MATH 239

TUTORIAL 6

Question 1:

For n a positive integer, define the prime graph B_n to be the graph with vertex set $\{1, \ldots, n\}$, where uv is an edge if and only if u + v is a prime.

- a) Draw B_9 .
- b) Prove that B_n is bipartite.

Answer 1:

a) The prime numbers up to 18 are 2,3,5,7,11,13,17. So, draw lines between vertices that sum up to those numbers, starting from 1+2=3.

b) As suggested by the picture above, we can form a bipartition V = (X, Y) where $v \in X$ if v is odd, and $v \in Y$ if v is even. To show that this is a bipartiton, we only need to show that there are no edges uv with both $u, v \in X$, or both $u, v \in Y$. If $u, v \in X$, then u and v are both odd, so their sum must be even. Furthermore, since u and v cannot both be 1, the sum must be at least 4. Hence, u + v must be composite. Similarly, if $u, v \in Y$, then u and v are both even, with a sum of at least 6. Hence, there can be no edges between vertices of the same bipartition, so B_n is bipartite.

Question 2:

For a graph G, we define the complement of graph of G, denoted \overline{G} , with $V(\overline{G}) = V(G)$, and $uv \in E(\overline{G})$ if and only if $uv \notin G$. Let G and H be two graphs and \overline{G} and \overline{H} be their complements. Show that G and H are isomorphic if and only if \overline{G} and \overline{H} are isomorphic.

Answer 2:

Let $V(G) = \{g_1, \ldots, g_n\}$ be the vertices of G and $f: V(G) \to V(H)$ be an isomorphism between G and H. Now, let g_i and g_j be vertices of \overline{G} . Observe the following chain of equivalence:

$$g_i$$
 and g_j are adjacent in $\overline{G} \iff g_i$ and g_j are not adjacent in $G \iff f(g_i)$ and $f(g_j)$ are not adjacent in $H \iff f(g_i)$ and $f(g_j)$ are adjacent in \overline{H}

This means that f is an isomorphism between \overline{G} and \overline{H} as well.

Date: 10/24/12.

1

MATH 239 2

For the reverse direction, we will first show that $\overline{\overline{G}} = G$. This follows since:

 g_i and g_j are adjacent in $G \iff g_i$ and g_j are not adjacent in \overline{G} $\iff g_i$ and g_j are adjacent in $\overline{\overline{G}}$

Applying the previous direction, we get that if \overline{G} and \overline{H} are isomorphic, then so must $G = \overline{\overline{G}}$ and $H = \overline{\overline{H}}$.

Question 3:

For $n \geq 0$, define the graph G_n as follows: $V(G_n)$ is the set of binary strings of length n having at most one block of 1's. Two vertices are adjacent if they differ in exactly 1 position.

- a) Draw G_3 and G_4 .
- b) Find $|V(G_n)|$.
- c) Find $|E(G_n)|$.

Answer 3:

a) G_3

 G_4

b) For $1 \le k \le n$, there are exactly n - k + 1 strings with one block of 1's of length k, where the block of 1's start from position 1 to n - k + 1 respectively. There is also one string with no block

MATH 239 3

of 1's. Therefore,

$$|V(G_n)| = 1 + \sum_{k=1}^{n} (n - k + 1)$$

= $1 + \frac{n(n+1)}{2}$
= $\frac{n^2 + n + 2}{2}$

c) To get the number of edges, we use the fact that the sum of the degree is twice the number of edges. Since n = 1 and n = 2 needs to be handled separately, we will assume $n \ge 3$.

First, the string with no 1's is adjacent to all strings with one 1, which means it has degree n. Now, let s be a string with k 1's, where $2 \le k \le n-1$. If s does not start or end with 1, you can either change a 0 to 1 on both ends, or change a 1 to 0 on both ends. For example, the string 001100 is adjacent to 011100, 001110, 000100, and 001000. Therefore, it is adjacent to 4 other strings. If s does start or ends with 1, you can no longer change one of the 0's to 1, so it is only adjacent to 3 other strings. Of the n-k+1 strings with k 1's, n-k-1 of them are of the former type, and 2 are of the latter. Therefore, the sum of degree of all strings with k 1's is 4(n-k+1)-2. The same is true for strings with one 1, except you can only change one 1 to 0, so you have 3n-2 as the total degree. Finally, the all 1's string is adjacent to only 2 strings. Tallying up, we have

$$2|E(G_n)| = n + (3n - 2) + \sum_{k=2}^{n-1} (4(n - k + 1) - 2) + 2$$

$$= 4n + \frac{4n(n-2)}{2}$$

$$= 2n^2$$

$$|E(G_n)| = n^2$$

It is easy to check that this formula holds for n = 1, 2 as well.