sublingually, vaginally, by inhalation spray, by drug pump or via an implanted reservoir in dosage formulations containing conventional non-toxic, physiologically acceptable carriers or vehicles. The preferred method of administration is by oral delivery. The form in which it is administered (e.g., syrup, elixir, capsule, tablet, solution, foams, emulsion, gel, sol) will depend in part on the route by which it is administered. For example, for mucosal (e.g., oral mucosa, rectal, ocular mucosa, intestinal mucosa, bronchial mucosa) administration, nose drops, aerosols, inhalants, nebulizers, eye drops or suppositories can be used. The compounds and agents of this invention can be administered together with other biologically active agents, such as analgesics, anti-inflammatory agents, anesthetics and other agents which can control one or more symptoms or causes of a Tie-2 dependent condition.

WO 01/72778

-45-

PCT/US01/08853

In a specific embodiment, it may be desirable to administer the agents of the invention locally to a localized area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, transdermal patches, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes or fibers. For example, the agent can be injected into the joints.

EXAMPLES

10

15

20

25

30

5

Example 1 Protein Purification

(His)₆Tie-2 802-1124, D964N, which contains a TEV protease cleavage peptide, was expressed recombinantly by baculovirus infection of SF-9 cells. Cells were lysed in a buffer containing 20 mM Tris pH 8.0, 137 mM NaCl, 10 % glycerol, 1 % Triton X-100, 1 mM ADP, 5 mM MgCl₂ and complete protease inhibitor, EDTAfree cocktail from Boehringer Mannhein.. The ligand ADP/Mg++ was maintained at this concentration in buffers of all subsequent purification steps. The cell lysate was centrifuged and the supernatant was applied to a Ni⁺⁺ chelating sepharose column which had been equilibrated in 50 mM HEPES, pH 7.5, 0.3 M NaCl. Tie-2 was eluted by competition with 100 mM imidazole. The eluted (His)₆ Tie-2 was digested with Tev protease and dialyzed against 50 mM HEPES, pH 7.5, 0.25 M NaCl, 5 mM DTT. The dialyzed sample was centrifuged to remove any precipitated protein, and Tie-2 was bound to a MonoQ anion exchange column and eluted with a linear 20 column volume gradient of 0.025-0.2 M NaCl. Typically, differences in the monodispersity of early eluting verses late eluting fractions could be detected using Dynamic Light Scattering (DLS). Sample purity was assessed with SDS-PAGE, native PAGE, and LC/MS total mass analysis. Fractions with similar DLS characteristics were pooled and concentrated to greater than 2 mg/ml using ultrafiltration at -80 °C. The ultracentrifuged samples were used in crystallographic

WO 01/72778

-46-

PCT/US01/08853

experiments described below. Table I lists a range of conditions suitable for crystallization.

Example 2:

5

10

15

20

30

I. Diphosphorylated Tie-2 802-1124

A. Crystallization Conditions:

Tie-2 802-1124 (2PO₄) protein was crystallized in a sitting or hanging drop geometry using a vapor diffusion method. The protein concentration was 5 mg/ml, and the well solution was 10% PEG 6,000; 0.1 M HEPES, pH 7.5; 5% MPD (2-methyl-2,4-pentanediol). Drops were set up using equal volumes of protein and well solution containing 500 μ M inhibitor. Crystals routinely grew to 0.4 mm x 0.1 mm x 0.01 mm in about a week. Crystals were of the space group P2(1)2(1)2(1) with unit cell dimensions a = 54.320 Å, b = 75.872 Å, c = 78.143 Å, and $\alpha = \beta = \gamma = 90.0^{\circ}$. Table I list a range of conditions which are suitable for crystallization.

B. Data Collection

Data on ligand bound crystals were collected on a Rigaku RU300 rotating anode generator running at 50kV 150 mA equipped with an R-Axis II phosphoimage plate detector. X-rays were monochromatized by long mirrors and filtered with a 0.0067µm Nickel filter. Data were processed and reduced with DENZO and SCALEPACK (Minor, W. 1993). Data were collected to 3.5 Å resolution.

25 C. Data Processing

Programs in the CCP4 suite (Collaborative Computational Project, Number 4 1994) (tomtz, trunc, cad and ecalc) were used to format and process the data for molecular replacement. The molecular replacement program AMORE (Navaza, J. 1994) was used successfully to find phases for the data set using an initial model. The initial model was composed of the carboxy-terminal portion (residues 566-575 and 592-672) of the FGFR kinase domain trimmed back to poly-Alanine (PDB accession number 1FGK). A second round of AMORE with a more complete model (residues

464-485, 491-500, 505-575 and 592-762) was also performed to confirm the phasing solution.

-47-

D. Optimization of Model

Several round of least-squared minimization using CNS (Brunger, A.T. et al., 1998) alternating with manual rebuilding, using the graphics program O, version 6.2.1 (Jones, A., 1997; Kleywegt G. J., 1995) were performed iteratively to improve the model while comparing it to electron density maps generated after each round with coefficients 2fo-fc contoured at a level of 1.0 sigma.

10

15

20

30

II. Tie-2 (D964N) 802-1124 (SEQ ID NO 2)

A. Crystallization Conditions

Purified Tie-2 (D964N) 802-1124 protein was crystallized in a sitting drop geometry using the vapor diffusion method. The protein concentration was 2.5 mg/ml, and the well solution was 1.0 to 1.5 M ammonium sulfate, 0.1M MES, pH 6.5, 5% dioxane (1,4-dioxane). Drops were set up using equal volumes of protein and well solution containing 100-300 μ M inhibitor. Crystals routinely grew to 0.3 mm x 0.05 mm x 0.01 mm in about 2-3 days. Crystals of Tie-2/inhibitor I were of the space group C222(1) with unit cell dimensions a = 75.195 Å, b = 116.287 Å, c = 95.060 Å and $\alpha = \beta = \gamma$ - 90.0°. Crystals of the Tie-2/inhibitor II, III or IV complex were of the space group P42212 with unit cell dimensions a = b = 86.0 Å, c = 112.0 Å and $\alpha = \beta = \gamma$ - 90.0°.

25 B. Data Collection

Data on a ligand-bound crystal (Tie-2 (D964N) 802-1124) complexed with inhibitors I, II, III, or IV were collected at the beamline X25 at Brookhaven National Laboratory (Upton, NY) equipped with the Brandeis B4, CCD detector. Data were processed and reduced with DENZO and SCALEPACK (Minor, W. 1993). Data for the Tie-2/inhibitor I complex were collected complete to 2.75 Å resolution, with higher resolution reflections visible to 2.0 Å resolution.

C. Data Processing

Programs in the CCP4 suite (Collaborative Computational Project, Number 4 1994) (tomtz, trunc, cad and ecalc) were used to format and process the data for molecular replacement. The molecular replacement program AMORE (Navaza, J. 1994) was used successfully to find phases for the data set using an initial model. The initial model was composed of the a conservative portion of the FGFR kinase domain (Tie2 residue numbering 818-830, 841-842, 850-857, 866-890, 900-916, 935-981, 1001-1093). The model, mostly poly-Alanine, was trimmed of loop regions which diverged upon superposition of five tyrosine kinase structures (IRK, HCK, SRC, FGFR, and LCK). In addition this model included only those side-chain residues in positions where an identical side-chain was found in the FGFR model.

PCT/US01/08853

D. Optimization of Model

Several round of least-squared minimization using CNS (Brunger, A. T. et al., 1998) alternating with manual rebuilding, using the graphics program O, version 6.2 (Jones, A., 1997; Kleywegt G. J., 1995) were performed to iteratively improve the model while comparing it to two electron density maps: one generated with coefficients 2fo-fc contoured at a level of 1.0 sigma and the other generated with coefficients fo-fc contoured at a level of 1.5 sigma.

20

25

5

10

15

E. Inhibitor Docking

Inhibitor I was found to be bound to the active site. It was initially docked by hand in O by visually inspecting the electron density maps and adjusting the torsion angles of the inhibitor. Parameter and topology files were generated for CNS using the X-util program xplo2d (Kleywegt G. J. and Jones, T.A. 1997) and modified slightly to properly model chlorine in the inhibitor.

III. Tie-2 (D964N) 802-1124 (SEQ ID NO 2)

A. Crystallization Conditions

The protein (construct Tie-2D964N) was provided in a buffer containing 25mM HEPES, pH 7.5, 50 mM NaCl, 5 mM MgCl2, 1 mM ADP and 5 mM DTT. The protein concentration was about 2.3 mg/ml as determined with a Coomassie Plus assay, BSA as standard.

The inhibitor III was dissolved in DMSO to give a 50 mM stock solution. Stock solution was added to the protein solution for a final inhibitor concentration of 2mM. Crystallization conditions were screened with Hampton Screen *Crystal screen*, *Crystal screen*, *Membfac, Natrix* and *PEG/ion screen* at room temperature and 4°C. Crystals grew with precipitation buffer: 20% PEG 3350, 0,2M tri-Lithium Citrat pH 8,1 (Hampton Screen *PEG/ion screen*, Nr. 45) sitting or hanging drop: 750μl buffer in reservoir in the drop typically 1μl - 2μl protein and 1μl - 2μl reservoir solution were mixed.

Addition of the following additives (10% by volume to the drop) also yielded crystals:

Add. Screen I	Nr.:01	0.1M Ba-Chloride
Add. Screen I	Nr.:03	0.1M Ca-Chloride
Add. Screen I	Nr.:06	0.1M Mg-Chloride
Add. Screen I	Nr.:16	0.1M Trimehylamine
Add. Screen I	Nr.:22	30% Ethanol
Add. Screen II	Nr.:08	30% Xylitol
Add. Screen II	Nr.:13	30% 1,5Diaminopentan-dihydrochloride
Add. Screen II	Nr.:14	30% 1,8 Diaminooctane
Add. Screen II	Nr.:17	0.1M Hexaaminocobalt-trichloride
Add. Screen III	[Nr.:02	1.0M Cesium-chloride

5

10

Add. Screen III Nr.:04	1.0M Lihium-chloride
Add. Screen III Nr.:06	0.5M Sodium-flouride
Add. Screen III Nr.:16	40% Acetonitrile
Add. Screen III Nr.:18	40% n-Propanol
Add. Screen III Nr.:19	5% Ethyl-acetate
Add. Screen III Nr.:20	40% Acetone
Add. Screen III Nr.:21	2,5% Dichlormethane
Add. Screen III Nr.:22	7% n-Butanol
Add. Screen III Nr.:24	0.1M 1,4 Dithio-DL-threitol

B. Data collection:

5

10

Data were measured at the beam line BW 6 of the Max-Planck-Society at DESY, Hamburg.

The crystals were shock cooled to $100 \, \text{K}$; cryobuffer was crystallization buffer plus $20-30 \, \%$ glycerol. 213 frames with delta phi=0.25 degrees were collected with a MAR CCD detector, at a crystal detector distance of 120mm and a wavelength of $1.072 \, \text{Å}$.

Crystals are of a tetragonal space group with unit cell dimensions a=b=86.0 Å and c=112.0 Å. The cell dimensions of different crystals vary (for a and b between 85 and 87Å, for c between 97 and 113). Extinctions indicate the space group P42212 which was confirmed by molecular replacement.

Table II: Crystallization conditions for Tie-2/inhibitor complexes.

Condition	Tie-2 802-1124 D964N	Tie-2 802-1124 (diphosphorylated)	
Protein concentration	2.5 mg/mL optimal	5 mg/mL optimal	
	range 1.5 – 4 mg/mL	range 2.5 – 10 mg/mL	
	limits 1.0 – 5.0 mg/mL		
Buffer	100 mM MES optimal	100 mM HEPES optimal	
concentration	range 50–250 mM	Range 50-150 mM	
	Limits 20–300 mM	Limits 20-300 mM	
pН	6.5 optimal	7.5 optimal	
 -	range 5.5 – 7.5	range 7.0 – 7.7	
		limits 6.5 – 8.0	
Buffer Identity	Buffers capable of buffering in a similar pH range expected to give similar results	(same)	
Precipitant	(NH ₄) ₂ SO ₄	10% PEG 6000 optimal	
	Range 1.0 – 1.5 M	conc. range 5-15%	
	Limits 0.7 – 1.8 M	conc. limits $1-20\%$	
		MW range 4000 – 8000	
		MW limits may be much wide	
Additive parameters	5% 1,4-dioxane optimal	5% MPD (2-Me-2,4-pentaned	
	range $0 - 10\%$ (higher concentrations etch the plastic vessel in which the experiment is done; higher concentrations may be possible in a resistant vessel)	optimal range 0 – 10%	
	1,3-dioxane, similar molecules, or mixtures in various ratios should also give similar results		

Additive identities	Examples which have been successfully added:	(same)
	1,5-diaminopentane	
,	Glycerol (1-10%) Ethylene glycol (1-10%)	
	Spermidine (10 – 300 mM)	
	Combinations, in varying ratios, may give similar results	
Drop volumes and ratios	2 μL protein + 2 μL well solution optimal	(same)
į	Total volume range: up to 200 μL, assuming a sitting geometry for larger volumes	
	Volume Ratio range: 1 part protein to 0.5 – 2.0 parts well solution	
Well volume (for 4 µL crystallization drop)	Range 500 – 1000 μL	(same)
	Limits 250 – large volume (limited by the distance between the drop and the surface of the well solution allowed by the vessel geometry, see below)	
Drop – well	2 cm optimal	(same)
solution distance	Range 1-4 cm	
	Limits: 0.1 cm - 5 cm	
Temperature	room temp optimal (22 - 25 °C)	(same)
	limits 17 – 30 °C	
Ligands	ADP/Mg ²⁺ and analogs	(same)
,	Inhibitors: inhibitors I-IV, analogs	
,	Expect similar results from ligands that bind reversibly under crystallization conditions with K _d values < 1 mM	

Variants in amino acid sequence that crystallize in the same space group and unit cell should be considered equivalent		(same)
	Additional constructs would include deletion of unstructured termini as determined by crystal structure of this construct. For example, deletion of the C-terminal 24 residues (leaving 802-1100 has been prepared, which is likely to yield similar results	
Posttranslational modification	Variants in posttranslational modification that crystallize in the same space group and unit cell should be considered equivalent	2 phosphate forms have been crystallized. This protein cont one phosphate on either Y897 Y899 and one on one of five T residues, at amino acids 1012, 1024, 1040, and 1048
		Other phosphorylated forms m give similar results.
		A single phosphate species has observed in which the phospha on either Y897 or Y899 has all been isolated.
		In addition, 3 and 4 phosphate species have been isolated whi may crystallize.
Space group	C222(1)	P2(1)2(1)2(1)
Unit cell	a = 75.195 Å, b = 116.287 Å, c = 95.060 Å	a = 54.320 Å, b = 75.872 Å, c 78.143 Å
	Variations of ± 2% should be considered equivalent	Variations of ± 2% should be considered equivalent
	Angles: $a = b = c = 90^{\circ}$	Angles: $a = b = c = 90^{\circ}$
	Observed variations of ± 1% should be considered equivalent	Observed variations of ± 1% should be considered equivale

Other crystallization	Low gravity	(same)
tricks that should give at least equivalent results	Temperature oscillations	
	Presence of cryoprotectant (15-25% glycerol added before data collection)	
	Variations in crystallization tray geometry	
	Data collection temperature (range: minus 180 to plus 25 °C)	

REFERENCES:

- Brunger, A.T., Adams, P. D., Clore, G. M., DeLano, W. L. Gros, P. Grosse-Kunstleve, R. W., Jiang, J-S., Kuszewski, J., Nigels, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L.. (1998) *Acta Cryst.*, *D54*, 905-921.
- Collaborative Computational Project, Number 4 (1994) The CCP4 Suite: Programs for Protein Crystallography. *Acta Crys.t D50*, 760-763.
 - Jones, A.T and Kjeldgaard, M. (1997) Methods in Enzymology 277, 173-208.
 - Kleywegt G. J. and Jones, T.A. (1997) Methods in Enzymology 277, 525-545.
 - Kleywegt G. J., (1995) ESF/CCP4 Newsletter 31, 45-50.
 - Minor, W. XDISPLAYF program, Purdue University (1993)
- 20 Navaza, J. (1994) Acta Cryst. A50, 157-163.

WO 01/72778

-55-

PCT/US01/08853

Example 3: In Vitro Potency Test of Tie-2 Inhibitors

The *in vitro* potency of compounds in inhibiting these protein kinases may be determined by the procedures detailed below.

The potency of compounds can be determined by the amount of inhibition of the phosphorylation of an exogenous substrate (e.g., synthetic peptide (Z. Songyang *et al.*, *Nature*. 373:536-539) by a test compound relative to control.

Human Tie-2 Kinase Production and Purification

The coding sequence for the human Tie-2 intra-cellular domain (aa775-1124) was generated through PCR using cDNAs isolated from human placenta as a template. A poly-His₆ sequence was introduced at the N-terminus and this construct was cloned into transfection vector pVL 1939 at the Xba 1 and Not 1 site. Recombinant BV was generated through co-transfection using the BaculoGold Transfection reagent (PharMingen). Recombinant BV was plaque purified and verified through Western analysis. For protein production, SF-9 insect cells were grown in SF-900-II medium at 2 x 106/ml, and were infected at MOI of 0.5. Purification of the His-tagged kinase used in screening was analogous to that described for KDR.

EGFR Tyrosine Kinase Source

5

10

15

20

25

30

EGFR was purchased from Sigma (Cat # E-3641; 500 units/50 1) and the EGF ligand was acquired from Oncogene Research Products/Calbiochem (Cat # PF011-100).

Enzyme Linked Immunosorbent Assay (ELISA) For PTKs

Enzyme linked immunosorbent assays (ELISA) were used to detect and measure the presence of tyrosine kinase activity. The ELISA were conducted according to known protocols which are described in, for example, Voller, *et al.*, 1980, "Enzyme-Linked Immunosorbent Assay," In: *Manual of Clinical Immunology, 2d ed.*, edited by Rose and Friedman, pp 359-371 Am. Soc. of Microbiology, Washington, D.C.

The disclosed protocol was adapted for determining activity with respect to a specific PTK. For example, preferred protocols for conducting the ELISA experiments is provided below. Adaptation of these protocols for determining a

-56-

compound's activity for other members of the receptor PTK family, as well as non-receptor tyrosine kinases, are well within the abilities of those skilled in the art. For purposes of determining inhibitor selectivity, a universal PTK substrate (e.g., random copolymer of poly(Glu₄ Tyr), 20,000-50,000 MW) was employed together with ATP (typically 5 µM) at concentrations approximately twice the apparent Km in the assay.

The following procedure was used to assay the inhibitory effect of compounds of this invention on Tie-2 tyrosine kinase activity:

Buffers and Solutions:

10 PGTPoly (Glu, Tyr) 4:1

5

Store powder at -20°C. Dissolve powder in phosphate buffered saline (PBS) for 50mg/ml solution. Store 1ml aliquots at -20°C. When making plates dilute to 250 g/ml in Gibco PBS.

Reaction Buffer: 100mM Hepes, 20mM MgCl₂, 4mM MnCl₂, 5mM DTT,

15 0.02%BSA, 200μM NaVO₄, pH 7.10

ATP: Store aliquots of 100mM at -20°C. Dilute to 20μM in water

Washing Buffer: PBS with 0.1% Tween 20

Antibody Diluting Buffer: 0.1% bovine serum albumin (BSA) in PBS

TMB Substrate: mix TMB substrate and Peroxide solutions 9:1 just before use or use

20 K-Blue Substrate from Neogen

Stop Solution: 1M Phosphoric Acid

Procedure

- 1. Plate Preparation:
- Dilute PGT stock (50mg/ml, frozen) in PBS to a 250μg/ml. Add 125μl per well of Corning modified flat bottom high affinity ELISA plates (Corning #25805-96). Add 125μl PBS to blank wells. Cover with sealing tape and incubate overnight 37°C. Wash 1x with 250μl washing buffer and dry for about 2hrs in 37°C dry incubator. Store coated plates in sealed bag at 4°C until used.

-57-

- 2. Tyrosine Kinase Reaction:
- -Prepare inhibitor solutions at a 4x concentration in 20% DMSO in water.
- -Prepare reaction buffer
- -Prepare enzyme solution so that desired units are in 50μl, e.g. for KDR make to 1 ng/ 1 for a total of 50ng per well in the reactions. Store on ice.
 - -Make 4x ATP solution to $20\mu M$ from 100mM stock in water. Store on ice
 - -Add 50µl of the enzyme solution per well (typically 5-50 ng enzyme/well depending on the specific activity of the kinase)
- 10 -Add 25μl 4x inhibitor
 - -Add 25µl 4x ATP for inhibitor assay
 - -Incubate for 10 minutes at room temperature
 - -Stop reaction by adding 50µl 0.05N HCl per well
 - -Wash plate
- **Final Concentrations for Reaction: 5μM ATP, 5% DMSO
 - 3. Antibody Binding
 - -Dilute 1mg/ml aliquot of PY20-HRP (Pierce) antibody (a phosphotyrosine antibody) to 50ng/ml in 0.1% BSA in PBS by a 2 step dilution (100x, then 200x)
- -Add 100μl Ab per well. Incubate 1 hr at room temp. Incubate 1 hr at 4C.
 - -Wash 4x plate
 - 4. Color reaction
 - -Prepare TMB substrate and add 100µl per well
- 25 -Monitor OD at 650nm until 0.6 is reached
 - -Stop with 1M Phosphoric acid. Shake on plate reader.
 - -Read OD immediately at 450nm

Optimal incubation times and enzyme reaction conditions vary slightly with enzyme preparations and are determined empirically for each lot.

WO 01/72778 PCT/US01/08853 -58-

Example 4: Cellular Assay for Determining the Potency of Tie-2 Inhibitors

The following cellular assay can be used to determine the potency of a Tie-2 inhibitor.

5 "NIH-3T3/hTEK Cell line:

A retroviral expression vector containing the full length Tie-2 cDNA, LNCX6 h-TEK, was kindly provided to us by Dr. Kevin Peters. A tumorigenic subline of NIH 3T3 cells was transfected with 10 ig of LNCX6 h-TEK by calcium phosphate precipitation method and selected with 400 ig/ml neomycin. Individual clones were isolated and analyzed for the presence of Tie-2 protein by Western blotting. Maximum expression of Tie-2 was observed in clone #67. Expression of Angiopoietin 1 message has been shown using PCR and an autocrine loop is revealed in the presence of vanadate

Cellular Tie-2 assay:

Tie-2 cellular autophosphorylation was measured using the NIH-3T3/hTEK (hTEK) cell line. Cells were seeded in 96 well plates overnight. The media was removed and cells treated with inhibitor for 20 minutes and phosphotase inhibitor NaVO₃ (2mM) for 15 more minutes. Cells were lysed with RIPA buffer and lysates were immunoprecipitated using a specific a-Tie-2 monoclonal antibody (KP33, provided by Dr. Kevin Peters) and the IP'd protein run on SDS PAGE. The phosphotyrosine level on Tie2 protein were then determined by a-phosphotyrosine antibodies (4G10, Upstate Biotechnology) on Western blots. Films were scanned and % inhibition as compared to untreated control was determined."

25 EQUIVALENTS

While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

10

15

WO 01/72778 PCT/US01/08853 -59-

CLAIMS

What is claimed is:

15

- A crystalline polypeptide, said polypeptide comprising the catalytic domain of
 a Tie-2 protein.
 - 2. The crystalline polypeptide of Claim 1 wherein the polypeptide comprises the catalytic domain of human Tie-2.
- 10 3. A crystalline polypeptide-ligand complex, said polypeptide comprising the catalytic domain of a Tie-2 protein.
 - 4. The crystalline polypeptide/ligand complex of Claim 3 wherein the polypeptide comprises the catalytic domain of a mammalian Tie-2.
 - 5. The crystalline polypeptide/ligand complex of Claim 4 wherein the mammalian Tie-2 protein is human Tie-2.
- 6. The crystalline polypeptide/ligand complex of Claim 5 wherein the polypeptide comprises amino acids 802-1124 of SEQ ID NO: 1.
 - 7. The crystalline polypeptide/ligand complex of Claim 6 wherein the ligand is of the formula:

- 8. The crystalline polypeptide/ligand complex of Claim 7 having unit cell parameters a is about 96 Å, b is about 118 Å, c is about 78 Å and $\alpha = \beta = \gamma = 90^{\circ}$.
- 9. The crystalline polypeptide/ligand complex of Claim 6 wherein the ligand is of the formula:

- 10. The crystalline polypeptide/ligand complex of Claim 9 having unit cell parameters a and b are about 86.0 Å, c is about 112.0 Å and $\alpha = \beta = \gamma = 90$ °.
 - 11. The crystalline polypeptide/ligand complex of Claim 6 wherein the ligand is of the formula:

12. The crystalline polypeptide/ligand complex of Claim 11 having unit cell parameters a and b are about 86.0 Å, and c is about 112.0 Å and $\alpha = \beta = \gamma = 90^{\circ}$.

5

13. The crystalline polypeptide/ligand complex of Claim 6 wherein the ligand is of the formula:

10 14. The crystalline polypeptide/ligand complex of Claim 13 having unit cell parameters a and b are about 86.0 Å, c is about 112.0 Å and $\alpha = \beta = \gamma = 90^{\circ}$.

10

15

20

- 15. A method of determining the three dimensional structure of a first polypeptide comprising the catalytic domain of a Tie-2 protein, said method comprising the steps of:
 - (a) obtaining a crystal of the first polypeptide comprising the catalytic domain of Tie-2;
 - (b) obtaining x-ray diffraction data for said crystal; and
 - (c) solving the crystal structure of said crystal using the atomic coordinates of a second polypeptide and said x-ray diffraction data, said second polypeptide comprising the catalytic domain of a Tie-2 protein.

16. The method of Claim 15 wherein the crystal of the first polypeptide comprises the first polypeptide complexed with a ligand.

- 17. The method of Claim 15 wherein the first polypeptide comprises the catalytic domain of a mammalian Tie-2 protein.
- 18. The method of Claim 17 wherein the first polypeptide and the second polypeptide, independently, comprise the catalytic domain of a human Tie-2 protein.
- 19. The method of Claim 18, wherein the first polypeptide comprises the catalytic domain of wild type human Tie-2 and the second polypeptide comprises the catalytic domain of wild type human Tie-2.
- 25 20. The method of Claim 19, wherein the first polypeptide comprises the catalytic domain of wild type human Tie-2.
 - 21. A method of identifying a compound which is an inhibitor of a Tie-2 protein, said method comprising the steps of
- obtaining the atomic coordinates of a crystal of a polypeptide comprising the catalytic domain of a Tie-2 protein;

- (b) using said atomic coordinates to define the active subsites of Tie-2; and
- (c) identifying a compound which binds to the one or more active subsite; wherein the compound which bind to the active subsite or sites is an inhibitor of a Tie-2 protein.

- 22. The method of Claim 21, further comprising the step of
 - (d) assessing the ability of the compound identified in step (c) to inhibit Tie-2.
- 10 23. The method of Claim 21 wherein the Tie-2 protein is a mammalian protein.
 - 24. The method of Claim 22 wherein the Tie-2 protein is a human protein.
 - 25. The method of Claim 24, wherein the Tie-2 protein is wild type human Tie-2.

- 26. The method of Claim 21 wherein said crystal further comprises a ligand bound to said catalytic domain.
- The method of Claim 24 wherein the polypeptide comprises amino acids 802-1124 of SEQ ID NO: 1.
 - 28. The method of Claim 24, wherein the ligand is of the formula:

- 29. The method of Claim 28, wherein the crystal has unit cell parameters wherein a is about 96 Å, b is about 118 Å, c is about 78 Å and $\alpha = \beta = \gamma = 90^{\circ}$.
- 5 30. The method of Claim 24, wherein the ligand is of the formula:

- 31. The method of Claim 30, wherein the crystal has unit cell parameters wherein a and b are about 86.0 Å, c is about 112.0 Å and $\alpha = \beta = \gamma = 90^{\circ}$.
- The method of Claim 24, wherein the ligand is of the formula:

33. The method of Claim 32, wherein the crystal has unit cell parameters wherein

a and b are about 86.0 Å, and c is about 112.0 Å and $\alpha = \beta = \gamma = 90^{\circ}$.

The method of Claim 24, wherein the ligand is of the formula: 34.

5

The method of Claim 34, wherein the crystal has unit cell parameters wherein 35. a and b are about 86.0 Å, c is about 112.0 Å and $\alpha = \beta = \gamma = 90^{\circ}$.

10

A method of identifying a compound which is a potential inhibitor of a Tie-2 36. protein, said method comprising the step of designing a compound that will interact with one or more subsites in the catalytic domain of the Tie-2 protein, based upon the crystal structure coordinates of a polypeptide comprising the catalytic domain; wherein said compound is identified as a potential inhibitor of the Tie-2 protein.

15

The method of Claim 36 wherein the Tie-2 protein is a mammalian Tie-2 37. protein.

20

38.

39.

The method of Claim 38, wherein the Tie-2 protein is wild type human Tie-2.

The method of Claim 37 wherein the Tie-2 protein is a human Tie-2 protein.

WO 01/72778 PCT/US01/08853 -66-

- 40. The method of Claim 39 wherein the polypeptide comprises amino acids 802-1124 of SEQ ID NO: 1.
- The method of Claim 38 wherein the crystal structure coordinates are set forth in Fig. 3.
 - 42. The method of Claim 38 wherein the crystal structure coordinates are set forth in Fig. 4.
- 10 43. The method of Claim 38 wherein the crystal structure coordinates are set forth in Fig. 5.
 - 44. The method of Claim 38 wherein the crystal structure coordinates are set forth in Fig. 6.
 - 45. The method of Claim 38 wherein the compound interacts with one or more of subsites 1 to 9.
- The method of Claim 45 wherein the compound interacts with two or more of subsites 1 to 9.

15

- 47. The method of Claim 46 wherein the compound interacts with three or more of subsites 1 to 9.
- 25 48. The method of Claim 46 wherein the compound interacts with a set of subsites comprising subsite 1 and subsite 2.
 - 49. The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 2 and subsite 3.

WO 01/72778

10

25

-67-

PCT/US01/08853

- 50. The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 2 and subsite 8.
- 5 51. The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 2, subsite 3 and subsite 8.
 - 52. The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 4 and subsite 5.

53. The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 2, subsite 7 and subsite 8.

- The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 2, subsite 3, subsite 7 and subsite 8.
 - The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 2, subsite 3, subsite 7 and subsite 8.
- The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 2, subsite 4, subsite 6 and subsite 8.
 - 57. The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 2, subsite 3, subsite 4, subsite 6 and subsite 8.
 - 58. The method of Claim 47 wherein the compound interacts with a set of subsites comprising subsite 1, subsite 2, subsite 3, subsite 4, subsite 6 and subsite 8.
 - 59. A Tie-2 inhibitor comprising two or more of the following:
- a hydrogen bond donor positioned to interact with Glu 903 of human Tie-2;

a hydrogen bond acceptor positioned to interact with Ala 905 of human (b) Tie-2; a hydrogen bond donor positioned to interact with Ala 905 of human (c) Tie-2; a hydrophobic moiety positioned to interact with one or more of Ile 5 (d) 830, Val 838, Ala 853, Ile 886, Ile 902, Tyr 904, Ala 905 and Leu 971 of human Tie-2; a hydrogen bond donor or positively charged functional group (e) positioned to interact with Asp 912 of human Tie-2; a hydrogen bond donor or hydrogen bond acceptor postioned to interact 10 (f) with Asn 909 of human Tie-2; a hydrophobic moiety positioned to interact with one or more of Val (g) 838, Lys 855, Ile 886, Ile 902, Leu 971 and Ala 981 of human Tie-2; a hydrogen bond acceptor or negatively charged functional group (h) positioned to interact with Lys 855 of human Tie-2; 15 a hydrogen bond acceptor positioned to interact with Asp 982 of (i) human Tie-2; a hydrogen bond acceptor positioned to interact with Phe 983 of human (j) Tie-2; a hydrophobic moiety positioned to interact with one or more of Leu 20 (k) 873, Leu 876, Ile 885, Ile 886, Leu 888, Leu 900, Ile 902, Ala 981 and Phe 983 of human Tie-2; a hydrogen bond donor or positively charged functional group (1) positioned to interact with Asp 982 of human Tie-2; a hydrogen bond donor positioned to interact with Ile 886 of human (m) 25 Tie-2; a hydrogen bond donor positioned to interact with Leu 768 of human (n) Tie-2; a hydrogen bond acceptor positioned to interact with Gly 831 of human (o) Tie-2; 30 a hydrogen bond donor or positively charged functional group (p)

positioned to interact with Glu 832 of human Tie-2; a hydrogen bond acceptor or negatively charged functional group (q) positioned to interact with Lys 840 of human Tie-2; a hydrogen bond acceptor or negatively charged functional group (r) positioned to interact with Lys 916 of human Tie-2; 5 a hydrogen bond acceptor or negatively charged functional group (s) positioned to interact with Arg 968 of human Tie-2; a hydrogen bond donor positioned to interact with Arg 968 of human (t) Tie-2. 10 The Tie-2 inhibitor of Claim 59 comprising (b) and (d). 60. The Tie-2 inhibitor of Claim 59 comprising (d) and at least one of (a), (b) and 61. (c). 15 The Tie-2 inhibitor of Claim 59 comprising (d) and at least two of (a), (b) and 62. (c). The Tie-2 inhibitor of Claim 62 further comprising at least one of (e) and (f). 63. 20 The Tie-2 inhibitor of Claim 62 further comprising (g). 64. 65. The Tie-2 inhibitor of Claim 63 further comprising (g). The Tie-2 inhibitor of Claim 64 further comprising (k). 25 66. The Tie-2 inhibitor of Claim 65 further comprising (k). 67. The Tie-2 inhibitor of Claim 62 further comprising at least one of (i) and (j). 68. 30 The Tie-2 inhibitor of Claim 63 further comprising at least one of (i) and (j). 69.

20

25

- 70. The Tie-2 inhibitor of Claim 66 further comprising at least one of (i) and (j).
- 71. The Tie-2 inhibitor of Claim 67 further comprising at least one of (i) and (j).
- 5 72. The Tie-2 inhibitor of Claim 59, wherein the inhibitor has a Ki of at least about 1 mM.
 - 73. The Tie-2 inhibitor of Claim 59, wherein the inhibitor has a Ki of at least about $100 \mu M$.
- 74. The Tie-2 inhibitor of Claim 59, wherein the inhibitor has a Ki of at least about 10 μM.
- 75. The Tie-2 inhibitor of Claim 59, wherein the inhibitor selectively binds Tie-2 receptors.
 - 76. A method of treating a Tie-2 dependent condition in a patient comprising the step of administering to the patient a therapeutically effective amount of a Tie-2 inhibitor of Claim 59.
 - 77. The method of Claim 76 wherein the patient is a human.
 - 78. The method of Claim 76 wherein the Tie-2 dependent condition is characterized by excessive vascular proliferation.
 - 77. The method of Claim 78 wherein the Tie-2 dependent condition is a hyperproliferative disorder, cancer, a cardiovascular condition, an ocular condition, von Hippel Lindau disease, pemphigoid, psoriasis, Paget's disease, polycystic kidney disease, fibrosis, sarcoidosis, cirrhosis, thyroiditis, Osler-Weber-Rendu disease, chronic inflammation, synovitis, inflammatory bowel disease, Crohn's disease, rheumatoid arthritis, osteoarthritis, psoriatic arthritis,

an ulcer or sepsis.

- The method of Claim 79, wherein the condition is a cancer selected from the group consisting of solid tumor, a sarcoma, fibrosarcoma, osteoma, melanoma, retinoblastoma, a rhabdomyosarcoma, glioblastoma, neuroblastoma, teratocarcinoma, an hematopoietic malignancy, malignant ascites, Kaposi's sarcoma, Hodgkin's disease, lymphoma, myeloma and leukemia.
- The method of Claim 79 wherein the condition is a cardiovascular condition selected from the group consisting of atherosclerosis, restenosis, ischemia/reperfusion injury, chronic occlusive pulmonary disease, vascular occlusion, carotid obstructive disease, Crow-Fukase (POEMS) syndrome, anemia, ischemia, infarct, and vascular leakage disorders.
- 15 A2. The method of Claim 79 wherein the condition is an ocular condition selected from the group consisting of ocular or macular edema, ocular neovascular disease, scleritis, radial keratotomy, uveitis, vitritis, myopia, optic pits, chronic retinal detachment, post-laser treatment complications, conjunctivitis, Stargardt's disease, Eales disease, retinopathy, macular degeneration and microangiopathy.
 - A3. The method of Claim 76, wherein the disorder involves aberrant endothelial-periendothelial interactions.
- 25 84. A method of decreasing fertility in a patient comprising the step of administering to the patient a therapeutically effective amount of a Tie-2 inhibitor of Claim 59.

WO 01/72778

-72-

PCT/US01/08853

A method of promoting angiogenesis or vasculogenesis in a patient comprising the step of administering to the patient a therapeutically effective amount of a Tie-2 inhibitor of Claim 59.

5

- 86. The method of Claim 85, wherein the Tie-2 inhibitor is administered in combination with a pro-angiogenic growth factor.
- A method of determining the three dimensional structure of a polypeptide

 comprising the catalytic domain of a Tie-2 protein, said method

 comprising the steps of:
 - (a) obtaining a crystal of the polypeptide comprising the catalytic domain of Tie-2;
 - (b) obtaining x-ray diffraction data for said crystal; and
 - (c) solving the crystal structure of said crystal.
 - 88. A crystalline polypeptide, said polypeptide comprising a sequence having 80% homology with the catalytic domain of a Tie-2 protein.

15

. MDSLASLVLC GVSLLLSGTV EGAMDLILIN SLPLVSDAET SLTCIASGWR PHEPITIGRD FEALMNQHQD PLEVTQDVTR EWAKKVVWKR EKASKINGAY FCEGRVRGEA IRIRTMKMRQ QASFLPATLT MTVDKGDNVN ISFKKVLIKE EDAVIYKNGS FIHSVPRHEV PDILEVHLPH AQPQDAGVYS ARYIGGNLFT SAFTRLIVRR CEAQKWGPEC NHLCTACMNN GVCHEDTGEC ICPPGFMGRT CEKACELHTF GRTCKERCSG QEGCKSYVFC LPDPYGCSCA TGWKGLQCNE ACHPGFYGPD CKLRCSCNNG EMCDRFQGCL CSPGWQGLQC EREGIPRMTP KIVDLPDHIE VNSGKFNPIC KASGWPLPTN EEMTLVKPDG TVLHPKDFNH TDHFSVAIFT IHRILPPDSG VWVCSVNTVA GMVEKPFNIS VKVLPKPLNA PNVIDTGHNF AVINISSEPY FGDGPIKSKK LLYKPVNHYE AWQHIQVTNE IVTLNYLEPR TEYELCVQLV RRGEGGEGHP GPVRRFTTAS IGLPPPRGLN LLPKSQTTLN LTWQPIFPSS EDDFYVEVER RSVQKSDQQN IKVPGNLTSV LLNNLHPREQ YVVRARVNTK AQGEWSEDLT AWTLSDILPP QPENIKISNI THSSAVISWT ILDGYSISSI TIRYKVQGKN EDQHVDVKIK NATIIQYQLK GLEPETAYQV DIFAENNIGS SNPAFSHELV TLPESQAPAD LGGGKMLLIA ILGSAGMTCL TVLLAFLIIL QLKRANVQRR MAQAFQNVRE EPAVQFNSGT LALNRKVKNN PDPTIYPVLD WNDIKFQDVI GEGNFGQVLK ARIKKDGLRM DAAIKRMKEY ASKDDHRDFA GELEVLCKLG HHPNIINLLG ACEHRGYLYL AIEYAPHGNL LDFLRKSRVL ETDPAFAIAN STASTLSSQQ LLHFAADVAR GMDYLSQKQF IHRDLAARNI LVGENYVAKI ADFGLSRGQE VYVKKTMGRL PVRWMAIESL NYSVYTTNSD VWSYGVLLWE IVSLGGTPYC GMTCAELYEK LPQGYRLEKP LNCDDEVYDL MRQCWREKPY ERPSFAQILV SLNRMLEERK TYVNTTLYEK FTYAGIDCSA EEAA

FIG. 1

ALNRKVKNN ARIKKDGLRM HHPNIINLLG ETDPAFAIAN IHRNLAARNI PVRWMAIESL GMTCAELYEK ERPSFAQILV	PDPTIYPVLD DAAIKRMKEY ACEHRGYLYL STASTLSSQQ LVGENYVAKI NYSVYTTNSD LPQGYRLEKP SLNRMLEERK	WNDIKFQDVI ASKDDHRDFA AIEYAPHGNL LLHFAADVAR ADFGLSRGQE VWSYGVLLWE LNCDDEVYDL TYVNTTLYEK	GEGNFGQVLK GELEVLCKLG LDFLRKSRVL GMDYLSQKQF VYVKKTMGRL IVSLGGTPYC MRQCWREKPY FTYAGIDCSA
ERPSFAQILV EEAA	SLNRMLEERK	TYVNTTLYEK	FTYAGIDCSA

CRYSTI										
ORIGNEY 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000	CRYST1	95	. 604	117.	589 78.2	14 90.0	0 90.00	90.00		
ORTEXX 0.000000 1.000000 0.0000000 0.0000000 0.0000000000000000 0.00000000000000000000000000000000000						0.00000	0	0.00000		
ORTGK3 0.0000000 0.0000000 0.0000000000000000 0.00000000000000000000000000000000000										
SCALE1 0.010460 0.000000 0.000000 0.000000 0.000000 SCALE2										
SCALEZ										
SCALES 0.00000 0.000000 0.012785 0.00000 0.00000 0.012785 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000										
ATOM 1 CB VAL 818 3.5159 51.390 -17.822 1.00 65.41 6 ATOM 2 C VAL 818 3.553 51.091 -15.926 1.00 99.70 6 ATOM 3 O VAL 818 2.603 51.682 -16.444 1.00 99.70 6 ATOM 4 N VAL 818 4.074 49.203 -17.428 1.00 99.70 7 ATOM 5 CA VAL 818 4.074 49.203 -17.428 1.00 99.70 7 ATOM 6 N LEU 819 3.729 50.991 -14.616 1.00100.00 7 ATOM 7 CA LEU 819 2.912 51.555 -13.639 1.00100.00 6 ATOM 8 CB LEU 819 3.310 51.175 -12.250 1.00 77.77 6 ATOM 9 CG LEU 819 2.625 51.796 -11.045 1.00 67.90 6 ATOM 10 CD1 LEU 819 3.336 51.313 -9.810 1.00 67.90 6 ATOM 11 CD2 LEU 819 3.356 51.363 91.00100.00 6 ATOM 12 C LEU 819 3.356 51.361 -10.02 1.00 67.90 6 ATOM 13 O LEU 819 3.365 51.796 -11.045 1.00 67.90 6 ATOM 14 N ASP 820 1.351 53.507 -13.602 1.00100.00 7 ATOM 15 CA ASP 820 -0.950 54.928 -13.699 1.00100.00 6 ATOM 16 CB ASP 820 -0.950 54.928 -13.699 1.00100.00 6 ATOM 17 CG ASP 820 -0.950 55.084 -13.929 1.00100.00 6 ATOM 18 OD1 ASP 820 -0.950 55.084 -13.929 1.00100.00 6 ATOM 19 OD2 ASP 820 -0.950 56.555 -14.140 1.00100.00 6 ATOM 19 OD2 ASP 820 -0.90 56.555 -14.140 1.00100.00 6 ATOM 20 C ASP 820 -0.087 57.303 -14.663 1.00100.00 6 ATOM 21 O ASP 820 -0.087 57.303 -14.663 1.00100.00 6 ATOM 22 N TRP 821 2.558 57.296 -11.329 1.00100.00 6 ATOM 24 CB TRP 821 3.396 59.782 -14.140 1.00100.00 7 ATOM 25 CG TRP 821 3.995 59.184 -10.239 1.00100.00 6 ATOM 26 CD2 TRP 821 3.995 59.18 -10.239 1.00100.00 6 ATOM 27 CE2 TRP 821 3.995 59.18 -10.239 1.00100.00 6 ATOM 27 CE2 TRP 821 3.995 59.18 -10.23 1.00100.00 6 ATOM 30 NEI TRP 821 2.571 56.605 -12.361 1.00100.00 6 ATOM 31 CZ2 TRP 821 3.995 59.18 -10.239 1.00100.00 6 ATOM 32 CA TRP 821 3.995 59.18 -10.239 1.00100.00 6 ATOM 30 NEI TRP 821 2.573 57.78 -11.132 1.00100.00 6 ATOM 30 NEI TRP 821 2.574 56.605 -12.361 1.00100.00 6 ATOM 30 NEI TRP 821 2.575 57.98 -11.132 1.00100.00 6 ATOM 30 CT RP 821 3.995 59.18 -10.263 1.00 96.04 6 ATOM 30 CT RP 821 3.995 59.18 -10.09 6.04 6 ATOM 30 NEI TRP 821 5.565 57.543 -10.09 6.04 6 ATOM 31 CZ2 TRP 821 1.856 59.303 -9.286 1.00100.00 7 ATOM 32 CA SRN 822 -1.1455 57.543 -10.09 1.00 78.55 7 ATOM 34 C									,	
ATOM 2 C VAL 818 2.603 51.091 -15.926 1.00 99.70 6 ATOM 3 O VAL 818 2.603 51.682 -16.444 1.00 99.70 8 ATOM 4 N VAL 818 4.074 49.203 -17.428 1.00 99.70 7 ATOM 5 CA VAL 818 4.628 50.419 -16.774 1.00 99.70 6 ATOM 6 N LEU 819 2.912 51.555 -13.639 1.00100.00 6 ATOM 7 CA LEU 819 2.912 51.555 -13.639 1.00100.00 6 ATOM 8 CB LEU 819 3.310 51.175 -12.250 1.00 77.77 6 ATOM 9 CG LEU 819 2.912 51.555 -13.639 1.00100.00 6 ATOM 10 CD1 LEU 819 2.312 51.555 -13.639 1.00100.00 6 ATOM 11 CD2 LEU 819 3.330 51.175 -12.250 1.00 67.90 6 ATOM 12 C LEU 819 3.336 51.313 -9.810 1.00 67.90 6 ATOM 13 O LEU 819 3.568 53.838 -13.899 1.00100.00 6 ATOM 13 O LEU 819 3.568 53.838 -13.899 1.00100.00 6 ATOM 14 N ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 15 CA ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 16 CB ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 17 CG ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 18 OD1 ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 19 OD2 ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 20 C ASP 820 -0.007 57.303 -14.663 1.00100.00 6 ATOM 21 O ASP 820 -0.007 57.303 -14.663 1.00100.00 6 ATOM 22 N TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 22 N TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.995 59.188 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.995 59.188 -10.263 1.00 96.04 6 ATOM 27 CEZ TRP 821 3.995 59.18 -10.263 1.00 96.04 6 ATOM 28 CE3 TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 29 CD1 TRP 821 3.995 59.18 -10.263 1.00 96.04 6 ATOM 30 NEIT RP 821 2.545 59.949 -9.931 1.00 96.04 6 ATOM 31 CZ2 TRP 821 3.995 59.18 -10.263 1.00 96.04 6 ATOM 32 CZ RP 821 1.365 57.543 -9.9149 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.365 59.188 -10.263 1.00 96.04 6 ATOM 34 C TRP 821 1.365 59.188 -10.263 1.00 96.04 6 ATOM 35 C TRP 821 1.365 59.188 -10.263 1.00 96.04 6 ATOM 36 N ASN 822 -1.453 57.543 -10.207 1.00100.00 8 ATOM 37 CA ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 59.303 -9.564 1.00 78.55 6 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.564		-							1 00 65.41	б
ATOM										
ATOM 4 N VAL 818 4.074 49.203 -17.428 1.00 99.70 7 ATOM 5 CA VAL 818 4.628 50.419 -16.774 1.00 99.70 6 ATOM 6 N LEU 819 3.729 50.991 -14.616 1.00100.00 7 ATOM 7 CA LEU 819 2.912 51.555 -13.639 1.00100.00 6 ATOM 8 CB LEU 819 2.625 51.796 -11.045 1.00 67.90 6 ATOM 10 CD1 LEU 819 1.661 51.416 -11.022 1.00 67.90 6 ATOM 11 CD2 LEU 819 2.625 51.796 -11.045 1.00 67.90 6 ATOM 12 C LEU 819 3.336 51.313 -9.810 1.00 67.90 6 ATOM 13 O LEU 819 3.3668 53.838 -13.899 1.00100.00 6 ATOM 14 N ASP 820 1.351 53.507 -13.602 1.00100.00 6 ATOM 15 CA ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 16 CB ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 17 CG ASP 820 -0.910 56.525 -14.140 1.00100.00 6 ATOM 18 OD1 ASP 820 -2.054 56.874 -13.785 1.00100.00 6 ATOM 19 OD2 ASP 820 -0.0910 56.525 -14.140 1.00100.00 6 ATOM 20 ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 21 O ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 6 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.985 59.118 -10.263 1.00100.00 6 ATOM 25 CG TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 27 CEZ TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 28 CE3 TRP 821 2.558 57.278 -11.132 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.545 59.44 -8.689 1.00 96.04 6 ATOM 31 CZZ TRP 821 1.355 57.43 -11.132 1.00 96.04 6 ATOM 32 CA TRP 821 2.558 57.278 -11.132 1.00 96.04 6 ATOM 32 CA TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 33 CH2 TRP 821 5.545 59.44 -8.689 1.00 96.04 6 ATOM 36 N ASN 822 -1.085 59.44 -6.976 1.00 96.04 6 ATOM 37 CA ASN 822 -1.085 59.303 -9.286 1.00 100.00 6 ATOM 38 CB ASN 822 -1.085 59.303 -9.286 1.00 100.00 6 ATOM 39 CG ASN 822 -1.085 59.303 -9.286 1.00 100.00 6 ATOM 39 CG ASN 822 -1.185 58.390 -11.037 1.00 100.00 6 ATOM 39 CG ASN 822 -1.185 57.540 -1.095 60.00 60.										
ATOM 5 CA VAL 818 4.628 50.419 -16.774 1.00 99.70 6 ATOM 6 N LEU 819 3.729 50.991 -14.616 1.00100.00 7 ATOM 7 CA LEU 819 3.729 50.991 -14.616 1.00100.00 6 ATOM 8 CB LEU 819 2.812 51.555 -13.639 1.00100.00 6 ATOM 9 CG LEU 819 2.625 51.796 -11.045 1.00 67.90 6 ATOM 10 CD1 LEU 819 1.61 51.416 -11.022 1.00 67.90 6 ATOM 11 CD2 LEU 819 3.336 51.313 -9.810 1.00 67.90 6 ATOM 12 C LEU 819 3.336 51.313 -9.810 1.00 67.90 6 ATOM 13 O LEU 819 3.568 53.838 -13.899 1.00100.00 6 ATOM 14 N ASP 820 1.351 53.507 -13.602 1.00100.00 6 ATOM 15 CA ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 16 CB ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 17 CG ASP 820 0.990 56.525 -14.140 1.00100.00 6 ATOM 18 OD1 ASP 820 -0.910 56.525 -14.140 1.00100.00 6 ATOM 19 OD2 ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 19 OD2 ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 20 C ASP 820 0.086 55.200 -11.290 1.00100.00 6 ATOM 21 O ASP 820 0.086 55.200 -11.290 1.00100.00 8 ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 6 ATOM 24 CB TRP 821 3.991 58.582 -11.458 1.00100.00 7 ATOM 25 CG TRP 821 3.995 59.118 -10.263 1.00100.00 6 ATOM 26 CD TRP 821 3.995 59.728 -11.458 1.00100.00 6 ATOM 27 CE2 TRP 821 3.995 59.728 -11.458 1.00100.00 6 ATOM 28 CB3 TRP 821 3.995 59.732 -11.458 1.00100.00 6 ATOM 29 CD TRP 821 3.995 59.732 -11.458 1.00100.00 6 ATOM 26 CD TRP 821 3.991 8.885 1.0096.04 6 ATOM 27 CE2 TRP 821 3.995 59.732 -91.49 1.0096.04 6 ATOM 28 CB3 TRP 821 2.061 60.200 -8.869 1.0096.04 6 ATOM 30 NEI TRP 821 3.995 59.732 -91.49 1.0096.04 6 ATOM 31 CZ2 TRP 821 1.365 57.543 -10.207 1.0096.04 6 ATOM 32 CR3 TRP 821 1.365 57.543 -10.0000.00 6 ATOM 33 CH2 TRP 821 1.365 57.543 -10.0000.00 6 ATOM 34 C TRP 821 1.365 57.543 -10.0000.00 6 ATOM 35 O TRP 821 1.365 57.543 -10.0000.00 6 ATOM 36 N ASN 822 -2.158 58.300 -11.037 1.00100.00 6 ATOM 37 CA ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 38 CB ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 CD ASN 822 -										
ATOM 6 N LEU 819 3.729 50.991 -14.616 1.00100.00 7 ATOM 7 CA LEU 819 2.912 51.555 -13.639 1.00100.00 6 ATOM 8 CB LEU 819 3.310 51.175 -12.250 1.00 77.77 6 ATOM 9 CG LEU 819 3.310 51.175 -12.250 1.00 77.77 6 ATOM 10 CD1 LEU 819 1.161 51.416 -11.022 1.00 67.90 6 ATOM 11 CD2 LEU 819 3.336 51.313 -9.810 1.00 67.90 6 ATOM 12 C LEU 819 3.336 51.313 -9.810 1.00 67.90 6 ATOM 13 O LEU 819 3.568 53.838 -13.99 1.00100.00 6 ATOM 14 N ASP 820 1.351 53.507 -13.602 1.00100.00 7 ATOM 15 CA ASP 820 0.990 54.928 -13.652 1.00100.00 6 ATOM 16 CB ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 17 CG ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 18 OD1 ASP 820 -0.910 56.525 -14.140 1.00100.00 6 ATOM 19 OD2 ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 20 C ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 20 C ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 21 O ASP 820 0.786 55.200 -11.290 1.00100.00 6 ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 7 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.995 59.118 -10.263 1.009 6.04 6 ATOM 26 CD2 TRP 821 3.995 59.188 -10.636 1.009 6.04 6 ATOM 27 CE2 TRP 821 3.995 59.118 -10.636 1.00 96.04 6 ATOM 28 CE3 TRP 821 3.995 59.118 -10.636 1.00 96.04 6 ATOM 30 NEI TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 31 CZZ TRP 821 4.371 59.991 -8.185 1.00 96.04 6 ATOM 32 CA TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 32 CA TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 33 CHZ TRP 821 1.835 57.543 -10.267 1.00 96.04 6 ATOM 36 N ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 37 CA ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.156 59.303 -9.286 1.00100.00 6 ATOM 39 CG ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.156 59.303 -9.286 1.00100.00 6 ATOM 39 CG ASN 822 -3.156 59.303 -9.286 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 69.331 -1.291 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 59.303 -9.286 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 59.303 -9.286 1.00100.00 6										
ATOM										
ATOM 8 CB LEU 819 3.310 51.175 -12.250 1.00 77.77 6 ATOM 9 CG LEU 819 2.625 51.796 -11.045 1.00 67.90 6 ATOM 10 CD1 LEU 819 1.661 51.416 -11.022 1.00 67.90 6 ATOM 11 CD2 LEU 819 3.336 51.313 -9.810 1.00 67.90 6 ATOM 12 C LEU 819 2.607 53.076 -13.729 1.00100.00 6 ATOM 13 O LEU 819 3.568 53.838 -13.899 1.00100.00 7 ATOM 14 N ASP 820 1.351 53.507 -13.602 1.00100.00 7 ATOM 15 CA ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 16 CB ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 17 CG ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 18 OD1 ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 19 OD2 ASP 820 -0.087 7.303 -14.663 1.00100.00 8 ATOM 20 C ASP 820 0.7087 7.303 -14.663 1.00100.00 8 ATOM 21 O ASP 820 0.7087 7.303 -14.663 1.00100.00 8 ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 7 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 7 ATOM 24 CB TRP 821 3.291 58.582 -11.458 1.0096.04 6 ATOM 26 CD2 TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 27 CE2 TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 28 CE3 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.545 59.494 -9.938 1.00 96.04 6 ATOM 28 CE3 TRP 821 1.836 60.316 -7.657 1.00 96.04 6 ATOM 30 NE1 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 32 C TRP 821 1.365 59.494 -9.938 1.00 96.04 6 ATOM 33 CH2 TRP 821 1.355 59.494 -9.938 1.00 96.04 6 ATOM 34 C TRP 821 1.355 59.494 -9.938 1.00 96.04 6 ATOM 35 O TRP 821 1.355 59.494 -9.938 1.00 96.04 6 ATOM 36 N ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 39 CG ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 39 CG ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 39 CG ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 39 CG ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 40 OD1 ASN 822 -1.585 59.33 -9.554 1.00 095.03 6 ATOM 40 OD1 ASN 822 -1.453 57.940 -7.842 1.00 095.03 6 ATOM 41 ND2 ASN 822 -1.453 57.940 -9.948 1.00 095.03 6 ATOM 42 C ASN 822 -1.455 59.33 -9.554 1.00 095.03 6 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 095.03 6										
ATOM 9 CG LEU 819 2.625 \$1.796 -11.045 1.00 67.90 6 ATOM 10 CD1 LEU 819 1.161 \$1.416 -11.022 1.00 67.90 6 ATOM 11 CD2 LEU 819 3.336 \$1.313 -9.810 1.00 67.90 6 ATOM 12 C LEU 819 3.336 \$1.313 -9.810 1.00 67.90 6 ATOM 13 O LEU 819 3.568 \$3.838 -13.899 1.00100.00 6 ATOM 14 N ASP 820 1.351 \$3.507 -13.602 1.00100.00 7 ATOM 15 CA ASP 820 0.990 \$4.928 -13.659 1.00100.00 7 ATOM 16 CB ASP 820 -0.505 \$5.084 -13.929 1.00100.00 6 ATOM 17 CG ASP 820 -0.505 \$5.084 -13.929 1.00100.00 6 ATOM 18 OD1 ASP 820 -0.910 \$6.525 +14.140 1.00100.00 6 ATOM 19 OD2 ASP 820 -0.907 \$5.307 +13.602 1.00100.00 6 ATOM 20 C ASP 820 -0.087 \$7.303 -14.663 1.00100.00 8 ATOM 20 C ASP 820 0.786 \$5.200 -11.290 1.00100.00 8 ATOM 20 C ASP 820 0.786 \$5.200 -11.290 1.00100.00 8 ATOM 21 O ASP 820 0.786 \$5.200 -11.290 1.00100.00 8 ATOM 22 N TRP 821 2.171 \$6.605 -12.361 1.00100.00 7 ATOM 24 CB TRP 821 3.291 \$8.582 -11.458 1.00100.00 6 ATOM 24 CB TRP 821 3.291 \$8.582 -11.458 1.00100.00 6 ATOM 25 CG TRP 821 3.291 \$8.582 -11.458 1.00100.00 6 ATOM 26 CD TRP 821 3.291 \$8.582 -11.458 1.00100.00 6 ATOM 27 CE2 TRP 821 3.291 \$8.582 -11.458 1.0096.04 6 ATOM 27 CE2 TRP 821 4.371 \$5.991 -8.185 1.0096.04 6 ATOM 27 CE2 TRP 821 4.371 \$5.991 -8.185 1.0096.04 6 ATOM 29 CD1 TRP 821 \$3.291 \$8.582 -11.458 1.0096.04 6 ATOM 29 CD1 TRP 821 \$3.369 \$59.782 -9.149 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.369 \$59.782 -9.149 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.369 \$59.782 -9.149 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.369 \$59.782 -9.149 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.369 \$59.782 -9.149 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.369 \$59.782 -9.149 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.369 \$59.782 -9.149 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.369 \$59.782 -9.149 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.369 \$59.782 -9.149 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.360 \$60.816 -7.657 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.360 \$60.816 -7.657 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.360 \$60.816 -7.657 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.500 \$60.816 \$7.657 1.0096.04 6 ATOM 30 NE1 TRP 821 \$3.500 \$60.816 \$7.657 1.0096.04 6 ATOM 30 NE1 TRP 821 \$										
ATOM 10 CD1 LEU 819										
ATOM 11 CD2 LEU 819 3.336 51.313 -9.810 1.00 67.90 6 ATOM 12 C LEU 819 2.607 53.076 -13.729 1.00100.00 6 ATOM 13 O LEU 819 3.568 53.838 -13.899 1.00100.00 7 ATOM 14 N ASP 820 1.351 53.507 -13.602 1.00100.00 7 ATOM 15 CA ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 16 CB ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 17 CG ASP 820 -0.910 56.525 -14.140 1.00100.00 6 ATOM 18 OD1 ASP 820 -2.054 56.874 -13.785 1.00100.00 6 ATOM 19 OD2 ASP 820 -0.091 55.525 -14.140 1.00100.00 8 ATOM 20 C ASP 820 -0.087 57.303 -11.293 1.00100.00 8 ATOM 21 O ASP 820 -0.087 57.303 -12.329 1.00100.00 8 ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 7 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.291 58.582 -11.458 1.00 96.04 6 ATOM 25 CG TRP 821 3.965 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.365 59.12 -9.149 1.00 96.04 6 ATOM 27 CE2 TRP 821 4.371 59.991 -8.185 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 30 CT TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 31 CZ2 TRP 821 1.803 60.616 -7.657 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 34 C TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 35 O TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 36 N ASN 822 -2.158 58.840 -11.037 1.00100.00 6 ATOM 37 CA ASN 822 -1.1462 57.434 -8.983 1.00 96.04 6 ATOM 38 CB ASN 822 -2.158 58.830 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 922 -3.508 60.321 -11.291 1.00100.00 6 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 44 N ASP 823 -1.451 57.340 -7.842 1.00 78.55 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 6 ATOM 44 N ASP 823 -1.853 57.755 -9.552 1.00 65.89 6 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 44 N ASP 823 -1.853 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.853 57.340 -7.842 1.00 95.03 7										
ATOM 12 C LEU 819 2.607 53.076 -13.729 1.00100.00 6 ATOM 13 O LEU 819 3.568 53.838 -13.899 1.00100.00 8 ATOM 14 N ASP 820 1.351 53.507 -13.602 1.00100.00 7 ATOM 15 CA ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 16 CB ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 17 CG ASP 820 -0.910 56.525 -14.140 1.00100.00 6 ATOM 18 OD1 ASP 820 -2.054 56.827 -13.785 1.00100.00 8 ATOM 19 OD2 ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 20 C ASP 820 0.786 55.200 -11.290 1.00100.00 8 ATOM 21 O ASP 820 0.786 55.200 -11.290 1.00100.00 6 ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 7 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 25 CG TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 27 CE2 TRP 821 4.371 59.991 -8.185 1.00 96.04 6 ATOM 28 CE3 TRP 821 4.371 59.991 -8.185 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NEI TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 31 CZ2 TRP 821 1.830 60.816 -7.657 1.00 96.04 6 ATOM 32 CX3 TRP 821 1.833 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 1.355 57.43 -10.207 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 6 ATOM 36 CG ASN 822 -1.185 58.100 1.007 78.55 6 ATOM 37 CA ASN 822 -3.508 60.321 -11.291 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 6 ATOM 41 ND2 ASN 822 -1.453 57.340 -7.842 1.00 78.55 6 ATOM 41 ND2 ASN 822 -3.508 60.321 -11.291 1.00100.00 6 ATOM 42 C ASN 822 -3.508 60.321 -11.291 1.00100.00 6 ATOM 44 N ASP 833 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 44 N ASP 833 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 44 N ASP 833 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 44 N ASP 833 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 44 N ASP 833 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 44 N ASP 833 -1.854 55.933 -9.554 1.00 95.03 7										
ATOM 13 O LEU 819 3.568 53.838 -13.899 1.00100.00 8 ATOM 14 N ASP 820 1.351 53.507 -13.602 1.00100.00 7 ATOM 15 CA ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 16 CB ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 17 CG ASP 820 -0.910 56.525 -14.140 1.00100.00 6 ATOM 18 ODI ASP 820 -0.910 56.525 -14.140 1.00100.00 6 ATOM 19 ODZ ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 20 C ASP 820 0.786 55.200 -11.299 1.00100.00 6 ATOM 21 O ASP 820 0.786 55.200 -11.290 1.00100.00 8 ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 7 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 7 ATOM 24 CB TRP 821 3.291 58.582 -11.458 1.00 96.04 6 ATOM 26 CDZ TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 27 CEZ TRP 821 4.371 59.991 -8.185 1.00 96.04 6 ATOM 29 CD1 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NEI TRP 821 2.824 61.007 -6.733 1.00 96.04 6 ATOM 31 CZZ TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 34 C TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 35 O TRP 821 1.355 57.574 -10.00 96.04 6 ATOM 36 N ASN 822 -1.185 58.80 -11.001 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 7 ATOM 38 CB ASN 822 -2.158 58.301 -11.0546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 6 ATOM 41 ND2 ASN 822 -3.508 60.321 -11.291 1.00100.00 6 ATOM 42 C ASN 822 -3.508 69.301 -7.842 1.00 78.55 6 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 6 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 6 ATOM 44 N ASP 823 -2.308 54.841 -8.704 1.00 95.03 6										
ATOM 14 N ASP 820										
ATOM 15 CA ASP 820 0.990 54.928 -13.659 1.00100.00 6 ATOM 16 CB ASP 820 -0.505 55.084 -13.929 1.00100.00 6 ATOM 17 CG ASP 820 -0.910 56.525 -14.140 1.00100.00 6 ATOM 18 OD1 ASP 820 -2.054 56.874 -13.785 1.00100.00 8 ATOM 19 OD2 ASP 820 -0.087 57.303 -14.663 1.00100.00 8 ATOM 20 C ASP 820 1.314 55.593 -12.329 1.00100.00 6 ATOM 21 O ASP 820 0.786 55.200 -11.290 1.00100.00 6 ATOM 22 N TRP 821 2.558 57.278 -11.132 1.00100.00 7 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.291 58.582 -11.458 1.00 96.30 6 ATOM 25 CG TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.985 59.18 -10.263 1.00 96.04 6 ATOM 27 CE2 TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 28 CE3 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 31 CZ2 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 34 C TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 35 O TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 36 N ASN 822 -1.85 57.434 -8.983 1.00100.00 8 ATOM 39 CG ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.506 59.303 -9.286 1.00100.00 6 ATOM 39 CG ASN 822 -3.506 59.303 -9.286 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.0070.00 0 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6										
ATOM 16 CB ASP 820										
ATOM 16 CB ASP 820										
ATOM 18 OD1 ASP 820	ATOM									
ATOM 19 OD2 ASP 820		17								
ATOM 20 C ASP 820 1.314 55.593 -12.329 1.00100.00 6 ATOM 21 O ASP 820 0.786 55.200 -11.290 1.00100.00 8 ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 7 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.291 58.582 -11.458 1.00 96.30 6 ATOM 25 CG TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 27 CE2 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 28 CE3 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 31 CZ2 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 7 ATOM 39 CG ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.536 69.303 -9.286 1.00100.00 7 ATOM 40 OD1 ASN 922 -3.508 60.321 -11.291 1.00100.00 6 ATOM 40 NASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 41 ND2 ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 44 N ASP 823 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 45 CA ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -1.854 55.933 -9.554 1.00 95.03 6 ATOM 45 CA ASP 823 -1.854 55.933 -9.556 1.00 95.03 6	ATOM	18								
ATOM 20 C ASP 820 0.786 55.200 -11.290 1.00100.00 8 ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 7 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.291 58.582 -11.458 1.00 96.30 6 ATOM 25 CG TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 27 CE2 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 28 CE3 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 31 CZ2 TRP 821 4.106 60.614 -6.976 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 -1.018 58.149 -10.061 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 7 ATOM 39 CG ASN 822 -3.536 60.321 -11.291 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 41 ND2 ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 44 N ASP 823 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 44 N ASP 823 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM	19		ASP						
ATOM 22 N TRP 821 2.171 56.605 -12.361 1.00100.00 7 ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.291 58.582 -11.458 1.00 96.30 6 ATOM 25 CG TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 27 CE2 TRP 821 4.371 59.991 -8.185 1.00 96.04 6 ATOM 28 CE3 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 31 CZ2 TRP 821 1.803 60.616 -7.657 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 7 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 39 CG ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 40 OD1 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.451 57.340 -7.842 1.00 95.03 7 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 6 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM	20	С							
ATOM 23 CA TRP 821 2.558 57.278 -11.132 1.00100.00 6 ATOM 24 CB TRP 821 3.291 58.582 -11.458 1.00 96.30 6 ATOM 25 CG TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 27 CE2 TRP 821 4.371 59.991 -8.185 1.00 96.04 6 ATOM 28 CE3 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 6 ATOM 31 CZ2 TRP 821 4.106 60.614 -6.976 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 2.824 61.007 -6.733 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 6 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 7 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.048 1.00 78.55 8 ATOM 43 O ASN 822 -1.453 57.094 -9.048 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	MOTA		0							
ATOM 24 CB TRP 821 3.291 58.582 -11.458 1.00 96.30 6 ATOM 25 CG TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 27 CE2 TRP 821 4.371 59.991 -8.185 1.00 96.04 6 ATOM 28 CE3 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 7 ATOM 31 CZ2 TRP 821 4.106 60.614 -6.976 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 2.824 61.007 -6.733 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 6 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 7 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 60.321 -11.291 1.00100.00 7 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.394 -7.842 1.00 78.55 8 ATOM 43 O ASN 822 -1.453 57.394 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM		N							
ATOM 25 CG TRP 821 3.985 59.118 -10.263 1.00 96.04 6 ATOM 26 CD2 TRP 821 3.369 59.782 -9.149 1.00 96.04 6 ATOM 27 CE2 TRP 821 4.371 59.991 -8.185 1.00 96.04 6 ATOM 28 CE3 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 7 ATOM 31 CZ2 TRP 821 4.106 60.614 -6.976 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.043 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM	23	CA	TRP	821					
ATOM 26 CD2 TRP 821	ATOM	24		TRP						
ATOM 27 CE2 TRP 821	MOTA		CG	TRP						
ATOM 28 CE3 TRP 821 2.061 60.200 -8.869 1.00 96.04 6 ATOM 29 CD1 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 7 ATOM 31 CZ2 TRP 821 4.106 60.614 -6.976 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 2.824 61.007 -6.733 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 38 CB ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 69.303 -9.286 1.00100.00 7 ATOM 41 ND2 ASN 822 -1.453 57.094 -9.043 1.00 78.55 8 ATOM 42 C ASN 822 -1.453 57.094 -9.043 1.00 78.55 8 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM									
ATOM 29 CD1 TRP 821 5.302 58.974 -9.938 1.00 96.04 6 ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 7 ATOM 31 CZ2 TRP 821 4.106 60.614 -6.976 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 2.824 61.007 -6.733 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 7 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 322 -3.508 60.321 -11.291 1.00100.00 7 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 43 O ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	MOTA	27								
ATOM 30 NE1 TRP 821 5.545 59.494 -8.689 1.00 96.04 7 ATOM 31 CZ2 TRP 821 4.106 60.614 -6.976 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 2.824 61.007 -6.733 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 6 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 43 O ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM		CE3							
ATOM 31 CZ2 TRP 821 4.106 60.614 -6.976 1.00 96.04 6 ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 2.824 61.007 -6.733 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 39 CG ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 922 -3.508 60.321 -11.291 1.00100.00 6 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 43 O ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM									
ATOM 32 CZ3 TRP 821 1.803 60.816 -7.657 1.00 96.04 6 ATOM 33 CH2 TRP 821 2.824 61.007 -6.733 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.536 60.321 -11.291 1.00100.00 6 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 43 O ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM	30								
ATOM 33 CH2 TRP 821 2.824 61.007 -6.733 1.00 96.04 6 ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 322 -3.508 60.321 -11.291 1.00100.00 8 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 43 O ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 44 N ASP 823 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	MOTA	31								
ATOM 34 C TRP 821 1.355 57.543 -10.207 1.00100.00 6 ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 8 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 43 O ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 44 N ASP 823 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.308 54.841 -8.704 1.00 95.03 6			CZ3							
ATOM 35 O TRP 821 1.462 57.434 -8.983 1.00100.00 8 ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 8 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM	33	CH2							
ATOM 36 N ASN 822 0.207 57.853 -10.801 1.00 78.55 7 ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 8 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 43 O ASN 822 -1.453 57.094 -9.043 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	ATOM	34	C							
ATOM 37 CA ASN 822 -1.018 58.149 -10.061 1.00 78.55 6 ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 8 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.308 54.841 -8.704 1.00 95.03 6	MOTA	35	0	TRP						
ATOM 38 CB ASN 822 -2.158 58.380 -11.037 1.00100.00 6 ATOM 39 CG ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 8 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.991 53.775 -9.562 1.00 65.89 6	ATOM	36	N	ASN	822	0.207				
ATOM 39 CG 'ASN 822 -3.126 59.416 -10.546 1.00100.00 6 ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 8 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.043 1.00 78.55 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.991 53.775 -9.562 1.00 65.89 6	ATOM	37	CA	ASN	822	-1.018				
ATOM 40 OD1 ASN 822 -3.508 60.321 -11.291 1.00100.00 8 ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.991 53.775 -9.562 1.00 65.89 6	ATOM	38	CB		822	-2.158				
ATOM 41 ND2 ASN 822 -3.536 59.303 -9.286 1.00100.00 7 ATOM 42 C ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.991 53.775 -9.562 1.00 65.89 6	ATOM	39	CG	'ASN	822	-3.126	59.416			
ATOM 42 C ASN 822 -1.453 57.094 -9.048 1.00 78.55 6 ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.991 53.775 -9.562 1.00 65.89 6	ATOM	40	OD1	ASN	922	-3.508	60.321			
ATOM 43 O ASN 822 -1.451 57.340 -7.842 1.00 78.55 8 ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.991 53.775 -9.562 1.00 65.89 6	ATOM	41	ND2	ASN	822	-3.536	59.303			
ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.991 53.775 -9.562 1.00 65.89 6	ATOM	42	С	ASN	822	-1.453				
ATOM 44 N ASP 823 -1.854 55.933 -9.554 1.00 95.03 7 ATOM 45 CA ASP 823 -2.308 54.841 -8.704 1.00 95.03 6 ATOM 46 CB ASP 823 -2.991 53.775 -9.562 1.00 65.89 6	ATOM	43	0	ASN	822	-1.451				
ATOM 46 CB ASP 823 -2.991 53.775 -9.562 1.00 65.89 6		44	N	ASP	823	-1.854	55.933			
A10H 40 CB A01 083	ATOM	45	CA	ASP	823	-2.308				
	ATOM	46	CB	ASP	823	-2.991				
		47	C	ASP	823	-1.158	54.218	-7.916	1.00 95.03	6

MOTA	48	0	ASP	823	-0.967	53.008	-7.949	1.00 95.03	8
ATOM	49	N	ILE	824	-0.384	55.043	-7.221	1.00 88.67	7
ATOM	50	CA	ILE	824	0.729	54.531	-6.426	1.00 88.67	6
ATOM	51	CB	ILE	824	2.112	54.819	-7.082	1.00 53.67	6
ATOM	52	CG2	ILE	824	3.202	54.080	-6.326	1.00 56.64	6
MOTA	53	CG1	ILE	824	2.161	54.314	-8.526	1.00 56.64	6
ATOM	54	CD1	ILE	824	3.503	54.615	-9.196	1.00 56.64	6
ATOM	55	C	ILE	824	0.701	55.176	-5.041	1.00 88.67	6
ATOM	56	0	ILE	824	1.617	55.912	-4.665	1.00 88.67	8
ATOM	57	N	LYS	825	-0.361	54.889	-4.292	1.00 65.97	7
MOTA	58	CA	LYS	825	-0.552	55.426	-2.947	1.00 65.97	6
ATOM	59	CB	LYS	825	-1.917	54.995	-2.406	1.00 30.30	6
ATOM	60	C	LYS	825	0.544	55.003	-1.973	1.00 65.97	6
ATOM	61	0	LYS	825	0.502	53.909	-1.401	1.00 65.97	8
MOTA	62	N	PHE	826	1.526	55.879	-1.788	1.00 96.52	7
ATOM	63	CA	PHE	826	2.632	55.608	-0.878	1.00 96.52	6
ATOM	64	CB	PHE	826	3.784	56.586	-1.112	1.00 96.59	6
ATOM	65	CG	PHE	826	4.397	56.474	-2.463	1.00100.00	6
ATOM	66	CD1	PHE	826	3.989	57.310	-3.489	1.00100.00	б
ATOM	67	CD2	PHE	826	5.351	55.500	-2.726 ·	1.00100.00	6
MOTA	68	CE1	PHE	826	4.518	57.181	-4.764	1.00100.00	6
MOTA	69	CE2	PHE	826	5.888	55.358	-4.001	1.00100.00	6
ATOM	70	CZ	PHE	826	5.469	56.202	-5.023	1.00100.00	6
ATOM	71	C	PHE	826	2.158	55.727	0.565	1.00 96.52	6
ATOM	72	0	PHE	826	1.746	56.794	0.991	1.00 96.52	8
ATOM	73	N	GLN	827	2.247	54.651	1.332	1.00100.00	7
MOTA	74	CA	GLN	827	1.769	54.708	2.698	1.00100.00	6
ATOM	75	CB	GLN	827	0.886	53.484	2.937	1.00100.00	6
	76	CG	GLN	827	-0.252	53.407	1.903	1.00100.00	6
ATOM	77	CD	GLN	827	-1.539	52.860	2.488	1.00100.00	6
ATOM	78	OE1	GLN	827	-1.553	51.771	3.060	1.00100.00	8
ATOM	78 79	NE2	GLN	827	-2.633	53.615	2.349	1.00100.00	7
MOTA	80	C	GLN	827	2.840	54.886	3.781	1.00100.00	6
MOTA	81	0	GLN	827	2.892	55.942	4.395	1.00100.00	8
ATOM	82	N	ASP	828	3.696	53.894	4.015	1.00 99.72	7
ATOM		CA	ASP	828	4.713	54.034	5.064	1.00 99.72	6
ATOM	83	CB	ASP	828	4.144	53.510	6.388	1.00 87.03	6
ATOM	84		ASP	828	5.121	53.627	7.533	1.00 84.60	6
ATOM	85	CG			5.870	54.617	7.572	1.00 84.60	8
ATOM	86	OD1	ASP	828	5.128	52.740	8.406	1'.00 84.60	8
ATOM	87	OD2	ASP	828		53.286	4.720	1.00 99.72	6
ATOM	88	C	ASP	828	6.003		4.034	1.00 99.72	8
MOTA	89	0	ASP	828	5.961	52.262 53.772	5.178	1.00 85.45	7
MOTA	90	' N	VAL	829	7.154	53.772	4.863	1.00 85.45	6
ATOM	91	CA	VAL	829	8.408		5.391	1.00 51.35	6
ATOM	92	CB	VAL	829	9.606	53.874		1.00 85.45	6
MOTA	93	С	VAL	829	8.460	51.633	5.402	1.00 85.45	8
ATOM	94	0	VAL	829	8.437	51.418	6.615	1.00100.00	7
MOTA	95	N	ILE	830	8.538	50.663	4.488		6
MOTA	96	CA	ILE	830	8.598	49.244	4.852	1.00100.00	6
MOTA	97	CB	ILE	830	8.745	48.326	3.602	1.00100.00	6
MOTA	98	CG2	ILE	830	9.458	47.031	3.973	1.00 81.07	
ATOM	99	CG1	ILE	830	7.370	48.034	2.994	1.00 81.07	6
ATOM	100	CDl	ILE	830	6.385	47.414	3.969	1.00 81.07	6
ATOM	101	С	ILE	830	9.788	49.013	5.769	1.00100.00	6
MOTA	102	0	ILE	830	9.782	48.103	6.596	1.00100.00	8
ATOM	103	N	\mathtt{GLY}	831	10.821	49.834	5.605	1.00 95.79	7
ATOM	104	CA	GLY	831	11.992	49.713	6.453	1.00 95.79	6

ATOM 105 C GLY 831 13.352 49.743 5.805 1.00 95.79 6
ATOM 106 O GLY 831 13.497 50.005 4.613 1.00 95.79 6
ATOM 107 N GLU 832 14.357 49.480 6.630 1.00 95.79 6
ATOM 108 CA GLU 832 15.760 49.427 6.231 1.00 95.79 7 7
ATOM 109 CB GLU 832 15.760 49.427 6.231 1.00 95.78 7
ATOM 109 CB GLU 832 16.055 48.055 5.602 1.00100.00 6
ATOM 110 CG GLU 832 16.417 46.997 6.632 1.00100.00 6
ATOM 111 CD GLU 832 16.316 49.758 7.859 1.00100.00 6
ATOM 112 OEI GLU 832 16.396 84.533 8.721 1.00100.00 6
ATOM 113 0E2 GLU 832 16.396 50.502 5.339 1.009.978 6
ATOM 114 C GLU 832 16.376 50.502 5.339 1.009.978 6
ATOM 115 O GLU 832 16.376 50.502 5.339 1.009.978 6
ATOM 116 N GLY 833 17.708 50.502 5.339 1.009.978 6
ATOM 115 O GLU 832 15.699 51.284 4.679 1.00 99.78 8
ATOM 116 N GLY 833 17.708 50.502 5.339 1.00100.00 6
ATOM 117 CA GLY 833 19.580 50.502 5.331 1.00100.00 6
ATOM 118 C GLY 833 19.580 50.502 5.331 1.00100.00 6
ATOM 119 O GLY 833 19.580 50.692 3.756 1.0010.00 6
ATOM 112 CA ASN 834 20.540 51.432 3.152 1.00100.00 6
ATOM 120 N ASN 834 20.540 51.432 3.152 1.00100.00 6
ATOM 121 CA ASN 834 21.663 55.854 2.407 1.00100.00 6
ATOM 122 CB ASN 834 22.414 9.810 3.241 1.00100.00 6
ATOM 122 CB ASN 834 22.444 9.810 3.241 1.00100.00 6
ATOM 122 CB ASN 834 23.700 49.360 2.579 1.00100.00 6
ATOM 123 CG ASN 834 23.700 49.360 2.579 1.00100.00 6
ATOM 124 CDL ASN 834 22.478 49.065 1.372 1.10100.00 6
ATOM 125 NDZ ASN 834 22.748 49.065 1.372 1.10100.00 6
ATOM 127 O ASN 834 22.094 89.067 1.387 1.00100.00 7
ATOM 120 CD ASN 834 22.099 89.228 1.240 1.00100.00 7
ATOM 127 O ASN 834 22.099 89.228 1.240 1.00100.00 8
ATOM 127 O ASN 834 22.099 89.228 1.240 1.00100.00 6
ATOM 130 CD PHE 835 21.519 50.650 -0.030 1.0010.00 6
ATOM 131 CG PHE 835 21.519 50.650 -0.030 1.0010.00 6
ATOM 131 CG PHE 835 21.519 50.650 -0.030 1.0010.00 6
ATOM 131 CG PHE 835 21.519 50.650 -0.030 1.0010.00 6
ATOM 131 CG PHE 835 21.519 50.650 -0.030 1.0010.00 6
ATOM 130 CD PHE 835 21.519 50.650 -0.030 1.0010.00 6
ATOM 131 CG PHE 835 21.519 50.650 -0.030 1.0010.00 6
ATOM 130 CD PHE 835 21.519 50.650 -0.030 1.0010

								•	
ATOM	162	CG	LEU	839	9.039	53.975	1.060	1.00 84.90	6
ATOM	163	CD1	LEU	839	10.061	53.788	-0.028	1.00 84.90	6
ATOM	164	CD2	LEU	839	8.417	55.343	0.924	1.00 84.90	6
MOTA	165	С	LEU	839	6.900	50.671	1.061	1.00 44.19	6
ATOM	166	0	LEU	839	6.814	50.010	0.033	1.00 44.19	8
MOTA	167	N	LYS	840	5.920	50.740	1.959	1.00 64.49	7
ATOM	168	CA	LYS	840	4.642	50.068	1.744	1.00 64.49	6
ATOM	169	CB	LYS	840	3.953	49.727	3.066	1.00 84.80	6
ATOM	170	ÇG	LYS	840	2.531	49.222	2.900	1.00 81.21	6
ATOM	171	CD	LYS	840	2.073	48.506	4.142	1.00 81.21	6
ATOM	172	CE	LYS	840	0.582	48.660	4.331	1.00 81.21	6
ATOM	173	NZ	LYS	840	-0.153	48.279	3.096	1.00 81.21	7
ATOM	174	C	LYS	840	3.798	51.053	0.951	1.00 64.49	6
ATOM	175	0	LYS	840	3.854	52.260	1.176	1.00 64.49	8
ATOM	176	N	ALA .	841	3.021	50.538	0.016	1.00 53.58	7
ATOM	177	CA	ALA	841	2.219	51.409	-0.814	1.00 53.58	6
ATOM	178	CB	ALA	841	3.082	51.913	-1.961	1.00 25.05	6
ATOM	179	С	ALA	841	1.003	50.670	-1.353	1.00 53.58	6
ATOM	180	0	ALA	841	1.144	49.616	-1.966	1.00 53.58	8
ATOM	181	N	ARG	842	-0.189	51.212	-1.135	1.00 86.10	7
ATOM	182	CA	ARG	842	-1.385	50.551	-1.637	1.00 86.10	6
ATOM	183	CB	ARG	842	-2.630	51.062	-0.905	1.00 40.66	6
ATOM	184	C	ARG	842	-1.514	50.804	-3.137	1.00 86.10	6
ATOM	185	0	ARG	842	-2.277	51.662	-3.572	1.00 86.10	8
ATOM	186	N	ILE	843	-0.763	50.040	-3.918	1.00 81.66	7
ATOM	187	CA	ILE	843	-0.773	50.176	-5.372	1.00 81.66	6
ATOM	188	CB	ILE	843	0.612	49.831	-5.984	1.00100.00	6
ATOM	189	CG2	ILE	843	0.443	49.166	-7.362	1.00100.00	6
ATOM ·	190	CG1	ILE	843	1.469	51.092	-6.056	1.00100.00	6
ATOM	191	CD1	ILE	843	1.562	51.810	-4.732	1.00100.00	6
ATOM	192	C	ILE	843	-1.796	49.337	-6.116	1.00 81.66	6
ATOM	193	0	ILE	843	-1.940	48.137	-5.884	1.00 81.66	8
ATOM	194	N	LYS	844	-2.482	49.988	-7.041	1.00 89.28	7
ATOM	195	CA	LYS	844	-3.449	49.324	-7.893	1.00 89.28	6
ATOM	196	CB	LYS	844	-4.657	50.218	-8.114	1.00 80.56	6
ATOM	197	C	LYS	844	-2.695	49.129	-9.205	1.00 89.28	6
ATOM	198	0	LYS	844	-1.818	49.928	-9.538	1.00 89.28	8
ATOM	199	N	LYS	845	-3.022	48.079	-9.944	1.00100.00	7
			LYS LIS		-2.339	47.828	-11.208	1.00100.00	6
ATOM ATOM	200	CA CB	LYS	845 845	-1.937		-11.305	1.00100.00	6
	201	C	LYS		-3.232		-12.376	1.00100.00	6
ATOM	202	_		845			-12.376	1.00100.00	8
ATOM	203	O N	LYS	845	-3.957		-13.559	1.00100.00	7
ATOM	204	N,	ASP	846	-2.834		-14.691	1.00100.00	6
ATOM	205	CA	ASP	846	-3.726		-15.906	1.00100.00	6
ATOM	206	CB	ASP	846	-3.314			1.00100.00	6
ATOM	207	CG	ASP	846	-3.993		-17.201	1.00100.00	8
ATOM	208	OD1		846	-4.145		-17.444		8
ATOM	209	OD2		846	-4.414		-18.049	1.00100.00	
ATOM	210	C	ASP	846	-5.170		-14.320	1.00100.00	6
ATOM	211	0	ASP	846	-5.989		-15.186	1.00100.00	8
ATOM	212	N	GLY	847	-5.433		-13.030	1.00100.00	7
ATOM	213	CA	GLY	847	-6.758		-12.459	1.00100.00	6
ATOM	214	C	\mathtt{GLY}	847	-6.612		-11.067	1.00100.00	6
ATOM	215	0	\mathtt{GLY}	847	-5.794		-10.856	1.00100.00	8
ATOM	216	N	LEU	848	-7.419		-10.161	1.00 86.45	7
ATOM	217	CA	LEU	848	-7.450	46.563	-8.761	1.00 86.45	6
MOTA	218	CB	LEU	848	-7.206	45.055	-8.687	1.00 99.14	6

ATOM	219	CG	LEU	848	-6.201	44.560	-9.729	1.00 92.74	6
ATOM	220	CD1	LEU	848	-5.757	43.115	-9.491	1.00 92.74	6
ATOM	221	CD2	LEU	848	-6.753	44.595	-11.155	1.00 92.74	6
ATOM	222	C	LEU	848	-6.366	47.280	-7.954	1.00 86.45	6
ATOM	223	0	LEU	848	-5.717	48.215	-8.445	1.00 86.45	8
ATOM	224	N	ARG	849	-6.211	46.809	-6.730	1.00 99.60	7
ATOM	225	CA	ARG	849	-5.226	47.347	-5.780	1.00 99.60	6
ATOM	226	CB	ARG	849	-5.877	48.415	-4.899	1.00100.00	6
ATOM	227	CG	ARG	849	-6.736	49.403	-5.692	1.00 99.93	6
ATOM	228	CD	ARG	849	-8.059	49.736	-4.998	1.00 99.93	6
ATOM	229	NE	ARG	849	-7.887	50.134	-3.594	1.00 99.93	7
ATOM	230	CZ	ARG	849	-8.903	50.347	-2.746	1.00 99.93	6
ATOM	231	NH1	ARG	849	-10.175	50.205	-3.143	1.00 99.93	7
ATOM	232	NH2	ARG	849	-8.747	50.710	-1.465	1.00 99.93	7
ATOM	233	C	ARG	849	-4.694	46.224	-4.887	1.00 99.60	б
ATOM	234	0	ARG	849	-5.398	45.242	-4.608	1.00 99.60	8
ATOM	235	N	MET	850	-3.457	46.411	-4.467	1.00 80.73	7
ATOM	236	CA	MET	850	-2.754	45.456	-3.599	1.00 80.73	6
ATOM	237	CB	MET	850	-1.967	44.457	-4.450	1.00100.00	6
ATOM	238	CG	MET	850	-2.734	43.994	-5.690	1.00 68.64	6
ATOM	239	SD	MET	850	-1.849	44.290	-7.206	1.00 68.64	16
ATOM	240	CE	MET	850	-0.189	43.661	-7.074	1.00 68.64	6
ATOM	241	C	MET	850	-1.782	46.199	-2.681	1.00 80.73	6
ATOM	242	0	MET	850	-1.937	47.403	-2.426	1.00 80.73	8
ATOM	243	N	ASP	851	-1.168	45.352	-2.147	1.00 74.44	7
ATOM	244	CA	ASP	851	-0.137	45.775	-1.223	1.00 74.44	6
ATOM	245	CB	ASP	851	-0.163	44.913	0.034	1.00100.00	6
ATOM	246	CG	ASP	851	-0.724	45.642	1.229	1.00100.00	6
ATOM	247		ASP	851	-1.307	46.731	1.026	1.00100.00	8
ATOM	248	OD2	ASP	851	-0.588	45.124	2.360	1.00100.00	8
ATOM	249	C	ASP	851	1.159	45.518	-1.967	1.00 74.44	6
ATOM	250	0	ASP	851	1.583	44.367	-2.118	1.00 74.44	8
ATOM	251	N	ALA	852	1.775	46.581	-2.456	1.00 26.66	7
ATOM	252	CA	ALA	852	3.023	46.431	-3.173	1.00 26.66	6
	253	CB	ALA	852	2.984	47.212	-4.475	1.00 11.17	6
ATOM		C	ALA	852	4.155	46.921	-2.313	1.00 26.66	6
ATOM	254		ALA	852	3.957	47.275	-1.154	1.00 26.66	8
ATOM	255	O NT	ALA	853	5.346	46.931	-2.890	1.00 89.52	7
ATOM	256	N		853	6.532	47.410	-2.204	1.00 89.52	6
ATOM	257	CA CB	ALA ALA	853	7.355	46.243	-1.675	1.00 23.28	6
ATOM	258	C	ALA	853	7.324	48.210	-3.229	1.00 89.52	6
ATOM	259	-			7.765	47.668	-4.240	1.00 89.52	8
ATOM	260.		ALA	853		49.467	-3.319	1.00 41.73	7
ATOM	261	N	ILE	854	7.417 8.279	50.444	-3.999	1.00 41.73	6
ATOM	262	CA	ILE	854		51.866	-3.630	1.00 71.42	6
ATOM	263	CB	ILE	854	7.851		-4.479	1.00 71.42	6
MOTA	264	CG2		854	8.539	52.937	-3.802	1.00 83.27	6
MOTA	265	CG1		854	6.349	52.102		1.00 83.27	6
ATOM	266	CD1		854	5.768	51.388	-5.024		6
ATOM	267	C	ILE	854	9.736	50.239	-3.577	1.00 41.73	8
ATOM	268	0	ILE	854	10.035	50.042	-2.390	1.00 41.73	7
MOTA	269	N	LYS	855	10.597	50.294	-4.576	1.00 62.34	6
ATOM	270	CA	LYS	855	12.045	50.123	-4.395	1.00 62.34	
MOTA	271	CB	LYS	855	12.496	48.792	-5.001	1.00 99.81	6
MOTA	272	CG	LYS	855	13.652	48.147	-4.235	1.00 99.81	6
MOTA	273	CD	LYS	855	13.741	46.635	-4.449	1.00 99.81	6
ATOM	274	CE	LYS	855	13.407	46.212	-5.881	1.00 99.81	6
MOTA	275	NZ	LYS	855	14.507	46.460	-6.824	1.00 99.81	7

								- 00 60 34	_
MOTA	276	С	LYS	855	12.797	51.263	-5.085	1.00 62.34 1.00 62.34	6 8
MOTA	277	0	LYS	855	12.216	52.028	-5.869	1.00 82.34	7
ATOM	278	N	ARG	85 <i>6</i>	14.076	51.334	-4.765	1.00100.00	6
MOTA	279	CA	ARG	856	14.982	52.353	-5.313	1.00100.00	6
MOTA	280	CB	ARG	856	14.324	53.733	-5.241	1.00 95.22	6
MOTA	281	CG	ARG	856	15.161	54.829	-5.903		6
MOTA	282	CD	ARG	856	14.465	56.192	-5.906	1.00 95.22	7
ATOM	283	NE	ARG	856	15.316	57.271	-6.428	1.00 95.22	
MOTA	284	CZ	ARG	856	14.938	58.554	-6.503	1.00 95.22	6
ATOM	285	NHl	ARG	856	13.723	58.940	-6.093	1.00 95.22	7
ATOM	286	NH2	ARG	856	15.715	59.537	-6.979	1.00 95.22	7
MOTA	287	C	ARG	856	16.284	52.382	-4.510	1.00100.00	6
MOTA	288	0	ARG	856	16.269	52.404	-3.270	1.00100.00	8
ATOM	289	N	MET	857	17.443	52.378	-5.338	1.00100.00	7
MOTA	290	CA	MET	857	18.288	53.750	-3.743	1.00100.00	6
ATOM	291	CB	MET	857	18.449	53.097	-2.384	1.00100.00	6
ATOM	292	CG	MET	857	17.994	54.017	-1.306	1.00100.00	6
ATOM	293	SD	MET	857	18.352	53.350	0.258	1.00100.00	16
MOTA	294	CE	MET	857	20.116	53.447	0.204	1.00100.00	6
ATOM	295	С	MET	857	19.646	53.843	-4.450	1.00100.00	6
ATOM	296	0	MET	857	20.497	52.937	-4.253	1.00100.00	8
ATOM	297	OXT	MET	857	19.839	54.838	-5.196	1.00 82.10	8
TER									
ATOM	298	CB	ASP	864	22.499	59.975	~11.088	1.00 55.87	6
ATOM	299	C	ASP	864	23.323	58.318	-12.792	1.00100.00	6
ATOM	300	0	ASP	864	22.981	58.052	-13.940	1.00100.00	8
ATOM	301	N	ASP	864	22.263	57.542	-10.688	1.00100.00	7
ATOM	302	CA	ASP	864	22.263	58.615	-11.734	1.00100.00	б
ATOM	303	N	ASP	865	24.599		-12.412	1.00100.00	7
ATOM	304	CA	ASP	865	25.670	57.988	-13.347	1.00100.00	6
ATOM	305	CB	ASP	865	26.925	58.842	-13.098	1.00 87.31	6
ATOM	306	C	ASP	865	25.951	56.494	-13.073	1.00100.00	6
ATOM	307	0	ASP	865	26.537		-13.902	1.00100.00	8
ATOM	308	N	HIS	866	25.485	56.080	-11.889	1.00 99.63	7
ATOM	309	CA	HIS	866	25.554	54.713	-11.357	1.00 99.63	6
ATOM	310	CB	HIS	866	25.728	54.726	-9.827	1.00100.00	6
ATOM	311	CG	HIS	866	24.600	55.378	-9.079	1.00100.00	6
	312	CD2		866	23.472	54.858	-8.543	1.00100.00	6
ATOM		ND1		866	24.593	56.720	-8.769	1.00100.00	7
ATOM	313	CE1		866	23.509	57.002	-8.065	1.00100.00	6
MOTA	314		HIS	866	22.811	55.888	-7.915	1.00100.00	7
ATOM	315			866	24.196		-11.715	1.00 99.63	6
ATOM		·Ċ	HIS	866	23.599		-10.964	1.00 99.63	8
ATOM	317	0	HIS		23.732		-12.904	1.00100.00	7
ATOM	318	N	ARG	867			-13.405	1.00100.00	6
MOTA	319	CA	ARG	867	22.419		-13.954	1.00100.00	6
MOTA	320	CB	ARG	867	21.700	55.721	-15.445	1.00100.00	6
ATOM	321	CG	ARG	867	21.971			1.00100.00	6
MOTA	322	CD	ARG	867	23.460			1.00100.00	7
MOTA	323	NE	ARG	867	23.698			1.00100.00	6
ATOM	324	CZ	ARG	867	24.794	55.439	-17.837	1.00100.00	7
MOTA	325	NHI		867	25.733	54.810	-17.137		7
MOTA	326	NH2		867	24.940	55.628		1.00100.00	
MOTA	327	C	ARG	867	22.524		-14.480	1.00100.00	6
MOTA	328	0	ARG	867	21.980		-15.575	1.00100.00	8
MOTA	329	N	ASP	868	23.225		-14.164	1.00100.00	7
ATOM	330	CA	ASP	868	23.393		-15.146	1.00100.00	6
ATOM .	331	CB	ASP	868	24.591	49.998	-14.773	1.00100.00	6

ATOM	332	CG	ASP	868	24.412	49.314	-13.435	1.00100.00	6
ATOM	333	OD1	ASP	868	24.613	49.980	-12.391	1.00100.00	8
ATOM	334	OD2	ASP	868	24.027	48.130	-13.442	1.00100.00	8
ATOM	335	C	ASP	868	22.154	49.960	-15.282	1.00100.00	6
ATOM	336	0	ASP	868	22.293	48.750	-15.504	1.00100.00	8
ATOM	337	N	PHE	869	20.955		-15.156	1.00100.00	7
ATOM	338	CA	PHE	869	19.717		-15.259	1.00100.00	6
	339								
ATOM		CB	PHE	869	18.424		-15.017	1.00 99.62	6
ATOM	340	CG	PHE	869	18.595		-14.986	1.00 99.62	6
MOTA	341		PHE	869	18.716		-13.761	1.00 99.62	6
ATOM	342	CD2	PHE	869	18.498	52.813	-16.148	1.00 99.62	6
MOTA	343	CE1	PHE	869	18.734	54.068	-13.681	1.00 99.62	6
ATOM	344	CE2	PHE	869	18.515	54.204	-16.077	1.00 99.62	6
ATOM	345	CZ	PHE	869	18.630	54.834	-14.843	1.00 99.62	6
ATOM	346	C	PHE	869	19.576		-16.612	1.00100.00	6
ATOM	347	ō	PHE	869	20.380		-17.508	1.00100.00	8
ATOM	348	N	ALA	870		•	-16.746	1.00100.00	7
					18.524				
ATOM	349	CA	ALA	870	18.206		-17.951	1.00100.00	6
ATOM	350	CB	ALA	870	19.005		-19.156	1.00 97.10	6
ATOM	351	C	ALA	870	18.532	46.061	-17.670	1.00100.00	6
ATOM	352	0	ALA	870	17.644	45.222	-17.671	1.00100.00	8
ATOM	353	N	GLY	871	19.810	45.775	-17.434	1.00100.00	7
ATOM	354	CA	GLY	871	20.221	44.419	-17.133	1.00100.00	6
ATOM	355	С	GLY	871	19.602	44.044	-15.804	1.00100.00	6
ATOM	356	0	GLY	871	19.400		-15.506	1.00100.00	8
ATOM	357	N	GLU	872	19.305		-14.996	1.00 99.97	7
ATOM	358	CA	GLU	872	18.669		-13.718	1.00 99.97	6
		CB	GLU						6
ATOM	359			872	18.811		-12.787	1.00100.00	
ATOM	360	CG	GLU	872	17.496		-12.182	1.00100.00	6
ATOM.	361	CD	GLU	872	17.571		-10.675	1.00100.00	6
MOTA	362	OE1	GLU	872	18.323	47.585	-10.230	1.00100.00	8
MOTA	363	OE2	GLU	872	16.882	45.946	-9.940	1.00100.00	8
ATOM	364	C	GLU	872	17.200	44.565	-14.033	1.00 99.97	6
ATOM	365	0	GLU	872	16.575	43.673	-13.465	1.00 99.97	8
ATOM	366	N	LEU	873	16.659		-14.961	1.00 63.02	7
ATOM	367	CA	LEU	873	15.255		-15.327	1.00 63.02	6
ATOM	368	CB	LEU	873	14.756		-15.955	1.00 69.97	6
ATOM	369	C	LEU					1.00 63.02	6
				873	14.977		-16.243		
ATOM	370	0	LEU	873	13.990		-16.052	1.00 63.02	8
ATOM	371	N	GLU	874	15.847		-17.227	1.00100.00	7
ATOM	372	CA	GLU	874	15.687		-18.164	1.00100.00	б
MOTA	373	CB	GLU	874	16.645	42.862	-19.331	1.00 19.50	6
ATOM	374	Ċ	GLU	874	15.923	41.394	-17.454	1.00100.00	6
ATOM	375	0	GLU	874	15.103	40.482	-17.547	1.00100.00	8
MOTA	376	N	LAV	875		41.298	-16.737	1.00 69.27	7
ATOM	377	CA	VAL	875			-16.002	1.00 69.27	6
ATOM	378	CB	VAL	875	18.763		-15.359	1.00 39.27	6
		C						1.00 59.27	6
ATOM	379		LAV	875	16.344		-14.934		
ATOM	380	0	VAL	875	16.338		-14.399	1.00 69.27	8
MOTA	381	N	LEU	876			-14.613	1.00 78.00	7
MOTA	382	CA	LEU	876			-13.616	1.00 78.00	6
ATOM	383	CB	LEU	876	14.169	41.853	-12.843	1.00 53.20	6
MOTA	384	CG	LEU	876	14.939	42.141	-11.537	1.00 29.26	6
ATOM	385	CD1	LEU	876	14.466		-10.852	1.00 29.26	6
ATOM	386	CD2		876	14.715		-10.608	1.00 29.26	6
ATOM	387	C	LEU	876	13.147		-14.290	1.00 78.00	6
		0	LEU	876	12.410		-13.737	1.00 78.00	8
ATOM	388	0	TEO	0/0	14.41U	33.202	-13.131	1.00 /0.00	J

									_
MOTA	389	N	CYS	877	12.870		-15.486	1.00 60.18	7
MOTA	390	CA	CYS	877	11.652	40.208	-16.191	1.00 60.18	6
MOTA	391	CB	CYS	877	11.199	41.317	-17.164	1.00100.00	6
ATOM	392	SG	CYS	877	12.370	41.807	-18.447	1.00100.00	16
ATOM	393	С	CYS	877	11.857	38.886	-16.916	1.00 60.18	6
ATOM	394	0	CYS	877	11.194		-17.909	1.00 60.18	8
ATOM	395	N	LYS	878	12.788		-16.398	1.00 65.17	7
ATOM	396	CA	LYS	878	13.088		-16.964	1.00 65.17	6
		CB	LYS	878	14.593		-17.078	1.00 89.20	6
MOTA	397				•				6
ATOM	398	CG	LYS	878	15.190		-18.092	1.00 52.09	
MOTA	399	CD	LYS	878	16.693		-18.128	1.00 52.09	6
MOTA	400	CE	LYS	878	17.289		-19.216	1.00 52.09	6
ATOM	401	NZ	LYS	878	16.965		-20.614	1.00 52.09	7
MOTA	402	С	LYS	878	12.473	35.703	-16.091	1.00 65.17	6
ATOM	403	0	LYS	878	12.100	34.632	-16.572	1.00 65.17	8
MOTA	404	N	LEU	879	12.365	35.982	-14.801	1.00100.00	7
ATOM	405	CA	LEU	879	11.752	35.044	-13.879	1.00100.00	6
ATOM	406	CB	LEU	879	12.480	35.052	-12.526	1.00 45.22	6
ATOM	407	CG	LEU	879	12.801		-11.904	1.00 46.30	6
ATOM	408		LEU	879	13.226		-10.462	1.00 46.30	6
	409	CD2	LEU	879	13.892		-12.704	1.00 46.30	6
ATOM							-13.717	1.00100.00	6
ATOM	410	C	LEU	879	10.301				8
ATOM	411	0	LEU	879	10.019		-13.405	1.00100.00	
ATOM	412	N	GTA	880	9.381		-13.972	1.00 96.05	7
MOTA	413	CA	\mathtt{GLY}	880	7.980		-13.848	1.00 96.05	6
ATOM	414	C	GLY	880	7.540	34.784	-12.409	1.00 96.05	6
ATOM	415	0	GLY	880	8.358	34.825	-11.483	1.00 96.05	8
MOTA	416	N	HIS	881	6.236	34.641	-12.216	1.00 70.51	7
ATOM	417	CA	HIS	881	5.693	34.496	-10.876	1.00 70.51	6
ATOM	418	CB	HIS	881	4.178	34.726	-10.843	1.00 99.80	6
ATOM	419	CG	HIS	881	3.498	34.160	-9.629	1.00 99.80	6
ATOM	420		HIS	881	3.000	32.924	-9.383	1.00 99.80	6
ATOM	421		HIS	881	3.264	34.897	-8.484	1.00 99.80	7
			HIS	881	2.648	34.142	-7.592	1.00 99.80	6
ATOM	422						-8.110	1.00 99.80	7
ATOM	423	NE2	HIS	881	2.477	32.939		1.00 70.51	6
ATOM	424	C	HIS	881	5.952	33.094	-10.384		
MOTA	425	0	HIS	881	5.908	32.134		1.00 70.51	8
ATOM	426	N	HIS	882	6.231	32.982	-9.104	1.00 45.83	7
MOTA	427	CA	HIS	882	6.404	31.672	-8.546	1.00 45.83	6
MOTA	428	CB	HIS	882	7.866	31.289	-8.449	1.00 14.81	6
MOTA	429	CG	HIS	882	8.076	29.813	-8.295	1.00 29.81	6
ATOM	430.	CD2	HIS	882	7.783	28.782	-9.126	1.00 29.81	б
ATOM	431		HIS	882	8.608	29.244	-7.167	1.00 29.81	7
MOTA	432		HIS	882	8.638	27.932	-7.299	1.00 29.81	6
ATOM	433		HIS	882	8.142	27.626	-8.484	1.00 29.81	7
ATOM	434	C	HIS	882	5.773	31.719	-7.182	1.00 45.83	6
						32.655	-6.411	1.00 45.83	8
ATOM	435	0	HIS	882				1.00 37.21	7
MOTA	436	N	PRO	883	4.959	30.711	-6.873		
ATOM	437	CD	PRO	883	4.747	29.405	-7.508	1.00 52.55	6
MOTA	438	CA	PRO	883	4.353	30.762	-5.556	1.00 37.21	6
MOTA	439	CB	PRO	883	3.821	29.336	-5.373	1.00 47.02	6
MOTA	440	CG	PRO	883	4.591	28.493	-6.316	1.00 52.55	6
MOTA	441	С	PRO	883	5.359	31.209	-4.487	1.00 37.21	6
ATOM	442	0	PRO	883	4.990	31.958	-3.579	1.00 37.21	8
MOTA	443	N	ASN	884	6.628	30.800	-4.601	1.00 24.86	7
ATOM	444	CA	ASN	884	7.619	31.198	-3.582	1.00 24.86	6
		CB	ASN	884	8.077	29.996		1.00 18.47	6
MOTA	445	CD	L'OIN	004	3.077		2.12	 .	

ATOM	446	CG	ASN	884	7.553	28.671	-3.203	1.00 33.47	6
ATOM	447		ASN	884	7.951	28.205	-4.243	1.00 33.47	8
MOTA	448	ND2	ASN	884	6.674	28.052	-2.443	1.00 33.47	7
ATOM	449	С	NZA	884	8.860	31.986	-4.022	1.00 24.86	6
MOTA	450	0	ASN	884	9.996	31.540	-3.862	1.00 24.86	8
ATOM	451	N	ILE	885	8.603	33.191	-4.518	1.00 46.00	7
ATOM	452	CA	ILE	885	9.616	34.125	-4.986	1.00 46.00	6
ATOM	453	CB	ILE	885	10.063	33.811	-6.435	1.00 25.68	6
ATOM	454	CG2	ILE	885	10.616	35.056	-7.119	1.00 21.87	6
ATOM	455	CG1	ILE	885	11.101	32.696	-6.451	1.00 21.87	6
ATOM	456	CD1	ILE	885	11.855	32.614	-7.727	1.00 21.87	6
MOTA	457	C	ILE	885	8.924	35.476	-5.013	1.00 46.00	6
ATOM	458	0	ILE	885	7.845	35.596	-5.601	1.00 46.00	8
ATOM	459	N	ILE	886	9.501	36.488	-4.373	1.00 36.62	7
ATOM	460	CA	ILE	886	8.857	37.785	-4.434	1.00 36.62	6
MOTA	461	CB	ILE	886	9.462	38.768	-3.414	1.00 17.99	6
ATOM	462	CG2	ILE	886	9.259	40.221	-3.846	1.00 27.09	6
ATOM	463	CG1	ILE	886	8.764	38.531	-2.075	1.00 27.09	6
ATOM	464	CD1	ILE	886	9.230	39.402	-1.000	1.00 27.09	6
ATOM	465	С	ILE	886	8.969	38.250	-5.881	1.00 36.62	6
ATOM	466	0	ILE	886	10.040	38.615	-6.363	1.00 36.62	8
ATOM	467	N	ASN	887	7.832	38.163	-6.566	1.00 39.60	7
ATOM	468	CA	ASN	887	7.716	38.506	-7.975	1.00 39.60	6
ATOM	469	CB	ASN	887	6.531	37.759	-8.603	1.00 82.94	6
ATOM	470	CG	ASN	887	6.602	36.250	-8.406	1.00 82.94	6
ATOM	471		ASN	887	7.490	35.584	-8.932	1.00 82.94	8
ATOM	472	ND2	ASN	887	5.665	35.710	-7.637	1.00 82.94	7
ATOM	473	C	ASN	887	7.535	39.990	-8.222	1.00 39.60	6
ATOM	474	Ö	ASN	887	6.893	40.687	-7.432	1.00 39.60	8
ATOM	475	N	LEU	888	8.125	40.438	-9.332	1.00 73.28	7
ATOM	476	CA	LEU	888	8.067	41.822	-9.789	1.00 73.28	б
ATOM	477	CB	LEU	888	9.044	42.055	-10.953	1.00 34.36	6
ATOM	478	CG	LEU	888	9.064	43.390	-11.721	1.00 18.51	6
ATOM	479		LEU	888	9.760		-10.873	1.00 18.51	6
ATOM	480		LEU	888	9.809		-13.035	1.00 18.51	6
ATOM	481	C	LEU	888	6.651	42.083	-10.274	1.00 73.28	6
ATOM	482	0	LEU	888	6.083	41.282	-11.022	1.00 73.28	8
ATOM	483	N	LEU	889	6.091	43.210	-9.853	1.00 99.59	7
ATOM	484	CA	LEU	889	4.731	43.573	-10.235	1.00 99.59	6
	485	CB	LEU	889	3.936	43.972	-8.975	1.00 97.88	6
ATOM ATOM	486	CG	LEU	889	3.874	42.924	-7.838	1.00 59.80	6
			LEU	889	2.923	43.357	-6.733	1.00 59.80	6
ATOM	487		LEU	889	3.419	41.589	-8.413	1.00 59.80	6
MOTA	488				4.676		-11.304	1.00 99.59	6
ATOM	489	C	LEU	889			-12.167	1.00 99.59	8
ATOM	490	0	LEU	889	3.805			1.00 54.35	7
MOTA	491	N	GLY	890	5.599		-11.266	1.00 54.35	6
ATOM	492	CA	GLY	890	5.597		-12.264	1.00 54.35	6
MOTA	493	C	GLY	890	6.668		-11.986		8
MOTA	494	0	GLY	890	7.617		-11.259	1.00 54.35	7
ATOM	495	N	ALA	891	6.534		-12.560	1.00 66.65	
MOTA	496	CA	ALA	891	7.515		-12.328	1.00 66.65	6
MOTA	497	CB	ALA	891	8.872		-12.911	1.00 68.11	6
MOTA	498	C	ALA	891	7.055		-12.937	1.00 66.65	б
MOTA	499	0	ALA	891	6.176		-13.789	1.00 66.65	8
ATOM	500	N	CYS	892	7.656		-12.485	1.00 99.57	7
MOTA	501	CA	CYS	892	7.322		-12.984	1.00 99.57	6
MOTA	502	CB	CYS	892	6.872	54.619	-11.833	1.00 98.88	6

ATOM	503	SG	CYS	892	5.614	55.803		1.00 92.24	16
ATOM	504	С	CYS	892	8.579	54.284		1.00 99.57	6
MOTA	505	0	CYS	892	9.610	53.625		1.00 99.57	8
ATOM	506	N	GLU	893	8.503	55.485		1.00 99.69	7
ATOM	507	CA	GLU	893	9.676	56.130		1.00 99.69	б
ATOM	508	CB	GLU	893	9.687	55.991		1.00100.00	6
ATOM	509	CG	GLU	893	10.439	54.776		1.00100.00	6
ATOM	510	CD	GLU	893	10.793		-18.308	1.00100.00	6
ATOM	511	OE1	GLU	893	11.715	55.657	-18.646	1.00100.00	8
ATOM	512	OE2	GLU	893	10.123	54.219	-19.128	1.00100.00	8
ATOM	513	C	GLU	893	9.616	57.594		1.00 99.69	6
ATOM	514	0	GLU	893	9.817	58.469		1.00 99.69	8
ATOM	515	N	HIS	894	9.516	57.779	-12.908	1.00 96.96	7
MCTA	516	CA	HIS	894	9.344	59.158	-12.428	1.00 96.96	6
ATOM	517	CB	HIS	894	8.697	59.154	-11.042	1.00100.00	6
ATOM	518	CG	HIS	894	8.186	60.532	-10.618	1.00100.00	6
ATOM	519	CD2		894	7.291	61.381	-11.187	1.00100.00	б
ATOM	520	ND1		894	8,631	61.157	-9.457	1.00100.00	7
ATOM	521	CE1		894	8.019	62.323	-9.357	1.00100.00	6
MOTA	522	NE2		894	7.216	62.472	-10.381	1.00100.00	7
ATOM	523	C	HIS	894	10.703	59.854		1.00 96.96	6
	524	0	HIS	894	11.756		-12.319	1.00 96.96	8
ATOM	525	И	ARG	895	10.631		-12.278	1.00100.00	7
ATOM		CA	ARG	895	11.818		-12.182	1.00100.00	6
MOTA	526		ARG	895	11.408		-11.741	1.00100.00	б
ATOM	527	CB		895	10.703	64.230		1.00100.00	6
ATOM	528	CG	ARG	895	10.357		-12.430	1.00100.00	6
ATOM	529	CD	ARG		10.896	66.673	-13.350	1.00100.00	7
ATOM	530	NE	ARG	895	10.138		-14.101	1.00100.00	6
MOTA	531	CZ	ARG	895	8.801		-14.056	1.00100.00	7
ATOM	532		ARG	895			-14.939	1.00100.00	7
MOTA	533	NH2	ARG	895	10.630		-11.159	1.00100.00	6
ATOM	534	C	ARG	895	12.796		-10.236	1.00100.00	8
ATOM	535	0	ARG	895	12.399		-11.359	1.00100.00	7
ATOM	536	N	GLY	896	14.055		-10.493	1.00100.00	6
ATOM	537	CA	GLY	896	15.150		-10.145	1.00100.00	6
MCTA	538	C	GLY	896	14.949		-9.013	1.00100.00	8
MCTA	539	0	\mathtt{GLY}	896	14.575	59.517		1.00100.00	7
MOTA	540	N	TYR	897	15.205	59.037	-11.143	1.00100.00	, б
ATOM	541	CA	TYR	897	15.068	57.578	-11.033	1.00100.00	6
ATOM	542	CB	TYR	8 <i>9</i> 7	15.624	57.096	-9.692	1.00100.00	6
MOTA	543	CG	\mathtt{TYR}	897	15.964	55.604	-9.688		_
ATOM	544	CD1	\mathtt{TYR}	897	17.195	55.165	-10.192	1.00100.00	6
MOTA	545	CE1	TYR	897	17.506		-10.190	1.00100.00	6
ATOM	546	CD2	TYR	897	15.045	54.676	-9.182	1.00100.00	6
ATOM	547	CE2	TYR	897	15.357	53.311	-9.179	1.00100.00	6
ATOM	543	CZ	TYR	897	16.587	52.873	-9.684	1.00100.00	6
ATOM	549	OH	TYR	897	16.890	51.547	-9.682	1.00100.00	8
ATOM	550	С	TYR	897	13.592	57.190	-11.131	1.00100.00	6
ATOM	551	0	TYR	897	12.714	58.051	-11.293	1.00100.00	8
ATOM	552	N	LEU	898	13.367	55.894	-11.027	1.00100.00	7
ATOM	553	CA	LEU	898	12.020	55.310	-11.093	1.00100.00	6
ATOM	554	CB	LEU	898	11.960	54.258	-12.202	1.00 41.85	6
ATOM	555	C	LEU	898	11.672	54.648	-9.759	1.00100.00	6
	556	0	LEU	898	12.234	54.992	-8.709	1.00100.00	8
ATOM	557	N	TYR	899	10.747	53.711	-9.850	1.00 72.77	7
ATOM		CA	TYR	899	10.267	52.951	-8.688	1.00 72.77	6
ATOM	558	CB	TYR	899	9.153	53.725	-7.982	1.00100.00	6
MOTA	559	CD	IIK	وون	٠. ــــــــــــــــــــــــــــــــــــ				

ATOM	560	CG	TYR	899	9.685	54.728	-6.958	1.00100.00	6
ATOM	561	CD1	TYR	899	9.394	56.090	-7.096	1.00100.00	6
MOTA	562	CE1	TYR	899	9.884	57.008	-6.159	1.00100.00	6
ATOM	563	CD2	TYR	899	10.465	54.283	-5.884	1.00100.00	6
ATOM	564	CE2	TYR	899	10.955	55.201	-4.948	1.00100.00	6
ATOM	565	CZ	TYR	899	10.664	56.564	-5.085	1.00100.00	6
ATOM	566	OH	TYR	899	11.140	57.456	-4.175	1.00100.00	8
ATOM	567	C	TYR	899	9.726	51.592	-9.136	1.00 72.77	б
		0	TYR	899			-9.940		8
ATOM	568				8.785	51.513		1.00 72.77	
ATOM	569	N	LEU	900	10.350	50.565	-8.591	1.00 78.27	7
MOTA	570	CA	LEU	900	9.996	49.168	-8.876	1.00 78.27	6
ATOM	571	CB	LEU	900	11.233	48.277	-8.738	1.00 79.18	6
ATOM	572	CG	LEU	900	11.566	47.512	-10.020	1.00 54.43	6
ATOM	573	CD1	LEU	900	11.602	48.408	-11.259	1.00 54.43	6
ATOM	574	CD2	LEU	900	12.931	46.823	-9.967	1.00 54.43	6
ATOM	575	С	LEU	900	8.927	48.689	-7.892	1.00 78.27	6
ATOM	576	0	LEU	900	9.079	48.823	-6.669	1.00 78.27	8
ATOM	577	N	ALA	901	7.874	48.141	-8.468	1.00 72.23	7
MOTA	578	CA	ALA	901	6.731	47.614	-7.708	1.00 72.23	6
ATOM	579	СВ	ALA	901	5.424	47.944	-8.433	1.00 33.79	6
ATOM	580	C	ALA	901	6.851	46.095	-7.568	1.00 72.23	6
								1.00 72.23	8
ATOM	581	0	ALA	901	7.121	45.383	-8.546		
MOTA	582	N	ILE	902	6.929	45.582	-6.293	1.00 59.87	7
ATOM	583	CA	ILE	902	7.104	44.154	-6.059	1.00 59.87	6
ATOM	584	CB	ILE	902	8.550	43.900	-5.623	1.00 34.80	6
ATOM	585	CG2	ILE	902	9.522	44.289	-6.729	1.00 35.77	6
MOTA	586	CG1	ILE	902	8.846	44.755	-4.397	1.00 35.77	6
ATOM	587	CD1	ILE	902	10.311	45.018	-4.169	1.00 35.77	6
ATOM	588	C	ILE	902	6.165	43.633	-4.969	1.00 59.87	6
ATOM	589	0	ILE	902	5.750	44.390	-4.093	1.00 59.87	8
ATOM	590	N	GLU	903	5.835	42.344	-5.030	1.00 34.73	7
ATOM	591	CA	GLU	903	4.967	41.716	-4.036	1.00 34.73	6
		CB	GLU	903	5.047	40.197	-4.119	1.00 38.01	6
ATOM	592								6
ATOM	593	CG	GLU	903	4.180	39.568	-5.170	1.00 49.25	
ATOM	594	CD	GLU	903	4.216	38.043	-5.112	1.00 49.25	6
ATOM	595	OE1	GLU	903	4.310	37.497	-3.985	1.00 49.25	8
ATOM	596	OE2	GLU	903	4.141	37.403	-6.191	1.00 49.25	8
ATOM	597	C	GLU	903	5.343	42.124	-2.627	1.00 34.73	6
ATOM	598	0	GLU	903	6.514	42.378	-2.330	1.00 34.73	8
ATOM	599	N	TYR	904	4.328	42.169	-1.770	1.00 31.03	7
ATOM	600	CA	TYR	904	4.469	42.530	-0.370	1.00 31.03	6
ATOM	601	ÇВ	TYR	904	3,411	43.577	-0.003	1.00 13.64	6
ATOM	602	ĊĠ	TYR	904	3.419	43.950	1.459	1.00 23.21	6
ATOM	603		TYR	904	4.598	44.344	2.086	1.00 23.21	6
ATOM				904		44.606	3.448	1.00 23.21	6
	604		TYR					1.00 23.21	6
ATOM	605	CD2	TYR	904	2.276	43.840	2.236		
ATOM	606	CE2	TYR	904	2.315	44.102	3.608	1.00 23.21	6
ATOM	607	CZ	TYR	904	3.509	44.477	4.204	1.00 23.21	6
ATOM	608	OH	TYR	904	3.575	44.663	5.569	1.00 23.21	8
ATOM	609	C	TYR	904	4.328	41.291	0.532	1.00 31.03	6
ATOM	610	0	TYR	904	3.388	40.494	0.393	1.00 31.03	8
ATOM	611	N	ALA	905	5.284	41.154	1.447	1.00 31.20	7
ATOM	612	CA	ALA	905	5.334	40.063	2.409	1.00 31.20	6
	613	CB	ALA	905	6.733	39.460	2.430	1.00 28.71	6
ATOM					4.990		3.781	1.00 31.20	6
ATOM	614	С	ALA	905		40.633			8
ATOM	615	0	ALA	905	5.853	41.091	4.514	1.00 31.20	
MOTA	616	N	PRO	906	3.716	40.600	4.151	1.00 17.48	7

								10	_
ATOM	617	CD	PRO	906	2.597	40.048	3.370	1.00 32.19	6 6
ATOM	618	CA	PRO	906	3.241	41.121	5.427	1.00 17.48	
ATOM	619	CB	PRO	906	1.728	40.964	5.314	1.00 32.19	6
ATOM	620	CG	PRO	906	1.580	39.762	4.442	1.00 32.19	6
ATOM	621	C	PRO	906	3.774	40.564	6.724	1.00 17.48	6
ATOM	622	0	PRO	906	3.408	41.072	7.788	1.00 17.48	8
ATOM.	623	N	HIS	907	4.636	39.550	6.683	1.00 30.66	7
ATOM	624	CA	HIS	907	5.123	38.987	7.954	1.00 30.66	6
ATOM	625	CB	HIS	907	4.657	37.543	8.130	1.00 5.00	6
ATOM	626	CG	HIS	907	3.174	37.357	8.048	1.00 5.00	6
ATOM	627	CD2	HIS	907	2.219	37.353	9.011	1.00 5.00	6
ATOM	628	ND1	HIS	907	2.517	37.103	6.865	1.00 5.00	7
ATOM	629	CE1	HIS	907	1.224	36.945	7.097	1.00 5.00	6
ATOM	630	NE2	HIS	907	1.021	37.091	8.393	1.00 5.00	7
ATOM	631	C	HIS	907	6.622	39.004	8.229	1.00 30.66	6
ATOM	632	0	HIS	907	7.130	38.115	8.926	1.00 30.66	8
ATOM	633	N	GLY	908	7.326	40.009	7.718	1.00 38.98	7
ATOM	634	CA	GĿŸ	908	8.756	40.081	7.947	1.00 38.98	6
ATOM	635	C	GLY	908	9.483	38.924	7.298	1.00 38.98	6
ATOM	636	0	GLY	908	8.935	38.235	6.436	1.00 38.98	8
MOTA	637	N	ASN	909	10.719	38.698	7.718	1.00 31.42	7
ATOM	638	CA	ASN	909	11.517	37.620	7.140	1.00 31.42	6
	639	CB	ASN	909	12.963	38.068	6.941	1.00 41.70	6
ATOM	640	CG	ASN	909	13.566	38.630	8.197	1.00 41.70	6
MOTA			ASN	909	14.196	39.684	8.163	1.00 41.70	8
ATOM	641	ND2	ASN	909	13.381	37.931	9.316	1.00 41.70	7
ATOM	642		ASN	909	11.488	36.349	7.964	1.00 31.42	6
ATOM	643	C	ASN	909	11.094	36.340	9.132	1.00 31.42	8
ATOM	644	0		910	11.937	35.275	7.347	1.00 17.12	7
ATOM	645	N	LEU LEU	910	11.930	34.014	8.019	1.00 17.12	6
ATOM	646	CA		910	12.524	32.962	7.139	1.00 20.29	6
ATOM	647	CB	LEU		12.192	31.558	7.604	1.00 20.29	6
MOTA	648	CG	LEU	910		31.274	7.677	1.00 20.29	6
ATOM	649		LEU	910	10.687	30.696	6.590	1.00 20.29	6
ATOM.	650	CD2	LEU	910	12.850		9.332	1.00 17.12	6
MOTA	651	С	LEU	910	12.679	34.039	10.355	1.00 17.12	8
ATOM	652	0	LEU	910	12.183	33.554	9.319	1.00 21.04	7
MOTA	653	N	LEU	911	13.885	34.579		1.00 21.04	б
MOTA	654	CA	LEU	911	14.646	34.644	10.551	1.00 23.99	6
ATOM	655	CB	LEU	911	15.865	35.523	10.363	1.00 23.99	6
ATOM	656	CG	LEU	911	16.744	35.463	11.596	1.00 23.99	6
ATOM	657	CDl	LEU	911	17.326	34.053	11.797	1.00 23.99	6
MOTA	658	CD2	LEU	911	17.833	36.483			
MOTA	659	C,	LEU	911	13.791	35.199	11.697	1.00 21.04	6
ATOM	660	0	LEU	911	13.565	34.515	12.692	1.00 21.04	8
MOTA	661	N	ASP	912	13.305	36.429	11.557	1.00 16.81	7
MOTA	662	CA	ASP	912	12.489	37.041	12.618	1.00 16.81	6
ATOM	663	CB	ASP	912	11.973	38.399	12.177	1.00 39.39	6
ATOM	664	CG	ASP	912	12.996	39.463	12.327	1.00 39.39	6
ATOM	665		ASP	912	12.794	40.557	11.777	1.00 39.39	8
ATOM	666		ASP	912	14.005	39.185	12.989	1.00 39.39	8
	667	C	ASP	912	11.311	36.214	13.031	1.00 16.81.	6
MOTA	668	0	ASP	912	11.020	36.079	14.215	1.00 16.81	8
ATOM		И	PHE	913	10.623	35.698	12.027	1.00 39.11	7
ATOM	669		PHE	913	9.462	34.884	12.255	1.00 39.11	6
ATOM	670	CA		913	8.850	34.495	10.937	1.00 34.21	6
ATOM	671	CB	PHE		7.458	34.005	11.055	1.00 34.21	6
MOTA	672	CG	PHE	913		34.897	11.233	1.00 34.21	6
MOTA	673	CD1	PHE	913	6.412	34.07/	±±.233	2.00 01.22	_

									_
ATOM	674	CD2	PHE	913	7.181	32.647	10.986	1.00 34.21	6
MOTA	675	CE1		913	5.109	34.450	11.343	1.00 34.21	6
MOTA	676	CE2	PHE	913	5.885	32.185	11.094	1.00 34.21	6
ATOM	677	cz	PHE	913	4.843	33.089	11.271	1.00 34.21	6
ATOM	678	C	PHE	913	9.846	33.636	13.026	1.00 39.11	6
ATOM	679	0	PHE	913	9.073	33.166	13.843	1.00 39.11	8
MOTA	680	N	LEU	914	11.018	33.076	12.770	1.00 29.14	7
MOTA	681	CA	LEU	914	11.389	31.895	13.527	1.00 29.14	6
MOTA	682	CB	LEU	914	12.622	31.212	12.916	1.00 10.91	б
MOTA	683	CG	LEU	914	12.407	30.445	11.606	1.00 10.91	6
MOTA	684	CD1	LEU	914	13.709	29.936	11.066	1.00 10.91	6
ATOM	685	CD2	LEU	914	11.430	29.310	11.861	1.00 10.91	6
ATOM	686	C	LEU	914	11.659	32.247	14.994	1.00 29.14	6
ATOM	687	0	LEU	914	11.215	31.551	15.893	1.00 29.14	8
ATOM	688	N	ARG	915	12.377	33.337	15.228	1.00 18.56	7
ATOM	689	CA	ARG	915	12.750	33.766	16.569	1.00 18.56	6
ATOM	690	CB	ARG	915	13.829	34.844	16.463	1.00 29.12	6
ATOM	691	CG	ARG	915	15.088	34.300	15.887	1.00 29.12	6
ATOM	692	CD	ARG	915	16.140	35.354	15.729	1.00 29.12	6
ATOM	693	NE	ARG	915	17.459	34.736	15.660	1.00 29.12	7
ATOM	694	CZ	ARG	915	18.580	35.352	15.285	1.00 29.12	6
ATOM	695	NH1	ARG	915	18.545	36.630	14.924	1.00 29.12	7
ATOM	696	NH2	ARG	915	19.745	34.689	15.287	1.00 29.12	7
ATOM	697	C	ARG	915	11.609	34.256	17.439	1.00 18.56	6
ATOM	698	Ō	ARG	915	11.641	34.094	18.665	1.00 18.56	8
ATOM	699	N	LYS	916	10.605	34.841	16.788	1.00 22.66	7
ATOM	700	CA	LYS	916	9.426	35.406	17.441	1.00 22.66	6
ATOM	701	CB	LYS	916	8.816	36.463	16.501	1.00 51.60	6
ATOM	702	CG	LYS	916	7.369	36.228	16.021	1.00 51.60	6
ATOM	703	CD	LYS	916	7.163	34.999	15.123	1.00 51.60	6
ATOM	704	CE	LYS	916	5.699	34.865	14.684	1.00 51.60	6
ATOM	705	NZ	LYS	916	4.772	34.565	15.811	1.00 51.60	7
ATOM	706	C	LYS	916	8.377	34.360	17.848	1.00 22.66	6
ATOM	707	0	LYS	916	7.332	34.718	18.366	1.00 22.66	8
ATOM	708	N	SER	917	8.677	33.082	17.633	1.00 22.66	7
ATOM	709	CA	SER	917	7.773	31.979	17.957	1.00 22.66	6
ATOM	710	CB	SER	917	7.623	31.070	16.741	1.00 19.58	б
ATOM	711	OG	SER	917	8.890	30.564	16.328	1.00 19.58	8
		C	SER	917	8.272	31.143	19.135	1.00 22.66	6
ATOM	712	0	SER	917	7.720	30.078	19.436	1.00 22.66	8
ATOM	713	И	ARG	918	9.339	31.602	19.780	1.00 32.97	7
ATOM	714				9.906	30.908	20.934	1.00 32.97	6
ATOM	715 .	**	ARG	918		31.305	21.132	1.00 9.93	6
ATOM	716	CB	ARG	918	11.372	31.089	19.973	1.00 9.93	6
MOTA	717	CG	ARG	918	12.287		20.402	1.00 9.93	6
ATOM	718	CD	ARG	918	13.751	31.230	19.413	1.00 9.93	7
ATOM	719	NE	ARG	918	14.633	30.604		1.00 9.93	6
MOTA	720	CZ	ARG	918	15.957	30.509	19.504	1.00 9.93	7
MOTA	721		ARG	918	16.610	31.007	20.533	1.00 9.93	7
ATOM	722		ARG	918	16.637	29.872	18.565		6
MOTA	723	C	ARG	918	9.110	31.323	22.177	1.00 32.97 1.00 32.97	8
ATOM	724	0	ARG	918	9.547	32.189	22.925		7
ATOM	725	N	VAL	919	7.943	30.704	22.365	1.00 29.42	
ATOM	726	CA	VAL	919	7.026	30.973	23.484	1.00 29.42	6
ATOM	727	CB	VAL	919	5.878	29.970	23.518	1.00 31.60	6
ATOM	728	CG1	VAL	919	4.650	30.613	24.113	1.00 31.60	6
ATOM	729	CG2	VAL	919	5.620	29.426	22.134	1.00 31.60	6
ATOM	730	C	VAL	919	7.635	30.893	24.867	1.00 29.42	6

ATOM	731	0	VAL	919	7.173	31.537	25.793	1.00 29.42	8
MOTA	732	N	LEU	920	8.635	30.048	25.020	1.00 34.37	7
ATOM	733	CA	LEU	920	9.260	29.900	26.305	1.00 34.37	6
ATOM	734	CB	LEU	920	10.093	28.629	26.324	1.00 36.03	6
ATOM	735	CG	LEU	920	10.638	28.310	27.688	1.00 36.03	6
ATOM	736		LEU	920	9.559	28.061	28.676	1.00 36.03	6
ATOM	737	CD2		920	11.592	27.104	27.587	1.00 36.03	6
ATOM	738	C	LEU	920	10.138	31.117	26.552	1.00 34.37	6
MOTA	739	0	LEU	920	10.523	31.393	27.676	1.00 34.37	8
ATOM	740	N	GLU	921	10.472	31.851	25.503	1.00 29.12	7
ATOM	741	CA	GLU	921	11.301	33.025	25.693	1.00 29.12	б
MOTA	742	CB	GLU	921	12.215	33.237	24.485	1.00 99.98	6
ATOM	743	CG	GLU	921	13.435	34.081	24.798	1.00 99.98	6
ATOM	744	CD	GLU	921	13.165	35.574	24.753	1.00 99.98	6
ATOM	745		GLU	921	12.935	36.086	23.638	1.00 99.98	8
ATOM	746	OE2	GLU	921	13.156	36.228	25.824	1.00 99.98	8
ATOM	747	C	GLU	921	10.362	34.207	25.885	1.00 29.12	6
MOTA	748	0	GLU	921	10.452	34.929	26.869	1.00 29.12	8
ATOM	749	N	THR	922	9.455	34.375	24.932	1.00 52.74	7
ATOM	750	CA	THR	922	8.463	35.437	24.944	1.00 52.74	6
MOTA	751	CB	THR	922	7.450	35.207	23.800	1.00 53.34	6
ATOM	752	OG1	THR	922	8.038	35.598	22.558	1.00 53.34	8
MOTA	753	CG2	THR	922	6.167	35.977	24.026	1.00 53.34	6
MOTA	754	C	THR	922	7.706	35.498	26.265	1.00 52.74	6
MOTA	755	0	THR	922	7.923	36.398	27.077	1.00 52.74	8
MOTA	756	N	ASP	923	6.827	34.515	26.461	1.00 32.25	7
MOTA	757	CA	ASP	923	5.981	34.391	27.651	1.00 32.25	6
MOTA	758	CB	ASP	923	4.509	34.434	27.231	1.00 60.93	6
ATOM	759	CG	ASP	923	3.558	34.328	28.404	1.00 60.93	б
ATOM	760	OD1		923	3.762	35.032	29.415	1.00 60.93	8
ATOM	761	OD2		923	2.593	33.545	28.309	1.00 60.93	8
ATOM	762	C	ASP	923	6.295	33.083	28.361	1.00 32.25	6
MOTA	763	0	ASP	923	5.711	32.034	28.055	1.00 32.25	8
ATOM	764	N	PRO	924	7.216	33.146	29.346	1.00 33.34	7
MOTA	765	CD	PRO	924	7.426	34.381	30.130	1.00100.00	6
ATOM	766	CA	PRO	924	7.637	31.978	30.125	1.00 33.34	6
MOTA	767	CB	PRO	924	8.263	32.605	31.366	1.00100.00	6
MOTA	768	CG	PRO	924	7.488	33.863	31.535	1.00100.00	6
ATOM	769	С	PRO	924	6.464	31.030	30.456	1.00 33.34	6
ATOM	770	0	PRO	924	6.470	29.873	30.053	1.00 33.34	8
ATOM	771	N	ALA	925	5.460	31.543	31.164	1.00 69.10	7
MOTA	772	CA	ALA	925	4.282	30.781	31.603	1.00 69.10	6
ATOM	773	CB	ALA	925	3.311	31.735	32.255	1.00 73.73	6
ATOM	774	С	ALA	925	3.562	29.976	30.531	1.00 69.10	6
ATOM	775	0	ALA	925	3.802	28.779	30.384	1.00 69.10	8
ATOM	776	N	PHE	926	2.662	30.639	29.806	1.00 48.64	7
ATOM	777	CA	PHE	926	1.877	30.013	28.743	1.00 48.64	6
ATOM	778	CB	PHE	926	1.766	30.975	27.558	1.00 37.88	6
ATOM	779	CG	PHE	926	0.669	30.632	26.605	1.00 37.88	6
ATOM	780	CD1		926	-0.646	30.983	26.893	1.00 37.88	6
ATOM	781	CD2	PHE	926	0.926	29.853	25.479	1.00 37.88	6
ATOM	782	CEl	PHE	926	-1.679	30.560	26.089	1.00 37.88	6
ATOM	783	CE2	PHE	926	-0.106	29.420	24.668	1.00 37.88	6
MOTA	784	CZ	PHE	926	-1.406	29.774	24.977	1.00 37.88	6
ATOM	785	C	PHE	926	2.439	28.673	28.267	1.00 48.64	6
ATOM	786	0	PHE	926	1.752	27.656	28.298	1.00 48.64	8
ATOM	787	N	ALA	927	3.688	28.681	27.812	1.00 47.80	7

ATOM	788	CA	ALA	927	4.337	27.467	27.340	1.00	47.80	6
ATOM	789	CB	ALA	927	5.786	27.752	26.970	1.00	31.97	6
ATOM	790	C	ALA	927	4.272	26.297	28.314	1.00	47.80	6
ATOM	791	0	ALA	927	3.725	25.256	27.984	1.00	47.80	8
ATOM	792	N	ILE	928	4.850	25.439	29.499	1.00	44.35	7
ATOM	793	CA	ILE	928	4.810	25.346	30.457	1.00	44.35	6
ATOM	794	СВ	ILE	928	5.155	25.837	31.868	1.00	67.81	6
ATOM	795	CG2	ILE	928	5.834	24.735	32.641	1.00		6
ATOM	796	CG1	ILE	928	6.130	27.004	31.806	1.00		6
	797	CD1	ILE	928	7.542	26.594	31.485	1.00		6
ATOM								1.00		6
ATOM	798	C	ILE	928	3.410	24.718	30.494			8
ATOM	799	0	ILE	928	3.266	23.499	30.626	1.00		
ATOM	800	N	ALA	929	2.390	25.562	30.346	1.00		7
MOTA	801	CA	ALA	929	0.984	25.135	30.390	1.00		6
ATOM	802	CB	ALA	929	0.118	26.315	30.676	1.00	5.26	6
ATOM	803	С	ALA	929	0.457	24.440	29.156	1.00	42.29	6
MOTA	804	0	ALA	929	-0.225	23.429	29.252	1.00	42.29	8
ATOM	805	N	ASN	930	0.745	24.995	27.994	1.00	36.17	7
MOTA	806	CA	ASN	930	0.259	24.398	26.775	1.00	36.17	6
ATOM	807	CB	ASN	930	-0.230	25.506	25.852	1.00	57.20	6
MOTA	808	CG	ASN	930	-1.444	26.223	26.430	1.00	57.20	6
ATOM	809		ASN	930	-2.586	25.742	26.344	1.00	57.20	8
ATOM	810	ND2	ASN	930	-1.202	27.360	27.057	1.00		7
ATOM	811	C	ASN	930	1.295	23.486	26.128	1.00		6
ATOM	812	0	ASN	930	1.088	22.976	25.028		36.17	8
							26.834	1.00		7
ATOM	813	N	SER	931	2.401	23.259		1.00		6
ATOM	814	CA	SER	931	3.468	22.383	26.353			
ATOM	815	CB	SER	931	2.986	20.930	26.341		90.81	6
ATOM	816	OG	SER	931	2.790	20.433	27.659	1.00		8.
ATOM	817	C	SER	931	4.006	22.748	24.979	1.00		6
ATOM	818	0	SER	931	4.484	21.889	24.258	1.00		8
ATOM	819	N	THR	932	3.918	24.023	24.622	1.00 4		7
ATOM	820	CA	THR	932	4.397	24.510	23.334	1.00 4	48.32	6
ATOM	821	CB	THR	932	3.443	25.591	22.749	1.00	79.61	6
ATOM	822	OG1	THR	932	3.247	26.634	23.711	1.00	79.61	8
ATOM	823	CG2	THR	932	2.108	24.989	22.374	1.00	79.61	6
ATOM	824	C	THR	932	5.784	25.127	23.483	1.00 4	48.32	6
ATOM	825	0	THR	932	6.046	25.841	24.449	1.00 4	18.32	8
ATOM	826	N	ALA	933	6.667	24.854	22.527	1.00		7
ATOM	827	CA	ALA	933	8.009	25.436	22.552	1.00 5		6
ATOM	828	CB	ALA	933	9.057	24.378	22.297	1.00 2		6
			ALA	933	8.051	25.489	21.461	1.00		6
ATOM	829	С						1.00		8
ATOM	830	0 .,	ALA	933	8.936	27.339	21.437	1.00		7
ATOM	831	N	SER	934	7.098	26.393	20.543			
ATOM	832	CA	SER	934	6.978	27.340	19.469	1.00 2		6
ATOM	833	CB	SER	934	7.937	27.003	18.341	1.00		6
ATOM	834	OG	SER	934	7.630	27.748	17.167	1.00		8
ATOM	835	C	SER	934	5.552	27.315	18.959	1.00 2		6
ATOM	836	0	SER	934	4.897	26.270	19.001	1.00		8
ATOM	837	N	THR	935	5.080	28.468	18.488	1.00		7
ATOM	838	CA	THR	935	3.740	28.582	17.963	1.00	15.04	6
ATOM	839	CB	THR	935	3.387	30.101	17.642	1.00		6
ATOM	840		THR	935 ,	4.301	30.658	16.680	1.00		8
ATOM	841	CG2	THR	935	3.432	30.930	18.917	1.00		6
		C	THR	935	3.652	27.696	16.712	1.00		6
ATOM	842							1.00		8
ATOM	843	0	THR	935	2.594	27.154	16.407			7
ATOM	844	N	LEU	936	4.778	27.530	16.015	1.00	41.30	,

ATOM	845	CA	LEU	936	4.839	26.720	14.788	1.00 41.56	6
MOTA	846	CB	LEU	936	6.005	27.210	13.915	1.00 16.11	6
ATOM	847	CG	LEU	936	5.980	28.713	13.613	1.00 16.11	6
ATOM	848	CD1	LEU	936	7.108	29.067	12.679	1.00 16.11	6
ATOM	849	CD2	LEU	936	4.640	29.083	13.020	1.00 16.11	6
ATOM	850	С	LEU	936	4.958	25.203	15.018	1.00 41.56	6
ATOM	851	0	LEU	936	5.433	24.744	16.063	1.00 41.56	8
MOTA	852	N	SER	937	4.524	24.440	14.021	1.00 27.35	7
ATOM	853	CA	SER	937	4.551	22.989	14.081	1.00 27.35	6
MOTA	854	CB	SER	937	3.167	22.438	13.764	1.00 9.94	б
ATOM	855	OG	SER	937	2.884	22.429	12.374	1.00 9.94	8
ATOM	856	C	SER	937	5.574	22.357	13.128	1.00 27.35	6
ATOM	857	0	SER	937	6.180	23.041	12.291	1.00 27.35	8
MOTA	858	N	SER	938	5.752	21.043	13.257	1.00 23.83	7
MOTA	859	CA	SER	938	6.689	20.294	12.431	1.00 23.83	6
ATOM	860	CB	SER	938	6.678	18.813	12.838	1.00 31.90	6
MOTA	861	OG	SER	938	7.011	17.966	11.741	1.00 31.90	8
ATOM	862	C	SER	938	6.362	20.431	10.943	1.00 23.83	6
MOTA	863	0	SER	938	7.256	20.590	10.121	1.00 23.83	8
ATOM	864	N	GLN	939	5.083	20.382	10.597	1.00 34.70	7
ATOM	865	CA	GLN	939	4.704	20.491	9.206	1.00 34.70	6
ATOM	866	CB	GLN	939	3.296	19.955	9.022	1.00 40.81	6
MOTA	867	CG	GLN	939	3.189	18.544	9.538	1.00 40.81	6
ATOM	868	CD	GLN	939	4.026	17.558	8.732	1.00 40.81	6
MOTA	869	OEI		939	3.584	17.084	7.675	1.00 40.81	8
MOTA	870	NE2	GLN	939	5.243	17.254	9.216	1.00 40.81	7
ATOM	871	C	GLN	939	4.838	21.906	8.685	1.00 34.70	6
MOTA	872	Ο.	GLN	939	5.352	22.096	7.592	1.00 34.70	8
MOTA	873	N	GLN	940	4.388	22.906	9.435	1.00 22.70	7
ATOM	874	CA	GLN	940	4.556	24.267	8.950	1.00 22.70	6
ATOM	875	CB	GLN	940	4.094	25.286	9.986	1.00 30.92	6
ATOM	876	CG	GLN	940	4.588	26.679	9.679	1.00 30.92	6
ATOM	877	CD	GLN	940	3.663	27.483	8.790	1.00 30.92	6
ATOM	878			940	2.738	28.141	9.277	1.00 30.92	8
MOTA	879	NE2	GLN	940	3.891	27.427	7.482	1.00 30.92	7
ATOM	880	C	GLN	940	6.047	24.501	8.632	1.00 22.70	6
ATOM	881	0	GLN	940	6.381	25.050	7.574	1.00 22.70	8
ATOM	882	И.	LEU	941	6.934	24.076	9.535	1.00 22.33	7
ATOM	883	CA	LEU	941	8.377	24.242	9.348	1.00 22.33	6
ATOM	884	CB	LEU	941	9.137	23.858	10.599	1.00 19.37	6
MOTA	885	CG	LEU	941	8.939	24.738	11.806	1.00 19.37	б
ATOM	886	CD1	LEU	941	9.540	23.981	12.995	1.00 19.37	6
MOTA	887	ÇD2	LEU	941	9.613	26.094	11.606	1.00 19.37	6
MOTA	888	C	LEU	941	8.956	23.427	8.202	1.00 22.33	5
ATOM	889	0 .	LEU	941	9.994	23.781	7.648	1.00 22.33	8
ATOM	890	N	LEU	942	8.334	22.308	7.869	1.00 30.49	7
MOTA	891	CA	LEU	942	8.877	21.545	6.765	1.00 30.49	6
ATOM	892	CB	LEU	942	8.370	20.098	6.748	1.00 27.17	6
ATOM	893	CG	LEU	942	8.901	19.138	7.816	1.00 27.17	6
ATOM	894	CD1	LEU	942	8.244	17.799	7.576	1.00 27.17	6
ATOM	895	CD2	LEU	942	10.399	18.997	7.776	1.00 27.17	6
ATOM	896	С	LEU	942	8.445	22.285	5.517 _.	1.00 30.49	6
ATOM	897	0	LEU	942	9.211	22.408	4.582	1.00 30.49	8
ATOM	898	N	HIS	943	7.224	22.805	5.502	1.00 24.87	7
ATOM	899	CA	HIS	943	6.766	23.543	4.331	1.00 24.87	6
ATOM	900	CB	HIS	943	5.393	24.127	4.565	1.00 75.69	6
ATOM	901	CG	HIS	943	4.306	23.142	4.316	1.00 75.69	6

									_
MOTA	902	CD2	HIS	943	3.224	23.187	3.507	1.00 75.69	6
ATOM	903	ND1	HIS	943	4.317	21.892	4.884	1.00 75.69	7
ATOM	904	CE1	HIS	943	3.284	21.198	4.431	1.00 75.69	6
ATOM	905	NE2	HIS	943	2.608	21.960	3.596	1.00 75.69	7
ATOM	906	С	HIS	943	7.727	24.644	3.967	1.00 24.87	6
ATOM	907		HIS	943	8.112	24.794	2.815	1.00 24.87	8
ATOM	908	N	PHE	944	8.107	25.412	4.976	1.00 23.28	7
ATOM	909	CA	PHE	944	9.049	26.499	4.812	1.00 23.28	6
ATOM	910	CB	PHE	944	9.379	27.069	6.196	1.00 24.44	6
	911	CG	PHE	944	8.293	27.953	6.782	1.00 24.44	6
ATOM		CD1		944	8.361	28.370	8.101	1.00 24.44	6
ATOM	912		PHE	944	7.282	28.477	5.983	1.00 24.44	6
MOTA	913			944	7.449	29.299	8.598	1.00 24.44	6
ATOM	914	CE1			6.372	29.406	6.489	1.00 24.44	6
ATOM	915		PHE	944			7.792	1.00 24.44	6
MOTA	916	CZ	PHE	944	6.466	29.815	4.079	1.00 23.28	6
ATOM	917	C	PHE	944	10.301	26.011		1.00 23.28	8
ATOM	918	0	PHE	944	10.778	26.675	3.164		7
ATOM	919	N	ALA	945	10.829	24.855	4.470	1.00 15.27	
ATOM	920	CA	ALA	945	11.996	24.310	3.799	1.00 15.27	6
ATOM	921	CB	ALA	945	12.627	23.197	4.645	1.00 55.81	6
MOTA	922	С	ALA	945	11.644	23.804	2.386	1.00 15.27	б
ATOM	923	0	ALA	945	12.493	23.819	1.517	1.00 15.27	8
ATOM	924	N	ALA	946	10.408	23.368	2.139	1.00 9.68	7
ATOM	925	CA	ALA	946	10.011	22.897	0.795	1.00 9.68	6
ATOM	926	CB	ALA	946	8.734	22.042	0.869	1.00 20.69	6
ATOM	927	C	ALA	946	9.760	24.088	-0.114	1.00 9.68	6
	928	0	ALA	946	10.026	24.032	-1.319	1.00 9.68	8
ATOM	929	N	ASP	947	9.205	25.149	0.471	1.00 24.26	7
ATOM		CA	ASP	947	8.922	26.379	-0.245	1.00 24.26	6
ATOM	930	CB	ASP	947	8.300	27.430	0.671	1.00 51.33	6
ATOM	931			947	6.870	27.122	1.021	1.00 51.33	6
ATOM	932	CG	ASP	947	6.378	26.066	0.572	1.00 51.33	8
ATOM	933	OD1			6.248	27.934	1.740	1.00 51.33	8
ATOM	934	OD2		947		26.909	-0.772	1.00 24.26	6
ATOM	935	C	ASP	947	10.231		-1.979	1.00 24.26	8
ATOM	936	0	ASP	947	10.378	27.109		1.00 24.23	7
MOTA	937	N	VAL	948	11.192	27.120	0.123	1.00 17.83	6
ATOM	938	CA	VAL	948	12.458	27.641	-0.335		6
ATOM	939	CB	VAL	948	13.483	27.833	0.788	1.00 5.04	6
ATOM	940	CG1	VAL	948	14.786	28.296	0.175	1.00 5.04	
ATOM	941	CG2	VAL	948	13.012	28.856	1.801	1.00 5.04	6
ATOM	942	С	VAL	948	13.078	26.766	-1.412	1.00 17.83	6
ATOM	943.	٥	VAL	948	13.514	27.304	-2.425	1.00 17.83	8
ATOM	944	Ń	ALA	949	13.115	25.442	-1.219	1.00 24.98	7
ATOM	945	CA	ALA	949	13.697	24.531	-2.221	1.00 24.98	6
ATOM	946	CB	ALA	949	13.827	23.129	-1.666	1.00 53.47	6
ATOM	947	C	ALA	949	12.882	24.505	-3.505	1.00 24.98	6
ATOM	948	Ö	ALA	949	13.440	24.313	-4.576	1.00 24.98	8
	949	И	ARG	950	11.570	24.716	-3.413	1.00 23.96	7
ATOM		CA	ARG	950	10.742	24.733	-4.617	1.00 23.96	б
MOTA	950			950	9.239	24.736	-4.282	1.00 30.38	6
ATOM	951	CB	ARG			24.756	-5.419	1.00 30.38	6
ATOM	952	CG	ARG	950	8.302		-5.415	1.00 30.38	6
ATOM	953	CD	ARG	950	6.829	24.454	-3.648	1.00 30.38	7
ATOM	954	NE	ARG	950	6.567	24.306		1.00 30.38	6
ATOM	955	CZ	ARG	950	6.313	23.154	-3.030	1.00 30.38	7
ATOM	956	NHl	ARG	950	6.270	22.013	-3.723		7
MOTA	957	NH2	ARG	950	6.132	23.146	-1.708	1.00 30.38	6
ATOM	958	C	ARG	950	11.091	25.997	-5.391	1.00 23.96	0

ATOM	959	0	ARG	950	11.089	26.003	-6.617	1.00 23.96	8 7
ATOM	960	N	GLY	951	11.409	27.064	-4.667	1.00 35.74 1.00 35.74	6
ATOM	961	CA	GLY	951	11.749	28.315	-5.323	1.00 35.74 1.00 35.74	6
ATOM	962	C	GLY	951	13.156	28.338	-5.890	1.00 35.74	8
ATOM	963	0	GLY	951	13.439	29.046	-6.850	1.00 35.74	7
MOTA	964	N	MET	952	14.050	27.562	-5.294 -5.755	1.00 35.49	6
ATOM	965	CA	MET	952	15.430	27.512		1.00 33.43	6
ATOM	966	CB	MET	952	16.335	26.979	-4.656	1.00 28.83	6
ATOM	967	CG	MET	952	16.616	27.981	-3.562 -4.180	1.00 28.83	16
MOTA	968	SD	MET	952	17.396	29.511	-4.130	1.00 28.83	6
ATOM	969	CE	MET	952	18.963	28.883		1.00 28.83	6
MOTA	970	C	MET	952	15.553	26.645	-6.972	1.00 35.49	8
ATOM	971	0	MET	952	16.480	26.786	-7.759	1.00 33.45	7
ATOM	972	N	ASP	953	14.623	25.723	-7.119	1.00 22.04	6
ATOM	973	CA	ASP	953	14.658	24.863	-8.277	1.00 22.04	6
ATOM	974	CB	ASP	953	13.701	23.708	-8.065	1.00 46.74	6
ATOM	975	CG	ASP	953	13.868	22.649	-9.095 -9.119	1.00 46.74	8
ATOM	976		ASP	953	14.938	22.016	-9.894	1.00 46.74	8
ATOM	977		ASP	953	12.934	22.479	-9.534	1.00 22.04	6
ATOM	978	C	ASP	953	14.285	25.650 25.378		1.00 22.04	8
ATOM	979	0	ASP	953	14.796			1.00 22.04	7
ATOM	980	N	TYR	954	13.388	26.620	-9.391 -10.506	1.00 30.73	6
ATOM	981	CA	TYR	954	12.969		-10.308	1.00 46.88	6
ATOM	982	CB	TYR	954	11.735		-10.120	1.00 46.88	6
ATOM	983	CG	TYR	954	11.212		-12.198	1.00 46.88	6
MOTA	984	CD1	TYR	954	10.358		-13.139	1.00 46.88	6
ATOM	985	CE1	TYR	954	9.817		-11.131	1.00 46.88	.6
ATOM	986	CD2	TYR	954	11.523		-12.071	1.00 46.88	6
ATOM	987	CE2	TYR	954	10.987 10.139		-13.062	1.00 46.88	6
ATOM	988	CZ	TYR	954	9.618		-13.980	1.00 46.88	8
ATOM	989	OH	TYR TYR	954 954	14.104		-10.820	1.00 30.73	6
ATOM	990	C		954 954	14.484		-11.961	1.00 30.73	8
MOTA	991	0	TYR LEU	955	14.454	29.048	-9.801	1.00 22.51	7
ATOM	992 993	N CA	LEU	955 955	15.727		-10.043	1.00 22.51	6
ATOM	993 994	CB	LEU	955	16.100	30.747	-8.771	1.00 36.85	6
ATOM		CG	LEU	955	15.166	31.699	-8.184	1.00 36.85	6
ATOM	995 996		LEU	955	15.708	32.365	-7.021	1.00 36.85	6
MOTA	997	CD2	LEU	955	14.586	32.734	-9.210	1.00 36.85	6
ATOM	998	C	LEU	955	16.963	29.355	-10.619	1.00 22.51	6
ATOM ATOM	999	0	LEU	955	17.530		-11.560	1.00 22.51	8
ATOM	1000	N.	SER	956	17.403		-10.080	1.00 31.05	7
ATOM	1001	CA	SER	956	18.608		-10.615	1.00 31.05	6
ATOM	1002	CB	SER	956	18.998	26.380	-9.778	1.00 57.17	6
ATOM	1003	OG	SER	956	18.077	25.324	-9.989	1.00 57.17	8
ATOM	1003	C	SER	956	18.439		-12.084	1.00 31.05	6
ATOM	1005	0	SER	956	19.379		-12.858	1.00 31.05	8
ATOM	1005	N	GLN	957	17.247		-12.462	1.00 19.64	7
ATOM	1007	CA	GLN	957	16.932		-13.841	1.00 19.64	6
ATOM	1008	CB	GLN	957	15.580		-13.899	1.00 97.55	6
ATOM	1009	CG	GLN	957	15.565		-13.366	1.00 97.55	б
ATOM	1010	CD	GLN	957	16.884	23.460		1.00 97.55	6
	1010	OE1		957	17.543		-14.568	1.00 97.55	8
ATOM	1011	NE2	GLN	957	17.275		-12.532	1.00 97.55	7
ATOM	1012	C	GLN	957	16.901		-14.860	1.00 19.64	6
ATOM	1013	0	GLN	957	16.903		-16.054	1.00 19.64	8
ATOM		N	LYS	958	16.815		-14.370	1.00 37.82	7
ATOM	1015	1.4	HID	230	-0.077	20.000		-	

ATOM	1016	CA	LYS	958	16.801	29.851	-15.205	1.00 37.82	6
ATOM	1017	СВ	LYS	958	15.881	30.918	-14.601	1.00 51.85	6
MOTA	1018	CG	LYS	958	14.374	30.580	-14.569	1.00 51.85	б
ATOM	1019	CD	LYS	958	13.831	30.551	-15.986	1.00 51.85	6
MOTA	1020	CE	LYS	958	12.345	30.408	-15.083	1.00 51.85	6
ATOM	1021	NZ	LYS	958	12.076	30.168	-17.526	1.00 51.85	7
ATOM	1022	C	LYS	958	18.236	30.355	-15.192	1.00 37.82	6
ATOM	1023	0	LYS	958	18.528	31.466	-15.641	1.00 37.82	8
ATOM	1024	N	GLN	959	19.129		-14.634	1.00 37.14	7
ATOM	1025	CA	GLN	959	20.543	29.885	-14.550	1.00 37.14	6
ATOM ·	1026	CB	GLN	959	21.078		-15.942	1.00 59.23	6
ATOM	1027	CG	GLN	959	20.943		-16.925	1.00 59.23	6
ATOM	1028	CD	GLN	959	21.605		-16.441	1.00 59.23	6
ATOM	1029	OE1		959	22.832		-16.372	1.00 59.23	8
ATOM	1030	NE2	GLN	959	20.790		-16.047	1.00 59.23	7
ATOM	1031	C	GLN	959	20.914		-13.559	1.00 37.14	6
ATOM	1032	0	GLN	959	21.937		-13.751	1.00 37.14	8
ATOM	1033	N	PHE	960	20.097		-12.519	1.00 48.69	7
ATOM	1034	CA	PHE	960	20.369		-11.492	1.00 48.69	6
ATOM	1035	CB	PHE	960	19.067		-10.840	1.00 18.22	6
ATOM	1035	CG	PHE	960	18.261		-11.686	1.00 18.22	6
			PHE	960	17.426		-12.686	1.00 18.22	6
ATOM	1037	CD2	PHE	960			-11.493	1.00 18.22	6
ATOM	1038				18.343			1.00 18.22	6
ATOM	1039	CEI	PHE	960	16.677		-13.502	1.00 18.22	6
ATOM	1040	CE2	PHE	960	17.607		-12.296		6
ATOM	1041	CZ	PHE	960	16.777		-13.301	1.00 18.22 1.00 48.69	6
ATOM	1042	C	PHE	960	21.225		-10.402		
ATOM	1043	0	PHE	960	21.203		-10.251	1.00 48.69	8
ATOM	1044	N	ILE	961	22.000	32.348	-9.674	1.00 25.93	7
ATOM	1045	CA	ILE	961	22.814	31.840	-8.561	1.00 25.93	6
ATOM	1046	CB	ILE	961	24.347	31.827	-8.883	1.00 5.00	6
MOTA	1047	CG2	ILE	961	25.140	31.201	-7.756	1.00 5.00	6
ATOM	1048	CG1	ILE	961	24.610		-10.132	1.00 5.00	6
ATOM	1049	CD1	ILE	961	25.990		-10.676	1.00 5.00	6
ATOM	1050	C	ILE	961	22.542	32.864	-7.449	1.00 25.93	6
ATOM	1051	0	ILE	961	22.658	34.061	-7.689	1.00 25.93	8
ATOM	1052	N	HIS	962	22.193	32.412	-6.247	1.00 38.00	7
ATOM	1053	CA	HIS	962	21.871	33.355	-5.180	1.00 38.00	6
ATOM	1054	CB	HIS	962	21.093	32.661	-4.072	1.00 25.73	õ
MOTA	1055	ÇG	HIS	962	20.206	33.579	-3.289	1.00 25.73	б
ATOM	1056	CD2	HIS	962	20.482	34.461	-2.308	1.00 25.73	6
MOTA	1057	ND1	HIS	962	18.846	33.614	-3.475	1.00 25.73	7
ATOM	1058	.CE1	HIS	962	18.315	34.478	-2.625	1.00 25.73	6
ATOM	1059	NE2	HIS	962	19.282	35.004	-1.903	1.00 25.73	7
ATOM	1060	С	HIS	962	23.054	34.079	-4.573	1.00 38.00	6
ATOM	1061	0	HIS	962	23.119	35.303	-4.637	1.00 38.00	8
ATOM	1062	N	ARG	963	23.972	33.338	-3.958	1.00 61.33	7
ATOM	1063	CA	ARG	963	25.152	33.932	-3.334	1.00 61.33	6
ATOM	1064	CB	ARG	963	25.855	34.907	-4.306	1.00 42.94	6
ATOM	1065	CG	ARG	963	25.864	34.466	-5.753	1.00 42.94	6
ATOM	1066	CD	ARG	963	26.986	35.078	-6.571	1.00 42.94	6
ATOM	1067	NE	ARG	963	26.799	36.481	-6.929	1.00 42.94	7
ATOM	1068	CZ	ARG	963	26.940	37.488	-6.079	1.00 42.94	6
ATOM	1069		ARG	963	27.268	37.258	-4.809	1.00 42.94	7
ATOM	1070		ARG	963	26.752	38.723	-6.508	1.00 42.94	7
ATOM	1071	C	ARG	963.	24.756	34.688	-2.062	1.00 61.33	6
ATOM	1072	0	ARG	963	25.543	35.464	-1.528	1.00 61.33	8
111011	20,2	_							

22/171

MOTA	1073	N	ASN	964	23.549	74 460	7 557	1 00 27 36	7
						34.460	-1.561	1.00 37.36	7
ATOM	1074	CA	ASN	964	23.111	35.212	-0.384	1.00 37.36	6
ATOM	1075	CB	ASN	964	22.742	36.636	-0.805	1.00 69.75	6
ATOM	1076	CG	ASN	964	23.319	37.670	0.107	1.00 69.75	6
ATOM	1077		ASN	964	23.337	37.499	1.324	1.00 69.75	8
MOTA	1078	ND2		964	23.792	38.761	-0.468	1.00 69.75	7
MOTA	1079	С	ASN	964	21.909	34.573	0.273	1.00 37.36	6
ATOM	1080	0	ASN	964	21.096	35.251	0.890	1.00 37.36	8
ATOM	1081	N	LEU	965	21.812	33.258	0.133	1.00 45.72	7
ATOM	1082	CA	LEU	965	20.691	32.503	0.666	1.00 45.72	6
ATOM	1083	CB	LEU	965	20.515	31.230	-0.182	1.00 22.49	6
ATOM	1084	CG	LEU	965	19.348	30.261	-0.002	1.00 22.49	6
ATOM	1085	CD1	LEU	965	19.237	29.344	-1.189	1.00 22.49	6
MOTA	1086	CD2	LEU	965	19.565	29.461	1.252	1.00 22.49	6
MOTA	1087	С	LEU	965	20.867	32.180	2.151	1.00 45.72	6
ATOM	1088	0	LEU	965	21.862	31.584	2.564	1.00 45.72	8
ATOM	1089	N	ALA	966	19.898	32.605	2.948	1.00 9.29	7
ATOM	1090	CA	ALA	966	19.899	32.364	4.386	1.00 9.29	6
ATOM	1091	CB	ALA	966	20.870	33.291	5.057	1.00 5.00	6
ATOM	1092	C	ΑĽΑ	966	18.474	32.615	4.891	1.00 9.29	6
ATOM	1093	0	ALA	966	17.613	32.963	4.107	1.00 9.29	8
ATOM	1094	N	ALA	967	18.209	32.464	6.181	1.00 20.93	7
ATOM	1095	CA	ALA	967	16.855	32.698	6.627	1.00 20.93	6
ATOM	1096	CB	ALA	967	16.627	32.084	7.989	1.00 8.30	6
ATOM	1097	C	ALA	967	16.481	34.170	6.630	1.00 20.93	6
ATOM	1098	0	ALA	967	15.335	34.486	6.393	1.00 20.93	8
ATOM	1099	N	ARG	968	17.423	35.077	6.875	1.00 18.97	7
ATOM	1100	CA	ARG	968	17.100	36.503	6.901	1.00 18.97	6
ATOM	1101	CB	ARG	968	18.298	37.322	7.381	1.00 55.21	6
ATOM	1102	CG	ARG	968	19.596	36.932	6.747	1.00 55.21	6
ATOM	1103	CD	ARG	968	20.653	38.006	6.946	1.00 55.21	6
ATOM	1104	NE	ARG	968	21.881	37.608	6.275	1.00 55.21	7
ATOM	1104	CZ	ARG	968	22.617	36.572	6.652	1.00 55.21	6
ATOM	1105	NH1	ARG	968			7.704	1.00 55.21	7
					22.246	35.846			7
ATOM	1107	NH2	ARG	968	23.697	36.244	5.954	1.00 55.21	6
ATOM	1108	C	ARG	968	16.632	37.016	5.548	1.00 18.97	
ATOM	1109	0	ARG	968	15.790	37.915	5.477	1.00 18.97	8
ATOM	1110	N	ASN	969	17.165	36.427	4.481	1.00 17.09	7
ATOM	1111	CA	ASN	969	16.820	36.815	3.109	1.00 17.09	6
ATOM	1112	CB	ASN	969	18.008	36.589	2.179	1.00 47.15	6
ATOM	1113	CG	ASN	969	19.028	37.700	2.240	1.00 47.15	6
MOTA	1114		ASN	969	20.137	37.547		1.00 47.15	8
ATOM	1115	ND2		969	18.661	38.831	2.842	1.00 47.15	7
MOTA	1116	C	ASN	969	15.619	36.088	2.526	1.00 17.09	6
MCTA	1117	0	ASN	969	15.524	35.926	1.318	1.00 17.09	8
ATOM	1118	N	ILE	970	14.725	35.625	3.385	1.00 17.16	7
MOTA	1119	CA	ILE	970	13.527	34.939	2.933	1.00 17.16	б
MOTA	1120	CB	ILE	970	13.521	33.425	3.353	1.00 5.00	б
ATOM	1121	CG2	ILE	970	12.211	32.763	2.943	1.00 5.00	6
MOTA	1122	CG1	ILE	970	14.716	32.686	2.742	1.00 5.00	6
MOTA	1123	CD1	ILE	970	14.542	32.175	1.313	1.00 5.00	6
ATOM	1124	С	ILE	970	12.395	35.687	3.653	1.00 17.16	6
ATOM	1125	0	ILE	970	12.454	35.923	4.864	1.00 17.16	8
ATOM	1126	N	LEU	971	11.365	36.047	2.903	1.00 27.06	7
ATOM	1127	CA	LEU	971	10.234	36.784	3.443	1.00 27.06	6
ATOM	1128	CB	LEU	971	10.000	38.039	2.584	1.00 23.00	6
ATOM	1129	CG	LEU	971	11.152	39.063	2.555	1.00 23.00	6

ATOM	1130	CD1	LEU	971	11.197	39.762	1.249	1.00 23.00	6
ATOM	1131	CD2	LEU	971	10.990	40.054	3.689	1.00 23.00	6
ATOM	1132	C	LEU	971	8.984	35.910	3.465	1.00 27.06	6
ATOM	1133	0	LEU	971	8.730	35.192	2.511	1.00 27.06	8
MOTA	1134	N	VAL	972	8.218	35.967	4.558	1.00 35.27	7
MOTA	1135	CA	VAL	972	6.974	35.188	4.710	1.00 35.27	6
ATOM	1136	CB	VAL	972	6.641	34.916	6.237	1.00 15.12	6
MOTA	1137	CG1	VAL	972	5.384	34.069	6.387	1.00 15.12	6
ATOM	1138	CG2	VAL	972	7.806	34.239	6.917	1.00 15.12	6
MOTA	1139	C	VAL	972	5.805	35.979	4.086	1.00 35.27	6
MOTA	1140	0	VAL	972	5.220	36.848	4.727	1.00 35.27	8
MOTA	1141	N	GLY	973	5.466	35.686	2.841	1.00 28.86	7
MOTA	1142	CA	GLY	973	4.378	36.404	2.212	1.00 28.86	6
MOTA	1143	C	\mathtt{GLY}	973	3.021	35.983	2.743	1.00 28.86	6
MOTA	1144	0	\mathtt{GLY}	973	2.933	35.251	3.734	1.00 28.86	8
MOTA	1145	N	GLU	974	1.954	36.429	2.092	1.00 36.97	7
MOTA	1146	CA	GLU	974	0.621	36.081	2.554	1.00 36.97	6
ATOM	1147	CB	GLU	974	-0.434	36.662	1.619	1.00 98.72	6
ATOM	1148	CG	GLU	974	-1.001	37.980	2.107	1.00 98.72	6
MOTA	1149	CD	GLU	974	-1.619	37.873	3.503	1.00 98.72	6
ATOM	1150	OE1	GLU	974	-2.364	36.904	3.759	1.00 98.72	8
ATOM	1151	OE2	GLU	974	-1.368	38.763	4.342	1.00 98.72	8
ATOM	1152	С	GLU ,	974	0.418	34.585	2.720	1.00 36.97	6
ATOM	1153	0	GLU	974	1.049	33.768	2.034	1.00 36.97	8
ATOM	1154	N	ASN	975	-0.474	34.253	3.649	1.00 50.17	7
ATOM	1155	CA	ASN	975	-0.811	32.878	3.980	1.00 50.17	6
ATOM	1156	CB	ASN	975	-1.496	32.190	2.812	1.00 49.51	6
ATOM	1157	CG	ASN	975	-2.900	32.725	2.577	1.00 49.51	6
ATOM	1158		ASN	975	-3.688	32.725	1.834	1.00 49.51	8
ATOM	1159		ASN	975	-3.218	33.851	3.213	1.00 49.51	7
ATOM	1160	C	ASN	975	0.432	32.122	4.392	1.00 50.17	6
ATOM	1161	0	ASN	975	0.528	30.910	4.222	1.00 50.17	8
ATOM	1162	·N	TYR	976	1.386	32.871	4.931	1.00 34.67	7
ATOM	1163	CA	TYR	976	2.637	32.335	5.427	1.00 34.67	6
ATOM	1164	CB	·TYR	976	2.386	31.613	6.734	1.00 32.84	6
ATOM	1165	CG	TYR	976	1.690	32.497	7.736	1.00 32.84	6
ATOM	1166		TYR	976	0.309	32.654	7.715	1.00 32.84	6
ATOM	1167	CE1	TYR	976	-0.328	33.464	8.525	1.00 32.84	6
ATOM	1168	CD2	TYR	976			8.693		6
ATOM	1169	CE2	TYR	976	2.411 1.792	33.182	9.602	1.00 32.84	6
ATOM	1170	CZ	TYR						6
	1170		TYR	976 976	0.422	34.129	9.571		-
ATOM		OH			-0.210	34.897	10.515	1.00 32.84	8
ATOM	1172	C:	TYR	976	3.376	31.440	4.475	1.00 34.67	6
ATOM	1173	0	TYR	976	. 3.903	30.410	4.875	1.00 34.67	8
ATOM	1174	N	VAL	977	3.436	31.857	3.217	1.00 16.20	7
ATOM	1175	CA	VAL	977	4.135	31.111	2.181	1.00 16.20	6
ATOM	1176	CB	VAL	977	3.297	31.091	0.876	1.00 9.07	6
ATOM	1177	CG1		977	4.187	30.767	-0.331	1.00 9.07	6
ATOM	1178	CG2		977	2.153	30.102	1.005	1.00 9.07	6
ATOM	1179	C	VAL	977	5.490	31.755	1.900	1.00 16.20	6
ATOM	1180	0	VAL	977	5.545	32.795	1.284	1.00 16.20	8
MOTA	1181	N	ALA	978	6.571	31.126	2.337	1.00 15.88	7
MOTA	1182	CA	ALA	978	7.924	31.643	2.141	1.00 15.88	6
ATOM	1183	СВ	ALA	978	8.940	30.547	2.439	1.00 21.88	6
MOTA	1184	С	ALA	978	8.238	32.215	0.757	1.00 15.88	6
ATOM	1185	0	ALA	978	7.905	31.630	-0.268	1.00 15.88	8
MOTA	1186	N	LYS	979	8.920	33.352	0.736	1.00 28.57	7

					_			- 00 00	_
MOTA	1187	CA	LYS	979	9.284	34.011	-0.508	1.00 28.57	6 6
ATOM	1188	CB	LYS	979	8.468	35.289	-0.621	1.00 15.51	
ATOM	1189	CG	LYS	979	6.969	35.078	-0.838	1.00 15.51	6
MOTA	1190	CD	LYS	979	6.698	34.786	-2.297	1.00 15.51	6
ATOM	1191	CE	LYS	979	5.254	35.044	-2.662	1.00 15.51	6
MOTA	1192	NZ	LYS	979	4.388	34.606	-1.545	1.00 15.51	7 6
ATOM	1193	С	LYS	979	10.800	34.294	-0.506	1.00 28.57	
MOTA	1194	0	LYS	979	11.348	34.679	0.525	1.00 28.57	8
MOTA	1195	N	ILE	980	11.458	34.082	-1.655	1.00 23.28	7
MOTA	1196	CA	ILE	980	12.914	34.271	-1.815	1.00 23.28	6
MOTA	1197	CB	ILE	980	13.507	33.236	-2.812	1.00 12.16	6
MOTA	1198	CG2	ILE	980	14.986	33.535	-3.046	1.00 12.16	6
ATOM	1199	CG1	ILE	980	13.309	31.804	-2.268	1.00 12.16	6
MOTA	1200	CD1	ILE	980	13.475	30.688	-3.319	1.00 12.16	6
MOTA	1201	C	ILE	980	13.270	35.665	-2.301	1.00 23.28	6
MOTA	1202	0	ILE	980	12.739	36.135	-3.292	1.00 23.28	8
ATOM	1203	N	ALA	981	14.185	36.335	-1.623	1.00 30.98	7
MOTA	1204	CA	ALA	981	14.538	37.683	-2.040	1.00 30.98	6
ATOM	1205	CB	ALA	981	13.810	38.664	-1.156	1.00 12.02	6
MOTA	1206	С	ALA	981	16.047	37.959	-2.021	1.00 30.98	6
ATOM	1207	0	ALA	981	16.840	37.172	-1.499	1.00 30.98	8
ATOM	1208	N	ASP	982	16.433	39.094	-2.589	1.00 70.73	7
ATOM	1209	CA	ASP	982	17.834	39.511	-2.652	1.00 70.73	6
ATOM	1210	CB	ASP	982	18.327	39.939	-1.272	1.00 99.58	6
ATOM	1211	CG	ASP	982	19.512	40.861	-1.358	1.00 99.58	6
ATOM	1212		ASP	982	19.287	42.012	-1.783	1.00 99.58	8
ATOM	1213		ASP	982	20.646	40.436	-1.039	1.00 99.58	8
ATOM	1214	C	ASP	982	18.821	38.488	-3.199	1.00 70.73	6
ATOM	1215	Ō	ASP	982	19.686	38.005	-2.477	1.00 70.73	8
ATOM	1216	N	PHE	983	18.703	38.184	-4.479	1.00 67.82	7
ATOM	1217	CA	PHE	983	19.595	37.229	-5.095	1.00 67.82	6
ATOM	1218	CB	PHE	983	18.781	36.124	-5.784	1.00 46.69	6
ATOM	1219	CG	PHE	983	17.480	36.593	-6.382	1.00 46.69	б
ATOM	1220	CD1	PHE	983	17.423	37.752	-7.143	1.00 46.69	6
ATOM	1221	CD2	PHE	983	16.317	35.852	-6.222	1.00 46.69	6
ATOM	1222	CEI	PHE	983	16.229	38.166	-7.737	1.00 46.69	6
ATOM	1223	CE2	PHE	983	15.122	36.259	-6.814	1.00 46.69	6
ATOM	1224	CZ	PHE	983	15.080	37:413	-7.570	1.00 46.69	6
	1225	C	PHE	983	20.552	37.905	-6.081	1.00 67.82	6
ATOM	1225	0	PHE	983	20.451	39.112	-6.338	1.00 67.82	8
ATOM		И	GLY	984	21.497	37.128	-6.599	1.00 44.02	7
ATOM	1227	_	GLY	984	22.467	37.644	-7.543	1.00 44.02	6
ATOM	1228.	ÇA	GLY	984	21.911	37.639	-8.954	1.00 44.02	6
MOTA	1229	מ	GLY	984	21.520	36.599	-9.488	1.00 44.02	8
MOTA	1230	0	LEU	985	21.875	38.816	-9.562	1.00100.00	7
MOTA	1231	N	LEU	985	21.363		-10.917	1.00100.00	6
ATOM	1232	CA		985	20.792		-11.126	1.00 41.04	6
ATOM	1233	CB	LEU LEU	985	19.455		-10.434	1.00 41.04	6
MOTA	1234	CG			18.448		-10.945	1.00 41.04	6
MOTA	1235		LEU	985	19.577	40.549	-8.925	1.00 41.04	б
ATOM	1236	CD2		985			-11.920	1.00100.00	6
MOTA	1237	C	LEU	985	22.473		-13.004	1.00100.00	8
MOTA	1238	0	LEU	985	22.517		-11.539	1.00 42.70	7
MOTA	1239	N	SER	986	23.383			1.00 42.70	6
MOTA	1240	CA	SER	986	24.484		-12.416	1.00 42.70	6
MOTA	1241	CB	SER	986	25.818		-11.697	1.00 68.70	8
MOTA	1242	OG	SER	986	25.996		-11.346	1.00 42.70	6
MOTA	1243	С	SER	986	24.295	35.955	-12.780	1.00 42.70	_

ATOM 1245 N ARG 987 23.381 35.697 -13.703 1.00 47.12 7 ATOM 1246 CA ARG 987 23.068 34.336 -14.124 1.00 47.12 6 ATOM 1247 CB ARG 987 21.873 34.383 -15.045 1.00 55.43 6 ATOM 1248 CG ARG 987 20.828 35.354 -14.585 1.00 55.43 6 ATOM 1249 CD ARG 987 19.927 35.581 -15.728 1.00 55.43 6 ATOM 1250 NE ARG 987 19.371 34.311 -16.169 1.00 55.43 7 ATOM 1251 CZ ARG 987 18.891 34.116 -17.385 1.00 55.43 6 ATOM 1252 NH1 ARG 987 18.924 35.110 -18.261 1.00 55.43 7 ATOM 1253 NH2 ARG 987 18.364 32.946 -17.713 1.00 55.43 7			_		006	24 056	25 070	12 238	1.00 42.70	8
ATOM 1246 CA ARG 987 23.068 34.336 -14.124 1.00 47.12 6 ATOM 1247 CB ARG 987 21.873 34.383 -15.045 1.00 55.43 6 ATOM 1248 CG ARG 987 20.828 35.354 -14.585 1.00 55.43 6 ATOM 1249 CD ARG 987 19.927 35.581 -15.728 1.00 55.43 6 ATOM 1250 NE ARG 987 19.927 35.581 -15.728 1.00 55.43 6 ATOM 1251 CZ ARG 987 19.927 34.311 -16.169 1.00 55.43 7 ATOM 1251 CZ ARG 987 18.991 34.116 -17.385 1.00 55.43 7 ATOM 1252 NH1 ARG 987 18.991 34.116 -17.385 1.00 55.43 7 ATOM 1253 NH2 ARG 987 18.991 34.116 -17.385 1.00 55.43 7 ATOM 1254 C ARG 987 18.991 34.116 -17.385 1.00 55.43 7 ATOM 1255 O ARG 987 24.294 35.110 -18.261 1.00 55.43 7 ATOM 1255 O ARG 987 24.294 35.110 -18.261 1.00 55.43 7 ATOM 1255 O ARG 987 24.294 33.608 -14.823 1.00 47.12 6 ATOM 1256 N GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1255 O ARG 987 24.990 34.223 -15.535 1.00 47.12 8 ATOM 1256 N GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1250 O GLY 988 24.891 32.294 -14.629 1.00 32.39 6 ATOM 1250 O GLY 988 24.891 32.294 -14.629 1.00 32.39 6 ATOM 1260 N GLN 989 25.330 31.512 -15.274 1.00 32.39 8 ATOM 1260 N GLN 989 26.999 29.978 -14.382 1.00 53.32 7 ATOM 1261 CA GLN 989 27.53 28.766 -13.738 1.00 53.32 7 ATOM 1261 CA GLN 989 27.53 28.766 -13.738 1.00 53.32 6 ATOM 1262 CB GLN 989 27.55 28.6759 -15.207 1.00 52.63 6 ATOM 1264 CD GLN 989 27.55 24.677 -15.207 1.00 52.63 6 ATOM 1265 OEI GLN 989 27.55 24.677 -13.985 1.00 52.63 6 ATOM 1266 NEZ GLN 989 27.35 24.677 -13.985 1.00 52.63 6 ATOM 1267 CC GLN 989 27.95 24.855 -16.052 1.00 52.63 6 ATOM 1267 CC GLN 989 27.95 24.855 -16.052 1.00 52.63 6 ATOM 1267 CC GLU 990 32.876 27.979 -14.751 1.00 52.63 6 ATOM 1267 CC GLU 990 32.876 27.979 -10.927 1.00 50.646 6 ATOM 1270 CA GLU 990 32.876 27.979 -10.927 1.00 50.646 6 ATOM 1270 CA GLU 990 32.876 27.979 -10.927 1.00 50.646 6 ATOM 1271 CB GLU 990 33.448 27.78 -12.099 1.00 60.466 6 ATOM 1272 CG GLU 990 33.448 27.78 -12.099 1.00 60.46 6 ATOM 1273 CD GLU 990 33.488 27.78 -12.099 1.00 60.46 6 ATOM 1284 O VAL 991 30.639 32.470 -10.387 1.00 47.34 6 ATOM 1286 CR TYR 992 33.638 35.517 -9.103 1.	ATOM	1244	0	SER	986	24.956				
ATOM 1246 CG ARG 987 21.873 34.383 -15.045 1.00 55.43 6 ATOM 1249 CD ARG 987 20.828 35.354 -14.585 1.00 55.43 6 ATOM 1249 CD ARG 987 19.927 35.581 -15.728 1.00 55.43 6 ATOM 1250 NE ARG 987 19.927 35.581 -15.728 1.00 55.43 6 ATOM 1250 NE ARG 987 18.891 34.116 -17.385 1.00 55.43 6 ATOM 1251 CZ ARG 987 18.891 34.116 -17.385 1.00 55.43 6 ATOM 1252 NH1 ARG 987 18.924 35.110 -18.261 1.00 55.43 7 ATOM 1253 NH2 ARG 987 18.924 35.110 -18.261 1.00 55.43 7 ATOM 1255 NH2 ARG 987 18.394 32.946 -17.713 1.00 55.43 7 ATOM 1255 NH2 ARG 987 24.990 34.223 -15.535 1.00 47.12 8 ATOM 1255 O ARG 987 24.990 34.223 -15.535 1.00 47.12 8 ATOM 1256 N GLY 988 24.281 32.294 -14.659 1.00 32.39 6 ATOM 1256 C GLY 988 25.704 30.203 -14.527 1.00 32.39 6 ATOM 1256 C GLY 988 25.704 30.203 -14.527 1.00 32.39 6 ATOM 1256 C GLY 988 25.704 30.203 -14.527 1.00 32.39 6 ATOM 1256 C GLY 988 25.704 30.203 -14.527 1.00 32.39 6 ATOM 1256 C GLY 988 27.473 28.756 -13.738 1.00 53.32 7 ATOM 1261 CA GLN 989 26.999 29.978 -14.382 1.00 53.32 7 ATOM 1262 CB GLN 989 27.536 26.759 -14.561 1.00 52.63 6 ATOM 1264 CD GLN 989 27.056 26.759 -14.761 1.00 52.63 6 ATOM 1265 CG GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1266 N GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1266 N GLN 989 27.058 25.407 -15.328 1.00 53.32 6 ATOM 1266 N GLN 989 27.058 25.10 53.32 1.00 52.63 7 ATOM 1266 N GLN 989 27.058 25.759 -15.507 1.00 52.63 6 ATOM 1266 N GLN 989 27.058 25.759 -15.507 1.00 52.63 6 ATOM 1266 N GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1266 N GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1266 N GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1267 C GLN 989 27.584 25.30 25.337 -15.120 1.00 52.63 7 ATOM 1267 C GLN 989 27.584 25.30 25.337 -15.120 1.00 52.63 7 ATOM 1268 O GLN 989 28.693 25.30 26 -12.552 1.00 57.00 6 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 30.072 30.32										
ATOM 1249 CG ARG 987 20.828 35.384 -14.885 1.00 55.43 6 ATOM 1250 NE ARG 987 19.927 35.581 -15.728 1.00 55.43 6 ATOM 1250 NE ARG 987 19.927 35.581 -15.278 1.00 55.43 7 ATOM 1251 CZ ARG 987 18.891 34.116 -17.385 1.00 55.43 7 ATOM 1251 CZ ARG 987 18.924 35.110 -18.261 1.00 55.43 7 ATOM 1252 NH1 ARG 987 18.924 35.110 -18.261 1.00 55.43 7 ATOM 1253 NH2 ARG 987 18.924 35.110 -18.261 1.00 55.43 7 ATOM 1253 NH2 ARG 987 24.204 33.608 -14.823 1.00 47.12 6 ATOM 1255 O ARG 987 24.204 33.608 -14.823 1.00 47.12 6 ATOM 1255 O ARG 987 24.204 33.608 -14.823 1.00 47.12 6 ATOM 1255 O ARG 987 24.204 33.608 -14.823 1.00 47.12 6 ATOM 1256 N GLY 988 25.330 31.512 -15.274 1.00 32.39 7 ATOM 1256 N GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1258 C GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1258 C GLY 988 24.832 29.393 -14.275 1.00 32.39 8 ATOM 1260 N GLN 989 26.999 29.978 -14.382 1.00 53.32 6 ATOM 1261 CA GLN 989 26.999 29.978 -14.382 1.00 53.32 6 ATOM 1261 CA GLN 989 26.063 27.789 -14.761 1.00 52.63 6 ATOM 1262 CB GLN 989 27.435 28.756 -13.738 1.00 53.32 6 ATOM 1263 CG GLN 989 27.533 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.553 24.672 -15.274 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.553 24.672 -15.274 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.553 24.672 -13.985 1.00 52.63 8 ATOM 1267 C GLN 989 27.553 24.672 -13.985 1.00 52.63 8 ATOM 1267 C GLN 989 27.553 24.672 -13.985 1.00 52.63 6 ATOM 1267 C GLN 989 27.555 24.672 -13.985 1.00 52.63 6 ATOM 1267 C GLN 989 27.555 24.672 -13.985 1.00 52.63 6 ATOM 1267 C GLN 989 27.555 24.672 -13.985 1.00 52.63 6 ATOM 1270 CB GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1272 CB GLU 990 30.688 31.814 -11.523 1.00 57.00 6 ATOM 1271 CB GLU 990 30.688 31.814 -11.523 1.00 57.00 6 ATOM 1278 C ALU 991 30.488 27.718 -12.049 1.00 60.46 6 ATOM 1278 C ALU 991 30.488 27.718 -12.049 1.00 60.46 6 ATOM 1278 C ALU 991 30.488 27.718 -12.049 1.00 60.46 6 ATOM 1278 C ALU 991 30.488 33.517 -9.103										
ATOM 1259 CD ARG 987 19.927 35.581 -15.728 1.00 55.43 6 ATOM 1250 NE ARG 987 19.927 35.581 -15.728 1.00 55.43 6 ATOM 1251 CZ ARG 987 18.891 34.116 -17.385 1.00 55.43 6 ATOM 1252 NH1 ARG 987 18.891 34.116 -17.385 1.00 55.43 7 ATOM 1253 NH2 ARG 987 18.891 34.116 -17.385 1.00 55.43 7 ATOM 1253 NH2 ARG 987 18.924 35.110 -18.261 1.00 55.43 7 ATOM 1254 C ARG 987 24.900 34.223 -15.535 1.00 47.12 8 ATOM 1255 O ARG 987 24.900 34.223 -15.535 1.00 47.12 8 ATOM 1255 O ARG 987 24.990 34.223 -15.535 1.00 47.12 8 ATOM 1256 N GLY 988 24.281 32.294 -14.629 1.00 32.39 6 ATOM 1258 C GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1258 C GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1256 O GLY 988 24.832 29.393 -14.575 1.00 32.39 6 ATOM 1256 O GLY 988 24.832 29.393 -14.575 1.00 32.39 6 ATOM 1260 N GLN 989 26.999 29.978 -14.382 1.00 53.32 7 ATOM 1261 CA GLN 989 27.056 26.759 -14.501 1.00 52.63 6 ATOM 1262 CB GLN 989 27.056 26.759 -14.501 1.00 52.63 6 ATOM 1262 CB GLN 989 27.056 26.759 -14.501 1.00 52.63 6 ATOM 1265 OEI GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.558 24.672 -13.985 1.00 52.63 8 ATOM 1266 NE2 GLN 989 27.558 24.672 -13.985 1.00 52.63 8 ATOM 1266 O GLN 989 27.355 24.672 -13.985 1.00 52.63 8 ATOM 1266 O GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1267 C GLN 989 28.212 24.855 -16.052 1.00 52.63 8 ATOM 1267 C GLN 989 28.212 24.855 -16.052 1.00 52.63 8 ATOM 1267 C GLU 990 31.320 29.082 30.096 -12.532 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.982 30.096 -12.532 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.982 30.096 -12.532 1.00 57.00 6 ATOM 1271 CB GLU 990 31.348 27.718 -12.097 1.00 60.46 6 ATOM 1273 CB GLU 990 31.488 27.718 -12.099 1.00 60.46 6 ATOM 1273 CB GLU 990 31.488 27.718 -12.099 1.00 60.46 6 ATOM 1273 CB GLU 990 31.488 27.718 -12.099 1.00 60.46 6 ATOM 1278 N VAL 991 30.569 31.320 29.522 -11.653 1.00 67.34 6 ATOM 1280 CB VAL 991 30.569 31.320 -12.539 1.00 67.34 6 ATOM 1280 CB VAL 991 30.569 31.320 -12.539 1.00 67.34 6 ATOM 1280	ATOM									
ATOM 1250 NE ARG 987 19.371 34.116 -17.385 1.00 55.43 7 ATOM 1251 CZ ARG 987 18.991 34.116 -17.385 1.00 55.43 7 ATOM 1252 NHI ARG 987 18.991 34.116 -17.385 1.00 55.43 7 ATOM 1252 NHI ARG 987 18.991 34.116 -17.385 1.00 55.43 7 ATOM 1253 NHZ ARG 987 18.364 12.946 -17.713 1.00 55.43 7 ATOM 1254 C ARG 987 24.290 33.608 -14.823 1.00 47.12 6 ATOM 1255 O ARG 987 24.990 34.223 -15.535 1.00 47.12 6 ATOM 1255 O ARG 987 24.990 34.223 -15.535 1.00 47.12 6 ATOM 1255 C GLY 988 24.281 32.294 -14.629 1.00 33.39 7 ATOM 1257 CA GLY 988 25.300 31.512 -15.274 1.00 32.39 6 ATOM 1258 C GLY 988 24.832 29.393 -14.275 1.00 32.39 6 ATOM 1259 O GLY 988 24.832 29.393 -14.275 1.00 32.39 8 ATOM 1250 N GLN 989 27.473 28.756 -13.738 1.00 53.22 7 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.22 7 ATOM 1262 CB GLN 989 27.633 27.789 -14.761 1.00 53.63 6 ATOM 1263 CG GLN 989 27.583 25.337 -15.120 1.00 53.63 6 ATOM 1264 CD GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1265 OBI GLN 989 27.553 25.337 -15.120 1.00 52.63 6 ATOM 1266 NB2 GLN 989 27.553 25.337 -15.120 1.00 52.63 7 ATOM 1266 NB2 GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1267 C GLN 989 28.643 28.026 -12.631 1.00 53.22 8 ATOM 1268 O GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1268 O GLN 989 27.355 24.672 -13.985 1.00 53.32 8 ATOM 1267 C GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1273 CD GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 31.320 29.532 -10.367 1.00 60.46 6 ATOM 1273 CD GLU 990 30.672 30.388 -11.503 1.00 67.00 6 ATOM 1271 CB GLU 990 30.672 30.386 -11.532 1.00 60.46 6 ATOM 1272 CG GLU 990 31.320 29.532 -10.367 1.00 60.46 6 ATOM 1272 CG GLU 990 31.320 29.532 -10.367 1.00 60.46 6 ATOM 1273 CD GLU 990 30.673 31.594 -17.595 1.00 60.46 6 ATOM 1275 O CE GLU 990 31.320 29.532 -10.367 1.00 60.46 6 ATOM 1278 N VAL 991 30.563 31.814 -11.523 1.00 60.46 6 ATOM 1279 CA VAL 991 30.563 31.814	MOTA									
ATOM 1251 CZ ARG 987 18.891 34.116 -17.385 1.00 55.43 6 ATOM 1252 NHI ARG 987 18.924 35.110 -18.261 1.00 55.43 7 ATOM 1253 NHZ ARG 987 18.364 32.946 -17.713 1.00 55.43 7 ATOM 1255 C ARG 987 24.204 33.608 -18.33 1.00 47.12 8 ATOM 1255 O ARG 987 24.909 34.223 -15.535 1.00 47.12 8 ATOM 1256 N GLY 988 24.281 32.294 -14.629 1.00 32.39 6 ATOM 1257 CA GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1258 C GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1256 O GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1256 C AG GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1256 C GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1256 C GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1256 C GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.32 7 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.22 7 ATOM 1262 CB GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1264 CD GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1265 ODI GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1266 NEZ GLN 989 27.355 24.672 -13.985 1.00 53.63 6 ATOM 1266 NEZ GLN 989 27.355 24.672 -13.985 1.00 53.32 8 ATOM 1267 C GLN 989 28.683 28.002 -11.861 1.00 53.32 8 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 53.32 8 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 53.32 8 ATOM 1270 CA GLU 990 31.320 29.552 -11.861 1.00 53.32 8 ATOM 1271 CB GLU 990 32.281 29.2952 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.281 29.2952 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.281 29.2952 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 -12.532 1.00 57.00 6 ATOM 1270 CA GLU 990 32.976 -12.532 1.00 57.00 60.46 6 ATOM 1271 CB GLU 990 33.448 27.718 -12.094 1.00 60.46 8 ATOM 1273 CD GLU 990 33.468 27.799 -10.927 1.00 60.46 6 ATOM 1273 CD GLU 990 33.468 27.799 -10.927 1.00 60.46 6 ATOM 1273 CD GLU 990 33.468 27.799 -10.927 1.00 60.46 6 ATOM 1276 C GLU 990 33.468 27.799 -10.927 1.00 60.46 6 ATOM 1277 C G GLU 990 33.468 27.799 -10.927 1.00 60.46 6 ATOM 1280 CB VAL 991 30.669 32.470 -10.367 1.00 47.34 6 ATOM 1280 CB VAL 991 30.669 32.470 -10.3	MOTA	1249								
ATOM 1252 NH1 ARG 987 18.924 35.110 -18.261 1.00 55.43 7 ATOM 1254 C ARG 987 18.364 32.946 -17.713 1.00 55.43 7 ATOM 1255 NH2 ARG 987 24.204 33.608 -14.823 1.00 47.12 6 ATOM 1255 O ARG 987 24.204 33.608 -14.823 1.00 47.12 6 ATOM 1255 O ARG 987 24.204 33.608 -14.823 1.00 47.12 6 ATOM 1255 O ARG 987 24.909 34.223 -15.535 1.00 47.12 8 ATOM 1255 C GLY 988 24.281 32.294 -14.629 1.00 33.39 7 ATOM 1258 C GLY 988 25.300 31.512 -15.274 1.00 32.39 6 ATOM 1259 O GLY 988 24.832 29.393 -14.275 1.00 32.39 6 ATOM 1259 O GLY 988 24.832 29.393 -14.275 1.00 32.39 6 ATOM 1260 N GLN 989 26.999 29.978 -14.382 1.00 53.32 7 ATOM 1261 CA GLN 989 27.056 26.759 -15.207 1.00 53.22 6 ATOM 1263 CG GLN 989 27.056 26.759 -15.207 1.00 53.63 6 ATOM 1263 CG GLN 989 27.056 26.759 -15.207 1.00 53.63 6 ATOM 1265 OEI GLN 989 27.553 25.337 -15.120 1.00 52.63 6 ATOM 1266 NEI GLN 989 27.553 25.337 -15.120 1.00 52.63 6 ATOM 1266 NEI GLN 989 27.355 24.672 -13.998 1.00 53.32 8 ATOM 1266 NEI GLN 989 27.355 24.672 -13.998 1.00 53.32 8 ATOM 1267 C GLN 989 27.355 24.672 -13.998 1.00 53.32 8 ATOM 1268 O GLN 989 28.639 27.355 24.672 -13.998 1.00 53.32 8 ATOM 1269 N GLU 990 29.082 30.096 -12.532 1.00 57.00 7 ATOM 1270 CA GLU 990 31.320 29.532 -11.853 1.00 53.32 8 ATOM 1270 CA GLU 990 31.320 29.532 -11.853 1.00 53.32 8 ATOM 1270 CA GLU 990 31.320 29.532 -11.853 1.00 57.00 7 ATOM 1271 CB GLU 990 31.320 29.532 -11.853 1.00 57.00 7 ATOM 1270 CA GLU 990 31.320 29.532 -11.853 1.00 57.00 6 ATOM 1273 CD GLU 990 32.986 37.388 1.50 60.46 6 ATOM 1275 CB GLU 990 31.320 29.532 -11.853 1.00 57.00 6 ATOM 1275 CB GLU 990 31.320 29.532 -11.853 1.00 57.00 6 ATOM 1275 CB GLU 990 31.320 29.532 -11.853 1.00 57.00 6 ATOM 1275 CB GLU 990 31.320 29.532 -11.853 1.00 57.00 6 ATOM 1275 CB GLU 990 31.320 29.532 -11.853 1.00 57.00 6 ATOM 1275 CB GLU 990 31.320 29.532 -11.853 1.00 57.00 6 ATOM 1275 CB GLU 990 31.320 39.333 -14.275 1.00 60.46 6 ATOM 1275 CB GLU 990 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31.320 31	ATOM	1250				- ·				
ATOM 1253 NH2 ARG 987 18.364 32.946 -17.713 1.00 55.43 7 ATOM 1255 0 ARG 987 24.204 33.608 -14.823 1.00 47.12 8 ATOM 1255 0 ARG 987 24.204 33.608 -14.823 1.00 47.12 8 ATOM 1255 0 ARG 987 24.209 34.223 -15.535 1.00 47.12 8 ATOM 1255 0 ALTO 1255 0 ALTO 1255 0 ALTO 1255 0 ALTO 1256 N GLY 988 24.281 32.294 -14.629 1.00 33.39 6 ATOM 1257 CA GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1259 0 GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1259 0 GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1250 N GLN 989 26.999 29.978 -14.382 1.00 53.32 7 ATOM 1261 CA GLN 989 26.999 29.978 -14.382 1.00 53.32 7 ATOM 1261 CA GLN 989 27.473 28.755 -13.738 1.00 53.32 6 ATOM 1262 CB GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1264 CD GLN 989 27.553 25.337 -15.120 1.00 52.63 6 ATOM 1265 OEI GLN 989 27.553 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 28.219 24.885 -16.052 1.00 52.63 8 ATOM 1266 NE2 GLN 989 28.219 24.885 -16.052 1.00 52.63 8 ATOM 1266 NE2 GLN 989 28.243 28.926 -12.631 1.00 53.32 6 ATOM 1267 C GLN 989 28.483 28.002 -11.861 1.00 53.32 6 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 53.32 8 ATOM 1269 N GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.976 27.979 -10.977 1.00 60.46 6 ATOM 1273 CD GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1273 CD GLU 990 30.036 31.814 -11.523 1.00 57.00 6 ATOM 1274 OEI GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1278 N VAL 991 30.567 33.904 -10.285 1.00 47.34 7 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.568 31.814 -10.537 1.	MOTA	1251	CZ							
ATOM 1254 C ARG 987 24.204 33.608 -14.823 1.00 47.12 6 ATOM 1255 O ARG 987 24.990 34.223 -15.535 1.00 47.12 8 ATOM 1256 N GLY 988 24.281 32.294 -14.629 1.00 32.39 6 ATOM 1257 CA GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1259 O GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1259 O GLY 988 24.832 29.393 -14.275 1.00 32.39 6 ATOM 1250 N GLN 989 26.999 29.978 -14.382 1.00 53.32 6 ATOM 1261 CA GLN 989 27.43 28.756 -13.738 1.00 53.32 6 ATOM 1262 CB GLN 989 27.563 27.789 -14.761 1.00 52.63 6 ATOM 1263 CG GLN 989 27.565 26.759 -15.207 1.00 52.63 6 ATOM 1264 CD GLN 989 27.563 25.337 -15.120 1.00 52.63 6 ATOM 1265 OEI GLN 989 27.565 24.675 -15.207 1.00 52.63 6 ATOM 1266 NE GLN 989 27.355 24.672 -13.985 1.00 52.63 6 ATOM 1267 C GLN 989 27.355 24.672 -13.985 1.00 52.63 6 ATOM 1268 OEI GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1267 C GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1268 O GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 53.32 6 ATOM 1270 CA GLU 990 31.320 29.532 -11.888 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.888 1.00 57.00 6 ATOM 1272 CG GLU 990 31.320 29.532 -10.745 1.00 60.46 6 ATOM 1271 CB GLU 990 31.3448 27.718 -12.049 1.00 60.46 6 ATOM 1273 CD GLU 990 30.669 32.81 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 30.448 27.198 -9.960 1.00 60.46 6 ATOM 1276 C GLU 990 30.669 32.81 -1.533 1.00 57.00 6 ATOM 1277 O GLU 990 30.669 32.81 -1.530 1.00 57.00 6 ATOM 1278 N VAL 991 30.567 33.904 -10.285 1.00 57.00 6 ATOM 1278 C GLU 990 30.669 32.861 -1.599 1.00 60.46 6 ATOM 1278 C GLU 990 30.669 32.861 -1.504 1.00 60.46 6 ATOM 1278 C GLU 990 30.669 32.861 -1.504 1.00 60.46 6 ATOM 1278 C GLU 990 30.669 32.861 -1.504 1.00 60.46 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 49.61 6 ATOM 1281 CGL VAL 991 30.567 33.904 -10.285 1.00 49.61 6 ATOM 1280 CB VAL 991 30.669 31.814 -11.533 1.00 57.00 6 ATOM 1280 CB VAL 991 30.669 31.814 -11.533 1.00 57.00 66 ATOM 1280 CB VAL 991 30.669 31.814 -11.533 1.00 60.46 6 ATOM 1280 CB VAL 991 30.669 31.814 -10.064 1.0	ATOM	1252								
ATOM 1255 O ARG 987 24.990 34.223 -15.535 1.00 47.12 8 ATOM 1256 N GLY 988 24.281 32.294 -14.629 1.00 32.39 7 ATOM 1257 CA GLY 988 25.300 31.512 -15.74 1.00 32.39 7 ATOM 1258 C GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1259 O GLY 988 24.881 29.393 -14.75 1.00 32.39 6 ATOM 1250 N GLN 989 26.999 29.978 -14.382 1.00 53.32 7 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.32 7 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.32 6 ATOM 1262 CB GLN 989 27.556 26.759 -15.207 1.00 52.63 6 ATOM 1263 CG GLN 989 27.558 25.337 -15.120 1.00 52.63 6 ATOM 1264 CD GLN 989 27.558 25.337 -15.120 1.00 52.63 6 ATOM 1265 OE1 GLN 989 27.558 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1266 NE2 GLN 989 28.219 24.855 -16.052 1.00 52.63 7 ATOM 1267 C GLN 989 28.683 27.366 26.759 -15.207 1.00 52.63 7 ATOM 1268 O GLN 989 28.83 28.002 -11.861 1.00 53.32 8 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 57.00 7 ATOM 1270 CA GLU 990 31.320 29.532 -11.858 1.00 57.00 7 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1273 CD GLU 990 30.689 31.814 -11.523 1.00 57.00 6 ATOM 1273 CD GLU 990 30.689 31.814 -11.523 1.00 57.00 6 ATOM 1273 CD GLU 990 30.689 32.470 -10.367 1.00 60.46 6 ATOM 1273 CD GLU 990 30.689 32.470 -10.367 1.00 60.46 6 ATOM 1273 CD GLU 990 30.689 32.470 -10.367 1.00 60.46 6 ATOM 1275 CC GLU 990 30.689 32.470 -10.367 1.00 60.46 6 ATOM 1275 CC GLU 990 30.689 32.470 -10.367 1.00 60.46 6 ATOM 1275 CC GLU 990 30.689 32.470 -10.367 1.00 60.46 6 ATOM 1276 C GLU 990 30.689 32.470 -10.367 1.00 60.46 6 ATOM 1278 N VAL 991 30.567 33.904 -10.285 1.00 60.46 6 ATOM 1278 N VAL 991 30.567 33.904 -10.285 1.00 60.46 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CB VAL 991 30.657 33.690 -10.049 1.00 60.46 6 ATOM 1280 CB VAL 991 30.657 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1280 CB VAL 991 31.888 34.057 -9.493 1.00 49.61 6 ATOM 1281 CD TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1282 CB TYR 992 33.683 35.	MOTA	1253	NH2	ARG						
ATOM 1256 N GLY 988 24.281 33.294 -14.629 1.00 32.39 6 ATOM 1257 CA GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1258 C GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1258 C GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1259 O GLY 988 24.832 29.393 -14.275 1.00 32.39 8 ATOM 1260 N GLN 989 26.999 29.978 -14.382 1.00 53.32 6 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.32 6 ATOM 1262 CB GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1263 CG GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1264 CD GLN 989 27.553 25.337 -15.120 1.00 52.63 6 ATOM 1265 NEZ GLN 989 27.553 25.337 -15.120 1.00 52.63 6 ATOM 1266 NEZ GLN 989 27.555 24.672 -13.985 1.00 52.63 6 ATOM 1268 NG GLN 989 27.558 28.219 24.855 -16.052 1.00 52.63 8 ATOM 1268 NG GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1268 NG GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1268 NG GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 57.00 7 ATOM 1270 CA GLU 990 31.320 29.532 -11.858 1.00 57.00 7 ATOM 1271 CB GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1274 OE1 GLU 990 30.639 32.363 -11.588 1.00 57.00 60.46 6 ATOM 1277 O GLU 990 30.639 32.363 -11.588 1.00 57.00 60.46 6 ATOM 1278 N VAL 991 30.567 32.904 -10.285 1.00 57.00 60.46 6 ATOM 1278 N VAL 991 30.567 32.904 -10.285 1.00 57.00 60.46 6 ATOM 1280 CB VAL 991 30.567 32.904 -10.285 1.00 57.00 60.46 6 ATOM 1281 CG1 VAL 991 30.567 32.904 -10.285 1.00 60.46 6 ATOM 1282 CG VAL 991 30.567 32.904 -10.285 1.00 60.46 6 ATOM 1282 CG VAL 991 30.569 32.470 -10.367 1.00 49.61 6 ATOM 1281 CG1 VAL 991 30.569 32.470 -10.367 1.00 49.61 6 ATOM 1282 CG VAL 991 30.569 32.470 -10.367 1.00 49.61 6 ATOM 1282 CG VAL 991 30.569 32.470 -10.367 1.00 49.61 6 ATOM 1284 C TYR 992 33.633 35.517 -9.433 1.00 49.61 6 ATOM 1285 C TYR 992 33.633 35.517 -9.433 1.00 49.61 6 ATOM 1286 CA TYR 992 33.633 35.517 -9.450 1.00 49.61 6 ATOM 1287 C TYR 992 33.633 35.204 -7.455 1.00 49.61 6 ATOM	ATOM	1254	С							
ATOM 1257 CA GLY 988 25.330 31.512 -15.274 1.00 32.39 6 ATOM 1258 C GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1259 O GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1260 N GLN 989 26.999 29.978 -14.382 1.00 53.32 7 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.32 7 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.32 6 ATOM 1262 CB GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1263 CG GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1265 OEI GLN 989 27.553 25.337 -15.120 1.00 52.63 6 ATOM 1265 OEI GLN 989 27.355 24.672 -13.985 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1267 C GLN 989 28.473 28.926 -12.631 1.00 53.32 8 ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 8 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 57.00 7 ATOM 1270 CA GLU 990 31.320 29.532 -11.858 1.00 65.466 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.466 6 ATOM 1272 CG GLU 990 32.976 27.979 -10.971 1.00 60.46 6 ATOM 1273 CD GLU 990 33.448 27.718 -12.049 1.00 60.46 6 ATOM 1275 OE2 GLU 990 33.448 27.718 -12.049 1.00 60.46 6 ATOM 1275 OE2 GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 CA GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 60.46 8 ATOM 1279 CA VAL 991 30.269 32.470 -10.367 1.00 67.34 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1280 CB VAL 991 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1280 C VAL 991 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1280 C VAL 991 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1280 C C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 49.61 6 ATOM 1281 CG1 VAL 991 30.366 31.814 -11.523 1.00 57.00 6 ATOM 1280 C VAL 991 30.368 31.814 -11.523 1.00 60.46 8 ATOM 1280 C VAL 991 30.667 33.904 -10.285 1.00 47.34 6 ATOM 1280 C VAL 991 30.667 33.904 -10.285 1.00 47.34 6 ATOM 1280 C VAL 991 30.667 33.904 -10.285 1.00 49.61 6 ATOM 1281 CG1 VAL 991 30.668 34.950 -8.127 1.00 49.61 6 ATOM 1282 CG2 VAL 991 31.884 35.554 -	MOTA	1255	0							
ATOM 1258 C GLY 988 25.704 30.203 -14.592 1.00 32.39 6 ATOM 1259 O GLY 988 24.832 29.393 -14.275 1.00 32.39 8 ATOM 1260 N GLN 989 26.999 29.78 -14.382 1.00 53.32 7 ATOM 1261 CA GLN 989 26.999 29.78 -14.382 1.00 53.32 7 ATOM 1262 CB GLN 989 28.063 27.789 -14.761 1.00 52.63 6 ATOM 1263 CG GLN 989 27.583 25.337 -15.207 1.00 52.63 6 ATOM 1263 CG GLN 989 27.583 25.337 -15.207 1.00 52.63 6 ATOM 1264 CD GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1265 OEI GLN 989 27.355 24.672 -13.985 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1267 C GLN 989 28.473 28.926 -12.631 1.00 53.32 8 ATOM 1269 N GLU 990 29.082 30.096 -12.532 1.00 53.32 8 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 53.32 8 ATOM 1271 CB GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1272 CG GLU 990 32.981 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1274 OEI GLU 990 33.448 27.718 -12.049 1.00 60.46 6 ATOM 1275 OEZ GLU 990 33.048 27.198 -9.960 1.00 60.46 6 ATOM 1276 C GLU 990 30.639 32.363 -12.539 1.00 57.00 6 ATOM 1276 C GLU 990 30.639 32.363 -12.539 1.00 57.00 6 ATOM 1276 C GLU 990 33.044 27.198 -9.960 1.00 60.46 6 ATOM 1277 O GLU 990 30.639 32.370 -10.745 1.00 60.46 6 ATOM 1276 C GLU 990 30.639 32.370 -10.745 1.00 60.46 6 ATOM 1277 O GLU 990 30.639 32.370 -10.745 1.00 60.46 6 ATOM 1278 N VAL 991 30.567 33.904 -10.285 1.00 57.00 8 ATOM 1278 N VAL 991 30.567 33.904 -10.285 1.00 57.00 8 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 57.00 6 ATOM 1280 CG VAL 991 31.878 34.745 -9.575 1.00 25.98 6 ATOM 1280 CG VAL 991 31.878 34.755 -10.094 1.00 60.46 6 ATOM 1281 CG1 VAL 991 31.878 34.755 -10.094 1.00 60.46 6 ATOM 1282 CG2 VAL 991 31.878 35.517 -8.774 1.00 68.84 7 ATOM 1281 CG1 VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1281 CG1 VAL 991 31.878 34.057 -9.493 1.00 49.61 6 ATOM 1281 CG2 VAL 991 31.878 35.501 -9.493 1.00 49.61 6 ATOM 1282 CG2 VAL 991 31.886 35.501 -7.465 1.00 49.61 6 ATOM 1289 CG TYR 992 36.680 34.950 -8.526 1.00 49.61 6 ATOM 1289 CG TYR 992 38.631 37.940 -7.155 1.	MOTA	1256	N	\mathtt{GLY}						
ATOM 1259 O GLY 988 24.832 29.393 -14.275 1.00 32.39 8 ATOM 1260 N GLN 989 26.999 29.978 -14.382 1.00 53.32 6 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.32 6 ATOM 1262 CB GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1263 CG GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1265 OE1 GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1265 OE1 GLN 989 27.355 24.672 -13.985 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1267 C GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1268 O GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1269 N GLU 990 29.082 30.096 -12.532 1.00 53.32 8 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 53.32 8 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1274 OE1 GLU 990 30.368 31.814 -11.523 1.00 60.46 6 ATOM 1275 OE2 GLU 990 30.368 31.814 -11.523 1.00 60.46 6 ATOM 1277 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1278 N VAL 991 30.567 33.904 -10.285 1.00 57.00 6 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 57.00 6 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 57.00 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 57.00 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 49.61 6 ATOM 1280 CB VAL 991 30.567 -33.904 -10.285 1.00 49.61 6 ATOM 1280 CB VAL 991 31.878 34.075 -9.575 1.00 25.98 6 ATOM 1280 CB VAL 991 31.878 34.075 -9.575 1.00 49.61 6 ATOM 1280 CB VAL 991 31.876 -9.575 1.00 49.61 6 ATOM 1280 CB TYR 992 33.683 35.517 -8.774 1.00 49.61 6 ATOM 1290 CE TYR 992 33.681 35.201 -7.465 1	MOTA	1257	CA	GLY						
ATOM 1260 N GLN 989 26.999 29.978 -14.382 1.00 53.32 7 ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.32 6 ATOM 1262 CB GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1263 CG GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1264 CD GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1265 OE1 GLN 989 27.553 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.555 24.672 -13.985 1.00 52.63 6 ATOM 1267 C GLN 989 28.473 28.926 -12.631 1.00 52.63 7 ATOM 1268 O GLN 989 28.473 28.926 -12.631 1.00 52.63 7 ATOM 1269 N GLU 990 30.072 30.328 -11.851 1.00 53.32 8 ATOM 1270 CA GLU 990 30.072 30.328 -11.855 1.00 57.00 7 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 57.00 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1274 OE1 GLU 990 33.448 27.718 -12.049 1.00 60.46 6 ATOM 1275 OE2 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 67.34 7 ATOM 1279 CA VAL 991 30.269 32.470 -10.367 1.00 57.00 6 ATOM 1279 CA VAL 991 30.269 32.470 -10.285 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.285 1.00 57.00 6 ATOM 1280 CB VAL 991 30.269 32.470 -10.265 1.00 57.00 6 ATOM 1280 CB VAL 991 30.269 32.470 -10.265 1.00 47.34 6 ATOM 1280 CB VAL 991 30.868 31.814 -11.523 1.00 57.00 6 ATOM 1280 CB VAL 991 30.867 -9.893 1.00 47.34 6 ATOM 1280 CB VAL 991 30.867 -9.893 1.00 47.34 6 ATOM 1280 CB VAL 991 30.867 -9.893 1.00 47.34 6 ATOM 1280 CB VAL 991 30.867 -9.893 1.00 47.34 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 49.61 6 ATOM 1280 CG VAL 991 31.878 34.057 -9.493 1.00 49.61 6 ATOM 1280 CG VAL 991 31.878 34.057 -9.493 1.00 49.61 6 ATOM 1280 CD TYR 992 33.663 35.517 -8.778 1.00 49.61 6 ATOM 1280 CD TYR 992 33.663 35.517 -8.786 1.00 49.61 6 ATOM 1290 CD TYR 992 33.661 36.833 -7.780 1.00 49.61 6 ATOM 1290 CD TYR 9	ATOM	1258	С	GLY	988	25.704				
ATOM 1261 CA GLN 989 27.473 28.756 -13.738 1.00 53.32 6 ATOM 1262 CB GLN 989 28.063 27.789 -14.761 1.00 52.63 6 ATOM 1263 CG GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1264 CD GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1265 OE1 GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 28.219 24.855 -16.052 1.00 52.63 7 ATOM 1266 NE2 GLN 989 28.243 28.926 -12.631 1.00 53.32 6 ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 6 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 57.00 7 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1274 OE1 GLU 990 33.448 27.718 -12.049 1.00 60.46 6 ATOM 1275 OE2 GLU 990 30.638 31.814 -11.523 1.00 57.00 6 ATOM 1276 C GLU 990 30.638 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.638 31.814 -11.523 1.00 57.00 6 ATOM 1278 N VAL 991 30.567 33.904 -70.367 1.00 67.00 68 ATOM 1278 N VAL 991 30.567 33.904 -70.367 1.00 67.00 68 ATOM 1280 CB VAL 991 30.567 33.904 -70.367 1.00 47.34 7 ATOM 1281 CG1 VAL 991 30.567 33.904 -70.265 1.00 57.00 6 ATOM 1280 CB VAL 991 30.567 33.904 -70.265 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -70.265 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -70.265 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -70.367 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -70.367 1.00 47.34 6 ATOM 1280 CG VAL 991 30.567 33.904 -70.367 1.00 47.34 6 ATOM 1280 CG VAL 991 30.567 33.904 -70.367 1.00 47.34 6 ATOM 1280 CG VAL 991 30.567 33.904 -70.367 1.00 47.34 6 ATOM 1280 CG VAL 991 30.567 33.904 -70.367 1.00 49.61 6 ATOM 1280 CG TYR 992 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CG TYR 992 31.886 35.201 -7.465 1.00 49.61 6 ATOM 1280 CG TYR 992 31.886 35.201 -7.465 1.00 49.61 6 ATOM 1290 CE TYR 992 31.683 35.617 -9.103 1.00 49.61 6 ATOM 1290 CE TYR 992 31.683 36.836 -7.991 1.00 63.84 6 ATOM 1290 CE TYR 992 33.630 36.8	ATOM	1259	0	\mathtt{GLY}	988	24.832				
ATOM 1262 CB GLN 989 28.063 27.789 -14.761 1.00 52.63 6 ATOM 1263 CG GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1264 CD GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1265 OEI GLN 989 27.583 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 28.219 24.855 -16.052 1.00 52.63 8 ATOM 1266 NE2 GLN 989 28.219 24.855 -16.052 1.00 52.63 8 ATOM 1266 NE2 GLN 989 28.683 28.002 -11.861 1.00 53.32 6 ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 6 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 57.00 7 ATOM 1270 CA GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1271 CB GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1272 CG GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1273 CD GLU 990 33.448 27.718 -12.049 1.00 60.46 6 ATOM 1275 OE2 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 7 ATOM 1277 O GLU 990 30.368 31.814 -11.523 1.00 57.00 8 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 57.00 8 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 57.00 8 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 57.00 8 ATOM 1280 CB VAL 991 30.567 -9.9575 1.00 25.98 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 57.00 8 ATOM 1280 CB VAL 991 30.567 -9.493 1.00 47.34 6 ATOM 1280 CB VAL 991 32.387 33.909 -8.924 1.00 47.34 6 ATOM 1280 CB VAL 991 32.387 33.909 -8.924 1.00 47.34 6 ATOM 1280 CB TYR 992 33.683 35.517 -8.774 1.00 68.84 7 ATOM 1280 CB TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1280 CB TYR 992 33.683 35.517 -8.774 1.00 69.61 6 ATOM 1280 CB TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1280 CB TYR 992 36.680 36.947 -9.493 1.00 47.34 6 ATOM 1280 CB TYR 992 36.680 36.947 -9.493 1.00 47.34 6 ATOM 1280 CB TYR 992 36.680 36.947 -9.493 1.00 49.61 6 ATOM 1280 CB TYR 992 36.680 36.947 -9.493 1.00 49.61 6 ATOM 1280 CB TYR 992 36.680 36.947 -9.490 1.00 68.84 6 ATOM 1290 CE1 TYR 992 36.680 36.947 -9.491 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 36.947 -9.400 1.00 49.61 6 ATOM 1290 CE TYR 992 37.886 35.201 -7.465 1.00 49.61 6 A	ATOM	1260	N	GLN	989	26.999				
ATOM 1262 CB GLN 989 28.063 27.789 -14.761 1.00 52.63 6 ATOM 1264 CD GLN 989 27.056 26.759 -15.207 1.00 52.63 6 ATOM 1264 CD GLN 989 27.533 25.337 -15.120 1.00 52.63 6 ATOM 1265 OE1 GLN 989 27.533 25.337 -15.120 1.00 52.63 6 ATOM 1266 NE2 GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1267 C GLN 989 28.219 24.855 -16.052 1.00 52.63 7 ATOM 1267 C GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 6 ATOM 1270 CA GLU 990 29.082 30.096 -12.532 1.00 57.00 6 ATOM 1271 CB GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 33.448 27.718 -12.049 1.00 60.46 6 ATOM 1273 CD GLU 990 33.448 27.718 -12.049 1.00 60.46 6 ATOM 1275 OE2 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 30.639 32.361 -11.533 1.00 57.00 6 ATOM 1275 OE2 GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1275 OE2 GLU 990 30.639 32.363 -12.539 1.00 57.00 6 ATOM 1275 OE2 GLU 990 30.639 32.363 -12.539 1.00 57.00 6 ATOM 1275 OE2 GLU 990 30.639 32.363 -12.539 1.00 57.00 6 ATOM 1275 OE2 GLU 990 30.639 32.363 -12.539 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 60.46 8 ATOM 1278 N VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1281 CG1 VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1281 CG1 VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1282 CG2 VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1285 N TYR 992 32.437 35.562 -9.483 1.00 47.34 6 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1289 CD1 TYR 992 33.683 35.517 -8.774 1.00 49.61 6 ATOM 1290 CE1 TYR 992 33.683 35.517 -8.774 1.00 49.61 6 ATOM 1290 CE1 TYR 992 33.683 35.517 -8.774 1.00 49.61 6 ATOM 1290 CE1 TYR 992 33.6680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE1 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.65	ATOM	1261	CA	GLN	989	27.473				
ATOM 1264 CD GLN 989 27.056 26.759 -15.1207 1.00 52.63 6 ATOM 1265 OE1 GLN 989 27.583 25.337 -15.120 1.00 52.63 8 ATOM 1266 NE2 GLN 989 28.219 24.855 -16.052 1.00 52.63 8 ATOM 1267 C GLN 989 28.473 28.926 -12.631 1.00 52.63 8 ATOM 1268 O GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 8 ATOM 1269 N GLU 990 30.072 30.328 -11.803 1.00 57.00 7 ATOM 1270 CA GLU 990 30.072 30.328 -11.803 1.00 57.00 7 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1274 OE1 GLU 990 33.448 27.198 -9.960 1.00 60.46 8 ATOM 1275 OE2 GLU 990 30.368 31.814 -11.523 1.00 57.00 7 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 8 ATOM 1277 O GLU 990 30.639 32.363 -12.589 1.00 57.00 8 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 7 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 57.00 8 ATOM 1281 CG1 VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1282 CG2 VAL 991 32.387 33.909 -8.924 1.00 47.34 6 ATOM 1283 C VAL 991 32.387 33.909 -8.924 1.00 47.34 6 ATOM 1283 C VAL 991 32.387 33.909 -8.924 1.00 47.34 6 ATOM 1285 N TYR 992 32.437 35.562 -9.483 1.00 47.34 6 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 33.683 35.517 -8.774 1.00 69.61 6 ATOM 1280 CE TYR 992 33.683 35.517 -8.774 1.00 69.61 6 ATOM 1280 CE TYR 992 33.683 35.517 -8.774 1.00 69.61 6 ATOM 1280 CE TYR 992 33.663 35.517 -8.774 1.00 49.61 6 ATOM 1280 CE TYR 992 33.663 36.836 -9.9493 1.00 47.34 6 ATOM 1280 CE TYR 992 33.663 35.517 -8.774 1.00 49.61 6 ATOM 1280 CE TYR 992 33.663 36.836 -9.9493 1.00 49.61 6 ATOM 1280 CE TYR 992 33.663 36.836 -7.999 1.00 49.61 6 ATOM 1290 CE TYR 992 33.663 36.836 -8.565 1.00 49.61 6 ATOM 1290 CE TYR 992 33.663 36.836 -8.565 1.00 49.61 6 ATOM 1290 CE TYR 992 33.663 36.836 -8.565 1.00 68.84 8 ATOM 1290 CE TYR 992 33.663 36.836 -8.565 1.00 68.84 8 ATOM 1290 CE TYR 992 33.603 36.836 -5.964 1.00 73		1262	CB	GLN	989	28.063				
ATOM 1265 OE1 GLN 989 27.583 25.337 -15.120 1.00 52.63 8 ATOM 1266 NE2 GLN 989 28.219 24.855 -16.052 1.00 52.63 7 ATOM 1266 NE2 GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1268 O GLN 989 28.683 28.926 -12.631 1.00 53.32 6 ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 8 ATOM 1269 N GLU 990 30.072 30.328 -11.503 1.00 57.00 7 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1273 CD GLU 990 33.448 27.718 -12.049 1.00 60.46 6 ATOM 1275 OE2 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 30.639 32.363 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.639 32.363 -12.539 1.00 57.00 6 ATOM 1277 O GLU 990 30.639 32.363 -12.539 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 25.98 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CB VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1280 CB TYR 992 33.683 35.517 -8.774 1.00 49.61 6 ATOM 1290 CBI TYR 992 33.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CBI TYR 992 33.680 34.950 -8.1		1263	CG	GLN	989	27.056				
ATOM 1265 OE1 GLN 989 28.219 24.855 -16.052 1.00 52.63 8 ATOM 1266 NE2 GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1268 O GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 6 ATOM 1269 N GLU 990 29.082 30.096 -12.532 1.00 57.00 7 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1274 OE1 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.044 27.198 -9.960 1.00 60.46 8 ATOM 1275 OE2 GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.639 32.363 -12.589 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 57.00 8 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.483 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 47.34 8 ATOM 1285 CG TYR 992 33.683 35.517 -6.774 1.00 68.84 7 ATOM 1286 CG TYR 992 33.683 35.517 -9.103 1.00 49.61 6 ATOM 1289 CG1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1289 CG2 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1280 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1280 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1280 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1280 CG TYR 992 36.680 36.947 -9.410 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 36.947 -9.410 1.00 49.61 6 ATOM 1290 CE2 TYR 992 36.680 36.947 -9.410 1.00 49.61 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 47.34 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.650 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1		1264	CD	GLN	989	27.583				
ATOM 1266 NE2 GLN 989 27.355 24.672 -13.985 1.00 52.63 7 ATOM 1267 C GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 6 ATOM 1269 N GLU 990 29.082 30.096 -12.532 1.00 57.00 7 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.0927 1.00 60.46 6 ATOM 1274 OE1 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1276 C GLU 990 30.639 32.363 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.639 32.363 -11.523 1.00 57.00 6 ATOM 1279 CA VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 47.34 6 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 47.34 6 ATOM 1288 CG TYR 992 31.683 35.517 -8.774 1.00 68.84 7 ATOM 1289 CD1 TYR 992 31.680 34.950 -8.127 1.00 49.61 6 ATOM 1298 CG2 TYR 992 31.680 34.950 -8.127 1.00 49.61 6 ATOM 1298 CG TYR 992 31.683 35.517 -9.103 1.00 49.61 6 ATOM 1299 CE2 TYR 992 33.683 35.517 -9.103 1.00 49.61 6 ATOM 1290 CE2 TYR 992 33.683 35.501 -7.465 1.00 49.61 6 ATOM 1290 CE2 TYR 992 33.683 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.683 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 33.653 36.802 -6.718			OE1	GLN	989	28.219	24.855	-16.052		
ATOM 1267 C GLN 989 28.473 28.926 -12.631 1.00 53.32 6 ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 8 ATOM 1269 N GLU 990 29.082 30.096 -12.532 1.00 57.00 7 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1274 OEI GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.448 27.718 -9.960 1.00 60.46 8 ATOM 1276 OE GLU 990 30.683 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.663 31.814 -11.523 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 6 ATOM 1280 CB VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1283 C VAL 991 33.633 35.517 -8.774 1.00 68.84 6 ATOM 1286 CA TYR 992 32.437 35.262 -9.883 1.00 68.84 7 ATOM 1287 CB TYR 992 33.683 35.517 -8.774 1.00 49.61 6 ATOM 1288 CG TYR 992 34.835 5.554 -9.765 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE2 TYR 992 38.614 36.947 -9.410 1.00 49.61 6 ATOM 1290 CD2 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1291 CD2 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1292 CE2 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CD1 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CD1 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CD1 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CD1 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CD1 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CD2 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CD1 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1290 CD2 TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CD2 TYR 992 33.653 36.806 -7.999 1.00 68.84 6 ATOM 1290 CD2 TYR 992 33.653 36.806 -7.999 1.00 68.84 6 ATOM 1290 CD3 TYR 992 33.603 36.806 -7.999					989	27.355	24.672	-13.985		
ATOM 1268 O GLN 989 28.683 28.002 -11.861 1.00 53.32 8 ATOM 1269 N GLU 990 29.082 30.096 -12.532 1.00 57.00 7 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.9779 -10.927 1.00 60.46 6 ATOM 1273 CD GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.363 1.814 -11.523 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 57.00 6 ATOM 1278 N VAL 991 30.567 33.904 -10.285 1.00 47.34 7 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1285 N TYR 992 32.433 35.517 -8.774 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 36.680 34.950 -9.493 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.957 -9.410 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.957 -9.410 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.957 -9.410 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.957 -9.410 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.957 -9.410 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.957 -9.410 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.957 -9.410 1.00 49.61 6 ATOM 1290 CE1 TYR 992 38.654 37.210 -8.750 1.00 49.61 6 ATOM 1290 CE1 TYR 992 38.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE1 TYR 992 38.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE1 TYR 992 38.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE1 TYR 992 38.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE1 TYR 992 38.653 36.836 -7.999 1.00 68.84 6 ATOM 1290 CE2 TYR 992 38.654 36.920 -7.115 1.00 49.61 6 ATOM 1299 CE2 TYR 992 38.653 36.806 -7.999 1.00 68.84 6 ATOM 1299 CE2 TYR 992 38.654 37.200 -6.718 1.			С		989	28.473	28.926	-12.631	1.00 53.32	
ATOM 1269 N GLU 990 29.082 30.096 -12.532 1.00 57.00 7 ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 8 ATOM 1273 CD GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.448 27.198 -9.960 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.044 27.198 -9.960 1.00 60.46 8 ATOM 1277 O GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1280 CB VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1283 C VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1283 C VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 47.34 6 ATOM 1285 N TYR 992 33.683 35.517 -8.774 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1290 CE1 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1292 CE2 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1292 CE2 TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C						28.683	28.002	-11.861	1.00 53.32	
ATOM 1270 CA GLU 990 30.072 30.328 -11.503 1.00 57.00 6 ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1274 OE1 GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1275 OE2 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.044 27.198 -9.960 1.00 60.46 8 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.368 31.814 -11.523 1.00 57.00 8 ATOM 1277 O GLU 990 30.639 32.363 -12.589 1.00 57.00 8 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 8 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1						29.082	30.096	-12.532		7
ATOM 1271 CB GLU 990 31.320 29.532 -11.858 1.00 60.46 6 ATOM 1272 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1274 OE1 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.044 27.198 -9.960 1.00 60.46 8 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.639 32.363 -12.589 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 31.878 34.057 -9.493 1.00 25.98 6 ATOM 1283 C VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 34.869 35.554 -9.765 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.774 1.00 68.84 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1291 CD2 TYR 992 38.154 37.210 -8.7750 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.653 36.836 -7.999 1.00 608.84 6 ATOM 1296 CA VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1296 CA VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 73.45 6						30.072	30.328	-11.503		6
ATOM 1273 CG GLU 990 32.281 29.295 -10.745 1.00 60.46 6 ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1274 OEI GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.044 27.198 -9.960 1.00 60.46 8 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.639 32.363 -12.589 1.00 57.00 6 ATOM 1278 N VAL 991 30.567 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 7 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1288 CG TYR 992 36.680 34.950 -8.924 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.543 37.210 -8.7765 1.00 49.61 6 ATOM 1293 CZ TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.614 36.933 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 33.653 36.836 -7.999 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.99 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.99 1.00 49.61 6 ATOM 1296 O TYR 992 33.653 36.836 -7.99 1.00 49.61 6 ATOM 1296 CA VAL 993 33.941 37.886 -8.565 1.00 68.84 6 ATOM 1296 CA VAL 993 33.941 37.886 -8.565 1.00 68.84 6 ATOM 1299 CB VAL 993 33.941 37.886 -8.565 1.00 68.84 6 ATOM 1299 CB VAL 993 33.941 37.886 -8.565 1.00 77.88 6							29.532	-11.858		
ATOM 1273 CD GLU 990 32.976 27.979 -10.927 1.00 60.46 6 ATOM 1274 OE1 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.044 27.198 -9.960 1.00 60.46 8 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.639 32.363 -12.589 1.00 57.00 8 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 7 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1288 CG TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1296 O TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 6 ATOM 1298 CA VAL 993 33.312 36.802 -6.718 1.00 73.45 6 ATOM 1299 CB VAL 993 33.312 36.802 -6.718 1.00 73.45 6 ATOM 1299 CB VAL 993 33.312 36.802 -6.718 1.00 73.45 6							29.295	-10.745	1.00 60.46	6
ATOM 1275 OE1 GLU 990 33.448 27.718 -12.049 1.00 60.46 8 ATOM 1275 OE2 GLU 990 33.044 27.198 -9.960 1.00 60.46 8 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.639 32.363 -12.589 1.00 57.00 6 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1282 CG2 VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1289 CD1 TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1295 C TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1295 C TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 6 ATOM 1295 C TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1299 CB VAL 993 33.312 36.802 -6.718 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 73.45 6							27.979	-10.927	1.00 60.46	6
ATOM 1275 OE2 GLU 990 33.044 27.198 -9.960 1.00 60.46 8 ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.368 31.814 -11.523 1.00 57.00 8 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.6941 36.947 -9.410 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 33.653 36.806 -7.999 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.806 -7.195 1.00 49.61 6 ATOM 1294 OH TYR 992 33.653 36.802 -6.718 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.802 -6.718 1.00 73.45 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1296 CA VAL 993 33.312 36.802 -6.718 1.00 73.45 6 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 77.88 6									1.00 60.46	8
ATOM 1276 C GLU 990 30.368 31.814 -11.523 1.00 57.00 6 ATOM 1277 O GLU 990 30.639 32.363 -12.589 1.00 57.00 8 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1292 CE2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 6 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 73.45 6							27.198	-9.960	1.00 60.46	8
ATOM 1277 O GLU 990 30.639 32.363 -12.589 1.00 57.00 8 ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.514 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 38.654 36.807 -7.115 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1296 CA VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.203 38.048 -5.964 1.00 73.45 6							31.814	-11.523	1.00 57.00	б
ATOM 1278 N VAL 991 30.269 32.470 -10.367 1.00 47.34 7 ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1283 C VAL 991 32.387 33.090 -8.924 1.00 47.34 6 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1285 N TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.863 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 49.61 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 6 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 77.88 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 77.88 6									1.00 57.00	8
ATOM 1279 CA VAL 991 30.567 33.904 -10.285 1.00 47.34 6 ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1291 CD2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.514 36.333 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1296 O TYR 992 33.653 36.836 -7.999 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 77.88 6							32.470	-10.367	1.00 47.34	7
ATOM 1280 CB VAL 991 29.423 34.745 -9.575 1.00 25.98 6 ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.187 35.817 -9.103 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1295 C TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1296 O TYR 992 38.653 36.836 -7.999 1.00 68.84 8 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1298 CA VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 73.45 6									1.00 47.34	6
ATOM 1281 CG1 VAL 991 29.646 36.247 -9.822 1.00 25.98 6 ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1289 CD1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1290 CE1 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1291 CD2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 73.45 6									1.00 25.98	6
ATOM 1282 CG2 VAL 991 28.029 34.365 -10.094 1.00 25.98 6 ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.187 35.817 -9.103 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 6 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 6 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 77.88 6								-9.822	1.00 25.98	6
ATOM 1283 C VAL 991 31.878 34.057 -9.493 1.00 47.34 6 ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 77.88 6								-10.094		6
ATOM 1284 O VAL 991 32.387 33.090 -8.924 1.00 47.34 8 ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.187 35.817 -9.103 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 77.88 6										6
ATOM 1285 N TYR 992 32.437 35.262 -9.483 1.00 68.84 7 ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.187 35.817 -9.103 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1295 C TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 33.293 38.048 -5.964 1.00 77.88 6									1.00 47.34	8
ATOM 1286 CA TYR 992 33.683 35.517 -8.774 1.00 68.84 6 ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.187 35.817 -9.103 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6										7
ATOM 1287 CB TYR 992 34.849 35.554 -9.765 1.00 49.61 6 ATOM 1288 CG TYR 992 36.187 35.817 -9.103 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 6 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6										6
ATOM 1287 CS 11R 992 36.187 35.817 -9.103 1.00 49.61 6 ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1295 C TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6										6
ATOM 1289 CD1 TYR 992 36.680 34.950 -8.127 1.00 49.61 6 ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6										
ATOM 1290 CE1 TYR 992 37.886 35.201 -7.465 1.00 49.61 6 ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6										
ATOM 1291 CD2 TYR 992 36.941 36.947 -9.410 1.00 49.61 6 ATOM 1292 CE2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6										
ATOM 1291 CD2 TYR 992 38.154 37.210 -8.750 1.00 49.61 6 ATOM 1293 CZ TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6										
ATOM 1292 CE2 TYR 992 38.614 36.333 -7.780 1.00 49.61 6 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6	MOTA									
ATOM 1293 CZ 11R 992 30.014 30.007 -7.115 1.00 49.61 8 ATOM 1294 OH TYR 992 39.785 36.607 -7.115 1.00 49.61 8 ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6	MOTA									
ATOM 1295 C TYR 992 33.653 36.836 -7.999 1.00 68.84 6 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6	MOTA									
ATOM 1295 C 11R 992 33.031 37.886 -8.565 1.00 68.84 8 ATOM 1296 O TYR 992 33.941 37.886 -8.565 1.00 68.84 8 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6	MOTA	1294								
ATOM 1296 O TYR 992 33.341 37.000 5.300 1.00 73.45 7 ATOM 1297 N VAL 993 33.312 36.802 -6.718 1.00 73.45 7 ATOM 1298 CA VAL 993 33.293 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6	ATOM	1295	С							
ATOM 1297 N VAL 993 33.312 38.048 -5.964 1.00 73.45 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6	MOTA	1296	0	TYR						
ATOM 1298 CA VAL 993 33.238 38.110 -5.043 1.00 77.88 6 ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 77.88 6	MOTA	1297	N	VAL	993					
ATOM 1299 CB VAL 993 32.078 38.110 -5.043 1.00 //.88 6	ATOM	1298	CA	VAL	993					
		1299	CB	VAL	993					
		1300	CG1	LAV	993	30.812	38.281	-5.857	1.00 77.88	Ö

MOTA	1301	CG2	VAL	993	32.012	36.866	-4.236	1.00 77.88	6
ATOM	1302	С	VAL	993	34.585	38.227	-5.162	1.00 73.45	6
MOTA	1303	0	VAL	993	35.222	37.248	-4.762	1.00 73.45	8
MOTA	1304	N	LYS	994	34.965	39.483	-4.946	1.00100.00	7
MOTA	1305	CA	LYS	994	36.190	39.825	-4.225	1.00100.00	6
MOTA	1306	CB	LYS	994	37.340	39.934	-5.227	1.00 96.49	6
MOTA	1307	CG	LYS	994	38.693	40.258	-4.635	1.00 96.49	6
ATOM	1308	CD	LYS	994	39.679	40.656	-5.728	1.00 96.49	6
MOTA	1309	CE	LYS	994	40.977	39.891	-5.576	1.00 96.49	б
MOTA	1310	NZ	LYS	994	41.937	40.208	-6.655	1.00 96.49	7
ATOM	1311	С	LYS	994	35.981	41.170	-3.525	1.00100.00	6
MOTA	1312	0	LYS	994	36.298	42.217	-4.089	1.00100.00	8
ATOM	1313	N	LYS	995	35.456	41.135	-2.299	1.00100.00	7
MOTA	1314	CA	LYS	995	35.173	42.337	-1.505	1.00100.00	6
ATOM	1315	CB	LYS	995	36.432	43.233	-1.423	1.00100.00	б
MOTA	1316	С	LYS	995	33.996	43.132	~2.094	1.00100.00	6
ATOM	1317	0	LYS	995	34.079	44.383	-2.139	1.00100.00	8
MOTA	1318	OXT	LYS	995	33.001	42.485	-2.484	1.00 85.30	8
TER									
ATOM	1319	СВ	PRO	1001	26.968	35.804	4.979	1.00 23.69	6
ATOM	1320	CG	PRO	1001	26.527	36.525	3.738	1.00 23.69	6
ATOM	1321	С	PRO	1001	29.219	34.895	5.215	1.00 43.97	6
ATOM	1322	0	PRO	1001	28.910	33.885	4.598	1.00 43.97	8
MOTA	1323	N	PRO	1001	28.835	36.609	3.692	1.00 43.97	7
ATOM	1324	CD	PRO	1001	27.692	36.488	2.779	1.00 23.69	6
ATOM	1325	CA	PRO	1001	28.434	36.157	5.028	1.00 43.97	6
ATOM	1326	N	VAL	1002	30.217	34.937	6.077	1.00 30.46	7
ATOM	1327	CA	VAL	1002	31.040	33.763	6.267	1.00 30.46	6
ATOM	1328	CB	VAL	1002	32.241	34.137	7.118	1.00 49.80	6
ATOM	1329		VAL	1002	32.805	35.456	6.632	1.00 49.80	6
ATOM	1330		VAL	1002	31.852	34.219	8.578	1.00 49.80	6
ATOM	1331	C	VAL	1002	30.360	32.503	6.834	1.00 30.46	6
ATOM	1332	0	VAL	1002	30.790	31.389	6.553	1.00 30.46	8
ATOM	1333	N	ARG	1003	29.292	32.669	7.596	1.00 40.35	7
MOTA	1334	CA	ARG	1003	28.643	31.505	8.207	1.00 40.35	6
ATOM	1335	CB	ARG	1003	27.872	31.924	9.444	1.00 42.33	6
ATOM	1336	CG	ARG	1003	28.755	32.265	10.626	1.00 42.33	6
ATOM	1337	CD	ARG	1003	27.857	32.633	11.767	1.00 42.33	6
	1338	NE	ARG	1003	28.533	32.694	13.047	1.00 42.33	7
ATOM		CZ	ARG	1003	29.508	33.544	13.336	1.00 42.33	6
MOTA	1339 1340		ARG	1003	29.932	34.417	12.428	1.00 42.33	7
ATOM	1341				30.067	33.516		1.00 42.33	7
ATOM		C C	ARG ARG	1003	27.737	30.626	7.370	1.00 40.35	6
ATOM	1342		ARG	1003	27.262	29.606	7.865	1.00 40.35	8
ATOM	1343	0		1004	27.495	31.011	6.121	1.00 25.04	7
ATOM	1344	N	TRP		26.632	30.250	5.221	1.00 26.04	б
ATOM	1345	CA	TRP	1004 1004	25.459	31.141	4.768	1.00 50.68	6
ATOM	1346	CB	TRP		24.332	31.279	5.776	1.00 50.68	6
ATOM	1347	CG	TRP	1004		32.186	6.885	1.00 50.68	6
ATOM	1348	CD2		1004	24.261	31.901	7.585	1.00 50.68	6
ATOM	1349	CE2	TRP	1004	23.066		7.363	1.00 50.68	6
MOTA	1350	CE3	TRP	1004	25.093	33.208		1.00 50.68	6
MOTA	1351	CD1		1004	23.207	30.513	5.843	1.00 50.68	7
MOTA	1352	NEI		1004	22.445	30.880	6.924	1.00 50.68	6
MOTA	1353	CZ2		1004	22.681	32.601	8.737	1.00 50.68	6
ATOM	1354	CZ3		1004	24.704	33.905	8.515	1.00 50.68	6
ATOM	1355	CH2		1004	23.510	33.594	9.186	1.00 26.04	6
MOTA	1356	C	TRP	1004	27.409	29.747	4.006	1.00 20.04	Ų

									_
ATOM	1357	0	TRP	1004	27.003	28.794	3.356	1.00 26.04	8
ATOM	1358	N	MET	1005	28.535	30.382	3.706	1.00 37.80	7
ATOM	1359	CA	MET	1005	29.329	30.009	2.543	1.00 37.80	б
ATOM	1360	CB	MET	1005	30.502	30.949	2.412	1.00 40.16	6
ATOM	1361	CG	MET	1005	30.063	32.299	1.973	1.00 40.16	6
ATOM	1362	SD	MET	1005	31.319	33.493	2.212	1.00 40.16	16
ATOM	1363	CE	MET	1005	32.621	32.780	1.246	1.00 40.16	6
ATOM	1364	C	MET	1005	29.827	28.584	2.473	1.00 37.80	6
ATOM	1365	0	MET	1005	30.268	28.011	3.465	1.00 37.80	8
MOTA	1366	N	ALA	1006	29.753	28.008	1.283	1.00 45.98	7
	1367	CA	ALA	1006	30.230	26.654	1.092	1.00 45.98	6
ATOM ATOM	1368	CB	ALA	1006	29.797	26.138	-0.284	1.00 10.86	6
	1369	C	ALA	1006	31.764	26.736	1.196	1.00 45.98	6
ATOM			ALA	1006	32.322	27.830	1.151	1.00 45.98	8
ATOM	1370	0	ILE	1008	32.448	25.604	1.326	1.00 44.58	7
ATOM	1371	N		1007	33.909	25.657	1.446	1.00 44.58	6
ATOM	1372	CA	ILE		34.528	24.267	1.753	1.00 25.13	6
ATOM	1373	CB	ILE	1007		23.969	3.224	1.00 25.13	6
MOTA	1374	CG2	ILE	1007	34.415		0.886	1.00 25.13	6
MOTA	1375	CG1	ILE	1007	33.880	23.182		1.00 25.13	6
MOTA	1376	CD1	ILE	1007	34.418	23.123	-0.571		6
MOTA	1377	С	ILE	1007	34.619	26.244	0.234	1.00 44.58	8
ATOM	1378	0	ILE	1007	35.585	26.988	0.379	1.00 44.58	7
MOTA	1379	N	GLU	1008	34.137	25.915	-0.957	1.00 31.07	
ATOM	1380	CA	GLU	1008	34.743	26.402	-2.188	1.00 31.07	6
MOTA	1381	CB	GLU	1008	34.089	25.710	-3.378	1.00 43.81	6
ATOM	1382	CG	GLU	1008	32.595	25.941	-3.415	1.00 43.81	6
MOTA	1383	CD	GLU	1008	31.795	24.661	-3.241	1.00 43.81	6
MOTA	1384	OE1	GLU	1008	31.967	23.953	-2.216	1.00 43.81	8
MOTA	1385	OE2	GLU	1008	30.965	24.377	-4.125	1.00 43.81	8
MOTA	1386	C	GLU	1008	34.578	27.914	-2.308	1.00 31.07	6
ATOM	1387	0	GLU	1008	35.377	28.583	-2.967	1.00 31.07	8
ATOM	1388	N	SER	1009	33.546	28.447	-1.660	1.00 30.15	7
ATOM	1389	CA	SER	1009	33.259	29.873	-1.711	1.00 30.15	6
MOTA	1390	CB	SER	1009	31.802	30.117	-1.366	1.00 23.09	6
ATOM	1391	OG	SER	1009	30.984	29.174	-2.034	1.00 23.09	8
ATOM	1392	С	SER	1009	34.150	30.622	-0.743	1.00 30.15	6
ATOM	1393	0	SER	1009	34.565	31.760	-0.995	1.00 30.15	8
MOTA	1394	N	LEU	1010	34.428	29.977	0.381	1.00 29.90	7
ATOM	1395	CA	LEU	1010	35.293	30.566	1.380	1.00 29.90	6
ATOM	1396	CB	LEU	1010	35.402	29.629	2.585	1.00 44.65	6
ATOM	1397	CG	LEU	1010	34.152	29.450	3.460	1.00 44.65	6
ATOM	1398	CD1	LEU	1010	34.435	28.420	4.534	1.00 44.65	6
ATOM	1399		LEU	1010	33.752	30.781	4.101	1.00 44.65	6
ATOM	1400	С	LEU	1010	36.663	30.771	0.726	1.00 29.90	6
ATOM	1401	0	LEU	1010	37.082	31.912	0.503	1.00 29.90	8
ATOM	1402	N	ASN	1011	37.327	29.661	0.397	1.00 34.23	7
ATOM	1403	CA	ASN	1011	38.652	29.638	-0.230	1.00 34.23	6
ATOM	1404	CB	ASN	1011	39.105	28.205	-0.511	1.00 32.72	6
ATOM	1405	CG	ASN	1011	38.990	27.287	0.679	1.00 32.72	6
ATOM	1406		ASN	1011	39.433	27.600	1.783	1.00 32.72	8
	1400		ASN	1011	38.404	26.117	0.450	1.00 32.72	7
ATOM			ASN	1011	38.801	30.353	-1.560	1.00 34.23	6
ATOM	1408	C	ASN	1011	39.728	31.137	-1.748	1.00 34.23	8
ATOM	1409	O N	TYR	1012	37.914	30.041	-2.494	1.00 35.06	7
ATOM	1410	N			38.018	30.611	-3.822	1.00 35.06	6
MOTA	1411	CA	TYR	1012	37.824	29.521	-4.845	1.00 40.77	6
ATOM	1412	CB	TYR	1012	38.705	28.358	-4.552	1.00 40.77	6
MOTA	1413	CG	TYR	1012	30.703	40.330	-4.332	2.00 40.77	-

28/171

ATOM	1414	CD1	TYR	1012	38.157	27.093	-4.400	1.00 40.77	6
ATOM	1415	CE1	TYR	1012	38.961	25.024	-4.105	1.00 40.77	6
ATOM	1416	CD2	TYR	1012	40.077	28.531	-4.397	1.00 40.77	6
ATOM	1417	CE2	TYR	1012	40.896	27.472	-4.098	1.00 40.77	6
ATOM	1418	CZ	TYR	1012	40.336	26.208	-3.957	1.00 40.77	6
	1419	OH	TYR	1012	41.152	25.119	-3.717	1.00 40.77	8
MOTA			TYR	1012	37.161	31.787	-4.193	1.00 35.06	6
MOTA	1420	C				32.440	-5.195	1.00 35.06	8
MOTA	1421	0	TYR	1012	37.443				7
ATOM	1422	N	SER	1013	36.109	32.060	-3.433	1.00 42.36	
MOTA	1423	CA	SER	1013	35.278	33.209	-3.746	1.00 42.36	6
MOTA	1424	CB	SER	1013	36.159	34.439	-3.983	1.00 39.37	6
ATOM	1425	OG	SER	1013	37.157	34.576	-2.983	1.00 39.37	8
ATOM	1426	C	SER	1013	34.433	32.973	-4.982	1.00 42.36	6
ATOM	1427	0	SER	1013	34.291	33.865	-5.807	1.00 42.36	8
ATOM	1428	N	VAL	1014	33.890	31.772	-5.121	1.00 22.55	7
ATOM	1429	CA	VAL	1014	33.045	31.467	-6.260	1.00 22.55	6
ATOM	1430	CB	VAL	1014	33.653	30.369	-7.143	1.00 31.51	6
ATOM	1431		VAL	1014	35.048	30.791	-7.599	1.00 31.51	6
ATOM	1432		VAL	1014	33.701	29.054	-6.383	1.00 31.51	6
		C	VAL	1014	31.720	30.999	-5.712	1.00 22.55	6
ATOM	1433				31.644	30.562	-4.577	1.00 22.55	8
ATOM	1434	0	VAL	1014			-6.507	1.00 26.01	7
MOTA	1435	N_	TYR	1015	30.671	31.121			6
MOTA	1436	CA	TYR	1015	29.338	30.712	-6.101	1.00 26.01	
MOTA	1437	CB	TYR	1015	28.501	31.938	-5.753	1.00 41.40	6
MOTA	1438	CG	TYR	1015	29.116	32.782	-4.672	1.00 41.40	6
MOTA	1439	CD1	TYR	1015	30.233	33.560	-4.922	1.00 41.40	6
ATOM	1440	CEl	TYR	1015	30.854	34.235	-3.904	1.00 41.40	б
ATOM	1441	CD2	TYR	1015	28.638	32.709	-3.365	1.00 41.40	6
ATOM	1442	CE2	TYR	1015	29.257	33.388	-2.330	1.00 41.40	б
ATOM	1443	CZ	TYR	1015	30.361	34.139	-2.605	1.00 41.40	6
ATOM	1444	OH	TYR	1015	30.968	34.830	-1.588	1.00 41.40	8
ATOM	1445	C	TYR	1015	28.674	29.998	-7.252	1.00 26.01	6
ATOM	1446	0	TYR	1015	28.513	30.572	-8.324	1.00 26.01	8
			THR	1016	28.311	28.741	-7.043	1.00 17.46	7
ATOM	1447	N				27.971	-8.082	1.00 17.46	6
MOTA	1448	CA	THR	1016	27.610			1.00 17.10	6
ATOM	1449	CB	THR	1016	28.317	26.625	-8.456	1.00 15.11	8
MCTA	1450	OG1	THR	1016	28.649	25.909	-7.262		
ATOM	1451	CG2	THR	1016	29.540	26.855	-9,283	1.00 15.11	6
ATOM	1452	C	THR	1016	26.257	27.590	-7.487	1.00 17.46	6
MOTA	1453	0	THR	1016	25.919	28.038	-6.408	1.00 17.46	8
ATOM	1454	N	THR	1017	25.489	26.752	-8.171	1.00 10.55	7
ATOM	1455	ÇA	THR	1017	24.229	26.325	-7.585	1.00 10.55	6
MOTA	1456	CB	THR	1017	23.346	25.602	-8.600	1.00 29.18	б
MOTA	1457	OG1		1017	22.913	26.533	-9,600	1.00 29.18	8
ATOM	1458	CG2	THR	1017	22.138	25.017	-7.906	1.00 29.18	6
ATOM	1459	C	THR	1017	24.563	25.381	-6.419	1.00 10.55	6
		0	THR	1017	23.802	25.287	-5.466	1.00 10.55	8
ATOM	1460				25.740	24.743	-6.500	1.00 41.35	7
ATOM	1461	N	ASN	1018			-5.505	1.00 41.35	6
ATOM	1462	CA	ASN	1018	26.266	23.772		1.00 49.00	6
ATOM	1463	CB	ASN	1018	27.522	23.095	-6.033		6
MOTA	1464	CG	ASN	1018	27.234	22.010	-7.015	1.00 49.00	
MOTA	1465	OD1	ASN	1018	28.100	21.630	-7.788	1.00 49.00	8
ATOM	1466	ND2	ASN	1018	26.025	21.477	-6.981	1.00 49.00	7
ATOM	1467	C	ASN	1018	26.646	24.371	-4.156	1.00 41.35	6
ATOM	1468	0	ASN	1018	26.773	23.647	-3.160	1.00 41.35	8
ATOM	1469	N	SER	1019	26.887	25.680	-4.148	1.00 46.21	7
ATOM	1470	CA	SER	1019	27.247	26.400	-2.935	1.00 46.21	6
AT OU									

ATOM	1471	СВ	SER	1019	28.179	27.570	-3.247	1.00 35.31	6
ATOM	1472	OG	SER	1019	27.517	28.561	-3.996	1.00 35.31	8
MOTA	1473	C	SER	1019	25.936	26.919	-2.392	1.00 46.21	6
ATOM	1474	0	SER	1019	25.835	27.281	-1.225	1.00 46.21	8
ATOM	1475	N	ASP	1020	24.929	26.965	-3.253	1.00 42.68	7
ATOM	1476	CĄ	ASP	1020	23.640	27.426	-2.808	1.00 42.68	6
MOTA	1477	CB	ASP	1020	22.826	28.008	-3.951	1.00 34.86	6
MOTA	1478	CG	ASP	1020	22.962	29.508	-4.032	1.00 34.86	6
ATOM	1479	OD1	LASP	1020	23.242	30.127	-2.972	1.00 34.86	8
MOTA	1480	OD2	2 ASP	1020	22.788	30.046	-5.149	1.00 34.86	8
MOTA	1481	C	ASP	1020	22.912	26.281	-2.171	1.00 42.68	6
ATOM	1482	0	ASP	1020	21.925	26.487	-1.480	1.00 42.68	8
MOTA	1483	N	VAL	1021	23.401	25.071	-2.398	1.00 33.68	7
MOTA	1484	CA	VAL	1021	22.751	23.944	-1.787	1.00 33.68	б
MOTA	1485	CB	VAL	1021	22.872	22.690	-2.628	1.00 9.47	6
ATOM	1486	CG1	VAL	1021	22.096	21.575	-1.962	1.00 9.47	6
MOTA	1487	CG2	VAL	1021	22.328	22.940	-4.008	1.00 9.47	6
ATOM	1488	C	VAL	1021	23.403	23.746	-0.444	1.00 33.68	6
ATOM	1489	0	VAL	1021	22.872	23.061	0.422	1.00 33.68	8
MOTA	1490	N	TRP	1022	24.565	24.355	-0.268	1.00 49.04	7
MOTA	1491	CA	TRP	1022	25.247	24.284	1.011	1.00 49.04	6
ATOM	1492	CB	TRP	1022	26.732	24.600	0.868	1.00 36.23	6
MOTA	1493	CG	TRP	1022	27.463	24.712	2.164	1.00 36.23	6
ATOM	1494	CD2	TRP	1022	28.575	23.920	2.583	1.00 36.23	6
ATOM	1495	CE2	TRP	1022	28.985	24.411	3.836	1.00 36.23	6
ATOM	1496	CE3	TRP	1022	29.269	22.843	2.019	1.00 36.23	6
MOTA	1497	CD1	TRP	1022	27.246	25.623	3.158	1.00 36.23	6
MOTA	1498	NE1	TRP	1022	28.155	25.452	4.165	1.00 36.23	7
ATOM	1499	CZ2	TRP	1022	30.061	23.862	4.532	1.00 36.23	6
ATOM	1500	CZ3	TRP	1022	30.338	22.300	2.710	1.00 36.23	6
ATOM	1501	CH2	TRP	1022	30.721	22.808	3.951	1.00 36.23	6
ATOM	1502	C	TRP	1022	24.558	25.391	1.777	1.00 49.04	6
ATOM	1503	0	TRP	1022	23.962	25.164	2.822	1.00 49.04	8.
ATOM	1504	N	SER	1023	24.599	26.598	1.244	1.00 40.71	7
ATOM	1505	CA	SER	1023	23.946	27.666	1.954	1.00 20.71	6
ATOM	1506	CB	SER	1023	24.032	28.977	1.181	1.00 20.71	6
ATOM	1507	OG	SER	1023	25.377	29.363	1.081	1.00 17.98	8
ATOM	1508	С	SER	1023	22.516	27.305	2.265	1.00 20.71	6
ATOM	1509	Ō	SER	1023	22.009	27.705	3.298	1.00 20.71	8
ATOM	1510	N	TYR	1024	21.842	26.557	1.400	1.00 27.47	7
ATOM	1511	CA	TYR	1024	20.474	26.200	1.758	1.00 27.47	6
ATOM	1512	CB	TYR	1024	19.728	25.580	0.590	1.00 27.47	_
ATOM	1513	CG.	TYR	1024	18.447	24.902	1.003	1.00 25.94	6
ATOM	1514	CD1		1024	17.222	25.512			6
ATOM	1515	CEl		1024	16.037		0.847	1.00 25.94 1.00 25.94	6 6
ATOM	1516	CD2	TYR	1024		24.846	1.170		
ATOM	1517	CE2	TYR	1024	18.465 17.288	23.611	1.506	1.00 25.94	6
ATOM	1518	CZ	TYR	1024		22.954	1.833	1.00 25.94	6
ATOM	1519	OH	TYR		16.089	23.579	1.656	1.00 25.94	6
ATOM	1520	C	TYR	1024	14.949	22.909	1.953	1.00 25.94	8
ATOM	1521			1024	20.502	25.233	2.942	1.00 27.47	6
		O N	TYR	1024	19.712	25.368	3.873	1.00 27.47	8
ATOM	1522	N	GLY	1025	21.419	24.273	2.917	1.00 24.43	7
ATOM	1523	CA	GLY	1025	21.505	23.344	4.025	1.00 24.43	6
ATOM	1524	C	GLY	1025	21.593	24.073	5.356	1.00 24.43	6
ATOM	1525	0	GLY	1025	21.032	23.619	6.356	1.00 24.43	8
ATOM	1526	N	VAL	1026	22.307	25.195	5.384	1.00 31.88	7
MOTA	1527	CA	VAL	1026	22.417	25.947	6.632	1.00 31.88	6

ATOM	1528	СВ	VAL	1026	23.566	26.979	6.609	1.00 14.56	6
MOTA	1529	CG1	-	1026	23.783	27.551	8.015	1.00 14.56	6
ATOM	1530	CG2	VAL	1026	24.835	26.301	6.132	1.00 14.56	6
MOTA	1531	С	VAL	1026	21.077	26.636	6.908	1.00 31.88	6
ATOM	1532	0	VAL	1026	20.691	26.833	8.062	1.00 31.88	8
MOTA	1533	N	LEU	1027	20.348	26.978	5.855	1.00 36.84	7
ATOM	1534	CA	LEU	1027	19.063	27.591	6.078	1.00 36.84	6
ATOM	1535	CB	LEU	1027	18.470	28.110	4.777	1.00 5.00	6
MOTA	1536	CG	LEU	1027	17.030	28.620	4.806	1.00 5.00	6
ATOM	1537		LEU	1027	16.683	29.318	6.095	1.00 5.00	6
ATOM	1538	CD2		1027	16.893	29.549	3.640	1.00 5.00	6
ATOM	1539	C	LEU	1027	18.149	26.556	6.711	1.00 36.84	6
ATOM	1540	0	LEU	1027	17.383	26.885	7.606	1.00 36.84	8
ATOM	1541	N	LEU	1028	18.234	25.304	6.272	1.00 19.77	7
ATOM	1542	CA	LEU	1028	17.390	24.264	6.848	1.00 19.77	6
ATOM	1543	CB	LEU	1028	17.645	22.931	6.147	1.00 24.80	6
ATOM	1544	CG	LEU	1028	16.802	21.696	6.487	1.00 24.80	6
ATOM	1545	CD1		1028	15.298	21.976	6.507	1.00 24.80	6
ATOM	1546	CD2	LEU	1028	17.117	20.681	5.417	1.00 24.80	6
ATOM	1547	C	LEU	1028	17.681	24.145	8.339	1.00 19.77	6
ATOM	1548	0	LEU	1028	16.779	23.912	9.136	1.00 19.77	8
ATOM	1549	N	TRP	1029	18.944	24.309	8.714	1.00 26.73	7
MOTA	1550	CA	TRP	1029	19.318	24.241	10.114	1.00 26.73	6
ATOM	1551	CB	TRP	1029	20.836	24.229	10.257	1.00 36.84	6
ATCM	1552	CG	TRP	1029	21.363	24.082	11.678	1.00 36.84	6
ATOM	1553	CD2	TRP	1029	21.634	25.145	12.611	1.00 36.84	6
ATOM	1554	CE2	TRP	1029	22.215	24.556	13.757	1.00 36.84	6
ATOM	1555	CE3	TRP	1029	21.438	26.536	12.588	1.00 36.84	6
ATOM	1556	CD1	TRP	1029	21.774	22.926	12.292	1.00 36.84	6
ATOM	1557	NEI	TRP	1029	22.292	23.202	13.539	1.00 36.84	7
ATOM	1558	CZ2	TRP	1029	22.613	25.310	14.860	1.00 36.84	6
ATOM	1559	CZ3	TRP	1029	21.830	27.283	13.682	1.00 36.84	6
ATOM	1560	CH2	TRP	1029	22.409	26.670	14.803	1.00 36.84	6 6
ATOM	1561	C	TRP	1029	18.736	25.435	10.898	1.00 26.73	8
ATOM	1562	O NT	TRP	1029	18.498	25.314	12.089	1.00 26.73	7
ATOM	1563	N	GLU	1030	18.520	26.590	10.266	1.00 28.62 1.00 28.62	6
MOTA MOTA	1564 1565	CA CB	GLU GLU	1030 1030	17.958	27.734 29.020	10.996 10.177	1.00 28.82	6
ATOM	1566	CG	GTO		18.082	29.535	10.177	1.00 33.13	6
	1567	CD	GLU	1030	19.486 19.635	30.718	9.135	1.00 33.13	6
ATOM ATOM	1568	0E1		1030 1030	19.628	30.718	7.909	1.00 33.13	8
ATOM	1569		GLU	1030	19.756	31.865	9.625	1.00 33.13	8
ATOM	1570	Ċ	GLU	1030	16.494	27.467	11.333	1.00 28.62	6
ATOM	1571	0	GLU	1030	16.056	27.619	12.470	1.00 28.62	8
ATOM	1572	N	ILE	1031	15.746	27.065	10.314	1.00 23.86	7
ATOM	1573	CA	ILE	1031	14.328	26.733	10.413	1.00 23.86	6
ATOM	1574	CB	ILE	1031	13.845	26.094	9.083	1.00 5.00	6
ATOM	1575	CG2		1031	12.626	25.263	9.308	1.00 5.00	6
ATOM	1576		ILE	1031	13.660	27.181	8.029	1.00 5.00	6
ATOM	1577	CD1	ILE	1031	13.157	26.703	6.709	1.00 5.00	6
ATOM	1578	C	ILE	1031	14.085	25.760	11.544	1.00 23.86	6
ATOM	1579	0	ILE	1031	13.202	25.766	12.357	1.00 23.86	8
MOTA	1580	N	VAL	1032	14.894	24.723	11.595	1.00 16.66	7
ATOM	1581	CA	VAL	1032	14.745	23.717	12.611	1.00 16.66	6
ATOM	1582	CB	VAL	1032	15.538	22.452	12.184	1.00 12.88	6
MOTA	1583		VAL	1032	15.873	21.594	13.367	1.00 12.88	6
ATOM	1584		VAL	1032	14.713	21.662	11.163	1.00 12.88	6
277 01.1	T 0 0 T		لبنده ٧		<u></u>	00_			-

ATOM	1585	С	VAL	1032	15.155	24.252	13.977	1.00	16.66	6
	1586	0	VAL	1032	14.456	24.032	14.952		16.66	8
ATOM			SER	1033	16.258	24.986	14.058		33.94	7
MOTA	1587	N				25.551	15.331		33.94	6
ATOM	1588	CA	SER	1033	16.732				27.55	6
ATOM	1589	CB	SER	1033	18.173	25.982	15.197			8
ATOM	1590	OG	SER	1033	18.203	27.172	14.452		27.55	
ATOM	1591	С	SER	1033	15.937	26.791	15.793		33.94	6
MOTA	1592	0	SER	1033	16.275	27.415	16.801		33.94	8
MOTA	1593	N	LEU	1034	14.913	27.165	15.035		25.63	7
MOTA	1594	CÁ	LEU	1034	14.075	28.313	15.353		25.63	6
ATOM	1595	CB	LEU	1034	13.382	28.107	16.707	1.00	16.09	6
ATOM	1596	CG	LEU	1034	12.545	26.834	15.882	1.00	16.09	6
ATOM	1597	CD1	LEU	1034	11.931	26.831	18.286	1.00	16.09	6
ATOM	1598	CD2	LEU	1034	11.456	26.758	15.839	1.00	16.09	6
ATOM	1599	C	LEU	1034	14.777	29.676	15.328	1.00	25.63	6
ATOM	1600	0	LEU	1034	14.641	30.476	16.254	1.00	25.63	8
ATOM	1601	N	GLY	1035	15.519	29.927	14.256	1.00	32.06	7
ATOM	1602	CA	GLY	1035	16.185	31.202	14.092	1.00	32.06	6
ATOM	1603	C	GLY	1035	17.458	31.404	14.866		32.06	6
ATOM	1604	0	GLY	1035	17.832	32.537	15.149		32.06	8
		N	GLY	1035	18.124	30.316	15.224		12.96	7
ATOM	1605				19.371	30.430	15.957		12.96	6
ATOM	1606	CA	GLY	1036			14.974		12.96	6
ATOM	1607	C	GLY	1036	20.486	30.704			12.96	8
MOTA	1608	0	GLY	1036	20.355	30.393	13.789			7
ATOM	1609	N	THR	1037	21.572	31.293	15.457		38.43	
ATOM	1610	CA	THR	1037	22.712	31.608	14.609		38.43	6
ATOM	1611	CB	THR	1037	23.593	32.723	15.266		32.45	6
MOTA	1612	OGI	THR	1037	22.813	33.907	15.442		32.45	8
ATOM	1613	CG2	THR	1037	24.754	33.076	14.387		32.45	6
MOTA	1614	С	THR	1037	23.519	30.323	14.418	1.00	38.43	6
ATOM	1615	0	THR	1037	23.687	29.555	15.359	1.00	38.43	8
ATOM	1616	N	PRO	1038	24.003	30.054	13.193	1.00	51.13	7
ATOM	1617	CD	PRO	1038	23.734	30.837	11.973	1.00	42.78	6
ATOM	1618	CA	PRO	1038	24.791	28.859	12.863	1.00	51.13	6
ATOM	1619	СВ	PRO	1038	24.677	28.776	11.354	1.00	42.78	6
MOTA	1620	CG	PRO	1038	24.691	30.218	10.977	1.00	42.78	6
ATOM	1621	C	PRO	1038	26.233	28.968	13.308	1.00	51.13	6
ATOM	1622	0	PRO	1038	26.873	30.002	13.113		51.13	8
			TYR	1039	26.753	27.895	13.886		44.91	7
ATOM	1623	N		1039	28.124	27.909	14.349		44.91	6
ATOM	1624	CA	TYR		29.082	28.341	13.221		38.97	6
ATOM	1625	CB	TYR	1039	28.980		11.933		38.97	6
MCTA		·CG	TYR	1039			10.739		38.97	6
ATOM	1627		TYR	1039	28.593	28.161			38.97	6
ATOM	1628		TYR	1039	28.487	27.434	9.545		38.97	
ATOM	1629	CD2	TYR	1039	29.263	26.185	11.907			6
MOTA	1630	CE2	TYR	1039	29.165	25.455	10.730		38.97	6
MOTA	1631	CZ	TYR	1039	28.773	26.082	9.553		38.97	6
MOTA	1632	OH	TYR	1039	28.647	25.353	8.396		38.97	8
ATOM	1633	C	\mathtt{TYR}	1039	28.176	28.932	15.479	-	44.91	6
ATOM	1634	0	TYR	1039	29.152	29.674	15.601		44.91	8
ATOM	1635	N	CYS	1040	27.120	28.989	16.293		52.33	7
ATOM	1636	CA	CYS	1040	27.093	29.933	17.411		52.33	6
ATOM	1637	CB	CYS	1040	25.700	30.015	18.046		51.31	6
ATOM	1638	SG	CYS	1040	25.484	31.409	19.213	1.00	51.31	16
ATOM	1639	C	CYS	1040	28.094	29.416	18.424		52.33	6
	1640	0	CYS	1040	28.113	28.224	18.729		52.33	8
ATOM		N	GLY	1041	28.930	30.315	18.928		33.04	7
MOTA	1641	ΤΛ	GII I	エハヸエ	20.930	50.515				

										_
ATOM	1642	CA	GLY	1041	29.930	29.917	19.895		33.04	6
ATOM	1643	C	GLY	1041	31.293	29.745	19.257	1.00	33.04	б
MOTA	1644	С	\mathtt{GLY}	1041	32.207	29.176	19.855	1.00	33.04	8
ATOM	1645	N	MET	1042	31.435	30.206	18.024	1.00	54.51	7
ATOM	1646	CA	MET	1042	32.718	30.129	17.350		54.51	6
					32.703		16.241		40.53	6
ATOM	1647	CB	MET	1042		29.085				
MOTA	1648	CG	MET	1042	33.032	27.691	16.710		40.53	6
ATOM	1649	SD	MET	1042	32.920	26.501	15.349	1.00	40.53	16
MOTA	1650	CE	MET	1042	31.539	25.362	15.966	1.00	40.53	6
ATOM	1651	C	MET	1042	33.029	31.492	16.785	1.00	54.51	6
ATOM	1652	0	MET	1042	32.195	32.395	16.804	1.00	54.51	8
ATOM	1653	N	THR	1043	34.241	31.633	16.286		54.86	7
	1654	CA		1043	34.677		15.726		54.86	6
ATOM			THR			32.894		_		6
ATOM	1655	CB	THR	1043	36.055	33.252	16.229		82.76	
ATOM	1656	OG1	THR	1043	36.987	32.269	15.763		82.7 <i>6</i>	8
ATOM	1657	CG2	THR	1043	36.069	33.282	17.735		82.76	б
ATOM	1658	C	THR	1043	34.780	32.79 <i>6</i>	14.227	1.00	54.86	6
ATOM	1659	0	THR	1043	34.695	31.710	13.659	1.00	54.86	8
ATOM	1660	N	CYS	1044	35.002	33.943	13.599	1.00	95.17	7
ATOM	1661	CA	CYS	1044	35.142	34.000	12.158	-	95.17	6
										6
ATOM	1662	CB	CYS	1044	35.205	35.453	11.692		93.17	
ATOM	1663	SG	CYS	1044	33.676	36.379	11.856		93.17	16
ATOM	1664	С	CYS	1044	36.396	33.272	11.681	1.00	95.17	6
ATOM	1665	0	CYS	1044	36.622	33.174	10.483	1.00	95.17	8
ATOM	1666	N	ALA	1045	37.215	32.773	12.603	1.00	38.28	7
ATOM	1667	CA	ALA	1045	38.428	32.079	12.197	1.00	38.28	6
ATOM	1668	CB	ALA	1045	39.618	32.633	12.941		50.33	6
										6
ATOM	1669	C	ALA	1045	38.348	30.571	12.387		38.28	
ATOM	1670	0	ALA	1045	38.780	29.817	11.517	1.00		8
ATOM	1671	N	GLU	1046	37.822	30.131	13.526	1.00		7
ATOM	1672	CA	GLU	1046	37.712	28.702	13.787	1.00	39.84	6
ATOM	1673	CB	GLU	1046	36.911	28.460	15.068	1.00	83.44	6
ATOM	1674	CG	GLU	1046	37.622	28.995	16.300	1.00	83.44	6
ATOM	1675	CD	GLU	1046	36.997	28.556	17.607	1.00	83.44	6
ATOM	1676		GLU	1046	36.872	27.334	17.835		83.44	8
									83.44	8
ATOM	1677		GLU	1046	36.635	29.442	18.408			
MOTA	1678	C	GLU	1046	37.051	28.027	12.591	1.00		6
ATOM	1679	0	GLU	1046	37.370	26.884	12.245	1.00	39.84	8
ATOM	1680	N	LEU	1047	36.148	28.772	11.953	1.00	55.18	7
ATOM	1681	CA	LEU	1047	35.412	28.312	10.771	1.00	55.18	б
ATOM	1682	CB	LEU	1047	34.315	29.319	10.424	1.00	58.88	6
ATOM	1683		LEU	1047	33.325	29.563	11.565	1.00	58.88	6
		_	LEU				11.148		58.88	6
MOTA	1684			1047	32.333	30.619				6
ATOM	1685		LEU	1047		28.260	11.906		58.88	
ATOM	1686	C	LEU	1047	36.307	28.092	9.548		55.18	б
MOTA	1687	0	LEU	1047	36.106	27.157	8.786	1.00	55.18	8
ATOM	1688	N	TYR	1048	37.283	28.967	9.352	1.00	49.08	7
ATOM	1689	CA	TYR	1048	38.203	28.820	8.234	1.00	49.08	6
ATOM	1690	CB	TYR	1048	39.033	30.097	8.078	1.00	62.53	6
						31.088	7.123		62.53	6
MOTA	1691	CG	TYR	1048	38.422					6
ATOM	1692		TYR	1048	37.554	32.092	7.559		62.53	
MOTA	1693	CE1	TYR	1048	36.956	32.963	6.644		62.53	6
ATOM	1694	CD2	TYR	1048	38.678	30.981	5.765		62.53	6
ATOM	1695	CE2	TYR	1048	38.096	31.829	4.851		62.53	6
ATOM	1696	CZ	TYR	1048	37.233	32.820	5.280		62.53	6
	1697	OH	TYR	1048	36.649	33.642	4.333		62.53	8
ATOM									49.08	6
ATOM	1698	C	TYR	1048	39.112	27.618	8.525	1.00	~J. UU	•

		•	•						
		·			FIG.	3EE			
ATOM	1755	NE	ARG	1056	31.444	19.832	6.494	1.00 56.27	7
ATOM	1754	CD	ARG	1056	29.992	19.943	6.563	1.00 56.27	6
ATOM	1753	CG	ARG	1056	29.456	19.890	8.001	1.00 56.27	6
ATOM	1752	CB	ARG	1056	29.674	21.216	8.729	1.00 56.27	6
ATOM	1751	N CA	ARG ARG	1056	31.038 30.216	19.885 21.079	10.231	1.00 78.80	6
ATOM ATOM	1749 1750	O N	TYR	1055 1056	32.982 31.038	20.912	9.728	1.00 <i>6</i> 1.80 1.00 78.80	8 7
ATOM	1748	С	TYR	1055	32.344	19.891	10.001	1.00 61.80	6 8
MOTA	1747	OH	TYR	1055	32.928	21.827	15.531	1.00100.00	8
MOTA	1746	CZ	TYR	1055	32.835	20.860	14.571	1.00100.00	6
MOTA	1745	CE2	TYR	1055	33.985	20.316	14.039	1.00100.00	6
MOTA	1744	CD2		1055	33.885	19.337	13.057	1.00100.00	6
ATOM	1743	CEL		1055	31.592	20.444	14.144	1.00100.00	6
ATOM	1742		TYR	1055	31.499	19.464	13.161	1.00100.00	6
ATOM ATOM	1741	CĠ	TYR	1055	32.547	18.897	12.598	1.00100.00	6
ATOM	1739 1740	CA CB	TYR TYR	1055 1055	33.018 32.547	18.525 17.902	10.146 11.458	1.00 61.80 1.00100.00	6
ATOM	1738	N	TYR	1055	34.460	18.683	10.164	1.00 61.80	7 6
ATOM	1737	O .	GLY	1054	34.644	19.099	7.965	1.00 78.88	8
ATOM	1736	C	GLY	1054	35.160	18.960	9.074	1.00 78.88	6
ATOM	1735	CA	\mathtt{GLY}	1054	36.658	19.075	9.293	1.00 78.88	6
ATOM	1734	N	GLY	1054	37.475	19.815	8.341	1.00 78.88	7
ATOM	1733	0	GLN	1053	38.279	17.904	7.304	1.00 77.10	8
ATOM	1731	C	GLN	1053	38.256	19.137	7.504	1.00100.00	6
ATOM	1731	CB	GLN	1053	40.574	19.932	5.542 7.003	1.00100.00	6
ATOM	1729	N CA	GLN	1053	38.756	19.932	6.359	1.00 77.10	6
ATOM ATOM	1728 1729	N	PRO GLN	1052 1053	36.747 38.756	20.823 21.308	5.474 6.359	1.00 73.14 1.00 77.10	8 7
ATOM	1727	С	PRO	1052	37.600 36.747	21.638	5.814	1.00 73.14	6
ATOM	1726		PRO	1052	38.368	25.214	6.097	1.00 57.36	6
ATOM	1725	CB	PRO	1052	38.669	23.898	5.460	1.00 57.36	6
ATOM	1724	CA	PRO	1052	37.372	23.122	5.675	1.00 73.14	6
MOTA	1723	CD	PRO	1052	37.819	24.695	7.400	1.00 57.36	6
MOTA	1722	N	PRO	1052	36.860	23.692	6.913	1.00 73.14	7
ATOM	1721	0	LEU	1051	35.308	22.098	7.123	1.00 50.22	8
ATOM	1720	CDZ	LEU	1051	35.827	23.121	7.540	1.00 21.77	6
ATOM	1719	CD1	LEU	1051	32.248 32.900	24.632 26.226	8.834 7.065	1.00 21.77 1.00 21.77	6
ATOM ATOM	1717 1718	CG	LEU LEU	1051 1051	33.258	24.954	7.780	1.00 21.77	6 6
ATOM	1716	CB	LEU	1051	34.627	25.081	8.449	1.00 21.77	6
ATOM	1715	CA	LEU	1051	35.323	23.769	8.810	1.00 50.22	6
ATOM	1714	N	LEU	1051	36.394	23.993	9.757	1.00 50.22	7
ATOM	1713	Ō	LYS	1050	35.910	22.112	10.874	1.00 80.24	8
ATOM	1712	C	LYS	1050	36.603	23.121	10.729	1.00 80.24	6
ATOM	1711	CB	LYS	1050	37.750	23.420	11.683 13.105	1.00 80.24	6
ATOM ATOM	1709 1710	N CA	LYS LYS	1050 1050	38.499 37.750	24.659	11.416	1.00 80.24 1.00 80.24	7 6
ATOM	1708	0	GLU	1049	39.581	23.962	9.543	1.00 50.97	8
MOTA	1707	C	GLU	1049	39.347	24.829	10.395	1.00 50.97	6
MOTA	1706	OE2		1049	41.397	24.589	14.641	1.00 95.40	8
MOTA	1705	OE1	GLU	1049	41.872	26.717	14.445	1.00 95.40	8
ATOM	1704	CD	GLU	1049		25.610	13.940	1.00 95.40	6
ATOM	1702	CG	GLU	1049	41.455	26.543 25.483	11.761 12.408	1.00 95.40 1.00 95.40	6 6
ATOM ATOM	1701 1702	CA CB	GLU	1049 1049	40.047 40.532	26.196	10.341	1.00 50.97	6
ATOM	1700	N	GLU	1049	39.224	27.293	9.817	1.00 50.97	7
MOTA	1699	0	TYR	1048	39.651	27.008	7.603	1.00 49.08	8

ATOM	1756	CZ	ARG	1056	32.115	19.413	5.425	1.00	56.27	б
ATOM	1757	NHl	ARG	1056	31.468	19.062	4.323	1.00	56.27	7
ATOM	1758	NH2	ARG	1056	33.441	19.327	5.464	1.00	56.27	7
MOTA	1759	С	ARG	1056	29.074	21.074	11.192	1.00	78.80	6
ATOM	1760	0	ARG	1056	29.031	20.212	12.068	1.00	78.80	8
ATOM	1761	N	LEU	1057	28.149	22.030	11.081	1.00	52.45	7
ATOM	1762	CA	LEU	1057	27.019	22.181	12.016	1.00	52.45	6
ATOM	1763	CB	LEU	1057	25.915	23.018	11.375	1.00	37.29	6
ATOM	1764	CG	LEU	1057	26.218	24.496	11.647	1.00	37.29	6
MOTA	1765	CD1	LEU	1057	25.208	25.439	10.966	1.00	37.29	6
ATOM	1766	CD2	LEU	1057	26.201	24.676	13.134	1.00	37.29	6
ATOM	1767	C	LEU	1057	26.429	20.921	12.635	1.00	52.45	6
ATOM	1768	0	LEU	1057	26.147	19.948	11.957	1.00	52.45	8
ATOM	1769	N	GLU	1058	 26.264	20.978	13.955	1.00	65.26	7
ATOM	1770	CA	GLU	1058	25.730	19.856	14.739	1.00	65.26	6
ATOM	1771	CB	GLU	1058	26.251	19.940	16.182	1.00	73.19	6
MOTA	1772	CG	GLU	1058	25.940	21.232	16.943	1.00	73.19	6
ATOM	1773	CD	GLU	1058	26.617	22.490	16.375		73.19	6
ATOM	1774	OE1	GLU	1058	27.625	22.354	15.641		73.19	8
ATOM	1775	OE2	GLU	1058	26.158	23.611	16.679		73.19	8
ATOM	1776	С	GLU	1058	24.207	19.746	14.738		65.26	6
ATOM	1777	0	GĿŰ	1058	23.497	20.746	14.708		65.26	8
ATOM	1778	N	LYS	1059	23.721	18.509	14.777		77.52	7
ATOM	1779	CA	LYS	1059	22.282	18.230	14.756		77.52	6
ATOM	1780	CB	LYS	1059	22.021	16.720	14.580		63.67	6
ATOM	1781	CG	LYS	1059	20.563	16.341	14.799		63.67	6
ATOM	1782	CD	LYS	1059	20.206	15.034	14.104		63.67	6
ATOM	1783	CE	LYS	1059	20.288	13.847	15.043		63.67	6
ATOM	1784	NZ	LYS	1059	19.240	13.976	16.098		63.67	7
ATOM	1785	C	LYS	1059	21.507	18.697	15.978		77.52	6
ATOM	1786	0	LYS	1059	21.765	18.261	17.093		77.52	8
ATOM	1787	N	PRO	1060	20.530	19.587	15.780		65.64	7
ATOM	1788	CD	PRO	1060	20.131	20.220	14.513		37.22	6
ATOM	1789	CA	PRO	1060	19.725	20.087	16.894		65.64	6
ATOM	1790	CB	PRO	1060	18.724	21.016	16.219		37.22	6
ATOM	1791	CG	PRO	1060	19.416	21.473	14.984		37.22	6
ATOM	1792	C	PRO	1060	19.030	18.898	17.567		65.64	6
ATOM	1793	0	PRO	1060	18.860	17.840	16.956		65.64	8
ATOM	1794	N	LEU	1061	18.637	19.074	18.820		79.51	7
ATOM	1795	CA	LEU	1061	17.962	18.017	19.564		79.51	6
ATOM	1796	CB	LEU	1061	17.893	18.413	21.044		82.15	6
ATOM	1797	CG	LEU	1061	17.476	19.851	21.443	1.00		6
ATOM	1798		LEU	1061	18.413	20.859	20.777	1.00		6
ATOM	1799	•	LEU	1061	16.033	20.833	21.048	1.00		6
ATOM	1800	CDZ	LEU	1061	16.562	17.680	19.047		79.51	6
ATOM	1801	0	LEU	1061	16.187		19.026		79.51	8
ATOM	1802					16.513		1.00		7
		N	ASN	1062	15.802	18.696	18.631			6
ATOM	1803	CA	ASN	1062	14.437	18.512	18.124	1.00	•	6
ATOM	1804	CB	ASN	1062	13.689	19.843	18.124		26.42	6
ATOM	1805	CG	ASN	1062	14.462	20.938	17.404	1.00		
ATOM	1806		ASN	1062	15.554	21.327	17.834	1.00		8
ATOM	1807	ND2		1062	13.908	21.430	16.294		26.42	7
ATOM	1808	С	ASN	1062	14.459	17.989	16.718	1.00		6
ATOM	1809	0	ASN	1062	13.422	17.665	16.156	1.00		8
ATOM	1810	N	CYS	1063	15.646	17.914	16.143	1.00		7
ATOM	1811	CA	CYS	1063	15.767	17.460	14.769	1.00		6
ATOM	1812	CB	CYS	1063	16.914	18.199	14.103	1.00	49.76	6

MOTA	1813	SG	CYS	1063	16.932	17.981	12.363	1.00 49.76	16
MOTA	1814	C	CYS	1063	15.943	15.948	14.559	1.00 48.23	6
MOTA	1815	0	CYS	1063	16.912	15.361	15.039	1.00 48.23	8
MOTA	1816	N	ASP	1064	15.001	15.338	13.834	1.00 41.84	7
MOTA	1817	CA	ASP	1064	15.029	13.907	13.522	1.00 41.84	6
MOTA	1818	CB	ASP	1064	13.788	13.487	12.715	1.00 55.35	6
ATOM	1819	CG	ASP	1064	13.829	12.012	12.290	1.00 55.35	6
MOTA	1820	OD1	ASP	1064	13.977	11.154	13.175	1.00 55.35	8
ATOM	1821	OD2	ASP	1064	13.712	11.710	11.086	1.00 55.35	8
ATOM	1822	C	ASP	1064	16.273	13.599	12.702	1.00 41.84	6
MOTA	1823	0	ASP	1064	16.918	14.521	12.181	1.00 41.84	8
ATOM	1824	N	ASP	1065	16.602	12.309	12.576	1.00 68.56	7
ATOM	1825	CA	ASP	1065	17.789	11.871	11.825	1.00 68.56	6
ATOM	1826	CB	ASP	1065	 18.094	10.391	12.086	1.00100.00	6
ATOM	1827	CG	ASP	1065	18.357	10.088	13.549	1.00100.00	6
MOTA	1828	ODl	ASP	1065	17.400	10.124	14.341	1.00100.00	8
ATOM	1829	OD2	ASP	1065	19.524	9.820	13.894	1.00100.00	8
MOTA	1830	C	ASP	1065	17.654	12.072	10.321	1.00 68.56	6
MOTA	1831	0	ASP	1065	18.627	12.404	9.644	1.00 68.56	8
ATOM	1832	N	GLU	1066	16.457	11.850	9.797	1.00 54.29	7
ATOM	1833	CA	GLU	1066	16.247	12.025	8.378	1.00 54.29	6
ATOM	1834	CB	GLU	1066	14.843	11.583	8.001	1.00 91.86	6
ATOM	1835	ÇG	GLU	1066	14.550	10.152	8.383	1.00 91.86	6
ATOM	1836	CD	GLU	1066	13.252	9.651	7.787	1.00 91.86	6
ATOM	1837		GLU	1066	12.729	8.615	8.258	1.00 91.86	8
ATOM	1838	OE2	GLU	1066	12.755	10.296	6.840	1.00 91.86	8
ATOM	1839	С	GLU	1066	16.481	13.479	7.989	1.00 54.29	6
ATOM	1840	0	GLU	1066	17.223	13.758	7.048	1.00 54.29	8
ATOM	1841	N.	VAL	1067	15.878	14.408	8.727	1.00 46.62	7
ATOM	1842	CA	VAL	1067	16.032	15.836	8.426	1.00 46.62	6
ATOM	1843	CB	VAL	1067	15.277	16.712	9.430	1.00 20.69	6
MOTA	1844	CG1		1067	15.286	18.154	8.957	1.00 20.69	6
ATOM	1845	CG2	VAL	1067	13.879	16.208	9.595	1.00 20.69	6
ATOM	1846	C	VAL	1067	17.484	16.314	8.400	1.00 46.62	6
ATOM	1847	0	VAL	1067	17.892	17.076	7.526	1.00 46.62	8
ATOM	1848	N	TYR	1068	18.261	15.858	9.367	1.00 49.64	7
ATOM	1849	CA	TYR	1068	19.654	16.240	9.459	1.00 49.64	6
ATOM	1850	CB	TYR	1068	20.195	15.811	10.813	1.00 42.96	6
ATOM	1851	CG	TYR	1068	21.604	16.239	11.074	1.00 42.96	6
ATOM	1852	CD1	TYR	1068	21.947	17.594	11.093	1.00 42.96	6
ATOM	1853	CE1	TYR	1068	23.236	18.006		1.00 42.96	6
ATOM	1854	CD2		1068	22.593	15.301	11.348	1.00 42.96	6
ATOM	1855	CE2	TYR	1068	23.882	15.701	11.640	1.00 42.96	6
ATOM	1856	CZ	TYR	1068	24.198	17.055	11.662	1.00 42.96	6
ATOM	1857	OH	TYR	1068	25.470	17.451	11.985	1.00 42.96	8
ATOM	1858	C	TYR	1068	20.424	15.557	8.338	1.00 49.64	6
ATOM	1859	0	TYR	1068	21.239	16.176	7.663	1.00 49.64	8
ATOM	1860	N		1068	20.148	14.275	8.144	1.00 54.25	7
			ASP				7.112	1.00 54.25	6
MOTA	1861 1862	CA CB	ASP ASP	1069 1069	20.808	13.495 12.188	6.905	1.00100.00	6
ATOM								1.00100.00	6
ATOM	1863	CG	ASP	1069	20.812	11.231	6.043	1.00100.00	8
ATOM	1864	OD1		1069	21.225	11.635	4.937	1.00100.00	8
ATOM	1865	OD2		1069	20.986	10.076	6.479		6
ATOM	1866	C	ASP	1069	20.815	14.279	5.803	1.00 54.25 1.00 54.25	8
ATOM	1867	0	ASP	1069	21.779	14.247	5.037		7
ATOM	1868	N	LEU	1070	19.697	14.956	5.562	1.00 40.31	6
MOTA	1869	CA	LEU	1070	19.496	15.777	4.371	1.00 40.31	0

MOTA	1870	СВ	LEU	1070	18.009	16.075	4.195	1.00 25.05	6
ATOM	1871	CG	LEU	1070	17.581	16.966	3.048	1.00 25.05	6
									6
MOTA	1872		LEU	1070	17.865	16.291	1.720	1.00 25.05	
MOTA	1873	CD2	LEU	1070	16.114	17.219	3.219	1.00 25.05	6
ATOM	1874	C	LEU	1070	20.290	17.079	4.447	1.00 40.31	6
ATOM	1875	0	LEU	1070	20.561	17.688	3.423	1.00 40.31	8
									7
ATOM	1876	N	MET	1071	20.639	17.510	5.655	1.00 23.05	
MOTA	1877	CA	MET	1071	21.452	18.703	5.785	1.00 23.05	6
ATOM	1878	CB	MET	1071	21.367	19.310	7.201	1.00 19.93	6
ATOM	1879	CG	MET	1071	20.030	19.910	7.631	1.00 19.93	6
									16
ATOM	1880	SD	MET	1071	20.077	20.344	9.411	1.00 19.93	
MOTA	1881	CE	MET	1071	18.390	20.649	9.751	1.00 19.93	6
ATOM	1882	С	MET	1071	22.888	18.243	5.504	1.00 23.05	6
ATOM	1883	0	MET	1071	 23.591	18.880	4.744	1.00 23.05	8
	1884	N	ARG	1072	23.319	17.124	6.082	1.00 51.65	7
ATOM									
MOTA	1885	CA	ARG	1072	24.689	16.669	5.864	1.00 51.65	6
MOTA	1886	CB	ARG	1072	24.978	15.434	6.696	1.00 98.84	6
MOTA	1887	CG	ARG	1072	24.870	15.716	8.162	1.00 98.84	6
ATOM	1888	CD	ARG	1072	26.125	16.339	8.727	1.00 98.84	6
								1.00 98.84	7
MOTA	1889	NE	ARG	1072	27.004	15.305	9.271		
MOTA	1890	CZ	ARG	1072	27.992	i5.530	10.131	1.00 98.84	6
ATOM	1891	NHl	ARG	1072	28.232	16.767	10.546	1.00 98.84	7
ATOM	1892	NH2	ARG	1072	28.724	14.521	10.593	1.00 98.84	7
		C	ARG	1072	25.023	16.404	4.401	1.00 51.65	6
MOTA	1893								
MOTA	1894	0	ARG	1072	26.150	16.659	3.973	1.00 51.65	8
ATOM	1895	N	${ t GLN}$	1073	24.073	15.900	3.617	1.00 27.54	7
MOTA	1896	CA	GLN	1073	24.376	15.679	2.211	1.00 27.54	6
MOTA	1897	CB	GLN	1073	23.347	14.746	1.568	1.00 67.93	6
							1.789	1.00 67.93	6
MOTA	1898	CG	GLN	1073	21.934	15.149			
MOTA	1899	CD	GLN	1073	20.972	14.026	1.527	1.00 67.93	б
ATOM	1900	OEl	${ t GLN}$	1073	20.889	13.066	2.298	1.00 67.93	8
ATOM	1901	NE2	GLN	1073	20.238	14.127	0.422	1.00 67.93	7
ATOM	1902	С	GLN	1073	24.449	17.041	1.500	1.00 27.54	6
								1.00 27.54	8
ATOM	1903	0	GLN .		25.088	17.162	0.453		
ATOM	1904	N	CYS	1074	23.816	18.070	2.072	1.00 36.16	7
ATOM	1905	CA	CYS	1074	23.858	19.423	1.497	1.00 36.16	6
ATOM	1906	CB	CYS	1074	22.925	20.393	2.243	1.00 40.38	6
ATOM	1907	SG	CYS	1074	21.201	20.463	1.797	1.00 40.38	16
									6
MOTA	1908	С	CYS	1074	25.282	19.995	1.627	1.00 36.16	
MOTA	1909	0	CYS	1074	25.746	20.748	0.767	1.00 36.16	8
ATOM	1910	N	TRP	1075	25.958	19.619	2.716	1.00 26.48	7
ATOM	1911	CA	TRP	1075	27.302	20.120	3.049	1.00 26.48	6
MOTA	1912	CB	TRP	1075	27.413	20.389	4.570	1.00 32.15	6
		•							
MOTA	1913	CG	TRP	1075	26.260	21.224	5.181	1.00 32.15	6
ATOM	1914	CD2	TRP	1075	25.679	21.080	6.485	1.00 32.15	6
MOTA	1915	CE2	TRP	1075	24.682	22.075	6.613	1.00 32.15	6
ATOM	1916	CE3	TRP	1075	25.901	20.211	7.553	1.00 32.15	6
							4.597	1.00 32.15	6
ATOM	1917	CD1	TRP	1075	25.607	22.272			
MOTA	1918	NE1	TRP	1075	24.662	22.783	5.449	1.00 32.15	7
ATOM	1919	CZ2	TRP	1075	23.909	22.222	7.774	1.00 32.15	6
ATOM	1920	CZ3	TRP	1075	25.133	20.361	8.703	1.00 32.15	6
		CH2	TRP	1075	24.148	21.357	8.807	1.00 32.15	6
ATOM	1921								6
MOTA	1922	С	TRP	1075	28.471	19.236	2.622	1.00 26.48	
MOTA	1923	0	TRP	1075	29.599	19.447	3.071	1.00 26.48	8
MOTA	1924	N	ARG	1076	28.209	18.265	1.751	1.00 51.58	7
ATOM	1925	CA	ARG	1076	29.258	17.367	1.279	1.00 51.58	6
							0.249	1.00 67.56	6
MOTA	1926	CB	ARG	1076	28.683	16.391	0.243	1.00 07.50	•

		~~	200	1076	27.618	15.509	0.847	1.00 67.56	6
ATOM	1927	CG	ARG	1076	27.279	14.291	0.009	1.00 67.56	6
ATOM	1928	CD	ARG	1076	26.267	13.485	0.690	1.00 67.56	7
ATOM	1929	NE	ARG	1076	25.731	12.365	0.215	1.00 67.56	6
ATOM	1930	CZ	ARG	1076	26.104	11.891	-0.966	1.00 67.56	7
MOTA	1931	NHl	ARG		24.819	11.714	0.929	1.00 67.56	7
ATOM	1932	NH2	ARG	1076	30.431	18.157	0.710	1.00 51.58	6
MOTA	1933	C	ARG	1076	30.431	19.206	0.103	1.00 51.58	8
MOTA	1934	0	ARG	1076		17.651	0.941	1.00 50.74	7
MOTA	1935	N	GLU	1077	31.642		0.488	1.00 50.74	6
MOTA	1936	CA	GLU	1077	32,885	18.281		1.00 91.21	6
ATOM	1937	CB	GLU	1077	34.059	17.419	0.893	1.00 50.74	6
MOTA	1938	C	GLU	1077	32.927	18.540	-1.013		8
ATOM	1939	0	GLU	1077	 33.213	19.657	-1.450		7
ATOM	1940	N	LYS	1078	32.656	17.494	-1.790	1.00 49.20	6
ATOM	1941	CA	LYS	1078	32.657	17.579	-3.240	1.00 49.20	6
ATOM	1942	CB	LYS	1078	32.895	16.197	-3.847	1.00 93.58	
MOTA	1943	CG	LYS	1078	34.289	15.666	-3.640	1.00 93.51	6
MOTA	1944	CD	LYS	1078	34.458	14.341	-4.346	1.00 93.51	6
MOTA	1945	CE	LYS	1078	35.872	13.806	-4.191	1.00 93.51	6
ATOM	1946	NZ	LYS	1078	36.025	12.476	-4.860	1.00 93.51	7
ATOM	1947	С	LYS	1078	31.345	18.145	-3.760	1.00 49.20	6
ATOM	1948	0	LYS	1078	30.290	17.528	-3.617	1.00 49.20	8
ATOM	1949	N	PRO	1079	31.390	19.341	~4.366	1.00 30.47	7
ATOM	1950	CD	PRO	1079	32.592	20.190	-4.459	1.00 29.67	6
ATOM	1951	CA	PRO	1079	30.236	20.040	-4.931	1.00 30.47	б
ATOM	1952	CB	PRO	1079	30.887	21.098	-5.791	1.00 29.67	6
	1953	CG	PRO	1079	32.024	21.511	-4.914	1.00 29.67	6
MOTA	1954	C	PRO	1079	29.235	19.190	-5.711	1.00 30.47	6
ATOM		0	PRO	1079	28.040	19.221	-5.420	1.00 30.47	8
MOTA	1955		TYR	1080	29.708	18.462	-6.718	1.00 44.53	7
MOTA	1956	N	TYR	1080	28.821	17.616	-7.520	1.00 44.53	6
ATOM	1957	CA		1080	29.576	17.054	-8.730	1.00 62.16	6
MOTA	1958	CB	TYR		30.938	16.479	-8.412	1.00 62.16	6
MOTA	1959	CG	TYR	1080	31.072	15.207	-7.859	1.00 62.16	6
MOTA	1960	CD1	TYR	1080	32.329	14.691	-7.531	1.00 62.16	6
MOTA	1961	CE1	TYR	1080		17.223	-8.636	1.00 62.16	6
MOTA	1962	CD2	TYR	1080	32.095		-8.312	1.00 62.16	6
ATOM	1963	CE2	TYR	1080	33.351	16.722	-7.757	1.00 62.16	6
MOTA	1964	CZ	TYR	1080	33.462	15.458	-7.409	1.00 62.16	8
MOTA	1965	OH,	TYR	1080	34.701	14.970		1.00 44.53	6
MOTA	1966	C	TYR	1080	28.232	16.490	-6.672	1.00 44.53	8
MOTA	1967	0	\mathtt{TYR}	1080	27.282	15.833	-7.087	1.00 41.53	7
ATOM	1968	N	GLU	1081	28.792	16.285	-5.484	1.00 41.53	6
MOTA	1969	CA	GLU	1081	28.285	15.257	-4.588		6
ATOM	1970	CB	GLU	1081	29.373	14.767	-3.638	1.00 60.45	6
MOTA	1971	CG	${ t GLU}$	1081	30.292	13.713	-4.220	1.00 60.45	
ATOM	1972	CD	GLU	1081	31.240	13.143	-3.182	1.00 60.45	б
MOTA	1973	OE1	GLU	1081	31.903	12.119	-3.470	1.00 60.45	8
ATOM	1974	OE2		1081	31.323	13.726	-2.079	1.00 60.45	8
ATOM	1975	С	GLU	1081	27.114	15.809	-3.778	1.00 41.53	6
ATOM	1976	Ō	GLU	1081	26.512	15.099	-2.972	1.00 41.53	8
ATOM	1977	N	ARG	1082	26.812	17.087	-3.975	1.00 50.75	7
	1978	CA	ARG	1082	25.702	17.706	-3.280	1.00 50.75	6
ATOM	1978	CB	ARG	1082	25.979	19.207	-3.053	1.00 30.76	6
ATOM			ARG	1082	26.429	19.535	-1.624	1.00 30.76	6
ATOM	1980	CG		1082	27.857	20.100	-1.505	1.00 30.76	6
ATOM	1981	CD	ARG		27.939	21.540	-1.743	1.00 30.76	7
ATOM	1982	NE	ARG	1082		22.258	-1.663	1.00 30.76	6
MOTA	1983	CZ	ARG	1082	29.060	22.250	1.505		

									_
ATOM	2041	0	LEU	1089	10.804	17.270	-1.423	1.00 31.43	8
ATOM	2042	N	VAL	1090	11.920	16.619	-3.265	1.00 26.46	7
ATOM	2043	CA	VAL	1090	11.346	15.288	-3.242	1.00 26.46	б
ATOM	2044	CB	VAL	1090	12.042	14.338	-4.171	1.00 24.17	6
ATOM	2045	CG1	VAL	1090	11.419	12.957	-4.012	1.00 24.17	б
		CG2	VAL	1090	11.913	14.819	-5.581	1.00 24.17	б
MOTA	2046				11.441	14.697	-1.861	1.00 26.46	6
ATOM	2047	C	VAL	1090				1.00 26.46	8
ATOM	2048	0	VAL	1090	10.476	14.126	-1.362		7
MOTA	2049	И	SER	1091	12.600	14.819	-1.235	1.00 24.68	
ATOM	2050	CA	SER	1091	12.726	14.276	0.094	1.00 24.68	6
ATOM	2051	CB	SER	1091	14.156	14.407	0.599	1.00 45.28	6
ATOM	2052	OG	SER	1091	15.039	13.699	~0.249	1.00 45.28	8
ATOM	2053	С	SER	1091	11.742	14.999	1.006	1.00 24.68	6
ATOM	2054	0	SER	1091	 10.796	14.379	1.471	1.00 24.68	8
	2055	N	LEU	1092	11.919	16.302	1.231	1.00 45.44	7
ATOM				1092	11.001	17.031	2.112	1.00 45.44	6
ATOM	2056	CA	LEU			18.557	1.905	1.00 19.86	6
MOTA	2057	CB	LEU	1092	11.127			1.00 19.86	6
ATOM	2058	CG	LEU	1092	12.518	19.144	2.242		6
ATOM	2059	CD1	LEU	1092	12.611	20.594	1.810	1.00 19.86	
ATOM	2060	CD2	LEU	1092	12.793	19.007	3.728	1.00 19.86	6
ATOM	2061	C	LEU	1092	9.554	16.568	1.918	1.00 45.44	6
ATOM	2062	0	LEU	1092	8.821	16.438	2.891	1.00 45.44	8
ATOM	2063	N	ASN	1093	9.162	16.275	0.678	1.00 44.52	7
ATOM	2064	CA	ASN	1093	7.797	15.820	0.360	1.00 44.52	6
	2065	CB	ASN	1093	7.578	15.906	-1.147	1.00 34.39	6
ATOM		CG	ASN	1093	7.266	17.302	-1.586	1.00 34.39	б
ATOM	2066				7.572	17.705	-2.703	1.00 34.39	8
MOTA	2067		ASN	1093		18.061	-0.698	1.00 34.39	7
ATOM.	2068	ND2		1093	6.639			1.00 44.52	6
MOTA	2069	C	ASN	1093	7.501	14.414	0.849	1.00 44.52	8
ATOM	2070	0	ASN	1093	6.437	14.137	1.401		7
ATOM	2071	N	ARG	1094	8.458	13.529	0.631	1.00 42.85	
ATOM	2072	CA	ARG	1094	8.329	12.168	1.074	1.00 42.85	6
ATOM	2073	CB	ARG	1094	9.491	11.353	0.472	1.00 83.86	6
ATOM	2074	CG	ARG	1094	10.129	10.325	1.373	1.00 83.62	6
ATOM	2075	CD	ARG	1094	11.099	10.992	2.328	1.00 83.62	6
ATOM	2076	NE	ARG	1094	11.576	10.076	3.359	1.00 83.62	7
	2073	CZ	ARG	1094	10.787	9.365	4.163	1.00 83.62	6
ATOM				1094	9.466	9.461	4.070	1.00 83.62	7
MOTA	2078	NH1	ARG		11.323	8.549	5.061	1.00 83.62	7
MOTA	2079	NH2	ARG	1094			2.628	1.00 42.85	6
ATOM	2080	C	ARG	1094	8.293	12.166		1.00 42.85	8
ATOM	2081	0	ARG	1094	7.667		3.239		7
MOTA	2082	. N	MET	1095	8.934	13.151	3.253	1.00 51.73	
ATOM	2083	ĊA	MET	1095	8.991	13.279	4.712	1.00 51.73	6
ATOM	2084	CB	MET	1095	10.206	14.135	5.109	1.00 28.03	6
ATOM	2085	CG	MET	1095	11.242	13.507	5.999	1.00 28.03	6
ATOM	2086	SD	MET	1095	12.707	14.551	6.044	1.00 28.03	16
ATOM	2087	CE	MET	1095	13.094	14.706	4.302	1.00 28.03	6
		C	MET	1095	7.757	13.989	5.274	1.00 51.73	6
ATOM	2088					13.870	6.450	1.00 51.73	8
ATOM	2089	0	MET	1095	7.425		4.413	1.00 48.50	7
MOTA	2090	N	LEU	1096	7.123	14.763		1.00 48.50	6
ATOM	2091	CA	LEU	1096	5.981	15.557	4.825		6
MOTA	2092	CB	LEU	1096	5.889	16.790	3.951	1.00 41.93	
ATOM	2093	CG	LEU	1096	6.365	18.048	4.638	1.00 41.93	6
ATOM	2094		LEU	1096	6.177	19.139	3.616	1.00 41.93	6
ATOM	2095		LEU	1096	5.5 <i>9</i> 3	18.342	5.911	1.00 41.93	6
	2095	C	LEU	1096	4.663	14.859	4.783	1.00 48.50	6
ATOM				1096	3.747	15.199	5.536	1.00 48.50	8
MOTA	2097	0	LEU	TOSO	3.1-1			=	

ATOM	2098	N	GLU	1097	4.537	13.900	3.890	1.00 62.96	7
ATOM	2099	CA	GLÜ	1097	3.261	13.252	3.809	1.00 63.28	6
ATOM	2100	CB	GLU	1097	3.046	12.672	2.424	1.00 90.58	6
MOTA	2101	CG	GLU	1097	2.625	13.708	1.449	1.00 90.58	6
MOTA	2102	CD	GLÜ	1097	2.523	13.139	0.080	1.00 90.58	6
ATOM	2103	OE:	L GLU	1097	3.480	12.481	-0.333	1.00 90.58	8
MOTA	2104	OE2	GLU	1097	1.492	13.317	-0.587	1.00 90.58	8
MOTA	2105	C	GLU	1097	3.099	12.216	4.892	1.00 64.94	6
MOTA	2106	0	GLU	1097	2.839	11.051	4.616	1.00 67.39	8
MOTA	2107	N	GLU	1098	3.279	12.659	6.137	1.00 99.89	7
MOTA	2108	CA	GLU	1098	3.132	11.782	7.288	1.00 99.89	6
ATOM	2109	CB	GLU	1098	4.342	10.880	7.434	1.00 62.46	6
ATOM	2110	CG	GLU	1098	4.908	10.367	6.157	1.00 62.46	6
ATOM	2111	CD	GLU	1098	 6.147	9.556	6.415	1.00 62.46	6
MOTA	2112	OE1	GLU	1098	6.614	9.586	7.576	1.00 62.46	8
ATOM	2113	OE2	GLU	1098	6.653	8.914	5.474	1.00 62.46	8
ATOM	2114	C	GLU	1098	2.928	12.540	8.608	1.00 99.89	6
ATOM	2115	0	GLÜ	1098	1.962	12.277	9.312	1.00 99.89	8
ATOM	2116	N	ARG	1099	3.815	13.483	8.937	1.00100.00	7
ATOM	2117	CA	ARG	1099	3.735	14.251	10.201	1.00100.00	6
ATOM	2118	CB	ARG	1099	2.339	14.863	10.201	1.00100.00	6
ATOM	2119	CG	ARG	1099	2.140	15.416	11.871	1.00 83.68	6
ATOM	2120	CD	ARG	1099	3.239	16.413	12.239	1.00 83.68	6
ATOM	2121	NE	ARG	1099	3.123	16.413	13.609	1.00 83.68	7
ATOM	2122	CZ	ARG	1099	3.314			· -	
ATOM	2123		ARG	1099		18.185	13.955	1.00 83.68	6
ATOM	2123	NH2			3.636	19.072	13.024	1.00 83.68	7
				1099	3.179	18.572	15.222	1.00 83.68	7
ATOM	2125	C	ARG	1099	4.083	13.322	11.354	1.00100.00	6
ATOM	2126	0	ARG	1099	3.393	13.259	12.370	1.00100.00	8
ATOM		N.	LYS	1100	5.153	12.570	11.174	1.00 88.41	7
ATOM	2128	CA	LYS	1100	5.572	11.681	12.224	1.00 88.41	6
ATOM	2129	CB	LYS	1100	6.250	10.454	11.641	1.00 87.41	6
ATOM	2130	CG	LYS	1100	5.322	9.628	10.762	1.00 87.41	6
ATOM	2131	CD	LYS	1100	3.984	9.336	11.456	1.00 87.41	6
ATOM '	2132	CE	LYS	1100	4.165	8.742	12.861	1.00 59.92	6
ATOM	2133	NZ	LYS	1100	4.852	7.411	12.877	1.00 59.92	7
ATOM	2134	С	LYS	1100	6.519	12.453	13.123	1.00 88.41	6
MOTA	2135	0	LYS	1100	7.597	11.969	13.470	1.00 88.41	8
MOTA	2136	N	THR	1101	6.112	13.672	13.472	1.00100.00	7
MOTA	2137	CA	THR	1101	6.892	14.519	14.356	1.00100.00	6
MOTA	2138	CB	THR	1101	6.795	13.998	15.811	1.00100.00	6
MOTA	2139	OG1	THR	1101	5.426	14.034	16.239	1.00 90.24	8
MOTA	2140	CG2	THR	1101	7.652	14.836	16.750	1.00 90.24	6
ATOM	2141	C	THR	1101	8.362	14.565	13.927	1.00100.00	6
ATOM	2142	0	THR	1101	9.219	13.923	14.541	1.00100.00	8
ATOM	2143	N	TYR	1102	8.655	15.300	12.862	1.00 39.18	7
MOTA	2144	CA	TYR	1102	10.042	15.411	12.416	1.00 39.18	6
MOTA	2145	CB	TYR	1102	10.106	15.624	10.912	1.00 91.13	6
ATOM	2146	CG	TYR	1102	9.798	14.391	10.132	1.00 60.67	6
MOTA	2147	CD1	TYR	1102	8.500	14.112	9.717	1.00 60.67	6
ATOM	2148	CE1	TYR	1102	8.222	12.956	9.006	1.00 60.67	6
ATOM	2149	CD2	TYR	1102	10.809	13.487	9.821	1.00 60.67	6
ATOM	2150	CE2	TYR	1102	10.544	12.338	9.120	1.00 60.67	6
ATOM	2151	CZ	TYR	1102	9.256	12.078	8.711	1.00 60.67	6
ATOM	2152	ОН	TYR	1102	9.019	10.950	7.978	1.00 60.67	8
ATOM	2153	C	TYR	1102	10.781	16.549	13.102	1.00 30.87	6
ATOM	2154	0	TYR						8
TT OIL	4134	0	TIK	1102	12.003	16.594	13.090	1.00 39.18	a

ATOM	2155	N	VAL	1103	10.028	17.469	13.690	1.00 80.69	7
ATOM	2156	CA	VAL	1103	10.614	18.614	14.370	1.00 80.69	6
ATOM	2157	CB	VAL	1103	10.585	19,857	13.466	1.00 82.85	6
ATOM	2158	CG1	VAL	1103	11.221	21.042	14.165	1.00 25.69	6
ATOM	2159	CG2	VAL	1103	11.310	19.563	12.172	1.00 25.69	6
ATOM	2160	С	VAL	1103	9.791	18.892	15.611	1.00 80.69	6
ATOM	2161	0	VAL	1103	8.677	19.395	15.529	1.00 80.69	8
ATOM	2162	N	ASN	1104	10.345	18.570	16.767	1.00 61.67	7
ATOM	2163	CA	ASN	1104	9.624	18.773	18.003	1.00 61.67	6
ATOM	2164	CB	ASN	1104	10.315	18.015	19.112	1.00 93.99	6
ATOM	2165	CG	ASN	1104	9.344	17.404	20.054	1.00 53.82	6
ATOM	2166	OD1		1104	8.643	18.111	20.791	1.00 53.82	8
ATOM	2167	ND2	ASN	1104	9.261	16.076	20.028	1.00 53.82	7
	2168	C C	ASN	1104				1.00 53.82	6
ATOM					9.470	20.240	18.395		8
ATOM	2169	0	ASN	1104	10.453	20.966	18.484	1.00 61.67	7
ATOM	2170	N	THR	1105	8.233	20.675	18.625	1.00 43.79	
ATOM	2171	CA	THR	1105	7.960	22.059	19.024	1.00 43.79	6
MOTA	2172	CB	THR	1105	7.081	22.763	18.002	1.00 95.52	6
MOTA	2173	OG1	THR	1105	5.888	22.001	17.786	1.00 51.15	8
MOTA	2174	CG2	THR	1105	7.835	22.923	16.700	1.00 51.15	6
ATOM	2175	С	THR	1105	7.231	22.045	20.350	1.00 43.79	6
ATOM	2176	0	THR	1105	6.598	23.024	20.754	1.00 43.79	8
MOTA	2177	N	THR	1106	7.338	20.905	21.016	1.00 47.73	7
ATOM	2178	CA	THR	1106	6.683	20.671	22.281	1.00 47.73	6
MOTA	2179	CB	THR	1106	5.850	19.415	22.236	1.00 24.03	6
ATOM	2180	OG1	THR	1106	4.835	19.542	21.237	1.00 24.03	8
MOTA	2181	CG2	THR	1106	5.222	19.167	23.580	1.00 24.03	6
MOTA	2182	C	THR	1106	7.676	20.434	23.372	1.00 47.73	б
MOTA	2183	0	THR	1106	8.742	19.880	23.129	1.00 47.73	8
MOTA	2184	N	LEU	1107	7.311	20.833	24.583	1.00 64.31	7
MOTA	2185	CA	LEU	1107	8.174	20.612	25.723	1.00 64.31	6
MOTA	2186	CB	LEU	1107	8.207	21.803	26.637	1.00 96.32	6
MOTA	2187	CG	LEU	1107	8.957	22.900	25.957	1.00 40.62	6
ATOM	2188	CD1	LEU	1107	7.919	23.838	25.432	1.00 40.62	6
ATOM	2189	CD2	LEU	1107	9.864	23.587	26.914	1.00 40.62	6
ATOM	2190	С	LEU	1107	7.795	19.433	26.564	1.00 64.31	6
ATOM	2191	0	LEU	1107	6.801	19.458	27.281	1.00 64.31	8
ATOM	2192	N	TYR	1108	8.708	18.463	26.384	1.00 94.02	7
ATOM	2193	CA	TYR	1108	8.405	17.305	27.238	1.00 94.02	6
ATOM	2194	CB	TYR	1108	8.596	16.009	26.448	1.00 99.65	6
ATOM	2195	CG	TYR	1108	7.705	15.929	25.207	1.00 78.77	6
ATOM	2196		TYR	1108	7.913	14.643	24.404	1.00 78.77	6
ATOM	2197	CD2	TYR	1108	6.212	15.974	25.538	1.00 78.77	6
ATOM	2198	C	TYR	1108	9.340	17.291	28.449	1.00 94.02	6
ATOM	2199	0	TYR	1108	8.922	16.976	29.574	1.00 94.02	8
ATOM		N	GLU	1108	10.796	17.582	27.521	1.00 92.55	7
	2200							1.00 92.55	6
ATOM	2201	CA	GLU	1109	11.496	17.815	28.793	1.00 95.82	6
ATOM	2202	CB	GLU	1109	11.234	16.655	29.755		6
ATOM	2203	C	GLU	1109	13.002	17.927	28.549	1.00 92.55	8
ATOM	2204	0	GLU	1109	13.672	16.935	28.226	1.00 92.55	
MOTA	2205	N	LYS	1110	13.581	19.231	28.669	1.00 54.62	7
ATOM	2206	CA	LYS	1110	14.995	19.556	28.430	1.00 54.62	6
MOTA	2207	CB	LYS	1110	15.850	18.294	28.564	1.00100.00	6
MOTA	2208	CG	LYS	1110	16.129	17.914	30.020	1.00 99.80	6
MOTA	2209	CD	LYS	1110	17.313	16.956	30.171	1.00 99.80	6
ATOM	2210	CE	LYS	1110	17.333	16.240	31.523	1.00 99.80	6
ATOM	2211	NZ	LYS	1110	18.525	15.400	31.710	1.00 99.80	7
					FIG. 3	3MM			
					• ;				

MOTA	2212	C	LYS	1110	15.168	20.134	27.023	1.00	54.62	6
ATOM	2213	0	LYS	1110	15.875	19.561	26.181	1.00	54.62	8
MOTA	2214	N	PHE	1111	14.506	21.258	26.825	1.00	53.78	7
MOTA	2215	CA	PHE	1111	14.527	21.994	25.551·	1.00	53.78	6
ATOM	2216	CB	PHE	1111	13.134	22.558	25.259	1.00	97.53	6
ATOM	2217	CG	PHE	1111	12.847	22.718	23.764	1.00	42.19	6
MOTA	2218	CD1	PHE	1111	12.368	21.631	23.023	1.00	42.19	6
MOTA	2219	CD2	PHE	1111	13.062	23.951	23.140	1.00	42.19	б
ATOM	2220	CE1	PHE	1111	12.104	21.779	21.655	1.00	42.19	6
ATOM	2221	CE2	PHE	1111	12.798	24.100	21.773	1.00	42.19	6
MOTA	2222	CZ	PHE	1111	12.318	23.013	21.031	1.00	42.19	6
MOTA	2223	C	PHE	1111	15.528	23.149	25.640	1.00	53.78	6
ATOM	2224	0	PHE	1111	15.647	23.812	26.681	1.00	53.78	8
ATOM	2225	N	THR	1112	16.171	23.593	24.331	1.00	41.67	7
ATOM	2226	CA	THR	1112	17.246	24.596	24.296	1.00	41.67	6
ATOM	2227	CB	THR	1112	18.609	23.900	24.280	1.00	81.18	. 6
ATOM	2228	OG1	THR	1112	18.657	22.952	23.224	1.00	45.38	8
MOTA	2229	CG2	THR	1112	18.915	23.153	25.579	1.00	45.38	6
ATOM	2230	C	THR	1112	17.113	25.461	23.041	1.00	41.67	б
ATOM	2231	0	THR	1112	16.476	25.063	22.055		41.67	8
MOTA	2232	N	TYR	1113	17.727	26.628	23.125		88.60	7
MOTA.	2233	CA	TYR	1113	17.729	27.614	22.034		88.60	6
ATOM	2234	CB	TYR	1113	16.857	28.816	22.408		72.51	6
MOTA	2235	CG	TYR	1113	15.375	28.464	22.561		11.65	6
ATOM	2236	CD1	TYR	1113	14.778	28.484	23.827		11.65	6
ATOM	2237	CE1	TYR	1113	13.422	28.166	23.967		11.65	6
ATOM	2238	CD2	TYR	1113	14.614	28.124	21.435		11.65	6
ATOM	2239	CE2	TYR	1113	13.258	27.806	21.575		11.65	6
ATOM	2240	CZ.	TYR	1113	12.662	27.827	22.842		11.65	6
MOTA	2241	OH	TYR	1113	11.344	27.518	22.978		11.65	8
ATOM	2242	C	TYR	1113	19.155	28.108	21.772		88.60	6
ATOM	2243	0	TYR	1113	20.133	27.378	21.991		88.60	8
ATOM	2243	N	ALA	1114	19.217	29.344	21.309		62.73	7
					20.484	30.020	20.989		62.73	6
MOTA	2245	CA	ALA	1114	21.530	28.992	20.552	1.00	7.22	6
ATOM	2246	CB	ALA	1114	20.268	31.024	19.854	1.00	62.73	6
ATOM	2247	C	ALA	1114	20.208	30.642	18.685		62.73	8
ATCM	2248	0	ALA	1114		30.642			60.96	7
ATOM	2249	N	GLY	1115	20.271		20.241	1.00	60.96	6
ATOM	2250	CA	GLY	1115	20.078	33.409	19.310		60.96	6
ATOM	2251	C	GLY	1115	21.034	34.552	19.657			8
ATOM	2252	0	GLY	1115	20.817	35.296	20.625		60.96	7
ATOM	2253	N	ILE	1116	22.069	34.651	18.843		82.32	6
ATOM	2254	CA	ŢŢĔ	1116	23.110	35.679	18.992		82.32	
MOTA	2255	CB	ILE	1116	22.488	37.073	18.892		68.50	6
MOTA	2256	C	ILE	1116	23.796	35.537	20.352		82.32	6
ATOM	2257	0	ILE	1116	24.984	35.192			82.32	8
ATOM TER	2258	OXT	ILE	1116	23.443	36.522	21.208	1.00	64.86	8
HETATM	2259	C29°	TEM	1	14.137	43.777	-1.896	1.00	87.75	6
HETATM	2260		TEM	1		44.384	-2.200	1.00	92.68	9
HETATM		C31		1	13.532	43.986	-0.603		84.61	6
HETATM		C32		1	10.062	43.539	1.417		72.29	6
HETATM		C28		1	13.152	42.505	-7,029		92.68	6
HETATM		C8	TEM	1	11.669	44.356	4.626		64.60	6
HETATM		C9	TEM	1	12.234	43.146	5.418		62.65	6
HETATM		C10		1	12.979	43.794	6.609		61.60	6
HETATM		C11		1	13.328	45.233	6.175		61.11	6
				_						

TTTTT NO.	2260	~		-						
HETATM			TEM	1	12.788	45.420			62.68	6
HETATM		C13	TEM	1	12.175	43.912	2.185		71.00	6
HETATM		N7	TEM	1	11.303	44.043	3.228	1.00	67.78	7
HETATM	2271	Nl	TEM	1	8.672	43.004	-0.559	1.00	73.02	7
HETATM		C2	TEM	1	8.784	43.270	0.784	1.00	71.64	6
HETATM	2273	NЗ	TEM	1	7.669	43.306	1.546	1.00	71.42	7
HETATM	2274	C4	TEM	1	7.718	43.568	2.851	1.00	69.68	6
HETATM	2275	N5	TEM	1	8.853	43.811	3.473	1.00	68.84	7
HETATM	2276	C6	TEM	1	10.030	43.817	2.820	1.00	69.92	6
HETATM	2277	C14	TEM	1	11.530	43.630	1.036	1.00	75.68	6
HETATM	2278	022	TEM	1	13.956	40.236	-4.115	1.00	92.68	8
HETATM	2279	C23	TEM	1	13.420	41.285	-6.355	1.00	92.68	6
HETATM	2280	C24	TEM	1 (12.844	40.071	-6.856	1.00	92.68	6
HETATM	2281	C25	TEM	1	12.014	40.102	-8.027	1.00	92.68	6
HETATM	2282	C26	TEM	1	11.757	41.334	-8.689	1.00	92.68	6
HETATM	2283	C27	TEM	1	12.330	42.534	-8.187	1.00	92.68	6
HETATM	2284	021	TEM	1	15.786	41.592	-5.276	1.00	92.68	8
HETATM	2285	C15	TEM	1	12.216	43.429	-0.313	1.00	80.63	6
HETATM	2286	C16	TEM	1	11.576	42.675	-1.308	1.00	83.45	6
HETATM	2287	C17	TEM	1	12.141	42.492	-2.551	1.00	87.27	6
HETATM	2288	C18	TEM	1	13.399	43.018	-2.887	1.00	88.78	6
HETATM	2289	N19	TEM	1	13.818	42.732	-4,220	1.00	90.27	7
HETATM	2290	S20	TEM	1	14.444	41.335	-4.875	1.00	92.68	16
MOTA	2291	S	SO4	2	25.361	40.893	-8.736	1.00	15.55	16
MOTA	2292	01	SO4	2	26.331	39.742	-8.499	1.00	20.26	8
MOTA	2293	02	SO4	2	25.230	41.131	-10.222	1.00	12.30	8
ATOM	2294	03	SO4	2	23.982	40.607	-8.171	1.00	16.39	8
ATOM	2295	04	SO4	2	25.930	42.110	-8.051	1.00	17.72	8
END								•		

A TOM	7	NT.	777 T	71	010	77.669	47 027	2 254	1 00	20.00
ATOM	1 2	N	VAL				47.027	2.354		20.00
ATOM		CA	VAL			76.422	47.479	1.690		
MOTA	3	C	VAL			75.257	46.471	1.737		20.00
MOTA	4	0	VAL			75.361	45.363	2.335		20.00
ATOM	5	CB	VAL			76.716	47.863	0.250		20.00
ATOM	9	N	LEU			74.145	46.870	1.095		20.00
ATOM	10	CA	LEU			72.922	46.055	1.058		20.00
ATOM	11	C	LEU			72.341	45.959	-0.347		20.00
MOTA	12	0	LEU			71.187	46.223	-0.571		20.00
ATOM	13	CB	LEU		819	71.897	46.637	2.052		20.00
ATOM	14	CG	LEU			70.399	46.340	1.987		20.00
ATOM	15		LEU			70.026	45.327	3.039		20.00
ATOM	16	CD2	LEU			69.612	47.643	2.186		20.00
MOTA	18	И	ASP			73.165	45.565	-1.294		20.00
ATOM	19	CA	ASP			72,758	45.427	-2.685		20.00
ATOM	20	C	ASP			71.419	45.961	-3.188		20.00
MOTA	21	Ο.			820	70.510	45.182	-3.445		20.00
MOTA	22	CB	ASP	A	820	72.867	43.971	-3.103		20.00
ATOM	23	CG	ASP	А	820	72.637	43.799	-4.570	1.00	20.00
MOTA	24	OD1	ASP	A	820	72.617	42.622	-5.045		20.00
ATOM	25	OD2	ASP	A	820	72.468	44.861	-5.242	1.00	20.00
ATOM	27	N	TRP	Α	821	71.336	47.280	-3.390	1.00	20.00
MOTA	28	CA	TRP	Α	821	70.128	47.958	-3.916	1.00	20.00
MOTA	29	C	TRP	A	821	69.296	47.063	-4.814	1.00	20.00
ATOM	30	0	TRP	Α	821	68.077	47.237	-4.938	1.00	20.00
ATOM	31	CB	TRP	A	821	70.479	49.190	-4.782	1.00	20.00
ATOM	32	CG	TRP	A	821	69.336	50.211	-4.771	1.00	20.00
ATOM .	33	CD1	TRP	A	821	68.872	50.892	-3.675	1.00	20.00
ATOM	34	CD2	TRP	A	821	68.465	50.552	-5.841	1.00	20.00
ATOM	35	NE1	TRP	A	821	67.753	51.628	-4.001	1.00	20.00
ATOM	36	CE2	TRP			67.482	51.435	-5.325	1.00	20.00
ATOM	37	CE3	TRP			68.408	50.201	-7.177	1.00	20.00
ATOM	38	CZ2	TRP			66.462	51.963	-6.104		20.00
ATOM	39	CZ3	TRP			67.382	50.730	-7.962		20.00
ATOM	40	CH2	TRP			66.430	51.597	-7.420		20.00
ATOM	43	N	ASN			69.999	46.156	-5.498		20.00
ATOM	44	CA	ASN			69.370	45.213	-6.404		20.00
ATOM	45.	C	ASN			67.947	44.823	-5.911		20.00
ATOM	46	0	ASN			67.000	44.734	-6.707		20.00
ATOM	47	CB	ASN			70.291	43.986	-6.531	1.00	
	48 .		ASN			69.610	42.766	-7.181	1.00	20.00
ATOM ATOM	49	CG,	ASN			69.287	42.766	-8.393		20.00
ATOM	50		ASN			69.406	41.706	-6.377		20.00
						67.778	44.632	-4.602		20.00
ATOM	54	N	ASP				44.032	-4.129		20.00
ATOM	55	CA	ASP			66.472		-2.847		20.00
ATOM	56	C	ASP			65.921	44.808			20.00
ATOM	57	0	ASP			66.179	44.295	-1.758		
ATOM	58	CB	ASP			66.454	42.681	-4.008		20.00
ATOM	60	N	ILE			65.166	45.894	-2.988		
ATOM	61	CA	ILE			64.480	46.524	-1.859		20.00
ATOM	62	C	ILE			63.021	46.501	-2.412		20.00
ATOM	63	0 .	ILE			62.776	46.906	-3.570		20.00
ATOM	64	CB	ILE			64.955	48.019	-1.586		20.00
ATOM	65	CG1	ILE			65.666 [.]	48.576	-2.803		20.00
ATOM	66	CG2	ILE			65.845	48.113	-0.382		20.00
MOTA	67	CD1	ILE	A	824	67.135	48.549	-2.681	1.00	20.00

MOTA	69	N	LYS			62.077	45.969	-1.626	1.00	20.00
MOTA	70	CA	LYS			60.645	45.921	-2.029	1.00	20.00
ATOM	71	C	LYS			59.922	47.060	-1.266	1.00	20.00
ATOM	72	0	LYS			59.578	46.946	-0.097	1.00	20.00
ATOM	73	CB			825	60.043	44.561	-1.696		20.00
ATOM	75	N	PHE			59.696	48.147	-1.988		20.00
ATOM	76	CA			826	59.153	49.401	-1.462	1.00	20.00
ATOM	77	С	PHE			57.643	49.569	-1.593	1.00	20.00
MOTA	78	0			826	57.160	50.073	-2.593	1.00	
MOTA	79	CB	PHE			59.882	50.481	-2.224	1.00	20.00
MOTA	80	CG	PHE			60.298	50.013	-3.604	1.00	20.00
ATOM	81	CD1				59.33 <i>6</i>	49.841	-4.613	1.00	20.00
ATOM	82	CD2				61.611	49.711	-3.887	1.00	20.00
ATOM	83	CE1				59.675	49.383	-5.876	1.00	20.00
ATOM	84	CE2				61.960	49.249	-5.145	1.00	20.00
ATOM	85	CZ	PHE			60.984	49.086	-6.144	1.00	20.00
ATOM	87	N	\mathtt{GLN}			56.919	49.173	-0.550	1.00	20.00
MOTA	88	CA	GLN	A	827	55.459	49.206	-0.491	1.00	20.00
ATOM	89	С	GLN			54.788	50.547	-0.268	1.00	20.00
ATOM	90	0	GLN			54.134	51.071	-1.177	1.00	20.00
ATOM	91	CB	\mathtt{GLN}	A	827	54.978	48.268	0.591	1.00	20.00
ATOM	92	CG	GLN .	A	827	56.111	47.581	1.340	1.00	20.00
ATOM	93	CD	GLN	A	827	56.511	46.315	0.637	1.00	20.00
ATOM	94	OE1	GLN .	A i	827	56.636	45.253	1.256	1.00	20.00
ATOM	95	NE2	GLN .	A	827	56.688	46.410	-0.675	1.00	20.00
ATOM	99	N	ASP .	A 8	828	54.918	51.103	0.928	1.00	20.00
ATOM	100	CA	ASP :	A 8	828	54.261	52.360	1.165	1.00	20.00
ATOM	101	С	ASP .	A 8	B28	54.815	53.309	2.231	1.00	20.00
ATOM	102	0	ASP I	A 8	328	55.694	52.973	3.033		20.00
ATOM	103	CB	ASP I	3 A	328	52.856	52.049	1.499		20.00
ATOM	104	CG	ASP I	A 8	328	52.783	50.948	2.460	1.00	20.00
ATOM	105	OD1	ASP 2			52.099	49.943	2.182		20.00
MOTA	106	OD2	ASP Z			53.439	51.088	3.504	1.00	20.00
ATOM	108	N	VAL A			54.278	54.522	2.216		20.00
ATOM	109	CA	VAL A			54.681	55.525	3.158		20.00
ATOM	110	С	VAL A			54.405	54.794	4.471		20.00
ATOM	111	0	VAL A			53.373	54.176	4.562		20.00
ATOM	112	CB	VAL A			53.772	56.742	2.971		20.00
ATOM	114	N	ILE A			55.298	54.759	5.453		20.00
ATOM	115	CA			330	54.911	54.062	6.686		20.00
ATOM	116	C			330	54.690	55.170	7.627		20.00
ATOM	117	0	ILE A			55.296	55.229	8.696		20.00
ATOM	118	ÇВ	ILE A			56.004	53.170	7.366		20.00
ATOM	119	••	ILE A			56.458	52.054	6.437		20.00
ATOM	120	CG2	ILE A			55.435	52.493	8.636		20.00
ATOM	121	CD1	ILE A			57.626	51.361	6.996		20.00
ATOM	123	N	GLY A			53.802	56.059			20.00
ATOM	124	CA	GLY A			53.588	57.205	7.244		20.00
ATOM	125	C	GLY A					8.087		
ATOM	126					54.694	58.162	7.693		20.00
ATOM		O N	GLY A			55.359	57.972	6.691		20.00
ATOM	128	N	GLU A				59.180	8.505		20.00
ATOM	129	CA	GLU F			55.889	60.205	8.260		20.00
	130	C	GLU A			57.146	59.876	7.452	1.00	
ATOM	131	0	GLU A			57.220	58.893	6.667	1.00	
ATOM	132	CB	GLU A			56.346	60.832	9.592		20.00
ATOM	133	CG	GLU A			56.473	62.337	9.489		20.00
ATOM	134	CD	GLU A	r 8	32	55.501	62.908	8.468	1.00	20.00

	,							
ATOM	135		l GLU	A 832	54.643	63.721	8.897	1.00 20.00
MOTA	136	OE	2 GLU	A 832	55.599	62.524	7.266	1.00 20.00
ATOM	138	N		A 833	58.134	60.754	7.680	1.00 20.00
ATOM	139	CA		A 833	59.440	60.670	7.054	1.00 20.00
ATOM	140	C		A 833	60.222	61.871	7.561	1.00 20.00
ATOM	141	0		A 833	60.606		8.770	1.00 20.00
ATOM	143	N		A 834	60.380	62.816	6.621	1.00 20.00
ATOM	144	CA		A 834	61.123	64.085	6.772	1.00 20.00
ATOM	145	C		A 834	62.555	63.797	7.139	1.00 20.00
ATOM	146	0		A 834	62.796	63.133	8.141	1.00 20.00
ATOM ATOM	147	CB		A 834	60.584	65.052	7.859	1.00 20.00
ATOM	148 149	CG	ASN A		61.664	66.125	8.258	1.00 20.00
ATOM	150		ASN A		61.998	66.999	7.444	1.00 20.00
ATOM	154	N	PHE A		62.224	66.022	9.491	1.00 20.00
ATOM	155	CA	PHE A		63.474	64.373	6.355	1.00 20.00
ATOM	156	C	PHE A		64.922	64.216	6.526	1.00 20.00
ATOM	157	0	PHE A		64.972	63.040	7.488	1.00 20.00
ATOM	158	CB	PHE A		65.560 65.545	63.063	8.616	1.00 20.00
ATOM	159	CG	PHE A		65.828	65.547 66.560	7.028	1.00 20.00
ATOM	160		PHE A		65.442	67.913	5.895 6.013	1.00 20.00 1.00 20.00
ATOM	161		PHE A		66.534	66.176	4.742	1.00 20.00
ATOM	162		PHE A		65.761	68.870	5.004	1.00 20.00
ATOM	163	CE2			66.859	67.138	3.725	1.00 20.00
ATOM	164	CZ	PHE A		66.469	68.482	3.867	1.00 20.00
ATOM	166	N	GLY A		64.251	62.029	6.984	1.00 20.00
ATOM	167	CA	GLY A		64.025	60.759	7.647	1.00 20.00
ATOM	168	C	GLY A		62.817	60.226	6.884	1.00 20.00
ATOM	169	0	GLY A		61.874	59.661	7.452	1.00 20.00
ATOM	171	N	GLN A		62.827	60.432	5.571	1.00 20.00
ATOM	172	CA	GLN A		61.720	59.959	4.749	1.00 20:00
ATOM	173	C	GLN A	837	61.471	58.496	5.132	1.00 20.00
ATOM	174	0	GLN A	837	62.278	57.647	4.742	1.00 20.00
ATOM	175	CB	GLN A	837	62.112	60.066	3.253	1.00 20.00
ATOM	176	CG	GLN A	837	63.459	60.807	2.984	1.00 20.00
ATOM	177	CD	GLN A	837	63.541	61.552	1.605	1.00 20.00
ATOM	178	OE1	GLN A	837	64.298	62.539	1.447	1.00 20.00
MOTA	179	NE2	GLN A	837	62.786	61.053	0.607	1.00 20.00
MOTA	183	N	VAL A		60.400	58.162	5.872	1.00 20.00
MOTA	184	CA	VAL A	838	60.233	56.718	6.211	1.00 20.00
ATOM	185	C	VAL A	838	59.296	55.833	5.400	1.00 20.00
ATOM	186	0	VAL A		58.143		5.734	1.00 20.00
ATOM	187		VAL A		59.824		7.659	1.00 20.00
ATOM	188		VAL A		60.786	55.456	8.230	1.00 20.00
ATOM	189	CG2	VAL A		59.760	57.703	8.475	1.00 20.00
ATOM	191	N	LEU A		59.820	55.181	4.373	1.00 20.00
ATOM	192	CA	LEU A		59.031	54.306	3.542	1.00 20.00
ATOM	193	C	LEU A		58.983	52.882	4.069	1.00 20.00
ATOM	194	0	LEU A		59.676	52.547	5.015	1.00 20.00
ATOM	195	CB	LEU A		59.566	54.385	2.111	1.00 20.00
ATOM	196	CG	LEU A		58.912	55.608	1.396	1.00 20.00
ATOM	197		LEU A		58.295	56.545	2.426	1.00 20.00
ATOM	198		LEU A		59.886	56.367	0.533	1.00 20.00
ATOM	200	N	LYS A		58.119	52.049	3.503	1.00 20.00
ATOM	201	CA .	LYS A		58.031	50.646	3.945	1.00 20.00
MOTA	202	C	LYS A		58.687	49.724	2.927	1.00 20.00
ATOM	203	0	LYS A	840	58.645	49.971	1.725	1.00 20.00

" IIIOM	004	~-					
ATOM	204			56.577		4.145	1.00 20.00
ATOM	205			56.445		5.251	1.00 20.00
ATOM	206			55.843		4.789	1.00 20.00
ATOM	207			55.173		5.960	1.00 20.00
ATOM	208			56.154		6.801	1.00 20.00
MOTA	213		ALA A 841	59.302	48.650	3.383	1.00 20.00
ATOM	214			59.929	47.798	2.393	1.00 20.00
ATOM	215		ALA A 841	60.199		2.787	1.00 20.00
ATOM	216		ALA A 841	60.460	46.044	3.971	1.00 20.00
ATOM	217			61.224	48.462	1.884	1.00 20.00
ATOM	219		ARG A 842	60.111	45.506	1.759	1.00 20.00
ATOM	220			60.347	44.075	1.824	1.00 20.00
ATOM	221	С	ARG A 842	61.797	43.918	1.340	1.00 20.00
ATOM	222	0	ARG A 842	62.105	43.967	0.158	1.00 20.00
ATOM	223	CB	ARG A 842	<i>59</i> .365	43.360	0.902	1.00 20.00
ATOM	225	N	ILE A 843	62.688	43.746	2.293	1.00 20.00
ATOM	226	CA	ILE A 843	64.113	43.638	2.034	1.00 20.00
MOTA	227	С	ILE A 843	64.747	42.223	2.205	1.00 20.00
ATOM	228	0	ILE A 843	64.527	41.503	3.201	1.00 20.00
ATOM	229	CB	ILE A 843	64.846	44.662	2.928	1.00 20.00
ATOM	230	CG:		65.867	45.411	2.103	1.00 20.00
MOTA	231	CG2	2 ILE A 843	65.469	43.996	4.130	1.00 20.00
ATOM	232	CD:	l ILE A 843	66.176	44.779	0.772	1.00 20.00
ATOM	234	N	LYS A 844	65.549	41.837	1.226	1.00 20.00
ATOM	235	CA	LYS A 844	66.190	40.551	1.273	1.00 20.00
ATOM	236	С	LYS A 844	67.652	40.641	1.709	1.00 20.00
ATOM	237	0	LYS A 844	68.540	40.820	0.869	1.00 20.00
ATOM	238	CB	LYS A 844	66.093	3 <i>9</i> .875	-0.111	1.00 20.00
ATOM	240	N	LYS A 845	67.897	40.510	3.014	1.00 20.00
ATOM	241	CA	LYS A 845	69.261	40.516	3.545	1.00 20.00
MOTA	242	C	LYS A 845	69.917	39.112	3.335	1.00 20.00
ATOM	243	0	LYS A 845	69.306	38.060	3.678	1.00 20.00
ATOM	244	CB	LYS A 845	69.255	40.857	5.035	1.00 20.00
MOTA	246	N	ASP A 846	71.148	39.140	2.765	1.00 20.00
ATOM	247	CA	ASP A 846	72.022	37.977	2.481	1.00 20.00
ATOM	248	C	ASP A 846	71.224	36.671	2.559	1.00 20.00
ATOM	249	0	ASP A 846	71.231	35.953	3.581	1.00 20.00
ATOM	250	CB	ASP A 846	73.214	37.987	3.484	1.00 20.00
ATOM	251	CG	ASP A 846	74.448	37.141	3.002	1.00 20.00
ATOM	252	OD1	ASP A 846	74.788	37.167	1.784	1.00 20.00
ATOM	253		ASP A 846	75.078		3.869	
MOTA	255	N	GLY A 847	70.497	36.405	1.476	1.00 20.00
ATOM	256	CA'	GLY A 847		35.206	1.405	1.00 20.00
ATOM	257	C	GLY A 847	68.642	35.071	2.527	1.00 20.00
ATOM	258	0	GLY A 847	68.972	34.604	3.636	1.00 20.00
ATOM	260	N	LEU A 848	67.406	35.481	2.198	1.00 20.00
MOTA	261	CA	LEU A 848	66.192	35.495	3.049	1.00 20.00
MOTA	262	C	LEU A 848	65.707	36.956	3.333	1.00 20.00
ATOM	263	0	LEU A 848	66.470	37.844	3.751	1.00 20.00
ATOM	264	CB	LEU A 848	66.402	34.666	4.318	1.00 20.00
ATOM	265	CG	LEU A 848	66.559	35.338	5.653	1.00 20.00
ATOM	266		LEU A 848	66.241	34.369	6.804	1.00 20.00
ATOM	267		LEU A 848	68.011	35.849	5.755	1.00 20.00
ATOM	269	N	ARG A 849	64.434			
ATOM	270	CA	ARG A 849	63.793	37.188	3.011	1.00 20.00
ATOM	271	C	ARG A 849	63.495	38.491	3.149	1.00 20.00
ATOM	272	0	ARG A 849 ARG A 849		38.916	4.576	1.00 20.00
ALON	212	•	ARG A 849	63.795	38.195	5.542	1.00 20.00

ATOM	273	CB	ARG	A	849	62.465	38.508	2.388	1.00	20.00
ATOM	274	CG			849	62.570	38.136	0.936		20.00
ATOM	275	CD			849	61.348	38.648	0.182	1.00	
ATOM	276	NE			849	61.060	37.918	-1.060	1.00	
ATOM	277	CZ			849	60.337	36.795	-1.117		20.00
MOTA	278	NH1			849	59.833	36.281	0.018		20.00
ATOM	279	NH2	ARG			60.113	36.198	-2.308	1.00	
ATOM	286	N	MET			62.903	40.112	4.678		20.00
ATOM	287	CA			850	62.466	40.710	5.938		20.00
ATOM	288	C	MET			61.786	42.087	5.756		20.00
MOTA	289	0			850	61.816	42.702	4.694		20.00
ATOM	290	CB	MET			63.628	40.814	6.953		20.00
ATOM	291	CG	MET			65.005	41.061	6.376		20.00
ATOM ATOM	292 293	SD CE	MET			66.205	41.855	7.507		20.00
ATOM	295	N	MET ASP			66.021 61.105	40.869	9.036		20.00
ATOM	296	CA	ASP			60.477	42.523	6.800 6.787		20.00
ATOM	297	C	ASP			61.586	44.780	7.213		20.00
ATOM	298	0	ASP			62.559	44.403	7.213		20.00
ATOM	299	CB	ASP			59.381	43.909	7.904		20.00
ATOM	300	CG	ASP			58.154	43.076	7.546		20.00
ATOM	301		ASP			57.886	42.769	6.352		20.00
ATOM	302		ASP			57.452	42.744	8.545		20.00
MOTA	304	N	ALA			61.366	46.044	6.842		20.00
ATOM	305	CA	ALA			62.230	47.173	7.161	1.00	
ATOM	306	C	ALA			61.483	48.457	6.814		20.00
ATOM	307	0	ALA			60.631	48.480	5.902		20.00
ATOM	308	CB	ALA			63.507	47.092	6.332		20.00
ATOM	310	N	ALA			61.774	49.522	7.546		20.00
ATOM	311	CA	ALA			61.205	50.818	7.189		20.00
ATOM	312	C	ALA			62.439	51.427	6.518		20.00
ATOM	313	0	ALA			63.529	50.919	6.771		20.00
ATOM	314	CB	ALA			60.812	51.581	8.418	1.00	20.00
ATOM	316	N	ILE			62.300	52.470	5.685	1.00	20.00
ATOM	317	CA	ILE	A	854	63.436	53.072	4.960	1.00	20.00
ATOM	318	С	ILE	A	854	63.501	54.570	5.142	1.00	20.00
ATOM	319	0	ILE	A	854	62.478	55.156	5.413	1.00	20.00
ATOM	320	CB	ILE	A	854	63.313	52.777	3.457	1.00	20.00
ATOM	321	CG1	ILE	A	854	63.527	51.284	3.195	1.00	20.00
ATOM	322	CG2	ILE	A	854	64.353	53.554	2.664	1.00	20.00
ATOM	323	CD1	ILE	Α	854	64.906	50.722	3.717	1.00	20.00
ATOM	325	N	LYS	A	855	64.699	55.189	5.023	1.00	20.00
ATOM	326	CA	LYS	Α	855	64.901	56.684	5.158	1.00	20.00
ATOM	327	c',	LYS	A	855	65.800	57.286	4.079	1.00	20.00
ATOM	328	0	LYS	A	855	65.740	56.867	2.946	1.00	20.00
MOTA	329	CB	LYS	Α	855	65.417	57.088	6.580	1.00	20.00
ATOM	330	CG	LYS	A	855	66.949	57.267	6.792	1.00	20.00
ATOM	331	CD	LYS	A	855	67.333	57.776	8.262	1.00	20.00
ATOM	332	CE	LYS	Ą	855	68.597	57.022	8.917	1.00	20.00
MOTA	333	NZ	LYS	A	855	69.828	57.804	9.506	1.00	20.00
ATOM	338	N	ARG	A	856	66.573	58.311	4.439	1.00	20.00
ATOM	339	CA	ARG	A.	856	67.569	59.035	3.573	1.00	20.00
ATOM	340	C	ARG			66.957	60.199	2.856		20.00
ATOM	341	0	ARG	A	856	66.375	60.027	1.793		20.00
MOTA	342	CB	ARG			68.288	58.135	2.533		20.00
MOTA	343	CG	ARG	A	856	69.278	58.948	1.706	1.00	20.00
ATOM	344	CD	ARG	A	856	68.965	58.943	0.179	1.00	20.00

PCT/US01/08853

345 NE ARG A 856 68.880 60.276 -0.435 1.00 20.00 346 CZ ARG A 856 68.623 60.497 -1.732 1.00 20.00 347 NH1 ARG A 856 68.425 59.484 -2.568 1.00 20.00 348 NH2 ARG A 856 68.555 61.750 -2.204 1.00 20.00 355 N MET A 857 67.166 61.381 3.446 1.00 20.00 355 N MET A 857 66.581 62.674 2.991 1.00 20.00 356 CA MET A 857 66.581 62.674 2.991 1.00 20.00 358 O MET A 857 66.581 62.674 2.991 1.00 20.00 358 O MET A 857 65.682 63.220 4.125 1.00 20.00 360 CG MET A 857 65.682 63.220 4.125 1.00 20.00 361 SD MET A 857 66.2819 63.037 4.735 1.00 20.00 361 SD MET A 857 61.431 64.067 3.876 1.00 20.00 365 N ASP A 864 77.202 66.313 -0.527 1.00 20.00 365 N ASP A 864 77.838 67.381 -1.394 1.00 20.00 366 CA ASP A 864 77.838 67.381 -0.527 1.00 20.00 367 C ASP A 864 78.591 68.418 -0.580 1.00 20.00 369 CB ASP A 864 78.591 68.418 -0.580 1.00 20.00 373 N ASP A 864 78.619 68.225 -1.043 1.00 20.00 374 CA ASP A 865 78.709 69.760 1.436 1.00 20.00 375 C ASP A 865 78.709 69.760 1.436 1.00 20.00 376 O ASP A 865 78.709 69.760 1.436 1.00 20.00 377 CB ASP A 865 78.128 69.958 2.819 1.00 20.00 377 CB ASP A 866 76.832 69.683 3.014 1.00 20.00 379 N HIS A 866 76.832 69.683 3.014 1.00 20.00 379 N HIS A 866 76.832 69.683 3.014 1.00 20.00 379 N HIS A 866 76.832 69.683 3.014 1.00 20.00 379 N HIS A 866 76.537 68.227 6.178 1.00 20.00 379 N HIS A 866 76.537 68.227 6.178 1.00 20.00 379 N HIS A 866 76.537 68.227 6.178 1.00 20.00 379 N HIS A 866 76.537 68.227 6.178 1.00 20.00 379 N HIS A 866 76.537 68.227 6.178 1.00 20.00 379 N HIS A 866 76.537 68.227 6.178 1.00 20.00 379 N HIS A 866 76.537 68.227 6.178 1.00 20.00 379 N HIS A 866 77.752 65.737 5.193 1.00 20.00 379 N ASP A 865 78.665 71.00 70.00 379 N HIS A 866 77.765 65.491 2.804 1.00 20.00 379 N ASP A 865 78.605 78.605 79.807 4.364 1.00 20.00 379 N ASP A 866 77.752 65.727 5.193 1.00 20.00 379 N ASP A 866 77.755 65.491 2.804 1.00 20.00 379 N ASP A 866 77.755 65.491 2.804 1.00 20.00 379 N ASP A 866 77.755 65.491 2.804 1.00 20.00 379 N ASP A 866 77.765 65.491 2.804 1.00 20.00 379 N ASP A 868 77.7509 65.491 2.804 1.00 20.00 379 ATOM MOTA MOTA MOTA MOTA ATOM MOTA MOTA MOTA MOTA MOTA MOTA ATOM MOTA MOTA MOTA ATOM MOTA MOTA MOTA MOTA ATOM MOTA ATOM MOTA ATOM ATOM MOTA MOTA ATOM ATOM MOTA MOTA MOTA ATOM MOTA MOTA MOTA ATOM MOTA MOTA ATOM ATOM MOTA ATOM 78.197 64.729 7.417 1.00 20.00 410 CA ASP A 868 MOTA 77.784 63.290 7.881 1.00 20.00 411 C ASP A 868 ATOM 412 O ASP A 868 413 CB ASP A 868 414 CG ASP A 868 77.720 62.981 9.089 1.00 20.00 ATOM 78.199 65.733 8.593 1.00 20.00 MOTA 77.414 65.248 9.815 1.00 20.00 MOTA 9.611 1.00 20.00 76.266 64.747 415 OD1 ASP A 868 MOTA 416 OD2 ASP A 868 77.931 65.385 10.971 1.00 20.00 418 N PHE A 869 77.560 62.391 6.921 1.00 20.00 419 CA PHE A 869 77.119 61.033 7.261 1.00 20.00 420 C PHE A 869 78.080 59.895 6.841 1.00 20.00 421 O PHE A 869 78.526 59.819 5.663 1.00 20.00 422 CB PHE A 869 75.738 60.806 6.625 1.00 20.00 ATOM ATOM ATOM ATOM 421 0 MOTA ATOM

				-	0.60	~~ coc				
ATOM	423	CG			869	75.685	61.221	5.199		20.00
ATOM	424	CD1			869	75.561	62.560	4.861		20.00
ATOM	425	CD2			869	75.848	60.286	4.190	1.00	20.00
ATOM	426	CE1	PHE	A	869	75.612	62.955	3.509	1.00	20.00
ATOM	427	CE2	PHE	A	869	75.896	60.680	2.838	1.00	20.00
ATOM	428	CZ	PHE	A	869	75.779	62.022	2.496	1.00	20.00
ATOM	430	N	ALA	A	870	78.350	59.018	7.812	1.00	20.00
ATOM	431	CA	ALA	A	870	79.231	57.831	7.715	1.00	
ATOM	432	C	ALA			79.352	57.560	9.172	1.00	20.00
ATOM	433	0	ALA			78.350	57.359	9.840	1.00	20.00
ATOM	434	CB	ALA			80.624	58.132	7.160	1.00	20.00
ATOM	436	N	GLY			80.558	57.601	9.698	1.00	
ATOM	437	CA	GLY			80.674	57.344	11.112		20.00
ATOM	438	C	GLY			79.343	57.592	11.791	1.00	20.00
ATOM	439	0	GLY			78.672	56.648	12.170	1.00	20.00
ATOM	441	N	GLU			78.958	58.864	11.901	1.00	20.00
ATOM	442	CA	GLU	А	872	77.690	59.258	12.529	1.00	20.00
ATOM	443	C	GLU	A	872	76.698	58.115	12.297	1.00	20.00
MOTA	444	0	GLU	A	872	76.096	57.579	13.241	1.00	20.00
ATOM	445	CB	GLU	A	872	77.178	60.602	11.939	1.00	20.00
ATOM	446	CG	GLU	A	872	76.581	60.552	10.530	1.00	20.00
ATOM	447	CD	GLU			75.027	60.750	10.507	1.00	20.00
ATOM	448	OE1	GLU			74.433	60.770	9.383	1.00	20.00
ATOM	449	OE2	GLU			74.405	60.881	11.596		20.00
			LEU			76.545	57.753	11.028		20.00
MOTA	451	N								
ATOM	452	CA	LEU			75.726	56.633	10.649		20.00
ATOM	453	C	LEU			76.593	55.505	11.273		20.00
MOTA	454	0	LEU			76.715	55.463	12.500		20.00
ATOM	455	CB	LEU	Α	873	75.658	56.527	9.101	1.00	20.00
ATOM	457	N	GLU	A	874	77.195	54.620	10.458	1.00	20.00
ATOM	458	CA	GLU	\mathbf{A}_{\cdot}	874	78.069	53.539	10.975	1.00	20.00
ATOM	459	C	GLU	A	874	77.903	53.535	12.468	1.00	20.00
ATOM	460	0	GLU	A	874	76.948	52.968	12.998	1.00	20.00
ATOM	461	CB	GLU	А	874	79.526	53.831	10.639	1.00	20.00
ATOM	463	N	VAL			78.838	54.222	13.116		20.00
ATOM	464	CA	VAL			78.847	54.419	14.567	1.00	20.00
ATOM	465	C	VAL			77.770	53.658	15.342	1.00	20.00
ATOM	466	0	VAL			78.065	52.892	16.266	1.00	20.00
MOTA	467	CB	VAL			78.756	55.961	14.897	1.00	20.00
ATOM	469	N	LEU			76.520	53.887	14.966	1.00	20.00
MOTA	470	CA	LEU			75.408	53.237	15.630	1.00	20.00
MOTA	471	C	LEU			75.957	51.873	16.004		20.00
ATOM	472	Ø	LEU	A	876	75.727	51.387	17.126		20.00
ATOM	473	CB	LEU	А	876	74.208	53.192	14.684	1.00	20.00
ATOM	474	CG	LEU	A	876	73.839	54.662	14.399	1.00	20.00
ATOM	475	CD1	LEU	Α	876	73.193	54.792	13.056	1.00	20.00
MOTA	476	CD2	LEU	A	876	72.942	55.198	15.481	1.00	20.00
ATOM	478	N	CYS			76.744	51.320	15.071	1.00	20.00
ATOM	479	CA	CYS			77.459	50.027	15.212		20.00
ATOM	480	C	CYS			77.658	49.645	16.685		20.00
						77.099	48.656	17.205		20.00
ATOM	481	0	CYS							
ATOM	482	CB	CYS			78.855	50.137	14.546		20.00
ATOM	483	SG	CYS			79.630	51.894	14.438		20.00
MOTA	485	N	LYS			78.447	50.496	17.337		20.00
ATOM	486	CA	LYS			78.789	50.363	18.762		20.00
MOTA	487	C	LYS			77.629	49.811	19.612		20.00
MOTA	488	0	LYS	A	878	77.847	49.438	20.805	1.00	20.00

ATOM	489	CB LYS A 878	79.260) =1 777	10 25	7 00 00 00
ATOM	490	CG LYS A 878	80.718			
ATOM		CD LYS A 878	81.321		_	
ATOM		CE LYS A 878	81.521			
ATOM		NZ LYS A 878	81.754			
ATOM		N LEU A 879	76.427			
ATOM		CA LEU A 879	75.203			
ATOM		C LEU A 879				
ATOM		O LEU A 879	74.179			-
ATOM		CB LEU A 879	73.068			1.00 20.00
ATOM		CG LEU A 879	74.620			1.00 20.00
ATOM		CD1 LEU A 879	74.799		20.603	1.00 20.00
ATOM		CD2 LEU A 879	75.966		21.461	1.00 20.00
ATOM		N GLY A 880	75.015		19.200	1.00 20.00
ATOM		CA GLY A 880	74.546		17.597	1.00 20.00
ATOM		C GLY A 880	73.551		16.578	1.00 20.00
ATOM		O GLY A 880	72.345		17.330	1.00 20.00
ATOM		N HIS A 881	71.296	47.906	17.464	1.00 20.00
ATOM		CA HIS A 881	72.545	46.101	17.820	1.00 20.00
ATOM		C HIS A 881	71.575	45.353	18.572	1.00 20.00
ATOM			71.402	46.024	19.917	1.00 20.00
ATOM			71.758	47.183	20.106	1.00 20.00
ATOM			72.059	43.906	18.744	1.00 20.00
ATOM		CG HIS A 881 ND1 HIS A 881	71.015	42.958	19.255	1.00 20.00
ATOM			69.952	42.520	18.485	1.00 20.00
ATOM		CD2 HIS A 881	70.877	42.349	20.464	1.00 20.00
ATOM		CE1 HIS A 881	69.207	41.691	19.197	1.00 20.00
ATOM		NE2 HIS A 881	69.746	41.566	20.402	1.00 20.00
ATOM		N HIS A 882	70.870	45.217	20.817	1.00 20.00
ATOM		CA HIS A 882	70.420	45.429	22.177	1.00 20.00
ATOM		HIS A 882	68.935	45.241	21.763	1.00 20.00
ATOM		D HIS A 882	68.440	45.758	20.724	1.00 20.00
ATOM		CB HIS A 882	70.704	46.804	22.806	1.00 20.00
ATOM		CG HIS A 882	70.491	46.812	24.295	1.00 20.00
		TD1 HIS A 882	69.252	46.654	24.868	1.00 20.00
ATOM		D2 HIS A 882	71.365	46.839	25.325	1.00 20.00
ATOM		CE1 HIS A 882	69.373	46.579	26.183	1.00 20.00
ATOM		IE2 HIS A 882	70.645	46.686	26.486	1.00 20.00
ATOM	538 N		68.210	44.463	22.547	1.00 20.00
ATOM		A PRO A 883	66.820	44.253	22.152	1.00 20.00
ATOM	540 C		66.019	45.510	22.212	1.00 20.00
ATOM	541 0		65.100	45.685	21.439	1.00 20.00
ATOM	542 C		66.309	43.176	23.108	1.00 20.00
ATOM	543 @		67.285	43.129	24.211	1.00 20.00
ATOM	544 CI		68.560	43.829	23.819	1.00 20.00
ATOM	545 N		66.414	46.408	23.098	1.00 20.00
ATOM	546 C	-	65.710	47.650	23.263	1.00 20.00
ATOM	547 C		66.169	48.856	22.439	1.00 20.00
ATOM	548 O		65.801	49.977	22.723	1.00 20.00
ATOM	549 CI		65.672	47.898	24.749	1.00 20.00
ATOM	550 CC		65.444	46.594	25.498	1.00 20.00
ATOM		D1 ASN A 884	65.835	46.388	26.649	1.00 20.00
ATOM		D2 ASN A 884	64.817	45.687	24.802	1.00 20.00
	.556 N		66.917	48.603	21.375	1.00 20.00
ATOM	557 CA		67.391	49.655	20.482	1.00 20.00
ATOM	558 C		67.205	49.202	19.020	1.00 20.00
ATOM	559 O		67.847	48.251	18.589	1.00 20.00
ATOM	560 CE	B ILE A 885	68.930	50.021	20.761	1.00 20.00

				_						
MOTA	561	CG1				69.032	50.962	21.954	1.00	20.00
MOTA	562	CG2	ILE	A	885	69.529	50.830	19.639	1.00	20.00
ATOM	563	CD1	ILE	A	885	70.397	51.213	22.385	1.00	20.00
ATOM	565	N	ILE	Α	886	66.325	49.886	18.282	1.00	20.00
ATOM	566	CA	ILE	Α	886	66.030	49.608	16.871	1.00	
ATOM	567	C	ILE			67.338	49.271	16.206		20.00
MOTA	568	0	ILE			68.363	49.491	16.788		20.00
MOTA	569	CB	ILE			65.331	50.854	16.183		20.00
ATOM	570	CG1	ILE			63.806	50.758	16.349	1.00	20.00
MOTA	571	CG2	ILE	Α	886	65.568	50.868	14.691	1.00	20.00
MOTA	572	CD1	ILE	А	886	63.134	49.624	15.492	1.00	20.00
ATOM	574	N	ASN	Α	887	67.347	48.757	14.990	1.00	20.00
ATOM	575	CA	ASN			68.628	48.381	14.442		20.00
MOTA	576	C	ASN			68.846	48.692	13.013	1.00	
ATOM	577	0	ASN			67.889	48.902	12.273	1.00	
MOTA	578	CB	ASN			68.827	46.892			20.00
MOTA	579	CG	ASN	Α	887	70.276	46.512	14.731	1.00	20.00
ATOM	580	OD1	ASN	Α	887	71.015	46.382	13.725	1.00	20.00
ATOM	581	ND2	ASN	Α	887	70.702	46.315	15.979	1.00	20.00
ATOM	585	N	LEU			70.118	48.684	12.604		20.00
ATOM	586	CA	LEU			70.417	48.950	11.203		20.00
			LEU							
ATOM	587	C				70.410	47.641	10.469	1.00	20.00
MOTA	588	0	LEU			71.128	46.705	10.852	1.00	20.00
ATOM	589	CB	LEU	A	888	71.799	49.586	11.000	1.00	20.00
ATOM	590	CG	LEU .	A	888	72.125	49.333	9.517	1.00	20.00
MOTA	591	CD1	LEU .	A	888	71.290	50.292	8.712	1.00	20.00
ATOM	592	CD2	LEU .	A	888	73.594	49.451	9.207	1.00	20.00
ATOM	594	N	LEU .			69.617	47.531	9.425		20.00
ATOM	595	CA	LEU .			69.676	46.284	8.712		20.00
	•									
MOTA	596	C	LEU .			70.630	46.494	7.567		20.00
ATOM	597	0	LEU .			71.830	46.369	7.746	1.00	20.00
MOTA	598	CB	LEU .	A	889	68.310	45.906	8.247	1.00	20.00
MOTA	599	CG	LEU .	A	889	67.451	45.554	9.465	1.00	20.00
ATOM	600	CD1	LEU .	A	889	66.321	44.719	8.913	1.00	20.00
ATOM	601	CD2	LEU :	Α	889	68.201	44.811	10.568	1.00	20.00
ATOM	603	N	GLY .			70.114	46.838	6.396	1.00	20.00
ATOM	604	CA	GLY .			70.971	47.127	5.254	1.00	20.00
ATOM	605	C	GLY .			71.310	48.613	5.048	1.00	20.00
ATOM	606	0	GLY :			71.237	49.441	5.951	1.00	20.00
ATOM	608	N	ALA .	Ą	891	71.684	48.930	3.819	1.00	20.00
ATOM	609	CA	ALA	A	891	72.084	50.262	3.393	1.00	20.00
ATOM	610	C	ALA	A	891	72.437	50.082	1.907	1.00	20.00
MOTA	611	0*	ALA			72.299	48.965	1.361	1.00	20.00
ATOM	612	CB	ALA			73.296	50.706	4.166	1.00	20.00
									1.00	20.00
ATOM	614	N	CYS			72.908	51.153	1.262		
ATOM	615	CA	CYS :			73.258	51.085	-0.166		20.00
ATOM	616	C	CYS 2	Ą	892	73.174	52.468	-0.776		20.00
ATOM	617	0	CYS :	Α	892	72.263	53.232	-0.453	1.00	20.00
MOTA	618	CB	CYS :	A	892	72.277	50.171	-0.952	1.00	20.00
ATOM	619	SG	CYS			72.953	48.465	-1.345	1.00	20.00
ATOM	621	N	GLU I			74.089	52.785	-1.680	1.00	
						74:062	54.101	-2.298		20.00
ATOM	622	CA	GLU :							
ATOM	623	C	GLU 1			73.386	54.004	-3.637		20.00
MOTA	624	0	GLU :			73.956	53.509	-4.616		20.00
MOTA	625	CB	GLU :	A	893	75.483	54.655	-2.463		20.00
MOTA	626	CG	GLU :	Α	893	76.613	53.751	-1.900	1.00	20.00
ATOM	627	CD	GLU :			77.227	52.860	-2.966	1.00	20.00
				-				-		

ATOM	620	0.	1 0777 7 002	7.6 021			
ATOM	628 629		1 GLU A 893 2 GLU A 893	76.831			
ATOM	631		HIS A 894	78.105	52.033		1.00 20.00
ATOM	632			72.140	54.427		1.00 20.00
ATOM	633		HIS A 894	71.437	54.382		1.00 20.00
				71.690	55.786		1.00 20.00
ATOM	634		HIS A 894	71.305	56.755		1.00 20.00
ATOM	635			69.937	54.149		1.00 20.00
ATOM	636			69.133	54.328		1.00 20.00
ATOM	637		1 HIS A 894	67.767	54.494		1.00 20.00
ATOM	638		2 HIS A 894	69.510	54.413	-7.301	1.00 20.00
ATOM	639		1 HIS A 894	67.332	54.680	-7.223	1.00 20.00
ATOM	640	NE:		68.369	54.634	-8.037	1.00 20.00
ATOM	644	N	ARG A 895	72.366	55.873	-6.556	1.00 20.00
ATOM	645	CA	ARG A 895	72.768	57.132	-7.151	1.00 20.00
MOTA	646	С	ARG A 895	71.873	58.311	-6.767	1.00 20.00
ATOM	647	0	ARG A 895	70.654	58.317	-7.001	1.00 20.00
ATOM	648	CB	ARG A 895	72.910	56.904	-8.643	1.00 20.00
ATOM	649	CG	ARG A 895	73.918	55.775	-8.856	1.00 20.00
ATOM	650	CD	ARG A 895	73.482	54.825	÷9.910	1.00 20.00
MOTA	651	NE	ARG A 895	74.001	55.309	-11.176	1.00 20.00
ATOM	652	CZ	ARG A 895	73.609		-12.370	1.00 20.00
ATOM	653	NHI	L ARG A 895	72.657		-12.469	1.00 20.00
ATOM	654	NHZ		74.183		-13.460	1.00 20.00
ATOM	661	N	GLY A 896	72.510	59.315	-6.177	1.00 20.00
ATOM	662	CA	GLY A 896	71.781	60.441	-5.654	1.00 20.00
ATOM	663	C	GLY A 896	71.963	60.040	-4.207	1.00 20.00
ATOM	664	0	GLY A 896	72.194	58.860	-3.967	1.00 20.00
ATOM	666	N	TYR A 897	71.919	60.962	-3.254	1.00 20.00
ATOM	667	CA	TYR A 897	72.066	60.604	-1.839	1.00 20.00
ATOM	668	C	TYR A 897	71.643	59.133	-1.531	1.00 20.00
ATOM	669	0	TYR A 897	70.959	58.507		
ATOM	670	CB	TYR A 897	71.195	61.548	-2.336	1.00 20.00
ATOM '	671	CG	TYR A 897	71.193		-1.039	1.00 20.00
ATOM	672	CD1			62.224	0.128	1.00 20.00
ATOM	673	CD2		73.097	62.810	0.030	1.00 20.00
ATOM				71.116	62.358	1.321	1.00 20.00
	674	CE1		73.638	63.526	1.108	1.00 20.00
ATOM	675	CE2		71.641	63.069	2.402	1.00 20.00
ATOM	676	CZ	TYR A 897	72.894	63.650	2.290	1.00 20.00
ATOM	677	OH	TYR A 897	73.381	64.361	3.369	1.00 20.00
ATOM	680	N	LEU A 898	72.001	58.564	-0.369	1.00 20.00
MOTA	681	CA	LEU A 898	71.571	57.163	-0.196	1.00 20.00
ATOM	682	С	LEU A 898	71.131	56.437	1.099	1.00 20.00
ATOM	683	۰٥,	LEU A 898	71.759	56.483	2.161	1.00 20.00
ATOM	684	CB,	LEU A 898	72.542	56.240	-0.990	1.00 20.00
ATOM	686	N	TYR A 899	70.041	55.704	0.830	1.00 20.00
MOTA	687	CA	TYR A 899	69.162	54.833	1.624	1.00 20.00
MOTA	688	C	TYR A 899	69.544	53.804	2.665	1.00 20.00
MOTA	689	0	TYR A 899	70.411	52.969	2.445	1.00 20.00
ATOM	690	CB	TYR A 899	68.268	54.076	0.657	1.00 20.00
ATOM	691	CG	TYR A 899	67.523	54.943	-0.339	1.00 20.00
ATOM	692		TYR A 899	68.208	55.776	-1.209	1.00 20.00
ATOM	693	CD2		66.163	54.790	-0.522	1.00 20.00
ATOM	694	CE1		67.574	56.407	-2.238	1.00 20.00
ATOM	695	CE2		65.514	55.429	-2.236	1.00 20.00
ATOM	696	CZ	TYR A 899	66.225			
ATOM	697	OH	TYR A 899		56.235	-2.431	1.00 20.00
MOTA	700			65.602	56.841	-3.510	1.00 20.00
MION	700	N	LEU A 900	68.814	53.814	3.775	1.00 20.00

ATOM	701	CA	LEU			69.047	52.841	4.845		20.00
ATOM	702	C	LEU			67.805	51.988	5.149	1.00	20.00
ATOM	703	0	LEU	Α	900	66.645	52.459	5.109	1.00	20.00
ATOM	704	CB	LEU	A	900	69.455	53.522	6.147	1.00	20.00
ATOM	705	CG	LEU	A	900	70.810	54.184	6.259	1.00	20.00
ATOM	706	CD1	LEU	A	900	71.404	54.368	4.864	1.00	20.00
ATOM	707	CD2	LEU		900	70.624	55.498	7.033	1.00	20.00
ATOM	709	N	ALA			68.083	50.739	5.495	1.00	20.00
ATOM	710	CA	ALA			67.043	49.813	5.811		20.00
		C	ALA			67.113	49.495	7.275		20.00
ATOM	711							7.670		20.00
ATOM	712	0	ALA			67.828	48.577			
ATOM	713	CB	ALA			67.221	48.564	5.003		20.00
MOTA	715	N	ILE			66.372	50.260	8.078		20.00
ATOM	716	CA	ILE	A	902	66.310	50.058	9.513		20.00
ATOM	717	C	ILE .	A	902	65.367	48.888	9.812		20.00
ATOM	718	0	ILE .	Α	902	64.702	48.383	8.917	1.00	20.00
ATOM	719	CB	ILE .	A	902	65.801	51.315	10.167	1.00	20.00
ATOM	720	CG1	ILE .	A	902	66.882	52.398	10.058	1.00	20.00
ATOM	721	CG2	ILE .	A	902	65.308	51.006	11.556	1.00	20.00
ATOM	722	CD1	ILE			67.878	52.583	11.280	1.00	20.00
ATOM	724	N	GLU .			65.322	48.439	11.057		20.00
			GLU .			64.435	47.350	11.465	1.00	20.00
ATOM	725	CA								20.00
ATOM	726	C	GLU .			62.997	47.870	11.692		
ATOM	727	0	GLU .			62.713	48.559	12.662		20.00
MOTA	728	CB	GLU .			64.973	46.703	12.746		20.00
MOTA	729	CG	GLU .			63.985	45.965	13.580		20.00
ATOM	730	CD	GLU .	A	903	64.471	45.766	15.006		20.00
ATOM	731	OE1	GLU .	A	903	63.971	44.875	15.725	1.00	20.00
ATOM	732	OE2	GLU .	A	903	65.365	46.509	15.425	1.00	20.00
ATOM	734	N	TYR .	A	904	62.115	47.514	10.767	1.00	20.00
ATOM	735	CA	TYR .	Α	904	60.707	47.846	10.758	1.00	20.00
ATOM	736	C	TYR .			59.985	47.328	11.989	1.00	20.00
ATOM	737	0	TYR			60.054	46.149	12.240	1.00	
	738	CB	TYR .			60.078	47.204	9.521	1.00	20.00
ATOM			TYR			58.553	47.146	9.537		20.00
ATOM	739	CG						8.920		20.00
ATOM	740	CD1	TYR .			57.795	48.150			20.00
ATOM	741	CD2	TYR .			57.868	46.125	10.188		
MOTA	742	CEl	TYR .			56.420	48.136	8.955		20.00
ATOM	743	CE2	TYR .			56.498	46.115	10.223		20.00
ATOM	744	CZ	TYR .	A	904	55.779	47.128	9.602		20.00
MOTA	745	OH	TYR .	Α	904	54.405	47.149	9.622		20.00
ATOM	748	$N \cdot$	ALA	Α	905	59.270	48.183	12.727	1.00	20.00
ATOM	749	CÀ	ALA	A	905	58.503	47.772	13.931	1.00	20.00
ATOM	750	C	ALA			56.987	47.506	13.620	1.00	20.00
ATOM	751	0	ALA			56.395	48.128	12.744		20.00
ATOM	752	CB	ALA			58.649	48.816	14.976	1.00	20.00
		N	PRO			56.341	46.572	14.317		20.00
ATOM	754									20.00
ATOM	755	CA	PRO			54.949	46.394	13.918		
ATOM	756	C	PRO			53.803	46.643	14.902		20.00
MOTA	757	0	PRO			52.992	45.748	15.150		20.00
MOTA	758	CB	PRO			54.958	44.937	13.468		20.00
MOTA	759	CG	PRO	A	906	55.981	44.280	14.584		20.00
ATOM	760	CD	PRO	A	906	56.719	45.482	15.227		20.00
ATOM	761	N	HIS			53.729	47.841	15.450	1.00	20.00
ATOM	762	CA	HIS			52.655	48.251	16.349	1.00	20.00
ATOM	763	C	HIS			52.966	49.700	16.468		20.00
		0	HIS			52.865	50.262	17.534		20.00
ATOM	764	9	****	~1	507	J4.00J	20.202	±,		

MOTA	765	CB	HIS	A	907	52.745	47.577	17.714	1.00	20.00
ATOM	766	CG	HIS	A	907	52.656	46.090	17.650	1.00	20.00
MOTA	767	ND1	HIS	Α	907	53.753	45.272	17.799	1.00	20.00
MOTA	768	CD2	HIS	Ą	907	51.622	45.274	17.350	1.00	2000
ATOM	769	CE1	HIS	Α	907	53.404	44.018	17.593	1.00	20.00
ATOM	770	NE2	HIS	A	907	52.116	43.993	17.318	1.00	20.00
ATOM	774	N	GLY	A	908	53.411	50.280	15.365	1.00	20.00
ATOM	775	CA	GLY	A	908	53.733	51.676	15.348	1.00	20.00
ATOM	776	C	GLY	A	908	54.622	52.111	16.486	1.00	20.00
ATOM	777	0	GLY	Α	908	55.525	51.381	16.887	1.00	20.00
ATOM	779	N	ASN	A	909	54.338	53.284	17.054	1.00	20.00
ATOM	780	CA	ASN	A	909	55.183	53.854	18.094	1.00	20.00
ATOM	781	C	ASN	A	909	54.590	53.912	19.463	1.00	20.00
ATOM	782	0	ASN	A	909	53.409	54.064	19.616	1.00	
ATOM	783	CB	ASN	A	909	55.545	55.270	17.672	1.00	
ATOM	784	CG	ASN			54.346	56.201	17.669		20.00
ATOM	785		ASN			54.409	57.315	17.192		20.00
ATOM	786	ND2				53.260	55.738	18.210	1.00	20.00
ATOM	790	N	LEU			55.414	53.878	20.482	1.00	20.00
ATOM	791	CA	LEU			54.872	53.913	21.808	1.00	20.00
ATOM	792	C	LEU			53.703	54.890	21.927		20.00
ATOM	793	0	LEU			52.760	54.647	22.669		20.00
ATOM	794	CB	LEU			55.949	54.257	22.797		20.00
	795	CG	LEU			55.456	54.079	24.220		20.00
ATOM			LEU						1.00	
ATOM	796					54.921	52.676	24.488		
ATOM	797	CD2	LEU			56.617	54.427	25.133	1.00	20.00
ATOM	799	N	LEU			53.725	56.005	21.219		20.00
ATOM	800	CA	LEU			52.578	56.862	21.381		20.00
ATOM	801	C	LEU			51.408	56.200	20.656		20.00
ATOM	802	0	LEU			50.700	55.442	21.275		20.00
ATOM	803	CB	LEU			52.820	58.302	20.863		20.00
ATOM	804	CG	LEU			51.958	59.498	21.354		20.00
MOTA	805	CD1				51.738	59.517	22.855		20.00
MOTA	806	CD2				52.645	60.737	20.917		20.00
ATOM	808	N	ASP			51.219	56.459	19.371		20.00
ATOM	809	CA	ASP			50.117	55.895	18.642	1.00	20.00
ATOM	810	C	ASP	Α	912	49.646	54.540	19.121	1.00	20.00
MOTA	811	0	ASP	Α	912	48.468	54.225	19.083	1.00	20.00
MOTA	812	CB	ASP	A	912	50.461	55.849	17.181	1.00	20.00
ATOM	813	CG	ASP	Α	912	50.214	57.151	16.498	1.00	20.00
ATOM	814	OD1	ASP	A	912	50.507	57.259	15.304	1.00	20.00
ATOM	815	OD2	ASP	A	912	49.725	58.089	17.141	1.00	20.00
ATOM	817	N,	PHE	Α	913	50.572	53.703	19.562	1.00	20.00
MOTA	818	CA	PHE	A	913	50.168	52.405	20.098	1.00	20.00
ATOM	819	С	PHE			49.397	52.903	21.287		20.00
ATOM	820	0	PHE			48.236	53.231	21.164		20.00
ATOM	821	CB	PHE			51.355	51.585	20.547		20.00
ATOM	822	CG	PHE			51.010	50.182	20.847		20.00
ATOM	823		PHE			50.511	49.365	19.866		20.00
ATOM	824		PHE			51.133	49.688	22.122		20.00
ATOM	825		PHE			50.141	48.088	20.152		20.00
	826					50.760				20.00
ATOM			PHE				48.418	22.407		
ATOM	827	CZ	PHE			50.263	47.619	21.418		20.00
ATOM	829	N	LEU			50.059	53.031	22.416		20.00
ATOM	830	CA	LEU			49.400	53.584	23.572		20.00
ATOM	831	C	LEU			48.080	54.304	23.288		20.00
ATOM	832	0	LEU	A	914	47.102	54.093	23.985	1.00	20.00

				_		54 545	-		- 00	00 00
ATOM	833	CB			914	50.342	54.549	24.244	1.00	20.00
ATOM	834	CG	LEU	Α	914	51.146	53.995	25.410	1.00	20.00
ATOM	835	CD1	LEU	A	914	52.130	55.080	25.953	1.00	20.00
ATOM	836	CD2	LEU	А	914	50.142	53.501	26.466	1.00	20.00
ATOM	838	N	ARG			48.006	55.139	22.265	1.00	20.00
	839	CA	ARG			46.736	55.841	22.041	1.00	20.00
ATOM										
ATOM	840	C	ARG			45.650	54.970	21.526	1.00	20.00
ATOM	841	0	ARG	A	915	44.569	54.984	22.054	1.00	20.00
ATOM	842	CB	ARG	A	915	46.896	57.078	21.141	1.00	20.00
ATOM	843	CG	ARG	Α	915	46.687	58.379	21.885	1:00	20.00
ATOM	844	CD	ARG	Α	915	47.528	59.415	21.256	1.00	20.00
ATOM	845	NE	ARG	Α	915	48.215	60.347	22.169	1.00	20.00
ATOM	846	CZ	ARG			48.763	61.482	21.760		20.00
		NH1				48.709	61.835	20.494	1.00	20.00
ATOM	847									
ATOM	848	NH2	ARG			49.383	62.240	22.602		20.00
ATOM	855	N	LYS			45.943	54.219	20.485	1.00	
MOTA	856	CA	LYS	A	916	45.019	53.242	19.890	1.00	20.00
ATOM	857	C	LYS	A	916	44.681	52.169	20.920	1.00	20.00
ATOM	858	0	LYS	A	916	44.275	51.109	20.561	1.00	20.00
ATOM	859	CB			916	45.714	52.563	18.676	1.00	20.00
ATOM	860	CG			916	45.988	51.000	18.704		20.00
ATOM	861	CD	LYS			46.802	50.408	19.888	1.00	
ATOM	862	CE			916	46.861	48.841	19.822	1.00	20.00
ATOM	863	NZ	LYS	Α	916	46.225	47.974	20.937	1.00	20.00
ATOM	868	N	SER	Α	917	44.851	52.438	22.196	1.00	20.00
ATOM	869	CA	SER	Α	917	44.597	51.466	23.204	1.00	20.00
ATOM	870	C	SER	A	917	43.641	52.011	24.233	1.00	20.00
ATOM	871	0	SER			43.501	51.444	25.330		20.00
	872		SER			45.891	51.147	23.883	1.00	20.00
ATOM		CB								20.00
ATOM	873	OG	SER			45.843	51.568	25.227	1.00	
ATOM	876	N	ARG	A	918	43.014	53.138	23.902	1.00	20.00
ATOM	877	CA	ARG	A	918	42.041	53.822	24.775	1.00	20.00
ATOM	878	С	ARG	A	918	40.816	53.359	24.014	1.00	20.00
ATOM	879	0	ARG	A	918	40.523	53.883	22.951	1.00	20.00
ATOM	880	CB	ARG			42.260	55.365	24.669	1.00	20.00
ATOM	881	CG	ARG			43.138	56.036	25.794	1.00	20.00
							57.502	25.488	1.00	20.00
ATOM	882	CD	ARG			43.547				
MOTA	883	NE	ARG			44.494	57.982	26.502	1.00	20.00
ATOM	884	CZ	ARG	A	918	44.777	59.260	26.795	1.00	20.00
MOTA	885	NHl	ARG	A	918	44.211	60.289	26.165	1.00	20.00
ATOM	886	NH2	ARG	Α	918	45.625	59.523	27.777	1.00	20.00
ATOM	893	N	VAL	Α	919	40.135	52.333	24.507	1.00	20.00
ATOM	894	CA	VAL			39.009	51.770	23.757	1.00	20.00
	895	C,	VAL			37.733	52.382	24.202		20.00
ATOM								23.450		20.00
MOTA	896	0	VAL			36.750	52.427			
ATOM	897	CB	VAL			38. <i>9</i> 25	50.198	23.861		20.00
MOTA	898		VAL			40.218	49.603	23.459		20.00
MOTA	899	CG2	VAL	A	919	38.550	49.746	25.275	1.00	20.00
MOTA	901	N	LEU	Α	920	37.736	52.861	25,432	1.00	20.00
ATOM	902	CA	LEU	Α	920	36.569	53.542	25.895	1.00	20.00
ATOM	903	C	LEU			36.303	54.630	24.864		20.00
						35.276		24.906		20.00
ATOM	904	0	LEU				55.259			20.00
MOTA	905	CB	LEU			36.815	54.146	27.236		
MOTA	906	CG	LEU			35.641	54.652	28.011		20.00
ATOM	907	CD1	LEU	A	920	35.060	53.567	28.831		20.00
ATOM	908	CD2	LEU	A	920	36.155	55.768	28.901		20.00
MOTA	910	N	GLU			37.224	54.824	23.926	1.00	20.00

ATOM	フエエ	CA.			74±		١٥٥٠/ د	55./83	22.850		20.00
ATOM	912	C			921		37.413	55.109	21.541	1.00	
ATOM	913	0			921		37.205	55.677	20.469	1.00	
ATOM	914	CB			921		38.047	56.940	23.011		20.00
ATOM	915	CG			921		38.258	57.743	21.736	1.00	
ATOM	916	CD			921		39.404	58.696	21.848	1.00	
ATOM	917	OE1			921		39.875	58.879	22.982	1.00	
ATOM	918	OE2			921		39.836	59.261	20.825	1.00	20.00
ATOM	920	N			922		37.936	53.893	21.615		
ATOM	921	CA			922		38.309	53.178	20.413	1.00	20.00
ATOM	922	C			922		37.429	51.960	20.078	1.00	
MOTA	923	0			922		37.502	51.387	18.963		20.00
ATOM	924	CB			922		39.742	52.728	20.559		20.00
MOTA	925	OG1	THR				40.441	53.058	19.366		20.00
MOTA	926	CG2	THR				39.824	51.214	20.816		20.00
ATOM	929	N	ASP				36.617	51.575	21.074	1.00	
ATOM	930	CA	ASP		923		35.712	50.423	21.026	1.00	
ATOM	931	C	ASP		923		34.972	50.387	22.350	1.00	
MOTA	932	0	ASP		923		35.259	49.550	23.203	1.00	20.00
ATOM	933	CB	ASP		923		36.494	49.119	20.905	1.00	20.00
ATOM	934	CG	ASP		923		35.87 <i>9</i>	48.142	19.909	1.00	
MOTA	935	OD1			923		35.624	48.553	18.745	1.00	20.00
ATOM	936	OD2	ASP		923		35.669	46.956	20.271	1.00	20.00
MOTA	938	N	PRO		924		34.042	51.323	22.577		20.00
ATOM	939	CA	PRO		924		33.362	51.211	23.874		20.00
MOTA	940	C	PRO				32.544	49.923	24.176		20.00
ATOM	941	0	PRO	A	924		32.172	49.720	25.342	1.00	20.00
ATOM	942	CB			924		32.540	52.506	23.953	1.00	20.00
MOTA	943	CG	PRO		924	,	33.214	53.417	22.960	1.00	20.00
ATOM	944	CD	PRO	A	924		33.600	52.512	21.841	1.00	20.00
MOTA	945	N	ALA				32.276	49.078	23.156	1.00	20.00
MOTA	946	CA	ALA	Α	925		31.551	47.770	23.326	1.00	20.00
ATOM	947	С	ALA	A	925		32.438	46.878	24.193	1.00	20.00
ATOM	948	0	ALA	Α	925		32.016	46.274	25.190	1.00	20.00
ATOM	949	CB	ALA	A	925		31.328	47.103	21.992	1.00	20.00
ATOM	951	N	PHE	A	926		33.695	46.843	23.771		20.00
ATOM	952	CA	PHE	A	926		34.782	46.173	24.431	1.00	20.00
ATOM	953	C	PHE	A	926		34.885	46.856	25.745	1.00	20.00
MOTA	954	0	PHE	A	926		34.896	46.269	26.772	1.00	20.00
MOTA	955	CB	PHE	A	926		36.058	46.460	23.667	1.00	20.00
ATOM	956	CG	PHE	A	926		37.046	45.347	23.693	1.00	20.00
MOTA	957	CD1	PHE	A	926		37.164	44.511	22.599	1.00	20.00
ATOM	958	,CD2	PHE	Α	926		37.810	45.127	24.825	1.00	20.00
ATOM	959	CE1	PHE	Α	926		38.003	43.493	22.630	1.00	20.00
ATOM	960	CÉ2	PHE	A	926		38.661	44.107	24.881	1.00	20.00
ATOM	961	CZ	PHE	A	926		38.773	43.272	23.786	1.00	20.00
ATOM	963	N	ALA	A	927		35.024	48.154	25.681	1.00	20.00
ATOM	964	CA	ALA	Α	927		35.084	48.926	26.885	1.00	20.00
ATOM	965	C	ALA	A	927	•	34.165	48.337	27.956	1.00	20.00
ATOM	966	0	ALA				34.695	47.721	28.843	1.00	20.00
ATOM	967	CB	ALA				34.717	50.348	26.587		20.00
ATOM	969	N	ILE				32.825	48.502	27.887		20.00
ATOM	970	CA	ILE				31.935	47.945	28.958		20.00
ATOM	971	C	ILE				31.760	46.437	29.001		20.00
ATOM	972	0	ILE				31.464	45.883	30.050		20.00
ATOM	973	CB	ILE				30.395	48.487	29.019		20.00
ATOM	974	CG1					30.081	49.486	27.941		20.00
· · · · · ·											

	~	~		_	000	20 000			- 00	20.00
ATOM	975	CG2	ILE			30.098	49.114	30.414		20.00
ATOM	976	CD1	ILE	Ą	928	29.952	50.862	28.545	1.00	20.00
ATOM	978	N	ALA	Ą	929	31.895	45.782	27.860	1.00	20.00
ATOM	979	CA	ALA	Ą	929	31.747	44.356	27.867	1.00	20.00
ATOM	980	С	ALA	Α	929	32.803	43.844	28.804	1.00	20.00
ATOM	981	ō	ALA			32.525	43.055	29.667		20.00
	982	CB	ALA			31.946	43.823	26.510		20.00
ATOM							44.358			20.00
MOTA	984	N	ASN			34.010		28.642		
ATOM	985	CA	ASN			35.181	44.009	29.429	1.00	20.00
ATOM	986	C	ASN			35.448	44.882	30.665		20.00
MOTA	987	0	ASN	A	930	36.191	44.496	31.566	1.00	20.00
ATOM	988	CB	ASN	A	930	36.397	44.067	28.511	1.00	20.00
ATOM	989	CG	ASN	A	930	36:628	42.771	27.745	1.00	20.00
ATOM	990	OD1	ASN	A	930	37.333	41.876	28.220	1.00	20.00
ATOM	991	ND2	ASN			36.046	42.671	26.547		20.00
MOTA	995	N	SER			34.847	46.063	30.695	1.00	
									1.00	20.00
ATOM	996	CA	SER			35.050	47.041	31.768		
ATOM	997	C	SER			36.531	47.527	31.922	1.00	20.00
MOTA	998	0	SER			37.074	47.556	33.020	1.00	20.00
MOTA	999	CB	SER	A	931	34.541	46.453	33.084	1.00	20.00
ATOM	1000	OG	SER	Α	931	34.196	45.103	32.879	1.00	20.00
ATOM	1003	N	THR	A	932	37.155	47.931	30.815	1.00	20.00
ATOM	1004	CA	THR	Α	932	38.545	48.392	30.821	1.00	20.00
MOTA	1005	C	THR			38.800	49.536	29.872	1.00	20.00
		0	THR			38.184	49.614	28.803	1.00	20.00
MOTA	1006									20.00
MOTA	1007	CB	THR			39.525	47.299	30.451		
MOTA	1008	OG1	THR			38.971	46.481	29.417	1.00	20.00
MOTA	1009	CG2	THR	Α	932	39.832	46.479	31.663		20.00
ATOM	1012	N	ALA	Α	933 .	39.747	50.384	30.287	1.00	
ATOM	1013	CA	ALA	A	933	40.179	51.608	29.597	1.00	20.00
ATOM	1014	C	ALA	A	933	41.172	51.417	28.495	1.00	20.00
ATOM	1015	0	ALA			41.155	52.134	27.513	1.00	20.00
ATOM	1016	CB	ALA			40.778	52.547	30.597	1.00	20.00
			SER			42.086	50.480	28.709		20.00
ATOM	1018	N							1.00	20.00
MOTA	1019	CA	SER			43.134	50.131	27.749		
ATOM	1020	C	SER			43.001	48.645	27.512	1.00	20.00
MOTA	1021	0	SER	А	934	42.431	47.966	28.337	1.00	
ATOM	1022	CB	SER	A	934	44.511	50.396	28.374	1.00	20.00
ATOM	1023	OG	SER	Α	934	45.494	50.638	27.386	1.00	20.00
MOTA	1026	N	THR	Α	935	43.497	48.150	26.380	1.00	20.00
ATOM	1027	CA	THR			43.529	46.701	26.144	1.00	20.00
ATOM	1028	C	THR			44.801	46.297	26.814	1.00	20.00
						45.015	45.118	27.082		20.00
MOTA	1029	·O .	THR							20.00
MOTA	1030	CB'	THR			43.768	46.312	24.783		
MOTA	1031	OG1	THR			44.892	47.021	24.325		20.00
MOTA	1032	CG2	THR	A	935	42.571	46.583	23.961		20.00
MOTA	1035	N	LEU	Α	936	45.640	47.301	27.070		20.00
ATOM	1036	CA	LEU	Α	936	46.897	47.138	27.735	1.00	20.00
MOTA	1037	С	LEU			46.640	46.822	29.174	1.00	20.00
MOTA	1038	0	LEU			45.579	47.010	29.666	1.00	20.00
		CB	LEU			47.699	48.413	27.635		20.00
ATOM	1039					47.921	49.086	26.273		20.00
ATOM	1040	CG	LEU							20.00
ATOM	1041	CD1				49.058	50.134	26.370		
ATOM	1042	CD2	LEU			48.250	48.029	25.238		20.00
ATOM	1044	N	SER	A	937	47.652	46.322	29.841		20.00
ATOM	1045	ÇA	SER	A	937	47.576	45.961	31.232		20.00
ATOM	1046	C	SER	A	937	48.521	46.834	32.054	1.00	20.00
		-		-						

ATOM	T047	U			93/	49.2		7.608	31.519		20.00
ATOM	1048	CB			937	47.9		4.501	31.384		20.00
ATOM	1049	OG			937	48.6		4.257	32.628	1.00	
MOTA	1052	N			938	48.4		6.695	33.365		20.00
ATOM	1053	C.A.			938	49.3		7.433	34.239	1.00	
ATOM	1054	C			938	50.7		6.904	33.957	1.00	
ATOM	1055	0			938	51.6		7.668	33.847	1.00	
ATOM	1056	CB			938	48.9		7.177	35.683	1.00	
ATOM	1057	OG			938	50.0		7.071	36.555		20.00
ATOM	1060	N			939	50.8		5.587	33.812	1.00	
ATOM	1061	CA			939	52.1		5.002	33.522	1.00	
ATOM	1062	C			939	52.7		5.435	32.165	1.00	20.00
ATOM	1063	0	GLN			53.8		5.917	32.073	1.00	
ATOM	1064	CB	GLN			52.1	,	3.465	33.608	1.00	
ATOM	1065	CG	GLN			52.2		2.909	35.046	1.00	20.00
ATOM	1066	CD	GLN			53.7		2.716	35.473	1.00	20.00
ATOM	1067	OEI				54.5		2.185	34.711	1.00	20.00
ATOM	1068	NE2	GLN			54.0		3.139	36.700	1.00	20.00
ATOM	1072	N	GLN			51.9		5.294	31.111	1.00	20.00
ATOM	1073	CA	GLN			52.4		5.696	29.813		20.00
ATOM	1074	C	GLN			53.04		7.092	29.913	1.00	20.00
ATOM	1075	0	GLN			53.94		7.477	29.163		20.00
ATOM	1076	CB	GLN			51.33		5.696	28.788	1.00	20.00
ATOM	1077	CG	GLN			51.69		5.374	27.506	1.00	20.00
ATOM	1078	CD	GLN			52.70		5.592	26.720		20.00
ATOM	1079	OEl				52.68		5.571	25.496		20.00
MOTA	1080	NE2	GLN			53.59		1.934	27.418		20.00
MOTA	1084	N	LEU			52.52		7.832	30.887	1.00	20.00
ATOM	1085	CA	LEU			52.9		9.212	31.110	1.00	20.00
ATOM	1086	C	LEU			54.28		9.397	31.744		20.00
MOTA	1087	0	LEU			55.07		0.181	31.231		20.00
ATOM	1088	CB	LEU			51.85		9.924	31.933		20.00
MOTA	1089	CG	LEU			50.70		0.500	31.161		20.00
ATOM	1090	CD1	LEU			50.18		L.653	31.924	1.00	
ATOM	1091	CD2	LEU			51.13		0.904	29.785		20.00
ATOM	1093	N			942			3.720	32.848		20.00
ATOM	1094	CA	LEU			55.88		3.863	33.431		20.00
ATOM	1095	C	LEU			56.82		3.204	32.440		20.00
MOTA	1096	0	LEU			57.98		3.583	32.283	1.00	20.00
ATOM	1097	CB	LEU			55.95	-	3.147	34.756	1.00	20.00
ATOM	1098	CG	LEU			54.73		3.399	35.609		20.00
ATOM	1099		LEU			54.90		7.676	36.943		20.00
ATOM	1100		LEU			54.52		9.936	35.793		20.00
MOTA	1102	N,	HIS			56.30		7.201	31.761		20.00
ATOM	1103	CA	HIS			57.12		5.548	30.800		20.00
ATOM	1104	C	HIS			57.75		7.596	29.894		20.00
MOTA	1105	0	HIS			58.96		7.781	29.936		20.00
ATOM	1106	CB	HIS			56.30		5.586	29.997		20.00
MOTA	1107	CG	HIS			56.54		1.159	30.350		20.00
MOTA	1108		HIS			56.70		1.732	31.649		20.00
ATOM	1109		HIS			56.63		3.054	29.582		20.00
MOTA	1110		HIS			56.88		2.427	31.670		20.00
ATOM	1111		HIS			56.84		994	30.427		20.00
MOTA	1115		PHE			56.92		3.278	29.084		20.00
MOTA	1116	CA	PHE			57.39		3.327	28.162		20.00
ATOM	1117	C	PHE			58.36).354	28.831		20.00
MOTA	1118	0	PHE	A	944	59.36	8 50	775	28.249	1.00	20.00

ATOM	1119		A 944	56.205		27.619	1.00 20.00
ATOM	1120		A 944	55.484		26.515	
ATOM	1121		A 944	54.116		26.572	1.00 20.00
ATOM	1122			56.130	49.020	25.368	1.00 20.00
MOTA	1123		A 944	53.432	48.727	25.515	1.00 20.00
ATOM	1124		A 944	55.433	48.534	24.300	1.00 20.00
ATOM	1125		A 944	54.096	48.393	24.375	1.00 20.00
ATOM	1127		A 945	58.055	50.749	30.057	
MOTA	1128		A 945	58.919	51.639	30.792	1.00 20.00
ATOM	1129		A 945	60.323	51.010	31.013	1.00 20.00
ATOM	1130		A 945	61.349	51.690	30.906	1.00 20.00
ATOM	1131		A 945	58.292	51.974	32.101	1.00 20.00
ATOM ATOM	1133		A 946	60.373	49.710	31.297	1.00 20.00
ATOM	1134 1135		A 946	61.650	49.043	31.547	1.00 20.00
ATOM	1136		A 946	62.466	48.605	30.330	1.00 20.00
ATOM	1137		A 946	63.646	48.331	30.434	1.00 20.00
MOTA	1139		A 946 A 947	61.418	47.872	32.429	1.00 20.00
ATOM	1140		A 947 A 947	61.823	48.486	29.188	1.00 20.00
ATOM	1141			62.532	48.106	27.998	1.00 20.00
ATOM	1141		A 947 A 947	63.351	49.335	27.765	1.00 20.00
ATOM	1142		A 947 A 947	64.564 63.560	49.273	27.560	1.00 20.00
ATOM	1144		A 947	61.560	47.930	26.849	1.00 20.00
ATOM	1144		A 947 A 947	61.242 61.770	46.473	26.549	1.00 20.00
ATOM	1146		A 947		45.561	27.247	1.00 20.00
ATOM	1148		A 948	60.447 62.640	46.255	25.595	1.00 20.00
ATOM	1149		A 948		50.465	27.811	1.00 20.00
ATOM	1150		A 948	63.203 64.337	51.808	27.624	1.00 20.00
ATOM	1151		A 948	65.360	52.099	28.598	1.00 20.00
ATOM	1152		A 948	62.108	52.539	28.177	1.00 20.00
ATOM	1153		A 948	62.712	52.917	27.776	1.00 20.00
ATOM	1154		A 948	61.121	54.286 52.784	27.666	1.00 20.00
ATOM	1156		A 949	64.166	51.850	26.722	1.00 20.00 1.00 20.00
ATOM	1157		A 949	65.243	52.135	29.886 30.812	1.00 20.00
ATOM	1158		A 949	66.449	51.321	30.812	1.00 20.00
ATOM	1159		A 949	67.578	51.738	30.460	1.00 20.00
ATOM	1160		A 949	64.850	51.822	32.209	1.00 20.00
ATOM	1162		A 950	66.212	50.134	29.928	1.00 20.00
ATOM	1163		A 950	67.293	49.254	29.578	1.00 20.00
MOTA	1164		A 950	68.005	49.853	28.406	1.00 20.00
ATOM.	1165		A 950	69.110	50.330	28.534	1.00 20.00
ATOM	1166	CB ARG		66.762	47.872	29.240	1.00 20.00
ATOM	1167	CG ARG		67.029	46.827	30.351	1.00 20.00
ATOM	1168	CD ARG		67.033	45.384	29.809	1.00 20.00
ATOM	1169	NE ARG		65.891	45.157	28.900	1.00 20.00
ATOM	1170	CZ ARG	¥ 950	64.646	44.807	29.260	1.00 20.00
ATOM	1171	NH1 ARG A		64.301	44.610	30.522	1.00 20.00
ATOM	1172	NH2 ARG A		63.726	44.693	28.323	1.00 20.00
ATOM	1179	N GLY		67.390	49.844	27.248	1.00 20.00
ATOM	1180	CA GLY		68.105	50.427	26.146	1.00 20.00
ATOM	1181	C GLY		68.769	51.722	26.564	1.00 20.00
ATOM	1182	O GLY A		69.885	52.024	26.163	1.00 20.00
ATOM	1184	N MET A		68.080	52.500	27.386	1.00 20.00
ATOM	1185	CA MET A		68.605	53.787	27.807	1.00 20.00
ATOM	1186	C MET A		69.952	53.633	28.437	1.00 20.00
ATOM	1187	O MET A		70.949	53.969	27.845	1.00 20.00
ATOM	·1188		952	67.659	54.492	28.797	1.00 20.00
			•				
				FIG.	4Q	•	
					~ z.		~
						•	 !
						•	•

ATOM	1189	CG	MET	A	952	67.289	55.894	28.400	1.00	20.00	
ATOM	1190	SD	MET			67.360	56.078	26.632	1.00	20.00	
ATOM	1191	CE	MET	Α	952	68.656	57.374	26.554	1.00	20.00	
ATOM	1193	И	ASP	Α	953	69.903	53.096	29.648	1.00	20.00	
ATOM	1194	CA	ASP	Α	953	70.999	52.819	30.539	1.00	20.00	
MOTA	1195	C	ASP			72.126	52.077	29.948	1.00	20.00	
ATOM	1196	0	ASP	A	953	73.077	51.814	30.608	1.00	20.00	
MOTA	1197	CB	ASP			70.496	52.036	31.733	1.00	20.00	
ATOM	1198	CG	ASP			71.538	51.117	32.295	1.00	20.00	
MOTA	1199	OD1				72.241	51.480	33.245	1.00	20.00	
ATOM	1200	OD2	ASP	A	953	71.672	50.004	31.785	1.00	20.00	
ATOM	1202	N	TYR			72.025	51.743	28.692		20.00	
ATOM	1203	CA.	TYR			73.060	51.020	28.034	1.00	20.00	
ATOM	1204	С	TYR			73.930	52.011	27.324		20.00	
ATOM	1205	0	TYR			75.135	51.833	27.254		20.00	
MOTA	1206	CB	TYR			72.416	50.047	27.070		20.00	
ATOM	1207	CG	TYR			73.330	49.432	26.068		20.00	
MOTA	1208	CD1	TYR			74.294	48.485	26.442		20.00	
MOTA	1209	CD2	TYR			73.181	49.719	24.734		20.00	
MOTA	1210	CE1	TYR			75.071	47.839	25.483	1.00		
MOTA	1211	CE2	TYR			73.947	49.082	23.779		20.00	
MOTA	1212	CZ	TYR			74.883	48.136	24.153		20.00	
MOTA	1213	OH	TYR			75.525	47.442	23.152	1.00		
MOTA	1216	N	LEU			73.286	53.052	26.786		20.00	•
MOTA	1217	CA	LEU			73.908	54.184	26.069	1.00		
MOTA	1218	C	LEU			74.356	55.110	27.176		20.00	
MOTA	1219	0	LEU			75.441	55.609	27.207		20.00	
MOTA	1220	CB	LEU .			72.863	54.943	25.265		20.00	
MOTA	1221	CG	LEU .			72.005	54.277	24.181		20.00	
MOTA	1222	CD1				70.489	54.637	24.288		20.00	
MOTA	1223		LEU .			72.573	54.751	22.838		20.00	
ATOM	1225	N	SER .			73.465	55.311	28.113		20.00	
ATOM	1226	CA	SER .			73.699	56.176	29.209		20.00	
ATOM	1227	C	SER .			74.985	55.783	29.829		20.00	
ATOM	1228	0	SER .			75.557	56.555	30.600		20.00	
ATOM	1229	CB	SER .			72.534	56.068	30.172		20.00	
ATOM	1230	OG	SER .			72.960	56.102	31.513		20.00	
ATOM	1233	N	GLN .			75.468	54.594	29.495		20.00	
ATOM	1234	CA	GLN .			76.755	54.097	30.040		20.00	
ATOM	1235	C	GLN .			77.824	54.054	28.959		20.00	
ATOM	1236	0	GLN .			78.985	54.213	29.208		20.00	
ATOM	1237	CB	GLN .			76.591	52.703	30.617		20.00	
ATOM	1238	ÇG	GLN .			75.563	52.626	31.692		20.00	
ATOM	1239	CD	GLN A			76.088	51.882	32.875		20.00	
ATOM	1240		GLN .			77.083	52.314	33.492		20.00	
ATOM	1241	NE2				75.447	50.747	33.215		20.00	
ATOM	1245	N	LYS			77.396	53.827	27.747		20.00	
ATOM	1246	CA	LYS 2			78.273	53.813	26.622		20.00	
ATOM	1247	C	LYS A			78.801	55.275	26.542		20.00	
ATOM	1248	0	LYS A			79.643	55.627	25.704		20.00	
ATOM	1249	CB	LYS 2			77.427	53.440	25.379		20.00	
ATOM	1250	CG	LYS I			78.110	52.552	24.355		20.00	
ATOM	1251	CD	LYS I			78.715	51.303	25.011		20.00	
ATOM	1252	CE	LYS A			77.845	50.099	24.743		20.00	
ATOM	1253	NZ	LYS :			77.570	50.041	23.271		20.00	
ATOM	1258	N	GLN I			78.268	56.108	27.438		20.00	
MOTA	1259	CA	GLN I	4 5	ナ ンゲ	78.526	57.551	27.543	1.00	20.00	

1260 C GLN A 959 77.366 58.361 26.838 1.00 20.00 1261 O GLN A 959 76.848 59.327 27.401 1.00 20.00 1262 CB GLN A 959 79.901 57.893 26.973 1.00 20.00 1263 CG GLN A 959 80.490 59.183 27.492 1.00 20.00 1264 CD GLN A 959 80.934 59.114 28.944 1.00 20.00 1265 OE1 GLN A 959 81.840 58.313 29.295 1.00 20.00 1266 NE2 GLN A 959 80.332 59.979 29.811 1.00 20.00 1270 N PHE A 960 76.937 57.940 25.649 1.00 20.00 1271 CA PHE A 960 75.828 58.582 24.898 1.00 20.00 1272 C PHE A 960 74.667 59.365 25.618 1.00 20.00 1273 O PHE A 960 74.110 58.916 26.628 1.00 20.00 MOTA MOTA ATOM ATOM MOTA ATOM ATOM 1270 N PHE A 960 76.937 57.940 25.649 1.00 20.00 1271 CA PHE A 960 75.828 58.52 24.4898 1.00 20.00 1272 C PHE A 960 74.105 58.916 26.628 1.00 20.00 1274 CB PHE A 960 75.189 57.528 23.985 1.00 20.00 1275 CG PHE A 960 76.070 57.067 22.851 1.00 20.00 1276 CG PHE A 960 76.570 55.766 22.818 1.00 20.00 1277 CD2 PHE A 960 76.570 55.766 22.818 1.00 20.00 1277 CD2 PHE A 960 76.367 57.901 21.792 1.00 20.00 1278 CE1 PHE A 960 77.349 55.308 21.743 1.00 20.00 1279 CE2 PHE A 960 77.439 55.308 21.743 1.00 20.00 1280 CZ PHE A 960 77.636 56.142 20.704 1.00 20.00 1280 CZ PHE A 961 74.308 60.532 25.068 1.00 20.00 1283 CA ILE A 961 73.212 61.377 25.623 1.00 20.00 1284 C ILE A 961 72.076 61.460 24.611 1.00 20.00 1285 C ILE A 961 73.631 62.832 25.988 1.00 20.00 1287 CG1 ILE A 961 73.631 62.832 25.988 1.00 20.00 1287 CG1 ILE A 961 73.631 62.832 25.988 1.00 20.00 1287 CG1 ILE A 961 73.631 62.832 25.988 1.00 20.00 1287 CG1 ILE A 961 73.631 62.832 25.988 1.00 20.00 1287 CG1 ILE A 961 73.631 62.832 25.988 1.00 20.00 1287 CG1 ILE A 961 73.631 62.832 25.988 1.00 20.00 1287 CG1 ILE A 961 73.631 62.832 25.988 1.00 20.00 1289 CD1 ILE A 961 75.935 63.855 26.373 1.00 20.00 1291 N HIS A 962 69.704 61.307 24.088 1.00 20.00 1292 CA HIS A 962 69.704 61.307 24.088 1.00 20.00 1291 N HIS A 962 69.704 61.307 24.088 1.00 20.00 1294 O HIS A 962 69.296 62.872 22.344 1.00 20.00 1294 O HIS A 962 69.296 62.872 22.344 1.00 20.00 1296 CG HIS A 962 66.589 58.290 22.528 1.00 20.00 1297 ND1 HIS A 962 66.589 58.290 22.528 1.00 20.00 1298 CD2 HIS A 962 66.589 58.290 22.528 1.00 20.00 1305 CA ARG A 963 66.653 64.665 24.122 1.00 20.00 1306 C ARG A 963 66.553 64.665 24.122 1.00 20.00 1306 C ARG A 963 66.553 64.665 24.122 1.00 20.00 1306 C ARG A 963 66.553 64.665 24.122 1.00 20.00 1310 CD ARG A 963 66.553 64.665 24.122 1.00 20.00 1310 CD ARG A 963 66.553 64.665 24.122 1.00 20.00 1311 NE ARG A 963 66.553 64.665 22.334 1.00 20.00 1311 NE ARG A 963 66.553 64.665 22.334 1.00 20.00 1311 NE ARG A 963 66.550 63.767 23.408 1.00 20.00 1311 NH ARG A 963 66.503 67.648 64.991 18.9 MOTA ATOM ATOM ATOM ATOM ATOM ATOM ATOM MOTA ATOM ATOM MOTA MOTA ATOM ATOM MOTA ATOM MOTA ATOM ATOM MOTA ATOM ATOM MOTA ATOM ATOM ATOM MOTA MOTA MOTA MOTA MOTA ATOM MOTA MOTA MOTA MOTA ATOM ATOM MOTA ATOM MOTA 1323 C ASN A 964 63.904 62.262 22.803 1.00 20.00 1324 O ASN A 964 64.890 63.763 21.054 1.00 20.00 1325 CB ASN A 964 64.890 63.763 21.054 1.00 20.00 1326 CG ASN A 964 63.647 63.940 20.206 1.00 20.00 1327 OD1 ASN A 964 62.565 64.079 20.780 1.00 20.00 1328 ND2 ASN A 964 63.769 63.939 18.866 1.00 20.00 1332 N LEU A 965 63.861 61.914 24.081 1.00 20.00 1333 CA LEU A 965 63.291 60.665 24.546 1.00 20.00 MOTA MOTA MOTA ATOM MOTA ATOM MOTA

ATOM	1334	С	LEU	A	965	61.884	61.116	24.926	1.00	20.00
ATOM	1335	0	LEU	A	965	61.701	62.119	25.629	1.00	20.00
ATOM	1336	CB	LEU	A	965	64.079	60.172	25.769	1.00	20.00
MCTA	1337	CG			965	64.292	58.716	26.189	1.00	20.00
MOTA	1338	CD1			965	64.689	57.802	25.040	1.00	20.00
ATOM	1339	CD2			965	€5.320	58.728	27.27 <i>6</i>	1.00	20.00
MOTA	1341	N			966	60.905	60.381	24.412	1.00	20.00
ATOM	1342	CA			966	59.511	60.666	24.605	1.00	20.00
ATOM	1343	С			966	58.812	59.674	23.677	1.00	20.00
ATOM	1344	0			966	59.379	59.250	22.667	1.00	20.00
ATOM	1345	CB			966	59.244	62.056	24.189		20.00
ATOM	1347	N			967	57.581	59.320	24.014	1.00	20.00
MOTA	1348	CA			967	56.826	58.358	23.242	1.00	20.00
ATOM	1349	C			967	56.842	58.489	21.740	1.00	20.00
ATOM	1350	0			967	57.050	57.521	21.044	1.00	20.00
ATOM	1351	CB			967	55.375	58.306	23.721		20.00
MOTA	1353	N	ARG			56.606	59.671	21.205		20.00
ATOM	1354	CA	ARG			56.580	59.697	19.759	1.00	20.00
ATOM	1355	C	ARG			57.802	59.015	19.160	1.00	20.00
ATOM	1356	0	ARG			57.751	58.532	18.041		20.00
ATOM	1357	CB	ARG			56.455	61.123	19.226		20.00
ATOM	1358	CG	ARG			57.264	62.162	19.987	1.00	20.00
ATOM	1359	CD	ARG			57.684	63.354	19.087		20.00
ATOM	1360	NE	ARG			58.467	64.376	19.784		20.00
ATOM	1361	CZ	ARG			58.098	64.982	20.904		20.00
ATOM	1362	NH1	ARG			56.937	64.698	21.492		20.00
MOTA	1363	NH2	ARG			58.929	65.828	21.473		20.00
ATOM	1370	N	ASN			58.881	58.913	19931		20.00
ATOM	1371	CA	ASN			60.122	58.388	19.383		20.00
ATOM	1372	C	ASN			60.608	57.008	19.754		20.00
MOTA	1373	0	ASN			61.716	56.647	19.413		20.00
ATOM	1374	CB	ASN			61.232	59.407	19.630		20.00
ATOM	1375	CG	ASN			60.873	60.787	19.118		20.00
ATOM	1376		ASN			60.733	61.724	19.892		20.00
ATOM	1377	ND2	ASN			60.702	60.910	17.802		20.00
ATOM	1381	N	ILE			59.775	56.249	20.443	1.00	
ATOM	1382	CA	ILE			60.073	54.912	20.851		20.00
ATOM	1383	C	ILE			59.153	54.057	20.034		20.00
ATOM	1384	0	ILE			58.006	54.384	19.930	1.00	20.00
ATOM	1385	CB	ILE			59.717	54.770	22.294		20.00
ATOM	1386	CG1	ILE			60.699	55.565	23.110		20.00
ATOM		CG2				59.730	53.328	22.724		20.00
ATOM		CD1					55.095	24.515		20.00
ATOM	1390	N	LEU				52.971	19.435		20.00
ATOM			LEU			58.733	52.086	18.656	1.00	
ATOM	1392		LEU			58.290	50.891	19.444		20.00
ATOM	1393		LEU			58.776	50.653	20.523	1.00	
ATOM			LEU			59.422	51.582	17.418	1.00	
ATOM			LEU			59.930	52.837	16.785	1.00	
ATOM		CD1					52.652	16.019	1.00	
ATOM		CD2					53.290	15.909	1.00	
ATOM			VAL			57.305	50.171	18.929	1.00	
ATOM			VAL				48.941	19.594	1.00	
ATOM			VAL				47.883	18.541	1.00	
ATOM	1402		VAL				47.793	17.661	1.00	
ATOM	1403		VAL				48.932		1.00	
ATOM ·	1404	CG1	٧AL	A	9/2	55.224	47.588	20.632	1.00	20.00

ATOM 1476 C ILE A 980 65.131 53.691 19.858 1.00 20.00
ATOM 1477 O ILE A 980 65.938 53.004 19.233 1.00 20.00
ATOM 1479 CGI ILE A 980 65.671 53.665 22.263 1.00 20.00
ATOM 1479 CGI ILE A 980 65.671 53.665 22.263 1.00 20.00
ATOM 1491 CDI ILE A 980 65.943 55.135 22.173 1.00 20.00
ATOM 1481 CDI ILE A 980 65.943 55.135 22.173 1.00 20.00
ATOM 1481 N ALA A 981 66.262 53.591 24.730 1.00 20.00
ATOM 1482 C ALA A 981 65.038 55.342 18.097 1.00 20.00
ATOM 1485 C ALA A 981 65.038 55.342 18.097 1.00 20.00
ATOM 1486 C ALA A 981 65.038 55.342 18.097 1.00 20.00
ATOM 1487 CE ALA A 981 65.038 55.342 18.097 1.00 20.00
ATOM 1487 CE ALA A 981 65.038 55.342 17.060 1.00 20.00
ATOM 1489 C ALA A 981 65.038 55.342 17.060 1.00 20.00
ATOM 1487 CE ALA A 981 65.038 58.763 18.171 1.00 20.00
ATOM 1489 C ASE A 982 65.61 65.510 57.362 16.973 1.00 20.00
ATOM 1497 C ASE A 982 66.653 89.753 16.416 1.00 20.00
ATOM 1491 C ASE A 982 66.653 89.753 16.024 17.000 1.00 20.00
ATOM 1493 CB ASE A 982 66.653 89.753 16.024 17.000 1.00 20.00
ATOM 1493 CB ASE A 982 66.653 89.753 16.024 17.000 1.00 20.00
ATOM 1493 CB ASE A 982 66.653 89.171 77.860 1.00 20.00
ATOM 1495 CDI ASE A 982 66.653 89.171 77.860 1.00 20.00
ATOM 1496 CD ASE A 982 66.653 89.171 77.860 1.00 20.00
ATOM 1496 CD ASE A 982 66.91 60.185 18.684 1.00 20.00
ATOM 1496 CD ASE A 982 66.91 60.185 18.684 1.00 20.00
ATOM 1496 CD ASE A 982 66.91 60.91 10.00 20.00
ATOM 1496 CD ASE A 982 66.91 16.00 18.00

ATOM	1541	NHl	ARG			83.127	56.473	20.738	1.00	20.00
ATOM	1542	NH2	ARG	Ā	987	83.761	56.206	22.936	1.00	20.00
MOTA	1549	N	\mathtt{GLY}	A	988	79.387	62.122	25.068	1.00	20.00
ATOM	1550	CA	GLY	A	986	80.028	63.260	25.633	1.00	20.00
ATOM	1551	С	GLY	A	988	79.480	63.223	27.024	1.00	20.00
ATOM	1552	0	GLY			79.050	62.151	27.453	1.00	20.00
ATOM	1554	N	GLN			79.521	64.369	27.704	1.00	20.00
ATOM	1555	CA			989	79.020	64.579		1.00	
								29.053		20.00
ATOM	1556	C	GLN			78.115	65.864	29.062	1.00	20.00
MOTA	1557	0	GLN			77.565	66.257	30.075	1.00	20.00
MOTA	1558	CB	\mathtt{GLN}			80.219	64.739	29.974	1.00	20.00
ATOM	1559	CG	GLN	А	989	79.924	65.292	31.348	1.00	20.00
ATOM	1560	CD	${\tt GLN}$	Α	989	81.068	66.095	31.985	1.00	20.00
MOTA	1561	OE1	GLN	Д	989	81.783	66.897	31.332	1.00	20.00
ATOM	1562	NE2	GLN	Α	989	81.233	65.891	33.273	1.00	20.00
ATOM	1566	N	GLU			77.933	66.496	27.908	1.00	20.00
ATOM	1567	CA	GLU			77.185	67.704	27.889	1.00	
MOTA	1568	С	GLU			76.348	68.030	26.675		20.00
MOTA	1569	0	GLU			75.199	68.420	26.836		20.00
ATOM	1570	CB	GLU			78.134	68.853	28.117	1.00	20.00
ATOM	1571	CG	GLU	A	990	78.194	69.367	29.499	1.00	20.00
ATOM	1572	CD	GLU	A	990	79.467	68.991	30.151	1.00	20.00
ATOM	1573	OE1	GLU	A	990	80.437	68.623	29.443	1.00	20.00
ATOM	1574	OE2	GLU	Α	990	79.486	69.061	31.387	1.00	20.00
ATOM	1576	N	VAL			76.878	67.895	25.469		20.00
ATOM	1577	CA	VAL			76.098	68.270	24.274		20.00
ATOM	1578	C	VAL			75.373	69.616	24.400		20.00
										20.00
ATOM	1579	0	VAL			74.538	69.823	25.274		
MOTA	1580	CB			991	74.965	67.324	23.910		20.00
ATOM	1581	CGl	VAL			74.620	67.527	22.479		20.00
ATOM	1582	CG2	VAL			75.323	65.922	24.159	1.00	20.00
MOTA	1584	N	TYR	A	992	75.674	70.528	23.504	1.00	20.00
ATOM	1585	CA	TYR	A	992	74.997	71.780	23.514	1.00	20.00
ATOM	1586	С	TYR	Α	992	74.389	71.784	22.118	1.00	20.00
ATOM	1587	0	TYR			75.036	71.437	21.138	1.00	20.00
ATOM	1588	CB	TYR			76.003	72.945	23.687		20.00
ATOM	1589	CG	TYR			75.520	74.227	23.027	1.00	20.00
	-									20.00
ATOM	1590	CD1	TYR			74.579	75.023	23.654		
MOTA	1591	CD2	TYR			75.804	74.487	21.702	1.00	
ATOM	1592	CE1	TYR			73.939	75.989	22.987	1.00	20.00
ATOM	1593	CE2	TYR	A	992	75.160	75.453	21.044	1.00	20.00
ATOM	1594.	CZ	TYR	<u> </u>	992	74.218	76.200	21.690	1.00	20.00
ATOM	1595	рн	TYR	Ą	992	73.552	77.196	21.023	1.00	20.00
ATOM	1598	N	VAL	A	993	73.131	72.161	22.020	1.00	20.00
ATOM	1599	CA	VAL			72.482	72.226	20.712		20.00
ATOM	1600	C	VAL			71.311	73.168	21.008		20.00
			VAL			70.748		22.101		20.00
ATOM	1601	0					73.116			
ATOM	1602	CB	VAL			72.102	70.746	20.159		20.00
ATOM	1603		VAL			71.570	69.843	21.226		20.00
MOTA	1604	CG2	$_{ m LAV}$	Ą	993	71.121	70.843	19.076		20.00
MOTA	1606	N	LYS	Α	994	70.990	74.076	20.082		20.00
ATOM	1607	CA	LYS	Ą	994	69.917	75.099	20.335	1.00	20.00
ATOM	1608	С	LYS			69.171	75.616	19.093	1.00	20.00
ATOM	1609	0	LYS			69.784	76.097	18.105		20.00
ATOM	1610	CB	LYS			70.508	76.336	21.083		20.00
							77.422	21.498		20.00
ATOM	1611	CG	LYS			69.513				
ATOM	1612	CD	LYS	A	994	69.827	78.812	20.847	1.00	20.00

ATOM	1613	CE	LYS	A.	994	69.627	80.017	21.856	1.00	20.00
ATOM	1614	NΣ	LYS	Α	994	70.649	81.165	21.795	1.00	20.00
MCTA	1619	N	LYS	Δ	995	67.841	75.573	19.202	1.00	
ATOM	1620	CA			995	66.914		18.132	1.00	
							75.962			
ATOM	1621	С	LYS		995	65.884	74.827	18.184	1.00	
ATOM	1622	0	LYS			65.303	74.470	17.139	1.00	20.00
ATOM	1623	CB	LYS	A	995	67.633	75.996	16.736	1.00	20.00
ATOM	1624	OXT	LYS	A	995	65.718	74.295	19.306	1.00	20.00
MOTA	1626	N	PRO	A	001	59.536	69.751	22.343	1.00	20.00
ATOM	1627	CA	PRO	Α	001	60.339	69.285	23.473	1.00	20.00
ATOM	1628	С	PRO	Δ	001	60.137	70.032	24.772	1.00	
ATOM	1629	Ō			001.	60.361	69.470	25.821	1.00	
ATOM	1630	CB			001			23.049	1.00	
						61.803	69.328			
ATOM	1631	CG	PRO			61.735	69.311	21.525		20.00
ATOM	1632	CD	PRO			60.238	69.446	21.080		20.00
ATOM	1635	N	VAL	Α	002	59.712	71.287	24.728	1.00	20.00
MOTA	1636	CA	VAL	A	002	59.503	72.082	25.958	1.00	20.00
ATOM	1637	C	LAV	A.	002	58.748	71.338	27.019	1.00	20.00
ATOM	1638	0	VAL	A	002	58.868	71.595	28.206	1.00	20.00
ATOM	1639	CB	VAL			58.690	73.333	25.706		20.00
ATOM	1640	CG1	VAL			58.862	74.285	26.868	1.00	
ATOM	1641	CG2	VAL			59.105	73.960	24.419	1.00	
MOTA	1643	N	ARG			57.939	70.406	26.586		20.00
ATOM	1644	CA	ARG			57.158	69.637	27.519		20.00
ATOM	1645	C	ARG	A	003	57.966	68.497	28.085	1.00	20.00
ATOM	1646	0	ARG	Α	003	57.686	68.013	29.163	1.00	20.00
ATOM	1647	CB	ARG	Α	003	55.943	69.145	26.797	1.00	20.00
ATOM	1648	CG	ARG	Α	003	55.600	70.041	25.655	1.00	20.00
ATOM	1649	CD	ARG			54.176	69.825	25.386	1.00	
ATOM	1650	NE	ARG			53.404	70.556	26.347	1.00	
			ARG							20.00
ATOM	1651	CZ				52.340	71.236	25.991		
MOTA	1652	NHl				52.002	71.218	24.710	1.00	20.00
ATOM	1653	NH2	ARG	A	003	51.653	71.922	26.889	1.00	
ATOM	1660	N	TRP	A	004	58.998	68.136	27.340	1.00	20.00
MOTA	1661	CA	TRP	A	004	59.930	67.076 ·	27.691	1.00	20.00
MCTA	1662	C	TRP	A	004	61.183	67.519	28.368	1.00	20.00
ATOM	1663	0	TRP	Α	0 0.4	61.602	66.921	29.361	1.00	20.00
ATOM	1664	CB			004	60.293	66.257	26.452	1.00	20.00
ATOM	1665	CG			004	59.275	65.242	26.277	1:00	20.00
		CD1			004	59.163	64.113	27.004	1.00	20.00
ATOM	1666									
ATOM	1667	CD2	TRP				65.395	25.588	1.00	20.00
MOTA	1668	NEI	TRP			57.932	63.567	26.839		20.00
MOTA	1669	ŒZ	TRP	Α	004	57.208	64.336	25.976		20.00
MOTA	1670	CE3	TRP	Α	004	57.518	66.339	24.696	1.00	20.00
ATOM	1671	CZ2	TRP	A	004	55.911	64.185	25.506	1.00	20.00
ATOM	1672	CZ3	TRP	A	004	56.192	66.185	24.224	1.00	20.00
ATOM	1673	CH2	TRP			55.426	65.126	24.632	1.00	20.00
ATOM	1676	N	MET			61.767	68.590	27.874		20.00
						63.025	69.060			20.00
ATOM	1677	CA	MET					28.428		
ATOM	1678	С	MET			63.185	69.238	29.950		20.00
ATOM	1679	0	MET			62.268	69.013	30.733		20.00
ATOM	1680	CB	MET			63.433	70.335	27.699		20.00
ATOM	1681	CG	MET	A	005	64.246	70.052	26.452		20.00
MOTA	1682	SD	MET	A	005	63.856	71.198	25.171	1.00	20.00
ATOM	1683	CE	MET			64.138	72.700	26.081	1.00	20.00
ATOM	1685	N	ALA			64.402	69.581	30.358		20.00
ATOM	1686	CA	ALA			64.714	69.835	31.765		20.00
AT OLI	7000	٠.٨		<i>-</i> -		0 1 · / 1 1	55.033	J,UJ		

ATOM	1687	С	ALA	A	006	65.147	71.295	31.859	1.00	20.00
MOTA	1688	0	ALA	Ą	006	65.854	71.804	30.965	1.00	20.00
MCTA	1689	CB	ALA	A.	006	65.819	68.944	32.215	1.00	20.00
ATOM	1691	N	ILE	Ą	007	64.694	71.961	32.930	1.00	20.00
ATOM	1692	CA	ILE	A	007	64.982	73.368	33.1 <i>6</i> 7	1.00	20.00
ATOM	1693	С	ILE	A	007	66.361	73.633	32.607	1.00	20.00
ATOM	1694	0			007	66.500	74.388	31.663	1.00	20.00
ATOM	1695	CB			007	64.876	73.725	34.674	1.00	20.00
ATOM	1696	CGl	ILE	A	007	65.897	72.943	35.501	1.00	20.00
MOTA	1697	CG2	ILE	Α	007	63.518	73.339	35.193	1.00	20.00
ATOM	1698	CD1			007	66.781	73.773	36.516	1.00	20.00
ATOM	1700	N	GLÜ	A	008	67.361	72.921	33.131	1.00	20.00
ATOM	1701	CA	GLÜ	A.	800	68.768	73.052	32.719	1.00	20.00
ATOM	1702	С	GLU	A	800	68.886	73.301	31.217	1.00	20.00
ATOM	1703	0	GLU	A	008	69.401	74.319	30.811	1.00	20.00
ATOM	1704	CB	GLU	Α	800	69.565	71.799	33.174	1.00	20.00
ATOM	1705	CG	GLU	A	800	69.424	70.540	32.296	1.00	20.00
ATOM	1706	CD	GLU			69.290	69.267	33.131	1.00	20.00
ATOM	1707	OEl	GLU	A	800	69.605	69.369	34.325	1.00	20.00
MOTA	1708	OE2	GLU			68.867	68.187	32.613	1.00	20.00
MOTA	1710	N	SER	A	009	68.388	72.388	30.384	1.00	20.00
ATOM	1711	CA	SER	A	009	68.456	72.641	28.947	1.00	20.00
ATOM	1712	C	SER	A	009	67.387	73.630	28.440	1.00	20.00
ATOM	1713	0	SER	A	009	67.491	74.109	27.327	1.00	20.00
ATOM	1714	CB	SER	Α	009	68.424	71.329	28.129	1.00	20.00
ATOM	1715	OG	SER	A	009	67.325	70.511	28.426	1.00	20.00
ATOM	1718	N	LEU	A	010	66.361	73.915	29.246	1.00	20.00
ATOM	1719	CA	LEU	A	010	65.328	74.909	28.869	1.00	20.00
ATOM	1720	С	LEU	Α	010	66.043	76.294	28.797	1.00	20.00
MOTA	1721	0	LEU	A	010	65.881	77,047	27.816	1.00	20.00
ATOM	1722	CB	LEU	A	010	64.213	74.966	29.928	1.00	20.00
ATOM	1723	CG	LEU	A	010	62.880	74.229	29.760	1.00	20.00
ATOM	1724	CD1	LEU	A	010	61.863	75.034	30.483	1.00	20.00
ATOM	1725	CD2	LEU	А	010	62.459	74.066	28.330	1.00	20.00
MOTA	1727	N	ASN	Α	011	66.825	76.577	29.854	1.00	20.00
MOTA	1728	CA	ASN	A	011	67.663	77.762	30.020	1.00	20.00
ATOM	1729	C	ASN	A	011	68.799	77.692	28.983	1.00	20.00
MOTA	1730	0	ASN	Α	011	68.799	78.348	27.914	1.00	20.00
ATOM	1731	CB	ASN	A	011	68.303	77.725	31.386	1.00	20.00
MOTA	1732	CG	ASN	A	011	67.325	77.469	32.474	1.00	20.00
MOTA	1733	OD1	ASN	A	011	66.150	77.759	32.316	1.00	20.00
ATOM	1734		ASN			67.791	76.929	33.607	1.00	20.00
MOTA	1738	Ν'	TYR	A	012	69.774	76.859	29.325	1.00	20.00
MOTA	1739	CA	TYR	A	012	70.918	76.611	28.481	1.00	20.00
ATOM	1740	С	TYR			70.488	75.487	27.544	1.00	20.00
MCTA	1741	0	TYR	A	012	69.908	74.499	28.020	1.00	20.00
MOTA	1742	CB	TYR	A	012	72.047	76.179	29.370	1.00	20.00
ATOM	1743	CG	TYR			71.787	76.590	30.784	1.00	20.00
ATOM	1744	CD1	TYR			71.854	75.680	31.809		20.00
ATOM	1745		TYR			71.474	77.879	31.097	1.00	20.00
ATOM	1746	CEl	TYR			71.619	76.047	33.097		20.00
ATOM	1747		TYR			71.246	78.242	32.357		20.00
ATOM	1748	CZ	TYR			71.321	77.328	33.361		20.00
ATOM	1749	OH	TYR			71.143	77.709	34.668		20.00
MOTA	1752	N	SER			70.711	75.615	26.235		20.00
ATOM	1753	CA	SER			70.309	74.544	25.335		20.00
ATOM	1754	C	SER			71.274	73.385	25.467		20.00
		_						,		

ATOM	1755	0	SER	A	013	71.810	72.898	24.464	1.00	20.00
ATOM	1756	CB	SER	A	013	70.291	75.025	23.898	1.00	20.00
ATOM	1757	OG	SER	A	013	70.122	76.432	23.813	1.00	20.00
ATOM	1760	N	VAL			71.469	72.957	26.713	1.00	20.00
ATOM	1761	CA	VAL			72.378	71.890	27.084	1.00	20.00
ATOM	1762	C	VAL			71.711	70.603	27.571	1.00	20.00
ATOM	1763	0	VAL			70.895	70.613	28.493	1.00	20.00
ATOM	1764	CB	VAL			73.316	72.316	28.230	1.00	20.00
	1765	CG1	VAL			74.335	73.331	27.748	1.00	20.00
ATOM.		CG2	VAL			72.490	72.849	29.394	1.00	20.00
ATOM	1766	N	TYR			72.100	69.472	27.009	1.00	20.00
ATOM	1768		TYR			71.502	68.235	27.446	1.00	20.00
MOTA	1769	CA	TYR			72.543	67.266	28.029	1.00	20.00
ATOM	1770	C				73.619	67.072	27.494	1.00	20.00
ATOM	1771	0	TYR				67.599	26.252	1.00	20.00
MOTA	1772	CB	TYR			70.783		25.477		20.00
ATOM	1773	CG	TYR			69.875	68.533		1.00	20.00
MOTA	1774	CD1	TYR			70.194	68.918	24.179	1.00	20.00
MOTA	1775	CD2	TYR			68.665	68.975	26.022		20.00
MOTA	1776	CE1	TYR			69.334	69.718	23.416	1.00	
MOTA	1777	CE2	TYR	A	015	67.782	69.778	25.286	1.00	20.00
ATOM	1778	CZ	TYR	А	015	68.116	70.150	23.968	1.00	20.00
ATOM	1779	OH	TYR		015	67.249	70.935	23.209	1.00	20.00
ATOM	1782	N	\mathtt{THR}	Α	016	72.253	66.679	29.161	1.00	20.00
ATOM	1783	CA	THR	A	016	73.172	65.695	29.673	1.00	20.00
ATOM	1784	С	THR	A	016	72.464	64.347	29.834	1.00	20.00
ATOM	1785	0	THR	Α	016	71.573	63.995	29.086	1.00	20.00
ATOM	1786	CB	THR	A	016	73.717	66.097	31.000	1.00	20.00
ATOM	1787	OG1	THR	A	016	72.692	66.000	31.993	1.00	20.00
ATOM	1788	CG2	THR			74.253	67.455	30.909	1.00	20.00
ATOM	1791	N	THR			72.891	63.584	30.818	1.00	20.00
ATOM	1792	CA			017	72.235	62.339	31.031	1.00	20.00
	1793	C	THR			71.021	62.785	31.819	1.00	20.00
ATOM	1794	0			017	69.889	62.570	31.364	1.00	20.00
ATOM		CB			017	73.112	61.308	31.826	1.00	20.00
ATOM	1795				017	73.546	60.286	30.931	1.00	20.00
MOTA	1796	OG1			017	72.315	60.660	32.954	1.00	20.00
ATOM	1797	CG2			018	71.265	63.454	32.958	1.00	20.00
ATOM	1800	N				70.189	63.934	33.825	1.00	20.00
ATOM	1801	CA			018	69.025	64.568	33.108	1.00	20.00
ATOM	1802	C			018		64.530	33.636	1.00	20.00
ATOM	1803	0			018	67.937 70.696	64.904	34.868		20.00
ATOM	1804	CB			018		64.331	35.676		20.00
ATOM	1805	,ĊG			018	71.785		36.887		20.00
MOTA	1806	ODl	ASN			71.761		35.013		20.00
ATOM	1807	ND2			018	72.767	63.734			20.00
MOTA	1811	N			019	69.247	65.184	31.948		20.00
MOTA	1812	CA			019	68.132	65.740	31.199		20.00
MOTA	1813	C			019	67.362	64.513	30.704		20.00
MOTA	1814	0			.019	66.145	64.414	30.875		
ATOM	1815	CB			019	68.613	66.544	30.006		20.00
MOTA	1816	OG	SER	A	019	69.999	66.633	30.051		20.00
ATOM	1819	И	ASP	Ą	020	68.110	63.583	30.104		20.00
ATOM	1820	CA			020	67.596	62.309	29.604		20.00
ATOM	1821	C			020	66.784	61.679	30.741		20.00
MOTA	1822	0			020	65.672	61.194	30.543		20.00
ATOM	1823	CB			020	68.767	61.388	29.217		20.00
	1824	CG			020	69.154		27.729	1.00	20.00
ATOM					020	68.649	62.363	26.979		2000
ATOM	1825	נעט	. mol	~						

ATOM	1826	OD2	ASP	<u>r</u>	020	69.992	60.673	27.292	1.00	20.00
ATOM	1828	N	VAL	A.	021	67.294	61.728	31.955		20.00
MOTA	1829	CA	VAI	A	021	66.522	61.083	32.960		20.00
ATOM	1830	С	VAL	A	021,	65.300	61.826	33.326	1.00	20.00
ATOM	1831	0	VAL	A	021	64.372	61.212	33.879	1.00	20.00
ATOM	1832	CB	VAL			67.316	60.766	34.204	1.00	20.00
ATOM	1833	CG1	VAT			66.471	60.862	35.417	1.00	20.00
	1834	CG2	VAL			67.803	59.362	34.110	1.00	20.00
ATOM		N	TRP		022	65.290	63.135	33.035		20.00
MOTA	1836	CA			022	64.157	64.016	33.326		20:00
ATOM	1837				022	63.051	63.699	32.319		20.00
ATOM	1838	C						32.629		20.00
ATOM	1839	0	TRP			61.948	63.268			20.00
MOTA	1840	CB	TRP			64.596	65.468	33.160		20.00
ATOM	1841	CG	TRP			63.439	66.467	33.254		
MOTA	1842	CD1			022	62.437	66.648	32.337		20.00
ATOM	1843	CD2	TRP			63.161	67.366	34.322		20.00
ATOM	1844	NE1			022	61.576	67.578	32.767		20.00
MOTA	1845	CE2	TRP	A	022	61.985	68.049	33.984		20.00
ATOM	1846	CE3	TRP	A	022	63.791	67.662	35.529		20.00
ATOM	1847	CZ2	TRP	Α	022	61.413	69.029	34.815		20.00
ATOM	1848	CZ3	TRP	A	022	63.237	68.626	36.355	1.00	20.00
ATOM	1849	CH2			022	62.052	69.303	35.992	1.00	20.00
ATOM	1852	N	SER			63.407	63.969	31.084	1.00	20.00
ATOM	1853	CA	SER			62.591	63.721	29.928	1.00	20.00
		C	SER			61.978	62.316	30.007		20.00
ATOM	1854	0	SER			60.863	62.092	29.540		20.00
ATOM	1855		SER			63.497	63.860	28.709		20.00
ATOM	1856	CB					63.795	27.527		20.00
MOTA	1857	OG	SER			62.747		30.617		20.00
MOTA	1860	N	TYR			62.731	61.390			20.00
MOTA	1861	CA	TYR			62.361	59.980	30.801		20.00
ATOM	1862	С	TYR			60.980	59.761	31.454		20.00
MOTA	1863	0	TYR			60.137	58.991	30.967		
ATOM	1864	CB	TYR			63.436	59.307	31.627		20.00
ATOM	1865	CG	TYR	Α	024	63.129	57.866	31.859		20.00
ATOM	1866	CD1	TYR	Ą	024	63.276	56.948	30.849		20.00
ATOM	1867	CD2	TYR	Α	024	62.479	57.473	33.019		20.00
ATOM	1868	CEl	TYR	A	024	62.766	55.706	30.979		20.00
ATOM	1869	CE2	TYR	A	024	61.962	56.236	33.157	1.00	20.00
ATOM	1870	CZ	TYR	A	024	62.099	55.365	32.135	1.00	20.00
ATOM	1871	OH	TYR	A	024	61.517	54.160	32.263	1.00	20.00
ATOM	1874	N	GLY			60.803	60.436	32.583	1.00	20.00
ATOM	1875	CA	GLY			59.558	60.427	33.311	1.00	20.00
ATOM	1876	C	GLY			58.477	61.257	32.614	1.00	20.00
		0	GLY			57.365	61.290	33.058	1.00	20.00
ATOM	1877	N	VAL			58.747	61.974	31.544		20.00
MOTA	1879		VAL			57.596	62.614	30.980		20.00
ATOM	1880	CA					61.313	30.484		20.00
ATOM	1881	C	VAL			57.057		30.923		20.00
MOTA	1882	0	VAL			56.006	60.906			20.00
ATOM	1883	CB			026	57.889	63.625	29.823		20.00
ATOM	1884		LAV			56.583	64.258	29.328		
MOTA	1885	CG2	VAL			58.746	64.717	30.327		20.00
ATOM	1887	N			027	57.843	60.639	29.632		20.00
MOTA	1888	CA	LEU	Α	027	57.535	59.273	29.064		20.00
ATOM	1889	C	LEU	A	027	56.767	58.278	30.014		20.00
ATOM	1890	0	LEU	Α	027	55.745	57.736	29.702		20.00
ATOM	1891	CB			027	58.852	58.615	28.663		20.00
ATOM	1892	CG			027	58.843	57.551	27.579	1.00	20.00
			_							

				-	0.5.5	-0 000	FC 171	26.367	1.00	20.00
ATOM	1893	CDl	LEU			58.238	58.171			20.00
MOTA	1894	CDZ	LEU			60.239	57.031	27.287		_
ATOM	1896	N	LEU			57.333	58.031	31.171	1.00	20.00
MOTA	1897	CA	LEU			56.723	57.188	32.128	1.00	20.00
ATOM	1898	С	LEU	A	028	55.330	57.638	32.349	1.00	20.00
ATOM	1899	0	LEU	<u> Z.</u>	028	54.428	56.817	32.517	1.00	20.00
ATOM	1900	CB	LEU	Α	028	57.455	57.281	33.427	1.00	20.00
ATOM.	1901	CG	LEU			56.778	56.395	34.430	1.00	20.00
ATOM	1902	CD1			028	56.765	55.005	33.926	1.00	20.00
	1903				028	57.488	56.475	35.740	1.00	20.00
ATOM					029	55.148	58.961	32.409	1.00	20.00
ATOM	1905	N					59.578	32.612	1.00	20.00
ATOM	1906	CA			029	53.820	· -	31.295	1.00	20.00
MOTA	1907	С	TRP		029	53.028	59.464			20.00
ATOM	1908	0			029	51.869	59.142	31.301	1.00	
MOTA	1909	CB			029	54.010	61.029	.33.088	1.00	20.00
MOTA	1910	CG	TRP	A	029	52.746	61.841	33.293	1.00	20.00
ATOM	1911	CD1	TRP	Α	029	52.207	62.275	34.483	1.00	20.00
ATOM	1912	CD2	TRP	A	029	51.934	62.381	32.271	1.00	20.00
ATOM	1913	NEl	TRP	A	029	51.113	63.057	34.241	1.00	20.00
ATOM	1914	CĖ2		A	029	50.925	63.138	32.892	1.00	20.00
ATOM	1915	CE3	TRP		029	51.962	62.298	30.886	1.00	20.00
		CZ2			029	49.975	63.798	32.185		20.00
ATOM	1916						62.951	30.186		20.00
MOTA	1917	CZ3			029	51.018		30.830		20.00
MOTA	1918	CH2	TRP			50.030	63.701			
MOTA	1921	N	GLU			53.684	59.695	30.166	1.00	20.00
ATOM	1922	CA	GLU			53.067	59.537	28.861		20.00
MOTA	1923	C	GLU	А	030	52.592	58.103	28.823		20.00
MOTA	1924	0	GLU	A	030	51.775	57.758	27.982	1.00	20.00
MOTA	1925	CB	GLU	A	030	54.099	59.616	27.737	1.00	20.00
ATOM	1926	CG	GLU	A	030	54.380	60.917	27.071	1.00	20.00
ATOM	1927	CD	GLU	Α	030	55.162	60.706	25.771	1.00	20.00
ATOM	1928	OE1	GLU			55.818	59.668	25.665	1.00	20.00
	1929	OE2	GLU			55.144	61.535	24.838	1.00	20.00
ATOM			ILE			53.124	57.260	29.711	1.00	20.00
ATOM	1931	N					55.820	29.680		20.00
ATOM	1932	CA	ILE			52.839			1.00	20.00
MOTA	1933	C	ILE			51.803	55.305	30.628		20.00
ATOM	1934	0			031	50.931	54.585	30.219	1.00	
ATOM	1935	· CB	ILE			54.192	54.974	29.833	1.00	20.00
ATOM	1936	CG1	ILE	Α	031	54.803	54.722	28.459	1.00	20.00
ATOM	1937	CG2	ILE	A	031	53.964	53.607	30.495	1.00	20.00
ATOM	1938	,CD1	ILE	Α	031	56.144	54.104	28.543		20.00
ATOM	1940		VAL	A	032	51.893	55.672	31.892	1.00	20.00
ATOM	1941	CA	VAL			50.918	55.223	32.895	1.00	20.00
ATOM	1942	C	VAL			49.618	55.914	32.620	1.00	20.00
		0	VAL			48.706	55.811	33.412		20.00
ATOM	1943					51.306	55.664	34.327		20.00
ATOM	1944	CB	VAL			50.610	56.932	34.667		20.00
ATOM	1945		VAL					35.333		20.00
ATOM	1946	CG2			032	50.962	54.602			
ATOM	1948	N				49.552	56.605	31.493		20.00
ATOM	1949	CA			033	48.413	57.405	31.146		20.00
MOTA	1950	C	SER	A	033	47.776	57.027	29.850		20.00
ATOM	1951	0	SER	A	033	46.634	57.396	29.585		20.00
ATOM	1952	CB			033	48.828	58.889	31.116	1.00	20.00
ATOM	1953	OG			033	49.492	59.239	29.905	1.00	20.00
		И			034	48.513	56.329	29.019	1.00	20.00
ATOM	1956				034	47.975	55.904	27.758		20.00
ATOM	1957	CA				47.939	57.037	26.801		20.00
MOTA	1958	Ċ	الطيد	A	034	*******	٠,٠٥٥,			

MCTA	1959	0	LEU	A	034	46.917	57.357	26.219	1.00 20.00
ATOM	1960	CB	LEU	Δ	034	46.580	55.366	27.923	1.00 20.00
ATOM	1961	CG	LEU			46.208	54.020	28,500	1.00 20.00
									1.00 20.00
ATOM	1962	CD1	TEU			46.074	54.041	29.977	
ATOM	1963	CD2	LEU	Α	034	44.892	53.709	27.900	1.00 20.00
ATOM	1965	N	\mathtt{GLY}	A	035	49.091	57.663	26.658	1.00 20.00
	1966	CA	GLY			49.248	58.759	25.715	1.00 20.00
MOTA									1.00 20.00
ATOM	1967	C	GLY			48.581	60.112	25.920	
ATOM	1968	0	GLY	Α	035	48.145	60.734	24.947	1.00 20.00
MOTA	1970	N	GLY	Α	036	48.511	60.580	27.156	1.00 20.00
	1971	CA	GLY			47.902	61.874	27.364	1.00 20.00
MCTA							62.925	27.245	1.00 20.00
MOTA	1972	C	GLY			48.981			
ATOM	1973	0	GLY	A	036	50.097	62.697	27.759	1.00 20.00
ATOM	1975	N	THR	A	037	48.692	64.027	26.543	1.00 20.00
ATOM	1976	CA	THR	Α	037	49.656	65.126	26.400	1.00 20.00
	1977 -		THR			50.114	65.691	27.757	1.00 20.00
ATOM									1.00 20.00
ATOM	1978	0	THR			49.289	65.966		
ATOM	1979	CB	THR	A	037	49.038	66.308	25.664	1.00 20.00
ATOM	1980	OG1	THR	A	037	49.457	66.326	24.301	1.00 20.00
ATOM	1981	CG2	THR			49.447	67.597	26.327	1.00 20.00
							65.866	27.966	1.00 20.00
ATOM	1984	N	PRO			51.445			
MOTA	1985	CA	PRO	Α	038	51.925	66.416	29.237	1.00 20.00
MOTA	1986	C	PRO	A	038	51.674	67.919	29.265	1.00 20.00
ATOM	1987	0	PRO	Α	038	51.812	68.570	28.264	1.00 20.00
		CB	PRO			53.401	66.083	29.223	1.00 20.00
ATOM	1988								1.00 20.00
ATOM	1989	CG	PRO			53.573	65.116	28.170	
ATOM	1990	CD	PRO	Α	038	52.592	65.497	27.134	1.00 20.00
ATOM	1991	N	TYR	Α	039	51.296	68.471	30.407	1.00 20.00
MOTA	1992	CA	TYR	Δ	039	51.040	69.900	30.494	1.00 20.00
			TYR			49.928	70.255	29.514	1.00 20.00
ATOM	1993	C							1.00 20.00
ATOM	1994	0	TYR	A	039	50.174	71.011	28.551	
MOTA	1995	CB	TYR	Α	039	52.317	70.678	30.156	1.00 20.00
ATOM	1996	CG	TYR	Α	039	53.492	70.254	31.016	1.00 20.00
	1997	CD1	TYR			54.593	69.571	30.470	1.00 20.00
MOTA								32.381	1.00 20.00
ATOM	1998	CD2	TYR			53.456	70.437		
ATOM	1999	CE1	TYR	Ą	039	55.586	69.088	31.288	1.00 20.00
ATOM	2000	CE2	TYR	A	039	54.438	69.966	33.188	1.00 20.00
ATOM	2001	CZ	TYR			55.489	69.290	32.656	1.00 20.00
			TYR			56.405	68.759	33.532	1.00 20.00
ATOM	2002	OH							1.00 20.00
ATOM	2005	N	CYS	A	040	48.713	69.706	29.757	
ATOM	2006	·CA	CYS	Α	040	47.536	69.943	28.893	1.00 20.00
ATOM	2007	'C	CYS	A	040	46.861	71.241	29.251	1.00 20.00
	2008	Ō	CYS			46.426	71.456	30.371	1.00 20.00
MOTA								28.952	1.00 20.00
ATOM	2009	CB	CYS			46.518	68.779		
ATOM	2010	SG	CYS	Α	040	45.587	68.439	27.332	1.00 20.00
ATOM	2012	N	GLY	Α	041	46.773	72.105	28.261	1.00 20.00
ATOM	2013	CA	GLY			46.197	73.417	28.496	1.00 20.00
		C	GLY			47.251	74.257	29.222	1.00 20.00
ATOM	2014							30.241	1.00 20.00
MOTA	2015	0	\mathtt{GLY}			46.977	74.928		
ATOM	2017	N	MET	Α	042	48.480	74.184	28.727	1.00 20.00
ATOM	2018	CA	MET	A	042	49.542	74.920	29.347	
	2019	С	MET			50.391	75.508	28.241	1.00 20.00
ATOM						50.540	74.944	27.173	1.00 20.00
ATOM	2020	0	MET						
MOTA	2021	CB	MET			50.321	73.990	30.253	1.00 20.00
ATOM	2022	CG	MET	A	042	50.038	74.150	31.721	1.00 20.00
ATOM	2023	SD			042	51.637	74.393	32.551	1.00 20.00
		CE			042	51.370		34.142	
MOTA	2024	CE	1.11. T	A	U#2	51.570	, 5.004		
						FIG. 4	CC.	. ~	
								. '	
		•						•	

ATOM	2026	N	THR	, A	043	50.915	76.686	28.463	1.00	20.00
ATOM	2027	CA	THP	A	043	51.699	77.320	27.418		20.00
ATOM	2028	C	THR	Ą	043	53.137	77.204	27.856	1.00	20.00
ATOM	2029	0	THR	A	043	53.479	77.409	29.047	1.00	20.00
ATOM	2030	CB	THR	A	043	51.356	78.827	27.279	1.00	20.00
ATOM	2031	OG1			043	51.534	79.465	28.565	1.00	20.00
ATOM	2032	CG2	THR	A	043	49.905	79.033	26.760	1.00	20.00
MOTA	2035	N	CYS	A	044	53.977	76.862	26.885	1.00	20.00
ATOM	2036	CA	CYS	Ą	044	55.388	76.714	27.139	1.00	20.00
MOTA	2037	С	CYS	A	044	55.681	77.866	28.075	1.00	20.00
MOTA	2038	0	CYS	A	044	55.836	77.638	29.269	1.00	20.00
MOTA	2039	CB	CYS	A	044	56.128	76.779	25.814	1.00	20.00
ATOM	2040	SG	CYS	A	044	55.373	75.549	24.616	1.00	20.00
MOTA	2042	N	ALA	A	045	55.664	79.092	27.554	1.00	20.00
ATOM	2043	CA	ALA	Ą	045	55.893	80.306	28.342	1.00	20.00
ATOM	2044	C			045	55.536	80.155	29.809	1.00	20.00
ATOM	2045	0	ALA	Ą	045	56.216	80.636	30.700	1.00	20.00
ATOM	2046	CB	ALA	Α	045	55.082	81.416	27.760	1.00	20.00
ATOM	2048	N	GLU	A	046	54.429	79.482	30.050	1.00	20.00
ATOM	2049	CA	GLU			53.961	79.269	31.390	1.00	20.00
ATOM	2050	C	GLU	A	046	54.902	78.299	32.100	1.00	20.00
ATOM	2051	0 ,	GLU	A	046	55.309	78.558	33.243	1.00	20.00
ATOM	2052	CB	GLU	A	046	52.556	78.738	31.281	1.00	20.00
MOTA	2053	CG	GLU	A	046	51.601	79.002	32.429	1.00	20.00
MOTA	2054	CD	GLU			50.437	78.036	32.341	1.00	20.00
ATOM	2055	OEl				50.182	77.380	33.378	1.00	20.00
MOTA	2056	OE2	GLU			49.814	77.940	31.222	1.00	20.00
MOTA	2058	N	LEU	A	047	55.251	77.192	31.437	1.00	20.00
MOTA	2059	CA	LEU	A	047	56.203	76.207	32.001	1.00	20.00
ATOM	2060	C	LEU	A	047	57.470	76.893	32.593	1.00	20.00
ATOM	2061	0	LEU			57.712	76.853	33.805	1.00	20.00
ATOM	2062	CB	LEU			56.639	75.203	30.914	1.00	20.00
ATOM	2063	CG	LEU	A	047	55.895	73.858	30.885	1.00	20.00
ATOM	2064	CD1	LEU	A	047	56.520	72.889	29.922	1.00	20.00
ATOM	2065	CD2	LEU			55.884	73.280	32.256	1.00	20.00
ATOM	2067	N	TYR			58.254	77.503	31.694	1.00	20.00
ATOM	2068	CA	TYR			59.483	78.267	31.974	1.00	20.00
ATOM	2069	С	TYR			59.499	78.978	33.311	1.00	20.00
ATOM	2070	0	TYR			60.325	78.669	34.188	1.00	20.00
ATOM	2071	CB	TYR			59.684	79.343	30.919		20.00
ATOM	2072	CG	ŢYR	A	048	60.217	78.874	29.611	1.00	20.00
MOTA	2073		TYR			59.370	78.692	28.518	1.00	20.00
ATOM	2074		TYR			61.570	78.629	29.459	1.00	20.00
ATOM	2075	CEl	TYR	A	048	59.868	78.263	27.278	1.00	20.00
MOTA	2076		TYR	A	048	62.094	78.206	28.248	1.00	20.00
MOTA	2077	CZ	TYR			61.250	78.013	27.141	1.00	20.00
ATOM	2078	OH	TYR			61.799	77.541	25.930	1.00	20.00
ATOM	2081	N	GLU			58.601	79.954	33.446	1.00	20.00
MOTA	2082	CA	GLU			58.527	80.725	34.680	1.00	20.00
ATOM	2083	С	GLU			58.074	79.756	35.720		20.00
ATOM	2084	0	GLU			58.417	79.886	36.903		20.00
ATOM	2085	CB	GLU			57.485	81.840	34.592		20.00
ATOM	2086	CG	GLU			57.233	82.519	35.947	1.00	20.00
ATOM	2087	CD	GLU			55.761	82.820	36.314	1.00	20.00
ATOM	2088		GLU			54.860	82.700	35.453		20.00
ATOM	2089		GLU			55.540	83.185	37.497		20.00
MOTA	2091	N	LYS	A	050	57.277	78.791	35.243	1.00	20.00

.. •

								1.00 20.00
ATOM	2092	CA	LYS A		56.683	77.749	36.092	
ATOM	2093	C	LYS A	050	57.625	76.655	36.652	1.00 20.00
MCTA	2094	0	LYS A	050	58.038	76.747	37.789	1.00 20.00
MOTA	2095	CB	LYS A	050	55.465	77.116	35.362	1.00 20.00
ATOM	2097	N	LEU A		57.965	75.640	35.880	1.00 20.00
	2098	CA	LEU A		58.854	74.592	36.398	1.00 20.00
ATOM	2099	C	LEU A		59.828	75.002	37.553	1.00 20.00
ATOM			LEU A		59.835	74.350	38.608	1.00 20.00
MOTA	2100	0.	LEU A		59.655	73.957	35.239	1.00 20.00
ATOM	2101	CB			58.981	72.988	34.248	1.00 20.00
ATOM	2102	CG	LEU A			72.566	34.798	1.00 20.00
ATOM	2103	CD1	LEU A		57.669	73.609	32.875	1.00 20.00
ATOM	2104	CD2	LEU A		58.796			1.00 20.00
ATOM	2106	N	PRO A		60.673	76.050	37.346	1.00 20.00
ATOM	2107	CA	PRO A		61.652	76.601	38.292	_
ATOM	2108	С	PRO A	052 .	61.323	76.418	39.750	
ATOM	2109	0	PRO A	052	61.675	75.396	40.337	1.00 20.00
MOTA	2110	CB	PRO A	052	61.724	78.053	37.895	1.00 20.00
ATOM	2111	CG	PRO A		61.556	78.008	36.389	1.00 20.00
	2112	CD	PRO A		60.771	76.762	36.051	1.00 20.00
ATOM			GLN A		60.706	77.399	40.394	1.00 20.00
ATOM	2113	N	GLN A		60.319	77.126	41.783	1.00 20.00
ATOM	2114	CA				76.531	41.498	1.00 20.00
MOTA	2115	C	GLN A		58.915		42.386	1.00 20.00
ATOM	2116	0	GLN A		58.116	76.198		1.00 20.00
ATOM	2117	CB	GLN A	053	60.274	78.414	42.664	
ATOM	2119	N	GLY A		58.649	76.413	40.208	
ATOM	2120	CA	GLY A	054	57.454	75.745	39.784	1.00 20.00
ATOM	2121	С	GLY A	054	57.520	74.261	40.190	1.00 20.00
ATOM	2122	0	GLY A	054	58.564	73.730	40.654	1.00 20.00
ATOM	2124	N	TYR A		56.363	73.629	40.002	1.00 20.00
	2125	CA	TYR A		56.081	72.268	40.370	1.00 20.00
ATOM		C	TYR A		56.216	71.476	39.095	1.00 20.00
MOTA	2126		TYR A		56.762	72.008	38.153	1.00 20.00
MOTA	2127	0			54.647	72.256	40.889	1.00 20.00
MOTA	2128	CB	TYR A			72.330	39.754	1.00 20.00
ATOM	2129	CG	TYR A		53.604	71.309	39.604	1.00 20.00
ATOM	2130	CD1			52.634		38.749	1.00 20.00
MOTA	2131	CD2	TYR A		53.685	73.316		1.00 20.00
ATOM -	2132	CEl	TYR A	055	51.805	71.283	38.478	1.00 20.00
ATOM	2133	CE2			52.863	73.280	37.642	
ATOM	2134	CZ	TYR A	055	51.928	72.264	37.501	1.00 20.00
ATOM	2135	OH	TYR A	055	51.114	72.171	36.375	1.00 20.00
MOTA	2138	N	ARG A	056	55.738	70.232	39.048	1.00 20.00
ATOM	2139.		ARG A		55.828	69.422	37.821	1.00 20.00
		C	ARG A		54.504		37.494	1.00 20.00
ATOM	2140		ARG A		53.471	69.052	38.098	1.00 20.00
ATOM	2141	O.	ARG A		56.926	68.379	37.948	1.00 20.00
MOTA	2142	CB			57.175	67.962	39.357	1.00 20.00
ATOM	2143	CG	ARG A			68.505	39.833	1.00 20.00
MOTA	2144	CD	ARG A		58.538		38.760	1.00 20.00
MCTA	2145	NE	ARG A		59.319			1.00 20.00
MOTA	2146	CZ	ARG A	. 056	60.182	70.114	38.982	
ATOM	2147	NH:	L ARG A	056	60.367		40.201	1.00 20.00
ATOM	2148	NH	_		60.839	70.655	37.996	1.00 20.00
ATOM	2155	N	LEU A		54.531	67.705	36.565	1.00 20.00
	2156		LEU A		53.312		36.203	1.00 20.00
ATOM			LEU A		52.643			1.00 20.00
MOTA	2157	C			53.221			
MOTA	2158	0	LEU A		53.519			•
MOTA	2159		LEU A					
MOTA	2160	CG	LEU P	7 05/	53.850	90.304	55.052	

				A = 7	54.504	65.224	32.920	1.00	20.00
MCTA	2161		LEU A		52.669	66.811	32.830		20.00
ATOM	2162		LEU A				37.390		20.00
ATOM	2164		GLU A		51.357	66.515			20.00
ATOM	2165		GLU A		50.325	66.093	38.333		20.00
ATOM	2166	С	GLU A		50.078	64.562	38.297		
ATOM	2167	0	GLU A		50.013	63.978	37.216	1.00	
ATOM	2168	CB	GLU A	058	49.091	66.872	37.885		20.00
ATOM	2169	CG	GLU A	058	48.798	66.637	36.334	1.00	
ATOM	2170	CD	GLU A	058	49.565	67.548	35.341	1.00	
ATOM	2171	OE1	GLU A		50.058	68.604	35.777		20.00
		. OE2	GLU A		49.657	67.227	34.128	1.00	20.00
ATOM	2174	N	LYS A		49.906	63.915	39.448	1.00	20.00
ATOM		CA	LYS A		49.693	62.458	39.420	1.00	20.00
ATOM	2175	CA		059	48.502	61.929	38.655	1.00	20.00
ATOM	2176			059	47.366	62.213	38.971	1.00	20.00
MOTA	2177	0			49.607	61.825	40.814		20.00
ATOM	2178	CB	LYS A		49.383	60.289	40.717		20.00
MOTA	2179	CG		059			42.056		20.00
MOTA	2180	CD		059	49.519	59.551	42.030		20.00
MOTA	2181	CE		059	48.286	59.754	-		2.0.00
MOTA	2182	NZ	LYS A		47.400	58.540	43.161		
ATOM	2187	N	PRO A	060	48.753	61.095	37.662		20.00
ATOM	2188	CA	PRO A	060	47.615	60.576	36.931		20.00
ATOM	2189	C	PRO A	060	46.646	59.848	37.873	_	20.00
ATOM	2190	0	PRO A		47.048	59.234	38.860		20.00
ATOM	2191	CB	PRO A		48.260	59.643	35.923		20.00
MOTA	2192	CG	PRO A		49.662	60.187	35.751		20.00
	2193	CD	PRO A		50.018	60.555	37.147		20.00
MOTA		N	LEU A		45.371	59.984	37.543	1.00	20.00
ATOM	2194		LEU A		44.236	59.426	38.245	1.00	20.00
MOTA	2195	CA	LEU A		44.496	58.098	38.924	1.00	20.00
MOTA	2196	C			44.187	57.890	40.123	1.00	20.00
MOTA	2197	0	LEU A			59.243	37.248		20.00
MOTA	2198	CB	LEU A		43.055	59.507	35.690		20.00
MOTA	2199	CG	LEU A		42.994		35.050		20.00
ATOM	2200	CD1	LEU A		44.393	59.876			20.00
ATOM	2201	CD2	LEU A		42.384	58.237	35.000		20.00
ATOM	2203	N	ASN F		45.075	57.203	38.117		20.00
MOTA	2204	CA	ASN A	062	45.378	55.820	38.502		
MOTA	2205	C	ASN A	062	46.840	55.286	38.537		20.00
MOTA	2206	0	ASN A	062	47.079	54.209	37.999		20.00
ATOM	2207	CB	ASN A		44.591	54.958	37.559	1.00	20.00
	2208	CG	ASN A		44.675	55.478	36.220	1.00	20.00
ATOM	2209	001	ASN A		45.731	55.960	35.816		20.00
ATOM			ASN A		43.590	55.443	35.504		20.00
ATOM	2210		CYS A		47.812	56.005	39.100	1.00	20.00
ATOM	2214	N	CYS 2		49.165	55.418	39.205	1.00	20.00
ATOM	2215	CA	CYS 2		49.155	55.124	40.645		20.00
MOTA	2216	C			48.285	55.550	41.377		20.00
MOTA	2217	0		A 063		56.362	39.046		20.00
MOTA	2218	CB		A 063	50.364		37.453		20.00
ATOM	2219	SG		A 063	50.817	56.807	41.067		20.00
MOTA	2221	N		A 064	50.186	54.449			20.00
ATOM	2222	CA		A 064	50.291	54.106	42.448		20.00
MOTA	2223	C		A 064	51.455	54.945	42.917		
MOTA	2224	0	ASP .	A 064	52.521	54.903	42.319		20.00
MOTA	2225	CB	ASP	A 064	50.558	52.601	42.552		20.00
ATOM	2226			A 064	50.951	52.180			20.00
ATOM	2227		l ASP		50.078				20.00
ATOM	2228		2 ASP		52.131	52.394	44.309	1.00	20.00
PL 1 011	0 ت ت ب	. در		-					

10/1/1

	2220	N	ASP A	065	,	51.259	55.718	43.973	1.00 20.00
ATOM	2230			065		52.332	56.577	44.460	1.00 20.00
ATOM	2231	CA C		065		53.733	56.051	44.341	1.00 20.00
ATOM	2232	0		065		54.642	56.860	44.332	1.00 20.00
ATOM	2233	CB		065		52.062	57.029	45.875	1.00 20.00
ATOM	2234	CG		065		50.937	58.020	45.923	1.00 20.00
ATOM	2235	OD1		065		50.842	58.814	44.958	1.00 20.00
ATOM	2236	OD2		065		50.136	58.013	46.883	1.00 20.00
ATOM	2237	N	GLU A	066		53.918	54.734	44.222	1.00 20.00
ATOM	2239	CA	GLU A	066		55.255	54.179	44.049	1.00 20.00
ATOM	2240 2241	C	GLU A	066		55.670	54.466	42.600	1.00 20.00
MOTA	2242	0	GLU A			56.854	54.554	42.311	1.00 20.00
MOTA	2242	CB		066		55.315	52.656	44.363	1.00 20.00
MOTA	2244	CG	GLU A			54.520	52.182	45.635	1.00 20.00
ATOM	2244	CD		066		54.944	50.804	46.237	1.00 20.00
ATOM	2245	OE1				54.716	50.604	47.469	1.00 20.00
MOTA	2247	OE2	GLU A			55.494	49.937	45.496	1.00 20.00
ATOM	2249	N	VAL A			54.726	54.592	41.671	1.00 20.00
ATOM	2250	CA		067		55.092	54.941	40.293	1.00 20.00
ATOM	2251	C	VAL A			55.224	56.462	40.180	1.00 20.00
ATOM	2252	0	VAL A			56.000	56.986	39.410	1.00 20.00
ATOM	2253	CB.	VAL A			54.055	54.487	39.279	1.00 20.00
MOTA MOTA	2254	CG1				54.600	54.593	37.857	1.00 20.00
ATOM	2255	CG2	VAL A			53.657	53.116	39.597	1.00 20.00
ATOM	2257		TYR A			54.460	57.189	40.948	1.00 20.00
ATOM	2258	CA	TYR A			54.614	58.609	40.861	1.00 20.00
ATOM	2259	C	TYR A			55.973	59.018	41.455	1.00 20.00
ATOM	2260	0	TYR A			56.712	59.819	40.831	1.00 20.00
MOTA	2261	CB	TYR A			53.489	59.313	41.595	1.00 20.00
ATOM	2262	CG	TYR F			53.361	60.752	41.220	1.00 20.00
MOTA	2263	CD1				53.128	61.124	39.920	1.00 20.00
ATOM	2264	CD2				53.490	61.746	42.186	1.00 20.00
ATOM	2265	CEl				53.031	62.478	39.603	1.00 20.00
ATOM	2266	CE2				53.395	63.060	41.887	1.00 20.00
ATOM	2267	CZ	TYR A			53.171	63.435	40.612	1.00 20.00
ATOM	2268	OH	TYR A			53.121	64.768	40.328	1.00 20.00
ATOM	2271	N	ASP A	A 069		56.315	58.503	42.647	1.00 20.00
ATOM	2272	CA		4 069		57.609	58.859	43.214	1.00 20.00
ATOM	2273	С	ASP A	4 069	ŀ	58.773	58.615	42.263	1.00 20.00
ATOM	2274	0	ASP I	A 065)	59.744	59.344	42.299	1.00 20.00
ATOM	2275	¨СВ	ASP I	A 069)	57.969	58.107	44.464	1.00 20.00
ATOM	2276	CG	ASP :	A 069)	59.422	58.423	44.879	1.00 20.00 1.00 20.00
ATOM	2277		L ASP			60.352	57.615	44.540	1.00 20.00
ATOM	2278	OD2	ASP .			59.635	59.510	45.509	1.00 20.00
ATOM	2280	N	LEU .	A 070)	58.720	57.565	41.452	1.00 20.00
ATOM	2281	CA	LEU .	A 070)	59.809		40.528	1.00 20.00
ATOM	2282	С	LEU			59.790		39.558	
ATOM	2283	0		A 070		60.802		39.276	
MOTA	2284	CB		A 070		59.609		39.765	
ATOM	2285	CG		A 07		60.747		38.780	
ATOM	2286	CD		A 07		61.879		39.574	
ATOM	2287			A 07		60.351		37.681	
ATOM	2289	_		A 07		58.597			
ATOM	2290			A 07		58.336			
ATOM	2291			A 07		59.004			
ATOM	2292	_		A 07		59.698			
ATOM	2293		MET	A 07	1	56.818	60.169	38.000	1.00 20.00

N TIOM	2294	CG	MET	Δ	071	56.219	59.904	36.636	1.00 20.00
MOTA					071	54.409	59.761	36.764	100 20.00
MOTA	2295	SD						35.467	1.00 20.00
ATOM	2296	CE			071	53.977	58.683	_	1.00 20.00
MOTA	2298	N	ARG			58.797	61.527	39.803	
ATOM	2299	CA	ARG			59.303	62.762	40.345	1.00 20.00
ATOM	2300	С	ARG	Ą	072	60.739	62.807	40.778	1.00 20.00
MOTA	2301	0	ARG	Α	072	61.312	63.884	40.945	1.00 20.00
MOTA	2302	CB	ARG	Ą	072	58.412	63.145	41.499	1.00 20.00
ATOM	2303	CG	ARG	Ą	072	56.978	63.140	41.074	1.00 20.00
ATOM	2304	CD	ARG	Α	072	56.500	64.539	41.064	1.00 20.00
ATOM	2305	NE	ARG			56.642	65.063	42.415	1.00 20.00
MOTA	2306	CZ	ARG			56.484	66.337	42.720	1.00 20.00
	2307	NHI	ARG			56.181	67.175	41.753	1.00 20.00
ATOM			ARG			56.642	66.771	43.968	1.00 20.00
ATOM	2308	NH2						41.011	1.00 20.00
MOTA	2315	N	GLN			61.325	61.647		
MOTA	2316	CA	GLN			62.717	61.652	41.387	
MOTA	2317	C	GLN			63.481	61.931	40.084	1.00 20.00
MOTA	2318	0	GLN	A	073	64.658	62.267	40.105	1.00 20.00
ATOM	2319	CB	${ t GLN}$	A	073	63.124	60.316	41.973	1.00 20.00
ATOM	2320	CG	GLN	A	073	63.076	60.211	43.490	1.00 20.00
ATOM	2321	CD	GLN	A	073	63.603	58.852	43.962	1.00 20.00
ATOM	2322	OEl	GLN	Α	073	63.853	58.641	45.159	1.00 20.00
ATOM	2323	NE2	GLN			63.792	57.925	43.008	1.00 20.00
	2327	N	CYS			62.819	61.805	38.947	1.00 20.00
MOTA		CA	CYS			63.503	62.093	37.720	1.00 20.00
MOTA	2328					63.403	63.601	37.500	1.00 20.00
ATOM	2329	C	CYS					36.642	1.00 20.00
MOTA	2330	0	CYS			64.073	64.148		1.00 20.00
MOTA	2331	CB			074	62.847	61.361	36.524	
MOTA	2332	SG	CYS			62.746	59.548	36.564	1.00 20.00
MOTA	2334	N	TRP	A	075	62.555	64.268	38.277	1.00 20.00
ATOM	2335	CA	TRP	A	075	62.311	65.708	38.110	1.00 20.00
MOTA	2336	C	TRP	A	075	62.906	66.552	39.231	1.00 20.00
ATOM	2337	0	TRP	A	075	62.503	67.692	39.456	1.00 20.00
ATOM	2338	CB	TRP	A	075	60.797	65.977	38.037	1.00 20.00
ATOM	2339	CG	TRP	Α	075	60.090	65.403	36.830	1.00 20.00
ATOM	2340	CD1	TRP			60.586	65.308	35.565	1.00 20.00
	2341	CD2	TRP		075	58.768	64.834	36.789	1.00 20.00
ATOM			TRP		075	59.669	64.720	34.751	1.00 20.00
MOTA	2342	NE1					64.416	35.468	1.00 20.00
MOTA	2343	CE2	TRP		075	58.542		37.742	1.00 20.00
MOTA	2344	CE3	TRP		075	57.755	64.634		1.00 20.00
MOTA	2345.	CZ2	TRP		075	57.343	63.808	35.062	
MOTA	2346	CZ3	TRP			56.551	64.024	37.331	1.00 20.00
MOTA	2347	CH2	TRP	A	075	56.366	63.624	36.002	1.00 20.00
ATOM	2350	N	ARG	A	076	63.865	65.959	39.934	1.00 20.00
ATOM	2351	CA	ARG	Α	076	64.533	66.625	41.024	1.00 20.00
ATOM	2352	С	ARG			65.304	67.793	40.364	1.00 20.00
ATOM	2353	Ō	ARG			65.983	67.586	39.347	1.00 20.00
		CB	ARG			65.462	65,.607	41.699	1.00 20.00
ATOM	2354					64.890	64.932	42.981	1.00 20.00
ATOM	2355	CG	ARG			65.230	63.413	43.072	1.00 20.00
ATOM	2356	CD	ARG					44.416	1.00 20.00
MOTA	2357	ΝE	ARG			64.997	62.813		
MOTA	2358	CZ	ARG			65.490	61.630	44.835	1.00 20.00
MOTA	2359	NHl	ARG			66.258	60.880	44.037	1.00 20.00
MOTA	2360	NH2	ARG	A	076	65.231	61.211	46.069	1.00 20.00
ATOM	2367	N	GLU	A	077	65.178	69.014	40.895	1.00 20.00
ATOM	2368	CA	GLU	A	077	65.885	70.155	40.318	1.00 20.00
ATOM	2369	C			077	67.310	69.773	39.983	1.00 20.00
222 01:1		-							

ATOM	2370	0	GLU	Σ	077	67.613	69.364	36.678	1.00	20.00
ATOM	2371	CB	GLU	Z.	077	65.889	71.343	41.278	1 00	20.00
MOTA	2373	N	LYS			68.184	69.910	40.953	1.00	20.00
ATOM	2374	CA	LYS	Ā	078	69.573	69.583	40.764	1.00	20.00
ATOM	2375	C	LYS	A	078	69.811	68.228	40.037	1.00	20.00
ATOM	2376	0	LYS			69.850	67.194	40.664		20.00
ATOM	2377	CB	LYS	A	0 / 8	70.225	69.573	42.138	1.00	20.00
ATOM	2378	CG	LYS	Α	078	69.346	70.070	43.275	1.00	.20.00
ATOM	2379	CD	LÝS	Δ	078	70.069	69.962	44.591	1.00	20.00
						69.301		45.713	1.00	
ATOM	2380	CE			078		70.580			20.00
ATOM	2381	NZ	LYS	A	078	69.362	69.789	47.005	1.00	2000
ATOM	2386	N	PRO	A	079	7.0.050	68.234	38.721	1.00	20.00
ATOM	2387	CA	PRO	22.	079	70.261	66.980	38.006	1.00	20.00
ATOM	2388	C	PRO			70.943	65.885	38.771		20.00
ATOM	2389	0	PRO	A	079	70.451	64.770	38.811	1.00	20.00
ATOM	2390	CB	PRO	Α	079	71.059	67.370	36.772	1.00	20.00
ATOM	2391	CG	PRO			70.896	68.782	36.633	1 00	20.00
ATOM	2392	CD	PRO			70.218	69.385	37.832	1.00	20.00
MOTA	2393	N	TYR	Α	080	72.085	66.172	39.382	1.00	20.00
ATOM	2394	CA	TYR	A	080	72.804	65.132	40.133	1.00	20.00
	2395	C	TYR			71.975	64.531	41.286		20.00
ATOM										
MOTA	2396	0	TYR	A	080	72.444	63.680	42.014	1.00	20.00
ATOM	2397	CB	TYR	Α	080	74.139	65.707	40.640	1.00	20.00
ATOM	2398	CG	TYR	Δ	080	74.006	66.804	41.677	1.00	20.00
	-		TYR				66.521	43.022		20.00
ATOM	2399	CD1				74.086				
ATOM	2400	CD2	TYR	A	080	73.757	68.117	41.304	1.00	20.00
ATOM	2401	CEl	TYR	Α	080	73.915	67.500	43.955	1.00	20.00
ATOM	2402	CE2	TYR	Δ	080	73.588	69.104	42.245	1.00	20.00
	-									20.00
ATOM	2403	CZ	TYR			73.664	68.784	43.562		
ATOM	2404	OH	TYR	A	080	73.475	69.749	44.512	1.00	20.00
ATOM	2407	N	GLU	A	081	70.743	65.007	41.436	1.00	20.00
ATOM	2408	CA	GLU			69.817	64.540	42.462	1.00	20.00
ATOM	2409	С	GLU			68.878	63.538	41.797		20.00
ATOM	2410	0	${ t GLU}$	A	081	68.205	62.751	42.451	1.00	20.00
ATOM	2411	CB	GLU	A	081	69.025	65.709	43.038	1.00	20.00
ATOM	2412	CG	GLU			69.358	66.053	44.505	1.00	20.00
MOTA	2413	CD	GLU			68.385	67.067	45.106	1.00	20.00
ATOM	2414	OE1	${ t GLU}$	\mathbf{A}	081	68.518	67.413	46.316	1.00	20.00
ATOM	2415	OE2	GLU	Α	081	67.485	67.510	44.342	1.00	20.00
ATOM	2417	N	ARG			68.875	63.582	40.471	1.00	20.00
									1.00	20.00
ATOM	2418	ÇA	ARG			68.097	62.678	39.655		
ATOM	2419	Ć	ARG	A	082	68.622	61.223	39.710		20.00
ATOM	2420	0	ARG	A	082	69.814	60.963	39.981	1.00	20.00
ATOM	2421	CB	ARG			68.085	63.174	38.218	1.00	20.00
										20.00
ATOM	2422	CG	ARG			66.784	63.856	37.837		
ATOM	2423	CD	ARG	A	082	66.836	65.398	37.781	1.00	20.00
MOTA	2424	NE	ARG	Α	082	67.235	65.908	36.451	1.00	20.00
ATOM	2425	CZ	ARG			67.427	67.194	36.163	1 00	20.00
ATOM	2426	NH1				67.258	68.107	37.101		20.00
ATOM	2427	NH2	ARG	A	082	67.805	67.552	34.947	1.00	20.00
ATOM	2434	N	PRO	A	083	67.725	60.237	39.513	1.00	20.00
							58.866	39.554		20.00
ATOM	2435	CA	PRO			68.223				
ATOM	2436	С	PRO			69.042	58.596	38.310		20.00
ATOM	2437	0	PRO	A	083	69.594	59.505	37.688	1.00	20.00
ATOM	2438	CB	PRO			66.942	58.037	39.582	100	20.00
		CG	PRO			65.877	58.981	40.016		20.00
MOTA	2439									
ATOM	2440	CD	PRO	Α	083	66.265	60.243	39.330	1.00	20.00

ATOM	2441	N	SER A			69.110	57.327	37.952		20.00
MCTA	2442	CA	SER A	ž	084	59.825	56.896	36.760		20.00
ATOM	2443	С	SER P	Ť	084	69.131	55.647	36.225	1.00	20.00
ATOM	2444	0	SER F	7	084	68.707	54.760	36.990	1.00	20.00
ATOM	2445	CB	SER A			71.283	56.583	37.087	1.00	20.00
ATOM	2446	OG	SER A			71.397	55.714	38.182	1.00	20.00
	2449	N			085	69.014	55.585	34.905	1.00	20.00
ATOM		CA			085	68.378	54.457	34.249	1.00	20.00
MOTA	2450				085	68.808	53.087	34.761		20.00
ATOM	2451	C			085	68.185	52.089	34.478		20.00
ATOM	2452	0					54.555	32.762		20.00
MOTA	2453	CB			085	68.633		32.702		20.00
ATOM	2454	CG			085	68.121	55.805			20.00
ATOM	2455	CD1			085	68.888	56.546	31.303		
MOTA	2456	CD2			085	66.866	56.277	32.507		20.00
MOTA	2457	CE1	PHE A	7	085	68.402	57.738	30.784		20.00
MOTA	2458	CE2	PHE A	Ī	085	66.395	57.456	31.995		20.00
ATOM	2459	CZ	PHE A	Ţ	085	67.160	58.174	31.140		20.00
MOTA	2461	N	ALA A	Ą	086	69.890	53.030	35.509	1.00	20.00
ATOM	2462	CA	ALA A			70.327	51.757	35.993	1.00	20.00
ATOM	2463	C	ALA A			69.505	51.422	37.206	1.00	20.00
	2464	0	ALA A			69.064	50.291	37.352	1.00	20.00
ATOM			ALA A			71.777	51.807	36.323	1.00	20.00
ATOM	2465	CB	GLN A			69.266	52.398	38.071	1.00	20.00
MOTA	2467	N				68.494	52.121	39.266		20.00
MOTA	2468	CA	GLN A				52.121	39.068		20.00
ATOM	2469	C	GLN A			66.956		39.846		20.00
ATOM	2470	0	GLN A			66.195	51.560			20.00
ATOM	2471	CB	GLN A			68.936	53.074	40.388		
ATOM	2472	CG	GLN A			69.565	54.391	39.973	1.00	
ATOM	2473	CD	GLN A			70.381	55.057	41.121		20.00
ATOM	2474	OE1	GLN Z	A	087	71.123	56.032	40.897	1.00	
ATOM	2475	NE2	GLN Z	A	087	70.244	54.536	42.341	1.00	
ATOM	2479	N	ILE 2	A	088	66.533	52.883	38.025	1.00	
ATOM	2480	CA	ILE 3	A	088	65.126	53.054	37.686	1.00	20.00
ATOM	2481	C	ILE A	A	088	64.687	51.697	37.241	1.00	20.00
ATOM	2482	Ō	ILE			63.649	51.196	37.639	1.00	20.00
ATOM	2483	CB			088	64.938	54.057	36.496	1.00	20.00
		CG1			088		.55.490	37.007	1.00	20.00
ATOM	2484	CG2			088	63.729	53.684	35.655	1.00	20.00
ATOM	2485					65.373	56.556	36.035	1.00	20.00
ATOM	2486	CD1	ILE :			65.515	51.128	36.379	1.00	20.00
MOTA	2488	Ŋ	LEU .				49.789	35.843	1.00	20.00
ATOM	2489	CA	LEU .			65.313				20.00
MOTA	2490	С	LEU			65.060	48.826	36.994		20.00
ATOM	2491	0	LEU			64.018	48.175	37.061		
ATOM	2492	CB	LEU			66.540	49.336	35.092		20.00
ATOM	2493	CG	LEU	A	089	66.547	47.848	34.823		20.00
ATOM	2494	CD1	LEU	A	089	65.147	47.379	34.407		20.00
MOTA	2495	CD2	LEU	Α	089	67.545	47.575	33.708		20.00
MOTA	2497	N	VAL			66.004	48.748	37.908		20.00
MOTA	2498	CA	VAL			65.821	47.903	39.051		20.00
ATOM	2499	C	VAL			64.572	48.276	39.816		20.00
		0	VAL			64.276	47.684	40.843		20.00
ATOM	2500					66.998	48.040	39.968		20.00
MOTA	2501	CB	VAL			66.566	48.001	41.390		20.00
ATOM	2502	CG1					46.942	39.655		20.00
ATOM	2503	CG2				68.012		39.295		20.00
MOTA	2505				091	63.807	49.232			20.00
·ATOM	2506	CA			091.	62.626	49.777	39.990		20.00
MOTA	2507	C	SER	A	091	61.224	49.394	39.462	1.00	20.00

ATOM	2508	0	SER	Ą	091	60.265	49.286	40.228	1.00	20.00
ATOM	2509	CB	SER	A	091	62.780	51.317	40.030	1.00	20.00
ATOM	2510	OG	SER	A	091	63.064	51.756	41.334		20.00
ATOM	2513	N			092	61.125	49.264	38.146		20.00
ATOM	2514	CA			092	59.906	48.874	37.485		20.00
ATOM	2515	C			092	59.997	47.345	37.496		20.00
ATOM	2516	0			092	58.987	46.643	37.662		20.00
					092					
MOTA	2517	CB				59.941	49.394	36.065		20.00
ATOM	2516	CG			092	60.797	50.625	35.992		20.00
ATOM	2519	CD1	LEU			60.882	51.169	34.601		20.00
ATOM	2520	CD2	LEU		092	60.174	51.616	36.871		20.00
ATOM	2522	N	ASN			61.243	46.886	37.306		20.00
ATOM	2523		ASN		093	61.699	45.495	37.299	1.00	
ATOM	2524	С	ASN			61.214	44.889	38.582		20.00
ATOM	2525	0	ASN			60.803	43.724	38.635		20.00
ATOM	2526	CB	ASN			63.206	45.466	37.438	1.00	20.00
MOTA	2527	CG	ASN	A	093	63.927	44.920	36.244	1.00	20.00
ATOM	2528	ODl	asn	A	093	65.126	44.666	36.350	1.00	20.00
MOTA	2529	ND2	ASN	Α	093	63.245	44.739	35.117	1.00	20.00
ATOM	2533	N	ARG	Α	094	61.344	45.693	39.631	1.00	20.00
ATOM	2534	CA	ARG	A	094	60.992	45.309	40.985	1.00	20.00
ATOM	2535	C	ARG	A	094	59.515	45.614	41.318	1.00	20.00
ATOM	2536	0	ARG	Α	094	59.112	45.717	42.468		20.00
ATOM	2537	CB	ARG			61.954	46.010	41.937		20.00
ATOM	2538	CG	ARG			61.850	45.571	43.339		20.00
ATOM	2539	CD	ARG			62.088	46.747	44.262		20.00
ATOM	2540	NE	ARG			61.170	46.917	45.403		20.00
ATOM	2541	CZ	ARG			59.842	47.007	45.328		20.00
ATOM	2542	NH1	ARG			59.224	46.948	44.164		20.00
ATOM	2543	NH2	ARG			59.129	47.209	46.438		20.00
ATOM	2550	N	MET			58.710	45.750	40.278		20.00
ATOM	2551	CA	MET			57.306	46.018	40.421		20.00
ATOM	2552	C	MET			56.723	44.944	39.527		20.00
ATOM	2553	ō	MET		095	55.597	44.512	39.706		20.00
ATOM	2554	CB	MET			56.967	47.406	39.870		20.00
ATOM	2555	CG	MET			57.240	48.556	40.822		20.00
ATOM	2556	SD	MET			56.618	50.279	40.365		20.00
ATOM	2557	CE	MET			56.509	50.955	42.056		20.00
ATOM	2559	N	LEU			57.495	44.509	38.551		20.00
ATOM	2560	CA	LEU			57.433	43.476	37.646		20.00
ATOM		,C	LEU			56.931	42.034	38.341		20.00
						56.594	40.999		1.00	
ATOM	2562	O.	LEU					37.738 36.401	1.00	
ATOM	2563	CB	LEU			57.960	43.493	35.421	1.00	
ATOM	2564	CG	LEU			57.892	44.684			
ATOM	2565		LEU			58.856	44.515	34.311	1.00	
ATOM	2566		LEU			56.523	44.804	34.819	1.00	
ATOM	2568	N	GLU			57.181	41.981	39.633	1.00	
ATOM	2569	CA	GLU			57.102	40.734	40.327	1.00	
MOTA	2570	С	GLU			56.396	40.934	41.642	1.00	
MOTA	2571	0	GLU			57.064	41.042	42.664	1.00	
ATOM	2572	CB	ĠŢŨ			58.499	40.252	40.506	1.00	
ATOM	2573	CG	GLU			59.459	40.519	39.475	1.00	
ATOM	2574	CD	GLU			60.327	39.305	39.212	1.00	
MOTA	2575	OE1	GLU			60.756	38.703	40.228	1.00	
MOTA	2576	OE2	GLU			60.564	38.961	38.022	1.00	
MOTA	2578	N	GLU			55.062	41.010	41.622	1.00	
MOTA	2579	CA	GLU	A	098	54.192	41.177	42.823	1.00	20.00

ATOM	2580	С	GLU			52.812	41.404	42.219		20.00
ATOM	2581	0	GLU	A		51.7 <i>6</i> 5	41.462	42.905		20.00
ATOM	2582	CB	GLU			54.514	42.433	43.686		20.00
ATOM	2583	CG	GLU			55.726	43.286	43.421		20.00
ATOM	2584	CD	GLU			56.655	43.318	44.654		20.00
MOTA	2585	OEl			098	56.157	43.414	45.803		20.00
ATOM	2586	OE2	GLU			57.903	43.232	44.488		20.00
MOTA	2588	N	ARG			52.872	41.529	40.898		20.00
ATOM	2589	CA	ARG			51.725	41.820	40.069		20.00
ATOM	2590	C	ARG			50.664	42.484	40.859 40.902		20.00
ATOM	2591	0	ARG			49.536	41.992	39.385		20.00
ATOM	2592	CB	ARG			51.107 50.252	40.600 41.009	38.173		20.00
ATOM	2593	CG	ARG				42.327	38.402		20.00
MOTA	2594	CD	ARG			49.462	42.327	37.193		20.00
ATOM	2595	NE	ARG			48.780 48.995	44.001	36.614		20.00
MOTA	2596	CZ	ARG ARG			49.888	44.858	37.132		20.00
MOTA	2597	NHI	ARG			48.348	44.319	35.492		20.00
ATOM	2598	NH2			100	51.012	43.593	41.491	1.00	20.00
ATOM	2605 2606	N CA	LYS			49.996	44.273	42.208		20.00
MOTA		C	LYS			49.233	45.314	41.412		20.00
MOTA MOTA	2607 2608	0			100	48.414	46.009	41.961		20.00
ATOM	2609	CB	LYS		100	50.568	44.887	43.452		20.00
	2610	CG	LYS			49.723	44.455	44.606		20.00
MOTA MOTA	2611	CD	LYS		100	48.746	43.295	44.135		20.00
ATOM	2612	CE	LYS			47.476	43.250	44.951	1.00	20.00
ATOM	2613	NZ	LYS			47.799	42.986	46.386	1.00	20.00
ATOM	2618	N	THR			49.448	45.372	40.107	1.00	20.00
ATOM	2619	CA	THR			48.825	46.402	39.284	1.00	20.00
ATOM	2620	C	THR			49.208	47.748	39.873	1.00	20.00
ATOM	2621	0	THR			48.788	48.131	40.984	1.00	20.00
ATOM	2622	СВ	THR			47.325	46.313	39.223	1.00	20.00
ATOM	2623	OG1	THR	A	101	46.859	45.424	40.224	1.00	20.00
ATOM	2624	CG2	THR	Ą	101	46.913	45.840	37.852	1.00	
ATOM	2627	N	TYR	A	.102	50.025	48.453	39.098	1.00	
ATOM	2628	CA	TYR	A	102	50.547	49.712	39.515		20.00
ATOM	2629	С	TYR	A	102	49.870	50.826	38.785	1.00	20.00
ATOM	2630	0	TYR	A	102	49.661	51.891	39.342	1.00	
ATOM	2631	CB	TYR	Α	102	52.040	49.684	39.310	1.00	20.00
MOTA	2632	CG	TYR	A	102	52.744	48.940	40.406	1.00	
MOTA	2633	CD1	TYR	A	102	53.416	47.744	40.169	1.00	20.00
ATOM	2634	CD2	TYR	Ā	102	52.769		41.663		20.00
MOTA	2635	CEl	TYR	A	102	54.090	47.122	41.160		20.00
ATOM	2636	CE2			102	53.430		42.653		20.00
ATOM	2637	CZ			102	54.102	47.691	42.416		20.00
MOTA	2638	OH			102	54.846	47.188	43.470		20.00
ATOM	2641	N			103	49.568	50.591	37.524		20.00
ATOM	2642	CA			103	48.790		36.741		20.00
ATOM	2643	С			103	47.512	50.735	36.788		20.00
ATOM	2644	0			103	47.571	49.547	37.137		20.00
ATOM	2645	CB			103	49.121	51.597	35.265		20.00
ATOM	2646	CG1			103	48.387	52.783	34.645		20.00
MOTA	2647	CG2			103	50.633	51.634	35.049		20.00
MOTA	2649	N			104	46.380	51.336	36.420		20.00
ATOM	2650	CA			104	45.109		36.473		20.00
ATOM	2651	С			104	44.386	51.023	35.231		20.00
MOTA	2652	0	ASN	A	104	44.569	52.110	34.731	1.00	20.00

7 (C) 74	2653	C.E.	ASN	7.	3.04	44 360			7 00	
ATOM	2653	CB				44.360	51.089	37.714		20.00
ATOM	2654	CG	ASN			42.863	51.071	37.544	1.00	
ATOM	2655	ODi				42.348	51.013	36.431	1.00	20.00
ATOM	2656	NDS	ASN			42.149	51.139	38.666	1.00	20.00
MCTA	2660	N	THR			43.545	50.137	34.732	1.00	20.00
ATOM	2661	CA	THR	Ą	105	42.855	50.390	33.490	1.00	20.00
ATOM	2662	C	THR	A	105	41.412	49.870	33.596	1.00	20.00
ATOM	2663	0	THR	A	105	40.678	49.783	32.593	1.00	
ATOM	2664	CB	THR	Α	105	43.627	49.686	32.341	1.00	20.00
ATOM	2665	OG1				44.293	48.501	32.839	1.00	20.00
ATOM	2666	CG2	THR			44.686	50.595	31.792	1.00	
ATOM	2669	N	THR			41.013				
ATOM	2670	CA	THR			39.701	49.565	34.831		20.00
ATOM	2671	C.	THR .				49.048	35.173	1.00	
						38.588	50.103	35.353	1.00	20.00
ATOM	2672	0	THR .			38.818	51.077	36.038		20.00
ATOM	2673	CB	THR .			39.850	48.258	36.473	1.00	20.00
MOTA	2674	OGI	THR .			39.615	46.869	36.226	1.00	20.00
ATOM	2675	CG2	THR .			38.902	48.779	37.552	1.00	20.00
MOTA	2678	N	LEU .	Ą	107	37.383	49.891	34.775	1.00	20.00
ATOM	2679	CA	LEU .	A.	107	36.229	50.816	34.903	1.00	20.00
ATOM	2680	С	LEU :	A	107	35.437	50.546	36.199	1.00	20.00
ATOM	2681	0	LEU :	Ą	107	35.067	49.413	36.473	1.00	20.00
MOTA	2682	CB	LEU :	Ą	107	35.279	50.655	33.739		20.00
ATOM	2683	CG	LEU Z			35.798	50.744	32.313		20.00
ATOM	2684	CD1	LEU 2			34:625	50.728	31.345		20.00
ATOM	2685	CD2	LEU 2			36.667	51.987	32.120		20.00
ATOM										
	2687	N	TYR Z			35.176	51.583	36.998		20.00
ATOM	2688	CA	TYR A			34.436	51.444	38.260		20.00
ATOM	2689	C	TYR A			33.529	52.660	38.590	1.00	
ATOM	2690	0	TYR A			33.124	52.843	39.767		20.00
MOTA	2691	CB	TYR A			35.417	51.219	39.419	1.00	20.00
MOTA	2692	CG	TYR A	7	108	36.234	49.960	39.165	1.00	20.00
ATOM	2693	CD1	TYR A	<i>j</i>	108	37.446	49.725	40.176	1.00	20.00
MOTA	2694	CD2	TYR A	4	108	35.201	48.850	39.201	1.00	20.00
ATOM	2696	N	GLU A	1	109	33.228	53.475	37.565	1.00	20.00
ATOM	2697	CA	GLU A	1	109	32.363	54.664	37.691	1.00	20.00
ATOM	2698	С	GLU A	Δ:	109	33.115	55.935	37.364	1.00	20.00
ATOM	2699	0	GLU A			34.039	56.360	38.093		20.00
ATOM	2700	CB	GLU A			31.764	54.786	39.092		20.00
ATOM	2702	N			110	32.723	56.590	36.284	1.00	20.00
ATOM	2702	CA	LYS A							20.00
						33.431	57.801	35.968		
ATOM	2704	Ċ	LYS A			34.879	57.443	35.586		20.00
ATOM	2705	0	LYS A			35.653	56.902	36.366		20.00
ATOM	2706	CB	LYS A			33.373	58.742	37.176		20.00
ATOM	2707	CG	LYS A			32.211	58.399	38.165	1.00	20.00
ATOM	2708	CD	LYS A			31.414	59.597	38.754	1.00	20.00
MOTA	2709	CE	LYS A			30.154	59.092	39.514	1.00	20.00
ATOM	2710	NZ	LYS A		110	30.320	58.678	40.967	1.00	20.00
ATOM	2715	N	PHE F	. :	111	35.184	57.675	34.324	1.00	20.00
ATOM	2716	CA	PHE A			36.489	57.460	33.833		20.00
ATOM	2717	C	PHE P			36.665	58.179	32.520		20.00
ATOM	2718	0	PHE A			36.065	57.840	31.494		20.00
ATOM	2719	CB	PHE A			36.842	55.994	33.658		20.00
ATOM	2720	CG	PHE P			38.193		33.013		20.00
							55.795			20.00
ATOM	2721		PHE P				55.675	33.772		
ATOM	2722		PHE A			38.332	55.861	31.657		20.00
MOTA	2723	CE1	PHE A		T T 7	40.601	55.639	33.171	1.00	20.00

.. .

ATOM	2724	CE2	PHE A	111	39.575	55.824	31.077	1.00	20.00
MOTA	2725	CZ		111	40.706	55.717	31.830	1.00	20.00
ATOM	2727	N	THR A		37.540	59.180	32.584	1.00	20.00
ATOM	2728	CA	THR A		37.904	59.997	31.457		20.00
ATOM	2729	С	THR A		39.374	59.703	31.350	1.00	20.00
ATOM	2730	0	THP A		39.967	59.297	32.329	1.00	20.00
ATOM	2731	CB		112	37.686	61.487	31.794	1.00	20.00
ATOM	2732	OG1	THR A		36.780	61.598	32.899	1.00	20.00
ATOM	2733	CG2	THR A		37.079	62.216	30.623	1.00	20.00
ATOM	2736	N	TYR A		39.926	59.880	30.153	1.00	20.00
ATOM	2737	CA	TYR A		41.339	59.706	29.866	1.00	20.00
ATOM	2738	C	TYR A		42.092	61.000	30.123		20.00
ATOM	2739	0	TYR A		41.837	61.669	31.105	1.00	20.00
ATOM	2740	CB	TYR A		41.520	59.320	28.433	1.00	20.00
ATOM	2741	CG	TYR A		41.095	57.923	28.236	1.00	20.00
MOTA	2742	CD1	TYR A		40.063	57.606	27.346	1.00	20.00
MOTA	2743	CD2	TYR A		41.699	56.879	28.960		20.00
ATOM	2744	CE1	TYR A		39.641	56.300	27.178	1.00	20.00
MOTA	2745	CE2	TYR A		41.283	55.573	28.792	1.00	20.00
MOTA	2746	CZ	TYR A		40.251	55.291	27.894	1.00	20.00
ATOM	2747	OH	TYR A		39.853	53.992	27.670	1.00	20.00
ATOM	2750	N	ALA A	114	42.958	61.423	29.201	1.00	20.00
MOTA	2751	CA	ALA A		43.754	62.605	29.511	1.00	20.00
ATOM	2752	C	ALA A	114	43.947	63.838	28.571	1.00	20.00
MOTA	2753	0	ALA A	114	43.604	64.944	28.952	1.00	20.00
ATOM	2754	CB	ALA A		45.129	62.109	30.025	1.00	20.00
ATOM	2756	И	GLY A	115	44.491	63.670	27.377	1.00	20.00
ATOM	2757	CA	GLY A	115	44.727	64.815	26.532	1.00	20.00
MOTA	2758	C	GLY A	115	44.350	64.834	25.059	1.00	20.00
ATOM	2759	0	GLY A	115	45.029	64.291	24.173	1.00	20.00
ATOM	2761	N	ILE A	116	43.220	65.504	24.838	1.00	20.00
ATOM	2762	CA	ILE A	116	42.609	65.779	23.527	1.00	20.00
MOTA	2763	C	ILE A		41.516	64.772	23.037	1.00	20.00
ATOM	2764	0	ILE A	116	41.123	63.952	23.880	1.00	20.00
ATOM	27 <i>6</i> 5	CB	ILE A	116	43.744	65.993	22.469	1.00	20.00
MOTA	2766	OXT	ILE A	116	41.049	64.815	21.867	1.00	20.00
TER									
HETATM	1	Cl	AEHNI	1	58.776	51.045	11.645	0.00	0.00
HETATM	2	N2	AEHNI	1	58.172	52.218	11.841	0.00	0.00
HETATM	3	C3	AEHNI	1	58.936	53.310	12.056	0.00	0.00
HETATM	, 4	C4	A EHNI	1	60.320	53.244	12.077	0.00	0.00
HETATM	5 .	C5	INH3A	1	60.887	51.924	11.859	0.00	0.00
HETATM	6	N6	INH3A	1	60.101	50.854	11.646	0.00	0.00
HETATM	8	N8	INH3A	1	58.497	54.604	12.288	0.00	0.00
HETATM	9	C9	INH3A	1	59.673	55.293	12.446	0.00	0.00
HETATM	10	ClO	AEHNI	1	60.842	54.525	12.326	0.00	0.00
HETATM	12	Nl3	AEHNI	1	62.289	51.734	11.876	0.00	0.00
HETATM	13	C14	AEHNI	1	62.258	54.972	12.430	0.00	0.00
HETATM	14	C16	INH3A	1	57.098	55.079	12.339	0.00	0.00
HETATM	15		INH3A	1	63.049	54.530	13.477	0.00	0.00
HETATM	16	C18		1	64.374	54.941	13.612	0.00	0.00
HETATM	17	C19	INH3A	1	64.935	55.815	12.687	0.00	0.00
HETATM	18	C20	INH3A	ı	64.131	56.249	11.643	0.00	0.00
HETATM	19		AEHNI	1	62.810	55.841	11.508	0.00	0.00
HETATM	23	N25		1	66.225	56.236	12.788	0.00	0.00
HETATM	24		INH3A	1	66.995	56.113	14.217	0.00	0.00
HETATM	25	027		1	65.999	55.773	15.187	0.00	0.00

HETATM	26	028	INH3A	1	67.770	57.301	14.420	0.00	0.00
HETATM	27	C29	INH3A	1	68.100	54.741	14.032	0.00	0.00
HETATM	28	C30	INH3A	1	69.041	54.751	13.007	0.00	0.00
HETATM	29	C31	INH3A	1	69.873	53.654	12.825	0.00	0.00
HETATM	30	C32	INH3A	1	69.740	52.566	13.674	0.00	0.00
HETATM	31	C33	INH3A	1	68.801	52.539	14.696	0.00	0.00
HETATM	32	C34	INH3A	1	67.972	53.639	14.872	0.00	0.00
HETATM	37	F39	INH3A	1	70.540	51.507	13.502	0.00	0.00
HETATM	39	F41	INH3A	1	64.638	57.094	10.735	0.00	0.00
HETATM	40	C42	INH3A	1	56.781	55.784	13.669	0.00	0.00
HETATM	41	C43	AEHNI	1	55.311	56.219	13.720	0.00	0.00
HETATM	42	C44	INH3A	ı	54.962	57.130	12.528	0.00	0.00
HETATM	43	C45	INH3A	1	55.278	56.419	11.202	0.00	0.00
HETATM	44	C46	INH3A	ı	56.748	55.981	11.144	0.00	0.00
HETATM	53	C55	INH3A	1	53.385	58.715	13.548	0.00	0.00
HETATM	54	C56	INH3A	1	51.998	59.356	13.419	0.00	0.00
HETATM	55	N57	INH3A	1	50.930	58.353	13.520	0.00	0.00
HETATM	56	C58	INH3A	1	51.136	57.302	12.516	0.00	0.00
HETATM	57	C59	INH3A	1	52.522	56.662	12.658	0.00	0.00
HETATM	58	N60	INH3A	1	53.588	57.668	12.536	0.00	0.00
HETATM	68	C70	INH3A	1	49.599	58.958	13.416	0.00	0.00
TER									

CRYST	86	.000	86.000 11	2.000 90	.00 90.00	90 00	P42212
SCALE1		Ο.	01163 0.000			0.0000	
SCALE2		Ο.	00000 0.011			0.0000	
SCALE3		Ο.	00000 0.000			0.0000	
ATOM	1		PRO A 817	8.606		6.968	
ATOM	2			9.750		6.436	
ATOM	3	C	PRO A 817	10.180		5.133	
ATOM	4	0	PRO A 817	10.749		5.149	
ATOM	5	CB	PRO A 817	10.807		7.499	
ATOM	6	N	VAL A 818	9.794		3.998	
ATOM	7	CA	VAL A 818	10.112		2.711	
ATOM	8	C	VAL A 818	11.172		1.952	1.00 67.24
ATOM	9	0	VAL A 818	11.086		1.837	1.00 67.24
ATOM	10	CB	VAL A 818	8.866		1.843	1.00 66.96
ATOM	11		1 VAL A 818	9.133		0.770	1.00 67.29
ATOM	12	CG2		7.637		2.629	1.00 66.80
ATOM	13	N	LEU A 819	12.192		1.464	1.00 67.40
ATOM	14	CA	LEU A 819	13.300		0.705	1.00 67.40
ATOM	. 15	C	LEU A 819	13.445		-0.680	•
ATOM	16	Ō	LEU A 819	13.179		-0.875	1.00 68.53 1.00 67.98
ATOM	17	CB	LEU A 819	14.589			
ATOM	18	N	ASP A 820	13.854		1.493	1.00 67.17
ATOM	19	CA	ASP A 820	13.054			1.00 70.32
ATOM	20	C	ASP A 820	15.382		-3.018	1.00 74.15
ATOM	21	ō	ASP A 820	16.390		-3.421	1.00 75.07
ATOM	22	CB	ASP A 820	13.314		-2.978	1.00 74.87
ATOM	23	CG	ASP A 820	13.314		-4.017	1.00 76.15
ATOM	24		ASP A 820	14.712		-4.054	1.00 78.23
ATOM	25		ASP A 820			-3.092	1.00 79.04
ATOM	26	N	TRP A 821	13.712		-5.051	1.00 78.55
ATOM	27	CA	TRP A 821	15.489 16.794		-4.336	1.00 77.12
ATOM	28	C	TRP A 821	17.288		-4.871	1.00 80.00
ATOM	29	0	TRP A 821	16.560		-5.674	1.00 80.90
ATOM	30	CB	TRP A 821	16.640		-5.750	1.00 82.56
ATOM	31	CG	TRP A 821	17.979		-5.738	1.00 81.50
ATOM	32	CD1		18.770		-6.126	1.00 84.29
ATOM	33	CD2		18.686		-7.174	1.00 85.04
ATOM	34	NE1	TRP A 821	19.932		-5.443	1.00 85.54
ATOM	35	CE2	TRP A 821			-7.184	1.00 85.91
ATOM	36	CE3	TRP A 821	19.895 18.402		-6.138	1.00 86.16
ATOM	37	CZ2	TRP A 821	20.822		-4.317	1.00 85.72
ATOM	38			19.317		-5.736	1.00 86.76
ATOM	39	CH2				-3.914	1.00 86.12
ATOM	40	N	ASN A 822	20.513		-4.632	1.00 86.81
ATOM	41	CA	ASN A 822	18.490		6.220	1.00 80.99
ATOM	42	C	ASN A 822	18.941		6.995	1.00 81.52
ATOM	43	0	ASN A 822	18.729		6.079	1.00 80.56
ATOM	44	CB	ASN A 822	18.110		6.381	1.00 81.67
ATOM	45	CG	ASN A 822 ASN A 822	18.164		8.312	1.00 83.00
ATOM	46		ASN A 822 ASN A 822	19.059		9.532	1.00 84.08
ATOM	47		ASN A 822 ASN A 822	20.168		9.420	1.00 84.25
ATOM	48	N	ASP A 823	18.581	39.608 -1		1.00 84.49
ATOM	49	CA	ASP A 823 ASP A 823	19.204		4.856	1.00 78.69
ATOM	50	C	ASP A 823	19.120		3.723	1.00 76.89
ATOM	51	0	ASP A 823	19.874		2.568	1.00 74.92
ATOM	52	CB	ASP A 823	19.952		1.417	1.00 75.11
ATOM				17.695		3.299	1.00 77.66
PTON	53	CG	ASP A 823	17.306	43.572 -	3.217	1.00 78.83

ATOM	54	OD1	ASP			17.885	44.406	-3.955	1.00	79.53
MOTA	55	OD2			823	16.391	43.945	-2.444	1.00	78.52
MOTA	56	N	ILE	A	824	20.438	39.973	-2.919	1.00	71.67
MOTA	57	CA	ILE	A	824	21.270	39.189	-2.030	1.00	69.30
MOTA	58	C ·	ILE	Α	824	22.624	39.046	-2.750	1.00	67.35
MOTA	59	0	ILE	A	824	22.678	38.352	-3.770		65.47
MOTA	60	CB	ILE	A	824	20.744	37.783	-1.696	1.00	69.43
ATOM	61	CG1	ILE	Α	824	19.356	37.733	-1.074	1.00	69.93
ATOM	62	CG2	ILE	A	824	21.752	37.046	-0.820	1.00	69.07
ATOM	63	CD1			824	19.156	38.009	0.386	1.00	71.48
ATOM	64	N	LYS	A	825	23.649	39.735	-2.252	1.00	65.03
MOTA	65	CA			825	24.977	39.581	-2.829	1.00	63.66
ATOM	66	C	LYS	Α	825	25.810	38.677	-1.903	1.00	62.88
ATOM	67	0	LYS	A	825	26.290	39.103	-0.850	1.00	60.46
MOTA	68	CB	LYS			25.688	40.893	-3.082	1.00	63.33
MOTA	69	N	PHE	Α	826	25.952	37.420	-2.315	1.00	62.22
MOTA	70	CA	PHE	A	826	26.745	36.434	-1.595	1.00	63.65
MOTA	71	С	PHE	Α	826	28.243	36.752	-1.654	1.00	64.85
ATOM	72	0	PHE	А	826	28.806	36.978	-2.738	1.00	65.98
ATOM	73	CB	PHE	Α	826	26.535	35.019	-2.151	1.00	63.23
ATOM	74	CG	PHE	Α	826	25.242	34.324	-1.828	1.00	63.28
ATOM	75	CD1	PHE	Α	826	24.194	34.262	-2.742	1.00	63.47
ATOM	76	CD2	PHE	Α	826	25.068	33.738	-0.587	1.00	62.78
MOTA	77	CE1	PHE	A	826	23.013	33.606	-2.421	1.00	63.26
MOTA	78	CE2	PHE	A	826	23.893	33.090	-0.261	1.00	63.76
ATOM	79	CZ	PHE	А	826	22.859	33.026	-1.183	1.00	63.42
MOTA	80	N	GLN	A	827	28.933	36.771	-0.514	1.00	64.73
MOTA	81	CA	GLN	A	827	30.359	37.048	-0.474	1.00	63.67
MOTA	82	C	GLN	Α	827	31.182	35.763	-0.387	1.00	62.27
MOTA	83	0	GLN	А	827	31.703	35.217	-1.356	1.00	61.84
MOTA	84	CB	GLN	A	827	30.736	37.884	0.748	1.00	65.45
MOTA	85	CG	GLN	A	827	29.641	38.676	1.428	1.00	69.14
MOTA	86	CD	GLN	Α	827	29.805	40.166	1.185	1.00	71.09
MOTA	87	OE1	GLN	Α	827	29.364	40.617	0.124	1.00	72.36
MOTA	88	NE2	GLN	Α	827	30.442	40.865	2.124	1.00	71.89
MOTA	89-	N	ASP	A	828	31.371	35.286	0.838	1.00	61.57
ATOM	90	CA	ASP	A	828	32.237	34.122	1.034	1.00	62.37
ATOM	91	C	ASP	Α	828	31.576	33.071	1.883	1.00	61.37
MOTA	92	0 -	ASP	A	828	30.330	32.899	1.910	1.00	63.34
ATOM	93	CB	ASP			33.605	34.623	1.532	1.00	63.30
ATOM	94	CG	ASP	A	828	33.536	35.073	2.977	1.00	65.22
ATOM	95 .		ASP			34.629	35.346	3.505		66.32
ATOM	96	OD2	ASP	A	828	32.418	35.135	3.513	1.00	67.27
ATOM	97	N	VAL			32.332	32.174	2.503	1.00	59.16
ATOM	98	CA	VAL	Α	829	31.820	31.095	3.339	1.00	56.81
ATOM	99	C,	VAL	A	829	32.101	31.413	4.805	1.00	57.13
ATOM ·	100		VAL			33.252	31.767	5.119		57.41
ATOM	101	CB	VAL			32.462	29.753	2.948		55.58
ATOM	102		VAL			32.035	28.658	3.909		55.56
ATOM	103		VAL			32.111	29.383	1.513		55.17
ATOM	104	N	ILE			31.106	31.314	5.693		56.36
ATOM	105	CA	ILE			31.360	31.613	7.108		54.69
ATOM	106	C	ILE			31.971	30.371	7.750		54.51
ATOM	107	0	ILE			32.927	30.411	8.507		54.88
ATOM	108	CB	ILE			30.170	32.157	7.898		52.84
ATOM	109		ILE			29.780	33.560	7.374		52.48
ATOM	110		ILE			30.518	32.300	9.375		51.14
										· - -

3 TOM		an.		-		25				
MOTA	168	CD1			839	26.155	30.260	0.433		47.96
MOTA	169	CD2			839	28.160	29.519	1.717	1.00	44.56
ATOM	170	N	LYS	A	840	28.053	34.107	3.847	1.00	47.52
ATOM	171	CA	LYS	A	840	27.984	35.508	4.234	1.00	48.47
ATOM	172	C			840	27.434	36.369	3.109		49.26
ATOM	173	0			840	27.837	36.150	1.960		49.21
MOTA	174	CB			840	29.393	35.943	4.654		48.66
ATOM	175	CG	LYS	A	.840	29.320	37.059	5.668	1.00	49.85
MOTA	176	CD	LYS	A	840	29.716	38.398	5.125	1.00	49.60
ATOM	177	CE	LYS	A	840	29.768	39.457	6.225	1.00	50.13
ATOM	178	NZ	Tys	Δ	840	31.184	39.749	6.580		51.35
ATOM	179	N			841	26.486	37.270	3.389		51.52
			ALA							
ATOM	180	CA				25.968	38.108	2.312		53.29
ATOM	181	C	ALA			25.768	39.564	2.726		54.51
ATOM	182	0	ALA	A	841	25.753	39.914	3.903	1.00	54.20
ATOM	183	CB	ALA	Α	841	24.641	37.503	1.837	1.00	52.47
MOTA	184	N	ARG	A	842	25.564	40.398	1.714	1.00	57.16
ATOM	185	CA	ARG	А	842	25.154	41.784	1.915		60.23
ATOM	186	C	ARG			23.699	41.667	1.451		61.88
ATOM		0	ARG							63.40
	187					23.499	41.023	0.416		
ATOM	188	CB	ARG			25.900	42.835	1.119		61.09
ATOM	189	CG	ARG			27.301	43.137	1.622		62.77
ATOM	190	CD	ARG	A	842	27.258	43.791	2.995	1.00	63.72
MOTA	191	NE	ARG	Α	842	26.985	45.231	2.928	1.00	64.65
ATOM	192	CZ	ARG			26.963	45.986	4.017	1.00	65.52
ATOM	193	NHl	ARG			26.724	47.291	4.022		65.78
		NH2	ARG			27.158				66.80
ATOM	194						45.436	5.214		
ATOM	195	N	ILE			22.745	42.047	2.281		63.86
ATOM	196	CA	ILE			21.322	41.935	1.983		66.38
ATOM	197	C	ILE	A	843	20.610	43.284	2.150	1.00	69.29
ATOM	198	0	ILE	A	843	20.337	43.810	3.233	1.00	72.01
ATOM .	199	CB	ILE	A	843	20.524	40.846	2.715	1.00	64.76
ATOM	200	CG1	ILE			20.218	41.134	4.182		63.75
ATOM	201	CG2	ILE			21.198	39.477	2.638		65.06
ATOM	202	CD1	ILE			19.030	40.372	4.733		61.60
ATOM	203	N	LYS			20.274	43.844	0.975		70.72
ATOM	204	CA	LYS	A	844 .	19.599	45.144	0.939		72.14
MOTA	205	C	LYS	A	844	18.157	45.087	1.427	1.00	73.85
ATOM	206	0	LYS	A	844	17.234	44.834	0.650	1.00	74.26
ATOM	207	CB	LYS		844	19.596	45.771	-0.449	1.00	71.35
ATOM	208	N	LYS			17.931	45.392	2.697		75.42
	209		LYS			16.580	45.403	3.262		77.81
ATOM		CA								
ATOM	210	Ć	LYS			16.190	46.868	3.403	1.00	
ATOM	211	0	LYS			16.751	47.630	4.197		79.71
ATOM	212	CB	LYS	A	845	16.528	44.624	4.561	1.00	77.32
MOTA	213	CG	LYS	A	845	15.188	44.450	5.231	1.00	76.89
ATOM	214	CD	LYS	A	845	15.318	43.734	6.572	1.00	76.27
ATOM	215	CE	LYS			13.956	43.469	7.205	1.00	75.52
ATOM	216	NZ	LYS			14.066	42.788	8.521	1.00	
ATOM	217	N	ASP			15.243	47.333	2.610	1.00	
ATOM	218	CA	ASP			14.674	48.627	2.374	1.00	
MOTA	219	C	ASP			15.649	49.493	1.560		85.22
ATOM	220	0	ASP	A	846	15.804	49.302	0.353	1.00	85.44
MOTA	221	CB	ASP	A	846	14.070	49.395	3.514	1.00	86.44
ATOM	222	CG	ASP			14.770	49.744	4.790		87.92
ATOM	223	OD1				15.058	50.942	5.029		88.52
										89.21
ATOM	224	OD2	ASP	A	040	15.044	48.819	5.599	1.00	Q7.41

					_				
MOTA	225	N			847	16.337	50.395	2.231	1.00 85.08
MOTA	226	CA	\mathtt{GLY}	A	847	17.317	51.266	1.590	1.00 83.96
ATOM	227	С	GLY	A	847	18.593	51.154	2.430	1.00 83.43
ATOM	228	0	GLY	A	847	19.555	51.871	2.210	1.00 84.91
ATOM	229	N	LEU	A	848	18.493	50.239	3.396	1.00 81.24
ATOM	230	CA	LEU	A	848	19.634	49.951	4.250	1.00 78.49
MOTA	231	С	LEU	A	848	20.311	48.732	3.617	1.00 76.61
ATOM	232	0	LEU	A	848	19.608	47.760	3.340	1.00 76.98
ATOM	233	CB	LEU	Α	848	19.195	49.564	5.658	1.00 78.88
ATOM	234	CG	LEU	Α	848	18.312	50.582	6.388	1.00 79.08
ATOM	235	CD1	LEU	A	848	17.346	49.858	7.312	1.00 79.29
ATOM	236	CD2	LEU			19.184	51.563	7.157	1.00 79.32
ATOM	237	N	ARG			21.592	48.863	3.326	1.00 73.72
ATOM	238	CA	ARG			22.332	47.696	2.850	1.00 70.15
ATOM	239	C	ARG			22.830	47.095	4.175	1.00 67.06
ATOM	240	0	ARG			23.153	47.922	5.036	1.00 65.85
ATOM	241	CB	ARG			23.493	48.031	1.941	1.00 33.83
ATOM	242	CG	ARG			23.403	47.798	0.452	1.00 72.96
ATOM	243	CD	ARG			24.483	46.995	-0.110	1.00 72.30
			ARG			25.606			1.00 74.22
ATOM	244	NE					47.792	-0.586	
ATOM	245	CZ	ARG			26.848	47.399	-0.871	1.00 75.22
ATOM	246	NH1	ARG			27.183	46.121	-0.715	1.00 73.54
ATOM	247	NH2	ARG			27.739	48.290	-1.305	1.00 74.94
MOTA	248	N	MET			22.777	45.781	4.369	1.00 63.25
MOTA	249	CA			850	23.293	45.285	5.655	1.00 59.28
ATOM	250	,C			850	23.898	43.883	5.493	1.00 55.95
ATOM	251	0			850	23.690	43.197	4.494	1.00 56.07
MOTA	252	CB			850	22.245	45.279	6.757	1.00 58.62
ATOM	253	CG	MET			21.296	44.096	6.631	1.00 59.21
ATOM	254	SD	MET		850	19.724	44.280	7.443	1.00 59.73
MOTA	255	CE	MET		850	20.128	44.922	9.049	1.00 59.43
ATOM	256	N			851	24.651	43.563	6.548	1.00 51.79
ATOM	257	CA			851	25.299	42.268	6.600	1.00 48.61
ATOM	258	C	ASP		851	24.332	41.192	7.084	1.00 45.57
MOTA	259	0	ASP			23.630	41.457	8.086	1.00 42.14
ATOM	260	CB			851	26.379	42.285	7.697	1.00 50.01
MOTA	261	CG			851	27.669	42.933	7.256	1.00 50.84
MOTA	262	OD1	ASP	A	851	28.043	42.801	6.057	1.00 51.87
ATOM	263	OD2	ASP	A	851	28.272	43.563	8.144	1.00 50.81
ATOM	264	N	ALA	Α	852	24.472	39.961	6.632	1.00 45.45
MOTA	265	CA	ALA			23.622	38.884	7.138	1.00 42.89
MOTA	266 .	Ç,	ALA	Α	852	24.373	37.570	7.066	1.00 42.71
ATOM	267	0	ALA	А	852	25.336	37.518	6.303	1.00 43.78
ATOM	268	CB	ALA	A	852	22.397	38.727	6.261	1.00 41.61
ATOM	269	N	ALA	A	853	23.847	36.577	7.785	1.00 43.18
ATOM	270	CA	ALA	А	853	24.394	35.222	7.668	1.00 43.19
ATOM	271	C	ALA	Α	853	23.300	34.446	6.931	1.00 45.23
ATOM	272	0	ALA	Α	853	22.122	34.570	7.296	1.00 45.40
MOTA	273	CB	ALA	A	853	24.725	34.651	9.043	1.00 43.45
ATOM	274	N	ILE	A	854	23.599	33.717	5.863	1.00 45.69
ATOM	275	CA	ILE	A	854	22.561	33.051	5.093	1.00 46.79
ATOM	276	C	ILE	A	854	22.583	31.537	5.228	1.00 50.11
MOTA	277	0	ILE			23.643	30.913	5.101	1.00 51.97
ATOM	278	CB	ILE	Α	854	22.686	33.334	3.581	1.00 45.28
ATOM	279	CG1	ILE	A	854	22.754	34.819	3.268	1.00 45.20
MOTA	280	CG2	ILE			21.553	32.685	2.794	1.00 45.13
ATOM	281	CD1				21.509	35.654	3.433	1.00 45.48

ATOM	282	N			855		21.40		30.949	5.453		51.72
ATOM	283	CA	LYS			•	21.35	5	29.474	5.425		54.33
ATOM	284	С	LYS				20.24	0	29.052	4.458		55.89
ATOM	285	0	LYS				19.27		29.786	4.205		52.41
ATOM	286	CB	LYS				21.27		28.892	6.808		55.64
MOTA	287	CG	LYS				19.91		28.834	7.487		58.25
ATOM	288	CD	LYS				20.05		28.092	8.807		59.55
MOTA	289	CE	LYS				18.98	7	27.027	9.025	1.00	60.12
ATOM	290	NZ	LYS				19.48		26.165	10.151		60.89
ATOM	291	N	ARG				20.38	6	27.871	3.871	1.00	59.82
ATOM	292	CA	ARG				19.41		27.341	2.915		63.71
ATOM	293	C	ARG				18.80		26.009	3.309		66.24
MOTA	294	0	ARG				19.45	6	25.004	3.565		66.29
ATOM	295	CB	ARG	A	856		20.12	6	27.258	1.555	1.00	63.38
ATOM	296	N	MET	A	857		17.48	б	25.951	3.418	1.00	69.77
ATOM	297	CA	MET	Α	857		16.71	8	24.748	3.728	1.00	73.04
ATOM	298	С	MET	Α	857		15.96	0	24.381	2.447	1.00	75.83
MOTA	299	0	MET	A	857	;	16.14	9	25.126	1.472	1.00	77.44
ATOM	300	CB	MET	A	857		15.76	1	24.965	4.887	1.00	72.49
ATOM	301	N	LYS	A	858	:	15.174	4	23.321	2.404	1.00	78.15
MOTA	302	CA	LYS	Α	858		14.449	9	22.985	1.184	1.00	80.35
ATOM	303	C	LYS	Α	858	;	13.18:	1	22.168	1.417	1.00	81.76
MOTA	304	0	LYS	Α	858	;	13.118	8	21.298	2.282	1.00	82.29
MOTA	305	CB	LYS	A	858	:	15.320	0	22.196	0.212	1.00	80.34
ATOM	306	N	GLU	A	85 <i>9</i>	:	12.17:	1	22.427	0.593	1.00	82.86
ATOM	307	CA	GLU	A	859	:	10.909	5	21.705	0.631	1.00	83.98
ATOM	308	C	GLÜ	A	859		10372		21.378	2.024	1.00	84.84
ATOM	309	0	GLU	A	859		9.465	5	20.540	2.160	1.00	85.54
ATOM	310	CB	GLU	A	859		11.040	0	20.388	-0.143	1.00	83.34
TER												
ATOM	311	N	ASP	В	868		3.887	7	24.257	9.102	1.00	74.33
ATOM	312	CA	ASP	В	868		4.969	9	23.506	9.742	1.00	73.45
ATOM	313	С	ASP	В	868		6.153	1	24.465	9.894	1.00	72.92
ATOM	314	0	ASP	В	868		6.219	5	25.236	10.848	1.00	72.75
ATOM	315	CB	ASP				5.345		22.276	8.927	1.00	73.09
ATOM	316	N	PHE				6.973		24.491	8.845	1.00	71.93
ATOM	317	CA `	PHE				8.128		25.356	8,739	1.00	71.39
ATOM	318	С	PHE				7.722		26.812	8.514	1.00	69.85
ATOM	319	ō			869		8.507		27.721	8.789		68.53
ATOM	320	СВ	PHE				9.086		24.894	7.635		72.16
ATOM	321	N	ALA			•	6.485		27.041	8.084		68.66
ATOM	322.		ALA				6.008		28.412	7.917	1.00	67.79
ATOM	323	C	ALA				5.699		28.972	9.300		66.69
ATOM	324	0	ALA				5.914		30.142	9.612		67.76
ATOM	325	CB	ALA				4.786		28.421	7.009		67.73
ATOM	326	N	GLY			,	5.125		28.124	10.156		64.74
ATOM	327	CA	GLY				4.746		28.539	11.506		63.48
ATOM	328	C	GLY				5.968		28.696	12.407		63.38
ATOM	329	o	GLY				6.078		29.586	13.241		62.27
ATOM	330	N	GLU				6.936		27.789	12.259		63.08
ATOM	331	CA	GLU				8.163		27.733	13.033		62.41
ATOM	332	C	GLU				8.870		29.166	12.865		59.48
ATOM	332 333	0	GLU				9.299		29.759	13.849		59.18
		CB	GLU				9.104		26.684	12.627		64.92
ATOM	334	CG	GLU				8.756		25.334	13.218		67.28
ATOM	335	CD	GLU				9.191		24.093	12.474	•	68.33
ATOM	336		GLU				8.848		22.953	12.474		69.51
ATOM	337	OET	OLLO OLLO	יי	U / 42		0.040	J	22.733	12.910	1.00	٠,٠٠٠

ATOM	395	CA	GLY	В	880	14.164	37.870	17.686	1.00	42.66
ATOM	396	C	GLY	В	880	14.499	39.226	18.185	1.00	43.75
atom	397	0	GLY	В	880	15.698	39.526	18.103	1.00	46.29
ATOM	398	N	HIS	В	881	13.580	40.053	18.637	1.00	42.86
MOTA	399	CA	HIS	В	881	13.759	41.403	19.105	1.00	43.65
ATOM	400	C	HIS	В	881	14.619	41.378	20.370	1.00	39.48
ATOM	401	0	HIS	В	881	15.539	42.203	20.446	1.00	43.05
ATOM	402	CB	HIS	В	881	12.417	42.127	19.236		47.39
ATOM	403	CG	HIS		881	11.628	42.051	20.490		50.98
ATOM	404	ND1	HIS	В	881	10.412	41.442	20.685	1.00	
ATOM	405	CD2	HIS		881	11.944	42.576	21.711	1.00	
ATOM	406		HIS		881	10.057	41.591	21.975	1.00	
ATOM	407	NE2	HIS			10.966	42.286	22.647	1.00	
ATOM	408	N	HIS		882	14.422	40.401	21.250	1.00	35.00
ATOM	409	CA	HIS	В	882	15.234	40.280	22.473	1.00	
ATOM	410	C	HIS	В	882	16.695	40.394	22.473	1.00	29.63
MOTA	411	0			882					
		CB	HIS	В	882	17.099	39.702	21.115	1.00	
ATOM	412					14.977	38.947	23.240	1.00	
ATOM	413	CG	HIS	В	882	15.458	39.007	24.665	1.00	28.91
MOTA	414	ND1	HIS		882	16.739	38.861	25.208		28.25
ATOM	415	CD2	HIS		882	14.687	39.334	25.705	1.00	27.99
ATOM	416	CE1	HIS		882	16.623	39.049	26.523	1.00	28.98
ATOM	417	NE2	HIS			15.346	39.333	26.866	1.00	
ATOM	418	N	PRO		883	17.468	41.252	22.659		31.32
MOTA	419	CA	PRO			18.882	41.398	22.375		31.40
MOTA	420	C	PRO		883	19.687	40.158	22.658		32.62
MOTA	421	0	PRO		883	20.700	39.965	21.941		36.70
ATOM	422	CB	PRO		883	19.206	42.672	23.123		30.55
MOTA	423	CG	PRO		883	18.433	42.543	24.437		33.27
ATOM	424	CD	PRO		883	17.096	42.064	23.858		31.21
ATOM	425	N	ASN		884	19.290	39.18 <i>9</i>	23.448		33.73
ATOM	426	CA	ASN			19.999	37.942	23.685	1.00	32.47
ATOM	427	C	ASN		884	19.496	36.811	22.823	1.00	34.37
ATOM	428	0	ASN	В	884	19.901	35.659	23.051	1.00	34.65
ATOM	429	CB	ASN	В	884	19.952	37.596	25.173	1.00	33.46
ATOM	430	CG	ASN	В	884	20.404	38.649	26.117		36.23
MOTA	431	ODl	ASN	В	884	20.011	39.181	27.122		37.73
ATOM	432	ND2	ASN	В	884	21.749	38.992	25.840	1.00	32.70
ATOM '	433	N	ILE	B	885	18.623	37.014	21.825	1.00	32.48
ATOM	434	CA	ILE	В	885	18.185	36.032	20.859	1.00	34.12
ATOM	435	C	ILE	В	885	18.587	36.426	19.455	1.00	32.76
ATOM	436	Q	ILE	В	885	18.359	37.539	18.982	1.00	33.37
ATOM	437	CB	ILE	В	885	16.662	35.743	21.004	1.00	33.83
ATOM	438	CGl	ILE	В	885	16.442	35.119	22.402	1.00	35.22
MOTA	439	CG2	ILE	В	885	16.088	34.847	19.922	1.00	33.58
ATOM	440	CD1	ILE	В	885	14.970	34.840	22.653	1.00	38.35
ATOM	441	N	ILE	В	886	19.261	35.557	18.697	1.00	34.99
ATOM	442	CA	ILE	В	886	19.694	35.965	17.333	1.00	37.58
ATOM	443	C	ILE	В	886	18.478	36.272	16.468		39.01
ATOM	444	0	ILE.			17.526	35.459	16.453		38.20
ATOM	445	CB	ILE			20.693	34.967	16.752		38.15
ATOM	446	CG1	ILE			21.549	35.590	15.622		40.28
ATOM	447	CG2	ILE			19.985	33.776	16.206		38.96
ATOM	448	CD1	ILE			22.675	36.445	16.190		39.25
ATOM	449	N	ASN			18.472	37.380	15.731		38.67
ATOM	450	CA	ASN			17.268	37.824	15.016		40.23
ATOM	451	C	ASN			17.116	37.485	13.560		40.18
	-	-						-		

ATOM 452 O ASN E 887 17.153 39.347 15.231 1.00 40.41 ATOM 454 CG ASN B 887 17.153 39.347 15.231 1.00 40.45 17.00 45.5 ODI ASN B 887 15.961 41.166 14.290 1.00 38.75 ATOM 455 ODI ASN B 887 15.961 41.166 14.290 1.00 38.75 ATOM 456 ND2 ASN B 887 14.746 39.340 14.692 1.00 38.70 ATOM 456 ND2 ASN B 888 14.746 39.340 14.692 1.00 38.70 ATOM 457 N LEU B 888 15.601 38.053 10.990 11.00 44.52 ATOM 459 C LEU B 888 15.501 38.053 10.990 10.0 44.52 ATOM 459 C LEU B 888 14.291 38.053 10.990 11.00 44.52 ATOM 469 C LEU B 888 12.393 38.957 11.351 1.00 42.69 ATOM 461 CB LEU B 888 11.674 35.185 11.586 1.00 42.69 ATOM 462 CG LEU B 888 12.393 38.957 11.351 1.00 42.69 ATOM 463 CDI LEU B 888 12.393 35.001 10.00 46.44 ATOM 463 CDI LEU B 888 12.393 35.001 10.00 46.44 ATOM 465 N LEU B 889 16.216 39.377 9.004 1.00 47.08 ATOM 466 CA LEU B 889 16.216 39.377 9.004 1.00 48.94 ATOM 466 CA LEU B 889 16.216 39.377 9.004 1.00 48.94 ATOM 467 C LEU B 889 16.106 39.377 9.004 1.00 48.94 ATOM 467 C LEU B 889 15.178 39.162 7.822 1.00 48.91 ATOM 470 CG LEU B 889 11.373 40.055 7.642 1.00 52.61 ATOM 470 CG LEU B 889 18.022 40.866 9.850 1.00 52.03 ATOM 471 CDI LEU B 889 18.022 40.866 9.850 1.00 52.47 ATOM 477 CG LEU B 889 18.029 40.866 9.850 1.00 52.47 ATOM 477 CG LEU B 889 19.053 41.862 9.535 1.00 56.92 ATOM 477 CG LEU B 889 19.053 41.862 9.535 1.00 56.92 ATOM 477 CG LEU B 889 19.053 41.862 9.535 1.00 56.92 ATOM 477 CG LEU B 889 19.053 41.862 9.535 1.00 56.92 ATOM 477 CG LEU B 889 19.053 41.862 9.535 1.00 56.92 ATOM 477 CG LEU B 889 19.053 41.862 9.535 1.00 56.62 ATOM 477 CG LEU B 889 19.053 41.862 9.535 1.00 56.62 ATOM 478 CG ALAB 891 13.367 36.080 41.619 1.00 52.67 ATOM 478 CG ALAB 891 13.367 36.080 41.619 1.00 56.62 ATOM 479 C ALAB 891 13.367 36.080 41.619 1.00 56.62 ATOM 479 C ALAB 891 13.367 36.080 41.619 1.00 56.62 ATOM 489 CG LEU B 893 13.203 32.401 1.00 52.67 ATOM 489 CG LEU B 893 13.203 32.401 1.00 52.67 ATOM 489 CG LEU B 893 12.307 30.91 1.00 52.67 ATOM 489 CG LEU B 893 12.307 30.91 1.00 52.67 ATOM 489 CG LEU B 893 12.307 30.91 1.00 66.95 ATOM 489

ATOM	509	С	ARG	В		14.001	26.742	-6.281		74.16
ATOM	510	0	ARG	В	895	12.911	27.249	-5.967	1.00	74.67
ATOM	511	CB	ARG	В	895	16.262	27.053	-7.367	1.00	74.14
ATOM	512	N	GLY	В	896	14.429	25.597	-5.769	1.00	73.62
	513	CA	GLY		896	13.554	24.843	-4.878	1.00	74.58
ATOM						13.801		-3.383	1.00	75.31
MOTA	514	С	GLY		896		24.946			
MOTA	515	0	GLY		896	13.362	24.085	-2.599	1.00	74.62
MOTA	516	N	TYR	В	897	14.568	25.958	-2.952	1.00	75.55
ATOM	517	CA	TYR	В	897	14.937	26.107	-1.551	1.00	75.78
ATOM	518	C	TYR	В	897	14.498	27.408	-0.882	1.00	73.41
ATOM	519	0	TYR		897	14.296	28.420	-1.548	1.00	73.50
ATOM	520	CB	TYR		897	16.466	26.038	-1.444	1.00	
			TYR		897	17.225	24.811	-1.836	1.00	80.53
MOTA	521	CG								81.37
ATOM	522	CD1	TYR		897	17.259	24.356	-3.145		
ATOM	523	CD2	TYR	В	897	17.982	24.114	-0.898	1.00	
ATOM	524	CE1	\mathtt{TYR}	В	897	17.983	23.232	-3.498	1.00	82.95
ATOM	525	CE2	TYR	В	897	18.712	22.994	-1.247	1.00	82.00
ATOM	526	CZ	TYR	В	897	18.723	22.542	-2.554	1.00	82.42
ATOM	527	N	LEU		898	14.434	27.417	0.450	1.00	70.37
			LEU		898	14.132	28.667	1.172	1.00	
ATOM	528	CA								
ATOM	529	С	LEU		898	15.407	29.218	1.794	1.00	66.94
ATOM	530	0	LEU	В	898	16.271	28.530	2.340	1.00	
ATOM	531	CB	LEU	В	898	12.957	28.443	2.089	1.00	67.63
ATOM	532	CG	LEU	В	898	12.979	28.839	3.549	1.00	66.92
ATOM	533	CD1	LEU	В	898	11.612	29.212	4.063	1.00	67.30
ATOM	534	CD2	LEU		898	13.492	27.667	4.393	1.00	67.72
			TYR		899	15.648	30.512	1.585		65.23
ATOM	535	N								61.95
MOTĄ	536	CA	TYR		899	16.871	31.191	2.019		
ATOM	537	C	\mathtt{TYR}		899	16.601	32.001	3.262		60.81
ATOM	538	0	TYR	В	899	15.646	32.7 <i>9</i> 7	3.247		61.40
ATOM	539	CB	TYR	В	899	17.291	31.923	0.733	1.00	62.33
ATOM	540	CG	TYR	В	899	17.999	31.028	-0.267	1.00	63.29
ATOM	541	CD1	TYR		899	17.347	30.060	-1.018	1.00	63.92
ATOM	542	CD2	TYR		899	19.373	31.154	-0.439	1.00	63.86
					899	18.025	29.235	-1.897		64.75
ATOM	543	CE1	TYR							64.65
MOTA	544	CE2	TYR		899	20.078	30.345	-1.317		
ATOM	545	CZ	TYR	В	899	19.395	29.384	-2.041	1.00	65.94
ATOM	546	$_{OH}$	TYR	В	899	20.089	28.577	-2.918	1.00	66.41
ATOM	547	N	LEU	В	900	17.269	31.750	4.397	1.00	56.58
ATOM	548	CA	LEU	В	900	17.006	32.506	5.625	1.00	52.46
ATOM	549	C	LEU	B	900	18.209	33.421	5.892	1.00	50.69
	550.		LEU			19.359	33.002	5.834		49.63
MOTA		•						6.859		52.94
ATOM	551	СВ	LEU			16.742	31.664			
ATOM	552	CG	LEU			15.786	30.472	6.845		53.46
MOTA	553	CD1	LEU	В	900	16.449	29.204	6.312		53.02
ATOM	554	CD2	LEU	В	900	15.211	30.153	8.224		53.76
ATOM	555	N	ALA	В	901	17.923	34.696	6.093	1.00	48.07
ATOM	556	CA	ALA			18.972	35.699	6.337	1.00	44.87
		C	ALA			18.893	36.119	7.800	1.00	42.43
ATOM	557							8.253		41.24
ATOM	558	0	ALA			17.895	36.689			
MOTA	559	CB	ALA			18.777	36.899	5.429		43.13
MOTA	560	N	ILE			19.919	35.717	8.532		42.59
MOTA	561	CA	ILE	В	902	20.012	35.929	9.979		40.02
ATOM	562	C	ILE	В	902	20.926	37.088	10.334	1.00	40.16
ATOM	563	ō	ILE			21.844	37.413	9.586	1.00	41.22
		CB	ILE			20.561	34.648	10.635		39.22
ATOM	564					19.781	33.405	10.190		41.67
ATOM	565	CG1	ILE	ם	JUZ	19./01	JJ.403	10.100	1.00	12.07

ATOM	566	CG2	ILE B	902	20.538	34.742	12.152	1.00	38.02
ATOM	567	CD1		902	18.258	33.542	10.392	1.00	44.70
MOTA	568	N	GLU B	903	20.702	37.692	11.498	1.00	38.24
MOTA	569	CA	GLU B	903	21.487	38.756	12.058	1.00	36.51
ATOM	570	C	GLU B	903	22.929	38.231	12.121		37.45
MOTA	571	0	GLU B	903	23.188	37.096	12.569	1.00	37.05
ATOM	572	CB	GLU 3	903	20.984	39.024	13.484	1.00	36.53
ATOM	573	CG		903	21.936	39.865	14.343	1.00	39.44
ATOM	574	CD		903	21.384	40.070	15.735	1.00	40.57
ATOM	575	OE1		903	21.848	40.909	16.534	1.00	39.27
ATOM	576	OE2	GLU B	903	20.387	39.361	16.065	1.00	39.59
ATOM	577	N	TYR B	904	23.817	39.039	11.558	1.00	36.26
ATCM	578	CA.	TYR B	904	25.236	38.729	11.507	1.00	38.11
ATOM	579	C	TYR B	904	25.928	39.016	12.842	1.00	36.13
ATOM	580	ō		904	25.810	40.085	13.447	1.00	36.04
ATOM	581	CB	TYR B	904	25.870	39.456	10.293	1.00	38.03
ATOM	582	CG	TYP B	904	27.340	39.121	10.159	1.00	39.56
	583	CD1	TYR B	904	27.790	37.827	9.900	1.00	40.02
ATOM	584	CD2	TYR B	904	28.296	40.122	10.364	1.00	39.80
ATOM	585	CE1	TYR B	904	29.154	37.532	9.822	1.00	40.07
ATOM	586	CE2	TYR B	904	29.641	39.846	10.258	1.00	39.30
MOTA		CEZ	TYR B.		30.043	38.571	9.994	1.00	38.67
ATOM	587	OH		904	31.395	38.341	9.943	1.00	42.02
ATOM	588		ALA B	905	26.565	37.994	13.427		33.70
MOTA	589	N	ALA B	905	27.351	38.148	14.629		34.04
ATOM	590	CA			28.807	38.331	14.173		34.59
	591	C		905		37.413	13.631		34.61
MOTA	592	0	ALA B	905	29.422	36.924	15.544		31.52
MOTA	593	CB	ALA B	905	27.272	39.523	14.313		37.23
MOTA	594	N	PRO B	906	29.362	39.735	13.790		36.90
ATOM	595	CA	PRO B	906	30.702	39.735	14.554	1.00	37.30
MOTA	596	C	PRO B	906	31.854	39.226	14.071	1.00	37.05
MOTA	597	0	PRO B	906	32.998		13.601	1.00	38.72
MOTA	598	CB	PRO B	906	30.757	41.248	14.378	1.00	39.46
ATOM	599	CG	PRO B	906	29.641	41.840	14.854	1.00	35.60
MOTA	600	CD	PRO E	906	28.736	40.738	15.767	1.00	35.76
ATOM	601	N	HIS B	907	31.720	38.652			34.45
MOTA	602	CA	HIS B	907	32.810	38.072	16.515		33.29
ATOM	603	C	HIS B	907	32.768	36.551	16.532		36.68
ATOM	604	0	HIS B	907	33.420	36.044	17.429	1.00	32.90
ATOM	605	ÇВ	HIS B	907	32.793	38.614	17.971		33.20
MOTA	606	CG	HIS B		32.706	40.082	17.966		
MOTA	607		HIS B		33.802	40.846	17.590		35.03
MOTA	608		HIS B		31.727	40.985	18.200		31.98
ATOM	609	CE1	HIS B		33.497	42.128	17.610		33.06
ATOM	610	NE2	HIS B	907	32.241	42.248	18.017		33.02
MOTA	611	N	GLY B	908	32.021	35.804	15.757		30.48
ATOM	612	CA	GLY B	908	32.010	34.380	15.765		32.68
ATOM	613	C	GLY B	908	31.084	33.774	16.838		31.58
ATOM	614	0	GLY B	908	30.218	34.407	17.431		28.30
ATOM	615	N	ASN B		31.300	32.477	17.068		27.49
ATOM	616	CA	ASN B		30.550	31.793	18.108		24.09
ATOM	617	C	ASN B		31.321	32.036	19.407		25.93
ATOM	618	Ō	ASN B		32.485	32.498	19.367		28.49
ATOM	619	CB	ASN B		30.241	30.343	17.894		26.09
ATOM	620	CG	ASN B		31.306	29.286	17.946		28.79
MOTA	621		ASN B		31.088	28.055	17.867		30.89
ATOM	622		ASN B		32.526	29.772	18.045	1.00	25.36
ATOM.	922	24202							

ATOM	623	N	LEU E	910	30.721	31.746	20.545	1.00	23.98
ATOM	624	CA	LEU E	910	31.369	32.013	21.809		24.27
MOTA	625	С	LEU E	910	32.494	31.025	22.149		28.34
ATOM	626	0	LEU E		33.475	31.482	22.740		28.22
ATOM	627	CB	LEU E		30.268	31.885	22.850		22.33
ATOM	628	CG	LEU E		30.701	31.957	24.327		23.69
ATOM	629	CD1			31.394	33.213	24.683		22.29
ATOM	630	CD2	LEU E		29.417	31.790	25.166		21.67
ATOM	631	N	LEU B		32.290	29.750	21.805		27.95
ATOM	632	CA	LEU B		33.380	28.801	22.034		25.73
ATOM	633	C	LEU B		34.638	29.295	21.337		27.49
ATOM	634	0	LEU B		35.676	29.359	22.043		26.42
ATOM	635	CB	LEU B		33.003	27.396	21.533		27.05
	636	CG	LEU B						25.84
ATOM					34.062	26.292	21.771		
MOTA	637				34.319	26.301	23.302		20.85
ATOM	638	CD2	LEU B		33.505	24.899	21.410		23.88
ATOM	639	N	ASP B		34.686	29.509	20.034		27.48
ATOM	640	CA	ASP B		35.832	30.077	19.341		30.26
ATOM	641	С	ASP B		36.323	31.426	19.869		31.88
ATOM	642	0	ASP B		37.540	31.676	19.938		29.65
ATOM	643	CB	ASP B		35.557	30.313	17.848		30.57
ATOM	644	CG		912	35.339	29.102	16.995		34.53
ATOM	645	OD1		912	34.882	29.274	15.841	1.00	37.84
MOTA	646	OD2	ASP B	912	35.663	27.975	17.416	1.00	37.21
MOTA	647	N	PHE B	913	35.440	32.298	20.355	1.00	31.78
MOTA	648	CA	PHE B	913	35.763	33.564	20.967	1.00	29.21
MOTA	649	C	PHE B	913	36.507	33.319	22.291	1.00	30.28
ATOM	650	0	PHE B	913	37.612	33.931	22.463	1.00	27.63
ATOM	651	CB	PHE B	913	34.591	34.492	21.208	1.00	27.45
ATOM	652	CG	PHE B	913	34.831	35.958	21.499	1.00	29.93
ATOM	653	CD1	PHE B	913	35.060	36.840	20.461	1.00	28.75
ATOM	654	CD2	PHE B	913	34.910	36.415	22.816		27.43
ATOM	655	CE1	PHE B	913	35.313	38.202	20.715		28.06
ATOM	656	CE2	PHE B	913	35.188	37.763	23.068		29.46
ATOM	657	CZ	PHE B	913	35.379	38.643	22.029	-	28.47
ATOM	658	N	LEU B	914	36.054	32.404	23.151		26.55
ATOM	659	CA	LEU B	914	36.844	32.188	24.365		31.20
ATOM	660	C	LEU B	914	38.154	31.425	24.075		30.42
ATOM	661	0	LEU B	914	39.065	31.539	24.890		29.64
ATOM	662	CB	LEU B	914	36.133	31.379	25.440		32.99
ATOM	663	CG	LEU B		34.718	31.897	25.858		32.39
ATOM			LEU B		34.718	30.794	26.190		31.43
						32.805	27.062		27.44
ATOM	665	CD2	LEU B		34.981				
ATOM	666	N	ARG B		38.196	30.595	23.029		28.43
ATOM	667	CA	ARG B		39.414	29.824	22.755		29.31
ATOM	668	C	ARG B		40.498	30.753	22.149		32.00
ATOM	669	0	ARG B		41.692	30.583	22.478		33.32
ATOM	670	CB	ARG B		39.157	28.572	21.911		25.22
ATOM	671	CG	ARG B		38.723	27.348	22.800		24.37
ATOM	672	CD	ARG B		38.161	26.209	21.957		24.35
ATOM '	673	NE	ARG B		37.642	25.132	22.889		26.89
ATOM	674	CZ	ARG B		37.100		22.346		25.09
MOTA	675	NHl	ARG B		37.054	23.901	21.016		24.19
ATOM	676	NH2	ARG B	915	36.588	23.111	23.194		23.94
MOTA	677	N	LYS B	916	40.164	31.751	21.372	1.00	34.12
ATOM	678	CA	LYS B	916	40.980	32.736	20.705	1.00	35.63
MOTA	679	C	LYS B	916	41.664	33.693	21.683	1.00	36.01
							•		

									7 00	3 6 61
MOTA	680	0	LYS			42.762	34.252.			36.61
ATOM	681	CB	LYS		916	40.287	33.552	19.615		34.37
ATOM	682	CG	LYS		916	40.129	32.825	18.298		42.16
MOTA	683	CD	LYS		916	39.443	33.575	17.172		44.43
ATOM	684	CE			916	38.756	32.732	16.114		47.47
ATOM	685	NZ	LYS		916	37.371	33.261	15.814		51.77
MOTA	686	N	SER		917	40.991	33.857	22.786		33.46
ATOM.	687	CA	SER	3	917	41.419	34.647	23.937		32.01
ATOM	688	С	SER	B	917	42.545	34.012	24.721		32.62
MOTA	689	0	SER		917	43.188	34.725	25.520		27.96
ATOM	690	CB	SER		917	40.117	34.800	24.689		31.09
MOTA	691	OG	SER	В	917	40.057	34.497	26.054		33.24
ATOM	692	N	ARG	В	918	42.926	32.735	24.574		33.26
MOTA	693	CA	ARG	В	918	43.911	32.087	25.401		29.88
MCTA	694	C	ARG	В	918	45.341	32.471	24.927		33.33
MOTA	695	0	ARG	В	918	46.072	31.782	24.226	1.00	34.36
MOTA	696	CB	ARG	В	918	43.750	30.570	25.487	1.00	30.84
ATOM	697	·CG	ARG	В	918	42.350	30.118	25.969	1.00	31.53
ATOM	698	CD	ARG		918	42.301	28.655	26.234	1.00	31.59
ATOM	699	NE	ARG		918	41.373	27.771	26.776	1.00	30.40
ATOM	700	CZ	ARG		918	41.314	26.510	27.146	1.00	27.78
ATOM	701		ARG		918	42.579	25.901	27.032	1.00	24.30
ATOM	702	NH2	ARG		918	40.359	25.804	27.635	1.00	24.57
	702	N	VAL		919	45.792	33.639	25.388	1.00	29.19
ATOM	703	CA	VAL		919	46.914	34.362	24.991		31.89
ATOM	704	C	VAL			48.324	33.779	25.390		33.48
ATOM	705	0	VAL		919	49.318	34.428	25.239	1.00	42.15
ATOM		CB	VAL		919	47.064	35.854	25.366		30.88
MOTA	707		VAL		919	46.027	36.669	24.602		34.82
MOTA	708	CG1	VAL		919	46.881	36.061	26.852		31.88
ATOM	709		LEU			48.272	32.609	25.986		31.42
ATOM	710	N				49.386	31.803	26.310		32.43
ATOM	711	CA	LEU		920	49.546	30.949	25.049		33.59
MCTA	712	C	LEU			50.874	30.754	24.757		34.43
ATOM	713	0	LEU		920		30.754	27.516		26.98
ATOM	714	CB	LEU		920	49.363	31.646	28.827		28.45
ATOM	715	CG	LEU		920	49.473	30.712	29.911		24.11
ATOM	716	CD1	LEU			49.060		29.084		24.38
ATOM	717	CD2	LEU			50.899	32.259			33.03
ATOM	718	N	GLU			48.560	30.587	24.414		34.88
MOTA	719	CA	GLU			48.691	29.839	23.163		36.44
ATOM	720	C,	GLU			48.686	30.741	21.960		37.60
ATOM	721	0	GLU			49.468	30.532	21.028		
MOTA	722	ĊB	GLU			47.526	28.797	23.034		36.48
ATOM	723	CG	GLU			47.367	28.228	21.636		39.16
ATOM	724	CD	GLU			46.213	27.255	21.414		43.37
ATOM	725	OE1	GLU			45.489	26.854	22.357		41.90
MOTA	726	OE2	GLU	${\tt B}$	921	46.044	26.848	20.222		42.19
ATOM	727	N	THR	В	922	47.772	31.738	21.886		33.22
MOTA	728	CA	THR	В	922	47.684	32.482	20.652		33.16
ATOM	729	С	THR	В	922	48.566	33.711	20.605		33.32
ATOM	730	0	THR	В	922 ·	48.787	34.124	19.452		33.82
ATOM	731	CB			922	46.212	32.897	20.346		33.96
MOTA	732	OG1			922	45.814	33.744	21.415		33.38
MOTA	733	CG2			922	45.288	31.667	20.363		35.79
MOTA	734	N			923	49.134	34.252	21.645		34.17
MOTA	735	CA.			923	50.099	35.410	21.445		33.90
MOTA	736	C			923	50.855	35.464	22.736	1.00	31.06
		_								

ATOM	737	0	ASP B	923	50.593	36.342	23.567	1.00 27.46
ATOM	738	CB		923	49.307	36.710	21.268	1.00 37.04
	739	CG		923	50.153	37.937	20.960	1.00 41.38
ATOM	740	-		923	49.577	39.035	20.699	1.00 39.51
ATOM				923	51.412	37.813	20.986	1.00 38.37
MOTA	741			924	51.732	34.505	23.057	1.00 30.87
ATOM	742	N			52.373	34.348	24.339	1.00 29.10
MOTA	743	CA		924			24.884	1.00 30.48
ATOM	744	С		924	53.219	35.487		1.00 36.16
ATOM	745	С		924	53.451	35.658	26.081	1.00 38.10
ATOM	746	CB		924	53.266	33.088	24.160	
ATOM	747	CG		924	53.404	32.976	22.696	-
ATOM	748	CD		924	52.076	33.382	22.137	1.00 31.39
MOTA	749	N	ALA B	925	53.613	36.368	24.008	1.00 26.00
ATOM	750	CA	ALA B	925	54.366	37.598	24.150	1.00 32.47
ATOM	751	C	ALA B	925	53.543	38.653	24.869	1.00 29.57
ATOM	752	0	ALA B	925	53.787	39.195	25.935	1.00 30.49
ATOM	753	CB		925	54.773	38.221	22.799	1.00 31.57
ATOM	754	N		926	52.319	38.825	24.295	1.00 29.73
	755	CA		926	51.269	39.710	24.838	1.00 29.93
ATOM			PHE B	926	51.056	39.489	26.342	1.00 26.49
ATOM	756	С	PHE B		50.877	40.391	27.189	1.00 33.60
MOTA	757	0		926	49.990	39.510	24.004	1.00 33.75
MOTA	758	CB	PHE B	926		40.282	24.610	1.00 35.41
ATOM	759	CG	PHE B	926	48.853		24.201	1.00 35.32
MOTA	760	CD1		926	48.530	41.563		1.00 35.32
ATOM	761	CD2		926	48.148	39.708	25.665	
ATOM	762	CEl	PHE B	926	47.510	42.237	24.860	1.00 37.62
ATOM	763	CE2	PHE B	926	47.135	40.390	26.312	1.00 40.82
ATOM	764	CZ	PHE B	926	46.803	41.649	25.884	1.00 37.83
ATOM	765	N	ALA B	927	50.917	38.202	26.616	1.00 30.01
ATOM	766	CA	ALA B	927	50.632	37.486	27.815	1.00 28.56
ATOM	767	C	ALA B	927	51.656	37.637	28.900	1.00 29.51
ATOM	768	0	ALA B	927	51.289	37.839	30.056	1.00 30.25
ATOM	769	CB		927	50.513	35.973	27.565	1.00 32.88
ATOM	770	N		928	52.948	37.452	28.535	1.00 31.84
		CA		928	54.019	37.696	29.494	1.00 33.06
ATOM	771	C	ILE B	928	54.111	39.221	29.662	1.00 31.39
ATOM	772			928	54.206	39.681	30.804	1.00 32.12
ATOM	773	0			55.354	37.042	29.050	1.00 34.86
ATOM	774	CB	ILE B	928	56.448	37.311	30.077	1.00 36.35
MOTA	775	CG1	ILE B	928		37.483	27.689	1.00 36.48
ATOM	776	CG2	ILE B	928	55.833		31.274	1.00 40.48
MOTA	777	CD1			56.235	36.372		1.00 32.07
MOTA	778	N	ALA B		53.998	40.026	28.623	1.00 32.07
ATOM	779	CA	ALA B	929	54.114	41.493	28.884	
ATOM	780	C	ALA B	929	52.935	42.038	29.650	1.00 32.88
ATOM	781	0	ALA B	929	53.152	42.885	30.515	1.00 32.96
MOTA	782	CB	ALA B	929	54.276	42.286	27.584	1.00 38.44
ATOM	783	N	ASN B	930	51.737	41.363	29.538	1.00 32.01
ATOM	784	CA	ASN B	930	50.624	41.923	30.307	1.00 32.62
ATOM	785	C	ASN B		50.458	41.157	31.604	1.00 32.33
MOTA	786	0	ASN B		49.549	41.509	32.315	1.00 30.28
		CB	ASN B		49.305	41.975	29.564	1.00 30.21
ATOM	787		ASN B		49.462	43.166	28.612	1.00 34.16
ATOM	788	CG			49.104	44.224	29.139	1.00 35.09
MOTA	789		ASN B			42.925	27.434	1.00 33.29
ATOM	790	ND2			49.997	40.126	31.740	1.00 31.40
MOTA	791	И	SER B		51.284		32.863	1.00 34.73
MOTA	792	CA	SER B		51.064			1.00 31.81
MOTA	793	C	SER B	931	49.616	38.647	32.909	1.00 01.01

ATOM	794	0	SER B	931	48.946	38.522	33.960	1.00	28.51
ATOM	795	CB	SER B	931	51.539	39.966	34.083	1.00	36.38
ATOM	796	OG	SER B	931	51.372	39.137	35.239	1.00	44.81
ATOM	797	N	THR B	932	49.066	38.367	31.708	1.00	31.32
ATOM	798	CA	THR B	932	47.681	37.822	31.741	1.00	33.33
ATOM	799	С	THR B	932	47.532	36.490	31.036	1.00	31.10
ATOM	800	0	THR B	932	48.276	36.141	30.127	1.00	30.68
ATOM	801	CB	THR B	932	46.678	38.870	31.263	1.00	33.87
ATOM	802	OGI	THR B	932	45.316	38.426	31.576	1.00	33.49
ATOM	803	CG2	THR B	932	46.692	39.109	29.757	1.00	33.71
ATOM	804	11	ALA B	933	46.529	35.668	31.389	1.00	31.61
ATOM	805	CA	ALA B	933	46.226	34.431	30.705	1.00	29.07
MOTA	806	С	ALA B	933	45.091	34.589	29.655	1.00	30.40
ATOM	807	0	ALA B	933	44.908	33.676	28.853	1.00	28.66
ATOM	808	CB	ALA B	933	45.737	33.378	31.703	1.00	27.24
ATOM	809	N	SER B	934	44.450	35.779	29.587	1.00	26.77
MOTA	810	CA	SER B	934	43.413	36.013	28.587	1.00	28.62
ATOM	811	С	SER B	934	43.192	37.464	28.195	1.00	27.31
ATOM	812	0	SER B	934	43.323	38.417	28.980	1.00	27.55
ATOM	813	CB	SER B		42.064	35.455	29.162	1.00	26.81
ATOM	814	OG	SER B		40.981	35.744	28.323	1.00	27.56
ATOM	815	N	THR B		42.820	37.745	26.944	1.00	27.99
MOTA	816	CA	THR B		42.439	39.110	26.578	1.00	29.68
ATOM	817	C	THR B		41.160	39.524	27.282	1.00	31.68
MOTA	818	ō	THR B		40.842	40.718	27.320	1.00	33.62
ATOM	819	CB	THR B		42,242	39.350	25.075	1.00	28.76
ATOM	820	OG1	THR B		41.506	38.262	24.505	1.00	29.66
ATOM	821	CG2	THR B		43.525	39.478	24.287	1.00	30.80
ATOM	822	N	LEU B		40.343	38.579	27.771	1.00	30.00
ATOM	823	CA	LEU B		39.018	38.902	28.323	1.00	31.45
MOTA	824	C	LEU B		39.137	39.093	29.820	1.00	29.86
ATOM	825	0	LEU B		39.947	38.339	30.364	1.00	28.85
ATOM	826	CB	LEU B		38.171	37.634	28.127	1.00	35.21
MOTA	827	CG	LEU B		37.312	37.342	26.944	1.00	38.52
ATOM	828	CD1	LEU B		37.602	38.053	25.641	1.00	42.04
ATOM	829	CD2	LEU E		37.181	35.833	26.689	1.00	40.21
ATOM	830	N	SER E		38.381	39.888	30.508	1.00	28.66
ATOM	831	CA	SER E		38.427	39.976	31.975	1.00	27.30
ATOM	832	C	SER E		37.373	39.107	32.612	1.00	25.12
ATOM	833	0	SER E		36.444	38.641	31.960	1.00	29.26
ATOM	834	СВ	SER E		38.164	41.408	32.478	1.00	28.29
ATOM	835	ÓG	SER E		36.753	41.746	32.275		26.99
ATOM	836	N	SER E		37.382	38.946	33.936	1.00	23.75
	837	CA	SER E		36.444	38.301	34.738	1.00	25.14
ATOM	238	C	SER E		34.982	38.781	34.508	1.00	29.67
ATOM	839	0	SER E		33.973	38.052	34.324	1.00	28.12
ATOM		CB	SER E		36.842	38.693	36.180		25.42
ATOM	840 841	OG	SER E		35.935	37.879	36.971		31.24
MOTA			GLN F		34.834	40.109	34.487		27.93
ATOM	842	N CA	GLN F		33.576	40.797	34.290		30.16
ATOM	843	CA	GLN I		33.036	40.463	32.911		26.11
ATOM	844		GLN F		31.840	40.271	32.714		28.65
ATOM	845	<u>съ</u>			33.784	42.330	34.312		33.19
ATOM	846	CB	GLN I		33.442	43.229	35.457		40.59
MOTA	847	CG	GLN I		32.130	43.223	36.180		39.70
MOTA	848	CD			31.005	43.468	35.831		47.06
ATOM	849		GLN I		32.185	42.646	37.424		42.39
ATOM	850	NE2	GLN]	J JJJ	J2.10J	22.040	J		

ATOM	251	N	GLN B	940	33.893	40.437	31.879	1.00 28.10
MOTA	852	CA	GLN B	940	33.294	39.992	30.590	1.00 26.42
MCTA	853	С	GLN B	940	32.792	38.510	30.608	1.00 27.93
	854	0	GLN B		31.699	38.213	30.003	1.00 - 24.42
ATOM			GLN B		34.237	40.315	29.474	1.00 28.32
ATOM .	855	CB						
ATOM	856	CG	GLN B		33.821	39.728	28.138	1.00 30.12
ATOM	857	CD	GLN B	940	32.714	40.351	27.341	1.00 32.84
ATOM	858	OE1	GLN B	940	32.980	40.952	26.293	1.00 32.97
ATOM	859	NE2	GLN B	940	31.444	40.215	27.742	1.00 32.92
ATOM	860	N	LEU B	941	33.469	37.651	31.370	1.00 26.91
ATOM	861	CA	LEU B		32.909	36.258	31.443	1.00 28.19
	862	C	LEU B		31.589	36.301	32.198	1.00 29.57
ATOM					30.678	35.590	31.730	1.00 30.43
MOTA	863	0	LEU B					1.00 30.43
MOTA	864	CB	LEU B		33.906	35.296	32.049	
ATOM	865	CG	LEU B	941	35.315	35.323	31.415	1.00 32.42
MOTA	866	CD1	LEU B	941	36.323	34.485	32.227	1.00 31.29
ATOM	867	CD2	LEU B	941	35.341	34.767	30.010	1.00 31.88
ATOM	868	N	LEU B	942	31.450	37.064	33.293	1.00 30.31
ATOM	869	CA	LEU B		30.167	37.145	33.968	1.00 32.16
		C	LEU B		29.036	37.749	33.115	1.00 31.83
MOTA	870						33.174	1.00 33.88
ATOM	871	0	LEU B		27.922	37.185		
MOTA	872	CB	LEU B		30.243	37.957	35.236	1.00 31.72
ATOM	873	CG	LEU B	942	31.083	37.434	36.382	1.00 33.04
MOTA	874	CD1	LEU B	942	31.284	38.550	37.417	1.00 33.30
ATOM	875	CD2	LEU B	942	30.573	36.187	36.999	1.00 35.60
ATOM	876	N	HIS B		29.333	38.722	32.292	1.00 30.14
	877	CA	HIS B		28.489	39.305	31.307	1.00 32.55
ATOM						38.261	30.293	1.00 33.04
ATOM	878	С	HIS B					1.00 29.13
ATOM	879	0	HIS B		26.773	38.281	29.997	
ATOM	880	CB	HIS B		29.051	40.525	30.513	1.00 31.92
ATOM	881	CG	HIS B	943	28.919	41.826	31.219	1.00 34.62
ATOM	882	ND1	HIS B	943	29.954	42.688	31.481	1.00 36.03
ATOM	883	CD2	HIS B	943	27.832	42.442	31.778	1.00 38.05
MOTA	884	CE1	HIS B	943	29.547	43.737	32.168	1.00 35.60
ATOM	885	NE2	HIS B		28.245	43.626	32.354	1.00 37.32
			PHE B		28.860	37.419	29.710	1.00 30.43
MOTA	886	ji					28.793	1.00 30.42
ATOM	887	CA	PHE B		28.322	36.430		
ATOM	888	C	PHE B		27.361	35.447	29.480	1.00 28.35
ATOM	889	0	PHE B	944	26.297	35.095	28.948	1.00 27.55
ATOM	890	CB	PHE B	944	29.414	35.601	28.129	1.00 29.40
ATOM	891	CG	PHE B	944	30.259	36.326	27.143	1.00 28.28
ATOM	892		PHE B		31.639	36.118	27.152	1.00 28.85
ATOM	893		PHE B		29.764	37.193	26.200	1.00 27.36
	-		PHE B		32.429	36.783	26.230	1.00 31.22
MOTA	894					37.861	25.279	1.00 30.76
MOTA	895	CE2			30.528			1.00 29.54
ATOM	896	CZ	PHE E		31.863	37.640	25.305	
MOTA	897	N	ALA E	945	27.661	35.064	30.707	1.00 28.20
ATOM	898	CA	ALA E	945	26.737	34.232	31.526	1.00 27.06
ATOM	899	С	ALA E	945	25.389	34.896	31.781	1.00 28.16
ATOM	900	0	ALA E		24.305	34.272	31.603	1.00 29.72
ATOM	901	CB	ALA E		27.424	33.982	32.882	1.00 22.24
					25.348	36.185	32.154	1.00 28.40
ATOM	902	N	ALA E					1.00 26.40
MOTA	903	CA	ALA E		24.058	36.906	32.424	
ATOM	904	C	ALA E		23.326	37.071	31.128	1.00 26.73
MOTA	905	0	ALA E	946	22.095	36.826	30.960	1.00 33.16
ATOM	906	CB	ALA E	946	24.422	38.268	33.049	
ATOM	907	N	ASP E		24.021	37.501	30.077	1.00 25.12
				- '				

ATOM	908	CA	ASP B	947	23.361	37.562	28.793	1.00	
ATOM	909	С	ASP B	947	22.653	36.217	28.522	1.00	
ATOM	910	0	ASP B	947	21.423	36.331	28.285		32.77
ATOM	911	CB	ASP B	947	24.158	37.947	27.594	1.00	
ATOM	912	CG	ASP B	947	24.798	39.318	27.538		37.39
ATOM	913		ASP B	947	24.327	40.283	28.209		38.95
ATOM	914	OD2	ASP B	947	25.817	39.462	26.816		38.99
ATOM	915	N	VAL B	548	.23.225	35.043	28.511		24.93
ATOM	916	CA	VAL B	948	22.519	33.824	28.235		26.37
ATOM	917	C	VAL B	948	21.319	33.657	29.150		26.38
ATOM	918	0	VAL B	948	20.273	33.241	28.688		28.00
MOTA	919	CB	VAL B	948	23.423	32.575	28.375		23.63
ATOM	920	CGl	AYP B	948 .	22.711	31.247	28.218		28.41
ATOM	921	CG2	VAL B	948	24.500	32.621	27.306		24.29
MOTA	922	N	ALA B	949	21.496	33.853	30.472	1.00	
ATOM	923	CA	ALA B	949	20.489	33.633	31.449	1.00	
ATOM	924	С	ALA B	949	19.254	34.514	31.245		29.82
ATOM	925	0	ALA B		18.125	33.995	31.478	1.00	
ATOM	926	CB	ALA B	949	21.105	33.945	32.833		21.23
ATOM	927	N	ARG B		19.483	35.753	30.814		29.05
MOTA	928	CA	ARG B	950	18.417	36.711	30.563		29.74
ATOM	929	C	ARG B	950	17.681	36.245	29.315		30.35
MOTA	930	0	ARG B		16.454	36.156	29.291		32.30
MOTA	931	CB	ARG B		18.943	38.135	30.331		29.04
MOTA	932	CG	ARG B		17.857	39.209	30.253		29.74 33.11
MOTA	933	CD	ARG B	950	18.484	40.540	29.840		
MOTA	934	NE	ARG B	950	19.702	40.789	30.623		36.26
MOTA	935	CZ	ARG B		20.973	41.064	30.349		36.47
MOTA	936	NHl			21.905	41.281	31.276		34.51
MOTA	937	NH2			21.378	41.083	29.088		29.52
MOTA	938	N	GLY E		18.419	35.817	28.306		30.22
MOTA	939	CA	GLY E		17.811	35.222	27.135 27.518		31.96
MOTA	940	С	GLY E		16.981	34.005	27.083		30.42
ATOM	941	0	GLY E		15.802	33.895	28.335		31.58
MOTA	942	N	MET E		17.505	33.082	28.668		31.52
ATOM	943	CA	MET E		16.833	31.858	29.545		31.14
ATOM	944	С	MET E		15.593	32.060 31.277	29.453		32.05
ATOM	945	0	MET E		14.692	30.817	29.348		32.91
ATOM	946	CB	MET E		17.728	29.963	28.470	1.00	28.12
ATOM	947	CG	MET E		18.601		27.056	1.00	
ATOM	948	ŞD	MET H		17.803	- 28.118	27.850		24.09
ATOM	949	CE	MET E		15.540	32.991	30.425		33.12
ATOM	950	N	ASP I		14.479	33.295	31.364		35.52
ATOM	951	CA	ASP I			33.873	30.536		34.51
ATOM	952	C	ASP I		13.331 12.167	33.463	30.579		34.88
ATOM	953	0	ASP I		14.959	34.196	32.470		37.38
ATOM	954	CB	ASP I		13.886	35.033	33.182		38.60
MOTA	955	CG	ASP I		13.235	34.579	34.136		38.16
ATOM	956		L ASP		13.233	36.209	32.830		39.51
ATOM	957		ASP		13.741	34.680	29.561		34.22
MOTA	958	N		B 954	12.764	35.208	28.602		33.92
ATOM	959	CA		B 954	12.764	34.027	27.920		35.03
MOTA	960	C		B 954	10.854	33.911	27.879		33.83
MOTA	961	0		B 954	13.457	36.158	27.672		36.04
MOTA	962	CB		B 954	12.621	36.621	26.523		40.14
ATOM	963	CG		B 954	11.489	37.372	26.834		42.51
MOTA	964	CD:	T TAK	B 954	. 11.403	2، د ، د	20.001		

ATOM	965		TYR B	954		12.873	36.322	25.202	1.00	
MOTA	966		TYR B	954		10.587	37.819	25.869		45.17
ATOM	967	CE2	TYR B	954		12.012	36.762	24.225		44.28
MOTA	968	CZ	TYR B	954		10.893	37.541	24.548	1.00	
ATOM	969		TYR B	954		10.043	37.968	23.564		46.72
ATOM	970		LEU B	955		12.809	33.080	27.399		34.55
ATOM	971	CA	LEU B	955		12.388	31.912	26.704		34.31
ATOM	972	C	LEU B	955		11.690	30.956	27.654	1.00	
MOTA	973	0	LEU B	955	•	10.537	30.633	27.336	1.00	
MOTA	974	CB	LEU B	955		13.431	31.053	26.006	-	34.82
MOTA	975	CG	LEU B	955		14.032	31.673	24.757		30.87 31.55
MOTA	976		TEA B	955		15.304	30.976	24.341		
ATOM	977	CD2	LEU B	955		13.075	31.726	23.592		32.89
ATOM	978	N	SER B			12.231	30.620	28.798		33.38
ATOM	979	CA	SER B			11.489	29.672	29.609		34.02
MOTA	980	C	SER B			10.214	30.243	30.247		34.18
ATOM	981	0	SER B	956		9.393	29.419	30.652		30.24
ATOM	982	CB	SER B	956		12.469	29.126	30.630		33.64
MOTA	983	OG	SER B			12.613	30.134	31.586		37.17
MOTA	984	N	GLN B	957		10.032	31.530	30.438		32.94
MOTA	985	CA	GLN B	957		8.852	32.137	31.059		37.57
MOTA	986	C .	GLN B	957		7.675	32.048	30.084	_	36.65
MOTA	987	0	GLN B	957		6.518	31.962	30.443		36.69
MOTA	988	CB	GLN B	957		9.101	33.516	31.671		39.36
MOTA	989	CG	GLN B			9.819	33.491	33.028		43.44
MOTA	990	CD	GLN B	957		10.305	34.801	33.581		47.63
MOTA	991	OE1	GLN B	957		10.420	35.138	34.789		48.94
MOTA	992	NE2	GLN B	957		10.736	35.802	32.807		50.75
MOTA	993	N	LYS B	958		7.937	31.933	28.792		37.29
MOTA	994	CA	LYS B	958		7.068	31.649	27.696		36.90
ATOM	9,95	C	LYS B	958		6.830	30.166	27.402		39.87
MOTA	996	0	LYS B	958		6.248	29.735	26.407		41.16
ATOM	997	CB	LYS E	958		7.554	32.393	26.439		40.75
ATOM	998	CG	LYS E	958		7.237	33.882	26.545	1.00	
ATOM	999	CD	LYS E	958		7.853	34.666	25.399	1.00	44.52
ATOM	1000	CE	LYS E	958		6.950	35.852	25.045		49.59
MOTA	1001	NZ	LYS E	958		7.755	36.850	24.277	1.00	
MOTA	1002	N	GLN E	959		7.238	29.272	28.275	1.00	38.89
MOTA	1003	CA	GLN E	959		7.191	27.826	28.340	1.00	39.77
MOTA	1004	С	GLN E	959		7.985	27.154	27.246	1.00	36.45
MOTA	1005	O.	GLN E	959		7.889		26.904		34.64
ATOM	1006	СB	GLN E	959		5.729	27.298	28.353		42.27
ATOM	1007	CG	GLN F	959		5.062	27.411	29.706		47.02
ATOM	1008	CD	GLN F	959		3.550	27.270	29.700		52.44
MOTA	1009	OEl	GLN E	3 959		2.905	27.301	30.787		54.64
MOTA	1010	NE2	GLN F	3 959		2.888	27.133	28.539		51.33
MOTA	1011	N	PHE F	3 960		8.932	27.911	26.701		35.89
ATOM	1012	CA	PHE F	3 960		9.764	27.490	25.601		34.12
ATOM	1013	С	PHE B	3 960		11.017	26.758	26.168		34.10
ATOM	1014	0	PHE I	3 960		11.310	27.045	27.320		36.77
ATOM	1015	CB	PHE I	3 960		10.127	28.752	24.850		38.30
ATOM	1016	CG		3 960		9.381	29.131	23.626		37.64
MOTA	1017		PHE I			8.691	30.350	23.577		39.17
MOTA	1018		PHE			9.322	28.313	22.534		37.83
ATOM	1019		PHE			7.970	30.753	22.460		36.50
MOTA	1020		PHE			8.612	28.711	21.415		38.89
ATOM	1021	CZ		B 960		7.938	29.930	21.372	1.00	38.28
FILOFI			•							

ATOM	1022	N	ILE B 961		11.301	25.645	25.515	1.00 32.04
ATOM	1023	CA	ILE B 961		12.386	24.751	25.913	1.00 35.73
ATOM	1024	С	ILE B 961		13.444	24.628	24.815	1.00 35.82
ATOM	1025	0	ILE B 961		13.170	24.025	23.764	1.00 36.60
MOTA	1026	CB	ILE B 961		11.866	23.322	26.185	1.00 37.85
ATOM	1027	CGl	ILE B 961	3	10.658	23.219	27.079	1.00 39.27
ATOM	1028	CG2	ILE B 961		12.985	22.443	26.741	1.00 41.20
ATOM	1029	CD1	ILE B 961		10.666	23.505	28.545	1.00 39.36
ATOM	1030	N	HIS B 962		14.751	24.959.	25.030	1.00 33.60
ATOM	1031	C.A.	HIS B 962		15.736	24.996	23.975	1.00 31.29
ATOM	1032	С	HIS B 962		16.435	23.705	23.604	1.00 30.82
ATOM	1033	0	HIS B 962		16.658	23.371	22.425	1.00 29.73
ATOM	1034	CB	HIS B 962		16.674	26.099	24.539	1.00 31.33
ATOM	1035	CG	HIS B 962		17.589	26.596	23.457	1.00 33.97
ATOM	1036	NDl	HIS B 962		17.135	26.808	22.169	1.00 33.33
MOTA	1037		HIS B 962		18.913	26.881	23.499	1.00 33.27 1.00 35.73
ATOM	1038	CE1	HIS B 962		18.200	27.242	21.492	1.00 35.73
ATOM	1039	NE2	HIS B 962		19.289	27.260	22.251	1.00 29.58
ATOM	1040	N	ARG B 963		16.968	23.006	24.598	1.00 33.00
MOTA	1041	CA	ARG B 963		17.746	21.769	24.471	1.00 35.00
MOTA	1042	С	ARG B 963		19.194	21.923	23.997	1.00 38.77
MOTA	1043	0	ARG B 963		19.889	20.887	24.004	1.00 39.02
ATOM	1044	CB	ARG B 963		17.204	20.679	23.551	1.00 31.62
ATOM	1045	CG	ARG B 963		15.815	20.172	23.935	1.00 31.52
MOTA	1046	CD	ARG B 963		15.128	19.404	22.847	1.00 33.88
ATOM	1047	NE	ARG B 963		15.025	19.871	21.521	1.00 33.83
MOTA	1048	CZ	ARG B 963		15.726	19.662	20.419	1.00 37.50
ATOM	1049		ARG B 963		16.808	18.841	20.421 19.289	1.00 37.35
ATOM	1050	NH2	ARG B 963		15.341	20.285		1.00 37.33
ATOM	1051	N	ASN B 964		19.655	23.009	23.398 22.816	1.00 38.69
ATOM	1052	CA	ASN B 964		20.974	23.021	23.372	1.00 36.17
MOTA	1053	С	ASN B 964		21.926	24.070	22.610	1.00 37.84
MOTA	1054	0	ASN B 964		22.772	24.513	21.298	1.00 41.85
MOTA	1055	CB	ASN B 964		20.798	23.344 22.173	20.634	1.00 46.78
MOTA	1056	CG	ASN B 964		20.079	21.037	21.043	1.00 49.94
MOTA	1057		ASN B 964		20.319	22.496	19.688	1.00 48.13
ATOM	1058	ND2		*	19.184	24.534	24.570	1.00 32.14
ATOM	1059	И	LEU B 965		21.795	25.569	25.189	1.00 33.80
ATOM	1060	CA	LEU B 965		22.546	25.064	25.398	1.00 36.44
ATOM	1061	C	LEU B 965		23.994	24.390	26.421	1.00 40.41
MOTA	1062	<u>٠</u> .	LEU B 965		24.144	25.960	26.578	1.00 31.51
ATOM	1063	CB	LEU B 965		20.940	26.943	26.863	1.00 30.06
ATOM	1064	CG	LEU B 965		20.731	26.975	28.363	1.00 26.70
ATOM	1065		LEU B 965		20.731	28.298	26.403	1.00 29.20
ATOM	1066	CD2			24.919	25.275	24.490	1.00 31.71
MOTA	1067	N	ALA B 966		26.340	24.956	24.701	1.00 29.62
ATOM	1068	CA	ALA B 966		27.144	26.139	24.175	1.00 27.97
MOTA	1069	C	ALA B 966		26.676	26.823	23.232	1.00 24.99
ATOM	1070	0	ALA B 966		26.737	23.681	23.960	1.00 24.98
MOTA	1071		ALA B 966		28.451		24.492	1.00 28.41
ATOM	1072		ALA B 967		29.236		23.991	1.00 25.71
MOTA	1073		ALA B 967		29.357		22.481	1.00 28.11
MOTA	1074		ALA B 967 ALA B 967		29.357			
ATOM	1075		ALA B 967 ALA B 967		30.515			
ATOM	1076		ARG B 968		29.406			
MOTA	1077				29.407			
MOTA	1078	CA	סטע ע טאא				•	

ATOM	1079	C	ARG E	968	28.100	27.003	19.677	1.00	
ATOM	1080	0	ARG E	968	28.131	27.362	18.476		31.68
ATOM	1081	CB	ARG E	968	29.753	25.111	19.610		29.15
ATOM	1082	CG	ARG E	968	28.695	24.044	19.886		31.62
MOTA	1083	CD	ARG E	968	28.941	22.658	19.226		35.47
ATOM	1084	NE	ARG E	968	27.817	21.807	19.703		38.33
MOTA	1085	CZ	ARG E	968	27.827	21.154	20.851		40.05.
MOTA	1086	NH1	ARG E	968	28.897	21.164	21.633	1.00	
ATOM	1087	NH2	ARG E	968	26.834	20.421	21.322	1.00	
MOTA	1088	N	ASN E	969	26.979	27.025	20.436		28.92
ATOM	1089	CA	ASN E	969	25.710	27.429	19.810	-	29.20
ATOM	1090	C	ASN E	969	25.291	28.803	20.297		30.35
ATOM	1091	0	ASN E	969	24.086	29.145	20.204		30.32
ATOM	1092	CB	ASN E	969	24.598	26.375	20.098		25.04
ATOM	1093	CG	ASN E	969	24.914	25.020	19.495		30.26
ATOM	1094	OD1	ASN E	969	25.378	24.869	18.361		32.57
ATOM	1095	ND2	ASN E	969	24.648	23.885	20.172	1.00	
ATOM	1096	N	ILE E	970	26.257	29.496	20.910	1.00	
ATOM	1097	CA	ILE E	970	26.015	30.841	21.418		28.82
ATOM	1098	C	ILE E	970	26.802	31.795	20.505	1.00	
ATOM	1099	0	ILE F	970	27.963	31.487	20.196	1.00	
ATOM	1100	CB	ILE F	3 970	26.412	31.038	22.895		26.22
ATOM	1101	CG1	ILE E	3 970	25.618	30.198	23.893		25.70
ATOM	1102	CG2	ILE E	3 970	26.312	32.536	23.261		21.48
ATOM	1103	CD1	ILE F	3 970	24.088	30.263	23.734	_	23.69
ATOM	1104	N	LEU F	3 971	26.208	32.904	20.028		29.96
MOTA	1105	CA	LEU F	3 971	26.961	33.826	19.172		30.19
ATOM	1106	С	LEU E	3 971	27.438	35.090	19.845		31.70
MOTA	1107	0	LEU I	3 971	26.784	35.584	20.761		33.46
MOTA	1108	CB	LEU I	3 971	26.085	34.128	17.930		30.67
MOTA	1109	CG	LEU 1	3 971	25.855	32.975	16.964		34.15
ATOM	1110	CD1	LEU 1	3 971	24.695	33.281	15.982		33.06
MOTA	1111	CD2	LEU :	3 971	27.122	32.553	16.185		30.70
ATOM	1112	N	VAL :	3 972	28.541	35.731	19.447		30.83
ATOM	1113	CA	VAL :	3 972	29.044	36.982	20.037		32.48
ATOM	1114	С	VAL :	B 972	28.758	38.104	19.005		30.36
ATOM	1115	0	VAL :	B 972	29.405	38.186	17.951		31.08
ATOM	1116	CB	VAL	B 972	30.521	36.984	20.420		32.58
ATOM	1117	CG1	VAL :	B 972	30.930	38.281	21.136	1.00	34.22
ATOM	1118	CG2	VAL .	B 972	30.871	35.785	21.333		31.21
ATOM	1119	N	GLY	B 973	27.711	38.847	19.310		30.33
ATOM	1120	ĠΑ	GLY	B 973	27.207	39.802	18.315		29.88
ATOM	1121	С	GLY	В 973	27.727	41.204	18.479		32.70
MOTA	1122	0	GLY	B 973	28.585	41.451	19.329		31.01
ATOM	1123	N	GLU	B 974	27.145	42.135	17.747		34.65
ATOM	1124	CA	GLU	B 974	27.522	43.527	17.855		33.72
MOTA	1125	C	GLU	B 974	27.649	43.930	19.302		33.97
ATOM	1126	0	GLU	B 974	26.870	43.530	20.180		30.31
ATOM	1127	CB	GLU	B 974	26.420	44.367	17.187		40.43
ATOM	1128	CG	GLU	B 974	26.557	44.283	15.649		48.26
ATOM	1129	CD	GLU	B 974	26.317	45.679	15.071		54.12
ATOM	1130	OE1	. GLU	B 974	25.119	46.052	15.074		56.77
MOTA	1131		GLU		27.258	46.414	14.674		56.47
ATOM	1132	N		B 975	28.679	44.730	19.612		32.99
ATOM	1133	CA		B 975	28.909	45.235	20.945		32.09
MOTA	1134	C		В 975	29.202		21.877		32.69
MOTA	1135	0		B 975	29.082	44.240	23.098	1.00	33.59

ATOM	1135	CB	ASN !	97	27.6	42 46.01	9 21.385	1.00	36.61
ATOM	1137	CG	ASN I						37.11
		OD1	ASN I					1.00	39.26
ATOM	1138								29.86
MOTA	1139	ND2	ASN I						32.96
ATOM	1140	N	TYR I						
ATOM	1141	CA	TYR I						33.87
ATOM	1142	C	TYR I						33.96
ATOM	1143	0	TYR I	976				1.00	38.50
ATOM	1144	CB	TYR E	976	31.0	90 42.14			32.57
MOTA	1145	CG	TYR E	976	32.3	16 42.63		1.00	34.93
MOTA	1146	CD1	TYR E	976	32.6	43.97	7 22.488	1.00	34.96
MCTA	1147	CD2	TYR E	976	33.0	54 41.75	0 21.796	1.00	36.25
ATOM	1148	CE1	TYR E	976	33.73	34 44.40	4 21.765	1.00	36.57
ATOM	1149	CE2	TYR E	976	34.13	1 42.18	5 21.066	1.00	37.74
ATOM	1150	CZ	TYR E	976	34.46	59 43.52	4 21.027	1.00	38.58
ATOM	1151	OH	TYR E	976	35.5	4 43.98	8 20.318	1.00	41.08
ATOM	1152	N	VAL E				8 22.583	1.00	33.38
ATOM	1153	CA	VAL E						30.29
MOTA	1154	C	VAL E					1.00	28.06
ATOM	1155	0	VAL E						30.23
			VAL E						29.39
ATOM	1156	CB							28.20
ATOM	1157	CG1	VAL E						31.72
ATOM	1158	CG2	VAL E						
ATOM	1159	N	ALA E						27.76
MOTA	1160	CA	ALA E						28.79
MOTA	1161	C	ALA E						31.90
MOTA	1162	0	ALA E						30.56
ATOM	1163	CB	ALA E						25.90
MOTA	1164	N	LYS E	979					33.62
MOTA	1165	CA	LYS E	979	23.07	70 35.78	4 21.463	1.00	31.66
ATOM	1166	С	LYS E	979	22.78	34.28	7 21.336	1.00	31.79
ATOM	1167	0	LYS E	979	23.56	33.49	0 20.808	1.00	29.59
ATOM	1168	CB	LYS E	979	23.10	36.39	0 20.030	1.00	34.05
ATOM	1169	CG	LYS E	979	22.88	37.91	7 20.237	1.00	38.30
ATOM	1170	CD	LYS E	979	23.14	9 38.76	6 19.049	1.00	36.22
ATOM	1171	CE	LYS E	979	23.15	7 40.25	2 19.366	1.00	39.70
MOTA	1172	NZ	LYS E	979	21.78	8 40.83	3 19.313	1.00	39.24
ATOM	1173	N	ILE E			_	6 21.839	1.00	29.92
ATOM	1174	CA	ILE E						29.31
ATOM	1175	C	ILE E						32.94
ATOM	1176	0	ILE E		20.09				34.86
ATOM	1177	CB	ILE E		20.14				27.87
ATOM	1178	CG1	ILE E						29.18
	1179	CG2	ILE E						32.98
ATOM		CD1	ILE E						26.99
ATOM	1180	N	ALA E						33.63
ATOM	1181								34.72
ATOM	1182	CA	ALA E						36.94
MOTA.	1183	C	ALA E						36.37
ATOM	1184	0	ALA E						32.74
ATOM	1185	CB	ALA E						
ATOM	1186	N	ASP E						38.89
MOTA	1187	CA	ASP E						38.46
ATOM	1188	C	ASP E						37.99
ATOM	1189	0	ASP E						36.61
MOTA	1190	CB	ASP E						40.25
ATOM	1191	CG	ASP E				•		43.41
MOTA	1192	OD1	ASP E	982	20.72	28 24.23	0 16.205	Τ.00	46.24

ATOM	1193	002	ASP	B	982	21.281	23.629	17.877	1.00	42.63
ATOM	1194	N		В	983	18.165	27.008	17.126	1.00	36.77
ATOM	1195	CA		В	983	16.782	26.774	17.503	1.00	41.16
MCTA	1196	C		B	983	16.065	25.567	16.890	1.00	42.48
ATOM	1197	0			983	16.087	25.257	15.684	1.00	43.89
ATOM	1198	CB		B	983	15.964	28.059	17.163	1.00	39.87
ATOM	1199	CG		B	983	16.280	29.135	18.179		.39.48
ATOM	1200	CD1		В	983	15.940	28.923	19.504		38.68
ATOM	1201	CD2		B	983	16.957	30.289	17.825	1.00	39.97
ATOM	1202	CE1			983	16.251	29.809	20.491	1.00	37.05
ATOM	1203	CE2			983	17.257	31.221	18.816	1.00	40.42
ATOM	1204	CZ			983	16.906	30.993	20.135	1.00	39.41
MOTA	1205	N	GLY :		984	15.346	24.852	17.733	1.00	41.51
ATOM	1206	CA	GLY I		984	14.461	23.724	17.265	1.00	41.21
ATOM	1207	C	GLY I		984	13.535	23.685	18.500	1.00	40.75
ATOM	1208	0	GLY 1		984	13.678	22.812	19.368	1.00	
ATOM	1209	N	LEU I		985	12.781	24.779	18.512	1.00	38.40
ATOM	1210	CA	LEU 1		985	12.020	25.010	19.826	1.00	38.54
ATOM	1211	C	LEU I		985	10.844	24.053	20.021	1.00	39.23
ATOM		. 0	LEU I		985	10.331	23.451	19.099	1.00	39.81
ATOM	1213	CB	LEU I		985	11.597	26.477	19.879	1.00	38.29
ATOM	1214	CG	LEU I		985	12.703	27.505	20.071	1.00	39.62
ATOM	1215	CD1	LEU I		985	12.112	28.913	19.963	1.00	41.67
ATOM	1216	CD2	LEU I		985	13.378	27.375	21.450	1.00	40.64
ATOM	1217	N	SER I		986	10.420	23.923	21.268	1.00	38.75
ATOM	1218	CA	SER E		986	9.258	23.124	21.640	1.00	41.57
ATOM	1219	C	SER E		986	8.618	23.946	22.764	1.00	41.04
ATOM	1220	0	SER E		986	9.376	24.681	23.389		40.97
MOTA	1221	CB	SER E		986	9.623	21.781	22.276	1.00	41.12
ATOM	1222	OG N	SER E		986	10.132	20.965	21.268	1.00	44.70
ATOM	1223	N	ARG F		987	7.306	23.872	22.881	1.00	
ATOM ATOM	1224	CA C	ARG I		987	6.579	24.634	23.849		39.96
	1225		ARG E		987	5.664	23.672	24.592		39.46
ATOM	1226	O T	ARG E		987	4.928	22.897	24.001	1.00	40.85
MOTA	1227	CB	ARG E		987	5.759	25.671	23.100	1.00	42.69
ATOM	1228 1229	CG			987	5.518	26.881	23.980		43.46
ATOM		CD	ARG E		987	4.820	27.932	23.102		47.12
ATOM	1230	NE	ARG E		987	4.503	29.062	23.969		48.45
ATOM ATOM	1231	CZ	ARG E		987	4.042	30.245	23.498		49.30
ATOM	1232		ARG E			3.859	30.446	22.195		47.75
ATOM	1233 1234	NH2 N	GLY E		988	3.820	31.126	24.461		47.10
ATOM	1235	ĆA	GLY E			5.803	23.678	25.895		36.84
ATOM	1235	CA	GLY E			5.310 6.133	22.780	26.860		37.53
ATOM	1237	0	GLY E				22.613	28.131		39.84
ATOM	1237	N	GLN E			7.113	23.319	28.413		37.68
ATOM	1239	CA	GLN E		989	5.621	21.679	28.931	1.00	
ATOM	1240	CA	GLN E		989	6.211	21.351	30.208		36.52 36.26
ATOM	1241	0	GLN E			7.342	20.344	29.982	1.00	
ATOM	1241		GLN E			8.364	20.451	30.678		
ATOM	1242	CB CG	GLN E		989 989	5.134	20.856	31.154		36.36
ATOM	1243	CD	GLN E			5.676 4.653	20.186	32.391	1.00	
			GLN E		989		19.836	33.425	1.00	
ATOM	1245				989	4.232	20.788	34.082	1.00	
ATOM	1246		GLN E		989	4.255	18.604	33.639		40.97
MOTA	1247	N				7.214	19.459	28.997		33.95
ATOM ATOM	1248 1249	CA C	GLU E			8.362	18.545	28.745		32.76
MIOM	1747	_	GHO E	• :	J J U	8.318	18.162	27.281	1.00	31.04

							4		
ATOM	1250	0	GLU B	990	7.134	18.267	26.782	1.00	35.90
ATOM	1251	CB	GLU B	990	8.324	17.321	29.615	1.00	32.06
ATOM	1252	CG	GLU B	990	7.034	16.491	29.549	1.00	34.29
ATOM	1253	CD	GLU B	990	5.855	16.986	30,361	1.00	35.18
ATOM	1254	OEl	GLU B	990	4.741	17.354	29.866	1.00	31.61
MOTA	1255	OE2	GLU B		5.907	17.055	31.606		37.46
	1256	N	VAL B	991	9.245	17.586	26.636		28.59
ATOM			VAL B	991	9.254	17.187	25.250		27.10
MOTA	1257	CA	VAL B	991	10.294	16.035	25.123		34.31
MOTA	1258	C				16.047	25.461		34.01
ATOM	1259	0	VAL B	991	11.499				27.78
MOTA	1260	CB	VAL B	991	9.566	18.341	24.297		
ATOM	1261	CG1	VAL B	991		18.939	24.577	1.00	28.52
ATOM	1262	CG2	VAL B	991	9.531	17.678	22.827		26.55
ATOM	1263	N	TYR B	992	9.815	15.116	24.284		33.22
ATOM	1254	CA	TYR B	992	10.510	13.950	23.872		35.07
ATOM	1265	C	TYR B	992	11.168	14.196	22.521	1.00	36.09
ATOM	1266	0	TYR B	992	10.453	14.723	21.653	1.00	37.35
MCTA	1267	CB	TYR B	992	9.504	12.750	23.851	1.00	32.12
MOTA	1268	CG	TYR B	992	10.187	11.588	23.154	1.00	34.00
ATOM	1269	CD1	TYR B	992	10.952	10.664	23.855	1.00	35.23
ATOM	1270	CD2	TYR B	992	10.065	11.491	21.767	1.00	34.41
ATOM	1271	CEI	TYR B	992	11.597	9.629	23.205	1.00	34.80
ATOM	1272	CE2	TYR B	992	10.706	10.464	21.115		35.88
			TYR B	992	11.471	9.575	21.830		37.31
ATOM	1273	CZ		992	12.090	8.582	21.090		41.58
ATOM	1274	OH	TYR B			13.922	22.409		35.09
MOTA	1275	N	VAL B	993	12.465				
MOTA	1276	CA	VAL B	993	13.166	14.093	21.148		40.55
ATOM	1277	С	VAL B	993	14.192	12.937	21.077		44.20
ATOM	1278	0	VAL B	993	14.924	12.698	22.027		41.10
MOTA	1279	CB	VAL B	993	14.027	15.345	20.884		40.80
MOTA	1280	CG1	VAL B	993	14.377	15.434	19.397		41.00
MOTA	1281	CG2	VAL B	993	13.444	16.675	21.308	1.00	40.65
ATOM	1282	N	LYS B	994	14.248	12.280	19.929		52.91
ATOM	1283	CA	LYS B	994	15.228	11.218	19.681	1.00	59.67
MOTA	1234	C	LYS B	994	16.314	11.668	18.722	1.00	63.50
MOTA	1285	0	LYS B	994	15.968	12.346	17.752	1.00	65.43
MOTA	1286	CB	LYS B	994	14.452	10.051	19.050	1.00	62.12
ATOM	1287	CG	LYS B		15.258	9.165	18.114	1.00	64.47
ATOM	1288	CD		994	14.523	7.917	17.676	1.00	66.81
ATOM	1289	CE		994	14.741	6.737	18.627		69.22
			LYS B		16.113	6.131	18.446		70.28
MOTA	1290	NZ			17.568	11.244	18.841		68.11
MOTA	1291	N.	LYS B			11.497	17.964		69.33
ATOM	1292	CA	LYS B		18.698		17.869		71.04
MOTA	1293	C	LYS B		19.277	12.900			68.75
ATOM	1294	CB	LYS B		18.387	11.058	16.520		72.92
MOTA	1295	N	THR B		19.210	13.731	18.891		
ATOM	1296	CA	THR B		19.849	15.039	18.958		74.27
ATOM	1297	C	THR B		18.897	16.170	18.571		74.88
ATOM	1298	0	THR B		17.742	15.867	18.197		75.62
MOTA	1299	CB	THR B	996	21.108	15.075	18.098	1.00	74.16
TER									
ATOM	1300	N	LEU C	1000	24.923	13.250	19.201		61.56
ATOM	1301	CA	LEU C		24.606	13.627	20.610	1.00	60.45
ATOM	1302	C	LEU C		25.273	14.888	21.132	1.00	59.31
ATOM	1302	0	LEU C		25.926	15.737	20.498	1.00	61.19
ATOM	1304	CB	LEU C		25.085	12.439	21.459		62.33
		N	PRO C		25.106	15.086	22.450		55.81
ATOM	1305	TA	£400 C.		0				
					m=0	Fire			
				•	FIG.	5W	. ,~		
						· _	•		
						•			

								7 00	17 50
ATOM	1306	CA	PRO	C1001	25.717	16.238	23.164	1.00	
ATOM	1307	С		C1001	25.633	15.865	24.622	1.00	
ATOM	1308	0	PRO	C1001	25.066	16.507	25.497		42.56
ATOM	1309	CB	PRG	C1001	25.055	17.514	22.761		49.13
ATOM	1310	N	VAL	C1002	26.137	14.628	24.881		39.19
ATOM	1311	CA	VAL	C1002	26.105	13.982	26.180		36.21
ATOM	1312	С	VAL	C1002	26.526	14.731	27.414		32.43
ATOM	1313	0	VAL	C1002	25.981	14.707	28.510		29.30
ATOM	1314	CE	VAL	C1002	27.129	12.774	26.075		38.41
ATOM	1315	CG1	VAL	C1002	27.304	12.077	27.400		36.91
MOTA	1316	CG2	VAL	C1002	26.315	11.872	25.131		39.50
ATOM	1317	N	ARG	C1003	27.699	15.354	27.317		35.49
ATOM	1318	CA		C1003	28.454	16.101	28.310		34.85
ATOM	1319	C	ARG	C1003	27.745	17.378	28.731		32.80
MOTA	1320	0	ARG	C1003	28.073	18.089	29.675		33.09
ATOM	1321	CB	ARG	C1003	29.877	16.407	27.775		35.57
ATOM	1322	CG	ARG	C1003	30.017	15.726	26.418		40.79
ATOM	1323	CD	ARG	C1003	31.524	15.638	26.082		42.74
ATOM	1324	NE	ARG	C1003	32.199	15.018	27.219		46.61
ATOM	1325	CZ	ARG	C1003	33.482	14.536	26.897		42.40
ATOM	1326	NH1	ARG	C1003	33.675	14.646	25.606		44.69
ATOM	1327	NH2	ARG	C1003	34.058	13.991	27.899		41.82
MOTA	1328	N		C1004	26.753	17.765	27.983		31.57
ATOM	1329	CA	TRP	C1004	25.743	18.792	28.171		32.26
ATOM	1330	C		C1004	24.352	18.357	28.588		33.31
ATOM	1331	o		C1004	23.571	19.223	29.047		32.82
ATOM	1332	CB			25.513	19.633	26.877		31.61
ATOM	1333	CG		C1004	26.794	20.424	26.649		29.75
ATOM	1334	CD1	TRP	C1004	27.065	21.659	27.174		33.83
ATOM	1335	CD2		C1004	27.885	20.016	25.845		30.53
ATOM	1336	NE1		C1004	28.350	22.036	26.758		30.12
ATOM	1337	CE2		C1004	28.838	21.058	25.939		32.87
ATOM	1338	CE3	TRP	C1004	28.284	18.907	25.081		31.33
ATOM	1339	CZ2	TRP	C1004	30.114	21.052	25.322		31.29
ATOM	1340	CZ3	TRP	C1004	29.523	18.911	24.457		31.61
MOTA	1341	CH2		C1004	30.442	19.974	24.537		31.26
ATOM	1342	N		C1005	24.039	17.058	28.523		31.05
MOTA	1343	CA		C1005	22.691	16.644	28.871		30.92
ATOM	1344	C	MET		22.482	16.372	30.342		31.46
ATOM	1345	0	MET		23.344	15.779	30.955	1.00	30.88
ATOM	1346	СB	MET		22.425	15.401	28.027	1.00	35.15
ATOM	1347	CG		C1005	22.250	15.671	26.542		35.78
ATOM	1348	SD		C1005	22.331	14.145	25.574		43.66
ATOM	1349	CE		C1005	20.582	13.671	25.658		39.42
ATOM	1350	N		C1006	21.331	16.767	30.898		30.39
ATOM	1351	CA		C1006	20.980	16.384	32.257		32.23
ATOM	1352	C		C1006	20.903	14.819	32.255		29.50
ATOM	1353	0		C1006	20.820	14.243	31.191		25.95
ATOM	1354	CB		C1006	19.558	16.827	32.686		32.19
ATOM	1355	N		C1007	21.063	14.271	33.415		28.66
ATOM	1356	CA		C1007	20.991	12.831	33.717		34.31
ATOM	1357	C		C1007	19.626	12.254	33.361		32.33
	1357	0		C1007	19.539	11.314	32.569		34.27
ATOM	1359	CB		C1007	21.316	12.831	35.238		36.74
ATOM	1360	CG		C1007	22.831				40.16
ATOM	1360	CG2		C1007	20.535				41.55
MOTA				E C1007	23.298		36.843		39.53
MOTA	1362	LD.	_ 4.4.4	_ 0100/					

ATOM	1363	N	GLU	C1008	18.515	12.879	33.668	1.00	32.21
ATOM	1354	CA	GLU	C1008	17.179	12.414	33.238	1.00	30.51
ATOM	1365	C	GLU	C1008	17.097	12.390	31.725	1.00	30.14
ATOM	1366	С	GLU	C1008	16.588	11.399	31.127	1.00	30.02
MOTA	1367	CB	GLU	C1008	16.079	13.201	33.887	1.00	32.29
ATOM	1368	CG		C1008	15.861	14.623	33.271		31.03
ATOM	1369	CD		C1008	16.672	15.611	34.070		30.62
	1370	OE1		C1008	17.610	15.181	34.800		33.04
MOTA					16.405			1.00	
ATOM	1371	OE2		C1008		16.824	34.011		
ATOM ·	1372	N		C1009	17.652	13.397	31.054	1.00	
ATOM	1373	CA		C1009	17.665	13.395	29.574		27.96
atom	1374	C		C1009	18.581	12.320	29.008		32.36
MCTA	1375	0		C1009	18.258	11.867	27.889		33.49
ATOM	1376	CB	SER	C1009	18.120	14.740	29.001	1.00	27.04
ATOM	1377	OG	SER	C1009	17.266	15.856	29.232	1.00	29.52
MOTA	1378	N	LEU	C1010	19.732	11.948	29.646	1.00	30.58
ATOM	1379	CA	LEU	C1010	20.458	10.834	29.043	1.00	33.82
ATOM	1380	С		C1010	19.587	9.543	29.184	1.00	34.58
ATOM	1381	Ō		C1010	19.600	8.647	28.340	1.00	33.77
ATOM	1382	CB		C1010	21.835	10.478	29.678		34.39
ATOM	1383	CG		C1010	22.839	11.659	29.618		34.04
				C1010	23.989	11.636	30.582		35.06
ATOM	1384	CD1		C1010	23.324	11.698	28.183		34.32
MOTA	1385	CD2							
MOTA	1386	N		C1011	18.894	9.423	30.317		34.50
ATOM	1387	CA		C1011	18.175	8.188	30.585	•	39.53
MOTA	1388	C	ASN	C1011	16.867	8.049	29.814		39.46
ATOM	1389	0	ASN	C1011	16.521	6.887	29.507		41.72
MOTA	1390	CB	ASN	C1011	17.744	7.990	32.055	1.00	37.12
ATOM	1391	CG	ASN	C1011	18.994	7.594	32.849	1.00	40.42
ATOM	1392	ODl	ASN	C1011	19.913	7.055	32.211	1.00	41.43
ATOM	1393	ND2		C1011	18.990	7.876	34.135	1.00	37.03
ATOM	1394	N		C1012	16.144	9.174	29.765	1.00	36.32
ATOM	1395	CA		C1012	14.765	9.067	29.205		33.71
ATOM	1396	C		C1012	14.644	9.864	27.929		37.07
	1397	0		C1012	13.431	9.936	27.557		39.06
ATOM				C1012	13.431	9.722	30.189		25.11
ATOM	1398	CB							26.79
ATOM	1399	CG		C1012	13.979	9.247	31.601		
MOTA	1400	CD1		C1012	13.915	10.061	32.704		28.02
ATOM	1401	CD2		C1012	14.199	7.868	31.824		29.96
ATOM	1402	CEl		C1012	14.075	9.560	33.984		31.07
ATOM	1403			C1012	14.378		33.070		30.68
MOTA	1404	ĊZ	TYR	C1012	14.310	8.194	34.126		32.85
MOTA	1405	OH	TYR	C1012	14.494	7.677	35.423	1.00	38.60
ATOM	1406	N	SER	C1013	15.568	10.695	27.480	1.00	35.61
MOTA	1407	CA	SER	C1013	15.244	11.547	26.340	1.00	36.12
ATOM	1408	С	SER	C1013	14.080	12.522	26.555	1.00	31.92
ATOM	1409	0		C1013	13.533	12.997	25.558	1.00	29.49
ATOM	1410	CB		C1013	15.021	10.764	25.075		38.37
ATOM	1411	OG		C1013	16.000	9.929	24.605		39.85
				C1013		12.926	27.798		34.71
ATOM	1412	N			13.848		28.005		34.17
ATOM	1413	CA		C1014	12.887	13.999			
ATOM	1414	C,		C1014	13.761	15.212	28.406		32.14
ATOM	1415	0		C1014	14.764	15.102	29.061		31.92
MOTA	1416	CB		C1014	11.803	13.647	29.007		35.91
MOTA	1417	CG1	VAL	C1014	10.773	14.771	28.958		35.03
MOTA	1418	CG2	VAL	C1014	11.129	12.316	28.672		35.03
ATOM	1419	N	TYR	C1015	13.255	16.377	27.994	1.00	33.31

n mon	1400	~~							
ATOM	1420	CA		R C1015		13.917		28.232	
ATOM	1421	C		2 C1015		12.870		28.713	1.00 32.82
ATOM	1422	0		C1015		11.635	18.497	28.361	
ATOM	1423	CB		R C1015		14.268	18.208	26.817	_
ATOM	1424	CG		C1015		15.273	17.339	26.106	
MOTA	1425	CD:		R C1015		14.953	16.293	25.270	1.00 33.14
ATOM	1426	CD2	TYF	C1015		16.625	17.556	26.338	1.00 33.80
ATOM	1427	CEI	TYF	C1015		15.892	15.497	24.664	1.00 36.71
ATOM	1428	CE2		C1015		17.623	16.791	25.745	1.00 36.63
ATOM	1429	CZ	TYR	C1015		17.249	15.758	24.895	1.00 36.99
MOTA	1430	OH	TYR	C1015		18.233	15.005	24.325	1.00 37.59
ATOM	1431	N	THR	C1016		13.210	19.409	29.691	1.00 29.91
MOTA	1432	CA	THR	C1016		12.342	20.393	30.312	1.00 30.08
MOTA	1433	C	THR	C1016		13.109	21.700	30.459	1.00 33.68
MOTA	1434	0	THR	C1016		14.307	21.752	30.085	1.00 32.46
MOTA	1435	CB		C1016		11.986	19.882	31.717	1.00 31.45
ATOM	1436	OG1		C1016		13.149	19.778	32.540	1.00 31.21
ATOM	1437	CG2		C1016		11.332	18.415	31.720	1.00 29.42
ATOM	1438	N		C1017		12.509	22.699	31.141	1.00 31.49
ATOM	1439	CA		C1017		13.301	23.863	31.536	1.00 31.49
ATOM	1440	C		C1017		14.367	23.447	32.536	1.00 32.10
ATOM	1441	0		C1017		15.480	24.004	32.588	1.00 31.99
ATOM	1442	CB		C1017		12.396	25.033	32.078	1.00 31.99
ATOM	1443	OG1		C1017		11.836	25.456	30.829	1.00 32.15
ATOM	1444	CG2		C1017		13.152	26.192	30.629	
ATOM	1445	N		C1017		14.062			1.00 30.94
ATOM	1445	CA		C1018		15.020	22.468	33.403	1.00 32.36
ATOM	1447	C		C1018		16.208	21.997 21.329	34.372	1.00 34.23
ATOM	1448	0		C1018		17.326		33.647	1.00 33.65
ATOM	1449	CB		C1018		14.563	21.560 21.089	34.163	1.00 32.63
MOTA	1450	CG		C1018				35.519	1.00 33.92
ATOM	1451			C1018		13.478	21.750	36.390	1.00 36.18
ATOM	1452	ND2		C1018		13.561	22.943	36.772	1.00 33.93
ATOM	1453	N		C1018		12.400	20.983	36.687	1.00 31.82
ATOM	1454	CA				16.007	20.738	32.468	1.00 30.11
				C1019		17.216	20.101	31.865	1.00 31.68
ATOM	1455	C		C1019		18.016	21.121	31.069	1.00 30.62
ATOM	1455	0		C1019		19.237	21.110	30.787	1.00 25.61
ATOM	1457	CB		C1019		16.668	18.883	31.150	1.00 29.04
ATOM	1458	OG		C1019		16.208	19.177	29.829	1.00 30.35
ATOM	1459	N		C1020		17.331	22.228	30.738	1.00 30.23
ATOM	1460	CA		C1020		17.923	23.429	30.164	1.00 27.36
ATOM	1461	Ċ		C1020		18.880	24.034	31.183	1.00 26.47
ATOM	1462	0		C1020		19.935	24.477	30.766	1.00 28.27
ATOM	1463	CB		C1020		16.986	24.536	29.714	1.00 28.00
MOTA	1464	CG		C1020		16.480	24.298	28.328	1.00 28.71
MOTA	1465	OD1		C1020	-	L6.969	23.343	27.647	1.00 31.13
ATOM	1466			C1020		L5.583	24.984	27.876	1.00 32.14
ATOM	1467	N		C1021		18.502	24.085	32.455	1.00 26.65
MOTA	1468	CA		C1021	=	19.328	24.627	33.497	1.00 26.02
ATOM	1469	C		C1021	2	20.546	23.742	33.781	1.00 27.12
MOTA	1470	0	VAL	C1021	2	21.575	24.333	34.098	1.00 23.97
ATOM	1471	CB		C1021	3	L8.525	24.925	34.779	1.00 27.32
ATOM	1472	CG1		C1021	1	19.464	25.263	35.929	1.00 25.33
MOTA	1473	CG2		C1021	1	17.590	26.138	34.62 <i>6</i>	1.00 29.37
ATOM	1474	N	TRP	C1022	2	20.461	22.409	33.671	1.00 25.32
ATCM	1475	CA	TRP	C1022	2	21.679	21.587	33.868	1.00 23.28
ATOM	1476	C	TRP	C1022	2	22.664	21.958	32.796	1.00 23.00

MOTA	1477	0	TRE	C1022	23.835	22.338	32.917	1.00	25.36
ATOM	1478	CB	. TRF	C1022	21.248	20.096	33.625	1.00	25.77
ATOM	1479	CG	TRE	C1022	22:434	19.150	33.646	1.00	27.35
MOTA	1480	CD1			23.411	18.987	32.695	1.00	26.63
ATOM	1481	CD2		C1022	22.685	18.200	34.675	1.00	28.39
ATOM	1482	NE1	TRP	C1022	24.267	18.008	33.079	1.00	29.90
ATOM	1483	CE2	TRF	C1022	23.840	17.481	34.300	1.00	30.24
ATOM	1484	CE3	TRP	C1022	22.041	17.867	35.866	1.00	30.30
ATOM	1485	CZ2	TRP		24.394	16.485	35.090	1.00	32.33
ATOM	1486	CZ3	TRP		22.563	15.816	36.624	1.00	31.39
MCTA	1487	CH2	TRP		23.718	16.151	36.243	1.00	32.10
MOTA	1488	N	SER	C1023	22.207	21.928	31.529	1.00	21.23
MOTA	1489	CA		C1023	23.068	22.354	30.379	1.00	22.80
ATOM	1490	C		C1023	23.618	23.745	30.495	1.00	27.97
MOTA	1491	0		C1023	24.829	24.031	30.146	1.00	23.26
ATOM	1492	CB		C1023	22.108	21.769	29.326	1.00	24.28
MOTA	1493	OG	SER	C1023	21.977	22.454	28.131	1.00	34.21
MOTA	1494	N		C1024	22.810	24.769	30.968	1.00	24.68
ATOM	1495	CA		C1024	23.395	25.101	31.223	1.00	25.91
MOTA	1496	C		C1024	24.614	26.083	32.155	1.00	28.55
ATOM	1497	0		C1024	25.582	26.856	32.091	1.00	26.16
MOTA	1498	CB	TYR	C1024	22.317	27.041	31.808	1.00	23.53
MOTA	1499	CG		C1024	22.904	28.385	32.225	1.00	23.34
MOTA	1500	CD1		C1024	22.931	29.409	31.328	1.00	21.89
MOTA	1501	CD2		C1024	23.322	28.564	33.537	1.00	21.62
ATOM	1502	CEl		C1024	23.498	30.540	31.655	1.00	24.95
MOTA	1503	CE2	TYR	C1024	23.929	29.791	33.858	1.00	25.56
MOTA	1504	CZ		C1024	23.957	30.795	32.941	1.00	24.77
ATOM	1505	OH		C1024	24.513	32.006	33.282		29.84
ATOM	1506	N		C1025	24.55 <i>9</i>	25.263	33.180		31.16
MOTA	1507	CA		C1025	25.499	24.901	34.180		28.63
MOTA	1508	C		C1025	26.812	24.444	33.475		29.18
ATOM	1509	0		C1025	27.826	24.973	33.911		25.38
ATOM	1510	N		C1026	26.724	23.628	32.431		30.48
MOTA	1511	CA		C1026	27.848	23.171	31.665		30.49
ATOM	1512	C	VAL	C1026	28.404	24.335	30.867		30.61
MOTA	1513	0		C1026	29.622	24.566	30.796		31.75
ATOM	1514	CB		C1026	27.598	21.959	30.748	1.00	29.54
ATOM	1515	CGl		C1026	28.867	21.451	30.040	1.00	26.68
ATOM	1516	CG2		C1026	26.960	20.808	31.527		28.00
ATOM	1517	N		C1027	27.539	25.107	30.208		29.76
ATOM	1518	CA		C1027	27.925	26.331	29.524		27.25
ATOM	1519	C		C1027	28.729	27.263	30.410		25.12
MOTA	1520	0		C1027	29.764	27.833	30.030		27.00
ATOM	1521	CB		C1027	26.664	27.044	28.959		27.55
ATOM	1522	CG		C1027		28.561	28.667		27.68
ATOM	1523			C1027	27.658	28.914	27.434		28.77
ATOM	1524			C1027	25.485	29.174	28.511		29.96
ATOM	1525	N		C1028	28.311	27.500	31.665		27.12
ATOM	1526	CA		C1028	28.994	28.386	32.576		26.05
ATOM	1527	C		C1028	30.399	27.853	32.836		28.29
ATOM	1528	0		C1028	31.296	28.666	32.888		27.74
ATOM	1529	CB		C1028	28.123	28.576	33.809		24.95
ATOM	1530	CG		C1028	28.601	29.349	34.990		26.00
ATOM	1531			C1028	28.932	30.805	34.567		26.51
ATOM	1532	CD2		C1028	27.771	29.411	36.264		23.62
MOTA	1533	N	TRP	C1029	30.569	26.514	32.998	T.00	27.52

ATOM	1534	CA	TRP	C1029	31.811	25.818	33.200	1.00	25.28
ATOM	1535	С	TRP	C1029	32.677	26.052	31.992	1.00	24.21
ATOM	1536	0	TRP	C1029	33.809	26.411	32.199	1.00	28.34
ATOM	1537	CB	TRP	C1029	31.604	24.291	33.488	1.00	25.52
ATOM	1538	CG	TRP	C1029	32.875	23.609	33.873	1.00	23.89
ATOM	1539	CD1	TRP	C1029	33.316	23.467	35.159	1.00	23.77
ATOM	154C	CD2	TRP	C1029	33.901	23.125	33.013	1.00	25.22
ATOM	1541	NEl	TRP	C1029	34.566	22.870	35.125	1.00	28.07
ATOM	1542	CE2	TRP	C1029	34.922	22.645	33.819	1.00	27.51
MOTA	1543	CE3	TRP	C1029	34.013	23.005	31.620	1.00	27.28
ATOM	1544	CZ2	TRP	C1029	36.095	21.998	33.349	1.00	30.61
ATOM	1545	CZ3	TRP	C1029	35.169	22.378	31.126	1.00	30.99
ATOM	1546	CH2	TRP	C1029	36.195	21.931	31.972	1.00	29.91
MOTA	1547	N	GLU	C1030	32.196	26.006	30.773	1.00	22.75
ATOM	1548	CA	GLU	C1030	32.865	26.380	29.590	1.00	24.64
ATOM	1549	C	GLU	C1030	33.291	27.882	29.553	1.00	23.46
MOTA	1550	0	GLU	C1030	34.433	28.114	29.047	1.00	23.61
MOTA	1551	CB	GLŨ	C1030	32.036	26.144	28.339	1.00	22.23
ATOM	1552	CG	GLU	C1030	31.853	24.671	28.076	1.00	27.85
ATOM	1553	CD	GLU	C1030	30.969	24.399	26.881	1.00	33.40
MOTA	1554	OE1	GLU	C1030	29.767	24.531	27.111	1.00	33.08
ATOM .	1555	OE2	GĽŪ	C1030	31.477	24.088	25.792	1.00	37.59
MOTA	1556	N	ILE	C1031	32.413	28.784	30.027	1.00	20.93
ATOM	1557	CA	ILE	C1031	32.888	30.190	29.987	1.00	23.32
MOTA	1558	С	ILE	C1031	34.099	30.417	30.881	1.00	24.20
ATOM	1559	0	ILE	C1031	35.125	31.060	30.547	1.00	25.10
MOTA.	1560	CB	ILE	C1031	31.720	31.156	30.365	1.00	22.53
MOTA	1561	CG1	ILE	C1031	30.622	31.066	29.330	1.00	24.20
ATOM	1562	CG2	ILE	C1031	32.262	32.584	30.449	1.00	25.77
ATOM	1563	CDl	ILE	C1031	29.254	31.567	29.766	1.00	24.02
ATOM	1564	N	VAL	C1032	34.002	30.128	32.180	1.00	23.96
ATOM	1565	CA	VAL	C1032	34.923	30.263	33.255	1.00	28.42
ATOM	1566	C	VAL	C1032	36.251	29.547	32.943	1.00	31.87
ATOM	1567	0	VAL	C1032	37.324	30.118	33.157	1.00	31.88
ATOM	1568	CB	VAL	C1032	34.229	29.636	34.479	1.00	31.74
MOTA	1569	CG1	VAL	C1032	35.145	28.990	35.490	1.00	35.56
ATOM	1570	CG2	VAL	C1032	33.241	30.562	35.210	1.00	29.88
ATOM	1571	N	SER	C1033	36.236	28.433	32.262	1.00	29.60
ATOM	1572	CA	SER	C1033	37.352	27.612	31.846	1.00	29.62
ATOM	1573	С	SER	C1033	37.900	28.101	30.520	1.00	30.68
ATOM	1574	Q.	SER	C1033	38.900	27.598	30.046	1.00	30.21
ATOM	1575	ĊВ	SER	C1033	36.909	26.139	31.703	1.00	30.12
ATOM	1576	QG	SER	C1033	36.408	25.725	30.430	1.00	30.39
ATOM	1577	N	LEU	C1034	37.291	29.100	29.905	1.00	28.42
ATOM	1578	CA	LEU	C1034	37.787	29. <i>6</i> 35	28.638	1.00	31.98
MOTA	1579	С	LEU	C1034	37.753	28.432	27.688	1.00	32.37
MOTA	1580	0	LEU	C1034	38.731	27.936	27.147	1.00	39.15
ATOM	1581	CB	LEU	C1034	39.205	30.261	28.704	1.00	29.58
ATOM	1582	CG	LEU	C1034	39.466	31.409	29.630	1.00	28.94
ATOM	1583	CD1	LEU	C1034	40.895	31.922	29.656	1.00	30.58
ATOM	1584	CD2	LEU	C1034	38.617	32.636	29.209	1.00	26.58
ATOM	1585	N		C1035	36.530	27.864	27.544	1.00	28.98
ATOM	1586	CA		C1035	36.357	26.754	26.647	1.00	24.56
ATOM	1587	C		C1035	37.171	25.481	26.790		20.81
MOTA	1588	Ó		C1035	37.321	24.796	25.771	1.00	21.90
ATOM	1589	N		C1036	37.326	24.968	27.997	1.00	21.82
ATOM	1590	CA	GLY	C1036	37.834	23.629	28.239	1.00	25.47
				•					

ATOM	1591	C	GLY	C1036	3	6.727	22.5	590	27.923	1.00	28.57	
MOTA	1592	0	GLY	C1036	3	5.562	22.9	944	28.062	1.00	33.09	
ATOM	1593	N	THR	C1037	3	7.098	21.4	424	27.446	1.00	31.18	
ATOM	1594	CA	THR	C1037	3	6.071	20.4	402	27.101	1.00	31.40	
MOTA	1595	C	THR	C1037	3	5.671	19.7	771	28.411	1.00	29.08	
ATOM	1596	0	THR	C1037	3	6.402	19.3	322	29.267	1.00	28.43	
MCTA	1597	CB	THR	C1037	3	6.849	19.3	362	26.248	1.00	35.25	
MOTA	1598	OG1		C1037	3	7.143	19.8	356	24.934	1.00	34.77	
ATOM	1599	CG2	THR	C1037	3	6.056	18.0	71	26.103	1.00	39.81	
ATOM	1600	N	PRO	C1038	3	4.318	19.8	349	28.643	1.00	28.79	
ATOM	1601	CA	PRO	C1038	3	3.748	19.2	251	29.832	1.00	29.26	
MOTA	1602	С	PRO	C1038	3	4.121	17.7	764	29.891	1.00	30.33	
MCTA	1603	0	PRO	C1038	3	4.045	17.0		28.877	1.00	30.70	
ATOM .	1604	CB	PRO	C1038	3	2.262	19.4	172	29.632	1.00	29.45	
ATOM.	1605	CG	PRO	C1038	3:	2.146	20.5	95	28.674	1.00	26.90	
ATOM	1606	CD		C1038	3	3.290	20.3	373	27.726	1.00	26.24	
MCTA	1607	N	TYR	C1039	3.	4.507	17.2	239	31.019	1.00	27.10	
ATOM	1608	CA	TYR	C1039	3.	4.831	15.8	65	31.319	1.00	31.51	
MOTA	1609	C		C1039	3.	5.958	15.3	22	30.451	1.00	33.48	
MCTA	1610	0		C1039	3	6.068	14.1	.91	29.947	1.00	32.47	
MOTA	1611	CB		C1039	3:	3.590	14.9	68	31.246	1.00	29.03	
ATOM	1612	CG		C1039	3:	2.355	15.4		31.980	1.00	28.35	
MOTA	1613	CD1		C1039	3	1.290	15.9		31.247		27.58	
MOTA	1614	CD2	TYR	C1039	3:	2.220	15.3	68	33.364	1.00	26.44	
MOTA	1615	CE1		C1039	3	0.142	16.4	86	31.827	1.00	23.25	
ATOM	1616	CE2		C1039	3 :	1.053	15.8		33.969		25.69	
MOTA	1617	CZ		C1039	3 (0.031	16.3	98	33.196	1.00	25.31	
ATOM	1618	OH	TYR	C1039		8.870	16.7	76	33.851	1.00	28.82	
ATOM	1619	N	CYS	C1040	3 (6.877	16.2		30.243		37.16	
ATOM	1620	CA		C1040	3 8	8.045	16.0	95	29.389		38.31	
ATOM	1621	C		C1040		8.733	14.8		29.848		36.75	
MOTA	1622	0		C1040	3 8	8.962	14.5		31.042		33.37	
ATOM	1623	CB		C1040	3 8	8.886	17.3		29.511		41.12	
MOTA	1624	SG	CYS	C1040		0.570	17.1		28.904	•	52.08	
ATOM	1625	N		C1041		8.916	13.8		28.920		38.90	
MOTA	1626	CA		C1041		9.550	12.6		29.230		43.75	
MOTA	1627	С		C1041		8.531	11.4		29.459	1.00	46.25	
MOTA	1628	0		C1041		3.940	10.3		29.384		45.71	
ATOM	1629	N		C1042		7.288	11.8		29.785		46.22	
ATOM	1630	CA		C1042		5.267	10.8		30.078		47.06	
ATOM	1631	C,		C1042		5.471	10.3		28.874		47.05	
MOTA	1632	0		C1042		5.257	11.1		27.937		47.49	
MOTA	1633	CB		C1042		5.281	11.3		31.119		46.72	
MOTA	1634	CG		C1042		5.944	11.6		32.445		48.06	
MOTA	1635	SD		C1042		1.712	11.8		33.734		51.59	
ATOM	1636	CE		C1042		3.816	10.2		33.378		51.12	
ATOM	1637	N		C1043		5.143	9.0		28.852		48.58	
ATOM	1638	CA		C1043		4.359	8.5		27.745		50.37	
ATOM	1639	C		C1043		2.867	8.8		27.938		49.20	
ATOM	1640	0		C1043		2.469	8.9		29.090		48.53	
ATOM	1641	CB		C1043		1.541	7.0		27.715		49.50	
ATOM	1642	0G1		C1043		3.825	6.4		28.780		49.52	
ATOM	1643	CG2		C1043		5.053	6.7		27.911		48.66	
ATOM	1644	N		C1044		2.090	8.7		26.869		52.39	
ATOM	1645	CA		C1044		0.591	8.9		27.031	-	54.39	
ATOM	1646	C		C1044		0.054	7.9		27.964		55.34	
MOTA	1647	0	CYS	C1044	29	9.373	8.2	30	28.952	1.00	56.27	

ATOM	1648	CB	CYS	C1044		29.890	9.166	25.699	1.00	54.86
ATOM	1649	SG		C1044		30.275	10.658	24.717	1.00	54.87
MOTA	1650	N	ALA	C1045		30.546	6.684	27.883	1.00	53.74
ATOM	1651	CA		C1045		30.276	5.533	28.691	1.00	53.52
ATOM	1652	C		C1045		30.319	5.704	30.200	1.00	52.95
ATOM	1653	0		C1045		29.467	5.296	31.022	1.00	52.64
ATOM	1654	CB		C1045		31.379	4.491	28.321	1.00	54.24
	1655	N		C1046		31.440	6.277	30.650	1.00	50.91
MOTA		CA		C1046	•	31.637	6.589	32.076	1.00	48.71
MOTA	1656	CA		C1046		30.675	7.673	32.539		46.60
ATOM	1657			C1046		30.237	7.666	33.717		44.26
ATOM	1658			C1046		33.085	7.002	32.314		49.93
ATOM	1659	CB		C1046		34.115	6.109	31.628		53.13
ATOM	1660	CG					6.735	31.729		54.82
MOTA	1661	CD		C1046		35.513	6.539	32.795		54.82
MOTA	1662	OE1		C1046		36.134				55.96
MOTA	1663	OE2		C1046		35.963	7.416	30.783		45.34
ATOM	1664	N		C1047		30.268	8.586	31.614		
ATOM	1665	CA		C1047		29.331	9.632	32.066		44.07
ATOM	1666	C	LEU	C1047		27.983	9.017	32.439		42.99
MOTA	1667	0	LEU	C1047		27.530	9.215	33.576		42.01
ATOM	1668	CB	LEU	C1047		29.181	10.815	31.111		45.07
ATOM	1669	CG	LEU	C1047		30.430	11.706	30.918		44.08
ATOM	1670	CD1	LEU	C1.047		30.038	12.921	30.115		45.50
MOTA	1671	CD2	LEU	C1047		31.071	12.058	32.245		42.85
ATOM	1672	N	TYR	C1048		27.409	8.182	31.588		43.22
ATOM	1673	CA		C1048		26.213	7.392	31.910		44.38
ATOM	1674	C		C1048		26.397	6.646	33.245	1.00	44.87
ATOM	1675	Õ		C1048		25.486	6.717	34.085	1.00	43.82
ATOM	1676	CB		C1048		25.905	6.343	30.853	1.00	44.96
ATOM	1677	CG		C1048		25.256	6.871	29.600	1.00	47.81
ATOM	1678	CD1		C1048		26.033	7.330	28.545	1.00	47.83
ATOM	1679	CD2		C1048		23.852	6.898	29.482	1.00	48.40
ATOM	1680	CE1		C1048		25.436	7.802	27.387	1.00	47.27
	1681	CE2		C1048		23.246	7.366	28.324	1.00	48.08
ATOM	1682	CZ		C1048		24.075	7.815	27.294	1.00	48.94
ATOM		OH		C1048		23.413	8.274	26.168	1.00	49.94
ATOM	1683			C1048		27.591	6.069	33.477	1.00	42.94
MOTA	1684	N		C1049		27.749	5.400	34.754	1.00	
MOTA	1685	CA				28.155	6.333	35.873	1.00	44.67
ATOM	1686	C	GLU			27.588	6.137	36.975		45.76
MOTA	1687	0	GLU			28.683	4.171	34.686		47.30
MOTA	1688	CB		C1049			4.453	34.837		49.28
MOTA	1689	CG		C1049		30.158		35.050		50.85
ATOM	1690	CD		C1049		31.072	3.245	34.042		51.60
MOTA	1691	OEl		C1049		31.702	2.810			49.78
ATOM	1692	OE2		C1049		31.179	2.748	36.200		45.45
ATOM	1.693	N		C1050		29.038	7.320	35.685		46.05
MOTA	1694	CA		C1050		29.387	8.148	36.861		
ATOM	1695	С		C1050		28.404	9.253	37.175		44.76
ATOM	1696	0		C1050		28.099	9.497	38.375		44.16
MOTA	1697	CB		C1050		30.814	8.668	36.707		49.41
ATOM	1698	CG	LYS	C1050		31.798	7.565	36.380		52.04
ATOM	1699	CD	LYS	C1050		33.285	7.938	36.456		54.77
ATOM	1700	CE	LYS	C1050		34.086	6.629	36.533		56.01
ATOM	1701	NZ		C1050		35.565	6.819	36.433		58.90
MOTA	1702	И	LEU	C1051		27.733	9.813	36.163		41.92
ATOM	1703	ÇA		C1051		26.746	10.866	36.552		43.18
MOTA	1704	C		C1051		25.759	10.435	37.607	1.00	43.39
				•						

		_		21253	25 502	71 000	38.662	1.00 43.64
MOTA	1705	0		C1051	25.582	11.062		1.00 43.49
ATOM	1706	CB		C1051	26.145	11.496	35.307	
ATOM	1707	CG		C1051	27.096	12.382	34.480	1.00 42.95
ATOM	1708	CD1	LEU	C1051	26.331	12.985	33.326	1.00 43.01
ATOM	1709	CD2	LEU	C1051	27.702	13.468	35.366	1.00 43.66
ATOM	1710	N		C1052	25.084	9.288	37.475	1.00 45.02
		CA		C1052	24.140	8.817	38.470	1.00 45.84
ATOM	1711				24.736	8.635	39.839	1.00 47.07
ATOM	1712	С		C1052		8.826	40.880	1.00 48.20
MCTA	1713	0		C1052	24.088			1.00 45.47
MOTA	1714	CB		C1052	23.559	7.544	37.854	
MCTA	1715	CG	PRO	C1052	23.652	7.799	36.384	1.00 44.83
MOTA	1716	CD	PRO	C1052	25.013	8.487	36.242	1.00 45.28
ATOM	1717	N	GLN	C1053	26.006	8.296	40.007	1.00 50.49
ATOM	1718	CA	GLN	C1053	26.594	8.130	41.331	1.00 52.45
ATOM	1719	C		C1053	26.921	9.462	41.976	1.00 51.74
		0		C1053	27.231	9.442	43.175	1.00 51.45
ATOM	1720				27.798	7.199	41.221	1.00 55.75
ATOM	1721	CB		C1053			40.768	1.00 61.04
ATOM	1722	CG		C1053	27.411	5.794		
MOTA	1723	CD		C1053	26.526	5.041	41.743	1.00 64.91
ATOM	1724	OE1	GLN	C1053	26.851	4.904	42.948	1.00 66.92
ATOM	1725	NE2	GLN	C1053	25.370	4.528	41.286	1.00 65.52
MOTA	1726	N	GLY	C1054	26.801	10.624	41.320	1.00 49.79
ATOM	1727	CA	_	C1054	27.061	11.874	42.052	1.00 46.62
				C1054	28.276	12.597	41.495	1.00 44.62
ATOM	1728	C				13.662	41.920	1.00 43.65
ATOM	1729	0		C1054	28.683			1.00 45.48
MOTA	1730	N		C1055	28.917	12.051	40.482	
MOTA	1731	CA	TYR	C1055	30.099	12.698	39.937	1.00 45.51
ATOM	1732	С	TYR	C1055	29.685	13.995	39.214	1.00 44.95
ATOM	.1733	0	TYR	C1055	28.622	13.976	38.583	1.00 46.39
ATOM	1734	CB		C1055	30.767	11.776	38.932	1.00 45.73
ATOM	1735	CG		C1055	32.055	12.414	38.433	1.00 48.52
		CD1		C1055	33.235	12.302	39.143	1.00 48.82
MOTA	1736				32.045	13.129	37.234	1.00 48.37
MOTA	1737	CD2		C1055			38.658	1.00 48.87
MOTA	1738	CEI		C1055	34.401	12.898		1.00 47.42
ATOM	1739	CE2		C1055	33.178	13.723	36.737	
ATOM	1740	CZ		C1055	34.354	13.582	37.459	1.00 49.27
MOTA	1741	OH	TYR	C1055	35.488	14.170	36.952	1.00 48.77
ATOM	1742	N	ARG	C1056	30.485	15.051	39.252	1.00 40.28
MOTA	1743	CA		C1056	30.189	16.276	38.566	1.00 38.71
	1744	C		C1056	31.481	17.012	38.176	1.00 39.85
ATOM				C1056	32.472	16.797	38.879	1.00 42.11
ATOM	1745	Ò			29.407	17.281	39.408	1.00 38.04
MCTA	1746	ĊВ		C1056			39.890	1.00 37.78
ATOM	1747	CG		C1056	27.996	17.004		1.00 34.37
ATOM	1748	CD		C1056	27.022	16.584	38.810	
ATOM	1749	ΝE	ARG	C1056	25.677	16.380	39.370	1.00 32.75
ATOM	1750	CZ	ARG	C1056	25.172	15.135	39.461	1.00 34.13
MOTA	1751	NHl	ARG	C1056	23.934	15.014	39.951	1.00 33.89
ATOM	1752	NH2		C1056	25.884	14.083	39.063	1.00 31.70
		N		C1057	31.450	17.843	37.130	1.00 37.74
ATOM	1753			C1057	32.615	18.640	36.829	1.00 38.61
MOTA	1754	CA					38.062	1.00 37.18
ATOM	1755	С		C1057	33.280	19.260		1.00 36.18
ATOM	1756	0		C1057	32.759	19.829	39.007	
MOTA	1757	CB	LEU	C1057	32.223	19.785	35.886	1.00 39.58
ATOM	1758	CG	LEU	C1057	31.870	19.236	34.492	1.00 40.26
ATOM	1759			C1057	31.190	20.384	33.790	1.00 41.53
ATOM	1760			C1057	33.089	18.719	33.746	1.00 40.04
	1761	N		C1058	34.597	19.231	37.962	1.00 38.47
ATOM	T 10T	TA	نايين				_	

MOTA	1762	CA	GLU	C1058	35.494	19.715	39.003	1.00	40.99
ATOM	1763	C	GLU	C1058	35.655	21.237	38.941	1.00	37.60
ATOM	1764	0	GLU	C1058	35.665	21.759	37.841	1.00	37.18
ATOM	1765	CB	GLU	C1058	36.808	18.952	38.778	1.00	43.93
ATOM	1766	CG	GLU	C1058	37.256	18.728	37.367	1.00	49.34
MOTA	1767	CD	GLU	C1058	36.540	18.005	36.265	1.00	51.18
ATOM	1768	OEl	GLU	C1058	3€.581	18.538	35.121	1.00	50.19
ATOM	1769	OE2	GLU	C1058	35.931	16.902	36.361	1.00	52.82
ATOM	1770	N	LYS	C1059	35.708	21.975	40.005	1.00	35.88
ATOM	1771	CA	LYS	C1059	35.948	23.424	39.950	1.00	40.12
ATOM	1772	С	LYS	C1059	37.345	23.831	39.473	1.00	41.54
ATOM	1773	0	LYS	C1059	38.332	23.431	40.095	1.00	41.88
MOTA	1774	CB	LYS	C1059	35.946	23.896	41.417	1.00	39.21
ATOM	1775	CG	LYS	C1059	35.984	25.413	41.569	1.00	41.97
ATOM	1776	CD	LYS	C1059	35.953	25.810	43.048	1.00	43.62
ATOM	1777	CE	LYS	C1059	37.349	25.786	43.641	1.00	43.92
ATOM	1778	NΖ	LYS	C1059	38.192	26.906	43.099	1.00	44.39
ATOM	1779	N	PRO	C1060	37.498	24.651	38.439	1.00	41.99
MOTA	1780	CA	PRO	C1060	38.795	25.166	38.040	1.00	42.27
ATOM	1781	C	PRO	C1060	39.441	25.920	39.186	1.00	42.45
MOTA	1782	0	PRO	C1060	38.840	26.618	39.996	1.00	40.76
ATOM	1783	CB	PRO	C1060	38.529	26.115	36.894	1.00	43.06
ATOM	1784	CG	PRO	C1060	37.145	25.765	36.416	1.00	41.60
MOTA	1785	CD	PRO	C1060	36.408	25.170	37.589	1.00	41.74
ATOM	1786	N	LEU	C1061	40.773	25.843	39.287	1.00	44.11
ATOM	1787	CA	LEU	C1061	41.557	26.440	40.325	1.00	44.84
ATOM	1788	C	LEU	C1061	41.416	27.941	40.443	1.00	44.71
ATOM	1789	0	LEU	C1061	41.441	28.470	41.567	1.00	45.26
ATOM	1790	CB	LEU	C1061	43.036	26.089	40.055	1.00	48.79
ATOM	1791	CG	LEU	C1061	43.314	24.624	40.459	1.00	52.11
ATOM	1792	CD1	LEU	C1061	44.673	24.204	39.897	1.00	53.08
ATOM	1793	CD2	LEU	C1061	43.288	24.512	41.984	1.00	52.05
ATOM	1794	N	ASN	C1062	41.247	28.623	39.321	1.00	44.44
ATOM	1795	CA	ASN	C1062	41.112	30.085	39.327	1.00.	44.45
ATOM	1796	C	ASN	C1062	39.661	30.582	39.363	1.00	44.24
ATOM	1797	0	ASN	C1062	39.394	31.757	39.073	1.00	42.70
ATOM	1798	CB	ASN	C1062	41.811	30.536	38.059	1.00	47.14
ATOM	1799	CG	ASN	C1062	41.018	30.280	36.799	1.00	50.71
ATOM	1800	OD1	ASN	C1062	40.297	29.260	36.680	1.00	55.26
ATOM	1801	ND2	ASN	C1062	41.160	31.208	35.873	1.00	49.84
ATOM	1802	Ŋ	CYS	C1063	38.727	29.727	39.787	1.00	40.21
ATOM	1803	ĊĀ		C1063	37.312	30.006	39.917	1.00	39.16
ATOM	1804	С		C1063	36.922	30.226	41.375	1.00	40.26
ATOM	1805	0	CYS	C1063	37.149	29.298	42.177	1.00	38.11
ATOM	1806	CB	CYS	C1063	36.476	28.796	39.430	1.00	36.02
MOTA	1807	SG	CYS	C1063	34.684	29.162	39.283	1.00	36.25
MOTA	1808	N	ASP	C1064	36.179	31.287	41.675	1.00	39.98
ATOM	1809	CA	ASP	C1064	35.704	31.514	43.034	1.00	42.23
ATOM	1810	C		C1064	34.623	30.474	43.367	1.00	43.63
ATOM	1811	0		C1064	33.885	29.998	42.516	1.00	42.13
ATOM	1812	CB		C1064	35.166	32.915	43.277	1.00	44.24
ATOM	1813	CG		C1064	34.744	33.348	44.660	1.00	47.38
MOTA	1814			C1064	35.591	34.016	45.335		49.14
ATOM	1815	OD2		C1064	33.594	33.165	45.169		46.30
ATOM	1816	N		C1065	34.571	30.128	44.646		44.20
ATOM	1817	CA		C1065	33.681	29.213	45.285	•	46.41
MOTA	1818	С		C1065	32.214	29.629	45.059	1.00	46.09

ATOM	1819	0 2	ASP C1) 6 5	31.383	28.772	44.807	1.00 45.90
ATOM	1820		ASP C1		33.999	29.111	46.780	1.00 49.84
ATOM	1821		ASP C1		34.972	28.020	47.179	1.00 54.04
ATOM	1822	OD1	ASP C1	065	35.370	27.139	46.384	1.00 54.54
ATOM	1823		ASP C1		35.412	27.941	48.364	1.00 56.55
ATOM	1824		GLU Cl		31.932	30.931	44.991	1.00 46.33
ATOM	1825		GLU Cl		30.585	31.364	44.699	1.00 46.37
MCTA	1826		GLU C1		30.162	30.946	43.279	1.00 43.58
ATOM	1827		GLU Cl		28.974	30.622	43.161	1.00 40.53
ATOM	1828	_	GLU C1		30.362	32.870	44.901	1.00 47.78
ATOM	1829		GLU C1		30.464	33.371	46.327	1.00 51.27
ATOM	1830		GLU Cl		30.147	34.853	46.483	1.00 54.46
ATOM	1831		GLU C1		30.977	35.632	47.023	1.00 56.49
ATOM	1832		GLU C1		29.039	35.278	46.075	1.00 54.91
ATOM	1833		VAL C1		31.031	31.026	42.267	1.00 40.02
ATOM	1834		VAL C1		30.592	30.670	40.914	1.00 38.39
	1835		VAL C1		30.361	29.166	40.750	1.00 38.56
MOTA	1835	_	VAL C1		29.492	28.741	39.975	1.00 35.01
MOTA			VAL C1		31.561	31.094	39.797	1.00 37.83
ATOM	1837		VAL C1		31.071	30.760	38.416	1.00 34.84
MOTA	1838		VAL C1		31.809	32.609	39.878	1.00 39.35
ATOM	1839		TYR Cl		31.258	28.419	41.393	1.00 37.89
ATOM	1840		TYR C1		31.203	26.969	41.346	1.00 38.97
ATOM	1841		TYR C1		29.924	26.510	42.044	1.00 40.70
MOTA	1842	C	TYR CI		29.265	25.613	41.492	1.00 38.63
MOTA	1843	0			32.437	26.278	41.913	1.00 37.20
ATOM	1844	CB	TYR C1		32.470	24.770	41.798	1.00 35.05
ATOM	1845	CG			32.535	24.158	40.556	1.00 34.59
ATOM	1846		TYR C1		32.431	23.934	42.903	1.00 35.51
ATOM	1847		TYR C1		32.536	22.785	40.405	1.00 33.51
ATOM	1848	CE1	TYR C1		32.456	22.549	42.800	1.00 33.38
ATOM	1849	CE2	TYR CI		32.540	22.006	41.540	1.00 33.70
ATOM	1850	CZ	TYR Cl		32.545	20.637	41.342	1.00 37.05
ATOM	1851	OH	TYR CI		29.573	27.177	43.159	1.00 42.06
MOTA	1852	Ŋ	ASP CI			26.862	43.806	1.00 42.68
ATOM	1853	CA	ASP C		28.316	27.069	42.869	1.00 40.99
MOTA	1854	C	ASP C		27.124	26.193	42.884	1.00 40.08
MOTA	1855	0	ASP C		26.233	27.676	45.094	1.00 47.98
MOTA	1856	CB	ASP. C		28.116	27.070	45.212	1.00 53.70
MOTA	1857	CG	ASP C		28.983	25.940	46.045	1.00 55.80
ATOM	1858	ODl	ASP C		29.487	27.786		
MOTA	1859	_	ASP C		29.161		42.087	1.00 36.81
MOTA	1860	N,	LEU C		27.080	28.150	41.140	1.00 36.03
MOTA	1861	CA	LEU C		25.977	28.308	40.123	1.00 34.83
ATOM	1862	C	LEU C		25.905	27.172	39.743	1.00 32.57
ATOM	1863	0	LEU C		24.833	26.703	40.472	1.00 33.68
ATOM	1864	CB	LEU C		26.131	29.666	39.458	1.00 35.12
ATOM	1865	CG	LEU C		25.095	30.113		1.00 33.22
MOTA	1866	CD1			23.674		40.003	1.00 34.63
ATOM	1867	CD2			25.391		39.084	1.00 34.03
MOTA	1868	N	MET C		27.036		39.602	1.00 38.71
MOTA	1869	CA	MET C		27.131		38.706	1.00 37.17
ATOM	1870	C	MET C	1071	26.555		39.372	1.00 36.82
MOTA	1871	0	MET C		25.808		38.735	
ATOM	1872	CB	MET C	1071	28.569	_	38.294	1.00 35.35
ATOM	1873	CG	MET C	1071	29.354		37.465	1.00 35.64
ATOM	1874		MET C	1071	31.096		37.207	1.00 32.11
ATOM	1875		MET C	1071	31.839	27.209	36.753	1.00 34.27

ATOM	1876	N	ARG	C1072		26.959	23.943	40.580	1.00	36.71
ATOM	1877	CA	ARG	C1072		26.550	22.771	41.323	1.00	37.27
ATOM	1878	C	ARG	C1072		25.039	22.687	41.557	1.00	36.15
ATOM	1879	0		C1072		24.384	21.638	41.587	1.00	37.31
ATOM	1880	CB		C1072		27.272	22.810	42.713	1.00	39.01
ATOM	1881	CG	ARG	C1072		28.773	22.514	42.664	1.00	38.84
ATOM	1882	CD		C1072		29.110	21.260	41.887	1.00	40.99
ATOM	1883	NE	ARG	C1072		28.618	20.088	42.608	1.00	45.98
ATOM	1884	CZ		C1072		29.217	19.090	43.239	1.00	46.52
ATOM	1885	NH1		C1072		30.532	18.968	43.255	1.00	44.60
ATOM	1886			C1072		28.428	18.173	43.842	1.00	46.54
ATOM	1857	N		C1073		24.427	23.832	41.775	1.00	36.36
	1888	CA		C1073		22.986	24.010	41.934	1.00	36.84
ATOM	1889	C		C1073		22.289	23.680	40.612	1.00	35.17
ATOM		0		C1073		21.240	23.043	40.616		36.12
MOTA	1890		GLN	C1073		22.690	25.436	42.324		40.62
ATOM	1891	CB				22.926	25.928	43.737		44.26
MOTA	1892	CG		C1073		22.601	27.425	43.797		48.97
ATOM	1893	CD		C1073			28.160	44.746		50.88
ATOM	1894	0E1	GLN	_		22.895		42.770		50.58
ATCM	1895	NE2		C1073		21.954	27.977 23.925	39.463		34.02
MOTA	1896	N	CYS	C1074		22.888		38.175		33.44
ATOM	1897	CA		C1074		22.346	23.554	37.953		32.85
ATOM	1898	C	CYS	C1074		22.300	22.048	37.953		28.15
MOTA	1899	0	CYS	C1074		21.595	21.573	_		
MOTA	1900	CB	CYS	C1074		23.165	24.222	37.052		32.80
ATOM	1901	SG		C1074		22.926	26.054	36.945		
MOTA	1902	N		C1075		23.155	21.300	38.651		34.38
MOTA	1903	CA	TRP	C1075		23.323	19.869	38.394		36.36
MOTA	1904	C	TRP			22.772	19.008	39.538		37.35
MOTA	1905	0	TRP	C1075		23.378	17.961	39.809		36.14
ATOM	1906	CB		C1075		24.797	19.516	38.184		31.61
MCTA	1907	CG		C1075		25.554	20.319	37.170		32.01
MOTA	1908	CD1	TRP			25.035	20.735	35.945	1.00	30.72
MOTA	1909	CD2	TRP	C1075		26.905	20.792	37.215		27.71
ATOM	1910	NE1	TRP	C1075		26.028	21.458	35.263		27.75
ATOM	1911	CE2	TRP	C1075		27.165	21.473	36.015		27.79
ATOM	1912	CE3	TRP	C1075		27.923	20.731	38.161		29.11
ATOM	1913	CZ2	TRP	C1075	,	28.393	22.095	35.707		27.12
MOTA	1914	CZ3	TRP	C1075		29.172	21.338	37.861	1.00	27.92
ATOM	1915	CH2		.C1075		29.394	22.010	36.640	1.00	26.04
ATOM	1916	N		C1076		21.729	19.503	40.206		38.82
MOTA	1917	ĊA	ARG	C1076	•	21.190	18.763	41.348		40.61
ATOM	1918	C	ARG	C1076		20.509	17.546	40.743		40.05
ATOM	1919	0	ARG	C1076		19.967	17.688	39.634		40.43
MOTA	1920	CB	ARG	C1076		20.272	19.608	42.208		42.35
MOTA	1921	CG	ARG	C1076		20.932	20.378	43.334		45.64
MOTA	1922	CD	ARG	C1076		20.106	21.505	43.893		49.70
ATOM	1923	NE	ARG	C1076		20.769	22.441	44.800		52.00
ATOM	1924	CZ	ARG	C1076		20.478	23.723	45.050		51.66
ATOM	1925	NH1	ARG	C1076		19.508	24.410	44.455		50.03
ATOM	1926	NH2	ARG	C1076		21.238	24.353	45.949		52.86
MOTA	1927	N	GLU	C1077		20.598	16.392	41.374		41.20
MOTA	1928	CA	GLU	C1077		19.944	15.200	40.818		42.65
ATOM	1929	C		C1077		18.447	15.393	40.555		38.60
ATOM	1930	Ō		C1077		17.929	15.043	39.481		35.94
MOTA	1931	CB		C1077		20.198	13.968	41.695		45.87
ATOM	1932	CG		C1077		20.013	12.643	40.962	1.00	50.08
-										

z mow	1933	CD	CTJI	C1077	20.183	11.401	41.819	1.00	54.47
ATOM		OE1		C1077	20.561	10.312	41.308	1.00	57.69
ATOM	1934	OE2		C1077	19.955	11.404	43.055	1.00	56.30
MOTA	1935			C1078	17.706	15.867	41.503		39.48
ATOM	1936	N			16.243	16.090	41.262		40.94
MOTA	1937	CA		C1078	16.079	17.369	40.455		40.21
ATOM	1938	С		C1078			40.854		38.01
ATOM	1939	0		C1078	16.480	18.449			43.70
MCTA	1940	CB		C1078	15.475	16.240	42.568		46.67
ATOM	1941	CG		C1078	15.829	15.188	43.605		
MOTA	1942	CD		C1078	15.384	15.538	45.015		49.04
ATOM	1943	CE	LYS	C1078	15.414	14.237	45.826		53.53
ATOM	1944	NZ	LYS	C1078	14.894	14.422	47.213		55.30
ATOM	1945	N	PRO	C1079	15.476	17.282	39.288		38.88
ATOM	1946	CA	PRO	C1079	15.298	18.465	38.451		39.64
MCTA	1947	С	PRO	C1079	14.654	19.621	39.182		40.23
ATOM	1948	0		C1079	15.091	20.778	39.078	1.00	39.41
ATOM	1949	CB		C1079	14.521	17.924	37.259	1.00	36.96
	1950	CG		C1079	14.929	16.461	37.199	1.00	35.65
ATOM		CD		C1079	14.988	16.035	38.647	1.00	36.92
ATOM	1951			C1080	13.657	19.387	40.028		41.92
ATOM	1952	N		C1080	12.882	20.406	40.717		43.85
ATOM	1953	CA				21.140	41.824		43.51
ATOM	1954	C		C1080	13.587	22.140	42.388		43.12
ATOM	1955	0		C1080	13.109		41.176		45.60
MOTA	1956	CB		C1080	11.505	19.831			47.84
MOTA	1957	CG		C1080	11.697	18.722	42.194		49.35
ATOM	1958	CD1		C1080	11.973	18.993	43.531		
ATOM	1959	CD2	TYR	C1080	11.636	17.389	41.798		49.13
ATOM	1960	CE1	TYR	C1080	12.146	17.958	44.445		50.14
MOTA	1961	CE2	TYR	C1080	11.806	16.370	42.704		50.24
ATOM	1962	CZ	TYR	C1080	12.058	16.656	44.030		50.60
ATOM	1963	OH	TYR	C1080	12.242	15.597	44.908		53.21
ATOM	1964	N		C1081	14.799	20.700	42.144		44.60
ATOM	1965	CA	GLU	C1081	15.638	21.420	43.102		44.07
ATOM	1966	C		C1081	16.559	22.432	42.419		40.19
ATOM	1967	0		C1081	17.250	23.137	43.126	1.00	37.60
	1968	CB		C1081	16.508	20.467	43.922	1.00	45.52
ATOM		CG		C1081	15.648	19.808	45.014	1.00	50.79
MCTA	1969	CD		C1081	16.627	18.944	45.789	1.00	54.16
ATOM-	1970			C1081	16.879	19.248	46.968		58.46
MOTA	1971	OE1			17.210	17.991	45.250		55.69
ATOM	1972	OE2		C1081	16.647	22.458	41.105		39.28
MOTA	1973	N		C1082		23.363	40.367		37.58
MOTA	1974	CA		C1082	17.497		40.394		38.63
MOTA	1975	C		C1082	16.828	24.740	40.383		40.38
MOTA	1975	0		C1082	15.612	24.910	38.895		36.08
MOTA	1977	CB		C1082	17.704	22.926			36.20
ATOM	1978	CG		C1082	18.469	21.599	38.779		33.59
MOTA	1979	CD	ARC	C1082	18.609	20.955	37.417		
MOTA	1980	ΝE	ARC	C1082	18.832	19.501	37.535		34.00
ATOM	1981	CZ	ARC	C1082	18.469	18.515	36.714		32.08
MOTA	1982		ARC	C1082	17.822	18.762	35.569		31.72
MOTA	1983	NH2	ARC	C1082	18.708	17.204	36.908		31.86
ATOM	1984	N		C1083	17.667	25.772	40.289		34.94
MOTA	1985	CA		C1083	17.201	27.135	40.253		32.78
ATOM	1986	C		C1083	16.556	27.432	38.912		33.70
	1987	0		C1083	16.641	26.652	37.947		31.92
MOTA		CB		C1083	18.446	28.006	40.398		27.76
MOTA	1988			C1083	19.621	27.077	40.186		30.28
ATOM	1989	CG	ואת	, C1003	L	2		-	

ATOM	1990	CD	PRO	C1083	19.139	25.661	40.404	1.00	32.35
ATOM	1991	N	SER	C1084	15.816	28.558	38.933		31.68
MOTA	1992	CA		C1084	15.199	29.032	37.705	1.00	31.93
ATOM	1993	С	SER	C1084	16.210	30.014	37.080		31.48
ATOM	1994	0	SER	C1084	17.144	30.514	37.733	1.00	29.39
MOTA	1995	CB	SER	C1084	13.873	29.704	38.085		31.83
ATOM	1996	OG	SER	C1084	14.132	31.022	38.595		32.90
MOTA	1997	N	PHE	C1085	16.099	30.275	35.783	1.00	30.49
MOTA	1998	CA	PHE	C1085	16.882	31.203	35.046	1.00	31.87
ATOM	1999	С	PHE	C1085	16.731	32.620	35.612	1.00	35.04
ATOM	2000	0	PHE	C1085	17.778	33.269	35.568	1.00	34.20
ATOM	2001	CB	PHE	C1085	16.631	31.270	33.533	1.00	29.72
ATOM	2002	CG	PHE	C1085	17.113	30.035	32.829	1.00	29.58
ATOM	2003	CD1	PHE	C1085	16.278	29.113	32.259	1.00	27.05
ATOM	2004	CD2	PHE	C1085	18.513	29.847	32.765	1.00	28.92
ATOM	2005	CE1	PHE	C1085	16.764	28.002	31.606	1.00	29.03
ATOM	2006	CE2		C1085	18.999	28.739	32.078	1.00	31.04
ATOM	2007	CZ		C1085	18.172	27.810	31.537	1.00	29.42
ATOM	2008	N .		C1086	15.538	32.967	36.152	1.00	34.52
ATOM	2009	CA		C1086	15.461	34.251	36.811	1.00	36.36
MOTA	2010	C		C1086	16.330	34.297	38.053	1.00	35.05
ATOM	2011	0		C1086	16.940	35.370	38.305	1.00	33.03
	2011	CB		C1086	13.991	34.579	37.178		36.02
ATOM				C1087	16.403	33.210	38.808		34.48
ATOM	2013	N		C1087	17.187	33.187	40.043		37.34
ATOM	2014	CA		C1087	18.692	33.172	39.718		36.23
MOTA	2015	C			19.488	33.831	40.397		34.12
MOTA	2016	0		C1087	16.898	31.991	40.963		39.18
ATOM	2017	CB		C1087		31.766	41.372		41.60
ATOM	2018	CG		C1087	15.465	30.507	42.185		41.95
MOTA	2019	CD		C1087	15.181		43.307		43.26
MOTA	2020	0E1		C1087	14.644	30.647			38.28
MOTA	2021	NE2		C1087	15.463	29.299	41.755		36.91
MOTA	2022	N		C1088	19.023	32.489	38.609		34.98
ATOM	2023	CA		C1088	20.421	32.470	38.143		36.64
MOTA	2024	С	ILE	C1088	20.850	33.891	37.730		
MOTA	2025	0		C1088	21.994	34.310	37.999	1.00	
ATOM	2026	CB		C1088	20.707	31.497	37.017	1.00	
MOTA	2027	CG1		C1088	20.729	30.014	37.479	1.00	
MOTA	2028	CG2		C1088	22.108	31.715	36.417		32.45
ATOM	2029	CD1		C1088	20.354	29.149	36.296		24.89
MOTA	2030	N		C1089	20.006	34.626	37.037		36.93
ATOM	2031	CA		C1089	20.288	36.010	36.641		38.78
ATOM	2032	C	LEU	C1089	20.504	36.934	37.835		39.65
MOTA	2033	0	LEU	C1089	21.396	37.812	37.840		38.19
MOTA	2034	CB	LEU	C1089	19.192	36.562	35.727		39.78
MOTA	2035	CG	LEU	C1089	19.421	37.938	35.087		41.64
ATOM	2036	CD1	LEU	C1089	20.497	37.892	34.014		39.98
ATOM	2037	CD2	LEU	C1089	18.113	38.470	34.492		40.00
ATOM	2038	N	VAL	C1090	19.730	36.740	38.902		41.42
ATOM	2039	CA	VAL	C1090	19.894	37.611	40.075		43.28
ATOM	2040	C	VAL	C1090	21.247	37.342	40.727		43.77
ATOM	2041	Ō		C1090	21.948	38.289	41.115		45.25
ATOM	2042	CB		C1090	18.759	37.424	41.081	1.00	44.41
ATOM	2043	CG1		C1090	19.139	38.123	42.387		45.32
ATOM	2044	CG2		C1090	17.422	37.989	40.595		45.38
ATOM	2045	N		C1091	21.634	36.074	40.924	1.00	43.36
ATOM	2045	CA		C1091	22.921	35.817	41.543		45.59
MION	2040	-M							

		_		C1 001	24 044	26 257	40.663	1.00 43.2	۵
ATOM	2047	С		C1091	24.044	36.357			
MOTA	2048	0		C1091	24.987	36.921	41.231	1.00 43.0	
ATOM	2049	CB		C1091	23.056	34.332	41.946	1.00 48.5	
ATOM	2050	OG	SER	C1091	22.563	33.588	40.846	1.00 54.8	
ATOM	2051	N	LEU	C1092	23.971	36.337	39.335	1.00 38.9	7
ATOM	2052	CA	LEU	C1092	25.098	36.849	38.570	1.00 37.8	4
MOTA	2053	C	LEU	C1092	25.118	38.383	38,604	1.00 39.8	2
ATOM	2054	0	LEU	C1092	26.207	38.957	38.627	1.00 35.9	5
ATOM	2055	CB		C1092	25.098	36.309	37.150	1.00 35.0	4
ATOM	2056	CG		C1092	25.301	34.789	36.982	1.00 33.8	8
ATOM	2057			C1092	24.655	34.383	35.662	1.00 33.0	7
	2058			C1092	26.773	34.446	37.016	1.00 34.0	4
MOTA				C1093	23.942	39.039	38.597	1.00 41.4	
MOTA	2059	N			23.920	40.525	38.641	1.00 43.6	
MOTA	2060	CA		C1093		41.074	39.936	1.00 44.9	
ATOM	2061	C		C1093	24.527			1.00 44.6	
ATOM	2062	0		C1093	25.166	42.135	39.946		
ATOM!	2063	CB		C1093	22.509	41.084	38.434	1.00 42.9	
MOTA	2064	CG		C1093	21.996	41.095	37.021	1.00 44.3	
MOTA	2065	OD1	ASN	C1093	20.771	41.140	36.726	1.00 46.0	
MOTA	2066	ND2	N2A	C1093	22.859	41.098	36.023	1.00 43.9	
ATOM	2067	N	ARG	C1094	24.374	40.336	41.043	1.00 46.2	7
ATOM	2068	CA	ARG	C1094	24.957	40.724	42.334	1.00 47.3	4
ATOM	2069	С	ARG	C1094	26.473	40.529	42.302	1.00 47.1	8
ATOM	2070	0		C1094	27.308	41.386	42.683	1.00 48.7	3
ATOM	2071	CB		C1094	24.207	39.952	43.397	1.00 48.5	2
ATOM	2072	CG		C1094	24.600	40.135	44.831	1.00 53.0	4
	2072	CD		C1094	25.893	39.506	45.266	1.00 55.5	1
ATOM				C1094	25.811	38.266 ⁻	46.057		
ATOM	2074	NE			26.945	37.595	46.345	1.00 58.9	
ATOM	2075	CZ		C1094	28.144	37.993	45.942	1.00 58.6	
MOTA	2076	NH1		C1094			47.071	1.00 60.4	
MOTA	2077	NH2		C1094	26.892	36.486		1.00 43.6	
MOTA	2078	N		C1095	26.945	39.465	41.654		
ATOM	2079	CA		C1095	28.378	39.288	41.439	1.00 41.5	
ATOM	2080	С	MET	C1095	28.854	40.419	40.535	1.00 37.9	
ATOM	2081	0	MET	C1095	29.993	40.855	40.670	1.00 39.0	
ATOM	2082	CB	MET	C1095	28.772	37.969	40.755	1.00 39.8	
ATOM	2083	CG	MET	C1095	28.636	36.767	41.644	1.00 42.2	
ATOM	2084	SD	MET	C1095	28.588	35.160	40.819	1.00 43.5	
ATOM	2085	CE	MET	C1095	29.492	34.284	42.084	1.00 43.6	4
ATOM	2086	N	LEU	C1096	28.128	40.770	39.489	1.00 38.6	3
ATOM	2087	ĊA		C1096	28.592	41.811	38.583	1.00 40.3	2
ATOM	2088	C		C1096	28.726	43.159	39.300	1.00 45.5	6
	2089	0		C1096	29.676	43.913	39.027	1.00 43.9	8
MOTA				C1096	27.705	41.881	37.363	1.00 38.7	
ATOM	2090	CB		C1096	27.859	40.853	36.254	1.00 36.8	
MOTA	2091	CG			26.623	40.917	35.364	1.00 37.2	
MOTA	2092	CD1		C1096		41.041	35.484	1.00 36.0	
ATOM	2093	CD2		C1096	29.157			1.00 50.7	
ATOM	2094	N		C1097	27.840	43.531	40.207	1.00 56.2	
MOTA	2095	CA		C1097	27.911	44.809	40.888		
MOTA	2096	С		C1097	28.997	45.073	41.913	1.00 57.9	
MOTA	2097	0	GLU	C1097	29.115	46.249	42.308	1.00 58.2	
MOTA	2098	CB		C1097	26.511	45.083	41.496	1.00 59.1	
MOTA	2099	CG	GLU	C1097	25.588	45.556	40.362	1.00 62.9	
ATOM	2100	CD	GLU	C1097	25.880	46.999	39.984	1.00 65.8	
MOTA	2101	OE1		C1097	26.772	47.604	40.633	1:00 67.3	
ATOM	2102	OE2		C1097	25.159	47.465	39.064	1.00 68.3	
MOTA	2103	Ń		C1098	29.832	44.134	42.340	1.00 59.6	54

ATOM	2104	CA	GLU	C1098	30.923	44.413	43.251	1.00	62.30
ATOM	2105	С	GLU	C1098	32.317	44.135	42.709		61.47
ATOM	2106	0	GLU	C1098	32.699	43.098	42.165	1.00	63.11
ATOM	2107	CB		C1098	30.721	43.618	44.546	1.00	63.71
MOTA	2108	CG	GLU	C1098	30.447	42.141	44.289	1.00	
ATOM	2109	CD	GLU	C1098	30.147	41.457	45.616	1.00	
ATOM	2110	OE1	GLU	C1098	29.135	41.807	46.262		67.90
MOTA	2111	OE2	GLU	C1098	30.943	40.587	46.021		67.37
ATOM	2112	N		C1099	33.234	45.047	43.011	1.00	
ATOM	2113	CA	ARG	C1099	34.637	45.044	42.675	1.00	60.00
ATOM	2114	С	ARG	C1099	35.404	43.736	42.782	1.00	58.76
MOTA	2115	0	ARG	C1099	36.433	43.655	42.072		60.07
MOTA	2116	CB	ARG	C1099	35.327	46.048	43.623		61.21
MOTA	2117	N		C1100	35.024	42.747	43.594	1.00	
MOTA	2118	CA		C1100	35.843	41.536	43.624	1.00	55.34
ATOM	2119	C	LYS	C1100	35.881	40.8 <i>6</i> 3	42.258		53.59
MOTA	2120	0		C1100	35.083	41.060	41.366		53.08
ATOM	2121	CB		C1100	35.416	40.629	44.760		56.50
MOTA	2122	CG	LYS	C1100	34.580	39.418	44.451		57.25
ATOM	2123	CD		C1100	33.972	38.745	45.669	1.00	57.47
ATOM	2124	CE		C1100	34.923	37.780	46.342		59.43
MOTA	2125	NZ	LYS	C1100	34.265	36.502	46.768	1.00	
MOTA	2126	N	THR	C1101	36.911	40.037	42.055	1.00	
MOTA	2127	CA	THR	C1101	37.201	39.285	40.840	1.00	
MOTA	2128	C		C1101	36.746	37.835	41.057	1.00	
MOTA	2129	0		C1101	37.229	37.252	42.047	1.00	
MOTA	2130	CB	THR	C1101	38.694	39.327	40.489	1.00	
MOTA	2131	OG1		C1101	39.019	40.606	39.939	1.00	
MOTA	2132	CG2		C1101	39.094	38.266	39.469	1.00	
MOTA	2133	N		C1102	35.884	37.335	40.167		41.77
MOTA	2134	CA		C1102	35.366	35.978	40.426	1.00	
MOTA	2135	C		C1102	.36.129	34.910	39.691		40.66
ATOM	2136	0		C1102	36.056	33.736	40.095		42.76
ATOM	2137	CB		C1102	33.858	35.910	40.100		38.06
MOTA	2138	CG		C1102	33.074	36.622	41.174		39.42
ATOM	2139	CDI		C1102	32.812	37.986	41.085		40.49
MOTA	2140	CD2		C1102	32.609	35.932	42.296	1.00	
ATOM	2141	CE1		C1102	32.107	38.642	42.061		41.47
ATOM	2142	CE2		C1102	31.904	36.580	43.294	-	41.62
MOTA	2143	СZ	TYR	C1102	31.672	37.936	43.168		42.72
ATOM	2144	ÒН		C1102	30.961		44.148		42.88
MOTA	2145	N		C1103	36.753		38.570		40.18
MOTA	2146	CA		C1103	37.580		37.772		38.79
MOTA	2147	С		C1103	38.963		37.561		40.96
MOTA	2148	0		C1103	39.070		36.864		41.22
ATOM	2149	CB		C1103	37.038		36.390		39.03 35.66
ATOM	2150			C1103	37.961		35.738		
MOTA	2151			C1103	35.597		36.439		36.18 41.19
MOTA	2152	N		C1104	39.993		38.154		
ATOM	2153	CA		C1104	41.366		38.131		43.68 42.39
MOTA	2154	C		C1104	42.006		36.765		
MOTA	2155	0		C1104	42.161		36.390		46.58
MOTA	2156	CB		C1104	42.212		39.143		44.69
ATOM	2157	CG		C1104	43.661		39.140		49.43 49.14
MOTA	2158			C1104	44.630		38.841		47.59
ATOM	2159			C1104	43.739				38.71
MOTA	2160	N	THR	C1105	42.337	35.771	36.035	1.00	JU.11

ATOM	2161	CA	THR	C1105		42.937	35.664	34.723	1.00	
ATOM	2162	С	THR	C1105		44.389	36.105	34.806	1.00	37.67
ATOM	2163	0	THR	C1105		44.998	36.087	33.725	1.00	39.99
ATOM	2164	CB		C1105		42.272	36.465	33.585	1.00	36.40
ATOM	2165	OG1		C1105		42.212	37.883	33.885	1.00	38.39
	2166	CG2	_	C1105		40.875	35.906	33.439	1.00	35.66
ATOM				C1106		44.918	36.386	35.989	1.00	39.77
ATOM	2167	N N		C1106		46.306	36.915	36.002		43.19
ATOM	2168	CA		C1106		47.368	35.852	36.199		44.10
MOTA	2169	C				47.129	34.854	36.896		45.27
ATOM	2170	0		C1106			38.022	37.058		47.23
MOTA	2171	CB		C1106		46.445	37.460	38.369		52.99
ATOM	2172	OG1		C1106		46.210		36.949		45.90
MOTA	2173	CG2		C1106		45.403	39.104	35.531		42.56
MOTA	2174	N		C1107		48.527	35.962			44.02
ATOM	2175	CA		C1107		49.593	34.961	35.679		
ATOM	2176	C .		C1107		50.420	35.168	36.946		46.85
MOTA	2177	0	LEU	C1107		50.888	36.295	37.127		49.56
MOTA	2178	CB	LEU	C1107		50.539	34.986	34.483		38.92
MOTA	2179	CG	LEU	C1107		49.970	34.778	33.106		37.89
ATOM	2180	CD1	LEU	C1107		51.073	34.991	32.082		39.13
ATOM	2181	CD2	LEU	C1107		49.400	33.350	32.925		34.26
ATOM	2182	N	TYR	C1108		50.605	34.176	37.803		49.68
ATOM	2183	CA		C1108		51.362	34.337	39.032		53.06
ATOM	2184	C		C1108		52.666	33.527	38.953	1.00	51.34
ATOM	2185	0		C1108		53.677	34.091	38.558	1.00	52.57
ATOM	2186	CB		C1108		50.645	33.861	40.328	1.00	54.61
	2187	CG		C1108		49.538	34.857	40.622	1.00	56.02
ATOM		CD1		C1108		48.208	34.511	40.387	1.00	56.47
ATOM	2188			C1108		49.864	36.137	41.055	1.00	56.41
MOTA	2189	CD2 CE1		C1108		47.207	35.441	40.597	1.00	56.50
ATOM	2190			C1108		48.864	37.072	41.271	1.00	57.46
MOTA	2191	CE2		C1108		47.544	36.698	41.044	1.00	57.18
ATOM	2192	CZ		C1108		46.577	37.639	41.267	1.00	
MOTA	2193	OH				52.585	32.293	39.382		50.07
ATOM	2194	N		C1109			31.412	39.346	1.00	50.65
MOTA	2195	CA		C1109		53.718	30.323	38.275	1.00	48.97
MOTA	2196	C		C1109	•	53.548	29.965	37.719	1.00	47.87
ATOM	2197	0	GLU			54.587	30.616	40.626	1.00	53.87
MOTA	2198	CB	GLU			53.958		41.965	1.00	58.53
MOTA	2199	CG		C1109		53.835	31.284			60.45
MOTA	2200	CD		C1109		54.896	32.352	42.202		61.68
MOTA	2201	OE1		C1109		56.092	31.991	42.113		61.69
ATOM	2202	OE2		Cl109		54.482	33.514	42.480		47.13
MOTA	2203	N		C1110		52.345	29.727	38.224		
MOTA	2204	CA		C1110		52.186	28.577	37.324		45.74
ATOM	2205	С	LYS	C1110		50.816	28.638	36.645		42.35
MOTA	2206	0	LYS	C1110		49.924	29.188	37.270		41.09
ATOM	2207	CB	LYS	C1110		52.400	27.320	38.151		48.67
MOTA	2208	CG	LYS	C1110		52.564	26.005	37.440		53.26
MOTA	2209	CD	LYS	C1110		53.174	24.877	38.287		56.04
MOTA	2210	CE		C1110		54.685	25.087	38.489		58.45
MOTA	2211	NZ		C1110		55.447	23.870	38.929		58.97
ATOM	2212	N		E C1111		50.666	28.295	35.359		37.18
	2212	CA		E C1111		49.325	28.434	34.823		36.07
MOTA	2214	C		C1111		49.163	27.464	33.658		33.65
MOTA		0		3 C1111		49.926	27.605	32.736	1.00	31.39
MOTA	2215	CB		C1111		48.962	29.880	34.438		36.60
ATOM	2216	CG		E C1111		47.531	30.157	34.143		37.58
MOTA	2217	٠٠٠	rn.	سلبد سدید س						

ATOM	2218	CD1	PHE	C1111	46.754	30.911	35.026	1.00 40.75
MOTA	2219	CD2	PHE	C1111	46.914	29.636	33.009	1.00 37.53
ATOM	2220	CE1	PHE	C1111	45.395	31.140	34.795	1.00 40.10
ATOM	2221	CE2	PHE	C1111	45.582	29.887	32.758	1.00 37.72
ATOM	2222	CZ	PHE	C1111	44.824	30.635	33.643	1.00 38.68
ATOM	2223	N	THR	C1112	48.115	26.664	33.719	1.00 28.79
ATOM	2224	CA	THR	C1112	47.683	25.828	32.634	1.00 31.45
ATOM	2225	Ċ	THR	C1112	46.183	26.063	32.377	1.00 30.94
ATOM	2226	Ò	THR	C1112	45.463	26.129	33.377	1.00 29.01
ATOM	2227	CB	THR	C1112	47.744	24.317	33.099	1.00 32.34
ATOM	2228	OG1	THR	C1112	49.026	24.124	33.723	1.00 35.99
ATOM	2229	CG2	THR	C1112	47.738	23.401	31.909	1.00 32.22
ATOM	2230	N	TYR	C1113	45.708	26.099	31.158	1.00 28.73
ATOM	2231	CA	TYR	C1113	44.309	26.076	30.840	1.00 28.29
ATOM	2232	С	TYR	C1113	43.709	24.640	30.942	1.00 31.34
ATOM	2233	0	TYR	C1113	44.388	23.615	30.928	1.00 25.50
ATOM	2234	CB	TYR	C1113	44.203	26.353	29.330	1.00 27.79
ATOM	2235	CG	TYR	C1113	44.656	27.778	29.016	1.00 29.11
ATOM	2236	CD1	TYR	C1113	45.753	27.954	28.181	1.00 30.15
ATOM	2237	CD2	TYR	C1113	44.032	28.897	29.544	1.00 27.99
ATOM	2238	CE1		C1113	46.199	29.241	27.868	1.00 31.57
ATOM	2239	CE2	TYR	C1113	44.460	30.198	29.201	1.00 30.17
ATOM	2240	CZ		C1113	45.571	30.354	28.371	1.00 30.26
ATOM	2241	OH		C1113	46.068	31.611	28.045	1.00 30.20
ATOM	2242	N		C1114	42.398	24.636	31.120	1.00 29.12
ATOM	2243	CA		C1114	41.638	23.395	31.035	1.00 30.29
ATOM	2244	C		C1114	41.882	22.872	29.625	1.00 30.26
ATOM	2245	0		C1114	41.791	23.661	28.680	1.00 30.70
ATOM	2246	CB		C1114	40.127	23.678	31.199	1.00 30.91
ATOM	2247	N		C1115	42.135	21.544	29.515	1.00 28.43
ATOM	2248	CA		C1115	42.371	21.045	28.199	1.00 30.36
ATOM	2249	C		C1115	41.138	20.933	27.334	1.00 34.03
ATOM ·	2250	0		C1115	39.913	20.801	27.653	1.00 35.50
ATOM	2251	N		C1116	41.445	21.017	26.046	1.00 35.79
ATOM	2252	CA		C1116	40.554	20.877	24.918	1.00 41.16
ATOM	2253	C		C1116	40.987	19.601	24.199	1.00 48.93
ATOM		CB		C1116	40.660	21.990	23.877	1.00 40.53
ATOM	2255	CG1	ILE	C1116	40.332	23.381	24.419	1.00 39.34
ATOM	2256	CG2		C1116	39.797	21.709	22.629	1.00 40.56
ATOM	2257	CD1		C1116	40.844	24.462	23.474	1.00 39.48
	2258	Ņ		C1117	40.096	18.690	23.816	1.00 56.34
ATOM ATOM	2259	CA.		C1117	40.671	17.809	22.759	1.00 64.41
ATOM	2259	C		C1117	39.582	17.226	21.862	1.00 67.05
	2261	0		C1117	38.632	16.639	22.384	1.00 66.11
ATOM	2262	CB		C1117	41.552	16.679	23.243	1.00 66.12
ATOM	2263	CG		C1117	42.980	17.054	23.608	1.00 68.11
ATOM				C1117	43.730	17.676	22.830	1.00 69.52
ATOM	2264			C1117	43.216	15.706	24.787	1.00 68.31
ATOM	2265			C1118	39.775	17.421	20.548	1.00 71.27
ATOM	2266	N C		C1118	38.800	16.948	19.563	1.00 75.06
ATOM	2267	CA			39.057	17.522	18.165	1.00 77.90
ATOM	2268	C		C1118	37.387	17.322	19.997	1.00 74.91
ATOM	2269	CB		C1118	38.094	17.331	17.244	1.00 81.20
ATOM	2270	N		C1119	38.055	17.960	15.924	1.00 83.28
ATOM	2271	CA		C1119	37.335	17.232	14.787	1:00 84.56
ATOM	2272	C		C1119	37.335	16.898	13.740	1.00 85.44
ATOM	2273	0		C1119		18.300	15.476	1.00 83.21
ATOM	2274	CB	ひだれ	C1119	39.493	10.300	13.4/0	

				0770	0	26 220	16 690	14.863	1 0.0	85.16
ATOM	2275	N		C112		36.028	16.990			84.89
MOTA	2276	CA		C112		35.171	16.384	13.874		-
ATOM	2277	С		C112		34.722	14.957	14.213		85.19
ATOM	2278	0	ALA	C112	0	33.876	14.494	13.396	1.00	85.38
ATOM	2279	CB	ALA	C112	0	35.714	16.345	12.447	1.00	84.84
TER										
HETATM	2200	Cl	IN3	ח	1.	27.737	34.907	12.224	1.00	40.84
					1	28.220	33.661	12.185		40.67
HETATM		N2	IN3							40.61
HETATM		C3			1	27.362	32.629	12.233		
HETATM	2283	C4	IN3		1	25.970	32.787	12.323		41.94
HETATM	2284	C5	IN3	D	1	25.529	34.130	12.362		41.03
HETATM	2285	N6	IN3	D	1	26.428	35.160	12.315	1.00	40.65
HETATM		NS	INB	D	l	27.727	31.299	12.203	1.00	42.23
HETATM		C9		D	1	26.517	30.664	12.312	1.00	42.50
HETATM		C10			1	25.373	31.506	12.348	00.T	44.61
					1	24.231	34.490	12.467		43.99
HETATM		N12								47.57
HETATM		C13			1	23.982	30.977	12.436		
HETATM	2293	C14	IN3	-	1	29.096	30.727	12.190		42.52
HETATM	2294	C15	IN3	D	1	22.960	31.497	13.194		50.46
HETATM	2295	C16	IN3	D	1	21.667	30.935	13.250	1.00	51.20
HETATM		C17	IN3	D	1	21.337	29.804	12.531	1.00	51.31
HETATM		C18		D	1	22.357	29.258	11.751	1.00	51.58
					1	23.637	29.839	11.712		51.00
HETATM		C19						12.581		52.79
HETATM	2302	N23			1	20.099	29.245			
HETATM		S24	IN3	D	1	19.137	29.209	13.847		53.21
HETATM	2304	025	ENI	D	1	19.809	29.557	15.058		54.86
HETATM	2305	026	IN3	D	1	18.402	27.997	13.940	1.00	52.02
HETATM		C27	IN3	D	1	17.984	30.563	13.554	1.00	59.14
HETATM		C28		D	1	17.058	30.565	12.515	1.00	62.44
		C29	IN3		1	16.171	31.631	12.344	1.00	63.41
HETATM						16.219	32.721	13.201		61.99
HETATM		C3 0	IN3		1					61.19
HETATM	2310	C31		D	1	17.146	32.728	14.233		
HETATM	2311	C32	IN3	D	1	18.012	31.655	14.412		59.69
HETATM	2312	CL33	IN3	D	1	17.000	29.190	11.437		72.20
HETATM	2313	CL34	IN3	D	1	14.971	31.634	11.070	1.00	66.32
HETATM		F38	IN3	D	1	22.188	28.164	10.970	1.00	50.23
HETATM		C3 9		D	1	29.429	30.465	13.689	1.00	41.55
		C40		D	1	30.719	29.713	13.975		41.76
HETATM						30.922	28.491	13.060		42.34
HETATM	2320	C41		D	1			11.579		44.10
HETATM		C42	IN3	D	1	30.611	28.800			
HETATM	2322	C4 3	IN3	D	1	29.231	29.447	11.376		43.74
HETATM	2331	C52	IN3	D	1	32.457	27.054	14.408		40.98
HETATM	2332	C53	IN3	D	1	33.702	26.161	14.218		39.93
HETATM		N54	ENI	D	1	34.865	27.024	14.047		40.92
HETATM		C55	IN3		1	34.719	27.865	12.858	1.00	41.55
		C56	IN3		1	33.437	28.707	12.946		41.49
HETATM						32.249	27.891	13.211		41.23
HETATM		N57	IN3		1					38.95
HETATM	2346	C67	IN3	D	1	36.230	26.430	14.126	1.00	30.22
TER										
MOTA	2355	0	HOH	W	1	31.108	33.861	12.284		32.88
ATOM	2356	0	HOH	W	2	26.872	17.118	31.780		27.53
MOTA	2357	Ō	нон		3	33.552	31.769	15.218	1.00	24.69
	2358	0	нон		4	47.567	25.314	28.603	1.00	31.73
MOTA			HOH		5 .	2.429	17.063	30.925		30.32
ATOM	2359	0						25.246		32.79
MOTA	2360	0	HOH		7	33.908	23.176			29.27
MOTA	2361	0	HOH		8	16.942	20.674	27.837		
MOTA	2362	0	HOH	M	9	41.194	27.270	31.243	1.00	27.50

ATOM	2363	0	HOH W	10		3€.797	18.417	32.828	1.00 30.03
ATOM	2364	0	HOH W	11		28.851	18.044	36.031	1.00 31.02
ATOM	2365	0	HOH W	12		15.509	25.207	20.371	1.00 36.36
ATOM	2366	0	HOH W	13		9.416	22.554	31.309	1.00 34.74
ATOM	2367	0	HOH W	14		24.583	41.060	16.124	1.00 44.69
	2368	0	HOH W	15		7.357	41.316	15.797	1.00 65.05
ATOM		0	HOH W	16		40.089	39.018	35.286	1.00 43.58
ATOM	2369		HOH W	17		42.573	39.050	31.498	1.00 33.36
ATOM	2370	0		18		18.935	40.500	18.279	1.00 34.03
ATOM	2371		HOH W			13.481	27.068	41.482	1.00 45.27
MOTA	2372	0	HOH W	19		19.798	23.284	27.046	1.00 32.39
MOTA	2373	0	HOH W	20				29.238	1.00 33.61
ATOM	2374	0	HOH M	22		13750	26.546		1.00 33.31
ATOM	2375	0	HOH W	23		15.599	37.531	37.224	1.00 51.51
MOTA	2376	0	HOH W	24		45.162	20.392	30.028	
ATOM	2377	0	HOH W	25		33.164	26.427	17.812	1.00 30.96
ATOM	2378	0	HOH W	27		25.096	40.967	30.617	1.00 31.07
MOTA	2379	0	HOH W	28		44.306	23.553	33.708	1.00 44.45
ATOM	2380	0	HOH W	29		14.071	17.249	33.601	1.00 32.43
ATOM	2381	0	HOH W	30		30.157	24.039	23.053	1.00 31.23
ATOM	2382	Ō	HOH W	31		21.111	43.623	15.597	1.00 74.93
	2383	ō	HOH W	33		19.327	17.632	28.859	1.00 33.09
ATOM	2384	Ö	HOH W	34		13.241	23.665	39.267	1.00 41.89
ATOM		0	HOH W	35		31.519	44.776	18.549	1.00 43.36
MOTA	2385		HOH W	36		34.470	39.819	38.307	1.00 52.30
MOTA	2386	0				19.740	20.765	27.651	1.00 65.54
MOTA	2387	0	HOH W	37		44.917	36.546	20.426	1.00 59.90
MOTA	2388	0	HOH W	38			9.839	35.866	1.00 47.22
ATOM	2389	0	HOH W	40		17.011		30.087	1.00 25.50
MOTA	2390	0	HOH W	41		38.945	20.370		1.00 23.36
ATOM	2391	0	HOH W	43		46.179	22.872	28.085	1.00 52.18
ATOM	2392	0	HOH W	44		33.414	46.660	18.569	1.00 32.13
ATOM	2393	0	HOH W	45		25.781	19.393	41.795	
ATOM	2394	0	HOH W	46		25.879	14.880	30.825	1.00 26.83
ATOM	2395	0	HOH W	47		12.674	31.920	35.287	1.00 41.22
ATOM	2396	0	HOH W	48		36.038	20.519	22.613	1.00 40.75
ATOM	2397	0	HOH W	49		9.232	35.876	28.692	1.00 40.36
ATOM	2398	0	HOH W	50	••	36.218	20.561	20.320	1.00 41.55
ATOM	2399	ō	HOH W	54		27.796	43.597	11.505	1.00 56.18
ATOM	2400	0	HOH W	56		43.257	28.114	21.417	1.00 40.56
		0	HOH W	57		42.324	44.229	29.443	1.00 56.40
MOTA	2401		HOH W	58		31.439	22.023	21.413	1.00 32.43
MOTA	2402	0		59		49.313	32.007	37.867	1.00 46.71
MOTA	2403	Q	HOH M			14.875	35.132	15.522	1.00 39.98
MOTA	2404	Ó	HOH W	60		20.722	5.005	29.475	1.00 39.73
MOTA	. 2405	0	HOH W	62			43.256	29.290	1.00 41.18
MOTA	2406	0	HOH W	63		45.974		37.028	1.00 43.70
MOTA	2407	0	HOH W	64		42.241	38.248	39.832	1.00 36.99
MOTA	2408	0	HOH W	65		32.550	42.002		1.00 37.71
ATOM	2409	0	HOH W	67		39.110	46.531	21.311	1.00 57.72
MOTA	2410	0	HOH W	68		24.108	20.905	21.953	
MOTA	2411	0	HOH W	69		1.460	21.994	31.199	1.00 37.30
MOTA	2412	0	HOH W	70	-	49.466	21.211	34.770	1.00 51.34
MOTA	2413	0	HOH W	71		36.003	21.023	42.825	1.00 40.91
ATOM	2414	0	HOH W	73		22.188	25.684	4.901	1.00 54.10
ATOM	2415	Ö	HOH W	74		39.079	46.157	42.492	1.00 62.53
MOTA	2416		HOH W	75		40.067		33.482	1.00 47.79
	2418	0	HOH W	76		46.668	20.370	34.397	100 41.58
ATOM			HOH W	78		11.682		39.657	1.00 44.53
ATOM	2418		HOH W	79		20.567		42.014	1.00 56.17
MOTA	2419	J	TIOH W	, ,					

ATOM	2420	0	нон и	80	22.313	16.019	43.949	1.00	47.96
ATOM	2421	0	HOH W	E3	33.379	32.767	48.175	1.00	44.70
ATOM	2422	0	нон и	84	28.448	47.110	11.329	1.00	72.32
ATOM	2423	0	HOH W		11.988	40.527	14.366	1.00	57.96
ATOM	2424	ō	HOH W		11.100	37.338	30.951	1.00	55.75
ATOM	2425	0	HOH W		32.424	25.662	10.927	1.00	
ATOM	2426	0	HOH W		40.553	21.024	36.981	1.00	56.71
	2427	0	HOH W		20.806	40.663	41.692	1.00	49.92
MOTA MOTA		0	HOH W		23.126	21.071	24.679	1.00	28.98
	2428		HOH W		21.847	27.668	22.076	1.00	39.04
ATOM	2429	0			17.442	12.682	22.568	1.00	42.46
ATOM	2430	0	HOH W			22.725	38.862		42.24
ATOM	2431	0	HOH W		10.365			1.00	43.57
ATOM	2432	0	HOH W		12.915	13.110	35.504		
ATOM	2433	0	HOH W		11.437	18.561	35.709		49.64
ATOM	2434	0	HOH W		18.202	17.009	21.807	1.00	
ATOM	2435	O	HOH W		13.090	22.057	22.029	1.00	44.65
ATOM	2436	0	HOH M	100	13.782	3.003	30.101		45.94
ATOM	2437	0	HOH W	101	37.114	30.510	14.091	1.00	54.40
ATOM	2438	0	HOH W	102	39.281	19.995	32.505	1.00	38.67
ATOM	2439	0	HOH W	103	19.163	41.538	33.907	1.00	49.16
MOTA	2440	0	HOH W	105	8.161	24.650	30.444	1.00	38.87
ATOM	2441	0	HOH W	106	19.044	34.146	43.247	1.00	36.17
ATOM	2442	0	HOH W		52.411	29.944	20.957	1.00	47.78
ATOM	2443	0	нон Ж	109	40.926	37.945	21.207	1.00	57.61
ATOM	2444	Ō	HOH W		23.910	22.805	45.525	1.00	56.43
ATOM	2445	Ō	HOH W		23.876	43.384	19.810	1.00	29.77
ATOM	2446	0	HOH W		6.751	36.672	21.579	1.00	62.88
ATOM	2447	0	HOH W		43.463	27.806	35.372		49.32
ATOM	2448	Ö	HOH W		33.230	32.283	12.794	1.00	37.37
		0.	HOH W		39.120	18.996	40.839		82.49
ATOM	2449		HOH W		17.786	13.772	37.357	1.00	49.91
ATOM	2450	0	W HOH		20.655	9.465	38.822	1.00	43.82
ATOM	2451	0			7.544	39.794	24.678	1.00	
MOTA	2452	0	HOH W				9.358	1.00	
ATOM	2453	0	HOH W		34.363	21.476	31.147	1.00	51.98
ATOM	2454	0	HOH W		14.923	37.925		1.00	
ATOM	2455	0	HOH W		14.386	25.644	36.407		36.98
ATOM	2456	0	HOH W		33.578	21.114	23.402	1.00	
ATOM	2457	0	HOH W		42.616	19.765	31.993	1.00	46.67
ATOM	2458	0	HOH W		0.324	31.122	29.775	1.00	
ATOM	2459	0	HOH W		44.223	21.073	33.792		58.84
MOTA	2460	Ò	HOH V		13.220	29.507	33.957		42.26
ATOM	2461	0	HOH W	127	24.661	6.250	44.308		53.58
ATOM	2462	0	HOH W		37.555	26.025	18.301		50.21
ATOM	2463	0	HOH W	131	29.409	15.521	23.790		37.37
ATOM	2464	0	HOH V	134	37.198	41.960	35.518		40.19
ATOM	2465	0	HOH V	1 135	38.741	36.516	21.186	1.00	31.33
ATOM	2466	0	HOH V	136	20.039	45.048	11.998	1.00	67.09
ATOM	2467	0	HOH V	1 137	44.865	39.383	33.992	1.00	42.87
ATOM	2468	0	HOH V	138	47.499	41.543	34.693	1.00	41.95
ATOM	2469	0	HOH V		14.470	39.588	29.214	1.00	39.88
ATOM	2470	0	HOH V		25.148	21.128	18.186	1.00	55.16
ATOM	2471	0	HOH V		19.506	9.850	24.839		56.90
ATOM	2472	0	HOH V		39.082	7.569	29.845		50.85
ATOM	2473	0	HOH V			8.580	37.497		73.18
ATOM	2474	0	HOH V			11.075	36.059		55.17
	2475	0	HOH V			16.767	43.975		45.07
ATOM	2475	0	HOH V			36.062	20.842		35.39
MOTA	24/0	9	11011	, 440	. 55.564	23.002			

MOTA 2477 O HOH W 147 21.172 42.848 12.347 1.00 52.85

TER

ATOM	1	N			818	77.717	45.877	1.677	1.00100.00
ATOM	2	CA	VAL	Ą	818	76.698	46.966	1.561	1.00100.00
ATOM	3	C	VAL	A	818	75.278	46.411	1.674	1.00100.00
ATOM	4	0	VAL	Ą	818	74.803	46.162	2.781	1.00100.00
ATOM	5	CB	VAL	Α	818	76.875	47.697	0.239	1.00 68.23
MOTA	9	N	LEU	А	819	74.617	46.228	0.530	1.00100.00
MOTA	10	CA	LEU	A	819	73.248	45.707	0.456	1.00100.00
ATOM	11	С	LEU			72.629	45.997	-0.918	1.00100.00
ATOM	12	0	LEU			71.622	46.689	-1.003	1.00100.00
ATOM	13	CB	LEU			72.369	46.345	1.536	1.00100.00
ATOM	14	CG	LEU			76.873	46.053	1,525	1.00100.00
ATOM	15	CD1	LEU			70.573	44.975	2.511	1.00100.00
ATOM	16	CD2	LEU			70.078		1.865	1.00100.00
							47.283		
ATOM	18	И	ASP			73.234	45.474	-1.984	1.00100.00
ATOM	19	CA	ASP			72.753	45.676	-3.359	1.00100.00
MOTA	20	C			820	71.292	46.104	-3.464	1.00100.00
ATOM	21	0	ASP	•		70.399	45.421	-2.983	1.00100.00
ATOM	22	CB	ASP	A	820	72.969	44.396	-4.177	1.00 99.21
ATOM	23	CG	ASP	A	820	71.872	44.160	-5.218	1.00 99.21
ATOM	24	OD1	ASP	А	820	71.584	42.982	-5.509	1.00 99.21
MOTA	25	OD2	ASP	A	820	71.303	45.140	-5.750	1.00 99.21
ATOM	27	N	TRP	A	821	71.050	47.227	-4.126	1.00 93.11
ATOM	28	CA	TRP	Α	821	69.694	47.719	-4.268	1.00 93.11
ATOM	29	C	TRP			68.716	46.617	-4.650	1.00 93.11
ATOM	30	0	TRP			67.904	46.199	-3.849	1.00 93.11
ATOM	31	CB			821	69.639	48.863	-5.283	1.00 97.87
ATOM	32	CG	TRP			68.703	49.927	-4.847	1.00 97.87
ATOM	33	CD1			821	68.605	50.452	-3.597	1.00 97.87
ATOM	34	CD2			821	67.667	50.542	-5.622	1.00 97.87
ATOM	35	NEI	TRP			67.567	51.352	-3.537	1.00 97.87
ATOM	36	CE2			821	66.974	51.429	-4.766	1.00 97.87
ATOM	37	CE3	TRP			67.255	50.429	-6.949	1.00 97.87
ATOM	38	CZ2			821	65.897	52.197	-5.193	1.00 97.87
ATOM	39	CZ3	TRP					-7.374	1.00 97.87
						66.180	51.192		
ATOM	40	CH2	TRP			65.512	52.065	-6.496	1.00 97.87
MOTA	43	N	ASN			68.798	46.140	-5.896	1.00100.00
ATOM	44	CA	ASN			67.901	45.077	-6.364	1.00100.00
ATOM	45	С	ASN			67.686	43.985	-5.314	1.00100.00
ATOM	46	0	ASN			66.545	43.614	-5.030	1.00100.00
ATOM	47	,CB	ASN			68.462	44.410	-7.624	1.00 56.29
ATOM	48	'CG	ASN	A	822	68.707	42,917	-7.427	1.00 56.29
ATOM	49	ODl	ASN	A	822	69.755	42.499	-6.902	1.00 56.29
ATOM	50	ND2	ASN			67.739	42.114	-7.837	1.00 56.29
ATOM	54	N	ASP			68.799	43.469	-4.776	1.00 99.96
MOTA	55	CA	ASP	А	823	68.825	42.413	-3.756	1.00 99.96
ATOM	56	C	ASP	A	823	67.823	42.654	-2.650	1.00 99.96
ATOM	57	0	ASP	Ą	823	67.545	41.765	-1.846	1.00 99.96
ATOM	58	CB	ASP	Α	823	70.218	42.308	-3.153	1.00100.00
ATOM	60	N	ILE	Α	824	67.303	43.875	-2.605	1.00 80.08
ATOM	61	CA	ILE	Α	824	66.315	44.270	-1.616	1.00 80.08
ATOM	⁶ 62	С	ILE			64.958	44.392	-2.274	1.00 80.08
ATOM	63	0	ILE			64.703	45.359	-2.973	1.00 80.08
ATOM	64	CB	ILE			66.651	45.641	-0.992	1.00100.00
ATOM	65	CG1				67.806	45.506	0.009	100100.00
ATOM	66	CG2	ILE			65.417	45.206	-0.307	1.00100.00
ATOM	67		ILE			69.048	44.906	-0.577	1.00100.00
111011	3 /	£ ⁄ـدب	تدليديد		J 2 T	02.040	24.200	0.377	1.00100.00

ATOM	69	N	LYS .	A	825	64.098	43.404	-2.036	1.00 99.67
MOTA	70	CA			825	62.735	43.391	-2.580	1.00 99.67
ATOM	71	С	LYS .	A	825	61.938	44.544	-1.938	1.00 99.67
MOTA	72	0			825	61.130	44.334	-1.027	1.00 99.67
ATOM	73	CB	LYS :	Ą	825	62.056	42.021	-2.286	1.00 63.59
ATOM	75	N	PHE .	A	826	62.171	45.762	-2.420	1.00 69.32
ATOM	76	CA	PHE .	A	826	61.502	46.933	-1.875	1.00 69.32
MOTA	77	С	PHE .	Ą	826	59.977	46.823	-1.994	1.00 69.32
ATOM	78	0	PHE .	A	826	59.500	45.922	-2.684	1.00 69.32
ATOM	79	CB	PHE :	A	826	62.060	48.158	-2.587	1.00 99.11
ATOM	80	CG	PHE .	A	826	63.558	48.351	-2.376	1.00 99.11
ATOM	81	CD1	PHE :	A	826	64.470	47.961	-3.343	1.00 99.11
ATOM	82	CD2	PHE .	A	826	64.045	48.959	-1.215	1.00 99.11
ATOM	83	CEl	PHE .	A	826	65.839	48.178	-3.157	1.00 99.11
ATOM	84	CE2	PHE .	A	826	65.418	49.179	-1.027	1.00 99.11
ATOM	85	CZ	PHE .			66.307	48.791	-1.995	1.00 99.11
ATOM	87	N	GLN .			59.222	47.691	-1.307	1.00 70.60
ATOM	88	CA	GLN .			57.728	47.659	-1.347	1.00 70.60
ATOM	89	C			827	57.010	49.023	-1.173	1.00 70.60
ATOM	90	0	GLN .			57.401	49.946	-1.874	1.00 70.60
ATOM	91	CB	GLN .			57.178	46.624	-0.337	1.00100.00
	92	CG	GLN .			57.627	45.151	-0.598	1.00100.00
MOTA	93	CD	GLN .			56.797	44.413	-1.665	1.00100.00
ATOM		OE1	GLN .			55.642	44.036	-1.433	1.00100.00
ATOM	94					57.396	44.196	-2.831	1.00100.00
ATOM	95	NE2	GLN .			56.000	49.149	-0.278	1.00 99.97
ATOM	99	N			828		50.418	-0.278	1.00 99.97
MOTA	100	CA	ASP			55.218	51.355	1.163	1.00 99.97
ATOM	101	C	ASP .			55.490	51.045	2.038	1.00 99.97
ATOM	102	0			828	56.284	50.128	0.010	1.00100.00
MOTA	103	CB			828	53.723		1.214	1.00100.00
ATOM	104	CG			828	53.034	50.839		1.00100.00
ATOM	105	OD1	ASP			52.702	52.037	1.109	1.00100.00
ATOM	106	OD2	ASP			52.834	50.215	2.280	1.00100.00
MOTA	108	N	VAL .			54.787	52.494	1.212	
ATOM	109	CA	VAL			54.900	53.488	2.295	1.00100.00
MOTA	110	С	VAL			54.384	53.014	3.639	1.00100.00
ATOM	111	0	VAL			53.683	52.012	3.703	1.00100.00
MOTA	112	CB	VAL	A	829	54.162	54.786	1.912	1.00100.00
ATOM	114	И	ILE	Ą	830	54.726	53.770	4.695	1.00 76.50
ATOM	115	CA	ILE			54.342	53.500	6.102	1.00 76.50
ATOM	116	C'	ILE	A	830	53.685		6.782	1.00 76.50
MOTA	117	0	ILE	A	830	52.464	54.830	6.808	1.00 76.50
MOTA	118	CB	ILE	A	830	55.571	53.069	6.979	1.00 83.02
MOTA	119	CG1	ILE	Α	830	55.888	51.607	6.755	1.00 83.02
ATOM	120	CG2	ILE	Ą	830	55.269	53.185	8.437	1.00 83.02
ATOM	121	CD1	ILE	Ą	830	57.118	51.163	7.437	1.00 83.02
MOTA	123	N	GLY			54.492	55.626	7.327	1.00100.00
ATOM .	124	CA	GLY			53.930	56.779	8.009	1.00100.00
ATOM	125	C	GLY			54.664	58.090	7.811	1.00100.00
ATOM	126	0	GLY			54.659	58.963	8.677	1.00100.00
ATOM	128	N	GLU			55.301	58.216	6.660	1.00 46.31
ATOM	129	CA	GLU			56.045	59.418	6.271	1.00 46.31
ATOM	130	C	GLU			57.586	59.215	6.265	1.00 46.31
ATOM	131	0	GLU			58.101	58.149	5.892	1.00 46.31
ATOM	132	СВ	GLU			55.668	60.618	7.158	1.00100.00
	133	CG	GLU			54.587	61.531	6.557	1.00100.00
ATOM		CD	GLU			54.197	62.702	7.473	1.00100.00
MOTA	134	עט	GUO.	H	<i>ع</i> د ں	5-2-2-7	52.752		

ATOM	135	OEl	GLU A	832	52.980	62.942	7.660	1.00100.00
ATOM	136	OEC	GLU A		55.107	63.387	8.002	1.00100.00
ATOM	138	N	GLY A	833	58.330	60.239	6.650	1.00100.00
ATOM	139	CA	GLY A		59.762	60.092	6.672	1.00100.00
ATOM	140	С	GLY A		60.311	61.410	7.090	1.00100.00
ATOM	141	0	GLY A		60.675	61.601	8.251	1.00100.00
ATOM	143	Ñ	ASN A		60.339	62.327	6.130	1.00 87.28
ATOM	144	CA	ASN A		60.829	63.680	6.360	1.00 87.28
MCTA	145	C	ASN A		62.306	63.520	6.539	1.00 87.28
MOTA	146	0		834	62.684	62.859	7.613	1.00 87.28
ATOM	147	CB	ASN A		60.114	64.306	7.570	1.00100.00
ATOM	148	CG	ASN A		60.641	65.685	7.932	1.00100.00
ATOM	149	OD1	ASN A		61.822	65.865	8.248	1.00100.00
ATOM	150	ND2	ASN A		59.751	66.671	7.903	1.00 68.16
ATOM	154	N		835	63.131	64.125	5.782	1.00 68.16
ATOM	155	CA		. 835	64.561	64.036	5.925	1.00 68.16
ATOM	156	C		835	64.700	62.693	6.578	1.00 68.16
ATOM	157	0		835	65.138	62.586	7.733	1.00 80.78
ATOM	158	CB		835	65.073	65.139	6.840 6.135	1.00 80.78
MOTA	159	CG	_	835	65.317	66.447		1.00 80.78
ATOM	160	CD1		835	64.950	67.651	6.733 4.877	1.00 80.78
MOTA	161	CD2	PHE A		65.931	66.475	6.097	1.00 80.78
MOTA	162	CE1	PHE A		65.190	68.856	4.226	1.00 80.78
MOTA	163	CE2	PHE P		66.178	67.689	4.838	1.00 80.78
MOTA	164	CZ		835	65.805	68.881 61.691	5.832	1.00100.00
ATOM	166	N	GLY F		64.226		6.257	1.00100.00
ATOM	167	CA	GLY F		64.252	60.304	5.914	1.00100.00
ATOM	168	C	GLY A		62.962	59.578 59.012	6.792	1.00100.00
ATOM	169	0	GLY F		62.31 <u>4</u> 62.599	59.565	4.636	1.00 88.37
ATOM	171	N	GLN A		61.356	58.915	4.214	1.00 88.37
MOTA	172	CA	GLN A		61.114	57.472	4.701	1.00 88.37
ATOM	173	C	GLN A		61.739	56.544	4.186	1.00 88.37
ATOM	174	0	GLN A		61.206	58.983	2.666	1.00 70.59
ATOM	175	CB	GLN A		62.424	58.531	1.876	1.00 70.59
ATOM	176	CG	GLN A		62.484	59.097	0.437	1.00 70.59
ATOM	177	CD			63.560	59.517	-0.041	1.00 70.59
ATOM	178	OE1 NE2			61.327	59.088	-0.263	1.00 70.59
ATOM	179	NEZ N	VAL A		60.211	57.302	5.687	1.00 63.61
MOTA	183	CA	VAL A		59.835	55.959	6.213	1.00 63.61
ATOM	184		VAL Z		58.710	55.222	5.481	1.00 63.61
ATOM	185	Ö.Ö	VAL Z		57.525	55.380	5.807	1.00 63.61
MOTA	186	O CB		838 A	59.384	55.939	7.692	1.00 61.77
ATOM	187 188		VAL Z		60.243	54.967	8.446	1.00 61.77
ATOM	189		VAL :		59.418	57.290	8.292	1.00 61.77
ATOM		N CG2		A 839	59.114	54.397	4.520	1.00100.00
ATOM	191 192	CA		A 839	58.201	53.584	3.738	1.00100.00
ATOM	193	CA		A 839	58.399	52.107	4.098	1.00100.00
MOTA	194	0		A 839	59.473	51.694	4.507	1.00100.00
ATOM		CB		A 839	58.464	53.783	2.244	1.00100.00
ATOM	195 196	CG		A 839	58.836	55.168	1.719	1.00100.00
MOTA		CDI		A 839	58.069	56.233	2.461	1.00100.00
MOTA	197	CD2		A 839	60.323	55.367	1.853	1.00100.00
ATOM	198 200	N		A 840	57.352	51.315	3.969	1.00 58.16
ATOM		CA		A 840		49.901	4.259	1.00 58.16
ATOM	201 202	CA		A 840		49.174	3.081	1.00 58.16
MOTA	202	0		A 840		49.497	1.943	1.00 58.16
MOTA	دىء	9	ب بد بیر		22.		•	•

7 7014	204 CB LYS A 840	56.071 49.313	4.549 1.00 67.71
ATOM	205 CG LYS A 840	56.075 47.809	4.810 1.00 67.71
ATOM	206 CD LYS A 840	55.274 47.391	6.047 1.00 67.71
ATOM	207 CE LYS A 840	55.467 45.926	6.360 1.00 67.71
ATOM	208 NZ LYS A 840	56.848 45.463	6.017 1.00 67.71
ATOM	213 N. ALA A 841	58.916 48.176	3.344 1.00 99.75
ATOM	7 0/1	59.514 47.452	2.241 1.00 99.75
MOTA		59,845 46.037	2.620 1.00 99.75
MOTA		59.830 45.684	3.796 1.00 99.75
MOTA		60.748 48.152	1.771 1.00 78.22
ATOM		60.143 45.231	1.605 1.00100.00
MOTA		60.499 43.832	1.798 1.00100.00
ATOM		61.972 43.576	1.429 1.00100.00
MOTA		62.288 43.082	0.352 1.00100.00
MOTA		59.574 42.951	0.973 1.00100.00
ATOM		62.868 43.919	2.348 1.00100.00
ATOM		64.301 43.743	2.148 1.00100.00
MOTA		64.642 42.262	2.174 1.00100.00
MOTA		63.952 41.488	2.844 1.00100.00
MOTA		65.094 44.489	3.263 1.00 99.77
ATOM		65.193 45.960	2.907 1.00 99.77
ATOM		66.487 43.937	3.421 1.00 99.77
MOTA	231 CG2 ILE A 843	63.857 46.576	2.554 1.00 99.77
MOTA	232 CD1 ILE A 843	65.691 41.882	1.435 1.00 77.20
MOTA	234 N LYS A 844	66.176 40.501	1.379 1.00 77.20
MOTA	235 CA LYS A 844	67.635 40.390	1.854 1.00 77.20
MOTA	236 C LYS A 844	68.499 41.059	1.313 1.00 77.20
MOTA	237 O LYS A 844	66.063 39.973	-0.045 1.00 63.87
MOTA	238 CB LYS A 844	67.921 39.570	2.859 1.00 93.93
ATOM	240 N LYS A 845		3.302 1.00 93.93
ATOM	241 CA LYS A 845		2.382 1.00 93.93
MOTA	242 C LYS A 845		1.453 1.00 93.93
MOTA	243 O LYS A 845		4.684 1.00 20.96
ATOM	244 CB LYS A 845		2.631 1.00 72.18
MOTA	246 N ASP A 846		1.815 1.00 72.18
MOTA	247 CA ASP A 846	· = · · · ·	2.059 1.00 72.18
MOTA	248 C ASP A 846	70.882 36.018	3.129 1.00 72.18
MOTA	249 O ASP A 846	70.861 35.389	2.390 1.00100.00
MOTA	250 CB ASP A 846	73.294 36.787	1.842 1.00100.00
ATOM	251 CG ASP A 846	74.415 37.685	0.607 1.00100.00
MOTA	252 OD1 ASP A 846	74.632 37.694	2.650 1.00100.00
MOTA	253 OD2 ASP A 846	75.083 38.376	1.082 1.00 99.53
ATOM	255 N GLY A 847	69.992 35.836	1.231 1.00 99.53
MOTA	256 CA GLY A 847	68.923 34.870	2.347 1.00 99.53
ATOM	257 C GLY A 847	68.008 35.367	3.302 1.00 99.53
ATOM	258 O GLY A 847	68.509 35.974	2.228 1.00 93.78
ATOM	260 N LEU A 848	66.694 35.120	
ATOM	261 CA LEU A 848		02 70
ATOM	262 C LEU A 848		07 70
ATOM	263 O LEU A 848		
MOTA	264 CB LEU A 848		
ATOM	. 265 CG LEU A 848		
ATOM	266 CD1 LEU A 848	65.937 37.849	
MOTA	267 CD2 LEU A 848	67.719 36.377	00 14
MOTA	269 N ARG A 845	63.781 37.063	
ATOM	270 CA ARG A 845	63.127 38.347	00 14
ATOM	271 C ARG A 849	62.191 38.669	
MOTA	272 O ARG A 849		4.612 1.00 80.14
71011			

		-	770	7	0.4.0	52 220	22 227	1.561	1.00 99.23
ATOM	273	CB	ARG			62.320	38.327		
ATOM	274	CG	ARG .		873	61.390	37.148	1.452	1.00 99.23
ATOM	275	CD	ARG	A	849	60.021	37.392	2.081	1.00 99.23
ATOM	276	NΞ	ARG .	A	849	59.022	36.456	1.540	1.00 99.23
ATOM	277	CZ	ARG .	A	849	58.743	35.268	2.050	1.00 99.23
	278	NHl	ARG .			59.379	34.826	3.127	1.00 99.23
ATOM			ARG			57.830	34.504	1.475	1.00 99.23
ATOM	279	NH2							
ATOM	286	N			850	62.041	39.958	4.350	
ATOM	287	CA	MET .	A	850	61.122	40.332	5.425	1.00 26.65
ATOM	288	С	MET .	A	850	60.680	41.820	5.406	1.00 26.65
ATOM	289	0	MET .	A	850	60.502	42.468	4.345	1.00 26.65
ATOM	290	CB	MET .	A	850	61.743	39.999	6.780	1.00 99.56
ATOM	291	CG			850	63.156	39.475	6.689	1.00 99.56
					850	64.190	40.566	5.745	1.00 99.56
ATOM	292	SD						6.902	1.00 99.56
ATOM	293	CE			350	65.522	40.771		
ATOM	295	N			851	60.515	42.341	6.612	1.00 27.82
ATOM	296	CA	ASP .	Ą	851	60.156	43.721	6.812	1.00 27.82
ATOM	297	C	ASP .	Ą	851	61.331	44.534	7.280	1.00 27.82
ATOM	298	0	ASP .	A	851	62.056	44.144	8.255	1.00 27.82
ATOM	299	CB			851	59.124	43.799	7.903	1.00 16.75
						58.382	42.570	7.998	1.00 16.75
ATOM	300	CG	ASP						
ATOM	301	OD1				58.147	42.049	6.837	
MOTA	302	OD2	ASP .	<u>A</u>	851	58.079	42.189	9.190	1.00 16.75
MOTA	304	N_1	ALA .	A	852	61.420	45.691	6.635	1.00 37.08
ATOM	305	CA	ALA.	Α	852	62.400	46.719	6.887	1.00 37.08
ATOM	306	С	ALA	Α	852	61.643	48.050	6.795	1.00 37.08
ATOM	307	Ō	ALA			60.764	48.247	5.950	1.00 37.08
					852 -	63.471	46.663	5.835	1.00100.00
ATOM	308	CB							1.00 97.32
ATOM	310	N	ALA			61.955	48.986	7.663	
MOTA	311	CA	ALA	A	853	61.303	50.269	7.528	1.00 97.32
ATOM	312	C	ALA	A	853	62.427	51.046	6.852	1.00 97.32
MOTA	313	0	ALA	A	853	63.501	51.201	7.415	1.00 97.32
ATOM	314	CB	ALA	A	853	60.947	50.824	8.895	1.00 15.46
ATOM	316	N	ILE			62.187	51.469	5.617	1.00 84.85
		CA	ILE			63.178	52.179	4.810	1.00 84.85
ATOM	317						53.682	4.985	1.00 84.85
ATOM	318	С	ILE			63.221			
ATOM	319	0	ILE			62.197	54.334	5.006	1.00 84.85
MOTA	320	CB	ILE	A	854	62.961	51.895	3.315	1.00 99.86
ATOM	321	CG1	ILE	<u>r</u> ,	854	63.540	50.538	2.948	1.00 99.86
ATOM	322	CG2	ILE	A	854	63.622	52.963	2.474	1.00 99.86
ATOM	323	CD1	ILE			63.707	49.610	4.109	1.00 99.86
		N	LYS			64.426	54.228	5.095	1.00100.00
ATOM	325					64.602	55.666	5.249	1.00100.00
MOTA	326	CA	LYS						1.00100.00
ATOM	327	C	LYS			65.867	56.179	4.602	
ATOM	328	0	LYS	Α	855	66.915	55.567	4.710	1.00100.00
MOTA	329	CB	LYS	Α	855	64.640	56.058	6.721	1.00100.00
MOTA	330	CG	LYS	A	855	65.352	57.373	6.977	1.00100.00
MOTA	331	CD	LYS			64.912	57.985	8.283	1.00100.00
		CE	LYS			65.371	57.143	9.459	1.00100.00
MOTA	332						57.366	9.812	1.00100.00
ATOM	333	NZ	LYS			66.801			1.00100.00
MOTA	338	N	ARG			65.751	57.314	3.927	
MOTA	339	CA	ARG			66.881	57.980	3.282	1.00100.00
ATOM	340	C	ARG	Α	856	66.403	59.192	2.543	1.00100.00
ATOM	341	0	ARG	A	856	65.575	59.088	1.631	1.00100.00
ATOM	342	CB	ARG			67.602	57.089	2.279	1.00100.00
ATOM	343	CG	ARG			68.637	57.868	1.462	1.00100.00
			ARG			68.118	58.410	0.090	1.00100:00
MOTA	344	CD	טאת	~	0.50	55.115	JU. 110		

							55 150	0 510	1.00100.00
ATOM	345	ΝE	ARG			68.946	59.472	-0.512	
MOTA	346	CZ	ARG			68.938	59.819	-1.801	1.00100.00
ATOM	347	NH1	ARG	A	856	68.145	59.210	-2.674	1.00100.00
ATOM	348-	NH2	ARG	A	856	69.744	60.783	-2.222	1.00100.60
ATOM	355	N	MET	A	857	66.951	60.337	2.922	1.00 39.23
ATOM	356	CA			857	66.567	61.616	2.275	1.00 39.23
ATOM	357	C.			857	67.634	62.754	2.130	1.00 39.23
		0	MET		857	68.221	63.225	3.157	1.00 39.23
ATOM	358				857	65.320	62.179	2.983	1.00100.00
ATOM	359	CB				64.305	62.877	2.092	1.00100.00
ATOM	360	CG	MET		857			2.908	1.00100.00
ATOM	361	SD	MEŢ		857	63.851	64.409		1.00100.00
MOTA	362	CE	MET		857	61992	64.355	2.935	
ATOM	363	TXO	MET			67.842	63.172	0.963	1.00100.00
MOTA	365	N	ASP	A	864	73.761	67.110	-3.548	1.00 99.95
ATOM	366	CA	ASP	A	864	74.976	66.819	-4.360	1.00 99.95
MOTA	367	C	ASP	A	864	76.224	67.493	-3.781	1.00 99.95
ATOM	368	0		Α	864	77.068	68.001	-4.530	1.00 99.95
ATOM	369	CB	ASP		864	74.765	67.261	-5.839	1.00 2.00
		N	ASP		865	76.338	67.492	-2.453	1.00100.00
ATOM	373				865	77.486	68.080	-1.760	1.00100.00
MOTA	374	CA	ASP			77.219	68.112	-0.267	1.00100.00
MOTA	375	C	ASP					0.391	1.00100.00
ATOM	376	0	ASP		865	77.444	69.131		1.00 53.42
MOTA	377	CB	ASP		865	77.720	69.454	-2.255	
ATOM	379	Ŋ	HIS	A	866	76.752	66.983	0.263	1.00100.00
MOTA	380	CA,	HIS	A	866	76.397	66.853	1.678	1.00100.00
ATOM	381	С	HIS	A	866	76.696	65.441	2.178	1.00100.00
MOTA	382	0	HIS	A	866	75.859	64.777	2.805	1.00100.00
ATOM	383	CB			866	74.905	67.144	1.848	1.00100.00
MOTA	384	CG			866	74.036	66.378	0.896	1.00100.00
		ND1				73.693	66.857	-0.350	1.00100.00
ATOM	385				866	73.459	65.158	1.003	1.00100.00
ATOM	386	CD2				72.943	65.965	-0.970	1.00100.00
MOTA	387	CE1						-0.170	1.00100.00
MOTA	388	NE2			866	72.787	64.925		1.00100.00
MOTA	392	N			867	77.912	64.998	1.913	
MOTA	393	CA			867	78.335	63.673	2.300	1.00100.00
ATOM	394	С	ARG	A	867	78.856	63.654	3.738	1.00100.00
ATOM	395	0	ARG	Ą	867	80.061	63.597	3.985	1.00100.00
MOTA	396	CB	ARG	A	867	79.393	63.206	1.310	1.00 99.71
ATOM	397	CG			867	79.185	63.783	-0.098	1.00 99.71
ATOM	398	CD			867	79.695	65.213	-0.213	1.00 99.71
	399	ΝĖ			867	81.116	65.305	0.115	1.00 99.71
ATOM	400				867	81.604	65.381	1.351	1.00 99.71
MOTA						80.785	65.378	2.396	1.00 99.71
MOTA	401		ARG			82.919	65.450	1.540	1.00 99.71
ATOM	402	NH2			867				1.00 88.85
MOTA	409	N			868	77.920	63.713	4.683	1.00 88.85
ATOM	410	CA			868	78.239	63.706	6.112	
MOTA	411	С			868	77.969	62.278	6.646	1.00 88.85
MOTA	412	0	ASF	Ą	868	78.558	61.850	7.655	1.00 88.85
ATOM	413	CB	ASF	A	868	77.368	64.758	6.870	1.00 67.57
ATOM	414	CG			868	77.674	66.231	6.460	1.00 67.57
ATOM	415		. ASI			78.671	66.496	5.753	1.00 67.57
		OD2			868	76.914	67.142	6.852	1.00 67.57
ATOM	416				869	77.097	61.545	5.943	1.00100.00
ATOM	418	N				76.719	60.176	6.322	1.00100.00
ATOM	419	CA			869			6.086	1.00100.00
MOTA	420	С			869	77.809	59.128		
ATOM	421	0			869	78.433	59.091	5.017	1.00 98.24
MOTA	422	CB	PHI	E A	869	75.431	59.745	5.595	1.00 70.24
		•							

					75 246		4 3.54	7 00 00 34
MCTA	423	CG	PHE A		75.346	60.207	4.164	1.00 98.24
ATOM	424	CD1	PHE A		74.434	61.186	3.789	1.00 98.24
ATOM	425	CD2	PHE A	869	76.165	59.652	3.186	1.00 98.24
MOTA	426	CE1	PHE A	869	74.341	61.604	2.457	1.00 98.24
ATOM	427	CE2	PHE A	869	76.078	60.063	1.854	1.00 98.24
MOTA	428	CZ	PHE A	869	75.166	61.038	1.492	1.00 98.24
ATOM	430	N	ALA A		78.007	58.287	7.106	1.00100.00
ATOM	431	CA	ALA A		79.005	57.205	7.146	1.00100.00
		C	ALA A		79.570	57.201	8.564	1.00100.00
MOTA	432		ALA A		80.736	56.892	8.807	1.00100.00
ATOM	433	0					6.134	1.00100.00
MOTA	434	CE	ALA A		80.131	57.437		1.00100.00
ATOM	436	N	GLY A		78.706	57.575	9.490	1.00100.00
ATOM	437	CA	GLY A		79.058	57.626	10.888	
ATOM	438	C	GLY A	871	77.783	57.234	11.591	1.00100.00
ATOM	439	0	GLY A	871	77.802	56.636	12.662	1.00100.00
ATOM	441	N	GLU A	872	76.656	57.592	10.987	1.00100.00
MCTA	442	CA	GLU A	872	75.384	57.210	11.564	1.00100.00
ATOM	443	C	GLU A	872	75.581	55.695	11.584	1.00100.00
MCTA	444	0	GLU A		75.628	55.083	12.655	1.00100.00
ATOM	445	CB	GLU A		74.200	57.613	10.651	1.00 99.93
			GLU A		73.244	58.668	11.260	1.00 99.93
ATOM	446	CG			71.754	58.458	10.919	1.00 99.93
ATOM	447	CD	GLU A			57.633	10.040	1.00 99.93
ATOM	448	OE1	GLU A		71.434			1.00 99.93
ATOM	449	OE2	GLU A		70.894	59.128	11.532	
ATÓM	451	N	LEU A		75.773	55.121	10.389	1.00 77.06
MOTA	452	CA	LEU A		75.982	53.683	10.215	1.00 77.06
ATOM	453	C	LEU A	873	77.167	53.198	11.046	1.00 77.06
ATOM	454	·0	LEU A	873	77.384	51.998	11.180	1.00 77.06
ATOM	455	CB	LEU A	873	76.202	53.366	8.746	1.00 96.97
ATOM	457	N	GLU A		77.920	54.142	11.612	1.00 98.87
MOTA	458	CA	GLU A		79.091	53.832	12.423	1.00 98.87
ATOM	459	C	GLU A		78.740	53.585	13.890	1.00 98.87
			GLU A		79.072	52.546	14.449	1.00 98.87
ATOM	460	0			80.107	54.954	12.306	1.00 56.03
MOTA	461	CB	GLU A				14.543	1.00100.00
ATOM	463	Ñ	VAL A		78.096	54.541	15.936	1.00100.00
ATOM	464	CA	VAL A		77.725	54.320		
MOTA	465	C	VAL A		76.577	53.312	15.875	1.00100.00
ATOM	466	0	VAL A	875	76.533	52.370	16.654	1.00100.00
MOTA	467	CB	VAL A	875	77.279	55.629	16.582	1.00100.00
ATOM	469	N	LEU A	876	75.678	53.520	14.911	1.00 63.64
ATOM	470	ĆA	LEU A	876	74.515	52.662	14.649	1.00 63.64
ATOM	471	C	LEU A	876	74.825	51.155	14.638	1.00 63.64
ATOM	472	0	LEU A		73.935	50.359	14.292	1.00 63.64
ATOM	473	CB	LEU A		73.914	53.005	13.267	1.00 36.83
	474	CG	LEU A		72.851	54.076	12.997	1.00 36.83
ATOM			LEU A		72.028	53.665	11.807	1.00 36.83
ATOM	475				71.987	54.260	14.181	1.00 36.83
ATOM	476	CD2						1.00 75.85
ATOM	478	N	CYS A		76.072	50.786	14.978	1.00 75.85
ATOM	479	CA	CYS A		76.570	49.391	14.973	
ATOM	480	С	CYS A	877	76.791	48.697	16.317	1.00 75.85
MCTA	481	0	CYS A	877	75.965	47.904	16.771	1.00 75.85
ATOM	482	CB	CYS A	877	77.890	49.343	14.202	1.00 82.25
ATOM	483	SG	CYS A		78.205	50.859	13.250	1.00 82.25
ATOM	485	N	LYS A		77.947	48.968	16.913	1.00100.00
ATOM	486	CA	LYS A		78.334	48.400	18.202	1.00100.00
ATOM	487	C	LYS A		77.159	48.295	19.186	1.00100.00
			LYS A		77.237	47.565	20.178	1.00100.00
MOTA	488	0	штэ А	. 370	11.231	1		

WO 01/72778 PCT/US01/08853

				_		20 100	40 051	18.826	1.00	99.60
ATOM	489	CB	LYS			79.460	49.251			
ATOM	490	CG	LYS	A	878	80.588	49.643	17.842		99.60
ATOM	491	CD	LYS	A	878	80.814	51.160	17.739	1.00	99.60
ATOM	492	CE	LYS	A	878	81.033	51.598	16.292	1.00	99.60
ATOM	493	NZ			878	82.152	52.567	16.077	1.00	99.60
	498	N	LEU			76.079	49.024	18.905	1.00	99.14
ATOM						74.905	49.034	19.762	1.00	99.14
ATOM	499	CA	LEU					18.953	1.00	
ATOM	500	С	PEA			73.664	48.687			
ATOM	501	0			879	72.574	48.526	19.488		99.14
ATOM	502	CB	LEU	A	879	74.748	50.416	20.401	1.00	
ATOM	503	CG	LEU	A	879	74.125	51.546	19.579	1.00	
ATOM	504	CD1	LEU	A	879	74.530	52.863	20.154	1.00	99.96
ATOM	505	CD2	LEU			74.555	51.454	18.135	1.00	99.96
			GLY			73.840	48.593	17.647	1.00	74.75
ATOM	507	N					48.256	16.775		74.75
MOTA	508	CA	GLY			72.737			1.00	
MOTA	509	С	GLY			71.778	47.281	17.406		
ATOM	510	0	GLY	A	980	70.589	47.458	17.285	1.00	
ATOM	512	N	HIS	A	881	72.288	46.243	18.067	1.001	
ATOM	513	CA	HIS	A	881	71.428	45.246	18.700	1.001	00.00
ATOM	514	C			881	71.274	45.583	20.172	1.001	00.00
					881	71.798	46.571	20.661	1.001	00.00
ATOM	515	0				71.989	43.818	18.514	1.00	
ATOM	516	CB			881				1.00	
MOTA	517	CG			881	71.360	42.778	19.401		
ATOM	518	ND1	HIS	A	881	70.116	42.234	19.155	1.00	
ATOM	519	CD2	HIS	Α	881	71.778	42.230	20.573	1.00	
ATOM	520	CE1	HIS	A	881	69.792	41.404	20.133	1.00	
ATOM	521	NE2	HIS	Z A	881	70.783	41.384	21.007	1.00	80.74
	525	N	HIS			70.539	44.718	20.846	1.00	5.03
MOTA					882	70.126	44.779	22.266	1.00	5.03
MOTA	526	CA	HIS				44.646	22.018	1.00	5.03
MOTA	527	C	HIS		882	68.572			1.00	5.03
MOTA	528	0	HIS		882	67.998	45.211	20.996		
MOTA	529	CB	HIS	A	882	70.487	46.161	22.887		36.20
ATOM	530	CG	HIS	A.	882	70.085	46.316	24.322		36.20
ATOM	531	NDl	HIS	A	882	68.786	46.169	24.753		36.20
ATOM	532	CD2	HIS			70.816	46.553	25.432	1.00	36.20
	533	CEI	HIS			68.731	46.302	26.066	1.00	36.20
MOTA						69.949	46.535	26.504		36.20
ATOM	534		HIS				43.928	22.885		18.79
MOTA	538	N			883	67.875				18.79
ATOM	539	CA	PRO	A	883	66.444	43.868	22.564		
ATOM	540	C	PRO	Α	883	65.806	45.252	22.201		18.79
ATOM	541	O.	PRO	A	883	65.014	45.404	21.188	1.00	18.79
ATOM	542	•			883	65.804	43.294	23.829		41.14
ATOM	543	CG			883	66.946	43.069	24.810	1.00	41.14
		CD			883	68.231	43.209	24.107	1.00	41.14
MOTA	544					66.245	46.252	22.975		21.27
ATOM	545	N			884			22.910		21.27
ATOM	546	CA			884	65.656	47.545			21.27
MOTA	547	C	ASN	Ą	884	66.055	48.782	22.174		
MOTA	548	0	ASN	Α	884	65.930	49.811	22.738		21.27
ATOM	549	CB	ASN	Α	884	65.371	47.916	24.332		47.99
ATOM	550	CG			884	64.926	46.747	25.093		47.99
	551		ASN			65.360	46.508	26.173	1.00	47.99
ATOM						64.056	45.990	24.504		47.99
ATOM	552	ND2			884			20.906	1.00	2.00
MOTA	556	N			885	66.421	48.685			2.00
MOTA	557	CA			885	66.784	49.799	20.139	1.00	
MOTA	558	C	ILE	: A	885	66.578	49.337	18.712		2.00
ATOM	559	0	ILE	A	885	67.324	48.601	18.278		2.00
MOTA	560	CB			885	68.282	50.142	20.404	1.00	5.30
ALON	200									

ATOM	561	CG1	ILE			68.387	50.790	21.774	1.00 5.30
ATOM	562	CG2	ILE			68.946	51.096	19.301	1.00 5.30
MOTA	563	CD1			885	69.834	51.062	22.137	1.00 5.30 1.00 41.79
ATOM	565	N	ILE			65.634	49.811	17.931	
MOTA	566	CA	ILE			65.528	49.296	16.564	1.00 41.79
ATOM	567	C	ILE			66.883	45.887	15.937	1.00 41.79
ATOM	568	0	ILE			67.899	49.217	16.450	1.00 41.79
MOTA	569	CB.	ILE			64.769	50.316	15.671	1.00 97.62
MOTA	570	CGl	ILE			63.737	49.563	14.817	1.00 97.62
ATOM	571	CG2	ILE			65.742	51.141	14.871	1.00 97.62
ATOM	572	CDl	ILE			62.833	50.438	14.004	1.00 97.62
ATOM	574	N	ASN			66.915	48.190	14.817	1.00 58.02
MOTA	575	CA	ASN			68.191	47.751	14.300	1.00 58.02
ATOM	576	С	ASN			68.481	48.230	12.940	1.00 58.02
ATOM	577	0	ASN	Α	887	67.635	48.811	12.321	1.00 58.02
ATOM	578	CB	ASN	A	887	68.237	46.228	14.269	1.00 61.11
ATOM	579	CG	ASN	A	887	69.626	45.688	14.460	1.00 61.11
ATOM	580	OD1	ASN	A	887	70.307	45.367	13.505	1.00 61.11
ATOM	581	ND2	ASN	Α	887	70.050	45.584	15.711	1.00 61.11
ATOM	585	N	LEU	A	888	69.688	47.945	12.467	1.00100.00
ATOM	586	CA	LEU	Α	888	70.097	48.313	11.122	1.00100.00
ATOM	587	C	LEU	A	888	70.158	47.037	10.282	1.00100.00
ATOM	588	0	LEU			71.039	46.202	10.444	1.00100.00
ATOM	589	CB	LEU	Α	888	71.467	48.993	11.131	1.00100.00
ATOM	590	CG	LEU			72.068	49.217	9.743	1.00100.00
ATOM	591		LEU			72.054	50.676	9.410	1.00100.00
ATOM	592	CD2				73.475	48.686	9.699	1.00100.00
ATOM	594	N .	LEU			69.191	46.880	9.398	1.00 73.18
ATOM	595	CA	LEU			69.128	45.721	8.530	1.00 73.18
ATOM	596	C	LEU			70.044	45.860	7.290	1.00 73.18
ATOM	597	0	LEU			70.737	44.920	6.926	1.00 73.18
ATOM	598	CB	LEU			67.666	45.500	8.102	1.00 10.03
ATOM	599	CG	LEU			66.628	44.729	9.010	1.00 10.03
	600	CD1				66.180	43.517	8.146	1.00 10.03
ATOM	601		LEU			67.147	44.336	10.432	1.00 10.03
ATOM	603	N N	GLY			70.058	47.028	6.651	1.00100.00
ATOM			GLY			70.898	47.201	5.475	1.00100.00
ATOM	604	CA C	GLY			71.057	48.582	4.845	1.00100.00
ATOM	605		GLY			70.515	49.581	5.319	1.00100.00
ATOM	606	0	ALA			71.829	48.616	3.758	1.00 93.61
ATOM	608	Ŋ	ALA			72.124	49.833	2.992	1.00 93.61
ATOM	609	CA	ALA			73.125	49.438	1.929	1.00 93.61
ATOM	610	C				73.123	48.626	2.223	1.00 93.61
ATOM	611	0	ALA			72.763	50.871	3.886	1.00 28.61
ATOM	612	CB	ALA			73.033	49.985	0.715	1.00100.00
ATOM	614	N	CYS			74.034	49.635	-0.306	1.00100.00
MOTA	615	CA	CYS				50.793	-0.956	1.00100.00
ATOM	616	C	CYS			74.789		-0.606	1.00100.00
MCTA	617	0	CYS			75.934	51.073	-1.429	1.00100.00
MOTA	618	CB	CYS			73.432	48.787		1.00100.00
ATOM	619	SG	CYS			74.641	48.356	-2.757	1.00 85.23
MOTA	621	N	GLU			74.134	51.447	-1.914	1.00 85.23
MOTA	622	CA	GLU			74.715	52.555	-2.679	1.00 85.23
ATOM	623	С	GLU			73.816	52.794	-3.880	
ATOM	624	0	GLU			74.228	52.512	-5.011	1.00 85.23
MOTA	625	CB	GLU			76.108	52.176	-3.222	1.00100.00
ATOM	626	CG			893	77.267	53.065	-2.785	1.00100.00
MOTA	627	CD	GLU	A	893	78.487	52.246	-2.386	1.00100.00

														201		
ATOM	628	OEl	GLU	Ą	893			029		1.535		3.266	1.00			
ATOM	629	OE2	GLU	Α	893	-	78.	893	57	2.307	_	1.197	1.00			
ATOM	631	N	HIS	A	894	-	72.	602	53	3.293	-	3.564	1.00	10	0.0	0
ATOM	632	CA	HIS	A	894	-	71.	731	53	3.508	-	4.810	1.00			
ATOM	633	C			894	•	71.	885	54	4.855	-	5.463	1.00	10	0.0	0
ATOM	634	0			894		71.	106	55	5.770	_	5.181	1.00	10	0.0	0
	635	CB			894			261	5	3.338	_	4.477	1.00	10	0.0	0
ATOM		CG	HIS					370		3.597	_	5.652	1.00	10	0.0	0
ATOM	636		HIS					309		4.476		5.610	1.00	10	0.0	0
MOTA	637							419		3.128		6.922	1.00			
ATOM	638	CD2			894					4.539		6.802	1.00			
MOTA	639							743.					1.00			
ATOM	640	NE2	HIS					397		3.729		7.615	1.00			
ATOM	644	N	ARG					888		4.950		6.340				
ATOM	645	CA	ARG					176		6.161		7.090	1.00			
MOTA	646	C	ARG					331		7.30 <i>9</i>		6.481	1.00			
MOTA	647	0	ARG	A	895	•	71.	194	5	7.562	-	6.910	1.00			
ATOM	648	CB	ARG	A	895	•	72.	842	5.	5.883	_	8.571	1.00			
ATOM	649	CG	ARG	A.	895	•	73.	711	5	4.767	-	9.229	1.00			
ATOM	650	CD	ARG			•	73.	012	5	4.079	- 1	.0.421	1.00	3	6.6	55
ATOM	651	NE	ARG				73.	.587	5	4.370	-1	1.738	1.00) 3	6.6	55
ATOM	652	CZ	ARG					.382	5	3.546	-1	2.451	1.00	3	6.6	55
	653		ARG					.735		2.315		1.986	1.00	3	6.6	55
ATOM			ARG					. 848		3.963		3.644	1.00) 3	6.6	55
MOTA	654	NH2	GLY					.901		7.979		5.469	1.00			
MOTA	661	N						. 190		9.016		4.751	1.00			
ATOM	662	CA	GLY							8.455		3.348	1.00			
MOTA	663	С	GLY					.918				-2.847	1.00			
ATOM	664	0	GLY					.779		8.462			1.00			
ATOM	666	N	TYR					.971		7.947		-2.705				
MOTA	667	CA	TYR	Ą	897			.864		7.372		-1.356	1.00			
ATOM	668	C	\mathtt{TYR}	Α	897		72	.959	5	5.835		-1.387	1.00			
ATOM	669	0	TYR	Ą	897		73	.599	5	5.240		-2.258	1.00			
MOTA	670	CB	TYR	A	897		71	.532	5	7.786	-	-0.716	1.00			
ATOM	671	CG	TYR	Α	897		71	.522	5	8.208		0.734	1.00			
ATOM	672	CD1			897		71	. 152	5	9.511		1.080	1.0	310	0.0	00
ATOM	673	CD2	TYR		897		71	.631	5	7.268		1.756	1.0	310	0.0	00
ATOM	674	CE1			897		70	.860	5	9.866		2.391	1.0	01 0	0.0	0.0
	675	CE2			897			.345	5	7.604		3.074	1.0	010	0.0	00
ATOM					897			.947		8.908		3.389	1.0	010	0.0	00
ATOM	676	CZ			897			.582		9.246		4.682	1.0	010	0.0	00
MOTA	677	OH			898.			.293		5.212		-0.419	1.0	010	0.0	00
MOTA	680	Ň						.272		3.765		-0.258	1.0			
MOTA	681	CA	LEU		898					3.763		0.459	1.0			
MOTA	682	С			898			.983					1.0			
MOTA	683	0			898			.810		2.197		0.836	1.0			
MOTA	684	CB			898			.495		3.328		0.551	1.0			
ATOM	686	N	TYR	A	899			.097		4.345		0.668				
MOTA	687	CA	TYR	A	899		68	.813		4.169		1.347	1.0			
ATOM	688	С	TYR	A	899		68	.976		3.434		2.680	1.0			
ATOM	689	0	TYR	A	899		70	.090	Ξ	3.252		3.153	1.0			
ATOM	690	CB			899		67	.840	5	3.420		0.434	1.0			
ATOM	691	CG			899		67	.265	5	4.259	l	-0.694	1.0			
	692	CD1			899			.218	5	3.770)	-2.004	1.0	0 9	€9.	94
ATOM		CD2			899			.738		55.531		-0.454	1.0			
MOTA	693				899			.662		54.519		-3.044	1.0			
ATOM	694	CE1			899			.176		56.295		-1.493	1.0			
ATOM	. 695	CE2						1.176		55.778		-2.780	1.0			
MOTA	696	CZ			899					56.50S		-3.792				
MOTA	697	OH			899			.580				3.300	1.0			
MOTA	700	N	LEU	A	900		6	.876	:	53.017		3.300	.1.0	•		

ATOM	701	CA	LEU	A	900	67.987	52.305	4.573	1.00	99.32
ATOM	702	С	LEU			67.119	51.071	4.770	1.00	99.32
ATOM	703	O	LEU			66.306	50.702	3.933	1.00	99.32
ATOM	704	CB	LEU			67.755	53.258	5.752		72.65
ATOM	705	CG	LEU			68.911	53.350	6.752	1.00	72.65
ATOM	706	CD1	LEU			70.175	52.843	6.059	1.00	72.65
		CD2	LEU			69.096	54.792	7.259		72.65
ATOM	707									100.00
MOTA	709	N	ALA			67.330	50.439	5.912		100.00
ATOM	710	CA_	ALA			66.617	49.244	6.288		
ATOM	711	C	ALA			66.802	49.053	7.774		100.00
ATOM	712	0	ALA			67.774	48.484	8.231		100.00
ATOM	713	CB	ALA			67.152	48.049	5.537		100.00
ATOM	715	N	ILE			65.840	49.575	8.510		33.23
ATOM	716	CA	ILE			65.773	49.510	9.964		33.23
MOTA	717	C	ILE	A	902	64.912	48.295	10.352		33.23
ATOM	718	0	ILE	Α	902	63.988	47.959	9.648	1.00	33.23
MOTA	719	CB	ILE	Α	902	65.130	50.817	10.474	1.00	58.03
ATOM	720	CG1	ILE	A	902	65.930	51.992	9.960	1.00	58.03
ATOM	721	CG2	ILE	A	902	65.107	50.870	11.955	1.00	58.03
ATOM	722	CD1	ILE	A	902	67.193	52.207	10.738	1.00	58.03
ATOM	724	N	GLU			65.256	47.622	11.440	1.00	37.33
ATOM	725	CA	GLU			64.468	46.507	11.912		37.33
ATOM	726	C	GLU			63.079	47.051	11.790		37.33
ATOM	727	0	GLU			62.856	48.198	12.081		37.33
	728	CB	GLU			64.732	46.216	13.388		74.67
ATOM	729	CG	GLU			63.667	45.362	14.022		74.67
ATOM			GLU			63.757	45.302	15.525		74.67
ATOM	730	CD						16.178	1.00	
ATOM	731	OE1	GLU			62.771	44.921			
MOTA	732	OE2	GLU			64.809	45.637	16.072		74.67
ATOM	734	N	TYR			62.137	46.221	11.362		98.95
MOTA	735	CA	TYR			60.765	46.667	11.209		98.95
ATOM	736	C	TYR			59.912	46.319	12.435	1.00	
ATOM	737	0	TYR			59.998	45.210	12.968	1.00	
MOTA	738	CB	TYR	A	904	60.187	46.064	9.939		65.21
MOTA	739	CG	TYR	Α	904	58.741	46.366	9.749		65.21
ATOM	740	CD1	TYR	Α	904	58.343	47.461	9.002	1.00	65.21
ATOM	741	CD2	TYR	Α	904	57.760	45.602	10.367	1.00	65.21
ATOM	742	CE1	TYR	Α	904	56.994	47.797	8.878	1.00	65.21
ATOM	743	CE2	TYR	A	904	56.418	45.929	10.249		65.21
ATOM	744	CZ	TYR			56.046	47.029	9.500	1.00	65.21
ATOM	745	OH	TYR	Α	904	54.736	47.335	9.321		65.21
ATOM	748	N	ALA			59.103	47.287	12.877	1.00	44.07
ATOM	749	CA	ALA			58.241	47.148	14.049		44.07
ATOM	750	C	ALA			56.742	46.973	13.670		44.07
ATOM	751	0	ALA			56.091	47.865	13.125		44.07
ATOM	752	CB	ALA			58.459	48.326	14.943		44.16
						56.169	45.798	13.983		95.76
MOTA	754	N	PRO				45.513	13.643		95.76
ATOM	755	CA	PRO			54.773				
ATOM	756	C	PRO			53.627	46.336	14.226		95.76
ATOM	757	0	PRO			52.547	46.358	13.656		95.76
ATOM	758	CB	PRO			54.642	44.022	13.956		74.50
ATOM	759	CG	PRO			55.605	43.816	15.072		74.50
ATOM	760	CD	PRO			56.773	44.682	14.734		74.50
ATOM	761	N	HIS			53.838	47.018	15.336		75.88
ATOM	762	CA	HIS	A	907	52.751	47.792	15.909		75.88
ATOM	763	C	HIS	Α	907	52.942	49.300	15.917		75.88
ATOM	764	0	HIS	Α	907	52.370	49.979	16.754	1.00	75.88

MOTA	765	CB	HIS A 907	52.491	47.321	17.327	1.00 58.13
ATOM	766	CG	HIS A 907	52.494	45.839		
MOTA	767	ND	1 HIS A 907	52.400	44.991		
ATOM	768		2 HIS A 907	52.595	45.049	18.552	1.00 58.13
ATOM	769	CE	1 HIS A 907	52.442	43.741	16.805	1.00 58.13
ATOM	770	NE	2 HIS A 907	52.563	43.750	18.117	1.00 58.13
MOTA	774	N	GLY A 908	53.744	49.827	15.004	1.00 99.49
MOTA	775		GLY A 908	53.952	51.258	14.965	1.00 99.49
ATOM	776		GLY A 908	54.688	51.796	16.168	1.00 99.49
MOTA	777		GLY A 908	55.536	51.126	16.736	1.00 99.49
ATOM	779	N	ASN A 909	54.345	53.015	16.565	1.00 37.36
ATOM	780	CA	ASN A 909	54.995	53.672	17.686	1.00 37.36
MOTA	781	C	ASN A 909	54.274	53.675	18.970	1.00 37.36
ATOM	782	0	ASN A 909	53.091	53,524	19.093	1.00 37.36
ATOM	783	CB	ASN A 909	55.422	55.139	17.378	1.00 21.80
MOTA	784	CG	ASN A 909	54.300	56.174	17.594	1.00 21.80
MOTA	785	OD	L ASN A 909	54.091	57.036	16.763	1.00 21.80
ATOM	786	ND	2 ASN A 909	53.611	56.094	18.714	1.00 21.80
ATOM	790	N	LEU A 910	55.043	53.958	19.971	1.00 6.05
ATOM	791	CA	LEU A 910	54.505	53.895	21.258	1.00 6.05
ATOM	792	C	LEU A 910	53.372	54.836	21.506	1.00 6.05
ATOM	793	0	LEU A 910	52.558	54.488	22.290	1.00 6.05
ATOM	794	CB	LEU A 910	55.629	53.964	22.304	1.00 22.43
MOTA	795	CG	LEU A 910	55.112	53.756	23.738	1.00 22.43
ATOM	796	CD1		54.795	52.285	23.989	1.00 22.43
MOTA	797	CD2		56.128	54.383	24.829	1.00 22.43
ATOM	799	N	LEU A 911	53.269	56.034	20.959	1.00 53.76
ATOM ·	800	CA	LEU A 911	52.062	56.772	21.333	1.00 53.76
ATOM	801	С	LEU A 911	50.801	56.136	20.690	1.00 53.76
ATOM	802	0	LEU A 911	49.969	55.583	21.406	1.00 53.76
ATOM	803	CB	LEU A 911	52.158	58.265	20.991	1.00 2.16
MOTA	804	CG	LEU A 911	51.350	59.370	21.692	1.00 2.16
ATOM	805	CD1		51.622	59.513	23.075	1.00 2.16
MOTA	806	CD2		51.612	60.569	20.997	1.00 2.16
MOTA	808	N	ASP A 912	50.666	56.165	19.363	1.00 37.67
ATOM	809	CA	ASP A 912	49.481	55.594	18.764	1.00 37.67
MOTA	810	C	ASP A 912	49.087	54.287	19.391	1.00 37.67
MOTA	811	0	ASP A 912	48.010	54.116	19.875	1.00 37.67
ATOM	812	CB	ASP A 912	49.652	55.383	17.285	1.00 2.00
ATOM	813	CG	ASP A 912	49.965	56.675	16.516	1.00 2.00
ATOM	814		ASP A 912	49.929	56.718	15.258	1.00 2.00
MOTA	815		ASP A 912	50.263	57.647	17.195	1.00 2.00
MOTA	817	N	PHE A 913	49.977	53.341	19.403	1.00 21.37
MOTA	819	CA	PHE A 913	49.659	52.056	19.975	1.00 21.37
MOTA	819	C	PHE A 913	49.216	52.291	21.331	1.00 21.37
MOTA	820	0	PHE A 913	48.338	51.566	21.787	1.00 21.37
ATOM	821	CB	PHE A 913	50.826	51.097	19.956	1.00 2.23
ATOM	822	CG	PHE A 913	50.639	49.861	20.776	1.00 2.23
ATOM	823		PHE A 913	50.389	48.681	20.185	1.00 2.23
ATOM	824		PHE A 913	50.826	49.886	22.142	1.00 2.23
ATOM	825		PHE A 913	50.330	47.610	20.870	1.00 2.23
ATOM	826	CE2		50.749	48.684	22.902	1.00 2.23
ATOM	827	CZ	PHE A 913	50.503	47.593	22.238	1.00 2.23
ATOM	829	N	LEU A 914	49.753	53.295	22.003	1.00 34.44
ATOM	830	CA	LEU A 914	49.233	53.552	23.340	1.00 34.44
	·831	С	LEU A 914	47.770	54.028	23.202	1.00 34.44
MOTA	832	0	LEU A 914	46.927	53.718	24.017	1.00 34.44

				_		TO 000		04 053	3 00	00 33
ATOM	833	CB	LEU			50.089	54.600	24.053		99.33
ATOM	834	CG	LEU	A	914	51.192	54.077	24.972	1.00	99.33
MOTA	835	CD1	LEU	A	914	52.365	55.032	24.979	1.00	99.33
ATOM	836	CD2	LEU	A	914	50.633	53.912	26.367	1.00	99.33
ATOM	838	N	ARG	A	915	47.489	54.720	22.111	1.00	38.92
ATOM	839	CA	ARG	A	915	46.202	55.332	21.795	1.00	38.92
ATOM	840	C	ARG	Α	915	45.058	54.463	21.348	1.00	38.92
ATOM	841	0	ARG			43.891	54.728	21.700	1.00	38.92
ATOM	842	CB	ARG			46.422	56.347	20.720	1.00	6.43
	843	CG	ARG			46.546	57.788	21.276	1.00	6.43
ATOM			ARG			47.992	58.402	21.097	1.00	6.43
ATOM	844	CD	ARG			48.094	59.491	22.107	1.00	6.43
MOTA	845	NE				48.254	60.805	21.838	1.00	6.43
MOTA	846	CZ	ARG					20.610	1.00	6.43
ATOM	847		ARG			48.331	61.314			
MOTA	848		ARG			48.468	61.590	22.822	1.00	6.43
MOTA	855	N	LYS			45.399	53.475	20.520	1.00	22.32
ATOM	856	CA	LYS	A	916	44.513	52.462	20.007		22,32
ATOM	857	C	LYS	A	916	44.158	51.432	21.156		22.32
ATOM	858	0	LYS	A	916	43.680	50.278	20.864	1.00	22.32
ATOM	859	CB	LYS	A	916	45.275	51.740	18.908	1.00	23.97
ATOM	860	CG	LYS	Α	916	46.735	51.281	19.327	1.00	23.97
ATOM	861	CD	LYS	Α	916	46.899	50.099	20.472	1.00	23.97
ATOM	862	CE	LYS			46.886	48.726	19.880	1.00	23.97
ATOM	863	NZ	LYS			46.600	48.934	18.374	1.00	23.97
	868	N	SER			44.387	51.831	22.418		22.74
MOTA		CA	SER			44.179	51.001	23.600	1.00	22.74
ATOM	869					43.034	51.499	24.516		22.74
MOTA	870	C	SER					25.545		22.74
MOTA	871	0	SER			42.627	50.829			34.41
MOTA	872	CB	SER			45.489	50.997	24.415	1.00	34.41
ATOM	873	OG	SER			45.310	50.676	25.795		
MOTA	876	N	ARG			42.610	52.718	24.199	1.00	59.16
ATOM	877	CA	ARG	Α	918	41.546	53.402	24.928		59.16
MOTA	878	С	ARG	А	918	40.240	52.937	24.293	1.00	59.16
ATOM	879	0	ARG	Α	918	39.667	53.636	23.457	1.00	59.16
ATOM	880	CB	ARG	Α	918	41.724	54.919	24.780	1.00	47.25
ATOM	881	CG	ARG	A	918	43.152	55.447	25.013	1.00	47.25
ATOM	882	CD	ARG	A	918	43.251	56.981	25.073	1.00	47.25
MOTA	883	NE	ARG			44.063	57.501	26.186	1.00	47.25
MOTA	884	CZ	ARG			44.349	58.794	26.368	1.00	47.25
ATOM	885	NHI	ARG	_	_	43.894	59.671	25.521	1.00	47.25
			ARG			45.092	59.226	27.374		47.25
ATOM	886	NH2				39.829	51.722	24.665		99.87
MOTA	893	N	VAL				51.077	24.148		99.87
ATOM	894	CA	VAL			38.625				99.87
MOTA	895	C	VAL			37.442	52.049	24.208		
MOTA	896	0	VAĿ			36.849	52.376	23.191		99.87
ATOM	897	CB	VAL	A	919	38.375	49.713	24.883		30.60
ATOM	898	CG1	VAL	A	919	39.007	48.626	24.110		30.60
ATOM	899	CG2	VAL	Α	919	38.949	49.723	26.257		30.60
MOTA	901	N	LEU	Α	920	37.111	52.497	25.405	1.00	36.31
ATOM	902	CA	LEU			36.115	53.513	25.648		36.31
ATOM	903	C	LEU			36.539	54.698	24.811	1.00	36.31
ATOM	904	0	LEU			37.065	55.646	25.312	1.00	36.31
	905	CB			920	36.201	53.928	27.088		11.95
ATOM					920	34.951	54.248	27.902		11.95
ATOM	906	CG				34.645	52.948	28.585		11.95
ATOM	907		LEU					28.954		11.95
ATOM	908		LEU			35.117	55.350		1.00	
MOTA	910	N	GLU	A	921	36.349	54.626	23.518	1.00	2.11

ATOM	9	911	CA	GLŰ	A	921		36.726	55	.656	22	.606	1.00	9.77
ATOM	9	912	С	GLU	A	921		3 <i>6.9</i> 37	54	.877	21	.314	1.00	9.77
ATOM	9	913	0	GLU	Α	921		36.305	55	.139	20	. 294	1.00	9.77
ATOM	9	14	CB	GLU	A	921		38.009	56	.321	23	.076	1.00	41.44
ATOM	9	15	CG	GLU	Α	921		38.187	57	.798	22.	646	1.00	41.44
ATOM		16	CD			921		39.514		.054		899		41.44
MOTA		17	OE1			921		40.583		.228		581		41.44
ATOM		18	OE2			921		39.465		.066		642		41.44
ATOM		20	N			922		37.799		.854		348		38.88
		21	CA			922		38.110		.051		167		38.88
ATOM														
MOTA		22	C			922		36.981		.136		842		38.88
ATOM		23	0			922		36.505		.013		726		38.88
ATOM		24	CB			922		39.174		.111		500	1.00	
MOTA		25	OGl	THR				39.068		.846		908	1.00	
MOTA	9	26	CG2	THR				40.560		.671		140		40.90
MOTA	9	29	N	ASP	A	923		36.604	51	.443	20.	897	1.00	29.76
MOTA	9	30	CA	ASP	Ą	923		35.585	50	.420	20.	901	1.00	29.76
ATOM	9	31	C	ASP	А	923		34.964	50	.486	22.	309	1.00	29.76
MOTA	. 9	32	0	ASP	Α	923		35.466	49	. 896	23.	271	1.00	29.76
ATOM		33	CB	ASP	Α	923		36.294		.081		662	1.00	100.00
MOTA		34	CG			923		35.357		.934		521		100.00
ATOM		35	OD1			923		35.131		.241		517		100.00
ATOM		36	OD2	ASP				34.854		.713		413		100.00
ATOM		38	N	PRO				33.906		.274		472		69.79
ATOM		39	CA	PRO				33.351		.282		821		69.79
														69.79
ATOM		40	C	PRO				32.633		.968		194		
MOTA		41	0	PRO				32.489		.672		371		69.79
ATOM		42	CB	PRO				32.449		.516		822		55.89
ATOM		43	CG	PRO				32.843		.260		568		55.89
MOTA		44	CD	PRO				33.238		.242		601		55.89
MOTA	9	45	N	ALA				32.206		.183		199		100.00
MOTA	9	46	CA	ALA	A	925		31.555	47	.897	23.	453	1.00	100.00
MOTA	9	47	C	ALA	А	925		32.501	47	062	24.	325	1.00	100.00
ATOM	9	48	0	ALA	A.	925		32.137	46	651	25.	428	1.00	100.00
ATOM	9	49	CB	ALA	A	925		31.278	47	.156	22.	146	1.00	100.00
MCTA	9	51	N	PHE	A	926		33.704	46	. 798	23.	809	1.00	39.96
MOTA		52	CA	PHE	A	926		34.714	46	.108	24.	576	1.00	39.96
ATOM		53	C			926		34.808		862		859	1.00	39.96
ATOM		54	0	PHE		926		34.279		468		851	1.00	39.96
ATOM		55	CB	PHE		-		36.075		145		886		99.37
		55 56	CG	PHE				37.128		350		602		99.37
ATOM												365		99.37
MOTA		57		PHE				37.270		. 990				
ATOM		58	CD2					37.940		. 950		560		99.37
ATOM		59		PHE				38.192		.248		071		99.37
ATOM		60	CE2	PHE				38.861		.217		265		99.37
ATOM		61	CZ	PHE				38.987		. 863		023		99.37
MOTA	9	63	N	ALA	A	927		35.470	47	. 996	25.	823		100.00
ATOM	9	64	CA	ALA	Α	927		35.628	48	.798	27.	018	1.00	100.00
MOTA	9	65	С	ALA	A	927		34.627	48	539	28.	167	1.00	100.00
ATOM	9	66	0	ALA	A	927		35.030	48	490	29.	328	1.00	100.00
ATOM		67	CB	ALA	А	927		35.611		.250	26.	619	1.00	37.88
ATOM		69	N	ILE				33.343		348		845		71.50
ATOM		70	CA	ILE				32.287		. 137		866		71.50
		71	C	ILE				31.863		700		164		71.50
ATOM			0	ILE				31.579		. 352		301		71.50
ATOM		72 73					_			. 939		510		96.87
ATOM		73	CB	ILE			•	30.987				787		96.87
ATOM	9	74	CG1	ILE	A	328		30.326	47	. 467	47.	151	2.00	20.07

ATOM	975	CG2	ILE	A	928	30.008	48.051	27.748	1.00	96.87
ATOM	976	CD1	ILE	A	928	28.888	49.846	29.624	1.00	96.87
ATOM	978	N	ALA	A	929	31.793	45.881	28.130	1.00	100.00
ATOM	979	CA	ALA	Α	929	31.431	44.498	28.319	1.00	100.00
ATOM	980	С	ALA	А	929	32.550	43.917	29.163	1.003	100.00
ATOM	981	0	ALA	A	929	32.326	43.246	30.160	1.00	100.00
ATOM	982	CB	ALA	Ą	929	31.367	43.810	26.982	1.00	31.88
ATOM	984	N	ASN	Д	930	33.767	44.220	28.737	1.00	37.33
ATOM	985	CA	ASN	A	930	35.009	43.775	29.380	1.00	37.33
ATOM	986	C	ASN	A	930	35.326	44.575	30.614	1.00	37.33
ATOM	987	0	ASN	A	930	36.020	44.110	31.496	1.00	37.33
ATOM	988	CB	ASN	A	930	36.163	43.843	28.378	1.00	87.25
ATOM	989	CG	ASN	А	930	36.469	42.497	27.753	1.00	87.25
ATOM	990	OD1	ASN			37.485	41.865	28.062	1.00	87.25
ATOM	991	ND2	ASN	Α	930	35.590	42.051	26.865	1.00	87.25
ATOM	995	N	SER			34.828	45.807	30.629	1.00	35.86
ATOM	996	CA	SER			34.968	46.734	31.740	1.00	35.86
ATOM	997	C	SER			36.347	47.321	32.044		35.86
ATOM	998	0	SER			36.779	47.344	33.211		35.86
ATOM	999	CB	SER			34.413	46.039	32.992	1.00	
ATOM	1000	OG	SER			34.049	44.700	32.650	1.00	47.04
MOTA	1003	И	THR			37.030	47.813	31.024	1.00	77.19
MOTA	1003	CA	THR			38.346	48.398	31.249	1.00	77.19
	1004	CA	THR			38.655	49.585	30.346	1.00	77.19
ATOM			THR			38.224	49.632	29.198	1.00	77.19
	1006	O GE	THR			39.453	47.353	31.056	1.00	99.17
ATOM	1007	CB						29.676	1.00	99.17
ATOM	1008	OG1	THR			39.813	47.299			
ATOM	1009	CG2	THR			38.980	45.991	31.492	1.00	99.17
MOTA	1012	N	ALA			39.376	50.554	30.891	1.00	37.14
MOTA	1013	CA	ALA			39.814	51.734	30.120		37.14
MOTA	1014	C	ALA			40.655	51.286	28.911	1.00	37.14
MOTA	1015	0	ALA			40.255	51.495	27.792	1.00	37.14
MOTA	1016	CB	ALA			40.625	52.743	31.046	1.00	2.00
MOTA	1018	N	SER			41.814	50.674	29.139	1.00	18.52
ATOM	1019	CA	SER			42.656	50.117	28.038		18.52
ATOM ·	1020	C	SER			42.578	48.537	27.897	1.00	18.52
ATOM	1021	0	SER	Α	934	42.047	47.842	28.815	1.00	18.52
MOTA	1022	CB	SER	Ą	934	44.114	50.415	28.347	1.00	25.65
ATOM	1023	OG	SER	Α	934	44.983	49.645	27.568	1.00	25.65
ATOM	1026	N	THR	А	935	43.162	48.023	26.794		63.20
ATOM	1027	CA	THR	A	935	43.338	46.574	26.529		63.20
MCTA	1028	C_	THR			44.762	46.121	26.957		63.20
ATOM	1029	o"	THR	А	935	45.084	44.947	26.871		63.20
MOTA	1030	CB	THR	A	935	43.298	46.147	25.069	1.00	29.40
ATOM	1031	OG1	THR	Α	935	44.470	46.603	24.393	1.00	29.40
ATOM	1032	CG2	THR	Α	935	42.095	46.590	24.385	1.00	29.40
MOTA	1035	N	LEU	А	936	45.616	47.065	27.349	1.00	6.64
ATOM	1036	CA	LEU	Α	936	46.959	46.811	27.861	1.00	6.64
MOTA	1037	C	LEU	A	936	46.654	46.775	29.277	1.00	6.64
MOTA	1038	0	LEU			45.478	46.916	29.572	1.00	6.64
ATOM	1039	CB	LEU			47.962	47.919	27.602	1.00	2.00
ATOM	1040	CG	LEU			48.129	48.224	25.129	1.00	2.00
ATOM	1041		LEU			48.725	49.731	25.993	1.00	2.00
ATOM	1041					48.953	47.147	25.523	1.00	2.00
ATOM	1042	N	SER			47.638	46.528	30.129		38.75
	1044	CA	SER			47.437	46.434	31.555		38.75
ATOM			SER			48.615	47.041	32.342		38.75
ATOM	1046	C	ನದಿನ	Α.	231	40.073	-,.O-1	J & , J T &		J J , , J

MOTA	1047	0	SER .	A. 9	937	49.664	47.405	31.785		38.75
ATOM	1048	CE	SER .	A !	937	47.257	44.979	31.954		80.09
ATOM	1049	OG	SER	A :	937	42.471	44.274	31.851	1.00	80.09
ATOM	1052	N	SER .	A :	938	48.441	47.158	33.646	1.00	54.88
ATOM	1053	CA	SER .	A :	938	49.489	47.699	34.441	1.00	54.88
ATOM	1054	С	SER .	A :	938	50.807	47.155	33.941		54.88
ATOM	1055	0	SER .	A.	938	51.696	47.907	33.571		54.88
ATOM	1056	CB	SER.	A.	938	49.295	47.312	35.887		69.11
MOTA	1057	OG	SER	A :	938	50.397	47.773	36.631		69.11
ATOM	1060	N	GLN	<u>4</u>	939	50.906	45.831	33.902	1.00	55.81
ATOM	1061	CA	GLN	A	939	52.106	45.148	33.492		55.81
ATOM	1062	C	GLN	A	939	52.644	45.445	32.132		55.81
ATOM	1063	0	GLN			53.750	45.896	32.027		55.81
ATOM	1064	CB	GLN	Ą	939	51.924	43.650	33.615		74.76
ATOM	1065	CG	GLN	A	939	52.012	43.126	35.014	1.00	74.76
ATOM	1066	CD	GLN	A	939	53.409	42.973	35.514	1.00	74.76
ATOM	1067	OE1	GLN	A	939	54.238	42.296	34.906		74.76
ATOM	1068	NE2	GLN	A	939	53.684	43.597	36.648	1.00	74.76
ATOM	1072	N	GLN	A	940	51.899	45.176	31.069	1.00	25.74
ATOM	1073	CA	GLN	A	940	52.446	45.439	29.736		26.74
ATOM	1074	C	GLN	A	940	52.963	46.884	29.791		26.74
ATOM	1075	0	GLN	A	940	53.929	47.302	29.115		26.74
MOTA	1076	CB	GLN	Α	940	51.405	45.313	28.639		43.63
MOTA	1077	CG	GLN	A	940	51.815	46.080	27.393		43.63
ATOM	1078	CD	GLN	A	940	52.444	45.214	26.267		43.63
ATOM	1079	OE1	GLN	A	940	51.734	44.544	25.479		43.63
ATOM	1080	NE2	GLN	A	940	53.756	45.236	26.183		43.63
ATOM	1084	N	LEU	Α	941	52.300	47.595	30.698		30.59
ATOM	1085	CA	LEU	Α	941	52.514	48.989	30.932		30.59
ATOM	1086	С	LEU	A	941	53.800	49.234	31.599	1.00	30.59
ATOM	1087	0	LEU	A	941	54.611	49.971	31.068	1.00	30.59
ATOM	1088	CB	LEU	Α	941	51.334	49.521	31.709	1.00	27.00
ATOM	1089	CG	LEU	Α	941	50.344	50.390	30.959	1.00	
MOTA	1090	CD1	LEU	A	941	50.253	51.655	31.777	1.00	27.00
ATOM	1091	CD2	LEU	A	941	50.770	50.642	29.576	1.00	27.00
MOTA	1093	N	LEU	A	942	53.992	48.683	32.768	1.00	26.63
ATOM	1094	CA	LEU	A	942	55.284	48.801	33.427	1.00	26.63
ATOM	1095	С	LEU	Α	942	56.433	48.144	32.573	1.00	26.63
ATOM	1096	Ο.	LEU	A	942	57.616	48.326	32.850	1.00	26.63
ATOM	1097	CB	LEU			55.208	48.083	34.741	1.00	3.59
ATOM	1098	CG	LEU	A	942	55.275	49.016			
ATOM	1099	CD1	LEU			55.141	48.265	37.321	1.00	
ATOM	1100		LEU			56.635	49.823	35.675	1.00	
ATOM	1102	N	HIS			56.084	47.359	31.562		54.79
ATOM	1103	CA	HIS			57.101	46.756	30.741		54.79
ATOM	1104	С	HIS			57.531	47.932	29.905		54.79
ATOM	1105	0	HIS			58.389	48.665	30.324		54.79
MOTA	1106	CB	HIS			56.530	45.638	29.852		38.35
ATOM	1107	CG	HIS			56.799	44.246	30.345		38.35
ATOM	1108		. HIS			56.846	43.914	31.682		38.35
ATOM	1109		HIS			56.988	43.092	29.671		38.35
MOTA	1110		. HIS			57.050	42.619	31.812		38.35
ATOM	1111		HIS			57.143	42.096	30.603		38.35
ATOM	1115	N			944	56.905	48.115	28.741	1.00	
ATOM	1116	CA			944	57.172	49.217		1.00	
ATOM	1117	C			944	58.218		28.412	1.00	
ATOM	1118	Ö			944	59.278	50.592	27.781	1.00	4.19
YTOU.		-								

ATOM	1119	CB	PHE A	944	55.878	49.913	27.509	1.00	28.23
ATOM	1120	CG	PHE A	944	55.036	49.255	26.489	1.00	28.23
ATOM	1121	CD1	PHE A	944	53.632	49.319	26.610	1.00	28.23
ATOM	1122	CD2	PHE A	944	55.605 '	48.780	25.336	1.00	28.23
MOTA	1123	CEl	PHE A	944	52.813	48.958	25.614	1.00	28.23
ATOM	1124	CE2	PHE A	944	54.769	48.399	24.289	1.00	28.23
ATOM	1125	CZ	PHE A.	944	53.342	48.504	24.452	1.00	28.23
ATOM	1127	N	ALA A	945	57.874	50.702	29.637	1.00	24.23
ATOM	1128	CA	ALA A	945	58.742	51.520	30.434	1.00	24.23
ATOM	1129	C	ALA A	945	59.943	50.648	30.375	1.00	24.23
MOTA	1130	0	ALA A	945	60.623	50.707	29.408	1.00	24.23
ATOM	1131	CB	ALA A		58.270	51.631	31.839	1.00	16.89
ATOM	1133	N	ALA A	946	60.153	49.775	31.366	1.00	23.93
ATOM	1134	CA	ALA A	946	61.327	48.819	31.493	1.00	23.93
ATOM	1135	C	ALA A	946	62.279	48.525	30.320	1.00	23,93
ATOM	1136	0	ALA A	946	63.460	48.674	30.432	1.00	23.93
MOTA	1137	CB	ALA A	946	60.834	47.495	32.054	1.00	76.24
MOTA	1139	N	ASP A	947	61.796	48.078	29.188	1.00	9.63
ATOM	1140	CA	ASP A	947	62.727	47.858	28.131	1.00	9.63
ATOM	1141	C	ASP A		63.169	49.132	27.456	1.00	9.63
ATOM	1142	0	ASP A	947	63.604	49.093	26.290	1.00	9.63
ATOM	1143	CB	ASP A	947	62.145	46.880	27.114	1.00	90.89
MOTA	1144	CG	ASP A	947	61.065	47.493	26.259	1.00	90.89
ATOM	1145	OD1	ASP A	947	60.143	46.747	25.854	1.00	90.89
MOTA	1146	OD2	ASP A	947	61.128	48.707	25.978	1.00	90.89
ATOM	1148	N		948	63.024	50.287	28.098		60.29
MOTA	1149	CA	VAL A		63.435	51.532	27.459	1.00	60.29
MOTA	1150	С	VAL A	948	64.572	51.963	28.376	1.00	60.29
ATOM	1151	0	VAL A		65.604	52.405	27.907		60.29
MOTA	1152	CB	VAL A	948	62.213	52.606	27.324	1.00	2.00
MOTA	1153	CG1	VAL A	948	62.752	54.133	26.901	1.00	2.00
MCTA	1154	CG2	VAL A	948	61.348	52.297	26.209	1.00	2.00
MOTA	1156	N	ALA A		64.402	51.773	29.686	1.00	12.91
ATOM	1157	CA	ALA A		65.448	52.097	30.677	1.00	12.91
ATOM	1158	C	ALA A		66.681	51.382	30.188	1.00	12.91
MOTA	1159	0	ALA A	949	67.733	52.000	29.956	1.00	12.91
MOTA	1160	CB	ALA A		65.135	51.617	32.017	1.00	
MOTA	1162	И	ARG A		66.484	50.078	30.000	1.00	22.64
MOTA	1163	CA	ARG A	950	67.422	49.105	29.537	1.00	22.64
MOTA	1164	C	ARG A		68.106	49.588	28.340	1.00	22.64 22.64
ATOM	1165	0	ARG A		69.275	49.681	28.386		
MOTA	1166	Çβ	ARG A		66.702	47.783	29.233		87.27 87.27
ATOM	1167	CG	ARG A		67.146	46.606	30.102		87.27
ATOM	1168	CD	ARG A		66.806	45.233	29.493		
MOTA	1169	ΝΞ	ARG A		65.466	45.208	28.912		87.27
ATOM	1170	CZ	ARG A		64.341	44.977	29.580		87.27 87.27
MOTA	1171	NHl			64.357	44.746	30.879		87.27
ATOM	1172	NH2			63.188	45.019	28.941		33.31
ATOM	1179	N	GLY A		67.435	49.846	27.241		
ATOM	1180	CA	GLY A		68.177	50.360	26.102		33.31 33.31
MOTA	1181	С	GLY A		68.720	51.768	26.462		
MOTA	1182	0	GLY A		69.514	52.379	25.745		33.31 48.02
MOTA	1184	N	MET A		68.277	52.318	27.588		48.02
MOTA	1185	CA	MET A		68.774	53.615	27.949		48.02
MOTA	1186	C	MET A		70.030	53.440	28.759		48.02
MOTA	1187	0	MET A		70.861	54.316	28.719		58.75
MOTA	1188	CB	MET A	952	67.721	54.442	28.720	4.00	

ATOM	1189	CG	MET	A	952	67.277	55.792	28.089		58.75
MOTA	1190	SD	MET			67.797	56.265	26.390		58.75
ATOM	1191	CE	MET	A	952	69.079	57.471	26.826	1.00	58.75
ATOM	1193	N			953	70.145	52.325	29.494		30.83
ATOM	1194	CA	ASP	A	953	71.299	51.942	30.317	1.00	30.83
MOTA	1195	C	ASP	A	953	72.393	51.689	29.346		30.83
ATOM	1196	0	ASP	A	953	73.521	52.078	29.523		30.83
MOTA	1197	CB	ASP	A	953	71.084	50.617	30.955		30.69
MOTA	1198	CG	ASP	А	953	71.512	50.589	32.381		30.69
ATOM.	1199	OD1	ASP	Α	953	71.504	51.661	32.997		30.69
ATOM	1200	OD2	ASP	A	953	71.838	49.485	32.907		30.69
MOTA	1202	N	TYR			72.031	50.999	28.292	1.00	19.34
ATOM	1203	CA	TYR			72.952	50.630	27.239	1.00	19.34
MOTA	1204	C	TYR			73.559	51.896	26.762	1.00	19.34
ATOM	1205	0	TYR			74.529	52.327	27.362	1.00	19.34
ATOM	1206	CB	TYR			72.236	49.887	26.117		37.26
MOTA	1207	CG	TYR			73.181	49.115			37.26
MOTA	1208	CD1	TYR			74.158	48.238	25.784	1.00	37.26
ATOM	1209	CD2	TYR			73.149	49.300	23.871		37.26
MOTA	1210	CEl	TYR			75.072	47.594	24.942		37.26
ATOM	1211	CE2	TYR			74.042	48.676	23.041		37.26
MOTA	1212	CZ	TYR			74.993	47.843	23.568		37.26
MOTA	1213	OH	TYR			75.859	47.367	22.645	1.00	37.26
MOTA	1216	N	LEU			72.967	52.501	25.722		49.71
ATOM	1217	CA	LEU			73.404	53.781	25.150		49.71
MOTA	1218	C	LEU			73.854	54.641	26.293		49.71
MOTA	1219	0	LEU			74.950	55.109	26.279		49.71
MOTA	1220	CB	LEU			72.272	54.530	24.439	1.00	17.74
MOTA	1221	CG	LEU			71.456	53.937	23.292	1.00	17.74
ATOM	1222	CD1				69.972	54.493	23.397	1.00	17.74 17.74
ATOM	1223	CD2	LEU			71.989	54.345	21.914		34.64
MOTA	1225	N			956	73.012	54.840	27,293		34.64
MOTA	1226	CA			956	73.430	55.663	28.404		34.64
ATOM	1227	C			956	74.843	55.360	28.778		34.64
MOTA	1228	0			956	75.701	56.218	28.579		37.38
MOTA	1229	CB			956	72.561	55.495	29.622		37.38
MOTA	1230	OG			956	73.071	56.228	30.699		33.59
MOTA	1233	N			957	75.134	54.188	29.321	1.00	33.59
MOTA	1234	CA			957	76.511	53.895	29.680	1.00	33.59
ATOM	1235	C			957	77.379	53.837	28.410		33.59
MOTA	1236	0			957	77.719		27.943 30.455		42.10
MOTA	1237	CB			957	76.583	52.568	32.002		42.10
ATOM	1238	CĞ			957	76.621	52.721			42.10
ATOM	1239	CD			957	77.483	53.951	32.500		42.10
MOTA	1240		GLN			78.321	54.499	31.739 33.780		42.10
MOTA	1241	NE2			957	77.274	54.367			99.18
ATOM	1245	N			958	77.739	54.952	27.823		99.18
ATOM	1246	CA			958	78.543	54.854	26.620 26.039		99.18
MOTA	1247	С			958	78.688	56.227			99.18
ATOM	1248	0			958	79.111	56.370	24.897		99.74
ATOM	1249	CB			958	77.880	53.934	25.586 25.404		99.74
MOTA	1250	CG			958	78.545	52.582			99.74
ATOM	1251	CD			958	77.830	51.738	24.360		99.74
MOTA	1252	CE			958	77.997	50.238	24.629		99.74
MOTA	1253	NZ			958	78.459	49.456	23.434		73.45
MOTA	1258	И			959	78.327		26.832		73.45
MOTA	1259	CA	GLN	ı A	959	. 78.423	58.615	26.402	1.00	

ATOM	1260	C	GLN A		77.3			25.376	1.00	
MOTA	1261	0	GLN A		77.4			24.702		73.45
ATOM	1262	CB	GLN A		79.7		.882	25.784		19.35
ATOM	1263	CG	GLN A		80.8			26.399		19.35
ATOM	1264	CD	GLN A		80.9		.449	27.805		19.35
ATOM	1265	OE1			80.2			28.221		19.35
ATOM	1266	NE2	GLN A		81.7		.708	28.610		19.35
ATOM	1270	N	PHE A		76.3		.075	25.242		36.08
ATOM	1271	CA	PHE A		75.3		.292	24.262	1.00	36.08
MOTA	1272	C ·	PHE A		74.2			24.958		36.08 36.08
ATOM	1273	0	PHE A		73.7	-	.762	26.078		
ATOM	1274	CB	PHE A		74.8		.957	23.718		85.11
ATOM	1275	CG	PHE A		75.6		.407	22.614	1.00	85.11 85.11
MOTA	1276		PHE A		76.5		.349	22.839		85.11
MOTA	1277		PHE A		75.6		.981	21.350		85.11
ATOM	1278	CE1	PHE A		77.3		.879	21.822		85.11
MOTA	1279	CE2			76.4		.505	20.330		85.11
MOTA	1280	CZ	PHE F		77.3		.461	20.572		30.22
ATOM	1282	N	ILE P		73.9		.227	24.300		30.22
ATOM	1283	CA	ILE A		72.9		.196	24.749		30.22
ATOM	1284	C.	ILE P		71 - 8		.213	23.713	1.00	30.22
ATOM	1285	0	ILE P		72.		.420	22.545		71.39
ATOM	1286	CB	ILE A		73.		.578	24.911	1.00	71.39
MOTA	1287	CG1	ILE A		74.6		.526	25.899	1.00	71.39
MOTA	1288	CG2		961	72.4		.518	25.442	1.00	71.35
MOTA	1289	CD1	ILE A		75.		.302	25.476	1.00	80.58
MOTA	1291	N	HIS A		70.		034	24.158		80.58
MOTA	1292	CA	HIS ?		69.		.924	23.236	1.00	80.58
MOTA	1293	С	HIS A		68.		.196	21.629		80.58
MOTA	1294	0		962	69.		2.676	23.855		39.42
MOTA	1295	CB		4 962	68.		9.904	23.008		39.42
ATOM	1296	CG		A 962	67.		9.585	22.575	1.00	39.42
MOTA	1297	ND1		A 962	67.		3.316).378	22.499		39.42
ATOM	1298	CD2			66.		3.335	21.832	_	39.42
MOTA	1299	CE1		A 962	66.		9.580	21.772		39.42
MOTA	1300	NE2			65.		2.694	23.367		25.62
ATOM	1304	N	ARG .		67.		3.920	22.979		25.62
MOTA	1305	CA	ARG .				3.852	22.084	1.00	25.62
ATOM.	1306	C	ARG .		65.		1.331	20.941		25.62
MOTA	1307	0	ARG .				1.955	22.380		98.75
MOTA	1308	CB	ARG				5.061	23.081		98.75
MOTA	1309	ÇĢ	ARG				5.016	22.356		98.75
MOTA	1310	CĎ	ARG				5.501	21.087		98.75
MOTA	1311	NE	ARG				5.832	19.911		98.75
MOTA	1312	CZ	ARG				5.680	19.852		98.75
MOTA	1313		ARG				5.321	18.801		98.75
ATOM	1314	NH2					3.276	22.661		47.91
ATOM		. N		A 96			3.070	22.035		47.91
MOTA	1322	CA		A 96			1.618	22.246		47.91
ATOM	1323	С		A 96			0.856	21.302		47.91
MOTA	1324	0		A 96			3.377	20.538		84.77
ATOM	1325	CB		A 96			4.459	20.153		84.77
ATOM	1326	CG		A 96			4.768	20.902		84.77
MOTA	1327		l ASN				5.039	18.977		84.77
MOTA	1328		2 ASN				1.249	23.509		96.70
MOTA	1332	N		A 96			9.897	23.937		96.70
MOTA	1333	CA	FFU	A 96	5 03	. **** >	J. U.J.			

									•		,
MOTA	1334	C	LEU .				61.836	60.220	24.659		96.70
ATOM	1335	0	LEU .				61.784	60.527	25.833	1.00	
MOTA	1336	CB	LEU .	A	965		64.352	59.382	24.805		17.46
MOTA	1337	CG	LEU .				64.456	58.589	26.099		17.46
MOTA	1338	CD1	LEU .				65.774	58.784	26.891		17.46
MOTA	1339	CD2	LEU .				63.423	59.114	26.967		17.46
ATOM	1341	N	ALA.				60.794	60.283	23.833	1.00	71.45
ATOM	1342	CA	ALA .	A	966		59.408	60.534	24.219		71.46
MOTA	1343	C	ALA .	A	966		58.601	59.518	23.395	1.00	71.46
MOTA	1344	0	ALA A	A.	966		59.009	59.122	22.314		71.46
MOTA	1345	CB	ALA	Ą	966		59.005	61.933	23.885	1.00	62.29
ATOM	1347	N	ALA	A,	967		57.457	59.105	23.908	1.00	34.40
MOTA	1348	CA	ALA	A	967		56.641	58.086	23.249	1.00	34.40
ATOM	1349	C	ALA	A	967		56.585	58.066	21.726	1.00	34.40
ATOM	1350	0	ALA	A	967		56.689	57.011	21.106	1.00	34.40
MOTA	1351	CB	ALA	Ą	967		55.236	58.088	23.807	1.00	31.96
ATOM	1353	N	ARG 2	Ą	968		56.462	59.208	21.094	1.00	9.59
ATOM	1354	CÁ	ARG 3	A	968		56.309	59.113	19.678	1.00	9.59
ATOM	1355	С	ARG I	A.	968		57.467	58.532	19.054	1.00	9.59
ATOM	1356	0	ARG I	Α	968		57.335	58.106	17.930	1.00	9.59
MOTA	1357	CB	ARG I				55.960	60.480	19.013	1.00	12.36
ATOM	1358	CG	ARG 2				56.480	61.806	19.751	1.00	12.36
ATOM	1359	CD	ARG I				56.426	62.907	18.727	1.00	12.36
ATOM	1360	NE	ARG I				57.453	63.898	18.879	1.00	12.36
ATOM	1361	CZ	ARG 2				57.608	64.568	19.994		12.36
MOTA	1362	NH1	ARG I				56.746	64.307	20.994		12.36
ATOM	1363	NH2	ARG I				58.718	65.297	20.205		12.36
ATOM	1370	N	ASN A				58.611	58.550	19.735		56.22
ATOM	1371	CA	ASN A			•	59.878	58.043	19.179		56.22
ATOM	1372	C	ASN A				60.309	56.672	19.730		56.22
ATOM	1372	0	ASN A				61.472	56.327	19.673		56.22
		CB	ASN A				61.011	59.053	19.444		99.68
ATOM	1374	CG	ASN A				60.674	60.482	18.998		99.68
ATOM	1375						60.213	61.303	19.787		99.68
ATOM	1376	OD1	ASN I						17.732		99.68
ATOM	1377	ND2	ASN A				60.926	60.780	20.288		10.68
MOTA	1381	N	ILE I				59.351	55.935	20.250		10.68
ATOM	1382	CA	ILE A				59.507	54.683			10.68
MOTA	1383	C	ILE				58.651	53.708	20.079		10.68
MOTA	1384	0	ILE .				57.450	53.865	20.060		
MOTA	1385	CB	ILE .				59.003	54.602	22.168		11.62
MOTA	1386	CG1	ILE .				59.808	55.496	23.084		11.62
ATOM	1387		ILE .				59.191	53.056	22.620		11.62
ATOM	1388	•	ILE .				61.263	55.730	22.600		11.62
MOTA	1390	И	LEU				59.250	52.676	19.496		31.69
ATOM	1391	CA	LEU .				58.518	51.699	18.733		31.69
MOTA	1392	C	LEU .				58.148	50.357	19.369		31.69
MOTA	1393	0	LEU .	A	971		58.938	49.792	20.1≟8		31.69
ATOM	1394	CB	LEU .				59.308	51.333	17.535		17.23
ATOM	1395	CG	LEU .				59.702	52.411	16.632		17.23
MOTA	1396	CD1	LEU .	A	971		60.981	51.973	16.005		17.23
MOTA	1397	CD2	LEU .	A	971		58.629	52.642	15.646		17.23
MOTA	1399	N	VAL .	Α	972		56.953	49.832	19.017		20.91
ATOM	1400	CA	VAL	A	972		56.655	48.486	19.475		20.91
MOTA	1401	С	VAL	Ą	972		56.862	47.491	18.389		20.91
ATOM	1402	0	VAL	Α	972		56.022	47.375	17.523	1.00	20.91
ATOM	1403	CB	LAV				55.344	48.349	19.953	1.00	
ATOM	1404		VAL				55.362	47.291	21.081	1.00	9.13
	_ ~ ~ -			-			_				

			~~~		000	65.044	53.446	19.649	1.00 2.00
ATOM	1476	C	ILE A				52,445	18.913	1.00 2.00
MOTA	1477	0	ILE A			65.191	53.649	22.013	1.00 22.25
MCTA	1478	CB	ILE A			65.717		23.463	1.00 22.25
ATOM	1479	CG1	ILE A			65.318	53.372		
MOTA	1480	CG2			980	65.839	55.073	21.885	1.00 22.25
MOTA	1481	CD1	ILE A			66.358	53.040	24.467	1.00 22.25
MOTA	1483	N	ALA A	Α.	981	65.129	54.715	19.235	1.00 37.10
ATOM	1484	CA	ALA A			65.489	55.166	17.870	1.00 37.10
ATOM	1485	С	ALA A	4	981	65.426	56.684	17.652	1.00 37.10
ATOM	1486	0	ALA A	Ā	981	64.905	57.454	18.494	1.00 37.10
ATOM	1487	CB	ALA A	Δ.	981	64.634	54.620	16.964	1.00 12.10
ATOM	1489	N	ASP A	A	982	65.933	57.120	16.508	1.00 81.89
ATOM	1490	CA	ASP A	A	982	65.907	58.525	16.186	1.00 81.89
ATOM	1491	C.	ASP A	A.	982	66.821	59.190	17.201	1.00 81.89
ATOM	1492	0			982	66.877	60.416	17.342	1.00 81.89
ATOM	1493	CB			982	64.465	59.029	16.284	1.00 22.36
ATOM	1494	CG			982	64.352	60.357	16.999	1.00 22.36
	1495	OD1	ASP A			64.517	61.390	16.281	1.00 22.36
MOTA		OD2			982	64.112	60.353	18.252	1.00 22.36
ATOM	1496				983	67.540	58.353	17.922	1.00 90.03
MOTA	1498	N			983	68.502	58.819	18.897	1.00 90.03
ATOM	1499	CA				69.521	59.638	18.083	1.00 90.03
ATOM	1500	C	PHE I			69.436	59.728	16.844	1.00 90.03
MOTA	1501	0	PHE				57.599	19.489	1.00100.00
MOTA	1502	CB	PHE			69.205	56.489	18.475	1.00100.00
MOTA	1503	CG	PHE .			69.417		17.502	1.00100.00
ATOM	1504	CD1				70.419	56.593		1.00100.00
ATOM	1505	CD2	PHE .			68.567	55.387	18.435	1.00100.00
MOTA	1506	CE1	PHE .	A	983	70.557	55.624	16.513	
MOTA	1507	CE2			983	68.704	54.418	17.449	1.00100.00
MOTA	1508	CZ			983	69.698	54.537	16.488	1.00100.00
MOTA	1510	N	GLY .	A	984	70.493	60.226	18.770	1.00 59.78
ATOM	1511	CA	GLY	Ą	984	71.533	60.957	18.060	1.00 59.78
MOTA	1512	С	GLY .	A	984	72.821	60.159	18.193	1.00 59.78
MOTA	1513	0	$\mathtt{GLY}$			72.900	59.221	19.019	1.00 59.78
MOTA	1515	N	LEU	A	985	73.816	60.488	17.379	1.00 99.32
MOTA	1516	CA	LEU	A	985	75.094	59.791	17.454	1.00 99.32
ATOM	1517	C	LEU	A	985	75.886	60.603	18.440	1.00 99.32
MOTA	1518	0	LEU	A	985	77.068	60.348	18.669	1.00 99.32
MOTA	1519	CB	LEU	Α	985	75.824	59.786	16.106	1.00100.00
ATOM	1520	CG	LEU	Α	985	75.453	58.753	15.036	1.00100.00
ATOM	1521	CD1	LEU	A	985	74.707	57.590	15.651	1.00100.00
MOTA	1522	CD2	LEU	А	985	74.604	59.428	13.971	1.00100.00
MOTA	1524	N	SER	A	985	75.211	61.587	19.020	1.00 37.75
ATOM	1525	CA	SER	Α	986	75.828	52.476	19.989	1.00 37.75
ATOM	1526	C	SER			76.413	61.806	21.210	1.00 37.75
MOTA	1527	0	SER	A.	986	75.708	61.541	22.143	1.00 37.75
MOTA	1528	CB	SER			74.830	63.525	20.445	1.00 99.91
ATOM	1529	OG	SER			75.198	64.776	19.917	1.00 99.91
ATOM	1532	N	ARG			77.710	61.513	21.216	1.00 63.13
ATOM	1533	CA	ARG			78.285	60.910	22.407	1.00 63.13
	1534	C	ARG			79.243	61.904	22.979	1.00 63.13
ATOM	1535	0	ARG			80.058	62.476	22.270	1.00 63.13
ATOM	1535	CB			987	78.964	59.567	22.132	1.00 87.40
ATOM		CG			987	79.870	59.529	20.947	1.00 87.40
ATOM	1537	CD			987	81.110	58.722	21.273	1.00 87.40
ATOM	1538				987	.80.807	57.654	22.217	1.00 87.40
MOTA	1539	NE			987	80.782	56.366	21.898	1.00 87.40
MOTA	1540	CZ	AKG	Α.	301	00.702	20.200		

ATOM	1541	NH1	ARG	A 9	87	81.042	55.981	20.658	1.00 87.40
ATOM	1542	NH2	ARG			80.506	55.463	22.824	1.00 87.40
ATOM	1549	N	GLY			79.090	62.096	24.282	1.00 28.62
ATOM	1550	CA	GLY	A 9	88	79.833	63.044	25.072	1.00 28.62
ATOM	1551	C	GLY			79.268	63.073	26.476	1.00 28.62
ATOM	1552	0	GLY			78.558	62.156	25.816	1.00 28.62
MOTA	1554	N	GLN	A 9	89	79.612	64.094	27.270	1.00 22.70
ATOM	1555	CA	GLN			79.214	64.322	28.682	1.00 22.70
ATOM	1556	C	GLN			78.188	65.518	28.775	1.00 22.70
MOTA	1557	ō	GLN			77.534	65.676	29.785	1.00 22.70
ATOM	1558	CB	GLN			80.449	64.647	29.536	1.00 98.73
ATOM	1559	CG	GLN			80.240	64.572	31.049	1.00 98.73
	1560	CD	GLN			81.127	65.539	31.844	1.00 98.73
MOTA	1561	OE1	GLN			81.240	66.712	31.510	1.00 98.73
MOTA		NE2	GLN			81.746	65.043	32.901	1.00 98.73
MOTA	1562		GLU			78.055	66.323	27.724	1.00 47.13
ATOM	1566	N					67.478	27.725	1.00 47.13
MOTA	1567	CA	GLU			77.173	67.842	26.251	1.00 47.13
MOTA	1568	C	GLU			77.106		25.565	1.00 47.13
MOTA	1569	0	GLU			78.116	67.765	28.534	1.00 77.23
ATOM	1570	CB	GLU			77.830	68.612		1.00 77.23
MOTA	1571	CG	GLU			76.950	69.834	28.830	
MOTA	1572	CD	GLU			76.930	70.244	30.322	
ATOM	1573	OE1	GLU		90	77.431	69.468	31.165	
ATOM	1574	OE2	GLU			76.406	71.337	30.658	1.00 77.23
MOTA	1576	N	VAL			75.946	68.228	25.727	1.00 24.20
MOTA	1577	CA	LAV	A 9	91	75.831	68.569	24.274	1.00 24.20
MOTA	1578	C	VAL			75.272	69.989	24.073	1.00 24.20
MOTA	1579	0	VAL	A 9	91	75.089	70.682	25.017	1.00 24.20
MOTA	1580	CB	VAL	A 9	91	74.897	67.572	23.527	1.00 55.15
MOTA	1581	CG1	VAL	A 9	91	75.197		22.035	1.00 55.15
MOTA	1582	CG2	VAL	A 9	91	75.015	66.252	24.148	1.00 55.15
MOTA	1584	N	TYR	A 9	92	75.056	70.398	22.840	1.00 53.40
ATOM	1585	CA	TYR	A 9	92	74.514	71.693	22.545	1.00 53.40
MOTA	1586	С	TYR	A 9	92	73.954	71.659	21.140	1.00 53.40
ATOM	1587	0	TYR	A 9	92	74.678	71.455	20.177	1.00 53.40
MOTA	1588	CB	TYR	A 9	92	75.594	72.774	22.658	1.00 83.17
ATOM	1589	CG	TYR	A 9	92	75.167	74.067	22.018	1.00 83.17
ATOM	1590	CD1	TYR	A 9	92	74.337	74.950	22.688	1.00 83.17
ATOM	1591	CD2	TYR	A 9	92	75.452	74.316	20.694	1.00 83.17
ATOM ·	1592	CE1				73.796	76.025	22.047	1.00 83.17
ATOM	1593	CE2		A 9	92	74.919	75.380	20.053	1.00 83.17
MOTA	1594	CZ		A 9		74.090	76.230	20.726	1.00 83.17
ATOM	1595	OH		A 9		73.569	77.297	20.053	1.00 83.17
ATOM	1598	N		A 9		72.645	71.821	21.015	1.00100.00
MOTA	1599	CA		A 9		72.047	71.808	19.695	1.00100.00
ATOM	1600	C		A 9		70.897	72.813	19.594	1.00100.00
ATOM	1601	Ô		A 9		69.736	72.514	19.912	1.00100.00
MOTA	1602	CB		A S		71.604	70.371	19.304	1.00 80.14
	1603	CG1		A 9		71.422	69.529	20.538	1.00 80.14
MOTA	1603	CG2		AS		70.338	70.409	18.450	1.00 80.14
ATOM				A S		71.260	74.022	19.155	1.00 83.98
MOTA	1606	N		A S		70.329	75.125	18.980	1.00 83.98
ATOM	1607	CA		A S		69.729	74.959	17.615	1.00 83.98
ATOM	1608	C				70.421	74.538	16.688	1.00 83.98
MOTA	1609	0		A			76.455	19.070	1.00100.00
ATOM	1610	CB		A		71.076	77.670	18.498	1.00100.00
MOTA	1611	CG		A		70.350	78.789	18.226	1.00100.00
MOTA	1612	CD	БΥΣ	A :	<b>ソソ</b> 4	71.347	10.109	10.220	_,

	152/

a most	1613	CE	TVC	A 994	70.694	80.150	18.153	1.00100.00
ATOM				A 994	71.425		18.962	1.00100.00
MOTA	1614	NZ				81.159		1.00 66.77
ATOM	1619	N		A 995	68.446	75.287	17.488	
MOTA	1620	CA		A 995	67.741	75.142	16.210	1.00 66.77
ATOM	1621	C		A 995	68.023	73.749	15.591	1.00 66.77
ATOM	1622	0		A 995	67.910	73.583	14.358	1.00 66.77
ATOM	1623	CB	LYS	A 995	68.167	76.265	15.244	1.00100.00
ATOM	1624	TXO	LYS	A 995	68.354	72.815	16.355	1.00100.00
ATOM	1626	N	PRO	A1001	61.032	69.682	22.189	1.00 23.57
ATOM	1627	CA	PRO	A1001	59.754	69.092	22.679	1.00 23.57
ATOM	1628	С	PRO	A1001	59.681	69.765	24.004	1.00 23.57
ATOM	1629	0	PRO	A1001	59.857	69.162	25.026	1.00 23.57
ATOM	1630	CB	PRO	A1001	59.964	67.607	22.863	1.00 82.24
ATOM	1631	CG		A1001	61.529	67.446	22.804	1.00 82.24
ATOM	1632	CD		A1001	62.179	68.812	22.494	1.00 82.24
ATOM	1635	N		A1002	59.429	71.067	23.965	1.00 14.96
	1636	CA		A1002	59.401	71.905	25.163	1.00 14.96
ATOM		C		A1002 A1002	58.731	71.247	26.277	1.00 14.96
MOTA	1637				58.930		27.409	1.00 14.96
MOTA	1638	0		A1002		71.607		
MOTA	1639	CB		A1002	58.755	73.268	24.833	1.00 66.63
MOTA	1640			A1002	57.691	73.065	23.764	1.00 66.63
MOTA	1641	CG2		A1002	58.212	73.946	26.088	1.00 66.63
ATOM	1643	N	ARG	A1003	57.913	70.256	25.990	1.00 36.10
ATOM	1644	CA	ARG	A1003	57.188	69.580	27.054	1.00 36.10
ATOM	1645	C	ARG	A1003	57.957	68.409	27.649	1.00 36.10
ATOM	1646	0	ARG	A1003	57.762	68.012	28.773	1.00 36.10
ATOM	1647	CB	ARG	A1003	55.829	69.195	26.507	1.00 97.10
ATOM	1648	CG	ARG	A1003	55.381	70.237	25.495	1.00 97.10
ATOM	1649	CD		A1003	53.974	70.007	25.036	1.00 97.10
ATOM	1650	NE		A1003	53.022	70.432	26.045	1.00 97.10
ATOM	1651	CZ		A1003	51.949	71.153	25.782	1.00 97.10
	1652			A1003	51.699	71.527	24.544	1.00 97.10
ATOM				A1003	51.136	71.493	26.759	1.00 97.10
ATOM	1653						26.865	1.00 31.39
ATOM	1660	N		A1004	58.902	67.934		1.00 31.39
ATOM	1661	CA		A1004	59.799	66.858	27.231	
ATOM	1662	С		A1004	61.031	67.342	27.941	1.00 31.39
ATOM	1663	0		A1004	61.431	66.841	28.992	1.00 31.39
ATOM	1664	CB		A1004	60.117	66.113	25.981	1.00 37.57
MOTA	1665	CG	TRP	A1004	59.058	65.128	25.860	1.00 37.57
ATOM	1666	CD1	TRP	A1004	59.055	63.870	26.415	1.00 37.57
MOTA	1667	CD2	TRP	A1004	57.758	65.324	25.323	1.00 37.57
ATOM	1668	NE1	TRP	A1004	57.832	63.290	26.253	1.00 37.57
MOTA	1669	ĊE2	TRP	A1004	57.011	64.149	25.594	1.00 37.57
MOTA	1670	CE3		A1004	57.142	66.370	24.648	1.00 37.57
ATOM	1671	CZ2		A1004	55.683	63.991	25.214	1.00 37.57
ATOM	1672	CZ3		A1004	55.789	66.223	24.252	1.00 37.57
ATOM	1673	CH2		A1004	55.087	65.041	24.541	1.00 37.57
				A1005	61.556	68.426	27.391	1.00 10.72
MOTA	1676	N					27.879	1.00 10.72
ATOM	1677	CA		A1005	62.723	69.067	29.340	1.00 10.72
ATOM	1678	C		A1005	62.709	69.405		1.00 10.72
ATOM	1679	0		A1005	61.690	69.822	29.947	
MOTA	1680	CB		A1005	62.983	70.254	27.003	1.00 63.30
MOTA	1681	CG		A1005	63.299	69.783	25.632	1.00 63.30
ATOM	1682	SD	MET	A1005	63.194	71.078	24.467	1.00 63.30
ATOM	1683	CE	MET	A1005	64.494	72.111	25.002	1.00 63.30
ATOM	1685	N	ALA	A1006	63.873	69.180	29.939	1.00 13.71
ATOM	1686	CA		A1006	64.092	69.541	31.343	1.00 13.71
<del>-</del>								

ATOM	1687	C		A1006	64.634	71.015	31.321	1.00 13.71
MOTA	1688	0		A1006	64.885	71.575	30.254	1.00 13.71
MOTA	1689	CB		A1006	65.114	68.618	31.976	1.00 44.23
MOTA	1691	N		A1007	64.762	71.597	32.515	1.00 21.54
ATOM	1692	CA		A1007	65.278	72.951	32.738	1.00 21.54
ATOM	1693	С		A1007	66.586	73.324	31.943	1.00 21.54
ATOM	1694	0		A1007	66.528	73.791	30.817	1.00 21.54
ATOM	1695	CB	ILE	A1007	65.482	73.137	34.300	1.00 20.90
ATOM	1696	CG1		A1007	66.672	72.188	34.830	1.00 20.90
ATOM	1697	CG2		A1007	64.088	72.800	35.034	1.00 20.90
ATOM	1698	CD1	ILE	A1007	67.395	72.474	36.237	1.00 20.90
ATOM	1700	N	GLU	A1008	67.752	73.082	32.510	1.00 10.72
ATOM	1701	CA	GLU	A1008	69.028	73.410	31.892	1.00 10.72
ATOM	1702	C	GLU	A1008	69.066	73.404	30.369	1.00 10.72
ATOM	1703	0	GLU	A1008	70.144	73.771	29.757	1.00 10.72
MOTA	1704	CB	GLU	A1008	70.098	72.429	32.417	1.00 39.30
ATOM	1705	CG	GLU	A1008	69.942	70.977	31.916	1.00 39.30
ATOM	1706	CD	GLU	A1008	69.159	70.091	32.896	1.00 39.30
MOTA	1707	OE1	GLU	A1008	68.082	70.549	33.382	1.00 39.30
ATOM	1708	OE2	GLU	A1008	69.634	68.944	33.178	1.00 39.30
ATOM	1710	И	SER	A1009	67.976	72.880	29.764	1.00 31.45
ATOM	1711	CA	SER	A1009	67.798	72.791	28.314	1.00 31.45
ATOM	1712	C	SER	A1009	66.826	73.844	27.779	1.00 31.45
ATOM	1713	0	SER	A1009	67.007	74.396	26.685	1.00 31.45
ATOM	1714	CB		A1009	67.286	71.410	27.930	1.00100.00
ATOM	1715	OG		A1009	68.088	70.402	28.500	1.00100.00
ATOM	1718	N		A1010	65.745	74.095	28.485	1.00 75.06
ATOM	1719	CA		A1010	64.852	75.103	27.977	1.00 75.06
ATOM	1720	C		A1010	65.758	76.342	27.926	1.00 75.06
ATOM	1721	0		A1010	65.737	77.146	26.989	1.00 75.06
ATOM	1722	CB		A1010	63.675	75.238	28.938	1.00 62.28
ATOM	1723	CG		A1010	62.685	74.078	28.725	1.00 62.28
ATOM	1724			A1010	61.421	74.394	29.511	1.00 62.28
ATOM	1725			A1010	62.379	73.854	27.229	1.00 62.28
ATOM	1727	N		A1011	66.597	76.401	28.951	1.00 36.75
MCTA	1728	CA		A1011	67.611	77.389	29.207	1.00 36.75
ATOM	1729	C		A1011	68.761	77.280	28.189	1.00 36.75
	1730	0		A1011	68.696	77.728	27.006	1.00 36.75
ATOM	1731	CB		A1011	68.174	77.122	30.588	1.00 53.79
ATOM	1732	CG		A1011	67.148	77.215	31.633	1.00 53.79
ATOM	1733			A1011 A1011	66.008	77.430	31.335	1.00 53.79
ATOM			-	A1011	67.541	77.071	32.879	1.00 53.79
ATOM	1734	N,		A1012	69.810	76.638	28.685	1.00 25.53
ATOM	1738			A1012 A1012	71.016	76.422	27.940	1.00 25.53
MOTA	1739	CA		A1012	70.747	75.476	26.776	1.00 25.53
ATOM	1740	C			71.392	75.570	25.756	1.00 25.53
ATOM	1741	0		A1012			28.872	1.00 38.16
ATOM	1742	CB		A1012	72.118	75.898	30.315	1.00 38.16
ATOM	1743	CG		A1012	71.934	76.312		1.00 38.16
ATOM	1744			A1012	72.332	75.491	31.341 30.645	1.00 38.16
ATOM	1745			A1012	71.301	77.512	32.642	1.00 38.16
MOTA	1746			A1012	72.105	75.841		1.00 38.16
MOTA	1747	CE2		A1012	71.072	77.863	31.943	1.00 38.16
MOTA	1748	CZ		A1012	71.473	77.028	32.927	1.00 38.16
ATOM	1749	OH		A1012	71.240	77.363	34.217	
MOTA	1752	N		A1013	69.812	74.566	26.863	1.00 71.42
ATOM	1753	CA		A1013	69.638	73.752	25.672	1.00 71.42
ATOM	.1754	С	SER	A1013	70.875	72.864	25.398	1.00 71.42

ATOM 1755 O SER A1013 71.360 72.693 24.272 1.00 71.42
ATOM 1757 OG SER A1013 69.331 74.696 24.502 1.00 25.42
ATOM 1750 N VAL A1014 71.383 72.310 26.482 1.00 65.71
ATOM 1761 CR VAL A1014 71.383 72.310 26.482 1.00 65.71
ATOM 1762 C VAL A1014 71.2507 71.423 26.395 1.00 66.71
ATOM 1763 O VAL A1014 71.255 70.283 27.994 1.00 66.71
ATOM 1764 CB VAL A1014 71.255 70.283 27.994 1.00 66.71
ATOM 1765 CG1 VAL A1014 71.255 70.283 27.994 1.00 66.71
ATOM 1766 CG2 VAL A1014 71.255 70.283 27.994 1.00 66.71
ATOM 1767 CG2 VAL A1014 71.255 70.283 27.994 1.00 65.71
ATOM 1768 N TWR A1015 72.067 69.104 28.765 1.00 53.96
ATOM 1766 CG2 VAL A1014 74.220 73.271 26.795 1.00 53.96
ATOM 1767 C TWR A1015 72.067 69.104 28.755 1.00 65.68
ATOM 1769 CA TWR A1015 72.067 69.104 28.755 1.00 65.68
ATOM 1770 C TWR A1015 72.067 69.104 28.733 1.00 65.68
ATOM 1771 O TWR A1015 73.635 66.702 26.646 1.00 65.68
ATOM 1772 CB TWR A1015 70.656 67.214 25.663 1.00100.00
ATOM 1773 CG TWR A1015 69.756 66.279 24.939 1.00100.00
ATOM 1775 CD2 TWR A1015 69.758 66.279 24.939 1.00100.00
ATOM 1776 CG1 TWR A1015 69.315 69.505 25.434 1.00100.00
ATOM 1776 CG2 TWR A1015 69.768 68.910 23.037 1.00100.00
ATOM 1776 CG2 TWR A1015 69.315 69.505 28.343 1.00100.00
ATOM 1776 CG TWR A1015 69.315 69.505 28.343 1.00100.00
ATOM 1776 CG TWR A1015 67.664 69.364 24.740 1.00100.00
ATOM 1778 CG TWR A1015 67.664 69.364 24.740 1.00100.00
ATOM 1779 OT TWR A1015 67.064 69.905 28.363 1.00100.00
ATOM 1779 CG TWR A1015 67.664 69.364 24.740 1.00100.00
ATOM 1779 CG TWR A1015 67.064 69.905 28.363 1.00100.00
ATOM 1779 CG TWR A1015 68.076 69.901 23.546 1.0000.00
ATOM 1779 CG TWR A1015 68.076 69.901 23.546 1.00100.00
ATOM 1789 CG TWR A1015 67.664 69.364 24.740 1.00100.00
ATOM 1789 CG TWR A1015 68.076 69.901 23.544 1.00100.00
ATOM 1780 CG TWR A1016 72.266 66.269 28.363 1.00100.00
ATOM 1780 CG TWR A1017 72.816 68.076 28.363 1.00100.00
ATOM 1780 CG TWR A1016 72.266 66.269 29.360 1.00 58.88
ATOM 1780 CG TWR A1016 72.266 66.269 29.360 1.00 58.88
ATOM 1780 CG TWR A1016 72.666 69.364 24.740 1.00100.00
ATOM 1780 C

ATOM	1893	CD1	LEU	A1027	9	57.496	57.117	27.007	1.00	37.14
ATOM	1894	CD2	LEU	A1027		59.417	57.890	25.930	1.00	37.14
ATOM	1896	N	LEU	A1028	5	57.746	58.125	30.978	1.00	8.77
ATOM	1897	CA	LEU	A1028	ŗ	57.188	57.363	32.009	1.00	8.77
ATOM	1898	C	LEU	A1028		55.743	57.749	32.088	1.00	8.77
ATOM	1899	0	LEU	A1028		54.947	56.870	31.744	1.00	8.77
ATOM	1900	CB		A1028	9	57.875	57.508	33.363	1.00	48.45
ATOM	1901	CG		A1028		57.252	56.440	34.294	1.00	48.45
ATOM	1902	CD1		A1028		56.823	55.185	33.534	1.00	48.45
ATOM	1903	CD2		A1028		58.220	56.043	35.333	1.00	48.45
	1905	N	TRP	A1029		55.442	59.029	32.483	1.00	30.07
ATOM		CA		A1029		54.084	59.703	32.660	1.00	30.07
ATOM	1906		TRP	A1029		53.253	59.613	31.429	1.00	30.07
ATOM	1907	С		A1029		52.118	59.261	31.397	1.00	30.07
MOTA	1908	0				54.227	61.222	32.983	1.00	2.92
MOTA	1909	CB		A1029				33.312	1.00	2.92
MOTA	1910	CG	TRP	A1029		52.932	62.000			2.92
MOTA	1911	CD1		A1029		52.349	62.276	34.582	1.00	2.92
ATOM	1912	CD2		A1029		51.964	62.434	32.334	1.00	
ATOM	1913	NE1		A1029		51.050	62.846	34.369	1.00	2.92
ATOM	1914	CE2		A1029		50.827	62.919	33.011	1.00	2.92
MOTA	1915	CE3	TRP	A1029		51.955	62.444	30.937	1.00	2.92
MOTA	1916	CZ2	TRP	A1029		49.767	63.362	32.342	1.00	2.92
ATOM	1917	CZ3	TRP	A1029	:	50.836	62.910	30.283	1.00	2.92
ATOM	1918	CH2		A1029	4	49.791	63.345	30.971	1.00	2.92
ATOM	1921	N	GLU	A1030	;	53.881	60.008	30.382	1.00	26.20
ATOM	1922	CA	GLU	A1030	į	53.292	59.957	29.076	1.00	
ATOM	1923	C	GLU	A1030	!	52.824	58.589	28.725	1.00	26.20
MOTA	1924	0	GLU	A1030	:	52.344	58.417	27.638	1.00	26.20
ATOM	1925	CB	GLU	A1030		54.358	60.378	28.077	1.00	24.00
ATOM	1926	CG	GLU	A1030		53.879	60.996	26.869	1.00	24.00
ATOM	1927	CD	GLU	A1030	:	54.860	60.718	25.857	1.00	24.00
ATOM	1928	OE1		A1030	1	55.885	60.279	26.378	1.00	24.00
ATOM	1929	OE2		A1030		54.661	60.907	24.633	1.00	24.00
ATOM	1931	N		A1031		52.969	57.631	29.631	1.00	14.69
ATOM	1932	CA		A1031		52.633	56.216	29.376	1.00	14.69
	1933	C		A1031		51.704	55.738	30.426		14.69
ATOM	1934	0		A1031		51.033	54.761	30.203	1.00	14.69
MOTA		CB		A1031		53.923	55.272	29.416		33.44
ATOM	1935			A1031		54.294	54.757	28.021	1.00	33.44
ATOM	1936	CG1		A1031		53.671	53.993	30.253	1.00	33.44
MOTA	1937	CG2				55.762	54.225	27.948		33,44
ATOM	1938	CD1		A1031			56.285	31.621		14.19
ATOM	1940	Ň		A1032		51.726	55.868	32.559		14.19
MOTA	1941	CA		A1032		50.676		32.011		14.19
ATOM	1942	С		A1032		49.327	56.496			14.19
MOTA	1943	0		A1032		48.282	55.823	31.882		41.51
ATOM	1944	CB		A1032		50.924	56.349	33.944		
ATOM	1945	CG1		A1032		49.666	56.640	34.596		41.51
MOTA	1946	CG2		A1032		51.681	55.290	34.704		41.51
ATOM	1948	N		A1033		49.395	57.755	31.625		31.81
ATOM	1949	CA		A1033		48.320	58.505	31.065		31.81
ATOM	1950	C		A1033		47.658	57.730	29.910		31.81
ATOM	1951	0	SER	A1033		46.551	58.079	29.445		31.81
MOTA	1952	CB	SER	A1033		48.895	59.828	30.546		68.54
ATOM	1953	OG	SER	A1033		49.757	59.623	29.445		68.54
ATOM	1956	N	LEU	A1034		48.316	56.686	29.442	1.00	
ATOM	1957	CA		A1034		47.777	55.984	28.298	1.00	
MOTA	1958	C		A1034		47.645	56.833	26.999	1.00	2.00
		-		•						

		_		77074		46,584	FC 0FF	26.409	1.00 2.00
ATOM	1959	0		A1034			56.955		
MOTA	1960	CE		A1034		46.422	55.343	28.654	1.00 31.43
MOTA	1961	CG		A1034		46.478	53.883	29.207	1.00 31.43
ATOM	1962	CD1	LEU	A1034		45.072	53.333	29.484	1.00 31.43
ATOM	1963	CD2	LEU	A1034		47.244	52.988	28.207	1.00 31.43
ATOM	1965	N	GLY	A1035		48.706	57.372	26.438	1.00 4.53
ATOM	1966	CA	GLY	A1035		48.437	58.149	25.224	1.00 4.53
ATOM	1967	С	GLY	A1035		48.241	59.685	25.565	1.00 4.53
ATOM	1968	0	GLY	A1035		47.964	60.498	24.649	1.00 4.53
ATOM	1970	N		A1036		48.509	60.071	26.820	1.00 18.31
ATOM	1971	CA		`A1036		48.281	61.470	27.160	1.00 18.31
ATOM	1972	C		A1036		49.211	62.717	27.185	1.00 18.31
ATOM	1973	0		A1036		49.988	62.881	28.181	1.00 18.31
		N		A1037		49.027	63.591	26.164	1.00 48.85
ATOM	1975			A1037		49.733	64.890	25.939	1.00 48.85
ATOM	1976	CA				50.225	65.522	27.265	1.00 48.85
ATOM	1977	C		A1037					1.00 48.85
ATOM	1978	0		A1037		49.431	65.933	28.077	
MOTA	1979	CB		A1037	,	48.780	65.886	25.216	1.00 25.15
ATOM	1980	OG1		A1037		48.988	65.904	23.772	1.00 25.15
MOTA	1981	CG2		A1037		48.993	67.215	25.789	1.00 25.15
ATOM	1984	N	PRO	A1038		51.538	65.697	27.456	1.00 42.23
ATOM	1985	CA	PRO	A1038		51.796	66.239	28.775	1.00 42.23
ATOM	1986	С	PRO	A1038		51.496	67.691	28.996	1.00 42.23
ATOM	1987	0	PRO	A1038		51.359	68.450	28.057	1.00 42.23
ATOM	1988	CB		A1038		53.271	65.779	29.048	1.00 10.66
ATOM	1989	CG		A1038		53.679	65.007	27.861	1.00 10.66
ATOM	1990	CD		A1038		52.809	65.456	26.765	1.00 10.66
	1991	N		A1039		51.381	68.090	30.253	1.00 39.67
ATOM	1992	CA		A1039		51.037	69.509	30.576	1.00 39.67
ATOM				A1039		49.924	69.987	29.682	1.00 39.67
MOTA	1993	C				50.172	70.931	28.955	1.00 39.67
ATOM	1994	0		A1039				30.375	1.00 15.36
MOTA	1995	CB		A1039		52.256	70.457		1.00 15.36
ATOM	1996	CG		A1039		53.503	69.958	31.103	
ATOM	1997	CD1		A1039		54.685	69.536	30.407	
MOTA	1998	CD2		A1039		53.518	69.952	32.481	1.00 15.36
MOTA	1999	CE1		A1039		55.790	69.157	31.105	1.00 15.36
MOTA	2000	CE2	TYR	A1039		54.636	69.571	33.153	1.00 15.36
ATOM	2001	CZ	TYR	A1039		55.737	69.191	32.449	1.00 15.36
MOTA	2002	OH	TYR	A1039		56.737	68.889	33.251	1.00 15.36
MOTA	2005	N	CYS	A1040		48.756	69.319	29.692	1.00100.00
MOTA	2006	CA	CYS	A1040		47.597	69.681	28.845	1.00100.00
MOTA	2007			A1040		47.013	70.930	29.435	1.00100.00
ATOM	2007	c, o		A1040		46.711	70.987	30.625	1.00100.00
	2008	CB		A1040		46.507	68.566	28.832	1.00 63.76
ATOM				A1040		45.039	68.722	27.619	1.00 63.76
MOTA	2010	SG				46.836	71.938	28.605	1.00 75.53
MOTA	2012	И		A1041			73.175	29.127	1.00 75.53
ATOM	2013	CA		A1041		46.305			1.00 75.53
MOTA	2014	C		A1041		47.419	74.160	29.448	1.00 75.53
ATOM	2015	0		A1041		47.217	75.358	29.342	
MOTA	2017	N		A1042		48.581	73.668	29.868	1.00 27.54
ATOM	2018	CA		A1042		49.666	74.553	30.126	1.00 27.54
ATOM	2019	С	MET	A1042		50.119	75.065	28.731	1.00 27.54
ATOM	2020	0	MET	A1042		50.034	74.344	27.742	1.00 27.54
ATOM	2021	CB	MET	A1042		50.771	73.851	30.909	1.00 47.82
ATOM	2022	CG		A1042		51.032	74.460	32.298	1.00 47.82
ATOM	2023	SD		A1042		52.810	74.502	32.805	1.00 47.82
	2024	CE		A1042		52.729	74.790	34.564	1.00 47.82
ATOM	4047	-11	1						

ATOM 2026 N THE ALO43 50.481 76.381 28.681 1.00 59.25 ATOM 2027 CA THE ALO43 50.918 77.067 27.468 1.00 59.25 ATOM 2028 C THE ALO43 52.434 76.835 28.437 1.00 59.25 ATOM 2029 O THE ALO43 53.084 76.835 28.437 1.00 59.25 ATOM 2020 CB THE ALO43 50.586 78.617 27.588 1.00 62.50 ATOM 2031 CGI THE ALO43 51.070 79.181 28.773 1.00 62.50 ATOM 2031 CGI THE ALO43 51.070 79.181 28.773 1.00 62.50 ATOM 2032 CG2 THE ALO43 49.076 78.877 27.351 1.00 62.50 ATOM 2035 CGI THE ALO43 49.076 78.877 27.351 1.00 62.50 ATOM 2035 CGI THE ALO43 49.076 78.877 27.351 1.00 62.50 ATOM 2035 CGI THE ALO43 49.076 78.877 27.351 1.00 62.50 ATOM 2035 CGI THE ALO43 49.076 78.877 27.351 1.00 62.50 ATOM 2035 CGI THE ALO43 49.076 78.877 27.351 1.00 62.50 ATOM 2035 CGI THE ALO43 49.076 78.877 27.351 1.00 62.50 ATOM 2035 CGI THE ALO43 52.997 76.968 26.194 1.00100.00 ATOM 2035 CGI THE ALO43 52.997 76.968 26.194 1.00100.00 ATOM 2035 CGI THE ALO44 56.478 77.4679 26.6975 1.00100.00 ATOM 2035 CGI THE ALO44 56.478 77.4679 26.975 1.00100.00 ATOM 2039 CH CYS ALO44 56.478 77.4679 26.975 1.00100.00 ATOM 2040 SGI TYS ALO44 56.478 77.467 27.100 1.00100.00 ATOM 2040 SGI THE ALO45 56.478 77.4678 27.100 1.00100.00 ATOM 2040 CALO ALA ALO45 56.478 77.467 27.100 1.00100.00 ATOM 2044 CALA ALO45 55.4673 78.663 27.623 1.00100.00 ATOM 2046 CB ALA ALO45 55.4673 78.663 27.623 1.00100.00 ATOM 2046 CB ALA ALO45 55.4673 78.663 27.623 1.00100.00 ATOM 2040 SGI THE ALO45 55.4673 78.663 27.623 1.00100.00 ATOM 2040 SGI THE ALO45 55.4673 78.983 28.207 1.00 27.64 ATOM 2050 CGI THE ALO45 55.4673 78.983 28.207 1.00 27.64 ATOM 2050 CGI THE ALO46 53.555 79.203 30.018 1.00 27.64 ATOM 2050 CGI THE ALO46 54.507 78.117 33.092 1.00 27.64 ATOM 2050 CGI THE ALO46 54.507 78.239 31.521 1.00 27.64 ATOM 2050 CGI THE ALO46 54.507 78.239 31.521 1.00 27.64 ATOM 2050 CGI THE ALO47 55.586 78.264 31.365 1.00 27.76 ATOM 2050 CGI THE ALO47 55.586 78.264 31.365 1.00 27.76 ATOM 2050 CGI THE ALO47 55.586 78.264 31.365 1.00 27.76 ATOM 2050 CGI THE ALO47 55.586 78.264 31.365 1.00 39.62 ATOM 2050 CGI THE ALO47 55.586 7

FIG. 6DD

ATOM 2092 CA LYS A1050 56.197 77.839 35.793 1.00 93.85
ATOM 2093 C LYS A1050 57.046 76.622 36.085 1.00 93.85
ATOM 2095 CE LYS A1050 57.178 76.212 37.211 1.00 93.85
ATOM 2095 CE LYS A1050 54.752 77.418 35.584 1.00 86.89
ATOM 2097 N LEU A1051 57.599 76.008 35.063 1.00 40.78
ATOM 2098 CA LEU A1051 58.459 74.868 35.336 1.00 40.78
ATOM 2098 CA LEU A1051 59.321 74.463 35.336 1.00 40.78
ATOM 2099 C LEU A1051 59.412 75.166 36.508 1.00 40.78
ATOM 2090 C LEU A1051 59.321 74.493 37.539 1.00 40.78
ATOM 2101 CB LEU A1051 59.201 74.391 34.072 1.00 66.80
ATOM 2101 CB LEU A1051 58.942 72.895 31.726 1.00 66.80
ATOM 2102 CG LEU A1051 58.92 72.933 31.726 1.00 66.80
ATOM 2103 CD1 LEU A1051 58.875 72.719 32.253 1.00 66.80
ATOM 2104 CD2 LEU A1051 58.875 72.719 32.253 1.00 66.80
ATOM 2105 W PRO A1052 60.356 76.129 36.369 1.00 42.79
ATOM 2106 CA PRO A1052 60.655 76.803 38.741 1.00 66.80
ATOM 2107 CA PRO A1052 60.655 76.803 38.741 1.00 62.79
ATOM 2109 C PRO A1052 61.929 77.549 35.473 1.00 22.79
ATOM 2110 CB PRO A1052 61.939 77.734 36.905 1.00 42.79
ATOM 2110 CB PRO A1052 61.952 77.7449 35.473 1.00 22.07
ATOM 2111 CG PRO A1052 61.952 77.7549 35.473 1.00 22.07
ATOM 2112 CD PRO A1052 61.952 77.7549 35.473 1.00 22.07
ATOM 2113 N GLN A1053 58.625 77.426 39.921 1.00 68.39
ATOM 2115 C GLN A1053 58.823 76.206 40.781 1.00 68.39
ATOM 2116 O GLN A1053 58.823 77.731 38.696 1.00 29.07
ATOM 2117 CB GLN A1053 58.823 77.744 38.699 1.00 68.39
ATOM 2116 C GLN A1053 58.823 77.746 40.808 1.00 39.49
ATOM 2121 C GLN A1053 58.823 76.206 40.781 1.00 68.39
ATOM 2115 C GLN A1053 58.823 76.206 40.781 1.00 68.39
ATOM 2116 O GLN A1053 58.823 76.206 40.781 1.00 68.39
ATOM 2117 CB GLN A1055 58.823 77.207 77.701 39.646 1.000 30.93
ATOM 2127 C TUR A1055 57.000 77.701 39.646 1.000 30.93
ATOM 2128 CB TUR A1055 57.000 77.701 39.646 1.000 30.93
ATOM 2129 CG ALY A1054 57.849 72.863 39.991 1.00 68.39
ATOM 2120 CG ALY A1054 57.849 72.863 39.991 1.00 68.39
ATOM 2121 C GLO ALY A1055 55.806 77.242 38.490 1.00 76.79
ATOM 2122 CG ALY A1055 55.806 77.242 38.490 1.00 76.79
ATOM 212

ATOM	2230	N	ASP	A1065	51.409	55.855	43.980		46.39
MOTA	2231	CA	ASP	A1065	52.499	56.662	44.508	1.00	46.39
MOTA	2232	C	AS₽	A1065	53.884	56.043	44.229		46.39
MOTA	2233	0	ASP	A1065	54.869	56.717	44.124		46.39
ATOM	2234	CB	ASP	A1065	52.299	56.875	46.021	1.00	75.00
MOTA	2235	CG	ASP	A1065	51.156	57.855	46.357	1.00	75.00
ATOM	2236	OD1	ASP	A1065	50.426	58.300	45.452	1.00	75.00
MOTA	2237	OD2	ASP	A1065	50.988	58.179	47.550	1.00	75.00
ATOM	2239	N	GLU	A1066	53.951	54.742	44.107	1.00	29.06
ATOM	2240	CA	GLU	A1066	55.205	54.101	43.803		29.06
ATOM	2241	С	GLU	A1066	55.543	54.513	42.403	-	29.06
ATOM	2242	0	GLU	A1066	56.559	55.189	42.220	1.00	29.06
ATOM	2243	CB	GLÜ	A1066	55.109	52.567	43.888	1.00	46.46
ATOM	2244	CG	GLU	A1066	56.488	51.877	43.895	1.00	46.46
ATOM	2245	CD	GLU	A1066	56.612	50.697	44.880	1.00	46.46
ATOM	2246	OE1	GLU	A1066	55.711	50.554	45.759	1.00	46.46
ATOM	2247	OE2	GLU	A1066	57.616	49.923	44.765	1.00	46.46
ATOM	2249	N	VAL	A1067	54.727	54.154	41.416	1.00	32.03
ATOM	2250	CA	VAL	A1067	55.023	54.533	40.036	1.00	32.03
MOTA	2251	C		A1067	55.293	56.054	39.731	1.00	32.03
ATOM	2252	ō		A1067	56.029	56.405	38.812	1.00	32.03
MOTA	2253	CB		A1067	53.885	54.021	39.107	1.00	15.97
MOTA	2254	CG1		A1067	53.965	54.642	37.618	1.00	15.97
MOTA	2255	CG2		A1067	53.929	52.448	39.087	1.00	15.97
ATOM	2257	N		A1068	54.738	56.973	40.480	1.00	40.19
ATOM	2258	CA		A1068	55.001	58.328	40.091		40.19
	2259	C		A1068	56.057	58.982	40.941		40.19
ATOM	2259	0.		A1068	56.899	59.755	40.422		40.19
MOTA	2260	CB		A1068	53.684	59.082	40.070	1.00	3.92
MOTA		CG		A1068	53.658	60.503	40.344	1.00	3.92
ATOM	2262	CD1		A1068	53.484	61.369	39.326	1.00	3.92
MOTA	2263			A1068	53.650	60.958	41.607	1.00	3.92
MOTA	2264	CD2 CE1		A1068	53.050	62.732	39.530	1.00	3.92
MOTA	2265			A1068	53.473	62.752	41.862	1.00	3.92
MOTA	2266	CE2			53.473	63.163	40.812	1.00	3.92
MOTA	2267	CZ		A1068 A1068	53.384	64.523	41.015	1.00	3.92
MOTA	2268	OH			55.999	58.711	42.242		34.55
MOTA	2271	N		A1069			43.139		34.55
ATOM	2272	CA		A1069	57.036	59.211	43.133		34.55
MOTA	2273	C		A1069	58.139	58.257			34.55
MÓTA	2274	0		A1069	58.415	57.326	43.454		80.97
MOTA	2275	CB		A1069	56.639	58.964	44.588		80.97
ATOM	2276	CG		A1069	57.819	58.905	45.514		80.97
MOTA	2277			A1069	58.968	59.094	45.061		
MOTA	2278			<b>VÍ09</b>	57.591	58.673	46.714		80.97
MOTA	2280	N		A1070	58.667	58.506	41.503	1.00	4.63
MOTA	2281	CA		A1070	59.682	57.806	40.729	1.00	
ATOM	2282	C		A1070	59.701	58.504	39.408	1.00	
ATOM	2283	0		A1070	60.763	58.899	38.932	1.00	
ATOM	2284	CB	LEU	A1070	59.389	56.337	40.348		35.45
MOTA	2285	CG		A1070	60.432	56.018	39.208		3.5.45
ATOM	2286	CD1	LEU	A1070	61.722	55.660	39.890		35.45
ATOM	2287	CD2	LEU	A1070	60.081	54.914	38.223		35.45
MOTA	2289	N	MET	A1071	58.577	58.594	38.714		33.43
ATOM	2290	CA	MET	A1071	58.562	59.377	37.490		33.43
MOTA	2291	С	MET	A1071	59.072	60.795	37.999		33.43
ATOM	2292	0	MET	A1071	59.717	61.547	37.301		33.43
ATOM	2293	CB	MET	A1071	57.328	59.425	36.716	1.00	46.26

, FIG. 6HH

ATOM	2370	0		A1077	67.727	69.428	38.509	1.00 54.46
MOTA	2371	CB		A1077	65.689	71.328	40.555	1.00 10.55
MOTA	2373	N		A1078	68.050	69.854	40.670	1.00 35.40
MOTA	2374	CA		A1078	69.476	69.542	40.642	1.00 35.40
ATOM	2375	C		A1078	69.746	68.345	39.704	1.00 35.40
ATOM	2376	0		A1078	69.592	67.215	40.099	1.00 35.40
ATOM	2377	CB		A1078	69.954	69.234	42.058	1.00 95.51
MOTA	2378	CG		A1078	70.054	70.458	42.936	1.00 95.51
ATOM	2379	CD		A1078	70.070	70.094	44.414	1.00 95.51
ATOM	2380	CE		A1078	71.487	70.050	44.990	1.00 95.51
ATOM	2381	NZ		A1078	71.575	69.341	46.309	1.00 95.51
MOTA	2386	N		A1079	70.230	68.582	38.481	1.00 54.45
MOTA	2387	CA		A1079	70.437	67.398	37.643	1.00 54.45
ATOM	2388	C		A1079	71.172	66.206	38,238	1.00 54.45
ATOM	2389	0		A1079	70.745	65.097	38.040	1.00 54.45
MOTA	2390	CB		A1079	71.099	67.958	36.381	1.00 46.70
MOTA	2391	CG		A1079	70.732	69.385	36.376	1.00 46.70
MOTA	2392	CD		A1079	70.658	69.817	37.801	1.00 46.70
MOTA	2393	N		A1080	72.265	66.402	38.968	1.00100.00
ATOM	2394	CA		A1080	72.963	65.243	39.542	1.00100.00
MOTA	2395	C		A1080	72.128	64.578	40.621	1.00100.00
ATOM	23 <i>96</i>	0		A1080	72.619	63.747	41.375	1.00100.00
ATOM	2397	CB		A1080	74.301	65.630	40.141	1.00 41.54
MOTA	2398	CG		A1080	74.194 .		40.985	1.00 41.54
MOTA	2399	CD1	TYR	A1080	73.912	66.774	42.320	1.00 41.54
MOTA	2400	CD2		A1080	74.316	68.109	40.422	1.00 41.54
MOTA	2401	CE1	TYR	A1080	73.757	67.883	43.061	1.00 41.54
ATOM	2402	CE2	TYR	A1080	74.158	69.220	41.161	1.00 41.54
MOTA	2403	CZ	TYR	A1080	73.882	69.118	42.480	1.00 41.54
MOTA	2404	OH	TYR	A1080	73.778	70.273	43.233	1.00 41.54
MOTA	2407	N	GLU	A1081	70.870	64.982	40.712	1.00 38.29
MOTA	2408	CA	GLU	A1081	69.948	64.379	41.652	1.00 38.29
MOTA	2409	C	GLU	A1081	69.030	63.423	40.853	1.00 38.29
ATOM	2410	0	GLU	A1081	68.522	62.443	41.398	1.00 38.29
MOTA	2411	CB	GLU	A1081	69.214	65.451	42.451	1.00 37.33
MOTA	2412	CG	GLU	A1081	69.927	65.679	43.797	1.00 37.33
ATOM	2413	CD	GLU	A1081	69.529	66.957	44.542	1.00 37.33
ATOM	2414	OE1	GLU	A1081	70.080	67.203	45.646	1.00 37.33
ATOM	2415	OE2	GLU	A1081	68.676	67.741	44.045	1.00 37.33
ATOM	2417	N	ARG	A1082	68.876	63.690	39.550	1.00 35.27
MOTA	2418	CA	ARG	A1082	68.154	62.803	38.655	1.00 35.27
ATOM	2419	C	ARG	A1082	68.831	61.404	38.883	1.00 35.27
MOTA	2420	0	ARG	A1082	69.932	61.322	39.463	1.00 35.27
ATOM	2421	CB	ARG	A1082	68.336	63.260	37.216	1.00 62.49
ATOM	2422	CG	ARG	A1082	67.202	64.072	36.647	1.00 62.49
ATOM	2423	CD		A1082	67.299	65.548	36.942	1.00 62.49
ATOM	2424	NE		A1082	67.442	66.375	35.737	1.00 62.49
MOTA	2425	CZ	ARG	A1082	67.099	67.665	35.661	1.00 62.49
ATOM	2426		ARG	A1082	66.585	68.293	36.705	1.00 62.49
ATOM	2427			A1082	67.317	68.345	34.547	1.00 62.49
ATOM	2434	N		A1083	68.144	60.280	38.530	1.00 37.62
MOTA	2435	CA		A1083	68.732	58.945	38.729	1.00 37.62
ATOM	2436	C		A1083	69.270	58.328	37.461	1.00 37.62
ATOM	2437	0		A1083	68.905	58.780	36.414	1.00 37.62
ATOM	2438	CB		A1083	67.541	58.148	39.267	1.00 40.57
ATOM	2439	CG		A1083	66.294	59.139	39.213	1.00 40.57
ATOM	2440	CD		A1083	66.721	60.125	38.171	1.00 40.57
FIT OF								

WO 01/72778 PCT/US01/08853

									00 77
MOTA	2441	N	SER	A1084	70.157	57.337	37.541		23.77
ATOM	2442	CA	SER	A1084	70.642	56.597	36.339		23.77
ATOM	2443	С	SER	A1084	69.465	55.689	35.826	1.00	23.77
ATOM	2444	0	SER	A1084	68.690	55.172	36.633	1.00	23.77
ATOM	2445	CB		A1084	71.772	55.617	36.733	1.00	2.00
ATOM	2446	OG		A1084	71.518	55.019	38.069	1.00	2.00
				A1085	69.330	55.466	34.520		44.36
ATOM	2449	N					34.032		44.36
ATOM	2450	CA	PHE	A1085	68.272	54.565			
MOTA	2451	С		A1085	68.458	53.237	34.801		44.36
ATOM	2452	0	PHE	A1085	67.633	52.852	35.603		44.36
ATOM	2453	CB	PHE	A1085	68.414	54.399	32.529		95.75
ATOM	2454	CG	PHE	A1085	68.175	55.669	31.783		95.75
ATOM	2455	CDI	PHE	A1085	69.088	56.137	30.866	1.00	95.75
ATOM	2456	CD2	PHE	A1085	67.036	56.409	32.022	1.00	95.75
ATOM	2457	CE1		A1085	68.863	57.321	30.200		95.75
	2458	CE2		A1085	66.807	57.591	31.361	1.00	95.75
ATOM				A1085	67.713	58.049	30.452		95.75
MOTA	2459	CZ							35.91
ATOM	2461	N		A1086	69.541	52.541	34.541		
MOTA	2462	CA		A1086	69.894	51.395	35.347		35.91
ATOM	2463	C	ALA	A1086	69.171	51.316	36.743		35.91
MOTA	2464	Q	ALA	A1086	68.741	50.223	37.179		35.91
ATOM	2465	CB	ALA	A1086	71.400	51.423	35.580	1.00	44.62
ATOM	2467	N	GLN	A1087	69.081	52.427	37.464	1.00	20.15
ATOM	2468	CA		A1087	68.394	52.412	38.732	1.00	20.15
	2469	C		A1087	66.842	52.338	38.466	1.00	20.15
ATOM				A1087	66.039	51.538	39.059		20.15
ATOM	2470	0				53.690	39.501		19.20
ATOM	2471	CB		A1087	68.766				19.20
MOTA	2472	CG		A1087	70.227	53.686	40.069		
ATOM	2473	CD		A1087	70.563	54.908	40.926		19.20
MOTA	2474	OE1	GLN	A1087	70.927	55.939	40.379		19.20
ATOM	2475	NE2	GLN	A1087	70.473	54.783	42.263		19.20
ATOM	2479	N	ILE.	A1088	66.451	53.197	37.550	1.00	25.82
ATOM	2480	CA	ILE	A1088	65.088	53.310	37.160	1.00	25.82
ATOM	2481	C		A1088	64.852	51.851	36.847	1.00	25.82
	2482	0		A1088	63.966	51.300	37.447	1.00	25.82
ATOM				A1088	64.921	54.260	35.919		17.84
MOTA	2483	CB				55.704	36.340		17.84
ATOM	2484	CG1		A1088	65.069				17.84
ATOM	2485	CG2		A1088	63.626	53.984	35.170		
ATOM	2486	CD1		A1083	65.738	56.545	35.203		17.84
ATOM	2488	N	LEU	A1089	65.628	51.205	35.969		19.62
ATOM	2489	CA	LEU	A1089	65.380	49.747	35.692		19.62
ATOM	2490	C	LEU	A1089	65.471	48.746	36.793		19.62
ATOM	2491	0		A1089	64.899	47.746	36.680	1.00	19.62
ATOM	2492	ζB		A1089	66.155		34.566	1.00	2.73
		ĊG		A1089	65.363		33.978	1.00	
ATOM	2493				65.305	47.787	32.425	1.00	
MOTA	2494			A1089			34.338	1.00	
ATOM	2495			A1089	66.127	46.642			15.82
MOTA	2497	N		A1090	66.164	48.988	37.866		
MOTA	2498	CA	VAL	A1090	66.074		38.898		15.82
MOTA	2499	С	VAL	A1090	64.931	48.400	39.791		15.82
MOTA	2500	0	VAL	A1090	64.700	47.776	40.834		15.82
ATOM	2501	CB		A1090	67.396	47.811	39.695	1.00	8.61
MOTA	2502			A1090	67.259	48.053	41.220	1.00	8.61
ATOM	2502			A1090	67.829	46.397	39.452	1.00	8.61
					64.218		39.377		45.24
ATOM	2505	N G7		A1091			40.110		45.24
ATOM	2506	CA		A1091	63.073		39.628		45.24
ATOM	2507	С	SER	A1091 '	61.708	49.486	37.545	1.00	-13.21

ATOM	2508	0	SER	A1091	60.764	49.305	40.422	1.00 45.24
ATOM	2509	CB	SER	A1091	63.064	51.511	39.963	1.00 46.04
ATOM	2510	OG	SER	A1091	62.473	52.119	41.083	1.00 46.04
MOTA	2513	N	LEU	A1092	61.582	49.317	38.318	1.00 48.10
ATOM	2514	CA	LEU	A1092	60.336	48.814	37.772	1.00 48.10
ATOM	2515	C	LEU	A1092	60.362	47.286	37.896	1.00 48.10
ATOM	2516	0		A1092	59.310	46.649	38.093	1.00 48.10
ATOM	2517	CB		A1092	60.226	49.217	36.335	1.00 20.50
ATOM	2518	CG		A1092	60.649	50.636	36.171	1.00 20.50
ATOM	2519	CDI		A1092	61.112	50.957	34.819	1.00 20.50
	2520	CD2		A1092				
ATOM					59.492	51.389	36.445	1.00 20.50
ATOM	2522	N		A1093	61.588	46.721	37.764	1.00 21.90
ATOM	2523	CA		A1093	61.816	45.284	37.914	1.00 21.90
ATOM	2524	С		A1093	61.298	44.970	39.321	1.00 21.90
ATOM	2525	0		A1093	60.506	44.064	39.515	1.00 21.90
ATOM	2526	CB		A1093	63.301	45.010	37.802	1.00 40.34
ATOM	2527	CG		A1093	63.756	44.903	36.364	1.00 40.34
ATOM	2528	OD1	ASN	A1093	64.796	44.322	36.103	1.00 40.34
ATOM	2529	ND2	ASN	A1093	62.989	45.468	35.422	1.00 40.34
ATOM	2533	N	ARG	A1094	61.699	45.746	40.314	1.00 34.76
ATOM	2534	CA	ARG	A1094	61.194	45.385	41.611	1.00 34.76
ATOM	2535	C		A1094	59.685	45.221	41.451	1.00 34.76
ATOM	2536	0	ARG	A1094	59.122	44.320	42.022	1.00 34.76
ATOM	2537	CB		A1094	61.515	46.451	42.653	1.00 99.74
ATOM	2538	CG		A1094	61.377	45.969	44.088	1.00 99.74
ATOM	2539	CD		A1094	59.934	46.037	44.575	1.00 99.74
ATOM	2540	NE		A1094	59.736	47.099	45.557	1.00 99.74
MOTA	2541	CZ		A1094	58.550	47.590	45.907	1.00 99.74
ATOM	2542	NH1		A1094	57.438	47.117	45.357	1.00 99.74
ATOM	2543	NH2		A1094	58.479	48.565	46.805	1.00 99.74
ATOM	2550	N		A1095	59.045	46.073	40.640	1.00 52.46
ATOM	2551	CA		A1095	57.594	46.029	40.452	1.00 52.46
ATOM	2552	C	MET	A1095	57.136	44.721	39.781	1.00 52.46
ATOM	2553	0	MET	A1095	56.663	43.809	40.435	1.00 52.46
MOTA	2554	CB	MET	A1095	 57.151	47.287	39.683	1.00 62.45
MOTA	2555	CG	MET	A1095	57.076	48.578	40.594	1.00 62.45
ATOM	2556	SD	MET	A1095	57.031	50.297	39.847	1.00 62.45
MOTA	2557	CE	MET	A1095	57.509	51.299	41.162	1.00 62.45
ATOM	2559	N	LEU	A1096	57.289	44,666	38.476	1.00 14.04
ATOM	2560	CA	LEU	A1096	57.029	43.531	37.600	1.00 14.04
ATOM	2561	С		A1096	57.039	42.101	38.255	1.00 14.04
ATOM	2562	0		A1096	56.575	41.148	37.638	1.00 14.04
ATOM	2563	CB		A1096	58.046	43.560	36.441	1.00 37.25
ATOM	2564	CG		A1096	58.047	44.610	35.300	1.00 37.25
ATOM	2565			A1096	59.158	44.291	34.269	1.00 37.25
							34.203	1.00 37.25
ATOM	2566			A1096	56.643	44.684		
ATOM	2568	N		A1097	57.574	41.928	39.450	1.00 42.58
ATOM	2569	CA		A1097	57.530	40.621	40.048	1.00 42.58
ATOM	2570	C ·		A1097	56.651	40.690	41.296	1.00 42.58
ATOM	2571	0		A1097	57.019	40.286	42.411	1.00 42.58
ATOM ·	2572	CB		A1097	58.919	40.136	40.396	1.00100.00
ATOM	2573	CG	GLU	A1097	59.757	39.901	39.188	1.00100.00
ATOM	2574	CD	GLU	A1097	60.925	40.839	39.144	1.00100.00
MOTA	2575	OE1	GLU	Al097	61.083	41.611	40.117	1.00100.00
ATOM	2576	OE2		A1097	61.680	40.799	38.147	1.00100.00
ATOM	2578	N		A1098	55.454	41.211	41.108	1.00 43.50
ATOM	2579	CA		A1098	54.540	41.313	42.226	1.00 43.50

		_		71000	,	-	41 770	43 6 / 4	1.00 43.50
ATOM	2580	C		A1098		53.112	41.239	41.6/9	1.00 43.50
ATOM	2581	0		A1098		52.247	40.533	42.228	1.00 43.30
ATOM	2582	CB		A1098		54.783	42.639	42.970	
MOTA	2583	CG		A1098		56.233	43.014	43.093	1.00 60.12
ATOM	2584	CD		A1098		56.895	42.498	44.392	1.00 60.12
ATOM	2585	OEl	GLU	A1098		56.253	42.586	45.481	1.00 60.12
MOTA	2586	OE2	GLU	A1098		58.071	42.019	44.331	1.00 60.12
ATOM	2588	N	ARG	A1099	1	52.896	41.931	40.566	1.00100.00
ATOM	2589	CA	ARG	A1099	1	51.564	42.010	40.005	1.00100.00
MOTA	2590	C	ARG	A1099	:	50.792	42.471	41.232	1.00100.00
ATOM	2591	0	ARG	A1099	į	50.117	41.681	41.899	1.00100.00
ATOM	2592	CB	ARG	A1099	!	51.050	40.643	39.530	1.00 69.49
ATOM	2593	CG	ARG	A1099		49.707	40.745	38.761	1.00 69.49
ATOM	2594	CD		A1099		49.883	40.941	37.244	1.00 69.49
ATOM	2595	NE	ARG	A1099		49.647	42.326	36.812	1.00 69.49
ATOM	2596	CZ		A1099		49.095	42.672	35.648	1.00 69.49
ATOM	2597			A1099		48.705	41.740	34.782	1.00 69.49
ATOM	2598	NH2		A1099		48.989	43.951	35.322	1.00 69.49
ATOM	2605	N		A1100		50.957	43.748	41.555	1.00 49.25
	2606	CA	-	A1100		50.308	44.328	42.698	1.00 49.25
MOTA	2607	C	LYS	A1100		49.232	45.070	42.019	1.00 49.25
MOTA				A1100		48.111	45.129	42.502	1.00 49.25
ATOM	2608	0	LYS	A1100		51.247	45.296	43.419	1.00 99.82
MOTA	2609	CB		A1100		50.853	45.635	44.859	1.00 99.82
ATOM	2610	CG		A1100		50.997	44.447	45.815	1.00 99.82
MOTA	2611	CD		A1100		49.635	43.868	46.212	1.00 99.82
MOTA	2612	CE				49.247	44.148	47.622	1.00 99.82
ATOM	2613	NZ		A1100		49.603	45.578	40.850	1.00 64.74
ATOM	2618	N		A1101		49.603	46.370	39.946	1.00 64.74
MOTA	2619	CA		A1101		49.030	47.835	40.194	1.00 64.74
MOTA	2620	C		A1101			48.463	41.014	1.00 64.74
ATOM	2621	0		A1101		48.381	46.080	40.069	1.00100.00
ATOM	2622	CB		A1101		47.282	44.676	40.244	1.00100.00
ATOM	2623	OG1		A1101		47.083	46.494	38.801	1.00100.00
ATOM	2624	CG2		A1101		46.581	48.346	39.472	1.00 78.61
MOTA	2627	N		A1102		50.026		39.571	1.00 78.61
MOTA	2628	CA		A1102		50.462	49.715		1.00 78.61
MOTA	2629	C		A1102		49.666	50.619	38.672	1.00 78.61
MOTA	2630	0		A1102		49.438	51.753	39.026	1.00 42.69
MOTA	2631	CB		A1102		51.960	49.856	39.210	1.00 42.69
MOTA	2632	CG		A1102		52.910	49.107	40.092	1.00 42.69
MOTA	2633	CDl		A1102		53.228	47.735	39.812	1.00 42.69
ATOM	2634	CD2		A1102		53.356	49.663	41.288	1.00 42.69
ATOM	2635	ĊEl		A1102		53.926	46.943	40.711	1.00 42.69
ATOM	2636	CE2		A1102		54.061	48.880	42.207	1.00 42.69
ATOM	2637	CZ	TYR	A1102		54.327	47.512	41.917	
ATOM	2638	OH	TYR	A1102		54.871	46.698	42.873	1.00 42.69
MOTA	2641	N	VAL	A1103		49.233	50.151	37.513.	
MOTA	2642	CA	VAL	A1103		48.509	51.066	36.650	1.00100.00
ATOM	2643	С	VAL	A1103		47.068	50.762	36.293	1.00100.00
MOTA	2644	0	,VAL	A1103		46.757	50.368	35.175	1.00100.00
MOTA	2645	CB	VAL	A1103		49.276	51.326	35.350	1.00100.00
ATOM	2646	CG1	VAL	A1103	•	48.590	52.426	34.565	1.00100.00
ATOM	2647	CG2	VAI	A1103		50.694	51.746	35.661	1.00100.00
ATOM	2649	N	ASN	A1104		46.191	50.990	37.260	1.00 30.52
ATOM	2650	CA		A1104		44.768	50.802	37.118	1.00 30.52
ATOM	2651	C		A1104		44.245	51.216	35.761	1.00 30.52
ATOM	2652	0	ASN	A1104		44.475	52.317	35.289	1.00 30.52

MOTA	2653	CB.	ASN	A1104	44	.041	51.572	38.171	1.00 63.62
MOTA	2654	CG	ASN	A1104	42	.646	51.154	38.272	1.00 63.62
MOTA	2655	OD1	ASN	A1104	41	.934	51.137	37.275	1.00 63.62
MOTA	2656	ND2	ASN	A1104	42	.224	50.788	39.469	1.00 63.62
ATOM	2660	N	THR	A1105	43	.519	50.305	35.135	1.00 45.33
ATOM	2661	CA	THR	A1105	42	.978	50.501	33.817	1.00 45.33
ATOM	2662	C		A1105	41	.629	49.788	33.751	1.00 45.33
ATOM	2663	ō		A1105		.980	49.726	32.734	1.00 45.33
ATOM	2664	CB		A1105		.987	49.959	32.817	1.00 46.03
ATOM	2665	OG1		A1105		.604	48.759	33.328	1.00 46.03
	2666	CG2		A1105		.083	50.972	32.633	1.00 46.03
ATOM									1.00 40.53
ATOM	2669	N		A1105		.199	49.243	34.869	1.00 15.59
ATOM	2670	CA		A1106		. 900		34.956	
ATOM	2671	C		A1106		.820	49.661	35.289	1.00 15.59
MOTA	2672	0		A1106		.072	50.461	36.167	1.00 15.59
ATOM	2673	CB		A1106		.931	47.514	36.091	1.00 59.09
MOTA	2674	OG1	THR	A1106	39.	.776	46.205	35.525	1.00 59.09
MOTA	2675	CG2	THR	A1106	38.	.827	47.743	37.083	1.00 59.09
ATOM	2678	N	LEU	A1107	37.	.641	49.683	34.662	1.00 27.67
ATOM	2679	CA	LEU	Al107	36.	.613	50.729	35.028	1.00 27.67
ATOM	2680	C	LEU	A1107	35.	.966	50.401	36.392	1.00 27.67
ATOM	2681	0	LEU	A1107	34.	.939	49.735	36.477	1.00 27.67
MOTA	2682	СВ	LEU	A1107		.491	50.874	33.967	1.00 39.85
ATOM	2683	CG		A1107		.834	50.768	32.492	1.00 39.85
ATOM	2684	CD1		A1107		.611	50.486	31.731	1.00 39.85
	2685			A1107		.500	51.981	31.985	1.00 39.85
ATOM							50.816	37.480	1.00 99.39
ATOM	2687	N		A1108		.576			1.00 99.39
MOTA	2688	CA		A1108		.969	50.482	38.748	
MOTA	2689	C		A1108		.685	51.305	38.878	1:00 99.39
MOTA	2690	0		A1108		.900	51.097	39.806	1.00 99.39
MOTA	2691	CB		A1108		. 973	50.749	39.872	1.00100.00
MOTA	2692	CG	TYR	A1108	38.	.383	50.249	39.513	1.00100.00
MOTA	2693	CD1	TYR	A1108	39.	.286	51.419	39.214	1.00100.00
ATOM	2694	CD2	TYR	A1108	38,	.945	49.421	40.644	1.00100.00
ATOM	2696	N	GLU	A1109	34.	.485	52.198	37.899	1.00100.00
ATOM	2697	CA	GLU	A1109	33.	.341	53.116	37.779	1.00100.00
ATOM	2698	C	GLU	A1109		.875	54.536	37.598	1.00100.00
ATOM	2699	0	GLU	A1109		. 957	54.846	38.095	1.00100.00
ATOM	2700	CB		A1109		.454	53.065	39.001	1.00 76.82
ATOM	2702	N		A1110		.104	55.390	36.914	1.00100.00
	2702	CA		A1110		.486	56.779	36.626	1.00100.00
MOTA				A1110		.891	56.830	36.038	1.00100.00
ATOM	2704	C.				.858	56.673	36.763	1.00100.00
MOTA	2705	0,		A1110					1.00 99.15
MOTA	2706	CB		A1110		.430	57.631	37.900	1.00 99.15
MOTA	2707	CG		A1110		.009	56.977	39.152	
MOTA	2708	CD		A1110		.718	57.970	40.052	1.00 99.15
ATOM	2709	CE		A1110	-	.246	57.852	41.490	1.00 99.15
MOTA	2710	NZ	LYS	A1110	33	.479	59.054	41.919	1.00 99.15
ATOM	2715	N	PHE	Al111	35	.030	57.055	34.737	1.00100.00
ATOM	2716	CA	PHE	A1111	36	.373	57.068	34.186	1.00100.00
ATOM	2717	С		A1111	36	.824	58.244	33.333	1.00100.00
ATOM	2718	0		A1111		.116	58.763	32.487	1.00100.00
ATOM	2719	CB		A1111		.685	55.747	33.449	1.00 61.16
ATOM	2720	CG		A1111		.144	55.601	33.081	1.00 61.16
ATOM	2721			A1111		.101	55.397	34.055	1.00 61.16
	2722			A1111		.575	55.820	31.785	1.00 61.16
ATOM						.448	55.431	33.736	1.00 61.16
MOTA	2723	CEL	PHE	A1111	40	. ** ** 0			2.00 02.20

ATOM	2724	CE2	PHE	A111	.1	39.917	55.8		1.485	1.00	
	2725	CZ	PHE	A111	L I	40.845	55.60	-	32.451	1.00	
•	2727	N	THR	A111	.2	38.080	58.5		33.586	1.00	
	2728	CA	THR			38.875	59.6		33.030	1.00	
	2729	C	THR			39.433	59.6		31.628	1.00	
	2730	0	THR			38.693	59.6		30.694	1.001	
ATOM	2731	CB	THR			40.029	59.9		34.007	1.001	
ATOM	2732	OG1	THR			41.181	59.1		33.618 35.430	1.001	
MOTA	2733	CG2	THR			39.637	59.4		31.504	1.00	
ATOM	2736	И	TYR			40.750	59.6 59.6		30.240		39.45
ATOM	2737	CA	TYR			41.514	60.8		30.250		39.45
-	2738	C	TYR			42.391	61.6		30.980		39.45
	2739	0	TYR			42.658 40.661	59.4		29.000		60.42
ATOM	2740	CB	TYR			40.682	58.0		28.373		60.42
ATOM	2741	CG		A11		40.003	57.8		27.193		60.42
ATOM	2742	CD1	TYR			41.168	56.9		29.056		60.42
ATOM	2743	CD2		A11		39.776	56.5		26.720		60.42
ATOM	2744	CEI		A11		40.938	55.6		28.577		60.42
MOTA	2745	CE2		A11 A11		40.231	55.5		27.413	1.00	60.42
MOTA	2746	CZ		A11		39.943	54.2		26.912		60.42
MOTA	2747	OH		All		42.852	61.1		28.847	1.001	100.00
MOTA	2750	N		All		43.759	62.2		28.741		100.00
ATOM	2751	CA		A11		44.080	62.7		27.312		100.00
MOTA	2752	С О		A11		44.093	63.9		27.052		100.00
MOTA	2753	CB		A11		45.049	61.8		29.500		34.32
MOTA	2754	N		A11		44.317	61.8		26.410		68.47
ATOM	2756 2757	CA		A11		44.683	62.0	24	24.996		68.47
ATOM	2758	C		A11		44.399	63.2	213	24.093		68.47
MOTA	2759	0		A11		45.017	63.3	303	23036		68.47
ATOM	2751	N		A11		43.470	64.(	880	24.487		100.00
MOTA MOTA	2762	CA		A13		43.066	65.2	299	23.739		100.00
ATOM	2763	C		A11		41.700	65.3		23.039		100.00
MOTA	2764	ō		A11		41.049	64.		23.163		100.00
MOTA	2765	CB		A13		44.141	65.		22.727		87.32
ATOM	2766	OXT		A13		41.280	66.	178	22.385	1.00	87.32
TER	2,700		-								0.00
HETATM	1	C1	INF	I I	1	58.113	50.	247	12.231	0.00	
HETATM		N2	INF		1	57.524	51.		12.202	0.00	
HETATM		C3	INF		1	58.303	52.		12.107	0.00	
HETATM	*	C4		ĭI	1	59.686			12.036	0.00	
HETATM		C5	INE	ΙĮ	1	60.234		117	12.080	0.00	
HETATM		N6	IN	I I	1	59.434		040	12.174	0.00	
HETATM		NS	INE	I I	1	57.877		857	12.079	0.00	
HETATM		C9	INI	H I	1	59.057		550	11.988	0.00	
HETATM		Cl	O IN	ΙĒ	1	60.219		760	11.953	0.00	
HETATM		C1:	3 IN	HI	1	61.633		217	11.871	0.00	
HETATM		N1	5 IN	HI	1	61.632		906	12.042		_
HETATM		C1	6 IN	ΗI	1	56.47		327	12.146 13.391		_
HETATN	4 15	C1	7 IN	ΗI	ı	56.258		.192			-
HETATI	м 16	Cl	8 IN	H I	1	54.80		.688	13.471 12.214		
HETATI	y 17	Cl	9 IN	H I	1	54.37		.477	10.955		
HETATI		C2		H I	1	54.67		.630	10.897		_
HETATI		C2		H I	1	56.12		.136	12.268		
HETATI				H I	1	52.94		.902	12.200		
HETAT	M 29			H I	1	51.99		.774	12.400		
HETAT		C3	3 IN	H I	1	50.53	7 20	.215	15.400		

Kinase catalytic domain structure walkthrough - insulin receptor kinase





FIG.

hinge
purine core
micleotide binding
catalytic lysine
distal hydrophobic
miscellaneous



### (19) World Intellectual Property Organization International Bureau





### (43) International Publication Date 4 October 2001 (04.10.2001)

PCT

## (10) International Publication Number WO 01/72778 A3

(51) International Patent Classification7: C07K 14/71, G01N 33/68, A61P 35/00

(US). BELLAMACINA, Cornelia [US/US]; 2517 Grove Way #110, Castro Valley, CA 94564 (US).

- (21) International Application Number: PCT/US01/08853
- (22) International Filing Date: 20 March 2001 (20.03.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/192,920

29 March 2000 (29.03.2000) US

- (71) Applicant (for all designated States except US): KNOLL GESELLSCHAFT MIT BESCHRAENKTER HAF-TUNG [DE/DE]; Knollstrasse 50, D-67061 Ludwigshafen (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BUMP, Nancy, J. [US/US]; 376 Andover Street, Lowell, MA 01852 (US). ARNOLD, Lee, D. [CA/US]; 216 Ruggles Street, Westborough, MA 01581 (US). DIXON, Richard, W. [US/US]; 19 Nottingham Drive, Jefferson, MA 10522 (US). HOEFFKEN, Hans, Wolfgang [DE/DE]; Dammstuecker Weg 37, 67069 Ludwigshafen (DE). ALLEN, Karen [US/US]; 139 Beaver Road, Weston, MA 02493

- (74) Agent: DECONTI, Giulio, A.; Lahive & Cockfield, LLP, 28 State Street, Boston, MA 02109 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ. DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO. NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

with international search report

(88) Date of publication of the international search report: 2 May 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.



(54) Title: METHOD OF IDENTIFYING INHIBITORS OF TIE-2

(57) Abstract: The present invention relates to polypeptides which comprise the ligand binding domain of Tie-2, crystalline forms of these polypeptides and the use of these crystalline forms to determine the three dimensional structure of the catalytic domain of Tie-2. The invention also relates to the use of the three dimensional structure of the Tie-2 catalytic domain both alone, or in complex with inhibitors, in methods of designing and/or identifying potential inhibitors of Tie-2 activity, for example, compounds which inhibit the binding of a native substrate to the Tie-2 catalytic domain.

## INTERNATIONAL SEARCH REPORT

rnational Application No

A. CLASSII IPC 7	FICATION OF SUBJECT MATTER C07K14/71 G01N33/68 A61P35/	<b>0</b> 0			
According to	International Patent Classification (IPC) or to both national classif	ication and IPC			
	SEARCHED				
Minimum do IPC 7	cumentation searched (classification system followed by classification ${\tt C07K} - {\tt G01N}$	ation symbols)			
Documentat	tion searched other than minimum documentation to the extent tha	t such documents are included in the fields se	earched		
Electronic d	ata base consulted during the international search (name of data	base and, where practical, search terms used	)		
EPO-In	ternal, WPI Data, PAJ, BIOSIS, MEDN	_INE, CHEM ABS Data, SEQ	UENCE SEARCH		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.		
outeget,					
X	WO 98 07835 A (SCHLESSINGER JOSI CONGXIN (US); SUGEN INC (US); To 26 February 1998 (1998-02-26) claims; examples	1-3,87, 88			
А	WO 98 41525 A (KNOLL AG ;CALDERI JOHN (GB); JOHNSTON DAVID NORMAI 24 September 1998 (1998-09-24) claims; examples		1,7		
Furt	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.		
<ul> <li>Special categories of cited documents:</li> <li>A' document defining the general state of the art which is not considered to be of particular relevance:</li> <li>E' earlier document bublished on or after the international filing date filing date</li> <li>L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</li> <li>O' document referring to an oral disclosure, use, exhibition or other means</li> <li>P' document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.</li> <li>X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.</li> <li>B' document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.</li> <li>X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.</li> <li>B' document member of the same patent family</li> </ul>					
Date of the	actual completion of the international search	Date of mailing of the international se	arch report		
5	5 February 2002	15/02/2002			
Name and	mailing address of the ISA	Authorized officer			
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Fuhr, C			

### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 21-86

Present claims 21-75 relate to a method defined by reference to a desirable characteristic, namely a method for finding a compound which fits into a catalytic domain by use of the atomic coordinates of a crystal of the catalytic domain, and the compounds identified therewith.

The claims cover all methods and compounds having this characteristic, whereas the application provides no support within the meaning of Article 6 PCT and/or no disclosure within the meaning of Article 5 PCT for such methods and compounds. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the method and compounds by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the no search has been carried out for those claims.

Present claims 76-86 relate to a method defined by reference to a desirable characteristic or property, namely a method of treatment of a tie-2 related condition by administration of a compound found with above mentioned method.

The claims cover all methods having this characteristic or property, whereas the application provides nosupport within the meaning of Article 6 PCT and/or no disclosure within the meaning of Article 5 PCT for such methods. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the method by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, no search has been carried out for those claims.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

# INTERNATIONAL SEARCH REPORT

Information on patent family members

rnational Application No

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9807835	A	26-02-1998	US	5942428 A	24-08-1999
			ΑU	7338 <b>9</b> 0 B2	31-05-2001
			ΑU	4160397 A	06-03-1998
			EP	0931152 A2	28-07-1999
			JP	2001514484 T	11-09-2001
			WO	9807835 A2	26-02-1998
WO 9841525	Α	24-09-1998	AU	6829398 A	12-10-1998
			BG	103785 A	30-06-2000
			BR	9808281 A	16-05-2000
			CN	1259950 T	12-07-2000
			WO	9841525 A1	24-09-1998
			EP	0970084 A1	12-01-2000
			HU	0001507 A2	28-10-2000
			JP	2001516353 T	25-09-2001
			NO	994509 A	17-09-1999
			PL	335685 A1	08-05-2000
			SK	125999 A3	16-05-2000
			TR	9902301 T2	21-12-1999
			US	6001839 A	14-12-1999