Ben Langmead

Department of Computer Science

You are free to use these slides. If you do, please sign the guestbook (www.langmead-lab.org/teaching-materials), or email me (ben.langmead@gmail.com) and tell me briefly how you're using them. For original Keynote files, email me.

Given strings x and y, what is the optimal global alignment value of a substring of x to a substring of y. This is local alignment.

Assume global alignment scoring where: (a) similarities get > 0, (b) dissimilarities get < 0, (c) alignment of ϵ to any string has score 0

Somehow we must weigh all possible pairs of substrings

What is bound for # substring pairs, assuming |x| = n, |y| = m? $O(m^2n^2)$

Let V[i, j] be the optimal global alignment value of a substring of x ending at i and a substring of y ending at j. The substrings may be empty.

The maximum V[i, j] over all i, j is the optimal score we're looking for

Only 4 ways to build a new edit transcript from another one:

Vertical: append \mathbf{I} to transcript for V[i-1, j], take gap penalty

Horizontal: append **D** to transcript for V[*i*, *j*-1], take gap penalty

Diagonal: append M or R to transcript for V[i-1, j-1], get match bonus or take replacement penalty as appropriate

Empty: let both substrings be empty, global alignment value = 0

Proof: Gusfield 11.7.1 - 11.7.2

Let
$$V[0, j] = 0$$
, and let $V[i, 0] = 0$

Otherwise, let
$$V[i,j] = \max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

s(a,b) assigns a score to a particular match, gap, or replacement

What's different from global alignment?

First row and columns initialized to all 0s

0 is one of the arguments of the max

	Α	С	G	Т	-
Α	2	-4	-4	-4	-6
С	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Т	-4	-4	-4	2	-6
_	-6	-6	-6	-6	

Let
$$V[0, j] = 0$$
, and let $V[i, 0] = 0$

Otherwise, let
$$V[i,j] = \max \left\{ egin{array}{l} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{array} \right.$$

s(a,b) assigns a score to a particular match, gap, or replacement

Does it make sense that first row and column get all 0s? Yes, b/c global alignment value of ϵ , ϵ (0) always best

									Ì	ĺ						
	_	ϵ	Т	Α	Т	Α	Т	G	C	G	G	C	G	Т	Т	<u>T</u>
	ϵ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	0														
	G	0														
	Т	0														
	Α	0														
	Т	0														
	G	0														
X	C	0														
/ \	C T	0														
	G	0														
	G	0														
	C	0														
	G	0														
	C	0														
	Т	0														
	Α	0														
	'															

	/	7 \
C	Ω	h)
0	(u,	\mathcal{O}
	\ /	

	Α	C	G	Τ	ı
Α	2	-4	-4	-4	-6
C	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Т	-4	-4	-4	2	-6
_	-6	-6	-6	-6	

$$V[i,j] = \max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

	€	Т	Α	Т	Α	Т	G	C	G	G	C	G	Т	Т	Т
ϵ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	2	0	2	2	0	2	0	0	0
G	0	0	0	0	0	0	2	0	2	4	0	2	0	0	0
T	0	2	0	2	0	2	0	0	0	0	0	0	4	2	2
Α	0	0	4	0	^.										
T	0														
G	0														
C	0														
T	0														
G	0														
G	0														
C	0														
G	0														
C	0														
T	0														
Α	0														

s(a,b)

	Α	С	G	Τ	ı
А	2	-4	-4	-4	-6
С	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Т			-4	2	-6
_	-6	-6	-6	-6	

$$V[i,j] = \max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

	ϵ	Т	Α	Т	Α	Т	G	C	G	G	C	G	Т	Т	<u>T</u>
ϵ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	2	0	2	2	0	2	0	0	0
G	0	0	0	0	0	0	2	0	2	4	0	2	0	0	0
Т	0	2	0	2	0	2	0	0	0	0	0	0	4	2	2
Α	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0
Τ	0	2	0	6	0	6	0	0	0	0	0	0	2	2	2
G	0	0	0	0	2	0	8	2	2	2	0	2	0	0	0
C	0	0	0	0	0	0	2	10	4	0	4	0	0	0	0
Т	0	2	0	2	0	2	0	4	6	0	0	0	2	2	2
G	0	0	0	0	0	0	4	0	6	8	2	2	0	0	0
G	0	0	0	0	0	0	2	0	2	8	4	4	0	0	0
C	0	0	0	0	0	0	0	4	0	2	10	4	0	0	0
G	0	0	0	0	0	0	2	0	6	2	4	12	6	0	0
C	0	0	0	0	0	0	0	4	0	2	4	6	8	2	0
Т	0	2	0	2	0	2	0	0	0	0	0	0	8	10	4
Α	0	0	4	0	4	0	0	0	0	0	0	0	2	4	6

	<i>(</i>	7 \
91	a.	n
0	$(\omega,$	$\mathcal{O}_{\mathcal{I}}$
	`	,

	Α	С	G	Т	ı
Α	2	-4	-4	-4	-6
С	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Т	-4	-4	-4	2	-6
_	-6	-6	-6	-6	

0's in essence allow peaks of similarity to rise above "background" of 0s

Backtrace: (a) start from maximal cell in the matrix, (b) stop backtrace when we reach a cell with score = 0

What if we didn't have a positive "bonus" for matches?

All cells would = 0

	E	Т	Α	T	Α	T	G	C	G	G	C	G	Т	Т	<u>T</u>
ϵ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	2	0	2	2	0	2	0	0	0
G	0	0	0	0	0	0	2	0	2	4	0	2	0	0	0
Т	0	2	0	2	0	2	0	0	0	0	0	0	4	2	2
Α	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0
Т	0	2	0	6	0	6	0	0	0	0	0	0	2	2	2
G	0	0	0	0	2	0	8	2	2	2	0	2	0	0	0
C	0	0	0	0	0	0	2	10	4	0	4	0	0	0	0
Т	0	2	0	2	0	2	0	4	6	0	0	0	2	2	2
G	0	0	0	0	0	0	4	0	6	8	2	2	0	0	0
G	0	0	0	0	0	0	2	0	2	8	4	4	0	0	0
C	0	0	0	0	0	0	0	4	0	2	10	4	0	0	0
G	0	0	0	0	0	0	2	0	6	2	4	12	6	0	0
C	0	0	0	0	0	0	0	4	0	2	4	6	8	2	0
Т	0	2	0	2	0	2	0	0	0	0	0	0	8	10	4
Α	0	0	4	0	4	0	0	0	0	0	0	0	2	4	6

s	(a,	b
	\ /	

	Α	С	G	Т	-
Α	2	-4	-4	-4	-6
С	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Т	-4	-4	-4	2	-6
_	-6	-6	-6	-6	

What if we didn't have negative "penalties" for edits?

Rule for ϵ , ϵ would never be used and alignment would essentially be global

$$\max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

Python example: http://nbviewer.ipython.org/6994170

We might be interested in the *best* local alignment, or in many *good-enough* local alignments

Reducing good-enough threshold risks allowing lots of tiny alignments that aren't very relevant

