博立信科技有限公司

Polysense Technologies

Wirelessly bridging the cloud and objects any sensor, any where, any time

在任何地点,任何时间,无线连接云和任何传感器

分布式物联网数据分析解决方案

Universal Sensing Solution with Distributed Data Analytic for IoT

WxS 8x00/6x00 LPWAN (LoRa) Wireless Sensing

WxS 8x00/6x00 LPWAN (Loka) Wireless Sensing

WxS 9x00/7x00 LPWAN NB-IoT/LTE CAT M Wireless Sensing

WxS 9x00/7x00

LPWAN NB-IoT/LTE CAT M
Wireless Sensing

iView Cloud data management platform

Cloud data management platform

Polysense 连接方式一

Polysense连接方式二

WxS系列

B射线采石场扬尘监测

新西兰拥有丰富的非金属矿业资源,包括煤、无定型硅石、斑脱土、硅藻土、白云石、铁矿砂、石灰石、珍珠石、浮石、高等级硅砂、沸石和不同类型的粘土。这些资源支撑着新西兰的工业、建筑业和农业生产。

采石场生产过程中主要产生含尘废气主要有以下方面:

(1)采石场无组织粉尘排放。 (2)破碎过程中产生粉尘。

(3)堆场扬尘。 (4)装料销售过程中扬尘。 (5)道路扬尘。

当TPS直径≤2.5um时, 称为可入肺颗粒物。 并携带大量工业物质长期累计于肺泡。 当TPS直径≤2.5um时, 称为可入肺颗粒物。 并携带大量工业物质长期累计于肺泡。形 成哮喘、肺癌, 和心血管等疾病。

中美PM2.5日均浓度对应的指数等级

日均浓度值(µg/m³)		空气质量等级	
中国	美国	中国	美国
0-35	0-12	一级(优)	好
35-75	12-35	二级(良)	中等
75-115	35-55	三级(轻度污染)	对敏感人群不健康
115-150	55-150	四级(中度污染)	不健康
150-250	150-250	五级(重度污染)	非常不健康
250-500	250-500	六级 (严重污染)	有毒害

因此,各国以及国际卫生组织,已锁定监测PM2.5的悬浮颗粒浓度值,为空气质量的主要因素。

各国随国情不同, 指标具有差异。

世界卫生组织(WHO)认为,pm2.5标准值为小于每立方米10微克。年均浓度达到每立方米35微克时,人患病并致死的几率将大大增加。

世界卫生组织(WHO)2005年《空气质量准则》				
项目	年均值	日均值		
准则值	$10 ug/m^3$	$^{25}ug/m^3$		
过渡期目标1	$35 ug/m^3$	$^{75}ug/m^3$		
过渡期目标2	$^{25}ug/m^3$	$50 ug/m^3$		
过渡期目标3	$15 ug/m^3$	$37.5 ug/m^3$		

以世卫组织数据为准的话,pm2.5国际标准分别为

过渡期目标 1 —— 24小时 < 75微克;

过度期目标 2 —— 24小时 < 50微克;

过度期目标 3 —— 24小时 < 37.5微克;

最终达标准则 —— 24小时 < 25微克;

通信组网方式LORAWAN:

性,建议使用LORAWAN的组网方式。

β射线可吸入扬尘浓度监测仪

采用β射线吸收原理通过测量大气扬 尘吸附放射量来测定扬尘的浓度。吸 附的射线量越多,扬尘浓度就越高, 吸附的射线量越少;反之,扬尘浓度 就越低。

β射线浓度监测原理

β射线是一种高速电子流,当它穿透物质后,部份被吸收,导致强度衰减。在一定条件下, 其衰减量的大小仅与吸收物质的质量有关,而与吸收物质的其它物化特性(如扬尘分散度、 颜色、光泽、形状等)无关,所以能直接测量大气扬尘的质量浓度。

项目	性能指标
测量范围	(0-1000) μ g/m³、(0-10000) μ g/m³可选
测量准确度	±2%
满标值	$1.5 \mathrm{mg/cm^2}$
斑点面积	$1\mathrm{cm}^2$
斑点之间的中心距	α ±0.5mm, α 为设定值约13.5mm
最低检测限	$\leq 2 \mu \text{g/m}^3$
计量前温度	-30℃~+50℃,示值误差为±0.5℃。
计量前压力	60kPa~110kPa,示值误差为±2.5%。
重现性	≤2%
仪器平行性	≤±15%
采样流量偏差	±2%(以恒流量16.7L/min为基础)
计时误差	24h<10s
整机噪声	≤65dB

多点的分布式监测:可以把整个区域的污染分布做全局显示,并可观察污染溯源及发展区域。

激光散射法监测扬尘适用分布式监测:

由于β射线的扬尘监测太过昂贵,对于大量的分布式 监测不够经济。建议使用激光散射法的扬尘仪实现分 布式整体监测。

检测原理:光散射原理;分辨率: 0.1 ug/m3;

粒径通道: PM2.5、PM10、TSP;

检测范围: 0~40mg/m3;

激光散射法: 当粒子经过聚焦激光所形成的光敏感区后, 粒子散射的光被探测窗口上的微光电探测器收集, 微光电探测器把接收的光强度信号快速、准确的转化为等量电压信号, 信号的密集度对应于粒子的单位浓度值, 扬尘浓度值进行系数转换后通过数据接口实时输出。

激光散射扬尘测试仪, 具有丰富的环境指标。 满足环境监测诸多要求。

项目	目的	指标
颗粒物传感器	PM扬尘污染	检测原理: 光散射原理; 分辨率: 0.1ug/m3; 粒径通道: PM2.5、PM10、TSP; 检测范围: 0~40mg/m3;
环境噪声传感器	爆破噪音污染	测量范围: 30-130dB; 采样速率: 48k/s高速采样;
风速、风向传感器	污染分布 趋势分析	风速: 量程: 0~45m/s; 分辨率: 0.1m/s; 准确度: ±0.3m/s; 启动风速: ≤0.5m/s;
		风向:量程: 0-360o;分辨率:1℃; 准确度:±3℃;启动风速:≤0.5m/s;
大气温湿度传感器	气候参考	温度: 量程: -40~120℃; 分辨率: 0.1℃; 准确度: ±0.3℃;
		湿度: 量程: 0~100%RH; 分辨率: 0.1%RH; 准确度: ±2%RH;
大气压传感器	气候参考	范围: 10~1100hPa; 辨率: 0.1hPa 准确度: ±0.3hPa

感谢指导!

THANKS FOR YOUR ATTENTION wyu@polysense.net