1

8.Circles

EE24BTECH11025 - GEEDI HARSHA VARDHAN

I. C: MCQs with one correct answer

- 12. Let a circle be given by 2x(x-a) + y(2y-b) = 0, $(a \ne 0, b \ne 0)$. Find the condition on a and b if two chords, each bisected by the x-axis, can be drawn to the circle from (a, b/2). (1992-6 Marks)
- 13. Consider a family of circles passing through two fixed points A(3,7) and B(6,5). Show that chords in which the circle $x^2 + y^2 4x 6y 3 = 0$ cuts the members of the family are concurrent at a point. Find the coordinate of this point. (1993- 5 Marks)
- 14. Find the coordinates of the point at which the circles $x^2 + y^2 4xx 2y = -4$ and $x^2 + y^2 12x 8y = -36$ touch each other. Also find equations common tangents touching the circles in the distinct points. (1993- 5 Marks)
- 15. Find the intervals of values of a for which the line y + x = 0 bisects two chords drawn from a point $\left(\frac{1+\sqrt{2}a}{2}, \frac{1-\sqrt{2}a}{2}\right)$ to the circle $2x^2 + 2y^2 \left(1 + \sqrt{2}a\right)x \left(1 \sqrt{2}a\right)y = 0.$ (1996- 5 Marks)
- 16. A circle passes through three points A,B and C with the line segment AC as its diameter. A line passing through A intersects the chord BC at point D inside the circle. If angles DAB and CAB are α and β respectively and the distance between the point A and midpoint of the line segment DC is d, prove that the area of the circle is $\frac{\pi d^2 \cos^2 \alpha}{\cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta \cos (\beta \alpha)}$ (1996- 5 Marks)
- 17. Let C be any circle with centre $(0, \sqrt{2})$. Prove (2005- 2 Marks) that at the most two rational points can be there on C.(A rational point is a point both of whose coordinates are rational numbers.) (1997- 5 Marks)
- 18. C_1 and C_2 are two concentric circles, the radius of C_2 being twice that of C_1 . From a point P on C_2 , tangents PA and PB are drawn to C_1 . Prove

that the centroid of the triangle PAB lies on C_1 . (1998- 8 Marks)

- 19. Let T_1 , T_2 be two tangents drawn from (2,0) onto the circle $C:x^2 + y^2 = 1$. Determine the circles touching C and having T_1 , T_2 as their pair of tangents. Further, find the equations of all possible common tangents to these circles, when taken two at a time. (1999- 10 Marks)
- 20. Let $2x^2 + y^2 3xy = 0$ be the equation of pair of tangents drawn from the origin O to a circle of radius 3 with the centre in the first quadrant. If A is one of the points of contact, find the length of OA. (2001- 5 Marks)
- 21. Let C_1 and C_2 be two circles with C_2 lying inside C_1 . A circle C lying inside C_1 touches C_1 internally and C_2 externally. Identify the locus of centre of C. (2001- 5 Marks)
- 22. For the circle $x^2 + y^2 = r^2$, find the value of r for which the area enclosed by the tangents drawn from the point P(6, 8) to the circle and the chord of contact is maximum. (2003- 2 Marks)
- 23. Find the equation of circle touching the line 2x + 3y + 1 = 0 at (1, -1) and cutting orthogonally the circle having line segment joining (0, 3) and (-2, -1) as diameter. (2004- 4 Marks)
- 24. Circles with radii 3,4 and 5 touch each other externally. If P is the point of intersection of tangents to these circles at their points of contact, find the distance of P from the points of contact. (2005- 2 Marks)

MATCH THE FOLLOWING

1. Let the circles C_1 : $x^2 + y^2 = 9$ and C_2 : $(x-3)^2 + (y-4)^2 = 16$, intersect at the points X and Y. Suppose that another circle C_3 : $(x-h)^2 + (y-k)^2 = r^2$ satisfies the following condition:

- (i) Centre of C_3 is collinear with the centres of C_1 and C_2
- (ii) C_1 and C_2 both lie inside C_3 , and
- (iii) C_3 touches C_1 at M and C_2 at N

Let the line through X and Y intersect C_3 at Z and W, and let a common tangent of C_1 and C_3 be a tangent to the parabola $x^2 = 8\alpha y$.

There are some expressions given in the List-1 whose values are given in List -2 below 2

Column 1

- (A) 2h+k
- (B) $\frac{LengthofZW}{}$
- lengtho f X Y
- (C) $\frac{Area of triangle MZN}{Area of triangle ZMW}$

Column 2

- (p) 6
- (q) $\sqrt{6}$
- (r) $\frac{5}{4}$ (s) $\frac{21}{5}$
- (t) $2\sqrt{6}$
- (u) $\frac{10}{3}$

Which of the following is the only CORRECT combination?

- (a) (IV),(S)
- (b) (I),(P)
- (c) (III),(R)
- (d) (IV),(U)
- 2. Let the circles C_1 : $x^2 + y^2 = 9$ and C_2 : $(x-3)^2 + (y-4)^2 = 16$, intersect at the points X and Y. Suppose that another circle $C_3: (x-h)^2 +$ $(y-k)^2 = r^2$ satisfies the following conditions:
 - (i) Centre of C_3 is collinear with centres of C_1 and
- (ii) C_1 and C_2 both lie inside C_3 , and
- (iii) C_3 touches C_1 at M and C_2 at N

Let the line through X and Y intersect C_3 at Z and W, and let a common tangent of C_1 and C_3 be a tangent to the parabola $x^2 = 8\alpha y$.

There are some expressions given in the List- 1 whose values are given in List - 2 below 2

Column1

- (A) 2h + k
- Lengthof ZW
- (C) $\frac{\frac{lengthofXY}{AreaoftriangleMZN}}{AreaoftriangleZMW}$

Column2

- (p) 6
- (q) $\sqrt{6}$
- (r) $\frac{5}{4}$
- (1) $\frac{7}{4}$ (s) $\frac{21}{5}$
- (t) $2\sqrt{6}$
- (u) $\frac{10}{3}$
- 2 Which of the following is the only INCORRECT combination?
- (a) (IV),(S)
- (b) (I),(P)
- (c) (III),(R)
- (d) (IV),(U)