The contraction in the Wick's theorem is just the propagator.

O For a real scalar field.

$$\hat{\varphi}(x)\hat{\varphi}(y) \equiv \langle o|T(\hat{\varphi}(x)\hat{\varphi}(y))|o\rangle$$

recall that the field operators in Wick's theorem are the ones in interaction picture, and the expressions are identical to the free field operators in Heisenberg picture we are familiar with,

$$\hat{\varphi}(x) = \int_{-\infty}^{+\infty} d^{3}\vec{p} \, C(E_{\vec{p}}) \left(\hat{a}_{\vec{p}} e^{-i\vec{p}.x} + \hat{a}_{\vec{p}}^{+} e^{i\vec{p}.x} \right)$$

where $[a_{\vec{r}}, a_{\vec{k}}^{\dagger}] = \frac{1}{(2\pi)^3 2E_{\vec{r}}} \cdot (C(E_{\vec{r}}))^5 S^3(\vec{r} - \vec{k})$

$$\Rightarrow \langle 0 | T(\hat{\varphi}(x)\hat{\varphi}(y)) | 0 \rangle$$

=
$$<0$$
 $| \theta(x_0 - y_0) \hat{\varphi}(x_0 \hat{\varphi}(y) + \theta(y_0 - x_0) \hat{\varphi}(y_0 \hat{\varphi}(x_0) | 0 >$

Since
$$\hat{a}|_{07=0}$$
, $|_{0}|_{a^{+}=0}$,

then
$$\langle 0 | \hat{\varphi}(x) \hat{\varphi}(y) | 0 \rangle$$

$$= \langle o | \hat{\varphi}^{(t)}(x) \hat{\varphi}^{(c)}(y) | o \rangle$$

where
$$\langle o | \hat{a}_{\vec{p}} \hat{a}_{\vec{k}}^{\dagger} | o \rangle$$

$$= \frac{1}{(2\pi)^{3} 2E_{p}} \left(\frac{1}{C(E_{p})}\right)^{2} \int_{0}^{3} (\vec{p} - \vec{k}) < 0/0 >$$

$$\Rightarrow \langle o | \hat{\varphi}(x) \hat{\varphi}(y) | o \rangle = \int_{-\infty}^{+\infty} d^3 \vec{p} \frac{1}{(2\pi)^3 2E_{\vec{p}}} e^{-i\vec{p} \cdot (x-y)}$$

$$\Rightarrow \hat{\mathcal{Y}}(x) \hat{\mathcal{Y}}(y) = \theta(x_0 + y_0) \int_{-\infty}^{+\infty} d^3p \frac{1}{(2\pi)^3 2E_p} e^{-ip \cdot (x-y)} + \theta(y_0 + x_0) \int_{-\infty}^{+\infty} e^{-ip \cdot (y-x_0)} d^3p \frac{1}{(2\pi)^3 2E_p} e^{-ip \cdot (y-x_0)}$$

where $\begin{cases} d^{\frac{3}{2}} \frac{1}{(2\pi)^{\frac{3}{2}} 2E_{p}} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} = \int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{\frac{3}{2}} 2E_{p}} e^{-i\vec{E}_{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} = \int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{\frac{3}{2}} 2E_{p}} e^{-i\vec{E}_{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} = \int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{\frac{3}{2}} 2E_{p}} e^{-i\vec{E}_{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} = \int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{\frac{3}{2}} 2E_{p}} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} = \int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{\frac{3}{2}} 2E_{p}} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y$ $\int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{3} 2E_{p}} e^{-i\vec{p}\cdot(\vec{y}-\vec{x})} = \int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{3} 2E_{p}} e^{-i\vec{E}_{p}\cdot(\vec{y}-\vec{x}_{0})} e^{-i\vec{p}\cdot(\vec{y}-\vec{x}_{0})} = \int_{+\infty}^{+\infty} \frac{1}{d(-\vec{p}')} \frac{1}{(2\pi)^{3} 2E_{p}} e^{-i\vec{E}_{p}\cdot(\vec{y}_{0}-\vec{x}_{0})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y}_{0})}$ $= \int_{-\infty}^{+\infty} d^{3}\vec{p}' \frac{1}{(2\pi)^{3} 2E_{\vec{p}'}} e^{-iE_{\vec{p}'}(y_{o}-x_{o})} e^{i\vec{p}' \cdot (\vec{x}-\vec{y})}$ $= \int_{-\infty}^{+\infty} d^{3}\vec{p}' \frac{1}{(2\pi)^{3} 2E_{\vec{p}'}} e^{-iE_{\vec{p}'}(y_{o}-x_{o})} e^{i\vec{p}' \cdot (\vec{x}-\vec{y})}$

Note that $E_{\vec{p}} = (|\vec{p}|^2 + m^2)^{\frac{1}{2}}$.

To calculate], we use the integral representation of the step function.

$$\frac{\partial(k)}{\partial x} = \begin{cases} 1 & \text{if } k > 0 \\ 0 & \text{if } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1 & \text{of } k < 0 \\ 0 & \text{of } k < 0 \end{cases}$$

$$= \begin{cases} 1$$

since the step function is real, its complex conjugate equals itself. To convince ourcelnes, let's show that the intergral indexed give the step function. So let's evaluate $L(k, E) \equiv \frac{1}{2\pi i} \int_{-\infty}^{+\infty} dx \frac{e^{ikx}}{x-i\epsilon}$,

when k > 0, let's evaluate the contour integral $I(k, E) = \frac{1}{2\pi i} \int_{C} dJ \frac{e^{ikJ}}{J - iE}$ where the contour radius is taken to infinity.

For the integral along the Eemicircular part, IR = 15 Reis-iz Cik(RCOZO+iRsino) Reisido a small number, which letting R be sufficiently large, | Re10-12 | - 9 goes to zero when ILR Sing R Sing e- RRSHB dB =(1)29R (= e-kRsing do $\frac{2}{\pi}\theta \le 5\%$ in the range $[0, \frac{\pi}{2}]$ $\rightarrow 0$ as $R \rightarrow \infty$ So the integral along the semicircular pant obes not contribute $\Rightarrow \frac{1}{2\pi i} \int_{C} dJ \frac{e^{ikt}}{J - i\epsilon} = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} dx \frac{e^{ikx}}{x - i\epsilon}$ Recidine

theorem | ik(i\(\in\))

\(\frac{1}{2\pi i}\) e-ke when k <0, let's close the contour in the lower half plane. $L(k, \varepsilon) = \frac{1}{2\pi i} \int_{C} dt \frac{e^{ikt}}{t^{-i\varepsilon}} \frac{\int_{C}^{\infty} Ret}{\int_{C}^{\infty} Ret}$ for the integral along the semicircular part, | Reio-iz | < 9, which goes to zero when R > 0. In this or Reis-is eik(Rase+irsne) Reiside=)[] = Reis-is| ekrshe | Le | this RS = e-kRsie de = (=) (-9R) = e kRsie de tips RS = e kRsie de \$\frac{1}{2\pi}\

So the integral along the semicircular part does not contribute $\Rightarrow \frac{1}{\pi i} \int_{C} d\vec{x} \frac{e^{ik\delta}}{\delta - i\epsilon} = \frac{1}{\pi i} \int_{-\alpha}^{+\infty} dx \frac{e^{ik\delta}}{\delta - i\epsilon}$ $\Rightarrow I(k, \xi) = \frac{1}{\pi i} \int_{-\infty}^{+\infty} dx \frac{e^{ikx}}{x - i\xi} = \begin{cases} e^{-k\xi}, & k > 0 \\ 0, & k < 0 \end{cases}$ =) $\lim_{\xi \to 0^+} I(\xi, \xi) = \begin{cases} 1 & k > 0 \\ 0 & k < 0 \end{cases}$ So, [] = $\frac{1}{2\pi i}$ $\int_{-\infty}^{+\infty} dk_0 \frac{e^{i(X_0 + X_0)}k_0}{k_0 - i\xi} \frac{e^{-iE_p(X_0 + X_0)}}{k_0 - i\xi}$ + $\int_{-\infty}^{+\infty} dk_0 \frac{e^{i(Y_0 - X_0)}k_0}{k_0 - i\xi} e^{-iE_p(Y_0 - X_0)}$, where ξ $\frac{1}{2\pi i} \begin{cases}
+\infty \\
-\infty
\end{cases} \frac{1}{2\pi i} \begin{cases}
+\infty \\
-\infty
\end{cases} \frac{e^{i(x_0-y_0)k_0'}}{E_p' + k_0' - i\epsilon} + \int_{-\infty}^{+\infty} dk_0' \frac{e^{i(y_0-x_0)k_0'}}{E_p' + k_0' - i\epsilon}
\end{cases}$ where the cecond integral $(+\infty)$ k_0' k_0' $=) [] = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} dk_o' \left(\frac{i(x_o - y_o)k_o'}{E_p^2 + k_o' - i\xi} + \frac{1}{E_p^2 - k_o' - i\xi}\right)$ $\Rightarrow [] = \frac{1}{2\pi i} 2E_{p} \int_{-\infty}^{+\infty} dk_{o} e^{i(x_{o}-y_{o})} k_{o}' \frac{1}{E_{p}^{2}-k_{o}^{2}-i\epsilon'}$ Note that as largas (X+Y) >0, we have lim (X-is + y-is) = lim X+Y

$$\Rightarrow \hat{\varphi}(x) \hat{\varphi}(y) = \int_{-\infty}^{+\infty} \frac{d^{3}\vec{p}}{\xi\pi^{3}} \underbrace{e^{i\vec{p}\cdot(\vec{x}\cdot\vec{y})}}_{\pi i} \underbrace{E\vec{p}}_{\vec{p}} \underbrace{f^{*}}_{\vec{k}} \underbrace{e^{i(\vec{x}\cdot\vec{y})}k_{o}'}_{\vec{k}} \underbrace{e^{i(\vec{x}\cdot\vec{$$

E for a complex scalar field. $\hat{\varphi}(x) = \int_{-\infty}^{+\infty} d^3 \vec{p} (E_{\vec{p}}) \left(\hat{a}_{\vec{p}} e^{-i\vec{p} \cdot x} + \hat{b}_{\vec{p}}^{\dagger} e^{i\vec{p} \cdot x} \right), \hat{\varphi}(y) = \int_{-\infty}^{+\infty} d^3 \vec{p} (E_{\vec{p}}) (\hat{a}_{\vec{p}}^{\dagger} e^{-i\vec{p} \cdot y}) d\hat{p} (E_{\vec{p}}) (\hat{a}_{\vec{p}}^$

Since $\hat{\varphi}(x) \hat{\varphi}(y) = \langle o | T(\hat{\varphi}(x) \hat{\varphi}(y)) | o \rangle = \langle o | \theta(x_0 - y_0) \hat{\varphi}^{\dagger}(x) \hat{\varphi}(y) + \theta(y_0 - x_0) \hat{\varphi}(y) \hat{\varphi}^{\dagger}(x)$ and $\hat{\varphi}(y) \hat{\varphi}^{\dagger}(x) = \langle o | T(\hat{\varphi}(y) \hat{\varphi}^{\dagger}(x)) | o \rangle = \langle o | \theta(y_0 - x_0) \hat{\varphi}(y) \hat{\varphi}^{\dagger}(x) + \theta(y_0 - x_0) \hat{\varphi}^{\dagger}(y) \hat{\varphi}^{\dagger}(x) + \theta(y_0 - y_0) \hat{\varphi}^{\dagger}(x) \hat{\varphi}(y) | o \rangle$ $= \hat{\varphi}^{\dagger}(x) \hat{\varphi}(y)$ we just need to worry about $\hat{\varphi}(x) \hat{\varphi}(y)$.

In fact, in general, $\hat{A}(x)\hat{B}(y) = \langle o|\Theta(x-\gamma_o)\hat{A}(x)\hat{B}(y) + \hat{\Theta}(y_o-x_o)\hat{B}(y)\hat{A}(x)|o \rangle = \xi_a\hat{B}(y)\hat{A}(x)$

$$\begin{split} \hat{\psi}(x) \; \hat{\psi}(y) &= \langle \circ | T \left(\hat{\psi}(x) \; \hat{\psi}^{\dagger}(y) \right) | o \rangle = \langle \circ | \Theta(x_{r},y_{0}) \; \hat{\psi}(x_{0}) \; \hat{\psi}(x_{$$

$$\begin{split} & \text{B} \text{ for a } \text{ Pirace } \text{ fermion } \text{ field.} \\ & \text{ } \hat{f}(x) = \int_{-\infty}^{\infty} d^3 \hat{f}(E_p) \underset{E \in \mathbb{H}}{>} (u(\hat{f},s)) \hat{b}_{p,s} e^{-i\hat{f}x} + v(\hat{f},s) d_{\hat{f},s} e^{-i\hat{f}x}) \\ & \hat{f}(y) = \int_{-\infty}^{\infty} d^3 \hat{f}(E_p) \underset{E \in \mathbb{H}}{>} (u(\hat{f},s)) \hat{b}_{p,s} e^{-i\hat{f}x} + v(\hat{f},s) d_{\hat{f},s} e^{-i\hat{f}x}) \\ & \hat{b}_{p,s}, \ \hat{b}_{R,r}^* = \frac{1}{(2\pi)^2} \frac{1}{2E_p} \left(\frac{1}{(2e_p)}\right)^2 \int_{\mathbb{T}^2} \mathcal{S}^*(\hat{f},R) = \int_{\mathbb{H}^2} d_{p,s}, d_{E_r}^* \left\{ e^{-i\hat{f}x} \right\} \\ & \text{other } f = 0. \end{split}$$

$$\Rightarrow \langle d + \frac{1}{4}(x) + \frac{1}{4}(y) \rangle |o\rangle = o, \ \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) \rangle |o\rangle = o. \end{split}$$

$$\frac{1}{4}(x) + \frac{1}{4}(y) = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) - \theta(y) + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(y) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) + \frac{1}{4}(x) \\ & = \langle o| + \frac{1}{4}(x) + \frac{1}{4}(x)$$

Va(P,S) V6 (P,S)

$$= \int_{-\infty}^{+\infty} d^3 \vec{p} \frac{1}{(x_1)^3 2 E_{\vec{p}}} e^{i \vec{p} \cdot (x_1 - y_2)} (\vec{p} - m)_{ab} = \int_{-\infty}^{+\infty} d^3 \vec{p} \frac{1}{(x_1 - y_2)^3 2 E_{\vec{p}}} e^{i \vec{p} \cdot (x_1 - y_2)} + i \vec{p} \cdot (\vec{p} - m)_{ab}$$

$$= \int_{-\infty}^{+\infty} d^3 \vec{p} \frac{1}{(x_1 - y_2)^3 2 E_{\vec{p}}} e^{i \vec{p} \cdot (x_1 - y_2)} (\vec{p} \cdot (x_1 - y_2) e^{i \vec{p} \cdot (x_1 - y_2)})_{ab}$$

$$= \int_{-\infty}^{+\infty} d^3 \vec{p} \frac{1}{(x_1 - y_2)^3 2 E_{\vec{p}}} e^{i \vec{p} \cdot (x_1 - y_2)} (-\vec{p} \cdot \vec{y} + m)_{ab} [\vec{q} \cdot (x_1 - y_2) e^{i \vec{p} \cdot (x_1 - y_2)} + \vec{p} \cdot \vec{y} \cdot m)_{ab}]$$

$$= \int_{-\infty}^{+\infty} d^3 \vec{p} \frac{1}{(x_1 - y_2)^3 2 E_{\vec{p}}} e^{i \vec{p} \cdot (x_1 - y_2)} (-\vec{p} \cdot \vec{y} + m)_{ab} [\vec{q} \cdot (x_1 - y_2) e^{i \vec{p} \cdot (x_1 - y_2)} + \vec{p} \cdot \vec{y} \cdot m)_{ab}]$$

$$= \int_{-\infty}^{+\infty} d^3 \vec{p} \frac{1}{(x_1 - y_2)^3 2 E_{\vec{p}}} e^{i \vec{p} \cdot (x_1 - y_2)} (-\vec{p} \cdot \vec{y} + m)_{ab} [\vec{q} \cdot (x_1 - y_2) e^{i \vec{p} \cdot (x_1 - y_2)} + \vec{q} \cdot (x_1 - y_2) e^{i \vec{p} \cdot (x_1 - y_2)} + \vec{q} \cdot (x_1 - y_2) e^{i \vec{p} \cdot (x_1 - y_2)} + \vec{q} \cdot (x_1 - y_2) e^{i \vec{p} \cdot (x_1 - y_2)} e^{$$

$$=\int_{-\infty}^{+\infty} d^{3}\vec{p} \frac{1}{(2\pi)^{4}} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} (-\vec{p}\cdot\vec{y}+m)_{ab} \frac{2E\pi}{2\pi i} \int_{-\infty}^{+\infty} dk_{c}'e^{-i(x_{c}+y_{c})k_{c}'} \frac{1}{E_{p}^{2}+k_{c}^{2}-i\xi}} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} (-\vec{p}\cdot\vec{y}+m)_{ab} \frac{1}{2\pi i} \int_{-\infty}^{+\infty} dk_{c}'e^{-i(x_{c}+y_{c})k_{c}'} \frac{1}{E_{p}^{2}+k_{c}^{2}-i\xi}} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} (-\vec{p}\cdot\vec{y}+m)_{ab} \frac{1}{i} \int_{-\infty}^{+\infty} dk_{c}'e^{-i(x_{c}+y_{c})k_{c}'} \frac{1}{E_{p}^{2}+k_{c}^{2}-i\xi}} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} (-\vec{p}\cdot\vec{y}+m)_{ab} \frac{1}{i} \int_{-\infty}^{+\infty} dk_{c}'e^{-i(x_{c}+y_{c})k_{c}'} \frac{1}{E_{p}^{2}+k_{c}^{2}-i\xi}} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{p}\cdot(\vec{x}-\vec{y})} e^{-i\vec{k}\cdot(\vec{x}-\vec{y})} e^{-i\vec{k}\cdot(\vec{x}-\vec{y})}$$

Often, $\frac{i(K+m)}{k^2-m^2-i\epsilon}$ is written as $\frac{i}{K-m-i\epsilon}$. However, it is just a short hand notation, since otherwise put the matrix in denomenator is nonsensical.

& For photon field, in the Caulant gauge we have studied, (A°(X)=0, \$\vec{7}\vec{A}^{\alpha}(X)=0) $A^{\mu}(x) = \int_{-\infty}^{+\infty} d\vec{k} (\vec{k}, x) = \int_{-\infty}^{+\infty} d\vec{k} (\vec{k}, x) (\vec{k}$ = (0, \(\int_{\mathred{\chi}}^{\frac{1}{2}} \hat{\chi} \(\bar{\epsilon} (\bar{\chi} (\bar{\chi}) \alpha_{\bar{\chi}} \hat{\chi} \\ \epsilon (\bar{\chi}) \alpha_{\bar{\chi}} \hat{\chi} \\ \epsilon (\bar{\chi}) \\ \alpha_{\bar{\chi}} where $\frac{1}{2}(\vec{e}^*(\vec{k}, \lambda))^i(\vec{e}(\vec{k}, \lambda))^j = \int_{\vec{k}} (\vec{k})^i(\vec{k})^j$ $\left[\begin{array}{c} \alpha_{\vec{R}S} , \alpha_{\vec{P},r}^{\dagger} \right] = \int_{Sr} \int_{S}^{3} (\vec{P} - \vec{K}) \frac{1}{2E_{\vec{P}}} \frac{1}{(E_{\vec{P}})^{3}} \left(\frac{1}{(E_{\vec{P}})^{3}}, \frac{1}{(E_{\vec{P}})^{3}} \right)$ $[a_{\overline{k},s}, a_{\overline{p},r}] = [a_{\overline{k},s}, a_{\overline{p},r}] = 0$ $A^{\mu}(x)A^{\nu}(y) = \langle o|T(A^{\mu}(x)A^{\nu}(y))|o\rangle = \Theta(x_{o}y_{o})\langle o|A^{\mu}(x)A^{\nu}(y)|o\rangle + \Theta(y_{o}x_{o})\langle o|A^{\nu}(y)A^{\nu}(y)|o\rangle$ = & (x0/0) <0 | A''(x) A'(y) |0> + & (/0x0) <0 | A''(y) A''(x) |0> where <0/A"(x)A"(y)/0> = \(\frac{1}{4p} \delta \times CEp) CEp) \(e^{-ip \times + i \times y} \frac{2}{5} \) \(\left(\varphi \, s \) \(\left(\varphi \, s \) \(\left(\varphi \, s \) \(\varphi \, r \) $= \int_{-\infty}^{+\infty} d^{3}\vec{p} \, e^{-i\vec{p}\cdot(x-y)} \stackrel{?}{=} \underbrace{\xi^{\mu}(\vec{p},s)} \stackrel{\xi^{*}}{\in \tau_{0}^{3}} \stackrel{?}{=} \underbrace{\xi^{\mu}(\vec{p},s)} \stackrel{?}$ $=\int_{-\alpha}^{+\infty}d^{3}\vec{p}\,e^{-i\vec{p}\cdot(\vec{x}-\vec{y})}\frac{1}{(\vec{p}-\vec{p})^{3}z\vec{p}}\times\begin{pmatrix}0&0&0&0\\0&0&0&0\\0&0&-i\vec{p}\cdot(\vec{x}-\vec{y})\\0&0&0&0\\0&0&-i\vec{p}\cdot(\vec{x}-\vec{y})\\0&0&0&0\\0&0&-i\vec{p}\cdot(\vec{x}-\vec{y})\\0&0&0&0\\0&0&-i\vec{p}\cdot(\vec{x}-\vec{y})\\0&0&0&0&0\\0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&$

$$\Rightarrow A^{\mu}(x) A^{\nu}(y) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A^{i}(x) A^{j}(y) \end{pmatrix}$$

$$= \int_{-\infty}^{+\infty} d^{3}\vec{p} \, e^{i\vec{p}\cdot(\vec{x}\cdot\vec{p})} \frac{1}{(2\pi)^{3}2I_{\vec{p}}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & S^{i}j - \frac{p^{i}p^{i}}{|\vec{p}|^{2}} \end{pmatrix} \left[O(x-y_{o}) e^{-it_{\vec{p}}(x-y_{o})} + O(x-y_{o}) e^{-it_{\vec{p}}(x-y_{o})} + O(x-y_{o}) e^{-it_{\vec{p}}(x-y_{o})} \right]$$
where
$$[] = \frac{1}{2\pi i} \frac{2E_{\vec{p}}}{2E_{\vec{p}}} \int_{-\infty}^{+\infty} dk_{o} \, e^{-i(x-y_{o})} \frac{k_{o}}{|\vec{p}|^{2}} \frac{1}{\pi i} \int_{-\infty}^{\infty} dk_{o}' \, e^{-i(x-y_{o})} \frac{k_{o}'}{|\vec{p}|^{2}} \frac{1}{\pi i} \int_{-\infty}^{+\infty} dk_{o}' \, e^{-i(x-y_{o})} \frac{k_{o}'}{|\vec{p}|^{2}} \frac{1}{\pi i} \int_{-\infty}$$