Monty Python Speech Diarization

Patricio Foncea, Andreea Georgescu, Andrey Sushko 12/10/2018

Problem Formulation

Data Available

- Flying Circus sketches, audio and subtitles.
- Each data point represents

 a line in a sketch
 Specifically, the averaged
 spectrogram data for the
 time interval of the line.
- Small sample of lines with labeled speaker.

Goal

- Assign lines to speakers.
- No prior information about different speakers.
- A version of the second stage in speech diarization: Once change in speaker candidates are identified, determine whether speech segments belong to same speakers.

Motivation

- Original goal: use subtitle
 files to generate new
 sketches (Neural Nets).

 Hypothesis: given time
 delimitation of lines, use
 clustering to supplement
 speaker to the data.
- Other application: determine speaker without storing content.

Methods – overview

- Unsupervised Clustering
 - Naïve k-means
 - Hierarchical trees with custom distances
 - Earth moving distance and KL Divergence
- Supervised Approach
 - For two lines, predict whether they belong to the same speaker
 - Fit logistic regression on labeled sample
- PCA and Gaussian Mixture
 - Run PCA to reduce dimensionality of frequency bins to a few significant chords
 - Estimate a gaussian mixture model to cluster lines

Naïve k-means

- Bad performance since clusters are not spherical.
 - Coordinates / features have a meaningful order
 - In this sense, we can think of data points more like distributions
 - Look at appropriate distances:
 - Averaged KL divergence
 - Earth moving distance

Dendrogram of two labeled sketches

Hierarchical Trees

Accuracy of clustering when we cut the tree before at 10 clusters

Pairwise distance distribution across pairs in the same / different clusters

Why do our distances perform badly?

Looking on average data per speaker, distances chosen look promising.

Each data point from one speaker is a poor estimation of complex distribution

Supervised Approach

- Approach: for a pair of data points, learn whether they belong to the same speaker or not.
 - Used logistic regression on labeled sample.
 - When Train = Test: 82% accuracy
 - When Train ≠ Test: 30% accuracy

Conclusion:

- Labeled data is small and not representative of entire dataset
- With more representative labeled data, this method could work well
 - Especially since it looks on entire sample from one speaker.

Feature Selection and Dimensionality Reduction

- Ran PCA on entire data set
- Data is separable but not cluster-able
- Suggests supervised method would work well with enough data

Entire dataset in first two PCs

Labeled data with two speakers in first two PCs

Gaussian Mixture Model

Fit model on labeled sample

Accuracy of Mixture of Gaussian

Projection onto components

And Now for Something Completely Different

Script generation via char-rnn

174

00:10:40,207 --> 00:10:42,740 I don't know what I mean, lord the strike.

223

00:10:27,591 --> 00:10:30,083 Well, we were the country

256

00:10:56,990 --> 00:10:59,163

the road of the wood.

273

00:14:12,286 --> 00:14:14,868

I can see the late

in the head of the world to me.

223

00:14:22,863 --> 00:14:25,923

I think you go to the

present the name of the collect.

240

00:14:02,646 --> 00:14:04,678

I was a special struck of the look in the studio

253

00:14:28,161 --> 00:14:30,244

Yes, yes, it's a little bit, by a bloody little back.

251

00:10:38,221 --> 00:10:41,512

The last week of the present scene

254

00:14:03,207 --> 00:14:04,905

I'm not a problems

and believe it again.

284

00:14:15,896 --> 00:14:17,698

The great address the stranges

296

00:14:37,811 --> 00:14:41,982

What a stupid.