In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
```

In [2]:

```
import warnings
warnings.filterwarnings('ignore')
```

In [3]:

```
df = pd.read_csv("house_price_data.csv")
```

In [4]:

df.head()

Out[4]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour
0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI

5 rows × 81 columns

→

```
In [5]:
```

```
df.tail()
```

Out[5]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCo
1455	1456	60	RL	62.0	7917	Pave	NaN	Reg	
1456	1457	20	RL	85.0	13175	Pave	NaN	Reg	
1457	1458	70	RL	66.0	9042	Pave	NaN	Reg	
1458	1459	20	RL	68.0	9717	Pave	NaN	Reg	
1459	1460	20	RL	75.0	9937	Pave	NaN	Reg	

5 rows × 81 columns

→

In [6]:

```
df.shape
```

Out[6]:

(1460, 81)

In [7]:

df.columns

Out[7]:

```
'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgTyp
e',
       'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemod
Add',
      'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrTyp
e',
       'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
       'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
       'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heatin
g',
       'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
       'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullB
ath',
       'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
       'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageT
ype',
      'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQ
ual',
       'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
      'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
       'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
       'SaleCondition', 'SalePrice'],
     dtype='object')
```

```
In [8]:
df.duplicated().sum()
Out[8]:
0
In [9]:
df = df.drop_duplicates()
In [10]:
df.isnull().sum()
Out[10]:
Ιd
                     0
MSSubClass
                     0
MSZoning
                     0
LotFrontage
                   259
LotArea
                     0
MoSold
                     0
YrSold
SaleType
                     0
SaleCondition
SalePrice
                     0
Length: 81, dtype: int64
In [11]:
null_counts = df.isnull().sum()
In [12]:
features_with_null = null_counts[null_counts > 0].index
print(features_with_null)
Index(['LotFrontage', 'Alley', 'MasVnrType', 'MasVnrArea', 'BsmtQual',
        'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Electrical', 'FireplaceQu', 'GarageType', 'GarageYrBlt',
        'GarageFinish', 'GarageQual', 'GarageCond', 'PoolQC', 'Fence',
        'MiscFeature'],
       dtype='object')
```

```
In [13]:
```

```
null_counts = df[['LotFrontage', 'Alley', 'MasVnrType', 'MasVnrArea', 'BsmtQual', 'BsmtC
                   'BsmtFinType1', 'BsmtFinType2', 'Electrical', 'FireplaceQu', 'GarageTy
                   'GarageFinish', 'GarageQual', 'GarageCond', 'PoolQC', 'Fence', 'MiscFe
print(null_counts)
                                                                                            \blacktriangleright
                  259
LotFrontage
Alley
                 1369
MasVnrType
                    8
MasVnrArea
                    8
BsmtQual
                   37
BsmtCond
                   37
BsmtExposure
                   38
BsmtFinType1
                   37
BsmtFinType2
                   38
Electrical
                    1
FireplaceQu
                  690
GarageType
                   81
GarageYrBlt
                   81
GarageFinish
                   81
GarageQual
                   81
GarageCond
                   81
PoolQC
                 1453
Fence
                 1179
MiscFeature
                 1406
dtype: int64
In [14]:
numeric_features = ['LotFrontage', 'MasVnrArea', 'GarageYrBlt']
```

for feature in categorical_features:
 df[feature].fillna('None', inplace=True)

In [15]:

```
df.isnull().sum()
```

Out[15]:

Ιd 0 MSSubClass 0 0 MSZoning LotFrontage 0 LotArea 0 MoSold 0 YrSold 0 SaleType 0 SaleCondition 0 SalePrice 0

Length: 81, dtype: int64

In [16]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Data	columns (total	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1460 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	1460 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	_
12	•		object
	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1460 non-null	object
26	MasVnrArea	1460 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1460 non-null	object
31	BsmtCond	1460 non-null	object
32	BsmtExposure	1460 non-null	object
33	BsmtFinType1	1460 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1460 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1460 non-null	-
			object
43	1stFlrSF	1460 non-null	int64
44	2ndF1rSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64
51	BedroomAbvGr	1460 non-null	int64
52	KitchenAbvGr	1460 non-null	int64
53	KitchenQual	1460 non-null	object
54	TotRmsAbvGrd	1460 non-null	int64
55	Functional	1460 non-null	object

```
56 Fireplaces
                   1460 non-null
                                  int64
 57
    FireplaceQu
                   1460 non-null
                                  object
 58
                                  object
    GarageType
                   1460 non-null
 59
    GarageYrBlt
                   1460 non-null
                                  float64
60 GarageFinish
                   1460 non-null
                                  object
61 GarageCars
                   1460 non-null
                                  int64
62 GarageArea
                                  int64
                   1460 non-null
63 GarageQual
                   1460 non-null
                                  object
                                  object
64 GarageCond
                   1460 non-null
65
    PavedDrive
                   1460 non-null
                                  object
66
    WoodDeckSF
                   1460 non-null
                                  int64
                   1460 non-null
67
    OpenPorchSF
                                  int64
68 EnclosedPorch 1460 non-null
                                  int64
69
    3SsnPorch
                   1460 non-null
                                  int64
70 ScreenPorch
                   1460 non-null
                                  int64
71 PoolArea
                   1460 non-null
                                  int64
72 PoolQC
                   1460 non-null
                                  object
73
    Fence
                   1460 non-null
                                  object
74 MiscFeature
                   1460 non-null
                                  object
                                  int64
75 MiscVal
                   1460 non-null
76 MoSold
                   1460 non-null
                                  int64
77 YrSold
                   1460 non-null
                                  int64
78 SaleType
                   1460 non-null
                                  object
79 SaleCondition 1460 non-null
                                  object
80 SalePrice
                   1460 non-null
                                  int64
dtypes: float64(3), int64(35), object(43)
memory usage: 935.3+ KB
```

In [17]:

```
object_columns = df.select_dtypes(include='object').columns.tolist()
numerical_columns = df.select_dtypes(include=['int', 'float']).columns.tolist()
print("Object columns:", object_columns)
print('\n')
print("Numerical columns:", numerical_columns)
```

Object columns: ['MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'SaleType', 'SaleCondition']

Numerical columns: ['Id', 'MSSubClass', 'LotFrontage', 'LotArea', 'Overall Qual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinS F1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'Lo wQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'Hal fBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'Gar ageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'Enclo sedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'Y rSold', 'SalePrice']

In [18]:

df.describe()

Out[18]:

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	146
mean	730.500000	56.897260	70.049958	10516.828082	6.099315	5.575342	197
std	421.610009	42.300571	22.024023	9981.264932	1.382997	1.112799	:
min	1.000000	20.000000	21.000000	1300.000000	1.000000	1.000000	187
25%	365.750000	20.000000	60.000000	7553.500000	5.000000	5.000000	198
50%	730.500000	50.000000	70.049958	9478.500000	6.000000	5.000000	197
75%	1095.250000	70.000000	79.000000	11601.500000	7.000000	6.000000	200
max	1460.000000	190.000000	313.000000	215245.000000	10.000000	9.000000	201

8 rows × 38 columns

In [19]:

df.nunique()

Out[19]:

Id	1460
MSSubClass	15
MSZoning	5
LotFrontage	111
LotArea	1073
	• • •
MoSold	12
YrSold	5
SaleType	9
SaleConditio	on 6
SalePrice	663
Length: 81,	dtype: int64

```
In [20]:
```

```
for i in object_columns:
    print(i)
    print(df[i].unique())
    print('\n')
MSZoning
['RL' 'RM' 'C (all)' 'FV' 'RH']
Street
['Pave' 'Grvl']
Alley
['None' 'Grvl' 'Pave']
LotShape
['Reg' 'IR1' 'IR2' 'IR3']
LandContour
['Lvl' 'Bnk' 'Low' 'HLS']
In [21]:
for i in object_columns:
    print(i)
    print(df[i].value_counts())
    print('\n')
MSZoning
RL
           1151
RM
            218
F۷
             65
             16
RH
C (all)
             10
Name: MSZoning, dtype: int64
Street
Pave
        1454
Grvl
Name: Street, dtype: int64
Alley
None
        1369
          50
Grvl
Pave
         41
```

In [22]:

```
for i in object_columns:
    print('Countplot for:', i)
    plt.figure(figsize=(15,6))
    sns.countplot(df[i], data = df, palette = 'hls')
    plt.xticks(rotation = -45)
    plt.show()
    print('\n')
```

Countplot for: MSZoning

Countplot for: Street

In [23]:

```
for i in object_columns:
    print('Pie plot for:', i)
    plt.figure(figsize=(20, 10))
    df[i].value_counts().plot(kind='pie', autopct='%1.1f%%')
    plt.title('Distribution of ' + i)
    plt.ylabel('')
    plt.show()
    print('\n')
```


C (all)

In [24]:

```
for i in object_columns:
    fig = go.Figure(data=[go.Bar(x=df[i].value_counts().index, y=df[i].value_counts())])
    fig.update_layout(
        title=i,
        xaxis_title=i,
        yaxis_title="Count")
    fig.show()
```

MSZoning

In [25]:

```
for i in object_columns:
    print('Pie plot for:', i)
    fig = px.pie(df, names=i, title='Distribution of ' + i)
    fig.show()
    print('\n')
```

Pie plot for: MSZoning

Distribution of MSZoning

In [26]:

```
for i in numerical_columns:
    plt.figure(figsize=(15,6))
    sns.histplot(df[i], kde = True, bins = 20, palette = 'hls')
    plt.xticks(rotation = 0)
    plt.show()
```


In [27]:

```
for i in numerical_columns:
    plt.figure(figsize=(15,6))
    sns.distplot(df[i], kde = True, bins = 20)
    plt.xticks(rotation = 0)
    plt.show()
```


In [28]:

```
for i in numerical_columns:
    plt.figure(figsize=(15,6))
    sns.boxplot(df[i], data=df, palette='hls')
    plt.xticks(rotation = 0)
    plt.show()
```


In [29]:

```
for i in numerical_columns:
    plt.figure(figsize=(15,6))
    sns.violinplot(df[i], data=df, palette='hls')
    plt.xticks(rotation = 0)
    plt.show()
```



```
In [30]:
```

```
for i in numerical_columns:
    fig = go.Figure(data=[go.Histogram(x=df[i], nbinsx=20)])
    fig.update_layout(
        title=i,
        xaxis_title=i,
        yaxis_title="Count")
    fig.show()
```

Id

In [31]:

```
for i in numerical_columns:
    fig = go.Figure(data=[go.Box(x=df[i])])
    fig.update_layout(
        title=i,
        xaxis_title=i,
        yaxis_title="Value")
    fig.show()
```

Id

In [32]:

```
for i in numerical_columns:
    fig = go.Figure(data=[go.Violin(x=df[i])])
    fig.update_layout(
        title=i,
        xaxis_title=i,
        yaxis_title="Value")
    fig.show()
```

Id

In [33]:

```
for i in numerical_columns:
    for j in object_columns:
        plt.figure(figsize=(15,6))
        sns.barplot(x = df[j], y = df[i], data = df, ci = None, palette = 'hls')
        plt.show()
```


In [34]:

```
for i in numerical_columns:
    for j in object_columns:
        plt.figure(figsize=(15,6))
        sns.boxplot(x = df[j], y = df[i], data = df, palette = 'hls')
        plt.show()
```


In [35]:

1000

```
for i in numerical_columns:
    for j in object_columns:
        plt.figure(figsize=(15,6))
        sns.violinplot(x = df[j], y = df[i], data = df, palette = 'hls')
        plt.show()
```



```
In [36]:

for i in numerical_columns:
    for j in numerical_columns:
        if i != j:
            plt.figure(figsize=(15,6))
            sns.lineplot(x = df[j], y = df[i], data = df, ci = None, palette = 'hls')
        plt.show()
```


In [37]:

1000

550 500 450

```
for i in numerical_columns:
    for j in numerical_columns:
        if i != j:
            plt.figure(figsize=(15,6))
            sns.scatterplot(x = df[j], y = df[i], data = df, palette = 'hls')
            plt.show()
```


In [38]:

corr = df.corr()

In [39]:

corr

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	Y
ld	1.000000	0.011156	-0.009601	-0.033226	-0.028365	0.012609	-(
MSSubClass	0.011156	1.000000	-0.357056	-0.139781	0.032628	-0.059316	(
LotFrontage	-0.009601	-0.357056	1.000000	0.306795	0.234196	-0.052820	(
LotArea	-0.033226	-0.139781	0.306795	1.000000	0.105806	-0.005636	(
OverallQual	-0.028365	0.032628	0.234196	0.105806	1.000000	-0.091932	(
OverallCond	0.012609	-0.059316	-0.052820	-0.005636	-0.091932	1.000000	-(
YearBuilt	-0.012713	0.027850	0.117598	0.014228	0.572323	-0.375983	1
YearRemodAdd	-0.021998	0.040581	0.082746	0.013788	0.550684	0.073741	(
MasVnrArea	-0.050199	0.022895	0.179283	0.103960	0.410238	-0.127788	(
BsmtFinSF1	-0.005024	-0.069836	0.215828	0.214103	0.239666	-0.046231	(
BsmtFinSF2	-0.005968	-0.065649	0.043340	0.111170	-0.059119	0.040229	-(
BsmtUnfSF	-0.007940	-0.140759	0.122156	-0.002618	0.308159	-0.136841	(
TotalBsmtSF	-0.015415	-0.238518	0.363358	0.260833	0.537808	-0.171098	(
1stFlrSF	0.010496	-0.251758	0.414266	0.299475	0.476224	-0.144203	C
2ndFlrSF	0.005590	0.307886	0.072483	0.050986	0.295493	0.028942	C
LowQualFinSF	-0.044230	0.046474	0.036849	0.004779	-0.030429	0.025494	-(
GrLivArea	0.008273	0.074853	0.368392	0.263116	0.593007	-0.079686	C
BsmtFullBath	0.002289	0.003491	0.091481	0.158155	0.111098	-0.054942	(
BsmtHalfBath	-0.020155	-0.002333	-0.006419	0.048046	-0.040150	0.117821	-(
FullBath	0.005587	0.131608	0.180424	0.126031	0.550600	-0.194149	(
HalfBath	0.006784	0.177354	0.048258	0.014259	0.273458	-0.060769	(
BedroomAbvGr	0.037719	-0.023438	0.237023	0.119690	0.101676	0.012980	-(
KitchenAbvGr	0.002951	0.281721	-0.005805	-0.017784	-0.183882	-0.087001	-(
TotRmsAbvGrd	0.027239	0.040380	0.320146	0.190015	0.427452	-0.057583	(
Fireplaces	-0.019772	-0.045569	0.235755	0.271364	0.396765	-0.023820	(
GarageYrBlt	0.000070	0.080187	0.064324	-0.024812	0.518018	-0.306169	(
GarageCars	0.016570	-0.040110	0.269729	0.154871	0.600671	-0.185758	(
GarageArea	0.017634	-0.098672	0.323663	0.180403	0.562022	-0.151521	(
WoodDeckSF	-0.029643	-0.012579	0.077106	0.171698	0.238923	-0.003334	(
OpenPorchSF	-0.000477	-0.006100	0.137454	0.084774	0.308819	-0.032589	(
EnclosedPorch	0.002889	-0.012037	0.009790	-0.018340	-0.113937	0.070356	-(
3SsnPorch	-0.046635	-0.043825	0.062335	0.020423	0.030371	0.025504	(
ScreenPorch	0.001330	-0.026030	0.037684	0.043160	0.064886	0.054811	-(
PoolArea	0.057044	0.008283	0.180868	0.077672	0.065166	-0.001985	(
MiscVal	-0.006242	-0.007683	0.001168	0.038068	-0.031406	0.068777	-(
MoSold	0.021172	-0.013585	0.010158	0.001205	0.070815	-0.003511	C
YrSold	0.000712	-0.021407	0.006768	-0.014261	-0.027347	0.043950	-(

38 rows × 38 columns

In [40]:

```
plt.figure(figsize=(30, 20))
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Plot')
plt.show()
```


In [41]:

```
df1 = df.copy()
```

In [42]:

```
plt.figure(figsize=(15,6))
sns.histplot(df1['SalePrice'], kde = True, bins = 20, palette = 'hls')
plt.xticks(rotation = 0)
plt.show()
```


In [43]:

```
plt.figure(figsize=(15,6))
sns.distplot(df1['SalePrice'], kde = True)
plt.xticks(rotation = 0)
plt.show()
```


In [44]:

```
df1['SalePrice'] = np.log(df1['SalePrice'])
```

In [45]:

```
plt.figure(figsize=(15,6))
sns.distplot(df1['SalePrice'], kde = True)
plt.xticks(rotation = 0)
plt.show()
```


In [46]:

from sklearn.preprocessing import StandardScaler
from scipy import stats

In [47]:

```
fig = plt.figure()
res = stats.probplot(df1['SalePrice'], plot=plt)
```


In [48]:

```
df1 = df1.drop('Id', axis = 1)
```

```
In [49]:
```

In [50]:

```
skewness = df1[numerical_columns].skew()
skewed_columns = skewness[(skewness > 1) | (skewness < -1)]
print(skewed_columns)</pre>
```

```
MSSubClass
                  1.407657
LotFrontage
                  2.384950
LotArea
                 12.207688
                  2.676412
MasVnrArea
BsmtFinSF1
                  1.685503
BsmtFinSF2
                  4.255261
TotalBsmtSF
                  1.524255
1stFlrSF
                  1.376757
LowQualFinSF
                  9.011341
GrLivArea
                  1.366560
BsmtHalfBath
                  4.103403
KitchenAbvGr
                  4.488397
WoodDeckSF
                  1.541376
OpenPorchSF
                  2.364342
EnclosedPorch
                  3.089872
3SsnPorch
                 10.304342
ScreenPorch
                  4.122214
PoolArea
                 14.828374
                 24,476794
MiscVal
dtype: float64
```

In [51]:

In [52]:

In [53]:

```
for feature in transformed_features:
   plt.figure(figsize=(8, 6))
   sns.histplot(df1[feature], kde=True)
   plt.title(f'Distribution of {feature}')
   plt.xlabel(feature)
   plt.ylabel('Density')
   plt.show()
```


In [54]:

```
df1 = pd.get_dummies(df1, columns=object_columns, drop_first=True)
```

In [55]:

df1

Out[55]:

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodA
0	60	4.189655	9.042040	7	5	2003	20
1	20	4.394449	9.169623	6	8	1976	19
2	60	4.234107	9.328212	7	5	2001	20
3	70	4.110874	9.164401	7	5	1915	19
4	60	4.442651	9.565284	8	5	2000	20
1455	60	4.143135	8.976894	6	5	1999	20
1456	20	4.454347	9.486152	6	6	1978	19
1457	70	4.204693	9.109746	7	9	1941	20
1458	20	4.234107	9.181735	5	6	1950	19
1459	20	4.330733	9.204121	5	6	1965	19

1460 rows × 261 columns

→

In [56]:

```
X = df1.drop(['SalePrice'], axis = 1)
y = df1['SalePrice']
```

In [57]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
```

In [58]:

```
from sklearn.linear_model import LinearRegression
regression_model = LinearRegression()
```

In [59]:

```
regression_model.fit(X_train, y_train)
```

Out[59]:

```
v LinearRegression
LinearRegression()
```

```
In [60]:
y_pred = regression_model.predict(X_test)
In [61]:
from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2_linear = r2_score(y_test, y_pred)
print("Mean Squared Error (MSE):", mse)
print("Root Mean Squared Error (RMSE):", rmse)
print("R-squared Score:", r2_linear)
Mean Squared Error (MSE): 0.01939759040469888
Root Mean Squared Error (RMSE): 0.1392752325602039
R-squared Score: 0.8960547414419818
In [62]:
from sklearn.linear_model import Lasso, Ridge
lasso_model = Lasso()
ridge_model = Ridge()
In [63]:
lasso_model.fit(X_train, y_train)
Out[63]:
 ▼ Lasso
Lasso()
In [64]:
ridge_model.fit(X_train, y_train)
Out[64]:
 ▼ Ridge
Ridge()
```

In [65]:

lasso_y_pred = lasso_model.predict(X_test)
ridge_y_pred = ridge_model.predict(X_test)

```
In [66]:
```

```
from sklearn.metrics import mean_squared_error, r2_score
lasso_mse = mean_squared_error(y_test, lasso_y_pred)
lasso_rmse = np.sqrt(lasso_mse)
lasso_r2 = r2_score(y_test, lasso_y_pred)
ridge_mse = mean_squared_error(y_test, ridge_y_pred)
ridge_rmse = np.sqrt(ridge_mse)
ridge_r2 = r2_score(y_test, ridge_y_pred)
print("Lasso Regression - Mean Squared Error (MSE):", lasso_mse)
print("Lasso Regression - Root Mean Squared Error (RMSE):", lasso_rmse)
print("Lasso Regression - R-squared Score:", lasso_r2)
print('\n')
print("Ridge Regression - Mean Squared Error (MSE):", ridge_mse)
print("Ridge Regression - Root Mean Squared Error (RMSE):", ridge_rmse)
print("Ridge Regression - R-squared Score:", ridge_r2)
Lasso Regression - Mean Squared Error (MSE): 0.07508906390930213
Lasso Regression - Root Mean Squared Error (RMSE): 0.27402383821357973
Lasso Regression - R-squared Score: 0.5976225912553943
Ridge Regression - Mean Squared Error (MSE): 0.018095090829807328
Ridge Regression - Root Mean Squared Error (RMSE): 0.13451799444612356
Ridge Regression - R-squared Score: 0.9030344050114845
In [67]:
from sklearn.linear_model import ElasticNet
In [68]:
model = ElasticNet(alpha=1.0, l1 ratio=0.5)
In [69]:
model.fit(X_train, y_train)
Out[69]:
▼ ElasticNet
ElasticNet()
In [70]:
y_pred = model.predict(X_test)
```

```
In [71]:
```

```
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2_elastic = r2_score(y_test, y_pred)

print("Mean Squared Error (MSE):", mse)
print("Root Mean Squared Error (RMSE):", rmse)
print("R-squared Score:", r2_elastic)
```

Mean Squared Error (MSE): 0.07107240352499863 Root Mean Squared Error (RMSE): 0.2665940800636778 R-squared Score: 0.6191465431213455

In [72]:

from sklearn.tree import DecisionTreeRegressor

In [73]:

```
regressor = DecisionTreeRegressor(random_state=42)
```

In [74]:

```
regressor.fit(X_train, y_train)
```

Out[74]:

```
DecisionTreeRegressor
DecisionTreeRegressor(random_state=42)
```

In [75]:

```
y_pred = regressor.predict(X_test)
```

In [76]:

```
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2_decision = r2_score(y_test, y_pred)

print("Mean Squared Error (MSE):", mse)
print("Root Mean Absolute Error (RMSE):", rmse)
print("R-squared Score:", r2_decision)
```

Mean Squared Error (MSE): 0.040017724625345835 Root Mean Absolute Error (RMSE): 0.20004430665566525 R-squared Score: 0.7855582757290561

```
In [77]:
from sklearn.ensemble import RandomForestRegressor
In [78]:
regressor = RandomForestRegressor(random_state=42)
In [79]:
regressor.fit(X_train, y_train)
Out[79]:
          RandomForestRegressor
RandomForestRegresspr(random_state=42)
In [80]:
y_pred = regressor.predict(X_test)
In [81]:
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2_random = r2_score(y_test, y_pred)
print("Mean Squared Error (MSE):", mse)
print("Root Mean Absolute Error (RMSE):", rmse)
print("R-squared Score:", r2_random)
Mean Squared Error (MSE): 0.02146666608916207
Root Mean Absolute Error (RMSE): 0.1465150712014367
R-squared Score: 0.884967250546951
In [82]:
from xgboost import XGBRegressor
```

In [83]:

regressor = XGBRegressor(random_state=42)

In [84]:

```
regressor.fit(X_train, y_train)
```

Out[84]:

In [85]:

```
y_pred = regressor.predict(X_test)
```

In [86]:

```
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2_xgboost = r2_score(y_test, y_pred)

print("Mean Squared Error (MSE):", mse)
print("Root Mean Squared Error (RMSE):", rmse)
print("R-squared Score:", r2_xgboost)
```

Mean Squared Error (MSE): 0.025051259332159053 Root Mean Squared Error (RMSE): 0.15827589624500332 R-squared Score: 0.8657586033028899

In [87]:

```
r2_scores = [r2_linear, lasso_r2, ridge_r2, r2_elastic, r2_decision, r2_random, r2_xgboo
algorithms = ['Linear Regression', 'Lasso Regression', 'Ridge Regression', 'ElasticNet R
```

In [88]:

```
plt.figure(figsize=(10, 6))
plt.bar(algorithms, r2_scores)
plt.xlabel('Regression Algorithm')
plt.ylabel('R-squared Score')
plt.title('Comparative R-squared Scores for Regression Algorithms')
plt.xticks(rotation=45)
plt.show()
```


In [89]:

```
fig = go.Figure(data=[go.Bar(x=algorithms, y=r2_scores)])
fig.update_layout(
    title='Comparative R-squared Scores for Regression Algorithms',
    xaxis_title='Regression Algorithm',
    yaxis_title='R-squared Score'
)
fig.show()
```

Comparative R-squared Scores for Regression Algorithms

