PHYSICAE AUSCULTATIONES

A Dissertation Presented

by

D. W. BLAIR

Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2010

Physics Department

TABLE OF CONTENTS

				Page
СН	ΙΑΡ	TER		
1.	MELTING: PART A (SCIENCE PAPER)			1
	1.1	Backg	ground	1
		1.1.1	theory of 2-D melting	1
	1.2 1.3	_	riments by Savage et. altion potential	
		1.3.1 1.3.2	range ~ 10 % of particle diameter	
		1.3.3 1.3.4	size, then enhanced melting	2
	1.4 1.5		ations	
		1.5.1 1.5.2	confirm that odd hydrodynamics didn't play a role explore role of range of potential on melting	
	1.6	Simula	ation algorithm / details	2
		1.6.1 1.6.2	brownian dynamics simulation	
	1.7	Result	ts	3
		1.7.1 1.7.2	short-range potential ($^{\sim}10\%$)longer-range potential ($^{\sim}80\%$)	
	1.8		ssion	

		1.9.1	3D	
		1.9.2	curved surfaces	
		1.9.3	non-spherical molecules	. 3
2.	ME	LTING	G: PART B (MOUMITA)	4
	2.1	Backgr	round	. 4
		2.1.1	Reference to experimental work and theory work in melting A	1
		2.1.2 2.1.3	chapter	. 4
	2.2	Theory	7	
	2.2	THEOL	y	. 0
		2.2.1	Determine energy cost, E, of creating a disclination on flat 2D Membrane	5
		2.2.2	For thermally-activated disclinations, K_B T $$ E	
		2.2.3	Disclinations create internal stresses: relieved by cracking	
		2.2.4	potential energy penalty, V, of crack in 2D sheet	
		2.2.5	minimize V to find critical crack length, $l_c(Y,gamma)$	
		2.2.6	estimate Y, gamma for simulations	
		2.2.7	use these to find a, critical average interparticle separation	
		2.2.8	this allows us to find a critical potential range, a	
	2.3	Simlua	ations	. 5
		2.3.1	Brownian dynamics background (refer to previous)	5
		2.3.1 $2.3.2$	My code (include in thesis) vs. Gromacs	
		2.3.2	New form of the interparticle potential	
		2.3.4	Phase behavior / melting temperature	
		2.3.5	Results	
	2.4	Discus	sion	. 6
	2.5	Code.		. 6
3. DIAMETER OF RANDOM CLUSTERS			ER OF RANDOM CLUSTERS	7
	3.1	Backgr	round	. 7
		3.1.1	Applications and physical realizations of the potts model	7
		3.1.1	Interesting properties of potts model clusters	
		3.1.3	Review of potts model	
	3 2	Simula	tions	R

		3.2.1	swendsen wang algorithm8
		3.2.2	method: determining chemical distance
		3.2.3	simulation details9
	3.3	Result	s9
		3.3.1	2D q=1,2,3,49
		3.3.1	3D q=1,2
			1 /
		3.3.3	4D q=29
1	рн	ASE T	RANSITIONS IN COMPUTATIONAL
ъ.			LEXITY
	4.1	Backgr	$\operatorname{round} \ldots \ldots \ldots \ldots \ldots \ldots 10$
		4.1.1	Constraint Satisfaction Problems (CSP)
		4.1.2	Proposal: study complexity of percolation model
	4.2	Percol	ation
	4.2	1 01001	auton
		4.2.1	The Model
		4.2.2	Background / applications
	4.3	PRAM	[11
		4.0.1	A 1
		4.3.1	Applications in comp sci
		4.3.2	PRIORITY CRCW11
	4.4	Paralle	el Algorithm for Percolation11
	4.5		s
	1.0	TCSUI	DII
		4.5.1	D ₂ vs. p for several system sizes L
		4.5.2	$\log(D_2)$ vs. $\log(L)$
		4.5.3	Distribution of cluster sizes

MELTING: PART A (SCIENCE PAPER)

1.1 Background

1.1.1 theory of 2-D melting

- bulk: hexatic, two-stage
- for finite crystallites: melting dominated by surface
- \bullet range of potential as issue
- imaging small crystallites difficult before savage's technique

- 1.2 Experiments by Savage et. al
- 1.3 Depletion potential
- 1.3.1 range $\tilde{\ }$ 10 % of particle diameter
- 1.3.2 observation: sublimation at steady rate until characteristic size, then enhanced melting
- 1.3.3 Figure: N vs t (Fig 2. from savage et. al)
- 1.3.4 Figure: Q_6 vs t (Fig 3. from savage et. al)
- 1.4 Simulations
- 1.5 Motivation
- 1.5.1 confirm that odd hydrodynamics didn't play a role
- 1.5.2 explore role of range of potential on melting
- 1.6 Simulation algorithm / details
- 1.6.1 brownian dynamics simulation
 - theory
 - algorithm
 - form of the interaction potential used
 - A-O depletion model
 - 'Blairium' A-O, but avoid infinite Brownian dynamics force

- 1.6.2 phase diagram exploration
- 1.7 Results
- 1.7.1 short-range potential (~10%)
 - N vs. t
 - Q_6 vs. t
 - \bullet Q₆ vs. N
- 1.7.2 longer-range potential (~80%)
- 1.8 Discussion
- 1.9 Future work
- 1.9.1 3D
- 1.9.2 curved surfaces
- 1.9.3 non-spherical molecules

MELTING: PART B (MOUMITA)

- 2.1 Background
- 2.1.1 Reference to experimental work and theory work in melting A chapter ${
 m ter}$
- 2.1.2 Theory: range of potential controls brittle/ductile transition
 - brittle / ductile theory
- 2.1.3 When crystallites are sufficiently brittle, melting is mediated by defects
 - alternative melting models

2.2 Theory

- 2.2.1 Determine energy cost, E, of creating a disclination on flat 2D Membrane
- 2.2.2 For thermally-activated disclinations, K_B T $\tilde{}$ E
- 2.2.3 Disclinations create internal stresses: relieved by cracking
- 2.2.4 potential energy penalty, V, of crack in 2D sheet
- 2.2.5 minimize V to find critical crack length, $l_c(Y,gamma)$
- 2.2.6 estimate Y, gamma for simulations
- 2.2.7 use these to find a, critical average interparticle separation
- 2.2.8 this allows us to find a critical potential range, a

2.3 Simluations

- 2.3.1 Brownian dynamics background (refer to previous)
- 2.3.2 My code (include in thesis) vs. Gromacs
- 2.3.3 New form of the interparticle potential
 - plot for short-range, longer-range

2.3.4 Phase behavior / melting temperature

- brittle
- ductile

2.3.5 Results

- For Brittle and Ductile cases:
 - N vs. t

- $Q_6 \text{ vs. } (N-N^*)$
- Q₆ vs. (N-N*)
- Ave. topological charge vs. (N-N*)
- $\bullet\,$ Alternative theories: e.g. Lacoste
- 2.4 Discussion
- 2.5 Code

DIAMETER OF RANDOM CLUSTERS

3.1	Background
3.1.1	Applications and physical realizations of the potts model
3.1.2	Interesting properties of potts model clusters
• 1	mass
• 1	perimeter
•	
• (chemical distance
	- literature review
	* applications
	- current understanding
	– no established relationship to other scaling exponents
• (diameter
	- graph theoretic definition

- applications
 - * relevant to efficiency of simulations
 - * communication on a potts network
- mean field expectations

3.1.3 Review of potts model

- overview
- phase behavior for q=1,2,3,4, D=1,2,3,4, infinite

3.2 Simulations

- 3.2.1 swendsen wang algorithm
- 3.2.2 method: determining chemical distance
 - review methods in literature
 - proposed trick
 - our method (useful when periodic boundaries)
 - ullet estimated algorithmic complexity

3.2.3 simulation details

- ullet autocorrelation time / independence
- ullet scaling methods
- 3.3 Results
- 3.3.1 2D q=1,2,3,4
- 3.3.2 3D q=1,2
- $3.3.3 ext{ 4D q=2}$

PHASE TRANSITIONS IN COMPUTATIONAL COMPLEXITY

4.1	Background		

4.1.1	Constraint Satisfaction Problems (CSP)
• E	Examples
	- kSAT
	- Graph-coloring
	- Spin models
	error-correcting codes

- Observation of threshold behavior in CSP
- Difficulties in tackling phase behavior of CSP

- 4.1.2 Proposal: study complexity of percolation model
- 4.2 Percolation
- 4.2.1 The Model
- 4.2.2 Background / applications
- **4.3** PRAM
- 4.3.1 Applications in comp sci
- 4.3.2 PRIORITY CRCW
- 4.4 Parallel Algorithm for Percolation
- 4.5 Results
- 4.5.1 D_2 vs. p for several system sizes L
- 4.5.2 $\log(D_2)$ vs. $\log(L)$
- 4.5.3 Distribution of cluster sizes
 - \bullet logarithmic or power law? (power law –; algorithm will often fail)