

Ordinary Least squares (OLS)

The aim is to estimate α and β (fixed) parameters bminimizing the squared errors

Simple Linear Regression:

Parameters (un-observed)

OLS Extended to Markers

Simple marker regression model

Aim is to minimize residual squares

$$argmin(\varepsilon \varepsilon) = argmin(y - X\beta)(y - x\beta)$$

 $\beta = (\acute{X}X)^{-1} \acute{X}Y$

Determines β such that residual squares are minimal called as Least Squares

$$V_{\beta}=(\acute{X}X)^{-1}\,\sigma_e^2$$
 where, $\sigma_e^2=rac{1}{n-1}\sum(y_i-eta_i)^2$

variance-covariance estimate for the sample estimates

Numeric Conversion is Key for Regression

sNP4			
SNP4			
-	SNP5	••••	SNPm
T/C	A/G	C/T	A/G
TT	GG	CC	AA
TT	GG	TT	AA
TT	GG	TT	AG
TC	AA	CC	NA
TC	AG	TT	GG
nt			
SNP4	SNP5	••••	SNPm
T/C	A/G	C/T	A/G
2	0	2	2
2	0	0	2
2	0	0	2
1	2	2	NA
1	1	0	0
	TT TT TT TC TC TC 2 2 2 2 1	TT GG TT GG TT GG TT GG TC AA TC AG SNP4 SNP5 T/C A/G 2 0 2 0 2 0 2 0 1 2	TT GG CC TT GG TT TT GG TT TT GG TT TC AA CC TC AG TT SNP4 SNP5 T/C A/G C/T 2 0 2 2 0 0 2 0 0 1 2 2

General Linear Model

$$y = X\beta + \varepsilon$$

where,

y =vector of dependent values (observed)

X= Design matrix for observations

 β =unknow parameter to estimate

 ε =residuals (deviations) and are equal to $y-X\beta$

Ordinary Least Square (OLS)

$$\varepsilon \sim MNV(0, \sigma_{\varepsilon}^{2}I)$$
$$\beta = (\acute{X}X)^{-1} \acute{X}Y$$

Residuals are homoscedastic and uncorrelated

Generalized Least Square (GLS)

$$\varepsilon \sim MNV(0, V)$$

$$\beta = (\acute{X}V^{-1}X)^{-1}XV^{-1}Y$$

Residuals are heteroscedastic and/or dependent,

OLS is BLUE?

Expected value:

$$E(\widehat{\beta}) = (\widehat{X}X)^{-1} X \widehat{E}(Y)$$
$$= (\widehat{X}X)^{-1} X (\widehat{\beta})$$

$$E(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$$

estimation is true β , and when this condition is met, it is called *unbiased*

When Gauss Markov Theorem is met

- 1. $E(\varepsilon) = 0$ (expectation of error is 0)
- 2. $variance = I\sigma^2$ (errors are uncorrleated)
- 3. Homoscedasticity of errors

Baseline Model of GS

$$y = \mu + \sum_{k} x_{k} \beta_{k} + \varepsilon$$

How the marker effects (β) are distributed

Solution

- ➤ Markers are fitted as random
- > We constrain these markers (penalty).
- ➤ What distribution are these markers sampled from (Optimization of the constraints)