2.1 逻辑代数概述

尝试设计一个三人表决器电路......

数字电路分析与设计工具:逻辑代数

第2章 逻辑代数基础

- •逻辑代数
- 基本运算、公式和定理
- 逻辑函数的表示、转换和化简

逻辑代数概述

逻辑:事物之间的因果关系

逻辑代数:逻辑运算的数学方法

(布尔代数)

- 1854年, George Boole指出"逻辑不仅仅是哲学, 也是数学"
- 数字电路中的逻辑代数:二值逻辑,逻辑变量的 取值只有0和1两种情况

- Claude Shannon发现布尔代数和电话交换电路之间 存在相似性
- 1937年Shannon在他的MIT硕士论文 "A Symbolic Analysis of Relay and Switching Circuits" 中提出了二值电子元件,奠定了数字电路的理论基础

2.2 逻辑代数中的三种基本运算

逻辑代数中的三种基本运算

三种电路的因果关系有何不同?

用A,B=1表示开关闭合,A,B=0表示开关断开; 用Y=1表示灯亮,Y=0表示灯灭。

国家标准

•条件之一具备,结果发生

$$\bullet Y = A OR B = A+B$$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

- •条件不具备,结果发生
- $Y = NOT \ A = \overline{A} = A'$

非

2.3 几种常用的复合逻辑运算

简单的积木相加

几种常用的复合逻辑运算

异或

 $Y=A \oplus B$

\boldsymbol{A}	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

$$Y = A \bigoplus B$$

同或

 $Y=A \odot B$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

$$Y = A \odot B$$

2.4 逻辑代数中的 基本公式和常用公式

逻辑代数中的基本公式和常用公式

1. 基本公式

 序号	公 式	序号	公 式
		10	1'=0; 0'=1
1	0 A = 0	11	1 + A = 1
2	1 A = A	12	0 + A = A
3	A A = A 重叠律	13	A + A = A
4	A A'= 0 互补律	14	A + A' = 1
5	A B = B A 交換律	15	A + B = B + A
6	A(BC) = (AB)C 结合律	16	A + (B + C) = (A + B) + C
7	A(B+C) = AB + AC Solution	17	A + B C = (A + B)(A + C)
8	(AB)'=A'+B' 反演律	18	(A+B)'=A'B'
9	(A')'=A 还原律	ĺ	

公式(17)的证明(公式推演法):

公式(8)的证明(穷举法):

(AD) $A \cdot D$

A B	AB	(AB)'	A'	<i>B'</i>	A' + B'
0 0	0	\bigcap 1	1	1	\bigcap 1
0 1	0	1	1	0	1
1 0	0	1	0	1	1
1 1	1	0	0	0	0

2. 若干常用公式

序	号	公式	
-	1	A + A B = A	
	2	A(A+B)=A	
	3	A B + A B' = A	
	4	$A + \overline{A'B} = A + B$	
4	5	A B + A' C + B C = A B + A' C	
		A B + A' C + B CD = A B + A' C	
(6	A (AB)' = A B'; A'(AB)' = A'	

2.5 逻辑代数中的基本定理

逻辑代数中的基本定理

1. 代入定理

高度集成化

在任何一个包含A的逻辑等式中,若以另外一个逻辑式代入式中A的位置,则等式依然成立。

$$A+BC = (A+B)(A+C)$$

$$A+B(CD) = (A+B)(A+CD)$$

$$= (A+B)(A+C)(A+D)$$

$$(A \cdot B)' = A' + B'$$

以 $B \cdot C$ 代入 B

$$\downarrow \downarrow$$
 $(A \cdot B \cdot C)' = A' + (BC)'$

$$= A' + B' + C'$$

代入定理

2. 反演定理

对任一逻辑式 $Y \Rightarrow Y'$:

 $\bullet \Rightarrow +, + \Rightarrow \bullet, 0 \Rightarrow 1, 1 \Rightarrow 0,$

原变量⇒反变量

反变量⇒原变量

变换顺序 先括号 , 然后与 , 最后或

不属于单个变量的上的反号保留不变

$$Y = A'(B + C) + CD$$

 $Y' = (A + B'C')(C' + D')$
 $= AC' + B'C' + AD' + D'CD'$

3. 对偶定理

对任一逻辑式 $Y \Rightarrow Y^{p}$: $\bullet \Rightarrow +, +\Rightarrow \bullet, 0 \Rightarrow 1, 1 \Rightarrow 0$

对偶定理: 若F = G,则 $F^D = G^D$

序号	公 式	序号	公 式
		10	1' = 0; 0'= 1
1	0 4 = 0	11	1 + A= 1
2	1 A = A	12	0 + A = A
3	AA = A	13	A + A = A
4	AA'=0	14	A+A'=1
5	AB = BA	对偶	A + B = B + A
6	A (B C) = (A B) C	16	A + (B + C) = (A + B) + C
7	A(B+C) = AB + AC	17	A + B C = (A + B)(A + C)
8	(AB)' = A' + B'	18	(A+B)'=A'B'
9	(A')'=A		

2.6 逻辑函数及其表示方法

逻辑函数及其表示方法

逻辑函数

若以逻辑变量为输入,运算结果为输出,则输入变量 取值确定以后,输出的取值也随之而定。输入和输出 之间是一种函数关系。

 $Y=F(A,B,C,\cdots)$

在二值逻辑中,输入/输出都只有两种取值0/1。

逻辑函数的表示方法

- 真值表
- 逻辑图

卡诺图 EDA

- 逻辑式
- 波形图

1. 真值表

输入变量	输出变量
A B C····	<i>Y₁ Y</i> ₂ ·····
穷举输入变量	在特定的输入变量
所有可能的	取值下,所对应的
取值组合	输出值

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

2. 逻辑式

将输入/输出之间的逻辑关系用与/或/非的运算式

进行表示。 Y = (AB + CD)'

3. 逻辑图

用逻辑图形符号表示逻辑运算关系,

与电路的实现相对应。

4. 波形图

将输入变量所有取值组合与对应输出

按时间顺序排列,画成波形。

2.7 逻辑函数表示 方法之间的转换

举例:举重裁判电路

用*A, B, C*=1/0表示开关闭合/断开; 用Y=1/0表示灯亮/灭。

逻辑函数表示方法之间的转换

1. 波形图 ⇒ 真值表

A	В	$ F_1 $
0	0	0
0	1	0
1	0	0
1	1	1

2. 真值表 ⇒ 逻辑式

这三种取值的任何一种都使 A B C Y Y=1,而: 0 0 0 0 •A=0,B=1,C=1 <=>A'BC =1 0 1 0 0 •A=1,B=0,C=1 <=>AB'C =1 0 0 0 0 •A=1,B=1,C=0 <=>ABC'=1 1 0 0 0 所以 Y= A'BC + AB'C + ABC' 1 1 0 1

真值表 ⇒ 逻辑式

- 找出真值表中使 Y=1 的输入变量取值组合;
- 将每个取值组合写成一个与项,其中取值为1 的写原变量,取值为0的写反变量;
- 将这些与项相或即得Y。

3. 逻辑式 ⇒ 真值表

把输入变量所有的取值组合 逐个代入逻辑式中,求输出, 列表。

\boldsymbol{A}	В	C	Y
0	0	Ű	Ú
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Y= A'BC + AB'C + ABC"

4. 逻辑式 ⇒ 逻辑图

• 用图形符号代替逻辑式中的逻辑运算符。

$$Y = A \cdot (B + C) \qquad \Longrightarrow \qquad {}^{A}_{C}$$

5. 逻辑图 ⇒ 逻辑式

 从输入到输出逐级写出每个图形符号对应的 逻辑运算式。

6. 逻辑式 ⇔ 逻辑式

•与或式:

$$Y = AC + BC'$$

• 与非-与非式:

$$Y = ((AC)'(BC')')'_{\star}$$

• 或与式:

$$Y = (B + C)(A + C')$$

• 或非-或非式:

$$Y = ((B+C)' + (A+C')')$$

与或非式:

$$Y = (B'C' + A'C)' \nu$$

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2.8 逻辑函数的公式化简法

逻辑函数的公式化简法

1. 逻辑式的最简形式

以最简与或逻辑式为例:

- 1)包含的与项已经最少;
- 2)每个与项的因子也已经最少。

$$Y_1 = ABC + B'C + ACD$$

 $Y_2 = AC + B'C$

2. 公式化简法

反复应用基本公式和常用公式,消去多余的与项和 多余的因子。

$$= AC + B'C + BD' + CD' + A + AB'DE$$

$$= A + B'C + BD' + CD'$$

$$= A + B'C + BD'$$

公式化简法

$$Y = \underline{AC} + B'C + BD' + CD' + A(B + C') + A'BCD' + AB'DE$$

$$AB + \underline{AC'}$$

$$= \underline{A + B'C + BD' + \underline{CD'} + AB + A'BCD' + AB'DE}$$

$$= A + B'C + BD' + CD'$$

$$= A + B'C + BD'$$

2.9 逻辑函数的 最小项之和标准形式

最小项举例:

•两变量A, B的最小项

A'B', A'B, AB', AB (2² = 4 \uparrow)

•三变量A,B,C的最小项

A'B'C', A'B'C, A'BC', A'BCAB'C', AB'C, ABC', ABC (2³ = 8 \uparrow)

逻辑函数的最小项之和标准形式

1. 最小项

n变量逻辑函数的最小项m:

- *m*是与项
- •包含n个因子
- n个变量均以原变量或反变量的形式在m中出现 一次

对于*n*变量逻辑函数 有2ⁿ个最小项

最小项的编号:

最小项	ABC 取值	对应 十进制数	编号
A'B'C'	0 0 0	0	m_0
A'B'C	0 0 1	1	m_1
A'BC'	0 1 0	2	m_2
A'BC	0 1 1	3	m_3
AB'C'	1 0 0	4	m_4
AB'C	1 0 1	5	m_5
ABC'	1 1 0	6	m_6
ABC	1 1 1	7	m_7

最小项的性质:

- •在输入变量任一取值下,有且仅有一个最小项的值为1;
- •全体最小项之和为1;
- •任何两个最小项之积为0;
- 两个相邻的最小项之和可以合并,消去一对因子, 只留下公共因子。

相邻:仅一个因子不同的最小项,如:

$$A'BC'$$
与 $A'BC$
 $A'BC' + A'BC = A'B(C' + C) = A'B$

2.10 逻辑函数的 最大项之积标准形式

2. 与或式 → 最小项之和

$$Y(A, B, C) = ABC' + BC$$

$$= ABC' + BC(A + A')$$

$$= ABC' + ABC + A'BC$$

$$= \sum m(3,6,7)$$

$$Y(A,B,C,D) = AB'C'D + BCD' + B'C$$

= $AB'C'D + (A+A')BCD' + B'C(D+D')$
=+ $B'CD + B'CD'$
=+ $(A+A')B'CD + (A+A')B'CD'$

逻辑函数的最大项之积标准形式

1. 最大项

n变量逻辑函数的最大项M:

- 是或项
- •包含n个因子
- n个变量均以原变量或反变量的形式在M中出现 一次

对于n变量逻辑函数 有2ⁿ个最大项

最大项举例:

•两变量*A, B*的最大项

$$A' + B'$$
, $A' + B$, $A + B'$, $A + B$ (2² = 4 \uparrow)

•三变量A,B,C的最大项

$$A' + B' + C'$$
, $A' + B' + C$, $A' + B + C'$,
 $A' + B + C$, $A + B' + C'$, $A + B' + C$,
 $A + B + C'$, $A + B + C$ $(2^3 = 8 ^)$

最大项的性质:

- •在输入变量任一取值下,有且仅有一个最大项的值 为0;
- •全体最大项之积为0:
- •任何两个最大项之和为1;
- 两个相邻的最大项之积可以合并,消去一对因子, 只留下公共因子。

相邻:仅一个因子不同的最大项,如:

$$A' + B + C \not A A' + B + C'$$

 $(A' + B + C)(A' + B + C') = A' + B + CC' = A' + B$

最大项的编号:

最大项	<i>ABC</i> 取值	对应 十进制数	编号
A' + B' + C'	111	7	M_7
A' + B' + C	110	6	M_6
A' + B + C'	101	5	M_5
A' + B + C	100	4	M_4
A+B'+C'	011	3	M_3
A + B' + C	010	2	M_2
A+B+C'	001	1	M_1
A+B+C	000	0	M_0

2. 或与式 → 最大项之积

$$Y(A, B, C) = (A + B + C')(B + C)$$

$$= (A + B + C')(B + C + AA')$$

$$= (A + B + C')(B + C + A)(B + C + A')$$

$$= \prod M (0,1,4)$$

2.11 最小项和最大项的关系

最小项与最大项的关系: $m_i = M'_i$

A B C	最小项 m_i		最大项 M_i	
0 0 0	A'B'C'	m_0	A + B + C	M_{0}
0 0 1	A'B'C	m_1	A + B + C'	M_{-1}
0 1 0	A'BC'	m_2	A + B' + C	M_{2}
0 1 1	A'BC	m_3	A + B' + C'	M_{3}
1 0 0	A B'C'	$m_{_4}$	A' + B + C	M_{-4}
1 0 1	AB'C	m_{5}	A' + B + C'	M_{5}
1 1 0	ABC'	m_{6}	A' + B' + C	M_{-6}
1 1 1	A B C	m_{7}	A' + B' + C'	M_{-7}

最小项之和转换为最大项之积:

$$Y = \sum_{k \neq i} m_{i}$$

$$Y' = \sum_{k \neq i} m_{k}$$

$$Y = (\sum_{k \neq i} m_{k})'$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y = \prod_{k \neq i} m'_{k} = \prod_{k \neq i} M_{k}$$

最小项之和 ⇒ 最大项之积

$$m_{2}$$
 m_{5} m_{6} m_{7}
 $Y = A'BC' + AB'C + ABC' + ABC$

$$Y' = A'B'C' + A'B'C + A'BC + AB'C'$$
 m_{0} m_{1} m_{3} m_{4}

$$Y = (A + B + C)(A + B + C')(A + B' + C')(A' + B + C)$$
 M_{0} M_{1} M_{3} M_{4}

2.12 逻辑函数的卡诺图表示

计算机化简

2. 卡诺图表示方法

●二变量

• 三变量

• 四变量

/	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_8	m_9	m_{11}	m_{10}

逻辑函数的卡诺图表示

1. 卡诺图

- •逻辑函数最小项之和的一种图形表示
- •用2"个小方格分别代表n变量的所有最小项,并将它们排列成矩阵,而且使几何位置相邻的两个最小项在逻辑上也是相邻的
- 一就得到n变量的卡诺图(Karnaugh Map)。

•五变量

/	000	001	011	010	110	111	101	100
00	m_0	m_1	m_3	m_2	m_6	m_7	m_5	m_4
01	m_8	m_9	m_{11}	m_{10}	m_{14}	m_{15}	m_{13}	m_{12}
11	m_{24}	m_{25}	m_{27}	m_{26}	m_{30}	m_{31}	m_{29}	m_{28}
10	m_{16}	m_{17}	m_{19}	m_{18}	m_{22}	m_{23}	m_{21}	m_{20}

相邻关系:

- 一是相接,即上下或左右紧挨着;
- 二是相对,即任意一行或一列的两端;
- 三是相重,即对折起来位置重合。

3. 用卡诺图表示逻辑函数

- 将逻辑函数表示为最小项之 _{AB} 和的形式;
- 在卡诺图上与这些最小项对 应的方格上填入1,其余方 格填入0。

CD				
/	00	01	11	10
00	0	1	0	0
01	1	0	0	1
11	0	0	1	0
10	1	1	1	1

$$Y(A, B, C, D) = ABCD + ABD + AB' + ABCD$$

$$= ABCD + (C + C)ABD' + AB(C + C)(D + D) + ABC1$$

$$= \sum m(1,4,6,8,9,1,0,1,1,1,5)$$

2.13 逻辑函数的卡诺图化简法

用卡诺图表示逻辑函数(简化方案)

- 确定使每个与项为1的所有输入变量取值,并在 卡诺图上对应方格填入1;
- 其余的方格填入0(或不填)。

$$Y = C + AB'$$

第一个与项C:

当ABC=xx1(x表示可以为0,也可以为1)时该与项为1,在卡诺图上对应四个方格(m_1 , m_3 , m_5 , m_7)处填1;

第二个与项 AB':

当ABC=10x时该与项为1,在卡诺图上对应两个方格 (m_4, m_5) 处填1。

逻辑函数的卡诺图化简法

- ✓两个相邻最小项可合并为一项,消去一个因子
- ✓四个相邻最小项可合并为一项,消去两个因子
- ✓八个相邻最小项可合并为一项,消去三个因子

合并后的与项

卡诺图化简的原则

- •与项的数目最少,即圈成的矩形数最少;
- •每个与项的因子最少,即圈成的矩形最大;
- •保证每个圈中至少有一个"1"只被圈过一次,否则该圈是多余的。

AB	c ⁰⁰	01	11	10
0		1	1	1
1	1	1		1

例: Y = ABC + ABD + AC'D + C'D' + AB'C + A'CD'

2.14 具有无关项的 逻辑函数化简

只有最合适的,没有最好的

具有无关项的逻辑函数化简

- •合理地利用无关项,可得更简单的化简结果
- 加入无关项,应使化简后的项数最少,每项的因子最少
- 从卡诺图上直观地看,加入无关项,应使矩形圈最大,矩形数最少

具有无关项的逻辑函数及其化简

约束项:逻辑函数中对输入变量的取值有限制,与这些被限制的取值对应的最小项称为约束项

任意项:在输入变量某些取值下,函数值为1或0不影响逻辑电路的功能,与这些取值对应的最小项称为任意项

无关项:约束项和任意项统称为无关项,它们可以 写入逻辑式,也可以不写入逻辑式。

例: Y = A'B'C'D + A'BCD + AB'C'D' 给定约束条件为: A'B'CD + A'BC'D + ABC'D' + AB'C'D + ABCD + ABCD' + AB'CD' = 0

AB CE	00	01	11	10
00		1		
01			1	
11				
10	1			

Y = A'B'C'D + A'BCD + AB'C'D'

给定约束条件为:

A'B'CD + A'BC'D + ABC'D' + AB'C'D + ABCD + ABCD' + AB'CD' = 0

 $(A, B, C, D) = \sum m(2,4,6,8)$

约束条件: $m_5 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15} = 0$

$$Y = AD' + BD' + CD'$$

逻辑函数的机器化简法

1. Q-M法

• $Y(A,B,C,D) = \Sigma m(0,3,4,5,6,7,8,10,11)$

合并前	的最小项	第一次合	并结果 (含n-1 量的乘积项)	第二次合并统 个变量的	结果 (含n-2 的乘积项)
编号	ABCD	编号	ABCD	编号	ABCD
0	00004	0, 4	0 - 00 P ₁		
4	0 1 00 4	0, 8	- 0 0 0 P ₂	4, 5, 6, 7	01 P ₇
8	10004	4, 5	0 1 0 - 1		
3	00111	4, 6 8, 10	1 0 - 0 p ₃		
5	0 1 0 1 1	3, 7		1	去重
6	10107	3, 11	0 - 1 1 P ₄ - 0 1 1 P ₅		
10	10104	5, 7 6, 7 10, 11	0 1 - 1 \(\frac{1}{2} \) 0 1 1 - \(\frac{1}{2} \) 1 0 1 - \(\frac{1}{2} \)		
7	01111	1			
11	1011 /				

2.15 逻辑函数的机器化简法

2. 利用Multisim的化简

例:已知逻辑函数Y的真值表如下,试用Multisim 求出 Y的逻辑函数式,并将其化简为与-或形式

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

