Package 'queueing'

October 13, 2022

Version 0.2.12
Date 2019-12-09
Title Analysis of Queueing Networks and Models
Author Pedro Canadilla
Maintainer Pedro Canadilla <pedro.canadilla@gmail.com></pedro.canadilla@gmail.com>
Depends R (>= $2.11.1$)
Description It provides versatile tools for analysis of birth and death based Markovian Queueing Models and Single and Multiclass Product-Form Queueing Networks. It implements M/M/1, M/M/c, M/M/Infinite, M/M/1/K, M/M/c/K, M/M/c/c, M/M/1/K/K, M/M/c/K/M, M/M/c/K/m, M/M/Infinite/F Multiple Channel Open Jackson Networks, Multiple Channel Closed Jackson Networks, Single Channel Multiple Class Open Networks, Single Channel Multiple Class Closed Networks and Single Channel Multiple Class Mixed Networks. Also it provides a B-Erlang, C-Erlang and Engset calculators. This work is dedicated to the memory of D. Sixto Rios Insua.
License GPL-2
Copyright Pedro Canadilla
<pre>URL https://www.r-project.org</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2019-12-08 22:10:02 UTC
RoxygenNote 6.0.1
R topics documented:
queueing-package 9 B_erlang 10 CheckInput 11 CheckInput.i_BnD 12 CheckInput.i_CJN 13

CheckInput.i_MCCN	14
CheckInput.i_MCMN	15
CheckInput.i_MCON	16
CheckInput.i_MM1	
CheckInput.i_MM1K	
CheckInput.i_MM1KK	
CheckInput.i_MMC	
CheckInput.i_MMCC	21
CheckInput.i_MMCK	22
CheckInput.i_MMCKK	
CheckInput.i_MMCKM	
CheckInput.i_MMInf	
CheckInput.i_MMInfKK	
CheckInput.i_OJN	
CompareQueueingModels	
C_erlang	
Engset	
Inputs	
Inputs.o_BnD	
Inputs.o_CJN	
Inputs.o_MCCN	
Inputs.o_MCMN	
1 —	
Inputs.o_MCON	
Inputs.o_MM1	
Inputs.o_MM1K	
Inputs.o_MM1KK	
Inputs.o_MMC	
Inputs.o_MMCC	
Inputs.o_MMCK	
Inputs.o_MMCKK	
Inputs.o_MMCKM	
Inputs.o_MMInf	
Inputs.o_MMInfKK	
Inputs.o_OJN	
L	
L.o_BnD	
L.o_CJN	
L.o_MCCN	
L.o_MCMN	52
L.o_MCON	
L.o_MM1	55
L.o_MM1K	56
L.o_MM1KK	57
L.o_MMC	58
L.o_MMCC	59
L.o_MMCK	60
L.o_MMCKK	61
L.o MMCKM	62

L.o_MMInf											
L.o_MMInfKK											
L.o_OJN	 	 	 		 	 					65
Lc	 	 	 		 	 					66
Lc.o_MCCN	 	 	 	 	 	 					67
Lc.o_MCMN	 	 	 		 	 					68
Lc.o_MCON	 	 	 		 	 					69
Lck											
Lck.o_MCCN	 	 	 		 	 					72
Lck.o_MCMN											
Lck.o MCON											
Lk											
Lk.o_CJN											
Lk.o_MCCN											
Lk.o_MCMN											
Lk.o_MCON											
Lk.o_OJN											
Lq											
Lq.o_MM1											
Lq.o_MM1K											
Lq.o_MM1KK											
Lq.o_MMC											
Lq.o_MMCC											
Lq.o_MMCK											
Lq.o_MMCKK											
Lq.o_MMCKM											
Lq.o_MMInf											
Lq.o_MMInfKK .											
$Lqq \ \dots \dots \dots$											
Lqq.o_MM1											
Lqq.o_MM1K											
Lqq.o_MM1KK											
Lqq.o_MMC											
Lqq.o_MMCC											
Lqq.o_MMCK											
Lqq.o_MMCKK .											
Lqq.o_MMCKM .											
Lqq.o_MMInf	 	 	 		 	 				. 1	02
Lqq.o_MMInfKK .	 	 	 		 	 				. 1	03
NewInput.BnD	 	 	 		 	 				. 1	04
NewInput.CJN	 	 	 		 	 				. 1	05
NewInput.MCCN .											
NewInput.MCMN .	 	 	 		 	 				. 1	08
NewInput.MCON .											
NewInput.MM1											
NewInput.MM1K .											
NewInput.MM1KK											
NewInput MMC											14

NewInput.MMCC	 	 	 	 	 	 	115
NewInput.MMCK	 	 	 	 	 	 	116
NewInput.MMCKK	 	 	 	 	 	 	117
NewInput.MMCKM	 	 	 	 	 	 	118
NewInput.MMInf	 	 	 	 	 	 	119
NewInput.MMInfKK	 	 	 	 	 	 	120
NewInput.OJN							
Pn							
Pn.o BnD							
Pn.o MM1							
Pn.o MM1K							
Pn.o_MM1KK							
Pn.o_MMC							
Pn.o_MMCC							
Pn.o_MMCK							
Pn.o_MMCKK							
Pn.o_MMCKM							
Pn.o_MMInf							
Pn.o_MMInfKK							
Pn.o_OJN							
print.summary.o BnD							
print.summary.o_CJN							
print.summary.o_MCCN							
print.summary.o_MCMN							
print.summary.o_MCON							
print.summary.o_MCON print.summary.o_MM1							
print.summary.o_MM1K							
print.summary.o_MM1KK							
print.summary.o_MMC							
print.summary.o_MMCC							
print.summary.o_MMCK							
print.summary.o_MMCKK							
print.summary.o_MMCKM							
print.summary.o_MMInf							
print.summary.o_MMInfKK .							
print.summary.o_OJN							
QueueingModel							
QueueingModel.i_BnD							
C							
`							
`							
· -							
QueueingModel.i_MM1	 	 	 	 	 	 	160
C							
_							
· -	 	 	 	 	 	 	163
QueueingModel.i_MMCK	 	 	 	 	 	 	165

summary.o_MCMN	. 215
summary.o_MCON	
summary.o_MM1	. 218
summary.o_MM1K	. 219
summary.o_MM1KK	. 220
summary.o_MMC	. 221
summary.o_MMCC	
summary.o_MMCK	. 223
summary.o_MMCKK	. 224
summary.o_MMCKM	. 225
summary.o_MMInf	. 226
summary.o_MMInfKK	. 227
summary.o_OJN	. 228
Throughput	. 229
Throughput.o_CJN	. 230
Throughput.o_MCCN	. 231
Throughput.o_MCMN	. 232
Throughput.o_MCON	. 233
Throughput.o_MM1	. 234
Throughput.o_MM1K	. 235
Throughput.o_MM1KK	. 236
Throughput.o_MMC	
Throughput.o_MMCC	. 238
Throughput.o_MMCK	. 239
Throughput.o_MMCKK	. 240
Throughput.o_MMCKM	. 241
Throughput.o_MMInf	
Throughput.o_MMInfKK	
Throughput.o_OJN	. 244
Throughputc	
Throughputc.o_MCCN	
Throughputc.o_MCMN	
Throughputc.o_MCON	
Throughputck	
Throughputck.o_MCCN	. 251
Throughputck.o_MCMN	
Throughputck.o_MCON	
Throughputen	. 255
~ .	. 256
Throughputk	. 257
Throughputk.o_CJN	
Throughputk.o_MCCN	
Throughputk.o_MCMN	. 261
Throughputk.o_MCON	
Throughputk.o_OJN	
Throughputn	
Throughputn.o_CJN	
VN	. 267

VN.o_MM1	268
VN.o_MM1K	
VN.o_MM1KK	270
VN.o_MMC	
VN.o_MMCC	
VN.o_MMCK	
VN.o_MMCKK	
VN.o_MMCKM	
VN.o_MMInf	
VN.o_MMInfKK	
VNq	
VNq.o_MM1	
VNq.o_MM1K	
VNq.o_MM1KK	
VNq.o_MMC	
VNq.o_MMCC	
VNq.o_MMCK	
VNq.o_MMCKK	
VNq.o_MMCKM	
VNq.o_MMInf	
VNq.o_MMInfKK	
VT	
VT.o_MM1	
VT.o_MM1K	
VT.o_MM1KK	
VT.o_MMC	
VT.o_MMCC	
VT.o_MMInf	
VT.o_MMInfKK	
VTq	
VTq.o_MM1	
VTq.o_MM1K	
VTq.o_MM1KK	
VTq.o_MMC	
VTq.o_MMCC	
VTq.o_MMCK	
VTq.o_MMCKK	
VTq.o_MMInf	
VTq.o_MMInfKK	
W	
W.o_CJN	
W.o_MCCN	
W.o_MCON	
W.o_MCON	
W.o_MM1	
W.o_MM1K	
W.o_MM1KK	
Wo MMC	315

364

Index

W.o_MMCC	 		 	 	 	 316
W.o_MMCK	 		 	 	 	 317
W.o_MMCKK .	 		 	 	 	 318
W.o_MMCKM .	 		 	 	 	 319
$W.o_MMInf$	 		 	 	 	 320
$W.o_MMInfKK$.	 		 	 	 	 321
W.o_OJN	 		 	 	 	 322
$Wc \ldots \ldots \ldots$	 		 	 	 	 323
Wc.o_MCCN	 		 	 	 	 324
Wc.o_MCMN	 		 	 	 	 325
Wc.o_MCON	 		 	 	 	 326
Wck	 		 	 	 	 328
Wck.o_MCCN .	 		 	 	 	 329
Wck.o_MCMN .	 		 	 	 	 330
Wck.o_MCON .	 		 	 	 	 331
$Wk\ldots\ldots\ldots$	 		 	 	 	 332
Wk.o_CJN	 		 	 	 	 333
Wk.o_MCCN	 		 	 	 	 335
Wk.o_MCMN	 		 	 	 	 336
Wk.o_MCON	 		 	 	 	 337
Wk.o_OJN	 		 	 	 	 338
Wq	 		 	 	 	 339
Wq.o_MM1	 		 	 	 	 340
Wq.o_MM1K	 		 	 	 	 341
Wq.o_MM1KK .	 		 	 	 	 342
Wq.o_MMC	 		 	 	 	 343
Wq.o_MMCC	 		 	 	 	 344
Wq.o_MMCK						
Wq.o_MMCKK .						
Wq.o_MMCKM						
Wq.o_MMInf						
Wq.o_MMInfKK						
Wqq						
Wqq.o_MM1						
Wqq.o_MM1K .						
Wqq.o_MM1KK						
Wqq.o_MMC						
Wqq.o_MMCC .						
Wqq.o_MMCK .						
Wqq.o_MMCKK						
Wqq.o_MMCKM						
Wqq.o_MMInf .						
Wqq.o_MMInfKK						
WWs						
WWs.o_MM1KK						
,, ,, <u>0.0_</u> 1,111111	 	• • •	 	 	 	 502

queueing-package 9

queueing-package	Analysis of Queueing Networks and Models.	

Description

It provides a versatile tool for analysis of birth and death based Markovian Queueing Models and Single and Multiclass Product-Form Queueing Networks.

It implements the following basic markovian models:

M/M/1,	M/M/c,		M/M/Infinite,
M/M/1/K,	M/M/c/K,	M/M/c/c,	
M/M/1/K/K,	M/M/c/K/K,	M/M/c/K/m,	M/M/Infinite/K/K

It also solves the following types of networks:

- Multiple Channel Open Jackson Networks.
- Multiple Channel Closed Jackson Networks.
- Single Channel Multiple Class Open Networks.
- Single Channel Multiple Class Closed Networks
- Single Channel Multiple Class Mixed Networks

Also it provides B-Erlang, C-Erlang and Engset calculators.

This work is dedicated to the memory of D. Sixto Rios Insua.

Details

All models are used in the same way:

- 1. Create inputs calling the appropriate *NewInput.model*. For example, x <- NewInput.MM1 (lambda=0.25, mu=1, n=10) for a M/M/1 model. To know the exact acronymn model to use for *NewInput* function, you can search the html help or write help.search("NewInput") at the command line.
- 2. Optionally, as a help for creating the inputs, the CheckInput(x) function can be called
- 3. Solve the model calling y <- QueueingModel(x). In this step, the CheckInput(x) will be called. That is the reason that the previous step is optional
- 4. Finally, you can get a performance value as W(y), Wq(y) or a report of the principals performace values calling summary(y)

See the examples for more detailed information of the use.

10 B_erlang

Author(s)

Author, Maintainer and Copyright: Pedro Canadilla <pedro.canadilla@gmail.com>

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

Examples

```
## M/M/1 model
summary(QueueingModel(NewInput.MM1(lambda=1/4, mu=1/3, n=0)))
## M/M/1/K model
summary(QueueingModel(NewInput.MM1K(lambda=1/4, mu=1/3, k=3)))
```

B_erlang

Returns the probability that all servers are busy

Description

Returns the probability that all servers are busy

Usage

```
B_erlang(c=1, u=0)
```

Arguments

c numbers of servers

u lambda/mu, that is, ratio of rate of arrivals and rate of service

Details

Returns the probability that all servers are busy

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Jagerman1974] Jagerman, D. L. (1974).

Some properties of the Erlang loss function.

Bell System Tech. J. (53), 525-551

CheckInput 11

See Also

```
C_erlang
```

Examples

```
## two servers
B_erlang(2, 0.5/0.7)
```

CheckInput

Generic S3 method to check the params of a queueing model (or network)

Description

Generic S3 method to check the params of a queueing model (or network)

Usage

```
CheckInput(x, ...)
```

Arguments

```
x a object of class i_MM1, i_MMC, i_MM1K, i_MMCK, i_MM1KK, i_MMCKK, i_MMCC, i_MMCKM, i_MMInfKK, i_MMInf, i_OJN
... aditional arguments
```

Details

Generic S3 method to check the params of a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

12 CheckInput.i_BnD

See Also

```
CheckInput.i_MM1
CheckInput.i_MMC
CheckInput.i_MMCK
CheckInput.i_MMCK
CheckInput.i_MM1KK
CheckInput.i_MMCKK
CheckInput.i_MMCCK
CheckInput.i_MMCCC
CheckInput.i_MMCKM
CheckInput.i_MMInfKK
CheckInput.i_MMInfKK
CheckInput.i_MMInf
CheckInput.i_OJN
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Check the inputs
CheckInput(i_mm1)</pre>
```

 ${\tt CheckInput.i_BnD}$

Checks the input params of a generic Birth and Death process model

Description

Checks the input params of a generic Birth and Death process model

Usage

```
## S3 method for class 'i_BnD'
CheckInput(x, ...)
```

Arguments

```
x a object of class i_BnD
... aditional arguments
```

Details

Checks the input params of a generic Birth and Death process model. The inputs params are created calling previously the NewInput.BnD

CheckInput.i_CJN 13

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.BnD.
```

Examples

```
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)

i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)

## Check the inputs
CheckInput(i_BnD)</pre>
```

CheckInput.i_CJN

Check the input params of a Closed Jackson Network

Description

Check the input params of a Closed Jackson Network

Usage

```
## S3 method for class 'i_CJN' CheckInput(x, ...)
```

Arguments

```
x a object of class i_CJN
... aditional arguments
```

Details

Check the input params of a Closed Jackson Network. The inputs params are created calling previously the NewInput.CJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos. Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)

cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)

CheckInput(cjn1)</pre>
```

 ${\tt CheckInput.i_MCCN}$

Check the input params of a MultiClass Closed Network

Description

Check the input params of a MultiClass Closed Network

Usage

```
## S3 method for class 'i_MCCN'
CheckInput(x, ...)
```

```
x a object of class i_MCCN
... aditional arguments
```

CheckInput.i_MCMN 15

Details

Check the input params of a MultiClass Closed Network. The inputs params are created calling previously the NewInput.MCCN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

CheckInput(i_MCCN1)</pre>
```

CheckInput.i_MCMN

Check the input params of a MultiClass Mixed Network

Description

Check the input params of a MultiClass Mixed Network

Usage

```
## S3 method for class 'i_MCMN'
CheckInput(x, ...)
```

```
x a object of class i_MCMN
... aditional arguments
```

Details

Check the input params of a MultiClass Mixed Network. The inputs params are created calling previously the NewInput.MCMN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
CheckInput(i_mcmn1)</pre>
```

CheckInput.i_MCON

Check the input params of a MultiClass Open Network

Description

Check the input params of a MultiClass Open Network

Usage

```
## S3 method for class 'i_MCON'
CheckInput(x, ...)
```

```
x a object of class i_MCON
... aditional arguments
```

CheckInput.i_MM1 17

Details

Check the input params of a MultiClass Open Network. The inputs params are created calling previously the NewInput.MCON

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
CheckInput(i_mcon1)</pre>
```

CheckInput.i_MM1

Checks the input params of a M/M/1 queueing model

Description

Checks the input params of a M/M/1 queueing model

Usage

```
## S3 method for class 'i_MM1'
CheckInput(x, ...)
```

```
x a object of class i_MM1
... aditional arguments
```

Details

Checks the input params of a M/M/1 queueing model. The inputs params are created calling previously the NewInput.MM1

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Check the inputs
CheckInput(i_mm1)</pre>
```

CheckInput.i_MM1K

Checks the input params of a M/M/1/K queueing model

Description

Checks the input params of a M/M/1/K queueing model

Usage

```
## S3 method for class 'i_MM1K'
CheckInput(x, ...)
```

Arguments

```
x a object of class i_MM1K
... aditional arguments
```

Details

Checks the input params of a M/M/1/K queueing model. The inputs params are created calling previously the NewInput.MM1K

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## check the parameters
CheckInput(i_mm1k)</pre>
```

CheckInput.i_MM1KK

Checks the input params of a M/M/1/K/K queueing model

Description

Checks the input params of a M/M/1/K/K queueing model

Usage

```
## S3 method for class 'i_MM1KK'
CheckInput(x, ...)
```

Arguments

x a object of class i_MM1KK

... aditional arguments

Details

Checks the input params of a M/M/1/K/K queueing model. The inputs params are created calling previously the NewInput.MM1KK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1KK.
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## check the parameters
CheckInput(i_mm1kk)</pre>
```

CheckInput.i_MMC

Checks the input params of a M/M/c queueing model

Description

Checks the input params of a M/M/c queueing model

Usage

```
## S3 method for class 'i_MMC'
CheckInput(x, ...)
```

Arguments

x a object of class i_MMC ... aditional arguments

Details

Checks the input params of a M/M/c queueing model. The inputs params are created calling previously the NewInput.MMC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMC.
```

CheckInput.i_MMCC 21

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## check the parameters
CheckInput(i_mmc)</pre>
```

CheckInput.i_MMCC

Checks the input params of a M/M/c/c queueing model

Description

Checks the input params of a M/M/c/c queueing model

Usage

```
## S3 method for class 'i\_MMCC' CheckInput(x, ...)
```

Arguments

```
x a object of class i_MMCC
... aditional arguments
```

Details

Checks the input params of a M/M/c/c queueing model. The inputs params are created calling previously the NewInput.MMCC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCC.
```

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## check the parameters
CheckInput(i_mmcc)</pre>
```

CheckInput.i_MMCK

Checks the input params of a M/M/c/K queueing model

Description

Checks the input params of a M/M/c/K queueing model

Usage

```
## S3 method for class 'i_MMCK'
CheckInput(x, ...)
```

Arguments

x a object of class i_MMCK
... aditional arguments

Details

Checks the input params of a M/M/c/K queueing model. The inputs params are created calling previously the NewInput.MMCK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCK.

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Check the inputs
CheckInput(i_mmck)</pre>
```

CheckInput.i_MMCKK

Checks the input params of a M/M/c/K/K queueing model

Description

Checks the input params of a M/M/c/K/K queueing model

Usage

```
## S3 method for class 'i_MMCKK'
CheckInput(x, ...)
```

Arguments

x a object of class i_MMCKK

... aditional arguments

Details

Checks the input params of a M/M/c/K/K queueing model. The inputs params are created calling previously the NewInput.MMCKK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## check the parameters
CheckInput(i_mmckk)</pre>
```

CheckInput.i_MMCKM

Checks the input params of a M/M/c/K/m queueing model

Description

Checks the input params of a M/M/c/K/m queueing model

Usage

```
## S3 method for class 'i\_MMCKM' CheckInput(x, ...)
```

Arguments

```
x a object of class i_MMCKM
```

... aditional arguments

Details

Checks the input params of a M/M/c/K/m queueing model. The inputs params are created calling previously the NewInput.MMCKM

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## check the parameters
CheckInput(i_mmckm)</pre>
```

CheckInput.i_MMInf

Checks the input params of a M/M/Infinite queueing model

Description

Checks the input params of a M/M/Infinite queueing model

Usage

```
## S3 method for class 'i_MMInf'
CheckInput(x, ...)
```

Arguments

```
x a object of class i_MMInf
```

... aditional arguments

Details

Checks the input params of a M/M/Infinite queueing model. The inputs params are created calling previously the NewInput.MMInf

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Check the parameters
CheckInput(i_mminf)</pre>
```

CheckInput.i_MMInfKK Checks the input params of a M/M/Infinite/K/K queueing model

Description

Checks the input params of a M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'i_MMInfKK'
CheckInput(x, ...)
```

Arguments

- x a object of class i_MMInfKK
- ... aditional arguments

Details

Checks the input params of a M/M/Infinite/K/K queueing model. The inputs params are created calling previously the NewInput.MMInfKK

References

```
[Kleinrock 1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
NewInput.MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## check the parameters
CheckInput(i_MMInfKK)</pre>
```

CheckInput.i_OJN 27

CheckInput.i_OJN

Check the input params of an Open Jackson Network

Description

Check the input params of an Open Jackson Network

Usage

```
## S3 method for class 'i_OJN'
CheckInput(x, ...)
```

Arguments

```
x a object of class i_OJN aditional arguments
```

Details

Check the input params of an Open Jackson Network. The inputs params are created calling previously the NewInput.OJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.OJN
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
CheckInput(ojn1)</pre>
```

CompareQueueingModels Compare several queueing models in a tabulated format

Description

Compare several queueing models in a tabulated format

Usage

```
CompareQueueingModels(model, ...)
CompareQueueingModels2(models)
```

Arguments

model	A Queueing Model obtained calling QueueingModel from classes described in the details section
• • •	a separated by comma list of queueing models obtained calling QueueingModel from classes described in the details section
models	A list of queueing models obtained calling QueueingModel from classes described in the details section

Details

Compare several queueing models in a tabulated format. By now, only o_MM1, o_MMC, o_MMInf, o_MM1K, o_MMCK, o_MMCC, o_MM1KK, o_MMCKK, o_MMCKM, o_MMInfKK classes can be compared

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

QueueingModel

```
q1 <- QueueingModel(NewInput.MM1(lambda=5, mu=7))
q2 <- QueueingModel(NewInput.MMC(lambda=5, mu=3, c=4))
q3 <- QueueingModel(NewInput.MMInf(lambda=3, mu=4))
q4 <- QueueingModel(NewInput.MMCC(lambda=5, mu=3, c=4))
CompareQueueingModels(q1, q2, q3)
CompareQueueingModels2(list(q1, q2, q3, q4))
```

C_erlang 29

C_erlang

Returns the probability to wait in queue because all servers are busy

Description

Returns the probability to wait in queue because all servers are busy

Usage

```
C_erlang(c=1, r=0)
```

Arguments

c numbers of servers

r lambda/mu, that is, ratio of rate of arrivals and rate of service

Details

Returns the probability to wait in queue because all servers are busy

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
B_erlang
```

```
## two servers
C_erlang(2, 0.5/0.7)
```

30 Inputs

Engset

Returns the probability that all servers are busy

Description

Returns the probability that all servers are busy

Usage

```
Engset(k=1, c=0, r=0)
```

Arguments

k numbers of usersc numbers of servers

r lambda/mu, that is, ratio of rate of arrivals and rate of service

Details

Returns the probability of blocking in a finite source model

See Also

```
B_erlang
```

Examples

```
## three users, two servers
Engset(3, 2, 0.5/0.7)
```

Inputs

Returns the input parameters of a queueing model (or network)

Description

Returns the inputs parameters of a already built queueing model (or network)

Usage

```
Inputs(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_MCON, o_MCCN, o_MCMN
```

... aditional arguments

Inputs.o_BnD 31

Details

Returns the input parameters of a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
Inputs.o_MM1
Inputs.o_MMC
Inputs.o_MMCK
Inputs.o_MMCK
Inputs.o_MMCK
Inputs.o_MMCKK
Inputs.o_MMCCC
Inputs.o_MMCCM
Inputs.o_MMCMM
Inputs.o_MMInfKK
Inputs.o_MMInf
Inputs.o_OJN
Inputs.o_CJN
Inputs.o_MCON
Inputs.o_MCCN
Inputs.o_MCCN
Inputs.o_MCCN
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## It returns the Inputs
Inputs(o_mm1)</pre>
```

 ${\tt Inputs.o_BnD}$

Returns the input parameters of a generic Birth and Death process model

Description

Returns the inputs parameters of a already built Birth and Death process model

32 Inputs.o_CJN

Usage

```
## S3 method for class 'o_BnD'
Inputs(x, ...)
```

Arguments

```
x a object of class o_BnD aditional arguments
```

Details

Returns the input parameters of a generic Birth and Death process model. The inputs parameters are created calling previously the NewInput.BnD

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.BnD.
```

Examples

```
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)

i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)

## Build the model
o_BnD <- QueueingModel(i_BnD)

## It returns the Inputs
Inputs(o_BnD)</pre>
```

Inputs.o_CJN

Returns the input params of a Closed Jackson Network

Description

Returns the input params of a Closed Jackson Network

Inputs.o_CJN 33

Usage

```
## S3 method for class 'o_CJN'
Inputs(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns the input params of a Closed Jackson Network. The inputs parameters are created calling previously the NewInput.CJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.CJN.
```

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Inputs(m_cjn1)
```

34 Inputs.o_MCCN

Inputs.o_MCCN

Returns the input params of a MultiClass Closed Network

Description

Returns the input params of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Inputs(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns the input params of a MultiClass Closed Network. The inputs parameters are created calling previously the NewInput.MCCN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN.
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)</pre>
```

Inputs.o_MCMN 35

```
Inputs(o_MCCN1)
```

Inputs.o_MCMN

Returns the input params of a MultiClass Mixed Network

Description

Returns the input params of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Inputs(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Returns the input params of a MultiClass Mixed Network. The inputs parameters are created calling previously the NewInput.MCMN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN.
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)</pre>
```

36 Inputs.o_MCON

```
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Inputs(o_mcmn1)</pre>
```

 ${\tt Inputs.o_MCON}$

Returns the input params of a MultiClass Open Network

Description

Returns the input params of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Inputs(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Returns the input params of a MultiClass Open Network. The inputs parameters are created calling previously the NewInput.MCON

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

NewInput.MCON.

Inputs.o_MM1 37

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Inputs(o_mcon1)</pre>
```

Inputs.o_MM1

Returns the input parameters of a M/M/1 queueing model

Description

Returns the inputs parameters of a already built M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1'
Inputs(x, ...)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the input parameters of a M/M/1 queueing model. The inputs parameters are created calling previously the NewInput.MM1

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

38 Inputs.o_MM1K

See Also

```
NewInput.MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## It returns the Inputs
Inputs(o_mm1)</pre>
```

Inputs.o_MM1K

Returns the input parameters of a M/M/1/K queueing model

Description

Returns the inputs parameters of a already built M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K'
Inputs(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the input parameters of a M/M/1/K queueing model. The inputs parameters are created calling previously the NewInput.MM1K

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1K.
```

Inputs.o_MM1KK 39

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## It returns the Inputs
Inputs(o_mm1k)</pre>
```

Inputs.o_MM1KK

Returns the input parameters of a M/M/1/K/K queueing model

Description

Returns the inputs parameters of a already built M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK'
Inputs(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the input parameters of a M/M/1/K/K queueing model. The inputs parameters are created calling previously the NewInput.MM1KK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MM1KK.

40 Inputs.o_MMC

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## It returns the Inputs
Inputs(o_mm1kk)</pre>
```

Inputs.o_MMC

Returns the input parameters of a M/M/c queueing model

Description

Returns the inputs parameters of a already built M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC'
Inputs(x, ...)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Returns the input parameters of a M/M/c queueing model. The inputs parameters are created calling previously the NewInput.MMC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMC.

Inputs.o_MMCC 41

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)</pre>
## Build the model
o_mmc <- QueueingModel(i_mmc)</pre>
## It returns the Inputs
Inputs(o_mmc)
```

Inputs.o_MMCC

Returns the input parameters of a M/M/c/c queueing model

Description

Returns the inputs parameters of a already built M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC'
Inputs(x, ...)
```

Arguments

. . .

a object of class o_MMCC Х aditional arguments

Details

Returns the input parameters of a M/M/c/c queueing model. The inputs parameters are created calling previously the NewInput.MMCC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCC.
```

42 Inputs.o_MMCK

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## It returns the Inputs
Inputs(o_mmcc)</pre>
```

Inputs.o_MMCK

Returns the input parameters of a M/M/c/K queueing model

Description

Returns the inputs parameters of a already built M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK'
Inputs(x, ...)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the input parameters of a M/M/c/K queueing model. The inputs parameters are created calling previously the NewInput.MMCK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCK.

Inputs.o_MMCKK 43

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## It returns the Inputs
Inputs(o_mmck)</pre>
```

Inputs.o_MMCKK

Returns the input parameters of a M/M/c/K/K queueing model

Description

Returns the inputs parameters of a already built M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK'
Inputs(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the input parameters of a M/M/c/K/K queueing model. The inputs parameters are created calling previously the NewInput.MMCKK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCKK.

44 Inputs.o_MMCKM

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Inputs
Inputs(o_mmckk)</pre>
```

Inputs.o_MMCKM

Returns the input parameters of a M/M/c/K/m queueing model

Description

Returns the inputs parameters of a already built M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM'
Inputs(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the input parameters of a M/M/c/K/m queueing model. The inputs parameters are created calling previously the NewInput.MMCKM

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCKM.

Inputs.o_MMInf 45

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## It returns the Inputs
Inputs(o_mmckm)</pre>
```

Inputs.o_MMInf

Returns the input parameters of a M/M/Infinite queueing model

Description

Returns the inputs parameters of a already built M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf'
Inputs(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the input parameters of a M/M/Infinite queueing model. The inputs parameters are created calling previously the NewInput.MMInf

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMInf.
```

46 Inputs.o_MMInfKK

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## It returns the Inputs
Inputs(o_mminf)</pre>
```

Inputs.o_MMInfKK

Returns the input parameters of a M/M/Infinite/K/K queueing model

Description

Returns the inputs parameters of a already built M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK'
Inputs(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Returns the input parameters of a M/M/Infinite/K/K queueing model. The inputs parameters are created calling previously the NewInput.MMInfKK

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
NewInput.MMInfKK.
```

Inputs.o_OJN 47

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## It returns the Inputs
Inputs(o_MMInfKK)</pre>
```

Inputs.o_OJN

Returns the input params of an Open Jackson Network

Description

Returns the input params of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN'
Inputs(x, ...)
```

Arguments

x a object of class o_OJN
... aditional arguments

Details

Returns the input params of an Open Jackson Network. The inputs parameters are created calling previously the NewInput.OJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.OJN.

48 L

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m < -c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)</pre>
i_ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)</pre>
# Build the model
o_ojn1 <- QueueingModel(i_ojn1)</pre>
Inputs(o_ojn1)
```

L

Returns the mean number of customers in a queueing model (or network)

Description

Returns the mean number of customers in a queueing model (or network)

Usage

```
L(x, \ldots)
```

Arguments

```
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK,
Χ
               o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_MCON, o_MCCN,
               o MCMN
               aditional arguments
```

. . .

Details

Returns the mean number of customers in a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

L.o_BnD 49

See Also

```
L.o_MM1
L.o_MMC
L.o_MM1K
L.o_MMCK
L.o_MM1KK
L.o_MMCKK
L.o_MMCC
L.o_MMCC
L.o_MMInfKK
L.o_MMInfKK
L.o_MMInf
L.o_OJN
L.o_CJN
L.o_CJN
L.o_CJN
L.o_MCON
L.o_MCON
L.o_MCON
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the L
L(o_mm1)</pre>
```

L.o_BnD

Returns the mean number of customers in the generic Birth and Death process model

Description

Returns the mean number of customers in the generic Birth and Death process model

Usage

```
## S3 method for class 'o_BnD' L(x, ...)
```

Arguments

```
x a object of class o_BnD aditional arguments
```

L.o_CJN

Details

Returns the mean number of customers in the generic Birth and Death process model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_BnD.
```

Examples

```
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)

i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)

## Build the model
o_BnD <- QueueingModel(i_BnD)

## Returns the L
L(o_BnD)</pre>
```

L.o_CJN

Returns the mean number of customers of a Closed Jackson Network

Description

Returns the mean number of customers of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' L(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns the mean number of customers of a Closed Jackson Network

L.o_MCCN 51

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 \leftarrow NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
L(m_cjn1)
```

L.o_MCCN

Returns the mean number of customers of a MultiClass Closed Network

Description

Returns the mean number of customers of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' L(x, ...)
```

L.o_MCMN

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns the mean number of customers of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
L(o_MCCN1)</pre>
```

L.o_MCMN

Returns the mean number of customers of a MultiClass Mixed Network

Description

Returns the mean number of customers of a MultiClass Mixed Network

L.o_MCMN 53

Usage

```
## S3 method for class 'o_MCMN' L(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Returns the mean number of customers of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
L(o_mcmn1)</pre>
```

L.o_MCON

L.o_MCON

Returns the mean number of customers of a MultiClass Open Network

Description

Returns the mean number of customers of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' L(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Returns the mean number of customers of a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

L(o_mcon1)</pre>
```

L.o_MM1 55

L.o_MM1

Returns the mean number of customers in the M/M/1 queueing model

Description

Returns the mean number of customers in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' L(x, \ldots)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the mean number of customers in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the L
L(o_mm1)</pre>
```

56 L.o_MM1K

 $L.o_MM1K$

Returns the mean number of customers in the M/M/1/K queueing model

Description

Returns the mean number of customers in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' L(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the mean number of customers in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the L
L(o_mm1k)</pre>
```

L.o_MM1KK 57

L.o_MM1KK Returns the mean number of customers in the M/M/1/K/K queueing model
--

Description

Returns the mean number of customers in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' L(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the mean number of customers in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the L
L(o_mm1kk)</pre>
```

L.o_MMC

L.o_MMC

Returns the mean number of customers in the M/M/c queueing model

Description

Returns the mean number of customers in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' L(x, ...)
```

Arguments

```
x a object of class o_MMC ... aditional arguments
```

Details

Returns the mean number of customers in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMC.
```

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the L
L(o_mmc)</pre>
```

L.o_MMCC 59

L.o_MMCC

Returns the mean number of customers in the M/M/c/c queueing model

Description

Returns the mean number of customers in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' L(x, ...)
```

Arguments

```
x a object of class o_MMCC
```

... aditional arguments

Details

Returns the mean number of customers in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCC.
```

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the L
L(o_mmcc)</pre>
```

L.o_MMCK

 $L.o_MMCK$

Returns the mean number of customers in the M/M/c/K queueing model

Description

Returns the mean number of customers in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' L(x, ...)
```

Arguments

x a object of class o_MMCK

... aditional arguments

Details

Returns the mean number of customers in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCK.
```

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the L
L(o_mmck)</pre>
```

L.o_MMCKK 61

L.o_MMCKK Returns the mean number of customers in the M/M/c/K/K queuein model	g
---	---

Description

Returns the mean number of customers in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' L(x, ...)
```

Arguments

```
x a object of class o_MMCKK
... aditional arguments
```

Details

Returns the mean number of customers in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the L
L(o_mmckk)</pre>
```

L.o_MMCKM

L.o_MMCKM

Returns the mean number of customers in the M/M/c/K/m queueing model

Description

Returns the mean number of customers in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' L(x, ...)
```

Arguments

x a object of class o_MMCKM

... aditional arguments

Details

Returns the mean number of customers in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the L
L(o_mmckm)</pre>
```

L.o_MMInf 63

L.o_MMInf Returns the mean number of customers in the M/M/Infinite queueing model	,
---	---

Description

Returns the mean number of customers in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' L(x, ...)
```

Arguments

```
x a object of class o_MMInf
... aditional arguments
```

Details

Returns the mean number of customers in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the L
L(o_mminf)</pre>
```

L.o_MMInfKK

L.o_MMInfKK

Returns the mean number of customers in the M/M/Infinite/K/K queueing model

Description

Returns the mean number of customers in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' L(x, ...)
```

Arguments

x a object of class o_MMInfKK

... aditional arguments

Details

Returns the mean number of customers in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock 1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the L
L(o_MMInfKK)</pre>
```

L.o_OJN 65

L.o_OJN

Returns the mean number of customers of an Open Jackson Network

Description

Returns the mean number of customers of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN'
L(x, ...)
```

Arguments

```
x a object of class o_OJN
... aditional arguments
```

Details

Returns the mean number of customers of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_OJN.
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the model
o_ojn <- QueueingModel(i_ojn)</pre>
```

66 Lc

L(o_ojn)

Lc

Returns the vector with the mean number of customers of each class in a multiclass queueing network

Description

Returns the vector with the mean number of customers of each class in a multiclass queueing network

Usage

```
Lc(x, ...)
```

Arguments

x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments

Details

Returns the vector with the mean number of customers of each class in a multiclass queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

Lc.o_MCON Lc.o_MCCN Lc.o_MCMN Lc.o_MCCN 67

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lc(o_mcon1)</pre>
```

Lc.o_MCCN

Returns the vector with the mean number of customers of each class in a MultiClass Closed Network

Description

Returns the vector with the mean number of customers of each class in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' Lc(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Returns the vector with the mean number of customers of each class in a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Lc.o_MCMN

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Lc(o_MCCN1)</pre>
```

Lc.o_MCMN

Returns the vector with the mean number of customers of each class in a MultiClass Mixed Network

Description

Returns the vector with the mean number of customers of each class in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Lc(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Returns the vector with the mean number of customers of each class in a MultiClass Mixed Network

Lc.o_MCON 69

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Lc(o_mcmn1)</pre>
```

Lc.o_MCON

Returns the vector with the mean number of customers of each class in a MultiClass Open Network

Description

Returns the vector with the mean number of customers of each class in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Lc(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

70 Lck

Details

Returns the vector with the mean number of customers of each class in a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lc(o_mcon1)</pre>
```

Lck

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Network

Description

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Network

Usage

```
Lck(x, ...)
```

Lck 71

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Lck.o_MCON
Lck.o_MCCN
Lck.o_MCMN
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lck(o_mcon1)</pre>
```

72 Lck.o_MCCN

Lck.o_MCCN

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Closed Network

Description

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Lck(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

Lck.o_MCMN 73

```
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Lck(o_MCCN1)</pre>
```

Lck.o_MCMN

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Mixed Network

Description

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Lck(x, ...)
```

Arguments

x a object of class o_MCMN

... aditional arguments

Details

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCMN.
```

74 Lck.o_MCON

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Lck(o_mcmn1)</pre>
```

Lck.o_MCON

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Open Network

Description

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Lck(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Lk 75

See Also

```
{\tt QueueingModel.i\_MCON.}
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lck(o_mcon1)</pre>
```

Lk

Returns the vector with the mean number of customers in each node (server) of a queueing network

Description

Returns the vector with the mean number of customers in each node (server) of a queueing network

Usage

```
Lk(x, ...)
```

Arguments

```
x a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Returns the vector with the mean number of customers in each node (server) of a queueing network

76 Lk.o_CJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Lk.o_OJN
Lk.o_CJN
Lk.o_MCON
Lk.o_MCCN
Lk.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lk(o_mcon1)</pre>
```

Lk.o_CJN

Returns the vector with the mean number of customers in each node (server) of a Closed Jackson Network

Description

Returns the vector with the mean number of customers in each node (server) of a Closed Jackson Network

Lk.o_CJN 77

Usage

```
## S3 method for class 'o_CJN' Lk(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns the vector with the mean number of customers in each node (server) of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Lk(m_cjn1)
```

78 Lk.o_MCCN

Lk.o_MCCN

Returns a vector with the mean number of customers in each node (server) of a MultiClass Closed Network

Description

Returns a vector with the mean number of customers in each node (server) of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' Lk(x, ...)
```

Arguments

- x a object of class o_MCCN
- ... aditional arguments

Details

Returns a vector with the mean number of customers in each node (server) of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

Lk.o_MCMN 79

```
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Lk(o_MCCN1)</pre>
```

Lk.o_MCMN

Returns a vector with the mean number of customers in each node (server) of a MultiClass Mixed Network

Description

Returns a vector with the mean number of customers in each node (server) of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Lk(x, ...)
```

Arguments

x a object of class o_MCMN

... aditional arguments

Details

Returns a vector with the mean number of customers in each node (server) of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCMN.
```

Lk.o_MCON

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Lk(o_mcmn1)</pre>
```

Lk.o_MCON

Returns a vector with the mean number of customers in each node (server) of a MultiClass Open Network

Description

Returns a vector with the mean number of customers in each node (server) of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Lk(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Returns a vector with the mean number of customers in each node (server) of a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Lk.o_OJN 81

See Also

```
{\tt QueueingModel.i\_MCON.}
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lk(o_mcon1)</pre>
```

Lk.o_OJN

Returns the vector with the mean number of customers in each node (server) of an Open Jackson Network

Description

Returns the vector with the mean number of customers in each node (server) of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN' Lk(x, ...)
```

Arguments

```
x a object of class o_OJN
... aditional arguments
```

Details

Returns the vector with the mean number of customers in each node (server) of an Open Jackson Network

82 Lq

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_OJN.
```

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)

i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the model
o_ojn <- QueueingModel(i_ojn)
Lk(o_ojn)</pre>
```

Lq

Returns the mean number of customers in the queue in a queueing model

Description

Returns the mean number of customers in the queue in a queueing model

Usage

```
Lq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
```

... aditional arguments

Lq.o_MM1 83

Details

Returns the mean number of customers in the queue in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
Lq.o_MM1
Lq.o_MMC
Lq.o_MM1K
Lq.o_MMCK
Lq.o_MM1KK
Lq.o_MMCKK
Lq.o_MMCKK
Lq.o_MMCK
Lq.o_MMCK
Lq.o_MMCK
Lq.o_MMCKM
Lq.o_MMInfKK
Lq.o_MMInf
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lq
Lq(o_mm1)</pre>
```

Lq.o_MM1

Returns the mean number of customers in the queue in the M/M/1 queueing model

Description

Returns the mean number of customers in the queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' Lq(x, ...)
```

 $Lq.o_MM1K$

Arguments

```
x a object of class o_MM1 ... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lq
Lq(o_mm1)</pre>
```

Lq.o_MM1K

Returns the mean number of customers in the queue in the M/M/1/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' Lq(x, ...)
```

Arguments

```
x a object of class o_MM1K
... aditional arguments
```

Lq.o_MM1KK 85

Details

Returns the mean number of customers in the queue in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the Lq
Lq(o_mm1k)</pre>
```

Lq.o_MM1KK

Returns the mean number of customers in the queue in the M/M/1/K/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' Lq(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/1/K/K queueing model

Lq.o_MMC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the Lq
Lq(o_mm1kk)</pre>
```

Lq.o_MMC

Returns the mean number of customers in the queue in the M/M/c queueing model

Description

Returns the mean number of customers in the queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' Lq(x, ...)
```

Arguments

```
x a object of class o_MMC
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/c queueing model

Lq.o_MMCC 87

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMC.
```

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Lq
Lq(o_mmc)</pre>
```

Lq.o_MMCC

Returns the mean number of customers in the queue in the M/M/c/c queueing model

Description

Returns the mean number of customers in the queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' Lq(x, ...)
```

Arguments

```
x a object of class o_MMCC
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/c/c queueing model

Lq.o_MMCK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCC.
```

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the Lq
Lq(o_mmcc)</pre>
```

Lq.o_MMCK

Returns the mean number of customers in the queue in the M/M/c/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' Lq(x, ...)
```

Arguments

```
x a object of class o_MMCK
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/c/K queueing model

Lq.o_MMCKK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCK.
```

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Lq
Lq(o_mmck)</pre>
```

Lq.o_MMCKK

Returns the mean number of customers in the queue in the M/M/c/K/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' Lq(x, ...)
```

Arguments

```
x a object of class o_MMCKK
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/c/K/K queueing model

90 Lq.o_MMCKM

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKK.
```

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Lq
Lq(o_mmckk)</pre>
```

Lq.o_MMCKM

Returns the mean number of customers in the queue in the M/M/c/K/m queueing model

Description

Returns the mean number of customers in the queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' Lq(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the mean number of customers in the queue in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

Lq.o_MMInf

See Also

```
QueueingModel.i_MMCKM.
```

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Lq
Lq(o_mmckm)</pre>
```

Lq.o_MMInf

Returns the mean number of customers in the queue in the M/M/Infinite queueing model

Description

Returns the mean number of customers in the queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' Lq(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the mean number of customers in the queue in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

92 Lq.o_MMInfKK

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Lq
Lq(o_mminf)</pre>
```

Lq.o_MMInfKK

Returns the mean number of customers in the queue in the M/M/Infinite/K/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' Lq(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the mean number of customers in the queue in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

Lqq 93

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)

## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)

## Returns the Lq
Lq(o_MMInfKK)</pre>
```

Lqq

Returns the mean number of customers in queue when there is queue in a queueing model

Description

Returns the mean number of customers in queue when there is queue in a queueing model

Usage

```
Lqq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
. . . . aditional arguments
```

Details

Returns the mean number of customers in queue when there is queue in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
Lqq.o_MM1
Lqq.o_MMC
Lqq.o_MM1K
Lqq.o_MMCK
Lqq.o_MM1KK
Lqq.o_MMCKK
Lqq.o_MMCCK
```

94 Lqq.o_MM1

```
Lqq.o_MMCKM
Lqq.o_MMInfKK
Lqq.o_MMInf
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lqq
Lqq(o_mm1)</pre>
```

Lqq.o_MM1

Returns the mean number of customers in queue when there is queue in the M/M/1 queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' Lqq(x, ...)
```

Arguments

x a object of class o_MM1
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1.
```

Lqq.o_MM1K

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lqq
Lqq(o_mm1)</pre>
```

Lqq.o_MM1K

Returns the mean number of customers in queue when there is queue in the M/M/1/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' Lqq(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1K.
```

96 Lqq.o_MM1KK

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the Lq
Lqq(o_mm1k)</pre>
```

Lqq.o_MM1KK

Returns the mean number of customers in queue when there is queue in the M/M/1/K/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' Lqq(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1KK.
```

Lqq.o_MMC 97

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the Lqq
Lqq(o_mm1kk)</pre>
```

Lqq.o_MMC

Returns the mean number of customers in queue when there is queue in the M/M/c queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' Lqq(x, ...)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

98 Lqq.o_MMCC

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Lqq
Lqq(o_mmc)</pre>
```

Lqq.o_MMCC

Returns the mean number of customers in queue when there is queue in the M/M/c/c queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' Lqq(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

Lqq.o_MMCK 99

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the Lqq
Lqq(o_mmcc)</pre>
```

Lqq.o_MMCK

Returns the mean number of customers in queue when there is queue in the M/M/c/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' Lqq(x, ...)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

100 Lqq.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Lqq
Lqq(o_mmck)</pre>
```

Lqq.o_MMCKK

Returns the mean number of customers in queue when there is queue in the M/M/c/K/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' Lqq(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

Lqq.o_MMCKM 101

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Lqq
Lqq(o_mmckk)</pre>
```

Lqq.o_MMCKM

Returns the mean number of customers in queue when there is queue in the M/M/c/K/m queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM'
Lqq(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the mean number of customers in the queue in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

Lqq.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Lqq
Lqq(o_mmckm)</pre>
```

Lqq.o_MMInf

Returns the mean number of customers in queue when there is queue in the M/M/Infinite queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' Lqq(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

Lqq.o_MMInfKK 103

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Lqq
Lqq(o_mminf)</pre>
```

Lqq.o_MMInfKK

Returns the mean number of customers in queue when there is queue in the M/M/Infinite/K/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK'
Lqq(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Returns the mean number of customers in queue when there is queue in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock 1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

NewInput.BnD

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Lqq
Lqq(o_MMInfKK)</pre>
```

NewInput.BnD

Define the inputs of a new generic Birth and Death process model

Description

Define the inputs of a new generic Birth and Death process model

Usage

```
NewInput.BnD(lambda=NULL, mu=NULL)
```

Arguments

lambda vectors of arrival rate depending of the number of users in the system. Observe

that in R, the vectors starts counting at 1, so lambda[1] is the arrival rate when

the system has 0 users on it

mu vectors of service rate depending of the number of users in the system. Observe

that in R, the vectors starts counting at 1, so mu[1] is the arrival rate when the

system has 1 users on it

Details

Define the inputs of a new generic Birth and Death process model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
CheckInput.i_BnD
```

NewInput.CJN 105

Examples

```
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)</pre>
```

NewInput.CJN

Define the inputs of a Closed Jackson Network

Description

Define the inputs of a Closed Jackson Network

Usage

```
NewInput.CJN(prob=NULL, n=0, z=0, operational=FALSE, method=0, tol=0.001, ...) 
NewInput2.CJN(prob=NULL, n=0, z=0, operational=FALSE, method=0, tol=0.001, nodes) 
NewInput3.CJN(n, z, numNodes, vType, vVisit, vService, vChannel, method=0, tol=0.001)
```

Arguments

prob	It is probability transition matrix or visit ratio vector. That is, the prob[i, j] is the transition probability of node i to node j, or prob[i] is the visit ratio (a probability, that is, a value between 0 and 1) to node i. Also, the visit ratio can express the number of times that a client visits the queueing center, in a more operational point of view. See the parameter operational
n	number of customers in the Network
Z	think time of the client
operational	If prob is a vector with the visit ratios, operational equal to FALSE gives to the visit ratio a probability meaning, that is, as the stacionary values of the imbedded markov chain. If operational is equal to TRUE, the operational point of view is used: it is the number of visits that the same client makes to a node.
method	If method is 0, the exact MVA algorith is used. If method is 1, the Bard-Schweitzer approximation algorithm is used.
tol	If the parameter method is 1, this is the tolerance parameter of the algorithm.
	a separated by comma list of nodes of i_MM1, i_MMC or i_MMInf class
nodes	A list of nodes of i_MM1, i_MMC or i_MMInf class
numNodes	The number of nodes of the network
vType	A vector with the type of server: "Q" for a queueing node, "D" for a delay node
vVisit	A vector with the visit ratios. It represent visit counts to a center as if the parameter operational were TRUE
vService	A vector with the services time of each node
vChannel	A vector with the number of channels of the node. The type of the server has to be "Q" to be inspected

NewInput.CJN

Details

Define the inputs of a Closed Jackson Network. For a operational use, NewInput3.CJN is recommended. For a more academic use, NewInput.CJN or NewInput2.CJN is recommended. Please, note that the different ways to create the inputs for a Closed Jackson Network are equivalent to each other, and no validation is done at this stage. The validation is done calling CheckInput function.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
## think time = 0
z <- 0
## operational value
operational <- FALSE
## definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)</pre>
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
## Not run:
  cjn1 <- NewInput2.CJN(prob, n, z, operational, 0, 0.001, list(n1, n2))</pre>
## End(Not run)
## using visit ratios and service demands. See [Lazowska84] pag 117.
## E[S] cpu = 0.005, Visit cpu = 121, D cpu = E[S] cpu * Visit cpu = 0.605
cpu <- NewInput.MM1(mu=1/0.005)</pre>
```

NewInput.MCCN 107

```
## E[S] disk1 = 0.030, Visit disk1 = 70, D disk1 = E[S] disk1 * Visit disk1 = 2.1
disk1 <- NewInput.MM1(mu=1/0.030)</pre>
## E[S] disk2 = 0.027, Visit disk2 = 50, D disk2 = E[S] disk2 * Visit disk2 = 1.35
disk2 <- NewInput.MM1(mu=1/0.027)</pre>
## The visit ratios.
vVisit <- c(121, 70, 50)
operational <- TRUE
net <- NewInput.CJN(prob=vVisit, n=3, z=15, operational, 0, 0.001, cpu, disk1, disk2)</pre>
## Using the operational creation function
n <- 3
think <- 15
numNodes <- 3
vType <- c("Q", "Q", "Q")
vService <- c(0.005, 0.030, 0.027)
vChannel <- c(1, 1, 1)
net2 <- NewInput3.CJN(n, think, numNodes, vType, vVisit, vService, vChannel, method=0, tol=0.001)</pre>
```

NewInput.MCCN

Define the inputs of a MultiClass Closed Network

Description

Define the inputs of a MultiClass Closed Network

Usage

```
NewInput.MCCN(
  classes, vNumber, vThink, nodes, vType, vVisit, vService, method=1, tol=0.01
)
```

Arguments

classes	The number of classes
vNumber	A vector with the number of customers of each class
vThink	A vector with the think time of each class
nodes	The number of nodes in the network
vType	A vector with the type of node: "Q" for queueing nodes or "D" for delay nodes
vVisit	A matrix[i, j]. The rows represents the different visit count for each class i to each node j
vService	A matrix[i, j]. The rows represents the different service time for each class i in each node j

108 NewInput.MCMN

method	If method is 0, the exact MVA algorith is used. If method is 1, the Bard-
	Schweitzer approximation algorithm is used
tol	If the parameter method is 1, this is the tolerance parameter of the algorithm

Details

Define the inputs of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

NewInput.MCMN

Define the inputs of a MultiClass Mixed Network

Description

Define the inputs of a MultiClass Mixed Network

Usage

```
NewInput.MCMN(
  classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService, method=0, tol=0.01
)
```

NewInput.MCMN 109

Arguments

classes	The number of classes
vLambda	It is a vector with the rate of arrivals of each class
vNumber	A vector with the number of customers of each class
vThink	A vector with the think time of each class
nodes	The number of nodes in the network
vType	A vector with the type of node: "Q" for queueing nodes or "D" for delay nodes
vVisit	A matrix[i, j]. The rows represents the different visit count for each class i to each node j. Take caution about the orden: open classes are defined first and closed classes are defined second
vService	A matrix[i, j]. The rows represents the different service times for each class i in each node j. Take caution about the orden: open classes are defined first and closed classes are defined second.
method	If method is 0, the exact MVA algorith is used. If method is 1, the Bard-Schweitzer approximation algorithm is used
tol	If the parameter method is 1, this is the tolerance parameter of the algorithm

Details

Define the inputs of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN
```

```
## See example in pag 147 in reference [Lazowska84] for more details. classes <- 4 # A and B are open classes and C and D are closed classes. vLambda <- c(1, 1/2) vNumber <- c(1, 1) vThink <- c(0, 0) nodes <- 2 vType <- c("Q", "Q") # When the visit ratios and vService are set, # be sure that the open classes are in the first positions # and the closed classes after the open classes. vVisit <- matrix(data=1, nrow=4, ncol=2)
```

110 NewInput.MCON

```
# A and B are open clasess:
# with demand service of 1/4 and 1/2 at the node 1 and 1/2 and 1 at the node 2
# C and D are open clasess:
# with demand service of 1/4 and 1/2 at the node 1 and 1/2 and 1 at the node 2
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

NewInput.MCON

Define the inputs of a MultiClass Open Network

Description

Define the inputs of a MultiClass Open Network

Usage

NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

Arguments

classes	The number of classes
vLambda	It is a vector with the rate of arrivals of each class
nodes	The number of nodes in the network
vType	A vector with the type of node: "Q" for queueing nodes or "D" for delay nodes
vVisit	A matrix[i, j]. The rows represents the different visit count for each class i to each node j $% \left\{ 1,2,\ldots,n\right\}$
vService	A matrix[i, j]. The rows represents the different service times for each class i in each node j

Details

Define the inputs of a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

QueueingModel.i_MCON

NewInput.MM1

Examples

```
classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)</pre>
```

See example in pag 138 in reference [Lazowska84] for more details.

NewInput.MM1

Define the inputs of a new M/M/1 queueing model

Description

Define the inputs of a new M/M/1 queueing model

Usage

```
NewInput.MM1(lambda=0, mu=0, n=0)
```

Arguments

lambda	arrival rate
mu	server service rate
n	number of customers in the system from which you want to obtain its probabilities. Put n=0 for a idle probability (no customer present in the system or system idle). With n=-1, no probabilities are computed

Details

Define the inputs of a new M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
CheckInput.i_MM1
```

NewInput.MM1K

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)</pre>
```

NewInput.MM1K

Define the inputs of a new M/M/1/K queueing model

Description

Define the inputs of a new M/M/1/K queueing model

Usage

```
NewInput.MM1K(lambda=0, mu=0, k=1)
```

Arguments

lambda arrival rate

mu server service ratek system capacity

Details

Define the inputs of a new M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MM1K
```

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)</pre>
```

NewInput.MM1KK 113

NewInput.MM1KK

Define the inputs of a new M/M/1/K/K queueing model

Description

Define the inputs of a new M/M/1/K/K queueing model

Usage

```
NewInput.MM1KK(lambda=0, mu=0, k=1, method=3)
```

Arguments

lambda arrival rate

mu server service rate k system capacity

method method of computation of the probabilities of k (system capacity) customers

down. With method=0, the exact results are calculated using the formal definition. With method=1, aproximate results are calculated using Stirling aproximation of factorials and logaritms. With method=2, Jain's Method [Jain2007], pag. 26 is used. With method=3, the result that K-n customers up has a truncated

poisson distribution is used [Kobayashi2012] pag. 709

Details

Define the inputs of a new M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Jain2007] Joti Lal Jain, Sri Gopal Mohanty, Walter Bohm (2007).

A course on Queueing Models.

Chapman-Hall.

[Kobayashi2012] Hisashi Kobayashi, Brian L. Mark, William Turin (2012).

Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance.

Cambridge University Press.

See Also

CheckInput.i_MM1KK

NewInput.MMC

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)</pre>
```

NewInput.MMC

Define the inputs of a new M/M/c queueing model

Description

Define the inputs of a new M/M/c queueing model

Usage

```
NewInput.MMC(lambda=0, mu=0, c=1, n=0, method=0)
```

Arguments

lambda	arrival rate
mu	server service rate
С	number of servers
n	number of customers in the system from which you want to obtain its probabilities. Put $n=0$ for a idle probability (no customer present in the system or system idle). With $n=-1$, no probabilities are computed
method	method of computation of the probabilities of n number of customers in the system. With method=0, the exact results are calculated using the formal definition. With method=1, approximate results are calculated using Stirling approximation of factorials and logaritms.

Details

Define the inputs of a new M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

CheckInput.i_MMC

NewInput.MMCC 115

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)</pre>
```

NewInput.MMCC

Define the inputs of a new M/M/c/c queueing model

Description

Define the inputs of a new M/M/c/c queueing model

Usage

```
NewInput.MMCC(lambda=0, mu=0, c=1, method=1)
```

Arguments

lambda arrival rate

mu server service rate
c number of servers

method with method = 0, the state probabilities are calculated using the formal definition

(with overflow problems with factorials; with method = 1 (default), the truncated

poisson distribution is used (recomended for professional use)

Details

Define the inputs of a new M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Kobayashi2012] Hisashi Kobayashi, Brian L. Mark, William Turin (2012).

Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance.

Cambridge University Press.

```
CheckInput.i_MMCC
```

NewInput.MMCK

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)</pre>
```

NewInput.MMCK

Define the inputs of a new M/M/c/K queueing model

Description

Define the inputs of a new M/M/c/K queueing model

Usage

```
NewInput.MMCK(lambda=0, mu=0, c=1, k=1)
```

Arguments

lambda	arrival rate
mu	server service rate
С	number of servers
k	system capacity

Details

Define the inputs of a new M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCK
```

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)</pre>
```

NewInput.MMCKK 117

NewTnni	1+	MMCKK
INGW LIIDI	11	77.11111

Define the inputs of a new M/M/c/K/K queueing model

Description

Define the inputs of a new M/M/c/K/K queueing model

Usage

```
NewInput.MMCKK(lambda=0, mu=0, c=1, k=1, method=0)
```

Arguments

lambda arrival rate

mu server service rate
c number of servers
k system capacity

method method of computation of the probabilities of k (system capacity) customers

down. With method=0, the exact results are calculated using the formal definition. With method=1, approximate results are calculated using Stirling approximation of factorials and logaritms. With method=2, Jain's Method [Jain2007], pag.

26 is used

Details

Define the inputs of a new M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Jain2007] Joti Lal Jain, Sri Gopal Mohanty, Walter Bohm (2007).

A course on Queueing Models.

Chapman-Hall.

See Also

```
CheckInput.i_MMCKK
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)</pre>
```

NewInput.MMCKM

NewInput.MMCKM	Define the inputs of a new M/M/c/K/m queueing model
----------------	---

Description

Define the inputs of a new M/M/c/K/m queueing model

Usage

```
NewInput.MMCKM(lambda=0, mu=0, c=1, k=1, m=1, method=0)
```

Arguments

lambda	arrival	rate
--------	---------	------

mu server service ratec number of serversk system capacity

m poblation size. Please, observe that should be $m \ge k$

method method of computation of the probabilities of k (system capacity) customers

down. With method=0, the exact results are calculated using the formal definition. With method=1, approximate results are calculated using Stirling approximation.

tion of factorials and logaritms.

Details

Define the inputs of a new M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCKM
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)</pre>
```

NewInput.MMInf 119

ΝωνΤ	nput	MMT	nf
INGMI	nbut	. I'II'I T	111

Define the inputs of a new M/M/Infinite queueing model

Description

Define the inputs of a new M/M/Infinite queueing model

Usage

```
NewInput.MMInf(lambda=0, mu=0, n=0)
```

Arguments

lambda arrival rate

mu server service rate

n number of customers in the system from which you want to obtain its probabili-

ties. Put n=0 for a idle probability (no customer present in the system or system

idle). With n=-1, no probabilities are computed

Details

Define the inputs of a new M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMInf
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)</pre>
```

120 NewInput.MMInfKK

NewInput.MMInfKK

Define the inputs of a new M/M/Infinite/K/K queueing model

Description

Define the inputs of a new M/M/Infinite/K/K queueing model

Usage

```
NewInput.MMInfKK(lambda=0, mu=0, k=1)
```

Arguments

lambda arrival rate

mu server service rate

Details

k

Define the inputs of a new M/M/Infinite/K/K queueing model

system capacity

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
CheckInput.i_MMInfKK
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)</pre>
```

NewInput.OJN 121

NewInput.OJN	Define the inputs of an Open Jackson Network	

Description

Define the inputs of an Open Jackson Network

Usage

```
NewInput.OJN(prob=NULL, ...)
NewInput2.OJN(prob=NULL, nodes)
NewInput3.OJN(vLambda, numNodes, vType, vVisit, vService, vChannel)
```

Arguments

prob	It is probability transition matrix or visit ratio vector. That is, the prob[i, j] is the transition probability of node i to node j, or prob[i] is the visit ratio to node i (the visit ratio values doesn't need to be probabilities, that is, a value greater than 1 can be used here. See the examples)
	a separated by comma list of nodes of i_MM1, i_MMC or i_MMInf class
nodes	A list of nodes of i_MM1, i_MMC or i_MMInf class
vLambda	Vector with the arrivals rates to each node
numNodes	Number of nodes
vType	A vector with the type of server: "Q" for a queueing node, "D" for a delay node
vVisit	A vector with the visit ratios
vService	A vector with the services time of each node
vChannel	A vector with the number of channels of the node. The type of the server has to be "Q" to be inspected

Details

Define the inputs of an Open Jackson Network. For a operational use, NewInput3.OJN is recommended. For a more academic use, NewInput.OJN or NewInput2.OJN is recommended. Please, note that the different ways to create the inputs for a Open Jackson Network are equivalent to each other, and no validation is done at this stage. The validation is done calling CheckInput function.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

122 NewInput.OJN

See Also

```
QueueingModel.i_OJN
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m < -c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)</pre>
ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
## Using function NewInput2
## Not run:
  ojn1 <- NewInput2.OJN(prob, list(n1, n2, n3, n4))
## End(Not run)
## Using visit ratios. Values taken from [Lazowska84], pag. 113.
## E[S] cpu = 0.005, Visit cpu = 121, D cpu = E[S] cpu * Visit cpu = 0.605
cpu <- NewInput.MM1(lambda=0.2, mu=1/0.005)</pre>
## E[S] disk1 = 0.030, Visit disk1 = 70, D disk1 = E[S] disk1 * Visit disk1 = 2.1
disk1 <- NewInput.MM1(lambda=0.2, mu=1/0.030)</pre>
## E[S] disk2 = 0.027, Visit disk2 = 50, D disk2 = E[S] disk2 * Visit disk2 = 1.35
disk2 <- NewInput.MM1(lambda=0.2, mu=1/0.027)</pre>
## In this example, to have the throughput per node, the visit ratios has to be given in this form.
## Please, don't use in the closed Jackson Network
visit <- c(121, 70, 50)
net <- NewInput.OJN(visit, cpu, disk1, disk2)</pre>
## Using NewInput3
vLambda <- c(0.2, 0.2, 0.2)
vService <- c(0.005, 0.030, 0.027)
numNodes <- 3
vType <- c("Q", "Q", "Q")
vChannel <- c(1, 1, 1)
net2 <- NewInput3.0JN(vLambda, numNodes, vType, visit, vService, vChannel)</pre>
```

Pn 123

Pn

Returns the probabilities of a queueing model (or network)

Description

Pn returns the probabilities that a queueing model (or network) has n customers. On returns the probabilities that an arrival that enter the system see n customers in it

Usage

```
Pn(x, ...)

Qn(x, ...)
```

Arguments

For Pn, an object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_BnD. For Qn, an object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf

... aditional arguments

Details

Pn returns the system probabilities of a queueing model (or network). Qn returns the probability that an effective arrival see n customers in the system

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

Pn.o_MM1 Qn.o_MM1 Pn.o_MMC Qn.o_MMC Pn.o_MM1K Qn.o_MM1K Pn.o_MMCK Qn.o_MMK Qn.o_MM1KK Qn.o_MM1KK Qn.o_MM1KK Pn.o_BnD

```
Pn.o_MMCC
Qn.o_MMCC
Pn.o_MMCKM
Qn.o_MMCKM
Pn.o_MMInfKK
Qn.o_MMInfKK
Pn.o_MMInf
Qn.o_MMInf
Pn.o_OJN
Pn.o_BnD
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the probabilities
Pn(o_mm1)</pre>
```

Pn.o_BnD

Returns the probabilities of a generic Birth and Death process model

Description

Pn returns the probabilities that a generic Birth and Death process model has n customers.

Usage

```
## S3 method for class 'o_BnD' Pn(x, ...)
```

Arguments

```
x a object of class o_BnD aditional arguments
```

Details

Pn returns the probabilities that a generic Birth and Death process model has n customers.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

Pn.o_MM1 125

See Also

```
QueueingModel.i_BnD.
```

Examples

```
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu < - rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)</pre>
## Build the model
o_BnD <- QueueingModel(i_BnD)</pre>
## Returns the probabilities
Pn(o_BnD)
## Simulating M/M/1
lambda <- rep(1/4, 200)
mu < - rep(1/3, 200)
pn_bnd_mm1 <- Pn(QueueingModel(NewInput.BnD(lambda=lambda, mu=mu)))</pre>
pn_mm1 <- Pn(QueueingModel(NewInput.MM1(lambda=1/4, mu=1/3, n=200)))</pre>
## Simulating M/M/2
lambda <- rep(5, 200)
mu <- c(1*10, rep(2*10, 199))
pn_mmc <- Pn(QueueingModel(NewInput.MMC(lambda=5, mu=10, c=2, n=200, method=0)))</pre>
pn_bnd_mmc <- Pn(QueueingModel(NewInput.BnD(lambda=lambda, mu=mu)))</pre>
## Simulating M/M/1/K/K
lambda <- c(2*0.25, 0.25)
mu \leftarrow rep(4, 2)
pn_mm1kk <- Pn(QueueingModel(NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)))</pre>
pn_bnd <- Pn(QueueingModel(NewInput.BnD(lambda=lambda, mu=mu)))</pre>
```

Pn.o_MM1

Returns the probabilities of a M/M/1 queueing model

Description

Pn returns the probabilities that a M/M/1 queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it. Pn.o_MM1

Usage

```
## S3 method for class 'o_MM1' Pn(x, ...) ## S3 method for class 'o_MM1' Qn(x, ...)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/1 queueing model has n customers.

Qn returns the probabilities that an arrival that enter the system see n customers. By the PASTA property, both probabilities has to be the same.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)

## Build the model
o_mm1 <- QueueingModel(i_mm1)

## Returns the probabilities
Pn(o_mm1)
Qn(o_mm1)</pre>
```

Pn.o_MM1K 127

Pn.o_MM1K

Returns the probabilities of a M/M/1/K queueing model

Description

Pn returns the probabilities that a M/M/1/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MM1K' Pn(x, ...) ## S3 method for class 'o_MM1K' Qn(x, ...)
```

Arguments

```
x a object of class o_MM1K
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/1/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the probabilities
Pn(o_mm1k)
Qn(o_mm1k)</pre>
```

Pn.o_MM1KK

Pn.o_MM1KK

Returns the probabilities of a M/M/1/K/K queueing model

Description

Pn eeturns the probabilities of a M/M/1/K/K queueing model Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MM1KK' Pn(x, ...) ## S3 method for class 'o_MM1KK' Qn(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Pn returns the probabilities that a M/M/1/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)</pre>
```

Pn.o_MMC 129

```
## Returns the probabilities
Pn(o_mm1kk)
Qn(o_mm1kk)
```

Pn.o_MMC

Returns the probabilities of a M/M/c queueing model

Description

Pn returns the probabilities that a M/M/c queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMC' Pn(x, ...) ## S3 method for class 'o_MMC' Qn(x, ...)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Pn returns the probabilities that a M/M/c queueing model has n customers.

Qn returns the probabilities that an arrival that enter the system see n customers. By the PASTA property, both probabilities has to be the same.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

Pn.o_MMCC

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)

## Build the model
o_mmc <- QueueingModel(i_mmc)

## Returns the probabilities
Pn(o_mmc)
Qn(o_mmc)</pre>
```

Pn.o_MMCC

Returns the probabilities of a M/M/c/c queueing model

Description

Pn returns the probabilities that a M/M/c/c queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMCC' Pn(x, ...) ## S3 method for class 'o_MMCC' Qn(x, ...)
```

Arguments

```
x a object of class o_MMCC
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/c/c queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

Pn.o_MMCK

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the probabilities
Pn(o_mmcc)
Qn(o_mmcc)</pre>
```

Pn.o_MMCK

Returns the probabilities of a M/M/c/K queueing model

Description

Pn returns the probabilities that a M/M/c/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMCK' Pn(x, ...) ## S3 method for class 'o_MMCK' Qn(x, ...)
```

Arguments

```
x a object of class o_MMCK
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/c/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

Pn.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)

## Build the model
o_mmck <- QueueingModel(i_mmck)

## Returns the probabilities
Pn(o_mmck)
Qn(o_mmck)</pre>
```

Pn.o_MMCKK

Returns the probabilities of a M/M/c/K/K queueing model

Description

Pn returns the probabilities that a M/M/c/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMCKK' Pn(x, ...) ## S3 method for class 'o_MMCKK' Qn(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Pn returns the probabilities that a M/M/c/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

Pn.o_MMCKM 133

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the parameters
Pn(o_mmckk)
Qn(o_mmckk)</pre>
```

Pn.o_MMCKM

Returns the probabilities of a M/M/c/K/m queueing model

Description

Pn returns the probabilities that a M/M/c/K/m queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMCKM' Pn(x, ...) ## S3 method for class 'o_MMCKM' Qn(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Pn returns the probabilities that a M/M/c/K/m queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos. Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

Pn.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the probabilities
Pn(o_mmckm)
Qn(o_mmckm)</pre>
```

Pn.o_MMInf

Returns the probabilities of a M/M/Infinite queueing model

Description

Pn returns the probabilities that a M/M/Infinite queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMInf' Pn(x, ...) ## S3 method for class 'o_MMInf' Qn(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Pn returns the probabilities that a M/M/Infinite queueing model has n customers.

Qn returns the probabilities that an arrival that enter the system see n customers. By the PASTA property, both probabilities has to be the same.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

Pn.o_MMInfKK

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the probabilities
Pn(o_mminf)
Qn(o_mminf)</pre>
```

Pn.o_MMInfKK

Returns the probabilities of a M/M/Infinite/K/K queueing model

Description

Pn returns the probabilities that a M/M/Infinite/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMInfKK' Pn(x, ...) ## S3 method for class 'o_MMInfKK' Qn(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/Infinite/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

Pn.o_OJN

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the probabilities
Pn(o_MMInfKK)
Qn(o_MMInfKK)</pre>
```

Pn.o_OJN

Returns vector of the probabilities of each node (server) of an Open Jackson Network

Description

Returns vector of the probabilities of each node (server) of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN' Pn(x, \ldots)
```

Arguments

x a object of class o_OJN
... aditional arguments

Details

Returns vector of the probabilities of each node (server) of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_OJN.
```

print.summary.o_BnD 137

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
Pn(o_ojn)</pre>
```

print.summary.o_BnD

Summary of the results of a generic Birth and Death process model

Description

Summary of the results of a generic Birth and Death process model.

Usage

```
## S3 method for class 'summary.o_BnD'
print(x, ...)
```

Arguments

x a object of class summary.o_BnD ... aditional arguments

Details

Summaries a generic Birth and Death process model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_BnD.
```

Examples

```
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)

## Build the model
o_BnD <- QueueingModel(i_BnD)

## Report the results
print(summary(o_BnD))</pre>
```

print.summary.o_CJN

Summary of the results of a Closed Jackson Network

Description

Summary of the results of a Closed Jackson Network

Usage

```
## S3 method for class 'summary.o_CJN' print(x, ...)
```

Arguments

x a object of class summary.o_CJN
... aditional arguments

Details

Summaries a Closed Jackson Network model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_CJN.
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
print(summary(m_cjn1))
```

print.summary.o_MCCN Summary of the results of a MultiClass Closed Network

Description

Summary of the results of a MultiClass Closed Network

Usage

```
## S3 method for class 'summary.o_MCCN'
print(x, ...)
```

Arguments

```
x a object of class summary.o_MCCN
... aditional arguments
```

Details

Summaries a MultiClass Closed Network model

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

print(summary(o_MCCN1))</pre>
```

print.summary.o_MCMN Summary of the results of a MultiClass Mixed Network

Description

Summary of the results of a MultiClass Mixed Network

Usage

```
## S3 method for class 'summary.o_MCMN'
print(x, ...)
```

Arguments

```
x a object of class summary.o_MCMN
```

... aditional arguments

Details

Summaries a MultiClass Mixed Network model

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
print(summary(o_mcmn1))</pre>
```

print.summary.o_MCON Summary of the results of a MultiClass Open Network

Description

Summary of the results of a MultiClass Open Network

Usage

```
## S3 method for class 'summary.o_MCON'
print(x, ...)
```

Arguments

```
x a object of class summary.o_MCON
... aditional arguments
```

Details

Summaries a MultiClass Open Network model

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
print(summary(o_mcon1))</pre>
```

print.summary.o_MM1

Summary of the results of a M/M/1 queueing model

Description

Summary of the results of a M/M/1 queueing model.

Usage

```
## S3 method for class 'summary.o_MM1'
print(x, ...)
```

Arguments

```
x a object of class summary.o_MM1
... aditional arguments
```

Details

Summaries a M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the results
print(summary(o_mm1))</pre>
```

```
{\tt print.summary.o\_MM1K} \quad \textit{Summary of the results of a M/M/1/K queueing model}
```

Description

Summary of the results of a M/M/1/K queueing model.

Usage

```
## S3 method for class 'summary.o_MM1K'
print(x, ...)
```

Arguments

```
x a object of class summary.o_MM1K
```

... aditional arguments

Details

Summaries a M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Report the results
print(summary(o_mm1k))</pre>
```

print.summary.o_MM1KK Summary of the results of a M/M/1/K/K queueing model

Description

Summary of the results of a M/M/1/K/K queueing model.

Usage

```
## S3 method for class 'summary.o_MM1KK'
print(x, ...)
```

Arguments

```
x a object of class summary.o_MM1KK
... aditional arguments
```

Details

Summaries a M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Report the results
print(summary(o_mm1kk))</pre>
```

print.summary.o_MMC

Summary of the results of a M/M/c queueing model

Description

Summary of the results of a M/M/c queueing model.

Usage

```
## S3 method for class 'summary.o_MMC'
print(x, ...)
```

Arguments

x a object of class summary.o_MMC

... aditional arguments

Details

Summaries a M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMC.
```

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the results
print(summary(o_mmc))</pre>
```

print.summary.o_MMCC Summary of the results of a M/M/c/c queueing model

Description

Summary of the results of a M/M/c/c queueing model.

Usage

```
## S3 method for class 'summary.o_MMCC'
print(x, ...)
```

Arguments

x a object of class summary.o_MMCC
... aditional arguments

Details

Summaries a M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Report the results
print(summary(o_mmcc))</pre>
```

print.summary.o_MMCK Summary of the results of a M/M/c/K queueing model

Description

Summary of the results of a M/M/c/K queueing model.

Usage

```
## S3 method for class 'summary.o_MMCK'
print(x, ...)
```

Arguments

x a object of class summary.o_MMCK
... aditional arguments

Details

Summaries a M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 ${\it Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.}$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the results
print(summary(o_mmck))</pre>
```

print.summary.o_MMCKK Summary of the results of a M/M/c/K/K queueing model

Description

Summary of the results of a M/M/c/K/K queueing model.

Usage

```
## S3 method for class 'summary.o_MMCKK'
print(x, ...)
```

Arguments

x a object of class summary.o_MMCKK
... aditional arguments

Details

Summaries a M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 ${\it Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.}$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the results
print(summary(o_mmckk))</pre>
```

print.summary.o_MMCKM Summary of the results of a M/M/c/K/m queueing model

Description

Summary of the results of a M/M/c/K/m queueing model.

Usage

```
## S3 method for class 'summary.o_MMCKM'
print(x, ...)
```

Arguments

x a object of class summary.o_MMCKM
... aditional arguments

Details

Summaries a M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the results
print(summary(o_mmckm))</pre>
```

print.summary.o_MMInf Summary of the results of a M/M/Infinite queueing model

Description

Summary of the results of a M/M/Infinite queueing model.

Usage

```
## S3 method for class 'summary.o_MMInf' print(x, ...)
```

Arguments

x a object of class summary.o_MMInf
... aditional arguments

Details

Summaries a M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the results
print(summary(o_mminf))</pre>
```

print.summary.o_MMInfKK

Reports the results of a M/M/Infinite/K/K queueing model

Description

Reports the results of a M/M/Infinite/K/K queueing model.

Usage

```
## S3 method for class 'summary.o_MMInfKK'
print(x, ...)
```

Arguments

x a object of class summary.o_MMInfKK
... aditional arguments

Details

Summaries a M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the results
print(summary(o_MMInfKK))</pre>
```

print.summary.o_OJN

Reports the results of an Open Jackson Network

Description

Reports the results of an Open Jackson Network

Usage

```
## S3 method for class 'summary.o_OJN'
print(x, ...)
```

Arguments

x a object of class summary.o_OJN

... aditional arguments

Details

Summaries an Open Jackson Network model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_OJN.
```

QueueingModel 153

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
o_ojn <- QueueingModel(i_ojn)
print(summary(o_ojn))</pre>
```

QueueingModel

Generic S3 method to build a queueing model (or network)

Description

Generic S3 method to build a queueing model (or network)

Usage

```
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MM1, i_MMC, i_MM1K, i_MMCK, i_MM1KK, i_MMCKK, i_MMCC, i_MMCKM, i_MMInf, i_OJN, i_MCON
... aditional arguments
```

Details

Generic S3 method to build a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1
QueueingModel.i_MMC
QueueingModel.i_MM1K
QueueingModel.i_MMCK
QueueingModel.i_MMCKK
QueueingModel.i_MMCKK
QueueingModel.i_MMCCC
QueueingModel.i_MMInfKK
QueueingModel.i_MMInfKK
QueueingModel.i_MMInf
QueueingModel.i_OJN
QueueingModel.i_MCON
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
QueueingModel(i_mm1)</pre>
```

QueueingModel.i_BnD

Builds a a generic Birth and Death process model

Description

Builds a a generic Birth and Death process model

Usage

```
## S3 method for class 'i_BnD'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_BnD aditional arguments
```

Details

Build a generic Birth and Death process model. It also checks the input params calling the Check-Input.i_BnD

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_BnD
```

Examples

```
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)

i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)

## Build the model
o_BnD <- QueueingModel(i_BnD)</pre>
```

QueueingModel.i_CJN

Builds one Closed Jackson Network

Description

Builds one Closed Jackson Network

Usage

```
## S3 method for class 'i_CJN'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_CJN
... aditional arguments
```

Details

Build one Closed Jackson Network. It also checks the input params calling the CheckInput.i_CJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
m_cjn1
```

QueueingModel.i_MCCN Builds one MultiClass Closed Network

Description

Builds one MultiClass Closed Network

Usage

```
## S3 method for class 'i_MCCN'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MCCN
... aditional arguments
```

Details

Build one MultiClass Closed Network. It also checks the input params calling the CheckInput.i_MCCN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
CheckInput.i_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
o_MCCN1</pre>
```

QueueingModel.i_MCMN Builds one MultiClass Mixed Network

Description

Builds one MultiClass Mixed Network

Usage

```
## S3 method for class 'i_MCMN'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MCMN
... aditional arguments
```

Details

Build one MultiClass Mixed Network. It also checks the input params calling the CheckInput.i_MCMN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
CheckInput.i_MCMN
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
o_mcmn1</pre>
```

QueueingModel.i_MCON Builds one MultiClass Open Network

Description

Builds one MultiClass Open Network

Usage

```
## S3 method for class 'i_MCON'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MCON
... aditional arguments
```

Details

Build one MultiClass Open Network. It also checks the input params calling the CheckInput.i_MCON

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
CheckInput.i_MCON
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
o_mcon1</pre>
```

QueueingModel.i_MM1

Builds a M/M/1 queueing model

Description

Builds a M/M/1 queueing model

Usage

```
## S3 method for class 'i_MM1'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MM1

... aditional arguments

Details

Build a M/M/1 queueing model. It also checks the input params calling the CheckInput.i_MM1

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MM1
```

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
QueueingModel(i_mm1)</pre>
```

QueueingModel.i_MM1K Builds a M/M/1/K queueing model

Description

Builds a M/M/1/K queueing model

Usage

```
## S3 method for class 'i_MM1K'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MM1K
```

... aditional arguments

Details

Build a M/M/1/K queueing model. It also checks the input params calling the CheckInput.i_MM1K

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MM1K.
```

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
QueueingModel(i_mm1k)</pre>
```

QueueingModel.i_MM1KK Builds a M/M/1/K/K queueing model

Description

Builds a M/M/1/K/K queueing model

Usage

```
## S3 method for class 'i_MM1KK'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MM1KK

... aditional arguments

Details

Build a M/M/1/K/K queueing model. It also checks the input params calling the CheckInput.i_MM1KK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MM1KK.
```

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
QueueingModel(i_mm1kk)</pre>
```

QueueingModel.i_MMC

Builds a M/M/c queueing model

Description

Builds a M/M/c queueing model

Usage

```
## S3 method for class 'i_MMC'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MMC
```

... aditional arguments

Details

Build a M/M/c/ queueing model. It also checks the input params calling the CheckInput.i_MMC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMC
```

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
QueueingModel(i_mmc)</pre>
```

QueueingModel.i_MMCC Builds a M/M/c/c queueing model

Description

Builds a M/M/c/c queueing model

Usage

```
## S3 method for class 'i_MMCC'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MMCC
```

... aditional arguments

Details

Build a M/M/c/c queueing model. It also checks the input params calling the CheckInput.i_MMCC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCC.
```

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
QueueingModel(i_mmcc)</pre>
```

QueueingModel.i_MMCK Builds a M/M/c/K queueing model

Description

Builds a M/M/c/K queueing model

Usage

```
## S3 method for class 'i_MMCK'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MMCK
```

... aditional arguments

Details

Build a M/M/c/K queueing model. It also checks the input params calling the CheckInput.i_MMCK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCK.
```

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
QueueingModel(i_mmck)</pre>
```

QueueingModel.i_MMCKK Builds a M/M/c/K/K queueing model

Description

Builds a M/M/c/K/K queueing model

Usage

```
## S3 method for class 'i_MMCKK'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MMCKK

... aditional arguments

Details

Build a M/M/c/K/K queueing model. It also checks the input params calling the CheckInput.i_MMCKK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
QueueingModel(i_mmckk)</pre>
```

QueueingModel.i_MMCKM Builds a M/M/c/K/m queueing model

Description

Builds a M/M/c/K/m queueing model

Usage

```
## S3 method for class 'i_MMCKM'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MMCKM

... aditional arguments

Details

Build a M/M/c/K/m queueing model. It also checks the input params calling the CheckInput.i_MMCKM

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCKM
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
QueueingModel(i_mmckm)</pre>
```

QueueingModel.i_MMInf Builds a M/M/Infinite queue model

Description

Builds a M/M/Infinite queue model

Usage

```
## S3 method for class 'i_MMInf'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MMInf

... aditional arguments

Details

Build a M/M/Infinite model. It also checks the input params calling the CheckInput.i_MMInf

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMInf
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
QueueingModel(i_mminf)</pre>
```

```
QueueingModel.i_MMInfKK
```

Builds a M/M/Infinite/K/K queueing model

Description

Builds a M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'i_MMInfKK'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MMInfKK
```

... aditional arguments

Details

Build a M/M/Infinite/K/K queueing model. It also checks the input params calling the CheckInput.i $_$ MMInfKK

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
CheckInput.i_MMInfKK
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
QueueingModel(i_MMInfKK)</pre>
```

QueueingModel.i_OJN Builds one

Builds one Open Jackson Network

Description

Builds one Open Jackson Network

Usage

```
## S3 method for class 'i_OJN'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_OJN
... aditional arguments
```

Details

Build one Open Jackson Network. It also checks the input params calling the CheckInput.i_OJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_OJN
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)

ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
m_ojn1 <- QueueingModel(ojn1)</pre>
```

Report 171

m_ojn1

Report

Reports the results of a queueing model

Description

Reports the results of a queueing model.

Usage

```
Report(x, ...)
```

Arguments

```
x i_MM1, i_MMC, i_MM1K, i_MMCK, i_MM1KK, i_MMCKK, i_MMCC, i_MMCKM, i_MMInfKK, i_MMInf, i_OJN, i_MCON
... aditional arguments
```

Details

Generic S3 method to report a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

QueueingModel.

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)

## Build the model
o_mm1 <- QueueingModel(i_mm1)

## Report the results
Report(o_mm1)</pre>
```

172 Report.o_BnD

Report.o_BnD

Reports the results of a M/M/1 queueing model

Description

Reports the results of a M/M/1 queueing model.

Usage

```
## S3 method for class 'o_BnD'
Report(x, ...)
```

Arguments

x a object of class o_BnD ... aditional arguments

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_BnD.
```

```
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)

i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)

## Build the model
o_BnD <- QueueingModel(i_BnD)

## Report the results
Report(o_BnD)</pre>
```

Report.o_CJN 173

Report.o_CJN

Reports the results of a Closed Jackson Network

Description

Reports the results of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN'
Report(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Generates a report of the queueing network received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)</pre>
```

174 Report.o_MCCN

```
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
Report(m_cjn1)</pre>
```

Report.o_MCCN

Reports the results of a MultiClass Closed Network

Description

Reports the results of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Report(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Generates a report of the queueing network received as parameter

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

```
## See example in pag 142 in reference [Lazowska84] for more details. classes <- 2 vNumber <- c(1,\ 1) vThink <- c(0,\ 0) nodes <- 2
```

Report.o_MCMN 175

```
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Report(o_MCCN1)</pre>
```

Report.o_MCMN

Reports the results of a MultiClass Mixed Network

Description

Reports the results of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Report(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Generates a report of the queueing network received as parameter

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCMN.
```

176 Report.o_MCON

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Report(o_mcmn1)</pre>
```

Report.o_MCON

Reports the results of a MultiClass Open Network

Description

Reports the results of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Report(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Generates a report of the queueing network received as parameter

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Report.o_MM1

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Report(o_mcon1)</pre>
```

Report.o_MM1

Reports the results of a M/M/1 queueing model

Description

Reports the results of a M/M/1 queueing model.

Usage

```
## S3 method for class 'o_MM1'
Report(x, ...)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

178 Report.o_MM1K

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)

## Build the model
o_mm1 <- QueueingModel(i_mm1)

## Report the results
Report(o_mm1)</pre>
```

Report.o_MM1K

Reports the results of a M/M/1/K queueing model

Description

Reports the results of a M/M/1/K queueing model.

Usage

```
## S3 method for class 'o_MM1K'
Report(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1K.
```

Report.o_MM1KK 179

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Report the results
Report(o_mm1k)</pre>
```

Report.o_MM1KK

Reports the results of a M/M/1/K/K queueing model

Description

Reports the results of a M/M/1/K/K queueing model.

Usage

```
## S3 method for class 'o_MM1KK'
Report(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1KK.
```

180 Report.o_MMC

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Report the results
Report(o_mm1kk)</pre>
```

Report.o_MMC

Reports the results of a M/M/c queueing model

Description

Reports the results of a M/M/c queueing model.

Usage

```
## S3 method for class 'o_MMC'
Report(x, ...)
```

Arguments

x a object of class o_MMC ... aditional arguments

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

Report.o_MMCC 181

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the results
Report(o_mmc)</pre>
```

Report.o_MMCC

Reports the results of a M/M/c/c queueing model

Description

Reports the results of a M/M/c/c queueing model.

Usage

```
## S3 method for class 'o_MMCC' Report(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

182 Report.o_MMCK

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Report the results
Report(o_mmcc)</pre>
```

Report.o_MMCK

Reports the results of a M/M/c/K queueing model

Description

Reports the results of a M/M/c/K queueing model.

Usage

```
## S3 method for class 'o_MMCK' Report(x, ...)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

Report.o_MMCKK 183

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the results
Report(o_mmck)</pre>
```

Report.o_MMCKK

Reports the results of a M/M/c/K/K queueing model

Description

Reports the results of a M/M/c/K/K queueing model.

Usage

```
## S3 method for class 'o_MMCKK'
Report(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

184 Report.o_MMCKM

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the results
Report(o_mmckk)</pre>
```

Report.o_MMCKM

Reports the results of a M/M/c/K/m queueing model

Description

Reports the results of a M/M/c/K/m queueing model.

Usage

```
## S3 method for class 'o_MMCKM'
Report(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

Report.o_MMInf 185

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the results
Report(o_mmckm)</pre>
```

Report.o_MMInf

Reports the results of a M/M/Infinite queueing model

Description

Reports the results of a M/M/Infinite queueing model.

Usage

```
## S3 method for class 'o_MMInf'
Report(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

Report.o_MMInfKK

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the results
Report(o_mminf)</pre>
```

Report.o_MMInfKK

Reports the results of a M/M/Infinite/K/K queueing model

Description

Reports the results of a M/M/Infinite/K/K queueing model.

Usage

```
## S3 method for class 'o_MMInfKK'
Report(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Generates a report of the queueing model received as parameter

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

Report.o_OJN 187

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the results
Report(o_MMInfKK)</pre>
```

Report.o_OJN

Reports the results of an Open Jackson Network

Description

Reports the results of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN'
Report(x, ...)
```

Arguments

```
x a object of class o_OJN
... aditional arguments
```

Details

Generates a report of the queueing network received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_OJN.
```

188 RO

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
o_ojn <- QueueingModel(i_ojn)
Report(o_ojn)</pre>
```

RO

Reports the server use of a queueing model

Description

Reports the server use of a queueing model)

Usage

```
RO(x, \ldots)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
... aditional arguments
```

Details

Reports the server use of a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

RO.o_MM1

See Also

```
RO.o_MM1
RO.o_MMC
RO.o_MM1K
RO.o_MMCK
RO.o_MM1KK
RO.o_MMCKK
RO.o_MMCKK
RO.o_MMCKK
RO.o_MMCC
RO.o_MMCKM
RO.o_MMInfKK
RO.o_MMInf
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the use of the server
RO(o_mm1)</pre>
```

 $R0.o_MM1$

Reports the server use of a M/M/1 queueing model

Description

Reports the server use of a M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' RO(x, ...)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Reports the server use of a M/M/1 queueing model

190 *RO.o_MM1K*

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the use of the server
RO(o_mm1)</pre>
```

RO.o_MM1K

Reports the server use of a M/M/1/K queueing model

Description

Reports the server use of a M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' RO(x, ...)
```

Arguments

```
x a object of class o_MM1K aditional arguments
```

Details

Reports the server use of a M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

RO.o_MM1KK 191

See Also

```
QueueingModel.i_MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Report the use of the server
RO(o_mm1k)</pre>
```

RO.o_MM1KK

Reports the server use of a M/M/1/K/K queueing model

Description

Reports the server use of a M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' RO(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Reports the server use of a M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1KK.
```

192 RO.o_MMC

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Report the use of the server
RO(o_mm1kk)</pre>
```

 $RO.o_MMC$

Reports the server use of a M/M/c queueing model

Description

Reports the server use of a M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' RO(x, \ldots)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Reports the server use of a M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

RO.o_MMCC

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the use of the server
RO(o_mmc)</pre>
```

 ${\sf RO.o_MMCC}$

Reports the server use of a M/M/c/c queueing model

Description

Reports the server use of a M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' RO(x, \ldots)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Reports the server use of a M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

194 RO.o_MMCK

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Report the use of the server
RO(o_mmcc)</pre>
```

RO.o_MMCK

Reports the server use of a M/M/c/K queueing model

Description

Reports the server use of a M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' RO(x, \ldots)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Reports the server use of a M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

RO.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the use of the server
RO(o_mmck)</pre>
```

RO.o_MMCKK

Reports the server use of a M/M/c/K/K queueing model

Description

Reports the server use of a M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' RO(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Reports the server use of a M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

196 RO.o_MMCKM

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the use of the server
RO(o_mmckk)</pre>
```

RO.o_MMCKM

Reports the server use of a M/M/c/K/m queueing model

Description

Reports the server use of a M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' RO(x, \ldots)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Reports the server use of a M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

RO.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the use of the server
RO(o_mmckm)</pre>
```

RO.o_MMInf

Reports the server use of a M/M/Infinite queueing model

Description

Reports the server use of a M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' RO(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Reports the server use of a M/M/Infinite queueing model. It should be noted that in this model, the RO parameter has a different meaning, its the traffic intensity and it coincides exactly with the average number of customers in the system (L)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos. Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf
L.o_MMInf
```

198 RO.o_MMInfKK

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the use of the server
RO(o_mminf)</pre>
```

RO.o_MMInfKK

Reports the server use of a M/M/Infinite/K/K queueing model

Description

Reports the server use of a M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' RO(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Reports the server use of a M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

ROck 199

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the use of the server
RO(o_MMInfKK)</pre>
```

R0ck

Reports a matrix with the use of class i in each node (server) j in a MultiClass Queueing Network

Description

Reports a matrix with the use of class i in each node (server) j in a MultiClass Queueing Network

Usage

```
ROck(x, ...)
```

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a matrix with the use of class i in each node (server) j in a MultiClass Queueing Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos CaballeROk, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial CentROk de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

200 ROck.o_MCCN

See Also

```
ROck.o_MCON
ROck.o_MCCN
ROck.o_MCMN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

ROck(o_MCCN1)</pre>
```

ROck.o_MCCN

Reports a matrix with the use of class i in each node (server) j in a MultiClass Closed Network

Description

Reports a matrix with the use of class i in each node (server) j in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' ROck(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports a matrix with the use of class i in each node (server) j in a MultiClass Closed Network

ROck.o_MCMN 201

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

ROck(o_MCCN1)</pre>
```

ROck.o_MCMN

Reports a matrix with the use of class i in each node (server) j in a MultiClass Mixed Network

Description

Reports a matrix with the use of class i in each node (server) j in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
ROck(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

202 ROck.o_MCON

Details

Reports a matrix with the use of class i in each node (server) j in a

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

ROck(o_mcmn1)</pre>
```

ROck.o_MCON

Reports a matrix with the use of class i in each node (server) j in a MultiClass Open Network

Description

Reports a matrix with the use of class i in each node (server) j in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' ROck(x, ...)
```

ROk 203

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports a matrix with the use of class i in each node (server) j in a

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

ROck(o_mcon1)</pre>
```

ROk

Reports a vector with each node (server) use of a queueing network

Description

Reports a vector with each node (server) use of a queueing network

Usage

```
R0k(x, ...)
```

204 ROk

Arguments

```
x a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a vector with each node (server) use of a queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos CaballeROk, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial CentROk de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
ROk.o_OJN
ROk.o_CJN
ROk.o_MCON
ROk.o_MCCN
ROk.o_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

ROk(o_MCCN1)</pre>
```

ROk.o_CJN 205

ROk.o_CJN	Reports a vector with each node (server) use of a Closed Jackson Network

Description

Reports a vector with each node (server) use of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN'
ROk(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Reports a vector with each node (server) use of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)</pre>
```

206 ROk.o_MCCN

```
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
ROk(m_cjn1)</pre>
```

ROk.o_MCCN

Reports a vector with each node (server) use of a MultiClass Closed Network

Description

Reports a vector with each node (server) use of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' ROk(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Reports a vector with each node (server) use of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCCN.
```

ROk.o_MCMN 207

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

ROk(o_MCCN1)</pre>
```

ROk.o_MCMN

Reports a vector with each node (server) use of a MultiClass Mixed Network

Description

Reports a vector with each node (server) use of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' ROk(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Reports a vector with each node (server) use of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

208 ROk.o_MCON

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

ROk(o_mcmn1)</pre>
```

ROk.o_MCON

Reports a vector with each node (server) use of a MultiClass Open Network

Description

Reports a vector with each node (server) use of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' ROk(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports a vector with each node (server) use of a MultiClass Open Network

 $ROk.o_{-}OJN$

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

ROk(o_mcon1)</pre>
```

ROk.o_OJN

Reports a vector with each node (server) use of an Open Jackson Network

Description

Reports a vector with each node (server) use of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN' ROk(x, ...)
```

Arguments

```
x a object of class o_OJN
... aditional arguments
```

210 SP

Details

Reports a vector with each node (server) use of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_OJN.
```

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
ROk(o_ojn)</pre>
```

SP

Returns the saturation point of a queueing model

Description

Returns the saturation point of a queueing model

Usage

```
SP(x, ...)
```

SP.o_MM1KK 211

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the saturation point of a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
SP.o_MM1KK
```

Examples

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=4, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the saturation point
SP(o_mm1kk)</pre>
```

SP.o_MM1KK

Returns the saturation point of a M/M/1/K/K queueing model

Description

Returns the saturation point, or the maximum number of customers that the M/M/1/K/K queueing model can support with no interference or syncronization between themselves

Usage

```
## S3 method for class 'o_MM1KK' SP(x, ...)
```

Arguments

```
x a object of class o_MM1KK
```

... aditional arguments

212 summary.o_BnD

Details

The value returned is the optimal number of customers of a M/M/1/K/K queueing model. It coincides with the inverse of the serialization parameter of Amdahl's Law. That is, the value which converges the speedup func(k) = k/(1 + ser * (k-1)). It makes sense, because the saturation point is the maximum value in which no syncronization happens.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos. Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=4, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the saturation point
SP(o_mm1kk)</pre>
```

summary.o_BnD

Summary of the results of a generic Birth and Death process model

Description

Summary of the results of a generic Birth and Death process model.

Usage

```
## S3 method for class 'o_BnD'
summary(object, ...)
```

Arguments

```
object a object of class o_BnD aditional arguments
```

summary.o_CJN 213

Details

Summaries a generic Birth and Death process model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_BnD.
```

Examples

```
## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)

i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)

## Build the model
o_BnD <- QueueingModel(i_BnD)

## Report the results
summary(o_BnD)</pre>
```

summary.o_CJN

Summary of the results of a Closed Jackson Network

Description

Summary of the results of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN'
summary(object, ...)
```

Arguments

```
object a object of class o_CJN aditional arguments
```

Details

Summaries a Closed Jackson Network model

214 summary.o_MCCN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
summary(m_cjn1)
```

summary.o_MCCN

Summary of the results of a MultiClass Closed Network

Description

Summary of the results of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
summary(object, ...)
```

summary.o_MCMN 215

Arguments

```
object a object of class o_MCCN
... aditional arguments
```

Details

Summaries a queueing network model

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
summary(o_MCCN1)</pre>
```

 $\verb"summary.o_MCMN"$

Summary of the results of a MultiClass Mixed Network

Description

Summary of the results of a MultiClass Mixed Network

216 summary.o_MCMN

Usage

```
## S3 method for class 'o_MCMN'
summary(object, ...)
```

Arguments

```
object a object of class o_MCMN
... aditional arguments
```

Details

Summaries a MultiClass Mixed Network model

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
summary(o_mcmn1)</pre>
```

summary.o_MCON 217

summary.o_MCON

Summary of the results of a MultiClass Open Network

Description

Summary of the results of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
summary(object, ...)
```

Arguments

```
object a object of class o_MCON aditional arguments
```

Details

Summaries a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

summary(o_mcon1)</pre>
```

218 summary.o_MM1

summary.o_MM1

Summary of the results of a M/M/1 queueing model

Description

Summary of the results of a M/M/1 queueing model.

Usage

```
## S3 method for class 'o_MM1'
summary(object, ...)
```

Arguments

```
object a object of class o_MM1 aditional arguments
```

Details

Summaries a M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the results
summary(o_mm1)</pre>
```

summary.o_MM1K 219

summary.o_MM1K

Summary of the results of a M/M/1/K queueing model

Description

Summary of the results of a M/M/1/K queueing model.

Usage

```
## S3 method for class 'o_MM1K'
summary(object, ...)
```

Arguments

```
object a object of class o_MM1K
... aditional arguments
```

Details

Summaries a M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Report the results
summary(o_mm1k)</pre>
```

summary.o_MM1KK

Summary of the results of a M/M/1/K/K queueing model

Description

Summary of the results of a M/M/1/K/K queueing model.

Usage

```
## S3 method for class 'o_MM1KK'
summary(object, ...)
```

Arguments

```
object a object of class o_MM1KK
... aditional arguments
```

Details

Summaries a M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Report the results
summary(o_mm1kk)</pre>
```

summary.o_MMC 221

summary.o_MMC

Summary of the results of a M/M/c queueing model

Description

Summary of the results of a M/M/c queueing model.

Usage

```
## S3 method for class 'o_MMC'
summary(object, ...)
```

Arguments

```
object a object of class o_MMC ... aditional arguments
```

Details

Summaries a M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMC.
```

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the results
summary(o_mmc)</pre>
```

222 summary.o_MMCC

summary.o_MMCC

Summary of the results of a M/M/c/c queueing model

Description

Summary of the results of a M/M/c/c queueing model.

Usage

```
## S3 method for class 'o_MMCC'
summary(object, ...)
```

Arguments

```
object a object of class o_MMCC aditional arguments
```

Details

Summaries a M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCC.
```

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Report the results
summary(o_mmcc)</pre>
```

summary.o_MMCK 223

summary.o_MMCK

Summary of the results of a M/M/c/K queueing model

Description

Summary of the results of a M/M/c/K queueing model.

Usage

```
## S3 method for class 'o_MMCK'
summary(object, ...)
```

Arguments

```
object a object of class o_MMCK
... aditional arguments
```

Details

Summaries a M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCK.
```

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the results
summary(o_mmck)</pre>
```

summary.o_MMCKK

Summary of the results of a M/M/c/K/K queueing model

Description

Summary of the results of a M/M/c/K/K queueing model.

Usage

```
## S3 method for class 'o_MMCKK'
summary(object, ...)
```

Arguments

```
object a object of class o_MMCKK
... aditional arguments
```

Details

Summaries a M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the results
summary(o_mmckk)</pre>
```

summary.o_MMCKM 225

summary.o_MMCKM

Summary of the results of a M/M/c/K/m queueing model

Description

Summary of the results of a M/M/c/K/m queueing model.

Usage

```
## S3 method for class 'o_MMCKM'
summary(object, ...)
```

Arguments

```
object a object of class o_MMCKM
... aditional arguments
```

Details

Summaries a M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the results
summary(o_mmckm)</pre>
```

226 summary.o_MMInf

summary.o_MMInf

Summary of the results of a M/M/Infinite queueing model

Description

Summary of the results of a M/M/Infinite queueing model.

Usage

```
## S3 method for class 'o_MMInf'
summary(object, ...)
```

Arguments

```
object a object of class o_MMInf
... aditional arguments
```

Details

Summaries a M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the results
summary(o_mminf)</pre>
```

summary.o_MMInfKK

summary.o_MMInfKK

Summary of the results of a M/M/Infinite/K/K queueing model

227

Description

Summary of the results of a M/M/Infinite/K/K queueing model.

Usage

```
## S3 method for class 'o_MMInfKK'
summary(object, ...)
```

Arguments

```
object a object of class o_MMInfKK
... aditional arguments
```

Details

Summaries a M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the results
summary(o_MMInfKK)</pre>
```

228 summary.o_OJN

summary.o_OJN

Summary of the results of an Open Jackson Network

Description

Summary of the results of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN'
summary(object, ...)
```

Arguments

```
object a object of class o_OJN aditional arguments
```

Details

Summaries an Open Jackson Network model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_OJN.
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
o_ojn <- QueueingModel(i_ojn)</pre>
```

Throughput 229

```
summary(o_ojn)
```

Throughput

Throughput of a queueing model (or network)

Description

Returns the throughput of a queueing model (or network)

Usage

```
Throughput(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN
```

... aditional arguments

Details

Returns the throughput of a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
Throughput.o_MM1
Throughput.o_MMC
Throughput.o_MMCK
Throughput.o_MMCK
Throughput.o_MMCKK
Throughput.o_MMCKK
Throughput.o_MMCCK
Throughput.o_MMCCC
Throughput.o_MMCKM
Throughput.o_MMInfKK
```

230 Throughput.o_CJN

```
Throughput.o_MMInf
Throughput.o_OJN
Throughput.o_CJN
Throughput.o_MCON
Throughput.o_MCCN
Throughput.o_MCMN
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Throughput
Throughput(o_mm1)</pre>
```

Throughput.o_CJN

Reports the network throughput of a Closed Jackson Network

Description

Reports the network throughput of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN'
Throughput(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Reports the network throughput of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.OJN, CheckInput.i_CJN, QueueingModel.i_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 \leftarrow NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Throughput(m_cjn1)
```

Throughput.o_MCCN

Reports the throughput of a MultiClass Closed Network

Description

Reports the throughput of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports the throughput of a MultiClass Closed Network

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughput(o_MCCN1)</pre>
```

Throughput.o_MCMN

Reports the throughput of a MultiClass Mixed Network

Description

Reports the throughput of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Reports the throughput of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN, CheckInput.i_MCMN, QueueingModel.i_MCMN
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Throughput(o_mcmn1)</pre>
```

Throughput.o_MCON

Reports the throughput of a MultiClass Open Network

Description

Reports the throughput of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Throughput(x, \ldots)
```

Throughput.o_MM1

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports the throughput of a MultiClass Open Network

References

```
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
```

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON, CheckInput.i_MCON, QueueingModel.i_MCON
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Throughput(o_mcon1)</pre>
```

Throughput.o_MM1

Throughput of a M/M/1 queueing model

Description

Returns the throughput of a M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1'
Throughput(x, ...)
```

Throughput.o_MM1K 235

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the throughput of a M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1, CheckInput.i_MM1, QueueingModel.i_MM1
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)

## Build the model
o_mm1 <- QueueingModel(i_mm1)

## Throughput
Throughput(o_mm1)</pre>
```

Throughput.o_MM1K

Throughput of a M/M/1/K queueing model

Description

Returns the throughput of a M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MM1K
```

... aditional arguments

Details

Returns the throughput of a M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1K, CheckInput.i_MM1K, QueueingModel.i_MM1K
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mmck <- QueueingModel(i_mm1k)

## Throughput
Throughput(o_mmck)</pre>
```

 $Throughput.o_MM1KK$

Throughput of a M/M/1/K/K queueing model

Description

Returns the throughput of a M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the throughput of a M/M/1/K/K queueing model

Throughput.o_MMC 237

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1KK, CheckInput.i_MM1KK, QueueingModel.i_MM1KK
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_MM1KKk <- QueueingModel(i_mm1kk)

## Throughput
Throughput(o_MM1KKk)</pre>
```

Throughput.o_MMC

Throughput of a M/M/c queueing model

Description

Returns the throughput of a M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMC
... aditional arguments
```

Details

Returns the throughput of a M/M/c queueing model

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMC, CheckInput.i_MMC, QueueingModel.i_MMC
```

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)

## Build the model
o_mmc <- QueueingModel(i_mmc)

## Throughput
Throughput(o_mmc)</pre>
```

Throughput.o_MMCC

Throughput of a M/M/c/c queueing model

Description

Returns the throughput of a M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMCC
... aditional arguments
```

Details

Returns the throughput of a M/M/c/c queueing model

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCC, CheckInput.i_MMCC, QueueingModel.i_MMCC
```

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Throughput
Throughput(o_mmcc)</pre>
```

Throughput.o_MMCK

Throughput of a M/M/c/K queueing model

Description

Returns the throughput of a M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMCK
... aditional arguments
```

Details

Returns the throughput of a M/M/c/K queueing model

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCK, CheckInput.i_MMCK, QueueingModel.i_MMCK
```

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Throughput
Throughput(o_mmck)</pre>
```

Throughput.o_MMCKK

Throughput of a M/M/c/K/K queueing model

Description

Returns the throughput of a M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMCKK
... aditional arguments
```

Details

Returns the throughput of a M/M/c/K/K queueing model

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCKK, CheckInput.i_MMCKK, QueueingModel.i_MMCKK
```

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## build the model
o_mmckk <- QueueingModel(i_mmckk)
## Throughput
Throughput(o_mmckk)</pre>
```

Throughput.o_MMCKM

Throughput of a M/M/c/K/m queueing model

Description

Returns the throughput of a M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMCKM
... aditional arguments
```

Details

Returns the throughput of a M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCKM, CheckInput.i_MMCKM, QueueingModel.i_MMCKM
```

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Throughput
Throughput(o_mmckm)</pre>
```

Throughput.o_MMInf

Throughput of a M/M/Infinite queueing model

Description

Returns the throughput of a M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMInf
... aditional arguments
```

Details

Returns the throughput of a M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
NewInput.MMInf, CheckInput.i_MMInf, QueueingModel.i_MMInf
```

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Throughput
Throughput(o_mminf)</pre>
```

Throughput.o_MMInfKK Throughput of a M/M/Infinite/K/K queueing model

Description

Returns the throughput of a M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Returns the throughput of a M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
NewInput.MMInfKK, CheckInput.i_MMInfKK, QueueingModel.i_MMInfKK
```

244 Throughput.o_OJN

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Throughput
Throughput(o_MMInfKK)</pre>
```

Throughput.o_OJN

Reports the throughput of an Open Jackson Network

Description

Reports the throughput of an Open Jackson Network

Usage

```
## S3 method for class 'o_0JN' Throughput(x, ...)
```

Arguments

x a object of class o_OJN
... aditional arguments

Details

Reports the throughput of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
NewInput.OJN, CheckInput.i_OJN, QueueingModel.i_OJN
```

Throughputc 245

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
Throughput(o_ojn)</pre>
```

Throughputc

Reports a vector with each class throughput in a multiclass queueing network

Description

Reports a vector with each class throughput in a multiclass queueing network

Usage

```
Throughputc(x, ...)
```

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a vector with each class throughput in a multiclass queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Throughputc.o_MCCN
Throughputc.o_MCCN
Throughputc.o_MCCN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputc(o_mcon1)</pre>
```

Throughputc.o_MCCN

Reports a vector with each class throughput in a MultiClass Closed Network

Description

Reports a vector with each class throughput in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Throughputc(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports a vector with each class throughput in a MultiClass Closed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughputc(o_MCCN1)</pre>
```

Throughputc.o_MCMN

Reports a vector with each class throughput in a MultiClass Mixed Network

Description

Reports a vector with each class throughput in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Throughputc(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Reports a vector with each class throughput in a MultiClass Mixed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN, CheckInput.i_MCMN, QueueingModel.i_MCMN
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Throughputc(o_mcmn1)</pre>
```

Throughputc.o_MCON Reports a vector with each class throughput in a MultiClass Open Network

Description

Reports a vector with each class throughput in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Throughputc(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Reports a vector with each class throughput in a MultiClass Open Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON, CheckInput.i_MCON, QueueingModel.i_MCON
```

```
## See example in pag 138 in reference [Lazowska84] for more details. classes <- 2 vLambda <- c(3/19,\ 2/19) nodes <- 2 vType <- c("Q",\ "Q") vVisit <- matrix(data=c(10,\ 9,\ 5,\ 4), nrow=2, ncol=2, byrow=TRUE) vService <- matrix(data=c(1/10,\ 1/3,\ 2/5,\ 1), nrow=2, ncol=2, byrow=TRUE)
```

250 Throughputck

```
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputc(o_mcon1)</pre>
```

Throughputck

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Network

Description

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Network

Usage

```
Throughputck(x, ...)
```

Arguments

x a object of class o_MCON, o_MCCN
... aditional arguments

Details

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
Throughputck.o_MCON
Throughputck.o_MCCN
Throughputck.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Throughputck(o_mcon1)</pre>
```

Throughputck.o_MCCN

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Closed Network

Description

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Throughputck(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Closed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughputck(o_MCCN1)</pre>
```

Throughputck.o_MCMN

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Mixed Network

Description

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Throughputck(x, ...)
```

Arguments

```
x a object of class o_MCMN
```

... aditional arguments

Details

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Mixed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN, CheckInput.i_MCMN, QueueingModel.i_MCMN
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)</pre>
Throughputck(o_mcmn1)
```

Throughputck.o_MCON

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Open Network

Description

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Throughputck(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Open Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON, CheckInput.i_MCON, QueueingModel.i_MCON
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Throughputck(o_mcon1)</pre>
```

Throughputen 255

Throughputcn	Returns a matrix with the Throughput from each class and every pop-
	ulation of a Multi Class Closed Network

Description

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

Usage

```
Throughputcn(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Throughputcn.o_MCCN
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

```
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Throughputcn(o_MCCN1)</pre>
```

 ${\bf Throughputcn.o_MCCN}$

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

Description

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

Usage

```
## S3 method for class 'o_MCCN' Throughputcn(x, \dots)
```

Arguments

x a object of class o_MCCN

... aditional arguments

Details

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

Throughputk 257

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughputcn(o_MCCN1)</pre>
```

Throughputk

Reports a vector with each node (server) throughput of a queueing network

Description

Reports a vector with each node (server) throughput of a queueing network

Usage

```
Throughputk(x, ...)
```

Arguments

```
x a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN aditional arguments
```

Details

Reports a vector with each node (server) throughput of a queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik

258 Throughputk.o_CJN

```
(1984).
```

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Throughputk.o_OJN
Throughputk.o_CJN
Throughputk.o_MCON
Throughputk.o_MCCN
Throughputk.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputk(o_mcon1)</pre>
```

Throughputk.o_CJN

Reports a vector with each node (server) throughput of a Closed Jackson Network

Description

Reports a vector with each node (server) throughput of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' Throughputk(x, \ldots)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Reports a vector with each node (server) throughput of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.CJN, CheckInput.i_CJN, QueueingModel.i_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)

# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)

# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)

Throughputk(m_cjn1)</pre>
```

Throughputk.o_MCCN

Reports a vector with each node (server) throughput of a MultiClass Closed Network

Description

Reports a vector with each node (server) throughput of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Throughputk(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports a vector with each node (server) throughput of a MultiClass Closed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughputk(o_MCCN1)</pre>
```

 $\begin{tabular}{ll} Throughput s.o_MCMN & Reports \ a \ vector \ with \ each \ node \ (server) \ throughput \ of \ a \ MultiClass \\ Mixed \ Network & \\ \end{tabular}$

Description

Reports a vector with each node (server) throughput of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Throughputk(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Reports a vector with each node (server) throughput of a MultiClass Mixed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN, CheckInput.i_MCMN, QueueingModel.i_MCMN
```

```
## See example in pag 147 in reference [Lazowska84] for more details. classes <- 4  
vLambda <- c(1, 1/2)  
vNumber <- c(1, 1)  
vThink <- c(0, 0)  
nodes <- 2  
vType <- c("Q", "Q")
```

```
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Throughputk(o_mcmn1)</pre>
```

Throughputk.o_MCON

Reports a vector with each node (server) throughput of a MultiClass Open Network

Description

Reports a vector with each node (server) throughput of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Throughputk(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Reports a vector with each node (server) throughput of a MultiClass Open Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON, CheckInput.i_MCON, QueueingModel.i_MCON
```

Throughputk.o_OJN 263

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Throughputk(o_mcon1)</pre>
```

Throughputk.o_OJN

Reports a vector with each node (server) throughput of an Open Jackson Network

Description

Reports a vector with each node (server) throughput of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN'
Throughputk(x, ...)
```

Arguments

x a object of class o_OJN
... aditional arguments

Details

Reports a vector with each node (server) throughput of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

264 Throughputn

See Also

```
NewInput.OJN, CheckInput.i_OJN, QueueingModel.i_OJN
```

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
Throughputk(o_ojn)</pre>
```

Throughputn

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Network

Description

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Network

Usage

```
Throughputn(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Network

Throughputn.o_CJN 265

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
Throughputn.o_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Throughputn(m_cjn1)
```

 ${\bf Throughputn.o_CJN}$

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Jackson Network

Description

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' Throughputn(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.CJN, CheckInput.i_CJN, QueueingModel.i_CJN
```

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 \leftarrow NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)</pre>
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Throughputn(m_cjn1)
```

VN 267

۷N

Returns the variance of the number of customers in a queueing model (or network)

Description

Returns the variance of the number of customers in a queueing model (or network)

Usage

```
VN(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInf
... aditional arguments
```

Details

Returns the variance of the number of customers in a queueing model (or network)

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
VN.o_MM1
VN.o_MMC
VN.o_MMCC
VN.o_MMInf
VN.o_MMInfKK
VN.o_MM1K
VN.o_MMCK
VN.o_MM1KK
VN.o_MMCKK
VN.o_MMCKK
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)</pre>
```

268 VN.o_MM1

```
## Returns the variance
VN(o_mm1)
```

VN.o_MM1

Returns the variance of the number of customers in the M/M/1 queueing model

Description

Returns the variance of the number of customers in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' VN(x, \ldots)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the variance of the number of customers in the M/M/1 queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1.
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance
VN(o_mm1)</pre>
```

VN.o_MM1K 269

VN.o_MM1K

Returns the variance of the number of customers in the M/M/1/K queueing model

Description

Returns the variance of the number of customers in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' VN(x, \ldots)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/1/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1K.
```

```
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VN(o_mm1k)</pre>
```

270 VN.o_MM1KK

VN.o_MM1KK

Returns the variance of the number of customers in the M/M/1/K/K queueing model

Description

Returns the variance of the number of customers in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' VN(x, ...)
```

Arguments

x a object of class o_MM1KK

... aditional arguments

Details

Returns the variance of the number of customers in the M/M/1/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1K.
```

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the variance
VN(o_mm1kk)</pre>
```

VN.o_MMC 271

 ${\sf VN.o_MMC}$

Returns the variance of the number of customers in the M/M/c queueing model

Description

Returns the variance of the number of customers in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' VN(x, \ldots)
```

Arguments

x a object of class o_MMC ... aditional arguments

Details

Returns the variance of the number of customers in the M/M/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMC.
```

```
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance
VN(o_mmc)</pre>
```

VN.o_MMCC

 ${\sf VN.o_MMCC}$

Returns the variance of the number of customers in the M/M/c/c queueing model

Description

Returns the variance of the number of customers in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' VN(x, \ldots)
```

Arguments

x a object of class o_MMCC

... aditional arguments

Details

Returns the variance of the number of customers in the M/M/c/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCC.
```

```
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VN(o_mmcc)</pre>
```

VN.o_MMCK 273

 ${\sf VN.o_MMCK}$

Returns the variance of the number of customers in the M/M/c/K queueing model

Description

Returns the variance of the number of customers in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' VN(x, \ldots)
```

Arguments

x a object of class o_MMCK

... aditional arguments

Details

Returns the variance of the number of customers in the M/M/c/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt QueueingModel.i\_MMCK.}
```

```
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the variance
VN(o_mmck)</pre>
```

274 VN.o_MMCKK

VN.o_MMCKK

Returns the variance of the number of customers in the M/M/c/K/K queueing model

Description

Returns the variance of the number of customers in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' VN(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/c/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the variance
VN(o_mmckk)</pre>
```

VN.o_MMCKM 275

VN.o_MMCKM

Returns the variance of the number of customers in the M/M/c/K/m queueing model

Description

Returns the variance of the number of customers in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' VN(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/c/K/m queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the variance
VN(o_mmckm)</pre>
```

VN.o_MMInf

VN.o_MMInf

Returns the variance of the number of customers in the M/M/Infinite queueing model

Description

Returns the variance of the number of customers in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' VN(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/Infinite queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VN(o_mminf)</pre>
```

VN.o_MMInfKK 277

VN.o_MMInfKK Returns the variance of the number of customers in the M/M/Infinite/K/K queueing model

Description

Returns the variance of the number of customers in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' VN(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/Infinite/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the variance
VN(o_MMInfKK)</pre>
```

278 VNq

VNq Returns the variance of the number of customers in the queue in a queueing model

Description

Returns the variance of the number of customers in the queue in a queueing model

Usage

```
VNq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in a queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
VNq.o_MM1
VNq.o_MM1
VNq.o_MMCC
VNq.o_MMInf
VNq.o_MMInfKK
VNq.o_MM1K
VNq.o_MMCK
VNq.o_MM1KK
VNq.o_MMCKK
VNq.o_MMCKK
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)</pre>
```

VNq.o_MM1 279

```
## Returns the variance
VNq(o_mm1)
```

VNq.o_MM1

Returns the variance of the number of customers in the queue in the M/M/1 queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' VNq(x, ...)
```

Arguments

x a object of class o_MM1
... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/1 queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1.
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance
VNq(o_mm1)</pre>
```

280 VNq.o_MM1K

VNq.o_MM1K

Returns the variance of the number of customers in the queue in the M/M/1/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' VNq(x, ...)
```

Arguments

x a object of class o_MM1K

... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/1/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1K.
```

```
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VNq(o_mm1k)</pre>
```

VNq.o_MM1KK 281

VNq.o_MM1KK	Returns the variance of the number of customers in the queue in the M/M/1/K/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' VNq(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in the M/M/1/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt QueueingModel.i\_MM1KK.}
```

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the variance
VNq(o_mm1kk)</pre>
```

VNq.o_MMC

VNq.o_MMC

Returns the variance of the number of customers in the queue in the M/M/c queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' VNq(x, ...)
```

Arguments

x a object of class o_MMC ... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMC.
```

```
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance
VNq(o_mmc)</pre>
```

VNq.o_MMCC 283

VNq.o_MMCC

Returns the variance of the number of customers in the queue in the M/M/c/c queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' VNq(x, ...)
```

Arguments

x a object of class o_MMCC

... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/c/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCC.
```

```
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VNq(o_mmcc)</pre>
```

VNq.o_MMCK

VNq.o_MMCK

Returns the variance of the number of customers in the queue in the M/M/c/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' VNq(x, ...)
```

Arguments

x a object of class o_MMCK

... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/c/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt QueueingModel.i\_MMCK.}
```

```
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the variance
VNq(o_mmck)</pre>
```

VNq.o_MMCKK 285

VNq.o_MMCKK	Returns the variance of the number of customers in the queue in the M/M/c/K/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK'
VNq(x, ...)
```

Arguments

```
x a object of class o_MMCKK
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in the M/M/c/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the variance
VNq(o_mmckk)</pre>
```

286 VNq.o_MMCKM

VNq.o_MMCKM

Returns the variance of the number of customers in the queue in the M/M/c/K/m queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' VNq(x, ...)
```

Arguments

x a object of class o_MMCKM

... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/c/K/m queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the variance
VNq(o_mmckm)</pre>
```

VNq.o_MMInf 287

VNq.o_MMInf	Returns the variance of the number of customers in the queue in the M/M/Infinite queueing model
	M/M/Injinite queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' VNq(x, ...)
```

Arguments

```
x a object of class o_MMInf
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in the M/M/Infinite queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VNq(o_mminf)</pre>
```

288 VNq.o_MMInfKK

VNq.o_MMInfKK	Returns the variance of the number of customers in the queue in the M/M/Infinite/K/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' VNq(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in the M/M/Infinite/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the VNq
VNq(o_MMInfKK)</pre>
```

VT 289

VT Returns the variance of the time spend in a queueing model (or network)

Description

Returns the variance of the time spend in a queueing model (or network)

Usage

```
VT(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
... aditional arguments
```

Details

Returns the variance of the time spend in a queueing model (or network)

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
VT.o_MM1
VT.o_MMC
VT.o_MMCC
VT.o_MMInf
VT.o_MMInfKK
VT.o_MM1K
VT.o_MM1KK
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in the system
VT(o_mm1)</pre>
```

290 VT.o_MM1

VT.o_MM1

Returns the variance of the time spend in the M/M/1 queueing model

Description

Returns the variance of the time spend in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' VT(x, \ldots)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the variance of the time spend in the M/M/1 queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1.
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in the system
VT(o_mm1)</pre>
```

VT.o_MM1K 291

VT.o_MM1K

Returns the variance of the time spend in the M/M/1/K queueing model

Description

Returns the variance of the time spend in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' VT(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the variance of the time spend in the M/M/1/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1K.
```

```
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VT(o_mm1k)</pre>
```

292 VT.o_MM1KK

 $VT.o_MM1KK$

Returns the variance of the time spend in the M/M/1/K/K queueing model

Description

Returns the variance of the time spend in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' VT(x, ...)
```

Arguments

x a object of class o_MM1KK

... aditional arguments

Details

Returns the variance of the time spend in the M/M/1/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1KK.
```

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the variance
VT(o_mm1kk)</pre>
```

VT.o_MMC 293

VT.o_MMC

Returns the variance of the time spend in the M/M/c queueing model

Description

Returns the variance of the time spend in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' VT(x, ...)
```

Arguments

x a object of class o_MMC ... aditional arguments

Details

Returns the variance of the time spend in the M/M/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt Queueing Model.i\_MMC}.
```

```
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance of the time spend in the system
VT(o_mmc)</pre>
```

294 VT.o_MMCC

VT.o_MMCC

Returns the variance of the time spend in the M/M/c/c queueing model

Description

Returns the variance of the time spend in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' VT(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the variance of the time spend in the M/M/c/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt Queueing Model.i\_MMCC.}
```

```
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VT(o_mmcc)</pre>
```

VT.o_MMInf 295

VT.o_MMInf	Returns the variance of the time spend in the M/M/Infinite queueing model
	model

Description

Returns the variance of the time spend in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' VT(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the the variance of the time spend in the M/M/Infinite queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VT(o_mminf)</pre>
```

296 VT.o_MMInfKK

VT.o_MMInfKK

Returns the variance of the time spend in the M/M/Infinite/K/K queue-ing model

Description

Returns the variance of the time spend in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' VT(x, ...)
```

Arguments

x a object of class o_MMInfKK

... aditional arguments

Details

Returns the variance of the time spend in the M/M/Infinite/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the variance
VT(o_MMInfKK)</pre>
```

VTq 297

VTq

Returns the variance of the time spend in queue in a queueing model

Description

Returns the variance of the time spend in queue in a queueing model

Usage

```
VTq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInf
... aditional arguments
```

Details

Returns the variance of the time spend in queue in a queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
VTq.o_MM1
VTq.o_MMC
VTq.o_MMCC
VTq.o_MMInf
VTq.o_MMInfKK
VTq.o_MM1K
VTq.o_MMCK
VTq.o_MM1KK
VTq.o_MM1KK
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in queue
VTq(o_mm1)</pre>
```

298 VTq.o_MM1

٧T	a.	0_	M	M 1

Returns the variance of the time spend in queue in the M/M/1 queueing model

Description

Returns the variance of the time spend in queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' VTq(x, ...)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the variance of the time spend in queue in the M/M/1 queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1.
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in queue
VTq(o_mm1)</pre>
```

VTq.o_MM1K 299

VTq.o_MM1K

Returns the variance of the time spend in queue in the M/M/1/K queueing model

Description

Returns the variance of the time spend in queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' VTq(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/1/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt QueueingModel.i\_MM1K.}
```

```
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VTq(o_mm1k)</pre>
```

300 VTq.o_MM1KK

VTq.o_MM1KK

Returns the variance of the time spend in queue in the M/M/1/K/K queueing model

Description

Returns the variance of the time spend in queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' VTq(x, ...)
```

Arguments

x a object of class o_MM1KK

... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/1/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1KK.
```

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the VTq
VTq(o_mm1kk)</pre>
```

VTq.o_MMC 301

VTq.o_MMC

Returns the variance of the time spend in queue in the M/M/c queueing model

Description

Returns the variance of the time spend in queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' VTq(x, ...)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt Queueing Model.i\_MMC.}
```

```
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance of the time spend in queue
VTq(o_mmc)</pre>
```

302 VTq.o_MMCC

VTq.o_MMCC

Returns the variance of the time spend in queue in the M/M/c/c queueing model

Description

Returns the variance of the time spend in queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' VTq(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/c/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCC.
```

```
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VTq(o_mmcc)</pre>
```

VTq.o_MMCK 303

VTq.o_MMCK

Returns the variance of the time spend in queue in the M/M/c/K queue-ing model

Description

Returns the variance of the time spend in queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' VTq(x, ...)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/c/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCK.
```

```
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the variance
VTq(o_mmck)</pre>
```

304 VTq.o_MMCKK

 $VTq.o_MMCKK$

Returns the variance of the time spend in queue in the M/M/c/K/K queueing model

Description

Returns the variance of the time spend in queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' VTq(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/c/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the variance
VTq(o_mmckk)</pre>
```

VTq.o_MMInf 305

VTq.o_MMInf

Returns the variance of the time spend in queue in the M/M/Infinite queueing model

Description

Returns the variance of the time spend in queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' VTq(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/Infinite queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VTq(o_mminf)</pre>
```

306 VTq.o_MMInfKK

VTq.o_MMInfKK	Returns	the	variance	of	the	time	spend	in	queue	in	the
	M/M/Infinite/K/K queueing model										

Description

Returns the variance of the time spend in queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' VTq(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/Infinite/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the variance
VTq(o_MMInfKK)</pre>
```

W 307

W

Returns the mean time spend in a queueing model (or network)

Description

Returns the mean time spend in a queueing model (or network)

Usage

```
W(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInf, o_OJN, o_MCON, o_MCCN, o_MCMN
. . . aditional arguments
```

Details

Returns the mean time spend in a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
W.o_MM1
W.o_MMC
W.o_MM1K
W.o_MMCK
W.o_MM1KK
W.o_MMCKK
W.o_MMCC
W.o_MMCC
W.o_MMInfKK
W.o_MMInf
W.o_OJN
W.o_MCON
W.o_MCCN
W.o_MCCN
```

308 W.o_CJN

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the W
W(o_mm1)</pre>
```

W.o_CJN

Returns the mean time spend in a Closed Jackson Network

Description

Returns the mean time spend in a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' W(x, \ldots)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns the mean time spend in a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_CJN.
```

W.o_MCCN 309

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
W(m_cjn1)
```

W.o_MCCN

Returns the mean time spend in a MultiClass Closed Network

Description

Returns the mean time spend in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' W(x, \ldots)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns the mean time spend in a MultiClass Closed Network

310 W.o_MCMN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

W(o_MCCN1)</pre>
```

W.o_MCMN

Returns the mean time spend in a MultiClass Mixed Network

Description

Returns the mean time spend in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' W(x, \ldots)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

W.o_MCON 311

Details

Returns the mean time spend in a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

W(o_mcmn1)</pre>
```

W.o_MCON

Returns the mean time spend in a MultiClass Open Network

Description

Returns the mean time spend in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' W(x, \ldots)
```

312 W.o_MM1

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Returns the mean time spend in a MultiClass Open Network

References

```
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
```

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

W(o_mcon1)</pre>
```

W.o_MM1

Returns the mean time spend in the M/M/1 queueing model

Description

Returns the mean time spend in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' W(x, \ldots)
```

W.o_MM1K 313

Arguments

```
x a object of class o_MM1 ... aditional arguments
```

Details

Returns the mean time spend in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)

## Build the model
o_mm1 <- QueueingModel(i_mm1)

## Returns the W
W(o_mm1)</pre>
```

W.o_MM1K

Returns the mean time spend in the M/M/1/K queueing model

Description

Returns the mean time spend in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' W(x, \ldots)
```

Arguments

```
x a object of class o_MM1K
... aditional arguments
```

314 W.o_MM1KK

Details

Returns the mean time spend in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the W
W(o_mm1k)</pre>
```

W.o_MM1KK

Returns the mean time spend in the M/M/1/K/K queueing model

Description

Returns the mean time spend in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' W(x, \ldots)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the mean time spend in the M/M/1/K/K queueing model

W.o_MMC 315

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the W
W(o_mm1kk)</pre>
```

W.o_MMC

Returns the mean time spend in the M/M/c queueing model

Description

Returns the mean time spend in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' W(x, \ldots)
```

Arguments

```
x a object of class o_MMC aditional arguments
```

Details

Returns the mean time spend in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

316 W.o_MMCC

See Also

```
QueueingModel.i_MMC.
```

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the W
W(o_mmc)</pre>
```

W.o_MMCC

Returns the mean time spend in the M/M/c/c queueing model

Description

Returns the mean time spend in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' W(x, \ldots)
```

Arguments

x a object of class o_MMCC aditional arguments

Details

Returns the mean time spend in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

W.o_MMCK 317

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the W
W(o_mmcc)</pre>
```

 $W.o_MMCK$

Returns the mean time spend in the M/M/c/K queueing model

Description

Returns the mean time spend in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' W(x, \ldots)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the mean time spend in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

318 W.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the W
W(o_mmck)</pre>
```

W.o_MMCKK

Returns the mean time spend in the M/M/c/K/K queueing model

Description

Returns the mean time spend in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' W(x, \ldots)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the mean time spend in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

W.o_MMCKM 319

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the W
W(o_mmckk)</pre>
```

 $W.o_MMCKM$

Returns the mean time spend in the M/M/c/K/m queueing model

Description

Returns the mean time spend in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' W(x, \ldots)
```

Arguments

```
x a object of class o_MMCKM
... aditional arguments
```

Details

Returns the mean time spend in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

320 W.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the W
W(o_mmckm)</pre>
```

W.o_MMInf

Returns the time spend in the M/M/Infinite queueing model

Description

Returns the mean time spend in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' W(x, \ldots)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the mean time spend in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

W.o_MMInfKK 321

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the W
W(o_mminf)</pre>
```

W.o_MMInfKK

Returns the mean time spend in the M/M/Infinite/K/K queueing model

Description

Returns the mean time spend in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' W(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Returns the mean time spend in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

322 W.o_OJN

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the W
W(o_MMInfKK)</pre>
```

W.o_OJN

Returns the mean time spend in an Open Jackson Network

Description

Returns the mean time spend in an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN' W(x, \ldots)
```

Arguments

```
x a object of class o_OJN
... aditional arguments
```

Details

Returns the mean time spend in an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_OJN.
```

Wc 323

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
W(o_ojn)</pre>
```

Wc

Returns the vector with each class mean time spend on a multiclass queueing network

Description

Returns the vector with each class mean time spend on a multiclass queueing network

Usage

```
Wc(x, ...)
```

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Returns the vector with each class mean time spend on a multiclass queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

324 Wc.o_MCCN

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Wc.o_MCON
Wc.o_MCCN
Wc.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Wc(o_mcon1)</pre>
```

Wc.o_MCCN

Returns the vector with each class mean time spend on a MultiClass Closed Network

Description

Returns the vector with each class mean time spend on a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' Wc(x, \ldots)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Wc.o_MCMN 325

Details

Returns the vector with each class mean time spend on a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Wc(o_MCCN1)</pre>
```

Wc.o_MCMN

Returns the vector with each class mean time spend on a MultiClass Mixed Network

Description

Returns the vector with each class mean time spend on a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Wc(x, ...)
```

326 Wc.o_MCON

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Returns the vector with each class mean time spend on a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Wc(o_mcmn1)</pre>
```

Wc.o_MCON

Returns the vector with each class mean time spend on a MultiClass Open Network

Description

Returns the vector with each class mean time spend on a MultiClass Open Network

Wc.o_MCON 327

Usage

```
## S3 method for class 'o_MCON' Wc(x, ...)
```

Arguments

```
x a object of class o_MCON
```

... aditional arguments

Details

Returns the vector with each class mean time spend on a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wc(o_mcon1)</pre>
```

328 Wck

Wck

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Queueing Network

Description

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Queueing Network

Usage

```
Wck(x, ...)
```

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Queueing Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Wck.o_MCON
Wck.o_MCCN
Wck.o_MCMN
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")</pre>
```

Wck.o_MCCN 329

```
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wck(o_mcon1)</pre>
```

Wck.o_MCCN

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Closed Network

Description

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' Wck(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCCN.
```

Wck.o_MCMN

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Wck(o_MCCN1)</pre>
```

Wck.o_MCMN

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Mixed Network

Description

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Wck(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Wck.o_MCON 331

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Wck(o_mcmn1)</pre>
```

Wck.o_MCON

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Open Network

Description

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Wck(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Open Network

332 Wk

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
{\tt Queueing Model.i\_MCON}.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Wck(o_mcon1)</pre>
```

Wk

Generic S3 method to return the mean time spend in each node (or server) of a network

Description

Generic S3 method to return the mean time spend in each node (or server) of a network

Usage

```
Wk(x, ...)
```

Arguments

```
x a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN ... aditional arguments
```

Details

Generic S3 method to return the mean time spend in each node (or server) of a network

Wk.o_CJN 333

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Wk.o_OJN
Wk.o_CJN
Wk.o_MCON
Wk.o_MCCN
Wk.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Wk(o_mcon1)</pre>
```

Wk.o_CJN

Returns the vector with the mean time spend in each node (server) of a Closed Jackson Network

Description

Returns the vector with the mean time spend in each node (server) of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' Wk(x, ...)
```

334 *Wk.o_CJN*

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns the vector with the mean time spend in each node (server) of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)</pre>
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Wk(m_cjn1)
```

Wk.o_MCCN 335

Wk.o MCCN	Returns a vector with the mean time spend in each node (server) of a
MC. O_FICCIT	MultiClass Closed Network

Description

Returns a vector with the mean time spend in each node (server) of a MultiClass Closed Network

Usage

```
## S3 method for class 'o\_MCCN' Wk(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns a vector with the mean time spend in each node (server) of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)</pre>
```

336 Wk.o_MCMN

```
Wk(o_MCCN1)
```

Wk.o_MCMN

Returns a matrix with the mean time spend in each node (server) of a MultiClass Mixed Network

Description

Returns a matrix with the mean time spend in each node (server) of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o\_MCMN' Wk(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Returns a matrix with the mean time spend in each node (server) of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)</pre>
```

Wk.o_MCON 337

```
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Wk(o_mcmn1)</pre>
```

Wk.o_MCON

Returns a matrix with the mean time spend in each node (server) of a MultiClass Open Network

Description

Returns a matrix with the mean time spend in each node (server) of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Wk(x, \ldots)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Returns a matrix with the mean time spend in each node (server) of a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCON.
```

338 Wk.o_OJN

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Wk(o_mcon1)</pre>
```

Wk.o_OJN

Returns the vector with the mean time spend in each node (server) of an Open Jackson Network

Description

Returns the vector with the mean time spend in each node (server) of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN' Wk(x, ...)
```

Arguments

x a object of class o_OJN
... aditional arguments

Details

Returns the vector with the mean time spend in each node (server) of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

Wq 339

See Also

```
QueueingModel.i_OJN.
```

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)

ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)

m_ojn1 <- QueueingModel(ojn1)

Wk(m_ojn1)</pre>
```

Wq

Returns the mean time spend in queue in a queueing model

Description

Returns the mean time spend in queue in a queueing model

Usage

```
Wq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
... aditional arguments
```

Details

Returns the mean time spend in queue in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

340 Wq.o_MM1

See Also

```
Wq.o_MM1
Wq.o_MMC
Wq.o_MM1K
Wq.o_MMCK
Wq.o_MM1KK
Wq.o_MMCKK
Wq.o_MMCCK
Wq.o_MMCKK
Wq.o_MMCKM
Wq.o_MMInfKK
Wq.o_MMInf
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wq
Wq(o_mm1)</pre>
```

Wq.o_MM1

Returns the mean time spend in queue in the M/M/1 queueing model

Description

Returns the mean time spend in queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' Wq(x, ...)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the mean time spend in queue in the M/M/1 queueing model

Wq.o_MM1K 341

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wq
Wq(o_mm1)</pre>
```

Wq.o_MM1K

Returns the mean time spend in queue in the M/M/1/K queueing model

Description

Returns the mean time spend in queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' Wq(x, ...)
```

Arguments

```
x a object of class o_MM1K ... aditional arguments
```

Details

Returns the mean time spend in queue in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

342 Wq.o_MM1KK

See Also

```
QueueingModel.i_MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the Wq
Wq(o_mm1k)</pre>
```

Wq.o_MM1KK

Returns the mean time spend in queue in the M/M/1/K/K queueing model

Description

Returns the mean time spend in queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' Wq(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1KK.
```

Wq.o_MMC

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the Wq
Wq(o_mm1kk)</pre>
```

Wq.o_MMC

Returns the mean time spend in queue in the M/M/c queueing model

Description

Returns the mean time spend in queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' Wq(x, ...)
```

Arguments

x a object of class o_MMC ... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

Wq.o_MMCC

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Wq
Wq(o_mmc)</pre>
```

Wq.o_MMCC

Returns the mean time spend in queue in the M/M/c/c queueing model

Description

Returns the mean time spend in queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' Wq(x, \ldots)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 ${\it Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.}$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

Wq.o_MMCK 345

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the Wq
Wq(o_mmcc)</pre>
```

Wq.o_MMCK

Returns the mean time spend in queue in the M/M/c/K queueing model

Description

Returns the mean time spend in queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' Wq(x, \ldots)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

346 Wq.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Wq
Wq(o_mmck)</pre>
```

Wq.o_MMCKK

Returns the mean time spend in queue in the M/M/c/K/K queueing model

Description

Returns the mean time spend in queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' Wq(x, ...)
```

Arguments

x a object of class o_MMCKK

... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

Wq.o_MMCKM 347

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Wq
Wq(o_mmckk)</pre>
```

Wq.o_MMCKM

Returns the mean time spend in queue in the M/M/c/K/m queueing model

Description

Returns the mean time spend in queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' Wq(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

348 Wq.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Wq
Wq(o_mmckm)</pre>
```

Wq.o_MMInf

Returns the mean time spend in queue in the M/M/Infinite queueing model

Description

Returns the mean time spend in queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' Wq(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

Wq.o_MMInfKK 349

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Wq
Wq(o_mminf)</pre>
```

Wq.o_MMInfKK

Returns the mean time spend in queue in the M/M/Infinite/K/K queueing model

Description

Returns the mean time spend in queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' Wq(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

350 Wqq

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Wq
Wq(o_MMInfKK)</pre>
```

Wqq

Returns the mean time spend in queue when there is queue in a queueing model

Description

Returns the mean time spend in queue when there is queue in a queueing model

Usage

```
Wqq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
. . . . aditional arguments
```

Details

Returns the mean time spend in queue when there is queue in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
Wqq.o_MM1
Wqq.o_MMC
Wqq.o_MM1K
Wqq.o_MMCK
Wqq.o_MM1KK
Wqq.o_MMCKK
Wqq.o_MMCCK
```

Wqq.o_MM1 351

```
Wqq.o_MMCKM
Wqq.o_MMInfKK
Wqq.o_MMInf
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wqq
Wqq(o_mm1)</pre>
```

Wqq.o_MM1

Returns the mean time spend in queue when there is queue in the M/M/1 queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' Wqq(x, ...)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the mean time spend in queue when there is queue in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1.
```

352 Wqq.o_MM1K

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)

## Build the model
o_mm1 <- QueueingModel(i_mm1)

## Returns the Wqq
Wqq(o_mm1)</pre>
```

Wqq.o_MM1K

Returns the mean time spend in queue when there is queue in the M/M/1/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' Wqq(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1K.
```

Wqq.o_MM1KK 353

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the Wqq
Wqq(o_mm1k)</pre>
```

Wqq.o_MM1KK

Returns the mean time spend in queue when there is queue in the M/M/1/K/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' Wqq(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1KK.
```

Wqq.o_MMC

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the Wqq
Wqq(o_mm1kk)</pre>
```

Wqq.o_MMC

Returns the mean time spend in queue when there is queue in the M/M/c queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' Wqq(x, ...)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

Wqq.o_MMCC 355

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Wqq
Wqq(o_mmc)</pre>
```

Wqq.o_MMCC

Returns the mean time spend in queue when there is queue in the M/M/c/c queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' Wqq(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

356 Wqq.o_MMCK

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the Wqq
Wqq(o_mmcc)</pre>
```

Wqq.o_MMCK

Returns the mean time spend in queue when there is queue in the M/M/c/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' Wqq(x, ...)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

Wqq.o_MMCKK 357

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)

## Build the model
o_mmck <- QueueingModel(i_mmck)

## Returns the Wqq
Wqq(o_mmck)</pre>
```

Wqq.o_MMCKK

Returns the mean time spend in queue when there is queue in the M/M/c/K/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' Wqq(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

358 Wqq.o_MMCKM

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Wqq
Wqq(o_mmckk)</pre>
```

Wqq.o_MMCKM

Returns the mean time spend in queue when there is queue in the M/M/c/K/m queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' Wqq(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

Wqq.o_MMInf 359

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Wqq
Wqq(o_mmckm)</pre>
```

Wqq.o_MMInf

Returns the mean time spend in queue when there is queue in the M/M/Infinite queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' Wqq(x, ...)
```

Arguments

x a object of class o_MMInf

... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

360 Wqq.o_MMInfKK

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Wqq
Wqq(o_mminf)</pre>
```

Wqq.o_MMInfKK

Returns the mean time spend in queue when there is queue in the M/M/Infinite/K/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' Wqq(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

WWs 361

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Wqq
Wqq(o_MMInfKK)</pre>
```

WWs

Returns the normalized mean response time in a queueing model

Description

Returns the normalized mean response time in a queueing model

Usage

```
WWs(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the normalized mean response time in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
WWs.o_MM1KK.
```

362 WWs.o_MM1KK

Examples

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the WWs
WWs(o_mm1kk)</pre>
```

WWs.o_MM1KK

Returns the normalized mean response time in the M/M/1/K/K queue-ing model

Description

Returns the normalized mean response time in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' WWs(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the normalized mean response time in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

WWs.o_MM1KK 363

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the WWs
WWs(o_mm1kk)</pre>
```

Index

* B_erlang	NewInput.MM1KK, 113
B_erlang, 10	Pn.o_MM1KK, 128
* BnD	print.summary.o_MM1KK,144
CheckInput.i_BnD, 12	QueueingModel.i_MM1KK, 162
L.o_BnD, 49	Report.o_MM1KK, 179
NewInput.BnD, 104	RO.o_MM1KK, 191
Pn.o_BnD, 124	SP, 210
print.summary.o_BnD, 137	SP.o_MM1KK, 211
QueueingModel.i_BnD, 154	summary.o_MM1KK,220
Report.o_BnD, 172	Throughput.o_MM1KK, 236
summary.o_BnD, 212	VN.o_MM1KK, 270
* C_erlang	VNq.o_MM1KK, 281
C_erlang, 29	VT.o_MM1KK, 292
* Closed Jackson Network	VTq.o_MM1KK, 300
CheckInput.i_CJN, 13	W.o_MM1KK, 314
Inputs.o_CJN, 32	Wq.o_MM1KK, 342
L.o_CJN, 50	Wqq.o_MM1KK, 353
Lk.o_CJN, 76	WWs, 361
NewInput.CJN, 105	WWs.o_MM1KK, 362
print.summary.o_CJN, 138	* M/M/1/K
QueueingModel.i_CJN, 155	CheckInput.i_MM1K, 18
Report.o_CJN, 173	Inputs.o_MM1K,38
ROk.o_CJN, 205	L.o_MM1K, 56
summary.o_CJN, 213	Lq.o_MM1K, 84
Throughput.o_CJN, 230	Lqq.o_MM1K, 95
Throughputk.o_CJN,258	NewInput.MM1K, 112
Throughputn.o_CJN, 265	Pn.o_MM1K, 127
W.o_CJN, 308	print.summary.o_MM1K,143
Wk.o_CJN, 333	QueueingModel.i_MM1K, 161
* CompareQueueingModels	Report.o_MM1K, 178
CompareQueueingModels, 28	RO.o_MM1K, 190
* Engset	summary.o_MM1K, 219
Engset, 30	Throughput.o_MM1K, 235
* M/M/1/K/K	VN.o_MM1K, 269
CheckInput.i_MM1KK, 19	$VNq.o_MM1K, 280$
Inputs.o_MM1KK, 39	VT.o_MM1K, 291
L.o_MM1KK, 57	VTq.o_MM1K, 299
Lq.o_MM1KK, 85	W.o_MM1K, 313
Lqq.o_MM1KK, 96	
Eqq.0_1111KK, 70	Wq.o_MM1K, 341

Wqq.o_MM1K, 352	W.o_MMInfKK, 321
* M/M/1	Wq.o_MMInfKK, 349
CheckInput.i_MM1, 17	Wqq.o_MMInfKK, 360
<pre>Inputs.o_BnD, 31</pre>	* M/M/Infinite
Inputs.o_MM1,37	<pre>CheckInput.i_MMInf, 25</pre>
L.o_MM1, 55	<pre>Inputs.o_MMInf, 45</pre>
Lq, 82	L.o_MMInf, 63
Lq.o_MM1, 83	Lq.o_MMInf,91
Lqq, 93	Lqq.o_MMInf, 102
Lqq.o_MM1,94	NewInput.MMInf, 119
NewInput.MM1, 111	Pn.o_MMInf, 134
Pn.o_MM1, 125	<pre>print.summary.o_MMInf, 150</pre>
print.summary.o_MM1,142	QueueingModel.i_MMInf, 168
QueueingModel.i_MM1, 160	Report.o_MMInf, 185
Report, 171	RO.o_MMInf, 197
Report.o_MM1, 177	summary.o_MMInf, 226
RO.o_MM1, 189	Throughput.o_MMInf, 242
summary.o_MM1, 218	VN.o_MMInf, 276
Throughput.o_MM1, 234	VNq.o_MMInf, 287
VN.o_MM1, 268	VT.o_MMInf, 295
VNq, 278	VTg.o_MMInf, 305
VNq.o_MM1, 279	W.o_MMInf, 320
VT.o_MM1, 290	Wg.o_MMInf, 348
VTq, 297	Wqq.o_MMInf, 359
VTq.o_MM1, 298	* M/M/c/K/K
W.o_MM1, 312	CheckInput.i_MMCKK, 23
Wq, 339	Inputs.o_MMCKK, 43
Wq.o_MM1, 340	L.o_MMCKK, 61
Wqq, 350	Lq.o_MMCKK, 89
Wqq.o_MM1, 351	Lqq.o_MMCKK, 100
* M/M/Infinite/K/K	NewInput.MMCKK, 117
CheckInput.i_MMInfKK, 26	Pn.o_MMCKK, 132
Inputs.o_MMInfKK, 46	print.summary.o_MMCKK, 148
L.o_MMInfKK, 64	QueueingModel.i_MMCKK, 166
Lq.o_MMInfKK, 92	Report.o_MMCKK, 183
Lgg.o_MMInfKK, 103	RO.o_MMCKK, 195
NewInput.MMInfKK, 120	summary.o_MMCKK, 224
Pn.o_MMInfKK, 135	Throughput.o_MMCKK, 240
print.summary.o_MMInfKK, 151	VN.o_MMCKK, 274
QueueingModel.i_MMInfKK, 169	VNq.o_MMCKK, 285
Report.o_MMInfKK, 186	VTq.o_MMCKK, 304
RO.o_MMInfKK, 198	W.o_MMCKK, 318
summary.o_MMInfKK, 227	Wg.o_MMCKK, 346
Throughput.o_MMInfKK, 243	Wqq.o_MMCKK, 357
VN.o_MMInfKK, 277	* M/M/c/K/m
VNq.o_MMInfKK, 288	CheckInput.i_MMCKM, 24
VT.o_MMInfKK, 296	Inputs.o_MMCKM, 44
VTq.o_MMInfKK, 306	L.o_MMCKM, 62
1 · · = - · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Lq.o_MMCKM, 90	Throughput.o_MMCC, 238
Lgq.o_MMCKM, 101	VN.o_MMCC, 272
NewInput.MMCKM, 118	VNq.o_MMCC, 283
Pn.o_MMCKM, 133	VT.o_MMCC, 294
print.summary.o_MMCKM, 149	VTq.o_MMCC, 302
QueueingModel.i_MMCKM, 167	W.o_MMCC, 316
Report.o_MMCKM, 184	Wq.o_MMCC, 344
RO.o_MMCKM, 196	Wqq.o_MMCC, 355
summary.o_MMCKM, 225	* M/M/c
Throughput.o_MMCKM, 241	CheckInput.i_MMC, 20
VN.o_MMCKM, 275	Inputs.o_MMC,40
VNq.o_MMCKM, 286	L.o_MMC, 58
W.o_MMCKM, 319	Lq.o_MMC, 86
Wq.o_MMCKM, 347	Lqq.o_MMC, 97
Wqq.o_MMCKM, 358	NewInput.MMC, 114
* M/M/c/K	Pn.o_MMC, 129
CheckInput.i_MMCK,22	print.summary.o_MMC, 145
Inputs.o_MMCK, 42	QueueingModel.i_MMC, 163
$L.o_MMCK, 60$	Report.o_MMC, 180
Lq.o_MMCK, 88	RO.o_MMC, 192
Lqq.o_MMCK, 99	summary.o_MMC, 221
NewInput.MMCK, 116	Throughput.o_MMC, 237
Pn.o_MMCK, 131	VN.o_MMC, 271
print.summary.o_MMCK, 147	VNq.o_MMC, 282
QueueingModel.i_MMCK, 165	VT.o_MMC, 293
Report.o_MMCK, 182	$VTq.o_MMC, 301$
RO.o_MMCK, 194	W.o_MMC, 315
summary.o_MMCK, 223	Wq.o_MMC, 343
Throughput.o_MMCK, 239	Wqq.o_MMC, 354
VN.o_MMCK, 273	* MultiClass Closed Network
VNq.o_MMCK, 284	CheckInput.i_MCCN, 14
VTq.o_MMCK, 303	Inputs.o_MCCN, 34
W.o_MMCK, 317	L.o_MCCN, 51
Wq.o_MMCK, 345	Lc.o_MCCN, 67
Wqq.o_MMCK, 356	Lck.o_MCCN, 72
* M/M/c/c	Lk.o_MCCN, 78
CheckInput.i_MMCC, 21	NewInput.MCCN, 107
Inputs.o_MMCC, 41	print.summary.o_MCCN, 139
L.o_MMCC, 59	QueueingModel.i_MCCN, 156
Lq.o_MMCC, 87	Report.o_MCCN, 174
Lqq.o_MMCC, 98	ROCK.o_MCCN, 200
NewInput.MMCC, 115	ROK. o_MCCN, 206
Pn.o_MMCC, 130	summary.o_MCCN, 214
print.summary.o_MMCC, 146	Throughput a MCCN, 231
QueueingModel.i_MMCC, 164	Throughput of a MCCN 251
Report.o_MMCC, 181	Throughput on 255
RO.o_MMCC, 193	Throughput on a MCCN 256
summary.o_MMCC, 222	Throughputcn.o_MCCN, 256

Throughputk.o_MCCN, 259	Wk.o_MCON, 337
W.o_MCCN, 309	* MultiClass Queueing Models
Wc.o_MCCN, 324	Lck, 70
Wck.o_MCCN, 329	* MultiClass Queueing Networks
Wk.o_MCCN, 335	R0ck, 199
* MultiClass Mixed Network	* MultiClass Queueing Network
CheckInput.i_MCMN, 15	Lc, 66
Inputs.o_MCMN, 35	Throughputc, 245
L.o_MCMN, 52	Throughputck, 250
Lc.o_MCMN, 68	Wc, 323
Lck.o_MCMN, 73	Wck, 328
Lk.o_MCMN, 79	* Open Jackson Network
NewInput.MCMN, 108	CheckInput.i_OJN, 27
print.summary.o_MCMN, 140	Inputs.o_OJN,47
QueueingModel.i_MCMN, 157	L.o_OJN, 65
Report.o_MCMN, 175	Lk.o_OJN, 81
ROck.o_MCMN, 201	NewInput.OJN, 121
ROk.o_MCMN, 207	Pn.o_OJN, 136
summary.o_MCMN, 215	print.summary.o_OJN, 152
Throughput.o_MCMN, 232	QueueingModel.i_OJN, 170
Throughputc.o_MCMN, 247	Report.o_OJN, 187
Throughputck.o_MCMN, 252	ROk.o_OJN, 209
Throughputk.o_MCMN, 261	summary.o_OJN,228
W.o_MCMN, 310	Throughput.o_OJN, 244
Wc.o_MCMN, 325	Throughputk.o_OJN, 263
Wck.o_MCMN, 330	W.o_OJN, 322
Wk.o_MCMN, 336	Wk.o_OJN, 338
* MultiClass Open Network	* Queueing Models
CheckInput.i_MCON, 16	CheckInput, 11
Inputs.o_MCON, 36	Inputs, 30
L.o_MCON, 54	L, 48
Lc.o_MCON, 69	Lk, 75
Lck.o_MCON, 74	Pn, 123
Lk.o_MCON, 80	QueueingModel, 153
NewInput.MCON, 110	RO, 188
print.summary.o_MCON, 141	Throughput, 229
QueueingModel.i_MCON, 159	VN, 267
Report.o_MCON, 176	VT, 289
ROck.o_MCON, 202	W, 307
ROk.o_MCON, 208	* Queueing Networks
summary.o_MCON, 217	ROk, 203 * Queueing Network
Throughput.o_MCON, 233	* Quedeing Network Throughputk, 257
Throughputc.o_MCON, 249	Throughputh, 264
Throughputck.o_MCON, 253	Wk, 332
Throughputk.o_MCON, 262	* queueing
W.o_MCON, 311	* queueing queueing-package, 9
Wc.o_MCON, 326	queueing-package, y
Wck.o_MCON, 331	B_erlang, 10, 29, 30

C_erlang, <i>11</i> , 29	L.o_MCCN, 49, 51
CheckInput, 11	L.o_MCMN, <i>49</i> , 52
CheckInput.i_BnD, 12, 104, 154, 155	L.o_MCON, 49, 54
CheckInput.i_CJN, 13, 155, 156, 231, 259,	L.o_MM1, 49, 55
266	L.o_MM1K, 49, 56
CheckInput.i_MCCN, 14, 157, 232, 247, 252,	L.o_MM1KK, 49, 57
256, 260	L.o_MMC, 49, 58
CheckInput.i_MCMN, 15, 158, 233, 248, 253,	L.o_MMCC, 49, 59
261	L.o_MMCK, 49, 60
CheckInput.i_MCON, 16, 159, 234, 249, 254,	L.o_MMCKK, 49, 61
262	L.o_MMCKM, 49, 62
CheckInput.i_MM1, 12, 17, 111, 160, 235	L.o_MMInf, 49, 63, 197
CheckInput.i_MM1K, 12, 18, 112, 161, 236	
CheckInput.i_MM1KK, 12, 19, 113, 162, 237	L.o_MMInfKK, 49, 64
CheckInput.i_MMC, 12, 20, 114, 163, 238	L.o_OJN, 49, 65
CheckInput.i_MMCC, 12, 20, 114, 103, 238 CheckInput.i_MMCC, 12, 21, 115, 164, 239	Lc, 66
CheckInput.i_MMCK, 12, 21, 113, 104, 239 CheckInput.i_MMCK, 12, 22, 116, 165, 240	Lc.o_MCCN, 66, 67
·	Lc.o_MCMN, 66, 68
CheckInput.i_MMCKK, 12, 23, 117, 166, 241	Lc.o_MCON, 66, 69
CheckInput.i_MMCKM, 12, 24, 118, 167, 242	Lck, 70
CheckInput.i_MMInf, 12, 25, 119, 168, 242	Lck.o_MCCN, 71, 72
CheckInput.i_MMInfKK, 12, 26, 120, 169, 243	Lck.o_MCMN, <i>71</i> , 73
CheckInput.i_OJN, 12, 27, 170, 244, 264	Lck.o_MCON, 71, 74
CompareQueueingModels, 28	Lk, 75
CompareQueueingModels2	Lk.o_CJN, 76, 76
(CompareQueueingModels), 28	Lk.o_MCCN, 76, 78
	Lk.o_MCMN, 76, 79
Engset, 30	Lk.o_MCON, 76, 80
	Lk.o_OJN, 76, 81
Inputs, 30	Lq, 82
Inputs.o_BnD, 31	Lq.o_MM1, 83, 83
Inputs.o_CJN, <i>31</i> , 32	Lq.o_MM1K, 83, 84
Inputs.o_MCCN, <i>31</i> , 34	Lq.o_MM1KK, 83, 85
Inputs.o_MCMN, <i>31</i> , 35	
Inputs.o_MCON, <i>31</i> , 36	Lq.o_MMC, 83, 86
Inputs.o_MM1, <i>31</i> , 37	Lq.o_MMCC, 83, 87
Inputs.o_MM1K, <i>31</i> , 38	Lq.o_MMCK, 83, 88
Inputs.o_MM1KK, <i>31</i> , 39	Lq.o_MMCKK, 83, 89
Inputs.o_MMC, <i>31</i> , 40	Lq.o_MMCKM, 83, 90
Inputs.o_MMCC, <i>31</i> , 41	Lq.o_MMInf, 83, 91
Inputs.o_MMCK, <i>31</i> , 42	Lq.o_MMInfKK, <i>83</i> , 92
Inputs.o_MMCKK, <i>31</i> , 43	Lqq, 93
Inputs.o_MMCKM, <i>31</i> , 44	Lqq.o_MM1, <i>93</i> , 94
Inputs.o_MMInf, 31, 45	Lqq.o_MM1K, <i>93</i> , 95
Inputs.o_MMInfKK, 31, 46	Lqq.o_MM1KK, <i>93</i> , <i>96</i>
Inputs.o_OJN, <i>31</i> , 47	Lqq.o_MMC, 93, 97
	Lqq.o_MMCC, 93, 98
L, 48	Lqq.o_MMCK, 93, 99
L.o_BnD, 49	Lqq.o_MMCKK, 93, 100
L.o_CJN, 49, 50	Lqq.o_MMCKM, 94, 101
•	., – ,

print.summary.o_MMCC, 146
print.summary.o_MMCK, 147
print.summary.o_MMCKK, 148
print.summary.o_MMCKM, 149
print.summary.o_MMInf, 150
print.summary.o_MMInfKK, 151
print.summary.o_OJN, 152
, , , , , , , , , , , , , , , , , , , ,
Qn (Pn), 123
Qn.o_BnD (Pn.o_BnD), 124
Qn.o_MM1, <i>123</i>
Qn.o_MM1 (Pn.o_MM1), 125
Qn.o_MM1K, <i>123</i>
Qn.o_MM1K (Pn.o_MM1K), 127
Qn.o_MM1KK, <i>123</i>
Qn.o_MM1KK (Pn.o_MM1KK), 128
Qn.o_MMC, 123
Qn.o_MMC (Pn.o_MMC), 129
Qn.o_MMCC, 124
Qn.o_MMCC (Pn.o_MMCC), 130
Qn. o_MMCK, 123
Qn.o_MMCK (Pn.o_MMCK), 131
Qn.o_MMCKK, 123
Qn.o_MMCKK (Pn.o_MMCKK), 132
Qn.o_MMCKM, 124
Qn.o_MMCKM (Pn.o_MMCKM), 133
Qn.o_MMInf, 124
Qn.o_MMInf (Pn.o_MMInf), 134
Qn.o_MMInfKK, 124
Qn.o_MMInfKK (Pn.o_MMInfKK), 135
queueing (queueing-package), 9
queueing-package, 9
QueueingModel, 28, 153, 171
QueueingModel.i_BnD, 50, 125, 138, 154,
172, 213
QueueingModel.i_CJN, <i>51</i> , <i>77</i> , <i>106</i> , <i>138</i> , 155
173, 205, 214, 231, 259, 266, 308,
334
QueueingModel.i_MCCN, 52, 68, 72, 78, 108,
140, 156, 174, 201, 206, 215, 232,
247, 252, 256, 260, 310, 325, 329,
335
QueueingModel.i_MCMN, 53, 69, 73, 79, 109,
141, 157, 175, 202, 208, 216, 233,
248, 253, 261, 311, 326, 331, 336
QueueingModel.i_MCON, 54, 70, 75, 81, 110,
142, 154, 159, 177, 203, 209, 217,
234, 249, 254, 262, 312, 327, 332,
337

QueueingModel.i_MM1, 55, 84, 94, 126, 143,	Report.o_MMInf, 185
154, 160, 178, 190, 218, 235, 268,	Report.o_MMInfKK, 186
279, 290, 298, 313, 341, 351	Report.o_OJN, 187
QueueingModel.i_MM1K, 56, 57, 85, 95, 127,	RO, 188
<i>144</i> , <i>154</i> , 161, <i>178</i> , <i>191</i> , <i>219</i> , <i>236</i> ,	RO.o_MM1, <i>189</i> , 189
269, 270, 280, 291, 299, 314, 342,	RO.o_MM1K, <i>189</i> , 190
352	RO.o_MM1KK, <i>189</i> , 191
QueueingModel.i_MM1KK, 86, 96, 128, 145,	RO.o_MMC, 189, 192
154, 162, 179, 191, 212, 220, 237,	RO.o_MMCC, 189, 193
281, 292, 300, 315, 342, 353, 362	RO.o_MMCK, 189, 194
QueueingModel.i_MMC, 58, 87, 97, 129, 146,	RO.o_MMCKK, <i>189</i> , 195
154, 163, 180, 192, 221, 238, 271,	RO.o_MMCKM, <i>189</i> , 196
282, 293, 301, 316, 343, 354	RO.o_MMInf, <i>189</i> , 197
QueueingModel.i_MMCC, 59, 88, 98, 130, 146,	RO.o_MMInfKK, <i>189</i> , 198
154, 164, 181, 193, 222, 239, 272,	ROck, 199
283, 294, 302, 316, 344, 355	ROck.o_MCCN, 200, 200
QueueingModel.i_MMCK, 60, 89, 99, 131, 147,	
	ROCK.o_MCMN, 200, 201
154, 165, 182, 194, 223, 240, 273,	ROck.o_MCON, 200, 202
284, 303, 317, 345, 356	ROk, 203
QueueingModel.i_MMCKK, 61, 90, 100, 132,	ROk.o_CJN, 204, 205
148, 154, 166, 183, 195, 224, 241,	ROk. o_MCCN, 204, 206
274, 285, 304, 318, 346, 357	ROk.o_MCMN, 204, 207
QueueingModel.i_MMCKM, 62, 91, 101, 133,	ROk.o_MCON, <i>204</i> , 208
149, 154, 167, 184, 196, 225, 242,	ROk.o_OJN, <i>204</i> , 209
275, 286, 319, 347, 358	
QueueingModel.i_MMInf, 63, 91, 102, 134,	SP, 210
150, 154, 168, 185, 197, 226, 242,	SP.o_MM1KK, <i>211</i> , 211
276, 287, 295, 305, 320, 348, 359	summary.o_BnD, 212
QueueingModel.i_MMInfKK, 64, 92, 103, 135,	summary.o_CJN, 213
<i>151</i> , <i>154</i> , 169, <i>186</i> , <i>198</i> , 227, 243,	summary.o_MCCN, 214
277, 288, 296, 306, 321, 349, 360	summary.o_MCMN, 215
QueueingModel.i_OJN, 65, 82, 122, 136, 152,	summary.o_MCON, 217
154, 170, 187, 210, 228, 244, 264,	summary.o_MM1, 218
322, 339	summary.o_MM1K, 219
	summary.o_MM1KK, 220
Report, 171	summary.o_MMC, 221
Report.o_BnD, 172	summary.o_MMCC, 222
Report.o_CJN, 173	summary.o_MMCK, 223
Report.o_MCCN, 174	summary.o_MMCKK, 224
Report.o_MCMN, 175	summary.o_MMCKM, 225
Report.o_MCON, 176	summary.o_MMInf, 226
Report.o_MM1, 177	summary.o_MMInfKK, 227
Report.o_MM1K, 178	summary.o_OJN, 228
Report.o_MM1KK, 179	3ummar y . 0_0311, 220
Report.o_MMC, 180	Throughput, 229
Report.o_MMCC, 181	Throughput.o_CJN, 230, 230
Report.o_MMCK, 182	Throughput.o_MCCN, 230, 231
Report.o_MMCKK, 183	Throughput.o_MCMN, 230, 231 Throughput.o_MCMN, 230, 232
Report.o_MMCKM, 184	Throughput.o_MCON, <i>230</i> , 233

Throughput.o_MM1, 229, 234	VNq.o_MMCKM, 278, 286
Throughput.o_MM1K, 229, 235	VNq.o_MMInf, <i>278</i> , 287
Throughput.o_MM1KK, 229, 236	VNq.o_MMInfKK, <i>278</i> , 288
Throughput.o_MMC, 229, 237	VT, 289
Throughput.o_MMCC, 229, 238	VT.o_MM1, 289, 290
Throughput.o_MMCK, 229, 239	VT.o_MM1K, 289, 291
Throughput.o_MMCKK, 229, 240	VT.o_MM1KK, 289, 292
Throughput.o_MMCKM, 229, 241	VT.o_MMC, 289, 293
Throughput.o_MMInf, 230, 242	VT.o_MMCC, 289, 294
Throughput.o_MMInfKK, 229, 243	VT.o_MMInf, 289, 295
Throughput.o_OJN, 230, 244	VT.o_MMInfKK, 289, 296
Throughputc, 245	VTq, 297
Throughputc.o_MCCN, 246, 246	VTq.o_MM1, 297, 298
Throughputc.o_MCMN, 247	VTq.o_MM1K, 297, 299
Throughputc.o_MCON, 246, 249	VTq.o_MM1KK, 297, 300
Throughputck, 250	VTq.o_MMC, 297, 301
Throughputck.o_MCCN, 250, 251	VTq.o_MMCC, 297, 302
Throughputck.o_MCMN, 250, 251	VTq.o_MMCK, 297, 303
Throughputck.o_MCON, 250, 252	
	VTq.o_MMCKK, 297, 304
Throughputen, 255	VTq.o_MMInf, 297, 305
Throughputch.o_MCCN, 255, 256	VTq.o_MMInfKK, 297, 306
Throughputk, 257	W, 307
Throughputk.o_CJN, 258, 258	W.o_CJN, 308
Throughputk.o_MCCN, 258, 259	- /
Throughputk.o_MCMN, 258, 261	W.o_MCCN, 307, 309
Throughputk.o_MCON, 258, 262	W.o_MCMN, 307, 310
Throughputk.o_OJN, 258, 263	W.o_MCON, 307, 311
Throughputn, 264	W.o_MM1, 307, 312
Throughputn.o_CJN, 265, 265	W.o_MM1K, 307, 313
NW 267	W.o_MM1KK, 307, 314
VN, 267	W.o_MMC, 307, 315
VN.o_MM1, 267, 268	W.o_MMCC, <i>307</i> , 316
VN.o_MM1K, 267, 269	W.o_MMCK, <i>307</i> , 317
VN.o_MM1KK, 267, 270	W.o_MMCKK, <i>307</i> , 318
VN.o_MMC, 267, 271	W.o_MMCKM, <i>307</i> , 319
VN.o_MMCC, 267, 272	W.o_MMInf, <i>307</i> , 320
VN.o_MMCK, 267, 273	W.o_MMInfKK, <i>307</i> , 321
VN.o_MMCKK, 267, 274	W.o_OJN, <i>307</i> , 322
VN.o_MMCKM, 267, 275	Wc, 323
VN.o_MMInf, 267, 276	Wc.o_MCCN, <i>324</i> , 324
VN.o_MMInfKK, <i>267</i> , 277	Wc.o_MCMN, <i>324</i> , 325
VNq, 278	Wc.o_MCON, <i>324</i> , 326
VNq.o_MM1, 278, 279	Wck, 328
VNq.o_MM1K, 278, 280	Wck.o_MCCN, 328, 329
VNq.o_MM1KK, 278, 281	Wck.o_MCMN, 328, 330
VNq.o_MMC, 282	Wck.o_MCON, 328, 331
VNq.o_MMCC, 278, 283	Wk, 332
VNq.o_MMCK, 278, 284	Wk.o_CJN, <i>333</i> , 333
VNq.o_MMCKK, 278, 285	Wk.o_MCCN, 333, 335
	• •

```
Wk.o_MCMN, 333, 336
Wk.o_MCON, 333, 337
Wk.o_OJN, 333, 338
Wq, 339
Wq.o_MM1, 340, 340
Wq.o_MM1K, 340, 341
Wq.o_MM1KK, 340, 342
Wq.o_MMC, 340, 343
Wq.o_MMCC, 340, 344
Wq.o_MMCK, 340, 345
Wq.o_MMCKK, 340, 346
Wq.o_MMCKM, 340, 347
Wq.o_MMInf, 340, 348
Wq.o_MMInfKK, 340, 349
Wqq, 350
Wqq.o_MM1, 350, 351
Wqq.o_MM1K, 350, 352
Wqq.o_MM1KK, 350, 353
Wqq.o_MMC, 350, 354
Wqq.o_MMCC, 350, 355
Wqq.o_MMCK, 350, 356
Wqq.o_MMCKK, 350, 357
Wqq.o_MMCKM, 351, 358
Wqq.o_MMInf, 351, 359
Wqq.o_MMInfKK, 351, 360
WWs, 361
WWs.o_MM1KK, 361, 362
```