Telco Customer Churn Prediction

Data Overview

• Dataset: Telco Customer Churn

Rows: 7043Columns: 21

• Objective: Predict whether a customer will churn (Yes/No)

Yes →They have left the service.

No →They are still an active user of the service.

Libraries And Data Loading

```
In [61]:
         # Data manipulation and analysis
         import pandas as pd
         import numpy as np
         from scipy import stats
         # Data visualization
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Preprocessing
         from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder
         from sklearn.model_selection import train_test_split
         # Handling imbalance
         from imblearn.over sampling import SMOTE
         # Machine Learning Models
         from sklearn.linear_model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.naive_bayes import GaussianNB
         from xgboost import XGBClassifier
         from sklearn.svm import SVC
         # Model evaluation
         from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_
         from sklearn.metrics import confusion_matrix, classification_report, roc_curve
         # Hyperparameter tuning
         from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, cross_val_score
         df = pd.read csv('Telco-Customer-Churn.csv')
```

EDA

1) Data Observations & Cleaning

In [62]:	df.	head()								
Out[62]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	Inte
	0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	
	1	5575- GNVDE	Male	0	No	No	34	Yes	No	
	2	3668- QPYBK	Male	0	No	No	2	Yes	No	
	3	7795- CFOCW	Male	0	No	No	45	No	No phone service	
	4	9237- HQITU	Female	0	No	No	2	Yes	No	
In [63]: In [64]:	df. df. ccla	info() ss 'pandas. eIndex: 704	omerID', core.fra 3 entrie	me.DataFrame':						•
	# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	columns (to Column gender SeniorCiti: Partner Dependents tenure PhoneServi: MultipleLi: InternetSe OnlineSecu OnlineBack: DeviceProte TechSuppor StreamingM Contract PaperlessB PaymentMet MonthlyCha TotalCharg Churn es: float64	zen ce nes rvice rity up ection t V ovies illing hod rges es	columns): Non-Null County 7043 non-null	object int64 object	: : : : : : : : : : : : : : : : : : :				

Initial Observations

- Target column: Churn (Yes/No).
- Feature types:

- Categorical (e.g., gender , InternetService , Contract)
- Numerical (e.g., tenure , MonthlyCharges)
- **Note**: TotalCharges is of type **object**, but it should be **numeric** needs cleaning.

```
In [65]: for col in df.columns:
             print(col,len(df[df[col]==" "]))
                                                              ")
             print("_
        gender 0
        SeniorCitizen 0
        Partner 0
        Dependents 0
        tenure 0
        PhoneService 0
        MultipleLines 0
        InternetService 0
        OnlineSecurity 0
        OnlineBackup 0
        DeviceProtection 0
        TechSupport 0
        StreamingTV 0
        StreamingMovies 0
        Contract 0
        PaperlessBilling 0
        PaymentMethod 0
        MonthlyCharges 0
        TotalCharges 11
        Churn 0
         df["TotalCharges"] = pd.to_numeric(df["TotalCharges"], errors='coerce')
         df["TotalCharges"] = df["TotalCharges"].fillna(0)
In [67]: df.isnull().sum()
```

```
Out[67]: gender
         SeniorCitizen
         Partner
         Dependents
         tenure
                             0
                             0
         PhoneService
         MultipleLines
                             0
         InternetService
         OnlineSecurity
                             0
         OnlineBackup
         DeviceProtection
                             0
         TechSupport
         StreamingTV
                             0
         StreamingMovies
         Contract
         PaperlessBilling
         PaymentMethod
         MonthlyCharges
                             0
         TotalCharges
                             0
         Churn
                             0
         dtype: int64
```

In [68]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
		704211	
0	gender	7043 non-null	object
1	SeniorCitizen	7043 non-null	int64
2	Partner	7043 non-null	object
3	Dependents	7043 non-null	object
4	tenure	7043 non-null	int64
5	PhoneService	7043 non-null	object
6	MultipleLines	7043 non-null	object
7	InternetService	7043 non-null	object
8	OnlineSecurity	7043 non-null	object
9	OnlineBackup	7043 non-null	object
10	DeviceProtection	7043 non-null	object
11	TechSupport	7043 non-null	object
12	StreamingTV	7043 non-null	object
13	StreamingMovies	7043 non-null	object
14	Contract	7043 non-null	object
15	PaperlessBilling	7043 non-null	object
16	PaymentMethod	7043 non-null	object
17	MonthlyCharges	7043 non-null	float64
18	TotalCharges	7043 non-null	float64
19	Churn	7043 non-null	object

dtypes: float64(2), int64(2), object(16)

memory usage: 1.1+ MB

Numerical Features Handling

```
In [69]: df.describe().T
```

•		count	mean	std	min	25%	50%	75%	max
	SeniorCitizen	7043.0	0.162147	0.368612	0.00	0.00	0.00	0.00	1.00
	tenure	7043.0	32.371149	24.559481	0.00	9.00	29.00	55.00	72.00
	MonthlyCharges	7043.0	64.761692	30.090047	18.25	35.50	70.35	89.85	118.75
	TotalCharges	7043.0	2279.734304	2266.794470	0.00	398.55	1394.55	3786.60	8684.80

```
In [70]: # Set the figure size and Layout
fig, axes = plt.subplots(1, 3, figsize=(18, 6)) # 1 row, 3 columns

# Plot each boxplot in a subplot
sns.boxplot(x='tenure', data=df, ax=axes[0])
axes[0].set_title('Tenure')

sns.boxplot(x='MonthlyCharges', data=df, ax=axes[2])
axes[1].set_title('Monthly Charges')

sns.boxplot(x='TotalCharges', data=df, ax=axes[1])
axes[2].set_title('Total Charges')

plt.tight_layout()
plt.show()
```



```
In [71]:
    def detect_outliers_iqr(df, column):
        Q1 = df[column].quantile(0.25)
        Q3 = df[column].quantile(0.75)
        IQR = Q3 - Q1
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        outliers = df[(df[column] < lower_bound) | (df[column] > upper_bound)]
        print(f"{column}: {len(outliers)} outliers")
        return outliers

# Apply to each numerical feature
for col in ['tenure', 'MonthlyCharges', 'TotalCharges']:
        detect_outliers_iqr(df, col)
```

tenure: 0 outliers MonthlyCharges: 0 outliers TotalCharges: 0 outliers

Out[69]:

```
In [72]: from scipy.stats import zscore
import numpy as np

def detect_outliers_zscore(df, column, threshold=3):
    z_scores = zscore(df[column].dropna())
```

```
outliers = df[np.abs(z_scores) > threshold]
               print(f"{column}: {len(outliers)} outliers (Z-score > {threshold})")
               return outliers
          # Apply to each numerical feature
          for col in ['tenure', 'MonthlyCharges', 'TotalCharges']:
               detect_outliers_zscore(df, col)
         tenure: 0 outliers (Z-score > 3)
         MonthlyCharges: 0 outliers (Z-score > 3)
         TotalCharges: 0 outliers (Z-score > 3)
In [73]:
          import matplotlib.pyplot as plt
          import seaborn as sns
          # Set style
          sns.set(style="whitegrid")
          # Separate numerical and target
          numerical_features = ["tenure", "MonthlyCharges", "TotalCharges"]
          # Plot distributions of numerical features
          fig, axes = plt.subplots(2, 2, figsize=(14, 10))
          for i, feature in enumerate(numerical_features):
               row, col = divmod(i, 2)
               sns.histplot(data=df, x=feature, hue="Churn", kde=True, ax=axes[row][col])
               axes[row][col].set_title(f"{feature} Distribution by Churn")
          plt.tight_layout()
          plt.show()
                             tenure Distribution by Churn
                                                                                MonthlyCharges Distribution by Churn
               Churn
          800
                                                                                                             Churn
                                                                1000
                  Yes
          700
          600
                                                                800
          500
                                                                600
          400
          300
                                                                400
          200
                                                                200
          100
            0
                                                                 0
                                                         70
                                      40
                                             50
                                                                                      MonthlyCharges
                           TotalCharges Distribution by Churn
                                                                1.0
                                                       Churn
                                                       Yes
          800
                                                                0.8
          600
                                                                0.6
        Count
          400
                                                                0.4
          200
                                                                0.2
```

0.0

1.0

Visual Analysis

TotalCharges

0

1. Tenure vs Churn

- Customers with **low tenure** are more likely to churn.
- Longer tenure is associated with customer retention.

2. Monthly Charges vs Churn

- Churn is higher among customers with **high monthly charges**.
- Indicates pricing could be a churn driver.

3. Total Charges vs Churn

- Churners mostly have **low total charges**, possibly due to short tenure.
- Reinforces the idea that new users are more likely to leave.

Key Takeaways

- Tenure, MonthlyCharges, and TotalCharges show strong patterns with churn.
- Recently joined or low-spending users have a higher churn risk.
- These features may be **important predictors** in the classification model.

```
In [74]: # Select relevant features
    corr_features = df[['tenure', 'MonthlyCharges', 'TotalCharges']]

# Calculate correlation matrix
    corr_matrix = corr_features.corr()

# Plot heatmap
    plt.figure(figsize=(8, 6))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', cbar=True)
    plt.title('Correlation Matrix: Tenure, MonthlyCharges, TotalCharges')
    plt.show()
```


Categorical Features Handling

```
In [75]: Categorical_cols=df.select_dtypes(include='object').columns.to_list()+['SeniorCitizen']

for col in Categorical_cols:
    plt.figure(figsize=(6,4))
    sns.countplot(data=df,x=col,hue='Churn')
    plt.title(f"{col} Distribution by Churn")
    plt.show()
```



```
In [76]:
         # Check data types and unique values in each column
         unique_values = df.nunique()
         unique_values
Out[76]: gender
                                 2
          SeniorCitizen
                                 2
          Partner
                                 2
          Dependents
                                 2
                                73
          tenure
                                 2
          PhoneService
                                 3
         MultipleLines
          InternetService
                                 3
          OnlineSecurity
                                 3
                                 3
          OnlineBackup
          DeviceProtection
                                 3
                                 3
          TechSupport
                                 3
          StreamingTV
                                 3
          StreamingMovies
          Contract
                                 3
          PaperlessBilling
                                 2
          PaymentMethod
                                 4
          MonthlyCharges
                              1585
                              6531
          TotalCharges
          Churn
                                 2
          dtype: int64
In [77]: for col in df.columns:
             if col not in ['tenure','MonthlyCharges','TotalCharges']:
                  print(col,df[col].unique())
                  print("___
```

```
gender ['Female' 'Male']
SeniorCitizen [0 1]
Partner ['Yes' 'No']
Dependents ['No' 'Yes']
PhoneService ['No' 'Yes']
MultipleLines ['No phone service' 'No' 'Yes']
InternetService ['DSL' 'Fiber optic' 'No']
OnlineSecurity ['No' 'Yes' 'No internet service']
OnlineBackup ['Yes' 'No' 'No internet service']
DeviceProtection ['No' 'Yes' 'No internet service']
TechSupport ['No' 'Yes' 'No internet service']
StreamingTV ['No' 'Yes' 'No internet service']
StreamingMovies ['No' 'Yes' 'No internet service']
Contract ['Month-to-month' 'One year' 'Two year']
PaperlessBilling ['Yes' 'No']
PaymentMethod ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
 'Credit card (automatic)']
Churn ['No' 'Yes']
```

Feature Engineering

```
In [78]: df['Churn'] = df['Churn'].map({'No': 0, 'Yes': 1})
In []:
In [79]: encoders={}
for column in Categorical_cols:
    label_encoder = LabelEncoder()
    df[column] = label_encoder.fit_transform(df[column])
    encoders[column]=label_encoder
In [80]: encoders
```

```
Out[80]: {'gender': LabelEncoder(),
           'Partner': LabelEncoder(),
           'Dependents': LabelEncoder(),
           'PhoneService': LabelEncoder(),
           'MultipleLines': LabelEncoder(),
           'InternetService': LabelEncoder(),
           'OnlineSecurity': LabelEncoder(),
           'OnlineBackup': LabelEncoder(),
           'DeviceProtection': LabelEncoder(),
           'TechSupport': LabelEncoder(),
           'StreamingTV': LabelEncoder(),
           'StreamingMovies': LabelEncoder(),
           'Contract': LabelEncoder(),
           'PaperlessBilling': LabelEncoder(),
           'PaymentMethod': LabelEncoder(),
           'Churn': LabelEncoder(),
           'SeniorCitizen': LabelEncoder()}
```

In [81]: df

Out[81]: gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetServ

_		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetServic
	0	0	0	1	0	1	0	1	
	1	1	0	0	0	34	1	0	
	2	1	0	0	0	2	1	0	
	3	1	0	0	0	45	0	1	
	4	0	0	0	0	2	1	0	
	•••								
7	038	1	0	1	1	24	1	2	
7	039	0	0	1	1	72	1	2	
7	040	0	0	1	1	11	0	1	
7	041	1	1	1	0	4	1	2	
7	042	1	0	0	0	66	1	0	

7043 rows × 20 columns

```
In [82]: scaler=StandardScaler()
    df[numerical_features]=scaler.fit_transform(df[numerical_features])
```

In [83]: df

:		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetSer
	0	0	0	1	0	-1.277445	0	1	
	1	1	0	0	0	0.066327	1	0	
	2	1	0	0	0	-1.236724	1	0	
	3	1	0	0	0	0.514251	0	1	
	4	0	0	0	0	-1.236724	1	0	
	•••								
	7038	1	0	1	1	-0.340876	1	2	
	7039	0	0	1	1	1.613701	1	2	
	7040	0	0	1	1	-0.870241	0	1	
	7041	1	1	1	0	-1.155283	1	2	
	7042	1	0	0	0	1.369379	1	0	

7043 rows × 20 columns

Out[83]:

```
In [84]: # Features and target
         x = df.drop("Churn", axis=1)
         y = df["Churn"]
In [ ]: # Split the data first
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, str
         # Then scale the data (no leakage)
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
In [85]: # 1. SMOTE (on training data only)
         smote = SMOTE(random_state=42)
         X_train_resampled, y_train_resampled = smote.fit_resample(X_train_scaled, y_train)
         # 2. Define classifiers
         models = {
             "Logistic Regression": LogisticRegression(max_iter=1000),
             "Decision Tree": DecisionTreeClassifier(),
             "Random Forest": RandomForestClassifier(),
             "XGBoost": XGBClassifier(eval_metric='logloss'),
             "SVM": SVC(probability=True),
             "KNN": KNeighborsClassifier(),
             "Naive Bayes": GaussianNB(),
             "AdaBoost": AdaBoostClassifier()
         # 3. Train all models
         trained models = {}
         for name, model in models.items():
             model.fit(X_train_resampled, y_train_resampled)
             trained_models[name] = model
             print(f"{name} trained successfully.")
```

```
Logistic Regression trained successfully.
Decision Tree trained successfully.
Random Forest trained successfully.
XGBoost trained successfully.
SVM trained successfully.
KNN trained successfully.
Naive Bayes trained successfully.
AdaBoost trained successfully.
```

```
In [86]: from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_
         # Initialize dictionary to store performance metrics
         model_performance_before_HT = {}
         # Evaluate each model
         for name, model in trained_models.items():
             y_pred = model.predict(X_test_scaled)
             y_prob = model.predict_proba(X_test_scaled)[:, 1] # For AUC-ROC
             # Calculate performance metrics
             accuracy = accuracy_score(y_test, y_pred)
             precision = precision_score(y_test, y_pred)
             recall = recall_score(y_test, y_pred)
             f1 = f1_score(y_test, y_pred)
             auc_roc = roc_auc_score(y_test, y_prob)
             # Store metrics
             model_performance_before_HT[name] = {
                 'Accuracy': accuracy,
                 'Precision': precision,
                 'Recall': recall,
                 'F1-Score': f1,
                 'AUC-ROC': auc_roc
             }
             # Print results
             print(f"\n{name} Performance:")
             print(f"Accuracy: {accuracy:.4f}")
             print(f"Precision: {precision:.4f}")
             print(f"Recall: {recall:.4f}")
             print(f"F1-Score: {f1:.4f}")
             print(f"AUC-ROC: {auc roc:.4f}")
```

```
Logistic Regression Performance:
```

Accuracy: 0.7424 Precision: 0.5095 Recall: 0.7888 F1-Score: 0.6191 AUC-ROC: 0.8391

Decision Tree Performance:

Accuracy: 0.7218 Precision: 0.4799 Recall: 0.5749 F1-Score: 0.5231 AUC-ROC: 0.6747

Random Forest Performance:

Accuracy: 0.7736 Precision: 0.5700 Recall: 0.5989 F1-Score: 0.5841 AUC-ROC: 0.8204

XGBoost Performance: Accuracy: 0.7779 Precision: 0.5796 Recall: 0.5936 F1-Score: 0.5865 AUC-ROC: 0.8146

SVM Performance: Accuracy: 0.7466 Precision: 0.5167 Recall: 0.7032 F1-Score: 0.5957 AUC-ROC: 0.8097

KNN Performance:
Accuracy: 0.6778
Precision: 0.4340
Recall: 0.7032
F1-Score: 0.5367
AUC-ROC: 0.7473

Naive Bayes Performance:

Accuracy: 0.7268
Precision: 0.4907
Recall: 0.7754
F1-Score: 0.6010
AUC-ROC: 0.8187

AdaBoost Performance:

Accuracy: 0.7388
Precision: 0.5054
Recall: 0.7567
F1-Score: 0.6060
AUC-ROC: 0.8335

In [87]: import pandas as pd

Convert model performance dictionary into DataFrame
performance_df = pd.DataFrame(model_performance_before_HT).T

Display the performance metrics for each model

performance_df

	Accuracy	Precision	Recall	F1-Score	AUC-ROC
Logistic Regression	0.742370	0.509499	0.788770	0.619098	0.839138
Decision Tree	0.721789	0.479911	0.574866	0.523114	0.674667
Random Forest	0.773598	0.569975	0.598930	0.584094	0.820356
XGBoost	0.777857	0.579634	0.593583	0.586526	0.814600
SVM	0.746629	0.516699	0.703209	0.595696	0.809721
KNN	0.677786	0.433993	0.703209	0.536735	0.747265
Naive Bayes	0.726757	0.490694	0.775401	0.601036	0.818722
AdaBoost	0.738822	0.505357	0.756684	0.605996	0.833482

```
In [88]:
         from sklearn.model_selection import GridSearchCV
         from sklearn.linear_model import LogisticRegression
         from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
         from sklearn.naive_bayes import GaussianNB
         from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_
         # 1. Initialize base models (XGBoost removed)
         base models = {
             'Logistic Regression': LogisticRegression(max_iter=1000),
             'Random Forest': RandomForestClassifier(),
             'Naive Bayes': GaussianNB(),
             'AdaBoost': AdaBoostClassifier()
         }
         # 2. Define hyperparameter grids (XGBoost removed)
         param_grids = {
             'Logistic Regression': {
                 'C': [0.01, 0.1, 1, 10],
                  'penalty': ['l1', 'l2'],
                 'solver': ['liblinear']
             },
              'Random Forest': {
                  'n_estimators': [100, 200],
                 'max_depth': [None, 10, 20],
                 'min_samples_split': [2, 5]
             },
              'Naive Bayes': {
                 'var_smoothing': [1e-09, 1e-08, 1e-07]
              'AdaBoost': {
                 'n_estimators': [50, 100, 200],
                  'learning_rate': [0.01, 0.1, 1]
         }
         # 3. Tune and store best models
         trained models = {}
         for name, model in base_models.items():
             print(f"\nTuning {name}...")
             grid = GridSearchCV(model, param_grids[name], cv=5, scoring='f1', n_jobs=-1)
             grid.fit(X_train_scaled, y_train)
             trained_models[name] = grid.best_estimator_
             print(f"Best parameters for {name}: {grid.best_params_}")
         # 4. Evaluate tuned models
```

```
model_performance = {}
for name, model in trained_models.items():
   y_pred = model.predict(X_test_scaled)
   # Check if model supports predict_proba
   if hasattr(model, "predict_proba"):
       y_prob = model.predict_proba(X_test_scaled)[:, 1]
    else:
       y_prob = y_pred
    accuracy = accuracy_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred)
   recall = recall_score(y_test, y_pred)
   f1 = f1_score(y_test, y_pred)
    auc_roc = roc_auc_score(y_test, y_prob)
    model_performance[name] = {
       'Accuracy': accuracy,
        'Precision': precision,
        'Recall': recall,
       'F1-Score': f1,
        'AUC-ROC': auc_roc
    print(f"\n{name} Performance:")
    print(f"Accuracy: {accuracy:.4f}")
    print(f"Precision: {precision:.4f}")
    print(f"Recall: {recall:.4f}")
    print(f"F1-Score: {f1:.4f}")
    print(f"AUC-ROC: {auc_roc:.4f}")
```

```
Tuning Logistic Regression...
        Best parameters for Logistic Regression: {'C': 1, 'penalty': 'l1', 'solver': 'liblinear'}
        Tuning Random Forest...
        Best parameters for Random Forest: {'max_depth': 10, 'min_samples_split': 5, 'n_estimators': 2
        00}
        Tuning Naive Bayes...
        Best parameters for Naive Bayes: {'var_smoothing': 1e-09}
        Tuning AdaBoost...
        Best parameters for AdaBoost: {'learning_rate': 1, 'n_estimators': 200}
        Logistic Regression Performance:
        Accuracy: 0.7991
        Precision: 0.6426
        Recall: 0.5481
        F1-Score: 0.5916
        AUC-ROC: 0.8404
        Random Forest Performance:
        Accuracy: 0.7970
        Precision: 0.6507
        Recall: 0.5080
        F1-Score: 0.5706
        AUC-ROC: 0.8394
        Naive Bayes Performance:
        Accuracy: 0.7466
        Precision: 0.5160
        Recall: 0.7326
        F1-Score: 0.6055
        AUC-ROC: 0.8201
        AdaBoost Performance:
        Accuracy: 0.7949
        Precision: 0.6349
        Recall: 0.5348
        F1-Score: 0.5806
        AUC-ROC: 0.8447
In [89]: # Convert model performance dictionary into DataFrame
         performance = pd.DataFrame(model performance).T
         # Display the performance metrics for each model
         performance
Out[89]:
                            Accuracy Precision
                                                  Recall F1-Score AUC-ROC
                                     0.642633  0.548128  0.591631
          Logistic Regression
                           0.799148
                                                                   0.840445
             Random Forest 0.797019 0.650685 0.508021 0.570571
                                                                   0.839440
                Naive Bayes
                           0.746629  0.516008  0.732620  0.605525
                                                                   0.820104
                  AdaBoost 0.794890 0.634921 0.534759 0.580552
                                                                   0.844713
         # Initialize dictionary to store training performance metrics
```

```
In [90]: # Initialize dictionary to store training performance metrics
model_performance_train = {}

# Evaluate each model on the training set
for name, model in trained_models.items():
    y_pred_train = model.predict(X_train_scaled)
```

```
if hasattr(model, "predict_proba"):
                 y_prob_train = model.predict_proba(X_train_scaled)[:, 1]
             else:
                 y_prob_train = y_pred_train
             accuracy = accuracy_score(y_train, y_pred_train)
             precision = precision_score(y_train, y_pred_train)
             recall = recall_score(y_train, y_pred_train)
             f1 = f1_score(y_train, y_pred_train)
             auc_roc = roc_auc_score(y_train, y_prob_train)
             model_performance_train[name] = {
                 'Accuracy': round(accuracy, 4),
                 'Precision': round(precision, 4),
                 'Recall': round(recall, 4),
                 'F1-Score': round(f1, 4),
                 'AUC-ROC': round(auc_roc, 4)
             }
         # Optionally show as table
         import pandas as pd
         performance_train_df = pd.DataFrame(model_performance_train).T
         print("\n | Model Training Performance Summary:\n")
         print(performance_train_df)
        Model Training Performance Summary:
                            Accuracy Precision Recall F1-Score AUC-ROC
                             0.8042 0.6571 0.5485 0.5979 0.8476
        Logistic Regression
                              0.8791
                                       0.8304 0.6843 0.7503
       Random Forest
                                                                  0.9531
       Naive Bayes
                            0.7563
                                       0.5293 0.7378 0.6164 0.8263
       AdaBoost
                              0.8080 0.6664 0.5532 0.6045 0.8544
In [91]: import joblib
         from sklearn.pipeline import Pipeline
         from sklearn.linear_model import LogisticRegression
         # Use the best parameters found during GridSearchCV
         best lr = LogisticRegression(C=1, penalty='l1', solver='liblinear', max iter=1000)
         # Create pipeline with scaler + model
         pipeline = Pipeline([
             ('scaler', StandardScaler()),
             ('model', best_lr)
         1)
         # Fit on original training data
         pipeline.fit(X_train, y_train)
         # Save the pipeline
         joblib.dump(pipeline, 'final_model_pipeline.pkl')
         print("Final model pipeline saved as 'final_model_pipeline.pkl'")
```

Final model pipeline saved as 'final_model_pipeline.pkl'

```
In [92]: from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score
import matplotlib.pyplot as plt
import seaborn as sns

# Predict and evaluate
y_pred = pipeline.predict(X_test)
y_prob = pipeline.predict_proba(X_test)[:, 1]
```

```
# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()

# Classification Report
print("Classification Report:\n")
print(classification_report(y_test, y_pred))

# AUC-ROC
roc = roc_auc_score(y_test, y_prob)
print(f"AUC-ROC: {roc:.4f}")
```


Classification Report:

	precision	recall	f1-score	support
0	0.84	0.89	0.87	1035
1	0.64	0.55	0.59	374
accuracy			0.80	1409
macro avg	0.74	0.72	0.73	1409
weighted avg	0.79	0.80	0.79	1409

AUC-ROC: 0.8404

```
In [93]: from sklearn.metrics import precision_recall_curve

precision, recall, thresholds = precision_recall_curve(y_test, y_prob)

# Plot

plt.figure(figsize=(8, 5))

plt.plot(thresholds, precision[:-1], "b--", label="Precision")

plt.plot(thresholds, recall[:-1], "g-", label="Recall")

plt.xlabel("Threshold")

plt.legend()
```


In []:	
In []:	
In []:	