Exercice 2 Eml 2017

On note $E = \mathbf{R}_2[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à 2 et $\mathcal{B} = (1, X, X^2)$ la base canonique de E.

Pour tout polynôme P de E, on note indifféremment P ou P(X).

Pour tout $(\alpha, \beta, \gamma) \in \mathbf{R}^3$, la dérivée P' du polynôme $P = \alpha + \beta X + \gamma X^2$ est le polynôme $P' = \beta + 2\gamma X$ et la dérivée seconde P'' de P est le polynôme $P'' = 2\gamma$.

On note, pour tout polynôme P de E:

$$a(P) = P - XP',$$
 $b(P) = P - P',$ $c(P) = 2XP - (X^2 - 1)P'$

Par exemple, $a(X^2) = X^2 - X(2X) = -X^2$.

Enfin, on note $f = b \circ a - a \circ b$.

Partie I : Étude de a

- 1. Montrer que a est un endomorphisme de E.
- 2. (a) Montrer que la matrice de A de a dans la base \mathcal{B} de E est : $A=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.
 - (b) Déterminer le rang de la matrice A.
- 3. L'endomorphisme a est-il bijectif? Déterminer Ker(a) et Im(a).

On admet, pour la suite de l'exercice, que b et c sont des endomorphismes de E.

On note B et C les matrices, dans la base \mathcal{B} de E, de b et c respectivement.

Partie II : Étude de b

- 4. Montrer que b est bijectif et que, pour tout Q de E, on a : $b^{-1}(Q) = Q + Q' + Q''$.
- 5. (a) Montrer que b admet une valeur propre et une seule et déterminer celle-ci.
 - (b) L'endmorphisme b est-il diagonalisale?

Partie III : Étude de c

- 6. Montrer: $C = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}$.
- 7. L'endomorphisme c est-il bijectif?

Partie IV : Étude de f

- 8. Montrer que $\forall P \in E$, f(P) = P'.
- 9. En déduire : $(BA AB)^3 = 0$.

Exercice 1 Edhec 2020

On note tB la transposée d'une matrice B et on rappelle que la transposition est une application linéaire. On dit qu'une matrice M de $\mathcal{M}_n(\mathbb{R})$ est antisymétrique lorsqu'elle vérifie ${}^tM = -M$ et on note $\mathcal{A}_n(\mathbb{R})$ I'cnsemble des matrices antisymétriques.

1. Montrer que $\mathcal{A}_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ On considère une matrice A fixée de $\mathcal{M}_n(\mathbb{R})$ et l'application f, qui à toute matrice M de $\mathcal{A}_n(\mathbb{R})$ associe :

$$f(M) = ({}^{t}A) M + MA$$

- 2. (a) Soit M une matrice de $\mathcal{A}_n(\mathbb{R})$. Établir que f(M) est une matrice antisymétrique.
 - (b) En déduire que f est un endomorphisme de $\mathcal{A}_{\mathbf{n}}(\mathbb{R})$

Dans toute la suite, on étudie le cas n = 3 et on choisit $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

3. On considère les trois matrices

$$J = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, K = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \text{ et, } L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

- (a) Montrer que la famille $\mathscr{B} = (J, K, L)$ est une famille génératrice de $\mathcal{A}_3(\mathbb{R})$
- (b) Montrer que \mathcal{B} est une famille libre et en déduire la dimension de $\mathcal{A}_3(\mathbb{R})$
- 4. (a) Calculer f(J), f(K) et f(L), puis les exprimer comme combinaisons linéaires de J et L seulement. Les calculs devront figurer sur la copie.
 - (b) En déduire une base de Im(f) ne contenant que des matrices de \mathcal{B}
 - (c) Déterminer la dimension de Ker(f) puis en donner une base.
- 5. (a) Écrire la matrice F de f dans la base B. On vérifiera que ses coefficients sont tous dans $\{-1;0\}$
 - (b) En déduire les valeurs propres de f
 - (c) On note Id l'endomorphisme identité de $\mathcal{A}_3(\mathbb{R})$. Determiner le rang de f + Id et dire si f est ou n'est pas diagonalisable.