Kontextsensitive Sprachen

Weiterführende Literatur:

- Hoffmann, Theoretische Informatik, Seite 191-192

Grammatik kontextsensitive Sprachen

Sei Σ ein Alphabet. Eine formale Sprache L ist eine Teilmenge aller Wörter über Σ

 $L \subset \Sigma^*$

Eine Grammatik ist ein 4-Tupel mit $G = (V, \Sigma, P, S)$ und besteht aus:

- Einer endlichen Menge V von Variablen (Nonterminale)

Variablen

- Dem endlichen Terminalalphabet Σ mit $\Sigma \cap V = \emptyset$

Terminalalphabet

- Der endlichen Menge an Produktionen

Produktionen

- Und einer Startvariablen S mit $S \in V$

Startvariablen

Eine kontextsensitive Sprache wird durch eine kontextsensitive Grammatik erzeugt, d. h. eine Grammatik mit Produktionsregeln der Form:

 $S \to \varepsilon$ oder $aA \to ac$ oder $Ab \to ab$ oder $AB \to BC$ oder $aBc \to abc$

Mit $A, B, C \in V$; $a, b, c \in \Sigma$

linke Seite: Nonterminale und Terminale rechte Seite: ϵ , Terminale, Nonterminale

linke Seite: Nonterminale und Terminale

rechte Seite: ε, Terminale, Nonterminale

Die Produktionsregeln dürfen hierbei die linke Seite allerdings nicht verkürzen (Ausnahme $S \to \varepsilon$). 1

Abschlusseigenschaften

Die kontextsensitiven Sprachen sind abgeschlossen unter:

- Vereinigung
- Schnitt
- Komplement
- Produkt
- Kleene-Stern

Für kontextsensitive Sprachen ist entscheidbar:

- Wortproblem

¹Theoretische Informatik – Typ-1- und Typ-0-Sprachen.

Literatur

- [1] Dirk W. Hoffmann. Theoretische Informatik. 2018.
- $\begin{tabular}{ll} [2] & \textit{Theoretische Informatik}-\textit{Typ-1- und Typ-0-Sprachen}. \end{tabular}$