Open Review Session

Roberta De Vito

Asymmetry of a distribution

Boxplots

Mean Median and Mode

Questions

Do you think that this distribution is

- 1. Positive skew
- 2. Symmetric
- 3. Negative skew

Questions

Can you write down the order of the mode, mean and median?

What is a QQ plot?

- 1. Let $\varepsilon_{(1)}, \ldots, \varepsilon_{(n)}$ be the ordered residuals with $\varepsilon_{(1)} \leq \varepsilon_{(2)} \leq \ldots \leq \varepsilon_{(n)}$.
- 2. Assume the ε are standardized by subtracting mean and dividing by standard error. This ensures that they have mean zero and variance one. Then, the distribution to compare to is a $\mathcal{N}(0,1)$.
- 3. If the ε -s come from a $\mathcal{N}(0,1)$ distribution, we expect $\varepsilon_{(k)}$ to be approximately equal to the $\frac{k}{n}$ -th quantile of the $\mathcal{N}(0,1)$.
- 4. A qq-plot plots the observed quantiles vs the theoretical quantiles. If points fall on a straight line, indication of the sample coming from a normal distribution.

QQ plot in practice

Question I QQplot

Do you think that this distribution is

- 1. Positive skew
- 2. Symmetric
- 3. Negative skew

Question I QQplot

Question II QQplot

Do you think that this distribution is

- 1. Positive skew
- 2. Symmetric
- 3. Negative skew

Question II QQplot

Question III QQplot

Do you think that this distribution is

- 1. Positive skew
- 2. Symmetric
- 3. Negative skew

Question III QQplot

Linear regression model

The linear regression

$$y_i = f(x_i) = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$$

$$f(x_i) = \beta_0 + \sum_{j=1}^p \beta_j x_{ij}$$

Matrix form:
$$Y = X\beta + \epsilon$$

Model Assumption

- 1. $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$
- 2. $\epsilon \sim N(0, \sigma^2)$
- 3. Error term is independent of (uncorrelated with) covariate(s)

$$Corr(X, \epsilon) = 0$$

4. Variance of error term is same, regardless of value of x (homoscedasticity)

$$Var(\epsilon) = \sigma^2$$

Example: Pollution data set

ID	code for the identification of the sample		
OVR65	% of 1960 SMSA population aged 65 or older		
EDUC	Median school years completed by those over 22		
HOUS	% of housing units with all facilities		
DENS	Population per sq. mile in urbanized areas, 1960		
NONW	% non-white population in urbanized areas, 1960		
WWDRK	% employed in white collar occupations		
POOR	% of families with income < 3000		
HC	Relative hydrocarbon pollution potential		
NOX	Same for nitric oxides		
S02	Same for sulphur dioxide		
HUMID	Annual average % relative humidity at 1pm		
MORT	Total age-adjusted mortality rate per 100,000		
PREC	Average annual precipitation in inches		

How do we find regression line that fits best?

Example: Pollution data set

ID	code for the identification of the sample		
OVR65	% of 1960 SMSA population aged 65 or older		
EDUC	Median school years completed by those over 22		
HOUS	% of housing units with all facilities		
DENS	Population per sq. mile in urbanized areas, 1960		
NONW	% non-white population in urbanized areas, 1960		
WWDRK	% employed in white collar occupations		
POOR	% of families with income < 3000		
HC	Relative hydrocarbon pollution potential		
NOX	Same for nitric oxides		
S02	Same for sulphur dioxide		
HUMID	Annual average % relative humidity at 1pm		
MORT	Total age-adjusted mortality rate per 100,000		
PREC	Average annual precipitation in inches		

The Im function in R: what are we looking?

```
Call:
lm(formula = mort \sim nonw + so2 + educ + nonw)
Residuals:
   Min 10 Median 30 Max
-94.201 -19.410 1.294 16.537 92.986
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1156.06487 71.68018 16.128 < 2e-16 ***
       3.70485 0.58615 6.321 4.55e-08 ***
nonw
       0.25699 0.08298 3.097 0.003054 **
so2
educ -24.92413 6.28208 -3.967 0.000209 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 39.02 on 56 degrees of freedom
Multiple R-squared: 0.6266, Adjusted R-squared: 0.6066
F-statistic: 31.33 on 3 and 56 DF, p-value: 5.063e-12
```

Inference

- ► $H_0: \beta_1 = 0$
- ▶ 95% confidence intervals

- $ightharpoonup R^2$
- ► F-statistics: Does the model fit better than a model with only an intercept?

Diagnostics and Assumption Checking

- 1. is the linear relationship a good assumption?
- 2. is the error term variance constant?
- 3. are the error term normally distributed?
- 4. are there any outliers?
- 5. do we repeat some information?

1. Non-linearity of the data

Residual plot of fitted values vs. residuals should

- have no discernible pattern
- be scattered evenly around 0

2. Non-constant Variance of Error Terms: Heteroscedasticity

- Patterns might indicate wrong form of model variable
- ▶ Funnel shape in the residual plot: transform Y

3. Normal distribution

4. Outliers

Outliers for Y

4. Outliers

Outliers for X (High Leverage)

5. Collinearity

- ► Collinearity refers to when the predictors are highly correlated.
- Repetition of information
- ▶ Leads to increased standard errors of the regression coefficients \rightarrow fail to reject $H_0: \beta_i = 0$
- take a look at the correlation of two covaiates.

Logistic regression model

The logistic function

Mathematical model

the outcome

$$y_i = \begin{cases} 1 & \text{if household i switched to a new well} \\ 0 & \text{if household i continued using its own well} \end{cases}$$

- ▶ The distance (in meters) to the closest known safe well
- ▶ The arsenic level of respondent's well
- Whether any members of the household are active in community organizations
- The education level of the head of household.

Logistic regression model with arsenic

Percent Change in the Odds $= (e^{\beta_1} - 1) \times 100$

```
summary(fit.3)
Call:
qlm(formula = switch ~ dist100 + arsenic, family = binomial(link = "logit"))
Deviance Residuals:
   Min 10 Median 30
                                   Max
-2.6351 -1.2139 0.7786 1.0702 1.7085
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.002749 0.079448
                                0.035
                                         0.972
dist100 -0.896644 0.104347 -8.593 <2e-16 ***
grsenic 0.460775 0.041385 11.134 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 4118.1 on 3019 degrees of freedom
Residual deviance: 3930.7 on 3017 degrees of freedom
AIC: 3936.7
Number of Fisher Scoring iterations: 4
```

Evaluating, Checking: Residuals

Evaluating, Checking: Binned Residuals

The Deviance in our data set

Model	Null Deviance	Residual Deviance
dist	4118.1	4076.2
dist100	4118.1	4076.2
arsenic	4118.1	3930.7
interaction	4118.1	3927.6
center	4118.1	3927.6
social	4118.1	3905.4
educ	4118.1	3907.9
log	4118.1	3863.1

Generalized Linear Model

A generalized linear model

- 1. $y = (y_1, \ldots, y_n)$
- 2. X and coefficients β
- 3. a link function g so that $\hat{y} = g^{-1}(X\beta)$
- 4. a data distribution
- 5. other parameters, for example?

Link Distribution

Family	Default Link Function
binomial	(link = "logit")
gaussian	(link = "identity")
Gamma	(link = "inverse")
inverse.gaussian	(link = "1/mu^2")
poisson	(link = "log")
quasi	(link = "identity", variance = "constant")
quasibinomial	(link = "logit")
quasipoisson	(link = "log")

Select the best model

Method for selecting the best model

- AIC
- ▶ BIC
- ► R²

$$y_i = \beta_0 + \epsilon_i$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i$$

Backward Stepwise Selection

$$y_i = \beta_0 + \dots + \beta_p x_{ip} + \epsilon_i$$

Backward Stepwise Selection

$$y_i = \beta_0 + \dots + \beta_{p-1} x_{i(p-1)} \epsilon_i$$

Backward Stepwise Selection

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i$$

6 Multi-level Model

Multi-level Model 1

$$y_i \sim N(\alpha_{j[i]} + \beta x_i, \sigma_y^2)$$

 $\alpha_j \sim N(\mu_0, \sigma_\alpha^2)$

```
lmer(formula = y ~ x + (1 | county))
         coef.est coef.se
(Intercept) 1.46 0.05
x -0.69 0.07
Error terms:
Groups Name Std.Dev.
county (Intercept) 0.33
Residual
                 0.76
# of obs: 919, groups: county, 85
deviance = 2163.7
           (Intercept)
          -0.27
             -0.53
               0.02
         85 -0.08
       21 / 11 1
```

Multi-level Model 2

$$y_i \sim N(\alpha_{j[i]} + \beta x_i, \sigma_y^2)$$

 $\alpha_j \sim N(\gamma_0 + \gamma_1 u_j, \sigma_\alpha^2)$

Varying intercepts and slopes

$$y_{i} = N(\alpha_{j[i]} + \beta_{j[i]}x_{i}, \sigma_{y}^{2})$$

$$\begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} \sim N\begin{pmatrix} \begin{pmatrix} \mu_{\alpha} \\ \mu_{\beta} \end{pmatrix}, \begin{pmatrix} \sigma_{\alpha}^{2} & \rho\sigma_{\alpha}\sigma_{\beta} \\ \rho\sigma_{\alpha}\sigma_{\beta} & \sigma_{\beta}^{2} \end{pmatrix}$$

Varying intercepts and slopes: R output

```
M3 \leftarrow lmer (y ~x + (1 + x | county))
  display (M3)
which vields
  lmer(formula = y ~ x + (1 + x | county))
             coef.est coef.se
  (Intercept) 1.46 0.05
      -0.68 0.09
  X
  Error terms:
   Groups Name Std.Dev. Corr
   county (Intercept) 0.35
           x 0.34 -0.34
     Residual
                       0.75
     # of obs: 919, groups: county, 85
     deviance = 2161.1
```

Varying intercepts and slopes: R output

```
fixef (M3)
(Intercept) x
1.46 -0.68
```

Varying intercepts and slopes: R output

```
ranef (M3)
   (Intercept)
         -0.32 0.14
         -0.53 - 0.09
          0.01 0.01
85
         -0.08 0.03
```


Unsupervised Learning

The matrix form

* X

The matrix form

$$X = \Lambda$$

The matrix form

Factor analysis

Property of the model: Identifiability

Plotting the Factor Model

Plotting the Factor Model with Varimax Rotation

