Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота № 1.1 з дисципліни «Дослідження операцій» на тему «Предмет, методи та завдання курсу "Дослідження операцій". Побудова оптимізаційних економіко-математичних моделей»

Виконав: студент ннікіт групи сп-425 Клокун В. Д. Перевірила: Яковенко Л. В.

1. ЗАВДАННЯ РОБОТИ

Підприємство може виготовляти чотири види продукції: T_1 , T_2 , T_3 , T_4 . Норми витрат ресурсів і прибуток від одиниці кожного виду ресурсу наведені в таблиці 1.

	1 /1	1 .	, , ,	,, , <u>,</u>	<u> </u>
Показники	Продукція				Ресурси
	T_1	T_2	T_3	T_4	
Трудові ресурси, людино- змін	2,5	2,5	2	1,5	100
Напівфабрикати, кг	4	10	4	6	260
Обладнання, станко- зміни	8	7	4	10	370
Прибуток від од. проду- кнії	40	50	100	80	

Табл. 1: Норми витрат ресурсів і прибуток від одиниці ресурсу

Записати математичну модель випуску продукції, яка максимізує прибутки, якщо:

- 1. Кількість одиниць третьої продукції повинна бути в 3 рази більшою за кількість одиниць першої продукції.
- 2. Першої продукції слід випускати не менше 25 одиниць, третьої не більше 30, а другої і четвертої у співвідношенні 1 : 3.

2. ХІД РОБОТИ

Усі моделі дослідження операцій складаються з 3 базових компонентів:

- 1. Керованих змінних, значення яких необхідно визначити.
- 2. Цілі (або цільової функції), яку необхідно оптимізувати.
- 3. Обмежень, які має задовольняти розв'язок.

За умовою задачі необхідно максимізувати прибуток підприємства, яке виготовляє продукцію декількох видів. Підприємство отримує прибуток, коли виготовляє і продає певну кількість продукції, отже його прибуток залежить від кількості проданої продукції кожного виду. Підприємство може регулювати, скільки продукції виготовляти, тому ці кількості і будуть керованими змінними. Якщо позначити i-й вид продукції як T_i , а кількість виготовлених одиниць продукції i-го виду як x_i , то x_1, x_2, x_3 та x_4 і будуть керованими змінними.

Ціль задачі — максимізувати прибутки. Позначимо прибуток від продажу однієї одиниці продукції виду T_i як p_i , тоді прибуток від продажу x_i одиниць товару цього ж типу виражається так: $P_i = p_i x_i$.

Прибутки від продажу одиниці кожного з видів продукції наведені в умові задачі, тому загальний прибуток від виготовлення довільної кількості продукції кожного виду виражається такою функцією:

$$P = p_1 x_1 + p_2 x_2 + p_3 x_3 + p_4 x_4 = 40x_1 + 50x_2 + 100x_3 + 90x_4.$$

Ціль поставленої задачі максимізувати прибутки, тому її можна записати так:

$$P = 40x_1 + 50x_2 + 100x_3 + 90x_4 \rightarrow \text{max}$$
.

Також задача накладає певні обмеження. Наприклад, підприємство може виробляти лише невід'ємну кількість кожного з видів продукції, тобто:

$$x_1, x_2, x_3, x_4 \ge 0.$$

Крім цього кількість виготовленої продукції певних типів має задовольняти такі вимоги щодо пропорцій одиниць продукції відносно одна одної:

$$x_3 = 3x_1$$
, $x_1 > 25$, $x_3 \le 30$, $x_2 = 3x_4$.

Також сказано, що кількість кожного ресурсу обмежена, тобто:

$$2,5x_1+2,5x_2+2x_3+1,5x_4\leqslant 100$$
 — трудові ресурси, $4x_1+10x_2+4x_3+6x_4\leqslant 260$ — напівфабрикати, $8x_1+7x_2+4x_3+10x_4\leqslant 370$ — обладнання.

Отже, враховуючи усі вищезазначені деталі, математичну модель задачі можна записати так:

$$z = 40x_1 + 50x_2 + 100x_3 + 80x_4 \rightarrow \max$$

$$\begin{cases} 2.5x_1 + 2.5x_2 + 2x_3 + 1.5x_4 \le 100 \\ 4x_1 + 10x_2 + 4x_3 + 6x_4 \le 260, \\ 8x_1 + 7x_2 + 4x_3 + 10x_4 \le 370, \\ 3x_1 = x_3, \\ x_1 \ge 25, \\ x_3 \le 30, \\ x_2 \le 3x_4, \\ x_1, x_2, x_3, x_4 \ge 0. \end{cases}$$

3. Висновок

Виконуючи дану лабораторну роботу, ми ознайомились з предметом, методами та завданням курсу «Дослідження операцій», а також побудували оптимізаційну економіко-математичну модель поставленої задачі.