Notes About the Simple TPM Attester Protocol

John D. Ramsdell

October 4, 2013

See the associated MITRE Technical Report (MTR) before looking at these notes.

The Simple TPM Attester Protocol (STAP) message algebra displayed in Figure 1 extents the one in the MTR by adding hashing and tags. It also adds the sort M for the state of the TPM, and two operations bt and ex, for boot and extend. Thus a state is a term of sort M.

Sorts: MOperations: bt: M $ex: T \times M \rightarrow M$ PCR extension

The transition relation is τ , where $(m_0, m_1) \in \tau$ iff $m_1 = \mathsf{bt}$ (boot), $\exists t \colon \top . m_1 = \mathsf{ex}(t, m_0)$ (extend), or $m_0 = m_1$ (observe). An infinite sequence π is a path if $\forall i \in \mathbb{N}$. $(\pi(i), \pi(i+1)) \in \tau$.

The encoding of TPM states as messages follows.

$$\begin{aligned} pcr \colon \mathsf{M} &\to \mathsf{S} \\ pcr(\mathsf{bt}) &= \mathsf{s}_0 \\ pcr(\mathsf{ex}(t,m)) &= \#(t,pcr(m)) \end{aligned}$$

Theorem 1 in the state world is imported into the strand space world as a bridge lemma.

```
Sorts:
                       \top, A, S, D, E, M
                       A < T, S < T, D < T, E < T
Subsorts:
Operations: (\cdot, \cdot) : \top \times \top \to \top Pairing
                       \{\!\mid\cdot\mid\!\}_{(\cdot)}\colon \top\times \mathsf{A}\to \top
                                                              Asymmetric encryption
                       \{ |\cdot| \}_{(\cdot)} : T \times S \to T(\cdot)^{-1} : A \to A
                                                              Symmetric encryption
                                                              Asymmetric key inverse
                       (\cdot)^{-1} : \mathsf{S} \to \mathsf{S}
                                                              Symmetric key inverse
                                : \top \to \mathsf{S}
                                                              Hashing
                       a_i, b_i : A
                                                              Asymmetric key constants
                                  : S
                                                              Symmetric key constants
                       \mathsf{s}_i
                       d_i
                                  : D
                                                              Data constants
                                  : E
                                                              Text constants
                                  : T
                                                              Tag constants
                       \mathsf{g}_i
                                  : M
                                                              TPM boot
                                  : \top \times \mathsf{M} \to \mathsf{M} \quad \mathrm{TPM} \ \mathrm{extend}
                       \mathbf{a}_{i}^{-1} = \mathbf{b}_{i} \quad \mathbf{b}_{i}^{-1} = \mathbf{a}_{i} \quad (i \in \mathbb{N})
\forall k \colon \mathsf{A}. (k^{-1})^{-1} = k \quad \forall k \colon \mathsf{S}. k^{-1} = k
Equations:
```

Figure 1: Crypto Algebra with State Signature

Figure 2: STAP Message-Passing and State History

Theorem 1 (Stable Boot Extend).

$$\forall \pi \in path, t \colon \top, i, j \in \mathbb{N}.$$

$$i < j \land \pi(i) = \mathsf{bt} \land \pi(k) = \mathsf{ex}(t, \mathsf{bt}) \supset$$

$$\exists j \in \mathbb{N}.$$

$$i \leq j \land j < k \land \pi(j) = \mathsf{bt} \land$$

$$\forall \ell \in \mathbb{N}. \ j < \ell \land \ell \leq k \supset \pi(\ell) = \mathsf{ex}(t, \mathsf{bt})$$

Much text has yet to written following this point...

Annotated STAP Roles. Some of the tags used in the protocol.

$$\begin{array}{ll} st = g_0 & \mathrm{State} \\ cd = g_1 & \mathrm{Key\ Created} \\ de = g_2 & \mathrm{Decrypt} \\ d = g_3 & \mathrm{Desired\ PCR\ Value} \end{array}$$

STAP Shape. The shape and its connection to state is in Figure 2.