AMENDMENTS TO THE CLAIMS

1. (Original) A multilayer structure, comprising:

a silicon based substrate; and

an epitaxial $Cd_{1-z}Zn_zX_xX'_{1-x}$ film grown on the silicon based substrate, where X is a chalcogenide selected from the group consisting of S and Se; X' is a higher atomic number chalcogenide relative to X and X' is selected from the group consisting of S, Se and Te; x is a number greater than zero and less than 1; and z is a number greater than or equal to zero and less than one.

- 2. (Original) The structure of claim 1 wherein X is Se and X' is Te.
- 3. (Original) The structure of claim 2 wherein z is zero.
- 4. (Original) The multilayer structure of claim 1, wherein the silicon based substrate has a CdX' overlayer in contact with the $Cd_{1-z}Zn_zX_xX'_{1-x}$ film.
- 5. (Original) The multilayer structure of claim 1, wherein the silicon based substrate is a single crystal.
 - 6. (Original) The multilayer structure of claim 1, wherein x+z is less than 0.10.
- 7. (Original) The multilayer structure of claim 1, wherein x+z is between 0.01 and 0.08.

- 8. (Original) The multilayer structure of claim 1, wherein x+z is between 0.03 and 0.05.
- 9. (Original) The multilayer structure of claim 3, wherein x is between 0.01 and 0.08.
- 10. (Original) The multilayer structure of claim 3, wherein x is between 0.03 and 0.05.
- 11. (Original) The multilayer structure of claim 1, wherein the $Cd_{1-z}Zn_zX_xX'_{1-x}$ film has a surface defect density equal to or less than 2000 per centimeter squared.
- 12. (Original) The multilayer structure of claim 11, wherein the surface defect density is less than 500 per square centimeter.
- 13. (Original) The multilayer structure of claim 1, further comprising a $Hg_{1-y}Cd_yTe$ layer grown on the $Cd_{1-z}Zn_zX_xX'_{1-x}$ film, the $Hg_{1-y}Cd_yTe$ layer being substantially lattice matched to the $Cd_{1-z}Zn_zX_xX'_{1-x}$ film.
 - 14. (Original) The multilayer structure of claim 13, wherein X is Se and X' is Te.

- 15. (Original) The multilayer structure of claim 14, wherein x+z is between 0.01 and 0.08 and y is between 0.15 and 0.35.
 - 16. (Original) The multilayer structure of claim 13, wherein z is zero.
 - 17. (Original) The multilayer structure of claim 16, wherein X is Se and X' is Te.
- 18. (Original) The multilayer structure of claim 16, wherein x is between 0.01 and 0.08 and y is between 0.15 and 0.35.
- 19. (Original) The multilayer structure of claim 1, further comprising a cadmium chalcogenide layer grown on the $Cd_{1-z}Zn_zX_xX'_{1-x}$ film.
- 20. (Original) The multilayer structure of claim 14 wherein the cadmium chalcogenide layer and the $Cd_{1-z}Zn_zX_xX'_{1-x}$ film are substantially lattice matched.
- 21. (Original) A $Cd_{1-z}Zn_zSe_xTe_{1-x}$ film grown by molecular beam epitaxy on a silicon based substrate, where x is a number between zero and one inclusive and z is greater than zero and less than one.
 - 22. (Original) The $Cd_{1-z}Zn_zSe_xTe_{1-x}$ film of claim 21 wherein x+z is less than 0.10.

- 23. (Original) The $Cd_{1-z}Zn_zSe_xTe_{1-x}$ film of claim 21, wherein the $Cd_{1-z}Zn_zSe_xTe_{1-x}$ film has a surface defect density of less than 2000 per square centimeter.
- 24. (Original) The $Cd_{1-z}Zn_zSe_xTe_{1-x}$ film of claim 21, having an overlayer of $Hg_{1-y}Cd_yTe$ thereon.
- 25. (Original) The $Cd_{1-z}Zn_zSe_xTe_{1-x}$ film of claim 24, wherein the $Cd_{1-z}Zn_zSe_xTe_{1-x}$ film is substantially lattice matched to the overlayer of $Hg_{1-y}Cd_yTe$.
- 26. (Original) The film of claim 24, wherein x+z is between 0.01 and 0.08 and y is between 0.15 and 0.35.
- 27. (Currently Amended) The film of claim 21 wherein the $Cd_{1-z}Zn_zSe_xTe_{1-x}$ film is grown from a $Cd_{1-z}Zn_zTe$ source and a Se source (not quite clear here?).
- 28. (Currently Amended) A $\frac{\text{CdSe}_{x}\text{Te}_{1-x}}{\text{CdS}_{x}\text{Te}_{1-x}}$ film grown by molecular beam epitaxy on a silicon based substrate, where x is a number between 0 and 1 inclusive and z is greater than zero and less than one.
- 29. (Currently Amended) The $\frac{\text{CdSe}_{x}\text{Te}_{1-x}}{\text{CdS}_{x}\text{Te}_{1-x}}$ film of claim 28 wherein x is less than 0.10.

- 30. (Currently Amended) The $\frac{\text{CdSe}_{x}\text{Te}_{1-x}}{\text{CdSe}_{x}\text{Te}_{1-x}}$ film of claim 28, wherein the $\frac{\text{CdSe}_{x}\text{Te}_{1-x}}{\text{CdSe}_{x}\text{Te}_{1-x}}$ film has a surface defect density of less than 2000 per square centimeter.
- 31. (Currently Amended) The $\frac{\text{CdSe}_{*}\text{Te}_{1-*}}{\text{CdS}_{x}\text{Te}_{1-x}}$ film of claim 28, having an overlayer of $\text{Hg}_{1-y}\text{Cd}_{y}\text{Te}$ thereon.
- 32. (Currently Amended) The $\frac{\text{CdSe}_{x}\text{Te}_{1-x}}{\text{CdSe}_{x}\text{Te}_{1-x}}$ film of claim 31, wherein the $\frac{\text{CdSe}_{x}\text{Te}_{1-x}}{\text{CdSe}_{x}\text{Te}_{1-x}}$ film is substantially lattice matched to the overlayer of $\text{Hg}_{1-y}\text{Cd}_{y}\text{Te}$.
- 33. (Original) The film of claim 31, wherein x is between 0.01 and 0.08 and y is between 0.15 and 0.35.
- 34. (Currently Amended) The film of claim 28 wherein the $\frac{CdS_xTe_{1-x}}{CdS_xTe_{1-x}}$ film is grown from a CdTe source and a $\frac{Se}{S}$ source.
- 35. (Original) A method of growing an epitaxial film of $Cd_{1-z}Zn_zX_xX'_{1-x}$, comprising the steps of:

providing a substrate;

growing a crystalline layer of CdX' on the substrate by molecular beam epitaxy; and growing the epitaxial film of $Cd_{1-z}Zn_zX_xX'_{1-x}$ on the layer of CdX' by molecular beam epitaxy where X and X' are different chalcogenides and each is selected from the group S, Se and Te and X has lower atomic number than X', x is a number greater than zero and less than one,

and z is a number greater than or equal to zero and less than one, where the epitaxial film of $Cd_{1-z}Zn_zX_xX'_{1-x}$ is grown from multiple sources selected from the group consisting of: $Cd_{1-z}Zn_zX'$, X; Cd, Zn, X', X; $Cd_{1-z}Zn_zX'$, Zn, Cd, X; CdX', Zn, X; and $Cd_{1-z}Zn_zX'$, Cd, X.

- 36. (Currently Amended) The method of claim 35, where wherein X is Se and X' is Te.
- 37. (Currently Amended) The method of claim 36 where wherein the multiple sources are CdTe, ZnTe, CdSe, Cd, Te, Se sources.
- 38. (Original) The method of claim 35 further comprising the step of: annealing the layer of CdX' prior to growing the epitaxial film.
- 39. (Currently Amended) The method of claim 35, wherein the epitaxial film of $Cd_{1-z}Zn_zX_xX'_{1-x}$ is grown using an X flux from the X source and a $Cd_{1-z}Zn_zX'$ flux from the ZnX' and CdX' compound sources[[.]], there being a flux ratio of ZnX'+X fluxes to CdX' flux, the flux ratio being less than approximately 0.08.
- 40. (Original) The method of claim 39, wherein the flux ratio is between 0.02 and 0.06, and preferably 0.04.
- 41. (Original) The method of claim 35 wherein the substrate is selected from the group consisting of: a silicon, gallium arsenide and indium antimonide.

- 42. (Original) The method of claim 35, wherein the epitaxial film of $Cd_{1-z}Zn_zX_xX'_{1-x}$ is grown at a film growth temperature, the film growth temperature being between 300°C and 450°C.
- 43. (Currently Amended) The method of claim 42 where wherein X is Se and X' is Te.
- 44. (Original) The method of claim 42 wherein the film growth temperature is between approximately 340°C and approximately 380°C.
- 45. (Original) The method of claim 35 further comprising the step of annealing during the growth of the layer of $Cd_{1-z}Zn_zX_xX'_{1-x}$.
- 46. (Currently Amended) A method of growing an epitaxial film of $\frac{\text{CdS}_{x}X'_{1-x}}{\text{CdS}_{x}X'_{1-x}}$, comprising the steps of:

providing a substrate;

growing a crystalline layer of CdX' on the substrate by molecular beam epitaxy; and growing the epitaxial film of CdX_xX'_{1-x} CdS_xX'_{1-x} on the layer of CdX' by molecular beam epitaxy where X and X' is are different chalcogenides and each is selected from the group S; Se and or Te and X has lower atomic number than X', x is a number greater than zero and less

Serial No. 10/807,714 Preliminary Amendment

than one, from multiple sources selected from the group consisting of: CdX', $\times \underline{S}$; Cd, X', $\times \underline{S}$; and CdX', Cd, $\times \underline{S}$.

- 47. (Currently Amended) The method of claim 46, where X is Se and wherein X' is Te.
- 48. (Currently Amended) The method of claim 47 where wherein the multiple sources are CdTe and Se S sources.
- 49. (Currently Amended) The method of claim 46, wherein the epitaxial film of $CdX_xX'_{1-x}$ $CdS_xX'_{1-x}$ is grown using an $X \subseteq S$ flux from the $X \subseteq S$ source and a CdX' flux from the CdX' compound source, there being a flux ratio of $X \subseteq S$ flux to CdX' flux, the flux ratio being less than approximately 0.08.
- 50. (Original) The method of claim 49, wherein the flux ratio is between 0.02 and 0.04.
- 51. (Original) The method of claim 46 wherein the substrate is selected from the group consisting of: a silicon, gallium arsenide and indium antimonide.

Serial No. 10/807,714 Preliminary Amendment

- 52. (Currently Amended) The method of claim 46, wherein the epitaxial film of $CdX_xX'_{1-x}$ $CdS_xX'_{1-x}$ is grown at a film growth temperature, the film growth temperature being between 300°C and 450°C.
 - 53. (Currently Amended) The method of claim 52 where X is Se and X' is Te.
- 54. (Original) The method of claim 52 wherein the film growth temperature is between approximately 340°C and approximately 380°C.
- 55. (Currently Amended) The method of claim 46 further comprising the step of annealing during the growth of the layer of $\frac{\text{CdX}_{*}X'_{1-*}}{\text{CdS}_{*}X'_{1-*}}$.
 - 56. (Original) A radiation detector, comprising:
 - a silicon based substrate;
 - a film of Cd_{1-z}Zn_zX_xX'_{1-x} grown on the silicon based substrate; and

a radiation sensing layer grown on the film of $CdX_xX'_{1-x}$, where X is a chalcogenide selected from the group consisting of: S and Se; X' is a higher atomic number chalcogenide relative to X and X' is selected from the group consisting of S, Se, and Te; and x is a number greater than zero and less than one, and z is a number greater than or equal to zero and less than one.

- 57. (Currently Amended) The radiation detector of claim 56 where wherein X is Se and X' is Te.
 - 58. (Original) The radiation detector of claim 56 wherein z is zero.
 - 59. (Original) The radiation detector of claim 56 where x+z is less than 0.10.
- 60. (Original) The radiation detector of claim 56, wherein the radiation sensing layer is a layer of Hg_{1-v}Cd_vTe.
- 61. (Original) The radiation detector of claim 56, wherein the radiation sensing layer is a layer of CdX'.
- 62. (Original) The radiation detector of claim 60 where X is Se and X' is Te and z is zero.
- 63. (Original) The radiation detector of claim 57 wherein the radiation sensing layer is substantially lattice matched to film of Cd_{1-z}Zn_zSe_xTe_{1-x}.
- 64. (Original) The radiation detector of claim 58 wherein the radiation sensing layer is substantially lattice matched to film of Cd_{1-z}Zn_zSe_xTe_{1-x}.
 - 65. (Original) The radiation detector of claim 62 wherein x is between 0.01 and 0.08.

Serial No. 10/807,714 Preliminary Amendment

- 66. (Original) The radiation detector of claim 60 wherein x is Se, X' is Te, and x+z is between 0.01 and 0.08.
- 67. (Original) The radiation detector of claim 62, wherein y is between 0.15 and 0.35.
- 68. (Original) The radiation detector of claim 66, wherein y is between 0.15 and 0.35.