Optisches Pumpen

Katharina Brägelmann Tobias Janßen

katharina.braegelmann@tu-dortmund.de, tobias2.janssen@tu-dortmund.de Durchführung: 07. November 2018, Abgabe: ??. November 2018

Inhaltsverzeichnis

1	Zielsetzung	2					
2	Theorie						
3	Aufbau und Durchführung3.1 Aufbau der Messapparatur3.2 Vorbereitung3.3 Messung der Resonanzstellen	7					
4	Auswertung						
5	Diskussion						

1 Zielsetzung

Hier könnte Ihre Werbung stehen.

2 Theorie

Ein Atom hat diskrete Energieniveaus, auf denen sich die Hüllenelektronen befinden. Die Verteilung der Elektronen erfolgt bei den äußeren Hüllenelektronen statistisch nach Boltzmann. Die Besetzungszahlen N_1, N_2 zweier Niveaus mit der statistischen Gewichtung g_1, g_2 liegen in folgendem Zusammenhang:

$$\frac{N_2}{N_1} = \frac{g_2 \exp\left(-\frac{W_2}{k_{\mathrm{B}}}\right)}{g_1 \exp\left(-\frac{W_1}{k_{\mathrm{B}}}\right)}.$$

Das Prinzip des optischen Pumpens besetzt die Niveaus entgegen dieser thermischen Verteilung.

Der Landé-Faktor g ist eine Materialeigenschaft, die zur Stoff- und Isotopenbestimmung benutzt werden kann. Das Bohr'sche Magneton ist der Betrag des magnetischem Momentes $\vec{\mu}$ eines Elektrons mit Bahndrehimpuls L=1. Der Landé-Faktor ist ein Verhältnisfaktor für die magnetischen Momente des Spins \vec{S} , des Bahndrehimpulses \vec{L} , des Gesamtdrehimpulses \vec{J} , etc. zum Bohr'schen Magneton $\mu_{\rm B}$: Das magnetische Moment zu dem Spin \vec{S} sieht wie folgt aus:

$$\vec{\mu_{\rm S}} = -g_{\rm S}\mu_{\rm B}\vec{S} \qquad \qquad {\rm mit} \qquad \qquad |\vec{\mu_{\rm S}}| = g_{\rm S}\mu_{\rm B}\sqrt{S(S+1)}. \label{eq:mu_S}$$

Entsprechend ist das magnetische Moment des Bahndrehimpuls \vec{L}

$$\vec{\mu_L} = -\mu_B \vec{L}$$
 mit $|\vec{\mu_L}| = \mu_B \sqrt{L(L+1)}$.

Abbildung 1: Darstellung der verschiedenen magnetischen Momente von Spin, Bahndrehimpuls und Gesamtdrehimpuls [1]

Die Kopplung von Spin und Bahndrehimpuls ergibt den Gesamtdrehimpuls \vec{J} und das zugehörige magnetische Moment $\vec{\mu_{\rm J}}$:

$$\vec{\mu}_{\rm J} = \vec{\mu}_{\rm S} + \vec{\mu}_{\rm L} = -g_{\rm J}\mu_{\rm B}\vec{J}$$
 mit $|\vec{\mu}_{\rm J}| = g_{\rm J}\mu_{\rm B}\sqrt{J(J+1)}$.

Nur das magnetische Moment $|\vec{\mu_{\rm J}}|$ in Richtung von \vec{J} hat schlussendlich einen Effekt, da \vec{J} eine Präzessionsbewegung vollführt (Abb. 1). Die Winkelbeziehung in $|\vec{\mu_{\rm J}}|$ lässt sich aus Abbildung 1 erkennen. Damit ergibt sich:

$$\begin{split} |\vec{\mu_{\rm J}}| = & |\mu_{\rm S}|\cos{(\alpha)} + & |\mu_{\rm L}|\cos{(\beta)} \\ \Leftrightarrow & g_{\rm J}\mu_{\rm B}\sqrt{J(J+1)} = & g_{\rm S}\mu_{\rm B}\sqrt{S(S+1)}\cos{(\alpha)} + & \mu_{\rm B}\sqrt{L(L+1)}\cos{(\beta)} \end{split}$$

Für die Winkel lässt sich aufstellen:

$$\cos(\alpha) = \frac{|\vec{S}|^2 - |\vec{L}|^2 + |\vec{J}|^2}{2|\vec{L}||\vec{J}|^2}$$
$$\cos(\beta) = \frac{-|\vec{S}|^2 + |\vec{L}|^2 + |\vec{J}|^2}{2|\vec{S}||\vec{J}|^2}.$$

Schlussendlich ergibt sich:

$$g_{\rm J} = \frac{(g_{\rm S}+1)J(J+1) + (g_{\rm S}-1)[S(S+1) - L(L-1)]}{2J(J+1)}.$$
 (1)

Der Zeemaneffekt beschreibt die Aufspaltung der vorhandenen Energieniveaus durch ein äußeres Magnetfeld. Die magnetischen Momente wechselwirken mit dem äußeren Magnetfeld \vec{B} und es haben nur die Beiträge entlang der \vec{J} -Achse einen Effekt. Durch die Richtungsquantelung ist die Wechselwirkungsenergie $E_{\rm mag}$ ein ganzzahliges Vielfaches $M_{\rm J}$ von $g_{\rm J}\mu_{\rm B}B$:

$$E_{\text{Zeeman}} = -\vec{\mu}_{\text{J}}\vec{B} \Leftarrow E_{\text{Zeeman}} = M_{\text{J}}g_{\text{J}}\mu_{\text{B}}B.$$
 (2)

Der Kernspin \vec{I} entspricht dem Eigendrehimpuls des Atomkerns und führt zur Aufspaltung der Energieniveaus im Rahmen der Hyperfeinstruktur. Die Hyperfeinstruktur wird durch den Zeemaneffekt weiter aufgespalten (Abb. 2). Der Gesamtdrehimpuls \vec{J} des Elektrons

Abbildung 2: Darstellung der Aufspaltung der Energieniveaus durch die Hyperfeinstruktur und den Zeemaneffekt [1]

und der Kernspin \vec{I} koppeln zu dem Gesamtdrehimpuls \vec{F} des Atoms:

$$ec{F} = ec{J} + ec{I}$$
 mit $|ec{\mu_{
m F}}| = g_{
m F} \mu_{
m B} \sqrt{F(F+1)}$.

Der Kernspin beeinflusst auch den Landé-Faktor $g_{\rm F}$, der sich nun wie folgt berechnet:

$$\mu_{\rm F} = g_{\rm F} \mu_{\rm B} \frac{F(F+1) + J(J+1) - I(I+1)}{2\sqrt{F(F+1)}}$$
 (3)

Idee des optischen Pumpens

- Übergänge der Elektronen auf den Energieniveaus durch Anregung
- um bestimmte Übergänge zu produzieren, bestimmtes Spektrallicht einstrahlen (D_1 -Licht)
- Anregung/Quantensprünge $E_2-E_1=h\nu$
- um GANZ bestimmte Übergänge zu produzieren, bestimmtes polarisiertes Licht einstrahlen (σ^+ -Licht)
- ------ Auswahlregeln
- angeregte Zustände fallen in alle Grundzustände zurück
- σ^+ pumpt (über die genannten Umwege) die Elektronen aus dem niedrigerem Grundzustand in den höheren Grundzustand

Optisches Pumpen + Aufbau

- zunächst sind alle Anregungen möglich, da die Elektronen noch auf allen Niveaus vorhanden sind
- das Licht wird also vollständig absorbiert
- mit der Zeit werden die Elektronen in einem Energieniveau gesammelt
- es sind keine Absorptionen möglich
- das Gas wird zunehmend transparent

Emission

- spontane Emission: Elektron fällt von alleine zurück (statistisch)
- Wahrscheinlich bei hohen Frequenzen des RF-Felds
- induzierte Emission: Elektron fällt zurück entlang der Energie der eingestrahlten Photonen (RF-Quanten)
- Wahrscheinlich bei niedrigen Frequenzen des RF-Felds
- induzierte Emission bei 'Resonanzstelle' (passendes RF-Feld mit der richtigen Energie für induzierte Emission)

$$h\nu = g_{\rm J}\mu_{\rm B}\Delta M_{\rm J}B_{\rm m} \Leftrightarrow B_{\rm m} = \frac{4\pi m_0}{e_0 g_{\rm J}}\nu \tag{4}$$

Optisches Pumpen + Kernspin

- Energie der Spektrallinie überdeckt alle Hyperfeinstrukturen und Zeemaneffekt
- σ^+ -Licht lässt nur $\Delta M_{\rm F}=+1$ zu, also sammeln sich die Elektronen bei $^2S_{1/2}, F=2, M_{\rm F}=+2$

Quadratischer Zeemaneffekt/Breit-Rabi-Formel

- große B-Felder
- Wechselwirkung Spin-Bahn-Kopplung
- Wechselwirkung magnetische Momente

$$U_{\rm HF} = g_{\rm F} \mu_{\rm B} B + g_{\rm F}^2 \mu_{\rm B}^2 B^2 \frac{(1 - 2M_{\rm F})}{\Delta E_{\rm HF}}$$
 (5)

3 Aufbau und Durchführung

3.1 Aufbau der Messapparatur

- Spektrallampe
- Sammelline/Kollimator
- D_1 -Interferenzfilter
- Polarisationsfilter + $\lambda/4$ -Platte
- Dampfzelle
- Heizer
- Helmholtzspulenpaare
- Vertikalfeld
- Horizontalfeld
- Sweepfeld
- RF-Feld mit Frequenzgenerator (Sinusspannung)
- Kollimator
- Photodiode
- Verstärker
- Oszilloskop

3.2 Vorbereitung

- Intensitätsmaximum der optischen Elemente auf die Photodiode bringen
- Ausrichten des Tisches mit der Messapparatur
- Vertikalfeld erhöhen bis der Peak auf dem Oszilloskop möglichst schmal ist

3.3 Messung der Resonanzstellen

- RF-Frequenz setzen ($\nu = 100 1000kHz$)
- B-Feld der Sweep-Spule erhöhen, um Resonanzstelle des B-Felds zu finden
- B-Feld propotional zu den Umdrehungen des verwendeten Potentiometers, Strom durch Potentiometerumdrehungen ablesen
- Horizontalfeld ebenfalls erhöhen um Resonanzstellen ins Bild des Oszilloskop zu bringen
- Frequenz, Umdrehung Sweep-Spule für beide Isotope, Umdrehung Horizontalfeldspule für beide Isotope notieren

4 Auswertung

Die gemessenen Umdrehungen lassen sich mit der Gleichung

$$1$$
Umdrehung = $0,1$ A

umrechnen. Aus der resultierenden Stromstärke kann das B-Feld berrechnet werden.

$$B = \mu_0 \frac{8}{\sqrt{125}} \frac{N \cdot I}{R}$$

Die Errechnete Werte sind zusammen mit den dazugehörigen Frequenzen in der Tabelle 1 eizusehen.

Tabelle 1: In Abhängigkeit der eingestellten Frequenz aufgenommene Stromstärken durch die beiden horizontalspulen. Die Messwerte der Sweep-Spule sind dabei mit (S) und die der Horizontal-Feld-Spule mit H gekenzeichnet. Aufgenommen wurden die Stromstärke an den Resonanzstellen für die beiden Isotope (1) und (2), mit dem gegebenen Maßen der Spulen wurde das horizontale Gesamtfeld aus den Stromstärken bestimmt.

Frequenz	Stromstärke	Stromstärke	B-Feld 1	Stromstärke	Stromstärke	B-Feld 2
	Horizontalspule	Sweep-Spule		Horizontalspule	Sweep-Spule	
kHz	A	A	$\mu \mathrm{T}$	A	A	μT
100	0,000	0,501	30,234	0,000	0,621	37,476
200	0,024	$0,\!432$	47,117	$0,\!024$	0,677	61,902
300	0,045	0,451	66,680	0,045	0,833	89,733
400	0,060	0,400	76,757	0,060	0,880	105,724
500	0,081	$0,\!324$	$90,\!587$	0,081	0,907	125,769
600	0,093	0,390	105,093	0,111	0,824	147,069
700	0,111	0,342	117,982	0,138	0,769	$167,\!429$
800	0,114	$0,\!549$	$133,\!105$	0,180	$0,\!510$	188,631
900	0,138	0,440	$147,\!574$	0,204	$0,\!544$	211,730
1000	0,144	0,617	163,518	0,234	0,503	235,565

In der Graphik 3 sind die werde Graphisch dagestellt. Es wird eine Ausgleichsrechnung der Form:

$$B(f) = af + b$$

durchgeführt.

$$a_1 = (1,438 \pm 0,023) \cdot 10^{-10} \frac{\mathrm{T}}{\mathrm{Hz}}$$

$$b_1 = (1,876 \pm 0,144) \cdot 10^{-5} \,\mathrm{T}$$

$$B2$$

$$a_2 = (2.141 \pm 0.031) \cdot 10^{-10} \, \frac{\mathrm{T}}{\mathrm{Hz}}$$

$$b_2 = (1.935 \pm 0.190) \cdot 10^{-5} \, \mathrm{T}$$

Mit der Steigung kann wie folgt der Landesche g_F -Faktor bestimmt werden.

$$g_F = \frac{h}{\mu_0 \cdot a_i}$$

Abbildung 3: Das für die Resonanzstelle benötigte Magnetfeld aufgetragen auf die Frequenz

Somit ergeben sich die Landeschen Faktoren zu:

$$\begin{split} g_{F1} &= 0.4967800215411603 \\ g_{F2} &= 0.3337255596982711. \end{split}$$

$$g_J = \frac{(g_s+1) \cdot J \cdot (J+1) + (g_s-1) \cdot [S \cdot (S+1) - L \cdot (L+1)]}{2 \cdot J \cdot (J+1)}$$

 g_s ist gegeben als

$$g_s = 2,0023$$

Die Quantenzalen in dem Versuch sind gegebnen als

$$S=\frac{1}{2},L=0,J=\frac{1}{2},F=I+J$$

Durch einsezten ergiegt sich, dass

$$g_J = g_s$$

ist. Mit Hilfe der Formel

$$I = \frac{1}{2} \left(\frac{g_J}{g_F} - 1 \right)$$

ergeben sich Kernspinzahlen von

 $I_1 = 1.515278305464324$

 $I_2 = 2.499920056783072$

??. November 2018 5 Diskussion

5 Diskussion

Hier könnte Ihre Werbung stehen.