Ordinary Differential Equations

First Order, Linear, ODEs - Integrating Factor

$$y'(x) + P(x)y(x) = Q(x)$$

$$y(x)\mu(x) = \int Q(x)\mu(x) dx + C$$
 with $\mu(x) = e^{\int P(x)dx}$

$$\int (uv') = uv - \int (u'v)$$

Second Order, Homogenous, Linear ODEs, with constant coefficients - Particular Equation

$$y''(x) + ay'(x) + by(x) = 0$$

Solve the particular equation

$$\lambda^2 + a\lambda + b = 0$$

for λ_1 and λ_2 .

Two, real roots

$$y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

One, real root

$$y(x) = (C_1 + xC_2)e^{\lambda x}$$

Two, complex roots

$$y(x) = Ae^{\lambda_1 x} + Be^{\lambda_2 x} = e^{-a/2x} \left[Ae^{i\omega x} + Be^{-i\omega x} \right] = e^{-a/2x} \left[\hat{A}\cos\omega x + \hat{B}\sin\omega x \right]$$

Fourier Transforms

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{in\pi x/L} \qquad c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-in\pi x/L}$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k) e^{ikx} dk \qquad F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$

Odd and even functions

If f(x) is an odd function, f(x) = -f(-x), the Fourier transform can be done using only sine (as cosine is symmetric around 0):

$$f(x) = \sqrt{\frac{2}{\pi}} i \int_{0}^{\infty} F(k) \sin(kx) dk \quad F(k) = \sqrt{\frac{2}{\pi}} i \int_{0}^{\infty} f(x) \sin(kx) dx$$

If f(x) is even, f(x) = f(-x), we need only cosine (as sine is anti-symmetric):

$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F(k) \cos(kx) dk \quad F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos(kx) dx$$

FT of a derivative

$$\mathcal{F}\Big[f^{(n)}(x)\Big] = (ik)^n \mathcal{F}[f(x)]$$