Project #1: Finite Difference Method (1)

Use the finite difference method to solve the following 1-D Poisson equation

$$-u''(x) = f(x), \quad u(0) = 1, u(1) = e, \quad x \in [0, 1]$$

where $f(x) = -e^x$. The exact solution is $v(x) = e^x$ which can be used to compare with the numerical solution.

Use uniform grids

$$x_i = ih$$
, $i = 0, 1, \dots, n$, where $h = \frac{1}{n}$

and central difference formula to discretize the differential equation.

- 1. Show the details to form the tri-diagonal system for n=4.
- 2. Solve the equation on four grids with $n_i = \{4, 8, 16, \text{ and } 32\}$ using the Thomas Algorithm for tri-diagonal systems. Plot the results u(x) vs. x for each n. Also plot the exact solution v(x) vs. x on the same figure for comparison purpose.
- 3. Compute the error for each grid using

$$\epsilon(h) = \left(h \sum_{i=1}^{n-1} |u_i - v_i|^2\right)^{1/2}$$

where u_i is the numerical solution and v_i is the given exact solution at x_i .

4. Compute the order of accuracy using

order =
$$\frac{\log(\epsilon(h_i)/\epsilon(h_{i-1}))}{\log(h_i/h_{i-1})}$$

where h_i is the mesh size corresponding to n_i and tabulate your results as follows.

n_i	ϵ_i	order
4		-
8		
16		
32		