Real-Time Communication System Powered By AI For Specially Abled

IBM Project Report Artificial Intelligence

Submitted By

Team ID: PNT2022TMID35302

Team Members:

Prathiba D - 2019103557

Ramya P - 2019103569

Rohith Kumar M - 2019103572

Abhimanyu SG - 2019103578

BACHELOR OF ENGINEERING

In

COMPUTER SCIENCE AND ENGINEERING

COLLEGE OF ENGINEERING, GUINDY

ANNA UNIVERSITY: CHENNAI 600 025

MAY 2022

CONTENTS

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE

13. APPENDIX

Source Code

GitHub & Project Demo Link

Introduction

1.1 Project Overview

Communication is essential for a person to express thoughts and emotions. In the modern world, despite the technical advancements, it is still a struggle for Specially-Abled people to communicate and express their thoughts with the rest of the world. Sign language is developed for specially impaired people so that they can communicate with ease. It is the most structured language where every gesture has a specific meaning associated to it.

But the normal people are not trained on hand sign language and conveying the message becomes difficult at times of emergency and causes a huge gap between the normal people and the inarticulate community.

Hence it is crucial to develop a solution that acts as a bridge between the hearing impaired and the hearing community.

1.2 Purpose

The project intends to create such an application which helps the specially challenged people to communicate among them and the common people. Communication between a person with hearing/speech impairment and a normal person has always been a challenging task. This application tries to reduce the barrier of communication by developing an assistive application for specially challenged people.

Literature Survey

2.1 Existing Problem

[1] Title: Portable Communication Aid for Specially Challenged: Conversion of

Hand Gestures into Voice and Vice Versa

Author: T Meera Devi, K M Shravan Raju

Methodology: The work is to develop a portable device for the disabled people who are not able to communicate with the normal persons properly. There are various steps

involved in recognizing the feature distinguishing hand gesticulation. The collected

gesticulation is trained using Neural Network. The hand movement pattern is

separated from a continuous recording of gestures. Low-Level understanding for the

feature pattern comprises the gestural segment.

Advantage: This will be useful for the normal people to communicate with differently

abled people and vice versa.

Limitation: Separation of the hand movements from continuous hand gestures may

result in accuracy issues.

[2] Title: Real-Time Two-Way Communication Approach for Hearing Impaired

and Dumb Person Based on Image Processing.

Author: Shweta. S. Shinde, Rajesh M. Autee, Vitthal K. Bhosale

Methodology: Proposed system is based on vision-based hand recognition approach.

The hand gestures are identified under varying illumination conditions. The proposed

2

method performs background segmentation of the hand from the acquired data and then is assigned a particular gesture for different alphabets. It involves feature extraction methods to calculate peak calculation and angle calculation of hand gestures. Finally, the gestures are recognized by converting these gestures into speech and vice versa. For extracting the features of speech signal Mel-frequency cepstrum coefficients and dynamic time warping are used. The proposed system is based on MATLAB.

Advantage: Two-way communication is possible enabling effective communication between normalpeople and physically impaired

Limitations: Detected only limited hand gestures (From alphabets A to I) Memory consumption is high as image processing is done using the built-in model of MATLAB.

[3] Title: Hand Gesture Detection based Real-time American Sign Language Letters Recognition using Support Vector Machine

Authors: Xinyun Jiang, Wasim Ahmad

Methodology: Features extraction by Principal Component Analysis(PCA) SVM is used for mapping handgestures.

Advantage: Principal Component Analysis used to select 8 features, reduces computational complexity and processing time.

Limitation: Reorientation stage- rotation angle of alphabets difficult to determine. Only static images are used.

[4] Title: Sign Language Recognition Using Deep Learning on Custom Processed Static Gesture Images.

Authors: Aditya Das, Shantanu Gawde, Khyati Suratwala, Dhananjay Kalbande

Methodology: CNN to recognize sign language gestures, Transfer learning using Inception v3.

Advantage: Average around 90% is obtained.

Limitation: Dynamic hand gestures are not used. Only static finger spellings are used.

[5] Title: Machine Learning Model for Sign Language Interpretation using Webcam Images.

Author: Kanchan Dabre, Surekha Dholay

Advantage: Prediction using Haar Cascade Classifier integrated with SVM, Classification based on supervised feed forward backpropagation algorithm. Convergence rate is faster. Average recognition rate: 91.11 %

Limitation: Haar Cascade Classifier compromises on precision.

[6] Title: MUDRAKSHARA - A Voice for Deaf/Dumb People

Author: Dr. Yeresime Suresh, J Vaishnavi, M Vindhya, Mohammed Sadiq Afreed Meeran, Supritha Vemala

Methodology: A system that recognizes hand gestures and performs the task same as translators is developed - MUDRAKSHARA. It identifies hand gestures in the images obtained from video that is captured by a web 'cam recorder and gives the meaning of

signs made by hearing/speech disabled people thus making communication complete.

Advantages: Provides the opportunity for common people to understand sign language thus bridging the communication gap between the deaf/dumb and the common people. High accuracy because of the highly trained CNN model.

Limitation: The system does not respond to dynamic hand gestures. Compared to other latest algorithms, CNN is a bit slow.

2.2 References

- [1] https://ieeexplore.ieee.org/document/8997140
- [2] https://ieeexplore.ieee.org/document/7919572
- [3] https://ieeexplore.ieee.org/document/8890379
- [4] https://ieeexplore.ieee.org/document/8537248
- [5] https://ieeexplore.ieee.org/document/6839279
- [6] https://ieeexplore.ieee.org/document/9225656

2.3 Problem Statement Definition

The project aims to develop a system that converts the sign language into a human hearing voice in the desired language as well as to convert speech into understandable sign language for the deaf and dumb. A convolution neural network is used to create a model that will be trained on different hand gestures. A web application to use the model will be built. This application will enable the deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output.

Ideation and Proposed Solution

3.1 Empathy Map Canvas

User1 (Person with hearing/speech impairment)

User2 Person without any impairments (parent/friend/relative/colleague)

3.2 Ideation & Brainstorming

Group ideas

3.3 Proposed Solution

S No.	Parameter	Description
1.	Problem	The project aims to develop a system that converts the
	Statement	sign language into a human hearing voice in the desired
	(Problem to be	language as well as to convert speech into understandable
	solved)	sign language for the deaf and dumb. A convolution
		neural network is used to create a model that will be
		trained on different hand gestures. A web application to
		use the model will be built.

	Model	so educating people about the uses and technology of this				
5.	Business	Not many models of this kind are available in the society,				
	Satisfaction	➤ Break the social barrier				
	Customer	> Equal opportunities				
4.	Social Impact /	➤ Understanding specially-abled people in a better way.				
		> In-built emergency options.				
		translations.				
		Suggestion mechanism based on the history of				
		> Translation into various languages.				
	Uniqueness	➤ An application with embedded features:				
3.	Novelty/	> Two-way communication.				
		output.				
		human-understandable language and speech is given as				
		their information using signs which get converted to				
		model. This app enables deaf and dumb people to convey				
		different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey				
		neural network to create a model that is trained on				
		the deaf and dumb. We are making use of a convolution				
		as convert speech into understandable sign language for				
		language to convey a message to normal people, as well				
	description	language into a human hearing voice in the desired				
2.	Idea / Solution	The idea is to develop a system that converts the sign				

	(Dayramy)	and deliverill examples amonto a hunge members for this amondrest
	(Revenue	model will surely create a huge market for this product.
	Model)	This can be done by means of mass communication and
		advertisements. Instead of promoting it in business point
		of view, promoting it in a service point of view will
		expand its reach.
6.	Scalability of	If a basic model of this solution is created, then expanding
	the Solution	it, needs some minimal man power with sufficient
		knowledge regarding this. So, with the increase in its
		demand, we can scale its production comfortably.

3.4 Problem Solution fit

2. JOBS-TO-BE-DONE / PROBLEMS

- There is a need to develop a system to convert sign language to speech and vice versa.
- There should be an application to convey the information.

9. PROBLEM ROOT CAUSE

- Everyone does not know the sign language.
- Inability to communicate normally and effectively.
- Improper interpretation.

7. BEHAVIOUR

- Text usage to convey information.
- Use of understandable signs.
- Lip reading.

3. TRIGGERS

ЕМ

- Seeing people being bullied and isolated.Inability to convey their thoughts during
- emergencies.Frustration upon missing opportunities.
- Wish to lead a normal life.

10. YOUR SOLUTION

The project deals with building an application which helps the specially challenged people to communicate between them and the common people. This application tries to reduce the barrier of communication by developing an assistive application for specially challenged people.

8. CHANNELS of BEHAVIOR

8.1 ONLINE

Video calls for distant communication involving either sign language or lip reading.

8.2 OFFLINE

Dependent on a person for communication assistance.

4. EMOTIONS: BEFORE / AFTER

Before

- Socially secluded
- Dependent
- Hurt

After

- Feel equal
- Confident
- Relieved

Requirement Analysis

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional	Sub Requirement (Story / Sub-Task)
	Requirement (Epic)	
FR-1	User Registration	Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
FR-3	Live capturing	Camera enabled devices can be used
FR-4	Translation	Conversion of sign language to text.
FR-5	Speech	Text to speech conversion.

4.2 Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	Simple GUI for easier interactions.
NFR-2	Security	Authentication, authorization and encryption
		of the application using IBM Watson cloud
		security.
NFR-3	Reliability	System should work dynamically without
		any failure for most of the time.

NFR-4	Performance	By using IBM Cloud APM, data center,					
		cloud infrastructure, and workloads are					
		managed with cognitive intelligence.					
		Outages and slowdowns can be reduced and					
		prevented around the clock in a hybrid					
		application world as Cloud APM assists in					
		moving from identifying performance issues					
		to isolating where the problem is occurring					
		and diagnosing issues before the application					
		is impacted.					
NFR-5	Availability	IBM Cloud uses global load balancing to					
		ensure that a redundant, highly available					
		platform is available to host the workloads					
		and applications.					
NFR-6	Scalability	IBM Cloud Bare metal servers help in					
		achieving scalability whenever needed					
		especially when number of users increase.					

Project Design

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priorit y	Release
Customer (Specially Abled Person)	Registration	USN-1	As a user, I can register to create an account for the application by entering my username, email and password.	I can access my account and select the mode of usage	High	Sprint-1
	Validation	USN-2	As a user, I will be authenticated to the website after checking my account credentials.		Mediu m	Sprint-2
	Login	USN-3	As a user, I will be prompted to select the mode of communicati on and I will select the specially abled mode (Gesture to Speech)	Credential s has to be matched	High	Sprint-3
	Mode Selection	USN-4	As a user of this mode I will capture my hand gesture as video	Either of the modes has to be chosen for further processing	High	Sprint-1
	Video Capturing	USN-5	As a user of this mode, Iwill be able to receive	Minimum video quality criteria	Low	Sprint- 1

	T		T		I	1
			and interpret the translated gestures from the other end.	has to be met		
	Gesture interpretation	USN-6	As a user, I can register for the application by entering my email, password, and confirming my password.	Must be a valid gesture	High	Sprint- 1
Customer (Normal Person)	Registration	USN-7	As a user, I can register to create an account for the application by entering my username, email and password.	I can access my account and select the mode of usage	High	Sprint-1
	Validation	USN-8	As a user, I will be authenticated to the website after checking my account credentials.		Mediu m	Sprint-2
	Confirmation	USN-9	As a user, I can log into the application by entering email & password	I can receive confirmatio n email & click confirm	Mediu m	Sprint-2
	Login	USN-10	As a user, I will be prompted to select the mode of	Credential s has to be matched	High	Sprint-3

			. ,.			
			communicati on and I will			
			select			
			the specially			
			abled mode			
			(Gesture to			
			Speech)			
	Mode	USN-11	As a user of	Either	High	Sprint-
	Selection	0511-11	this mode I	of the	_	1
			will record the	modes has		
			speech in order	to be		
			to convert it	chosen		
			into gesture	for further		
				processing		
	Speech	USN-12	As a user of	Minimum	Low	Sprint-
	Recording		this mode, I	audio		1
			will be able	quality		
			to receive	criteria		
			and interpret	has to be		
			the translated	met		
			speech from			
			the other end.			
	Speech	USN-13	As an admin,	The	Mediu	Sprint-
	recognition		I will be	words	m	3
			responsible	must be a		
			for controlling	recognizabl		
			the user	e		
			activities and			
			further			
			upgradations			
			of the			
	A 1: .:		application	A J., 1 1	3.6.1	G. · ·
Administr	Application	USN-14	As an admin,	Admin level	Mediu	Sprint-
ator	monitoring		I will be	privilege	m	3
	and controlling		responsible			
	Controlling		for controlling			
			the user			
			activities and			
			further			
			upgradations			
			of the app.			

Project Planning and Scheduling

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
3	Registration	USN-1	As a user, I can register to create an account for the application by entering my username, email and password.	5	High	Prathiba DRohithKumar M
3	Validation	USN-2	As a user, I will be authenticated to the website after checking my account credentials.	5	Medium	Ramya PRohithKumar M
3	Login	USN-3	As a user, I can log into the account by entering the appropriate credentials	5	Medium	Prathiba DSendamang alam Gandhi Abhimanyu
4	Mode Selection	USN-4	As a user, I will be prompted to select the mode of communication.(Sign to Speech / Speech to Sign)	10	High	Prathiba DRohithKumar M
1	Video Capturing (Sign to Speech)		As a user of this mode my hand gesture will be captured once I click the 'Click to Start Capture' button.	4	Medium	 Rohith Kumar M Sendamang alam Gandhi Abhimanyu

	1		1				
1	Gesture to text conversion (Sign to Speech)	USN-6	The gestures I show will be converted into a text format internally and will be displayed on the screen.	12	High	•	Prathiba D Ramya P
1	Text to speech conversion (Sign to Speech)	USN-7	The intermediate text format will be converted to speech using API and will be produced as output.	4	Medium	•	Rohith Kumar M Sendamang alam Gandhi Abhimanyu
2	Speech Recording (Speech to Sign)	USN-8	As a user of this mode my voice/speech input will be recorded once I click the 'Click to Record' button.	4	Medium	•	Ramya P Sendamang alam Gandhi Abhimanyu
2	Speech to text conversion (Speech to Sign)	USN-9	Voice input converted to text format internally and will be displayed in a text box	8	Medium	•	Ramya P Rohith Kumar M
2	Text to gesture conversion (Speech to Sign)	USN-10	The text format is converted into sign language gestures(displayed as images) using an alphabet to image mapper function.	8	High	•	Prathiba D Sendamang alam Gandhi Abhimanyu
4	Logout	USN-11	As a user I can logout from my account at any point of time.	10	Low	•	Ramya P Sendamang alam Gandhi Abhimanyu

6.2 Sprint Delivery Schedule

Sprint	Total	Duration	Sprint Start	Sprint End	Story	Sprint
	Story		Date	Date (Planned)	points	Release
	Points				completed	Date
					(as on	(Actual)
					planned	
					date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 Reports from JIRA

Coding and Execution

7.1 Feature 1 - Sign to Speech

Model Building

Sign to Text

Loading the Dataset & Image Data Generation

Model Creation

```
In [6]:
           # Importing Libraries
            from tensorflow.keras.models import Sequential
           from tensorflow.keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense
 In [7]:  # Creating Model
  model=Sequential()
 In [8]:
           # Adding Convolution Lavers
           model.add(Convolution2D(32,(3,3),activation='relu',input_shape=(64,64,3)))
 In [9]: # Adding Pooling Layers
           model.add(MaxPooling2D(pool_size=(2,2)))
In [10]: # Adding Flatten Layers
           model.add(Flatten())
In [11]:  # Adding Dense Layers
model.add(Dense(300,activation='relu'))
           model.add(Dense(150,activation='relu'))
model.add(Dense(9,activation='softmax'))
In [12]:
           # Compiling the Model
           model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
```

```
In [13]:
          # Fitting the Model Generator
          model.fit\_generator(x\_train, steps\_per\_epoch=len(x\_train), epochs=10, validation\_data=x\_test, validation\_steps=len(x\_test))
          C:\Users\91936\AppData\Local\Temp/ipykernel_20056/1042518445.py:2: UserWarning: `Model.fit_generator` is deprecated and will be removed in
          a future version. Please use `Model.fit`, which supports generators.

model.fit_generator(x_train,steps_per_epoch=len(x_train),epochs=10,validation_data=x_test,validation_steps=len(x_test))
          Epoch 1/10
          18/18 [===:
Epoch 2/10
                                                ==] - 40s 2s/step - loss: 1.0239 - accuracy: 0.6818 - val_loss: 0.3153 - val_accuracy: 0.9173
          18/18 [=
                                     ========] - 39s 2s/step - loss: 0.1846 - accuracy: 0.9447 - val_loss: 0.2546 - val_accuracy: 0.9547
          Epoch 3/10
          18/18 [==
                                               ====] - 40s 2s/step - loss: 0.0730 - accuracy: 0.9806 - val_loss: 0.2105 - val_accuracy: 0.9733
          Epoch 4/10
          18/18 [===:
Epoch 5/10
                                                  =] - 41s 2s/step - loss: 0.0369 - accuracy: 0.9910 - val_loss: 0.2486 - val_accuracy: 0.9636
          18/18 [===
Epoch 6/10
                                       ========] - 41s 2s/step - loss: 0.0221 - accuracy: 0.9952 - val_loss: 0.2183 - val_accuracy: 0.9689
          18/18 [===:
Epoch 7/10
                                          ======] - 42s 2s/step - loss: 0.0143 - accuracy: 0.9970 - val_loss: 0.2178 - val_accuracy: 0.9756
          18/18 [===:
Epoch 8/10
                                     ========] - 42s 2s/step - loss: 0.0092 - accuracy: 0.9983 - val_loss: 0.2357 - val_accuracy: 0.9764
          18/18 [====
Epoch 9/10
                                        =======] - 44s 2s/step - loss: 0.0093 - accuracy: 0.9978 - val_loss: 0.2137 - val_accuracy: 0.9769
          18/18 [====
                                 =========] - 47s 3s/step - loss: 0.0069 - accuracy: 0.9986 - val_loss: 0.2290 - val_accuracy: 0.9773
          Epoch 10/10
                                       :=======] - 43s 2s/step - loss: 0.0059 - accuracy: 0.9990 - val_loss: 0.2644 - val_accuracy: 0.9769
          18/18 [====
Out[13]:
          Saving the Model
In []:
          #Saving the model
           model.save('aslpng1.h5')
```

Testing the model

```
In [1]: #Importing the necessary packages
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image

In [9]: #Loading the saved model
model=load_model('aslpng1.h5')

In [10]: model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 62, 62, 32)	896
max_pooling2d (MaxPooling2D)	(None, 31, 31, 32)	0
flatten (Flatten)	(None, 30752)	0
dense (Dense)	(None, 300)	9225900
dense_1 (Dense)	(None, 150)	45150
dense_2 (Dense)	(None, 9)	1359
Cotal params: 9,273,305 Crainable params: 9,273,305 Crainable params: 0		

Test Cases

Alphabet 'G'

```
test_image
```

Out[12]:

Image Preprocessing

```
In [13]:
               #image to array conversion
               tmp=image.img_to_array(test_image)
In [14]:
               #Image Dimension expansion
              print('Image Dimension before expansion',tmp.ndim)
tmp=np.expand_dims(tmp,axis=0)
print('Image Dimension after expansion',tmp.ndim)
```

Image Dimension before expansion 3 Image Dimension after expansion 4

Prediction

```
In [15]: prediction=np.argmax(model.predict(tmp),axis=1)
            index=['A','B','C','D','E','F','G','H','I']
print(index[prediction[0]])
```

1/1 [======] - 0s 134ms/step

Alphabet 'H'

```
In [26]:
  test_image
```

Out[26]:

In [27]:

Image Preprocessing

```
#image to array conversion
tmp=image.img_to_array(test_image)
In [28]:
#Image Dimension expansion
print('Image Dimension before expansion',tmp.ndim)
               tmp=np.expand_dims(tmp,axis=0)
print('Image Dimension after expansion',tmp.ndim)
```

Image Dimension before expansion 3 Image Dimension after expansion 4

Prediction

```
In [29]:
          prediction=np.argmax(model.predict(tmp),axis=1)
          index=['A','B','C','D','E','F','G','H','I']
print(index[prediction[0]])
         1/1 [=====] - 0s 25ms/step _{\rm H}
```

23

Text to Speech

```
import pyttsx3

def TexttoSpeech(command):
    engine = pyttsx3.init()
    engine.say(command)
    engine.runAndWait()

text=input("Enter the text ")
TexttoSpeech(text)
```

Real-time Gesture Recognition

Test Cases

```
In [6]:
        import numpy as np
import keras
         import os
         import cv2
         from tensorflow.keras.models import load_model
         from tensorflow.keras.preprocessing import image
        from skimage.transform import resize
        index = ['A','B','C','D','E','F','G','H','I']
model=load_model('model.h5')
         video = cv2.VideoCapture(0)
while True:
            success, frame = video.read()
            cv2.imwrite('frame.jpg', frame)
img=resize(frame,(64,64,1))
             img=np.expand_dims(img,axis=0)
            if(np.max(img)>1):
                img = img/255.0
            predict_x=model.predict(img)
            print(predict_x)
predict=np.argmax(predict_x,axis=1)
            y=predict[0]
            video.release()
         cv2.destroyAllWindows()
```

signtospeech.html

```
{% extends "layout.html" %}
{% block nav %}
<a href="/services" class="active">Home</a>
<a href="/homepage">Sign Out</a>
{% endblock %}
{% block body %}
<section class="tm-welcome-section">
    <div class="container tm-position-relative">
      <div class="row tm-welcome-content">
         <br>><br>>
         <h2 class="white-text tm-handwriting-font tm-welcome-header">
           <img src="{{ url_for('static', filename='img/header-line.png') }}" alt="Line"</pre>
             class="tm-header-line"> Sign On!  <img src="{{ url for('static',
filename='img/header-line.png') }}" alt="Line"
             class="tm-header-line"></h2>
         <h2 class="gold-text tm-welcome-header-2">Sign To Speech Translation</h2>
         <span</pre>
                  class="gold-text" style="font-size:22px; ">Real Time Communication Powered
By AI For Specially Abled</span>
                       <span style="font-size:20px; color:#222222"> The project intends to
create an application which helps the specially challenged people to communicate among them and
the common people. Communication between a person with hearing/speech impairment and a
normal person has always been a challenging task. This application tries to reduce the barrier of
communication by developing an assistive application for specially challenged people.
         </span>
         <br/>br><br>>
      </div>
      <img src="{{ url for('static', filename='/Others/SignSpeech.jpg') }}" alt="Table Set"</pre>
class="tm-table-set img-responsive" width="100%">
    </div>
  </section>
  <div class="tm-main-section light-gray-bg">
    <div class="container" id="main">
       <section class="tm-section tm-section-margin-bottom-0 row">
         <div class="col-lg-12 tm-section-header-container">
           <h2 class="tm-section-header gold-text tm-handwriting-font">Our Services</h2>
           <div class="tm-hr-container">
             <hr class="tm-hr">
           </div>
```

```
</div>
         <div class="col-lg-12 tm-popular-items-container">
           <div class="tm-popular-item">
              <img src="{{ url for('static', filename='Others/camera.jpeg') }}" alt="Popular"</pre>
class="tm-popular-item-img" width="286px" height="166px">
              <div class="tm-popular-item-description">
                <h3 class="tm-handwriting-font tm-popular-item-title"><span
                     class="tm-handwriting-font bigger-first-letter">C</span>lick To
Capture</h3>
                <hr class="tm-popular-item-hr">
                Click here to turn on your camera and start showing gestures! 
                <div class="order-now-container">
                   <a href="/predict" class="order-now-link tm-handwriting-font">Proceed</a>
Now < /a >
                </div>
              </div>
           </div>
           <div class="tm-popular-item">
              <img src="{{ url for('static', filename='/Others/home.png') }}" alt="Popular"</pre>
class="tm-popular-item-img" width="286px" height="166px">
              <div class="tm-popular-item-description">
                <h3 class="tm-handwriting-font tm-popular-item-title"><span
                     class="tm-handwriting-font bigger-first-letter">B</span>ack To Home</h3>
                <hr class="tm-popular-item-hr">
                Click here to go back and toggle between modes!
                <div class="order-now-container">
                   <a href="/services" class="order-now-link tm-handwriting-font">Proceed</a>
Now < /a >
                </div>
              </div>
           </div>
         </div>
       </section>
    </div>
  </div>
{% endblock %}
```

7.2 Feature 2 - Speech to Sign

Model Building

Speech to Text

Text to Sign

speechtosign.html

```
{% extends "layout.html" %}
{% block nav %}
<a href="/services" class="active">Home</a>
<a href="/homepage">Sign Out</a>
{% endblock %}
{% block body %}
<section class="tm-welcome-section">
    <script type="text/javascript" src="{{ url for('static', filename='script.js') }}"></script>
    <div class="container tm-position-relative">
      <div class="row tm-welcome-content">
         <hr><hr><
         <h2 class="white-text tm-handwriting-font tm-welcome-header">
             <img src="{{ url for('static', filename='/img/header-line.png') }}" alt="Line"</pre>
               class="tm-header-line"> Sign On!  <img src="{{ url for('static',
filename='/img/header-line.png') }}" alt="Line"
               class="tm-header-line"></h2>
           <h2 class="gold-text tm-welcome-header-2">Speech To Sign Translation</h2>
           <span</pre>
                    class="gold-text" style="font-size:22px; ">Real
                                                                     Time Communication
Powered By AI For Specially Abled</span>
                        <span style="font-size:20px; color:#222222">
                                                                      The project intends to
create an application which helps the specially challenged people to communicate among them and
the common people. Communication between a person with hearing/speech impairment and a
normal person has always been a challenging task. This application tries to reduce the barrier of
communication by developing an assistive application for specially challenged people.
           </span>
           <br/>br><br>>
         </div>
         <img src="{{ url for('static', filename='/Others/SpeechSign.jpg') }}" alt="Table Set"
class="tm-table-set img-responsive" width="100%">
      </div>
  </section>
  <div class="tm-main-section light-gray-bg">
    <div class="container" id="main">
      <section class="tm-section tm-section-margin-bottom-0 row">
```

```
<div class="col-lg-12 tm-section-header-container">
            <h2 class="tm-section-header gold-text tm-handwriting-font">Our Services</h2>
            <div class="tm-hr-container">
              <hr class="tm-hr">
            </div>
         </div>
            <div class="col-lg-12 tm-popular-items-container">
            <div class="tm-popular-item">
              <center>
                              style="margin-top:50px"
                                                              id="convert text"
              <textarea
                                                                                       rows="14"
cols="28"></textarea>
          </center>
              <div class="tm-popular-item-description">
                <div>
                   <button id="click to record"</pre>
                                                    onclick="addImg()" class="btn" style="color:
#c79c60; font-weight: bold;background-color: black; width: 230px; height:50px;
                   border-radius:12px; font-size: 21px;">Capture</button><br/>></br>
                   <script>
                        function addImg(){
                          var dimg = document.getElementById('convert text').value;
                          var letter=dimg.toUpperCase();
                          p="../static/Gesture Images/"+letter+".jpg";
                          document.getElementById('demo').src=p;
                        }
                      </script>
                    </div>
                      </div>
                      </div>
         <script type="text/javascript" src="{{ url for('static', filename='/js/script.js') }}"></script>
              <img
                     id ="demo" src="{{ url for('static',
                                                                 filename='/Others/asl.jpeg')
height="500px" width="300px" style="width:50%;"/><br><br>
         </div>
       </section>
    </div>
  </div>
{% endblock %}
```

Flask Application

app.py

```
from flask import Flask, render template, request, redirect, url for, session, Response
from flask mysqldb import MySQL
import MySQLdb.cursors
import re
import cv2
from keras.models import load model
import numpy as np
from gtts import gTTS
import os
from keras.preprocessing import image
from skimage.transform import resize
from playsound import playsound
import pyttsx3
import speech recognition as sr
from PIL import Image
import matplotlib.pyplot as plt
app = Flask( name )
index = ['A','B','C','D','E','F','G','H','I']
model=load model('model.h5')
video = cv2.VideoCapture(0)
r = sr.Recognizer()
app.secret_key = 'your secret key'
app.config['MYSQL HOST'] = 'localhost'
app.config['MYSQL USER'] = 'root'
app.config['MYSQL PASSWORD'] = 'Prathidp28#'
app.config['MYSQL_DB'] = 'applogin'
mysql = MySQL(app)
def SpeakText(command):
    engine = pyttsx3.init()
    engine.say(command)
    engine.runAndWait()
def generate frames():
```

```
while (video.isOpened()):
        success, frame = video.read()
        cv2.imwrite('frame.jpg', frame)
        img=resize(frame,(64,64,1))
        img=np.expand dims(img,axis=0)
        if(np.max(img)>1):
            img = img/255.0
        predict x=model.predict(img)
        print(predict x)
        predict=np.argmax(predict x,axis=1)
        y=predict[0]
        SpeakText(index[y])
        copy = frame.copy()
        cv2.rectangle(copy, (320, 100), (620, 400), (255, 0, 0), 5)
        cv2.putText(frame, "The Predicted Alphabet : " + str(index[y]), (100, 100),
cv2.FONT HERSHEY SIMPLEX, 1, (0, 0, 0), 4)
        cv2.imshow('frame', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        ret, buffer = cv2.imencode('.jpg', frame)
        frame = buffer.tobytes()
        yield (b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
(a)app.route('/')
@app.route('/homepage', methods =['GET', 'POST'])
def homepage():
    return render template('homepage.html')
@app.route('/services', methods = ['GET', 'POST'])
def services():
    return render template('services.html')
@app.route('/login', methods =['GET', 'POST'])
def login():
    msg = "
    if request.method == 'POST' and 'username' in request.form and 'password' in request.form:
        username = request.form['username']
        password = request.form['password']
        cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor)
        cursor.execute('SELECT * FROM accounts WHERE username = % s AND password = %
s', (username, password, ))
```

```
account = cursor.fetchone()
        if account:
             session['loggedin'] = True
             session['id'] = account['id']
             session['username'] = account['username']
             msg = 'Logged in successfully!'
             return render template('services.html', msg = msg)
        else:
             msg = 'Incorrect username / password !'
    return render template('login.html', msg = msg)
(a)app.route('/signtospeech', methods = ['GET', 'POST'])
def signtospeech():
    return render template('signtospeech.html')
@app.route('/speechtosign', methods =['GET', 'POST'])
def speechtosign():
    return render template('speechtosign.html')
(a)app.route('/register', methods = ['GET', 'POST'])
def register():
    msg = "
    if request.method == 'POST' and 'username' in request.form and 'password' in request.form and
'email' in request.form:
        username = request.form['username']
        password = request.form['password']
        email = request.form['email']
        cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor)
        cursor.execute('SELECT * FROM accounts WHERE username = \% s', (username, ))
        account = cursor.fetchone()
        if account:
             msg = 'Account already exists!'
        elif not re.match(r'[^{\wedge}@]+@[^{\wedge}@]+\.[^{\wedge}@]+', email):
             msg = 'Invalid email address!'
        elif not re.match(r'[A-Za-z0-9]+', username):
             msg = 'Username must contain only characters and numbers!'
        elif not username or not password or not email:
             msg = 'Please fill out the form!'
        else:
             cursor.execute('INSERT INTO accounts VALUES (NULL, % s, % s, % s)', (username,
password, email, ))
             mysql.connection.commit()
             msg = 'You have successfully registered!'
```

```
elif request.method == 'POST':
    msg = 'Please fill out the form !'
return render template('register.html', msg = msg)
```

@app.route('/predict', methods=['GET', 'POST'])
def predict():

return Response(generate_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')

Homepage - 1

Homepage - 2

Sign Up page

Sign In page

Dashboard - 1

Dashboard - 2

Sign to Speech page

Capture and Back to Homepage options

Speech to Sign page

ASL reference

7.3 Database Schema

```
    CREATE DATABASE IF NOT EXISTS 'applogin' DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;

0 USE `applogin`;
3
4 ● ⊖ CREATE TABLE IF NOT EXISTS `accounts` (
         'id' int(11) NOT NULL AUTO_INCREMENT,
         'username' varchar(50) NOT NULL,
6
7
         'password' varchar(255) NOT NULL,
          'email' varchar(100) NOT NULL,
8
         PRIMARY KEY ('id')
9
     ) ENGINE=InnoDB AUTO INCREMENT=2 DEFAULT CHARSET=utf8;
1
2 • SELECT * FROM applogin.accounts;
```

Testing

8.1 Test Cases

Feature Type	Component	Test Scenario	Steps to execute	Test Data	Expected Result	Actual Result	Status
Functional	Signup	Verify the user is able to register	(i) Enter details and click signup (ii) Enter Valid username and password	Userna me: Passwor d:	If entered the user's details shoud be registered in the database	Working as expected	Pass
Functional	Login	Verify that the user is able to login	(i) Enter details and click login (ii) Enter valid username and password	Userna me: Passwor d:	Entering these the user should be able to login to dashboard	Working as expected	Pass
Functional	Dashboard	Verify whether the user is able to redirect to respective pages	(i) Click on SigntoSpeech button (ii) Click on SpeechtoSign button	Input to the buttons inorder to move to respective pages	By clicking on the two buttons he should be able to move to respective pages	Working as expected	Pass
Functional	SigntoSpeec h	Verify the sign language is converted to speech	(i) Give a sign language and get the result (ii) Click on back button	Photos of sign languag e alphabet s	Sign language shown converted to voice.	Working as expected	Pass
Functional	SpeechtoSig n	Verify the speech is converted to sign	(i) Give a speech and get the result as signs (ii) Click on the back button	Voice of a person dictating alphabet s.	Voice converted to Sign.	Working as expected	Pass

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of digital naturalists project at the time of the release to User Acceptance Testing.

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they resolved.

Resolution	Low severity	Medium Severity	High Severity	Subtotal of Bugs
By UI	1	2	2	2
By Functionality	0	2	2	2
Duplicate	0	4	7	2
External	0	0	0	0
Fixed	1	4	4	9
Not Reproduced	0	0	0	0
Skipped	0	0	0	0
Won't fix	0	0	0	0
Totals	2	15	16	29

3. Defect Analysis

Section	Total Cases	Not Tested	Fail	Pass
User Interface	2	0	0	2
Flask	4	0	0	4
application				
Exception	1	0	0	1
Reporting				
Final Report	2	0	0	2
Output				

Results

9.1 Performance Metrics

Parameter	Values			
Model Summary	Total params: 9,273,305 Trainable params: 9,273,305 Non-trainable params: 0	: 1 model.summary() Model: "sequential" Layer (type) conv2d (Conv2D) max_pooling2d (MaxPooling2D) flatten (Flatten) dense (Dense) dense_1 (Dense) dense_2 (Dense)	Output Shape (None, 62, 62, 32) (None, 31, 31, 32) (None, 30752) (None, 300) (None, 150) (None, 9)	Param # 896 0 9225900 45150
		Total params: 9,273,305 Trainable params: 9,273,305 Non-trainable params: 0		

Accuracy	Training Accuracy - 0.9995 Validation Accuracy - 0.977	Epoch 9/10 18/18 [========] - 41s 2s/step - loss: 0.0045 - accuracy: 0.9994 - val_loss: 0.2632 - val_accuracy: 0.977 3 Epoch 10/10 18/18 [========] - 38s 2s/step - loss: 0.0035 - accuracy: 0.9995 - val_loss: 0.2710 - val_accuracy: 0.977 3
Confidence Score (Only Yolo Projects)	Class Detected -	Not Applicable

ADVANTAGES

- Two-way translation (sign to speech and vice versa) is possible.
- ➤ The application can identify and translate the live and moving images.
- The proposed system ensures the easy translation of sign language to English. Even people who are unaware of the sign language can use the application easily.
- No high-end devices are required to use the application and is compatible with all operating systems and browses.
- ➤ The proposed system is user friendly and makes the life of the person with disability easy.

DISADVANTAGES

- Since it is a web page-based system, it does require internet connectivity which can be inconvenient at times.
- It would have been convenient if it is application based.
- There is a slight chance for a mistranslation. It is difficult to build a perfect system.
- Sign language customization feature is not available.
- The person should have a fundamental knowledge on the operation of computer systems and devices

CONCLUSION

The proposed system is easy to implement as there is no complex feature calculation. This system provides us with high gesture recognition rate with accuracy 90% within minimum time. The system aims to lower the communication gap between deaf people and normal world, since it facilitates dual communications. The projected methodology interprets hand gestures into speech and vice versa. The system overcomes disadvantages of previous existing system and improves their manner. With this project the deaf-mute people can use the hand gestures to perform sign language and it will be converted into speech with accuracy 93%; and the speech of normal person is converted into hand gesture, so the communication between them can take place easily.

FUTURE SCOPE

- The application can be extended to receive user feedback. Improvements in the existing application features or the addition of new features can be carried based on the feedback and ratings.
- The implementation of our model for other sign languages such as Indian Sign Language (ISL) and Russian Sign Language (RSL), as it is currently limited to American Sign Language (ASL).
- ➤ Further training the neural network to efficiently recognize symbols involving two hands.
- > This application can be enhanced for dynamic gesture recognition wherein LSTM

networks can be employed.

> Users can be given the privilege to specify additional gestures for recognition.

APPENDIX

Source Code

https://github.com/IBM-EPBL/IBM-Project-18089-1659679109/tree/main/Final%20Deliverables/Final%20Code

GitHub

https://github.com/IBM-EPBL/IBM-Project-18089-1659679109

Project Demo Link

https://github.com/IBM-EPBL/IBM-Project-18089-1659679109/blob/main/Final

%20Deliverables/Demonstration%20Video%20Link/demo link.txt