Esperança i variància d'una suma de variables aleatòries

Si $S_n = X_1 + X_2 + \cdots + X_n$, on X_1, \cdots, X_n són variables aleatòries i n és constant, llavors:

$$E(S_n) = E(X_1 + X_2 + \dots + X_n) = E(X_1) + E(X_2) + \dots + E(X_n) = \sum_{i=1}^n E(X_i)$$

$$Var(S_n) = Var(X_1 + X_2 + \dots + X_n) = Cov(X_1, X_1) + Cov(X_1, X_2) + \dots + Cov(X_n, X_n) = \sum_{i=1}^n \sum_{j=1}^n Cov(X_i, X_j)$$

Propietats:

• si X_1, \dots, X_n són **independents**, llavors:

$$Var(X_1 + X_2 + \dots + X_n) = Var(X_1) + Var(X_2) + \dots + Var(X_n)$$

• si X_1, \dots, X_n són **i.i.d.**¹, llavors

$$E(X_1 + X_2 + \dots + X_n) = n \cdot E(X)$$

$$Var(X_1 + X_2 + \dots + X_n) = n \cdot Var(X)$$

Exemple 3:

(Exercici 1). Sigui W = X + Y + Z, on X, Y i Z són variables aleatòries amb mitjana 0 i variància 1, i amb Cov(X,Y) = 1/4, Cov(X,Z) = 0, Cov(Y,Z) = -1/4.

- a) Trobau l'esperança i la variància de W.
- b) Repetiu l'apartat (a) suposant que X,Y i Z estan incorrelades.

Exemple 4:

(Exercici 3). Siguin X_1, \ldots, X_n variables aleatòries amb la mateixa mitjana μ i covariàncies $Cov(X_i, X_j) = \sigma^2 \rho^{|i-j|}$ per $i, j = 1, \ldots, n$ amb $\sigma > 0$ i $|\rho| < 1$. Determinau la mitjana i la variància de $S_n = X_1 + \cdots + X_n$.

Exercicis proposats: 2

 $^{^1}$ Les v.a. X_1, \dots, X_n es diu que són **i.i.d.** si són **independents** i estan **idènticament distribuïdes**, és a dir, si totes tenen la mateixa funció de densitat o probabilitat, i en conseqüència $E(X_1) = E(X_2) = \dots = E(X_n) = E(X)$ i $Var(X_1) = Var(X_2) = \dots = Var(X_n) = Var(X)$.

Suma d'un nombre aleatori de v.a.

Sigui $S_N = X_1 + X_2 + \cdots + X_N$, on X_1, \cdots, X_N són variables aleatòries i N és un nombre aleatori enter positiu, llavors, si les variables són i.i.d.:

$$E(X_1 + X_2 + \dots + X_N) = E(N) \cdot E(X)$$
$$Var(X_1 + X_2 + \dots + X_N) = E(N) \cdot Var(X) + E(X)^2 \cdot Var(N)$$

Exemple 5:

(Exercici 6). Sigui N una v.a. que pren valors enters positius. Sigui X_1, \ldots, X_N una seqüència de N v.a. iid. Considerem $S_N = \sum_{k=1}^N X_k$.

- a) Calculau $E(S_N|N)$. (Sol.: $\mathbf{NE}(\mathbf{X})$).
- b) Calculau $E(S_N) = E(E(S_N|N))$. (Sol.: $\mathbf{E}(\mathbf{N})\mathbf{E}(\mathbf{X})$)
- c) Demostrau que $E(e^{j\omega S_N}|N) = \Phi_{X_1}(\omega)^N$.
- d) Demostrau que $\Phi_{S_N}(\omega) = G_N(\phi_{X_1}(\omega))$ on $G_N(z) = E(z^N)$ és la funció generadora de probabilitats de $N.(ind.: \Phi_{S_N}(\omega) = E(E(e^{j\omega S_N}|N)))$.

Exemple 6:

(Exercici 7). Sigui $X_1, X_2, \ldots, X_k, \ldots$ una seqüència de v.a. iid. que pren valors enters. Sigui N una v.a. que pren valors enters positius. Sigui $S_N = \sum_{k=1}^N X_k$

- a) Trobau la mitjana i la variància de S_N .
- b) Demostrau que $G_{S_N}(z) = E(z^{S_N}) = G_N(G_{X_1}(z)).$

Exemple 7:

(Exercici 23). El nombre N d'usuaris que arriben a un sistema durant un cert període és una variable aleatòria amb llei $Po(\lambda)$. Sigui $p \in (0,1)$ la probabilitat que un usuari que arriba al sistema rebi servei. Determinau la llei de la variable aleatòria que compta el nombre d'usuaris que reben servei.

Problemes proposats: 8