INDVCTIVE STEP:

Assume it is true for
$$0$$

$$Pr(\alpha_1,...,\alpha_n|\beta) = Pr(\alpha_1|\alpha_2,...,\alpha_n,\beta)Pr(\alpha_1|\alpha_3,...\alpha_n,\beta)...$$

$$Pr(\alpha_n|\beta)$$

To Prove:

BY BAYES CONSTITUNITY:

$$P_{r}(\alpha_{1},...,\alpha_{n+1}|\beta) = P_{r}(\alpha_{1},...,\alpha_{n}|\alpha_{n+1},\beta) \cdot P_{r}(\alpha_{n+1}|\beta)$$

$$= P_{r}(\alpha_{1}|\alpha_{2},...,\alpha_{n+1}\beta)P_{r}(\alpha_{2}|\alpha_{2},...,\alpha_{n+1}\beta)...$$

$$P_{r}(\alpha_{n+1}|\beta) \cdot P_{r}(\alpha_{n+1}|\beta)...$$

$$P_{r}(\alpha_{n+1}|\beta) \cdot P_{r}(\alpha_{n+1}|\beta)...$$
[From O]

HENCE PROVED //

PANEN:

So, Using Case Ambryses

$$Pr(R) = Pr(R,0) + Pr(R,n) + Pr(R,70,7n)$$

(Only 3 possibilities as 0 and no one mutually exclusive)

$$= P_{r}(A)o) \cdot P_{r}(o) + P_{r}(A)n) \cdot P_{r}(n) + P_{r}(R) \tau_{0} \tau_{0} \cdot P_{r}(\tau_{0}) + P_{r}(R) \tau_{0} \cdot P_{r}(\tau_{$$

$$Pr(O|R) = \frac{Pr(R|O) \cdot Pr(O)}{Pr(R|O)}$$
Bayes Ave

3. BAYELIAN NETWORK:

$$X_1 = X_2 = X_3 = \{H, T\}$$
 where H: Head

T: Tail

F: Off

CONDITIONAL PROBABILITY TABLES:

Ocosa,
1/3
V ₃
1)3

Coin	×	ک ۱۳۱۳ در ۱۳۹۰
a	Ч	0.2
a	Τ	0 · 8
Ь	Н	0.4
Ь	т	0.6
C	н	0.8
c	Τ	٥٠٦

Coin	X ₂	^{الم} ار∞، ۱
a	Ч	0.2
a	τ	0.8
Ь	Н	0.4
Ь	Т	0.6
C	н	0.8
С	Τ	o · ɔ

Coin	X ₃	₽ _{K3} lωn
a	ч	0.2
a	τ	0.8
Ь	Н	0.4
Ь	т	D-6
C	н	0.8
С	Τ	ნ∙ე

X,	× ₂	×₃	BELL	Pge11 (x1, x2, x3
н	М	Н	Τ	1
н	н	н	t	0
н	ч	Τ	Τ	0
н	н	т	۶	1
н	Τ	Н	†	40
и	Τ	Ч	Ł	1
Т	Н	н	Τ	0
7	Н	Н	F	3
н	τ	7	τ	0
n	Т	Τ	F]
	η	Т	T	0
٣	н	Т	F)
Τ	7	4	Т	0
т	Т	н	F)
۲	Τ	T	ī	1
ታ	7	τ	۴	0

4.

a. MARKOVIAN ASSUMPTIONS:

$$I(A, \phi, BE)$$

b. * d-separated (A,F,E)

Valve 0 - open

Valve & - open

So Path A-D-B-E is not blocked.

A and E are not d-separated by F.

FALSE //

* d-separated (h, B, E)

Value F - open

Valve H - closed

So 6-F-M-E-B is closed.

Valve P - open

Valve D - open

Value B - closed

Path G-F-O-B-E is blocked

Valve F - open

Valve c - open

Valve A - open

Value D - closed

Valve B - closed

So, path G-F-C-A-D-B-& is blocked.

Every path between in and E are blocked by 8.

in and E are d-separated by 8.

TRUE

· d- separated (AB, COE, LH)

Closed at C
Path A-C-F-G is blocked.

Closed at D
Path A-D-F-G is blocked.

Closed at E
Path A-D-B-E-M-F-h is blocked.

Closed at E
Path A-D-B-E-H is blocked.

Closed at C
Path A-c-F-M is blocked.

Closed at D
Path A-D-F-H is blocked.

Closed at E

Path A-C-F-D-B-E-H is blocked.

Closed at D

Path B-D-F-6 is blocked.

Closed at E
Path B-F-H-F-G is blocked.

Closed at C
Path B-D-A-C-F-h is blocked.

Closed at E
Path B-E-H is blocked.

Closed at D
Path B-D-F-H is blocked.

Closed at C
Path B-D-A-C-F-M is blocked.

Every path between {A,B} and {In,H} are blocked by {c,o,E} dA,B] and {In,H} are d-separated by {c,o,E}

TRUE //

C.

Pr(a,b,c,d,e,f,g,h) = Pr(a). Pr(b). Pr(c|a). Pr(d|a,b).

Pr(e|b). Pr(f|c,d). Pr(g|f). Pr(h|e,f).

A and B are independent from Markovian Assumption $I(A, \emptyset, BE)$

$$S_0$$
, $P_r(n=1, \beta=1) = P_r(n=1) \cdot P_r(\beta=1)$
 $= 0.2 \times 0.7$
 $= 0.14 //$

Pr (E = 0 | A = 0)

By BAYES CONDITIONING $P_{r}(E=0)A=0)=\frac{P_{r}(E=0,A=0)}{P_{r}(B=0)}$

A and E are independent from Markovian Assumption $I(A, \emptyset, BE)$

So, Pr(E=D, A=D) = Pr(E=D). Pr(A=D)

$$S_0 \qquad P_Y \left(\varepsilon = 0 \right) = \frac{P_Y \left(\varepsilon = 0 \right) \cdot P_Y \left(\rho = 0 \right)}{P_Y \left(\rho = 0 \right)} = P_Y \left(\varepsilon = 0 \right)$$

Vsing Case Analysis

$$P_{1}(E = 0) = P_{1}(E = 0 | B = 0). P_{2}(B = 0) + P_{2}(E = 0 | B = 1). P_{2}(B = 0)$$

$$= 0.1 \times 0.3 + 0.63 = 0.66$$

$$P_{3}(E = 0 | A = 0) = 0.66$$

5. a. Mlx) = { wo, w2, w3}

b.
$$P_{r}(\omega) = P_{r}(\omega_{0}) + P_{r}(\omega_{2}) + P_{r}(\omega_{3})$$

= 0.3+0.1+0.4
= 0.8/)

C. Pr(A, 814)

$$Pr(\omega|a) = \begin{cases} 0 & \text{if } \omega \neq 7\alpha \\ Pr(\omega)/Pr(a) & \text{if } \omega \neq \alpha \end{cases}$$

	A	В	Prlanblal
Wo	Τ	Τ	0·3/0·8 = 0·375
ω,	٣	£	0
w ₂	F	T	0-1/0-8= 0-125
w ₃	F	F	0.4/0.8 = 0.5

А	В	B ≈7 7B
٣	7	F
т	F	τ
£	Τ	T
F	F	٢

$$M(\Delta) = \{ \omega_1, \omega_2, \omega_3 \}$$