Quantum Computing

- Lecture 2 (April 24, 2025)
- Today:
 - Quantum state, qubit, and their linear algebra formulation

- A qubit describes the quantum state of a quantum system
- Abstracted as a mathematical object (i.e., ignore their physical meanings...)
- Two "basic" states $|0\rangle$, $|1\rangle$
 - Dirac (Bra-ket) notations
 - In some research papers, |) is also called a quantum register
- We describe the **superposition** state of the system using the qubit:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

• The numbers α and β are complex number and $|\alpha|^2 + |\beta|^2 = 1$

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

• The numbers α and β are complex number and $|\alpha|^2 + |\beta|^2 = 1$

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$$

• The numbers α and β are complex number and $|\alpha|^2 + |\beta|^2 = 1$

Superposition (for single qubit, informal): $|\phi\rangle$ cannot be written as either $|0\rangle$ or $|1\rangle$

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

• The numbers α and β are **complex number** and $|\alpha|^2 + |\beta|^2 = 1$

A quick recap of complex numbers \mathbb{C} :

- A complex number $\alpha \in \mathbb{C}$ can be written as $\alpha = a + bi$, where a, b are real numbers, and $i = \sqrt{-1}$
- If $\alpha \in \mathbb{C}$ and $\alpha = a + bi$, then we write its **conjugate** as $\alpha^* = a bi$
- We write α 's **norm** as $|\alpha| = |\sqrt{\alpha^2 + b^2}|$. We always have $|\alpha| = |\alpha^*| = |\sqrt{\alpha\alpha^*}|$
- If $|\alpha| = 1$, then α can also be written as $\alpha = \cos \theta + i \sin \theta$ for some θ .
- By Euler's formula, $lpha=\cos x+i\sin x=e^{ix}$, and $|e^{ix}|=1$

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

- The numbers α and β are **complex number** and $|\alpha|^2 + |\beta|^2 = 1$
- Examples:

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \qquad \cos\theta |0\rangle + e^{i\psi}\sin\theta |1\rangle$$

Qubit as a unit vector

• We describe the state of a system using the **single** qubit:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

- The numbers α and β are **complex number** and $|\alpha|^2 + |\beta|^2 = 1$
- Relation between $|0\rangle$ and $|1\rangle$:
 - They should be "easy" to distinguish
 - Linear algebra representation:

$$|0\rangle \coloneqq \begin{bmatrix} 1 \\ 0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Qubit as a unit vector

Some linear algebra:

- Focus on vector spaces over C
- Linear (in)dependence, basis, orthonormal basis, transpose, adjoint, ...

$$|0\rangle\coloneqq\begin{bmatrix}1\\0\end{bmatrix}$$
, $\langle 0|\coloneqq\begin{bmatrix}0\\1\end{bmatrix}$, or more generally, if $|\psi\rangle=\begin{bmatrix}\alpha\\\beta\end{bmatrix}$, then $\langle \psi|=[\alpha^*\ \beta^*]$

- We call $|\psi\rangle$ a "**ket**" and $\langle\psi|$ a "**bra**"
- Inner product using Dirac (Bra-ket) notations: $\langle \phi | \psi \rangle$
- Easy to see $\langle 0|1\rangle = \langle 1|0\rangle = 0$ and $\langle 0|0\rangle = 1 = \langle 1|1\rangle$

Qubit as a unit vector

- We describe the state of a system using the **single** qubit:
 - The numbers α and β are **complex number**

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$= \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$$

• A single qubit is a **unit vector over** \mathbb{C}^2

$$\||\phi\rangle\| = \sqrt{\langle \phi | \phi \rangle} = \sqrt{|\alpha|^2 + |\beta|^2} = 1$$

Change basis:

$$\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$$
 is a basis of \mathbb{C}^2 (known as **computational basis**)

$$\left\{\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}, \frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}\right\}$$
 is also a basis of \mathbb{C}^2

Qubit in Different Bases

• Single qubit:
$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2, ||\phi\rangle|| = 1$$

• Change basis: $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$ is a basis of \mathbb{C}^2 (known as **computational basis**)

$$\left\{\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}, \frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}\right\}$$
 is also a basis of \mathbb{C}^2 .

• Let $|\mathcal{I}\rangle\coloneqq\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$ and $|\mathcal{I}\rangle\coloneqq\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$, then:

$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} | \rangle + \frac{\alpha - \beta}{\sqrt{2}} | \rangle$$

Qubit in Different Bases

• Single qubit:
$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2, ||\phi\rangle|| = 1$$

Described by different bases:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} |\mathcal{P}\rangle + \frac{\alpha - \beta}{\sqrt{2}} |\mathcal{P}\rangle$$

• What do they mean? Depends on measurement (will be introduced later)

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{C}^2$$

• If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} | \nearrow \rangle + \frac{\alpha - \beta}{\sqrt{2}} | \searrow \rangle$$

• If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} | \rangle + \frac{\alpha - \beta}{\sqrt{2}} | \rangle$$

• If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

• If we measure $|\phi\rangle$ in the basis $\{|\nearrow\rangle, |\searrow\rangle\}$:

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} |\nearrow\rangle + \frac{\alpha - \beta}{\sqrt{2}} |\searrow\rangle$$

• If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

$$|\phi\rangle = b = \begin{cases} 0 & \text{with probability } \alpha^2 \\ 1 & \text{with probability } \beta^2 \end{cases}$$

• If we measure $|\phi\rangle$ in the basis $\{|\nearrow\rangle, |\searrow\rangle\}$:

$$|\phi\rangle = \begin{bmatrix} & & \text{with probability } \left| \left(\frac{\alpha + \beta}{\sqrt{2}} \right) \right|^2 \\ & & \text{with probability } \left| \left(\frac{\alpha - \beta}{\sqrt{2}} \right) \right|^2 \end{bmatrix}$$

- Single qubit: $|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} |\rangle + \frac{\alpha \beta}{\sqrt{2}} |\rangle$
- If we measure $|\phi\rangle$ in the computational basis $\{|0\rangle, |1\rangle\}$:

It depends on how you define 0, 1, ∠, \(\), ... (i.e., how you encode the information and define its measurement)

• If we measure $|\phi\rangle$ in the basis $\{|\nearrow\rangle, |\searrow\rangle\}$:

$$|\phi\rangle = \begin{bmatrix} & & & \text{with probability } \left| \left(\frac{\alpha + \beta}{\sqrt{2}} \right) \right|^2 \\ & & & \text{with probability } \left| \left(\frac{\alpha - \beta}{\sqrt{2}} \right) \right|^2 \end{bmatrix}$$

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Notes:

- 1. We may also call α and β as amplitudes
- 2. Why complex numbers? A natural way for describing waves (amplitude + phase)

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Wrong: The qubit is $|0\rangle$ with probability $|\alpha|^2$ and is $|1\rangle$ with probability $|\beta|^2$

Correct: The qubit is in a superposition before measurement – in both $|0\rangle$ and $|1\rangle$ at once

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Can we estimate α and β by measuring $|\phi\rangle$ many times?

• Single qubit:
$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Can we estimate α and β by measuring $|\phi\rangle$ many times?

No. Because of collapse and no-cloning...

 $|oldsymbol{\phi}
angle$ becomes $|oldsymbol{b}
angle$ after measurement...

Inner/Outer Product

- Let $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$ be a qubit
- Inner product (to see adjoint and linearity):

$$\langle \phi | \phi \rangle = \langle \phi | \cdot | \phi \rangle = (\alpha^* \langle 0 | + \beta^* \langle 1 |) \cdot (\alpha | 0 \rangle + \beta | 1 \rangle) = \dots = 1$$

• Outer product: $|\phi\rangle\langle\phi|$

$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
, $\langle \phi | = [\alpha^* \ \beta^*]$, $|\phi\rangle\langle \phi | = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \cdot [\alpha^* \ \beta^*] = (a \ 2 \ x \ 2 \ matrix)$

Inner/Outer Product

- Let $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$ be a qubit
- Inner product (to see adjoint and linearity):

$$\langle \phi | \phi \rangle = \langle \phi | \cdot | \phi \rangle = (\alpha^* \langle 0 | + \beta^* \langle 1 |) \cdot (\alpha | 0 \rangle + \beta | 1 \rangle) = \dots = 1$$

• Outer product: $|\phi\rangle\langle\phi|$

$$|\phi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
, $\langle \phi | = [\alpha^* \ \beta^*]$, $|\phi\rangle\langle \phi | = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \cdot [\alpha^* \ \beta^*] = (a \ 2 \ x \ 2 \ matrix)$

What does $|\phi\rangle\langle\phi|$ represents? A **projector** that project a vector onto the "line" (one-dimension linear space) spanned by $|\phi\rangle$.

Tensor Product

• Let \mathbf{A} $(n_1 \times m_1)$ and \mathbf{B} $(n_2 \times m_2)$ be two arbitrary complex matrices, where

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,m_1} \\ \vdots & \ddots & \vdots \\ a_{n_1,1} & \cdots & a_{n_1,m_1} \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} b_{1,1} & \cdots & b_{1,m_2} \\ \vdots & \ddots & \vdots \\ b_{n_2,1} & \cdots & b_{n_2,m_2} \end{bmatrix}$$

• Then the **tensor product** of **A** and **B**, denoted as $A \otimes B$, is defined by

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{1,1} \mathbf{B} & \cdots & a_{1,m_1} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{n_1,1} \mathbf{B} & \cdots & a_{n_1,m_1} \mathbf{B} \end{bmatrix}, \text{ which is a } \mathbf{n_1} \mathbf{n_2} \times \mathbf{m_1} \mathbf{m_1} \text{ matrix}$$

Tensor Product

• Let \mathbf{A} $(n_1 \times m_1)$ and \mathbf{B} $(n_2 \times m_2)$ be two arbitrary complex matrices, where

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,m_1} \\ \vdots & \ddots & \vdots \\ a_{n_1,1} & \cdots & a_{n_1,m_1} \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} b_{1,1} & \cdots & b_{1,m_2} \\ \vdots & \ddots & \vdots \\ b_{n_2,1} & \cdots & b_{n_2,m_2} \end{bmatrix}$$

• Then the **tensor product** of **A** and **B**, denoted as $A \otimes B$, is defined by

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{1,1}\mathbf{B} & \cdots & a_{1,m_1}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{n_1,1}\mathbf{B} & \cdots & a_{n_1,m_1}\mathbf{B} \end{bmatrix}, \text{ which is a } \mathbf{n_1}\mathbf{n_2} \times \mathbf{m_1}\mathbf{m_1} \text{ matrix}$$

- One can define tensor product for vectors in a natural way.
- We use tensor product to define multiple qubits

Multiple Qubits

- In the classical world, an n-bit string has 2^n possibilities (i.e., 2^n basic states)
- We define multiple qubits (in the computational basis) by an analogous way.

Multiple Qubits

- Multiple (n) qubits in the computational basis.
- 2^n basic states: $|00\cdots 00\rangle$, $|00\cdots 01\rangle$, $|00\cdots 10\rangle$, $|00\cdots 11\rangle$, ..., $|11\cdots 11\rangle$, where

$$|b_{n-1}b_{n-2}\cdots b_1b_0\rangle := |b_{n-1}\rangle \otimes |b_{n-2}\rangle \otimes \cdots \otimes |b_1\rangle \otimes |b_0\rangle$$

• More compact representation:

$$|0\rangle, |1\rangle, |2\rangle, |3\rangle, \dots, |2^n - 1\rangle$$

• An n-qubit states: A superposition of the 2^n basic states

$$|\boldsymbol{\phi}\rangle = \sum_{i=0}^{n-1} \alpha_i |i\rangle$$

where $\alpha_i \in \mathbb{C}$ and $\sum_{i=0}^{n-1} |\alpha_i|^2 = 1$

Multiple Qubits

- Multiple (n) qubits in the other orthonormal basis: $|\phi_0\rangle$, $|\phi_1\rangle$, $|\phi_2\rangle$, ..., $|\phi_n\rangle$
- An n-qubit states: A superposition of the 2^n basic states

$$|\phi\rangle = \sum_{i=0}^{n-1} \alpha_i |\phi_i\rangle$$

where $\alpha_i \in \mathbb{C}$ and $\sum_{i=0}^{n-1} |\alpha_i|^2 = 1$

• A n-qubit states is a **unit vector over** \mathbb{C}^{2^n}

Next Topic

- Linear Operators, Unitaries, Quantum Gates, Entanglement, ...
- More linear algebra

- Next Wednesday: ~50min lecture + 40min exercise & explanation
 - Bring your pen and paper (and also your laptop/iPad to check the lecture notes)

References

- [NC00] Quantum Computation and Quantum Information. Michael Nielsen and Isaac Chuang
 - Section 1.2 (**Bloch sphere representation** of a qubit)
 - Sections 2.1.1 2.1.3
- [KLM07] An Introduction to Quantum Computing. Phillip Kaye, Raymond Laflamme, Michele Mosca
 - Sections 2.1, 2.2, and 2.6
- [RP11] Quantum Computing: A Gentle Introduction. Eleanor Rieffel and Wolfgang Polak
 - Sections 2.1-2.2, 3.1
- Professor Mark Zhandry's <u>lecture note</u>.
- Professor Henry Yuen's <u>lecture note</u>.