BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3 \cdot \left(1 + \frac{1}{2}\right) - \frac{1}{2} = 3 \cdot \frac{3}{2} - \frac{1}{2} =$	3 p
	$=\frac{9}{2}-\frac{1}{2}=4$	2p
2.	f(a) = a + 2	2p
	a+2=6, de unde obţinem $a=4$	3 p
3.	2x+1=9	3 p
	x = 4, care convine	2p
4.	Mulțimea A are 23 de elemente, deci sunt 23 de cazuri posibile	2p
	În mulțimea A sunt 14 numere n care verifică inegalitatea $n \ge 10$, deci sunt 14 cazuri	
	favorabile, de unde obținem $p = \frac{14}{23}$	3 p
5.	$x_M = \frac{-1+1}{2} = 0$, unde punctul M este mijlocul segmentului AB	3 p
	$y_M = \frac{2+6}{2} = 4$	2p
6.	$AB = \sqrt{BC^2 - AC^2} = \sqrt{2}$	3 p
	AB = AC, deci triunghiul ABC este isoscel	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = 3 \cdot 1 - 2 \cdot 2 =$	3 p
	=3-4=-1	2 p
b)	$2B - A = \begin{pmatrix} 0 & 8 \\ 8 & 4 \end{pmatrix} - \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 6 \\ 6 & 3 \end{pmatrix} =$	3 p
	$=3\begin{pmatrix} -1 & 2\\ 2 & 1 \end{pmatrix} = 3C$	2p
c)	$B + 2C = \begin{pmatrix} -2 & 8 \\ 8 & 4 \end{pmatrix}, A^{-1} = \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix}$	3 p
	$X = \frac{1}{2}(B+2C) \cdot A^{-1}$, de unde obţinem $X = \begin{pmatrix} 9 & -14 \\ 0 & 2 \end{pmatrix}$	2p
2.a)	5*4=(5-4)(4-4)+4=	3p
	$=1 \cdot 0 + 4 = 4$	2p

Probă scrisă la matematică *M_tehnologic*

]	b)	x*6=2x-4, pentru orice număr real x	3 p
		2x-4=6x, de unde obținem $x=-1$	2p
	c)	$\left(\frac{4}{n}-4\right)(n-4)+4>4 \Leftrightarrow \left(\frac{1}{n}-1\right)(n-4)>0$, unde n este număr natural nenul	2p
		Cum n este număr natural nenul, obținem $n=2$ și $n=3$	3 p

1.a)	$f'(x) = 3x^2 + 6 \cdot 2x - 15 =$	3p
	$=3x^2+12x-15=3(x^2+4x-5), x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = -5 \text{ sau } x = 1$	2p
	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -5]$, deci f este crescătoare pe $(-\infty, -5]$, $f'(x) \le 0$, pentru	
	orice $x \in [-5,1]$, deci f este descrescătoare pe $[-5,1]$ și $f'(x) \ge 0$, pentru orice $x \in [1,+\infty)$,	3 p
	deci f este crescătoare pe $[1,+\infty)$	
c)	$f''(x) = 3(2x+4), x \in \mathbb{R}, \text{ deci } \lim_{x \to +\infty} \frac{f'(x)}{e^x f''(x)} = \lim_{x \to +\infty} \frac{x^2 + 4x - 5}{e^x (2x+4)} = \lim_{x \to +\infty} \frac{2x + 4}{e^x (2x+6)} = \lim_{x \to$	3 p
	$= \lim_{x \to +\infty} \frac{2}{e^x \left(2x+8\right)} = 0$	2p
2.a)	$\int_{0}^{1} (x+9) \cdot f(x) dx = \int_{0}^{1} 8x dx = 4x^{2} \Big _{0}^{1} =$	3 p
	=4-0=4	2p
b)	$\int_{1}^{6} \frac{1}{8x} \cdot f(x) dx = \int_{1}^{6} \frac{1}{x+9} dx = \int_{1}^{6} \frac{(x+9)'}{x+9} dx = \ln(x+9) \Big _{1}^{6} =$	3 p
	$= \ln 15 - \ln 10 = \ln \frac{3}{2}$	2p
c)	$\int_{0}^{3} f(x^{2}) dx = \int_{0}^{3} \frac{8x^{2}}{x^{2} + 9} dx = 8 \int_{0}^{3} \left(1 - \frac{9}{x^{2} + 9} \right) dx = 8x \Big _{0}^{3} - 8 \cdot \frac{9}{3} \arctan \left(\frac{x}{3} \right) \Big _{0}^{3} = 24 - 6\pi$	3 p
	$24-6\pi=6(4+a\pi)$, de unde obținem $a=-1$	2p

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $3 \cdot \left(1 + \frac{1}{2}\right) \frac{1}{2} = 4$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 2. Determinați numărul real a pentru care f(a) = 6.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_7(2x+1) = \log_7 9$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr n din mulțimea $A = \{1, 2, 3, ..., 23\}$, acesta să verifice inegalitatea $n \ge 10$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,2) și B(1,6). Determinați coordonatele mijlocului segmentului AB.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, cu $AC = \sqrt{2}$ și BC = 2. Arătați că triunghiul ABC este isoscel.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 4 \\ 4 & 2 \end{pmatrix}$ și $C = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = -1.
- **5p b**) Arătați că 2B A = 3C.
- **5p** c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$ pentru care $2X \cdot A = B + 2C$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție x * y = (x-4)(y-4)+4.
- **5p** | **a**) Arătați că 5*4=4.
- **5p** | **b**) Determinați numărul real x pentru care x*6=6x.
- **5p** c) Determinați numerele naturale nenule *n* pentru care $\frac{4}{n} * n > 4$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 6x^2 15x + 9$.
- **5p** a) Arătați că $f'(x) = 3(x^2 + 4x 5), x \in \mathbb{R}$.
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Arătați că $\lim_{x \to +\infty} \frac{f'(x)}{e^x f''(x)} = 0$.
 - **2.** Se consideră funcția $f:(-9,+\infty) \to \mathbb{R}$, $f(x) = \frac{8x}{x+9}$.
- **5p** a) Arătați că $\int_{0}^{1} (x+9) \cdot f(x) dx = 4$.
- **5p b)** Arătați că $\int_{1}^{6} \frac{1}{8x} \cdot f(x) dx = \ln \frac{3}{2}$.
- **5p** c) Determinați numărul real a pentru care $\int_{0}^{3} f(x^{2}) dx = 6(4 + a\pi)$.

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$4 \cdot \left(1 - \frac{4}{5}\right) + \frac{1}{5} = 4 \cdot \frac{1}{5} + \frac{1}{5} =$	3p
	$=\frac{4}{5}+\frac{1}{5}=1$	2p
2.	f(0)=2	2p
	$f(1) = 5 \Rightarrow f(0) \cdot f(1) = 2 \cdot 5 = 10$	3 p
3.	2x-3=x	3 p
	x=3	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele n din mulțimea A pentru care $n^2 \le 23$ sunt $0, 1, 2, 3$ și 4 , deci sunt 5 cazuri	
	favorabile, de unde obținem $p = \frac{5}{10} = \frac{1}{2}$	3p
5.	OA = 3, $OB = 4$	2p
	$AB = 5$, deci $P_{\Delta OAB} = 3 + 4 + 5 = 12$	3p
6.	$\cos 60^{\circ} = \frac{1}{2}, \sin 30^{\circ} = \frac{1}{2}$	2p
	$(1+2\cos 60^\circ)\cdot \sin 30^\circ = (1+2\cdot\frac{1}{2})\cdot\frac{1}{2} = 2\cdot\frac{1}{2} = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 0 \\ 1 & 3 \end{vmatrix} = 1 \cdot 3 - 0 \cdot 1 =$ $= 3 - 0 = 3$	3p 2p
b)	$B(8) - 3B(2) = \begin{pmatrix} 8 & 0 \\ -1 & 6 \end{pmatrix} - 3\begin{pmatrix} 2 & 0 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 2 & 6 \end{pmatrix} =$	3p
	$=2\begin{pmatrix}1&0\\1&3\end{pmatrix}=2A$	2 p
c)	$A \cdot B(x) = \begin{pmatrix} x & 0 \\ x - 3 & 3x - 6 \end{pmatrix}, \text{ pentru orice număr real } x$	3 p
	$\begin{pmatrix} x & 0 \\ x-3 & 3x-6 \end{pmatrix} = \begin{pmatrix} x & 0 \\ -1 & x-2 \end{pmatrix}, \text{ de unde obținem } x = 2$	2 p
2.a)	$f = X^3 - 2X^2 - 2X + 3 \Rightarrow f(1) = 1^3 - 2 \cdot 1^2 - 2 \cdot 1 + 3 =$	3 p
	=1-2-2+3=0	2p

Probă scrisă la matematică *M_tehnologic*

b)	$x_1x_2 + x_2x_3 + x_3x_1 = -2$ și $x_1x_2x_3 = -m \Rightarrow x_1x_2 + x_2x_3 + x_3x_1 + x_1x_2x_3 = -2 - m$	3 p
	-2-m=1, de unde obținem $m=-3$	2p
c)	f(-2) = m - 12, pentru orice număr real m	2p
	m-12=0, de unde obținem $m=12$	3 p

SHRIECTHL al III-lea

SUBI	ECTUL al III-lea (30 de pui	ncte)
1.a)	$f'(x) = \frac{3(x^2+1)-3x \cdot 2x}{(x^2+1)^2} =$	3p
	$= \frac{3-3x^2}{\left(x^2+1\right)^2} = \frac{3\left(1-x^2\right)}{\left(x^2+1\right)^2}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x}{x^2 + 1} = \lim_{x \to +\infty} \frac{3}{x \left(1 + \frac{1}{x^2}\right)} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 1$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, -1] \Rightarrow f$ este descrescătoare pe $(-\infty, -1]$; $f'(x) \ge 0$, pentru	
	orice $x \in [-1,1] \Rightarrow f$ este crescătoare pe $[-1,1]$; $f'(x) \le 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este	3 p
	descrescătoare pe $[1,+\infty)$	
2.a)	$\int_{0}^{1} (f(x) - 1) dx = \int_{0}^{1} 2x^{2} dx = \frac{2x^{3}}{3} \Big _{0}^{1} =$	3p
	$=\frac{2\cdot 1^3}{3} - \frac{2\cdot 0^3}{3} = \frac{2}{3}$	2p
b)	$\left \int_{0}^{2} \frac{4x}{f(x)} dx = \int_{0}^{2} \frac{4x}{2x^{2} + 1} dx = \int_{0}^{2} \frac{\left(2x^{2} + 1\right)'}{2x^{2} + 1} dx = \ln\left(2x^{2} + 1\right) \right _{0}^{2} =$	3р
	$= \ln 9 - \ln 1 = 2 \ln 3$	2p
c)	$\int_{1}^{e} f\left(\frac{1}{x}\right) \cdot \ln x dx = \int_{1}^{e} \left(\frac{2}{x^{2}} + 1\right) \cdot \ln x dx = \int_{1}^{e} \left(-\frac{2}{x} + x\right) \cdot \ln x dx = \left(-$	3р
	$3 - \frac{4}{e} = 2n^2 + 1 - \frac{4}{e}$ şi, cum <i>n</i> este număr natural, obținem $n = 1$	2p

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $4 \cdot \left(1 \frac{4}{5}\right) + \frac{1}{5} = 1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 2. Arătați că $f(0) \cdot f(1) = 10$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{2x-3} = 3^x$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr n din mulțimea $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, acesta să verifice inegalitatea $n^2 \le 23$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,3) și B(4,0). Arătați că perimetrul triunghiului OAB este egal cu 12.
- **5p 6.** Arătați că $(1+2\cos 60^{\circ}) \cdot \sin 30^{\circ} = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}$ și $B(x) = \begin{pmatrix} x & 0 \\ -1 & x-2 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = 3.
- **5p** | **b**) Arătați că B(8) 3B(2) = 2A.
- **5p** c) Determinați numărul real x pentru care $A \cdot B(x) = B(x)$.
 - **2.** Se consideră polinomul $f = X^3 2X^2 2X + m$, unde m este număr real.
- **5p** a) Pentru m = 3, arătați că f(1) = 0.
- **5p b**) Determinați numărul real m pentru care $x_1x_2 + x_2x_3 + x_3x_1 + x_1x_2x_3 = 1$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.
- **5p** c) Determinați numărul real m pentru care polinomul f este divizibil cu polinomul X + 2.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{3x}{x^2 + 1}$.
- **5p** a) Arătați că $f'(x) = \frac{3(1-x^2)}{(x^2+1)^2}, x \in \mathbb{R}$.
- **5p** | **b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- $\mathbf{5p} \mid \mathbf{c}$) Determinați intervalele de monotonie a funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 + 1$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x)-1) dx = \frac{2}{3}$.
- **5p b**) Arătați că $\int_{0}^{2} \frac{4x}{f(x)} dx = 2 \ln 3$.
- **5p** c) Determinați numărul natural n, știind că $\int_{1}^{e} f\left(\frac{1}{x}\right) \cdot \ln x dx = f\left(n\right) \frac{4}{e}$.

Examenul național de bacalaureat 2023 Proba E. c)

Matematică *M_tehnologic* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1,5+3\cdot(1-0,5)=1,5+3\cdot0,5=$	3 p
	=1,5+1,5=3	2p
2.	f(0)=5	2p
	f(1) = 4, deci $f(0) - f(1) = 5 - 4 = 1$	3p
3.	3x - 8 = 1	3p
	x=3, care convine	2p
4.	Mulțimea A are 5 elemente, deci sunt 5 cazuri posibile	2p
	Numerele n , din mulțimea A , pentru care $2n \ge 9$ sunt 5 , 7 și 9 , deci sunt 3 cazuri	
	favorabile, de unde obținem $p = \frac{3}{5}$	3 p
5.	$AC = \sqrt{10}$	2p
	$BC = \sqrt{10}$, deci triunghiul ABC este isoscel	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} \Rightarrow 50 = \frac{AB \cdot 5}{2}$	3p
	$AB = \frac{2 \cdot 50}{5} = 20$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot (-1) =$	3р
	=1+1=2	2p
b)	$3A(2) + A(6) = \begin{pmatrix} 6 & 3 \\ -6 & 0 \end{pmatrix} + \begin{pmatrix} 6 & 1 \\ -6 & -4 \end{pmatrix} = \begin{pmatrix} 12 & 4 \\ -12 & -4 \end{pmatrix} =$	3 p
	$=4\begin{pmatrix}3&1\\-3&-1\end{pmatrix}=4A(3)$	2p
c)	$A(x) \cdot A(x) = \begin{pmatrix} x^2 - x & 2 \\ -2x & x^2 - 5x + 4 \end{pmatrix}, \text{ pentru orice număr real } x$	2p
	$\begin{pmatrix} x^2 - x & 2 \\ -2x & x^2 - 5x + 4 \end{pmatrix} = \begin{pmatrix} 2x & 2 \\ -2x & 4 - 2x \end{pmatrix}, \text{ de unde obținem } x = 0 \text{ sau } x = 3$	3р
2.a)	1*1=1·1+2·1-1-1=	3p
	=1+2-1-1=1	2p
b)	x*2=4x-3, pentru orice număr real x	3 p
	4x-3=x, de unde obținem $x=1$	2p

Probă scrisă la matematică *M_tehnologic*

c)	$(1-x)*x = -x^2 - 2x - 1 + 2 =$	3 p
	$=-(x+1)^2+2 \le 2$, pentru orice număr real x	2p

SUBIECTUL al III-lea

	` .	arrece)
1.a)	$f'(x) = 2 - 2e^{-x} = 2 - \frac{2}{e^x} =$	3 p
	$f'(x) = 2 - 2e^{-x} = 2 - \frac{2}{e^x} = \frac{2e^x - 2}{e^x} = \frac{2(e^x - 1)}{e^x}, \ x \in \mathbb{R}$	2p
b)	f(0)=1, f'(0)=0	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = 1$	3 p
c)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2x + \frac{2}{e^x} - 1}{x} = \lim_{x \to +\infty} \left(2 + \frac{2}{xe^x} - \frac{1}{x}\right) = 2, \text{ deci } m = 2$	3p
	$\lim_{x \to +\infty} \left(f(x) - 2x \right) = \lim_{x \to +\infty} \left(\frac{2}{e^x} - 1 \right) = -1, \text{ deci } n = -1$	2 p
2.a)	$\int_{1}^{2} (f(x) - 3x) dx = \int_{1}^{2} 4x^{3} dx = x^{4} \Big _{1}^{2} = 16 - 1 = 15$	3p
b)	s s e	2p
0)	$\int_{2}^{3} \frac{1}{f(x) - 4x^{3} + 3} dx = \frac{1}{3} \int_{2}^{3} \frac{1}{x + 1} dx = \frac{1}{3} \ln(x + 1) \Big _{2}^{3} =$	3 p
	$= \frac{1}{3} (\ln 6 - \ln 3) = \frac{1}{3} \ln 2$	2p
c)	$g(x) = 5x^2 + 3$, $x \in [1,2]$, deci $\mathcal{V} = \pi \int_{1}^{2} (25x^4 + 30x^2 + 9) dx = \pi (5x^5 + 10x^3 + 9x) \Big _{1}^{2} = 234\pi$	3 p
	$f(3) = 4 \cdot 3^3 + 3 \cdot 3 = 117$, deci $\mathcal{V} = 2\pi f(3)$	2p

(30 de puncte)

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $1,5+3\cdot(1-0,5)=3$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5 x. Arătați că f(0) f(1) = 1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{3x-8} = 1$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr n din mulțimea $A = \{1, 3, 5, 7, 9\}$, acesta să verifice inegalitatea $2n \ge 9$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,0), B(1,2) și C(4,1). Arătați că triunghiul ABC este isoscel.
- **5p 6.** Se consideră triunghiul ABC dreptunghic în A, cu aria egală cu 50 și AC = 5. Arătați că lungimea laturii AB este egală cu 20.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x & 1 \\ -x & 2-x \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = 2$.
- **5p b**) Arătați că 3A(2) + A(6) = 4A(3).
- **5p** c) Determinați numerele reale x pentru care $A(x) \cdot A(x) = 2A(x)$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție x * y = xy + 2x y 1.
- **5p a)** Arătati că 1*1=1.
- **5p b**) Determinați numărul real x pentru care x*2=x.
- **5p** | **c**) Arătați că $(1-x)*x \le 2$, pentru orice număr real x.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x + \frac{2}{a^x} 1$.
- **5p** a) Arătați că $f'(x) = \frac{2(e^x 1)}{e^x}, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Determinați numerele reale m și n, știind că dreapta d de ecuație y = mx + n este asimptota oblică spre $+\infty$ la graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 + 3x$.
- **5p** a) Arătați că $\int_{1}^{2} (f(x) 3x) dx = 15$.
- **5p b)** Arătați că $\int_{2}^{5} \frac{1}{f(x) 4x^3 + 3} dx = \frac{1}{3} \ln 2$.
- **5p** c) Demonstrați că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}, \ g(x) = \frac{x^3 + f(x)}{x}$ este egal cu $2\pi f(3)$.

Examenul național de bacalaureat 2023 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_6 = a_2 + 4r$, deci $4r = 16$, de unde obținem $r = 4$, unde r este rația progresiei aritmetice	3 p
	$a_1 = a_2 - r = 7 - 4 = 3$	2p
2.	$f(a) = 3a \Leftrightarrow 8a - 5 = 3a$	3 p
	a=1	2p
3.	$\log_4(3x^2) = \log_4 12$, de unde obținem $3x^2 = 12$	3 p
	x = -2, care nu convine; $x = 2$, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Numerele naturale n , de două cifre, pentru care \sqrt{n} este număr natural par sunt 16, 36 și 64, deci sunt 3 cazuri favorabile, de unde obținem $p = \frac{3}{90} = \frac{1}{30}$	3p
5.	M(-1,3) și $N(3,0)$, unde punctele M și N sunt mijloacele segmentelor AB , respectiv OC	2p
	$MN = \sqrt{(3+1)^2 + (0-3)^2} = \sqrt{25} = 5$	3 p
6.	$\sin B = \frac{AC}{BC} \Rightarrow \frac{1}{2} = \frac{AC}{16}$, deci $AC = 8$	2p
	$AB = \sqrt{BC^2 - AC^2} = 8\sqrt{3}$ şi, cum $\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2}$, obţinem $\mathcal{A}_{\Delta ABC} = \frac{8 \cdot 8\sqrt{3}}{2} = 32\sqrt{3}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} -3 & 3 \\ -2 & -1 \end{vmatrix} = -3 \cdot (-1) - 3 \cdot (-2) =$ $= 3 + 6 = 9$	3p
		2p
b)	$B(3) = \begin{pmatrix} 4 & -3 \\ 2 & 2 \end{pmatrix}$ și $B(4) = \begin{pmatrix} 5 & -3 \\ 2 & 3 \end{pmatrix} \Rightarrow B(3) \cdot B(4) = \begin{pmatrix} 14 & -21 \\ 14 & 0 \end{pmatrix} =$	3 p
	$=7\begin{pmatrix} 2 & -3 \\ 2 & 0 \end{pmatrix} = 7B(1)$, de unde obţinem $x = 7$	2p
c)	$C \cdot B(a) = \begin{pmatrix} \frac{-a+1}{3} & \frac{a+2}{3} \\ \frac{-2a-4}{9} & \frac{-a+7}{9} \end{pmatrix}, \text{ pentru orice număr real } a$	2p
	$C \cdot B(a) = B(a) \cdot C = I_2$, de unde obținem $a = -2$	3 p

Probă scrisă la matematică $M_tehnologic$

Model

2.a)	$f = X^3 + X^2 + X - 4 \Rightarrow f(2) = 2^3 + 2^2 + 2 - 4 =$	3 p
	= 8 + 4 + 2 - 4 = 10	2 p
b)	$f = X^3 + X^2 - 4X - 4 \Rightarrow f = (X+1)(X-2)(X+2)$	2p
	Rădăcinile polinomului f sunt -2 , -1 și 2	3 p
c)	$x_1 + x_2 + x_3 = -1$, $x_1x_2 + x_2x_3 + x_3x_1 = m \Rightarrow x_1^2 + x_2^2 + x_3^2 = 1 - 2m$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f	3p
	Cum m este număr natural nenul, obținem $x_1^2 + x_2^2 + x_3^2 < 0$, deci polinomul f nu are toate rădăcinile reale	2 p

1.a)	$f'(x) = \frac{(2x-2)(x+2) - (x^2 - 2x + 1) \cdot 1}{(x+2)^2} =$	3p
	$= \frac{2x^2 + 4x - 2x - 4 - x^2 + 2x - 1}{(x+2)^2} = \frac{x^2 + 4x - 5}{(x+2)^2}, \ x \in (-2, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{e^x} = \lim_{x \to +\infty} \frac{x^2 - 2x + 1}{e^x(x+2)} = \lim_{x \to +\infty} \frac{2x - 2}{e^x(x+3)} =$	3 p
	$= \lim_{x \to +\infty} \frac{2}{e^x (x+4)} = 0$	2p
c)	$f''(x) = \frac{18}{(x+2)^3}, x \in (-2, +\infty)$	3 p
	$f''(x) > 0$, pentru orice $x \in (-2, +\infty)$, de unde obținem că funcția f este convexă	2p
2.a)	$\int_{1}^{3} \left(f(x) - \frac{1}{\sqrt{x+1}} \right) dx = \int_{1}^{3} (x+1) dx = \left(\frac{x^{2}}{2} + x \right) \Big _{1}^{3} =$	3 p
	$=\frac{9}{2}+3-\frac{1}{2}-1=6$	2p
b)	$\int_{0}^{8} (f(x) - x - 1) dx = \int_{0}^{8} \frac{1}{\sqrt{x + 1}} dx = 2 \int_{0}^{8} (x + 1)' \cdot \frac{1}{2\sqrt{x + 1}} dx = 2\sqrt{x + 1} \bigg _{0}^{8} =$	3p
	$=2\cdot 3-2\cdot 1=4$	2 p
c)	$V = \pi \int_{0}^{3} g^{2}(x) dx = \pi \int_{0}^{3} \left((x+1)^{2} + 2\sqrt{x+1} + \frac{1}{x+1} \right) dx =$	2p
	$= \pi \int_{0}^{3} (x+1)' \left((x+1)^{2} + 2\sqrt{x+1} + \frac{1}{x+1} \right) dx = \pi \left(\frac{(x+1)^{3}}{3} + 4 \cdot \frac{(x+1)\sqrt{x+1}}{3} + \ln(x+1) \right) \Big _{0}^{3} =$	3p
	$= \pi \left(\frac{64}{3} + \frac{32}{3} + \ln 4 - \frac{1}{3} - \frac{4}{3} \right) = \pi \left(\frac{91}{3} + \ln 4 \right)$	

Examenul național de bacalaureat 2023 Proba E. c)

Matematică M_tehnologic

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați termenul a_1 al progresiei aritmetice $(a_n)_{n>1}$, știind că $a_2 = 7$ și $a_6 = 23$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 8x 5. Determinați numărul real a pentru care punctul A(a,3a) aparține graficului funcției f.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_4 x + \log_4 (3x) = \log_4 12$.
- **5p** | **4.** Determinați probabilitatea ca, alegând un număr n din mulțimea numerelor naturale de două cifre, \sqrt{n} să fie număr natural par.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-3,2), B(1,4) și C(6,0). Determinați distanța dintre mijloacele segmentelor AB și OC.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, cu BC = 16 și măsura unghiului B egală cu 30° . Arătați că aria triunghiului ABC este egală cu $32\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} -3 & 3 \\ -2 & -1 \end{pmatrix}$ și $B(x) = \begin{pmatrix} x+1 & -3 \\ 2 & x-1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = 9.
- **5p b**) Determinați numărul real x pentru care $B(3) \cdot B(4) = xB(1)$.
- **5p** c) Determinați numărul real a pentru care matricea B(a) este inversa matricei $C = \frac{1}{9}A$.
 - **2.** Se consideră polinomul $f = X^3 + X^2 + mX 4$, unde m este număr real.
- **5p** a) Pentru m=1, arătați că f(2)=10.
- **5p b)** Pentru m = -4, determinați rădăcinile polinomului f.
- **5p** c) Demonstrați că, pentru orice număr natural nenul m, polinomul f nu are toate rădăcinile reale.

- **1.** Se consideră funcția $f:(-2,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 2x + 1}{x + 2}$.
- **5p** a) Arătați că $f'(x) = \frac{x^2 + 4x 5}{(x+2)^2}, x \in (-2, +\infty)$.
- **5p b**) Arătați că $\lim_{x \to +\infty} \frac{f(x)}{e^x} = 0$.
- **5p** c) Demonstrați că funcția f este convexă.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x)=x+1+\frac{1}{\sqrt{x+1}}$.
- **5p** a) Arătați că $\int_{1}^{3} \left(f(x) \frac{1}{\sqrt{x+1}} \right) dx = 6.$
- **5p b)** Arătați că $\int_{0}^{8} (f(x) x 1) dx = 4$.

5p c) Arătați că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,3] \to \mathbb{R}$, g(x) = f(x), este egal cu $\pi\left(\frac{91}{3} + \ln 4\right)$.

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1-0,2): 2+0,3\cdot 2=0,8: 2+0,6=$	3p
	=0,4+0,6=1	2p
2.	f(2) = 0, $g(2) = 2 + m$	3 p
	0 = 2 + m, de unde obținem $m = -2$	2p
3.	$7^{x+3} = 7^{2x}$, de unde obținem $x+3=2x$	3p
	x = 3	2p
4.	$x - \frac{30}{100} \cdot x = 210$, unde x este prețul înainte de ieftinire	3p
	x = 300 de lei	2p
5.	$M(1,2)$, deci $OM = \sqrt{5}$ și $MB = \sqrt{10}$	3p
	$OB = \sqrt{5}$, deci $MB^2 = OB^2 + OM^2$, de unde obținem că triunghiul OMB este dreptunghic în O	2p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\sin 30^\circ = \frac{1}{2}$, $\cos 30^\circ = \frac{\sqrt{3}}{2}$	3p
	$\sqrt{3}\sin 45^{\circ} + 2\sin 30^{\circ} - \sqrt{2}\cos 30^{\circ} = \sqrt{3} \cdot \frac{\sqrt{2}}{2} + 1 - \sqrt{2} \cdot \frac{\sqrt{3}}{2} = 1$	2p

1.a)	$A(2) = \begin{pmatrix} 4 & -2 \\ 2 & 1 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 4 & -2 \\ 2 & 1 \end{vmatrix} = 4 \cdot 1 - (-2) \cdot 2 =$	3р
	=4+4=8	2p
b)	$A(0) = \begin{pmatrix} 2 & -2 \\ 2 & -1 \end{pmatrix} \Rightarrow A(0) \cdot A(0) = \begin{pmatrix} 0 & -2 \\ 2 & -3 \end{pmatrix}$	3 p
	$\begin{pmatrix} 0 & -2 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} x+2 & -2 \\ 2 & x-1 \end{pmatrix}, \text{ de unde obținem } x = -2$	2p
c)	$\det(A(x)) = x^2 + x + 2$, pentru orice număr real x	2p
	$x^2 + x + 2 = y^2 + y + 2 \Rightarrow (x - y)(x + y + 1) = 0$ şi, cum x şi y sunt numere reale distincte, obţinem $x + y + 1 = 0$, deci $x + y = -1$	3р
2.a)	$1*2 = 4 \cdot 1 \cdot 2 - 3 \cdot 1 + 2 \cdot 2 - 1 =$	3p
	=8-3+4-1=8	2p
b)	x*(-1) = -7x - 3, pentru orice număr real x	2p
	$-7x-3=4 \Rightarrow -7x=7$, de unde obţinem $x=-1$	3p

c)	$4ax-3x+2a-1=-x \Rightarrow 4ax-2x+2a-1=0 \Rightarrow 2x(2a-1)+2a-1=0$, pentru orice număr real x	3p	
	$a = \frac{1}{2}$	2p	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 2 - \frac{8}{x^2} =$	3p
	$=\frac{2x^2-8}{x^2}=\frac{2(x^2-4)}{x^2}, \ x \in (0,+\infty)$	2p
b)	f(2) = 7, f'(2) = 0	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = 7$	3 p
c)	$f'(x) = 0 \Rightarrow x = 2$; $f'(x) \le 0$, pentru orice $x \in (0,2] \Rightarrow f$ este descrescătoare pe $(0,2]$	2p
	$0 < 1 - x < 1 + x < 2$, pentru orice $x \in (0,1)$, de unde obținem $f(1-x) \ge f(1+x)$, pentru orice $x \in (0,1)$	3 p
2.a)	$\int_{0}^{2} (f(x) - 4x) dx = \int_{0}^{2} (3x^{2} + 2) dx = (x^{3} + 2x) \Big _{0}^{2} =$	3 p
	$=2^3+2\cdot 2=12$	2p
b)	$\int_{0}^{1} \left(f(x) - 3x^{2} - 2 \right) e^{x} dx = \int_{0}^{1} 4x e^{x} dx = 4(x - 1) e^{x} \Big _{0}^{1} =$	3 p
	= 0 + 4 = 4	2p
c)	$\int_{-1}^{0} a \cdot f'(x) \cdot (f(x))^{a-1} dx = (f(x))^{a} \Big _{-1}^{0} = 2^{a} - 1, \text{ pentru orice } a \in (0, +\infty)$	3p
	$2^a - 1 = 63$, de unde obținem $a = 6$, care convine	2p

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(1-0,2): 2+0, 3\cdot 2=1$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$ și $g: \mathbb{R} \to \mathbb{R}$, g(x) = x + m, unde m este număr real. Determinați numărul real m pentru care f(2) = g(2).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $7^{x+3} = 49^x$.
- **5p 4.** După o ieftinire cu 30%, un produs costă 210 lei. Determinați prețul produsului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,5) și B(2,-1). Arătați că triunghiul *OMB* este dreptunghic în O, unde M este mijlocul segmentului AB.
- **5p 6.** Arătați că $\sqrt{3} \sin 45^{\circ} + 2 \sin 30^{\circ} \sqrt{2} \cos 30^{\circ} = 1$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} x+2 & -2 \\ 2 & x-1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(2)) = 8$.
- **5p b)** Determinați numărul real x pentru care $A(0) \cdot A(0) = A(x)$.
- **5p** c) Arătați că, dacă x și y sunt numere reale distincte astfel încât $\det(A(x)) = \det(A(y))$, atunci x + y = -1.
 - 2. Pe multimea numerelor reale se definește legea de compoziție x * y = 4xy 3x + 2y 1.
- **5p a)** Arătati că 1*2=8.
- **5p b)** Determinați numărul real x pentru care x*(-1)=4.
- **5p** c) Determinați numărul real a pentru care x * a = -x, pentru orice număr real x.

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x)=2x-1+\frac{8}{x}$.
- **5p** a) Arătați că $f'(x) = \frac{2(x^2 4)}{x^2}, x \in (0, +\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 2, situat pe graficul funcției f.
- **5p** c) Demonstrați că $f(1-x) \ge f(1+x)$, pentru orice $x \in (0,1)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 + 4x + 2$.
- **5p** a) Arătați că $\int_{0}^{2} (f(x) 4x) dx = 12$.
- **5p b)** Arătați că $\int_{0}^{1} (f(x) 3x^2 2)e^x dx = 4$.
- **5p** c) Determinați $a \in (0, +\infty)$ pentru care $\int_{-1}^{0} a \cdot f'(x) \cdot (f(x))^{a-1} dx = 63.$

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_2 - a_1 = 10$, unde r este rația progresiei aritmetice	2 p
	$a_3 = a_2 + r = 20 + 10 = 30$	3 p
2.	f(0)=4	2p
	$f(1) = 6 \Rightarrow f(0) + f(1) = 4 + 6 = 10$	3 p
3.	x-4=4	3p
	x = 8, care convine	2 p
4.	$\frac{20}{100} \cdot 80 = 16$ lei	2p
	Prețul după ieftinire este $80-16=64$ de lei	3 p
5.	$MN = \sqrt{9+16} =$	3p
	$=\sqrt{25}=5$	2p
6.	AC = 4	3p
	$\mathcal{A}_{\Delta ABC} = \frac{4 \cdot 4}{2} = 8$	2p

1.a)	$A(2) = \begin{pmatrix} 2 & 5 \\ -1 & 2 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 2 & 5 \\ -1 & 2 \end{vmatrix} = 2 \cdot 2 - 5 \cdot (-1) =$	3p
	= 4 + 5 = 9	2p
b)	$A(a) + A(-a) = \begin{pmatrix} a & a+3 \\ -1 & 2 \end{pmatrix} + \begin{pmatrix} -a & -a+3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 6 \\ -2 & 4 \end{pmatrix} =$	3 p
	$= 2 \begin{pmatrix} 0 & 3 \\ -1 & 2 \end{pmatrix} = 2A(0), \text{ pentru orice număr real } a$	2p
c)	$A(a) \cdot A(-1) = \begin{pmatrix} -2a - 3 & 4a + 6 \\ -1 & 2 \end{pmatrix} \Rightarrow A(a) \cdot A(-1) - aI_2 = \begin{pmatrix} -3a - 3 & 4a + 6 \\ -1 & 2 - a \end{pmatrix}, \text{ de unde obținem}$	3p
	$\det(A(a)\cdot A(-1)-aI_2)=3a^2+a$, pentru orice număr real a	
	$3a^2 + a = 0$, de unde obţinem $a = -\frac{1}{3}$ sau $a = 0$	2p
2.a)	$f(0) = 0^3 + 3 \cdot 0^2 + m \cdot 0 - 4 =$	3 p
	=0+0+0-4=-4, pentru orice număr real m	2p
b)	f(-1) = -m - 2, pentru orice număr real m	2p
	f(-1) = 0, de unde obţinem $m = -2$	3 p

c)	$x_1 + x_2 + x_3 = -3$, $x_1x_2 + x_2x_3 + x_3x_1 = m$, $x_1^2 + x_2^2 + x_3^2 = 9 - 2m$, pentru orice număr natural m	3 p	
	9-2m>5 și, cum m este număr natural, obținem $m=0$ sau $m=1$	2 p	

1.a)	$f'(x) = 2x - 3 + \frac{1}{x} =$	3p
	$= \frac{2x^2 - 3x + 1}{2} = \frac{(2x - 1)(x - 1)}{2}, \ x \in (0, +\infty)$	2p
-	x x	
b)	f(1)=2, f'(1)=0	2 p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 2$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = \frac{1}{2} \text{ sau } x = 1; \ f'(x) \ge 0, \text{ pentru orice } x \in \left(0, \frac{1}{2}\right] \Rightarrow f \text{ este crescătoare pe}$	3р
	$\left[\left(0, \frac{1}{2} \right] \text{ și } f'(x) \le 0, \text{ pentru orice } x \in \left[\frac{1}{2}, 1 \right] \Rightarrow f \text{ este descrescătoare pe } \left[\frac{1}{2}, 1 \right] \right]$	•
	$f(x) \le f\left(\frac{1}{2}\right)$, pentru orice $x \in (0,1]$ și, cum $f\left(\frac{1}{2}\right) = \frac{11}{4} - \ln 2$, obținem $f(x) \le \frac{11}{4} - \ln 2$,	2p
	pentru orice $x \in (0,1]$	
2.a)	$\int_{1}^{3} \left(f(x) - \frac{6}{2x+3} \right) dx = \int_{1}^{3} e^{x} dx = e^{x} \Big _{1}^{3} =$	3p
	$=e^3-e=e(e^2-1)$	2p
b)	$\int_{-1}^{0} \left(f(x) - e^{x} \right) dx = \int_{-1}^{0} \frac{6}{2x+3} dx = 3 \int_{-1}^{0} \frac{(2x+3)'}{2x+3} dx = 3 \ln(2x+3) \Big _{-1}^{0} =$	3p
	$=3(\ln 3 - \ln 1) = 3\ln 3$	2p
c)	$g(x) = (2x^2 + 3x)e^x + 6x, \ x \in \left(-\frac{3}{2}, +\infty\right), \ \det \mathcal{A} = \int_0^1 g(x) dx = \int_0^1 ((2x^2 + 3x)e^x + 6x) dx = \int_0^1 g(x) dx = \int_0^1 ((2x^2 + 3x)e^x + 6x) dx = \int_0^1 ((2x^2 + 3x)e^x + 6x + 6x) dx = \int_0^1 ((2x^2 + 3x)e^x + 6x$	2
	$ = (2x^{2} + 3x)e^{x} \begin{vmatrix} 1 \\ 0 - (4x + 3)e^{x} \end{vmatrix} \begin{vmatrix} 1 \\ 0 + 4e^{x} \end{vmatrix} \begin{vmatrix} 1 \\ 0 + 3x^{2} \end{vmatrix} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = $	3p
	=5e-7e+3+4e-4+3=2e+2=2(e+1)	2p

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Calculați termenul a_3 al progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=10$ și $a_2=20$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 4. Arătați că f(0) + f(1) = 10.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2(x-4) = \log_2 4$.
- **5p 4.** Un produs costă 80 de lei. Determinați prețul produsului după o ieftinire cu 20%.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(0,2) și N(3,6). Arătați că distanța dintre punctele M și N este egală cu S.
- **5p 6.** Se consideră triunghiul ABC dreptunghic în A, cu AB = 4 și măsura unghiului C egală cu 45° . Arătați că aria triunghiului ABC este egală cu 8.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} a & a+3 \\ -1 & 2 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(2)) = 9$.
- **5p** | **b**) Arătați că A(a) + A(-a) = 2A(0), pentru orice număr real a.
- **5p** c) Determinați numerele reale a pentru care $\det(A(a) \cdot A(-1) aI_2) = 0$.
 - **2.** Se consideră polinomul $f = X^3 + 3X^2 + mX 4$, unde *m* este număr real.
- **5p a**) Arătați că f(0) = -4, pentru orice număr real m.
- **5p b**) Determinați numărul real m, știind că -1 este rădăcină a polinomului f.
- **5p** c) Determinați numerele naturale m pentru care $x_1^2 + x_2^2 + x_3^2 > 5$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^2 3x + 4 + \ln x$
- **5p** a) Arătați că $f'(x) = \frac{(2x-1)(x-1)}{x}, x \in (0,+\infty)$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $f(x) \le \frac{11}{4} \ln 2$, pentru orice $x \in (0,1]$.
 - **2.** Se consideră funcția $f: \left(-\frac{3}{2}, +\infty\right) \to \mathbb{R}$, $f(x) = e^x + \frac{6}{2x+3}$.
- **5p** a) Arătați că $\int_{1}^{3} \left(f(x) \frac{6}{2x+3} \right) dx = e(e^2 1).$
- **5p b)** Arătați că $\int_{-1}^{0} (f(x) e^x) dx = 3 \ln 3$.
- **5p** c) Arătați că suprafața plană delimitată de graficul funcției $g: \left(-\frac{3}{2}, +\infty\right) \to \mathbb{R}, g(x) = \left(2x^2 + 3x\right)f(x),$ axa Ox și dreptele de ecuații x = 0 și x = 1 are aria egală cu 2(e+1).