Contents

1	引论	
	1.1	系统和网
		1.1.1 连接方式
		1.1.2 等级制网络结构
	1.2	通信网的类型
	1.3	通信网的组成要素
	1.4	对通信网的要求
	1.5	引论
		1.5.1 通信网的组成要素

Chapter 1

引论

1.1 系统和网

通信系统是将用户(信源)要求传递的信息转移到另一个用户(信宿)的全部软硬通信设备。

通信过程: 信源-发送器-信道-接收器-信宿

一条线路:连接两个话机的这一对线。

1.1.1 连接方式

全联结网 $C_n^2 = \frac{n(n-1)}{2}$

采用中央交换的方式 $C_n^2 - -n$, 当任意两个用户要通话时,由交换机将它们连通,通话完毕将线路拆除,供其他用户使用

网络的结构的变化:点-点,全联通,交换式

建立大规模通信网需要引入层次交换。终端设备-传输设备-交换设备-传输设备-终端设备

交换:

思想 动态按需分配

目的 网络资源共享,降低通信成本

用户到交换机通过用户线连接,交换机之间通过中继线连接。

1.1.2 等级制网络结构

全部节点分成多个等级,每个节点属于某个等级,低等级节点与管辖它的高等级节点相连,形成多级汇接辐射结构。

- 1. 高等级通信繁忙时,可连接成网状结构
- 2. 某些节点间的联系十分密切,则可以建立直接连接。

1.1.2.1 电话网

电话网络结构的演变:减少等级->无级动态网,现在的长途电话网结构为二**级** 传统电话网分为:

本地网 在同一编号区域范围内,由若干端局,或者由若干端局与汇接局及局间中继线、用户线和话机终端等组成的电话网

长途网 指在全国范围内,由端局、汇接局和若干个长途局组成。

Figure 1.1:

Figure 1.2:

DC1 省际交换中心,汇接所在省的省际长途来话、去话话务,以及所在本地网的长途终端话务 **省内** 汇接所在本地网的长途终端话务

1.1.2.2 因特网

多级结构的因特网, 主机到主机的通信可能经过多种 ISP。 下一代网络的系统结构:接入层,传送层,控制器,业务/应用层。四层。

1.2 通信网的类型

按不同方式有不同分类, 如按距离分, 按业务分。

1.3 通信网的组成要素

通信网是通信系统的系统。通信网的"硬件":完成接人、传输和交换

- 1. 终端机,信息的产生者和使用者
- 2. 传输线路, UTP 非屏蔽双绞线,STP 屏蔽双绞线..., 有线传输、无线传输。传输线路复用。
- 3. 交换设备和业务节点 交换方式
 - (a) 电路交换, 以电路联接为目的的交换方式是电路交换方式。**面向连接**。 分为三个阶段: **建立连接、通信、释放连接**。 特点:
 - i. 局内用户间连通, 用户-用户。

Figure 1.3:

ii. 本局用户与有中继线联结的用户接通(用户—中继线—用户)

Figure 1.4:

iii. 纯交换,中继线与中继线

Figure 1.5:

缺点:网络资源(包括线路和交换设备)的利用不充分。

- (b) 报文交换,将整个报文作为一个整体进行存储-转发
- (c) 分组交换,把一份报文分解成若干段,每一段组装成为一个分组(Packet),交换机以分组作为存储、 处理和传输单元。

转发原理:将需要传输的数据组装成分组,标上地址信息发往网络,**网络各结点根据分组的地址**,一级级地转发到目的地。分组交换的两种形式:

数据报 数据报每经过一个中继节点时,都要进行路由选择,是一种无连接的服务。

虚电路 在发送用户数据之前,先传送控制信息分组,建立一条固定路由,以后两者之间发送的数据 都沿着这条路由转发。**发送数据可能存在排队等待(电路交换不需要等待)**

电路交换和分组交换的共同点是所有需要交换的信息都必须送到一个交换点或转接站,由后者来控制。 自从 ALOHA 系统引入后,这一概念有了变化,**各个用户直接送到线路上去**,各用户都有一地址,这就 是**多址接人方式**

通信网的"软件": 完成控制、管理、运营和维护,实现通信网的智能化

1. 各种规定,包括信令、协议和和各种标准。

Figure 1.6:

电话信令

计算机通信协议 采用分层的设计方法。

网络的体系结构:网络的各层功能和协议的集合。

OSI7 层模型: 上 4 层为用户层, 主要针对用户, 下 3 层为通信层, 主要针对通信网。

1.4 对通信网的要求

- 1. 接通的任意性和快速性
- 2. 运行的可靠性
- 3. 信息的透明性
- 4. 质量的一致性
- 5. 较好的灵活性
- 6. 经济的合理性

1.5 报告

1.5.1 通信网的组成要素

问题 1.5.1 当今典型网络的终端设备、设备线路、交换设备,主要设备的工作原理和功能

终端设备 主要功能是把待传送的信息和在信道上传送的信号之间的相互转换。

- 发送传感起来感受信息和接受传感器将信号恢复称能被利用的信息
- 能处理信号的设备使之能与信道匹配
- 能产生和辨别网内所需的信令或协议,以便相互联系和应答

设备线路 传输线路, 踏实电磁波传输的路径。通常分为无界传播和导引传播。

- 1. 无线信道传输通道主要自由空间,需要发射机、发射天线、接受天线和接收机。
 - (a) **长波线路** 300kHz 以下。沿地面尤其是海岸的传播损耗小。一般用于航海系统中
 - (b) 短波线路 3MHz-30MHz。传播损耗已较大,但利用地球上空电离层反射,可进行远距离通信。
 - (c) 微波线路 作为通信网的信道的主要方式是中继线路或接力线路。
- 2. **有线信道**电磁波是沿道题传播的,而且通常是能构成直流通路,适宜与基带传输。包括**架空明线、平衡电缆、同轴电缆、波导传输**。,除了有线线路还需要增加**增音器和均衡器**。

交换设备 终端设备和信道是构成通信系统的必要设施,除此之外,还需要交换设备

- 1. 电路交换
- 2. **分组交换** 分组交换在网路资源利用上比电路交换方式好,但总要引入一定延时,所以对实时要求高的如电话通信不利。
- 3. **多址接人** 上两者都需要讲交换信息传送到一个交换点或转接站。引入多址接入可使哥哥用户直接 接送到线路上去。

问题 1.5.2 电话网与计算机通信网的不同

- 1. 传统电话网使用电路交换方式,而计算机通信网多使用分组交换方式或虚电路方式。
- 2. 电话网对交换的实时性要求高,但对准确率要求相对较低。计算机通信网则对实时性要求相对低,准确率要求高。
- 3. 电话网传输速率相对计算机通信网普遍较低。

问题 1.5.3 通信网的约定的概念,电话网的约定、因特网的约定

1. 通信网的约定 网内使用的一种"语言",用他们来协调网的运行,达到互通、互控和互换的目的。

- 2. 电话网的约定 电话信令
- 3. 因特网的约定 计算机通信协议

问题 1.5.4 通信网的质量标准及传输标准

- 1. 质量标准 质量决定于信道的比特误码率
 - (a) 接续质量, 受网资源的容量和可靠性限制, 主要靠增加网资源来提高
 - (b) 信息质量, 受终端额信道的失真和噪声等限制, 因信息类型的不同而不同。
- 2. 传输标准 规定了信道接口的一系列参数。