Thermal Measurements of Icy Lunar Regolith Simulant

George Johnson
Research Engineer – Planetary Surface Technology Development Lab
June 8, 2023

This work is supported by a Lunar Surface Technology Research (LuSTR) grant from NASA's Space Technology Research Grants Program: 80NSSC21K0769

PHCP Project Introduction

Percussive Hot Cone Penetrometer and Ground Penetrating Radar

- GPR
 - Location of larger ice deposits
- Geotechnical Data
 - Cone surface pressure & load
 - o Impact loads
 - Measurement of depth displacement
- Thermal Data
 - Vertical and lateral quantification of volatiles
 - o Properties of desiccated regolith

PHCP Thermal Measurement Objectives

SPACE RESOURCES ROUNDTABLE

Atmospheric Testing

- Determine size of heat affected zone
- Thermal properties of various wt.% mixed water and ice samples
- Experimental data for thermal model
- Develop a method of correlating data with wt.% of ice

Vacuum Testing

- Test thermal cone designs at medium vacuum
- Analyze thermal property differences between atmospheric and vacuum
- Refine method of correlating data with wt.% of ice

Cryogenic Vacuum Volatiles Testing

- Thermal properties for various wt.% of LCROSS volatiles
- Experimental data correlating power and temperature measurements with wt.%

Atmospheric Testing

Thermal Cone Vacuum Testing

Cryogenic Vacuum Volatiles Testing

Atmospheric Test Setup

Number of experimental tests conducted at three constant power levels for sample mixtures with specific weight percentages of water or ice

Sample Material and Volatile Composition	Constant Power Supplied		
	30 Watts	50 Watts	100 Watts
Dry, F-80	3	3	2
Wet 5 wt.%, F-80	1	1	1
Wet 10 wt.%, F-80	-	1	1
Frozen 5 wt.%, F-80	-	1	1
Frozen 10 wt.%, F-80	-	1	1
Dry, MTU-LHT-1A	1	1	1
Wet 1.5 wt.%, MTU-LHT-1A	1	1	1
Frozen 1.5 wt.%, MTU-LHT-1A	1	1	1
Wet 5 wt.%, MTU-LHT-1A	1	1	1
Frozen 5 wt.%, MTU-LHT-1A	1	1	1
Wet 7 wt.%, MTU-LHT-1A	1	1	1
Frozen 7 wt.%, MTU-LHT-1A	1	1	1
Wet 10 wt.%, MTU-LHT-1A	-	1	1
Frozen 10 wt.%, MTU-LHT-1A	-	1	1

Atmospheric Test Setup

Used to determine the size of the heat affected zone and correlate weight percentage of water and ice under atmospheric conditions

Atmospheric Test Setup Procedure

Modified 5-gallon bucket

Spray specific wt.% of water in cement mixer with lunar simulant

Vibratory compaction or Consistent compressive compaction

Heater and relative thermocouple spacing

10wt% Frozen Water & MTU-LHT-1A @ Constant 100 Watts

Atmospheric Data Analysis and wt.% Correlation

Atmospheric Data Analysis and wt.% Correlation

Avg 2 mm volume	Avg 5 mm volume	Avg 10 mm volume
1.456 E-4 m ³	4.104 E-4 m ³	7.853 m ³

Atmospheric Testing Conclusions

Thermal Cone Designs

Thermal Cone Vacuum Testing

Thermal Cone Vacuum Test Setup

Aluminum Thermal Cone mk1

Steel Thermal Cone mk2

Thermal Cone Vacuum Test Results

Thermal Cone Vacuum Test Results

Cryogenic Vacuum Volatiles Thermal Measurement Test Setup

Volatiles being considered for testing. Extracted from LCROSS data (Colaprete et al. 2010)

Volatile Species	Target Temperature (Tripple Point)
H ₂ O - Water	< 0 °C
CO ₂ - Carbon Dioxide	< -56 °C
CH ₄ - Methane	< -182 °C
C ₂ H ₄ - Ethylene	< -169 °C
CH ₃ OH - Methanol	< -98 °C
SO ₂ - Sulfur Dioxide	< -75 °C

Cryogenic Vacuum Volatiles Thermal Measurement Test Setup

Space Resources Roundtable

Chilled volatile mixing

Insulated LN₂ bath box in fume hood

Volatile plunger and LN₂ box

Frozen volatile LN₂ cooled tube testing

LN₂ bath box

Plunger with nozzles for volatile deposition and compression rings for volatile snow collection

Frozen CO₂ snow collection

Cryogenic Vacuum Volatiles Test Results

Cryogenic Vacuum Volatiles Test Results

Acknowledgements

PSTDL LuSTR Thermal Team

Dr. Paul van Susante Faculty Advisor

Dr. Jeff Allen Faculty Advisor

Dr. Tim Eisele Faculty Advisor

Travis Wavrunek PhD

Dr. Anurag Rajan Postdoc

Ben Wiegand Research Engineer

