MATH 307

Assignment #12

Due Friday, April 22nd, 2022

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

1. Suppose T is a positive operator on V. Prove that T is invertible if and only if $\langle Tv, v \rangle > 0$ for every $v \in V$ with $v \neq 0$.

Proof. (\Longrightarrow)

Suppose T is invertible. By the positivity hypothesis, there exists $R \in \mathcal{L}(V)$ such that $R^2 = T$. Hence,

$$\langle Tv, v \rangle = \langle R^2v, v \rangle$$
 (Substitution)
= $\langle Rv, R^*v \rangle$ (Taking the adjoint)
= $\langle Rv, Rv \rangle$ (Self-adjoint square roots)

Which, by the definiteness property of inner products, $\langle Rv, Rv \rangle = 0$ if and only if Rv = 0.

By positivity on T, then $R^2 = T$. Multiplying on the right by T^{-1} , then $R^2T^{-1} = TT^{-1} = I$. Therefore $R(RT^{-1}) = I$. Hence R is invertible and $R^{-1} = RT^{-1}$.

Thus, by invertibility null $R = \{0\}$. Since $v \neq 0$ by hypothesis, $Rv \neq 0$. Therefore $\langle Rv, Rv \rangle > 0$ for $v \neq 0$ and hence $\langle Tv, v \rangle > 0$.

Proof. (\longleftarrow)

Suppose $\langle Tv, v \rangle > 0$ for $v \neq 0$. This implies that $Tv \neq 0$ and $v \neq 0$ since $\langle 0, u \rangle = 0 = \langle u, 0 \rangle$ for any $u \in V$. Thus $Tv \neq 0$ for all $v \neq 0$. Hence T is injective, and thus invertible.

2. Suppose $T \in \mathcal{L}(V)$, for an inner product space V. For $u, v \in V$, define the function of two variables $\langle u, v \rangle_T$ by

$$\langle u, v \rangle_T = \langle Tu, v \rangle.$$

Prove that $\langle \cdot, \cdot \rangle_T$ is an inner product on V if and only if T is an invertible positive operator (with respect to the original inner product $\langle \cdot, \cdot \rangle$).

Proof. (\Longrightarrow)

Suppose $\langle \cdot, \cdot \rangle_T$ is an inner product, we will show that T is an invertible positive operator (with respect to the original $\langle \cdot, \cdot \rangle$). By positivity of inner products, $\langle Tv, v \rangle = \langle v, v \rangle_T \geq 0$, so $\langle Tv, v \rangle \geq 0$. For self-adjoint,

$$\langle Tu, v \rangle = \langle u, v \rangle_T$$

$$= \overline{\langle v, u \rangle_T}$$

$$= \overline{\langle Tv, u \rangle}$$

$$= \langle u, Tv \rangle.$$

Therefore *T* is self-adjoint and hence *T* is a positive operator.

For invertibility, $\langle v, v \rangle_T = 0$ if and only if v = 0, so $\langle v, v \rangle_T = \langle Tv, v \rangle = 0$ if and only if $v = 0^{\dagger}$. Suppose Tv = 0 for some $v \neq 0$. Then $\langle Tv, v \rangle = \langle 0, v \rangle = 0$. Hence, a contradiction to † . Thus Tv = 0 if and only if v = 0 and null $T = \{0\}$. Therefore T is injective and hence invertible. \Box

Proof. (\longleftarrow)

Suppose T is an invertible positive operator (with respect to the original $\langle \cdot, \cdot \rangle$). We will show that $\langle \cdot, \cdot \rangle_T$ is an inner product. That is, positivity, definiteness, additivity, homogeneity, and symmetry.

positivity

Since *T* is positive we know that $\langle Tv, v \rangle \geq 0$. Since $\langle v, v \rangle_T = \langle Tv, v \rangle$ then $\langle v, v \rangle_T \geq 0$.

definiteness

By *T*'s positivity, $R^2 = T$ for a positive square root *R* of *T*. Then $\langle Tv, v \rangle = \langle R^2v, v \rangle = \langle Rv, Rv \rangle$. As shown in #1, since *T* is positive and invertible then *R* is also invertible and hence injective. So Rv = 0 if and only if v = 0 and hence $\langle Rv, Rv \rangle = \langle Tv, v \rangle = \langle v, v \rangle_T = 0$ if and only if v = 0.

additivity in the first slot

Directly,
$$\langle u + v, w \rangle_T = \langle T(u + v), w \rangle = \langle Tu, w \rangle + \langle Tv, w \rangle = \langle u, w \rangle_T + \langle v, w \rangle_T$$
.

homogeneity in first slot

Directly,
$$\langle \lambda u, v \rangle_T = \langle \lambda T u, v \rangle = \lambda \langle T u, v \rangle = \lambda \langle u, v \rangle_T$$
.

conjugate symmetry

Directly with
$$T$$
 self-adjoint, $\langle u, v \rangle_T = \langle Tu, v \rangle = \overline{\langle v, Tu \rangle} = \overline{\langle v, u \rangle} = \overline{\langle v, u \rangle}_T$.

- 3. Suppose $S \in \mathcal{L}(V)$. Prove that the following are equivalent:
 - (a) S is an isometry;
 - (b) $\langle S^*u, S^*v \rangle = \langle u, v \rangle$ for all $u, v \in V$;
 - (c) $S^*e_1, \dots S^*e_m$ is an orthonormal list for every orthonormal list of vectors e_1, \dots, e_m in V;
 - (d) $S^*e_1, \dots S^*e_n$ is an orthonormal basis for some orthonormal basis e_1, \dots, e_n of V.

We will prove $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a)$.

Proof. (a \Longrightarrow b)

Suppose S is an isometry. Then taking the adjoint of the right hand side, $\langle S^*u, S^*v \rangle = \langle SS^*u, v \rangle$. Since S is an isometry, then $SS^* = I$. Hence, $\langle S^*u, S^*v \rangle = \langle u, v \rangle$.

Proof. (b \Longrightarrow c)

Suppose $\langle S^*u, S^*v \rangle = \langle u, v \rangle$ for all $u, v \in V$. Since e_1, \ldots, e_m is an orthonormal list then $\langle e_j, e_k \rangle = 0$ for $j \neq k$ and 1 for j = k. By (b), $\langle S^*e_j, S^*e_k \rangle = \langle e_j, e_k \rangle$, hence S^*e_1, \ldots, S^*e_m is also an orthonormal list in V by equality.

Proof. (c \Longrightarrow d)

Suppose $S^*e_1, \ldots S^*e_m$ is an orthonormal list for every orthonormal list of vectors e_1, \ldots, e_m in V. Then we can extend e_1, \ldots, e_m to a basis of V by the Gram Schmidt procedure with and apply (c) with $m = n = \dim V$.

Proof. (d \Longrightarrow a)

Suppose $S^*e_1, \ldots S^*e_n$ is an orthonormal basis for some orthonormal basis e_1, \ldots, e_n of V. Then $\langle SS^*e_j, e_k \rangle = \langle S^*e_j, S^*e_k \rangle = \langle e_j, e_k \rangle$, which is orthonormal. Every $u, v \in V$ can be written as a unique linear combination of e_1, \ldots, e_n . Hence, $\langle SS^*u, v \rangle = \langle u, v \rangle$ and $SS^* = I$, a condition for an isometry.

4. Suppose T_1, T_2 are normal operators on \mathbf{F}^3 and both operators have 2, 5, 7 as eigenvalues. Prove that there exists an isometry $S \in \mathcal{L}(\mathbf{F}^3)$ such that $T_1 = S^*T_2S$.

Proof.

By Theorem 7.22, since T_1 are normal, then the eigenvectors of T_1 corresponding to distinct eigenvalues are orthogonal. Since there are 3 distinct eigenvalues (namely 2, 5, and 7) and dim V=3, then we have an orthonormal basis for \mathbb{F}^3 consisting of the eigenvectors corresponding to distinct eigenvalues from T_1 . Similarly T_2 has an orthonormal basis of eigenvectors corresponding to 2, 5, and 7.

Let $B_1 := \{e_1, e_2, e_3\}$ be an orthonormal basis for \mathbb{F}^3 corresponding to T_1 's eigenvectors. Similarly, let $B_2 := \{f_1, f_2, f_3\}$ be an orthonormal basis for \mathbb{F}^3 corresponding to T_2 's eigenvectors. For $S \in \mathcal{L}(\mathbb{F}^3)$, define $Se_i = f_i$ for i = 1, 2, 3. Then for the orthonormal basis e_1, e_2, e_3 of \mathbb{F}^3 , $Se_1, \ldots, Se_n = f_1, \ldots, f_n$ is an orthonormal basis. Hence (d) \Rightarrow (a) of 7.42 shows S is an isometry.

Therefore S^* is an isometry and $S^* = S^{-1}$. Thus $S^*f_i = S^{-1}f_i = e_i$. Then, recall that $T_1e_i = \lambda_i e_i$ and $T_2f_i = \lambda_i f_i$. Then

$$T_1e_i = \lambda_i e_i$$
 (eigenvalues for eigenvectors)
 $= \lambda_i (S^*f_i)$ (substitution)
 $= S^*(\lambda_i f_i)$ (linearity)
 $= S^*(T_2 f_i)$ (substitution)
 $= S^*(T_2 Se_i)$ (substitution)

Hence $T_1e_i = S^*T_2e_i$. Since e_i forms a [orthonormal] basis B_1 for \mathbb{F}^3 , then for any vector $v \in \mathbb{F}^3$ we have $v = a_1e_1 + a_2e_2 + a_3e_3$. So by linearity,

$$T_1v = T_1(a_1e_1 + a_2e_2 + a_3e_3)$$
 (substitution of v)
 $= a_1(T_1e_1) + a_2(T_1e_2) + a_3(T_1e_3)$ (linearity)
 $= a_1(S^*T_2Se_1) + a_2(S^*T_2Se_2) + a_3(S^*T_2Se_3)$ (substitution of $T_1e_i = S^*T_2Se_i$)
 $= S^*T_2S(a_1e_1 + a_2e_2 + a_3e_3)$ (linearity)
 $= S^*T_2Sv$ (substitution of v)

Hence $T_1 = S^*T_2S$ and S is an isometry.

5. Fix $u, x \in V$ with $u \neq 0$. Define $T \in \mathcal{L}(V)$ by $Tv = \langle v, u \rangle x$ for every $v \in V$. Prove that

$$\sqrt{T^*T}v = \frac{\|x\|}{\|u\|} \langle v, u \rangle u$$

for every $v \in V$.

Proof.

First computing T^* we have

$$\langle Tv, w \rangle = \langle \langle v, u \rangle x, w \rangle$$
 (substitution with given $Tv = \langle v, u \rangle x$)
$$= \langle v, u \rangle \langle x, w \rangle$$
 (homogeneity in the first slot)
$$= \langle v, \overline{\langle x, w \rangle} u \rangle$$
 (second slot conjugate homogeneity)
$$= \langle v, \langle w, x \rangle u \rangle$$
 (conjugate symmetry)
$$= \langle v, T^*w \rangle .$$
 (take adjoint)

Therefore $T^*w = \langle w, x \rangle u$. Thus

$$T^*Tv = T^* \langle v, u \rangle x$$
 (substitution)

$$= \langle \langle v, u \rangle x, x \rangle u$$
 (definition of T^*)

$$= \langle v, u \rangle \langle x, x \rangle u$$
 (homogeneity in first slot)

$$= \langle v, u \rangle ||x||^2 u$$

$$= \langle v, u \rangle ||x||^2 u \frac{\langle u, u \rangle}{||u||^2}$$
 (fancy 1)

$$= \left(\frac{||x||}{||u||}\right)^2 \langle v, u \rangle \langle u, u \rangle u$$

not finished

6. Give an example of $T \in \mathcal{L}(\mathbf{C}^2)$ such that 0 is the only eigenvalue of T and the singular values of T are 5, 0.

Solution: Define T(x, y) = (5y, 0). Then using the standard basis

$$\mathcal{M}(T) = \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}$$
 and $\mathcal{M}(T) = \begin{bmatrix} 0 & 0 \\ 5 & 0 \end{bmatrix}$.

Therefore

$$T^*T = \begin{bmatrix} 0 & 0 \\ 0 & 25 \end{bmatrix}$$
 and $\sqrt{T^*T} = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$.

Because T is an upper triangular matrix, the diagonal gives us its eigenvalues. Hence 0 is T's eigenvalue with multiplicity 2. Then by diagonal matrix properties, the eigenvalues of $\sqrt{T^*T}$ are 5 and 0. Therefore the singular values of T are 5, 0.

7. Suppose $T \in \mathcal{L}(V)$ and s is a singular value of T. Prove that there exists a vector $v \in V$ such that ||v|| = 1 and ||Tv|| = s.

Proof.

Let s_1, \ldots, s_n be the singular values of T. Let $s = s_1$. Then by SVD, there exists orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_n \langle v, e_n \rangle f_n$$

for every $v \in V$. If we choose $v = e_1$ then its clear that ||v|| = 1 by normalized vector properties. Further,

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$$

$$= s_1 \langle e_1, e_1 \rangle f_1 + s_2 \langle e_1, e_2 \rangle f_2 + \dots + s_n \langle e_1, e_n \rangle f_n$$

$$= 1 \qquad = 0 \qquad = 0$$

$$= s_1 f_1$$

$$= s f_1.$$

Then $||Tv||^2 = ||sf_1||^2 = \langle sf_1, sf_1 \rangle = |s|^2 \langle f_1, f_1 \rangle = |s^2|$ since f_1 is normalized. Thus ||Tv|| = |s|. But singular values are non-negative by definition, hence |s| = s and therefore ||Tv|| = s for $v = e_1$.

8. Suppose $T \in \mathcal{L}(\mathbf{C}^2)$ is defined by T(x, y) = (-4y, x). Find the singular values of T.

Solution: The transformation matrix for *T* with respect to the standard basis is

$$\mathcal{M}(T) = \begin{bmatrix} 0 & -4 \\ 1 & 0 \end{bmatrix}$$
 and $\mathcal{M}(T^*) = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix}$.

Then

$$T^*T = \begin{bmatrix} 1 & 0 \\ 0 & 16 \end{bmatrix}$$
 and $\sqrt{T^*T} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$.

As such, the eigenvalues of $\sqrt{T^*T}$ are the singular values by definition. Since the eigenvalues of a diagonal matrix are the diagonals, then the singular values are 4, 1.