

Análise das Formaturas Operacionais no Combate Aéreo Além do Alcance Visual para Infiltração em Território Inimigo

Alunos:

Francisco H. Figueiredo Araujo Cap Eng Murillo Santilli Szvaticsek Cap Av Marco Antonio Pacheco da Silva Orientadores:
João P. A. Dantas
Christopher S. Cerqueira
Cesar A. C. Marcondes

DEFESA

APOIO

Introdução

Formaturas Operacionais

Metodologia

- Pergunta Operacional
- Métrica
- Simulações
- Resultados
- Conclusões
- Referências

INTRODUÇÃO

INTRODUÇÃO

FORÇA AÉREA BRASILEIRA

 F-5M: Anápolis (GO), Santa Cruz (RJ) e Canoas (RS)

A-29 Supertucano:

 Boa Vista (RR),
 Porto Velho (RO),
 Campo Grande (MS)
 e Natal (RN)

A-1M (AMX): Santa Maria (RS)

 F-39 Gripen: início de operação – primeira unidade no Brasil em 2020.

INTRODUÇÃO

Principais missões:

- Interceptação (Defesa Aérea)
- Ataque (emprego Ar-Solo)
- Escolta (emprego Ar-Ar)
- Combate Aéreo (WVR e BVR)
- Apoio Aéreo Aproximado
- Reconhecimento Armado
- Reconhecimento Visual

CENÁRIO

Formaturas operacionais na Aviação de Caça

A sobrevivência das aeronaves operando em ambientes hostis, de modo a cumprir missões com sucesso, depende diretamente das táticas empregadas (Ball, 2003)

SOBREVIVÊNCIA NOS CONFLITOS: DISCIPLINA DE DESIGN FORMAL

OTIMIZAR RESULTADOS

FORMATURAS OPERACIONAIS NA AVIAÇÃO DE CAÇA

"Never break your formation into less than two-ship elements. **Stay in pairs**. A man by himself is a liability, a two-ship team is an asset. If you are separated, join up immediately with other friendly airplanes."

Major Thomas B. "Tommy" McGuire, USAAF

(Shaw, 1985)

Modelagem e Simulação

- Avaliar os resultados;
- Apoiar à tomada de decisão;
- Otimizar o emprego de recursos antes da execução real.

(Dantas et al., 2023)

Formaturas

no Ambiente de Simulação Aeroespacial

Line Abreast

- Visão semelhante do hemisfério traseiro (Shaw, 1985);
- Excelente capacidade de observação (United States, 2024);
- Avanço angular do ala, pode não ser completamente eficiente em caso de manobras agressivas inesperadas (Shaw, 1985).

Formaturas

Fighting Wing

- Busca a realização de manobras de engajamento conjunto do elemento;
- Proporciona posição fluida ao ala (cone 60°);
- Possibilita manobras agressivas por parte do líder (Shaw, 1985).

Lead Trail

 Situações de engajamento que possibilita liberdade de ação para tomadas de decisão do líder;

 Ala manobra facilmente em seu setor traseiro para segui-lo e apoiá-lo (Shaw, 1985)

Formaturas

Wedge

 Permite maior energia potencial ao ala, em posição alta e externa ao voo do líder, proporcionando apoio mútuo;

 Permite manobras rápidas do líder com assistência da outra aeronave (United States, 2024).

METODOLOGIA

HIPÓTESE DE PESQUISA

Pergunta Operacional

Quais os impactos das formaturas operacionais no combate BVR 2x2 para infiltração em território inimigo?

CENÁRIO DE SIMULAÇÃO

MÉTRICA

Mission Integrated Result Value (MIRV)

🔼 Pd – Dano no Alvo (Building Damage)

$$Pd = \text{building_damage} \times 3$$

Representa o **nível de dano causado ao alvo principal** (ex: radar inimigo).

Pa – Aeronaves Inimigas Abatidas (Red Killed)

$$Pa = \frac{\text{acft_killed_red}}{\text{acft_total_red}}$$

Mede a **eficiência ofensiva do time azul** sobre o inimigo (vermelho).

Pp – Perdas do Atacante (Prop.de Sobrevivência Azul)

$$Pp = rac{ ext{acft_total_blue} - ext{acft_killed_blue}}{ ext{acft_total_blue}}$$

Reflete o nível de **sobrevivência das aeronaves do time azul** (atacante).

Pm – Emprego de Meios (Eficiência de Mísseis)

$$Pm = rac{ ext{aam_total_blue} - (ext{aam_lost_blue} + ext{aam_hit_blue})}{ ext{aam_total_blue}}$$

Avalia a capacidade de **preservar munição** (mísseis ar-ar).

 $MIRV = 0.3 \cdot Pd + 0.5 \cdot Pp + 0.1 \cdot Pa + 0.1 \cdot Pm$

(Viscardi et al., 2024)

QUANTIDADE DE SIMULAÇÕES

Fórmula para estimar o Tamanho da Amostra

$$E = Z_{lpha/2} \cdot rac{\sigma}{\sqrt{n}} \Rightarrow n = \left(rac{Z_{lpha/2} \cdot \sigma}{E}
ight)^2$$

Onde:

n: número de simulações (amostras)

 $Z\alpha/2$: valor crítico da distribuição normal padrão correspondente ao **nível de confiança**

 σ : desvio padrão populacional estimado da variável de interesse

E: erro máximo de estimativa tolerado

(Montgomery & Runger, 2018)

Erro máximo de Estimativa (E)	Simulações (n)	Custo por Execução AsaCoin \$	Custo Total AsaCoin \$
5,00%	58	AC\$ 61,35	AC\$ 245,41
4,00%	91	AC\$ 95,86	AC\$ 383,45
3,00%	162	AC\$ 170,42	AC\$ 681,69
2,00%	365	AC\$ 383,45	AC\$ 1.533,81
1,00%	1461	AC\$ 1.533,81	AC\$ 6.135,23
0,50%	5843	AC\$ 6.135,23	AC\$ 24.540,91

RESULTADOS

Métrica Principal e Fatores

Cenário	Pd	Рр	Pa	Pm	MIRV
Lead Trail	0,928	0,745	0,093	0,507	0,711
Fighting Wing	0,895	0,670	0,119	0,444	0,660
Line Abreast	0,805	0,604	0,100	0,384	0,592
Wedge	0,793	0,560	0,104	0,347	0,563
Média	0,855	0,645	0,104	0,421	0,632
Desvio Padrão	0,067	0,081	0,011	0,070	0,067

RESULTADOS

Análise Estatística

- Teste de Normalidade Shapiro-Wilk
 - p < 0,05 em todas as formações</p>
 - Dados da MIRV não seguem distribuição normal
 - ANOVA foi descartada
- Teste de Kruskal-Wallis
 - Teste não paramétrico para as 4 formações existentes
 - \circ p = 1,46 × 10⁻¹⁰
 - Conclusão: Há diferença estatística entre ao menos duas formações
- Análise Bootstrap (10.000 reamostragens)
 - Teste não paramétrico para as 4 formações existentes

RESULTADOS

Bootstrap

Comparação	Diferença Média	Valor-p	Significância	
Lead Trail vs Line Abreast	0,119	0,000	Significativa	
Lead Trail vs Fighting Wing	0,051	0,005	Significativa	
Lead Trail vs Wedge	0,148	0,000	Significativa	
Line Abreast vs Fighting Wing	-0,068	0,001	Significativa	
Line Abreast vs Wedge	0,029	0,193	X Não significativa	
Fighting Wing vs Wedge	0,0969	0,000	Significativa	2

CONCLUSÃO

CONCLUSÃO

Simulação

Simulações no ASA permitiram **analisar o desempenho de formações táticas** em missão de infiltração com ataque ao solo, sob combate BVR.

Formaturas mais eficazes identificadas

Lead Trail e **Fighting Wing** obtiveram os melhores resultados na métrica MIRV, destacando-se em sobrevivência, ofensividade e uso racional de mísseis.

Contribuição para a decisão tática real

Os achados oferecem suporte objetivo à tomada de decisão por Unidades Aéreas da FAB, otimizando o emprego de formaturas em missões reais.

Limitações do estudo

Resultados válidos <u>apenas para o cenário testado</u>. Necessária validação futura com diferentes ameaças, aeronaves e parâmetros operacionais.

Recomendações para estudos futuros

Expandir <u>simulações para novos cenários</u>, variar as regras de engajamento e integrar dados reais para validação operacional e doutrinária.

ROTEIRO

Introdução

Formaturas Operacionais

Metodologia

- Pergunta Operacional
- Métrica
- Simulações
- Resultados
- Conclusões
- Referências

REFERÊNCIAS

- R. E. Ball, The Fundamentals of Aircraft Combat Survivability: Analysis and Design, 2nd ed. Reston, Virginia: American Institute of Aeronautics and [1] Astronautics, 2003.
- [2] M. Viscardi, J. P. A. Dantas, D. Geraldo, e A. Passaro, "Manobra Winding: Defesa Contra Mísseis Passivos e Semiativos Superfície-Ar," in Anais do XXV Simpósio de Aplicações Operacionais em Áreas de Defesa (SIGE), Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, Brasil, out. 2024.
- Y. Kong, W. Wei, L. Zhang, Y. Chen, H. Zhang, and B. Chen, "Hierarchical reinforcement learning from competitive self-play for dual-aircraft formation air [3] combat," Chinese Journal of Aeronautics, vol. 36, no. 10, pp. 281–292, Oct. 2023, doi: 10.1016/j.cja.2023.06.016.
- R. L. Shaw, Fighter Combat: Tactics and Maneuvering. Annapolis, Maryland: Naval Institute Press, 1985. [4]
- J. P. A. Dantas, D. Geraldo, A. N. Costa, M. R. O. A. Maximo, e T. Yoneyama, "ASA-SimaaS: Advancing Digital Transformation through Simulation Services in [5] the Brazilian Air Force" in Anais do Simpósio de Aplicações Operacionais em Áreas de Defesa (SIGE), São José dos Campos, Brasil, 2023.
- J. P. A. Dantas, A. N. Costa, V. C. F. Gomes, A. R. Kuroswiski, F. L. L. Medeiros, e D. Geraldo, "ASA: A Simulation Environment for Evaluating Military [6] Operational Scenarios," arXiv preprint arXiv:2207.12084, 2022.
- United States. Department of the Air Force. "T-38C Flying Fundamentals. AETC Manual 11-251". 10 set. 2024. 203 p. Disponível em: https://static.e- [7] publishing.af.mil/production/1/aetc/publication/aetcman11-251/aetcman11-251.pdf>. Acesso em: 09/06/2025.
- United States. Department of the Air Force. "Tactical Doctrine T-38C Employment Fundamentals/Introduction to Fighter Fundamentals (IFF"). AETC Tactics, [8] Techniques, and Procedures 11-1, 31 dez. 2024. 166 p. Disponível em: https://static.e-publishing.af.mil/production/1/aetc/publication/aetcttp11-1/aetcttp11-1.pdf. Acesso em:
- 08/06/2025.
- A. Gosavi, Simulation-Based Optimization, 2nd ed., vol. 55. in Operations Research/Computer Science Interfaces Series, vol. 55. Boston, MA: Springer US, [9] 2015.
- [10] A. R. Kuroswiski, F. L. L. Medeiros, M. M. De Marchi, and A. Passaro, "Beyond visual range air combat simulations: validation methods and analysis using agent-based models," The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, Nov. 2023.
- M. Viscardi, J. P. A. Dantas, D. Geraldo, and A. Passaro, "Advanced Defensive Tactics: Integrating Simulation and Machine Learning in Aerial Warfare," [11] Spectrum - The Journal of Operational Applications in Defense Areas, vol. 25, no. 1, pp. 12–17, 2024. doi: 10.55972/spectrum.v25i1.403.
- D. C. Montgomery, Design and Analysis of Experiments, 9th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2017. [12]
- D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, 7th ed., Hoboken, NJ: Wiley, 2018. [13]
- Davis, Robert. "Forward Arming and Refueling Points for Fighter Aircraft: Power Projection in an AntiAccess Environgment". Air & Space Power Journal, v. 28, [14]
- n. 5, set./ out, p. 5-28, 2014. Disponível em: https://www.airuniversity.af.edu/Portals/10/ASPJ/journals/Volume-28 Issue-5/F-Davis.pdf>. Acesso em: 04/04/2024.
- M. D. McKay, R. J. Beckman, and W. J. Conover, "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a [15] Computer Code," Technometrics, vol. 21, no. 2, pp. 239-245, May 1979, doi: 10.2307/1268522.
- [16] A. L. Dideriksen. "Enhancing performance criteria to improve U.S. military aviation training". Tese (Doutorado em Engenharia Industrial) – The University of Iowa, Iowa City, 2021. Disponível em: https://iro.uiowa.edu/esploro/outputs/doctoral/Enhancing-performance-criteria-to-improve- US/9984097369002771/filesAndLinks?index=0>. Acesso 17/06/2025.

OBRIGADO!

Murillo Santilli Szvaticsek

szvaticsek@ita.br

Marco Antonio Pacheco da Silva

marco.silva.102036@ga.ita.br

Francisco Henrique Figueiredo Araujo

figueiredofhfa@ita.br

Análise das Formaturas Operacionais no Combate Aéreo Além do Alcance Visual para Infiltração em Território Inimigo

Alunos:

Francisco H. Figueiredo Araujo Cap Eng Murillo Santilli Szvaticsek Cap Av Marco Antonio Pacheco da Silva Orientadores:
João P. A. Dantas
Christopher S. Cerqueira
Cesar A. C. Marcondes

DEFESA

APOIO

