653

(1)

毎秒N個の電子が陽極に到達しているとする。

1[A]は導体の断面を1秒間に1[C]の電流により流れる電荷であるので、

$$I=eN$$
 となる。

$$I=6.4\times 10^{-3}A$$
 , $e=1.6\times 10^{-19}C$ を代入して、 $6.4\times 10^{-3}=(1.6\times 10^{-19})\cdot N$ $\therefore N=4.0\times 10^{16}$ 個

(2)

電子が1Vで加速されるときに得る運動エネルギーを1eVと定義されているので、

陽極に達した電子の運動エネルギーKは、

$$K = 40 \times 10^3 eV = 6.4 \times 10^{-15} J$$

(3)

電子が1Vで加速されるときに得る運動エネルギーを1eVと定義されているので、 最短波長を λ_0 とすると、光子のエネルギー $h\frac{c}{\lambda_0}$ は、運動エネルギーKに等しいので、

$$K = h \frac{c}{\lambda_0}$$

$$K=6.4\times 10^{-15}J$$
 , $h=6.6\times 10^{-34}J\cdot s$, $c=3.0\times 10^8\,m/_S$ を代入して、 $6.4\times 10^{-15}=(6.6\times 10^{-34})\cdot \frac{3.0\times 10^8}{\lambda_0}$

$$\lambda_0 = 3.09 \times 10^{-11} m$$