Dimensionality Reduction for Visualization

Kevin Moon (kevin.moon@usu.edu)
STAT/CS 5810/6655

Outline

- 1. Manifold Learning
- 2. Visualizing with PCA
- 3. t-SNE
- 4. UMAP
- 5. PHATE
- 6. DIG

Manifold learning

Manifold learning

Manifold learning

Manifold Learning for Data Visualization

Data Visualization

- Humans are very visual
- Data visualization is a necessary tool for exploration
 - Develop intuitive understanding of the structure
 - Generate hypotheses

Challenges in Visualizing (Biomedical) Data

- High dimensions
- Noise/artifacts
- Nonlinearities
 - Most biological processes are NOT linear

Visualization with PCA

1400 points, 60 dimensions

PCA

Visualization with PCA

Newly generated scRNA-seq data (27 days)

 \approx 31k cells, more than 17k genes

t-SNE (van der Maaten & Hinton, JMLR, 2008)

- t-distributed stochastic neighbor embedding (t-SNE)
- Widely used on single cell data
 - Biology version (Amir et al, Nature Biotech, 2013) has 1400+ citations
- Attempts to preserve local relationships in both the high and low-dimensional spaces
 - Designed for separating clusters

(Amir et al, 2013)

t-SNE

Basic idea: neighbors in the high-dimensional space should be neighbors in low-dimensions

Compute affinities/probabilities from distances:

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k
eq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)}$$

Symmetrize:

$$p_{ij} = rac{p_{j|i} + p_{i|j}}{2N}$$

Probabilities in low dimensions:

$$q_{ij} = rac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_k \sum_{l
eq k} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

Compute affinities/probabilities from distances:

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k
eq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)}$$

• Symmetrize:

$$p_{ij} = rac{p_{j|i} + p_{i|j}}{2N}$$

Probabilities in low dimensions:

$$q_{ij} = rac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_k \sum_{l
eq k} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

Minimize KL divergence between them:

$$ext{KL}\left(P \parallel Q
ight) = \sum_{i
eq j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

Visualization with t-SNE

1400 points, 60 dimensions

t-SNE

Visualization with t-SNE

Newly generated scRNA-seq data (27 days)

≈31k cells, more than 17k genes

Issues with t-SNE

- Sensitive to hyperparameters
- Cluster sizes in a t-SNE plot are meaningless
 - Distance adapts to density
- Distances between clusters are generally meaningless
 - Global relationships are not preserved
- Random noise may not look random
- See https://distill.pub/2016/misread-tsne/ for more details

UMAP

- UMAP was proposed in 2018 to counter t-SNE's issues with preserving global structure
- It's also faster than t-SNE
- UMAP does do better at global structure, but not for the reasons the original authors claimed

UMAP vs. t-SNE

T-SNE

- Uses "perplexity" to determine similarity scale
- Normalizes similarities
- Averages similarities to symmetrize
- Uses KL-divergence as a loss function
- Initializes randomly
- Considers most pairwise similarities

UMAP

- Uses k-nn distances to determine similarity scale
- Doesn't normalize
- Symmetrizes similarities differently
- Uses cross entropy as a loss function
- Initializes with Laplacian Eigenmaps
- Uses noise contrastive estimation (NCE)

Importance of Initialization

- The main reason UMAP does better at global relationships than t-SNE is the Laplacian eigenmaps initialization
- Initializing t-SNE with PCA gives near identical results (Kobak and Linderman, 2021)

UMAP still fails at global structure

Artificial Tree Data

1400 points, 60 dimensions

UMAP

Why is UMAP faster?

- Loss function is faster to compute and differentiate (no similarity normalizations)
- Biggest gain is in NCE
- NCE compares points to only a few real points as well as a bunch of "fake" points
 - Allows for faster computations
 - Used in a lot of neural network settings to speed up training as part of "self-supervised learning"
 - However, it changes the effective loss function (Damrich and Hamprecht, 2021)

Balancing local and global information

- T-SNE and UMAP are good for local structure
- PCA is good for global structure
- Diffusion maps (DM) does well at capturing both
- Idea: use DM to visualize data

Visualization with Diffusion Maps

- DM captures the information accurately and robustly, but not for visualization
- DM tends to place the structure in higher dimensions
- DM can also be unstable with boundaries and intersections

PHAIL (Potential of Heat-diffusion for Affinity-based Transition

Embedding)

Visualizing Structure and Transitions in High-Dimensional Biological Data (Nature Biotechnology, 2019)

 A method for visualizing data built off of the diffusion framework **PHATE**

1400 points, 60 dimensions

PHATE on GMM

Truth PHATE t-SNE

The PHATE Algorithm

PHATE on Frey Faces

- Frey Faces dataset
 - 1965 frames taken from a video of Brendan Frey making various faces in front of a camera
 - Resolution: 20x28
- Frames are given out of order to PHATE w/o information about sequential ordering

PHATE on Frey Faces

PHATE on EB scRNA-seq Data

Newly generated scRNA-seq data (27 days)

≈31k cells, more than 17k genes

PHATE

Exploratory Data Analysis with PHATE

 Coloring the embedding by gene expression after MAGIC* (van Dijk,...Moon et al., 2018) reveals lineages

• Interactive web tool: krishnaswamylab.org/phatewebtool

*Published in Cell

Exploratory Data Analysis with PHATE

Discovering New Surface Markers for Sorting Populations

The PHATE Algorithm

Capturing local neighborhoods

- Large Euclidean distance gives wrong global structure for visualizing
- Small Euclidean distances ok
 - Encodes local structure

From distances to affinities

- Step 1: Calculate all pairwise Euclidean distances
- Step 2: Convert the distances to pairwise affinities using a kernel function
 - E.g. the Gaussian kernel
 - Kernel function must be near zero for large distances and nonzero for small distances
 - Affinity: a measure of similarity between points
- Problem: many data have both dense and sparse regions
- A kernel bandwidth fixed for dense regions doesn't work well for sparse regions and vice versa
- Idea: use locally adaptive bandwidth

Capturing Local Neighborhoods

• Adaptive
$$\alpha$$
-decaying kernel $\tilde{g}(x,y) = \exp\left(-\left(\frac{||x-y||}{\epsilon_x}\right)^{\alpha}\right), \rightarrow g(x,y) = \frac{\tilde{g}(x,y) + \tilde{g}(y,x)}{2}$

Where

- ϵ_x = distance from x to its kth nearest neighbor
- α controls the decay rate of \tilde{g}

Provides a robust notion of adaptive locality

Capturing Local Neighborhoods

Capturing Local Neighborhoods

The PHATE Algorithm

Diffusion Denoises and Recovers Global Structure

- Big Euclidean steps bad, likely to exit structure
- Small steps good, likely to stay within structure
- To learn global structure via small local steps we use random walk (diffusion)
 - Normalize affinity matrix to create Markov transition matrix (the <u>diffusion operator</u>) P (Coifman & Lafon, ACHA, 2006)
 - Power *P* by time step *t*

How much diffusion?

• Von Neumann entropy (von Neumann, 1932) of diffused operator P^t

$$VNE(P^t) = -\sum_{j} \eta_j \log \eta_j$$
, $\eta_j = \lambda_j^t / \left| |\lambda^t| \right|_1$

Where $\lambda^t = {\lambda_0^t, \lambda_1^t, ...}$ are the eigenvalues of P^t

- VNE is a soft proxy of numerical rank
- Decays as diffusion time increases, $\lim_{t\to\infty} VNE(P^t) = 0$
- Use rate of decay to choose time scale

How much diffusion?

Embedding is visually robust in the flatter region

The PHATE Algorithm

Transform to low dimensions

Potential Distances

Diffusion operator contains global and local structure

Potential Distances

- Diffusion operator contains global and local structure
 - Encoded in multiple dimensions
- To extract this information, we transform diffused probabilities using a potential transformation
 - Forms an information distance between diffused probabilities
 - Connected to heat potential

• Embed for visualization using multidimensional scaling

Full PHATE Algorithm

Input: Data matrix X, neighborhood size k, locality scale α , desired embedding dimension m (usually 2 or 3 for visualization)

Output: The PHATE embedding Y_m

- 1: $D \leftarrow$ compute pairwise distance matrix from X
- 2: Compute the k-nearest neighbor distance $\varepsilon_k(x)$ for each column x of X
- 3: $K_{k,\alpha} \leftarrow$ compute local affinity matrix from D and ε_k (see Eq. 3)
- 4: $P \leftarrow$ normalize $K_{k,\alpha}$ to form a Markov transition matrix (diffusion operator; see Eq. 2)
- 5: $t \leftarrow$ compute time scale via Von Neumann Entropy (see Eq. 5)
- 6: Diffuse P for t time steps to obtain P^t
- 7: Compute potential representations: $U_t \leftarrow -\log(P^t)$
- 8: $\mathfrak{V}^t \leftarrow$ compute potential distance matrix from U_t (see Eq. 6)
- 9: $Y_{class} \leftarrow$ apply classical MDS to \mathfrak{V}^t
- 10: $Y_m \leftarrow$ apply metric MDS to \mathfrak{V}^t with Y_{class} as an initialization

Supplemental Table S1: Detailed steps in the PHATE algorithm.

Scalability of PHATE

- Storing and performing operations on the diffusion matrix can be difficult for large samples
- Can reduce computation by diffusing through "landmarks" (compressed diffusion, Gigante et al., 2018)
 - Landmarks are chosen by clustering
 - Obtain an embedding of all points by projection

PHATE applied to the 10x megacell mouse brain data (>1 million cells)

Noisy Visualizations

- The visualizations are still pretty noisy when the data are noisy
- Can we just diffuse more to denoise more?
- Increasing the amount of diffusion can oversmooth
 - Loss of true signal
- Can we do better than this?

Dynamical Systems Approach

- Let's add some more structural assumptions
- Let's assume that the data are generated by a dynamical system (e.g. EEG measurements)
 - I.e., we now have a time component to the data
- Goal: learn a low-dimensional representation of the data

Diffusion with Dynamical Systems

State-space formalism:

$$\begin{aligned} \boldsymbol{x}_t &= \boldsymbol{y}_t(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_t \\ d\theta_t^i &= a^i (\theta_t^i) dt + dw_t^i, & i &= 1, \dots, m \end{aligned}$$

- x_t is the observed time series while θ_t represents the unobserved states that drive the process
- ξ_t is a stationary process independent of y_t (noise)
- $m{x}_t$ is a corrupted version of a clean process $m{y}_t$ that is driven by $m{ heta}_t$
- The unknown drift functions a^i are independent of θ^j when $j \neq i$
 - \Rightarrow we assume local independence between θ_t^i and θ_t^j when $j \neq i$
- w_t^i are independent white noise
- Can we recover $\boldsymbol{\theta}_t$ from \boldsymbol{x}_t ?

Diffusion with Dynamical Systems

State-space formalism:

$$\begin{aligned} \boldsymbol{x}_t &= \boldsymbol{y}_t(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_t \\ d\boldsymbol{\theta}_t^i &= a^i (\boldsymbol{\theta}_t^i) dt + d\boldsymbol{w}_t^i, & i = 1, \dots, m \end{aligned}$$

- Can view \mathbf{y}_t as being drawn from the conditional pdf $p(\mathbf{y}|\boldsymbol{\theta})$
- Important insight 1 (Talmon & Coifman, 2015): the pdf $p(x|\theta)$ is a linear transformation of $p(y|\theta)$
- New feature space: histograms $m{h}_t$ taken within a time window centered at $m{x}_t$
- Important insight 2: the expected value of the histograms, e.g. $\mathbb{E}[h_t]$, is a linear transformation of $p(x|\theta)$

Diffusion with Dynamical Systems

- Important insight 1 (Talmon & Coifman, 2015): the pdf $p(x|\theta)$ is a linear transformation of $p(y|\theta)$
- Important insight 2: the expected value of the histograms, e.g. $\mathbb{E}[\boldsymbol{h}_t]$, is a linear transformation of $p(\boldsymbol{x}|\boldsymbol{\theta})$
- Important insight 3: the Mahalanobis distance is invariant under linear transformations
- Therefore, the following distance is noise resilient (Talmon & Coifman, 2015):

$$D^{2}(\boldsymbol{x}_{t},\boldsymbol{x}_{s}) = (\mathbb{E}[\boldsymbol{h}_{t}] - \mathbb{E}[\boldsymbol{h}_{s}])^{T}C_{t}^{-1}(\mathbb{E}[\boldsymbol{h}_{t}] - \mathbb{E}[\boldsymbol{h}_{s}])$$

• I.e., under certain assumptions,

$$\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_S\|^2 \approx D^2(\boldsymbol{x}_t, \boldsymbol{x}_S)$$

Dynamical Information Geometry (Duque et al., 2019)

Compute the Mahalanobis between expected values:

$$d^{2}(\boldsymbol{z}_{t},\boldsymbol{z}_{s})=(\mathbb{E}(\boldsymbol{h}_{t})-\mathbb{E}(\boldsymbol{h}_{s}))^{T}(\boldsymbol{C}_{t}+\boldsymbol{C}_{s})^{-1}(\mathbb{E}(\boldsymbol{h}_{t})-\mathbb{E}(\boldsymbol{h}_{s})),$$

- ullet Expected values and covariance matrices computed in a time window of length L_2
- Input these distances into diffusion maps to get EIG (Talmon and Coifman, 2015)
 - A noise-resilient dimensionality reduction method
- Input these distances into PHATE to get DIG
 - A noise resilient visualization method

EEG Results: Information Distances

- Applied DIG to EEG sleep data (Terzano et al., 2002; Goldberger et al., 2000)
- Visualizations colored by time

DIG (Mahalanobis Distance)

An alternative geodesic distance

Information Distances

 We also explored other information distances (applied to the diffusion operator) besides the potential distance

$$D_{\gamma,t}^{2}(\boldsymbol{x}_{i},\boldsymbol{x}_{j}) = \begin{cases} \sum\limits_{k=1}^{N} \frac{(\log P_{ki}^{t} - \log P_{kj}^{t})^{2}}{\phi_{0}(k)}, & \gamma = 1 \\ \sum\limits_{k=1}^{N} \frac{(P_{ki}^{t} - P_{kj}^{t})^{2}}{\phi_{0}(k)}, & \gamma = -1 \\ \sum\limits_{k=1}^{N} \frac{2((P_{ki}^{t})^{\frac{1-\gamma}{2}} - (P_{kj}^{t})^{\frac{1-\gamma}{2}})^{2}}{(1-\gamma)\phi_{0}(k)}, & -1 < \gamma < 1. \end{cases}$$

 Top corresponds to potential distance (PHATE), middle to diffusion maps

EEG Results: Information Distances

Visualizations colored by sleep stage

PHATE Summary

- Data have structure at different scales
 - Local branching structure
 - Global relationship between branches
- Existing visualization methods fail to account for all scales
- PHATE captures both global and local structure
- PHATE reveals new biology
- DIG extends this to better denoise the data

Further reading

PHATE

- Paper: https://doi.org/10.1101/120378
- Code: https://github.com/KrishnaswamyLab/PHATE

• DIG

- Paper: https://doi.org/10.1109/MLSP.2019.8918875
- Code: https://github.com/KevinMoonLab/DIG

T-SNE

- https://lvdmaaten.github.io/tsne/
- https://distill.pub/2016/misread-tsne/

UMAP

- Damrich and Hamprecht (2021): https://openreview.net/pdf?id=DKRcikndMGC
- Kobak and Linderman (2021): https://www.nature.com/articles/s41587-020-00809-z