Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

# Применение нейросетевого подхода к кластерному анализу распределённых данных

Выполнил:

Руководитель:

Итальянцев Ян Викторович, гр. 3304 Борисенко Константин Алексеевич, к.т.н., ассистент кафедры МОЭВМ

#### Актуальность

Работа с Big Data требует применение распределённого подхода к вычислению и работе алгоритмов кластеризации, обученная нейронная сеть позволит автоматизировать этот процесс

Проблематика: кластеризация с использованием данных распределённых между машинами

- требует много вычислительных ресурсов,
- имеет ограничение на количество обрабатываемых данных.

#### Цель и задачи

**Цель**: обеспечить кластеризацию распределённых данных обучив нейронную сеть

#### Задачи:

- 1. Провести обзор подходов к решению задачи
- 2. Рассмотреть методы распределения вычислений
- 3. Создать и обучить нейронную сеть локально
- 4. Применив SGD обучить сеть распределённо
- 5. Определить предел возможного ускорения вычислений при увеличении количества вычислителей

#### Использованные технологии и инструментарий



Python – богатый ЯП применяемый для машинного обучения



Fast Artificial Neural Network – библиотека машинного обучения, для работы достаточно указать гиперпараметры и набор данных



SimpleHTTPServer – модуль для обеспечения лёгкого создания HTTP серверов

#### Особенности реализации

- Данная работа представляет из себя клиентсерверное решение
- Работа пяти HTTP серверов обеспечивается через TCP/IP протокол, каждый из которых запущен локально и отводится под отдельные задачи
- Наборы данных представленные в работе и используемые для обучения и тестирования взяты с <a href="https://www.kaggle.com/datasets">https://www.kaggle.com/datasets</a>
- Использование ASGD, и модели параллелизма для обеспечения распределённого обучения

#### Принцип работы Растущего нейронного газа



случайных нейрона соединить Это графа GNG.

1) Создать два 2) Выбрать точку 3) данных v1 и двигать шагов создать нейрон и ближайший нейрон(в между нейроном их. данном случае s1), так наибольшей ошибкой начало же как тот с которым он и непосредственно соединён(здесь s2) ближе к v1

После нейроном соединённым нейроном наибольшей ошибкой

Основная идея работы GNG

#### Рассмотрение аналогов

| Имя     | Основа<br>сети  | Ограничение<br>на обработку | Работа с<br>шумом и<br>т.д | Необходи<br>мость<br>специфика<br>ции |
|---------|-----------------|-----------------------------|----------------------------|---------------------------------------|
| partSOM | K-means/<br>SOM | До десяти<br>тысяч          | Нет                        | Да                                    |

экземпляров

До ста тысяч

экземпляров

Более ста

ТЫСЯЧ

экземпляров

Нет

Нет

Да

Да

**DPDC** 

**NNDDC** 

**DBSCAN** 

**GNG** 

#### Методы распределения вычислений

Model Parallelism

Data Parallelism





#### Model and Data Parallelism









Представление методов параллелизм данных и параллельности модели и их объединения

#### ASGD для обновления параметров сети

## Asynchronous Distributed Stochastic Gradient Descent



Был реализован асинхронный стохастический градиентный спуск, как оптимизирующая функция для усреднения параметров сети

#### Архитектура проекта



#### Оценки времени вычислений и стоимости связи

1 Computation time

$$O(\frac{p}{q}logk) + O(plog\frac{1}{e}) \tag{1}$$

2 Communication cost

$$O(Nk) + O(pk) \tag{2}$$

3 Communication time

$$O(plogk)$$
 (3)

Где р – размер параметров, е – желаемая ошибка, k – количество машин, q – количество процессоров, N – количество экземпляров в наборе данных

### Результаты при тестировании

| Наименование<br>набора данных | Размер<br>наборов/<br>параметров | Время<br>необходимое<br>на обучение | Точность при<br>тестировании |
|-------------------------------|----------------------------------|-------------------------------------|------------------------------|
|                               |                                  |                                     |                              |

2-3 часов

20-30 минут

1-2 дней

94,3

85,1

92,2

384/8

90/4

130000/7

Diabetic Disease

**Market Basket** 

Wine Reviews

#### Ограничение распределённых систем

Согласно закону Амдала и вытекающего из него закона Густавсона - Барсиса, мы встречаемся с невозможностью преодоление определённого ускорения системы, предел для проводимого исследования в рамках ВКР оказался трёхкратным для 16 процессоров

Закон Густафсона — Барсиса выражается формулой:

$$S = s + (1-s)n = n + (1-n)s$$
 , где

- s доля последовательных расчётов в программе,
- n количество процессоров.

#### Апробация работы

• Репозиторий проекта <a href="https://github.org/Bedrang/NNDDC">https://github.org/Bedrang/NNDDC</a>.

#### Заключение

- Проделанный обзор методов показал необходимость разработки данного алгоритма с применением SGD
- Сформулированы критерии которые необходимо определить для получения точных результатов
- Экспериментальное исследование скорости работы алгоритма показало, что прирост производительности обучения сети возрос почти в два раза
- Дальнейшие направления исследований включают в себя доработку метода усреднения параметров, и использования модификаций GNG(IGNG)

Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

## Спасибо за внимание!

Выполнил:

Руководитель:

Итальянцев Ян Викторович, гр. 3304 Борисенко Константин Алексеевич, к.т.н. ассистент кафедры МОЭВМ

### Общая схема работы системы



- 1 Входной слой сети
- 2 Скрытый слой сети
- 3 Выходной слой сети
- 4 стохастический градиентный спуск, оптимизирующая функция