SI	а	10	I1	A	380	I2	r	3	I3	x	30	I 4	а	8	I 5	a	1968
	b	280		В	70		x	1		a	6		b	17		b	2
	c	400		n	60		у	15		с	8		d	287		c	25
	d	120		m	5		p	40		f(4)	63		K	280		d	95

Group Events

SG	A	10	G6	p	60	G7	A	75	G8	\boldsymbol{A}	2	G9	\boldsymbol{A}	1	G10	A	20
	В	4		k	100		В	3		B	52		В	0		B	30
	C	900		N	9		C	2		N	5		C	8		\boldsymbol{C}	2
	D	18		M	999999		D	5		K	16		D	9		D	18

Sample Individual Event

SI.1 If
$$x^2 - 8x + 26 \equiv (x + k)^2 + a$$
, find a.

Reference: 1984 FI2.4, 1985 FG10.2, 1986 FG7.3, 1988 FG9.3

$$x^{2} - 8x + 26 \equiv (x - 4)^{2} + 26 - 16$$

$$a = 10$$

SI.2 If
$$\sin a^{\circ} = \cos b^{\circ}$$
, where 270 < *b* < 360, find *b*.

$$\sin 10^{\circ} = \cos b^{\circ}$$

$$\cos b^{\circ} = \cos 80^{\circ}$$

$$b = 360 - 80 = 280$$

SI.3 X sold an article to Y for \$b at a loss of 30%. If the cost price of the article for X is \$c, find
$$c$$
.

$$c \cdot (1 - 30\%) = 280$$

$$c = 400$$

SI.4 In the figure, O is the centre of the circle. If
$$\angle ACB = \frac{3c^{\circ}}{10}$$
 and

$$\angle AOB = d^{\circ}$$
, find d.

$$\angle ACB = 120^{\circ}$$

reflex
$$\angle AOB = 240^{\circ}$$
 (\angle at centre twice \angle at \odot^{ce})

$$\angle AOB = 120^{\circ} (\angle s \text{ at a point})$$

$$d = 120$$

I1.1 If A = 11 + 12 + 13 + ... + 29, find A.

$$A = \frac{1}{2}(11+29) \cdot 19 = 380$$

I1.2 If $\sin A^{\circ} = \cos B^{\circ}$, where 0 < B < 90, find B.

$$\sin 380^{\circ} = \cos B^{\circ}$$

$$\sin 20^{\circ} = \cos B^{\circ}$$

$$B = 70$$

I1.3 In the given figure, $\angle PQR = B^{\circ}$, $\angle PRQ = 50^{\circ}$. If $\angle QSR = n^{\circ}$, find n.

$$\angle PQR = 70^{\circ}$$

$$\angle QPR = 60^{\circ} (\angle s \text{ sum of } \Delta)$$

$$n = 60$$
 (\angle s in the same segment)

I1.4 *n* cards are marked from 1 to *n* and one is drawn at random. If the chance of it being a multiple of 5 is $\frac{1}{m}$, find *m*.

Favourable outcome =
$$\{5, 10, \dots, 60\}$$

$$\frac{1}{m} = \frac{12}{60} = \frac{1}{5}$$

$$\Rightarrow m = 5$$

12.1 The volume of a sphere with radius r is 36π , find r.

$$\frac{4\pi}{3}r^3 = 36\pi$$

$$r = 3$$

12.2 If $r^x + r^{1-x} = 4$ and x > 0, find x.

$$3^x + \frac{3}{3^x} = 4$$
 (It is straight forward by guessing $x = 1$)

$$(3^x)^2 - 4 \cdot 3^x + 3 = 0$$

$$(3^x - 1)(3^x - 3) = 0$$

$$3^x = 1 \text{ or } 3$$

$$x = 0$$
 (rejected, as $x > 0$) or 1

I2.3 In a:b=5:4, b:c=3:x and a:c=y:4, find y.

$$a:b:c=15:12:4$$

$$a: c = 15:4$$

$$\Rightarrow$$
 y = 15

12.4 In the figure, AB is a diameter of the circle. APQ and RBQ are straight lines.

If
$$\angle PAB = 35^{\circ}$$
, $\angle PQB = y^{\circ}$ and $\angle RPB = p^{\circ}$, find p .

$$\angle ABR = 35^{\circ} + y^{\circ} = 50^{\circ} \text{ (ext. } \angle \text{ of } \Delta\text{)}$$

$$\angle APR = \angle ABR = 50^{\circ}$$
 (\angle s in the same segment)

$$p + 50 = 90$$
 (\angle in semi-circle)

$$p = 40$$

I3.1 In the figure, find x.

$$x + 20 + 2x + 10 + 2x = 180$$
 (\angle s sum of Δ)
 $x = 30$

I3.2 The coordinates of the points P and Q are (a, 2) and (x, -6) respectively.

If the coordinates of the mid-point of PQ is (18, b), find a.

$$\frac{1}{2}(a+30) = 18$$

$$a = 6$$

I3.3 A man travels from X to Y at a uniform speed of a km/h and returns at a uniform speed of 2a km/h. If his average speed is c km/h, find c.

Let the distance between *X* and *Y* be *s* km.

$$c = \frac{2s}{\frac{s}{a} + \frac{s}{2a}} = \frac{2}{\frac{1}{6} + \frac{1}{12}} = 8$$

I3.4 If
$$f(y) = 2y^2 + cy - 1$$
, find $f(4)$.

$$f(4) = 2(4)^2 + 8(4) - 1 = 63$$

Individual Event 4

I4.1 If the curve $y = 2x^2 - 8x + a$ touches the x-axis, find a.

$$\Delta = (-8)^2 - 4(2)a = 0$$

$$a = 8$$

I4.2 In the figure, AB is a diameter of the circle.

If
$$AC = 15$$
, $BC = a$ and $AB = b$, find b .

$$\angle ACB = 90^{\circ} (\angle \text{ in semi-circle})$$

$$b^2 = 15^2 + 8^2$$
 (Pythagoras' theorem)

$$b = 17$$

14.3 The line 5x + by + 2 = d passes through (40, 5). Find *d*.

Reference: 1984 FI2.3

$$d = 5(40) + 17(5) + 2 = 287$$

I4.4 X sold an article to Y for \$d at a profit of 2.5%.

If the cost price of the article for X is X, find X.

$$K = 287 \div (1 + 2.5\%) = 280$$

I5.1 Let $x = 19.\dot{8}\dot{7}$. If $19.\dot{8}\dot{7} = \frac{a}{99}$, find a. (Hint: $99x = 100 \ x - x$)

$$99x = 100 \ x - x = 1987 + 0.87 - 19.87 = 1968$$

$$x = \frac{1968}{99}$$

$$\Rightarrow a = 1968$$

15.2 If $f(y) = 4 \sin y^{\circ}$ and f(a - 18) = b, find b.

$$b = f(a - 18) = f(1950)$$

$$= 4 \sin 1950^{\circ}$$

$$= 4 \sin(360^{\circ} \times 5 + 150^{\circ})$$

$$= 4 \sin 150^{\circ} = 2$$

15.3 If $\frac{\sqrt{3}}{b\sqrt{7}-\sqrt{3}} = \frac{2\sqrt{21}+3}{c}$, find c.

$$\frac{\sqrt{3}}{2\sqrt{7} - \sqrt{3}} \cdot \frac{2\sqrt{7} + \sqrt{3}}{2\sqrt{7} + \sqrt{3}} = \frac{2\sqrt{21} + 3}{c}$$

$$c = 4(7) - 3 = 25$$

I5.4 In the figure, ST is a tangent to the circle at P.

If
$$\angle MQP = 70^{\circ}$$
, $\angle QPT = c^{\circ}$ and $\angle MRQ = d^{\circ}$, find d.

$$\angle MRP = 70^{\circ} (\angle s \text{ in the same segment})$$

$$\angle PRQ = c^{\circ} = 25^{\circ} (\angle \text{ in alt. segment})$$

$$d = 70 + 25 = 95$$

Sample Group Event

SG.1 If $100A = 35^2 - 15^2$, find A.

Reference: 1984 FI1.1

$$100A = (35 - 15)(35 + 15) = 1000$$

$$A = 10$$

SG.2 If $(A-1)^6 = 27^B$, find B.

$$(10-1)^6 = 27^B$$

$$3^{12} = 3^{3B}$$

$$\Rightarrow B = 4$$

SG.3 In the given diagram, the sum of the three marked angles is C° . Find C.

Reference: 1984 FSI.1, 1989 FSI.1

Sum of interior angles of a triangle = 180°

angle sum of three vertices = $3 \times 360^{\circ} = 1080^{\circ}$

$$C = 1080 - 180 = 900$$

SG.4 If the lines x + 2y + 1 = 0 and 9x + Dy + 1 = 0 are parallel, find D.

$$-\frac{1}{2} = -\frac{9}{D}$$

$$\Rightarrow D = 18$$

Group Event 6

G6.1 If α , β are the roots of $x^2 - 10x + 20 = 0$, and $p = \alpha^2 + \beta^2$, find p.

$$\alpha + \beta = 10, \alpha\beta = 20$$

$$p = (\alpha + \beta)^2 - 2\alpha\beta$$

$$=10^2-2(20)=60$$

G6.2 The perimeter of an equilateral triangle is p. If its area is $k\sqrt{3}$, find k.

Reference: 1984FI4.4, 1985 FSI.4, 1986 FSG.3, 1988 FG9.1

Length of one side = 20

$$\frac{1}{2} \cdot 20^2 \sin 60^\circ = k\sqrt{3}$$

$$k = 100$$

G6.3 Each interior angle of an *N*-sided regular polygon is 140°. Find *N*.

Reference: 1997 FI4.1

Each exterior angle = 40° (adj. \angle s on st. line)

$$\frac{360^{\circ}}{N}$$
 = 40° (sum of ext. ∠s of polygon)

$$\Rightarrow N = 9$$

G6.4 If $M = (10^2 + 10 \times 1 + 1^2)(10^2 - 1^2)(10^2 - 10 \times 1 + 1^2)$, find M.

$$M = (10^2 + 10 \times 1 + 1^2)(10 - 1)(10 + 1)(10^2 - 10 \times 1 + 1^2)$$

$$= (10^3 - 1)(10^3 + 1)$$

$$=10^6 - 1 = 999999$$

Group Event 7

G7.1 The acute angle formed by the hands of a clock at 3:30 p.m. is A° . Find A.

Reference 1984 FG7.1, 1985 FI3.1, 1989 FI1.1, 1990 FG6.3, 2007 HI1

At 3:00 p.m., the angle between the arms of the clock = 90°

From 3:00 p.m. to 3:30 p.m., the hour-hand had moved $360^{\circ} \times \frac{1}{12} \times \frac{1}{2} = 15^{\circ}$.

The minute hand had moved 180°.

$$A = 180 - 90 - 15 = 75$$

G7.2 If $\tan(3A + 15)^{\circ} = \sqrt{B}$, find *B*.

$$\tan(225+15)^\circ = \sqrt{B}$$

$$\Rightarrow B = 3$$

G7.3 If $\log_{10}AB = C \log_{10}15$, find C.

$$\log_{10} (75 \times 3) = C \log_{10} 15$$

$$\log_{10} 225 = C \log_{10} 15$$

$$\Rightarrow C = 2$$

G7.4 The points (1, 3), (4, 9) and (2, D) are collinear. Find D.

Reference: 1984 FSG.4, 1984 FG7.3, 1986 FG6.2, 1989 HI8

$$\frac{D-9}{2-4} = \frac{9-3}{4-1}$$

$$D - 9 = -4$$

$$\Rightarrow D = 5$$

Group Event 8

G8.1 If
$$A = \frac{5\sin\theta + 4\cos\theta}{3\sin\theta + \cos\theta}$$
 and $\tan\theta = 2$, find A.

Reference: 1986 FG10.3, 1989 FSG.4, 1989 FG10.3, 1990 FG7.2

$$A = \frac{(5\sin\theta + 4\cos\theta) \div \cos\theta}{(3\sin\theta + \cos\theta) \div \cos\theta}$$
$$= \frac{5\tan\theta + 4}{3\tan\theta + 1}$$
$$= \frac{5(2) + 4}{3(2) + 1} = 2$$

G8.2 If
$$x + \frac{1}{x} = 2A$$
, and $x^3 + \frac{1}{x^3} = B$, find B.

Reference: 1983 FG7.3, 1984 FG10.2, 1985 FI1.2, 1989 HI1, 1990 HI12, 2002 FG2.2

$$x + \frac{1}{x} = 4$$

$$\Rightarrow x^{2} + \frac{1}{x^{2}} = 4^{2} - 2 = 14$$

$$B = x^{3} + \frac{1}{x^{3}}$$

$$= \left(x + \frac{1}{x}\right)\left(x^{2} - 1 + \frac{1}{x^{2}}\right)$$

$$= 4(14 - 1) = 52$$

G8.3 There are exactly *N* values of α satisfying the equation $\cos^3 \alpha - \cos \alpha = 0$, where $0^{\circ} \le \alpha \le 360^{\circ}$. Find *N*.

$$\cos \alpha (\cos \alpha + 1)(\cos \alpha - 1) = 0$$

 $\cos \alpha = 0, -1 \text{ or } 1$
 $\alpha = 90, 270, 180, 0, 360$
 $\Rightarrow N = 5$

G8.4If the N^{th} day of May in a year is Thursday and the K^{th} day of May in the same year is Monday, where 10 < K < 20, find K.

Reference: 1984 FG6.3, 1985 FG9.3, 1988 FG10.2

$$5^{th}$$
 May is Thursday
 9^{th} May is Monday
 16^{th} May is Monday
 $\Rightarrow K = 16$

Last updated: 15 August 2016

In the given multiplication, different letters represent different integers ranging

A B C D

from 0 to 9. **G9.1** Find *A*. D C B A

Last updated: 15 August 2016

G9.2 Find *B*.

G9.3 Find *C*.

1 B C 9

G9.4 Find *D*.

Reference: 1994 HI6

As there is no carry digit in the thousands digit multiplication, A = 1, D = 9

Consider the tens digit: $9C + 8 \equiv B \pmod{10} \dots (1)$

As there is no carry digit in the thousands digit, let the carry digit in the hundreds digit be *x*.

9B + x = C and B, C are distinct integers different from 1 and 9

$$\Rightarrow$$
 B = 0, C = x

Sub. B = 0 into (1):
$$9C + 8 \equiv 0 \pmod{10}$$

$$\Rightarrow$$
 9C \equiv 2 (mod 10)

$$\Rightarrow$$
 C = 8

$$\therefore$$
 A = 1, B = 0, C = 8, D = 9

Group Event 10

G10.1 The average of p, q, r and s is 5. The average of p, q, r, s and A is 8. Find A.

Reference: 1985 FG6.1, 1986 FG6.4, 1988 FG9.2

$$p + q + r + s = 20$$

$$p + q + r + s + A = 40$$

$$A = 20$$

G10.2 If the lines 3x - 2y + 1 = 0 and Ax + By + 1 = 0 are perpendicular, find B.

Reference: 1983 FG9.3, 1984 FSG.3, 1985 FI4.1, 1986 FSG.2, 1988 FG8.2

$$\frac{3}{2} \times \left(-\frac{20}{B} \right) = -1 \Rightarrow B = 30$$

G10.3 When $Cx^3 - 3x^2 + x - 1$ is divided by x + 1, the remainder is -7. Find C.

$$C(-1) - 3 - 1 - 1 = -7$$

$$C=2$$

G10.4 If P, Q are positive integers such that P + Q + PQ = 90 and D = P + Q, find D.

(Hint: Factorise 1 + P + Q + PQ)

Reference: 2002 HG9, 2012 FI4.2

WLOG assume $P \le Q$, 1 + P + Q + PQ = 91

$$(1 + P)(1 + Q) = 1 \times 91 = 7 \times 13$$

$$1 + P = 1 \Rightarrow P = 0$$
 (rejected)

or
$$1 + P = 7 \Rightarrow P = 6$$

$$1 + O = 13 \Rightarrow O = 12$$

$$D = 6 + 12 = 18$$