XARXES (GEINF) CURS 2013/14 Recuperació del primer examen parcial de teoria i problemes (30 de gener de 2014)

	Nom:			
	DNI:			_
La duració de l'examen é	és de 2 hores.			
No es poden utilitzar apu	ınts.			

Test (5 punts)

Una resposta correcta suma 0.500 punts, una incorrecta resta 0.125 punts, i una no contestada suma zero. Fes servir la taula que tens a sota (les respostes que no estiguin a la taula no es comptaran).

Respostes							
1)	а	b	С	d			
2)	а	b	С	d			
3)	а	b	С	d			
4)	а	b	С	d			
5)	а	b	С	d			
6)	а	b	С	d			
7)	а	b	С	d			
8)	а	b	С	d			
9)	а	b	С	d			
10)	а	b	С	d			

- 1) Es transmet un paquet de 250 *bytes* a una velocitat de transmissió de 5 Mbps per un enllaç de 100 km. El medi té una velocitat de propagació de 2.5·10⁸ m/s. Quina és CERTA?
 - a. El temps de transmissió T_{ix} del paquet és 0.8 ms.
 - (b.) El temps de propagació T_p de l'enllaç és 0.4 ms.
 - c. El retard total D del paquet és 0.4 ms.
 - d. El temps de transmissió T_{ix} del paquet és 0.05 ms.
- 2) Els missatges d'un protocol tenen un camp de control d'errors de 5 bits. Com a mínim es pot assegurar que aquest protocol (quina és CERTA):
 - a. pot corregir situacions d'error de fins a 2 bits.
 - b. utilitza un codi de control d'errors de tipus convolucional.
 - c. pot detectar situacions d'errors de fins a 4 bits.
 - (d.) fa detecció d'errors.
- 3) Quant a la comunicació amb sockets TCP/IP amb la interfície de C en Linux, quina és FALSA?
 - a. El client és el que demana la connexió amb la crida connect().
 - b. El servidor és el que accepta la connexió amb la crida accept().
 - c. El servidor ha d'associar el socket per rebre connexions a un port conegut amb la crida bind().
 - (d.) El client ha d'utilitzar la crida *listen()* per poder escoltar peticions de connexió.
- 4) Si un protocol utilitza un mecanisme de correcció d'errors del tipus ARQ, quina és FALSA?
 - (a)És segur que sempre es podran corregir tots els errors.
 - b. Si l'ARQ és continu s'aprofita millor el canal de comunicació que si és de parada i espera.
 - c. És segur que els missatges del protocol tindran algun tipus de camp de control d'errors.
 - d. Perquè es pugui fer servir ARQ ha d'existir un canal d'anada i un de tornada.

5) Amb el Wireshark es captura el següent paquet. Quina és FALSA?

- a. El camp "protocol=17" del paquet IP és una adreça (SAPI) que identifica a l'entitat usuària d'IP.
- b. El camp "port destí=53" del paquet UDP és una adreça (SAPI) que identifica a l'entitat usuària d'UDP.
- (c.) UDP és un protocol de la capa de transport, orientat a la connexió, ordenat i fiable.
- d. DNS és un protocol de la capa d'aplicació que proporciona el servei de traducció de noms a adreces IP (p.e., "www.udg.edu" correspon a "84.88.142.13").
- 6) Si es vol enviar un missatge digital a través d'un ràdioenllaç que opera a la banda dels 2 GHz, quin senyal (modulació) fer servir?
 - a. Un senyal FM amb f_p =2 MHz.
 - (b) Un senyal FSK amb $f_p=2$ GHz.
 - c. Un senyal de 2 nivells.
 - d. Un senyal AM amb f_p =2 GHz.
- 7) Donada la resposta freqüencial d'un sistema (veure figura), quina és FALSA?
 - a. Es tracta d'un sistema amb una atenuació de $L=1/K^2=4$.
 - b. Es tracta d'un sistema en banda base amb amplada de banda 15 kHz.
 - c. Es tracta d'un sistema que entre 0 i 15 kHz no distorsiona.
 - (d.)Es tracta de la resposta d'un amplificador.

- a. La primera component correspon a una cosinosoide de freqüència 10 Hz.
- (b) Aquest espectre no és correcte, ja que l'amplitud és parella i la fase imparella.
- c. El senyal té una amplada de banda de 50 Hz.
- d. Es tracta d'un senyal periòdic.

1/2

H(f)

0.5

15 KHz

9) Quina és CERTA?

- a. Com major és la relació de senyal a soroll rebuda (S/N)_R, pitjor és la qualitat de la transmissió.
- b. La relació de senyal a soroll (S/N)_R es dona en dBm o dBW.

 $(E_r = 2)$

- c. Si el filtre del receptor es dissenya bé, s'elimina tot el soroll afegit al senyal original durant la transmissió.
- (d.) Si el filtre del receptor es dissenya bé, com major és l'amplada de banda del senyal transmès, major és la potència de soroll rebuda.
- 10) Donats el senyal i sistema de la figura, quina és la velocitat de transmissió màxima r_b a la que es pot transmetre el senyal sense que hi hagi distorsió?

b. 30 Kbps

c. 60 Kbps

d. 7.5 Kbps

Resposta frequencial del sistema

Exercicis (5 punts)

Cada exercici son 2.5 punts.

1.- Els noms i significats dels missatges d'un protocol de transport orientat a la connexió, que utilitza el mecanisme de control d'errors ARQ continu go-back-N i finestra lliscant de longitud k = 3, són els següents:

PIC: petició d'inici de connexió. PFC: petició de fi de connexió.

RP: resposta (positiva) de les peticions anteriors.

I(N): missatge d'informació número N.

ACK(N): confirmació positiva del missatge I(N) i de tots els anteriors.

NAK(N): confirmació negativa del missatge I(N).

Els números de seqüència no estan limitats i els missatges es numeren consecutivament (0,1,2, etc.). En un moment determinat una entitat de protocol A estableix la connexió amb una altra entitat B per enviar-li un fitxer, i després allibera la connexió. El fitxer es fragmenta en 5 missatges I. Tots els missatges arriben bé excepte el primer cop que s'envien les dues primeres confirmacions (ACK(0) i ACK(1)), que no arriben bé (es perden o es detecten errònies). Es demana el següent:

- a) La seqüència temporal de missatges intercanviats per les entitats A i B.
- b) La velocitat efectiva de transmissió del fitxer.

NOTA:

- La velocitat de transmissió de la font (A) és 10 Mbps
- Tots els missatges I són de 1250 bytes i cadascun conté 1000 bytes d'informació
- Els retards dels paquets (tant d'anada com de tornada) són constants i dels següents valors: el retard d'un missatge I és $D_I = 3$ ms, i el retard dels altres missatges és $D_{altres} = 2$ ms
- El timeout és de 9 ms
- El temps de processament de les estacions és zero
- 2.- Dos *routers* d'una xarxa estan units a través d'un enllaç de 100 Mbps. El transmissor està format per un codificador, un modulador ASK-2 a la freqüència de 2 GHz i un amplificador de guany 30 dB, que dóna a la seva sortida una potència de senyal transmès de 0 dBm. L'enllaç és un cable de longitud 100 km, atenuació 0.7 dB/km i temperatura de soroll 3000 K. El receptor està format per un filtre, un amplificador de guany 40 dB, un desmodulador i un descodificador. El senyal no pateix distorsió.

Es demana el següent:

- a) Dibuixeu el senyal transmès $s_T(t)$ quan transporta el missatge ...10000111... (indiqueu el temps entre símbols T_s , la velocitat de senyalització r_s , etc.), i dibuixeu el seu espectre $S_T(t)$ (indiqueu l'amplada de banda del senyal B_T , la posició, etc.).
- b) Dibuixeu una possible resposta freqüencial del cable $H_c(f)$. Dibuixeu la resposta freqüencial dels dos amplificadors $H_a(f)$ i $H_a(f)$, i del filtre $H_f(f)$.
- c) Deduïu l'expressió de la relació de senyal a soroll rebuda $(S/N)_R$ en funció de la potència del senyal transmès S_T , la temperatura de soroll T_n , l'amplada de banda del senyal B_T i l'atenuació del cable L_c .
- d) Calculeu la probabilitat d'error de bit P_b .

NOTA:

- La constant de *Boltzman* és $K = 1.38 \cdot 10^{-23} \text{ J/K}$.
- L'eficiència espectral E_f d'un senyal ASK-2 és 1.
- Feu servir els gràfics $P_b (S/N)_R$ següents:

Exercici 1 (i)

- Es tracta d'una aplicació de transferència de fitxers, amb arquitectura (~ TCP/IP):
 - Aplicació de Transferència de Fitxers (ATF): transfereix fitxers (C-S o P2P)
 - Transport (T): permet que múltiples processos d'aplicació s'enviïn i rebin missatges d'informació; a més, aquí és orientada a la connexió i fiable.
 - Xarxa (X): envia i rep missatges d'informació entre estacions; aquí és no orientada a la connexió i no fiable

Els paquets es poden perdre o arribar amb errors, i tarden un temps (retard D) p.e., el client envia un fitxer al servidor...

- el C en A: crida Aenvfitx; el S en B crida Aserveixpetició
- ATF en A: crida Tcon, Tenv, Tdesc; ATF en B: crida Tesp, Trep, (Trep)
- T en A: crida Xenvia, Xrep; T en B: crida Xrep, Xenvia

Exercici 1 (ii)

- El protocol T és orientat a la connexió i utilitza ARQ amb ACKs i NAKs, per corregir els paquets perduts i erronis de la xarxa:
 - els ACKs són acumulatius!
 - les causes de retransmissió són expiracions de timeout i NAKs!
 - els #seqüència no estan limitats
- El fitxer es fragmenta en 5 missatges-l idèntics:

Els altres missatges en general són molt més curts...

- Els temps els posem en funció del temps de transmissió T_{ix} d'un missatge-l:
 - $T_{ix} = 1250.8/(10.10^6) = 10^{-3} \text{ s} = 1 \text{ ms}$
 - $D_l = 3 \text{ ms } (= 3 \cdot T_{ix})$
 - $D_{altres} = 2 \text{ ms} (= 2 \cdot T_{ix})$
 - $t_{AT} = D_I + D_{ack} = 3 + 2 = 5 \text{ ms} \ (= 5 \cdot T_{ix})$
 - $timeout = 9 \text{ ms} (= 9 \cdot T_{ix})$

Exercici 2: senyal i espectre

Exercici 2 : respostes frequencials

Si no distorsió, la resposta frequencial d'A és plana i la de Φ és lineal en la banda del senyal:

senyal
$$s_{out}(t) = H_{Ax} s_{in}(t - H_{Rx})$$
 potència $S_{out} = \overline{s_{out}(t)^2} = H_{Ax}^2 \overline{s_{in}(t - H_{Rx})^2} = H_{Ax}^2 S_{in}$

$$L_c = 70 \text{ dB}^* \text{ lineal } L_c = 10^{70/10} = 10^7 \qquad (L_c = 1/H_{Ac}^2) \quad H_{Ac} = 3.16 \cdot 10^{-4}$$

$$G_T = 30 \text{ dB} \quad \text{lineal } G_T = 10^{30/10} = 10^3 \qquad (G_T = H_{At}^2) \quad H_{At} = 31.62$$

$$G_R = 40 \text{ dB} \quad \text{lineal } G_R = 10^{40/10} = 10^4 \qquad (G_R = H_{Ar}^2) \quad H_{Ar} = 100$$
Filtre $H_{Af} = 1$

Exercici 2: la (S/N)_R

$$S_{R} = \overline{S_{R}^{2}(t)} = \overline{S_{T}^{2}(t-H_{R})} \frac{1}{L_{c}} 1^{2} G_{R} = S_{T}[W] \frac{1}{L_{c}} G_{R} [W]$$

$$N_{R} = \overline{n_{R}^{2}(t)} = (KT_{n})B_{t}G_{R} = K[J/K] T_{n}[K] B_{T}[Hz] G_{R} [W]$$

$$\underbrace{(S/N)_{R} = \frac{S_{R}}{N_{R}} = \frac{S_{T}/L_{c} \cancel{G}_{R}}{KT_{n}B_{T}\cancel{G}_{R}} = \frac{S_{T}}{KT_{n}B_{T}L_{c}}}_{[W]} = \underbrace{10 \cdot \log_{10}(S/N)_{R}}_{[U]} = \underbrace{10 \cdot \log_{10}(S_{T}[W])}_{[U]} - 10 \cdot \log_{10}KT_{n}B_{T} - \underbrace{10 \log_{10}L_{c}}_{[U]}_{[U]}$$

$$\underbrace{S_{T}[dBW]}_{[U]} = \underbrace{S_{T}/L_{c} \cancel{G}_{R}}_{[U]} = \underbrace{S_{T}/L_{c} \cancel{G}_{R}}_{$$

$$(S/N)_R[dB] = S_T[dBW] - 10log_{10}(KT_nB_T) - L_c[dB]$$

Exercici 2: P_b

$$S_{T}[dBM] = 0 dBm \Rightarrow S_{T}[mW] = 10^{0/10} \text{ mW} = 1 \text{ mW} = 10^{-3} \text{ W}$$

$$S_{T}[dBW] = 10\log_{10}(10^{-3}) = 30 \text{ dBW}$$

$$(S/N)_{B}[dB] = S_{T}[dBW] - 10\log_{10} \underbrace{KT_{n}B_{T}}_{1.38 \cdot 10^{-23}} - L_{c}[dB] = -30 - (-113.83) - 70 = 3.83 \text{ dB} (24.15)$$

$$1.38 \cdot 10^{-23} \cdot 3 \cdot 10^{3} \cdot 10^{8}$$

$$1.38 \cdot 10^{-23} \cdot 3 \cdot 10^{3} \cdot 10^{8}$$

$$1.38 \cdot 10^{-23} \cdot 3 \cdot 10^{3} \cdot 10^{8}$$

$$1.38 \cdot 10^{-23} \cdot 3 \cdot 10^{3} \cdot 10^{8}$$

$$P_{b} = 4 \cdot 10^{-7}$$

$$10^{3} - P_{b} = 4 \cdot 10^{-7}$$

$$10^{4} - P_{b} = 4 \cdot 10^{-7}$$

$$10^{5} - P_{b} = 4 \cdot 10^{-$$