数据挖掘作业三

——分类与聚类

姓名: 高建花

班级: 硕士4班

学号: 2120171010

分类与聚类

1. 数据集

https://www.kaggle.com/c/titanic/data

此数据集包括训练数据(train.csv)和测试数据(test.csv),训练数据用于建立机器学习的模型,测试集用来检测模型的有效性。

2. 编程环境

编程语言: python

Packages: sklearn, pandas, matplotlib

IDE: PyCharm

3. 分类与聚类

3.1 数据预处理

先查看训练数据和测试数据的基本信息

	train.info	test.info		
<class 'pandas.core.frame.dataframe'=""></class>		<class 'pandas.core.frame.dataframe'=""></class>		
RangeIndex: 891 entries, 0 to 890		RangeIndex: 418 entries, 0 to 417		
Data columns (total 12 columns):		Data columns (total 11 columns):		
PassengerId	891 non-null int64	PassengerId	418 non-null int64	
Survived	891 non-null int64	Pclass	418 non-null int64	
Pclass	891 non-null int64	Name	418 non-null object	
Name	891 non-null object	Sex	418 non-null object	
Sex	891 non-null object	Age	332 non-null float64	
Age	714 non-null float64	SibSp	418 non-null int64	
SibSp	891 non-null int64	Parch	418 non-null int64	
Parch	891 non-null int64	Ticket	418 non-null object	
Ticket	891 non-null object	Fare	417 non-null float64	
Fare	891 non-null float64	Cabin	91 non-null object	
Cabin	204 non-null object	Embarked	418 non-null object	
Embarked	889 non-null object	dtypes: float64(2), int64(4), object(5)		
dtypes: float64(2), int64(5), object(5)		memory usage	: 27.8+ KB	
memory usage: 66.2+ KB				

考虑到 PassengerId、Name、Ticket 是标识属性,对于 Survived 的预测没有影响,故将这些属性丢弃;另外测试数据和训练数据中 Cabin 属性的缺失值均比较多,故将此属性也丢弃。然后使用均值来填补训练数据中的 Age 和测试数据中的 Age、Fare 属性,用众数来填补训练数据中的 Embarked 属性。得到的数据信息如下:

train.info		test.info		
<class 'pandas.core.frame.dataframe'=""></class>		<class 'pandas.core.frame.dataframe'=""></class>		
RangeIndex: 891 entries, 0 to 890		RangeIndex: 418 entries, 0 to 417		
Data columns (total 7 columns):		Data columns (total 7 columns):		
Pclass	891 non-null int64	Pclass	418 non-null int64	
Sex	891 non-null object	Sex	418 non-null object	
Age	891 non-null float64	Age	418 non-null float64	
SibSp	891 non-null int64	SibSp	418 non-null int64	
Parch	891 non-null int64	Parch	418 non-null int64	
Fare	891 non-null float64	Fare	418 non-null float64	
Embarked	891 non-null object	Embarked	418 non-null object	
dtypes: float64(2), int64(3), object(2)		dtypes: float64(2), int64(3), object(2)		
memory usage: 41.8+ KB		memory usage: 19.6+ KB		

3.2 支持向量机分类

分类步骤如下:

- (1) 设定初始参数值,比如核函数、正则化参数等;
- (2) 使用网络搜索进行调参,核函数为 linear 时有正则化参数和权重向量,核函数为 rbf 时有 gamma、正则化参数和权重向量;
- (3) 交叉验证。对于每组参数,使用 4 重交叉验证估计训练得到的分类器的泛化性能,即将训练样本分为 4 份,每次采用 3 份作为训练集,另 1 份作为验证集。重复做 4 次实验,每次采用不同的验证集。
- (4) 将 4 次实验的评价指标求均值,作为此组参数获得的分类器其泛化性能的评价指标;
- (5) 得到泛化性能最好的一组参数,在整个训练集上训练模型。

结果如下:

Train result 0.833 (+/-0.010) for {'C': 1, 'kernel': 'linear'} 0.762 (+/-0.054) for {'C': 1, 'kernel': 'rbf'} 0.832 (+/-0.012) for {'C': 10, 'kernel': 'linear'} 0.765 (+/-0.040) for {'C': 10, 'kernel': 'rbf'} Best parameters: {'C': 1, 'kernel': 'linear'}

因为本实验用的是普通的笔记本电脑,所以参数设置不宜过多,使用上述参数来简单展示。将最终的预测结果写入到文件,上传到 kaggle 网站上,查看得分如下:

Name Submitted Wait time Execution time Score submission_SVM.csv just now 0 seconds 0 seconds 0.76555

Complete

3.3 AdaBoost 分类

与上述 SVM 类似,不同的是 AdaBoost 中设置的参数不同,此处设置了弱分类器的个数 n_estimators 和学习率 learning_rate 的几组值:

训练结果如下:

Train result Grid scores on validation set: 0.858 (+/-0.028) for {'learning_rate': 1, 'n_estimators': 50} 0.856 (+/-0.026) for {'learning_rate': 1, 'n_estimators': 100} 0.857 (+/-0.026) for {'learning_rate': 1, 'n_estimators': 150} 0.857 (+/-0.024) for {'learning_rate': 1, 'n_estimators': 200} 0.848 (+/-0.017) for {'learning_rate': 0.1, 'n_estimators': 50} 0.857 (+/-0.022) for {'learning_rate': 0.1, 'n_estimators': 100} 0.861 (+/-0.025) for {'learning_rate': 0.1, 'n_estimators': 150} 0.861 (+/-0.026) for {'learning_rate': 0.1, 'n_estimators': 200} 0.786 (+/-0.045) for {'learning_rate': 0.01, 'n_estimators': 50} 0.828 (+/-0.009) for {'learning_rate': 0.01, 'n_estimators': 100} 0.829 (+/-0.012) for {'learning_rate': 0.01, 'n_estimators': 150} 0.835 (+/-0.011) for {'learning_rate': 0.01, 'n_estimators': 200} Best parameters: {'learning_rate': 0.1, 'n_estimators': 200}

将预测结果上传到 kaggle 网站上,查看得分如下:

Name	Submitted	Wait time	Execution time	Score
submission_AdaBoost.csv	just now	0 seconds	0 seconds	0.75598

Complete

可看出,其分类的准确率比 SVM 稍低,当然还可以通过调整参数来提升其准确率。

3.4 KMeans 聚类

其主要步骤如下:

- (1) 每次选取两个特征进行聚类;
- (2) KMeans 中的聚类个数设置为 2, 即 Survived 的值为 0 或 1。
- (3) 使用 adjusted rand index(ARI, 兰德指数)来作为聚类效果的评价指标, 其取值范围为[-1,1], 负值表示聚类结果较差, 越接近 1, 其聚类结果越好。

最终得到结果如下图:可以看出('sex', 'Embarked')两个特征跟 Survived 的相关程度最高。

3.5 谱聚类

与 KMeans 聚类相类似,不同的是在谱聚类中,相似性度量分别使用 6-近邻和 8-近邻。得到结果如下图(依次为 6-近邻和 8-近邻的结果):可以看出同等条件下,6-近邻比 8-近邻的聚类效果稍好,且与 Survived 相关程度最高的特征组合也不同,分别是('Pclass','Fare'),('SibSp', 'Fare')。

两种聚类算法相比,可看出在一定的参数条件下,KMeans 的聚类效果要比谱聚类的效果好。


```
('SibSp', 'Fare') : -0.010
('Sex', 'Age') : -0.010
('Age', 'SibSp') : -0.006
('Fare', 'Embarked') : -0.003
('Pclass', 'Bmbarked') : -0.003
('Sex', 'Age') : -0.003
('Sex', 'Age') : -0.003
('Sex', 'Bmbarked') : -0.003
('Sex', 'Embarked') : -0.001
('Pclass', 'Fare') : -0.001
('Age', 'Embarked') : 0.001
('Age', 'Embarked') : 0.003
('Parch', 'Embarked') : 0.004
('Sex', 'Fare') : 0.005
('Age', 'Fare') : 0.006
('SibSp', 'Embarked') : 0.006
```


('Sex', 'Fare')	-0.022
('Sex', 'Age')	-0.009
('Sex', 'Parch')	-0.006
('Pclass', 'Fare')	-0.005
('Pclass', 'Embarked')	-0.004
('SibSp', 'Embarked')	-0.004
('Pclass', 'Sex')	-0.002
('Age', 'SibSp')	-0.002
('SibSp', 'Parch')	-0.002
('Age', 'Parch')	-0.000
('Age', 'Embarked')	0.001
('Parch', 'Fare')	0.002
('Parch', 'Embarked')	0.002
('Pclass', 'SibSp')	0.003
('Sex', 'SibSp')	0.004
('Sex', 'Embarked')	0.004
('Pclass', 'Age')	0.007
('Pclass', 'Parch')	0.009
('Fare', 'Embarked')	0.013
('Age', 'Fare')	0.014
('SibSp', 'Fare')	0.022