Introduction to Data Structures

자료구조개론

Joonwon Lee

College of Software

Instructor Information

- Joonwon Lee
 - Professor in College of Software
 - Research areas
 - Computer Systems
- Contact information
 - joonwon@skku.edu
 - http://csl.skku.edu/People/Joon
 - Corporate Collaboration Center #85572
 - Office hour: by appointment

Course information

- Class hours
 - •
 - •
- Language: **English**
- Classroom:
- Prerequisite:
 - You SHOULD know how to program in C
 - If you don't understand C Review in the next lecture, come back again after taking programming course in C (or Java, C++)
- Course website
 - http://www.icampus.skku.edu

Online Lectures

- Corona Virus made it!
- Online lectures
 - lecture note and media will be loaded on icampus.skku.edu
 - homework and questions will be posted on the same site
 - final exam will be rendered on the same site

What is this course?

• In computer science, a **data structure** is a data organization, management and storage format that enables <u>efficient</u> access and modification. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data. [Wikipedia]

Class goals

- Learn data structure, which is a way of collecting and organizing data in a computer to perform operations on the data efficiently
- Cover arrays, stacks, queues, linked lists, tree, graph, hashing, search and sorting algorithms

Lecture notes

Textbook

Fundamentals of data structures in C
by Horowits, Sanhni and Anderson-Freed (2nd, 2008)

• Lecture Notes

- Adapt Prof. Jinkyu Lee's slides
- which is also from Prof. Jongwuk Lee's slides.

Grading

- Attendance: 10%
 - You will be given F if you are absent eight times or more.
 - Alternative attendance approval: to follow SKKU rule
- Assignments: 20%
 - Four programming assignments
 - Academic honesty is truly needed since the penalty is severe
- Mid-term exam: 30%
- Final exam: 40%

Grading

- If you have any plan to be absent with reasonable reasons, please tell me in advance!
- Cheating will lead you to fail this course with "F" grade.
- You will be given F if you are absent eight times or more.
- The 50% A and 90% B grade guideline is merely an upper-limit by SKKU, not by myself.

Tentative schedule and topics

Week 1: Course introduction, C overview	
Week 2: Performance analysis, recursion	
Week 3: Stacks	Homework 1
Week 4: Queues	
Week 5: List	Homework 2
Week 6: Linked List	
Week 7: Trees & Mid-term exam	Homework 3
Week 8: Binary Trees	

Tentative schedule and topics

Week 9: Heap	Homework 4 out
Week 10: Graphs	
Week 11: Sorting	Homework 5 out
Week 12: Hashing	
Week 13: Binary Search Tree	Homework 6 out
Week 14: Binary Search Tree II	
Week 15: more BST & Final exam	

TA

• To be updated

Do we have to use English?

- You are recommended to use English only.
- Assignment
 - Your program (C code): only in English
 - Your report: either in English or Korean
- Exam
 - All questions: written in English
 - Your answers: either in English or Korean
- Outside of the class
 - Questions through email: either in English or Korean
- In-class
 - I will answer to either languages

Any question?

• And, any suggestion?

Basics of data structures

Definition

- Definition of data structure
 - An organization of information, usually in memory, for better algorithm efficiency
 - Queue, stack, linked list, heap, dictionary, tree, etc.
- Definition of algorithm
 - What is an algorithm?
 - What is an efficient algorithm?
 - An algorithm which spends less resources: time and space

Definition

- Definition of an algorithm: a finite set of instructions that should satisfy
 - 1) Input: zero or more inputs
 - 2) Output: at least one output
 - 3) Definiteness: clear and unambiguous instructions
 - 4) Finiteness: terminating after a finite number of steps
 - 5) Effectiveness (Machine-executable): basic enough to be carried out

Program

Program

Example

- Example 1
 - Question 1: sort 100 records.
 - Question 2: sort 1,000,000 records.

	Question 1	Question 2
Insertion Sort	c ₁ *10 ⁴ unit time	c ₁ *10 ¹² unit time
Heap sort	c ₂ *10 ² unit time	c ₂ *10 ⁶ unit time

Example

- Example 2
 - Question 1: You have a lot sorted data. You frequently search for some data.
 - Question 2: You have the same data. You frequently insert and delete some data.

	Question 1	Question 2
Array	c ₁₁ * log n unit time	+ c ₁₂ * n unit time
Linked-List	c ₂₁ * n unit time	+ c ₂₂ unit time

Overview

- What to learn in Data Structure
 - Some theory and data structure to efficiently store and manipulate data
 - Some algorithms and examples
- Example
 - Data structure: array, list, queue, tree, graph, sorting, hashing, heap, etc.
 - Algorithm: sorting, searching, minimum spanning tree, shortest path algorithm, etc.
 - Theory: abstract data types, performance analysis

Overview

• Data Structure course vs. Algorithm course

Program = Data Structure + Algorithm

Data Structure Course

Algorithm Course

Data Structure + Algorithm

Data Structure + Algorithm