Diabetes risk predictor

Data Science Bootcamp

Sprint 2

Created By: Diego Villanueva

Agenda

- 1. Problem overview
- 2. Proposed solution
- 3. EDA and pre-processing
- 4. Models and evaluation
- 5. Next steps

Diabetes has become one of the biggest epidemics in human history

It is estimated that 422 million people are living with diabetes in the world...

422 M cases

4.8 M cases

... and almost half of them have not been diagnosed

46% of global cases are undiagnosed

In the UK, up to 1M people

A ML solution

Early warning system to help doctors predict the risk of a patient developing diabetes

EDA /Pre-processing: The dataset used has 20 indicators

Dataset with 20 indicators

Demographic

Lifestyle

Medical

Issues addressed during pre-processing:

- Inbalanced data
 - Over sampling
- Different numerical scale
 - Scaling
- Multicollinearity
 - Detection & drop features

Logistic Regression

Pipeline / Grid Search

Standard Scaler

Accuracy

Precision

Recall

0.85	
0.54	
0.16	
0.25	

Logistic Regression

Pipeline / Grid Search

Standard Scaler

Δ		LIP	2	
$\overline{}$	CC	uı	a	∪ y

Precision

Recall

0.85	
0.54	
0.16	
0.25	

- -> if we tested 100 people, the model classfied 85 of them correctly
- -> out of all the ppl we predicted to have diabetes, only 54% of them have it
- -> out of all the ppl who have diabetes, we only detected 16% of them
- -> this is the balance between precision and recall

Logistic Regression

Pipeline / Grid Search

Standard Scaler

Decision Tree

Pipeline / Grid Search

Standard Scaler

Δ		III	20	\ /
$\boldsymbol{\sqcap}$	CC	uı	au	, V

Precision

Recall

0.85	
0.54	
0.16	
0.25	

0.85	
0.59	
0.12	
0.20	

Logistic Regression

Pipeline / Grid Search

Standard Scaler

Decision Tree

Pipeline / Grid Search

Standard Scaler

Logistic Regression

Pipeline / Grid Search

Scaling + Oversampling

Accuracy

Precision

Recall

0.85	
0.54	
0.16	
0.25	

0.85
0.59
0.12
0.20

0.73
0.34
0.74
0.46

Logistic Regression

Pipeline / Grid Search

Standard Scaler

Decision Tree

Pipeline / Grid Search

Standard Scaler

Logistic Regression

Pipeline / Grid Search

Scaling + Oversampling

Decision Tree

Pipeline / Grid Search

Scaling + Oversampling

Accuracy

Precision

Recall

0.85
0.54
0.16
0.25

(0.85
(0.59
	0.12
	0.20

0.73
0.34
0.74
0.46

0.72
0.31
0.60
0.40

Learned

Look for good balance of precision and recall -not only accuracy

Next steps

- Try different models
- Make solution accesible