Department of Mathematics Indian Institute of Technology Patna

MA - 201: B.Tech. II year Autumn Semester: 2019-20

Assignment-5: Complex Analysis

1.	Loca	te the	kind	of	singul	arities f	or the	foll	lowing	; functi	ons	at	the	indic	ated	point	z.
	(i)	$\frac{\cot z\pi}{(z-a)^2}$, z =	0	(ii)	$\sin \frac{1}{1-z}$, z =	1	(iii)	$\tan\frac{1}{z}$,	z =	0					

2. For each of the function given below write the **principal part** of the function at its isolated singular points and classify whether that point is a pole, removable singularity, or an essential singular point:

```
(i)
(iv)
```

3. Determine the poles and their order for the following functions:

(i)
$$\frac{1-\cosh z}{z^3}$$
 (ii) $\frac{1-e^{2z}}{z^4}$ (iii) $\frac{e^{2z}}{(z-1)^2}$ (iv) $\frac{1}{z^6+1}$ (v) $\frac{1}{3z^4+10z^2+3}$ (vi) $z \cot z$ (vii) $\frac{1}{1-e^z}$ (viii) $\frac{\sinh z}{z^4}$ (ix) $\frac{\cot \pi z}{z^2}$

4. Determine zeros and their order for given functions.

(i)
$$(z+2-i)^2$$
 (ii) z^4+z^2 (iii) $e^{2z}-e^z$ (iv) $e^{\tan z}$ (v) $(1+z^2)^4$ (vi) $z^2(e^z-1)$ (vii) z^6+2z^3+1 (viii) $z\sin z^2$

```
5. Compute residue at all singular points of following functions. 

(i) \frac{1}{z^5+z^3} (ii) z\cos\frac{1}{z} (iii) \tanh z (iv) z\sec z (v) \frac{e^z}{z^2+\pi^2} (vi) e^{1+(1/z)} (vii) \frac{\csc z}{z} (viii) \frac{e^{4z}-1}{\sin^2 z} (ix) \frac{\sin z}{z^2+1} (x) z^n\sin\frac{1}{z}, n integer
```

6. Evaluate
$$\int_C f(z)dz$$
 (C is positively oriented) using Residue Theorem when:

(i) $f(z) = \frac{3z^3+2}{(z-1)(z^2+9)}$, $C:|z-2|=2$ (ii) $f(z) = \frac{1}{z^3(z+4)}$,, $C:|z+2|=3$ (iii) $f(z) = \frac{\cosh \pi z}{z(z^2+1)}$, $C:|z|=2$ (iv) $\frac{z^3e^{1/z}}{1+z^3}$, $C:|z|=3$ (v) $f(z) = \frac{1}{4+z^4}$, $C:|z+1-i|=1$ (vi) $f(z) = \frac{\sin z}{4z^2-\pi^2}$, $C:|z|=2$ (ix) $f(z) = \frac{1}{3z^4+10z^2+3}$, $C:|z|=1$ (viii) $f(z) = \frac{\sin z}{4z^2-\pi^2}$, $C:|z|=2$ (ix) $f(z) = \frac{\sin ze^{1/(z-1)^2}}{z^2(z^2-1)}$, $C:|z-i\sqrt{3}|=1$ (x) $f(z) = \frac{\sin z}{4z^2-\pi^2}$, $C:|z|=2$ (xi) $f(z) = \frac{\sin ze^{1/(z-1)^2}}{z^2(z^2-1)}$, $C:|z+(1/2)|=1$ (xii) $f(z) = \tan \pi z$, $C:|z|=2$ (xiii) $f(z) = e^{1/z}\sin(1/z)$, $C:|z|=1$ (xiv) $f(z) = z^3e^{(-1/z^2)}$, $C:|z+i|=2$

7. Evaluate following integral.

(i)
$$\int_{0}^{2\pi} \frac{\cos \theta}{3+\sin \theta} d\theta$$
 (ii) $\int_{0}^{\pi} \frac{1}{2-\cos \theta} d\theta$ (iii) $\int_{0}^{2\pi} \frac{1}{a+\cos \theta} d\theta$ (v) $\int_{-\infty}^{2\pi} \frac{1}{(x^2+16)^2} dx$ (vi) $\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2(x^2+4)} dx$ (vii) $\int_{-\infty}^{\infty} \frac{1}{(x^2+a^2)(x^2+c^2)} dx$