

SMART CONTRACT AUDIT REPORT

for

Plena

Prepared By: Xiaomi Huang

PeckShield July 13, 2023

Document Properties

Client	Plena
Title	Smart Contract Audit Report
Target	Plena
Version	1.0
Author	Patrick Lou
Auditors	Xuxian Jiang, Patrick Lou
Reviewed by	Xiaomi Huang
Approved by	Xuxian Jiang
Classification	Public

Version Info

	Version	Date	Author(s)	Description
ĺ	1.0	July 13, 2023	Patrick Lou	Final Release
ĺ	1.0-rc	June 27, 2023	Patrick Lou	Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name	Xiaomi Huang	
Phone	+86 183 5897 7782	
Email	contact@peckshield.com	

Contents

1	Introduction					
	1.1 About Plena	4				
	1.2 About PeckShield	5				
	1.3 Methodology	6				
	1.4 Disclaimer	9				
2	Findings	10				
	2.1 Summary	10				
	2.2 Key Findings	11				
3	Detailed Results	12				
	3.1 Accommodation Of Non-ERC20-Compliant Tokens	12				
	3.2 Trust Issue of Admin Keys	14				
4	Conclusion	15				
Re	eferences	16				

1 Introduction

Given the opportunity to review the design document and related smart contract source code of the Plena protocol, we outline in the report our systematic approach to evaluate potential security issues in the smart contract implementation, expose possible semantic inconsistencies between smart contract code and design document, and provide additional suggestions or recommendations for improvement. Our results show that the given version of smart contracts can be further improved due to the presence of several issues related to either security or performance. This document outlines our audit results.

1.1 About Plena

The Plena Finance protocol's Portfolio feature allows users to create multiple portfolios with different tokens. Users can select the tokens they want to invest in and begin their investment journey with any token of their choice. With a single tap, all the chosen tokens are bought simultaneously, streamlining the investment process. This feature offers flexibility and convenience for users to diversify their holdings and manage their investments efficiently. The basic information of the audited protocol is as follows:

Item Description
Target Plena
Type EVM Smart Contract
Language Solidity
Audit Method Whitebox
Latest Audit Report July 13, 2023

Table 1.1: Basic Information of Plena

In the following, we show the Git repository of reviewed files and the commit hash value used in this audit.

https://github.com/PlenaFinance/plenaPortfolioV3 (f73082d)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/PlenaFinance/plenaPortfolioV3 (54b9e33)

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the security, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading services and products (including the service of smart contract auditing). We are reachable at Telegram (https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

High Critical High Medium

High Medium

Low

High Low

High Medium

Low

High Medium

Low

Likelihood

Table 1.2: Vulnerability Severity Classification

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating Methodology [6]:

- <u>Likelihood</u> represents how likely a particular vulnerability is to be uncovered and exploited in the wild;
- Impact measures the technical loss and business damage of a successful attack;
- Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: *H*, *M* and *L*, i.e., *high*, *medium* and *low* respectively. Severity is determined by likelihood and impact and can be classified into four categories accordingly, i.e., *Critical*, *High*, *Medium*, *Low* shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with a severity category. For one check item, if our tool or analysis does not identify any issue, the contract is considered safe regarding the check item. For any discovered issue, we might further deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

- Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues found by our tool.
- <u>Semantic Consistency Checks</u>: We then manually check the logic of implemented smart contracts and compare with the description in the white paper.
- Advanced DeFi Scrutiny: We further review business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.
- Additional Recommendations: We also provide additional suggestions regarding the coding and development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to better delineate and organize weaknesses around concepts frequently encountered in software development. Though some categories used in CWE-699 may not be relevant in smart contracts, we use the CWE categories in Table 1.4 to classify our findings.

Table 1.3: The Full List of Check Items

Category	Check Item		
	Constructor Mismatch		
	Ownership Takeover		
	Redundant Fallback Function		
	Overflows & Underflows		
	Reentrancy		
	Money-Giving Bug		
	Blackhole		
	Unauthorized Self-Destruct		
Basic Coding Bugs	Revert DoS		
Dasic Couling Dugs	Unchecked External Call		
	Gasless Send		
	Send Instead Of Transfer		
	Costly Loop		
	(Unsafe) Use Of Untrusted Libraries		
	(Unsafe) Use Of Predictable Variables		
	Transaction Ordering Dependence		
	Deprecated Uses		
Semantic Consistency Checks	Semantic Consistency Checks		
	Business Logics Review		
	Functionality Checks		
	Authentication Management		
	Access Control & Authorization		
	Oracle Security		
Advanced DeFi Scrutiny	Digital Asset Escrow		
Advanced Berr Scruting	Kill-Switch Mechanism		
	Operation Trails & Event Generation		
	ERC20 Idiosyncrasies Handling		
	Frontend-Contract Integration		
	Deployment Consistency		
	Holistic Risk Management		
	Avoiding Use of Variadic Byte Array		
	Using Fixed Compiler Version		
Additional Recommendations	Making Visibility Level Explicit		
	Making Type Inference Explicit		
	Adhering To Function Declaration Strictly		
	Following Other Best Practices		

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category	Summary		
Configuration	Weaknesses in this category are typically introduced during		
	the configuration of the software.		
Data Processing Issues	Weaknesses in this category are typically found in functional-		
	ity that processes data.		
Numeric Errors	Weaknesses in this category are related to improper calcula-		
	tion or conversion of numbers.		
Security Features	Weaknesses in this category are concerned with topics like		
	authentication, access control, confidentiality, cryptography,		
	and privilege management. (Software security is not security		
	software.)		
Time and State	Weaknesses in this category are related to the improper man-		
	agement of time and state in an environment that supports		
	simultaneous or near-simultaneous computation by multiple		
5 C IV	systems, processes, or threads.		
Error Conditions,	Weaknesses in this category include weaknesses that occur if		
Return Values,	a function does not generate the correct return/status code,		
Status Codes	or if the application does not handle all possible return/status		
Describe Management	codes that could be generated by a function.		
Resource Management	Weaknesses in this category are related to improper manage-		
Behavioral Issues	ment of system resources.		
Denavioral issues	Weaknesses in this category are related to unexpected behav-		
Business Logics	iors from code that an application uses. Weaknesses in this category identify some of the underlying		
Dusilless Logics	problems that commonly allow attackers to manipulate the		
	business logic of an application. Errors in business logic can		
	be devastating to an entire application.		
Initialization and Cleanup	Weaknesses in this category occur in behaviors that are used		
mitialization and Cicanap	for initialization and breakdown.		
Arguments and Parameters	Weaknesses in this category are related to improper use of		
Barrieros aria i aramieses	arguments or parameters within function calls.		
Expression Issues	Weaknesses in this category are related to incorrectly written		
,	expressions within code.		
Coding Practices	Weaknesses in this category are related to coding practices		
3	that are deemed unsafe and increase the chances that an ex-		
	ploitable vulnerability will be present in the application. They		
	may not directly introduce a vulnerability, but indicate the		
	product has not been carefully developed or maintained.		

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software release, and does not give any warranties on finding all possible security issues of the given smart contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence of any further findings of security issues. As one audit-based assessment cannot be considered comprehensive, we always recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contract(s). Last but not least, this security audit should not be used as investment advice.

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Plena protocol. During the first phase of our audit, we study the smart contract source code and run our in-house static code analyzer through the codebase. The purpose here is to statically identify known coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually review business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity	# of Findings	
Critical	0	
High	0	
Medium	1	
Low	1	
Informational	0	
Total	2	

We have so far identified a list of potential issues: some of them involve subtle corner cases that might not be previously thought of, while others refer to unusual interactions among multiple contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or verification. After further analysis and internal discussion, we determined a few issues of varying severities that need to be brought up and paid more attention to, which are categorized in the above table. More information can be found in the next subsection, and the detailed discussions of each of them are in Section 3.

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity vulnerability, and 1 low-severity vulnerability.

Table 2.1: Key Plena Audit Findings

ID	Severity	Title	Category	Status
PVE-001	Low	Accommodation Of Non-ERC20-	Coding Practices	Fixed
		Compliant Tokens		
PVE-002	Medium	Trust Issue of Admin Keys	Security Features	Confirmed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is always important to develop necessary risk-control mechanisms and make contingency plans, which may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3 for details.

3 Detailed Results

3.1 Accommodation Of Non-ERC20-Compliant Tokens

• ID: PVE-001

Severity: Low

• Likelihood: Low

• Impact: Low

• Target: FolioFactory

• Category: Coding Practices [4]

• CWE subcategory: CWE-1109 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the specification or have additional functionalities beyond the specification. In this section, we examine the transfer() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular token, i.e., ZRX, as our example. We show the related code snippet below. On its entry of transfer(), there is a check, i.e., if (balances[msg.sender] >= _value && balances[_to] + _value >= balances[_to]). If the check fails, it returns false. However, the transaction still proceeds successfully without being reverted. This is not compliant with the ERC20 standard and may cause issues if not handled properly. Specifically, the ERC20 standard specifies the following: "Transfers _ value amount of tokens to address _ to, and MUST fire the Transfer event. The function SHOULD throw if the message caller's account balance does not have enough tokens to spend."

```
64
       function transfer(address _to, uint _value) returns (bool) {
65
           //Default assumes totalSupply can't be over max (2^256 - 1).
66
            if (balances[msg.sender] >= _value && balances[_to] + _value >= balances[_to]) {
67
                balances[msg.sender] -= _value;
68
                balances[_to] += _value;
69
                Transfer(msg.sender, _to, _value);
70
                return true;
71
           } else { return false; }
72
73
       function transferFrom(address _from, address _to, uint _value) returns (bool) {
```

```
74
            if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value &&
                balances[_to] + _value >= balances[_to]) {
75
                balances[_to] += _value;
                balances[_from] -= _value;
76
77
                allowed[_from][msg.sender] -= _value;
78
                Transfer(_from, _to, _value);
79
                return true;
80
            } else { return false; }
81
```

Listing 3.1: ZRX.sol

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer (), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false without reverts. Moreover, the safe version also supports tokens that return no value (and instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.

In the following, we show the FolioFactory::withdraw() routine. The unsafe version of IERC20(erc20).transfer(recipient, amount); (line 124) may return false on failure while not revert. We may intend to replace the transferFrom() with safeTransferFrom().

```
function withdraw(
    address erc20,
    address recipient,
    uint256 amount

// external onlyOwner {
    require(erc20 != address(0) && recipient != address(0), "ZERO ADDRESS");
    IERC20(erc20).transfer(recipient, amount);
}
```

Listing 3.2: FolioFactory::withdraw()

Recommendation Accommodate the above-mentioned idiosyncrasy with safe-version implementation of ERC20-related transfer().

Status The issue has been fixed by this commit: 54b9e33.

3.2 Trust Issue of Admin Keys

ID: PVE-002

• Severity: Medium

• Likelihood: Medium

Impact: Medium

• Target: FolioFactory

• Category: Security Features [3]

• CWE subcategory: CWE-287 [2]

Description

In the FolioFactory smart contract, there is a privileged owner account that plays a critical role in governing and regulating the protocol-wide operations (e.g., approve a module for use in the portfolio, withdraw ERC20 tokens). In the following, we show the representative functions potentially affected by the privilege of the owner account.

```
78
        function approveModule(address _module) external onlyOwner {
79
            _approvedModules[_module] = true;
80
81
82
        function withdraw(
83
            address erc20,
84
            address recipient,
85
            uint256 amount
86
        ) external onlyOwner {
87
            require(erc20 != address(0) && recipient != address(0), "ZERO ADDRESS");
88
            IERC20(erc20).transfer(recipient, amount);
89
```

Listing 3.3: Example Privileged Operations in FolioFactory

We emphasize that the privilege assignment may be necessary and consistent with the protocol design. However, it is worrisome if the owner is not governed by a DAO-like structure. Note that a compromised account would allow the attacker to modify a number of sensitive system parameters, which directly undermines the assumption of the protocol design.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance contract. All changed to privileged operations may need to be mediated with necessary timelocks. Eventually, activate the normal on-chain community-based governance life-cycle and ensure the intended trustless nature and high-quality distributed governance.

Status The issue has been confirmed by the team.

4 Conclusion

In this audit, we have analyzed the design and implementation of the Plena protocol which allows users to create multiple portfolios with different tokens. Users can select the tokens they want to invest in and begin their investment journey with any token of their choice. The current code base is well structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting stage of development. To improve this report, we greatly appreciate any constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

References

- [1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.org/data/definitions/1126.html.
- [2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.
- [3] MITRE. CWE CATEGORY: 7PK Security Features. https://cwe.mitre.org/data/definitions/ 254.html.
- [4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/1006.html.
- [5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.
- [6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_ Methodology.
- [7] PeckShield. PeckShield Inc. https://www.peckshield.com.