Partially-Observable MDPs

Monday, November 7, 2016 1:33 PM

Partially Observable MDPs

- · What if your sensors are unreliable?
- You don't know what state you are in and thus don't know which action to perform, $\pi(s)$.
- Belief state: probability distribution over the states
 - b = <1/9, 1/9, 1/9, 1/9, ...>
 - b(s) is the probability of being in state s
- Sensor model: P(e | s)
 - Probability that you receive observation e given you are in state s

- Agent update: b'(s') = ⊕P(e | s')∑sP(s' | s, a)b(s)
 Shorthand: b' = FORWARD(b, a, e)
- · If you had a policy:
 - Given b, execute $a = \pi(b)$
 - Receive percept e
 - Set b' = FORWARD(b, a, e)
- **Problem:** MDP creates $\pi(s)$, but POMDP requires $\pi(b)$

Convert POMPD to a MDP

Transition function over states T(s, a, s') = P(s' | s, a)

• State reward function: R(s)

1/2 (5)

• Belief reward function: $\rho(b) = \sum_{s} b(s) R(s)$

• Belief transition function: T(b, a, b') = P(b' | b, a)

 P(b' | e, a, b) = 1 if b' = FORWARD(b, a, e) or 0 otherwise

9 states

5

Approximation Technique

Save anything on the web to OneNote in one click
Get OneNote Web Clipper

 \times