

PENGUJIAN HIPOTESIS DUA POPULASI

SATS412 / MODUL 9

Pengujian Hipotesis Dua Populasi (Proporsi)

OUTLINE

01	Pengantar
02	Uji Hipotesis
03	Selang Kepercayaan
04	Studi Kasus

01. PENGANTAR

- Proporsi merupakan karakteristik yang mengikuti kejadian distribusi Binomial dan identik dengan kejadian sukses dan gagal. Pengujian dua proporsi yang masing-masing proporsi berasal dari dua populasi yang berbeda serta independen.
- Pengujian hipotesis proporsi dua populasi bertujuan untuk mengetahui proporsi kejadian sukses tertentu dengan nilai tertentu.
- ☐ Contoh kasus:
 Seorang perokok akan memutuskan berhenti merokok bila ia merasa yakin bahwa proporsi perokok yang menderita kanker paru-paru lebih besar dari pada proporsi bukan perokok yang menderita kanker paru-paru.

O1. PENGANTAR

Tahap Pengujian Hipotesis

- 1) Menyatakan hipotesis nol dan hipotesis alternatif (H_0 dan H_1)
- 2) Tentukan tingkat signifikansi (α)
- 3) Tentukan distribusi sampling dan statistik uji yang sesuai
- 4) Tentukan titik kritis yang membagi daerah penolakan dan penerimaan H₀
- 5) Lakukan pengambilan keputusan/kesimpulan.
 - Jika statistik uji berada di daerah penolakan, maka tolak H_0 . Namun bila statistik uji ada di daerah penerimaan H_0 , maka gagal tolak atau terima H_0 . Kemudian lakukan pengambilan kesimpulan sesuai dengan konteks masalah

02. UJI HIPOTESIS

Pengujian Hipotesis Proporsi 2 Populasi

Hipotesis Uji

$$H_0: P_1 = P_2 \quad \text{dan} \quad H_1: P_1 \neq P_2$$

- Tingkat signifikansi (α) dan ukuran sampel (n)
- Statistik Uji 3.

$$z = \frac{(\hat{P}_1 - \hat{P}_2)}{\sqrt{\hat{P}\hat{q}(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$\hat{P} = \frac{x_1 + x_2}{n_1 + n_2}$$

$$q = 1 - P$$

$$\hat{P} = \frac{x_1 + x_2}{n_1 + n_2}$$
$$q = 1 - P$$

$$Z_{\text{tabel}} = \pm Z_{\alpha/2}$$

02. UJI HIPOTESIS

Pengujian Hipotesis Rata-rata 2 Populasi

4. Titik Kritis

Tolak H_0 jika $Z_{hitung} > Z_{tabel}$ dan atau

Tolak H_0 jika $Z_{hitung} < -Z_{tabel}$

5. Penarikan Kesimpulan

03. SELANG KEPERCAYAAN

Selang Kepercayaan Proporsi 2 Populasi

$$\left(\hat{p}_{1}-\hat{p}_{2}\right)-z_{\alpha/2}\sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}} < p_{1}-p_{2} < \left(\hat{p}_{1}-\hat{p}_{2}\right)+z_{\alpha/2}\sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}}$$

atau

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$$

- Suatu pemungutan suara hendak dilakukan di antara penduduk kota A dan kota B untuk mengetahui pendapat mereka mengenai pembangunan mall baru. Lokasi mall berada di perbatasan kota A dan B. Sebagian besar penduduk merasa bahwa pembangunan tersebut akan lolos, karena letak mall yang strategis dan besarnya proprsi penduduk menyetujuinya. Untuk mengetahui apakah ada selisih yang nyata antara proporsi penduduk kota A dan kota B yang setuju dengan pembangunan mall, dilakukan pengambilan sampel. Di kota A, terdapat 120 penduduk dan total 200 penduduk menyetujui. Sedangkan di kota B, terdapat 240 penduduk dari total 500 penduduk menyetuji. Lakukan pengujian hipotesis untuk membuktikan bahwa proporsi penduduk yang setuju di kota A lebih tinggi dibandingkan kota B. gunakan $\alpha = 5\%$.
- 2. Hitunglah selang kepercayaan 95% untuk selisih proporsi penduduk di kota A dan kota B yang menyatakan setuju!

1. Jawaban studi kasus proporsi dua populasi

 p_1 merupakan proporsi penduduk yang setuju di kota A dan p_2 merupakan proporsi penduduk yang setuju di kota B

a. Hipotesis Uji

$$H_0: p_1 \ge p_2$$

$$H_1: p_1 > p_2$$

- b. Tingkat signifikansi (α) = 5%
- c. Statistik Uji

$$z = \frac{(\hat{P}_1 - \hat{P}_2)}{\sqrt{\hat{P}\hat{q}(\frac{1}{n_1} + \frac{1}{n_2})}} \longrightarrow Z_{\text{hitung}} = \frac{(0.6 - 0.48)}{\sqrt{0.51(0.49)(\frac{1}{200} + \frac{1}{500})}} = 2.9$$

Dengan:

$$\hat{p}_1 = \frac{x_1}{n_1} = \frac{120}{200} = 0.6 \hat{p}_2 = \frac{x_2}{n_2} = \frac{200}{500} = 0.48$$

$$\hat{P} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{120 + 200}{200 + 500} = 0.51$$

$$\hat{q} = 1 - \hat{p} = 1 - 0.51 = 0.49$$

d. Titik Kritis

 $Z_{tabel} = \pm Z_{\alpha}$

Estimasi Titik Batas Atas Konfidensi

e. Kesimpulan

Karena nilai $Z_{hitung} > Z_{tabel}$ yaitu 2.9 > 1.645 maka H_0 ditolak. Artinya proporsi penduduk yang setuju di kota A lebih tinggi dibandingkan kota B.

2. Jawaban studi kasus proporsi dua populasi

Selang Kepercayaan

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Interpretasi:

Dengan tingkat keyakinan 95%, selisih proporsi penduduk di kota A dan B yang menyatakan setuju adalah antara 0.039 hingga 0.201.

3. Seorang ahli farmakologi mengadakan percobaan dua macam obat hipertensi. Obat pertama diberikan pada 100 ekor tikus dan ternyata 60 ekor menunjukkan perubahan tekanan darah. Obat kedua diberikan pada 150 ekor tikus dan ternyata 85 ekor berubah tekanan darahnya. Pengujian dilakukan dengan tingkat signifikansi 5%.

Diketahui:

$$H_0: p_1 = p_2$$
 $n_1 = 100$ $n_2 = 150$

$$n_1 = 100$$

 $n_2 = 150$

$$\hat{p}_1 = \frac{x_1}{n_1} = \frac{60}{100} = 0.6$$

$$\hat{p}_2 = \frac{x_2}{n_2} = \frac{85}{150} = 0.567$$

$$\hat{P} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{60 + 85}{100 + 150} = 0.58$$

$$\hat{q} = 1 - \hat{p} = 1 - 0.58 = 0.42$$

3. Jawaban studi kasus proporsi dua populasi

 p_1 merupakan proporsi obat hipertensi pertama dan p_2 merupakan proporsi obat hipertensi kedua

a. Hipotesis Uji

$$H_0$$
: $p_1 = p_2$

$$H_1: p_1 \neq p_2$$

- b. Tingkat signifikansi (α) = 5%
- c. Statistik Uji

$$z = \frac{(\hat{P}_1 - \hat{P}_2)}{\sqrt{\hat{P}\hat{q}(\frac{1}{n_1} + \frac{1}{n_2})}} \longrightarrow Z_{\text{hitung}} = \frac{(0.6 - 0.567)}{\sqrt{0.58(0.42)(\frac{1}{100} + \frac{1}{150})}} = 0.52$$

Titik Kritis

Kesimpulan e. Karena nilai Z_{hitung} < Z_{tabel} yaitu 0.52 < 1.96 maka H_0 gagal ditolak. Artinya tidak terdapat perbedaan efek yang nyata di antara kedua macam obat anti hipertensi tersebut.

Titik

Sekian Pengujian Hipotesis Dua Populasi (Proporsi)

Terima kasih telah menonton video ini...
Selamat belajar, semoga sukses