Uncertainty Part 2 Sports Analytic Mania

Prof. Bisbee

Vanderbilt University

Slides Updated: 2024-08-10

Agenda

- 1. Uncertainty
- 2. More NBA data
- 3. Bootstrap Sampling

Sports Analytics

- Previously, we looked at players
 - Specifically, isRookie and pts
 - But could try many other ideas
- Useful if we want a job scouting talent
- But what if we want to advise actual games?
 - Game Data!

Other NBA Data

• Load the game_summary.Rds data

```
require(tidyverse)
gms <-
read_rds('https://github.com/jbisbee1/DS1000_F2024/raw/main/data/game_s
gms</pre>
```

```
## # A tibble: 7,380 \times 16
     idGame yearSeason dateGame idTeam nameTeam locationGame
##
      <dbl>
                <chr>>
##
   1 2.16e7
                 2017 2016-10-25 1.61e9 Clevela... H
##
   2 2.16e7
                 2017 2016-10-25 1.61e9 New Yor... A
##
##
   3 2.16e7
                 2017 2016-10-25 1.61e9 Portlan... H
##
  4 2.16e7
                 2017 2016-10-25 1.61e9 Utah Ja... A
## 5 2.16e7
                 2017 2016-10-25 1.61e9 Golden ... H
##
   6 2.16e7
                 2017 2016-10-25 1.61e9 San Ant... A
##
  7 2.16e7
                 2017 2016-10-26 1.61e9 Miami H... A
##
  8 2.16e7
                 2017 2016-10-26 1.61e9 Orlando... H
##
   9 2.16e7
                 2017 2016-10-26 1.61e9 Dallas ... A
                 2017 2016-10-26 1.61e9 Indiana... H
  10 2.16e7
## # i 7,370 more rows
## # i 10 more variables: tov <dbl>, pts <dbl>, treb <dbl>,
```

Other NBA Data

• Contains data on every game played between 2016 and 2019

```
gms %>%
  ggplot(aes(x = dateGame)) +
  geom_bar(stat = 'count')
```


Other NBA Data

glimpse(gms)

```
## Rows: 7,380
## Columns: 16
## $ idGame
                  <dbl> 21600001, 21600001, 21600002, 2160000...
                  <int> 2017, 2017, 2017, 2017, 2017, 2017, 2...
## $ vearSeason
## $ dateGame
                  <date> 2016-10-25, 2016-10-25, 2016-10-25, ...
                  <dbl> 1610612739, 1610612752, 1610612757, 1...
## $ idTeam
## $ nameTeam
                  <chr> "Cleveland Cavaliers", "New York Knic...
## $ locationGame <chr> "H", "A", "H", "A", "H", "A", "A", "H...
## $ tov
                  <dbl> 14, 18, 12, 11, 16, 13, 10, 11, 15, 1...
## $ pts
                  <dbl> 117, 88, 113, 104, 100, 129, 108, 96,...
## $ treb
                  <dbl> 51, 42, 34, 31, 35, 55, 52, 45, 49, 5...
## $ oreb
                  <dbl> 11, 13, 5, 6, 8, 21, 16, 15, 10, 8, 1...
## $ pctFG
                  <dbl> 0.4833077, 0.3220769, 0.4310000, 0.51...
## $ pctFT
                  <dbl> 0.7500000, 0.8055000, 1.0000000, 1.00...
## $ teamrest
                  <dbl> 120, 120, 120, 120, 120, 120, 120, 12...
## $ second game
                  <lgl> FALSE, FALSE, FALSE, FALSE, FA...
## $ isWin
                  <lgl> TRUE, FALSE, TRUE, FALSE, FALSE, TRUE...
## $ ft 80
                  <dbl> 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0...
```

Codebook

Name	Description
idGame	Unique game id
yearSeason	Which season? NBA uses ending year so 2016-17 = 2017
dateGame	Date of the game
idTeam	Unique team id
nameTeam	Team Name
IocationGame	Game location, H=Home, A=Away
tov	Total turnovers
pts	Total points
treb	Total rebounds
pctFG	Field Goal Percentage
teamrest	How many days since last game for team
pctFT	Free throw percentage
isWin	Won? TRUE or FALSE
4 00	To any a compal manual them 00 is a war and of five a themselve

Codebook

- Which of these are categorical? Which are continuous?
 - Remember the **process**!
- isWin as an ordered binary

```
gms %>%
count(isWin)
```

```
## # A tibble: 2 × 2
## isWin n
## <lgl> <int>
## 1 FALSE 3690
## 2 TRUE 3690
```

Codebook

The same number for wins and losses?

```
gms %>%
  select(idGame,nameTeam,dateGame,locationGame,isWin) %>% head()
```

```
## # A tibble: 6 × 5
                                          locationGame isWin
      idGame nameTeam
                                dateGame
       <dbl> <chr>
                                 <date> <chr>
                                                        <1g1>
  1 21600001 Cleveland Cavaliers 2016-10-25 H
                                                        TRUE
  2 21600001 New York Knicks 2016-10-25 A
                                                        FALSE
  3 21600002 Portland Trail Bla... 2016-10-25 H
                                                        TRUE
## 4 21600002 Utah Jazz
                            2016-10-25 A
                                                        FALSE
                                                        FALSE
  5 21600003 Golden State Warri... 2016-10-25 H
## 6 21600003 San Antonio Spurs 2016-10-25 A
                                                        TRUE
```

- Each row is a team-game pair
 - I.e., the Cavs hosted the Knicks on October 25, 2016 and won!

The Knicks

Science

- What predicts winning?
 - Points? (more is better)
 - Turnovers? (less is better)
 - Rebounds? (more is better)
- How confident are we?

```
gms %>%
  group_by(isWin) %>%
  summarise(avgTO = mean(tov))
```

```
## # A tibble: 2 × 2
## isWin avgTO
## <lgl> <dbl>
## 1 FALSE 13.9
## 2 TRUE 13.1
```

- On average, winning teams have ~1 fewer turnover than losing teams
- FSNoR: is this always the case?

```
gms %>%
  filter(yearSeason == 2017) %>%
  group_by(isWin) %>%
  summarise(avgTO = mean(tov))
```

```
## # A tibble: 2 × 2
## isWin avgTO
## <lgl> <dbl>
## 1 FALSE 13.8
## 2 TRUE 12.9
```

- On average, winning teams have ~1 fewer turnover than losing teams
- FSNoR: is this always the case?

```
gms %>%
  filter(yearSeason == 2018) %>%
  group_by(isWin) %>%
  summarise(avgTO = mean(tov))
```

```
## # A tibble: 2 × 2
## isWin avgTO
## <lgl> <dbl>
## 1 FALSE 14.1
## 2 TRUE 13.3
```

- On average, winning teams have ~1 fewer turnover than losing teams
- FSNoR: is this always the case?

```
gms %>%
  group_by(isWin,yearSeason) %>%
  summarise(avgTO = mean(tov)) %>%
  spread(isWin,avgTO,sep = '_')
```

```
## # A tibble: 3 × 3
##
    yearSeason isWin FALSE isWin TRUE
        <int>
                 <dbl> <dbl>
##
## 1
         2017
                    13.8 12.9
                              13.3
## 2
         2018
                    14.1
## 3
         2019
                    13.9
                              13.1
```

- On average, winning teams have ~1 fewer turnover than losing teams
- FSNoR: is this always the case?
 - Not literally (numbers change)
 - But practically?
- How confident are we in making this claim?
 - In each season, the average turnovers of winning teams are roughly 1
 lower than the average turnovers of losing teams
 - Use bootstrap sampling to express this more concretely!

Looping

```
set.seed(123)
bs_tov <- NULL
for(i in 1:1000) {
   bs_tov <- gms %>%
      sample_n(size = 100,replace = T) %>%
      group_by(isWin) %>%
      summarise(avgTO = mean(tov)) %>%
      bind_rows(bs_tov)
}
bs_tov %>% head()
```

```
## # A tibble: 6 × 2
## isWin avgT0
## <lgl> <dbl>
## 1 FALSE 13.6
## 2 TRUE 13.3
## 3 FALSE 13.9
## 4 TRUE 13.0
## 5 FALSE 14.1
## 6 TRUE 13.0
```

Bootstrapped Estimates vs Data

```
bs_tov %>%
  group_by(isWin) %>%
  summarise(bs_est = mean(avgTO))
```

```
## # A tibble: 2 × 2
## isWin bs_est
## <lgl> <dbl>
## 1 FALSE 13.9
## 2 TRUE 13.1
```

```
gms %>%
  group_by(isWin) %>%
  summarise(data_est = mean(tov))
```

```
## # A tibble: 2 × 2
## isWin data_est
## <lgl> <dbl>
## 1 FALSE 13.9
## 2 TRUE 13.1
```

Bootstrapped Estimates vs Data

- They're identical!
 - In theory, bootstrapped samples converge on true values
 - ...where "true" is the full data
- So then why bother with bootstrapping?
- Uncertainty!

Plot Distributions of Bootstraps

```
bs_tov %>%
  ggplot(aes(x = avgTO,fill = isWin)) +
  geom_density(alpha = .3)
```


Generalizability

- What if we only used one season?
 - Do we think our conclusions would "generalize" (i.e., apply to) other seasons?
 - For example, is the turnover-win relationship the same in the 2017 season as the 2018 season?
 - What about the 2019 season?
 - Why or why not?
- Demonstrate using the 2017 data

Generalizability

Bootstrap + group by

```
bsRes <- NULL
for(i in 1:500) { # Only 500 simulations this time
  bsRes <- gms %>%
    group by(yearSeason) %>% #<< Group by the season</pre>
    sample n(size = 100,replace = T) %>% #<< Get 100 observations per</pre>
season
    group by(yearSeason,isWin) %>% #<< Then calculate mean tov by
season AND win
    summarise(avgT0 = mean(tov,na.rm=T),.groups = 'drop') %>%
    ungroup() %>%
    mutate(bsInd = i) %>%
    bind rows(bsRes)
```

```
bsRes %>%
  ggplot(aes(x = avgT0)) +
  geom_density(alpha = .3)
```


• Is this answering our question?

```
bsRes %>%
  ggplot(aes(x = avgTO,fill = isWin)) +
  geom_density(alpha = .3)
```


• Is this answering our question?

```
bsRes %>%
  ggplot(aes(x = avgTO,fill = isWin)) +
  geom_density(alpha = .3) +
  facet_grid(yearSeason~.)
```



```
p <- bsRes %>%
  ggplot(aes(x = avgTO, fill = isWin)) +
  geom\ density(alpha = .3) +
  geom vline(data = bsRes %>%
               group by(yearSeason,isWin) %>%
               summarise(avgTO = mean(avgTO,na.rm=T)),
             aes(xintercept = avgTO,color = isWin),linetype =
'dashed') +
  geom text(data = bsRes %>%
               group_by(yearSeason,isWin) %>%
               summarise(avgTO = mean(avgTO,na.rm=T)),
             aes(x = avgT0,y = Inf,label = round(avgT0,1)),hjust =
1.1, vjust = 1.1, size = 3, angle = 90) +
  facet grid(yearSeason~.)
```

р

Summarizing further

- We are *actually* interested in whether winning teams turnover the ball less
 - Science: never forget your theory / hypothesis!
- So let's actually calculate this!
- The spread command to create two columns

```
bsRes %>%
  spread(isWin,avgTO,sep = '_') %>%
  mutate(TO_diff = isWin_FALSE - isWin_TRUE)
```

```
## # A tibble: 1,500 × 5
    yearSeason bsInd isWin_FALSE isWin_TRUE TO_diff
##
       <int> <int>
##
                    ##
        2017
                    14.3 13.1 1.16
        2017 2
##
                   14.1 12.5 1.60
    2017 3 13.6 13.9 -0.285
##
##
        2017
                    13.6 12.3 1.34
        2017 5
##
                 14.1 13.4 0.739
        2017 6
##
                     14.3 12.9 1.47
        2017
                     13.4
                             13.4 -0.0161
```

Generalizability

```
bsRes %>%
  spread(isWin,avgT0,sep = '_') %>%
  mutate(T0_diff = isWin_FALSE - isWin_TRUE) %>%
  ggplot(aes(x = T0_diff,fill = factor(yearSeason))) +
  geom_density(alpha = .3)
```


Comparing across seasons

```
p <- bsRes %>%
  spread(isWin,avgTO,sep = ' ') %>%
  mutate(TO diff = isWin FALSE - isWin TRUE) %>%
  ggplot(aes(x = TO diff,group = yearSeason)) +
  geom density(alpha = .3) +
  geom vline(xintercept = 0) +
  geom text(data = bsRes %>%
             spread(isWin,avgTO,sep = ' ') %>%
             mutate(TO diff = isWin FALSE - isWin TRUE) %>%
             group by(yearSeason) %>%
             summarise(conf = mean(TO diff > 0),
                       TO diff = mean(TO diff),
                       y = .25),
            aes(x = TO diff, y = y, label =
paste0(round(conf*100,1),'%'))) +
  facet grid(yearSeason ~.)
```

Comparing across seasons

p

Visualization is **DEEP**

```
toplot <- bsRes %>%
  spread(isWin,avgTO,sep = ' ') %>%
  mutate(TO diff = isWin FALSE - isWin TRUE)
tmp <- density(toplot$TO diff)</pre>
p \leftarrow data.frame(x = tmp$x,y = tmp$y,
           area = tmp$x >= 0) %>%
  ggplot(aes(x = x, ymin = 0, ymax = y, fill = area)) +
  geom ribbon(alpha = .6) +
  geom vline(xintercept = 0,linetype = 'dashed',size = 1.1) +
  annotate(geom = 'text',x = mean(toplot$TO diff),y = .25,
           label = paste0("Losing team had\nmore turnovers
in\n",round(mean(toplot$TO diff > 0),3)*100,"% of\nBootstraps"),
           hiust = .5) +
  labs(title = 'Difference in Turnovers by Game Outcome',
       subtitle = '1,000 Bootstrapped Estimates from 2016-2019
Seasons',
       x = 'Losing Team Turnovers minus Winning Team Turnovers',
       y = 'Density of Simulated Games') +
  scale fill manual(name = 'Who Had More Turnovers',
                     values = c('grey60', 'gold'), labels = c('Winning')
Team','Losing Team')) +
  #laama / ...a. 1 | laa alaama ...... | -1 aman# | la1 aman/\)
```

Visualization is **DEEP**

Conclusion

• Anyone can spit stats

Data scientists are comfortable with uncertainty

Quiz & Homework

- Go to Brightspace and take the 10th quiz
 - The password to take the quiz is ####

Homework:

- 1. Work through ds1000_hw_11.Rmd (regression!)
- 2. Finish Problem Set 6 (on Brightspace)