Лекция 3

Поиск в пространстве состояний:

Стратегии информированного (эвристического) поиска

Поиск «сначала лучший» (Best-First Search – BFS)

- Методы «слепого» поиска в большинстве случаев неэффективны, т. к.
 - •
- Эффективность поиска может быть повышена за счет *использования* дополнительных специфичных для данного класса задач знаний эвристик
- Эти знания:
 - должны позволять оценивать желательность раскрытия той или иной вершины в дереве поиска;
 - их естественно представить **оценочной функцией**, которая возвращает число, отражающее предпочтительность раскрытия вершин;
- **BFS** (Best-First Search) поиск, при котором *первой раскрывается* вершина с максимальной оценкой

Реализация BFS через обобщенный поиск

- В обобщенном алгоритме поиска единственным местом, где можно использовать дополнительные знания об особенностях задачи является функция построения очереди: Queueing-Fn(Queue, Elements)
- Пусть: *Eval-Fn* функция оценки; *Queuing-Fn* функция, упорядочивающая вершины в соответствии с *Eval-Fn*

Тогда BFS поиск на базе обобщенного поиска General-Seach реализуется следующим образом:

function BFS (*problem*, *Eval-Fn*) **returns** a solution sequence **return** GENERAL-SEARCH (*problem*, *Queuing-Fn*)

• Название BFS – строго говоря неточно, т. к. оценочная функция не гарантирует абсолютно лучшего, оптимального выбора вершины для раскрытия, а лишь определяет вершину, которая представляется лучшей с точки зрения скорейшего достижения целевого состояния

Жадный поиск (Greedy Search)

- **Жадный поиск** первой раскрывается вершина, состояние которой оценивается как ближайшее к целевому состоянию
- Обозначим h(n) оценочная стоимость самого дешевого пути из состояния вершины n в целевое состояние
- h(n) эвристическая функция
- Тогда реализация жадного поиска на основе BFS :

function GREEDY-SEARCH (*problem*) **returns** a solution or failure **return** BFS (*problem*, *h*)

Жадный поиск. Пример

В транспортных задачах (поиск путей на графе) в качестве h(n) часто используют расстояние по прямой - h_{SLD}

Жадный поиск: пример

Шаги жадного поиска для Бухареста. В качестве эвристической функции используется h_{SLD} – расстояние по прямой до Бухареста

Эффективность жадного поиска

Жадный поиск:

- НЕ оптимален;
- НЕ полон;
- Временная сложность *O*(b^m), m максимальная глубина пространства поиска;
- Емкостная сложность **O**(b^m), (все вершины сохраняются в памяти);
 - аналогичен поиску в глубину;
 - как правило находит решение (если оно существует) быстро, хотя оно не всегда является оптимальным;
 - в конкретных задачах *при наличии хорошей эвристической функции* емкость и/или время могут быть существенно сокращены

Поиск А*

- Жадный поиск стремится минимизировать оценочную стоимость пути до цели h(n), что позволяет в ряде случаев повысить эффективность поиска, однако не является ни оптимальным, ни полным
- С другой стороны *поиск по критерию стоимости* использует *минимальную стоимость пути до текущего состояния g(n)* и является <u>полным и оптимальным,</u> однако часто оказывается неэффективным
- Естественно *совместить эти два подхода* или стратегии, чтобы использовать их преимущества
- Введем аддитивную оценочную стоимость:

$$f(n) = g(n) + h(n),$$

f(n) — оценочная стоимость наиболее дешевого пути, проходящего через n

Поиск А*

- Эвристика *h*(*n*) является **допустимой** (admissible), если она *никогда* не переоценивает реальное значение (в задачах минимизации)
 - в задачах максимизации эвристика h(n) допустима, если она никогда не недооценивает реальное значение
- Поиск BFS, использующий функцию f(n) = g(n) + h(n), где h(n) является **допустимой** называется **поиском A***
- Реализация поиска A* на основе BFS :

function A*-SEARCH (*problem*) **returns** a solution or failure **return** BFS (*problem*, *g*+*h*)

Поиск А*. Пример

Поиск А* в задаче поиска пути до Бухареста:

Поиск А*. Пример

Шаги поиска A^* для пути в Бухарест. Вершины помечены f = g + h. Значения h - paccmoяние по прямой до Бухареста.

Монотонность эвристик

• f(n) монотонна, если для каждой вершины n и каждого ее последователя n , сгенерированного любым действием a, оценочная стоимость достижения цели из n не больше чем стоимость c(n, a, n') шага достижения n' плюс оценочная стоимость достижения цели из n':

$$f(n) \le c(n, a, n') + f(n')$$

• Иначе говоря, монотонная f(n) никогда не убывает вдоль пути из корня к цели

• Пример. Пусть g(n) = 3, h(n) = 4, т. е. f(n) = 7 g(n') = 4, h(n') = 2, т. е. f(n') = 6

$$n$$
 n , $f(n) = 3 + 4 = 7$ $f(n') = 4 + 2 = 6$

Имеем нарушение монотонности.

Для восстановления используется прием — выравнивание максимального пути: $f(n') = \max(f(n), g(n') + h(n'))$

• Если эвристика *монотонна*, то она *является допустимой!!!*

Представление поиска А* контурами

А* поиск с монотонной эвристикой можно интерпретировать как поиск по контурам, которые фокусируются в направлении целевой вершины:

Контуры для f = 380, f = 400 и f = 420, для исходной точки Arad. Вершины внутри контуров имеют f-стоимость меньше чем значение контура

Поиск А*

А* поиск фокусируется в направлении целевой вершины.

Пусть f^* - стоимость оптимального пути, тогда поиск A^* :

- раскрывает все вершины, у которых $f(n) < f^*$
- может раскрывать некоторые вершины, у которых $f(n) = f^*$

 A^* поиск является **полным**, так как по мере расширения контура с возрастанием f, неизбежно достигается контур, у которого f равна стоимости f^* пути к целевому состоянию.

 A^* -поиск является **оптимально эффективным** — никакой другой алгоритм не гарантирует нахождения оптимальных вершин эффективнее, чем A^* поиск

Полнота поиска А*

- Поскольку A^* раскрывает вершины в порядке возрастания f, он рано или поздно должен достичь целевого состояния.
- Это справедливо, если число узлов с $f(n) \le f^*$ не бесконечно
 - число узлов с $f(n) \le f^*$ может быть бесконечно, если:
 - существует узел с бесконечным коэффициентом ветвления
 - существует путь с конечной стоимостью пути, но бесконечным числом узлов в нем
- Итак, А* является *полным* на графах с конечным коэффициентом ветвления при наличии некоторой положительной константы δ , такой что стоимость каждого оператора не меньше δ

Доказательство оптимальности поиска А*

Пусть G – оптимальное целевое состояние и $f(G) = f^* = g(G)$.

Пусть G_2 – субоптимальное целевое состояние, т.е. $f(G_2) = g(G_2) > f^*$.

Предположим противное: A* выбрал из очереди G₂ (тогда A* завершится с субоптимальным решением)

Рассмотрим ситуацию, когда алгоритм мог бы (гипотетически!) достичь целевое состояние G₂ (субоптимальное) раньше, чем G (оптимальное):

n – вершина, которая в текущий момент является листом на оптимальном пути к G

Если n не выбрана для раскрытия раньше G_2 , то $f(n) \ge f(G_2)$

Поскольку h является **допустимой**, $f^* = f(G) \ge f(n)$.

Таким образом, $f^* \ge f(G_2)$. Поскольку $h(G_2)=0$, имеем $f^* \ge g(G_2)$ – противоречие!

Сложность А*

В общем случае:

- Временная O(bd)
- Емкостная O(bd)
- Суб-экспоненциальный рост при $|h(n) h^*(n)| \le O(\log h^*(n))$
 - для большинства практических эвристик ошибка, к сожалению, по крайней мере пропорциональна стоимости пути

А* является **оптимально эффективным** для любой заданной *h*-функции среди алгоритмов расширяющих пути поиска от корня. Т.е никакой другой оптимальный алгоритм не гарантирует раскрытия меньшего числа вершин.

• Интуитивно ясно: любой алгоритм, который не раскрывает все вершины в контурах между корнем и контуром цели рискует пропустить оптимальное решение

Эвристики h(n) для A^*

Пример головоломки 8-ка

Целевое состояние

Эвристики:

- h₁ число фишек, находящихся в неверной позиции
- h₂ сумма Манхэттенских расстояний фишек от их целевых позиций
- h_2 доминирует над h_1 : $\forall n, h_2(n) \ge h_1(n)$

Эвристики h(n) для A^*

Сравнение стоимости поиска и эффективного коэффициента ветвления для *поиска с итеративным углублением* и поиска A* с h1 и h2. Данные усреднены по 100 примерам 8-ки, для решений различной глубины

	Search Cost			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20		7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Эффективный коэффициент ветвления (*effective branching factor*) – среднее число преемников узла в дереве поиска после применения эвристик. Характеризует качество используемой эвристической функции.

Всегда лучше использовать эвристику h(n) с б**о**льшими значениями, при условии что она не делает переоценки, т.к. A^* раскрывает все вершины с $f(n) < f^*$