

Das Modell für Stickstoff und Kohlenstoff in Agrarökosystemen

Benutzerhandbuch - Version 1.2.6

von Dr. Claas Nendel

und Dr. Xenia Specka

2014

MONICA – Dokumentation

Inhaltsverzeichnis

Inhaltsverzeichnis	2
Installationshinweise	2
Start von MONICA	3
Start der Beispielsimulation per Startmenü	3
Starten von MONICA aus der Kommandozeile	3
Konfigurieren einer eigenen Simulation	3
Die monica.ini – Konfigurationsdatei	4
files	5
simulation_time	5
nmin_fertiliser	
automatic_irrigation	5
site_parameters	6
Konfigurieren von Input-Dateien	
Die Bodenprofildatei "SOIL"	7
Die Fruchtfolgedatei "ROTATION"	
Die Düngemitteleinsatzdatei "FERT"	8
Die Beregnungsdatei "IRRIG"	9
Die Wetterdateien	
Auswerten einer eigenen Simulation	11
Die Ergebnisdatei smout.dat	11
Die Ergebnisdatei rmout.dat	13

Installationshinweise

Der MONICA-Installer führt Sie schrittweise durch den Installationsprozess des Modells. Nach der Annahme der Lizenzbestimmungen können Sie definieren, in welches Verzeichnis das Modell installiert werden soll. Standardmäßig wird MONICA in das Programme Verzeichnis, üblicherweise C:\Programme, installiert.

Bei der Installation wird neben dem Modell auch eine Datenbank, die wichtige Modellparameter verwaltet, sowie Beispielsimulationsdaten installiert. Die Beispieldaten enthalten bereits eine vollständig konfigurierte Simulation im dem von MONICA gewünschten Format, mit Konfiguration von Klimadaten, Bodenprofil, der Fruchtfolge, Düngung, Bewässerung etc. Anhand des Formats dieser Beispieldaten können eigene, neue Simulationen entwickelt werden.

Die Beispieldaten von MONICA werden automatisch in das Verzeichnis" %USERPROFILE%\MONICA\Examples installiert. Die Umgebungsvariable %USERPROFILE% verweist auf ihr persönliches Benutzerprofilverzeichnis (z.B. "C:\Dokumente und Einstellungen\Benutzername"). Durch Eingabe von %USERPROFILE% in die Adresszeile des Windows Dateiexplorers gelangen Sie ganz einfach in ihr Benutzerverzeichnis.

Start von MONICA

Start der Beispielsimulation per Startmenü

Im Startmenü und auf dem Desktop werden Verknüpfungen angelegt, die MONICA automatisch mit der Beispielsimulation starten. Als Ergebnis der MONICA Simulation werden zwei Dateien im Beispielsimulationsordner erzeugt (rmout.dat und smout.dat). Diese Dateien enthalten im CSV-Format wichtige Programmausgaben über Pflanzenentwicklung und Bodenprozesse.

Starten von MONICA aus der Kommandozeile

MONICA ist ein aktuell noch ein auf Kommandozeile basierendes Programm, d.h. MONICA muss direkt von der Windows-Kommandozeile aufgerufen werden.

Öffnen Sie ihre Kommandozeile in Windows per $Start \rightarrow Ausführen$ und Angabe des Befehls cmd. Alternativ finden Sie die Kommandozeile auch im Startmenü unter Alle Programme \rightarrow Zubehör \rightarrow Eingabeaufforderung.

Nach dem Öffnen der Kommandozeile müssen sie in das Installationsverzeichnis von MONICA, welches Sie bei der Installation des Modells definiert haben, wechseln

> cd C:\Programme\MONICA.

Dort angekommen können Sie MONICA nun aufrufen. Als Parameter erwartet MONICA die Pfadangabe des Ordners mit dem Simulationsdaten:

> monica.exe "%USERPROFILE%"\MONICA\Examples\Hohenfinow2

Hinweis:

Das Benutzerverzeichnis **%USERPROFILE%** ist ein Platzhalter für Ihr persönliches Nutzerverzeichnis. Bitte ersetzen Sie ihn entsprechend. Es muss unbedingt in Anführungszeichen gesetzt werden, da MONICA sonst den Pfad nicht korrekt auswerten kann.

Während der Simulation schreibt MONICA verschiedene Ausgaben in die Kommandozeile. Anhand dieser können Sie den Status der Simulation verfolgen. Die Ergebnisse der Simulation werden in zwei Dateien rmout.dat und smout.dat im Simulationsordner abgelegt. Diese Dateien sind im CSV-Format abgelegt und können mit Excel weiter analysiert werden.

Konfigurieren einer eigenen Simulation

Anhand der Beispieldaten können Sie auch eine eigene Simulation mit eigenen Klimadaten, Fruchtfolgen etc. konfigurieren. Verschiedene Einstellungen der Simulation werden in einer Konfigurationsdatei (monica.ini) ablegt. MONICA erwartet in jedem Simulationsverzeichnis eine solche INI-Datei. Beim Start der Simulation liest das Modell die Daten der Konfiguration ein und führt eine Simulation entsprechend der Einstellungen durch.

Die monica.ini – Konfigurationsdatei

Beispiel monica.ini

[files]
soil=SOIL.txt
croprotation=ROTATION.txt
fertiliser=FERT.txt
irrigation=IRRIG.TXT
climate_prefix=MET_BS.

[simulation_time] startyear=1999 endyear=2008

[nmin_fertiliser]

activated=0

;mineral_fert_id=1
;organic_fert_id=2
;min=10.0
;max=100.0
;delay_in_days=30

[automatic_irrigation]

activated=0

;amount=0 ;treshhold=0.15 ;nitrate=0 ;sulfate=0

[site parameters]

latitude=46.42

slope=0.01

heightNN=150.0

soilCNRatio=10.0

atmospheric CO2=360.0

wind speed height=2.0

leaching_depth=1.2

N_deposition=30

pH=6.5

;groundwater_depth_min=-1 ;groundwater_depth_max=-1 ;groundwater_depth_min_month=-1

[general_parameters]

;use_secondary_yields=1 nitrogen_response_on=true water_deficit_response_on=true emergence_moisture_control_on=false emergence_flooding_control_on=false [init values]

init_percentage_FC=1.0 ; Initial soil moisture content in percent field capacity

init_soil_nitrate=0.01 ; Initial soil nitrate content [kg NO3-N m-3]

init soil ammonium=0.0001; Initial soil ammonium content [kg NH4-N m-3]

Die monica.ini besteht aus den sieben Sektionen files, simulation_time, nmin_fertiliser, automatic_irrigation, site_parameters, general_parameters und init-values. Innerhalb der Sektionen gibt es einzelne Elemente, die im Folgenden erklärt werden.

Hinweis: Kommentare beginnen mit einem Semikolon. Beginnt eine Zeile mit einem Semikolon, so ist diese Zeile auskommentiert und wird beim Einlesen durch MONICA ignoriert.

files

soilDateiname der BodenprofildateicroprotationDateiname der FruchtfolgedateifertiliserDateiname der DüngedateiirrigationDateiname der Beregnungsdatei

climate_prefix Prefix der Klimadateien.

simulation_time

startyear Startjahr der Simulation, vierstellige Zahl endyear Endjahr der Simulation, vierstellige Zahl

nmin_fertiliser

activated 0 oder 1; Deaktiviert oder aktiviert den Einsatz der

automatischen Düngesteuerung nach dem Nmin-Ansatz. Wenn Deaktiviert, werden alle weiteren Elemente dieser Sektion ignoriert. Im Beispiel oben sind sie auskommentiert.

mineral_fert_id MONICA-ID des mineralischen Düngers organic fert id MONICA-ID des organischen Düngers

min Minimale Menge, die automatisch gedüngt wird [kg N ha⁻¹]
max Maximale Menge, automatisch gedüngt wird [kg N ha⁻¹]
delay in days Angabe des autom. Düngedatums in julianischer Form [d]

automatic_irrigation

activated 0 oder 1; Deaktiviert oder aktiviert den Einsatz der

automatischen Bewässerung. Wenn Deaktiviert, werden alle weiteren Elemente dieser Sektion ignoriert. Im Beispiel oben

sind sie auskommentiert.

amount Beregnungsmenge [mm]

treshold Bodenfeuchtegehalt, unterhalb dem die Bewässerung erfolgt

 $[m^3 m^{-3}]$

nitrateNitratkonzentration im Wasser [ppm]sulfateSulfatkonzentration im Wasser [ppm]

site_parameters

latitude Breitengrad des Standorts im Dezimalformat

slope Hangneigung [m m⁻¹]
heightNN Höhe über Normal Null [m]

soilCNratio C/N-Verhältnis des Humus im Boden

atmospheric_CO2 Atmosphärische CO₂-Konzentration (0 = MONICA berechnet

den beobachteten Wert des Mauna Loa-Observatoriums 1959

- 2010, bzw. projiziert das IPCC A1B Szenario bis 2100)

wind_speed_height Höhe der Windgeschwindigkeitsmessung [m]

leaching_depthTiefe, ab der Nitrat als ausgewaschen betrachtet wird [m] $N_deposition$ Jährliche atmosphärische Stickstoffdeposition [kg N ha $^{-1}$]

pH pH-Wert in oberster Bodenschicht []

groundwater_depth_minNiedrigster Grundwasserpegel im Jahr (Flurabstand) [m]groundwater_depth_maxHöchster Grundwasserpegel im Jahr (Flurabstand) [m]

groundwater depth min month Monat, in dem im Durchschnitt der niedrigste

Grundwasserpegel erreicht wird

general_parameters

use_secondary_yields 0 oder 1; Deaktiviert oder aktiviert die Berechnung des

Sekundärertrags, z.B von Stroh

nitrogen_response_on "false" oder "true"; Deaktiviert oder aktiviert die

Rückkopplung eines etwaigen Stickstoffdefizits auf das

Pflanzenwachstum

water_deficit_response_on "false" oder "true"; Deaktiviert oder aktiviert die

Rückkopplung eines etwaigen Wasserdefizits auf das

Pflanzenwachstum

emergence_moisture_control_on "false" oder "true"; Deaktiviert oder aktiviert die

Rückkopplung des Bodenwassergehalts in der obersten

Schicht auf das Auflaufen der Pflanze

emergence_flooding_control_on "false" oder "true"; Deaktiviert oder aktiviert die

Rückkopplung einer etwaigen Wasserbedeckung des Bodens

auf das Auflaufen der Pflanze

init values

init_percentage_FCStartwert des Bodenwassergehalts [% Feldkapazität]init_soil_nitrateStartwert des Bodennitratgehalts [kg NO3-N m³]init_soil_ammoniumStartwert des Bodenammoniumgehalts [kg NH4-N m³]

Konfigurieren von Input-Dateien

Hinweis: Die Dateien, in denen die Input-Information für die

Simulation, sind noch einer älteren Generation von Simulationsmodellen entnommen, um Vergleiche zwischen Modellversionen zu ermöglichen. Aus diesem Grund gehorcht der Aufbau der Dateien einem strengen

Muster, von dem nicht abgewichen werden darf.

Die Bodenprofildatei "SOIL"

Im CSV-Format sind in dieser Datei all wichtigen Bodeninformationen enthalten. BdID beschreibt eine Identifikationsnummer, die frei vergeben werden kann. Corg enthält den organischen Kohlenstoffgehalt in [%], Bart die Bodenart nach der Bodenkundlichen Kartieranleitung, 5. Auflage (KA5). UKT beschreibt die Unterkante des jeweiligen Horizonts in [dm] und LD die Lagerungsdichteklasse nach KA5. Stn repräsentiert den Steingehalt in [%]. Alle weiteren Angaben haben zurzeit keine Funktion. Unterschiedliche Horizonte eines Bodens werden, mit gleicher ID, zeilenweise angefügt. Das Profil muss bis 20 dm definiert sein (UKT = 20 für den letzten Horizont).

```
BdID Corg Bart UKT LD Stn C/N C/S Hy Wmx AzHo 001 1.02 Sl3 02 3 00 010 --- 00 08 3 001 1.02 St2 03 3 00 010 --- 00 08 001 0.15 St2 20 3 00 010 --- 00 08 End
```

Die Fruchtfolgedatei "ROTATION"

Diese Datei enthält die Daten über die angebauten Früchte und Ihre Saat- und Erntetermine. Die field_ID hat zunächst keine Funktion, da die Zuordnung zum Boden über die Benennung in der ini-Datei erfolgt. Crp enthält das ID-Kürzel der Ackerfrucht. Derzeit können folgende Früchte simuliert werden:

- Winterweizen ("WW")
- Wintergerste ("WG")
- Sommergerste ("SG")
- Winterroggen ("WR")
- Zuckerrübe ("ZR")
- Silomais ("SM")
- Körnermais ("GM")
- Winterraps ("WC")
- Futtererbse ("FP")
- Wintertriticale ("WTR")
- Ölrettich ("OR")
- Phacelia ("PH")
- Senf ("MU")
- Sorghum ("SOR")
- Sojabohne Reifegruppe 000 ("SX0")
- Sojabohne Reifegruppe 00 ("S00")

- Sojabohne Reifegruppe 0 ("SOX")
- Sojabohne Reifegruppe 1 ("S01")
- Sojabohne Reifegruppe 2 ("S02")
- Sojabohne Reifegruppe 3 ("S03")
- Sojabohne Reifegruppe 4 ("S04")
- Sojabohne Reifegruppe 5 ("S05")
- Sojabohne Reifegruppe 6 ("S06")
- Sojabohne Reifegruppe 7 ("S07")
- Sojabohne Reifegruppe 8 ("S08")
- Sojabohne Reifegruppe 9 ("S09")
- Sojabohne Reifegruppe 10 ("S10")
- Sojabohne Reifegruppe 11 ("S11")
- Sojabohne Reifegruppe 12 ("S12")

Es folgen das Saatdatum *sowing* und das Erntedatum *harves*, sowie ein Bodenbearbeitungsdatum *tillag*. Unter *dp* kann außerdem die Tiefe der Bodenbearbeitung angegeben werden. Alle weiteren Einträge haben zurzeit keine Funktion.

field_ID crp sowing harves tillag Exp dp Yld year comment 301000001 WG 250999 270600 280600 000 15 000 2000 301000001 ZR 100401 180901 041101 000 10 000 2001 301000001 WW 071101 010802 200902 000 15 000 2002 end

Die Düngemitteleinsatzdatei "FERT"

In dieser Datei werden die N-Düngemaßnahmen erfasst. Die Schlag_ID hat zurzeit keine Funktion. N bezeichnet die Menge N als Reinnährstoff in [kg ha⁻¹] und FRT benennt den Düngertyp. Derzeit kann MONICA folgende Düngertypen abbilden:

- Kaliumnitrat ("KN")
- Kalkammonsalpeter ("KAS")
- Ammoniumharnstofflösung ("AHL")
- Ammoniumsulfat ("AS")
- Diammoniumphosphat ("DAP")
- Schweinegülle ("SG")

- Rindergülle ("RG1")
- Stallmist ("SM")
- Harnstoff ("H")
- NPK-Compounddünger ("NPK")
- Alzon ("ALZ")
- Nitrophoska ("NIT")
- Hühnergülle ("HG")
- Hähnchentrockenmist ("HFM")
- Hühnermist ("HM")
- Carbokalk ("CK")
- Klärschlamm ("KSL")
- Bioabfallkompost ("BAK")
- Yara Pellon Y3 ("YP3")

Des Weiteren folgen das Ausbringungsdatum *Date* und eine Angabe *Incorp* ob der Dünger eingearbeitet wurde (1) oder nicht (0)

Schlag_ID N FRT Date Incorp 301000001 9600 FM 230899 0 301000001 113 RG1 080999 1 301000001 054 AHL 220300 1 end

Die Beregnungsdatei "IRRIG"

Die Beregnungsdatei enthält Angaben über die Bewässerung der Kultur. Die *Field_ID* hat zurzeit keine Funktion. mm bezeichnet die Wassergabe in [mm]. SCc hat zurzeit keine Funktion. IrrDat benennt das Datum der Bewässerungsgabe und NCc die Angabe über die N-Konzentration im Bewässerungswasser in [mg I^{-1}]

Field_ID mm SCc IrrDat NCc 301000001 24 334 050500 000 301000001 24 334 120500 000 end

Die Wetterdateien

Die Wetterdateien enthalten die Wetterinformation in täglicher Auflösung für jeweils ein Jahr. Die entsprechende Jahreszahl wird als Dateiendung verwendet, also "xxx.992" für das Wetter des Jahres 1992 oder "xxx.008" für das Wetter des Jahres 2008. Für den in der .ini-Datei definierten Simulationszeitraum müssen die Wetterdateien vollständig im Verzeichnis vorliegen. Das Format der Wetterdateien ist zurzeit noch sehr streng gehandhabt und orientiert sich an älteren Formaten, um die Lesbarkeit vergangener Projekte zu ermöglichen. Das Format ist ein Leerzeichen-getrenntes Textformat. Solche Wetterdateien werden am günstigsten erzeugt, in dem die im Windows-Excel erstellte Vorlage zu nächst mit den Daten gefüllt wird und im csv-Dateiformat abgespeichert wird. In der csv-Datei müssen dann mit einem Texteditor die für das Format als Trennzeichen üblichen Kommata durch Leerezeichen ersetzt werden. Abschließend muss noch die Dateiendung ".csv" durch die oben beschriebene Jahreskennung ersetzt werden.

Das Format der Wetterdateien sieht wie folgt aus:

Tp_av Tpmin Tpmax T_s10 T_s20 vappd wind sundu radia prec tagesnummer RF C_deg C_deg C_deg C_deg mm_Hg m/se hours J/cm² mm jday % 50 ----- 000.6 -01.5 001.0 000.0 000.0 000.0 006.7 000.0 0052.0 000.0 001 090 0002.8 000.0 006.0 000.0 000.0 000.0 012.8 000.0 0052.0 000.0 002 085

Die Spalten enthalten (von links nach rechts) die Tagesmitteltemperatur der Luft in 2m Höhe in [°C] (Tp_av), die Tagesmininimumtemperatur der Luft in 2m Höhe in [°C] (Tpmin), die Tagesmaximumtemperatur der Luft in 2m Höhe in [°C] (Tpmax), die Bodentemperatur in 10cm Bodentiefe in [°C] (T_s10), die Bodentemperatur in 20cm Bodentiefe in [°C] (T_s20), das Sättigungsdefizit der Luft in [mm Hg] (vappd), die Windgeschwindigkeit in 2m Höhe in [m s⁻¹], die Sonnenscheindauer in [h] (sundu), die Globalstrahlung in [J cm⁻²] (radia), den Niederschlag in [mm], die laufende Nummer des julianischen Tages und die relative Luftfeuchte in [%] (RF).

Für den Betrieb von MONICA sind derzeit nur die Variablen *Tp_av*, *Tpmin*, *Tpmax*, *wind*, *prec*, *tagesnummer* und *RF* notwendig, außerdem wahlweise *sundu* oder *radia*. Die verbleibenden Variablen sollten mit 000.0 oder –99.9 gefüllt werden.

Die jeweiligen Wetterdateien müssen vollständig sein, d.h. sie müssen nach dem dreizeiligen Kopf 365 Zeilen nach obigem Format enthalten (366 Zeilen für Schaltjahre).

Auswerten einer eigenen Simulation

Die Ergebnisse der Simulation werden in zwei Textdateien *rmout.dat* und *smout.dat* geschrieben, welche in dem jeweiligen Projektordner angelegt werden. Diese Dateien sind Tabulator-getrennt und können sehr einfach in Microsoft-Excel geladen und für grafische Auswertungen aufbereitet werden.

Die Ergebnisdatei smout.dat

In die Datei smout.dat werden häufig verwendete Zielgrößen im Tagesschritt geschrieben.

Bezeichner	Beschreibung	Einheit
Datum	Datum des simulierten Tages	[TT/MM/YYYY]
Stage	Entwickungsstadium der Pflanze, nach Definition in der	[0;1]
	Datenbank für Pflanzenparameter	
Height	Höhe der Pflanze in	[m]
Root	Trockenmasse der Wurzel	[kg ha ⁻¹]
Root10	Trockenmasse der Wurzel in 0-10 cm Bodentiefe	[kg ha ⁻¹]
Leaf	Trockenmasse der Blätter	[kg ha ⁻¹]
Shoot	Trockenmasse der Sprossachse und Triebe	[kg ha ⁻¹]
Fruit	Trockenmasse der Frucht	[kg ha ⁻¹]
AbBiom	Oberirdische Trockenmasse der Pflanze	[kg ha ⁻¹]
AbGBiom	(noch nicht implementiert)	
Yield	Ertrag (Trockenmasse)	[kg ha ⁻¹]
EarNo	Ährenzahl bei Getreide (noch nicht implementiert)	

Bezeichner	Beschreibung	Einheit
GrainNo	Kornzahl (noch nicht implementiert)	
LAI	Blattflächenindex	[m ² m ⁻²]
AbBiomNc	N-Konzentration in oberirdischer Trockenmasse	[kg N kg DM ⁻¹]
YieldNc	N-Konzentration in Trockenmasseertrag	[kg N kg DM ⁻¹]
AbBiomN	N-Konzentration in oberirdischer Trockenmasse	[kg N ha ⁻¹]
YieldN	N-Konzentration in Ertrag	[kg N ha ⁻¹]
TotNup	N-Aufnahme der Pflanze	[kg N ha ⁻¹]
NGrain	N im Korn (noch nicht implementiert)	
Protein	Rohproteingehalt im Korn	[kg kg ⁻¹]
BedGrad	Bedeckungsgrad	[m ² m ⁻²]
M0-10	Bodenfeuchte in 0-10 cm Tiefe	[m³ m ⁻³]
M10-20	Bodenfeuchte in 10-20 cm Tiefe	[m³ m ⁻³]
M20-30	Bodenfeuchte in 20-30 cm Tiefe	[m ³ m ⁻³]
M30-40	Bodenfeuchte in 30-40 cm Tiefe	[m ³ m ⁻³]
M40-50	Bodenfeuchte in 40-50 cm Tiefe	[m³ m ⁻³]
M50-60	Bodenfeuchte in 50-60 cm Tiefe	[m ³ m ⁻³]
M60-70	Bodenfeuchte in 60-70 cm Tiefe	[m ³ m ⁻³]
M70-80	Bodenfeuchte in 70-80 cm Tiefe	$[m^3 m^{-3}]$
M80-90	Bodenfeuchte in 80-90 cm Tiefe	[m ³ m ⁻³]
M0-30	Bodenfeuchte in 0-30 cm Tiefe	[m ³ m ⁻³]
M30-60	Bodenfeuchte in 30-60 cm Tiefe	[m ³ m ⁻³]
M60-90	Bodenfeuchte in 60-90 cm Tiefe	[m ³ m ⁻³]
M0-60	Bodenfeuchte in 0-60 cm Tiefe	[m ³ m ⁻³]
M0-90	Bodenfeuchte in 0-90 cm Tiefe	$[m^3 m^{-3}]$
PAW0-200	Pflanzenverfügbares Wasser 0-200 cm Tiefe	[mm]
PAW0-130	Pflanzenverfügbares Wasser 0-130 cm Tiefe	[mm]
PAW0-120	Pflanzenverfügbares Wasser 0-120 cm Tiefe	[mm]
N0-30	Mineralischer Stickstoff in 0-30 cm Tiefe	[kg m ⁻³]
N30-60	Mineralischer Stickstoff in 30-60 cm Tiefe	[kg m ⁻³]
N60-90	Mineralischer Stickstoff in 60-90 cm Tiefe	[kg m ⁻³]
N0-60	Mineralischer Stickstoff in 0-60 cm Tiefe	[kg m ⁻³]
N0-90	Mineralischer Stickstoff in 0-90 cm Tiefe	[kg m ⁻³]
N0-200	Mineralischer Stickstoff in 0-200 cm Tiefe	[kg N ha ⁻¹]
N0-130	Mineralischer Stickstoff in 0-130 cm Tiefe	[kg N ha ⁻¹]
N0-120	Mineralischer Stickstoff in 0-120 cm Tiefe	[kg N ha ⁻¹]
NH430	Ammonium in 0-30 cm Tiefe	[kg N m ⁻³]
NH460	Ammonium in 0-60 cm Tiefe	[kg N m ⁻³]
NH490	Ammonium in 0-90 cm Tiefe	[kg N m ⁻³]
Co0-10	Organischer Kohlenstoff in 0-10 cm Tiefe	[kg C m ⁻³]
Co0-30	Organischer Kohlenstoff in 0-30 cm Tiefe	[kg C m ⁻³]
T0-10	Bodentemperatur in 0-10 cm Tiefe	[°C]
T20-30	Bodentemperatur in 20-30 cm Tiefe	[°C]
T50-60	Bodentemperatur in 50-60 cm Tiefe	[°C]
CO2	CO ₂ -Ausgasung aus dem Boden	[kg C ha ⁻¹]
NH3	NH ₃ -Ausgasung aus dem Boden	[kg N ha ⁻¹]
N2O	N₂O-Ausgasung aus dem Boden (noch nicht implementiert)	
N2	N ₂ -Ausgasung aus dem Boden (noch nicht implementiert)	

Ngas	Gesamte N-Ausgasung aus dem Boden (noch nicht	
	implementiert)	
NFert	N-Düngung	[kg N ha ⁻¹]
Irrig	Bewässerung [mm]	[mm]

Die Ergebnisdatei rmout.dat

In die Datei *rmout.dat* werden Zielgrößen im Tagesschritt geschrieben, die zur detaillierten Aufklärung von simulierten Prozessen beitragen.

Bezeichner	Beschreibung	Einheit
Datum	Datum des simulierten Tages	[TT/MM/YYYY]
TraDef	Transpirationsdefizit	[0;1]
Tra	Transpiration	[mm]
NDef	Stickstoffdefizit	[0;1]
HeatRed	Reduktionsfaktor Assimilatspeicherung durch Hitzestresss	[0;1]
OxRed	Sauerstoffdefizit	[0;1]
Stage	Entwicklungsstadium der Pflanze, nach Definition in der Datenbank für Pflanzenparameter	[]
TempSum	Temperatursumme während der Pflanzenentwicklung	[°C d]
VernF	Erfüllungsgrad des Vernalisationsanspruchs	[0;1]
DaylF	Erfüllungsgrad des Tageslängenanspruchs	[0;1]
IncRoot	Wurzelwachstumsrate	[kg CH ₂ O ha ⁻¹ d ⁻¹]
IncLeaf	Blattwachstumsrate	[kg CH_2O ha ⁻¹ d ⁻¹]
IncShoot	Sprosswachstumsrate	[kg CH ₂ O ha ⁻¹ d ⁻¹]
IncFruit	Wachstumsrate Speicherorgan	[kg CH ₂ O ha ⁻¹ d ⁻¹]
RelDev	Relative Entwicklung der Pflanze	[0; 1]
Root	Trockenmasse der Wurzel	[kg ha ⁻¹]
Leaf	Trockenmasse der Blätter	[kg ha ⁻¹]
Shoot	Trockenmasse der Sprossachse und Triebe	[kg ha ⁻¹]
Fruit	Trockenmasse der Frucht	[kg ha ⁻¹]
Yield	Marktertrag	[kg ha ⁻¹]
GroPhot	Gross photosynthesis	[kg CH_2O ha ⁻¹ d ⁻¹]
NetPhot	Net photosynthesis	[kg CH ₂ O ha ⁻¹ d ⁻¹]
MaintR	Erhaltungsatmung	[kg CH ₂ O ha ⁻¹ d ⁻¹]
GrowthR	Wachstumsatmung	[kg CH ₂ O ha ⁻¹ d ⁻¹]
StomRes	Stomata-Widerstand	[s ⁻¹]
Height	Höhe der Pflanze in	[m]
LAI	Blattflächenindex	$[m^2 m^{-2}]$
RootDep	Aktuelle effektive Durchwurzelungstiefe	[Tiefenschicht]
AbBiom	Oberirdische Trockenmasse der Pflanze	[kg m ⁻²]
NBiom	N-Menge in der Biomasse	[kg ha ⁻¹]
SumNUp	Summe des aufgenommenen N	[kg N ha ⁻¹ d ⁻¹]
ActNup	aktuelle N-Aufnahme	[kg N ha ⁻¹ d ⁻¹]
PotNup	potenzielle N-Aufnahme	[kg N ha ⁻¹ d ⁻¹]
NFixed	Atmosphärisches N gebunden durch Rhizobium-Symbiose	[kg N ha ⁻¹ d ⁻¹]
Target	Zielkonzentration Stickstoff	[kg N kg ⁻¹ DM]
CritN	Kritische Konzentration Stickstoff	[kg N kg ⁻¹ DM]

Bezeichner	Beschreibung	Einheit
AbBiomN	N-Konzentration in oberirdischer Biomasse	[kg N kg ⁻¹]
YieldN	N-Konzentration in marktfähigem Ertrag	[kg N kg ⁻¹]
Protein	Rohprotein-Konzentration in marktfähigem Ertrag	[kg kg ⁻¹]
NPP	Nettoprimärproduktion der Pflanze	[kg C ha ⁻¹]
NPPRoot	Nettoprimärproduktion pro Wurzelmasse	[kg C ha ⁻¹]
NPPLeaf	Nettoprimärproduktion pro Blattmasse	[kg C ha ⁻¹]
NPPShoot	Nettoprimärproduktion pro Sprossmasse	[kg C ha ⁻¹]
NPPFruit	Nettoprimärproduktion pro Masse Speicherorgan	[kg C ha ⁻¹]
GPP	Bruttoprimärproduktion der Pflanze	[kg C ha ⁻¹]
Ra	Gesamtatmung der Pflanze	[kg C ha ⁻¹]
RaRoot	Wurzelatmung	[kg C ha ⁻¹]
RaLeaf	Blattatmung	[kg C ha ⁻¹]
RaShoot	Sprossatmung	[kg C ha ⁻¹]
RaFruit	Atmung des Speicherorgans	[kg C ha ⁻¹]
Mois0	Bodenfeuchte in 0-10 cm Tiefe	[m³ m ⁻³]
Mois1	Bodenfeuchte in 10-20 cm Tiefe	[m³ m ⁻³]
Mois2	Bodenfeuchte in 20-30 cm Tiefe	[m³ m ⁻³]
Mois3	Bodenfeuchte in 30-40 cm Tiefe	[m³ m ⁻³]
Mois4	Bodenfeuchte in 40-50 cm Tiefe	[m³ m ⁻³]
Mois5	Bodenfeuchte in 50-60 cm Tiefe	[m³ m ⁻³]
Mois6	Bodenfeuchte in 60-70 cm Tiefe	[m³ m ⁻³]
Mois7	Bodenfeuchte in 70-80 cm Tiefe	[m³ m ⁻³]
Mois8	Bodenfeuchte in 80-90 cm Tiefe	[m ³ m ⁻³]
Mois9	Bodenfeuchte in 90-100 cm Tiefe	[m³ m ⁻³]
Mois10	Bodenfeuchte in 100-110 cm Tiefe	[m ³ m ⁻³]
Mois11	Bodenfeuchte in 110-120 cm Tiefe	[m ³ m ⁻³]
Mois12	Bodenfeuchte in 120-130 cm Tiefe	[m ³ m ⁻³]
Mois13	Bodenfeuchte in 130-140 cm Tiefe	[m ³ m ⁻³]
Mois14	Bodenfeuchte in 140-150 cm Tiefe	$[m^3 m^{-3}]$
Mois15	Bodenfeuchte in 150-160 cm Tiefe	$[m^3 m^{-3}]$
Mois16	Bodenfeuchte in 160-170 cm Tiefe	$[m^3 m^{-3}]$
Mois17	Bodenfeuchte in 170-180 cm Tiefe	[m³ m ⁻³]
Mois18	Bodenfeuchte in 180-190 cm Tiefe	$[m^3 m^{-3}]$
Mois19	Bodenfeuchte in 190-200 cm Tiefe	$[m^3 m^{-3}]$
Precip	Niederschlag	[mm]
Irrig	Bewässerung	[mm]
Infilt	Infiltration	[mm]
Surface	Oberflächenspeicher	[mm]
RunOff	Oberflächenabfluss	[mm]
SnowD	Schneemächtigkeit	[m]
FrostD	Tiefe Frostfront	[m]
ThawD	Tiefe Taufront	[m]
PASW-0	Planzenverfügbares Wasser in 0-10 cm Tiefe	[mm]
PASW-1	Planzenverfügbares Wasser in 10-20 cm Tiefe	[mm]
PASW-2	Planzenverfügbares Wasser in 20-30 cm Tiefe	[mm]
PASW-3	Planzenverfügbares Wasser in 30-40 cm Tiefe	[mm]
PASW-4	Planzenverfügbares Wasser in 40-50 cm Tiefe	[mm]
PASW-5	Planzenverfügbares Wasser in 50-60 cm Tiefe	[mm]

Bezeichner	Beschreibung	Einheit
PASW-6	Planzenverfügbares Wasser in 60-70 cm Tiefe	[mm]
PASW-7	Planzenverfügbares Wasser in 70-80 cm Tiefe	[mm]
PASW-8	Planzenverfügbares Wasser in 80-90 cm Tiefe	[mm]
PASW-9	Planzenverfügbares Wasser in 90-100 cm Tiefe	[mm]
PASW-10	Planzenverfügbares Wasser in 100-110 cm Tiefe	[mm]
PASW-11	Planzenverfügbares Wasser in 110-120 cm Tiefe	[mm]
PASW-12	Planzenverfügbares Wasser in 120-130 cm Tiefe	[mm]
PASW-13	Planzenverfügbares Wasser in 130-140 cm Tiefe	[mm]
PASW-14	Planzenverfügbares Wasser in 140-150 cm Tiefe	[mm]
PASW-15	Planzenverfügbares Wasser in 150-160 cm Tiefe	[mm]
PASW-16	Planzenverfügbares Wasser in 160-170 cm Tiefe	[mm]
PASW-17	Planzenverfügbares Wasser in 170-180 cm Tiefe	[mm]
PASW-18	Planzenverfügbares Wasser in 180-190 cm Tiefe	[mm]
PASW-19	Planzenverfügbares Wasser in 190-200 cm Tiefe	[mm]
SurfTemp	Oberflächentemperatur	[°C]
STemp0	Bodentemperatur in 0-10 cm Tiefe	[°C]
STemp1	Bodentemperatur in 10-20 cm Tiefe	[°C]
STemp2	Bodentemperatur in 20-30 cm Tiefe	[°C]
STemp3	Bodentemperatur in 30-40 cm Tiefe	[°C]
STemp4	Bodentemperatur in 40-50 cm Tiefe	[°C]
act_Ev	Aktuelle Evaporation	[mm]
act_ET	Aktuelle Evapotranspiration	[mm]
ETO	Referenz-Evapotranspiration	[mm]
Kc	Kc-Faktor zur Referenz-Evapotranspiration	[] [10 ⁻⁶ m ³ m ⁻³]
atmCO2	Atmosphärische CO ₂ -Konzentration	
Groundw	Grundwasserflurabstand	[m]
Recharge NLeach	Tiefenperkolation N-Auswaschung	[mm] [kg N ha ⁻¹]
	Nitratgehalt in 0-10 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-0		
NO3-1	Nitratgehalt in 10-20 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-2	Nitratgehalt in 20-30 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-3	Nitratgehalt in 30-40 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-4	Nitratgehalt in 40-50 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-5	Nitratgehalt in 50-60 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-6	Nitratgehalt in 60-70 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-7	Nitratgehalt in 70-80 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-8	Nitratgehalt in 80-90 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-9	Nitratgehalt in 90-100 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-10	Nitratgehalt in 100-110 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-11	Nitratgehalt in 110-120 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-12	Nitratgehalt in 120-130 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-13	Nitratgehalt in 130-140 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-14	Nitratgehalt in 140-150 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-15	Nitratgehalt in 150-160 cm Tiefe	[kg NO ₃ -N m ⁻³]

Bezeichner	Beschreibung	Einheit
NO3-16	Nitratgehalt in 160-170 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-17	Nitratgehalt in 170-180 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-18	Nitratgehalt in 180-190 cm Tiefe	[kg NO ₃ -N m ⁻³]
NO3-19	Nitratgehalt in 190-200 cm Tiefe	[kg NO ₃ -N m ⁻³]
Carb	Carbamidgehalt in 0-10 cm Tiefe	[kg C(NH ₃) ₂ -N m ⁻³]
NH4-0	Ammoniumgehalt in 10-20 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-1	Ammoniumgehalt in 10-30 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-2	Ammoniumgehalt in 20-40 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-3	Ammoniumgehalt in 30-50 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-4	Ammoniumgehalt in 40-60 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-5	Ammoniumgehalt in 50-70 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-6	Ammoniumgehalt in 60-80 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-7	Ammoniumgehalt in 70-90 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-8	Ammoniumgehalt in 80-100 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-9	Ammoniumgehalt in 90-100 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-10	Ammoniumgehalt in 100-120 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-11	Ammoniumgehalt in 110-120 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-12	Ammoniumgehalt in 120-130 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-13	Ammoniumgehalt in 130-140 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-14	Ammoniumgehalt in 140-150 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-15	Ammoniumgehalt in 150-160 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-16	Ammoniumgehalt in 160-170 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-17	Ammoniumgehalt in 170-180 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-18	Ammoniumgehalt in 180-190 cm Tiefe	[kg NH ₄ -N m ⁻³]
NH4-19	Ammoniumgehalt in 190-200 cm Tiefe	[kg NH ₄ -N m ⁻³]
NO2-0	Nitritgehalt in 0-10 cm Tiefe	[kg NO ₂ -N m ⁻³]
NO2-1	Nitritgehalt in 10-20 cm Tiefe	[kg NO ₂ -N m ⁻³]
NO2-2	Nitritgehalt in 20-30 cm Tiefe	[kg NO ₂ -N m ⁻³]
NO2-3	Nitritgehalt in 30-40 cm Tiefe	[kg NO ₂ -N m ⁻³]
SOC-0	Organischer Kohlenstoff in 0-10 cm Tiefe	[kg C m ⁻³]
SOC-1	Organischer Kohlenstoff in 10-20 cm Tiefe	[kg C m ⁻³]
SOC-2	Organischer Kohlenstoff in 20-30 cm Tiefe	[kg C m ⁻³]
SOC-3	Organischer Kohlenstoff in 30-40 cm Tiefe	[kg C m ⁻³]
AOMf-0	Organischer Kohlenstoff in schnell abbaubarer frischer Substanz 0- 10 cm Tiefe	[kg C m ⁻³]
AOMs-0	Organischer Kohlenstoff in langsam abbaubarer frischer Substanz 0-10 cm Tiefe	[kg C m ⁻³]
SMBf-0	Organischer Kohlenstoff in schnell umsetzenden Mikroorganismen in 0-10 cm Tiefe	[kg C m ⁻³]
SMBs-0	Organischer Kohlenstoff in langsame umsetzenden Mikroorganismen in 0-10 cm Tiefe	[kg C m ⁻³]
SOMf-0	Organischer Kohlenstoff in schnell abbaubarer humifizierter Substanz 0-10 cm Tiefe	[kg C m ⁻³]
SOMs-0	Organischer Kohlenstoff in langsam abbaubarer humifizierter Substanz 0-10 cm Tiefe	[kg C m ⁻³]

Bezeichner	Beschreibung	Einheit
CBal-0	Kohlenstoffbilanz in 0-10 cm Tiefe	[kg C m ⁻³]
Nmin-0	Netto-N-Mineralisation in 0-10 cm Tiefe	[kg N m ⁻²]
Nmin-1	Netto-N-Mineralisation in 10-20 cm Tiefe	[kg N m ⁻²]
Nmin-2	Netto-N-Mineralisation in 20-30 cm Tiefe	[kg N m ⁻²]
NetNmin	Kumulierte Netto-N-Mineralisation gesamt	[kg N m ⁻²]
Denit	N₂-Produktion durch Denitrifikation	[kg N m ⁻²]
N2O	N₂O-Produktion	[kg N ₂ O-N m ⁻²]
SoilpH	pH-Wert des Bodens	[]
NEP	Netto-Ökosystemproduktion	[kg C m ⁻²]
NEE	Netto-Ökosystemaustausch	[kg C m ⁻²]
Rh	Heterotrophische Respiration	[kg C m ⁻² d ⁻¹]
tmin	Tagesminimumtemperatur	[°C]
tavg	Tagesmitteltemperatur	[°C]
tmax	Tagesmaximumtemperatur	[°C]
wind	Windgeschwindigkeit	[m s ⁻¹]
globrad	Globalstrahlung	[J cm ⁻²]
relhumid	Relative Luftfeuchte	[%]
sunhours	Sonnenscheindauer	[h]