Логика-2, 3 курс М

Виктор Львович Селиванов 1

¹ФМКН СП6ГУ

Весенний семестр, 2024-25

v.selivanov@spbu.ru

Важная дополнительная информация: https://github.com/vseliv/Logic2-2024

Литература

- 1. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. 4-е изд., доп. М.: МЦНМО, 2012. 240 с.
- 2. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. 4-е изд., доп. М.: МЦНМО, 2012. 159 с.
- 3. Н. Катленд. Вычислимость. Введение в теорию рекурсивных функций. М: Мир, 1983, 255 с.
- 4. И.А. Лавров, Л.Л. Максимова, Задачи по теории множеств, математической логике и теории алгоритмов. Издание четвертое, М.: Наука, 2001. 256 с.
- 5. Дж. Шенфилд. Математическая логика. М.: Наука, 1975. 528

Выражения ЛП $^{\sigma}$ строятся из исходных символов, разбитых на следующие множества:

 Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа; множество предикатных символов непусто.

Выражения ЛП $^{\sigma}$ строятся из исходных символов, разбитых на следующие множества:

- Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа; множество предикатных символов непусто.
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$

Выражения ЛП $^{\sigma}$ строятся из исходных символов, разбитых на следующие множества:

- Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа; множество предикатных символов непусто.
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- ightharpoons Логические символы $\land \lor \to \lnot \forall \exists$

Выражения ЛП $^{\sigma}$ строятся из исходных символов, разбитых на следующие множества:

- Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа; множество предикатных символов непусто.
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- ightharpoons Логические символы $\land \lor \to \lnot \forall \exists$
- Вспомогательные символы (),

Осмысленные выражения $\Pi \Pi^{\sigma}$

тоже терм.

 σ -ТЕРМЫ: любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$

Осмысленные выражения $\Pi\Pi^{\sigma}$

σ -ТЕРМЫ:

любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$ тоже терм.

σ -ФОРМУЛЫ:

суть формулы.

выражение $P(t_1,\ldots,t_n)$, где t_1,\ldots,t_n — термы, а P - n-местный предикатный символ из σ , является формулой; если φ и ψ — формулы, а x — переменная, то выражения $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $\neg \varphi$, $\forall x \varphi$, $\exists x \varphi$

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ; $FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ;

 $FV(\forall x \varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Переменные, которые входят в формулу, но не являются свободными, называются связанными. Формулы без свободных переменных называются предложениями.

Запись $\varphi=\varphi(x_1,\ldots,x_m)$ означает, что $FV(\varphi)\subseteq\{x_1,\ldots,x_m\}$. Аналогично для термов.

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to \{\text{И},\text{Л}\},$ а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to \{\mathsf{VI},\mathsf{II}\}$, а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

Изоморфизмом $\mathbb A$ на $\mathbb B$ называется биекция g множества A на множество B такая, что $P^{\mathbb A}(a_1,\dots,a_n)=P^{\mathbb B}(g(a_1),\dots,g(a_n))$ и $g(f^{\mathbb A}(a_1,\dots,a_n))=f^{\mathbb B}(g(a_1),\dots,g(a_n))$ для любых $a_1,\dots,a_n\in\mathbb A$.

Структуры $\mathbb A$ и $\mathbb B$ называются изоморфными ($\mathbb A \simeq \mathbb B$), если существует изоморфизм $\mathbb A$ на $\mathbb B$.

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathrm N, \mathrm J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x), f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu});$$

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathsf N, \mathsf J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x)$$
, $f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $P(t_1,\ldots,t_n)^{\mathbb{A},\nu} = P^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $(\varphi \wedge \psi)^{\mathbb{A},\nu} = \varphi^{\mathbb{A},\nu} \wedge \psi^{\mathbb{A},\nu}$, аналогично для \vee,\to,\neg ;

$$(\forall x\varphi)^{\mathbb{A},\nu} = \bigwedge_{a \in A} \varphi^{\mathbb{A},\nu_a^x} \text{ in } (\exists x\varphi)^{\mathbb{A},\nu} = \bigvee_{a \in A} \varphi^{\mathbb{A},\nu_a^x}$$

где ν_a^x — означивание, полученное из ν изменением значения x на a.

Значения термов и формул

Пусть $t = t(x_1, \ldots, x_m)$ и $\varphi = \varphi(x_1, \ldots, x_m)$.

- Если означивания μ и ν согласованы на x_1,\dots,x_m , то $t^{\mathbb{A},\mu}=t^{\mathbb{A},\nu}$ и $\varphi^{\mathbb{A},\mu}=\varphi^{\mathbb{A},\nu}$. Поэтому вместо $t^{\mathbb{A},\nu}$ часто пишут $t^{\mathbb{A}}(x_1/a_1,\dots,x_m/a_m)$ или, короче, $t^{\mathbb{A}}(a_1,\dots,a_m)$, где $a_i=\nu(x_i)$; аналогично для формул. Вместо $\varphi^{\mathbb{A}}(a_1,\dots,a_m)=\mathbb{N}$ часто пишут $\mathbb{A}\models\varphi(a_1,\dots,a_m)$.
- Если g изоморфизм $\mathbb A$ на $\mathbb B$, то $g(t^{\mathbb A, \nu}) = t^{\mathbb A, g \circ \nu}$ и $\varphi^{\mathbb A, \nu} = \varphi^{\mathbb A, g \circ \nu}$. Иными словами, $g(t^{\mathbb A}(a_1, \dots, a_m)) = t^{\mathbb B}(g(a_1), \dots, g(a_m))$ и $\varphi^{\mathbb A}(a_1, \dots, a_m) = \varphi^{\mathbb B}(g(a_1), \dots, g(a_m))$.
- Если $\mathbb{A} \simeq \mathbb{B}$, то эти структуры элементарно эквивалентны ($\mathbb{A} \equiv \mathbb{B}$), т.е. в них истинны одни и те же σ -предложения.

Общезначимость и ее варианты

- ightharpoonup arphi общезначима (тождественно истинна), если $arphi^{\mathbb{A},
 u} = \mathbb{N}$ для любых \mathbb{A} и ν .
- ightharpoonup arphi и ψ равносильны ($arphi \equiv \psi$), если $arphi^{\mathbb{A},
 u} = \psi^{\mathbb{A},
 u}$ для любых \mathbb{A} и ν .
- ▶ Моделью множества предложений T называется структура, в которой все предложения из T истинны.
- ▶ Предложение φ логически следует из множества педложений T ($T \models \varphi$), если φ истинно в любой модели множества T.
- ▶ Теория множество предложений. Замкнутая теория теория, замкнутая относительно логического следования. $[T] = \{ \varphi \mid T \models \varphi \}$ замыкание теории T.

Общезначимость и ее варианты

- ightharpoonup arphi общезначима $\iff \models arphi$.
- $ho = \psi \iff (\varphi \to \psi) \land (\psi \to \varphi)$ общезначима.
- ightharpoonup arphi(ar x) общезначима $\iff orall ar x arphi$ общезначима.
- $T \models (\varphi \to \psi) \iff T \cup \{\varphi\} \models \psi.$
- $ightharpoonup T \models arphi \iff T \cup \{ \neg arphi \}$ не имеет модели.
- $lacktriangledown T \models arphi \iff \bigwedge T
 ightarrow arphi$ общезначима, где T конечное множество предложений.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $A \in F \vee (I \setminus A) \in F$ для любого $A \subset I$.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $A \in F \vee (I \setminus A) \in F$ для любого $A \subseteq I$.

ПРЕДЛОЖЕНИЕ.

- 1. Ультрафильтры на I это в точности максимальные фильтры по включению.
- 2. Если F ультрафильтр, то $A \in F \iff (I \setminus A) \not\in F$ и $A \cup B \in F \iff A \in F \lor B \in F$, для любых $A, B \subseteq I$.
- 3. Любой фильтр на I содержится в некотором ультрафильтре.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

ТЕОРЕМА. Для любых ультрафильтра F, σ -формулы $\varphi(x_1,\ldots,x_m)$ и $a_1,\ldots,a_m\in A$ имеем: $\mathbb{A}_F\models\varphi([a_1],\ldots,[a_m])\iff\{i\mid\mathbb{A}_i\models\varphi(a_1(i),\ldots,a_m(i))\}\in F.$

В частности, при m=0: $\mathbb{A}_F\models \varphi\iff \{i\mid \mathbb{A}_i\models \varphi\}\in F.$

Теорема компактности

TEOPEMA. Если любое конечное подмножество множества предложений T имеет модель, то T имеет модель.

Теорема компактности

TEOPEMA. Если любое конечное подмножество множества предложений T имеет модель, то T имеет модель.

Пусть $I=\{i\mid i$ — конечное подмножество $T\}$. Каждое $i\in I$ имеет модель. По аксиоме выбора, существует семейство структур $\{\mathbb{A}_i\}_{i\in I}$ такое, что $\mathbb{A}_i\models i$ для любого $i\in I$. Пусть $G_i=\{j\in I\mid i\subseteq j\}$. Для любых $i,k\in I$ выполнено $G_i\cap G_k=G_{i\cup k}$. Поэтому $F=\{A\subseteq I\mid \exists i(G_i\subseteq A)\}$ — фильтр на I. По доказанному ранее, существует ультрафильтр $H\supseteq F$.

Теорема компактности

TEOPEMA. Если любое конечное подмножество множества предложений T имеет модель, то T имеет модель.

Пусть $I=\{i\mid i$ — конечное подмножество $T\}$. Каждое $i\in I$ имеет модель. По аксиоме выбора, существует семейство структур $\{\mathbb{A}_i\}_{i\in I}$ такое, что $\mathbb{A}_i\models i$ для любого $i\in I$. Пусть $G_i=\{j\in I\mid i\subseteq j\}$. Для любых $i,k\in I$ выполнено $G_i\cap G_k=G_{i\cup k}$. Поэтому $F=\{A\subseteq I\mid \exists i(G_i\subseteq A)\}$ — фильтр на I. По доказанному ранее, существует ультрафильтр $H\supseteq F$.

Утверждаем, что ультрапроизведение \mathbb{A}_H является моделью для T, т.е. $\mathbb{A}_H \models \varphi$ для любого $\varphi \in T$. Но $\{\varphi\} \in I$, откуда $G_{\{\varphi\}} \in F \subseteq H$ и $G_{\{\varphi\}} \subseteq \{i \mid \mathbb{A}_i \models \varphi\} \in H$. По теореме об ультрапоизведении, $\mathbb{A}_H \models \varphi$.

Теорема компактности для нормальных моделей

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

Теорема компактности для нормальных моделей

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

TEOPEMA. Если любое конечное подмножество множества предложений T сигнатуры с равенством имеет нормальную модель, то и все множество T имеет нормальную модель.

Теорема компактности для нормальных моделей

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

TEOPEMA. Если любое конечное подмножество множества предложений T сигнатуры с равенством имеет нормальную модель, то и все множество T имеет нормальную модель.

Для доказательства надо применить предыдущую теорему к множеству $T \cup E_{\sigma}$, где E_{σ} — аксиомы равенства (утверждающие, что = есть σ -конгруэнтность) и профакторизовать полученную модель $\mathbb A$ по конгруэнтности $=^{\mathbb A}$.

Аксиомы равенства, нормальные модели

$$\forall x(x = x), \ \forall x \forall y(x = y \to y = x),$$

$$\forall x \forall y \forall z(x = y \land y = z \to x = z),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \to f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \to P(y_1, \dots, y_n)).$$

Аксиомы равенства, нормальные модели

$$\forall x(x = x), \ \forall x \forall y(x = y \to y = x),$$

$$\forall x \forall y \forall z(x = y \land y = z \to x = z),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \to f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \to P(y_1, \dots, y_n)).$$

TEOPEMA. Если теория содержит аксиомы равенства и имеет модель, то она имеет и нормальную модель.

- lack A подструктура $\Bbb B$ ($\Bbb A\subseteq\Bbb B$), если $A\subseteq B$, $P^{\Bbb A}(a_1,\ldots,a_n)=P^{\Bbb B}(a_1,\ldots,a_n)$ и $f^{\Bbb A}(a_1,\ldots,a_n)=f^{\Bbb B}(a_1,\ldots,a_n)$ для всех $a_1,\ldots,a_n\in A$;
- ▶ *вложение* структуры \mathbb{A} в структуру \mathbb{B} это изоморфизм \mathbb{A} на подструктуру структуры \mathbb{B} ;
- ▶ \mathbb{A} элементарная подструктура \mathbb{B} ($\mathbb{A} \leq \mathbb{B}$), если $A \subseteq B$ и $\varphi^{\mathbb{A}}(\overline{a}) = \varphi^{\mathbb{B}}(\overline{a})$) для всех $\overline{a} \in \mathbb{A}$ и для всех формул $\varphi(\overline{x})$;
- ▶ элементарное вложение \mathbb{A} в \mathbb{B} это изоморфизм \mathbb{A} на элементарную подструктуру структуры \mathbb{B} ;
- $ightharpoonup \mathbb{A}$ элементарно эквивалентно \mathbb{B} ($\mathbb{A} \equiv \mathbb{B}$), если они удовлетворяют одни и те же предложения.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X\subseteq A$, $|X|\leq |\mathsf{For}_\sigma|$. Тогда существует $\mathbb{B}\preceq \mathbb{A}$: $X\subseteq B$ и $|\mathbb{B}|\leq |\mathsf{For}_\sigma|$.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X \subseteq A$, $|X| \leq |\mathsf{For}_{\sigma}|$. Тогда существует $\mathbb{B} \preceq \mathbb{A}$: $X \subseteq B$ и $|\mathbb{B}| \leq |\mathsf{For}_{\sigma}|$.

Д. Определим последовательность

$$X = S_0 \subseteq S_1 \subseteq \dots$$
 по индукции:

$$S_{n+1} = S_n \cup \{ \eta(e) \mid e \in E_n \},$$

где E_n и $\eta:E_n\to A$ определены так:

$$E_n = \{ (\overline{a}, \varphi(\overline{x}, y)) \mid \overline{a} \in S_n \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \} \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \} \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \}$$

$$\mathbb{A} \models \varphi(\overline{a}, \eta(e))$$
 для всех $e \in E_n$. $B = \bigcup_n S_n$.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X \subseteq A$, $|X| \leq |\mathsf{For}_{\sigma}|$. Тогда существует $\mathbb{B} \preceq \mathbb{A}$: $X \subseteq B$ и $|\mathbb{B}| \leq |\mathsf{For}_{\sigma}|$.

Д. Определим последовательность $X=S_0\subseteq S_1\subseteq\dots$ по индукции: $S_{n+1}=S_n\cup\{\eta(e)\mid e\in E_n\},$ где E_n и $\eta:E_n\to A$ определены так: $E_n=\{(\overline{a},\varphi(\overline{x},y))\mid \overline{a}\in S_n$ и $\mathbb{A}\models \exists y\;\varphi(\overline{a},y)\}$ и $\mathbb{A}\models \varphi(\overline{a},\eta(e))$ для всех $e\in E_n$. $B=\bigcup_n S_n$.

Известен следующий важный результат: Не существует логики, собственным образом расширяющей логику предикатов и удовлетворяющей теоремам компактности и понижения мощности.

Константное обогащение

Если $\sigma\subseteq \tau$, то сигнатура τ называется *обогащением* сигнатуры σ . Если $\mathbb{A}-\sigma$ -структура, то, определив интерпретацию символов из $\tau\setminus\sigma$ в A, получим τ -структуру \mathbb{B} , называемую обогащением структуры \mathbb{A} . Наоборот: если $\mathbb{B}-\tau$ -структура, то, "забывая" интерпретацию символов из $\tau\setminus\sigma$, получим σ -обеднение $\mathbb{B}|_{\sigma}$ структуры \mathbb{B} . Чаще всего сигнатуры обогащаются константными символами.

Константное обогащение

Если $\sigma\subseteq \tau$, то сигнатура τ называется *обогащением* сигнатуры σ . Если $\mathbb{A}-\sigma$ -структура, то, определив интерпретацию символов из $\tau\setminus\sigma$ в A, получим τ -структуру \mathbb{B} , называемую обогащением структуры \mathbb{A} . Наоборот: если $\mathbb{B}-\tau$ -структура, то, "забывая" интерпретацию символов из $\tau\setminus\sigma$, получим σ -обеднение $\mathbb{B}|_{\sigma}$ структуры \mathbb{B} . Чаще всего сигнатуры обогащаются константными символами.

Например, пусть $\mathbb{A}-\sigma$ -структура, а $\sigma_A=\sigma\cup\{c_a\mid a\in A\}$ ее обогащение новыми константными символами c_a такими, что $c_a\neq c_b$ при $a\neq b$. Стандартным константным обогащением структуры \mathbb{A} называется ее σ_A -обогащение, в котором новые символы интерпретируются так: $c_a\mapsto a$, для любого $a\in A$.

Диаграммы структур

Диаграмма σ -структуры \mathbb{A} — это множество $D(\mathbb{A})$ σ_A -предложений вида $f(c_{a_1},\ldots,c_{a_n})=c_a,\ P(c_{a_1},\ldots,c_{a_n}),$ $\neg P(c_{a_1},\ldots,c_{a_n})$, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Полная диаграмма σ -структуры \mathbb{A} — это множество $D^*(\mathbb{A})$ всех σ_A -предложений, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Диаграммы структур

Диаграмма σ -структуры \mathbb{A} — это множество $D(\mathbb{A})$ σ_A -предложений вида $f(c_{a_1},\ldots,c_{a_n})=c_a,\ P(c_{a_1},\ldots,c_{a_n}),$ $\neg P(c_{a_1},\ldots,c_{a_n}),$ истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Полная диаграмма σ -структуры \mathbb{A} — это множество $D^*(\mathbb{A})$ всех σ_A -предложений, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

ПРЕДЛОЖЕНИЕ. 1. σ -Структура $\mathbb A$ изоморфно вкладывается в σ -структуру $\mathbb B\iff \mathbb B$ является σ -обеднением некоторой модели множества $D(\mathbb A)$.

2. σ -Структура $\mathbb A$ элементарно вкладывается в σ -структуру $\mathbb B\iff \mathbb B$ является σ -обеднением некоторой модели множества $D^*(\mathbb A)$.

Повышение мощности

TEOPEMA. Пусть имеется бесконечная σ -структура $\mathbb A$ и кардинал $\kappa \ge \max(|A|,|\mathsf{For}_\sigma|)$. Тогда $\mathbb A$ элементарно вкладывается в некоторую структуру мощности κ .

Повышение мощности

TEOPEMA. Пусть имеется бесконечная σ -структура $\mathbb A$ и кардинал $\kappa \ge \max(|A|,|\mathsf{For}_\sigma|)$. Тогда $\mathbb A$ элементарно вкладывается в некоторую структуру мощности κ .

Обогатим σ до $\tau=\sigma_A\cup\{d_\alpha\mid \alpha\in\kappa\}$, добавив κ новых различных константных символов в σ_A , и рассмотрим τ -теорию

$$T = D^*(A) \cup \{ \neg (d_{\alpha} = d_{\beta}) \mid \alpha, \beta \in \kappa, \alpha \neq \beta \}.$$

Любое конечное $T_0 \subseteq T$ имеет модель, являющуюся τ -обогащением структуры \mathbb{A}_A , в котором константы $\{d_\alpha\}$, входящие в T_0 , интерпретируются различными элементами A. По теореме компактности, T имеет модель \mathbb{C} . Поскольку $lpha\mapsto d_{lpha}^{\mathbb{C}}$ — инъекция из κ в C , $\kappa\leq |C|$. Пусть $X\subseteq C$ множество мощности κ , содержащее \mathbb{C} -интерпретации всех c_a , $a \in A$. По теореме о понижении мощности, найдется $\mathbb{B}' \preceq \mathbb{C}$ мощности $|\mathbb{B}'| \leq |\mathsf{For}_{\tau}| \leq \kappa$. С другой стороны, $B' \supset X$, поэтому $|B'| \geq |X| = \kappa$, откуда $|\mathbb{B}'| = \kappa$. Обеднение $\mathbb{B} = \mathbb{B}' | \sigma$ имеет мощность κ и $\mathbb A$ элементарно вкладывается в $\mathbb B$.

Мощность моделей теории

В качестве следствий теорем о повышении и понижении мощности получаем:

Мощность моделей теории

В качестве следствий теорем о повышении и понижении мощности получаем:

TEOPEMA. Если σ -теория T имеет модель мощности $\geq n$ для любого $n\in\mathbb{N}$, то она имеет модель любой мощности $\kappa\geq |{\sf For}_\sigma|.$

Мощность моделей теории

В качестве следствий теорем о повышении и понижении мощности получаем:

TEOPEMA. Если σ -теория T имеет модель мощности $\geq n$ для любого $n\in\mathbb{N}$, то она имеет модель любой мощности $\kappa\geq |{\sf For}_\sigma|.$

TEOPEMA. Если σ -теория T имеет единственную с точностью до изоморфизма модель некоторой мощности $\kappa \geq |\mathsf{For}_\sigma|$ и не имеет конечных моделей, то она полна (т.е. $T \models \varphi \lor T \models \neg \varphi$ для любого σ -предложения φ).

Аксиоматизируемые классы

- ightharpoonup T множество σ -предложений.
- ▶ Теории T соответствует класс ее моделей $\mathrm{Mod}(T) = \{\mathbb{A} \mid \mathbb{A} \models T\}$
- ► Классу структур $K \subseteq \operatorname{Str}_{\sigma}$ соответствует его теория $\operatorname{Th}(K) = \{ \varphi \in \operatorname{Sent}_{\sigma} \mid \forall \mathbb{A} \in K \ (\mathbb{A} \models \varphi) \}.$
- Класс структур K аксиоматизируем, если $K = \mathsf{Mod}(T)$ для некоторой теории T.
- Класс структур K конечно аксиоматизируем, если $K = \mathsf{Mod}(T)$ для некоторой конечной теории $T = \{\varphi_1, \dots, \varphi_n\}$. Это равносильно аксиоматизируемости одной формулой $(\varphi_1 \wedge \dots \wedge \varphi_n)$.

Аксиоматизируемые классы: свойства

- 1. Если $T \subseteq T'$, то $\mathsf{Mod}(T) \supseteq \mathsf{Mod}(T')$;
- 2. Если $K \subseteq K'$, то $\mathsf{Th}(K) \supseteq Th(K')$;
- 3. $K \subseteq \mathsf{Mod}(\mathsf{Th}(K))$ и $T \subseteq \mathsf{Th}(\mathsf{Mod}(T))$;
- 4. Класс K аксиоматизируем тогда и только тогда, когда $K = \mathsf{Mod}(\mathsf{Th}(K));$
- 5. Любое пересечение аксиоматизируемых классов является аксиоматизируемым классом. Объединение двух аксиоматизируемых классов является аксиоматизируемым классом;
- 6. Класс K конечно аксиоматизируем тогда и только тогда, когда K и $\mathsf{Str}_\sigma \backslash K$ аксиоматизируемы;
- 7. Класс K аксиоматизируем тогда и только тогда, когда K замкнут относительно элементарной эквивалентности и ультрапроизведений.

Доказательство свойства 7

Достаточно доказать, что из замкнутости следует $\mathsf{Mod}(\mathsf{Th}(K)) \subseteq K$, т.е. любая $\mathbb{A} \models \mathsf{Th}(K)$ элементарно эквивалентна ультрапроизведению подходящего семейства $\{\mathbb{B}_i\}_{i\in I}, \mathbb{B}_i\in K$, по некоторому ультрафильтру G на I. Зафиксируем $\mathbb{A} \models \mathsf{Th}(K)$ и проверим сначала, что для любого $\varphi \in \mathsf{Th}(\mathbb{A})$ существует $\mathbb{B} \in K$ такая, что $\mathbb{B} \models \varphi$. Пусть нет, т.е. $\mathbb{B} \models \neg \varphi$ для любой $\mathbb{B} \in K$. Тогда $\neg \varphi \in \mathsf{Th}(K)$ и следовательно $\mathbb{A} \models \neg \varphi$ – противоречие. Т. о., существует семейство $\{\mathbb{B}_{\varphi}\}_{\varphi\in\mathsf{Th}(\mathbb{A})}$ K-структур такое, что $\mathbb{B}_{\varphi}\models\varphi$. Для $\varphi \in I$, пусть $U_{\varphi} = \{ \psi \in \mathsf{Th}(\mathbb{A}) \mid \psi \to \varphi \text{ общезначима} \}.$ Тогда $\varphi \in U_{\varphi}$ и $U_{\varphi} \cap U_{\varphi'} = U_{\varphi \wedge \varphi'} \neq \emptyset$, поэтому $F = \{J \subseteq \mathsf{Th}(\mathbb{A}) \mid \exists \varphi (J \supseteq U_{\varphi})\}$ – фильтр на I. Пусть G ультрафильтр, расширяющий F. Остается проверить, что $\mathbb{A} \equiv \mathbb{B}_G$. Достаточно проверить, что $\mathbb{B}_G \models \varphi$ для любого $\varphi \in \mathsf{Th}(\mathbb{A})$. Поскольку для любого $\psi \in U_\phi$

выполнены $\mathbb{B}_{\psi} \models \psi \to \varphi$ и $\mathbb{B}_{\psi} \models \psi$, получаем $\mathbb{B}_{\psi} \models \varphi$. Отсюда

 $U_{arphi}\subseteq\{\psi\in\mathsf{Th}(\mathbb{A})\mid\mathbb{B}_{\psi}\modelsarphi\}\in F\subseteq G$, значит $\mathbb{B}_{G}\modelsarphi$.

Классификация формул

- Σ_0 множество всех формул, равносильных бескванторным формулам;
- $ightharpoonup \Sigma_1$ множество всех формул, равносильных формулам вида $\exists \overline{x} \ \psi(\overline{x}, \overline{y})$, где ψ бескванторная;
- ▶ Σ_2 множество всех формул, равносильных формулам вида $\exists \overline{x_1} \, \forall \overline{x_2} \, \psi(\overline{x_1}, \overline{x_2}, \overline{y})$, где ψ бескванторная, и т.д.;
- lacktriangle множество Π_n определяется аналогично множеству Σ_n с заменой \exists на \forall и наоборот.

Классификация формул

- Σ_0 множество всех формул, равносильных бескванторным формулам;
- $ightharpoonup \Sigma_1$ множество всех формул, равносильных формулам вида $\exists \overline{x} \ \psi(\overline{x}, \overline{y})$, где ψ бескванторная;
- ▶ Σ_2 множество всех формул, равносильных формулам вида $\exists \overline{x_1} \, \forall \overline{x_2} \, \psi(\overline{x_1}, \overline{x_2}, \overline{y})$, где ψ бескванторная, и т.д.;
- ▶ множество Π_n определяется аналогично множеству Σ_n с заменой \exists на \forall и наоборот.

ПРЕДЛОЖЕНИЕ. 1. $\Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}$.

- 2. Множества Σ_n и Π_n замкнуты относительно \wedge, \vee .
- 3. $\varphi \in \Pi_n \iff \neg \varphi \in \Sigma_n$.
- 4. $\bigcup \Sigma_n = \bigcup \Pi_n = \mathsf{For}_{\sigma}$.

Основные равносильности

```
1. (\varphi \to \psi) \equiv (\neg \varphi \lor \psi); 2. \neg \neg \varphi \equiv \varphi;
3. \neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi); 4. \neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi);
5. (\varphi \wedge \psi) \equiv (\psi \wedge \varphi); 6. (\varphi \vee \psi) \equiv (\psi \vee \varphi);
7. \varphi \wedge (\psi \wedge \theta) \equiv (\varphi \wedge \psi) \wedge \theta;
8. \varphi \lor (\psi \lor \theta) \equiv (\varphi \lor \psi) \lor \theta;
9. \varphi \wedge (\psi \vee \theta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \theta);
10. \varphi \lor (\psi \land \theta) \equiv (\varphi \lor \psi) \land (\varphi \lor \theta).
11. \neg(\forall x\varphi) \equiv \exists x(\neg\varphi);
12. \neg(\exists x\varphi) \equiv \forall x(\neg\varphi);
13. \psi \wedge \forall x \varphi \equiv \forall x (\psi \wedge \varphi);
14. \psi \vee \exists x \varphi \equiv \exists x (\psi \vee \varphi);
15. \psi \lor \forall x \varphi \equiv \forall x (\psi \lor \varphi) (x не входит свободно в \psi);
16. \psi \wedge \exists x \varphi \equiv \exists x (\psi \wedge \varphi) (x не входит свободно в \psi);
17. \forall x \varphi(x) \equiv \forall y \varphi(y) (y не входит в \varphi);
18. \exists x \varphi(x) \equiv \exists y \varphi(y) (y не входит в \varphi).
```

TEOPEMA. Аксиоматизируемый класс K является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур.

TEOPEMA. Аксиоматизируемый класс K является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур.

Д-во \Leftarrow . Пусть $K=\operatorname{Mod}(T)$. Достаточно проверить $K=\operatorname{Mod}(\Gamma)$, $\Gamma=\{\varphi\in\Pi_1\mid T\models\varphi\}$. Включение K в $\operatorname{Mod}(\Gamma)$ очевидно. Проверим, что $\mathbb{B}\in K$ для любой $\mathbb{B}\models\Gamma$. Заметим, что существует $\mathbb{A}\models T\cup\operatorname{Th}_{\Sigma_1}(\mathbb{B})$ (иначе, по компактности, $T\cup\{\psi_1,\dots,\psi_n\}$ не имеет модели для конечного множества $\psi_i\in\operatorname{Th}_{\Sigma_1}(\mathbb{B})$, откуда $\psi=\psi_1\wedge\ldots\wedge\psi_n\in\Sigma_1$, $T\models\neg\psi\in\Pi_1$, а значит, $\mathbb{B}\models\neg\psi\wedge\psi$, противоречие).

TEOPEMA. Аксиоматизируемый класс K является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур.

Д-во \Leftarrow . Пусть $K = \operatorname{Mod}(T)$. Достаточно проверить $K = \operatorname{Mod}(\Gamma)$, $\Gamma = \{\varphi \in \Pi_1 \mid T \models \varphi\}$. Включение K в $\operatorname{Mod}(\Gamma)$ очевидно. Проверим, что $\mathbb{B} \in K$ для любой $\mathbb{B} \models \Gamma$. Заметим, что существует $\mathbb{A} \models T \cup \operatorname{Th}_{\Sigma_1}(\mathbb{B})$ (иначе, по компактности, $T \cup \{\psi_1, \dots, \psi_n\}$ не имеет модели для конечного множества $\psi_i \in \operatorname{Th}_{\Sigma_1}(\mathbb{B})$, откуда $\psi = \psi_1 \wedge \dots \wedge \psi_n \in \Sigma_1$, $T \models \neg \psi \in \Pi_1$, а значит, $\mathbb{B} \models \neg \psi \wedge \psi$, противоречие).

Для проверки $\mathbb{B} \in K$ достаточно вложить \mathbb{B} в некоторую $\mathbb{C} \in K$, т.е. проверить, что $T \cup D(\mathbb{B})$ имеет модель. По компактности, достаточно проверить, что $T \cup \{\delta_1, \dots, \delta_m\}$ имеет модель, где $\delta_i = \delta_i(\overline{c}) \ (c \in \sigma_B)$. Поскольку $\mathbb{B} \models \exists \overline{x} \delta(\overline{x}) \in \Sigma_1, \ \delta = \delta_1 \wedge \dots \wedge \delta_m, \ \mathbb{A} \models \exists \overline{x} \delta(\overline{x})$. Значит, \mathbb{A} можно обогатить до модели $T \cup \{\delta_1, \dots, \delta_m\}$.

Класс структур K замкнут относительно объединений цепей, если из $\mathbb{A}_n \in K$ и $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \dots$ следует $\bigcup \mathbb{A}_n \in K$.

TEOPEMA. Аксиоматизируемый класс является Π_2 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно объединений цепей структур.

Класс структур K замкнут относительно объединений цепей, если из $\mathbb{A}_n \in K$ и $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \dots$ следует $\bigcup \mathbb{A}_n \in K$.

TEOPEMA. Аксиоматизируемый класс является Π_2 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно объединений цепей структур.

Класс структур K замкнут относительно объединений цепей, если из $\mathbb{A}_n \in K$ и $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \dots$ следует $\bigcup \mathbb{A}_n \in K$.

TEOPEMA. Аксиоматизируемый класс является Π_2 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно объединений цепей структур.

 $egin{aligned} \mathcal{A}. & \mathsf{H}\mathsf{a}\mathsf{v}\mathsf{a}\mathsf{n}\mathsf{o} & \mathsf{a}\mathsf{h}\mathsf{a}\mathsf{n}\mathsf{o}\mathsf{o}\mathsf{f}\mathsf{u}\mathsf{v}\mathsf{d}\mathsf{o}\mathsf{n} \end{aligned}$ рассмотрим $\Gamma = \{ \varphi \in \Pi_2 \mid T \models \varphi \}$ и докажем $K = \mathsf{Mod}(\Gamma);$ достаточно проверить, что $\mathbb{B} \models T$ для любой $\mathbb{B} \models \Gamma.$ Как и раньше, существует $\mathbb{A} \models T \cup \mathsf{Th}_{\Sigma_2}(\mathbb{B}).$

Покажем, что существуют $\mathbb{A}' \equiv \mathbb{A}$ и $\mathbb{B}' \succeq \mathbb{B}$ такие, что $\mathbb{B} \subseteq \mathbb{A}' \subseteq \mathbb{B}'$.

Рассмотрим $\operatorname{Th}(\mathbb{A}) \cup \operatorname{Th}_{\Pi_1}(\mathbb{B}_B)$, где $\mathbb{B}_B - \sigma_B$ -обогащение \mathbb{B} . Для любого конечного $\{\delta_1(\overline{c}), \ldots, \delta_m(\overline{c})\} \subseteq \operatorname{Th}_{\Pi_1}(\mathbb{B}_B)$ имеем $\mathbb{B} \models \exists \overline{x}(\delta_1(\overline{x}) \wedge \ldots \wedge \delta_m(\overline{x})) \in \Sigma_2$, откуда $\mathbb{A} \models \exists \overline{x}(\delta_1(\overline{x}) \wedge \ldots \wedge \delta_m(\overline{x}))$.

Значит, некоторое $\sigma_{\overline{c}}$ -обогащение $\mathbb A$ является моделью $\mathsf{Th}(\mathbb A)\cup\{\delta_1(\overline{c}),\dots,\delta_m(\overline{c})\}$. По компактности, есть модель $\mathbb A'_B$ теории $\mathsf{Th}(\mathbb A)\cup\mathsf{Th}_{\Pi_1}(\mathbb B_B)$; пусть $\mathbb A'$ – ее σ -обеднение. Тогда $\mathbb A'\equiv\mathbb A$, $\mathbb B\subseteq\mathbb A'$, и $\mathsf{Th}_{\Sigma_1}(\mathbb B_B)\supseteq\mathsf{Th}_{\Sigma_1}(\mathbb A'_B)$ (поскольку $\mathsf{Th}_{\Pi_1}(\mathbb B_B)\subseteq\mathsf{Th}_{\Pi_1}(\mathbb A'_B)$).

Рассмотрим теперь $D(\mathbb{A}_B') \cup \mathsf{Th}(\mathbb{B}_B)$. Рассуждая как и выше, видим что эта теория имеет модель $\mathbb{B}_{A'}'$ такую, что $\mathbb{B} \preceq \mathbb{B}'$.

Значит, некоторое $\sigma_{\bar{c}}$ -обогащение $\mathbb A$ является моделью $\mathsf{Th}(\mathbb A)\cup\{\delta_1(\bar{c}),\dots,\delta_m(\bar{c})\}$. По компактности, есть модель $\mathbb A'_B$ теории $\mathsf{Th}(\mathbb A)\cup\mathsf{Th}_{\Pi_1}(\mathbb B_B)$; пусть $\mathbb A'$ – ее σ -обеднение. Тогда $\mathbb A'\equiv\mathbb A$, $\mathbb B\subseteq\mathbb A'$, и $\mathsf{Th}_{\Sigma_1}(\mathbb B_B)\supseteq\mathsf{Th}_{\Sigma_1}(\mathbb A'_B)$ (поскольку $\mathsf{Th}_{\Pi_1}(\mathbb B_B)\subseteq\mathsf{Th}_{\Pi_1}(\mathbb A'_B)$).

Рассмотрим теперь $D(\mathbb{A}_B') \cup \mathsf{Th}(\mathbb{B}_B)$. Рассуждая как и выше, видим что эта теория имеет модель $\mathbb{B}_{A'}'$ такую, что $\mathbb{B} \preceq \mathbb{B}'$.

Итерируя конструкцию $(\mathbb{A},\mathbb{B})\mapsto (\mathbb{A}',\mathbb{B}')$, определим структуры $(\mathbb{A}_0,\mathbb{B}_0)=(\mathbb{A},\mathbb{B})$ и $(\mathbb{A}_{n+1},\mathbb{B}_{n+1})=(\mathbb{A}'_n,\mathbb{B}'_n)$.

Тогда $\mathbb{B}_n\subseteq \mathbb{A}_{n+1}\subseteq \mathbb{B}_{n+1}$, $\mathbb{A}_{n+1}\equiv \mathbb{A}_n\equiv \mathbb{A}$, и $\mathbb{B}_n\preceq \mathbb{B}_{n+1}$.

Тогда $\mathbb{B}=\mathbb{B}_0\preceq\mathbb{B}_1\preceq\cdots$, откуда $\mathbb{B}\preceq\bigcup_n\mathbb{B}_n=\bigcup_n\mathbb{A}_n\models T.$

Значит, $\mathbb{B} \models T$.

Полные теории

 σ -Теория T называется *полной*, если она имеет модель и, для любого σ -предложения φ , либо $T\models\varphi$, либо $T\models\neg\varphi$. ПРЕДЛОЖЕНИЕ. Для теории T, имеющей модель, равносильны следующие условия: T-полна; $[T]=\operatorname{Th}(\mathbb{A}),$ для любой $\mathbb{A}\models T$ (где $[T]=\{\varphi\mid T\models\varphi\}-\text{множество}$ всех логических следствий теории T); $\operatorname{Th}(\mathbb{A})=\operatorname{Th}(\mathbb{B})$ для любых $\mathbb{A},$ $\mathbb{B}\models T.$

Полные теории

 σ -Теория T называется *полной*, если она имеет модель и, для любого σ -предложения φ , либо $T \models \neg \varphi$.

ПРЕДЛОЖЕНИЕ. Для теории T, имеющей модель, равносильны следующие условия:

T — полна;

 $[T]=\mathsf{Th}(\mathbb{A})$, для любой $\mathbb{A}\models T$ (где $[T]=\{\varphi\mid T\models\varphi\}$ — множество всех логических следствий теории T); $\mathsf{Th}(\mathbb{A})=\mathsf{Th}(\mathbb{B})$ для любых $\mathbb{A},\,\mathbb{B}\models T.$

Теория называется *категоричной в мощности* κ , если она имеет единственную с точностью до изоморфизма модель мощности κ .

Ранее уже доказали простую, но важную теорему:

Если σ -теория не имеет конечных моделей и категорична в некоторой мощности $\geq |\mathsf{For}_{\sigma}|$, то она полна.

Модельно полные теории

Теория T модельно полна, если она имеет модель и отношения \subseteq, \preceq совпадают на $\mathsf{Mod}(T)$.

Модельно полные теории

Теория T модельно полна, если она имеет модель и отношения \subseteq, \preceq совпадают на $\mathsf{Mod}(T)$.

TEOPEMA. Для теории T, имеющей модель, равносильны:

- 1. T модельно полна.
- 2. Для любой $\mathbb{A} \models T$, теория $T \cup D(\mathbb{A})$ полна.
- 3. Для любых $\mathbb{A},\mathbb{B}\models T$ из $\mathbb{A}\subseteq\mathbb{B}$ следует, что любое Σ_1 -предложение в сигнатуре σ_A , которое истинно в \mathbb{B}_A , будет истинно и в \mathbb{A}_A .
- 4. $\Sigma_1=\Pi_1$ по модулю T (т.е. любая Σ_1 -формула $\varphi(\overline{x})$ равносильна подходящей Π_1 -формуле $\psi(\overline{x})$ в T: $T\models \forall \overline{x}\; (\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$.
- 5. $For_{\sigma} = \Pi_1$ по модулю T.

Доказательство $3\Rightarrow 4$

Пусть $\varphi(\overline{y}) \in \Sigma_1$, нужно проверить, что $T \models \forall \overline{y} \ (\varphi(\overline{y}) \leftrightarrow \psi(\overline{y}))$ для некоторой $\psi(\overline{y}) \in \Pi_1$; достаточно получить $T \models \varphi(\overline{c}) \leftrightarrow \psi(\overline{c})$ для новых констант \overline{c} . Пусть $\Gamma = \{\gamma \in \Pi_1 \mid T \models \varphi(\overline{c}) \to \gamma\}$. Достаточно доказать $T \cup \Gamma \models \varphi(\overline{c})$, поскольку тогда $T \cup \{\gamma_1, \ldots, \gamma_m\} \models \varphi(\overline{c})$ по компактности, и $\psi = \gamma_1 \wedge \cdots \wedge \gamma_k \in \Pi_1$ годится.

Доказательство $3\Rightarrow 4$

Пусть $\varphi(\overline{y}) \in \Sigma_1$, нужно проверить, что $T \models \forall \overline{y} \ (\varphi(\overline{y}) \leftrightarrow \psi(\overline{y}))$ для некоторой $\psi(\overline{y}) \in \Pi_1$; достаточно получить $T \models \varphi(\overline{c}) \leftrightarrow \psi(\overline{c})$ для новых констант \overline{c} . Пусть $\Gamma = \{\gamma \in \Pi_1 \mid T \models \varphi(\overline{c}) \to \gamma\}$. Достаточно доказать $T \cup \Gamma \models \varphi(\overline{c})$, поскольку тогда $T \cup \{\gamma_1, \ldots, \gamma_m\} \models \varphi(\overline{c})$ по компактности, и $\psi = \gamma_1 \wedge \cdots \wedge \gamma_k \in \Pi_1$ годится.

Для любой $\mathbb{A}\models T\cup\Gamma$ проверим $\mathbb{A}\models\varphi$. Сначала докажем, что $T\cup\{\varphi\}\cup D(\mathbb{A})$ имеет модель. Пусть нет, тогда по компактности для некоторых $\{\delta_1,\ldots,\delta_m\}\subseteq D(\mathbb{A})$ у $T\cup\{\varphi\}\cup\{\delta_1,\ldots,\delta_m\}$ нет модели. Пусть $\delta=\delta_1\wedge\ldots\wedge\delta_m$. По определению диаграммы, $\mathbb{A}\models\exists\overline{x}\;\delta(\overline{x})$. С другой стороны, из-за отсутствия модели $T\cup\{\varphi\}\models\forall x\neg\delta(\overline{x})$, поэтому $T\models\varphi\to\forall\overline{x}\;\neg\delta(\overline{x})$. По определению Γ , $\forall\overline{x}\;\neg\delta(\overline{x})\in\Gamma$, значит эта формула верна в \mathbb{A} . Но и её отрицание верно в \mathbb{A} . Противоречие. Пусть $\mathbb{B}\models T\cup\{\varphi\}\cup D(\mathbb{A})$. Тогда $\mathbb{A}\subseteq\mathbb{B}$, $\varphi-\Sigma_1$ -предложение. Из 3) получаем $\mathbb{A}\models\varphi$, чтд.

Дополнительные свойства

TEOPEMA.

- 1. Любая модельно полная теория Π_2 -аксиоматизируема.
- 2. Если модельно полная теория T имеет модель, которая вкладывается в любую модель T, то T полна.
- 3. Если для любых двух моделей модельно полной теории T существует третья модель, в которую они обе вкладываются, то T полна.
- 4. Теория T допускает элиминацию кванторов (т.е. $For_{\sigma} = \Pi_0$ по модулю T) в точности тогда, когда теория $T \cup D(\mathbb{A})$ полна для любой $\mathbb{A} \subseteq \mathbb{B} \models T$.
- 5. Если теория Π_2 -аксиоматизируема, не имеет конечных моделей и категорична в некоторой мощности $\lambda \geq |\mathsf{For}_\sigma|$, то она модельно полна.

Пусть T допускает \ni K и \land вкладывается в некоторую модель T; надо показать, что теория $T \cup D(\mathbb{A})$ полна. Достаточно доказать, что любые две модели \mathbb{B}, \mathbb{C} этой теории элементарно эквивалентны, т.е. $\varphi^{\mathbb{B}} = \varphi^{\mathbb{C}}$ для любого предложения φ сигнатуры σ_A . По свойству диаграммы, существуют изоморфные вложения $f: \mathbb{A} \to \mathbb{B}|_{\sigma}$ и $g: \mathbb{A} \to \mathbb{C}|_{\sigma}$. Пусть $d=(d_1,\ldots,d_m)$ — все константы из $\sigma_A\setminus\sigma$, входящие в $\varphi = \varphi(d_1, \ldots, d_m)$. Поскольку T допускает ЭК, можем считать arphi бескванторной. Пусть $ar{a}$, $ar{b}$ и $ar{c}$ — интерпретации констант $ar{d}$ в \mathbb{A}, \mathbb{B} и \mathbb{C} . Тогда $\varphi^{\mathbb{B}}(b_1, \ldots, b_m) = \varphi^{\mathbb{B}}(f(a_1), \ldots, f(a_m)) =$ $\varphi^{\mathbb{A}}(a_1,\ldots,a_m)=\varphi^{\mathbb{C}}(q(a_1),\ldots,q(a_m))=\varphi^{\mathbb{C}}(c_1,\ldots,c_m).$

Пусть T допускает \ni K и \land вкладывается в некоторую модель T; надо показать, что теория $T \cup D(\mathbb{A})$ полна. Достаточно доказать, что любые две модели \mathbb{B}, \mathbb{C} этой теории элементарно эквивалентны, т.е. $\varphi^{\mathbb{B}}=\varphi^{\mathbb{C}}$ для любого предложения φ сигнатуры σ_A . По свойству диаграммы, существуют изоморфные вложения $f: \mathbb{A} \to \mathbb{B}|_{\sigma}$ и $g: \mathbb{A} \to \mathbb{C}|_{\sigma}$. Пусть $d=(d_1,\ldots,d_m)$ — все константы из $\sigma_A\setminus\sigma$, входящие в $\varphi = \varphi(d_1, \ldots, d_m)$. Поскольку T допускает ЭК, можем считать arphi бескванторной. Пусть $ar{a}$, $ar{b}$ и $ar{c}$ — интерпретации констант $ar{d}$ в \mathbb{A}, \mathbb{B} и \mathbb{C} . Тогда $\varphi^{\mathbb{B}}(b_1, \ldots, b_m) = \varphi^{\mathbb{B}}(f(a_1), \ldots, f(a_m)) =$ $\varphi^{\mathbb{A}}(a_1,\ldots,a_m)=\varphi^{\mathbb{C}}(q(a_1),\ldots,q(a_m))=\varphi^{\mathbb{C}}(c_1,\ldots,c_m).$

Обратно, пусть $T\cup D(\mathbb{A})$ полна для любой \mathbb{A} , вкладывающейся в некоторую модель T. Надо доказать, что любая σ -формула $\varphi(\bar{x})$ равносильна подходящей бескванторной $\psi(\bar{x})$ в T. Обогатим σ новыми константами \bar{c} до $\sigma_{\bar{c}}$ и подберем $\psi(\bar{x})$ так, что $T\models\varphi(\bar{c})\leftrightarrow\psi(\bar{c})$ в обогащённой структуре.

Пусть Γ — множество всех бескванторных $\sigma_{\overline{c}}$ -предложений таких, что $T \models \varphi(\overline{c}) \to \gamma$. Достаточно проверить $T \cup \Gamma \models \varphi(\overline{c})$, т.е. $\varphi(\overline{c})$ истинна в любой модели $\mathbb{B} \models T \cup \Gamma$. Пусть \mathbb{A} — подструктура \mathbb{B} , порожденная элементами $a_i = c_i^{\mathbb{B}}$, $i = 1, \ldots, k$, и пусть $Diag(\mathbb{A})$ — множество всех бескванторных $\sigma_{\overline{c}}$ -предложений, истинных в \mathbb{A} . Тогда $\mathrm{Diag}(\mathbb{A})$ обладает свойством диаграммы, т.е. σ -обеднения моделей этого множества — это в точности σ -структуры, в которые изоморфно вкладывается $\mathbb{A}|_{\sigma}$. В частности, $\mathbb{B} \models T \cup \mathrm{Diag}(\mathbb{A})$.

Пусть Γ — множество всех бескванторных $\sigma_{\overline{c}}$ -предложений таких, что $T \models \varphi(\overline{c}) \to \gamma$. Достаточно проверить $T \cup \Gamma \models \varphi(\overline{c})$, т.е. $\varphi(\overline{c})$ истинна в любой модели $\mathbb{B} \models T \cup \Gamma$. Пусть \mathbb{A} — подструктура \mathbb{B} , порожденная элементами $a_i = c_i^{\mathbb{B}}$, $i = 1, \ldots, k$, и пусть $Diag(\mathbb{A})$ — множество всех бескванторных $\sigma_{\overline{c}}$ -предложений, истинных в \mathbb{A} . Тогда $\mathrm{Diag}(\mathbb{A})$ обладает свойством диаграммы, т.е. σ -обеднения моделей этого множества — это в точности σ -структуры, в которые изоморфно вкладывается $\mathbb{A}|_{\sigma}$. В частности, $\mathbb{B} \models T \cup \mathrm{Diag}(\mathbb{A})$.

Поскольку теория $T\cup {\sf Diag}({\mathbb A})$ по условию полна, достаточно доказать, что $T\cup {\sf Diag}({\mathbb A})\cup \{\varphi(\overline c)\}$ имеет модель. Предположим противное. Тогда $T\cup \{\delta_1(\overline c),\ldots,\delta_n(\overline c))\}\cup \{\varphi(\overline c)\}$ не имеет модели для некоторого конечного $\{\delta_1(\overline c),\ldots,\delta_n(\overline c))\}\subseteq {\sf Diag}({\mathbb A})$. Тогда $T\models \varphi(\overline c)\to \bigvee_i\neg \delta_i(\overline c)$, значит предложение $\gamma=\bigvee \neg \delta_i(\overline c)$ лежит в Γ , откуда ${\mathbb B}\models \gamma$, а значит и ${\mathbb A}\models \gamma$. Но по определению ${\sf Diag}({\mathbb A})$ выполнено ${\mathbb A}\models \neg \gamma$. Противоречие.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

II выигрывает в описанной партии, если конечные подструктуры, порождённые построенными кортежами элементов $\overline{a},\overline{b}$, изоморфны относительно соответствия $a_i\mapsto b_i$, $c^\mathbb{A}\mapsto c^\mathbb{B}$; пустые подструктуры изоморфны по определению.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

II выигрывает в описанной партии, если конечные подструктуры, порождённые построенными кортежами элементов $\overline{a}, \overline{b}$, изоморфны относительно соответствия $a_i \mapsto b_i$, $c^\mathbb{A} \mapsto c^\mathbb{B}$; пустые подструктуры изоморфны по определению.

Игра $G(\mathbb{A},\mathbb{B})$ отличается только тем, что первый ход I начинает выбором числа n; далее игра идёт как $G_n(\mathbb{A},\mathbb{B})$.