

Chpt.8 Statistical Inference: Hypothesis Testing

第八章 假设检验

上节回顾

- 有关于正态总体方差的假设检验
- 非正态总体的假设检验

$$H_0$$
: $\theta = \theta_0$ H_1 : $\theta \neq \theta_0$ \overline{V} $U(\theta_0)$ 近似

$$Z = \frac{\overline{X} - \mu(\theta_0)}{\sigma(\theta_0) / \sqrt{n}} \sim N(0,1)$$
 拒绝域为 $|Z| \geq z_{\alpha/2}$

■ 分布拟合检验

南开大学计算机学院 pp. 2

例6 测量100个某种机械零件的质量(单位: g), 统计如下表

零件质量区间	频数	零件质量区间	频数
236.5~239.5	1	251.5~254.5	22
239.5~242.5	5	254.5~257.5	11
242.5~245.5	9	257.5~260.5	6
245.5~248.5	19	260.5~263.5	1
248.5~251.5	24	263.5~266.5	2

 $\dot{\mathbf{p}}$: 这种机械零件的质量是否服从正态分布 (取显著水平 α =0.05)?

解: 依题意, 检验假设

 H_0 : X~N(μ , σ^2), H_1 : X不服从正态分布N(μ , σ^2).

已知 n=100,把各个区间的中点值取作 x_i ,分别计算 参数 μ , σ^2 的极大似然估计值:

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 250.6 \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 26.82$$

 $\hat{\sigma} = 5.18$, 计算 $X \sim N(250.6, 5.18^2)$ 时,X 落在各个区间的概率

$$p_{i} = P\{\alpha_{i-1} \le X < \alpha_{i}\} = \Phi\left(\frac{\alpha_{i} - 250.6}{5.18}\right) - \Phi\left(\frac{\alpha_{i-1} - 250.6}{5.18}\right)$$

$$i = 1, 2, \dots, 10$$

其中, $\Phi(X)$ 为标准正态分布的分布函数。

随机变量的取值为区间 $(-\infty, +\infty)$, 应把第一个区间扩大为 $(-\infty,$

239.5), 把最后一个区间扩大为(263.5, +∞)。把检验所需数据

整理并列表如下:

零件质量区间	m _i	p_{i}	np _i	$\left (m_i - np_i)^2 / np_i \right $		
(-∞, 239.5)	1)6	0.0504	F 04	0.001		
239.5~242.5	$\begin{bmatrix} 1\\5 \end{bmatrix}$ 6	0.0594	5.94	0.001		
242.5~245.5	9	0.1041	10.41	0.191		
245.5~248.5	19	0.1774	17.74	0.089		
248.5~251.5	24	0.2266	22.66	0.079		
251.5~254.5	22	0.2059	20.59	0.097		
254.5~257.5	11	0.1348	13.48	0.456		
257.5~260.5	6)					
260.5~263.5	1 9	0.0918	9.18	0.004		
$(263.5, +\infty)$	2]					
总计	100	1	100	0.917		

由此得差异度χ²=0.917

因为合并后区间数为k=7,需要估计的参数个数 r=2,即 χ^2

自由度 *l=k-r-1=4*

查表得 $\chi_{0.05}^2(4) = 9.49$

因为 $\chi^2 = 0.917 < \chi^2_{0.05}(2) = 9.49$, 所以接受原假设 H_0

即在显著水平a=0.05下,可以认为这种机械零件的质量服从正

态分布.

习 题

从1500到1931年的432年间,每年爆发战争的次数可以看作一个随机变量,据统计,这432年间共爆发了299次战争,具体数据如下:

战争次数X	0	1	2	3	4	
发生 X次战争的年数	223	142	48	15	4	

通常假设每年爆发战争的次数服从泊松分布。那么 上面的数据是否有充分的理由推翻每年爆发战争 的次数服从泊松分布假设?

解: $H_0: X \sim \pi(\lambda)$, λ 未知, $\hat{\lambda} = \overline{X} = 299/432 = 0.69$.

$$\hat{p}_i = \frac{\hat{\lambda}^i e^{-\hat{\lambda}}}{i!}, i = 0, 1, 2, 3, \quad \hat{p}_4 = \sum_{j=4}^{\infty} \frac{\hat{\lambda}^j e^{-\hat{\lambda}}}{j!}.$$

战争次数x	0	1	2	3	≥ 4
实测频数 m _i	223	142	48	15	4
概率估计 \hat{p}_i	0.502	0.346	0.119	0.027	0.006
理论频数 $n\hat{p}_i$	217	149	51	12	3

15

检验统计量的观察值为

$$\chi^{2} = \sum_{i=1}^{k} \frac{(m_{i} - np_{i})^{2}}{np_{i}} = 1.74$$

即在显著性水平 $\alpha = 0.05$ 下临界值

$$\chi_{\alpha}^{2}(k-r-1) = \chi_{0.05}^{2}(4-1-1) = 5.991$$

于是, 1.74 < 5.991, 不能拒绝原假设。

H0的选择非常重要。

▶ A: 某种药为假药 B: 某种药为真药

如果拒绝A带来的后果比拒绝B带来的后果更严重,则选择A作为原假设。 将A作为原假设,我们在检验时会控制第I类错误的概率,即当该药为假药 错判为真药的概率不超过显著水平α,是个小概率事件。

➤ A: 新技术为提高收益 B: 新技术提高收益

在没有哪个假设带来的后果更严重需要规避时,常常选取H0为维持现状,即"无效益","无改进","无价值"等。这样,一旦拒绝H0,就表示有较强的理由去采取新技术。

➤ A: 红光的反应时间比绿光短 B: 红光的反应时间不小于绿光的反应时间

通常把我们想要支持的观点设为H1,这样一旦拒绝H0,就表示有较强的理由去支持我们想支持的观点。

2. 如果一个矩形的宽度 w 与长度 l 的比 $w/l = \frac{1}{2}(\sqrt{5}-1) \approx 0.618$,这样的矩形称为黄金矩形. 这种尺寸的矩形使人们看上去有良好的感觉. 现代的建筑构件(如窗架)、工艺品(如图片镜框),甚至司机的执照、商业的信用卡等常常都是采用黄金矩形. 下面列出某工艺品工厂随机取的 20 个矩形的宽度与长度的比值:

0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628

0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933 设这一工厂生产的矩形的宽度与长度的比值总体服从正态分布,其均值为 μ ,方差为 σ^2 , μ , σ^2

均未知. 试检验假设(取 α =0.05)

$$H_0: \mu = 0.618$$
, $H_1: \mu \neq 0.618$.

3. 要求一种元件平均使用寿命不得低于 1000 h,生产者从一批这种元件中随机抽取 25件,测得其寿命的平均值为 950 h.已知该种元件寿命服从标准差为 $\sigma=100 \text{ h}$ 的正态分布. 试在显著性水平 $\alpha=0.05$ 下判断这批元件是否合格?设总体均值为 μ , μ 未知. 即需检验假设

$$H_0: \mu \ge 1 000, H_1: \mu < 1 000.$$

4. 下面列出的是某工厂随机选取的 20 只部件的装配时间(min):

设装配时间的总体服从正态分布 $N(\mu,\sigma^2),\mu,\sigma^2$ 均未知. 是否可以认为装配时间的均值显著大于 10 (取 $\alpha=0.05$)?

$$H_0$$
: $\mu \le 10$, H_1 : $\mu > 10$

12. 某种导线,要求其电阻的标准差不得超过 $0.005~\Omega$,今在生产的一批导线中取样品 9根,测得 $s=0.007~\Omega$,设总体为正态分布,参数均未知. 问在显著性水平 $\alpha=0.05$ 下能否认为这批导线的标准差显著地偏大?

$$H_0$$
: $\sigma < 0.005$, H_1 : $\sigma \ge 0.005$

10. 为了试验两种不同的某谷物的种子的优劣,选取了 10 块土质不同的土地,并将每块土地分为面积相同的两部分,分别种植这两种种子. 设在每块土地的两部分人工管理等条件完全一样. 下面给出各块土地上的单位面积产量:

土地编号i	1	2	3	4	5	6	7	8	9	10
种子 $A(x_i)$	23	35	29	42	39	29	37	34	35	28
种子 B(y _i)	26	39	35	40	38	24	36	27	41	27

设 $D_i = X_i - Y_i$ $(i=1,2,\dots,10)$ 是来自正态总体 $N(\mu_D,\sigma_D^2)$ 的样本, μ_D,σ_D^2 均未知. 问以这两种子种植的谷物的产量是否有显著的差异(取 $\alpha=0.05$)?

$$H_0: \mu_D = 0, \ H_1: \ \mu_D \neq 0$$

9. 为了比较用来做鞋子后跟的两种材料的质量,选取了 15 名男子(他们的生活条件各不相同),每人穿一双新鞋,其中一只是以材料 A 做后跟,另一只以材料 B 做后跟,其厚度均为 10 mm. 过了一个月再测量厚度,得到数据如下:

男子	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
材料 $A(x_i)$			-												
材料 B(y _i)	7.4	5.4	8.8	8.0	6.8	9.1	6.3	7.5	7.0	6.5	4.4	7.7	4.2	9.4	9. 1

设 $D_i = X_i - Y_i$ $(i=1,2,\cdots,15)$ 是来自正态总体 $N(\mu_D,\sigma_D^2)$ 的样本, μ_D,σ_D^2 均未知. 问是否可以认为以材料 A 制成的后跟比材料 B 的耐穿(取 $\alpha=0.05$)?

$$H_0: \mu_D \leq 0, \ H_1: \mu_D > 0$$

检验假设的设计

对于某研究问题,假设某样本预期服从 $N(10,3.5^2)$ 正态分布,其采样均值 $\bar{x}=12$,同时已知n=9

请做如下判定:在显著性0.05情况下,1.本次采样的结果(均值)是否发生变化; 2.本次样本的均值是否变大

第一问: $H_0: u = u_0; H_1: u \neq u_0$

第二问: $H_0: u \leq u_0; H_1: u > u_0$

"工具"随机变量 $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$

带入数据: $\frac{12-10}{3.5/\sqrt{9}} = \frac{2*3}{3.5} = 1.7$

对于第一问: 双尾检验, $Z_{\alpha/2} = 1.96$

所以有

-1.96 < z = 1.7 < 1.96

结论:

 $u = u_0$

对于第二问: 单尾检验, $Z_{\alpha} = 1.64$

所以有

z = 1.7 > 1.64

结论:

 $u > u_0$

检验结果是高度依赖检验设计的。当有可能时, 应该选择更为严格(或者说更明确)的H1.

置信区间与假设检验的关系

我们观测到,在进行置信区间估计和假设检验时,使用了同样的统计量选用方法,那么二者是否存在联系?

注意: 首先分辨两者的区别!

南开大学计算机学院 pp. 17

8.5* 置信区间与假设检验的关系

A: 从置信区间出发

设 $X \sim f(\theta)$,对参数 θ 应用某统计量进行区间估计,得到 $1 - \alpha$ 置信区间 $(\underline{\theta}, \overline{\theta})$,按照置信区间定义,有

$$P\{\underline{\theta} < \theta < \overline{\theta}\} \ge 1 - \alpha$$

此时对于原假设 H_0 : $\theta = \theta_0$,若其满足,则应该有 $P\{\underline{\theta} < \theta_0 < \overline{\theta}\} \ge 1 - \alpha$ 对上述随机变量运算进行处理

$$P\{(\underline{\theta} < \theta_0) \cap (\theta_0 < \overline{\theta})\} \ge 1 - \alpha$$

或者有

$$P\{(\theta_0 < \overline{\theta}) \cap (\theta_0 > \underline{\theta})\} \ge 1 - \alpha$$

若满足任意性,则上述三个命题等价

8.5* 置信区间与假设检验的关系

 $P\{\underline{\theta} < \theta < \overline{\theta}\} \ge 1 - \alpha$ 讨论的是 θ 的 $1 - \alpha$ 的置信区间; 而

 $P\{(\theta_0 < \overline{\theta}) \cap (\theta_0 > \underline{\theta})\} \ge 1 - \alpha$ 讨论的是 θ_0 落在两个(关于X的统计量)的区间之内,则 H_0 则为大概率事件,接受HO。

对此我们得到另一种假设检验的方法:

计算 θ 的置信区间,然后观察 θ_0 是否落入该置信区间内,如果落入则接受 H_0 : $\theta = \theta_0$

对比原来方法求拒绝域:

我们首先定义一个包含 θ_0 和X的,服从基本分布的统计量,然后计算该统计量的分位值及相应拒绝域。观察样本值造成的统计量的数值,是否落入该拒绝域。

进而拓展讨论:如何处理讨论单尾检验vs.单侧置信区间

南开大学计算机学院 pp. 19

8.5* 置信区间与假设检验的关系

B: 从假设检验出发 $(H_0: \theta_0 = \theta)$

对于 θ_0 的接受域有, $P\{(\theta_0 < \overline{\theta}) \cap (\theta_0 > \underline{\theta})\} \ge 1 - \alpha$,

由于对于任意 θ_0 , θ 都成立, 那么对于 $\theta_0 = \theta$ 的情况, 只要 θ 落在上述区间 $(\underline{\theta}, \overline{\theta})$ 中(注意,此时

区间 $(\underline{\theta}, \overline{\theta})$ 是 θ_0 的接受域)

仿照前文讨论, 进行部分替换后有下面公式

$$P\{\underline{\theta} < \theta < \overline{\theta}\} \ge 1 - \alpha$$

此时接受域 $(\underline{\theta}, \overline{\theta})$ 恰好符合 θ 置信空间的定义,所以 $(\underline{\theta}, \overline{\theta})$ 可以作为 θ 的 $1 - \alpha$ 置信空间所以,若我们将假设检验研究中的接受域 $Z_{1-\alpha/2} <$ 统计量 $(X, \theta_0) < Z_{\alpha/2}$,转化为

$$\underline{\theta} =$$
统计量 $(X, Z_{1-\alpha/2}) < \underline{\theta}_0 < \overline{\theta} =$ 统计量 $(X, Z_{\alpha/2})$

 $\mathbf{M}(\underline{\theta}, \overline{\theta})$ 也可以作为 $\mathbf{\theta}$ 的置信区间(当 H_0 满足时)

pp. 20

置信区间与假设检验的关系

例 1 设 $X \sim N(\mu, 1)$, μ 未知, $\alpha = 0.05$, n = 16, 且由一样本算得 $\overline{x} = 5.20$, 于 是得到参数 μ 的一个置信水平为 0.95 的置信区间

$$(\overline{x} - \frac{1}{\sqrt{16}} z_{0.025}, \overline{x} + \frac{1}{\sqrt{16}} z_{0.025}) = (5.20 - 0.49, 5.20 + 0.49)$$

= (4.71, 5.69).

现在考虑检验问题 $H_0: \mu=5.5$, $H_1: \mu\neq5.5$. 由于 $5.5\in(4.71,5.69)$,故接受 H_0 .

例 2 数据如上例. 试求右边检验问题 $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$ 的接受域, 并求 μ 的单侧置信下限(α =0.05).

解 检验问题的拒绝域为 $z = \frac{\overline{x} - \mu_0}{1/\sqrt{16}} \geqslant z_{0.05}$,或即 $\mu_0 \leqslant 4.79$. 于是检验问题的接受域为 $\mu_0 > 4.79$. 这样就得到 μ 的单侧置信区间(4.79, ∞),单侧置信下限 $\mu = 4.79$.

pp. 21

p值法

例 1 设总体 $X \sim N(\mu, \sigma^2)$, μ 未知, $\sigma^2 = 100$,现有样本 x_1 , x_2 ,…, x_{52} ,算得 x=62.75. 现在来检验假设

$$H_0: \mu = \mu_0 = 60$$
, $H_1: \mu > 60$.

采用 Z 检验法,检验统计量为

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

以数据代入,得 Z 的观察值为

$$z_0 = \frac{62.75 - 60}{10/\sqrt{52}} = 1.983.$$

概率

$$P\{Z \ge z_0\} = P\{Z \ge 1.983\} = 1 - \Phi(1.983) = 0.023 \text{ s.}$$

此即为图 8-7 中标准正态曲线下位于 z_0 右边的尾部面积.

此概率称为Z检验法的右边检验的p值.记为

$$P\{Z \geqslant z_0\} = p$$
 ff(=0.023 7).

*样本容量的选取

*秩和检验