

數位邏輯設計

4.2 Combinational Circuits

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Combinational & Sequential Logic

- A Combinational Circuit consists of Logic gates whose outputs at any time are determined from only the present value of inputs.
- A Sequential Circuit consists of Logic gates whose outputs at any time are determined from not only the present value of inputs, but also on past input.
- Combinational circuits employ only logic gates.
- Sequential circuits employ storage elements in addition to logic gates.

Combinational Circuit

- The diagram of a combinational circuit has logic gates with **no feedback paths or memory elements**.
- Characteristics of the following diagram
 - $\geq 2^n$ possible combinations of input values.
 - Described by *m* Boolean functions and each function is expressed in terms of the n input variables.

Important Standard Combinational Circuit

- Standard combinational circuit
 - ➤ adders, subtractors, multiplier
 - > comparators,
 - > decoders, encoders,
 - > multiplexers
- The above components are available in integrated circuits as medium scale integration (MSI) circuit.
- They are also standard cells in complex very large scale integrated (VLSI) circuit.

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.3 Analysis Procedure

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Analysis Procedures of Combinational Circuit

- Step 1:
 - ➤ make sure that it is combinational not sequential■ No feedback path or memory elements.
- Step 2.
 - > derive its Boolean functions or truth table.

Examples

■ Step 1: This circuit is a combinational circuit.

No feedback! No register!

Derive Boolean Function

■ Step 2:

Derive Truth Table

■ Step 2:

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.4 Design Procedure

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

- 1. Determine inputs and outputs from the specifications and assign a symbol to each.
- 2. Derive the truth table that defines the relationship between inputs and outputs.
- 3. Obtain the simplified Boolean functions for each output (by K-Map).
- 4. Draw the logic diagram and verify the correctness of the design (manually or by simulation).

- Convert 4bits binary coded decimal (BCD) to excess-3 code.
- Inputs: bits of BCD code.
 - $\triangleright A,B,C,D$
- Output: bits of excess-3 code.
 - \triangleright x, y, z, w

- Step 1:
 - Determine inputs and outputs from the specifications and assign a symbol to each.

	Inpu	t BCD)	Out	out Ex	cess-3	3 Code
Α	В	C	D	w	X	V	Z

■ Step 2:

Derive the truth table that defines the relationship between inputs and outputs.

	Input BCD			Output Excess-3 Co			
Α	В	C	D	w	X	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	O	0	1	1	1	0	0

- Step3:
 - ➤ Obtain the simplified Boolean functions for each output.

■ The simplified functions

$$z = D'$$

$$y = CD + C'D'$$

$$x = B'C + B'D + BC'D'$$

$$w = A + BC + BD$$

Two-level

AND gates: 7

OR gates: 3

Another implementation

$$z = D'$$

$$y = CD + C'D' = CD + (C+D)'$$

$$x = B'C + B'D + BC'D' = B'(C+D) + B(C+D)'$$

$$w = A + BC + BD = A + B(C+D)$$

Three-level

AND gates: 4

OR gates: 4

■ Logic Diagram for BCD-to-excess-3 Code Converter

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.5.1 Half Adder and Full Adder

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Half Adder

■ Function

$$>0+0=0$$
; $0+1=1$; $1+0=1$; $1+1=10$

Inputs

$$\triangleright x$$
, y

- outputs
 - $\succ C$ (carry)
 - >S (sum)
- truth table

X	y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

Boolean Functions

$$\triangleright S = x'y + xy' = x \oplus y$$

$$> C = xy$$

Implementations

- The arithmetic sum of three input bits
- input bits
 - $\rightarrow x$, y: two significant bits
 - $\geq z$: the carry bit from the previous lower significant bit
- output bits:
 - $\succ C$ (carry)
 - >S (sum)

■ Truth Table

x	y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Simplified the Boolean Functions

(a)
$$S = x'y'z + x'yz' + xy'z' + xyz$$

(b) C = xy + xz + yz

Implementation

Simplified the Boolean Functions

$$\triangleright$$
 $S = x'y'z + x'yz' + xy'z' + xyz = z \oplus (x \oplus y)$

$$ightharpoonup C = xy + xz + yz = z(x \oplus y) + xy$$

Implementation

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.5.1(補充)Half Adder and Full Adder

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Full Adder & Half Adder

Half Adder

■ Full Adder

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.5.2 Binary Adder

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Full Adder & Binary Adder

■ 4 bit adder

Subscript <i>i</i> :	3	2	1	0	
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_i
Output carry	0	0	1	1	C_{i+}

4 bits Binary Adder

Carry Propagation

 C_i to C_{i+1} : need 2 gate level; C_0 to C_4 : need 8 gate level For an n-bits adder, there are 2n gate level for the carry to propagate from input to output.

Carry Look Ahead

Purpose:

> Reduce the carry propagation delay

Formula

- \triangleright carry propagate: $P_i = A_i \oplus B_i$
- \triangleright carry generate: $G_i = A_i B_i$
- \triangleright sum: $S_i = P_i \oplus C_i$
- \triangleright carry: $C_{i+1} = G_i + P_i C_i$

Boolean functions of Carries

- $ightharpoonup C_0 = \text{input carry}$
- $\triangleright C_1 = G_0 + P_0 C_0$
- $> C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$
- $ho C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

Carry Lookahead Generator

Only 2 gate levels for the carry to propagate from input to output!

4-bit carry-look ahead adder

carry propagate: $P_i = A_i \oplus B_i$

carry generate: $G_i = A_i B_i$

 $C_0 = \text{input carry}$

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.5.3 Binary Subtractor

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Binary Subtractor

A-B = A+(2's complement of B) = A + B' + 1

Binary Subtractor

- $\blacksquare A B = A + (2$'s complement of B)
- 4-bit Adder Subtractor

$$> M = 0, A + B;$$

$$M=1, A+B'+1$$

Binary Adder

■ M=0

Binary Subtractor

Overflow

- The storage is limited
 - ➤ 4-bits : -8 ~7

6 0110 -6 1010 2 0010 -2 1110 5 0101 -5 1011 3 0011 -3 1101 11 01011 -11 10101 5 00101 -5 11011
$$C_3=1, C_4=0$$
 $C_3=0, C_4=1$ $C_3=0, C_4=0$ $C_3=1, C_4=1$

- Overflow Detection: $V=C_3 \oplus C_4$
 - \triangleright V = 0 \rightarrow no overflow;
 - $ightharpoonup V = 1 \rightarrow \text{overflow}$

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.6 Decimal Adder

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

BCD Adder

- Add two BCD's
 - ≥9 inputs: two BCD's and one carry-in
 - > 5 outputs: one BCD and one carry-out
- Design approaches
 - ➤ A truth table with 2^9 entries → Bad idea!
 - >use binary full Adders
 - \rightarrow the sum $\leq 9 + 9 + 1 = 19$
 - binary to BCD

BCD Adder

Binary Sum					BCD Sum					Decima	
K	Z_8	Z_4	Z ₂	Z ₁	c	S ₈	S ₄	S2	Sı	72	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	2	
0	0	0	1	1	0	0	0	1	1	3	
0	0	1	0	0	0	0	1	0	0	4	
0	0	1	0	1	0	0	1	0	1	5	
0	0	1	1	0	0	0	1	1	0	6	
0	0	1	1	1	0	0	1	1	1	7	
0	1	0	0	0	0	1	0	0	0	8	
0	1	0	0	1	0	1	0	0	1	9	
0	1	0	1	0	1	0	0	0	0	10	
0	1	0	1	1	1	0	0	0	1	11	
0	1	1	0	0	1	0	0	1	0	12	
0	1	1	0	1	1	0	0	1	1	13	
0	1	1	1	0	1	0	1	0	0	14	
0	1	1	1	1	1	0	1	0	1	15	
1	0	0	0	0	1	0	1	1	0	16	
1	0	0	0	1	1	0	1	1	1	17	
1	0	0	1	0	1	1	0	0	0	18	
1	0	0	1	1	1	1	0	0	1	19	

$$C = K + Z_8 Z_4 + Z_8 Z_2$$

$$S = Z + 0000 \text{ if } C=0$$

$$S = Z + 0110$$
 if $C=1$

BCD Adder

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.7 Binary Multiplier

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

2 Bits Binary Multiplier

- Partial products
 - > AND operations
- Sum of partial Products
 - ➤ Half Adder

4-bit by 3-bit binary multiplier

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.8 Magnitude Comparator

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Design Concepts for Comparator

- The comparison of two numbers
 - >outputs: A>B, A=B, A<B
- Design Approaches
 - >truth table
 - $+2^{2n}$ entries too cumbersome for large n
 - *>* use inherent regularity of the problem
 - reduce design efforts
 - reduce human errors

Algorithms

- Two binary number: $(A = A_3A_2A_1A_0; B = B_3B_2B_1B_0)$
- Equality for each bits: $x_i = A_i B_i + A_i' B_i'$, for i = 0, 1, 2, 3

Algorithm:

$$(A=B) = x_3x_2x_1x_0$$
 (A=B if $A_3=B_3$, $A_2=B_2$, $A_1=B_1$ and $A_0=B_0$)

$$(A>B) = A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$$

$$(A>B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$$

Implementation

$$x_i = A_i B_i + A_i' B_i' = (A_i' B_i + A_i B_i')'$$

Exclusive-NOR

Four bit Magnitude Comparator

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.9 Decoder

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

n-to-m decoder

- \blacksquare a binary code of *n* bits = 2^n distinct information
- A *decoder* is a combinational circuit that converts binary information from n input line to a m ($m \le 2^n$) unique output lines.
- only one output can be active $(D_i = 1)$ at any time.
- Truth table of a 3 to 8 decoder:

Inputs					Out	puts				
x	y	z	Do	D ₁	D ₂	D_3	D_4	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Implementation of 3 to 8 decoder

■ Each one of the eight AND gates generates one of minterms.

2-to-4 line decoder with enable input

- It is more economical to generate the decoder minterms in their complement form by using NAND gates.
- Examples:
 - \triangleright Enable when E=0
 - \triangleright Output is activated if $D_i = 0$

E	A	В	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

(a) Logic diagram

(b) Truth table

4-to-16 decoder

■ A 4-to-16 decoder can be constructed by using two 3-to-8 decoders

4X16 decoder

Combination Logic Implementation

- ■each output = a minterm
- use a decoder and an external OR gate to implement any Boolean function of n input variables

Implementation of a Full Adder with a Decoder

■Boolean function of a full-adder

$$> S(x,y,x) = \Sigma(1,2,4,7)$$

$$> C(x,y,z) = \Sigma(3,5,6,7)$$

x	y	z	С	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Full Adder

Implementation of Boolean Function

- two possible approaches using decoder
 - \triangleright OR(minterms of F): k inputs
 - \triangleright NOR(minterms of F'): $2^n k$ inputs
- Example:

$$F(x,y,x)=\Sigma(0,1,2,4,6,7)$$

$$F'(x,y,x)=\Sigma(3,5)$$

2024/4

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.10 Encoder

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Encoder

Encoder:

- > A digital circuit that perform the inverse operation of a decoder.
- $\geq 2^n$ (or fewer) input lines and *n* output lines.
- \triangleright Only one input is activated $(D_i=I)$

Example : Octal to binary encoder

	Inputs							Outputs			
Do	D ₁	D ₂	D_3	D_4	D ₅	D_6	D ₇	x	y	z	
1	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	0	0	1	0	0	0	0	0	1	1	
0	0	0	0	1	0	0	0	1	0	0	
0	0	0	0	0	1	0	0	1	0	1	
0	0	0	0	0	0	1	0	1	1	0	
0	0	0	0	0	0	0	1	1	1	1	

$$z = D_1 + D_3 + D_5 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$x = D_4 + D_5 + D_6 + D_7$$

Encoder

- Function of encoder fails
 - > when multiple inputs are activated.
 - > All inputs are 0.
- **Example**:

$$D_3=1 \& D_6=1 \implies x=y=z=1;$$

$$z = D_1 + D_3 + D_5 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$x = D_4 + D_5 + D_6 + D_7$$

A higher priority for inputs with higher subscript numbers. $(D_3=1$ & $D_6=1$ $\rightarrow D_6$ is activated).

Priority Encoder

- A *priority encoder* is an encoder circuit that includes the priority function.
- A priority encoder is used to resolve the ambiguity of illegal inputs (multiple inputs are 1 at the same time).
- Example:
 - $\gt V=0$ if all inputs =0;
 - higher priority for inputs with higher subscript numbers

	Inp	uts	O	utput	S	
Do	D ₁	D ₂	D ₃	x	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

Maps for a priority encoder

	Inp	uts	C	utput	S	
D ₀	D ₁	D ₂	D ₃	x	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

$$x = D_{2} + D_{3}$$

$$y = D_{3} + D_{1}D_{2}'$$

$$V = D_{0} + D_{1} + D_{2} + D_{3}$$

Implementation of a priority encoder

$$x = D_2 + D_3$$

$$y = D_3 + D_1 D_2'$$

$$V = D_0 + D_1 + D_2 + D_3$$

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.11.1 Multiplexer & Demultiplexer

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Recall: Decoder & Encoder

Inputs						Out	puts			
x	y	z	Do	D ₁	D ₂	D_3	D_4	D ₅	D_6	D_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

			Inp	uts			10	C	utput	S
D _o	D ₁	D ₂	D_3	D ₄	D ₅	D ₆	D ₇	x	y	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Multiplexer and Demultiplexer

- *Multiplexer*: a circuit that selects binary information from one of many input lines and direct it to a single line.
- **Demultiplexer**: a circuit that receive information from a single line and transmits it on one of many output lines.

Demultiplexers

- Example : 1 to 4 line demultiplexer
 - ➤ Data input : D
 - ➤ Selection input *A*, *B*
 - \triangleright Output: Y_i

Truth Table

A	В	\mathbf{Y}_0	\mathbf{Y}_1	Y_2	Y_3
0	0	D	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

2-to-1-line multiplexer

4-to-1-line multiplexer

■ Truth table

S_1	S_0	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

Implementation

- Data inputs:
 - $\triangleright A_i, B_i$
- Selection input:
 - > S
- Enable input:
 - $\triangleright E$
- **Outputs**
 - $> Y_i$

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

數位邏輯設計

4.11.2 Multiplexer

主講者:吳順德

國立臺灣師範大學機電工程系 副教授

Multiplexer

Three-State (Tri-State) Gates

- Three-state gates:
 - ➤ Output state: 0, 1, and high-impedance.
- High impedance:
 - **➣** The logic behaves like open circuit (output is disconnected).
 - The circuit has no logic significant.
- Graph Symbol

Construct Multiplexer by Three State Gates

4-to-1 line multiplexer

\(\)

Ways for Implementing Multiplexer

AND – OR Gates

Three state gates + decoder

 $E=0 \implies$ all of the three-state buffer are inactive \implies Y high impedance $E=1 \implies$ only one of the three-state buffers will active.

- n variable Boolean function implemented by using multiplexer:
 - 1. First *n*-1 variables are connected to the selection inputs of the multiplexer.
 - 2. The remaining single variable denoted by *z* is used for the data input.
 - 3. The data input of the multiplexer will be z, z', l or 0

Example:

$$F(x,y,z) = \Sigma(1,2,6,7)$$

	F	z	y	x
F = z	0	0	0	0
	1	1	0	0
F = z'	1	0	1	0
	0	1	1	0
F = 0	0	0	0	1
1 - 0	0	1	0	1
F = 1	1	0	1	1
1 - 1	1	1	1	1

(a) Truth table

Example:

$F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

A	В	C	D	F	
0	0	0	0	0	F = D
0	0	0	1	1	<i>i</i> – <i>D</i>
0	0	1	0	0	F = D
0	0	1	1	1	ts enemi
0	1	0	0	1	F = D'
0	1	0	1	0	
0	1	1	0	0	F = 0
0	1	1	1	0	• •
1	0	0	0	0	F = 0
1	0	0	1	0	
1	0	1	0	0	F = D
1	0	1	1	1	I - D
1	1	0	0	1	F = 1
1	1	0	1	1	E = 1
1	1	1	0	1	F = 1
1	1	1	1	1	r = 1

Reference

■ M. M. Mano and M. D. Ciletti, "Digital Design," 5th Ed., Pearson Education Limited, 2013.

