3. Grafy i Turystyka

Pan X pracuje jako przewodnik turystyczny. Aktualnie, jego zadaniem jest przewiezienie pewnej liczby turystów pomiędzy dwoma miastami, jedną z istniejących dróg dwukierunkowych. Pomiędzy każdą parą sąsiadujących miast istnieje linia autobusowa, który łączy bezpośrednio te miasta i tylko je. Każda z tych linii dysponuje autobusami, które mogą zabierać tylko określoną liczbę osób na swój pokład. Pan X ma mapę miast i dróg pomiędzy nimi oraz informację o limicie każdej z linii. Wie też, że nie zawsze będzie mógł przewieźć wszystkich turystów jednym kursem. **Naszym celem jest minimalizacja liczby kursów.** Rozważmy poniższy przypadek:

Załóżmy, że chcemy przewieźć 99 turystów z miasta 1 do miasta 7. Oczywiście poprawnym rozwiązaniem jest wykonanie przewozu trasą: 1,2,4,7, jadąc którą trzeba wykonać 5 kursów. Proszę napisać program, który wskaże minimalną liczbę kursów.

Wejście

Pojedynczy plik wejściowy zawiera dane jednego testu. Pierwsza linia pliku zawiera dwie liczby całkowite: m,d; (m < 100), gdzie m jest liczbą miast, a d – dróg. Kolejne d linii zawiera po trzy liczby całkowite: c_1,c_2,p , $(1 , gdzie <math>c_1$ i c_2 są numerami miast, a p - maksymalną liczbą pasażerów, których można przewieźć pomiędzy nimi jednym kursem. Kolejne linie zawierają po trzy liczby całkowite s,e,t, (1 < t < 1000000), gdzie s i e są początkiem i końcem trasy, a t - liczbą pasażerów, których należy przewieźć pomiędzy nimi. Koniec poprawnych danych wyznacza linia zawierająca dwa zera.

Wyjście

Plik wyjściowy powinien zawierać tyle linii, ile jest przypadków testowych. W każdej linii powinna znaleźć się jedna liczba całkowita odpowiadająca liczbie kursów, które powinny być zrealizowane dla kolejnego przypadku testowego.

Przykład

FIZYKIAU	
Dla danych wejściowych	Plik wyjściowy powinien zawierać
	33 31
7.10	_
7 10	5
1 2 30	
1 3 15	
1 4 10	
2 4 25	
2 5 60	
3 4 40	
3 6 20	
4 7 35	
5 7 20	
6 7 30	
1 7 99	
0 0	