Ampliación de Cálculo Hoja 6

- 1.- Resuelve las E.D.O. que se plantearon en los problemas de la Hoja 1.
- 2.- Dibuja las gráficas de las siguientes familias de curvas en implícitas:
- a) $x^2 + 3y^2 = k$, k>0. b) $ye^{-2x} = k$ c) $x^2 y^2 = k$ d) Representa la curva xy(y-x) $-2x^2 + y^2 = 0$ (**Indicación:** tener en cuenta el teorema
- de la función implicita).
- 3.- Dibuja las líneas isoclinas de las siguientes ecuaciones diferenciales y aproxima geométricamente las soluciones :

a)
$$v' = (v-1)^2$$

b)
$$y' = x^2 - y^2$$

a)
$$y' = (y-1)^2$$
 b) $y' = x^2-y^2$ c) $y' = (x+y)(x-y)^{-1}$

4.- VARIABLES SEPARADAS. Integra:

$$a)(1+e^t)x(t)x'(t) = e^t$$

a)
$$(1+e^t)x(t)x'(t) = e^t$$
 b) $x'(t) = x^2(t)$ sent c) $y' = 2y^2 - 2y$

d) Halla la solución de los siguientes problemas de Cauchy:

$$d_1$$
) $y'x^3$ seny=2 con y $\xrightarrow[x \longrightarrow \infty]{} \pi/3$; d_2) $y' = y^2$ senx con $y(0) = 1/2$

5.- Halla las soluciones de los siguientes problemas de valor inicial, indicando su intervalo de definición:

a)
$$x' + 5x = t^2$$
. $x(0) = 3$

a)
$$x' + 5x = t^2$$
, $x(0) = 3$ b) $x' = (tgt)x + cost$, $x(0) = 1$

c)
$$x' + 2tx = t^3$$
, $x(0) = 1$

c)
$$x' + 2tx = t^3$$
, $x(0) = 1$ d) $tx' + \frac{t}{\sqrt{1 + t^3}} = x$, $x(1) = 2$

e)
$$y' - 3y = -2e^{-2x}$$
, $y(0) = 5$.

- 6.- Se sabe que la población de una ciudad crece a tasa constante. Si la población se ha doblado en 3 años, y en 5 años ha alcanzado la cifra de 40.000 habitantes, ¿cuántas personas vivían en la ciudad al comienzo de ese período de cinco años?
- 7.- a) Si f_1 y f_2 son dos soluciones de la ecuación y' + p(x)y = 0, prueba que $c_1f_1(x)+c_2f_2(x)$ también es solución para todo par $c_1,c_2\in\mathbb{R}$. b) Si f es una solución de la ecuación y'+p(x)y = g(x), prueba que $f(x)+c_1f_1(x)+c_2f_2(x)$ también es solución para todo par $c_1,c_2\in\mathbb{R}$.
- **8.-** El carbono 14 (C_{14}) tiene una vida media de 5700 años y se encuentra uniformemente repartido en la atmósfera en forma de CO_2 . Las plantas vivas absorben C_{14} y mantienen una proporción constante de C_{14} y C_{12} . Al morir las plantas, la desintegración del C_{14} altera la proporción. Compara la proporción de C_{14} en dos trozos del mismo árbol, uno vivo y otro cortado hace 2000 años.
- **9.-** La ecuación y' + $p(x)y = q(x)y^n$ se conoce como ecuación de Bernouilli. Comprueba que si n \neq 0, entonces el cambio de variable $z(x) = y(x)^{1-n}$ reduce la ecuación de Bernoulli a una ecuación líneal. Usa lo anterior para resolver:

a)
$$x^2y'+2x^3y = y^2(1+2x^2)$$
 b) $t\frac{x'(t)}{x^3(t)} + \frac{1}{x^2(t)} = t$

c) y' +
$$\frac{y}{x + 1}$$
 = -1/2(x+1)³ y²

a)
$$y'' = e^t$$
 b) $y'' - 2y' - 8y = 2e^t - 8\cos 2t$

c)
$$y'' - 4y' + 4y = 2e^{2t} + \frac{t}{2}$$
 d) $y'' - 2y' + 2y = e^{ex} + x^2$

e)
$$2y'' - 4y' - 8y = -40\cos 3x + 50\sin 3x$$

f)
$$2y'' - y' + 2y = e^{4x}$$
, $y(0)=3 e y'(0)=2$.

g) y" - y' - 5y = 1, y
$$\longrightarrow$$
 $-\frac{1}{5}$ cuando x \longrightarrow ∞ .

h) y"- 5y'+ 6y =
$$2e^{-2t}(9sen2t+4cos2t)$$
, y \longrightarrow 0 para $t\longrightarrow\infty$.

- 11.- Las raíces de una ecuación característica asociada a una E.D.O. de segundo orden son 1 y -1. Encuentra la ecuación diferencial y su solución general.
- 12.- Supongamos que las raíces de la ecuación $\lambda^2 + a\lambda + b = 0$ tienen parte real negativa. Prueba que toda solución de la ecuación diferencial x"+ ax' + bx = 0 satisface que $\lim_{t\to\infty} x(t) = 0$.
- 13.- Sean a,b,c tres constantes positivas. Prueba que la diferencia de dos soluciones cualesquiera de la ecuación: ax'' + bx' + cx = q(t)donde q(t) es una función continua de \mathbb{R} en \mathbb{R} , converge a cero cuando $t \longrightarrow \infty$.
 - 14.- Resuelve el "problema de contorno":

$$x'' + x' - 6x = 0$$
, $x(0) = 1$ y $x(\infty) = 0$.

- 15.- Sea q(t) un polinomio de grado 2. Prueba que toda ecuación: $x'' + a_1x' + a_2x = q(t)$ tiene una solución particular que es un polinómio de grado menor o igual a 2.
 - 16.- Se considera la ecuación:

$$x'' + ax' + bx = b(t)$$

- a) Si $b(t) = e^{\lambda t}$, prueba que la ecuación admite una solución particular del tipo $Ae^{\lambda t}$ o bien Ateλt, en el caso de ser λ solución de la ecuación característica.
- b) Si b(t) = cosbt, prueba que la ecuación admite una solución particular del tipo Acosbt + Bsenbt o bien t(Acosbt + Bsenbt) si +bi es solución de la ecuación característica.
 - 17.- a) Calcula el voltage de salida del circuito 1):
- b) Plantea un sistema de cuatro ecuaciones diferenciales lineales de primer orden con coeficientes constantes para cuatro incognitas de modo que dicho sistema describa las intensidades del circuito 2):

He aqui un cuadro sinóptico de las formas de soluciones particulares para distintas formas de segundos miembros.

.Ns de orden	Segundo miembro de la ecuación diferencial	Raices de la ecuación característica	Forma de la solución particular, donde k= max (m, n)
-	$P_{m}(x)$	I. El número O no es raíz de la ecuación característica	$\tilde{P}_{m}(x)$
		2. El número O es raíz de la ecuación carac- terística de orden s	$x^{s}\tilde{P}_{m}(x)$
[]	P _m (x) e ^{αx} (α es real)	l. El número α no es raíz de la ecuación característica	$\widetilde{P}_{m}(x) e^{ax}$
		 El número α es raíz de la ecuación carac- terística de orden s 	$x^{s}\widetilde{P}_{m}(x)e^{ax}$
Ш	$P_n(x)\cos\beta x + Q_m(x) \sin\beta x$	 Los números ± iβ no son raíces de la ecuación caracterís tica 	$\tilde{P}_k(x)\cos\beta x + \hat{Q}_k(x)\sin\beta x$
		2 Los números ±iβ son raíces de la ecuación caracterís- tica de orden s	$\begin{array}{c c} x^{5} \left(\widetilde{P}_{k} \left(x \right) \cos \beta x + \right. \\ \left. + \widetilde{Q}_{k} \left(x \right) \sin \beta x \right) \end{array}$
V. V.	$e^{\alpha x}[P_n(x)\cos\beta x + Q_m(x)\sin\beta x]$	 Los números α ± iβ no son raíces de la ecuación caracteristica 	$(\widetilde{P}_{k}(x) \cos \beta x + \widetilde{Q}_{k}(x) \sin \beta x) e^{\alpha x}$
		 Los números α±iβ son raíces de la equación caracterís- tica de orden s 	$x^{s} (\widetilde{P}_{k}(x) \cos \beta x + \widetilde{Q}_{k}(x) \sin \beta x) e^{\alpha x}$