DEVOIR À LA MAISON N°3

Problème 1 -

Partie I -

Soit f une application de $\mathbb R$ dans $\mathbb R$ strictement monotone telle que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y)$$

On pose c = f(1).

- **1.** Déterminer f(0) et montrer que $c \neq 0$. Dans la suite, on pose $g = \frac{1}{c}f$.
- **2.** Montrer que pour tout $(x, y) \in \mathbb{R}^2$

$$g(x + y) = g(x) + g(y)$$
 et $g(x - y) = g(x) - g(y)$

- **3.** Montrer que pour tout $n \in \mathbb{N}$, g(n) = n.
- **4.** Montrer que g est une fonction impaire et en déduire que g(n) = n pour tout $n \in \mathbb{Z}$.
- **5.** Montrer que pour tout $r \in \mathbb{Q}$, g(r) = r.
- **6.** Montrer que g est strictement croissante.
- 7. Montrer que g(x) = x pour tout $x \in \mathbb{R}$. On pourra raisonner par l'absurde et admettre qu'il existe toujours un rationnel strictement compris entre deux réels distincts.
- 8. En déduire f.

Partie II -

Soit $n \in \mathbb{N}^*$. On se propose de déterminer les applications f de \mathbb{R} dans \mathbb{R} strictement monotones telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+f(y)) = f(x) + y^n$$

Dans la suite, f désigne une telle application.

- **1.** Justifier que f est injective.
- **2.** Montrer que f(0) = 0.
- **3.** Montrer que $f(f(y)) = y^n$ pour tout $y \in \mathbb{R}$.
- **4.** On suppose n = 1 dans cette question.
 - **a.** Montrer que pour tout $(x, y) \in \mathbb{R}^2$, f(x + y) = f(x) + f(y).
 - **b.** Justifier qu'il existe $c \in \mathbb{R}$ tel que f(x) = cx pour tout $x \in \mathbb{R}$.
 - c. Conclure.
- **5.** On suppose maintenant n > 1.

- a. Montrer que $\mathfrak n$ ne peut être pair. On suppose donc $\mathfrak n$ impair dans la suite.
- **b.** Montrer que f \circ f est bijective. En déduire que f l'est également.
- **c.** Montrer que f(x+y)=f(x)+f(y) pour tout $(x,y)\in\mathbb{R}^2$.
- **d.** En déduire une contradiction.
- **e.** Conclure.