CONNECT-4 GAME

ECE 3135 Final Project

Muaz Rahman Jose Hernandez

Take turns dropping discs from the top of this grid. Disc will fall straight down and occupy the next available space.

Objective: Be the first player to get four discs in a row. Vertically. Horizontally. Or Diagonally.

User Inputs

Sw6-0 Column Input

Btn0: P1 Input Btn1: P2 Input

Btn3: Reset

Seven Segment Displays

Outputs

SSD0: Win Condition

(0 = Draw/None)

(1 = Player 1 Wins)

(2 = Player 2 Wins)

SSD2: Column Selected

(1-7, E = Enter)

SSD3: Player Turn

VGA

MODULES

- Connect Four Top Module
- Connect Four SM
- Connect Four VGA
- Sync
- Deb
- Connect Four UCF

```
(All Input/Output, Module Instantiation)
(State Machine)
(VGA Output Generation)
(Sync Generator - Vertical, Horizontal)
(Debouncer - to get clear picture)
```

STATE MACHINE DIAGRAM

(IMPLEMENTATION)

STATE MACHINE DIAGRAM

(STATE DETAILS)

- IN1: Initial State
- P1: Player 1 Move/Validate Input
- P1C: Check game logic/Update board/Output
- P1C2: Check for End Condition
- P2: Player 2 Move/Validate Input
- P2C: Check game logic/Update board/Output
- P2C2: Check for End Condition
- END: End Condition Met/Logic/Stop Game

*SSD Updating in Real-Time

STATE MACHINE WAVEFORM

VGA DISPLAY

Green Lines: Boundaries

Red Squares: Player 1
Blue Squares: Player 2

SEVEN SEGMENT DISPLAYS

CONCLUSION

- Which topics we utilized from class/lab:
 - VGA Demo
 - State Machine/Diagram
 - SSD Implementation
 - Dividing up Modules Instantiation
 - Efficient Coding
- Most Difficult Aspects of Project:
 - VGA Display
 - Integration of all Modules
 - Debouncing
- Potential Modifications:
 - Circles not Squares
 - Player blocks shown above Grid

IN-CLASS DEMONSTRATION

THE END

Thank You