Problem 15

Prove by mathematical induction.

 $n(n^2+5)$ is divisible by 6, for each integer $n \geq 0$.

Proof. (by induction)

Let the property P(n) be the sentence " $n(n^2 + 5)$ is divisible by 6".

$$P(n) \longrightarrow n(n^2 + 5)$$
 is divisible by 6.

Base case; P(0): " $0(0^0 + 5)$ is divisible by 6". True, $6 \mid 0$ since $6 \cdot 0 = 0$. **Inductive hypothesis**: Let $k \in \mathbb{Z} \ni k \ge 0$. Assume P(k), that is $6 \mid k(k^2 + 5)$. Then $\exists r \in \mathbb{Z} \ni 6r = k(k^2 + 5)$ or $6r = k^3 + 5$ by definition of divisibility. [NTS: $6 \mid (k+1)((k+1)^2 + 5)$]

$$(k+1)((k+1)^2+5) = (k+1)(k^2+2k+1+5)$$
 by algebra
 $= k(k^2+2k+5+1)+1(k^2+2k+6)$
 $= k^3+5k+2k^2+k+k^2+2k+6$
 $= 6r+3k^2+3k+6$ by substitution
 $= 6r+6+3k(k+1)$ by algebra

k(k+1) are consecutive integers, and by the Parity Property (Theorem 4.5.2) k and k+1 have opposite parity. Multiplying an odd and an even integer results in an even integer by Theorem 4.3.3. We let $S=k(k+1)\ni S$ is even and by definition of even $\exists a\in\mathbb{Z}\ni S=2a$

$$= 6r + 6 + 3 \cdot 2a$$
$$= 6(r+1+a)$$

Let $t \in \mathbb{Z}$. $t \in \mathbb{Z}$ since r, $1, a \in \mathbb{Z}$ by closure of the integers under sums. $6t = k(k^2 + 5)$ by substitution, where $t \in \mathbb{Z}$. Therefore $6 \mid k(k^2 + 5)$ by definition of divisibility.