

Drehstrom-Asynchronmaschine mit Schleifringläufer

Zusammenfassung—In diesem Versuch soll eine Käfigläufer-Asynchronmaschine genauer untersucht werden. Zur Bestimmung der ESB- Parameter wurde hierzu der Leerlauf, als auch Kurzschlussversuch durchgeführt...

I. ANLAUFMOMENT UND KIPPMOMENT

Bei diesem Versuch wurde das Drehmoment mit einem 40cm langen Stab und einer Digitalen Wage gemessen.

Mit der Gleichung 1 wurde das Drehmoment aus den Messungen berechnet.

$$M = \frac{G}{1000} \cdot g \cdot l = \frac{G(I_1)}{1000} \text{kg} \cdot 9.81 \text{m/s}^2 \cdot 0.4 \text{m}$$
 (1)

In den Abbildungen 1 und 2 wird das Anlaufmoment der ASM über die Spannung graphisch dargestellt.

Die obere Hälfte der Abbildungen zeigt eine linearisierte Extrapolation des Verlaufs der Drehmomente M_{an} und M_{Kipp} über die Spannung U_1^2 , bis 400^2V .

Aber in der unteren Hälfte der Abbildungen wird das Drehmoment der ASM direkt über die Spannung U_1 dargestellt und mit einer quadratischen Polynomfunktion extrapoliert.

Abbildung 1: Anlaufmoment

Der lineare Verlauf in Abb.1, $M_{an}(U)$ [rot]:

$$0,1511x - 0,07306$$

$$M_{an}(U_N = 400^2V^2) = 24,11 Nm$$

Und die quadratische Polynomfunktion $M_{an}(U)$ [blau]:

$$0,000199x^2 - 0,007889x + 0,190977$$
$$M_{an}(U_N = 400V) = 28,83 Nm$$

Abbildung 2: Kippmoment

Der lineare Verlauf in Abb.2, $M_{Kipp}(U)$ [rot]:

$$0,1863x - 0,1431$$

$$M_{Kipp}(U_N = 400^2 V^2) = 29,67\ Nm$$

Und die quadratische Polynomfunktion $M_{Kipp}(U)$ [blau]:

$$0,000198x^2 - 0,0024495x - 0,035842$$
$$M_{Kipp}(U_N = 400V) = 30,6 Nm$$

A. Zusammenhang zwischen Drehmoment und Spannung

Bei zunehmender Spannung U_1 steigt das Drehmoment M quadratisch an. Das Drehmoment ist direkt proportional zu U^2 $(M \sim U^2)$ und darauf ergibt sich folgende Beziehnung:

$$M = konst. \cdot U$$

II. BESTIMMUNG DER ERSATZSCHALTBILDPARAMETER

A. Parameterbestimmung aufgrund der Kurzschlussmessung

Umrechnen der gemessenen Widerstandswerte auf die Bezugstemperatur $T = 75^{\circ}\text{C}$:

$$R_{175} = R_{120} \frac{235^{\circ}\text{C} + 75^{\circ}\text{C}}{235^{\circ}\text{C} + 25^{\circ}\text{C}}$$
$$= 2,32 \ \Omega \cdot \frac{235^{\circ}\text{C} + 75^{\circ}\text{C}}{235^{\circ}\text{C} + 25^{\circ}\text{C}}$$
$$= 2,820 \ \Omega$$

Berechnen des Läuferwiderstands mithilfe der Übersetzungsverhältnis:

$$R_{2}^{'} = \ddot{u}^{2} \cdot R_{2} = 4,7^{2} \cdot 216m\Omega = 4,77\Omega$$

$$R_{275}^{'} = R_{220} \frac{235^{\circ}\text{C} + 75^{\circ}\text{C}}{235^{\circ}\text{C} + 25^{\circ}\text{C}}$$

$$= 4,77 \Omega \cdot \frac{235^{\circ}\text{C} + 75^{\circ}\text{C}}{235^{\circ}\text{C} + 25^{\circ}\text{C}}$$

$$= 5.8 \Omega$$

Es gilt:

$$R_k = R_1 + R_2 = 2,820 \ \Omega + 5,8 \ \Omega = 8,62 \ \Omega$$
 (2)

Aus der Kurzschlussmessung in 4.2.1 wird der Kurzschlusswiderstand R_k mit:

$$R_k = \frac{U_k}{\Re \{I_k\}}$$
 (3)

$I_1[A]$	$P_1[W]$	U[V]	G[g]	$M_{an}[Nm]$
4,2	392	113	464	1,82074

Tabelle I: Kurzschlussmessung 4.2.1

Mit den Werten aus der Tabelle I kann $cos\varphi_k$ berechnet werden:

$$cos\varphi_k = \frac{P_1}{\sqrt{3} \cdot I_1 \cdot U} \tag{4}$$

$$cos\varphi_k = \frac{P_1}{\sqrt{3} \cdot I_1 \cdot U}$$

$$cos\varphi_k = \frac{392W}{\sqrt{3} \cdot 4, 2A \cdot 113V} = 0,4769$$
(5)

Mithilfe der Formel 5 kann der Realteil der Strom I_1 ermittelt:

$$\varphi_k = \arccos(0, 4769) = 61, 51^{\circ}$$
 (6)

$$\Re\{I_k\} = \cos\varphi_k \cdot I_k = 0,4769 \cdot 4, 2A = 2A \tag{7}$$

$$\mathfrak{Im}\{I_k\} = \sin\varphi_k \cdot I_k = 0,8790 \cdot 4,2A = 3,69A$$
 (8)

Da die Maschine im Stern geschaltet ist, ergibt sich für die Spannung U_k :

$$\boxed{U_k = \frac{U}{\sqrt{3}}} = \frac{113V}{\sqrt{3}} = 65,24V \tag{9}$$

Jetzt kann R_k aus den Formeln 6 und 9 berechnet werden:

$$R_k = \frac{65,24V}{2A} = 32,62 \ \Omega \tag{10}$$

Die Streureaktanzen $X_{1\sigma}$ und $X_{2\sigma}$ werden mit:

$$X_{1\sigma} + X_{2\sigma}' = \frac{U_k}{\Im \mathfrak{m}\{I_k\}} \tag{11}$$

Da $X_{1\sigma} = X'_{2\sigma}$ ist, ergibt sich:

$$X_{1\sigma} = X_{2\sigma}' = \frac{U_k}{\Im \mathfrak{m} \{I_k\}} \cdot \frac{1}{2}$$

$$= \frac{65,24V}{3,69A} \cdot \frac{1}{2} = 8,84 \Omega$$
(12)

$$= \frac{65,24V}{3,69A} \cdot \frac{1}{2} = 8,84 \ \Omega \tag{13}$$

1) Vergleich zwischen ermittelter und gemessener Kurzschlusswiderstand: Der gemessene Widerstandswert (Formel 2), ist im Vergleich zudem rechnerisch ermittelter Wert (Formel 10) um den Faktor 4 größer.

Eine mögliche Erklärung wäre, dass beim Kurzschlussversuch die Temperatur der Asynchronmaschine sehr schnell angestiegen ist und damit auch der Widerstandswert.