

Machine learning techniques for highthroughout analyses of TR-PES measurements

Convolutional Neural Networks employed to fit XPS spectra

Arthur Julien, Jean-Baptiste Puel, Philip Schulz

18/03/2024

Context: time resolved XPS measurements

Objective of the experiment: quantify changes of material properties upon illumination

High throughput analysis methods are necessary

Objective: high throughput fits of XPS spectra

Jacobsson, T. J., Correa-Baena, J. P., Halvani Anaraki, E., Philippe, B., Stranks, S. D., Bouduban, M. E. F., Tress, W., Schenk, K., Teuscher, J., Moser, J. E., Rensmo, H., & Hagfeldt, A. (2016). Unreacted Pbl2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 138(32), 10331–10343.

Fitting procedure must allow to distinguish peak contributions in XPS spectra

Iterative identification of major peak

Park, S. H., Park, H., Lee, H., & Kim, H. S. (2021). Iterative peak-fitting of frequency-domain data via deep convolution neural networks. Journal of the Korean Physical Society, 79(12), 1199–1208.

Model to fit each peak contribution: pseudo-Voigt profile (sum of Gaussian and Lorentzian functions):

$$y = c \left(\alpha \exp\left(-\frac{(a-x)^2}{2(\beta b)^2}\right) + (1-\alpha)\frac{(\Gamma b)^2}{1 + (a-x)^2} \right)$$

Ratios between both functions are fixed (α , β and Γ)

Fitting parameters:

- a: peak position
- b: peak width
- c: peak amplitude

Principle of the procedure: iterative identification of a, b and c for each peak contribution.

Convolutional neural networks

Procedure proposed by Park et al. in: Iterative peak-fitting of frequency-domain data via deep convolution neural networks. Journal of the Korean Physical Society, 79(12), 1199–1208.

Convolutional neural networks

Principle of convolution neural networks: serial connection of convolution products and filters

Convolutional neural networks for peak identification

IPVF

Training of CNN is necessary to adjust internal parameters and obtain desired outputs

Training CNNs

Training database:

Each entry is synthetized with the sum of 1 to 5 contributions

- Internal parameters of CNN are optimized to minimize error between CNN outputs and true values.
- Exploration of CNN internal parameters is automatized.
- Error is quantified with Mean Absolute Error: MAE

- Sparse densenet: model developed by Park et al.
- LeNet: first simple CNN

~ 1 000 000 entries

Optimization of CNN internal parameters

Testing CNNs

Test database:

- Similar database to training
- Distinct entries employed to evaluate performances on new cases
- ~ 150 000 entries

Example of test result

Almost perfect superposition of CNN result and true major peak

IPVF

Statistical error over test database:

	Sparse densenet	LeNet
MAE on major peak position	0.09	0.25
MAE major peak width	0.02	0.05
MAE major peak amplitude	0.01	0.03
MAE on total number of peaks	0.03	0.1
Average fit time	1.4x10 ⁻³ s	1.1x10 ⁻⁴ s

Similar results to Park et al. (1 200 000 entries training database)

Iterative application of CNN

Neural network as been developed and trained on the identification of one peak

It is applied iteratively to find several contributions in a spectrum

CNN is applied 5 times to iteratively find the remaining major peak

Test spectrum 0.6 Recursive fit Intensity 5.0 7.0 0.0 Good results 10 12 14 Energy but still errors 0.1 Error -0.110 12 14 Energy Average processing time: 0.21 s per spectrum CNN is applied 5 times to iteratively find the remaining major peak

Least square reduction fit initialized by CNN results to "polish" results

Average processing time: 2.22 s per spectrum

IPVF

Machine learning techniques for high-throughout analyses of TR-PES measurements

fit

Iterative application of CNN: statistical results

Overall fit quality is evaluated through R² coefficient for **total spectrum**:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Fit quality is sufficient when $R^2 > 0.995$ (empirical threshold)

Distribution of R² obtained over 500 test spectra:

Mean Average Error for each **peak parameter**: (only cases with two or five contributions)

1									
		Sub peak 1	Sub peak 2	Sub peak 3	Sub peak 4	Sub peak 5	Avg all peaks		
Two sub-peaks									
MAE on position	Iterative fit	0.018	0.024				0.021		
	Iterative fit + "polish"	0.014	0.020				0.017		
MAE on width	Iterative fit	0.011	0.023	Low	ver avera	ge error	0.017		
	Iterative fit + "polish"	0.011	0.020	afte	r polishin	0.015			
MAE on amplitude	Iterative fit	0.006	0.010				0.008		
	Iterative fit + "polish"	0.006	0.008				0.007		
Five sub-peaks									
MAE on position	Iterative fit	0.173	0.496	0.845	1.055	0.887	0.691		
	Iterative fit + "polish"	0.233	0.572	0.789	0.871	0.774	0.648		
MAE on width	Iterative fit	0.031	0.072	0.104	0.160	0.156	0.105		
	Iterative fit + "polish"	0.044	0.080	0.098	0.144	0.142	0.102		
MAE on amplitude	Iterative fit	0.028	0.043	0.061	0.067	0.050	0.050		
	Iterative fit + "polish"	0.035	0.046	0.058	0.060	0.045	0.049		

Remaining contributions are more noisy and more sensitive to accuracy of previous fits

- Polishing step improves fit quality
- Even in most difficult cases (five contributions), average error remains low
- Statistics over iterative fit quality were not evaluated by Park et al.

Results on experimental measurements

Evolution of first peak contribution:

250

500

750

1000 1250

Results on experimental measurements

Evolution of two first peak contributions:

20

250

750

Energy

1000 1250

Conclusion

Analysis of time resolved XPS measurements

Training of convolutional neural network to find the major contribution

Recursive procedure to find all contributions

Application to experimental measurements

Tracking of contribution properties over time

