

<u>Lectu</u>	<u>re 9: I</u>	ntro	<u>oducti</u>	on	to	
					_	_

12. Examples of Maximum

课程 □ Unit 3 Methods of Estimation □ Maximum Likelihood Estimation

□ Likelihood Estimators

12. Examples of Maximum Likelihood Estimators

Note: The following problem will be presented in lecture (at the bottom of this page), but we encourage you to attempt it first.

Maximum Likelihood Estimator of a Bernoulli Statistical Model I

3/3 points (graded)

In the next two problems, you will compute the MLE (maximum likelihood estimator) associated to a Bernoulli statistical model.

Let $X_1, \ldots, X_n \overset{iid}{\sim} \operatorname{Ber}(p^*)$ for some unknown $p^* \in (0,1)$. You construct the associated statistical model $(\{0,1\}, \{\operatorname{Ber}(p)\}_{p \in (0,1)})$. Let L_n denote the likelihood of this statistical model. Recall that in the fourth problem "Likelihood of a Bernoulli Statistical Model" from two slides ago that you derived the formula

$$L_{n}\left(x_{1},\ldots,x_{n},p
ight)=\prod_{i=1}^{n}p^{x_{i}}\left(1-p
ight)^{1-x_{i}}=p^{\sum_{i=1}^{n}x_{i}}\left(1-p
ight)^{n-\sum_{i=1}^{n}x_{i}}.$$

Oftentimes for computating the MLE it is more convenient to work with and optimize the \log -likelihood $\ell\left(p\right):=\ln L_{n}\left(x_{1},\ldots,x_{n},p\right)$.

The derivative of the log-likelihood can be written

$$rac{\partial}{\partial p} {
m ln} \, L_n \left(x_1, \ldots, x_n, p
ight) = A/p - \left(n - A
ight)/B$$

where A can be expressed in terms of $\sum_{k=1}^n x_i$ and B can be expressed in terms of p. Fill in the blanks with the appropriate values for A and B

(Enter **Sigma_n** for entire sum $\sum_{k=1}^n x_i$).

$$A = oxedsymbol{egin{array}{c} Sigma_n \ \hline oxedsymbol{\Sigma_n} \end{array}}$$

For which p does $rac{\partial}{\partial p} \ln L_n\left(x_1,\ldots,x_n,p
ight) = 0$? Denote this critical point by \hat{p} .

$$\hat{p}=0$$

$$\hat{p}=1$$

$$oldsymbol{\hat{p}} = \sum_{k=1}^n x_i$$

$$ullet \hat{p} = rac{1}{n} \sum_{k=1}^n x_i \; \Box$$

Solution:

Observe that

$$egin{aligned} \ln L_n\left(x_1,\ldots,x_n,p
ight) &= \ln\left(p^{\sum_{i=1}x_i}\left(1-p
ight)^{n-\sum_{i=1}x_i}
ight) \ &= \left(\sum_{i=1}^nx_i
ight) \ln p + \left(n-\sum_{i=1}^nx_i
ight) \ln \left(1-p
ight). \end{aligned}$$

Taking the derivative with respect to p,

$$rac{\partial}{\partial p} \mathrm{ln}\, L_n\left(x_1,\ldots,x_n,p
ight) = rac{\sum_{i=1}^n x_i}{p} - rac{n - \sum_{i=1}^n x_i}{1-p}.$$

We set this to be 0 and solve for p:

$$egin{aligned} rac{\sum_{i=1}^n x_i}{p} - rac{n - \sum_{i=1}^n x_i}{1-p} &= 0 \Leftrightarrow \ rac{(1-p)\sum_{i=1}^n x_i - p\left(n - \sum_{i=1}^n x_i
ight)}{p\left(1-p
ight)} &= 0 \Leftrightarrow \ rac{\sum_{i=1}^n x_i - np}{p\left(1-p
ight)} &= 0. \end{aligned}$$

Since the derivative blows up at p=0,1, we can assume 0 and ignore the denominator for the purpose of solving for <math>p. Hence $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the unique critical point of the log-likelihood.

提交

你已经尝试了1次(总共可以尝试2次)

Answers are displayed within the problem

Maximum Likelihood Estimator of a Bernoulli Statistical Model: Second Derivative Test

5/5 points (graded)

Setup:

As above, let $X_1, \ldots, X_n \overset{iid}{\sim} \operatorname{Ber}(p^*)$ for some unknown $p^* \in (0,1)$. You construct the associated statistical model $(\{0,1\},\{\operatorname{Ber}(p)\}_{p\in(0,1)})$. Let L_n denote the likelihood of this statistical model. Recall from a previous problem that

$$L_n\left(x_1,\dots,x_n,p
ight) = \prod_{i=1}^n p^{x_i} \left(1-p
ight)^{1-x_i} = p^{\sum_{i=1}^n x_i} \left(1-p
ight)^{n-\sum_{i=1}^n x_i}.$$

As stated, it will be more convenient to work with the \log -likelihood $\ell\left(heta
ight)=\ln L_{n}\left(x_{1},\ldots,x_{n},p
ight)$.

Question:

Next we will do the second derivative test to see if the critical point \hat{p} obtained from the previous question is a local maximum. The second derivative of the log-likelihood can be written

$$rac{\partial^2}{\partial p^2} {
m ln}\, L_n\left(x_1,\ldots,x_n,p
ight) = -rac{C}{p^2} - rac{n-C}{D}$$

where C depends on $\sum_{i=1}^n x_i$ and D depends on p. Fill in the blanks with the correct values of C and D.

(Type **Sigma_n** for the entire sum $\sum_{k=1}^n x_i$)

$$C =$$
 Sigma_n Answer: Sigma_n Answer: (1-p)^2 Answer: (1-p)^2

Next we will test the endpoints of our optimization problem. Fill in the blanks with the correct values: (Note that here we are working with the **likelihood**, *not* the **log-likelihood**)

$$L_{n}\left(x_{1},\ldots,x_{n},0
ight) = oxed{0}$$
 \Box Answer: 0.0

$$L_n\left(x_1,\ldots,x_n,1
ight)= iggl[0]$$
 \square Answer: 0.0

What is the maximum likelihood estimator (MLE) \hat{p}_n^{MLE} for the true parameter p^* ?

 \circ 0

 \circ 1

 $\sum_{i=1}^n X_i$

 $left rac{1}{n} \sum_{i=1}^n X_i \ \Box$

Solution:

The second derivative is

$$rac{\partial}{\partial heta} \left(rac{\sum_{i=1}^{n} X_i}{p} - rac{n - \sum_{i=1}^{n} X_i}{1 - p}
ight) = -rac{\sum_{i=1}^{n} x_i}{p^2} - rac{n - \sum_{i=1}^{n} x_i}{\left(1 - p
ight)^2}.$$

Since this expression is always negative, this implies that the critical point \hat{p} is a **local maximum**.

Testing the endpoints we see

$$L_n\left(x_1,\dots,x_n,0
ight) \ = 0^{\sum_{i=1}^n x_i} (1)^{n-\sum_{i=1}^n x_i} = 0$$

$$L_n\left(x_1,\dots,x_n,1
ight) \ \equiv 1^{\sum_{i=1}^n x_i} (0)^{n-\sum_{i=1}^n x_i} = 0$$

Since the likelihood is non-negative, the endpoints are actually **global minima**.

Hence, the global maximum is achieved at $\hat{p}=rac{1}{n}\sum_{i=1}^n x_i$. Plugging in the random variables X_1,\ldots,X_n , we derive the MLE

$$\hat{p}_n^{MLE} = rac{1}{n} \sum_{i=1}^n X_i$$

which is precisely the **sample mean**.

Remark 1: This problem illustrates the conceptually nice fact that the **maximum likelihood estimator** for a Bernoulli statistical model is the **sample mean**.

Remark 2: Note that for this problem, we derived the maximum likelihood estimator by optimizing $\ln L_n$ treating x_1, \ldots, x_n as abstract variables. At the end, we plugged in our random samples X_1, \ldots, X_n . In practice, we would have access to observations $X_1 = x_1, \ldots, X_n = x_n$, and we can simply plug in x_1, \ldots, x_n for the values of X_1, \ldots, X_n in the expression for the MLE to get our estimate of the true parameter.

Remark 3: Alternatively, to get the estimate for p^* , we can first plug in the observations $X_1 = x_1, \ldots, X_n = x_n$ and then optimize the log-likelihood $\ln L_n(x_1, \ldots, x_n, p)$ as a function of p. You will get the same answer either way.

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

Maximum Likelihood Estimator of Bernoulli Trials

Exercises

a) Which one of the following functions are concave on $\Theta = \mathbb{R}^2$?

1.
$$h(\theta) = -(\theta_1 - \theta_2)^2 - \theta_1 \theta_2$$

2.
$$h(\theta) = -(\theta_1 - \theta_2)^2 + \rho^{-\alpha}$$

3.
$$h(\theta) = (\theta_1 - \theta_2)^2 -$$

- 4. Both 1. and 2.
- 5. All of the above
- 6. None of the above

b)Let $h: \Theta \subset \mathbb{R}^d \to \mathbb{R}$ be a function whose hessian matrix $\mathbf{H}h(\theta)$ has a positive diagonal entry for some $\theta \in \Theta$. Can h be concave?

(Caption will be displayed when you start playing the video.)

Start of transcript. Skip to the end.

So check one thing.

Actually, let's do the b together.

Let h be a function whose hessian matrix has a positive diagonal entry.

So it's any matrix.

So I don't tell you anything except for the fact

that there is.

视频

下载视频文件

字幕

下载 SubRip (.srt) file

下载 Text (.txt) file

讨论

显示讨论

主题: Unit 3 Methods of Estimation:Lecture 9: Introduction to Maximum Likelihood Estimation / 12. Examples of Maximum Likelihood Estimators