## Kittipong Tapyou 65070501003

# Homework 08 : Blurring and restoration

During acquisition, an image undergoes uniform linear motion in the vertical direction for a time T1. The direction of motion then switches to the horizontal direction for a time interval T2. Assuming that the time it takes the image to change directions is negligible, and that shutter opening and closing times are negligible also

#### Expression for the blurring function H(u,v)

$$Y(u,v) = G(u,v) \times H(u,v)$$

เมื่อนำรูปภาพมาแปลงให้อยู่ใน frequency space G(u,v) จากนั้นทำการ blur รูปภาพ โดย ใช้ Linear motion blur degradation function  $H_1(u,v)$  ซึ่งเป็นการ blur แนวตั้ง โดยมี parameter คือ  $T_1$  และ a และ ในขณะที่ shutter ถูกเปิดอยู่นั้น ก็ได้มีการขยับอีกแกนนึงคือ แกนนอน ด้วย  $H_2(u,v)$  โดยมี parameter คือ  $T_2$  และ b

$$H(u, v) = H_1(u, v) + H_2(u, v)$$

หากการ blur นั้นเป็นการขยับ ในระยะเวลาของ shutter เดียวกัน(ตีความจาก shutter opening and closing times are negligible also)จะ ให้ได้ blurring function ดังสมการด้านบน (เพิ่มเติม : หากการ blur นั้นเกิดขึ้น ในลำดับ shutter ที่ต่างกัน จะสามารถเขียน ในรูปของผลคูณของ H)

$$H(u,v) = \frac{T_1}{\pi ua} sin(\pi ua) e^{-j\pi ua} + \frac{T_2}{\pi vb} sin(\pi vb) e^{-j\pi vb}$$

และเมื่อทำการคูณกับภาพต้นฉบับ เพื่อให้ได้ภาพเบลอ จะได้ภาพจากสมการด้านล่าง

$$Y(u,v) = G(u,v) \times \frac{T_1}{\pi u a} sin(\pi u a) e^{-j\pi u a} + \frac{T_2}{\pi v b} sin(\pi v b) e^{-j\pi v b}$$

หมายเหตุ : หาก  $T_1$  และ  $T_2$  มีค่ามากเกินไป ภาพที่ได้จะมีความสว่างมาก (แสงเข้าเยอะ)

### The blurring on the cameraman image



โดยที่  $T_1 = 0.6$ , a = 0.2 และ  $T_2 = 0.4$ , a = 0.4

#### How the blurred image can be restored?

$$Y(u, v) = G(u, v) \times H(u, v) + N(u, v)$$

หากพิจารณาสมการ restoration จะพบว่าภาพที่มีการ blur นั้นเกิดจากการผ่าน degradation จากนั้นจะมีการผสมกับ noise  $N(u,\,v)$  ทำ ให้หากเราต้องการทำ restoration กับภาพทั่วไปนั้น นอกจากที่เราจะต้องทราบ degradation function แล้ว ยังต้องทราบ noise function อีกด้วย เพื่อให้ได้รูปที่ต้องการ  $g(x,y) \Longleftrightarrow G(u,v)$  ตามสมการด้านล่าง

$$G(u,v) = \frac{Y(u,v) - N(u,v)}{H(u,v)}$$

แต่หากพิจารณาเพียงแค่สมการจาก section ด้านบน  $Y(u, v) = G(u, v) \star H(u, v)$  เราจะพบว่าภาพ blur  $y\left(x,\,y\right)\Longleftrightarrow\,Y\left(u,\,v\right)$ ที่เกิดจากการสังเคราะห์นั้น ไม่มี noise ก็สามารถทำการ restore ได้โดยจากสมการด้านล่าง

$$G(u,v) = \frac{Y(u,v)}{H(u,v)}$$

ซึ่งจากเราสามารถที่จะหา blurring function  $H(u,\,v)$  ได้ หากภาพที่ได้เป็นภาพที่มาจากการ blur ที่เกิดจาก shutter (สมการด้านล่าง) ก็สามารถแก้สมการได้ โดยมี parameter ที่ต้องหาเพียงแค่ 3 ตัวคือ  $a,\,b$  และ Tซึ่งสามารถ trail and error ได้ หรือสามารถที่จะใช้ iterative improvement strategies ในการแก้ปัญหาได้

$$H(u,v) = \frac{T}{\pi(ua+vb)} sin(\pi(ua+vb)) e^{-j\pi(ua+vb)}$$

แต่ในกรณีของการที่ภาพของเราผ่านกระบวนการ degradation หลายรอบ ก็จะต้อง หา parameter จำนวน 3 $^n$  ตัว เมื่อ n คือจำนวนครั้งของการทำ degradation และสามารถrestore รปภาพได้จากสมการด้านล่าง

$$G(u,v) = \frac{Y(u,v)}{H_1(u,v) \times H_2(u,v) \times \dots \times H_n(u,v)}$$

เช่นเดียวกับ ในกรณีของ Linear motion blur degradation ในงานนี้ที่มีการ degrade หลายทิศทางแบบ sequential ในลำดับ shutter เดียวกัน ก็สามารถ restore ได้จากสมการด้านล่าง

$$G(u,v) = \frac{Y(u,v)}{H_1(u,v) + H_2(u,v) + \dots + H_n(u,v)}$$

#### **Provided Code**

In[151]:=



grayImg = ColorConvert[img, "Grayscale"];

```
In[193]:=
```

```
fftFreq[n_Integer] :=
 If[EvenQ[n],
    Join[Range[0, n/2 - 1], Range[-n/2, -1]],
    Join[Range[0, (n - 1)/2], Range[-(n - 1)/2, -1]]
fftFreq[10]
```

Out[194]=

$$\{0, 1, 2, 3, 4, -5, -4, -3, -2, -1\}$$

ทำการสร้าง sampling factor ที่ใช้สำหรับการ sampling u, v ซึ่ง DC อยู่ที่ตำแหน่ง 0,0 และ information มีแค่ครึ่งเดียว ทำให้ต้องสร้างตั้งแต่ 0 ถึง Floor(n/2) และ -Ceil(n/2) ถึง -1

In[199]:=

ด้านบนเป็น function สำหรับการสร้าง Linear motion blur degradation function แบบสองแกนพร้อมกัน(รองรับการเคลื่อนที่แนวเฉียง)

In[218]:=

```
H1 = LinearMotionBlurDeg[fImg, 0.2, 0, 0.6];
H2 = LinearMotionBlurDeg[fImg, 0, 0.4, 0.4];
```

สร้าง filter โดยที่  $T_1$  = 0.6, a = 0.2 และ  $T_2$  = 0.4, a = 0.4

In[220]:=

Out[220]=



ตัวอย่าง magnitude และ phase ของH1 และ H2

In[221]:=

blurImg = fImg \* (H1 + H2); Image[Re[InverseFourier[blurImg]]]

Out[222]=



ภาพการทำ Linear motion blur แบบ sequential ในลำดับ shutter เดียวกัน

In[223]:=

Image[Re[InverseFourier[blurImg / (H1 + H2)]]]

Out[223]=



ตัวอย่างของการทำ restoration เมื่อเราทราบ blurring function และไม่มี noise