KRZYSZTOF SOKÓŁ-SZOŁTYSEK PROGRAM 7 GRUPA PONIEDZIAŁKOWA

CHOINKA

-RYSUNEK

/	1	2	3	4	5	6	7	8
1	0	0	0	1	0	0	0	0
2	0	0	1	1	1	0	0	0
3	0	0	0	1	0	0	0	0
4	0	1	1	1	1	1	0	0
5	0	0	0	1	0	0	0	0
6	1	1	1	1	1	1	1	1
7	0	0	0	1	0		0	0
8	0	0	1	1	1	0	0	0

-GRAF POŁĄCZEŃ

-WARTOŚCI WŁASNE

In[61]:=

N[Eigenvalues[B]]

 $\text{Out}[\text{GI}] = \{3.3781, -0.446909 + 1.01133 \, i, -0.446909 - 1.01133 \, i, -0.484286, \, 0., \, 0., \, 0., \, 0.\}$

 $| \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\}\}\&)/@\{3.3781, -0.446909+1.01133i, -0.446909-1.01133i, -0.484286, 0., 0., 0., 0.\}, AspectRatio \rightarrow 0.5, PlotRange \rightarrow All] } \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\}\}\&)/@\{3.3781, -0.446909+1.01133i, -0.446909-1.01133i, -0.484286, 0., 0., 0., 0.\})} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\}\}\&)/@\{3.3781, -0.446909+1.01133i, -0.446909-1.01133i, -0.484286, 0., 0., 0., 0.\})} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\}\}\&)/@\{3.3781, -0.446909+1.01133i, -0.446909-1.01133i, -0.484286, 0., 0., 0., 0.\})} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\}\}\&)/@\{3.3781, -0.446909+1.01133i, -0.446909-1.01133i, -0.484286, 0., 0., 0., 0.\})} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\}\&)/@\{3.3781, -0.446909+1.01133i, -0.446909-1.01133i, -0.484286, 0., 0., 0., 0.\})} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\}\&)/@\{3.3781, -0.446909+1.01133i, -0.446909-1.01133i, -0.484286, 0., 0., 0., 0.])} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\}\&)/@\{3.3781, -0.446909+1.01133i, -0.446909-1.01133i, -0.484286, 0., 0., 0., 0.])} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\}\&)/@\{3.3781, -0.446909-1.01133i, -0.484286, 0., 0., 0.])} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\&)/@\{3.3781, -0.446909-1.01133i, -0.484286, 0., 0., 0.])} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\&)/@\{3.3781, -0.446909-1.01133i, -0.484286, 0., 0., 0.])} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[\#1]\&)/@\{3.3781, -0.446909-1.01133i, -0.484286, 0., 0.])} \\ | \text{listPlot[(Tooltip[\{Re[\#1], Im[M1], Im[M1], -0.446909-1.01133i, -0.484286, 0.])} \\ | \text{listPlot[(Tooltip[\{Re[M1], Im[M1], Im[M1], -0.484286, 0.])} \\ | \text{listPlot[(Tooltip[\{Re[M1], Im[M1], Im[M1], -0.48428, 0.])} \\ | \text{listPlot[(Tooltip[\{Re[M1], Im[M1], Im[M1], -0.4$

PREZENT

-RYSUNEK

/	1	2	3	4	5	6	7	8
1	1	1	1	1	0	0	0	0
2	1	0	0	0	0	0	1	0
3	1	1	1	1	0	1	1	1
4	0	0	0	1	0	0	1	0
5	1	1	1	1	0	0	0	0
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0

-GRAF POŁĄCZEŃ

-WARTOŚCI WŁASNE

M[Eigenvalues[c]]

Out[63]= {2.41421, 1., -0.414214, 0., 0., 0., 0., 0.}

MIKOŁAJ

-RYSUNEK

1	1	2	3	4	5	6	7	8
1	0	0	1	1	0	0	0	0
2	0	0	0	1	0	0	0	0
3	0	1	1	1	1	1	0	0
4	1.	0			1	0		1
5	0	0			1.	0		1.
6	0	0	0	1	0	0	0	0
7	0	0	1	0	1	0	0	0
8	0	1	0	0	0	1	0	0

-GRAF POŁĄCZEŃ

-WARTOŚCI WŁASNE

WNIOSKI

Z wykresów wartości własnych widać, że nierzeczywiste wartości własne występują parami oraz są symetryczne względem osi rzeczywistej. Zerowe wartości własne odpowiadają odizolowanym wierzchołkom. Nasuwają się skojarzenia z podstawowym pomysłem na algorytm Pagerank Google, w którym waga strony jest(w dużym uproszczeniu) mocno związana z wartością własną pozyskaną z grafu połączeń.