Stany własne hamiltonianu w 1D, metoda strzałów $_{\rm Julia~Ceklarz}$

Zadanie 1.

 $\mathbf{a})$

Rysunek 1

b)

Rysunek 2

Zadanie 2.

a)

Rysunek 3

b)

Rysunek 4

Rysunek 5

Zadanie 3.

a)

Rysunek 6

b)

Rysunek 7: 7 najniższych stanów dla bariery potencjału $0.5\mathrm{eV}$

 $\mathbf{c})$

Rysunek 8: 7 pierwszych stanów dla W = 7.5meV

Rysunek 9: 7 pierwszych stanów dla W = 75meV

Rysunek 10: 7 pierwszych stanów dla W = 375meV

Rysunek 11: 7 pierwszych stanów dla W = 750meV

Rysunek 12: 7 pierwszych stanów dla W = 1.125eV

Rysunek 13: 7 pierwszych stanów dla $\mathcal{W}=1.49\mathrm{eV}$

\mathbf{d}

Ponieważ stany parzyste w punkcie N/2, czyli w miejscu, gdzie znajduje się bariera,
nie mają elektronów, czyli bariera na nie nie działa.

Rysunek 14: zilustrowanie jak na pierwsze 6 stanów oddziałuje bariera potencjału w punkcie ${\rm N}/2$