SAYISAL ANALIZ

Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ

LINEER DENKLEM SISTEMI ÇÖZÜMLERI

(iTERATIF YÖNTEMLER)

2

İÇERİK

Doğrusal Denklem Takımlarının Çözümü

- ☐ Yinelemeli (İterasyon) Yöntemler
 - > Jacobi yöntemi
 - **➤** Gauss-Siedel yöntemi

Doğrusal Denklem Sistemleri

Bir Bilinmeyenli Bir Denklem

Klasik Form

$$a_{11}X_1 = b_1$$

Matris Form

$$[a_{11}][x_1] = [b_1] \rightarrow \underline{A} \underline{x} = \underline{b}$$

İki Bilinmeyenli İki Denklemli Sistem

Klasik Form

$$a_{11}X_1 + a_{12}X_2 = b_1$$
$$a_{21}X_1 + a_{22}X_2 = b_2$$

Matris Form

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \rightarrow \underline{A} \underline{x} = \underline{b}$$

m Bilinmeyenli n Denklemli Sistem

Klasik Form

$$a_{11}X_1 + a_{12}X_2 + \dots + a_{1m}X_m = b_1$$

$$a_{21}X_1 + a_{22}X_2 + \dots + a_{2m}X_m = b_2$$
.
$$a_{11}X_1 + a_{22}X_2 + \dots + a_{2m}X_m = b_2$$

Matris Form

$$\begin{aligned} a_{11}X_1 + a_{12}X_2 + \dots + a_{1m}X_m &= b_1 \\ a_{21}X_1 + a_{22}X_2 + \dots + a_{2m}X_m &= b_2 \\ \vdots \\ a_{n1}X_1 + a_{n2}X_2 + \dots + a_{nm}X_m &= b_n \end{aligned} \quad \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \Rightarrow \underline{A} \ \underline{X} = \underline{b}$$

Not: Birinci dereceden bilinmeyen ve sabit sayılar içeren denklem sistemleri lineer denklem sistemlerdir.

YİNELEMELİ YÖNTEMLER

- Büyük katsayılar matrisi içeren lineer denklem sistemlerinin eliminasyon yöntemleriyle çözümü çoğu zaman ekonomik olmaz. Bu gibi durumlarda iteratif yöntemler seçilir.
- Literatif ve yaklaşık çözümler daha önce anlatılan yerine koyma yöntemlerine alternatif oluştururlar.

- ☐ Örnek yinelemeli (iteratif) yöntemler
 - Jacobi Yöntemi
 - ☐ Gauss-Siedel Yöntemi

JACOBI YÖNTEMi

- ☐ Toplam adımlarla yineleme yöntemi olarak ta bilinir.
- Örneğin iki bilinmeyenli bir denklem ele alalım.
 - $a_{11} x_1 + a_{12} x_2 = c_1$
- ☐ Denklemler tekrar düzenlenirse (bilinmeyenler yalnız bırakılırsa)
 - $\Box x_1 = (c_1 a_{12} x_2) / a_{11} = f(x_1, x_2)$
 - $\square x_2 = (c_2 a_{21} x_1) / a_{22} = g(x_1, x_2)$
- Jacobi iterasyonu bilinmeyenler için bir tahmin ile başlar.
 - \square Çözüm için bir başlangıç x_1 ve x_2 değerleri seçilir. (yani x_0 vektörü)
 - \square Örneğin; $X_1=Ax_0+C$ ve sırasıyla $X_2=Ax_1+C$
 - \square genellersek, $X_k=Ax_{k-1}+C$ ve X_k bilinmeyen vektör elemanları
 - $x_i^{(k)} = \sum_{j=1}^n a_{ij} x_j^{(k-1)} + c_i, \quad i = 1:n$
- Durdurma kriteri olarak ya iterasyon sayısı ya da hata sınırlaması kullanılır

$$\max_{i \le i \ge n} \frac{\left| x_i^k - x_i^{k-1} \right|}{x_i^k}$$

JACOBI YÖNTEMi

Örnek: jacobi iterasyon metodu kullanarak aşağıdaki lineer denklem sistemini çözünüz

$$10 x_1 + 2x_2 + 3x_3 = 23$$

 $2x_1 - 10x_2 + 3x_3 = -9$
 $-x_1 - x_2 + 5x_3 = 12$

Çözüm Yolu: yeniden düzenleme

$$x_1 = (23 - 2x_2 - 3x_3)/10$$

 $x_2 = (-9 - 2x_1 - 3x_3)/(-10)$
 $x_3 = (12 + x_1 + x_2)/5$

 $x_1 = 0$, $x_2 = 0$, ve $x_3 = 0$. keyfi tahminlerle başlıyoruz ve iterasyon aşağıdaki sonuçları verir.

ITER	X_1	X_2	X_3	Hata normu, $E = \sum_{i=1}^{n} X_i^{\text{new}} - X_i^{\text{old}} $	i
0	0	0	0		
1	2.300000	0.900000	2.400000	5.600000	
2	1.400000	2.080000	3.040000	2.720000	
3	0.972000	2.092000	3.096000	4.960001E-01	
4	0.952800	2.023200	3.012800	1.712000E-01	
5	0.991520	1.994400	2.995200	8.512014E-02	
6	1.002560	1.996864	2.997184	1.548803E-02	
7	1.001472	1.999667	2.999885	6.592035E-03	
8	1.000101	2.000260	3.000228	2.306700E-03	
9	0.9998797	2.000089	3.000072	5.483031E-04	
10	0.9999606	1.999998	2.999994	2.506971E-04	

JACOBI YÖNTEMI

$$\square$$
Örnek: 4

- □ Denklem sisteminin direkt yöntemlerle çözümü x=[0.1667 0.4167 -0.0833 0.1667] dir.
- □Çözümde ondalık sayıdan sonra 4 hane verilmiştir. Aynı denklem sistemini JACOBI iterasyonu ile çözelim. Denklem sistemini

$$x_1 = \frac{1}{4}(1-x_2-x_3) \ , \ x_2 = \frac{1}{4}(2-x_1-x_4) \ , \ x_3 = \frac{1}{4}(-x_2-x_4) \ , \ x_4 = \frac{1}{4}(1-x_2-x_3)$$

şeklinde yazalım. i. bilinmeyenin k. Ve k-1. adımda hesaplanan iki değerinin farkı $x_i^k - x_i^{k-1}$ olmak üzere, $\max |x_i^k - x_i^{k-1}| \le \epsilon$ koşulu **sağlanınca iterasyonu durduralım**. $\epsilon = 0.0001$ seçelim. Çözümde 4 ondalık hane kullanalım. Başlangıç için $x = x^{(0)} = [0 \ 0 \ 0]^T$ alalım.

JACOBI YÖNTEMi

k	X ₁	X ₂	X ₃	X 4
0	0	0	0	0
1	0.2500	0.5000	0	0.2500
2	0.1250	0.3750	-0.1250	0.1250
3	0.1875	0.4375	-0.0625	0.1875
4	0.1563	0.4063	-0.0938	0.1563
5	0.1719	0.4219	-0.0782	0.1719
6	0.1641	0.4141	-0.0860	0.1641
7	0.1680	0.4180	-0.0821	0.1680
8	0.1660	0.4160	-0.0840	0.1660
9	0.1670	0.4170	-0.0830	0.1670
10	0.1665	0.4165	-0.0835	0.1665
11	0.1668	0.4168	-0.0833	0.1667
12	0.1666	0.4166	-0.0834	0.1666
13 <	0.1667	0.4167	-0.0833	0.1667

Başlangıç değerleri

 $Max \mid x_i^k - x_i^{k-1} \mid = \mid x_4^2 - x_4^1 \mid = \mid 0.1250 - 0.2500 \mid = 0.1250 > \varepsilon = 0.0001$ olduğundan **iterasyona devam!**

 $|0.1875 - 0.1250| = 0.0625 > \varepsilon = 0.0001$, iterasyona devam!

 $|0.1660 - 0.1680| = 0.0020 > \varepsilon = 0.0001$, iterasyona devam!

 $|0.1668 - 0.1665| = 0.0003 > \varepsilon = 0.0001$, iterasyona devam!

 $|0.1667 - 0.1666| = 0.0001 = \varepsilon = 0.0001$. iterasyon durduruldu

İterasyon no

13. iterasyon sonunda bulunan çözüm

Çözüm:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0.1667 \\ 0.4167 \\ -0.0833 \\ 0.1667 \end{bmatrix}$$

- En çok kullanılan iteratif yöntemdir.
- Değişkenlerin yeni değerleri, tüm değişkenler için bir iterasyonun tamamlanması beklenmeden, sonraki hesaplamalarda kullanılır.
- 3'e 3'lük bir denklem sistemi üzerinde Gauss-Siedel yönteminin çalışması.

Başlangıç koşulları:
$$x_1=0$$
; $x_2=0$; $x_3=0$

$$x_{1} = \frac{b_{1} - a_{12}x_{2} - a_{13}x_{3}}{a_{11}}$$

$$x_{2} = \frac{b_{2} - a_{21}x_{1} - a_{23}x_{3}}{a_{22}}$$

$$x_{3} = \frac{b_{3} - a_{31}x_{1} - a_{32}x_{2}}{a_{33}}$$

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1$$

$$a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2$$

$$a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3$$

n değişken için Gauss-Siedel formülü;

$$x_i^{k+1} = \frac{b_i}{a_{ii}} - \sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^{k}$$

■Yakınsama koşulu

$$\left|a_{ii}\right| \ge \sum_{\substack{j=1\\i\neq i}}^{n} \left|a_{ij}\right|$$

GAUSS-SİEDEL YÖNTEMİ

Örnek: Aşağıdaki denklemi Gauss-Siedel yöntemini kullanarak 2 iterasyon için çözünüz?.

$$3 x_1 - 0.1 x_2 - 0.2 x_3 = 7.85$$

$$0.1 x_1 + 7 x_2 - 0.3 x_3 = -19.3$$

$$0.3 x_1 + 0.2 x_2 + 10 x_3 = 71.4$$

• Bilinmeyen x değerlerini diğerleri cinsinden bul

$$x_{1} = \frac{7.85 + 0.1x_{2} + 0.2x_{3}}{3}$$

$$x_{2} = \frac{-19.3 - 0.1x_{1} + 0.3x_{3}}{7}$$

$$x_{3} = \frac{71.4 - 0.3x_{1} + 0.2x_{2}}{10}$$

- **2** <u>iterasyon 0</u> için $x_1 = 0$, $x_2 = 0$, $x_3 = 0$,
 - **€** <u>iterasyon 1</u>
 - x_1 hesabi için, $x_2 = 0$, $x_3 = 0$, $x_1 = \frac{7.85 + 0 + 0}{3} = 2.616667$
 - \square x₂ hesabı için, x₁ = 2.616667, x₃ = 0,

$$x_2 = \frac{-19.3 - 0.1(2.616667) + 0}{7} = -2.794524$$

 \square x₃ hesabı için, x₁ = 2.616667, x₂ = -2.794524,

$$x_3 = \frac{71.4 - 0.3(2.616667) + 0.2(-2.794524)}{10} = 7.005610$$

4 iterasyon 2

 \square x₁ hesabi için, x₂ = -2.794524, x₃ = 7.005610,

$$x_1 = \frac{7.85 + 0.1(-2.794524) + 0.2(7.005610)}{3} = 2.990557$$

 \square x₂ hesabı için, x₁ = 2.990557, x₃ = 7.005610

$$x_2 = \frac{-19.3 - 0.1(2.990557) + 0.3(7.005610)}{7} = -2.499625$$

 \square x₃ hesabı için, x₄ = 2.990557, x₂ = -2.499625,

$$x_3 = \frac{71.4 - 0.3(2.990557) + 0.2(-2.499625)}{10} = 7.000291$$

Hatayı tahmin etmek için bilinmeyenlerin bağıl yaklaşım yüzde hatalarına bakılır. Örneğin x₁ için:

$$\left| \in_{a,1} \right| = \left| \frac{2.990557 - 2.616667}{2.990557} \right| \% 100 = \% 12.5 \text{ 'tir. } x_2 \text{ ve } x_3 \text{ için hata tahminleri}$$

$$\left| \in_{a,2} \right| = \left| \frac{-2.499625 - 2.794524}{-2.499625} \right| \% 100 = \% 11.8$$

$$\left| \in_{a,3} \right| = \left| \frac{7.000291 - 7.005610}{7.000291} \right| \% 100 = \% 0.076$$

$$\left| \in_{a,3} \right| = \left| \frac{7.000291 - 7.005610}{7.000291} \right| \% 100 = \% 0.076$$

Bu şekilde tüm hatalar belirlenen bir tolerans sınırı altına düşene kadar iterasyona devam edilir.

- □ Denklem sisteminin direkt yöntemlerle çözümü x=[0.1667 0.4167 -0.0833 0.1667] dir.
- □ Çözümde ondalık sayıdan sonra 4 hane verilmiştir. Aynı denklem sistemini GAUSS-SEIDELiterasyonu ile çözelim. Denklem sistemini

$$x_1 = \frac{1}{4}(1 - x_2 - x_3)$$
, $x_2 = \frac{1}{4}(2 - x_1 - x_4)$, $x_3 = \frac{1}{4}(-x_2 - x_4)$, $x_4 = \frac{1}{4}(1 - x_2 - x_3)$

şeklinde yazalım. i. bilinmeyenin k. Ve k-1. adımda hesaplanan iki değerinin farkı $x_i^k - x_i^{k-1}$ olmak üzere, $Max \mid x_i^k - x_i^{k-1} \mid \le \epsilon$ koşulu **sağlanınca iterasyonu durduralım**. $\epsilon = 0.0001$ seçelim. Çözümde 4 ondalık hane kullanalım. Başlangıç için $\kappa = \kappa^{(0)} = [0\ 0\ 0\ 0]^T$ alalım.

k	X ₁	X ₂	X ₃	X ₄
0	0	0	0	0 -
1	0.2500	0.4375	-0.0625	0.1563
2	0.1563	0.4219	-0.0782	0.1641
3	0.1641	0.4180	-0.0821	0.1660
4	0.1660	0.4170	-0.0830	0.1665
5	0.1665	0.4168	-0.0833	0.1666
6	0.1666	0.4167	-0.0833	0.1667
7 <	0.1667	0.4167	-0.0834	0.1667

Başlangıç değerleri

 $Max \mid x_i^k - x_i^{k-1} \mid = \mid x_1^2 - x_1^2 \mid = \mid 0.1563 - 0.2500 \mid = 0.0937 > \varepsilon = 0.0001$ olduğundan **iterasyona devam!**

 $|0.1641 - 0.1563| = 0.0078 > \varepsilon = 0.0001$, iterasyona devam!

 $|0.1667 - 0.1666| = 0.0001 = \varepsilon = 0.0001$, iterasyonu durdur!

İterasyon adımları 7. iterasyon sonunda bulunan çözüm

Çözüm:

m:
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0.1667 \\ 0.4167 \\ -0.0834 \\ 0.1667 \end{bmatrix}$$

14

GAUSS-SIEDEL YÖNTEMİ MATLAB UYGULAMASI


```
a=[3 -0.1 -0.2
   0.17 - 0.3
   0.3 0.2 10];
b = [7.85]
   -19.3
   71.41;
for i=1:size(a,1)
    ea(i)=0.9;
    xson(i)=0;
end
 es=0.8;
while max(ea)>es
    xonceki=xson;
for i=1:size(a,1)
    Toplam1=0; Toplam2=0;
    for j=1:i-1
        Toplaml=Toplaml+a(i,j)/a(i,i)*xson(j);
    end
    for j=i+l:size(a,l)
        Toplam2=Toplam2+a(i,j)/a(i,i)*xonceki(j);
    end
    xson(i)=b(i)/a(i,i)-Toplaml-Toplam2;
    ea(i) = abs((xson(i) - xonceki(i))/xson(i))*100;
end
end
xson
ea
```


GAUSS-SIEDEL YÖNTEMI MATLAB UYGULAMASI

```
A=[914-120;17120-2;
41810-1; -301904;
11206-1;2-20117];
b=[-1; 6; 3; 4; 0; -2];
x=[0;0;0;0;0;0];
x_1=[0;0;0;0;0;0];
eps=0.01;n=0;Nmax=100;
while n<Nmax
  for i=1:length(A)
    for j=1:length(A)
      if i<i
        x(i)=x(i)+(-1*A(i,j)*x(j));
      elseif i==i
        bol=A(i,j);
      else
        x(i)=x(i)+(-1*A(i,j)*x_1(j));
      end
    end
    x(i)=(x(i)+b(i))/bol;
  end
  if max(100*abs(x-x 1)./x) < eps
    sonuc=x
    n=Nmax;
  end
  x 1=x;
  x(:)=0;
  n=n+1;
```

$$x_i^{k+1} = \frac{b_i}{a_{ii}} - \sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^{k}$$

Yandaki MATLAB Programını Jacobi Yöntemini gerçekleştirecek şekilde değiştiriniz.

Hatırlatma

$$x_{i}^{k} = \frac{b_{i}}{a_{ii}} - \sum_{\substack{j=1 \ j \neq i}}^{n} \frac{a_{ij}}{a_{ii}} x_{j}^{k-1}$$

Ödevler dersin Araştırma Görevlisine, takiben eden hafta teslim edilecektir.

Not: Vaktinde teslim edilmeyen ödevler alınmayacaktır.

16

end

JACOBI İLE GAUSS-SEIDEL YÖNTEMLERİNİN KARŞILAŞTIRILMASI

- $x_1 = (b_1 a_{12} x_2 a_{13} x_3)/a_{11}$ $x_2 = (b_2 - a_{21} x_1 - a_{23} x_3)/a_{22}$ $x_3 = (b_3 - a_{31} x_1 - a_{32} x_2)/a_{33}$ $x_1 = (b_1 - a_{12} x_2 - a_{13} x_3) a_{11}$ $x_2 = (b_2 - a_{21} x_1 - a_{23} x_3)/a_{22}$ $x_3 = (b_3 - a_{31} x_1 - a_{32} x_2)/a_{33}$ (b)
 - Jacobi

- Her x değeri bulundukça bir sonraki x değerini belirleyen denklemde hemen hesaplanır.
- Eğer çözüm yakınsıyorsa her zaman en iyi tahminler kullanılmış olur.

iterasyonda hesaplanan tüm Her değerleri bir sonraki değerleri bulunurken toplu olarak yerine koyulur.

GAUSS ELEME YÖNTEMİ

- Örnek: Aşağıda verilen doğrusal denklem takımındaki bilinmeyen değerleri için;
 - Gauss Eleme yönteminin[R : E] formunu kullanarak tam değerlerini bulunuz.
 - Qauss Siedel Yöntemini kullanarak 3 iterasyon için çözünüz. Başlangıç değerlerini 0 alınız. 3. iterasyon sonunda yaklaşık bağıl hatalarını hesaplayınız. Her iterasyonda bulduğunuz sonucun, tam değerlere yaklaşıp yaklaşmadığını gözlemleyiniz.

$$2X_{1} - X_{2} + X_{3} = 2$$

$$X_{1} - 2X_{2} + X_{3} = -1$$

$$X_{1} - X_{2} + X_{3} = 0$$

Çalışma Sorusu

Aşağıdaki doğrusal denklem sistemini Gauss Seidel ve Jacobi yöntemlerini kullanarak 5 iterasyon için <u>ayrı ayrı</u> hem el ile hem de MATLAB ile çözünüz? Not: Her iterasyon için hata hesaplamalarını da yapınız.

$$2X_1 - 3X_2 + X_3 = -5.4$$

$$3X_1 + 2X_2 - X_3 = 6.7$$

$$X_1 + 4X_2 - 5X_3 = 3.2$$

KAYNAKLAR

- İlyas ÇANKAYA, Devrim AKGÜN, Sezgin KAÇAR "Mühendislik Uygulamaları İçin MATLAB", Seçkin Yayıncılık
- Steven C. Chapra, Raymond P. Canale (Çev. H. Heperkan ve U. Kesgin), "Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler", Literatür Yayıncılık.
- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları, No:168, Kocaeli, 2005.
- Ahmet TOPÇU, "Bilgisayar Destekli Nümerik Analiz", OGÜ.
- Yüksel YURTAY, Sayısal Analiz Ders Notları, Sakarya Üniversitesi
- Prof.Dr. Asaf VAROL, "Sayısal Analiz Ders Notları", Fırat Üniversitesi
- Fahri VATANSEVER, "İleri Programlama Uygulamaları", Seçkin Yayıncılık

