CPSC 340: Machine Learning and Data Mining

Feature Selection
Bonus Slides

Bayesian Information Criterion (BIC)

- A disadvantage of these methods:
 - Still prefers a larger 'p' as 'n' grows.
- Solution: make λ depend on 'n'.
- For example, the Bayesian information criterion (BIC) uses:

$$\lambda = \frac{1}{2} \log(n)$$

- BIC penalizes a bit more than AIC for large 'n'.
 - As 'n' goes to ∞, recovers "true" model ("consistent" for model selection).
- In practice, we usually just try a bunch of different λ values.
 - Picking λ is like picking 'k' in k-means.

Discussion of other Scores for Model Selection

- There are many other scores:
 - Elbow method (corresponds to specific choice of λ).
 - You could also use BIC for choosing 'k' in k-means.
 - Methods based on validation error.
 - "Take smallest 'p' within one standard error of minimum cross-validation error".
 - Minimum description length.
 - Risk inflation criterion.
 - False discovery rate.
 - Marginal likelihood (CPSC 540).
- These can adapted to use the L1-norm and other errors.

Genome-Wide Association Studies

- Genome-wide association studies:
 - Measure if there exists a dependency between each individual "single-nucleotide polymorphism" in the genome and a particular disease.

- Has identified thousands of genes "associated" with diseases.
 - But by design this has a huge numbers of false positives (and many false negatives).

Backward Selection and RFE

- Forward selection often works better than naïve methods.
- A related method is backward selection:
 - Start with all features, compute score after removing each feature, remove the one that improves the score the most.
- If you consider adding or removing features, it's called stagewise.
- Stochastic local search is a class of fancier methods.
 - Simulated annealing, genetic algorithms, ant colony optimization, etc.
- Recursive feature elimination is another related method:
 - Fit parameters of a regression model.
 - Prune features with small regression weights.
 - Repeat.

Consider a supervised classification task:

gender	mom	dad
F	1	0
M	0	1
F	0	0
F	1	1

SNP
1
0
0
1

- Predict whether someone has particular genetic variation (SNP).
 - Location of mutation is in "mitochondrial" DNA.
 - "You almost always have the same value as your mom".
 - For simplicity we'll assume 1950s-style gender and parentage.

Consider a supervised classification task:

gender	mom	dad
F	1	0
M	0	1
F	0	0
F	1	1

- True model:
 - (SNP = mom) with very high probability.
 - (SNP != mom) with some very low probability.
- What are the "relevant" features for this problem?
 - Mom is relevant and {gender, dad} are not relevant.

SNP	
1	
0	
0	
1	

What if "mom" feature is repeated?

		•	
gender	mom	dad	mom2
F	1	0	1
M	0	1	0
F	0	0	0
F	1	1	1

SNP
1
0
0
1

- Are "mom" and "mom2" relevant?
 - Should we pick them both?
 - Should we pick one because it predicts the other?
- is "correct", but

 not picking either
 is incorrect.
- If features can be predicted from features, can't know which to pick.
 - Collinearity is a special case of "dependence" (which may be non-linear).

What if we add (maternal) "grandma"?

	· •		
gender	mom	dad	grandma
F	1	0	1
M	0	1	0
F	0	0	0
F	1	1	1

SNP
1
0
0
1

- Is "grandma" relevant?
 - You can predict SNP very accurately from "grandma" alone.
 - But "grandma" is irrelevant if I know "mom".
- A feature is only "relevant" in the context of available features.
 - Adding/removing features can make features relevant/irrelevant.

What if we don't know "mom"?

gender	grandma	dad
F	1	0
M	0	1
F	0	0
F	1	1

SNP
1
0
0
1

- Now is "grandma" is relevant?
 - Without "mom" variable, using "grandma" is the best you can do.

- A feature is only "relevant" in the context of available features.
 - Adding/removing features can make features relevant/irrelevant.

What if we don't know "mom" or "grandma"?

gender	dad
F	0
M	1
F	0
F	1

SNP
1
0
0
1

- Now there are no relevant variables, right?
 - But "dad" and "mom" must have some common maternal ancestor.
 - "Mitochondrial Eve" estimated to be ~200,000 years ago.
- A "relevant" feature may have a tiny effect.

What if we don't know "mom" or "grandma"?

gender	dad
F	0
M	1
F	0
F	1

SNP
1
0
0
1

- Now there are no relevant variables, right?
 - What if "mom" likes "dad" because he has the same SNP as her?

Confounding factors can make "irrelevant" variables "relevant".

What if we add "sibling"?

gender	dad	sibling
F	0	1
M	1	0
F	0	0
F	1	1

SNP
1
0
0
1

Sibling is "relevant" for predicting SNP, but it's not the cause.

- "Relevance" for prediction does not imply a causal relationship.
 - Causality can even be reversed...

What if don't have "mom" but we have "baby"?

gender	dad	baby
F	0	1
M	1	1
F	0	0
F	1	1

SNP
1
0
0
1

- "Baby" is relevant when (gender == F).
 - "Baby" is relevant (though causality is reversed).
 - Is "gender" relevant?
 - If we want to find relevant causal factors, "gender" is not relevant.
 - If we want to predict SNP, "gender" is relevant.
- "Relevance" may depend on values of certain features.
 - "Context-specific" relevance.

- Warnings about feature selection:
 - If features can be predicted from features, you can't know which to pick.
 - A feature is only "relevant" in the context of available features.
 - A "relevant" feature may have a tiny effect.
 - Confounding factors can make "irrelevant" variables the most "relevant".
 - "Relevance" for prediction does not imply a causal relationship.
 - "Relevance" may depend on values of certain features.

Is this hopeless?

- We often want to do feature selection we so have to try!
- Different methods are affected by problems in different ways.
- These "problems" don't have right answers but have wrong answers:
 - Variable dependence ("mom" and "mom2" have same information).
 - But should take at least one.
 - Conditional independence (all "grandma" information is captured by "mom").
 - Should take "grandma" only if "mom" missing.
- These "problems" have application-specific answers:
 - Tiny effects.
 - Context-specific relevance (is "gender" relevant if given "baby"?).
- See bonus slides for discussion causality and confounding issues.
 - Unless you control data collection, standard feature selection methods cannot address those issues.

Method\Issue	Dependence	Conditional Independence	Tiny effects	Context-Specific Relevance
Association (e.g., measure correlation between features 'j' and 'y')	Ok (takes "mom" and "mom2")	Bad (takes "grandma", "great-grandma", etc.)	Ignores	Bad (misses features that must interact, "gender" irrelevant given "baby")

Method\lssue	Dependence	dence Conditional Tiny effects Independence		Context-Specific Relevance
Association (e.g., measure correlation between features 'j' and 'y')	Ok (takes "mom" (takes "grandma", and "mom2") "great-grandma", etc.)		Ignores	Bad (misses features that must interact, "gender" irrelevant given "baby")
Regression Weight (fit least squares, take biggest w _j)	Bad (can take irrelevant but collinear, can take none of "mom1-3")	Ok (takes "mom" not "grandma", if linear and 'n' large.	Ignores (unless collinear)	Ok (if linear, "gender" relevant give "baby")

Method\Issue	Dependence	Conditional Independence	Tiny effects	Context-Specific Relevance
Association (e.g., measure correlation between features 'j' and 'y')	Ok (takes "mom" and "mom2")	Bad (takes "grandma", "great-grandma", etc.)	Ignores	Bad (misses features that must interact, "gender" irrelevant given "baby")
Regression Weight (fit least squares, take biggest w _j)	Bad (can take irrelevant but collinear, can take none of "mom1-3")	Ok (takes "mom" not "grandma", if linear and 'n' large.	Ignores (unless collinear)	Ok (if linear, "gender" relevant give "baby")
Search and Score w/ Validation Error	Ok (takes at least one of "mom" and "mom2")	Bad (takes "grandma", "great-grandma", etc.)	Allows	Ok ("gender" relevant given "baby")

Method\Issue	Dependence	Conditional Independence	Tiny effects	Context-Specific Relevance
Association (e.g., measure correlation between features 'j' and 'y')	Ok (takes "mom" and "mom2")	Bad (takes "grandma", "great-grandma", etc.)	Ignores	Bad (misses features that must interact, "gender" irrelevant given "baby")
Regression Weight (fit least squares, take biggest w _j)	Bad (can take irrelevant but collinear, can take none of "mom1-3")	Ok (takes "mom" not "grandma", if linear and 'n' large.	Ignores (unless collinear)	Ok (if linear, "gender" relevant give "baby")
Search and Score w/ Validation Error	Ok (takes at least one of "mom" and "mom2")	Bad (takes "grandma", "great-grandma", etc.)	Allows (many false positives)	Ok ("gender" relevant given "baby")
Search and Score w/ L0-norm	Ok (takes exactly one of "mom" and "mom2")	Ok (takes "mom" not grandma if linear-ish).	Ignores (even if collinear)	Ok ("gender" relevant given "baby")

Feature Selection in Tree-Based Methods

- Decision trees naturally do feature selection while learning:
 - The features used for the splits are the ones that are "selected".
- There are a variety of ways evaluate features in random forests:
 - Compute proportion of trees that use feature 'j'.
 - Compute average infogain increase when using feature 'j'.
 - Permute all values of feature 'j', and see how "out of bag" error increases.
- You could use any of above to select features from random forest.

Mallow's Cp

Older than AIC and BIC is Mallow's Cp:

$$f(w) = \frac{\|Xw - y\|^2}{\|Mxw - y\|^2} - n + 2\|w\|_0$$

$$\frac{1}{n}\|Xw - y\|^2$$

$$\frac{1}{n}\|xw - y\|$$

• Minimizing this score is equivalent to L0-regularization:

$$f(w) = \frac{1}{2} || \chi_w - y ||^2 + \lambda ||w||_0$$
with $\lambda = || \chi_w - y ||^2$

• So again, viewing λ as hyper-parameter, this score is special case.

Adjusted R²

Older than AIC and BIC and Mallow's Cp is adjusted R²:

$$f(n) = 1 - (1 - R^2) \frac{n-1}{n-||n||_{6}-1}$$
 where $R^2 = 1 - \frac{||X_{m}-y||^2}{||X_{m}^2-y||^2}$

Maximizing this score is equivalent to L0-regularization:

$$= \frac{1}{2} \| \chi_{n} - \chi \|^{2} + \lambda \| \| \| \|_{0}$$
with $\lambda = \frac{\| \chi_{n} - \chi \|^{2}}{2(n-1)}$

• So again, viewing λ as hyper-parameter, this score is special case.

ANOVA

• Some people also like to compute this "ANOVA" quantity:

$$f(w) = \frac{||Xw - \overline{y}||^2}{||y - \overline{y}||^2}$$
mean of yi values repeated in times

This is based on the decomposition of "total squared error" as:

$$||y-y||^2 = ||xw-y||^2 + ||xw-y||^2$$
"total" error "explained" error "residual" (usual) error.

- Notice that "explained error" goes up as our usual ("residual") error goes down.
- Trying to find the 'k' features that maximize 'f' ("explain the most variance") is equivalent to L0-regularization with a particular λ (so another special case).

Information Criteria with Noise Variance

We defined AIC/BIC for feature selection in least squares as:

$$f(w) = \frac{1}{2} || \chi_w - y ||^2 + \eta ||w||_0$$

- The first term comes from assuming $y_i = w^T x_i + \varepsilon$, where ε comes from a normal distribution with a variance of 1.
 - We'll discuss why when we discuss MLE and MAP estimation.
 - If you aren't doing least squares, replace first term by "log-likelihood".
- If you treat variance as a parameter, then after some manipulation:

$$f(w) = \frac{n}{2} \log (\|Xw - y\|^2) + \lambda \|w\|_0$$

• However, this is again equivalent to just changing λ .

Complexity Penalties for Other Models

- Scores like AIC and BIC can also be used in other contexts:
 - When fitting a decision tree, only split a node if it improves BIC.
 - This makes sense if we're looking for the "true tree", or maybe just a simple/interpretable tree that performs well.
- In these cases we replace "LO-norm" with "degrees of freedom".
 - In linear models fit with least squares, degrees of freedom is number of non-zeroes.
 - Unfortunately, it is not always easy to measure "degrees of freedom".

Alternative to Search and Score: good old p-values

- Hypothesis testing ("constraint-based") approach:
 - Generalization of the "association" approach to feature selection.
 - Performs a sequence of conditional independence tests.

- If they are independent (like "p < .05"), say that 'j' is "irrelevant".</p>
- Common way to do the tests:
 - "Partial" correlation (numerical data).
 - "Conditional" mutual information (discrete data).

Testing-Based Feature Selection

- Hypothesis testing ("constraint-based") approach:
- Two many possible tests, "greedy" method is for each 'j' do:

First test if
$$x_{ij} \perp y_i$$

If still dependent test $x_{ij} \perp y_i \mid x_{is}$ where 's' has one feature features to minimize

If still dependent test $x_{ij} \perp y_i \mid x_{is}$ where 's' now has two features dependence.

If still dependent when 's' includes all other features, declare 'j' relevant.

• "Association approach" is the greedy method where you only do the first test (subsequent tests remove a lot of false positives).

Hypothesis-Based Feature Selection

Advantages:

- Deals with conditional independence.
- Algorithm can explain why it thinks 'j' is irrelevant.
- Doesn't necessarily need linearity.

Disadvantages:

- Deals badly with exact dependence: doesn't select "mom" or "mom2" if both present.
- Usual warning about testing multiple hypotheses:
 - If you test p < 0.05 more than 20 times, you're going to make errors.
- Greedy approach may be sub-optimal.

Neither good nor bad:

- Allows tiny effects.
- Says "gender" is irrelevant when you know "baby".
- This approach is sometimes better for finding relevant factors, not to select features for learning.

Causality

- None of these approaches address causality or confounding:
 - "Mom" is the only relevant direct causal factor.
 - "Dad" is really irrelevant.
 - "Grandma" is causal but is irrelevant if we know "mom".

- Other factors can help prediction but aren't causal:
 - "Sibling" is predictive due to confounding of effect of same "mom".
 - "Baby" is predictive due to reverse causality.
 - "Gender" is predictive due to common effect on "baby".

· We can sometimes address this using interventional data..

Interventional Data

- The difference between observational and interventional data:
 - If I see that my watch says 10:45, class is almost over (observational).
 - If I set my watch to say 10:45, it doesn't help (interventional).
- The intervention can help discover causal effects:
 - "Watch" is only predictive of "time" in observational setting (so not causal).
- General idea for identifying causal effects:
 - "Force" the variable to take a certain value, then measure the effect.
 - If the dependency remains, there is a causal effect.
 - We "break" connections from reverse causality, common effects, or confounding.

Causality and Dataset Collection

- This has to do with the way you collect data:
 - You can't "look" for variables taking the value "after the fact".
 - You need to manipulate the value of the variable, then watch for changes.
- This is the basis for randomized control trial in medicine:
 - Randomly assigning pills "forces" value of "treatment" variable.
 - Randomization means they aren't taking the pill due to confounding factors.
 - Differences between people who did and did not take pill should be caused by pill.
 - Include a "control" as a value to prevent placebo effect as confounding.
- See also Simpson's Paradox:
 - https://www.youtube.com/watch?v=ebEkn-BiW5k

Structure Learning: Unsupervised Feature Selection

• "News" data: presence of 100 words in 16k newsgroup posts:

car	drive	files	hockey	mac	league	рс	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

Which words are related to each other?

Problem of structure learning: unsupervised feature selection.

Structure Learning: Unsupervised Feature Selection

 Optimal tree structure: (ignore arrows)

Naïve Approach: Association Networks

- A naïve approach to structure learning ("association networks"):
 - For each pair of variables, compute a measure of similarity or dependence.
- Using these n² similarity values either:
 - Select all pairs whose similarity is above a threshold.
 - Select the "top k" most similar features to each feature 'j'.
- Main problems:
 - Usually, most variables are dependent (too many edges).
 - "Sick" is getting connected to "Tuesdays" even if "tacos" are a variable.
 - "True" neighbours may not have the highest dependence.
 - "Sick" might get connected to "Tuesdays" before it gets connected to "milk".
- (Variation: best tree can be found as minimum spanning tree problem.)

Example: Vancouver Rain Data

Consider modeling the "Vancouver rain" dataset.

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	
Month 1	0	0	0	1	1	0	0	1	1	
Month 2	1	0	0	0	0	0	1	0	0	
Month 3	1	1	1	1	1	1	1	1	1	
Month 4	1	1	1	1	0	0	1	1	1	
Month 9 Month 5		0	0	0	1	1	0	0	0	
Most 6	0	1	1	0	0	0	0	1	1	

- The strongest signal in the data is the simple relationship:
 - If it rained yesterday, it's likely to rain today (> 50% chance that $x^{t-1} = x^t$).
 - But an "association network" might connect all days (all dependent).

Dependency Networks

- A better approach is dependency networks:
 - For each variable 'j', make it the target in a supervised learning problem.

- Now we can use any feature selection method to choose j's "neighbours".
 - Forward selection, L1-regularization, ensemble methods, etc.
- Can capture conditional independence:
 - Might connect "sick" to "tacos", and "tacos" to "Tuesdays" (w/o sick-tacos).

Dependency Networks

• Dependency network fit to Vancouver rain data (different λ values):

Dependency Networks

Variation on dependency networks on digit image pixels:

Another popular structure learning method is the "PC" algorithm.