Exercises: Preliminaries (Solutions)

3. Recall that the (relative) condition number of the function f at x is given by

$$\kappa_f(x) = \left| \frac{xf'(x)}{f(x)} \right|.$$

(a) Calculation shows that

$$\kappa_f(x) = \frac{x}{\cosh x \sinh x} \quad \text{or} \quad \frac{4xe^{2x}}{e^{4x} - 1}.$$

Using the exponential form, one can confirm that $\kappa_f(x)$ does not blow up anywhere.

(b) When simplified,

$$\kappa_f(x) = \left| \frac{xe^x}{e^x - 1} - 1 \right|$$

Some notable limits are

$$\lim_{x \to 0} \kappa_f(x) = 0,$$

$$\lim_{x \to \infty} \kappa_f(x) = \infty,$$

$$\lim_{x \to -\infty} \kappa_f(x) = 1.$$

Note that $\kappa_f(x)$ blows up as $x \to \infty$.

(c) Another calculus exercise leads to

$$\kappa_f(x) = \left| 1 - \frac{x \sin(x)}{1 - \cos(x)} \right|.$$

It is not very difficult to see that $\lim_{x\to 0} \kappa_f(x) = 1$, even though the denominator of the second term approaches 0 as $x\to 0$. However, there are infinitely many nonzero x at which $1-\cos(x)$ vanishes while $x\sin(x)$ does not, namely, at $x=2n\pi$, where n is a nonzero integer. Therefore, $\kappa_f(x)\to \infty$ as $x\to 2n\pi$, where $n\in\mathbb{Z}\setminus\{0\}$.