Algorithms and Data Structures

Quadrature Laplace's method

Learning goals

Laplace's method

Target: Approximate integral of function *f* with the following properties:

- The mass concentrates on a small area around a center and the function has very rapidly decreasing tails ("similarity" to the density of a normal distribution)
- The function we want to integrate is the density of a random variable that is approximately normally distributed

In particular, we assume that f

- Can only be positive
- Is two times continuously differentiable
- Has a global maximum at x_0

We could approximate the area underneath the graph of the function with a staircase function and represent the integral with a very simple formula that depends on $f(x_0)$:

$$\int f(x) dx \approx f(x_0) \cdot c$$

$$(x_0, f(x_0))$$

$$0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10$$

$$x$$

But instead of the step function we would like to choose a function that approximates *f* **better** and which has well-known properties.

Idea: Approximate the integral using the density function of the normal distribution!

How? We center and scale the density function of the normal distribution such that it approximates *f* "best possible".

In other words: We determine **expectation** and **standard deviation** of a normal distribution such that the corresponding density function fits best possible to the function f we are interested in.

Mathematical derivation:

Let there be a function f with a global maximum at x_0 .

We define $h(x) := \log f(x)$ as the logarithmized function and rewrite the integral

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \exp(\underbrace{\log f(x)}_{:=h(x)}) dx$$

Using Taylor's theorem around x_0 we obtain

$$\int_{a}^{b} \exp(h(x)) \approx \int_{a}^{b} \exp\left(h(x_{0}) + h'(x_{0})(x - x_{0}) + \frac{1}{2}h''(x_{0})(x - x_{0})^{2}\right) dx$$

 x_0 is also the maximum of $h(x) = \log(f(x))$. Hence, $h'(x_0) = 0$ and the second summand disappears:

$$\int_{a}^{b} \exp(h(x)) \ dx \approx \int_{a}^{b} \exp\left(h(x_{0}) + \frac{1}{2}h''(x_{0})(x - x_{0})^{2}\right) dx$$

We take advantage of the fact that exp(x + y) = exp(x) exp(y)

$$\int_a^b \exp(h(x_0)) \cdot \exp\left(\frac{1}{2}h''(x_0)(x-x_0)^2\right) dx$$

and pull the constant $\exp(h(x_0))$ out of the integral

$$\exp(h(x_0)) \cdot \int_a^b \exp\left(\frac{1}{2}h''(x_0)(x-x_0)^2\right) dx$$

Within the integral there is now an expression which "almost" corresponds to the density of a normal distribution with expectation $\mu := x_0$ and variance $\sigma^2 := -h''(x_0)^{-1}$:

$$\int_{a}^{b} f(x)dx \approx \exp(h(x_0)) \cdot \int_{a}^{b} \exp\left(\frac{1}{2}h''(x_0)(x - x_0)^2\right) dx$$

$$= \exp(h(x_0)) \cdot \int_{a}^{b} \exp\left(-\frac{1}{2}\frac{(x - x_0)^2}{-h''(x_0)^{-1}}\right) dx$$

$$= \exp(h(x_0)) \cdot \int_{a}^{b} \exp\left(-\frac{1}{2}\frac{(x - \mu)^2}{\sigma^2}\right) dx$$

 $-h''(x_0)^{-1}$ must be truly positive to correspond to the variance of a normal distribution. Since h(x) has a global maximum in x_0 , the second derivative at this point is negative and therefore $-h''(x_0)^{-1} > 0$.

If we add (and cancel) the multiplicative constant $c=\frac{1}{\sqrt{2\pi\sigma^2}}$, we obtain

$$\int_{a}^{b} f(x)dx \approx \frac{1}{c} \cdot \exp(h(x_{0})) \cdot \int_{a}^{b} \underbrace{c \cdot \exp\left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)}_{\text{Density ND}} dx$$

$$= \frac{1}{c} \underbrace{\exp(h(x_{0}))}_{f(x_{0})} \cdot \int_{a}^{b} \phi_{\mu,\sigma^{2}}(x) dx$$

$$= \frac{1}{c} f(x_{0}) \cdot (\Phi_{\mu,\sigma^{2}}(b) - \Phi_{\mu,\sigma^{2}}(a))$$

where $\phi_{\mu,\sigma^2}(x)$ denotes the density and $\Phi_{\mu,\sigma^2}(x)$ the distribution function of a normal distribution with expectation μ and variance σ^2 .

For integration limits $b = \infty$ and $a = -\infty$ Laplace's method of f is then

$$\int_{-\infty}^{\infty} f(x) dx \approx \frac{1}{c} \cdot f(x_0) \cdot \left(\Phi_{\mu,\sigma^2}(+\infty) - \Phi_{\mu,\sigma^2}(-\infty) \right)$$
$$= \sqrt{-\frac{2\pi}{h''(x_0)}} \cdot f(x_0)$$

with
$$h(x) = \log f(x)$$
.

Laplace's method thus corresponds to a value that only depends on the maximum of the function $f(x_0)$ and the curvature of the logarithmic function $h''(x_0)$.

Laplace's method also works well in higher dimensions. For $f:\mathbb{R}^m\to\mathbb{R}$ with global maximum in \mathbf{x}_0 the generalized form is given by

$$I(f) \approx (2\pi)^{m/2} \det(-H_f(x_0)^{-1})^{1/2} \exp(f(x_0))$$

where $H_f(x_0)$ denotes the Hessian matrix of f at x_0 . Since x_0 is a global maximum, $H_f(x_0)$ is negative definite.

The problem of integration is reduced to

- Solving an optimization problem → find x₀
- Determining the second derivative h''(x) (or generally the Hessian matrix $H_f(\mathbf{x})$) at the optimal position x_0 .

Instead of integration, an optimization problem must now be solved, which is often much easier and faster.

Application example: Bayesian computation

Given:

$$x|\lambda \sim \mathsf{Poisson}(\lambda)$$
 (Likelihood)
 $\lambda \sim \mathsf{Gamma}(\alpha,\beta)$ (Prior)

Wanted: Posterior density of the parameter λ given n observations $\mathbf{x} = (x^{(1)}, x^{(2)}, ..., x^{(n)})$

$$p(\lambda|oldsymbol{x}) = rac{egin{array}{c} ext{Likelihood} & ext{Prior} \ p(oldsymbol{x}|\lambda) \cdot \pi(\lambda) \ \end{pmatrix}}{\int p(oldsymbol{x}|\lambda) \cdot \pi(\lambda) \ d\lambda}$$

The density of the gamma distribution is given by $\pi_{\alpha,\beta}(\lambda) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}\lambda^{\alpha-1}\exp(-\lambda\beta)$

To keep the calculations simple, we calculate the posterior density for only **one** observation x.

The posterior density of λ given the observation x is (except for one constant)

$$p(\lambda|x) \propto \lambda^{x+\alpha-1} \exp\left(-\frac{\lambda}{1/\beta+1}\right) =: f(\lambda).$$

So to determine the posterior density $p(\lambda|x)$ exactly, we search for the normalization constant c, which ensures that $\int c \cdot f(\lambda) d\lambda = 1$, hence

$$c \cdot \int f(\lambda) d\lambda = 1$$

$$c = \frac{1}{\int f(\lambda) d\lambda}$$

Goal: Approximation of
$$\int f(\lambda) \ d\lambda$$
 with $f(\lambda) = \lambda^{x+\alpha-1} \exp\left(-\frac{\lambda}{1/\beta+1}\right)$

We calculate $h(\lambda) = \log f(\lambda)$

$$h(\lambda) = \log\left(\lambda^{x+\alpha-1} \cdot \exp(-\frac{\lambda}{1/\beta+1})\right)$$
$$= (x+\alpha-1)\log\lambda - \frac{\lambda}{1/\beta+1}$$
$$h'(\lambda) = \frac{x+\alpha-1}{\lambda} - \frac{1}{1/\beta+1}$$
$$h''(\lambda) = -\frac{x+\alpha-1}{\lambda^2}$$

To approximate the integral using Laplace's method, we need $\lambda_0 := \arg \max f(\lambda)$ and $h''(\lambda_0)$, where $h(\lambda) := \log(f(\lambda))$.

The maximum of $f(\lambda)$ is the same as the maximum of $h(\lambda)$ (easier to calculate)

$$\frac{x+\alpha-1}{\lambda} - \frac{1}{1/\beta+1} = 0$$

$$\lambda_0 = \frac{x+\alpha-1}{1/\beta+1}$$

and thus

$$h''(\lambda_0) = -\frac{(1/\beta + 1)^2}{x + \alpha - 1}$$

We insert $\lambda_0 = \frac{x+\alpha-1}{1/\beta+1}$ and $h''(\lambda_0)$ into the formula for Laplace's method and obtain

$$\int f(\lambda)d\lambda \approx \sqrt{-\frac{2\pi}{h''(\lambda_0)} \cdot f(\lambda_0)}$$
$$= \sqrt{2\pi} \cdot \frac{\sqrt{x+\alpha-1}}{1/\beta+1} \cdot f(\lambda_0)$$

Hence, the normalization constant c can be approximated by

$$c = \frac{1}{\int f(\lambda) d\lambda} pprox \frac{1}{\sqrt{2\pi}} \frac{1/\beta + 1}{\sqrt{x + \alpha - 1}} \cdot \frac{1}{f(\lambda_0)}$$

When calculating posterior distributions, Laplace's method provides a good approximation if

- The number *n* of observations is large
- The posterior distributions are roughly symmetric

