This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 417/06, 413/06, 417/14, A61K

(11) International Publication Number:

WO 96/26207

A1

(43) International Publication Date:

. 29 August 1996 (29.08.96)

(21) International Application Number:

PCT/JP96/00403

(22) International Filing Date:

22 February 1996 (22.02.96)

(30) Priority Data:

7/34963 7/336391

31/425, 31/42

ЛР 23 February 1995 (23.02.95) JP

25 December 1995 (25.12.95)

(71) Applicant (for all designated States except US): NISSAN CHEMICAL INDUSTRIES, LTD. [JP/JP]; 7-1, Kanda-Nishiki-cho 3-chome, Chiyoda-ku, Tokyo 101 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): OHARA, Yoshio [JP/JP]; Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274 (JP). SUZUKI, Mikio [JP/JP]; Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashishi. Chiba 274 (JP). OHDOI, Keisuke [JP/JP]; Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho. Funabashi-shi, Chiba 274 (JP). MIYACHI, Nobulide [JP/JP]: Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiha 274 (JP). KATO, Katsuhiro [JP/JP]; Nissan Chemical Industries. Ltd., Central Research Institute. 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274 (JP), KOBAYASHI,

Tetsuya [JP/JP]: Nissan Chemical Industries, Ltd., Central Research Institute, 722-1. Tsuhoi-cho, Funabashi-shi, Chiba 274 (JP). SHIKADA, Ken-ichi [JP/JP]; Nissan Chemical Industries, Ltd., Seibutsukagaku Kenkyusho, 1470, Oaza-shiraoka, Shiraoka-machi, Minamisaitama-gun. Saitama 349-02 (JP). KITAHARA, Masaki [JP/JP]; Nissan Chemical Industries, Ltd., Seibutsukagaku Kenkyusho, 1470, Oaza-shiraoka, Shiraoka-machi, Minamisaitama-gun, Saitama 349-02 (JP). NAITO, Takeshi [JP/JP]; Nissan Chemical Industries, Ltd., Seibutsukagaku Kenkyusho, 1470. Oaza-shiraoka. Shiraoka-machi, Minamisaitama-gun. Saitama 349-02 (JP), YOTSUMOTO, Takashi [JP/JP]; Nissan Chemical Industries, Ltd., Seibutsukagaku Kenkyusho. 1470, Oaza-shiraoka, Shiraoka-machi, Minamisaitama-gun. Saitama 349-02 (JP), MIYAKOSHI, Chie [JP/JP]: Nissaii Chemical Industries, Ltd., Seibutsukagaku Kenkyusho. 1470, Oaza-shiraoka, Shiraoka-machi, Minamisaitama-gun. Saitama 349-02 (JP).

- (74) Agents: YAMAMOTO, Ryozo et al.: Torimoto Kogyo Buikting, 38. Kanda-Higashimatsushitacho, Chiyoda-ku, Tokyo 101 (JP).
- (81) Designated States: AU. CA. CN. CZ. FI, HU. KR. LT. UV. MX. NO. NZ. RO. RU. SI. SK. UA. US. European patent (AT. BE. CH, DE. DK, ES, FR. GB. GR, IE, IT, LU, MC. NL. PT. SE).

Published

With international search report

(54) Title: THIAZOLIDINE AND OXAZOLIDINE INDOLES WITH HYPOCLYCEMIC ACTIVITY

(57) Abstract

An indole type thiazolidine compound of formula (1) and its salt, wherein X1 is S or O; X2 is S, O or NH, Y is CR6R7 (R6 is a hydrogen atom or a C1-C7 alkyl group); R1 is a substituent at the 2-13-14-15-16- or 7- position of an indole ring and is a C1-C10 alkyl group, -W1-V1-Z (Z is a C1-C10 cycloalkyl group, ii C6-C14 aromatic group, a C1-C12 heterocyclic aromatic group, a C_1 - C_6 heterocycloaliphatic group, etc., V is $O,\,S,\,$ etc., W is a divalent C1-C6 saturated or C2-C6 unsaturated hydrocarbon group

which may be substituted with at most 3 of hydroxyl, oxo and C1-C7 alkyl groups, and each of k and l is 0 or 1), -V-W-Z (V, W and Z are as defined above), -W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different), or R1 may be a hydrogen atom when Y is bonded to the 4. 5-, 6- or 7-position of an indole ring; each of R2 and R3 is a substituent at the 2-, 3-, 4-, 5-, 6- or 7-position of an indole ring, and is independently a hydrogen atom, a C1-C7 alkyl group, or the like; R4 is a hydrogen atom or a C1-Calkyl group: RS is a hydrogen atom or a carboxymethyl group; and Rn is a substituent at the 1-position of an indole ring, and is a hydrogen atom, B C1-C7 alkyl group, a C1-C7 alkoxy group, an alkylsulfonyl group, an arylsulfonyl group, or the like.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Аппевы				
AT	Austra	GB	United Kingdom	MW	
AU	Australia	GE	Georgia		Malawi
BB	Barbados	GN	Guinea	MX	Mexico
BE	· 	GR	Greece	NE	Niger
BF	Belgium	HU	Hungary	NL	Netherlands
BG	Burking Faso	1E	ireland	NO	Norway
	Bulgana	1T	Italy	NZ	New Zealand
BJ	Benin	JP	Japan	PL	Poland
BR	Brazil	KE	•	PT	Portugal
BY	Beiarus	KG	Kenya	RO	Romania
CA	Canada	KP	Kyrgystan	. RU	Russian Federation
CF	Central African Republic		Democratic People's Republic	SD	Sudan
CC	Congo	KR	of Korea	SE	Sweden
CH	Switzerland		Republic of Korea	SG	Singapore
CI	Côte d'Ivoire	KZ	Kazakhstan	SI	Slovenia
CM	Cameroon	LI	Liechtenstein	SK	Slovakia
CN	China	LK	Sri Lanka	SN	Senegal
CS	Czechoslovakia	LR	Liberia	SZ	Swaziland
CZ	Czech Republic	LT	Lathuania	. 10	Chad
DE	Germany	LU	Luxembourg	TG	
DK	Denmark	LV	Larvu	LT.	Togo
EE	Euonu	MC	Monaco	17	Tajikistan
ES	Spain	MD	Republic of Moldova	UA	Trinidad and Tobago
FI	Finland	MG	Madagascar	UG	Ukraine
FR	France	ML	Mali	US	Uganda
GA	Gabon	MN	Mongolia .		United States of America
		MR	Mauritania	UZ	Uzbekistan
				. VN	Viet Nam

DESCRIPTION

THIAZOLIDINE AND OXAZOLIDINE INDOLES WITH HYPOCLYCEMIC ACTIVITY

TECHNICAL FIELD

5

10

The present invention relates to novel indole type thiazolidines having a hypoglycemic effect and aldose-reductase inhibitory activities, which are useful in medical and veterinary fields, particularly useful for preventing or treating diabetes mellitus and diabetic complications.

BACKGROUND TECHNIQUE

Heretofore, various sulfonylurea derivatives and biguanide derivatives have been widely used as oral hypoglycemic agents for lowering blood sugar levels. However, these agents had disadvantages of causing serious hypoglycemic coma and lactic acidosis revelation, and therefore every possible care must have been taken for practical use. "Chem. Pharm. Bull., vol. 30, p. 3563

- 20 (1982)", "J. Med. Chem., vol. 32, p. 421 (1989)", "J. Med. Chem., vol. 34, p. 318 (1991)", "J. Med. Chem., vol. 33, p. 1418 (1990)", Japanese Unexamined Patent Publication No. 64586/1980, and European Laid Open Patent Publications No. 177353, No. 283035, No. 283036, No.
- 25 332331, and No. 332332 disclose various thiazolidindiones which achieve a hypoglycemic effect, and these are particularly useful for treating Type II diabetes and are

noted as agents for hardly causing such hypoglycemic symptoms as caused by the above-mentioned oral hypoglycemic agents. However, although these compounds have a function of effectively lowering a blood sugar level, it is not proved that these compounds have effects for reducing or preventing various chronic symptoms caused by diabetes, such as diabetic nephropathy, diabetic cataract, diabetic retinopathy, diabetic neuropathy and the like.

- 10 Further, some of a series of indole derivatives having a thiazolidine ring or an oxazolidine ring as a partial structure, are known. For example, there is reported in Bioorg. Med. Chem. Lett., vol. 2(7), P705 (1992) that a series of 3-((4-oxo-2-thioxo-5-
- thiazolidinylidene)methyl)indole derivatives have cyclooxygenase and 5-lipoxygenase inhibitory activities. Arch. Pharm. (Weinheim)., vol. 304(7), P523 (1971) and European Patent No. 343643 disclose that a series of 2-((4-oxo-2-thioxo-5-thiazolidinylidene)methyl)indole
- derivatives have anti-inflammatory and anti-allergy activities. Japanese Examined Patent Publication No. 56175/1986 and European Laid Open Patent Publication No. 47109 disclose that a series of 3-((N-carboxymethyl-4-oxo-2-thioxo-5-thiazolidinylidene)methyl)indole
- derivatives have aldose-reductase inhibitory activities. Indian Drugs, vol. 22(10), P519 (1985) and J. Chem. Soc. Pak., vol. 4(1), P43 (1982) discloses a series of 3-((4-

oxo-2-thioxo-5-thiazolidinylidene)methyl)indole Japanese Unexamined derivatives have CNS activities. Patent Publication No. 96941/1980 discloses that a series of 3-((4-oxo-2-thioxo-5-thiazolidinylidene)methyl)indole derivatives are useful as a photographic material of 5 silver halide. Anal. Lett., vol. 17(Al3), P1447 (1984) discloses that 3-((4-oxo-2-thioxo-5thiazolidinylidene)methyl)indole is useful as a spectroscopic analytical reagent. J. Med. Chem., vol 21 (1), P82 (1977) discloses that a series of 3-(4-oxo-2-10 thioxo-5-thiazolidinylmethyl)indole derivatives have anti-bacterial activities. J. Med. Chem., vol. 10(5), P852 (1967) discloses that a series of 3-((4-oxo-2thiexembethiamolidinylidene)methyl)indole derivatives have decarboxylase inhibitory activities. However, it is 15 not known at all that these compounds have a hypoglycemic effect.

discloses that a compound having 2,4-dioxo-5-oxazolidinyl directly bonded with an indole ring as a hypoglycemic effect on rats. However, these compounds are not actually synthesized, and their effects are not clear.

Also, US Patent No. 4,738,972 and PCT Publication No. 8607056 disclose that a compound having 2,4-dioxo-5-thiazolidinyl directly bonded to the 5-position of an indoline ring has a hypoglycemic effect on ob/ob mice. However, these compounds are not actually synthesized and

The novel indole type thiazolidine derivatives of the DISCLOSURE OF THE INVENTION

diabetes mellitus and diabetic complications. type thiazolidines capable of preventing or treating 52 Thus, the present invention provides indole compounds. were not exhibited by the above-mentioned known effects and aldose-reductase inhibitory activities which

02

have found compounds having excellent hypoglycemic their properties. As this result, the present inventors in the above-mentioned literatures, and have studied synthesized various thiazolidines which are not disclosed

Under these circumstances, the present inventors have complications.

enzyme is useful as an agent for treating these diabetic SŢ nephropathy, and therefore an inhibitor against this diabetic retinopathy, diabetic neuropathy and diabetic exacerbates various diabetic complications such as polyols thus produced by the enzyme in organs induces or 0 T

It is also known that accumulation of the living body. galactose to polyols such as sorbitol and galactitol in a be an enzyme for reducing aldoses such as glucose and

On the other hand, aldose reductase (AR) is known to

mice, but its effect is not satisfactory. hypoglycemic effect on yellow obese diabetes mellitus

indolylmethylene-2-thioxo-4-thiazolidinone has a Publication No. 587377 discloses M-substituted 2- or 3their effects are not clear. European Laid Open Patent

- b -

PCT/JP96/00403 L0797/96 OM

PCT/JP96/00403

5

25

present invention are indole type thiazolidines of the following formula (I) and their salts:

wherein X1 is S or O;

 X^2 is S, O or NH;

Y is CR^6R^7 (R^6 is a hydrogen atom, a C_1 - C_7 alkyl group or a C_3 - C_7 cycloalkyl group, and R^7 is a hydrogen atom, a C_1 - C_7 alkyl group or a C_2 - C_7 cycloalkyl group, or forms a bond together with R^4);

 \mathbb{R}^1 is a substituent at the 2-, 3-, 4-, 5-, 6- or 7- position of an indole ring, examples of which include a C_1-C_{10} alkyl group, a C_2-C_{10} alkenyl group, a C_2-C_{10} alkynyl group, a C_1-C_{10} alkoxy group, a C_2-C_{10} alkenyloxy group, a C_1-C_{10} alkylthio group, a C_1-C_{10} monoalkylamino group or a $\operatorname{di-C_2-C_{10}}$ alkylamino group (each of said C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_1-C_{10} alkoxy, C_2-C_{10} alkenyloxy, C_1-C_{10} alkylthio, C_1-C_{10} monoalkylamino and $\operatorname{di-C_1-C_{10}}$ alkylamino groups may be substituted with a hydroxyl group or a C_1-C_7 alkyl group), or

 $-W_k-V_c-Z$ (Z is a C_3-C_{10} cycloalkyl group, a C_3-C_7 cycloalkenyl group, a C_6-C_{14} aromatic group, a C_1-C_{12} heterocyclic aromatic group (said heterocyclic aromatic group may contain at most 5 hetero atoms selected from the group consisting of an oxygen atom, a sulfur atom and

	•		
	•		
	-		
		•	

. -

a nitrogen atom as constituents for the heterocyclic ring), or a C_1 - C_6 heterocycloaliphatic group (said heterocycloaliphatic group may contain at most 3 hetero atoms selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom as constituents 5 for the heterocyclic ring) (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, C_1-C_{12} heterocyclic aromatic and C_1 - C_6 heterocycloaliphatic groups may have at most 5 substituents selected from the group consisting of a hydrogen atom, a C_1 - C_7 alkyl group, 10 a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino 15 group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a 20 phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 25 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group

and a dimethylamino group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group and a thiazolidindion-5-yl methyl group),

V is O, S, SO, SO₂ or NR⁸ (R⁸ is a hydrogen atom or a C_1 - C_3 alkyl group),

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 + C_7 alkyl groups, and

10 each of k and ℓ is 0 or 1),

-V-W-Z (V, W and Z are as defined above),

-W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different), or

 R^1 may be a hydrogen atom when Y is bonded at the 4-, 15 5-, 6- or 7-position of an indole ring,

each of R^2 and R^3 is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group (said C_1 - C_7 alkyl and C_3 - C_7 cycloalkyl groups may be substituted with a hydroxyl group), a C_1 - C_7 alkyloxy group, a benzyloxy

- group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group, a pyrimidinyl group, a pyridazinyl group, a furanyl group, a thienyl group, a pyrrolyl group, a pyrazolyl group, an imidazolyl group, a pyranyl group, a quinolyl group, a benzoxazolyl group, a
- 25 benzothiazolyl group or a benzimidazolyl group (each of said phenyl, naphthyl, benzyl, pyridyl, pyrimidinyl, pyridazinyl, furanyl, thienyl, pyrrolyl, pyrazolyl,

imidazolyl, pyranyl, quinolyl, benzoxazolyl, benzothiazolyl and benzimidazolyl groups may be substituted with at most 5 substituents selected from the group consisting of a hydroxyl group, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group and a halogen atom), a hydroxyl group or halogen atom;

 \mathbb{R}^4 is a hydrogen atom or a \mathbb{C}_1 - \mathbb{C}_7 alkyl group, or forms a bond together with \mathbb{R}^7 ;

 ${\tt R}^{\tt 5}$ is a hydrogen atom or a carboxymethyl group; and Rⁿ is a substituent at the 1-positon of an indole 10 ring, examples of which include a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_4 alkoxymethyl group, an aryloxymethyl group, a C_1-C_4 alkylaminomethyl group, a substituted acetamidemethyl group, a substituted thiomethyl group, a carboxyl group, 15 a C_1-C_7 acyl group, an arylcarbonyl group, a C_1-C_4 alkoxycarbonyl group, an aryloxycarbonyl group, a C_1-C_4 alkylaminocarbonyl group, an arylaminocarbonyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkoxyalkyloxy group, a trialkylsilyl group, a trialkylarylsilyl group, an 20 alkylsulfonyl group or an arylsulfonyl group.

The substituents of the compound of the formula (I) of the present invention will be explained with reference to typical examples, but it should be understood that the scope of the present invention is by no means limited by these examples.

Each substituent in the formula (I) will be

specifically described hereinafter.

In the definition of R^1 :

 R^1 is a substituent at the 2-, 3-, 4-, 5-, 6- or 7-position, preferably at the 2- or 5-position of an indole ring. The C_1 - C_{10} alkyl group includes, for example, methyl,

ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, l-pentyl, 2-pentyl, 3-pentyl, i-pentyl, neopentyl, t-pentyl, l-hexyl, 2-hexyl, 3-hexyl, l-methyl-lethyl-n-pentyl, l,l,2-trimethyl-n-propyl, l,2,2-trimethyl-n-propyl, 3,3-dimethyl-n-butyl, l-heptyl, 2-heptyl, l-ethyl-l,2-dimethyl-n-propyl, l-ethyl-2,2-dimethyl-n-propyl, l-octyl, 3-octyl, 4-methyl-3-n-heptyl, 6-methyl-3-n-heptyl, 2-propyl-l-n-heptyl, 2,4,4-

- trimethyl-l-n-pentyl, l-nonyl, 2-nonyl, 2,6-dimethyl-4-n-heptyl, 3-ethyl-2,2-dimethyl-3-n-pentyl, 3,5,5-trimethyl-l-n-hexyl, l-decyl, 2-decyl, 4-decyl, 3,7-dimethyl-l-n-octyl, and 3,7-dimethyl-3-n-octyl. Preferred is a C_4-C_{10} alkyl group which includes, for example, n-butyl, i-
- butyl, s-butyl, t-butyl, l-pentyl, 2-pentyl, 3-pentyl, ipentyl, neo-pentyl, t-pentyl, l-hexyl, 2-hexyl, 3-hexyl,
 l-methyl-l-ethyl-n-pentyl, l,l,2-trimethyl-n-propyl,
 l,2,2-trimethyl-n-propyl, 3,3-dimethyl-n-butyl, l-heptyl,
 2-heptyl, l-ethyl-l,2-dimethyl-n-propyl, l-ethyl-2,2-
- dimethyl-n-propyl, 1-octyl, 3-octyl, 4-methyl-3-n-heptyl, 6-methyl-2-n-heptyl, 2-propyl-1-n-heptyl, 2,4,4-trimethyl-1-n-pentyl, 1-nonyl, 2-nonyl, 2,6-dimethyl-4-n-

heptyl, 3-ethyl-2,2-dimethyl-3-n-pentyl, 3,5,5-trimethyl-1-n-hexyl, 1-decyl, 2-decyl, 4-decyl, 3,7-dimethyl-1-n-octyl and 3,7-dimethyl-3-n-octyl. Each group may be substituted by a hydroxyl group or a C_1 - C_7 alkyl group.

- The C₂-C₁₀ alkenyl group includes, for example, ethenyl, 1-propenyl, 2-propenyl, 1-methylvinyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-ethyl-2-vinyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1,2-
- dimethyl-l-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-l-propenyl, 1-ethyl-2-propenyl, 1-methyl-l-butenyl, 1-methyl-2-butenyl, 2-methyl-l-butenyl, 1-i-propylvinyl, 2,4-pentadienyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2,4-hexadienyl, 4-methyl=3=mentanyl;
- 15 l-heptenyl, l-octenyl, l-nonenyl and l-decenyl.

 Preferred is a C₅-C₁₀ alkenyl group which includes, for example, l-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1,2-dimethyl-l-propenyl, 1,2-dimethyl-2-propenyl, l-ethyl-l-propenyl, l-methyl-l-butenyl,
- 1-methyl-2-butenyl, 2-methyl-1-butenyl, 1-i-propylvinyl,
 2,4-pentadienyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4hexenyl, 5-hexenyl, 2,4-hexadienyl, 1-methyl-1-pentenyl,
 1-heptenyl, 1-octenyl, 1-nonenyl and 1-decenyl. Each
 group may be substituted by a hydroxyl group or a C₁-C₇
 alkyl group.

The C_2-C_{10} alkynyl group includes, for example, ethynyl,1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-

butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-heptynyl, 1-octynyl, 1-nonynyl, and 1-decynyl. Preferred is a C_5 - C_{10} alkynyl group which includes, for example, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-heptynyl, 1-octynyl, 1-nonynyl and 1-decynyl. Each group may be substituted by a hydroxyl group or a C_1 - C_7 alkyl group.

The C_1-C_{10} alkoxy group includes, for example,

- methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy and decyloxy. Preferred is a C_4 - C_{10} alkoxy group which includes, for example, n-butoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy,
- hexyloxy, heptyloxy, octyloxy, nonyloxy and decyloxy. Each group may be substituted by a hydroxyl group or a C_1-C_7 alkyl group.

The C_2-C_{10} alkenyloxy group includes, for example, ethenyloxy, 1-propenyloxy, 2-propenyloxy, 1-butenyloxy,

- 2-butenyloxy, 3-butenyloxy, 1-pentenyloxy, 2-pentenyloxy, 3-pentenyloxy, 4-pentenyloxy, 2,4-pentadienyloxy, 1-hexenyloxy, 2-hexenyloxy, 3-hexenyloxy, 4-hexenyloxy, 5-hexenyloxy, 2,4-hexadienyloxy, 1-heptenyloxy, 1-cottenyloxy, 1-nonenyloxy and 1-decenyloxy. Preferred is
- 25 a C₅-C₁₀ alkenyloxy which includes, for example, 1pentenyloxy, 2-pentenyloxy, 3-pentenyloxy, 4-pentenyloxy,
 2,4-pentadienyloxy, 1-hexenyloxy, 2-hexenyloxy, 3-

10

15

20

25

hexenyloxy, 4-hexenyloxy, 5-hexenyloxy, 2,4-hexadienyloxy, 1-heptenyloxy, 1-octenyloxy, 1-nonenyloxy and 1-decenyloxy. Each group may be substituted by a hydroxyl group or a C_1 - C_7 alkyl group.

The C_1 - C_{10} alkylthio group includes, for example, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-butylthio, t-butylthio, pentylthio, hexylthio, heptylthio, octylthio, nonylthio and decylthio. Preferred is a C_5 - C_{10} alkylthio which includes, for example, pentylthio, hexylthio, heptylthio, octylthic, nonylthio and decylthio. Each group may be substituted by a hydroxyl group or a C_1 - C_7 alkyl group.

The C_1 - C_{10} monoalkylamino group includes, for example, methylamino, ethylamino, n-propylamino, i-propylamino, n-butylamino, i-butylamino, s-butylamino, t-butylamino, pentylamino, hexylamino, heptylamino, octylamino, nonylamino and decylamino. Preferred is a C_5 - C_{10} monoalkylamino group which includes, for example, pentylamino, hexylamino, heptylamino, octylamino, nonylamino and decylamino. Each group may be substituted by a hydroxyl group or a C_1 - C_7 alkyl group.

The di-C₁-C₁₀ alkylamino group includes, for example, dimethylamino, diethylamino, di-n-propylamino, di-i-propylamino, d-n-hexylamino, N-methyl-N-n-pentylamino, N-methyl-N-n-hexylamino, N-methyl-N-n-heptylamino, N-methyl-N-n-nonylamino, N-methyl-N-n-nonylamino, and N-methyl-N-n-decylamino. Preferred are, for example, N-methyl-N-n-decylamino.

methyl-N-n-pentylamino, N-methyl-N-n-hexylamino, Nmethyl-N-n-heptylamino, N-methyl-N-n-octylamino, Nmethyl-N-n-nonylamino, and N-methyl-N-n-decylamino. group may be substituted by a hydroxyl group or a C_1-C_7 alkyl group.

In the definition of Z:

The C_3-C_{10} cycloalkyl group includes, for example, cyclopropyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, 4-methyl-cyclohexyl, cyclobutyl, cyclopentyl, cyclohexyl,

- cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, 10 bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, 1-adamantyl, and 2-adamantyl. Preferred is a C_6-C_{10} cycloalkyl group which includes, for example, cyclohexyl, bicyclo[2.2.1]heptyl,
- bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, l-adamantyl 15 and 2-adamantyl. Each group may have at most 5 substituents (the substituents may, for example, be a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl 20
- and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1 - C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide 25
- group, a methanesulfonylamidé group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy

10

group, a $\operatorname{tri-C_1-C_7}$ -alkylsilyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group).

The C_3-C_7 cycloalkenyl group includes, for example, cyclohexenyl (said cyclohexenyl includes 1-cyclohexenyl, 2-cyclohexenyl, and 3-cyclohexenyl), cyclopentadienyl, 2-15 bicyclo[2.2.1]heptenyl, and 2,5bicyclo[2.2.1]heptadienyl. Each group may have at most 5 substituents (said substituents may, for example, be a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C3-C7 cycloalkenyl group (said alkyl, cycloalkyl 20 and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C₁-C₇ alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide 25 group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl

group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C₁-C₇ alkyl group, a C₃-C₇ cycloalkyl group, a C₁-C₃ alkoxy group, a C₁-C₃ alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a l-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group).

The C_6-C_{14} aromatic group includes, for example, phenyl, naphthyl (said naphthyl includes a-naphthyl, and 15 \dot{eta} -naphthyl), indenyl (said indenyl includes l-indenyl, 2indenyl, 3-indenyl, 4-indenyl, 5-indenyl, 6-indenyl, and 7-indenyl), indanyl (said indanyl includes l-indanyl, 2indanyl, 4-indanyl, and 5-indanyl), and fluorenyl (said fluorenyl includes 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 20 4-fluorenyl, and 9-fluorenyl). Preferred is a C_6-C_{14} aromatic group which includes, for example, phenyl, naphthyl (said naphthyl includes a-naphthyl, and etanaphthyl), and fluorenyl (said fluorenyl includes 1fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl, and 9-25 fluorenyl). Each group may have at most 5 substituents (said substituents may, for example, be a hydrogen atom,

a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, 5 a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a 10 tri-C₁-C₇-alkylsilyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group 15 consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3tetrazolyl group, a 5-tetrazolyl group, a 20 thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group).

The C₁-C₁₂ heterocyclic aromatic group is a heterocyclic group having a 5-15 membered monocyclic or condensed ring containing at most 5 hetero-atoms in the ring, selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom. Examples of the

heterocyclic aromatic group include furyl (said furyl includes 2-furyl, and 3-furyl), thienyl (said thienyl includes 2-thienyl, and 3-thienyl), pyrrolyl (said pyrrolyl includes 1-pyrrolyl, 2-pyrrolyl, and 3-

- pyrrolyl), oxazolyl (said oxazolyl includes 2-oxazolyl, 4-oxazolyl, and 5-oxazolyl), thiazolyl (said thiazolyl includes 2-thiazolyl, 4-thiazolyl, and 5-thiazolyl), isoxazolyl (said isoxazolyl includes 3-isoxazolyl, 4-isoxazolyl, and 5-isoxazolyl), isothiazolyl (said
- isothiazolyl includes 3-isothiazolyl, 4-isothiazolyl, and 5-isothiazolyl), furazanyl (said furazanyl includes 3-furazanyl), pyrazolyl (said pyrazolyl includes 1-pyrazolyl, 3-pyrazolyl, and 4-pyrazolyl), oxopyrazolyl (said oxopyrazolyl includes 3-oxopyrazol-l-yl, 3-
- oxopyrazol-2-yl, 3-oxopyrazol-3-yl, 3-oxopyrazol-4-yl, and 4-oxopyrazol-3-yl), imidazolyl (said imidazolyl includes l-imidazolyl, 2-imidazolyl, and 4-imidazolyl), oxoimidazolyl (said oxoimidazolyl includes 2-oxoimidazol-l-yl, and 2-oxoimidazol-4-yl), triazolyl (said triazolyl
- includes 1,2,3-triazol-1-yl, 1,2,3-triazol-2-yl, 1,2,3-triazol-4-yl, 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl, and i,2,4-triazol-4-yl), triazolonyl (said triazolonyl includes 1,2,4(2H,4H)-triazol-3-on-2-yl, 1,2,4-(2H,4H)-triazol-3-on-5-yl,
- 25 1,2,4(lH,2H)-triazol-3-on-l-yl, 1,2,4(lH,2H)-triazol-3-on-2-yl, and 1,2,4(lH,2H)-triazol-3-on-5-yl), tetrazolyl (said tetrazolyl includes l-tetrazolyl, 2-tetrazolyl, and

5-tetrazolyl), pyranyl (said pyranyl includes 2-pyranyl, 3-pyranyl, and 4-pyranyl), pyridyl (said pyridyl includes 2-pyridyl, 3-pyridyl, and 4-pyridyl), pyridonyl (said pyridonyl includes 2-pyridon-l-yl, 2-pyridon-3-yl, 2pyridon-4-yì, 2-pyridon-5-yl, 2-pyridon-6-yl, 4-pyridon-5 1-yl, 4-pyridon-2-yl, and 4-pyridon-3-yl), pyridazinyl (said pyridazinyl includes 3-pyridazinyl, and 4pyridazinyl), pyridazinonyl (said pyridazinonyl includes 3(2H)-pyridazinon-2-yl, 3(2H)-pyridazinon-4-yl, 3(2H)pyridazinon-5-yl, 3(2H)-pyridazinon-6-yl, 4(1H)-10 pyridazinon-l-yl, 4(lH)-pyridazinon-3-yl, 4(lH)pyridazinon-5-yl, and 4(lH)-pyridazinon-6-yl), pyrimidinyl (said pyrimidinyl includes 2-pyrimidinyl, 4pyrimidinyl, and 5-pyrimidinyl), pyrimidinonyl (said pyrimidinonyl includes (2(lH)-pyrimidinon-l-yl, 2(lH)pyrimidinon-4-yl, 2(lH)-pyrimidinon-5-yl, 2(lH)-15 pyrimidinon-6-yl, 4(3H)-pyrimidinon-2-yl, 4(3H)pyrimidinon-3-yl, 4(3H)-pyrimidinon-5-yl, 4(3H)pyrimidinon-6-yl, 4(lH)-pyrimidinon-1-yl, 4(lH)pyrimidinon-2-yl, 4(lH)-pyrimidinon-5-yl, and 4(lH)pyrimidinon-6-yl), pyrazinyl (said pyrazinyl includes 2-20 pyrazinyl, 2(lH)-pyrazin-l-yl, 2(lH)-pyrazin-3-yl, 2(lH)pyrazin-5-yl, and 2(lH)-pyrazin-6-yl), triazinyl (said triazinyl includes 1,2,3-triazin-4-yl, 1,2,3-triazin-5yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, and 1,2,4triazin-6-yl), tetrazinyl (said tetrazinyl includes 25 1,2,3,4-tetrazin-5-yl, and 1,2,4,5-tetrazin-3-yl),

25

indolyl (said indolyl includes l-indolyl, 2-indolyl, 3indolyl, 4-indolyl, 5-indolyl, 6-indolyl, and 7-indolyl), quinolyl (said quinolyl includes 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, and 8quinolyl), quinolonyl (said quinolonyl includes 2-5 quinolon-1-yl, 2-quinolon-3-yl, 2-quinolon-4-yl, 2quinolon-5-yl, 2-quinolon-6-yl, 2-quinolon-7-yl, 2quinolon-8-yl, 4-quinolon-1-yl, 4-quinolon-2-yl, 4quinolon-3-yl, 4-quinolon-5-yl, 4-quinolon-6-yl, 4quinolon-7-yl, and 4-quinolon-8-yl), benzofuranyl (said 10 benzofuranyl includes 2-benzofuranyl, 3-benzofuranyl, 4benzofuranyl, 5-benzofuranyl, 6-benzofuranyl, and 7benzofuranyl), benzothienyl (said benzothienyl includes 2-benzothienyl, 3-benzothienyl, 4-benzothienyl, 5benzothienyl, 6-benzothienyl, and 7-benzothienyl), 15 isoquinolyl (said isoquinolyl includes 1-isoquinolyl, 3isoquinolyl, 4-isoquinolyl, 5-isoquinolyl, 6-isoquinolyl, 7-isoquinolyl, and 8-isoquinolyl), isoquinolonyl (said isoquinolonyl includes l-isoquinolon-2-yl, l-isoquinolon-3-yl, l-isoquinolon-4-yl, l-isoquinolon-5-yl, lisoquinolon-6-yl, l-isoquinolon-7-yl, l-isoquinolon-8-yl, 3-isoquinolon-2-yl, 3-isoquinolon-4-yl, 3-isoquinolon-5yl, 3-isoquinolon-6-yl, 3-isoquinolon-7-yl, and 3isoquinolon-8-yl), benzoxazolyl (said benzoxazolyl includes 2-benzoxazolyl, 4-benzoxazolyl, 5-benzoxazolyl, 6-benzoxazolyl, and 7-benzoxazolyl), benzothiazolyl (said

benzothiazolyl includes 2-benzothiazolyl, 4-

benzothiazolyl, 5-benzothiazolyl, 6-benzothiazolyl, and 7-benzothiazolyl), benzopyrazolyl (said benzopyrazolyl includes 1-benzopyrazolyl, 2-benzopyrazolyl, 3benzopyrazolyl, 4-benzopyrazolyl, 5-benzopyrazolyl, 6benzopyrazolyl, and 7-benzopyrazolyl), benzimidazolyl (said benzimidazolyl includes 1-benzimidazolyl, 2-5 benzimidazolyl, 4-benzimidazolyl, and 5-benzimidazolyl), benzotriazolyl (said benzotriazolyl includes 1benzotriazolyl, 4-benzotriazolyl, and 5-benzotriazolyl), benzopyranyl (said benzopyranyl includes 2-benzopyranyl, 3-benzopyranyl, 4-benzopyranyl, 5-benzopyranyl, 6-10 benzopyranyl, 7-benzopyranyl, and 8-benzopyranyl), indolizinyl (said indolizinyl includes 1-indolizinyl, 2indolizinyl, 3-indolizinyl, 5-indolizinyl, 6-indolizinyl, 7-indolizinyl, and 8-indolizinyl), purinyl (said purinyl includes 2-purinyl, 6-purinyl, 7-purinyl, and 8-purinyl), 15 phthalazinyl (said phthalazinyl includes 1-phthalazinyl, 5-phthalazinyl, and 6-phthalazinyl), oxophthalazinyl (said oxophthalazinyl includes l-oxophthalazin-2-yl, loxophthalazin-4-yl, l-oxophthalazin-5-yl, loxophthalazin-6-yl, l-oxophthalazin-7-yl, and l-20 oxophthalazin-8-yl), naphthyridinyl (said naphthyridinyl includes 2-naphthyridinyl, 3-naphthyridinyl, and 4naphthyridinyl), quinoxalinyl (said quinoxalinyl includes 2-quinoxalinyl, 5-quinoxalinyl, and 6-quinoxalinyl), quinazolinyl (said quinazolinyl includes 2-quinazolinyl, 25 4-quinazolinyl, 5-quinazolinyl, 6-quinazolinyl, 7-

quinazolinyl, and 8-quinazolinyl), cinnolinyl (said cinnolinyl includes 3-cinnolinyl, 4-cinnolinyl, 5-cinnolinyl, 6-cinnolinyl, 7-cinnolinyl, and 8-cinnolinyl), benzodioxolyl (said benzodioxolyl includes

- 1,3-benzodioxol-4-yl, and 1,3-benzodioxol-5-yl),
 benzodioxanyl (said benzodioxanyl includes 1,4benzodioxan-2-yl, 1,4-benzodioxan-5-yl, and 1,4benzodioxan-6-yl), oxonaphthalenyl (said oxonaphthalenyl
 includes 1,4-oxonaphthalen-2-yl, 1,4-oxonaphthalen-5-yl,
- and 1,4-oxonaphthalen-6-yl), 2,3-dihydrobenzofuranyl (said 2,3-dihydrobenzofuranyl includes 2,3-dihydro-4-benzofuranyl, 2,3-dihydro-5-benzofuranyl, 2,3-dihydro-6-benzofuranyl, and 2,3-dihydro-7-benzofuranyl), benzothiazinyl (said benzothiazinyl includes 1,4-
- benzothiazin-2-yl, 1,4-benzothiazin-3-yl, 1,4-benzothiazin-4-yl, 1,4-benzothiazin-5-yl, 1,4-benzothiazin-6-yl, 1,4-benzothiazin-7-yl, and 1,4-benzothiazin-8-yl), pteridinyl (said pteridinyl includes 2-pteridinyl, 4-pteridinyl, 6-pteridinyl, and 7-
- pteridinyl), pyrazolo[1,5-a]pyrimidinyl (said
 pyrazolo[1,5-a]pyrimidinyl includes pyrazolo[1,5a]pyrimidin-2-yl, pyrazolo[1,5-a]pyrimidin-3-yl,
 pyrazolo[1,5-a]pyrimidin-5-yl, pyrazolo[1,5-a]pyrimidin6-yl, and pyrazolo[1,5-a]pyrimidin-7-yl), pyrazolo[5,1-
- c)[1,2,4]triazinyl (said pyrazolo[5,1-c][1,2,4]triazinyl
 includes pyrazolo[5,1-c][1,2,4]triazin-3-yl,
 pyrazolo[5,1-c][1,2,4]triazin-4-yl, pyrazolo[5,1-

- c][1,2,4]triazin-7-yl, and pyrazolo[5,1-c][1,2,4]triazin-8-yl), thiazolo[3,2-b]triazolyl (said thiazolo[3,2-b]triazolyl includes thiazolo[3,2-b]triazol-2-yl, thiazolc[3,2-b]triazol-5-yl, and thiazolo[3,2-b]triazol-6-yl), benzopyrano[2,3-b]pyridyl (said benzopyrano[2,3-b]
- 6-yl), benzopyrano[2,3-b]pyridyl (said benzopyrano[2,3-b]pyridyl includes benzopyrano[2,3-b]pyridin-2-yl, benzopyrano[2,3-b]pyridin-3-yl, benzopyrano[2,3-b]pyridin-4-yl, benzopyrano[2,3-b]pyridin-5-yl, benzopyrano[2,3-b]pyridin-6-yl, benzopyrano[2,3-b]
- b)pyridin-7-yl, benzopyrano[2,3-b)pyridin-8-yl, and benzopyrano[2,3-b)pyridin-9-yl), 5H-benzopyrano[2,3-b)pyridonyl (said 5H-benzopyrano[2,3-b)pyridonyl includes 5H-benzopyrano[2,3-b)pyridin-5-on-2-yl, 5H-benzopyrano[2,3-b)pyridin-5-on-3-yl, 5H-benzopyrano[2,3-b]pyridin-5-on-3-yl, 5H-b
- b)pyridin-5-on-4-yl, 5H-benzopyrano[2,3-b)pyridin-5-on-6-yl, 5H-benzopyrano[2,3-b)pyridin-5-on-7-yl, and 5H-benzopyrano[2,3-b)pyridin-5-on-8-yl), xanthenyl (said xanthenyl includes l-xanthenyl, 2-xanthenyl, 3-xanthenyl, 4-xanthenyl, and 9-xanthenyl), phenoxathiinyl (said
 - phenoxathiinyl includes l-phenoxathiinyl, 2phenoxathiinyl, 3-phenoxathiinyl, and 4-phenoxathiinyl),
 carbazolyl (said carbazolyl includes l-carbazolyl, 2carbazolyl, 3-carbazolyl, 4-carbazolyl, and 9carbazolyl), acridinyl (said acridinyl includes l-
 - acridinyl, 2-acridinyl, 3-acridinyl, 4-acridinyl, and 9-acridinyl), phenazinyl (said phenazinyl includes 1-phenazinyl, 2-phenazinyl, 3-phenazinyl, and 4-

phenazinyl), phenothiazinyl (said phenothiazinyl includes l-phenothiazinyl, 2-phenothiazinyl, 3-phenothiazinyl, 4-phenothiazinyl, and 10-phenothiazinyl), phenoxazinyl (said phenoxazinyl includes l-phenoxazinyl, 2-

- phenoxazinyl, 3-phenoxazinyl, 4-phenoxazinyl, and 10-phenoxazinyl), and thianthrenyl (said thianthrenyl includes 1-thianthrenyl, 2-thianthrenyl, 3-thianthrenyl, 4-thianthrenyl, 6-thianthrenyl, 7-thianthrenyl, 8-thianthrenyl, and 9-thianthrenyl). Preferred examples of
- the C₁-C₁₂ heterocyclic aromatic group include furyl (said furyl includes 2-furyl, and 3-furyl), thienyl (said thienyl includes 2-thienyl, and 3-thienyl), pyrrolyl (said pyrrolyl includes 1-pyrrolyl, 2-pyrrolyl, and 3-pyrrolyl), oxazolyl (said oxazolyl includes 2-oxazolyl,
- 4-oxazolyl, and 5-oxazolyl), thiazolyl (said thiazolyl includes 2-thiazolyl, 4-thiazolyl, and 5-thiazolyl), isoxazolyl (said isoxazolyl includes 3-isoxazolyl, 4-isoxazolyl, and 5-isoxazolyl), isothiazolyl (said isothiazolyl includes 3-isothiazolyl, 4-isothiazolyl, and
- 5-isothiazolyl), imidazolyl (said imidazolyl includes limidazolyl, 2-imidazolyl, and 4-imidazolyl), pyridyl
 (said pyridyl includes 2-pyridyl, 3-pyridyl, and 4pyridyl), pyridazinyl (said pyridazinyl includes 3pyridazinyl, and 4-pyridazinyl), pyridazinonyl (said
- pyridazinonyl includes 3(2H)-pyridazinon-2-yl, 3(2H)pyridazinon-4-yl, 3(2H)-pyridazinon-5-yl, and 3(2H)pyridazinon-6-yl), pyrimidinyl (said pyrimidinyl includes

2-pyrimidinyl, 4-pyrimidinyl, and 5-pyrimidinyl), pyrazinyl (said pyrazinyl includes 2-pyrazinyl), indolyl (said indolyl includes 1-indolyl, 2-indolyl, 3-indolyl, 4-indoly1, 5-indoly1, 6-indoly1, and 7-indoly1), quinoly1 (said quinolyl includes 2-quinolyl, 3-quinolyl, 4-5 quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, and 8quinolyl), benzoxazolyl (said benzoxazolyl includes 2benzoxazolyl, 4-benzoxazolyl, 5-benzoxazolyl, 6benzoxazolyl, and 7-benzoxazolyl), benzothiazolyl (said benzothiazolyl includes 2-benzothiazolyl, 4-10 benzothiazolyl, 5-benzothiazolyl, 6-benzothiazolyl, and 7-benzothiazolyl), benzimidazolyl (said benzimidazolyl includes 1-benzimidazolyl, 2-benzimidazolyl, 4benzimidazolyl, and 5-benzimidazolyl), phthalazinyl (said phthalazinyl includes 1-phthalazinyl, 5-phthalazinyl, and 15 6-phthalazinyl), quinoxalinyl (said quinoxalinyl includes 2-quinoxalinyl, 5-quinoxalinyl, and 6-quinoxalinyl), benzodioxolyl (said benzodioxolyl includes 1,3benzodioxol-4-yl, and 1,3-benzodioxol-5-yl), benzothiazinyl (said benzothiazinyl includes 1,4-20 benzothiazin-2-yl, 1,4-benzothiazin-3-yl, 1,4benzothiazin-4-yl, 1,4-benzothiazin-5-yl, 1,4benzothiazin-6-yl, 1,4-benzothiazin-7-yl, and 1,4benzothiazin-8-yl), pyrazolo[1,5-a]pyrimidinyl (said pyrazolo[1,5-a]pyrimidinyl includes pyrazolo[1,5-25 a)pyrimidin-2-yl, pyrazolo[1,5-a)pyrimidin-3-yl,

pyrazolo[1,5-a]pyrimidin-5-yl, pyrazolo[1,5-a]pyrimidin-

- 6-yl, and pyrazolo[1,5-a]pyrimidin-7-yl), pyrazolo[5,1-c][1,2,4]triazinyl (said pyrazolo[5,1-c][1,2,4]triazinyl includes pyrazolo[5,1-c][1,2,4]triazin-3-yl, pyrazolo[5,1-c][1,2,4]triazin-4-yl, pyrazolo[5,1-c][1,2,4]triazin-4-yl, pyrazolo[5,1-
- c][1,2,4]triazin-7-yl, and pyrazolo[5,1-c][1,2,4]triazin-8-yl), thiazolo[3,2-b]triazolyl (said thiazolo[3,2-b]triazolyl includes thiazolo[3,2-b]triazol-2-yl, thiazolo[3,2-b]triazol-5-yl, and thiazolo[3,2-b]triazol-6-yl), and benzopyrano[2,3-b]pyridyl (said
- benzopyrano[2,3-b]pyridyl includes benzopyrano[2,3-b]pyridin-2-yl, benzopyrano[2,3-b]pyridin-3-yl, benzopyrano[2,3-b]pyridin-4-yl, benzopyrano[2,3-b]pyridin-5-yl, benzopyrano[2,3-b]pyridin-6-yl, benzopyrano[2,3-b]pyridin-7-yl, benzopyrano[2,3-b]
- b)pyridin-8-yl, and benzopyrano[2,3-b]pyridin-9-yl). Each group may have at most 5 substituents (said substituents may, for example, be a hydrogen atom, a C₁-C₇ alkyl group, a C₃-C₇ cycloalkyl group, a C₃-C₇ cycloalkyl group (said alkyl, cycloalkyl and
- cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1 - C_7 alkoxy group, a C_1 - C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a
- methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a

 ${\rm tri-C_1-C_7-alkylsilyloxy}$ group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a ${\rm C_1-C_7}$ alkyl group, a ${\rm C_3-C_7}$ cycloalkyl group, a ${\rm C_1-C_3}$ alkoxy group, a ${\rm C_1-C_3}$ alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a l-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group).

The C1-C6 heterocycloaliphatic group is a heterocyclic group having a 3-8 membered monocyclic or condensed dicyclic ring containing at most 3 hetero-atoms 15 in the ring, selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom. Examples of the heterocycloaliphatic group include piperidyl (said piperidyl includes l-piperidyl, 2-piperidyl, 3-piperidyl, and 4-piperidyl), pyrrolidinyl (said pyrrolidinyl 20 includes 1-pyrrolidinyl, 2-pyrrolidinyl, and 3pyrrolidinyl), imidazolidinyl (said imidazolidinyl includes l-imidazolidinyl, 2-imidazolidinyl, and 4imidazolidinyl), pyrazolidinyl (said pyrazolidinyl includes 1-pyrazolidinyl, 3-pyrazolidinyl, and 4-25 pyrazolidinyl), morpholinyl (said morpholinyl includes 2morpholinyl, 3-morpholinyl, and 4-morpholinyl), and

tetrahydrofuranyl (said tetrahydrofuranyl includes 2tetrahydrofuranyl, and 3-tetrahydrofuranyl). Each group may have at most 5 substituents (said substituents may, for example, be a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an 10 acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl 15 or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio 20 group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a l-tetrazolyl group, a 3tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group). 25

> In the definitions of R^a , R^b and R^c : The C_1 - C_7 alkyl group includes, for example, methyl,

ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, and n-heptyl. Preferred are methyl, ethyl and n-propyl. Each group may be substituted with a hydroxyl group.

The C₃-C₇ cycloalkyl group includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, bicyclo[2.2.1]heptyl, and bicyclo[3.1.1]heptyl. Preferred are cyclopropyl and cyclohexyl. Each group may be substituted by a hydroxyl group.

The \mathbb{C}_3 - \mathbb{C}_7 cycloalkenyl group includes, for example, 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, cyclopentadienyl, 2-bicyclo[2.2.1]heptenyl and 2,5-bicyclo[2.2.1]heptadienyl. Each group may be substituted by a hydroxyl group.

The C_1 - C_7 alkoxy group includes, for example, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy and heptyloxy.

15

The C₁-C₇ alkylthio group includes, for example, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-buthylthio, t-butylthic, pentylthio, hexylthio and heptylthio.

The tri-C₁-C₇-alkylsilyloxy group includes, for

example, trimethylsilyloxy, triethylsilyloxy,

triisopropylsilyloxy, diethylisopropylsilyloxy,

dimethylisopropylsilyloxy, di-t-butylmethylsilyloxy,

isopropyldimethylsilyloxy, t-butyldimethylsilyloxy, thexyldimethylsilyloxy or the like, preferably t-butyldimethylsilyloxy or the like.

The naphthyl group includes an α-naphthyl group, a β
naphthyl group. The furanyl group includes a 2-furanyl
group and a 3-furanyl group. The thienyl group includes
a 2-thienyl group and a 3-thienyl group. The imidazolyl
group includes a 1-imidazolyl group, a 2-imidazolyl group
and a 4-imidazolyl group. The pyridyl group includes a

2-pyridyl group and a 3-pyridyl group and a 4-pyridyl
group. Each groups may be substituted with at most 5
substituents selected from the group consisting of a C₁C₇ alkyl group, a C₃-C₇ cycloalkyl group, a C₁-C₃ alkoxy
group, a C₁-C₃ alkylthio group, a hydroxyl group, a

15 fluorine atom, a chlorine atom, a bromine atom, a nitro

group and a dimethylamino group. The phenyl and the benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino group.

20

25

The C_1-C_3 alkoxycarbonyl group includes, for example, methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl and i-propoxycarbonyl.

The halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Preferred are a

fluorine atom, a chlorine atom and a bromine atom.

V is O, S, SO, SO_2 or NR^8 (R^8 is a hydrogen atom or C_1-C_3 alkyl (which may, for example, be methyl, ethyl, n-propyl or i-propyl, preferably methyl)). It is preferably S, SO, SO_2 or NR^8 .

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3, preferably at most 2, of hydroxyl, oxo and C_1 - C_7 alkyl groups.

The C₁-C₇ alkyl group includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl and n-heptyl. Preferred may, for example, be methyl.

w is preferably

$$\begin{array}{c}
\begin{pmatrix}
R^{d} \\
C \\
R^{e}
\end{pmatrix}_{\mathbf{n}}$$

20

25

wherein m is from 1 to 5, and each of R^d and R^e is a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that R^d and R^e on the first carbon atom adjacent to N are not hydroxyl groups and provided that R^d and R^e on the first carbon atom adjacent to O are not hydroxyl groups or do not together form an oxo group).

 R^1 may be $-W_k-V_\ell-Z$, -V-W-Z or -W-V-W-Z in addition to

the one mentioned above.

 $-W_k-V_\ell-Z$ may, for example, be -W-Z, -V-Z or -W-V-Z. Preferable examples of -W- in the above -W-Z are illustrated below.

Also, preferable examples of -V- in the above -V-Z include S, SO and SO,.

Also, preferable examples of -W-V- in the above -W-V-Z include $-CO-NR^8-$ (R^8 is a hydrogen atom or a C_1-C_3 alkyl group (e.g. methyl, ethyl, n-propyl or i-propyl, preferably methyl)).

Also, preferable examples of -V-W- in the above -V-W-Z include $-O-(CH_2)_n-(n$ is from 1 to 5).

Also, preferable examples of -W-V-W- in the above -W-V-W-Z include $-(CH_2)_n-NR^8-CO-$ (n is from 1 to 5, R^8 is a hydrogen atom or a C_1-C_3 alkyl group (e.g. methyl, ethyl, n-propyl or i-propyl, preferably methyl)).

Each of \mathbb{R}^2 and \mathbb{R}^3 independently is a hydrogen atom, a C_1-C_7 alkyl group (which may, for example, be methyl,

- ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl or n-heptyl, preferably methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl or t-butyl, and said C_1 - C_7 alkyl group may be substituted with at most two hydroxyl groups, preferably one hydroxyl
- group), a C₃-C₇ cycloalkyl group (which may, for example, be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, bicyclo[2.2.1]heptyl or

bicyclo[3.1.1]heptyl, preferably cyclopropyl or cyclohexyl, and said C_3-C_7 cycloalkyl group may be

substituted with at most 2 hydroxyl group, preferably one hydroxyl group), a C_1 - C_7 alkoxy group (which may, for example, be methoxy, ethoxy n-propoxy, i-propoxy, n-

butoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy or heptyloxy, preferably methoxy, ethoxy, n-propoxy, ipropoxy, n-butoxy, i-butoxy, s-butoxy or t-butoxy), a benzyloxy group, a phenyl group, a naphthyl group (which may be an α -naphthyl group, or a β -naphthyl group), a 5 benzyl group, a pyridyl group (which may, for example, be a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group, preferably a 2-pyridyl group), a pyrimidinyl group (which may, for example, be a 2-pyrimidinyl group, a 4pyrimidinyl group or a 5-pyrimidinyl group), a 10 pyridazinyl group (which may, for example, be a 3pyridazinyl group or a 4-pyridazinyl group), a furanyl group (which may, for example, be a 2-furanyl group or a 3-furanyl group), a thienyl group (which may, tor example, be a 2-thienyl group or a 3-thienyl group), a 15 pyrrolyl group (which may, for example, be a 1-pyrrolyl group, a 2-pyrrolyl group or a 3-pyrrolyl group), a pyrazolyl group (which may, for example, be a 1-pyrazolyl group, a 3-pyrazolyl group or a 4-pyrazolyl group), an imidazolyl group (which may, for example, be a 1-20 imidazolyl group, a 2-imidazolyl group or a 4-imidazolyl group), a pyranyl group (which may, for example, be 2pyranyl, 3-pyranyl or 4-pyranyl, preferably 2-pyranyl), a quinolyl group (which may, for example, be 2-quinolyl, 3quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl 25

or 8-quinolyl, preferably 2-quinolyl), a benzoxazolyl group (which may, for example, be a 2-benzoxalyl group, a

WO 96/26207 PCT/JP96/00403

4-benzoxazolyl group, a 5-benzoxazolyl group, a 6benzoxazolyl group or a 7-benzoxazolyl group, preferably a 2-benzoxazolyl group), a benzothiazolyl group (which may, for example, be a 2-benzothiazolyl group, a 4benzothiazolyl group, a 5-benzothiazolyl group, a 6-5 benzothiazolyl group or a 7-benzothiazolyl group, preferably a 2-benzothiazolyl group), or a benzimidazolyl group (which may, for example, be a 1-benzimidazolyl group, a 2-benzimidazolyl group, a 4-benzimidazolyl group or a 5-benzimidazolyl group, preferably a 2-

10 benzimidazolyl group).

When \mathbb{R}^2 or \mathbb{R}^3 is a phenyl, naphthyl, benzyl, pyridyl, pyrimidinyl, pyridazinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, pyranyl, quinolyl, benzoxazolyl,

- benzothiazolyl, or benzimidazolyl group, the substituents 15 for such a phenyl, naphthyl, benzyl, pyridyl, pyrimidinyl, pyridazinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, pyranyl, quinolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl group may be as follows.
- The C_1-C_7 alkyl group includes, for example, methyl, 20 ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, tbutyl, n-pentyl, n-hexyl and n-heptyl. Preferred may, for example, be methyl, ethyl, n-propyl, i-propyl, nbutyl, i-butyl, s-butyl or t-butyl.
- The C_1-C_7 alkoxy group includes, for example, 25 methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, ibutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy and

heptyloxy. Preferred may, for example, be methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy or t-butoxy.

The halogen atom may, for example, be a fluorine

atom, a chlorine atom, a bromine atom or an iodine atom,

preferably, a fluorine atom, a chlorine atom or a bromine

atom.

R⁴ is a hydrogen atom or a C₁-C₇ alkyl group (which may, for example, be methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl or n-beptyl, preferably methyl), or forms a bond together with R⁷. It is preferably a hydrogen atom or a methyl group, or forms a bond together with R⁷. More preferably, it is a hydrogen atom, or forms a bond together with R⁷.

 ${\ensuremath{\mathsf{R}}}^5$ is a hydrogen atom or a carboxymethyl group, preferably a hydrogen atom.

Rⁿ is a substituent at the 1-position of an indole ring, and is a hydrogen atom, a C₁-C₇ alkyl group (such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl and n-heptyl, preferably a C₁-C₃ alkyl group), a C₃-C₇ cycloalkyl group (such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, preferably cyclopropyl), a C₁-C₄ alkoxymethyl group (such as MOM: methoxymethyl, MEM: 2-methoxymethyl, ethoxymethyl, n-propoxymethyl, i-propoxymethyl, n-butoxymethyl, iBM: isobutyloxymethyl,

20

BUM: t-butoxymethyl, POM: pivaloyloxymethyl and SEM: trimethylsilylethoxymethyl, preferably a C_1-C_2 alkoxy methyl group), an aryloxymethyl group (such as BOM: benzyloxymethyl, PMBM: p-methoxybenzyloxymethyl and p-AOM: p-anisyloxymethyl, preferably a benzyloxymethyl 5 group), a C_1-C_4 alkylaminomethyl group (such as dimethylaminomethyl), a substituted acetamidemethyl group (such as Acm: acetamidemethyl and Tacm: trimethylacetamidemethyl), a substituted thiomethyl group (such as MTM: methylthiomethyl, PTM: phenylthiomethyl and 10 Btm: benzylthiomethyl), a carboxyl group, a C_1-C_7 acyl group (such as formyl, acetyl, fluoroacetyl, difluoroacetyl, trifluoroacetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, propionyl, Pv: pivaloyl and tigloyl), an arylcarbonyl group (such as benzoyl, benzoylformyl, benzoylpropionyl and phenylpropionyl), a C_1-C_4 alkoxycarbonyl group (such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, i-propoxycarbonyl, nbutoxycarbonyl, i-butoxycarbonyl, BOC: t-butoxycarbonyl, AOC: t-amyloxycarbonyl, VOC: vinyloxycarbonyl, AOC: aliyloxycarbonyl, Teoc: 2-(trimethylsilyl)ethoxycarbonyl, and Troc: 2,2,2-trichloroethoxycarbonyl, preferably methoxycarbonyl), an aryloxycarbonyl group (such as Z:

benzyloxycarbonyl, p-nitrobenzyloxycarbonyl and MOZ: pmethoxybenzyloxycarbonyl), a C_1 - C_4 alkylaminocarbonyl 25 group (such as methylcarbamoyl, Ec: ethylcarbamoyl and npropylcarbamoyl), an arylaminocarbonyl group (such as

phenylcarbamoyl), a C_1-C_7 alkoxy group (such as methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexyloxy and n-heptyloxy, preferably a C_1-C_3 alkoxy group), a C_1-C_7 alkoxyalkyloxy

group (such as MOMO: methoxymethyloxy, MEMO:
methoxyethyloxymethyloxy and BOMO: benzyloxymethyloxy), a
trialkylsilyl group (such as TMS: trimethylsilyl, TES:
triethylsilyl, TIPS: triisopropylsilyl, DEIPS:
diethylisopropylsilyl, DMIPS: dimethylisopropylsilyl,

5

- DTBMS: di-t-butylmethylsilyl, IPDMS:
 isopropyldimethylsilyl, TBDMS: t-butyldimethylsilyl and
 TDS: thexyldimethylsilyl, preferably tbutyldimethylsilyl), a trialkylarylsilyl group (such as
 DPMS: diphenylmethylsilyl, TBDPS: t-butyldiphenylsilyl,
- TBMPS: t-butyldimethoxyphenylsilyl and TPS:

 triphenylsilyl), an alkylsulfonyl group (such as Ms:

 methane sulfonyl and ethane sulfonyl), and an aryl

 sulfonyl group (such as benzene sulfonyl, Ts: p-toluene

 sulfonyl, p-chlorobenzene sulfonyl, MBS: p-methoxybenzene
- sulfonyl, m-nitrobenzene sulfonyl, iMds: 2,6-dimethoxy-4-methylbenzene sulfonyl, Mds: 2,6-dimethyl-4-methoxybenzene sulfonyl, Mtb: 2,4,6-trimethoxybenzene sulfonyl, Mte: 2,3,5,6-tetramethyl-4-methoxybenzene sulfonyl, Mtr: 2,3,6-trimethyl-4-methoxybenzene sulfonyl,
- Mts: 2,4,6-trimethylbenzene sulfonyl and Pme: pentamethylbenzene sulfonyl), preferably a hydrogen atom, methyl, ethyl, n-propyl, i-propyl, cyclopropyl, methoxy,

ethoxy, n-propoxy, i-propoxy, methoxymethyl, ethoxymethyl, carboxyl and methoxycarbonyl, preferably a hydrogen atom, methyl, methoxymethyl, carboxyl and methoxycarbonyl.

Y is bonded on the carbon atom at the 2-, 3-, 4-, 5-, 6- or 7-position of the indole ring, more preferably on the carbon atom at the 2- or 5-position.

In the definition of Y:

R⁶ is a hydrogen atom, a C₁-C₇ alkyl group (which may, for example, be methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl or n-heptyl, preferably methyl) or a C₃-C₇ cycloalkyl group (which may, for example, be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, preferably

cyclopropyl). It is preferably a hydrogen atom or methyl, more preferably a hydrogen atom.

 R^7 is a hydrogen atom, a C_1-C_7 alkyl group (which may, for example, be methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl or

n-heptyl, preferably methyl) or a C_3 - C_7 cycloalkyl group (which may, for example, be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, preferably cyclopropyl), or forms a bond together with R^4 . It is preferably a hydrogen atom, or forms a bond together with R^4 .

X1 is S or O, preferably S.

 X^2 is S, O or NH, preferably O or S, more preferably

10

15

ο.

In the present specification, "n" means normal, "i" means iso, "s" means secondary, "t" means tertiary, "c" means cyclo, "Me" means methyl, "Et" means ethyl, "Pr" means propyl, "Bu" means butyl, "Pen" means pentyl, "Hex" means hexyl, "Ph" means phenyl, and "Hal" means halogen.

Among these compounds, there is a compound having an asymmetric carbon atom at the 5-position of thiazolidine ring. The compound having the above formula (I) includes all of these optical isomers and their mixtures.

when R² is a substituent at the 3-position of an indole ring and is a hydroxyl group, the following tautomer may form between the 2-position and the 3-position of an indole ring. The present invention includes all of these tautomers.

Indole type thiazolidines of the following formula and their salts.

(wherein X¹, X², Y, R⁴, R⁵ and Rⁿ are substituents as defined in the formula (I); R¹ is a substituent at the 2-, 4-, 5-, 6- or 7-position of an indole ring and is a substituent as defined in the formula (I); R² is a hydroxyl group at the 3-position of an indole ring; and

 \mathbb{R}^3 is a substituent at the 2-, 4-, 5-, 6- or 7-position of an indole ring and is a substituent as defined in the formula (I)).

The following compounds (1) to (24) may be mentioned as preferred examples of the compound of the formula (I) of the present invention.

(1) The indole type thiazolidine compound and its salt of the present invention, wherein the compound of the formula (I) is represented by the following formula 10 (Ia):

- wherein R^1 is a substituent at the 2-, 3-, 4-, 6- or 7-position of an indole ring, and is a hydrogen atom, a C_1 - C_{10} alkyl group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkoxy group, a C_2 - C_{10} alkenyloxy group, a C_1 - C_{10} alkylthio group, a C_1 - C_{10} monoalkylamino group or a C_1 - C_{10} alkylamino group (each of said C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} monoalkylamino and C_1 - C_1 0 alkylamino groups may be substituted with a hydroxyl group or a C_1 - C_1 0 alkyl group), or
- $-W_k-W_c-Z$ (among groups of Z as defined for the formula (I), said C_3-C_{10} cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl,

- cyclooctyl, cyclononyl, cyclodecyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, or adamantyl, said C_3 - C_7 cycloalkenyl group is cyclohexenyl, cyclopentadienyl, 2-bicylo[2.2.1]heptenyl or 2,5-
- bicyclo[2.2.1]heptadienyl, said C_6-C_{14} aromatic group is phenyl, naphthyl, indenyl, indanyl or fluorenyl, said C_1-C_{12} heterocyclic aromatic group is furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, furazanyl, pyrazolyl, oxopyrazolyl, imidazolyl,
- oxoimidazolyl, triazolyl, triazolonyl, tetrazolyl,

 pyranyl, pyridyl, pyridonyl, pyridazinyl, pyridazinonyl,

 pyrimidinyl, pyrimidinonyl, pyrazinyl, triazinyl,

 tetrazinyl, indolyl, quinolyl, quinolonyl, benzofuranyl,

 benzothienyl, isoquinolyl, isoquinolyl, benzofuranyl,
- benzothiazolyl, benzopyrazolyl, benzimidazolyl, benzotriazolyl, benzopyranyl, indolizinyl, purinyl, phthalazinyl, oxophthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, benzodioxolyl, benzodioxanyl, oxonaphthalenyl, dihydrobenzofuranyl,
- benzothiazinyl, pteridinyl, pyrazolo[1,5-a]pyrimidinyl,
 pyrazolo[5,1-c][1,2,4]triazinyl, thiazolo[3,2b]triazolyl, benzopyrano[2,3-b]pyridyl, 5Hbenzopyrano[2,3-b]pyridonyl, xanthenyl, phenoxathiinyl,
 carbazolyl, acridinyl, phenazinyl, phenothiazinyl,
- phenoxazinyl, or thianthrenyl, and said C₁-C₆
 heterocycloaliphatic group is piperidyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, morpholinyl, or

tetrahydrofuranyl, (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, C_1-C_{12} heterocyclic aromatic and C_1-C_6 heterocycloaliphatic groups may have at most 5 substituents selected from the group consisting of a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a

- trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy
- group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group
- consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a l-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a
- 25 thiazolidindion-5-yl group and a thiazolidindion-5-yl
 methyl group),

V is C, S, SO, SO_2 or NR^8 (R^8 is a hydrogen atom or a

20

 C_1-C_3 alkyl group),

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, and

5 each of k and ℓ is 0 or 1),

-V-W-Z (V, W and Z are as defined above), or -W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different).

(2) The indole type thiazolidine compound and its salt according to the above-mentioned (1), wherein the compound of the formula (Ia) is represented by the formula (Ib):

$$R^{2} \xrightarrow{R^{3}} N$$

$$R^{1} \xrightarrow{N} N$$

$$R^{n}$$

$$X^{1} \xrightarrow{N} X^{2}$$

$$(1b)$$

(3) The indole type thiazolidine compound and its salt according to the above-mentioned (2), wherein the compound of the formula (Ib) is represented by the following formula (Ic):

$$R^{2} \xrightarrow{R^{3}} NH$$

$$R^{1} \xrightarrow{N} N$$

$$R^{n}$$

$$R^{n}$$

$$R^{2} \xrightarrow{R^{3}} NH$$

$$R^{2} \xrightarrow{N} NH$$

$$R^{2} \xrightarrow{N} NH$$

$$R^{3} \xrightarrow{N} NH$$

$$R^{3} \xrightarrow{N} NH$$

$$R^{4} \xrightarrow{N} NH$$

$$R^{5} \xrightarrow{N} NH$$

$$R^{5} \xrightarrow{N} NH$$

$$R^{5} \xrightarrow{N} NH$$

wherein R^1 is a substituent at the 2-position of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is O, S, SO, SO₂ or NR⁸ (R⁸ is a hydrogen

atom or a C_1 - C_3 alkyl group), W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, when two W's are present, such W's may be the same or different, and Z is

wherein each of R^a and R^b is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 -C₇ cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthio group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, o-naphthyl, R-naphthyl, firanyl; thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, σ -naphthyl, β -naphthyl, furanyl, thienyl, 15 imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a 20 bromine atom, a nitro group and a dimethylamino group), a l-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1-C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl 25 group);

 \mathbb{R}^2 or \mathbb{R}^3 is a hydrogen atom, a \mathbb{C}_1 - \mathbb{C}_4 alkyl group, a

 C_3 - C_6 cycloalkyl group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group or a halogen atom; and R^5 is a hydrogen atom.

(4) The indole type thiazolidine compound and its salt according to the above-mentioned (2), wherein the compound of the formula (Ib) is represented by the following formula (Id):

$$R^{2} \xrightarrow{R^{3}} Y \xrightarrow{R^{4}} O$$

$$R^{1} \xrightarrow{N} NH \qquad (Id)$$

wherein R^1 is a substituent at the 2-positioin of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is O, S, SO, SO₂ or NR^8 (R^8 is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups, when two W's are present, such W's 20 may be the same or different, and Z is

R ^b R ^c	R ^b R ^c	- Ra Rc	$R^{a} = \frac{1}{1}$	Ac .
	R ³ / S R ^c ,			
R° /= N N N R° R°	R ^a V=F\N\N\R ^b \ R ^c \ R ^c \	Ra /= =N Rb/	Ra N S	R ^a P ^c
Ra N Rc O	N R^a	Ra CEEN	Rª NEN N	R ^a N N N N N N N N N N N N N N N N N N N
Ra N O	Rª N	R ^b R ^c	R ^b R ^c R ^c N	R ^b R ^c
R ^b R ^c	$R^{a} \xrightarrow{R^{c}} O$	R ^b R ^c R ^c N	R^{a} N N ,	R ^b R ^c N
R ^b O R ^c N	$R^{b} = R^{c}$ $R^{a} = \frac{1}{1} \frac{N}{N}$	R ^b , N, R ^c	Ra N	Ra N N

wherein each of R^{a} and R^{b} is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 -C₇ cyclcalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthio group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy . group, a phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, σ -naphthyl, β -naphthyl, furanyl, thienyl, 15 imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a 20 bromine atom, a nitro group and a dimethylamino group), a l-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl 25

group); $R^2 \text{ or } R^3 \text{ is a hydrogen atom, a } C_1^-C_4 \text{ alkyl group, a}$

 C_3 - C_6 cycloalkyl group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group or a halogen atom; and R^5 is a hydrogen atom.

(5) The indole type thiazolidine compound and its salt according to the above-mentioned (4), wherein: Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4);

 \mathbb{R}^1 is a substituent at the 2-position of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is

- 10 O, S, SO, SO_2 or NR^8 (R^8 is a hydrogen atom or a C_1 - C_3 alkyl group), W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups (provided that the first carbon atom bonded to N is not substituted with a hydroxyl
- substituted with a hydroxyl group, and also provided that the first carbon atom bonded to O is not substituted with a hydroxyl group or an oxo group) when two W's are present, such W's may be the same or different, and Z is

- Michigan

15

20

group);

wherein each $R^{\mathbf{a}}$ and $R^{\mathbf{b}}$ is independently a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl 10 group, a phenoxy group, a benzyloxy group, a $tri-C_1-C_7$ alkylsilyloxy group, a phenyl, a-naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, a-naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino group), a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3-C_7 cycloalkyl group or a hydroxymethyl

 ${\sf R^4}$ is a hydrogen atom or a methyl group, or forms a 25 bond together with R⁷; and

 \mathbb{R}^{n} is a substituent at the 1-position of an indole

10

20

ring, and is a hydrogen atom, a C_1 - C_3 alkyl group, a cyclopropyl group, a C_1 - C_2 alkoxymethyl group, a benzyloxymethyl group, a carboxyl group, a methoxycarbonyl group, a C_1 - C_3 alkoxy group, and a trialkylsilyl group.

(6) The indole type thiazolidine compound and its salt according to the above-mentioned (5), wherein:

 R^1 is -W-Z, wherein W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 2 of hydroxyl, oxo and C_1 - C_7 alkyl groups.

(7) The indole type thiazolidine compound and its salt according to the above-mentioned (6), wherein R^1 is -W-Z, wherein W is

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d 's together form a double bond, or adjacent R^d 's together form a triple bond.

(8) The indole type thiazolidine compound and its salt according to the above-mentioned (7), wherein:

25 R^1 is -W-Z, wherein W is

(9) The indole type thiazolidine compound and its salt according to the above-mentioned (5), wherein:

 R^1 is -V-Z, wherein V is S, SO or SO_2 .

(10) The indole type thiazolidine compound and its salt according to the above-mentioned (5), wherein:

 R^1 is -W-V-Z, wherein W is

$$\begin{array}{c}
\begin{pmatrix}
\mathsf{R}^{\mathsf{d}} \\
\mathsf{C} \\
\mathsf{R}^{\mathsf{e}}
\end{pmatrix}_{\mathsf{rr}}$$

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that R^d and R^e on the first carbon atom adjacent to N are not hydroxyl groups and also provided that R^d and R^e on the first carbon atom adjacent to O are not hydroxyl groups or do not together form an oxo group),

V is NR^8 (R^8 is a hydrogen atom or a C_1 - C_3 alkyl 20 group).

(11) The indole type this zolidine compound and its salt according to the above-mentioned (10), wherein:

 R^1 is -W-V-Z, wherein -W-V- is -CO-NR⁸- (R^8 is a hydrogen atom or a C_1 - C_3 alkyl group).

25 (12) The indole type thiazolidine compound and its salt of the present invention, wherein the compound of the formula (I) is represented by the following formula

(Ie):

5

wherein R^1 is a substituent at the 3-, 4-, 5-, 6- or 7-position of an indole ring, and is a C_1 - C_{10} alkyl group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkynyl group, a C_1 - C_{10} alkoxy group, a C_2 - C_{10} alkenyloxy group, a C_1 - C_{10} alkylthio group, a C_1 - C_{10} monoalkylamino group or a di- C_1 - C_{10} alkylamino group (each of said C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} monoalkylamino and C_1 - C_{10} alkylamino groups may be substituted with a hydroxyl

15 group or a C_1-C_7 alkyl group), or

-W_k-V_c-Z (among groups of 2 as defined for the formula (1), said C₃-C₁₀ cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, or adamantyl, said C₃-C₇ cycloalkenyl group is cyclohexenyl, cyclopentadienyl, 2-bicylo[2.2.1]heptenyl or 2,5-bicyclo[2.2.1]heptadienyl, said C₆-C₁₄ aromatic group is phenyl, naphthyl, indenyl, indanyl or fluorenyl, said C₁-25 C₁₂ heterocyclic aromatic group is furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, furazanyl, pyrazolyl, oxopyrazolyl, imidazolyl,

oxoimidazolyl, triazolyl, triazolonyl, tetrazolyl, pyranyl, pyridyl, pyridonyl, pyridazinyl, pyridazinonyl, pyrimidinyl, pyrimidinonyl, pyrazinyl, triazinyl, tetrazinyl, indolyl, quinolyl, quinolonyl, benzofuranyl, benzothienyl, isoquinolyl, isoquinolonyl, benzoxazolyl, 5 benzothiazolyl, benzopyrazolyl, benzimidazolyl, benzotriazolyl, benzopyranyl, indolizinyl, purinyl, phthalazinyl, oxophthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, benzodioxolyl, benzodioxanyl, oxonaphthalenyl, dihydrobenzofuranyl, 10 benzothiazinyl, pteridinyl, pyrazolo[1,5-a]pyrimidinyl, pyrazolo[5,1-c][1,2,4]triazinyl, thiazolo[3,2b]triazolyl, benzopyrano[2,3-b]pyridyl, 5Hbenzopyrano[2,3-b]pyridonyl, xanthenyl, phenoxathiinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, 15 phenoxazinyl, or thianthrenyl, and said C_1-C_6 heterocycloaliphatic group is piperidyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, morpholinyl, or tetrahydrofuranyl, (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, C_1-C_{12} heterocyclic aromatic and C_1 - C_6 heterocycloaliphatic groups may have 20 at most 5 substituents selected from the group consisting of a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted 25

cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a

trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl

- group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted
- with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-
- tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group and a thiazolidindion-5-yl methyl group),

V is 0, S, SO, SO or NR 8 (R is a hydrogen atom or a C_1 - C_3 alkyl group),

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, and each of k and ℓ is 0 or 1).

-V-W-Z (V, W and Z are as defined above), or

- 25 -W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different).
 - (13) The indole type thiazolidine compound and its

salt according to the above-mentioned (12), wherein the compound of the formula (Ie) is represented by the formula (If):

$$\begin{array}{c|c}
R^{1} & R^{1} & R^{4} & O \\
R^{1} & X^{1} & NR^{5} \\
\hline
\end{array}$$
(If)

(14) The indole type thiazolidine compound and its salt according to the above-mentioned (13), wherein the compound of the formula (If) is represented by the following formula (Ig):

15

20

wherein R^1 is a substituent at the 5-position of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is O, S, SO, SO₂ or NR⁸ (R⁸ is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups, when two W's are present, such W's may be the same or different, and Z is

WO 96/26207

25

wherein each of R^a and R^b is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 -C₇ cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthio group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, a-naphthyl, β -naphthyl, furanyl, thienyl, 15 imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a 20 bromine atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3-C_7 cycloalkyl group or a hydroxymethyl group);

 R^2 or R^3 is a hydrogen atom, a C_1 - C_4 alkyl group, a

 C_3 - C_6 cycloalkyl group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group or a halogen atom; and R^5 is a hydrogen atom.

(15) The indole type thiazolidine compound and its salt according to the above-mentioned (13), wherein the compound of the formula (If) is represented by the following formula (Ih):

$$R^{2} \xrightarrow{R^{3}} NH$$
(Ih)

wherein R¹ is -V-W-Z, -W-Z, -V-W-V-W-Z, -W-V-W-Z, -V-W-V-Z or -W-V-Z (V is O, S or NR⁸ (R⁸ is a hydrogen atom or a C₁-C₃ alkyl graup). Will a divalent C₁-C₆

saturated or C₂-C₆ unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C₁-C₇ alkyl groups, when two V's or W's are present, such V's or W's may be the same or different, and Z is

wherein each of R^{a} and R^{b} is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 -C₇ cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthio group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile . 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a $tri-C_1-C_7$ -alkylsilyloxy group, a phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, a-naphthyl, β -naphthyl, furanyl, thienyl, 15 imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a 20 bromine atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl 25 group);

 R^2 or R^3 is a hydrogen atom, a C_1 - C_4 alkyl group, a

15

 C_3 - C_6 cycloalkyl group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group or a halogen atom; and R^5 is a hydrogen atom.

(16) The indole type thiazolidine compound and its salt according to the above-mentioned (15), wherein: Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4);

 R^1 is a substituent at the 5-position of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is C, S, SC, SO₂ or NR^8 (R^8 is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups (provided that the first carbon atom bonded to N is not substituted with a hydroxyl group, and also provided that the first carbon atom bonded to O is not substituted with a hydroxyl group or an oxo group), when two W's are present, such W's may be the same or different, and Z is

wherein each Ra and Rb is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl 10 group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇alkylsilyloxy group, a phenyl, a-naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benæyl group (each of said phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be 15 substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino group), a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl group);

 R^4 is a hydrogen atom or a methyl group, or forms a bond together with R^7 ; and

 R^n is a substituent at the 1-position of an indole

ring, and is a hydrogen atom, a C_1 - C_3 alkyl group, a cyclopropyl group, a C_1 - C_2 alkoxymethyl group, a benzyloxymethyl group, a carboxyl group, a methoxycarbonyl group, a C_1 - C_3 alkoxy group, and a trialkylsilyl group.

(17) The indole type thiazolidine compound and its salt according to the above-mentioned (16), wherein:

 R^1 is -W-Z, wherein W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 2 of hydroxyl, oxo and C_1 - C_7 alkyl groups.

(18) The indole type thiazolidine compound and its salt according to the above-mentioned (17), wherein: \mathbb{R}^1 is -W-Z, wherein W is

$$\begin{array}{c}
\begin{pmatrix}
R^{\sigma'} \\
C \\
R^{e} \\
\end{pmatrix}$$

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond.

- (19) The indole type thiazolidine compound and its salt according to the above-mentioned (18), wherein:
- 25 R^1 is -W-Z, wherein W is

(20) The indole type thiazolidine compound and its salt according to the above-mentioned (16), wherein:

 R^1 is -V-2, wherein V is S, SO or SO_2 .

(21) The indole type thiazolidine compound and its salt according to the above-mentioned (16), wherein:

 R^1 is -W-V-Z, wherein W is

$$\frac{\begin{pmatrix} R^d \\ C \\ R^e \end{pmatrix}_m}{\begin{pmatrix} R^e \\ M \end{pmatrix}}$$

independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that R^d and R^e on the first carbon atom adjacent to N are not a hydroxyl group, and also provided that R^d and R^e on the first carbon atom bydroxyl group, and also provided that R^d and R^e on the first carbon atom adjacent to O are not hydroxyl groups or do not together form an oxo group), and

V is NR^8 (R^8 is a hydrogen atom or a C_1 - C_3 alkyl 20 group).

(22) The indole type thiazolidine compound and its salt according to the above-mentioned (21), wherein:

 R^1 is -W-V-Z, wherein -W-V- is -CO-NR^8- (R^8 is a hydrogen atom or a C_1 - C_3 alkyl group).

25 (23) The indole type thiazolidine compound and its salt according to the above-mentioned (8), (9), (11), (19), (20) or (21), wherein:

15

20

Y is -CH2-; and

R4 is a hydrogen atom.

(24) The indole type thiazolidine compound and its salt according to the above-mentioned (8), (9), (11), (19), (20) or (21), wherein: Y is CHR^7 (R^7 forms a bond together with R^4), and R^4 forms a bond together with R^7 .

The compound of the above formula (I) of the present invention has acidic hydrogen on a thiazolidine ring or on an oxazolidine ring. Further, when substituent Z is a heterocyclic aromatic group or a heterocyclic aliphatic group, it sometimes has a basic nitrogen. compound may be converted to a pharmaceutically acceptable non-toxic salt with an appropriate base or acid, if desired. The compound of the formula (1) can be used for the purpose of the present invention either in the free form or in the form of a pharmaceutically acceptable salt. Examples of the basic salt include an alkali metal salt (lithium salt, sodium salt, potassium salt and the like), an alkali earth metal salt (calcium salt, magnesium salt and the like), an aluminum salt, an ammonium salt which may be unsubstituted or substituted with a methyl, ethyl or benzyl group, an organic amine salt (methylamine salt, ethylamine salt, dimethylamine salt, diethylamine salt, trimethylamine salt,

triethylamine salt, cyclohexylamine salt, ethylenediamine salt, bicyclohexylamine salt, ethanolamine salt, diethanolamine salt, triethanolamine salt, piperazine

PCT/JP96/00403

salt, dibenzylpiperidine salt, dehydroabietilamine salt, N,N'-bisdehydroabietilamine salt, benzathine(N,N'-dibenzylethylenediamine) salt, glucamine salt, meglumine(N-methylglucamine) salt, benetamine(N-methylglucamine)

- benzylphenetylamine)salt, trometamine(2-amino-2-hydroxymethyl-1,3-propanediol)salt, choline salt, procaine salt), a basic amino acid salt (lysine salt, ornithine salt, arginine salt and the like), a pyridine salt, a collidine salt, a quinoline salt, and the like.
- Examples of an acid-addition salt include a mineral acid salt (hydrochloride, hydrobromide, sulfate, hydrogensulfate, nitrate, phosphate, hydrogenphosphate, dihydrogenphosphate and the like), an organic acid salt (formate, acetate, propionate, succinate, malonate,
- oxalate, maleate, fumarate, malate, citrate, tartrate, lactate, glutamate, asparate, picrate, carbonate and the like), a sulfonic acid salt (methanesulfonate, benzenesulfonate, toluenesulfonate and the like), and the like. Each of these salts can be prepared by a known method.

The compound having the formula (I), i.e. indole type thiazolidines, can be prepared by the following synthetic methods.

A reaction solvent used in the preparation is stable under the reaction conditions, and is preferably so inert as not to inhibit the reaction. Examples of the reaction solvent include water, alcohols (such as methanol,

ethanol, propanol, butanol and octanol), cellosolves (such as methoxyethanol and ethoxyethanol), aprotic polar organic solvents (such as dimethylformamide, dimethylsulfoxide, dimethylacetamide, tetramethylurea, sulfolane and N,N-dimethylimidazolidinone), ethers (such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane), aliphatic hydrocarbons (such as pentane, nhexane, c-hexane, octane, decaline and petroleum ether), aromatic hydrocarbons (such as benzene, chlorobenzene, nitrobenzene, toluene, xylene and tetralin), halogenated 10 hydrocarbons (such as chloroform, dichloromethane and dichloroethane), ketones (such as acetone, methyl ethyl ketone and methyl butyl ketone), lower aliphatic acid esters (such as methyl acetate, ethyl acetate and methyl propionate), alkoxy alkanes (such as dimethoxyethane and 15 diethoxyethane), acetonitrile, and the like. These solvents are optionally selected depending on the reactivity of the aimed reaction, and are respectively used alone or in a mixture. In some qases, there are used as an anhydrous solvent by using a dehydrating agent 20 or a drying agent. The above-mentioned solvents are merely examples which can be used in the reaction of the present invention, and the present invention is not

limited to these conditions.

Process 1 Preparation of Compound (I-1) [Step A]

(wherein R^1 , R^2 , R^3 , R^6 , R^n , X^1 and X^2 are as defined above, and R^{10} is a hydrogen atom or a protecting group of amide (such as Tr: trityl)).

A compound wherein \mathbb{R}^4 and \mathbb{R}^7 are bonded together in the formula (I), i.e. a compound of the formula (I-1), can be obtained by dehydration-condensation of a compound of the formula (II) and a compound of the formula (V). The compound of the formula (II) is a well known compound 15 cr can be synthesized by the method disclosed in Japanese Unexamined Patent Publication No. 271288/1991, Japanese Unexamined Patent Publication No. 277660/1988, Japanese Unexamined Patent Publication No. 71321/1975 or Japanese Examined patent Publication No. 34986/1974. The compound 20 of the formula (V) is a well known compound or can be synthesized by the method disclosed in "J. Prakt. Chem." (vol. 2, p. 253, 1909), "J. Prakt. Chem." (vol. 3, p. 45, 1919), "Chem. Ber." (vol. 118, p. 774, 1985), and German Laid Open Patent Publication No. DE-3045059. 25 compound of the formula (V) wherein R^{10} is hydrogen, can be used in this reaction after displacing its acidic

:

Property and the second second

hydrogen at the 3-position of thiazolidine or oxazolidine with an appropriate substituent (such as TR: trityl) by a well known method.

This reaction is conducted usually in an appropriate organic solvent in the presence of base or acid. Examples of such a solvent include alcohols, cellosolves, 5 aprotic polar organic solvents, ethers, aromatic hydrocarbons, halogenated hydrocarbons, alkoxyalkanes and acetonitrile.

Examples of the base and the acid include organic amines (such as dimethylamine, diethylamine, 10 diisopropylamine, diisopropylethylamine, trimethylamine, triethylamine, piperidine, piperazine, pyrrolidine, morpholine, pyridine, methanolamine and ethanolamine),

- Acid Capture H: 3,4-dihydro-2H-pyrid(1,2-a)pyrimidin-2one, Acid Capture 9M: 9-methyl-3,4-dihydro-2H-pyrid[1,2-15 a)pyrimidin-2-one, and the like, or metal alkoxides (such as sodium methoxide, sodium ethoxide, lithium isopropoxide and potassium t-butoxide), inorganic alkali
 - metal salts (such as potassium carbonate, sodium carbonate, sodium hydrogencarbonate, potassium 20 hydrogencarbonate, sodium hydride, potassium hydride, calcium hydride, sodium acetate and potassium acetate), organic acids (such as acetic acid, trichlornacetic acid and trifluoroacetic acid), inorganic acids (such as 25
 - phosphoric acid), and the like. These materials are selected appropriately depending on the reactivity of the

aimed reaction.

This reaction can be accelerated by removing water formed during the reaction out of the system by using an appropriate dehydrating agent such as molecular sieves and anhydrous sodium sulfate or by azeotropic distillation using Dean-Stark tube.

This reaction is conducted usually at a temperature ranging from 0°C to a boiling point of a solvent used, preferably from 20°C to 120°C, for from 0.5 to 30 hours.

10 Process 2 Preparation of Compound (I-2) [Step B]

$$R^{1}$$
 R^{2}
 R^{2}
 R^{3}
 R^{n}
 X^{1}
 R^{10}
 R^{2}
 R^{n}
 X^{2}
 R^{n}
 X^{2}

(wherein R^1 , R^2 , R^3 , R^6 , R^{10} , R^n , χ^1 and χ^2 are as defined above).

A compound of the formula (I-I) (R⁴ and R⁷ together form a bond) obtained by the above method can be converted into a compound of the formula (I-2) (R⁴ and R⁷=H) in accordance with an appropriate reduction method, for example by catalytically hydrogenating in the presence of an appropriate catalyst, or by using an appropriate metal-hydrogen complex compound, or by reducing a double bond connecting an indole ring with a

10

20

25

1 (2 to 1 🔏)

1 - 1101 > 0100400

thiazolidine or oxazolidine ring in a lower alcohol such as methanol by magnesium or sodium amalgam.

The reduction reaction by catalytic hydrogenation is conducted usually in a solvent such as water, alcohols, cellosolves, aprotic polar organic solvents, ethers, alkoxyalkanes, lower aliphatic acid esters or lower aliphatic acids, preferably water, methanol, ethanol, methoxyethanol, dimethylformamide, dimethylacetamide, tetrahydrofuran, dioxane, dimethoxyethane, ethylacetate or acetic acid. The solvent may be used alone or in a mixture. Examples of the catalyst used in this reaction include Raney nickel, palladium black, palladium carbon, ruthenium carbon, platinum oxide and the like. reaction proceeds usually at normal temperature and a atmospheric pressure but it is preferable for 15 accelerating the procedure of the reaction to optionally employ an elevated temperature and a higher pressure.

In the case of the reduction reaction using a metalhydrogen complex compound, a reaction is conducted in water or an appropriate organic solvent at a temperature of from 0°C to 150°C, preferably from 0°C to 30°C, and examples of the metal-hydrogen complex compound include sodium borohydride, potassium borohydride, lithium borohydride, sodium cyanoborohydride, potassium tri-sbutylborohydride, potassium triethylborohydride, lithium triethylborohydride, sodium triethylborohydride, tetramethylammonium borohydride, tetra-n-butylammonium

borohydride, tetra-n-butylammonium cyanoborohydride, sodium triacetoxyborohydride, tetra-n-butylammonium triacetoxyborohydride, lithium thexylborohydride, potassium triphenylborohydride, sodium

trimethoxyborohydride, rhodium borohydride,
tetraethylammonium borohydride, methyltrioctylammonium
boronydride, calcium borohydride bis(tetrahydrofuran),
lithium dimethylborohydride, zinc borohydride and the
like. Also, in this reduction, an undesired side
reaction can be inhibited by adding a Co reagent such as
CoCl₂, CoCl₃ and Co(OAc)₂ in the presence of a ligand

such as dimethyl glyoxime, 2,2'-dipyridyl and 1,10-

phenanthroline (see WO 93/13095).

In the case of the reduction using an amalgam, the

reaction is conducted in a solvent such as alcohols,

preferably ethanol or ethanol at a temperature of from
20°C to a boiling point of a solvent used, preferably

from 0°C to 50°C. Also, the reduction method by

magnesium/methanol can be employed, as described in "J.

Org. Chem.", vol. 40, P 127 (1975).

Process 3 Preparation of Compound (I) (Displacement of substituent \mathbb{R}^n) [Step C]

(wherein R^1 , R^2 , R^3 , R^4 , R^5 , X^1 , X^2 and Y are as defined above, R^n is a substituent (other than a hydrogen atom) at the 1-position of an indole ring).

Among the compounds of the formula (I), the R^n substituent other than a hydrogen atom at the 1-position of an indole ring can be converted to a hydrogen atom by a well known appropriate method. The following reaction conditions can be employed depending on the type of the substituent R^n .

5

The displacement of the Rⁿ substituent can be 10 conducted by heat-refluxing for 1 to 12 hours in a mixture solution of sodium hydroxide aqueous solution/ethanol when Rn is a benzenesulfonyl group, a ptoluenesulfonyl group or a p-methoxybenzenesulfenyl group; by catalytically reducing in the presence of 15 palladium carbon, lithium aluminum hydride or Raney nickel in methanol, ethyl acetate or tetrahydrofuran when Rⁿ is a methoxy group, a methoxymethyloxy group, a methoxyethyloxy group or a benzyloxymethyloxy group; by stirring at room temperature in trifluoroacetic acid, a 20 mixture solution of sodium hydroxide/methanol or a mixture solution of hydrochloric acid aqueous solution/methanol when Rⁿ is a tertiary butylamino carbonyl group or a tertiary butoxy carbonyl group; by using tetra-n-butylammonium fluoride or cesium fluoride 25 in tetrahydrofuran at room temperature when R^n is a trimethylsilyl group, a tertiary butyldimethylsilyl

group, a tertiary butyldiphenylsilyl group or a triisopropylsilyl group; by stirring at room temperature in a mixture solution of sodium hydroxide aqueous solution/ethanol when R^n is an acetyl group or a trifluoroacetyl group; by using tetrabutylammonium 5 fluoride or a cesium fluoride at room temperature in tetrahydrofuran when Rⁿ is a trimethylsilylethyloxymethyl group; by using lithium bromide and boron trifluoride/ether complex and acetic anhydride when Rⁿ is a methoxymethyl group; by using sodium methoxide or 10 sodium borohydride in methanol at room temperature when Rⁿ is a dimethylaminomethyl group; or by heating at 80°C to 200°C and decarboxylating when Rⁿ is a carboxyl group, thus converting the substituent at the 1-position to a hydrogen atom. 15

Process 4 Displacement of \mathbb{R}^4 substituent of Compound (I-2) [Step D]

(wherein R^1 , R^2 , R^3 , R^4 , R^6 , R^{10} , X^1 and X^2 are as defined above).

A compound of the formula (I-2) $(R^4, R^7=H)$ can be

converted into a compound of the formula (I-2) $(R^4 \neq H, R^7 = H)$ in accordance with a well known method by alkylating hydrogen at the 5-position of a thiazolidine or oxazolidine ring with an appropriate alkylating agent (such as alkylhalides including methyliodide and ethyliodide, alkylsulfates including dimethylsulfate and diethylsulfate, or aliphatic or aromatic sulfonic acid esters including methyltosylate and methylmesylate).

This reaction is conducted usually in the presence of
a base in an appropriate organic solvent. Examples of
the solvent used include aprotic polar organic solvents,
ethers, and alkoxy alkanes, preferably tetrahydrofuran
and dimethoxy ethane. Examples of the base include
alkali metal amides (such as LDA: lithium diisopropyl
amide and potassium amide), aliphatic or aromatic lithium
compounds (such as n-butyl lithium, t-butyl lithium and
phenyl lithium), and the like. These materials are
selected optionally depending on the reactivity of the
aimed reaction.

This reaction is conducted usually at a temperature in the range of from -20°C to 100°C, preferably from -10°C to 30°C for 0.1 to 10 hours.

<u>Process 5</u> Preparation of Compound (I-2) [Step E] and Deprotection of \mathbb{R}^{10}

WO 96/26207 PCT/JP96/00403

(wherein R¹, R², R³, R⁴, R⁶, R¹⁰, Rⁿ, X¹ and X² are as

defined above, and R¹² is an appropriate leaving group in nucleophilic displacement in the present reaction, examples of which include a halogen such as chloro, bromo and iodo, and an aromatic or aliphatic sulfonyloxy group such as p-toluenesulfonyloxy, benzenesulfonyloxy and

methanesulfonyloxy).

A compound of the formula (I) other than the one wherein R⁴ and R⁷ together form a bond, i.e. a compound of the formula (I-2), can be obtained by reacting a compound of the formula (V) with an indole derivative of the formula (VI). The compound of the formula (V) used herein is a well known compound or can be synthesized by a method disclosed in "Ukr. Khim. Zh." (vol. 16, p. 545, 1950), "J. Med. Chem." (vol. 34, p. 1538, 1991), "J. Prakt. Chem." (vol. 2, 79, P. 259 (1909), "J. Prakt. Chem." (vol. 2, 99, P. 56 (1919) or Japanese Unexamined Patent Publication No. 216882/1984. The compound of the formula (V) wherein R¹⁰ is hydrogen, is used in this

20

25

reaction preferably after displacing its acidic hydrogen with an appropriate substituent (such as Tr: trityl) by a known method.

This reaction is conducted usually in an appropriate organic solvent in the presence of base. Examples of the 5 solvent thus used include aprotic polar organic solvents (such as HMPA: hexamethylphosphoric triamide and DMPU: 1,3-dimethy1-3,4,5,6-tetrahydro-2(1H)-pyrimidine), ethers (such as THF: tetrahydrofuran) and alkoxyalkanes, and the solvent may be used respectively alone or in a mixture. 10 Examples of the base thus used include a strong base such as alkali metal amides (e.g. LDA: lithium diisopropyl amide, sodium amide and potassium amide) and aliphatic or aromatic lithium compounds (e.g. n-butyl lithium, t-butyl lithium and phenyl lithium). These materials are 15 selected optionally depending on the reactivity of the aimed reaction.

The reaction using a compound of the formula (V)wherein \mathbb{R}^4 and \mathbb{R}^{10} are hydrogen, can be conducted in accordance with a method disclosed in "J. Labelled 20 Compounds and Radiopharmaceuticals" (vol. XXVIII, No. 8, p. 911, 1990). In such a case, a compound of the formula (V) is reacted with n-butyl lithium usually in an inert gas atmosphere such as nitrogen and in a mixed solvent such as THF: HMPA=4:1 at a temperature of from -100°C to -10°C to form an anion, which is then reacted with an indole compound of the formula (VI) to obtain a compound

of the formula (I-2). The reaction of the anion and the indole compound (VI) is conducted usually at a temperature of from -50°C to 100°C, preferably from -10°C to room temperature. The reaction time may be varied depending on the materials used, but is usually from 0.5 to 1 hour for the formation of an anion and from 0.5 to 5 hours for the reaction with an indole compound.

Also, this reaction can be conducted in accordance with a method disclosed in "J. Amer. Chem. Soc." (vol.

- 10 87, p. 4588, 1965) or "J. Med. Chem." (vol. 34, p. 1538, 1991). In such a case, a compound of the formula (V) is reacted with magnesium methylcarbonate in an inert gas atmosphere such as nitrogen and in an aprotic polar property and as dimethylformamide to form a
- chelate compound, and the chelate compound thus formed is further reacted with an indole compound of the formula (VI) to obtain a compound of the formula (I-2). This reaction is conducted usually at a temperature ranging from 20°C to 150°C, preferably from 70°C to 100°C. The reaction time varies depending on the materials used, but the formation of the chelate compound takes from 0.5 to 2 hours and the reaction with the indole compound takes

In some cases, an amide group at the 3-position of thiazolidine ring of the compound of the formula (I-2) thus obtained may be deprotected by a well-known method. When R¹⁰ is Tr (trityl), this method is conducted by

using an organic acid such as trifluoroacetic acid and trichloroacetic acid or an inorganic acid such as hydrochloric acid and sulfuric acid. This reaction is conducted in the absence of a solvent or in the presence of a solvent such as ethers including tetrahydrofuran and dioxane and halogenated solvents including chloroform and dichloromethane, at a temperature ranging from 0°C to 100°C, preferably from 10°C to 50°C, for 0.1 to 5 hours.

Process 6

$$R^{1}$$
 R^{6}
 R^{1}
 R^{6}
 R^{1}
 R^{6}
 R^{1}
 R^{6}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{1}
 R^{2}
 R^{2

(wherein R^1 , R^2 , R^3 and R^6 are as defined above, and R^{11} is C_1 - C_4 alkyl such as methyl, ethyl, n-propyl, i-propyl, n-butyl and t-butyl, and Hal is a halogen atom such as a chlorine atom, a bromine atom and an iodide atom).

A compound of the formula (I) wherein R^4 and R^7 are H and X^1 is S and X^2 is NH, i.e. a compound of the formula (I-2c) (R^4 , R^7 =H, X^1 =S, X^2 =NH), can be obtained by reacting thiourea with a halocarboxylic acid ester of the formula (XII).

25 This reaction is conducted usually in an appropriate organic solvent in the presence of base or acid.

Examples of the solvent used include alcohols,

cellosolves and aprotic polar organic solvents, preferably sulfolane.

This reaction is conducted at a temperature of from 0°C to a boiling point of a solvent used, preferably from 50°C to 150°C, for 0.5 to 10 hours.

As the reaction proceeds, a hydrogen halide is by produced, but the reaction can be accelerated by capturing the by-produced hydrogen halide with an appropriate base. Examples of the base used include organic amines (such as dimethylamine, diethylamine, 10 diisopropylamine, diisopropylethylamine, trimethylamine, triethylamine, piperidine, piperazine, pyrrolidine, morpholine, pyridine, methanolamine and ethanolamine), inorganic alkali metal salts (such as sodium acetate and potassium acetate) and the like.

Process 7

15

5

(wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^6 and \mathbb{R}^n are as defined above).

A compound of the formula (I-2c) ($X^1=S$, $X^2=NH$), can 25 be converted into a compound of the formula (I-2d) ($X^1=S$, $X^2=0$) by hydrolyzing an imino group at the 2-position of

15

20

thiazolidine by a well known method.

This reaction is conducted usually in the presence of water and an acid in an appropriate organic solvent.

Examples of the solvent include usually alcohols, cellosolves, aprotic polar organic solvents, ethers and alkoxy alkanes, preferably methanol, ethanol, methoxyethanol, sulfolane, dioxane and dimethoxyethane.

Examples of the acid include inorganic acids (such as hydrochloric acid, sulfuric acid and hydrobromic acid), and these materials are selected optionally depending on the reactivity of the aimed reaction.

This reaction is conducted usually at a temperature in the range of from 50°C to a boiling point of a solvent used in the reaction, preferably from 80°C to 150°C. The reaction time is usually from 0.5 to 30 hours.

Process 8

(wherein R^2 , R^3 , R^4 , R^{10} , R^{12} , X^1 , X^2 , Y, V and Z are as defined above).

An indole compound (R¹=-V-Z) of the formula (XVI) can also be obtained by reacting a compound of the formula (XV) with a hydroxyl group, a thiol group or an amino group of an indole compound of the formula (XIV) by a

nucleophilic substitution reaction. The compound of the formula (XIV) is preferably protected by substituting hydrogen of \mathbb{R}^{10} with an appropriate substituent (such as Tr: trityl).

- This reaction is usually conducted in an appropriate organic solvent in the presence of base. Examples of the solvent used include aprotic polar organic solvents, ethers, aromatic hydrocarbons, hydrogenated hydrocarbons, alkoxyalkanes, acetonitrile, and the like.
- Examples of the base thus used include organic amines (such as dimethylamine, diethylamine, diisopropylamine, diisopropylethylamine, trimethylamine, triethylamine, piperidine, piperazine, pyrrolidine, morpholine, pyridine, methanolamine and ethanolamine), Acid Captor H:
- 3,4-dihycro-2H-pyrido[1,2-a]pyrimidin-2-one and Acid Captor 9M: 9-methyl-3,4-dihydro-2H-pyrido[1,2-ajpyrimidin-2-one), metal alkoxides (such as sodium methoxide, sodium ethoxide, lithium isopropoxide and potassium t-butoxide), inorganic alkali metal salts (such
- as sodium hydroxide, potassium hydroxide, ilithium hydroxide, potassium carbonate, sodium carbonate, sodium nydrogencarbonate, potassium hydrogencarbonate, sodium hydride, sodium acetate and potassium acetate), and alkali metal amides (such as sodium amide). These
- 25 materials are selected appropriately depending on the reactivity of the aimed reaction.

This reaction is conducted usually at a temperature

10

ranging from -20°C to a boiling point of the solvent used, preferably from 20°C to 150°C, for from 0.5 to 30 hours.

Among compounds thus obtained, the one having a protecting group on the thiazolidine ring as represented by the formula (XVI), can be led to a compound of the formula (I) either in accordance with the method disclosed by T.W. Greene, P.G.M. Wuts in "Protective Groups in Organic Synthesis" (1991) or deprotecting the amide group at the 3-position of the thiazolidine ring by the method described in Process 5.

Process 9

(wherein \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^{10} , \mathbb{R}^{12} , \mathbb{R}^n , \mathbb{X}^1 , \mathbb{X}^2 , \mathbb{Y} , \mathbb{V} , \mathbb{W} and \mathbb{Z} are as defined above).

An indole compound (R¹=-V-W-Z) of the formula

(XVIII), can also be obtained by reacting a compound of the formula (XVII) with a hydroxyl group, a thiol group or an amino group of an indole compound of the formula (XIV) by nucleophilic substitution reaction. The compound of the formula (XIV) is preferably protected by substituting hydrogen of R¹⁰ with an appropriate substituent (such as Tr: trityl).

Among compounds of the formula (I), a compound

wherein \mathbb{R}^1 is -V-W-Z and W is COCH_2 , can be obtained by using a compound of $Z-COCH_2-Hal$ (W=COCH₂, $R^{12}=Hal$, Z and Hal are substituents explained above). Such a compound is well known and is commercially available, or can be obtained by a well known method (for example, British 5 Laid Open Patent Publication No. 1107677 discloses a compound wherein Z is pyrrole, Japanese Unexamined Patent Publication No. 85372/1986 discloses a compound wherein Z is oxazole or thiazole and U.S. Patent No. 4,167,626 discloses a compound wherein Z is triazole). Also, such 10 a compound can be obtained by halogenating Z-COCH3 (for example, "Bull. Soc. Chim. Fr., p. 1760 (1973)" discloses a compound wherein Z is furan, "Tetrahedron, 29(2), p. 413 (1973)" discloses a compound wherein Z is thiophene,

- "J. Heterocyclic Chem., 27(5), p. 1209 (1990)" discloses a compound wherein Z is pyrrole, "Bull. Soc. Chim. Fr., p. 540 (1988)", "Bull. Soc. Chim. Fr., p. 318 (1987)", "J. Heterocyclic Chem., 23(1), p. 275 (1986)", "Arch. Pharm., 316(7), p. 608 (1983)" and "Synlett., (7), p. 483
- 20 (1991)" disclose a compound wherein Z is pyrazole, "J. Heterocyclic Chem., 17(8), p. 1723 (1980)" discloses a compound wherein Z is imidazole, and "J. Chem. Soc. C(20), p. 2005 (1976)" and "Heterocycles, 26(3), p. 745 (1987)" disclose a compound wherein Z is triazole) as a starting material by means of an appropriate well known halogenation method (e.g. a method disclosed in Japanese Unexamined Patent Publication No. 85372/1986). Also,

such a compound can be obtained by subjecting Z-CO₂R' (R'=lower alkyl or substituted or unsubstituted benzyl) (for example, "Z. Chem., 9(1), p. 22 (1969)" and "Synth. Commun., 20(16), p. 2537 (1990)" disclose a compound wherein Z is thiophene, "J. Org. Chem., 55(15), p. 4735 5 (1990)" and "Chem. Pharm. Bull., 17(3), p. 582 (1969)" disclose a compound wherein Z is pyrrole, European Laid Open Patent Publication No. 506194 discloses a compound wherein Z is imidazole, and "Chem. Ber., 117(3), p. 1194 (1984)" discloses a compound wherein Z is pyrazole or 10 triazole) as a starting material to an appropriate well known reduction-oxidation reaction (for example, reduction by diisobutyl aluminum hydride and then oxidation by manganese dioxide) to obtain Z-CHO, and further by converting the product thus obtained to Z-15 COCH₂-hal by an appropriate method (e.g. a method disclosed in "Tetrahedron Letters, p. 4661 (1972)").

This reaction can be conducted in the same manner as in the Process 8.

Among compounds thus obtained, the one having a protecting group on the thiozolidine ring as represented by the formula (XVIII), can be led to a compound of the formula (I) either in accordance with the method disclosed by T.W. Greene, P.G.M. Wuts in "Protective Groups in Organic Synthesis" (1991) or deprotecting the amide group at the 3-position of the thiazolidine ring by the method described in Process 5.

Process 10

(wherein R^2 , R^3 , R^4 , R^{10} , R^{12} , R^n , X^1 , X^2 , Y, V, W and Z are as defined above).

An indole compound (R¹=-W-V-Z) of the formula (XX) can also be obtained by reacting a compound of the formula (XV) with a hydroxyl group, a thiol group or an amino group of an indole compound of the formula (XIX) by nucleophilic substitution. The compound of the formula (XIX) is preferably protected by substituting hydrogen of R¹⁰ with an appropriate substituent (such as Tr: trityl).

This reaction can be conducted in the same manner as in the above Process 8.

Among the compounds thus obtained, the compound

10 having a protective group introduced into a thiazolidine ring part of the formula (XX) can be converted into a compound of the formula (I) by deprotecting an amino group at the 3-position of the thiazolidine ring in accordance with the method disclosed by T.W. Greene,

125 F.G.M. Wuts "Protective Groups in Organic Synthesis" (1991) or the method disclosed in the Process 5.

20

25

Process 11

(wherein R^2 , R^3 , R^4 , R^{10} , R^{12} , R^n , X^1 , X^2 , Y, V, W and Z are as defined above).

An indole compound (R¹=-W-V-W-Z) of the formula (XXI)

10 can also be obtained by reacting a compound of the formula (XVII) with a hydroxyl group, a thiol group or an amino group of an indole compound of the formula (XIX). The compound of the formula (XIX) is preferably protected by substituting hydrogen of R¹⁰ with an appropriate

15 substituent (such as Tr: trityl).

This reaction can be conducted in the same manner as in the above Process 8.

Among the compounds thus obtained, the compound having a protective group introduced into a thiazolidine ring part of the formula (XXI) can be converted to a compound of the formula (I) by deprotecting an amino group at the 3-position of the thiazolidine ring in accordance with the method disclosed by T.W. Green, P.G.M. Wuts "Protective Groups in Organic Synthesis" (1991) or the method disclosed in the above Process 5.

Process 12

An indole compound (R¹=-W-V+Z) of the formula (XXIV)

10 can also be obtained by reacting an indole compound of the formula (XXII) with a hydroxyl group, a thiol group or an amino group of a compound of the formula (XXIII) by nucleophilic substitution. The compound of the formula (XXII) is preferably protected by substituting hydrogen of R¹⁰ with an appropriate substituent (such as Tr: trityl).

This reaction can be conducted in the same manner as in the above Process 8.

Among the compounds thus obtained, a compound having
20 a protective group introduced into a thiazolidine ring
part of the formula (XXIV) can be converted to a compound
of the formula (I) by deprotecting an amino group at the
3-position of the thiazolidine ring in accordance with
the method disclosed by T.W. Greene, P.G.M. Wuts
25 "Protective Groups in Organic Synthesis" (1991) or the
method disclosed in the above Process 5.

Process 13

5

20

25

(wherein R^2 , R^3 , R^4 , R^{10} , R^{12} , R^n , X^1 , X^2 , Y, V, W and Zare as defined above).

An indole compound $(R^1=-W-V-W-Z)$ of the formula (XXVI) can also be obtained by reacting an indole 10 compound of the formula (XXII) with a hydroxyl group, a thiol or an amino group of a compound of the formula (XXV). The compound of the formula (XXII) is preferably protected by substituting hydrogen of R¹⁰ with an appropriate substituent (such as Tr: trityl). 15

This reaction can be conducted in the same manner as in the above Process 8.

Among the compounds thus obtained, a compound having a protective group introduced into a thiazolidine ring part of the formula (XXVI) can be converted to a compound of the formula (I) by deprotecting an amino group at the 3-position of the thiazolidine ring in accordance with the method disclosed by T.W. Greene, P.G.M. Wuts "Protective Groups in Organic Synthesis" (1991) or the method disclosed in the above Process 5.

Now, the processes for producing intermediates useful for the preparation of the compounds of the present

Synthesis Route 2 Introduction of substituent \mathbb{R}^1 into the 2-positon of indole

$$R^{2}$$
 R^{1}
 R^{n}
 R^{n}
 R^{1}
 R^{n}
 R^{n}
 R^{1}
 R^{n}
 R^{n

WO 96/26207 PCT/JP96/00403

- 101 -

invention will be described hereinafter. Method for preparing intermediate (III) Synthesis Route 1 [Step a]

(wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^n are as defined above, and \mathbb{R}^8 is 10 a hydrogen atom, a C_1-C_4 alkyl group, a phenyl group or a benzyl group).

A hydroxymethylindole (intermediate (III)) is available by using a commercial available reagent or by reducing a carboxyl indole of the formula (IV) or an alkoxycarbonylindole.

15

25

The step of synthesizing the compound of the formula (III) can be conducted by using a well known appropriate reducing agent (e.g. metal hydride complex compounds such as LAH: lithium aluminum hydride, SAH: sodium aluminum 20 hydride, sodium triethoxyaluminum hydride, Red-Al: sodium bis(2-methoxyethoxy) aluminum hydride, SBH: sodium borohydride and LBH: lithium borohydride, and metal hydride compounds such as DIBAH: diisobutyl aluminum hydride, and catalytic hydrogenation using CuBaCrO as a catalyst).

,				
				-
	•			
				-
,				
		•		
		•		
•				

(wherein R^1 , R^2 , R^3 , R^n , W and Z are as defined above, and R^9 is a protecting group (such as t-butyldimethylsilyl group) of a primary hydroxymethyl group).

Among hydroxymethyl indole compounds of the formula (III), a compound having a hydrogen atom at the 2-position of an indole ring can get a carbon functional group: R¹ (2-W-, Z-V-W-, Z-W-V- and Z-V-) introduced at the 2-position by means of the following method.

10 (Protection of hydroxymethyl group)

In this synthesis route, a compound (VII) can be obtained by protecting a primary hydroxymethyl group of hydroxymethyl indole of the formula (III) by means of a well known method. For example, protection of these alcohols can be conducted in accordance with the method 15 disclosed by T.W. Greene, P.G M. Wuts in " Protective Groups in Organic Synthesis" (1991). A protective group: R⁹ is preferably stable under basic conditions in the following step, examples of which include a substituted silyl group (such as trimethylsilyl, triethylsilyl, 20 triisopropylsilyl, dimethylisopropylsilyl, diethylisopropylsilyl, dimethylthexylsilyl, tbutyldimethylsilyl, t-butyldiphenylsilyl, tribenzylsilyl, tri-p-xylylsilyl, triphenylsilyl, diphenylmethylsilyl and t-butylmethoxyphenylsilyl), a substituted acyl group 25 (such as chloroacetyl, dichloroacetyl, trichloroacetyl, fluoroacetyl, difluoroacetyl, trifluoroacetyl and

pivaloyl), benzoyl, a substituted alkoxycarbonyl group (such as methoxycarbonyl, ethoxycarbonyl, t-butyloxycarbonyl and i-butyloxycarbonyl), and the like, particularly preferably triisopropylsilyl, t-

- butyldimethylsilyl, t-butyldiphenylsilyl and the like. When the protective group is t-butyldimethylsilyl, this reaction is conducted by using t-butyldimethylsilyl chloride in dimethylformamide in the presence of imidazole at room temperature in accordance with J. Amer.
- 10 Chem. Soc., vol. 94, P 6190 (1972). (Step b)

15

In Step b, at the 2-position of the indole ring of the compound (VII) thus obtained, a carbon functional group: Z-W-, Z-V-W- or Z-V- can be introduced in accordance with the method disclosed by A. R. Kartitzky, "Tetrahedron Letters" vol. 26(48), P5935 (1985).

A compound of the formula (VIII) means an electrophilic reagent which can be reacted with an indole ring metalated in step b. Examples of a substrate usable in such a reaction are illustrated below. For example, in the case of synthesizing a compound of the formula (VII) wherein W is $-CH_2-(R^d=H, R^e=H, m=1)$, a compound of the formula Z-A (A is $-CH_2-B$ (B is a leaving group in this reaction, such as a chlorine atom, a bromine atom, an iodine atom, methanesulfonyl, benzenesulfonyl and p-toluenesulfonyl) can be employed. When synthesizing a compound of the formula (VII) wherein W is $-C(=O)-(R^d=1)$

25

and R^e together form an oxo group and m=1), a compound of the formula Z-A (A is -C(=0)-B (B is a leaving group in this reaction, such as OH, OLi, ONa, OK, a chlorine atom, a bromine atom, an iodine atom and methoxymethylamino,

- preferably OK, a chlorine atom, a bromine atom and methoxymethylamino)) can be employed. In the case of synthesizing a compound of the formula (VII) wherein W is -C(OH)H- (Rd=H, Re=OH, m=1), a compound of the formula Z-A (A is -CHO) can be employed. In the case of
- synthesizing a compound of the formula (VII) wherein W is $-C(OH)R^{d}-(R^{d}=Me \text{ or }Ph, R^{e}=OH, m=1)$, a compound of the formula Z-A (A is $-C=O)-R^{d}$ ($R^{d}=M^{e}$ or Ph)) can be employed. In the case of synthesizing a compound of the formula (VII) wherein V is -S-, a compound of the formula Z-A (A is -S-S-Z) can be employed.

When synthesizing a compound of the formula (VII) wherein V is $-SO_2$ -, a compound of the formula Z-W-A or Z-A (A is SO_2 -B (B is an eliminated group in this reaction, such as a halogen atom, preferably a chlorine atom)) can be employed. When synthesizing a compound of the formula (VII) wherein W-V is CO-NH, a compound of the formula Z-A (A is -N=C=O) can be employed.

A compound of the formula (VIII) may be a commercially available reagent or can be synthesized by a well known method.

In this case, lithium tetrahydrofuran, sodium hydroxide, potassium hydroxide, lithium, sodium,

potassium, zinc, magnesium or copper, preferably s-butyl lithium or t-butyl lithium is used in an inert gas atmosphere such as nitrogen or argon. For example, in the case of using t-butyl lithium, the reaction is conducted at a temperature of from -100°C to 100°C, 5 preferably at -78°C, for 1 to 2 hours, and the reaction with a compound of the formula (VIII) is then conducted at −7**8°**C. Thereafter, the reaction temperature is returned to room temperature, and a saturated ammonium chloride aqueous solution is added thereto, and the 10 reaction mixture is heated at 80°C-120°C to obtain a compound of the formula (VII) or to isolate a carboxylic acid compound (VII) R^n =COOH by recrystallization, which is then heated at 80°C-200°C to conduct decarboxylation. (Deprotection of hydroxylmethyl group)

Deprotection of a primary hydroxylmethyl group is conducted by means of a well known method. For example, deprotection of these alcohols is conducted in accordance with the method disclosed by T.W. Greene, P.G.M. Wuts "Protective Groups in Organic Synthesis" (1991) to obtain 20 a compound (III) wherein \mathbb{R}^1 is introduced at the 2-When R^9 is t-butyldimethylsilyl, this reaction position. is conducted by using tetra-n-butylammonium fluoride in THF: Tetrahydrofuran at 0°C-30°C in accordance with the method disclosed in J. Amer. Chem. Soc., vol. 94, 25 P6190(1972).

15

Synthesis Route 3 Introduction of substituent \mathbb{R}^1 at the 2-position of indole

$$R^{2} \longrightarrow CO_{2}R^{5}$$

$$R^{1} \longrightarrow R^{n}$$

$$(IV)$$

$$(R^{1}=H, R^{n}=H)$$

$$R^{2} \longrightarrow R^{n}$$

$$(III)$$

$$(R^{1}=H, R^{n}\neq H)$$

$$R^{2} \longrightarrow R^{n}$$

$$(III)$$

$$(R^{1}=H, R^{n}\neq H)$$

$$R^{2} \longrightarrow R^{n}$$

$$R^{n} \longrightarrow R^{n}$$

(wherein R^1 , R^2 , R^3 , R^8 , R^9 , R^n , W and Z are as defined above).

Among alkoxycarbonyl indoles of the formula (IV), a compound having an indole ring having hydrogen at the 1-position and the 2-position can be converted to the corresponding hydroxymethyl indole (compound (III)) by introducing a carbon functional group: R¹ (Z-W-) by means of the following method.

The alkoxycarbonyl indole of the formula (IV) used 10 may be a commercially available reagent or may be obtained by esterifying indole carboxylic acid as a starting material by a well known method.

(Displacement of Rⁿ substituent)

5

In this synthesis route, firstly a substituent: R^{n} $(\neq H)$ is introduced at the 1-position of an indole ring of 15 alkoxycarbonyl indole (IV). Examples of \mathbb{R}^n include a $\mathbb{C}_1 C_7$ alkyl group, a C_1 - C_4 alkoxymethyl group, a C_1 - C_4 alkylaminomethyl group, a carboxyl group, a C_1-C_4 alkoxycarbonyl group, a C_1 - C_4 alkylaminocarbonyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkoxyalkylmethyloxy group, 20 an alkylsulfonyl group and an aryl sulfonyl group, preferably methyl, methoxymethyl, dimethylaminomethyl, carboxyl, t-butyloxycarbonyl, methylcarbamoyl, methoxy, methoxymethyloxy, mesyl, benzene sulfonyl, ptoluenesulfonyl, p-methoxybenzenesulfonyl, p-25 fluorobenzenesulfonyl and p-chlorobenzenesulfonyl, more preferably benzene sulfonyl. When R^n is $PhSO_2-$, this

reaction is conducted by using benzenesulfonyl chloride, sodium hydride and n-butyl lithium in dimethylformamide at 0°C- 100°C in accordance with the method disclosed by R.J. Sundberg, "J. Org. Chem." vol. 38(19), P3324 (1973). (Reduction of alkoxycarbonyl group)

The alkoxycarbonyl group of the compound (IV) thus obtained is reduced by using an appropriate reducing agent such as DIBAL: diisobutylaluminium hydride and LAH: lithium aluminum hydride by means of a well known method to obtain the corresponding hydroxymethyl indole (compound (III)). This reaction is conducted, for example, in THF at 0°C-50°C.

(Protection of hydroxymethyl group)

The primary hydroxymethyl group of the hydroxymethyl

indole (compound (III)) is protected by means of a well

known method to obtain a compound (VII). A protective

group: R⁹ should be preferably stable under basic

conditions in the following step, and the same protective

group as used in Synthesis Route 1 can be used. For

example, when a t-butyldimethylsilyl group is used, a

protective group can be introduced in the same manner as

in Synthesis Route 1.

(Step c)

In the compound (VII) thus obtained, a carbon

functional group R¹ can be introduced at the 2-position

of the indole ring in accordance with the method

disclosed by R.J. Sundberg, "J. Org. Chem.", vol. 38

(19), P3324 (1973).

In this reaction, a compound of the formula (VII) is reacted with a base to anionize the 2-position under an inert gas atmosphere such as nitrogen or argon in an aprotic organic solvent such as tetrahydrofuran, ether, 5 isopropyl ether, n-pentane, i-pentane, cyclopentene, nhexane, cyclohexane, HMPA: hexamethylphosphoric triamide, HMPT: hexamethylphosphorous triamide, N,N,N',N'tetramethylethylenediamine, dioxane, dimethylsulfoxide or dimethylformamide. Examples of the base used include n-10 butyl lithium, s-butyl lithium, t-butyl lithium, phenyl lithium, methyl lithium, LDA: lithium diisopropyl amide, potassium bis(trimethylsilyl)amide, calcium hydride, sodium hydride, potassium hydride, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, 15 lithium, sodium, potassium, zinc, magnesium or copper, preferably n-butyl lithium, s-butyl lithium, t-butyl lithium or LDA. For example, when t-butyl lithium is used, the reaction is conducted at a temperature of from -100°C to 100°C, preferably from -78°C to 0°C, for 10 to 20 120 minutes, and then the reaction with a compound of the formula (VIII) is conducted to introduce a carbon functional group at the 2-positon of the indole ring. compound of the formula (VIII) may be a commercially available reagent or may be synthesized in the same 25 manner as above.

(Deprotection of hydroxymethyl group)

The deprotection of a primary hydroxymethyl group is conducted by means of a well known method to obtain a compound (III) having \mathbb{R}^1 introduced at the 2-position. When \mathbb{R}^9 is t-butyldimethylsilyl, this reaction is conducted under the same conditions as in Synthesis Route 1.

Method for preparing intermediate (II)
Synthesis Route 1

Step d

R

R

R

R

CHO

R

(III)

(III)

$$(R^6 = H)$$

Step e

R

(III)

 $(R^6 = H)$
 $(R^6 = H)$
 $(R^6 = H)$

(wherein R^1 , R^2 , R^3 , R^6 and R^n are as defined above).

A carbonyl indole of the formula (II) is a well known compound or can be obtained by oxidizing a hydroxymethyl indole of the formula (III). This step is conducted by using an appropriate oxidizing agent (such as manganese dioxide, PCC: pyridiniumchlorochromate, PDC:

WO 96/26207 PCT/JP96/00403

pyridiniumdichromate, DDQ: dichlorodicyanobenzoquinone, chloranil, Swern oxidizing agent: oxalyl chloridedimethylsulfoxide-tertiary amine or sulfur trioxide-pyridine complex).

An example of using pyridine chromic acid complex as an oxidizing agent is disclosed in Japanese Examined Patent Publication No. 34986/1974.

.

A formylindole of the formula (II) ($R^6=H$) obtained by the above method can be converted to a carbonylindole of the formula (II) ($R^6\neq H$) by alkylating the formyl group with an appropriate alkylating agent.

This step can be conducted by the method using diazomethane as disclosed in "Tetrahedron Letters" P955 (1963) and "Chem. Ber." vol. 40, P479 (1907), the method using alkyl halide as disclosed in "Synth. Commun." vol. 14(8), P743 (1984) or the method using alkyl lithium as disclosed in "J. Org. Chem." vol. 30, P226 (1965).

Synthesis Route 2

Introduction of substituent \mathbb{R}^1 and formylation at the 2- positon of indole

Step f

1) Formylation

$$R^3$$
 R^n

CHO

 R^1
 $Z-W$
 (II)
 $(R^1=Z-W-,W=CHOH, R^n=MeO)$

20 (wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n , \mathbb{W} and \mathbb{Z} are as defined above).

Among formylindoles of the formula (II) $(R^6=H)$, a compound having a formyl group at the 2-position of an indole ring and having a carbon functional group R^1 at the 4-, 5-, 6- or 7-position can be synthesized by the following method.

A carbon functional group: \mathbb{R}^1 can be introduced in the indole nucleus by protecting a nitrogen atom at the

l-position of haloindole of the formula (IX) with a lower alkoxy group, particularly a methoxy group, conducting formylation at the 2-position, conducting metalation of the haloindole in the presence of a strong base and then reacting with an aldehyde compound of the formula (XI). (Reduction of indole ring)

A haloindole (IX) used as a starting material has a hydrogen atom at the 1-position and a halogen atom at the 4-, 5-, 6- or 7-position. The halogen atom is preferably

- bromine or iodine, more preferably bromine, and the haloindcle (IX) used is a commercially available reagent or can be synthesized by a well known method. The haloindole (IX) can be converted into the corresponding indoline (compound (X)) by reducing at the 2- and 3-
- positions of the indole ring, for example, by the method disclosed in "J. Amer. Chem. Soc. " vol. 96, P7812 (1974).

(Synthesis of methoxyindole by oxidation and methylation of indoline)

- The indoline (compound (X)) can be converted into the corresponding l-methoxyhaloindole (compound (IX)) by conducting oxidation and methylation at the 2-, 3- and l-positions in accordance with the method disclosed in Japanese Unexamined Patent Publication No. 31257/1991 (M.
- 25 Somei). This reaction is conducted by oxidizing with a 30% hydrogen peroxide aqueous solution in a methanol/water mixture solvent in the presence of

. 5

disodium tungstate dihydrate as a catalyst at 0°C and then methylating with diazomethane or dimethylsulfuric acid: potassium carbonate at room temperature.

(Step f)

- 1-methoxyhaloindole (compound (IX)) can be converted to the aimed formylindole (compound (II)) by conducting formylation at the 2-positon and then reacting with compound (VIII) in accordance with the method disclosed in "Heterocycles" by M. Somei, vol. 132, P221 (1991).
- The 2-position of 1-methoxyhaloindole is anionized by reacting with a base under an inert gas atmosphere such as nitrogen or argon in an aprotic organic solvent such as tetrahydrofuran, ether, isopropyl ether, n-pentane, ippentane, cyclopentane, n-hexane, cyclohexane, HMPA:
- hexamethylphosphoric triamide, HMPT:

 nexamethylphosphorous triamide, N,N,N',N'
 tetramethylethylene diamine, dioxane, dimethylsulfoxide

 or dimethylformamide. Examples of such a base include n
 butyl lithium, s-butyl lithium, t-butyl lithium, phenyl

 lithium, methyl lithium, LDA: lithium dilsopropyl amide,

 potassium bis(trimethylsilyl)amide, calcium hydride,

 sodium hydride, potassium hydride, potassium carbonate,

 lithium hydroxide, sodium hydroxide, potassium hydroxide,

 lithium, sodium, potassium, zinc, magnesium and copper,

 preferably phenyl lithium, n-butyl lithium and LDA: For

 example, when phenyl lithium is used, the reaction is

conducted for 10-120 minutes by lithium-modifying the 2-

position in tetrahydrofuran at a temperature of from -100°C to 100°C, preferably from -78°C to 0°C, and reaction with N,N'-dimethylformamide, N,N'methoxymethylformamide is then conducted for 5 to 120 minutes. Thereafter, the 5-position is anionized by 5 further reacting with a base at a temperature of from -100°C to 100°C, preferably from -78°C to 0°C. Examples of the base used include n-butyl lithium, s-butyl lithium, t-butyl lithium, phenyl lithium, methyl lithium, LDA: lithium diisopropylamide, potassium 10 bis(trimethylsilyl)amide, calcium hydride, sodium hydride, potassium hydride, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide,

lithium, sodium, potassium, zinc, magnesium and copper,
preferably s-butyl lithium and t-butyl lithium. For
example, when t-butyl lithium is used, after reacting for
lo to 120 minutes, reaction with the compound of the
formula (VIII) is conducted to obtain the aimed formyl
indole (compound (II)).

Synthesis Route 3

10

15

20

ì

(wherein R^1 , R^2 , R^3 , R^n , W and Z are as defined above).

Among formylindoles of the formula (II) $(R^6=H)$, an indole having a formyl group at the 2-position of the indole ring and having a carbon functional group: R^1 at the 4-, 5-, 6- or 7-position can be synthesized by the following method.

After protecting a nitrogen atom at the 1-position of a haloindole of the formula (IX) with a substituted silyl group, the haloindole is subjected to metalation in the presence of a strong base and was reacted with an aldehyde compound of the formula (VIII) to introduce a carbon functional group into the indole ring.

Thereafter, the silyl group at the 1-position is deprotected and the 2-position is formylated to obtain a formylindole (intermediate (II)).

The haloindole (IX) (R¹=Br, I, Rⁿ=H) used as a starting material has a hydrogen atom at the 1-position and a halogen atom at the 4-, 5-, 6- or 7-position. The halogen atom is preferably bromine or iodine, more preferably bromine and the haloindole used may be a commercially available reagent or may be prepared by a well known method.

(Introduction of substituent Rⁿ)

An appropriate substituent is introduced into the haloindole (IX) by a well known method. Examples of the substituent include a substituted silyl group, a C_1-C_7 acyl group, a C_1-C_4 alkoxycarbonyl group and a C_1-C_4

alkylaminocarbonyl group, preferably pivaloyl, t-butyl oxycarbonyl, t-butyl carbamoyl, triisopropylsilyl, tbutyldimethylsilyl and t-butyldiphenylsilyl, more preferably triisopropylsilyl, t-butyldimethylsilyl and tbutyldipnenylsilyl. (Step g)

5

The 5-position of the compound of the formula (IX) $(R^1=Br, T, R^n=H)$ is anionized by reacting with a base under an inert gas atmosphere such as nitrogen or argon in an aprotic organic solvent such as tetrahydrofuran, 10 ether, isopropyl ether, n-pentane, i-pentane, cyclopentane, n-hexane, cyclohexane, HMPA: hexamethylphosphoric triamide, HMPT: hexamethylphosphorous triamide, N,N,N',N'-

- tetramethylethylene diamine, dioxane, dimethylsulfoxide 15 or dimethylformamide, preferably tetrahydrofuran or Examples of the based used include n-butyl lithium, s-butyl lithium, t-butyl lithium, phenyl lithium, methyl lithium, LDA: lithium diisopropyl amide,
- potassium bis(trimethylsilyl)amide, calcium hydride, 20 sodium hydride, potassium hydride, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium, sodium, potassium, zinc, magnesium and copper, preferably n-butyl lithium, s-butyl lithium, t-butyl
- lithium and methyl lithium. For example, when t-butyl 25 lithium is used, the reaction is conducted in ether at a temperature of from -100°C to 100°C, preferably -78°C to

20

0°C, for 10 to 120 minutes, and the reaction product is further reacted with a compound of the formula (VIII) to obtain a compound (IX) $(R_1=Z-W-, W=CHOH, R^n=Si (iPr)_3)$. (Removal of R^n substituent)

A compound of the formula (IX) ($R^1=Z-W-$, W=CHOH, $R^n=Si(iPr)_3$) can be converted to a compound of the formula (IX) ($R^1=Z-W-$, W=CHOH, $R^n=H$) by reacting with tetra-n-butylammonium fluoride in tetrahydrofuran or ether at room temperature.

10 (Protection of hydroxy group)

A compound of the formula (IX) ($R^1 \neq Z = W = W = CHOH$, $R^n = H$) can be converted to a compound of the formula (IX) ($R^1 = Z = W = W = C(H)OSiMe_2 = Bu$, $R^n = H$) by reacting with tertiary butyldimethylsilyl chloride in the presence of imidazole in dimethylformamide.

(Formylation at the 2-position of indole ring)

A compound of the formula (IX) (R¹=7-W-, W=C(H)OSiMe₂t-Bu, Rⁿ=H) can be converted into a formylated product (II) by the method disclosed in "J. Am. Chem. Soc." of A. R. Katritzky, vol. 108, P 6808 (1986).

Synthesis Route 4

(wherein R^1 , R^2 , R^3 and R^n are as defined above).

The formylated product (II) can be obtained by reducing a cyano group of an indole of the formula (XIII). This step can be conducted by using an appropriate reducing agent (such as Raney nickel, nickel, sodium aluminum hydride, sodium triethoxyaluminum hydride, diisobutylaluminium hydride and tin chloride (II)).

An example of reducing an indole (XIII) by using 10 Raney nickel is described in Japanese Unexamined Patent Publication No. 151172/1986.

Method for preparing intermediate (XII)

(wherein R^1 , R^2 , R^3 , R^6 , R^{11} , Z and Hal are as defined above, and R^{13} is OR^{11} (R^{11} is as defined above) or C_1 – C_3 alkyl such as methyl, ethyl, n-propyl and i-propyl).

A halocarboxylic acid ester of the formula (XII) can be obtained by reacting a halomethylindole of the formula (VI) with a malonic acid ester or a lower acylacetic acid ester by a well known method to obtain a compound of the formula (XI) and halogenating the compound of the formula (XI) thus obtained.

The halomethylindole of the formula (VI) can be synthesized by the method disclosed in "Org. Prep. Proced. Int." vol. 25, P249 (1993). Thus, the halomethylindole of the formula (VI) can be obtained by 10 halogenating a hydroxymethylindole of the formula (III) with an appropriate halogenating agent (such as SOCl2, POCl3, PCl5, HCl, SnCl4, HBr, PBr4, Br4, POPr4, methanesulfonic acid chloride, pethluen##HlfHA1C Acid chloride, N-bromosuccinimide-triphenylphosphine and N-15 chlorosuccinimide-triphenylphosphine).

Among compounds of the formula (XI), a compound wherein R^{13} is C_1-C_3 alkyl, can be obtained by reacting a halomethylindole of the formula (VI) with a lower acylacetic acid ester such as methyl acetoacetate or ethyl acetoacetate in the presence of an appropriate base; (such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, sodium amide, potassium amide, diisopropylamide, butyl lithium, metallic sodium, potassium carbonate, sodium hydride, potassium hydride 25 and calcium hydride) in accordance with the method disclosed in "J. Amer. Chem. Soc." vol 64, P435 (1942).

20

WO 96/26207 PCT/JP96/00403

Among compounds of the formula (XII), a compound wherein R¹³ is OR¹¹, can be obtained by reacting a halomethylindole of the formula (VI) with a malonic acid ester such as diethyl malonate or di-t-butyl malonate in the presence of such a base as mentioned above, in accordance with the method disclosed in "J. Amer. Chem. Soc." vol 74, P831 (1952).

5

20

25

The step for preparing a compound of the formula (XII) is conducted by using an appropriate halogenating agent (such as bromine or N-chlorosuccinimide) in the presence of an appropriate base (such as potassium hydroxide, sodium methoxide or potassium carbonate) in accordance with the method disclosed in "J. Amer. Chem. Soc." vol 71, P3107 (1949) or "Tetrahedron Letters" vol. 28, P5505 (1987).

Also, a compound of the formula (XII) can be obtained by reacting a halomethylindole of the formula (VI) with a diazoacetic acid ester in the presence of a copper catalyst in accordance with the method disclosed in "Zur. Russ. Fiz-Chim." vol. 21, P851 (1951).

Among the above-mentioned compounds (II), (III), (VII) and (IX), the compound having a carbon functional group as \mathbb{R}^1 is a novel compound and is useful as an intermediate for preparing the compound of the formula (I).

Examples of the compound of the present invention are illustrated as compounds of the formulas (I-1) and (I-2)

WO 96/26207 PCT/JP96/00403

- 125 -

in Tables 1 to 10. Also, the above described salts derived by reacting basic nitrogen at the 3-position of the thiazolidine ring by means of a well known method are also the compounds of the present invention.

In the Tables, Me is a methyl group; Et is an ethyl group; Pr is a propyl group; Bu is a butyl group; Pen is a pentyl group; Hex is a hexyl group; Hep is a heptyl group; Ph is a phenyl group; n means "normal"; i means "iso"; s means "secondary"; t means "tertiary"; and c means "cyclo". Also, Ol to Q317 and J1 to J42 represent the following substituents.

—С—СН<u>—</u>СН−

Q75

Q78

Q81

Q84

Q87

Q90

Q83

Q89

Q77

Q82

Q85

Q88

Q91

Q 118 Q117 Q116 Me Q120 Q121 Q119 Me Me OMe -Me Me MeO Me Q123 Q122 Q124 C1'ΕtΟ CI Q127 Q126 Me OMe Q125 OMe F₃C Q130 Вг Q129 Q128 .OMc Me MeO Me Br ОМе Q133 OMe Q132 Q131 Me OMc MeO Q135 Q136 Me Q134 OMe OMe MeO

Q161 Q162 Q163 CI $\mathbf{M}\mathbf{c}$ Q165 Q164 Q166 OMe Μc Q167 Q168 Q160 Me Q170 Q171 Q172 CI OEt Q173 OEt Q174 Q175 O-n-Bu OEt Q176 Q177 Q178 OBn CF₃ OBn CI ÇŁ3 CI ÇI Q179 Q180 Q181 OMe OTBS MeO ĊI Q182 Q183 Q184 BrMe() OMe

$$\begin{array}{c|c}
R^6 & R^7 \\
R^4 & O \\
N & & NH \\
N & & X^2
\end{array}$$

In the above formula, x^1 , x^2 , R^4 , R^6 and R^7 are selected from the following Table 1. Table 1

	-					
• -		Х1	x²	? R'	a R	6 R ⁷
10	_	S	0	Н	н	н
		S	s	Н	Н	H
	(0	s	Н	Н	н
	c)	Ó	H	Ħ	н
15	5	5	0	Me	Н	H
	S	;	S	Me	н	н
	0		s	Me	Н	н
	0	()	Me	H	H
	s	C)	H	H	Me
20	s	2	3	Н	H	Me
	0	S	;	H	H	Me
	0	0	1	Н	Н	Me
	S	0		Me:	E	Me
	s	S		Me	H	Me
25	0	S		Me	н	Me
	0	0		Me	Н	Me

$$Ph = \begin{pmatrix} O \\ Me \\ N \end{pmatrix} \begin{pmatrix} Me \\ N \\ H \end{pmatrix} \begin{pmatrix} R^6 \\ N \\ N^2 \end{pmatrix}$$

In the above formula, X^1 , X^2 and R^6 are selected from the following Table 2.

Table 2

	χı	x ²	R ⁶	
10				
	S	0	H	
	S	S	н .	
	0	s	H	
	0	Ö	H	
15	ε	0	Me	
	S	s	Me	
	0	S	Me	
	0	O	Me	

$$Ph \xrightarrow{O \longrightarrow M1c} NH \qquad Ph \xrightarrow{O \longrightarrow M1c} NH \qquad NH$$

In the above formula, \mathbb{R}^n is selected from the following Table 3.

Table 3

	R ⁿ	Rn
10		
	Н	benzoyl
	Me	methoxycarbonyl
	ⁿ Bu	benzyloxycarbonyl
	ⁿ Hex	methylcarbamoyl
15	^c Pr	phenylcarbamoyl
	^c Hex	methoxy
	methoxymethyl	n-butoxy
	benzyloxymethyl	n-hexyloxy
	dimethoxyaminomethyl	methoxymethyloxy
20	acetamidemethyl	triisopropylsilyl
	methylthiomethyl	t-butyldiphenylsilyl
	carboxyl	methanesulfonyl
	formyl	benzenesulfonyl
	acetyl	-

- 146 -

In the above formula, \mathbb{R}^2 and \mathbb{R}^3 are selected from the following Table 4.

Table 4

5	R ²	R ³
	3-ОН	Ħ
	4-OH	н
	6-OH	н
10	7-OH	Н
	3-Me	Н
	3-MeO	Н
	3-PhCH ₂ O	H
	3-Ph	Н
15	3-C1	н

In the above formula, W is selected from the following Table 5.

Table 5

_				
	w	W	W	W
5 -				
	Jl	J12	J23	J34
	J2	J13	' J24	J3 5
	J3	J14	J25	J36
	J4	J15	J26	J37
0	J5	J16	J27	J38
	J6	J17	J28	J 39
	J 7	J18	J29	J40
	J8	J19	J30	J41
	J 9	J20	J31	J42
25	J10	J21	J32	
	Jll	J22	J33	

$$R^{1} \stackrel{N}{\stackrel{N}{\longrightarrow}} O$$

In the above formula, R^1 is selected from the following Table 6. 10

Table 6

 R^1

15 n-hexyl 1-hexenyl l-hexyn**yl** n-hexyloxy 2-hexenyloxy

20

n-hexylthio n-hexylamino N-methyl-N-n-hexylamino

•

In the above formula, Z and W are selected from the following Tables 7 to $\overline{22}$.

Table 7

5			z w	z	W	Z	W :	. Z	W
		Q1	. J l	Q21	J1	Q41	Jl	Q61	J 1
		Q2	J1	022	Jl	Q42	Jl		
		Q3	Jl			Q43			
10		Q4	Jl			Q44			
		Q5	Jl			Q45			
		Q6	Jĺ	Q26					
	(Q7		Q27					
			Jl			Q48 .			
15	C	29	Jl	Q29 .		Q49 3			
	C	010	Jl	Q30 J				Q70 J	
	Q	11	Jl	Q31 J	11	Q51 J	1	Q71 J	1
	Q	12	J1	Q32 J	1	Q52 J	1 (272 J	1
	Q	13	Jl	Q33 J	1	Q53 J	1 (273 J	1
20	Q.	14	J1	Q34 J	1 (Q54 J	1 (274 J.	1
	Q.	15	Jl (235 J	1 (255 J	ı ç	275 J.	l
	Ql	۱6	J1 (236 J	1 (Q56 J]	L Q	76 J]	L
	Q1	7	Jl ()37 J	()57 J1	. Q	נע 77	
				38 J1					
?5	Ql	9 3	JI Q	39 J1	0	59 J1	Q	79 Jl	
	Q2	0 3	71 . Q	40 J1	· Q	60 Jl	Qŧ	30 J1	

Ta	b	1	e	8
----	---	---	---	---

							_	
	Z	W	Z	W	7	,	w :	z k
5	Q81	Jl	Q101	· J1	Q121	Jl	Q14:	l J1
•	Q82	J1	Q102	Jl	Q122	Jl	0142	2 31
	Q83	Jl (2103	Jl	Q123	Jl	Q143	3 J1
	Q84	Jl (2104	Jl	Q124	Jl	Q144	Jl
	Q85	Jl (2105	Jl	Q125	Jl	Q145	Jl
10	Q86	Jl (2106	Jl	Q126	Jl	Q146	Jl
}	Q87	Jl (2107	Jl	0127	Jl	Q147	Jl
	Q88	Jl (0108	Jl	Q128	Jŀ	Q1 ₄₈	J1
	089	J1 (109	Jł	0129	31	01 49	3 3
	Q90	Jl Q	110	Jl	Q130	Jl	Q150	Jl
15	Q91	Jl Q	111	Jl	Q131	Jl	Q151	Jl
	Q92	Jl Q	112	Jì	Q132	Jl	Q152	Jl
	Q93	Jl Q	113	Jl	Q133	Jl	Q153	Jl
	Q94	Jl 🤉	114	Jl	Q134	Jl	0154	Jl
	Q95	Jl Q	115	Jl	Q135	Jl	Q155	Jl
20	Q96	Jl Q	116	Jl	Q136	Jl	Q156	Jl
	Q97	J1 Q	117	Jl	Q137	Jl	Q157	Jl
	Q98	J1 Q	118	Jl	0138	Jl	Q158	Jl
	099	J1 Q	119	Jl	Q139	Jl	Q159	Jl
	Q100	J1 Q.	120	Jl	Q140	Jl	Q160	Jl
25							 -	

Table 9

							
	Z W	z	W	Z	W	Z	W
5	Q161 J	l Q181	. J1	Q201	J1	Q221	Jl
	Q162 J	l Q182	Jl	Q202	J1	Q222	Jl
	Q163 J	l Q183	Jl	Q203	Jl	Q223	Jl
	Q164 J	l Q184	Jl	Q204	Jl	Q224	Jl
	Q165 J	Q185	Jl	Q205	Jl	Q225	Jl
10	Q166 J1	Q186	Jl	Q206	Jl	Q226	Jl
	Q167 J1	Q187	Jl	Q207 S	71	Q227	Jl
	Q168 J1	Q188	Jl	Q208 J	71	Q228	J1
	Q169 J1	Q189	Jl	Q209 J	11	Q229	Jl
	Q170 J1	Q190	J 1-	Q210 J	ı	Q230	Jl
15	Q171 J1	Q191	J1	Q211 J	1	Q231 .	Jl
	Q172 J1	Q192	Jl	Q212 J	1	Q232 J	71
	Q173 J1	Q193	Jl	Q213 J	1	0233	ול
	0174 J1	Q194	J1	O214 J	1	Q234 3	71
	Q175 J1	Q195	Jl	Q215 J	ı	Q235 J	1
20	Q176 J1	Q196 .	Jl	Q216 J	L	Q236 J	1
	Q177 J1	Q197 S	71	Q217 J1	L	Q237 J	1
	Q178 J1	Q198 J	J1	Q218 J1		Q238 J	1
	Q179 J1	Q199 J	rı	Q219 J1	. (Q239 J	1
	Q180 J1	Q200 J	1	Q220 J1	(Q240 J	1
25							

Table 10

	2 w	z w	Z W	z w
5	Q241 J1	0261 J1	Q281 J1	Q301 J
	Q242 J1	Q262 J1	Q282 J1	Q302 Ji
	Q243 J1	Q263 J1	Q283 J1	Q303 J1
	Q244 J1	Q264 J1	Q284 J1	Q304 J1
	Q245 J1	Q265 J1	Q285 J1	Q305 J]
10	Q246 J1	Q266 J1	Q286 J1	Q306 J1
	Q247 J1	Q267 J1	Q287 J1	Q307 J1
	Q248 J1	Q268 J1	Q288 J1	Q308 J1
•	Q249 J1	Q269 J1	Q289 J1	Q309 J1
	Q250 J1	Q270 J1	Q290 J1	Q310 J1
15	Q251 J1	Q271 J1	Q291 J1	Q311 J1
	Q252 J1	Q272 J1	Q292 J1	Q312 J1
	Q253 J1	Q273 J1	Q293 J1	Q313 J1
	Q254 J1	Q274 J1	Q294 J1	Q314 J1
	Q255 J1	Q275 J1	Q295 J1	Q315 J1
20	Q256 J1	Q276 J1	Q296 J1	Q316 J1
	Q257 J1	Q277 J1	Q297 J1	Q317 Ji
	Q258 J1	Q278 J1	Q298 J1	
		Q279 J1		
		Q280 J1		
25				

- 154 -

Table 11

			W	z 	W	Z	ผ	Z W	
5		Ql	J2	Q21	J2	Q41	J2	Q61 J2	_
		Q2	J2	Q22	J2	Q42	J2	Q62 J2	
		Q3	J2	Q23	J2	Q43	J2	Q63 J2	
		Q4	J2	Q24	J2	Q44	J2	Q64 J2	
		Q5	J2	·Q25	J2	Q45	J 2	Q65 J2	
10		Q6	J2	Q26	J2	Q46	J2	Q66 J2	
		Q7	J2	Q27	J2	Q47	J2	Q67 J2	
		Q8	J2	Q28	J2	Q48	J 2	Q68 J2	
		Q9	J2	Q29	J2	Q49	J2	Q69 J2	
	(D10	J₽	Q30 ,	J 2	Q50 J	72	Q70 J2	
15	(211	J2	Q31 3	72	Q51 J	J 2	Q71 J2	
	C)12	J2	Q32 J	72	Q52 J	72	Q72 J2	
	C)13 ,	J2	Q33 J	2	Q53 J	2	Q73 J2	
		14.	•)34 J		Q54 J		Q74 J2	
	Q	15 3	J2 ()35 J	2 (Q55 J	2 (Q75 J2	
20	Q.	16 J	'2 C	36 J	2 (Q56 J:	2 (276 J2	
				37 J:		257 J:	_)77 J2	
)58 J2		78 J2	
)59 J2		79 J2	
5 -	02	0 J:	2 Q	40 J2	0	60 J2	Q	80 J2	

Table 12

	z 	w z	w	· Z	W	z	W
5	Q81 J	2 Q101	J2	Q121	J2	0141	J2
	Q82 J	2 Q102	J2	Q122	J2	Q142	J2
	Q83 J	2 Q103	J2	Q123	J2	Q143	J2
	Q84 J	2. Q104	J2	Q124	J2	Q144	J2
	Q85 J2	Q105	J2	Q125	J2	Q145	J2
10	Q86 J2	Q106	J2	Q126	J2	Q146	J2
	Q87 J2	Q107	J2	Q127	J2	0147	J 2
	Q88 J2	Q108	J2	Q128	J2	Q148	J 2
	Q89 J2	Q10 9	J2	Q129 .	J2	Q149 .	J2
	Q90 J2	Q110	J2	Q130 J	J2 (Q150 .	J2
15	Q91 J2	Q111 .	J2	Q131 J	J2 (2151 .	J2
(Q92 J2	Q112 .	J 2	Q132 J	72 (2152	J 2
(⊋93 J2	0113	J 2 .	Q133 J	2 (2153	12
. (94 J2	0114	J2 (Q134 J	2 ()154 J	2
C)95 J2	Q115 J	72 (Q1.35 J	2 0)155 J	2
20 Q	96 J2	Q116 J	2 (2136 J	2 Q	156 J	2
0	97 J2	Q117 J	2 ()137 J	2 Q	157 J	2
0	98 J2	Oll8 J	2 ()138 J:	2 Q	158 J	2
Q	99 J2	Q119 J	2 C)139 J	2 Q	159 J:	2
Q.	100 J2	C120 J	2 Q	140 J2	2 Q:	160 J:	2
25 —							 -

Table 13

	z 	W	Z	W	Z	W	2	W
5	Ql	61 J2	Q181	l J2	Q201	J .2	Q221	J2
	Q16	52 J2	Q182	2 J2	Q202	J2	Q222	J2
	Q1 <i>6</i>	33 J2	Q183	J 2	Q203	J 2	Q223	J2
	Q16	64 J2	Q184	J2	Q204	J2	Q224	J2
	Q16	5 J2	Q185	J2	Q205	J2	Q225	J2
10	Q16	6 J 2	Q186	J2	0206	J2	Q226	J2
	Q16	7 J2	Q187	J2	Q207	J2	Q227	J2
	Q16	8 J2	Q188	J2	Q208	J2	Q228	J2
	Q169	9 J 2	Q189	J2	Q209	J2	Q229	J2
	Q170) J2	0190	J2	Q210	J2	Q230	J 2
15	Q171	. J2	Q191	J2	Q211 .	J2	Q231 .	J 2
	Q172	J2	Q192	J2	Q212 .	J2	Q232	72
	Q173	J2	Q193	J2	Q213 J	J 2	Q233 3	12
	Q174	J2	Q194	J2	Q214 J	J 2	Q234 J	12
	Q175	J2	Q195 .	J2	Q215 J	12	Q235 J	2
20	Q176	J2	Q196 J	J 2	Q216 J	2	Q236 J	2
	Q177	J2	Q197 3	72	Q217 J	2	Q237 J	2
	Q178	J2	Q198 J	72	Q218 J	2	Q238 J	2
	Q179	J2	Q199 J	12	Q219 J	2	Q239 J	2
	Q180	J 2	Q200 J	2 (Q220 J:		Q240 J:	
25							·· -	_

Table 14

								
	2	W	Z	w	z	W	z	W
5	Q241	J2 (261	J2	0281	J2	0301	J2
	Q242	J2 Ç	262	J2	Q282	J2	Q302	J2
-	Q243	J2 C	263	J2	Q283	J2	0303	J2
	Q244 .	J2 C	264	J2	Q284	J2	Q304	J2
	Q245	J2 C	265	J2	Q285	J2	Q305	J2
10	Q246 .	72 Q	266	J2	Q286	J2	Q306	J2
	Q247 J	72 Q	267	J2	Q287	J2	Q307	J2
	Q248 J	72 Q	268	J2	Q288	J2	Q308	J2
	Q249 S	72 Q	269	J 2	Q289	J2	Q309	J2
	Q250 J	2 Q	270	J2	Q290	J2	Q310	J2
15	Q251 J	· 2 Q	271 .	J 2	Q291	J2	Q311	J2
	Q252 J	2 Q	272 .	J2	Q292	J2	Q312	J2
	Q253 J	2 Q:	273	J2	Q293	J2 ·	Q313	J2
	Q254 J	2 Q:	274 3	J 2	Q294	J2	Q314	J2
	Q255 J	2 Q:	275 J	J2 ,	Q295	J2	Q315	J2
20	Q256 J	2 Q2	276 J	72	Q296	J2	Q316	J2
	Q257 J	2 Q 2	?77 J	12	Q297	J 2	Q317	J2
	Q258 J							
	Q259 J	2 Q2	179 J	12	Q299 i	J 2		
	Q260 J							
· c -								

25

- 158 -

Table 15

			z v	∛	z	W		z	W		Z	W	
5	ı	Q.	1 J	4 (Q2.	l J	1 Q	41	J4	Q	61	J4	
		Q:	2 J	4 (222	2 J 4	Q	42	J4	Q	62	J4	
		Q:	3 ј	4 (223	3 J4	Q	43	J4	Q	53	J4	
		Q4	J	4 (24	J4	Q4	14	J4	Qé	54	J4	
		Q5	J	4 C	25	J4	Q4	15	J4	Qé	5	J4	
10		Q6	J	4 C	26	J4	Q4	6	J4	Q6	6	J4	
		Q7	J	4 Q	27	J 4	Q4	7	J4	Q6	7	J4	
		Q8	J	Q	28	J4	04	8	J4	Ω6	8	J4	
		Q9	J4	Q	29	J4	Q4	9	J4	Q6	9	J4	
		Q1	0 J 4	•	30	J 4	120 F.	n 1	J 4				
15	(נגכ	. J4			J4	_			-			
	C	212	J4	Q3	2	J4	Q5 2	ز :	14	Q72	: J	4	
	C)13	J4	Q3	3	J4	Q53	J	۲4	Q73			
			J4				Q54			Q74			
	Q	15	J4	Q3						Q75			
20	Q	16	J4	Q3	6.	J 4	Q56	J	4	Q76			
	Q	17	J 4	Ō3.	7 3	74	Q57			Q77			
	Q.	18	J4	Q38	3 3	14	Q58						
							Q59			Q79			
							Q60						
25 .											J 4		

Table 16

	Z W	z w	z w	z w
5	Q81 J4	Q101 J4	Q121 J4	Q141 J4
	Q82 J4	Q102 J4	Q122 J4	Q142 J4
	Q83 J4	O103 J4	Q123 J4	Q143 J4
	Q84 J4	Q104 J4	Q124 J4	Q144 J4
	Q85 J4	Q105 J4	Q125 J4	Q145 J4
10	Q86 J4	Q106 J4	Q126 J4	Q146 J4
	Q87 J4	Q107 J4	Q127 J4	Q147 J4
	Q88 J4	Q108 J4	Q128 J4	Q148 J4
	Q89 J4	Q109 J4	Q129 J4	Q149 J4
	Q90 J4	Q110 J4	0130 J4 ·	Q150 J4
15	Q91 J4	Q111 J4	Q131 J4	Q151 J4
	Q92 J4	Q112 J4	Q132 J4	Q152 J4
	Q93 J4	Q113 J4	Q133 J4	Q153 J4
	Q94 J4	Q114 J4	Q134 J4	Q154 J4
	Q95 J4	Q115 J4	Q135 J4	Q155 J4
20	Q96 J4	Q116 J4	Q136 J4	Q156 J4
	Q97 J4	Q117 J4	Q137 J4	Q157 J4
	Q98 J4	Q118 J4	Q138 J4	Q158 J4
	Q99 J4	Q119 J4	Q139 J4	Q159 J4.
	Q100 J4	Q120 J4	Q140 J4	Q160 J4
ar .				

Table 17

			;	₩ ——		z Z	W		Z	1	W	2		W
5	5		61 .		Ωl	81	J	1	Q20	1 3	14	. Q2	21	J4
		Q1	62 J	14	Q1	82	J4	1 (Q20	2 J	4	Q2	22	J4
		Ql	63 J	4	Ql	83	J4	(220	3 J	4	Q2.	23	J4
		Qle	54 J	4	Ql	84	J4	Ç	220	4 J	4	Q2:	2 4	J4
		Qle	55 J	4	Q1	85	J4	C	209	5 J	4	Q22	25	J4
10		Q16	6 J	4	Q18	36	J4	Q	206	5 J		Q22		
		Q16	7 J	4	Q18	37	J4	Q	207	7 J4	1	Q22		
	. (Q16	8 J	1 .	Q18	8	J4	Q	208	J4	,	Q22		
	(216	9 J4	١ (218	9 ,	J4			J4		Q22		
	C	2170) J4	Ç	219	0.	J4			J4		Q23(
15	C)17]	J4	C)19.	1 3	14			J4				
	Q	172	J4		19:			-				2231		
			J4		193					J4	_)232	J	4
				_						J4		233	J	4
			J4					Q2	14	J4	Q	234	J.	4
			J4	Q.	195	J	4	Q2:	15	J4	Q	235	J	4
20	Q)	176	J4	Q.	196	J	4	Q2:	16	J 4	Q	236	J4)
	Q1	.77	J4	ړي	197	J	4	Q2]	١7 ،	J4	Q:	237	J4	ļ
	Q1	78	J4	Ql	98	·J4	1	Q21	. 8 .	J 4	Q	238	J 4	
	01	79	J4	Ql	99	J4	} (Q21	9 3	14				
25 -			J4									40		
_														

Table 18

	z 	W	Z	W	z	W	2	W
·· 5	Q241	J4	Q261	J4	Q281	J4	Q301	J4
	Q242	J4	Q262	J4	Q282	J4	Q302	J4
	Q243	J4	Q263	J4	Q283	J4	Q303	J4
	Q244	J 4	Q264	J4	Q284	J4	Q304	J4
	Q245	J4	Q265	J4	0285	J4	Q305	J 4
10	Q246	J4	Q266	J4	Q286	J4	Q306	J4
	Q247	J4	Q267	J4	Q287	J4	Q307	J4
	Q248	J4	Q268	J4	Q288	J4	Q308	J4
	Q2 4 9	J4	Q269	J4	Q289	J4	Q309	J4
	Q250	J4	Q270	J4	Q290	J 4	Q310	J4
15	Q251	J4	Q271	J4	Q291	J4	0311	J4
	Q252	J4	Q272	J4	Q292	J4	Q312	J4
	Q253	J4	Q273	J4	Q293	J4	Q3.13	J4
	Q254	J4	Q274	J4	Q294	J4	Q314	J4
	Q255	J4	Q275	J4	Q295	J 4	Q315	J4
20	Q256	J4	Q276	J4	Q296	J4	Q316	J4
	Q257	J4	Q277	J4	Q297	J4	Q317	J 4
	Q258	J4	Q278	J4	Q298	J4		
	Q259	J4	Q279	J4	Q299	J4		
	Q260	J 4	Q280	J4	Q300	J4		
25								

Table 19

	z	W	Z	W	Z	W	Z	W	
5	Ql	J5	Q21	J5	Q41	. J5	Q61	J5	
	Q2	J 5	Q22	J5	Q42	. J5	Q62	J5	
	Q3	J 5	Q23	J5	Q43	J 5	Q63	J5	
	04	J 5	Q24	J5	Q44	J5	Q64	J5	
	Q5	J5	Q25	J5	Q45	J5	Q65	J5	
10	Q6	J5	Q26	J5	Q46	J5	Q66	J5	
	Q7	J5	Q27	J5	Q47	J5	Q67	J 5	
	QB	J5	Q28	J 5	Q48	J5	Q68	J5	
	Q 9	J5	Q29		Q49	J5	969	J5	
	#1 ×	4 4 4	910	JI	520	JS	QPO	J5	
15	Q11	J 5	Q31 .	J5	Q51	J5	Q71 3	J5	
	012	J5	Q32 .	J 5	Q52	J5	Q72 3	75	
	Q13	J 5	Q33 3	7,5	Q53	J5	Q73 J	15	
	Q14	J 5	Q34 J	75	Q54	J5	Q74 J	5	
	Q15	J5	Q35 J	5	Q55 .	J5	Q75 J	5	
20	Q16	J5	Q36 J	5	Q56 J	J5 (Q76 J	5	
	Q17	J 5	Q37 J	5 (Q57 J	75 (277 J:	5	
	Q18	J5 (Q38 J	5 (258 J	15 (278 J:	5	
)39 J)59 J	•	79 J5		
	Q20 J	75 C)40 J	5 C	60 J		080 J5		
5 -								_	

Table 20

	Z v	₹ Z	W	Z	W	7	W
5	Q81 J	Q101	J5	Q121	J5	Q14:	L J5
	Q82 J5	Q102	J5	Q122	J5	0142	2 J5
	Q83 J5	Q103	J5	Q123	J 5	0143	J5
	Q84 J5	Q104	J5	Q124	J5	Q144	J5
	Q85 J5	Q105	J5	Q125	J 5	0145	J5
10	Q8 6 J5	Q106	J5	Q126	J5	0146	J5
	Q87 J5	Q107	J 5	Q127	J 5	Q147	J5
	Q88 J5	Q108	J5	Q128	J5	Q148	J5
	Q89 J5	Q109	J5	Q129	J5	Q149	J5
	Q90 J5	Q110	J 5	Q130	J5	Q150	J5
15	Q91 J5	Q111	J5	Q131	J5	Q151	J5
	Q92 J5	Q112	J5	Q132	J5	Q152	J5
	Q93 J5	Q113 .	J5	0133	J5	Q153	J 5
	Q94 J5	Q114 .	J 5	Q134	J 5	Q154	J5
	Q95 J5	Q115 3	75	Q135 .	J5	Q155	J 5
20	Q96 J5	Q116 S	75	Q136 .	J 5	Q156	J5
	Q97 J5	Q117 3	15	Q137 .	J5	Q157	J5
	Q98 J5	Q118 J	15	Q138 .	75	Q158	J5
	Q99 J5	Q119 J	'5 (0139	7 5	0159	J5
:5	Q100 J5	Q120 J	5 (D140 3	15	Q360	J5
)							

Table 21

				<u>-</u>			
	Z	พ	Z 4	7 2	W	Z	W
5	0161	J5 Q :	181 J	5 Q2	01 J5	Q221	J5
	Q162	J5 Q	182 J	5 Q 2	02 J5	Q222	J 5
	Q163	J5 Q:	183 J	5 Q2	03 J5	Q223	J5
	Q164 .	75 Q1	184 J	5 Q 20	04 J5	Q224	J 5
	Q165 .	75 Q1	.85 J	5 Q20)5 J5	Q225	J5
10	Q166 .	75 Q1	.в6 ј	5 Q20	6 J5	Q226	J 5
	Q167 3	5 Q1	.87 J	5 Q20	<i>ז</i> 5 לֹּו	Q227	J5
	Q168 J	75 Q1	88 J	5 Q20	8 J5	Q228	J5
	Q169 J	75 QÌ	89 J	5 Q20	9 J 5	0229	J5
	Q170 J	5 01	90 JS	021	0 J5	0230	J5
15	Q171 <i>-</i>	5 Q19	91 J5	Q21	1 J 5	Q231	J5
	Q172 J	5 Q19	92 J5	Q212	2 J5	Q232	J 5
•	0173 J	Q19	3 J5	Q213	J 5	Q233 .	J 5
	Q174 J5	Q19	4 J5	Q214	J 5	Q234 S	75
	Q175 J5	Q19	5 J 5	Q215	J 5	Q235 J	75
20	Q176 J5	Q19	6 J 5	Q216	J 5	Q236 J	5
	Q177 J5	019	7 J 5	Q217	J 5	Q237 J	5
	Q178 J5	Q198	3 J 5	Q218	J5 (Q238 J	5
	Q179 J5	Q199	J5 '	Q219	J5 (2239 J	5
!5 -	Q180 J5	Q200	J 5	Q220	J5 ()240 J	5

Table 22

	z 	w 	z	W	Z	W	z	W
5	Q241	J5	Q261	L _. J5	028	l J 5	Q301	J5
	Q242	J5	0262	2 J5	028	2 J 5	Q302	. J5
	Q243	J5	Q263	J 5	Q283	3 J5	Q303	J 5
	Q244	J5	Q264	J5	Q284	J 5	Q304	J5
	Q245	J5	Q265	J5	Q285	J 5	Q305	J5
10	Q246	J5	Q266	J5	Q286	J5	Q306	J5
	Q247	J5	Q267	J5	Q287	J5	Q307	J5
	Q248	J5	Q268	J5	Q288	J5	Q308	J5
	Q249	J 5	Q269	J5	Q289	J5	Q309	J5
	Q250	J 5	Q270	J5	Q290	J 5	Q310	J5
15	Q251 .	J5	Q271	J 5	Q291	J 5	Q311	J5
	Q252 .	J 5	Q272	J 5	Q292	J5	Q312	J5
	Q253 J	J 5.	Q273	J5	Q293	J5	0313	J5
	Q254 J	J 5.	Q274	J5	Q294	J5	Q314	J5
	Q255 3	J 5	0275	J5	Q295	J5	Q315	J5
20	Q256 3	<i>T</i> 5	Q276	J 5	Q296	J5	Q316	J5
	Q257 J	r 5	0277	J5	Q297	J5	Q317	J5
	Q258 J	15	Q278	J 5	Q298	J 5		
	Q259 J	5	Q279	J5	Q299	J5		
	Q260 J							
25 -						- <u>-</u>		

5

In the above formula, $R^{\mathbf{a}}$, $R^{\mathbf{b}}$ and $R^{\mathbf{c}}$ are selected from the following Table 23.

Table 23

10	R ^a F	t Rc	Rª	R♭	R ^c
•	2-Me F	н н	4 – Q E	33 H	Н
	3-Nu H)	3-0H	: н	H
	4-Me H	Ħ	3-04	Ħ	н
15	2-OMe H	H	4-OH	н	H
	3-OMe H	Н	2-F	Н	H
	4-OMe H	Н	3-F	Н	H
	2-Ph H	Н	4-F	Н	Н
	3-Ph H	Н	2-C1	Н	H
20	4-Ph H	H	3-C1	Н	Н
	4-011 H	Н	4-Cl	Н	Н
	4-Q18 H	Н	2-Br	Н	Н
	4-Q19 H	Н	3-Br	Н	Н
	4-Q49 H	Н	4-Br	Н	Н
25	4-Q13 H	Н	3-CF ₃	Н	Н
	4-OPh H	Н			
·					

In the above formula, R^a , R^b and R^c are selected from the following Table 24.

Table 24

10	Rª	R ^b	Ř a	R ^b	, Rª	R ^b
20	н	Me	Q6	Me	 Q14	Me
	Me	Me	Q85	Me	Q49	Me
	E t	Me	Q8 6	Ne	976	Мe
	n _{Pr}	Me	Q87	Me	Q13	Me
15	iPr	Me	Q10	Me	OPh	Me
	^t Bu	Me	Q88	Me	Q83	Me
	c _{Pr}	Me	Q89	Me	Ph	Н
	^c Hex	Me	Q 8	Me	Ph	Me
	Q84	Me	Q 90	Me	Ph	Et
20	Ph	Me	Q 91	Me	Ph	ⁿ Pr
	Ql	Me	4-Ph-Ph	Me	Ph	ⁱ Pr
	Q2	Me	011	Me	Ph	^t Bu
	Q3	Me	Q12	Me	Ph	cpr
	04	Me	Q18	Me	Ph	^c Hex
25	Q 5	Me	Q 19	Me	Ph	Ph
_					 	

In the above formula, R^{a} , R^{b} and R^{c} are selected from the following Table 25.

Table 25

	R ^a	Rb	R ^c		Rª	R ^b	R°
	H	Me	н	-	Q90	Me	н
5	Me	Me	Н		Q91	Me	н
	Et	Me	H		4-Ph-P	h Me	Н
	ⁿ Pr	Me	Н		011	Me	н
	ⁱ Pr	Me	н		012	Me	Н
	^t Bu	Me	н		Q18	Me	. Н
10	^c Pr	Me	Н		Q19	Me	н
	^c Hex	Me	н		Qİ4	Me	н
	Q84	Me	н		Q49	Me	Н
	Ph	Me	H		976	He	Ħ
	ΟJ	Ne	H		613	Me	H
15	02	Me	H		OPh	Me	H
	Q3	Me	H		Q83	Me	H
	Q4	Me	Н		Ph	H	H
	Q 5	Me	Н		Ph	Me	Н
20	Q6	Me	Н		Ph	Et	H
	Q85	Me	Н		Ph	n _{Pr}	н
	QB6	Me	Н		Ph	Pr	Н
	Q87	Me	H		Ph	^t Bu	Н
	Q10	Me	H		P'n	cpr	Н
	088	Me	H		Ph	^c Hex	Н
25	089	Me	H		Ph	Ph	Н
	Q8 ·	Me	н		Ph	Me	Me

5

10

15

As evident from the following test results, the compound (I) or its pharmaceutically acceptable salt of the present invention has a hypoglycemic activity, and can be used alone or in a mixture with a known pharmaceutically acceptable binder, excipient, lubricant or disintegrator, for preventing or treating diabetes mellitus of mammals including humans, mice, rats, rabbits, dogs, monkeys, cows, horses, pigs and the like. The compound (I) or its pharmaceutically acceptable salt of the present invention can also be used for preventing or treating diabetic complications including diabetic eye diseases (such as diabetic cataract and diabetic retinopathy), diabetic neuropathy, diabetic nephropathy, diabetic gangrene, and the like. The compound (I) or its pharmaceutically acceptable salt of the present invention can also be used in combination with various oral hypoglycemic agents such as insulin derivatives, sulfonylurea derivatives and biguanide derivatives, and

The compounds (I) of the present invention may be formulated into various suitable formulations depending upon the manner of administration. The compounds of the present invention may be administered in the form of free thiazolidindione or in the form of physiologically hydrolyzable and acceptable pharmaceutically acceptable salts (such as sodium salts or potassium salts).

aldose-reductase inhibitory agents.

The pharmaceutical composition of the present

invention is preferably administered orally in the form of the compound of the present invention by itself or in the form of powders, granules, tablets or capsules formulated by mixing the compound of the present invention with a suitable pharmaceutically acceptable carrier including a binder (such as hydroxypropyl cellulcse, syrup, gum arabic, gelatin, sorbitol, tragacanth gum, polyvinyl pyrrolidone or CMC-Ca), an excipient (such as lactose, sugar, corn starch, calcium phosphate, sorbitol, glycine or microcrystal cellulose powder), a lubricant (such as magnesium stearate, talc, polyethylene glycol or silica), and a disintegrator (such as potato starch).

However, the pharmaceutical composition of the present invention is not limited to such oral 15 administration and it is applicable for parenteral administration. For example, it may be administered in the form of e.g. a suppository formulated by using oily base material such as cacao butter, polyethylene glycol, lanolin or fatty acid triglyceride, a transdermal 20 therapeutic base formulated by using liquid paraffin, white vaseline, a higher alcohol, Macrogol ointment, hydrophilic ointment or hydro-gel base material, an injection formulation formulated by using one or more materials selected from the group consisting of 25 polyethylene glycol, hydro-gel base material, distilled water, distilled water for injection and an excipient

such as lactose or corn starch, or a formulation for administration through mucous membranes such as an ocular mucous membrane, a nasal mucous membrane and an oral mucous membrane.

The daily dose of the compound of the present invention is from 0.05 to 50 mg, preferably from 0.1 to 10 mg per kg weight of a patient, and it is administered from once to three times per day. The dose may of course be varied depending upon the age, the weight or the condition of illness of a patient.

EXAMPLES

Now, the present invention will be described in further detail with reference to Examples for preparation of the compounds of the present invention.

Pharmacological Test Examples and Formulation Examples.

However, it should be understood that the present invention is by no means restricted by such specific Examples.

Reference 1 Synthesis of hydroxymethylindole (Compound (III))

Synthesis Route 1

Synthesis of 5-hydroxymethylindole (III-1)

25

20

10.60 g (65.77 mmol) of 5-indolecarboxylic acid was

dissolved in 120 ml of tetrahydrofuran, and was cooled to 0°C. To the resultant mixture, 9.98 g (263.09 mmol) of lithium aluminum hydride was added little by little. After gradually rising reaction temperature to room

- temperature, a resultant mixture was heated under reflux for 30 minutes. To the resultant reaction mixture, were added little by little Celite, ethyl acetate, methanol and water in this order, and the mixture was quenched with an excess amount of a reducing agent. A resultant
- reaction mixture was filtrated by means of a small amount of silica gel. The solvent in the filtrate was removed by distillation under reduced pressure to obtain a 9.50 g (98.1%) of the subject compound (III-1).

Colorless plate-like crystals

Melting point: 58-58.5°C (solvent for recrystallization: diethylether/hexane)

60MHz 1 H-NMR(CDC1₃), δ :2.10(1H. brs), 4.60(2H. s), 6.35(1H dd. J=4.0 3.0Hz), 6.80-7.30(3H, m), 7.41(1H. brs), 8.22(1H. brs).

MS(EI) m/e:147(M^{*}), 130, 118.

20 Synthesis route 2

Synthesis of 2-benzyl-5-hydroxymethylindole %III-2)

25

5-t-butyldimethylsilyloxymethylindole (Compound (VII-1))

$$OSiMe2tBu$$
(VII-1)

5

9.50 g (65.55 mmol) of Compound (III-1) was dissolved in 40 ml of dimethylformamide dehydrated with molecular sieves, and 6.96 g (98.325 mmol) of imidazole and 11.85 g (78.66 mmol) of t-butyldimethylsilyl chloride were added thereto and were stirred at room temperature for 10 10 hours. After finishing the reaction, a saturated sodium chloride aqueous solution was added to the reaction solution, and the mixture was extracted with ethyl acetate to obtain an organic phase which was then washed with a saturated sodium chloride aqueous solution. washed organic phase was then dried with anhydrous sodium sulfate, and the residue obtained after removing a solvent by distillation under reduced pressure was subjected to silica gel column chromatography (eluent: ethyl acetate/hexane=1/4). The product thus obtained was 20 further recrystallized to obtain 13.05 g of the subject compound (VII-1).

Colorless plate-like crystals

Melting point: 48-49°C (solvent used for

recrystallization: diethylether/hexane)
60MHz 'H-NMR(CDCl₃), δ:0.10(6H, s), 0.92(9H, s), 4.75(2H, s), 6.40(1H, d
d, J=4.0, 3.0Hz), 6.92-7.35(3H, m), 7.45(1H, brs), 8.00(1H, brs),
MS(EI) m/e:261(M*), 246, 204, 130.

5

10

15

20

25

2-benzyl-5-t-butyldimethylsilyloxymethylindole (Compound (VII-2))

To an anhydrous tetrahydrofuran (5 ml) solution of 555.5 mg (2.1248 mmol) of Compound (VII-1), was dropwise added 1.3 ml (2.1248 mmol) of butyl lithium (1.6 M hexane solution) at -78°C, and the resultant mixture was stirred for 15 minutes. Dry carbon dioxide gas was passed through the reaction solution for 15 minutes. After fully removing carbon dioxide gas at a reaction temperature of 20°C, the reaction temperature was lowered to -78°C. After fully cooling, 2.8 ml (4.2496 mmol) of t-butyl lithium (1.54 M solution in pentane) was dropwise added thereto, and the resultant mixture was stirred for Thereafter, an anhydrous tetrahydrofuran (2 ml) 2 hours. solution of 726.9 mg (4.2496 mmol) of benzylbromide (Compound (VIII-1)) was added thereto at room temperature. After stirring the reaction mixture at -78°C for 30 minutes, the reaction mixture was further stirred at room temperature for 30 minutes and further stirred at a refluxing temperature of a solvent for 15 minutes. After terminating the reaction by adding methylene chloride and 2M hydrochloric acid to the reaction solution, an organic phase obtained was washed

with a saturated ammonium chloride aqueous solution.

After drying the organic phase thus obtained with anhydrous sodium sulfate, a residue obtained after removing a solvent by distillation under reduced pressure was subjected to silica gel column chromatography (eluent: ethyl acetate/hexane = 1/4) and was repeatedly subjected to a silica gel column chromatography (eluent: ethyl acetate/hexane = 1/15) to obtain 111.9 mg (15.0%) of the subject compound (VII-2).

10 Yellow oily material 60MHz 'H-NMR(CDCl₃), δ:0.10(6H, s). 0.92(9H, s). 4.00(2H, s). 4.72(2H, s). 6.18(1H, d, J=2.0Hz), 6.90-7.30(2H, m), 7.38(1H, brs), 7.51(1H, brs). MS (EI) m/e:351(M*), 294, 235, 220, 149.

In the same manner as above, electrophilic reagents (Compound (VIII)) were used to Compound (VII-1) in place of benzylbromide to synthesize the following compounds $(R^1, R^2 \text{ and } R^3 \text{ in the table correspond to the substituents of Compound (VII)).}$

10

$$\begin{array}{c|c}
R^{2} & R^{3} \\
R^{1} & N \\
H
\end{array}$$
(VII)

 $(R^{n}=H, R^{1}=W-Z, R^{9}=SiMc_{2}Bu^{1})$

Compound No.	R ¹	R ²	R ³	Electrophile (VIII)	Properties (mp °C)
VII-3	Ph—N	H,	H	Ph—N—I (VIII-2)	Coloriess needles (104-105)
VII-4	Ph-NN Me	н	н	Ph-N Me Me O OMe (VIII-3)	Yellow crystals (135-138)

15 Compound (VII-3)

60MHz 'H-NMR(CDCI₃), δ :0.90(6H, s), 0.92(9H, s), 2.27(3H, s), 3.96(2H, s), 4.75(2H, s), 6.21(1H, d, J=2.0Hz), 6.90-7.70(6H, m), 7.75-8.15(2H, m), 8.77(1H, brs).

MS(EI) m/e:432(M°), 417, 375, 301, 156, 105, 75.

20 Compound (VII-4)

60MHz 1 H-NMR(CDC1₃), δ :1.12(6H, s), 1.95(9H, s), 2.68(3H, s), 4.75(2H, s), 7.00-8.30(9H, m), 9.32(1H, brs).

MS(FD) m/e:446

2-benzyl-5-hydroxymethylindole (Compound (III-2))

To a tetrahydrofuran (5 ml) solution of 111.9 mg (0.3183 mmol) of Compound (VII-2), was added a tetrahydrofuran (1 ml) solution of 166.4 mg (2.041 mmol) of tetra-n-butylammonium fluoride. After stirring the resultant mixture at room temperature for 3 hours, 156.4 5 mg (2.041 mmol) of tetra-n-butyl ammonium fluoride was further added thereto and was stirred at room temperature for 2 hours. The resultant reaction solution was extracted by adding 2M-hydrochloric acid, water and chloroform. An organic phase obtained was dried with 10 anhydrous sodium sulfate, and a residue obtained after removing a solvent under reduced pressure was subjected to silica gel column chromatography (eluent: ethyl acetate/hexane = 1/1) to obtain 57.7 mg (76.4%) of the subject compound (III-2). 15

Yellow crystals

60MHz 'H-NMR(CDC1₃), δ:1.75(1H, s), 4.00(2H, s), 4.62(1H, s), 6.20(1H, d. J=2.0Hz), 7.00-7.35(2H, m), 7.39(1H, brs), 7.83(1H, brs).

In the same manner as above, Compound (VII-3 and VII-20 4) were used to synthesize the following compounds (\mathbb{R}^1 , \mathbb{R}^2 and \mathbb{R}^3 in the Table correspond to the substituents of Compound (III)).

$$\begin{array}{c|c}
R^2 & & \\
R^1 & & \\
H & &
\end{array}$$
(111)

 $(R^n=H, R^1=W-Z)$

5

10

Compound No.	RI	R ²	R ³	Properties (mp °C)
III-3	Ph—N—Me	н	Н	Pale yellow needles (104-105)
III4	Ph-NN Mc	Н	Н	Pale yellow needles (225-226)

Compound (III-3)

60MHz 'H-NMR(CDCl₃), &: 2.09(1H, brs), 2.22(3H, s), 3.89(2H, s), 4.62(2H, s), 6.18(1H, brs), 6.80-7.60(6H, m), 7.70-8.10(2H, m), 8.92(1H, brs), MS(EI) m/e:318(M*), 301, 287, 275, 172, 147, 130, 115, 105, 77.

Compound (III-4)

500MHz 'H-NMR(DMSO-d₄), δ: 2.65(3H. s), 4.58(2H. d, J=5.6Hz), 5.15(1H. t. J=5.6Hz), 7.31(1H. dd, J=8.5, 1.0Hz), 7.48(1H. d. J=8.5Hz), 7.53(1H. t. J=7.3Hz), 7.66(2H. t. J=7.3Hz), 7.73(1H. s), 7.96(1H. d. J=1.0Hz), 8.20 (2H. d. J=7.3Hz), 11.92(1H. brs)

MS(EI) m/e:332(M*), 315, 301, 285, 186, 174, 156, 144, 128, 117, 91, 77

Synthesis Route 3

25 Synthesis of 1-benzenesulfonyl-5-hydroxymethyl-2-(2-phenyl-5-methyloxazole-4-yl) methylindole (Compound III-5)

5 Methyl 5-(1-benzenesulfonyl)indolecarboxylate

1.0470 g (6.4966 mmol) of 5-indolecarboxylic acid was dissolved in 10 ml of acetone and was reacted with an excess amount of diazomethane at room temperature. After finishing the reaction, a residue obtained by removing a solvent under reduced pressure was subjected to silica column chromatography (eluent: ethyl acetate/hexane = 1/2) to obtain 1.1123 g (97.7%) of methyl 5-indolecarboxylate.

Colorless crystals.

60MHz 'H-NMR(CDCI₃), &:3.78(3H, s), 6.52(1H, dd, J=3.0, 3.0Hz), 7.12(1H 20 d, J=3.0Hz), 7.28(1H, d, J=9.0Hz), 7.82(1H, dd, J=9.0, 2.0Hz), 8.30(1H d, J=2.0Hz), 8.51(1H, brs).

MS(EI) $m/\epsilon:175(M)^*$, 149, 144, 116.

67.8 mg (2.8262 mmol) of sodium hydride was suspended in 2 ml of dimethylformamide dehydrated with molecular sieves. To the suspension thus obtained, was added a molecular sieves-dehydrated dimethylformaldehyde (5 ml) solution of 412.6 mg (2.3552 mmol) of methyl 5-

ż

indolecarboxylate at room temperature. After stirring the resultant mixture for 40 minutes, a molecular sieves—dehydrated dimethylformaldehyde (2 ml) solution of 832.0 mg (4.7104 mmol) of benzenesulfonyl chloride was added thereto at room temperature and was stirred for 2 hours. Water was added to the reaction solution and the reaction solution was extracted with ethyl acetate to obtain an organic phase which was then washed with a saturated sodium chloride aqueous solution. The washed organic phase was dried with anhydrous sodium sulfate, and a residue obtained by removing a solvent under reduced pressure was washed with hexane to obtain 729.9 mg (98.3%) of the aimed methyl 5-(1-benzenesulfonyl)indolecarboxylate.

15 Colorless crystals

Melting point: 149-149.5°C (solvent used for

recrystallization: benzene)

60MHz 'H-NMR (CDCl₃), δ :3.90(3H, s), 6.67(1H, d, J=5.0Hz), 7.20-8.40(9H,

m).

MS(EI) π/e:315(M^{*}), 284, 174, 159, 143, 115

20

1-benzenesulfony1-5-hydroxymethylindole

508.7 mg (1.6131 mmol) of methyl 5-(1-benzenesulfonyl)indolecarboxylate was dissolved in 5 ml of tetrahydrofuran dehydrated with molecular sieves and

6.32 ml (3.2263 mmol) of diisobutylaluminium hydride (1.02 M toluene solution) was gradually dropwise added thereto at room temperature and the resultant mixture was stirred at room temperature for 30 minutes. resultant reaction solution, were added Celite, water and 5 ethylacetate in this order, and the resultant reaction solution was filtrated by a filter paper and the filtrate was washed with a saturated sodium chloride aqueous solution. An organic phase obtained was dried with anhydrous sodium sulfate, and a residue obtained by 10 removing a solvent under reduced pressure was then filtrated by silica gel to obtain 508.8 mg of aimed material. The compound thus obtained was used in the following reaction without further purifying.

15 Colorless oily material

60MHz 'H-NMR(CDCl₃), δ:4.65(2H, brs), 6.55(1H, d, J=5.0Hz), 7.00-8.10(9N. m).

MS(EI) m/e:287(M*), 270, 141, 129, 118, 91, 77.

1-benzenesulfonyl-5-t-butyldimethylsilyloxymethylindole

20 (Compound (VII-5))

$$OR^9$$

$$(VII-5)$$

$$SO_2Ph$$

$$R^9=SiMe_2Bu'$$

508.8 mg (1.6131 mmol) of 1-benzenesulfony1-5hydroxymethylindole was dissolved in 5 ml of dimethylformamide dehydrated with molecular sieves, and

164.7 mg (2.4197 mmol) of imidazole and 486.2 mg (3.2262 mmol) of t-butyldimethysilyl chloride were added thereto and the resultant mixture was stirred at room temperature for 16 hours. After finishing the reaction, the saturated sodium chloride aqueous solution was added to 5 the resultant reaction solution and the resultant reaction solution was extracted with ethyl acetate to obtain an organic phase which was then washed with a saturated sodium chloride aqueous solution. The organic phase thus obtained was dried with anhydrous sodium 10 sulfate, and a residue obtained by removing a solvent under reduced pressure was subjected to a silica gel column chromatography (eluent: ethyl acetate/hexane = 1/4) to obtain 611.9 mg (94.5%) of the subject compound 15 (VII-5)

Colorless oily material

60MHz 1 H-NMR (CDCI₃), δ :0.07(6H, s), 0.90(9H, s), 4.70(2H, s), 7.00-8.00 (9H, m).

1-benzenesulfony1-2-(2-pheny1-5-methyloxazole-4-

$$OR^9$$
 (VII-6)
 $R^n = SO_2Ph$, $R^9 = SiMe_2Bu^1$)

25

To an anhydrous tetrahydrofuran (2 ml) solution of 167.1 mg (0.4161 mmol) of Compound (VII-5), was dropwise

added 0.35 ml (0.5409 mmol) of t-butyllithium (1.54 M $\,$ solution in pentane) at -12°C. After rising the reaction temperature to room temperature, the reaction mixture was stirred for 30 minutes, and 248.9 mg (0.8322 mmol) of 2phenyl-5-methyloxazole-4-ylmethyl iodide (Compound (VIII-5 2)) and anhydrous tetrahydrofuran (2 ml) solution were added thereto at room temperature. After stirring the mixture for 1 hour, water was added to the reaction solution and the reaction solution was extracted with ethyl acetate to obtain an organic phase which was then 10 washed with a saturated sodium chloride aqueous solution. The organic phase thus obtained was dried with anhydrous sodium sulfate, and a residue obtained by removing a solvent under reduced pressure was subjected to a silica gel column chromatography (eluent: ethyl acetate/hexane 15 = 1/7) repeatedly to obtain 160.9 mg (67.5%) of the subject compound (VII-6).

Light-yellow oily material

60MHz 'H-NMR (CDCI3), δ:0.12(6H, s), 0.90(9H, s), 2.22(3H, s), 4.22(2H, s).

20 4.72(2H, s), 6.27(1H, s), 6.80-8.20(13H, m).

MS(EI) m/ϵ :572(M*), 515, 441, 374, 299, 105.

l-benzenesulfonyl-2-(2-phenyl-5-methyloxazole-4-

yl)methyl-5-hydroxymethylindole (Compound (III-5))

25
$$Ph \longrightarrow N$$
 N OH $(III-5)$ $(R^n = SO_2Ph)$

To a tetrahydrofuran (1 ml) solution of 46.9 mg

(0.0819 mmol) of Compound (VII-6), was added 0.5 ml of
tetran-butylammonium fluoride (1M THF solution). After
stirring the resultant mixture for 1 hour at room
temperature, the water was added to the resultant
reaction solution and the reaction solution was extracted
with chloroform. An organic phase obtained was dried
with anhydrous sodium sulfate, and a residue obtained by
removing a solvent under reduced pressure was subjected
to silica gel column chromatography (eluent: ethyl
acetate/hexane = 1/2) to obtain quantitatively 39.5 mg of
the subject compound (III-5).

Light-yellow oily material

60MHz ¹H-NMR(CDCl₁), δ:3.22(3H, s), 4.22(2H, s), 4.66(2H, s), 6.28(JH, s), 6.80-8.30(13H, m).

MS(EI) m/e:458(M*). 317. 300. 287. 245. 217. 195. 154. 105. 77.

Reference Example 2 Synthesis of formylindole (Compound II)

20 Synthesis Route 1

Synthesis of 5-formylindole (II-a-1)

25

750.2 mg (5.0971 mmol) of 5-hydroxymethylindole (Compound (III-1)) was dissolved in 14 ml of

tetrahydrofuran, and 4.4314 g (50.971 mmol) of activated manganese dioxide was added thereto and the resultant mixture was heat-refluxed for 17 hours. After the reaction mixture was filtrated to remove an oxidizing agent residue, yellow brown crystals (657.0 mg) obtained were subjected to silica gel column chromatography (eluent: ethyl acetate/hexane = 1/1) to obtain 602.6 mg (81.4%) of the subject compound (II-a-1) Light yellow crystals Melting point: 95-96°C

- 10 60MHz 'H-NMR(CDCl₃), &:6.50(1H, dd, J=3.0, 2.0Hz), 7.18(1H, d, J=3.0Hz), 7.36(1H, d J=9.0Hz), 7.68(1H, dd, J=9.0, 1.0Hz), 8.05(1H, brs), S.75(1 H, brs), 9.90(1H s).

 MS(EI) m/e:145(M)*, 116, 89.
- In the same manner as above, the following compounds were synthesized (\mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^n in the table correspond to the substituents of Compound (II)).

$$R^{2} \xrightarrow[R^{1}]{N} CHO$$

$$R^{1} \xrightarrow[R^{n}]{N}$$

5	Compound No.	R ¹	R ²	R ³	Rn	Starting material (III)	Properties (mp °C)
3	II-a-2	2- (Ph)	Н	Н	н	III-2	Yellow crystals (108-109)
10	II-a-3	2- (Ph-Nie)	Н	н	Н	111-3	Pale yellow crystals (127-128)
		2- Ph-NN Me					Pale yellow powder (258.5- 259.5)
	Il-a-5	2- (Ph N Me	н	Н	SO ₂ Ph	111-5	Yellow amorphous
15							

Compound (II-a-2)

60MHz 1 H-NMR(CDC1₃), δ :4.08(2H, s), 6.36(1H, brs), 6.88-7.50(6H, m), 7.5 8(1H, dd, J=9.0, 2.0Hz), 7.97(1H, brs), 8.30(1H, brs), 9.85(1H, s). MS(EI) m/e:235(M $^{+}$), 206, 158, 129, 115, 102, 91, 77.

20 Compound (II-a-3)

60MHz ¹H-NMR(CDC1₃), δ:2.27(3H, s), 3.92(2H, s), 6.35(1H, brs), 7.10-8.0 5(8H, m), 9.55(1H, brs), 9.81(1H, s).

MS(EI) m/e 316(M*). 287. 273. 170. 115. 105. 77.

Compound (II-a-4)

500MHz 'H-NMR(DMSO-d₄), δ: 2.67(3H, s), 7.54(1H, t, J=7.3Hz), 7.66(1H, d J=9.8Hz), 7.70(2H, t, J=7.8Hz), 7.84(1H, dd, J=9.8, 1.0Hz), 8.21(2H, d J=7.8Hz), 8.24(1H, s), 8.49(1H, d, J=1.0Hz), 10.02(1H, s, -CHO), 12.45 (1h, brs).

MS(EI) m/ϵ :330(M*), 301, 172, 117, 91, 77.

Compound (II-a-5)

60MHz 1 H-NMR(CDC1₃), &:2.27(3H, s), 4.26(2H, s), 6.42(1H, s), 7.10-8.40 (13H, m), 9.92(1H, s).

10 MS(EI) m/e:456(M*), 315, 105, 77.

Synthesis Route 2

Synthesis of 2-formyl-5-(1-hydroxybenzyl)-1-methoxyindole (Compound (II-a-6))

2-formylindole (Compound (II-b)) can be obtained by
conducting formylation at the 2-position of 5-bromo-lmethoxyindole synthesized through 5-boromoindoline using
5-bromoindole as a starting material.

1.09 g (5.5598 mmol) of 5-bromoindole was dissolved in 20 ml of acetic acid, and 2.1 g (33.3 mmol) of sodium cyanoborohydride was added little by little thereto at room temperature. After stirring the resultant mixture at room temperature for 20 minutes, acetic acid was

removed by distillation. 40% sodium hydroxide was then added thereto, and the resultant reaction solution was completely neutralized with acetic acid and was extracted with ethyl acetate. After an organic phase obtained was dried with anhydrous sodium sulfate, a residue obtained by removing a solvent by distillation under reduced pressure was subjected to silica gel column chromatography (eluent: ethyl acetate/hexane = 2/1) to obtain 904.2 mg (82.1%) of 5-boromoindoline.

10 Colorless oily material

60MHz 1 H-NMR(CDC1₃), δ :2.90(2H. brt. J=8.0Hz). 3.42(2H. brt. J=8.0Hz) 3 42(1H. brs). 6.30(1H. d. J=9.0Hz), 6.95(1H. dd. J=9.0. 2.0Hz), 7.01(1H. d. J=2.0Hz).

MS(EI) m/e:199(M*), 197(M*), 117, 89.

15 5-bromo-1-methoxyindole (Compound (IX-1))

- 20 904 2 mg (4.565 mmol) of 5-bromoindoline was converted by the method disclosed in "Heterocycles" by M. Somei and T. Kawasaki, 1989, 29, 1251 to 739.3 mg (3.2701 mmol, 71.6%) of the subject compound (IX)-1). Colorless column-like crystals
- 25 Melting point: 44-45°C 500MHz H-NMR(CDCl₃), δ:4.08(3H, s), 6.29(1H, d, J=3.4Hz), 7.25(1H, d, J=3.4Hz), 7.31(1H, brs), 7.71(1H, brs). MS(EI) m/e:227(M*), 225(M*) 212, 210, 196, 194, 115, 88.

WO 96/26207 PCT/JP96/00403

- 190 -

2-formyl-5-(l-hydroxybenzyl)-l-methoxyindole (Compound (II-b-6))

To an anhydrous tetrahydrofuran (5 ml) solution of 492.9 mg (2.1802 mmol) of Compound (IX-1), was dropwise added 2.35 ml of phenyl lithium (1.02 M solution in 10 ether-cyclohexane, 2.3982 mmol) at -16°C under argon atmosphere. After 15 minutes, 159.4 mg (2.1802 mmol) of anhydrous dimethylformamide was added thereto. After the resultant mixture was stirred at -16°C for 15 minutes as it was, the reaction temperature was lowered to -78°C. 15 After fully lowering the reaction temperature, 2.02 ml of t-butyl lithium (1.61 M solution in pentane, 3.2703mmol) was dropwise added thereto. After 10 minutes, 0.66 ml (6.5406 mmol) of benzaldehyde (Compound (VIII-4)) was added thereto, and the resultant mixture was stirred for 20 10 minutes. 20 ml of water was added to the resultant reaction mixture, and the reaction mixture was extracted with ethyl acetate to obtain an organic phase. organic phase thus obtained was washed with a saturated sodium chloride aqueous solution, and the washed organio 25 phase was dried with anhydrous sodium sulfate. Thereafter, the residue obtained by removing a solvent by

distillation under reduced pressure was subjected to a silica gel column chromatography (eluent: ethyl acetate/hexane = 1/3) to obtain 494.7 mg (80.7%) of the subject compound (II-b-6).

- 5 Light-yellow oily material 500MHz 'H-NMR(CDCl₃), & :2.32(1H. brs), 4.15(3H. s), 5.95(1H. s), 7.09(1H. d. J=0.7Hz), 7.28(1H. brt, J=8.0Hz), 7.35(2H. brt, J=8.0Hz), 7.41(2H. brd, J=8.0Hz), 7.43(1H. dd, J=9.0, 1.5Hz), 7.46(1H. ddd, J=9.0, 1.5, 0.7Hz), 7.73(1H. dd, J=1.5, 0.7Hz), 9.90(1H. s).
- 10 MS(EI) m/e: 281(M⁺), 264, 176, 148, 117, 105, 77.

In the same manner as above, electrophilic reagents (Compound (VIII)) were used in place of benzaldehyde to synthesize the following compounds (R¹, R², R³ and Z in the table correspond to the substituent of Compound (II-b)).

$$\begin{array}{c}
R^{3} \\
R^{2} \\
R^{1}
\end{array}$$
CHO
$$(11-b)$$

			•	
Compound No.	R [†]	R^2 R^3 R^n	Electrophile (VΠI)	Properties (mp °C)
11-6-7		н `НН МеО	VIII-5	Yellow oil
11-6-8	OH OH	н н меО	VIII-6	Pale yellow plates (168-168.5)
Il-b-9 Ph-	N N O	н н меО	Ph-NNMe Me Me O OMe VIII-3	Colorless needles (176.5-177.5, decomp.)
II-b-10 P	HO Ph	н н меО	Ph Ph VIII-8	Pale yellow plates (147-148)
(1-6-11	ОН	Н Н МеО	O O H	Yellow oil
Ne Ne	Me OH	H MeO	Me OHII-10	Yellow oil

Compound No	R!	R ²	R ³	R٩	Electrophile (VIII)	Properties (mp °C)
П-Б-13	РОН	Н	н	MeC	VIII-II	
11-b-14	MeO	н	н	MeO	NIeO VIII-12	H Yellow oil
II-b-15	ОН	Н	Н	MeO	УШ-13	Yellow oil
11-6-16	rbso OH	н	Ħ	CMP4	TASEL VIII-14	Yellere ell
II-b-17	H	н	Н	MeO	N=C=0 VIII-15	Pale yellow needles (162 5-163.5)

Compound (II-b-7)

500MHz 'H-NMR(CDCl₃), δ:2.39(1H, brs), 4.15(3H, s), 6.12(1H, brs), 7.0 (1H, s). 7.40-7.52(4H, m). 7.72-7.80(3H, m). 7.94(1H, brs), 9.91(1H, s) MS(EI) m/e: 331(M*), 314, 299, 283, 270, 254, 241, 226, 215, 202, 172, 5 55. 127. 116. 101, 89.

Compound (II-b-8)

500MHz 'H-NMR(DMS0-d₆), δ :4.09(3H, s), 6.10(1H, d, J=3.9Hz), 6.29(1H, d J=3.9Hz), 7.35(1H, s), 7.51(1H, d, J=8.0Hz), 7.55(1H, d, J=8.0Hz), 7.5 (1H, dd, J=8.0 8.0Hz), 7.71(1H, dd, J=8.0, 8.0Hz), 7.89(1H, s), 7.98(1H

d. J=9.0Hz), 7.99(1H, d. J=9.0Hz), 8.33(1H, brs), 8.90(1H, d. J=1.0Hz). 10 9.91(1H, s).

MS(EI) m/e: 332(M⁺), 315, 255, 245, 202, 156, 128, 117. Compound (II-b-9)

500MHz 'H-NMR(CDCI₃), δ :2.72(3H, s), 4.24(3H, s), 7.32(1H, s), 7.41(1H.

brt. J=7.6Hz), 7.52(2H, brt. J=7.6Hz), 7.63(1H, dd, J=8.8, 0.7Hz), 8.12 (2H, brd, J=7.6Hz), 8.39(1H, dd, J=8.8, 1.5Hz), 8.86(1H, dd, J=1.5, 0.7Hz z), 9.98(1H, s).

MS(EI) m/e 360(M*), 329, 310, 202, 186, 172, 143, 115, 91, 77. Compound (II-b-10)

500MHz 'H-NMR(CDC1₃), δ:2.86(1H, brs), 4.17(3H, s), 7.04(1H, s), 7.26-7 37(10H, m), 7.45-7.48(2H, m), 7.50-7.52(1H, m), 9.89(1H, s). MS(EI) m/e: 357(M*). 280, 249, 220, 202, 183, 165, 143, 116, 105, 89, 77.

Compound (II-b-11)

500MHz 'H-NMR(CDC1₃), δ:2.25(1H, brs), 4.16(3H, s), 5.87(1H, brs), 5.93

(1H. d. J=1.0Hz), 5.94(1H. d. J=1.0Hz), 6.78(1H. d. J=7.8Hz), 6.88(1H. d. d. J=7.8. 1.0Hz), 7.10(1H, s), 7.42 (1H, dd. J=8.6, 1.0Hz), 7.47 (1H, d. J=8.6Hz), 7.73 (1H, d, J=1.0Hz), 9.91 (1H, s).

MS(EI) m/e: 325(M*), 308, 277, 202, 172, 149, 122, 93.

Compound (II-b-12)

500MHz 'H-NMR(CDCl₃), δ :2.15 (1H. brs), 2.24 (3H. s), 2.32 (3H. s.), 4
16 (3H. s.), 6.08 (1H. brs), 6.99 (1H. brs), 7.07 (1H. brs), 7.08 (1H. brd, J=8.3Hz), 7.42 (1H. brd, J=8.3Hz), 7.42 (1H. brd, J=8.3Hz), 7.46 (1H. brd, J=8.3Hz), 7.64 (1H. brs), 9.90(1H. s).

MS(EI) m/e: 309(M*), 293, 231, 219, 181, 169, 133, 131, 119, 104, 69.

Compound (II-b-13)

500MHz 1 H-NMR(CDCI₂), δ :2.30 (1H, brd. J=3.4Hz), 4.16(3H. s), 5.94 (1H brd, J=3.4Hz), 7.03 (2H, dd, J=8.6, 8.6Hz), 7.10 (1H, d, J=0.5Hz), 7.37

10 (2H, dd, J=10.5, 8.6Hz), 7.40 (1H, dd, J=8.5, 1.5Hz), 7.48 (1H, ddd, J=8.5, 0.7, 0.5Hz), 7.71 (1H, dd, J=1.5, 0.7Hz), 9.91(1H, s).

MS(EI) m/e: 299(M⁺), 123.

Compound (II-b-14)

500MHz ¹H-NMR(CDC1₃), δ:2.24 (1H. brs). 3.80 (3H, s). 4.16 (3H, s). 5.92 (1H. s). 6.88 (2H, brd, J=8.8Hz), 7.10 (1H, d, J=0.9Hz). 7.31 (2H, brd, J=8.8Hz). 7.42 (1H, dd, J=8.8, 1.5Hz), 7.46 (1H, ddd, J=8.8, 0.9. 0.9Hz). 7.74 (1H, dd, J=1.5, 0.9Hz), 9.91 (1H, s).

MS(EI) m/e: 311(M*), 294, 263, 202, 135.

Compound (II-b-15)

20 400MHz 'H-NMRR(CDC1₃), δ:2.53 (1H. brs), 4.18 (3H. s), 6.95-7.00 (2H. m), 7.12 (1H. brs), 7.26-7.32 (1H. m), 7.52 (2H. brs), 7.81 (1H. brs), 9.92 (1H. s).

MS(EI) m/e: 287(M*). 270. 239. 223. 202. 171. 143. 111.

5

Compound (II-b-16)

500MHz 'H-NMR(CDCl₃), δ:0.18 (6H, s), 0.97 (9H, s), 2.27 (1H, brs), 4.16 (3H, s), 5.90 (1H, brs), 6.81 (2H, brd. J=8.5Hz), 7.09 (1H, d, J=0.5Hz) 7.23 (2H, brd. J=8.5Hz), 7.42 (1H, dd. J=8.9, 1.0Hz), 7.46 (1H, dag. J 8.9, 0.5, 0.5Hz), 7.72 (1H, dd. J=1.0, 0.5Hz), 9.90 (1H, s).

MS(EI) m/e: 411(M*), 354, 323, 305, 294, 266, 235, 201, 150, 135,

Compound (II-b-17)

400MHz 'H-NMR(DMSO-d₆), δ:4.17 (3H, s), 7.10 (1H, brt, J=7.5Hz), 7.36 (2 H. brt, J=7.5Hz), 7.54 (1H, d, J=0.9Hz), 7.73 (1H, dddd, J=8.8, 1.6, 0.9, 0.7Hz), 7.80 (2H, brd, J=7.5Hz), 8.07 (1H, dd, J=8.8, 1.6Hz), 8.49 (1H, dd, J=1.6, 0.7Hz), 9.99 (1H, s), 10.32 (1H, brs).

EXAMPLE 1

Synthesis of 5-(5-indolylmethylidene)thiazolidine-2,413 diane (Compound (I-la-1)) (Step A)

MS(EI) m/e: 294(M*), 202, 171, 143, 115, 92, 65.

20

25

To a toluene (10 ml) solution of 548.7 mg (3.7800 mmol) of Compound (II-1), were added a toluene (0.5 ml) solution of 96.6 mg (1.134 mmol) of piperidine and 885.5 mg (7.56 mmol) of thiazolidine-2,4-dione and a toluene (0.5 ml) solution of 45.4 mg (0.756 mmol) of acetic acid, and the resultant mixture was heat-refluxed for 1 hour. Orange color crystals were precipitated from the reaction

solution, and the crystals were filtrated and were dissolved in acetone. The solution thus obtained was heated with activated carbon, and methanol was added thereto and a solvent was then removed by distillation under reduced pressure. Crystals precipitated were filtrated and dried to obtain 400.8 mg (43.4%) of the aimed material (compound (I-la-l)).

Yellow crystals

Melting point: 320-325°C (dec.) (solvent used for

10 recrystallization: methanol/acetone)

60MHz $^{1}H-NMR(DMSO-d_{\bullet})$, δ :6.50(1H, m). 7.21(1H, dd, J=9.0, 2.0Hz), 7.38(1 H, d, J=5.0Hz), 7.45(1H, d, J=9.0Hz), 7.75(1H, d, J=2.0Hz), 7.79(1H, s), 11.40(2H, brs)

MS(EI) m/e:244(M^{*}), 173, 145, 128.

In the same manner as above, the following compounds were synthesized (R^1 , R^2 , R^3 and R^n and the table correspond to the substituents of Compound (I-la)).

5

 $(R^4,R^7=bond,R^6=H)$

						•
Compound No.	R1		R ³	Rn	Starting material (II)	Properties (mp °C)
I-1a-2	2- (Ph)	Н	Н	H	II-a-2	Yellow powder (269-270, decomp.)
I-1a-3	2-(Ph-N)	Н	H,	Н	II-a-3	Orange powder (265)
	2- Ph-NN Me				II-a-4	Yellow powder (315-318, decomp.)
I-1a-5	2- (Ph N	H I	H S	O ₂ Ph	II-a-5	Pale yellow powder (260, decomp.)

Compound (I-la-2)

500MHz ¹H-NMR (DMSO-d_•), δ:4.09(2H, s), 6.28(1H, s), 7.20-7.35(6H, m), 7.

20 41(1H. d. J=8.5Hz), 7.70(1H. d. J=1.0Hz), 7.85(1H. s), 11.38(1H. brs), 1 2.38(1H. trs).

MS(FAB*) m/e:335(M*). 263. 218.

Compound (1-la-3)

500MHz 'H-NMR (DMSO-d.), δ :2.73(3H, s), 4.02(2H, s), 6.34(1H, s), 7.27(1H,

25 dd. J=8.5. 1.0Hz). 7.45(1H, d. J=8.5Hz). 7.43-7.55(3H, m). 7.73(1H, d. J=1.0Hz). 7.86(1H, s). 7.92(2H, dd. J=5.8, 1.0Hz). 11.36(1H, brs). 12.43
(1H. brs).

MS(EI) m/e 416(M*), 344, 172.

Compound (I-la-4)

500MHz 'H-NMR (DMSO-d₆), δ:2.66(3H, s), 7.54(1H, brt. J=8.0Hz), 7.57(1H, d, J=8.8Hz), 7.64(1H, brd, J=8.8Hz), 7.67(2H, brt. J=8.0Hz), 7.87(1H, s), 8.12(1H, s), 8.14(1H, s), 8.21(2H, brd, J=8.0Hz), 12.31(1H, brs), 12.50 (1H, brs).

MS(FD) m/e:429(M⁻).

Compound (I-la-5)

500MHz 'H-NMR (DMSO-d₆), δ:2.32(3H. s), 4.29(2H. s), 6.58(1H. s), 7.45-7 65(5H. m), 7.68(1H. t. J=7.0Hz), 7.74(1H. d. J=1.0Hz), 7.82(1H. s), 7.87 10 -8.00(4H. m), 8.18(1H. d. J=8.8Hz), 12.56(1H. brs).

MS(EI) m/e:555(M*), 414, 353, 141, 105]

To an ethanol (8 ml) solution of 494.7 mg (1.7586 mmol) of compound (II-p-6), were added 412.0 mg (3.5171 mmol) of thiazolidine-2,4-dione and 29.9 mg (0.3517 mmol) of piperidine. A resultant mixture was heat-refluxed for 3 hours, and the reaction solution was cooled. Crystals precipitated were filtrated and dried to obtain 465.9 mg (69.6%) of the aimed compound (1-1b-6).

Yellow needle-like crystals

25 Melting point: 222-223°C (dec.) (solvent used for recrystallization: chloroform/ethanol) 500MHz 'H-NMR(DMSO-d*), δ :4.07(3H, s), 5.79(1H, d, J=3.9Hz), 5.89(1H, d J=3.9Hz), 6.75(1H, s), 7.20(1H, brt, J=7.5Hz), 7.30(2H, brt, J=7.5Hz), 7.33(1H, dd, J=8.5, 1.0Hz), 7.40(2H, brd, J=7.5Hz), 7.48(1H, d, J=8.5Hz), 7.69(1H, s), 7.71(1H, d).

5 MS(EI) m/e:380(M⁺), 349, 306, 205, 105.

In the same manner as above, the following compounds were synthesized (R^1 , R^2 , R^6 and R^n correspond to the substituents of Compound (I-lb)).

٤.

 $(R^4, R^7 = bond, R^6 = H)$

Compound No.	R!	R ²	R ³	Rn	Starting material (11)	Properties (mp °C)
I- 1b-7	OTO OH	Н	н	MrO	11-6-7	Orange powder (226-227)
I-16-8	HO	Н	н	МеО	11-6-8	Yellow crystals (260-265, decomp.)
I-1b-9	Ph-NNN O	Н	Н	Me)	11-6-9	Orange powder (260-261, decomp.)
1-1b-10	HC Ph	Н	Н	Me(1)	11-6-10	Orange amorphous
1-16-11	ОН	н	Н	MeO	H-b-11	Orange powder (300-350, decomp.)
l-1b-12	Me OH	н	н	MeO	H-b-12	Yellow powder (178-179. decomp.)
l-1b-13	L OH	н	н	MeO	11-6-13	Yellow needles (224-225, decomp.)

	Compound No.	R ¹	R ²	R ³	Rn	Starting material (II)	Properties (mp °C)
5	. I = 1 b = 1 4	MeO	H	н	MeO	II-b-14	Orange needles (219-220, decomp.)
	I-1b-15	OH	.	Н	MeO	11-6-15	Orange powder (>224, decomp.)
L O	1-16-16	TBSO	н	4	MeO	11-6-16	Yellow needles
	1-16-17	O H	н н		MeO	II-b-17	Yellow powder (200-207, decomp.)

Compound (I-1b-7)

500MHz 1 H-NMR (DMSO-d₆), δ :4.06(3H, s), 5.97(1H, d, J=3.0Hz), 6.05(1H, d, J=3.0Hz), 6.76(1H. s), 7.30-8.00(11H. m), 12.65(1H. brs). 15

MS(EI) m/e:430(M*). 301. 254. 220. 205. 155. 127. 91.

Compound (I-1b-8)

500MHz 'H-NMR(DMSO-d₆), δ :4.07(3H, s), 6.08(1H, d, J=3.4Hz), 6.25(1H, d, J=3.4Hz). 7.41(1H. s). 7.3S-8.90(10H. m), 12.66(1H. brs).

MS(EI) m/e:431(M*), 400, 357, 330, 301, 255, 216, 200, 172, 156, 128. Compound (I-1b-9)

500MHz 'H-NMR(DMSO-d₄), δ:2.62(3H, s), 4.18(3H, s), 7.07(1H, s), 7.50(1H, brt, J=7.6Hz), 7.63(2H, brt, J=7.6Hz), 7.71(1H, s), 7.74(1H, d, J=8.8Hz),

 $\delta.10(2H. \text{ brd. } J=7.6Hz).$ 8.18(1H. dd. J=8.8. 1.0Hz), 8.78(1H. d. J=1.0Hz).

12.83(1H. brs). 25

MS(EI) m/e:459(M*), 385, 357, 225, 199, 171, 143, 127, 91.

Compound (I-1b-10)

500MHz ¹H-NMR(CDCl₃), δ:3.05 (1H. brs), 4.09 (3H. s), 6.58 (1H. s), 7.20 -7.50 (13H. m), 7.91 (1H. s), 8.90 (1H. brs).

MS(EI) m/e:456(M^{*}), 379, 177, 149, 105, 77.

5 Compound (I-1b-11)

500MHz 'H-NMR(DMSO-d₄), δ :4.07(3H, s), 5.71 (1H, d, J=4.0Hz), 5.84 (1H, d, J=4.0Hz), 5.94 (1H, d, J=0.5Hz), 5.95 (1H, d, J=0.5Hz), 6.75 (1H, s), 6.82 (1H, d, J=8.9Hz), 6.87 (1H, dd, J=8.9, 1.0Hz), 6.90 (1H, d, J=1.0Hz), 7.32 (1H, dd, J=8.5, 1.0Hz), 7.47 (1H, d, J=8.5Hz), 7.69 (2H, s), 12.10 65 (1H, brs).

MS(EI) m/e 424(M*), 228, 213, 102

Compound (I-1b-12)

500MHz 1 H-NMR(DMS0-d₆), δ :2.16 (3H, s), 2.24 (3H, s), 4.07 (3H, s), 5.69 (1H, d, J=3.8Hz), 5.87 (1H, d, J=3.8Hz), 6.75 (1H, s), 6.91 (1H, brs).

15 7.01 (1H. brd, J=7.6Hz), 7.26 (1H. dd, J=8.5, 1.0Hz), 7.39 (1H. d. J=7.6 Hz), 7.47 (1H. d. J=8.5Hz), 7.58 (1H. brs), 7.69 (1H. s), 12.65 (1H. brs), MS(EI) m/e:408(M*), 379, 358, 275, 205, 172, 133, 105.

Compound (I-1b-13)

500MHz ¹H-NMR (DMSO-d₄), δ :4.07 (3H. s), 5.80 (1H, d, J=3.8Hz), 5.96 (1H, d, J=3.8Hz), 6.75 (1H, s), 7.12 (2H, t, J=8.3Hz), 7.32 (1H, dd, J=8.6, 1.2Hz), 7.42 (2H, dd, J=8.3, 5.7Hz), 7.48 (1H, d, J=8.6, 0.5Hz), 7.70 (1H, dd, J=1.2 0.5Hz), 12.65 (1H, brs).

MS (FAB*) m/e:398 (M*)

Compound (I-1b-14)

500MHz 'H-NMR(DMSO-d₄), δ:3.38 (3H. s), 4.07 (3H, s), 5.74 (1H. d. J=3.8 Hz), 5.80 (1H. d. J=3.8Hz), 6.74 (1H. brs), 6.85 (2H. d. J=8.8Hz), 7.28 (2H. d. J=8.8Hz), 7.31 (1H. dd. J=8.6, 1.0Hz), 7.47 (1H. dd. J=8.6, 0.5H z), 7.68 (1H. dd. J=1.0, 0.5Hz), 7.69 (1H. s), 12.65 (1H. brs), MS(EI) m/e:410(M*), 220, 205, 172, 135, 108, 77

Compound (I-1b-15)

500MHz 'H-NMR (DMSO-d₆), δ:4.09 (3H, s), 6.02 (1H, d, J=4.5Hz), 6.23 (1H, d, J=4.5Hz), 6.78 (1H, s), 6.88 (1H, dd, J=4.0, 0.4Hz), 6.92 (1H, dd, J=5.0, 4.0Hz), 7.38 (1H, dd, J=5.0, 0.4Hz), 7.40 (1H, dd, J=8.6, 0.3Hz),

5 7.51 (1H, d, J=8.6Hz), 7.70 (1H, s), 7.75 (1H, d, J=0.3Hz), 12.65 (1H, b rs).

MS(EI) m/e 386(M*), 301, 256, 205, 171, 145, 111, 85. Compound (I-1b-16)

400MHz 'H-NMR (DMSO-d₆), δ:0.15 (6H, s), 0.93 (9H, s), 4.07 (3H, s), 5.72 10 (1H, d, J=3.7Hz), 5.82 (1H, d, J=3.7Hz), 6.75 (1H, s), 6.77 (2H, d, J=8.4Hz), 7.25 (2H, d, J=8.4Hz), 7.32 (1H, brd, J=8.3Hz), 7.47 (1H, brd, J=8.3Hz), 7.68 (1H, s), 7.69 (1H, brs), 12.09 (1H, brs), MS(EI) m/e:510 (M*), 422, 378, 205.

Compound (I-1b-17)

15 400MHz 'H-NMR(DMSO-d₆), δ:4.17(3H, s), 6.93 (1H, s), 7.11 (1**μ**, brt, J=7.3Hz), 7.35 (2H, brt, J=7.3Hz), 7.69 (1H, d, J=8.8Hz), 7.72 (1H, s), 7.80 (2H, brd, J=7.3Hz), 7.96 (1H, d, J=8.8Hz), 8.40 (1H, brs), 10.28 (1H, brs), 12.70 (1H, brs).

MS(EI) m/e:393(M*), 301, 270, 230, 199, 171, 127, 92, 65.

20 EXAMPLE 2

Removal of substituent R^n (Step C)

Synthesis of 5-((5-(1-hydroxybenzyl)indole-2-yl)methylidene)thiazolidine-2,4-dione (Compound (I-lb-

25

To a tetrahydrofuran-water (12 ml-4 ml) solution of 455.9 mg (1.1984 mmol) of compound (I-1b-6), were added 489.1 mc of magnesium oxide and 476.8 mg of 10% Pd-C, and the resultant mixture was stirred for 20 hours at room temperature under hydrogen atmosphere of 1 atmospheric pressure. After terminating the reaction, the reducing agent was removed by filtration. The solvent in the filtrate was removed by distillation under reduced pressure, and a residue obtained was recrystallized to obtain 409.4 mg (97.5%) of the subject compound (1-1b-101).

Yellow powder

Melting point: 450°C< (solvent used for recrystallization: THF/benzene)

- 15 500MHz 'H-NMR(DMSO-d₁), &: 5.77(1H, d. J=3.9Hz), 5.82(1H, d. J=3.9Hz), 6. 77(1H, s.), 7.18 (1H, brt. J=9.0Hz), 7.21(1H, d. J=9.0Hz), 7.28(2H, brt. J=9.0Hz), 7.36(1H, d. J=9.0Hz), 7.39(2H, brd. J=9.0Hz), 7.65(1H, s), 7 72(1H, s), 11.59(1H, brs), 12.52(1H, brs)

 MS(EI) m/e:350(M²), 279, 220, 205, 145, 105, 91, 77
- In the same manner as above, the following compounds were synthesized (R^1 , R^2 , R^3 and R^n in the table correspond to the substituents of Compound (I-lb)).

 $(R^4, R^7 = bond, R^6 = H)$

No.	RI	R ² R ³	Rn	Staning material (1-	Propenies Ib) (mp *C)
116-102		н н	H	1-16-11	Yellow powder (330-400, decomp
1-16-103	Me OH	нн	н	I-1b-12	Yellow powder (125-160, decomp.)
I-1b-104	F	н н	н	1-16-13	Yellow powder (246-250, decomp.)
-16-105	он Он	н н	Н	1-16-14	Yellowish orange powder (280-300, decomp)
16-106	S	н н	н	I-1b-15 (Yellow powder (280-290, decomp.)

Compound (I-1b-102)

500MHz 'H-NMR(DMSO-d₄), &:5.68 (1H. d. J=3.9Hz). 5.77 (1H. d. J=3.9Hz). 5.93 (1H. d. J=0.5Hz). 5.95 (1H. d. J=0.5Hz). 6.78 (1H. d. J=1.0Hz). 6.8 1 (1H. d. J=8.0Hz). 6.86 (1H. dd. J=8.0. 1.0Hz). 6.89 (1H. d. J=1.0Hz). 5.7.20 (1H. dd. J=8.6, 1.0Hz). 7.36 (1H. d. J=8.6Hz)7.63 (1H. d. J=1.0Hz). 7.74 (1H. s). 11.59 (1H. s). 12.50 (1H. brs). MS(FD⁺) m/e:394 (M⁺).

Compound (I-1b-103)

500MHz 1 H-NMR (DMS0-d₆), δ :2.14 (3H, s), 2.24 (3H, s), 5.62 (1H, d, J=5.0 Hz), 5.86 (1H, d, J=5.0Hz), 6.77 (1H, s), 6.90 (1H, s), 7.01 (1H, brd, J=6.9Hz), 7.14 (1H, brd, J=8.1Hz), 7.36 (1H, d, J=8.1Hz), 7.39 (1H, d, J=6.9Hz), 7.52 (1H, s), 7.73 (1H, s), 11.59 (1H, brs), 12.50 (1H, brs), MS(FAB⁺) m/e:379 (M⁺+1), 362.

Compound (I-1b-104)

500MHz 'H-NMR(DMSO-d*), δ:5.78 (1H, d, J=3.8Hz), 5.89 (1H, d, J=3.8Hz), 6.78 (1H, dd, J=1.0, 0.3Hz), 7.11 (2H, t, J=9.0Hz), 7.20 (1H, dd, J=5.1, 1.0Hz), 7.37 (1H, dd, J=5.1, 0.5, 0.3Hz), 7.40 (2H, dd, J=9.0, 6.1Hz), 7.65 (1H, dd, J=1.0, 0.5Hz), 7.74 (1H, s), 11.61 (1H, brs), 12.52 (1H, brs), MS(FAB*) π/e:368(M*+1).

20 Compound (I-1b-105)

25

500MHz 1 H-NMR (DMSO-d*), δ :3.71 (3H, s), 5.71 (1H, d, J=3.8Hz), 5.73 (1H, d, J=3.8Hz), 6.78 (1H, dd, J=1.0, 0.5Hz), 6.85 (2H, d, J=8.5Hz), 7.19 (1H, dd, J=8.5, 1.0Hz), 7.27 (2H, d, J=8.5Hz), 7.35 (1H, ddd, J=8.5, 0.5, 0.5Hz), 7.63 (1H, dd, J=1.0, 0.5Hz), 7.74 (1H,s), 11.59 (1H,brs), 12.50 (1H, brs).

MS(FAB*) m/e:381(M*+1), 380, 363.

5

15

Compound (I-1b-106)

500MHz 1 H-NMR(DMSO-d₄), δ :5.99 (1H. d, J=4.2Hz), 6.16 (1H. d, J=4.2Hz). 6.81 (1H. dd, J=1.0, 0.5Hz), 6.85 (1H. dd, J=4.0, 1.0Hz), 6.92 (1H. dd, J=5.1, 4.0Hz), 7.28 (1H. dd, J=8.8, 1.0Hz), 7.37 (1H. dd, J=5.1, 1.0Hz). 7.40 (1H. ddd, J=8.8, 0.7, 0.5Hz), 7.69 (1H. dd, J=1.0, 0.5Hz), 7.75 (1H. s), 11.64 (1H.brs), 12.52 (1H. brs).

MS(EI) m/e:356(M*), 340, 286, 269, 245, 174, 143, 116, 99, 44.

Compound (I-1b-7) was reduced in the same manner as above, and compound (I-2b-5) wherein the substituent Rⁿ was removed and the connecting part between an indole ring and a thiazole ring was reduced, was formed.

Light-yellow powder

Melting point: 100-108°C (solvent used for recrystallization: chloroform/hexane)

500MHz 'H-NMR(DMSO-d₄), δ: 3.26(1H, dd, J=15.4, 9.8Hz), 3.50(1H, dd, J=15.4, 3.9Hz), 4.94(1H, dd, J=9.8, 3.9Hz), 5.82(1H, d, J=3.9Hz), 5.90(1H, d, J=3.9Hz), 6.18(1H, s), 7.00-8.00(10H, m), 10.97(1H, s), 12.07(1H, brs). EXAMPLE 3

Synthesis of 5-(indole-ylmethyl)thiazolidine-2,4-25 dione (Compound (I-2a-1)) (Step B) **WO 96/26207**

5

EXAMPLE 3-1 Reduction by hydrogenation

To a tetrahydrofuran (10 ml) solution of 104.7 mg (0.4286 mmol) of compound (I-la-l), was added 109.7 mg of 10% Pd-C, and the resultant mixture was stirred at room temperature for 20 hours under hydrogen atmosphere of l atmospheric pressure. After finishing the reaction, the reducing agent was removed by filtration. The solvent in the filtrate was removed by distillation under reduced pressure, and a residue obtained was dissolved in a solvent of ethyl acetate/hexane (1/1). This solution was filtrated by silica gel, and was subjected to recrystallization to obtain 80.8 mg of the aimed compound (I-2a-1).

Yellow column-like crystals

20 Melting point: 159.5-160.5°C (solvent used for
 recrystallization: ethylacetate/hexane)
60MHz 'H-NMR(CD₃COCD₃), δ:3.15(1H, dd, J=12.0, 9.0Hz), 3.60(1H, dd, J=12.
0, 5.0Hz), 4.70(1H, dd, J=9.0, 5.0Hz), 6.31(1H, m), 6.90-7.60(4H, m), 10.
00(1H, brs).

25 MS(EI) m/e:246(M*), 130, 115.

5

In the same manner as above, the following compounds were synthesized (R^1 , R^2 , R^3 and R^n in the table correspond to the substituents of Compound (I-2a)).

 $(R^4, R^7 = H, R^6 = H)$

10	Compound No.	R ¹	R ²	R ³	Rn	Starting material (I-1a)	Properties (mp *C)
	I = 2 a = 2	2- (Ph)	H	н	н	I-1a-2	Yellow prisms (132-133)
15		2-(Ph-N)					Pale yellow powder (111-112)
		- (Ph-(N) Me				I-1a-5	Pale yellow prisms (104-105)
0	l-2a-7 2-	Ph-N	н н		н	l-1a-4	Pale yellow crystals (115-116)

Compound (I-2a-2)

500MHz 'H-NMR(CDC1₃), δ:3.19(1H, dd, J=14.1, 10.1Hz), 3.63(1H, dd, J=14.1, 3.9Hz), 4.13(2H, s), 4.57(1H, dd, J=10.1, 3.9Hz), 6.30(1H, dd, J=1.0, 0.5Hz), 6.97(1H, dd, J=8.3, 1.7Hz), 7.20(1H, ddd, J=8.3, 0.5, 0.5Hz), 7.21-7.27(5H, m), 7.39(1H, dd, J=0.5, 0.5Hz), 7.77 (1H, brs), 7.79 (1H, brs)

MS(FAB*) m/e:337(M*). 220.

Compound (I-2a-3)

500MHz ¹H-NMR (DMSO-d₄), δ :2.35(3H. s), 3.10(1H. dd. J=7.5, 5.0Hz), 3.42 (1H. dd. J=7.5, 2.5Hz), 3.97(2H. s), 4.88(1H. dd. J=5.0, 2.5Hz), 6.14(1H. s), 6.89(1H. dd. J=8.0, 1.0Hz), 7.23(1H. d. J=8.0Hz), 7.27(1H. d. J=1.0 Hz), 7.45-7.55(3H. m), 7.91(2H. dd. J=8.0, 2.0Hz), 10.90(1H. brs), 14.96 (1H. brs).

MS(FAB*) m/e:418(M*), 301, 172.

Compound (I-2a-4)

- 500MHz ¹H-NMR (CDC1₃), δ :2.30(3H, s), 3.18(1H, dd, J=15.0, 10.0Hz), 3.56 (1H, dd, J=15.0, 5.0Hz), 4.25(2H, s), 4.52(1H, dd, J=10.0, 5.0Hz), 6.31 (1H, s), 7.12(1H, dd, J=8.0, 2.0Hz), 7.30-7.50(6H, m), 7.52(1H, dd, J=8.0, 8.0Hz), 7.78(2H, dd, J=7.0, 1.0Hz), 7.82(1H, brs), 7.97-8.02(2H, m), 8.11(1H, d, J=8.0Hz).
- 15 MS(EI) m/e:557(M*), 416, 386, 299.

Compound (I-2a-7)

500MHz ¹H-NMR(CDCl₃), δ:2.65 (3H, s), 3.21 (1H, dd, J=14.2, 8.8Hz), 3.48 (1H, dd, J=14.2, 4.4Hz), 4.95 (1H, dd, J=8.8, 4.4Hz), 7.23 (1H, brd, J=20.8.5), 7.46 (1H, brd, J=8.5Hz), 7.52 (1H, brt, J=7.6Hz), 7.66 (1H, brs), 7.97 (1H, brs), 8.20 (1H, brt, J=7.6Hz), 11.96 (1H, brs), 12.01 (1H, brs), MS(EI) m/e:431 (M*), 415, 205, 183, 156, 129, 91.

EXAMPLE 3-2 Reduction by amalgam

Synthesis of 5-((5-(1-hydroxybenzyl)indole-2-

yl)methyl)thiazclidine-2,4-dione (Compound (I-2a-6))

WO 96/26207

5

To a MeOH (3 ml) solution of 119.0 mg (0.3396 mmol) of compound (I-lb-6), was added 3% sodium-amalgam, and the resultant mixture was stirred at room temperature for 18 hours. After finishing the reaction, the reaction mixture was filtrated to remove the reducing agent. The solvent in the filtrate was removed by distillation under reduced pressure, and a residue obtained was subjected to silica gel column chromatography (eluent:

tetrahydrofuran/benzene=1/3) to obtain 86.0 mg (61.1%) of

15 the subject compound (I-2b-6).

Colorless powder

Melting point: 84-87°C (solvent used for recrystallization: chloroform/hexane)

500MHz 'H-NMR(CDCI₃), δ:3.42(1H. dd. J=15.4, 7.3Hz), 3.53(1H. dd. J=15.4, 4.9Hz), 4.60(1H. dd. J=7.3, 4.9Hz), 5.95(1H. d, J=2.0Hz), 6.35(1H. d, J=7.8Hz), 7.25(1H. brt, J=7.6Hz), 7.28(1H. d, J=7.6Hz), 7.33(2H. brt, J=7.6Hz), 7.42(2H. brd, J=7.6Hz), 7.56(1H. s), 7.95(1H. brs), 8.26(1H. brs), MS(EI) α/e:352(M*), 236, 205, 105, 78.

In the same manner as above, the following compounds were synthesized $(R^1, R^2, R^3 \text{ and } R^n \text{ in the table}$ correspond to the substituents of Compound (I-2b).

$$R^{1}$$
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{6}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{7}
 R^{6}
 R^{7}
 R^{7

 $(R^4, R^7 = bond, R^6 = H)$

Compound No.	R ¹	R²	R ³	R"	Starting material (I-1b)	Properties (mp °C)
1-2b-3	OH	Ħ	Н	Н	I-1b-102	Pale yellow amorphous
1-26-9	Me OH	н	Н	н	1-16-103	Yellow powder (102-104)
1-26-10	F	11	H	Н	l-1b-104	Pale yellow powder (77-81)
l-2b-11	MeO OH	Н	11	Н	I-1b-105	Paie vellow powder (75-77 decomp)
l-2b-12	OH	н	Н	1 i	1-16-106	Pale yellow powder (68-69, decomp.)

Compound (I-2b-8)

500MHz 'H-NMR (DMSO-d₆), δ:3.25 (1H. dd. J=15.2, 10.0Hz), 3.51 (1H. dd. J=15.2, 3.6Hz), 4.94 (1H. dd. J=10.0, 3.6Hz), 5.63 (1H. d. J=4.5Hz), 5.64 (1H. d. J=4.5Hz), 5.92 (1H. brs), 5.93 (1H. brs), 6.18 (1H. brs), 6.79 (1H. d. J=8.0Hz), 6.83 (1H. dd. J=8.0, 1.0Hz), 6.88 (1H. d. J=1.0Hz), 7.01 (1H. brd. J=S.5Hz), 7.20 (1H. brd. J=8.5Hz), 7.41 (1H. brs), 10.96 (1H. brs), 12.07 (1H. brs).

MS(EI) m/e:396(M*+1), 280 149

Compound (I-2b-9)

500MHz 'F-NMR (DMSO-d*). δ:2.12 (3H. s). 2.23 (3H. s). 3.24 (1H. dd. J=17. 5. 9.5Hz). 3.51 (1H. dd. J=17.5. 5.0Hz). 4.95 (1H. dd. J=9.5, 5.0Hz). 5. 46 (1H. d. J=4.5Hz). 5.81 (1H. d. J=4.5Hz). 6.16 (1H. brs). 6.88 (1H. brs). 6.95 (1H. brd. J=8.0Hz). 6.99 (1H. brd. J=8.0Hz). 7.20 (1H. brd. J=8.0Hz). 7.31 (1H. brs). 7.41 (1H. brd. J=8.0Hz). 10.97 (1H. brs). 12.09 (brs).

MS(FAB*) m/e:381(M*+1), 364.

Compound (I-2b-10)

500MHz 'H-NMR(DMSO-d*). δ:3.27 (1H. dd. J=15.4, 9.8Hz), 3.51 (1H. dd. J=15.4, 4.2Hz), 4.95 (1H. dd. J=9.8, 4.2Hz), 5.73 (1H. d. J=3.9Hz), 5.75 (1H. d. J=3.9Hz), 6.18 (1H. brs), 7.00 (1H. brd. J=8.3Hz), 7.08 (2H. J=8.8Hz), 7.2: (1H. brd. J=8.3Hz), 7.39 (2H. dd. J=8.8, 5.8Hz), 7.42 (1H. brs), 10.89 (1H. brs), 12.09 (1H. brs).

MS(FAB*) @/e:371(M*+1), 370, 353, 307, 254

Compound (I-2b-11)

500MHz 'H-NMR(DMSO-d₄), δ:3.70 (3H, s), 5.58 (1H, d, J=3.9Hz), 5.67 (1H, d, J=3.9Hz), 6.17 (1H, brs), 6.83 (2H, d, J=9.5Hz), 7.00 (1H, brd, J=4.3Hz), 7.20 (1H, brd, J=4.3Hz), 7.26 (2H, d, J=9.5Hz), 7.40 (1H, brs), 10 96 (1H, brs), 12.07 (1H, brs).

MS(FAB*) m/e:382(M*), 365, 266, 249, 135, 119.

Compound (I-2b-12)

500MHz ¹H-NMR (DMSO-d₆), δ:3.27 (1H, dd, J=15.0, 10 OHz), 3.52 (1H, dd, J=15.0, 3.9Hz), 4.96 (1H, dd, J=10.0, 3.9Hz), 5.94 (1H, d, J=4.2Hz), 6.02 (1H, d, J=4.2Hz), 6.20 (1H, brs), 6.82 (1H, dd, J=3.4, 1.2Hz), 6.90 (1H, dd, J=5.3, 3.4Hz), 7.09 (1H, brd, J=8.3Hz), 7.25 (1H, brd, J=8.3Hz), 7.33 (1H, dd, J=5.3, 1.2Hz), 7.48 (1H, brs), 11.03 (1H, brs), 12.10 (1H, brs).

MS(FAB*) m/e:358(M*), 341, 242.

15 EXAMPLE 4

Synthesis of 5-((1-methoxy-5-hydroxy(2-phenyl-5-methyl-1,2,3-triazol-4-yl)methylindol-2-yl)methylidenethiazolidine-2,4-dione (Compound (I-lb-18))

To a tetrahydrofuran (5 ml) solution of 129.8 mg (0.2825 mmol) of compound (I-1b-9), was added 21.4 mg (0.5650 mmol) of sodium borohydride at room temperature, and the resultant mixture was stirred for 1 hour. After finishing the reaction, water and 2M hydrochloric acid

were added to the reaction solution and the reaction solution was extracted with a mixed solvent of chloroform: MeOH=9:1. An organic phase obtained was washed with a saturated sodium chloride aqueous solution, and a solvent was removed by distillation under reduced pressure. A residue obtained was recrystallized from chloroform/hexane to obtain 127.9 mg (98.1%) of Compound (I-1b-18).

Orange crystals

10 Melting point: 170-176°C (decomposition) (solvent used for recrystallization: chloroform/hexane)
500MHz 'H-NMR(DMSO-d₆), δ:2.21 (3H, s), 4.07 (3H, s), 6.08 (1H, d, J=4.3 Hz), 6.19 (1H, d, J=4.3Hz), 6.79 (1H, s), 7.35 (1H, brt, J=7.5Hz), 7.40 (1H, d, J=8.0Hz), 7.53 (2H, brt, J=7.5Hz), 7.45 (1H, d, J=8.0Hz), 7.68
15 (1H, s), 7.27 (1H, brs), 7.93 (2H, brt, J=7.5Hz), 12.63 (1H, brs), MS(EI) m/e 461(M*), 431, 387, 362, 331, 301, 186, 172, 117. EXAMPLE 5

Synthesis of 5-((2-hydroxy(2-phenyl-5-methyl-1,2,3-tiazol-4-yl)methylindol-5-yl)methyl)thiazolidine-2,4-dione (Compound (I-2a-19))

25

To a tetrahydrofuran (3 ml) solution of 100.5 mg (0.2329 mmol) of Compound (I-2a-7), was added 26.4 mg

(0.6988 mmol) of sodium borohydride at room temperature, and the resultant mixture was stirred for 3 hours. After finishing the reaction, water and 2M hydrochloric acid were added to the reaction solution and the reaction solution was extracted with a mixed solvent of chloroform: MeOH=9:1. An organic layer obtained was washed with a saturated sodium chloride aqueous solution, and a solvent was removed by filtration under reduced pressure. A residue obtained was recrystallized with chloroform-hexane, and the recrystallized material was subjected to silica gel column chromatography (eluent: tetrahydrofuran/hexane = 1/2) and was further recrystallized from chloroform-hexane to obtain 14.8 mg

15 Colorless crystals

(14.7%) of Compound (I-2a-19).

Melting point: 103-108°C(decomposition) (solvent used for recrystallization: chloroform/hexane)

500MHz 1 H-NMR(DMS0-d₄), δ :3.10 (1H, dd, J=14.0, 9.8Hz), 3.44 (1H, dd, J=14.1, 4.2Hz), 4.89 (1H, dd, J=9.8, 4.2Hz), 6.13 (1H, d, J=4.6Hz), 6.22

20 (1H. brs), 6.28 (1H. d. J=4.6Hz), 6.93 (1H. brd, J=8.3Hz), 7.28 (1H. brd, J=8.3Hz), 7.32 (1H. brs), 7.73 (1H. brt, J=7.8Hz), 7.53 (2H. brt, J=7.8Hz), 7.95 (2H. brd, J=7.8Hz), 11.05 (1H. brs), 11.97 (1H. brs), MS(EI) m/e:433(M*), 315, 299, 187, 158, 130

20 mg (0.0479 mmol) of Compound (I-2a-3) was

dissolved in 2 ml of a methanol/tetrahydrofuran mixture solution (1/1 v/v). 2.57 ml of sodium hydroxide aqueous solution (74.7 mg%) was added to the above prepared

solution of Compound (I-2a-3), and the resultant mixture was stirred at room temperature for 1 hour and 20 minutes. Thereafter, a solvent was removed by distillation under reduced pressure and an aqueous solution of a residue obtained was freeze-dried to obtain 16.4 mg (77.9%) of Compound (I-4a-1).

Colorless crystals

Melting point: 260-265°C (decomposition)

 $MS(FAB^{+})$ m/e: 439(M⁺)

10 EXAMPLE 6

Preparation of sodium salt of 5-(((2-phenyl-5-methyl-1,2,3-triazol-4-yl)methylindol-5-yl)methyl)thiazolidine-2,4-dione (Compound (I-4a-1))

In the same manner as above, the following compounds 20 were synthesized $(R^1,\ R^2,\ R^3 \text{ and } R^n \text{ in the table}$ correspond to the substituents of Compounds (I-3a, I-4a, I-3b and I-4b)).

 $(R^4, R^7 = H, R^6 = H)$

Compound No.	R ^I	R ²	R:	3 · R ⁿ	Starting materials (1-1a)	Properties (mp °C)
1-3a-1	2- (Ph N Ne	Н	н	SO ₂ Ph	I-1a-5	Colorless amorphous (160-180, decomp.)

Compound (I-3a-1)

 $MS(FAB^+) m/e:578(M^++1)$.

Compound No.	R ^I		R ³		Staning materials (1-2a)	Properties (mp *C)
1-4a-2	2- (Pirk N N N N N N N N N N N N N N N N N N N	H	Н	н .	1-2a-7	Yellow powder (180-250, decomp)

Compound (I-4a-2)

110 30,20207

MS(FD) m/e:476(M⁺+Na), 454(M⁺+1), 431(M⁺-Na+1).

 $(R^4, R^7 = bond, R^6 = H)$

Compound No	R ¹	R ² R ³ R ⁿ	Starting materials (1-1b)	Properties
1-36-2		Н Н МеО	1-16-6	Yellow amorphous (220-230, decomp.
1-36-3	ОН	Н Н МеО	1-16-7	Yellow amorphous (260-280, decomp.)
1-36-4		н н меО	1-16-8	Yellow amorphous 195-230, decomp.)
1-36-5	O O OH	Н Н МеО 1.	·1b-11 Y	'ellow amorphous 80-230, decomp.)
I-3b-6	OH	H H MeO I-	1b-13 Ye	ellow amorphous 2-176, decomp.)
-36-7 Me		H H MeO I-I	Yel b-1:	low amorphous (164-170, decomp.)
3 b - 8	OH	H H McO I-It	Yelli	ow amorphous 260, decomp.)

Compound (I-3a-2)

MS(FAB+) m/e:403(M++1).

Compound (I-3a-3)

MS(FAB+) m/e:403(M++1).

Compound (I-3a-5)

MS(FD) m/e:424(M+-Na+1).

Compound (I-3a-7)

MS(FD) m/e:410(M⁺-Na+1).

Compound (I-3a-8)

10 MS(FAB⁺) m/e:387(M⁺-Na+1), 386.

$$R^3$$
 R^2
 R^1
 R^0
 $(R^4, R^7 = bond, R^6 = H)$

Compound No.	R ¹	R ²	R ³	Rn	Starting materials (I-1b)	Propenies (mp °C)
1-3b-9	OH	Н	Н	Н	1-16-101	Yellow crystals (220-400, decomp.)
I-3b-10	OH	н	Н	Н	I-1b-102	Yellow crystals (200-400, decomp.)
I-3b-11	Me OH	н	Н	Н	I-1b-103	Yellow amorphous (190-210, decomp.)
I-3b-12	F OH	Н	H	н	l-1b-104	Colorless amorphous (190-220, decomp.)

- 223 -

```
Compound (I-3b-9)

MS(FAB+) m/e:395(M++Na), 373.

Compound (I-3b-10)

MS(FAB+) m/e:439(M++Na), 417, 416.

Compound (I-3b-11)

MS(FAB+) m/e:423(M++Na), 401(M++1), 400(M+).

Compound (I-3b-12)

MS(FAB+) m/e:412(M++Na-1), 390(M+).
```

 $(R^4,R^7=bond,R^6=H)$

Compound No.	R1	R	2 R	3 Rn	Starting materials (1-2b)	Properties (mp °C)
I – 4 b – 3	ОН	н	н	н	I-2b-5	Pale brown crystals (180-300, decomp.)
I-4b-4	Me OH	н	Н	Н	I-2b-8	Pale red amorphous (200-300, decomp.)
1-46-5	Me OH	Н	Н	Н	I-2b-9	Yellow amorphous (210-290, decomp.)
I-4b-6	F O O	Н	Н	н	I-2b-10	Coloriess amorphous

Compound (I-4b-3)

MS(FD) m/e:447(M⁺+Na), 425(M⁺+1).

Compound (I-4b-4)

 $MS(FD) m/e:441(M^++Na), 419(M^++1).$

5 Compound (I-4b-5)

 $MS(FD) m/e:425(M^++Na), 403(M^++1).$

Compound (I-4b-6)

 $MS(FAB^{+})$ $m/e:414(M^{+}+Na)$.

TEST EXAMPLE 1: Measurement of hypoglycemic effect

KK mouse and KKAY mouse, NIDDM models (male, 6-7 weeks old) (Nakamura, Proc. Jpn. Acad., vol. 38, 348-352, 1962; Iwatsuka et al. Endocrinol. Jpn., vol. 17, 23-35, 1970) were purchased from Nihon Clea. They were allowed free access to high-calories' chow (CMF, Oriental Yeast) and water. Around 40 g-weighted mice were examined.

Blood (20 $\mu\ell$) collected from the retro-orbital sinus was diluted in 60 units heparin sodium-solution and was centrifuged in a microfuge. The supernatant was assayed. The glucose concentration was determined by glucose oxidase method (Glucose Analyzer II, Beckman). A group of 3 to 4 micro basis and the supernatant was assayed.

of 3 to 4 mice having a blood glucose value of higher than 200 mg/df, the blood glucose value of which did not reduce by more than 10% for 24 hours after once oral administration of 0.5% carboxymethyl cellulose (CMC)—saline, were tosted

25 saline, were tested.

20

All test-compounds suspended in 0.5% carboxy-methyl cellulose (CMC)-saline were orally administered in mice.

Before and 24 hours after the administration, blood was collected from the retro-orbital sinus, and a blood glucose value was measured in the above-mentioned manner. The hypoglycemic activity was expressed by the percentage of reducing blood glucose calculated before and 24 hours after the administration.

KKAY mouse

Dosc (mg/kg)	% decrease
30	17.6
30	23.4
30	26.5
30 -	. 14.2
3 0	12.7
3 0	23.8
30	17.5
3 ()	22.6
3 ()	14.1
3 ()	19.6
30	16.0
3.0	27.9
30	15.1
30	38.0
30	10.8
30	20 9
30	32.2
30	25.0
30	18.8
3 ()	17 5
3 ()	17 0
30	28 0
30	28.4
3 ()	-3.0
3 0	-2.5
	30 30 30 30 30 30 30 30 30 30

Glibenelamide

10

The compounds of the present invention exhibited hypoglycemic activities at substantially higher degree as compared with CS-045 used as controls. Glibenclamide (insulin-releasing agent) did not exhibit hypoglycemic activity in this test.

TEXT EXAMPLE 2: Measurement of hypoglycemic and hypolipidemic effect

db/db mice, NIDDM model (male 6 weeks old), were purchased from Nihon Charles River. They were allowed free access to chow (MF, Oriental Yeast) and water. Around 50 g-weighed mice were examined.

Blood (20 μ l) collected from the retro-orbital sinus was diluted in 60 units heparin sodium-solution and was centrifuged in a microfuge. The supernatant was assayed.

The glucose concentration was determined by glucose oxidase method (Glucose Analyzer II, Beckman). A group of 6 mice were tested.

All test-compounds suspended in 0.5% carboxy-methyl cellulose (CMC)-saline were orally administered in mice once a day for 4 days. Before, 1 day, 2 days, 3 days and 4 days after the administration, blood was collected from the retro-orbital sinus, and a blood glucose value was measured in the above-mentioned manner. The hypoglycemic activity was expressed by the percentage of reducing blood glucose calculated before and 1 day, 2 days, 3 days or 4 days after the administration.

The total cholesterol (TC) amounts in bloods

collected before drug-administration and 4 days after the drug-administration were measured in accordance with the cholesterol oxidase method and the triglyceride (TG) amounts in theses bloods were measured by the end point method employing glycerol oxidase method. The neutral lipid reducing activity in each blood was expressed by a reducing rate relative to the value before the drug-administration.

The compounds of the present invention exhibited

10 higher hypoglycemic activities and higher neutral lipid reducing activities as compared with CS-045 used as controls.

Compound No.	Dose	% decrease	% decre	ase of
	(mg/kg)	of glucose	TC	TG
1-26-6	30	10.5	19.5	13.8
CS-045	300	17.7	7 1	36 9

20

CS - 045

TEST EXAMPLE 3: Measurement of aldose-reductase inhibitory activities

Rat kidney AR was prepared as follows; Rat kidney was

perfused by ice-cold saline to remove blood and then homogenized in a Teflon homogenizer with 3 time volumes of cold 5 mM Tris-HC ℓ buffer (pH 7.4). The homogenate was centrifuged at 45,000 x g for 40 minutes to remove insoluble materials, and the supernatant fraction was dialyzed overnight against 0.05 M sodium chloride solution. The dialyzed solution was centrifuged again at $11,000 \times g$ for 20 minutes and the supernatant fraction was used as an aldose reductase sample.

Determination of AR and effects of test compounds 10 AR activity was assayed by the modified method of Inukai et al. (Jpn. J. Pharmacol. 61, 221-227, 1993). The absorbance of NADPH (340 nm), oxidation of the cofactor for AR, was determined by spectrophotometer (UV-240, Shimadzu, Kyoto). The assay was carried out in 0.1M 15 sodium phosphate (pH 6.2) containing 0.4M lithium sulfate, 0.15 mM NADPH, the enzyme, various concentrations of test compounds and 10 mm DLglyceraldehyde. The reference blank contained all of the above ingrecients, except for DL-glyceraldehyde. 20 reaction was started by addition of the substrate (DLglyceraldehyde). The reaction rate was measured at 30°C for 2 minutes. All test compounds were dissolved in dimethyl sulfoxide (DMSO). The final concentration of DMSO in reaction mixture never exceeded 1%. 25

Compound No.	Concentration (μM)	% inhibition
l-1a-4	30	100 0
I-1b-14	30	53.4
I-2b-6	100	36.3
I-2b-10	30	23.3
I-3b-5	30	49.6
CS-045	100	0
Sulindac	30	54.0
Quercetin	30	10.8
Alrestatin	100	0

WO 96/26207 PCT/JP96/00403

- 232 -

The compounds of the present invention exhibited equivalent or stronger aldose-reductase inhibitory activities than sulindac, quercetin or alrestatin used as control. Further, CS-045 exhibited no activities.

5 FORMULATION EXAMPLE 1

Tablets

	The compound of the present invention Lactose	1.0 g
	Crystal cellulose powder	5.0 g
10	Corn starch	8.0 g
		3.0 g
	Hydroxypropyl cellulose CMC-Ca	1.0 g
	Magnesium stearate	1.5 g
		0.5 g
15	Total	
		20.0 g

The above components were mixed by a usual method and then tabletted to produce 100 tablets each containing 10 mg of the active ingredient.

20 FORMULATION EXAMPLE 2

Capsules

	The compound of the present invention	1.0 g
	Lactose	3.5 g
25	Crystal cellulose powder	10.0 g
23	Magnesium stearate	0.5 g
	Total	
		15.0 g

The above components were mixed by a usual method and then packed in No. 4 gelatin capsules to obtain 100 capsules each containing 10 mg of the active ingredient. FORMULATION EXAMPLE 3

5 Soft capsules

	The compound of the present invention	1.00 g
	PEG (polyethylene glycol) 400	3.89 g
	Saturated fatty acid triglyceride	15.00 g
	Peppermint oil	0.01 g
10	Polysorbate 80	0.10 g
	Total	20.00 g

The above compounds were mixed and packed in No. 3

15 soft gelatin capsules by a usual method to obtain 100 soft capsules each containing 10 mg of the active ingredient.

FORMULATION EXAMPLE 4

Ointment

20	The compound of	the present	invention	1.0	g (10	0.0	g)
•	Liquic paraffin			10.0	g (10	0.0	g)
	Cetanol			20.0	3 (21	0.0	g)
	White vaseline			68.4	; (59	9.4	g)
	Ethylparaben			0.1 g			
25	<pre>ℓ-menthol</pre>			0.5 ç) (().5	g)

Total

The above components were mixed by a usual method to obtain a l% (10%) ointment.

FORMULATION EXAMPLE 5

Suppository

5	The compound of	the present invention 1.0 g	
	Witepsol Hl5*	46.9 g	
	Witepsol W35*	52.0 g	
	Polysorbate 80	0.1 g	
10	Total		_

10 Total 100.0 g

*: Trademark for triglyceride compound

The above components were melt-mixed by a usual method and poured into suppository containers, followed by cooling for solidification to obtain 100 suppositories of 1 g each containing 10 mg of the active ingredient. FORMULATION EXAMPLE 6

Granules

	The compound of the present invention	
20	Lactose	3
	Crystal cellulose powder	6.0 g
	Corn starch	6.5 g
	Hydroxypropyl cellulose	5.0 g
	Magnesium stearate	1.0 g
25	J amount Securate	0.5 g
	Mark 1	
	Total	20.0 g

The above components were granulated by a usual method and packaged to obtain 100 packages each containing 200 mg of the granules so that each package contains 10 mg of the active ingredient.

5 <u>INDUSTRIAL APPLICABILITY</u>

Since the compound of the present invention has a hypoglycemic effect and an aldose-reductase inhibitory activity and has less toxicity, it is useful for preventing or treating diabetic complications including diabetic eye diseases (such as diabetic cataract and diabetic retinopathy), diabetic neuropathy, diabetic nephropathy, diabetic gangrene, and the like.

CLAIMS

1. An indole type thiazolidine compound of the following formula (I) and its salt:

$$R^{2} \xrightarrow{\mathbb{R}^{1}} Y \xrightarrow{\mathbb{R}^{4}} \mathbb{N}\mathbb{R}^{5}$$

$$\mathbb{R}^{n} \qquad \mathbb{X}^{2}$$

$$\mathbb{R}^{n} \qquad \mathbb{X}^{2}$$

wherein X^1 is S or O;

10 X^2 is S, O or NH;

Y is CR^6R^7 (R^6 is a hydrogen atom, a C_1 - C_7 alkyl group or a C_3 - C_7 cycloalkyl group, and R^7 is a hydrogen atom, a C_1 - C_7 alkyl group or a C_3 - C_7 cycloalkyl group, or forms a bond together with R^4);

- 15 R^1 is a substituent at the 2-, 3-, 4-, 5-, 6- or 7- position of an indole ring and is a C_1 - C_{10} alkyl group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkenyl group, a C_1 - C_{10} alkoxy group, a C_2 - C_{10} alkenyloxy group, a C_1 - C_{10} alkylthio group, a C_1 - C_{10} monoalkylamino group or a dialelempton alkylamino group (each of said C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkylthio, C_1 - C_{10} monoalkylamino and di- C_1 - C_{10} alkylamino groups may be substituted with a hydroxyl group or a C_1 - C_2 alkyl group), or

group may contain at most 5 hetero atoms selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom as constituents for the heterocyclic ring), or a C_1 - C_6 heterocycloaliphatic group (said heterocycloaliphatic group may contain at most 3 hetero 5 atoms selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom as constituents for the heterocyclic ring) (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, C_1-C_{12} heterocyclic aromatic and C_1-C_6 heterocycloaliphatic 10 groups may have at most 5 substituents selected from the group consisting of a hydrogen atom, a C_1 - C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a 15 C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile group, a 20 carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a $tri-C_1-C_7$ -alkylsilyloxy group, a phenyl, naphthyl, furanyl, threnyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be 25 substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7

cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a l-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a

5 thiazolidindion-5-yl group and a thiazolidindion-5-yl methyl group),

V is O, S, SO, SO $_2$ or NR 8 (R 8 is a hydrogen atom or a C_1-C_3 alkyl group),

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, and

each of k and ℓ is 0 or 1),

-V-W-Z (V, W and Z are as defined above), or -W-V-W-Z (V, W and Z are as defined above, and two

15 W's may be the same or different), or

 R^1 may be a hydrogen atom when Y is bonded to the 4-, 5-, 6- cr 7-position of an indole ring;

each of \mathbb{R}^2 and \mathbb{R}^3 is a substituent at the 2-, 3-, 4-, 5-, 6- or 7-position of an indole ring, and is

- independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group (said C_1 - C_7 alkyl and C_3 - C_7 cycloalkyl groups may be substituted with a hydroxyl group), a C_1 - C_7 alkoxy group, a benzyloxy group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group, a
- pyrimidinyl group, a pyridazinyl group, a furanyl group, a thienyl group, a pyrrolyl group, a pyrazolyl group, an imidazolyl group, a pyranyl group, a quinolyl group, a

benzoxazolyl group, a benzothiazolyl group or a benzimidazolyl group (each of said phenyl, naphthyl, benzyl, pyridyl, pyrimidinyl, pyridazinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, pyranyl,

- quinolyl, benzoxazolyl, benzothiazolyl and benzimidazolyl groups may be substituted with at most 5 members selected from the group consisting of a hydroxyl group, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group and a halogen atom), a hydroxyl group or a halogen atom;
- 10 R^4 is a hydrogen atom or a C_1 - C_7 alkyl group, or forms a bond together with R^7 ;

R⁵ is a hydrogen atom or a carboxymethyl group; and Rⁿ is a substituent at the 1-position of an indole ring, and is a hydrogen atom, C₁-C₇ alkyl group, a C₃-C₇ cycloalkyl group, a C₁-C₄ alkoxymethyl group, an aryloxymethyl group, a C₁-C₄ alkylaminomethyl group, a substituted acetamidemethyl group, a substituted thiomethyl group, a carboxyl group, a C₁-C₇ acyl group, an arylcarbonyl group, a C₁-C₄ alkoxycarbonyl group, an aryloxycarbonyl group, a C₁-C₄ alkylaminocarbonyl group, an arylaminocarbonyl group, a C₁-C₇ alkoxy group, a C₁-C₇ alkoxyalkyloxy group, a trialkylsilyl group, a trialkylsilyl group, a arylsulfonyl group.

25 2. The indole type thiazolidine compound and its salt according to Claim 1, wherein the compound of the formula (I) is represented by the following formula (Ia):

wherein R^1 is a substituent at the 2-, 3-, 4-, 6- or 7- position of an indole ring and is a hydrogen atom, a C_1 - C_{10} alky. group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkynyl group, a C_1 - C_{10} alkoxy group, a C_2 - C_{10} alkenyloxy group, a C_1 - C_{10} alkylthio group, a C_1 - C_{10} monoalkylamino group or a C_1 - C_{10} alkylamino group (each of said C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} monoalkylamino and C_1 - C_1 0 alkylamino groups may be substituted with a hydroxyl group or a C_1 - C_2 alkyl group), or

-W_k-V_c-2 (among groups of Z as defined for the formula (I), said C₃-C₁₀ cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, or adamantyl, said C₃-C₇ cycloalkenyl group is cyclohexenyl, cyclopentadienyl, 2-bicylo[2.2.1]heptenyl or 2,5-bicyclo[2.2.1]heptadienyl, said C₆-C₁₄ aromatic group is phenyl, naphthyl, indenyl, indanyl or fluorenyl, said C₁-25 C₁₂ heterocyclic aromatic group is furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, furazanyl, pyrazolyl, oxopyrazolyl, imidazolyl, imidazolyl,

25

oxoimidazolyl, triazolyl, triazolonyl, tetrazolyl, pyranyl, pyridyl, pyridonyl, pyridazinyl, pyridazinonyl, pyrimidinyl, pyrimidinonyl, pyrazinyl, triazinyl, tetrazinyl, indolyl, quinolyl, quinolonyl, benzofuranyl, benzothienyl, isoquinolyl, isoquinolonyl, benzoxazolyl, 5 benzothiazolyl, benzopyrazolyl, benzimidazolyl, benzotriazolyl, benzopyranyl, indolizinyl, purinyl, phthalazinyl, oxophthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, benzodioxolyl, benzodioxanyl, oxonaphthalenyl, dihydrobenzofuranyl, 10 benzothiazinyl, pteridinyl, pyrazolo[1,5-a]pyrimidinyl, pyrazolo[5,1-c][1,2,4]triazinyl, thiazolo[3,2b)triazolyl, benzopyrano[2,3-b)pyridyl, 5Hbenzopyrano[2,3-b]pyridonyl, xanthenyl, phenoxathiinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, 15 phenoxazinyl, or thianthrenyl, and said C_1-C_6 heterocycloaliphatic group is piperidyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, morpholinyl, or tetrahydrofuranyl, (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, C_1-C_{12} heterocyclic aromatic and C_1 - C_6 heterocycloaliphatic groups may have at most 5 substituents selected from the group consisting of a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy

group, a C_1 - C_7 alkylthio group, a halogen atom, a

trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl

- group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a $tri-C_1-C_7$ -alkylsilyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted
- with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a l-tetrazolyl group, a 3-
- 15 tetrazolyl group, a 5-tetrazolyl group, a
 thiazolidindion-5-yl group and a thiazolidindion-5-yl
 methyl group),

V is O, S, SO, SO $_2$ or NR 8 (R 8 is a hydrogen atom or a C $_1$ -C $_3$ alkyl group),

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, and each of k and ℓ is 0 or 1).

-V-W-2 (V, W and Z are as defined above), or

- -W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different).
 - 3. The indole type thiazolidine compound and its salt

according to Claim 2, wherein the compound of the formula (Ia) is represented by the formula (Ib):

4. The indole type thiazolidine compound and its salt according to Claim 3, wherein the compound of the formula (Ib) is represented by the formula (Ic):

$$R^{2} \xrightarrow{R^{3}} V \xrightarrow{N} V$$

$$R^{1} \xrightarrow{N} V$$

$$R^{n} \qquad (1c)$$

15

wherein R^1 is a substituent at the 2-position of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is O, S, SO, SO₂ or NR⁸ (R⁸ is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups, when two W's are present, such W's may be the same or different, and Z is

20

25

wherein each of R^a and R^b is independently a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3- C₇ cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthio group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, a-naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl group);

 \mathbb{R}^2 or \mathbb{R}^3 is a hydrogen atom, a $\mathbb{C}_1^{-1}\mathbb{C}_4^{-1}$ alkyl group, a

 C_3-C_6 cycloalkyl group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group or a halogen atom; and R^5 is a hydrogen atom.

5. The indole type thiazolidine compound and its salt according to Claim 3, wherein the compound of the formula (Ib) is represented by the formula (Id):

wherein \mathbb{R}^1 is a substituent at the 2-position of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is O, S, SO, SO₂ or NR⁸ (R⁸ is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxe and C_1-C_7 alkyl groups, when two W's are present, such W's

may be the same or different, and Z is

wherein each of R^a and R^b is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthic group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, a-naphthyl, β -naphthyl, furanyl, thienyl, 15 imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a 20 bromine atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3-C_7 cycloalkyl group or a hydroxymethyl 25 group);

 ${\bf R}^2$ or ${\bf R}^3$ is a hydrogen atom, a ${\bf C_1}$ – ${\bf C_4}$ alkyl group, a

 C_3-C_6 cycloalkyl group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group or a halogen atom; and R^5 is a hydrogen atom.

6. The indole type thiazolidine compound and its salt according to Claim 5, wherein Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4);

 R^1 is a substituent at the 2-position of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is 0, S, SO, SO₂ or NR⁸ (R⁸ is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups (provided that the first carbon atom bonded to N is not substituted with a hydroxyl group and the first carbon atom bonded to O is not substituted with a hydroxyl group or an oxo group), when two W's are present, such W's may be the same or different, and Z is

WO 96/26207

wherein each R^a and R^b is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl

- group), a hydroxyl group, a C_1 - C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a
- 10 C_1 - C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a phenoxy group, a benzyloxy group, a tri- C_1 - C_7 -alkylsilyloxy group, a phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, α -naphthyl, β -naphthyl, furanyl,
- thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro
- group and a dimethylamino group), a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl group);
- R^4 is a hydrogen atom or a methyl group, or forms a bond together with R^7 ; and

 \mathbb{R}^n is a substituent at the 1-position of an indole

5:

ring, and is a hydrogen atom, a C_1-C_3 alkyl group, a cyclopropyl group, a C_1-C_2 alkoxymethyl group, a benzyloxymethyl group, a carboxyl group, a methoxycarbonyl group, a C_1-C_3 alkoxy group and a trialkylsilyl group.

7. The indole type thiazolidine compound and its salt according to Claim 6, wherein:

 R^1 is -W-2, wherein W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 2 of hydroxyl, oxo and C_1-C_7 alkyl groups.

8. The indole type thiazolidine compound and its salt according to Claim 7, wherein:

 R^1 is -W-Z, wherein W is

15

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond.

- 9. The indole type thiazolidine compound and its salt according to Claim 8, wherein:
- 25 R^1 is -W-2, wherein W is

10. The indole type thiazolidine compound and its salt according to Claim 6, wherein:

 R^1 is -V-Z, wherein V is S, SO or SO_2 .

11. The indole type thiazolidine compound and its salt according to Claim 6, wherein:

 R^1 is -W-V-2, wherein W is

$$\frac{\begin{pmatrix} \mathsf{R}^{\mathsf{d}} \\ \mathsf{C} \\ \mathsf{H}^{\mathsf{e}} \end{pmatrix}_{\mathsf{m}}}{\langle \mathsf{R}^{\mathsf{d}} \rangle_{\mathsf{m}}}$$

- wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that
- R^d and R^e on the first carbon atom adjacent to N are not hydroxyl groups and also provided that R^d and R^e on the first carbon atom adjacent to O are not hydroxyl groups or do not together form an oxo group),

 $^{
m V}$ is NR $^{
m B}$ (R $^{
m B}$ is a hydrogen atom or a C $_{
m 1}$ -C $_{
m 3}$ alkyl 20 group).

12. The indole type thiazolidine compound and its salt according to Claim 11, wherein:

 R^1 is -W-V-2, wherein -W-V- is -CO-NR^B- (R^B is a hydrogen atom or a C_1 - C_3 alkyl group).

25 13. The indole type thiazolidine compound and its salt according to Claim 1, wherein the compound of the formula (I) is represented by the following formula (Ie):

- wherein R^1 is a substituent at the 3-, 4-, 5-, 6- or 7-position of an indole ring, and is a C_1 - C_{10} alkyl group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkynyl group, a C_1 - C_{10} alkoxy group, a C_2 - C_{10} alkenyloxy group, a C_1 - C_{10} alkylthio group, a C_1 - C_{10} monoalkylamino group or a dialylthio group, a C_1 - C_{10} monoalkylamino group or a dialkenyl, C_2 - C_{10} alkylamino group (each of said C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} monoalkylamino and C_1 - C_1 0 alkylamino groups may be substituted with a hydroxyl group or a C_1 - C_2 alkyl group), or
- $-W_k-V_\ell-2 \text{ (among groups of 2 as defined for the formula (I), said C_3-C_{10} cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, or adamantyl,$
- said C_3 - C_7 cycloalkenyl group is cyclohexenyl, cyclopentadienyl, 2-bicylo(2.2.1)heptenyl or 2,5-bicyclo(2.2.1)heptadienyl, said C_6 - C_{14} aromatic group is phenyl, naphthyl, indenyl, indanyl or fluorenyl, said C_1 - C_{12} heterocyclic aromatic group is furyl, thienyl,
- 25 pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl,
 furazanyl, pyrazolyl, oxopyrazolyl, imidazolyl,
 oxoimidazolyl, triazolyl, triazolonyl, tetrazolyl,

pyranyl, pyridyl, pyridonyl, pyridazinyl, pyridazinonyl, pyrimidinyl, pyrimidinonyl, pyrazinyl, triazinyl, tetrazinyl, indolyl, quinolyl, quinolonyl, benzofuranyl, benzothienyl, isoquinolyl, isoquinolonyl, benzoxazolyl,

- benzothiazolyl, benzopyrazolyl, benzimidazolyl, benzotriazolyl, benzopyranyl, indolizinyl, purinyl, phthalazinyl, oxophthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, benzodioxolyl, benzodioxanyl, oxonaphthalenyl, dihydrobenzofuranyl,
- benzothiazinyl, pteridinyl, pyrazolo[1,5-a]pyrimidinyl,
 pyrazolo[5,1-c][1,2,4]triazinyl, thiazolo[3,2b]triazolyl, benzopyrano[2,3-b]pyridyl, 5Hbenzopyrano[2,3-b]pyridonyl, xanthenyl, phenoxathiinyl,
 carbazolyl, acridinyl, phenazinyl, phenothiazinyl,
- phenoxazinyl, or thianthrenyl, and said C_1-C_6 heterocycloaliphatic group is piperidyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, morpholinyl, or tetrahydrofuranyl, (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, C_1-C_{12} heterocyclic
- aromatic and C_1 - C_6 heterocycloaliphatic groups may have at most 5 substituents selected from the group consisting of a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkyl and cycloalkenyl groups may be substituted
- with a hydroxyl group), a hydroxyl group, a C_1 - C_7 alkoxy group, a C_1 - C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a

methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri- C_1-C_7 -alkylsilyloxy group, a phenyl,

- naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group
- consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a l-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a
- thiazolidindion-5-yl group and a thiazolidindion-5-yl
 methyl group),

V is O, S, SO, SO $_2$ or NR 8 (R 8 is a hydrogen atom or a $\rm C_1\text{--}C_3$ alkyl group),

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated 20 hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, and

each of k and ℓ is 0 or 1),

-V-W-Z (V, W and Z are as defined above), or -W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different).

14. The indole type thiazolidine compound and its salt according to Claim 13, wherein the compound of the

formula (Ie) is represented by the formula (If):

$$R^{2} \xrightarrow{R^{3}} NR^{5}$$

$$R^{1} \xrightarrow{N} NR^{5}$$

$$X^{1} \xrightarrow{N} NR^{5}$$

$$X^{2}$$

15. The indole type thiazolidine compound and its salt according to Claim 14, wherein the compound of the formula (If) is represented by the formula (Ig):

$$\begin{array}{c}
R^{2} \\
R^{2} \\
R^{1}
\end{array}$$

$$\begin{array}{c}
R^{2} \\
N
\end{array}$$

$$\begin{array}{c}
N \\
N
\end{array}$$

wherein R^1 is a substituent at the 5-position of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is 0, S, S0, S0, S0, or NR⁸ (R⁸ is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups, when two W's are present, such W's may be the same or different, and Z is

wherein each of R^a and R^b is independently a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3- C, cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthio group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, σ -naphthyl, β -naphthyl, furanyl, thienyl, 15 imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a 20 bromine atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C₃-C₇ cycloalkyl group or a hydroxymethyl 25 group);

 R^2 or R^3 is a hydrogen atom, a C_1-C_4 alkyl group, a

 C_3 - C_6 cycloalkyl group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group or a halogen atom; and R^5 is a hydrogen atom.

16. The indole type thiazolidine compound and its salt according to Claim 14, wherein the compound of the formula (If) is represented by the formula (Ih):

10

wherein R^1 is a substituent at the 5-posotion of an indole ring, and is -W-2, -V-2, -W-V-2, -V-W-Z or -W-V-W-Z (V is O, S, SO, SO₂ or NR⁸ (R⁸ is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups, when two W's are present, such W's may be the same or different, and Z is

group);

wherein each of R^a and R^b is independently a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3- C₇ cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthic group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a tri-C₁-C₇-alkylsilyloxy group, a phenyl, σ -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, 15 imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a 20 bromine atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3-C_7 cycloalkyl group or a hydroxymethyl 25

 \mathbb{R}^2 or \mathbb{R}^3 is a hydrogen atom, a \mathbb{C}_1 - \mathbb{C}_4 alkyl group, a

 C_3 - C_6 cycloalkyl group, a phenyl group, a naphthyl group, a benzyl group, a pyridyl group or a halogen atom; and R^5 is a hydrogen atom.

17. The indole type thiazolidine compound and its salt according to Claim 16, wherein Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4);

 R^1 is a substituent at the 5-position of an indole ring, and is -W-Z, -V-Z, -W-V-Z, -V-W-Z or -W-V-W-Z (V is 0, S, SO, SO, SO, or NR^8 (R^8 is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups (provided that the first carbon atom bonded to N is not substituted with a hydroxyl group and the first carbon atom bonded to 0 is not substituted with a hydroxyl group or an oxo group), when two W's are present, such W's may be the same or different, and Z is

wherein each R^a and R^b is independently a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl 10 group, a phenoxy group, a benzyloxy group, a $tri-C_1-C_7$ alkylsilyl group, a phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be 15 substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino group), a 5-tetrazolyl group, a 20 thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1-C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl group);

 R^4 is a hydrogen atom or a methyl group, or forms a bond together with R^7 ; and

 R^n is a substituent at the 1-position of an indole

ring, and is a hydrogen atom, a C_1-C_3 alkyl group, a cyclopropyl group, a C_1-C_2 alkoxymethyl group, a benzyloxymethyl group, a carboxyl group, a methoxycarbonyl group, a C_1-C_3 alkoxy group and a trialkylsilyl group.

18. The indole type thiazolidine compound and its salt according to Claim 17, wherein:

 R^1 is -W-Z, wherein W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 2 of hydroxyl, oxo and C_1 - C_7 alkyl groups.

19. The indole type thiazolidine compound and its salt according to Claim 18, wherein:

 R^1 is -W-Z, wherein W is

20

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond.

20. The indole type thrazolidine compound and its salt according to Clarm 19, wherein:

25 R^1 is -W-Z, wherein W is

21. The indole type thiazolidine compound and its salt according to Claim 17, wherein:

 R^1 is -V-Z, wherein V is S, SO or SO_2 .

22. The indole type thiazolidine compound and its salt according to Claim 17, wherein:

 R^1 is -W-V-Z, wherein W is

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or E^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that R^d and R^e on the first carbon atom adjacent to N are not hydroxyl groups and also provided that R^d and R^e on the first carbon atom adjacent to O are not hydroxyl groups or do not together form an oxo group), and

V is NR 8 (R 6 is a hydrogen atom or a $\rm C_1 - C_3$ alkyl 20 group).

23. The indole type thrazolidine compound and its salt according to Claim 22, wherein:

 R^1 is -W-V-2, wherein -W-V- is -CO-NR⁸- (R⁸ is a hydrogen atom or a C_1 - C_3 alkyl group).

25 24. The indole type thiazolidine compound and its salt according to Claim 9, 10, 12, 20, 21 or 22, wherein:

WO 96/26207 PCT/JP96/00403

 R^4 is a hydrogen atom.

5

25. The indole type thiazolidine compound and its salt according to Claim 9, 10, 12, 20, 21 or 22, wherein:

Y is CHR^7 (R^7 forms a bond together with R^4); and R^4 forms a bond together with R^7 .

- 26. A hypoglycemic agent containing the indole type thiazolidine compound or its salt according to Claim 1 as an active agent.
- 27. An aldose reductase inhibitor containing the indole 10 type thiazolidine compound or its salt according to Claim 1 as an active agent.
 - 28. A pharmaceutical agent for preventing and treating diabetes mellitus and diabetic complications, which contains the indole type thiazolidine compound or its salt according to Claim 1 as an active agent.

INTERNATIONAL SEARCH REPORT

PCT/JP 96/90493

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D417/06 C07D41 C07D413/06 C07D417/14 A61K31/425 A61K31/42 According to international Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07D IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Х EP,A,O 587 377 (LILLY CO ELI) 16 March 1-28 cited in the application see claims GB,A,2 080 803 (PFIZER) 10 February 1982 Х 1 - 28cited in the application see claims X EP,A,O 047 109 (ONO PHARMACEUTICAL CO) 10 1-28 March 1982 cited in the application see claims 1-25 Х EP.A.O 343 643 (WARNER LAMBERT CO) 29 November 1989 cited in the application see claims -/--X Further documents are listed in the continuation of hox C Patent family members are listed in annex. Х Special categories of cited documents: "I later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not . aled to understand the principle or theory underlying the connidered to be of particular relevance E earlier document but published on or after the international v "X" document of particular relevance; the claimed invention filing date samot he considered novel or cannot be considered to "L" document which may throw doubts on priority claims to or involve an inventive step when the document is taken alone which is cited to establish the publication date of another 'Y' document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu other means menu, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 23.05.1996 13 May 1996 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rajswijk Tel. (+ 31-70) 340-2040, fx. 31 h51 epo ni. Henry, J Fax (- 31-70) 340-3016

1

INTERNATIONAL SEARCH REPORT

Inter and Application No PCT/JP 96/00403

Category	DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/JP 96/00403	
	* Citation of document, with indication, where appropriate, of the relevant partages	Relevant to claim No.	
X	US.A.5 143 927 (BOSCHELLI DIANE H ET AL) 1 September 1992 see the whole document	1-25	
X	US.A.3 320 282 (MANFRED SCHACH VON WITTENAU ET AL) 16 May 1967	1-25	
X	JOURNAL OF MEDICINAL CHEMISTRY, vol. 21, no. 1, January 1978, WASHINGTON US,	1-25	
	pages 82-87, XP002002903 MICHAEL R. HARNDEN ET AL: "Thiazolinone analogues of indolmycin with antiviral and antibacterial activity" cited in the application see the whole document		
	JOURNAL OF MEDICINAL CHEMISTRY, vol. 10, no. 9, September 1967, WASHINGTON US,	1-25	
	pages 852-855, XP002002904, EDWARD J. GLAMKOWSKI ET AL: "A new class of potent decarboxylase inhibitors.Beta-(3-indolyl)-alpha-hydrazin opropionic acids" cited in the application see the whole document		
	CHEMICAL ABSTRACTS, vol. 101, no. 26, 24 December 1984 Columbus, Ohio, US; abstract no. 239482z. GALAN ALFONSO ET AL: "Derivatives of rhodanine as spectropnotometric analytical reagents. Determination of copper" page 574; XP002002905 cited in the application see abstract & ANAL.LETT., vol. 17, 1984,	1-25	
	pages 1447-1462. CHEMICAL ABSTRACTS, vol. 94, no. 14, 6 April 1981 Columbus, Ohio, US; abstract no. 112466d, page 633; XP002002906 Cited in the application see abstract	1-25	
	& JP.A.80 096 941 (MITSUBISHI PAPER MILLS, LTD) 23 July 1980		

1

Form PCT/ISA/210 (continuation of second sheet) (July 1993)

NOTES TO FORM PCT/ISA/220

These Notes are intended to give the basic instructions concerning the filing of amendments under article 19. The Notes are based on the requirements of the Patent Cooperation Treaty, the Regulations and the Administrative Instructions under that Treaty. In case of discrepancy between these Notes and those requirements, the latter are applicable. For more detailed information, see also the PCT Applicant's Guide, a publication of WIPO.

In these Notes, "Article", "Rule", and "Section" refer to the provisions of the PCT, the PCT Regulations and the PCT Administrative Instructions respectively.

INSTRUCTIONS CONCERNING AMENDMENTS UNDER ARTICLE 19

The applicant has, after having received the international search report, one opportunity to amend the claims of the international application. It should however be emphasized that, since all parts of the international application (claims, description and drawings) may be amended during the international preliminary examination procedure, there is usually no need to file amendments of the claims under Article 19 except where, e.g. the applicant wants the latter to be published for the purposes of provisional protection or has another reason for amending the claims before international polication. Furthermore, it should be emphasized that provisional protection is available in some States only.

What parts of the international application may be amended?

Under Article 19, only the claims may be amended.

During the international phase, the claims may also be amended (or further amended) under Article 34 before the International Preliminary Examining Authority. The description and drawings may only be amended under Article 34 before the International Examining Authority.

Upon entry into the national phase, all parts of the international application may be amended under Article 28 or, where applicable, Article 41.

When?

Within 2 months from the date of transmittal of the international search report or 16 months from the priority date, whichever time limit expires later. It should be noted, however, that the amendments will be considered as having been received on time if they are received by the International Bureau after the expiration of the applicable time limit but before the completion of the technical preparations for international publication (Rule 46.1).

Where not to file the amendments?

The amendments may only be filed with the International Bureau and not with the receiving Office or the International Searching Authority (Rule 46.2).

Where a demand for international preliminary examination has been its filed, see below.

How?

Either by cancelling one or more entire claims, by adding one or more new claims or by amending the text of one or more of the claims as filed.

A replacement sheet must be submitted for each sheet of the claims which, on account of an amendment or amendments, differs from the sheet originally filed.

All the claims appearing on a replacement sheet must be numbered in Arabic numerals. Where a claim is cancelled, no renumbering of the other claims is required. In all cases where claims are renumbered, they must be renumbered consecutively (Administrative Instructions, Section 205(b)).

The amendments must be made in the language in which the international application is to be published.

What documents must/may accompany the amendments?

Letter (Section 205(b)):

The amendments must be submitted with a letter.

The letter will not be published with the international application and the amended claims. It should not be confused with the "Statement under Article 19(1)" (see below, under "Statement under Article 19(1)").

The letter must be in English or French, at the choice of the applicant. However, if the language of the international application is English, the letter must be in English; if the language of the international application is French, the letter must be in French.

•		·	
			·
	·		
·			
·			

NOTES TO FORM PCT/ISA/220 (continued)

The letter must indicate the differences between the claims as filed and the claims as amended. It must, in particular, indicate, in connection with each claim appearing in the international application (it being understood that identical indications concerning several claims may be grouped), whether

- the claim is unchanged;
- (ii) the claim is cancelled:
- (iii) the claim is new:
- (iv) the claim replaces one or more claims as filed;
- (v) the claim is the result of the division of a claim as filed.

The following examples illustrate the manner in which amendments must be explained in the accompanying letter:

- [Where originally there were 48 claims and after amendment of some claims there are 51]:
 "Claims 1 to 29, 31, 32, 34, 35, 37 to 48 replaced by amended claims bearing the same numbers; claims 30, 33 and 36 unchanged; new claims 49 to 51 added."
- [Where originally there were 15 claims and after amendment of all claims there are 11]: "Claims 1 to 15 replaced by amended claims 1 to 11."
- 3. [Where originally there were 14 claims and the amendments consist in cancelling some claims and in adding new claims]: "Claims 1 to 6 and 14 unchanged; claims 7 to 13 cancelled; new claims 15, 16 and 17 added." or "Claims 7 to 13 cancelled; new claims 15, 16 and 17 added; all other claims unchanged."
- 4. [Where various kinds of amendments are made]: "Claims 1-10 unchanged; claims 11 to 13, 18 and 19 cancelled; claims 14, 15 and 16 replaced by amended claim 14; claim 17 subdivided into amended claims 15, 16 and 17; new claims 20 and 21 added."

"Statement under article 19(1)" (Rule 46.4)

The amendments may be accompanied by a statement explaining the amendments and indicating any impact that such amendments might have on the description and the drawings (which cannot be amended under Article 19(1)).

The statement will be published with the international application and the amended claims.

it must be in the language in which the international appplication is to be published.

it must be brief, not exceeding 500 words if in English or if translated into English.

It should not be confused with and does not replace the letter indicating the differences between the claims as filed and as amended. It must be filed on a separate sheet and must be identified as such by a heading, preferably by using the words "Statement under Article 19(1)."

It may not contain any disparaging comments on the international search report or the relevance of citations contained in that report. Reference to citations, relevant to a given claim, contained in the international search report may be made only in connection with an amendment of that claim.

Consequence if a demand for international preliminary examination has already been filed

If, at the time of filing any amendments under Article 19, a demand for international preliminary examination has already been submitted, the applicant must preferably, at the same time of filing the amendments with the International Bureau, also file a copy of such amendments with the International Preliminary Examining Authority (see Rule 62.2(a), first sentence).

Consequence with regard to translation of the international application for entry into the national phase

The applicant's attention is drawn to the fact that, where upon entry into the national phase, a translation of the claims as amended under Article 19 may have to be furnished to the designated/elected Offices, instead of, or in addition to, the translation of the claims as filed.

For further details on the requirements of each designated/elected Office, see Volume II of the PCT Applicant's Guide.

THIS PAGE BLANK (USPTO)