Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be cooperative
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**
- 9. Be **inclusive** and **accepting**

Learning Objectives

- 1. Describe the basic concept of a transformer unit
- 2. Explain positional embedding and its application
- 3. Explain attention matrix and the difference between its variant
- 4. Describe decoding and encoding
- 5. Explain the inferring process in transformers

Transformers were first developed for Seq2Seq tasks

Seq2Seq models use a simple model of encoding and decoding

Attention helps seq2seq models to remember the context

Attention is all you need!

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer*
Google Brain

noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

Attention is all you need!

Task: Hotel location

you get what you pay for , not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n't be beaten , but it is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel cleanliness

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though as very thin . service was excellent, let us book in at 8:30am! for location and price, this can't be beaten, but it is cheap for a reason. if you come expecting the hilton, then book the hilton! for uk travellers, think of a blackpool b&b.

Task: Hotel service

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though as very thin . service was excellent, let us book in at 8:30am! for location and price, this ca n't be beaten, but it is cheap for a reason . if you come expecting the hilton, then book the hilton! for uk travellers, think of a blackpool b&b.

What it can do ...

https://transformer.huggingface.co/doc/distil-gpt2

Basic architecture of a transformer

The second step is word embedding


```
original text "hello world!"

tokens ['hello', 'world', '!']

token [7592, 2088, 999]
```


The first step of the process is word embedding

During the tokenization and embedding, we lose the order of words

Positional encoding allows for some notion of order

Positional encoding allows for some notion of order

A good positional encoding should have consistent distance

The weather is great.

0, 0.25, 0.5, 0.75, 1

The weather is really great!

0, 0.2, 0.4, 0.6, 0.8, 1

A good positional encoding should have

- 1. Unique stamps for each position in the sentence
- 2. Distances should be consistent
- 3. A way to easily generalize to larger sentences
- 4. Deterministic assignment

Sinusoidal functions are good embeddings

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.\,t), & ext{if } i = 2k \ \cos(\omega_k.\,t), & ext{if } i = 2k+1 \end{cases}$$

where

$$\omega_k=rac{1}{10000^{2k/d}}$$

Sinusoidal functions are good embeddings

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.\,t), & ext{if } i = 2k \ \cos(\omega_k.\,t), & ext{if } i = 2k+1 \end{cases}$$

where

$$\omega_k=rac{1}{10000^{2k/d}}$$

Sinusoidal functions are good embeddings

The main module of a transformer is an attention unit

Self-attention allows for finding correlation between words

	"The	Megil	.6	oje ^{gi}
the	0.8	0.1	0.05	0.05
weather	0.1	0.6	0.2	0.1
is	0.05	0.2	0.65	0.1
great	0.2	0.1	0.1	0.6

To understand attention, we need to understand key, query, and value

Softmax takes in values and return a number between $(0,1) \rightarrow$ great for generating probabilities or as activation for multicategories

$$\sigma(ec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

 σ = softmax

 \vec{z} = input vector

 e^{z_i} = standard exponential function for input vector

K = number of classes in the multi-class classifier

 e^{z_j} = standard exponential function for output vector

 e^{z_j} = standard exponential function for output vector

The simplest attention is scaled dot product attention

Scaled Dot-Product Attention

In most cases multi-head attentions are used

The attention layer is followed by short residual skip connections and a normalization layer

The output of the attention is then fed into a feed forward layer

The encoder is now complete!

The weather is great.

The weather is great.

The weather is great.

هوا عالى

The weather is great.

هوا عالى است

The weather is great.

هوا عالى است.

Shifting outputs ...

Shifting outputs prevent network from copying the decoder input

The weather is great.

Shifting outputs prevent network from copying the decoder input

The weather is great.

هوا	-	هو ا	
В	←	هوا	14%
		خورشيد	12%
		من	20%
		درخت	3%

Masked layers ensure that we're only seeing information before the word to predict

$$ext{MaskedAttention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(rac{\mathbf{Q}\mathbf{K}^T + \mathbf{M}}{\sqrt{dk}}
ight)\mathbf{V}$$

Encoder-decoder attention is where the magic happens

The output of encoder: Keys and values

The decoder's latest sentence:
The query

The final step is another linear layer and a softmax

Which word in our vocabulary am is associated with this index? Get the index of the cell 5 with the highest value (argmax) log_probs 0 1 2 3 4 5 ... vocab size Softmax logits 0 1 2 3 4 5 ... vocab size Linear Decoder stack output

Basic architecture of a transformer

Why do transformers work so well?

Why do transformers work so well?

- 1. Distributed and independent representation at each block
- 2. Meaning heavily depends on the context
- 3. Multiple encoder and decoder units
- 4. Combination of high- and low-level information

Famous transformers

Famous transformers

BERT (Bidirectional Encoder Representations from Transformers)

Next lecture: AlphaFold2 and DL in protein engineering

Kristine Deibler · 1st
Computational Design Scientist at Novo Nordisk

Layne Price · 1st Sr Machine Learning Scientist at Amazon

Nikhil Naik · 2nd Senior Research Manager | Machine learning, Computer Vision, NLP, AI for Biology

