EXERCISES FROM A FRIENDLY INTRODUCTION TO GROUP THEORY BY DAVID NASH

ERIC BAILEY

Contents

1.	Preliminaries	2
1.1.	. Sets Exercises	2

Date: November 26, 2017.

1. Preliminaries

1.1. Sets Exercises.

```
1. (a) IsUnder30 := n -> n < 30;;  
# \{n \in \mathbb{Z} \mid n^2 < 30\}
S := [];; n := 0;;  
repeat
   Add( S, n^2 );  
   n := n + 1;  
until not IsUnder30( n^2 );  

# \{x, y, z \in S \mid x^2 + y^2 + z^2\}
T := Set( List( Tuples( S, 3), Sum) );;  
# \{n \in \mathbb{Z} \mid n < 30 \land \exists x, y, z \in \mathbb{Z}, x^2 + y^2 + z^2 = n\}
Set( Filtered( T, IsUnder30 ) );
```

```
[ 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29 ]
```

```
(b) DigitsInt := function ( n, base )
       local digits;
       digits := [];
       repeat
           Add( digits, RemInt( n, base ), 1 );
           n := QuoInt( n, base );
       until IsZero( n );
       return digits;
   end;;
   IsAllOddSortedList := function ( digits )
       return ForAll( digits, IsOddInt ) and
              IsSortedList( digits );
   end;;
   IsAllOddSortedDigitsInt := function ( n )
       return IsAllOddSortedList( DigitsInt( n, 10 ) );
   end;;
   Set( Filtered( [100 .. 999], IsAllOddSortedDigitsInt ) );
   [ 111, 113, 115, 117, 119, 133, 135, 137, 139, 155, 157, 159,
     177, 179, 199, 333, 335, 337, 339, 355, 357, 359, 377, 379,
     399, 555, 557, 559, 577, 579, 599, 777, 779, 799, 999 ]
(c) Cartesian([1, 2, 3], [1, FLOAT.PI]);
   [[1, 1], [1, 3.14159], [2, 1], [2, 3.14159],
     [3, 1], [3, 3.14159]]
```

2. Proof. ② Let $x \in R \cup (S \cap T)$. By definition $x \in R$ or $x \in S \cap T$.

Case 1: $x \in R$ Since $x \in R$, it follows that $x \in R \cup S$ and $x \in R \cup T$. Thus we have $x \in (R \cup S) \cap (R \cup T)$.

Case 2: $x \in S \cap T$ By definition $x \in S$ and $x \in T$. It follows that $x \in R \cup S$ and $x \in R \cup T$. Thus we have $x \in (R \cup S) \cap (R \cup T)$.

Together, Case 1 and Case 2 demonstrate that if $x \in R \cup (S \cap T)$, then $x \in (R \cup S) \cap (R \cup T)$ as well, which proves that $R \cup (S \cap T) \subseteq (R \cup S) \cap (R \cup T)$.

For the other containment, suppose that $x \in (R \cup S) \cap (R \cup T)$. Then specifically $x \in R \cup S$ and $x \in R \cup T$. These imply respectively that $x \in R$ or $x \in S$ and that $x \in R$ or $x \in T$. Hence, $x \in R \cup (S \cap T)$ and we have $(R \cup S) \cap (R \cup T) \subseteq R \cup (S \cap T)$. By double containment we have shown that $R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$ as desired.