SI UNIT DEFINITIONS (D6)

Base Units

Base Unit	Base Symbol	Base Quantity	Typical Symbol	Formal Definition	Equation
Second	S	Time	t	The second, symbol s , is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, Δv_{Cs} , the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s^{-1} .	$1 \text{ s} = \frac{9 192 631 770}{\Delta v_{\text{Cs}}}$
Metre	m	Length	<i>l, x, r,</i> etc.	The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum, c , to be 299 792 458 when expressed in the unit m s ⁻¹ , where the second is defined in terms of the caesium frequency $\Delta \nu_{\rm Cs}$.	$1 \text{ m} = \left(\frac{c}{299792458}\right) \text{s}$
Kilogram	kg	Mass	m	The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant, h , to be $6.626\ 070\ 15 \times 10^{-34}$ when expressed in the unit J s, which is equal to kg m 2 s $^{-1}$, where the metre and the second are defined in terms of c and $\Delta \nu_{\rm Cs}$.	$1 \text{ kg} = \left(\frac{h}{6.62607015 \times 10^{-34}}\right) \text{m}^{-2} \text{s}$
Ampere	A	Electric Current	I, i	The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge, e , to be $1.602\ 176\ 634 \times 10^{-19}$ when expressed in the unit C, which is equal to A s, where the second is defined in terms of Δv_{Cs} .	$1 \text{ A} = \left(\frac{e}{1.602 \ 176 \ 634 \times 10^{-19}}\right) \text{s}^{-1}$
Kelvin	К	Thermodynamic Temperature	T	The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant, k , to be $1.380\ 649\times 10^{-23}$ when expressed in the unit J K ⁻¹ , which is equal to kg m ² s ⁻²	$1 \text{ K} = \left(\frac{1.380 \text{ 649} \times 10^{-23}}{k}\right) \text{kg m}^2 \text{ s}^{-2}$

Base Unit	Base Symbol	Base Quantity	Typical Symbol	Formal Definition	Equation
				K^{-1} , where the kilogram, metre and second are defined in terms of h , c and Δv_{Cs} .	
Mole	mol	Amount of Substance	n	The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly $6.022\ 140\ 76\times 10^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant, $N_{\rm A}$, when expressed in the unit ${\rm mol}^{-1}$ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.	$1 \text{ mol} = \left(\frac{6.02214076 \times 10^{23}}{N_{\text{A}}}\right)$
Candela	cd	Luminous Intensity	$I_{ m V}$	The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540×10^{12} Hz, K_{cd} , to be 683 when expressed in the unit lm W^{-1} , which is equal to cd sr W^{-1} , or cd sr W^{-1} and W^{-1} where the kilogram, metre and second are defined in terms of W^{-1} , and W^{-1} .	$1 \text{ cd} = \left(\frac{K_{\text{cd}}}{683}\right) \text{kg m}^2 \text{ s}^{-3} \text{ sr}^{-1}$

Sources:

- Base Unit [1] [2]
- Base Symbol [1] [2]
- Base Quantity [1] [2]
- Typical Symbol [1] [2]
- Formal Definition [1] [2]
- Equation [1] [2]

Derived Units

Derived Unit	Unit Symbol	Derived Quantity	Equation Expressed in Terms of SI Base Units	Equation Expressed in Terms of Other SI Units
Radian	rad	Plane Angle	rad = m/m	-
Steradian	sr	Solid Angle	$sr = m^2/m^2$	-
Hertz	Hz	Frequency	$Hz = s^{-1}$	-
Newton	N	Force	$N = kg m s^{-2}$	-
Pascal	Ра	Pressure, Stress	$Pa = kg m^{-1} s^{-2}$	-
Joule	J	Energy, Work, Amount of Heat	$J = kg m^2 s^{-2}$	J = N m
Watt	W	Power, Radiant Flux	$W = kg m^2 s^{-3}$	W = J/s
Coulomb	С	Electric Charge	C = A s	-
Volt	v	Electric Potential Difference	$V = kg m^2 s^{-3} A^{-1}$	V = W/A
Farad	F	Capacitance	$F = kg^{-1} m^{-2} s^4 A^2$	F = C/V
Ohm	Ω	Electric Resistance	$\Omega = kg m^2 s^{-3} A^{-2}$	$\Omega = V/A$
Siemens	S	Electric Conductance	$S = kg^{-1} m^{-2} s^3 A^2$	S = A/V
Weber	Wb	Magnetic Flux	Wb = kg $m^2 s^{-2} A^{-1}$	Wb = V s
Tesla	Т	Magnetic Flux Density	$T = kg s^{-2} A^{-1}$	$T = Wb/m^2$
Henry	Н	Inductance	$H = kg m^2 s^{-2} A^{-2}$	H = Wb/A

Derived Unit	Unit Symbol	Derived Quantity	Equation Expressed in Terms of SI Base Units	Equation Expressed in Terms of Other SI Units
Degree Celsius	°C	Celsius Temperature	x °C = x K, where -273.15 °C $\equiv 0$ K	-
Lumen	lm	Luminous Flux	lm = cd sr	lm = cd sr
Lux	lx	Illuminance	$lx = cd sr m^{-2}$	$lx = lm/m^2$
Becquerel	Bq	Activity Referred to a Radionuclide	$Bq = s^{-1}$	-
Gray	Gy	Absorbed Dose, Kerma	$Gy = m^2 s^{-2}$	Gy = J/kg
Sievert	Sv	Dose Equivalent	$Sv = m^2 s^{-2}$	Sv = J/kg
Katal	kat	Catalytic Activity	$kat = mol s^{-1}$	-

Sources:

- Derived Unit [1] [2]
- Unit Symbol [1] [2]
- Derived Quantity [1] [2]
- Equation Expressed in Terms of SI Base Units [1] [2]
- Equation Expressed in Terms of Other SI Units [1] [2]