

Analysis of RL Algorithms for a Simulated Hill Climb Racing Agent

July 28, 2025

- 1 Problem Definition
- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

Markov Decision Process

Problem Definition 00000000

> A MDP is a stochastic model for sequential decision making defined by a tuple:

$$(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$$

State Space (S)

Action Space (A)

Event	Value
Forward Progress (per meter)	+5.0
Coin Collection	+20.0
Air Time (per second)	+5.0
Time Penalty (per step)	-0.1
Crash (Episode End)	-50.0

Discount Factor (γ)

Problem Definition occoooo•

policy (π)

Problem Classification

- 1 Problem Definition
- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

DQN Algorithm

- 1 Problem Definition
- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

Exprected SARSA Algorithm

- 1 Problem Definition
- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

PPO Algorithm

July 28, 2025

- 2 Deep Q-Network
- 3 Expected SARSA
- 4 Proximal Policy Optimization
- 6 Results

Thank you!

