

3B. RELATIONAL ALGEBRA

Slides adapted from Pearson Ed.

Recall from week 1:

- Relational database management systems (RDBMS).
 - Formalized by relational algebra/calculus.
 - Standardized by SQL (Structured Query Language) standard.
 - Implemented by various off-the-shelf products (MySQL, Oracle, MariaDB, SQLite, PostgreSQL Microsoft SQL Server, IBM Db2, etc.).

Basic mathematical definitions

- **Set**: an *unordered* collection of data, without repeats.
 - Denoted using curly brackets {}.
- **Tuple**: an *ordered* list of data (2-tuple = ordered pair; 3-tuple = triple; etc.).
 - Denoted using brackets ().
- Cartesian product: the set of all possible combinations of the elements of the sets involved in the product.
 - Cartesian product of two sets (A x B) will be a set containing ordered pairs like (a, b).

Relations in mathematics

- A mathematical relation describes a connection between elements of two sets (for a binary relation).
 - If a pair (a, b) is in the relation, it means element α is related to b.
 - If a pair (c, d) is missing from the relation, it means c and d don't have this particular relationship.
- For an *n*-ary relationship: Given sets A_1 , A_2 , ..., A_n , a **relation** is a particular subset of the set $A_1 \times A_2 \times ... \times A_n$.
 - **Domain**: the set each member of the tuple is drawn from $(A_1, A_2, etc.)$.

In relational databases, all tables are a mathematical relation

- Attributes = columns = domains that data is drawn from.
 - For Staff, the columns are staffNo (set of all possible staff numbers), fName (set of all possible strings maybe with an upper character limit), etc.
- Records = rows = tuples that are included in the relation.
 - For Staff, a tuple in the relation might be ("SG37", "John", "Smith", ...).
- Table = relation = a set of tuples.
- All parts of a relational database are in a simple 2-D form (relation) that can be mathematically manipulated and analyzed.

Relational algebra

- Can perform transformations on relations to produce new relations.
- Has the property of closure: applying an operation to a type (relation) yields the same type (relation).
 - Allows multiple operations to be strung together.

Five basic operations

- Selection,
- Projection,
- Union,
- Set difference,
- Cartesian product.

 Plus 3 derived operations: Intersection, Join (several types), and Division.

Selection (or Restriction) - σ

- \bullet $\sigma_{\text{predicate}}(R)$
- Row selection:
 - Given a relation R and a predicate, produces a new relation R' consisting only of tuples satisfying the predicate.
 - Ex: $\sigma_{\text{salary} > 10000}$ (Staff)
- Like the WHERE clause in SQL.

Projection – Π

- $\Pi_{a_1,...,a_n}(R)$
- Column selection:
 - Given a relation R and a list of attributes, produces a new relation R' that has all of R's tuples but with attributes other than the ones listed masked out
 - Ex: $\Pi_{\text{staffNo, fName, IName, salary}}$ (Staff) \rightarrow produces a four-column table (a 4-tuple relation).
- Like the SELECT [list] clause in SQL.

Union – U

- $\blacksquare R \cup S$
- Table combination; vertical join:
 - Combine (without duplicates) the tuples of two relations R and S that have identical schemas (list of (attribute name, domain) pairs)
 - Ex: List all cities where there is either a branch office or a property for rent:
 - $\Pi_{city}(Branch) \cup \Pi_{city}(PropertyForRent)$
- Same as UNION function in SQL.

Set difference – -

- R S (or R \ S)
- Removal of elements:
 - Remove from R all tuples identical to the ones that exist in S, producing a new relation R'.
 - Like union, must be union compatible (have same schemas).
 - Ex: List all cities where there is a branch office but no properties for rent.
 - $\Pi_{city}(Branch) \Pi_{city}(PropertyForRent)$
- Same as EXCEPT function in SQL.

Cartesian product – x

- $\blacksquare R \times S$
- Horizontal join; pairwise concatenation of tuples.
 - Combine every tuple in R with every tuple in S to get a table with |R|x|S| tuples with numcols(R) + numcols(S) columns.
- Same as listing two or more tables after FROM clause in SQL.

Visualizing basic operations

Derived operations

- Intersection \cap $R \cap S$
 - Equivalent to R (R S).
- Join: frequently-used operation that consist of a Cartesian product followed by a selection (selection differs by type of join).
- Division \div $R \div S$
 - Sub-tuples of R that span all the values in S.

Theta join (θ-join) - ⋈

- $\blacksquare R \bowtie_{predicate} S$
 - Equivalent to $\sigma_{predicate}(R \times S)$
- Predicate involves a comparison $(<, \le, >, \ge, =, \ne)$.
 - Ones involving '=' are called equijoins.
- Same as using the FROM... JOIN... ON clause in SQL.
 - Flexible and all-purpose.

Natural join - ⋈

- $\blacksquare R \bowtie S$
- An equijoin that checks for equality on all attributes with the same name and removes the duplicate column(s) in the final table.
 - Equivalent to $\Pi_{reduced\ list}(\sigma_{R.c1=S.c1,etc.}(R\times S))$
- Similar to FROM... JOIN... USING clause in SQL.

Outer joins

- By default, joins are inner joins, meaning they only contain entries from the tables where the condition was fulfilled.
- Can also specify outer joins, which retain rows/tuples in one or both tables/relations even if they didn't match with anything.
 - Missing attributes that would have been filled by the match(es) in the other table are filled with nulls.
 - Left join / left outer join preserves all rows from the first table.
 - Right join / right outer join preserves all rows from the second table.
 - Full outer join does both.

SQL: Outer join example

- Task: List branches and properties in the same city, along with unmatched [branches | properties | branches or properties].
 - SELECT b.*, p.*
 FROM Branch b [LEFT | RIGHT | FULL] JOIN Property p
 ON b.bCity = p.pCity;

Semijoin - ▷

- \blacksquare R \triangleright predicate S
- Same as θ -join except the final result only contains R's attributes.
 - Equivalent to $\Pi_{R's \ attr \ list}(\sigma_{predicate}(R \times S))$
 - Use S to filter R's rows (tuples).

Division - ÷

- $\blacksquare R \div S (=T)$
- Selects (a part of) tuples in R that match every possible value in S.
 - Attributes in result relation T is attr(R) attr(S).
 - S x T will not generate any tuples that weren't already in R.

• Equivalent to $\Pi_{attr(T)}(R) - \Pi_{attr(T)}(\Pi_{attr(T)}(R) \times S) - R$

Start with all tuples in R

Remove the ones that don't fully cover S

After this op, only rows that don't fully cover S will remain

20

Division - ÷

- $R \div S (= T)$
- Selects (a part of) tuples in R that match every possible value in S.
 - Attributes in result relation T is attr(R) attr(S).
 - S x T will not generate any tuples that weren't already in R.
 - Equivalent to $\Pi_{attr(T)}(R) \Pi_{attr(T)}(\Pi_{attr(T)}(R) \times S) R$
 - Alternative using assignment:

$$T_1 \leftarrow \Pi_{attr(T)}(R)$$

$$T_2 \leftarrow \Pi_{attr(T)}(T_1 \times S) - R$$

$$T \leftarrow T_1 - T_2$$

S ⊇ R

Division example

- Identify all clients who have viewed all properties with three rooms.
 - $(\Pi_{clientNo, propertyNo}(Viewing)) \div (\Pi_{propertyNo}(\sigma_{rooms = 3} (PropertyForRent)))$

• •	
clientNo	propertyNo
CR56	PA14
CR76	PG4
CR56	PG4
CR62	PA14
CR56	PG36

 $\Pi_{\text{clientNo,propertyNo}}(\text{Viewing}) \quad \Pi_{\text{propertyNo}}(\sigma_{rooms=3}(\text{PropertyForRent}))$

propertyNo	
PG4 PG36	

RESULT

clientNo CR56

Visualizing derived operations

Proposed operations

- Aggregation ($\Im_{\text{list of < aggfunc, attr> pairs}}(R)$)
 - Aggregation functions: COUNT, SUM, AVG, MIN, and MAX as in SQL.
- Grouping (grouping attr(s) ℑlist of <aggfunc, attr> pairs(R))
 - Forms groups based on the list on the left and calculates aggregate function on all groups.
- Produces a scalar, 1-D, or 2-D table (i.e. another relation).
 - Give new relation better name using rename function (ρ).
 - Example: ρ_R (myCount) $\mathfrak{I}_{COUNT propertyNo}(\sigma_{rent > 350}(PropertyForRent)).$