#### Arquitetura de Computadores (AC22S)

### Aritmética Binária



**Gustavo Santos** 





### Previously...

Sistemas de numeração: binário, decimal e hexadecimal

Em computação, trabalha-se normalmente com

- a) Decimal para entrada e saída de dados
- b) Binária para operações internas
- c) Hexadecimal e Octal para representação compacta



### Regras de Conversão



### Representação de números negativos (2/2)

- Temos duas principais convenções
- Representação em complemento de 2
- Passo 1: Manter os bits da direita para esquerda até a ocorrência do primeiro bit igual a 1
- Passo 2: Inverter os bits restantes

$$(00101001)_2 = (41)_{10}$$

$$(11010111)_2 = (-41)_{10}$$



# Limite de representação (4 bits)

| Decimal | Binário com sinal | Compl. de 2 |
|---------|-------------------|-------------|
| -8      |                   | 1000        |
| -7      | 1111              | 1001        |
| -6      | 1110              | 1010        |
| -5      | 1101              | 1011        |
| -4      | 1100              | 1100        |
| -3      | 1011              | 1101        |
| -2      | 1010              | 1110        |
| -1      | 1001              | 1111        |
| 0       | 0000 / 1000       | 0000        |
| 1       | 0001              | 0001        |
| 2       | 0010              | 0010        |
| 3       | 0011              | 0011        |
| 4       | 0100              | 0100        |
| 5       | 0101              | 0101        |
| 6       | 0110              | 0110        |
| 7       | 0111              | 0111        |



# Adição

Utiliza as mesmas regras da soma em decimal

| a | b | a+b | carry | $\left\{ \right.$ |
|---|---|-----|-------|-------------------|
| 0 | 0 | 0   | 0     |                   |
| 0 | 1 | 1   | 0     |                   |
| 1 | 0 | 1   | 0     |                   |
| 1 | 1 | 0   | 1     |                   |

"vai-um"

## SS .

#### - Adição no sistema binário

 Segue o mesmo mecanismo da soma convencional, da direita para a esquerda, contando vai-um quando necessário



#### Adição no sistema binário

 Segue o mesmo mecanismo da soma convencional, da direita para a esquerda, contando vai-um quando necessário

podemos ter um bit a mais

### - Adição no sistema binário

Oaso especial: soma de dois bits 1 com carry

- $(16)_{10}$  +  $(34)_{10}$ , com  $\frac{7}{5}$  bits de representação
- Passo 1: representar operandos em binário. como?

# SP .

#### Adição no sistema binário

- $(16)_{10} + (34)_{10}$ , com 7 bits de representação
- Passo 1: representar operandos em binário, pelas divisões sucessivas por 2

preencher com zeros à esquerda

```
0 0 1 0 0 0 0
```

## S.

- $(16)_{10}$  +  $(34)_{10}$ , com  $\frac{7}{5}$  bits de representação
- Passo 2: realizar somas bit a bit, segundo a tabela

## S.

- $(16)_{10}$  +  $(34)_{10}$ , com  $\frac{7}{5}$  bits de representação
- Passo 2: realizar somas bit a bit, segundo a tabela

# SS .

- (16)<sub>10</sub> + (34)<sub>10</sub>, com <u>7 bits de representação</u>
- Passo 3: obter o equivalente em decimal. como?

- (16)<sub>10</sub> + (34)<sub>10</sub>, com <u>7 bits de representação</u>
- Passo 3: obter o equivalente em decimal, usando o polinômio de formatação

$$0*2^{6} + 1*2^{5} + 1*2^{4} + 0*2^{3} + 0*2^{2} + 1*2^{1} + 0*2^{0}$$
  
 $32 + 16 + 2 = (50)_{10}$ 



## Exercício de fixação

Realizar a soma  $(14)_{10} + (7)_{10}$  em um sistema binário com 4 bits de representação



## Exercício de fixação

Realizar a soma  $(13)_{10}$  +  $(11)_{10}$  em um sistema binário com 6 bits de representação



### Subtração

Basta calcular o complemento de 2 do subtraendo e realizar uma adição.

Ou seja, a - b equivale a a + (-b)

- Dica 1: para converter um número negativo em complemento de 2, segue a mesma regra:
- Manter os bits da direita para esquerda até a ocorrência do primeiro bit igual a 1, inverter os bits restantes
- $(-7)_{10} = (11001)_{c2, 5 \text{ bits}}$
- $(+7)_{10} = (?????)_{c2, 5 \text{ bits}}$

- Dica 1: para converter um número negativo em complemento de 2, segue a mesma regra:
- Manter os bits da direita para esquerda até a ocorrência do primeiro bit igual a 1, inverter os bits restantes
- $(-7)_{10} = (11001)_{c2, 5 \text{ bits}}$
- $(+7)_{10} = (00111)_{c2, 5 \text{ bits}}$

## SP .

- Dica 2: numa representação com n bits, os bits excedentes são descartados
- Com 8 bits de representação:



 Dica 3: representando números em complemento de 2, o primeiro bit representa o sinal do resultado

```
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

número negativo



Dica 4: obtendo um número negativo, como sabemos o representante dele em decimal?

1 0 0 1 1 0 0 0 < número negativo



- Dica 4: obtendo um número negativo, como sabemos o representante dele em decimal?
- Segue a mesma regra: Manter os bits da direita para esquerda até a ocorrência do primeiro bit igual a 1, inverter os bits restantes

1 0 0 1 1 0 0 0

0 1 1 0 1 0 0 0

aplicando a regra, este é o representante positivo

- Dica 4: obtendo um número negativo, como sabemos o representante dele em decimal?
- Segue a mesma regra: Manter os bits da direita para esquerda até a ocorrência do primeiro bit igual a 1, inverter os bits restantes

```
1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0
```

```
1*2^6 + 1*2^5 + 1*2^3 = (104)_{10} ou seja, (10011000)_{c2,8bits} = (-104)_{10}
```

 $(34)_{10}$  —  $(16)_{10}$ , com 7 bits de representação

- $\bigcirc$  (34)<sub>10</sub> (16)<sub>10</sub>, com 7 bits de representação
- Passo 1: representar operandos em binário, através de divisões sucessivas por 2



- $\bigcirc$  (34)<sub>10</sub> (16)<sub>10</sub>, com 7 bits de representação
- Passo 1: representar operandos em binário, através de divisões sucessivas por 2

preencher com zeros à esquerda 0 1 0 0 0 1 0

0 0 1 0 0 0 0

## S\$

#### Subtração no sistema binário

- $\bigcirc$  (34)<sub>10</sub> (16)<sub>10</sub>, com 7 bits de representação
- Passo 2: representar subtraendo em negativo com complemento de 2

0 1 0 0 0 1 0

0 0 1 0 0 0 0

- $\bigcirc$  (34)<sub>10</sub> (16)<sub>10</sub>, com 7 bits de representação
- Passo 2: representar subtraendo em negativo com complemento de 2

## SP .

- $\bigcirc$  (34)<sub>10</sub> (16)<sub>10</sub>, com 7 bits de representação
- Passo 3: realizar somas bit a bit, segundo a tabela



- $\bigcirc$  (34)<sub>10</sub> (16)<sub>10</sub>, com 7 bits de representação
- Passo 3: realizar somas bit a bit, segundo a tabela

descarto o bit excedente

## S\$

- $(34)_{10}$   $(16)_{10}$ , com 7 bits de representação
- Passo 4: obter o equivalente em decimal

- $\bigcirc$  (34)<sub>10</sub> (16)<sub>10</sub>, com 7 bits de representação
- Passo 4: obter o equivalente em decimal

número positivo

$$1*2^4 + 1*2^1 = (18)_{10}$$



## Exercício de fixação

Realizar a subtração  $(14)_{10}$  —  $(7)_{10}$  em um sistema binário com 5 bits de representação



## Exercício de fixação

Realizar a subtração (9)<sub>10</sub> — (28)<sub>10</sub> em um sistema binário com 6 bits de representação



- A representação de números é limitada
- Quanto maior o número de dígitos (bits) disponíveis, maior a faixa de representação; porém, essa faixa sempre será finita
- Ao realizar a soma de dois números, o resultado pode sair da faixa de representação do sistema
- Chamamos esse fenômeno de overflow, ou estouro de representação



# Limite de representação (4 bits)

| Decimal | Binário com sinal | Compl. de 2 |
|---------|-------------------|-------------|
| -8      |                   | 1000        |
| -7      | 1111              | 1001        |
| -6      | 1110              | 1010        |
| -5      | 1101              | 1011        |
| -4      | 1100              | 1100        |
| -3      | 1011              | 1101        |
| -2      | 1010              | 1110        |
| -1      | 1001              | 1111        |
| 0       | 0000 / 1000       | 0000        |
| 1       | 0001              | 0001        |
| 2       | 0010              | 0010        |
| 3       | 0011              | 0011        |
| 4       | 0100              | 0100        |
| 5       | 0101              | 0101        |
| 6       | 0110              | 0110        |
| 7       | 0111              | 0111        |

#### Estouro de representação

- A representação de números é limitada
- Por exemplo, para números binários de quatro bits em complemento de 2, temos:

$$1000 + 0001 = 1001$$
  $-8 + 1 = -7$ 
 $1000 + 1111 = 0111$   $-8 + -1 = 7$ 
 $0111 + 1111 = 0110$   $7 + -1 = 6$ 
 $0111 + 0011 = 1010$   $7 + 3 = -6$ 
em binário equivalente em decimal

#### Estouro de representação

- A representação de números é limitada
- Por exemplo, para números binários de quatro bits em complemento de 2, temos:

$$1000 + 0001 = 1001$$
  $-8 + 1 = -7$ 
 $1000 + 1111 = 0111$   $-8 + -1 = 7$ 
 $0111 + 1111 = 0110$   $7 + -1 = 6$ 
 $0111 + 0011 = 1010$   $7 + 3 = -6$ 
em binário equivalente em decimal

#### Estouro de representação

 Regra do overflow: dois números, ambos positivos ou ambos negativos, são somados e o resultado obtido tem o sinal oposto

$$1000 + 0001 = 1001$$
  $-8 + 1 = -7$ 
 $1000 + 1111 = 0111$   $-8 + -1 = 7$ 
 $0111 + 1111 = 0110$   $7 + -1 = 6$ 
 $0111 + 0011 = 1010$   $7 + 3 = -6$ 
em binário equivalente em decimal



### **Bibliografia**

STALLINGS, William. **Arquitetura e organização de computadores**. 8. ed. São Paulo, SP: Prentice-Hall, 2010. 624 p. ISBN 9788576055648.

(Capítulo 9.3, disponível no Moodle)



- Representação de números reais
- Ponto fixo e ponto flutuante