## Joint Action and Music Research

Social Cognition @ BME

Atsuko Tominaga

Central European University

2020-12-07

#### **Outline**

#### 1. Joint Action - acting together

Investigating **real-time** social interactions

#### 2. Music - unique human cultures

How does studying music help to understand social interactions?

#### 3. My research: teaching expertise

How has social learning contributed to cultural transmission?

# Joint Action acting together

### What is Joint Action (JA)?

- A variety of **real-time** communication and coordination in our daily life.
- Is studying individuals enough to understand social interactions?

#### Working definitions

- ...any form of social interaction whereby **two or more individuals coordinate their actions in space and time** to bring about a change in the environment (Sebanz et al., 2006)
- SCA (Shared Cooperative Activity) involves mutual responsiveness—of intention and in action—in the service of appropriately stable, interlocking, reflexive, and mutually noncoerced intentions in favor of the joint activity (Bratman, 1992)
- ...there is in fact a range of **different levels of 'joint'** behaviour (Milward & Carpenter, 2018)

#### Comparison between individual and joint performances

- Do people behave differently when they are doing the same task with or without a partner?
- One of the well-established psychological effects: Simon effect



figure: http://sylvankornblum.com/the-simon-task/, experiment: https://www.psytoolkit.org/experiment-library/simon.html

#### Social Simon effect?

How can we make the Simon task so that two people (not one) can perform together?





- What you have to do is only to respond to one stimulus (e.g., if a triangle, press the right button)
  - essentially this turns to be a go/nogo task
- a) Joint condition: you perform the task
   with your partner
- b) Individual condition: you perform the task **without** your partner

Representiting inthers (actionis in the one's own? Sebanz et al., 2003)

### People are affected by their partner



Fig. 2. Mean RTs on compatible, neutral, and incompatible trials in the two-choice condition (a), the joint gonogo condition (b), and the individual go-nogo condition (c). Mean RTs in the two-choice condition were 446 ms (SD = 40 ms), 452 ms (SD = 40 ms), and 455 ms (SD = 43 ms), in the joint go-nogo condition 325 ms (SD = 32 ms), 331 ms (SD = 32 ms), and 336 ms (SD = 32 ms), and in the individual go-nogo condition 323 ms (SD = 32 ms), 319 ms (SD = 30 ms), and 326 ms (SD = 28 ms).

- Essentially one individual always
  needed to respond to one stimulus
  regardless of the conditions.
- Compatibility Effect (CE) = Difference between Compatible and Incompatible conditions
- CE in Joint condition > CE in Individual condition

Representing others' actions: just like one's own? Sebanz et al., 2003

## Other findings

- Similar findings to Sebanz et al. (2003) using other compatibility tasks (e.g., Atmaca et al., 2011)
- Allocating attention differently when coactors are present (e.g., Böckler et al., 2012;
   Eskenazi et al., 2012)
- Neurocognitive evidence (e.g., Bekkering et al., 2009)
  - action monitoring
  - action prediction
  - action selection

#### Why do coactors matter?

- Automatic self-other integration?
- Performing with computers? Beliefs are enough?
- Representing coactors' tasks, or coactors or something else?

# 2. Music unique human cultures

## Music as a tool to investigate JA

#### Why is music useful to study JA?

- A universal way of non-verbal communication/coordination
- Multi-level interactivity: from individuals to groups
- Parent-infant synchrony to professional jazz improvisation
- Trade-off between experimental control and ecological validity



## >> sidenote: is music universal across cultures?

BBS (Behaviour and Brain Sciences) / one of the forthcoming topics is the origin of music

#### Music as a coevolved system for social bonding

Published online by Cambridge University Press: 20 August 2020

Patrick E. Savage, Psyche Loui, Bronwyn Tarr, Adena Schachner, Luke Glowacki, Steven Mithen and W. Tecumseh Fitch

Show author details ∨

#### Origins of music in credible signaling

Published online by Cambridge University Press: 26 August 2020









Show author details ∨

## JA research in music

- **Temporal-auditory** coordination (**real-time** interactions)
  - relatively easier to measure (quantify) compared to sensorimotor coordination (e.g., body sway)
  - written information-flow between performers; namely sheet music!

#### **Various topics**

- Parent-infant synchrony
- Prosocial behaviour
- Real-time interpersonal coordination
- Leader-follower relationship
- Interpersonal brain synchrony

What can music tell us about social interaction? D'Ausilio et al., 2015

# 3. My research teaching expertise

## What am I doing?

- Many forms of JAs I am interested in **teaching behaviour**.
  - Knowledge between a teacher and a student is **not equal**.
- Teaching has been supposed to be unique to human beings (Tomasello, 2016; Whiten, 2017)
  - Ostensive signals (e.g., eye contact, pointing, infant-directed speech) alter what novices learn (e.g., Csibra & Gergely, 2009)

#### Do experts modulate their behaviour for teaching?

- Infant-directed speech and action (e.g., Wang et al., 2018; Brand et al., 2002)
- Slow and exaggerated performance
  - to attract novices
  - to show relevance to novices
  - any performance which is deviated from the optimal one is fine?

## Teaching musical expressive techniques

• How about teaching expertise where subtle modulation is crucial to acquiring skills?



• Currently doing (A) - very controlled (non-interactive) experiments

## Teaching musical expressive techniques

Articulation (the smoothness of sound) Legato / Staccato



• Dynamics (the loudness of sound) Forte / Piano



## Experiment

- Recruited expert pianists (more than 10 years experience in piano)
- Asked to perform one piece with either articulation and dynamics in the following conditions

#### **Teaching condition**

Perform the piece with a designated expressive technique to teach it to students (as a teacher).

#### Performing condition

Perform the piece with a designated expressive technique to perform your best to an audience (as a performer)

## Experiment

#### Design (within-subjects)

- Condition: Teaching vs Performing
- Technique: Articulation vs Dynamics

#### **Hypotheses**

- Experts will highlight the most relevant feature of the expressive technique they are going to teach.
  - exaggerate articulation (= longer legato and shorter staccato) when teaching
  - exaggerate dynamics (= louder forte and softer piano) when teaching

## How to quantify musical performance?

- From discrete to continuous measures
  - finger-tapping/drumming, keyboards: discrete
  - string, wind instruments etc.: continuous (more complex)
- MIDI data
  - Musical Instrument Digital Interface
  - timestamp of each onset / offset
  - o pitch
  - velocity (loudness)
  - o similar to reaction times (RTs) in Psychological Research

## Results (teaching articulation)



Participants highlighted staccato (= produced shorter staccato for teaching)

## Results (teaching dynamics)



Participants made a larger contrast between forte and piano for teaching

## Replicated with a more naturalistic piece

• Clementi: Sonatina in C major, op. 36 no. 3 (modified)



#### Discussion

- Expert pianists successfully modulated their performances for teaching.
  - especially highlighting **the most relevant aspect** of the technique to be taught
  - not only overall exaggeration but also focusing on particular points (fine-tuned exaggeration)

#### **Limitations**

- Imaginary situation
  - On they behave in the same way if they are in front of actual students?
- Lack of students' information
- Can students notice such exaggeration (because they are too subtle)?

#### **Current study**

• Looking at perceptual abilities of musicians and non-musicians for such modulation.

### SOMBY Lab at CEU (Vienna)

#### **SOcial Mind and Body Lab**

Principle Investigators: Natalie Sebanz and Günther Knoblich





- *Topics*: Joint planning, coordination, and commitment / Communication and teaching in joint action / Joint attention, perspective taking etc.
- *Methodologies*: Classical behavioural studies, motion tracking, eye tracking, EEG, musical equipments (e.g., keyboards, drum pads) etc.
- Website: https://somby.ceu.edu/

## Any question?

**Atsuko Tominaga** 

Email: Tominaga\_Atsuko@phd.ceu.edu

## Key references

Sebanz, N., Bekkering, H., & Knoblich, G. (2006). *Joint action: bodies and minds moving together. Trends in cognitive sciences, 10*(2), 70-76.

Milward, S. J., & Carpenter, M. (2018). Joint action and joint attention: Drawing parallels between the literatures. *Social and Personality Psychology Compass, 12*(4), e12377.

Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing others' actions: just like one's own?. *Cognition, 88*(3), B11-B21.

D'Ausilio, A., Novembre, G., Fadiga, L., & Keller, P. E. (2015). What can music tell us about social interaction?. *Trends in cognitive sciences, 19*(3), 111-114.

Csibra, G., & Gergely, G. (2009). Natural pedagogy. *Trends in cognitive sciences, 13*(4), 148-153.