Analisis Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Tamu Pada Hotel Non Bintang

Analysis of Artificial Neural Network In Predicting The Number of Guests In Non-Star Hotels

Bil Klinton Sihotang¹, Anjar Wanto²

^{1,2} Teknik Informatika, STIKOM Tunas Bangsa, Pematangsiantar
^{1,2} Jln.Sudirman Blok A No. 1, 2, 3 Pematangsiantar, 21111
Program Studi Teknik Informatika
e-mail: ¹bilklintonsihotang@gmail.com, ²anjarwanto@amiktunasbangsa.ac.id

Abstrak

Analisis pada sebuah prediksi (peramalan) sangat penting dilakukan pada sebuah penelitian, sehingga dengan analisis data ini akan diperoleh gambaran yang jelas terhadap masalah yang dibahas. Seperti halnya dalam memprediksi jumlah tamu pada hotel nonbintang. Penelitian ini diharapkan dapat bermanfaat, baik bagi Pemerintah maupun pihak swasta sebagai salah satu bahan kajian dalam pengembangan bisnis perhotelan, maupun bagi para akademisi sebagai bahan kajian/penelitian khususnya yang terkait dengan bidang pariwisata dan perhotelan. Data yang digunakan dalam penelitian ini adalah data jumlah tamu pada hotel nonbintang menurut provinsi yang berasal dari Badan Pusat Statistik Indonesia dari tahun 2011 sampai dengan tahun 2016. Penelitian ini menggunakan metode jaringan saraf tiruanBackpropagation dengan menggunakan 5 model arsitektur, yakni : Antara lain 4-19-1, 4-50-1, 4-17-1, 4-16-1, 4-22-1. Dari ke 5 arsitektur ini, arsitektur terbaiknya yaitu 12-19-1 dengan tingkat akurasi sebesar 88,2%, MSE 0,10206089 dengan tingkat error yang digunakan 0,001 – 0,05. Dengan demikian, model ini cukup bagus untuk prediksi jumlah tamu pada hotel nonbintang.

Kata kunci—JST, Backpropagation, Analisis, Hotel

Abstract

Analysis on a prediction (forecasting) is very important to do in a study, so with this data analysis will be obtained a clear picture of the issues discussed. As well as in predicting the number of guests in non-star hotels. This research is expected to be useful for both Government and private parties as one of the study materials in the development of hotel business, as well as for academics as study material / research especially related to tourism and hospitality field. The data used in this study is data on the number of guests in non-star hotels by province from the Central Bureau of Statistics Indonesia from 2011 to 2016. This study uses the method of artificial neural network Backpropagation using 5 architectural models, those are 4-19-1, 4-50-1, 4-17-1, 4-16-1, 4-22-. From architecture, the best architecture is 12-19-1 with an accuracy of 88.2%, MSE 0.10206089 with error rate used 0.001 - 0.05. Thus, this model is good enough to predict the number of guests in non-star hotels.

Keywords—JST, Backpropagation, Analysis, Hotel

1. PENDAHULUAN

Pada saat ini bisnis perhotelan berkembang begitu pesat, hal ini disebabkan karena begitu banyaknya bermunculan hotel-hotel kecil, menengah sampai hotel berbintang sehingga persaingan dunia hotel semakin ketat [1]. Industri perhotelan memiliki karakteristik lain dari industri yang biasa kita kenal dimana konsumen membeli jasa ini dalam jangka pendek, dipengaruhi oleh fisik atau produk hotel, strategi harga, promosi komunikasi dengan calon dan langganan, dan menetapkan lokasi dan saluran distribusi yang efektif sehingga keputusan konsumen untuk berkunjung bisa terus dilakukan [2]. Pesatnya pertumbuhan hotel mendorong persaingan yang ketat sehingga banyak hotel melakukan inovasi baik dalam produk, layanan dan fasilitas yang dimiliki. Pada dasarnya hampir semua hotel memiliki fasilitas yang sama, yang membedakan salah satunya adalah kualitas layanan yang dimilikinya [3]. Berhasil tidaknya suatu usaha perhotelan sangat tergantung pada room occupancy rate (tingkat hunian kamar), yakni persentase dari kamar-kamar hotel yang bisa terisi atau disewa oleh tamu dibandingkan dengan jumlah seluruh kamar yang dapat disewakan, diperhitungkan dalam jangka waktu tertentu (misalnya bulanan atau tahunan) [4]. Usaha dalam dunia perhotelan memungkinkan dapat memiliki resiko yang sangat tinggi. Hal ini dapat di lihat dari jumlah angka transaksi pemesanan (Reservasi) pada kamar hotel yang merupakan suatu penilaian, apakah usaha tersebut meningkat atau menurun, maka dari pemasalahan ini, maka dibutuhkan suatu perhitungan dalam hal paramalan jumlah transaksi dalam pemesanan (Reservasi) kamar hotel. Teknik yang digunakan dalam melakukan pemecahan kasus untukmemprediksi sesuatu hal yakni Jaringan Syaraf Tiruan (JST). Jaringan Saraf Tiruan akan berfungsi sebagai pengganti saraf dan otak, yang pada saat itu akan berhubungan dengan dunia luar, kemampuan untuk belajar dan generalisasi dengan cepat dan mudah dalam pengenalan pola karakter dan mudah diimplementasikan [5][6]. JST akan dapat digunakan dalam hal untuk melakukan proses pencarian atau proses menemukan sesuatu tujuan yang diinginkan. Kinerja JST itu sendiri adalah melakukan suatu proses pembelajaran dari suatu model yang diinginkan berdasarkan data.JST merupakan sistem pemrosesan informasi yang mempunyai penampilan karakteristik menyerupai jaringan syaraf biologi. Backpropagation merupakan salah satu dari metode pelatihan pada jaringan syaraf, dimana ciri dari metode ini adalah meminimalkan error pada output yang dihasilkan oleh jaringan [7]. Salah satu metode prediksi (peramalan) banyak digunakan oleh peneliti adalah dengan menggunakanjaringan backpropagation tiruan tiruan. Algoritma backpropagation adalah metode yang dapat memberikan hasil yang lebih akurat dalam peramalan karena metode ini berkinerja berulang pelatihan untuk mendapatkan model terbaik dan juga dapat dianalisis dalam matematika [8][9].

Pada penelitian sebelumnya, [10] melakukan penelitian untuk memprediksi jumlah reservasi kamar hotel dengan metode backpropagation pada hotel Grand Zuri Padang, Menghasilkan model Jaringan Syaraf Tiruan yang dapat digunakan untuk melakukan prediksi, model jaringan yang didapatkan berbentuk pola 3-6-1 yang mana terdiri dari 3 lapisan input, 5 lapisan hidden dan 1 lapisan output. sehingga pola ini dapat digunakan dalam melakukan prediksi terhadap jumlah pemesanan (Reservasi) kamar hotel dan Hasil prediksi yang didapat mempunyai tingkat akurasi 99.99% dan tingkat kesalahan 0.01%. Selanjutnya [11] melakukan prediksi indeks harga konsumen berdasarkan kelompok kesehatan dengan menggunakan metode backpropagation yang menggunakan 8 model arsitektur, yakni : 12-5-1 yang nanti nya akan menghasilkan prediksi dengan tingkat akurasi sebesar 58%, 12-26-1 = 58%, 12-29-1 = 75%, 12-35-1 = 50%, 12-40-1 = 42%, 12-60-1 = 67%, 12-70-1 = 92% dan 12-75-1 = 50%. Sehingga diperoleh model arsitektur terbaik menggunakan model 12-70-1 yang menghasilkan tingkat akurasi sebesar 92%, MSE 0,3659742 dengan tingkat error yang digunakan 0,001 – 0,05. Berikutnya [12] melakukan penelitian Jaringan Syaraf Tiruan untuk memprediksi jumlah

kemisikinan pada Kabupaten/Kota di Provinsi Riau,Ada 5 model arsitektur yang digunakan pada algoritma backpropagation ini, antara lain 4-2-5-1 yang nanti nya akan menghasilkan prediksi dengan tingkat akurasi 8%, 4-5-6-1=25%, 4-10-12-1=92%, 4-10-15-1=100% dan 4-15-18-1=33%. Arsitektur terbaik dari ke 5 model ini adalah 4-10-12-1 dengan tingkat keakurasian mencapai 100% dan tingkat error yang digunakan 0,001-0,05.

2. METODE PENELITIAN

Dalam penelitian Jaringan Syaraf Tiruan (JST) menggunakan beberapa metode dalam memprediksi jumlah pengunjung indonesia pada hotel nonbintang menurut provinsi, berikut adalah metode yang penulis lakukan:

2.1. Identifikasi Masalah

Identifikasi masalah pada penelitian ini adalah bagaimana cara memprediksi jumlah tamu indonesia pada hotel nonbintang menurut provinsi. Untuk menyelesaikan masalah tersebut penulis menggunakan jaringan syaraf tiruan dengan algoritma backpropagation.

2.2. Mempelajari Literatur

Untuk mencapai tujuan yang akan ditentukan, maka perlu dipelajari beberapa literatur-literatur yang sesuai dengan penelitian yang akan dilakukan [13]. Seperti jurnal-jurnal nasional/internasional dan prosiding seminar nasional/internasional.

2.3. Mengumpulkan Data

Pada tahap ini, data-data diperoleh dari Berita Resmi Statistik (BRS) yang rutin diterbitkan tiap tahunnya oleh Badan Pusat Statistik (BPS) Indonesia [14]. Data yang digunakan dalam penelitian ini adalah data Jumlah Tamu Indonesia Pada Hotel Non Bintang Menurut Provinsi di Indonesia 2011-2016 (Tabel 1). Data training yang akan digunakan adalah data tahun 2011-2014 dengan target tahun 2015. Sedangkan data testing yang akan digunakan adalah data tahun 2012-2015 dengan target tahun 2016.

Tabel 1 Jumlah Tamu Indonesia Pada Hotel NonBintang Sumber: Badan Pusat Statistik Indonesia

Provinsi	2011	2012	2013	2014	2015	2016
Aceh	561022	483073	630691	757064	288840	1005709
Sumatera Utara	1281591	2278774	3063990	3553948	1419223	3878838
Sumatera Barat	854994	820854	683452	934243	463806	1128314
Riau	1825680	1455159	1768826	1246237	510693	2399251
Jambi	505092	422225	417542	379978	198975	576185
Sumatera Selatan	1285950	897005	1263664	1103197	517567	1269744
Bengkulu	163317	166641	201727	299225	149100	530732
Lampung	1007124	1004751	878118	806952	485793	1242893
Kep Bangka Belitung	75362	74291	57036	140673	79627	90761
Kepulauan Riau	571577	636491	797330	1304863	339435	1304789
DKI Jakarta	2423467	2218057	2912175	4781955	1408573	3166747

Provinsi	2011	2012	2013	2014	2015	2016
Jawa Barat	5954133	6389315	6559982	6961616	3324486	8267441
Jawa Tengah	3305547	4288385	3173029	4321048	3507499	6897256
DI Yogyakarta	2655858	2471073	1200412	1771311	686573	2688385
Jawa Timur	4359289	4990164	5681584	5156117	3596498	7132681
Banten	840135	678016	1561495	588829	560276	990719
Bali	1537620	1747294	1390415	1114686	518630	1190944
Nusa Tenggara Barat	290627	415261	790517	739260	351909	491129
Nusa Tenggara Timur	225211	268075	360887	508957	440153	490910
Kalimantan Barat	1029348	1208147	965874	1179572	484107	1578286
Kalimantan Tengah	688876	631989	1144088	801905	433062	1013814
Kalimantan Selatan	717374	685288	525611	910216	311341	1056777
Kalimantan Timur	1793035	1249650	1154760	1343209	324578	1118874
Kalimantan Utara	0	0	0	0	219368	445913
Sulawesi Utara	614324	590923	435166	741882	290987	516005
Sulawesi Tengah	480349	432952	231715	812212	285969	682133
Sulawesi Selatan	1533494	1140206	1697501	1561859	356586	1566455
Sulawesi Tenggara	341187	372025	307352	935382	158602	876042
Gorontalo	133804	109019	104392	98110	62518	117492
Sulawesi Barat	48730	135115	106835	150625	137663	252212
Maluku	112166	138666	308090	410113	278523	140011
Maluku Utara	126803	136256	222436	235987	132003	350442
Papua Barat	73059	85749	73275	160679	85286	238025
Papua	254402	253594	504590	510590	276103	468673

2.4. Analisa Data

Analisa Data diperlukan untuk menentukan hasil dari prediksi jumlah pengunjung indonesia pada hotel nonbintang menurut provinsi. Sehingga dengan analisis data ini akan diperoleh gambaran yang jelas terhadap masalah yang dibahas.

2.5. Normalisasi Data

Sebelum diproses, data dinormalisasi terlebih dahulu. Normalisasi terhadap data dilakukan agar keluaran jaringan sesuai dengan fungsi aktivasi yang digunakan. Fungsi aktivasi yang peneliti gunakan dalam penelitian ini adalah fungsi aktivasi sigmoid. Fungsi sigmoid adalah fungsi asimtotik (tidak pernah mencapai 0 ataupun 1) [15], maka transformasi data dilakukan pada interval yang lebih kecil yaitu [0.1; 0.9], ditunjukkan dengan persamaan.

$$x' = \frac{0.8(x-a)}{b-a} + 0.1\tag{1}$$

Tabel 2 Normalisasi Data Training

Provinsi	2011	2012	2013	2014	Target
Aceh	0,16447	0,15551	0,17248	0,18700	0,13319
Sumatera Utara	0,24728	0,36187	0,45210	0,50840	0,26309
Sumatera Barat	0,19825	0,19433	0,17854	0,20736	0,15330
Riau	0,30980	0,26722	0,30327	0,24321	0,15869
Jambi	0,15804	0,14852	0,14798	0,14367	0,12287
Sumatera Selatan	0,24778	0,20308	0,24522	0,22677	0,15948
Bengkulu	0,11877	0,11915	0,12318	0,13439	0,11713
Lampung	0,21573	0,21546	0,20091	0,19273	0,15583
Kep Bangka Belitung	0,10866	0,10854	0,10655	0,11617	0,10915
Kepulauan Riau	0,16568	0,17314	0,19163	0,24995	0,13901
DKI Jakarta	0,37849	0,35489	0,43466	0,64952	0,26187
Jawa Barat	0,78422	0,83423	0,85385	0,90000	0,48204
Jawa Tengah	0,47986	0,59280	0,46463	0,59656	0,50307
DI Yogyakarta	0,40520	0,38397	0,23795	0,30355	0,17890
Jawa Timur	0,60095	0,67345	0,75290	0,69252	0,51329
Banten	0,19654	0,17791	0,27944	0,16767	0,16438
Bali	0,27670	0,30079	0,25978	0,22810	0,15960
Nusa Tenggara Barat	0,13340	0,14772	0,19084	0,18495	0,14044
Nusa Tenggara Timur	0,12588	0,13081	0,14147	0,15849	0,15058
Kalimantan Barat	0,21829	0,23884	0,21099	0,23555	0,15563
Kalimantan Tengah	0,17916	0,17263	0,23147	0,19215	0,14977
Kalimantan Selatan	0,18244	0,17875	0,16040	0,20460	0,13578
Kalimantan Timur	0,30605	0,24360	0,23270	0,25436	0,13730
Kalimantan Utara	0,10000	0,10000	0,10000	0,10000	0,12521
Sulawesi Utara	0,17060	0,16791	0,15001	0,18525	0,13344
Sulawesi Tengah	0,15520	0,14975	0,12663	0,19334	0,13286
Sulawesi Selatan	0,27622	0,23103	0,29507	0,27948	0,14098
Sulawesi Tenggara	0,13921	0,14275	0,13532	0,20749	0,11823
Gorontalo	0,11538	0,11253	0,11200	0,11127	0,10718
Sulawesi Barat	0,10560	0,11553	0,11228	0,11731	0,11582
Maluku	0,11289	0,11593	0,13540	0,14713	0,13201
Maluku Utara	0,11457	0,11566	0,12556	0,12712	0,11517
Papua Barat	0,10840	0,10985	0,10842	0,11846	0,10980
Papua	0,12923	0,12914	0,15799	0,15867	0,13173

Tabel 3 Normalisasi Data Testing

Provinsi	2012	2013	2014	2015	Target
Aceh	0,14674	0,16103	0,17326	0,12795	0,19732
Sumatera Utara	0,32051	0,39649	0,44390	0,23733	0,47534
Sumatera Barat	0,17943	0,16613	0,19040	0,14488	0,20918
Riau	0,24081	0,27116	0,22059	0,14942	0,33216
Jambi	0,14086	0,14040	0,13677	0,11925	0,15575
Sumatera Selatan	0,18680	0,22228	0,20675	0,15008	0,22287
Bengkulu	0,11613	0,11952	0,12895	0,11443	0,15136
Lampung	0,19722	0,18497	0,17808	0,14701	0,22027
Kep Bangka Belitung	0,10719	0,10552	0,11361	0,10771	0,10878
Kepulauan Riau	0,16159	0,17715	0,22627	0,13285	0,22626
DKI Jakarta	0,31463	0,38180	0,56273	0,23630	0,40643
Jawa Barat	0,71826	0,73478	0,77364	0,42169	0,90000
Jawa Tengah	0,51497	0,40704	0,51813	0,43940	0,76741
DI Yogyakarta	0,33911	0,21616	0,27140	0,16644	0,36014
Jawa Timur	0,58287	0,64978	0,59893	0,44802	0,79019
Banten	0,16561	0,25110	0,15698	0,15422	0,19587
Bali	0,26908	0,23454	0,20786	0,15019	0,21524
Nusa Tenggara Barat	0,14018	0,17649	0,17153	0,13405	0,14752
Nusa Tenggara Timur	0,12594	0,13492	0,14925	0,14259	0,14750
Kalimantan Barat	0,21691	0,19346	0,21414	0,14684	0,25272
Kalimantan Tengah	0,16115	0,21071	0,17760	0,14191	0,19810
Kalimantan Selatan	0,16631	0,15086	0,18808	0,13013	0,20226
Kalimantan Timur	0,22092	0,21174	0,22998	0,13141	0,20827
Kalimantan Utara	0,10000	0,10000	0,10000	0,12123	0,14315
Sulawesi Utara	0,15718	0,14211	0,17179	0,12816	0,14993
Sulawesi Tengah	0,14189	0,12242	0,17859	0,12767	0,16601
Sulawesi Selatan	0,21033	0,26426	0,25113	0,13451	0,25158
Sulawesi Tenggara	0,13600	0,12974	0,19051	0,11535	0,18477
Gorontalo	0,11055	0,11010	0,10949	0,10605	0,11137
Sulawesi Barat	0,11307	0,11034	0,11458	0,11332	0,12441
Maluku	0,11342	0,12981	0,13968	0,12695	0,11355
Maluku Utara	0,11318	0,12152	0,12284	0,11277	0,13391
Papua Barat	0,10830	0,10709	0,11555	0,10825	0,12303
Papua	0,12454	0,14883	0,14941	0,12672	0,14535

2.6. Merancang Arsitektur Jaringan Syaraf Tiruan

Tahap ini akan menampilkan sistem yang dirancang berdasarkan hasil analisa data dan merancang arsitektur Jaringan Syaraf Tiruan algoritma Backpropagation. Jaringan Syaraf Tiruan (JST) digunakan sebagai klafisikasi pada sistem. Jaringan ini memiliki beberapa lapisan, yaitu lapisan masukan (input), lapisan keluaran (output) dan beberapa lapisan tersembunyi (hidden). Lapisan tersembunyi tersebut membantu jaringan untuk dapat mengenali lebih banyak pola masukan dibandingkan dengan jaringan yang tidak memiliki lapisan tersembunyi. Jaringan Saraf yang akan dibangun adalah algoritma propagasi balik (backpropagation) dengan fungsi aktivasi Sigmoid. Fungsi aktivasi dalam Jaringan Saraf Tiruan dipakai untuk proses perhitungan terhadap nilai aktual output pada hidden layer dan menghitung nilai aktual output pada output layer [16].

2.7. Implementasi

Pada penelitian ini penulis mengimplementasikan pengujian model dari hasil perancangan sistem diimplementasikan dengan menggunakan alat bantu komputer dengan operating system windows dan menggunakan software Matlab 2011b.

2.8. Pengujian Hasil Pengolahan Data

Pengujian hasil pengolahan data dilakukan agar penulis mengetahui apakah sistem yang dirancang tersebut sudah sesuai dengan yang diharapkan.

3. HASIL DAN PEMBAHASAN

3.1. Analisis

Sebelumnya data yang akan diujikan haruslah dibagi menjadi dua (2) bagian, di mana bagian pertama adalah untuk data training dan bagian kedua adalah untuk data testing. Parameter-parameter yang digunakan secara umum pada aplikasi Matlab untuk training dan testing dapat dilihat pada kode berikut:

```
net=newff(minmax(P),[19,1],{'tansig','purelin'},'traingdx');
net.IW{1,1};
net.b{1};
net.LW{2,1};
net.b{2};
net.trainParam.epochs=10000
net.trainParam.goal = 0.0001;
net.trainParam.Lr=0.0001;
net.trainParam.show = 1000;
net=train(net,P,T)
```

Gambar 1 Kode Program dengan Aplikasi Matlab

Dari gambar 1 dapat dijelaskan bahwa:

- a) >>net=newff(minmax(P),[19,1],{'tansig','purelin'},'traingd');
 Perintah ini digunakan untuk membentuk jaringan pada backpropagation dengan hidden layer 19 dan output 1, dengan menggunakan fungsi aktivasi tansig dan purelin serta fungsi pelathian traingdx(Gradient descent with momentum and adaptive learning rate
- b) >> net.IW{1,1};
 Perintah ini digunakan untuk melihat nilai bobot awal pada lapisan masukan dan lapisan tersembunyi (bilangan diambil secara acak dari komputer).
- c) $>> net.b\{1\}$;

Perintah ini digunakan untuk melihat nilai bias awal pada lapisan tersembunyi (bilangan diambil secara acak dari komputer)

- d) $>> net.LW{2,1};$
 - Perintah ini digunakan untuk melihat nilai bobot awal pada lapisan tersembunyi dan lapisan keluaran (bilangan diambil secara acak dari komputer).
- e) $>> net.b\{2\};$
 - Perintah ini digunakan untuk melihat nilai bias awal pada lapisan keluaran (bilangan diambil secara acak dari komputer).
- f) >> net.trainParam.epochs =10000;
 - Perintah yang dipakai untuk menentukan jumlah epochs maksimum pelatihan.
- g) >> net.trainParam.goal=0.001;
 - Perintah untuk menentukan batas MSE agar iterasi dihentikan. Iterasi akan berhenti jika MSE < dari batas yang ditentukan atau jumlah epoch telah mencapai maksimum sesuai nilai yang diberikan pada perintah net.trainParam.epochs.
- h) >> net.trainParam.Lr=0.01;
 - Perintah yang digunakan untuk menentukan laju pembelajaran (learning rate). Defaultnya adalah 0,01. Semakin besar nilai laju pembelajaran, semakin cepat pula proses pelatihan. Akan tetapi jika nilainya terlalu besar, algoritma menjadi tidak stabil dan mencapai titik minimum lokal.
- i) >> net.trainParam.Show 1000;
 - Perintah yang digunakan untuk menampilkan frekuensi perubahan MSE.
- j) >> net = train(net, P, T);
 - Perintah untuk menampilkan hasil dari data traning dan data testing yang telah di masukkan pada aplikasi matlab.

3.2. Hasil

Analisis hasil peramalan dengan ANN berbasis Backpropagation dilakukan dengan cara membandingkan antara hasil peramalan dengan target data sebenarnya sehingga diperoleh nilai kesalahan. Semakin kecil nilai kesalahan semakin baik nilai peramalan [17][18].Penelitian ini menggunakan 5 arsitektur. Antara lain 4-19-1 yang nanti nya akan menghasilkan prediksi dengan tingkat akurasi sebesar 88,2%, 4-50-1 = 85,3%, 4-17-1 = 73,5%, 4-16-1 = 73,5%, dan 4-22-1 = 61,8%. Dari ke 5 arsitektur ini, arsitektur terbaiknya yaitu 4-19-1 dengan tingkat akurasi sebesar 88,2%.

Gambar 2 Hasil Data Pelatihan Dengan Arsitektur 4-19-1

Berdasarkan gambar 2 dapat dijelaskan bahwa dengan model arsitektur 4-19-1 menggunakan aplikasi Matlab, akan menghasilkan Epoch sebesar 7395 dengan lama waktu 32 detik.

Gambar 3 Hasil Epoch Training Dengan Arsitektur4-19-1

Berdasarkan gambar 3 dapat dijelaskan bahwa dengan model arsitektur terbaik yang digunakan yakni 4-19-1 akan menghasilkan best training performance sebesar 0.00099994 dengan epoch 7935.

Tabel 4 merupakan hasil akurasi dan tingkat MSE dari model arsitektur terbaik, yakni 12-5-1. Tabel 4 ini dibuat dan dihitung dengan menggunakan Microsoft Excel. Berdasarkan tabel 5, error = diperoleh dari Target-Output, SSE = diperoleh dari E3 ^ 2, Total = Jumlah SSE yang dihasilkan, Hasil = Jika nilai kesalahan dalam pengujian data <= 0.05 maka hasilnya benar (1). Jika tidak maka salah (0). Akurasi = diperoleh dari jumlah hasil yang benar dibagi banyaknya data (34) * 100 yang akan menghasilkan 88,2%. MSE diperoleh dari Total SSE / 34 (jumlah data). Sedangkan 1 berarti Benar, dan 0 berarti Salah.

Tabel 4 Arsitektur JST Backpropagation Terbaik

		Data T	raning		Data Testing				
No	Target	Output	Error	SSE	Target	Output	Error	SSE	Hasil
1	0,133192	0,1276	0,005592	0,00003127	0,19732	0,18920	0,00812	0,00006589	1
2	0,263091	0,2606	0,002491	0,00000621	0,47534	0,50970	-0,03436	0,00118087	1
3	0,153299	0,1424	0,010899	0,00011878	0,20918	0,16310	0,04608	0,00212350	1
4	0,158687	0,2118	-0,05311	0,00282102	0,33216	0,32930	0,00286	0,00000820	1
5	0,122865	0,1493	-0,02643	0,00069879	0,15575	0,16680	-0,01105	0,00012200	1
6	0,159477	0,1198	0,039677	0,00157423	0,22287	0,24380	-0,02093	0,00043819	1
7	0,117134	0,1271	-0,00997	0,00009932	0,15136	0,15110	0,00026	0,00000007	1
8	0,155825	0,1799	-0,02407	0,00057959	0,22027	0,18130	0,03897	0,00151856	1
9	0,10915	0,1241	-0,01495	0,00022349	0,10878	0,13520	-0,02642	0,00069788	1
10	0,139006	0,1136	0,025406	0,00064549	0,22626	0,18650	0,03976	0,00158070	1
11	0,261867	0,2848	-0,02293	0,00052591	0,40643	0,41170	-0,00527	0,00002777	1
12	0,482036	0,4822	-0,00016	0,00000003	0,90000	2,12400	-1,22400	1,49817600	1
13	0,503067	0,5011	0,001967	0,00000387	0,76741	0,00370	0,76371	0,58325888	0
14	0,178898	0,1095	0,069398	0,00481610	0,36014	0,15410	0,20604	0,04245327	0
15	0,513295	0,5112	0,002095	0,00000439	0,79019	-0,35170	1,14189	1,30392374	0
16	0,164385	0,1284	0,035985	0,00129489	0,19587	0,28140	-0,08553	0,00731589	1
17	0,159599	0,2765	-0,1169	0,01366588	0,21524	0,23700	-0,02176	0,00047342	1
18	0,14044	0,1383	0,00214	0,00000458	0,14752	0,20820	-0,06068	0,00368156	1
19	0,150581	0,1263	0,024281	0,00058954	0,14750	0,14830	-0,00080	0,00000064	1
20	0,155632	0,1751	-0,01947	0,00037902	0,25272	0,18100	0,07172	0,00514420	0
21	0,149766	0,1394	0,010366	0,00010745	0,19810	0,24380	-0,04570	0,00208832	1
22	0,135778	0,1268	0,008978	0,00008060	0,20226	0,15800	0,04426	0,00195887	1
23	0,137299	0,1097	0,027599	0,00076171	0,20827	0,22650	-0,01823	0,00033241	1
24	0,125209	0,1284	-0,00319	0,00001018	0,14315	0,10420	0,03895	0,00151701	1
25	0,133439	0,1317	0,001739	0,00000302	0,14993	0,15470	-0,00477	0,00002274	1
26	0,132862	0,0926	0,040262	0,00162106	0,16601	0,13500	0,03101	0,00096141	1
27	0,140977	0,1225	0,018477	0,00034141	0,25158	0,32560	-0,07402	0,00547922	1
28	0,118226	0,0857	0,032526	0,00105793	0,18477	0,15320	0,03157	0,00099668	1
29	0,107184	0,1365	-0,02932	0,00085941	0,11137	0,13880	-0,02743	0,00075245	1
30	0,11582	0,1359	-0,02008	0,00040322	0,12441	0,13410	-0,00969	0,00009399	1
31	0,132007	0,1203	0,011707	0,00013705	0,11355	0,15670	-0,04315	0,00186208	1

	Data Traning					Data Testing				
No	Target	Output	Error	SSE	Target	Output	Error	SSE	Hasil	
32	0,115169	0,1328	-0,01763	0,00031085	0,13391	0,15320	-0,01929	0,00037208	1	
33	0,109801	0,1247	-0,0149	0,00022199	0,12303	0,13740	-0,01437	0,00020642	1	
34	0,131729	0,1299	0,001829	0,00000334	0,14535	0,18050	-0,03515	0,00123544	1	
			Total	0,03400162	·		Total	3,470070355	99.20/	
			MSE	0,00100005			MSE	0,102060893	88,2%	

Ket: 1= Benar 0=Salah

Pada tabel 5 dapat dilihat perbandingan dari 5 model arsitektur jaringan yang digunakan. Dari ke 5 model arsitektur ini, tingkat Epoch dan waktu diperoleh dengan menggunakan aplikasi Matlab, sedangkan MSE dan Akurasi dari masing-masing model arsitektur diperoleh dengan menggunakan perhitungan pada Microsoft Excel.

Tabel 5 Hasil Akurasi Backpropagation

		1 1 5							
No	A		Traini	ing	Testing				
	Arsitektur	Epoch	Waktu	MSE	MSE	Akurasi			
1	4-16-1	3744	0:00:16	0,00099994	0,03106215	73,5%			
2	4-17-1	3295	0:00:14	0,00100031	0,07525813	73,5%			
3	4-19-1	7395	0:00:32	0,00100005	0,10206089	88,2%			
4	4-22-1	6821	0:00:30	0,00002942	0,23002962	61,8%			
5	4-50-1	9379	0:00:42	0,00099993	0,04498104	85,3%			

Pada tabel 6 dapat dilihat hasil prediksi pengunjung hotel Non Bintang di Indonesia untuk tahun 2018, 2019 dan 2020. Adapun hasil ini diperoleh dari perhitungan dengan model arsitektrur terbaik (4-19-1) menggunakan aplikasi Matlab dan Microsoft Excel, sama seperti pembahasan sebelumnya.

Tabel 6 Hasil Prediksi 3 Tahun Kedepan (Tahun 2018-2020)

No	Provinsi	Pengunjung Hotel Non Bintang				
		2018	2019	2020		
1	Aceh	756758,7	1156525	1672067		
2	Sumatera Utara	3436752	3079895	2656124		
3	Sumatera Barat	1331806	1496054	1565935		
4	Riau	1515394	2355692	2496502		
5	Jambi	441065,4	946788,4	1431784		
6	Sumatera Selatan	1886455	1590106	1922539		
7	Bengkulu	326444,5	907286,4	1418199		
8	Lampung	1071481	1535556	1667822		
9	Kep Bangka Belitung	546944,1	547066	899424,8		

No	Provinsi	Pengunjung Hotel Non Bintang				
		2018	2019	2020		
10	Kepulauan Riau	1627101	1444325	1712822		
11	DKI Jakarta	3824326	3900972	4078295		
12	Jawa Barat	7719496	6976483	6489618		
13	Jawa Tengah	6654881	5837509	6013297		
14	DI Yogyakarta	2797595	3042274	2893011		
15	Jawa Timur	7214387	7339525	5666882		
16	Banten	877207,9	1343689	1621973		
17	Bali	2046730	1552485	1954803		
18	Nusa Tenggara Barat	1466826	871546,5	1293387		
19	Nusa Tenggara Timur	1163760	1311711	857821		
20	Kalimantan Barat	1555220	1721780	1878388		
21	Kalimantan Tengah	1117135	1269388	1644897		
22	Kalimantan Selatan	1014170	1255280	1575274		
23	Kalimantan Timur	2055472	1347451	1758671		
24	Kalimantan Utara	195310,3	905405,4	1323104		
25	Sulawesi Utara	1354148	953372	1176218		
26	Sulawesi Tengah	1199701	1068116	1289991		
27	Sulawesi Selatan	2296371	1982304	2243483		
28	Sulawesi Tenggara	842238,8	935502,1	1583765		
29	Gorontalo	385697,7	567757,5	994519,2		
30	Sulawesi Barat	456607,3	842390,3	958009,8		
31	Maluku	1220099	709776,5	770368,1		
32	Maluku Utara	412895,9	773732,1	1233953		
33	Papua Barat	384726,3	690025,5	1104048		
34	Рариа	935489,7	890357	1215274		

4. KESIMPULAN

Kesimpulan yang dapat diambil dari penelitian ini adalah sebagai berikut:

- a. Kesimpulan bahwa model prediksi jumlah pengunjung hotel non bintang menggunakan metode ANN berbasis bacpropagatian yang optimal dan cukup akurat. Dengan model arsitektur 4-19-1, dapat melakukan prediksi jumlah pengunjung hotel non bintang dengan Akurasi 88%.
- b. Model Arsitektur jaringan yang digunakan sangat mempengaruhi tingkat training dan testing.
- c. Dengan melihat hasil pengujian, dapat diambil kesimpulan bahwa terjadi kecepatan dan hasil akurasi yang bervariasi pada 5 percobaan dari setiap pengujian yang dilakukan.

5. SARAN

Penelitian yang dilakukan ini berhubungan dengan keperluan pribadi, sehingga untuk waktu, kondisi dan tempat yang berbeda dapat dilakukan penelitian lanjutan dengan mengunakan metode lain, sehingga akan lebih banyak penelitian-penelitian terkait, agar dapat dijadikan sumber informasi dan acuan bagi para pengembang hotel-hotel melati atau nonbintang untuk mengembangkan strategi pemasaran atau fasilitas usaha perhotelannya agar mampu bersaing dengan hotel-hotel berbintang.

DAFTAR PUSTAKA

- [1] K. Lia and W. U. Indah, "Analisis dan Perancangan sistem informasi Hotel Graha Prima Pacitan," *Journal Speed*, vol. 6, no. 3, p. 6, 2014.
- [2] S. M. Chandra and M. V. J. Tielung, "Pengaruh Kualitas Pelayanan, Promosi, Dan Lokasi Terhadap Keputusan Konsumen Menggunakan Hotel Baliem Pilamo Di Wamena," *Jurnal EMBA*, vol. 3, no. 3, pp. 959–970, 2015.
- [3] Retno Susanti, "Faktor-Faktor Yang Mempengaruhi Kepuasan Pelanggan (Studi Kasus Kualitas Pelayanan di Hotel X Surabaya)," *Ekonomi*, vol. 2, pp. 1–15, 2015.
- [4] S. C. Rini Triana, Mukhlis Yunus, "PENGARUH PROGRAM BAURAN PROMOSI TERHADAP," *Jurnal manajemen*, vol. 4, no. 2, pp. 229–236, 2015.
- [5] A. Wanto, "Optimasi Prediksi Dengan Algoritma Backpropagation Dan Conjugate Gradient Beale-Powell Restarts," *Jurnal Teknologi dan Sistem Informasi*, vol. 3, no. 3, pp. 370–380, 2018.
- [6] A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, "Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density," *International Journal Of Information System & Technology*, vol. 1, no. 1, pp. 43–54, 2017.
- [7] R. W. Purnamasari, E. Sugiharti, and Dwijanto, "IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION SEBAGAI SISTEMDETEKSI PENYAKIT TUBERCULOSIS (TBC)," *UNNES Journal of Mathematics*, vol. 2, no. 2, pp. 0–6, 2013.
- [8] S. Putra Siregar and A. Wanto, "Analysis Accuracy of Artificial Neural Network Using Backpropagation Algorithm In Predicting Process (Forecasting)," *International Journal Of Information System & Technology*, vol. 1, no. 1, pp. 34–42, 2017.
- [9] M. Fauzan *et al.*, "Epoch Analysis And Accuracy 3 ANN Algorithm Using Consumer Price Index Data In Indonesia," *International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology (3rd ICEST)*, vol. 3, no. 1, pp. 1–7, 2018.
- [10] M. Yanto, S. Defit, and G. W. Nurcahyo, "ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang)," *Jurnal KomTekInfo*, vol. 2, no. 1, pp. 34–39, 2015.
- [11] A. Wanto and A. P. Windarto, "Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation," *Jurnal & Penelitian Teknik Informatika*, vol. 2, no. 2, 2017.
- [12] A. Wanto, "Penerapan Jaringan Saraf Tiruan Dalam Memprediksi Jumlah Kemiskinan Pada Kabupaten/Kota Di Provinsi Riau," *Kumpulan jurnaL Ilmu Komputer (KLIK)*, vol. 5, no. 1, pp. 61–74, 2018.
- [13] Y. D. Lestari, "Jaringan Syaraf Tiruan Untuk Prediksi Penjualan Jamur Menggunakan Algoritma Backropagation," *Journal Information System Development (ISD)*, vol. 2, no. 1, pp. 40–46, 2017.

- [14] M. G. Sadewo, A. P. Windarto, and D. Hartama, "Penerapan Datamining Pada Populasi Daging Ayam Ras Pedaging Di Indonesia Berdasarkan Provinsi Menggunakan K-Means," *InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan)*, vol. 2, no. 1, pp. 60–67, 2017.
- [15] A. Wanto, M. Zarlis, Sawaluddin, and D. Hartama, "Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process," *Journal of Physics: Conference Series*, vol. 930, no. 1, pp. 1–7, 2017.
- [16] A. Wanto *et al.*, "Levenberg-Marquardt Algorithm Combined with Bipolar Sigmoid Function to Measure Open Unemployment Rate in Indonesia," *3rd International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology*, pp. 1–7, 2018.
- [17] N. Susanti, "Penerapan Model Neural Network Backpropagation untuk Prediksi Harga Ayam," *Seminar Nasional Teknologi Industri dan Informatika (SNATIF)*, pp. 325–332, 2014.
- [18] A. Wanto et al., "Analysis Of Standard Gradient Descent With GD Momentum And Adaptive LR For SPR Prediction," International Conference of Computer, Environment, Agriculture, Social Science, Health Science, Engineering and Technology (3rd ICEST), pp. 1–9, 2018.