GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR - GAAV

CEFET-MG TIMÓTEO

GAAV - PROF.

13ª Lista de exercícios – ERE

- 1) Decomponha W = -i 3j + 2k como a soma de dois vetores W_1 e W_2 , com W_1 paralelo ao vetor j + 3k e W_2 ortogonal a este último.
- 2) Verifique se os seguintes pontos pertencem a um mesmo plano:

$$A = (2, 0, 2), B = (3, 2, 0), C = (0, 2, 1) e D = (10, -2, 1);$$

- 3) Dado o triângulo de vértices A = (0, 1, -1), B = (-2, 0, 1) e C = (1, -2, 0), determine a medida da altura relativa ao lado BC.
- 4) Sejam U e V vetores no espaço, com $V \neq 0$.
- (a) Determine o número α , tal que U α V seja ortogonal a V.
- (b) Mostre que $(U + V) \times (U V) = 2V \times U$.
- 5) Quais são as coordenadas do ponto P', simétrico do ponto P = (1, 0, 3) em relação ao ponto M = (1, 2, -1)? (Sugestão: o ponto P' é tal que o vetor MP' = -MP.
- 6) Considere as retas (x, y, z) = t(1, 2, -3) e(x, y, z) = (0, 1, 2) + s(2, 4, -6). Encontre a equação geral do plano π que contém estas duas retas.
- 7) Ache a equação do plano paralelo ao plano 2x y + 5z 3 = 0 e que passa por P = (1, -2, 1).
- 8) Encontre a equação do plano que passa pelo ponto P = (2, 1, 0) e é perpendicular aos planos x + 2y 3z + 2 = 0 e 2x y + 4z 1 = 0.

GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR - GAAV

9) Reduzir cada uma das equações de forma a identificar a cônica que ela representa e faça um esboço do seu gráfico:

(a)
$$4x^2 + 2y^2 = 1$$

(c)
$$x^2 - 9y^2 = 9$$

(b)
$$x^2 + y = 0$$

- 10) Escreva as equações das seguintes cônicas:
- a) Os focos são $F_1 = (-1, -1)$ e $F_2 = (1, 1)$ e satisfaz dist (P, F_1) + dist (P, F_2) = 4;
- b) Os focos são $F_1 = (3, -1)$ e $F_2 = (3, 4)$ e satisfaz $| dist(P, F_1) dist(P, F_2) | = 3;$
- c) O foco é F = (0, 0) e diretriz x + y = 2 (d);
- 11) Mostre que a equação da hipérbole com focos nos pontos F_1 = $(x_0 c, y_0)$ e F_2 = $(x_0 + c, y_0)$ e satisfaz |dist(P, F_1) dist(P, F_2)| = 2a, em que a < c é $\frac{(x-x_0)^2}{a^2}$ $\frac{(y-y_0)^2}{b^2}$ = 1, em que $b = \sqrt{c^2 a^2}$.

