Distance Vector Routing 洲 요

Metric

- Metric
 - 목적지 네트워크까지 도달하는데 지불해야 하는 비용
- 목적지 네트워크까지 존재하는 여러 개의 경로 중에 하나의 경로를 선택할 때 metric값이 낮은 것을 선택한다
- RIP Metric
- Hop Count
- EIGRP Metric
- Bandwidth, Delay
- Load, Reliability

<u>Distance Vector Routing의 개요</u>

경로 정보 수집

- 최적의 라우팅 리스트를 만든 후, 주기적으로 라우팅 테이블을 인접관계에 있는 라우터에게 전달
- RIP은 30초, IGRP는 90초 마다 자기가 학습한 내용을 인접 장비에게 전송

<u>Distance Vector Routing의 개요</u>

경로 정보 수집

- Router들은 Destination Network에 대해 최적의 경로를 선택 후 이를 관리 및 유지 한다
 - Connected Network 정보 학습
 - Route 초기 정보 교환
 - Route 정보 교환

<u>Distance Vector Routing의 개요</u>

경로 정보 수집

- 수렴
- 모든 장비가 변경된 네트워크 정보를 학습하고, 학습한 정보를 경로 선택에 적용할 수 있는 상태

Routing 정보 관리

Routing Information up-date

- Update 방식
 - 라우터에서 다른 라우터로 Hop-by-Hop으로 진행
- Update 순서
 - 1.Topology의 변화가 Routing Table의 갱신을 요구
 - 2.자신의 Routing Table의 갱신을 처리
 - 3.Router A가 갱신된 Routing Table을 다음 Update 주기에 전송
 - 4.Routing Table의 갱신을 처리

Routing 정보 관리

- Update 정보를 수신한 장비는 수신 내용을 적용해서 네트워크 경로를 결정한 다음 다른 라우터로 전송 (Hop-by-Hop)
- 주기적 업데이트
 - 30초/90초 간격으로 네트워크정보를 전부 브로드캐스트, 또는 멀티캐스트
 - RIP : 30sec
 - IGRP: 90sec
- 타이머
 - Invalid 180초
 - Hold down 180초
 - Flush 240초

Routing Loop 예제

- Routing Loop
 - Packet이 특정 장비를 따라 계속 맴도는 현상
 - Loop가 발생하면 목적지 네트워크에 도달할 수 없다.

Distance Vector 4 Routing Loop

Routing Loop 예제 (계속)

- Hop Count
 - 패킷이 목적지 네트워크로 전달 되는 동안 거 처가는 장비의 수를 말하며, 최대 15대를 넘 어서 전달 될 수 없다
- Hop Count =16
 - 도달할 수 없는 네트워크를 의미한다

- 해결 방법
- Split Horizon
- Route Poisoning
- Poison Reverse
- Hold Down Timer
- Triggered Update

Routing Loop 문제 해결

Split Horizon

R	A Routir	ng T	able

10.1.0.0	Fa0	0
10.2.0.0	S0	0
10.3.0.0	S0	1
10.4.0.0	S0	2

RB Routing Table

1.0			
10.2.0.0	S0	0	
10.3.0.0	S1	0	
10.4.0.0	S1	1	
10.1.0.0	S0	1	

RC Routing Table

10.3.0.0	S0	0
10.4.0.0	Fa0	0
10.2.0.0	S0	1
10.1.0.0	S0	2

• 특정 interface에서 받아온 Route정보는 수신 interface를 통해 다시 전달하지 않는다

Routing Loop 문제 해결

Route Poisoning

• 문제가 발생한 네트워크의 metric 값을 무한대 값으로 광고한다

Routing Loop 문제 해결

Poison Reverse

- 수신된 정보에 대해 metric 값을 무한대로 재 광고 한다.
- Split Horizon보다 우선 한다

Routing Loop 문제 해결

Hold down Timer

- Router가 특정 Link의 Fail을 전달 받은 후에 해당 경로를 Routing Table에서 바로 제거하지 않고 특정 시간 동안 그 정보의 사실을 확인하기 위해 기다린다
- 이는 Topology의 변화 정보를 검증하는 용도이다
- 현재 경로와 같거나 불리한 정보를 수신하면 모두 무시한다

Routing Loop 문제 해결

Triggered Update

• Topology의 변화를 즉시 이웃한 Router에게 알려준다