Listing of Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

1. (Currently amended) A compound having the formula

$$R^{1}$$
 N^{6}
 N^{4}
 N^{2}
 N^{2

the <u>a</u> N-oxide form[[s]], the <u>a</u> pharmaceutically acceptable addition salt[[s]] and <u>or</u> the <u>a</u> stereochemically isomeric form[[s]] thereof, wherein:

m represents an integer being 0 or 1;

n represents an integer being 0, 1 or 2;

 R^1 represents hydrogen, C_{1-4} alkyl, hydroxy C_{1-4} alkyl, C_{1-4} alkyloxycarbonyl or C_{1-4} alkyl substituted with phenyl, pyridinyl or morpholinyl,

phenyl or phenyl substituted with one or where possible more substituents each independently being selected from C_{1-4} alkyl, C_{1-4} alkyloxycarbonyl, -NO₂ or cyano- C_{1-4} alkyl,

piperidinyl or piperidinyl substituted with one or where possible more substituents each independently being selected from C_{1-4} alkyl, C_{1-4} alkyloxycarbonyl or phenyl- C_{1-4} alkyl,

phenyl-C₁₋₄alkyl or C₁₋₄alkyloxycarbonyl;

 R^2 represents hydrogen, phenyl, C_{1-4} alkyl or C_{1-4} alkyl substituted with phenyl or hydroxy;

R³ represents hydrogen, phenyl, C₁₋₄alkyl or C₁₋₄alkyl substituted with phenyl or hydroxy; or

 R^2 and R^3 taken together with the carbon atom to which they are attached form a C_{3-8} cycloalkyl or Het^1 wherein said C_{3-8} cycloalkyl or Het^1 each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from C_{1-4} alkyloxycarbonyl, phenylcarbonyl

- C_{1-4} alkylsulfonyl, aminosulfonyl, mono- or di(C_{1-4} alkyl)aminosulfonyl or -C(=NH)-NH₂;
- R⁴ represents halo, hydroxy, hydroxyC₁₋₄alkyl or C₁₋₄alkyloxy;
- R^5 represents formyl, C_{1-4} alkyl, C_{1-4} alkyloxy, Het^2 , - NO_2 , - SO_2 - Het^6 , aminosulfonyl, - SO_2 - $NR^{12}R^{13}$,
 - C₁₋₄alkyl substituted with one or where possible more substituent being selected from hydroxy, halo, Het³, NR⁶R⁷ or formyl,
 - C₁₋₄alkyloxy substituted with one or where possible more substituents being selected from Het⁴, NR⁸R⁹ or -C(=O)-Het⁴;
- R^6 and R^7 are each independently selected from hydrogen, $C_{1\text{-}4}$ alkyl, -Het⁵, aminosulphonyl, mono- or di($C_{1\text{-}4}$ alkyl)aminosulfonyl, $C_{1\text{-}4}$ alkylsulfonyl, $C_{1\text{-}4}$ alkyloxycarbonyl, $C_{1\text{-}4}$ alkyloxy $C_{1\text{-}4}$ alkyl, methoxy $C_{1\text{-}4}$ alkyl or $C_{1\text{-}4}$ alkyl substituted with one or where possible more substituents being selected from hydroxy, Het⁵, $C_{1\text{-}4}$ alkyloxycarbonyl or $C_{1\text{-}4}$ alkylsulfonyl;
- R⁸ and R⁹ are each independently selected from hydrogen, mono- or di(C₁₋₄alkyl)aminosulphonyl or aminosulphonyl;
- R^{12} and R^{13} are each independently selected from hydrogen, C_{1-4} alkyl, C_{1-4} alkyloxy C_{1-4} alkyl;
- Het¹ represents piperidinyl;
- Het ² represents a heterocycle selected from piperidinyl, or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from C₁₋₄alkyloxycarbonyl;
- Het³ represents a heterocycle selected from morpholinyl, pyrrolidinyl, piperidinyl, or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from hydroxy, C₁₋₄alkyl, C₁₋₄alkyloxycarbonyl, hydroxyC₁₋₄alkyl, aminosulfonyl, mono- or di(C₁₋₄alkyl)aminosulfonyl, NR¹⁰R¹¹, imidazolyl, tetrahydropyrimidinyl, amino, NH₂-SO₂-O-, mono- or di(C₁₋₄alkyl)amino- SO₂-O-, NH₂-SO₂-NH-, mono- or di(C₁₋₄alkyl)amino- SO₂-NH-, hydroxyC₁₋₄alkyloxyC₁₋₄alkyl, C₁₋₄alkyloxyC₁₋₄alkyl or C₁₋₄alkyloxy;
- R^{10} and R^{11} are each independently selected from hydrogen, C_{1-4} alkyl, C_{1-4} alkyloxycarbonyl, or mono- or di $(C_{1-4}$ alkyl)aminosulfonyl;
- Het⁴ represents a heterocycle selected from morpholinyl, piperidinyl or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each

independently selected from $C_{1\text{--}4}$ alkyl, aminosulphonyl, mono- or $\text{di}(C_{1\text{--}4}$ alkyl)aminosulfonyl or $C_{1\text{--}4}$ alkyl substituted with one or more hydroxy;

Het⁵ represents a heterocycle selected from pyridinyl, pyrrolidinyl, or piperidinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from C₁₋₄alkyl, aminosulfonyl, C₁₋₄alkyloxycarbonyl or mono- or di(C₁₋₄alkyl)aminosulfonyl;

Het⁶ represents morpholinyl.

 (Currently amended) A compound according to claim 1 wherein; m represents an integer being 0 or 1;

n represents an integer being 0, 1 or 2;

R¹ represents C₁₋₄alkyl preferably methyl, C₁₋₄alkyl substituted with pyridinyl, phenyl, piperidinyl or piperidinyl substituted with C₁₋₄alkyloxycarbonyl;

R² represents hydrogen or C₁₋₄alkyl preferably methyl;

R³ represents hydrogen or C₁₋₄alkyl preferably methyl; or

 R^2 and R^3 taken together with the carbon atom to which they are attached form cyclopentyl or piperidinyl wherein said cyclopentyl or piperidinyl each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from C_{1-4} alkyloxycarbonyl,

phenylcarbonyl or -C(=NH)-NH₂;

R⁴ represents halo or C₁₋₄alkyloxy;

 R^5 represents Het^2 , C_{1-4} alkyl substituted with one or where possible more substituents being selected from hydroxy, halo, Het^3 or NR^6R^7 , or R^5 represents

 C_{1-4} alkyloxy substituted with one or where possible more substituents being selected from Het⁴ or -C(=O)-Het⁴;

R⁶ and R⁷ are each independently selected from hydrogen, C₁₋₄alkyl, Het⁵ or C₁₋₄alkyl substituted with one or where possible more substituents being selected from hydroxy or Het⁵;

Het² represents piperazinyl;

Het³ represents a heterocycle selected from morpholinyl, pyrrolidinyl, piperidinyl, or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from C_{1-4} alkyl preferably methyl, aminosulfonyl,

- mono- or di(C_{1-4} alkyl)aminosulfonyl, hydroxy C_{1-4} alkyloxy C_{1-4} alkyloxy C_{1-4} alkyloxy;
- Het⁴ represents a heterocycle selected from morpholinyl or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three C₁₋₄alkyl substituents, preferably methyl;
- Het⁵ represents a heterocycle selected from pyridinyl, pyrrolidinyl or piperidinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from aminosulfonyl, C_{1-4} alkyloxycarbonyl or monoor di(C_{1-4} alkyl)aminosulfonyl.
- (Currently amended) A compound according to claim 1 wherein; <u>m represents an integer being 0 or 1;</u> <u>n represents an integer being 0, 1 or 2;</u>
 - R^1 represents C_{1-4} alkyl preferably methyl, C_{1-4} alkyl substituted with phenyl, or R^1 represents piperidinyl or piperidinyl substituted with C_{1-4} alkyloxycarbonyl;
 - R^2 represents hydrogen, phenyl, C_{1-4} alkyl or C_{1-4} alkyl substituted with phenyl;
 - \mathbb{R}^2 R³ represents hydrogen, phenyl, C₁₋₄alkyl or C₁₋₄alkyl substituted with phenyl; or
 - R² and R³ taken together with the carbon atom to which they are attached form cyclopentyl or piperidinyl wherein said cyclopentyl or piperidinyl each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from C₁₋₄alkyloxycarbonyl, C₁₋₄alkylsulfonyl, mono- or di(C₁₋₄alkyl)aminosulfonyl or phenylcarbonyl; R⁴ represents halo, preferably Cl or R⁴ represents C₁₋₄alkyloxy preferably methoxy;
 - R⁵ represents formyl, C₁₋₄alkyl substituted with one or where possible more substituent being selected from hydroxy, Het³ or NR⁶R⁷, or R⁵ represents C₁₋₄alkyloxy substituted with one or where possible more substituents being selected from Het⁴ or -C(=O)-Het⁴;
 - R⁶ and R⁷ are each independently selected from hydrogen, C₁₋₄alkyl, -Het⁵, C₁₋₄alkylsulfonyl, methoxyC₁₋₄alkyl, or C₁₋₄alkyl substituted with one or where possible more substituents being selected from hydroxy or Het⁵;
 - Het² represents piperidinyl optionally substituted with C₁₋₄alkyloxycarbonyl;
 - Het³ represents a heterocycle selected from morpholinyl, pyrrolidinyl, piperidinyl, or piperazinyl wherein said monocyclic heterocycles each independently may

optionally be substituted with one, or where possible two or three substituents each independently selected from hydroxy, C_{1-4} alkyl, C_{1-4} alkyloxycarbonyl, hydroxy C_{1-4} alkyl, aminosulfonyl, mono- or di $(C_{1-4}$ alkyl)aminosulfonyl, $NR^{10}R^{11}$, imidazolyl, tetrahydropyrimidinyl, amino,

hydroxy C_{1-4} alkyloxy C_{1-4} alkyl, C_{1-4} alkyloxy C_{1-4} alkyl or C_{1-4} alkyloxy; R^{10} and R^{11} are each independently selected from hydrogen or C_{1-4} alkyl;

- Het⁴ represents a heterocycle selected from morpholinyl or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three C₁₋₄alkyl substituents, preferably methyl;
- Het⁵ represents a heterocycle selected from pyridinyl, pyrrolidinyl or piperidinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from C₁₋₄alkyl, aminosulfonyl, C₁₋₄alkyloxycarbonyl or mono- or di(C₁₋₄alkyl)aminosulfonyl.
- 4. (Currently Amended) A compound as claimed in claim 1, wherein R² and R³ taken together with the carbon atom to which they are attached form a C₃₋₈cycloalkyl, preferably cyclopentyl.
- 5. (Currently Amended) A compound as claimed in claim 1, provided that when R^5 represents a C_{1-4} alkyloxy substituted with Het^4 , said Het^4 is being selected from the group consisting of morpholinyl, piperidinyl, piperazinyl and piperazinyl substituted with one C_{1-4} alkyl, preferably methyl.
- 6. (Currently Amended) A compound as claimed in claim 1, provided that when R^5 represents a C_{1-4} alkyloxy substituted with -C(=O)-Het⁴, said Het⁴ consists of piperazinyl preferably substituted with C_{1-4} alkyl.
- 7. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, an effective kinase inhibitory amount of a compound as described in claim 1.
- 8. (Previously presented) A process of preparing a pharmaceutical composition as defined in claim 7, comprising a pharmaceutically acceptable carrier is intimately mixed with an effective kinase inhibitory amount of a compound as described in claim 1.

- 9. (Cancelled)
- 10. (Cancelled)
- 11. (Currently Amended) A process of preparing a compound as described in claim 1, comprising
 - i) reacting a primary amine of formula (V) with an aldehyde of formula (VI); wherein Q is defined as

$$(\mathbb{R}^4)_n$$

in a condensation reaction using ethanol as a suitable solvent;

e) EtOH

ii) followed by a nitrosative cyclisation of the thus obtained Schiffs bases of formula (II) with NaNO₂ in acetic acid, and refluxing the nitroso intermediates of formula (III) in a suitable solvent such as acetic anhydride or ethanol further comprising dithiothreitol (DTT);

a) NaNO₂, AcOH, H₂O b) DTT, EtOH

- 12. (Currently amended) A compound as claimed in claim 2, wherein R² and R³ taken together with the carbon atom to which they are attached form a C₃₋₈cycloalkyl₅ preferably cyclopentyl.
- 13. (Currently amended) A compound as claimed in claim 3, wherein R² and R³ taken together with the carbon atom to which they are attached form a C₃₋₈cycloalkyl₅ preferably cyclopentyl.
- 14. (Currently amended) A compound as claimed in claim 2, provided that when R⁵ represents a C₁₋₄alkyloxy substituted with Het⁴, said Het⁴ is being selected from the group consisting of morpholinyl, piperidinyl, piperazinyl and piperazinyl substituted with one C₁₋₄alkyl, preferably methyl.
- 15. (Currently amended) A compound as claimed in claim 3, provided that when R⁵ represents a C₁₋₄alkyloxy substituted with Het⁴, said Het⁴ is being selected from the group consisting of morpholinyl, piperidinyl, piperazinyl and piperazinyl substituted with one C₁₋₄alkyl, preferably methyl.
- 16. (Currently amended) A compound as claimed in claim 4, provided that when R⁵ represents a C₁₋₄alkyloxy substituted with Het⁴, said Het⁴ is being selected from the group consisting of morpholinyl, piperidinyl, piperazinyl and piperazinyl substituted with one C₁₋₄alkyl, preferably methyl.
- 17. (Currently amended) A compound as claimed in claim 2, provided that when R⁵ represents a C₁₋₄alkyloxy substituted with –C(=O)-Het⁴, said Het⁴ consists of piperazinyl preferably substituted with C₁₋₄alkyl.
- 18. (Currently amended) A compound as claimed in claim 3, provided that when R⁵ represents a C₁₋₄alkyloxy substituted with –C(=O)-Het⁴, said Het⁴ consists of piperazinyl preferably substituted with C₁₋₄alkyl.
- 19. (Currently amended) A compound as claimed in claim 4, provided that when R⁵ represents a C₁₋₄alkyloxy substituted with –C(=O)-Het⁴, said Het⁴ consists of piperazinyl preferably substituted with C₁₋₄alkyl.