RPCA for Modal Decomposition of Corrupt Fluid Flows

Review of paper by Scherl et. al.

Yerbol Palzhanov

University Of Houston

November 10, 2022

Motivation

Figure: Schematic of RPCA filtering applied to corrupt flow field data. Corrupted snapshots are arranged as column vectors in the matrix \mathbf{X} , which is decomposed into the sum of a low-rank matrix \mathbf{L} and a sparse matrix of outliers \mathbf{S} .

- Overview of standard POD and DMD
- Robust PCA
- Description of flow fields
- Results of RPCA filtering

- Overview of standard POD and DMD
- Robust PCA
- Description of flow fields
- Results of RPCA filtering

Proper orthogonal decomposition

There are several variants of POD , paper presents a variant of the snapshot POD of Sirovich that relies on the numerically stable SVD. POD modes are obtained by computing the SVD of $\mathbf{X} \in \mathbb{R}^{n \times m}$:

$$\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T},\tag{1}$$

where , $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{\Sigma} \in \mathbb{R}^{n \times m}$ and $\mathbf{V} \in \mathbb{R}^{m \times m}$. The columns of \mathbf{U} are *POD modes* with the same dimension as a flow field \mathbf{x} . POD modes are orthonormal so that $\mathbf{U}^T\mathbf{U} = \mathbf{I}$; similarly $\mathbf{V}^T\mathbf{V} = \mathbf{I}$. Moreover, the columns of \mathbf{U} (resp. rows of \mathbf{V}^T) are arranged in order of their importance in describing the data.

Proper orthogonal decomposition

The matrix **X** will exhibit *low-rank structure*, so that it is well approximated by the first $r \ll m < n$ columns of **U** and **V**:

$$\mathbf{X} \approx \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^T, \tag{2}$$

The Eckart-Young theorem states that this is the *optimal* rank-r approximation of the matrix \mathbf{X} in a least-squares sense.

Dynamic mode decomposition

DMD is a modal decomposition technique that simultaneously identifies spatially coherent modes that are constrained to have the same linear behavior in time, given by oscillations at a fixed frequency with growth or decay

DMD seeks to identify the leading eigenvalues and eigenvectors of the best-fit linear operator **A** that evolves snapshots forward in time:

$$\mathbf{x}_{k+1} \approx \mathbf{A}\mathbf{x}_k.$$
 (3)

Dynamic mode decomposition

Dynamic mode decomposition

- Overview of standard POD and DMD
- Robust PCA
- Description of flow fields
- Results of RPCA filtering

Mathematically, the goal is to find ${f L}$ and ${f S}$ that satisfy the following:

$$\min_{\boldsymbol{L},\boldsymbol{S}} \text{rank}(\boldsymbol{L}) + \|\boldsymbol{S}\|_0 \text{ subject to } \boldsymbol{L} + \boldsymbol{S} = \boldsymbol{X}. \tag{4}$$

It is possible to solve for L and S with *high probability* using a convex relaxation of (4):

$$\min_{\mathbf{L},\mathbf{S}} \|\mathbf{L}\|_* + \lambda_0 \|\mathbf{S}\|_1 \text{ subject to } \mathbf{L} + \mathbf{S} = \mathbf{X}, \tag{5}$$

where $\|\cdot\|_*$ is the nuclear norm, given by the sum of singular values which is a proxy for the rank of the matrix and $\lambda_0 = \lambda/\sqrt{\max(n,m)}$ and $\|\cdot\|_1$ is the 1-norm of the matrix.

The convex problem in (5) is known as *principal component pursuit* (PCP), and may be solved using the augmented Lagrange multiplier (ALM) algorithm.

Specifically, an augmented Lagrangian may be constructed:

$$\mathcal{L}(\mathbf{L}, \mathbf{S}, \mathbf{Y}) = \|\mathbf{L}\|_* + \lambda_0 \|\mathbf{S}\|_1 + \langle \mathbf{Y}, \mathbf{X} - \mathbf{L} - \mathbf{S} \rangle + \frac{\upsilon}{2} \|\mathbf{X} - \mathbf{L} - \mathbf{S}\|_F^2.$$
 (6)

Where Y is the matrix of Lagrange multipliers and v is a hyperparameter. We then solve for \mathbf{L}_k and \mathbf{S}_k to minimize \mathcal{L} , update the Lagrange multipliers

$$\mathbf{Y}_{k+1} = \mathbf{Y}_k + \upsilon(\mathbf{X} - \mathbf{L}_k - \mathbf{S}_k),$$

and iterate until convergence.

- Overview of standard POD and DMD
- Robust PCA
- Description of flow fields
- Results of RPCA filtering

Flow fields

Flow past a cylinder, DNS

Channel flow, DNS

Flow past a cylinder, PIV

Turbine wake, PIV

- Overview of standard POD and DMD
- Robust PCA
- Description of flow fields
- Results of RPCA filtering

