

Análise Matemática II | Engenharia Informática

TP2

Métodos Numéricos para resolução de Sistemas de ED SED

Diogo Silva – 2020138438 - LEI Hugo Ferreira – 2020128305 - LEI Rúben Mendes – 2020138473 LEI

Índice

1. Introdução	3
2. Métodos Numéricos para resolução de sistemas de ED	4
2.1. Método de Euler	4
2.2. Método de Euler Melhorado	4
2.3. Método de Runge-Kutta de ordem 2	5
2.4. Método de Runge-Kutta de ordem 4	6
3. Problemas de Aplicação e Testes de Método	8
3.1. Problema do Pêndulo	8
3.2. Problema do sistema massa-mola sem amortecimento	12
3.3. Problema do sistema massa-mola com amortecimento	12
3.4. Problema do circuito elétrico	13
4. Conclusão	15

Figura 1 Pendulo	10
Figura 2 Sistema Mola-Massa com Amortecimento	10
Figura 3 Sistema Mola-Massa sem Amortecimento	11
Figura 4 Comportamento Circuito Elétrico	11

1. Introdução

Este trabalho foi realizado no âmbito da Unidade Curricular de Análise Matemática II, como avaliação do nosso conhecimento de programação em MATLAB. Pretende-se que os alunos obtenham soluções aproximadas de problemas de aplicação, através da redefinição e adaptação das funções implementadas na atividade01, paraa resolução de sistemas de equações diferenciais de 1º ordem com condições iniciais. Neste relatório, vamos apresentar o código dos diferentes métodos numéricos utilizados para a resolução dos diversos problemas, assim como os gráficos que lhes são respetivos. É possível obter estes gráficos através da APP criada por nós, onde o utilizador introduz uma função, os parâmetros da entrada e o método que pretende usar.

2. Métodos Numéricos para resolução de sistemas de ED

2.1. Método de Euler

```
Fórmula: u_{i+1} = u_i + hf(t_i, u_i, v_i)
v_{i+1} = v_i + hg(t_i, u_i, v_i)
```

Algoritmo/Função:

```
function y = NEuler(f,a,b,n,y0)
   = (b-a)/n;
t(1) = a;
y(1) = y0;
for i=1:n
    y(i+1)=y(i)+h*f(t(i),y(i));
    t(i+1) = t(i) + h;
end
end
```

2.2. Método de Euler Melhorado

Fórmula:
$$u_{i+1} = u_i + hf(t_i, u_i, v_i)$$

 $v_{i+1} = v_i + hg(t_i, u_i, v_i)$
 $u_{i+1} = u_i + \left(\frac{h}{2}\right) * (f(t_i, u_i, v_i) + f(t_{i+1}, u_{i+1}, v_{i+1}))$
 $v_{i+1} = u_i + \left(\frac{h}{2}\right) * (g(t_i, u_i, v_i) + g(t_{i+1}, u_{i+1}, v_{i+1}))$

Algoritmo/Função:

```
function y = NEulerMelh(f,a,b,n,y0)
h=(b-a)/n;
```



```
t=a:h:b;
t(1) =a;
y=zeros(1,n+1);
y(1)=y0;
for i=1:n
    %y(i+1)=y(i)+h*f(t(i),y(i));
    y(i+1)=
    y(i)+h/2*(f(t(i),y(i))+h*f(t(i+1),y(i)));
    t(i+1) = t(i)+h;
end
end
```

2.3. Método de Runge-Kutta de ordem 2

Fórmula:
$$\begin{aligned} k_{1_u} &= hf(t_i, u_i, v_i) \\ k_{1_v} &= hg(t_i, u_i, v_i) \\ k_{2_u} &= hf\left(t_{i+1}, u_i + k_{1_u} \,,\, v_i + k_{1_v}\right) \\ k_{2_v} &= hg\left(t_{i+1}, u_i + k_{1_u} \,,\, v_i + k_{1_v}\right) \\ u_{i+1} &= u_i + \frac{1}{2}(k_{1_u} + k_{2_u}) \\ v_{i+1} &= v_i + \frac{1}{2}(k_{1_v} + k_{2_v}) \end{aligned}$$

Algoritmo/Função:

```
function y = NRK2(f,a,b,n,y0)
h=(b-a)/n;
t=a:h:b;
y=zeros(1,n+1);
y(1)=y0;
for i=1:n
    k1=h*f(t(i),y(i));
    k2=h*f(t(i+1),y(i)+k1);
    y(i+1)=y(i)+(k1+k2)/2;
end
```


2.4. Método de Runge-Kutta de ordem 4

Fórmula:
$$k_{1u} = hf(t_i, u_i, v_i)$$

$$k_{1v} = hg(t_i, u_i, v_i)$$

$$k_{2u} = hf\left(t_i + \frac{h}{2}, u_i + \frac{k_{1u}}{2}, v_i + \frac{k_{1v}}{2}\right)$$

$$k_{2v} = hg\left(t_i + \frac{h}{2}, u_i + \frac{k_{1u}}{2}, v_i + \frac{k_{1v}}{2}\right)$$

$$k_{3u} = hf\left(t_i + \frac{h}{2}, u_i + \frac{k_{2u}}{2}, v_i + \frac{k_{2v}}{2}\right)$$

$$k_{3v} = hg\left(t_i + \frac{h}{2}, u_i + \frac{k_{2u}}{2}, v_i + \frac{k_{2v}}{2}\right)$$

$$k_{4u} = hf\left(t_i + h, u_i + k_{3u}, v_i + k_{3v}\right)$$

$$k_{4v} = hg\left(t_i + h, u_i + k_{3u}, v_i + k_{3v}\right)$$

$$u_{i+1} = u_i + \frac{1}{6}(k_{1u} + 2k_{2u} + 2k_{3u} + k_{4u})$$

$$v_{i+1} = v_i + \frac{1}{6}(k_{1v} + 2k_{2v} + 2k_{3v} + k_{4v})$$

Algoritmo/Função:

```
function y = NRK4(f,a,b,n,y0)

h = (b-a)/n;
t=a:h:b;
y=zeros(1,n+1);
y(1)=y0;

for i=1:n
    k1 = f(t(i), y(i));
    k2 = f(t(i)+(h/2), y(i)+(h*k1)/2);
    k3 = f(t(i)+(h/2), y(i)+h*(k2/2));
    k4 = f(t(i)+h, y(i)+(h*k3));
```


Engenharia Informática – Análise Matemática II Instituto Superior de Engenharia de Coimbra

$$y(i+1)=y(i)+(h/6)*(k1+2*k2+2*k3+k4);$$

t(i+1)=t(i)+h;

end

3. Problemas de Aplicação e Testes de Método

3.1. Problema do Pêndulo

Problema Inicial:

$$\theta'' + \frac{c}{mL}\theta' + \frac{g}{L}sen(\theta) = 0$$

, sendo:

 $m \rightarrow \text{massa}$

 $l \rightarrow comprimento$

 $C \rightarrow$ coeficiente de amortecimento

 $g \rightarrow$ constante de gravidade

1ºPasso:

Trocar variável

$$y = \theta$$

sabendo que:

$$\frac{g}{L} = 1$$

$$\frac{C}{mL} = 0.3$$

$$t \in [0.15]$$

$$y(0) = \frac{\pi}{2}$$

$$y'(0) = 0$$

2ºPasso:

Substituir na equação

$$y'' + \frac{c}{mL}y' + \frac{g}{L}sen(y) = 0 <=> y'' + 0.3y' + sen(y) = 0 <=> y'' = -sen(y) - 0.3y'$$

3ºpasso:

Transformar a ED num sistema de Equações (SED)

-> Introduzir duas novas variáveis

-> Fazer um sistema

$$\begin{cases} u' = v \\ v' = -sen(u) - 0.3v \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \int u' = 0u + 1v$$

$$v' = -sen(u) - 0.3v \Leftrightarrow$$

$$\Leftrightarrow \int u' = f(t, u, v)$$
$$v' = g(t, u, v)$$

PVI:

$$u' = v$$

$$v' = -sen(u) - 0.3v$$

$$t \in [0.15]$$

$$u(0) = \frac{\pi}{2}$$

$$v(0) = 0$$

APP:

Figura Pendulo

Figura 2 Sistema Mola-Massa com Amortecimento

Figura 2 Sistema Mola-Massa sem Amortecimento

Figura 3 circuito eletrico

3.2. Problema do sistema massa-mola sem amortecimento

Movimento harmónico simples (movimento livre não amortecido) é descrito através da equação mx' + kx = 0, que está sujeita às condições iniciais x(0) = a e x'(0) = b, representando a medida de deslocamento inicial e a velocidade inicial.

Equação diferencial de ordem 2

$$x'' + 16x = 0$$

$$\Leftrightarrow x'' = -16x$$

Condições iniciais:

$$x(0) = 9$$
$$x'(0) = 0$$

Sendo:

$$u = x$$
$$v' = x$$
"

Então:

$$v' = -16u$$
, $u(0) = 9$, $v(0) = 0$

3.3. Problema do sistema massa-mola com amortecimento

- -> Um peso de 6.4 lb provoca um alongamento de 1.28 ft numa mola;
 - -> A força amortecedora é o dobro da velocidade instantânea;
- -> O peso desloca-se da posição de equilíbrio com uma velocidade de 4 ft/s orientada para cima.

Tendo em conta:

$$->W=ks$$
 – lei de Hooke, sendo $k=5\,$ lb/ft

$$->W=mg$$
, sendo $m=0.2$

Equação do movimen to livre amortecido:

$$m\frac{d^2x}{dt^2} = -Kx - b\frac{dx}{dt}$$

Onde:

- -> b é uma constante;
- -> O sinal "-" indica que as forças amortecidas atuam numa direção oposta à do movimento.

Equação diferencial de peso:

$$-0.2x'' = -5x - 2x'$$

$$x'' + 10x' + 25x = 0$$

$$x'' = -10x' - 25x$$

Condições iniciais:

$$-> x(0) = 0$$

 $-> x'(0) = -4$

Sendo:

$$-> u = x$$

 $-> v' = x''$

Então:

$$v'=x$$
" $ightarrow \ v'=-10v-25u$, $u(0)=0$, $v(0)=-4$

3.4. Problema do circuito elétrico

$$L\frac{di}{dt} + RC i(t) + \frac{1}{C} \int_0^t i(\tau) d\tau = 0$$

Condições iniciais:

$$-> i(0) = 1$$

 $-> i'(0) = 1$

Passo 1:

Simplificar a expressão

Dividindo a equação por L, obtemos:

$$i''(t) + \frac{R}{L}i'(t) + \frac{1}{CL}i(t) = 0$$

Passo 2:

Trocar a variável:

$$-y = i(t)$$

$$y'' + \frac{R}{L} y' + \frac{1}{cL} y = 0 \Leftrightarrow y'' = -\frac{R}{L} y' - \frac{1}{cL} y$$

$$u = v$$

$$v = y'$$

$$u' = v$$

$$v' = y'' = > v' = -\frac{R}{L} v - \frac{1}{cL} u$$

$$u(0) = 1$$

$$v(0) = 0$$

Considerando:

$$-> \frac{R}{L} = \frac{4}{3} \\
-> \frac{1}{CL} = \frac{16}{3}$$

Então:

$$v' = -\frac{4}{3}v - \frac{16}{3}u$$

4. Conclusão

Concluindo, com este trabalho foi possível resolver problemas tais como: sistemas mecânicos mola-massa com amortecimento e sem amortecimento, circuitos elétricos de uma maneira mais rápida e eficiente. Com o gráfico apresentado na GUI, é possível verificar que o método com maior precisão é o método RK4, tendo em conta que a linha deste método é a mais próxima à solução exata. Pelo contrário, o método com menor precisão é o método de Euler, pois a linha que lhe corresponde é a mais afastada da linha de solução exata.