Transform			
pair	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	u(t)	$\frac{1}{s}$	$\Re e\{s\} > 0$
3	-u(-t)	$\frac{1}{s}$	$\Re e\{s\} < 0$
4	$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
5	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\Re e\{s\} < 0$
6	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re \{s\} > -\alpha$
7	$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} < -\alpha$
8	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\alpha$
9	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\mathbb{R}e\{s\}<-lpha$
10	$\delta(t-T)$	e^{-sT}	All s
11	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\Re e\{s\} > 0$
12	$[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$\Re e\{s\} > 0$
13	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
14	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
15	$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s ⁿ	All s
16	$u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{}$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
	n times		

Section	Property	Signal	Laplace Transform	ROC
		$x(t) \\ x_1(t) \\ x_2(t)$	$X(s)$ $X_1(s)$ $X_2(s)$	R R ₁ R ₂
9.5.1 9.5.2 9.5.3	Linearity Time shifting Shifting in the s-Domain	$ax_1(t) + bx_2(t)$ $x(t - t_0)$ $e^{s_0t}x(t)$	$aX_{1}(s) + bX_{2}(s)$ $e^{-st_{0}}X(s)$ $X(s-s_{0})$	At least $R_1 \cap R_2$ R Shifted version of R (i.e., s is
9.5.4	Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	in the ROC if $s - s_0$ is in R) Scaled ROC (i.e., s is in the
9.5.5 9.5.6	Conjugation Convolution	$x^*(t) \\ x_1(t) * x_2(t)$	$X^*(s^*)$ $X_1(s)X_2(s)$	ROC II S/a IS III R) R At least $R_1 \cap R_2$
9.5.7	Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R
9.5.8	Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R
9.5.9	Integration in the Time Domain	$\int_{-\infty}^{\tau} x(\tau) d(\tau)$		At least $R \cap \{ \Thetae\{s\} > 0 \}$
9.5.10	If $x(t) = 0$ for $t < 0$ and x	for $t < 0$ and $x(t)$ contains no impulses or higher-order $x(0^+) = \lim_{s \to \infty} sX(s)$	Initial- and Final-Value Theorems ontains no impulses or higher-order $x(0^+) = \lim_{s \to \infty} sX(s)$	for $t < 0$ and $x(t)$ has a finite limit as $t \longrightarrow \infty$ then
		$\lim_{t \to \infty} x(t)$	$\lim_{t \to \infty} x(t) = \lim_{s \to \infty} x(s)$	
		Properties of the Laplace Transform		(bilateral LT)

 TABLE 10.2
 SOME COMMON z-TRANSFORM PAIRS

Signal	Transform	ROC
1. $\delta[n]$	1	Allz
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z ^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$6\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r

TABLE 10.1 PROPERTIES OF THE Z-TRANSFORM

Section	Property	Signal	ıal	z-Transform	ROC
		x[n] x1[n] x2[n]		$X(z) X_1(z) X_2(z)$	R R ₁
10.5.1	Linearity Time shifting	$ax_1[n] + bx_2[n]$ $x[n-n_0]$	1	$aX_1(z) + bX_2(z)$ $z^{-n_0}X(z)$	At least the intersection of R ₁ and R ₂ R, except for the possible addition or
10.5.3	Scaling in the z-domain	e ^{jwo} rz[n] ζζιτ[n] a't[n]		$X(e^{-j\omega_0}z)$ $X\left(\frac{z}{z_0}\right)$ $X(a^{-1}z)$	Acception of the origin R z_0R Scaled version of R (i.e., $ a R$ = the
10.5.4	Time reversal	x[-n]		$X(z^{-1})$	set of points $\{ a z\}$ for z in K) Inverted R (i.e., R^{-1} = the set of points z^{-1} , where z is in R)
10.5.5	Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for some integer r	rk for some integer r rk	(₄ 2)X	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, where z is in R)
10.5.6	Conjugation Convolution	$x^*[n]$ $x_1[n] * x_2[n]$		$X_1(z^*)$ $X_1(z)X_2(z)$	R At least the intersection of R_1 and R_2
10.5.7	First difference	x[n] - x[n-1]		$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$
10.5.7	Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
10.5.8	Differentiation in the z-domain	nx[n]		$-z\frac{zp}{(z)XP}z-$	æ
10.5.9			Initial Value Theorem If $x[n] = 0$ for $n < 0$, then $x[0] = \lim_{z \to \infty} X(z)$	em , then	