Chapitre 7: Fractions

1 L'écriture fractionnaire

Cours : écriture fractionnaire

Soient a et b deux nombres, avec b non égal à 0. Le quotient de a par b est le nombre qui, multiplié par b, donne a.

On peut le noter :

- a ÷ b : c'est l'écriture décimale.
- $\frac{a}{b}$: c'est l'écriture **fractionnaire**.

a est le numérateur.

b est le dénominateur.

On ne peut **jamais** diviser par 0.

Exemple

Le quotient de 8 par 9 est $\frac{8}{9}$, et on a $\frac{8}{9} \times 9 = 8$.

Cours: Fractions

Lorsque a et b sont des nombres *entiers*, on dit que $\frac{a}{b}$ est une **fraction**.

2 Simplifier des fractions

Cours

Si on **multiplie** ou **divise** le numérateur **et** le dénominateur d'un quotient par le **même** nombre (différent de 0), la valeur du quotient reste la même.

Si a, b, et k sont trois nombres, avec b \neq 0 et k \neq 0, alors

$$\frac{a}{b} = \frac{a \times k}{b \times k} = \frac{a \div k}{b \div k}$$

Exemple

$$\frac{24}{30} = \frac{24 \div 6}{30 \div 6} = \frac{4}{5}$$

$$\frac{3,5}{6} = \frac{3,5 \times 2}{6 \times 2} = \frac{7}{12}$$

Cours

Ī

Pour **simplifier** une fraction, il faut écrire une autre fraction qui lui est égale, mais dont le numérateur et le dénominateur sont plus petits.

Pour simplifier au maximum une fraction, il faut utiliser le PGCD, vu au chapitre 1. On dit alors que la fraction est **irréductible**.

Exemple

Pour simplifier $\frac{36}{15}$:

- 36 et 15 sont divisible par 3.
- Donc on a $\frac{36}{15} = \frac{36 \div 3}{15 \div 3} = \frac{12}{5}$

Exemple

Pour simplifier $\frac{84}{70}$:

- On a $84 = 2 \times 2 \times 3 \times 7$ et $70 = 2 \times 5 \times 7$. Donc PGCD(84, 70) = $2 \times 7 = 14$.
- Donc on a $\frac{84}{70} = \frac{84 \div 14}{70 \div 14} = \frac{6}{5}$.

3 Comparaison de fractions

Cours

Pour placer une fraction $\frac{a}{b}$ sur une droite graduée, on peut :

- Calculer la valeur de $\frac{a}{b}$;
- Placer un point A d'abscisse a, et diviser le segment [OA] en b partie égales.

Exemple

Pour placer $\frac{6}{4}$, on peut :

- Calculer $\frac{6}{4} = 1,5$
- Placer le point A d'abscisse 6, et diviser le segment [OA] en 4 parties égales.

Cours: Comparer des fraction

Pour comparer des fractions, il faut qu'elles aient le même dénominateur. On les compare alors par leur numérateur.

Exemple

$$\frac{8}{5} < \frac{9}{5}$$
, car 8 < 9.

Méthode

Si on veut comparer deux fractions qui n'ont pas le même dénominateur, il faut les modifier pour qu'elles aient le même dénominateur. Pour comparer $\frac{a}{b}$ et $\frac{c}{d}$:

On multiplie le numérateur et le dénominateur de $\frac{a}{h}$ par d, et le numérateur et le dénominateur de $\frac{c}{d}$ par b.

$$\frac{a}{b} = \frac{a \times d}{b \times d}$$
 et $\frac{c}{d} = \frac{c \times b}{d \times b}$

$$b \times d = d \times b$$

Exemple

Si on veut comparer $\frac{12}{10}$ et $\frac{8}{6}$:

$$\frac{12}{10} = \frac{12 \times 6}{10 \times 6} = \frac{72}{60} \quad \text{et} \quad \frac{8}{6} = \frac{8 \times 10}{6 \times 10} = \frac{80}{60}$$

Donc
$$\frac{12}{10} < \frac{8}{6}$$

Avancé

Méthode: Comparer des fractions

Pour comparer deux fractions $\frac{a}{b}$ et $\frac{c}{d}$, on peut mettre le dénominateur de ces fractions au **PPCM** de c et d.

Exemple

On voudrait comparer $\frac{17}{90}$ et $\frac{19}{110}$.

- $90 = 2 \times 5 \times 11$ et $110 = 2 \times 3 \times 3 \times 5$, donc PPCM(90, 110) = $2 \times 3 \times 3 \times 5 \times 11 = 990$.
- On a $90 \times 11 = 990$ et $110 \times 9 = 990$. Donc

$$\frac{17}{90} = \frac{17 \times 11}{90 \times 11} = \frac{187}{990}$$
$$\frac{19}{110} = \frac{19 \times 9}{110 \times 9} = \frac{171}{990}$$

Donc
$$\frac{17}{90} > \frac{19}{110}$$
.