GEOEMETRIA ANALÍTICA

AULA 3 - 2024.1

Prof. Dr. Mário José de Souza

1. Coordenadas no Plano

- Designamos por \mathbb{R}^2 o conjunto formado pelos pares ordenados (x, y), onde x e y são números reais. O número x chama-se primeira coordenada e o número y chama-se segunda coordenada do par ordenado (x, y).
- Um sistema de eixos ortogonais OXY num plano π
 é um par de eixos OX e OY, tomados em π, que são perpendiculares e têm a mesma origem O.

Figura 10: Sistema de eixos ortogonais OXY no plano π .

O eixo-OX é chamado eixo horizontal e o eixo-OY, eixo vertical.

• Um plano π munido de um sistema de eixos ortogonais põe-se, de maneira natural, em correspondência biunívoca com o conjunto \mathbb{R}^2 :

$$\pi \longleftrightarrow \mathbb{R}^2$$

De fato, dado um ponto $P \in \pi$, tomamos as retas r e s tais que:

- $r \parallel \text{eixo} OY \in P \in r$,
- $s \parallel \text{eixo} OX \in P \in s$.

Se o ponto X de interseção da reta r com o eixo-OXtem coordenada x no eixo-OXe se o ponto Y de interseção da reta s com o eixo-OY tem coordenada y no eixo-OY, associase ao ponto P o par ordenado $(x,y) \in \mathbb{R}^2$.

Figura 11: Determinando as coordenadas do ponto $P \in \pi$

Reciprocamente:

Dado o par ordenado $(x, y) \in \mathbb{R}^2$ temos que, se:

- o X é o ponto do eixo-OX de coordenada x;
- o Y é o ponto do eixo-OY de coordenada y;
- o r é a reta paralela ao eixo-OY que passa por X;
- o s é a reta paralela ao eixo-OX que passa por Y, então $\{P\} = r \cap s$.
- Os números x e y chamam-se coordenadas cartesianas do ponto P relativamente ao sistema de eixos ortogonais fixado.

A coordenada x é a abscissa de P e y é a ordenada de P.

Observação 2

No eixo-OX, os pontos têm coordenadas (x,0).

No eixo-OY, os pontos têm coordenadas (0, y).

Observação 3

Os eixos ortogonais decompõem o plano em quatro regiões chamadas quadrantes:

2. Distância entre dois pontos no plano

Seja π um plano munido de um sistema de eixos ortogonais OXY e sejam $P_1=(x_1,y_1)$ e $P_2=(x_2,y_2)$ dois pontos do plano π .

Seja
$$Q = (x_1, y_2)$$
. Como,
 $d(P_1, Q) = |y_2 - y_1|$,
 $d(P_2, Q) = |x_2 - x_1|$,

temos, pelo teorema de Pitágoras,

Figura 13: Distância entre dois pontos no plano.

$$d(P_1, P_2)^2 = d(P_1, Q)^2 + d(P_2, Q)^2$$

$$\iff d(P_1, P_2)^2 = |x_2 - x_1|^2 + |y_2 - y_1|^2$$

$$\iff$$
 $d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Calcule a distância do ponto A = (-1, 2) ao ponto B = (2, -3).

Solução.

Temos:

$$d(A,B) = \sqrt{(2-(-1))^2 + (-3-2)^2} = \sqrt{9+25} = \sqrt{34}.$$

Determine para quais valores de $m \in \mathbb{R}$ os pontos P = (m, 1) e Q = (2m, -m) têm distância igual a 1.

Solução.

Temos:

$$d(P,Q) = \sqrt{(2m-m)^2 + (-m-1)^2} = \sqrt{2m^2 + 2m + 1} = 1$$

$$\iff 2m^2 + 2m + 1 = 1$$

$$\iff m(m+1) = 0$$

$$\iff m = 0 \text{ ou } m = -1.$$

Determine os pontos P pertencentes ao eixo-OX tais que d(P, A) = 5, onde

$$A = (1,3).$$

Solução.

O ponto P é da forma (x,0) para algum $x \in \mathbb{R}$. Logo,

$$d(A, P) = \sqrt{(x-1)^2 + (0-3)^2} = 5$$
 $\iff (x-1)^2 + 9 = 25 \iff (x-1)^2 = 16$
 $\iff x-1 = \pm 4 \iff x = 5 \text{ ou } x = -3$
 $\iff P = (5,0) \text{ ou } P = (-3,0).$

Definição 2

Dados um ponto A num plano π e o número r > 0, o **círculo** C **de centro** A **e raio** r > 0 é o conjunto dos pontos do plano π situados à distância r do ponto A, ou seja:

$$\mathcal{C} = \{ P \in \pi \mid d(P, A) = r \}.$$

Seja OXY um sistema de eixos ortogonais no plano π e sejam a e b as coordenadas do centro A neste sistema de eixos. Então,

$$P = (x, y) \in \mathcal{C} \iff d(P, A) = r \iff d(P, A)^2 = r^2 \iff$$
$$(x - a)^2 + (y - b)^2 = r^2$$

Assim, associamos ao círculo C uma equação que relaciona a abscissa com a ordenada de cada um de seus Uma vez obtida pontos. a equação, as propriedades geométricas do círculo podem ser deduzidas por métodos algébricos.

Determine o centro e o raio do círculo dado pela equação:

(a)
$$C: x^2 + y^2 - 4x + 6y = 0$$
.

(b)
$$C: x^2 + y^2 + 3x - 5y + 1 = 0$$
.

Solução.

(a) Completando os quadrados, obtemos:

$$x^{2} - 4x + y^{2} + 6y = 0$$

$$(x^{2} - 4x + 4) + (y^{2} + 6y + 9) = 0 + 4 + 9$$

$$(x - 2)^{2} + (y + 3)^{2} = 13.$$

Portanto, o círculo \mathcal{C} tem centro no ponto A=(2,-3) e raio $r=\sqrt{13}$.

(b) Completando os quadrados, obtemos:

$$x^{2} + 3x + y^{2} - 5y = -1$$

$$\left(x^{2} + 3x + \frac{9}{4}\right) + \left(y^{2} - 5y + \frac{25}{4}\right) = -1 + \frac{9}{4} + \frac{25}{4}$$

$$\left(x + \frac{3}{2}\right)^{2} + \left(y - \frac{5}{2}\right)^{2} = \frac{30}{4}.$$

Assim, \mathcal{C} é o círculo de centro no ponto $A = \left(-\frac{3}{2}, \frac{5}{2}\right)$ e raio $\frac{\sqrt{30}}{2}$.

Seja OXY um sistema de eixos ortogonais e considere os pontos $P_1 = (x_1, y_1)$

e $P_2=(x_2,y_2)$. Então, $M=\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$ é o ponto médio do segmento P_1P_2 .

Solução.

De fato, considerando os pontos $Q_1 = (x_M, y_1)$ e $Q_2 = (x_M, y_2)$, temos que os triângulos $\triangle P_1 M Q_1$ e $\triangle P_2 M Q_2$ são congruentes (AAL), onde $M = (x_M, y_M)$.

Logo,

$$d(P_1, Q_1) = d(P_2, Q_2)$$

$$\Rightarrow |x_M - x_1| = |x_2 - x_M|$$

$$\Rightarrow x_M \text{ \'e o ponto m\'edio entre}$$

$$x_1 \text{ e } x_2$$

$$\Rightarrow x_M = \frac{x_1 + x_2}{2} .$$

Figura 15: M é o ponto médio do segmento P_1P_2 .

$$\begin{array}{cccc} \bullet \; d(Q_1,M) = d(Q_2,M) & \Longrightarrow & |y_M - y_1| = |y_2 - y_M| \\ & \Longrightarrow & y_M \; \text{\'e o ponto m\'edio entre} \; y_1 \; \text{\'e} \; y_2 \\ & \Longrightarrow & y_M = \frac{y_1 + y_2}{2} \; . \end{array}$$

Assim, as coordenadas do ponto médio M do segmento P_1P_2 são os valores médios das respectivas coordenadas dos pontos P_1 e P_2 . \square

Exemplo 6

Dados dois pontos A e B do plano π , seja \mathcal{R} o conjunto dos pontos equidistantes de A e B, ou seja:

$$\mathcal{R} = \{ P \in \pi \mid d(P, A) = d(P, B) \}.$$

Mostre algebricamente que R é a mediatriz do segmento AB, isto é, R é a reta perpendicular ao segmento AB que passa pelo ponto médio M de AB.

Solução.

Para isso, escolhemos um sistema de eixos ortogonais OXY de modo que o eixo-OX seja a reta que passa pelos pontos A e B, com origem no ponto médio M do segmento AB e orientada de modo que A esteja à esquerda de B (figura 17).

Neste sistema de eixos, A e B têm coordenadas $(-x_0, 0)$ e $(x_0, 0)$, respectivamente, para algum número real $x_0 > 0$. Então,

$$P = (x, y) \in \mathcal{R} \iff d(P, A) = d(P, B) \iff d(P, A)^2 = d(P, B)^2$$

$$\iff (x - (-x_0))^2 + (y - 0)^2 = (x - x_0)^2 + (y - 0)^2$$

$$\iff (x + x_0))^2 + y^2 = (x - x_0)^2 + y^2$$

$$\iff x^2 + 2xx_0 + x_0^2 + y^2 = x^2 - 2xx_0 + x_0^2 + y^2$$

$$\iff 2xx_0 = -2xx_0 \iff 4xx_0 = 0 \iff x = 0 \iff P \in \text{eixo} - OY.$$

Figura 16: Mediatriz e ponto médio de AB.

Figura 17: Escolha do sistema de eixos ortogonais OXY.

Portanto, $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 \mid x=0\} = \text{eixo} - OY$, que é geometricamente

a reta perpendicular ao segmento AB que passa pelo ponto médio M deste segmento, como queríamos provar. \Box

Exemplo 7

Dado o ponto P = (x, y), considere os pontos P' = (-y, x) e P'' = (y, -x).

Mostre que os pontos P' e P'' são obtidos a partir do ponto P por uma rotação de 90^o do segmento OP em torno da origem.

Convencionamos dizer que a rotação de 90° que leva o ponto P = (x, y) ao ponto P' = (-y, x) tem sentido positivo, e que a rotação de 90° que leva o ponto P ao ponto P'' tem sentido negativo.

Solução.

Figura 18: Posição dos pontos P e P' no plano.

Como

$$\left\{ \begin{array}{l} d(P,O)^2 = (x-0)^2 + (y-0)^2 = x^2 + y^2 \\ d(P',O)^2 = (-y-0)^2 + (x-0)^2 = y^2 + x^2, \end{array} \right.$$

temos que o triângulo $\triangle POP'$ é isósceles.

Além disso,

$$d(P, P')^2 = (-y - x)^2 + (y - x)^2 = y^2 + 2xy + x^2 + x^2 - 2xy + y^2$$
$$\Longrightarrow d(P, P')^2 = 2(x^2 + y^2) \Longrightarrow d(P, P')^2 = d(P, O)^2 + d(P', O)^2.$$

Logo, pela lei dos cossenos, o triângulo $\triangle POP'$ é retângulo em O.

Isso significa que o ponto P' é obtido a partir do ponto P por uma rotação de 90^o do segmento OP em torno da origem.

Consideremos agora o ponto P'' = (y, -x). De maneira análoga, podemos provar que P'' é obtido a partir do ponto P por uma rotação de 90° do segmento OP em torno da origem.

3. Vetores no plano

3.1 Paralelogramos

Lembremos que um **paralelogramo** é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.

Usando congruência de triângulos, podemos verificar que as seguintes afirmativas são equivalentes:

- O quadrilátero ABDC é um paralelogramo;
- Os lados opostos de ABDC são congruentes;
- Os ângulos opostos de ABDC são congruentes;
- Dois lados opostos de ABDC s\u00e3o congruentes e paralelos;
- As diagonais de ABDC se intersectam num ponto que é o ponto médio de ambas.

Figura 1: Paralelogramo ABDC.

Por exemplo, vamos demonstrar a seguinte equivalência:

Proposição 1

No quadrilátero ABDC os lados opostos AC e BD são congruentes e paralelos se, e somente se, as diagonais de ABDC se intersectam num ponto que é o ponto médio de ambas.

Prova.

(a) Suponhamos que os lados opostos AC e BD no quadrilátero ABDC são congruentes e paralelos, e seja M o ponto A de interseção das diagonais AD e BC. Pela hipótese, temos:

Figura 2: ABDC de lados opostos congruentes e paralelos.

Proposição 1

No quadrilátero ABDC os lados opostos AC e BD são congruentes e paralelos se, e somente se, as diagonais de ABDC se intersectam num ponto que é o ponto médio de ambas.

- |AC| = |BD|, isto é, os comprimentos dos lados AC e BD são iguais;
- AC || BD.

Logo,

- $\widehat{ACB} = \widehat{DBC}$, por serem ângulos alternos internos;
- $\widehat{CAD} = \widehat{BDA}$, por serem ângulos alternos internos.

Pelo critério ALA (ângulo-lado-ângulo), concluímos que os triângulos $\triangle AMC$ e $\triangle DMB$ são congruentes.

Em particular, |AM| = |DM| e |BM| = |CM|. Portanto, M é o ponto médio das diagonais AD e BC.

(b) Suponhamos agora que as diagonais AD e BC do quadrilátero ABDC se intersectam no ponto M que é o ponto médio de ambas. Devemos mostrar que os lados opostos AC e BD no parale-

Figura 3: ABDC com |AM| = |DM| e |BM| = |MC|.

logramo ABDC são paralelos e congruentes. Temos:

- $\bullet |AM| = |DM|$
- $\bullet |BM| = |CM|$

• $\widehat{AMC} = \widehat{DMB}$, pois são ângulos opostos pelo vértice.

Pelo critério LAL (lado-ângulo-lado), os triângulos $\triangle AMC$ e $\triangle DMB$ são congruentes.

Em particular, |AC| = |DB| e $\widehat{ACB} = \widehat{CBD}$, ou seja, os lados AC e DB são congruentes e paralelos.

3.2 Segmentos orientados

Seja AB um segmento orientado com origem A e extremidade B.

Isto é, no segmento AB estabelecemos um sentido de percurso (orientação) de A para B.

Dizemos que o segmento orientado BA tem sentido de percurso (ou orientação) oposto ou contrário ao do segmento AB. Classificamos os segmentos orientados da seguinte maneira:

Definição 1

Dizemos que os segmentos $AB \in CD$ são **equipolentes**, e escrevemos $AB \equiv CD$, quando satisfazem às três propriedades abaixo:

- $AB \in CD$ têm o mesmo comprimento: |AB| = |CD|.
- AB e CD são paralelos ou colineares.
- AB e CD tem o mesmo sentido.

Esclarecimento da definição de equipolência

• Se AB e CD são segmentos colineares, então eles têm o mesmo sentido quando induzem o mesmo sentido de percurso na reta que os contêm.

Figura 5: Segmentos colineares AB e CD que têm o mesmo sentido.

Figura 6: Segmentos colineares AB e CD que não têm o mesmo sentido.

Se AB e CD são segmentos paralelos de igual comprimento, então AB e
 CD têm o mesmo sentido quando ABDC é um paralelogramo.

Proposição 2

$$AB \equiv CD \iff \text{ponto médio de } AD = \text{ponto médio de } BC$$

Prova.

Com efeito, se $AB \parallel CD$ já sabemos que a equivalência é verdadeira, pois ABDC é um paralelogramo.

Vejamos que isso também é verdadeiro quando AB e CD são segmentos colineares.

Figura 9: $AB \equiv CD$ com A, B, C e D colineares.

Consideremos a reta r que contém A, B, C e D com uma orientação e uma origem O escolhidas de modo que B esteja à direita de A (figura 9).

Sejam a, b, c e d as respectivas coordenadas dos pontos A, B, C e D na reta r.

(a) Como AB e CD têm o mesmo sentido, a < b e c < d, e, como estes segmentos têm o mesmo comprimento, b - a = d - c. Logo,

$$b-a=d-c\iff a+d=b+c \Longleftrightarrow \frac{a+d}{2}=\frac{b+c}{2}$$
 \iff ponto médio de $AD=$ ponto médio de BC .

$$a+d=b+c \Longrightarrow b-a=d-c$$
.

Como b-a e d-c têm o mesmo sinal e o mesmo módulo, AB e CD têm o mesmo sentido e o mesmo comprimento, além de serem colineares (por hipótese). Assim, $AB \equiv CD$.

Proposição 3

Dados A, B e C pontos quaisquer no plano, existe um único ponto D no plano tal que $AB \equiv CD$.

Prova.

Como os pontos A, B e C podem ou não ser colineares, temos dois casos a considerar.

(a) A, B e C são colineares.

Neste caso, a circunferência de centro no ponto C e raio |AB| intersecta a reta que contém os pontos A, B e C em exatamente dois pontos, mas apenas um deles, que designamos D, é tal que AB e CD têm o mesmo sentido (veja a figura 10).

Figura 10: $AB \equiv CD \text{ com } A, B \in C \text{ colineares.}$

(b) A, $B \in C$ não são colineares.

Seja r a reta que passa pelo ponto C e é paralela à reta que contém os pontos A e B.

O círculo de centro C e raio |AB| intersecta a reta r em exatamente dois pontos, mas só um, que designamos D, é tal que ABDC é um paralelogramo. Ou seja, $AB \equiv CD$ (veja a figura 11).

Figura 11: $AB \equiv CD \text{ com } A$, $B \in C$ não colineares.

3.3 Vetores

Definição 2

Quando os segmentos de reta orientados AB e CD são equipolentes, dizemos que eles representam o mesmo vetor \overrightarrow{v} e escrevemos $\overrightarrow{v} = \overrightarrow{AB}$.

Isto é, o vetor $\overrightarrow{v} = \overrightarrow{AB}$ é o conjunto que consiste de todos os segmentos orientados equipolentes ao segmento AB. Tais segmentos são chamados representantes do vetor \overrightarrow{v} .

Observação 1

(a) Da definição de vetor, temos $AB \equiv CD \iff \overrightarrow{v} = \overrightarrow{AB} = \overrightarrow{CD}$.

Observação 1

(a) Da definição de vetor, temos $AB \equiv CD \iff \overrightarrow{v} = \overrightarrow{AB} = \overrightarrow{CD}$.

(b) Por convenção, o vetor nulo é o vetor $\overrightarrow{0} = \overrightarrow{AA}$, qualquer que seja o ponto A no plano.

(c) Dado um vetor \overrightarrow{v} e um ponto qualquer C, existe um único ponto D tal que $\overrightarrow{v} = \overrightarrow{CD}$. Isto é, qualquer ponto do plano é origem de um único

segmento orientado representante do vetor \overrightarrow{v} .

Na prática, trabalhamos com vetores usando a sua expressão em relação a um sistema de eixos ortogonais dado.

Consideremos um sistema de eixos ortogonais OXY no plano, e sejam

$$A = (a_1, a_2)$$
 $C = (c_1, c_2)$
 $B = (b_1, b_2)$ $D = (d_1, d_2)$

pontos do plano. A seguinte proposição caracteriza a equipolência em termos de coordenadas.

Proposição 4

$$AB \equiv CD \iff b_1 - a_1 = d_1 - c_1 \quad e \quad b_2 - a_2 = d_2 - c_2$$

Prova.

Pela proposição 2,

$$AB \equiv CD \iff \text{ponto médio de } AD = \text{ponto médio de } BC$$

$$\iff \left(\frac{a_1+d_1}{2},\frac{a_2+d_2}{2}\right) = \left(\frac{b_1+c_1}{2},\frac{b_2+c_2}{2}\right)$$

$$\iff (a_1+d_1,a_2+d_2) = (b_1+c_1,b_2+c_2)$$

$$\iff a_1+d_1 = b_1+c_1 \quad \text{e} \quad a_2+d_2 = b_2+c_2$$

$$\iff b_1-a_1 = d_1-c_1 \quad \text{e} \quad b_2-a_2 = d_2-c_2.$$

como queríamos demonstrar.

Definição 3

Dados $A = (a_1, a_2)$ e $B = (b_1, b_2)$, os números $b_1 - a_1$ e $b_2 - a_2$ são as coordenadas do vetor $\overrightarrow{v} = \overrightarrow{AB}$ e escrevemos $\overrightarrow{v} = (b_1 - a_1, b_2 - a_2)$.

Note que, se
$$\overrightarrow{AB} \equiv CD$$
, então, pela proposição anterior, $\overrightarrow{AB}' = (b_1 - a_1, b_2 - a_2) = (d_1 - c_1, d_2 - c_2) = \overrightarrow{CD}'$.

Exemplo 1

Sejam A = (1,2), B = (3,1) e C = (4,0). Determine as coordenadas do

vetor $\overrightarrow{v} = \overrightarrow{AB}$ e as coordenadas do ponto D tal que $\overrightarrow{v} = \overrightarrow{CD}$.

Solução.

Temos $\overrightarrow{v} = \overrightarrow{AB} = (3-1,1-2) = (2,-1)$. Além disso, se $D = (d_1,d_2)$, temos

$$\overrightarrow{v} = \overrightarrow{AB} = \overrightarrow{CD} \iff AB \equiv CD$$

$$\iff (2, -1) = (d_1 - 4, d_2 - 0)$$

$$\iff 2 = d_1 - 4 \quad \text{e} \quad -1 = d_2 - 0$$

$$\iff d_1 = 2 + 4 = 6 \quad \text{e} \quad d_2 = -1 + 0 = -1.$$

Portanto,
$$D = (6, -1)$$
.

Corolário 1

Usando a proposição 4, é fácil verificar que:

(a) $AB \equiv CD \iff AC \equiv BD$.

Figura 12: $AB \equiv CD \iff AC \equiv BD$

(b) $AB \equiv CD \ e \ CD \equiv EF \Longrightarrow AB \equiv EF$.

Figura 13: $AB \equiv CD \ e \ CD \equiv EF \Longrightarrow AB \equiv EF$.

Em virtude do item (c) da observação 1, temos:

Proposição 5

Sejam OXY um sistema de eixos ortogonais e $\overrightarrow{v} = \overrightarrow{AB}$ um vetor.

Então existe um único ponto P tal que $\overrightarrow{OP} = \overrightarrow{AB} = \overrightarrow{v}$. Além disso, as coordenadas do ponto P coincidem com as coordenadas do vetor \overrightarrow{v} .

Prova.

De fato, se $A = (a_1, a_2)$, $B = (b_1, b_2)$ e $P = (p_1, p_2)$, então $\overrightarrow{v} = (b_1 - a_1, b_2 - a_2)$ e

$$AB \equiv OP \iff (b_1 - a_1, b_2 - a_2) = (p_1 - 0, p_2 - 0)$$

 $\iff P = (p_1, p_2) = (b_1 - a_1, b_2 - a_2)$

como queríamos verificar.

Exemplo 2

Sejam A = (-1, 2) e B = (4, 1). Determine o ponto P tal que $\overrightarrow{OP} = \overrightarrow{AB}$.

Solução.

Pela proposição anterior,

$$P = (4 - (-1), 1 - 2) = (4 + 1, -1) = (5, -1).$$

Figura 14: Exemplo 2, onde $AB \equiv OP$.

Muito obrigado!

