# NCERT Solutions for Class 12- Maths Chapter 4 - Determinants

# Chapter 4 - Determinants Exercise Ex. 4.1 Solution 1

$$\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$$

#### Solution 2

(i) 
$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = (\cos \theta)(\cos \theta) - (-\sin \theta)(\sin \theta) = \cos^2 \theta + \sin^2 \theta = 1$$

(ii) 
$$\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$$
  

$$= (x^2 - x + 1)(x + 1) - (x - 1)(x + 1)$$

$$= x^3 - x^2 + x + x^2 - x + 1 - (x^2 - 1)$$

$$= x^3 + 1 - x^2 + 1$$

### Solution 3

 $= x^3 - x^2 + 2$ 

The given matrix is 
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$$
.

$$\therefore 2A = 2\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}$$

$$\therefore \text{L.H.S.} = |2A| = \begin{vmatrix} 2 & 4 \\ 8 & 4 \end{vmatrix} = 2 \times 4 - 4 \times 8 = 8 - 32 = -24$$

$$\text{Now, } |A| = \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix} = 1 \times 2 - 2 \times 4 = 2 - 8 = -6$$

$$\therefore \text{R.H.S.} = 4|A| = 4 \times (-6) = -24$$

$$\therefore \text{L.H.S.} = \text{R.H.S.}$$

The given matrix is 
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$
.

By expanding along the first row, we have:

$$|A| = 1 \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} - 0 \begin{vmatrix} 0 & 2 \\ 0 & 4 \end{vmatrix} + 1 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 1(4-0) - 0 + 0 = 4$$

$$\therefore 27|A| = 27(4) = 108 \qquad ...(i)$$
Now,  $3A = 3\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12 \end{bmatrix}$ 

$$\therefore |3A| = 3\begin{vmatrix} 3 & 6 \\ 0 & 12 \end{vmatrix} - 0\begin{vmatrix} 0 & 6 \\ 0 & 12 \end{vmatrix} + 3\begin{vmatrix} 0 & 3 \\ 0 & 0 \end{vmatrix}$$

$$= 3(36 - 0) = 3(36) = 108 \qquad ...(ii)$$

From equations (i) and (ii), we have:

$$|3A| = 27|A|$$

Hence, the given result is proved.

(i) Let 
$$A = \begin{bmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{bmatrix}$$
.

It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.

$$|A| = -0 \begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 0 \begin{vmatrix} 3 & -2 \\ 3 & 0 \end{vmatrix} - (-1) \begin{vmatrix} 3 & -1 \\ 3 & -5 \end{vmatrix} = (-15+3) = -12$$

(ii) Let 
$$A = \begin{vmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix}$$
.

By expanding along the first row, we have:

$$|A| = 3 \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} + 4 \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix}$$
$$= 3(1+6) + 4(1+4) + 5(3-2)$$
$$= 3(7) + 4(5) + 5(1)$$
$$= 21 + 20 + 5 = 46$$

(iii) Let 
$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$
.

By expanding along the first row, we have:

$$|A| = 0 \begin{vmatrix} 0 & -3 \\ 3 & 0 \end{vmatrix} - 1 \begin{vmatrix} -1 & -3 \\ -2 & 0 \end{vmatrix} + 2 \begin{vmatrix} -1 & 0 \\ -2 & 3 \end{vmatrix}$$
$$= 0 - 1(0 - 6) + 2(-3 - 0)$$
$$= -1(-6) + 2(-3)$$
$$= 6 - 6 = 0$$

(iv) Let 
$$A = \begin{vmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{vmatrix}$$
.

By expanding along the first column, we have:

$$|A| = 2 \begin{vmatrix} 2 & -1 \\ -5 & 0 \end{vmatrix} - 0 \begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} + 3 \begin{vmatrix} -1 & -2 \\ 2 & -1 \end{vmatrix}$$
$$= 2(0-5) - 0 + 3(1+4)$$
$$= -10 + 15 = 5$$

#### Solution 6

$$Let A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}.$$

By expanding along the first row, we have:

$$|A| = 1 \begin{vmatrix} 1 & -3 \\ 4 & -9 \end{vmatrix} - 1 \begin{vmatrix} 2 & -3 \\ 5 & -9 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 5 & 4 \end{vmatrix}$$

$$= 1(-9+12) - 1(-18+15) - 2(8-5)$$

$$= 1(3) - 1(-3) - 2(3)$$

$$= 3+3-6$$

$$= 6-6$$

$$= 0$$

$$\begin{vmatrix}
2 & 4 \\
5 & 1
\end{vmatrix} = \begin{vmatrix}
2x & 4 \\
6 & x
\end{vmatrix}$$

$$\Rightarrow$$
 2×1-5×4 = 2x×x-6×4

$$\Rightarrow 2-20 = 2x^2-24$$

$$\Rightarrow 2x^2 = 6$$

$$\Rightarrow x^2 = 3$$

$$\Rightarrow x = \pm \sqrt{3}$$

$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$

$$\Rightarrow 2 \times 5 - 3 \times 4 = x \times 5 - 3 \times 2x$$

$$\Rightarrow$$
 10-12 = 5x-6x

$$\Rightarrow -2 = -x$$

$$\Rightarrow x = 2$$

#### Solution 8

$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$

$$\Rightarrow x^2 - 36 = 36 - 36$$

$$\Rightarrow x^2 - 36 = 0$$

$$\Rightarrow x^2 = 36$$

$$\Rightarrow x = \pm 6$$

Hence, the correct answer is B

# Chapter 4 - Determinants Exercise Ex. 4.2 Solution 1

$$\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = \begin{vmatrix} x & a & x \\ y & b & y \\ z & c & z \end{vmatrix} + \begin{vmatrix} x & a & a \\ y & b & b \\ z & c & c \end{vmatrix} = 0 + 0 = 0$$

[Here, the two columns of the determinants are identical]

$$\Delta = \begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + R_2$ , we have:

$$\Delta = \begin{vmatrix} a - c & b - a & c - b \\ b - c & c - a & a - b \\ -(a - c) & -(b - a) & -(c - b) \end{vmatrix}$$

$$= -\begin{vmatrix} a - c & b - a & c - b \\ b - c & c - a & a - b \\ a - c & b - a & c - b \\ a - c & b - a & c - b \end{vmatrix}$$

Here, the two rows R1 and R3 are identical.

$$\therefore \Delta = 0.$$

### Solution 3

$$\begin{vmatrix} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{vmatrix} = \begin{vmatrix} 2 & 7 & 63 + 2 \\ 3 & 8 & 72 + 3 \\ 5 & 9 & 81 \end{vmatrix} = \begin{vmatrix} 2 & 7 & 2 \\ 3 & 8 & 72 \\ 5 & 9 & 81 \end{vmatrix} = \begin{vmatrix} 2 & 7 & 2 \\ 3 & 8 & 3 \\ 5 & 9 & 5 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & 7 & 9(7) \\ 3 & 8 & 9(8) \\ 5 & 9 & 9(9) \end{vmatrix} + 0 \qquad [Two columns are identical]$$

$$= 9 \begin{vmatrix} 2 & 7 & 7 \\ 3 & 8 & 8 \\ 5 & 9 & 9 \end{vmatrix}$$

$$= 0 \qquad [Two columns are identical]$$

$$\Delta = \begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$$

By applying  $C_3 \rightarrow C_3 + C_2$ , we have:

$$\Delta = \begin{vmatrix} 1 & bc & ab+bc+ca \\ 1 & ca & ab+bc+ca \\ 1 & ab & ab+bc+ca \end{vmatrix}$$

$$\Delta = (ab + bc + ca) \begin{vmatrix} 1 & bc & 1 \\ 1 & ca & 1 \\ 1 & ab & 1 \end{vmatrix}$$

Here, two columns C1 and C3 are proportional.

$$\therefore \Delta = 0.$$

$$\Delta = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix}$$

$$= \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a & p & x \end{vmatrix} + \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ b & q & y \end{vmatrix}$$

$$= \Delta_1 + \Delta_2 \text{ (say)} \qquad ...(1)$$
Now,  $\Delta_1 = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a & p & x \end{vmatrix}$ 

Applying  $R_2 \rightarrow R_2 - R_3$ , we have:

$$\Delta_1 = \begin{vmatrix} b+c & q+r & y+z \\ c & r & z \\ a & p & x \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 - R_2$ , we have:

$$\Delta_1 = \begin{vmatrix} b & q & y \\ c & r & z \\ a & p & x \end{vmatrix}$$

Applying  $R_1 \leftrightarrow R_3$  and  $R_2 \leftrightarrow R_3$ , we have:

$$\Delta_{1} = (-1)^{2} \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} = \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} \qquad \dots (2)$$

$$\Delta_2 = \begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ b & q & y \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 = R_3$ , we have:

$$\Delta_2 = \begin{vmatrix} c & r & z \\ c+a & r+p & z+x \\ b & q & y \end{vmatrix}$$

Applying  $R_2 \rightarrow R_2 - R_1$ , we have:

$$\Delta_2 = \begin{vmatrix} c & r & z \\ a & p & x \\ b & q & y \end{vmatrix}$$

Applying  $R_1 \leftrightarrow R_2$  and  $R_2 \leftrightarrow R_3$ , we have:

$$\Delta_2 = (-1)^2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} = \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix} \qquad \dots (3)$$

From (1), (2), and (3), we have:

$$\Delta = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}$$

Hence, the given result is proved.

We have,

$$\Delta = \begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$$

Applying  $R_1 \rightarrow cR_1$ , we have:

$$\Delta = \frac{1}{c} \begin{vmatrix} 0 & ac & -bc \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 - bR_2$ , we have:

$$\Delta = \frac{1}{c} \begin{vmatrix} ab & ac & 0 \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$$

$$= \frac{a}{c} \begin{vmatrix} b & c & 0 \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$$

Here, the two rows  $R_1$  and  $R_3$  are identical.

$$...\Delta = 0.$$

$$\Delta = \begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix}$$

$$= abc \begin{vmatrix} -a & b & c \\ a & -b & c \\ a & b & -c \end{vmatrix}$$

$$= a^2b^2c^2 \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$
[Taking out factors  $a$ ,  $b$ ,  $c$  from  $C_1$ ,  $C_2$ , and  $C_3$ ]
[Taking out factors  $a$ ,  $b$ ,  $c$  from  $C_1$ ,  $C_2$ , and  $C_3$ ]

Applying  $R_2 \rightarrow R_2 + R_1$  and  $R_3 \rightarrow R_3 + R_1$ , we have:

$$\Delta = a^{2}b^{2}c^{2}\begin{vmatrix} -1 & 1 & 1\\ 0 & 0 & 2\\ 0 & 2 & 0 \end{vmatrix}$$
$$= a^{2}b^{2}c^{2}(-1)\begin{vmatrix} 0 & 2\\ 2 & 0 \end{vmatrix}$$
$$= -a^{2}b^{2}c^{2}(0-4) = 4a^{2}b^{2}c^{2}$$

(i) Let 
$$\Delta = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$
.

Applying  $R_1 \longrightarrow R_1 = R_3$  and  $R_2 \longrightarrow R_2 = R_3$ , we have:

$$\Delta = \begin{vmatrix} 0 & a-c & a^2-c^2 \\ 0 & b-c & b^2-c^2 \\ 1 & c & c^2 \end{vmatrix}$$

$$= (c-a)(b-c)\begin{vmatrix} 0 & -1 & -a-c \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + R_2$ , we have:

$$\Delta = (b-c)(c-a)\begin{vmatrix} 0 & 0 & -a+b \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix}$$
$$= (a-b)(b-c)(c-a)\begin{vmatrix} 0 & 0 & -1 \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix}$$

Expanding along C1, we have:

$$\Delta = (a-b)(b-c)(c-a)\begin{vmatrix} 0 & -1 \\ 1 & b+c \end{vmatrix} = (a-b)(b-c)(c-a)$$

Hence, the given result is proved.

(ii) Let 
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}$$
.

Applying  $C_1 \longrightarrow C_1 = C_3$  and  $C_2 \longrightarrow C_2 = C_3$ , we have:

$$\Delta = \begin{vmatrix} 0 & 0 & 1 \\ a-c & b-c & c \\ a^3-c^3 & b^3-c^3 & c^3 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 0 & 1 \\ a-c & b-c & c \\ (a-c)(a^2+ac+c^2) & (b-c)(b^2+bc+c^2) & c^3 \end{vmatrix}$$

$$= (c-a)(b-c)\begin{vmatrix} 0 & 0 & 1 \\ -1 & 1 & c \\ -(a^2+ac+c^2) & (b^2+bc+c^2) & c^3 \end{vmatrix}$$

Applying  $C_1 \rightarrow C_1 + C_2$ , we have:

$$\Delta = (c-a)(b-c)\begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & c \\ (b^2-a^2)+(bc-ac) & (b^2+bc+c^2) & c^3 \end{vmatrix}$$

$$= (b-c)(c-a)(a-b)\begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & c \\ -(a+b+c) & (b^2+bc+c^2) & c^3 \end{vmatrix}$$

$$= (a-b)(b-c)(c-a)(a+b+c)\begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & c \\ -1 & (b^2+bc+c^2) & c^3 \end{vmatrix}$$

Expanding along C1, we have:

$$\Delta = (a-b)(b-c)(c-a)(a+b+c)(-1)\begin{vmatrix} 0 & 1 \\ 1 & c \end{vmatrix}$$
  
=  $(a-b)(b-c)(c-a)(a+b+c)$ 

Hence, the given result is proved.

Let 
$$\Delta = \begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix}$$
.

Applying  $R_2 \rightarrow R_2 - R_1$  and  $R_3 \rightarrow R_3 - R_1$ , we have:

$$\Delta = \begin{vmatrix} x & x^2 & yz \\ y-x & y^2-x^2 & zx-yz \\ z-x & z^2-x^2 & xy-yz \end{vmatrix}$$

$$= \begin{vmatrix} x & x^2 & yz \\ -(x-y) & -(x-y)(x+y) & z(x-y) \\ (z-x) & (z-x)(z+x) & -y(z-x) \end{vmatrix}$$

$$= (x-y)(z-x) \begin{vmatrix} x & x^2 & yz \\ -1 & -x-y & z \\ 1 & z+x & -y \end{vmatrix}$$

Applying  $R_3 \rightarrow R_2 + R_3$ , we have

$$\Delta = (x - y)(z - x) \begin{vmatrix} x & x^2 & yz \\ -1 & -x - y & z \\ 0 & z - y & z - y \end{vmatrix}$$

$$| 0 z-y z-y |$$

$$\Rightarrow \Delta = (x-y)(z-x)(z-y) \begin{vmatrix} x & x^2 & yz \\ -1 & -x-y & z \\ 0 & 1 & 1 \end{vmatrix}$$

$$\Rightarrow \Delta = -(x - y)(z - x)(z - y) \begin{vmatrix} x & x^{2} & yz \\ 1 & x + y & -z \\ 0 & 1 & 1 \end{vmatrix}$$

$$\Rightarrow \Delta = (x - y)(z - x)(y - z) \begin{vmatrix} x & x^{2} & yz \\ 1 & x + y & -z \\ 0 & 1 & 1 \end{vmatrix}$$

$$\Rightarrow \Delta = (x - y)(z - x)(y - z) \begin{vmatrix} x & x^2 & yz \\ 1 & x + y & -z \\ 0 & 1 & 1 \end{vmatrix}$$

$$\Rightarrow \Delta = (x - y)(z - x)(y - z)[x(x + y) + xz - x^2 + yz]$$

$$\Rightarrow \Delta = (x - y)(z - x)(y - z)[x^2 + xy + xz - x^2 + yz]$$

$$\Rightarrow \Delta = (x - y)(z - x)(y - z)[xy + xz + yz]$$

Hence proved.

(i) 
$$\Delta = \begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + R_2 + R_3$ , we have:

$$\Delta = \begin{vmatrix} 5x+4 & 5x+4 & 5x+4 \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}$$

$$= (5x+4) \begin{vmatrix} 1 & 1 & 1 \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}$$

Applying  $C_2 \rightarrow C_2 = C_1$ ,  $C_3 \rightarrow C_3 = C_1$ , we have:

$$\Delta = (5x+4) \begin{vmatrix} 1 & 0 & 0 \\ 2x & -x+4 & 0 \\ 2x & 0 & -x+4 \end{vmatrix}$$
$$= (5x+4)(4-x)(4-x) \begin{vmatrix} 1 & 0 & 0 \\ 2x & 1 & 0 \\ 2x & 0 & 1 \end{vmatrix}$$

Expanding along C3, we have:

$$\Delta = (5x+4)(4-x)^{2} \begin{vmatrix} 1 & 0 \\ 2x & 1 \end{vmatrix}$$
$$= (5x+4)(4-x)^{2}$$

Hence, the given result is proved.

(ii) 
$$\Delta = \begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & y & y+k \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + R_2 + R_3$ , we have:

$$\Delta = \begin{vmatrix} 3y+k & 3y+k & 3y+k \\ y & y+k & y \\ y & y & y+k \end{vmatrix}$$

$$= (3y+k)\begin{vmatrix} 1 & 1 & 1 \\ y & y+k & y \\ y & y & y+k \end{vmatrix}$$

Applying  $C_2 \longrightarrow C_2 = C_1$  and  $C_3 \longrightarrow C_3 = C_1$ , we have:

$$\Delta = (3y+k)\begin{vmatrix} 1 & 0 & 0 \\ y & k & 0 \\ y & 0 & k \end{vmatrix}$$

$$= k^{2}(3y+k)\begin{vmatrix} 1 & 0 & 0 \\ y & 1 & 0 \\ y & 0 & 1 \end{vmatrix}$$

Expanding along C3, we have:

$$\Delta = k^2 (3y + k) \begin{vmatrix} 1 & 0 \\ y & 1 \end{vmatrix} = k^2 (3y + k)$$

Hence, the given result is proved.

(i) 
$$\Delta = \begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + R_2 + R_3$ , we have:

$$\Delta = \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

$$= (a+b+c)\begin{vmatrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

Applying  $C_2 \rightarrow C_2 - C_1$ ,  $C_3 \rightarrow C_3 - C_1$ , we have:

$$\Delta = (a+b+c)\begin{vmatrix} 1 & 0 & 0 \\ 2b & -(a+b+c) & 0 \\ 2c & 0 & -(a+b+c) \end{vmatrix}$$
$$= (a+b+c)^{3}\begin{vmatrix} 1 & 0 & 0 \\ 2b & -1 & 0 \\ 2c & 0 & -1 \end{vmatrix}$$

Expanding along C3, we have:

$$\Delta = (a+b+c)^3 (-1)(-1) = (a+b+c)^3$$

Hence, the given result is proved.

(ii) 
$$\Delta = \begin{bmatrix} x+y+2z & x & y \\ z & y+z+2x & y \\ z & x & z+x+2y \end{bmatrix}$$

Applying  $C_1 \rightarrow C_1 + C_2 + C_3$ , we have:

$$\Delta = \begin{vmatrix} 2(x+y+z) & x & y \\ 2(x+y+z) & y+z+2x & y \\ 2(x+y+z) & x & z+x+2y \end{vmatrix}$$

$$= 2(x+y+z) \begin{vmatrix} 1 & x & y \\ 1 & y+z+2x & y \\ 1 & x & z+x+2y \end{vmatrix}$$

Applying  $R_2 \rightarrow R_2 = R_1$  and  $R_3 \rightarrow R_3 = R_1$ , we have:

$$\Delta = 2(x+y+z)\begin{vmatrix} 1 & x & y \\ 0 & x+y+z & 0 \\ 0 & 0 & x+y+z \end{vmatrix}$$

$$= 2(x+y+z)^{3}\begin{vmatrix} 1 & x & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Expanding along R3, we have:

$$\Delta = 2(x+y+z)^{3}(1)(1-0) = 2(x+y+z)^{3}$$

Hence, the given result is proved.

$$\Delta = \begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + R_2 + R_3$ , we have:

$$\Delta = \begin{vmatrix} 1 + x + x^2 & 1 + x + x^2 & 1 + x + x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix}$$

$$= \left(1 + x + x^2\right) \begin{vmatrix} 1 & 1 & 1 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix}$$

Applying  $C_2 \rightarrow C_2 = C_1$  and  $C_3 \rightarrow C_3 = C_1$ , we have:

$$\Delta = (1+x+x^2) \begin{vmatrix} 1 & 0 & 0 \\ x^2 & 1-x^2 & x-x^2 \\ x & x^2-x & 1-x \end{vmatrix}$$

$$= (1+x+x^2)(1-x)(1-x) \begin{vmatrix} 1 & 0 & 0 \\ x^2 & 1+x & x \\ x & -x & 1 \end{vmatrix}$$

$$= (1-x^3)(1-x) \begin{vmatrix} 1 & 0 & 0 \\ x^2 & 1+x & x \\ x & -x & 1 \end{vmatrix}$$

Expanding along R1, we have:

$$\Delta = (1 - x^3)(1 - x)(1) \begin{vmatrix} 1 + x & x \\ -x & 1 \end{vmatrix}$$

$$= (1 - x^3)(1 - x)(1 + x + x^2)$$

$$= (1 - x^3)(1 - x^3)$$

$$= (1 - x^3)^2$$

Hence, the given result is proved.

$$\Delta = \begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + bR_3$  and  $R_2 \rightarrow R_2 - aR_3$ , we have:

$$\Delta = \begin{vmatrix} 1+a^2+b^2 & 0 & -b(1+a^2+b^2) \\ 0 & 1+a^2+b^2 & a(1+a^2+b^2) \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$$

$$= (1+a^2+b^2)^2 \begin{vmatrix} 1 & 0 & -b \\ 0 & 1 & a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$$

Expanding along R1, we have:

$$\Delta = (1 + a^2 + b^2)^2 \left[ (1) \begin{vmatrix} 1 & a \\ -2a & 1 - a^2 - b^2 \end{vmatrix} - b \begin{vmatrix} 0 & 1 \\ 2b & -2a \end{vmatrix} \right]$$

$$= (1 + a^2 + b^2)^2 \left[ 1 - a^2 - b^2 + 2a^2 - b(-2b) \right]$$

$$= (1 + a^2 + b^2)^2 \left( 1 + a^2 + b^2 \right)$$

$$= (1 + a^2 + b^2)^3$$

$$\Delta = \begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix}$$

Taking out common factors a, b, and c from R1, R2, and R3 respectively, we have:

$$\Delta = abc \begin{vmatrix} a + \frac{1}{a} & b & c \\ a & b + \frac{1}{b} & c \\ a & b & c + \frac{1}{c} \end{vmatrix}$$

Applying  $R_2 \longrightarrow R_2 = R_1$  and  $R_3 \longrightarrow R_3 = R_1$ , we have:

$$\Delta = abc \begin{vmatrix} a + \frac{1}{a} & b & c \\ -\frac{1}{a} & \frac{1}{b} & 0 \\ -\frac{1}{a} & 0 & \frac{1}{c} \end{vmatrix}$$

Applying  $C_1 \to aC_1$ ,  $C_2 \to bC_2$ , and  $C_3 \to cC_3$ , we have:

$$\Delta = abc \times \frac{1}{abc} \begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$$

Expanding along R3, we have:

$$\Delta = -1 \begin{vmatrix} b^2 & c^2 \\ 1 & 0 \end{vmatrix} + 1 \begin{vmatrix} a^2 + 1 & b^2 \\ -1 & 1 \end{vmatrix}$$
$$= -1(-c^2) + (a^2 + 1 + b^2) = 1 + a^2 + b^2 + c^2$$

Hence, the given result is proved.

A is a square matrix of order  $3 \times 3$ .

Let 
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
.

Then,  $kA = \begin{bmatrix} ka_1 & kb_1 & kc_1 \\ ka_2 & kb_2 & kc_2 \\ ka_3 & kb_3 & kc_3 \end{bmatrix}$ .

$$\therefore |kA| = \begin{vmatrix} ka_1 & kb_1 & kc_1 \\ ka_2 & kb_2 & kc_2 \\ ka_3 & kb_3 & kc_3 \end{vmatrix}$$

$$= k^3 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
(Taking out common factors  $k$  from each row)
$$= k^3 |A|$$

$$\therefore |kA| = k^3 |A|$$

Hence, the correct answer is C.

#### Solution 16

We know that to every square matrix, A = [aij] of order n. We can associate a number called the determinant of square matrix A, where  $aij = (i, j)^{th}$  element of A.

Thus, the determinant is a number associated to a square matrix.

Hence, the correct answer is C.

# Chapter 4 - Determinants Exercise Ex. 4.3 Solution 1

(i) The area of the triangle with vertices (1, 0), (6, 0), (4, 3) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[ 1(0-3) - 0(6-4) + 1(18-0) \right]$$

$$= \frac{1}{2} \left[ -3 + 18 \right] = \frac{15}{2} \text{ square units}$$

(ii) The area of the triangle with vertices (2, 7), (1, 1), (10, 8) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[ 2(1-8) - 7(1-10) + 1(8-10) \right]$$

$$= \frac{1}{2} \left[ 2(-7) - 7(-9) + 1(-2) \right]$$

$$= \frac{1}{2} \left[ -14 + 63 - 2 \right] = \frac{1}{2} \left[ -16 + 63 \right]$$

$$= \frac{47}{2} \text{ square units}$$

(iii) The area of the triangle with vertices (-2, -3), (3, 2), (-1, -8)

is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} -2 & -3 & 1 \\ 3 & 2 & 1 \\ -1 & -8 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[ -2(2+8) + 3(3+1) + 1(-24+2) \right]$$

$$= \frac{1}{2} \left[ -2(10) + 3(4) + 1(-22) \right]$$

$$= \frac{1}{2} \left[ -20 + 12 - 22 \right]$$

$$= -\frac{30}{2} = -15$$

Hence, the area of the triangle is |-15| = 15 square units

Area of AABC is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} a & b+c & 1 \\ b-a & a-b & 0 \\ c-a & a-c & 0 \end{vmatrix} \text{ (Applying } R_2 \to R_2 - R_1 \text{ and } R_3 \to R_3 - R_1 \text{)}$$

$$= \frac{1}{2} (a-b)(c-a) \begin{vmatrix} a & b+c & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix}$$

$$= \frac{1}{2} (a-b)(c-a) \begin{vmatrix} a & b+c & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} \text{ (Applying } R_3 \to R_3 + R_2 \text{)}$$

$$= 0 \qquad \text{ (All elements of } R_3 \text{ are } 0 \text{)}$$

Thus, the area of the triangle formed by points A, B, and C is zero.

Hence, the points A, B, and C are collinear.

We know that the area of a triangle whose vertices are  $(x_1, y_1)$ ,  $(x_2, y_2)$ , and

 $(x_3, y_3)$  is the absolute value of the determinant ( $\Delta$ ), where

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

It is given that the area of triangle is 4 square units.

(i) The area of the triangle with vertices (k, 0), (4, 0), (0, 2) is given by the relation,

$$\triangle = \frac{1}{2} \begin{vmatrix} k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[ k (0-2) - 0 (4-0) + 1 (8-0) \right]$$
$$= \frac{1}{2} \left[ -2k + 8 \right] = -k + 4$$

$$-k + 4 = \pm 4$$

When 
$$-k + 4 = -4$$
,  $k = 8$ .

When 
$$-k + 4 = 4$$
,  $k = 0$ .

Hence, k = 0, 8.

(ii) The area of the triangle with vertices (-2, 0), (0, 4), (0, k) is given by the relation,

$$\triangle = \frac{1}{2} \begin{vmatrix} -2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1 \end{vmatrix}$$

$$=\frac{1}{2}\Big[-2(4-k)\Big]$$

$$= k - 4$$

$$k - 4 = \pm 4$$

When 
$$k-4=-4$$
,  $k=0$ .

When 
$$k - 4 = 4$$
,  $k = 8$ .

Hence, 
$$k = 0, 8$$
.

#### Solution 4

(i) Let P (x, y) be any point on the line joining points A (1, 2) and B (3, 6). Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$\frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

$$\Rightarrow \frac{1}{2} \Big[ 1(6-y) - 2(3-x) + 1(3y-6x) \Big] = 0$$

$$\Rightarrow 6 - y - 6 + 2x + 3y - 6x = 0$$

$$\Rightarrow 2y - 4x = 0$$

$$\Rightarrow y = 2x$$

Hence, the equation of the line joining the given points is y = 2x.

(ii) Let P (x, y) be any point on the line joining points A (3, 1) and

B (9, 3). Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$\frac{1}{2} \begin{vmatrix} 3 & 1 & 1 \\ 9 & 3 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

$$\Rightarrow \frac{1}{2} \left[ 3(3-y) - 1(9-x) + 1(9y-3x) \right] = 0$$

$$\Rightarrow 9 - 3y - 9 + x + 9y - 3x = 0$$

$$\Rightarrow 6y - 2x = 0$$

$$\Rightarrow x - 3y = 0$$

Hence, the equation of the line joining the given points is x - 3y = 0

#### Solution 5

The area of the triangle with vertices (2, -6), (5, 4), and (k, 4) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 2 & -6 & 1 \\ 5 & 4 & 1 \\ k & 4 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[ 2(4-4) + 6(5-k) + 1(20-4k) \right]$$

$$= \frac{1}{2} \left[ 30 - 6k + 20 - 4k \right]$$

$$= \frac{1}{2} \left[ 50 - 10k \right]$$

$$= 25 - 5k$$

It is given that the area of the triangle is  $\pm 35$ .

Therefore, we have:

$$\Rightarrow$$
 25 - 5 $k = \pm 35$ 

$$\Rightarrow 5(5-k) = \pm 35$$

$$\Rightarrow 5-k=\pm 7$$

When 
$$5 - k = -7$$
,  $k = 5 + 7 = 12$ .

When 
$$5-k=7$$
,  $k=5-7=-2$ .

Hence, 
$$k = 12, -2$$
.

The correct answer is D.

# Chapter 4 - Determinants Exercise Ex. 4.4 Solution 1

i) The given determinant is 
$$\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$$
.

Minor of element  $a_{ij}$  is  $M_{ij}$ .

$$M_{11} = minor of element a_{11} = 3$$

$$M_{12} = minor$$
 of element  $a_{12} = 0$ 

$$M_{21} = minor of element a_{21} = -4$$

$$M_{22} = minor of element a_{22} = 2$$

Cofactor of 
$$a_{ij}$$
 is  $A_{ij} = (-1)^{i+j} M_{ij}$ .

•• 
$$A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (3) = 3$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (0) = 0$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (-4) = 4$$

$$A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (2) = 2$$

(ii) The given determinant is  $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$ .

Minor of element  $a_{ij}$  is  $M_{ij}$ .

...  $M_{11} = minor of element <math>a_{11} = d$ 

 $M_{12} = minor$  of element  $a_{12} = b$ 

 $M_{21} = minor of element a_{21} = c$ 

 $M_{22} = minor of element a_{22} = a$ 

Cofactor of  $a_{ij}$  is  $\mathbb{A}_{ij} = (-1)^{i} +_{j} \mathbb{M}_{ij}$ .

•••  $A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (d) = d$ 

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (b) = -b$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (c) = -c$$

$$A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (a) = a$$

i) The given determinant is 
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
.

By the definition of minors and cofactors, we have:

$$\mathbf{M}_{11} = \operatorname{minor of } a_{11} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

$$M_{12} = \text{minor of } a_{12} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

$$M_{13} = \text{minor of } a_{13} = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0$$

$$\mathbf{M}_{21} = \text{minor of } a_{21} = \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0$$

$$M_{22} = \text{minor of } \alpha_{22} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

$$M_{23} = \text{minor of } a_{23} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0$$

$$M_{31} = \text{minor of } a_{31} = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} = 0$$

$$M_{32} = \text{minor of } a_{32} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0$$

$$M_{33} = \text{minor of } a_{33} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

$$A_{11} = \text{cofactor of } a_{11} = (-1)^{1+1} M_{11} = 1$$

$$A_{12} = \text{cofactor of } a_{12} = (-1)^{1+2} M_{12} = 0$$

$$A_{13} = \text{cofactor of } \alpha_{13} = (-1)^{1+3} \text{ M}_{13} = 0$$

$$A_{21} = \text{cofactor of } a_{21} = (-1)^{2+1} M_{21} = 0$$

$$A_{22} = \text{cofactor of } \alpha_{22} = (-1)^{2+2} M_{22} = 1$$

$$A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} \text{ M}_{23} = 0$$

$$A_{31} = \text{cofactor of } a_{31} = (-1)^{3+1} M_{31} = 0$$

$$A_{32} = \text{cofactor of } a_{32} = (-1)^{3+2} \text{ M}_{32} = 0$$

$$A_{33} = \text{cofactor of } \alpha_{33} = (-1)^{3+3} \text{ M}_{33} = 1$$

(ii) The given determinant is 
$$\begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{vmatrix}$$
.

By definition of minors and cofactors, we have:

$$M_{11} = \text{minor of } a_{11} = \begin{vmatrix} 5 & -1 \\ 1 & 2 \end{vmatrix} = 10 + 1 = 11$$

$$M_{12} = \text{minor of } a_{12} = \begin{vmatrix} 3 & -1 \\ 0 & 2 \end{vmatrix} = 6 - 0 = 6$$

$$M_{13} = \text{minor of } a_{13} = \begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3$$

$$M_{21} = \text{minor of } a_{21} = \begin{vmatrix} 0 & 4 \\ 1 & 2 \end{vmatrix} = 0 - 4 = -4$$

$$M_{22} = \text{minor of } a_{22} = \begin{vmatrix} 1 & 4 \\ 0 & 2 \end{vmatrix} = 2 - 0 = 2$$

$$M_{23} = \text{minor of } a_{23} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1$$

$$M_{31} = \text{minor of } a_{31} = \begin{vmatrix} 0 & 4 \\ 5 & -1 \end{vmatrix} = 0 - 20 = -20$$

$$M_{32} = \text{minor of } a_{32} = \begin{vmatrix} 1 & 4 \\ 3 & -1 \end{vmatrix} = -1 - 12 = -13$$

$$M_{33} = \text{minor of } a_{33} = \begin{vmatrix} 1 & 0 \\ 3 & 5 \end{vmatrix} = 5 - 0 = 5$$

$$A_{11} = \text{cofactor of } a_{11} = (-1)^{1+1} M_{11} = 11$$

$$A_{12} = \text{cofactor of } a_{12} = (-1)^{1+2} M_{12} = -6$$

$$A_{13} = \text{cofactor of } a_{13} = (-1)^{1+3} M_{13} = 3$$

$$A_{21} = \text{cofactor of } a_{21} = (-1)^{2+1} M_{21} = 4$$

$$A_{22} = \text{cofactor of } a_{22} = (-1)^{2+2} M_{22} = 2$$

$$A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} M_{23} = -1$$

$$A_{31} = \text{cofactor of } a_{31} = (-1)^{3+1} M_{31} = -20$$

$$A_{32} = \text{cofactor of } a_{32} = (-1)^{3+2} M_{32} = 13$$

$$A_{33} = \text{cofactor of } a_{33} = (-1)^{3+3} M_{33} = 5$$

We have:

$$M_{21} = \begin{vmatrix} 3 & 8 \\ 2 & 3 \end{vmatrix} = 9 - 16 = -7$$

$$A_{21} = \text{cofactor of } a_{21} = (-1)^{2+1} M_{21} = 7$$

$$M_{22} = \begin{vmatrix} 5 & 8 \\ 1 & 3 \end{vmatrix} = 15 - 8 = 7$$

$$A_{22} = \text{cofactor of } a_{22} = (-1)^{2+2} M_{22} = 7$$

$$M_{23} = \begin{vmatrix} 5 & 3 \\ 1 & 2 \end{vmatrix} = 10 - 3 = 7$$

$$A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} M_{23} = -7$$

We know that  $\Delta$  is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

$$\Delta = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = 2(7) + 0(7) + 1(-7) = 14 - 7 = 7$$

The given determinant is  $\begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$ .

We have:

$$M_{13} = \begin{vmatrix} 1 & y \\ 1 & z \end{vmatrix} = z - y$$

$$\mathbf{M}_{23} = \begin{vmatrix} 1 & x \\ 1 & z \end{vmatrix} = z - x$$

$$M_{33} = \begin{vmatrix} 1 & x \\ 1 & y \end{vmatrix} = y - x$$

$$A_{13} = \text{cofactor of } a_{13} = (-1)^{1+3} M_{13} = (z - y)$$

$$A_{23} = \text{cofactor of } a_{23} = (-1)^{2+3} M_{23} = -(z-x) = (x-z)$$

$$A_{33} = \text{cofactor of } a_{33} = (-1)^{3+3} M_{33} = (y - x)$$

We know that  $\Delta$  is equal to the sum of the product of the elements of the second row with their corresponding cofactors.

Hence, 
$$\Delta = (x-y)(y-z)(z-x)$$
.

We know that:

 $\Delta = \text{Sum of the product of the elements of a column (or a row) with their corresponding cofactors$ 

$$\Delta = a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$$

Hence, the value of  $\Delta$  is given by the expression given in alternative D.

The correct answer is D.

# Chapter 4 - Determinants Exercise Ex. 4.5 Solution 1

Let 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

We have,

$$A_{11} = 4$$
,  $A_{12} = -3$ ,  $A_{21} = -2$ ,  $A_{22} = 1$   

$$\therefore adjA = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$

#### Solution 2

Let 
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$$
.

We have,

$$A_{11} = \begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3$$

$$A_{12} = -\begin{vmatrix} 2 & 5 \\ -2 & 1 \end{vmatrix} = -(2 + 10) = -12$$

$$A_{13} = \begin{vmatrix} 2 & 3 \\ -2 & 0 \end{vmatrix} = 0 + 6 = 6$$

$$A_{21} = -\begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = -(-1-0) = 1$$

$$A_{22} = \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} = 1 + 4 = 5$$

$$A_{23} = -\begin{vmatrix} 1 & -1 \\ -2 & 0 \end{vmatrix} = -(0-2) = 2$$

$$A_{31} = \begin{vmatrix} -1 & 2 \\ 3 & 5 \end{vmatrix} = -5 - 6 = -11$$

$$A_{32} = -\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = -(5-4) = -1$$

$$A_{33} = \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = 3 + 2 = 5$$
Hence,  $adjA = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} 3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5 \end{bmatrix}$ .

$$A = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$

we have.

$$|A| = -12 - (-12) = -12 + 12 = 0$$

$$\therefore |A|I = 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Now,

$$A_{11} = -6, A_{12} = 4, A_{21} = -3, A_{22} = 2$$

$$\therefore adjA = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$$

Now.

$$A(adjA) = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -12+12 & -6+6 \\ 24-24 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Also,  $(adjA) A = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$ 

$$= \begin{bmatrix} -12+12 & -18+18 \\ 8-8 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Hence, A(adjA) = (adjA)A = |A|I.

# Solution 4

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$|A| = 1(0-0) + 1(9+2) + 2(0-0) = 11$$

$$\therefore |A|I = 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

Now.

$$A_{11} = 0, A_{12} = -(9+2) = -11, A_{13} = 0$$
  
 $A_{21} = -(-3-0) = 3, A_{22} = 3-2 = 1, A_{23} = -(0+1) = -1$   
 $A_{31} = 2-0 = 2, A_{32} = -(-2-6) = 8, A_{33} = 0+3=3$ 

$$\therefore adjA = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$

Now,

Now,
$$A(adjA) = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0+0+0 & 9+0+2 & 6+0-6 \\ 0+0+0 & 3+0-3 & 2+0+9 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

Also,

$$(adjA) \cdot A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0+0+0 & 0+2+9 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

Hence, A(adjA) = (adjA)A = AI.

## Solution 5

Let 
$$A = \begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$$
.

we have,

$$|A| = 6 + 8 = 14$$

Now.

$$A_{11} = 3$$
,  $A_{12} = -4$ ,  $A_{21} = 2$ ,  $A_{22} = 2$ 

$$A_{11} = 3, A_{12} = -4, A_{21} = 2, A_{22} = 2$$
  

$$\therefore adjA = \begin{bmatrix} 3 & 2 \\ -4 & 2 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = \frac{1}{14} \begin{bmatrix} 3 & 2 \\ -4 & 2 \end{bmatrix}$$

Let 
$$A = \begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$
.

we have,

$$|A| = -2 + 15 = 13$$

Now,

$$A_{11} = 2$$
,  $A_{12} = 3$ ,  $A_{21} = -5$ ,  $A_{22} = -1$ 

$$\therefore adjA = \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adj A = \frac{1}{13} \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

## Solution 7

$$Let A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}.$$

We have,

$$|A| = 1(10-0)-2(0-0)+3(0-0)=10$$

Now,

$$A_{11} = 10 - 0 = 10, A_{12} = -(0 - 0) = 0, A_{13} = 0 - 0 = 0$$
  
 $A_{21} = -(10 - 0) = -10, A_{22} = 5 - 0 = 5, A_{23} = -(0 - 0) = 0$   
 $A_{31} = 8 - 6 = 2, A_{32} = -(4 - 0) = -4, A_{33} = 2 - 0 = 2$ 

$$\therefore adjA = \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = \frac{1}{10} \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$

$$Let A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}.$$

We have,

$$|A| = 1(-3-0)-0+0=-3$$

Now,

$$A_{11} = -3 - 0 = -3$$
,  $A_{12} = -(-3 - 0) = 3$ ,  $A_{13} = 6 - 15 = -9$   
 $A_{21} = -(0 - 0) = 0$ ,  $A_{22} = -1 - 0 = -1$ ,  $A_{23} = -(2 - 0) = -2$   
 $A_{31} = 0 - 0 = 0$ ,  $A_{32} = -(0 - 0) = 0$ ,  $A_{33} = 3 - 0 = 3$ 

$$\therefore adjA = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = -\frac{1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

Let 
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$$
.

We have,

$$|A| = 2(-1-0)-1(4-0)+3(8-7)$$

$$= 2(-1)-1(4)+3(1)$$

$$= -2-4+3$$

$$= -3$$

Now.

$$A_{11} = -1 - 0 = -1, A_{12} = -(4 - 0) = -4, A_{13} = 8 - 7 = 1$$
  
 $A_{21} = -(1 - 6) = 5, A_{22} = 2 + 21 = 23, A_{23} = -(4 + 7) = -11$   
 $A_{31} = 0 + 3 = 3, A_{32} = -(0 - 12) = 12, A_{33} = -2 - 4 = -6$ 

$$\therefore adjA = \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$
$$\therefore A^{-1} = \frac{1}{|A|}adjA = -\frac{1}{3} \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$

$$Let A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}.$$

By expanding along C<sub>1</sub>, we have:

$$|A| = 1(8-6)-0+3(3-4)=2-3=-1$$

Now,

$$A_{11} = 8 - 6 = 2$$
,  $A_{12} = -(0+9) = -9$ ,  $A_{13} = 0 - 6 = -6$   
 $A_{21} = -(-4+4) = 0$ ,  $A_{22} = 4 - 6 = -2$ ,  $A_{23} = -(-2+3) = -1$   
 $A_{31} = 3 - 4 = -1$ ,  $A_{32} = -(-3-0) = 3$ ,  $A_{33} = 2 - 0 = 2$ 

$$\therefore adjA = \begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix}$$

$$\therefore adjA = \begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA = -\begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$$

## Solution 11

Let 
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$$
.

$$|A| = 1(-\cos^2 \alpha - \sin^2 \alpha) = -(\cos^2 \alpha + \sin^2 \alpha) = -1$$

$$A_{11} = -\cos^2 \alpha - \sin^2 \alpha = -1, A_{12} = 0, A_{13} = 0$$

$$A_{21} = 0, A_{22} = -\cos \alpha, A_{23} = -\sin \alpha$$

$$A_{31} = 0, A_{32} = -\sin \alpha, A_{33} = \cos \alpha$$

$$\therefore adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos\alpha & -\sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix}$$

$$\therefore adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos\alpha & -\sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = -\begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos\alpha & -\sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & -\cos\alpha \end{bmatrix}$$

Let 
$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$
.

We have,

$$|A| = 15 - 14 = 1$$

Now,

$$A_{11} = 5, A_{12} = -2, A_{21} = -7, A_{22} = 3$$

$$\therefore adjA = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

Now, let 
$$B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
.

We have,

$$|B| = 54 - 56 = -2$$

$$\therefore adjB = \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix}$$

$$\therefore B^{-1} = \frac{1}{|B|} adj B = -\frac{1}{2} \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix} = \begin{bmatrix} -\frac{9}{2} & 4 \\ \frac{7}{2} & -3 \end{bmatrix}$$

Now,

$$B^{-1}A^{-1} = \begin{bmatrix} -\frac{9}{2} & 4\\ \frac{7}{2} & -3 \end{bmatrix} \begin{bmatrix} 5 & -7\\ -2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{45}{2} - 8 & \frac{63}{2} + 12\\ \frac{35}{2} + 6 & -\frac{49}{2} - 9 \end{bmatrix} = \begin{bmatrix} -\frac{61}{2} & \frac{87}{2}\\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix} \qquad \dots (1)$$

Then,

$$AB = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 18+49 & 24+63 \\ 12+35 & 16+45 \end{bmatrix}$$
$$= \begin{bmatrix} 67 & 87 \\ 47 & 61 \end{bmatrix}$$

Therefore, we have  $|AB| = 67 \times 61 - 87 \times 47 = 4087 - 4089 = -2$ . Also,

$$adj(AB) = \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$

$$\therefore (AB)^{-1} = \frac{1}{|AB|} adj(AB) = -\frac{1}{2} \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{61}{2} & \frac{87}{2} \\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix} \dots (2)$$

From (1) and (2), we have:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Hence, the given result is proved.

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

$$\therefore A^{2} - 5A + 7I$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & 0 \\ 0 & -7 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$Hence, A^{2} - 5A + 7I = O.$$

$$\therefore A \cdot A - 5A = -7I$$

$$\Rightarrow A \cdot A \left( A^{-1} \right) - 5AA^{-1} = -7IA^{-1} \qquad \qquad \text{[Post-multiplying by } A^{-1} \text{ as } |A| \neq 0 \text{]}$$

$$\Rightarrow A \left( AA^{-1} \right) - 5I = -7A^{-1}$$

$$\Rightarrow AI - 5I = -7A^{-1}$$

$$\Rightarrow AI^{-1} = -\frac{1}{7}(A - 5I)$$

$$\Rightarrow A^{-1} = -\frac{1}{7}(5I - A)$$

$$= \frac{1}{7} \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

$$\therefore A^{2} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 9+2 & 6+2 \\ 3+1 & 2+1 \end{bmatrix} = \begin{bmatrix} 11 & 8 \\ 4 & 3 \end{bmatrix}$$
Now,
$$A^{2} + aA + bI = O$$

$$\Rightarrow (AA) A^{-1} + aAA^{-1} + bIA^{-1} = O$$
[Post-multiplying]

$$\Rightarrow \left(AA\right)A^{-1} + aAA^{-1} + bIA^{-1} = O$$

$$(AA) A^{-1} + aAA^{-1} + bIA^{-1} = O$$
 [Post-multiplying by  $A^{-1}$  as  $|A| \neq 0$ ]

$$\Rightarrow A(AA^{-1}) + aI + b(IA^{-1}) = O$$

$$\Rightarrow AI + aI + bA^{-1} = O$$

$$\Rightarrow A + aI = -bA^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{b}(A + aI)$$

$$A^{-1} = \frac{1}{|A|} adjA = \frac{1}{1} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

We have:

$$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = -\frac{1}{b} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} = -\frac{1}{b} \begin{bmatrix} 3+a & 2 \\ 1 & 1+a \end{bmatrix} = \begin{bmatrix} \frac{-3-a}{b} & -\frac{2}{b} \\ -\frac{1}{b} & \frac{-1-a}{b} \end{bmatrix}$$

Comparing the corresponding elements of the two matrices, we have:

$$-\frac{1}{b} = -1 \Rightarrow b = 1$$

$$\frac{-3 - a}{b} = 1 \Rightarrow -3 - a = 1 \Rightarrow a = -4$$

Hence, -4 and 1 are the required values of a and b respectively.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1+1+2 & 1+2-1 & 1-3+3 \\ 1+2-6 & 1+4+3 & 1-6-9 \\ 2-1+6 & 2-2-3 & 2+3+9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 4+2+2 & 4+4-1 & 4-6+3 \\ -3+8-28 & -3+16+14 & -3-24-42 \\ 7-3+28 & 7-6-14 & 7+9+42 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix}$$

$$A^3 - 6A^2 + 5A + 11I$$

$$= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - 6 \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} + 5 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} + \begin{bmatrix} 5 & 5 & 5 \\ 5 & 10 & -15 \\ 10 & -5 & 15 \end{bmatrix} + \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

$$= \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O$$

Thus,  $A^3 - 6A^2 + 5A + 11I = O$ .

Now,

$$A^3 - 6A^2 + 5A + 11I = 0$$

$$\Rightarrow (AAA)A^{-1} - 6(AA)A^{-1} + 5AA^{-1} + 11IA^{-1} = 0$$
 Post-multiplying by  $A^{-1}$  as  $|A| \neq 0$ 

$$\Rightarrow AA(AA^{-1}) - 6A(AA^{-1}) + 5(AA^{-1}) = -11(IA^{-1})$$

$$\Rightarrow A^2 - 6A + 5I = -11A^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{11} (A^2 - 6A + 5I)$$
 ...(1)

Now,

$$A^{2}-6A+5I$$

$$=\begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} - 6\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} + 5\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} - \begin{bmatrix} 6 & 6 & 6 \\ 6 & 12 & -18 \\ 12 & -6 & 18 \end{bmatrix} + \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$=\begin{bmatrix} 9 & 2 & 1 \\ -3 & 13 & -14 \\ 7 & -3 & 19 \end{bmatrix} - \begin{bmatrix} 6 & 6 & 6 \\ 6 & 12 & -18 \\ 12 & -6 & 18 \end{bmatrix}$$

$$=\begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix}$$

From equation (1), we have:

$$A^{-1} = -\frac{1}{11} \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4+1+1 & -2-2-1 & 2+1+2 \\ -2-2-1 & 1+4+1 & -1-2-2 \\ 2+1+2 & -1-2-2 & 1+1+4 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}$$

$$A^{3} = A^{2}A = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 12+5+5 & -6-10-5 & 6+5+10 \\ -10-6-5 & 5+12+5 & -5-6-10 \\ 10+5+6 & -5-10-6 & 5+5+12 \end{bmatrix}$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix}$$

Now.

$$A^3 - 6A^2 + 9A - 4I$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix} - 6 \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} + 9 \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix} - \begin{bmatrix} 36 & -30 & 30 \\ -30 & 36 & -30 \\ 30 & -30 & 36 \end{bmatrix} + \begin{bmatrix} 18 & -9 & 9 \\ -9 & 18 & -9 \\ 9 & -9 & 18 \end{bmatrix} - \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 40 & -30 & 30 \\ -30 & 40 & -30 \\ 30 & -30 & 40 \end{bmatrix} - \begin{bmatrix} 40 & -30 & 30 \\ -30 & 40 & -30 \\ 30 & -30 & 40 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A^3 - 6A^2 + 9A - 4I = 0$$

Now,

$$A^3 - 6A^2 + 9A - 4I = O$$

$$\Rightarrow (AAA)A^{-1} - 6(AA)A^{-1} + 9AA^{-1} - 4IA^{-1} = 0$$

Post-multiplying by 
$$A^{-1}$$
 as  $|A| \neq 0$ 

$$\Rightarrow AA(AA^{-1}) - 6A(AA^{-1}) + 9(AA^{-1}) = 4(IA^{-1})$$
  
\Rightarrow AAI - 6AI + 9I = 4A^{-1}

$$\Rightarrow A^2 - 6A + 9I = 4A^{-1}$$

$$\Rightarrow A^{-1} = \frac{1}{4} (A^2 - 6A + 9I)$$
 ...(1)

$$A^2 - 6A + 9I$$

$$\begin{bmatrix}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{bmatrix} - 6 \begin{bmatrix}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{bmatrix} + 9 \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$= \begin{bmatrix}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{bmatrix} - \begin{bmatrix}
12 & -6 & 6 \\
-6 & 12 & -6 \\
6 & -6 & 12
\end{bmatrix} + \begin{bmatrix}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{bmatrix}$$

$$= \begin{bmatrix}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{bmatrix}$$

From equation (1), we have:

$$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

We know that,

$$(adjA) A = |A|I = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}$$

$$\Rightarrow |(adjA) A| = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}$$

$$\Rightarrow |adjA||A| = |A|^{3} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = |A|^{3} (I)$$

$$\therefore |adjA| = |A|^{2}$$

Hence, the correct answer is B.

## Solution 18

Since A is an invertible matrix,  $A^{-1}$  exists and  $A^{-1} = \frac{1}{|A|}adjA$ .

As matrix 
$$A$$
 is of order 2, let  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ .  
Then,  $|A| = ad - bc$  and  $adjA = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ .

Now,

$$A^{-1} = \frac{1}{|A|} a dj A = \begin{bmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{bmatrix}$$

$$\therefore |A^{-1}| = \begin{vmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix} = \frac{1}{|A|^2} \begin{vmatrix} d & -b \\ -c & a \end{vmatrix} = \frac{1}{|A|^2} (ad - bc) = \frac{1}{|A|^2} \cdot |A| = \frac{1}{|A|}$$

$$\therefore \det(A^{-1}) = \frac{1}{\det(A)}$$

Hence, the correct answer is B.

# Chapter 4 - Determinants Exercise Ex. 4.6 Solution 1

The given system of equations is:

$$x + 2y = 2$$

$$2x + 3y = 3$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

Now.

$$|A| = 1(3) - 2(2) = 3 - 4 = -1 \neq 0$$

· A is non-singular.

Therefore,  $A^{-1}$  exists.

Hence, the given system of equations is consistent.

#### Solution 2

The given system of equations is:

$$2x - y = 5$$

$$x + y = 4$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$
,  $X = \begin{bmatrix} x \\ z \end{bmatrix}$  and  $B = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ .

Now,

$$|A| = 2(1) - (-1)(1) = 2 + 1 = 3 \neq 0$$

· A is non-singular.

Therefore,  $A^{-1}$  exists.

Hence, the given system of equations is consistent.

The given system of equations is:

$$x + 3y = 5$$

$$2x + 6y = 8$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 8 \end{bmatrix}.$$

Now,

$$|A| = 1(6) - 3(2) = 6 - 6 = 0$$

∴ A is a singular matrix.

Now.

$$(adjA) = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$$

$$(adjA)B = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 30 - 24 \\ -10 + 8 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix} \neq O$$

Thus, the **Solution** of the given system of equations does not exist. Hence, the system of equations is inconsistent

The given system of equations is:

$$x+y+z=1$$

$$2x + 3y + 2z = 2$$

$$ax + ay + 2az = 4$$

This system of equations can be written in the form AX = B, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}.$$

Now.

$$|A| = 1(6a-2a)-1(4a-2a)+1(2a-3a)$$
$$= 4a-2a-a=4a-3a=a\neq 0$$

• A is non-singular.

Therefore,  $A^{-1}$  exists.

Hence, the given system of equations is consistent

The given system of equations is:

$$3x - y - 2z = 2$$

$$2y - z = -1$$

$$3x - 5y = 3$$

This system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.$$

Now.

$$|A| = 3(0-5)-0+3(1+4)=-15+15=0$$

∴ A is a singular matrix.

Now,

$$(adjA) = \begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix}$$

$$\therefore (adjA)B = \begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10 - 10 + 15 \\ -6 - 6 + 9 \\ -12 - 12 + 18 \end{bmatrix} = \begin{bmatrix} -5 \\ -3 \\ -6 \end{bmatrix} \neq O$$

Thus, the **Solution** of the given system of equations does not exist. Hence, the system of equations is inconsistent

The given system of equations is:

$$5x - y + 4z = 5$$

$$2x + 3y + 5z = 2$$

$$5x - 2y + 6z = -1$$

This system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}.$$

Now,

$$|A| = 5(18+10)+1(12-25)+4(-4-15)$$

$$= 5(28)+1(-13)+4(-19)$$

$$= 140-13-76$$

$$= 51 \neq 0$$

A is non-singular.

Therefore,  $A^{-1}$  exists.

Hence, the given system of equations is consistent

$$A = \begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 5 \end{bmatrix}.$$
Now, 
$$|A| = 15 - 14 = 1 \neq 0.$$

Thus, A is non-singular. Therefore, its inverse exists.

Now,

$$A^{-1} = \frac{1}{|A|} (adjA)$$

$$\therefore A^{-1} = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 - 10 \\ -28 + 25 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
Hence  $x = 2$  and  $y = -3$ 

Hence, x = 2 and y = -3.

$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}.$$
Now,
$$|A| = 8 + 3 = 11 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now,

$$A^{-1} = \frac{1}{|A|} adjA = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -8+3 \\ 6+6 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -5 \\ 12 \end{bmatrix} = \begin{bmatrix} \frac{5}{11} \\ \frac{12}{11} \end{bmatrix}$$
Hence,  $x = \frac{-5}{11}$  and  $y = \frac{12}{11}$ .

$$A = \begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 \\ 7 \end{bmatrix}.$$
Now,

 $|A| = -20 + 9 = -11 \neq 0$ 

Thus, A is non-singular. Therefore, its inverse exists.

Now.

$$A^{-1} = \frac{1}{|A|} (adjA) = -\frac{1}{11} \begin{bmatrix} -5 & 3 \\ -3 & 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{11} \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 & -3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 15 - 21 \\ 9 - 28 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -6 \\ -19 \end{bmatrix} = \begin{bmatrix} -\frac{6}{11} \\ \frac{19}{11} \end{bmatrix}$$
Hence,  $x = \frac{-6}{11}$  and  $y = \frac{-19}{11}$ .

# Solution 10

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and  $B = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ .  
Now,

$$|A| = 10 - 6 = 4 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{4} \begin{bmatrix} 2 & -2 \\ -3 & 5 \end{bmatrix}$$

$$X = A^{-1}B$$

$$X = \frac{1}{4} \begin{bmatrix} 2 & -2 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$X = \frac{1}{4} \begin{bmatrix} -4 \\ 16 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{bmatrix}, \ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ \frac{3}{2} \\ 9 \end{bmatrix}.$$

Now.

$$|A| = 2(10+3)-1(-5-3)+0=2(13)-1(-8)=26+8=34 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now, 
$$A_{11} = 13$$
,  $A_{12} = 5$ ,  $A_{13} = 3$   
 $A_{21} = 8$ ,  $A_{22} = -10$ ,  $A_{23} = -6$   
 $A_{31} = 1$ ,  $A_{32} = 3$ ,  $A_{33} = -5$   

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{34} \begin{bmatrix} 13 & 8 & 1\\ 5 & -10 & 3\\ 3 & -6 & -5 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{34} \begin{bmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{3}{2} \\ 9 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{34} \begin{bmatrix} 13 + 12 + 9 \\ 5 - 15 + 27 \\ 3 - 9 - 45 \end{bmatrix}$$

$$= \frac{1}{34} \begin{bmatrix} 34\\17\\-51 \end{bmatrix} = \begin{bmatrix} 1\\\frac{1}{2}\\-\frac{3}{2} \end{bmatrix}$$

Hence, 
$$x = 1$$
,  $y = \frac{1}{2}$ , and  $z = -\frac{3}{2}$ .

The given system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}.$$

Now,

$$|A| = 1(1+3)+1(2+3)+1(2-1)=4+5+1=10 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now, 
$$A_{11} = 4$$
,  $A_{12} = -5$ ,  $A_{13} = 1$   
 $A_{21} = 2$ ,  $A_{22} = 0$ ,  $A_{23} = -2$   
 $A_{31} = 2$ ,  $A_{32} = 5$ ,  $A_{33} = 3$   

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 16 + 0 + 4 \\ -20 + 0 + 10 \\ 4 + 0 + 6 \end{bmatrix}$$

$$= \frac{1}{10} \begin{bmatrix} 20 \\ -10 \\ 10 \end{bmatrix}$$

Hence, x = 2, y = -1, and z = 1.

#### Solution 13

The given system of equations can be written in the form AX = B, where

$$A = \begin{bmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}.$$

Now.

$$|A| = 2(4+1)-3(-2-3)+3(-1+6)=2(5)-3(-5)+3(5)=10+15+15=40\neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now, 
$$A_{11} = 5$$
,  $A_{12} = 5$ ,  $A_{13} = 5$   
 $A_{21} = 3$ ,  $A_{22} = -13$ ,  $A_{23} = 11$   
 $A_{31} = 9$ ,  $A_{32} = 1$ ,  $A_{33} = -7$   

$$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} 25 - 12 + 27 \\ 25 + 52 + 3 \\ 25 - 44 - 21 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$$

Hence, x = 1, y = 2, and z = -1.

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}.$$

Now.

$$|A| = 1(12-5)+1(9+10)+2(-3-8)=7+19-22=4 \neq 0$$

Thus, A is non-singular. Therefore, its inverse exists.

Now, 
$$A_{11} = 7$$
,  $A_{12} = -19$ ,  $A_{13} = -11$   
 $A_{21} = 1$ ,  $A_{22} = -1$ ,  $A_{23} = -1$   
 $A_{31} = -3$ ,  $A_{32} = 11$ ,  $A_{33} = 7$   

$$A^{-1} = \frac{1}{|A|}(adjA) = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 49 - 5 - 36 \\ -133 + 5 + 132 \\ -77 + 5 + 84 \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} 8 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Hence, x = 2, y = 1, and z = 3.

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$

$$\therefore |A| = 2(-4+4) + 3(-6+4) + 5(3-2) = 0 - 6 + 5 = -1 \neq 0$$

$$\text{Now, } A_{11} = 0, A_{12} = 2, A_{13} = 1$$

$$A_{21} = -1, A_{22} = -9, A_{23} = -5$$

$$A_{31} = 2, A_{32} = 23, A_{33} = 13$$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA) = -\begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}$$
...(1)

...(1)

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}.$$

The solution of the system of equations is given by  $X = A^{-1}B$ .

$$X = A^{-1}B$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} \qquad [Using (1)]$$

$$= \begin{bmatrix} 0 - 5 + 6 \\ -22 - 45 + 69 \\ -11 - 25 + 39 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Hence, x = 1, y = 2, and z = 3.

Let the cost of onions, wheat, and rice per kg be Rs x, Rs y, and Rs z respectively.

Then, the given situation can be represented by a system of equations as:

$$4x + 3y + 2z = 60$$
$$2x + 4y + 6z = 90$$
$$6x + 2y + 3z = 70$$

This system of equations can be written in the form of AX = B, where

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}.$$

$$|A| = 4(12-12) - 3(6-36) + 2(4-24) = 0 + 90 - 40 = 50 \neq 0$$

$$Now, \quad A_{11} = 0, A_{12} = 30, A_{13} = -20$$

$$A_{21} = -5, A_{22} = 0, A_{23} = 10$$

$$A_{31} = 10, A_{32} = -20, A_{33} = 10$$

$$A^{-1} = \frac{1}{|A|} \text{ adjA}$$

$$A^{-1} = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$

$$X = A^{-1}B = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix} \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$$

$$X = \frac{1}{50} \begin{bmatrix} 250 \\ 400 \\ 400 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 8 \end{bmatrix}$$

$$x = 5$$
,  $y = 8$  and  $z = 8$ 

Hence, the cost of onion per kg is Rs. 5, the cost of wheat per kg is Rs. 8 and the cost of rice per kg is Rs. 8.

# Chapter 4 - Determinants Exercise Misc. Ex. Solution 1

$$\Delta = \begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix}$$

$$= x(-x^2 - 1) - \sin\theta(-x\sin\theta - \cos\theta) + \cos\theta(-\sin\theta + x\cos\theta)$$

$$= -x^3 - x + x\sin^2\theta + \sin\theta\cos\theta - \sin\theta\cos\theta + x\cos^2\theta$$

$$= -x^3 - x + x(\sin^2\theta + \cos^2\theta)$$

$$= -x^3 - x + x$$

$$= -x^3 \text{ (Independent of } \theta \text{)}$$

Hence,  $\Delta$  is independent of  $\theta$ .

#### Solution 2

L.H.S. = 
$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ca \\ c & c^2 & ab \end{vmatrix}$$

$$= \frac{1}{abc} \begin{vmatrix} a^2 & a^3 & abc \\ b^2 & b^3 & abc \\ c^2 & c^3 & abc \end{vmatrix}$$

$$= \frac{1}{abc} \cdot abc \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$
[Applying  $C_1 \leftrightarrow C_3$  and  $C_2 \leftrightarrow C_3$ ]
$$= R.H.S.$$

Hence, the given result is proved.

$$\Delta = \begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$$

Expanding along C3, we have:

$$\Delta = -\sin\alpha \left( -\sin\alpha \sin^2\beta - \cos^2\beta \sin\alpha \right) + \cos\alpha \left( \cos\alpha \cos^2\beta + \cos\alpha \sin^2\beta \right)$$

$$= \sin^2\alpha \left( \sin^2\beta + \cos^2\beta \right) + \cos^2\alpha \left( \cos^2\beta + \sin^2\beta \right)$$

$$= \sin^2\alpha \left( 1 \right) + \cos^2\alpha \left( 1 \right)$$

$$= 1$$

#### Solution 4

$$\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + R_2 + R_3$ , we have:

$$\Delta = \begin{vmatrix} 2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

$$= 2(a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

Applying  $C_2 \rightarrow C_2 - C_1$  and  $C_3 \rightarrow C_3 - C_1$ , we have:

$$\Delta = 2(a+b+c)\begin{vmatrix} 1 & 0 & 0 \\ c+a & b-c & b-a \\ a+b & c-a & c-b \end{vmatrix}$$

Expanding along R1, we have:

$$\Delta = 2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)]$$

$$= 2(a+b+c)[-b^2-c^2+2bc-bc+ba+ac-a^2]$$

$$= 2(a+b+c)[ab+bc+ca-a^2-b^2-c^2]$$

It is given that  $\Delta = 0$ .

$$(a+b+c)[ab+bc+ca-a^2-b^2-c^2]=0$$
  
 $\Rightarrow$  Either  $a+b+c=0$ , or  $ab+bc+ca-a^2-b^2-c^2=0$ .

Now.

$$ab + bc + ca - a^2 - b^2 - c^2 = 0$$

$$\Rightarrow -2ab - 2bc - 2ca + 2a^2 + 2b^2 + 2c^2 = 0$$

$$\Rightarrow (a-b)^2 + (b-c)^2 + (c-a)^2 = 0$$

$$\Rightarrow (a-b)^2 = (b-c)^2 = (c-a)^2 = 0$$

$$\Rightarrow (a-b) = (b-c) = (c-a) = 0$$

$$\Rightarrow a = b = c$$

$$[(a-b)^2, (b-c)^2, (c-a)^2 \text{ are non-negative}]$$

Hence, if  $\Delta = 0$ , then either a + b + c = 0 or a = b = c.

$$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$

Applying  $R_1 \rightarrow R_1 + R_2 + R_3$ , we get:

$$\begin{vmatrix} 3x+a & 3x+a & 3x+a \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$

$$\Rightarrow (3x+a)\begin{vmatrix} 1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$
Applying  $C_2 \rightarrow C_2 - C_1$  and  $C_3 \rightarrow C_3 - C_1$ , we have:

$$\begin{pmatrix}
3x+a \\
x \\
x \\
0
\end{pmatrix}
\begin{vmatrix}
1 & 0 & 0 \\
x & a & 0 \\
0 & a
\end{vmatrix} = 0$$

Expanding along R<sub>1</sub>, we have:

$$(3x+a)[1\times a^2] = 0$$
  
$$\Rightarrow a^2(3x+a) = 0$$

But  $a \neq 0$ .

Therefore, we have:

$$3x + a = 0$$

$$\Rightarrow x = -\frac{a}{3}$$

$$\Delta = \begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix}$$

Taking out common factors a, b, and c from  $C_1$ ,  $C_2$ , and  $C_3$ , we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ b & b+c & c \end{vmatrix}$$

Applying  $R_2 \rightarrow R_2 - R_1$  and  $R_3 \rightarrow R_3 - R_1$ , we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ b & b-c & -c \\ b-a & b & -a \end{vmatrix}$$

Applying  $R_2 \rightarrow R_2 + R_1$ , we have:

$$\Delta = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ b-a & b & -a \end{vmatrix}$$

Applying  $R_3 \rightarrow R_3 + R_2$ , we have:

$$\Delta = abc\begin{vmatrix} a & c & a+c \\ a+b & b & a \\ 2b & 2b & 0 \end{vmatrix}$$

$$= 2ab^2c\begin{vmatrix} a & c & a+c \\ a+b & b & a \\ 1 & 1 & 0 \end{vmatrix}$$

Applying  $C_2 \rightarrow C_2 - C_1$ , we have:

$$\Delta = 2ab^2c \begin{vmatrix} a & c-a & a+c \\ a+b & -a & a \\ 1 & 0 & 0 \end{vmatrix}$$

Expanding along R<sub>3</sub>, we have:

$$\Delta = 2ab^{2}c \left[ a(c-a) + a(a+c) \right]$$

$$= 2ab^{2}c \left[ ac - a^{2} + a^{2} + ac \right]$$

$$= 2ab^{2}c \left( 2ac \right)$$

$$= 4a^{2}b^{2}c^{2}$$

Hence, the given result is proved.

We know that  $(AB)^{-1} = B^{-1}A^{-1}$ .

$$B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

$$\therefore |B| = 1 \times 3 - 2 \times (-1) - 2(2) = 3 + 2 - 4 = 5 - 4 = 1$$
Now,  $A_{11} = 3$ ,  $A_{12} = 1$ ,  $A_{13} = 2$ 

$$A_{21} = 2$$
,  $A_{22} = 1$ ,  $A_{23} = 2$ 

$$A_{31} = 6$$
,  $A_{32} = 2$ ,  $A_{33} = 5$ 

$$\therefore adjB = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$

Now,

$$B^{-1} = \frac{1}{|B|} \cdot adjB$$

$$\therefore B^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$

$$\therefore (AB)^{-1} = B^{-1}A^{-1}$$

$$= \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 9 - 30 + 30 & -3 + 12 - 12 & 3 - 10 + 12 \\ 3 - 15 + 10 & -1 + 6 - 4 & 1 - 5 + 4 \\ 6 - 30 + 25 & -2 + 12 - 10 & 2 - 10 + 10 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$
  
 
$$\therefore |A| = 1(15-1) + 2(-10-1) + 1(-2-3) = 14 - 22 - 5 = -13$$

Now, 
$$A_{11} = 14$$
,  $A_{12} = 11$ ,  $A_{13} = -5$   
 $A_{21} = 11$ ,  $A_{22} = 4$ ,  $A_{23} = -3$ 

$$A_{31} = -5, A_{32} = -3, A_{13} = -1$$

$$\therefore adjA = \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} (adjA)$$

$$= -\frac{1}{13} \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} -14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1 \end{bmatrix}$$

(i)

$$|adjA| = 14(-4-9)-11(-11-15)-5(-33+20)$$
$$= 14(-13)-11(-26)-5(-13)$$
$$= -182+286+65=169$$

We have,

$$adj(adjA) = \begin{bmatrix} -13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65 \end{bmatrix}$$

$$\therefore [adjA]^{-1} = \frac{1}{|adjA|} (adj(adjA))$$

$$= \frac{1}{169} \begin{bmatrix} -13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65 \end{bmatrix}$$

$$= \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix}$$

$$= \frac{1}{13} \begin{bmatrix} -14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{14}{13} & \frac{11}{13} & \frac{5}{13} \\ \frac{11}{13} & \frac{4}{13} & \frac{3}{13} \\ \frac{5}{13} & \frac{3}{13} & \frac{1}{13} \end{bmatrix}$$

$$\therefore adj(A^{-1}) = \begin{bmatrix} -\frac{4}{169} - \frac{9}{169} & -\left(-\frac{11}{169} - \frac{15}{169}\right) & -\frac{33}{169} + \frac{20}{169} \\ -\left(-\frac{11}{169} - \frac{15}{169}\right) & -\left(-\frac{42}{169} + \frac{55}{169}\right) & \frac{56}{169} - \frac{121}{169} \end{bmatrix}$$

$$= \frac{1}{169} \begin{bmatrix} -13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix}$$

Hence,  $[adjA]^{-1} = adj(A^{-1})$ .

We have shown that:

$$A^{-1} = \frac{1}{13} \begin{bmatrix} -14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1 \end{bmatrix}$$
And,  $adjA^{-1} = \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix}$ 

Now.

$$|A^{-1}| = \left(\frac{1}{13}\right)^{3} \left[-14 \times (-13) + 11 \times (-26) + 5 \times (-13)\right] = \left(\frac{1}{13}\right)^{3} \times (-169) = -\frac{1}{13}$$

$$\therefore (A^{-1})^{-1} = \frac{adjA^{-1}}{|A^{-1}|} = \frac{1}{\left(-\frac{1}{13}\right)} \times \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix} = A$$

$$\therefore (A^{-1})^{-1} = A$$

$$\Delta = \begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + R_2 + R_3$ , we have:

$$\Delta = \begin{vmatrix} 2(x+y) & 2(x+y) & 2(x+y) \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

$$= 2(x+y) \begin{vmatrix} 1 & 1 & 1 \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

Applying  $C_2 \rightarrow C_2 - C_1$  and  $C_3 \rightarrow C_3 - C_1$ , we have:

$$\Delta = 2(x+y) \begin{vmatrix} 1 & 0 & 0 \\ y & x & x-y \\ x+y & -y & -x \end{vmatrix}$$

Expanding along R1, we have:

$$\Delta = 2(x+y)[-x^2 + y(x-y)]$$
  
= -2(x+y)(x^2 + y^2 - yx)  
= -2(x^3 + y^3)

### Solution 10

$$\Delta = \begin{vmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{vmatrix}$$

Applying  $R_2 \rightarrow R_2 - R_1$  and  $R_3 \rightarrow R_3 - R_1$ , we have:

$$\Delta = \begin{vmatrix} 1 & x & y \\ 0 & y & 0 \\ 0 & 0 & x \end{vmatrix}$$

Expanding along C1, we have:

$$\Delta = 1(xy - 0) = xy$$

$$\Delta = \begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix}$$

Applying 
$$R_2 \to R_2 - R_1$$
 and  $R_3 \to R_3 - R_1$ , we have:  

$$\Delta = \begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ \beta - \alpha & \beta^2 - \alpha^2 & \alpha - \beta \\ \gamma - \alpha & \gamma^2 - \alpha^2 & \alpha - \gamma \end{vmatrix}$$

$$= (\beta - \alpha)(\gamma - \alpha)\begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ 1 & \beta + \alpha & -1 \\ 1 & \gamma + \alpha & -1 \end{vmatrix}$$

Applying  $R_3 \rightarrow R_3 - R_2$ , we have:

$$\Delta = (\beta - \alpha)(\gamma - \alpha)\begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ 1 & \beta + \alpha & -1 \\ 0 & \gamma - \beta & 0 \end{vmatrix}$$

Expanding along R3, we have:

$$\Delta = (\beta - \alpha)(\gamma - \alpha) \left[ -(\gamma - \beta)(-\alpha - \beta - \gamma) \right]$$

$$= (\beta - \alpha)(\gamma - \alpha)(\gamma - \beta)(\alpha + \beta + \gamma)$$

$$= (\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)(\alpha + \beta + \gamma)$$

Hence, the given result is proved.

$$\Delta = \begin{vmatrix} x & x^2 & 1 + px^3 \\ y & y^2 & 1 + py^3 \\ z & z^2 & 1 + pz^3 \end{vmatrix}$$

Applying  $R_2 \rightarrow R_2 - R_1$  and  $R_3 \rightarrow R_3 - R_1$ , we have:

$$\Delta = \begin{vmatrix} x & x^2 & 1 + px^3 \\ y - x & y^2 - x^2 & p(y^3 - x^3) \\ z - x & z^2 - x^2 & p(z^3 - x^3) \end{vmatrix}$$

$$= (y - x)(z - x) \begin{vmatrix} x & x^2 & 1 + px^3 \\ 1 & y + x & p(y^2 + x^2 + xy) \\ 1 & z + x & p(z^2 + x^2 + xz) \end{vmatrix}$$

Applying  $R_3 \rightarrow R_3 - R_2$ , we have

$$\Delta = (y-x)(z-x)\begin{vmatrix} x & x^2 & 1+px^3 \\ 1 & y+x & p(y^2+x^2+xy) \\ 0 & z-y & p(z-y)(x+y+z) \end{vmatrix}$$

$$= (y-x)(z-x)(z-y)\begin{vmatrix} x & x^2 & 1+px^3 \\ 1 & y+x & p(y^2+x^2+xy) \\ 0 & 1 & p(x+y+z) \end{vmatrix}$$

Expanding along R3, we have:

$$\Delta = (x-y)(y-z)(z-x)\Big[(-1)(p)(xy^2+x^3+x^2y)+1+px^3+p(x+y+z)(xy)\Big]$$

$$= (x-y)(y-z)(z-x)\Big[-pxy^2-px^3-px^2y+1+px^3+px^2y+pxy^2+pxyz\Big]$$

$$= (x-y)(y-z)(z-x)(1+pxyz)$$

Hence, the given result is proved.

$$\Delta = \begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix}$$

Applying  $C_1 \rightarrow C_1 + C_2 + C_3$ , we have:

$$\Delta = \begin{vmatrix} a+b+c & -a+b & -a+c \\ a+b+c & 3b & -b+c \\ a+b+c & -c+b & 3c \end{vmatrix}$$

$$= (a+b+c) \begin{vmatrix} 1 & -a+b & -a+c \\ 1 & 3b & -b+c \\ 1 & -c+b & 3c \end{vmatrix}$$
Applying  $R_2 \to R_2 - R_1$  and  $R_3 \to R_3 - R_1$ , we have:

$$\Delta = (a+b+c)\begin{vmatrix} 1 & -a+b & -a+c \\ 0 & 2b+a & a-b \\ 0 & a-c & 2c+a \end{vmatrix}$$

Expanding along C1, we have:

$$\Delta = (a+b+c)[(2b+a)(2c+a)-(a-b)(a-c)]$$

$$= (a+b+c)[4bc+2ab+2ac+a^2-a^2+ac+ba-bc]$$

$$= (a+b+c)(3ab+3bc+3ac)$$

$$= 3(a+b+c)(ab+bc+ca)$$

Hence, the given result is proved.

$$\Delta = \begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix}$$
Applying P \( \rightarrow \text{P} \) \( \rightarrow \text{P} \) and P \( \rightarrow \text{P} \)

Applying  $R_2 \rightarrow R_2 - 2R_1$  and  $R_3 \rightarrow R_3 - 3R_1$ , we have:

$$\Delta = \begin{vmatrix} 1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 3 & 7+3p \end{vmatrix}$$

Applying  $R_3 \rightarrow R_3 - 3R_2$ , we have:

$$\Delta = \begin{vmatrix} 1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 0 & 1 \end{vmatrix}$$

Expanding along C1, we have:

$$\Delta = 1 \begin{vmatrix} 1 & 2+p \\ 0 & 1 \end{vmatrix} = 1(1-0) = 1$$

Hence, the given result is proved.

### Solution 15

$$\Delta = \begin{vmatrix} \sin \alpha & \cos \alpha & \cos(\alpha + \delta) \\ \sin \beta & \cos \beta & \cos(\beta + \delta) \\ \sin \gamma & \cos \gamma & \cos(\gamma + \delta) \end{vmatrix}$$

$$= \frac{1}{\sin \delta \cos \delta} \begin{vmatrix} \sin \alpha \sin \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta - \sin \alpha \sin \delta \\ \sin \beta \sin \delta & \cos \beta \cos \delta & \cos \beta \cos \delta - \sin \beta \sin \delta \\ \sin \gamma \sin \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta - \sin \gamma \sin \delta \end{vmatrix}$$

Applying  $C_1 \rightarrow C_1 + C_3$ , we have:

$$\Delta = \frac{1}{\sin \delta \cos \delta} \begin{vmatrix} \cos \alpha \cos \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta - \sin \alpha \sin \delta \\ \cos \beta \cos \delta & \cos \beta \cos \delta & \cos \beta \cos \delta - \sin \beta \sin \delta \\ \cos \gamma \cos \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta - \sin \gamma \sin \delta \end{vmatrix}$$

Here, two columns C<sub>1</sub> and C<sub>2</sub> are identical.

$$\Delta = 0$$
.

Hence proved

Let 
$$\frac{1}{x} = p, \frac{1}{v} = q, \frac{1}{z} = r.$$

Then the given system of equations is as follows:

$$2p + 3q + 10r = 4$$

$$4p-6q+5r=1$$

$$6p + 9q - 20r = 2$$

This system can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}, X = \begin{bmatrix} p \\ q \\ r \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}.$$

Now,

$$|A| = 2(120 - 45) - 3(-80 - 30) + 10(36 + 36)$$
$$= 150 + 330 + 720$$
$$= 1200$$

Thus, A is non-singular. Therefore, its inverse exists.

Now,

$$A_{11} = 75, A_{12} = 110, A_{13} = 72$$

$$A_{21} = 150, A_{22} = -100, A_{23} = 0$$

$$A_{31} = 75$$
,  $A_{32} = 30$ ,  $A_{33} = -24$ 

$$A^{-1} = \frac{1}{|A|} adjA$$

$$= \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$$

Now,

$$X = A^{-1}B$$

$$\Rightarrow \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$
$$= \frac{1}{1200} \begin{bmatrix} 300 + 150 + 150 \\ 440 - 100 + 60 \\ 288 + 0 - 48 \end{bmatrix}$$
$$\begin{bmatrix} \frac{1}{7} \end{bmatrix}$$

$$= \frac{1}{1200} \begin{bmatrix} 600 \\ 400 \\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

:. 
$$p = \frac{1}{2}$$
,  $q = \frac{1}{3}$ , and  $r = \frac{1}{5}$ 

Hence, x = 2, y = 3, and z = 5.

$$\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix}$$

$$= \begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+(a+c) \\ x+4 & x+5 & x+2c \end{vmatrix}$$
(2b = a+c as a, b, and c are in A.P.)

Applying  $R_1 \rightarrow R_1 - R_2$  and  $R_3 \rightarrow R_3 - R_2$ , we have:

$$\Delta = \begin{vmatrix} -1 & -1 & a-c \\ x+3 & x+4 & x+(a+c) \\ 1 & 1 & c-a \end{vmatrix}$$

Applying  $R_1 \rightarrow R_1 + R_3$ , we have:

$$\Delta = \begin{vmatrix} 0 & 0 & 0 \\ x+3 & x+4 & x+a+c \\ 1 & 1 & c-a \end{vmatrix}$$

Here, all the elements of the first row  $(R_1)$  are zero.

Hence, we have  $\Delta = 0$ .

The correct answer is A.

$$A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$
$$\therefore |A| = x(yz - 0) = xyz \neq 0$$

Now, 
$$A_{11} = yz$$
,  $A_{12} = 0$ ,  $A_{13} = 0$   
 $A_{21} = 0$ ,  $A_{22} = xz$ ,  $A_{23} = 0$   
 $A_{31} = 0$ ,  $A_{32} = 0$ ,  $A_{33} = xy$   

$$\therefore adjA = \begin{bmatrix} yz & 0 & 0 \\ 0 & xz & 0 \\ 0 & 0 & xy \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} adjA$$

$$= \frac{1}{xyz} \begin{bmatrix} yz & 0 & 0 \\ 0 & xz & 0 \\ 0 & 0 & xy \end{bmatrix}$$

$$= \begin{bmatrix} \frac{yz}{xyz} & 0 & 0 \\ 0 & \frac{xz}{xyz} & 0 \\ 0 & 0 & \frac{xy}{xyz} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{x} & 0 & 0 \\ 0 & \frac{1}{y} & 0 \\ 0 & 0 & \frac{1}{z} \end{bmatrix} = \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$$

The correct answer is A.

$$A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$$

$$\therefore |A| = 1(1 + \sin^2 \theta) - \sin \theta (-\sin \theta + \sin \theta) + 1(\sin^2 \theta + 1)$$

$$= 1 + \sin^2 \theta + \sin^2 \theta + 1$$

$$= 2 + 2\sin^2 \theta$$

$$= 2(1 + \sin^2 \theta)$$
Now,  $0 \le \theta \le 2\pi$ 

$$\Rightarrow 0 \le \sin \theta \le 1$$

$$\Rightarrow 0 \le \sin^2 \theta \le 1$$

$$\Rightarrow 1 \le 1 + \sin^2 \theta \le 2$$

$$\Rightarrow 2 \le 2(1 + \sin^2 \theta) \le 4$$

$$\therefore \operatorname{Det}(A) \in [2, 4]$$

The correct answer is D.