City-Level Unemployment Map

Interactive Map of Recent (August 2023) City-Level Unemployment Data for Top 100 US Cities

Ryan McReynolds September 26, 2023

GitHub repo: https://github.com/ryanmcr17/city-level-employment

Executive Summary

Project Plan/Proposal

The aim of this project is to clearly represent recent employment statistics for individual large US cities. I plan to provide a dashboard/page through which users can visualize city-level data from the federal Bureau of Labor Statistics (BLS) around key unemployment metrics. I will display city-specific data on an interactive map of the US with multiple visualization options for users.

Key Files/Folders

- all data processing / ETL work contained within cityDataETL/ folder
 - cityDataETL.ipynb contains the bulk of the ETL work
 - sqlite file contains the cleaned-up database produced by the Python ETL code
 - CityUnemploymentAPI.py is separate Python code which generates a Flask API allowing users to call the city data from the SQLite DB in JSON format
- index.html is the primary file to open which loads the interactive map
- the static/ folder contains the JS file that processes the city data (pulled from the Flask API) into circle markers and builds the Leaflet map

Project

Data Processing / ETL

Key Data Sources

City-level unemployment data pulled from the Bureau of Labor Statistics (BLS) API CSV file of city lat/long coordinates and populations downloaded from https://simplemaps.com/data/us-cities

Data Wrangling

'Area codes' for US cities/locations scraped from BLS page and parsed as .tsv string BLS 'area codes' merged with city DF containing lat/long coordinates and population data 'Area codes' used to build out BLS API URLs for unemployment data calls

	area_type_code	area_code	area_text	display_level	selectable	sort_sequence
0	Α	ST0100000000000	Alabama	0	Т	1
1	Α	ST0200000000000	Alaska	0	Т	149
2	А	ST0400000000000	Arizona	0	Т	193
3	А	ST0500000000000	Arkansas	0	Т	257
4	А	ST0600000000000	California	0	Т	383

	City Area Code	city_state_key
0	CT0100820000000	Alabaster, AL
1	CT0101852000000	Anniston, AL
2	CT0102956000000	Athens, AL
3	CT0103076000000	Auburn, AL
4	CT0105980000000	Bessemer, AL

	City	Latitude	Longitude	Population	Unemployment Rate Series ID	Unemployment Series ID	Labor Force Participation Rate Series ID	City Area Code
0	New York, NY	40.6943	-73.9249	18972871	LAUCT365100000000003	LAUCT3651000000000004	LAUCT365100000000008	CT3651000000000
1	Los Angeles, CA	34.1141	-118.4068	12121244	LAUCT0644000000000003	LAUCT0644000000000004	LAUCT0644000000000008	CT0644000000000
2	Chicago, IL	41.8375	-87.6866	8595181	LAUCT171400000000003	LAUCT1714000000000004	LAUCT171400000000008	CT1714000000000
3	Miami, FL	25.7840	-80.2101	5711945	LAUCT1245000000000003	LAUCT1245000000000004	LAUCT124500000000008	CT1245000000000
4	Dallas, TX	32.7935	-96.7667	5668165	LAUCT481900000000003	LAUCT4819000000000004	LAUCT481900000000008	CT4819000000000
5	Houston, TX	29.7860	-95.3885	5650910	LAUCT4835000000000003	LAUCT4835000000000004	LAUCT483500000000008	CT4835000000000
6	Atlanta, GA	33.7628	-84.4220	5046555	LAUCT130400000000003	LAUCT1304000000000004	LAUCT130400000000008	CT1304000000000
7	Washington, DC	38.9047	-77.0163	4810669	LAUCT1150000000000003	LAUCT1150000000000004	LAUCT1150000000000008	CT1150000000000
8	Boston, MA	42.3188	-71.0852	4208580	LAUCT2507000000000003	LAUCT2507000000000004	LAUCT250700000000008	CT2507000000000
9	Phoenix, AZ	33.5722	-112.0892	4047095	LAUCT045500000000003	LAUCT045500000000004	LAUCT045500000000008	CT0455000000000

Final ETL Output

Unemployment data pulled via BLS API and merged back with city location/population data Final cleaned-up dataframe saved to SQLite DB file

	Unemployment Rate Series ID	August 2023 Unemployment Rate	
0	LAUCT365100000000003	5.6	
1	LAUCT064400000000003	5.7	
2	LAUCT171400000000003	4.4	
3	LAUCT124500000000003	1.8	
4	LAUCT481900000000003	4.3	

	Unemployment Series ID	August 2023 Unemployment
0	LAUCT365100000000004	234715
1	LAUCT0644000000000004	117804
2	LAUCT171400000000004	61024
3	LAUCT1245000000000004	4350
4	LAUCT481900000000004	32665

89	city	latitude	longitude	population	unemploymentRate	unemploymentCount
0	New York, NY	40.6943	-73.9249	18972871	5.6	234715
1	Los Angeles, CA	34.1141	-118.4068	12121244	5.7	117804
2	Chicago, IL	41.8375	-87.6866	8595181	4.4	61024
3	Miami, FL	25.7840	-80.2101	5711945	1.8	4350
4	Dallas, TX	32.7935	-96.7667	5668165	4.3	32665

Flask API

Flask API

Separate Python file creates the Flask API which responds to API calls with the city dataset from the SQLite database in JSON format

[{ "city": "New York, NY", "latitude": "40.6943", "longitude": "-73.9249", "population": "18972871", "unemploymentRate": "5.6", "unemploymentCount": "234715" }, { "city": "Los Angeles, CA", "latitude": "34.1141", "longitude" "-118.4068", "population": "12121244", "unemploymentRate": "5.7", "unemploymentCount": "117804" }, { "city": "Chicago, IL", "latitude": "41.8375", "longitude": "-87.6866", "population": "8595181", "unemploymentRate": "4.4", "latitude": "41.8375", "longitude": "-87.6866", "population": "8595181", "unemploymentRate": "4.4", "latitude": "4.4", "latitude": "4.4", "latitude": "4.5.4", "lat "unemploymentCount": "61024" }. { "citv": "Miami, FL", "latitude": "25,7840", "longitude": "-80,2101", "population": "5711945", "unemploymentRate": "1.8", "unemploymentCount": "4350" }. { "citv": "Dallas, TX", "latitude": "2,7840", "longitude": "2,7840 "32.7935", "longitude": "-96.7667", "population": "5668165", "unemploymentRate": "4.3", "unemploymentCount": "32665" }. { "city": "Houston, TX", "latitude": "29.7860", "longitude": "-95.3885", "population": "5650910", "unemploymentRate": "5.2", "unemploymentCount": "62158" }, { "city": "Atlanta, GA", "latitude": "33.7628", "longitude": "-84.4220", "population": "5046555", "unemploymentRate": "3.9", "unemploymentCount": "10846" }, { "city"; "Washington, DC", "latitude"; "38,9047", "longitude"; "-77,0163", "population"; "4810669", "unemploymentRate"; "5.5", "unemploymentCount"; "21877" }, { "city"; "Boston, MA", "latitude"; "42.3188", "longitude"; "-71.0852", "population": "4208580", "unemploymentRate": "3.0", "unemploymentCount": "11719" }, { "city": "Phoenix, AZ", "latitude": "33.5722", "longitude": "-112.0892", "population": "4047095", "unemploymentRate": "4.2" "unemploymentCount": "38801" \, { "citv": "Detroit, MI", "latitude": "42,3834", "longitude": "-83,1024", "population": "352856", "unemploymentRate": "8.3", "unemploymentCount": "21211" \, { "citv": "Seattle, WA", "latitude" "47.6211", "longitude"; "-122.3244", "population"; "3438221", "unemploymentRate"; "3.4", "unemploymentCount"; "17375" }, { "city"; "San Diego, CA", "latitude"; "32.8313", "longitude"; "-117.1222", "population"; "3084174", "unemploymentRate": "3.8", "unemploymentCount": "27621" }, { "city": "Minneapolis, MN", "latitude": "44.9635", "longitude": "93.2678", "population": "2856952", "unemploymentRate": "3.1", "unemploymentCount": "7864" } { "city": "Tampa, FL", "latitude": "27.9945", "longitude": "-82.4447", "population": "2683956", "unemploymentRate": "3.2", "unemploymentCount": "7337" }, { "city": "Baltimore, MD", "latitude": "39.3051", "longitude": "-76.6144", "population": "2205092", "unemploymentRate": "2.3", "unemploymentCount": "6439" }, { "city": "Las Vegas, NV", "latitude": "36.2333", "longitude": "-115.2654", "population": "2150373", "unemploymentRate": "6.3" "unemploymentCount": "20610" }, { "city": "St. Louis, MO", "latitude": "38.6359", "longitude": "-90.2451", "population": "2092481", "unemploymentRate": "4.3", "unemploymentCount": "6679" }, { "city": "Portland, OR", "latitude": "45.5371", "longitude": "-122.6500", "population": "2036875", "unemploymentRate": "3.7", "unemploymentCount": "14126" }, { "city": "Riverside, CA", "latitude": "33.9381", "longitude": "-117.3949", "population": "2022285", "unemploymentRate": "4.5", "unemploymentCount": "7153" }, { "city": "Orlando, FL", "latitude": "28,4773", "longitude": "-81,3370", "population": "1927699", "unemploymentRate": "3.0", "unemploymentCount": "5500" }, { "city": "Sacramento, CA", "latitude": "38.5677", "longitude": "121.4685", "population": "1924167", "unemploymentRate": "4.6", "unemploymentCount": "11353" }, { "city": "San Antonio, TX", "latitude": "29.4632", "longitude": "-98.5238", "population": "1910785", "unemploymentRate": "4.2", "unemploymentCount": "33127" }, { "city": "San Jose, CA", "latitude": "37.3012", "longitude": "-121.8480", "population": "1729879", "unemploymentRate"; "3.7", "unemploymentCount"; "20468" }, { "city"; "Pittsburgh, PA", "latitude"; "40.4397", "longitude"; "-79.9763", "population"; "1720279", "unemploymentRate"; "3.5", "unemploymentCount"; "5472" }, 3 "city": "Cincinnati, OH", "latitude": "39.1413", "longitude": "-84.5060", "population": "1712287", "unemploymentRate": "3.7", "unemploymentCount": "5721" }, { "city": "Cleveland, OH", "latitude": "41.4764", "longitude": "-81.6805", "population": "1683059", "unemploymentRate": "4.5", "unemploymentCount": "7261" }, { "city": "Austin, TX", "latitude": "30.3005", "longitude": "-97.7522", "population": "1659251", "unemploymentRate": "3.7", "unemploymentCount": "25096" }, { "city": "Kansas City, MO", "latitude": "39.1238", "longitude": "94.5541", "population": "1644497", "unemploymentRate": "3.6", "unemploymentCount": "9934" }, { "city": "Columbus, OH", "latitude": "39.9862", "longitude": "-82.9855", "population": "1556848", "unemploymentRate": "3.3", "unemploymentCount": "16045" }, { "city": "Charlotte, NC", "latitude": "35.2083", "longitude": "-80.8303", "population": "1516107", "unemploymentRate": "3.5", "unemploymentCount": "18784" }, { "city": "Virginia Beach, VA", "latitude": "36.7335", "longitude": "-76.0435", "population": "1500764", "unemploymentRate": "2.5", "unemploymentCount": "6173" }, { "city": "Milwaukee, WI", "latitude": "43.0642", "longitude": "-87.9675", "population": "1340981", "unemploymentRate": "4.6", "unemploymentCount": "12760" }, { "city": "Providence, RI", "latitude": "41.8230", "longitude": "-71.4187", "population": "1270149", "unemploymentRate": "3.1", "unemploymentCount": "2749" }, { "city": "Jacksonville, FL", "latitude": "30.3322", "longitude": "-81.6749", "population": "1220191", "unemploymentRate": "3.4", "unemploymentCount": "17502" }, { "city": "Salt Lake City, UT", "latitude": "40.7776", "longitude": "-111.9311", "population": "1135344", "unemploymentRate": "2.9", "unemploymentCount": "3875" }, { "city": "Raleigh, NC", "latitude": "35.8324", "longitude": "-78.6429", "population": "1062018", "unemploymentRate": "3.4", "unemploymentCount": "9451" }, { "city": "Memphis, TN", "latitude" "35.1087", "longitude": "-89.9663", "population": "1034498", "unemploymentRate": "5.4", "unemploymentCount": "15901" }, { "city": "Richmond, VA", "latitude": "37.5295", "longitude": ".77.4756", "population": "1008069".

💶 🔑 🖈 🔲 🖏 E

JavaScript+Leaflet

JavaScript+Leaflet

Upon loading the HTML, JavaScript calls the Flask API, processes the JSON data on cities, creates 2 sets of Leaflet circle markers the visualize the data in different ways, and builds the Leaflet map with layers

```
// Account to the ST of ST of
```



```
// create circle enterb based on coordinates + attributes dict, with detailed popup showing additional info

circleroriespenia

Letriclecordinates, featureAttributes)

Abdrogove("abd-loam=\")\text{2003} idosemployeentGoolmit_string(")

Bell to the coordinate of the coordinates o
```

```
let overlayMaps = {
        "Unemployment Data, Top 100 US Cities (size represents population)": cityLayer,
        "Unemployment Data, Top 100 US Cities (size represents unemployment rate)": cityLayer2.
let myMap = L.map("map", {
     center: [39.8355, -99.0909],
      layers: [street, cityLayer]
var legend = L.control({
    position: 'bottomright'
 legend.onAdd = function(map) {
    var div = L.DomUtil.create('div', 'unemployment legend');
     div.style.backgroundColor = "white";
     div.style.border = "thin solid black";
     div.style.padding = "0px 10px 10px";
      div.innerHTML = '<h3>Unemployment Rate<br/>August 2023\</h3><syq width="10" height="10" ><rect width="10" height="10" height="10" fill="#663399"/></syq> 0-1%<br/>br><syq vidth="10" height="10" heigh
legend.addTo(myMap);
L.control.layers(baseMaps, overlayMaps, {
     collapsed: false
 }).addTo(myMap);
```

Final Product

Interactive Map

Upon loading the HTML, JavaScript calls the Flask API, processes the JSON data on cities, creates 2 sets of Leaflet circle markers the visualize the data in different ways, and builds the Leaflet map with layers

Conclusions and Next Steps

Analysis/Takeaways/Value

- This map enables users to easily go beyond average national unemployment data and view how that data varies at the city level for the 100 largest US cities (by population), including potential correlation in unemployment statistics within sub-regions of the country
 - The first map overlay/view seems to indicate some correlation between city size/population and higher unemployment rates, as well as generally lower unemployment rates in the Southwest, especially Florida, and in the Northwest / Mountain West
 - The second map overlay/view makes it much more clear to see that the highest unemployment rates are quite concentrated within a few smaller regions of the country, specifically Detroit, MI then California / Las Vegas, then the Northeast

Next Steps / Future Analysis

- Given additional time it would be valuable to add additional pages/options to help users explore more unemployment rate data
 - Analyzing unemployment data over longer periods of time for individual cities
 - Pulling similar data for larger areas/regions to allow users to view the data at different levels of aggregation
 - Running statistical analysis on various datasets to better describe and understand how current rates and/or rates for individual cities compare
- It would also be great to pull in additional datasets to allow users to view unemployment rate statistics within the context of other geographical data
 - GDP per capita, credit card debt per capita, median home prices, demographic data, job type data, etc

Appendix

Acknowledgements and Data Sources

- SimpleMaps used for database of US cities with populations and lat+long coordinates: https://simplemaps.com/data/us-cities
- help with SQLite database creation via Python/Pandas pulled from https://www.fullstackpython.com/blog/export-pandas-dataframes-sqlite-sqlalch emy.html
- help with Flask+Python+HTML+JS for creating web applications pulled from https://www.geeksforgeeks.org/pass-javascript-variables-to-python-in-flask/
- reverse geocoding for looking up state names from lat/long coordinates via https://geocode.maps.co/ API