Der Umkehrsatz

Def Seien $U, V \subset \mathbb{R}^n$ offene Teilmengen. Die Abbildung $f: U \to V$ heißt *Diffeomorphismus*, falls:

- 1) f ist stetig differenzierbar
- 2) f ist bijektiv
- 3) f^{-1} ist stetig differenzierbar

Satz 3.4 (Umkehrsatz) Sei $U \subset \mathbb{R}^n$ offen, $f: U \to \mathbb{R}^n$ stetig differenzierbar und $a \in U$. Sei das Differential $Df_{|a|}$ (bzw. die Jacobi-Matrix $J_f(a)$) invertierbar. Dann gibt es Umgebungen $U_0 \subset U$ von a und V_0 von f(a), sodass $f: U_0 \to V_0$ ein Diffeomorphismus ist. Dabei gilt

$$(Df_{|x})^{-1} = D(f^{-1})_{|f(x)} \qquad (J_f(x))^{-1} = J_{f^{-1}}(f(x))$$

für alle $x \in U_0$.

Satz 3.5 (Satz von der offenen Abbildung) Sei $U \subset \mathbb{R}^n$ offen und $f \in C^1(U, \mathbb{R}^n)$. Ist Df auf U invertierbar, so ist f(U) eine offene Teilmenge von \mathbb{R}^n .

Der Satz über implizite Funktionen

Satz 3.6 (Satz über implizite Funktionen, m = 1)

Sei $U \subset \mathbb{R}^{n+1}$ offen und $f: U \to \mathbb{R}$ eine stetig differenzierbare Funktion. Sei $(a,b) \in U \subset \mathbb{R}^n \times \mathbb{R}$ ein Punkt mit f(a,b) = 0. Ist $\frac{\partial f}{\partial y}(a,b) \neq 0$, so gibt es Umgebungen $U_0 \subset \mathbb{R}^n$ von $a, V_0 \subset \mathbb{R}$ von b und eine stetig differenzierbare Funktion $g: U_0 \to V_0$, sodass

$$f(x,y) = 0 \quad \Leftrightarrow \quad y = g(x)$$

für alle $x \in U_0, y \in V_0$. Die partiellen Ableitungen von g in a lassen sich nach der Formel

$$\frac{\partial g}{\partial x_i}(a) = -\frac{\frac{\partial f}{\partial x_i}(a, g(a))}{\frac{\partial f}{\partial y}(a, g(a))}, \qquad i = 1, ..., n,$$

berechnen.

Bezeichnung:

$$\frac{\partial(f_1, ..., f_m)}{\partial(y_1, ..., y_m)} := \begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial y_1} & \cdots & \frac{\partial f_m}{\partial y_m} \end{pmatrix}$$

Satz 3.7 (Satz über implizite Funktionen, allgemeiner Fall)

Sei $U \subset \mathbb{R}^{n+m}$ offen und $f: U \to \mathbb{R}^m$ eine stetig differenzierbare Abbildung. Sei $(a,b) \in U \subset \mathbb{R}^n \times \mathbb{R}^m$ ein Punkt mit f(a,b) = 0. Ist die Matrix $\frac{\partial (f_1, \dots f_m)}{\partial (y_1, \dots, y_m)}(a,b)$ invertierbar, so gibt es Umgebungen $U_0 \subset \mathbb{R}^n$ von a, $V_0 \subset \mathbb{R}^m$ von b und eine stetig differenzierbare Funktion $g: U_0 \to V_0$, sodass

$$f(x,y) = 0 \Leftrightarrow y = q(x)$$

für alle $x \in U_0, y \in V_0$. Außerdem gilt die Formel

$$\frac{\partial g}{\partial x}(a) = -\left(\frac{\partial f}{\partial y}(a, g(a))\right)^{-1} \frac{\partial f}{\partial x}(a, g(a)),$$

wobei
$$\frac{\partial g}{\partial x} := \frac{\partial(g_1, \dots, g_m)}{\partial(x_1, \dots, x_n)}, \ \frac{\partial f}{\partial y} := \frac{\partial(f_1, \dots, f_m)}{\partial(y_1, \dots, y_m)} \text{ und } \frac{\partial f}{\partial x} := \frac{\partial(f_1, \dots, f_m)}{\partial(x_1, \dots, x_n)}.$$