1 Schaltungstechnik - Allgemeines

1.0.1 Kirchoffsche Gesetze

Stromgesetz KCL Kirchoff's Current Law	Spannungsgesetz KVL Kirchoff's Voltage Law
Knotenregel	Maschenregel
$\sum_{Knoten} i_k(t) = 0$	$\sum_{Masche} u_m(t) = 0$
rausfließende positiv	in Umlaufrichtung positiv
Maxwell: $\operatorname{div} \boldsymbol{j} = 0$	Maxwell: $\operatorname{rot} \underline{\boldsymbol{E}} = 0$
(n-1) Gleichungen	b-(n-1) Gleichungen

1.1 Bauelemente

Art	Beschr.	linear
Resitivität	$f_R(u,i)$	$u = R \cdot i$
Kapazitivtät	$f_C(u,q)$	$q = C \cdot u$
Induktivtät	$f_L(i, \Phi)$	$\Phi = L \cdot i$
Memristivität	$f_{M}(q,\Phi)$	$\Phi = M \cdot q$

1.1.1 Allgemeine Zusammenhänge u, i, q, Φ

$i(t) = \dot{q}(t)$	[i] = A
$i(t) = \dot{q}(t)$ $q(t) = q(t_0) + \int_{t_0}^t i(\tau) d\tau$	[q] = As = C
$u(t) = \dot{\Phi}(t)$	$[u] = V$ $[\Phi] = Vs = Wb$
$\Phi = \Phi(t_0) + \int_{t_0}^t u(\tau) d\tau$	$[\Phi] = Vs = Wb$

1.1.2 Eintorverschaltungen

	Serienschaltung	Parallelschaltung
	$u = u_1 + u_2$	$u_{\pm}u_{1} = u_{2}$
allgemein	$i = i_1 = i_2$	$i = i_1 + i_2$
ı I	$q = q_1 = q_2$	$q = q_1 + q_2$
	$\Phi = \Phi_1 + \Phi_2$	$\Phi = \Phi_1 = \Phi_2$
resistiv	$R = R_1 + R_2$	$R = \frac{R_1 \cdot R_2}{R_1 + R_2}$
kapazitiv	$C = \frac{C_1 \cdot C_2}{C_1 + C_2}$	$C = C_1 + C_2$
induktiv	$L = L_1 + L_2$	$L = \frac{L_1 \cdot L_2}{L_1 + L_2}$
Impedanz	$Z = Z_1 + Z_2$	$Z = \frac{Z_1 \cdot Z_2}{Z_1 + Z_2}$
Admittanz	$Y = \frac{Y_1 \cdot Y_2}{Y_1 + Y_2}$	$Y = Y_1 + Y_2$

1.2 Linearisierung

Großsignal	Kleinsignal
$i = I_{AP} + \Delta i$	$\Delta i = i - I_{AP}$
$u = U_{AP} + \Delta u$	$\Delta u = u - U_{AP}$
$\Delta \underline{i} pprox \underline{G} \cdot \Delta \underline{u} \qquad \underline{G}$ is	st die Jakobimatrix $\left. rac{\partial g_i(\underline{u})}{\partial u_j} ight _{U_{AP}}$
$\Delta \underline{\underline{u}} pprox \underline{R} \cdot \Delta \underline{\underline{u}}$ Großsignal: $i pprox I_{AP}$ +	

1.3 Zweitore

Widerstandsbeschr.	Leitwertbeschr.
$u_1 = r_1(i_1, i_2)$ $u_2 = r_2(i_1, i_2)$	$i_1 = g_1(u_1, u_2) i_2 = g_2(u_1, u_2)$
Hybridbeschreibung	Inverse Hybridbeschr.
$u_1 = h_1(i_1, u_2)$ $i_2 = h_2(i_1, u_2)$	$\begin{vmatrix} i_1 = h'_1(u_1, i_2) \\ u_2 = h'_2(u_1, i_2) \end{vmatrix}$
Kettenbeschreibung	Inverse Kettenbeschr.
$u_1 = a_1(u_2, -i_2)$ $i_1 = a_2(u_2, -i_2)$	$ \begin{vmatrix} u_2 = a'_1(u_1, -i_1) \\ i_2 = a'_2(u_1, -i_1) \end{vmatrix} $

1.4 Knotenspannungsanalyse

$\underbrace{oldsymbol{Y}}_{k}_{ ext{Knotenleitwertsmatrix}}$	Spannungsvektor	= Stromq	\underline{i}_q uellenvektor
Vorgobon:			

- 1. Nicht lineare Elemente linearisieren
- 2. Nicht spannungsgesteuerte Elemente (dual)wandeln: $\mathsf{Spannungsquelle} \to \mathsf{Stromquelle}$
- 3. Aufstellen der Leitwertsmatrix Y_k : Nur Leitwerte G eintragen! $C \to j\omega C$ $L \to \frac{1}{i\omega L}$
- 4. Bestimmung des Stromquellenvektors \underline{i}_a : in Knoten reinfließender Strom positiv, rausfließenden negieren.
- 5. Leitwertsmatrix soweit es geht reduzieren: Nullator: Spalten in $\underline{\boldsymbol{Y}}_k$ und $\underline{\boldsymbol{i}}_q$ so wie Zeilen in $\underline{\boldsymbol{u}}_k$ addieren. Norator: Zeilen in \underline{Y}_k und \underline{i}_q so wie Spalten in \underline{u}_k addieren. Falls mit Masse verbunden: Spalte bzw. Zeile streichen!

2 Dynamische Schaltungen

... enthalten mindestens ein reaktives Bauelement und werden durch differentielle Zustandsgleichungen beschrieben. Reaktive Bauelemente können Energie speichern. Dadurch hängt ihr Verhalten vom vorherigen Zustand ab

Elementare Differentialgleichungen		Einheiten
Kapazität	Induktivität	$\Omega F = SH = \frac{H}{\Omega} = s$
$i_C = C \cdot \dot{u}_C$	$u_L = L \cdot \dot{i}_L$	$HF = s^2$

2.1 Relaxationspunkte (Ruhepunkte)

sind die energetisch tiefsten Punkte der Kennlinie. Prüfe ob von einen Punkt(Kandidat) zu allen anderen Punkten $\int u \, dq = W_C > 0$

Ladungs/Flussgesteuert: Kandidaten nur bei u=0/i=0!Sonst auch bei Knicken oder Wendestellen möglich.

2.2 Dynamisches System

mit k Ausgängen, n Zustandsgrößen und r Erregungen. Die Zustandsgrößen x müssen einen stetigen Verlauf haben!

Allgemeine Zustandsgleichung:	$\underline{\dot{\boldsymbol{x}}}(t) = \boldsymbol{A}\underline{\boldsymbol{x}}(t) + \boldsymbol{B}\underline{\boldsymbol{v}}(t)$
Allgemeine Ausgangsgleichung:	$\underline{\boldsymbol{y}}(t) = \boldsymbol{C}\underline{\boldsymbol{x}}(t) + \boldsymbol{\mathcal{D}}\underline{\boldsymbol{v}}(t)$
Zustandsvariable z.B. (u_C, i_L)	$\underline{\boldsymbol{x}}(t) \in \mathbb{R}^n$
Ausgangsvariable z.B. (u_3, i_4)	$\underline{\underline{y}}(t) \in \mathbb{R}^k$
Erregungsvektor z.B. (U_0, I_0)	$\underline{\boldsymbol{v}} \in \mathbb{R}^r$
Systemmatrix	$\mathbf{A} \in \mathbb{R}^{n \times n}$
Einkopplungsmatrix	$oldsymbol{\mathcal{B}} \in \mathbb{R}^{n imes r}$
Auskopplungsmatrix	$oldsymbol{C} \in \mathbb{R}^{k imes n} \ oldsymbol{D} \in \mathbb{R}^{k imes r}$
Durchgangsmatrix	$oldsymbol{\mathcal{D}} \in \mathbb{R}^{k imes r}$
•	

Konservatives System: $\sum_{i=1}^{n} \frac{\partial E(\underline{x})}{\partial x_{i}} \dot{x}_{i} = 0$

2.3 Schaltungen ersten Grades

$u_C(t) = A \cdot \sin(\omega t)$ Beispiele

2.3.1 Dynamischer Pfad

kapazitiv	induktiv
u_C stetig, i_C springt	i_L stetig, u_L springt
$\dot{u}(t) = -\frac{1}{C} \cdot i(t)$	$\dot{i}(t) = -\frac{1}{L} \cdot u(t)$
$i>0\Rightarrow\dot{u}<0\Rightarrow u$ fällt	$u>0\Rightarrow \dot{i}<0\Rightarrow i$ fällt
$i < 0 \Rightarrow \dot{u} > 0 \Rightarrow u$ steigt	$u < 0 \Rightarrow i > 0 \Rightarrow i$ steigt
$i=0\Rightarrow \dot{u}=0\Rightarrow \mathrm{GGP}$	$u=0\Rightarrow \dot{i}=0\Rightarrow GGP$

Zeitdauer auf linearen Pfaden

2.4 Multivibrator mit $R_L = R_0 = R_1$

Relaxationsoszillator (NIK Polung beachten!):

Flip-Flop (Bistabile Schaltung):

2.5 NIK allgemein (Polung beachten)

$u = -\frac{R_0}{R_1} R_L \cdot i \qquad -U_{sat} < \frac{R_L + R_1}{R_L} u < U_{sat}$ III positive Sättigung $u_d > 0 \Leftrightarrow u_{out} = U_{sat}$

 $u = R_0 i + U_{sat}$

2.6 Eigenwerte(EW) λ bestimmen

 $\underbrace{A}_{\mathbf{q}} = \lambda_{\mathbf{q}} \Rightarrow (\underbrace{A}_{\mathbf{q}} - \lambda_{\mathbf{1}})\underline{q} = 0$ mit Eigenwert λ und Eigenvektor \underline{q} $\det(\underline{A} - \lambda_{\mathbf{1}}) = 0$

Vereinfachung für 2 × 2 Matrizen:

$$\lambda_{1/2} = rac{\mathrm{sp} oldsymbol{\mathcal{A}}}{2} \pm \sqrt{\left(rac{\mathrm{sp} oldsymbol{\mathcal{A}}}{2}
ight)^2 - \det oldsymbol{\mathcal{A}}} \hspace{0.5cm} \hspace{0.5cm}$$

$$\operatorname{Sp}_{\widetilde{\mathcal{A}}} = a_{11} + a_{22}, \quad \det \widetilde{\mathcal{A}} = a_{11}a_{22} - a_{12}a_{21}$$

Zeitkonstante $\tau = -\frac{1}{2}$

2.7 Eigenvektoren(EV) q bestimmen

$$(\mathbf{A} - \lambda \mathbf{1})\mathbf{q} = 0 \Rightarrow \mathbf{Q} = \ker(\mathbf{A} - \lambda \mathbf{1})$$

Merke: Eigenvektoren sind beliebig skalierbar! Vereinfachung für 2×2 Matrizen, falls $\lambda_1 \neq \lambda_2$:

2.8 Gleichgewichtspunkte(GGP) \underline{x}_{∞} bestimmen

$$\underline{\underline{x}}_{\infty} : \underline{\dot{x}} = 0 = \underline{\dot{A}}\underline{x}_{\infty} + \underline{\dot{B}}\underline{v} \quad \Rightarrow \quad \boxed{\underline{x}_{\infty} = -\underline{\dot{A}}^{-1}\underline{\dot{B}}\underline{v}}$$

Oder aus Schaltbild berechnen:

Ersetze $C \to LL$ und $L \to KS$, berechne $\underline{\boldsymbol{x}} = \underline{\boldsymbol{x}}_{\infty}$

2.9 autonome(inhomogene) Systeme mit v = const.

- 1. Fall **A** ist invertierbar $(\lambda_{1/2} \neq 0)$
 - 1. Transformation auf homogenes System: $\underline{\boldsymbol{x}}' = \underline{\boldsymbol{x}} - \underline{\boldsymbol{x}}_{\infty}$ (gültig, da $\dot{\boldsymbol{x}}' = \dot{\boldsymbol{x}}$) $\underline{\underline{x}}_{\infty} = -\underline{\underline{A}}^{-1}\underline{\underline{B}}\underline{\underline{v}}$ (oder aus Schaltbild berechnen) Anfangswerte auch transformieren!
 - 2. Löse homogenes System $\dot{\boldsymbol{x}}' = \boldsymbol{A} \boldsymbol{x}'$
 - 3. Gesamtlösung durch Rücktransformation: $x = x' + x_{\infty}$ \Rightarrow Verschiebung des Ursprungs um x_{∞}
- 2. Fall \mathbf{A} ist singulär $(\exists \lambda = 0)$
 - 1. Transformation auf Normalform: $\dot{\underline{x}} = \underline{x}\underline{A} + \underline{B}\underline{v} \mid Q^{-1}$. $\Rightarrow \quad \underline{\dot{\boldsymbol{\xi}}} = \underline{\boldsymbol{\lambda}}\underline{\boldsymbol{\xi}} + \underline{\boldsymbol{v}}' \quad \text{mit } \underline{\boldsymbol{\Lambda}} = \begin{bmatrix} 0 & 0 \\ 0 & \lambda \end{bmatrix}$
 - 2. Berechne Xi Lösungen:

$$\begin{split} \xi_2 &= -\frac{v_2'}{\lambda} + \left(\xi_{0,2} + -\frac{v_2'}{\lambda}\right) \exp(\lambda t) \\ &\frac{\text{Falls } v_{01}' = 0 \qquad | \quad \text{Falls } v_{01}' \neq 0}{\xi_1 = const.} \\ &\xi_\infty = \begin{pmatrix} iwas \\ -\frac{v_2'}{\lambda} \end{pmatrix} \qquad \text{Kein GGP!} \end{split}$$

3. Gesamtlösung durch Rücktransformation: $oldsymbol{x} = oldsymbol{Q} \cdot oldsymbol{\xi}$

2.10 Nichtlineare dynamische Schaltungen 2. Grades

- 1. DGL aufstellen: $\dot{x} = f(x)$
- 2. GGPs bestimmen: $\dot{x} = f(x) \stackrel{!}{=} 0$ $C: \quad \dot{u}_C = 0 \quad \Rightarrow i_C = 0 \quad \Rightarrow \mathsf{LL}$
- $L: \quad i_L = 0 \quad \Rightarrow u_L = 0 \quad \Rightarrow \mathsf{KS}$
- 3. Linearisiere in \underline{x}_{∞} : $\underline{f}(\underline{x}) \approx \underline{f}(\underline{x}_{\infty}) + \underline{J}(\underline{x}_{\infty}) \cdot (\underline{x} \underline{x}_{\infty})$
- 4. Berechne EW und EV von $J(\underline{x}_{\infty})$ für jeden GGP 5. Satz von Hartman:
- Falls von $\underline{J}(\underline{x}_{\infty})$ der Realteil aller Eigenwerte ungleich null ist $(Re(\lambda) \neq 0)$, dann verhält sich ein konservatives System in der Umgebung von \underline{x}_{∞} qualitativ genauso wie ein lineares System mit $J(\underline{x}_{\infty})$ als Systemmatrix.

2.11 Normalform

Um DGL's 2ten Grades zu entkoppeln und auf zwei DGL's ersten Grades zurückzuführen. Transformiertes System = Diagonalisiertes System =Xi-System in Xi-Koordinaten.

$$\begin{array}{|c|c|} \hline \underline{\dot{\boldsymbol{\xi}}}(t) &= & \underline{\boldsymbol{\Lambda}} & \cdot & \underline{\boldsymbol{\xi}}(t) & + & \underline{\boldsymbol{v}}'(t) \\ \underline{\boldsymbol{Q}}^{-1}\underline{\dot{\boldsymbol{x}}}(t) & & \underline{\boldsymbol{Q}}^{-1}\underline{\boldsymbol{A}}\underline{\boldsymbol{Q}} & \underline{\boldsymbol{Q}}^{-1}\underline{\boldsymbol{x}}(t) & & \underline{\boldsymbol{Q}}^{-1}\underline{\boldsymbol{B}}\underline{\boldsymbol{v}}(t) \end{array}$$

 \overline{Q} : Matrix der Eigenvektoren $\underline{\tilde{\Lambda}}$: Diagonalmatrix der Eigenwerte.

Transformation:	Rücktransformat
$\underline{\boldsymbol{\xi}}(t) = \underline{\boldsymbol{Q}}^{-1}\underline{\boldsymbol{x}}(t)$	$\underline{\boldsymbol{x}}(t) = \underline{\boldsymbol{Q}}\underline{\boldsymbol{\xi}}(t)$
$\mathbf{\Lambda} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}$	$\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}$
$\underline{\boldsymbol{v}}' = \boldsymbol{Q}^{-1} \boldsymbol{B} \underline{\boldsymbol{v}}(t)$	$B \underline{v} = Q \underline{v}'$

3 Komplexe Wechselstromrechnung

Vorraussetzung: lineares, eingeschwungenes System mit sinusförmiger Erregung: $x(t) = A \cdot \cos(\omega t + \varphi) = A \cdot \sin(\omega t + \varphi + \frac{\pi}{2})$

Eigenschaften: eindeutig, linear, differenierbar ($\frac{d}{dt} = j\omega$)

Beispiel: $u_L = L \cdot \frac{\mathrm{d}}{\mathrm{d}t} i_l \ \Rightarrow \underline{\pmb{U}}_L = L \cdot j \omega \underline{\pmb{I}}_L$

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

$$\omega = 2\pi f \qquad A = X_m = |X|$$

$$\text{Komplexe Zahlen: } \frac{z_2}{a+jb} = \frac{z_2(a-jb)}{a^2+b^2} \qquad \frac{1}{j} = -j$$

Zeiger:	$X = A \cdot \exp(j\varphi) = A \cdot \cos(\varphi) + A \cdot j \sin(\varphi)$
Zeitsignal:	$x(t) = \Re[X \cdot \exp(j\omega t)] = A \cdot \cos(\omega t + \varphi)$

	i .		i ,.			i	1 2	١.
x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$\frac{3}{2}\pi$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
$_{ m tan}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	0	$-\infty$	0

 $Z(j\omega) = R(j\omega) + jX(j\omega)$: Impedanz $U = Z \cdot I$ Impedanz Resistanz Reaktanz $\dot{Y}(j\omega) = G(j\omega) + jB(j\omega)$: Admittanz $I = Y \cdot U$

	z	Y
Widerstand	R	$G = \frac{1}{R}$
Kondensator	$\frac{1}{j\omega C}$	$j\omega C$
Spule	$j\omega C$ $j\omega L$	$\frac{1}{j_{1}\omega L}$
Memristor	M	$\frac{1}{M}$

Rechenregeln: $A=a+jb=\hat{A}_m \exp(j\varphi)$ Radius $\hat{A}_m=\sqrt{a^2+b^2}$

Mehrere Erregungen mit unterschiedlicher Kreisfrequenz: Getrennte Zeigerrechnung für einzelne Frequenzen, zurücktransformieren und addieren.

3.1 Oszillatoren

autonome Schaltung 2. Grades mit nur einem instabile GGP.

Van der
$$\operatorname{Pol}(L||C)$$
 | Stückweise fast harmon. Relax.
$$J(\underline{\boldsymbol{x}}_{\infty}) = \begin{bmatrix} \frac{1}{RC} & -\frac{1}{C} \\ \frac{1}{L} & 0 \end{bmatrix} \begin{bmatrix} 0 & -\frac{1}{C} \\ \frac{1}{L} & \pm \frac{R}{L} \end{bmatrix} & \pm \frac{R}{2L} \pm j\omega_0$$

3.2 Übertragungsfunktion $H(j\omega) = a + jb$

$$H(j\omega) = \frac{U_{out}}{U_{in}} = |H(j\omega)| \cdot \exp(j\varphi(\omega))$$

$$H(j\omega) = \frac{U_{Out}}{U_{in}} = \frac{U_{Km}}{I_n} \cdot G = \frac{(-1)^{n+m} \det \mathbf{Y}_{nm}(j\omega)}{\det \mathbf{Y}_k(j\omega)} \cdot G$$

$$20 \log_{10} \left(\frac{1}{a}\right) = -20 \log_{10} (a) \qquad \log_{10}(1) = 0$$
$$20 \log_{10} \left(\sqrt{a}\right) = 10 \log_{10} a$$

$$\begin{array}{ll} \text{Faktorisieren: } H(j\omega) = \prod H_i(j\omega) \text{ damit gilt:} \\ v(\omega) = \sum v_i(\omega) & \varphi(\omega) = \sum \varphi_i(\omega) \end{array}$$

$$\sphericalangle H(j\omega) = \varphi(\omega) = \begin{cases} \arctan\frac{b}{a} & \text{für } a > 0 \\ +\frac{\pi}{2} & \text{für } a = 0, b > 0 \\ -\frac{\pi}{2} & \text{für } a = 0, b < 0 \\ \arctan\frac{b}{a} + \pi & \text{für } a < 0, b \geq 0 \\ \arctan\frac{b}{a} - \pi & \text{für } a < 0, b \geq 0 \end{cases}$$

$$\arctan\left(-\frac{b}{a}\right) = -\arctan\left(\frac{b}{a}\right)$$

$$0.1\omega_0$$
 ω_0 $10\omega_0$ $0.1\omega_0$ ω_0 $10\omega_0$

 $\varphi = 0$

3.3 Pol-Nullstellen-Diagramm (PN-Diagramm)

Polstellen ×, Nullstellen o

Polstellen = Eigenfrequenzen = Eigenwerte.

Polstellen haben negativen Realteil ⇒ Schaltung Stabil

3.4 Ortskurven

0dB

Berechne Markante Punkte von $Y(j\omega)$ oder $Z(j\omega)=\frac{U}{T}=H(j\omega)$

 $O \rightarrow \infty$

$$\Re Z(j0)$$
 $\Im Z(j0)$

$$\Re Z(j\infty)$$
 $\Im Z(j\infty)$

$$\Re Z(j\omega_0)$$
 $\Im Z(j\omega_0)$

3.5 Leistung und Energie

Differenzielle Energie: $dE = p(t) dt = u(t) \cdot i(t) dt$

Wirkleistung:
$$P_w = \frac{1}{T} \int_0^T p(t) dt$$

Für lineare resistive Schaltungen: $P_w=R\cdot I_{eff}^2=\frac{U_{eff}^2}{R}$ Komplexe Leistung: $P=\frac{1}{2}UI^*=P_w+jP_B$

4 Lösen von homogenen DGLs

Gegeben: Homogene Differnetialgleichungen der Form $\dot{m{x}} = m{A}m{x}$ mit Anfangswerten $x_{0,1}$ und $x_{0,2}$

$$\lambda_1
eq \lambda_2 \in \mathbb{R}$$

$$\left|\lambda_1
ight|<\left|\lambda_2
ight|\quad\Rightarrow \underline{q}_2$$
,,schneller"

$$\underline{\boldsymbol{x}}(t) = x_{0,1} \cdot \exp(\lambda_1 t) \cdot \underline{\boldsymbol{q}}_1 + x_{0,2} \cdot \exp(\lambda_2 t) \cdot \underline{\boldsymbol{q}}_2$$

Matrix Λ	Eigenwerte	$\underline{\boldsymbol{x}} = 0$	Name	Portrait
$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$	$\lambda_1 < 0 < \lambda_2$	instabil	Sattelpunkt	
	$\lambda_2 < \lambda_1 < 0$	stabil	Knoten 2	q_1
	$0 < \lambda_1 < \lambda_2$	instabil	Knoten 2	q_1
$\begin{bmatrix} 0 & 0 \\ 0 & \lambda_2 \end{bmatrix}$	$\lambda_1 = 0, \ \lambda_2 < 0$	stabil	Kamm	
	$\lambda_1 = 0, \ \lambda_2 > 0$	instabil	Kamm	

$$\begin{split} & \underline{Q}' = \left[\underline{q}_1' \quad \underline{q}_2'\right] = \begin{bmatrix} -a_{12} & -a_{12} \\ \frac{a_{11} - a_{22}}{2} & \frac{a_{11} - a_{22}}{2} - 1 \end{bmatrix} = \begin{bmatrix} \left(\text{Eigen-vektor}\right) & \left(\text{Haupt-vektor}\right) \\ \underline{x}(t) = \left[\underline{1} + (\underline{A} - \lambda \underline{1}) \cdot t\right] \cdot \exp(\lambda t) \cdot \frac{x_{0,1}}{x_{0,2}} \end{split}$$

	Matr	ix A	Eigenwerte	$\underline{\boldsymbol{x}} = 0$	Name	Portrait
	$\begin{bmatrix} \lambda \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ \lambda \end{bmatrix}$	$\lambda < 0$	stabil	Knoten 1	q_2'
			$\lambda > 0$	instabil	Knoten 1	q_2' q_1'
	$\begin{bmatrix} \lambda \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \lambda \end{bmatrix}$	$\lambda < 0$	stabil	Knoten 3	q_2' q_1'
			$\lambda > 0$	instabil	Knoten 3	q_2'
-	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 0	$\lambda = 0$	stabil	Ruheebene	q_2' q_1'
-	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 0	$\lambda = 0$	instabil	Ruhegerade	- q' ₁ - q' ₁

$\lambda_1 = \lambda_2^*$ =	$= lpha + eta j \in \mathbb{C}$	Q' =	$\left[\Re\underline{\boldsymbol{q}}_{1}\right]$	$\Im \underline{q}_1 = \begin{bmatrix} \underline{q}_r & \underline{q}_j \end{bmatrix}$			
$\begin{array}{ll} \underline{\boldsymbol{x}}(t) &= x_{0,1} \cdot e^{\alpha t} \cdot \left[\cos(\beta t) \underline{\boldsymbol{q}}_r - \sin(\beta t) \cdot \underline{\boldsymbol{q}}_j \right] + \\ &+ x_{0,2} \cdot e^{\alpha t} \cdot \left[\sin(\beta t) \underline{\boldsymbol{q}}_r + \cos(\beta t) \cdot \underline{\boldsymbol{q}}_j \right] \end{array}$							
$Matrix\ \Lambda$	Eigenwerte	$\underline{\boldsymbol{x}} = 0$	Name	Portrait			
$\begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$	$\alpha < 0, \ \beta \neq 0$	stabil	Strudel	$q_j = q_r$			
	$\alpha > 0, \ \beta \neq 0$	instabil	Strudel	q_j q_r			
$\begin{bmatrix} 0 & -\beta \\ \beta & 0 \end{bmatrix}$	$\alpha = 0, \ \beta \neq 0$	stabil	Wirbel	$\overline{ \left \begin{array}{c} q_j \\ \hline \\ \hline \end{array} \right } \overline{q_r}$			

Zeitverlauf immer von \underline{q}_i nach \underline{q}_r bzw. von \underline{q}_r nach $-\underline{q}_i$

Lösung für inhomogene $DGL(v \neq 0)$ mit singulärer Matrix A (nicht entkoppelbar):

$$\begin{bmatrix} 0 & 0 \\ 0 & \lambda_2 \end{bmatrix} \qquad \lambda_1 = 0, \ \lambda_2 < 0 \qquad \text{instabil} \qquad \text{Kamm} \qquad \begin{matrix} q_2 \\ q_1 \end{matrix}$$

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad \lambda = 0 \qquad \qquad \text{instabil} \qquad \text{Knoten} \qquad \begin{matrix} q_2 \\ q_2 \\ q_1 \end{matrix}$$