LayoutLmv3 (Data Augmentation and Imbalance mitigation)

Hardware Setup

We conducted our experiments using an **NVIDIA GeForce RTX 3050 Laptop GPU with 4GB of dedicated memory.** The limited GPU memory was a key consideration in our experiment setup and model configuration.

Data Preparation

The dataset comprised **196 scanned invoices**, with annotations initially provided in CSV format and subsequently converted to JSON to align with model input requirements. Manual corrections were made for errors in the 'ieee' labels.

OCR Processing

 Pytesseract OCR: Initial OCR was performed using Pytesseract, which required preprocessing of images to improve text recognition accuracy. Post-OCR, data was reformatted to fit the input requirements of LayoutLM (image, words, ner_tags, bounding_boxes).

- Azure OCR: Due to suboptimal results from Pytesseract affecting model performance, Azure OCR was utilized to ensure higher accuracy in text extraction.
- **3. Labeling via IOU**: The Intersection Over Union (IOU) metric was employed to align OCR results with existing labels, facilitating accurate training data preparation.

Data Imbalance

The dataset exhibits significant class imbalance, which is detailed as follows in the training set (80% of total data):

'O': 25,989
'B-title': 137
'B-date': 146
'B-ieee': 133
'B-total': 150
'B-totalValue': 147

the labels needed to be in the IOB(inside, outside, beginning) form : {'O', 'B-title', 'I-title', 'B-date', 'I-date', 'B-ieee', 'I-ieee', 'B-total', 'I-total', 'B-totalValue', 'I-totalValue'}

Data Augmentation

Even small rotations (limit=) caused cropping out essential textual elements, leading to mismatches between the words, labels, and their corresponding bounding boxes. To mitigate this issue, I first applied **padding** to the images before rotation. We then developed **a script to identify the minimum and maximum x and y coordinates across all bounding boxes**, ensuring that the cropping maintained **a margin of 20 pixels** from these boundaries. This approach not only **preserved crucial data** but also standardized image dimensions across the dataset, significantly enhancing model performance. Furthermore, the augmentation techniques **improved the quality of images with complex backgrounds that were initially challenging to preprocess**, ensuring more consistent and clear inputs for model training.

Steps:

- Median Blur, Color Jitter for image enhancement.
- Padding with a probability of 1
- Rotation: Limit of 5 degrees, applied with inter cubic interpolation
- Resizing using bilinear sampling to maintain uniform image dimensions, beneficial for consistent model performance.

Model Training and Fine-Tuning

To prevent overfitting, a weight decay regularization of 0.01 is implemented.

• Loss Function: Cross entropy with class weights and Focal loss were tested to address data imbalance.

	GFlops	Batch size	epoch	Learning rate	Inference time (seconds)	Params (Millions)	Training loss	Valida tion loss	F1 score	Accuracy	Recall	Precision
LMv3 (weighted Cross Entropy)	79.44	4	38	5e-5	1.809	125.93	0.10	3.19	0.50	0.96	0.52	0.48
LMv3 (Focal Loss)	44.83	4	50	5e-5	2.08	125.93	0.002	0.036	0.56	0.97	0.48	0.68

NB: (I tried using a batch size of 8 and LR= 10e-4 but the training always reached some point and then an error occurred, upon inspection i figured that the model wasn't "stable enough" and some forums advised of decreasing the Ir/batch size)

Training and validation loss plots & Inference:

Weighted Cross Entropy Loss: (lasted 16h to 38 epochs even though I used GPU ⇒ Isuspect that the result is mistaken because of hardware issues)

Inference: (shows only class other)

Focal Loss:

Inference: (plotting all labels besides other)

Conclusion:

Cross entropy is the original loss function of the model but adding the **class weights** makes the process harder and way more resource demanding without any effects. **Focal Loss** shows better performance and is promising. training for more epochs and with more data might give some good results (worth experimenting with the handwritten and machine written data merged)

Next, Fedi and akram will each run the same code but train with LiLT and LayoutLMv2 so we can compare (OCR=False— since it's widely used and the model takes so much time to train, I suggest that we prioritize this comparison between models without using the built in OCR) — Run on colab