Universidad de Granada	Fundamentos Físicos y Tecnológicos G.I.I.	Examen de Teoría 6 de Septiembre de 2012	
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Responde a cada pregunta en hojas separadas.
- Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- 1. Dos cargas $q_1=2\mu C$ y $q_2=-2\mu C$ se encuentran en dos de los vértices de un triángulo equilátero de 1m de lado. Calcula:
 - a) El campo eléctrico creado por esas dos cargas en el tercer vértice. (0.5 puntos)
 - b) El trabajo necesario para llevar una carga de $1\mu C$ desde ese tercer vértice hasta el centro del triángulo. (0.5 puntos)
- 2. En el circuito de la figura [1]:
 - a) Calcula el equivalente Thevenin del circuito visto desde los puntos A y B si $R=2k\Omega, V_1=2V, V_2=5V$ e I=2mA. (1.5 puntos)
 - b) Calcula la potencia de la fuente de corriente y de la fuente de tensión V_2 justificando si es consumida o suministrada. (1 punto)

Figura 1: Circuito para el problema 2.

- 3. En el circuito de la figura 2:
 - a) Calcula la función de transferencia teniendo en cuenta que $R=10k\Omega$ y L=1mH. (0.75 puntos)
 - b) Dibuja el diagrama de Bode en módulo y fase y explica su significado.(1 punto)
 - c) ¿Qué forma tiene la salida $v_o(t)$ si la entrada es $v_i(t) = 0.7 \sin\left(3.10^6 t + \frac{\pi}{3}\right) V$? (0.25 puntos)
 - d) ¿Cuánto vale la potencia disipada en la bobina si la entrada es $v_i(t) = 0.7 \sin \left(3.10^6 t + \frac{\pi}{3}\right) V$? Justifica tu respuesta. (0.25 puntos)

Figura 2: Circuito para el problema 3.

- 4. En el circuito de la figura 3:
 - a) Determinar razonadamente el valor de la salida teniendo en cuenta que $R=1k\Omega$, $V_i=3V$, I=1mA y $V_T=0.6V$. Justifica el estado del diodo presente en el circuito. (1 punto)
 - b) ¿Qué intensidad circula por la resistencia de valor 2R? Justifica la respuesta. (0.25 puntos)
 - c) Calcula la potencia consumida por el diodo. (0.5 puntos)

Figura 3: Circuito para el problema 4.

- 5. Un transistor MOSFET tipo n tiene la puerta cortocircuitada con el drenador: (0.5 puntos)
 - a) Entonces el transistor está en saturación.
 - b) Entonces el transistor podría estar en saturación o corte.
 - c) Entonces el transistor podría estar en lineal o corte.
 - d) Entonces el transistor está en lineal.
- 6. Dibuja un inversor CMOS y explica brevemente su funcionamiento. Dibuja y explica su función de transferencia en tensión $(V_o V_i)$. Explica brevemente qué ventajas tiene la lógica CMOS sobre las lógicas NMOS. (1 punto)
- 7. Explica la utilidad de los circuitos de las figuras 4(a) y 4(b). Si tuvieras que elegir entre uno de los dos circuitos, ¿cuál escogerías? Razona tu respuesta. (1 punto)

Figura 4: Circuitos para el problema 7.

EXAMEN 2012 SEPTIEMBRE G.I.I.

4. Datos R=JKI Vi = 3V Awb = TVT=0.6V

CVS CESTAdo del diodo? CI por 2R?

1°) Supongamos el diodo OFF:

2°) El diodo debe estas conduciendo, lo cual implica que V+=Vz=0.6V Suporición

·) Modelo lineal ideal: I = I = OA

·) Realin negat: V=V=V=0.6V D& intervaided

.) Ley de mides B: N- pues I = DA 2R es nula

 $T_{3} = T_{2} = D \frac{V_{i} - V_{B}}{R} = \frac{V_{B} - V_{0}}{R} = D \frac{3 - 0.6}{4000} = \frac{0.6 - V_{0}}{4000} = D$ D Vn=-1.8V

c) Potencia consumida por el diodo.

 $T_{R} = \frac{1}{\sqrt{2}} = 0.6 \text{ mA}$ $T_{R} = \frac{1}{\sqrt{2}} = 0.6 \text{ mA}$

Potencia consumida = Id. Vr = 0.24 mW

 $\frac{R_{3}R_{2}}{j\omega C_{3}} + \frac{R_{3}}{j\omega C_{3}}\frac{R_{3}R_{2}j\omega C_{2} + R_{3}}{j\omega C_{3}j\omega C_{2}}$ $= \frac{R_{3}j\omega C_{3}j\omega C_{2} + R_{2}j\omega C_{3}j\omega C_{2} + j\omega C_{3} + j\omega C_{2}}{R_{3}+R_{3}R_{3}j\omega C_{2}}$

$$= \frac{1}{100} \cdot \frac{(R_{3} + R_{2}) \frac{1}{3} \omega C_{3} + 1 + \frac{C_{3}}{C_{2}}}{1000 + \frac{1}{3} \omega C_{3} + 1 + \frac{C_{3}}{C_{2}}} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000 + \frac{1}{3} \omega C_{3} + 1}{1000 + \frac{1}{3} \omega C_{3}} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000 + \frac{1}{3} \omega C_{3}} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000 + \frac{1}{3} \omega C_{3}} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000 + \frac{1}{3} \omega C_{3}} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000} \cdot \frac{1}{2000 + \frac{1}{3} \omega C_{3}} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000} \cdot \frac{1}{2000 + \frac{1}{3} \omega C_{3}} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000} \cdot \frac{1}{2000 + \frac{1}{3} \omega C_{3}} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000} \cdot \frac{1}{2000 + \frac{1}{3} \omega C_{3}} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000} \cdot \frac{1}{2000} \cdot \frac{1}{2000} = \frac{1}{3} \frac{1}{200} \cdot \frac{1}{2000} \cdot \frac{1}{2000} = \frac{1}{3} \frac{1}{2000} =$$

$$\left[\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{\omega}{6} \right] \quad \text{Moraulo} = \sqrt{1} \cdot \frac{1}{2} + \left(\frac{\omega}{\frac{10^{6}}{6}} \right)^{2}$$
Argumento = ouctg $\left(\frac{\omega}{\frac{10^{6}}{6.6}} \right)$

Argumento = - actg
$$\left(\frac{10^2}{5}\right)$$

We dule = $\frac{1}{5}$

1°) Diodo OFF:

2') Diedo ON: Con Vis 1.2V

