Analysis 2, Complex Analysis Assessed Coursework 2

Deadline the 26th of March, 2021.

Q1. [5] Find the Laurent series for the function

$$\frac{z^2 - 2z + 3}{z - 2}$$

in the region |z - 1| > 1.

Q2. [5]

a) [2] Find $\Omega \subset \mathbb{R}^2$ where the function

$$u(x,y) = \frac{x^2 + y^2 + x}{x^2 + y^2}$$

is harmonic.

b) [2] Find all harmonic conjugates v(x, y). *Hint: use C-R equations in polar coordinates.*

- c) [1] If f(z) = u(x, y) + iv(x, y), find f(z) in terms of z.
- Q3. [5] Use complex integration to compute

$$\int_0^\infty \frac{1-\cos x}{x^2} \, \mathrm{d}x.$$

Q4. [5]

- a) [3] Let ψ be holomorphic in $D = \{z : |z| \le 1\}$. Prove that there exists $0 < \rho$ such that for any $w \in \{z : |z| < \rho\}$ the equation $z = w \psi(z)$ has exactly one root.
- b) [2] Find the Möbius transform w = f(z) that maps points $z_1 = 1$, $z_2 = i$ and $z_3 = -i$ onto the given points $w_1 = -i$, $w_2 = i$ and $w_3 = \infty$, respectively.