第四部分 数理逻辑

数理逻辑从17世纪末莱布尼茨(Gottfred Wlhelm Leibniz 数理逻辑的创始人)起,至今已有几百年的历史了,它与数学的其它分支、计算机科学、人工智能及语言学等都有密切的的联系,并日益显示其重要作用和广泛的应用前景。

莱布尼茨

戈特弗里德 威廉 莱布尼茨

戈特弗里德·威廉·莱布尼茨 (Gottfried Wilhelm Leibniz, 1646 年-1716年)德国数学家。第一个公 开微积分方法的人,并且符号被主 流应用,而牛顿是确认早于莱布尼 茨使用微积分的。中年后莱布尼茨 健康出现问题,智力退化严重,于 50岁左右开始研究古代中国,并且 与闵明我通信。死于70岁。 莱布尼茨一生没有结婚。

- 8岁时,莱布尼茨进入尼古拉学校,学习拉丁文、希腊文、修辞学、算术、逻辑、音乐以及《圣经》、路德教义等。
- 1661年,15岁的莱布尼茨进入莱比锡大学学习法律,一进校便跟上了大学二年级标准的人文学科的课程,他还抓紧时间学习哲学和科学。1665年,莱布尼茨向莱比锡大学提交了博士论文《论身份》,1666年,审查委员会以他太年轻(年仅20岁)而拒绝授予他法学博士学位,黑格尔认为,这可能是由于莱布尼茨哲学见解太多,审查论文的教授们看到他大力研究哲学,心里很不乐意。他对此很气愤,于是毅然离开莱比锡,前往纽伦堡附近的阿尔特多夫大学,并立即向学校提交了早已准备好的那篇博士论文,1667年2月,阿尔特多夫大学授予他法学博士学位,还聘请他为法学教授。
- 这一年,莱布尼茨发表了他的第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学的才华,后来的一系列工作使他成为数理逻辑的创始人。

众所周知,语言是交流思想的工具,目常 生活的语言称为自然语言,它虽然丰富多彩, 但容易产生二义性, 因此对严格的推理问题, 使用自然语言是不方便的,这就需要引入一种 形式化的语言,它具有单一、明确的含义,这 种形式化的语言在逻辑中称为目标语言, 由目 标语言和一些规定的公式与符号构成了数理 逻辑的形式符号体系。

逻辑学 ——研究推理的一门学科。

数理逻辑(符号逻辑)——用数学方法研究推理的一门数学学科。

一套符号体系 + 一组规则

数理逻辑的内容

古典数理逻辑(本教材的内容)

命题逻辑

谓词逻辑(一阶逻辑)

现代数理逻辑

公理化集合论

递归论

模型论

证明论

第7章 命题逻辑

命题与联结词 命题公式及其分类 等值演算 其它联结词 对偶与范式 推理理论

第7章 命题逻辑 (Proposition Logic)

- 7.1 命题与联结词
- 7.1.1 命题

目标语言中的基本元素是具有判断内容的语句,而判断是对事物作出肯定或否定的一种思维形式,因此能表达判断的语句应该是陈述句。

定义1 能够判断真假的陈述句称为命题。

一个命题所取的"值"称为真值,真值只能取

"真"或"假"两种情况,"真"记为T(True)

或1, "假"记为F(False)或0。

非真即假的陈述句称为命题。

例1 判断下列语句是否命题(若是命题) 判断其真值)

$$(2)$$
 雪是黑色的 \checkmark F

$$(3)$$
 我们正在上课 \checkmark T

(5) 1+101=110 \checkmark

在二进制中为真命题,十进制中为假命题真值依赖上下文。

(6) 别的星球上有生命 🗸

目前无法决定真值,但真值一定存在。

- (7) 请勿吸烟! ×
- (8) 明天有会吗? ×
- (9) 天气多好啊! ×

这三个均不是命题,因为都不是陈述句。

(10) <u>我正在说谎</u> ×

也不是命题,这种语句称为悖论。

若给它指派"真",但语句本身说明是"假" 若给它指派"假",语句本身又暗指是"真" • 古代的一名国王要处死一名政治反对派。 假惺惺地说:"让神的旨意决定这个人的 命运吧。我允许他在临刑前说一句话,如 果讲的是真话,那么他将被斩首,如果说 的是假话,那么他将被绞死。"聪明的反 对派说: "我将被绞死。" 国王陷入窘境 。如果断定为真话,则将问斩,但犯人自 称"被绞死。"故为假话。但此时按国王 之言应处绞刑,犯人正言是"被绞死", 又成真话,故此,国王只能放其生路。

命题的语句形式 ——陈述句

非命题的陈述句 ——悖论语句

判断一个句子是否为命题:

- (1) 看它是否为陈述句;
- (2) 看它的真值是否唯一。

确定命题的真值需注意:

- (1) 时间性
- (2) 区域性
- (3) 标准性

定义2 为了便于对命题作一般性的讨论,在数理逻辑中,常用大写的英文字母或带下标的大写字母表示命题,称其为命题标示符,如 $P,Q,R,\cdots,A_1,A_2,\cdots$ 等等。

例如 P: 今天下雨

 A_1 : 雪是黑的

这里的 P, A1 即为命题标示符。

一个命题标示符,如果表示确定的命题, 称其为命题常元: 如果只是任意命题的位置标 志,称其为命题变元。由于命题变元可以代表 任意命题,所以不能确定真值情况,故命题变 元不是命题,只有当命题变元P用一个确定的 命题取代后,才具有真值,这时P才是命题, 称为对P进行指派。

7.1.2 联结词

在自然语言中,经常使用如"与""或" "但是""如果...那么..."等一些联结词,由于 对这些联结词没有严格的定义,极易产生多义 性。在数理逻辑中,也有类似的联结词,为了 避免出现多义性,给出了严格的定义,并且予以 符号化。

1、否定 "否定"是一个一元运算

定义3 设P是一个命题,P的否定是一个新命题,记作 ¬P。若P为T,¬P为F;若P为F,¬P为T。 其关系如表所示

P	$\neg P$
$m{T}$	$oldsymbol{F}$
$oldsymbol{F}$	T

数理逻辑

例 P: 伦敦是个多雾的城市

 $\neg P$: 伦敦并非是个多雾的城市

 $\neg P$: 伦敦不是个多雾的城市

练习 Q: 3是个偶数

 $\neg Q$: ?

2、合取

"合取"是一个二元运算

定义4 设P和Q是两个命题,P与Q的 合取也是一个命题,记作 $P \land Q$,当且仅当P,Q

同时为T时, $P \wedge Q$ 为T,其它情况下, $P \wedge Q$ 均为F。 其关系如表所示

P	Q	$P \wedge Q$
T	T	$m{T}$
\boldsymbol{T}	F	$oldsymbol{F}$
${m F}$	$\mid T \mid$	$oldsymbol{F}$
\boldsymbol{F}	\boldsymbol{F}	$oldsymbol{F}$

自然语言中:"与""但是""既…,就…" "不仅…,而且…""虽然…,但是…"等等 均可用^表示。

例 P: 今天下雨; Q: 明天下雨;

 $P \wedge Q$: 今明两天都下雨。

虽然"合取"联结词可以对应于自然语言但并不完全相同。例如

P: 我去看电影; Q: 房间里有10张桌子;

 $P \wedge Q$: 我去看电影并且房间里有10张桌子.

在自然语言中, $P \wedge Q$ 这个命题是没有意义的,但在数理逻辑中却是一个新命题,可按"合取"的定义确定真值。

3、析取

"析取"是一个二元运算

定义5 设P和Q是两个命题,P与Q的 析取也是一个命题,记作 $P \lor Q$,当且仅当P,Q

同时为F时, $P \vee Q$ 为F,其它情况下, $P \vee Q$ 均为T。 其关系如表所示

P	Q	$P \lor Q$
T	T	$m{T}$
\boldsymbol{T}	$oldsymbol{F}$	T
${m F}$	T	T
\boldsymbol{F}	\boldsymbol{F}	$oldsymbol{F}$

自然语言中,"或"可用 >表示。

例 P: 今天下雨; Q: 明天下雨;

 $P \lor Q$: 今天或明天下雨.

"析取"联结词也与自然语言有所不同自然语言中的"或",有两种含义:

- (1) 相容"或"——可兼或(用>表示)
- (2) 不相容"或"——异或、排斥或

例如

- (1) 灯泡有故障或开关有故障。
- (2) 我在家通过电视看这场杂技或到剧场看这场杂技。
 - (3) 他昨天做了二或三十道习题。

这里(1)是可兼或,(2)是异或,(3)中的"或"是指习题的近似数目,不是联结词。

4、蕴含

"蕴含"是一个二元运算

定义6 设P和Q是两个命题,P与Q的 蕴含也是一个命题,记作 $P \rightarrow Q$,当且仅当P

的真值为T,Q的 真值为F时, $P \rightarrow Q$ 的真值为F,其它情 况下, $P \rightarrow Q$ 均为T。 其关系如表所示

P	Q	$P \rightarrow Q$
\boldsymbol{T}	T	T
\boldsymbol{T}	\boldsymbol{F}	$oldsymbol{F}$
\boldsymbol{F}	T	T
\boldsymbol{F}	$m{F}$	$m{T}$

自然语言中,"如果…,那么…"可以用 →表示。

例 P:天不下雨; Q:我去看电影;

 $P \to Q$:如果天不下雨,那么我去看电影

但在自然语言中,前面的原因与后面的结果一般是有联系的,否则就没有意义了,但逻辑语言中,蕴含联结词没有这个要求。

例 P: 雪是黑色的; Q: 2+2=4

 $P \rightarrow Q$:如果雪是黑色的,那么2+2=4

而且命题 $P \to Q$ 是 T。因为此命题的前件是 F,无论后件的情况如何,命题的真值总是 T,将这种情况称为"善意的推断"。

例 假如给我一根杠杆和一个支点,我可以橇起地球(阿基米德)。

例 咿索的主人一次在酒桌上喝醉酒说: 我没醉,我可以和你们打赌,我能把大海喝干。 醒来后别人找他理论,怎么办?

他求救于咿索,咿索说:如果你堵住所有的入海口,我就把大海喝干。

如果一个条件语句的前一部分条件(前件)为假,那么这个语句总被认为是真的。

5、等价 "等价"是一个二元运算

定义7 设P和Q是两个命题,P与Q的 等价也是一个命题,记作 $P \leftrightarrow Q$,当P = Q的

的真值相同时, $P \leftrightarrow Q$ 的真值为T,否则 $P \leftrightarrow Q$ 的真值为 F, 其关系如表所示

P	Q	$P \leftrightarrow Q$
\boldsymbol{T}	T	$oldsymbol{T}$
\boldsymbol{T}	$oldsymbol{F}$	$oldsymbol{F}$
${m F}$	T	$oldsymbol{F}$
F	\boldsymbol{F}	$m{T}$

 $P \leftrightarrow Q$ ——充分必要条件

例 (1)两个三角形全等(P),当且仅当它们的三组对应边均相等(Q)。

符号化: $P \leftrightarrow Q$

(2) 函数 y = f(x) 在 x = a 处连续 (P),

充分必要条件是: $\exists x \rightarrow a \text{ 时}, f(x) \rightarrow f(a)(Q)$ 。

符号化: $P \leftrightarrow Q$

(3) 2+2=4(P) 当且仅当雪是黑的(Q)。

符号化: $P \leftrightarrow Q$

数理逻辑

内容小结

- 1.命题的判定
- 2.联结词的概念

课下练习 P123 习题7.1 1,2,4

- 7.2 命题公式及其分类
- 7.2.1 命题公式

定义8 不含有任何联结词的命题,称为 原子命题或简单命题;至少包含一个联结词的 命题,称为复合命题。

例 设P,Q,R是任意命题,则 ¬ $P,P \lor Q,P \land Q \leftrightarrow R,P \rightarrow (Q \lor \neg R)$ 均为复合命题,也称为命题公式。

定义9 命题逻辑中的合式公式(well formed formula),递归定义如下:

- (1) 单个命题常元或变元是合式公式;
- (2) 若A和B是合式公式,则 $\neg A$, $A \land B$, $A \lor B$, $A \rightarrow B$, $A \leftrightarrow B$ 也都是合式公式;
- (3)当且仅当能够有限次地应用(1)~(2)得到的包含命题常元、命题变元,联结词和括号的符号串是合式公式,合式公式也称为命题公式或简称为公式。

说明1 定义是以递归形式给出的。

- (1) 称为基础; (2) 称为归纳;
- (3) 称为界限。
 - 说明2 命题公式不是命题。

7.2.2 赋值 (解释或指派)

定义10 设A是一个命题公式, P_1,P_2,\cdots,P_n 是出现在A中的所有命题变元,给 P_1,P_2,\dots,P_n 指定一组真值, 称为对公式 A 的一个赋值 (解 释或指派);若指定的一组值使A 的值为T, 称这组值为A的成真赋值; 若使A为F,称其 为A的成假赋值。

例 若给公式 $A = \neg (P \lor Q) \rightarrow R$ 一组赋值 T, T, F (赋值一般按字典顺序排列, P = T, Q = T, R = F),得A 的真值为T,故T, T, F 是A 的成 真赋值;若另给一组赋值F, F, F,得A 的真值 为F,则F, F, F 是A 的成假赋值。

一个含n个命题变元的公式 共有2"组不同的赋值 将公式在所有赋值之下取值的情况列成表, 称为公式的真值表。

例1 构造公式 $\neg P \lor Q$ 的真值表

解 如表所示

	Q	$\neg P$	$\neg P \lor Q$
T	T	$oldsymbol{F}$	T
\overline{T}	\boldsymbol{F}	F	$oldsymbol{F}$
\overline{F}	T	T	T
\overline{F}	F	T	T

例2 构造下列两个公式的真值表

(1)
$$P \wedge Q \rightarrow P$$
 (2) $\neg (P \rightarrow Q) \wedge Q$

解 (1) 如表所示

P	Q	$P \wedge Q$	$P \wedge Q \rightarrow P$
T	T	T	T
T	$oldsymbol{F}$	$oldsymbol{F}$	$m{T}$
\overline{F}	T	$oldsymbol{F}$	T
\overline{F}	F	F	T

(2) 如表所示

$\overline{P Q}$	$P \rightarrow Q$	$\neg (P \rightarrow Q)$	$\neg (P \rightarrow Q) \land Q$
T T	T	$oldsymbol{F}$	$oldsymbol{F}$
T F	$oldsymbol{F}$	T	F
$\overline{F T}$	T	F	F
$\overline{F F}$	T	$oldsymbol{F}$	$oldsymbol{F}$

7.2.3 命题公式的分类

定义11 设A是一个命题公式

- (1) 若A 在它的任何赋值下取值均为T,称A 是重言式或永真式,如例2(1)。
- (2) 若A 在它的任何赋值下取值均为F,称A 是矛盾式或永假式,如例2(2)。
- (3) 若A 至少存在一组赋值使其为T,称A 是可满足式,如例1。

结论:

- (1) 设公式A是重言式,则A的否定 $\neg A$ 是矛盾式,反之亦然。
 - (2) 设公式A,B是重言式,则 $A \land B,A \lor B$, $A \rightarrow B,A \leftrightarrow B$ 均为重言式。

数理逻辑

内容小结

- 1.真值表
- 2.判断公式的类型

课下练习 P125 习题7.2 1,2,3