Statistical Machine Learning

Lecture 04
Gaussian Process II

Sharif University of Technology Spring 2021

Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$

A Gaussian process defines a distribution over functions p(f) which can be used for

Bayesian regression:

$$p(f|\mathcal{D}) = \underbrace{\frac{p(f)p(\mathcal{D}|f)}{p(\mathcal{D})}}$$

Gaussian Processes

A Gaussian process defines a distribution over functions, p(f), where f is a function mapping some input space $\mathcal X$ to \Re .

$$f:\mathcal{X} o \Re.$$

Notice that f can be an infinite-dimensional quantity (e.g. if $\mathcal{X} = \Re$)

Let $\mathbf{f} = (f(x_1), \dots, f(x_n))$ be an n-dimensional vector of function values evaluated at n points $x_i \in \mathcal{X}$. Note \mathbf{f} is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset $\{x_1, \ldots, x_n\} \subset \mathcal{X}$, the marginal distribution over that finite subset $p(\mathbf{f})$ has a multivariate Gaussian distribution.

Gaussian process covariance functions (kernels)

p(f) is a Gaussian process if for any finite subset $\{x_1,\ldots,x_n\}\subset\mathcal{X}$, the marginal distribution over that finite subset $p(\mathbf{f})$ has a multivariate Gaussian distribution.

Gaussian processes (GPs) are parameterized by a mean function $\mu(x)$, and a covariance function, or kernel, K(x, x').

$$p(f(x), f(x')) = N(\mu, \Sigma)$$

where

$$\mu = \begin{bmatrix} \mu(x) \\ \mu(x') \end{bmatrix} \quad \Sigma = \begin{bmatrix} K(x,x) & K(x,x') \\ K(x',x) & K(x',x') \end{bmatrix}$$

and similarly for $p(f(x_1),\ldots,f(x_n))$ where now μ is an $n\times 1$ vector and Σ is an

Linux Kennel (Covanina): K(x,x)=x-x'

Polynomial: K(x,x')=(x-x')

expanded: K(x,x')=exp(-\frac{1}{2}|x-x'|)

Gaussian process covariance functions

Gaussian processes (GPs) are parameterized by a mean function, $\mu(x)$, and a covariance function, K(x,x').

An example covariance function:

$$K(x_i, x_j) = v_0 \exp\left\{-\left(\frac{|x_i - x_j|}{r}\right)^{\alpha}\right\} + v_1 + v_2 \delta_{ij}$$

with parameters $(v_0, v_1, v_2, r, \alpha)$

These kernel parameters are interpretable and can be learned from data:

Once the mean and covariance functions are defined, everything else about GPs follows from the basic rules of probability applied to mutivariate Gaussians.

Samples from GPs with different $K(x,x^\prime)$

Using Gaussian processes for nonlinear regression

Prior on f is a GP, likelihood is Gaussian, therefore posterior on f is also a GP.

We can use this to make predictions

$$(p(y_*|\mathbf{x}_*, \mathcal{D}) = \int p(y_*|\mathbf{x}_*, f, \mathcal{D}) p(f|\mathcal{D}) df$$

We can also compute the marginal likelihood (evidence) and use this to compare or tune covariance functions

$$p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|f, \mathbf{X}) p(f) df$$

Prediction using GPs with different K(x, x')

A sample from the prior for each covariance function:

Corresponding predictions, mean with two standard deviations:

gpdemo

GP learning the kernel

Consider the covariance function K with hyperparameters $\theta = (v_0, v_1, r_1, \dots, r_d, \alpha)$:

$$K_{\theta}(\mathbf{x}_i, \mathbf{x}_j) = v_0 \exp \left\{ -\sum_{d=1}^{D} \left(\frac{|x_i^{(d)} - x_j^{(d)}|}{r_d} \right)^{\alpha} \right\} + v_1$$

Given a data set $\mathcal{D} = (\mathbf{X}, \mathbf{y})$, how do we learn $\boldsymbol{\theta}$?

The marginal likelihood is a function of θ

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_{\boldsymbol{\theta}} + \sigma^2 \mathbf{I})$$

where its log is:

$$\ln p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = -\frac{1}{2} \ln \det(\mathbf{K}_{\boldsymbol{\theta}} + \sigma^2 \mathbf{I}) - \frac{1}{2} \mathbf{y}^{\top} (\mathbf{K}_{\boldsymbol{\theta}} + \sigma^2 \mathbf{I})^{-1} \mathbf{y} + \text{const}$$

which can be optimized as a function of θ and σ .

Alternatively, one can infer θ using Bayesian methods, which is more costly but immune to overfitting.

From linear regression to GPs:

• Linear regression with inputs x_i and outputs y_i :

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

ullet Linear regression with M basis functions:

 $y_i = \sum_{m=1}^{M} \beta_m \phi_m(x_i) + \epsilon_i$

• Bayesian linear regression with basis functions:

$$eta_m \sim \mathsf{N}(\cdot|0,\lambda_m)$$
 (independent of eta_ℓ , $orall \ell
eq m$), $\epsilon_i \sim \mathsf{N}(\cdot|0,\sigma^2)$

• Integrating out the coefficients, β_j , we find:

$$E[y_i] = 0, \qquad Cov(y_i, y_j) = K_{ij} \stackrel{\text{def}}{=} \sum_{m=1}^{M} \lambda_m \, \phi_m(x_i) \, \phi_m(x_j) + \delta_{ij} \sigma^2$$

This is a Gaussian process with covariance function $K(x_i, x_j) = K_{ij}$.

This GP has a finite number (M) of basis functions. Many useful GP kernels correspond to infinitely many basis functions (i.e. infinite-dim feature spaces).

A multilayer perceptron (neural network) with infinitely many hidden units and Gaussian priors on the weights \rightarrow a GP (Neal, 1996)

Using Gaussian Processes for Classification

Binary classification problem: Given a data set $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, with binary class labels $y_i \in \{-1, +1\}$, infer class label probabilities at new points.

There are many ways to relate function values $f_i = f(\mathbf{x}_i)$ to class probabilities:

$$p(y_i|f_i) = \begin{cases} \frac{1}{1 + \exp(-y_i f_i)} & \text{sigmoid (logistic)} \\ \Phi(y_i f_i) & \text{cumulative normal (probit)} \\ \boldsymbol{H}(y_i f_i) & \text{threshold} \\ \epsilon + (1 - 2\epsilon)\boldsymbol{H}(y_i f_i) & \text{robust threshold} \end{cases}$$

Non-Gaussian likelihood, so we need to use approximate inference methods (Laplace, EP, MCMC).

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

$$y_1 - y_2 = m(x_1 - x_2)$$

$$\frac{y_1 - y_2}{x_1 - x_2} = m$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$c = y_1 - mx_1$$

How do we deal with three simultaneous equations with only two unknowns?

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

$$y_3 = mx_3 + c$$

Overdetermined System

• With two unknowns and two observations:

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

Additional observation leads to overdetermined system.

$$y_3 = mx_3 + c$$

ullet This problem is solved through a noise model $\epsilon \sim \mathcal{N}\left(0,\sigma^2
ight)$

$$y_1 = mx_1 + c + \epsilon_1$$
$$y_2 = mx_2 + c + \epsilon_2$$
$$y_3 = mx_3 + c + \epsilon_3$$

Overdetermined System

With two unknowns and two observations:

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

Additional observation leads to overdetermined system.

$$y_3 = mx_3 + c$$

ullet This problem is solved through a noise model $\epsilon \sim \mathcal{N}\left(0,\sigma^2
ight)$

$$y_1 = mx_1 + c + \epsilon_1$$

$$y_2 = mx_2 + c + \epsilon_2$$

$$y_3 = mx_3 + c + \epsilon_3$$

Overdetermined System

With two unknowns and two observations.

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

Additional observation leads to overdetermined system.

$$y_3 = mx_3 + c$$

ullet This problem is solved through a noise model $\epsilon \sim \mathcal{N}\left(0,\sigma^2
ight)$

$$y_1 = mx_1 + c + \epsilon_1$$

$$y_2 = mx_2 + c + \epsilon_2$$

$$y_3 = mx_3 + c + \epsilon_3$$

Noise Models

- We aren't modeling entire system.
- Noise model gives mismatch between model and data
- Gaussian model justified by appeal to central limit theorem.
- Other models also possible (Student-t for heavy tails).
- Maximum likelihood with Gaussian noise leads to least squares.

What about two unknowns and *one* observation?

$$y_1 = mx_1 + c$$

$$m=\frac{y_1-c}{x}$$

$$c = 1.75 \Longrightarrow m = 1.25$$

$$c = -0.777 \Longrightarrow m = 3.78$$

$$c = -4.01 \Longrightarrow m = 7.01$$

$$c = -0.718 \Longrightarrow m = 3.72$$

$$c = 2.45 \Longrightarrow m = 0.545$$

$$c = -0.657 \Longrightarrow m = 3.66$$

$$c = -3.13 \Longrightarrow m = 6.13$$

$$c = -1.47 \Longrightarrow m = 4.47$$

Can compute m given c. Assume

$$c \sim \mathcal{N}(0,4)$$
,

we find a distribution of solutions.

Probability for Under- and Overdetermined

- To deal with everdetermined introduced probability distribution for 'variable', ϵ_i .
- For underdetermined system introduced probability distribution for 'parameter', c.
- This is known as a Bayesian treatment.

- For general Bayesian inference need multivariate priors.
- E.g. for multivariate linear regression:

$$y_i = \sum_i w_j x_{i,j} + \epsilon_i$$

(where we've dropped c for convenience), we need a prior over \mathbf{w} .

- This motivates a multivariate Gaussian density.
- We will use the multivariate Gaussian to put a prior directly on the function (a Gaussian process).

- For general Bayesian inference need multivariate priors.
- E.g. for multivariate linear regression:

$$y_i = \mathbf{w}^{\top} \mathbf{x}_{i,:} + \epsilon_i$$

(where we've dropped c for convenience), we need a prior over \mathbf{w} .

- This motivates a multivariate Gaussian density.
- We will use the multivariate Gaussian to put a prior *directly* on the function (a Gaussian process).

Multivariate Regression Likelihood

• Recall multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,:}\right)^2\right)$$

• Now use a multivariate Gaussian prior:

$$p(\mathbf{w}) = \frac{1}{(2\pi\alpha)^{\frac{p}{2}}} \exp\left(-\frac{1}{2\alpha} \mathbf{w}^{\top} \mathbf{w}\right)$$

Multivariate Regression Likelihood

• Recall multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,:}\right)^2\right)$$

• Now use a multivariate Gaussian prior:

$$p(\mathbf{w}) = rac{1}{(2\pilpha)^{rac{p}{2}}} \exp\left(-rac{1}{2lpha}\mathbf{w}^{ op}\mathbf{w}
ight)$$

Posterior Density

Once again we want to know the posterior:

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) \propto p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$$

And we can compute by completing the square.

$$\begin{split} \log p(\mathbf{w}|\mathbf{y},\mathbf{X}) = & -\frac{1}{2\sigma^2} \sum_{i=1}^n y_i^2 + \frac{1}{\sigma^2} \sum_{i=1}^n y_i \mathbf{x}_{i,:}^\top \mathbf{w} \\ & -\frac{1}{2\sigma^2} \sum_{i=1}^n \mathbf{w}^\top \mathbf{x}_{i,:} \mathbf{x}_{i,:}^\top \mathbf{w} - \frac{1}{2\alpha} \mathbf{w}^\top \mathbf{w} + \text{const.} \\ & p(\mathbf{w}|\mathbf{y},\mathbf{X}) = \mathcal{N} \left(\mathbf{w} | \mu_w, \mathbf{C}_w \right) \\ \mathbf{C}_w = & (\sigma^{-2} \mathbf{X}^\top \mathbf{X} + \alpha^{-1})^{-1} \text{ and } \mu_w = \mathbf{C}_w \sigma^{-2} \mathbf{X}^\top \mathbf{y} \end{split}$$

Posterior Density

Once again we want to know the posterior:

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) \propto p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$$

And we can compute by completing the square.

$$\begin{split} \log p(\mathbf{w}|\mathbf{y},\mathbf{X}) &= -\frac{1}{2\sigma^2} \sum_{i=1}^n y_i^2 + \frac{1}{\sigma^2} \sum_{i=1}^n y_i \mathbf{x}_{i,:}^\top \mathbf{w} \\ &- \frac{1}{2\sigma^2} \sum_{i=1}^n \mathbf{w}^\top \mathbf{x}_{i,:} \mathbf{x}_{i,:}^\top \mathbf{w} - \frac{1}{2\alpha} \mathbf{w}^\top \mathbf{w} + \text{const.} \\ p(\mathbf{w}|\mathbf{y},\mathbf{X}) &= \mathcal{N}\left(\mathbf{w}|\boldsymbol{\mu}_w, \mathbf{C}_w\right) \\ \mathbf{C}_w &= (\sigma^{-2} \mathbf{X}^\top \mathbf{X} + \alpha^{-1})^{-1} \text{ and } \boldsymbol{\mu}_w = \mathbf{C}_w \sigma^{-2} \mathbf{X}^\top \mathbf{y} \end{split}$$

Bayesian vs Maximum Likelihood

• Note the similarity between posterior mean

$$\mu_{w} = (\underline{\sigma^{-2}} \mathbf{X}^{\top} \mathbf{X}) + \underline{\alpha^{-1}})^{-1} \sigma^{-2} \mathbf{X}^{\top} \mathbf{y}$$

and Maximum likelihood solution

$$\hat{\mathbf{w}} = \mathbf{X}^{\top} \mathbf{X} - \mathbf{1} \mathbf{X}^{\top} \mathbf{y}$$

Two Dimensional Gaussian

- Consider height hand weight w kg.
- Could sample height from a distribution:

$$p(h) \sim \mathcal{N} \left(1.7, 0.0225\right)$$

• And similarly weight:

$$p(w) \sim \mathcal{N}(75, 36)$$

Height and Weight Models

distributions for height and weight.

Marginal Distributions

Independence Assumption

This assumes height and weight are independent.

$$p(h, w) = p(h)p(w)$$

• In reality they are dependent (body mass index)

$$p(w,h)=p(w)p(h)$$

$$p(w,h) = \frac{1}{\sqrt{2\pi\sigma_1^2}\sqrt{2\pi\sigma_2^2}} \exp\left(-\frac{1}{2}\left(\frac{(w-\mu_1)^2}{\sigma_1^2} + \frac{(h-\mu_2)^2}{\sigma_2^2}\right)\right)$$

$$p(w,h) = \frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2}} \exp\left(-\frac{1}{2} \begin{pmatrix} \begin{bmatrix} w \\ h \end{bmatrix} - \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \end{pmatrix}^{\top} \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}^{-1} \begin{pmatrix} \begin{bmatrix} w \\ h \end{bmatrix} - \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right)$$

$$ho(\mathbf{y}) = rac{1}{2\pi \left| \mathbf{D}
ight|} \exp \left(-rac{1}{2} (\mathbf{y} - oldsymbol{\mu})^ op \mathbf{D}^{-1} (\mathbf{y} - oldsymbol{\mu})
ight)$$

Form correlated from original by rotating the data space using matrix R.

$$ho(\mathbf{y}) = rac{1}{2\pi \left| \mathbf{D}
ight|^{rac{1}{2}}} \exp \left(-rac{1}{2} (\mathbf{y} - oldsymbol{\mu})^ op \mathbf{D}^{-1} (\mathbf{y} - oldsymbol{\mu})
ight)$$

Form correlated from original by rotating the data space using matrix R.

$$\rho(\mathbf{y}) = \frac{1}{2\pi \left|\mathbf{D}\right|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{R}^{\top}\mathbf{y} - \mathbf{R}^{\top}\boldsymbol{\mu})^{\top}\mathbf{D}^{-1}(\mathbf{R}^{\top}\mathbf{y} - \mathbf{R}^{\top}\boldsymbol{\mu})\right)$$

Form correlated from original by rotating the data space using matrix R.

$$\rho(\mathbf{y}) = \frac{1}{2\pi \left|\mathbf{D}\right|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{R} \mathbf{D}^{-1} \mathbf{R}^{\top} (\mathbf{y} - \boldsymbol{\mu})\right)$$

this gives a covariance matrix:

$$\mathbf{C}^{-1} = \mathbf{R} \mathbf{D}^{-1} \mathbf{R}^{\top}$$

Form correlated from original by rotating the data space using matrix ${f R}.$

$$ho(\mathbf{y}) = rac{1}{2\pi \, |\mathbf{C}|^{rac{1}{2}}} \exp\left(-rac{1}{2}(\mathbf{y}-oldsymbol{\mu})^{ op} \mathbf{C}^{-1}(\mathbf{y}-oldsymbol{\mu})
ight)$$

this gives a covariance matrix:

$$\mathbf{C} = \mathbf{R} \mathbf{D} \mathbf{R}^{\top}$$

1 Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

1 Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

1 Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

1 Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Multivariate Consequence

If

$$\mathsf{x} \sim \mathcal{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$$

And

$$y = Wx$$

Then

$$\mathsf{y} \sim \mathcal{N}\left(\mathsf{W} \mu, \mathsf{W} \mathbf{\Sigma} \mathsf{W}^{ op}
ight)$$

Multivariate Consequence

If

$$\mathsf{x} \sim \mathcal{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$$

And

$$\mathbf{y} = \mathbf{W}\mathbf{x}$$

Then

$$\mathsf{y} \sim \mathcal{N}\left(\mathsf{W} \mu, \mathsf{W} \mathbf{\Sigma} \mathsf{W}^{ op}
ight)$$

Multivariate Consequence

If

$$\mathsf{x} \sim \mathcal{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$$

And

$$\mathbf{y} = \mathbf{W}\mathbf{x}$$

Then

$$\mathbf{y} \sim \mathcal{N}\left(\mathbf{W}oldsymbol{\mu}, \mathbf{W}oldsymbol{\Sigma}\mathbf{W}^{ op}
ight)$$

Sampling a Function

Multi-variate Gaussians

- We will consider a Gaussian with a particular structure of covariance matrix.
- Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{f} = [f_1, f_2 \dots f_{25}]$.
- We will plot these points against their index.

Gaussian Distribution Sample

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

Figure: A sample from a 25 dimensional Gaussian distribution.

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_2)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of f_2 from f_1 requires conditional density.
- Conditional density is also Gaussian.

$$p(f_2|f_1) = \mathcal{N}\left(f_2|\frac{k_{1,2}}{k_{1,1}}f_1, k_{2,2} - \frac{k_{1,2}^2}{k_{1,1}}\right)$$

where covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & k_{1,2} \\ k_{2,1} & k_{2,2} \end{bmatrix}$$

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, $p(f_1, f_5)$.
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of f* from f requires multivariate conditional density.
- Multivariate conditional density is also Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\mathbf{K}_{*,\mathbf{f}}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{f},\mathbf{K}_{*,*} - \mathbf{K}_{*,\mathbf{f}}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{K}_{\mathbf{f},*}\right)$$

Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{f,f} & \mathbf{K}_{*,f} \\ \mathbf{K}_{f,*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Prediction with Correlated Gaussians

- Prediction of f* from f requires multivariate conditional density.
- Multivariate conditional density is also Gaussian.

$$egin{aligned}
ho(\mathbf{f}_*|\mathbf{f}) &= \mathcal{N}\left(\mathbf{f}_*|oldsymbol{\mu}, \Sigma
ight) \ egin{aligned} egin{aligned} eta &= \mathbf{K}_{*,\mathbf{f}} \mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1} \mathbf{K}_{\mathbf{f},*} \end{aligned} \ \Sigma &= \mathbf{K}_{*,*} - \mathbf{K}_{*,} \mathbf{K}_{\mathbf{f},*}^{-1} \mathbf{K}_{\mathbf{f},*} \end{aligned}$$

Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{f,f} & \mathbf{K}_{*,f} \\ \mathbf{K}_{f,*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k\left(\mathbf{x}, \mathbf{x}'\right) = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k\left(\mathbf{x}, \mathbf{x}'\right) = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_{2}^{2}}{2\ell^{2}}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Noise Models

Graph of a GP

- Relates input variables, \mathbf{X} , to vector, \mathbf{y} , through \mathbf{f} given kernel parameters $\boldsymbol{\theta}$.
- Plate notation indicates independence of $y_i|f_i$.
- Noise model, $p(y_i|f_i)$ can take several forms.
- Simplest is Gaussian noise.

Figure: The Gaussian process depicted graphically.

Limitations of Gaussian Processes

- Inference is $O(n^3)$ due to matrix inverse (in practice use Cholesky).
- Gaussian processes don't deal well with discontinuities (financial crises, phosphorylation, collisions, edges in images).
- Widely used exponentiated quadratic covariance (RBF) can be too smooth in practice (but there are many alternatives!!).

Summary

- Broad introduction to Gaussian processes.
 - Started with Gaussian distribution.
 - Motivated Gaussian processes through the multivariate density.
- Emphasized the role of the covariance (not the mean).
- Performs nonlinear regression with error bars.
- Parameters of the covariance function (kernel) are easily optimized with maximum likelihood.

A picture

