B

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR DEPARTMENT OF CHEMICAL ENGINEERING

MID SEMESTER EXAMINATION 2013-14 (SPRING) COMPUTER AIDED PROCESS ENGINEERING (CH30016)

Number of students: 86;

Total time: 2 hrs.

Total marks 30

Answer ALL questions

1.

Stream No. and Type	CP (MW/ °C)	T _s (°C)	(°C)
1. Hot	0.15	250	40
2. Hot	0.25	200	80
3. Cold	0.20	20	180
4. Cold	0.30	140	230

- (a) From the above stream table find out the Pinch Temperature and the minimum hot and cold utility required for the process. Assume minimum approach temperature between a hot and cold stream (ΔT_{min}) to be 10 ^{O}C .
- (b) Place the Heat Exchanger matches taking the above and below the Pinch process separately and then combine them for the overall design for maximum energy recovery (MER).
- (c) What is the minimum number of heat transfer unit for this heat exchanger network. Identify the "Loop"s across the Pinch and break it by relaxing energy along a "Path", thereby redesigning the heat exchanger network for minimum number of unit. (3+4+3=10)
- 2. (a) What is the significance of "Pinch Temperature" and ΔT_{min} in a process?
 - (b) Describe the algorithm for placing a Pinch-match. What are the logic behind the different stream splitting in that algorithm?
 - (c) How do you place matches in the following hypothetical case:

	Pinch	CP
H1		5.0
H2		1.0
C1		4.0
C1 C2	<u> </u>	3.0
		(4+3+3=10)

- 3. (a) What do you mean by "Lumped parameter" and "Distributed parameter" model?
 - (b) Develop the Lumped parameter model of a jacketed CSTR having a reaction **A** + **B** → **C**. State the assumptions, identify the variables and the governing equations and develop the IFD of the solution scheme.

$$(2 + 8 = 10)$$

NOTE: Do not ask any question at the Examination Hall. If in doubt, make suitable assumptions and proceed. Handwriting and figures should be neat. Parts of a question should be answered together.