MIDS W207 Applied Machine Learning

Week 12 Live Session Slides

Social Network Analysis

Social Network Analysis: Applications

Social Network Analysis: Applications

Social Network Analysis: Applications

Network Representation

Real World Networks

(a) Small-World Network (SWN) (b) Scale-Free Network (SFN) (c) Random Network (RN)

Centrality Measures

Degree

Eigenvector/ PageRank

Closeness

Betweenness

Adjacency Matrix

Density

Connected Components

Degree Distribution

Giant Components

Density

Connected Components

Degree Distribution

Giant Components

Strongly-Connected

Graph G is **strongly connected** if, for every u and v in V, there is some path from u to v and some path from v to u.

Strongly

Not Strongly

Density

Connected Components

Degree Distribution

Giant Components

node	degree	
1	2	
2	3	
3	2	
4	3	
5	3	

degree	frequency	
1	1/6	
2	2/6	
3	3/6	

Density

Connected Components

Degree Distribution

Giant Components

Watts strogatz model

Watts and Strogatz model [WS98]

- Start with a ring, where every node is connected to the next k nodes
- With probability p, rewire every edge (or, add a shortcut) to a uniformly chosen destination.
 - Granovetter, "The strength of weak ties"

Barabasi Albert model

$$PR_{t+1}(P_i) = \sum [PR_t(P_j)] / C(P_j)$$

Page Rank

 $PR(A) = (\frac{1}{4}) / 3$

 $PR(B) = ((\frac{1}{4}) / 2) + ((\frac{1}{4})/3)$

iteration 1	iteration 2	iteration 3	Page Rank
1/4	1/12		
1/4	2.5/12		
1/4			
1/4			

 $PR(C) = ((\frac{1}{4})/2) + ((\frac{1}{4})/1)$

Iteration	1 Iteration 2	Iteration 3	Page Rank
1/4	1/12		
1/4	2.5/12		
1/4	4.5/12		
1/4			

Iterat	ion 1	Iteration 2	Iteration 3	Page Rank
1	/4	1/12		
1	/4	2.5/12		
1	/4	4.5/12		
1	/4	4/12		

 $PR(D) = ((\frac{1}{4}) / 3) + ((\frac{1}{4})/1)$

Iteration 1	Iteration 2	Iteration 3	Page Rank
1/4	1/12	1.5/12	1
1/4	2.5/12	2/12	2
1/4	4.5/12	4.5/12	4
1/4	4/12	4/12	3

$$PR_{t+1}(P_i) = \sum [PR_t(P_j)] / C(P_j)$$

Network Visualization

iGraph

NetworkX

Gephi

UCINET

NetLogo

Code Review