RV COLLEGE OF ENGINEERING $^{\circ}$

(An Autonomous Institution affiliated to VTU) HI Semester B. E. Examinations April - 2022

Common for CSE/ISE

DISCRETE MATHEMATICAL STRUCTURES

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one

PART-A

		AMI-A	
1	1.1	Find the number of 5 latt	
	1.2	Find the number of 5-letter words which contain 3 different consonants and two different vowels. 21(3 × 5(2 × 5) = 1596000 How many different outcomes are possible by tossing 10 similar coins?	02
	1.3	Find the recurrence relation and the initial condition for the given sequence $q_{\eta} = -3q_{\eta,\eta}$	02
	1.4	Write down the following proposition in symbolic form, and find its negation. $\{ \forall \ \chi \in \uparrow, \ \langle \chi \rangle \} = \{ \forall \ \chi \in \downarrow, \ \langle \chi \rangle \} = \{ \forall \ \chi \in \downarrow, \ \langle \chi \rangle$	02
	1.5	"If all triangles are right-angled, then no triangle is equiangular." From the information given, determine the truth value required. $p \land q$ is false and p is true;	02
	1.6	Find the truth value of q. Construct the truth table for the compound proposition, $\neg q \land ((7r) \rightarrow p)$	01
	1.7	Find the inverse of the function f: $A \rightarrow B$ $A = \{x \mid x \text{ is real and } x \ge -1\}$	01
	1.8	$B = \{y \mid y \text{ is real and } y \ge 0\}, f(a) = a^2 - 1.$ For the poset (A, R) defined on the set $A = \{2, 3, 5, 6, 7, 11, 12, 35, 385\}$ as represented by the following Hasse diagram in Fig. 1.8 $LUB\{3, 6\}, GLB\{35, 385\}$	02
		6 35 12 385	
		Fig. 1.8 A binary symmetric channel has probability $p = 0.05$ of incorrect transmission. If the word $C = 011011101$ is transmitted, what is the probability that three errors occur, no two of them consecutive?	02
		as, the them consecutive:	02

10x (0.05)3 x (0.95)2 +4 (0.05)3 x (0.95) 5c3 p3 (1-p)2 + 4c3 p3 (1-p)1

5 H=	E H, + Hrti PART-B	(K+2)HICH	- (K+1)
151		1 1	

		12 (11 = 12)		
2	a b	Let $H_1 = 1$, $H_2 = 1 + \frac{1}{2}$, $H_3 = 1 + \frac{1}{2}$, $+\frac{1}{3}$,, $H_n = 1 + \frac{1}{2}$, $+\frac{1}{3}$,, $\frac{1}{n}$. Prove that $\sum_{i=1}^{n} H_i = (n+1)H_n - n$ for all positive integers $n \ge 1$. Find and solve a recurrence relation for the number of binary sequences of length $n \ge 1$ that has no consecutive 0's.	05 06	
	С	In how many ways can Antony place 2 so that there is at least one book on each shelf? (For any of these arrangements consider the book on each shelf to be placed one next to the other, with the first book at the left of the shelf).	05	20/31
3	а	Test the validity of the given argument.	05	= 23 711)
	b	$p \to q$, $q \to s$, $r \to \neg s$, $\neg p \lor r \vdash \neg p$ Write down the converse, inverse and contrapositive of each of the following statements for which the set of all real numbers is the universe.		= 1771
	С	following statements for which the decrease $\forall x [0 \rightarrow p]$ funiverse. i. $\forall x. [(x > 3) \rightarrow (x^2 > 9)]$. Could $\forall x [0 \rightarrow p]$ fii. $\forall x, [\{(x^2 + 4x - 21) > 0\} \rightarrow \{(x > 3) \lor (x < -7)\}]$ $\downarrow 2 \not = 9$ Also, indicate their truth values. Prove the given logical equivalence without using truth table. $[\neg p \land (\neg q \land r)] \lor (q \land r) \lor (p \land r) \Leftrightarrow r$	06	
		OR		
4	a b	Prove the given logical equivalence without using truth table. $(p \to q) \Lambda [\neg q \Lambda(r \lor \neg q)] \Leftrightarrow \neg (q \lor p)$ Establish the validity of the following argument	05	Santiffill Halland
	5	$\forall x, [p(x) \forall q(x)] \\ \forall x, [\{\neg p(x) \land q(x)\} \rightarrow r(x)]$		
	С	$\exists \forall x, [\neg r(x) \rightarrow p(r)]$ State the converse, inverse and contrapositive of the following	06	
	C	conditionals: i. If a quadrilateral is a parallelogram, then its diagonals bisect each other.		
		ii. If a real number x^2 is greater than zero, then x is not equal to zero.	05	

2.6)
$$a_{n} = a_{n-1} + a_{n-2} + a_{n-3} - a_{n}$$

 $a_{n} = A(15)^{n} + B(15)^{n} - 2M$
 $A = \sqrt{3} + 3/25$, $B = (\sqrt{3} - 3)/25 - 1M$

Converse: 4 p

		,	
5 a	Let $F:A \rightarrow B$ be a function and C and D be arbitrary nonempty subsets		
	of B. Then prove the following:		
	$f^{-1}(C \sqcup D) = f^{-1}(C) \sqcup f^{-1}(D)$		
	$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$	06	
ь	1_{2} , 4_{1} (4.3.2.4.5.6.7) and R be the equivalence relation on A inst		
D	induces the partition $3 = 2(11) \cdot (12) \cdot (212) \cdot (32) \cdot (42) \cdot (42)$	1110-	
	miduces the partition $R^2 = (1, 2) + $	105	
	Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and R be the equivalence relation of R induces the partition $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$ ($A = \{1,2\} \cup \{3\} \cup \{4,5,7\} \cup \{6\}$. Find R . $(4,7), (5,4), (5,5), (5,7), (7,4), (7,5)$ The Hasse diagram of a partial order R on the set $A = \{1,2,3,4,5,6\}$ is	1(7)7	0/6,633
С	as given in Fig. 5c. Write down R as a subset of $A \times A$. Construct its		
	as given in Fig. 5c. write down R as a subset of $n \times n$. Constitute its		
	digraph.	100	12
	as given in Fig. 3c. write down it do to do so so so so do digraph. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	1 (-	13)
	R= (1,1)(1,4)(1,6)		
	(6,6)? -2,	SM	
	(914)(416)(315)	F	
	A 64 De 2	05	
9	Fig. 5c	0.5	
7	(C) OR		
X2K G	The state of the s		
6/ a	For the Poset (A, R) represented by the following Hasse diagram in Fig.		
2/	6a, find		
7	i. $GLB \{B,C\}$		
	ii. $GLB(B,W)$		
	iii. $GLB\{e,x\}$		
	iv. $LUB\{c,b\}$		
	v. $LUB\{d,x\}$		
	2 W W		
	x w y		
	vo e		
	c b d		
	σ α	05	
	Fig. 6a		
b	On the set Z of all integers, a relation R is defined by aRb if and only		
	$a^2 = b^2$. Verify that R is an equivalence relation. Determine the	0 =	
	partition induced by this relation. $R = 5262$	05	
С	Let $f: R \to R$ be defined by		
5-173 5-75	$\begin{cases} x + 7 \text{ for } x \le 0 \end{cases} \qquad T \qquad \mathcal{H} = \pm 9 \}$		7
7 1/0 1/2			7-71
3,1.53	$ \begin{cases} x + 7 & \text{for } x \le 0 \\ -2x + 5 & \text{for } 0 \le x < 3 \\ x - 1 & \text{for } x \ge 3 \end{cases} $ Find $ f^{-1}(-10), f^{-1}(0), f^{-1}(4), f^{-1}(6), Also $ $ \begin{cases} x + 7 & \text{for } x \le 0 \\ -2x + 5 & \text{for } 0 \le x < 3 \\ x - 1 & \text{for } x \ge 3 \end{cases} $ $ [n] = \{n, -n\} =$	[- h 7	,)
		-	
P-1,15	determine $f^{-1}([-5,-1])$, $f^{-1}[-5,0])$. $P = \{167,17\}$ $[-12,-8]$ $[-12,-7]$ $U[5/2,3]$ Design a DFA for the given language	06	
77	[-12,-8] L-12,-77 U[5/2,37		
7 a	Design a DFA for the given language		
	$L = \{W: n_a(w) \ge 1, n_b(w) = 2, w(-\{a, b\}^*\}.$		
		07	

	b	Convert the following ε – <i>NFA</i> given in Fig. 7b into its equivalent DFA.	
_	$\rightarrow \bigcirc \bigcirc$	B Stori 90 & 91 0 90 1 90 1 90 1 90 1 90 1 90 1	
	0	Fig. 7b	05
-	С	Define language of NFA and extended transition function of t-NFA.	04
8	a	Dues 11 de	
	b	Prove that $(Z_4, +)$ is cyclic group. Find all its generators.	04
	b	Let E: $Z_2^3 \rightarrow Z_2^9$ be the encoding function for the (9, 3) triple repetition code.	
		i. If D: $Z_2^9 o Z_2^3$ is the corresponding decoding function. Apply D to decode the following received words:	
		111101100,000100011,010011111,001110011	
		Find the three different received words r for which $D(r) = 000$.	
	С	For a group G, prove that the function $f: G \to G$ defined by $f(a) = a^{-1}$ is an isomorphism if and arrive if G in the function $f: G \to G$ defined by $f(a) = a^{-1}$	06
		is an isomorphism if and only if G is abelian.	06

11) 00 00 00 00 00 , 100000000, 000000000]