## Numerikus módszerek 1.

7. előadás: LER érzékenysége

Dr. Bozsik József

## Tartalomjegyzék

- Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- **5** Relatív maradék
- 6 Matlab példák

# Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 6 Relatív maradék
- 6 Matlab példák

### Definíció: mátrixok kondíciószáma

Adott  $A \in \mathbb{R}^{n \times n}$  invertálható mátrix és  $\|.\|$  mátrixnorma esetén a cond  $(A) := \|A\| \cdot \|A^{-1}\|$  mennyiséget az A mátrix kondíciószámának nevezzük. (Jele néha  $\kappa(A)$ . [kappa])

#### Definíció: mátrixok kondíciószáma

Adott  $A \in \mathbb{R}^{n \times n}$  invertálható mátrix és  $\|.\|$  mátrixnorma esetén a cond  $(A) := \|A\| \cdot \|A^{-1}\|$  mennyiséget az A mátrix kondíciószámának nevezzük. (Jele néha  $\kappa(A)$ . [kappa])

### Megjegyzés:

• Csak invertálható mátrixokra értelmes.

#### Definíció: mátrixok kondíciószáma

Adott  $A \in \mathbb{R}^{n \times n}$  invertálható mátrix és  $\|.\|$  mátrixnorma esetén a cond  $(A) := \|A\| \cdot \|A^{-1}\|$  mennyiséget az A mátrix kondíciószámának nevezzük. (Jele néha  $\kappa(A)$ . [kappa])

### Meg jegyzés:

- Csak invertálható mátrixokra értelmes.
- Értéke függ a norma választásától.
   (Pl. cond<sub>1</sub>(A), cond<sub>2</sub>(A),...)

## Állítás: a kondíciószám tulajdonságai – 1. rész

a Indukált mátrixnorma esetén cond  $(A) \ge 1$ .

## Állítás: a kondíciószám tulajdonságai – 1. rész

- a Indukált mátrixnorma esetén cond  $(A) \ge 1$ .
- **b** cond  $(c \cdot A) = \text{cond } (A), \quad (c \in \mathbb{R}, c \neq 0).$

## Állítás: a kondíciószám tulajdonságai – 1. rész

- a Indukált mátrixnorma esetén cond  $(A) \ge 1$ .
- **b** cond  $(c \cdot A) = \text{cond } (A), \quad (c \in \mathbb{R}, c \neq 0).$
- **c** Ha Q ortogonális, akkor cond  $_2(Q)=1$ .

## Állítás: a kondíciószám tulajdonságai – 1. rész

- a Indukált mátrixnorma esetén cond  $(A) \ge 1$ .
- **b** cond  $(c \cdot A) = \text{cond } (A), \quad (c \in \mathbb{R}, c \neq 0).$
- **G** Ha Q ortogonális, akkor cond  $_2(Q) = 1$ .

**a** 
$$1 = ||I|| = ||A \cdot A^{-1}|| \le ||A|| \cdot ||A^{-1}|| = \text{cond}(A)$$
.

## Állítás: a kondíciószám tulajdonságai – 1. rész

- a Indukált mátrixnorma esetén cond  $(A) \ge 1$ .
- **b** cond  $(c \cdot A) = \text{cond } (A), \quad (c \in \mathbb{R}, c \neq 0).$
- **G** Ha Q ortogonális, akkor cond  $_2(Q) = 1$ .

**a** 
$$1 = ||I|| = ||A \cdot A^{-1}|| \le ||A|| \cdot ||A^{-1}|| = \text{cond}(A)$$
.

**6** cond 
$$(cA) = ||cA|| \cdot ||(cA)^{-1}|| = ||cA|| \cdot ||\frac{1}{c}A^{-1}|| = ||c|| \cdot ||A|| \cdot \frac{1}{|c|} \cdot ||A^{-1}|| = cond(A).$$

## Állítás: a kondíciószám tulajdonságai – 1. rész

- a Indukált mátrixnorma esetén cond  $(A) \ge 1$ .
- **b** cond  $(c \cdot A) = \text{cond } (A), \quad (c \in \mathbb{R}, c \neq 0).$
- **6** Ha Q ortogonális, akkor cond  $_2(Q) = 1$ .

**a** 
$$1 = ||I|| = ||A \cdot A^{-1}|| \le ||A|| \cdot ||A^{-1}|| = \text{cond}(A)$$
.

**6** cond 
$$(cA) = ||cA|| \cdot ||(cA)^{-1}|| = ||cA|| \cdot ||\frac{1}{c}A^{-1}|| = ||c|| \cdot ||A|| \cdot \frac{1}{|c|} \cdot ||A^{-1}|| = cond(A).$$

$$\begin{array}{l} \textbf{6} \ \, \|Q\|_2 = \sup_{x \neq 0} \frac{\|Qx\|_2}{\|x\|_2} = \sup_{x \neq 0} \frac{\sqrt{x^\top Q^\top Q x}}{\sqrt{x^\top x}} = 1 \\ \, \|Q^{-1}\|_2 = \left\|Q^\top\right\|_2 = 1, \quad \operatorname{cond}_2(Q) = 1 \end{array}$$

## Állítás: a kondíciószám tulajdonságai – 2. rész

**1** Ha A szimmetrikus, akkor cond  $_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$ .

## Állítás: a kondíciószám tulajdonságai – 2. rész

- **1** Ha A szimmetrikus, akkor cond  $_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$ .
- **a** Ha A szimm., pozitív definit, akkor cond  $_2(A) = \frac{\max \lambda_i(A)}{\min \lambda_i(A)}$ .

## Állítás: a kondíciószám tulajdonságai – 2. rész

- **1** Ha A szimmetrikus, akkor cond  $_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$ .
- **a** Ha A szimm., pozitív definit, akkor cond  $_2(A) = \frac{\max \lambda_i(A)}{\min \lambda_i(A)}$ .
- **i** Ha A invertálható, akkor cond  $(A) \ge \frac{\max|\lambda_i(A)|}{\min|\lambda_i(A)|}$ .

## Állítás: a kondíciószám tulajdonságai – 2. rész

- **1** Ha A szimmetrikus, akkor cond  $_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$ .
- **1** Ha A szimm., pozitív definit, akkor cond  $_2(A) = \frac{\max \lambda_i(A)}{\min \lambda_i(A)}$ .
- **i** Ha A invertálható, akkor cond  $(A) \ge \frac{\max|\lambda_i(A)|}{\min|\lambda_i(A)|}$ .

**6** Eml.: 
$$||A||_2 = \sqrt{\max \lambda_i(A^\top A)}$$
.  
 De  $\lambda_i(A^\top A) = \lambda_i(A^2) = (\lambda_i(A))^2$ , így  $||A||_2 = \max |\lambda_i(A)|$ .

## Állítás: a kondíciószám tulajdonságai – 2. rész

- **1** Ha A szimmetrikus, akkor cond  $_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$ .
- **a** Ha A szimm., pozitív definit, akkor cond  $_2(A) = \frac{\max \lambda_i(A)}{\min \lambda_i(A)}$ .
- **i** Ha A invertálható, akkor cond  $(A) \ge \frac{\max|\lambda_i(A)|}{\min|\lambda_i(A)|}$ .

## Állítás: a kondíciószám tulajdonságai – 2. rész

- **d** Ha A szimmetrikus, akkor cond  $_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$ .
- **a** Ha A szimm., pozitív definit, akkor cond  $_2(A) = \frac{\max \lambda_i(A)}{\min \lambda_i(A)}$ .
- **i** Ha A invertálható, akkor cond  $(A) \ge \frac{\max|\lambda_i(A)|}{\min|\lambda_i(A)|}$ .

- **1** Eml.:  $\|A\|_2 = \sqrt{\max \lambda_i(A^\top A)}$ . De  $\lambda_i(A^\top A) = \lambda_i(A^2) = (\lambda_i(A))^2$ , így  $\|A\|_2 = \max |\lambda_i(A)|$ . Az inverzre:  $\|A^{-1}\|_2 = \max |\lambda_i(A^{-1})| = \frac{1}{\min |\lambda_i(A)|}$ .
- O A pozitiv definitség miatt nem kell abszolút érték.

## Állítás: a kondíciószám tulajdonságai – 2. rész

- **d** Ha A szimmetrikus, akkor cond  $_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$ .
- **6** Ha A szimm., pozitív definit, akkor cond  $_2(A) = \frac{\max \lambda_i(A)}{\min \lambda_i(A)}$ .
- **i** Ha A invertálható, akkor cond  $(A) \ge \frac{\max|\lambda_i(A)|}{\min|\lambda_i(A)|}$ .

- **6** Eml.:  $\|A\|_2 = \sqrt{\max \lambda_i} (A^{\top}A)$ . De  $\lambda_i (A^{\top}A) = \lambda_i (A^2) = (\lambda_i (A))^2$ , így  $\|A\|_2 = \max |\lambda_i (A)|$ . Az inverzre:  $\|A^{-1}\|_2 = \max |\lambda_i (A^{-1})| = \frac{1}{\min |\lambda_i (A)|}$ .
- a A pozitiv definitség miatt nem kell abszolút érték.

$$\|A\| \geq \varrho(A) = \max |\lambda_i(A)|, \ \|A^{-1}\| \geq \varrho(A^{-1}) = \frac{1}{\min |\lambda_i(A)|}.$$



## Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 6 Relatív maradék
- 6 Matlab példák

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a jobb oldalt, azaz a vektort kicsit megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, . . . )

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a jobb oldalt, azaz a vektort *kicsit* megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, ...)

#### 1 Eredeti:

adott A és b, kiszámíthatjuk a megoldást: x.

$$Ax = b$$

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a jobb oldalt, azaz a vektort *kicsit* megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, ...)

- 1 Eredeti:
  - adott A és b, kiszámíthatjuk a megoldást: x.
  - Ax = b
- Módosult:

adott A és  $b + \Delta b$ , kiszámíthatjuk a megoldást:  $x + \Delta x$ .

$$A(x + \Delta x) = (b + \Delta b)$$

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a jobb oldalt, azaz a vektort *kicsit* megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, . . . )

- 1 Eredeti:
  - adott A és b, kiszámíthatjuk a megoldást: x.
  - Ax = b
- Módosult:

adott A és  $b + \Delta b$ , kiszámíthatjuk a megoldást:  $x + \Delta x$ .  $A(x + \Delta x) = (b + \Delta b)$ 

Nyilván a megoldás is kicsit más lesz...

### Példa:

Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

### Példa:

• Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ \, x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Módosult:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot (x + \Delta x) = \begin{bmatrix} 4.11 \\ 9.7 \end{bmatrix}$$

### Példa:

Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ \, x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Módosult:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot (x + \Delta x) = \begin{bmatrix} 4.11 \\ 9.7 \end{bmatrix}$$

8

A módosult LER megoldása: 
$$x + \Delta x = \begin{bmatrix} 0.34 \\ 0.97 \end{bmatrix}$$



### Példa:

Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ \, x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Módosult:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot (x + \Delta x) = \begin{bmatrix} 4.11 \\ 9.7 \end{bmatrix}$$

8

A módosult LER megoldása: 
$$x + \Delta x = \begin{bmatrix} 0.34 \\ 0.97 \end{bmatrix}$$

4 Mi történt?

Hogyan jellemezhető a megoldás megváltozása a jobb oldal megváltozásához képest?

• Mennyire változott a jobb oldal:

$$\delta b := \frac{\|\Delta b\|}{\|b\|} = 9.4959e - 004.$$

- Emiatt mennyire változik a megoldás:  $\delta x := \frac{\|\Delta x\|}{\|x\|} = 1.1732$ .
- Vizsgáljuk a kettő hányadosát:  $\frac{\delta x}{\delta h} = 1235.5$ .
- cond(A) = 1623

### Tétel: LER érzékenysége a jobb oldal pontatlanságára

Ha A invertálható és  $b \neq 0$ , akkor illeszkedő normákban

$$\frac{1}{\|A\|\cdot\|A^{-1}\|}\cdot\frac{\|\Delta b\|}{\|b\|}\leq\frac{\|\Delta x\|}{\|x\|}\leq\|A\|\cdot\left\|A^{-1}\right\|\cdot\frac{\|\Delta b\|}{\|b\|},$$

azaz

$$\frac{1}{\operatorname{cond}(A)} \cdot \delta b \le \delta x \le \operatorname{cond}(A) \cdot \delta b.$$

### Tétel: LER érzékenysége a jobb oldal pontatlanságára

Ha A invertálható és  $b \neq 0$ , akkor illeszkedő normákban

$$\frac{1}{\|A\|\cdot\|A^{-1}\|}\cdot\frac{\|\Delta b\|}{\|b\|}\leq\frac{\|\Delta x\|}{\|x\|}\leq\|A\|\cdot\left\|A^{-1}\right\|\cdot\frac{\|\Delta b\|}{\|b\|},$$

azaz

$$\frac{1}{\operatorname{cond}(A)} \cdot \delta b \le \delta x \le \operatorname{cond}(A) \cdot \delta b.$$

#### Biz.:

**1**  $A(x + \Delta x) = (b + \Delta b)$ -ből vonjuk ki az Ax = b LER-t, így  $A\Delta x = \Delta b$ .



### Tétel: LER érzékenysége a jobb oldal pontatlanságára

Ha A invertálható és  $b \neq 0$ , akkor illeszkedő normákban

$$\frac{1}{\|A\|\cdot\|A^{-1}\|}\cdot\frac{\|\Delta b\|}{\|b\|}\leq\frac{\|\Delta x\|}{\|x\|}\leq\|A\|\cdot\left\|A^{-1}\right\|\cdot\frac{\|\Delta b\|}{\|b\|},$$

azaz

$$\frac{1}{\operatorname{cond}(A)} \cdot \delta b \le \delta x \le \operatorname{cond}(A) \cdot \delta b.$$

- **1**  $A(x + \Delta x) = (b + \Delta b)$ -ből vonjuk ki az Ax = b LER-t, így  $A\Delta x = \Delta b$ .
- **2** Viszont  $x = A^{-1}b$  és  $\Delta x = A^{-1}\Delta b$  is teljesül.



### Biz. (folytatás):

$$b = Ax$$
,  $x = A^{-1}b$ ,  $\Delta b = A\Delta x$ ,  $\Delta x = A^{-1}\Delta b$ .

### Biz. (folytatás):

$$b = Ax$$
,  $x = A^{-1}b$ ,  $\Delta b = A\Delta x$ ,  $\Delta x = A^{-1}\Delta b$ .

- 4 Bármely egyenlőségnél vehetjük a normát. (A vektornormához illeszkedő mátrixnormát használunk.)
  - **a**  $||b|| = ||Ax|| \Rightarrow ||b|| \le ||A|| \cdot ||x|| \Rightarrow ||x|| \ge \frac{||b||}{||A||}$

### Biz. (folytatás):

$$b = Ax$$
,  $x = A^{-1}b$ ,  $\Delta b = A\Delta x$ ,  $\Delta x = A^{-1}\Delta b$ .

- 4 Bármely egyenlőségnél vehetjük a normát. (A vektornormához illeszkedő mátrixnormát használunk.)
  - **a**  $||b|| = ||Ax|| \Rightarrow ||b|| \le ||A|| \cdot ||x|| \Rightarrow ||x|| \ge \frac{||b||}{||A||}$

### Biz. (folytatás):

$$b = Ax$$
,  $x = A^{-1}b$ ,  $\Delta b = A\Delta x$ ,  $\Delta x = A^{-1}\Delta b$ .

- 4 Bármely egyenlőségnél vehetjük a normát. (A vektornormához illeszkedő mátrixnormát használunk.)
  - **3**  $||b|| = ||Ax|| \Rightarrow ||b|| \le ||A|| \cdot ||x|| \Rightarrow ||x|| \ge \frac{||b||}{||A||}$

  - **c**  $||x|| = ||A^{-1}b|| \Rightarrow ||x|| \le ||A^{-1}|| \cdot ||b||,$

#### Biz. (folytatás):

Tehát a 4-féle alak:

$$b = Ax$$
,  $x = A^{-1}b$ ,  $\Delta b = A\Delta x$ ,  $\Delta x = A^{-1}\Delta b$ .

- 4 Bármely egyenlőségnél vehetjük a normát. (A vektornormához illeszkedő mátrixnormát használunk.)
  - **a**  $||b|| = ||Ax|| \Rightarrow ||b|| \le ||A|| \cdot ||x|| \Rightarrow ||x|| \ge \frac{||b||}{||A||}$

  - **G**  $||x|| = ||A^{-1}b|| \Rightarrow ||x|| \le ||A^{-1}|| \cdot ||b||,$  **d**  $||\Delta x|| = ||A^{-1}\Delta b|| \Rightarrow ||\Delta x|| \le ||A^{-1}|| \cdot ||\Delta b||.$

#### Biz. (folytatás):

Tehát a 4-féle alak:

$$b = Ax$$
,  $x = A^{-1}b$ ,  $\Delta b = A\Delta x$ ,  $\Delta x = A^{-1}\Delta b$ .

4 Bármely egyenlőségnél vehetjük a normát. (A vektornormához illeszkedő mátrixnormát használunk.)

**3** 
$$||b|| = ||Ax|| \Rightarrow ||b|| \le ||A|| \cdot ||x|| \Rightarrow ||x|| \ge \frac{||b||}{||A||}$$

**6** 
$$||x|| = ||A^{-1}b|| \Rightarrow ||x|| \le ||A^{-1}|| \cdot ||b||,$$

**6** 
$$||x|| = ||A^{-1}b|| \Rightarrow ||x|| \le ||A^{-1}|| \cdot ||b||,$$
  
**1**  $||\Delta x|| = ||A^{-1}\Delta b|| \Rightarrow ||\Delta x|| \le ||A^{-1}|| \cdot ||\Delta b||.$ 

**5** Az alsó becslés (b) és (c) alapján:

$$\frac{\|\Delta x\|}{\|x\|} \ge \frac{\frac{\|\Delta b\|}{\|A\|}}{\|A^{-1}\| \cdot \|b\|} = \frac{1}{\|A\| \cdot \|A^{-1}\|} \cdot \frac{\|\Delta b\|}{\|b\|}.$$



#### Biz. (folytatás):

**6** A felső becslés (a)  $||x|| \ge \frac{||b||}{||A||}$  és (d)  $||\Delta x|| \le ||A^{-1}|| \cdot ||\Delta b||$  alapján:

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A^{-1}\| \cdot \|\Delta b\|}{\frac{\|b\|}{\|A\|}} = \|A\| \cdot \|A^{-1}\| \cdot \frac{\|\Delta b\|}{\|b\|}.$$



### Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 6 Relatív maradék
- 6 Matlab példák

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a bal oldalt, azaz a mátrixot kicsit megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, ...)

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a bal oldalt, azaz a mátrixot *kicsit* megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, ...)

#### 1 Eredeti:

adott A és b, kiszámíthatjuk a megoldást: x.

$$Ax = b$$

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a bal oldalt, azaz a mátrixot *kicsit* megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, . . . )

#### 1 Eredeti:

adott A és b, kiszámíthatjuk a megoldást: x.

$$Ax = b$$

#### Módosult:

adott  $A + \Delta A$  és b, kiszámíthatjuk a megoldást:  $x + \Delta x$ .

$$(A + \Delta A)(x + \Delta x) = b$$

$$A \cdot x = b$$

Vizsgáljuk meg, hogy hogyan változik meg a LER megoldása, ha a bal oldalt, azaz a mátrixot *kicsit* megváltoztatjuk, "perturbáljuk"! (Mérési pontatlanság, kerekítési hiba, ...)

- 1 Eredeti:
  - adott A és b, kiszámíthatjuk a megoldást: x.
  - Ax = b
- Módosult:

adott  $A + \Delta A$  és b, kiszámíthatjuk a megoldást:  $x + \Delta x$ .  $(A + \Delta A)(x + \Delta x) = b$ 

Nyilván a megoldás is kicsit más lesz...

#### Példa:

Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

#### Példa:

• Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ \ x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Módosult:

$$\begin{bmatrix} 4.11 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot (x + \Delta x) = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix}$$

#### Példa:

• Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ \, x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Módosult:

$$\begin{bmatrix} 4.11 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot (x + \Delta x) = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix}$$

8

A módosult LER megoldása: 
$$x + \Delta x = \begin{bmatrix} 2.94 \\ -2.85 \end{bmatrix}$$



#### Példa:

Eredeti:

$$\begin{bmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot x = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix} \quad \rightarrow \quad \mathsf{megold\'as:} \ \, x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Módosult:

$$\begin{bmatrix} 4.11 & 2.8 \\ 9.7 & 6.6 \end{bmatrix} \cdot (x + \Delta x) = \begin{bmatrix} 4.1 \\ 9.7 \end{bmatrix}$$

8

A módosult LER megoldása: 
$$x + \Delta x = \begin{bmatrix} 2.94 \\ -2.85 \end{bmatrix}$$

4 Mi történt?

Hogyan jellemezhető a megoldás megváltozása a jobb oldal megváltozásához képest?

- Mennyire változott a mátrix:  $\delta A := \frac{\|\Delta A\|}{\|A\|} = 7.8495e 004$ .
- Emiatt mennyire változik a megoldás:  $\delta x := \frac{\|\Delta x\|}{\|x\|} = 3.4507.$
- Vizsgáljuk a kettő hányadosát:  $\frac{\delta x}{\delta A} =$  4396.1.
- cond(A) = 1623

### Tétel: LER érzékenysége a mátrix pontatlanságára

Ha A invertálható,  $b \neq 0$  és  $\|\Delta A\| \cdot \|A^{-1}\| < 1$ , akkor indukált mátrixnormában

$$\frac{\|\Delta x\|}{\|x\|} \leq \frac{\|A\|\cdot \|A^{-1}\|}{1-\|\Delta A\|\cdot \|A^{-1}\|} \cdot \frac{\|\Delta A\|}{\|A\|}.$$

### Tétel: LER érzékenysége a mátrix pontatlanságára

Ha A invertálható,  $b \neq 0$  és  $\|\Delta A\| \cdot \|A^{-1}\| < 1$ , akkor indukált mátrixnormában

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A\| \cdot \|A^{-1}\|}{1 - \|\Delta A\| \cdot \|A^{-1}\|} \cdot \frac{\|\Delta A\|}{\|A\|}.$$

#### Lemma

Ha ||M|| < 1, akkor (I + M) invertálható és indukált mátrixnormában

$$||(I+M)^{-1}|| \leq \frac{1}{1-||M||}.$$

#### Tétel: LER érzékenysége a mátrix pontatlanságára

Ha A invertálható,  $b \neq 0$  és  $\|\Delta A\| \cdot \|A^{-1}\| < 1$ , akkor indukált mátrixnormában

$$\frac{\|\Delta x\|}{\|x\|} \leq \frac{\|A\|\cdot \|A^{-1}\|}{1-\|\Delta A\|\cdot \|A^{-1}\|} \cdot \frac{\|\Delta A\|}{\|A\|}.$$

#### Lemma

Ha ||M|| < 1, akkor (I + M) invertálható és indukált mátrixnormában

$$||(I+M)^{-1}|| \leq \frac{1}{1-||M||}.$$

Megj: A lemmához kell az indukált mátrixnorma.

#### Biz. lemma:

• Az I+M mátrix tényleg invertálható, hiszen  $\varrho(M) \leq \|M\| < 1$ , azaz M sajátértékeire:  $|\lambda_i(M)| < 1$ , vagyis az egységsugarú körön belül helyezkednek el. Meggondolható, hogy I+M sajátvektorai ugyanazok, mint M sajátvektorai, a sajátértékekre pedig  $\lambda_i(I+M)=1+\lambda_i(M)$  teljesül, így I+M minden sajátértéke pozitív, következésképpen I+M invertálható.

#### Biz. lemma:

- Az I+M mátrix tényleg invertálható, hiszen  $\varrho(M) \leq \|M\| < 1$ , azaz M sajátértékeire:  $|\lambda_i(M)| < 1$ , vagyis az egységsugarú körön belül helyezkednek el. Meggondolható, hogy I+M sajátvektorai ugyanazok, mint M sajátvektorai, a sajátértékekre pedig  $\lambda_i(I+M)=1+\lambda_i(M)$  teljesül, így I+M minden sajátértéke pozitív, következésképpen I+M invertálható.
- Vizsgáljuk most I + M inverzét, majd ennek normáját.

$$(I+M)^{-1} = I \cdot (I+M)^{-1} = (I+M-M)(I+M)^{-1} =$$

$$= I - M \cdot (I+M)^{-1},$$

$$\left\| (I+M)^{-1} \right\| \le \|I\| + \|M\| \cdot \left\| (I+M)^{-1} \right\|,$$

$$(1-\|M\|) \cdot \left\| (I+M)^{-1} \right\| \le \|I\| = 1 \implies \left\| (I+M)^{-1} \right\| \le \frac{1}{1-\|M\|}.$$

**Biz. tétel:** Az  $(A+\Delta A)(x+\Delta x)=b$  LER-ből Ax=b-t kivonva  $(A+\Delta A)\cdot \Delta x+\Delta A\cdot x=0$ , másképp

$$(A + \Delta A) \cdot \Delta x = -\Delta A \cdot x,$$
$$A \cdot (I + A^{-1} \cdot \Delta A) \cdot \Delta x = -\Delta A \cdot x.$$

**Biz. tétel:** Az  $(A + \Delta A)(x + \Delta x) = b$  LER-ből Ax = b-t kivonva  $(A + \Delta A) \cdot \Delta x + \Delta A \cdot x = 0$ , másképp

$$(A + \Delta A) \cdot \Delta x = -\Delta A \cdot x,$$
  
$$A \cdot (I + A^{-1} \cdot \Delta A) \cdot \Delta x = -\Delta A \cdot x.$$

Mivel feltevésünk szerint  $\|A^{-1}\cdot\Delta A\|\leq \|A^{-1}\|\cdot\|\Delta A\|<1$ , a lemma alapján mondhatjuk, hogy  $(I+A^{-1}\cdot\Delta A)$  invertálható.

$$\Delta x = -(I + A^{-1} \cdot \Delta A)^{-1} A^{-1} \Delta A \cdot x$$

**Biz. tétel:** Az  $(A + \Delta A)(x + \Delta x) = b$  LER-ből Ax = b-t kivonva  $(A + \Delta A) \cdot \Delta x + \Delta A \cdot x = 0$ , másképp

$$(A + \Delta A) \cdot \Delta x = -\Delta A \cdot x,$$
$$A \cdot (I + A^{-1} \cdot \Delta A) \cdot \Delta x = -\Delta A \cdot x.$$

Mivel feltevésünk szerint  $||A^{-1} \cdot \Delta A|| \le ||A^{-1}|| \cdot ||\Delta A|| < 1$ , a lemma alapján mondhatjuk, hogy  $(I + A^{-1} \cdot \Delta A)$  invertálható.

$$\Delta x = -(I + A^{-1} \cdot \Delta A)^{-1} A^{-1} \Delta A \cdot x$$

Az inverz normájára adott becslésünket is felhasználva:

$$\begin{split} \|\Delta x\| &\leq \left\| (I+A^{-1}\cdot\Delta A)^{-1} \right\| \cdot \left\| A^{-1} \right\| \cdot \|\Delta A\| \cdot \|x\| \\ \frac{\|\Delta x\|}{\|x\|} &\leq \frac{1}{1-\|A^{-1}\cdot\Delta A\|} \cdot \left\| A^{-1} \right\| \cdot \|\Delta A\| \leq \frac{\|A\|\cdot\|A^{-1}\|}{1-\|A^{-1}\|\cdot\|\Delta A\|} \cdot \frac{\|\Delta A\|}{\|A\|}. \end{split}$$

#### Tétel átfogalmazás:

$$\frac{\|A\| \cdot \|A^{-1}\|}{1 - \|\Delta A\| \cdot \|A^{-1}\|} \cdot \frac{\|\Delta A\|}{\|A\|} =$$

#### Tétel átfogalmazás:

$$\begin{split} &\frac{\|A\|\cdot\|A^{-1}\|}{1-\|\Delta A\|\cdot\|A^{-1}\|}\cdot\frac{\|\Delta A\|}{\|A\|} = \\ &= \frac{\|A\|\cdot\|A^{-1}\|}{1-\frac{\|\Delta A\|}{\|A\|}\cdot\|A\|\cdot\|A^{-1}\|}\cdot\frac{\|\Delta A\|}{\|A\|} = \end{split}$$

#### Tétel átfogalmazás:

$$\begin{split} &\frac{\|A\|\cdot\|A^{-1}\|}{1-\|\Delta A\|\cdot\|A^{-1}\|}\cdot\frac{\|\Delta A\|}{\|A\|} = \\ &= \frac{\|A\|\cdot\|A^{-1}\|}{1-\frac{\|\Delta A\|}{\|A\|}\cdot\|A\|\cdot\|A^{-1}\|}\cdot\frac{\|\Delta A\|}{\|A\|} = \\ &= \frac{\operatorname{cond}\left(A\right)}{1-\operatorname{cond}\left(A\right)\cdot\frac{\|\Delta A\|}{\|A\|}}\cdot\frac{\|\Delta A\|}{\|A\|}. \end{split}$$

### Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 6 Relatív maradék
- 6 Matlab példák

# Megjegyzés: egyesített tétel LER érzékenységéről

Ha az

$$A \cdot x = b$$

LER esetén mind a bal oldal mátrixa, mind a jobb oldal vektora megváltozik, és az így számolt megoldásra

$$(A + \Delta A) \cdot (x + \Delta x) = b + \Delta b$$

teljesül, akkor a következő becslés igazolható:

# Megjegyzés: egyesített tétel LER érzékenységéről

Ha az

$$A \cdot x = b$$

LER esetén mind a bal oldal mátrixa, mind a jobb oldal vektora megváltozik, és az így számolt megoldásra

$$(A + \Delta A) \cdot (x + \Delta x) = b + \Delta b$$

teljesül, akkor a következő becslés igazolható:

$$\frac{\left\|\Delta x\right\|}{\left\|x\right\|} \leq \frac{\mathsf{cond}\left(A\right)}{1-\mathsf{cond}\left(A\right) \cdot \frac{\left\|\Delta A\right\|}{\left\|A\right\|}} \cdot \left(\frac{\left\|\Delta A\right\|}{\left\|A\right\|} + \frac{\left\|\Delta b\right\|}{\left\|b\right\|}\right).$$

#### Példa

Hogyan befolyásolja az LU-felbontás a feladat kondicionáltságát? Mutassuk meg, hogy nem javul.

#### Példa

Hogyan befolyásolja az LU-felbontás a feladat kondicionáltságát? Mutassuk meg, hogy nem javul.

• 
$$Ax = b \Rightarrow LUx = b \Rightarrow Ly = b, Ux = y,$$

#### Példa

Hogyan befolyásolja az LU-felbontás a feladat kondicionáltságát? Mutassuk meg, hogy nem javul.

- $Ax = b \Rightarrow LUx = b \Rightarrow Ly = b, Ux = y,$
- $A = L \cdot U \quad \Rightarrow \quad ||A|| \leq ||L|| \cdot ||U||$

#### Példa

Hogyan befolyásolja az LU-felbontás a feladat kondicionáltságát? Mutassuk meg, hogy nem javul.

- $Ax = b \Rightarrow LUx = b \Rightarrow Ly = b, Ux = y,$
- $A = L \cdot U \quad \Rightarrow \quad ||A|| \leq ||L|| \cdot ||U||$
- $A^{-1} = U^{-1} \cdot L^{-1} \quad \Rightarrow \quad ||A^{-1}|| \le ||L^{-1}|| \cdot ||U^{-1}||$

#### Példa

Hogyan befolyásolja az LU-felbontás a feladat kondicionáltságát? Mutassuk meg, hogy nem javul.

- $Ax = b \Rightarrow LUx = b \Rightarrow Ly = b, Ux = y,$
- $A = L \cdot U \quad \Rightarrow \quad ||A|| \leq ||L|| \cdot ||U||$
- $A^{-1} = U^{-1} \cdot L^{-1} \quad \Rightarrow \quad ||A^{-1}|| \le ||L^{-1}|| \cdot ||U^{-1}||$
- $\operatorname{cond}(A) \leq \operatorname{cond}(L) \cdot \operatorname{cond}(U)$

#### Példa

Hogyan befolyásolja az LU-felbontás a feladat kondicionáltságát? Mutassuk meg, hogy nem javul.

#### Biz.:

- $Ax = b \Rightarrow LUx = b \Rightarrow Ly = b, Ux = y,$
- $A = L \cdot U \Rightarrow ||A|| \leq ||L|| \cdot ||U||$
- $A^{-1} = U^{-1} \cdot L^{-1} \quad \Rightarrow \quad ||A^{-1}|| \le ||L^{-1}|| \cdot ||U^{-1}||$
- $\operatorname{cond}(A) \leq \operatorname{cond}(L) \cdot \operatorname{cond}(U)$

Sőt előfordulhat, hogy cond (L), cond (U) >> cond (A), azaz bizonyos mátrixok esetén előfordulhat, hogy a Gauss-elimináció nagyon pontatlan eredményt ad.

#### Példa gyakorlatra

lgazoljuk, hogy a QR-felbontással a feladat kondicionáltsága nem változik.

#### Példa gyakorlatra

lgazoljuk, hogy a QR-felbontással a feladat kondicionáltsága nem változik.

#### Példa gyakorlatra

Igazoljuk, hogy a Cholesky-felbontással a feladat kondicionáltsága nem változik.

#### Példa gyakorlatra

lgazoljuk, hogy a QR-felbontással a feladat kondicionáltsága nem változik.

#### Példa gyakorlatra

Igazoljuk, hogy a Cholesky-felbontással a feladat kondicionáltsága nem változik.

Ez is mutatja a *QR*- és Cholesky-felbontáson alapuló módszerek stabilitását.

# Tartalomjegyzék

- Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 6 Relatív maradék
- 6 Matlab példák

## Relatív maradék

A kondíciószám, csak a LER megoldás (vagyis a feladat) érzékenységét jellemzi, a megoldó algoritmusét nem. A megoldó módszer jellemzésére a maradékvektort használjuk. A kondíciószám, csak a LER megoldás (vagyis a feladat) érzékenységét jellemzi, a megoldó algoritmusét nem. A megoldó módszer jellemzésére a maradékvektort használjuk.

## Definíció: reziduum- vagy maradékvektor

Legyen  $\tilde{x}$  az Ax = b LER egy közelítő megoldása. Ekkor az  $r := b - A\tilde{x}$  vektort **reziduum**- vagy **maradékvektornak** nevezzük.

A kondíciószám, csak a LER megoldás (vagyis a feladat) érzékenységét jellemzi, a megoldó algoritmusét nem. A megoldó módszer jellemzésére a maradékvektort használjuk.

## Definíció: reziduum- vagy maradékvektor

Legyen  $\tilde{x}$  az Ax = b LER egy közelítő megoldása. Ekkor az  $r := b - A\tilde{x}$  vektort **reziduum**- vagy **maradékvektornak** nevezzük.

Látjuk, hogy a reziduum vektor könnyen számolható, alkalmazható direkt- és iterációs módszerek esetén is. Az utóbbi esetben leállási feltétel is készíthető a segítségével.

### Definíció: relatív maradék

• Az  $\eta:=\frac{\|r\|}{\|A\|\cdot\|\widetilde{x}\|}$  ([éta]) mennyiséget **relatív maradéknak** nevezzük.

#### Definíció: relatív maradék

- Az  $\eta := \frac{\|r\|}{\|A\| \cdot \|\widetilde{x}\|}$  ([éta]) mennyiséget **relatív maradéknak** nevezzük.
- A stabilitás inverz megfogalmazása alapján a módszer stabil, ha az  $\widetilde{x}$  közelítő megoldáshoz tartozó  $(A+\Delta A)\cdot\widetilde{x}=b$  LER csak kicsit perturbált az eredetihez képest, azaz  $\frac{\|\Delta A\|}{\|A\|}$  kicsi.

#### Definíció: relatív maradék

- Az  $\eta := \frac{\|r\|}{\|A\| \cdot \|\widetilde{x}\|}$  ([éta]) mennyiséget **relatív maradéknak** nevezzük.
- A stabilitás inverz megfogalmazása alapján a módszer stabil, ha az  $\widetilde{x}$  közelítő megoldáshoz tartozó  $(A+\Delta A)\cdot\widetilde{x}=b$  LER csak kicsit perturbált az eredetihez képest, azaz  $\frac{\|\Delta A\|}{\|A\|}$  kicsi.

 $\eta$  értéke a közelítő megoldás ismeretében könnyen számolható. A továbbiakban  $\Delta A$  ismerete nélkül szeretnénk becsléseket adni a nem ismert  $\frac{\|\Delta A\|}{\|A\|}$  mennyiségre.

#### Tétel: becslés a relatív maradékra

Ha A invertálható, akkor illeszkedő mátrixnormában

$$\eta \leq \frac{\|\Delta A\|}{\|A\|},$$

azaz ha  $\eta$  nagy, akkor  $\frac{\|\Delta A\|}{\|A\|}$  is nagy.

#### Tétel: becslés a relatív maradékra

Ha A invertálható, akkor illeszkedő mátrixnormában

$$\eta \leq \frac{\|\Delta A\|}{\|A\|},$$

azaz ha  $\eta$  nagy, akkor  $\frac{\|\Delta A\|}{\|A\|}$  is nagy.

**Biz.:** 
$$b = (A + \Delta A) \cdot \widetilde{x} = A \cdot \widetilde{x} + \Delta A \cdot \widetilde{x}$$
, innen  $b - A \cdot \widetilde{x} = r = \Delta A \cdot \widetilde{x}$ , a mátrixnorma illeszkedését felhasználva

$$||r|| \leq ||\Delta A|| \cdot ||\widetilde{x}||$$
.

#### **Tétel:** becslés a relatív maradékra

Ha A invertálható, akkor illeszkedő mátrixnormában

$$\eta \leq \frac{\|\Delta A\|}{\|A\|},$$

azaz ha  $\eta$  nagy, akkor  $\frac{\|\Delta A\|}{\|A\|}$  is nagy.

**Biz.:** 
$$b = (A + \Delta A) \cdot \widetilde{x} = A \cdot \widetilde{x} + \Delta A \cdot \widetilde{x}$$
, innen  $b - A \cdot \widetilde{x} = r = \Delta A \cdot \widetilde{x}$ , a mátrixnorma illeszkedését felhasználva

$$||r|| \leq ||\Delta A|| \cdot ||\widetilde{x}||$$
.

A relatív maradékot becsülve

$$\eta = \frac{\|r\|}{\|A\| \cdot \|\widetilde{x}\|} \le \frac{\|\Delta A\| \cdot \|\widetilde{x}\|}{\|A\| \cdot \|\widetilde{x}\|} \le \frac{\|\Delta A\|}{\|A\|}$$

## Tétel: relatív maradék 2-es normában

Ha A invertálható, akkor

$$\eta_2 = \frac{\|\Delta A\|_2}{\|A\|_2}$$

#### **Tétel:** relatív maradék 2-es normában

Ha A invertálható, akkor

$$\eta_2 = \frac{\|\Delta A\|_2}{\|A\|_2}.$$

Biz.: Belátjuk, hogy

$$\Delta A = \frac{r\widetilde{x}^{\top}}{\widetilde{x}^{\top}\widetilde{x}}$$

jó lesz perturbációnak, vagyis  $\widetilde{x}$  egy ennyivel megváltoztatott mátrixú LER pontos megoldása.

#### **Tétel:** relatív maradék 2-es normában

Ha A invertálható, akkor

$$\eta_2 = \frac{\|\Delta A\|_2}{\|A\|_2}.$$

Biz.: Belátjuk, hogy

$$\Delta A = \frac{r\widetilde{x}^{\top}}{\widetilde{x}^{\top}\widetilde{x}}$$

jó lesz perturbációnak, vagyis  $\tilde{x}$  egy ennyivel megváltoztatott mátrixú LER pontos megoldása. Végezzük el a behelyettesítést:

$$(A + \Delta A) \cdot \widetilde{x} = \left(A + \frac{r\widetilde{x}^{\top}}{\widetilde{x}^{\top}\widetilde{x}}\right) \cdot \widetilde{x} =$$

$$= A\widetilde{x} + \frac{r\widetilde{x}^{\top}\widetilde{x}}{\widetilde{x}^{\top}\widetilde{x}} = A\widetilde{x} + (b - A\widetilde{x}) = b.$$

Biz.: folyt. Felhasználjuk, hogy

$$\left\| r\widetilde{\mathbf{x}}^{\top} \right\|_{2} = \left\| r \right\|_{2} \cdot \left\| \widetilde{\mathbf{x}} \right\|_{2}.$$

(Beadható HF-nak kitűzött feladat.)

Biz.: folyt. Felhasználjuk, hogy

$$\left\| r\widetilde{\mathbf{x}}^{\top} \right\|_{2} = \left\| r \right\|_{2} \cdot \left\| \widetilde{\mathbf{x}} \right\|_{2}.$$

(Beadható HF-nak kitűzött feladat.)

A relatív maradékot becsülve

$$\frac{\left\|\Delta A\right\|_{2}}{\left\|A\right\|_{2}} = \frac{\left\|r\widetilde{\mathbf{x}}^{\top}\right\|_{2}}{\left\|A\right\|_{2}\left\|\widetilde{\mathbf{x}}\right\|_{2}^{2}} = \frac{\left\|r\right\|_{2}\left\|\widetilde{\mathbf{x}}\right\|_{2}}{\left\|A\right\|_{2}\left\|\widetilde{\mathbf{x}}\right\|_{2}^{2}} = \frac{\left\|r\right\|_{2}}{\left\|A\right\|_{2}\left\|\widetilde{\mathbf{x}}\right\|_{2}} = \eta_{2}.$$

Biz.: folyt. Felhasználjuk, hogy

$$\left\| r\widetilde{\mathbf{x}}^{\top} \right\|_{2} = \left\| r \right\|_{2} \cdot \left\| \widetilde{\mathbf{x}} \right\|_{2}.$$

(Beadható HF-nak kitűzött feladat.)

A relatív maradékot becsülve

$$\frac{\|\Delta A\|_{2}}{\|A\|_{2}} = \frac{\left\|r\widetilde{\mathbf{x}}^{\top}\right\|_{2}}{\|A\|_{2}\|\widetilde{\mathbf{x}}\|_{2}^{2}} = \frac{\|r\|_{2}\|\widetilde{\mathbf{x}}\|_{2}}{\|A\|_{2}\|\widetilde{\mathbf{x}}\|_{2}^{2}} = \frac{\|r\|_{2}}{\|A\|_{2}\|\widetilde{\mathbf{x}}\|_{2}} = \eta_{2}.$$

Ha  $\eta_2$  kicsi, akkor  $\frac{\|\Delta A\|_2}{\|A\|_2}$  is kicsi.

Ha  $\eta_2 < \varepsilon_1$ , akkor ebben az adott aritmetikában pontosabb megoldás nem adható.

# Tartalomjegyzék

- 1 Mátrixok kondíciószáma
- 2 Lineáris egyenletrendszer vektorának megváltozása
- 3 Lineáris egyenletrendszer mátrixának megváltozása
- 4 Egyesített tétel, szorzatfelbontások hatása
- 5 Relatív maradék
- 6 Matlab példák

## Példák Matlab-ban



- Egy perturbált LER (jobboldala változik, mátrixa a Hilbert mátrix).
- $3 \operatorname{cond}_2(V_n)$  változása a méret függvényében.
- $oldsymbol{4}$  cond  $_2(\text{tridiag}(-1,2,-1))$  változása a méret függvényében.
- $\mathbf{5}$  cond  $_2(rand_n)$  változása a méret függvényében.

# LER vektorának megváltozása

### Példa:

Jelöljük  $H_5$ -tel az  $5 \times 5$ -ös Hilbert mátrixot.

$$H_5 = \left(\frac{1}{i+j-1}\right)_{i,j=1}^5 = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 & 1/5 \\ 1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\ 1/3 & 1/4 & 1/5 & 1/6 & 1/7 \\ 1/4 & 1/5 & 1/6 & 1/7 & 1/8 \\ 1/5 & 1/6 & 1/7 & 1/8 & 1/9 \end{bmatrix}$$

### 1. Példa:

### • Eredeti LER:

$$H_5 \cdot x = egin{bmatrix} 1/5 \\ 1/6 \\ 1/7 \\ 1/8 \\ 1/9 \end{bmatrix} \quad o \quad \mathsf{megold\'as:} \ x = egin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

### 1. Példa:

• Eredeti LER:

$$H_5 \cdot x = egin{bmatrix} 1/5 \\ 1/6 \\ 1/7 \\ 1/8 \\ 1/9 \end{bmatrix} \quad o \quad \mathsf{megold\'as:} \ x = egin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Módosult LER:

$$H_5 \cdot (x + \Delta x) = egin{bmatrix} 1/5 \\ 1/6 \\ 1/7 \\ 1/8 \\ 1/9 + 1/1000 \end{bmatrix}$$

## 1. Példa

A módosult LER megoldása: 
$$x + \Delta x = \begin{bmatrix} 0.6300 \\ -12.6000 \\ 56.7000 \\ -88.2000 \\ 45.1000 \end{bmatrix}$$

A módosult LER megoldása: 
$$x + \Delta x = \begin{bmatrix} 0.6300 \\ -12.6000 \\ 56.7000 \\ -88.2000 \\ 45.1000 \end{bmatrix}$$

 $oldsymbol{\delta} b = 0.0029$ : a jobboldal relatív hibája

A módosult LER megoldása: 
$$x + \Delta x = \begin{bmatrix} 0.6300 \\ -12.6000 \\ 56.7000 \\ -88.2000 \\ 45.1000 \end{bmatrix}$$

- $\mathbf{0}$   $\delta b = 0.0029$ : a jobboldal relatív hibája
- 2  $\delta x = 114.4469$  a megoldás relatív hibája

A módosult LER megoldása: 
$$x + \Delta x = \begin{bmatrix} 0.6300 \\ -12.6000 \\ 56.7000 \\ -88.2000 \\ 45.1000 \end{bmatrix}$$

- $\mathbf{0}$   $\delta b = 0.0029$ : a jobboldal relatív hibája
- 2  $\delta x = 114.4469$  a megoldás relatív hibája
- **3** a két mennyiség hányadosa:  $\delta x/\delta b = 3.9006e + 004$

A módosult LER megoldása: 
$$x + \Delta x = \begin{bmatrix} 0.6300 \\ -12.6000 \\ 56.7000 \\ -88.2000 \\ 45.1000 \end{bmatrix}$$

- $\mathbf{0}$   $\delta b = 0.0029$ : a jobboldal relatív hibája
- 2  $\delta x = 114.4469$  a megoldás relatív hibája
- 3 a két mennyiség hányadosa:  $\delta x/\delta b = 3.9006e + 004$
- 4 ennek becslése a tétellel:  $cond_2(H_5) = 4.7661e + 005$ .

## Hilbert mátrix kondíciószáma

### 2. Példa:

A Hilbert mátrix kondíciószámának változását vizsgáljuk:



Nem sok látszik az ábrából, mintha csak az utolsó érték lenne nagy.

## Hilbert mátrix kondíciószáma

### 2. Példa:

Vegyük a kondíciószámok logaritmusát!



## Hilbert mátrix kondíciószáma

### 2. Példa:

Vegyük a kondíciószámok logaritmusát!



$$\operatorname{cond}_2(H_n) \approx \exp(3.1n) \approx 22^n$$

## Vandermonde mátrix kondíciószáma

## 3. Példa:

A [0, 1] intervallum egyenletes felosztású pontjaiból képzett Vandermonde mátrix kondíciószámának változását vizsgáljuk:



Nem sok látszik az ábrából, mintha csak az utolsó érték lenne nagy.

## Vandermonde mátrix kondíciószáma

## 3. Példa:

Vegyük a kondíciószámok logaritmusát!



## Vandermonde mátrix kondíciószáma

### 3. Példa:

Vegyük a kondíciószámok logaritmusát!



$$\operatorname{cond}_2(V_n) \approx \exp(1.85n) \approx (6.4)^n$$

# A tridiag (-1, 2, -1) mátrix kondíciószáma

### 4. Példa:

A tridiag (-1,2,-1) mátrix kondíciószámának változását vizsgáljuk:



Az ábra alapján sejthető, hogy a növekedés a méret négyzetével arányos.

# A tridiag (-1, 2, -1) mátrix kondíciószáma

### 4. Példa:

Vegyük a kondíciószámok gyökét!



Elméletileg igazolható, hogy  $\operatorname{cond}_2(\operatorname{tridiag}(-1,2,-1)) \approx \left(\tfrac{2(n+1)}{\pi}\right)^2.$ 



## Véletlen mátrix kondíciószáma

## 5. Példa:

Véletlen mátrix kondíciószámának változását vizsgáljuk:



Az előző mátrixokhoz képest egész kicsi értékeket kaptunk.