valogat

1. ertek2

Let H be the minimal degree polynomial, for which:

$$H(-5) = 253$$
 $H(-4) = 110$ $H'(-5) = -181$ $H'(-4) = -108$

Then, H(0) =

- (a) -2 \checkmark
- (b) 2
- (c) -1
- (d) 1

2. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(2) = 2$$
 $H(-5) = -82$ $H'(2) = 12$ $H'(-5) = 61$

Then, H(5) =

- (a) 128 ✓
- (b) 126
- (c) 129
- (d) 124

3. ertek2

Let H be the minimal degree polynomial, for which:

$$H(-2) = 32$$
 $H(2) = 8$ $H'(-2) = -38$ $H'(2) = -6$

Then, H(-4) =

(a) 188 ✓

- (b) 192
- (c) 187
- (d) 189

4. ertek2

Let H be the minimal degree polynomial, for which:

$$H(2) = -15$$
 $H(-1) = 9$ $H'(2) = -29$ $H'(-1) = -14$

Then, H(-2) =

- (a) 37 ✓
- (b) 34
- (c) 38
- (d) 36

5. ertek2

Let H be the minimal degree polynomial, for which:

$$H(5) = 181$$
 $H(0) = 1$ $H'(5) = 96$ $H'(0) = 1$

Then, H(-3) =

- (a) $-11 \checkmark$
- (b) -13
- (c) -8
- (d) -12

6. ertek2

Let H be the minimal degree polynomial, for which:

$$H(0) = 3$$
 $H(2) = -37$ $H'(0) = -2$ $H'(2) = -50$

Then, H(-3) =

- (a) 63 ✓
- (b) 65
- (c) 67
- (d) 61

7. ertek2

Let H be the minimal degree polynomial, for which:

$$H(4) = -147$$
 $H(5) = -283$ $H'(4) = -108$ $H'(5) = -166$

Then, H(-3) =

- (a) 21 ✓
- (b) 20
- (c) 24
- (d) 18

8. ertek2

Let H be the minimal degree polynomial, for which:

$$H(3) = 65$$
 $H(4) = 151$ $H'(3) = 64$ $H'(4) = 110$

Then, H(-4) =

- (a) $-89 \checkmark$
- (b) -92
- (c) -85
- (d) -86

9. ertek2

Let H be the minimal degree polynomial, for which:

$$H(1) = -1$$
 $H(5) = 307$ $H'(1) = 5$ $H'(5) = 197$

Then, H(3) =

- (a) 57 ✓
- (b) 56
- (c) 54
- (d) 61

10. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-2) = 24$$
 $H(-3) = 73$ $H'(-2) = -30$ $H'(-3) = -71$

Then, H(3) =

- (a) $-101 \checkmark$
- (b) -99
- (c) -97
- (d) -98

11. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(0) = -2$$
 $H(-5) = 578$ $H'(0) = 4$ $H'(-5) = -336$

Then, H(-2) =

- (a) 38 ✓
- (b) 34
- (c) 41

(d) 36

12. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-2) = -40$$
 $H(0) = -4$ $H'(-2) = 46$ $H'(0) = 2$

Then, H(4) =

- (a) 164 ✓
- (b) 165
- (c) 168
- (d) 163

13. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-3) = 79$$
 $H(5) = -329$ $H'(-3) = -83$ $H'(5) = -211$

Then, H(0) =

- (a) 1 ✓
- (b) -2
- (c) -3
- (d) 4

14. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-2) = 14$$
 $H(2) = 10$ $H'(-2) = -17$ $H'(2) = -1$

Then, H(-5) =

(a) 164 ✓

- (b) 168
- (c) 167
- (d) 163

15. **ertek2**

Let ${\cal H}$ be the minimal degree polynomial, for which:

$$H(2) = -7$$
 $H(0) = -3$ $H'(2) = 6$ $H'(0) = -2$

Then, H(-5) =

- (a) $-343 \checkmark$
- (b) -347
- (c) -340
- (d) -346

16. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-2) = -12$$
 $H(-4) = -108$ $H'(-2) = 18$ $H'(-4) = 86$

Then, H(-5) =

- (a) $-219 \checkmark$
- (b) -216
- (c) -217
- (d) -222

17. ertek2

Let H be the minimal degree polynomial, for which:

$$H(0) = -2$$
 $H(-5) = -442$ $H'(0) = -2$ $H'(-5) = 253$

Then, H(-3) =

- (a) $-104 \checkmark$
- (b) -102
- (c) -106
- (d) -107

18. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(4) = 86 \ H(-5) = -112 \ H'(4) = 58 \ H'(-5) = 67$$

Then, H(-1) =

- (a) -4 \checkmark
- (b) -8
- (c) -6
- (d) -7

19. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-5) = 341$$
 $H(-3) = 73$ $H'(-5) = -208$ $H'(-3) = -72$

Then, H(0) =

- (a) 1 ✓
- (b) -2
- (c) -1
- (d) 0

20. ertek2

Let H be the minimal degree polynomial, for which:

$$H(3) = -114$$
 $H(-3) = 54$ $H'(3) = -100$ $H'(-3) = -64$

Then, H(-4) =

- (a) 145 ✓
- (b) 141
- (c) 143
- (d) 146

21. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-3) = -94$$
 $H(5) = 154$ $H'(-3) = 79$ $H'(5) = 111$

Then, H(0) =

- (a) -1 \checkmark
- (b) -4
- (c) -2
- (d) 0

22. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(3) = 45$$
 $H(5) = 287$ $H'(3) = 61$ $H'(5) = 193$

Then, H(-5) =

- (a) $-443 \checkmark$
- (b) -442
- (c) -446

(d) -444

23. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-1) = -1$$
 $H(-5) = 259$ $H'(-1) = 3$ $H'(-5) = -181$

Then, H(5) =

- (a) $-451 \checkmark$
- (b) -447
- (c) -455
- (d) -452

24. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(3) = 24$$
 $H(-3) = -12$ $H'(3) = 30$ $H'(-3) = 18$

Then, H(-5) =

- (a) −88 ✓
- (b) -91
- (c) -89
- (d) -90

25. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-3) = 87$$
 $H(4) = -263$ $H'(-3) = -99$ $H'(4) = -197$

Then, H(1) =

(a) -5 \checkmark

- (b) -3
- (c) -9
- (d) -7

26. ertek2

Let H be the minimal degree polynomial, for which:

$$H(1) = 2$$
 $H(0) = -1$ $H'(1) = 3$ $H'(0) = 2$

Then, H(-3) =

- (a) 38 ✓
- (b) 42
- (c) 39
- (d) 41

27. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-2) = 50$$
 $H(0) = 4$ $H'(-2) = -61$ $H'(0) = -1$

Then, H(-3) =

- (a) 142 ✓
- (b) 140
- (c) 144
- (d) 139

28. ertek2

Let H be the minimal degree polynomial, for which:

$$H(2) = 12$$
 $H(0) = -4$ $H'(2) = 20$ $H'(0) = 4$

Then, H(-4) =

- (a) $-180 \checkmark$
- (b) -176
- (c) -177
- (d) -179

29. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-1) = 6$$
 $H(-5) = -34$ $H'(-1) = -6$ $H'(-5) = 42$

Then, H(-4) =

- (a) -3 \checkmark
- (b) 1
- (c) -6
- (d) -5

30. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(-3) = -73$$
 $H(-4) = -141$ $H'(-3) = 54$ $H'(-4) = 83$

Then, H(-2) =

- (a) $-31 \checkmark$
- (b) -35
- (c) -27
- (d) -29

31. ertek2

Let H be the minimal degree polynomial, for which:

$$H(5) = 144$$
 $H(3) = 32$ $H'(5) = 84$ $H'(3) = 32$

Then, H(4) =

- (a) 75 ✓
- (b) 77
- (c) 74
- (d) 72

32. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(5) = -342$$
 $H(-1) = -6$ $H'(5) = -188$ $H'(-1) = 4$

Then, H(1) =

- (a) -6 \checkmark
- (b) -10
- (c) -7
- (d) -2

33. **ertek2**

Let H be the minimal degree polynomial, for which:

$$H(5) = -208 \ H(0) = -3 \ H'(5) = -131 \ H'(0) = -1$$

Then, H(-4) =

- (a) 161 ✓
- (b) 165
- (c) 158

(d) 163