STAT 7200

Introduction to Advanced Probability
Lecture 12

Taylor R. Brown

Convergence Almost Surely

- We say that $\{Z_n\}$ converges to Z almost surely (or a.s., or with probability 1), if $\mathbf{P}(\{\omega: \lim_{n\to\infty} Z_n(\omega) = Z(\omega), \omega\in\Omega\}) = 1$
- $\mathbf{P}(Z_n \to Z) = 1$ is equivalent to For each $\varepsilon > 0$, $\mathbf{P}(|Z_n - Z| \ge \varepsilon \ i.o.) = 0$ (or $\mathbf{P}(|Z_n - Z| < \varepsilon \ a.a.) = 1)$
- For r.v.s. Z, Z_1, Z_2, \cdots , we have that $\varepsilon > 0$, $\sum_n \mathbf{P}(|Z_n Z| \ge \varepsilon) < \infty$ implies $\mathbf{P}(Z_n \to Z) = 1$ by the Borel-Cantelli lemma.

Convergence in Probability

- Convergence in Probability For r.v.s. Z, Z_1, Z_2, \ldots , we say that $\{Z_n\}$ converges to Z in probability, if for all $\varepsilon > 0$, $\mathbf{P}(|Z_n Z| \ge \varepsilon) \to 0$ as $n \to \infty$.
- **Example** Let Z_1, Z_2, \ldots be random variables such that $P(Z_n=1)=\frac{1}{2^n}$ and $P(Z_n=0)=1-\frac{1}{2^n}$. Then for $1>\varepsilon>0$, $\mathbf{P}(|Z_n|\geq \varepsilon)=\frac{1}{2^n}\to 0$, so we must have $Z_n\to 0$ in probability.

Proposition 1

Convergence almost surely implies convergence in probability.

- **Proof** If $\{Z_n\}$ converges to Z almost surely, then for each $\varepsilon > 0$, $\mathbf{P}(|Z_n Z| \ge \varepsilon \ i.o.) = 0$. That is, $\mathbf{P}(\limsup_n \{|Z_n Z| \ge \varepsilon\}) = 0$.
- $0 \le \liminf_n \mathbf{P}(|Z_n Z| \ge \varepsilon) \le \limsup_n \mathbf{P}(|Z_n Z| \ge \varepsilon) \le \mathbf{P}(\limsup_n \{|Z_n Z| \ge \varepsilon\}) = 0.$
- Thus, $\lim_n \mathbf{P}(|Z_n Z| \ge \varepsilon) = 0$, $\{Z_n\}$ converges to Z in probability,.

Convergence in Probability and Convergence Almost Surely

On the other hand, even if we know $\mathbf{P}(|Z_n - Z| \ge \varepsilon) \to 0$, we still have no idea regarding the probability of $\{|Z_n - Z| \ge \varepsilon \ i.o.\}$ is greater than 0.

If $\mathbf{P}(|Z_n-Z|\geq \varepsilon)$ went to 0 fast enough, then the $\sum_n \mathbf{P}(|Z_n-Z|\geq \varepsilon)<\infty$, and we could invoke Borel-Cantelli. If it goes to 0 slowly, then we can come up with counter-examples:

Convergence in Probability and Convergence Almost Surely

- For $n \in \mathbb{N}$ let Z_n be such that $\mathbf{P}(Z_n = 1) = 1 \mathbf{P}(Z_n = 0) = \frac{1}{n}$. Also, suppose these r.v.s are independent.
- Pick $1 > \epsilon > 0$. Then $\mathbf{P}(|Z_n 0| > \epsilon) = \mathbf{P}(Z_n = 1) = n^{-1} \to 0$. So it converges *in probability*.
- On the other hand, $\sum_n \mathbf{P}(|Z_n 0| > \epsilon) = \infty$, so by the second Borel-Cantelli lemma, $\mathbf{P}(|Z_n| > \epsilon \text{ i.o.}) = 1$. Not only does it not converge almost surely to 0, but it converges to 0 almost nowhere!

Convergence in Probability and Convergence Almost Surely

• **Example** Consider the uniform measure $([0,1],\mathcal{M},\lambda)$ and define

$$Z_1 = \mathbf{1}_{[0,1/2)}, Z_2 = \mathbf{1}_{[1/2,1]},$$

 $Z_3 = \mathbf{1}_{[0,1/4)}, Z_4 = \mathbf{1}_{[1/4,1/2)}, Z_5 = \mathbf{1}_{[1/2,3/4)}, Z_6 = \mathbf{1}_{[3/4,1]},$
 $Z_7 = \mathbf{1}_{[0,1/8)}, Z_8 = \mathbf{1}_{[1/8,2/8)}, \dots, Z_{14} = \mathbf{1}_{[7/8,1]},$
 \dots

- In general $Z_n=1_{\left[rac{k}{2^m},rac{k+1}{2^m}
 ight)}$ where $m=\lfloor\log_2(n+1)
 floor$ and $k=n+1-2^m$
- $\{Z_n\}$ converges to 0 in probability because, for any $1 > \epsilon > 0$, $2^{-\lfloor \log_2(n+1) \rfloor} \le 1/(n+1) \to 0$.
- But $\limsup_{n\to\infty}\{|Z_n|>\epsilon\}=\bigcap_{a=1}^\infty\bigcup_{n\geq a}\left[\frac{k}{2^m},\frac{k+1}{2^m}\right)=\bigcap_{a=1}^\infty[0,1].$
- For each ω , the sequence $Z_1(\omega), Z_2(\omega), \cdots$ contains infinitely number of 1s.

Weak Law of Large Numbers Version 1

Theorem 2 (WLLN V1)

For a sequence of independent random variables $X_1, X_2, ...$ with the same mean μ and finite variance bounded by σ^2 , define $S_n = X_1 + X_2 + \cdots + X_n$, then S_n/n converges to μ in probability.

- **Proof** We need to prove that, for any $\varepsilon > 0$, $\lim_n \mathbf{P}(|S_n/n \mu| \ge \varepsilon) = 0$.
- Since $\mathbf{E}(S_n/n) = \sum_{i=1}^n \mathbf{E}(X_i)/n = \mu$, by Chebychev's inequality, we have:

$$\mathbf{P}(|\frac{S_n}{n} - \mu| \ge \varepsilon) \le \frac{\mathbf{Var}(S_n/n)}{\varepsilon^2} = \frac{\sum_{i=1}^n \mathbf{Var}(X_i)}{n^2 \varepsilon^2} = \frac{\sigma^2}{n \varepsilon^2} \to 0$$

• Note Since $\sum_n \frac{1}{n} = \infty$, the above proof does not suggest that S_n/n converges to μ almost surely.

Strong Law of Large Numbers Version 1

Theorem 3 (SLLN V1)

For a sequence of independent random variables X_1, X_2, \ldots with the same mean μ and bounded finite fourth central moments ($\mathbf{E}(X_i - \mu)^4 \le a < \infty$), define $S_n = X_1 + X_2 + \cdots + X_n$, then S_n/n converges to μ almost surely.

- **Proof** Without loss of generality, let us assume that $\mu = 0$ (otherwise we can set $X_i' = X_i \mu$).
- We want to show that, for any $\varepsilon > 0$, $\sum_n \mathbf{P}(|S_n/n| \ge \varepsilon) < \infty$, and then invoke BCL. Note that

$$\mathbf{P}(|\frac{S_n}{n}| \ge \varepsilon) = \mathbf{P}(S_n^4 \ge n^4 \varepsilon^4) \le \frac{\mathbf{E}(S_n^4)}{n^4 \varepsilon^4}$$

If we can show that, $\mathbf{E}(S_n^4) \leq Kn^2$, where K is a constant, then $\sum_n \mathbf{P}(|S_n/n| \geq \varepsilon) \leq K\epsilon^{-4} \sum_n \frac{1}{n^2} < \infty$, and we should have S_n/n converges to μ almost surely.

Strong Law of Large Number Version 1: continued

- **Proof: continued** As $S_n = X_1 + X_2 + \cdots + X_n$, the expansion of S_n^4 would contains four different terms: 1) X_i^4 , whose expectation is bounded by constant a; 2) $X_i(X_j^3)$, whose expectation equals 0 as we assume $\mu = 0$; 3) $X_i X_j X_k^2$, whose expectation also equals 0. 4) $X_i^2 X_j^2$.
- For the expectation of $X_i^2 X_j^2$ $(i \neq j)$. Note that as $X^2 \leq X^4 + 1$ (considering X > 1 and $X \leq 1$), we have $\mathbf{E} X_i^2 \leq \mathbf{E} X_i^4 + 1 \leq a+1$, so $\mathbf{E} (X_i^2 X_j^2) \leq (a+1)^2$.
- Furthermore, there are n different terms in the form of X_j^4 in the expansion of S_n , and $\binom{4}{2}\binom{n}{2}=3n(n-1)$ different terms in the form of $X_i^2X_j^2$. Thus:

$$\mathbf{E}(S_n^4) = \sum_i \mathbf{E}(X_i^4) + \sum_{i \neq j} \mathbf{E}(X_i^2 X_j^2) \le na + 3n(n-1)(a+1)^2 \le Kn^2.$$

We then have S_n/n converges to μ almost surely.

Relax the Conditions in the Law of Large Number

- In the discussion above, to ensure the law of large numbers, we required that X_i s are independent random variables with finite high-order moments.
- One way to relax this condition is to only require the first moment to be finite. In this situation, we would need to add an extra condition: that the X_i s are identically distributed (in addition to independent).
- **Identically Distributed:** A collection of random variable $\{X_{\alpha}\}_{{\alpha}\in I}$ is identically distributed if for any measurable function f, the expectation $\mathbf{E}(f(X_{\alpha}))$ is the same for all $\alpha\in I$. This condition is equivalent to: for any $x\in \mathbf{R}$, $\mathbf{P}(X_{\alpha}\leq x)$ does not depend on α .
- i.i.d.: A collection of random variable $\{X_{\alpha}\}_{{\alpha}\in I}$ are i.i.d. if they are independent and identically distributed.

Strong Law of Large Number Version 2

Theorem 4 (SLLN V2)

Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables with a finite mean μ . Define $S_n = X_1 + X_2 + \cdots + X_n$. Then S_n/n converges to μ almost surely.

Corollary 5 (Weak Law of Large Number (WLLN) V2)

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with a finite mean μ . Define $S_n = X_1 + X_2 + \cdots + X_n$. Then S_n/n converges to μ in probability.

The second version of WLLN follows from the fact that convergence almost surely implies convergence in probability.

Proof to Strong Law of Large Number Version 2: Part I

- First, without loss of generality, we may assume that X > 0. Otherwise, we can let $X_i = X_i^+ X_i^-$, and apply the law of large number to X_i^+ and X_i^- respectively.
- Second, to prove almost sure convergence, the most reliable route is to use Chebchev's inequality to obtain an upper bound of $\mathbf{P}(|S_n/n-\mu|\geq\varepsilon)$ and then apply Borel-Cantelli Lemma to show that the probability of event $\{|S_n/n-\mu|\geq\varepsilon\ i.o.\}$ equals 0. However, the condition of applying Chebchev's inequality is that the variance of X_i exists. For this purpose, we need to construct a truncated version of X_i .

Proof to Strong Law of Large Number Version 2: Part II

• Let $Y_i = X_i \mathbf{1}_{X_i < i}$. Then $0 \le Y_i \le i$, $\mathbf{E}(Y_i^k) \le i^k < \infty$ for any k.

Lemma 6

Define $T_n = Y_1 + \cdots + Y_n$, if T_n/n converges to μ almost surely, S_n/n also converges to μ almost surely

- **Proof:** We only need to show that $(T_n S_n)/n \to 0$ almost surely.
- As $\sum_{k=1}^{\infty} \mathbf{P}(X_k \neq Y_k) = \sum_{k=1}^{\infty} \mathbf{P}(X_k > k) \leq \sum_{k=1}^{\infty} \mathbf{P}(X_1 \geq k) \leq \mathbf{E}(X_1) = \mu < \infty$ (see Proposition 4.2.9), by the Borel-Cantelli Lemma, $\mathbf{P}(X_k \neq Y_k \ i.o.) = 0$. Thus $\mathbf{P}(X_k Y_k = 0 \ a.a) = 1$.
- For any $\omega \in \{\omega : X_k(\omega) Y_k(\omega) = 0 \ a.a\}$, there is an $N \in \mathbf{N}$ so that for any n > N, $X_n(\omega) = Y_n(\omega)$. Correspondingly, for n > N, $(T_n(\omega) S_n(\omega))/n = \sum_{i=1}^N (Y_i(\omega) X_i(\omega))/n \to 0$ as $n \to \infty$. Thus $\mathbf{P}(\lim_n (T_n S_n)/n = 0) \le \mathbf{P}(X_k Y_k = 0 \ a.a) = 1$.