MINOR TEST 1 (MTL101)

Maximum Time: 1 Hour Max Marks: 20

All questions carry equal marks

- 1. Let V and U be vector spaces over a field \mathbb{F} . If $\phi:V\to W$ is a vector space homomorphism of V onto U, with $Kernel(\phi)=W$, then prove that V/W is isomorphic onto U.
- 2. Let $T: \mathbb{R}^4_{\mathbb{R}} \to \mathbb{R}^3_{\mathbb{R}}$ be the map $(x_1, x_2, x_3, x_4) \to (x_1 x_4, x_2 + x_3, x_3 x_4)$.
 - (a) Prove that T is a homomorphism of $\mathbb{R}^4_{\mathbb{R}}$ onto $\mathbb{R}^3_{\mathbb{R}}$.
 - (b) Determine the kernel and range of T and compute their dimensions over \mathbb{R} .
- 3. (a) Let V and W be vector spaces over a field F. If vectors v₁, v₂, ···, v_n ∈ V are linearly independent over F and if T: V → W is a one to one homomorphism of V into W, mapping v_i to w_i for each i = 1, ···, n, then prove that w₁, w₂, ···, w_n are linearly independent vectors in W over F.
 - (b) Determine the linear span L(S) over \mathbb{R} for $S = \{(2, 3, -4), (-4, -5, 8), (8, 2, -16)\}$. Also determine its dimension over \mathbb{R} .
- 4. Let V be the vector space of all polynomials $p(x) \in \mathbb{R}[x]$ of degree at most 2 over the field \mathbb{R} . Let $T: V \to V$ be the map sending p(x) to p(x) + p'(0), $\forall p(x) \in V$. Here, p'(x) is the derivative of p(x) w.r.t. x.
 - (a) Prove that T is a homomorphism.
 - (b) Is T onto V? Justify.

Scanned by CamScanner