Gentrification and Health Disparities: An Integrated Analysis of Inequality in Philadelphia

Jenea Adams

Annan Timon

april 30

Contents

Packages	2
Executive Summary	2
Abstract & Goal of the Study	2
Data	2
Brief Summary of Findings	3
EDA	4
Analysis	6
Linear Model	6
Model Selection	7
Forward Selection	8
Stroke	8
COPD	8
Backward Selection	8
Stroke	8
COPD	8
Evaluation of Forward and Backward selection	8
LASSO - predicting all diseases	12
Appendix I: Data Cleaning	17
Appendix II: Extended EDA	19
Appendix III: Data Dictionary	20

Packages

Executive Summary

Abstract & Goal of the Study

Gentrification is a process of affluent residents and businesses displacing existing low-income residents and businesses. Beyond prospects for so-called "urban renewal", gentrification has real, tangible effects on the landscape and trajectories of existing communities who often don't benefit from the changes of a neighborhood and are disenfranchised from participating in the growth of their area. Gentrification also has documented health effects on communities, such as shortened life expectancy, higher cancer rates, higher infant mortality, and cardiovascular diseases. Income inequality can be used to estimate gentrification rates. It can be quantified by a Gini index which is a value from 0 to 1 indicating inequality in the dispersion of income in a given unit. This study begins to to investigate a statistical framework for capturing the relationship between income inequality and health effects in Philadelphia, especially the historic Black Bottom (Figure 1), from integrated datasets.

Data

In this project, we use the following three nearly cleaned data:

final data.RDS: Census-Tract-level socialeconomic information that combines the following datqsets:

- Food access: The Neighborhood Food Retail dataset includes GEOID level assessments of food access relevant to distance and types of high produce grocery stores, as well as if that area is a high poverty area.
- Hospital locations: locations of hospitals by type of care provided. We chose this to understand the distribution and access to healthcare in each census block.
- **Heat Vulnerability**: scores and indicators for heat vulnerability by census block and prevalence of heat-related illnesses. This may or may not be related to access to green space and tree canopy. This data gives us an idea of environmental variables which contribute to health outcomes and quality of life for Philadelphia residents.
- Affordable Housing: locations of affordable and accessible housing projects recorded by the city.
 This data will provide information on the distribution of affordable housing options mapped to census blocks.
- Philadelphia population metrics: Demographic information of Philadelphia census blocks by race and ethnicity
- Socioeconomic data: income inequality calculated as a census tract-level Gini index.
- **Health data**: measures of prevalence of health measures such as cancer prevalence, access to health insurance, blood pressure, heart disease, and more by census tract.
- Transitscore/Walkscore/Bikescore: measures how walkable, well served by public transportation, and bikeable a location is

Philadelphia's Black Bottom

Gini: measuring income inequality

Gini indexes have changed over time. Here we select the top and bottom 5 census tracts based on their mean Gini coefficient from 2011 to 2019. We see that the Black Bottom area has had a high mean gini index.

Figure 1: Philadelphia's Black Bottom from 1930 to 1973

|

Brief Summary of Findings

We found that there were strong associations between indicators of income inequality and adverse health outcomes in and closely bordering the footprint of Philadelphia's Black bottom. This association is particularly strong in in models used to predict COPD prevalence and Diabeates prevalence, diseases for which we see strong evidence of geospatial disparities in and around Philadelphia's Historic Black Bottom.

\mathbf{EDA}

looking specifically at 2010

Even though the last census concluded in 2020, we are using 2010 data because that was the year for the most robust and informative data available from our many sources.

|

Transit and walks scores are lower in census tracts with higher (than average) inequality/Gini indexes.

There's a wider distribution of low produce supply stores than high produce supply stores, which seem to be concentrated in the center of the city. We also have number of restaurants but don't include the analysis here for brevity

High vs. Low Produce Supemarkets and Stores by Census Tracts

Analysis

Linear Model

Model data prep

[1] 258 56

[1] 111 56

Disease that with prevalences that increase with every increase in gini index: COLON_SCREEN_CrudePrev, COPD_CrudePrev, DENTAL_CrudePrev, STROKE_CrudePrev Disease that with prevalences that decrease with every increase in gini index: ACCESS2_CrudePrev, BPHIGH_CrudePrev, CHOLSCREEN_CrudePrev, CSMOKING_CrudePrev, DIABETES_CrudePrev, LPA_CrudePrev, OBESITY_CrudePrev, PHLTH_CrudePrev, SLEEP_CrudePrev

Model Selection

Next we perform model selection on models to predict colon screening and COPD prevalence since they appear to have a strong positive correlation to gini index.

Pepare the data subsetting for model prediction of disease variables vs socioeconomic indicators

Forward Selection

Stroke

```
## [1] 1.058470e+03 1.867166e-28 1.614981e-28 1.276336e-28 1.117426e-28 ## [6] 9.780608e-29 8.999488e-29 8.557649e-29 8.229538e-29 7.952600e-29 ## [11] 7.809146e-29 7.615971e-29 7.518012e-29 7.402318e-29 7.303076e-29 ## [16] 7.224276e-29 7.158858e-29 7.131089e-29 7.103575e-29 7.078254e-29 ## [21] 7.074114e-29
```

COPD

[1] 21

Backward Selection

Stroke

[1] 21

COPD

Evaluation of Forward and Backward selection

We evaluate some of the outputs from regsubsets by looking for best performing subsets with high R^2 values or low RSS (Residual Sum of Squares). Overall, it seems that forward and backward selection has the lowest RSS for the 20-variable model, but the plots show that there may be some variables that provide the hights R^2, such as heat exposure, vehicle availability, and experiencing health effects from heat exposure for the COPD prediction model.

```
plot(fit.backward.copd, scale = "r2")
```


Stroke

which.min(summary(fit.forward.stroke)\$rss)

[1] 20

which.min(summary(fit.forward.stroke)\$rss)

[1] 20

coef(fit.forward.stroke, 20)

##	(Intercept)	Population2010
##	8.699494e-15	-6.122308e-20
##	HSI_SCORE	HEI_SCORE
##	-1.033855e-16	1.871907e-16
##	HVI_SCORE	$sumTOTAL_LPSS$
##	2.642465e-16	-2.469482e-18
##	avgLPSS_PER1000	$sumTOTAL_HPSS$
##	3.946810e-18	1.869696e-17
##	avgHPSS_PER1000	$avgPCT_HPSS$
##	-1.085258e-16	4.995873e-18
##	avgPCT_VEHICLE_AVAIL	sumTOTAL_RESTAURANTS
##	-5.194791e-17	-9.419641e-18
##	avgPCT_POVERTY	sumTOTAL_UNITS
##	-8.076808e-18	7.304433e-19
##	walk_score	transit_score
##	-5.399541e-18	-3.972348e-18

```
##
                       bike_score
                                                             gini
##
                    -9.688228e-19
                                                   -1.573594e-15
                                            heat_health_effects1
##
                      n_hospitals
                                                   -6.674627e-16
##
                    -1.012018e-16
##
   'final_data$STROKE_CrudePrev'
                     1.000000e+00
##
which.min(summary(fit.backward.stroke)$rss)
## [1] 20
which.min(summary(fit.backward.stroke)$rss)
```

[1] 20

```
coef(fit.backward.stroke, 20)
```

```
##
                      (Intercept)
                                                   Population2010
##
                     8.520469e-15
                                                    -9.142541e-20
##
                        HSI_SCORE
                                                         HEI_SCORE
##
                    -1.777926e-16
                                                     2.195129e-16
                        HVI_SCORE
                                                    sumTOTAL_LPSS
##
##
                     3.616050e-16
                                                    -1.893904e-18
##
                  avgLPSS_PER1000
                                                    sumTOTAL_HPSS
##
                     5.165871e-18
                                                     1.167587e-17
##
                  avgHPSS_PER1000
                                                      avgPCT_HPSS
##
                    -9.329250e-17
                                                     3.844135e-18
                                             \verb"sumTOTAL_RESTAURANTS"
            avgPCT_VEHICLE_AVAIL
##
                    -4.530590e-17
##
                                                    -9.527703e-18
##
                   avgPCT_POVERTY
                                                   sumTOTAL_UNITS
##
                    -4.147210e-18
                                                     4.208901e-19
##
                                                    transit_score
                       walk_score
                                                    -2.406180e-18
##
                    -5.079155e-18
##
                       bike_score
                                                              gini
##
                    -6.324161e-19
                                                    -1.439776e-15
##
                      n_hospitals
                                             heat_health_effects1
##
                    -7.699055e-17
                                                    -8.807395e-16
##
   'final data$STROKE CrudePrev'
                     1.000000e+00
##
```

The RSS is the smallest for the 20-variable model for Stroke in both forward and backward selection COPD

```
which.min(summary(fit.forward.copd)$rss)
```

[1] 20

```
which.min(summary(fit.forward.copd)$rss)
```

[1] 20

coef(fit.forward.copd, 20)

```
##
                    (Intercept)
                                              Population2010
##
                   3.397340e-15
                                                3.191191e-20
##
                      HSI_SCORE
                                                   HEI SCORE
                 -1.241787e-17
                                                1.580660e-16
##
                      HVI_SCORE
##
                                               sumTOTAL LPSS
##
                   3.095724e-17
                                               -4.975750e-19
##
               avgLPSS_PER1000
                                               sumTOTAL_HPSS
##
                 -5.322894e-19
                                                8.596414e-18
                                                 avgPCT HPSS
##
               avgHPSS PER1000
##
                  -3.001471e-17
                                               -1.170297e-18
                                        sumTOTAL RESTAURANTS
##
          avgPCT_VEHICLE_AVAIL
##
                 -8.572170e-18
                                               -1.127614e-18
##
                avgPCT_POVERTY
                                              sumTOTAL_UNITS
##
                  2.193157e-18
                                                6.101153e-20
##
                     walk_score
                                               transit score
##
                 -2.947037e-19
                                               -2.388980e-18
##
                     bike_score
                                                         gini
##
                   3.005885e-19
                                               -6.206644e-16
##
                   n_hospitals
                                        heat_health_effects1
##
                  -8.900563e-19
                                               -2.411462e-16
   'final data$COPD CrudePrev'
##
                   1.000000e+00
```

which.min(summary(fit.backward.copd)\$rss)

[1] 20

which.min(summary(fit.backward.copd)\$rss)

[1] 20

coef(fit.backward.copd, 20)

```
##
                                              Population2010
                    (Intercept)
##
                   3.397340e-15
                                                3.191191e-20
##
                      HSI_SCORE
                                                    HEI_SCORE
##
                 -1.241787e-17
                                                1.580660e-16
                      HVI_SCORE
                                               sumTOTAL_LPSS
##
##
                   3.095724e-17
                                               -4.975750e-19
##
               avgLPSS_PER1000
                                               sumTOTAL_HPSS
##
                                                8.596414e-18
                  -5.322894e-19
##
               avgHPSS_PER1000
                                                 avgPCT_HPSS
##
                  -3.001471e-17
                                               -1.170297e-18
##
          avgPCT_VEHICLE_AVAIL
                                        sumTOTAL RESTAURANTS
##
                  -8.572170e-18
                                               -1.127614e-18
##
                 avgPCT_POVERTY
                                              sumTOTAL_UNITS
##
                   2.193157e-18
                                                6.101153e-20
##
                     walk_score
                                               transit score
                  -2.947037e-19
##
                                               -2.388980e-18
```

```
##
                     bike_score
                                                         gini
##
                   3.005885e-19
                                                -6.206644e-16
                    n_hospitals
##
                                        heat_health_effects1
                  -8.900563e-19
                                                -2.411462e-16
##
##
   'final_data$COPD_CrudePrev'
##
                   1.000000e+00
```

The RSS is the smallest for the 20-variable model for COPD in both forward and backward selection

LASSO - predicting all diseases

LASSO loop


```
##
## Call:
  lm(formula = f_new, data = final_data_sub)
##
## Residuals:
##
                1Q Median
  -2.7643 -0.5277 -0.0162 0.4666
                                   3.0146
##
  Coefficients:
##
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         1.008e+01
                                    6.235e-01
                                               16.159 < 2e-16 ***
## Population2010
                                    3.882e-05
                                               -3.464 0.000596 ***
                        -1.345e-04
                                    4.191e-02
## HSI_SCORE
                                               -0.556 0.578728
                        -2.329e-02
## HEI_SCORE
                         6.603e-01
                                    4.415e-02
                                               14.955 < 2e-16 ***
## sumTOTAL_HPSS
                         1.229e-02
                                    9.040e-03
                                               1.359 0.174914
```

```
## avgHPSS PER1000
                       -9.062e-02 3.183e-02 -2.847 0.004668 **
## avgPCT_VEHICLE_AVAIL -5.165e-02 3.692e-03 -13.990 < 2e-16 ***
## sumTOTAL RESTAURANTS -1.036e-02
                                   2.459e-03 -4.213 3.19e-05 ***
## walk_score
                       -3.959e-03
                                   3.375e-03 -1.173 0.241500
## gini
                       -2.321e+00
                                   8.384e-01
                                             -2.768 0.005933 **
## heat_health_effects1 -9.634e-01
                                  1.610e-01 -5.986 5.24e-09 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8748 on 358 degrees of freedom
## Multiple R-squared: 0.7412, Adjusted R-squared: 0.734
## F-statistic: 102.5 on 10 and 358 DF, p-value: < 2.2e-16
```

COPD18 17 16 16 15 15 14 15 13 11 10 8 6 3 3 2 1 1


```
##
## lm(formula = f_new, data = final_data_sub)
##
## Residuals:
       Min
                1Q Median
                                3Q
                                       Max
## -3.6771 -0.5763 -0.0015 0.6450 3.6077
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        13.449200
                                    0.893747
                                              15.048 < 2e-16 ***
## HEI_SCORE
                         0.878069
                                    0.054300
                                              16.171 < 2e-16 ***
## avgHPSS PER1000
                        -0.036264
                                    0.018637
                                              -1.946 0.052457 .
## avgPCT_HPSS
                                              -3.739 0.000215 ***
                        -0.025461
                                    0.006810
## avgPCT_VEHICLE_AVAIL -0.042243
                                    0.006187
                                              -6.827 3.71e-11 ***
## sumTOTAL_RESTAURANTS -0.007578
                                    0.002935 -2.582 0.010223 *
```

```
## avgPCT_POVERTY
                        0.012661
                                   0.006041
                                              2.096 0.036787 *
## walk_score
                       -0.001614
                                   0.003903 -0.414 0.679468
## transit_score
                       -0.020714
                                   0.006127
                                             -3.381 0.000802 ***
                       -3.174678
                                   0.990450
                                             -3.205 0.001471 **
## gini
## heat_health_effects1 -0.663080
                                   0.184491
                                             -3.594 0.000371 ***
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 1.03 on 358 degrees of freedom
## Multiple R-squared: 0.7971, Adjusted R-squared: 0.7914
## F-statistic: 140.6 on 10 and 358 DF, p-value: < 2.2e-16
```

Stroke

Linear Model Residual and QQ plot

```
par(mfrow = c(1, 2))
plot(models$STROKE_CrudePrev,1:2)
```


Linear Model after LASSO Residual and QQ plot

```
par(mfrow = c(1, 2))
plot(models_min$STROKE_CrudePrev,1:2)
```


The linearity assumption for both models is met since the residual plot show reasonable symmetry.

anova(models\$STROKE_CrudePrev, models_min\$STROKE_CrudePrev)

```
## Analysis of Variance Table
##
## Model 1: STROKE_CrudePrev ~ Population2010 + HSI_SCORE + HEI_SCORE + HVI_SCORE +
       sumTOTAL_LPSS + avgLPSS_PER1000 + sumTOTAL_HPSS + avgHPSS_PER1000 +
##
       avgPCT_HPSS + avgPCT_VEHICLE_AVAIL + sumTOTAL_RESTAURANTS +
##
       avgPCT_POVERTY + sumTOTAL_UNITS + walk_score + transit_score +
##
       bike_score + gini + n_hospitals + heat_health_effects
##
  Model 2: STROKE_CrudePrev ~ Population2010 + HSI_SCORE + HEI_SCORE + sumTOTAL_HPSS +
##
       avgHPSS_PER1000 + avgPCT_VEHICLE_AVAIL + sumTOTAL_RESTAURANTS +
##
##
       walk_score + gini + heat_health_effects
     Res.Df
               RSS Df Sum of Sq
                                     F Pr(>F)
##
## 1
        349 258.86
## 2
        358 273.94 -9
                        -15.087 2.2601 0.01812 *
##
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Linear Model Residual and QQ plot

COPD

```
par(mfrow = c(1, 2))
plot(models$COPD_CrudePrev,1:2)
```


Linear Model after LASSO Residual and QQ plot

```
par(mfrow = c(1, 2))
plot(models_min$COPD_CrudePrev,1:2)
```



```
## Analysis of Variance Table
##
## Model 1: COPD CrudePrev ~ Population2010 + HSI SCORE + HEI SCORE + HVI SCORE +
##
       sumTOTAL_LPSS + avgLPSS_PER1000 + sumTOTAL_HPSS + avgHPSS_PER1000 +
##
       avgPCT_HPSS + avgPCT_VEHICLE_AVAIL + sumTOTAL_RESTAURANTS +
##
       avgPCT_POVERTY + sumTOTAL_UNITS + walk_score + transit_score +
##
       bike_score + gini + n_hospitals + heat_health_effects
## Model 2: COPD_CrudePrev ~ HEI_SCORE + avgHPSS_PER1000 + avgPCT_HPSS +
       avgPCT_VEHICLE_AVAIL + sumTOTAL_RESTAURANTS + avgPCT_POVERTY +
##
##
       walk_score + transit_score + gini + heat_health_effects
##
     Res.Df
               RSS Df Sum of Sq
                                     F Pr(>F)
## 1
        349 361.07
## 2
        358 379.61 -9
                         -18.54 1.9911 0.03947 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Appendix I: Data Cleaning

```
## [1] "3352b422b0ef5aaabae7a20651522b5a7688e0bf"
```

Data landing and inspection

In order to directly download data from the Census API, you need a key. You can sign up for a free key here. Type your key in quotes using the census_api_key() command.

```
376 tracts here
384 census tracts here (2010 data)
384 census tracts here (2010 data)
##
     OBJECTID_1 TractFIPS NAME10 OBJECTID HSI_SCORE HEI_SCORE HVI_SCORE
                                          188 0.9768257 -3.31447 -3.477334
## 1
            276 4.2101e+10
                                  1
##
    N_VERYHIGH Shape__Area Shape__Length
## 1
              0
                     1202257
                                   4528.079
philly_census_health x population_philly (by race)
## [1] 376 77
## [1] 376 86
```

Next we just need to separate out the last digit in the food_access GEOID10 to transform the census block group number into a census tract number (https://www.census.gov/programs-surveys/geography/guidance/geo-identifiers.html#:~:text=Census%20Tract,482012231001)

The new census tract column is now TractFIPS like the other datasets.

Then we can average the estimates for each census tract to get one row of data for each census tract.

```
## # A tibble: 6 x 9
     TractFIPS sumTOTAL_LPSS avgLPSS_PER1000 sumTOTAL_HPSS avgHPSS_PER1000
##
                         <int>
                                          <dbl>
                                                        <dbl>
##
## 1 42101000100
                           106
                                           25.2
                                                         19.5
                                                                         4.60
                                                         17.8
## 2 42101000200
                           120
                                           44.7
                                                                         6.62
## 3 42101000300
                           182
                                           77.7
                                                         35.2
                                                                         14.1
## 4 42101000401
                            74
                                           28.1
                                                         20
                                                                         7.60
## 5 42101000402
                                           59.5
                                                         45.8
                           199
                                                                         13.8
## 6 42101000500
                           148
                                           58.9
                                                         23.8
                                                                         9.45
## # i 4 more variables: avgPCT_HPSS <dbl>, avgPCT_VEHICLE_AVAIL <dbl>,
       sumTOTAL_RESTAURANTS <int>, avgPCT_POVERTY <dbl>
```

So now that we are down to about 380 census tracts, we can merge with the other data for merege3

[1] 376 94

Geolocating addresses (for the housing and hospital data) to census tracts Getting census tract-level gini indices

```
## [1] "GEOID" "state" "county" "tract" "gini"
```

Merge these with the rest of the data matrix

Preparing hospital data

##		OBJECTID			НС	SPITAL_NAME		STREET_ADD	RESS
##	25	1		Aria 1	Health- Frank	ford Campus	4900 I	Frankford Av	renue
##	22	2	I	Aria H	ealth- Torres	dale Campus	3	3998 Red Lic	n Rd
##	23	3 Beli	mont Cente	er for	Comprehensiv	e Treatment	420	00 Monument	Road
##	36	4			Chestnut Hi	ll Hospital	8835 Ge	ermantown Av	enue
##	17	5 5	The Childr	cen's	Hospital of F	hiladelphia	3401 Ci	ivic Center	Blvd
##	6	6	Einstein	Medica	al Center - F	hiladelphia	1200	West Tabor	Road
##		CITY	STATE ZIF	CODE	PHONE_NUMBER	HOSPIT	AL_TYPE	cxy_lon	
##	25	Philadelphia	PA	19124	215-831-2000	General	medical	-75.08039	
##	22	Philadelphia	PA	19114	215-612-4000	General	medical	-74.98026	
##	23	Philadelphia	PA	19131	215-877-2000	Behavioral	health	-75.21645	
##	36	Philadelphia	PA	19118	215-248-8200	General	medical	-75.21210	
##	17	Philadelphia	PA	19104	215-590-1000	General	medical	-75.19318	
##	6	Philadelphia	PA	19141	215-456-7890	General	medical	-75.14383	
##		cxy_lat							
##	25	40.02035							
##	22	40.06777							
##	23	39.99804							
##	36	40.07856							
##	17	39.94810							
##	6	40.03806							

Final merge

Appendix II: Extended EDA

We used only the following residential census tracts for the analysis

Philadelphia Census Tracts

Affordable Housing and Transit by Cancer Prevalence and Heat–Related Illness

EDA looking at relationship of our variables

[distributions of hospitals] [distribution of affordable housing]

Appendix III: Data Dictionary

Here is the break down of variable names:

Variable	Description		▼ Description ▼		
TractFIPS	Census tract identifier	PERCENT_ASIAN_NH	Percent Asian		
Population2010	Population in 2010	PERCENT_HISPANIC	Percent Hispanic		
ACCESS2_CrudePrev	Access to health insurance prevalence		Displays sensitivity to heat by census tract,		
ARTHRITIS_CrudePrev	Arthritis prevalence		incorporating demographic, health and disability		
BINGE_CrudePrev	Binge drinking	HSI_SCORE	indicators (2019)		
BPHIGH_CrudePrev	High blood pressure		Displays heat exposure by census tract		
BPMED_CrudePrev	On blood pressure medication		incorporating daytime and nighttime land surface		
CANCER_CrudePrev	cancer		temperature, surface reflectivity, building density,		
CASTHMA_CrudePrev	asthma	HEI SCORE	and vegetation (2017-2019).		
CHD_CrudePrev	heart disease	_	Displays heat vulnerability by census tract,		
CHECKUP_CrudePrev	up-to-date on checkups		incorporating heat exposure and sensitivity		
CHOLSCREEN_CrudePrev	cholesterol screen	HVI_SCORE	indicators (2017 - 2019).		
COLON_SCREEN_CrudePrev	colon screen	TIVI_SCORE	Total low produce supply stores within a mile of		
COPD_CrudePrev	COPD	TOTAL LOSS			
COREM_CrudePrev	male core checkups	sumTOTAL_LPSS	internal census block groups		
COREW_CrudePrev	female core checkups		Average number of low-produce supply stores per		
CSMOKING_CrudePrev	smoking	avgLPSS_PER1000	1k people		
DENTAL_CrudePrev	dental visits		Total high produce supply stores within a mile of		
DIABETES_CrudePrev	diabietes	sumTOTAL_HPSS	internal census block groups		
HIGHCHOL_CrudePrev	high cholesterol		Average number of high-produce supply stores per		
KIDNEY_CrudePrev	kidney disease	avgHPSS_PER1000	1k people		
LPA_CrudePrev	leisure-time physical activity		Average percentang of all stores within half mile		
MAMMOUSE_CrudePrev	mamogram use		walking distance of the block group that are high		
MHLTH_CrudePrev	mental health poor for > 14 days	avgPCT HPSS	produce supply		
OBESITY_CrudePrev	obesity	sumTOTAL RESTAURANTS	Total restaurants in the tract		
PAPTEST_CrudePrev	pap test		Average percent of people in poverty across		
PHLTH_CrudePrev	poor physical health	avgPCT_POVERTY	census block groups		
SLEEP_CrudePrev	sleep issues	avgrc1_POVERTT	Total affordable housing unit within the census		
STROKE_CrudePrev	stroke	TOTAL LINUTS			
TEETHLOST_CrudePrev	teeth lost	sumTOTAL_UNITS	tract		
COUNT_WHITE_NH	Count of White residents	walk_score	Redfin walk score		
COUNT_BLACK_NH	Count of Black residents	transit_score	REdfin transit score		
COUNT_ASIAN_NH	Count of Asian residents	bike_score	Redfin bike score		
COUNT_HISPANIC	Count of Hispanic Residents	gini	Gini index		
PERCENT_WHITE_NH	Percent White	n_hospitals	Number of hospitals int he census tract		
PERCENT_BLACK_NH	Percent Black		Indicator variable caputring if this census tract is		
PERCENT_ASIAN_NH	Percent Asian		among the topp 75 most vulnerable to experience		
PERCENT_HISPANIC	Percent Hispanic	heat health effects	health impacts of heat vulnerability		

Figure 2: Data Dictionary