Real Analysis Homework 8

Alexander J. Tusa

December 11, 2018

1. Section 5.1

1. Prove the Sequential Criterion 5.1.3.

Recall the Sequential Criterion:

Theorem. A function $f: A \to \mathbb{R}$ is continuous at the point $c \in A$ if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to f(c).

Let $\varepsilon > 0$ be given. Since we're given that f is continuous, we know that by the definition of continuity, there exists a $\delta > 0$ such that if $x \in A$ satisfies $|x - c| < \delta$, then $|f(x) - f(c)| < \varepsilon$. Thus, for that δ , since $x_n \to c$, $\exists n_0 \in \mathbb{N}$ s.t. $n \ge n_0 \Longrightarrow |x_n - c| < \delta$. Thus we have

$$n \ge n_0 \implies |x_n - c| < \delta$$

 $\implies |f(x_n) - f(c)| < \varepsilon$
 $\implies \lim_{n \to \infty} f(x_n) = f(c)$

Now, suppose that for every sequence (x_n) in A that converges to c, $f(x_n)$ converges to f(c). We will now show that the f is continuous at c.

Proof. We want to show that f is continuous at c.

By way of contradiction, suppose that f is discontinuous at c. Then we know that $\exists \ \varepsilon > 0 \ \forall \ \delta > 0 \ |x - c| < \delta \ \text{and} \ |f(x) - f(c)| \ge \varepsilon$.

Let $\delta = \frac{1}{n}$. Then we have that x_n is such that $|x-c| < \frac{1}{n}$ and that $|f(x_n) - f(c)| \ge \varepsilon$.

- \therefore We have a sequence (x_n) such that $\lim_{n\to\infty} x_n = c$ and $\lim_{n\to\infty} f(x_n) \neq f(c)$. Notice however that we have a contradiction here, and thus we have that f is continuous at c.
- **5.** Let f be defined for all $x \in \mathbb{R}, x \neq 2$, by $f(x) = (x^2 + x 6)/(x 2)$. Can f be defined at x = 2 in such a way that f is continuous at this point?

Since we have that f is not defined at x = 2, we know that we have to factor the numerator to evaluate the limit.

So, for $x \neq 2$:

$$f(x) = \frac{x^2 + x - 6}{x - 2} = \frac{\cancel{(x - 2)}(x + 3)}{\cancel{x - 2}} = x + 3$$

Thus, if we let f(2) := 5, then f is continuous:

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (x+3) = 5$$

7. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at c and let f(c) > 0. Show that there exists a neighborhood $V_{\delta}(c)$ of c such that if $x \in V_{\delta}(c)$, then f(x) > 0.

Proof. Let $\varepsilon = \frac{f(c)}{2} > 0$. Since we are given that f is continuous at c, we know that there exists $\delta > 0$ such that

$$|x-c| < \delta \implies |f(x) - f(c)| < \varepsilon = \frac{f(c)}{2}$$

Thus, if we define $V_{\delta}(c) := (c - \delta, c + \delta)$ and if we let $x \in V_{\delta}(c)$, then we have

$$x \in V_{\delta}(c) \implies |x - c| < \delta$$

$$\implies |f(x) - f(c)| < \varepsilon$$

$$\implies -\varepsilon < f(x) - f(c) < \varepsilon$$

$$\implies f(c) - \frac{f(c)}{2} < f(x) \qquad (\varepsilon = \frac{f(c)}{2})$$

$$\implies \frac{1}{2}f(c) < f(x)$$

$$\implies f(x) > 0 \qquad (f(c) > 0)$$

Thus we have that there exists a neighborhood $V_{\delta}(c)$ such that if $x \in V_{\delta}(c)$, then f(x) > 0.

11. Let K > 0 and let $f : \mathbb{R} \to \mathbb{R}$ satisfy the condition $|f(x) - f(y)| \le K|x - y|$ for all $x, y \in \mathbb{R}$. Show that f is continuous at every point $c \in \mathbb{R}$.

Proof. We want to show that f is continuous at every point $c \in \mathbb{R}$.

Let $\varepsilon > 0$ be given, and let $\delta = \frac{\varepsilon}{k}$. Then, for any $c \in \mathbb{R}$,

$$|x - c| < \delta \implies |x - c| < \frac{\varepsilon}{k}$$

$$\implies k|x - c| < \varepsilon$$

$$\implies |f(x) - f(c)| \le k|x - c| < \varepsilon$$

$$\implies |f(x) - f(c)| < \varepsilon$$

Thus we have that f is continuous for $c \in \mathbb{R}$. Since c is arbitrary, this also shows that f is continuous for all $c \in \mathbb{R}$.

12. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that f(r) = 0 for every rational number r. Prove that f(x) = 0 for all $x \in \mathbb{R}$.

Proof. We want to show that $f(x) = 0, \ \forall \ x \in \mathbb{R}$.

Let $x \in \mathbb{R}$. Since we know that \mathbb{Q} is dense in \mathbb{R} , we know that we can find a sequence (x_n) of rational numbers such that (x_n) converges to x. Thus, by continuity of f at x, $(f(x_n))$ converges to f(x). Since x_n is rational, we have that $f(x_n) = 0 \,\forall n \in \mathbb{N}$. Thus we have that $f(x) = \lim f(x_n) = \lim 0 = 0$.

 \therefore We have that f(x) = 0 for all $x \in \mathbb{R}$.

- 2. Use the definition of continuity to show that the given f is continuous.
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$.

Recall the definition of continuity:

Definition 0.1. Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$, and let $c \in A$. We say that f is **continuous at** c if, given any number $\varepsilon > 0$, there exists $\delta > 0$ such that if x is any point of A satisfying $|x - c| < \delta$, then $|f(x) - f(c)| < \varepsilon$. If f fails to be continuous at c, then we say that f is **discontinuous at** c.

Proof. In order to show that f is continuous for all $c \in \mathbb{R}$, we must consider two cases: $c \neq 0$, and c = 0.

Suppose $c \neq 0$. Then we have the following:

$$|f(x) - f(c)| = |x^2 - c^2|$$

$$= |(x - c)(x + c)|$$

$$= |x - c||x + c|$$

$$< |x - c|(|x| + |c|)$$

$$< \varepsilon$$

Which yields that

$$|x-c|<rac{arepsilon}{|x|+|c|}<rac{arepsilon}{|x|}$$

So, for the case when $c \neq 0$, let $\delta = \frac{\varepsilon}{|x|}$.

Now, suppose that c = 0. Then we have the following:

$$|f(x) - f(c)| = |x^2 - 0^2|$$

$$= |x^2|$$

$$= (|x|)^2$$

$$< \varepsilon$$

So, we have now that

$$(|x|)^2 < \varepsilon \implies |x| < \sqrt{\varepsilon}$$

Thus, let $\delta = \sqrt{\varepsilon}$.

 \therefore Since we have found definitions of δ that satisfy the definition of continuity, we have that f is continuous $\forall c \in \mathbb{R}$.

(b) Let $f:(0,\infty)\to\mathbb{R}$ be given by f(x)=1/x.

Proof. Suppose $x > \frac{c}{2}$, since c > 0. Then we have that

$$|f(x) - f(c)| = \left| \frac{1}{x} - \frac{1}{c} \right| = \frac{|x - c|}{xc} < \frac{2}{c^2} |x - c| < \varepsilon \implies |x - c| < \frac{c^2 \varepsilon}{2}$$

So, if we let $\delta < \min\{\frac{c^2\varepsilon}{2}, \frac{c}{2}\}$, then we have that if $|x-c| < \delta$, $x > \frac{c}{2}$, and $\left|\frac{1}{x} - \frac{1}{c}\right| < \frac{2}{c^2}\delta \le \varepsilon$.

 \therefore We have that f is continuous $\forall c \in (0, \infty)$.

(c) Let $f: \mathbb{R} \to \mathbb{R}$ be given by f(x) = |x| (This is Problem 10 in Section 5.1)

Proof. We must first note the following:

$$|a| = |a - b + b|$$

$$\leq |a - b| + |b|$$

$$\downarrow \downarrow$$

$$|a| - |b| \leq |a - b|$$

 $\implies \pm (|a| - |b|) \le |a - b|$ We also note:

$$|b| = |b - a + a|$$

$$\leq |b - a| + |a|$$

$$= |a - b| + |a|$$

$$\downarrow \downarrow$$

$$|b| - |a| \leq |a - b|$$

$$\implies ||a| - |b|| \le |a - b|$$

$$|f(x) - f(c)| = ||x| - |c||$$

$$\leq |x - c|$$

$$< \varepsilon$$

Thus if we let $\varepsilon = \delta$, then we have that $|x - c| < \delta$.

 \therefore We have that f(x) is continuous $\forall c \in \mathbb{R}$.

- 3. Let $f(x) = \begin{cases} 3x + 2 & \text{if } x \text{ is rational} \\ 6 x & \text{if } x \text{ is irrational} \end{cases}$
 - (a) Determine whether or not f is continuous at x = 1.

f is continuous at x = 1 since we proved in HW7 that $\lim_{x \to 1} f(x)$ exists, $\lim_{x \to 1} f(x) = f(1) = 5$.

(b) Determine whether or not f is continuous at x = 0.

f is not continuous for $x \neq 1$ (and not x = 0) since from Homework 7 again, $\lim_{x \to c} f(x)$ does not exists for $x \neq 1$.

4. Let $g(x) = \begin{cases} 2x & \text{if } x \text{ is rational} \\ x+3 & \text{if } x \text{ is irrational} \end{cases}$

Find all points where g is continuous (This is Problem 13 of Section 5.1)

First, let c be some point of continuity of g. Then since both \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense in \mathbb{R} , we can find sequences $(x_n) \subset \mathbb{Q}$ and $(y_n) \subset \mathbb{R} \setminus \mathbb{Q}$ such that $(x_n) \to c$ and $(y_n) \to c$. Then we have the following:

$$g(c) = \lim_{n \to \infty} g(x_n)$$

$$= \lim_{x \to \infty} 2x_n$$

$$= 2c \qquad (x_n \to c)$$

$$g(c) = \lim_{n \to \infty} g(y_n)$$

$$= \lim_{n \to \infty} y_n + 3$$

$$= c + 3 \qquad (y_n \to c)$$

$$\implies 2c = c + 3$$

$$\updownarrow$$

$$c = 3$$

Thus, we have that if g is continuous at a point c, then it must be c=3. Thus we conjecture that g is continuous only at 3.

Proof.

$$|g(x) - g(3)| = |g(x) - 6|$$
 (3 $\in \mathbb{Q}$)
 $\leq \sup\{|2x - 6|, |(x + 3) - 6|\}$ (x is either rational or irrational)
 $= \sup\{2|x - 3|, |x - 3|\}$
 $= 2|x - 3|$

Thus $\forall \ \varepsilon > 0$ let $\delta = \frac{\varepsilon}{2}$. Then we have that

$$|x-3| < \delta \implies |g(x) - g(3)| < \varepsilon$$

 \therefore We have that g is only continuous at c=3.

- **5.** Give an example of the following, if possible.
 - (a) A function f defined on \mathbb{R} such that it is not continuous at any point in \mathbb{R} .

Consider the Dirichlet function. This function is not continuous at any points.

(b) A function f defined on \mathbb{R} such that it is continuous at exactly one point in \mathbb{R} .

Consider the function
$$f(x) := \begin{cases} x, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Notice that this function is continuous only at x = 0.

(c) A function f defined on \mathbb{R} such that it is continuous at exactly two points in \mathbb{R} .

Consider the function
$$f(x) := \begin{cases} x^2, & \text{if } x \in \mathbb{Q} \\ 1, & \text{if } x \notin \mathbb{Q} \end{cases}$$

We notice that this function is continuous only at the points -1 and 1.

6. Section 5.2

2. Show that if $f: A \to \mathbb{R}$ is continuous on $A \subseteq \mathbb{R}$ and if $n \in \mathbb{N}$, then the function f^n defined by $f^n(x) = (f(x))^n$, for $x \in A$, is continuous on A.

Proof. We want to show that f^n is continuous. We prove it by method of mathematical induction.

Basis Step: Let n = 1. Then we have that $f^1(x) = (f(x))^1 = f(x) \implies f^1 = f$. Since we are given that f is continuous, we know that f^1 is continuous as well.

Inductive Step: Assume that $f^n(x) = (f(x))^n$ is continuous $\forall n \in \mathbb{N}$.

Show: We want to show that $f^{n+1}(x) = (f(x))^{n+1}$ is continuous $\forall n \in \mathbb{N}$. Then we have

$$f^{n+1} = f^n \cdot f$$

Recall Theorem 5.2.1:

Theorem. Let $A \subseteq \mathbb{R}$, let f and g be functions on A to \mathbb{R} , and let $b \in \mathbb{R}$. Suppose that $c \in A$ and that f and g are continuous at c.

- i. Then f + g, f g, fg, and bf are continuous at c.
- ii. If $h: A \to \mathbb{R}$ is continuous at $c \in A$ and if $h(x) \neq 0$ for all $x \in A$, then the quotient f/h is continuous at c.

Since both f^n and f are continuous functions, by *Theorem 5.2.1*, we have that $f^n \cdot f = f^{n+1}$ is a continuous function on A since it is the product of continuous functions on A.

- \therefore By the Principle of Mathematical Induction, we have that f^n is continuous $\forall n \in \mathbb{N}$ on A.
- **3.** Give an example of functions f and g that are both discontinuous at a point c in \mathbb{R} such that (a) the sum f+g is continuous at c and (b) the product fg is continuous at c.

Consider the functions
$$f(x) := \begin{cases} 1, & x = 0 \\ 0, & x \neq 0 \end{cases}$$
, and $g(x) := \begin{cases} 0, & x = 0 \\ 1, & x \neq 0 \end{cases}$

We first note that both f(x) and g(x) are discontinuous at x = 0.

(a) Note that the sum

$$f(x) + g(x) := \begin{cases} 1+0, & x=0\\ 0+1, & x \neq 0 \end{cases} = \begin{cases} 1, & x=0\\ 1, & x \neq 0 \end{cases} = 1$$

. Thus, we have that the sum f(x) + g(x) is a constant function, and thus is defined $\forall x \in \mathbb{R}$, and thus f(x) + g(x) is continuous at c, where c = 0.

(b) Now, the product $f(x) \cdot g(x)$ is

$$f(x) \cdot g(x) := \begin{cases} 1 \cdot 0, & x = 0 \\ 0 \cdot 1, & x \neq 0 \end{cases} = \begin{cases} 0, & x = 0 \\ 0, & x \neq 0 \end{cases} = 0$$

Thus we have that the product of $f(x) \cdot g(x)$ is also a continuous function since $f(x) \cdot g(x) = 0$. Thus, we have that $f(x) \cdot g(x)$ is continuous $\forall x \in \mathbb{R}$. Hence $f(x) \cdot g(x)$ is continuous at c, where c = 0.

5. Let g be defined on \mathbb{R} by g(1) := 0, and g(x) := 2 if $x \neq 1$, and let f(x) := x + 1 for all $x \in \mathbb{R}$. Show that $\lim_{x \to 0} g \circ f \neq (g \circ f)(0)$. Why doesn't this contradict Theorem 5.2.6?

Recall Theorem 5.2.6:

Theorem. Let $A, B \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ be functions such that $f(A) \subseteq B$. If f is continuous at a point $c \in A$ and g is continuous at $b = f(c) \in B$, then the composition $g \circ f : A \to \mathbb{R}$ is continuous c.

Note that we have $g(x) := \begin{cases} 0, & x = 1 \\ 2, & x \neq 1 \end{cases}$, and f(x) := x + 1.

Thus
$$(g \circ f)(x) = g(f(x)) = g(x+1) = \begin{cases} 0, & x+1=1\\ 2, & x+1 \neq 1 \end{cases} = \begin{cases} 0, & x=0\\ 2, & x \neq 0 \end{cases}$$

This gives us that $\lim_{x\to 0} (g\circ f)(x) = \lim_{x\to 0} 2 = 2$, since $x\to 0 \implies x\neq 0$

Thus we have that $\lim_{x\to 0} (g\circ f)(x) \neq (g\circ f)(0)$ since $2\neq 0$.

The reason that this does not violate *Theorem 5.2.6* is because g is discontinuous at f(0), since f(0) = 1.

7. Give an example of a function $f:[0,1] \to \mathbb{R}$ that is discontinuous at every point of [0,1] but such that |f| is continuous on [0,1].

Let
$$f(x) := \begin{cases} -1, & x \in \mathbb{Q} \\ 1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Recall Theorem 2.4.8 - The Density Theorem:

Theorem (The Density Theorem). If x and y are any real numbers with x < y, then there exists a rational number $r \in \mathbb{Q}$ such that x < r < y.

And also recall Corollary 2.4.9:

Corollary. If x and y are real numbers with x < y, then there exists an irrational number z such that x < z < y.

Recall the $Discontinuity\ Criterion$:

Theorem (Discontinuity Criterion). Let $A \subseteq \mathbb{R}$, let $F : A \to \mathbb{R}$, and let $c \in A$. Then f is discontinuous at c if and only if there exists a sequence (x_n) in A such that (x_n) converges to c, but the sequence $(f(x_n))$ does not converge to f(c).

Consider the sequence $x_n := (\frac{1}{3}, \frac{1}{3}, \dots, \frac{1}{3})$. Clearly $x_n \in [0, 1] \ \forall n \in \mathbb{N}$. However, note that $\lim_{x \to \frac{1}{3}} (x_n) = \frac{1}{3}$, but $\lim_{x \to \frac{1}{3}} (f(x_n)) = 1$ but $f(\frac{1}{3}) = -1$. Thus we have that $\lim_{x \to \frac{1}{3}} (f(x_n)) \neq f(c)$, where $c = \frac{1}{3}$. Thus by the *Discontinuity Criterion*, since there exists a sequence $(x_n) \in [0, 1]$ such that $(x_n) \to c \in [0, 1]$ but $(f(x_n)) \to f(c)$. Thus we have that f is discontinuous at $c = \frac{1}{3}$. However, note that by the *Density Theorem* and by *Corollary 2.4.9*, we have that f is discontinuous at $c \neq c \in [0, 1]$.

However, note that $|f(x)| = 1 \ \forall \ x \in [0,1]$. Thus we have that |f| is continuous $\forall \ c \in [0,1]$.

8. Let f, g be continuous from \mathbb{R} to \mathbb{R} and suppose that f(r) = g(r) for all rational numbers r. Is it true that f(x) = g(x) for all $x \in \mathbb{R}$?

This is actually true.

Proof. Let $x \in \mathbb{R}$ be arbitrary. By the *Density Theorem*, we know that we can find a sequence $(x_n) \subset \mathbb{Q}$ s.t. $(x_n) \to x$.

Then we have:

$$f(x) = \lim_{n \to \infty} f(x_n)$$
 (f is continuous)

$$= \lim_{n \to \infty} g(x_n)$$
 ($x_n \in \mathbb{Q}$)

$$= g(x)$$
 (g is continuous)

$$\implies f(x) = g(x) \ \forall \ x \in \mathbb{R}$$

14. Let $g: \mathbb{R} \to \mathbb{R}$ satisfy the relation g(x+y) = g(x)g(y) for all $x, y \in \mathbb{R}$. Show that if g is continuous at x = 0, then g is continuous at every point of \mathbb{R} . Also if we have g(a) = 0 for some $a \in \mathbb{R}$, then g(x) = 0 for all $x \in \mathbb{R}$.

Proof. We first note that since we're given that g is continuous at x = 0, we have

$$g(0) = g(0+0)$$

$$= g(0) \cdot g(0)$$

$$= g(0)^{2}$$

$$(g(x+y) = g(x)g(y), \ \forall x, y \in \mathbb{R})$$

This tells us that we have two cases to consider for g(0): g(0) = 0 or g(0) = 1.

Case 1: g(0) = 0 Let g(a) = 0 for some $a \in \mathbb{R}$. Then we have that $\forall x \in \mathbb{R}$,

$$g(x) = g((x-a) + a) = g(x-a) \cdot g(a) = 0$$

Thus, if $g(a) = 0 \,\forall a \in \mathbb{R}$, then $g \equiv 0$ and thus g is constant. Thus, g is continuous $\forall x \in \mathbb{R}$.

Case 2: g(0) = 1 Let $g(c) \neq 0 \ \forall c \in \mathbb{R}$. Otherwise we have that g is a zero function, which was shown to be continuous as the result of *Case 1*, and this contradicts the fact that we let $g(0) = 1 \neq 0$.

Let $\varepsilon > 0$ be given, and let $c \in \mathbb{R}$ be arbitrary such that $c \neq 0$. Since g is continuous at 0 and $g(c) \neq 0$, we know that $\exists \delta > 0$ s.t. $\forall x \in \mathbb{R}$, we have:

$$|x - 0| < \delta \implies |g(x) - g(0)| < \frac{\varepsilon}{|g(c)|}$$

that is, since g(0) = 1,

$$|x| < \delta \implies |g(x) - 1| < \frac{\varepsilon}{|g(c)|}$$

Thus, for $x \in \mathbb{R}$ s.t. $|x - c| < \delta$, we have

$$|g(x) - g(c)| = |g((x - c) + c) - g(c)|$$

$$= |g(x - c)g(c) - g(c)| \qquad (g(a + b) = g(a)g(b))$$

$$= |g(c)(g(x - c) - 1)|$$

$$= |g(c)||g(x - c) - 1|$$

$$= |g(c)||g(h) - 1| \qquad (Substitue h := x - c)$$

$$< |g(c)| \frac{\varepsilon}{|g(c)|}$$

$$= \varepsilon$$

 \therefore We have that g is continuous at c. Since $c \neq 0$ was arbitrary and g is continuous at 0, we have that g is continuous on \mathbb{R} .

- 7. Prove or justify if true. Provide a counterexample if false.
 - (a) Let f be defined on [a, b]. Let x_n be any sequence in [a, b]. The sequence $\{f(x_n)\}$ converges to f(c) for x_n converging to $c \in [a, b]$ implies that f is continuous at x = c.

This is true. Recall the Sequential Criterion for Continuity:

Theorem (Sequential Criterion for Continuity). A function $f: A \to \mathbb{R}$ is continuous at the point $c \in A$ if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to f(c).

This is true by the Sequential Criterion for Continuity.

(b) If f is continuous on D and the sequence x_n in D is a converging sequence, then the sequence $\{f(x_n)\}$ converges.

This statement is false. Consider the function $f:(0,1)\to\mathbb{Q}$ given by $f(x)=\frac{1}{x}$, and consider the sequence $x_n:=(0.1,0.01,0.001,0.0001,\dots),\ \forall\ n\in\mathbb{N}$. Then we have that $x_n\to 0$, but since $0\notin(0,1)$ and since (0,1) is not a compact set, this violates the Sequential Criterion for Continuity and thus this statement is false.