MATEMÁTICA DISCRETA I

PRIMER CONTROL (Recuperación)

Apellidos______Nombre_____n° mat._____

Observaciones:

- Sólo se valorarán aquellas respuestas que justificadamente utilicen los métodos desarrollados en esta asignatura.
- No está permitido el uso de dispositivos electrónicos.

Ejercicio 1 (15 ptos.)

Sea n = 270 y sea D_n el conjunto de los divisores positivos de n. Se pide:

- a) Sabiendo que una relación R en D_n es un subconjunto del producto cartesiano $D_n \times D_n$, écuál es el cardinal del conjunto de todas las relaciones distintas en D_n ?
- b) Dibuja el diagrama de Hasse de D_n con la relación de orden de divisibilidad.
- c) Encuentra todos los elementos de D_n que tienen complementario. Razona si D_n es Álgebra de Boole.
- d) Sea el conjunto $C = D_n \{45, 54\}$ con la relación de orden de divisibilidad. Calcula si existe el $\sup\{6,27\}$ en C. Razona si C es un retículo.

Solución

a) $2^{|D_n \times D_n|} = 2^{|D_n|^2} = 2^{16^2}$ ya que $|D_n| = 4.2.2$ puesto que 270 = $3^3.2.5$

- b)
- c) Complementario de 1 = 270

Complementario de 2 = $135 (3^3.5)$

Complementario de $5 = 54 (3^3 \cdot 2)$

Complementario de $3^3 = 10$

 D_n no es Álgebra de Boole ya que, por ejemplo, 3 no tiene complementario.

d) $\sup\{6,27\} = 270 \text{ ya que } 54, \text{ que es el mínimo común múltiplo de } 6 \text{ y } 27, \text{ no está en } C.$

C no es retículo ya que, por ejemplo, no existe $\sup\{9,15\}$ puesto que cotas $\sup\{9,15\}$ = $\{90,135,270\}$ y 90 no divide a 135, luego no existe la menor de las cotas superiores. Tampoco existen $\sup\{9,5\}$, $\inf\{90,135\}$.

MATEMÁTICA DISCRETA I

PRIMER CONTROL (Recuperación)

Apellidos_____Nombre____no mat._____

Ejercicio 2 (10 ptos.)

Utilizando el método de Quine – McCluskey, obtén una expresión booleana en forma de "mínima suma de productos" para la función booleana cuyo conjunto de verdad es

 $S(f) = \{11010, 11111, 10111, 01111, 00111, 11110, 01000\}.$

Solución

111111	1-111	
10111	-1111	111
01111	1111-	
11110	-0111	
11010	0-111	
00111	11-10	
01000		

	11111	10111	01111	11110	11010	00111	01000
111	1	√	1			1	
1111-	1			√			
11-10				√	√		
01000							1

$$f(x, y, z, t, w) = z t w + x y t w' + x' y z' t' w'$$

Ejercicio 3 (15 ptos.)

- a) Demuestra por inducción que n² + 3n es par para todo n número natural.
- b) La compañía Phonestar nos ha cobrado 27 € con 61 céntimos en la última factura telefónica. Sabemos que hemos realizado tan sólo dos llamadas, una a París y otra a Moscú. Las tarifas de la compañía son las siguientes: 1 € con 32 céntimos el minuto por una llamada a París, y 6 € con 49 céntimos el minuto si la llamada es a Moscú. ¿Cuánto tiempo hemos estado hablando en cada una de las llamadas?

Solución

- a) Para n = 1 tenemos $1^2 + 3.1 = 4$ que es par.
 - Supongamos el resultado cierto para n (Hipótesis de inducción: n²+3n par) y demostrémoslo para n+1: $(n+1)^2 + 3(n+1) = n^2 + 2n + 1 + 3n + 3 = (n^2 + 3n) + 2n + 4$ este número es par por ser suma de pares ya que, n² + 3n es par por la Hipótesis de inducción y 2n y 4 son pares.
- b) La ecuación diofántica es: 132 x + 649 y = 2761

MATEMÁTICA DISCRETA I

PRIMER CONTROL (Recuperación)

Apellidos______Nombre____no mat._____

121 = 11 * 11 + 0

mcd(649, 132) = 11

11 divide a 2761 por lo que la ecuación diofántica tiene solución, 2761 = 11 * 251

11 = 132 - 121 * 1 = 132 - (649 - 134 * 4) = 132 * 5 + 649 * (-1)

Como x, y > 0, se tiene que:

1255 + 59 † > 0 => † > -21.27

-251 -12t > 0 => t < -20.92

Luego t = -21, x = 16, y = 1, la solución es 16 minutos de llamada con París, y 1 minuto con Moscú.