3章 関数とグラフ

練習問題 2-A

1.
$$y=f(x)$$
 とおく .
$$(1) \qquad f(-x)=\frac{-x}{(-x)^2+1}$$

$$=-\frac{x}{x^2+1}$$

$$=-f(x)$$

よって,奇関数である.

(2)
$$f(-x) = (-x)^4 - 5(-x)^2$$
$$= x^4 - 5x^2$$
$$= f(x)$$
よって、偶関数である.

(3)
$$f(-x) = (-x)^6 - 2(-x)^3$$
$$= x^6 - 2(-x^3)$$
$$= x^6 + 2x^3$$
$$f(-x) \neq f(x), \quad f(-x) \neq -f(x)$$
よって、奇関数でも偶関数でもない.

$$f(-x) = |-x|$$

$$= |x|$$

$$= f(x)$$

よって、偶関数である.

2. (1) この関数のグラフは , $y=x^3$ のグラフを , x 軸方向に -1 , y 軸方向に -2 平行移動したものである .

§ 2 いろいろな関数 (p.99~p.100)

(2) この関数のグラフは , $y=-x^4$ のグラフを , x 軸方向に 1 , y 軸方向に 2 平行移動したものである .

(3) 分子を分母で割ると

$$\begin{array}{c|c}
 & -1 \\
x+1 \overline{\smash{\big)} - x + 1} \\
 & \underline{-x - 1} \\
2
\end{array}$$

よって,
$$y = \frac{2}{x+1} - 1$$

この関数のグラフは , $y=\frac{2}{x}$ のグラフを , x軸方向に -1 , y 軸方向に -1 平行移動したものである

定義域は $x \neq -1$, 値域は $y \neq -1$ で , 漸近線は , x = -1 , y = -1 である .

[式変形の別解]

$$y = \frac{-(x+1)+2}{x+1}$$
$$= \frac{-(x+1)}{x+1} + \frac{2}{x+1}$$
$$= \frac{2}{x+1} - 1$$

(4) 分子を分母で割ると

$$\begin{array}{c}
-1 \\
-x+2 \overline{\smash{\big)}\ x} \\
\underline{x-2} \\
2
\end{array}$$

よって,
$$y = \frac{2}{-x+2} - 1$$

$$= -\frac{2}{x-2} - 1$$

この関数のグラフは , $y=-\frac{2}{x}$ のグラフを , x 軸方向に 2 , y 軸方向に -1 平行移動したものである .

定義域は $x \neq 2$, 値域は $y \neq -1$ で , 漸近線は , $x=2, \ y=-1$ である .

〔式変形の別解〕

$$y = \frac{(x-2)+2}{-(x-2)}$$

$$= \frac{x-2}{-(x-2)} + \frac{2}{-(x-2)}$$

$$= -\frac{2}{x-2} - 1$$

(5)
$$y = \sqrt{-3(x-2)} + 1$$

この関数のグラフは , $y=\sqrt{-3x}$ のグラフを , x 軸方向に 2 , y 軸方向に 1 平行移動したものである .

定義域は $-3x+6 \ge 0$ より, $x \le 2$.

(6) この関数のグラフは , $y=2\sqrt{x}$ のグラフを , x 軸方向に -1 , y 軸方向に 3 平行移動したものである .

定義域は $x+1 \ge 0$ より, $x \ge -1$.

3.
$$y = \frac{\frac{1}{2}(2x-1) + \frac{1}{2} + 2}{2x-1}$$
$$= \frac{\frac{1}{2}(2x-1) + \frac{5}{2}}{2x-1}$$
$$= \frac{1}{2} + \frac{5}{4\left(x - \frac{1}{2}\right)}$$
$$= \frac{5}{4\left(x - \frac{1}{2}\right)} + \frac{1}{2}$$

よって , この関数のグラフは , $y=\frac{5}{4x}\left(y=\frac{\frac{5}{4}}{x}\right)$

のグラフを , x 軸方向に $\frac{1}{2}$, y 軸方向に $\frac{1}{2}$ 平行移動したものである .

定義域は, $x \neq \frac{1}{2}$,値域は, $y \neq \frac{1}{2}$ で,漸近線は, $x = \frac{1}{2},\; y = \frac{1}{2}$ である.

$$x=-2$$
 のとき , $y=rac{-2+2}{2\cdot(-2)-1}=0$ $x=0$ のとき , $y=rac{0+2}{2\cdot0-1}=-2$

与えられた定義域でのグラフを書くと

よって,値域は, $-2 \le y \le 0$

4. グラフが,点 $(-1,\ 1)$ を通るので $1=rac{a\cdot(-1)+b}{2\cdot(-1)+1}$ $1=rac{-a+b}{-1}$ すなわち, $-a+b=-1\cdots$ ①

$$y = \frac{a\left(x + \frac{1}{2}\right) - \frac{1}{2}a + b}{2\left(x + \frac{1}{2}\right)}$$
$$= -\frac{\frac{1}{2}a - b}{2\left(x + \frac{1}{2}\right)} + \frac{a}{2}$$
$$= -\frac{\frac{1}{4}(a - 2b)}{x + \frac{1}{2}} + \frac{a}{2}$$

よって,漸近線は,
$$x=-\frac{1}{2}$$
, $y=\frac{a}{2}$ であるから $\frac{a}{2}=2$,すなわち, $a=4$ これを,①に代入して $-4+b=-1$ $b=3$ したがって, $a=4$, $b=3$

5.
$$y = \sqrt{2(x-3)}$$

よって,この関数のグラフは, $y=\sqrt{2x}$ のグラフを x 軸方向に3 平行移動したものである. 定義域は, $2x-6 \ge 0$ より, $x \ge 3$

グラフより,
$$x=a$$
 のとき, $y=2$ となればよいので
$$2=\sqrt{2a-6}$$
 両辺を 2 乗して
$$4=2a-6$$
 $2a=10$

6. (1) 逆関数は,
$$x=ay+b$$
 これを, y について解くと $ay+b=x$ $ay=x-b$ $a \neq 0$ なので

a = 5

$$y=rac{1}{a}x-rac{b}{a}$$
定義域,値域は,すべての実数.

(2) この関数の定義域は, $x \le 0$,値域は, $y \ge -2$ であるから,逆関数の定義域,値域はそれぞれ $x \ge -2, \ y \le 0$ 逆関数は, $x = y^2 - 2$

これを,
$$y$$
 について解くと $y^2-2=x$ $y^2=x+2$ $y\leq 0$ なので $y=-\sqrt{x+2}$

(3) この関数の定義域は,x = -b,値域は,y = 0であるから,逆関数の定義域,値域はそれぞれ

$$x \neq 0, \; y \neq -b$$
 逆関数は, $x = \frac{a}{y+b}$ これを, y について解くと
$$x(y+b) = a$$
 $x \neq 0$ なので

$$y+b = \frac{a}{x}$$

$$y = \frac{a}{x} - b$$

$$(4) \qquad y = \frac{(x+3)-4}{x+3}$$

$$= -\frac{4}{x+3} + 1$$

この関数の定義域は,x = -3,値域は,y = 1であるから、逆関数の定義域、値域はそれぞれ

$$x \neq 1, \ y \neq -3$$

逆関数は, $x = \frac{y-1}{y+3}$
これを, y について解くと $x(y+3) = y-1$ $xy-y = 3x-1$ $y(x-1) = -3x-1$ $x \neq 1$ なので $y = \frac{-3x-1}{x+1}$

この関数の定義域は, $x \ge 1$,値域は, $y \ge 3$ である から,逆関数の定義域,値域はそれぞれ

$$x \geq 3, \quad y \geq 1$$

逆関数は, $x=(y-1)^2+3$
これを, y について解くと
 $(y-1)^2=x-3$
 $y \geq 1$ より, $y-1 \geq 0$ であるから
 $y-1=\sqrt{x-3}$
 $y=\sqrt{x-3}+1 \quad (x \geq 3)$

練習問題 2-B

1. グラフが原点を通るから $0=rac{0+b}{0+c}$ すなわち,b=0

$$y=rac{a(x+c)-ac+b}{x+c}$$

$$=a+rac{b-ac}{x+c}=rac{b-ac}{x+c}+a$$
 よって,漸近線は, $x=-c,\;y=a$ であるから $-c=-1,\;a=2$ 以上より, $a=2,\;b=0,\;c=1$

2. $y=\sqrt{kx}$ のグラフを,x 軸方向に -3,y 軸方向に 1 平行移動したグラフの式は, $y-1=\sqrt{k(x+3)}$ である.

このグラフが , 点
$$(-11,\ 5)$$
 を通るので $5-1=\sqrt{k(-11+3)}$ $4=\sqrt{-8k}$ $4^2=(\sqrt{-8k})^2$ $16=-8k$ よって , $k=-2$

3. $y=-\sqrt{-2(x-2)}$ であるから,このグラフは, $y=-\sqrt{-2x}$ のグラフを,x 軸方向に 2 平行移動したものである.

定義域は, $4-2x \ge 0$ より, $x \le 2$

グラフより , x=a のとき , y=-3 となればよいの で

$$-3=-\sqrt{4-2a}$$
 $(-3)^2=(-\sqrt{4-2a})^2$ $9=4-2a$ $2a=-5$ よって, $a=-\frac{5}{2}$

4.
$$y = \frac{x + \frac{k}{2} - \frac{k}{2} - 1}{2\left(x + \frac{k}{2}\right)}$$
$$= \frac{-\frac{k}{2} - 1}{2\left(x + \frac{k}{2}\right)} + \frac{1}{2}$$

逆関数が存在するためには , $-\frac{k}{2}-1 \neq 0$, すなわち , $k \neq -2$

このとき,この関数の定義域は, $x = -\frac{k}{2}$,値域は, $y = \frac{1}{2}$ であるから,逆関数の定義域は, $x = \frac{1}{2}$,値域は, $x = \frac{1}{2}$,値域は, $x = \frac{1}{2}$

逆関数は, $x=\frac{y-1}{2y+k}$ であるから,これを y について解くと

$$(2y+k)x = y-1$$
$$2yx + kx = y-1$$

$$(2x-1)y=-kx-1$$
 $x
eq rac{1}{2}$ であるから , $y=rac{-kx-1}{2x-1}$

これともとの関数である $y=\frac{x-1}{2x+k}$ が一致するの

で , $\frac{x-1}{2x+k}=\frac{-kx-1}{2x-1}$ が , x についての恒等式になる .

両辺に
$$(2x+k)(2x-1)$$
 をかけると $(x-1)(2x+1)=(-kx-1)(2x+k)$ $2x^2-3x+1=-2kx^2+(-k^2-2)x-k$ よって
$$\begin{cases} 2=-2k \\ -3=-k^2-2 \\ 1=-k \end{cases}$$
 したがって, $k=-1$

恒等式に持ち込まなくても, $\frac{x-1}{2x+k}=\frac{-kx-1}{2x-1}$ から,k=-1 としてもいいかもしれません.

5.
$$f(x) = \frac{a(x-3) + 3a + b}{x-3}$$
$$= \frac{3a+b}{x-3} + a$$

逆関数が存在するためには , $3a+b \neq 0$

このとき ,この関数の定義域は $x \neq 3$,値域は , $y \neq a$ であるから , 逆関数の定義域は , $x \neq a$, 値域は , $y \neq 3$ 逆関数は, $x=\frac{ay+b}{y-3}$ であるから,これをyにつ

いて解くと

$$(y-3)x=ay+b$$

$$xy-3x=ay+b$$

$$(x-a)y=3x+b$$

$$(x-a)y=3x+b$$

$$x \neq a$$
 であるから , $g(x)=\frac{3x+b}{x-a}$ $f(2)=1$ より $1=\frac{2a+b}{-1}$, すなわち , $2a+b=-1\cdots$ ①

 $4=rac{9+b}{3-a}$, すなわち , 4(3-a)=9+b

整理すると, $4a+b=3\cdots ②$ ① , ②を連立させて解くと , $a=2,\ b=-5$

これは, $3a+b \neq 0$ を満たすので,a=2,b=-5

6. (1)
$$y = \frac{2(x-1)-3}{x-1}$$
$$= -\frac{3}{x-1} + 2$$

この関数の定義域は, $x \neq 1$,値域は, $y \neq 2$

(2)
$$\begin{cases} y = \frac{2x-5}{x-1} \\ y = 5-x \end{cases}$$
を解くと
$$\frac{2x-5}{x-1} = 5-x$$
$$2x-5 = (5-x)(x-1)$$
$$2x-5 = -x^2+6x+5$$
$$x^2-4x=0$$
$$x(x-4) = 0$$
$$x = 0, 4$$
$$x = 0 \text{ のとき}, y = 5$$
$$x = 4 \text{ のとき}, y = 1$$

よって,交点の座標は,(0,5),(4,1)

(3)

y=5-x のグラフが , $y=rac{2x-5}{x-1}$ のグラ フより上側にある範囲が不等式の解であるから x < 0, 1 < x < 4

7. (1)
$$\begin{cases} y=\sqrt{x+2} \\ y=x \end{cases}$$
 とする. $y=\sqrt{x+2}$ の定義域は, $x+2\geq 0$ より, $x\geq -2$,値域は $y\geq 0$ $y=\sqrt{x+2}$ と $y=x$ のグラフをかくと

交点の座標を求めるために , $\sqrt{x+2}=x$ を解 くと

$$x+2=x^2$$
 $x^2-x-2=0$ $(x-2)(x+1)=0$ $x=2, -1$ $x=2$ のとき,左辺 = 右辺 = 2 $x=-1$ のとき,左辺 = 1,右辺 = -1 ,よって,無縁解.

よって,交点の座標は,(2,2)

 $y = \sqrt{x+2}$ のグラフが , y = x のグラフより

上側にある範囲が不等式の解であるから

$$-2 \le x < 2$$

(2)
$$\begin{cases} y=\frac{4}{x-3}\\ y=x \end{cases}$$
 とする.
$$y=\frac{4}{x-3}\text{ の定義域は,}x \neq 3\text{,値域は }y \neq 0$$

$$y=\frac{4}{x-3}\text{ と }y=x\text{ のグラフをかくと}$$

交点の座標を求めるために, $\dfrac{4}{x-3}=x$ を解くと

$$4=x(x-3)$$
 $x^2-3x-4=0$ $(x-4)(x+1)=0$ $x=4,-1$ $x=4$ のとき, $y=4$ $x=-1$ のとき, $y=-1$ よって,交点の座標は, $(4,4),(-1,-1)$ $y=\frac{4}{x-3}$ のグラフが, $y=x$ のグラフより上側にある範囲が不等式の解であるから

x < -1, 3 < x < 4