





# Working Group 3 Summary: V<sub>td</sub>, V<sub>ts</sub>, and Friends

Jeffrey Berryhill Laurent Lellouch Mikolaj Misiak Christoph Paus

CKM Workshop, UCSD March 18, 2005



# $V_{td}V_{ts}^*$ from Rare K Decays: $K^+ \rightarrow \pi^+ \nu \nu$ , $K_L \rightarrow \pi^0 \nu \nu$

#### **Buchalla**

Theoretically "Gold-Plated" relations of BFs to  $\lambda_t = V_{td} V_{ts}^*$ 

$$K^+ \rightarrow \pi^+ \nu \nu$$
 rate ~  $|V_{td}V_{ts}^*|^2$ 



et al.

Theory error in |V<sub>td</sub>| extraction from BF ~10% mostly parametric errors from m<sub>c</sub>, V<sub>cb</sub>
Only 5% error from scale dependence

$$K_1 \rightarrow \pi^0 vv$$
 rate ~  $(\text{Im } \lambda_t)^2 \sim \bar{\eta}^2$ 

Theory error in η extraction from BF ~3%





# $K+\rightarrow \pi^+\nu\nu$ : Measurement Status

ange (cm

<u>Jaffe</u>

#### BNL E787/E949:

Stop kaon, measure outgoing pion Aggressively and redundantly veto huge backgrounds

$$\mathcal{B}(\mathrm{K}^+ \to \pi^+ \nu \overline{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10}$$
  
 $\underline{\mathsf{SM}} = (0.77 \pm 0.11) \times 10^{-10}$ 

Blind analysis
3 candidate events in the signal box
Background probability = 0.001 (>3σ)

|                    |           |              | <u> </u>      |
|--------------------|-----------|--------------|---------------|
| Suppression method |           |              |               |
| Kine               | PID       | Veto         | Timing        |
| $\sqrt{}$          | √         | (√)          |               |
| √                  |           | √            |               |
|                    | $\sqrt{}$ |              | $\checkmark$  |
|                    |           | $\checkmark$ | $\checkmark$  |
|                    |           |              | Kine PID Veto |

Veto includes both  $\gamma$  and charged particle vetoing

No new data expected 15% precision improvement from final analysis





### **Rare K Decays: Summary**

### K<sup>+</sup> signal in the right range

David E. Jaffe (CKM Workshop 2005)

2

March 2005

What do we know about  $K_{\rm L}^0 o \pi^0 \ell^+ \ell^-, \, {
m K}^+ o \pi^+ 
u ar{
u} \, {
m and} \, {
m K}_{
m L}^0 o \pi^0 
u ar{
u}$ 

| $\mathrm{K}^+  ightarrow \pi^+  u ar{ u}$ | $ m K_L^0  ightarrow \pi^0  u ar{ u}$ | $ m K_L^0  ightarrow \pi^0 e^+ e^-$ | $ m \mid K_L^0  ightarrow \pi^0 \mu^+ \mu^-$ | Process                            |
|-------------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------------|------------------------------------|
| $7 \times 10^{-11}$                       | $3 \times 10^{-11}$                   | $4 \times 10^{-11*}$                | $1 \times 10^{-11*}$                         | $\mathcal{B}(\mathrm{SM})$         |
| $(1.47^{+1.30}_{-0.89}) \times 10^{-10}$  | $< 5.9 \times 10^{-7}$                | $< 2.8 \times 10^{-10}$             | $< 3.8 \times 10^{-10}$                      | $\mathcal{B}(\mathrm{expt})$       |
| 10%                                       | < 2%                                  | 10%                                 | 10%                                          | $\sigma_{\mathcal{B}}/\mathcal{B}$ |
| $ \lambda_t $                             | $Im(\lambda_t)$                       | $Im(\lambda_t)$                     | $Im(\lambda_t)$                              | UT                                 |
| E787/E949                                 | E391a                                 | NA48/5                              | NA48/5                                       | Expts                              |
| 1989-2002(+?)                             | 2002-                                 | _                                   |                                              | When                               |
| CKM2,NA48/3                               | KOPIO                                 | Interesting SM-like precision       |                                              | Expts                              |
| 2009?                                     | 2010-                                 | is years awa                        | y                                            | When                               |

 $\lambda_t \equiv V_{ts}^* V_{td}$ , All limits at 90% CL. \* Assumes positive interference (next pages)



# K<sup>0</sup> Mixing: Theory Precision

 $K^0 - \bar{K}^0$  mixing induces indirect CP violation in  $K \to \pi\pi$  which is governed by

$$|\epsilon_K| \simeq C_{\epsilon} A^2 \lambda^6 \bar{\eta} \left[ A^2 \lambda^4 (1 - \bar{\rho}) \eta_2 S(x_t) + P(x_t, x_c, \cdots) \right] c_K(\mu) B_K(\mu)$$

$$c_K(\mu)\langle \bar{K}^0|(\bar{s}d)_{V-A}(\bar{s}d)_{V-A}(\mu)|K^0\rangle = \frac{8}{3}M_K^2 f_K^2 \hat{B}_K^{RGI}$$

- For CKMology, assume no NP in this FCNC process and CKM unitarity
- 6 many quenched calculations of  $B_K$  with different fermion discretizations agree in continuum limit
- newer calculations performed with "chirally-improved" fermions give value of B<sub>K</sub> slightly lower than reference JLQCD '97 result
- $^{6}$  ★ 2 new  $N_f = 2$  calculations (C<sup>-</sup>) (UKQCD '04, RBC '05) suggest mild decrease of  $B_K$  with  $m_{sea}$

### Recent quenched $B_K^{NDR}(2 \text{ GeV})$





(Dawson, WG 3)

#### $N_f = 2$ and quenched vs lattice spacing



(Dawson, WG 3)

⋆ Summary (Dawson, WG3)

$$\hat{B}_K^{RGI} = 0.79(4)(9)$$

 $\hat{B}_{K}^{RGI} = 0.79(4)(9)$  [0.86(6)(14)-ICHEP '02]

- central value is average of recent quenched results
- $N_f = 2$  used to estimate quenching uncertainty
- $\delta B_K = 12\%$  of which 10% is (educated) guess of quenching uncertainty
- $\star$  situation will be clarified by  $N_f=2+1$  calculations underway
- Non lattice estimates in certain limits of QCD: Peris et al '00, Bijnens et al '95 & '05, . . .



# $B^0_{(d,s)} - ar{B}^0_{(d,s)}$ oscillations in SM



$$B_{q}^{0} = V_{tq} - V_{tb}^{*} - b \\ W \ge t \ge W = \bar{B}_{q}^{0}$$

$$b - V_{tb}^{*} - V_{tq} = q$$

$$\Delta M_q \simeq \frac{G_F^2}{8\pi^2} \, M_W^2 \, |V_{tq} V_{tb}^*|^2 \, \eta_B S_0(x_t) c_B(\mu) \, \frac{|\langle \bar{B}_q | (\bar{b}q)_{V-A} (\bar{b}q)_{V-A}(\mu) | B_q \rangle|}{2 M_{B_d}}$$

$$c_B(\mu)\langle \bar{B}_q^0|(\bar{b}q)_{V-A}(\bar{b}q)_{V-A}(\mu)|B_q^0\rangle = \frac{8}{3}M_{B_q}^2 f_{B_q}^2 \hat{B}_{B_q}$$

- CKMology assumes no NP in these FCNC processes and CKM unitarity
- 6 In  $\Delta M_d/\Delta M_s$ , short distance coefficients and many lattice uncertainties cancel
- $f_{B_q}$  and  $g_{B_q}$  on lattice separately, because systematics very different
- 6 methods similar as those for  $f_{D_{d,s}} o ext{important rôle of CLEO-c}$

Extrapolation in light u valence and u, d sea quark necessary for  $f_B$  and  $B_B$ 

2002: inclusion large chiral log term could lower value of  $f_B$  obtained from extrapolating lattice results obtained w/  $m_u = m_d \gtrsim m_s^{phys}/2$  (Kronfeld et al)

- 6 by O(20%) (Yamada; Kronfeld et al)
- 6 by O(10%) (Lellouch; Becirevic)

- \* New results on subset of  $N_f = 2+1$ , MILC gauge configurations (C<sup>-</sup> on Bernard scale): Wingate et al '04 and Gray et al '04 (preliminary)
- → some evidence for log
- $\rightarrow O(10\%)$  effect
- $\rightarrow$  will be checked with full  $\chi$ PT fit



 $f_{B_s} \sqrt{M_{B_s}}/f_B \sqrt{M_B}$  from Kronfeld WG3

Not an issue for  $B_B$ ,  $B_{B_s}$  and  $f_{B_s}$ 

#### Lattice summary:

| Qty                           | Lellouch                 | Hashimoto  |  |
|-------------------------------|--------------------------|------------|--|
|                               | ICHEP 2002               | ICHEP 2004 |  |
| $f_B \hat{B}_B^{1/2}$         | 235(33)(+0)              | 214(38)    |  |
| $f_{B_s} \hat{B}_{B_s}^{1/2}$ | 276(38)                  | 262(35)    |  |
| ξ                             | $1.18(4)(^{+12}_{-\ 0})$ | 1.23(6)    |  |
|                               |                          |            |  |

(Decay constants in MeV)

#### QCD sum-rules results:

$$f_B = 210(19) \, {
m MeV}$$
 ,  $f_{B_s} = 244(21) \, {
m MeV}$  (Jamin et al '02)  $\hat{B}_B = 1.60(3)$  (Körner et al '03)

- 6 Evidence for chiral logs in  $f_{B_s} o$  central value shifts to middle of asymmetric error range
- Summary numbers are C<sup>-</sup> results
- $^{6}$  ★ Expect C<sup>+</sup>–B<sup>-</sup> results in coming year or so ( $N_f = 2+1$  staggered at more than 1 lattice spacing)
  - most of chiral extrapolation error will be statistical
- 6 Also need non-staggered  $N_f=2+1$  results to check assumptions and methods used
- 6  $\delta_{th}|V_{td}| \simeq 20\%$  from  $\Delta M_d$
- 6  $\delta_{th} |V_{td}/V_{ts}| \simeq 5\%$  from  $\Delta M_d/\Delta M_s$



# **B**<sub>s</sub> Mixing Measurements

CKM fits expect  $\Delta m_s \approx 14-24 \text{ ps}^{-1}$ 

World average "Amplitude scan"  $\Delta m_s > 14.5 \text{ ps}^{-1}$ 





$$A_{mix}(t) = \frac{N_{unmix}(t) - N_{mix}(t)}{N_{unmix}(t) + N_{mix}(t)} = D \cdot \cos(\Delta mt)$$

 in reality, perform amplitude scan using likelihood fit (discussed in more detail later)

Signif = 
$$\sqrt{\frac{N\epsilon D^2}{2}}e^{\left(\frac{(\Delta m_s \sigma_t)^2}{2}\right)\left(\frac{S}{S+B}\right)}$$



# DØ B<sub>s</sub> Mixing in Semileptonics

#### **Abbott**

- $B_s \rightarrow D_s \mu X$  (460 pb<sup>-1</sup>)
  - $-D_s \rightarrow \phi \pi$
  - Enhanced opposite side  $\mu$  tag
  - 7037 events (376 tags)

$$\mathcal{E}D^2 = (1.17 \pm 0.04)\%$$





Limit:  $\Delta m_s > 5.0 ps^{-1} @95\% CL$ 

Sensitivity: 4.6 ps<sup>-1</sup>



# CDF B<sub>s</sub> Mixing in Semileptonics

#### **Furic**

- $B_s \rightarrow D_s + \text{lepton } (e/\mu)$ 
  - $-D_s \rightarrow \phi \pi, K*K, \pi \pi \pi$
  - 4355 events
  - Trigger: 4GeV  $e/\mu$  + track
  - Opposite side flavor tags

 $e,\mu$ , jetcharge  $\varepsilon D^2 = (1.43 \pm 0.09)\%$ 





Limit:  $\Delta m_s > 7.7 ps^{-1}$  @95% CL Sensitivity: 7.3 ps<sup>-1</sup>

For both CDF+D0, semileptonic decays rapidly lose ct resolution at realistic  $\Delta m_s$ 

# **CDF Hadronic B decays**

**Furic** 

# Improvements: Hadronic



- assuming 4x effective statistics lowers the sensitivity curve
- 20% improvement in ct resolution further flattens sensitivity curve in the region of interest



# B<sub>s</sub> Mixing, Roadmap to Improvement

#### **Abbott**

- More integrated luminosity
- Better flavor tagging (same-side K tag)
- Improve proper time resolution (event-by-event vertexing)
- Hadronic decays matter more for larger ∆m<sub>s</sub>
- D0 tracking upgrade (add small radius silicon this summer)
- DAQ/trigger/offline upgrades
- Peril: can present trigger efficiency be maintained at high instantaneous luminosity?





# Friends of B<sub>s</sub> mixing: leptonic D decays

Ryd

$$D^{+} \left\{ \begin{array}{c} c & W^{+} & \ell^{+} \\ \overline{d} & V \end{array} \right.$$

$$\Gamma(D^{+} \to l^{+} \nu) = \frac{G_F^2}{8\pi} \left( f_D^2 M_{l}^2 M_{D^{+}} (1 - \frac{m_l^2}{M_{D^{+}}^2})^2 |V_{cd}|^2 \right)$$

Extract  $f(D^+)$  from  $D^+ \rightarrow \mu \nu$  decay rate

30k fully reconstructed  $\psi$ " $\rightarrow$  D $^+$ D $^-$  events 8 signal events with missing mass = 0

Can improve to 3% precision for f(D+)

 $f(D_s^+)$  2% precision expected from  $ψ(3770)→D_s^+D_s^-$  running (τν and μν)



BF(D<sup>+</sup>
$$\rightarrow \mu\nu$$
) = 3.5 ± 1.4 ± 0.6 10<sup>-4</sup> f(D<sup>+</sup>) = 202 ± 41 ± 17 MeV  
LAT = 225 ± 13 ± 21 MeV

D decay constants and their ratios check or bound errors of lattice estimates of B decay constants



#### Friends of B<sub>s</sub> Mixing: B mixing and lifetime

**Hastings** 

Further improvement in B<sup>0</sup>, B<sup>+</sup> lifetime and B<sup>0</sup> mixing from B factories







< 1% B factory precision on lifetime and mixing

#### Results

$$\Delta m_d = (0.514 \pm 0.005) \text{ ps}^{-1}$$
 $\tau_{B^0} = (1.532 \pm 0.011) \text{ ps}$ 

Mixing and lifetimes from B factories could ultimately improve by another 2x

#### b-hadron lifetime ratios and width differences: theory

#### Review by Tarantino in WG 3

$$\Gamma_{H_q} \sim \operatorname{Im}\langle H_q | \mathcal{T} | H_q \rangle$$
  $\Delta \Gamma_q \sim \operatorname{Im}\langle \bar{B}_q | \mathcal{T} | B_q \rangle$ 

$$\mathcal{T} = i \int d^4x \, T \left\{ H_{eff}^{\Delta B=1}(x) H_{eff}^{\Delta B=1}(0) \right\}$$

 $m_b \gg \lambda_{QCD}$  allows short distance expansion in  $\alpha_s(m_b)$  and  $1/m_b$ 

Lifetime ratios and width differences differ from 1 and 0 at order  $1/m_b^3$ , when spectator effects appear

#### Lifetime ratios

- $6 \star O(1/m_b^4)$  estimated (Gabbiani et  $6 \cdot O(1/m_b^4)$  estimated (Beneke et al al '04)

#### Width differences

- $O(\alpha_s)$  (Beneke et al, Franco et al '02)  $O(\alpha_s)$  (Beneke et al, Ciuchini et al '03)
  - '96)
- 6  $O(\alpha_s)$  penguins neglected 6  $\star O(1/m_b^5)$  in progress (Lenz et al)

#### Lifetime ratios

- 6 O(1/m<sub>b</sub><sup>3</sup>), ΔB=0 matrix elements computed in quenched approximation for mesons (Di Pierro et al '98, APE '01) and baryons (Di Pierro et al '99)
- 6 for mesons also with sum rules (Baek et al '98)
- agreement less good for color suppressed matrix elements
- 6 NLO corrections can be large, as are  $O(1/m_b^4)$  for  $\tau(\Lambda_b)/\tau(B_d)$
- $\rightarrow$  O(30-40%) uncertainties in deviation from 1
- 6 effect of neglected penguins on  $\tau(\Lambda_b)/\tau(B_d)$ ?

#### Width differences

- 6  $O(1/m_b^3)$ ,  $\Delta B$ =2 matrix elements computed in quenched approximation (Gimenez et al '00, Hi-KEK '00, APE '01-'02) and with  $N_f$  = 2 (JLQCD '01-'03)
- 6 results are consistent
- 6 NLO corrections of order -35%
- estimated 1/m<sub>b</sub><sup>4</sup> corrections further reduce LO result
- $\rightarrow$  O(30-40%) uncertainties in deviation from 0



# Friends of B<sub>s</sub> Mixing: recent lifetimes progress

#### **Abbott**

 $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$  new D0 measurement consistent with predictions

• New DØ result

$$\Delta\Gamma_{\rm s}/\Gamma_{\rm s} = 0.21 + 0.33 - 0.45 ({\rm stat.+syst.})$$

• Constrain  $\tau_{Bs}=1.39$  ps

 $\Delta\Gamma_{\rm s}/\Gamma_{\rm s} = 0.23 + 0.16 - 0.17 ({\rm stat. + syst.})$ 



#### **Tarantino**

HFAG measurements 
$$\frac{\tau(B^+)}{\tau(B_d)} = 1.081 \pm 0.015, \ \frac{\tau(B_s)}{\tau(B_d)} = 0.939 \pm 0.044, \ \frac{\tau(\Lambda_b)}{\tau(B_d)} = 0.803 \pm 0.047$$

$$\frac{\text{NLO+}}{O(1/m_b^4)} \ \frac{1.06(2)}{O(1/m_b^4)} \ \frac{1.00(1)}{O(1/m_b^4)} \ \frac{0.88(5)}{O(1/m_b^4)} \ \text{Predictions}$$

Recent predictions and measurements exhibit no serious "lifetime puzzle"



# **Radiative Penguin**

#### **Nishida**

#### Radiative B decays: penguin diagram

**Sensitive to New Physics** 

 $b \rightarrow s\gamma$  process has been studied.

- Branching fraction.
- Charge and isospin asymmetry.
- □ Mixing induced CP asymmtery.



**b**→**s**γ penguin

#### But, $b \rightarrow d\gamma$ is not observed yet.

- suppressed by  $|V_{td}/V_{ts}|^2$  in SM.
- Search for  $B\rightarrow \rho\gamma$ ,  $\omega\gamma$  has been done.





# Search for $B \rightarrow \rho \gamma$ , $B \rightarrow \omega \gamma$

#### **Nishida**

Search for 
$$B^+ \to \rho^+ \gamma$$
,  
 $B^0 \to \rho^0 \gamma$ ,  $B^0 \to \omega \gamma$ 

#### **Isospin relation**

$$B(B \rightarrow (\rho, \omega) \gamma)$$

$$\equiv \mathbf{B}(\mathbf{B}^+ \to \rho^+ \gamma)$$

$$= 2(\tau_{B^+}/\tau_{B^0})\mathbf{B}(B^0 \rightarrow \rho^0 \gamma)$$

$$= 2(\tau_{B^+}/\tau_{B^0})\mathbf{B}(B^0 \rightarrow \omega \gamma)$$

#### **Analysis**

- Severe continuum background.
- . b  $\rightarrow$  s $\gamma$  (esp. B  $\rightarrow$  K\* $\gamma$  ) background.
- Non-negligible BB background.



Simultaneous fit to 3 modes (+B  $\rightarrow$  K\* $\gamma$ )

SM prediction:  $B(B\rightarrow (\rho,\omega)\gamma) = (0.9-1.8)\times 10^{-6}$ 



# $b \rightarrow d \gamma$ Branching Fractions: Exclusive



Nishida
$$\bar{\mathcal{B}}[B \to (\rho, \omega) \, \gamma] \equiv \frac{1}{2} \left\{ \mathcal{B}(B^+ \to \rho^+ \gamma) + \frac{\tau_{B^+}}{\tau_{B^0}} \left[ \mathcal{B}(B_d^0 \to \rho^0 \gamma) + \mathcal{B}(B_d^0 \to \omega \gamma) \right] \right\}$$
central value
$$90\% \text{ C.L. upper limit}$$

$$\begin{array}{c} \text{Combined significance} \\ \text{Belle+BaBar} = 2.6 \text{ } \sigma \\ \\ \rho, \omega \text{ } \gamma \text{ (combined)} \\ \end{array}$$

$$\begin{array}{c} \text{BaBar preliminary} \\ \text{191 fb}^1 \\ \text{Belle preliminary} \\ \text{253 fb}^1 \\ \text{Ali et al.} \\ \text{hep-ph/0405075} \\ \text{Bosch et al.} \\ \text{hep-ph/0106081} \\ \end{array}$$

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$\begin{array}{c} \text{Branching Fraction} \\ \text{So observation in 1-2 years} \\ \end{array}$$

$$|V_{td}/V_{ts}|$$
 from  $\mathcal{B}(B \to \rho \gamma)/\mathcal{B}(B \to K^* \gamma)$  (talk by S. Bosch)

The  $\rho^0/K^{*0}$  modes are theoretically the cleanest.

The ratio of their CP-averaged branching fractions reads

$$R_0 \equiv \frac{\mathcal{B}(B^0 \to \rho^0 \gamma) + \mathcal{B}(\bar{B}^0 \to \rho^0 \gamma)}{\mathcal{B}(B^0 \to K^{*0} \gamma) + \mathcal{B}(\bar{B} \to \bar{K}^{*0} \gamma)} = \frac{K}{2\xi^2} \left| \frac{V_{td}}{V_{ts}} \right|^2 (1 + \Delta),$$

#### where

K = 1.023 — kinematic factor.

 $\xi$  — ratio of heavy-to-light formfactors ( $\xi \to 1$  when  $m_d \to m_s$ ).

"SU(3) limit"

 $\Delta$  — subleading contributions:

- (i) weak annihilation (suppression by  $C_1 + \frac{1}{3}C_2 \simeq -0.2$  and  $\Lambda/m_b$ )
- (ii) (penguin)<sub>c</sub>-(penguin)<sub>u</sub> (suppression by  $m_c^2/m_b^2 \simeq 0.1$ )

 $\Delta$  depends on the CKM parameters. In the domain of interest for the SM  $(0.3 < \sqrt{\bar{\rho}^2 + \bar{\eta}^2} < 0.5, \quad \frac{\pi}{4} < \gamma < \frac{\pi}{2})$ , the CKM factor in  $\Delta$  becomes a suppression factor  $\sim 0.2$ . Consequently,  $|\Delta| < 0.04 \Rightarrow \text{Uncertainties}$  in  $\Delta$  have little effect on the determination of  $|V_{td}/V_{ts}|$ .

#### What is the value of $\xi$ ?



$$B(B \to \rho \gamma)/B(B \to K^* \gamma)$$

**Bosch** 

• Ratio  $R_0$  of neutral branching fractions  $\sim \xi = F_{K^*}/F_{\rho}$ 

• R<sub>0</sub> theoretically clean

•  $R_t = 0.82 \frac{\xi}{1.3} \sqrt{\frac{R_0}{0.01}}$  within  $\pm 3\%$ 

 $\xi_{\mathrm{LCSR}} = 1.25 \pm 0.20$ Ball, Zwicky

 $\xi_{\rm LQCD} = 1.1 \pm 0.1$ 

 $\xi = 1.2 \pm 0.1$ CKM2005 round table

 $\mathbf{I}$  vary  $\xi$ 

Beneke, Feldmann, Seidel Ali, Parkhomenko, Lunghi SWB, Buchalla







# **Other Penguin Decays**

#### Hollar, Feldmann



 $B \rightarrow K(*)ll$ , s ll branching fractions measured by B factories and theory error already dominant

More will be learned from distributions and asymmetries



 $B \rightarrow \pi l l$  has possibility for observation at B factories (not background limited)  $\rho l l$  much harder

A list of future challenges to the Workshop participants.



To the Tevatron: Now that you have a good shovel, break substantial new ground with it for  $\Delta m_s$  constraints.



Upgrades, better tagging, better vertexing, more luminosity, better DAQ, Whatever it takes! The flavor physics community is cheering you on!



To the Lattice community: Raise the "letter grade" above "C" level for f<sub>B</sub>, B<sub>B</sub> et al., so that the impact of future Tevatron results is maximized.

$$f_{B_s} = 260 \pm 7 \pm 28 \text{ MeV [HPQCD]}$$
 C
$$\hat{B}_{B_s} = 1.31 \pm 0.10 \text{ [JLQCD; Lattice 2003]} \quad \text{D}^+/\text{C}^-$$

$$\xi_B = 1.022 \pm 0.018 \text{ [JLQCD; Lattice 2003]} \quad \text{D}^+$$

$$\xi = 1.25 \pm 0.10 \text{ [Lattice 2003]} \quad \text{D}$$
Andreas Kronfeld
My grade in Claude's scheme

To CLEO-c et al.: Continue to keep the lattice community hogest!



To the B factories: Measure a clear signal for  $B\rightarrow \rho\gamma$  or drive lower limit off the (CKM) map!





To the heavy quark theory community: Improve and/or realistically bound the impact of penguins on  $V_{td}/V_{ts}$  et al. The measurements are there and ready to be exploited now!





To the Kaon physics community: Keep your future projects alive (and Andrzej out of retirement). The small theory errors mean these may ultimately be the best attainable CKM constraints on  $V_{td}$  and  $\eta$ .

