1

Assignment 15

Jayati Dutta

Abstract—This is a simple document explaining how to determine whether a functional is linear or not on a vector space using trace of matrices.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

Let V be the vector space of $n \times n$ matrices over the field F. If **B** is a fixed $n \times n$ matrix, define a function f_B on V by $f_B(\mathbf{A}) = tr(\mathbf{B}^t \mathbf{A})$. Show that, f_B is a linear functional on V.

2 Solution

Hence, it can be said that f_B is a linear functional on V.

Given	V is a vector space of $n \times n$ matrices over the field F \mathbf{B} is a fixed $n \times n$ matrix A function f_B on V is defined such that $f_B(\mathbf{A}) = tr(\mathbf{B}^t \mathbf{A})$
To prove	f_B is a linear functional on V
Properties of Trace of Matrix	$1.tr(\mathbf{M} + \mathbf{N}) = tr(\mathbf{M}) + tr(\mathbf{N})$ $2. tr(c\mathbf{M}) = c(tr(\mathbf{M}))$ Where M and N are two square matrices
Proof	$As f_{B}(\mathbf{A}) = tr(\mathbf{B}^{t}\mathbf{A})$ $\Rightarrow f_{B}(c\mathbf{A}_{1} + \mathbf{A}_{2})$ $= tr(\mathbf{B}^{t}(c\mathbf{A}_{1} + \mathbf{A}_{2}))$ $\Rightarrow f_{B}(c\mathbf{A}_{1} + \mathbf{A}_{2}) = tr(c\mathbf{B}^{t}\mathbf{A}_{1})$ $+tr(\mathbf{B}^{t}\mathbf{A}_{2})$ $\Rightarrow f_{B}(c\mathbf{A}_{1} + \mathbf{A}_{2}) = c(tr(\mathbf{B}^{t}\mathbf{A}_{1}))$ $+tr(\mathbf{B}^{t}\mathbf{A}_{2})$ $\Rightarrow f_{B}(c\mathbf{A}_{1} + \mathbf{A}_{2})$ $= cf_{B}(\mathbf{A}_{1}) + f_{B}(\mathbf{A}_{2})$