

Department of Information Security and Communication Technology

Examination paper for TTM4135 Applied Cryptography and Network Security
Academic contact during examination: Anamaria Costache
Academic contact present at the exam location: No
Phone : 73 55 94 42
Examination date: 2025-05-30
Examination time (from-to): 09:00 - 12:00
Permitted examination support material : (D) No printed or hand-written support material is allowed. A specific basic calculator is allowed.
Other information: –
Language: English
Number of pages: 10
Number of pages enclosed: 2

Date Checked by:

Signature

Instructions

The maximum score is 60 points. The problem set consists of two exercises.

Exercise 1 consists of the multiple choice questions. There are 30 questions each worth 1 point.

Answer the multiple choice problems using the separate answer page. *Detach the answer page and hand it in at the end of the examination with your answers booklet(s)*. The answer page includes answer boxes for multiple choice problems.

Check the boxes like this: \boxtimes

If you check the wrong box, fill it completely, like this:

Then check the correct box.

Other correction methods are not permitted.

Incorrect answers receive a discount (penalty) of 0.33 marks. In the case that *multiple* answers are correct, *all* correct answers must be checked in order to receive the points for the question. If an imcomplete answer is given, it will count as a wrong answer.

Note that the multiple choice problems do not receive penalty marks if you do not check any of the four boxes for a given statement.

- Exercise 2 consists of questions requiring written answers. There are 5 questions, each worth a maximum of 6 points. Partial points for each of the questions are divided evenly, so that if there are two parts for a question then each part is worth 3 points and if there are three parts for a questions then each part is worth 2 points.

The written answers should be written in the answer book(s) provided.

- Which of the below represents an active threat:

 (a) Replay
 (b) Denial of Service
 (c) Traffic analysis
 (d) Eavesdropping

 2 2⁻¹ mod 377 is equal to:

 (a) 1
 (b) 189
 (c) 376
 (d) 0.5

 In Z**₁₃, the multiplicative group of non-zero integers modulo 11:

 (a) 2 is a generator
 (b) 3 is a generator
- (d) there is no generator4. In an alphabet of 27 characters, how many possible permutations are there for the random
 - (a) 10^{27}
 - (b) 27!
 - (c) 2^{27}
 - (d) $2 \cdot 10^{27}$
- 5. According to Kerkhoff's principle, which of the following should be available to an attacker of an iterated block cipher?
 - (a) The round keys

(c) 4 is a generator

simple substitution cipher?

- (b) The number of rounds
- (c) The key length
- (d) The IV
- 6. Triple DES is the encryption algorithm defined by iterating three instances of the DES algorithm, by evaluating EDE (Encryption, Decryption, Encryption). Let K_1, K_2, K_3 be the three keys used, so that we evaluate triple DES as $C = E(D(E(P, K_1), K_2), K_3)$, for some plaintext P. Which of the following is *not* an option for values of the keys?
 - (a) $K_1 = K_3$
 - (b) $K_1 = K_2 = K_3$
 - (c) $K_1 = K_2$
 - (d) K_1, K_2, K_3 are all distinct

7. Recall that for AES, the S-boxes are defined over the finite field $GF(2^8)$. Let's take the easier example of $GF(2^2)$. This is defined via the polynomial $p(x) = x^2 + x + 1$. We recall the multiplication table below. What is the missing value in the table (denoted by \star)?

×	0	1	x	x + 1
0	0	0	0	0
1	0	1	x	x + 1
x	0	x	x+1	*
x + 1	0	$ \begin{array}{c} 1 \\ x \\ x+1 \end{array} $	*	x

- (a) 1
- (b) *x*
- (c) x + 1
- (d) 0 are all distinct
- 8. Suppose that 110010 is observed to be a ciphertext from the one-time pad using the binary alphabet. Then we know that:
 - (a) The plaintext was 111111 with probability $1/2^6$
 - (b) The plaintext must be different from 110010
 - (c) The keystream used must be different from 110010
 - (d) The plaintext could have been any 6-bit string
- 9. Recall Euler's phi function ϕ . Let n be an integer, which factorises as $n = p_0^{k_0} \cdot p_1^{k_1} \cdot \ldots \cdot p_{\ell-1}^{k_{\ell-1}}$. What is the formula for computing $\phi(n)$?

(a)
$$\phi(n) = \prod_{i=0}^{\ell-1} p_i^{k_i-1} (p_i - 1)$$

(b)
$$\phi(n) = \prod_{i=0}^{\ell-1} p_i^{k_i-1}$$

(c)
$$\phi(n) = \prod_{i=0}^{\ell-1} (p_i - 1)$$

(d)
$$\phi(n) = \prod_{i=0}^{\ell-2} p_i^{k_i-1} (p_i - 1)$$

- 10. Recall Euler's phi function ϕ . If n = 92, what is the value of $\phi(n)$?
 - (a) 88
 - (b) 45
 - (c) 91
 - (d) 44
- 11. The Euler function ϕ is often useful for public key cryptography. For any integer n > 1 it is always true that:
 - (a) $\phi(n)$ is an odd integer
 - (b) $\phi(n)$ divides n
 - (c) $\phi(n)$ is an even integer
 - (d) $\phi(n) < n$
- 12. Which of the following pairs of equations cannot be solved using the Chinese Remainder Theorem?

- (a) $x \equiv 1 \pmod{39}$ and $x \equiv 3 \pmod{28}$
- (b) $x \equiv 3 \pmod{28}$ and $x \equiv 5 \pmod{4}$
- (c) $x \equiv 5 \pmod{39}$ and $x \equiv 3 \pmod{4}$
- (d) $x \equiv 3 \pmod{25}$ and $x \equiv 5 \pmod{4}$
- 13. Let p be a prime, and g a generator for \mathbb{Z}_p^* . The Discrete Logarithm problem is:
 - (a) Given x and $y \equiv x \pmod{p}$, recover p
 - (b) Given x, p and $y \equiv g^x \pmod{p}$, recover g
 - (c) Given x and $y \equiv x^g \pmod{p}$, recover p
 - (d) Given g, p and $y \equiv g^x \pmod{p}$, recover x
- 14. Euler's Theorem states that if n is an integer and gcd(a, n) = 1, then:
 - (a) $a^{\phi(n)} \equiv 1 \pmod{n}$
 - (b) $a^n \equiv 1 \pmod{n}$
 - (c) $n^a \equiv a \pmod{n}$
 - (d) $a^{\phi(n)+1} \equiv 0 \pmod{n}$
- 15. When public key cryptography is used for encryption:
 - (a) The private key of the sender is needed during encryption
 - (b) The private key of the recipient is needed during encryption
 - (c) The private key of the recipient is needed during decryption
 - (d) The private key of the sender is needed during decryption
- 16. When public key cryptography is used for digital signatures
 - (a) The public key of the verifier is used for signature verification
 - (b) The private key of the signer is used for signature verification
 - (c) The private key of the verifier is used for signature verification
 - (d) The public key of the signer is used for signature verification
- 17. A function f is said to be *one-way* if:
 - (a) It is computationally hard to compute f(x) for all x
 - (b) It is easy to compute f(x) for all x
 - (c) It is easy to compute f(x) given x, but computationally hard to compute a pre-image of y, given y
 - (d) It is computationally hard to compute f(x) given x, but easy to compute a pre-image of y, given y
- 18. Below, you can find an incomplete Diffie-Hellman key exchange. What are missing are: the value B sent by Bob to Alice (denoted by \star), and the value of the shared secret key K (denoted by \diamond). What is the value of the pair (\star, \diamond) ?

Shared Secret Key: $K = \diamond \mod p$

(a)
$$(\star, \diamond) = (g^{ab}, g^{ab})$$

(b)
$$(\star, \diamond) = (g^b, g^{ab})$$

(c)
$$(\star, \diamond) = (g^a, g^{ab})$$

(d)
$$(\star, \diamond) = (b, g^{ab})$$

19. Below, you can see the table of modular exponentiation modulo 11. What is the value of the missing entry (denoted by \star)?

Table 1: $a^k \mod 11$

$k \backslash a$	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	1	4	9	5	3	3	5	9	4	1
3	1	8	5	9	4	7	2	6	3	10
4	1	5	4	3	9	9	3	4	5	1
5	1	10	1	1	1	10	10	10	1	10
6	1	9	3	4	5	5	4	3	9	1
7	1	7	9	5	3	8	8	2	4	10
8	1	*	5	9	4	4	6	5	3	1
9	1	6	4	3	9	2	9	7	5	10
10	1	1	1	1	1	1	1	1	1	1

- (a) 5
- (b) 3
- (c) 4
- (d) 10
- 20. The inputs to a public key verification algorithm are:
 - (a) The secret verification key, the message m and the signature σ
 - (b) The public verification key and the hash of the signature σ and message m
 - (c) The public verification key, the message m and the signature σ
 - (d) The secret verification key and the hash of the signature σ and message m
- 21. In a public key signature scheme, the *unforgeability* property refers to the fact that is is impossible to:
 - (a) Construct a pair (m, σ) that passes verification without the secret signing key K_s

- (b) Construct a pair (m, σ) that passes verification without the public verification key K_s
- (c) Construct a pair (m, σ) that passes verification without the secret verification key K_s
- (d) Construct a pair (m, σ) that passes verification without the public signing key K_s
- 22. A message authentication code (MAC) requires a key as input while a hash function does not. Because of this:
 - (a) The output size of a MAC must be longer than the output size of a hash function for the same security level
 - (b) The length of the output of a MAC must always be longer than the length of the output of a hash
 - (c) A MAC can provide data integrity
 - (d) a MAC can provide non-repudiation
- 23. A cryptographic hash function h often needs the property of collision resistance. To ensure that finding collisions is of the same order of difficulty as brute force key search on a symmetric cipher with a key of 256 bits, the output size of h should be approximately:
 - (a) 512 bits
 - (b) $\sqrt{256}$ bits
 - (c) 128 bits
 - (d) 256 bits
- 24. The Merkle-Damgård construction for hash functions makes use of a compression function *h*, which acts on successive message blocks. A benefit of this construction is:
 - (a) Computation of a hash value requires a fixed number of calls to h, independent of the length of the input message
 - (b) If h is collision-resistant then the whole hash function is collision-resistant
 - (c) No padding is required for the input message, no matter what the output size of h is
 - (d) The length of the input message does not need to be included
- 25. A plaintext P=101101 is encrypted into a ciphertext C=010011 with a one-time pad. Suppose that an attacker is able to mount a known plaintext attack to partially obtain the three *lowest* bits of P, P'=101 (i.e. $P=101 \parallel P'$), and the corresponding portion of C. Now, the attacker knows:
 - (a) That P = 101101
 - (b) That K = 1111110
 - (c) That $K = K' \parallel 110$, for some K'
 - (d) Nothing at all
- 26. Galois counter mode (GCM) provides which of the following security services?
 - (a) Integrity, but not confidentiality
 - (b) Both confidentiality and integrity
 - (c) Non-repudiation, but not confidentiality
 - (d) Both confidentiality and non-repudiation
- 27. The purpose of the handshake protocol in TLS is to:

- (a) Change the cryptographic algorithms from previously used ones
- (b) Signal events such as failures
- (c) Setup sessions with the correct keys and algorithms
- (d) Provide confidentiality and integrity for application messages
- 28. An X.509 digital certificate is issued by a certification authority CA for a subject A. Which of the following *must* be included in the certificate:
 - (a) The subject's private key
 - (b) The subject's public key
 - (c) The certification authority's private key
 - (d) The certification authority's public key
- 29. A difference between TLS 1.3 and TLS 1.2 is:
 - (a) The TLS 1.3 handshake protocol always provides forward secrecy
 - (b) There are no known attacks on the TLS 1.3 protocol
 - (c) The TLS 1.3 record protocol includes data compression
 - (d) The TLS 1.3 protocol provides post-quantum security
- 30. One valid TLS 1.2 ciphersuite is denoted as

When this ciphersuite is chosen, integrity of application data is provided by:

- (a) An HMAC tag with SHA-256 as the underlying hash function
- (b) A CBC-based tag with AES as the underlying encryption function
- (c) Signing each application message with an RSA signature
- (d) Appending a hash of each packet, using SHA-256, before encryption with AES

Written answer questions

1. An *affine cipher* has an encryption algorithm as follows: for some secret values a, b, an alphabet Ω of size $|\Omega| = \omega$, and a message $m \in \Omega$,

$$E(x) = a \cdot x + b \pmod{\omega}.$$

We impose the requirement $\gcd(a,\omega)=1$ (i.e. a and ω are co-prime), as decryption may not be defined otherwise.

- (a) How many keys can we have (give a general formula)?
- (b) Let $\omega = 28$. How many keys can we have?
- (c) Let x = 6, a = 9, b = 21. What is the value of E(x)?
- 2. Recall the Output FeedBack Mode (OFB) for encryption.

Output Feedback (OFB) mode encryption

Figure 1: OFB mode of encryption

The keystream is

$$O_t = E(O_{t-1}, K),$$

where $O_0 = IV$ is chosen at random, and K is the encryption key. Then, the encryption equation is

$$C_t = P_t \oplus O_t$$
.

- (a) What is the equation for decryption of ciphertext block C_t ?
- (b) Is parallel encryption possible?
- (c) Is parallel decryption possible?
- (d) If one bit is flipped in one ciphertext block, how many bits are affected in the plaintext after decryption?
- 3. Recall that in digital signatures, we have the following parameters/ algorithms:
 - A private signing key K_s ;

- A *public* verification key K_v ;
- A signing algorithm Sign, which takes in a message m and a signing key K_s , and outputs a signature σ

$$Sign(m, K_s) = \sigma;$$

- A verification algorithm Ver, which takes in a message m, a verification key K_v , and a signature σ , and outputs a boolean value True/ False

$$Ver(m, \sigma, K_v) = True/$$
 False.

- (a) *Using the terminology above*, recall the *correctness* and *unforgeability* properties of a signature scheme.
- (b) Consider this version of the RSA signature.
 - A modulus n = pq is computed from random large primes p and q
 - Two exponents e and d are generated with

$$ed \pmod{\phi(n)} = 1$$

- Private signing key is $K_s = (d, p, q)$
- Public verification key is $K_v = (e, n)$

RSA Digital Signature Algorithm

Signature generation: Inputs are the message m, the modulus n and the private exponent d

- i. Compute signature $\sigma = m^d \pmod{n}$
- ii. Output the pair (m, σ)

Signature verification: Inputs are the message m, the claimed signature σ and the verification key $K_v = (e, n)$

i. Check whether $\sigma^e \pmod{n} = m$, and if so, output True; otherwise, output False

Why is it insecure? (Hint: consider question 3a)).

- (c) How can we fix this? (Hint: recall hash functions)
- 4. Cryptosystems based on discrete logarithms often make use of a prime number and a generator g of the integers modulo p, \mathbb{Z}_p^* (recall that in class, we often wrote $\langle g \rangle = \mathbb{Z}_p^*$, i.e. g generates the group \mathbb{Z}_p^*).
 - (a) Show that when p = 19, the value g' = 5 is not a generator but the value g = 2 is a generator. (Hint: for the following question, you may find it helpful to list all the powers of g = 2 modulo 19).
 - (b) Consider Diffie–Hellman key exchange in \mathbb{Z}_p^* when p=19 and g=2. Alice chooses random secret input value a=7, and so sends the value $A=14=2^7\pmod{19}$ to Bob. Bob sends his message B back, and they both compute the shared secret. If the value of the shared secret is 17, what is Bob's secret b? (Hint: you can go back to Question 18 to see a partial summary of the Diffie-Hellman key exchange).
- 5. The TLS handshake protocol is complex and allows several variants. In this question we focus on the TLS 1.3 version of the handshake protocol.

- (a) It is optional for a client to use a certificate. What are the security consequences when a client does not have a certificate?
- (b) TLS 1.3 offers several different ciphersuites which are negotiated in the handshake. State and explain one advantage and one disadvantage of allowing different ciphersuites.
- (c) How does 0-RTT enhance the protocol compared to TLS1.2? Are there any security trade-offs?

ATTACHMENT Page 1 of 2

TTM4135 Examination 2025-05-30 Answer page for Exercise 1 Multiple Choice Questions

Detach this page and hand it in together with your written answers

Candi	date number:			
1.	(a)	(b)	(c)	(d)
2.	(a)	(b)	(c)	(d)
3.	(a)	(b)	(c)	(d)
4.	(a)	(b)	(c)	(d)
5.	(a)	(b)	(c)	(d)
6.	(a)	(b)	(c)	(d)
7.	(a)	(b)	(c)	(d)
8.	(a)	(b)	(c)	(d)
9.	(a)	(b)	(c)	(d)
10.	(a)	(b)	(c)	(d)
11.	(a)	(b)	(c)	(d)
12.	(a)	(b)	(c)	(d)
13.	(a)	(b)	(c)	(d)
14.	(a)	(b)	(c)	(d)
15.	(a)	(b)	(c)	(d)
16.	(a)	(b)	(c)	(d)
17.	(a)	(b)	(c)	(d)
18.	(a)	(b)	(c)	(d)
19.	(a)	(b)	(c)	(d)
20.	(a)	(b)	(c)	(d)
21.	(a)	(b)	(c)	(d)
22.	(a)	(b)	(c) 🗌	(d)

ATTACHMENT Page 2 of 2

23.	(a)	(b)	(c) 🗌	(d)
24.	(a)	(b)	(c)	(d)
25.	(a)	(b)	(c)	(d)
26.	(a)	(b)	(c)	(d)
27.	(a)	(b)	(c)	(d)
28.	(a)	(b)	(c)	(d)
29.	(a)	(b)	(c)	(d)
30.	(a)	(b)	(c)	(d)