PyHSPF: Data Integration Software for Hydrologic and Water Quality Modeling

David Lampert Energy Systems Division Argonne National Laboratory 05/29/2015

Outline

- Hydrology/watershed modeling background
- PyHSPF overview and important classes
- Software example application
- Future ideas

Water Movement on Land Surfaces/Watersheds

Human activities alter hydrologic cycle and water quality: Need Data/Models to Predict Downstream Implications

Basic Equation for Hydrologic Modeling

Climate

4

Hydrological Simulation Program in Fortran (HSPF)

- Developed by EPA and USGS from Stanford Watershed Model
- Flexible and adaptable (good and bad)
- Model development process
 - 1. Divide watershed into reach network
 - Define catchment areas for reaches (subbasins)
 - 3. Divide subbasins into homogeneous land segments by category (corn, forest, pasture, developed, etc.)
 - 4. Supply climate forcing time series
 - 5. Calibrate hydrology process parameters using observed flows

Calculation Logic Example

"Water flows down hill" (water on land surface)

- 1. Perform water budget on each land segment at each time step
- 2. Route runoff from land segments to streams
- 3. Perform water budget on stream reaches
- 4. Go to the next time step

HPSF Pervious Land Segment (PERLND) Water Budget (External Time Series, Fluxes, State Variables)

Evapotranspiration (ET)

- Combined evaporation and plant transpiration
- Function of:
 - Climate
 - Temperature (hot = more evaporation)
 - Humidity (dry = more evaporation)
 - Wind (windy = more evaporation)
 - Sunlight (sunny = more evaporation)
 - Vegetation
 - Leaf area index of vegetation
 - Stomatal resistance of vegetation
 - Soil moisture
- Penman-Monteith Equation (energy balance) = climate
- 2. Empirical crop coefficient = vegetation
- 3. Watershed model + (1) + (2) = soil moisture accounting

Summary of HSPF Data Needs

- Hydrography
 - Stream reach network/connectivity
 - Stream reach catchment areas/geometry (subbasins)
 - Dams/diversions/withdrawals
- Land use
 - Subbasin land use category fractions
 - Crop-specific information (plant, till dates)
- Climate time series
 - Precipitation, temperature, humidity, wind, sunlight
 - Evapotranspiration demand (depends on vegetation)
- Hydrology
 - Stream flow and water quality
 - Hydrology process parameters (inversion)

PyHSPF: Python extensions for utilizing HSPF

HSPF Version 12.2 Source Code

GNU Compiler Collection

Python Programming Language

Other Python Modules

Open source software

HSPF Fortran
Source Changes

PyHSPF Source Code

Global Historical Climate Network Daily Dataset

Global Surface Summary of Day Dataset

Hourly
Precipitation
Dataset 3240

Cropland Data Layer

National Solar Radiation Database

National Water Information System

National Hydrography
Dataset Plus Version 2

Online databases

Automates data extraction, aggregation, calibration to develop model in ~1 hour

"Core" Module Classes/Data Structures

National Hydrography Dataset Plus Tools

Climate Data - Reference Evapotranspiration

Automated extraction of temperature, dew point, wind speed, solar radiation, pan evaporation

Computation of hourly reference evapotranspiration (ET_o) time series (demand by well-watered grass)

Basic Equation for Hydrologic Modeling

Not measurable, requires calibration/inversion

Postprocessor and AutoCalibrator Classes

Monthly Hydrograph

Statistical Plots

"Day of the Year" Hydrograph

Land Use Change Application (2001 vs 2009)

Corn fraction increased ~10% Evapotranspiration increased 30 mm/yr (5%)

-92.2

Parameter	2001 Land use Scenario 2009 Land use Scenario	
	Mass Balance (mm/yr)	Mass Balance (mm/yr)
Precipitation	898	898
Runoff	251	221
Evapotranspiration	630	661
Annual Max Daily Flow (ft3/s)	93.6	78.5

Climate Change Application (downscaled climate model)

- Standard Weather Research and Forecasting (WRF) Model
- Observed versus simulated climate in calibrated HSPF model

Future Ideas for PyHSPF

- Nationwide-application
 - Larger-scale models
 - Data mining (correlations between hydrological processes and human activities)
- Time-variable land use
- Water quality modules
 - Pesticides
 - Nutrients
- Different data sources
 - Radar precipitation
 - Climate models
 - Different countries
- Modified hydrological process representation

Thank You!

David Lampert (djlampert@gmail.com, dlampert@anl.gov) https://github.com/djlampert/PyHSPF