

Embedded Systems: Communication

Embedded Systems: bus and interfacing

Lecturer:
Ing. Luca Pizzamiglio
Politecnico di Milano, DEI
pizzamiglio@gmail.com

Outline

- Hierarchical buses
- Protocols
 - Serial
 - ► Parallel
 - Wireless

Multilevel bus architectures

- Don't want one bus for all communication
 - Peripherals would need high-speed, processor-specific bus interface
 - excess gates, power consumption, and cost; less portable
 - Too many peripherals slows down bus
- Processor-local bus
 - High speed, wide, most frequent communication
 - Connects microprocessor, cache, memory controllers, etc.
- Peripheral bus
 - Lower speed, narrower, less frequent communication
 - ► Typically industry standard bus (ISA, ← PCI) for portability

- Bridge
 - Single-purpose processor converts communication between busses

Advanced communication principles

- Layering
 - Break complexity of communication protocol into pieces easier to design and understand
 - Lower levels provide services to higher level
 - Lower level might work with bits while higher level might work with packets of data
 - Physical layer
 - Lowest level in hierarchy
 - Medium to carry data from one actor (device or node) to another
- Parallel communication
 - Physical layer capable of transporting multiple bits of data
- Serial communication
 - Physical layer transports one bit of data at a time
- Wireless communication
 - No physical connection needed for transport at physical layer

Parallel communication

- Multiple data, control, and possibly power wires
 - One bit per wire
- High data throughput with short distances
- Typically used when connecting devices on same IC or same circuit board
 - Bus must be kept short
 - long parallel wires result in high capacitance values which requires more time to charge/discharge
 - Data misalignment between wires increases as length increases
- Higher cost, bulky
 - **ES. SCSI**

Serial communication

- Single data wire, possibly also control and power wires
- Words transmitted one bit at a time
- Higher data throughput with long distances
 - Less average capacitance, so more bits per unit of time
- Cheaper, less bulky
- More complex interfacing logic and communication protocol
 - Sender needs to decompose word into bits
 - Receiver needs to recompose bits into word
 - Control signals often sent on same wire as data increasing protocol complexity

Wireless communication

- Infrared (IR)
 - Electronic wave frequencies just below visible light spectrum
 - Diode emits infrared light to generate signal
 - Infrared transistor detects signal, conducts when exposed to infrared light
 - Cheap to build
 - Need line of sight, limited range
- Radio frequency (RF)
 - Electromagnetic wave frequencies in radio spectrum
 - Analog circuitry and antenna needed on both sides of transmission
 - Line of sight not needed, transmitter power determines range

Error detection and correction

- Often part of bus protocol
- Error detection: ability of receiver to detect errors during transmission
- Error correction: ability of receiver and transmitter to cooperate to correct problem
 - Typically done by acknowledgement/retransmission protocol
- Bit error: single bit is inverted
- Burst of bit error: consecutive bits received incorrectly
- Parity: extra bit sent with word used for error detection
 - Odd parity: data word plus parity bit contains odd number of 1's
 - Even parity: data word plus parity bit contains even number of 1's
 - Always detects single bit errors, but not all burst bit errors
- Checksum: extra word sent with data packet of multiple words
 - e.g., extra word contains XOR sum of all data words in packet

Outline

- Hierarchical buses
- Protocols
 - Serial
 - ► Parallel
 - Wireless

Serial protocols: I²C

- I²C (Inter-IC)
 - Two-wire serial bus protocol developed by Philips Semiconductors nearly 20 years ago
 - Enables peripheral ICs to communicate using simple communication hardware
 - Data transfer rates up to 100 kbits/s and 7-bit addressing possible in normal mode
 - 3.4 Mbits/s and 10-bit addressing in fast-mode
 - Common devices capable of interfacing to I²C bus:
 - EPROMS, Flash, and some RAM memory, real-time clocks, watchdog timers, and microcontrollers

I2C bus structure

Typical read/write cycle

A

C

D

8

D

7

R

Α

0

 \mathbf{C}

Α

T

 $T \mid R$

A

6

Α

5

S

T

A

C

K

Serial protocols: CAN

- CAN (Controller area network)
 - Protocol for real-time applications
 - Developed by Robert Bosch GmbH
 - Originally for communication among components of cars
 - Applications now using CAN include:
 - elevator controllers, copiers, telescopes, production-line control systems, and medical instruments
 - Data transfer rates up to 1 Mbit/s and 11-bit addressing
 - Common devices interfacing with CAN:
 - 8051-compatible 8592 processor and standalone CAN controllers
 - Actual physical design of CAN bus not specified in protocol
 - Requires devices to transmit/detect dominant and recessive signals to/from bus
 - e.g., '1' = dominant, '0' = recessive if single data wire used
 - Bus guarantees dominant signal prevails over recessive signal if asserted simultaneously

Serial protocols: FireWire

- FireWire (a.k.a. I-Link, Lynx, IEEE 1394)
 - High-performance serial bus developed by Apple Computer Inc.
 - Designed for interfacing independent electronic components
 - e.g., Desktop, scanner
 - Data transfer rates from 12.5 to 400 Mbits/s, 64-bit addressing
 - Plug-and-play capabilities
 - Packet-based layered design structure
 - Applications using FireWire include:
 - disk drives, printers, scanners, cameras
 - Capable of supporting a LAN similar to Ethernet
 - 64-bit address:
 - 10 bits for network ids, 1023 subnetworks
 - 6 bits for node ids, each subnetwork can have 63 nodes
 - 48 bits for memory address, each node can have 281 terabytes of distinct locations

Serial protocols: USB

- USB (Universal Serial Bus)
 - Easier connection between PC and monitors, printers, digital speakers, modems, scanners, digital cameras, joysticks, multimedia game equipment
 - 2 data rates:
 - 12 Mbps for increased bandwidth devices
 - 1.5 Mbps for lower-speed devices (joysticks, game pads)
 - Tiered star topology can be used
 - One USB device (hub) connected to PC
 - hub can be embedded in devices like monitor, printer, or keyboard or can be standalone
 - Multiple USB devices can be connected to hub
 - Up to 127 devices can be connected like this
 - USB host controller
 - Manages and controls bandwidth and driver software required by each peripheral
 - Dynamically allocates power downstream according to devices connected/disconnected

Outline

- Hierarchical buses
- Protocols
 - Serial
 - ► Parallel
 - Wireless

Parallel protocols: PCI Bus

- PCI Bus (Peripheral Component Interconnect)
 - High performance bus originated at Intel in the early 1990's
 - Standard adopted by industry and administered by PCISIG (PCI Special Interest Group)
 - Interconnects chips, expansion boards, processor memory subsystems
 - Data transfer rates of 127.2 to 508.6 Mbits/s and 32-bit addressing
 - Later extended to 64-bit while maintaining compatibility with 32-bit schemes
 - Synchronous bus architecture
 - Multiplexed data/address lines

Parallel protocols: ARM Bus

ARM Bus

- Designed and used internally by ARM Corporation
- Interfaces with ARM line of processors
- Many IC design companies have own bus protocol
- Data transfer rate is a function of clock speed
 - If clock speed of bus is X, transfer rate = 16 x X bits/s
- 32-bit addressing

Outline

- Hierarchical buses
- Protocols
 - Serial
 - ► Parallel
 - Wireless

Wireless protocols: IrDA

IrDA

- Protocol suite that supports short-range point-to-point infrared data transmission
- Created and promoted by the Infrared Data Association (IrDA)
- Data transfer rate of 9.6 kbps and 4 Mbps
- IrDA hardware deployed in notebook computers, printers,
 PDAs, digital cameras, public phones, cell phones
- Lack of suitable drivers has slowed use by applications
- Windows 2000/98 and Linux include support
- Becoming available on popular embedded OS's

Wireless protocols: Bluetooth

- Bluetooth
 - New, global standard for wireless connectivity
 - Based on low-cost, short-range radio link
 - Connection established when within 10 meters of each other
 - No line-of-sight required
 - e.g., Connect to printer in another room

Wireless Protocols: IEEE 802.11

- IEEE 802.11
 - Proposed standard for wireless LANs
 - Specifies parameters for PHY and MAC layers of network
 - PHY layer
 - physical layer
 - handles transmission of data between nodes
 - provisions for data transfer rates of 1 or 2 Mbps
 - operates in 2.4 to 2.4835 GHz frequency band (RF)
 - or 300 to 428,000 GHz (IR)
 - MAC layer
 - medium access control layer
 - protocol responsible for maintaining order in shared medium
 - collision avoidance/detection