Better Explainability with Graphs

What drives Graph Neural Network predictions

This is Tom.

Al does not like Toms medication.

Tom is sick and needs medication.

What would you do?

Explainability matters!

WHY did the AI predict side effects?

What is Explainable AI (xAI)?

Making machine learning models and their predictions understandable for humans.

- Trust
- Compliance (GDPR)
- Ethics

We use graphs because they perform well and can be nicely visualized for xAl.

What are Graphs anyway?

Why Graphs are important?

- Natural representation of relational data
- Preserve structural information
- Enable complex pattern recognition

What are Graphs anyway?

- Node classification
- Link prediction

Directed

Undirected

Node classification task: Homophilic vs Heterophilic

Nodes connect to similar nodes.

Nodes connect to dissimilar nodes.

Homophilic

Similar nodes connect to each other (e.g., friends with similar interests)

Heterophilic

Different nodes tend to connect (e.g., buyer-seller relationships)

Node feature embeddings in 2D before and after training where different colors belong to different classes

GNNExplainer

Explanation: optimization on masks (node, feature, edges) in order to extract a subgraph that contributes to a graph neural network's prediction.

Ying, Zhitao, et al. (2019)

GNNExplainer

Subgraph visualization:

edge_mask > threshold 0.5

Limitations:

- better suitable for homophilic graphs
- sensitivity to hyperparameters
- lack of explainability metrics
- black-box nature of optimization

ATTENTION!!

Like in Transformers...

Let's make it more technical!

Layer 1:

Layer 2:

2 kinds of Graphs

CoGNN, a brand new gnn... published in 2024...

License: arXiv.org perpetual non-exclusive license arXiv:2310.01267v2 [cs.LG] 09 Jun 2024

Cooperative Graph Neural Networks

Ben Finkelshtein Xingyue Huang Michael Bronstein

İsmail İlkan Ceylan

Abstract

Graph neural networks are popular architectures for graph machine learning, based on iterative computation of node representations of an input graph through a series of invariant transformations. A large class of graph neural networks follow a standard message-passing paradigm: at every layer, each node state is updated based on an aggregate of messages from its neighborhood. In this work, we propose a novel framework for training graph neural networks, where every node is viewed as a *player* that can choose to either 'listen', 'broadcast', 'listen and broadcast', or to 'isolate'. The standard message propagation scheme can then be viewed as a special case of this framework where every node 'listens and broadcasts' to all neighbors. Our approach offers a more flexible and dynamic message-passing paradigm, where each node can determine its own strategy based on their state, effectively exploring the graph topology while learning. We provide a theoretical analysis of the new message-passing scheme which is further supported by an extensive empirical analysis on synthetic and real-world data.

graph neural networks, dynamic message passing, information flow

Original Graph on a homophilic dataset

Layer 1

Summary

Key Takeaways

- Graphs are powerful data structures with powerful models
- Explainability is different for different stakeholders
- Explainability is difficult but necessary

Thank you very much for your attention!

Model Architecture Limitations of GNNs and GAT

• Over-squashing: Information loss in long-range dependencies

Cause: Trying to put too much information into a single feature vector

Over-smoothing: Node features become too similar

Cause: Updating a vector too often

- Fixed topology during message passing
- Difficulty in explainability

Where Applications of Graphs in industry

- Fraud detection
- Customer segmentation
- Biomedical applications
- Recommendation systems

GNN Architecture for node predictions

Graph with node features

Feature Aggregation

Final Feature with prediction

GAT and CoGNN Model architecture

Layer 1:

Layer 3: https://ralo93.github.io/xai_gat2/

Layer 2:

Roman empire dataset: heterophilic graph, 22662 nodes, 18 classes

mask generation

Understanding Graph Datasets

- Multiple node types and/or edge types
- Example: Knowledge graphs with different entity types
- Complex relationships and varying feature spaces
- Roman Empire dataset showcasing diverse entity types

Model Architectures

3. The Cooperative Graph Neural Networks' (CoGNN) Framework

Core Concept

- → Nodes as Active Players!
- Dynamic and asynchronous message passing
- Flexible information flow based on node state
- Task-specific topology learning
- Each node can choose its communication strategy

CoGNN - Dual Network Design

Action Network (π)

- Predicts probability distribution over actions
- Shared across layers
- Uses node states to determine optimal actions
- Enables dynamic graph exploration

Environment Network (n)

- Updates node representations
- Processes messages based on chosen actions
- Aggregates information selectively
- Learns task-specific features

CoGNN - Message Passing Mechanism

Two-Stage Process

- 1. Action Selection
- Each node chooses action using π network
- Actions determine information flow
- Creates dynamic computation graph
- Enables directed message passing

- 2. State Update
- Environment network η updates nodes
- Updates depend on chosen actions
- Different update rules for different actions
- Selective information aggregation

CoGNN - Advantages and Benefits

Key CoGNN Features

- Mitigates over-smoothing through isolation
- Better handles long-range dependencies
- Task-specific topology learning
- More expressive than standard GNNs
- Efficient runtime complexity

Empirical Results

- State-of-the-art on heterophilic graphs
- Strong performance on long-range tasks
- Effective on both homophilic and heterophilic data
- Robust to increasing network depth