Tracker Alignment Emulsion-IFT matching

Ke Li 07/07/2023

07/07/2023

Alignment

Purpose:

Calibrate the geometry

Method:

Minimize the chi2 defined with residuals

Two approaches in FASER

- Global chi2
- Iterative local chi2

2

Coordinate systems

• Local (module)

Same with ATLAS

Global

Origin point is defined by the center of magnets

- Local frame is used for module level alignment
- Global frame is used for layer/station level alignment
- Please be noted the local/global is different to that in millepede-II

Alignment

- 6 alignment parameters per module (X/Y/Z shift and rotations)
- Residual is defined as: $\vec{r} = \vec{f}(\vec{a}, \vec{\pi}) \vec{m}$
- Define the total chi2 from all the tracks as:
- Minimize the chi2

$$\chi^{2} = \sum_{tracks} \vec{r_i}^{T} \cdot V_i^{-1} \cdot \vec{r_i}$$
$$\frac{d\chi^{2}(\vec{a})}{d\vec{a}} = \vec{0}$$

$$\frac{d\chi^2(\vec{a})}{d\vec{a}} = \vec{0}$$

$$\Delta \vec{a} = -\left(\sum_{tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right)^T\right)^{-1} \cdot \left(\sum_{tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \vec{r}_i(\vec{a}_0)\right)$$

Alignment parameters

 $\vec{f}(\vec{a},\vec{\pi})$: Prediction from track fitting

 \vec{m} : Measurements

 V_i^{-1} : Covariance matrix of residuals measurements

Global chi2 alignment

Global chi2 alignment, solve the equation directly without any assumption

$$\delta a = \left(\sum_{tracks} \frac{\partial r^{T}}{\partial a_{0}} W \frac{\partial r}{\partial a_{0}}\right)^{-1} \cdot \left(\sum_{tracks} \frac{\partial r^{T}}{\partial a_{0}} W r(a_{0}, \pi_{0})\right)$$

$$W = V^{-1} - V^{-1} \frac{\partial r}{\partial \pi_{0}} \left(\frac{\partial r^{T}}{\partial \pi_{0}} V^{-1} \frac{\partial r}{\partial \pi_{0}}\right) \frac{\partial r^{T}}{\partial \pi_{0}} V^{-1}$$

- In Faser, 6 freedom per module -> 576 freedoms, not too big
- Main problem is how to get the derivations $\frac{\partial r}{\partial a_0}$, $\frac{\partial r}{\partial \pi_0}$ on Not easy to get them analytically
 - \circ Calculate them numerically, i.e. change a and π by a small value, then calculate $\frac{\Delta r}{\Delta \pi/a}$
 - For each measurement and each alignment parameter
 - \blacksquare Change the module position by Δa , then recalculate the residual r
 - The module position is always defined by module side 0
 - For side 1, we will change the side 0 position

Millepede-II

- A library to perform the global chi2 alignment
 - Inputs are $\frac{\partial r}{\partial a_0}$, $\frac{\partial r}{\partial \pi_0}$ for each measurement (mille format)
 - Easy to add constraints
 - Fixed the average of the modules to be the layer center
 - 11001*1+11101*1+11201*1 =0
 - Label naming scheme:
 - Module: <stationID+1><layerID><moduleID><sideID><DoF id+1>
 - Layer: <stationID+1><layerID><DoF id+1>
 - Very fast, but not integrated into calypso yet
 - Need to do alignment manually
 - CKF output -> convert to mille format -> extract alignment corrections -> prepare new geometry -> CKF
 - Next todo: integrate the whole alignment into calypso

Task list (tracker alignment + Emulsion-IFT matching)

Task	Description	Priority	Responsible person	Status
1	Add more DoFs for layers/stations/modules	1	Ke, ?	Finalizing
2	Integrate millepede and alignment to calypso	2	Ke, ?	
3	New strategy of fixing layers as the reference for coordinate system	2	?	
4	Estimate the systematic uncertainty on track parameters	2	?	
5	Estimate the alignment corrections for all the datasets	3	?	
6	Align IFT w.r.t other tracker stations, need to validate the IFT geometry first	1	?	
7	Testbeam alignment, application to IFT alignment	2	?	
8	Test the survey/metrology data	2	?	
9	Matching strategy, definition of residuals and extraction of alignment corrections	1	Ali, Yuxiao, ?	
10	(optional) Reconstruct the emulsion track		?	
11	Extend the emulsion track to tracker and estimate the track charge	3	?	

Sundry items

- Weekly meeting for discussion
 - Tomohiro and I will coordinate the efforts
 - Everyone need to report the status and progress
- Mattermost or skype group channel?
- For tracker alignment, additional experts, Pavel and Claus, are happy to help and discuss
- For emulsion-IFT matching, we need to keep closely discussion with FASERnv experts

All the tasks are super important for physics analysis!