Algebraic Topology Homework 4

Isaac Martin

Last compiled September 28, 2022

§ Problems from 1.2

Exercise 1.3 Let $p: \tilde{X} \to X$ be a covering space with $p^{-1}(x)$ finite and nonempty for all $x \in X$. Show that \tilde{X} is compact Hausdorff if and only if X is compact Hausdorff.

Proof: First, a quick lemma.

Lemma 0.1. Suppose $f: X \to Y$ is a local homeomorphism between topological spaces X and Y, i.e. That at every point $x \in X$ there exists some open neighborhood $U \subseteq X$ of x such that f(U) is open and the restriction $f|_U$ is a homeomorphism onto f(U). Then f is an open map.

Proof. Let $U \subseteq X$ be an open set. Around each point $x \in V$ we may find an open set U_x which maps homeomorphically to an open set $V_x = f(U_x)$ via f. Then $f(U_x \cap U)$ is open in V_x equipped with the subspace topology. This means $f(U_x \cap U) = V_x \cap A$ for some open set $A \subseteq X$, but then $f(U_x \cap U)$ is a finite intersection of opens in Y and hence itself open. We then have that

$$f(U) = \bigcup_{x \in U} f(U_x \cap U),$$

and therefore f(U) is open.

Let's take care of Hausdorffness first. Suppose X is Hausdorff and choose any two $x,y\in \tilde{X}$ with $x\neq y$. There are two cases to consider depending on whether or not x and y lie in the same fiber. If they do not, then by Hausdorffness on X we may find open neighborhoods $U\subseteq X$ for p(x) and $V\subseteq X$ for p(y) such that $U\cap V=\emptyset$. Then $p^{-1}(U)$ and $p^{-1}(V)$ are disjoint open neighborhoods of x and y respectively since p is continuous. If instead f(x)=f(y), take an open neighborhood $V\subseteq X$ of f(x) which is evenly covered. Let U and U' be the open sets in the collection determined by $f^{-1}(V)$ which contain x and y respectively. Note that x and y are only contained in one such open set by the assumption that $f^{-1}(V)$ is a disjoint union of such sets. If U=U', then the restriction $p|_U:U\to V$ would not be injective and hence could not be a homeomorphism. But $p|_U$ is a homeomorphism, hence $y\notin U$ which implies U and U' are separating neighborhoods for x and y. In either case, if X is Hausdorff then X is Hausdorff.

Now suppose that \tilde{X} is Hausdorff. Pick two distinct points $x,y\in X$ and let U and V be evenly covered neighborhoods of x and y respectively. Choose $\tilde{x}\in f^{-1}(x), \tilde{y}\in f^{-1}(y)$, and let \tilde{U} and \tilde{V} be open sets mapping homeomorphically to U and V respectively via p such that $\tilde{x}\in \tilde{U}$ and $\tilde{y}\in \tilde{V}$. That is, pick \tilde{x} , \tilde{y} , \tilde{U} and \tilde{V} to be points/open sets in \tilde{X} corresponding to x,y,U and V in X via p. Since \tilde{X} is Hausdorff, we may find separating neighborhoods \tilde{A} of \tilde{x} and \tilde{B} of \tilde{y} such that $\tilde{A}\cap \tilde{B}=\emptyset$. Set $A=p(\tilde{U}\cap \tilde{A})$ and $B=p(\tilde{V}\cap \tilde{B})$. We have that $x\in A$ since $\tilde{x}\in \tilde{U}\cap \tilde{A}$ and likewise $y\in B$. Because p is a homeomorphism on \tilde{U} , it is an open map and \tilde{A} is therefore open in the subspace topology in \tilde{U} . This means there is some open set \tilde{U}' such that $\tilde{A}=U\cap U'$ in \tilde{X} , implying that \tilde{A} is open in \tilde{X} since finite intersections of opens are open. The set $\tilde{B}\subseteq X$ is open by similar reasoning. Finally, if there were some $\tilde{z}\in \tilde{A}\cap B$, then there must be some $\tilde{z}\in (\tilde{U}\cap \tilde{A})\cap (\tilde{V}\cap \tilde{B})$ since $p|_{\tilde{U}\cap \tilde{V}}\to U\cap V$ is a homeomorphism. There is no such \tilde{z} since \tilde{A} and \tilde{B} were

chosen to be separating neighborhoods in \tilde{X} , hence A and B are disjoint. This proves we can separate distinct points in X by open sets, and hence X is Hausdorff.

We now move on to compactness. One direction is easy: from pointset topology we know that the image of a compact set under a continuous map is compact, hence $X=p(\tilde{X})$ is compact if \tilde{X} is compact. To see this, take an open cover $\{U_{\alpha}\}_{\alpha\in A}$ of X. Then $\{p^{-1}(U_{\alpha})\}_{\alpha\in A}$ is an open cover of \tilde{X} and must have a finite subcover $\{p^{-1}(U_1),...,p^{-1}(U_n)\}$. But then $\{pp^{-1}(U_1),...,pp^{-1}(U_n)\}=\{U_1,...,U_n\}$ is an open cover of X by the surjectivity of p.

Suppose now that X is compact and choose some open cover $\mathcal U$ of X. I first claim that for each $x\in X$, we may find an open neighborhood $V_x\subseteq X$ of x such that each lift of V_x is contained in U_α for some α . The idea is to shrink an evenly covered neighborhood of x until it satisfies the desired property. Indeed, since $f^{-1}(x)=\{\tilde{x}_1,...,\tilde{x}_n\}$ is finite, we may find $U_1,...,U_n$ such that $\tilde{x}_i\in U_i$. By the definition of a covering space, we can find an evenly covered neighborhood $V\subseteq X$ of x. Since each lift of V contains exactly one element of the fiber of x, there are exactly n-lifts of V, and we enumerate them $\tilde{V}_1,...,\tilde{V}_n$. Define the intersection $\tilde{W}_i=\tilde{V}_i\cap U_i$. Each \tilde{W}_i contains \tilde{x}_i , and is hence a nonempty open set of \tilde{X} . Furthermore, $W_i=p(\tilde{W}_i)$ is a homeomorphic to \tilde{W}_i since the restriction of p to \tilde{V}_i is a homeomorphism by definition. Now define $V_x=W_1\cap...\cap W_n$. We have that V_x is a neighborhood of x since $\tilde{x}_i\in \tilde{W}_i\Longrightarrow x=p(\tilde{x}_i)\in W_i=p(\tilde{W}_i)$ for each i and each lift of V_x is entirely contained in $\tilde{W}_i\subseteq U_i$ for some $1\leq i\leq n$, proving the claim.

Choosing such a V_x for each $x \in X$ gives us a cover $\mathcal V$ of X, and hence by compactness we may find a finite subcover $\mathcal V' = \{V_{x_1},...,V_{x_n}\}$. Because each V_x was constructed above as a subset of an evenly covered neighborhood of x, it to is an evenly covered neighborhood of x and hence has exactly n lifts. This implies that the lift $\mathcal V'$ to $\tilde X$ is also a finite cover. For each $1 \le i \le n$ and each lift V_{x_i} , there is some $U \in \mathcal U$ containing that lift, and since we have finitely many lifts for each V_{x_i} and finitely many V_{x_i} in the collection $\mathcal V'$, the lift of $\mathcal V'$ to $\tilde X$ has a refinement to a finite sub cover of $\mathcal U$. This proves that $\tilde X$ is compact.

Exercise 1.4 Construct a simply-connected covering space of the space $X \subseteq \mathbb{R}^3$ that is the union of a sphere and a diameter. Do the same when X is the union of a sphere and a circle intersecting it in two points.

Proof: Let $X \subseteq \mathbb{R}^3$ be the union of unit sphere S^2 in \mathbb{R}^3 with its diameter D connecting its north and south poles on the x-axis, i.e. the line segment between (-1,0,0) and (1,0,0). Now for $t \in \mathbb{R}$ let $T_t : \mathbb{R}^3 \to \mathbb{R}^3$ be the homeomorphism of \mathbb{R}^3 given by translating by t along the x-axis, that is, $T_t(x,y,z) = (x+t,y,z)$.

I claim that

$$\tilde{X} = \bigcup_{n \in \mathbb{Z}} (T_{4n}(S^2) \cup T_{4n+1}(D)),$$

seen in Figure (1), is a simply-connected cover of X. By deformation retracting each $T_{4n+1}(D)$ to a point, we see that \tilde{X} is homotopy equivalent to an infinite wedge of spheres, and hence simply connected. To see that it is a covering space of X, we need to construct a covering map. Define $p: \tilde{X} \to X$ to be the inverse translation T_{-4n} on each sphere $T_{4n}(S^2)$ and the inverse translation $T_{-(4n+1)}$ followed by a reflection across the yz-plane on each line segment $T_{4n+1}(D)$. Then for each point $x \in X$ we can find an $\epsilon > 0$ small enough so that $p^{-1}(B_{\epsilon}(x) \cap X)$ is a union of disjoint homeomorphic copies of $B_{\epsilon}(x) \cap X$, each lift given by a translate or a reflection followed by a translate.

Figure 1: Universal cover of the sphere union a diameter

Now let X be the unit sphere S^2 in \mathbb{R}^3 union a circle S^1 which intersects S^2 at exactly two points. By homotoping these two points along the section of the great arc connecting them on the surface of S^2 , we see that X is homotopy equivalent to $S^2 \vee S^1 \vee S^1$ (see Figure 2).

For its universal cover, we first take the Cayley graph Y from Example 1.45, the universal cover of $S^1 \vee S^1$ equipped with covering map $p_1: Y \to S^1 \vee S^1$. We then obtain a space \tilde{X} by wedging a copy of S^2 at every point of $p_1^{-1}(x)$, where x denotes the basepoint of $S^1 \vee S^1$. The space \tilde{X} is seen in Figure (3). The covering map $p: \tilde{X} \to X$ sends each copy of S^2 to S^2 in X and is defined to be p_1 on Y. The space \tilde{X} is simply connected since it is homotopy equivalent to the wedge of countably many spheres, again by the homotopy retracting each chord in Y to a point.

Figure 2: The sphere union a circle intersecting it twice is homotopy equivalent to $S^2 \vee S^1 \vee S^1$

Figure 3: The universal cover \tilde{X} of the sphere union a twice-intersecting circle.

EXERCISE 1.5 Let X be the subspace of \mathbb{R}^2 consisting of the four sides of the square $[0,1] \times [0,1]$ together with the segments of the vertical lines $x=\frac{1}{2},\frac{1}{3},\frac{1}{4},...$ inside the square. Show that for every covering space $\tilde{X} \to X$ there is some neighborhood of the left edge of X that lifts homeomorphically to \tilde{X} . Deduce that X has no simply-connected covering space.

Proof: Call the leftmost edge of X E. We first argue that if \tilde{X} is a covering space of X then there is a neighborhood of E that lifts homeomorphically to \tilde{X} . By the definition of a covering space, for each point $x \in X$ there is some evenly covered neighborhood U_x and the set of all such neighborhoods forms a cover for X. Closed and bounded in \mathbb{R}^2 implies compact (Hein Borel baby) so there exists a finite subset $S \subseteq X$ such that $\{U_x\}_{x \in S}$ is a finite subcover of X. Define $T = \{x \in S \mid U_x \cap E \neq \emptyset\}$ and

$$U = \bigcup_{x \in T} U_x$$

to be the union of all these evenly covered neighborhoods which intersect E nontrivially. We argue that this set is an evenly covered neighborhood of E.

Because E is connected, there must be at least two distinct $x_1, x_2 \in T$ such that $U_{x_1} \cap U_{x_2} \neq \emptyset$. For any $y \in U_{x_1} \cap U_{x_2}$, let $V \subseteq U_{x_1} \cap U_{x_2}$ be an open neighborhood of y. Then V is an evenly covered neighborhood of y, and each of its disjoint copies in $p^{-1}(U_{x_1})$ must intersect the corresponding copy in $p^{-1}(U_{x_2})$. This

implies that $U_{x_1} \cup U_{x_2}$ is an evenly mapped neighborhood for both x_1 and x_2 . By redefining $U_{x_1} = U_{x_1} \cup U_{x_2}$ and removing x_2 from T, we reduce the cardinality of T by 1 and leave U unaffected, still covered by evenly covered sets. Since T is finite, repeating this process must eventually terminate with |T| = 1, leaving us with only U, an evenly covered set containing E. This proves that U is (one choice of) the desired neighborhood of E.

Since U is an open set in $X \subseteq \mathbb{R}^2$ equipped with the subspace topology, there must be an open set $V \subseteq \mathbb{R}^2$ such that $U = V \cap \mathbb{R}^2$. Let B denote the boundary of V, noting that it intersects E trivially because $E \subseteq V$. Since E is compact in \mathbb{R}^2 and $E \cap B = \emptyset$, the minimum distance r between E and B is attained by a pair of points in E and B and is positive. We can therefore find some $n \in \mathbb{N}$ such that $\frac{1}{n} < r$. Since each point x in the vertical line $L = \{1/n\} \times [0,1]$ of X is distance 1/n from E, $x \in V$. This implies that $L \subseteq V$, and hence $L \subseteq U$. Likewise, each point along the horizontal segments H_1 and H_2 connecting L to E is within distance 1/n of E and is hence also contained in U.

The union $E \cup H_1 \cup L \cup H_2$ lifts homeomorphically to \tilde{X} as it is contained in U, but this means that \tilde{X} contains a loop which is not nullhomotopic. We conclude that \tilde{X} is not simply connected, and since \tilde{X} was chosen to be an arbitrary cover space of X, that X has no universal cover.

Figure 4: \tilde{X} has a nontrivial loop.

Exercise 1.9 Show that if a path-connected, locally path-connected space X has $\pi_1(X)$ finite, then every map $X \to S^1$ is nullhomotopic. [Use the covering space $\mathbb{R} \to S^1$].

Proof: Note first that there is no finite subgroup of the additive group \mathbb{Z} . Indeed, if $g \in \mathbb{Z}$ were of finite order $k \geq 1$, then $k \cdot g = 0 \implies g = 0$ since \mathbb{Z} is an integral domain. The continuous map $f: X \to S^1$ induces a morphism $f_*: \pi_1(X,x_0) \to \pi_1(S^1,s_0)$, and since $\pi_1(X,x_0)$ is finite by assumption, this induced map must be the trivial map. This implies that $f_*(\pi_1(X,x_0)) = \langle 0 \rangle \subseteq p_*(\pi_1(\mathbb{R},r_0))$, where $p: \mathbb{R} \to S^1$ is the

covering map, and hence by the lifting criterion there exists a lift $\tilde{f}: X \to \mathbb{R}$ of f sending x_0 to the arbitrarily chosen basepoint $r_0 \in \mathbb{R}$.

Since $\mathbb R$ deformation retracts to to r_0 , $\tilde f:X\to\mathbb R$ is nullhomotopic to the constant map $g:X\to\mathbb R$ defined $g(x)=r_0$. Let $\tilde F:X\times [0,1]\to\mathbb R$ be the homotopy taking $\tilde f$ to g, i.e. a homotopy such that $\tilde F(x,0)=\tilde f(x)$ and $\tilde F(x,1)=r_0$. Both $\tilde F$ and p are continuous, hence the composition $p\circ \tilde F$ is continuous. But this is a homotopy taking f to the constant map sending everything in X to s_0 , since $f=p\circ \tilde f=p\circ \tilde F(x,0)$ and $p\circ \tilde F(x,1)=p(r_0)=s_0$. We conclude that $f:X\to S^1$ is nullhomotopic.

Exercise 1.12 Let a and b be the generators of $\pi_1(S^1 \vee S^1)$ corresponding to the two S^1 summands. Draw a picture of the covering space of $S^1 \vee S^1$ corresponding to the normal subgroup generated by a^2 , b^2 and $(ab)^4$, and prove that this covering space is indeed the correct one.

Proof: The covering space corresponding to the subgroup normally generated by a^2 , b^2 and $(ab)^4$ is seen in (5). Call this space \tilde{X} , set $X = S^1 \vee S^1$, and let $p: \tilde{X} \to X$ be the covering map obtained by identifying all the a edges and all the b edges in \tilde{X} . The a and b loops in \tilde{X} correspond to a^2 and b^2 respectively, while traversing the outer edges of the graph gives a loop corresponding to $(ab)^4$. To check that \tilde{X} does indeed correspond to the subgroups *normally* generated by a^2 , b^2 and $(ab)^4$, it suffices to check that \tilde{X} is a normal cover by Proposition 1.39. We therefore need to check that the group of deck transformations acts transitively on the fiber $p^{-1}(x)$ of the basepoint $x \in X$.

Let \tilde{x} be the orange point in the top left of the figure, near 11 o'clock. To move \tilde{x} clockwise around \tilde{X} , we apply the deck transformations corresponding to a and b interchangably, starting with a. For example, applying a takes \tilde{x} to the blue point near 1 o'clock in the figure, ab takes \tilde{x} to the orange point near 2 o'clock and so on. This procedure allows us to take \tilde{x} to any other point in $p^{-1}(x)$, and reversing this process can take any point in $p^{-1}(x)$ to \tilde{x} . By passing through \tilde{x} we can take any point in $p^{-1}(x)$ to any other point, hence the action of deck transformations on \tilde{X} is transitive and \tilde{X} is a normal cover.

Figure 5: Graph corresponding to $\langle a^2, b^2, (ab)^4 \rangle$.

Exercise 1.15 Let $p: \tilde{X} \to X$ be a simply-connected covering space of X and let $A \subseteq X$ be a path-connected, locally path-connected subspace, with $\tilde{A} \subseteq \tilde{X}$ a path-component of $p^{-1}(A)$. Show that $p: \tilde{A} \to A$ is the covering space corresponding to the kernel of the map $\pi_1(A) \to \pi_1(X)$.

Proof: Let $p'=p|_{\tilde{A}}$ be the restriction of of p to \tilde{A} with codomain $A, \iota:A\to X$ the inclusion of A into X and $\tilde{\iota}:\tilde{A}\to \tilde{X}$ the inclusion of \tilde{A} into \tilde{X} . Note that we have $\iota\circ r=p\circ \tilde{\iota}$ by definition, and that the induced maps on fundamental groups satisfies the same relation.

$$\tilde{A} \xrightarrow{\tilde{\iota}} \tilde{X}
\downarrow_r \qquad \downarrow_p
A \xrightarrow{\iota} X$$

Since X and A are both path connected, we can choose x_0 to be the basepoint of each without this choice affecting their respective fundamental groups. Let \tilde{x}_0 be the basepoint for \tilde{A} and \tilde{X} in the same way, such that $r(\tilde{x}_0) = x_0$. With this notation in place, functoriality of the fundamental group gives us a corresponding commutative diagram:

$$\pi_1(\tilde{A}, \tilde{x}_0) \xrightarrow{\tilde{\iota}_*} \pi_1(\tilde{X}, \tilde{x}_0)$$

$$\downarrow^{r_*} \qquad \qquad \downarrow^{p_*} .$$

$$\pi_1(A, x_0) \xrightarrow{\iota_*} \pi_1(X, x_0)$$

I first claim that the map r is a covering space of A. For each $x \in A$, take an evenly covered neighborhood U of x in X. Then $U \cap A$ is also an evenly covered neighborhood. Taking the preimage in \tilde{X} under p, intersecting with \tilde{A} and then taking the image under r then gives us an evenly covered neighborhood of x in A whose preimage is entirely contained in \tilde{A} .

Now we want to show $p:\tilde{A}\to A$ is the covering space of A corresponding to the kernel of the map $\pi_1(A,x_0)\to\pi_1(X,x_0)$, or more precisely, that $r_*(\pi_1(\tilde{A},\tilde{x}_0))=\ker\iota_*$. Because \tilde{X} is simply-connected, $\pi_1(\tilde{X},\tilde{x}_0)=0$. The composition $p_*\circ\tilde{\iota}_*$ is therefore trivial, implying $\iota_*\circ r_*=0$ too by the commutativity of the above diagram. This implies that $r_*(\pi_1(\tilde{A},x_0))\subseteq\ker\iota_*$.

For the other inclusion, suppose we start with an element $[\gamma] \in \ker \iota_*$. This lifts to a unique path α in \tilde{A} with initial endpoint \tilde{x}_0 , and the composition of α with $\tilde{\iota}$ gives a path in \tilde{X} . The commutativity of the first diagram means that $\tilde{\iota} \circ \alpha$ is a lift of $\iota \circ \gamma$, but this is homo topic to the trivial path at x_0 in X since $[\gamma] \in \ker \iota_*$. hence $\tilde{\iota} \circ \alpha$ is actually a loop based at x_0 . This means α is a loop in \tilde{A} and so $[\alpha]$ is an element $\pi_1(\tilde{A}, \tilde{x}_0)$. We know $[\gamma] = [r \circ \alpha]$ already since α was defined to be a lift of γ , hence $[\gamma] = r_*([\alpha])$. This gives us the other inclusion, and we are done.

EXERCISE 1.23 Show that if a group G acts freely and properly discontinuously on a Hausdorff space X, then the action is a covering space action. (Here "properly discontinuously" means that each $x \in X$ has a neighborhood U such that $\{g \in G \mid U \cap g(U) \neq \emptyset\}$ is finite.) In particular, a free action of a finite group on a Hausdorff space is a covering space action.

Proof: Suppose that G is a group which acts freely and properly discontinuously on a Hausdorff space X. For an open set $U \subseteq X$, define

$$S_U = \{ g \in G \mid U \cap g(U) \neq \emptyset \}.$$

By the "properly discontinuous" hypothesis, we know that for each $x \in X$ we may find some open neighborhood U_x such that S_{U_x} is finite. We need only show that we can refine our choice of U_x to guarantee S_{U_x} is empty, as this is the definition of a covering space action.

Fix $x \in X$ and U_x as above, and enumerate S_{U_x} as $\{g_1,...,g_n\}$ where $g_1=e$. Because the action of G is free, $g_ix=g_jx$ only if i=j. Using the Hausdorffness of X we can therefore find an open neighborhood V_i of g_ix for each $1 \le i \le n$ such that $V_i \cap V_j = \emptyset$ whenever $i \ne j$. Define $U = U_x \cap \bigcap_{i=1}^n g_i^{-1}(V_i)$. Each set $g^{-1}(V_i)$ contains $g_i^{-1}g_ix=x$ and is open, so U is open and nonempty. Consider $U \cap g(U)$ for an arbitrary $g \in G$. If $g \not\in S_{U_x}$ then $U \cap g(U) \subseteq U_x \cap g(U_x) = \emptyset$, and if $g = g_i$ for some $1 < i \le n$, then

$$U \cap g(U) \subseteq g_1(g_1^{-1}(V_1)) \cap g_i(g_i^{-1}(V_i)) = V_1 \cap V_i = \emptyset.$$

Thus, U is an open neighborhood of x such that $U \cap g(U) = \emptyset$ whenever $e \neq g \in G$, and hence the action of G on X is a covering space action.

In particular, this means that every free action of a finite group on a Hausdorff space is a covering space action, since the action of a finite group on a topological space is automatically what Hatcher calls a "properly discontinuous" group action.