Численное решение нелинейных уравнений f(x) = 0. Задача решения нелинейных уравнений состоит из двух этапов: отделения корней и уточнения корней. На первом этапе находится такой отрезок [a,b], на котором существует коренв (в дальнейшем будем обозначать его θ), и он единственен. Эта работа, как правило, проводится аналитически. На втором этапе строится последовательность x_n , сходящаяся к корню.

Метод половинного деления

Пусть на отрезке [a,b] функция f(x) непрерывна и на концах отрезка принимает разные знаки: f(a)f(b) < 0, тогда по теореме Больцано-Коши на этом отрезке существует корень θ . На этом утверждении и основан метод. Находим середину отрезка c = (a + b)/2 и сужаем отрезок так, чтобы на его концах функция принимала разные знаки: если f(a)f(c) < 0, то в качестве нового значения правого конца отрезка нужно взять b = c, иначе a = c. Далее деление отрезка повторяется до тех пор, пока длина отрезка не станет меньше наперед заданной точности ε . Алгоритм всегда сходится, но его недостатком является большое число итераций: число итераций не зависит от функции, а только от длины отрезка

Метод касательных (Ньютона)

Возьмем в качестве начального приближения один из концов отрезка [a,b] $x_0=b$ из уравнения касательных выводится формула $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$

Метод хорд (неподвижных хорд)

Возьмем в качестве начального приближения один из концов отрезка [a,b] $x_0=b$ и возьмем первое приближение x_1 . Через точки с координатами $(x_0,f(x_0))$ и $(x_1,f(x_1))$ на графике функции проведем хорду. Точку пересечения хорды с осью абсцисс обозначим x_2 . Далее проводим хорду через точки с координатами $(x_0,f(x_0))$ и $(x_2,f(x_2))$, пересечения этой хорды с осью абсцисс обозначим x_3 и т. д. Используя уравнение прямой линии, проходящей через две заданные точки, получаем формулу $x_{n+1}=x_n-\frac{f(x_n)(x_n-x_0)}{f(x_n)-f(x_0)}$

Погрешность методов

Если x_n - очередное приближение, θ - корень уравнения, то требуемая точность ε , будет достигнута, если выполняется условие $|x_n - \theta| < \varepsilon$. Однако это условие нельзя использовать для окончания итерационного процесса, так как корень неизвестен. Выведем другую оценку погрешности. Разложим функцию по формуле Тейлора в окрестности приближения x_n и поставим в разложение корень θ , получим $0 = f(\theta) = f(x_n) + f'(c)(x_n - \theta), c \in [\theta, x_n]$.

Откуда $\theta - x_n = -\frac{f(x_n)}{f'(c)}$. Предположим $|f'(x)| \ge m > 0$ на [a,b], тогда $|x_n - \theta| < \frac{f(x_n)}{m}$, и следовательно критерий остановки $\frac{f(x_n)}{m} \le \varepsilon$