٠	<u>'</u>		١-
160/		ᆍ	ıı⊢.
诚		ᄵ	ж

本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,	诚实
做人。 本人签字:	

编号:		
Z/m •		

西北工业大学考试试题(卷)

2014-2015 学年第 二 学期

2014 2015 子午另 二 子別											
开课学院 自动化学院 课程 自动控制原理 学时 56							时56				
考试日期 <u>2015.6.24</u> 考试时间 <u>2</u> 小时 考试形式(闭)(^A)卷											
	题号	_		三	四	五					总分
	得分										
Ē	考生班级	ž			学 号				姓 名		
	 一、(30分)单项选择题(在每小题的四个备选答案中,选出一个正确答案,将其答案写在题目右侧的括号内,每小题 3分) 1. 系统特征方程为 D(s)=s³+2s²+3s+6=0,则系统 () 										
	A、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平面闭环极点数 $Z=2$ 。										
2. 系统在 $r(t) = t^2$ 作用下的稳态误差 $e_{ss} = \infty$,说明(
	A、 型别 v < 2;										
3. 单位负反馈系统的开环传递函数为 $G(s) = \frac{16}{s^2 + 4s + 16}$,则其闭环系统的阻尼比 ξ											
等	手 ()									
	A、	0.5;		B、 1;		C,	$\frac{1}{\sqrt{2}}$;		D.	$\frac{1}{2\sqrt{2}}$;	:
4.	4. 在典型欠阻尼二阶系统中附加一个闭环极点,则()										
	A	对系统	动态性的	性能没有影响; B、 超调量增大;							
	C,	稳态误	差减小;			D、 峰值时间增大。					
5	5 为了能同时减少输入和干扰引起的稳态误差,基措施是()										

- A、在反馈通道中增加积分环节:
- B、增加干扰作用点前的前向通道的积分环节的个数;
- C、增大干扰作用点到输出的前向通道增益;
- D、增大干扰作用点至输出的前向通道的积分环节个数;
- 6. 系统传递函数为 $\frac{1}{s+2}$, 在输入信号 $r(t) = 4\sin 2t$ 作用下, 其稳态响应的幅值为(

 $B \cdot \frac{1}{\sqrt{2}}$

 $C, \sqrt{2}$:

- $D_{\lambda} = 2\sqrt{2}$
- 7. 已知开环幅相特性如图 1 所示, 则图中不稳定的系统是()。

图 1 开环幅相特性

A、系统①:

B、系统②:

C、系统(3):

- D、都不稳定。
- 8. 开环频域性能指标中的相角裕度 γ 增大,则()。
 - A、超调 σ % 减小
- B、超调 σ %增大
- C、调整时间t。增大
- D、截止频率一定增大
- 9. 开环对数频率特性沿 ω 轴向左平移时()
 - A、 ω_c 减小, γ 增加; B、 ω_c 减小, γ 不变;
 - C、 ω 。增加, γ 不变;
- D、 ω_c 不变, γ 也不变。
- 10. 已知某串联校正装置的传递函数为 $\frac{0.8(s+3)}{s+1}$,则它是一种()
 - A、 相位超前校正:
- B、 PD 校正:
- C、 相位迟后校正;
- D、 PI 校正

二、(12分) 求出图 2 所示系统结构的传递函数 $\Phi(s) = C(s)/R(s)$ 。

图 2 系统结构图

- 三、(16分)某二阶系统的结构图如图 3(a)所示,已知断开测速反馈通道时,系统的单位阶跃响应如图 3(b)所示。
 - (1) (6分)确定系统的参数 K, ξ , ω_n ;
 - (2) (6分) 配置测速反馈参数 K_t , 使 σ % 减小至 4.33%, 并计算此时系统的 t_s ;
 - (3) (4分) 求出校正后系统在单位速度输入时的稳态误差。

四、(18分)设单位反馈系统开环传递函数为: $G(s) = \frac{20}{(s+4)(s+b)}$, 要求:

- (1) (8分) 计算分离点、起始角,并在图 4上作出b从 $0\to\infty$ 变化时的根轨迹。
- (2)(5分)确定使系统阶跃响应单调收敛且调节时间最短的b值,并求出此时系统的闭环传递函数。
 - (3)(5分)确定系统为欠阻尼状态时参数 b 的取值范围。

五、(24分)已知某单位反馈系统开环传递函数的对数幅频曲线图 5 所示,

- (1)(5分)根据图 5确定系统开环传递函数;
- (2)(9分)求出系统的截止频率、相角裕度和幅值裕度;
- (3) $(10\, \text{分})$ 设计一串联校正装置 $G_c(s) = \frac{\frac{s}{\omega_c} + 1}{\frac{s}{\omega_D} + 1}$,使系统满足如下指标,并在图 5

中绘制校正后的对数幅频特性曲线。设计指标: ① r(t) = t 时, $e_{ss}^* = 0.1$;② $\omega_c^* = 8$;③ $\gamma^* \ge 60^\circ$;④ $h^* \ge 10$ dB。

西北工业大学命题专用纸