Forecasting for Special Cases

Agenda

- New Products
- Intermittent Demand
- Forecasting Wrap-Up

New-to-World

first of their kind, creates new market, radically different

New-to-Company

new market/category for the company, but not to the marketplace

incremental innovations added to complement existing product lines and targeted to the current market

Product Improvements

new, improved versions of existing offering, targeted to the current market – replaces existing products

Product Repositioning

taking existing products/services to new markets or applying them to a new purpose

Cost Reductions

reduced price versions of the product for the existing market

CTL.SC1x - Supply Chain and Logistics Fundamentals

Why does it matter?

New Product Categories

Type of New Product	Percent of Introductions	Forecast Accuracy (1-MAPE)	Launch Cycle Length	Success Rate
New-to-World	8-10%	40%	104	38-65%
New-to-Company	17-20%	47%	weeks	36-03%
Line Extensions	21-26%	54-62%	62/29*	FF 770/
Product Improvements	26-36%	65%	weeks	55-77%
Product Re-Positioning	5-7%	54-65%	NI/A	66-79%
Cost Reductions	10-11%	72%	N/A	00-79%

Adapted from Cooper, Robert (2001) <u>Winning at New Products</u>, Kahn, Kenneth (2006) <u>New Product forecasting</u>, and PDMA (2004) New Product Development Report.

^{*} Major revisions / Incremental improvements – about evenly split

Product-Market Matrix

		Product Technology		
		Current	New	
		Market Penetration	Product Development	
	Current	Forecasting Approach: Quantitative analysis of similar situations with item: time series, regression, etc.	Forecasting Approach: Analysis of similar items: "looks-like" analysis or analogous forecasting	
ket		Cost Reductions & Product Improvements	Line Extensions	
Market		Market Development	Diversification	
	New	Forecasting Approach: Customer and market analysis to understand market dynamics and drivers	Forecasting Approach: Scenario planning & analysis to understand key uncertainties & factors	
		Product Repositionings	New-to-Company & New-to-World	

Why do firms launch new products?

- Companies earn significant revenue & profit from new products:
 - Revenue 21% to 48%
 - Profit 21% to 49%
- By Selected Industries (revenue/profit):

Fast Moving Consumer Goods	24%	24%
Consumer Services	25%	24%
Chemicals	18%	22%
Healthcare	31%	33%
Technology	47%	44%

 Product lifecycle is shortening and/or ability to maintain pricing is eroding faster

Adapted from Cooper, Robert (2001) <u>Winning at New Products</u>, Kahn, Kenneth (2006) <u>New Product forecasting</u>, and PDMA (2004) New Product Development Report.

New Product Development Process

New Product Development Process

10

New Product Forecasting Methods

Customer/market research 57%	Exponential smoothing 10%
 Jury of executive opinion 44% 	Experience curves 10%
Sales force composite 39%	Delphi method8%
Looks-like analysis 30%	Linear Regression 7%
Trend line analysis 19%	Decision trees
Moving average 15%	Simulation 4%
Scenario analysis 14%	• Others: 9%

- Methods differ by stage and by new product type.
- On an average, companies use 3 different methods to forecast new products.
- Business-to-Business (B2B) firms tend to use qualitative forecasts more than the Business-to-Consumer (B2C) firms.
- B2B firms have a longer forecasting horizon (34 months) compared to the B2C firms (18 months.)

Adapted from Kahn, Kenneth (2006) New Product Forecasting.

^{*} Based on a survey of 168 companies.

"Looks-Like" or Analogous Forecasting

- How to do it
 - Look for comparable product launches
 - Create month by month (week by week) sales record
 - Use the percent of total sales as guide to trajectory
 - Similar to using "comps" in real estate
- Structured Analogy
 - Create database of past launches (sales over time)
 - Characterize each launch by
 - Product type
 - Season of introduction
 - Price
 - Target market demographics
 - Physical characteristics
 - Use characteristics of new product to query old launches

Lesson: Forecasting for Special Cases

Avoid only including successful launches!

Diffusion Models

S-Curve for Adoption Rate

Bass Diffusion Model

- Two effects driving product adoption:
 - Innovation Effect (p)
 - Innovators are early adopters high intrinsic tendency to adopt
 - They are drawn to the technology regardless of who else is using it
 - Innovator demand peaks early in the lifecycle
 - Imitation Effect (q)
 - Imitators hear about the product by word of mouth
 - They are influenced by behavior of their peers & social contagion
 - Imitator demand peaks later in the lifecyle

Bass Diffusion Model

Innovation Effect

Imitation Effect

$$n(t) = p \times [Remaining Potential] + q \times [Adopters] \times [Remaining Potential]$$

 $n(t) = p [m-N(t-1)] + q[N(t-1)/m][m-N(t-1)]$

Lesson: Forecasting for Special Cases

Example: iWidget Sales

Management estimates the iWidget has a 4 year product life with total sales of 750,000 units. They estimate that p=0.10 and q=0.25 for this product. Project sales by quarter:

Q1 =
$$(.10)(750-0)+(.25)(0)(750-0)=75k$$

Q2 = $(.10)(750-75)+(.25)(75/750)(750-75)=84k$
Q3

Where:

p = Coefficient of innovation

q = Coefficient of imitation

m = Total number of customers who will adopt

n(t) = Number of customers adopting at time t

N(t-1) = Cumulative number of customers by time t

	Innovation	Imitation	Cum.	
Quarter	Effect	Effect	N(t-1)	n(t)
1	75	-	-	75
2	68	17	75	84
3	59	31	159	90
4	50	42	250	92
5	41	47	341	87
6	32	46	429	78
7	24	41	507	65
8	18	34	572	52
9	13	26	624	39
10	9	19	663	28
11	6	14	691	20
12	4	9	710	13
13	3	6	724	9
14	2	4	733	6
15	1	3	739	4
16	1	2	743	3

Bass Diffusion Model Parameters

- So where do these p & q values come from?
 - Look for previous studies
 - Identify "like" products in terms of
 - Environmental context (e.g., socioeconomic and regulatory environments)
 - Market structure (e.g., barriers to entry, number of competitors)
 - Buyer behavior (e.g., consumer, business)
 - Marketing mix strategies (e.g., promotion, pricing)
 - Characteristics of the innovation (e.g., complexity, relative advantage)

Parameter values differ over time and vary by regions.

Good for estimating sales trajectories – not absolute sales

Provides estimate of time of peak sales: $t^*=\ln(q/p)/(p+q)$

Product	Innovation Coefficient p	Imitation Coefficient q
Cable TV	.100	.060
Cell Phone	.008	.421
Curling Irons	.028	.993
Dishwasher	.0014	.206
Drip Coffeemaker	.017	.993
Radio	.027	.435
Microwave	.002	.357
Non-durable product	.023	.788
Home PC	.121	.281

Typical values:

- p ~ 0.03 and often < 0.01

- q ~ 0.38 and 0.3≤q≤0.5

Sources from Lilien G. and A. Rangasamy Marketing engineering, Revised 2nd Edition (2006), Kahn (2006), Bass, F (1969) "A New Product Growth Model," and Van den Bulte, C (2002) "Diffusion Speed Across countries & Products".

Estimating Diffusion Models

Estimating p & q from Recent Sales

First, transform Bass Model into linear equation:

$$n(t) = p \not\in m - N(t-1) \not\ni + q \not\in \frac{N(t-1)}{m} \not\cup \frac{m}{m} - N(t-1) \not\ni$$

$$n(t) = pm - pN(t-1) + qN(t-1) - \frac{m}{c} \frac{q}{m} \not\circ \frac{m}{m} \not\in N(t-1) \not\ni^{2}$$

$$n(t) = pm + (q-p)N(t-1) - \frac{m}{c} \frac{q}{m} \not\circ N(t-1) \not\ni^{2}$$

Second, estimate the regression equation using past sales periods.

$$y_i = b_0 + b_1 x_{1i} + b_2 x_{2i}$$

where:

$$y_i = n(t)$$
 = sales for period t

$$x_{1i} = N(t - 1) = \text{cumulative sales up to period t-1}$$

$$x_{2i} = x_{1i}^2$$
 = square of cumulative sales

$$b_0 = pm$$
 $b_1 = q - p$ $b_2 = \frac{-q}{m}$

Third, back calculate for the parameters:

$$p = \frac{b_0}{m} \qquad q = -b_2 m$$

$$b_1 = q - p = -b_2 m - \frac{b_0}{m}$$

$$0 = -b_2 m^2 - b_1 m - b_0$$

$$m = \frac{b_1 \pm \sqrt{b_1^2 - 4b_2b_0}}{-2b_2}$$

Example: Diffusion Model

Suppose I have the following sales information for the first 5 quarters of a

product launch:

Quarter	n(t)	N(t-1)	N(t-1)^2
1	160	0	0
2	223	160	25,600
3	310	383	146,689
4	425	693	480,249
5	575	1,118	1,249,924

Regress using the LINEST function giving me:

(0.000093)	0.4765	160.18
0.0001066	0.1333	30.31
0.98	35.32	#N/A
48.17	2	#N/A
120,203.73	2,495.47	#N/A

b ₂	b_1	b_0
S _{b2}	S _{b1}	S _{b0}
R ²	S _e	
F	d_f	
SSR	SSE	

Back solving for p, q, m:

My regression equation becomes:

$$n_t = 160.18 + (0.4765)N_{t-1} - (0.000093)(N_{t-1})^2$$

 Use these parameters to estimate future sales or compare to similar past product launches

Forecasting Products with Intermittent Demand

Problems with Intermittent Demand

- Suppose I had an item that is ordered every 6 months for 1,000 units. Average monthly demand = 2000/12 = 167 units.
- What happens if I forecast demand using simple exponential smoothing:

 $\hat{x}_{t,t+1} = \partial x_t + (1 - \partial)\hat{x}_{t-1,t} \qquad 0 \pm \partial \pm 1$

Problems with Intermittent Demand

- Or more realistically, my demand for product is infrequent, of different size, and irregularly ordered.
- Forecasting demand using simple exponential smoothing results in additional noise.
- Separate components of demand and model separately:
 - Time between transactions
 - Magnitude of individual transactions

Croston's Method

Demand process: $x_t = y_t z_t$

If demand is independent between time periods, then the probability that a transaction occurs is 1/n, that is:

$$\operatorname{Prob}(y_t = 1) = \frac{1}{n}$$
 $\operatorname{Prob}(y_t = 0) = 1 - \frac{1}{n}$

The updating procedure becomes:

If $x_t=0$ (no transaction occurs),

$$z^{\hat{}}_{t} = z^{\hat{}}_{t-1}$$

 $n^{\hat{}}_{t} = n^{\hat{}}_{t-1}$

If
$$x_t>0$$
 (transaction occurs),
 $z_t^* = \alpha x_t + (1-\alpha) z_{t-1}^*$
 $n_t^* = \beta n_t + (1-\beta) n_{t-1}^*$

Forecast

$$x^{\uparrow}_{t,t+1} = z^{\uparrow}_{t}/n^{\uparrow}_{t}$$

Where:

 $\mathbf{x_t}$ = Demand in period t

 $\mathbf{y_t} = 1$ if transaction occurs in period t, =0 otherwise

 $\mathbf{z_t}$ = Size (magnitude) of transaction in time t

 $\mathbf{n_t}$ = Number of periods since last transaction

 α = Smoothing parameter for magnitude

 β = Smoothing parameter for transaction frequency

Approach adapted from Silver, Pyke, & Peterson (1998), <u>Inventory</u> Management and Production Planning and Scheduling

Croston's Method – An Example

- Using same data:
 - Average demand per year ~2,000 units
 - Irregular transaction size and time between orders
- Create a forecast for demand going forward using Croston's method

=E7/F7 =IF(B6>0,1,D6+1)

=IF(B7>0,\$C\$1*B7+(1-\$C\$1)*E6,E6)

=IF(B7>0,\$C\$2*D7+(1-\$C\$2)*F6,F6)

Croston's Method

- Essentially shifts the updating to only after an order occurs.
 - Smooths out the forecast for replenishment purposes average usage per period
 - Unbiased and has lower variance than simple smoothing.

Cautions

- Infrequent updating introduces a lag to responding to magnitude changes
- Recommended use of smoothing for MSE of non-zero transaction periods

NewMSE
$$(z) = W(x_t - \hat{z}_{t-1})^2 + (1 - W) \text{OldMSE}(z)$$
 $x_t > 0$

Forecasting Wrap Up

Demand Process – Three Key Questions

What should we do to shape and create demand for our product?

Demand Planning

- Product & Packaging
- Promotions
- Pricing
- Place

What should we expect demand to be given the demand plan in place?

Demand Forecasting

- Strategic, Tactical, Operational
- Considers internal & external factors
- Baseline, unbiased, & unconstrained

How do we prepare for and act on demand when it materializes?

Demand Management

- Balances demand & supply
- Sales & Operations Planning (S&OP)
- Bridges both sides of a firm

Material adapted from Lapide, L. (2006) Course Notes, ESD.260 Logistics Systems.

Many Forecast Methods & Approaches

- Subjective Approaches
 - Judgmental someone somewhere knows
 - Experimental sample local and extrapolate
- Objective Approaches
 - Time Series pattern matching
 - Simple models (Moving Average, Cumulative, Naïve)
 - Exponential smoothing balancing new & old information
 - Smoothing constants determine "nervousness" & response
 - Lots of bookkeeping, updating & tricky initialization
 - Causal Analysis underlying drivers
 - Ordinary Least Squares (OLS) Regression
 - A single dependent variable (y) and one or more independent variables (x1, x2, ...)
 - Testing the model and individual coefficients
 - Watch-Outs: Correlation ≠ Causation & Avoid over-fitting
- Most firms use a portfolio of different techniques & methods

Special Cases for Forecasting

- New Products
 - No history there fore needed new methods
 - "Looks Like" Forecasting
 - Diffusion Models (innovator and imitator)
 - Different types of new products Different methods
 - New-to-World
 - New-to-Company
 - Line Extensions
 - Product Improvements
 - Product Re-Positioning
 - Cost Reductions
 - New product development process (stages & gates)
- Intermittent Demand
 - Croston's Method smooths out sporadic and irregular transactions

Final Forecasting Comments

- Data Issues Dominate
 - Sales data is not demand data
 - Transactions can aggregate and skew actual demand
 - Historical data might not exist
- Practical Things to Look For
 - Forecasting vs. Inventory Management (avoid bias)
 - Statistical Validity vs. Use and Cost of Model
 - Demand is not always exogenous
 - Error trending over time is it creeping?
- Hidden Costs of Complexity the more complex the system:

- the less frequently the parameters are checked and updated
- the less likely anyone who uses the system understands it
- the less likely operational teams will trust the output

CTL.SC1x -Supply Chain & Logistics Fundamentals

Questions, Comments, Suggestions? Use the Discussion!

"Dutchess" Photo courtesy Yankee Golden Retriever Rescue (www.ygrr.org)

Image Sources 1

- By Esa Sorjonen (I took the picture of my own Sony Walkman WM-2) [Attribution], via Wikimedia Commonshttp://commons.wikimedia.org/wiki/File%3ASony_Walkman_WM-2.jpg
- "PostItNotePad" by DangApricot (Erik Breedon) Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:PostItNotePad.JPG#mediaviewer/File:PostItNotePad.JPG
- "IPhone 2G PSD Mock" by Justin14 Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:IPhone_2G_PSD_Mock.png#mediaviewer/File:IPhone_2G_PSD_Mock.png
- "Ipod 1G" by Original uploader was Rjcflyer@aol.com at en.wikipedia Transferred from en.wikipedia; transferred to Commons by User:Addihockey10 using CommonsHelper.. Licensed under Creative Commons Attribution 2.5 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Ipod_1G.png#mediaviewer/File:Ipod_1G.png
- "Ipod 2G" by Original uploader was Rjcflyer@aol.com at en.wikipedia Transferred from en.wikipedia; transferred to Commons by User:Addihockey10 using CommonsHelper.. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Ipod_2G.png#mediaviewer/File:Ipod_2G.png
- "Ipod backlight transparent". Licensed under Creative Commons Attribution-Share Alike 2.0-at via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Ipod_backlight_transparent.png#mediaviewer/File:Ipod_backlight_transparent.png
- "Ipod 5th Generation white rotated". Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Ipod 5th Generation white rotated.png#mediaviewer/File:Ipod 5th Generation white rotated.png
- "IPod classic" by Kyro Own work. Licensed under Creative Commons Attribution 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:IPod_classic.png#mediaviewer/File:IPod_classic.png
- "IPod shuffle 1G" by Kyro own work, about 2h with Adobe Photoshop CS4.. Licensed under Creative Commons Attribution 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:IPod shuffle 1G.png#mediaviewer/File:IPod shuffle 1G.png
- "IPodphoto4G 1" by Original Photograph AquaStreakImage Cleanup Rugby471 From English Wikipedia, original image is/was here.
 Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:IPodphoto4G_1.png#mediaviewer/File:IPodphoto4G_1.png
- "Diet coke can" by The logo may be obtained from The Coca-Cola Company.. Licensed under Fair use of copyrighted material in the context of Diet Coke via Wikipedia http://en.wikipedia.org/wiki/File:Diet_coke_can.png#mediaviewer/File:Diet_coke_can.png
- "Caff Free Diet cke can" by The logo may be obtained from The Coca-Cola Company.. Licensed under Fair use of copyrighted material in the context of Diet Coke via Wikipedia http://en.wikipedia.org/wiki/File:Caff Free Diet cke can.png#mediaviewer/File:Caff Free Diet cke can.png
- "Vanilla coke zero can" by The logo may be obtained from The Coca-Cola Company.. Licensed under Fair use of copyrighted material in the context of Coke zero via Wikipedia -

Lesson: Forecasting for Special Cases

http://en.wikipedia.org/wiki/File:Vanilla_coke_zero_can.png#mediaviewer/File:Vanilla_coke_zero_can.png

Image Sources 2

- "Vanilla cola can" by The logo may be obtained from Vanilla Coke.. Licensed under Fair use of copyrighted material in the context of Vanilla Coke via Wikipedia http://en.wikipedia.org/wiki/File:Vanilla_cola_can.png#mediaviewer/File:Vanilla_cola_can.png
- "New Coke can". Via Wikipedia http://en.wikipedia.org/wiki/File:New_Coke_can.jpg#mediaviewer/File:New_Coke_can.jpg
- "Coca-Cola lata" by Eduardo Sellan III Own work. Licensed under Public domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Coca-Cola_lata.jpg#mediaviewer/File:Coca-Cola_lata.jpg
- "Aspirin1" by User Mosesofmason on zh.Wikipedia Originally from zh.Wikipedia; zh:Image:Aspirin.jpg. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Aspirin1.jpg#mediaviewer/File:Aspirin1.jpg
- "Arm & Hammer logo" by The logo may be obtained from Arm & Hammer.. Licensed under Fair use of copyrighted material in the context of Arm & Hammer via Wikipedia http://en.wikipedia.org/wiki/File:Arm_%26_Hammer_logo.svg#mediaviewer/File:Arm_%26_Hammer_logo.svg