# Chapter 9 Input Modeling

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

## Purpose & Overview



- Input models provide the driving force for a simulation model.
- The quality of the output is no better than the quality of inputs.
- In this chapter, we will discuss the 4 steps of input model development:
  - □ Collect data from the real system
  - Identify a probability distribution to represent the input process
  - □ Choose parameters for the distribution
  - Evaluate the chosen distribution and parameters for goodness of fit.

### **Data Collection**



- Suggestions that may enhance and facilitate data collection:
  - □ Plan ahead: begin by a practice or pre-observing session, watch for unusual circumstances
  - ☐ Analyze the data as it is being collected: check adequacy
  - Combine homogeneous data sets, e.g. successive time periods, during the same time period on successive days
  - □ Be aware of data censoring: the quantity is not observed in its entirety, danger of leaving out long process times
  - Check for relationship between variables, e.g. build scatter diagram
  - Check for autocorrelation
  - Collect input data, not performance data

# Identifying the Distribution



- Histograms
- Selecting families of distribution
- Parameter estimation
- Goodness-of-fit tests
- Fitting a non-stationary process

#### [Identifying the distribution]

- A frequency distribution or histogram is useful in determining the shape of a distribution
- The number of class intervals depends on:
  - □ The number of observations
  - □ The dispersion of the data
  - ☐ Suggested: the square root of the sample size
- For continuous data:
  - Corresponds to the probability density function of a theoretical distribution
- For discrete data:
  - Corresponds to the probability mass function
- If few data points are available: combine adjacent cells to eliminate the ragged appearance of the histogram

## [Identifying the distribution]







| Arrivals per<br>Period | Frequency  |
|------------------------|------------|
| 1 CITOU                | rrequericy |
| 0                      | 12         |
| 1                      | 10         |
| 2                      | 19         |
| 3                      | 17         |
| 4                      | 10         |
| 5                      | 8          |
| 6                      | 7          |
| 7                      | 5          |
| 8                      | 5          |
| 9                      | 3          |
| 10                     | 3          |
| 11                     | 1          |

There are sample data, so the histogram may have a cell for each possible value in the data range









## Selecting the Family of Distributions



- A family of distributions is selected based on:
  - ☐ The context of the input variable
  - □ Shape of the histogram
- Frequently encountered distributions:
  - ☐ Easier to analyze: exponential, normal and Poisson
  - □ Harder to analyze: beta, gamma and Weibull

## Selecting the Family of Distributions

[Identifying the distribution]

- Use the physical basis of the distribution as a guide, for example:
  - □ Binomial: # of successes in n trials
  - □ Poisson: # of independent events that occur in a fixed amount of time or space
  - Normal: dist'n of a process that is the sum of a number of component processes
  - Exponential: time between independent events, or a process time that is memoryless
  - □ Weibull: time to failure for components
  - □ Discrete or continuous uniform: models complete uncertainty
  - ☐ Triangular: a process for which only the minimum, most likely, and maximum values are known
  - Empirical: resamples from the actual data collected

## Selecting the Family of Distributions

[Identifying the distribution]

- Remember the physical characteristics of the process
  - □ Is the process naturally discrete or continuous valued?
  - □ Is it bounded?
- No "true" distribution for any stochastic input process
- Goal: obtain a good approximation

#### [Identifying the distribution]



- Q-Q plot is a useful tool for evaluating distribution fit
- If X is a random variable with cdf F, then the q-quantile of X is the γ such that

$$F(\gamma) = P(X \le \gamma) = q$$
, for  $0 < q < 1$ 

- □ When *F* has an inverse,  $\gamma = F^{-1}(q)$
- Let  $\{x_i, i = 1, 2, ..., n\}$  be a sample of data from X and  $\{y_j, j = 1, 2, ..., n\}$  be the observations in ascending order:

$$y_j$$
 is approximately  $F^{-1}\left(\frac{j-0.5}{n}\right)$ 

where *j* is the ranking or order number

[Identifying the distribution]



- The plot of  $y_j$  versus  $F^{-1}((j-0.5)/n)$  is
  - □ Approximately a straight line if F is a member of an appropriate family of distributions
  - ☐ The line has slope 1 if *F* is a member of an appropriate family of distributions with appropriate parameter values

#### [Identifying the distribution]



□ The observations are now ordered from smallest to largest:

| j | Value | j  | Value  | j  | Value  |
|---|-------|----|--------|----|--------|
| 1 | 99.55 | 6  | 99.98  | 11 | 100.26 |
| 2 | 99.56 | 7  | 100.02 | 12 | 100.27 |
| 3 | 99.62 | 8  | 100.06 | 13 | 100.33 |
| 4 | 99.65 | 9  | 100.17 | 14 | 100.41 |
| 5 | 99.79 | 10 | 100.23 | 15 | 100.47 |

□  $y_j$  are plotted versus  $F^{-1}((j-0.5)/n)$  where F has a normal distribution with the sample mean (99.99 sec) and sample variance  $(0.2832^2 \text{ sec}^2)$ 

#### [Identifying the distribution]

Example (continued): Check whether the door installation



#### [Identifying the distribution]



- Consider the following while evaluating the linearity of a q-q plot:
  - The observed values never fall exactly on a straight line
  - □ The ordered values are ranked and hence not independent, unlikely for the points to be scattered about the line
  - □ Variance of the extremes is higher than the middle. Linearity of the points in the middle of the plot is more important.
- Q-Q plot can also be used to check homogeneity
  - Check whether a single distribution can represent both sample sets
  - □ Plotting the order values of the two data samples against each other

## Parameter Estimation

#### [Identifying the distribution]



- Next step after selecting a family of distributions
- If observations in a sample of size n are  $X_1, X_2, ..., X_n$  (discrete or continuous), the sample mean and variance are:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} \qquad S^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}}{n-1}$$

If the data are discrete and have been grouped in a frequency distribution:

$$\bar{X} = \frac{\sum_{j=1}^{k} f_j X_j}{n} \qquad S^2 = \frac{\sum_{j=1}^{k} f_j X_j^2 - n \bar{X}^2}{n-1}$$

where  $f_j$  is the observed frequency of value  $X_j$ 

## Parameter Estimation

#### [Identifying the distribution]



When raw data are unavailable (data are grouped into class intervals), the approximate sample mean and variance are:

$$\overline{X} = \frac{\sum_{j=1}^{c} f_{j} m_{j}}{n} \qquad S^{2} = \frac{\sum_{j=1}^{c} f_{j} m_{j}^{2} - n \overline{X}^{2}}{n-1}$$

where  $f_j$  is the observed frequency of in the jth class interval  $m_i$  is the midpoint of the jth interval, and c is the number of class intervals

- A parameter is an unknown constant, but an estimator is a statistic.
- Estimator depends on the sample values.

## Parameter Estimation

#### [Identifying the distribution]



Vehicle Arrival Example (continued): Table in the histogram example on slide 6 (Table 9.1 in book) can be analyzed to obtain:

$$n = 100, f_1 = 12, X_1 = 0, f_2 = 10, X_2 = 1,...,$$
  
and  $\sum_{j=1}^{k} f_j X_j = 364$ , and  $\sum_{j=1}^{k} f_j X_j^2 = 2080$ 

The sample mean and variance are





- ☐ The histogram suggests *X* to have a Possion distribution
  - However, note that sample mean is not equal to sample variance.
  - Reason: each estimator is a random variable, is not perfect.

# **Exponential Distribution**

$$f(x) = \lambda e^{-\lambda x}$$

$$f(x_1, x_2, ..., x_n) = \lambda e^{-\lambda x_1} \cdot \lambda e^{-\lambda x_2} ... \lambda e^{-\lambda x_n} = \lambda^n e^{-\lambda \sum_{i=1}^n x_i}$$

$$L(\lambda) = \lambda^n e^{-\lambda \sum_{i=1}^n x_i}$$

$$\ln L(\lambda) = n \ln(\lambda) - \lambda \sum_{i=1}^n x_i$$

$$\frac{n}{\lambda} - \sum_{i=1}^n x_i = 0 \implies \lambda = \frac{n}{\sum_{i=1}^n x_i} = 1/\bar{X}$$

## Goodness-of-Fit Tests

#### [Identifying the distribution]



- Conduct hypothesis testing on input data distribution using:
  - □ Kolmogorov-Smirnov test
  - ☐ Chi-square test
- No single correct distribution in a real application exists.
  - ☐ If very little data are available, it is unlikely to reject any candidate distributions
  - ☐ If a lot of data are available, it is likely to reject all candidate distributions
- So,
  - □ Failing to reject a candidate == one piece of evidence in favor of that choice
  - □ rejecting a input model == one piece of evidence against that choice

#### [Goodness-of-Fit Tests]



- Intuition: comparing the histogram of the data to the shape of the candidate density or mass function
- Valid for large sample sizes when parameters are estimated by maximum likelihood
- By arranging the n observations into a set of k class intervals or cells, the test statistics is:



which **approximately** follows the chi-square distribution with k-s-1 degrees of freedom, where s = # of parameters of the hypothesized distribution estimated by the sample statistics.

#### [Goodness-of-Fit Tests]



The hypothesis of a chi-square test is:

 $H_0$ : The random variable, X, conforms to the distributional assumption with the parameter(s) given by the estimate(s).

 $H_1$ : The random variable X does not conform.

- If the distribution tested is discrete and combining adjacent cell is not required (so that E<sub>i</sub> > minimum requirement):
  - Each value of the random variable should be a class interval, unless combining is necessary, and

$$p_i = p(x_i) = P(X = x_i)$$

#### [Goodness-of-Fit Tests]



If the distribution tested is continuous:

$$p_i = \int_{a_{i-1}}^{a_i} f(x) dx = F(a_i) - F(a_{i-1})$$

where  $a_{i-1}$  and  $a_i$  are the endpoints of the  $i^{th}$  class interval and f(x) is the assumed pdf, F(x) is the assumed cdf.

 $\square$  Recommended number of class intervals (k):

|   | Sample Size, n | Number of Class Intervals, k   |  |
|---|----------------|--------------------------------|--|
| • | 20             | Do not use the chi-square test |  |
|   | 50             | 5 to 10                        |  |
|   | 100            | 10 to 20                       |  |
|   | > 100          | n <sup>1/2</sup> to n/5        |  |

Caution: Different grouping of data (i.e., k) can affect the hypothesis testing result.

#### [Goodness-of-Fit Tests]



 $H_0$ : the random variable is Poisson distributed.

 $H_1$ : the random variable is not Poisson distributed.

| <b>x</b> <sub>i</sub> | Observed Frequency, O <sub>i</sub> | Expected Frequency, E <sub>i</sub> (O <sub>i</sub> - | $E_{i})^{2}/E_{i} \qquad E_{i} = np(x)$ |
|-----------------------|------------------------------------|------------------------------------------------------|-----------------------------------------|
| 0                     | ر 12                               | 2.6                                                  | $e^{-\alpha}\alpha^x$                   |
| 1                     | 10 }                               | 9.6                                                  |                                         |
| 2                     | 19                                 | 17.4                                                 | =n                                      |
| 3                     | 17                                 | 21.1                                                 | 0.8                                     |
| 4                     | 19                                 | 19.2 4                                               | .41                                     |
| 5                     | 6                                  | 14.0                                                 | .57                                     |
| 6                     | 7                                  | 8.5                                                  | .26                                     |
| 7                     | 5 )                                | 4.4                                                  |                                         |
| 8                     | 5                                  | 2.0                                                  |                                         |
| 9                     | 3 >                                | 0.8 > 11                                             | Combined because                        |
| 10                    | 3                                  | 0.3                                                  |                                         |
| > 11                  | 1 )                                | 0.1 J                                                | of min $E_i$                            |
|                       | 100                                | 100.0 27                                             | 7.68                                    |

□ Degree of freedom is k-s-1 = 7-1-1 = 5, hence, the hypothesis is rejected at the 0.05 level of significance.

$$\chi_0^2 = 27.68 > \chi_{0.05,5}^2 = 11.1$$

# Chi-Square test, equal probabilities



- Use class intervals that are equal in probability
- Only when raw data is available
- Using equal probabilities:

$$E_i = np_i \ge 5, p_i = \frac{1}{k}$$

$$\frac{n}{k} \ge 5 => k \le \frac{n}{5}$$

# Chi-Square test, equal probabilities



$$\hat{\lambda} = \frac{1}{\overline{X}} = 0.084, \quad n = 50 = k \le 10$$

 $H_0$ : the random variable is exponentially distributed.

 $H_1$ : the random variable is not exponentially distributed

$$k = 8 = p = 0.125$$

$$F(a_i) = 1 - e^{-\lambda a_i}$$
,  $i = 1, 2, ..., k$ 

$$ip = 1 - e^{-\lambda a_i} = > a_i = -\frac{1}{\lambda} \ln(1 - ip), i = 0,1,...,k$$

$$\alpha = 0.05, k-s-1=8-1-1=6$$

$$\chi^2_{\alpha,k-s-1} = 12.6$$

# Chi-Square test, equal probabilities



| Class<br>Interval  | Observed Frequency $O_i$ | Expected Frequency $E_i$ | $\frac{(O_i - E_i)^2}{E_i}$ |
|--------------------|--------------------------|--------------------------|-----------------------------|
| [0, 1.590)         | 19                       | 6.25                     | 26.01                       |
| [1.590, 3.425)     | 10                       | 6.25                     | 2.25                        |
| [3.425, 5.595)     | 3                        | 6.25                     | 0.81                        |
| [5.595, 8.252)     | 6                        | 6.25                     | 0.01                        |
| [8.252, 11.677)    | 1                        | 6.25                     | 4.41                        |
| [11.677, 16.503)   | 1                        | 6.25                     | 4.41                        |
| [16.503, 24.755)   | 4                        | 6.25                     | 0.81                        |
| $[24.755, \infty)$ | 6                        | 6.25                     | 0.01                        |
|                    | 50                       | 50                       | 39.6                        |

## Kolmogorov-Smirnov Test



- Intuition: formalize the idea behind examining a q-q plot
- Recall from Chapter 7.4.1:
  - □ The test compares the **continuous** cdf, F(x), of the hypothesized distribution with the empirical cdf,  $S_N(x)$ , of the N sample observations.
  - □ Based on the maximum difference statistics (Tabulated in A.8):

$$D = \max |F(x) - S_N(x)|$$

- A more powerful test, particularly useful when:
  - □ Sample sizes are small,
  - No parameters have been estimated from the data.

## Kolmogorov-Smirnov Test



- Compares the continuous cdf, F(x), of the uniform distribution with the empirical cdf, S<sub>N</sub>(x), of the N sample observations.
  - $\square$  We know:  $F(x) = x, \ 0 \le x \le 1$
  - □ If the sample from the RN generator is  $R_1, R_2, ..., R_N$ , then the empirical cdf,  $S_N(x)$  is:

$$S_N(x) = \frac{\text{number of } R_1, R_2, ..., R_n \text{ which are } \leq x}{N}$$

- Based on the statistic:  $D = max|F(x) S_N(x)|$ 
  - □ Sampling distribution of D is known (a function of N, tabulated in Table A.8.)

## Kolmogorov-Smirnov Test

### [Goodness-of-Fit Tests]



| i/N 0.20 0.40 0.60 0.80 1.00                                                             |                                 |
|------------------------------------------------------------------------------------------|---------------------------------|
| $    1/N - R_{(i)}     0.15   0.26   0.16   0.01   0.07 $                                | $D^{+} = max \{i/N - R_{(i)}\}$ |
| Step 2: $\begin{cases} R_{(i)} - (i-1)/N & 0.05 & 0.06 & 0.04 & 0.21 & 0.13 \end{cases}$ | $r = max \{R_{(i)} - (i-1)/N\}$ |

Step 3:  $D = max(D^+, D^-) = 0.26$ 

**Step 4:** For  $\alpha = 0.05$ ,

 $D_{\alpha} = 0.565 > D$ 

Hence,  $H_0$  is not rejected.



## p-Values and "Best Fits"





- □ The significance level at which one would just reject  $H_0$  for the given test statistic value.
- □ A measure of fit, the larger the better
- □ Large *p-value*: good fit
- ☐ Small *p-value*: poor fit

#### Vehicle Arrival Example (cont.):

- $\Box$   $H_0$ : data is Possion
- $\square$  Test statistics:  $\chi_0^2 = 27.68$ , with 5 degrees of freedom
- □ p-value = 0.00004, meaning we would reject  $H_0$  with 0.00004 significance level, hence Poisson is a poor fit.

## p-Values and "Best Fits"

[Goodness-of-Fit Tests]

- Many software use p-value as the ranking measure to automatically determine the "best fit". Things to be cautious about:
  - □ Software may not know about the physical basis of the data, distribution families it suggests may be inappropriate.
  - ☐ Close conformance to the data does not always lead to the most appropriate input model.
  - □ *p-value* does not say much about where the lack of fit occurs
- Recommended: always inspect the automatic selection using graphical methods.

## Fitting a Non-stationary Poisson Process



- Fitting a NSPP to arrival data is difficult, possible approaches:
  - ☐ Fit a very flexible model with lots of parameters or
  - Approximate constant arrival rate over some basic interval of time,
     but vary it from time interval to time interval.
- Suppose we need to model arrivals over time [0,T], our approach is the most appropriate when we can:
  - Observe the time period repeatedly and
  - □ Count arrivals / record arrival times.

## Fitting a Non-stationary Poisson Process



$$\hat{\lambda}(t) = \frac{1}{n\Delta t} \sum_{j=1}^{n} C_{ij}$$

days

where n = # of observation periods,  $\Delta t$  = time interval length  $C_{ij}$  = # of arrivals during the i<sup>th</sup> time interval on the j<sup>th</sup> observation period

Example: Divide a 10-hour business day [8am,6pm] into equal intervals k = 20 whose length  $\Delta t = \frac{1}{2}$ , and observe over n =3

**Number of Arrivals Estimated Arrival** Day 1 Day 2 **Time Period** Day 3 Rate (arrivals/hr) For instance, 8:00 - 8:00 10 24 12 14 1/3(0.5)\*(23+26+32) 8:30 - 9:00 23 26 32 54 = 54 arrivals/hour 9:00 - 9:30 27 32 52 18 9:30 - 10:00 20 13 12 30

# Selecting Model without Data

- If data is not available, some possible sources to obtain information about the process are:
  - Engineering data: often product or process has performance ratings provided by the manufacturer or company rules specify time or production standards.
  - Expert option: people who are experienced with the process or similar processes, often, they can provide optimistic, pessimistic and most-likely times, and they may know the variability as well.
  - Physical or conventional limitations: physical limits on performance, limits or bounds that narrow the range of the input process.
  - ☐ The nature of the process.
- The uniform, triangular, and beta distributions are often used as input models.

## Multivariate and Time-Series Input Models



#### Multivariate:

For example, lead time and annual demand for an inventory model, increase in demand results in lead time increase, hence variables are dependent.

#### ■ Time-series:

□ For example, time between arrivals of orders to buy and sell stocks, buy and sell orders tend to arrive in bursts, hence, times between arrivals are dependent.

#### Covariance and Correlation





$$(X_1 - \mu_1) = \beta(X_2 - \mu_2) + \varepsilon$$

$$\varepsilon \text{ is a random variable}$$

is a random variable with mean  $\theta$  and is independent of  $X_2$ 

- $\square$   $\beta$  = 0,  $X_1$  and  $X_2$  are statistically independent
- $\square$   $\beta > 0$ ,  $X_1$  and  $X_2$  tend to be above or below their means together
- $\square$   $\beta$  < 0,  $X_1$  and  $X_2$  tend to be on opposite sides of their means
- Covariance between  $X_1$  and  $X_2$ :

$$cov(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E(X_1X_2) - \mu_1\mu_2$$

where  $cov(X_1, X_2)$   $\begin{cases} = 0, \\ < 0, \\ > 0, \end{cases}$  then  $\beta$   $\begin{cases} = 0 \\ < 0 \\ > 0 \end{cases}$ 

#### Covariance and Correlation



#### [Multivariate/Time Series]

Correlation between  $X_1$  and  $X_2$  (values between -1 and 1):

$$\rho = \operatorname{corr}(X_1, X_2) = \frac{\operatorname{cov}(X_1, X_2)}{\sigma_1 \sigma_2}$$

- where  $corr(X_1, X_2)$   $\begin{cases} = 0, \\ < 0, \\ > 0, \end{cases}$  then  $\beta \begin{cases} = 0 \\ < 0 \\ > 0 \end{cases}$
- □ The closer  $\rho$  is to -1 or 1, the stronger the linear relationship is between  $X_1$  and  $X_2$ .

#### Covariance and Correlation

[Multivariate/Time Series]

- Atimeseriesisasequenceofrandomvariables  $X_1, X_2, X_3, ...$ , are identically distributed (same mean and variance) but dependent.
  - $\square$  cov( $X_t$ ,  $X_{t+h}$ ) is the lag-h autocovariance
  - $\square$  corr( $X_t$ ,  $X_{t+h}$ ) is the lag-h autocorrelation
  - □ If the autocovariance value depends only on h and not on t, the time series is covariance stationary

# Multivariate Input Models



- If  $X_1$  and  $X_2$  are normally distributed, dependence between them can be modeled by the bivariate normal distribution with  $\mu_1$ ,  $\mu_2$ ,  $\sigma_1^2$ ,  $\sigma_2^2$  and correlation  $\rho$ 
  - To Estimate  $\mu_1$ ,  $\mu_2$ ,  $\sigma_1^2$ ,  $\sigma_2^2$ , see "Parameter Estimation" (slide 15-17, Section 9.3.2 in book)
  - To Estimate  $\rho$ , suppose we have n independent and identically distributed pairs  $(X_{11}, X_{21}), (X_{12}, X_{22}), \dots (X_{1n}, X_{2n})$ , then:

$$cov(X_1, X_2) = \frac{1}{n-1} \sum_{j=1}^{n} (X_{1j} - \hat{X}_1)(X_{2j} - \hat{X}_2)$$
$$= \frac{1}{n-1} \left( \sum_{j=1}^{n} X_{1j} X_{2j} - n \hat{X}_1 \hat{X}_2 \right)$$

$$\hat{\rho} = \frac{\hat{\text{cov}}(X_1, X_2)}{\hat{\sigma}_1 \hat{\sigma}_2}$$
Sample deviation

## Summary



- In this chapter, we described the 4 steps in developing input data models:
  - ☐ Collecting the raw data
  - Identifying the underlying statistical distribution
  - □ Estimating the parameters
  - □ Testing for goodness of fit