Лабораторная работа №4

Эмуляция и измерение задержек в глобальных сетях

Ланцова Яна Игоревна

Содержание

1	Цел	ıь работы	5
2	Задачи Выполнение лабораторной работы		6
3			7
	3.1	Запуск лабораторной топологии	7
	3.2	Добавление/изменение задержки в эмулируемой глобальной сети	9
	3.3	Изменение задержки в эмулируемой глобальной сети	11
	3.4	Восстановление исходных значений (удаление правил) задержки в	
		эмулируемой глобальной сети	12
	3.5	Добавление значения дрожания задержки в интерфейс подключе-	
		ния к эмулируемой глобальной сети	12
	3.6	Добавление значения корреляции для джиттера и задержки в ин-	
		терфейс подключения к эмулируемой глобальной сети	13
	3.7	Распределение задержки в интерфейсе подключения к эмулируе-	
		мой глобальной сети	14
	3.8	Воспроизведение экспериментов. Добавление задержки для интер-	
		фейса, подключающегося к эмулируемой глобальной сети	14
	3.9	Задание для самостоятельной работы	19
4	Выв	воды	21

Список иллюстраций

3.1	исправление мтт magic cookie	/
3.2	Простейшая топология	8
3.3	ifconfig на хостах h1 и h2	9
3.4	Проверка подключения между хостами	9
3.5	Добавление задержки в 100мс	10
3.6	Двунаправленная задержка соединения	11
3.7	Изменение задержки на 50мс	11
3.8	Восстановление исходных значений задержки	12
3.9	Добавление значения дрожания задержки в интерфейс подключения	13
3.10	Добавление значения корреляции для джиттера и задержки в ин-	
	терфейс подключения	13
3.11	Распределение задержки в интерфейсе подключения	14
	Установка пакета и создание каталога	15
3.13	Скрипт на Python для эксперемента	15
3.14	Скрипт для визуализации ping_plot	16
3.15	Makefile для управления процессом проведения эксперимента	16
3.16	Запуск эксперимента	16
3.17	Визуализация эксперимента	17
3.18	ЗУдаление строки из файла .dat	17
	Визуализация эксперимента	18
3.20	Скрипт script_1.py	18
3.21	Результат работы скрипта script_1.py	18
3.22	Изменение файла lab_netem_i.py	19
	Визуализация эксперимента	20
3.24	Результат работы скрипта script 1.pv	20

Список таблиц

1 Цель работы

Основной целью работы является знакомство с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получение навыков проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

2 Задачи

- 1. Задайте простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8.
- 2. Проведите интерактивные эксперименты по добавлению/изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети.
- 3. Реализуйте воспроизводимый эксперимент по заданию значения задержки в эмулируемой глобальной сети. Постройте график.
- 4. Самостоятельно реализуйте воспроизводимые эксперименты по изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети. Постройте графики.

3 Выполнение лабораторной работы

3.1 Запуск лабораторной топологии

Из основной ОС подключимся к виртуальной машине и в исправим права запуска X-соединения. Скопируем значение куки (MIT magic cookie) своего пользователя mininet в файл для пользователя root (рис. 3.1).

```
mininet@mininet-vm:~
login as: mininet
mininet@172.16.176.128's password:
welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-42-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

Failed to connect to https://changelogs.ubuntu.com/meta-release-lts. Check your Internet connection or proxy settings

Last login: Sat Sep 20 08:27:58 2025 from 172.16.176.1
mininet@mininet-vm:~$ xauth list $DISPLAY
mininet-vm/unix:11 MIT-MAGIC-COOKIE-1 30c8e7e73c005db184d27d9f3da6d98e
mininet@mininet-vm:~$ xauth add mininet-vm/unix:11 MIT-MAGIC-COOKIE-1 30c8e7e73c0
05db184d27d9f3da6d98e
root@mininet-vm:~$ xauth list $DISPLAY
mininet-vm/unix:11 MIT-MAGIC-COOKIE-1 30c8e7e73c005db184d27d9f3da6d98e
root@mininet-vm:~$ tauth list $DISPLAY
mininet-vm/unix:11 MIT-MAGIC-COOKIE-1 30c8e7e73c005db184d27d9f3da6d98e
root@mininet-vm:~$ logout
mininet@mininet-vm:~$ logout
```

Рис. 3.1: Исправление MIT magic cookie

Зададим простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8 (рис. 3.2). После введения этой команды запустятся терминалы двух хостов, коммутатора и контроллера. Терминалы коммутатора и контроллера можно закрыть.

Рис. 3.2: Простейшая топология

На хостах h1 и h2 введем команду ifconfig, чтобы отобразить информацию, относящуюся к их сетевым интерфейсам и назначенным им IP-адресам. В дальнейшем при работе с NETEM и командой tc будут использоваться интерфейсы h1-eth0 и h2-eth0(рис. 3.3).

```
* "host: h1"@mininet-vi
root@mininet-vm:/home/mininet# ifconfig
h1-eth0: flags=4163-UP, BROADCAST, RUNNING, MULTICAST> mtu 1500 inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255 ether 82:42:2f:d3:18:6b txqueuelen 1000 (Ethernet)
             RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
             TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
             RX packets 977 bytes 275008 (275.0 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 977 bytes 275008 (275.0 KB)
             TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
root@mininet-vm:/home/mininet# []
 T "host: h2"@mininet-vm
                                                                                                                        П
root@mininet-vm:/home/mininet# ifconfig
h2-eth0: flags=4163-UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
ether 56:cf:4e:22:6a:61 txqueuelen 1000 (Ethernet)
             RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
              TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
             inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 955 bytes 297892 (297.8 KB)
             RX errors 0 dropped 0 overruns 0 frame 0 TX packets 955 bytes 297892 (297.8 KB)
              TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рис. 3.3: ifconfig на хостах h1 и h2

Проверим подключение между хостами h1 и h2 с помощью команды ping с параметром -с 6 (рис. 3.4).

```
root@mininet-vm:/home/mininet# ping 10.0.0.2 -c 6
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=23.8 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.904 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.104 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.152 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.211 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.220 ms

--- 10.0.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5079ms
rtt min/avg/max/mdev = 0.104/4.234/23.814/8.760 ms
```

Рис. 3.4: Проверка подключения между хостами

3.2 Добавление/изменение задержки в эмулируемой глобальной сети

На хосте h1 добавим задержку в 100 мс к выходному интерфейсу. Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду

ping с параметром -с 6 с хоста h1 (рис. 3.5).

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 1 00ms root@mininet-vm:/home/mininet# ping 10.0.0.2 -c 6 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=103 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=103 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=102 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms --- 10.0.0.2 ping statistics --- 6 packets transmitted, 6 received, 0% packet loss, time 5008ms rtt min/avg/max/mdev = 100.418/101.560/103.122/1.147 ms
```

Рис. 3.5: Добавление задержки в 100мс

В введенной команде:

- sudo: выполнить команду с более высокими привилегиями;
- tc: вызвать управление трафиком Linux;
- qdisc: изменить дисциплину очередей сетевого планировщика;
- add: создать новое правило;
- dev h1-eth0: указать интерфейс, на котором будет применяться правило;
- netem: использовать эмулятор сети;
- delay 100ms: задержка ввода 100 мс.

Для эмуляции глобальной сети с двунаправленной задержкой необходимо к соответствующему интерфейсу на хосте h2 также добавить задержку в 100 миллисекунд. Проверим, что соединение между хостом h1 и хостом h2 имеет RTT в 200 мс (100 мс от хоста h1 к хосту h2 и 100 мс от хоста h2 к хосту h1), повторив команду ping с параметром -с 6 на терминале хоста h1 (рис. 3.6).

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h2-eth0 root netem delay 1 00ms
root@mininet-vm:/home/mininet# ■

root@mininet-vm:/home/mininet# ping 10.0.0.2 -c 6
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=206 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=204 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=202 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=202 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=202 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=202 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=202 ms
65 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=202 ms
66 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=202 ms
67 backets transmitted, 6 received, 0% packet loss, time 501lms
rtt min/avg/max/mdev = 201.505/202.907/205.568/1.391 ms
root@mininet-vm:/home/mininet# □
```

Рис. 3.6: Двунаправленная задержка соединения

3.3 Изменение задержки в эмулируемой глобальной сети

Изменим задержку со 100 мс до 50 мс для отправителя h1 и для получателя h2. Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с терминала хоста h1. (рис. 3.7).

```
root@mininet-vm:/home/mininet# sudo tc qdisc change dev h2-eth0 root netem delay 50ms root@mininet-vm:/home/mininet# □ □ □

**Thost h1*@mininet-vm: /home/mininet# sudo tc qdisc change dev h1-eth0 root netem delay 50ms
1: command not found root@mininet* sudo tc qdisc change dev h1-eth0 root netem dela y 50ms
Error: Qdisc not found. To create specify NLM_F_CREATE flag. root@mininet-vm:/home/mininet# sudo tc qdisc change dev h1-eth0 root netem dela y 50ms
Error: Qdisc not found. To create specify NLM_F_CREATE flag. root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 50ms root@mininet-vm:/home/mininet# sudo tc qdisc change dev h1-eth0 root netem delay 50ms root@mininet-vm:/home/mininet# ping 10.0.0.2 -c 6
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=103 ms
--- 10.0.0.2 ping statistics --- 6 packets transmitted, 6 received, 0% packet loss, time 5013ms
rtt min/ava/max/mdev = 101.434/120.245/209.959/40.126 ms
```

Рис. 3.7: Изменение задержки на 50мс

3.4 Восстановление исходных значений (удаление правил) задержки в эмулируемой глобальной сети

Восстановим конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса для отправителя h1 и для получателя h2. Проверим, что соединение между хостом h1 и хостом h2 не имеет явно установленной задержки, используя команду ping с параметром -с 6 с терминала хоста h1 (рис. 3.8).

Рис. 3.8: Восстановление исходных значений задержки

3.5 Добавление значения дрожания задержки в интерфейс подключения к эмулируемой глобальной сети

Добавим на узле h1 задержку в 100 мс со случайным отклонением 10 мс. Проверим, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс со случайным отклонением ±10 мс, используя в терминале хоста h1 команду ping с параметром -с 6. Восстановим конфигурацию интерфейса по умолчанию на узле h1 (рис. 3.9). Увидим, что в первом случае у нас создалась сеть с настроенными параметрами, а во втором случае дефолтная сеть без этих параметров.

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms root@mininet-vm:/home/mininet# ping 10.0.0.2 - c 6
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=114 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=98.3 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=94.1 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=91.1 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=111 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=109 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=109 ms
65 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=109 ms
66 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=109 ms
67 bytes from 10.0.0.2 ping statistics
68 bytes from 10.0.0.2 ping statistics
69 packet transmitted, 6 received, 0% packet loss, time 5012ms
69 rtt min/avg/max/mdev = 94.050/104.215/113.511/7.245 ms
60 root@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem
```

Рис. 3.9: Добавление значения дрожания задержки в интерфейс подключения

3.6 Добавление значения корреляции для джиттера и задержки в интерфейс подключения к эмулируемой глобальной сети

Добавим на интерфейсе хоста h1 задержку в 100 мс с вариацией ±10 мс и значением корреляции в 25%. Убедимся, что все пакеты, покидающие устройство h1 на интерфейсе h1-eth0, будут иметь время задержки 100 мс со случайным отклонением ±10 мс, при этом время передачи следующего пакета зависит от предыдущего значения на 25%. Используем для этого в терминале хоста h1 команду ping с параметром -с 20. Восстановим конфигурацию интерфейса по умолчанию на узле h1(рис. 3.10).

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25% root@mininet-vm:/home/mininet# ping 10.0.0.2 - c 20 PING 10.0.0.2 (ol.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2; icmp_seq=1 ttl=64 time=95.6 ms
64 bytes from 10.0.0.2; icmp_seq=3 ttl=64 time=109 ms
64 bytes from 10.0.0.2; icmp_seq=3 ttl=64 time=101 ms
64 bytes from 10.0.0.2; icmp_seq=4 ttl=64 time=103 ms
64 bytes from 10.0.0.2; icmp_seq=5 ttl=64 time=103 ms
64 bytes from 10.0.0.2; icmp_seq=6 ttl=64 time=103 ms
64 bytes from 10.0.0.2; icmp_seq=6 ttl=64 time=105 ms
64 bytes from 10.0.0.2; icmp_seq=8 ttl=64 time=103 ms
64 bytes from 10.0.0.2; icmp_seq=8 ttl=64 time=103 ms
64 bytes from 10.0.0.2; icmp_seq=8 ttl=64 time=99.6 ms
64 bytes from 10.0.0.2; icmp_seq=1 ttl=64 time=99.6 ms
64 bytes from 10.0.0.2; icmp_seq=11 ttl=64 time=99.6 ms
64 bytes from 10.0.0.2; icmp_seq=11 ttl=64 time=109 ms
64 bytes from 10.0.0.2; icmp_seq=12 ttl=64 time=111 ms
64 bytes from 10.0.0.2; icmp_seq=13 ttl=64 time=109 ms
64 bytes from 10.0.0.2; icmp_seq=14 ttl=64 time=108 ms
64 bytes from 10.0.0.2; icmp_seq=15 ttl=64 time=108 ms
64 bytes from 10.0.0.2; icmp_seq=16 ttl=64 ti
```

Рис. 3.10: Добавление значения корреляции для джиттера и задержки в интерфейс подключения

3.7 Распределение задержки в интерфейсе подключения к эмулируемой глобальной сети

Зададим нормальное распределение задержки на узле h1 в эмулируемой сети. Убедимся, что все пакеты, покидающие хост h1 на интерфейсе h1-eth0, будут иметь время задержки, которое распределено в диапазоне 100 мс ±20 мс. Используем для этого команду ping на терминале хоста h1 с параметром -с 10. Восстановим конфигурацию интерфейса по умолчанию на узле h1. Завершим работу mininet в интерактивном режиме(рис. 3.11):

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms 20ms distribu tion normal root@mininetvm:/home/mininet# ping 10.0.0.2 - c 10 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=79.5 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=61.3 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=61.3 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=108 ms 64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=109 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=198 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=98.7 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=115 ms 64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=110 ms 64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=114 ms 64 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=96.1 ms 64 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=114 ms 65 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=116 ms 65 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=116 ms 65 bytes from 10.0.0.2: icmp
```

Рис. 3.11: Распределение задержки в интерфейсе подключения

3.8 Воспроизведение экспериментов. Добавление задержки для интерфейса, подключающегося к эмулируемой глобальной сети

С помощью API Mininet воспроизведем эксперимент по добавлению задержки для интерфейса хоста, подключающегося к эмулируемой глобальной сети. В виртуальной среде mininet установим пакет geeqie (понадобится для просмотра файлов png), в своём рабочем каталоге с проектами создадим каталог simple-delay и перейдем в него (рис. 3.12).

```
mininet@mininet-vm:-$ mkdir -p ~/work/lab_netem_i/simple-delay
mininet@mininet-vm:-$ sudo apt install geeqie
Reading package lists... Done
Building dependency tree
Reading state information... Done
geeqie is already the newest version (1:1.5.1-8build1).
0 upgraded, 0 newly installed, 0 to remove and 374 not upgraded.
mininet@mininet-vm:-$
```

Рис. 3.12: Установка пакета и создание каталога

Создадим скрипт для эксперимента lab_netem_i.py (рис. 3.13).

Рис. 3.13: Скрипт на Python для эксперемента

В этом скрипте создается простейщая топология сети, затем с помощью комнанд, использованных нами ранее задается задержка в 100 мс для обоих хостов, после чего пингуется второй хост (100 сообщений отправляется), при этом из сообщений при пинге вытаскиваются номер сообщения и значение времени, которые записываются в файл с данными.

Создаём скрипт для визуализации ping_plot результатов эксперимента (рис. 3.14):

Рис. 3.14: Скрипт для визуализации ping_plot

Зададим права доступа к файлу скрипта: chmod +x ping_plot. Создадим Makefile для управления процессом проведения эксперимента (рис. 3.15).

```
ping.dat ping.pno
       sudo python lab_netem_i.py
sudo chown mininet:mininet ping.dat
ng.png: ping.dat
./ping_plot
```

Рис. 3.15: Makefile для управления процессом проведения эксперимента

Выполним эксперимент, написав команду make (рис. 3.16).

```
Adding switch
Creating links
Starting network
  Configuring hosts
  Starting controller
  Set delay h1: ('tc qdisc add dev h1-eth0 root netem delay 100ms',) h2: ('tc qdisc add dev h2-eth0 root netem delay 100ms',)
   ing
1: ('ping -c 100', '10.0.0.2', '| grep "time=" | awk \'{print $5, $7}\' | sed -e \'s/
/g\' -e \'s/icmp_seq=//g\' > ping.dat')
```

Рис. 3.16: Запуск эксперимента

Продемонстрируем построенный в результате выполнения скриптов график (рис. 3.17).

Рис. 3.17: Визуализация эксперимента

Из файла ping.dat удалим первую строку (рис. 3.18).

Рис. 3.18: Удаление строки из файла .dat

Из файла ping.dat удалим первую строку и заново построим график (рис. 3.19).

Рис. 3.19: Визуализация эксперимента

Разработаем скрипт для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени приёмапередачи (рис. fig. 3.20).

Рис. 3.20: Скрипт script_1.py

Продемонстрируем работу скрипта с выводом значений на экран или в отдельный файл (рис. fig. 3.21).

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ sudo python script_1.py
min: 201
max: 204
avg: 201.949494949495
std: 0.6757269309257353
```

Рис. 3.21: Результат работы скрипта script_1.py

3.9 Задание для самостоятельной работы

Самостоятельно реализуем воспроизводимые эксперименты по изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети (рис. fig. 3.22).

Рис. 3.22: Изменение файла lab_netem_i.py

Продемонстрируем построенный в результате выполнения скриптов график (рис. 3.23).

Рис. 3.23: Визуализация эксперимента

Вычислим минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая (рис. 3.24).

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ sudo python script_1.py
min: 101
max: 209
avg: 102.95
std: 10.72839619181194
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рис. 3.24: Результат работы скрипта script_1.py

4 Выводы

В результате выполнения данной лабораторной работы я познакомилась с NETEM – инструментом для тестирования производительности приложений в виртуальной сети, а также получила навыки проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.