

Méthodes formelles de vérification (MFVerif) TD n° 5 : LTL - Automates de Büchi

Formules LTL

Exercice 1:

Donner la sémantique (définition) des opérateurs LTL par rapport à une séquence infinité des états σ . On dénote par $\sigma(i)$ le i-sienne état dans la séquence σ . Par exemple, si P est un prédicat atomique (évaluée sur un état), on écrit :

$$P \vDash \sigma \iff P(\sigma(0))$$

Compléter la définition ci-dessous.

$$P \vDash \sigma \iff P(\sigma(0))$$

$$\bigcirc \varphi \vDash \sigma \iff$$

$$\Box \varphi \vDash \sigma \iff$$

$$\Diamond \varphi \vDash \sigma \iff$$

$$\varphi \ \mathcal{U} \ \psi \vDash \sigma \iff$$

Exercice 2:

Montrez que les formules suivantes ne sont pas équivalentes en fournissant des séquences d'états qui satisfont une mais pas l'autre :

- 1. $\Diamond \Box p$ and $\Box (p \to \bigcirc p)$
- **2.** $\Diamond \Box p$ and $\neg p \ \mathcal{U} \ \Box p$
- **3.** $\Box(p \to \bigcirc p)$ and $\neg p \ \mathcal{U} \ \Box p$

Exercice 3:

Vérifiez si les formules suivantes sont satisfiables et/ou valides :

- 1. $\bigcirc\bigcirc a \Rightarrow \bigcirc a$
- **2.** $\bigcirc(a \lor \Diamond a) \Rightarrow \Diamond a$
- 3. $\Box a \Rightarrow \neg \bigcirc (\neg a \land \Box \neg a)$
- **4.** $(\Box a) \ \mathcal{U} \ (\diamondsuit b) \Rightarrow \Box (a \ \mathcal{U} \ \diamondsuit b)$
- **5.** $\diamondsuit b \Rightarrow (a \ \mathcal{U} \ b)$

Automates de Büchi

Exercice 4:

Donner les automates de Buchi reconnaissant les séquences infinies satisfaisant chacune des formules LTL

- 1. $\Box \Diamond p$
- **2.** $\Diamond \Box p$
- **3.** $\Box(p \Rightarrow \Box \Diamond q)$
- **4.** $\Box \Diamond p \Rightarrow \Box \Diamond q$

Exercice 5:

On considère le modèle donné dessous. Dire si la formule LTL suivante est satisfaite :

$$\Diamond (a \ \mathcal{U} \ b)$$

Sinon, faire le minimum des changements dans le modèle pour obtenir un modèle qui la satisfait.

Model Checking

Exercice 6:

Prouver par la méthode de model checking vu au cours si l'automate donné en bas satisfait la formule LTL suivant : $\varphi = \Box(a \ \mathcal{U} \ b)$. Justifier chaque étape de la construction.

FIGURE 1 – Automate de un four microondes.

Exercice 7:

Le modèle de la Figure 6 represente un four de microondes. Montrer que ce modèle ne respecte pas la formule LTL suivante :

 $\square \diamondsuit \mathsf{off}$

Montrer qu'il respecte la formule LTL :

 $\square \diamondsuit \mathsf{closed}$