# **Decision trees**

## Fraida Fund

## Contents

| In this lecture                                |
|------------------------------------------------|
| Recap                                          |
| Flexible decisions with cheap prediction?      |
| Decision tree                                  |
| Tree terminology                               |
| Note on notation                               |
| Stratification of feature space (1)            |
| Stratification of feature space (2)            |
| Tree representation                            |
| Tree characterization                          |
| Stratification of feature space - illustration |
| Training a decision tree                       |
| Basic idea (1)                                 |
| Basic idea (2)                                 |
| Recursive binary splitting                     |
| Recursive binary splitting steps               |
| Loss function for regression tree              |
| Loss function for classification tree          |
| Classification error rate                      |
| GINI index                                     |
| Entropy                                        |
| Comparison - measures of node impurity         |
| Conditional entropy                            |
| Information gain                               |
| Example: should I play tennis? (1)             |
| Example: should I play tennis? (2)             |
| Example: should I play tennis? (3)             |
| Example: should I play tennis? (4)             |
| Example: should I play tennis? (5)             |
| Feature importance                             |
| Bias and variance                              |
|                                                |
|                                                |
| Stopping criteria                              |
| Pruning                                        |
| Pruning classification trees                   |
| Weakest link pruning (1)                       |
| Weakest link pruning (2)                       |
| Cost complexity pruning                        |
| Summary - so far                               |
| The good and the bad (1)                       |
| The good and the bad (2)                       |

## In this lecture

- · Decision trees
- · Training decision trees
- · Bias and variance of decision trees

## Recap

#### Flexible decisions with cheap prediction?

KNN was very flexible, but prediction is slow.

Next: flexible decisions, non-parametric approach, fast prediction

#### **Decision tree**

#### Tree terminology



Figure 1: A binary tree.

#### **Note on notation**

Following notation of ISLR, Chapter 8:

- $\bullet \ X_j \text{ is feature } j \\$
- $x_i$  is sample i

## Stratification of feature space (1)

- Given set of possible predictors,  $X_1,\dots,X_p$
- Training: Divide predictor space (set of possible values of X) into J non-overlapping regions:  $R_1,\ldots,R_J$ , by splitting sequentially on one feature at a time.

## Stratification of feature space (2)

- Prediction: For each observation that falls in region  $\boldsymbol{R}_i$ , predict
  - mean of labels of training points in  $\boldsymbol{R}_j$  (regression)
  - mode of labels of training points in  $R_i$  (classification)



Figure 2: Dividing the feature space with a decision tree.

## **Tree representation**

- At node that is not a leaf: test one feature  $X_i$  Branch from node depending on value of  $X_i$  Each leaf node: predict  $\hat{y}_{R_m}$

#### **Tree characterization**

- size of tree |T| (number of leaf nodes)
- depth (max length from root node to a leaf node)

## Stratification of feature space - illustration



Figure 3: ISLR, Fig. 8.3.

The stratification on the top left cannot be produced by a decision tree using recursive binary splitting. The other three subfigures represent a single stratification.

## Training a decision tree

### Basic idea (1)

- Goal: find the high-dimensional rectangles that minimize error
- Computationally expensive to consider every possible partition

#### Basic idea (2)

- Instead: recursive binary splitting (top-down, greedy approach)
- Greedy: at each step, make the best decision at that step, without looking ahead and making a decision that might yield better results at future steps

#### **Recursive binary splitting**

For any feature j and *cutpoint* s, define the regions

$$R_1(j,s) = \{X|X_j < s\}, \quad R_2(j,s) = \{X|X_j \geq s\}$$

where  $\{X|X_j < s\}$  is the region of predictor space in which  $X_j$  takes on a value less than s.

## **Recursive binary splitting steps**

Start at root of the tree, considering all training samples.

- 1. At the current node,
- 2. Find feature  $X_i$  and cutpoint s that minimizes some loss function (?)
- 3. Split training samples at that node into two leaf nodes
- 4. Stop when no training error (?)
- 5. Otherwise, repeat at leaf nodes

#### Loss function for regression tree

For regression: look for feature j and cutpoint s that leads to the greatest possible reduction in squared error, where the "new" squared error is:

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 \quad + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

( $\hat{y}_{R_{i}}$  is the prediction for the samples in  $R_{j}$ .)



Figure 4: Training a regression tree.

#### Loss function for classification tree

For classification, find a split that minimizes some measure of node impurity:

- A node whose samples all belong to the same class most pure
- A node whose samples are evenly distributed among all classes highly impure

#### **Classification error rate**

For classification: one possible way is to split on 0-1 loss or misclassification rate:

$$\sum_{x_i \in R_m} 1(y_i \neq \hat{y}_{R_m})$$

Not used often.

#### **GINI** index

The GINI index is:

$$\sum_{k=1}^K \hat{p}_{mk} (1-\hat{p}_{mk})$$

where  $\hat{p}_{mk}$  is the proportion of training samples in  $R_m$  belonging to class k. You can see that this is small when all values of  $\hat{p}_{mk}$  are around 0 or 1.

#### **Entropy**

Entropy as a measure of impurity on subset of samples:

$$-\sum_{k=1}^K \hat{p}_{mk} \log_2 \hat{p}_{mk}$$

where  $\hat{p}_{mk}$  is the proportion of training samples in  $R_m$  belonging to class k.

## **Comparison - measures of node impurity**



Figure 5: Measures of node "impurity".

## **Conditional entropy**

- Splitting on feature X creates subsets  ${\cal S}_1$  and  ${\cal S}_2$  with different entropies Conditional entropy:

$$\mathrm{Entropy}(S|X) = \sum_v \frac{|S_v|}{|S|} \mathrm{Entropy}(S_v)$$

## **Information gain**

· Choose feature to split so as to maximize information gain, the expected reduction in entropy due to splitting on X:

$$\mathrm{Gain}(S,X) := \mathrm{Entropy}(S) - \mathrm{Entropy}(S|X)$$

#### Example: should I play tennis? (1)

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

Figure 6: Via Tom Mitchell.

## Example: should I play tennis? (2)

For top node:  $S = \{9+, 5-\}, |S| = 14$ 

$$\mathrm{Entropy}(S) = -\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14} = 0.94$$

#### Example: should I play tennis? (3)

If we split on Wind:

Considering the Weak branch:

• 
$$S_{\text{weak}} = \{6+, 2-\}, |S_{\text{weak}}| = 8$$

$$\begin{array}{l} \bullet \; S_{\rm weak} = \{6+,2-\}, |S_{\rm weak}| = 8 \\ \bullet \; {\rm Entropy}(S_{\rm weak}) = -\frac{6}{8} \log_2(\frac{6}{8}) - \frac{2}{8} \log_2(\frac{2}{8}) = 0.81 \end{array}$$

Considering the Strong branch:

$$\begin{aligned} & \bullet \ S_{\rm strong} = \{3+,3-\}, |S_{\rm strong}| = 6 \\ & \bullet \ {\rm Entropy}(S_{\rm strong}) = 1 \end{aligned}$$

• Entropy 
$$(S_{
m strong})=1$$



Figure 7: Considering the split on Wind.

## Example: should I play tennis? (4)

$$\begin{split} & \operatorname{Entropy}(S) = -\tfrac{9}{14}\log_2\tfrac{9}{14} - \tfrac{5}{14}\log_2\tfrac{5}{14} = 0.94 \\ & \operatorname{Entropy}(S|\mathsf{Wind}) = \tfrac{8}{14}\mathsf{Entropy}(S_{\mathsf{weak}}) + \tfrac{6}{14}\mathsf{Entropy}(S_{\mathsf{strong}}) = 0.89 \\ & \operatorname{Gain}(S,\mathsf{Wind}) = 0.94 - 0.89 = 0.05 \end{split}$$

#### Example: should I play tennis? (5)

- Gain(S, Outlook) = 0.246
- Gain(S, Humidity) = 0.151
- Gain(S, Wind) = 0.048
- Gain(S, Temperature) = 0.029
- $\rightarrow$  Split on Outlook!

#### **Feature importance**

- ullet For each feature  $X_i$ , find all nodes where the feature was used as the split variable
- Add up information gain due to split (or for GINI index, difference in loss weighted by number of samples.)
- · This sum reflects feature importance

#### **Bias and variance**

#### Managing tree depth

- If tree is too deep likely to overfit (high variance)
- · If tree is not deep enough likely to have high bias



Figure 8: The depth/size of the tree (number of regions) controls the complexity of the regression line or decision boundaries, and the bias variance tradeoff.

## **Stopping criteria**

If we build tree until there is zero error on training set, we have "memorized" training data.

Other stopping criteria:

- · Max depth
- Max size (number of leaf nodes)
- · Min number of samples to split
- · Min number of samples in leaf node
- · Min decrease in loss function due to split

(Can select depth, etc. by CV)

#### **Pruning**

- · Alternative to stopping criteria: build entire tree, then prune
- With greedy algorithm a very good split may descend from a less-good split

## **Pruning classification trees**

We usually prune classification trees using classification error rate as loss function, even if tree was built using GINI or entropy.

### Weakest link pruning (1)

Prune a large tree from leaves to root:

- Start with full tree  $T_{
  m 0}$
- Merge two adjacent leaf nodes into their parent to obtain  $T_{\mathbf{1}}$  by minimizing:

$$\frac{Err(T_1) - Err(T_0)}{|T_0| - |T_1|}$$

#### Weakest link pruning (2)

- Iterate to produce a sequence of trees  $T_0, T_1, \dots, T_m$  where  $T_m$  is a tree of minimum size.
- · Select optimal tree by CV

#### **Cost complexity pruning**

Equivalent to: Minimize

$$\sum_{m=1}^{|T|}\sum_{x_i}^{R_m}(y_i-\hat{y}_{R_m})^2+\alpha|T|$$

Choose  $\alpha$  by CV, 1-SE rule ( $\uparrow \alpha, \downarrow |T|$ ).



Figure 9: Weakest link pruning.



Figure 10: Selecting tree from the set of candidate trees.

## **Summary - so far**

## The good and the bad (1)

## Good:

- Easy to interpret, close to human decision-making
- Can derive feature importance
- Easily handles mixed types, different ranges
  Can find interactions that linear classifiers can't

## The good and the bad (2)

## Bad:

- Need deep tree to overcome bias
- Deep trees have large variance
- Non-robust: Small change in data can cause large change in estimated tree