

与代做 CS编程辅导 Information Technology

FIT1006 Business mation Analysis

Assignment Project Exam Help

Lecture 18

Email: tutorcs@163.com

Hypothesis Testing (Part 2)

https://tutorcs.com

Topics covered: 代写代做 CS编程辅导

- p-value
- Type I and II
- The significante cand powers of a test.

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

The Steps of Hypothesis Testing

- 1. Decide on a null esis H₀.
- 3. Decide on a significance level.
- 4. Calculate the appropriate test statistic.
- 5. Find from tables the corresponding tabulated test statistic. Email: tutorcs@163.com
- 6. Compare calculated and tabulated test statistics and decide whether to accept or reject the null hypothesis.
- 7. State the conclusion and assumptions of the test.

(Source: Rees, D.G. Essential Statistics, Chapman and Hall 1995.)

p-value

程序代写代做 CS编程辅导

■ The p-value of the smallest value of the critical region the statistic: the smallest value of the critical region the statistic:

Calculating the p-Saide CS编程辅导

- Modified Questio st lecture:
- A hypothesis test propulation mean when the population varian
- The Axle manufacturing company has been making axles for a long time and kept records for every axle produced. Assignment Project Exam Help • Population parameters are μ = 90mm and σ = 2.5mm.
- A sample of 100 axles from new machine has mean = 90.5.
- Is the new machine making parts with same average length required (90mm) https://eutheyslonger than this?
- What is the p-value of the test?

https://flux.qa样序eeacodes.给好像(SV)

Question 1

From the tables

A. 0.0114

2) =

P(Z>2) = 1 - 0.9772= 0.0228

B. 0.0228 This area = 0.9772; z = 2.0 (one tail)

C. 0.4886

WeChat: cstutorcs D. 0.9772

<u> </u>	0.700			D. 0.01						
Cumula	itive Probab	ilities for	the Standa	ard Normal Distribution Signment Project			Evon	a Ualı		
			AS	Sigim	ient f	rojeci	LXan	1 1161		
Tableg	Table gives $P(Z<_{\overline{z}})$ for $Z=N(0,1)$									
			En	nail: tı	itores	$@16^{3}$	3.com			
	z 0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1	.6 0.9452	0.9463	0.9474	0,9484	0.9495,	0.9505	0.9515	0.9525	0.9535	0.9545
1	.7 0.9554	0.9564	0.95/3	0.9582	30.935	/ @ .9599	0.9608	0.9616	0.9625	0.9633
1	.8 0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1	.9 0.9713	0.9719	0.9776	0.9/7/3-2	1AP738	0.9744	0.9750	0.9756	0.9761	0.9767
2	.0 0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2	.1 0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2	.2 0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2	.3 0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2	.4 0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2	.5 0.9938	0.9940	0.9941	F0T-9943	sines Informat	^{ion} 0.9946	^{Lect} 0.9948	0.9949	0.9951	0.9952

Solution

程序代写代做 CS编程辅导 = 0.01,

Area = 1 - 0.01 = 0.99

- 1. H_0 , $\mu = 90 \text{mm}$
- 2. H_1 , $\mu > 90$ mm H_2 ided experiment) one tail critical value
- 3. Significance = 0.01

for $\alpha = 0.01$, from

table: 7 = 2.33

- 4. The test statistic, x = 90.5. We calculate Z_x . (standardising) Sign Don Proposition Propo
- 5. From tables the calculated critical value is 2.33.
- 6. We see that 2002.333 and thus do not reject H₀.
- 7. Conclude ... https://tutorcs.com
- p-value of the test is 0.0228 this is the highest level of significance at which H₀ will be rejected.

... visually... 程序代写代做 CS编程辅导

<u>Interpreting the p-value:</u>

A small p-value indicates the ample evidence to support the alternative hypothesis.

Since, 2 < 2.33 \rightarrow do not reject H_o

Test statístic = 90.5Standardísed test statístic = 2

• A big p-value indicates that there is little evidence to support the WeChat: cstutorcs alternative hypothesis.

Email: tutorcs@163.com
$$\rightarrow$$
 p-value = 0.0228

Acceptance **749889476**

https://tutorcs.com

$$\mu = 90$$

For $\alpha = 0.01$, one tail; critical value = 2.33

Errors in Hypothesis 作等指射

- We can make two hen testing hypotheses
 - A <u>Type I error in the null hypothesis</u> is correct, but is rejected.
 - A Type II error Voccurs where hull hypothesis is incorrect but is not rejected.

 Assignment Project Exam Help

 Assignment Project Exam Help

 H_0 is Rejected is Rejected

	110 BINDLING COUNTY & 1	OJ.COM 18 Rejected
H_0 is Correct	Correct.Decision9476	Type I Error
· ·	$(1 - \alpha)$	α
H_1 is Correct	Type in Europe s.com	n Correct Decision
II Is Collect	β	$(1 - \beta)$

程序代写代做 CS编程辅导

■ The distinction because ype I and II errors is easier to understand using the hall law analogy.

V	Person Acquitted	Person Convicted
Person is InnocentA	Cigrene De Pisionet 1	Ekype Hetpor
Person is Guilty E	Type II Error	Correct Decision

QQ: 749389476

When we attempttpsminimize.thentype I error, the consequence is an increase in the type II error.

10

The Power of the Fest Cs編輯編e Null Hypothesis when you should 为

- The probability of the null hypothesis is included by the probability of avoiding a Type II error is (1-β), this is the power of the test.
- α and β are interrefated: frictersing α reduces β and vice versa. To reduce the reample size map de size map de

Email: tutorcs@163.com

• Only α or β (usually α) can be chosen. The true value of β also depends on the actual value of the population parameter – which is: often unknown.

The Power ofthe Test Cta...

Calculating β程序代写代做 CS编程辅导

- - The Axle mar to the company has been making axles for a long time to the cords for every axle produced.
 - Population paragretars are 100 mm and $\sigma = 2.5$ mm.
 - A sample of 100 axles from new machine has mean = 92.7.
 - Is the new machine making parts with same average length required 690 mg 389476
 - Assume a 1% significance. https://tutorcs.com
 - What is the power of the test if it eventuates that the new machines produces axles with a mean length of 91mm?

Solution

程序代写代做 CS编程辅导

- From our previou ions
- H_0 , $\mu = 90$ mm
- H_1 , $\mu \neq 90$ mm (a two talled experiment)
- Significance = 0.0 WeChat: cstutorcs
- From tables the catical values Breject. Exam Help
- Use upper critical value since alternative is > H₀
- Calculate upper critical value = 90 + 2.58(0.25) = 90.65
- P(x < 90.65) when $X \sim N(91, 0.25^2)$ is P(z < -1.42) = 0.08
- https://tutorcs.com
 This is the probability that we fail to reject the null hypothesis, when the population mean for the new axle is 91mm. The power of the test = 0.92

The Power ofthe Test cta...

Power Curves 序代写代做 CS编程辅导

• To see ho ver of a test changes as the value of the alternation the power of the

16

Example

程序代写代做 CS编程辅导

- From last lectul
- It is claimed the transfer of the little in the little more than \$150 22 week on food and grocery items on average. A sample of 15 families was conducted and the amount spent each week was recorded. Do these results sappigntntheist thresies? Fassouthelp 1% significance) Email: tutorcs@163.com
- Weekly food and grocery expenditure (\$)
 OO: 749389476
- **1** 156, 234, 199, 78, 256, 189, 221, 49, 220, 178, 120, 290, 97, 177. https://tutorcs.com
- What is the power of the test if the average cost of groceries is \$160?
 MONASH University

Summary Statistics from Exter

學家發展學		_
Mean 💮 🔭	179.7	
Standa : Turis 14	17.7	
Median Dia Salah	189.0	
Mode	#N/A	
Standard/Devirationcstu	torcs 68.5	
Sample Variance	4697.0	
Kurtosis Assignment F	roject Exam 🗜	lelp
Skewness	-0.5	
Range Email: tutorcs	© 163.co24 _{1.0}	
Minimum	49.0	
Maximum Q: 7493894	290.0	
Sum	2695.0	
Count https://tutores	.com 15.0	

https://flux.qa样序的可论的es.编辑像GV)

Question 2

The power of the

A. 0.99

B. 0.01

C. 0.98

WeChat: cstutorcs D. 0.02

https://flux.qa程序eeacode:多线像V)

Question 3

For a one-sided 11 15 observations the t Statistic for a 1% 213 meance is:

A. 2.6025 WeChat: 18tu2092467

✓ C. 2.6245 Assignment.Projette Exam Help

	Critical Valu	ues of the t D	istribution						
	Table gives	uppor critics	Fal values on	mail: t	utores (@163.c	om		
	Table gives	иррег стиса	ir varues om	y	а				
	n	0.300	0.200	(): 07140	1389467	6 0.050	0.025	0.010	0.005
	12	0.5386	0.8726	1.0832	1.3562	1.7823	2.1788	2.6810	3.0545
	13	0.5375	0.8702	1.0795	1.3502	1.7709	2.1604	2.6503	3.0123
	* 14	0.5366	0.8681	LLD\$.0763L	norgaso	OM ₇₆₁₃	2.1448	2.6245	2.9768
	15	0.5357	0.8662	1.0735	1.3406	1.7531	2.1314	2.6025	2.9467
	16	0.5350	0.8647	1.0711	1.3368	1.7459	2.1199	2.5835	2.9208
	17	0.5344	0.8633	1.0690	1.3334	1.7396	2.1098	2.5669	2.8982
	18	0.5338	0.8620	1.0672	1.3304	1.7341	2.1009	2.5524	2.8784

程序代写代做 CS编程辅导

- H_0 , $\mu = 150
- H_1 , $\mu > 150 (a c
- Significance = 0.

experiment)

- From tables the critical value $T_{(0.01)(v=14)}$ is $2.624\sigma_x$ WeChat: cstutorcs
- Calculate upper critical value: 150 + 2.624(17.7) = 196.5
- Assignment Project Exam Help Assume alternative distribution Normal, new µ, original SE.
- P(x < 196.5) when x = 196.5 when
- This is β, the propositint → Pβ ≥ Pγ = Fail to reject the null hypothesis, when the population mean for expenditure is https://tutorcs.com \$160.
- The power of the test is 0.02.

Other Hypothesis Tests S编程辅导

- We have looke bothesis tests for the population me population proportion.
- There are a range of other hypothesis tests which are regularly has edutionese include tests for:
 - The difference meanist Exam Help
 - VarianceEmail: tutorcs@163.com
 - Distribution Shape9476
 - Independence/tutorcs.com

We're not going to cover this.

Reading/Questions (Selvanathan)

Reading: Hypothe

• 7th Ed. Se 3, 12.5, 12.6.

WeChat: cstutorcs

 Questions: Hypothesis Testing Assignment Project Exam Help

• 7th Ed. Questions 12.1, 12.19, 12.25, 12.26, 12.56, 12.59, 12.65, 12.66, 12.67, 12.70, 12.72, 12.74.

QQ: 749389476

https://tutorcs.com

23