

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

CÁLCULO INTEGRAL II. CÁLCULO II

OBJETIVOS:

- Calcular integrales mediante sustitución simple.
- Calcular integrales mediante integración por partes.
- Calcular integrales mediante fracciones parciales.
- Calcular integrales definidas.
- 1. Calcule las siguientes integrales utilizando el método de sustitución simple.

a)
$$\int \frac{4}{4 - 2x} dx.$$
b)
$$\int_{0}^{1} \frac{6x^{2} - 12}{x^{3} - 6x + 1} dx.$$
c)
$$\int e^{-2y} + e^{2y} dy.$$
d)
$$\int_{0}^{2} \frac{2e^{2x}}{1 + e^{2x}} dx.$$
e)
$$\int 7x\sqrt{4 - x^{2}} dx.$$
f)
$$\int_{-1}^{0} \frac{w^{2} + 4w - 1}{w + 2} dw.$$
g)
$$\int \frac{e^{\sqrt{3x}}}{\sqrt{2x}} dx.$$
h)
$$\int_{-2}^{-1} \frac{(1 + e^{3x})^{2}}{e^{-3x}} dx.$$
i)
$$\int \frac{6}{(y + 5)^{3}} dy.$$
j)
$$\int_{0}^{4} xe^{4-x^{2}} dx.$$
k)
$$\int y(y + 2)^{2} dy.$$
l)
$$\int_{-1}^{1} (2x + 1)(x^{2} + x)^{4} dx.$$
m)
$$\int \frac{6x^{2} + 4}{e^{x^{3} + 2x}} dx.$$
n)
$$\int_{0}^{5} \sqrt{e^{3z}} dz.$$

2. Calcule las siguientes integrales utilizando el método de integración por partes.

a)
$$\int xe^{-x}dx$$
.
b) $\int \ln(4x)dx$.
c) $\int_{-1}^{3} \frac{x}{(2x+1)^2}dx$.
d) $\int 4xe^{2x}dx$.
e) $\int x^2e^xdx$.
f) $\int_{0}^{1} x^2e^{-2x}dx$.
g) $\int \frac{\ln(x+1)}{x+1}dx$.
h) $\int (\ln(x))^2dx$.
i) $\int y^3 \ln(y)dx$.
j) $\int_{0}^{2} 15x\sqrt{x+1}dx$.
k) $\int \sqrt{x}\ln(x^2)dx$.
l) $\int (x-e^{-x})^2dx$.
m) $\int 2(2x-1)\ln(x-1)dx$.

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

3. Exprese la forma racional dada en términos de fracciones parciales. Considere la posibilidad de tener que dividir primero.

a)
$$\frac{10x}{x^2 + 7x + 6}$$
.

b)
$$\frac{4x-5}{x^2+3x+1}$$
.

$$c) \ \frac{x+5}{x^2-1}.$$

$$d) \frac{x^2+3}{x^3+x}.$$

$$e) \ \frac{3x^2 + 5}{(x^2 + 4)^2}.$$

$$f) \ \frac{x^2}{x^2 + 6x + 8}.$$

4. Calcule las siguientes integrales utilizando el método de fracciones parciales.

a)
$$\int \frac{5x-2}{x^2-x} dx.$$

b)
$$\int \frac{1}{x^2 - 5x + 6} dx$$
.

c)
$$\int \frac{x^4 - 3x^3 - 5x^2 + 8x - 1}{x^3 - 2x^2 - 8x} dx.$$

$$d) \int_{-1}^{1} \frac{2(x^2+8)}{x^3+4x} dx.$$

$$e) \int \frac{3x^3 + x}{(x^2 + 1)^2} dx.$$

$$f) \int \frac{4x}{x^4 - x^2} dx.$$

g)
$$\int_0^1 \frac{2x^3 - 6x^2 - 10x - 6}{x^4 - 1} dx$$
.

h)
$$\int \frac{13x^3 + 24x}{(x^2 + 1)(x^2 + 2)} dx.$$

$$i) \int \frac{x+1}{x^2-x-2} dx.$$

$$j) \int \frac{-3x^3 + 2x - 3}{x^2(x^2 - 1)} dx.$$

$$k) \int \frac{2 - 2x}{x^2 + 7x + 12} dx.$$

$$l) \int_{1}^{2} \frac{2x^{2} + 1}{(x+3)(x+2)} dx.$$

5. Escribe los siguientes problemas de valor inicial como una integral definida y resuelve.

a)
$$\frac{dy}{dx} = e^{2x} + 3, y(0) = -\frac{1}{2}.$$

b)
$$\frac{dy}{dx} = \frac{x+3}{x}, y(1) = 5.$$

c)
$$\frac{dy}{dx} = xe^{5x+2}, y(0) = 1.$$

d)
$$\frac{dy}{dx} = \ln(4x), y(0) = 1.$$

e)
$$\frac{dy}{dx} = \frac{x^2 - 2}{(x - 2)(x - 1)}, y(0) = 1.$$

f)
$$\frac{dy}{dx} = \frac{x^3 - 1}{(x^2 - 1)(x^2 - 1)}, y(0) = 2.$$

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2 ,2	1						
6) /	5x2 - 12	_ dx	-s u -s du -s du -s du -s du -s du	: 45-1	0× + 1			
Jy	(- 6x +1	.	- du	= 3x1 -	6 dx			
			<u>du</u>	- ol x				
			3 _x 1.6					
0								
6	x ² -12.	1 du						
J	x ² -12.	3x2 -6						
(60	<u>*1 - 2)</u> .	4						
	u	3(x2-1)						
	8	1						
	ч	1 3						
h	2							
+ + +	u							
U	4							
- C)							
2	_							
U	u							
			_	. 11				
Z \n	(141)	= 2\n(1x2 - 6x +1) 0				
		, ,						
		2/n/	-6 +1 -41 -2 m(2)) - 21	n(111)			
		2 In (1-41) - 21	n(1 1 1)				
		= 2 x 2	(s) n/					

$\int_{-1}^{0} \frac{w^2 + 4w - 1}{w + 2} dw.$	du = du => du			
	du = du => du			
J du	w 2 + 4 m - 1	(w ² +	Pru - Pradu	
Ja	u	J 0	Vu	
N U 1 C = 5	In 1 w +21 +C			
3 4 dx	u = 4-2y du = -2dx			
u da	du - dx			
u T	+1			
J-2du				
Ja				
2 (du				

0.1	. 1)					_			_			_	_	_			-
$\int \frac{\ln(x)}{x}$	$\frac{(x+1)}{x+1}dx$		u -)nc	X 11)												
J = x	+1		J.,	4				۱.,	۲.,		_ J.						
	u .		Du -		(1)	-	=)	ωυ	. (1	41)	= 45						_
0				X+	1												_
(_	u.	(X+1)	da														
J	XXX																
	* `																
٥	ı																
1 (1 du																
J																	
	٦ ا																
	2																
	2 n(x+1) ¹ 2																_
	7																
- 1	n (x+1)	_															
	7																
																	\pm
																	+
																	4
																	\exists
																	4
																	+
																	_
																	T
																	+
																	+
																	+
																	_
																	T
																	+
																	+
																	7
																	+
																	4

