Лабораторная работа №1: Вычислительный эксперимент

Тема работы

Исследование видимых траекторий движения планет солнечной системы на примере Марса.

Постановка задачи

Организовать и провести вычислительный эксперимент для исследования видимых траекторий движения планет Солнечной системы средствами электронных таблиц. Исследовать видимую траекторию движения Марса.

Оборудование

- ПК (Использовался ноутбук с установленной ОС GNU/Linux)
- Табличный процессор (в ходе работы использовался LibreOffice Calc 7.0)

Математическая модель

Уравнения движения Марса относительно Земли имеют вид:

$$x = r_1 \cos(w_1 t + j) - r_2 \cos(w_2 t + j)$$

$$y = r_1 \sin(w_1 t + j) - r_2 \sin(w_2 t + j)$$

где $w = 2\pi/T$ (T – период обращения планеты вокруг Солнца).

Описание переменных и постоянных

Переменная	Суть	Значение
X	X-координата Марса в гелеоцентрической системе координат	$x = r_1 \cos(w_1 t + j) - r_2 \cos(w_2 t + j)$ $j)$
у	Y-координата Марса в гелеоцентрической системе координат	$y = r_1 \sin(w_1 t + j) - r_2 \sin(w_2 t + j)$ $j)$
r_1	Расстояние от Марса до солнца	227,9 млн. км.
r_2	Расстояние от Земли до солнца	149,6 млн. км.
T_1	Период обращения Марса	687 дней

Переменная	Суть	Значение
	вокруг Солнца	
T_2	Период обращения Земли вокруг Солнца	365,25 дней
j	Угол поворота	0 радиан
W_1	$w_1 = 2\pi/T_1$	0,009145830141455
W ₂	$w_2 = 2\pi/T_2$	0,017202423838959

Ход эксперимента: таблица и график траектории

Траектория движения Марса вокруг Земли (ближайшие 10 тыс. дней)

Анализ результатов эксперимента

Из графика и результатов вычислений можно сделать вывод, что расстояние от Земли до Марса не постоянно и варьируется в пределах приблизительно от 70 до 400 млн. км.

Вывод

Используя современные технологии, можно в сжатые сроки смоделировать и визуализировать такие явления, как движение планет в Солнечной системе и не только.