《通信原理》期中试题及参考答案

一. 选择填空

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
答案	A	D	С	D	A	В	С	В	D	В	A
空格号	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
答案	D	D	В	С	A	С	A	В	A	D	С
空格号	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
答案	C	A	D	A	В	D	A	C	В	В	A
空格号	(34)	(35)	(36)	(37)	(38)	(39)	(40)	(41)	(42)	(43)	(44)
答案	В	В	D	A	В	A	C	В	A	В	C
空格号	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)	(53)	(54)	(55)
答案	Α	В	D	D	С	Α	D	В	С	D	Α

(1)	(A) $X^*(f)Y(f)$	(B) $X(f)Y(f)$
(1)	(C) $\int_{-\infty}^{\infty} X^*(f)Y(f)df$	(D) $\int_{-\infty}^{\infty} X(f)Y(f)df$

2. 平稳过程X(t)通过一个传递函数为H(f)的滤波器后成为Y(t)。若X(t)的功率谱密度是 $P_X(f)$,则Y(t)的功率谱密度是 $P_Y(f)=(2)$,Z(t)=X(t)+Y(t)的功率谱密度是 $P_Z(f)=(3)$ 。

(2)	(A) $H(f)P_X(f)$	(B) $ H(f) P_X(f)$
(2)	(C) $ H(f) ^2 P_X^2(f)$	(D) $ H(f) ^2 P_X(f)$
(2)	(A) $[1 + H(f)] P_X(f)$	(B) $P_X(f) + P_Y(f)$
(3)	(C) $ 1 + H(f) ^2 P_X(f)$	(D) $P_X(f) + H(f)P_Y(f)$

3. 周期单位冲激序列 $\sum\limits_{n=-\infty}^{\infty}\delta(t-nT_{\mathrm{s}})$ 的傅氏变换是<u>(4)</u>。

(4)	(A) $\frac{1}{T_{\rm s}} \sum_{n=-\infty}^{\infty} e^{j2\pi \frac{n}{T_{\rm s}}t}$	(B) $\frac{1}{T_s} \sum_{n=-\infty}^{\infty} e^{-j2\pi \frac{nf}{T_s}}$
(4)	(C) $\frac{1}{T_{\rm s}} \sum_{n=-\infty}^{\infty} \delta(f - nT_{\rm s})$	(D) $\frac{1}{T_{\rm s}} \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T_{\rm s}})$

4. 若能量信号g(t)的傅氏变换为G(f),则其能量为(5)。

(5)		(B) $\int_{-\infty}^{\infty} G^2(f) df$
(5)	(C) $\int_0^\infty G(f) ^2 \mathrm{d}f$	(D) $\frac{1}{T_{\rm s}} \int_{-\infty}^{\infty} G(f) ^2 \mathrm{d}f$

5. 已知 PAM 信号的数学期望为零,带宽大于奈奎斯特极限带宽。下图是用线谱法从接收到的 PAM 信号中提取时钟的框图,图中的装置 1 应为(6),装置 2 应为(7)。

(6) (7)	(A) 均衡器	(B) 平方器	(C) 窄带滤波器	(D) 压控振荡器
---------	---------	---------	-----------	-----------

6. 某二进制基带传输系统在 $[0,T_b]$ 内发送 $s_1(t)=+2$ 或 $s_2(t)=-2$ 之一。信号经过信道传输后叠加了零均值白高斯噪声。接收端将接收信号通过一个带宽为 $2/T_b$ 的理想低通滤波器之后在 $t=T_b/2$ 时刻采样。若 $s_1(t),s_2(t)$ 等概出现,则最佳判决门限 $(\underline{8})$,若 $s_1(t)$ 的出现概率比 $s_2(t)$ 大,则最佳判决门限 $(\underline{9})$ 。

(8)(9) (A) 大于零	(B) 等于零	(C) 等于 1	(D) 小于零

7. 下列框图中, (10)是差分编码, (11)是差分译码, (12)是相关编码。

8. 下列波形中,(13)是 HDB3 码,(14)是数字双相码(Manchester 码),(15)是 AMI 码,(16) 是双极性归零码。其中 AMI 码译码后的数据是(17),HDB3 码译码后的数据是(18)。

9. 假设发送数据独立等概,数据速率为 10b/s。下列功率谱密度图中,(19)对应单极性不归零码,(20)对应双极性不归零码,(21)对应单极性归零码,(22)对应双极性归零码。

10. 下列框图中, (23)可用于 AM 信号的非相干解调, (24)可用于解调 FM 信号, (25)可用于解调 SSB 信号。

11. 若 16 进制数字信号的数据速率是 400b/s,则其符号速率是(26)Baud,比特间隔是(27)ms,符号间隔是(28)ms。

(26)	(A) 100	(B) 200	(C) 300	(D) 400
(27) (28)	(A) 1	(B) 2.5	(C) 5	(D) 10

12. 若 s(t)的功率	革谱密度 $P_s(f)$ 在 $f =$	0处最大,则 3dB	带宽定义为满足 <u>(29)</u>	的 B 。
(29)	(A) $P_s(B) = \frac{1}{2}P($	0)	(B) $P_s(B) = \frac{1}{3}P($	
(29)	(C) $P_s(B) = \frac{1}{\sqrt{2}}P$	$\mathcal{C}(0)$	(D) $P_s(B) = \frac{1}{\sqrt{3}}I$	P(0)
时的幅度为(归零码的比特间隔是 DV。若"1"出现的 的概率是 0.25,则当	概率是 0.5,则平均	均功率是 <u>(30)</u> W,平均	匀比特能量是 <u>(31)</u> J。
(30) (31) (32) (33)	(A) 0.5	(B) 1	(C) 2	(D) 4
				素以独立等概方式取
值于{±1},	g(t)的傅氏变换是滚[T.	1	
(34)	(A) 平稳	(B) 循环平稳	(C) 高斯	(D) 泊松
15. 若加(t)是偶日	函数,则其希尔伯特	变换 <i>m(t)</i> 是 <u>(35)</u> 函	数。	
(35)	(A) 偶	(B) 奇	(C) 非奇非偶	(D) 复值
16. e ^{j200πt} 是 <u>(36)</u>	信号。			
(36)	(A) 实	(B) 能量	(C) 非周期	(D) 解析
功率谱密度。	出信噪比 $\left(rac{S}{N} ight)$ 。与输 λ	間制信号的帯宽相同 、信噪比 $\left(rac{S}{N} ight)_{i}$ 的关系	司,则 DSB-SC 和 S 在 DSB-SC 中是 <u>(38</u>	SB 的输出信噪比关 <u>)</u> , 在 SSB 中是 <u>(39)</u> 。
(37)	(A) $\left(\frac{S}{N}\right)_{\text{ODSB}} = \left(\frac{S}{N}\right)_{\text{ODSB}}$ (C) $2\left(\frac{S}{N}\right)_{\text{ODSB}} = \left(\frac{S}{N}\right)_{\text{ODSB}}$	$\left(\frac{S}{N}\right)_{OSSB}$	(B) $\left(\frac{S}{N}\right)_{\text{ODSB}} = 2$ (D) $\left(\frac{S}{N}\right)_{\text{ODSB}} > \left(\frac{S}{N}\right)_{\text{ODSB}}$	$\left(\frac{S}{N}\right)_{\text{OSSB}}$
(38) (39)	(A) $\left(\frac{S}{N}\right)_{o} = \left(\frac{S}{N}\right)_{i}$ (C) $2\left(\frac{S}{N}\right)_{o} = \left(\frac{S}{N}\right)_{i}$		(B) $\left(\frac{S}{N}\right)_{o} = 2\left(\frac{S}{N}\right)_{i}$ (D) $\left(\frac{S}{N}\right)_{o} < \left(\frac{S}{N}\right)_{i}$	i
	传输系统采用升余弦	交流 交流 降波形进行信息	是传输, 其符号速率 <i>I</i>	$R_{ m s}$ 、带宽 W 和滚降因
子α之间的关		D .	P (1 + c)	B (1+c)
$(40) \qquad (A) ;$	$\frac{R_{\rm s}}{W(1+\alpha)} = 2 \tag{B}$	$\frac{R_{\rm s}}{W(1+\alpha)} = 1 \tag{0}$	$C) \frac{R_s(1+\alpha)}{W} = 2$	$\text{(D) } \frac{R_{\rm s}(1+\alpha)}{W} = 1$
入相关性, 月	基本思想是:在既定 用来改变信号的频谱 E接收端增加一个装	特性,以达到提高	系统频带利用率的	目的。 <u>(42)</u> 技术的基

(B) 部分响应

(C) 匹配滤波

(D) 升余弦滚降

符号间干扰。

(41)(42) (A) 信道均衡

20.平稳随机过程X(t)的一维概率密度函数如下所示。此随机过程的均值是(43),平均功率是(44)。

21. 设有零均值窄带平稳过程 $X(t) = X_c(t)\cos 2\pi f_c t - X_s(t)\sin 2\pi f_c t$,已知其方差为 1。X(t)的 希尔伯特变换为 $\hat{X}(t) = (45)$,其方差为(46)。X(t)的复包络为 $X_L(t) = (47)$,其方差为(48)。

X(t)的同相分量 $X_{c}(t)$ 的方差为<u>(49)</u>。

(45)		$X_{\rm c}(t)\sin 2\pi f_{\rm c}t + 1$	- ()	(B) $X_{\rm c}(t)\cos 2\pi f_{\rm c}t +$	$X_{\rm s}(t)\sin 2\pi f_{\rm c}t$
(43)	(C)	$X_{\rm c}(t)\sin 2\pi f_{\rm c}t - 1$	$X_{\rm s}(t)\cos 2\pi f_{\rm c}t$	(D) $X_{\rm s}(t) \sin 2\pi f_{\rm c} t$ –	$X_{\rm c}(t)\cos 2\pi f_{\rm c}t$
(46)	(A)	0.5	(B) 1	(C) 2	(D) 4
(4)	7)	(A) $X_{\rm c}(t) + X_{\rm s}(t)$		(B) $X_{\rm c}(t) - X_{\rm s}(t)$	
(47	1)	(C) $X_{\rm c}(t) - \mathrm{j}X_{\rm s}(t)$	t)	(D) $X_{c}(t) + jX_{s}(t)$	
(48) (4	49)	(A) 0	(B) 0.5	(C) 1	(D) 2

22. 设 FM 系统中的调制信号是 $m(t) = 4\cos 200\pi t$,调制指数是 $\beta_f = 5$,则已调信号是<u>(50)</u>,其带宽近似是<u>(51)</u>Hz。

	(50)	(A) $2\cos(2\pi f_{\rm c}t + 5)$	$\sin 200\pi t$	(B) $2\cos(2\pi f_{\rm c}t + 5)$	$\cos 200\pi t$)
	(50)	(C) $2\cos(2\pi f_{\rm c}t + 4)$	$\sin 200\pi t$)	(D) $2\cos(2\pi f_{\rm c}t + 2$	$0\sin 200\pi t$
ſ	(51)	(A) 100	(B) 200	(C) 1000	(D) 1200

23. 设m(t)是均值为 0,带宽为 W 的模拟基带信号。将 DSB SC 信号 $m(t)\cos 2\pi f_c t$ ($f_c \gg W$) 通过一个传递函数为H(f)的带通滤波器后输出是s(t)。若H(f)是下列中的(52),则 s(t)是上单边带 SSB 信号;若H(f)是下列中的(53),则 s(t)是下单边带 SSB 信号;若H(f)是下列中的(54),则 s(t)是 VSB 信号。

24. 接收端通过观察测量眼图不能获得的信息是(55)。

(55)	(A) 发送数据是否经过了差分编码	(B) 信道是否引起了符号间干扰
(33)	(C) 发送数据是否采用了多电平	(D) 接收信号是否有明显的噪声

二. 零均值模拟基带信号 m(t)对频率为 f_c =1000Hz 的载波作 AM 调制,已调信号 s(t)的功率谱密度(W/Hz)如下图所示,括号中的数字表示冲激的强度。

- (1) 求此 AM 信号的功率及调制效率;
- (2) 令 $m_n(t) = m(t)/\max|m(t)|$ 为m(t)的归一化表示式,试写出 $m_n(t)$ 的表达式(取初相为 0);
- (3) 写出s(t)的表达式;
- (4) 若保持 AM 已调信号中的载频功率不变,提高m(t)的幅度使调幅系数成为 1,求此时 AM 信号的功率及调制效率。

参考答案:

- (1)对功率谱积分得到功率是 $2 \times 4 + 4 \times \frac{1}{4} = 9$ 。边带功率是 1,调制效率是 1/9。
- (2) 从图中可以看出 m(t) 是频率为 100Hz 的单音,幅度归一化之后的表达式为 $m_n(t) = \cos 200\pi t$ 。
- $(3)s(t) = A[1 + am_n(t)]\cos 2\pi f_c t$, $m_n(t)$ 的功率是 0.5,s(t)的功率是 $\frac{A^2}{2}[1 + \frac{a^2}{2}] = 9$,载频功率是 $\frac{A^2}{2} = 8$,故 A=4,a=1/2, $s(t) = 4[1 + 0.5\cos 200\pi t]\cos 2000\pi t$ 。
- (4)需要将m(t)的幅度加倍,m(t)的功率加 4 倍,边带功率成为 4,总功率是 12,调制效率是 1/3。
- 三. 下图中模拟信号m(t)的功率谱密度如图右示,m(t)对载频 f_c ($f_c \gg 100$) 进行下单边带 SSB 调制后成为功率为 1W 的已调信号s(t),然后叠加了单边功率谱密度为 N_0 =0.002W/Hz 的加性白高斯噪声。BPF 是理想带通滤波器,其通带正好能使s(t)通过,LPF 的截止频率为 100Hz。 A_1,A_2 是常数。

- (1) 画出s(t)的单边功率谱密度图;
- (2) 求 A 点的信噪比;
- (3) 若已知 B 点输出y(t)的功率是 3W,求y(t)中的有用信号功率及噪声功率,并画出y(t)的双 边功率谱密度图。

参考答案: (1)

- (2)噪声功率是 0.2W, 信噪比是 5
- (3)输出信噪比=输入信噪比=5,故信号功率是 2.5W,噪声功率是 0.5W

- 四. 设有 PAM 信号 $s(t) = \sum_{n=-\infty}^{\infty} a_n g(t-nT_b)$,其中 $\{a_n\}$ 是取值于 $\{\pm 1\}$ 的独立等概序列, $g(t) = \operatorname{rect}(\frac{t}{T_b})$ 是矩形脉冲。s(t)与其延迟加权相加得到 $y(t) = s(t) + \beta s(t-\tau)$,其中 $\tau > 0$, β
- 是定值。
- (1) 写出s(t)的功率谱密度 $P_s(f)$ 表达式;
- (2) 写出y(t)的功率谱密度 $P_y(f)$ 表达式;
- (3) 求能使 $P_y(f)$ 的主瓣带宽成为 $1/(2T_b)$ 的最小时延 τ 以及相应的 β 值;
- (4) 求能使 $P_{\nu}(f)$ 的主瓣带宽成为 $1/(2T_{\rm b})$ 并能使 $P_{\nu}(0)=0$ 的最小时延 τ 以及相应的 β 值。 参考答案:

$$(1)P_s(f) = \frac{1}{T_b} |G(f)|^2 = T_b \operatorname{sinc}^2(fT_b)$$

$$(2)P_y(f) = \left|1 + \beta e^{-j2\pi f\tau}\right|^2 \cdot T_b \operatorname{sinc}^2(fT_b)$$

- (3)此时要求 $\beta e^{-j2\pi\frac{1}{2T_b}\tau}=-1$,满足此式的最小时延是 $\tau=T_b$,相应的 β =1
- (4)此时还要求 $\beta e^{-j2\pi\cdot 0\cdot \tau} = -1$,即 $\beta = -1$,同时还需要 $\beta e^{-j2\pi\frac{1}{2T_b}\tau} = -1$,得到最小时延是 $\tau = 2T_b$ 。
- 五. 下图所示的数字基带传输系统在 $[0,T_b]$ 时间内发送 $s_1(t)=g(t)$ 或 $s_2(t)=-g(t)$ 之一,g(t)如 图右所示。图中加性白高斯噪声 $n_{\mathbf{w}}(t)$ 的单边功率谱密度是 N_0 =1, t_0 是最佳采样时刻。

- (1) 求g(t)的能量 E_q ;
- (2) 画出匹配滤波器的冲激响应;
- (3) 写出发送 $s_1(t)$ 条件下 y 的概率密度函数;
- (4) 若判决门限 $V_T = 0$,求发送 $s_1(t)$ 条件下的错判概率。

参考答案::

 $(1)E_g=2.5T_b$

(2)

(3)条件均值是 $2.5T_b$,条件方差是 $\frac{5}{4}T_b$, $\frac{1}{\sqrt{2.5\pi T_b}}e^{-\frac{2(y-2.5T_b)^2}{5T_b}}$

 $(4)^{\frac{1}{2}} \operatorname{erfc}(\sqrt{2.5T_{\rm b}}) = Q(\sqrt{5T_{\rm b}})$

六. 某基带传输系统收发总体的冲激响应是 x(t), 总体传递函数是X(f)。

- (1) 若x(t) = sinc(2t),写出能使采样值满足 $x(nT_s) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$ 的最小 T_s 、该系统无符号间干扰传输的最大传输速率 R_s 、系统带宽、X(f)表达式以及该系统的频带利用率(Baud/Hz);
- (2) 若x(t) = sinc(2t) sinc(t),写出该系统无符号间干扰传输的最大传输速率 R_s 、x(t)的带宽、系统的频带利用率(Baud/Hz),并画出X(f)图。

参考答案:

(1) $T_s = \frac{1}{2}$, R_s =2Baud, B=1Hz, $X(f) = \frac{1}{2} \operatorname{rect}(f/2)$, 频带利用率是 2Baud/Hz;

(2)能使 $x(nT_{\rm s})=\left\{ egin{array}{ll} 1, & n=0 \\ 0, & n
eq 0 \end{array}
ight.$ 的最小 $T_{\rm s}$ 仍然是 $T_{\rm s}=rac{1}{2}$,故所求 $R_{\rm s}=2$ Baud

 $\operatorname{sinc}(t)$ 的带宽是 0.5Hz, $\operatorname{sinc}(2t)$ 的带宽是 1Hz,两者卷积后带宽是 1.5Hz。频带利用率是 4/3Baud/Hz。X(f)如下

