ELEC 341: Systems and Control

Lecture 20

Stability margin: Examples on frequency domain specifications

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- mechanical
- electrical
- electromechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- ✓• Transient
 - Steady state
- Frequency response
 - Bode plot

Design

Matlab simulations

Closed-loop stability criterion (review)

 Closed-loop stability can be determined by the roots of the characteristic equation

$$1 + L(s) = 0, L(s) = G(s)C(s)$$

- Closed-loop system is stable if the Ch. Eq. has all roots in the open left half plane.
- How to check the closed-loop stability?
 - Computation of all the roots
 - Routh-Hurwitz stability criterion
 - Nyquist stability criterion: Open-loop FRF $L(j\omega)$ contains information of closed-loop stability.

Nyquist stability criterion (review)

CL system is stable
$$\Leftrightarrow Z = P + N = 0$$

- Z: # of CL poles in open RHP
- P: # of OL poles in open RHP (given)
- N: # of clockwise/counterclockwise encirclement of -1 by Nyquist plot of L(s)

Examples when P = 0 (review)

CL stable

CL unstable

Gain margin (GM) (review)

• Phase crossover frequency ω_p :

$$\angle L(j\omega_p) = -180^{\circ}$$

Gain margin (in dB)

$$GM = 20\log_{10}\frac{1}{|L(j\omega_p)|}$$

 Indicates how much OL gain can be multiplied without violating CL stability.

Phase margin (PM) (review)

• Gain crossover frequency $\omega_{\rm g}$:

$$|L(j\omega_g)| = 1$$

Phase margin

$$PM = \angle L(j\omega_g) + 180^{\circ}$$

 Indicates how much OL phase lag can be added without violating CL stability.

Relative stability on Nyquist plot and Bode plot

Example 1: (GM & PM)

$$G_1(s) = \frac{1}{s+1}$$

X

$$G_2(s) = \frac{1}{s}$$

$$L(s) = \frac{1}{s(s+1)}$$

10⁰

Example 1 (cont'd): (GM & PM)

$$L(s) = \frac{1}{(s+1)^2}$$

-0.5

0

0.5

Example 2: (GM & PM)

$$L(s) = \frac{1}{(s+1)^3}$$

Example 2 (cont'd): How to compute GM?

Frequency response function

$$L(j\omega) = \frac{1}{(j\omega+1)^3} \left((a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \right)$$

$$= \frac{1}{(j\omega)^3 + 3(j\omega)^2 + 3j\omega + 1}$$

$$= \frac{1}{1 - 3\omega^2 + j\omega(3 - \omega^2)}$$

$$= \frac{1 - 3\omega^2 - j\omega(3 - \omega^2)}{(1 - 3\omega^2)^2 + \omega^2(3 - \omega^2)^2}$$

$$Im \{L(j\omega)\} = 0 \implies \omega_p = \sqrt{3} \implies L(j\sqrt{3}) = -\frac{1}{8}$$

(PM computation often requires computational tools.)

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- mechanical
- electrical
- electromechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- **Transient**
 - Steady state
- Frequency response
 - Bode plot

Design

Design specs

Design examples

Matlab simulations

Controller design comparison

Design specifications in time domain (rise time, settling time, overshoot, steady state error, etc.)

Approximate translation

Desired closed-loop pole location in s-domain

Desired open-loop frequency response in s-domain

Root locus shaping

Frequency response shaping (loop shaping)

Feedback control system design

- Given G(s), design C(s) that satisfies CL stability and time-domain specs, i.e., transient and steady-state responses.
- We will learn about typical modifications of OL Bode plot and their effect on closed-loop properties such as stability and time-domain responses.

How to design C (or K) to yield a specific PO in step response using frequency response?

Here is a summary of steps to take:

- Step 1: Use the given PO, find ζ .
- Step 2: Use ζ . Find PM (see note below). Call this PM_{compensator}.
- Step 3: Find ω^* at which the following equation is satisfied:

$$\angle L(j\omega^*) = -180^0 + PM_{compensator}$$

• Step 4: Find the requested gain, i.e., C,

$$C = \frac{1}{|L(j\omega^*)|}$$

Note: There are two methods to calculate PM (the simplified one is preferred):

$$PM_{compensator} = 100\zeta$$
 or $PM_{compensator} = tan^{-1} \left(\frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{1 + 4\zeta^4}}}\right)$

Example 3

For the position control system shown below, find the value of preamplifier gain, *C*, to yield a 9.5% overshoot in the transient response for a step input. Use frequency response methods.

a place of mind

Example 3 (cont'd)

Solution:

$$L(s) = \frac{100}{s(s+36)(s+100)} \rightarrow \text{ Find } C \text{ so that PO} = 9.5\%$$

$$\zeta = \frac{\left| \ln \frac{PO}{100} \right|}{\sqrt{\pi^2 + \left(\ln \frac{PO}{100} \right)^2}} = \frac{\left| \ln \frac{9.5}{100} \right|}{\sqrt{\pi^2 + \left(\ln \frac{9.5}{100} \right)^2}} \rightarrow \zeta \approx 0.6$$

$$PM_{compensator} = 100\zeta \rightarrow PM_{compensator} = 60^{\circ}$$

$$\angle L(j\omega^*) = -180^{\circ} + PM_{compensator} = -180^{\circ} + 60^{\circ} = -120^{\circ} \rightarrow \angle L(j\omega^*) = -120^{\circ}$$

Find ω^* at which $\angle L(j\omega^*) = -120^0$

$$\angle L(j\omega^*) = 0^0 - \{90^0 + \tan^{-1}\left(\frac{\omega^*}{36}\right) + \tan^{-1}\left(\frac{\omega^*}{100}\right)\} = -120^0 \rightarrow \omega^* = 14.45$$

At
$$\omega^* = 14.45 \to C = ?$$

$$|L(j \times 14.45)| = \frac{100}{14.45\sqrt{14.45^2 + 36^2}\sqrt{14.45^2 + 100^2}} \rightarrow |L(j \times 14.45)| = 1.7656 \times 10^{-3}$$

$$C = \frac{1}{|L(j\omega^*)|} = \frac{1}{1.7656 \times 10^{-3}} \rightarrow C = 566$$

Typical modification of OL Bode plot

Using the above is called frequency shaping (loop shaping) design.

Steady-state accuracy

y(t) tracks r(t) very well.

Sensitivity reduction

- Sensitivity indicates the influence of plant variations (due to temperature, humidity, age, etc.) on closed-loop performance.
- Sensitivity function

$$S(s) = \frac{\partial T(s)/T(s)}{\partial G(s)/G(s)} = \frac{1}{1 + G(s)C(s)} = \frac{1}{1 + L(s)}$$

Disturbance

- Unwanted signal
- Examples
 - Wind turbulence in airplane altitude control
 - Wave in ship direction control
 - Sudden temperature change outside the temperature-controlled room
 - Bumpy road in cruise control
- Often, disturbance is neither measurable nor predictable. Use feedback to compensate for it!

Noise reduction

y(t) is not affected by n(t).

Relative stability

- We require adequate GM and PM for:
 - safety against inaccuracies in modeling
 - reasonable transient response (overshoot)
- It is difficult to give reasonable numbers of GM and PM for general cases, but usually,
 - GM should be at least 6 dB
 - PM should be at least 45 deg

(These values are not absolute but approximate!)

• In controller design, we are especially interested in PM (which typically leads to good GM).

Control in automobiles

Automobile is a collection of control technologies.

- Vehicle stability control
 - Antilock Breaking System (ABS)
 - Traction control
 - Active suspension
- Energy efficiency and emission reduction
 - Engine control (fuel injection amount and timing, spark timing)
 - Transmission control
 - Energy management of hybrid vehicles
- Driver-assist system and autonomous car
 - Adaptive cruise control
 - Automated parallel parking
 - · Automatic lane following
 - Collision prevention
 - Driverless car (Tesla, Google, Mercedes-Benz, Toyota, etc.)
 - Flying vehicle (AeroMobil)

Wind turbines

- Multi-disciplinary
 - Electrical, civil, mechanical, materials, integrated, and environmental engineering
 - Dynamics (modeling)
 - Aerodynamics (blade design)
 - Fluid dynamics (wind flow)
 - Hydro dynamics (offshore)
 - Vibration (fatigue)
 - Control
 - Yaw control
 - Blade pitch control
 - Generator torque control

The Eye of the Wind (60m hub height, 1.5MW)
Grouse Mountain

Onshore and offshore wind turbines (Taken from NREL report)

Inside the nacelle of a wind turbine

(Taken from NREL report)

Application of systems and control in various disciplines

Automatic control supports various disciplines! (often called "hidden technology")

Electrical engineering Biomedical engineering Mechanical engineering Chemical engineering Civil engineering Aerospace engineering Environmental engineering

Integrated engineering **Engineering physics** Computer engineering Mechatronics engineering MEMS, Nanotechnology Medicine, Economics, Biology

Control in biomedical engineering

Rehabilitation engineering

- Powered prostheses (use body signals to control external assistive devices)
- Functional electrical stimulation (use external signal to control body)
 - Stroke
 - Spinal cord injuries
 - Parkinson's disease

Drug delivery and administration

- Blood pressure regulation
- Blood glucose control
- Anesthesia control

Medical instruments

- Smart surgical tools
- Artificial tactile sensing and haptics feedback
- Temperature and humidity regulation
- Robotically-assisted surgery
- Artificial hearts

Summary

- Examples of gain margin and phase margin
- Frequency domain specifications
- Next
 - Frequency response shaping (loop shaping) on Bode plot using Matlab
 - Gain
 - Lead, lag, and lead-lag compensators