

#### DEEP LEARNING WORKSHOP

Dublin City University 21-22 May 2018



# Day 2 Lecture 6 Segmentation



Amaia Salvador amaia.salvador@upc.edu

PhD Candidate Universitat Politècnica de Catalunya



# Segmentation

#### **Segmentation**



Define the accurate boundaries of all objects in an image

#### Semantic Segmentation

Label every pixel!

Don't differentiate instances (cows)

Classic computer vision problem



### Instance Segmentation

Detect instances, give category, label pixels

"simultaneous detection and segmentation" (SDS)

Label are class-aware and instance-aware



#### Outline

# Segmentation Datasets Semantic Segmentation Methods

- Deconvolution (or transposed convolution)
- Dilated Convolution
- Skip Connections

#### **Instance Segmentation Methods**

- Proposal-Based
- Recurrent
- Metric Learning

#### Outline

#### **Segmentation Datasets**

#### Semantic Segmentation Methods

- Deconvolution (or transposed convolution)
- Dilated Convolution
- Skip Connections

#### **Instance Segmentation Methods**

- Proposal-Based
- Recurrent
- Metric Learning

### Segmentation: Datasets

#### Pascal Visual Object Classes



- 20 categories
- +10,000 images
- Semantic segmentation GT
- Instance segmentation GT

#### Pascal Context



- Real indoor & outdoor scenes
- 540 categories
- +10,000 images
- Dense annotations
- Semantic segmentation GT
- Objects + stuff

### Segmentation: Datasets

#### ADE20K







- Real general scenes
- +150 categories
- +22,000 images
- Semantic segmentation GT
- Instance + parts segmentation GT
- Objects and stuff

#### **COCO Common Objects in Context**



- Real indoor & outdoor scenes
- 80 categories
- +300,000 images
- 2M instances
- Partial annotations
- Semantic segmentation GT
- Instance segmentation GT
- Objects, but no stuff

### Segmentation: Datasets

#### **CityScapes**



- Real driving scenes
- 30 categories
- +25,000 images
- 20,000 partial annotations
- 5,000 dense annotations
- Semantic segmentation GT
- Instance segmentation GT
- Depth, GPS and other metadata
- Objects and stuff

#### Mapillary Vistas Dataset



- Real driving scenes
- 100 categories
- 25,000 images
- Semantic segmentation GT
- Instance + parts segmentation GT
- Objects and stuff

#### Outline

#### Segmentation Datasets

#### **Semantic Segmentation Methods**

- Deconvolution (or transposed convolution)
- Dilated Convolution
- Skip Connections

#### **Instance Segmentation Methods**

- Proposal-Based
- Recurrent
- Metric Learning

# From Classification to Segmentation



# From Classification to Segmentation

Run "fully convolutional" network to get all pixels at once



# Semantic Segmentation



Problem 1:

Smaller output due to pooling

# Learnable upsampling



Typical 3 x 3 convolution, stride 1 pad 1



Input: 4 x 4



Output: 4 x 4

Typical 3 x 3 convolution, stride 1 pad 1



Typical 3 x 3 convolution, stride 1 pad 1



Typical 3 x 3 convolution, stride 2 pad 1



Input: 4 x 4



Output: 2 x 2

Typical 3 x 3 convolution, stride 2 pad 1



Typical 3 x 3 convolution, stride 2 pad 1



3 x 3 "deconvolution", stride 2 pad 1



Input: 2 x 2



Output: 4 x 4

3 x 3 "deconvolution", stride 2 pad 1





Warning: Checkerboard effect when kernel size is not divisible by the stride



Source: distill.pub

Warning: Checkerboard effect when kernel size is not divisible by the stride



stride = 2, kernel\_size = 3

Source: distill.pub



Noh et al. <u>Learning Deconvolution Network for Semantic Segmentation</u>. ICCV 2015

# Alternative to Transposed Convolution: Subpixel

# Rearrange features in previous convolutional layer to form a higher resolution output



### Semantic Segmentation



High-level features (e.g. conv5 layer) from a pretrained classification network are the input for the segmentation branch

# Skip Connections

#### Recovering low level features from early layers



Skip connections = Better results

#### **Dilated Convolutions**

Structural change in convolutional layers for dense prediction problems (e.g. image segmentation)



- The receptive field grows exponentially as you add more layers → more context information in deeper layers wrt regular convolutions
- Number of parameters increases linearly as you add more layers

### **Dilated Convolutions**



Source: <a href="https://github.com/vdumoulin/conv">https://github.com/vdumoulin/conv</a> arithmetic

#### State-of-the-art models

- U-Net
  - Deconvolutions
  - skip connections



#### State-of-the-art models

PSPNet (dilated convolutions + pyramid pooling)



#### State-of-the-art models

DeepLab v2 (dilated convolutions + CRF)



DeepLab v3 (added pyramid pooling. Removed CRF)

Chen et al. <u>DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs</u>. TPAMI 2017

Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. TPAMI 2017

#### Outline

# Segmentation Datasets Semantic Segmentation Methods

- Deconvolution (or transposed convolution)
- Dilated Convolution
- Skip Connections

#### **Instance Segmentation Methods**

- Proposal-Based
- Recurrent
- Metric Learning

### Instance Segmentation

Detect instances, give category, label pixels

"simultaneous detection and segmentation" (SDS)



#### Instance Segmentation

#### More challenging than Semantic Segmentation

- Number of objects is variable
- No unique match between predicted and ground truth objects (cannot use instance IDs)

#### Several attack lines:

- Proposal-based methods
- Recurrent Neural Networks
- Metric Learning

# Proposal-based

#### Similar to R-CNN, but with segment proposals



Slide Credit: CS231n

## Proposal-based Instance Segmentation: Mask R-CNN

Faster R-CNN for Pixel Level Segmentation as a parallel prediction of masks and class labels



#### Mask R-CNN

- Classification & box detection losses are identical to those in Faster R-CNN
- Addition of a new loss term for mask prediction:

The network outputs a  $K \times m \times m$  volume for mask prediction, where K is the number of categories and m is the size of the mask (square)



He et al. Mask R-CNN. ICCV 2017

# Mask R-CNN: RoI Align

Reminder: Rol Pool from Fast R-CNN



Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal Rol conv features: C x h x w for region proposal Fully-connected layers expect low-res conv features:

C x h x w

# Mask R-CNN: RoI Align

Use bilinear interpolation instead of cropping + maxpool







## Limitations of Proposal-based models

- 1. Two objects might share the same bounding box: Only one will be kept after NMS step.
- 2. Choice of NMS threshold is application dependant
- 3. Choice of anchor boxes is application dependant
- 4. Same pixel can be assigned to multiple instances
- Number of predictions is limited by the number of proposals.

#### Recurrent Instance Segmentation

#### Sequential mask generation



Romera-Paredes & H.S. Torr. Recurrent Instance Segmentation ECCV 2016

# Recurrent Instance Segmentation



#### Metric Learning

Mapping pixels to a N-dimensional space where pixels belonging to the same object are close to each other.



|                | AP   | AP0.5 | AP100m | AP50m |
|----------------|------|-------|--------|-------|
| R-CNN+MCG      | 4.6  | 12.9  | 7.7    | 10.3  |
| FCN+Depth      | 8.9  | 21.1  | 15.3   | 16.7  |
| JGD            | 9.8  | 23.2  | 16.8   | 20.3  |
| InstanceCut    | 13.0 | 27.9  | 22.1   | 26.1  |
| Boundary-aware | 17.4 | 36.7  | 29.3   | 34.0  |
| DWT            | 19.4 | 35.3  | 31.4   | 36.8  |
| Pixelwise DIN  | 20.0 | 38.8  | 32.6   | 37.6  |
| Mask R-CNN     | 26.2 | 49.9  | 37.6   | 40.1  |
| Ours           | 17.5 | 35.9  | 27.8   | 31.0  |

Results on Cityscapes

#### Outline

# Segmentation Datasets Semantic Segmentation Methods

- Deconvolution (or transposed convolution)
- Dilated Convolution
- Skip Connections

#### **Instance Segmentation Methods**

- Proposal-Based
- Recurrent
- Metric Learning

# Questions?

# Proposal-based





## Proposal-based Instance Segmentation: MNC

Faster R-CNN for Pixel Level Segmentation in a multi-stage cascade strategy



Dai et al. Instance-aware Semantic Segmentation via Multi-task Network Cascades. CVPR 2016

# Proposal-based Instance Segmentation: MNC



**Predictions** 

**Ground truth** 

#### Mask R-CNN

#### **Instance Segmentation**

|                    | backbone              | AP   | $AP_{50}$ | $AP_{75}$ | $AP_S$ | $AP_M$ | $AP_L$ |
|--------------------|-----------------------|------|-----------|-----------|--------|--------|--------|
| MNC [10]           | ResNet-101-C4         | 24.6 | 44.3      | 24.8      | 4.7    | 25.9   | 43.6   |
| FCIS [26] +OHEM    | ResNet-101-C5-dilated | 29.2 | 49.5      | -         | 7.1    | 31.3   | 50.0   |
| FCIS+++ [26] +OHEM | ResNet-101-C5-dilated | 33.6 | 54.5      | -         | -      | -      | -      |
| Mask R-CNN         | ResNet-101-C4         | 33.1 | 54.9      | 34.8      | 12.1   | 35.6   | 51.1   |
| Mask R-CNN         | ResNet-101-FPN        | 35.7 | 58.0      | 37.8      | 15.5   | 38.1   | 52.4   |
| Mask R-CNN         | ResNeXt-101-FPN       | 37.1 | 60.0      | 39.4      | 16.9   | 39.9   | 53.5   |

#### **Object Detection**

|                            | backbone                 | APbb | $AP_{50}^{bb}$ | $AP_{75}^{bb}$ | $AP^bb_S$ | ${ m AP}_{M}^{ m bb}$ | $\mathrm{AP}^{\mathrm{bb}}_L$ |
|----------------------------|--------------------------|------|----------------|----------------|-----------|-----------------------|-------------------------------|
| Faster R-CNN+++ [19]       | ResNet-101-C4            | 34.9 | 55.7           | 37.4           | 15.6      | 38.7                  | 50.9                          |
| Faster R-CNN w FPN [27]    | ResNet-101-FPN           | 36.2 | 59.1           | 39.0           | 18.2      | 39.0                  | 48.2                          |
| Faster R-CNN by G-RMI [21] | Inception-ResNet-v2 [37] | 34.7 | 55.5           | 36.7           | 13.5      | 38.1                  | 52.0                          |
| Faster R-CNN w TDM [36]    | Inception-ResNet-v2-TDM  | 36.8 | 57.7           | 39.2           | 16.2      | 39.8                  | 52.1                          |
| Faster R-CNN, RoIAlign     | ResNet-101-FPN           | 37.3 | 59.6           | 40.3           | 19.8      | 40.2                  | 48.8                          |
| Mask R-CNN                 | ResNet-101-FPN           | 38.2 | 60.3           | 41.7           | 20.1      | 41.1                  | 50.2                          |
| Mask R-CNN                 | ResNeXt-101-FPN          | 39.8 | 62.3           | 43.4           | 22.1      | 43.2                  | 51.2                          |