# Finite representation of real numbers Floating-point numbers

Dr. Ing. Rodrigo Gonzalez

rodrigo.gonzalez@ingenieria.uncu.edu.ar

Técnicas Digitales III

Universidad Tecnológica Nacional, Facultad Regional Mendoza.



## Summary

- Floating-point Representation
  - Floating-point Representation
  - Standards
  - Normalized Form
- Floating-point Examples
- De-normalized Form
- Special values
- Sounding schemes supported by IEEE-754
- Opposition of the property of the property
- Precision
- 8 Precision problems

## Floating-point Representation

A floating-point number can represent a very large or a very small value, positive and negative.



Floating-point Numbers (Decimal)

A floating-point number is typically expressed in the scientific notation in the form of

$$(-1)^{\mathcal{S}} \times F \times r^{\mathcal{E}}$$
,

where,

- S, sign bit.
- F, fraction.
- E, biased exponent.
- r, certain radix. r = 2 for binary; r = 10 for decimal.

#### Standards

Modern computers adopt IEEE 754-2008 standard for representing floating-point numbers.

|          |                                         |                                         |                |                                         |                | IEE                   | E Sta          | ndar                                    | d P7                                    | 54 Fo                                   | rmat   |      |    |      |       |      |
|----------|-----------------------------------------|-----------------------------------------|----------------|-----------------------------------------|----------------|-----------------------|----------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------|------|----|------|-------|------|
| Bit      | 31                                      | 30                                      | 29             | 28                                      | 27             | 26                    | 25             | 24                                      | 23                                      | 22                                      | 21     | 20   |    | 2    | 1     | 0    |
|          | S                                       | 27                                      | 26             | 25                                      | 24             | 23                    | 22             | 21                                      | 20                                      | 2 1                                     | 2 2    | 2 3  |    | 2 21 | 2 22  | 2-23 |
| Sign (s) |                                         | $\leftarrow$ Exponent (c) $\rightarrow$ |                |                                         |                |                       |                |                                         | $\leftarrow$ Fraction $(f) \rightarrow$ |                                         |        |      |    |      |       |      |
|          |                                         |                                         |                |                                         |                |                       | I              | BM I                                    | Form                                    | at                                      |        |      |    |      |       |      |
| Bit      | 31                                      | 30                                      | 29             | 28                                      | 27             | 26                    | 25             | 24                                      | 23                                      | 22                                      | 21     | 20   |    | 2    | 1     | 0    |
|          | S                                       | 26                                      | 25             | 24                                      | 2 <sup>3</sup> | 2 <sup>2</sup>        | 21             | 20                                      | 2-1                                     | 2 2                                     | 2-3    | 2-4  |    | 2 22 | 2 23  | 2 24 |
| Sign     | Sign (s)                                |                                         |                | $\leftarrow$ Exponent $(e) \rightarrow$ |                |                       |                |                                         |                                         | $\leftarrow$ Fraction $(f) \rightarrow$ |        |      |    |      |       |      |
|          |                                         |                                         |                |                                         | DEC            | (Dig                  | ital I         | Equip                                   | omer                                    | nt Co                                   | rp.) F | orma | t  |      |       |      |
| Bit      | 31                                      | 30                                      | 29             | 28                                      | 27             | 26                    | 25             | 24                                      | 23                                      | 22                                      | 21     | 20   |    | 2    | 1     | 0    |
|          | S                                       | 27                                      | 2 <sup>6</sup> | 25                                      | 24             | <b>2</b> <sup>3</sup> | 2 <sup>2</sup> | 21                                      | 20                                      | 2-2                                     | 2 -3   | 2 4  |    | 2 22 | 2 -23 | 2 24 |
| Sigr     | n (s)                                   | $\leftarrow$ Exponent (e) $\rightarrow$ |                |                                         |                |                       |                |                                         | $\leftarrow$ Fraction $(f) \rightarrow$ |                                         |        |      |    |      |       |      |
|          |                                         |                                         |                |                                         |                | M                     | IL-S           | TD 1                                    | 750                                     | \ For                                   | mat    |      |    |      |       |      |
| Bit      | 31                                      | 30                                      | 29             |                                         | 11             | 10                    | 9              | 8                                       | 7                                       | 6                                       | 5      | 4    | 3  | 2    | 1     | 0    |
|          | 20                                      | 2 1                                     | 2 2            |                                         | 2-20           | 2 21                  | 2 -22          | 2 -23                                   | 27                                      | 26                                      | 25     | 24   | 23 | 22   | 21    | 20   |
|          | $\leftarrow$ Fraction $(f) \rightarrow$ |                                         |                |                                         |                |                       |                | $\leftarrow$ Exponent (e) $\rightarrow$ |                                         |                                         |        |      |    |      |       |      |

#### IEEE 754-2008 standard

#### IEEE 754-2008 standard defines several formats.

|                | Binary form       | nats $(B=2)$     | Decimal formats $(B = 10)$ |                     |                |                |                |
|----------------|-------------------|------------------|----------------------------|---------------------|----------------|----------------|----------------|
| Parameter      | Binary<br>16      | Binary<br>32     | Binary<br>64               | Binary<br>128       | Decimal<br>132 | Decimal<br>164 | Decimal<br>128 |
| p, digits      | 10 + 1            | 23 + 1           | 52 + 1                     | 112 + 1             | 7              | 16             | 34             |
| $e_{max}$      | +15               | +127             | +1023                      | +16383              | +96            | +384           | +16,383        |
| $e_{min}$      | -14               | -126             | -1022                      | -16382              | -95            | -383           | -16,382        |
| Common<br>name | Half<br>precision | Single precision | Double precision           | Quadruple precision |                |                |                |

## IEEE-754 32-bit Single-Precision



$$(-1)^S \times F \times r^{(E-bias)}$$

- *S*, sign bit. **0** for positive numbers and **1** for negative numbers.
- F, 23-bits fraction:  $\begin{bmatrix} 2^{-1} & 2^{-2} \cdots 2^{-23} \end{bmatrix}$
- We need to represent both positive and negative exponents.
- *E*, 8-bits exponent, **no sign bit**.
  - E = [1, 254], bias = 127;  $-126 \le E bias \le 127$ .
  - E = 0 and E = 255 are reserved.

#### Normalized Form



- Representation of a floating point number may not be unique:
- For example, the number 13.25 can be represented as

$$1101.01 * (2^0) = 110.101 * (2^1) = 11.0101 * (2^2) = 1.10101 * (2^3)$$

- A floating point number is normalized when the integer part of its mantissa is forced to be exactly 1 and its fraction is adjusted accordingly.
- The leading 1 is implicit. It is not part of the 32 bits number.
- 1.F = 1.  $[2^{-1} \ 2^{-2} \cdots 2^{-23}]$ .

## Example <sup>1</sup>

#### Represent 3215.020002<sub>10</sub>

```
Decimal Value Entered: 3215.020002
Single precision (32 bits):
          Status: normal
Binary:
  Bit 31
                            Bits 30 - 23
                                                                       Bits 22 - 0
 Sign Bit
                           Exponent Field
                                                                       Significand
   0
                              100 0101 0
                                                              1 .100 1000 1111 0000 0101 0010
           Decimal value of exponent field and exponent | Decimal value of the significand
   1: -
                        138
                              - 127 = 11
                                                                       1.5698340
Hexadecimal: 4548F052
                          Decimal: 3215.0200
```

http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

### Example 2

Represent  $3215.020002_{10} \times 2 = 6430.040004_{10}$ 

Decimal Value Entered: 6430.040004

#### Single precision (32 bits):

```
Binary:
          Status: normal
```

```
Bit 31
                          Bits 30 - 23
Sign Bit
                         Exponent Field
  0
                            10001011
  0: +
         Decimal value of exponent field and exponent
  1: -
                            - 127 = 12
                      139
```

```
Bits 22 - 0
           Significand
  1 .10010001111000001010010
Decimal value of the significand
```

1.5698340

Hexadecimal: 45C8F052

Decimal: 6430.0400

## Example 3

Represent  $3215.020002_{10}/4 = 803.7550005_{10}$ 

Decimal Value Entered: 803.7550005

Single precision (32 bits):

Binary: Status: normal

Hexadecimal: 4448F052 Decimal: 803.75500

Floating-point numbers are auto-scaled!

#### De-normalized Form

## Not all real numbers in the range are representable



#### Normalized floating-point numbers



#### Denormalized floating-point numbers

- Normalized form has a serious problem.
- The number zero cannot be represent with an implicit leading 1!
- De-normalized form is devised to represent zero and small numbers.
- $E = 0 \implies 0.F$ , implicit leading 0: **0.**  $[2^{-1} \ 2^{-2} \cdots 2^{-23}]$ .

#### Example

#### Represent -3.4E-39<sub>10</sub>

Decimal Value Entered: -3.4e-39

#### Single precision (32 bits):



Hexadecimal: 802505D1 Decimal: -3.3999999e-39

## Special values

- **Zero**: E = 0, F = 0. Two representations: **+0** (S = 0) and **-0** (S = 1).
- Inf (Infinity): E = 0xFF, F = 0. Two representations: +Inf (S = 0) and -Inf (S = 1).
- NaN (Not a Number): E = 0xFF,  $F \neq 0$ . A value that cannot be represented as a real number (e.g. 0/0).

## **MATLAB**

- $0 \sim a = 1/0$
- ② » ans = Inf
- 0 > b = -1/0
- $\bigcirc$  » ans = -Inf
- $\bigcirc$  » c = 0/0
- 0 » ans = NaN

## Rounding schemes



- ulp (unit of least precision). In MATLAB, eps ().
- f, significant, f = 1.F.
- f' and f'' being two successive multiples of ulp.
- Assume that f' < f < f''.
- f'' = f' + ulp.
- Then, the rounding function round(f) associates to f either f' or f'', according to some rounding strategy.

## Rounding schemes supported by IEEE-754, II



#### Rounding schemes are:

- Truncation (also called round toward 0 or chopping):
  - if f is positive, round(f) = f'.
  - if f is negative, round(-f) = f''.
- Round toward plus infinity: round(f) = f".
- Round toward minus infinity: round(f) = f'.
- Round to nearest (default):
  - if f < f' + ulp/2, round(f) = f'.
  - if f > f' + ulp/2, round(f) = f''.

## Dynamic range

Dynamic range for floating-point numbers is defined as,

$$DR_{dB} \approx 6.02 \cdot 2^{b_E}$$

where  $b_E$  is the number of bits of E.

For single precision (32-bits):

$$\textit{DR}_{\textit{dB}} \approx 6.02 \cdot 2^8 \approx 1541\, \text{dB}$$

For 32-bits fixed point:

$$DR_{dB} \approx 6.02 \cdot 31 \approx 186 \, dB$$

#### Precision

- Precision is not constant throughout all floating-point numbers' range.
- As the numbers get larger, the precision gets larger as well.

#### **MATLAB**

```
w u = linspace(-15,15,1000);

y q = quantizer([6 4],'float'); % [wordlength exponentlength]

wy1 = quantize(q,u);

plot(u,y1); title(tostring(q))

wy2 = quantizer('fixed',[5 1]); % [wordlength fractionlength]

yy2 = quantize(q,u);

plot(u,y2); title(tostring(q))
```





#### Precision IV

eps(x) returns the positive distance from abs(x) to the next larger floating point number of the same precision.

#### **MATLAB**

- $\bigcirc$  » e1 = eps(single(1))
- ② » e1 = 1.1920929e-07
- $\bigcirc$  » e2 = 9.5367432e-07
- » e3 = eps(single(1e10))
- $0 \sim e3 = 1024$
- 0 > t = single(1e10) + single(1300)
- $\bigcirc$  » t = 10000001024.00

## Sum of two floating-point positive numbers

Perform 0.5 + (-0.4375) using 4 bits for the mantissa.

$$0.5 = 0.1 \times 2^0 = 1.000 \times 2^{-1} \text{ (normalised)}$$
 
$$-0.4375 = -0.0111 \times 2^0 = -1.110 \times 2^{-2} \text{ (normalised)}$$

Matches with the exponent of the larger number:

Apply *n* left shifts to -1.110 where n = (exponent1 - exponent2).

$$-1.110 \times 2^{-2} = -0.1110 \times 2^{-1}$$

Add the mantissas:

$$1.000 \times 2^{-1} + -0.1110 \times 2^{-1} = 0.001 \times 2^{-1}$$

Normalise the sum, checking for overflow/underflow:

$$0.001 \times 2^{-1} = 1.000 \times 2^{-4}$$

$$-126 <= -4 <= 127$$
 No overflow or underflow

Round the sum:

The sum fits in 4 bits so rounding is not required

## Sum of two floating-point positive numbers, II

Perform 1e10 + 1300 using IEEE-754 single precision.

Matches with the exponent of the larger number:

Apply n left shifts to 1.01000101000000000000000000 where n = (exponent1 - exponent2).

$$1300 = 1.01000101000000000000000000 \times r^{(137-127)}$$

Add the mantissas:

Normalise the sum, checking for overflow/underflow:

$$1.001010100000010111111001 \times r^{(160-127)}$$

$$-126 <= (160 - 127) <= 127$$
 No overflow or underflow

Round the sum:

The sum fits in 23 bits so rounding is not required

## More examples

 When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

#### **MATLAB**

- $\bigcirc$  » (2^53 + 1) 2^53
- $\bigcirc$  » ans = 0
- $\bigcirc$  » x = 0;
- $\bigcirc$  » t = tan(x) sin(x)/cos(x)
- 0 > t = 0
- $0 \times x = 1;$
- $\bigcirc$  » t = tan(x) sin(x)/cos(x)
- 0 > t = 2.2204e 16 % eps(1)

## Fixed-point vs floating-point



## Bibliography

1 Jean-Pierre Deschamps, Gustavo D. Sutter, and Enrique Cantó. Guide to FPGA Implementation of Arithmetic Functions, Chapter 12.