$$P_{i} = P \cdot P_{i+1} + Q \cdot P_{i-1}. \qquad (q = 1-p \cdot P + 0).$$
Step: \mathbb{D} . guess a Sol of the form: $P_{i} = x^{i}$

$$=> x^{i} = p \cdot x^{i+1} + q \cdot x^{i-1}$$

$$=> x = p \cdot x^{2} + q$$

$$i \cdot e \cdot px^{2} - x + q = 0 \quad \text{characteristic equation}$$
(2).

Characteristic equation have
$$\text{two roots}.$$
If two distinct roots Γ_{i} and Γ_{2} , then the solution of the form: $P_{i} = a\Gamma_{i}^{i} + b\Gamma_{2}^{i}$
if only one distinct root Γ_{1} : $P_{i} = a\Gamma_{1}^{i} + b\Gamma_{2}^{i}$
in our case: $x = \frac{1 \pm \sqrt{1-4pq}}{2p} = \frac{1 \pm \sqrt{1-4pq}}{2p} = \frac{(t/2p-1)}{2p}$

$$= 1. \text{ or } \frac{2}{P}$$

$$\Rightarrow P_i = \begin{cases} a+b(\frac{q}{P})^i, P \neq q \\ a+bi, P = q \end{cases}$$

=> Solve a, b by two known points.