Лабораторная «Детектирование лиц»

В качестве отчета необходимо прислать iPython notebook с кодом и отчетом с полученными изображениями или ответами на вопрос. В этой лабораторной работе предстоит реализовать простейший детектор лиц на изображениях с помощью техники скользящего окна, гистограмм ориентированных градиентов и метода опорных векторов.

Построение детектора (5 баллов)

Для обучения модели детектора используйте изображения из папки train. Все тренировочные изображения нормализованы, имеют размер 24х32, окном именно такого размера и нужно детектировать лица на тестовых изображениях. Отрицательных примеров гораздо больше, чем положительных.

Вычислите HOG признаки всех тренировочных изображений. При выполнении стоит пользоваться функцией skimage.feature.hog(). Значение параметров orientations и cells_per_block стоит взять равными 9 и (1,1) соответственно, хорошее значение размера клетки (параметр pixels_per_cell) предстоит подобрать.

После извлечения НОG признаков все тренировочные изображения-окна описываются векторами фиксированнной длины и на них можно обучить SVM sklearn.svm.SVC(). Обратите внимание, что для реализации подавления немаксимумов и подсчета AUC нужно, чтобы SVM выдавал вероятность объекта в данном окне.

После обучения классификатора необходимо реализовать метод скользящего окна. НОG-признаки для окон на тестовых изображениях необходимо вычислять с теми же параметрами, что и на обучающих. Запустите алгоритм детектирования, подберите оптимальные значения параметров метода (шаг окна, количество масштабов в пирамиде изображений). Реализуйте подавление немаксимумов. Визуализируйте результаты детектирования. Практикум считается сданным, если неудовлетворительный результат детектирования получается максимум на двух изображениях.

Оценка качества детектора (5 баллов)

Для оценки качества детектора обычно используется мера AUC — площадь под precision-recall кривой. Вам предлагаются два скрипта для подсчета AUC и построения графика кривой. Разберитесь, как запустить эти скрипты (они хорошо документированы), разметьте тестовые изображения в требуемом для скрипта формате и запустите скрипты. Результаты выведите в іруthon notebook и прокомментируйте.