When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks

Octavian Suciu, Radu Mãrginean, Yiğitcan Kaya, Hal Daumė III, Tudor Dumitras.

USENIX Security Symposium 2018

Summary

Problem

- Existing attacks make diverse, potentially unrealistic assumptions about the adversary attack in machine learning (ML) system
- Need high accuracy ML attack model by a weaker adversaries

Contributions

- Define FAIL model that is a general framework for ML attack in various adversarial knowledge and control over the victim
- Propose StingRay that is targeted poisoning attack algorithm of high attack accuracy in FAIL model
- Show that a prior poisoning attack is less effective under FAIL model while StingRay shows high accuracy of attack

Contributions & Motivations

- Contributions:
 - Define FAIL model that is a general framework for ML attack in various adversarial knowledge and control over the victim
 - Propose StingRay that is targeted poisoning attack algorithm of high attack accuracy in FAIL model
 - Show that a prior poisoning attack is less effective under FAIL model while StingRay shows high accuracy of attack
- The attacker has too much information and controls about a victim
 - Existing attacks make diverse, potentially unrealistic assumptions about the adversary attack in machine learning (ML) system
 - Need high accuracy ML attack model by a weaker adversaries

Motivation

The previous attacker (paper) has too much information and controls about a victim

- Know victim's data set
- Know victim's ML algorithm
- Know victim's feature information
- Know victim's data set

Targeted attacks against machine learning model

Evasion attacks

(b)

Targeted poisoning attacks

(c)

Problem Statement

- How can we systematically model adversaries based on realistic assumptions about their capabilities?
- How realistic is the targeted poisoning threat?
- Define and evaluate a more general transferability across a wide range of adversary models

Transferability

- Attack samples crafted locally, on a surrogate model that reflects the adversary's limited knowledge, allowing them to remain successful against the target model
- Black-box attacks often investigate transferability in the case where the local and target models use different training algorithms

Threat model

- Targeted poisoning attacks
- Alice as victim classifier
- h(t) = yt

- Bob as an owner of the target instance: (c)
 - possesses an instance $\mathbf{t} \in \mathbf{T}$ with label y_t , called the target, which will get classified by Alice
- Mallory as an attacker:
 - Partial knowledge of Alice's classifier
 - Read-only access to target's feature representation
 - Do not control either \mathbf{t} or label \mathbf{y}_t which is assigned by the oracle such as VirusTotal

Threat model: Attacker Goals

- Mallory's first goal is:
 - Introduce a targeted misclassification on the target by deriving a training set, ya is Mallory's desired label for t
- Mallory's second goal is:
 - Minimize the effect of the attack on Alice's overall classification performance, small PDR
 - Performance Drop Ratio (PDR)

$$PDR = \frac{performance(h)}{performance(h^*)}$$

Realistic adversaries

- Imperfect knowledge about the ML model
- Limited capabilities in crafting adversarial samples
- For successful attack
 - Samples crafted under these conditions must transfer to the original (target) model
- Suggest formalize the adversary's strength in the FAIL attacker model in four dimensions

Constraints

- 1. Poison samples must have clean labels
 - Adversary can inject training samples but cannot determine how they labeled
- 2. Poison samples must be individually inconspicuous
 - Similar to the existing training instances
- 3. Poison samples must be individually inconspicuous
- 4. Poison samples must exhibit a generalized form of transferability
 - Adversary tests the samples on a surrogate model, trained with partial knowledge along multiple dimensions, defined by the FAIL model

Discussion about poison attack

Assumption about poison attack: adversary can inject training samples but cannot determine how they labeled

Microsoft's Tay chatbot poisoned through tweets

(https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist)

Question: Is it a valid assumption to inject a training samples?

FAIL attacker model

- Feature knowledge $F_k = \{i \in 1 ... n : x_i \text{ is known}\}$: the subset of features known to the adversary.
- Algorithm knowledge A': the learning algorithm that the adversary uses to craft poison samples.
- Instance knowledge S': the labeled training instances available to the adversary.
- Leverage $F_m = \{i \in 1 ... n : x_i \text{ is modifiable}\}$: the subset of features that the adversary can modify.
- F and A dimension constrain the hypothesis space
- I dimension affect the accuracy of instance space
- L dimension affects ability to craft attack instance

FAIL attacker model

F dimension: What features could be kept as a secret? Could the attacker access the exact feature values?

A dimension: Is the algorithm class known? Is the training algorithm secret? Are the classifier parameters secret?

I dimension: Is the entire training set known? Is the training set partially known? Are the instances known to the attacker sufficient to train a robust classifier?

L dimension: Which features are modifiable by the attacker? and What side effects do the modifications have?

Constraints

- 1. Poison samples must have clean labels
 - Adversary can inject training samples but cannot determine how they labeled
- 2. Poison samples must be individually inconspicuous
 - Similar to the existing training instances
- 3. Poison samples must be individually inconspicuous
- 4. Poison samples must exhibit a generalized form of transferability
 - Adversary tests the samples on a surrogate model, trained with partial knowledge along multiple dimensions, defined by the FAIL model

StingRay Attack

StingRay is a general framework for crafting poison samples

StingRay is model agnostic (CNN, SVM, random forest)

StingRay Attack Algorithm

Algorithm 1 The StingRay attack.

```
1: procedure STINGRAY(S', Y_{S'}, \mathbf{t}, y_t, y_d)
           I = \emptyset
          h = A'(S')
 3:
          repeat
 4:
                \mathbf{x_h} = \text{GETBASEINSTANCE}(S', Y_{S'}, \mathbf{t}, y_t, y_d)
 5:
                \mathbf{x_c} = \text{CRAFTINSTANCE}(\mathbf{x_b}, \mathbf{t})

if GetNegativeImpact(S', \mathbf{x_c}) < \tau_{NI} then
 6:
 7:
                      I = I \cup \{\mathbf{x_c}\}
 8:
                      h = A'(S' \cup I)
 9:
           until (|I| > N_{min} and h(\mathbf{t}) = y_d) or |I| > N_{max}
10:
           PDR = GETPDR(S', Y_{S'}, I, y_d)
11:
           if h(\mathbf{t}) \neq y_d or PDR < \tau_{PDR} then
12:
13:
                 return Ø
14:
           return I
15: procedure GETBASEINSTANCE(S', Y_{S'}, \mathbf{t}, y_t, y_d)
           for \mathbf{x_b}, y_b in Shuffle(S', Y_{S'}) do
16:
                if D(\mathbf{t}, \mathbf{x_b}) < \tau_D and y_b = y_d then
17:
18:
                      return x<sub>b</sub>
```

S.I $h(\mathbf{t}) = y_d$: the desired class label for target

S.II $D(\mathbf{t}, \mathbf{x_b}) < \tau_D$: the inter-instance distance metric

D.III $\bar{s} = \frac{1}{|I|} \sum_{\mathbf{x_c} \in I} s(\mathbf{x_c}, \mathbf{t})$, where $s(\cdot, \cdot)$ is a *similarity* metric: crafting target resemblance

D.IV $NI < \tau_{NI}$: negative impact of poisoning instances

S.V $PDR < \tau_{PDR}$: the perceived performance drop

D.VI $|I| \ge N_{min}$: the minimum number of poison instances

B.VII $|I| \le N_{max}$: maximum number of poisoning instances

Example of Crafting Instances – Android Malware Detector Drebin

api call::setWifiEnabled

permission::WRITE_CONTACTS <

permission.CALL_PHONE

permission::ACCESS_WIFI_STATE

permission::READ_CONTACTS

intent.action.SEARCH

intent.action.MAIN

VirusTotal highlights some features as more suspicious than others

Example of Crafting Instances – Choosing a Base Instances

api_call::setWifiEnabled
permission::WRITE_CONTACTS
permission.CALL_PHONE

permission::ACCESS_WIFI_STATE *

permission::READ_CONTACTS -

intent.action.SEARCH
intent.action.MAIN

Choose base instances with some similarity to target

api_call::setWifiEnabled

permission::ACCESS_WIFI_STATE

activity::MainActivity

permission::READ_CONTACTS

Example of Crafting Instances – Individual Inconspicuousness

api_call::setWifiEnabled

permission::WRITE_CONTACTS

permission.CALL_PHONE

permission::ACCESS_WIFI_STATE

permission::READ_CONTACTS

intent.action.SEARCH
intent.action.MAIN

api_call::setWifiEnabled

permission::ACCESS_WIFI_STATE

activity::MainActivity

permission::READ_CONTACTS

Reusing existing instances mitigates lack of leverage on some features

Example of Crafting Instances – Collective Inconspicuousness

api_call::setWifiEnabled

permission::WRITE_CONTACTS

permission.CALL_PHONE

permission::ACCESS_WIFI_STATE

permission::READ_CONTACTS

intent.action.SEARCH
intent.action.MAIN

api_call::setWifiEnabled

permission::ACCESS_WIFI_STATE

activity::MainActivity
permission::READ_CONTACTS

api_call::setWifiEnabled

permission::ACCESS_WIFI_STATE

activity::MainActivity
permission::READ CONTACTS

Poison instances bypass three defenses: RONI, targeted RONI and Micromodels

api_call::setWifiEnabled

permission::ACCESS_WIFI_STATE

activity::MainActivity
permission::READ_CONTACTS

Example of Crafting Instances – Uncontrolled Labels

api_call::setWifiEnabled

permission::WRITE_CONTACTS

permission.CALL_PHONE

permission::ACCESS_WIFI_STATE

permission::READ_CONTACTS

intent.action.SEARCH
intent.action.MAIN

api_call::setWifiEnabled

permission::ACCESS_WIFI_STATE

activity::MainActivity
permission::READ_CONTACTS

api_call::setWifiEnabled

permission::ACCESS_WIFI_STATE

activity::MainActivity

permission::READ_CONTACTS

intent.action.MAIN

89% of the 19,000 crafted apps are labeled as benign by VirusTotal

api_call::setWifiEnabled

permission::ACCESS_WIFI_STATE

activity::MainActivity

permission::READ_CONTACTS

intent.action.SEARCH

Attack implementation: Image classification

Dataset:

- Neural network (NN) based image classification
- CIFAR-10, 60,000 RGB images of 32x32 pixels
- Split into 10 classes
- 50,000 instances for training, 10,000 instances for testing
- the attacker has an image t with true label y_t (e.g. a dog) and wishes to trick the model into classifying it as a specific class y_d (e.g. a cat)

Attack implementation: Android Malware Detection

- The Drebin android malware detector
- Linear SVM classifier
- The Drebin dataset
 - 123,453 Android apps
 - 5,560 malware samples
 - 10 AV engines on VirusTotal
 - The feature space has 545,333 dimensions
- Two feature extractor:
 - AndroidManifest XML file
 - Dex file

Attack implementation: Twitter-based exploit prediction

- Features extracted from:
 - Twitter
 - Public vulnerability databases
- The dataset contains:
 - 4,140 instances
 - 268 are labeled as positive
- The classifier uses 72 features from 4 categories:
 - CVSS Score;
 - Vulnerability Database;
 - Twitter traffic;
 - Twitter word features

Attack implementation: Data breach prediction

- Random Forest classifier
- The classifier uses:
 - 2,292 instances
 - 382 positive-labeled examples
- The 74 existing features are extracted from externally observable network misconfiguration symptoms as well as blacklisting information about hosts in an organization's network.

Average Results

#	Λ.	SR %	$ar{ au_D}$	1 [Λ.	SR %	PDR	Instances	Π	П	٨	SR %	PDR	Instances
#	Δ	SK 70	\(\bullet_D\)	J	Δ			mstances	Ш	Ш	Δ	SK 70	FDK	Histalices
	FAIL:Unknown features													
1	32%	67/3	0.070] [39%	87/63/67	0.93/0.96/0.96	8/4/10		\prod	109066	79/3/5	0.99/0.99/1.00	73/50/53
2	62%	86/7	0.054		66%	84/71/74	0.94/0.95/0.95	8/4/9			327199	77/12/13	0.99/0.99/1.00	51/50/15
FAIL:Unknown algorithm														
3	shallow	99/10	0.035] [shallow	83/65/68	0.97/0.97/0.96	17/14/15	\prod	\prod	SGD	42/33/42	0.99/0.99/0.99	65/50/31
4	narrow	82/20	0.027		narrow	75/67/72	0.96/0.97/0.96	20/16/17			dSVM	38/35/48	0.99/0.99/0.99	78/50/61
FAIL:Unavailable training set														
5	35000	93/18	0.032] [35000	73/68/76	0.97/0.96/0.96	17/16/14	\prod	\prod	8514	69/27/27	0.90/0.99/0.99	57/50/42
6	50000	80/80	0.026		50000	78/70/74	0.97/0.97/0.97	18/16/15			85148	50/50/50	0.99/0.99/0.99	77/50/61
	FAIL:Unknown training set													
7	45000	90/18	0.029] [45000	82/69/74	0.98/0.96/0.96	16/10/15	\prod	\prod	8514	53/21/24	0.93/0.99/1.00	62/50/49
8	50000	96/19	0.034]	50000	70/62/68	0.95/0.96/0.96	17/8/17			43865	36/29/39	1.04/0.99/0.99	100/50/87
FAIL:Read-only features														
9	18%	80/4	0.011] [25%	80/70/72	0.97/0.97/0.97	19/16/15	\prod	\prod	851	73/12/13	0.67/0.99/1.00	50/50/10
10	41%	80/34	0.022		50%	80/71/76	0.97/0.97/0.97	18/16/13			8514	49/16/17	0.90/0.99/1.00	61/50/47
11	62%	80/80	0.026]	75%	83/78/79	0.97/0.97/0.96	16/16/12			85148	32/32/32	0.99/0.99/0.99	79/50/57

Table 3: JSMA on the image classifier

Table 4: StingRay on the image classifier

Table 5: StingRay on the malware classifier

Tables 3, 4, 5: FAIL analysis of the two applications. For each JSMA experiment, we report the attack SR (perceived/potential), as well as the mean perturbation $\bar{\tau}_D$ introduced to the evasion instances. For each StingRay experiment, we report the SR and PDR (perceived/actual/potential), as well as statistics for the crafted instances on successful attacks (mean/median/standard deviation). Δ represents the variation of the **FAIL** dimension investigated.

#6 is white box adversary

StingRay – White-Box Performance

Success Rate (SR): Percentage of attacks that are successful on the victim

	StingRay
	I /SR%/PDR
Images	16/70/0.97
Malware	77/50/0.99
Exploits	7/6/1.00
Breach	18/34/0.98

StingRay Attack on Drebin

Feature secrecy appears to be the most powerful limiting factor

StrngRay and JSMA – Image Classifier

StingRay has high accuracy than JSAM on all dimensions

JSAM is more effective in white-box settings

StrngRay and JSMA – Image Classifier

Discussion! How about unifying dimension? For example, limited F+A or I+L

Full	Limited F	Limited A	Limited I	Limited L	
Unconstrained	30-40% center pixels known	CNN missing one layer	70% training set known	40-50% border pixels read-only	

StingRay has high accuracy than JSAM on all dimensions

JSAM is more effective in white-box settings

Conclusion

- FAIL adversary model provides a framework for exposing and systematizing assumptions
- **StingRay** a targeted poisoning attack designed to bypass existing defenses. It shows that attack is practical for four classification tasks with three different classifiers.
- Feature secrecy as the most prominent factor in reducing the attack success rate

