EE 724 PN Junctions L3

Udayan Ganguly March 4, 2019

n/p-metal contact to semiconductor

A metal work function closer to Si CB is able to inject electrons easily into CB but not holes into VB: n-type metal Conversely p-metal may be defined.

Note: band bending is small because metal / Si Fermi levels are initially aligned.

Schottky barrier

2. Transport

To make resistor network, (1) plot free carrier profile (2) convert R=1/qµn

1. Electrostatics

Band bending can be calculated by depletion approximation

Based on the resistor network, electron current will dominate.

PS: External lead 2 must be an n-contact; so there may be addition resistance to VB

Method

- Choose Equilibrium band diagram
- Plot n(x) and p(x)
- 3. If there was a small bias applied, where will the Fermi level bend?
- 4. If larger bias was applied where will it bend?
- Think if Q4 was asked before Q3, what would be the trouble in answering Q4 directly? Would it be easier if you asked yourself Q3 first?

Three limiting cases

- Over-the-Barrier-Current
 - only T dependent in reverse bias
- Tunneling
 - No T dependence but strong V dependence in reverse bias
- Mixed
 - Both T and V dependence

Application1: Band Transport in a BJT

Question 1: Stepwise show how far the current may be calculated using QFL arguments.

Assume depletion regions are not merged (i.e. not punch-through).

Show I_C , I_b vs V_B @ constant V_C and V_C @ constant V_B

Electrostatics & Transport in BJT

1. Electrostatics: Use Depletion approximation

2 Transport (use previous algorithm 2.1 carrier profile is drawn og (n or 2.2 resistance network is drawn So we know where the E_{Fn} and E_{Fp} will bend. Or conversely where is it

flat. Can we draw this? See in the next page!

BJT transport calculation

2.3 Based on resistor network, we know where E_{Fn} and E_{Fp} is flat Electron and hole conc at edges of diffusion calculation zones known electron \square hole. \square

2.4 Electron ---- and hole ---- profiles are drawn based on transport e.g. diffusion in this case. Other mechanisms will be shown later

2.5 E_{Fn} and E_{Fp} profiles in diffusion calculation regions (where there is gradient) are created based on n and p profiles

Calculating current

Electron current calculated in p-region

$$\frac{dn}{dt} = \nabla J + R = D\frac{d^2n}{dx^2} + \frac{n - n_0}{\tau} = 0$$

Assume no recombination $\tau \to \infty$

e-Current from E to C

$$J_o = J(x) = qD \frac{dn}{dx} = \text{constant}$$

 $\Rightarrow \frac{dn}{dx} = \text{constant} = \frac{n_L - n_R}{l_R}$

Where $n_L = \frac{n_i 2}{N_A} \exp(\frac{V_{EB}}{V_T})$; forward biased

$$n_R = \frac{n_i 2}{N_A} \exp(-\frac{V_{BC}}{V_T})$$
; reverse biased

 l_p : quazi neutral p-region (which also has a V_{BE} and V_{BC} dependence based on depletion approximation) e-Current from E to C

 $J_o = \frac{q\nu}{l_n} \frac{n_i 2}{N_A} \left(\exp\left(\frac{V_{EB}}{V_T}\right) - \exp\left(-\frac{V_{BC}}{V_T}\right) \right)$

Similarly; you may calculate hole current at the various junctions Which hole current dominated EB or CB?

h-Current from E to C $J_o = \frac{qD}{l_{nE}} \frac{n_i 2}{N_{DE}} \left(\exp(\frac{V_{EB}}{V_T}) - 1 \right)$

Difference between base contact effect to control base potential vs. current sink

Base contact is strongly electrically coupled (potential divider model) to entire base

Fraction of e-current makes it to base contact due to geometry effect;
Only a small fraction (local) electrons reach base; rest majority reach S/D

BJT IV characteristics

e-Current from E to C

$$J_o = \frac{qD}{l_p} \frac{n_i 2}{N_A} \left(\exp\left(\frac{V_{EB}}{V_T}\right) - \exp\left(-\frac{V_{BC}}{V_T}\right) \right)$$

 l_p : quazi neutral p-region (which also has a V_{BE} and V_{BC} dependence based on depletion approximation)

For long base, lp % change due to V_{BC} is low but high for short base

Application 2: Transport in punch-through diode

Punch-through diodes are used for (i) ESD protection (b) RRAM

selector devices

Question 1: Show how far the current may be calculated using QFL arguments;

a) With punch-through of depletions at V=0 b) With punch-through of depletions at V=V+? Guess the IV characteristics and band profile.

No p-Metal/p-Si contact

Given are other device options;

- i) 2 antiparallel diodes
- ii) Two anti-serial Schottky diodesWhat are the advantages vs. disadvantages

Punch-through diode as Selector

11/30/2014

Application 3a: A case of Si n+/insulator/n+ junction

- Plot carrier profiles; Where is the maximum resistance?
- Does it matter
 - if the contacts are metals or highly doped semiconductors? Draw band diagram & derive current. What type of device is this?

Application 3b: A case of Si n+/insulator/n+ junction

Contact resistance is defined by Fermi level pinning:

 What happens when the conduction band offset is zero with a fine valance band offset? What type of device is this?

- In Ohmic conduction: V only adds electric field that moves intrinsic Carriers
- In insulators; intrinsic charge is low, injected charged is limited Current voltage depend (like charging up a capacitor);

voltage depend (like charging up a capacitor);
$$J(x) = q\mu n(V)E(V) = \mu\left(\frac{cV}{L}\right)\left(\frac{V}{L}\right) = \mu\left(\frac{\epsilon V}{L^2}\right)\left(\frac{V}{L}\right) = \frac{111111CC}{CV}$$

- More accurate derivation: Drift is dominant
- $J(x) = q\mu n(x)E(x) = Jo$ as there is no recombination
- $n(x) = \frac{J_o}{q\mu E}$... from Drift based transport

•
$$\frac{dE}{dx} = -\frac{qn(x)}{\epsilon}$$
 from Poisson

• $\frac{dE}{dx} = -\frac{q}{\epsilon} \frac{J_o}{q\mu E}$ • $E^2 = \frac{2q}{\epsilon} \frac{J_o}{q\mu} x \Rightarrow \frac{dV}{dx} = (2\frac{q}{\epsilon} \frac{J_o}{q\mu} x)^{1/2}$

•
$$V = \frac{2}{3} \left(\frac{2q}{\epsilon} \frac{J_o}{q\mu} \right)^{1/2} (x)^{3/2} \longrightarrow J_o = \frac{9}{8} \frac{\epsilon \mu V^2}{L^3}$$

Space Charge

Ε

J~n.E

Application 3c: A case of Si n+/insulator/n+ junction

 What if one side is low doped semiconductors?
 Draw band diagram
 & derive current.
 What type of device is this?