Übung zur Vorlesung Berechenbarkeit und Komplexität

Blatt 5

Tutoriumsaufgabe 5.1

Für eine Turingmaschine M über dem Eingabealphabet $\Sigma = \{0, 1\}$ und ein Wort $w \in \Sigma^*$ sei M_w^* eine Turingmaschine, die bei Eingabe ϵ zunächst das Wort w auf das Band schreibt und dann M auf w simuliert. Bei anderen Eingaben darf sich M_w^* beliebig verhalten.

- (a) Geben Sie eine **formale** Definition für M_w^* an.
- (b) Beschreiben Sie grob die Funktionsweise einer Turingmaschine N, die bei Eingabe $\langle M \rangle w$ die Gödelnummer von M_w^* berechnet. Sollte die Eingabe nicht das vorgegebene Format haben, darf sich die Turingmaschine N beliebig verhalten.

Hinweis: Sie können für N eine Mehrband-TM verwenden.

Bemerkung: Diese Aufgabe ist Teil des Beweises für die Unentscheidbarkeit des Epsilon-Halteproblems H_{ϵ} (siehe Vorlesung).

Tutoriumsaufgabe 5.2

Zeigen oder widerlegen Sie, dass die Sprache $L = \{\langle M \rangle \mid L(M) \text{ ist endlich} \}$ rekursiv ist. Sie können gegebenenfalls den Satz von Rice verwenden.

Tutoriumsaufgabe 5.3

Beweisen oder widerlegen Sie:

- (a) Es existiert eine TM M, für die es unentscheidbar ist, ob M auf einem gegebenen Wort w hält.
- (b) Es existieren eine TM M und ein Wort w, für die es unentscheidbar ist, ob M auf w hält.

Hinweis: Bringen Sie die umgangssprachlichen Formulierungen zuerst in eine klare mathematische Form, und untersuchen Sie dann die resultierenden Sprachen.

Tutoriumsaufgabe 5.4

Seien L_1, L_2, L_3 drei Sprachen über dem Alphabet $\{0, 1\}$.

- (a) Zeigen Sie, dass das Reduktionskonzept " \leq " transitiv ist. Zeigen Sie also: Aus $L_1 \leq L_2$ und $L_2 \leq L_3$ folgt $L_1 \leq L_3$.
- (b) Zeigen Sie die Aussage: $(L_1 \leq L_2 \Rightarrow \overline{L_1} \leq \overline{L_2})$.

— BITTE WENDEN —

Hausaufgabe 5.1

$$(2+2+2 \text{ Punkte})$$

Zeigen oder widerlegen Sie, dass folgende Sprachen rekursiv sind. Sie können gegebenenfalls den Satz von Rice verwenden.

- (a) $L_1 = \{ \langle M \rangle \mid M \text{ hält auf } \langle M \rangle \}.$
- (b) $L_2 = \{ \langle M \rangle \mid L(M) = \{ w \in \{0, 1\}^* \mid |w| \ge 2 \} \}.$
- (c) $L_3 = \{ \langle M \rangle \mid \exists w \in \{0, 1\}^* . M \text{ hält auf } w \}.$

Hausaufgabe 5.2

(2 + 2 Punkte)

Für eine Sprache L über dem Alphabet $\{0,1\}$ definieren wir die Sprache

$$L^* = \{ w_1 w_2 \dots w_n \mid n \ge 0, w_1, \dots, w_n \in L \}.$$

Beweisen oder widerlegen Sie:

- (a) Wenn L rekursiv ist, dann ist auch L^* rekursiv.
- (b) Wenn L^* rekursiv ist, dann ist auch L rekursiv.

Hausaufgabe 5.3

(1+2+3) Punkte)

In dieser Aufgabe wird das Alphabet $\Sigma := \{0, 1, 2, \dots, 9\}$ und der (unendlich lange, nicht periodische) Nachkommateil $w(\pi) := 14159265358979323846 \cdots$ der Dezimaldarstellung der Zahl $\pi \approx 3, 14$ betrachtet.

- (a) Zeigen Sie: Die Sprache $L_1 := \{ w \in \Sigma^* \mid w \text{ ist ein Präfix von } w(\pi) \}$ ist entscheidbar.
- (b) Zeigen Sie: Die Sprache $L_2 := \{w \in \Sigma^* \mid w \text{ ist ein Teilwort von } w(\pi)\}$ ist rekursiv aufzählbar. Ob L_2 entscheidbar ist, ist ein (schwieriges) ungelöstes Problem¹.
- (c) Zeigen Sie: Die Sprache $L_3 := \{w \in \{3\}^* \mid w \text{ ist ein Teilwort von } w(\pi)\}$ ist entscheidbar.

Abgabe bis Mittwoch, den 28.11.2018 um 12:15 Uhr im Sammelkasten am Lehrstuhl i1, in Ihrem Tutorium oder am Anfang der Globalübung.

¹Es ist nicht bekannt, ob $w(\pi)$ jedes $w \in \Sigma^*$ als Teilwort enthält.