

Flink OLAP Improvement of Resource Management and Runtime

曹帝胄 | 字节跳动基础架构工程师

- **1** Flink OLAP in ByteDance
- 02 作业调度
- 03 Runtime 执行
- 04 收益
- 05 未来规划

01 Flink OLAP in ByteDance

Flink OLAP Architecture in ByteDance

Flink OLAP in ByteDance

集群数

20+ HTAP 线上集群

集群规模

16,000+ Cores

业务规模

Query 50W+/天

X

QPS

Lantency

调度 Benchmark

测试用例

- 根据复杂度设计三组测试
- Flink 默认并发度128,数据量极小

Join

select val1, count(*) from table1 left join table2 on val1=val2 left join table3 on val2=val3 group by val1

WordCount

select val1, count(*) from table1
group by val1

Source-Sink

select val1 from table1;

测试环境

- 5台物理机, 共 500 Cores, 1.25W 个 Slot
- · 统计10分钟内完成的作业及作业平均 Latency

Flink 调度不同阶段 QPS

部署阶段性能下降明显

高 QPS 下 , Latency 上涨严重

现状和优化

作业资源管理流程复杂

作业资源管理和部署瓶颈

作业部署交互瓶颈

结果拉取瓶颈

作业运行时资源创建

高并发下锁抢占问题

任务运行延迟瓶颈

现状优化

作业资源管理流程优化

作业调度优化

任务部署结构优化

模块交互优化

任务运行时优化

结果拉取优化

Task 运行优化

02 作业调度

- 1. 资源管理流程优化
- 2. 任务部署结构优化
- 3. 模块交互优化

现状

每次资源申请释放都需要经过 ResourceManager, 形成单点瓶颈

资源管理流程优化

优化

Remove Slot

Source-sink 调度部署阶段 QPS 测试

	Client 提交线程数	QPS
优化前	32	160.42
优化后	32	359.67

按 TM 维度作业部署

任务部署结构优化

Jobld

JobInfomation

.....

TaskInfomation

ConnectitionInfo

现状

优化

作业	计算任务数量	优化前		优化后	
		序列化后数据大小(KB)	序列化总耗时 (ms)	序列化后数据大小(KB)	序列化总耗时 (ms)
Source	13	63.1	5462	5.6	644
WordCount	26	317.3	122546	11.1	940
Join	30	557.5	219189	28.3	2830

В

Batch status update

以 Task 数为128的测试作业在 QPS 100, TM 100的环境下为例

В

A

优化前		优化后		
连接连接/销毁 QPS	Task 任务更新请求数	连接连接/销毁 QPS	Task 任务更新请求数	
10,000	2,560,000	0	25,600	

03 Runtime 优化

- 1. 作业结果拉取优化
- 2. Task 运行优化

Pull VS Push

Result

存在轮询时间,增加了 Lateancy

需要创建临时资源(网络、线程等)

Dispatcher 存在单 Actor 线程瓶颈

作业结束状态处理

作业结果 Push 架构

50TM 下空数据 Query QPS 测试

提交协议	Client 提交线程数	查询完成 QPS
Http Rest (pull)	128	850
Netty Socket (push)	128	4096

线程优化

现状

优化和实现

锁优化

现状

Request Lock
Segment

Task
Segment

MemoryPool

Task
Segment
Segment
Segment

10并发, Task100, TM 为1, batchSegment size 为10申请 segment 的锁占用请求由1000/s -> 100/s 模拟申请10w个 segment 总耗时由4353ms -> 793 ms 优化

最大 segment 碎片 < BatchSegment size

Task 运行优化

内存优化

现状

Job 1

Job 2

Job 3

MetricStore

JobMetricStore

TaskMetricStore

优化

num	#instances	#bytes	class name
1:	7262797	1032501800	
2:	5368079	995963816	[Ljava.lang.Object; Full GC 火火子)年14,000 /0
3:	691648	842363656	[B
4:	3155236	227176992	java.util.concurrent.ScheduledThreadPoolExecutor\$ScheduledFutureTask
5:	509466	205810696	[I
6:	1919162	168532912	[J
7:	1960498	160478536	[Ljava.util.HashMap\$Node;
8:	6303200	151276800	java.lang.String
9:	2538445	121845360	java.util.HashMap
10:	2767442	88558144	java.util.HashMap\$Node
11:	3505117	84122808	java.util.ArrayList
12:	1510617	72509616	org.apache.flink.runtime.executiongraph.IOMetrics
13:	1189876	66633056	org.apache.flink.runtime.executiongraph.ArchivedExecution
14:	1915568	61298176	org.apache.flink.runtime.executiongraph.ExecutionAttemptID
15:	1189876	57114048	org.apache.flink.runtime.executiongraph.ArchivedExecutionVertex
16:	1204656	48186240	org.apache.flink.runtime.util.EvictingBoundedList
17:	654457	41885248	java.util.concurrent.ConcurrentHashMap

04 收益

- 1. Benchmark
- 2. 业务收益

Benchmark

调度部署阶段 QPS

业务接入 12+ User Growth、电商、 幸福里、飞书等核心业务

单集群复杂查询 QPS > 200 Latency P99 <5s

05 未来规划

- 1. Serveless 能力建设
- 2. 性能提升

Serveless 能力建设

Default
ResourceGroup
TaskManager

TaskManager Min

TaskManager

TaskManager Max ResourceGroup 1

TaskManager

TaskManager Min

TaskManager

TaskManager Max ResourceGroup 2

TaskManager

TaskManager

Min

TaskManager

TaskManager Max ResourceGroup 3

TaskManager

TaskManager

Min

TaskManager

TaskManager Max

Reserved Pool

TaskManager

TaskManager

TaskManager

TaskManager

TaskManager

TaskManager

TaskManager

TaskManager

TaskManager Cluster

• 集群维度支持资源组隔离

• 集群支持弹性扩缩容

• 单节点维度支持计算任务分优先级调度

集群负载性能

- 1. JobManager 支持水平扩展
- 2. 集群资源利用率优化
- 3. Task 调度性能优化

运行时优化

- 1. 运行时网络消息优化
- 2. 资源申请流程优化

冷启动优化

- 1. Gateway 冷启动优化
- 2. 网络初始化优化
- 3. 内存申请流程优化

THANK YOU

谢 谢 观 看