

Cluster Analysis

CS4881 Aritificial Intelligence Jay Urbain Credits:

Tom Mitchell, Machine Learning

© Jiawei Han and Micheline Kamber, Data Mining

http://www.cs.sfu.ca

May 8, 2007

Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

May 8, 2007

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Grouping a set of data objects into clusters
- Clustering is unsupervised classification: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

May 8, 2007

General Applications of Clustering

- Pattern Recognition
- Spatial Data Analysis
 - create thematic maps in GIS by clustering feature spaces
 - detect spatial clusters and explain them in spatial data mining
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document/text classification
 - Cluster Weblog data to discover groups of similar access patterns

May 8, 200

Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- <u>Land use:</u> Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning:</u> Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

May 8, 20

What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high intra-class similarity
 - low <u>inter-class</u> similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation.
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns.

Requirements of Clustering

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

.....

Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

May 8, 2007

Data Structures

- Data matrix
 - (two modes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

- Dissimilarity matrix
- (one mode)

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

May 8, 2007

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, which is typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal and ratio variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

May 8, 200

Type of data in clustering analysis

- Interval-scaled variables:
- Binary variables:
- Nominal, ordinal, and ratio variables:
- Variables of mixed types:

May 8, 200

Interval-valued variables

- Standardize data
 - Calculate the *mean absolute deviation*:

$$x_{nf} - m_f \mid$$

 $s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$

where $m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf})$ • Calculate the standardized measurement (*z-score*)

$$z_{if} = \frac{x_{if} - m_f}{s} \qquad z = \frac{x - \mu}{\sigma}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt{\left(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q\right)}$$

where $i = (x_{j1}, x_{j2}, ..., x_{jp})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two ρ -dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

May 8, 2007

Similarity and Dissimilarity Between Objects (Cont.)

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - d(i,j) ≥ 0
 - d(i,i)=0
 - $\bullet \ d(i,j) = d(j,i)$
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Also one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures.

May 8, 200

Binary Variables

A contingency table for binary data

5 .	,	ı	Object j		
		1	0	sum	
	1	а	b	a+b	
Object i	0	c	d	c+d	
	sum	a+c	b+d	a+b c+d p	

- Simple matching coefficient (invariant, if the binary variable is $\underline{symmetric}$): $d\left(i,j\right) = \frac{b+c}{a+b+c+d}$
- Jaccard coefficient (noninvariant if the binary variable is $\underbrace{asymmetric}$): $d(i,j) = \underbrace{\frac{b+c}{a+b+c}}$

May 8, 2007

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0

$$d (jack ,mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d (jack ,jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d (jim ,mary) = \frac{1+2}{1+1+2} = 0.75$$

May 8, 20

Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the M nominal states

May 8, 200

Ordinal Variables

- An ordinal variable can be discrete or continuous
- order is important, e.g., rank
- Can be treated like interval-scaled
 - replacing x_{if} by their rank $r_{if} \in \{1,..., M_f\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

 compute the dissimilarity using methods for intervalscaled variables

Ratio-Scaled Variables

- <u>Ratio-scaled variable</u>: a positive measurement on a nonlinear scale, approximately at exponential scale, such as Ae^{Bt} or Ae^{-Bt}
- Methods:
 - treat them like interval-scaled variables not a good choice! (why?)
 - apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as interval-scaled.

May 8, 2007

Variables of Mixed Types

- A database may contain all the six types of variables
- symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio.
- One may use a weighted formula to combine their effects.
 \(\sum_{P} = \delta \) (f) d (f)

 $d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$

• f is binary or nominal:

$$d_{ii}^{(f)} = 0$$
 if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ o.w.

- f is interval-based: use the normalized distance
- f is ordinal or ratio-scaled
 - compute ranks r_{if} and $z_{if} = \frac{r_{if} 1}{M_{i-1}}$
 - and treat z_{if} as interval-scaled

May 8, 2007

Chapter 8. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

May 8, 2007

Major Clustering Approaches

- <u>Partitioning algorithms</u>: Construct various partitions and then evaluate them by some criterion
- <u>Hierarchy algorithms</u>: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- <u>Density-based</u>: based on connectivity and density functions
- Grid-based: based on a multiple-level granularity structure
- Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

May 8, 200

Chapter 8. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

May 8, 200

Partitioning Algorithms: Basic Concept

- Partitioning method: Construct a partition of a database D
 of n objects into a set of k clusters
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medolds</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

May 8, 2007

4

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in 4 steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 - Assign each object to the cluster with the nearest seed point.
 - Go back to Step 2, stop when no more new assignment.

May 8, 200

Comments on the K-Means Method

Strength |

- Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
- Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms

Weakness

- Applicable only when *mean* is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

May 8, 200

Variations of the K-Means Method

- A few variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: kprototype method

Лаv 8. 200

The K-Medoids Clustering Method

- Find *representative* objects, called <u>medoids</u>, in clusters
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the nonmedoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

May 8, 200

Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

More on Hierarchical Clustering Methods Major weakness of agglomerative clustering methods do not scale well: time complexity of at least O(n²), where n is the number of total objects can never undo what was done previously Integration of hierarchical with distance-based clustering BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters CURE (1998): selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction CHAMELEON (1999): hierarchical clustering using

dynamic modeling

Chapter 8. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

May 8, 2007

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98)

May 8, 200

Density-Based Clustering: Background

- Two parameters:
 - *Eps*: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Epsneighbourhood of that point
- $N_{Eps}(p)$: {q belongs to D / dist(p,q) <= Eps}
- Directly density-reachable: A point p is directly density-reachable from a point q wrt. Eps, MinPts if
 - 1) p belongs to N_{Eps}(q)
 - 2) core point condition:

MinPts = 5

 $Eps=1\ cm$

May 8, 2007

ensity-Based Clustering: Background (II)

- Density-reachable:
 - A point ρ is density-reachable from a point q wrt. *Eps, MinPts* if there is a chain of points $\rho_1, \ldots, \rho_n, \rho_1 = q, \rho_n = \rho$ such that ρ_{i+1} is directly density-reachable from ρ_i

- Density-connected
 - A point p is density-connected to a point q wrt. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o wrt. Eps and MinPts.

May 8, 200

DBSCAN: Density Based Spatial Clustering of Applications with Noise Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points Discovers clusters of arbitrary shape in spatial databases with noise Discovers clusters of arbitrary shape in spatial databases with noise Eps = 1cm MinPts = 5

Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - STING (a STatistical Information Grid approach) by Wang, Yang and Muntz (1997)
 - WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB'98)
 - A multi-resolution clustering approach using wavelet method
 - CLIQUE: Agrawal, et al. (SIGMOD'98)

STING: A Statistical Information Grid Approach (2)

- Each cell at a high level is partitioned into a number of smaller cells in the next lower level
- Statistical info of each cell is calculated and stored beforehand and is used to answer queries
- Parameters of higher level cells can be easily calculated from parameters of lower level cell
 - count, mean, s, min, max
 - type of distribution—normal, uniform, etc.
- Use a top-down approach to answer spatial data queries
- Start from a pre-selected layer—typically with a small number of cells
- For each cell in the current level compute the confidence interval

May 8, 2007

STING: A Statistical Information Grid Approach (3)

- Remove the irrelevant cells from further consideration
- When finish examining the current layer, proceed to the next lower level
- Repeat this process until the bottom layer is reached
- Advantages:
 - Query-independent, easy to parallelize, incremental update
 - O(K), where K is the number of grid cells at the lowest level
- Disadvantages:
 - All the cluster boundaries are either horizontal or vertical, and no diagonal boundary is detected

May 8 200

WaveCluster (1998)

- How to apply wavelet transform to find clusters
 - Summaries the data by imposing a multidimensional grid structure onto data space
 - These multidimensional spatial data objects are represented in a n-dimensional feature space
 - Apply wavelet transform on feature space to find the dense regions in the feature space
 - Apply wavelet transform multiple times which result in clusters at different scales from fine to coarse

WaveCluster (1998)

- Why is wavelet transformation useful for clustering
 - Unsupervised clustering
 It uses hat-shape filters to emphasize region where points cluster, but simultaneously to suppress weaker information in their boundary
 - Effective removal of outliers
 - Multi-resolution
 - Cost efficiency
- Major features:
 - Complexity O(N)
 - Detect arbitrary shaped clusters at different scales
 - Not sensitive to noise, not sensitive to input order
 - Only applicable to low dimensional data

CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD'98).
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and gridbased
 - It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into nonoverlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - A cluster is a maximal set of connected dense units within a subspace

May 8, 200

CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters:
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster

May 8, 2007

Strength and Weakness of CLIQUE

- Strength
 - It <u>automatically</u> finds <u>subspaces of the highest</u> <u>dimensionality</u> such that high density clusters exist in those subspaces
 - It is insensitive to the order of records in input and does not presume some canonical data distribution
 - It scales *linearly* with the size of input and has good scalability as the number of dimensions in the data increases
- Weakness
 - The accuracy of the clustering result may be degraded at the expense of simplicity of the method

Chapter 8. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

May 8, 200

Model-Based Clustering Methods

- Attempt to optimize the fit between the data and some mathematical model
- Statistical and AI approach
 - Conceptual clustering
 - . A form of clustering in machine learning
 - Produces a classification scheme for a set of unlabeled objects
 - Finds characteristic description for each concept (class)
 - COBWEB (Fisher'87)
 - A popular a simple method of incremental conceptual learning
 - Creates a hierarchical clustering in the form of a classification
 tree
 - Each node refers to a concept and contains a probabilistic description of that concept

May 8 200

More on Statistical-Based Clustering

- Limitations of COBWEB
 - The assumption that the attributes are independent of each other is often too strong because correlation may exist
 - Not suitable for clustering large database data skewed tree and expensive probability distributions
- CLASSIT
 - an extension of COBWEB for incremental clustering of continuous data
 - suffers similar problems as COBWEB
- AutoClass (Cheeseman and Stutz, 1996)
 - Uses Bayesian statistical analysis to estimate the number of clusters
 - Popular in industry

May 8, 200

Other Model-Based Clustering Methods

- Neural network approaches
 - Represent each cluster as an exemplar, acting as a "prototype" of the cluster
 - New objects are distributed to the cluster whose exemplar is the most similar according to some dostance measure
- Competitive learning
 - Involves a hierarchical architecture of several units (neurons)
 - Neurons compete in a "winner-takes-all" fashion for the object currently being presented

May 8, 20

Chapter 8. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

What Is Outlier Discovery?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data
 - Example: Sports: Michael Jordon, Wayne Gretzky,
- Problem
 - Find top n outlier points
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

May 8, 200

Outlier Discovery:

Data Values

- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute
 - In many cases, data distribution may not be known

May 8, 2007

Chapter 8. Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- Outlier Analysis
- Summary

May 8, 200

Problems and Challenges

- Considerable progress has been made in scalable clustering methods
 - Partitioning: k-means, k-medoids, CLARANS
 - Hierarchical: BIRCH, CURE
 - Density-based: DBSCAN, CLIQUE, OPTICS
 - Grid-based: STING, WaveCluster
 - Model-based: Autoclass, Denclue, Cobweb
- Current clustering techniques do not <u>address</u> all the requirements adequately
- Constraint-based clustering analysis: Constraints exist in data space (bridges and highways) or in user queries

May 8. 20

Constraint-Based Clustering Analysis

 Clustering analysis: less parameters but more user-desired constraints, e.g., an ATM allocation problem

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches
- There are still lots of research issues on cluster analysis, such as constraint-based clustering

References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD'99.
- P. Arabie, L. J. Hubert, and G. De Soete. Clustering and Classification. World Scietific, 1996
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96.
- M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. SSD'95.
- D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB'98.
- S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. SIGMOD'98.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.

May 9, 2007

References (2)

- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98.
- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- P. Michaud. Clustering techniques. Future Generation Computer systems, 13, 1997.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition, 101-105.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB'98.
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB'97.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. SIGMOD'96.

.....

13