Chapter 3: Markor decision processes (MDP) SB: Chap 3

3.1. Hodel

 $t = 0, 1, \ldots$ · Environment state: St E.S.

· System to control · Info for making decision

· Agent state: $A_t \in A(s)$ t = 0, 1, ...

· Controller

· Action state / decision pavailable actions from given state · State space can depend on current state

Simplification: A(s) = A Vs

Reward: Rt ∈ R

. Signal fran pptem/environment

· Defines good/bad actions

Zero/baseline not important

RV concluted with states/actions

Sometimes expussed as r(5, a, 5')

· Transition probability (dynamics):

$$p(s', r \mid s, a) = P(S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a)$$

Reward

 $S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow \cdots$ Sys form

A. / A, / Agent

· Assumed homogeneous (time-independent, stationary)

· Example :

R=10

a = 1

2 determination actions: left, wight

Deterministic reward given state

and docon't depend on action (pame for a=0,1

· State transition probabolity:

$$p(s'|s,a) = \sum_{r} p(s',r|s,a)$$

Trans: tim matix for each a

P(jli) Pa

· Reward probability:

$$p(r|s,a) = \sum_{s'} p(s',r|s,a)$$

campare with MRP

Expected reward:
$$\rho(s,a) = E[R_{t+1}|S_t=s, A_t=a]$$

$$s = S_t \longrightarrow S_{t+1}$$

$$a = A_t$$

$$p(s,a) = \sum_{r} r p(r/s,a)$$

$$= \sum_{r,s'} r p(s',r|s,a)$$

· One-Step reward from state 5 and action a

· Docon't depend on time (stationary)

· How to choose action/control/decision at given state?

· Policy transition probability:

$$TT(a|s) = P(A_t = a|S_t = s)$$

$$S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow \cdots$$
 $A_0 \rightarrow A_1$

) noise in guriponment Lexplaction

· Mapping state -> action

· Probabilistic policy: actions are random

Assumed homogeneous (time-independent, stationary)

· Deterministic policy:
$$TT(s) = a$$
one state one action

Joint probability: p(5', r,a/s) = p(s',r/s,a) TT(a/s)

· System transition peobalisty:

$$P_{\Pi}(s'|s) = \sum_{a} p(s'|s,a)\pi(a|s)$$
 Average over actions
$$= \sum_{a,r} p(s',r|s,a)\pi(a|s)$$

Effective dynamics under policy TT · Transition matrix: Pm (Pm)ij = Pm (j/i) $S_0 \xrightarrow{\gamma_{\pi}} S_1 \xrightarrow{\gamma_{\pi}} S_2 \xrightarrow{\gamma_{\pi}} \dots$

· Cempaison:

· No control:
$$S_0 \xrightarrow{P} S_1 \xrightarrow{P} S_2 \rightarrow \dots \qquad p(s'|s)$$

· Open-loop control:
$$S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow \cdots p(s^i | s, a)$$

$$A_0 \qquad A_1$$

· Reduced dynamico:
$$S_0 \xrightarrow{S_H} S_1 \xrightarrow{P_H} S_2 \xrightarrow{R_H} ... P_H(s'1s)$$

· Expected seward under policy TT:

$$\rho_{\pi}(s) = E_{\pi} \left[R_{t+1} \middle| S_{t} = s \right]$$

$$= E_{\pi} E \left[R_{t+1} \middle| S_{t} = s, A_{t} \right]$$

$$= E_{\pi} \left[\rho(s, A_{t}) \right]$$

$$\rho_{\pi}(s) = \sum_{a} \rho(s, a) \, \pi(a|s) \quad \text{arrange mu actions}$$

$$= \sum_{a,r} r \, \rho(r|s, a) \, \pi(a|s)$$

$$= \sum_{a,r} r \, \rho(s', r|s, a) \, \pi(a|s)$$

$$= \sum_{a,r,s'} r \, \rho(s', r|s, a) \, \pi(a|s)$$

·
$$p(s,a)$$
 docsn't depend on π
· Deterministic : $p_{\pi}(s) = p(s, \pi(s))$

3.3. Value Junctions

· State value function:

$$V_{\pi}(s) = E_{\pi}[G_{t} | S_{t} = s]$$

$$S = S_{t} \longrightarrow S_{t+1} \longrightarrow S_{t+2} \longrightarrow S_{t+3} \longrightarrow \cdots$$

$$A_{t} \longrightarrow A_{t+1} \longrightarrow A_{t+2} \longrightarrow A_{t+2} \longrightarrow \cdots$$

- · Future return / cost to go from state 5 + policy TT
- · Long term value of s under IT
- · Function of TT(·15) · Docon't depend on time t (Infinit return)

· State - action value function:

$$9_{\pi}(s,a) = E_{\pi}[G_t | S_t = s, A_t = a]$$

$$S = S_{t} \longrightarrow S_{t+1} \longrightarrow S_{t+2} \longrightarrow S_{t+3} \longrightarrow \cdots$$

$$A_{t} \longrightarrow A_{t+1} \longrightarrow A_{t+2} \longrightarrow A_{t+2} \longrightarrow \cdots$$

- · Return / cost to go if action a taken from state s Value of action a when in 5 if policy IT followed after
- · Docor't depend on time t

· Connection:

$$V_{\pi}(s) = E_{\pi} \left[\left. 9_{\pi}(s, A_t) \middle| S_t = s \right] \right] \qquad \text{are all actions}$$

$$= \sum_{a} 9_{\pi}(s, a) \pi(a|s)$$

$$V_{\pi}(s) = g_{\pi}(s, \pi(s))$$
 for deterministic policy

Example:

$$a = 0$$
 $G \bigcirc 1$
 $G \bigcirc 1$

$$a=1 \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad F$$

$$Policy 1: T_{i}(s)=0 \qquad \forall \qquad s \qquad \text{move left}$$

$$fram all state \qquad \text{telements for } i$$

· Policy 3:
$$\Pi_3 = \frac{1}{2} \Pi_1 + \frac{1}{2} \Pi_2$$
 GOLDEGO Prandon policy/control

CW: Calculate V_{Π_1} , V_{Π_2} , V_{Π_3}

Note:
$$\rho(s)=1$$
 or 10 $s=0$, $s=6$ $\forall \pi$ reward only depends on $\rho(s,a)=1$ n 10 $s=0$, $s=6$ $\forall \alpha$ $s=6$

3.4. Bellman equations (BE)

· Bellman equation for Nature Junction:

$$V_{\pi}(s) = E_{\pi} \begin{bmatrix} R_{\ell+1} + 8 N_{\pi}(S_{\ell+1}) \middle S_{\ell} = s \end{bmatrix} \xrightarrow{\text{Compare With}} HRP$$

$$S = S_{\ell} \longrightarrow S_{\ell+1} \longrightarrow S_{\ell+2} \longrightarrow \dots \qquad S$$

$$A_{\ell} \longrightarrow A_{\ell+1} \longrightarrow A$$

$$V_{\pi}(s) = \sum_{s':a} \rho(s,a) \pi(a|s) + \sum_{s':a} V_{\pi}(s') \rho(s'|s,a) \pi(a|s)$$

$$= \sum_{s',r,a} r p(s',r|s,a) \pi(a|s)$$

+
$$8 \sum_{s',r,a} N_{\pi}(s') p(s',r|s,a) \pi(a|s)$$

· Linear equation:
$$V_{\pi} = \rho_{\pi} + \mathcal{E} P_{\pi} V_{\pi}$$

· BE for action-value function:

$$g_{\pi}(s,a) = E_{\pi} \begin{bmatrix} R_{t+1} + \chi g_{\pi}(s_{t+1}, A_{t+1}) \mid S_{t} = s, A_{t} = a \end{bmatrix}$$

$$R_{t+1} \qquad R_{t+2}$$

$$s = S_{t} \rightarrow S_{t+1} \rightarrow S_{t+2} \rightarrow \cdots$$

$$A_{t} \qquad A_{t+1} \qquad S_{t+1} \wedge A_{t+1}$$

$$S_{t+1} \wedge A_{t+1} \qquad S_{t+1} \wedge A_{t+1}$$

$$S_{t+1} \wedge A_{t+1} \qquad S_{t+1} \wedge A_{t+1}$$

9 (S1a) 9 (St+1, At+1)

$$q_{\pi}(s,a) = \rho(s,a) + 8 \sum_{a',s'} q_{\pi}(s',a') \rho(s'|s,a) \pi(a'|s') \\
 = \sum_{s',r} \rho(s',r|s,a) \\
 = \sum_{s',r} \rho(s',r|s,a) \\
 = \sum_{a',s',r} q_{\pi}(s',a') \rho(s',r|s,a) \pi(a'|s') \\
 = \sum_{a',s',r} q_{\pi}(s',a') \rho(s',r|s,a) \pi(a'|s')$$

· Linear equation for "matrix" 911

· Two ways of defining MDPS

Pa.

$$\langle \rho_n(s) = E_n[R_{t+1} | S_t = S]$$

(, Pro(s'/s)

P

$$V_{\pi} = \rho_{\pi} + \delta P_{\pi} V_{\pi}$$

$$g_{\pi} = \rho + 8 \left(P_{a} \pi g_{\pi} \right)$$

3.5 Optimal policios

$$R_{1} \qquad R_{2} \qquad R_{3}$$

$$S = S_{0} \longrightarrow S_{1} \longrightarrow S_{2} \longrightarrow S_{3} \longrightarrow \cdots$$

$$A_{1} \qquad A_{2} \qquad A_{2}$$

$$V_{\pi}(s) = E_{\pi}[G_t | S_t = s] = E_{\theta}[G_s | S_s = s]$$

· Goal: Find TI with map expected return

· Optimal value function:

$$V_{+}(s) = max V_{H}(s)$$

- · Best actions/policies from S · At least one solution

· Optimal action-value function:

- Ophmal policy for successes states from S,a · Same solution The as No
- $T_* = arg max V_{\pi}(s)$ · Optimal policy:

· General results (Silver: L2): For any finite MOPS . There grists at least one optimal policy II+

All optimal Tto achieve Vo

· Optimal policy is deterministic (one action per plate · " stationary

$$\Rightarrow \pi_{*}(s) = a$$

· Optimal pshiay:

 $T_{4}(s) = arg max 9, (s,a) = best action from 5$

· Optimal value function:

I hest action

$$V_{+}(s) = V_{\pi_{+}}(s) = 9_{+}(s, \pi_{+}(s))$$

$$V_{+}(5) = \max_{a} q_{+}(5,a)$$

TT+ 0 9, 0 Nx

· Note: 1/1 (s) = \(\int 9_T (s,a) T (a/s)

	3-12
Example:	
R=1 ?	$\mathcal{A} = \mathcal{O}$
R=1 ? 2 3	(4) (5) (6)
1	
Starl	
8x0: Better to move left	to get R=1 reward
821: " " " wysht	" " R=10 "
Optimal policy: for each S	i, einer left a right
, , , , , , , , , , , , , , , , , , , ,	p(s'/s, a-o) p(s'/s, a=1)
π ρ^{4}	
The among 27 possible poli	(125
3.6 Bell man optimality equations	
See 3-126	
· Value function:	
y with function .	
of (a) = max EB +	X11 (5) /5 = 5 1 = 27
$V_{+}(s) = \max_{a} E[R_{t+1} + c]$	1 - 1 (0 [+1] 0 + = 0 , 7 + - 0]
1	
· Optimel from 5 = optimal action from 5 and then	
optimal policy after	
Expectation on one step - no En	
· may outside expectation	
· oug max defines TT,	(s)
· Nonlinear equation because of max	
E Gr	
$S = S_{t} \longrightarrow S_{t+1} \longrightarrow A_{t}$	allal = man aleal +
2 t+1	$V_{2}(S) = may p(S, \alpha) + 1$
	$V_{*}(s) = \max_{\alpha} \rho(s, \alpha) + \sum_{s'} V_{*}(s') \rho(s' s_{s'})$
\mathcal{A}_{t}	2,
II II	

op timel future

op timal present

- · Whatera action chosen at time t, rest of dynamics is optimal
- · To be optimal at St = 5, choose optimal action and then

 follow optimal policy from St+1

$$\Rightarrow V_*(s) = \max_{\alpha} E[R_{t+1} + V_*(S_{t+1}) | S_t = s, A_t = a]$$

Example:

· Action Value Junction:

ie.

$$q_*(s,a) = p(s,a) + 8 \max_{a'} \sum_{s'} q(s',a') p(s'|s,a)$$

= $p(s,a) + 8 \sum_{s'} V_*(s') p(s'|s,a)$

$$S = S_{t} \longrightarrow S_{t+1} \longrightarrow S_{t+2} \longrightarrow \cdots$$

$$A_{t} \longrightarrow A_{t+1} \longrightarrow$$

- · Optimal from S,a = optimal after reaching St+1

 by taking optimal action after
- · Max inside docon't influence revard
 · arg max de fines $T_{*}(s')$
- · Nonlinear equation because of may

Bellman's optimality principle:

An optimal policy has the property that whatever the instial state / decision are, the remaining decisions constitute an optimal policy with regard to the state resulting from the first decision.