Parte Didáctica

Módulo: Programación – 1.º DAM

Actividad: "Del problema a la pantalla"

2.1 ¿Qué supuesto queremos trabajar?

- Simular un proceso completo de desarrollo algorítmico:
 - Planteamiento de un problema cotidiano
 - Diseño de la solución en pseudocódigo y diagramas
 - Codificación en lenguaje real (Python)
 - Representación visual del algoritmo mediante un prototipo de interfaz

2.2 Contextualización del alumnado

- Alumnado de 1.º DAM
 - En proceso de adquirir competencias en programación estructurada
 - Grado de heterogeneidad medio-alto
 - Motivación vinculada a la creación de soluciones reales y visuales

2.3 Conocimientos previos requeridos

- ✓ Uso de condicionales (if , else)
- ✓ Bucles (for , while)
- ✓ Entrada/salida en consola
- **✓** Funciones simples
- ✓ Nociones básicas de lógica algorítmica

2.4 Objetivos de aprendizaje

- **©** El alumnado será capaz de:
 - Analizar problemas y plantear soluciones paso a paso
 - Representar algoritmos mediante pseudocódigo y diagramas
 - Traducir algoritmos a código funcional en Python
 - Diseñar interfaces visuales que reflejen el comportamiento lógico del algoritmo

2.5 Metodología

- **K** Enfoque práctico y por fases
- Aprendizaje basado en retos cotidianos
- Evaluación continua y formativa
- Trabajo individual con momentos colaborativos
- Retroalimentación inmediata

2.6 Material didáctico (DUA)

- Plantilla base de pseudocódigo y diagramas
- Fichas guía con ejemplos visuales
- Acceso a entorno Python (Thonny, Replit...)
- Introducción guiada a Figma (versión gratuita)
- Adaptación textual y visual del enunciado

2.7 Secuencia de acciones formativas

- 1. Presentación de varios problemas cotidianos
- 2. Elección del problema y análisis de entradas/salidas
- 3. Representación de la solución en:
 - Pseudocódigo
 - Diagrama de flujo o Nassi-Shneiderman
- 4. Codificación en Python
- 5. Prototipado del flujo en Figma
- 6. Presentación y revisión cruzada entre compañeros

2.8 Actividad principal

"Del problema a la pantalla"

- Fase 1: Planteamiento del problema
 - Ejemplos: sistema de descuentos, gestión de reservas, turnos, votaciones...
- Fase 2: Diseño de la solución
 - Pseudocódigo
 - Diagrama de flujo o Nassi-Shneiderman
- Fase 3: Implementación en Python
 - Código funcional a partir del diseño lógico
- ** Fase 4: Prototipado visual
 - Interfaz en Figma que refleje pantallas, botones, lógica de interacción

2.9 Evaluación: instrumentos y criterios

Criterios:

- Análisis correcto del problema
- Coherencia entre pseudocódigo, diagrama y código
- Funcionalidad del programa
- Relación entre lógica y flujo visual
- Claridad y creatividad del prototipo

Instrumentos:

- Lista de control por fases
- Rúbrica detallada
- Observación directa + entrega final

2.10 Inclusión y atención a la diversidad

- Plantillas y ejemplos adaptados
- Uso flexible del entorno de desarrollo
- Opción de entregar por fases o por pareja
- Prototipado guiado con recursos visuales
- Feedback personalizado

2.11 Actividades de ampliación

- * Para alumnado avanzado:
 - Integrar entrada/salida gráfica (Tkinter, PySimpleGUI)
 - Añadir persistencia básica de datos
 - Simular casos de error y validación
 - Crear documentación técnica y vídeo demo

Cierre

- La actividad conecta todas las fases del desarrollo de una aplicación:
 - Problema → Análisis → Lógica → Código → Interfaz
- Produce el ciclo completo de pensamiento computacional y diseño orientado al usuario.