高等数学 II	
2018-2019 学年	(下)

姓名: 专业: 学号:

第 11 周作业

练习 1. 计算

- 1. $\int_L (x+y)ds$, 其中 L 是连接 (1,0) 及 (0,1) 两点的直线段;
- 2. $\int_C x ds$, 其中 C 为直线 y=x 及抛物线 $y=x^2$ 所围成区域的整个边界;
- 3. $\int_L \frac{1}{x^2+y^2+z^2} ds$, 其中 L 为曲线 $x=e^t \cos t$, $y=e^t \sin t$, $z=e^t$ 上相应于 t 从 0 到 2 的这段弧。

练习 2. 计算 $\int_C x^2 dx + xy dy$,其中 C 是正方形 $[0,1] \times [0,1]$ 边界,逆时针方向。

练习 3. 计算

- 1. $\int_L (x^2-2xy)dx + (y^2-2xy)dy$, 其中 L 是抛物线 $y=x^2$ 上从点 (-1,1) 到点 (1,1) 的一段弧;
- 2. $\int_L x dx + y dy + (x+y-1) dz$, 其中 L 是从点 (1,1,1) 到 (2,3,4) 的直线段。

- - 2. 计算 $\int_L x dx + y dy + z dz$, 其中有向曲线 L 的参数方程是 $\gamma(t) = (e^t, t, t^2)$, $0 \le t \le 1$.
 - 3. 计算 $\int_L (\sin z) dx + (\cos z) dy (xy)^{1/3} dz$,其中有向曲线 L 的参数方程是 $\gamma(\theta) = (\cos^3 \theta, \sin^3 \theta, \theta), 0 \le \theta \le \frac{7}{2}\pi$ 。

练习 5. 证明曲线积分 $\int_{(1,2)}^{(3,4)} (6xy^2 - y^3) dx + (6x^2y - 3xy^2) dy$ 与路径无关,并计算积分值。