Estática y Dinámica

Movimiento relativo

Movimiento relativo

Movimiento relativo

$$\vec{r}_A = \vec{r}_B + \vec{r}_{AB}$$

$$\vec{v}_A = \vec{v}_B + \vec{v}_{AB}$$

$$\vec{a}_A = \vec{a}_B + \vec{a}_{AB}$$

Ejemplo

Un barco con su proa dirigida hacia al norte cruza un rio a una velocidad de 10 km/h en relación al agua que a su vez tiene una velocidad de 5.0 km/h en dirección Este.

Determinar la velocidad del bote relativa a un observador en la orilla

Ejemplo

Si queremos que el mismo bote viaje en línea recta en dirección al Norte, ¿Hacia qué dirección debemos dirigir la proa?

Ejemplo

Imaginemos que hacemos un viaje en avión de A a B y luego de vuelta a A.

Curiosidad: Si el viento sopla de A a B, comparado con un viaje sin viento, ¿el viaje completo de ida y vuelta se hace en, mayor, menor o igual tiempo?

Α

В

 $ec{v}_v$: velocidad del viento

 $ec{v}_{vs}$: velocidad del avión sin viento

Enunciado para los problemas 12-13:

El brazo ranurado OA gira en sentido contrario al de las manecillas del reloj alrededor de O, de modo que cuando se encuentra formando un ángulo θ respecto de la horizontal, el brazo OA gira con una velocidad angular de $\dot{\theta}$ y una aceleración angular de $\ddot{\theta}$. El movimiento del pasador B está limitado a la superficie circular fija y a lo largo de la ranura en OA, como se muestra en la figura. Note que r es equivalente a coordenada radial ρ .

Figura 5: Problemas 12-13.

Problema 12: ¿Cuál es la magnitud de la velocidad (i.e. rapidez) del pasador B en ese instante?

- a) $b\dot{\theta}$
- b) $2b\dot{\theta}\sin\theta$
- c) $2b\dot{\theta}\cos\theta$
- d) $2b\dot{\theta}$

Problema 13: ¿Cuál es la magnitud de la aceleración del pasador B en ese instante?

- a) $2b\ddot{\theta}$
- d) $2b\ddot{\theta}\sin\theta$
- c) $2b\sqrt{\ddot{\theta}^2 + 4\dot{\theta}^4}$
- d) $2b\ddot{\theta}\cos\theta$