LCC

— Ficha de exercícios 8

2019/2020

• Integral de linha (campos escalares)

- 1. (a) Calcule $\int_{\mathcal{C}} (y+x) ds$, onde \mathcal{C} é a curva de equações $x=t,y=2t,\,1\leq t\leq 2$.
 - (b) Calcule $\int_{\mathcal{C}} x \, ds$, onde \mathcal{C} é a curva de equações $x = t^3, y = t$, $0 \le t \le 1$.
- **2.** Seja \mathcal{C} a parte superior da circunferência unitária $x^2 + y^2 = 1$. Calcule $\int_{\mathcal{C}} (2 + x^2 y) \, ds$.
- **3.** Determine $\int_{\mathcal{C}} 2x\,ds$, onde \mathcal{C} é o arco \mathcal{C}_1 da parábola $y=x^2$ de (0,0) a (1,1) seguido pelo segmento de reta C_2 de (1,1) a (1,2).

Análise

- 4. Calcule
 - (a) $\int_{\mathcal{C}} (x-2y^2) \, dy$, onde \mathcal{C} é o arco da parábola $y=x^2$ de (-2,4) a (1,1);
 - (b) $\int_{\mathcal{C}} \operatorname{sen} x \, dx$, onde \mathcal{C} é o arco da curva $x = y^4$ de (1, -1) a (1, 1);
 - (c) $\int_{\mathcal{C}} xy \, dx + (x-y) \, dy$, onde \mathcal{C} consiste nos segmentos de (0,0) a (2,0) e de (2,0) a (3,2).
- **5.** Calcule $\int_{\mathcal{C}} xy^2z \, ds$, onde \mathcal{C} é o segmento de reta de (1,0,1) a (0,3,6).
- **6.** Calcule $\int_{\mathcal{C}} y \sec z \, ds$, onde \mathcal{C} é a hélice circular dada pelas equações $x = \cos t$, $y = \sec t$, z = t, $0 \le t \le 2\pi$.
- 7. Seja $\mathcal C$ a curva que consiste no segmento de reta $\mathcal C_1$ de (2,0,0) a (3,4,5) seguido pelo segmento de reta vertical C_2 de (3,4,5) a (3,4,0). Determine $\int_{\mathcal{C}} y \, dx + z \, dy + x \, dz$.

• Integral de linha (campos vetoriais)

- 8. Em cada uma das alíneas seguintes, esboce um número suficiente de vetores que ilustre o padrão do campo vetorial $\mathbf{F}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dado por
- (a) $\mathbf{F}(x,y) = (2,2);$ (b) $\mathbf{F}(x,y) = (x,y);$ (c) $\mathbf{F}(x,y) = (-x,y).$
- **9.** Sendo ${\bf r}$ o caminho definido por ${\bf r}(t)=(1,t,e^t),\,t\in[0,2]$ e ${\bf F}$ o campo vetorial ${\bf F}(x,y,z)=(\cos z,e^x,e^y)$ calcule o integral de caminho de F ao longo de r.
- 10. Considere o campo vetorial $\mathbf{F}:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ definido por $\mathbf{F}(x,y,z)=x\vec{i}+y\vec{j}+z\vec{k}$. Calcule o integral de \mathbf{F} ao longo dos seguintes caminhos:
 - (a) $\mathbf{r}(t) = (t, t, t), \quad t \in [0, 1];$

- (b) $\mathbf{r}(t) = (\sec t, 0, \cos t), \quad 0 < t < 2\pi$
- 11. Calcule cada um dos seguintes integrais de caminho:
 - (a) $\int_{\mathbb{R}} x \, dy y \, dx$, $\mathbf{r}(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$;
 - (b) $\int x dx + y dy$, $\mathbf{r}(t) = (\cos(\pi t), \sin(\pi t))$, $0 \le t \le 2$;
 - (c) $\int_{\mathcal{C}} yz \, dx + xz \, dy + xy \, dz$, quando \mathcal{C} é a curva formada pelos segmentos de reta que unem os pontos (1,0,0), (0,1,0) e (0,0,1).
- **12.** Calcule o trabalho realizado pela força ${f F}(x,y,z)=xec i+yec j+zec k$ no deslocamento de uma partícula ao longo da parábola $y = x^2, z = 0$ de x = -1 para x = 2.