프로젝트 결과 발표

2022.12.12. 2022254001 박영제

목차

01 프로젝트 개요 02 데이터 수집 및 탐색 03 데이터 모델링 프리프로세싱

04 모델 생성 모델 평가

05 프로젝트 결과 분석

프로젝트 개요

Minue of Angle(MOA) 설정에 따른 명중률 예측

목표

1차 목표 : 인공지능 캐릭터의 총기 격발 시 명중률 산출

2차 목표

- 1) 이론에 근거하여 산정된 데이터의 신뢰성 확보
- 2) 인공지능 캐릭터 MOA 설정에 따른 정량적 명중률 확보

논리적 근거

1) 고객은 상대하는 적군의 총기 명중률을 설정할 수 있도록 기능 개발을 원하나 거리 별, 상황별 명중기준이 일정하지 않아 정확한 명중률을 구현할 수 없다.

억지로 명중률을 설정하려면 명중률에 따른 공포탄 삽탄 비율 구현을 고려 중으로 실제 교전상황과 상당한 차이를 보인다.

2) 모의훈련에 있어 상대의 사격수준에 따른 상황 극복은 우선순위가 높은 요구도이고 실제 총기의 성 능지표인 MOA 개념을 도입하여 명중률을 제시할 수 있다면 보다 합리적인 지표로 활용될 수 있다.

필요 자원 및 이슈

- 1) 데이터: 총기 MOA, 거리별(100m, 200m, 250m) 사격 결과
- 2) 기타 프로젝트에 수행에 필요한 자원 : 특수전 모의훈련체계 개발결과
- 3) 이슈 : 없음

현재상태

- 1) 해당 프로젝트는 현재 요구분석단계의 종료시점을 앞두고 있고, 현재 명중률과 관련된 이슈는 공포 탄 삽탄을 고려 중이나 본 기획의 논리를 근거로 MOA 구현을 제시할 예정
- 2) 주요 이해관계자 : 프로젝트 수행사 및 소요부대

실행

- 1) 에뮬레이터 개발을 통한 MOA 설정에 따른 거리 별 사격결과 데이터 확보
- 2) 확보된 데이터를 기반으로 명중률 제시

목표 선정 변화

- 1) 특수부대 모의훈련체계 인공지능 캐릭터 자율행동
- 범위가 과대하고 linear regression에 적당하지 않음
- 2) 인력채용 매칭
- 업무관련 목표가 아님
- 3) MOA 설정에 따른 명중률 예측
- 현재 수행업무 중 linear regression 적용한 범위임.

데이터 수집 및 탐색

(측정 환경)

- 1) 사업 수행중인 프로젝트 내 모의소프트웨어 사용 사격결과 데이터 생성
- 2) 5/10/15MOA, 100/200/250m 조건에서 1탄창(30발) 소총 각각 30회 사격

		5MOA			10MOA	
거리(m)	100	200	250	100	200	250
1회	30	30	30	30	29	21
2회	30	30	30	30	27	20
3호	30	30	30	30	28	23
4회	30	30	30	30	25	21
5회	30	30	30	30	27	22
6회	30	30	30	30	27	24
7회	30	30	30	30	25	22
8호	30	30	30	30	27	21
9회	30	30	30	30	27	21
10회	30	30	30	30	27	18
11회	30	30	30	30	28	21
12회	30	30	30	30	29	22
13호	30	30	30	30	27	21
14회	30	30	30	30	27	18
15회	30	30	30	30	27	21
16회	30	30	30	30	26	24
17회	30	30	30	30	29	22
18회	30	30	30	30	27	23
19회	30	30	30	30	27	21
20회	30	30	30	30	26	21
21회	30	30	30	30	27	23
22회	30	30	30	30	29	21
23회	30	30	30	30	26	24
24호	30	30	30	30	27	23
25회	30	30	30	30	26	21

수집	데이터)	
----	------	--

	shoot	meter	MOA
0	30	100	5
1	30	100	5
2	30	100	5
3	30	100	5
4	30	100	5
265	13	250	15
266	14	250	15
267	13	250	15
268	13	250	15
269	14	250	15

(데이터프레임)

데이터모델링 프리프로세싱

1. 종속변수 : 명중 수 (shoot) 독립변수 : 거리(m), 총기오차(MOA)

	snoot	meter	MOA
0	30	100	5
1	30	100	5
2	30	100	5
3	30	100	5
4	30	100	5

·

3. 상관분석

```
correlation = MOADF['meter'].corr(MOADF['MOA'])
print('correlation between x1 and x2: ', correlation)
correlation = MOADF['shoot'].corr(MOADF['MOA'])
print('correlation between x1 and x2: ', correlation)
correlation = MOADF['meter'].corr(MOADF['shoot'])
print('correlation between x1 and x2: ', correlation)
```

correlation between x1 and x2: 0.0 correlation between x1 and x2: -0.6358507621008532 correlation between x1 and x2: -0.5731515900930911

- 독립변수 간 상관 관계 없음.
- 독립변수와 종속변수 간 부상관 관계 있음

5. R-square

```
R2 score is 0.7328089368904734
intercept (b0) 44.48571428571429
Predictor coefficient Name coefficient Value
0 meter b1 -0.053175
1 MOA b2 -0.901111
```

2. 시각화

Dep. Variable:	shoot	R-squared:	0.73
Model:	OLS	Adj. R-squared:	0.73
Method:	Least Squares	F-statistic:	366.3
Date:	Tue, 18 Oct 2022	Prob (F-statistic):	3.03e-7
Time:	19:45:45	Log-Likelihood:	-678.89
No. Observations:	270	AIC:	1364
Df Residuals:	267	BIC:	1375
Df Model:	2		
Covariance Type:	nonrobust		

const	44.4857	0.724	61.455	0.000	43.060	45.911
meter	-0.0532	0.003	-18.118	0.000	-0.059	-0.047
MOA	-0.9011	0.045	-20.100	0.000	-0.989	-0.813
Omnibus:		43.	647 Durbi	n-Watson:		0.264
Prob(Omnibu	ıs):	0.	000 Jarqu	ie-Bera (JB):		13.633
Skew:		-0.	271 Prob(JB):		0.00110
Kurtosis:		2.	042 Cond.	No.		767.

모델 생성 및 평가

1. 종속변수 : 명중 수 (shoot) 독립변수 : 거리(m), 총기오차(MOA)

	snoot	meter	MUA
0	30	100	5
1	30	100	5
2	30	100	5
3	30	100	5
4	30	100	5

(데이터프레임)

5. R-square

R2 score is 0.7281134265182319

model coefficients:

[[-0.05261663 -0.88463488]]

intercept: [44.31922708]

6. scaling

meter		meter	
0.666667	30	200	30
0.000000	116	100	116
1.000000	79	250	79
0.666667	127	200	127
0.000000	196	100	196
1.000000	81	250	81
0.666667	39	200	39
1.000000	240	250	240
0.666667	47	200	47
0.000000	94	100	94

2. 상관관계 확인

	shoot	meter	MOA
shoot	1.000000	-5.731516e-01	-6.358508e-01
meter	-0.573152	1.000000e+00	4.986509e-16
MOA	-0.635851	4.986509e-16	1.000000e+00

3. Heat map

4. Train

	meter	MOA
30	200	5
116	100	10
79	250	5
127	200	10
196	100	15
81	250	5
39	200	5
240	250	15
47	200	5
94	100	10

6. RMSE

the root mean square error is 2.977287968133936 the validation RMSE is 3.0301670741506546 R2 score is 0.7406938305689212

프로젝트 결과 분석

1. 기획

- 적합한 프로젝트 목표 수립을 위하여 다각도의 접근을 수행
- 업무와 연계되며 선형회귀에 적합한 목표 및 범위를 선정하여 기획함

2. 데이터 수집

- 업무상 진행중인 프로젝트와 연계하여 신뢰도 있는 데이터를 수집 함
- 양적 측면에서 독립변수의 수 등 다소 아쉬운 부분이 있음

3. 모델링

- 기획에서부터 비교적 명확한 모델을 선정하여 신뢰성 있는 모델을 생성 함
- 스케일링 이후 과정이 생략되어 다소 아쉬움

4. 마치며

- 학위과정 내 개인적 목표인 가상현실과 인공지능의 교차점 연구에 있어 접근의 실마리를 일부 발견 함.
- 선형회귀의 적합 분야 및 한계를 이해 함.
- 학우들과의 접점이 많지 않았지만 다른 분야의 기반지식, 문제해결 과정 등을 엿볼 수 있어 많은 도움이 됨.

감사합니다