Lista de Exercícios - GAAL

Segunda Prova

1 Transformações lineares

Questão 1.1. Verifique se as funções de \mathbb{R}^2 em \mathbb{R}^2 abaixo são ou não lineares:

- a) f(x,y) = (y,x);
- b) f(x,y) = (x+1,2y);
- c) f(x,y) = (x,y);
- $d) \ f(x,y) = \left(\frac{x+y}{2}, x-y\right);$
- e) f(x,y) = (x/y, y/x).

Questão 1.2. Verifique se as funções de \mathbb{R}^3 em \mathbb{R}^3 abaixo são ou não lineares:

- a) f(x, y, z) = (x, y, 0);
- b) f(x, y, z) = (z, y, x);
- c) $f(x, y, z) = (2\pi x, 2x, \pi x);$
- d) f(x, y, z) = (x + y, y + z, x + z);
- $e) f(x, y, z) = (\operatorname{sen} x, \cos y, \operatorname{tg} z).$

Questão 1.3. Se f e g são duas funções lineares (de \mathbb{R}^2 em \mathbb{R}^2 ou de \mathbb{R}^3 em \mathbb{R}^3), podemos concluir que $f \circ g$ e $g \circ f$ também são lineares?

Questão 1.4. Considere f, g duas funções lineares em \mathbb{R}^2 . Defina a função $f+g: \mathbb{R}^2 \to \mathbb{R}^2$ dada por (f+g)(x,y) := f(x,y) + g(x,y). Essa função é linear? E se f, g fossem funções lineares em \mathbb{R}^3 ?

2 Produtos interno e vetorial

Questão 2.1. Calcule o produto interno dos vetores abaixo:

- a) (1,1) e(2,3);
- b) $(\pi, 2)$ $e(2, \pi)$;
- c) (0,7) e (8,1);
- d) (1,1,1) $e(\pi,\pi,4)$;
- e) (0,7,2) e (3,6,5);
- f) (1,2) e(-2,1);
- g) (2,4) e (16,-8);
- h) (1,-1,2) e (1,-1,-1).

Questão 2.2. Dos itens acima, quais são pares de vetores ortogonais? Por que?

Questão 2.3. Exiba um vetor ortogonal a (2, -7).

Questão 2.4. Calcule o produto vetorial dos vetores abaixo:

- a) (1,2,3) e(2,4,6);
- b) (2,5,3) e(1,1,1);
- c) (0,0,1) e (3,4,8);
- d) (8, 8, 8) e (2, 3, 4).

Questão 2.5. Exiba um vetor que seja simultaneamente ortogonal a (0,0,1) e (3,4,8).

3 Subespaços

Questão 3.1. Verifique se os conjuntos abaixo são subespaços:

a)
$$\{(x,y) \in \mathbb{R}^2 \mid x=0\};$$

b)
$$\{v \in \mathbb{R}^2 \mid 2v = 0\};$$

c)
$$\{v \in \mathbb{R}^2 \mid v = 0\};$$

d)
$$\{(x,y) \in \mathbb{R}^2 \mid x+y=2 \text{ ou } x+y=4;$$

e)
$$\{(x,y) \in \mathbb{R}^2 \mid y = x^2\};$$

$$f) \{(x,y) \in \mathbb{R}^2 \mid 3x + 2y = 7\};$$

$$g) \{(x,y) \in \mathbb{R}^2 \mid x+y=x-y\};$$

h)
$$\{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1\};$$

i)
$$\{(x,y,z) \in \mathbb{R}^3 \mid x+y=2, x+z=5 \ e \ y+z=3\};$$

$$j) \ \{v \in \mathbb{R}^3 \mid v \perp (1,1,1)\};$$

k)
$$\{v \in \mathbb{R}^3 \mid v = \lambda(2,3,1), \text{ para algum } \lambda \in \mathbb{R}\};$$

l)
$$\{v \in \mathbb{R}^3 \mid v \times (1,1,1) = 0\};$$

$$m) \{ v \in \mathbb{R}^3 \mid \langle v, (2, 3, 2) \rangle = 9 \}.$$

4 Geradores

Questão 4.1. Determine os subespaços gerados pelos seguintes vetores:

```
a) \{(1,0),(0,1)\};
```

b)
$$\{(1,1),(1,-1)\};$$

$$c) \{(2,3),(-2,-3)\};$$

$$d) \{(0,0)\};$$

$$e) \{(1,1),(2,3),(4,-2)\};$$

$$f) \{(1,5), (4,20), (-3,-15)\};$$

$$g) \{(1,1,1),(1,1,-1),(7,7,0)\};$$

$$h) \{(1,0,-1),(-1,0,-2),(0,0,1)\};$$

$$i) \{(1,0,0)\};$$

$$j) \{(1,0,6),(2,3,4)\};$$

$$k) \{(1,0,3),(1/3,0,1)\};$$

$$l) \{(1,1,1),(2,3,4),(0,0,1),(0,9,7)\}.$$

Questão 4.2. Dados dos subespaços abaixo, exiba um possível conjunto de geradores para cada um deles:

- a) O plano que contém os vetores (1,0,1) e (0,0,1);
- b) A reta em \mathbb{R}^2 que contém o vetor (2,5);
- $c)\ O\ plano\ ortogonal\ ao\ vetor\ (1,1,1);$
- d) A reta em \mathbb{R}^2 ortogonal ao vetor (1,1);
- e) A reta em \mathbb{R}^3 que contém o vetor (2,1,-5);
- f) Todo o \mathbb{R}^3 .

5 L.D. e L.I.

Questão 5.1. Verifique se os conjuntos abaixo são l.d. ou l.i.:

- a) $\{(1,0)\};$
- b) $\{(1,0),(0,1),(2,5)\};$
- $c) \{(1,1),(2,3)\};$
- $d) \{(1,-1),(3,-2),(2,2)\};$
- $e) \{(1,1,1),(1,1,-1)\};$
- $f) \{(1,7,6), (3,21,18)\};$
- $g) \{(1,1,1),(1,2,3),(2,5,3),(7,-2,3)\};$
- $h) \{(1,0,1),(1,1,0),(0,1,1)\}.$

Questão 5.2. Verifique que o conjunto $\{(1,1),(2,3),(3,5),(4,-2)\}$ é l.d. Em seguida, descreva quais vetores você poderia tirar desse conjunto de forma a torná-lo l.i.

Questão 5.3. Verifique que o conjunto $\{(1,0,1),(2,3,2)\}$ é l.i. Em seguida, apresente um novo vetor que seja l.i. com o conjunto anterior, mas que também forme, junto com esse conjunto, um conjunto de geradores para \mathbb{R}^3 (ou seja, encontre v tal que $\{(1,0,1),(2,3,2),v\}$ é l.i. e gera \mathbb{R}^3).

6 Núcleo e Imagem

Questão 6.1. Para cada função linear da seção 1 desta lista, exiba seu núcleo e imagem. Em seguida, calcule um conjunto de geradores l.i. para o núcleo e a imagem, e conclua calculando as dimensões de cada um.