考研高数

枫聆

2021年5月26日

目录

1	经典证明	2
2	函数极限	4

经典证明

Definition 1.1. (连续函数在闭区间上有界) 若 real-valued 函数 f 在闭区间 [a,b] 上连续,那么它在其上有界. 证明. (方法 1: f(x) 非空子区间 [a,x],求其上确界) 假设 B 是使得 f(x) 在形如闭区间 [a,x] 上有界的 $x \in [a,b]$ 集合,显然 $a \in B$,所以 B 非空。若 $e \in B$ 且 e > a,那么 a 和 e 之间的点都是在 B 里面的,所以实际上 B 是一个闭区间. 我们再考虑 B 的上确界,根据 x 的取法,有 $x \le b$,如果我们能证明它的上确界在 b 出取得,那么整个命题就得证. 现在假设 $\sup(B) < b$,由于 B 是一个闭区间,所以 $\sup(B) \in B$. 由于 f 是连续的,那么足够靠近 $\sup(B)$ 的地方,即 $s - \sup(B) < \delta$ 且 $s > \sup(B)$,有 $|f(s) - f(\sup(B))| < \varepsilon$,那么 $[\sup(B), s]$ 也是有界,这是和 $\sup B$ 是 B 的上确界矛盾的.

(方法 2: 构造一个严格递增的数列, 其子列收敛造矛盾).

Definition 1.2. (确界原理) 任一有上界的非空实数集必有上确界,同理任一有下界的非空实数集必有下确界. 证明. 构造一个实数划分,用戴德金分割定理说明界数就是确界假设非空实数集 S 有上界 M,取 S 所有上界为集合 B. 因为 $M \in B$ 所以 B 非空,取 $A = \mathbb{R}$ B,要证明 A 是非空是 trivial 的,取 $x = x_0 - 1$, $x_0 \in S$,那么 $x \in A$. 显然地 A 里面所有的元素都小于 B 里面的元素(若是大于 B 里面某个元素,那么它就是 S 的一个上界了,这是矛盾的),这样我们就可以得到一个实数上的划分,根据戴德金实数分割定理,存在一个 β ,它要么是 A 里面最大值或者要么 B 里面的最小值。假设它是 A 里面的最大值,根据 A 的定义,对于任意 $a \in A$ 都存在一个 $x_0 \in S$ 使得 $a < x_0$,将其作用到 β 上,我们得到某个 $x_0' \in S$ 使得 $\beta < x_0'$. 我们考虑 $\frac{x_0' + \beta}{2}$,有

$$\beta < \frac{x_0' + \beta}{2} < x_0'$$

所以 $\frac{x_0'+\beta}{2} \in A$, 这和 β 是 A 里面最大值是矛盾的,所以 $\beta \in B$,即这个 β 就是 S 的上确界.

Definition 1.3. (极值定理) 若 real-valued 函数 f 在闭区间 [a,b] 连续,那们存在 $c,d \in [a,b]$ 使得

$$f(c) \le f(x) \le f(d), x \in [a, b].$$

Definition 1.4. (罗尔定理)如果 real-valued 函数 f 在闭区间 [a,b] 上连续,且在开区间 (a,b) 内可导,若有 f(a) = f(b),那么存在至少一个 $c \in (a,b)$ 使得

$$f'(c) = 0.$$

证明. (导数存在的充分必要条件) f 在 [a,b] 上连续,那么其在 [a,b] 是可以取到极值的,分两种情况讨论: (1 如果其最大值和最小值同时在 a,b 取得,那么 f 就是常函数,对任意的 $x \in [a,b]$ 都有 f'(x) = 0. (2 不失一般性,我们假设 f 在一点 $c \in (a,b)$ 处 f(c) 为最大值,我们来考虑 c 的一个邻域 $(c-\varepsilon,c+\varepsilon)$ 两边,其中 $c-\varepsilon$ 和 $c+\varepsilon$ 均在 [a,b] 里面. 对任意的 $h \in (c-\varepsilon,c)$ 都有

$$f'(c^-) = \lim_{h \rightarrow c^-} \frac{f(c) - f(h)}{c - h} \leq 0.$$

同理对任意的 $t \in (c, c + \varepsilon)$ 都有

$$f'(c^+) = \lim_{t \rightarrow c^+} \frac{f(t) - f(c)}{t - c} \geq 0.$$

由于 f 在 c 点可导,那么 $f'(c) = f'(c^-) = f'(c^+) = 0$.

函数极限