POPIS INŠTRUKCIÍ

Inštrukčný súbor CPU emulátora obsahuje 55 inštrukcií. Tieto inštrukcie môžeme rozdeliť do piatich základných skupín. Sú to:

- aritmetické a logické inštrukcie
- inštrukcie pre posun a rotáciu
- inštrukcie prenosu dát
- inštrukcie vetvenia
- špeciálne inštrukcie

Vysvetlivky označení použitých pri popise inštrukcií:

- *R* všeobecné označenie registra
- *K* konštanta (8 alebo 16-bitová)
- index *s* zdrojový register (source)
- index d cieľový register (destination)

1. ARITMETICKÉ A LOGICKÉ INŠTRUKCIE

ADD – Sčítanie bez Carry

Popis: Sčítanie obsahu dvoch registrov a umiestenie výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd + Rs$

Syntax: Parametre: Čítač inštrukcií: ADD Rd,Rs Rd,Rs – A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

ADC – Sčítanie s Carry

Popis: Sčítanie obsahu dvoch registrov a obsahu príznakového bitu Carry a umiestenie výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd + Rs + CY$

Syntax: Parametre: Čítač inštrukcií: ADC Rd,Rs Rd,Rs – A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

ADI – Pripočítanie konštanty

Popis: Pripočítanie konštanty k obsahu registra a uloženie výsledku do registra.

Operácia:

 $Rd \leftarrow Rd + K$

Syntax: Parametre: Čítač inštrukcií: ADI Rd,K $Rd-A,B,C,D; 0 \le K \le 255$ $PC \leftarrow PC + 1$

SUB – Odčítanie bez Carry

Popis: Odčítanie obsahov dvoch registrov a uloženie výsledku do registra Rd.

Operácia: $Rd \leftarrow Rd - Rs$

Syntax: Parametre: Čítač inštrukcií: SUB Rd,Rs Rd,Rs - A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

SUC – Odčítanie s Carry

Popis: Odčítanie obsahu registra Rs a Carry od obsahu registra Rd a uloženie výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd - Rs - CY$

Syntax: Parametre: Čítač inštrukcií: SBC Rd,Rs Rd,Rs -A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

SBI – Odčítanie konštanty

Popis: Odčítanie konštanty od obsahu registra a uloženie výsledku do registra.

Operácia: $Rd \leftarrow Rd - K$

Syntax: Parametre: Čítač inštrukcií: SBI Rd,K $Rd - A,B,C,D; 0 \le K \le 255$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

AND – Logický súčin

Popis: Operácia vykoná logický súčin medzi registrom Rd a registrom Rs z následným uložením výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd \bullet Rs$

Syntax: Parametre: Čítač inštrukcií: AND Rd,Rs Rd,Rs – A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

ANI – Logický súčin s konštantou

Popis: Vykoná logický súčin medzi obsahom registra Rd a konštantou z následným uložením výsledku do registra Rd.

Operácia: $Rd \leftarrow Rd \bullet K$

Syntax: Parametre: Čítač inštrukcií: ANI Rd,K Rd – A,B,C,D; $0 \le K \le 255$ PC \leftarrow PC + 1

ORR – Logický súčet

Popis: Vykoná logický súčet medzi obsahom registra Rd a obsahom registra Rs z následným uložením výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd \lor Rs$

Syntax: Parametre: Čítač inštrukcií: ORR Rd,Rs Rd,Rs - A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

ORI – Logický súčet s konštantou

Popis: Vykoná logický súčet medzi obsahom registra Rd a konštantou z následným uložením výsledku do registra Rd.

Operácia: $Rd \leftarrow Rd \lor K$

Syntax: Parametre: Čítač inštrukcií: ORI Rd,K $Rd - A,B,C,D; 0 \le K \le 255$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

XOR – Exkluzívny súčet

Popis: Vykoná logickú operáciu XOR medzi obsahom registra Rd a obsahom registra Rs a uloží výsledok do registra Rd.

Operácia:

 $Rd \leftarrow Rd \oplus Rs$

Syntax: Parametre: Čítač inštrukcií: XOR Rd,Rs Rd,Rs - A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

XRI – Exkluzívny súčet s konštantou

Popis: Vykoná logickú operáciu XOR medzi obsahom registra Rd a konštantou z následným uložením výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd \oplus K$

Syntax: Parametre: Čítač inštrukcií: XRI Rd,K Rd – A,B,C,D; $0 \le K \le 255$ PC \leftarrow PC + 1

Nastavenie príznakov: Z

INC – Inkrement

Popis: Obsah registra zvýši o 1.

Operácia: $Rd \leftarrow Rd + 1$

Syntax: Parametre: Čítač inštrukcií: INC Rd Rd – A,B,C,D $PC \leftarrow PC + 1$

INX – Inkrement 16-bitového registra

Popis: Obsah registra zvýši o 1.

Operácia: $Rd \leftarrow Rd + 1$

Syntax: Parametre: Čítač inštrukcií: INX Rd Rd - S,M $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

DEC – **Dekrement**

Popis: Obsah registra zmenší o 1.

Operácia: $Rd \leftarrow Rd - 1$

Syntax: Parametre: Čítač inštrukcií: DEC Rd Rd – A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

DCX – Dekrement 16-bitového registra

Popis: Obsah registra zmenší o 1.

Operácia: $Rd \leftarrow Rd - 1$

Syntax: Parametre: Čítač inštrukcií: DCX Rd Rd - S,M - PC \leftarrow PC + 1

Nastavenie príznakov: Z,CY

CMP – Porovnanie obsahu dvoch registrov

Popis: Nedeštruktívne odčítanie obsahov dvoch registrov a nastavenie príznakov.

Operácia: Rd – Rs

Syntax: Parametre: Čítač inštrukcií: CMP Rd,Rs Rd,Rs - A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

CMI – Porovnanie obsahu registra a konštanty

Popis: Nedeštruktívne odčítanie konštanty od obsahu registra a nastavenie príznakov.

Operácia: Rd – K

Syntax: Parametre: Čítač inštrukcií: CMI Rd,K Rd – A,B,C,D; $0 \le K \le 255$ PC \leftarrow PC + 1

2. INŠTRUKCIE POSUNU A ROTÁCIE

SHL – logický posun vľavo

Popis: Posunie všetky bity registra o daný počet miest doľava. Do *n* spodných bitov uloží nulu. *Operácia:*

Syntax: Parametre: Čítač inštrukcií: SHL Rd,n $Rd - A,B,C,D; 1 \le n \le 8$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

SHR – logický posun vpravo

Popis: Posunie všetky bity registra o daný počet miest doprava. Do *n* horných bitov uloží nulu. *Operácia:*

Syntax: Parametre: Čítač inštrukcií: SHR Rd,n Rd – A,B,C,D; $1 \le n \le 8$ PC \leftarrow PC + 1

Nastavenie príznakov: Z

SCR – logický posun vpravo s Carry

Popis: Posunie všetky bity registra o daný počet miest doprava. Do *n* horných bitov uloží nulu. Nultý bit sa pri každom posune uloží do Carry.

Syntax: Parametre: Čítač inštrukcií: SCR Rd,n $Rd-A,B,C,D; 1 \le n \le 8$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

RTL – rotácia vľavo

Popis: Posunie všetky bity v registri Rd doľava o *n* miest. Pri každom posune uloží do nultého bitu obsah siedmeho bitu.

Syntax: Parametre: Čítač inštrukcií: RTL Rd,n $Rd - A,B,C,D; 1 \le n \le 8$ $PC \leftarrow PC + 1$

RCL – rotácia vľavo s Carry

Popis: Posunie všetky bity v registri Rd doľava o *n* miest. Pri každom posune uloží do nultého bitu obsah siedmeho bitu. Siedmy bit sa pri každom posune ukladá do Carry.

Operácia:

Syntax: Parametre: Čítač inštrukcií: RCL Rd,n Rd – A,B,C,D; $1 \le n \le 8$ PC \leftarrow PC + 1

Nastavenie príznakov: Z,CY

RTR – rotácia vpravo

Popis: Posunie všetky bity v registri Rd doprava o *n* miest. Pri každom posune uloží do siedmeho bitu obsah nultého bitu.

Operácia:

Syntax: Parametre: Čítač inštrukcií: RTR Rd,n Rd – A,B,C,D; $1 \le n \le 8$ PC \leftarrow PC + 1

Nastavenie príznakov: Z

RCR – rotácia vpravo s Carry

Popis: Posunie všetky bity v registri Rd doprava o n miest. Pri každom posune uloží do siedmeho bitu obsah nultého bitu a do Carry sa uloží nultý bit.

Operácia:

Syntax: Parametre: Čítač inštrukcií: RCR Rd,n Rd – A,B,C,D; $1 \le n \le 8$ PC \leftarrow PC + 1

3. INŠTRUKCIE PRENOSU DÁT

MOV – Kopírovanie obsahu registra

Popis: Do registra Rd zapíše obsah registra Rs.

Operácia: Rd ← Rs

Syntax: Parametre: Čítač inštrukcií: MOV Rd,Rs Rd,Rs - A,B,C,D $PC \leftarrow PC + 1$

MVI – Načítanie konštanty do registra

Popis: Do registra Rd zapíše 8-bitovú konštantu.

Operácia: Rd ← K

Syntax: Parametre: Čítač inštrukcií: MVI Rd,K Rd – A,B,C,D; $0 \le K \le 255$ PC \leftarrow PC + 1

MXI – Načítanie 16-bitovej konštanty do registra

Popis: Do registra Rd zapíše 16-bitovú konštantu.

Operácia: Rd ← K

Syntax: Parametre: Čítač inštrukcií: MXI Rd,K Rd – S,M; $0 \le K \le 65535$ PC \leftarrow PC + 1

MVX – Kopírovanie dvoch 8-bitových registrov do 16-bitového alebo naopak

Popis: Do 16-bitového registra zapíše obsah dvoch 8-bitových registrov alebo naopak.

Syntax:Operácia:MVX S,A $SP \leftarrow BA$ MVX M,A $MP \leftarrow BA$ MVX C,S $CD \leftarrow SP$ MVX C,M $CD \leftarrow MP$

MMR – Načítanie konštanty z pamäti programu

Popis: Načítanie konštanty z pamäti programu do registra Rd. V registri Rs je uložený index miesta v pamäti. Definovanie konštanty v pamäti programu sa uskutočňuje inštrukciou BYTE. *Operácia:*

Ćítač inštrukcií: PC ← PC + 1

 $Rd \leftarrow [Rs]$

Syntax:Parametre:Čítač inštrukcií:MMR Rd,RsRd,Rs – A,B,C,D $PC \leftarrow PC + 1$

LMI – Čítanie pamäte s použitím adresy

Popis: Načíta 1 bajt do registra z miesta v pamäti, ktoré je dané adresou.

Operácia: $Rd \leftarrow [adr]$

Syntax: Parametre: Čítač inštrukcií: LMI Rd,adr Rd – A,B,C,D; $0 \le adr \le 65535$ PC \leftarrow PC + 1

LMR – Čítanie pamäte s použitím smerníka MP

Popis: Načíta 1 byte do registra z miesta v pamäti, na ktoré ukazuje smerník MP.

Operácia: $Rd \leftarrow [MP]$

Čítač inštrukcií: Syntax: Parametre: LMR Rd Rd - A,B,C,D $PC \leftarrow PC + 1$

SMI – Zápis do pamäte s použitím adresy

Popis: Uloží obsah registra do miesta v pamäti, ktoré je dané adresou.

Operácia: $[adr] \leftarrow Rs$

Čítač inštrukcií: Syntax: Parametre: $PC \leftarrow PC + 1$ Rs – A,B,C,D; $0 \le adr \le 65535$ SMI adr,Rs

SMR – Zápis do pamäte s použitím smerníka MP

Popis: Uloží obsah registra do miesta v pamäti, na ktoré ukazuje smerník MP.

Operácia: $[MP] \leftarrow Rs$

Syntax: Parametre: SMR Rs

Čítač inštrukcií: $PC \leftarrow PC + 1$ Rs - A,B,C,D

INN – Čítanie z vstupno-výstupného registra

Popis: Načíta dáta z vstupno-výstupného registra daného adresou do registra Rd.

Operácia: $Rd \leftarrow [adr]$

Syntax: Parametre: Čítač inštrukcií: INN Rd,adr $Rd - A,B,C,D; 0 \le adr \le 65535$ $PC \leftarrow PC + 1$

OUT – Zápis do vstupno-výstupného registra

Popis: Zapíše obsah registra Rs do vstupno-výstupného registra daného adresou.

Operácia: $[adr] \leftarrow Rs$

Čítač inštrukcií: Syntax: Parametre: Rs – A,B,C,D; $0 \le adr \le 65535$ $PC \leftarrow PC + 1$ OUT adr,Rs

PUS – Uloženie obsahu registra do zásobníka

Popis: Zapíše obsah registra Rs do zásobníka.

Operácia: $[SP] \leftarrow Rs$

Čítač inštrukcií: Syntax: Parametre: Zásobník: PUS Rs $SP \leftarrow SP - 1$ $PC \leftarrow PC + 1$ Rs - A,B,C,D,F

> $SP \leftarrow SP - 2$ Rs - M

POP – Načítanie obsahu registra zo zásobníka

Popis: Načíta obsah registra Rd zo zásobníka.

Operácia: $Rd \leftarrow [SP]$

Syntax: Parametre: Zásobník: Čítač inštrukcií: POP Rd Rd – A,B,C,D,F SP \leftarrow SP + 1 PC \leftarrow PC + 1

Rd - M $SP \leftarrow SP + 2$

STR – Nepriamy zápis do vnútornej pamäte procesora (256 B)

Popis: Uloží obsah registra do miesta v pamäti procesora, na ktoré ukazuje smerník Rd.

Operácia: [Rd] ← Rs

Syntax: Parametre: Čítač inštrukcií: STR Rd,Rs Rd,Rs -A,B,C,D $PC \leftarrow PC + 1$

LDR – Nepriame čítanie z vnútornej pamäte procesora (256 B)

Popis: Načíta do registra dáta z vnútornej pamäte procesora, na ktoré ukazuje smerník Rs. *Operácia:*

 $Rd \leftarrow [Rs]$

Syntax: Parametre: Čítač inštrukcií: LDR Rd,Rs Rd,Rs - A,B,C,D $PC \leftarrow PC + 1$

4. INŠTRUKCIE VETVENIA

JMP – Bezpodmienečný skok

Popis: Vykoná skok na dané návestie v programe.

Operácia: $PC \leftarrow [nav]$

Syntax: \check{C} ítač inštrukcií: JMP nav $PC \leftarrow [nav]$

JZR - Skok ak Zero = 1

Popis: Vykoná skok na dané návestie, ak je príznak Zero nastavený.

Operácia:

if Z = 1 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$

Syntax: Čítač inštrukcií:

JZR nav $PC \leftarrow [nav] \text{ ak } Z = 1$ $PC \leftarrow PC + 1 \text{ ak } Z = 0$

JNZ - Skok ak Zero = 0

Popis: Vykoná skok na dané návestie, ak je príznak Zero nulový.

Operácia:

if Z = 0 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$

Syntax: Čítač inštrukcií:

JNZ nav $PC \leftarrow [nav]$ ak Z = 0

 $PC \leftarrow PC + 1$ ak Z = 1

JCY - Skok ak Carry = 1

Popis: Vykoná skok na dané návestie, ak je príznak Carry nastavený.

Operácia:

if CY = 1 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$

Syntax: Čítač inštrukcií:

JCY nav $PC \leftarrow [nav]$ ak CY = 1

 $PC \leftarrow PC + 1$ ak CY = 0

JNC - Skok ak Carry = 0

Popis: Vykoná skok na dané návestie, ak je príznak Carry nulový.

Operácia:

if CY = 0 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$

Syntax: Čítač inštrukcií:

JNZ nav $PC \leftarrow [nav]$ ak CY = 0

 $PC \leftarrow PC + 1$ ak CY = 1

CAL – Bezpodmienečné volanie podprogramu

Popis: Volá podprogram, ktorého začiatok je daný návestím. Návratová adresa (t.j. adresa inštrukcie nasledujúcej po CAL) je uložená do zásobníka.

Operácia:

 $PC \leftarrow [nav]$ Zásobník:

Syntax: $STACK \leftarrow PC + 1$ \check{C} itač inštrukcií: CAL nav $SP \leftarrow SP - 1$ $PC \leftarrow [nav]$

CZR – Volanie podprogramu ak Zero = 1

Popis: Volá podprogram daný návestím, ak je príznak Zero nastavený. Návratová adresa (t.j. adresa inštrukcie nasledujúcej po CZR) je uložená do zásobníka.

Operácia:

if Z = 1 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$ Syntax: Zásobník: CZR nav

ak Z = 1 $STACK \leftarrow PC + 1$ $SP \leftarrow SP - 1$ $PC \leftarrow [nav]$

ak Z = 0 – $PC \leftarrow PC + 1$

CNZ – Volanie podprogramu ak Zero = 0

Popis: Volá podprogram daný návestím, ak je príznak Zero nulový. Návratová adresa (t.j. adresa inštrukcie nasledujúcej po CNZ) je uložená do zásobníka.

Operácia:

if Z=0 then $PC \leftarrow [nav]$ else $PC \leftarrow PC+1$ Syntax: Zásobník: Čítač inštrukcií: CNZ nav ak Z=0 STACK $\leftarrow PC+1$ $PC \leftarrow [nav]$ $SP \leftarrow SP-1$ ak Z=1 $PC \leftarrow PC+1$

CCY - Volanie podprogramu ak Carry = 1

Popis: Volá podprogram daný návestím, ak je príznak Carry nastavený. Návratová adresa (t.j. adresa inštrukcie nasledujúcej po CCY) je uložená do zásobníka. Operácia:

if CY = 1 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$ Syntax: $Z\acute{a}sobn\acute{k}$: CCY nav ak CY = 1 STACK $\leftarrow PC + 1$ PC $\leftarrow [nav]$ $SP \leftarrow SP - 1$ ak CY = 0 PC $\leftarrow PC + 1$

CNC – Volanie podprogramu ak Carry = 0

Popis: Volá podprogram daný návestím, ak je príznak Carry nulový. Návratová adresa (t.j. adresa inštrukcie nasledujúcej po CNC) je uložená do zásobníka. Operácia:

if CY = 0 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$ Syntax: Z is sobnik: CNC nav AR is CY = 0 in CY = 0

RET – Návrat z podprogramu

Popis: Vykoná návrat z podprogramu. Návratová adresa je načítaná zo zásobníka. *Operácia:*

 $PC \leftarrow STACK$

Syntax: Zásobník: Čítač inštrukcií: RET SP \leftarrow SP + 1 PC \leftarrow STACK

5. ŠPECIÁLNE INŠTRUKCIE

EIT – Povolenie prerušenia

Popis: Povolí prerušenie procesora, ale až po vykonaní inštrukcie nasledujúcej po inštrukcii EIT. *Operácia:*

 $EI \leftarrow 1$

Syntax: \check{C} ítač inštrukcií: EIT $PC \leftarrow PC + 1$

DIT – Zakázanie prerušenia

Popis: Zakáže prerušenie procesora.

Operácia: EI \leftarrow 0

Syntax: \check{C} ítač inštrukcií: DIT $PC \leftarrow PC + 1$

SCALL – Špeciálna inštrukcia pre interakciu programu s užívateľom

Popis: Umožňuje: (1) zistiť stlačenie klávesy, (2) načítať do registra D klávesu stlačenú užívateľom, (3) zobraziť obsah registra D na konzole.

Operácia:

1. SCALL KPR: ak je stlačená klávesa, nastaví príznak Carry

SCALL KEY: D ← klávesa
 SCALL DSP: konzola ← D

Syntax: \check{C} ítač inštrukcií:1. SCALL KPRPC \leftarrow PC + 12. SCALL KEYPC \leftarrow PC + 13. SCALL DSPPC \leftarrow PC + 1

BYTE – Definícia konštanty v pamäti programu

Popis: Táto pseudoinštrukcia umožňuje definovať konštanty umiestnené v pamäti programu. Ich čítanie zabezpečuje inštrukcia MMR. Maximálny počet konštánt je 256.

Syntax: Parametre: BYTE K $0 \le K \le 255$