

Faculdade de Engenharia Departamento de Engenharia Electrotécnica Curso de Engenharia Informática Disciplina: Criptografia e Segurança de Dados

Ficha 2 - Exercícios de Revisão CRIPTOGRAFIA MODERNA

Assinatura Digital e Autoridades de Certificação (AC)

- 1. Qual é a importância da utilização de assinatura digital?
- 2. Esquematize e explique o funcionamento da assinatura digital.
- 3. Qual é o objetivo central da utilização de AC?
- 4. O que entende por certificado e qual é o papel principal da AC?
- 5. Explique com as suas palavras a diferença entre certificação cruzada e certificação hierárquica.
- 6. Dê um exemplo de verificação da autenticidade da chave pública de uma entidade por outra, assumindo que cada uma obtém um certificado de AC diferente.
- 7. Indique e explique dois problemas relacionados ao uso de ACs.

PKI – Public Key Infrastructure (Infraestrutura de Chave Pública)

- 1. Defina PKI e explique a sua aplicação.
- 2. Identifique e descreva os componentes da PKI.
- 3. Fale dos processos da PKI.
- 4. Por que razão a tarefa de geração de chaves é normalmente atribuída a uma entidade externa (TTP Trusted Third Party, ou Terceira Parte Confiável)?
- 5. Entende ser pacífico que a tarefa de geração e distribuição de chaves seja atribuída a uma TTP? Porquê?
- 6. Quais são os requisitos que uma TTP precisa reunir para ser confiável no processo de geração e distribuição de chaves?
- 7. O que entende por PGP?
- 8. O que significa Web de abordagem Trust e em que situação se aplica melhor?
- 9. Na PKI, qual é a diferença que existe entre sistemas baseados em identidade e sistemas centrados no servidor?
- 10. Dê um exemplo de utilização de um criptossistema híbrido apresentando ilustração de dois intervenientes na comunicação.
- 11. Apresente a diferença entre criptografia e esteganografia.

Criptografia Quântica

Tabela:1: Convenção Binária

BASE	0	1
V-H	1	\rightarrow
D-C	7	K

Tabela 2: Transmissão do Protocolo BB84

	1 ^a	2ª	3 ^a	4 ^a	5 ^a	6 ^a	7 ^a	8 ^a	
Bits do Emissor a ser transmitidos:	1	0	1	1	0	0	1	0	
Transmissão:									
Base do Emissor	V-H	V-H	D-C	V-H	D-C	D-C	D-C	V-H	
Q-bits do emissor									
Base do Invasor	D-C	D-C	V-H	V-H	D-C	D-C	V-H	V-H	
Q-bits capturados pelo invasor									
Base do receptor:	V-H	D-C	D-C	D-C	V-H	D-C	V-H	V-H	
Q-bits capturados pelo Receptor									
Bits do Receptor a ser comparados:									
Bits do Emissor a ser comparados:									

- 1. De acordo com as Tabelas 1 e 2, responda às questões que se seguem:
 - a) Indique a sequência de Q-bits do emissor.
 - b) Indique a sequência de Q-bits capturados pelo invasor.
 - c) Assumindo que na entrada quântica do receptor chegou a sequência de q-bits do invasor, indique a leitura do receptor.
 - d) Qual é a sequência de bits correspondente às posições onde as bases do emissor e do receptor coincidem?
 - e) Qual é a sequência de bits que o receptor irá comparar com o emissor para verificar a ocorrência da intromissão?
 - f) Qual será o desfecho da comunicação?