CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 16 MARZO 2018

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola** e **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Sia (S, *) un monoide, con elemento neutro t. Sia $a \in S$.

- (i) Dire quando, per definizione, $a \in invertibile$ in (S, *).
- (ii) Dire quando, per definizione, $a \in cancellabile$ (o regolare) in (S, *).
- (iii) Vero o falso?
 - (a) se a è invertibile, allora a è necessariamente cancellabile;
 - (b) se a è cancellabile, allora a è necessariamente invertibile.
- (iv) L'insieme $\mathcal{U}(S)$ degli elementi invertibili è una parte chiusa di (S,*)? Nel caso lo sia spiegare in dettaglio perché.

Esercizio 2. Siano $S = \{n \in \mathbb{N} \mid 1 \le n \le 99\}$, $S^3 = S \times S \times S$ e $T = \{(a, b, c) \in S^3 \mid a \ne b \ne c \ne a\}$, l'insieme delle terne ordinate di elementi di S a coordinate a due a due distinte.

- (i) Fornire un'espressione per |T| (indicare |T| come prodotto nel modo più semplice possibile, senza svolgere le moltiplicazioni).
- (ii) Si consideri l'applicazione $f: T \to T$ così definita: per ogni $(a,b,c) \in T$, l'immagine di (a,b,c) mediante f è quell'unica terna $(u,v,w) \in T$ tale che $\{u,v,w\} = \{a,b,c\}$ e u < v < w (ad esempio, f((3,1,7)) = (1,3,7)).
 - (a) f è iniettiva? È suriettiva?
 - (b) Detto \Re il nucleo di equivalenza di f, per ogni $(a,b,c) \in T$ determinare $|[(a,b,c)]_{\Re}|$.
 - (c) Calcolare $|T/\Re|$. (Avendo calcolato |T| e la cardinalità di ciascuna classe di equivalenza, è facile dire quante sono le classi di equivalenza).

Sia ora σ la relazione d'ordine in S^3 definita da: per ogni $(a,b,c),(x,y,z) \in S^3$.

$$(a,b,c) \sigma(x,y,z) \iff (a \le x \land b \le y \land c \le z).$$

- (iii) Determinare gli eventuali minimo, massimo, elementi minimali, elementi massimali in (S^3, σ) .
- (iv) In (S^3, σ) , descrivere i minoranti di $\{(3, 2, 1), (1, 2, 3)\}$ e trovare, se esiste, inf $\{(3, 2, 1), (1, 2, 3)\}$.
- (v) (S^3, σ) è un reticolo?
- (vi) In (T, σ) , descrivere i minoranti di $\{(1, 2, 3)\}$ e quelli di $\{(3, 2, 1), (1, 2, 3)\}$; decidere se (T, σ) ha minimo e se è un reticolo.

Esercizio 3. Siano $f = x^2 + x + \bar{1}$ e $g = x^3 + x + \bar{1}$ due polinomi in $\mathbb{Z}_{59}[x]$, e sia t = fg. Dando per noto che f e g sono entrambi irriducibili, rispondere alle seguenti domande:

- (i) t ha radici in \mathbb{Z}_{59} ?
- (ii) t ha un divisore h di grado due e coefficiente direttore $\bar{5}$? Se sì, calcolarne uno.
- (iii) Nel caso in cui un tale h esista, posto t = hk,
 - (a) il grado ed il coefficiente direttore di k sono univocamente determinati? Se sì, quali sono?
 - (b) h e/o k sono necessariamente irriducibili?
 - (c) h e/o k sono univocamente determinati?

Esercizio 4. Siano fissati un insieme S ed una sua parte T. Definiamo l'operazione binaria * in $\mathcal{P}(S)$ ponendo, per ogni $A, B \subseteq S$,

$$A * B = (A \cap B) \triangle (A \cap T) \triangle (B \cap T).$$

Questa operazione è associativa e (ovviamente) commutativa.

- (i) Verificare che, per ogni $E \in \mathcal{P}(S)$, $\varnothing * E = E \cap T$ e $S * E = E \cup T$.
- (ii) Utilizzando il punto precedente, stabilire se $(\mathcal{P}(S), *)$ è un monoide.
- (iii) Dire quale (nota) operazione è * nei casi in cui $T = \emptyset$ o T = S.