ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs

Zhewei Yao, Amir Gholami, Kurt Keutzer, George Biros University of California, Berkeley

Residual Networks as ODEs

We can view ResNet as an Euler discretization of a Neural ODE

$$z_1 = z_0 + \int_0^1 f(z(t), \theta) dt$$
 ODE
 $z_1 = z_0 + f(z_0, \theta)$ ODE forward Euler

Neural ODEs

° In Neural ODEs, the forward solve is equivalent to solving the following integration:

$$z_1 = z_0 + \int_0^1 f(z(t), \theta) dt$$
 ODE
 $z_1 = z_0 + f(z_0, \theta)$ ODE forward Euler

How do we backpropogate gradients?

Gradient Backpropogation

 We need to first form the Lagrangian and find its saddle points (KKT conditions). This leads to the following system:

$$\frac{\partial z}{\partial t} + f(z, \theta) = 0, \quad t \in (0, 1]$$
$$-\frac{\partial \alpha(t)}{\partial t} - \frac{\partial f}{\partial z}^{T} \alpha = 0, \quad t \in [0, 1)$$
$$\alpha_{1} + \frac{\partial J}{\partial z_{1}} = 0,$$
$$g_{\theta} = \frac{\partial R}{\partial \theta} - \int_{0}^{1} \frac{\partial f(z(t), \theta)}{\partial \theta}^{T} \alpha(t) dt$$

Gradient Backpropogation

 We need to first form the Lagrangian and find its saddle points (KKT conditions). This leads to the following system:

$$\frac{\partial z}{\partial t} + f(z, \theta) = 0, \quad t \in (0, 1]$$
$$-\frac{\partial \alpha(t)}{\partial t} - \frac{\partial f}{\partial z}^{T} \alpha = 0, \quad t \in [0, 1)$$
$$\alpha_{1} + \frac{\partial J}{\partial z_{1}} = 0,$$
$$g_{\theta} = \frac{\partial R}{\partial \theta} - \int_{0}^{1} \frac{\partial f(z(t), \theta)}{\partial \theta}^{T} \alpha(t) dt$$

- To backpropogate the gradient we need to store intermediate activations in time z(t) -> O(LNt) memory footprint
 - The memory requirement is increased by a factor of Nt

Reverse ODE Solve

- A recent solution was proposed by Chen et al. to reverse ODE solve and avoid storing z(t)
 - Reduces memory cost from O(LNt) -> O(L)

But can ODEs be reversed in time?

Given z_0 we can perform forward pass to computer z_1 $\sum_{z_{1/3}}^{z_{1/3}} \sum_{z_{2/3}}^{z_{2/3}} \sum_{z_{1/3}}^{z_{1/3}} \sum_{z_{$

But can we recover z_0 by only storing z_1 and reversing ODE?

Reversibility of ODEs

- ° Reversing ODEs is in general ill-conditioned.
- ° Consider the following example:
- ° Solving this ODE is stable in forward mode

$$\frac{dz}{dt} = -\lambda^2 z(t)$$
$$z_t = z_0 \exp(-\lambda^2 t)$$

However, reverse mode solution would exponentially amplify noise

$$z_0 = z_t \exp(\lambda^2 t)$$

Irreversibility of ODEs

Demonstration of irreversibility with Euler solver

Irreversibility of ODEs

Demonstration of irreversibility with adaptive RK45 solver

ANODE: Addressing Challenges with Neural ODEs

- The memory footprint challenge could be simply addressed via checkpointing
 - O(LNt) to O(L + Nt) without the stability issue of Neural ODE

- Cannot use continuous form of optimality conditions
 - ANODE uses "Discretize-Then-Optimize" approach to obtain correct gradient information

A. Griewank. "Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation". Optimization Methods and software (1992), pp. 35–54.

A. Gholami, K. Keutzer, G. Biros. "ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs", arxiv-1902.10298

ANODE vs Neural ODE

Consider a network with L ODE layers each with Nt time steps

	Baseline	ANODE	Neural ODE
Memory Footprint	O(LNt)	O(L + Nt)	O(L)
FLOPS	O(LNt)	O(LNt)	O(LNt)
Stability	Stable Backprop	Stable Backprop	Unstable Backprop

Challenges with Neural ODEs

Results on Cifar-10 using SqueezeNext

Results on Cifar-100 using ResNet-18

ANODEV2: A Coupled Neural ODE Framework

Zhang T, Yao Z, Gholami A, Keutzer K, Gonzalez J, Biros G, Mahoney M. "ANODEV2: A Coupled Neural ODE Evolution Framework" arXiv:1906.04596.

ANODEV2: A Coupled Neural ODE Framework

Zhang T, Yao Z, Gholami A, Keutzer K, Gonzalez J, Biros G, Mahoney M. "ANODEV2: A Coupled Neural ODE Evolution Framework" arXiv:1906.04596.

THANK YOU

Code: github.com/amirgholami/anode

