Лекция по математическому анализу №6.

Чудинов Никита (группа 145)

21 сентября 2015

Пример.

$$\sum_{1}^{\infty} n \cdot x^{n-1} = \sum_{1}^{\infty} (x^n)' =$$

Ряд равномерно сходится в $|x| \leqslant r < 1$ по принципу Вейерштрасса. $|n \cdot x^{n-1}| \leqslant n \cdot r^{n-1}$. $\sum_{i=1}^{\infty} n r^{n-1}$ сходится по признаку Коши.

$$= \left(\sum_{1}^{\infty} x^{n}\right)' = \left(\frac{x}{1-x}\right)' = \frac{1}{(1-x)^{2}}.$$

Степенные ряды

Определение 1. *Степенным рядом* с центром в точке z_0 называется выражение:

$$\sum_{1}^{\infty} c_n (z - z_0)^n;$$

Где $c_n, z, z_0 \in \mathbb{C}$ называются коэффициентами степенного ряда.

Теорема. Абель

- Если степенной ряд сходится в точке $z_1 \neq z_0$, то он сходится в области $D_1 = \{z: |z-z_0| < |z_1-z_0|\};$
- Если степенной ряд расходится в точке z_2 , то он расходится в области $D_2 = \{z: |z-z_0| > |z_2-z_0|\}.$

Доказательство.

• Пусть ряд сходится в z_1 и $z \in D_1$. Тогда:

$$\sum_{0}^{\infty} |c_n(z - z_0)^n| = \sum_{0}^{\infty} |c_n| \cdot |z_1 - z_0|^n \cdot \underbrace{\left|\frac{z - z_0}{z_1 - z_0}\right|^n}_{n < 1}; \tag{1}$$

Так как ряд сходится в точке z_1 , то $c_n(z_1-z_0)^n \leqslant M \ \forall n$ (ограниченны).

• Доказывается аналогично.

Теорема. $\exists R \in [0; +\infty]$:

- 1. если R=0, то ряд (1) сходится только в точке z_0 ;
- 2. если $R = \infty$, то ряд (1) сходится в любой точке плоскости;

3. иначе: Ряд (1) сходится абсолютно в круге $\{z: |z-z_0| < R\}$, где R — радиус сходимости и расходится в $\{z: |z-z_0| > R\}$. На самой окружности ряд может как сходиться, так и расходиться.

Доказательство.

1. просто;

- 2. просто;
- 3. Пусть D множество z, при которых ряд сходится.
 - (a) Если D не ограничено: для $\forall z \in \mathbb{C} \; \exists z_1 \in D : |z-z_0| < |z_1-z_0| \Rightarrow$ по теореме Абеля ряд сходится в \mathbb{C} .
 - (b) Если D ограниченно: Пусть $R = \sup_{z \in D} |z - z_0| \Rightarrow R \neq \infty$:
 - і. если R = 0, то (1) сходится только в z_0 .
 - ії. если R>0, то $\forall z:|z-z_0|< R$ $\exists \ z_1\in D:|z-z_0|<|z_1-z_0|\Rightarrow$ по теореме Абеля.

П

Ряд (1) сходится в точке z.

Следствие.

1. ряд (1) сходится абсолютно;

2. ряд (1) равномерно сходится в круге $D_r = \{z : |z - z_0| \leqslant r\} : r < R.$

Доказательство.

$$|c_n(z-z_0)^n| = |c_n(z_1-z_0)^n| \cdot \left| \frac{z-z_0}{z_1-z_0} \right|^n;$$

 $z_1: r < |z_1-z_0| < R.$

3. Сумма степенного ряда является непрерывной функцией в круге сходимости.

 $Пример. \ \sum_{1}^{\infty} \frac{z^{n}}{n^{2}}; \ R = 1 - \text{на окружности сходится.}$

Пример. $\sum_{1}^{\infty} \frac{z^n}{n}$; R = 1 — на окружности может как сходиться, так и нет.

Пример.
$$\sum_{n=0}^{\infty} \frac{z^n}{n!}$$
; $R = \infty$.

Следствие. Если $\exists \lim_{n \to \infty} \sqrt[n]{|c_n|}$, то $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|c_n|}}$.

Следствие. Если $\exists \lim_{n \to \infty} \frac{c_n}{c_{n+1}}$, то $R = \lim_{n \to \infty} \frac{c_n}{c_{n+1}}$.

Теорема (формула Коши-Адамара).

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}}.$$

Теорема. Если ряд сходится в круге, то его можно почленно интегрировать и дифференцировать и радиус круга сходимости не изменится.