# INF1344 Final

November 25, 2022

This is the analysis for Group 6, INF1344 Fall 2022.

```
[4]: install.packages("car")
    require("dplyr")
     library(car)
     #installing required packages
    Installing package into '/opt/r'
    (as 'lib' is unspecified)
    also installing the dependencies 'carData', 'nnet', 'pbkrtest'
    Loading required package: dplyr
    Attaching package: 'dplyr'
    The following objects are masked from 'package:stats':
        filter, lag
    The following objects are masked from 'package:base':
        intersect, setdiff, setequal, union
    Loading required package: carData
    Attaching package: 'car'
    The following object is masked from 'package:dplyr':
        recode
```

# 

#### [6]: MCPD

#displaying our dataset

|                               | 19 | female             | 27.900 | 0 | yes | southwest | 16884.924 |
|-------------------------------|----|--------------------|--------|---|-----|-----------|-----------|
|                               | 18 | male               | 33.770 | 1 | no  | southeast | 1725.552  |
|                               | 28 | male               | 33.000 | 3 | no  | southeast | 4449.462  |
|                               | 33 | male               | 22.705 | 0 | no  | northwest | 21984.471 |
|                               | 32 | male               | 28.880 | 0 | no  | northwest | 3866.855  |
|                               | 31 | female             | 25.740 | 0 | no  | southeast | 3756.622  |
|                               | 46 | female             | 33.440 | 1 | no  | southeast | 8240.590  |
|                               | 37 | female             | 27.740 | 3 | no  | northwest | 7281.506  |
|                               | 37 | male               | 29.830 | 2 | no  | northeast | 6406.411  |
|                               | 60 | female             | 25.840 | 0 | no  | northwest | 28923.137 |
|                               | 25 | male               | 26.220 | 0 | no  | northeast | 2721.321  |
|                               | 62 | female             | 26.290 | 0 | yes | southeast | 27808.725 |
|                               | 23 | male               | 34.400 | 0 | no  | southwest | 1826.843  |
|                               | 56 | female             | 39.820 | 0 | no  | southeast | 11090.718 |
|                               | 27 | male               | 42.130 | 0 | yes | southeast | 39611.758 |
|                               | 19 | male               | 24.600 | 1 | no  | southwest | 1837.237  |
|                               | 52 | female             | 30.780 | 1 | no  | northeast | 10797.336 |
|                               | 23 | male               | 23.845 | 0 | no  | northeast | 2395.172  |
|                               | 56 | male               | 40.300 | 0 | no  | southwest | 10602.385 |
|                               | 30 | male               | 35.300 | 0 | yes | southwest | 36837.467 |
|                               | 60 | female             | 36.005 | 0 | no  | northeast | 13228.847 |
|                               | 30 | female             | 32.400 | 1 | no  | southwest | 4149.736  |
|                               | 18 | male               | 34.100 | 0 | no  | southeast | 1137.011  |
|                               | 34 | female             | 31.920 | 1 | yes | northeast | 37701.877 |
|                               | 37 | male               | 28.025 | 2 | no  | northwest | 6203.902  |
|                               | 59 | female             | 27.720 | 3 | no  | southeast | 14001.134 |
|                               | 63 | female             | 23.085 | 0 | no  | northeast | 14451.835 |
|                               | 55 | female             | 32.775 | 2 | no  | northwest | 12268.632 |
|                               | 23 | male               | 17.385 | 1 | no  | northwest | 2775.192  |
| A data.frame: $1338 \times 7$ | 31 | male               | 36.300 | 2 | yes | southwest | 38711.000 |
|                               | 25 | female             | 30.200 | 0 | yes | southwest | 33900.653 |
|                               | 41 | male               | 32.200 | 2 | no  | southwest | 6875.961  |
|                               | 42 | male               | 26.315 | 1 | no  | northwest | 6940.910  |
|                               | 33 | female             | 26.695 | 0 | no  | northwest | 4571.413  |
|                               | 34 | $_{\mathrm{male}}$ | 42.900 | 1 | no  | southwest | 4536.259  |
|                               | 19 | female             | 34.700 | 2 | yes | southwest | 36397.576 |
|                               | 30 | female             | 23.655 | 3 | yes | northwest | 18765.875 |
|                               | 18 | male               | 28.310 | 1 | no  | northeast | 11272.331 |
|                               | 19 | female             | 20.600 | 0 | no  | southwest | 1731.677  |
|                               | 18 | $_{\mathrm{male}}$ | 53.130 | 0 | no  | southeast | 1163.463  |
|                               | 35 | male               | 39.710 | 4 | no  | northeast | 19496.719 |
|                               | 39 | female             | 26.315 | 2 | no  | northwest | 7201.701  |
|                               | 31 | male               | 31.065 | 3 | no  | northwest | 5425.023  |
|                               | 62 | male               | 26.695 | 0 | yes | northeast | 28101.333 |
|                               | 62 | male               | 38.830 | 0 | no  | southeast | 12981.346 |
|                               | 42 | female             | 40.370 | 2 | yes | southeast | 43896.376 |
|                               | 31 | male               | 25.935 | 1 | no  | northwest | 4239.893  |
|                               | 61 | male               | 33.535 | 0 | no  | northeast | 13143.337 |
|                               | 42 | female             | 32.870 | 0 | no  | northeast | 7050.021  |
|                               | 51 | male               | 30.030 | 1 | no  | southeast | 9377.905  |

children smoker <int> <chr>

bmi

<dbl>

age

<int>

sex

<chr>

charges <dbl>

region <chr>

# 1 Research Question

Is there any relationship between the primary beneficiary's age, and their individual medical costs billed by health insurance?

# 2 Research Hypothesis

Individual medical costs billed by health insurance is different for patients with younger age and older age, and sex has a moderating effect on the difference between the two groups.

# 3 Exploring the relationship between age and charge, with sex as a controlling varible

#### 3.1 Variable Descriptive Statistics

#### 3.1.1 Age

```
[7]: range(MCPD$age)
#checking the maximum and minimum value for "age"

1. 18 2. 64

[8]: length(MCPD$age)
#checking the count of "age"

1338
```

```
[9]: median(MCPD$age)
#checking the median of "age"
```

39

```
[10]: mean(MCPD$age)
#checking the mean of "age"
```

39.2070254110613

```
[11]: unique(MCPD$age)
#checking all the unique values of "age"
```

 $1. \ 19 \ 2. \ 18 \ 3. \ 28 \ 4. \ 33 \ 5. \ 32 \ 6. \ 31 \ 7. \ 46 \ 8. \ 37 \ 9. \ 60 \ 10. \ 25 \ 11. \ 62 \ 12. \ 23 \ 13. \ 56 \ 14. \ 27 \ 15. \ 52 \ 16. \ 30 \ 17. \ 34 \ 18. \ 59 \ 19. \ 63 \ 20. \ 55 \ 21. \ 22 \ 22. \ 26 \ 23. \ 35 \ 24. \ 24 \ 25. \ 41 \ 26. \ 38 \ 27. \ 36 \ 28. \ 21 \ 29. \ 48 \ 30. \ 40 \ 31. \ 58 \ 32. \ 53 \ 33. \ 43 \ 34. \ 64 \ 35. \ 20 \ 36. \ 61 \ 37. \ 44 \ 38. \ 57 \ 39. \ 29 \ 40. \ 45 \ 41. \ 54 \ 42. \ 49 \ 43. \ 47 \ 44. \ 51 \ 45. \ 42 \ 46. \ 50 \ 47. \ 39$ 



Looks like there are no outliers.

# 3.1.2 Sex

```
[13]: length(MCPD$sex)
#checking the count of "sex"
```

1338

```
[14]: unique(MCPD$sex)
#checking all the unique values of "sex"
```

1. 'female' 2. 'male'

# 3.1.3 Charges

#checking if there are any outliers in "charges"



Data looks significantly skewed to the right. Thus cannot eliminate anyone as outliers (for now).

All three variables are recorded in standard manner, with no missing value or significant outlier. Therefore, we proceed with our analysis

#### 3.2 Correlation Analysis

Correlation measures how strong two quantitative variables bivariate. Becasue we are investigating the relationship between age and personal health care cost, it is reasonable to for us to see if these two variable bivariate.

Ho: there is no lineaer correlation between patients' age and personal health care charges

Ha: there exists a lineaer correlation between patients' age and personal health care charges

```
[20]: AgeChargescor <- cor.test(MCPD$age, MCPD$charges, method = "pearson")
AgeChargescor
```

Pearson's product-moment correlation

Because the p-value is smaller than 0.001, the correlation is significant. There exists a 0.2990082 correlation between age and personal health care charge.

#### 3.3 Multiple Regression Analysis

Ho: age cannot be used to predict personal health care charge

Ha: age can be used to predict personal health care charge

First, we need to convert sex into a factor. (reason should be explained in the actual write-up)

```
[92]: MCPD$sex.f <- as.factor(MCPD$sex)
```

"sex.f" is a variable with a factor class now, and we will verify it.

```
[93]: print(class(MCPD$sex.f))
```

#### [1] "factor"

Now we run a multiple regression, with the dependent variable (DV) being "charge", independent variable (IV) being "age", and control variable (CV) being "sex"

```
[94]: lmACS <- lm(charges ~ age + sex.f, data = MCPD)

print(summary(lmACS))

#lmACS stands for linear model for the relationship between Age, Charges, and

→Sex.

#Great (or not great), age is significantly positively correlated with medical

→charges; however, sex is a significant control variable.
```

```
Call:
lm(formula = charges ~ age + sex.f, data = MCPD)
Residuals:
   Min   1Q Median   3Q   Max
```

```
-8821 -6947 -5511 5443 48203
```

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2343.62 994.35 2.357 0.0186 *
age 258.87 22.47 11.523 <2e-16 ***
sex.fmale 1538.83 631.08 2.438 0.0149 *
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11540 on 1335 degrees of freedom
```

F-statistic: 68.8 on 2 and 1335 DF, p-value: < 2.2e-16

Both variables are statistically significant. For detailed interpretation, please refer to course slides.

Adjusted R-squared: 0.09209

#### 3.4 T-Test

#### 3.4.1 T-test for age and charges

Multiple R-squared: 0.09344,

```
Ho: age low = age highHa: age low age high
```

We have checked the mean and median of "age" for this sample, they are 39.2073 and 39, respectively; thus it makes sense if we divide "age" into 2 groups, the cutoff point being 39.

```
[95]: ageL <- MCPD$charges[MCPD$age <= 39]
ageH <- MCPD$charges[MCPD$age > 39]
t.test(ageL, ageH)
```

Welch Two Sample t-test

```
data: ageL and ageH
t = -9.8047, df = 1335.2, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -7528.464 -5018.126
sample estimates:
mean of x mean of y
    10157.22    16430.51</pre>
```

Awesome, the cost of health care spend is significantly different for younger and older samples!

# 3.4.2 T-test for sex and charges

Ho: male = femaleHa: male = female

```
[96]: chargesM <- MCPD$charges[MCPD$sex == "male"]
  chargesF <- MCPD$charges[MCPD$sex == "female"]
  t.test(chargesM, chargesF)</pre>
```

Welch Two Sample t-test

```
data: chargesM and chargesF
t = 2.1009, df = 1313.4, p-value = 0.03584
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    91.85535 2682.48932
sample estimates:
mean of x mean of y
13956.75 12569.58
```

Significant, but to a less degree, suggesting it being a good controlling variable.

### 3.5 Two-Way ANOVA

#### 3.5.1 Two-way ANOVA test

Ho: the mean personal health care charge is the same across all the groups

Ha: at least one group has a different mean personal health care charge than the other groups

First, we need to create a new categorical variable where age is categorized as "high" or "low" based on their values (i.e. high if the value is >39, low if value is <=39)

```
[97]: MCPD$age.c <- ifelse(MCPD$age>39, "high", "low")
View(MCPD)
```

|                               | age         | sex                | bmi      | children    | $\operatorname{smoker}$ | region    | charges     | sex.f              | age.c       |
|-------------------------------|-------------|--------------------|----------|-------------|-------------------------|-----------|-------------|--------------------|-------------|
|                               | <int></int> | <chr></chr>        | <dbl $>$ | <int></int> | <chr></chr>             | <chr $>$  | <dbl></dbl> | <fct $>$           | <chr></chr> |
| •                             | 19          | female             | 27.900   | 0           | yes                     | southwest | 16884.924   | female             | low         |
|                               | 18          | $_{\mathrm{male}}$ | 33.770   | 1           | no                      | southeast | 1725.552    | $_{\mathrm{male}}$ | low         |
|                               | 28          | male               | 33.000   | 3           | no                      | southeast | 4449.462    | male               | low         |
|                               | 33          | male               | 22.705   | 0           | no                      | northwest | 21984.471   | male               | low         |
|                               | 32          | $_{\mathrm{male}}$ | 28.880   | 0           | no                      | northwest | 3866.855    | $_{\mathrm{male}}$ | low         |
|                               | 31          | female             | 25.740   | 0           | no                      | southeast | 3756.622    | female             | low         |
|                               | 46          | female             | 33.440   | 1           | no                      | southeast | 8240.590    | female             | high        |
|                               | 37          | female             | 27.740   | 3           | no                      | northwest | 7281.506    | female             | low         |
|                               | 37          | male               | 29.830   | 2           | no                      | northeast | 6406.411    | $_{\mathrm{male}}$ | low         |
|                               | 60          | female             | 25.840   | 0           | no                      | northwest | 28923.137   | female             | high        |
|                               | 25          | $_{\mathrm{male}}$ | 26.220   | 0           | no                      | northeast | 2721.321    | $_{\mathrm{male}}$ | low         |
|                               | 62          | female             | 26.290   | 0           | yes                     | southeast | 27808.725   | female             | high        |
|                               | 23          | $_{\mathrm{male}}$ | 34.400   | 0           | no                      | southwest | 1826.843    | $_{\mathrm{male}}$ | low         |
|                               | 56          | female             | 39.820   | 0           | no                      | southeast | 11090.718   | female             | high        |
|                               | 27          | $_{\mathrm{male}}$ | 42.130   | 0           | yes                     | southeast | 39611.758   | $_{\mathrm{male}}$ | low         |
|                               | 19          | $_{\mathrm{male}}$ | 24.600   | 1           | no                      | southwest | 1837.237    | $_{\mathrm{male}}$ | low         |
|                               | 52          | female             | 30.780   | 1           | no                      | northeast | 10797.336   | female             | high        |
|                               | 23          | $_{\mathrm{male}}$ | 23.845   | 0           | no                      | northeast | 2395.172    | $_{\mathrm{male}}$ | low         |
|                               | 56          | $_{\mathrm{male}}$ | 40.300   | 0           | no                      | southwest | 10602.385   | $_{\mathrm{male}}$ | high        |
|                               | 30          | $_{\mathrm{male}}$ | 35.300   | 0           | yes                     | southwest | 36837.467   | $_{\mathrm{male}}$ | low         |
|                               | 60          | female             | 36.005   | 0           | no                      | northeast | 13228.847   | female             | high        |
|                               | 30          | female             | 32.400   | 1           | no                      | southwest | 4149.736    | female             | low         |
|                               | 18          | $_{\mathrm{male}}$ | 34.100   | 0           | no                      | southeast | 1137.011    | $_{\mathrm{male}}$ | low         |
|                               | 34          | female             | 31.920   | 1           | yes                     | northeast | 37701.877   | female             | low         |
|                               | 37          | $_{\mathrm{male}}$ | 28.025   | 2           | no                      | northwest | 6203.902    | $_{\mathrm{male}}$ | low         |
|                               | 59          | female             | 27.720   | 3           | no                      | southeast | 14001.134   | female             | high        |
|                               | 63          | female             | 23.085   | 0           | no                      | northeast | 14451.835   | female             | high        |
|                               | 55          | female             | 32.775   | 2           | no                      | northwest | 12268.632   | female             | high        |
|                               | 23          | $_{\mathrm{male}}$ | 17.385   | 1           | no                      | northwest | 2775.192    | $_{\mathrm{male}}$ | low         |
| A data.frame: $1338 \times 9$ | 31          | $_{\mathrm{male}}$ | 36.300   | 2           | yes                     | southwest | 38711.000   | $_{\mathrm{male}}$ | low         |
|                               | ~~          | 0 1                | 20.200   |             |                         | . 1       |             | 0 1                | ,           |
|                               | 25          | female             | 30.200   | 0           | yes                     | southwest | 33900.653   | female             | low         |
|                               | 41          | male               | 32.200   | 2           | no                      | southwest | 6875.961    | male               | high        |
|                               | 42          | male               | 26.315   | 1           | no                      | northwest | 6940.910    | male               | high        |
|                               | 33          | female             | 26.695   | 0           | no                      | northwest | 4571.413    | female             | low         |
|                               | 34          | male               | 42.900   | 1           | no                      | southwest | 4536.259    | male               | low         |
|                               | 19          | female             | 34.700   | 2           | yes                     | southwest | 36397.576   | female             | low         |
|                               | 30          | female             | 23.655   | 3           | yes                     | northwest | 18765.875   | female             | low         |
|                               | 18          | male               | 28.310   | 1           | no                      | northeast | 11272.331   | male               | low         |
|                               | 19          | female             | 20.600   | 0           | no                      | southwest | 1731.677    | female             | low         |
|                               | 18          | male               | 53.130   | 0           | no                      | southeast | 1163.463    | male               | low         |
|                               | 35          | male               | 39.710   | 4           | no                      | northeast | 19496.719   | male               | low         |
|                               | 39          | female             | 26.315   | 2           | no                      | northwest | 7201.701    | female             | low         |
|                               | 31          | male               | 31.065   | 3           | no                      | northwest | 5425.023    | male               | low         |
|                               | 62          | male               | 26.695   | 0           | yes                     | northeast | 28101.333   | male               | high        |
|                               | 62          | male               | 38.830   | 0           | no                      | southeast | 12981.346   | male               | high        |
|                               | 42          | female             | 40.370   | 2           | yes                     | southeast | 43896.376   | female             | high        |
|                               | 31          | male               | 25.9351  | 1           | no                      | northwest | 4239.893    | male               | low         |
|                               | 61          | male               | 33.535   | 0           | no                      | northeast | 13143.337   | male               | high        |
|                               | 42          | female             | 32.870   | 0           | no                      | northeast | 7050.021    | female             | high        |
|                               | 51          | male               | 30.030   | 1           | no                      | southeast | 9377.905    | male               | high        |

Now we have both the IV and CV categorical variables, we can start our two-way ANOVA. Because we have 2 variables in interest, with 2 groups within each variable; we have 4 groups in total (a 2\*2 design). These groups are "male \* young", "male \* old", "female \* young", and "female \* old". We will see how many samples there are for each group.

```
[98]: sum(MCPD$sex.f == 'male' & MCPD$age.c == "low")

346

[99]: sum(MCPD$sex.f == 'male' & MCPD$age.c == "high")

330

[100]: sum(MCPD$sex.f == 'female' & MCPD$age.c == "low")

328

[101]: sum(MCPD$sex.f == 'female' & MCPD$age.c == "high")
```

334

346 + 330 + 328 + 334 = 1338. We have all the samples included. This is an unbalanced design (different sample size per group), we will run ANOVA with a Type III sum of square (details should be included in the acutal write-up).

```
[102]: anovaACS <- aov(charges ~ age.c * sex, data = MCPD)
Anova(anovaACS, type = "III")
print(summary(anovaACS))
#anovaACS stands for ANOVA of "age", "charges", and "sex".</pre>
```

```
Sum Sq
                                           Df
                                                    F value
                                                                 Pr(>F)
                            <dbl>
                                           <dbl>
                                                    <dbl>
                                                                 <dbl>
                                                                 2.777815e-111
                (Intercept)
                            83352874778
                                           1
                                                    610.4361226
A anova: 5 \times 4
                     age.c
                            7023663006
                                           1
                                                    51.4379093
                                                                 1.221071e-12
                                                                 1.604189e-01
                       sex
                            269333544
                                           1
                                                    1.9724686
                  age.c:sex
                            15443197
                                           1
                                                    0.1130985
                                                                 7.366966e-01
                            182152940873
                 Residuals
                                           1334
                                                    NA
                                                                 NA
               Df
                      Sum Sq
                                Mean Sq F value Pr(>F)
                1 1.316e+10 1.316e+10
                                          96.401 <2e-16 ***
age.c
                1 7.426e+08 7.426e+08
                                           5.438 0.0198 *
sex
                1 1.544e+07 1.544e+07
                                           0.113 0.7367
age.c:sex
             1334 1.822e+11 1.365e+08
Residuals
```

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' '1

Both significant, and interpreted same as a regular ANOVA F value. Interaction is not, the interpretation is the following: "The p-value for the interaction between age.c and sex is 0.7367 (insignificant), which indicates that the relationships between age and health care charges does not depend on the patient's sex."

#### 3.5.2 Assumptions of two-way ANOVA test

Two-way ANOVA test assumes that the observations within each cell are normally distributed and have equal variances. We will test the assumptions below. Assuming the independence of observation is true.

## Checking the homogeneity of variance assumption

[103]: plot(anovaACS, 1)
#Plotting the residuals versus fits plot to check the homogeneity of variance.



In the residuals versus fits plot, there is no evident relationships between residuals and fitted values (the mean of each groups), which is good. So, we can assume the homogeneity of variances. (because the range of y does not change significantly when x changes).

[104]: leveneTest(charges ~ sex.f\*age.c, data = MCPD)
#run a Levene's test to check the homogeneity of variances.

Ouch! Becuase the p-value of Levene's test is significant, suggesting that the assumption of equal variance is violated. However, we will keep using two-way ANOVA because firstly, Levene's test can be too sensitive when sample size gets larger; secondly, the groups sizes are almost equal, making the two-way ANOVA robust to the violation of this assumption; thirdly, equal variance is assumed from the residuals versus fits plot; lastly, we can use post-hoc test to verify if the group means are heterogeneious with Tukey's HSD tests. (I would like to have something like a Welch's ANOVA for our study, but it does not exist for a two-way ANOVA. We can find references supporting the above mentioned reasons.)

#### Checking the normality assumpttion

[105]: plot(anovaACS, 2)
#plotting the normality plot of the residuals



Noticed that the residual quantile does not follow a straight line, the assumption is violated.

```
[106]: anovaACS_residuals <- residuals(object = anovaACS)
shapiro.test(x = anovaACS_residuals)
#extract the residuals and run Shapiro's test</pre>
```

Shapiro-Wilk normality test

```
data: anovaACS_residuals
W = 0.74859, p-value < 2.2e-16</pre>
```

Because the p-value is significant, the assumption of normality is violated. Sad, very sad.

We will still use two-way ANOVA when this assumption is violated. The reason is quoted here "The assumption of normality is necessary for statistical significance testing using a two-way ANOVA. However, the two-way ANOVA is considered "robust" to violations of normality. This means that some violation of this assumption can be tolerated and the test will still provide valid results. Therefore, you will often hear of this test only requiring approximately normally distributed data. Furthermore, as sample size increases, the distribution can be quite non-normal and, thanks to the Central Limit Theorem, the two-way ANOVA can still provide valid results. "Retreived from https://www.amstatisticalconsulting.com/banking-fees-2-4/. We will need to find a more legit reference for the write-up.

#### 3.5.3 Post-hoc analysis

## Summary statistics for all four groups

```
[107]: group_by(MCPD, sex.f, age.c) %>%
    summarise(
    count = n(),
    mean = mean(charges, na.rm = TRUE),
    sd = sd(charges, na.rm = TRUE)
)
#This will give us the means and standard diviations for all four gourps.
```

`summarise()` has grouped output by 'sex.f'. You can override using the `.groups` argument.

**Tukey multiple comparisons of means** We have already proven both variables to be significantly different by ANOVA test. However, if we want to find out which group is not homogeneous with the other groups, we will still run a Tukey's test.

```
[108]: tukey_test <- TukeyHSD(anovaACS)
print(tukey_test)</pre>
```

```
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = charges ~ age.c * sex, data = MCPD)

$age.c
diff lwr upr p adj
low-high -6273.295 -7526.715 -5019.875 0

$sex
```

```
diff lwr upr p adj
male-female 1489.841 236.3879 2743.295 0.0198643
```

#### \$`age.c:sex`

|                                   | diff      | lwr        | upr       | p adj     |
|-----------------------------------|-----------|------------|-----------|-----------|
| <pre>low:female-high:female</pre> | -6514.794 | -8851.3487 | -4178.239 | 0.000000  |
| high:male-high:female             | 1273.794  | -1059.1862 | 3606.773  | 0.4967335 |
| low:male-high:female              | -4811.173 | -7116.8602 | -2505.486 | 0.000006  |
| high:male-low:female              | 7788.587  | 5445.0267  | 10132.148 | 0.000000  |
| <pre>low:male-low:female</pre>    | 1703.620  | -612.7719  | 4020.013  | 0.2319951 |
| low:male-high:male                | -6084.967 | -8397.7531 | -3772.181 | 0.0000000 |

The interpretation here is straight forward. If the p-value is significant, the two groups' means are different. Because we have 4 groups, there are 6 pair-wise comparisons. Four of them do differ significantly from each other.

# 4 Short Comment

This concludes the analysis. Visualizations can be provided upon request. Please contact me (Justin) for additional support, or if you have any question, suggestions, or if you find any mistakes. You can also ask "Xinpei" for additional support. If you feel like helping this analysis, please try to find some literatures supporting the reasons I have mentioned for keeping applying two-way ANOVA when the assumptions were violated.

Thank you for reading:)