

Deep Reinforcement Learning: Rainbow in Atari Simulator

Deep Learning Seminar WS 19/20 Aylin Haskioglu

Agenda

- Rainbow Agent
 - DQN + Variants/Extensions
 - Results
- Experiments
 - Frameworks
 - Results

Q-learning

- Learning action-value function
- Determines how good a action at a particular state is
- Bellman equation:

$$Q(s,a) = r + \gamma max_{a'}Q(s',a')$$

At the end of the training

https://medium.com/@SmartLabAl/reinforcement-lear ning-algorithms-an-intuitive-overview-904e2dff5bbc

DQN – Deep Q-learning Network

https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/ https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

DQN - Variants/Extensions

Double DQN (DDQN)

- Countermeasurment for overestimation bias
- Decouples action selection from its evaluation

Multi-Step Q-learning

Calculate Q-values with N-step Return

DQN - Variants/Extensions

Prioritized Experience Replay

- Selectes samples with most probability to learn from
- Learning potential -> Q-Loss

Dueling Network Architecture

- One stream to calculate value of being at specific state
- One stream to calculate advantage of action over other actions at specific state
- Combines at the end to get a state action value

DQN - Variants/Extensions

Distributional Q-learning

- Normally using average estimated Q-value as target
 - -> average Q-values not accurate
- Learn distribution of Q-Values instead of average
- KL divergence as loss

Noisy Nets

- Combining final output linear layer of Q-Network with noisy stream
- Network can learn to ignore noisy stream during training

Rainbow

- Replace 1-step distributional loss with multi-step variant
- Combine with DDQN
- Proportional prioritized replay → prioritizes transistions by the KL loss
- Dueling network adapted for use with return distributions
- Replace all linear layers with noisy equivalent

Rainbow

Experiments

- Different frameworks, different implementations
- Colab
- Anyrl-py
 - Used by OpenAI Baseline Retro Contest
- Dopamine
 - Only using 3 variants not all

Parameter	Value
Min history to start learning	80K frames
Adam learning rate	0.0000625
Exploration ϵ	0.0
Noisy Nets σ_0	0.5
Target Network Period	32K frames
Adam ϵ	1.5×10^{-4}
Prioritization type	proportional
Prioritization exponent ω	0.5
Prioritization importance sampling β	0.4 ightarrow 1.0
Multi-step returns n	3
Distributional atoms	51
Distributional min/max values	[-10, 10]

Table 1: Rainbow hyper-parameters

Anyrl – Space Invaders

Anyrl – Space Invaders

Anyrl – Space Invaders

Dopamine

AverageReturns

NumEpisodes

C 🔳 🖸

0

10

15

20

25

30

300 200 100 0 5 10 15 20 25 30

Dopamine

22.01.20

Sources

• Paper:

https://arxiv.org/pdf/1710.02298.pdf

• Github:

https://github.com/AyHaski/DL_AtariRainbow

• Frameworks:

https://github.com/unixpickle/anyrl-py

https://github.com/google/dopamine

https://github.com/astooke/rlpyt

https://github.com/Kaixhin/Rainbow

https://github.com/ray-project/ray/tree/master/rllib

https://github.com/openai/retro-baselines

• Links:

https://www.freecodecamp.org/news/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe/

https://medium.com/intelligentunit/conquering-openai-retro-contest-2-demystifying-rainbow-baseline-9d8dd258e74b

DQN – Deep Q-learning Network

- Epsilon-greedy strategy
 - Exploration at the beginning
 - Exploitation with time
- Experience Replay
 - All experience is stored in replay memory
 - Random samples are used instead of most recent transistions
- Online/Target Network
 - Online is periodically copied to target network
 - Target → For future rewards computations

18

Formulas

Dqn Loss

$$(R_{t+1} + \gamma_{t+1} \max_{a'} q_{\overline{\theta}}(S_{t+1}, a') - q_{\theta}(S_t, A_t))^2$$

DDQN

$$(R_{t+1}+\gamma_{t+1}q_{\overline{\theta}}(S_{t+1}, \operatorname*{argmax}_{a'}q_{\theta}(S_{t+1}, a'))-q_{\theta}(S_t, A_t))^2$$

Prioritized

$$p_t \propto \left| R_{t+1} + \gamma_{t+1} \max_{a'} q_{\overline{\theta}}(S_{t+1}, a') - q_{\theta}(S_t, A_t) \right|^{\omega}$$

Dueling

$$q_{\theta}(s, a) = v_{\eta}(f_{\xi}(s)) + a_{\psi}(f_{\xi}(s), a) - \frac{\sum_{a'} a_{\psi}(f_{\xi}(s), a')}{N_{\text{actions}}}$$

MutliStep

$$R_t^{(n)} \equiv \sum_{k=0}^{n-1} \gamma_t^{(k)} R_{t+k+1} \,. \tag{2}$$

A multi-step variant of DQN is then defined by minimizing the alternative loss,

$$(R_t^{(n)} + \gamma_t^{(n)} \max_{a'} q_{\overline{\theta}}(S_{t+n}, a') - q_{\theta}(S_t, A_t))^2.$$

Formulas - Integrated Agent

Distributional

$$D_{\mathrm{KL}}(\Phi_{\boldsymbol{z}}d_t^{(n)}||d_t)$$

Prioritized

$$p_t \propto \left(D_{\mathrm{KL}}(\Phi_{\boldsymbol{z}} d_t^{(n)} || d_t) \right)^{\omega}$$

Dueling

$$p_{\theta}^{i}(s,a) = \frac{\exp(v_{\eta}^{i}(\phi) + a_{\psi}^{i}(\phi,a) - \overline{a}_{\psi}^{i}(s))}{\sum_{j} \exp(v_{\eta}^{j}(\phi) + a_{\psi}^{j}(\phi,a) - \overline{a}_{\psi}^{j}(s))}$$

where
$$\phi = f_{\xi}(s)$$
 and $\overline{a}_{\psi}^{i}(s) = \frac{1}{N_{\mathrm{actions}}} \sum_{a'} a_{\psi}^{i}(\phi, a')$.