МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г.Шухова)

Курсовая работа

дисциплина «Теория цифровых автоматов» по теме «Синтез цифровых автоматов по граф-схемам алгоритмов»

Выполнил: студент группы ВТ-31 Макаров Д.С.

Проверил: Рязанов Ю.Д.

Содержание

C	одержание	1
1	Введение	2
2	Построение граф-схемы алгоритма.	2
3	Получение автоматов Мили и Мура в табличном и графовом виде. 3.1 Автомат Мили.	3 3 4
4	Получение функций возбуждения триггеров и минимизация системы булевых функций автоматов. 4.1 Автомат Мили. D-триггер.	5 5 7 9
5	Программа-симулятор автомата и ее тестирование.	16
6	Вывод	17
7	Список литературы	18
8	Приложение	19

Введение

Дана таблица с заданием.

Номер вершины	Тип вершины	Переход по «0»	Переход по «1»	Содержимое вершины
1	Начало	2	2	
2	Условие	3	5	X ₁
3	Условие	5	9	X ₃
4	Действие	6	6	y ₁ y ₂
5	Действие	7	7	y ₂
6	Условие	4	8	X ₂
7	Условие	4	9	X ₃
8	Действие	10	10	y ₂
9	Действие	7	7	y ₂ y ₃
10	Конец			

Рис. 1: Таблица с заданием

Построение граф-схемы алгоритма.

Представим алгоритм данный в таблице, в виде граф-схемы алгоритма. Так же отметим на ГСА состояния автоматов Мили и Мура.

Рис. 2: Граф-схема алгоритма

Для дальнейшего удобства записи входов и выходов дадим им символьные метки.

Получение автоматов Мили и Мура в табличном и графовом виде.

Получим по ГСА таблицы автоматов Мили и Мура.

3.1 Автомат Мили.

Текущее состояние	Входной сигнал	Состояние перехода	Выход Мили
	x_1	a_2	y_3
a_1	$\overline{x}_1 x_3$	a_2	y_2y_3
	$\overline{x}_1 \overline{x}_3$	a_2	y_3
a.	x_3	a_2	y_2y_3
a_2	\overline{x}_3	a_3	y_1y_2
a.	\overline{x}_2	a_3	y_1y_2
a_3	x_2	a_1	y_2

Рис. 3: Таблица автомата Мили

Построим граф автомата Мили.

Рис. 4: Граф автомата Мили

Выполним кодирование состояний автомата Мили, для хранения состояний данного автомата необходимо 2 триггера.

Кодирование состояний автомата Мили

Состояние	Код
a_1	00
a_2	01
a_3	10

Получим функции выходов автомата Мили. Выходы автомата Мили зависят от входов и от текущего состояния.

Функция выходов Мили y_1 :

$$(\overline{t}_1t_2\overline{x}_3)\lor(t_1\overline{t}_2\overline{x}_2)$$
 Функция выходов Мили $y_2:$ $(t_1\overline{t}_2x_2)\lor(\overline{t}_1\overline{t}_2\overline{x}_1x_3)\lor(\overline{t}_1t_2x_3)\lor(\overline{t}_1t_2\overline{x}_3)\lor(t_1\overline{t}_2\overline{x}_2)$ Функция выходов Милли $y_3:$ $(\overline{t}_1\overline{t}_2x_1)\lor(\overline{t}_1\overline{t}_2\overline{x}_1\overline{x}_3)\lor(\overline{t}_1\overline{t}_2\overline{x}_1x_3)\lor(\overline{t}_1t_2x_3)$

3.2 Автомат Мура.

Получим по ГСА автомат Мура,

Текущее состояние	Выход Мура	Входной сигнал	Состояние перехода
		x_1	a_2
a_1	y_2	$\overline{x}_1 x_3$	a_3
		$\overline{x}_1 \overline{x}_3$	a_4
	245	x_3	a_3
a_2	y_3	\overline{x}_3	a_5
a.	210.210	x_3	a_3
a_3	y_2y_3	\overline{x}_3	a_5
~	y_3	x_3	a_3
a_4	93	\overline{x}_3	a_5
		\overline{x}_2	a_5
a_5	y_1y_2	x_2	a_1

Рис. 5: Таблица автомата Мура

Рис. 6: Граф автомата Мура

Выполним кодирование состояний автомата Мура, для хранения состояний данного автомата необходимо 3 триггера.

Кодирование состояний автомата Мура

Состояние	Код
$egin{array}{c} a_1 \ a_2 \end{array}$	000 001

Состояние	Код
a_3	010
a_4	011
a_5	100

Получим функции выходов Мура. Выходы автомата Мура зависят только текущего состояния.

```
Функция выходов Мура r_1: (\bar{t}_1t_2t_3) Функция выходов Мура r_2: (\bar{t}_1\bar{t}_2t_3)\vee(\bar{t}_1t_2t_3)\vee(t_1\bar{t}_2\bar{t}_3) Функция выходов Мура r_3: (\bar{t}_1\bar{t}_2t_3)\vee(\bar{t}_1t_2\bar{t}_3)
```

Получение функций возбуждения триггеров и минимизация системы булевых функций автоматов.

4.1 Автомат Мили. D-триггер.

Получим функции возбуждения D-триггера для автомата Мили.

Функция возбуждения D-триггера ϕ_1 :

 $(\overline{t}_1t_2\overline{x}_3)\vee(t_1\overline{t}_2\overline{x}_2)$

Функция возбуждения D-триггера ϕ_2 :

 $(\overline{t}_1\overline{t}_2x_1) \vee (\overline{t}_1\overline{t}_2\overline{x}_1x_3) \vee (\overline{t}_1\overline{t}_2\overline{x}_1\overline{x}_3) \vee (\overline{t}_1t_2x_3)$

Минимизируем систему булевых функций $(y_1, y_2, y_3, \phi_1, \phi_2)$.

СДНФ системы булевых функций

 $y_1 = \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee t_1 \overline{t}_2 x_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 x_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 x$

 $y_2 = \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 x_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 x_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x$

 $y_3 = \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{$

 $f_1 = \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 x_3 \overline{x}_2 x_1$

 $f_2 = \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{$

Получим все простые импликанты системы булевых функций с учетом признака принадлежности.

Простые импликанты после "склеивания":

1. $\bar{t}_1 t_2 \bar{x}_3 (1, 2, 4)$

- 2. $t_1\overline{t}_2\overline{x}_2(1,2,4)$
- 3. $\overline{t}_2 x_3 \overline{x}_1(2)$
- 4. $\overline{t}_1 x_3 \overline{x}_1(2,3,5)$
- 5. $\bar{t}_1 t_2 x_3(2,3,5)$
- 6. $\bar{t}_1 t_2(2)$
- 7. $t_1\bar{t}_2(2)$
- 8. $\bar{t}_1 x_3(3,5)$
- 9. $\bar{t}_1\bar{t}_2(3,5)$

Из полученных импликант построим таблицу импликант.

Рис. 7: Таблица импликант. Часть 1.

t1!t2!x3x2!x1	t1!t2!x3x2x1	t1!t2x3x2!x1	t1!t2x3x2x1	It1It2I	x3!x2!x1	It1It2I	x3!x2x1	It1It2	1x3x2!x1	It1It2	x3x2x1	It1It2	x3!x2x1	It1It2:	x3x2x1
2	2	2	2	3	5	3	5	3	5	3	5	3	5	3	5
		*													
*	*	*	*												
				*	*	*	*	*	*	*	*	*	*	*	*

Рис. 8: Таблица импликант. Часть 2.

Полученное покрытие:

- 1. $\overline{t}_2 x_3 \overline{x}_1(2)$
- 2. $t_1 \overline{t}_2 \overline{x}_2(1,4)$
- 3. $\overline{t}_1 t_2 \overline{x}_3 (1, 2, 4)$
- 4. $\bar{t}_1 t_2 x_3(2,3,5)$
- 5. $t_1\bar{t}_2(2)$
- 6. $\bar{t}_1\bar{t}_2(3,5)$

Далее применим факторизационный метод для получения схемы в базисе HE-ИЛИ-И с элементами имеющими 2 входа.

	t1	!t1	t2	!t2	x1	!x1	x2	!x2	x3	!x3	z1	z2	z3
u1				-		-			*			*	
u2	*			-		(38 2		-					*
u3		0.50	-							*	*		
u4		150	-						*		*		
u5	*			*					D				
u6		*		*		. 59				- 5			
z1		*	*										
z2				*		*							
z3				*				*					
	u1	u2	u3	u4	u5	u6	v1	v2					
y1		*	*			90		. V					
y2	-		-	-	-		ż	*					
уЗ				*		*							
f1		*	*		9 - 1								
f2				*		*							
v1	*		*					7					
v2		P P		*	*	10		W	9				

Рис. 9: Таблицы факторизации

Подсчитаем общее кол-во входов получившейся схемы.

Входы элементов НЕ: 5

Входы элементов И: 18

Входы элементов ИЛИ: 14

Сложность по Квайну: 37

По этому же принципу получим схему автомата Мили с Т-триггерами и автоматов Мура.

4.2 Автомат Мили. Т-триггер.

Функция возбуждения Т-триггера ϕ_1 :

 $(\overline{t}_1t_2\overline{x}_3)\vee(t_1\overline{t}_2x_2)$

Функция возбуждения Т-триггера ϕ_2 :

 $(\overline{t}_1\overline{t}_2x_1)\vee(\overline{t}_1\overline{t}_2\overline{x}_1x_3)\vee(\overline{t}_1\overline{t}_2\overline{x}_1\overline{x}_3)\vee(\overline{t}_1t_2\overline{x}_3)$

СДНФ системы булевых функций

 $y_1 = \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee t_1 \overline{t}_2 x_3 \overline{x}_2 x_1 \vee t_1 \overline{t}_2 x_3 \overline{x}_2 x$

 $y_2 = \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 x_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}$

 $y_3 = \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{$

 $f_1 = \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{x}_3 x_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 x_2 \overline{x}_1 \vee t_1 \overline{t}_2 \overline{x}_3 x_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 x_2 x_1 \vee t_1 \overline{t}_2 \overline{x}_3 x_2 x_1 \vee t_1 \overline{t}_2 x_3 x_2 x_1 \vee$

 $f_2 = \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee$

Простые импликанты после "склеивания":

1. $\bar{t}_1\bar{t}_2x_3\bar{x}_1(2,3,5)$

- 2. $\bar{t}_1 t_2 \bar{x}_3 (1, 2, 4, 5)$
- 3. $t_1 \overline{t}_2 \overline{x}_2(1,2)$
- 4. $\overline{t}_2 x_3 \overline{x}_1(2)$
- 5. $\bar{t}_1 x_3 \bar{x}_1(2,3)$
- 6. $\bar{t}_1 t_2 x_3(2,3)$
- 7. $t_1 \bar{t}_2 x_2(2,4)$
- 8. $\bar{t}_1 t_2(2)$
- 9. $\bar{t}_1 \bar{x}_3(5)$
- 10. $t_1\bar{t}_2(2)$
- 11. $\bar{t}_1 x_3(3)$
- 12. $\bar{t}_1\bar{t}_2(3,5)$

	101	1t2bc	30x21:	ct	-	11290	3h(2)	1	It	1121x3	a2tr			1129	c3x2x	1	1112b	3tx2fx1	111121	x30x2:	a ti	t2x3b	c29x1	t1lt2x3	lx2x1	Itti	t2x3b	20x1	11111	2x3x2	9x1	It112x3	3bt2bt1	It112x	3tx2x1	It1t2x	3x21x1	R1t2x	3x2x1	t18t2	1x3x2t	oct
	1	2	4	5	1	2	4	5	1	2	4	5	1	2	4	5	1	2	1	2		1	2	1	2	2	3	5	2	3	5	2	3	2	3	2	3	2	3	2	4	
R182x34x1(2,3,5)				Т																											*											
H1t2b(3(1,2,4,5)		٠		٠								•																														
t1lt2b(2(1,2)																								*																		
ft2x3tx1(2)																																										
ff1x3fx1(2,3)																														^			*			-						
R112x3(2,3)																																										
t1lt2x2(2,4)																																										
It1t2(2)																																										
It1b(3(5)																																										
11112(2)																																										
H1x3(3)																																										
H1R2(3,5)																														*												

Рис. 10: Таблица импликант. Часть 1.

t1!t2!x	3x2x1	t1!t2x	3x2!x1	t1!t2x	3x2x1	It1It2b	3!x2!x1	It1It2b	3!x2x1	It1It2b	3x2!x1	It1It2I	(3x2x1	It1It2x	3!x2x1	It1It2x	3x2x1
2	4	2	4	2	4	3	5	3	5	3	5	3	5	3	5	3	5
		*															
*	*	*	*	*	*												
							*		*		*		*				
*														*		*	
							*	*	*	*		*	*	*	*		

Рис. 11: Таблица импликант. Часть 2.

Полученное покрытие

- 1. $\bar{t}_1 t_2 \bar{x}_3 (1, 2, 4, 5)$
- 2. $\bar{t}_1\bar{t}_2(3,5)$
- 3. $t_1\bar{t}_2x_2(2,4)$
- 4. $t_1 \overline{t}_2 \overline{x}_2(1,2)$
- 5. $\bar{t}_1 t_2 x_3(2,3)$
- 6. $\overline{t}_2 x_3 \overline{x}_1(2)$

	t1	!t1	t2	!t2	x1	!x1	x2	!x2	х3	!x3	z1	z2	z3
u1		=	-70							*	*		
u2		*		*									
u3	-						*					*	
u4	-							*				*	
u5		-	170						*		*		
u6				*		*			*				*
z1		*	*			8 3					83		2
z2	*			*									
z3				*		2							
	u1	u2	u3	u4	u5	u6	v1	v2	v3				
y1	*			*									
y2	100			, E8	ु	0.0	-	*	×				
у3		*			*								
f1	*		*										
f2	*	*				8 - 3							
v1	*		*										
v2				*	*								
v3			3	44 B		*	*	2					

Рис. 12: Таблицы факторизации

Входы элементов НЕ: 5 Входы элементов И: 18 Входы элементов ИЛИ: 16 Сложность по Квайну: 39

4.3 Автомат Мура. D-триггер.

Функция возбуждения D-триггера ϕ_1 :

 $(\overline{t}_1\overline{t}_2t_3\overline{x}_3)\vee(\overline{t}_1t_2\overline{t}_3\overline{x}_3)\vee(\overline{t}_1t_2t_3\overline{x}_3)\vee(t_1\overline{t}_2\overline{t}_3\overline{x}_2)$

Функция возбуждения D-триггера ϕ_2 :

 $(\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1x_3)\vee(\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1\overline{x}_3)\vee(\overline{t}_1\overline{t}_2t_3x_3)\vee(\overline{t}_1t_2\overline{t}_3x_3)\vee(\overline{t}_1t_2t_3x_3)$

Функция возбуждения D-триггера ϕ_3 :

 $(\overline{t}_1\overline{t}_2\overline{t}_3x_1)\vee(\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1\overline{x}_3)$

СДНФ системы булевых функций

 $y_1 = \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 t_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 x_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 x_3 x_2 x_1$

 $y_2 = \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t$

 $y_3 = \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 x_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_$

 $f_1 = \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 t_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{t}_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3$

 $f_2 = \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1$

Простые импликанты после "склеивания":

- 1. $\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_3\overline{x}_1(5,6)$
- 2. $\bar{t}_1 t_2 t_3 \bar{x}_3 (1, 2, 4)$
- 3. $\bar{t}_1 t_2 t_3 x_3 (1, 2, 5)$
- 4. $\bar{t}_1\bar{t}_2t_3\bar{x}_3(2,3,4)$
- 5. $\bar{t}_1\bar{t}_2t_3x_3(2,3,5)$
- 6. $t_1 \overline{t}_2 \overline{t}_3 \overline{x}_2(2,4)$
- 7. $\bar{t}_1 t_2 \bar{t}_3 \bar{x}_3(3,4)$
- 8. $\bar{t}_1 t_2 \bar{t}_3 x_3 (3,5)$
- 9. $\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1(5)$
- 10. $\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_3(6)$
- 11. $\bar{t}_1\bar{t}_2\bar{t}_3x_1(6)$
- 12. $\bar{t}_1 t_2 t_3 (1,2)$
- 13. $\overline{t}_1 t_3 \overline{x}_3(2,4)$
- 14. $\bar{t}_1 t_2 \bar{x}_3(4)$
- 15. $\bar{t}_1 t_3 x_3(2,5)$
- 16. $\bar{t}_1 t_2 x_3(5)$
- 17. $\bar{t}_1 x_3 \bar{x}_1(5)$
- 18. $\bar{t}_1\bar{t}_2t_3(2,3)$
- 19. $t_1\bar{t}_2\bar{t}_3(2)$
- 20. $\bar{t}_1 t_2 \bar{t}_3(3)$
- 21. $\bar{t}_1 t_3(2)$

Рис. 13: Таблица импликант. Часть 1.

Рис. 14: Таблица импликант. Часть 2.

lt1lt2lt3lx	3!x2!x1	It1It2It3	lx3x2lx1	lt1lt2lt3x3lx2lx1	!t1!t2!t3x3x2!x1	lt1lt2lt3lx3lx2x1	lt1lt2lt3lx3x2x1	lt1lt2lt3x3lx2x1	lt1lt2lt3x3x2x1
5	6	5	6	5	5	6	6	6	6
*	*	*	*						
*		*	*	*	*	*			
			*			*		*	*
									1000
				*	*				
					1				

Рис. 15: Таблица импликант. Часть 3.

Полученное покрытие:

- 1. $\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_3(6)$
- 2. $t_1 \bar{t}_2 \bar{t}_3 \bar{x}_2(4)$
- 3. $\bar{t}_1\bar{t}_2\bar{t}_3x_1(6)$
- 4. $\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1(5)$
- 5. $\bar{t}_1 t_2 x_3(5)$
- 6. $t_1\overline{t}_2\overline{t}_3(2)$
- 7. $\overline{t}_1 t_2 \overline{x}_3(4)$
- 8. $\bar{t}_1\bar{t}_2t_3x_3(2,3,5)$
- 9. $\bar{t}_1 t_2 t_3 (1,2)$
- 10. $\bar{t}_1\bar{t}_2t_3\bar{x}_3(2,3,4)$
- 11. $\bar{t}_1 t_2 \bar{t}_3 (3)$

	t1	!t1	t2	!t2	t3	!t3	x1	!x1	x2	!x2	х3	!x3	z1	z2	z3	z4	z5	Z
u1		-		"# <u>*</u>		120						*		*				
u2	-			-		-				*					*			1
u3		-		070		(10)	*							я				Г
u4		-		353		353		*						2				
u5		2	2								*							1
u6	-		3	-		-									*			
u7		-	-									*						5
u8		-			-						*		*					Г
u9		-	_		×						9 9							- 1
u10		-		-	-							*	×					Г
u11		-	-			×												
z1					*											*		Г
z2		-		19-		*	1									*		
z3	*			-		37.0											*	Г
z4		*		*							2 1							5
z5				*		*											, 1	
z6		*	*															
	u1	u2	u3	u4	u5	u6	u7	u8	u9	u10	u11	v1	v2	v3	ν4			
y1									*									
y2						-		-	ं	-				*	*			
у3				, ×				200		-	*			*				
f1		*					-			-			ż					
f2				3570	-			*				*						
f3	*		*															
v1		_		*	×	_		_										
v2							*			*								
v3								*		*								
v4						*			*									

Рис. 16: Таблицы факторизации

Входы элементов НЕ: 6 Входы элементов И: 32 Входы элементов ИЛИ: 18 Сложность по Квайну: 56

4.4 Автомат Мура. Т-триггер.

Функция возбуждения Т-триггера ϕ_1 :

 $(\overline{t}_1\overline{t}_2t_3\overline{x}_3) \vee (\overline{t}_1t_2\overline{t}_3\overline{x}_3) \vee (\overline{t}_1t_2t_3\overline{x}_3) \vee (\overline{t}_1\overline{t}_2\overline{t}_3x_2)$

Функция возбуждения Т-триггера ϕ_2 :

 $(\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1x_3)\vee(\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1\overline{x}_3)\vee(\overline{t}_1\overline{t}_2t_3x_3)\vee(\overline{t}_1t_2\overline{t}_3\overline{x}_3)\vee(\overline{t}_1t_2t_3\overline{x}_3)$

Функция возбуждения Т-триггера ϕ_3 :

 $(\overline{t}_1\overline{t}_2\overline{t}_3x_1)\vee(\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1\overline{x}_3)\vee(\overline{t}_1\overline{t}_2t_3x_3)\vee(\overline{t}_1t_2t_3x_3)\vee(\overline{t}_1\overline{t}_2t_3\overline{x}_3)\vee(\overline{t}_1t_2t_3\overline{x}_3)\vee(\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_3)\vee(\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_3$

СДНФ системы булевых функций

 $y_1 = \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 t_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 x_3 x_2 x_1 \vee \overline{t}_1 \nabla \overline{t}_1 t_2 t_3 x_3 x_2 x_1 \vee \overline{t}_1 \nabla \overline{t}_1 t_2 t_3 x_3 x_2 x_1 \vee \overline{t}_1 \nabla \overline{t}_1 t_2 t_3 x_3 x_2 x_1 \vee \overline{t}_1 \nabla \overline{t}_1 \nabla$

 $y_2 = \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline$

 $y_3 = \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline$

 $\overline{t}_1t_2\overline{t}_3\overline{x}_3x_2x_1\vee\overline{t}_1t_2\overline{t}_3x_3\overline{x}_2\overline{x}_1\vee\overline{t}_1t_2\overline{t}_3x_3\overline{x}_2x_1\vee\overline{t}_1t_2\overline{t}_3x_3x_2\overline{x}_1\vee\overline{t}_1t_2\overline{t}_3x_3x_2x_1$

 $f_1 = \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 t_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{t}_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{t}_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 t_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 t_2 \overline{t}_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{t}_3 \overline{t}_2 \overline{t}_3 \overline{t}_3$

 $f_2 = \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 t_3 x_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1$

 $f_3 = \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 x_2 x_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 x_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 x_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2 \overline{x}_1 \vee \overline{t}_1 \overline{t}_2 \overline{t}_3 \overline{x}_3 \overline{x}_2$

Простые импликанты после "склеивания":

- 1. $\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_3\overline{x}_1(5,6)$
- 2. $\overline{t}_1 t_2 t_3 \overline{x}_3 (1, 2, 4, 5, 6)$
- 3. $\bar{t}_1\bar{t}_2t_3\bar{x}_3(2,3,4,6)$
- 4. $\bar{t}_1\bar{t}_2t_3x_3(2,3,5,6)$
- 5. $\overline{t}_1\overline{t}_2x_3\overline{x}_1(5)$
- 6. $t_1\bar{t}_2\bar{t}_3x_2(2,4)$
- 7. $\bar{t}_1 t_2 \bar{t}_3 \bar{x}_3 (3, 4, 5)$
- 8. $\overline{t}_1\overline{t}_3\overline{x}_3\overline{x}_1(5)$
- 9. $\overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1(5)$
- 10. $\bar{t}_1 t_2 t_3 (1, 2, 6)$
- 11. $\overline{t}_1 t_3 \overline{x}_3 (2, 4, 6)$
- 12. $\overline{t}_1 t_2 \overline{x}_3 (4, 5)$
- 13. $\bar{t}_1\bar{t}_2t_3(2,3,6)$
- 14. $\overline{t}_1\overline{t}_2\overline{x}_3(6)$
- 15. $\bar{t}_1\bar{t}_2x_1(6)$
- 16. $t_1\bar{t}_2\bar{t}_3(2)$
- 17. $\bar{t}_1 t_2 \bar{t}_3(3)$
- 18. $\bar{t}_1 t_3(2,6)$

	1	11213	b30c2	9x1	- 1		E1121	Steal	12x1			11112	13142	0x29x1			11112	130:3	2x1		mit	23131	x2tx1	R10	213x3	b2x1	RIC	215x3	ztr1	R10	15x3	x2x1	101	1112131	x302	bc1	81	1215	31:2	(1	111	112131	3x21x	d l	81	1213	Ex310	2x1
	1	2	4	5	6	1	2	4	5	6	1	2	4	5	6	1	2	4	5	6	1	2	6	1	2	6	1	2	6	1	2	6	2	3	4	6	2	3	4	6	2	3	4	6	2	3	4	6
E1E2E3b:38c1(5,6)				\neg																																												_
11t2t3tx3(1,2,4,5,6)	-																																															
R1R2I30x3(2,3,4,6)																																						٠						٠				
It1II2t3x3(2,3,5,6)																																																
ft1ft2x3tx1(5)																																																
11lt2lt3x2(2,4)																																																
It1t283b(3,4,5)																																																
H1H3bx3tx1(5)																																																
h182838x1(5)																																																
It1t213(1,2,6)		*																													*																	
h113bx3(2,4,6)		*	*																																								*					
It1t2tx3(4,5)			*										*						*																													
R1R2I3(2,3,6)																																														*		
R1R2b(3(6)																																																
H1H2x1(6)																																																
118(28(3)(2)																																																
H112H3(3)																																																
R115(2,6)																																																

Рис. 17: Таблица импликант. Часть 1.

Рис. 18: Таблица импликант. Часть 2.

					IX3IX2IX1			It1It2It3x3Ix2Ix1					lt1lt2lt3x3x2
3	3	3	3	5	6	5	6	5	5	6	6	6	6
								*					
						*							
							*				*		
										*	*	*	*

Рис. 19: Таблица импликант. Часть 3.

Полученное покрытие:

- 1. $t_1\bar{t}_2\bar{t}_3x_2(4)$
- $2. \ \overline{t}_1\overline{t}_2\overline{t}_3\overline{x}_1(5)$
- 3. $t_1\bar{t}_2\bar{t}_3(2)$
- 4. $\bar{t}_1 t_2 \bar{t}_3(3)$
- 5. $\overline{t}_1 t_2 \overline{x}_3(4,5)$
- 6. $\bar{t}_1\bar{t}_2x_1(6)$
- 7. $\bar{t}_1\bar{t}_2t_3\bar{x}_3(2,3,4)$
- 8. $\overline{t}_1\overline{t}_2\overline{x}_3(6)$
- 9. $\bar{t}_1 t_2 t_3 (1, 2, 6)$
- 10. $\bar{t}_1\bar{t}_2t_3x_3(2,3,5,6)$

	t1	!t1	t2	!t2	t3	lt3	x1	!x1	x2	!x2	x3	!x3	z1	z2	z3	z4	z5	z6	z7	z8
u1	1777			170		157			*				*							
u2		2		825		320		12								*			*	
u3	-		5	-		-					8	ĺ	*	y = 5		7 20	5	8	44	9
u4		-				ż											*			
u5			*									-	Г		×					
u6		_	,	X25			2										į.	*	į.	
u7		-		-	*							-		*						
u8		-		-3								-	Г	*						
u9		-	1.51														*			
u10		-		-	-						-							*	0	*
z1	*			1		-					-		8			*				
z2		-		*								-			*					
z3		*										*								
z4				*		*														
z5		*	*																	
z6		*		*															0	
z7		*						*												
z8					*						*									
				1																
	u1	u2	u3	u4	u5	u6	u7	u8	u9	u10	v1	v2	v3	ν4	v5	ν6				
y1									*											
y2			3773				13.7		-	-	*			*						
у3			5	1		8 3	-			*	8		*			83				
f1	*				-		-					*								
f2		-			-	-				×					×					
f3			8			-		1	-	-	*			9 8		*				
v1									*	*										
v2					*		*													
v3				*			*													
v4			*				*													
v5		*			*						8									
v6						*		*												

Рис. 20: Таблицы факторизации (элементы ИЛИ)

Входы элементов НЕ: 5 Входы элементов И: 30 Входы элементов ИЛИ: 11 Сложность по Квайну: 46

4.5 Выбор минимальной схемы автомата.

Выбрать схему автомата минимальной сложности (по Квайну).

Минимальной схемой автомата оказалась схема автомата Мили с D-триггерами, с сложностью по Квайну 37.

Рис. 21: Схема автомата Мили с D-триггерами

Программа-симулятор автомата и ее тестирование.

Написать программу моделирования выбранной схемы автомата. На входе – последовательность наборов входных сигналов, на выходе – последовательность состояний триггеров и значений сигналов на выходе.

Текст программы в см. в приложении.

Найти последовательность наборов входных сигналов, при обработке которой каждый триггер изменит своё состояние с нуля в единицу и с единицы в ноль хотя бы один раз и, аналогично, произойдут изменения сигналов на каждом выходе.

- 1. Вход 100 Текущее состояние $00 \to \Pi$ ереходное состояние 01 Выход 001
- 2. Вход 001 Текущее состояние 01 \rightarrow Переходное состояние 01 Выход 011
- 3. Вход 000 Текущее состояние 01 \to Переходное состояние 10 Выход 110
- 4. Вход 100 Текущее состояние $10 \to \Pi$ ереходное состояние 01 Выход 010

Триггеры: False True Выходы: False False True Триггеры: False True Выходы: False True True Триггеры: True False Выходы: True True False Триггеры: False False Выходы: False True False

Рис. 22: Вывод программы

Вывод

В процессе выполнения данной работы, получены навыки разметки ГСА для синтеза структурных автоматов Мили и Мура.

Были синтезированы 4 автомата:

- автомат Мили с D-триггерами.
- автомат Мили с Т-триггерами.
- автомат Мура с D-триггерами.
- автомат Мура с Т-триггерами.

После получения функций выходов автомата и функций возбуждения триггеров, были минимизированны системы булевых функций и при помощи факторизационного метода получены схемы автоматов в базисе И-ИЛИ-НЕ.

Схема с минимальной сложностью по Квайну оказалась схема автомата Мили с D-триггерами.

Симуляция полученной схемы показала, что полученная схема автомата корректна.

Можно сказать, что для получения оптимальной схемы автомата по ГСА необходимо проверить все типы автоматов и триггеров.

Список литературы

- [1] **Баранов С.И.** Синтез микропрограммных автоматов (граф-схемы и автоматы). / 2-е изд., перераб и доп. Энергия, Ленингр. отд-ние 1979.
- [2] Построение абстрактных автоматов по графсхеме микропрограммы [Электронный ресурс] URL: https://www.intuit.ru/studies/courses/1031/242/lecture/6232

Приложение

Содержимое файла source.py

```
def automaton(t1,t2,x1,x2,x3):
    z1 = not t1 and t2
    z2 = not t2 and not x1
    z3 = not t2 and not x2
    u1 = x3 and z2
    u2 = t1 and z3
    u3 = not x3 and z1
    u4 = x3 and z1
    u5 = t1 and not t2
    u6 = not t1 and not t2
    v1 = u1 \text{ or } u3
    v2 = u4 \text{ or } u5
    f1 = u2 \text{ or } u3
    f2 = u4 \text{ or } u6
    y1 = u2 \text{ or } u3
    y2 = v1 \text{ or } v2
    y3 = u4 \text{ or } u6
    return f1,f2,y1,y2,y3
trigger1 = False
trigger2 = False
#A1->A2 Z1 W3
input1,input2,input3 = True,False,False
trigger1,trigger2,output1,output2,output3 = automaton(trigger1,trigger2,input1,input2,input3)
print('Триггеры:',trigger1,trigger2,'Выходы:',output1,output2,output3)
#A2->A2 Z2 W4
input1,input2,input3 = False,False,True
trigger1,trigger2,output1,output2,output3 = automaton(trigger1,trigger2,input1,input2,input3)
print('Триггеры:',trigger1,trigger2,'Выходы:',output1,output2,output3)
#A2->A3 Z3 W5
input1,input2,input3 = False,False,False
trigger1,trigger2,output1,output2,output3 = automaton(trigger1,trigger2,input1,input2,input3)
print('Триггеры:',trigger1,trigger2,'Выходы:',output1,output2,output3)
#A3->A1 Z4 W2
input1,input2,input3 = False,True,False
trigger1,trigger2,output1,output2,output3 = automaton(trigger1,trigger2,input1,input2,input3)
print('Триггеры:',trigger1,trigger2,'Выходы:',output1,output2,output3)
```