A More Robust Optimal Adjustment Set

Chase Mathis

December 2023

Goals and New Research

- Similar to how a trek is associated with covariance, can one find a graphical structure or function of one that defines the bias term.
- ► In sparse data situations, should researchers include forbidden terms if sample covariance meet certain constraints.

Previous Causal DAGs

- ► The optimal adjustment set is the unbiased adjustment set that has the *lowest asymptotic variance*.
- ▶ Henckel et al. [1] that for Structural Equation Models (SEMs), an optimal adjustment set for finding the causal effect of $T \rightarrow Y$ is:

$$\textit{O}_{\textit{g}}(\textit{T} \rightarrow \textit{Y}) = \textit{pa}_{\textit{g}}(\textit{cn}_{\textit{g}}(\textit{T} \rightarrow \textit{Y})) \setminus (\textit{cn}_{\textit{g}}(\textit{T} \rightarrow \textit{Y}) \cup \{\textit{T}\}).$$

▶ It was also shown for the non-parametric case [2]

Example

So for instance in the graph below the

- $cn_G(T \to Y) = \{W, M, Y\}$

Graph Example

Consider the Structural Equation Model

▶ In the graph below, the $O_g(T \to Y) = \{A, B, C, D, V, S\}$

In R

In R, this can be seen as

```
T \leftarrow rnorm(n)
V \leftarrow rnorm(n)
S \leftarrow rnorm(n)
A \leftarrow rnorm(n)
B < - rnorm(n)
C \leftarrow rnorm(n)
D <- rnorm(n)
E \leftarrow rnorm(n)
W \leftarrow 5 * T + 2 * V + rnorm(n)
Y < -7 * W + A + B + 4 *S + C + D + rnorm(n)
```

Results

I calculate the MSE of the $\hat{\beta_T} \mid \beta = -35$ over the optimal adjustment set and instead only using the strongly causal nodes V, S, I see the following:

Results 2: Changing Parameters

If I make the variance of A, B, C, D, E small or V, S large, the difference is more pronounced

Forbidden Nodes

I've also been considering Forbidden Nodes and including them in adjustment sets.

Here M is a forbidden node and including it will give a biased estimate for $T \rightarrow Y$

Variable Mediator

If data is sparse and M is quite a bit more variable than the other variables (5x), I found that the MSE of $\hat{\beta_T}$ is smaller when adjusting for M then for not adjusting for M

Adjusting for Two Forbidden Nodes

In the graph shown below, nodes A, B are forbidden as they are descendants of a causal node.

If we adjust for them, however, the bias is a ratio of determinants.

Proof

$$\beta_{ty \cdot ab} = \frac{\sigma_{ty \cdot ab}}{\sigma_{tt \cdot ab}} \tag{1}$$

$$= \frac{\sigma_{ty} - \Sigma_{t,AB} \Sigma_{AB}^{-1} \Sigma_{AB,y}}{|\Sigma_{AB \cdot t}| \sigma_{tt} / |\Sigma_{AB}|}$$
(2)

Focusing on the numerator, $\sigma_{ty} = \beta_{ty} * \sigma_{tt} = \beta_{tm}\beta_{my} * \sigma_{tt}$

$$= \frac{\beta_{tm}\beta_{my}\sigma_{tt} - \Sigma_{t,AB}\Sigma_{AB}^{-1}\Sigma_{AB,y}}{|\Sigma_{AB,t}|\sigma_{tt}/|\Sigma_{AB}|}$$
(3)

Proof Cont.

Focusing on $\Sigma_{t,AB}\Sigma_{AB}^{-1}\Sigma_{AB,y}$, we get the following:

$$\Sigma_{t,AB} \Sigma_{AB}^{-1} \Sigma_{AB,y} = tr(\Sigma_{t,AB} \Sigma_{AB}^{-1} \Sigma_{AB,y})$$
 (4)

$$= tr(\Sigma_{t,AB}^T \Sigma_{AB,y} \Sigma_{AB}^{-1}) \tag{5}$$

$$= tr(\begin{bmatrix} \sigma_{ta} & \sigma_{tb} \end{bmatrix} \begin{bmatrix} \sigma_{ay} \\ \sigma_{by} \end{bmatrix} \Sigma_{AB}^{-1})$$
 (6)

We can use the trek rule to find that $\sigma_{ay}=\sigma_{mm}\beta_{ma}\beta_{my}$ and $\sigma_{by}=\sigma_{mm}\beta_{mb}\beta_{my}$

$$= \sigma_{mm} \beta_{my} tr(\begin{bmatrix} \sigma_{ta} & \sigma_{tb} \end{bmatrix} \begin{bmatrix} \beta_{ma} \\ \beta_{mb} \end{bmatrix} \Sigma_{AB}^{-1})$$
 (7)

$$\sigma_{ta} = \beta_{ta}\sigma_{tt}, \sigma_{tb} = \beta_{tb}\sigma_{tt}$$

Proof Cont.

$$= \sigma_{mm} \sigma_{tt} \beta_{my} tr(\begin{bmatrix} \beta_{ta} & \beta_{tb} \end{bmatrix} \begin{bmatrix} \beta_{ma} \\ \beta_{mb} \end{bmatrix} \Sigma_{AB}^{-1})$$
 (8)

(9)

Further, $\beta_{ta} = \beta_{tm}\beta_{ma}$, $\beta_{tb} = \beta_{tm}\beta_{mb}$

$$= \sigma_{mm} \sigma_{tt} \beta_{my} \beta_{tm} tr(\begin{bmatrix} \beta_{ma} & \beta_{mb} \end{bmatrix} \begin{bmatrix} \beta_{ma} \\ \beta_{mb} \end{bmatrix} \Sigma_{AB}^{-1})$$
 (10)

$$= \sigma_{mm}\sigma_{tt}\beta_{my}\beta_{tm}(\beta_{ma}^2 + \beta_{mb}^2)tr(\Sigma_{AB}^{-1})$$
(11)

$$= \sigma_{tt} \beta_{my} \beta_{tm} (\sigma_{ma}^2 + \sigma_{mb}^2) tr(\Sigma_{AB}^{-1}) / \sigma_{mm}$$
 (12)

$$= \sigma_{tt} \beta_{my} \beta_{tm} (\sigma_{ma}^2 + \sigma_{mb}^2) (\frac{1}{\sigma_{aa \cdot b}} + \frac{1}{\sigma_{bb \cdot a}}) / \sigma_{mm}$$
 (13)

(14)

Proof Cont.

Returning to the original equation

$$= \frac{\beta_{tm}\beta_{my}\sigma_{tt} - \sigma_{tt}\beta_{my}\beta_{tm}(\sigma_{ma}^2 + \sigma_{mb}^2)(\frac{1}{\sigma_{aa\cdot b}} + \frac{1}{\sigma_{bb\cdot a}})/\sigma_{mm}}{|\Sigma_{AB\cdot t}|\sigma_{tt}/|\Sigma_{AB}|}$$
(15)

$$= \frac{\beta_{tm}\beta_{my}|\Sigma_{AB}|\left(1 - (\sigma_{ma}^2 + \sigma_{mb}^2)(\frac{1}{\sigma_{aa\cdot b}} + \frac{1}{\sigma_{bb\cdot a}})/\sigma_{mm}\right)}{|\Sigma_{AB\cdot t}|}$$
(16)

$$= \frac{\beta_{tm}\beta_{my}|\Sigma_{AB}|\frac{1}{\sigma_{mm}}\left(\sigma_{mm} - (\sigma_{ma}^2 + \sigma_{mb}^2)(\frac{1}{\sigma_{aa \cdot b}} + \frac{1}{\sigma_{bb \cdot a}})\right)}{|\Sigma_{AB \cdot t}|}$$
(17)

$$= \frac{\beta_{tm}\beta_{my}|\Sigma_{AB}|\frac{1}{\sigma_{mm}}\sigma_{mm\cdot AB}}{|\Sigma_{AB\cdot t}|}$$
(18)

$$\sigma_{mm\cdot AB}|\Sigma_{AB}| = |\Sigma_{AB\cdot m}||\sigma_{mm}|$$

$$= \beta_{tm} \beta_{my} \frac{|\Sigma_{AB \cdot m}|}{|\Sigma_{AB \cdot t}|}$$

Adjusting for A Mediator

In the graph shown below, nodes M is a mediator, and the bias term is a ratio of schur complements minus a path from $W \to Y$ through only M.

Future Work

After talking with Dr. Evans, I plan to look into the simple linear scenario to come up with constraints about whether to include M as a confounding factor.

Perhaps, if one is uncertain if M is a mediator or not, one should still include it if it meets a certain criterion.

References

Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(2):579–599, March 2022.

Andrea Rotnitzky and Ezequiel Smucler.

Efficient adjustment sets for population average causal treatment effect estimation in graphical models.

Journal of Machine Learning Research, 21(188):1–86, 2020.