Prediction and Playing Games

Vineel Pratap vineel@eng.ucsd.edu

February 20, 2014

Chapter 7: Prediction, Learning and Games - Cesa Binachi & Lugosi

K-Person Normal Form Games

- ▶ Each player k (k = 1, ..., K) has N_k possible actions $i_k \in 1, ..., N_K$
- ► *K*-tuple of all the players' actions $\mathbf{i} = (i_1, ..., li_K) \in \bigotimes_{k=1}^K \{1, ..., N_k\}$
- ▶ Loss suffered by player k is $\ell^{(k)}$, where $\ell^{(k)}: \mathbf{i} \to [0,1]$

Mixed strategy

- Mixed strategy for player k is a probability distribution $\mathbf{p}^k = (p_1^{(k)}, ..., p_{N_k}^{(k)})$
- Action played by player k, $I^{(k)}$ is a random variable taking values in the set $\{1, ..., N_k\}$ according to the distribution $\mathbf{p}^{(k)}$
- K-tuple of actions played by all players, $\mathbf{I} = (I^{(1)}, ..., I^{(K)})$
- Mixed strategy profile,

$$\pi(i) = \mathbb{P}[\mathbf{I} = \mathbf{i}] = p_{i_1}^{(1)} \times \ldots \times p_{i_K}^{(K)}$$
 for all $\mathbf{i} = (i_1, ... i_k) \in \bigotimes_{k=1}^K \{1, ..., N_k\}$

Nash Equilibrium

► The expected loss of player is

$$\pi\ell^{(k)} \equiv \mathbb{E} \,\ell^{(k)}(\mathbf{I})$$

$$= \sum_{i_1=1}^{N_1} ... \sum_{i_K=1}^{N_K} p_{i_1}^{(1)} \times ... \times p_{i_K}^{(K)} \ell^{(k)}(i_1, ..., i_K)$$

A mixed strategy profile $\pi = \mathbf{p}^{(1)} \times ... \times \mathbf{p}^{(K)}$ is called a Nash Equilibrium if

$$\pi \; \ell^k \leq \pi_k' \; \ell^k$$
 for all $k = 1, ..., K$ and mixed strategies $\mathbf{q}^{(k)}$,
$$\pi_k' = \mathbf{p}^{(1)} \; \times \ldots \times \mathbf{q}^{(k)} \; \times \ldots \times \mathbf{p}^{(K)}$$

► Nash Theorem : Every finite game has a mixed strategy Nash equilibrium

Two-Person Zero-Sum Games

For each pair of actions $\mathbf{i} = (i_1, i_2)$, where $i_1 \in \{1, ..., N_1\}$ and $i_2 \in \{1, ..., N_2\}$, the losses of the two players satisfy

$$\ell^{(1)}(\mathbf{i}) = -\ell^{(2)}(\mathbf{i})$$

- ▶ Simplifying notation replace $\ell^{(1)}$, N_1 , N_2 by ℓ , N, M
- Mixed strategy profile $\pi = \mathbf{p} \times \mathbf{q}$, where $\mathbf{p} = (p_1, ..., p_N)$ and $\mathbf{q} = (q_1, ..., q_M)$, is a Nash equilibrium if and only if for all $\mathbf{p}' = (p'_1, ..., p'_N)$ and $\mathbf{q}' = (q'_1, ..., q'_M)$,

$$\sum_{i=1}^{N} \sum_{j=1}^{M} p_{i} q'_{j} \ell(i,j) \leq \sum_{i=1}^{N} \sum_{j=1}^{M} p_{i} q_{j} \ell(i,j) \leq \sum_{i=1}^{N} \sum_{j=1}^{M} p'_{i} q_{j} \ell(i,j)$$

Two-Person Zero-Sum Games

Introduce notation
$$\bar{\ell}(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{N} \sum_{j=1}^{M} p_i \ q_j \ \ell(i, j)$$

$$\max_{\mathbf{q}'} \bar{\ell}(\mathbf{p}, \mathbf{q}') = \bar{\ell}(\mathbf{p}, \mathbf{q}) = \min_{\substack{\mathbf{p}' \\ \mathbf{q}'}} \bar{\ell}(\mathbf{p}', \mathbf{q})$$

$$\max_{\mathbf{q}'} \bar{\ell}(\mathbf{p}, \mathbf{q}') \leq \max_{\mathbf{q}'} \min_{\substack{\mathbf{p}' \\ \mathbf{p}'}} \bar{\ell}(\mathbf{p}', \mathbf{q}') \rightarrow (1)$$

$$\min_{\substack{\mathbf{p}' \\ \mathbf{q}'}} \max_{\mathbf{q}'} \bar{\ell}(\mathbf{p}', \mathbf{q}') \leq \max_{\mathbf{q}'} \min_{\mathbf{p}'} \bar{\ell}(\mathbf{p}', \mathbf{q}') \rightarrow (1)$$

Also, for all
$$\mathbf{p}$$
 and \mathbf{q}' , $\bar{\ell}(\mathbf{p},\mathbf{q}') \geq \min_{\mathbf{p}'} \; \bar{\ell}(\mathbf{p}',\mathbf{q}')$

$$\max_{\mathbf{q}'} \; \bar{\ell}(\mathbf{p},\mathbf{q}') \geq \max_{\mathbf{q}'} \; \min_{\mathbf{p}'} \; \bar{\ell}(\mathbf{p}',\mathbf{q}') \; \text{for all } \mathbf{p}$$

$$\min_{\mathbf{p}'} \max_{\mathbf{q}'} \; \bar{\ell}(\mathbf{p}',\mathbf{q}') \geq \max_{\mathbf{q}'} \; \min_{\mathbf{p}'} \; \bar{\ell}(\mathbf{p}',\mathbf{q}') \to (2)$$

von Neumann's minimax theorem

From (1) & (2), the existence of Nash equilibrium p x q implies that

$$\min_{\mathbf{p}'}\max_{\mathbf{q}'} \ \bar{\ell}(\mathbf{p}',\mathbf{q}') = \max_{\mathbf{q}'} \ \min_{\mathbf{p}'} \ \bar{\ell}(\mathbf{p}',\mathbf{q}')$$

- ▶ The common value is called the value of the game, V
- Nash equilibrium, $\mathbf{p} \times \mathbf{q} \Leftrightarrow \bar{\ell}(\mathbf{p}, \mathbf{q}) = V$

"As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved" - John von Neumann, 1928

Correlated Equilibrium

A probability distribution P over the set $\bigotimes_{k=1}^K \{1,...,N_k\}$ of all possible K-tuples of actions is called a correlated equilibrium if for all k=1,...,K,

$$\mathbb{E} \ell^{(k)}(\mathbf{I}) \leq \mathbb{E} \ell^{(k)}(\mathbf{I}^-, \tilde{I}^{(k)}),$$

where the r.v. $\mathbf{I} = (I^{(1)},...,I^{(K)})$ is distributed according to P and $(\mathbf{I}^-,\tilde{I}^{(k)}) = (I^{(1)},...,I^{(k-1)},\tilde{I}^{(k)},I^{(k+1)},...,I^{(K)})$, where $\tilde{I}^{(k)}$ is an arbitrary $\{1,...,N_k\}$ -valued r.v. that is a function of $I^{(k)}$

Correlated Equilibrium

Lemma: A probability distribution P over the set of all K-tuples $\mathbf{i} = (i_1, ..., i_K)$ of actions is a correlated equilibrium if and only if, for every player $k \in \{1, ..., K\}$ and actions $j, j' \in \{1, ..., N_k\}$, we have

$$\sum_{\mathbf{i}:i_k=j}P(\mathbf{i})\left(\ell^{(k)}(\mathbf{i})-\ell^{(k)}(\mathbf{i}^-,j')\right)\leq 0$$

where $(\mathbf{i}^-, j') = (i_1, ..., i_{k-1}, j', i_{k+1}, ..., i_K)$.

Repeated Two-Player Zero-Sum Games

- At each time instant t=1,2,... player k(k=1,...,K) selects a mixed strategy $\mathbf{p}_t^{(k)}=(p_{1,t}^{(k)},...,p_{N_k,t}^{(k)})$ over the set $1,...,N_k$ of his actions and draws an action $I_t^{(k)}$ according to the distribution.
- ▶ Mixed strategy $\mathbf{p}_t^{(k)}$ may depend on the sequence of random variables $\mathbf{I}_1, ..., \mathbf{I}_{t-1}$

Repeated Two-Player Zero-Sum Games

- If all players play to keep their internal regret small, then the joint empirical frequencies of play converge to the set of correlated equilibria
- If every player uses a well-calibrated forecasting strategy to predict the K-tuple of actions I_t and chooses an action that is the best reply to the forecasted distibution, the same convergence is also achieved.

Regret based strategies

- At each round t, based on the past plays of both players, the row player chooses an action $I_t \in \{1,...,N\}$ according to the mixed strategy \mathbf{p}_t and the column player chooses an action $J_t \in \{1,...,M\}$ according to the mixed strategy \mathbf{q}_t .
- ▶ If the row player knew the column player's actions $J_1, ..., J_n$ in advance, he would choose $I_t = argmin_{i=1,...,N}\ell(i,J_t)$ invoking a total loss $\sum_{t=1}^n min_{i=1,...,N}\ell(i,J_t)$.
- A meaningful objective is to minimize the difference between the row player's cumulative loss and the cumulative loss of the best constant strategy,

minimize
$$\sum_{t=1}^{n} \ell(I_t, J_t) - \min_{i=1,\dots,N} \sum_{t=1}^{n} \ell(i, J_t)$$

Hannan consistent strategy

- A strategy is Hannan consistent if the regret is o(1), regardless of how the column player behaves.
- ightharpoonup Assuming row player chooses his actions I_t , regardless of what the column player does,

$$\limsup_{n\to\infty} \left(\frac{1}{n}\sum_{t=1}^n \ell(I_t,J_t) - \min_{i=1,\dots,N} \frac{1}{n}\sum_{t=1}^n \ell(i,J_t)\right) \leq 0$$
almost surely.

► For example, this may be achieved by the exponentially weighted average mixed strategy

$$p_{i,t} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \ell(i,J_s)\right)}{\sum_{k=1}^{N} \exp\left(-\eta \sum_{s=1}^{t-1} \ell(k,J_s)\right)} \quad i = \{1,..,N\}, \eta > 0$$

Hannan consistent strategy

Notation:

$$ar{\ell}(\mathbf{p},j) = \sum\limits_{i=1}^N p_i \ell(i,j)$$
 and $ar{\ell}(i,\mathbf{q}) = \sum\limits_{i=1}^M q_i \ell(i,j)$

Theorem: Assume that in a two-person zero-sum game the row player plays according to a Hannan-consistent strategy. Then

$$\limsup_{n\to\infty} \tfrac{1}{n} \sum_{t=1}^n \ell(I_t,J_t) \leq V \quad \textit{almost surely}.$$

Assuming Hannan consistency, it suffices to show that

$$\min_{i=1,\dots,N} \frac{1}{n} \sum_{t=1}^{n} \ell(i, J_t) \leq V$$

$$\min_{i=1,\dots,N} \frac{1}{n} \sum_{t=1}^{n} \ell(i, J_t) = \min_{\mathbf{p}} \frac{1}{n} \sum_{t=1}^{n} \bar{\ell}(\mathbf{p}, J_t)$$

Hannan consistent strategy

Then, letting $\hat{q}_{j,n} = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I}_{J_t=j}$ be the emperical probability of the row player's action being j,

$$\min_{\mathbf{p}} \frac{1}{n} \sum_{t=1}^{n} \bar{\ell}(\mathbf{p}, J_{t}) = \min_{\mathbf{p}} \sum_{j=1}^{M} \hat{q}_{j,n} \bar{\ell}(\mathbf{p}, j)
= \min_{\mathbf{p}} \bar{\ell}(\mathbf{p}, \hat{\mathbf{q}}_{n})
\leq \max_{\mathbf{q}} \min_{\mathbf{p}} \bar{\ell}(\mathbf{p}, \mathbf{q}) = V.$$

Corollary: Assume that in a two-person zero-sum game, both players play according to some Hannan consistent strategy. Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^{n}\ell(I_t,J_t)=V\quad almost\ surely.$$