NYCU-ECE DCS-2024

Online Test

Design: Linear Programming

資料準備

1. 從 TA 目錄資料夾解壓縮:

% tar -xvf ~dcsTA01/ OT.tar

- 2. 解壓縮資料夾 OT 包含以下:
 - a. 00 TESTBED/
 - b. 01 RTL/
 - c. 02 SYN/
 - d. 03 GATE/
- 3. 在 00_{TESTBED} /中,有助教寫好的簡易 pattern 可供參考,demo 時會使用另一個完整 pattern

Block Diagram

設計描述

在數學中,線性規劃(Linear Programming)特指目標函數和約束條件皆為線性的最佳化問題。這次考試要大家完成一個整數線性規劃運算電路,找出符合約束條件**最佳整數解**。

任意線性規劃問題可表達成以下形式:

maximize
$$\mathbf{c}^T \mathbf{x}$$
 subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ (1)

本題設計的電路所要計算的是二維,以 x_1,x_2 作為變數,具有六個約束條件的線性規劃問題,並且找出符合條件且 x_1,x_2 皆為整數的目標函數最大值。

因此在上述表示式(1)中, $\mathbf{x}=\begin{bmatrix}x_1\\x_2\end{bmatrix}$; $c^T=[c_1\ c_2]$,為目標函數的係數;A為 6×2 矩陣,第一、二行分別代表約束條件的 \mathbf{x}_1 , \mathbf{x}_2 係數。

以下列線性規劃問題為例:

目標函數: $x_1 + 3x_2$

約束條件: $x_1 \ge 2$ $x_1 \le 9$ $x_2 \ge -1$ $x_2 \le 7$ $5x_1 + 4x_2 \le 27$ $8x_1 - 6x_2 \ge 0$

本範例套用表示式(1),
$$c^T = \begin{bmatrix} 1 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \\ 5 & 4 \\ -8 & 6 \end{bmatrix} \quad b = \begin{bmatrix} -2 \\ 9 \\ 1 \\ 7 \\ 27 \\ 0 \end{bmatrix}$$

上圖圓圈的座標點為符合約束條件的整數解,目標函數在 $\mathbf{x} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ 有最大值12。

在本題中,pattern每筆輸入皆包含四個如同範例,會在二維座標限制出一個矩形區域的約束條件,i.e. 每筆輸入的A會有四列和範例中A的前四列相同(但約束條件之間順序不一定和範例相同)。此矩形區域長寬皆不會大於15,矩形區域上下界的 x_1,x_2 不會超過正負31。

Pattern提供的所有約束條件交集不會是空集合, i.e.一定會有解。

輸入與輸出

每一筆輸入Pattern會拉起in_valid並對in_a1, in_a2, in_b連續給值7 cycles。第一cycle,Pattern會分別在in_a1, in_a2給目標函數係數 c_1 , c_2 的值,in_b則會輸入0。第二至七cycle,Pattern會依序在in_a1輸入六個約束條件的 x_1 係數,i.e. A的第一行;在in_a2輸入六個約束條件的 x_2 係數,i.e. A的第二行;在in_b輸入b。

請注意,輸入階段的第二至七cycle,輸入六個約束條件的先後順序是隨機的,例如下圖和上圖都是前頁的線性規劃例題,但約束條件輸入順序不同。

當輸出結果時,out_valid會拉起並在out_max_value 輸出符合約束條件且 x_1, x_2 皆為整數的目標函數最大值,持續1 cycle。

Hint

由於本題求的是x₁,x₂皆為整數時的解,且其中四個約束條件框出大小不超過15x15的矩形範圍,因此可窮舉矩形範圍內所有整數座標點,並檢查剩餘的兩個約束條件,即可找出符合條件的最佳解。

Inputs

Signal name	Number of bit	Description
clk	1	10ns clock signal
rst_n	1	Asynchronous negedge reset signal
in_valid	1	Pull high during digit input
in_a1	6	Signed integer, the coefficient of x ₁
in_a2	6	Signed integer, the coefficient of x ₂
in_b	12	Signed integer, the constant b

Outputs

Signal name	Number of bit	Description
out_valid	1	Pulled high during out_max_value output
		(reset required)
out_max_value	12	Signed integer, maximum of the objective
		function. (reset required)

Specifications

- 1. Top module name: **LP**(File name : **LP.sv**)
- 2. 在非同步負準位 reset 後,所有的 output 訊號必須全部歸零。
- 3. Output 要在 Input 結束後的 300 cycles 內輸出。
- 4. Output 僅能輸出 1 cycle,不能多不能少。
- 5. 下一筆 input 會在 out valid pull down 後 1~4 個 cycle 送入
- 6. 02_SYN result 不行有 error 且不能有任何 latch。
- 7. Timing report 的 slack 必須為 non-negative 且 result 為 Met。
- 8. Gate level simulation 不能有 timing violation。
- 9. Clock period 10 ns •
- 10. Input delay = 0.5 * clock period; Output delay = 0.5 * clock period
- 11. 請勿使用 *error*, *latch*, *congratulation* or *fail* 當作 logic / wire / reg / submodule / parameter 的名稱,否則 demo 結果會是 fail

Note: *代表在該 word 前後的任何符號,比如: error_test 即為禁止的。

上傳檔案

- 1. 請將LP.sv重新命名後上傳E3。命名規則:LP_dcsxxx.sv 例如:工作站帳號 是dcs175的同學須將他的Design LP.sv重新命名為LP_dcs175.sv並上傳E3。
- 2. 6/4 18:20考試時間結束前上傳E3的OT繳交區
- 3. 2nd Demo deadline: 6/9 23:59

Grading policy

- 1. Students who pass 1st Demo yield 100 points.
- 2. Students who pass 2nd Demo yield 60~80 points, depending on performance.
- 3. Performance: Latency * Area

Note

Template folders and reference commands:

- 1. 01_RTL/(RTL simulation) \rightarrow ./01_run
- 2. $02_SYN/(synthesis) \rightarrow ./01_run_dc$
- 3. $03_{GATE}/(gate-level simulation) \rightarrow ./01_run$