Collective models

Goal: generate/predict mobility flows between origins and destinations

Examples:

Commuting flows

Migration/relocation flows

Spatial flows and OD matrices

Mathematically, spatial flows are represented as a Origin-Destination **(OD) matrix**, **T**:

- 1. Define locations discretizing space, using a tessellation (e.g., counties, municipalities)
- 1. Element T_{ii} is the *number of trips from i to j per unit time*.

OD matrix

destination

		a	Ь	С	d	е	f
	a	-	3	27	2	1	0
	b	1	-	4	0	0	5
)	С	8	3	-	1	13	6
	d	2	1	5	-	0	2
	е	11	0	6	5	-	1
	f	0	3	2	2	0	-

(self-loops are usually not considered)

Total out-flow from i

$$\sum_{j} T_{ij} = O_i$$

Total in-flow to j

$$\sum_{i} T_{ij} = D_j$$

Total flow

$$\sum_{i,j} T_{ij} = N$$

 The model assigns a probability to each possible OD-matrix T

- Methods to fit the model's parameters
 - maximizing the likelihood of observed T*
 - minimizing the distance from observed T*

Idea: Interpret the problem as a classification task

classes = locations

Idea: Interpret the problem as a classification task

given a trip's origin location, predict the destination

Goal: find the correct class (= location of destination)

Each location has some probability to be the destination

How do we estimate these probabilities?

Gravity model

Gravity model

Parameters β and y can be estimated using **maximum likelihood**

$$p_{ij} \propto rac{pop_j^eta}{r_{ij}^\gamma}$$

Validation of collective models

Comprehensive survey on distance/similarity measures between probability density functions. (Cha, S. H., 2007, City, 1(2))

Common metrics to compare OD matrices

- Sorensen-Dice similarity (Common part of commuters)
- Root Mean Squared Error

 $\frac{\sum_{ij} \min(T_{ij}^e, T_{ij}^m)}{\sum_{ij} T_{ij}^e}$

$$\sqrt{\frac{\sum_{ij}(T^e_{ij}-T^m_{ij})^2}{n^2}}$$

• More (cosine similarity, correlation, ...)