Solutions of Presentation Exercises

Then m, n z k => |xm-xn| = |(xm-xm-1) + (xm--xm-z) + \cdots + (xn+1-xn)|

| = |xm-xm-1| + |xm--xm-z| + \cdots + |xm-1-xn||

| = |xm-xm-1| + |xm--xm-z| + \cdots + |xm-1-xn||

| = |xm-xm-1| + |xm--xm-z| + \cdots + |xm-xn||

| = |xm-xm-1| + |xm--xm-z| + \cdots + |xm-xn||

| = |xm-xm-1| + |xm--xm-z| + \cdots + |xm-xn||

| = |xm-xm-1| + |xm--xm-z| + \cdots + |xm-xn||

| = |xm-xm-1| + |xm--xm-z| + |xm-xm-z| + |xm-x| + |xm-x-x| + |xm-x-x| + |xm-x-x| + |xm-x-x| + |xm-x-x| + |xm

(69) (b) Sketch $x \Rightarrow z$, $x^2 \Rightarrow 4$, $\frac{1}{x} \Rightarrow \frac{1}{z}$. $x \in (1,3) \Rightarrow x + z \in (3,5)$, $\frac{1}{z} | x \in (6,\frac{1}{z})$ $\Rightarrow |x^2 + \frac{1}{x} - \frac{1}{z}| = |x^2 + \frac{1}{x} - \frac{1}{z}| \le |x^2 + \frac{1}{x} - \frac{1}{z}| = |x + z||x - 2| + \frac{|x - z|}{z|x|} \le |x - 1| = \frac{|x - 1|}{z} |x - 1|$ Solution $\forall x > 0$, take $S = \frac{2}{11} x > 0$. Then $|x - 1| < S \Rightarrow |x - 1| < \frac{2}{11} x \Rightarrow |x - \frac{1}{z}| = |x^2 + x - \frac{1}{z}| < \frac{1}{z} |x - 1| < \frac{2}{z}$

(c) Claim: $|1a|-1b|| \le |a-b|$.

Proof. If $|a| \ge |b|$, then $|1a|-|b|| = |a|-|b| \le |a-b|$ $|a|=|a-b|+|b| \le |a-b|+|b|$ If $|b| \ge |a|$, then $||a|-|b|| = ||b|-|a|| \le ||b-a|| = |a-b|$. from the $|a| \ge ||b||$ case.

Sketch $x \Rightarrow 2$, $f(x) = |x^2 - 9| \Rightarrow |-5| = 5$ $x \in (1, +) \Rightarrow x + 2 \in (3, 6)$ $(x - 2) < \frac{2}{5}$ $|f(x) - 5| = |x^2 - 9| - |-5| < |x^2 - 9| - |-5| = |x^2 - 4| = |x + 2| |x - 2| < 6 |x - 2| < \frac{2}{5}$ and $|x + 2| < \frac{2}{5}$

Intermediate Value Theorem

(12) (a) If f: [a,b] > R is continuous and y. is between f(a) and f(b), then there is (at least one) xo ∈ [a,b] such that f(xo)=yo.

(6) Define $g: [0,1] \rightarrow \mathbb{R}$ by g(x) = f(x) - f(x+1). Note g(0) = f(0) - f(1) and g(1) = f(1) - f(2) = f(1) - f(0) = -g(0). So g(1) and g(0) are of opposite sign. Since g is continuous on [0,1], by the intermediate value theorem, $\exists C \in [0,1]$ such that 0 = g(c) = f(c) - f(c+1). Then f(c) = f(c+1).

(c) Observe that $|t|^r + |2t|^r + |3t|^r = |4t|^r + |5t|^r$ for every $t \in \mathbb{R}$ is equivalent to $1 + 2^r + 3^r = 4^r + 5^r$. We will show this equation has a solution. Let $f(r) = 1 + 2^r + 3^r - 4^r - 5^r$, which is continuous. Since f(0) = 1, f(1) = -3, by the intermediate value theorem, there is $r \in (0,1)$ such that f(r) = 0. For this r, let $g(t) = |t|^r$, then g(t) + g(2t) + g(3t) = g(4t) + g(5t) for all $r \in \mathbb{R}$.

(165) Let $S_f = f_X$: f is discontinuous at x } and Similarly for S_g and S_{fg} . By the monotone function theorem, S_f and S_g are countrible sets: If f and g are continuous at x, then f_g is continuous at x. Taking contrapositive, if f_g is discontinuous at x, then f is discontinuous at x or g is discontinuous at x. So $S_{fg} \subseteq S_f \cup S_g$. Since S_f , S_g countrible \Longrightarrow S_f G countrible \Longrightarrow G countri

By the useful inequalities, $|\sin a - \sin b| \le |a - b|$ for all $a, b \in \mathbb{R}$. So $|f(x) - f(y)| \le |\sin(x^2) - \sin(y^2)| \le |x^2 - y^2|$. For every $\varepsilon > 0$, by Archimedean Principle, $\exists K \in \mathbb{N}$ such that $K > \sqrt{\varepsilon}$. Then $m, n \ge K$ implies $m_1, m_2 \in (0, \sqrt{\varepsilon})$ $\Rightarrow |x_m - x_n| = |f(m) - f(m)| \le |m^2 - m^2| \le |\kappa^2 - 0| = |\kappa^2 < \varepsilon$. $|\sin x_n| \le |\sin x_n| \le |\sin x_n|$ (80)(a) f(x) converges to L as x tends to x_0 iff for every E>0, there exists 6>0 such that for every $x\in S$, $0<|x-x_0|<\delta$ implies $|f(x)-L|<\epsilon$. (6) <u>Solution1</u> ∀ ≥ >0, set S= € >0 € $\forall x \in (6,5,+\infty)$ $0 < |x-1| < \delta \Rightarrow |\sqrt{x+\frac{1}{x}} - \sqrt{2}| \leq \sqrt{|x+\frac{1}{x}-2|} = \sqrt{\frac{x^2-2x+1}{x}} = \sqrt{\frac{(x-1)^2}{x}}$ $= \frac{|x-1|}{\sqrt{x}} < \sqrt{2} |x-1| < \varepsilon$ $= \frac{|x-1|}{\sqrt{x}} < \sqrt{2} |x-1| < \varepsilon$ $= \frac{1}{\sqrt{x}} < \sqrt{2} < \sqrt{2} |x-1| < \varepsilon$ $= \frac{1}{\sqrt{x}} < \sqrt{2} < \sqrt{2} < \sqrt{2} < \sqrt{2} < \sqrt{2} < \varepsilon$ Solution 2 YE>0, Set S=√== $\forall x \in (0,5,+\infty) \qquad |\sqrt{x}-\sqrt{b}| = \frac{|x-b|}{\sqrt{x}+\sqrt{x}} \sqrt{x}+\frac{1}{x} \ge 0 \qquad x > 0.5$ $0 < |x-1| < \delta \Rightarrow |\sqrt{x}+\frac{1}{x}-\sqrt{z}| = \frac{|x+\frac{1}{x}-2|}{\sqrt{x}+\frac{1}{x}+\sqrt{z}} \le \frac{|x-1|/x}{\sqrt{z}} < \frac{2}{\sqrt{z}}(x-1) < \frac{2}{x}$