NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI

d) 2000 J/mol

EKSEMPEL PÅ SEMESTERPRØVE TMT4110 KJEMI (kap 9-11)

Hjelpemidler:	B2-Typegodkjent kalkulator, med tomt minne, i henhold til utarbeidet liste. Aylward & Findlay: SI Chemical Data	
	riktig svar for hver oppgave. Sett derfor kun ett kryss for hver oppgave. er flere svar er avgitt for en oppgave bedømmes denne med null poeng.	
1. Termodyna	amikkens første lov kan uttrykkes som	
a) Energien i	universet er konstant	
b) Energien i	universet øker med tiden	
c) Energien fe	or et system er konstant	
d) Entropien	i verden er konstant	
2. Den eksote	erme reaksjonen $\frac{1}{2}$ O ₂ + H ₂ \rightarrow H ₂ O foregår i en lukket beholder med konstar	ıt
volum. Energ	iutvekslingen med omgivelsene fører til at	
a) den indre e	energi til beholderen er uendret	
b) den indre e	energi til beholderen avtar	
c) den indre energi til beholderen øker		
d) Energi fra	omgivelsene tilføres beholderen	
3. En lukket omgivelsene	gassbeholder ekspanderer mot et konstant ytre trykk. Arbeidet som utføres p tilsvarer	å
a) PΔV		
$b) - P\Delta V$		
c) – $V\Delta P$		
d) VΔP		
4. Standard m	nolar entalpi for diamant (karbon) er	_
a) 0 J/mol		
b) 2 J/mol		
c) = 2000 J/mc	, i	

5 Standard dannelsesentalpi for C ₂ H ₂ (g) og C ₆ H ₆ (l) er henholdsvis 227 og 49 kJ/mol. Ber	egn
entalpi for reaksjonen $C_6H_6(1) \rightarrow 3 C_2H_2(g)$	
a) 632 kJ	
b) 730 kJ	
c) 234 kJ	
d) 178 kJ	
6. Fordampningsentalpien for vann ved 373,3 K er 40,66 kJ/mol. Spesifikk varmekapas	itet
for vann og vanndamp er henholdsvis 4,184 JK ⁻¹ g ⁻¹ og 2,02 JK ⁻¹ g ⁻¹ . Anta at disse verdiene	e er
uavhengig av temperaturen. Hva er fordampningsentalpien for vann ved 340,2 K?	
a) 40,95 kJ/mol	
b) 42,15 kJ/mol	
c) 41,95 kJ/mol	
d) 39,37 kJ/mol	
7. Standard dannelsesentalpi for H ₂ O(l) ved 298 K er - 285,8 kJ/mol. Beregn endring i in	dre
energi (E) for prosessen $H_2O(1) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ ved 298 K og 1 atm.	
a) - 285,8 kJ	
b) 282,1 kJ	
c) - 289,5 kJ	
d) 285,8 kJ	
8. Gassen A2 reagerer med gassen B2 til gassen AB. Bindingsenergien for AB er langt stø	ørre
enn for de to reaktantene. Hvilke av følgende utsagn for reaksjonen er korrekt	
a) $\Delta H > 0$, $\Delta S > 0$	
b) $\Delta H > 0$, $\Delta S < 0$	
c) $\Delta H < 0$, $\Delta S >> 0$	
c) $\Delta H < 0$, $\Delta S >> 0$ d) $\Delta H < 0$, $\Delta S \approx$ uforandret	
d) $\Delta H < 0$, $\Delta S \approx$ uforandret 9. Hvilke av følgende prosesser trenger energitilførsel	
d) $\Delta H < 0$, $\Delta S \approx$ uforandret 9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster	
d) $\Delta H < 0$, $\Delta S \approx$ uforandret 9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster b) Oppløsning av salt i vann	
d) $\Delta H < 0$, $\Delta S \approx$ uforandret 9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster b) Oppløsning av salt i vann c) En satellitt faller tilbake på jorden	
d) $\Delta H < 0$, $\Delta S \approx$ uforandret 9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster b) Oppløsning av salt i vann	
d) $\Delta H < 0$, $\Delta S \approx$ uforandret 9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster b) Oppløsning av salt i vann c) En satellitt faller tilbake på jorden	
d) $\Delta H < 0$, $\Delta S \approx$ uforandret 9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster b) Oppløsning av salt i vann c) En satellitt faller tilbake på jorden d) Oppløsning av saft i vann 10. Beregn entropiendringen for omgivelsene (ΔS_{surr}) for følgende prosess ved 25°C h	vor
9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster b) Oppløsning av salt i vann c) En satellitt faller tilbake på jorden d) Oppløsning av saft i vann 10. Beregn entropiendringen for omgivelsene (ΔS_{surr}) for følgende prosess ved 25°C h ΔH° = -2221 kJ: $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(l)$	vor
9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster b) Oppløsning av salt i vann c) En satellitt faller tilbake på jorden d) Oppløsning av saft i vann	vor
d) $\Delta H < 0$, $\Delta S \approx$ uforandret 9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster b) Oppløsning av salt i vann c) En satellitt faller tilbake på jorden d) Oppløsning av saft i vann 10. Beregn entropiendringen for omgivelsene (ΔS_{surr}) for følgende prosess ved 25°C h $\Delta H^o = -2221 \text{ kJ: } C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(l)$ a) 7453 J/K b) 88840 J/K	vor
9. Hvilke av følgende prosesser trenger energitilførsel a) Jern ruster b) Oppløsning av salt i vann c) En satellitt faller tilbake på jorden d) Oppløsning av saft i vann	vor

11. Beregn ΔG° for reaksjonen $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l)$. ΔG°_f for henholdsv	/is
CH ₄ , CO ₂ , H ₂ O er -51, -394, -237 kJ/mol	15
a) – 974 kJ	
b) 817 kJ	
(c) - 580 kJ	
d) -817 kJ	
d) -61 / kJ	<u> </u>
12. For flytende kvikksølv er entalpi og entropi for fordampning henholdsvis 58,51 kJ/m	
og 92,92 JK ⁻¹ mol ⁻¹ . Hva er kokepunktet for kvikksølv?	.01
a) 629,7 K	1
b) 639,7 K	
c) 529,7 K	
d) 723,1 K	
d) 723,1 K	<u> </u>
13. Ved likevekt ved 800 K for reaksjonen $N_2(g) + 3 F_2(g) \rightarrow 2 NF_3(g)$ er partialtrykkene for	or
$N_2(g)$, $F_2(g)$ og $NF_3(g)$ 0,021, 0,063, 0,48 atm. ΔG° for reaksjonen ved 800 K er	OI
a) – 85,7 kJ	
b) -71,1 kJ	
c) 71,1 kJ	
d) 85,7 kJ	
u) 63,7 kJ	<u> </u>
14. ΔH° og ΔS° er -58,03 kJ/mol og -176,6 JK ⁻¹ mol ⁻¹ for reaksjonen 2 NO ₂ (g) \rightarrow N ₂ O ₄ (g	<u></u>
Likevektskonstanten for reaksjonen ved 100°C er	5).
a) 4,5x10 ⁻¹⁸	1
b) 12,7	
c) 0,079	
d) 2.2×10^{17}	
u) 2,2X10	1
15. Forskjellen i Gibbs energi mellom en ideell gass som endres fra 1 til 0,1 atm ved 298	K
er	
a) - 5.70 kJ	Ī
b) 5700 kJ	
c) 5,7 kJ	
d) - 5700 kJ	
$a_{\rm J} = 3700 \text{ kJ}$	<u> </u>
16. Hvilken av H ₂ , F ⁻ , Na, Fe ²⁺ er det beste reduksjonsmiddelet under standard betingelser?	
T ID. DVIIKEII AV DA E. INA EE. EI GELDESIE JEGIIKSIONSONIOOEIELINGELSIANGATO BETOOEISELA	
a) H ₂	
a) H ₂ b) F	
a) H ₂	

17. Hvilken av følgende reaksjoner kan benyttes til å lage en galvanisk celle		
a) NaF(aq) \rightarrow Na + $\frac{1}{2}$ F ₂ (g)		
b) $NaCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NaNO_3(aq)$		
c) $Cu^{2+}(aq) + Mg(s) \rightarrow Mg^{2+}(aq) + Cu(s)$		
d) $Zn^{2+}(aq) + Ni(s) \rightarrow Ni^{2+}(aq) + Zn(s)$		
18. Beregn standard cellepotensial for reaksjonen CH ₃ OH(l) + $3/2O_2(g) \rightarrow CO_2(g) +$	2	
H ₂ O(l) når Gibbs energi for reaksjonen er – 702 kJ.		
a) -2,43 V		
b) -1,21 V		
c) 2,43 V		
d) 1,21 V		
19. Gitt følgende galvanisk celle: Al Al ³⁺ (1,0 M) Pb ²⁺ (1,0 M) Pb. Beregn cellespennin		
en for cellen etter at [Al ³⁺] er endret med 0,6 M pga av den galvaniske reaksjonen. Standa	ırd	
cellepotensial for cellen er 1,53.		
a) -1,50 V		
b) 1,50 V		
c) 1,56 V		
d) -1,56 V		
20 C H		
20. Cellepotensialet for cellen Pb Pb ²⁺ (1,8 M) Ag ₂ SO ₄ (M) Ag er 0,83 V. I den høyre d		
av cellen ble det tilsatt overskudd Ag ₂ SO ₄ (s) slik at løsningen er mettet på Ag ₂ SO ₄ (s). Hva	er	
løselighetsproduktet for Ag ₂ SO ₄ ? Standard cellepotensial for cellen er 0,93.	_	
a) 1,02x10 ⁻⁵	-	
b) 2,04x10 ⁻⁶		
c) $1,04 \times 10^{-4}$		
d) 1,03x10 ⁻¹⁰		

FORMEL	KOMMENTAR
PV = nRT	Ideell gass
$P_i = n_i RT/V (P_T = \sum_i P_i)$	Partialtrykk av i
$C = q / \Delta T$	Varmekapasitet
E = q + w	Endring i indre energi
H = E + PV	Entalpi
$\Delta H = q_p$	Konstant P. Bare volumarb.
$\Delta H^{\circ} = \sum \Delta H_{\rm f}^{\circ}$ (produkter) - $\sum \Delta H_{\rm f}^{\circ}$ (reaktanter)	Husk støkiometriske koeffisienter
$\Delta H_T^{\circ} = \Delta H_{298}^{\circ} + \Delta C_P^{\circ} \times \Delta T$	ΔC_p^o konstant
$\ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$	ΔH og ΔS konstant
$dS = \frac{dq_{\text{rev}}}{T}$	Entropiendring
$\Delta S_T^{\circ} = \Delta S_{298}^{\circ} + \Delta C_P^{\circ} \ln \left(\frac{T}{298,15} \right)$	ΔC_p^o konstant
G = H - TS	Gibbs energi. Fri energi.
$\Delta G = \Delta H - T\Delta S$	Endring i fri energi ved konstant T
$\Delta G_T^{\circ} = \Delta H_{298}^{\circ} - T \Delta S_{298}^{\circ}$	$\Delta C_p^o \approx 0$
$\Delta G = \Delta G^{\circ} + RT \ln Q$	Reaksjonskvotient, Q
$G = G^{\circ} + RT \ln a$	Aktivitet (relativ), a
$\Delta G^{\circ} = -RT \ln K$	Likevektskonstant, K
$\Delta G = -nFE$	Cellepotensial, E
$Q = It = n_{e}F$	Elektrisk ladning
$E = E^o - \frac{RT}{nF} \ln Q = E^o - \frac{0.0592}{n} \log Q$, 25° C	Nernsts ligning
$r = -\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = k[A]^{l} [B]^{m} [C]^{n} [D]^{p}$	Reaksjonshastighet for $aA + bB = cC + dD$
Total orden = $l + m + n + p$	
$k = A e^{-\frac{E_a}{RT}}$	Hastighetskonstant, k Aktiveringsenergi, E_a