Objectif. Tableau de variation d'une fonction

Exercice 1. Vrai ou Faux

a. 3 ∈ [1 ; 5]	b. 2 ∈ [4 ; 6]
c. 1 ∈]-2 ; 5[d. 5 ∈ [5 ; 6]
e. 5 ∈] 5 ; 6]	f. 2 ∈ [3 ; ∞

g. 4 ∈ [3; ∞[

Exercice 2. Pour chaque fonction, donner l'ensemble de définition D_f (l'ensemble sur lequel la fonction f est définie), et établir le tableau de variations :

Exercice 3. Une fonction f est décroissante sur $]-\infty;4]$ et croissante sur $[4;+\infty[$. On sait de plus que f(4)=-3.

Dresser le tableau de variations de f.

Exercice 4. g est une fonction dont le tableau de variations est le suivant :

x	-3	1	2	5
g	4	3 /	5	→ -3

- a. Donner le sens de variations de g sur [2; 5].
- b. En déduire quel est le nombre le plus grand entre g(3) et g(4).
- c. Indiquer sur quel intervalle g est croissante.
- d. Donner la liste des intervalles sur lesquels la fonction est décroissante.
- e. *g* admet-elle un maximum ? Quelle est sa valeur et où est-il atteint ?
- f. *g* admet-elle un minimum? Quelle est sa valeur et où est-il atteint?

Exercice 5. Pour chacune des courbes :

- a. Déterminer la valeur du maximum.
- b. Dresser le tableau de variations correspondant.

Objectif. Lire le maximum ou le minimum d'une fonction.

Exercice 6. Pour chaque tableau de variations :

- a. Donner la liste des intervalles sur lesquels la fonction est croissante.
- b. Donner la liste des intervalles sur lesquels la fonction est décroissante.
- c. Déterminer si la fonction représentée admet un maximum et/ou un minimum avec les informations disponibles.

-30

h

Objectif. Lire le signe d'une fonction

Exercice 7. Voici les courbes représentatives de trois fonctions f, g, h.

a. Dresser le tableau de signes de chaque fonction.

Exercice 8. Une fonction h est définie sur [-5; 8]. Elle s'annule en -2; 0; et 5 et est positive pour tout x appartenant à [-2; 5]. Elle est négative sinon. Dresser le tableau de signes de cette fonction.

Exercice 9. A partir du tableau de signes suivant:

x	- ∞		-3		+∞
f(x)		+	0	-	

- a. Donner les signes des nombres suivants : f(5); f(-2); f(-7)
- b. Résoudre les inéquations suivantes

(A)
$$f(x) > 0$$

(B)
$$f(x) \ge 0$$

(C)
$$f(x) < 0$$

c. Dans un repère, tracer une courbe pouvant représenter la fonction f

Objectif. Déterminer le signe d'une fonction affine.

Exercice 10.

Pour chaque fonction, donner le tableau de variations, et le tableau de signes.

a.
$$A(x) = 2x + 4$$

b.
$$B(x) = 8x - 5$$

c.
$$C(x) = -3x + 12$$

d.
$$D(x) = -7x - 2$$

e.
$$E(x) = -3x + 12$$

f.
$$F(x) = \frac{1}{2}x + 4$$

g.
$$G(x) = x - \sqrt{2}$$

f.
$$F(x) = \frac{1}{2}x + 4$$

h. $H(x) = \frac{5}{6}x + \frac{12}{7}$

Exercice 11.

a. Donner une expression possible pour la fonction f de tableau de signes suivant :

x	- ∞	2		+∞
f(x)		_ 0	+	

b. Même consigne

x	- ∞	3	3	+∞
g(x)		+ ()	_

Objectif. Déterminer le signe d'un produit ou d'un quotient.

Exercice 12. Etudier le signe des fonctions suivantes.

a.
$$A(x) = x$$

b.
$$B(x) = x^2$$

c.
$$C(x) = x^4 + 1$$

$$d. D(x) = \frac{1}{x}$$

Exercice 13. On considère la fonction f définie sur \mathbb{R} par f(x) = (3x - 4)(x + 2).

- a. Etudier le signe de 3x 4 et de x + 2 pour $x \in$
- b. Dresser le tableau de signes de la fonction *f*
- c. Représenter graphiquement f sur la calculatrice et vérifier le résultat précédent.

Exercice 14. Établir le tableau de signes des fonctions suivantes.

a.
$$A(x) = (-2x + 3)(-3x - 5)$$

b.
$$B(x) = (2x + 14)(6x + 24)$$

c.
$$C(x) = (5x - 65)(7 - 2x)$$

d.
$$D(x) = (-3x - 72)(-4x - 96)$$

e.
$$E(x) = 3(x - 7)$$

f.
$$F(x) = -2(2+x)(3-x)$$

Exercice 15. Établir le tableau de signes des fonctions suivantes.

a.
$$A(x) = \frac{x+2}{-x^3}$$

b.
$$B(x) = \frac{2x+3}{6x-4}$$

c.
$$C(x) = \frac{-3x-9}{-2x+7}$$

$$d. D(x) = \frac{x}{8-x}$$

e.
$$E(x) = \frac{\frac{2x}{6}}{-2x+1}$$

f.
$$F(x) = \frac{x}{6-2x}$$

Exercice 16. Étudier le signe des fonctions :

a.
$$A(x) = (x+6)^2 - 25$$

b.
$$B(x) = \frac{1}{x+1} + \frac{2}{x-1}$$

c.
$$C(x) = \frac{x}{(x-6)(7x+8)}$$

Exercices. Variations et signe d'une fonction – 2

Objectif. Résoudre une équation ou une inéquation à l'aide d'une étude de signe

Exercice 17. *f* est une fonction dont voici le tableau de signes.

x	- ∞		– 5		1		2
f(x)		-	0	+	0	-	

Résoudre les équations et inéquations suivantes.

$$(A) f(x) = 0$$

(B)
$$f(x) > 0$$

(C)
$$f(x) \leq 0$$

(D)
$$f(x) < 0$$

Exercice 18.

- a. Etudier le signe de (x-2)(-2x+3) pour $x \in$
- b. En déduire les solutions de l'inéquation :

(*I*):
$$(x-2)(-2x+3) > 0$$

Exercice 19. Résoudre les inéquations suivantes dans \mathbb{R} .

(A)
$$3x + 5 > -2x + 10$$

(C)
$$10x - 10 < x + 4$$

(B)
$$(9x - 1)(4 - x) < 0$$

(D)
$$x^2 - 9 < 0$$

(B)
$$(9x - 1)(4 - x) < 0$$

(E) $(3x + 2)(4x - 8) \ge 0$

(F)
$$3x^2 - 6x > 0$$

Exercice 20. Résoudre les inéquations suivantes dans \mathbb{R} .

$$(A) \frac{1}{4x+1} > 0$$

(B)
$$-\frac{2x}{} \le 0$$

(C)
$$\frac{\chi^{4\chi+1}}{\chi^{4}} > 1$$

(B)
$$-\frac{2x}{x+8} \le 0$$

(D) $\frac{x+2}{x-1} > \frac{x+1}{x}$

Exercice 21. Résoudre les inéquations suivantes dans \mathbb{R} .

(A)
$$x^2 > 16$$

(B)
$$-2x^2 + 1 < 11$$

(D) $\frac{1}{x} \ge \frac{2}{3}$

(C)
$$\frac{1}{r} < 3$$

(D)
$$\frac{1}{x} \ge \frac{2}{3}$$

Exercice 22. Déterminer l'ensemble de définition des fonctions suivantes :

a.
$$a(x) = \frac{1}{x^2 - 4}$$

b.
$$b(x) = \sqrt{5 - x}$$

c.
$$c(x) = \sqrt{x^2 + 1}$$

d.
$$d(x) = \frac{1}{x^2 + 2x + 2}$$

f. $f(x) = \frac{1}{\sqrt{x+3}}$

e.
$$e(x) = \sqrt{-x^2 + 9}$$

f.
$$f(x) = \frac{1}{\sqrt{x+3}}$$

Objectif. Etudier la position relative de courbes

Exercice 23. On considère les fonctions f et gdéfinies sur \mathbb{R} par $f(x) = 4x^2$ et g(x) = -4x - 1. Soit C_f et C_a leurs courbes représentatives dans un repère.

- a. Exprimer f(x) g(x) en fonction de $x \in \mathbb{R}$.
- b. Factoriser f(x) g(x)
- c. En déduire que $f(x) \ge g(x)$ pour $x \in \mathbb{R}$.
- d. Que peut-on en déduire concernant C_f et C_g ?

Exercice 24.

- a. Démontrer que $x^2 6x 7 = (x 3)^2 16$
- b. Déterminer le signe de $T(x) = x^2 6x 7$ sur $\mathbb{R}.$

Exercice 25. Déterminer la position relative des courbes des fonctions f et g définies sur \mathbb{R} respectivement par:

$$f(x) = x^3 + x^2 + x + 1$$
 et $g(x) = x^3 - 3x^2 + 5x$.