Produit scalaire algébrique

Définition (Produit scalaire). Dans un repère <u>orthonormé</u>, si $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors on appelle **produit scalaire de** \vec{u} **et** \vec{v} et on note $\vec{u} \cdot \vec{v}$ le <u>nombre</u> défini par $\vec{u} \cdot \vec{v} = xx' + yy'$

Exemple. Le produit scalaire de $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$ est $\vec{u} \cdot \vec{v} = (2) \times (-3) + (3) \times (-5) = -21$

Attention le produit scalaire · n'est pas une multiplication \times . \vec{u} et \vec{v} sont des vecteurs et pas des nombres.

Exemple.
$$\binom{5}{-1} \cdot \binom{3}{-2} = (5) \times (3) + (-1) \times (-2) = 15 + 2 = 17$$

Hypothèses. Soit $\vec{u}, \vec{v}, \vec{w}$ trois vecteurs du plan, et k un réel.

Propriété. Le produit scalaire est commutatif.

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

Exemple.
$$\binom{-4}{3} \cdot \binom{2,5}{-1} = (-4)(2,5) + (3)(-1) = -13$$
 $\binom{2,5}{-1} \cdot \binom{-4}{3} = (2,5)(-4) + (-1)(3) = -13$

Propriété. Le produit scalaire · est distributif sur +. $(\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{d}$

$$(\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

Exemple.
$$\binom{1}{0} + \binom{3}{-2} \cdot \binom{2}{3} = \binom{1}{0} \cdot \binom{2}{3} + \binom{3}{-2} \cdot \binom{2}{3} = 2 + 0 + 6 - 6 = 2$$

Propriété. Dans un produit scalaire, les constantes peuvent être sorties devant

$$\vec{u} \cdot (k\vec{v}) = (k\vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v})$$

Exemple.
$$\binom{5}{-1} \cdot 5 \binom{3}{-2} = 5 \left(\binom{5}{-1} \cdot \binom{3}{-2} \right) = 5 \times \left((5)(3) + (-1)(-2) \right) = 5(17) = 85$$

Rappel. La **norme** (ou **longueur**) d'un vecteur $\vec{u} = {x \choose y}$, est définie par $\|\vec{u}\| = \sqrt{x^2 + y^2}$

Exemple. Soit $\vec{u} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$, alors $\|\vec{u}\| = \sqrt{(3)^2 + (-4)^2} = 5$. \vec{u} est de longueur 5.

Propriété. Le carré scalaire est égal au carré de la norme.

$$\vec{u}^2 = \vec{u} \cdot \vec{u} = x^2 + y^2 = ||\vec{u}||^2$$

Exemple.
$$\binom{4}{-3} \cdot \binom{4}{-3} = (4)(4) + (-3)(-3) = 25$$
. Aussi $\left\| \binom{4}{-3} \right\|^2 = \sqrt{(4)^2 + (-3)^2}^2 = (4)^2 + (-3)^2 = 25$

Attention : $\|\vec{u}\|$ est un nombre donc $\|\vec{u}\|^2 = \|\vec{u}\| \times \|\vec{u}\|$. Mais dans $\vec{u} \cdot \vec{u}$ il s'agit du produit scalaire et pas \times .

 $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{x^2 + y^2}$ Corollaire. La norme d'un vecteur est la racine de son carré scalaire.

Propriété. 1ère identité remarquable vectorielle. $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$

Propriété. $2^{\text{ème}}$ identité remarquable vectorielle. $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$

Preuve.
$$\left\| \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} \right\|^2 = \left\| \begin{pmatrix} x - x' \\ y - y' \end{pmatrix} \right\|^2 = (x - x')^2 + (y - y')^2 = x^2 + y^2 + x'^2 + y'^2 - 2xx' - 2yy'$$

Propriété. Dans un repère orthonormé, deux vecteurs sont orthogonaux ssi leur produit scalaire est nul.

 \vec{u} et \vec{v} orthogonaux $\Leftrightarrow \|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 \Leftrightarrow \vec{u} \cdot \vec{v} = 0 \Leftrightarrow xx' + yy' = 0$.

Exemple. Montrer que $\vec{u} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$ sont orthogonaux.

 $\vec{u} \cdot \vec{v} = (2) \times (-3) + (-3) \times (-2) = -6 + 6 = 0$ donc les vecteurs \vec{u} et \vec{v} sont orthogonaux.

Propriété. Soit A, B deux points distincts. Soit M un point.

M appartient au cercle de diamètre [AB] ssi $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ ssi ABM est rectangle en *M* (quand $M \neq A, B$)

L'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est le cercle de diamètre [AB].

Exemple. Si A = (5; 4) et B = (1; 2), donner une équation du cercle de diamètre [AB] On note C ce cercle. Soit M = (x; y) un point du plan.

$$M \in \mathcal{C} \Leftrightarrow \overrightarrow{MA} \cdot \overrightarrow{MB} = 0 \Leftrightarrow \begin{pmatrix} 5 - x \\ 4 - y \end{pmatrix} \cdot \begin{pmatrix} 1 - x \\ 2 - y \end{pmatrix} = 0 \Leftrightarrow (5 - x)(1 - x) + (4 - y)(2 - y) = 0$$

 $M \in \mathcal{C} \Leftrightarrow 5 - 5x - x + x^2 + 8 - 4y - 2y + y^2 = 0 \Leftrightarrow x^2 + y^2 - 6x - 6y + 13 = 0$

Propriété. Etant donné deux points A et B et leur milieu I, on a $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$

Exemple. Soit A = (5, 4) et B = (1, 2), déterminer l'ensemble (E) des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 8$.

On note *I* le milieu de [*AB*]. On a $I = (\frac{5+1}{2}; \frac{4+2}{2}) = (3; 3)$.

De plus $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(-4)^2 + (-2)^2} = \sqrt{20}$

Soit M = (x; y) un point du plan.

 $M \in (E) \Leftrightarrow \overrightarrow{MA} \cdot \overrightarrow{MB} = 8 \Leftrightarrow MI^2 - \frac{1}{4}AB^2 = 8 \Leftrightarrow MI^2 - \frac{1}{4} \times 20 = 8 \Leftrightarrow MI^2 - 5 = 8 \Leftrightarrow MI^2 = 13 \Leftrightarrow MI = \sqrt{13}$

(E) est un cercle de centre I = (3,3) et de rayon $\sqrt{13}$.

Définition. \vec{u} est un vecteur normal à la droite (AB) ssi \vec{u} est orthogonal à \overrightarrow{AB} ssi $\vec{u} \cdot \overrightarrow{AB} = 0$

Propriété. Un vecteur normal à une droite d'équation cartésienne " ax + by + c = 0 " est $\binom{a}{b}$.

Exemple. Déterminer une équation de la droite (d) de vecteur normal $\vec{n} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et passant par A = (1; 0).

Soit M = (x; y) un point du plan.

$$M \in (d) \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \Leftrightarrow {x-1 \choose y-0} \cdot {2 \choose -3} = 0 \Leftrightarrow (x-1)(2) + (y)(-3) = 0 \Leftrightarrow 2x - 3y - 2 = 0$$

Rappel. \vec{u} est un **vecteur directeur de la droite** (AB) ssi \vec{u} est colinéaire à \overrightarrow{AB} ssi $\det(\vec{u}; \overrightarrow{AB}) = 0$

Propriété. <u>Un</u> vecteur directeur d'une droite d'équation cartésienne " ax + by + c = 0 " est $\binom{-b}{a}$.

Exemple. Déterminer une équation de la droite (d) de vecteur directeur $\vec{u} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ passant par A = (1;0).

Soit M = (x; y) un point du plan.

$$M \in (d) \Leftrightarrow \det(\overrightarrow{AM}; \overrightarrow{u}) = 0 \Leftrightarrow \begin{vmatrix} x - 1 & 2 \\ y - 0 & -3 \end{vmatrix} = 0 \Leftrightarrow (x - 1)(-3) - (y)(2) = 0 \Leftrightarrow -3x + 3 - 2y = 0$$

Produit scalaire géométrique

Définition. L'angle géométrique entre deux <u>vecteurs non nuls</u> \overrightarrow{u} et \overrightarrow{v} noté $(\overrightarrow{u}; \overrightarrow{v})$ est défini comme la longueur, le long du cercle \mathcal{C} de centre O=(0;0) de rayon 1, de l'arc le plus court possible entre A et B, les points de \mathcal{C} définis par $\frac{\overrightarrow{u}}{\|\overrightarrow{u}\|} = \overrightarrow{OA}$ et $\frac{\overrightarrow{v}}{\|v\|} = \overrightarrow{OB}$.

Idée. $(\widehat{\vec{u};\vec{v}})$ correspond à l'angle saillant que l'on mesure directement au rapporteur entre \vec{u} et \vec{v} si on les fait partir d'un même point.

Remarque. $(\overrightarrow{u}; \overrightarrow{v})$ est un nombre qui appartient toujours à l'intervalle $[0; \pi]$

Définition. Deux vecteurs \vec{u} ; \vec{v} non nuls sont **orthogonaux**, s'ils forment un angle droit. $(\vec{u}; \vec{v}) = \frac{\pi}{2}$ **Définition**. Deux vecteurs non nuls sont **colinéaires**, s'ils forment un angle valant 0 ou π . $(\vec{u}; \vec{v}) \in \{0; \pi\}$

Propriété. Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires ssi il existe un réel k tel que $\vec{u} = k\vec{v}$. **Propriété.** Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires ssi $\det(\vec{u}; \vec{v}) = \vec{0}$

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ désigne la donnée d'un point 0 et de vecteurs $\vec{\imath}$ et $\vec{\jmath}$ <u>non colinéaires</u>. **Déf.** $R_0 = \left((0;0); \binom{1}{0}; \binom{0}{1}\right)$ est **le repère canonique**. Il sert de référence pour les repères orthonormés.

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthonormé** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux et de longueur 1 (dans R_0).

Exemples. Ici R_0 est le repère de référence. Ci-contre, les repères R_0 , R_1 et R_2 sont orthonormés. Les longueurs ont donc la même mesure dans R_0 , R_1 , R_2 . R_3 n'est pas orthonormé car ses vecteurs sont de longueur 2 (en les mesurant dans R_0). R_4 n'est pas orthonormé car ses vecteurs ne sont pas orthogonaux (au sens de R_0).

Propriété. Soit $R = (0; \vec{\imath}; \vec{\jmath})$. Soit un vecteur \vec{u} . Il existe d'uniques $x, y \in \mathbb{R}$ tels que $\vec{u} = x\vec{\imath} + y\vec{\jmath}$.

Définition. x et y sont les coordonnées du <u>vecteur</u> \vec{u} <u>dans le repère R</u>. On note souvent $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}_R$

Propriété. Soit $R = (0; \vec{\imath}; \vec{\jmath})$. Soit un point M. Il existe d'uniques $x, y \in \mathbb{R}$ tels que $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$.

Définition. x et y sont les coordonnées du <u>point</u> M dans le repère R. On note souvent $M = (x; y)_R$

Remarque. Quand on change de repère R, les coordonnées d'un vecteur ou d'un point changent. Cependant, la plupart des formules vectorielles restent valables, si on les écrit dans un <u>même</u> repère R.

Propriété. Les longueurs et angles géométriques ne changent pas si on change de repère orthonormé

Théorème. Loi des cosinus, ou formule d'Al-Kashi

Dans un triangle ABC quelconque, on a, par exemple :

$$BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC})$$

En posant a = BC, b = AC, c = AB, $\alpha = \widehat{BAC}$, on peut écrire :

$$a^2 = b^2 + c^2 - 2bc\cos(\alpha)$$

Exemple. Soit un triangle ABC tel que AB = 8, AC = 4 et $\widehat{BAC} = 50^{\circ}$.

Calculer la longueur BC.

$$BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC}) = 64 + 16 - 2 \times 8 \times 4 \times \cos(50^\circ) \approx 38,86$$
 et donc $BC \approx 6,23$

Hypothèse. On se place dans un repère <u>orthonormé</u> R fixé. Soit $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$, $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs <u>non nuls</u>

Rappel. Produit scalaire (algébrique). $\vec{u} \cdot \vec{v} = xx' + yy'$ Pannel (2ème identité remarquable). $||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2\vec{u} \cdot \vec{v}$

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$$

Propriété. Reformulation vectorielle d'Al-Kashi.

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\| \|\vec{v}\| \cos(\widehat{\vec{u}}; \widehat{\vec{v}})$$

Propriété. Produit scalaire (géométrique). $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\vec{u}; \vec{v})$

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$ Si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, alors :

Exemple. Soit deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} tels que AB = 2 et AC = 3 et $\widehat{BAC} = 30^{\circ}$.

Leur produit scalaire vaut $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\overrightarrow{BAC}) = 2 \times 3 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$

Corollaire. Le produit scalaire $\vec{u} \cdot \vec{v}$ est un nombre qui ne dépend pas du repère orthonormé R choisi.

Quand on utilise $\vec{u} \cdot \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}_{p} \cdot \begin{pmatrix} x' \\ y' \end{pmatrix}_{p} = xx' + yy'$, on peut choisir un repère <u>orthonormé</u> R qui nous arrange.

Corollaire. \vec{u} et \vec{v} sont orthogonaux $\Leftrightarrow \vec{u} \cdot \vec{v} = 0$

$$(\operatorname{Car}(\widehat{\vec{u}}; \vec{v}) = \frac{\pi}{2} \Leftrightarrow \cos(\widehat{\vec{u}}; \vec{v}) = 0 \Leftrightarrow \vec{u} \cdot \vec{v} = 0)$$

Corollaire. \vec{u} et \vec{v} colinéaires de même sens $\Leftrightarrow \vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}||$

$$(\operatorname{Car}(\widehat{\vec{u}\,;\vec{v}}) = 0 \Leftrightarrow \cos(\widehat{\vec{u}\,;\vec{v}}) = 1)$$

Corollaire. \vec{u} et \vec{v} colinéaires de sens opposés $\Leftrightarrow \vec{u} \cdot \vec{v} = -\|\vec{u}\| \|\vec{v}\|$ (Car $(\vec{u}; \vec{v}) = \pi \Leftrightarrow \cos(\vec{u}; \vec{v}) = -1$)

$$(\operatorname{Car}(\widehat{\vec{u}}:\vec{v}) = \pi \Leftrightarrow \cos(\widehat{\vec{u}}:\vec{v}) = -1$$

Propriété (Interprétation géométrique). Soit trois points A, B, C (ou deux vecteurs \vec{u}, \vec{v} qu'on fait partir d'un même point A). Alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \pm AB \times AH$ où H est le projeté orthogonal de C sur (AB).

Le signe est + si \overrightarrow{AH} est de même sens que \overrightarrow{AB} , et - sinon.

Exemple.

Ici $\vec{u} = \overrightarrow{AB}$ et \overrightarrow{AH} sont dans le même sens, donc

$$\vec{u} \cdot \vec{v} = +4 \times 6 = +24$$

Exemple.

Ici $\vec{u} = \overrightarrow{AB}$ et \overrightarrow{AH} sont dans des sens opposés, donc

$$\vec{u} \cdot \vec{v} = -4 \times 5 = -20$$

Méthode. Pour déterminer la composante d'un vecteur \vec{v} dans une direction donnée, on « projette » sur un vecteur directeur u<u>nitaire</u> \vec{u} dans la direction souhaitée. (On calcule $\vec{v} \cdot \vec{u}$)

Exemple. Une piste de ski est représentée par une droite qui descend avec une pente de 45°.

La piste est donc dirigée par le vecteur unitaire $\vec{u} = \begin{pmatrix} \cos(-45^\circ) \\ \sin(-45^\circ) \end{pmatrix}$. Un skieur de 70 kg, subit son poids comme une force \vec{F} d'environ 700 N vers le bas, donc $\vec{F} = \begin{pmatrix} 0 \\ -700 \end{pmatrix}$. La composante du poids du skieur le long de la piste est donc $\vec{F} \cdot \vec{u} = (-700)(\sin(-45^{\circ})) = 700\sin(45^{\circ}) \approx 500 \text{ N}.$

Pour aller plus loin...

Changements de repère.

Propriété. Dans tout repère orthonormé $R = (0; \vec{\imath}; \vec{\jmath})$,

Les coordonnées d'un vecteur \vec{v} dans R peuvent s'obtenir en calculant $x^R_{\vec{v}} = \vec{v} \cdot \vec{\iota}$ et $y^R_{\vec{v}} = \vec{v} \cdot \vec{\jmath}$.

Les coordonnées d'un point M dans R peuvent s'obtenir en calculant $x_M^R = \overrightarrow{OM} \cdot \vec{\iota}$ et $y_M^R = \overrightarrow{OM} \cdot \vec{\jmath}$.

Exemple. On note $R = (0; \vec{\imath}; \vec{\jmath})$ et $R' = (0'; \vec{\imath'}; \vec{\jmath'})$.

On a $A = (2; 0)_R$.

Calculer les coordonnées de A dans R'.

$$x_{\vec{l'}} = \vec{l'} \cdot \vec{l} = \|\vec{l'}\| \|\vec{l}\| \cos(\vec{l'}; \vec{l}) = \cos(\vec{l'}; \vec{l}) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$y_{\vec{l'}} = \vec{l'} \cdot \vec{j} = \cos(\vec{l'}; \vec{j}) = \cos\left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

Ainsi dans
$$R'$$
, $x_A = \overrightarrow{O'A} \cdot \overrightarrow{\iota'} = \begin{pmatrix} 2-3 \\ 0-1 \end{pmatrix}_R \cdot \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ \end{pmatrix}_R = -\sqrt{2} \text{ et } y_A = \overrightarrow{O'A} \cdot \overrightarrow{J'} = \begin{pmatrix} 2-3 \\ 0-1 \end{pmatrix}_R \cdot \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ \end{pmatrix}_R = 0$

Donc
$$A = \left(-\sqrt{2}; 0\right)_{R'}$$