Vertex AI: Qwik Start

Overview

In this lab, you will use BigQuery for data processing and exploratory data analysis and the Vertex AI platform to train and deploy a custom TensorFlow Regressor model to predict customer lifetime value. The goal of the lab is to introduce to Vertex AI through a high value real world use case - predictive CLV. You will start with a local BigQuery and TensorFlow workflow that you may already be familiar with and progress toward training and deploying your model in the cloud with Vertex AI.

Vertex AI GA No code / low code workflow Video Tables BigQuery ML Translation Vision Language Forecast Train Experiment Deploy **Custom training** New workflow New Model Monitoring ML Metadata Explainable Al **Feature Store** Pipeline Notebooks

Vertex AI is Google Cloud's next generation, unified platform for machine learning development and the successor to AI Platform announced at Google I/O in May 2021. By developing machine learning solutions on Vertex AI, you can leverage the latest ML pre-built components and AutoML to significantly enhance development productivity, the ability to scale your workflow and decision making with your data, and accelerate time to value.

Objectives

- Train a TensorFlow model locally in a hosted Vertex Notebook.
- Create a managed Tabular dataset artifact for experiment tracking.
- Containerize your training code with Cloud Build and push it to Google Cloud Artifact Registry.
- Run a Vertex AI custom training job with your custom model container.
- Use Vertex TensorBoard to visualize model performance.
- Deploy your trained model to a Vertex Online Prediction Endpoint for serving predictions.
- Request an online prediction and explanation and see the response.

Enable Google Cloud services

1. In Cloud Shell, use gcloud to enable the services used in the lab.

```
gcloud services enable \
compute.googleapis.com \
iam.googleapis.com \
iamcredentials.googleapis.com \
monitoring.googleapis.com \
logging.googleapis.com \
notebooks.googleapis.com \
aiplatform.googleapis.com \
bigquery.googleapis.com \
artifactregistry.googleapis.com \
cloudbuild.googleapis.com \
container.googleapis.com \
```

Create Vertex Al custom service account for Vertex Tensorboard integration

1. Create custom service account

SERVICE_ACCOUNT_ID=vertex-custom-training-sa gcloud iam service-accounts create \$SERVICE_ACCOUNT_ID \

- --description="A custom service account for Vertex custom training with Tensorboard" \
- --display-name="Vertex AI Custom Training"
 - 2. Grant it access to GCS for writing and retrieving Tensorboard logs

PROJECT_ID=\$(gcloud config get-value core/project)
gcloud projects add-iam-policy-binding \$PROJECT_ID \

- --member=serviceAccount:\$SERVICE_ACCOUNT_ID@\$PROJECT_ID.iam.gserviceaccount.com \
- --role="roles/storage.admin"
 - Grant it access to your BigQuery data source to read data into your TensorFlow model

```
gcloud projects add-iam-policy-binding $PROJECT_ID \
--member=serviceAccount:$SERVICE_ACCOUNT_ID@$PROJECT_ID.iam.gserviceaccount.co
m --role="roles/bigquery.admin"
```

4. Grant it access to Vertex AI for running model training, deployment, and explanation jobs.

```
gcloud projects add-iam-policy-binding $PROJECT_ID
--member=serviceAccount:$SERVICE_ACCOUNT_ID@$PROJECT_ID.iam.gserviceaccount.co
m --role="roles/aiplatform.user"
```

Deploy Vertex Notebook instance

- 1. Click on the **Navigation Menu**.
- 2. Navigate to **Vertex AI**, then to **Workbench**

- 3. On the Notebook instances page, navigate to the **User-Managed Notebooks** tab and click **New Notebook**.
- In the Customize instance menu, select TensorFlow Enterprise and choose the version of TensorFlow Enterprise 2.3 (with LTS) > Without GPUs.

5. In the **New notebook instance** dialog, for **Region**, select us-central1, for **Zone**, select a zone within the selected region, leave all other fields with their default options, and click **Create**.

After a few minutes, the Vertex AI console will display your instance name, followed by Open Jupyterlab.

6. Click **Open JupyterLab**. Your notebook is now set up.

Clone the lab repository

Next you'll clone the training-data-analyst notebook in your JupyterLab instance.

1. In JupyterLab, click the **Terminal** icon to open a new terminal.

Note: If prompted, click Cancel for Build Recommended.

2. To clone the training-data-analyst Github repository, type in the following command, and press **Enter**.

cd

git clone https://github.com/GoogleCloudPlatform/training-data-analyst

To confirm that you have cloned the repository, double-click the training-data-analyst directory and confirm that you can see its contents.

Install lab dependencies

 Run the following to go to the training-data-analyst/self-paced-labs/vertex-ai/vertex-ai-qwik start folder, then pip install requirements.txt to install lab dependencies:

cd training-data-analyst/self-paced-labs/vertex-ai/vertex-ai-qwikstart
pip install -U -r requirements.txt

Navigate to lab notebook

In your notebook, navigate to training-data-analyst > self-paced-labs > vertex-ai
 vertex-ai-qwikstart, and open lab_exercise.ipynb.

2. Continue the lab in the notebook, and run each cell by clicking the **Run** () icon at the top of the screen. Alternatively, you can execute the code in a cell with **SHIFT + ENTER**.

Read the narrative and make sure you understand what's happening in each cell.

Congratulations!

Congratulations! In this lab, you walked through a machine learning experimentation workflow using Google Cloud's BigQuery for data storage and analysis and Vertex Al's machine learning services to train and deploy a TensorFlow model to predict customer lifetime value. You progressed from training a TensorFlow model locally to training on the cloud with Vertex Al and leveraged several new unified platform capabilities such as Vertex TensorBoard and prediction feature attributions.