

Datalab Seminar

Introduction to D3.js

Interactive Data Visualization in the Web Browser

Dr. Philipp Ackermann

Sample Code: http://github.engineering.zhaw.ch/VisualComputingLab/CGdemos

Zürcher Fachhochschule © 2016 InIT/ZHAW Visual Computing Lab

Data Visualization

- Converting raw data to a form that is viewable and understandable to humans
 - Transform the symbolic to the geometric
 - Make the obvious and the hidden/abstract observable
- Interactive exploration
 - Drill-down
 - Dynamic mapping
- Gaining insight by interactive exploration and dynamic simulation
 - Amplify cognition (by creating a mental image)
 - Visual thinking (high bandwidth, pattern recognition, ...)

Data Visualization

"A picture is worth more than a thousand words" (An ancient Chinese proverb)

"Tell me and I will forget...

Show me and I may remember...

Involve me and I will understand."

(Another ancient Chinese proverb)

→ Interactive information visualization is a great tool for fostering involvement and understanding

Zürcher Fachhochschule 3

Data Visualization

- Information Visualization
 - Abstract representation
 - Discrete data

- Scientific Visualization
 - Artefacts with well-defined 2D/3D representation in reality
 - Continuous data (e.g., computational fluid dynamics, weather models)

InfoVis and Big Data / Open Data

- More and more data produced
- More and more open data
 - opendata.ch http://opendata.ch
- Importance of visualizing this data
- Narrative information visualization
- Data-driven journalism
 - The New York Times
 http://blog.visual.ly/10-things-you-can-learn-from-the-new-york-times-data-visualizations/
 - The Guardian
 http://www.theguardian.com/news/datablog
 - Neue Zürcher Zeitung <u>http://nzz.ch/data</u>

Zürcher Fachhochschule

D3.js

- A JavaScript library for creating data visualization
 - Transformation of data into interactive visualizations
 - A kind of clever "jQuery for SVG"
 - Developed by Mike Bostock
 (while @ Standford, now @ New York Times)
- Based on standard Web technology
 - HTML Hypertext Markup Language
 - CSS Cascading Style Sheets
 - JS JavaScript
 - SVG Scalable Vector Graphics
 - DOM The Document Object Model

D3.js Features

- Solves the fundamental problem of data visualisation
 - Creates SVG (or HTML) DOM elements
 - Manipulates the DOM with data
 - Supports differential data update
- Fast, simple and efficient
- Support for animations and transitions
- A lot of existing chart/graph layouts
- Modularity
 - Extensions with functions and plugins
- Active community support

Zürcher Fachhochschule

Data in d3.js

- Data are arrays
 - Array of numbers
 - Array of objects
 - Array of arrays (matrix)
 - Use JavaScript's built-in array methods array.{filter,map,sort,...}
- JSON
 - Embed JSON data
 - Loading JSON data
- Loading Comma-Separated Values (CSV)
- Loading XML data using XMLHttpRequest

Selection & Manipulation

- Selectors to simplify DOM access
 - Similar to jQuery (but not the same)
 - d3.selectAll("div")
 - Compared to jQuery: \$("div")
 - Result is an array

```
d3.selectAll("circle");
```

- Method chaining
 - Shorter (and more readable) code

```
d3.selectAll("circle")
   .attr("cx", 20)
   .attr("cy", 15)
   .attr("r", 5)
   .style("fill", "red");
```

Zürcher Fachhochschule

9

Data Binding

- Select elements and join with data
 - Pairs a data object and a visual element

```
var myData = [
    {x: 2.0, y: 9.4},
    {x: 3.0, y: 8.1},
    {x: 5.0, y: 8.4},
    {x: 8.0, y: 8.7},
    {x: 9.0, y: 9.2}
];
```

```
svg.selectAll("circle")
   .data(myData)
   .enter().append("circle")
   .attr("cx", x)
   .attr("cy", y)
   .attr("r", 5)
   .style("fill", "red");
```

Generation of visual elements

```
.enter().append()
```

- Set properties using functions of data
 - Attributes (and styles) control position and appearance

Data Binding

- Join cycle: enter, update & exit
 - Keeps track of new and old objects
 - Lets you animate differences between new & old data
 - Keeps existing layout stable
- enter()
 - Generate new visual element
- update()
 - Update values of existing elements
- exit()
 - Remove visual element
 - Can be done with transition

Zürcher Fachhochschule

11

Scales

- Scales are functions that map from an input domain to an output range
 - Input is data-driven
 - Output range controls visual properties
- Scale types
 - Ordinal scale
 - Linear scale
 - Log scale
 - Power scale
 - Time range
 - Color categories

```
x("B"); // 240
```


Linear scale samples

Zürcher Fachhochschule 13

Axes

- Labeling of scales
 - Create an axis for a given scale

```
var xAxis = d3.svg.axis()
   .scale(x)
   .orient("right");
```

Add the axis by creating a <g> group element

```
svg.append("g")
   .attr("class", "x axis")
   .call(xAxis);
```

Customize axis appearance via CSS and by Ticks

```
.axis path, .axis line {
  fill: none;
  stroke: #000;
  shape-rendering: crispEdges;
}
```

```
var axis = d3.svg.axis()
   .tickSize(10,0);
```

Let's Make a Bar Chart

 By generating HTML div elements

 By generating SVG rect elements and axes

Zürcher Fachhochschule

Layouts

- Layouts do transform data to visual elements
 - They do not draw, they make the data uplift by generating, positioning, and sizing visual elements
- Predefined layouts

Bundle

Partition

Chord

- Pie

Cluster

Stack

Force

Tree

Hierarchy

Treemap

Histogram

- World cloud

- Pack

_ ...

See https://github.com/mbostock/d3/wiki/Gallery

Let's Make a Pie Chart

- By using a d3.js pie layout
 - d3.csv
 - · Load and parse data
 - d3.scale.ordinal
 - · Color encoding
 - d3.svg.arc
 - Generate arc elements
 - d3.layout.pie
 - Compute arc angles from data

Zürcher Fachhochschule 17

Transitions and Interactions

- Make your charts change smoothly
 - Data changes become animated
 - Smooth movements
 - Fade-in / fade-out
- Add event handlers to generated SVG elements
 - On over → Tooltips
 - On click → Follow URL link
 - On dblclick → Drill-down
 - On drag → Move / rearrange

Let's Visualize a Network Graph

- Using directional force layout
 - Dynamic network layout
 - Nodes as circles
 - · Links as curved arrows
 - Event handlers
 - Click
 - Dblclick
 - Drag
 - Transition
 - Node resizing

Zürcher Fachhochschule

10

Geographical Maps

- GeoJSON
 - Maps geographic data to SVG polygon elements
- TopoJSON
 - Borders are stitched together from segments called arcs
 - Arcs are shared by borders → compact data
- Many different geo projections in d3.geo.js available

Let's Create a Swiss Map

By using d3.topojson.js

Zürcher Fachhochschule

21

Example: Visualize content from DB

- Cron job: PHP script to daily save value in DB
- PHP script to provide DB records as JSON
- HTML/D3.js code for data graphics

Example: Visualize content from DB

PHP script to provide DB records as JSON

Zürcher Fachhochschule 23

Example: Visualize content from DB

HTML/D3.js code to get data via JSON

```
<h1>Amount of files on Metason server</h2>
<script src="http://d3js.org/d3.v3.min.js" charset="utf-8"><script>

...
    var parseDate = d3.time.format("%Y-%m-%d").parse;
    var x = d3.time.scale().range([0, width]);
    var y = d3.scale.linear().range([height, 0]);

...
    d3.json("getstats.php", function (error, data) {
        data.forEach(function (d) {
            d.day = parseDate(d.day);
            d.portraitfiles = +d.portraitfiles;
        });
        x.domain(d3.extent(data, function (d) {
            return d.day;
        }));
        y.domain([0, d3.max(data, function (d) {
                return d.portraitfiles;
        })]);
    </script>
```

Student Project: eHealth Info Vis

- Interactive Web Graphics
 - Access to Open Data of public health information
 - Web-based information visualization based on D3.js
 - http://www.visualcomputinglab.ch/healthvis

Information Visualization Example

- Combine multiple & linked views
- Temporal filtering & animation
- Interactive legends

http://www.metason.net/artistnet/India Arie.html

A Typical d3.js Application

- Data Flow
 - Import of raw data
 - · Optional: Data pre processing
 - Data filtering
 - · By user interaction
 - · By animation (timer)
 - Visual mapping
 - Preperation for visualization
 - Chart-specific data arrays
 - Calculate scales and axes
 - Several parallel charts
 - Main chart
 - Side charts

Zürcher Fachhochschule

Information Visualization Samples

- Try out great samples of Info Vis based on d3.js
 - www.bloomberg.com/dataview/2014-04-17/how-americans-die.html
 - www.cs.umd.edu/~bederson/papers/index.html
 - www.nytimes.com/interactive/2013/04/08/business/global/asia-map.html
 - github.com/mbostock/d3/wiki/Gallery

Dive Deeper

- Learning by doing
 - Checkout d3.js Web site www.d3js.org
 - Use existing tutorials https://github.com/mbostock/d3/wiki/Tutorials
 - Take small steps
 - Learn from examples
- Study d3.js visualization samples
 - https://github.com/mbostock/d3/wiki/Gallery
 - http://bl.ocks.org/mbostock
 - **–** ...

Zürcher Fachhochschule 29

Types of Data Visualization

Data GraphicsInformation VisualizationNarrative VisualizationStatistics+ Information Architecture+ StorytellingStatic Presentation+ Interaction+ Animation

Visual Data Mining

- Visual Data Mining
 - Use of visual tools for data exploration
- Interactive exploration
 - Interplay of human and machine intelligence
 - Interaction Loop
 - Machine processing
 Visual pattern recognition
 - Best of both worlds
 - Machine speed
 - Human perception & interpretation

Zürcher Fachhochschule 31

Recommended Reading

A Tour Through the Visualization Zoo

PDF: http://portal.acm.org/ft_gateway.cfm?id=1805128&type=pdf

HTML: http://queue.acm.org/detail.cfm?id=1805128

Recommended Reading

