# Consensus Learning Model

Aditya Kumar Akash

IIT Bombay
adityakumarakash@gmail.com

October 13, 2015

## Overview

- Problem
  - Problem as graph

- Solution
  - Solution of optimization problem

## Multilabel Classification

#### Multilabel classification

Data form - (x,z), x is the feature vector of an instance Let L be set of all I possible labels, z is a vector of length I,  $z_I \in \{0,1\}$ , denoting relevance of label to the instance

## Model

A bipartite graph modelling relations between instances and predictions is used for prediction combination.



Graph has group nodes g and instance nodes x. Dashed rectangle surround group nodes from one classifier.

# Bipartite Graph

### In the graph -

- Group Node represents a label depicted by connection of group node to left most nodes
- Instance nodes connected to more than one group node thus representing multilabel prediction
- Relation between labels given by figure b

## Formulation

#### Notations -

- Each node associated with probability distribution over / labels
- $u_{il} \rightarrow \text{prob of } i\text{-th instance taking label class } 1 \text{ on label } l$ , thus prob of relevance
- $q_{il} \rightarrow \text{prob of seeing } l\text{-th label given the } j\text{-th label}$
- $v = m * I \rightarrow \text{Number of group nodes} = \text{classifiers * labels}$

TABLE II: Notations for MLCM-r

| Symbol | Meaning                                                                                          |
|--------|--------------------------------------------------------------------------------------------------|
| A      | $a_{i,j}$ is the prediction of label $(j \mod l)$ on $\mathbf{x}_i$ by the $\lfloor j/l \rfloor$ |
| B      | Label node class distribution                                                                    |
| U      | $u_{i\ell}$ is the probability that label $\ell$ is relevant to $\mathbf{x}_i$                   |
| Q      | $q_{j\ell}$ is the probability of seeing label $\ell$ given label $j$                            |
| $I_k$  | k dimensional identity matrix                                                                    |

## **Formulation**

Optimization problem formulated  $\rightarrow$ 

$$\begin{aligned} \min_{U,Q} \sum_{i=1}^{n} \sum_{j=1}^{v} a_{ij} \|u_{i} - q_{j}\|^{2} + \alpha \sum_{j=1}^{v} \|q_{j} - b_{j}\|^{2} \\ u_{il} &\geq 0, \sum_{l} u_{il} = 1, i = 1, ..., n \\ q_{jl} &\geq 0, \sum_{l} q_{jl} = 1, j = 1, ..., v \end{aligned}$$

- First term ensures that if  $x_i$  is assigned  $g_j$  then their probability distribution must be close
- Second term puts constraints that a group  $g_j$  's distribution is not much deviating from the initial prediction

# Algorithm

 $\begin{array}{l} \textbf{Input:} \ \text{group-object affinity matrix } A, \ \text{initial labeling matrix } Y; \ \text{parameters } \alpha \ \text{and } \epsilon; \\ \textbf{Output:} \ \text{consensus matrix } U; \\ \textbf{Algorithm:} \\ \text{Initialize } U^0, U^1 \ \text{randomly} \\ t \leftarrow 1 \\ \textbf{while } \|U^t - U^{t-1}\| > \epsilon \ \textbf{do} \\ Q^t = (D_v + \alpha K_v)^{-1} (A^T U^{t-1} + \alpha K_v Y) \\ U^t = D_n^{-1} A Q^t \\ \textbf{return } U^t \end{array}$ 

$$\vec{q}_{j.}^{(t)} = \frac{\sum_{i=1}^{n} a_{ij} \vec{u}_{i.}^{(t-1)} + \alpha k_{j} \vec{y}_{j.}}{\sum_{i=1}^{n} a_{ij} + \alpha k_{j}} \qquad \vec{u}_{i.}^{(t)} = \frac{\sum_{j=1}^{v} a_{ij} \vec{q}_{j.}^{(t)}}{\sum_{j=1}^{v} a_{ij}}$$

Here, 
$$D_{v} = diag(\sum_{i=1}^{n} a_{ij})_{v \times v}$$
,  $D_{n}diag(\sum_{j=1}^{v} a_{ij})_{n \times n}$ ,  $K_{v} = diag(\sum_{z=1}^{l} y_{jz})_{v \times v}$ 



## Closed Solution

$$Q^* = (I_v - D_\lambda D_v^{-1} A' D_n^{-1} A)^{-1} D_{1-\lambda} B$$
 (3)

where  $D_v = \operatorname{diag}(\mathbb{1}'A)$ ,  $D_n = \operatorname{diag}(\mathbb{1}'A')$ ,  $\mathbb{1}$  is a column vector with all entries being 1.  $D_{\lambda} = D_v(\alpha I + D_v)^{-1}$  and  $D_{1-\lambda} = \alpha(\alpha I + D_v)^{-1}$ . After  $Q^*$  is obtained,  $U^*$  is obtained using

$$U^* = D_n^{-1} A Q^* \tag{4}$$

where the  $v \times v$  diagonal matrices  $D_\lambda$  and  $D_{1-\lambda}$  have (j,j) entries as  $\frac{w_j}{w_j + \alpha k_j}$  and  $\frac{\alpha k_j}{w_j + \alpha k_j}$ .

## Current Work

- Working on update equation when new edges or instances are added
- Model hierarchical tree structure on labels
- Implementing the above algorithm to find out the effectiveness

## References



Sihong Xie, Xiangnan Kong, Jing Gao, Wei Fan, Philip S. Yu Multilabel Consensus Classification



Jing Gaoy, Feng Liangy, Wei Fanz, Yizhou Suny, Jiawei Han Graph-based Consensus Maximization among Multiple Supervised and Unsupervised Models

# The End