

CLAIMS

What is claimed is:

Sub B6

1 1. An interface system for monitoring a number of channels in a
2 communications system having at least one group of a number of nodes, each node
3 having a number of channels, the interface system comprising:
4 a processor electrically coupled to a local interface;
5 a memory electrically coupled to the local interface;
6 a display device electrically coupled to the local interface; and
7 test result interface logic stored on the memory and executable by the
8 processor, the test result interface logic including:
9 group level display logic to generate a number of group level
10 test result components on the display device that include a number of group
11 parameters associated with the at least one group;
12 node level display logic to generate a number of node level test
13 result components on the display device that include a number of node
14 parameters associated with one of the nodes; and
15 channel level display logic to generate a number of channel level
16 test result components on the display device that include a number of channel
17 parameters associated with one of the nodes.

1 2. The system of claim 1, wherein the group level test result components
2 further comprise a node information table listing a number of the nodes associated with
3 the at least one group.

1 3. The system of claim 1, wherein the group level test result components
2 further comprise a group total node power graph indicating a power range for a
3 number of the nodes associated with the at least one group.

1 4. The system of claim 1, wherein the group level test result components
2 further comprise an average percent availability graph indicating a low percent
3 availability, a high percent availability, and an average percent availability for a number
4 of the nodes associated with the at least one group.

1 5. The system of claim 1, wherein the node level test result components
2 further comprise a channel plan graph that indicates a desired frequency spectrum of a
3 respective one of the nodes, the desired frequency spectrum including at least one
4 frequency band associated with at least one of the channels that are associated with the
5 respective node.

1 6. The system of claim 1, wherein the node level test result components
2 further comprise a total node power graph indicating an amount of power associated
3 with one of the nodes with respect to time.

1 7. The system of claim 1, wherein the node level test result components
2 further comprise a node spectrum scan indicating an actual frequency spectrum of one
3 of the nodes with respect to time.

1 8. The system of claim 1, wherein the channel level test result components
2 further comprise a channel carrier-to-noise graph indicating a magnitude of a channel
3 carrier-to-noise ratio of the channels associated with one of the nodes with respect to
4 time.

1 9. The system of claim 1, wherein the channel level test result components
2 further comprise channel percent available graph indicating a percent availability of the
3 channels associated with one of the nodes with respect to time.

1 10. The system of claim 1, wherein the channel level test result components
2 further comprise a channel average noise power graph indicating a magnitude of a
3 channel noise power of the channels associated with one of the nodes with respect to
4 time.

1 11. The system of claim 1, wherein the channel level test result components
2 further comprise a channel power graph indicating a magnitude of a channel noise
3 power of one of the channels associated with one of the nodes with respect to time.

1 12. The system of claim 1, wherein the channel level test result components
2 further comprise a channel burst counter graph indicating a number of channel bursts
3 occurring in the channels associated with one of the nodes with respect to a burst
4 duration length.

1 13. An interface method for monitoring a number of channels in a
2 communications system having at least one group of a number of nodes, each node
3 having a number of channels, the interface method comprising the steps of:
4 generating a number of group level test result components on a display
5 device that include a number of group parameters associated with the at least one
6 group;
7 generating a number of node level test result components on the display
8 device that include a number of node parameters associated with one of the nodes; and
9 generating a number of channel level test result components on the
10 display device that include a number of channel parameters associated with one of the
11 nodes.

1 14. The method of claim 13, wherein the step of generating a number of
2 node level test result components on the display device that include a number of node
3 parameters associated with one of the nodes further comprises the step of generating a
4 channel plan graph that indicates a desired frequency spectrum of a respective one of
5 the nodes, the desired frequency spectrum including at least one frequency band
6 associated with at least one of the channels that are associated with the respective
7 node.

1 15. The method of claim 13, wherein the step of generating a number of
2 node level test result components on the display device that include a number of node
3 parameters associated with one of the nodes further comprises the step of generating a
4 total node power graph indicating an amount of power associated with one of the
5 nodes with respect to time.

1 16. The method of claim 13, wherein the step of generating a number of
2 channel level test result components on the display device that include a number of
3 channel parameters associated with one of the nodes further comprises the step of
4 generating a channel carrier-to-noise graph indicating a magnitude of a channel carrier-
5 to-noise ratio of the channels associated with one of the nodes with respect to time.

1 17. The method of claim 13, wherein the step of generating a number of
2 channel level test result components on the display device that include a number of
3 channel parameters associated with one of the nodes further comprises the step of
4 generating a channel percent available graph indicating a percent availability of the
5 channels associated with one of the nodes with respect to time.

1 18. The method of claim 13, wherein the step of generating a number of
2 channel level test result components on the display device that include a number of
3 channel parameters associated with one of the nodes further comprises the step of
4 generating a channel average noise power graph indicating a magnitude of a channel
5 noise power of the channels associated with one of the nodes with respect to time.

1 19. The method of claim 13, wherein the step of generating a number of
2 channel level test result components on the display device that include a number of
3 channel parameters associated with one of the nodes further comprises the step of
4 generating a channel power graph indicating a magnitude of a channel noise power of
5 one of the channels associated with one of the nodes with respect to time.

1 20. The method of claim 13, wherein the step of generating a number of
2 channel level test result components on the display device that include a number of
3 channel parameters associated with one of the nodes further comprises the step of
4 generating a channel burst counter graph indicating a number of channel bursts
5 occurring in the channels associated with one of the nodes with respect to a burst
6 duration length.