Máster Universitario en Inteligencia Artificial

Herramientas de Estadística

- 1. (a) 170.07
 - (b) 170
 - (c) 177
 - (d) 63.07
 - (e) 7.94
 - (f) 0.017
 - (g) -0.87
 - (h) 0.17
 - (i) 1.77 (exceso de curtosis: -1.23). Apuntamiento negativo (distribución platicúrtica).
- 2. 0.5 (50%)
- 3. $\frac{1}{2}$ (50%)
- 4. 0.1875 (18.75%)
- 5. 0.8175 (81.75%)
- 6. 0.8072 (80.72%)
- 7. [140.76, 143.24]
- 8. [140.87, 143.13]
- 9. [1.03, 6.66]
- 10. [1.13, 8.66]
- 11. $H_0: \mu = 1600, H_a: \mu < 1600$. Se rechaza H_0 , hay indicios de fraude con un nivel de confianza de un 95%.
- 12. $H_0: \sigma^2=0.5^2, H_a: \sigma^2>0.5^2$. Se acepta H_0 , no hay indicios suficientes, con un nivel de confianza de un 99%, para determinar que la máquina es defectuosa.
- 13. $H_0: \mu = 70.7, H_a: \mu \neq 70.7$. Se acepta H_0 . No hay indicios suficientes para refutar la hipótesis que afirma que el peso medio es 70.7, con un nivel de confianza del 90%.
- 14. $H_0: \sigma^2=0.1252, H_a: \sigma^2\neq 0.1252$. Se rechaza H_0 , se puede afirmar con un 95% de confianza que la desviación típica no es 0.125.
- 15. $H_0: \mu_A = \mu_B, H_a: \mu_A \neq \mu_B$. Se rechaza H_0 , se puede afirmar que existen diferencias significativas entre la vida útil de los productos de sendas marcas, con un 95% de confianza.
- 16. $H_0: p=0.5, H_a: p\neq 0.5$. Se acepta H_0 , no se puede considerar que la moneda esté trucada con un 90% de confianza.
- 17. $H_0: p_A = p_B, H_a: p_A < p_B$. Se rechaza H_0 en favor de H_a , se puede afirmar con una confianza de un 90% que el medicamento B es más efectivo que el medicamento A.
- 18. Se rechaza la hipótesis, concluyéndose que los nacimientos de hijos e hijas no son equiprobables con un nivel de confianza de un 99%.
- 19. (a) y = 0.095 + 0.68x
 - (b) x = 0.069 + 1.36y
 - (c) 0.96
- 20. $y = 6.78 + 2.89x + 1.73x^2$
- 21. $y = 2.06 \frac{1.04}{x}$, r = -0.98
- 22. $y = 2.55x^0.47$, r = 0.97
- 23. $y = 2.47(0.51)^x$, r = -0.997