CSc 8530 Parallel Algorithms

Spring 2019

January 24th, 2019

Dags for parallel processing

- We can represent computations using dags
 - Nodes with zero in-degree are inputs (also called leafs)
 - Nodes with zero out-degree are outputs (also called roots or sinks)
 - \bullet For simplicity, here we assume all internal vertices have in-degree ≤ 2
- ullet Each node represents an O(1) (constant-time) operation
- This model is best-suited for numerical computations
- For simplicity, we will assume no loops (what the book strangely calls branching)
 - We can always unroll a loop by duplicating it the appropriate number of times
- Node order represents precendence
 - What operations must come before and after

Parallel sums

- \bullet Two dags for computing the sum S of the $n=2^k$ elements of an array A
- Note how the depths (max distance from leafs to root) differ significantly between the two choices: O(n) vs $O(\log{(n)})$

Dag model

- ullet Input nodes have $t_i=0$ and no processor is allocated to them
- The sequence $\{(j_i, t_i) | i \in N\}$ is an execution **schedule**
 - ullet With p processors
 - ullet N is the number of nodes in the dag
- ullet The time to execute a particular schedule is $\max_{i\in N} t_i$
- The parallel complexity is

$$T_p(n) = \min \left\{ \max_{i \in N} t_i \right\}$$

- ullet The minimum is taken over all possible schedules with p processors
- The depth of the dag is a lower bound on $T_p(n)$, for any p

The shared-memory model

- A natural extension of the sequential RAM model
- Many processors have access to a single, shared memory unit (also called global memory)
- Each processor also has its own local memory
- Processors communicate by exchanging data through the shared memory
- Each processor is indexed by a unique id

Example: matrix-vector multiplication – pseudocode

ALGORITHM 1.1

(Matrix Vector Multiplication on the Shared-Memory Model)

Input: An $n \times n$ matrix A and a vector x of order n residing in the shared memory. The initialized local variables are (1) the order n, (2) the processor number i, and (3) the number $p \le n$ of processors such that r = n/p is an integer.

Output: The components $(i-1)r+1, \ldots, ir$ of the vector y=Ax stored in the shared variable y.

begin

```
1. global read(x, z)

2. global read(A((i-1)r + 1:ir, 1:n), B)

3. Compute w = Bz.

4. global write(w, y((i-1)r + 1:ir))

end
```

Analysis:

- Steps 1 and 2 transfer $O(n^2/p)$ values from the shared memory into each processor
- Step 3 requires $O(n^2/p)$ arithmetic operations
- ullet Step 4 stores n/p numbers from local to shared memory

Example: sum on the PRAM model

- Given an array A with $n = 2^k$ values and a PRAM with p processors
- We wish to compute $S = A[1] + A[2] + \dots A[n]$
- A parallel implementation will run fastest with n processors
- However, not all processors are needed at every iteration

ALGORITHM 1.2

(Sum on the PRAM Model)

Input: An array A of order $n = 2^k$ stored in the shared memory of a PRAM with n processors. The initialized local variables are n and the processor number i.

Output: The sum of the entries of A stored in the shared location S. The array A holds its initial value.

begin

```
J. global read(A(i), a)
2. global write(a, B(i))
3. for h = 1 to log n do
if (i \le n/2^h) then
begin
global read(B(2i - 1), x)
global read(B(2i, y))
Set 2: = x + y
global write(z, B(i))
end
4. if i = 1 then global write(z, S)
```

4 D > 4 D > 4 D > 4 D > 3 P 9 Q Q

Example: sum on the PRAM model

- Given an array A with $n = 2^k$ values and a PRAM with p processors
- We wish to compute $S = A[1] + A[2] + \dots A[n]$
- A parallel implementation will run fastest with n processors
- However, not all processors are needed at every iteration

PRAM variations

- PRAM variants differ in how they handle simultaneous access to the same location in shared memory
 - Exclusive read exclusive write (EREW)
 - Concurrent read exclusive write (CREW)
 - Concurrent read concurrent write (CRCW)
- Furthermore, we have three subtypes of CRCW:
 - Common CRCW PRAM
 - Allows concurrent writes only when all processors attempt to write the same value
 - Arbitrary CRCW PRAM
 - Allows an arbitrary processor to succeed
 - Priority CRCW PRAM
 - Assumes processors have a priority (based on their ids)
 - The lowest id wins
- EREW, CREW, and, CRCW differ slightly in their computational power
 - i.e., in the space of functions they can theoretically compute

PRAM simplifications

- In the book and our slides, we will omit details concerning memory-access operations
- e.g., an instruction such as A = B + C will really mean:
 - \bigcirc global read(B, x)
 - **2** global read(C, y)
 - 3 z = x + y
 - lacktriangle global write(z,A)

The network model

- A **network** is a graph G = (V, E)
 - The nodes V are the processors
 - ullet The edges E are two-way communication links between processors
- There is no shared memory
 - Each processor does have local memory
- The model can be either synchronous or asynchronous
- send(X, i) instruction: sends X to processor P_i (and continue executing the next instruction immediately)
- receive(Y, j) operation: wait for Y from processor P_j (and suspend execution until data is received)

The network model

- The processors of an asynchronous network coordinate their activities through message passing
 - A pair of processors need not be adjacent
 - Routing algorithms transmit a message through a network
- The topological properties of the network affects the system's processing capabilities:
 - Diameter: maximum distance between any two nodes
 - Maximum degree: of any node in G
 - Node and edge connectivity: the minimum number of nodes (edges) whose removal disconnects the graph
- We will briefly look at some representative topologies:
 - Linear array
 - 2D mesh
 - Hypercube

Linear array

- In a **linear array**, processor P_i is connected to P_{i-1} and P_{i+1} , if they exist
- In a **ring**, P_1 and P_p (the last processor) are connected to each other
- Diameter:
- Maximum degree:

Linear array

- In a **linear array**, processor P_i is connected to P_{i-1} and P_{i+1} , if they exist
- In a ring , P_1 and P_p (the last processor) are connected to each other
- Diameter:
 - p-1
- Maximum degree:

Linear array

- In a **linear array**, processor P_i is connected to P_{i-1} and P_{i+1} , if they exist
- In a ring , P_1 and P_p (the last processor) are connected to each other
- Diameter:
 - p-1
- Maximum degree:
 - 2

Linear array - matrix-vector multiplication

- Assume we want to compute y = Ax
 - With p < n
 - and r = p/n an integer
- First, partition:

•
$$A = (A_1, A_2, \dots, A_n)$$

•
$$x = (x_1, x_2, \dots, x_p)$$

- Then, compute $z_i = A_i x_i$ on each processor independently
- Finally, add up the sum $z = \sum_{i=1}^{p} z_i$

ALGORITHM 1.4

(Asynchronous Matrix Vector Product on a Ring)

Input: (1) The processor number i; (2) the number p of processors; (3) the ith submatrix B = A(1:n, (i-1)r+1:ir) of size $n \times r$, where r = nip; (4) the ith subvector w = x(i-1)r+1:ir) of size $n \times r$. Output: Processor P_i computes the vector $y = A_1x_1 + \cdots + A_ix_i$ and spaces the result to the right. When the algorithm terminates, P_1 will hold the product Ax.

begin

- 1. Compute the matrix vector product z = Bw.
- 2. if i = 1 then set y: = 0 else receive(y, left)
- $3. \ Set \ y: = y + z$
- 4. send(y, right)
 5. if i = 1 then receive(y, left)

end

Linear array - matrix-vector multiplication

We split the computations as follows (for p = n/2):

$$y_1 = a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 + a_{1,4}x_4 + \dots + a_{1,n-1}x_{n-1} + a_{1,n}x_n$$

$$y_2 = a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 + a_{2,4}x_4 + \dots + a_{2,n-1}x_{n-1} + a_{2,n}x_n$$

$$\vdots$$

$$y_n = a_{n,1}x_1 + a_{n,2}x_2 + a_{n,3}x_3 + a_{n,4}x_4 + \dots + a_{n,n-1}x_{n-1} + a_{n,n}x_n$$

for processors P_1 , P_2 , ..., P_p resp.

Linear array – matrix-vector multiplication

We split the computations as follows:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} z_{1,1} \\ z_{2,1} \\ \vdots \\ z_{n,1} \end{bmatrix} + \begin{bmatrix} z_{1,2} \\ z_{2,2} \\ \vdots \\ z_{n,2} \end{bmatrix} + \ldots + \begin{bmatrix} z_{1,p} \\ z_{2,p} \\ \vdots \\ z_{n,p} \end{bmatrix}$$

for processors P_1 , P_2 , ..., P_p resp.

Linear array - matrix-vector multiplication

Computation time:

$$T_{comp} = O(n^2/p)$$

- Approx $\alpha(n^2/p)$ for some constant α
- However, P_1 has to wait until the p-1 partial sums have been transmitted to execute the last instruction

Communication time:

$$T_{comm} = p * comm(n)$$

 comm(n) is the time needed to transmit n numbers between adjacent processors

ALGORITHM 1.4

(Asynchronous Matrix Vector Product on a Ring)

Input: (1) The processor number i; (2) the number p of processors; (3) the ith submatrix B = A(1:n, (i-1)r+1:ir) of size $n \times r$, where r = n|p; (4) the tth subvector w = x((i-1)r+1:ir) of size r. **Output:** Processor P_i computes the vector $y = A_1x_1 + \cdots + A_ix_i$ and passes the result to the right. When the algorithm terminates, P_1 will hold the product Ax.

begin

- 1. Compute the matrix vector product z = Bw.
- 2. if i = 1 then set y := 0else receive(v, left)
- 3. Set v: = v + z
- 4. send(v, right)
- 5. if i = 1 then receive(v, left)

end

Linear array – matrix-vector multiplication

- $comm(n) \approx \sigma + n\tau$
 - σ : startup time
 - τ : transfer rate
- Total execution time:

$$T = T_{comp} + T_{comm}$$
$$\approx \alpha(n^2/p) + p(\sigma + n\tau)$$

- There is a trade-off between the two terms
- The sum is minimized when $\alpha(n^2/p) = p(\sigma + n\tau)$
 - Such that $p = n\sqrt{\alpha/(\sigma + n\tau)}$

ALGORITHM 1.4

(Asynchronous Matrix Vector Product on a Ring)

Input: (1) The processor number i; (2) the number p of processors; (3) the ith submatrix B = A(1:n, (i-1)r+1:ir) of size $n \times r$, where r = nip; (4) the ith subvector w = x((i-1)r+1:ir) of size r. Output: Processor P_i computes the vector $y = A_1x_1 + \cdots + A_rx_r$ and passes the result to the right. When the algorithm terminates, P_1 will hold the product Ax.

begin

- 1. Compute the matrix vector product z = Bw.
- 2. if i = 1 then set y := 0
- else receive(y, left) 3. Set y: = y + z
- 4. send(v, right)
- 5. if i = 1 then receive(y, left)

end