Vlastnosti formálních jazyků

ZPRACUJE: Mystik

Obsah

- 1 Uzavřenost jazyků vůči operacím
- 2 Rozhodnutelnost problémů v jazycích
- 3 Vlastnosti jazyků
 - 3.1 Typ 3 Regulární jazyky
 - 3.2 Typ 2 Bezkontextové jazyky
 - 3.3 Typ 0 Rekurzivně vyčíslitelné jazyky

Uzavřenost jazyků vůči operacím

Substituce

každý symbol věty nahradíme za některou větu substitučního jazyka pro daný symbol (substituční jazyk je stejné třídy jako iazvk)

Morfismus

speciální případ substituce, kdy substituční jazyk má vždy jen jednu větu (symbol vždy nahrazujeme za jedu a tu samou větu)

Inv. morfismus

je operace opačná k morfismu - tj. každá věta jazyka je nahrazena za symbol tak aby náhrada byla inverzní k nějakému morfismu

Ostatní operace jsou obvyklé množinové operace.

Jazyk	Sjednocení	Průnik	Průnik s typem 3	Konkatenace	Iterace	Doplněk	Substituce	Reverze	Morfismus	Inv. morfismus
Тур 3	Ano	Ano	Ano	Ano	Ano	Ano	Ano	Ano	Ano	Ano
Typ 2 - deterministické	Ne	Ne	Ano	Ne	Ne	Ano	Ne	Ne	Ne	Ano
Typ 2	Ano	Ne	Ano	Ano	Ano	Ne	Ano	Ano	Ano	Ano
Тур 1	Ano	Ano	Ano	Ano	Ano	Ano	Ne	Ano	Ne	Ano
Typ 0 - rekurzivní	Ano	Ano	Ano	Ano	Ano	Ano	Ne	Ano	Ne	Ano
Тур 0	Ano	Ano	Ano	Ano	Ano	Ne	Ano	Ano	Ano	Ano

Vychází ze S3ervacovy tabulky uzavřenosti jazykových říd.

Rozhodnutelnost problémů v jazycích

Neprázdnost

obsahuje jazyk alespoň jeden řetezec

Prázdnost

jazyk neobsahuje žádný řetezec

Konečnost

obsahuje jazyk konečný počet řetezců

Náležitost řetezce do jazyka

je daný řetezec řetezcem jazyka

Inkluze

1 z 3 29.5.2011 17:24

je jazyk generovaný jedno gramatikou podmnožinou jazyku generovaného druhou gramtikou

Ekvivalence gramatik

generují dvě gramatiky stejné jazyky

Jazyk	Neprázdnost	Prázdnost	Konečnost	Náležitost	Inkluze	Ekvivalence
Тур 3	Ano	Ano	Ano	Ano	Ano	Ano
Typ 2 - deterministické	Ano	Ano	Ano	Ano	Ne	Ano
Typ 2	Ano	Ano	Ano	Ano	Ne	Ne
Typ 1	??	Ne	Ne	Ano	Ne	Ne
Typ 0 - rekurzivní	částečně	Ne	Ne	Ano	Ne	Ne
Тур 0	částečně	Ne	Ne	částečně	Ne	Ne

Vlastnosti jazyků

Typ 3 - Regulární jazyky

Pumpig lemma

Nechť L je nekonečný regulární jazyk. Pak existuje celočíselná konstanta p ≥ 0 taková, že platí:

$$w \in L \land |w| \ge p \Rightarrow w = xyz \land 0 < |y| < p \land xy_iz \in L(i \ge 0)$$

Neformálně: V každé dostatečně dlouhé větě každého regulárního jazyka jsme schopni najít poměrně krátkou sekvenci, kterou je možné vypustit, resp. zopakovat libovolně krát přičemž dostáváme stále věty daného jazyka.

často se používá k důkazu, že jazyk není regulární (ilustrační příklad viz příklad 3.30 v opoře TIN)

Prefixová ekvivalence (\sim_L)

dva prvky u, v jsou prefixově ekvivalentí ($u \sim_L v$) pokud platí:

$$\forall w \in \Sigma^* : uw \in L \Leftrightarrow vw \in L$$

- tj. pokud lze oba řetězce přidat jako prefix jakémukoli řetězci jazyka a vzniklá slova buď obě budou nebo obě nebudou v jazyce
 L
- Pozn.: index ekvivalence je počet tříd rozkladu podle ekvivalence

Pravá konguruence

ekvivalence je pravou kongruencí pokud platí, že za dva ekvivalentní prvky lze připojit nějaký symbol abecedy a prvky budou stále ekvivalentní

Myhill-Nerodova věta

1. varianta:

Nechť L je jazyk nad Σ pak následující tvrzení jsou ekvivalntní:

- L je jazyk přijímaný deterministickým konečným automatem
- L je sjednocení některých tříd rozkladu určeného pravou kongruencí na Σ^* s konečným indexem
- Relace L má konečný index

2. varianta:

Počet stavů libovolného minimálního deterministického konečného automatu přijímajícího L je roven indexu \tilde{L} (takový DKA existuje právě tehdy, když \tilde{L} je konečný)

Každý konečný jazyk je regulární

Typ 2 - Bezkontextové jazyky

Pumpig lemma

Pokud je jazyk L bezkontextový, existuje číslo p > 0 tak, že každé slovo w z L, pro které platí $|w| \ge p$, lze zapsat ve tvaru w = uvxyz, kde pro slova u, v, x, y a z platí, že $|vxy| \le p$, $|vy| \ge 1$, a uv^ixy^jz patří do L pro každé $i \ge 0$.

Problém, zda daný bezkontextový jazyk je deterministický bezkontextový jazyk, není obecně rozhodnutelný.

2 z 3 29.5.2011 17:24

Problém, zda daná gramatika je nebo není víceznačná, je nerozhodnutelný.

Typ 0 - Rekurzivně vyčíslitelné jazyky

Riceova věta

Každá netriviální vlastnost rekurzivně vyčíslitelných jazyků je nerozhodnutelná.

Každá netriviální nemonotónní vlastnost rekurzivně vyčíslitelných jazyků není ani částečně rozhodnutelná.

- Pozn.: Triviální vlastnost je vždy pro všechny množiny pravdivá nebo nepravdivá
- Pozn.: Monotónní vlastnost pokud monotónní vlastnost platí v podmnožině tak platí i v nadmnožině

Jsou-li jazyky L i \overline{L} rekurzivně vyčíslitelné jsou oba rekurzivní.

Kategorie: Státnice 2011 | Teoretická informatika

Stránka byla naposledy editována 28. 5. 2011 v 09:23.

3 z 3 29.5.2011 17:24