# New York City Food Venues Analysis

Peiwen Liu June 29, 2020

### Introduction

As many might not expect, the restaurant industry in New York City has been suffering for a while. Despite the large population of New York City (6% of the total population in the US), there were only around 27,000 restaurants (4% of the total restaurants in the US) by 2018 (Statista, 2019).[1] This number had not increased much since 2013 due to the intense competition and slim profit margin. Worse enough, as the increase of minimum wage (from \$10.50 in 2016 to \$15 in 2019) which resulted from the victory of "Fight for \$15" labor movement, the restaurants jobs in New York City decreased by 5,900 (3.4%) in 2018 (David, 2019). As the outbreak of the COVID-19 pandemic, survival of restaurants in New York City becomes undoubtably even tougher. Although consumer rating is not the sole factor that determines the survival of a restaurant, it does positively correlate with survival. For example, although the increase of minimum wage decreases the overall survival of restaurants at city level, 3.5-star (out of 5) restaurants are 14% more likely to exit the market as \$1 increase in minimum wage while 5-star restaurants are largely unaffected (Luca and Luca, 2017).[2] In addition, high-quality restaurants with higher ratings benefit from the increased Yelp exposure (i.e., 7-19% more likely to survive) but low-quality restaurants with lower ratings are undermined by the increased Yelp (i.e., 7-19% more likely to exit the market) (Fang, 2019).[3]

Therefore, it is critical for restaurant owners and investors to understand customer rating which can further interact with other factors and jointly predict the survival of a particular restaurant. Using a uniquely constructed dataset, this project aims to understand the correlations between customer rating and several other factors such as the number of customer rating, deviation of customer rating. Furthermore, this project explores the aforementioned relationships not only at city level, but also at food category level (e.g., bar, bakery, café) and price level and reveals several interesting findings. For example, the correlation between customer rating and number of customer rating is stronger for hedonic food category than for utilitarian food category. Also, this correlation is stronger for higher price tiers than for lower price tiers.

# **Data Description**

• The list of all community boards in New York City with relevant information is fetched from the main table of *Neighborhoods in New York City* Wikipedia page. [4] The main libraries I used to build the function for fetching the table are **urllib.request** and **BeautifulSoup**.

The database has main components of *Community Boards*, *Area, Population* and *Population per Area* data in New York City. To combine it with the following geometric database, an extra column of *boro\_cd* is added as the codes of community boards, which serves as the primary key for the two databases.

| C | ommunity Board | ${\rm Area}\ {\rm km}^2$ | Pop.    | Pop. /km <sup>2</sup> | Neighborhood                                   | boro_cd |
|---|----------------|--------------------------|---------|-----------------------|------------------------------------------------|---------|
|   | Bronx CB 1     | 7.17                     | 91,497  | 12,761                | Melrose, Mott Haven, Port Morris               | 201     |
|   | Bronx CB 2     | 5.54                     | 52,246  | 9,792                 | Hunts Point, Longwood                          | 202     |
|   | Bronx CB 3     | 4.07                     | 79,762  | 19,598                | Claremont, Concourse Village, Crotona Park, Mo | 203     |
|   | Bronx CB 4     | 5.28                     | 146,441 | 27,735                | Concourse, Highbridge                          | 204     |
|   | Bronx CB 5     | 3.55                     | 128,200 | 36,145                | Fordham, Morris Heights, Mount Hope, Universit | 205     |

• The geometric and boundary information of all the community boards is found in the source geojson file of *The NYC Boundaries Map*, which is an open source tool for viewing and querying overlapping administrative boundaries in New York City. [5]

The key information of the database is in the *geometry* column, where the polygon or multipolygon data sets are presented for individual *boro\_cd*. The geometric information is necessary for the function folium. GeoJson that is incorporated in the choropleth map.

|   | boro_cd | shape_area    | shape_leng    | geometry                                      | Latitude  | Longitude  |
|---|---------|---------------|---------------|-----------------------------------------------|-----------|------------|
| 0 | 311     | 103177785.365 | 51549.5578567 | MULTIPOLYGON (((-73.97299 40.60881, -73.97259 | 40.607216 | -73.993636 |
| 1 | 313     | 88195686.2748 | 65821.875577  | MULTIPOLYGON (((-73.98372 40.59582, -73.98305 | 40.580649 | -73.982140 |
| 2 | 312     | 99525500.0655 | 52245.8304843 | MULTIPOLYGON (((-73.97140 40.64826, -73.97121 | 40.631227 | -73.983260 |
| 3 | 304     | 56663217.0191 | 37008.1004432 | MULTIPOLYGON (((-73.89647 40.68234, -73.89653 | 40.694549 | -73.916836 |
| 4 | 206     | 42664311.28   | 35875.7111716 | MULTIPOLYGON (((-73.87185 40.84376, -73.87192 | 40.849604 | -73.887530 |

• The search for food venues near each community board and the acquisition of venue details are performed with Foursqure Places API. In the process of data collection and cleaning, several issues are worth stressing. First, it only allows user to get the venues near specific locations rather than administrative districts. To make sure certain venue obtained belongs to the right community board, it is important to filter out venues by checking their coordination with the boundaries of community boards during search.

Second, since there is a limit of 50 for number of venues to return for each community board, the resulting dataset is incomplete in terms of counting all food venues in New York City. However, the dataset can be regarded as evenly random samples for these administrative districts and have significant value of statistics.

Third, it is found in the later investigation that venues corresponding to some category such as Flower Shop and Clothing Store are included in the database. To avoid misleading information in categorical analysis, category list is manually verified for the purpose of cleaning.

Last, there are venues which don't deliver either rating scores or price tiers message (None value). During the analysis of rating- or price-based information, database is wrangled accordingly to be ready for use.

The final database which contains the information of venue id, name, latitude, longitude and category, rating, rating signal, price tier, tips, likes and listed count is shown below:

| be | oro_cd | Community<br>Board | Community Board<br>Latitude | Community Board<br>Longitude | Venue Id                 | Venue Name              | Venue<br>Latitude | Venue<br>Longitude | Venue<br>Category       | Rating | Rating<br>Signal | Price | Tips<br>Number | Likes | Listed<br>Number |
|----|--------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------|-------------------|--------------------|-------------------------|--------|------------------|-------|----------------|-------|------------------|
| 0  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 4dae69211e7207bbeb106d82 | Cypress Corner<br>Deli  | 40.807903         | -73.913446         | Café                    | None   | None             | None  | 0              | 0     | 0                |
| 1  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 4c0c07676071a593902be232 | Primos                  | 40.808725         | -73.915402         | Deli / Bodega           | None   | None             | None  | 1              | 1     | 0                |
| 2  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 4c0952f0bbc676b0b30148d5 | La Morada               | 40.810670         | -73.921758         | Mexican<br>Restaurant   | 8.9    | 84               | None  | 29             | 57    | 223              |
| 3  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 4cf2eb9c1c158cfa95b9dab5 | Fresco Pizza &<br>Pasta | 40.814358         | -73.913183         | Pizza Place             | 7      | 20               | None  | 9              | 10    | 5                |
| 4  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 4bf1b1ef3fa220a150991820 | Mexicocina              | 40.811837         | -73.909512         | Mexican<br>Restaurant   | 9      | 84               | 2     | 24             | 55    | 71               |
| 5  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 4e4e242dbd4101d0d7a333fc | KFC                     | 40.816524         | -73.918461         | Fried Chicken<br>Joint  | 6.2    | 8                | 1     | 2              | 4     | 2                |
| 6  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 4d2e531979dd6ea8795588d3 | Checkers                | 40.815628         | -73.917990         | Fast Food<br>Restaurant | 4.8    | 12               | None  | 11             | 0     | 2                |
| 7  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 5db1caab98c98d0008f537f9 | Starbucks               | 40.816376         | -73.918473         | Coffee Shop             | 7.1    | 0                | None  | 0              | 0     | 0                |
| 8  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 56eaefc4498e0c20d8bda9f1 | Capri Cakes             | 40.816880         | -73.920876         | Bakery                  | None   | None             | None  | 1              | 3     | 0                |
| 9  | 201    | Bronx CB 1         | 40.810909                   | -73.91647                    | 5b54e70182a750002c111916 | Taco Bell               | 40.818109         | -73.923674         | Taco Place              | 6      | 0                | None  | 0              | 0     | 0                |

# **Data Analysis and Discussion**

- 1. Choropleth maps
- Choropleth map for not rated food venues: The database for this choropleth map stems from counting the unrated venues for each community board. The result is shown as follow:



The community board with the high unrated food venue ratio is **Brooklyn CB 5** and **Queens CB 12** (ratio = 0.85), followed by **Queens CB 13** (ratio = 0.8). Additionally, it is shown that there are more unrated food venues overall in the community boards which locate away from core area of New York City. Those food venues could be new in the area or belong to certain category that people are of less interest in rating for.

• Choropleth map for food rating: The database for this choropleth map is obtained by averaging the valid rating scores of all the food venues for each community board. The result is shown as follow:



The community boards with highest average rating for food venues are Manhattan CB 2 and 3 (average rating score: 8.6), closely followed by Brooklyn CB 1 and 6 (average rating score: 8.4). Most community boards with high unrated food venues ratio to have low food ratings in general. On the other hand, community boards with fewer unrated food venues essentially show higher food rating.

• Choropleth maps for most ratings received, likes and listed count: the database for this choropleth map comes from summing up the rating signal, likes and listed count of the rated venues for each community board. The result is shown as follow:







The community boards with most ratings received are Manhattan CB 2 (average rating signals: 702), followed by Manhattan CB 3 (average rating signals: 691) and 5 (average rating signals: 688). The rating signals of core areas in New York City significantly exceeds other regions. Brooklyn CB 1, 2, 6 and 8 are exactly the community boards in Brooklyn with the highest food rating. The investigation on the correlation between rating and rating signals is thus very important and interesting, which is discussed in the following sections. Furthermore, choropleth maps for most ratings receive, likes and listed count look quite similar to each other. Therefore, correlation among these three features is meaningful to study as well.

• Choropleth map for food venue price: the database for this choropleth map comes from averaging the price tier of the food venues for each community board. The result is shown as follow:



The community boards with most expensive food venues in average are Queens CB 3 (average price tier: 2.2), followed by Bronx CB 10 (average price tier: 2.1).

The choropleth maps above present a variety of information across community boards in New York City. Before we visualize the similar features across food categories in the next, it is a good idea to have a look at the relationship among rating signal, likes and listed count first so that we may simplify our analysis by reducing highly correlation features.

# 2. Correlation among details of venues

• The following six figures are scatter plot for different sets of features to reveal the relationship amongst them:



• We generate two tables based on the correlation matrix for rating signal, tips number, likes and listed number to show their correlations and corresponding p-values.

### Correlation Table:

|                      | <b>Rating Signal</b> | Tips Number | Likes | <b>Listed Number</b> |
|----------------------|----------------------|-------------|-------|----------------------|
| Rating Signal        | 1.000                | 0.921       | 0.997 | 0.884                |
| Tips Number          | 0.921                | 1.000       | 0.905 | 0.882                |
| Likes                | 0.997                | 0.905       | 1.000 | 0.874                |
| <b>Listed Number</b> | 0.884                | 0.882       | 0.874 | 1.000                |

# Corresponding p values (<):

|                      | <b>Rating Signal</b> | Tips Number | Likes | <b>Listed Number</b> |
|----------------------|----------------------|-------------|-------|----------------------|
| Rating Signal        | 1.0                  | 0.0         | 0.0   | 0.0                  |
| Tips Number          | 0.0                  | 1.0         | 0.0   | 0.0                  |
| Likes                | 0.0                  | 0.0         | 1.0   | 0.0                  |
| <b>Listed Number</b> | 0.0                  | 0.0         | 0.0   | 1.0                  |

The two features with the highest correlation are Rating Signal and Likes (correlation = 0.997, P < 0.001). The two features with the lowest correlation are Tips Number and Listed Number (correlation = 0.882, P < 0.001). These four features are highly correlated with each other as the values of correlation among them are all greater than 0.88. In the following analysis, we thus mainly concentrate on Rating Signal in these features.

### 3. Analysis rating signal and rating score across prices

The bar plot shown below averages rating signal, likes and tips count in terms of each price tier. The data comes from mean aggregation with respect to price tier for all venues.



Venues with the most average rating signal received is of price tier 2, followed by price tier 3, then price tier 4 and last price tier 1.

Next, to the study of the relationship between rating and price tier of food venues. All rating information associated with their price tiers are extracted and the database with price tier 1-4 as feature columns is generated for our analysis.



The correlation between rating and price is **correlation = 0.307 (P < 0.001)**. The result indicates that a food venue with a higher price tier is likely to receive a higher rating in general. In addition, when the average rating score of the food venues across price tiers becomes higher, it looks less deviated and differentiated.

# 4. Analysis of rating and rating signal

It is shown previously in choropleth maps that rating and rating signal across community boards have similar distribution. Now, we analyze all the datapoints of these two properties from our database.



The correlation between overall rating scores and number of rating signal received is **correlation =** 0.307 (P < 0.001). The result perfectly describes the phenomenon that food venues with more rating received (more popular in common sense) tend to have higher rating scores. The same studies across different price tiers are performed as well. The results are:



As we already see the significant correlation between rating score and rating signal, it is also very interesting to figure out the correlation across food venue categories. To achieve a throughout investigation, we first analyze the statistics of rating scores across categories. The box plot is generated after value of rating scores of all the venues are extract and put into data frame with columns consisting of categories.



Next, we create the similar database for analyzing rating signal across food venue category. Since the range and difference of rating signal is very large. It is not a good way to demonstrate it in box plot, though the data is used in the following correlation test.

The result of correlation between rating scores and signal across food venue categories is shown below:



The two highest correlation exists in Fried Chicken Joint (correlation = 0.636, P < 0.001) and Ice Cream Shop (correlation = 0.611, P < 0.001), which are both very hedonic categories. The effect of popularity on rating (users' experience) is thus stronger. On the other hand, the two lowest correlation exists in Coffee Shop (correlation = 0.237, P < 0.002) and Bakery (correlation = 0.230, P < 0.04). Bakery are quite a utilitarian category, which is opposite to hedonic categories. The effect of popularity on rating (users' experience) is thus weaker.

Finally, we test the correlation between mean and standard deviation of rating scores and signal. Each set of mean and standard deviation is calculated on individual category.

**Correlation Table** 

|             | rating mean | rating std | signal mean | signal std |
|-------------|-------------|------------|-------------|------------|
| rating mean | 1.000       | -0.246     | 0.336       | 0.184      |
| rating std  | -0.246      | 1.000      | -0.039      | 0.231      |
| signal mean | 0.336       | -0.039     | 1.000       | 0.652      |
| signal std  | 0.184       | 0.231      | 0.652       | 1.000      |

P < Table

|             | rating mean | rating std | signal mean | signal std |
|-------------|-------------|------------|-------------|------------|
| rating mean | 1.000       | 0.006      | 0.000       | 0.041      |
| rating std  | 0.006       | 1.000      | 0.671       | 0.010      |
| signal mean | 0.000       | 0.671      | 1.000       | 0.000      |
| signal std  | 0.041       | 0.010      | 0.000       | 1.000      |

The correlation between mean and standard deviation of rating scores is **correlation = -0.246** (P < 0.006). This result confirms our observation that food venues across categories or price tiers with higher average rating show less difference and polarization in rating. It also agrees well with the rating analysis across price tiers shown in the previous section. In another aspect, the correlation between mean and standard deviation of rating signal is **correlation = 0.652** (P < 0.001). To a great extent, such a high correlation is due to numbers of extreme large rating signal for some food venues along with large variances in their categories.

The **correlation = 0.336 (P < 0.001)** between means of rating and rating signal received is consistent with our analysis on overall rating and rating signal previously (correlation = 0.307, P < 0.001) and further confirm their positive correlation. Interestingly, though the mean of rating score is negatively correlated with its standard deviation, it is found to be positively correlated with the standard deviation of rating signal (**correlation = 0.184, P < 0.04**). However, the other way around, there is no correlation between the mean of rating signal and the standard deviation of rating.

### 5. Clustering community boards based on frequency of food categories

Before performing clustering analysis, a table showing top 10 venue category for each community boards are created based on one-hot encoding of venues in terms of category.

|   | Community<br>Board | 1st Most Common<br>Venue | 2nd Most Common<br>Venue | 3rd Most Common<br>Venue | 4th Most Common<br>Venue | 5th Most Common<br>Venue | 6th Most Common<br>Venue | 7th Most Common<br>Venue | 8th Most Common<br>Venue | 9th Most Common<br>Venue | 10th Most Common<br>Venue |
|---|--------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
| 0 | Bronx CB 01        | Fast Food<br>Restaurant  | Mexican Restaurant       | Donut Shop               | Deli / Bodega            | Café                     | Pizza Place              | Bakery                   | Coffee Shop              | Fried Chicken Joint      | Juice Bar                 |
| 1 | Bronx CB 02        | Fast Food<br>Restaurant  | Pizza Place              | Chinese Restaurant       | Food                     | American<br>Restaurant   | Juice Bar                | Restaurant               | Café                     | Cafeteria                | Deli / Bodega             |
| 2 | Bronx CB 03        | Deli / Bodega            | Seafood Restaurant       | Fast Food<br>Restaurant  | Pizza Place              | Bakery                   | Food                     | Chinese Restaurant       | Mexican Restaurant       | Food Truck               | Donut Shop                |
| 3 | Bronx CB 04        | Deli / Bodega            | Fast Food<br>Restaurant  | Chinese Restaurant       | Donut Shop               | Sandwich Place           | Hot Dog Joint            | Seafood Restaurant       | Steakhouse               | Mexican Restaurant       | Pizza Place               |
| 4 | Bronx CB 05        | Mexican Restaurant       | Fast Food                | Pizza Place              | Bakery                   | Deli / Bodega            | Fried Chicken Joint      | Donut Shop               | Restaurant               | Chinese Restaurant       | African Restaurant        |

Unsupervised learning K-means algorithm is used to cluster the community boards. For choosing the optimal k number, elbow method is applied first, and the result is:



Apparently, the improvements of the distortion decline relatively steadily and evenly so that no elbow point is found for the optimized k-clustering number. Hence, we apply a different method of average silhouette, with result shown below. In this case, we are able to determine an optimal  $\mathbf{k} = 4$ 



After choosing the k-clustering number, we conduct clustering, label each community boards and update the information in our database. The clustering map is generated afterwards based on the result:



For community boards in the 1st cluster, the 1st most common venues are all Coffee Shop. The 2nd and 3rd ones are mainly Pizza Place, Deli / Bodega, Italian Restaurant and Bakery. For community boards in the 2nd cluster, the 1st most common venue is mostly Deli / Bodega, followed by mainly Pizza Place as the 2nd most common venue. For community boards in the 3rd cluster, the 1st, 2nd and 3rd most common venues are quite diverse. For community boards in the 4th cluster, the 1st most common venues are all Caribbean Restaurant and the 1st most common venues are all Bakery.

### Conclusion

In the study, we analyze the data of food venues in New York City. We first visualize different properties of food venues for each community boards by generating corresponding choropleth maps. We then found strong positive correlation among details of venues (rating signal, likes, tip and listing count). More importantly, we analyze the correlation between rating and price. The result shows that food venues with higher price tiers tend to receive higher rating in general. Furthermore, we investigate the relationship between rating and signal across categories. We found that food venues with more rating received is likely to have higher rating scores. Then, we analyze rating/signal correlation in terms of food venue category. We observe that hedonic venues show much stronger rating/signal correlation than utilitarian ones. Meanwhile, it is shown that there are less difference and polarization for higher rated food venues. Finally, we perform k-mean clustering on community boards in New York City based on their most common venue categories. Our results are both informative and conclusive for entrepreneurs, investors, and city managers to enhance the survival of a particular restaurant and to improve the survival rate of restaurants in certain community.

#### Reference

- David, Greg. NYC restaurant jobs decline for the first time in a decade. Crain's New York Business, March 2019
- Luca, Dara Lee, and Michael Luca. Survival of the Fittest: The Impact of the Minimum Wage on Firm Exit. Harvard Business School Working Paper, No. 17-088, April 2017.
- Fang, Limin. The Effects of Online Review Platforms on Restaurant Revenue, Survival Rate,
  Consumer Learning and Welfare. UCDavis Economics Event Paper, January 2019
- 4. Neighborhoods in New York City
- 5. The NYC Boundaries Map
- 6. Forsquare API