Statistical Process Control

Argon Chen (陳正剛) Graduate Institute of Industrial Engineering National Taiwan University

Variation Causes and Behavior

- Shewhart's Variation Causes
 - Chance (Common) Causes
 - the variation sources are under the normal conditions that are commonly observed in processes.
 - Special (Assignable) Causes
 - some variation source(s) goes beyond the normal conditions
- Process shift
 - mean level shift
 - process variation shift
 - mean and variation shift

©Argon Chen

The Nature of Faults in the Process

Two fundamental types of faults or problems					
Faults	Local faults Special causes Sporadic problems Assignable causes :	versus	System faults Common causes Chronic problems Chance causes :		
Examples	Broken tools Jammed machine Material contamination Human errors Accidents :	versus	Wrong specification Inappropriate method Poor supervision Poor training Poor design :		
Action/ by Whom	Correctable locally (at the machine level) by the individual (operator or the first level of supervision)	versus	Requires a change in the system – only management can specify and implement the change		

4

Statistical Process Control

- A prime objective of a control chart is to detect **special (assignable) causes** of variation in a process.
- A control chart detects the presence of a special cause but does not "find" the cause.
- A process that is operating without special causes of variation (only under <u>common causes</u> of variation) is said to be "in a state of statistical control."

Moving from Instability to Control to Improvement

- SPC: detect and remove special cause of variation
- Process improvement: reduce common cause of variation

9

©Argon Chen

Statistical Process Control (SPC) Chart

- A scientific approach to detect process changes?
 - Hypothesis testing.....t-test? umh...too complicated...
 - Recall what hypothesis testing is
 - test statistic
 - rejection region
- SPC chart approach to detect process changes
 - sample statistic
 - out-of-control region

)

- graphical trend chart

Hypothesis Testing vs. SPC Chart

- We need a model to describe the variability behavior
- Is there any universal mathematical model that can describe the behavior? Yes, normal distribution (Central Limit Theorem)!

11

©Argon Chen

Shewhart Control Chart

- Sample (Test) statistic (*Y*):
 - \overline{X} or R: variable characteristic (Ex: SiO₂ thickness, CD, etc.)
 - − p: fraction defective (attribute characteristic) (Ex: number of defective wafers in a lot of wafers)
 - c: number of defects (attribute characteristic) (Ex: number of particles on a wafer)
- Out-of-control (Reject) region (Shewhart scheme):

outside (*Expected Value* ± 3×*Standard Deviation*)

- Shewhart Control Chart
 - Central Line (CL): mean of Y (or target T)
 - Upper Control Limit (UCL): CL+3 $\hat{\sigma}_{Y}$
 - Lower Control Limit (LCL): CL–3 $\hat{\sigma}_{Y}$

12

Control Chart for Central Tendency

$$Y = \overline{X} = \sum_{i=1}^{n} X_i / n$$

 n : sample size

$$CL = \overline{Y} = \overline{\overline{X}} \text{ (or } T)$$

$$UCL = \overline{\overline{X}} \text{ (or } T) + 3\hat{\sigma}_{\overline{X}}$$

$$LCL = \overline{\overline{X}} \text{ (or } T) - 3\hat{\sigma}_{\overline{X}}$$

©Argon Chen

Estimation of $\sigma_{\bar{X}}$

• Estimating $\sigma_{\overline{X}}$ sample standard deviation

$$\hat{\sigma}_{\overline{X}} = S_{\overline{X}} = \sqrt{\frac{\sum_{i} (\overline{X}_{i} - \overline{\overline{X}})^{2}}{k - 1}}$$

• Do not use $\sigma_{\bar{X}} = \frac{\sigma_{\bar{X}}}{\sqrt{n}} \Rightarrow \hat{\sigma}_{\bar{X}} = \frac{S_{\bar{X}}}{\sqrt{n}}$

(Variation sources of X and \overline{X} are different)

Control Chart for Dispersion

- Control chart (hypothesis test) for dispersion
 - test statistic: range (R)
 - rejection region: above or below 3 standard deviation of R

 $\overline{R} \pm 3 \cdot \hat{\sigma}_R$

• Estimating σ_R :

$$\hat{\sigma}_R = S_R = \sqrt{\frac{\sum_i (R_i - \overline{R})^2}{k - 1}}$$

15

©Argon Chen

Control Limit Calculations

Given
$$\hat{\sigma}_{\overline{x}} = S_{\overline{x}}$$
 and $\hat{\sigma}_{R} = S_{R}$

Average chart

$$UCL(LCL) = \bar{\bar{X}} + (-)3\hat{\sigma}_{\bar{X}} = \bar{\bar{X}} + (-)3S_{\bar{X}}$$
$$-UCL(LCL) = \bar{\bar{X}} + (-)3\frac{\hat{\sigma}_{x}}{\sqrt{n}} = \bar{\bar{X}} + (-)3\frac{S_{x}}{\sqrt{n}}$$

Range chart

$$UCL(LCL) = \overline{R} + (-)3\sigma_R = \overline{R} + (-)3S_R$$
$$= \overline{R} + 3S_R(\max[0, \overline{R} - 3S])$$

Two Types of Errors and Chart Performance

- Two errors of \bar{X} hypothesis testing:
 - type I error?chart signals but the process is still in control
 - type II error?
 chart does not signal but the process is actually out of control
- Calculating the probabilities of type I and type II errors (α and β)
 - assumptions: normal and independence

Example: \bar{X} -R control chart

©Argon Chen

Two Types of Errors and Average Run Length

- Average Run Length (ARL): The average time length a control chart takes to give an alarm.
- ARL₀: The average time length a control chart takes to give an false alarm when the process is actually in-control. (measuring Type I error probability, α)
- ARL₁: The average time length a control chart takes to give an out-of-control alarm given the process is indeed out-of-control (measuring Type II error probability, β)

Average Run Length (ARL₀) under Control

- RL₀: number of runs between false alarms (a random variable)
- Average run length (ARL₀)
 - Average of RL_0 (Geometric Distribution with $p=\alpha$)
 - Higher ARL₀ ⇒ higher robustness
 - $-ARL_0=1/\alpha$

Average Run Length (ARL₁) under Out-of-Control

- RL₁: the number of runs it takes to detect a shift (a random variable)
- Average run length (ARL₁)
 - Average of RL_1 (Geometric Distribution with $p=1-\beta$)
 - Lower $ARL_1 \Rightarrow$ higher sensitivity
 - ARL₁=1/(1- β) for Shewhart control chart

$$\alpha = 0.0027 \Rightarrow ARL_0 = \frac{1}{\alpha} = 370.37$$

23

Type II Error Prob. of \bar{X} Chart

$$\beta = \text{Prob.}(T - 3\sigma_{\overline{x}} \le \overline{x} \le T + 3\sigma_{\overline{x}})$$

$$= \text{Prob.}(\frac{T - 3\sigma_{\overline{x}} - (T + 2\sigma_{\overline{x}})}{\sigma_{\overline{x}}} \le \frac{\overline{x} - (T + 2\sigma_{\overline{x}})}{\sigma_{\overline{x}}} \le \frac{T + 3\sigma_{\overline{x}} - (T + 2\sigma_{\overline{x}})}{\sigma_{\overline{x}}})$$

$$= \text{Prob.}(-5 \le Z \le 1) = ? \Rightarrow \text{ARL}_1 = 1/(1 - \beta)$$

©Argon Chen

- Western Electric Run Rules
- apply to \bar{X} and R control charts

25

©Argon Chen

Test 1: Extreme Points

- one point beyond the control limit
- apply to \bar{X} and R control charts
- Western Electric Rule 1

26

Test 2: Two-out-of-Three

- two out of three points in zone A or beyond
- apply to \overline{X} control chart (not to R since distribution of R is more likely asymmetric)
- Western Electric Rule 2

27

rgon Chen

Test 3: Four-out-of-Five

- four out of five points in zone B or beyond
- apply to \overline{X} control chart (not to R since distribution of R is more likely asymmetric)
- Western Electric Rule 3

28

Test 4: Runs above or below the Centerline

- eight points above or below the centerline
- apply to \bar{X} and R control charts
- Western Electric Rule 1

29

©Argon Chen

Test 5: Linear Trend Identification

- six points show a continuing increase or decrease
- apply to \bar{X} and R control charts

30

Test 8: Run in Zone C

- 15 points fall in zone C only
- apply to \bar{X} control chart

Notice: these tests do improve the sensitivity of the charts, but increase α -risk as well.

33

©Argon Chen

Control Chart for Attribute Variable

• Example: Defects on semiconductor wafer surface

34

Source: https://www.rsipvision.com/automated-optical-inspection/

Shewhart Attribute Control Chart

- p chart (fraction defective item)
- *np* (*d*) chart (number of defective item)
- c chart (number of defects)
- *u* chart (number of defects per unit)

35 ©Argon Chen

Attribute Quality Characterization

• Example: defects of bearing cast

1 Flash 1 Gate breakout Number of defectives = 6 Fraction defective = $\frac{6}{10} = 0.6$ Number of defects/unit = $\frac{11}{10} = 1.1$

Ideas of Number of Defectives np (d) Chart

- Number of Defectives: In a sample of *n* items, *d* is the number of bad items
- Assuming Binomial Distribution Model

$$P(d) = \binom{n}{d} p^{d} (1-p)^{n-d}$$

- Test statistic: d
- Control chart scheme: $E(d) \pm 3\sqrt{Var(d)}$
- Based on binomial model:

$$E(d) = np$$
$$Var(d) = np(1-p)$$

37

©Argon Chen

Number of Defectives (np) Chart

$$n\hat{p} \pm 3\sqrt{n\hat{p}(1-\hat{p})} \quad \text{where} \quad \hat{p} = \overline{p} = \frac{\sum_{i=1}^{k} d_i}{\sum_{i=1}^{k} n_i} \text{ (why not } \frac{\sum_{i=1}^{k} d_i}{k}?)$$

Average weighted by sample size

$$= \frac{n_1}{\sum_{i=1}^{k} n_i} \bullet \frac{d_1}{n_1} + \frac{n_2}{\sum_{i=1}^{k} n_i} \bullet \frac{d_2}{n_2} + \dots + \frac{n_k}{\sum_{i=1}^{k} n_i} \bullet \frac{d_k}{n_k} = \frac{\sum_{i=1}^{k} d_i}{\sum_{i=1}^{k} n_i}$$

38

	Sample	Number Defective	Fraction Defective
	1	7	0.07
	2	8	0.08
	3	6	0.06
	4	8	0.08
	5	6	0.06
	6	8	0.08
	7	3	0.03
	8	5	0.05
 n=100 k=30	9	9	0.09
n = 100	10	7	0.07
	11	7	0.07
· 1-20	12	9	0.09
• K-30	13	8	0.08
	14	7	0.07
	15	8	0.08
	16	10	0.10
	17	10	0.10
	18	5	0.05
	19	12	0.12
	20	11	0.11
	21	8	0.08
	22	10	0.10
	23	4	0.04
	24	10	0.10
	25	7	0.07
	26	7	0.07
	27	9	0.09
	28	8	0.08
	29	10	0.10
	30	$\frac{10}{237}$	0.10

Ideas of Fraction Defectives (p) Chart

- Fraction Defectives: In a sample of *n* items, *d* is the number of bad items
- Assuming Binomial Distribution Model

$$P(d) = \binom{n}{d} p^{d} (1-p)^{n-d}$$

- Test statistic: d/n
- Control chart scheme: $E(d/n) \pm 3\sqrt{Var(d/n)}$
- Based on binomial model:

$$E(d/n) = E(d)/n = np/n = p$$
$$Var(d/n) = Var(d)/n^2 = [np(1-p)]/n^2 = [p(1-p)]/n$$

41

©Argon Chen

Fraction Defectives (p) Chart

$$\hat{p} \pm 3\sqrt{[\hat{p}(1-\hat{p})]/n}$$

where
$$\hat{p} = \overline{p} = \frac{\sum_{i=1}^{k} d_i}{\sum_{i=1}^{k} n_i}$$

Variable-Sample-Size p Chart

- compute separate limits for each subgroup
- use an average sample size
- use standarized *p* values

$$Z_i = \frac{\frac{d_i}{n_i} - \overline{p}}{\sqrt{\overline{p}(1 - \overline{p}) / n_i}}$$

Variable-Sample-Size	e p Chart Example
----------------------	-------------------

Sample	n	d	р	LCL_p	UCL_p	z
1	238	11	0.046	0.026	0.131	-1.84
2	245	18	0.073	0.027	0.130	-0.28
3	270	17	0.063	0.029	0.127	-0.94
4	207	15	0.072	0.022	0.134	-0.31
5	251	11	0.044	0.027	0.129	-2.03
6	254	15	0.059	0.028	0.129	-1.14
7	236	19	0.081	0.026	0.131	0.13
8	245	20	0.082	0.027	0.130	0.19
9	246	35	0.142	0.027	0.130	3.74
10	269	14	0.052	0.029	0.127	-1.60
11	223	7	0.031	0.024	0.132	-2.61
12	246	42	0.171	0.027	0.130	5.40
13	262	14	0.053	0.029	0.128	-1.50
14	258	15	0.058	0.028	0.128	-1.21
15	232	20	0.086	0.025	0.131	0.45
16	219	9	0.041	0.024	0.133	-2.05
17	263	23	0.087	0.029	0.128	0.55
18	244	11	0.045	0.027	0.130	-1.93
19	274	21	0.077	0.030	0.127	-0.10
20	245	37	0.151	0.027	0.130	4.24
21	233	16	0.069	0.026	0.131	-0.55
22	267	18	0.067	0.029	0.128	-0.66
23	254	20	0.079	0.028	0.129	0.03
24	264	16	0.061	0.029	0.128	-1.07
25	253	34	0.134	0.028	0.129	3.32
26	290	22	0.076	0.031	0.126	-0.15
27	231	9	0.039	0.025	0.131	-2.23
28	227	40	0.176	0.025	0.132	5.49
29	234	18	0.077	0.026	0.131	-0.08
30	253	15	0.059	0.028	0.129	-1.13

Ideas of Number of Defect Chart

• Assuming Poisson Distribution Model (why?)

$$P(\text{defect number} = c; \lambda) = \frac{e^{-\lambda} \lambda^c}{c!}$$

- Sample statistic: *c*
- Control chart scheme: $E(c) \pm 3\sqrt{Var(c)}$
- Base on Poisson model:

$$E(c) = Var(c) = \lambda$$

47

©Argon Chen

Number of Defect (c) Chart

$$\hat{\lambda} \pm 3\sqrt{\hat{\lambda}}$$

where
$$\hat{\lambda} = \overline{c} = \frac{\sum_{i=1}^{k} c_i}{k}$$

Ideas of Number of Defects per Unit Chart

• Assuming Poisson Distribution Model again

$$P(\text{defect number/unit } b; \lambda) = \frac{e^{-\lambda} \lambda^b}{b!}$$

- Sample statistic: $u = \sum_{i=1}^{n} b_i / n = \frac{c}{n} = \overline{b}$
- Control chart scheme: $E(\overline{b}) \pm 3\sqrt{Var(\overline{b})}$
- Base on Poisson model:

$$E(\overline{b}) = E(b) = \lambda$$
 $Var(\overline{b}) = Var(b)/n = \lambda/n$

Number of Defects per Unit (u) Chart

• Variable limits due to variable sample sizes

$$\hat{\lambda} \pm 3\sqrt{\hat{\lambda}/n}$$

where
$$\hat{\lambda} = \frac{\sum_{i=1}^{k} c_i}{\sum_{i=1}^{k} n_i}$$
 k : number of samples (lots)

51

©Argon Chen

Number of Defect per Unit (u) Chart Example

Sample Size, n		Number of Defects per Sample, c	Average Number of Defects per Unit, u	LCL _u	UCL
1	16	23	1.44	0.49	2.25
2	20	30	1.50	0.59	2.16
3	26	35	1.35	0.68	2.06
4	8	12	1.50	0.13	2.61
5	22	29	1.32	0.62	2.12
6	29	35	1.21	0.72	2.02
7	31	50	1.61	0.74	2.00
8	13	15	1.15	0.40	2.35
9	28	36	1.29	0.71	2.04
10	23	38	1.65	0.64	2.10
11	19	24	1.26	0.57	2.18
12	23	32	1.39	0.64	2.10
13	14	24	1.71	0.43	2.31
14	29	34	1.17	0.72	0.72
15	27	38	1.41	0.70	2.05
16	15	25	1.67	0.46	2.28
17	22	26	1.18	0.62	2.12
18	22	24	1.09	0.62	2.12
19	14	22	1.57	0.43	2.31
20	16	17	1.06	0.49	2.25
21	22	33	1.50	0.62	2.12
22	16	21	1.31	0.49	2.25
23	14	18	1.29	0.43	2.31
24	5	9	1.80	0.00	2.94
25	13	18	1.38	0.40	2.35
26	19	26	1.37	0.57	2.18
27	10	12	1.20	0.26	2.48

An example calculation for control limits follows. control limits = $\overline{u} \pm 3\sqrt{\frac{\overline{u}}{n}}$ = 1.37 $\pm 3\sqrt{\frac{1.37}{n}}$.

For sample 1, $n_1 = 16$, and therefore, LCL₁ = 0.49

 $LCL_{u_1} = 0.49$ $UCL_{u_1} = 2.25$.