

Class 10th

CHEMISTRY ACIDS BASES AND SALTS

Arrhenius's concept of acids and bases:

- An acid is a substance that produces H⁺ or H₃O⁺ ions in an aqueous solution
- A base is a substance that gives OH⁻ ions in the aqueous solution.
- The ionisation of hydrochloric acid in water:

$$HCl(aq) + H2O(l) \rightarrow H3O+(aq) + Cl-(aq)$$

Ionisation of sodium hydroxide in water:

$$NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$

General characteristics of acids and bases:

Acids:

- · They have a sour taste.
- Acids release H⁺ions in aqueous solution.
- They are corrosive in nature.
- They are good conductors of electricity in solution,
- · They changed the blue litmus paper to red.

Bases:

- · They are soapy to the touch.
- Bases release OH ions in aqueous solution.
- · They taste bitter.
- · Strong bases like sodium hydroxide are corrosive in nature.
- · They changed the red litmus paper to blue.

Indicators:

• An indicator is a chemical compound which indicates the presence of an acidic, basic, or neutral substance either by a change in colour or odour.

Types of indicators:

- Olfactory indicators: Those substances whose odour changes in acidic or basic media are called olfactory indicators. For e.g., clove oil, vanilla extract, and raw onion.
- Natural indicators: Turmeric, litmus (obtained from lichen), China rose, and red cabbage.
- **Synthetic indicators**: Methyl orange, phenolphthalein.

Universal Indicator: A universal indicator is a mixture of indicators which shows a gradual but well-marked series of colour changes over a very wide range of changes in concentration of H⁺ ions.

	Indicator	Acids	Bases
1.	Red litmus	No Colour change	Blue
2.	Blue litmus	Red	No colour change
3.	Phenolphthalein	Colourless	Pink
4.	Methyl orange	Red	Yellow

Classification of acids:

- (A) On the **basis of origin**, acids are of two types:
- 1. Mineral acid:
 - These are acids prepared from minerals present in the earth's crust.
 - Example: HNO₃ HCl, H₂SO₄ etc.
- 2. Organic acid:
 - These are acids produced by plants and animals.
 - Example: lactic acid, citric acid etc.
- (B) On the **basis of strength**, acids are of two types:
- 1. Strong acid:
 - The acids which dissociate completely in aqueous solution are strong acids.
 - Examples: HCl, HNO₃ etc.
- 2. Weak acids:
 - The acids which do not dissociate completely in an aqueous solution are called weak acids.
 - Examples: CH₃COOH, H₂CO₃ etc.

Chemical properties of acids and bases:

1. Reaction of acid and base with metals:

$$2HCl + Zn \rightarrow ZnCl_2 + H_2$$

$$NaOH + Zn \rightarrow Na_2ZnO_2 + H_2$$

Note – Such reactions are not possible with all the metals.

- 2. Detection of hydrogen gas:
 - When a burning candle is brought near a test tube containing hydrogen gas it burns with a 'Pop' sound.
- 3. Action of Acids with metal Carbonates and metal bicarbonates
 - Metal Carbonate/bicarbonates + Acid → Salt + Carbon dioxide + Water

$$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$$

$$NaHCO_3(s) + HCl(aq) \rightarrow NaCl(aq) + CO_2(g) + H_2O(l)$$

- 4. Detection of Carbon dioxide gas (Lime water Test):
 - On passing the CO₂ gas evolved through lime water,

$$Ca(OH)_2 (aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$$

Lime water

White precipitate

• On passing excess CO₂ the following reaction takes place

$$CaCO_3(s) + H_2O(l) + CO_2(g) \rightarrow Ca(HCO_3)_2$$
 (aq)

Soluble in water

5. Neutralisation Reaction

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + 57.1KJ$$

6. Reactions of metal oxides with acids

$$CuO(s) + 2HCl(aq) \rightarrow CuCl_2(s) + H_2O(l)$$

7. Reaction of Non-Metallic Oxide with Base

$$CO_2(g) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + H_2O(l)$$

pH Scale:

• A negative logarithm of hydrogen ion concentration is known as pH.

$$pH = -log[H^+]$$

- According to the pH scale, the lesser the pH value, the stronger the acid and vice-versa.
- On Increasing [H⁺], the Value of pH will decrease.
- Mixing an acid or base with water results in a decrease in the concentration of ions (H₃O⁺/OH⁻) per unit volume. Such a process is called dilution.
- On dilution, the pH of the acidic solution increases and the basic solution decreases.

For water or neutral solutions: pH = 7

for acidic solutions: pH < 7 for basic solution: pH > 7

Significance of pH in everyday life:

(i) **pH in our digestive system:**

• Dilute HCl (Hydrochloric acid) helps in the digestion of food (proteins) in our stomach. Excess acid in the stomach causes acidity (indigestion). Antacids like magnesium hydroxide [Mg(OH)₂] also known as milk of magnesia and sodium hydrogen carbonate (baking soda) are used to neutralize excess acid.

(ii) Tooth decay caused by acids:

• The bacteria present in our mouth converts the sugar into acids. When the pH of acid formed in the mouth falls below 5.5, tooth-decaying starts. The toothpastes contain some basic ingredients and they help neutralize the effect of acids and also increase the pH of the mouth.

(iii) Soil of pH and plant growth:

 Most plants have healthy growth when the soil has a specific pH (close to 7) range which should be neither alkaline nor highly acidic.

Salts: Salts are the ionic compounds which are produced after the neutralization reaction between acid and base.

Classification of Salts (based on pH values)

- (i) Neutral Salts:
 - Strong acid + Strong base → Neutral Salt + water
 - Examples: Sodium chloride, potassium chloride etc
- (ii) Acidic Salts:
 - Strong acid +Weak base → Acidic Salt + water
 - Examples: Ammonium sulphate, Ammonium chloride, etc.
- (iii) Basic Salts:
 - Weak acid + Strong base → Basic Salt + water
 - **Example:** Sodium carbonate, potassium phosphate etc.

SOME IMPORTANT CHEMICAL COMPOUND

1. **Common Salt:**

Common name: Table salt & rock salt Chemical name: sodium chloride

Chemical formula: NaCl.

- In pure form, NaCl is a white crystalline solid, however, it is often brown due to the presence of impurities.
- 2. Sodium Hydroxide:

Common name: Caustic soda

Chemical name: Sodium hydroxide

Chemical formula: NaOH

• **Preparation**: It is obtained by the electrolytic decomposition of a brine solution (NaCl + H₂O). This whole process is known as Chlor – Alkali process.

$$\begin{array}{ccc} 2\mathrm{NaCl}(\mathrm{aq}) + 2\mathrm{H}_2\mathrm{O}(l) \rightarrow 2\mathrm{NaOH}(\mathrm{aq}) + \mathrm{Cl}_2(\mathrm{g}) + \mathrm{H}_2(\mathrm{g}) \\ & \quad \text{Sodium} \\ & \quad \text{Sodium} \\ & \quad \text{Chlorine} \end{array}$$

At anode = Chlorine gas,

At Cathode= Hydrogen gas,

Near the cathode = Sodium hydroxide

• Uses of the products of the chlor-alkali process:

- Use of hydrogen gas
 - o As fuel, margarine, in making of ammonia for fertilizer, etc.
- Use of chlorine gas
 - o Water treatment, manufacturing of PVC, disinfectants, CFC, and pesticides.
 - o Manufacturing of bleaching powder and hydrochloric acid.

• Use of sodium hydroxide

o De-greasing of metals, manufacturing of paper, soap, detergents, artificial fibres, etc.

3. Bleaching Powder:

Common name: Bleaching powder or Chloride of lime or Chlorinated lime.

Chemical name: Calcium oxychloride

Chemical formula: CaOCl₂

• **Preparation:** Bleaching powder is produced by the action of chlorine on dry slaked lime (Ca(OH)₂).

$$Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$$

Note: Aqueous solution of bleaching powder is basic in nature. The term bleach means removal of colour. Bleaching powder is often used as a bleaching agent. It works because of oxidation. Chlorine in the bleaching powder is responsible for the bleaching effect.

• Use of Bleaching Powder:

• to make drinking water free from germs.

• for the bleaching of cotton in the textile industry, and the bleaching of wood pulp in the paper industry.

• as an oxidizing agent in many industries,

4. Baking Soda:

Common name: Baking soda.

Chemical name: Sodium bicarbonate

Chemical formula: NaHCO₃

Preparation:

• Baking soda is obtained by the reaction of brine with carbon dioxide and ammonia. This is known as the **Solvay process**.

$$\underbrace{\begin{array}{c} \text{NaCl+} \text{H_2O} + \text{CO_2} + \text{NH_3} & \longrightarrow \text{NH_4Cl} + \text{$NaHCO_3$} \\ \text{Sodium} & \text{Water} & \text{Carbon} \\ \text{chloride} & \text{dioxide} & \text{Ammonia} & \text{Ammonium} \\ \hline \textbf{Brine} & \\ \hline \end{array} } \underbrace{\begin{array}{c} \text{NaCl+} \text{$NaHCO_3$} \\ \text{Ammonium} \\ \text{chloride} & \text{bicarbonate} \\ \end{array} }$$

• Properties of Sodium Bicarbonate:

• Sodium bicarbonate is a white crystalline solid that forms an alkaline solution with water.

• When heated above 543K, it decomposes into sodium carbonate, carbon dioxide and water.

$$2NaHCO_3(s) + heat \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(l)$$

Use of Baking Soda:

• Baking soda is used in the making of baking powder(baking soda + mild edible acid like tartaric acid), which is used in cooking as it produces carbon dioxide causing bread or cake to rise making them soft and spongy.

- Sodium hydrogen carbonate is also an ingredient in antacids.
- It is also used in soda-acid fire extinguishers.

5. Washing Soda:

Common name: washing soda

Chemical name: Sodium carbonate decahydrate

Chemical formula: Na₂CO₃.10H₂O

Preparation:

- Recrystallization of Sodium carbonate:
 - o Sodium carbonate is recrystallized by dissolving in water to get washing soda

$$\begin{array}{ccc} NaCO_3 + 10H_2O & \longrightarrow Na_2CO_3.10H_2O \\ & Sodium & Sodium carbonate \\ & carbonate & (Hydrated) \end{array}$$

Use of washing soda:

- It is used as a cleaning agent for domestic purposes.
- It is used for removing the permanent hardness of water.
- It is used in glass, soap and paper industries.
- It is used in the manufacture of sodium compounds such as Borax (Na₂B₄O₇.10H₂O).

Water of Crystallization:

• Many salts contain water molecules and are known as Hydrated Salts. The water molecule present in salt is known as Water of crystallization.

Examples:

- o **Blue vitriol** = $CuSO_4.5H_2O$
- o Green vitriol = $FeSO_4.7H_2O$
- o White vitriol = $ZnSO_4.7H_2O$

6. Plaster of Paris:

Common name: Plaster of Paris

Chemical name: Calcium Sulphate hemihydrate

Chemical formula: $CaSO_4$. $\frac{1}{2}H_2O$

Preparation:

• On heating gypsum at 373K, it loses water molecules and becomes CaSO₄. $\frac{1}{2}$ H₂O.

$$\text{CaSO}_4.2\text{H}_2\text{O} \quad 373k \rightarrow \text{ CaSO}_4.\frac{1}{2}\text{H}_2\text{O} + 1\frac{1}{2}\text{H}_2\text{O}$$

POP

Gypsum

Note: The temperature is carefully controlled, as at higher temperatures gypsum is fully dehydrated.

$$CaSO_4.2H_2O > 373k \rightarrow CaSO_4(anhydrous) + 2H_2O$$

POP

dead burnt plaster

Properties:

When it is dissolved in water, it gets crystallized and forms gypsum

$$CaSO_4.\frac{1}{2}H_2O + 1\frac{1}{2}H_2O \rightarrow CaSO_4.2H_2O$$

POP

Gypsum

Uses:

- It is used for making toys, cosmetics and casts of statues.
- It is used as a cast for setting broken bones.
- It is used for making surfaces smooth and for making designs on walls and ceilings.