

Università degli Studi di Milano - Bicocca

Dipartimento di Informatica, Sistemistica e Comunicazione Corso di Laurea in Informatica

Analisi e confronto di metriche di validazione interna per il clustering

Tesi di laurea di: Andrea Spagnolo

Matricola: 879254

Relatore: Davide Ciucci

Co-relatore: Davide Chicco

Anno accademico: 2023-2024

Introduzione

- Il **clustering** è una tecnica di apprendimento non supervisionato utilizzata per raggruppare dati simili.
- Il **limite** principale del clustering è la difficoltà nel valutare la qualità dei risultati ottenuti.

Prima di k-means

Obiettivo

Confrontare le metriche Silhouette coefficient, Entropia, Davies-Bouldin index, Calinski-Harabasz index, Dunn index e Gap statistic per valutare quali siano le più efficaci.

Metodi

- Per determinare quali tra le 6 metriche performa meglio è stato svolto un test su diversi tipi di dataset.
- Questi dataset rappresentano casi dove il risultato del clustering va peggiorando, ed occorre verificare se e quali di queste metriche sono consistenti con questo peggioramento.

Dataset reali EHRs

Matrice di zeri e uni

- Ho applicato le sei metriche alla matrice di zeri e uni con una riga che viene manipolata ad ogni iterazione.
- L'obiettivo è capire quali metriche sono consistenti con il peggioramento della qualità del clustering.

Risultati dataset Matrice di zeri e uni

Dato questo dataset mi aspetto che le metriche peggiorino all'aumentare delle righe modificate.

Ciò è accaduto con tutte le metriche tranne che con l'Entropia che rimane sempre costante e con la Gap Statistic che ha un andamento irregolare.

metric	result	time
Silhouette	correct	0.901 ms
Complementary Entropy	wrong	0.299 ms
Reciprocal Davies-Bouldin	correct	0.435 ms
Dunn index	correct	0.274 ms
Calinski-Harabasz	correct	0.197 ms
Gap Statistic	wrong	238.138 ms

Dataset artificiali

Risultati dataset artificiali

È stato analizzato il comportamento delle metriche per ognuno dei 7 dataset. Silhouette e Davies-Bouldin sono le metriche che hanno registrato le migliori performance.

metric	correct	wrong	%	average time
Silhouette	6	1	85.71	0.284 sec
Reciprocal Davies-Bouldin	6	1	85.71	0.0003 sec
Dunn index	5	2	71.43	0.121 sec
Calinski-Harabasz	4	3	57.14	0.0003 sec
Gap Statistic	3	4	42.86	0.077 sec
Complementary Entropy	1	6	14.29	0.0001 sec

Dataset reali

Ho preso in esame 5 diversi dataset medici reali riguardanti:

- la sepsi & SIRS
- la correlazione tra insufficienza cardiaca e depressione
- gli arresti cardiaci
- il neuroblastoma
- il diabete di tipo 1

Dataset artificiale cartella clinica

age	sex_0male_1female	education	cancer_stage
5	0	1	1
6	0	1	1
5	0	1	1
4	0	1	1
6	0	1	1
80	1	4	4
79	1	4	4
78	1	4	4
78	1	4	4
81	1	4	4

Procedimento dataset reali

Risultati dataset reali

È stato analizzato il comportamento delle metriche per ognuno dei 6 dataset.

Silhouette, **Davies-Bouldin** e **Dunn index** sono le metriche che hanno registrato le migliori performance.

metric	correct	wrong	%	avarage time
Silhouette	6	0	100.0 %	3.346 ms
Reciprocal Davies-Bouldin	6	0	100.0 %	1.069 ms
Dunn index	6	0	100.0 %	1.095 ms
Calinski-Harabasz	5	1	83.333 %	0.806 ms
Gap Statistic	4	2	66.667 %	199.575 ms
Complementary Entropy	3	3	50.0 %	0.258 ms

- Analizzando i risultati, le metriche **Silhouette** e **Davies-Bouldin** sono risultate le **più performanti.**
- Questo è particolarmente interessante se si considera che queste metriche sono tra le più utilizzate e diffuse all'interno della comunità scientifica, suggerendo una conferma empirica dell'affidabilità.

