```
In [1]: import requests
        import pandas as pd
        import numpy as np
        from datetime import datetime
        import re
        import warnings
        #warnings.simplefilter('ignore')
        #Specifying which teams and years to include in data set
        Teams = ['CHC', 'CHW', 'LAA', 'LAD', 'NYM', 'NYY', 'OAK', 'SFG']
        Years = []
        for year in range(2010,2020):
            Years.append(str(year))
        list_of_df = list()
        #Creating dataframe
        for team in Teams:
            for year in Years:
                #Will retrieve data from each year for each team
                url = 'https://www.baseball-reference.com/teams/' + team + '/' +
        year +'-schedule-scores.shtml'
                dfname = team + '_' + year
                html = requests.get(url).content
                df list = pd.read html(html)
                df = df_list[-1]
                #Formatting data table
                #rename columns
                df.rename(columns={"Gm#": "GM Num", "Unnamed: 4": "Home", "Tm":
        "Team", "D/N": "Night"}, inplace = True)
                #turn home, game win, and night into dummy variables
                df['Home'] = df['Home'].apply(lambda x: 0 if x == '@' else 1)
                df['Game_Win'] = df['W/L'].astype(str).str[0]
                df['Game_Win'] = df['Game_Win'].apply(lambda x: 0 if x == 'L' el
        se 1)
                df['Night'] = df['Night'].apply(lambda x: 1 if x == 'N' else 0)
                #quantify streak as number
                df['Streak'] = df['Streak'].apply(lambda x: -1*len(x) if '-' in
        x else len(x))
                df.drop('Unnamed: 2', axis=1, inplace = True)
                df.drop('Orig. Scheduled', axis=1, inplace = True)
                df.drop('Win', axis=1, inplace = True)
                df.drop('Loss', axis=1, inplace = True)
                df.drop('Save', axis=1, inplace = True)
                #Drop rows that do not have data
                df = df[df['GM_Num'].str.isdigit()]
                #Convert W-L column to 4 new numeric columns: Wins, Losses, Net
         Wins (Wins - Losses), Win Percentage (Wins/Total Games)
                WL = df["W-L"].str.split("-", n = 1, expand = True)
                df["Wins"] = WL[0].astype(dtype=np.int64)
                df["Losses"] = WL[1].astype(dtype=np.int64)
                df['Net_Wins'] = df['Wins'] - df['Losses']
                df['Win Per'] = df['Wins']/(df['Wins']+df['Losses'])
                #Turn date into datetime object
                DayDate = df['Date'].str.split(", ", n = 1, expand = True)
```

```
df['DayOfWeek'] = DayDate[0]
    df['Date'] = DayDate[1] + ', ' + year
    df['Date'] = [re.sub("\s\(\\d+\\)", "", str(x)) for x in df['Date']

    df['Date'] = pd.to_datetime(df['Date'], format='%b %d, %Y')
    #Add to list which will be turned into a dataframe
    list_of_df.append(df)

#Create dataframe
bbattend

#Create dataframe
bbattend
```

/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:46: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:47: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:48: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:49: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:52: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:53: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:54: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:55: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

```
In [2]: #Create Year Variable for Matching Later
        bbattend['Year'] = bbattend.Date.dt.year
        #Specify what the same-market team is for matching
        bbattend['Same Mkt Team'] = bbattend.apply(lambda _: '', axis=1)
        bbattend['Same_Mkt_Team'][bbattend['Team'].str.contains('LAA')] = 'LAD'
        bbattend['Same Mkt Team'][bbattend['Team'].str.contains('LAD')] = 'LAA'
        bbattend['Same Mkt Team'][bbattend['Team'].str.contains('NYY')] = 'NYM'
        bbattend['Same_Mkt_Team'][bbattend['Team'].str.contains('NYM')] = 'NYY'
        bbattend['Same Mkt Team'][bbattend['Team'].str.contains('CHW')] = 'CHC'
        bbattend['Same_Mkt_Team'][bbattend['Team'].str.contains('CHC')] = 'CHW'
        bbattend['Same_Mkt_Team'][bbattend['Team'].str.contains('OAK')] = 'SFG'
        bbattend['Same Mkt Team'][bbattend['Team'].str.contains('SFG')] = 'OAK'
        #Create day of week dummy variables
        WeekDays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Sat
        urday', 'Sunday']
        for i in WeekDays:
            bbattend[i] = bbattend.apply(lambda _: '', axis=1)
            bbattend[i] = bbattend['DayOfWeek'].apply(lambda x: 1 if x == i else
        0)
        #Create game id which will be used to delete duplicates later
        bbattend['game_id'] = bbattend['Team'] + bbattend['Date'].astype(str)
        #bbattend
```

```
/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel launcher.
py:6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel launcher.
py:7: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
  import sys
/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.
py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.
py:9: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
  if __name__ == '__main__':
/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel launcher.
py:10: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
  # Remove the CWD from sys.path while we load stuff.
/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel launcher.
py:11: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
  # This is added back by InteractiveShellApp.init path()
/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel launcher.
py:12: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
  if sys.path[0] == '':
/Users/laurel/anaconda3/lib/python3.7/site-packages/ipykernel launcher.
py:13: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/indexing.html#indexing-view-versus-copy
  del sys.path[0]
```

```
In [3]: # Create merged table
        # Will match all dates of games of team with dates within same year of t
        eams from same-market team
        merged = bbattend.merge(
            bbattend[["Date", "Year", "Team", "Net_Wins", "Win_Per", "Streak", 'W
        ins', 'Losses']],
            how="inner",
            left_on=["Year", "Same_Mkt_Team"],
            right_on=["Year", "Team"],
            suffixes=('', '_Same_Mkt_Team')
        )
        #Measure how far apart the dates of the games are
        merged["date_diff"] = (merged.Date - merged.Date_Same_Mkt_Team).dt.days
        #Only keep the dates of same-market team that occurred before the date o
        f home team's game
        merged = merged[merged['date_diff'] > 0]
```

```
In [4]: #Sort by date_diff so closest dates appear first
    merged.sort_values(by='date_diff', inplace = True)

#Only keep first game_id which will include the data of the same-market
    team for the closest date before the game
    merged.drop_duplicates(subset =['game_id'], keep = 'first', inplace = Tr
    ue)

merged.sort_values(by=['Team', 'Date'], inplace = True)
    merged.head(20)
```

	GM_Num	Date	Team	Home	Орр	W/L	R	RA	Inn	W- L	 Sunday	game_id	Dat
162	2	2010- 04-07	CHC	0	ATL	L	2	3	NaN	0-2	 0	CHC2010- 04-07	
325	3	2010- 04-08	CHC	0	ATL	W	2	0	NaN	1-2	 0	CHC2010- 04-08	
488	4	2010- 04-09	CHC	0	CIN	L	4	5	NaN	1-3	 0	CHC2010- 04-09	
651	5	2010- 04-10	CHC	0	CIN	W	4	3	NaN	2-3	 0	CHC2010- 04-10	
814	6	2010- 04-11	CHC	0	CIN	L	1	3	NaN	2-4	 1	CHC2010- 04-11	
977	7	2010- 04-12	CHC	1	MIL	W	9	5	NaN	3-4	 0	CHC2010- 04-12	
1141	8	2010- 04-14	CHC	1	MIL	W	7	6	NaN	4-4	 0	CHC2010- 04-14	
1304	9	2010- 04-15	CHC	1	MIL	L	6	8	NaN	4-5	 0	CHC2010- 04-15	
1467	10	2010- 04-16	CHC	1	HOU	W	7	2	NaN	5-5	 0	CHC2010- 04-16	
1630	11	2010- 04-17	CHC	1	HOU	L	3	4	NaN	5-6	 0	CHC2010- 04-17	
1793	12	2010- 04-18	CHC	1	HOU	L	2	3	10	5-7	 1	CHC2010- 04-18	
1956	13	2010- 04-19	CHC	0	NYM	L	1	6	NaN	5-8	 0	CHC2010- 04-19	
2118	14	2010- 04-20	CHC	0	NYM	L	0	4	NaN	5-9	 0	CHC2010- 04-20	
2281	15	2010- 04-21	CHC	0	NYM	W	9	3	NaN	6-9	 0	CHC2010- 04-21	
2444	16	2010- 04-22	CHC	0	NYM	L	2	5	NaN	6- 10	 0	CHC2010- 04-22	
2607	17	2010- 04-23	CHC	0	MIL	W	8	1	NaN	7- 10	 0	CHC2010- 04-23	
2770	18	2010- 04-24	CHC	0	MIL	W	5	1	NaN	8- 10	 0	CHC2010- 04-24	
2933	19	2010- 04-25	CHC	0	MIL	W	12	2	NaN	9- 10	 1	CHC2010- 04-25	
3096	20	2010- 04-26	CHC	1	WSN	W- wo	4	3	10	10- 10	 0	CHC2010- 04-26	
3258	21	2010- 04-27	CHC	1	WSN	L	1	3	NaN	10- 11	 0	CHC2010- 04-27	

20 rows × 40 columns

```
In [6]: #create df with just home games
homegames = merged[merged.Home == 1]
#homegames.to_csv('bbattendhome.csv')
homegames
```

	GM_Num	Date	Team	Home	Орр	W/L	R	RA	Inn	W- L	 Sunday	game_id
977	7	2010- 04-12	CHC	1	MIL	W	9	5	NaN	3-4	 0	CHC2010- 04-12
1141	8	2010- 04-14	CHC	1	MIL	W	7	6	NaN	4-4	 0	CHC2010- 04-14
1304	9	2010- 04-15	CHC	1	MIL	L	6	8	NaN	4-5	 0	CHC2010- 04-15
1467	10	2010- 04-16	CHC	1	HOU	W	7	2	NaN	5-5	 0	CHC2010- 04-16
1630	11	2010- 04-17	CHC	1	HOU	L	3	4	NaN	5-6	 0	CHC2010- 04-17
1793	12	2010- 04-18	CHC	1	HOU	L	2	3	10	5-7	 1	CHC2010- 04-18
3096	20	2010- 04-26	CHC	1	WSN	W- wo	4	3	10	10- 10	 0	CHC2010- 04-26
3258	21	2010- 04-27	CHC	1	WSN	L	1	3	NaN	10- 11	 0	CHC2010- 04-27
3421	22	2010- 04-28	CHC	1	WSN	L	2	3	NaN	10- 12	 0	CHC2010- 04-28
3584	23	2010- 04-29	CHC	1	ARI	L	5	13	NaN	10- 13	 0	CHC2010- 04-29
3747	24	2010- 04-30	CHC	1	ARI	W	11	5	NaN	11- 13	 0	CHC2010- 04-30
3910	25	2010- 05-01	CHC	1	ARI	W	7	5	NaN	12- 13	 0	CHC2010- 05-01
4073	26	2010- 05-02	CHC	1	ARI	W	10	5	NaN	13- 13	 1	CHC2010- 05-02
5215	33	2010- 05-10	CHC	1	FLA	L	2	4	NaN	14- 19	 0	CHC2010- 05-10
5377	34	2010- 05-11	CHC	1	FLA	L	2	3	NaN	14- 20	 0	CHC2010- 05-11
5540	35	2010- 05-12	CHC	1	FLA	W	4	3	NaN	15- 20	 0	CHC2010- 05-12
5703	36	2010- 05-14	CHC	1	PIT	L	6	10	NaN	15- 21	 0	CHC2010- 05-14
5866	37	2010- 05-15	CHC	1	PIT	L	3	4	NaN	15- 22	 0	CHC2010- 05-15
6029	38	2010- 05-16	CHC	1	PIT	W	4	3	NaN	16- 22	 1	CHC2010- 05-16
6192	39	2010- 05-17	CHC	1	COL	W- wo	4	2	11	17- 22	 0	CHC2010- 05-17
6354	40	2010- 05-18	CHC	1	COL	W	6	2	NaN	18- 22	 0	CHC2010- 05-18
7333	46	2010- 05-25	CHC	1	LAD	W	3	0	NaN	22- 24	 0	CHC2010- 05-25
7496	47	2010- 05-26	CHC	1	LAD	L	5	8	NaN	22- 25	 0	CHC2010- 05-26

	GM_Num	Date	Team	Home	Орр	W/L	R	RA	lnn	W- L	 Sunday	game_id
7659	48	2010- 05-27	CHC	1	LAD	W	1	0	NaN	23- 25	 0	CHC2010- 05-27
7822	49	2010- 05-28	CHC	1	STL	L	1	7	NaN	23- 26	 0	CHC2010- 05-28
7985	50	2010- 05-29	CHC	1	STL	W	5	0	NaN	24- 26	 0	CHC2010- 05-29
8148	51	2010- 05-30	CHC	1	STL	L	1	9	NaN	24- 27	 1	CHC2010- 05-30
9778	61	2010- 06-11	CHC	1	CHW	L	5	10	NaN	27- 34	 0	CHC2010- 06-11
9941	62	2010- 06-12	CHC	1	CHW	L	1	2	NaN	27- 35	 0	CHC2010- 06-12
10104	63	2010- 06-13	CHC	1	CHW	W	1	0	NaN	28- 35	 1	CHC2010- 06-13
2089739	102	2019- 07-23	SFG	1	CHC	W- wo	5	4	13	52- 50	 0	SFG2019- 07-23
2089902	103	2019- 07-24	SFG	1	CHC	L	1	4	NaN	52- 51	 0	SFG2019- 07-24
2091532	113	2019- 08-05	SFG	1	WSN	L	0	4	NaN	56- 57	 0	SFG2019- 08-05
2091695	114	2019- 08-06	SFG	1	WSN	L	3	5	NaN	56- 58	 0	SFG2019- 08-06
2091858	115	2019- 08-07	SFG	1	WSN	L	1	4	NaN	56- 59	 0	SFG2019- 08-07
2092021	116	2019- 08-08	SFG	1	PHI	W	5	0	NaN	57- 59	 0	SFG2019- 08-08
2092183	117	2019- 08-09	SFG	1	PHI	L	6	9	NaN	57- 60	 0	SFG2019- 08-09
2092346	118	2019- 08-10	SFG	1	PHI	W	3	1	NaN	58- 60	 0	SFG2019- 08-10
2092509	119	2019- 08-11	SFG	1	PHI	W	9	6	NaN	59- 60	 1	SFG2019- 08-11
2092672	120	2019- 08-13	SFG	1	OAK	W	3	2	NaN	60- 60	 0	SFG2019- 08-13
2092835	121	2019- 08-14	SFG	1	OAK	L	5	9	NaN	60- 61	 0	SFG2019- 08-14
2094465	131	2019- 08-26	SFG	1	ARI	L	4	6	NaN	65- 66	 0	SFG2019- 08-26
2094628	132	2019- 08-27	SFG	1	ARI	L	2	3	NaN	65- 67	 0	SFG2019- 08-27
2094792	133	2019- 08-29	SFG	1	SDP	L	3	5	NaN	65- 68	 0	SFG2019- 08-29
2094955	134	2019- 08-30	SFG	1	SDP	W	8	3	NaN	66- 68	 0	SFG2019- 08-30

	GM_Num	Date	Team	Home	Орр	W/L	R	RA	Inn	W- L	 Sunday	game_id
2095118	135	2019- 08-31	SFG	1	SDP	L	1	4	NaN	66- 69	 0	SFG2019- 08-31
2095281	136	2019- 09-01	SFG	1	SDP	L	4	8	NaN	66- 70	 1	SFG2019- 09-01
2096584	144	2019- 09-09	SFG	1	PIT	L	4	6	NaN	69- 75	 0	SFG2019- 09-09
2096747	145	2019- 09-10	SFG	1	PIT	W	5	4	NaN	70- 75	 0	SFG2019- 09-10
2096910	146	2019- 09-11	SFG	1	PIT	L	3	6	NaN	70- 76	 0	SFG2019- 09-11
2097073	147	2019- 09-12	SFG	1	PIT	L	2	4	NaN	70- 77	 0	SFG2019- 09-12
2097236	148	2019- 09-13	SFG	1	MIA	W	1	0	NaN	71- 77	 0	SFG2019- 09-13
2097399	149	2019- 09-14	SFG	1	MIA	L	2	4	NaN	71- 78	 0	SFG2019- 09-14
2097562	150	2019- 09-15	SFG	1	MIA	W	2	1	NaN	72- 78	 1	SFG2019- 09-15
2098703	157	2019- 09-24	SFG	1	COL	L	5	8	16	75- 82	 0	SFG2019- 09-24
2098866	158	2019- 09-25	SFG	1	COL	W- wo	2	1	NaN	76- 82	 0	SFG2019- 09-25
2099029	159	2019- 09-26	SFG	1	COL	W	8	3	NaN	77- 82	 0	SFG2019- 09-26
2099192	160	2019- 09-27	SFG	1	LAD	L	2	9	NaN	77- 83	 0	SFG2019- 09-27
2099355	161	2019- 09-28	SFG	1	LAD	L	0	2	NaN	77- 84	 0	SFG2019- 09-28
2099518	162	2019- 09-29	SFG	1	LAD	L	0	9	NaN	77- 85	 1	SFG2019- 09-29

6384 rows × 40 columns

```
In [7]: def mean_std(cat):
    print(cat + ':')
    for i in Teams:
        TeamTemp = homegames[homegames['Team'] == i]
        TeamTemp = TeamTemp[pd.notnull(TeamTemp[cat])]
        TeamTemp[cat] = TeamTemp[cat].astype(str).astype(int)
        TeamMean = TeamTemp[cat].mean()
        TeamStd = TeamTemp[cat].std()
        print(i + "'s Mean: " + str(TeamMean))
        print(i + "'s Standard Dev: " + str(TeamStd))
```

```
In [8]: mean_std('Attendance')
        #mean std('Win Per')
        Attendance:
        CHC's Mean: 36891.974968710885
        CHC's Standard Dev: 4080.876292558024
        CHW's Mean: 22465.715012722645
        CHW's Standard Dev: 6536.423707134375
        LAA's Mean: 37858.708798017346
        LAA's Standard Dev: 4100.180384667041
        LAD's Mean: 44832.69937888199
        LAD's Standard Dev: 6405.553003267846
        NYM's Mean: 29966.022813688214
        NYM's Standard Dev: 6223.064231626648
        NYY's Mean: 42032.096815286626
        NYY's Standard Dev: 4881.165233741245
        OAK's Mean: 20075.015132408575
        OAK's Standard Dev: 7939.438976393215
        SFG's Mean: 40054.90099009901
        SFG's Standard Dev: 3294.46544414653
In [9]: segment_dummies = pd.get_dummies(homegames['Team'])
        homegames = pd.concat([homegames, segment_dummies], axis=1)
        homegames.head()
Out[9]:
```

	GM_Num	Date	Team	Home	Орр	W/L	R	RA	Inn	W- L	 Losses_Same_Mkt_Team
977	7	2010- 04-12	CHC	1	MIL	W	9	5	NaN	3- 4	 4
1141	8	2010- 04-14	CHC	1	MIL	W	7	6	NaN	4- 4	 5
1304	9	2010- 04-15	CHC	1	MIL	L	6	8	NaN	4- 5	 5
1467	10	2010- 04-16	CHC	1	HOU	W	7	2	NaN	5- 5	 6
1630	11	2010- 04-17	CHC	1	HOU	L	3	4	NaN	5- 6	 7

5 rows × 48 columns

```
In [ ]:
In [10]: homegames.to csv('homegames.csv')
In [ ]:
```

```
In [1]: import requests
        import pandas as pd
        import numpy as np
        from datetime import datetime
        import re
        import warnings
        warnings.simplefilter('ignore')
        #Specifying which teams and years to include in data set
        Teams = ['OAK']
        #Teams = ['SFG']
        #Teams = ['SFG', 'OAK', 'LAA', 'LAD', 'CHC', 'CHW']
        Years = ['2019']
        #for year in range(2016,2020):
            Years.append(str(year))
        list_of_df = list()
        #Creating dataframe
        for team in Teams:
            for year in Years:
                #Will retrieve data from each year for each team
                url = 'https://www.baseball-reference.com/teams/' + team + '/' +
        year +'-schedule-scores.shtml'
                dfname = team + '_' + year
                html = requests.get(url).content
                df list = pd.read html(html)
                df = df list[-1]
                #Formatting data table
                #rename columns
                df.rename(columns={"Gm#": "GM Num"}, inplace = True)
                df = df[df['GM Num'].str.isdigit()]
                df = df[['Date','Attendance']]
                #Turn date into datetime object
                DayDate = df['Date'].str.split(", ", n = 1, expand = True)
                df['Date'] = DayDate[1] + ', ' + year
                df['Date'] = [re.sub("\s\(\d+\)", "", str(x)) for x in df['Date']
        ]]
                df['Date'] = pd.to datetime(df['Date'], format='%b %d, %Y')
                #Add to list which will be turned into a dataframe
                list_of_df.append(df)
        #Create dataframe
        bbattend = pd.concat(list of df)
```

```
In [2]: bbattend.dtypes
bbattend.head()
```

Out[2]:

	Date	Attendance
0	2019-03-20	45787
1	2019-03-21	46451
2	2019-03-28	22691
3	2019-03-29	22585
4	2019-03-30	16051

In [3]: #print(bbattend.Attendance)

```
In [4]: OAKdf = bbattend
  OAKdf = OAKdf[pd.notnull(OAKdf['Attendance'])]
  OAKdf['Attendance'] = OAKdf['Attendance'].astype(int)
  OAKdf.dtypes
```

Out[4]: Date datetime64[ns]
Attendance int64

dtype: object

```
In [5]: OAKdf.head()
```

Out[5]:

	Date	Attendance
0	2019-03-20	45787
1	2019-03-21	46451
2	2019-03-28	22691
3	2019-03-29	22585
4	2019-03-30	16051

```
In [6]: Teams = ['SFG']
        Years = ['2019']
        list_of_df = list()
        #Creating dataframe
        for team in Teams:
            for year in Years:
                #Will retrieve data from each year for each team
                url = 'https://www.baseball-reference.com/teams/' + team + '/' +
        year +'-schedule-scores.shtml'
                dfname = team + ' ' + year
                html = requests.get(url).content
                df_list = pd.read_html(html)
                df = df_list[-1]
                #Formatting data table
                #rename columns
                df.rename(columns={"Gm#": "GM Num"}, inplace = True)
                df = df[df['GM_Num'].str.isdigit()]
                df = df[['Date','Attendance']]
                #Turn date into datetime object
                DayDate = df['Date'].str.split(", ", n = 1, expand = True)
                df['Date'] = DayDate[1] + ', ' + year
                df['Date'] = [re.sub("\s\(\d+\)", "", str(x)) for x in df['Date']
        ]]
                df['Date'] = pd.to datetime(df['Date'], format='%b %d, %Y')
                #Add to list which will be turned into a dataframe
                list of df.append(df)
        #Create dataframe
        bbattend = pd.concat(list of df)
        SFGdf = SFGdf[pd.notnull(SFGdf['Attendance'])]
        #OAKdf['Attendance'] = OAKdf['Attendance'].astype(str).astype(int)
```

```
In [7]: | SFGdf = bbattend
        SFGdf['Attendance'] = SFGdf['Attendance'].astype(int)
        SFGdf.dtypes
```

Out[7]: Date datetime64[ns] Attendance int64 dtype: object

```
In [8]: SFGdf = SFGdf.dropna()
    SFGdf.head()
```

Out[8]:

	Date	Attendance
0	2019-03-28	44655
1	2019-03-29	33769
2	2019-03-30	41899
3	2019-03-31	38444
5	2019-04-01	40477

plt.show()

```
In [20]: import datetime as dt
   import matplotlib.pyplot as plt
   import matplotlib.dates as mdates
   import matplotlib.patches as mpatches

fig, ax = plt.subplots(figsize=(11,5))
   ax.plot(OAKdf.Date, OAKdf.Attendance, color = 'green', label='OAK')
   ax.plot(SFGdf.Date, SFGdf.Attendance, color = 'orange', label='SFG')
   ax.set_title('San Francisco Giants and Oakland Athletics Attendance 2019
   Season')
   ax.legend()
```



```
In [10]: Teams = ['LAA']
         list_of_df = list()
         #Creating dataframe
         for team in Teams:
             for year in Years:
                 #Will retrieve data from each year for each team
                 url = 'https://www.baseball-reference.com/teams/' + team + '/' +
         year +'-schedule-scores.shtml'
                 dfname = team + '_' + year
                 html = requests.get(url).content
                 df list = pd.read_html(html)
                 df = df list[-1]
                 #Formatting data table
                 #rename columns
                 df.rename(columns={"Gm#": "GM_Num"}, inplace = True)
                 df = df[df['GM_Num'].str.isdigit()]
                 df = df[['Date','Attendance']]
                 #Turn date into datetime object
                 DayDate = df['Date'].str.split(", ", n = 1, expand = True)
                 df['Date'] = DayDate[1] + ', ' + year
                 df['Date'] = [re.sub("\s\(\d+\)", "", str(x)) for x in df['Date']
         ]]
                 df['Date'] = pd.to_datetime(df['Date'], format='%b %d, %Y')
                 #Add to list which will be turned into a dataframe
                 list of df.append(df)
         #Create dataframe
         bbattend = pd.concat(list of df)
         LAAdf = bbattend
         LAAdf = LAAdf[pd.notnull(LAAdf['Attendance'])]
         LAAdf['Attendance'] = LAAdf['Attendance'].astype(int)
```

```
In [11]: | Teams = ['LAD']
         #Teams = ['SFG', 'OAK', 'LAA', 'LAD', 'CHC', 'CHW']
         #for year in range(2016,2020):
             Years.append(str(year))
         list_of_df = list()
         #Creating dataframe
         for team in Teams:
             for year in Years:
                 #Will retrieve data from each year for each team
                 url = 'https://www.baseball-reference.com/teams/' + team + '/' +
         year +'-schedule-scores.shtml'
                 dfname = team + '_' + year
                 html = requests.get(url).content
                 df_list = pd.read_html(html)
                 df = df list[-1]
                 #Formatting data table
                 #rename columns
                 df.rename(columns={"Gm#": "GM_Num"}, inplace = True)
                 df = df[df['GM_Num'].str.isdigit()]
                 df = df[['Date','Attendance']]
                 #Turn date into datetime object
                 DayDate = df['Date'].str.split(", ", n = 1, expand = True)
                 df['Date'] = DayDate[1] + ', ' + year
                 df['Date'] = [re.sub("\s\(\d+\)", "", str(x))  for x in df['Date']
         ]]
                 df['Date'] = pd.to datetime(df['Date'], format='%b %d, %Y')
                 #Add to list which will be turned into a dataframe
                 list of df.append(df)
         #Create dataframe
         bbattend = pd.concat(list of df)
         LADdf = bbattend
         LADdf = LADdf[pd.notnull(LADdf['Attendance'])]
         LADdf['Attendance'] = LADdf['Attendance'].astype(int)
```

```
In [12]: fig, ax = plt.subplots(figsize=(11,5))
    ax.plot(LAAdf.Date, LAAdf.Attendance, color = 'red', label='LAA')
    ax.plot(LADdf.Date, LADdf.Attendance, color = 'blue', label='LAD')
    ax.set_title('Los Angeles Angels and Los Angeles Dodgers Attendance 2019
    Season')
    ax.legend()
    plt.show()
```



```
In [13]: import requests
         import pandas as pd
         import numpy as np
         from datetime import datetime
         import re
         import warnings
         warnings.simplefilter('ignore')
         #Specifying which teams and years to include in data set
         \#Teams = ['OAK']
         Teams = ['CHC']
         #Teams = ['SFG', 'OAK', 'LAA', 'LAD', 'CHC', 'CHW']
         #for year in range(2016,2020):
              Years.append(str(year))
         list_of_df = list()
         #Creating dataframe
         for team in Teams:
             for year in Years:
                 #Will retrieve data from each year for each team
                 url = 'https://www.baseball-reference.com/teams/' + team + '/' +
         year +'-schedule-scores.shtml'
                 dfname = team + '_' + year
                 html = requests.get(url).content
                 df_list = pd.read_html(html)
                 df = df list[-1]
                 #Formatting data table
                 #rename columns
                 df.rename(columns={"Gm#": "GM Num"}, inplace = True)
                 df = df[df['GM Num'].str.isdigit()]
                 df = df[['Date','Attendance']]
                 #Turn date into datetime object
                 DayDate = df['Date'].str.split(", ", n = 1, expand = True)
                 df['Date'] = DayDate[1] + ', ' + year
                 df['Date'] = [re.sub("\s\(\d+\)", "", str(x))  for x in df['Date']
         ]]
                 df['Date'] = pd.to datetime(df['Date'], format='%b %d, %Y')
                 #Add to list which will be turned into a dataframe
                 list of df.append(df)
         #Create dataframe
         bbattend = pd.concat(list of df)
         CHCdf = bbattend
         CHCdf = CHCdf[pd.notnull(CHCdf['Attendance'])]
         CHCdf['Attendance'] = CHCdf['Attendance'].astype(int)
```

```
In [14]: import requests
         import pandas as pd
         import numpy as np
         from datetime import datetime
         import re
         import warnings
         warnings.simplefilter('ignore')
         #Specifying which teams and years to include in data set
         \#Teams = ['OAK']
         Teams = ['CHW']
         #Teams = ['SFG', 'OAK', 'LAA', 'LAD', 'CHC', 'CHW']
         #for year in range(2016,2020):
              Years.append(str(year))
         list_of_df = list()
         #Creating dataframe
         for team in Teams:
             for year in Years:
                 #Will retrieve data from each year for each team
                 url = 'https://www.baseball-reference.com/teams/' + team + '/' +
         year +'-schedule-scores.shtml'
                 dfname = team + '_' + year
                 html = requests.get(url).content
                 df_list = pd.read_html(html)
                 df = df_list[-1]
                 #Formatting data table
                 #rename columns
                 df.rename(columns={"Gm#": "GM Num"}, inplace = True)
                 df = df[df['GM Num'].str.isdigit()]
                 df = df[['Date','Attendance']]
                 #Turn date into datetime object
                 DayDate = df['Date'].str.split(", ", n = 1, expand = True)
                 df['Date'] = DayDate[1] + ', ' + year
                 df['Date'] = [re.sub("\s\(\d+\)", "", str(x))  for x in df['Date']
         ]]
                 df['Date'] = pd.to datetime(df['Date'], format='%b %d, %Y')
                 #Add to list which will be turned into a dataframe
                 list of df.append(df)
         #Create dataframe
         bbattend = pd.concat(list of df)
         CHWdf = bbattend
         CHWdf = CHWdf[pd.notnull(CHWdf['Attendance'])]
         CHWdf['Attendance'] = CHWdf['Attendance'].astype(int)
```

```
In [15]: fig, ax = plt.subplots(figsize=(11,5))
    ax.plot(CHWdf.Date, CHWdf.Attendance, color = 'gray', label='CHW')
    ax.plot(CHCdf.Date, CHCdf.Attendance, color = 'blue', label='CHC')
    ax.set_title('Chicago White Sox and Chicago Cubs Attendance 2019 Season'
    )
    ax.legend()
    plt.show()
```



```
In [16]: Teams = ['NYY']
         #Teams = ['SFG', 'OAK', 'LAA', 'LAD', 'CHC', 'CHW']
         #for year in range(2016,2020):
             Years.append(str(year))
         list_of_df = list()
         #Creating dataframe
         for team in Teams:
             for year in Years:
                 #Will retrieve data from each year for each team
                 url = 'https://www.baseball-reference.com/teams/' + team + '/' +
         year +'-schedule-scores.shtml'
                 dfname = team + '_' + year
                 html = requests.get(url).content
                 df_list = pd.read_html(html)
                 df = df list[-1]
                 #Formatting data table
                 #rename columns
                 df.rename(columns={"Gm#": "GM_Num"}, inplace = True)
                 df = df[df['GM_Num'].str.isdigit()]
                 df = df[['Date','Attendance']]
                 #Turn date into datetime object
                 DayDate = df['Date'].str.split(", ", n = 1, expand = True)
                 df['Date'] = DayDate[1] + ', ' + year
                 df['Date'] = [re.sub("\s\(\d+\)", "", str(x))  for x in df['Date']
         ]]
                 df['Date'] = pd.to datetime(df['Date'], format='%b %d, %Y')
                 #Add to list which will be turned into a dataframe
                 list of df.append(df)
         #Create dataframe
         bbattend = pd.concat(list of df)
         NYYdf = bbattend
         NYYdf = NYYdf[pd.notnull(NYYdf['Attendance'])]
         NYYdf['Attendance'] = NYYdf['Attendance'].astype(int)
```

```
In [17]: Teams = ['NYM']
         list_of_df = list()
         #Creating dataframe
         for team in Teams:
             for year in Years:
                 #Will retrieve data from each year for each team
                 url = 'https://www.baseball-reference.com/teams/' + team + '/' +
         year +'-schedule-scores.shtml'
                 dfname = team + '_' + year
                 html = requests.get(url).content
                 df list = pd.read_html(html)
                 df = df list[-1]
                 #Formatting data table
                 #rename columns
                 df.rename(columns={"Gm#": "GM_Num"}, inplace = True)
                 df = df[df['GM_Num'].str.isdigit()]
                 df = df[['Date','Attendance']]
                 #Turn date into datetime object
                 DayDate = df['Date'].str.split(", ", n = 1, expand = True)
                 df['Date'] = DayDate[1] + ', ' + year
                 df['Date'] = [re.sub("\s\(\d+\)", "", str(x)) for x in df['Date']
         ]]
                 df['Date'] = pd.to_datetime(df['Date'], format='%b %d, %Y')
                 #Add to list which will be turned into a dataframe
                 list of df.append(df)
         #Create dataframe
         bbattend = pd.concat(list of df)
         NYMdf = bbattend
         NYMdf = NYMdf[pd.notnull(NYMdf['Attendance'])]
         NYMdf['Attendance'] = NYMdf['Attendance'].astype(int)
```

```
In [18]: fig, ax = plt.subplots(figsize=(11,5))
    ax.plot(NYYdf.Date, NYYdf.Attendance, color = 'blue', label='NYY')
    ax.plot(NYMdf.Date, NYMdf.Attendance, color = 'orange', label='NYM')
    ax.set_title('New York Yankees and New York Mets Attendance 2019 Season'
    )
    ax.legend()
    plt.show()
```



```
In [19]: bbattendhome =pd.read_csv("bbattendhome.csv")
   bbattendhome['Year'] = pd.DatetimeIndex(bbattendhome['Date']).year
   #bbattendhome.head()
   bbattendhome.boxplot(column='Attendance', by='Team')
   plt.title("Boxplot of Home Game Attendance by Team")
   plt.suptitle("")

plt.show()
```



```
In [ ]:
```

```
In [22]: import pandas as pd
import numpy as np

homegames = pd.read_csv("homegames.csv")
homegames.drop(columns=['Unnamed: 0', 'Inn'], inplace = True)
homegames['Win_Per'] = 100*homegames['Win_Per']
homegames['Win_Per_Same_Mkt_Team'] = 100*homegames['Win_Per_Same_Mkt_Team']
homegames.dropna(inplace = True)
homegames.head()
```

Out[22]:

	GM_Num	Date	Team	Home	Орр	W/L	R	RA	W- L	Rank	 Losses_Same_Mkt_Team	di
0	7	2010- 04-12	CHC	1	MIL	W	9	5	3- 4	3	 4	
1	8	2010- 04-14	CHC	1	MIL	W	7	6	4- 4	3	 5	
2	9	2010- 04-15	CHC	1	MIL	L	6	8	4- 5	3	 5	
3	10	2010- 04-16	CHC	1	HOU	W	7	2	5- 5	2	 6	
4	11	2010- 04-17	CHC	1	HOU	L	3	4	5- 6	3	 7	

5 rows × 47 columns

```
In [2]: list(homegames.columns)
Out[2]: ['GM_Num',
          'Date',
          'Team',
          'Home',
          'Opp',
          'W/L',
          'R',
          'RA',
          'W-L',
          'Rank',
          'GB',
          'Time',
          'Night',
          'Attendance',
          'Streak',
          'Game_Win',
          'Wins',
          'Losses',
          'Net_Wins',
          'Win_Per',
          'DayOfWeek',
          'Year',
          'Same_Mkt_Team',
          'Monday',
          'Tuesday',
          'Wednesday',
          'Thursday',
          'Friday',
          'Saturday',
          'Sunday',
          'game_id',
          'Date_Same_Mkt_Team',
          'Team_Same_Mkt_Team',
          'Net Wins Same Mkt Team',
          'Win Per Same Mkt Team',
          'Streak Same Mkt Team',
          'date_diff',
          'CHC',
          'CHW',
          'LAA',
          'LAD',
          'NYM',
          'NYY',
          'OAK',
          'SFG']
In [3]: homegames.Win_Per.unique()
Out[3]: array([42.85714286, 50.
                                          , 44.4444444, ..., 49.61832061,
                48.87218045, 47.77070064])
```

In [4]: import statsmodels.formula.api as smf attend_ols1 = smf.ols('Attendance ~ Streak_Same_Mkt_Team', data=homegam es).fit(cov_type = 'HC3') print(attend_ols1.summary())

OLS Regression Results ______ ====== Dep. Variable: Attendance R-squared: 0.000 Model: OLS Adj. R-squared: -0.000 F-statistic: Method: Least Squares 0.7714 Thu, 19 Dec 2019 Prob (F-statistic): Date: 0.380 Time: 10:01:57 Log-Likelihood: -67866. No. Observations: 6372 AIC: 1. 357e+05 Df Residuals: 6370 BIC: 1. 358e+05 Df Model: 1 HC3 Covariance Type: ______ ========== coef std err z P>|z| [0.025 0.975]______ 3.432e+04 128.038 268.065 0.000 3.4 Intercept 1e+04 3.46e+04 Streak Same Mkt Team -43.6365 49.684 -0.878 0.380 -14 1.015 53.742 ______ ====== 396.406 Durbin-Watson: Omnibus: 0.306 Prob(Omnibus): 0.000 Jarque-Bera (JB): 394.759 Skew: -0.563 Prob(JB): 1.90e-86 Kurtosis: 2.530 Cond. No. 2.50

======

Warnings:

```
In [5]: #attend ols2 = smf.ols('Attendance ~ Win Per Same Mkt Team', data=homeg
      ames).fit(cov type = 'HC3')
      attend ols2 = smf.ols('Attendance ~ Win Per Same Mkt Team', data=homega
      mes).fit(cov_type = 'HC3')
      print(attend ols2.summary())
                          OLS Regression Results
     ______
     ======
     Dep. Variable:
                        Attendance R-squared:
      0.004
     Model:
                              OLS Adj. R-squared:
      0.004
     Method:
                      Least Squares F-statistic:
     20.23
                    Thu, 19 Dec 2019 Prob (F-statistic):
     Date:
      6.98e-06
     Time:
                           10:01:57 Log-Likelihood:
     -67854.
     No. Observations:
                             6372 AIC:
                                                        1.
     357e+05
     Df Residuals:
                             6370 BIC:
                                                        1.
      357e+05
     Df Model:
                               1
                              HC3
     Covariance Type:
      ______
      ===========
                         coef std err z P>|z|
      [0.025 0.975]
      _____
                      3.76e+04 748.734 50.220 0.000 3.
      Intercept
     61e+04 3.91e+04
     Win Per Same Mkt Team -64.0997 14.250 -4.498 0.000 -
      92.030 -36.170
      ______
      ======
     Omnibus:
                           393.193 Durbin-Watson:
      0.307
     Prob(Omnibus):
                            0.000 Jarque-Bera (JB):
     404.744
     Skew:
                            -0.577 Prob(JB):
      1.29e-88
                             2.560 Cond. No.
     Kurtosis:
```

275.

Warnings:

[1] Standard Errors are heteroscedasticity robust (HC3)

```
In [26]: #attend ols2 = smf.ols('Attendance ~ Win Per Same Mkt Team', data=homeg
        ames).fit(cov type = 'HC3')
        attend_ols2 = smf.ols('Attendance ~ Wins Same Mkt Team', data=homegames
        ).fit(cov_type = 'HC3')
       print(attend ols2.summary())
                               OLS Regression Results
       ______
       ======
       Dep. Variable:
                             Attendance R-squared:
       0.000
       Model:
                                    OLS Adj. R-squared:
       -0.000
       Method:
                           Least Squares F-statistic:
       0.09760
```

12:08:38

Date: 0.755 Time:

-67867.

357e+05

Warnings:

No. Observations:

Df Residuals:

Thu, 19 Dec 2019 Prob (F-statistic):

6372 AIC:

6370 BIC:

Log-Likelihood:

1.

1.

358e+05 Df Model: 1 HC3 Covariance Type: ______ ========== coef std err z P>|z| [0. 0.975 Intercept 3.425e+04 255.893 133.860 0.000 3.38e +04 3.48e+04 Wins Same Mkt Team 1.6404 5.251 0.312 0.755 -8. 651 11.932 ______ ====== Omnibus: 396.619 Durbin-Watson: 0.306 Prob(Omnibus): 0.000 Jarque-Bera (JB): 394.197 Skew: -0.562 Prob(JB): 2.52e-86 2.529 Cond. No. Kurtosis: 94.3 ______ ======

OLS Regression Results

=======================================		======		========	=======	=====
=====						
Dep. Variable: 0.011	Attend	dance	R-sq	uared:		
Model:		OLS	Adi.	R-squared:		
0.011			- 3			
Method:	Least Sq	uares	F-st	atistic:		
36.07			_			
Date:	Thu, 19 Dec	2019	Prob	(F-statistic):	
2.65e-16						
Time:	12:0	09:08	Log-	Likelihood:		
-67832.						
No. Observations: 357e+05		6372	AIC:			1.
Df Residuals:		6369	BIC:			1.
357e+05						
Df Model:		2				
Covariance Type:		HC3				
=======================================						
	goof	a+d	orr	z	DNIEL	
[0.025 0.975]					P> Z	
Intercept	3.374e+04	264.	341	127.621	0.000	3.3
2e+04 3.43e+04						
Wins Same Mkt Team	-68.8691	9.	427	-7.305	0.000	-8
7.346 -50.392	000005			, , , ,		· ·
Losses_Same_Mkt_Team 7.331 107.784	87.5573	10.	320	8.484	0.000	6
=======================================	========	======	=====	========	=======	=====
======						
Omnibus:	39:	1.387	Durb	in-Watson:		
0.309						
Prob(Omnibus):	(0.000	Jarq	ue-Bera (JB):		
408.035						
Skew:	_(0.582	Prob	(JB):		
2.49e-89						
Kurtosis:		2.573	Cond	. No.		
133.						
=======================================	========			========	=======	=====
======						

Warnings:

OLS Regression Results

Dep. Variable: Attendance R-squared: 0.098 Model: OLS Adj. R-squared: 0.097 Method: Least Squares F-statistic: 210.9 Date: Thu, 19 Dec 2019 Prob (F-statistic): 1.97e-89 Time: 10:01:58 Log-Likelihood: -67540. No. Observations: 6372 AIC: 1. 351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3
0.098 Model: OLS Adj. R-squared: 0.097 Method: Least Squares F-statistic: 210.9 Date: Thu, 19 Dec 2019 Prob (F-statistic): 1.97e-89 Time: 10:01:58 Log-Likelihood: -67540. No. Observations: 6372 AIC: 1. 351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3
0.097 Method: Least Squares F-statistic: 210.9 Date: Thu, 19 Dec 2019 Prob (F-statistic): 1.97e-89 Time: 10:01:58 Log-Likelihood: -67540. No. Observations: 6372 AIC: 1. 351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3 ====================================
Method: Least Squares F-statistic: 210.9 Date: Thu, 19 Dec 2019 Prob (F-statistic): 1.97e-89 Time: 10:01:58 Log-Likelihood: -67540. No. Observations: 6372 AIC: 1. 351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3 ====================================
210.9 Date: Thu, 19 Dec 2019 Prob (F-statistic): 1.97e-89 Time: 10:01:58 Log-Likelihood: -67540. No. Observations: 6372 AIC: 1. 351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3 ====================================
Date: Thu, 19 Dec 2019 Prob (F-statistic): 1.97e-89 Time: 10:01:58 Log-Likelihood: -67540. No. Observations: 6372 AIC: 1. 351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3
1.97e-89 Time:
Time: 10:01:58 Log-Likelihood: -67540. No. Observations: 6372 AIC: 1. 351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3 ===================================
-67540. No. Observations: 6372 AIC: 1. 351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3 ====================================
No. Observations: 6372 AIC: 1. 351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3 ====================================
351e+05 Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3 ====================================
Df Residuals: 6369 BIC: 1. 351e+05 Df Model: 2 Covariance Type: HC3 ====================================
351e+05 Df Model: 2 Covariance Type: HC3 ====================================
Df Model: 2 Covariance Type: HC3 ====================================
Covariance Type: HC3 ====================================
coef std err z P> z [0.025 0.975]
coef std err z P> z [0.025 0.975]
coef std err z P> z [0.025 0.975]
[0.025 0.975]
·
Intercept 1 9180+04 1240 000 15 464 0 000 1
INCELCED: 1.310ETU4 1240.000 13.404 0.000 1.
67e+04 2.16e+04
Win_Per_Same_Mkt_Team -44.8331 15.826 -2.833 0.005 -
75.852 –13.815
Win_Per 340.6958 16.962 20.086 0.000 3
07.451 373.941
=======================================
======
Omnibus: 374.171 Durbin-Watson:
0.361
Prob(Omnibus): 0.000 Jarque-Bera (JB):
441.523 Skew: -0.642 Prob(JB):
Skew: -0.642 Prob(JB): 1.33e-96
Kurtosis: 2.881 Cond. No.
577.
======

Warnings:

```
In [7]: from sklearn import linear model
                                                                   # ols, ridge,
         lasso
        from sklearn.preprocessing import StandardScaler
        var_list = ['Night', 'Streak', 'Wins', 'Losses', 'Net_Wins', 'Win_Per',
        'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sun
        day', 'Net_Wins_Same_Mkt_Team', 'Win_Per_Same_Mkt_Team', 'Streak_Same_Mk
        t_Team', 'LAA', 'LAD', 'CHC', 'CHW', 'NYY', 'NYM', 'SFG', 'OAK']
        #var_list = ['Win_Per', 'Win_Per_Same_Mkt_Team']
        X = StandardScaler().fit_transform(homegames[var_list])
        lasso model best alpha = linear model.LassoCV(cv=10).fit(X, homegames['A
        ttendance'])
        lasso model_alpha = lasso_model_best_alpha.alpha_
        print('The best alpha from the candidate alphas is {0}.'.format(lasso mo
        del best alpha.alpha ))
        print(lasso_model_best_alpha.coef_)
        #Drop Losses, Thursday
```

/Users/laurel/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler.

return self.partial_fit(X, y)

/Users/laurel/anaconda3/lib/python3.7/site-packages/sklearn/base.py:46 4: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler.

return self.fit(X, **fit_params).transform(X)

The best alpha from the candidate alphas is 5.37129426477929.

[5.48184784e+01 -1.43178023e+02 2.62506606e+02 0.00000000e+00 1.46291000e+03 1.59847904e+02 -2.89230773e+02 -1.47103284e+02 -1.50288663e+02 -0.00000000e+00 9.03450631e+02 1.66058123e+03 1.04431001e+03 -2.04533722e+02 -9.35266522e+01 3.58201884e+01 3.55785387e+02 2.23385916e+03 -5.37902474e+00 -4.50008148e+03 1.17062955e+03 -2.13763152e+03 9.61136069e+02 -5.59203093e+03]

OLS Regression Results

		regress.				
=======================================	========	-=====	=====	=========	======	====:
Dep. Variable:	Attend	dance	R-sai	lared:		
0.011	nccin	auricc .	K-5q.	aurcu.		
Model:		OLS	ibα	R-squared:		
0.010		ОПО	114).	N-Bquarca:		
Method:	Least Squ	lares	F_gt:	atistic.		
18.29	Heast by	au Cb	1-500	acibere.		
	Thu 19 Dec	2019	Proh	(F-statistic):	•	
5.98e-15	1114, 13 200	2013	1100	(I beacibele).	•	
Time:	12:4	13:09	I.oa-1	Likelihood:		
-67831.	12.	.5.05	109 .	arnerinoou.		
No. Observations:		6372	ATC:			1
357e+05		0372	1110.			_
Df Residuals:		6367	BTC•			1.
357e+05		0307	DIC.			_
Df Model:		4				
Covariance Type:		нс3				
=======================================	========	======	=====		======	====
==========						
	coef	std	err	Z	P> z	
[0.025 0.975]						
T. I I	2 240 404	1105	067	20 201	0 000	_
	3.349e+04	1105	.86/	30.281	0.000	3
13e+04 3.57e+04	4 0615		5 00	0.005	0 014	
Win_Per_Same_Mkt_Team	4.8615	20.	. /03	0.235	0.814	-
35.716 45.439	40 4202	F 1	000	0.022	0 251	
Streak_Same_Mkt_Team	48.4382	51.	.982	0.932	0.351	-
53.444 150.320	72 2412	1 2	CO1	F 257	0 000	-:
Wins_Same_Mkt_Team	-/3.3412	13.	.091	-3.35/	0.000	
00.175 -46.507	02 2470	1 /	014	C 10F	0 000	
Losses_Same_Mkt_Team	92.24/8	14.	.914	0.185	0.000	
63.016 121.479						
=======================================						
Omnibus:	390	0.514	Durb	in-Watson:		
0.309	350	,.511	Duib.	in watbon.		
Prob(Omnibus):	(0.000	Jargi	ue-Bera (JB):		
407.303	`	, . 000	ourq	ac bera (ob).		
Skew:	_(0.582	Prob	(JB):		
3.59e-89	_(,	1100	(02)•		
Kurtosis:	2	2.574	Cond	. No.		
597.	4		COM	• 110 •		

Warnings:

```
In [29]: attend ols5 = smf.ols('Attendance ~ Wins Same Mkt Team + Losses Same Mk
         t Team + Wins + Losses', data=homegames).fit(cov type = 'HC3')
         print(attend_ols5.summary())
```

OLS Regression Results ______ Dep. Variable: Attendance R-squared: 0.151 Model: OLS Adj. R-squared:

0.150 Method: Least Squares F-statistic:

316.4 Thu, 19 Dec 2019 Date: Prob (F-statistic):

23e-248 Time: 12:45:57 Log-Likelihood:

-67346.

No. Observations: 6372 AIC: 1. 347e+05 6367

BIC:

1.

1.

Df Residuals:

347e+05 Df Model: 4

HC3 Covariance Type:

=======================================						
		coef	std err	Z	P> z	
[0.025	0.975]					
Intercept		3.388e+04	258.195	131.218	0.000	3.3
4e+04	3.44e+04					
Wins_Same_Mkt_Team		54.2327	83.088	0.653	0.514	-10

8.618 217.083 Losses Same Mkt Team 97.9457 82.590 1.186 0.236 -6 3.927 259.819 2.714 223.7920 82.471 0.007 Wins 6 2.153 385.431 -377.9694 82.613 -4.575 0.000 Losses -53 9.887 -216.051

Omnibus: 400.352 Durbin-Watson:

0.361

Prob(Omnibus): 0.000 Jarque-Bera (JB):

479.629

Skew: -0.671 Prob(JB): 7.

08e-105

2.933 Cond. No. Kurtosis:

======

Warnings:

		OLS Re	gress.	LOII ICC	Surcs		
=======	:=======	=========	=====	=====		======	=====
Dep. Var	iable:	Attenda	nce	R-squ	ared:		
Model:			OLS	Adi.	R-squared:		
0.709			0_0		54441		
Method:		Least Squa	res	F-sta	atistic:		
1359.		-					
Date:		Thu, 19 Dec 2	019	Prob	(F-statistic):	:	
0.00							
Time:		10:04	:37	Log-I	Likelihood:		
-63929.							
	rvations:	6	372	AIC:			1
279e+05							
Df Resid	luals:	6	362	BIC:			1
279e+05			•				
Df Model			9				
	ce Type:		HC3				
	:======== :=======						
		coef	std	err	Z	P> z	
[0.025	0.975]					- 1-1	
		2 507-104	722	225	47 007	0 000	2
Intercep	3.65e+04	3.50/e+04	/33	.235	47.827	0.000	3
		m -28.0054	۵	064	3 000	0.002	
		20.0034	9 .	.004	-3.090	0.002	-
Win Per		124.5626	10	.377	12.004	0.000	-
_	144.901	12110020	10.		120001	0.000	
CHC		-3048.7062	178	790	-17.052	0.000	-33
99.127	-2698.285						
CHW		-1.7e+04	263	.839	-64.447	0.000	-1
75e+04	-1.65e+04						
LAA		-1796.9956	190	.447	-9.436	0.000	-23
	-1423.727						
LAD		4225.1934	251	.065	16.829	0.000	37
	4717.273						_
NYM	0051 000	-9757.2031	257	.812	-37.846	0.000	-1
	-9251.900	1267 2220	212	000	F 07F	0 000	,
NYY 51.617	1683.031	1267.3238	212	.099	5.975	0.000	8
OAK	1003.031	1 000±01	201	001	-65.599	0.000	-2
	-1.92e+04	-1.900-04	301	.001	-05.599	0.000	-2
		=========	=====	=====	-========	======	====:
======							
Omnibus:		190.	822	Durbi	n-Watson:		
1.046							
Prob(Omn	ibus):	0.	000	Jarqu	ie-Bera (JB):		
408.096							
Skew:		0.	178	Prob	(JB):		
2.42e-89							
Kurtosis	:	4.	187	Cond	No.		
701.							

======

Warnings:

[1] Standard Errors are heteroscedasticity robust (HC3)

```
In [21]: attend_ols7 = smf.ols('Attendance ~ Win_Per_Same_Mkt_Team + Win_Per + C
    HC + CHW + LAA + LAD + NYM + NYY + OAK + Wins + Losses', data=homegames)
    .fit(cov_type = 'HC3')
    print(attend_ols7.summary())
```

=======		==========	======			======	=====
======							
Dep. Vai	riable:	Atten	dance	R-sq	uared:		
0.721							
Model:			OLS	Adj.	R-squared:		
0.721							
Method:		Least Sq	uares	F-st	atistic:		
1246.							
Date:		Thu, 19 Dec	2019	Prob	(F-statistic):		
0.00							
Time:		10:	54 : 16	Log-	Likelihood:		
-63795 .							
	ervations:		6372	AIC:			1.
276e+05	1 . 1		6260	DIG			-
Df Resid	quals:		6360	BIC:			1.
277e+05	1.		11				
Df Model			11 HC3				
	nce Type: =======	==========		====	=========	======	=====
	 	_					
		coef	std	err	Z	P> z	
[0.025	0.975]					' '	
Intercep	ot	3.974e+04	816	.761	48.652	0.000	3.
	4.13e+04						
		am -20.1713	8	.518	-2.368	0.018	_
36.867							
Win_Per		12.2678	13	.782	0.890	0.373	_
	39.279						
СНС		-2924.3251	176	.635	-16.556	0.000	-32
	-2578.128	4 655	2.50	. = .			_
CHW	1 6 104	-1.655e+04	262	.3/1	-63.076	0.000	-1.
	-1.6e+04	1000 7400	100	0.62	0.006	0 000	2.2
LAA 64.020	-1515.460	-1889.7400	190	.963	-9.896	0.000	-22
LAD	-1313.400	3832.8077	246	212	15.567	0.000	33
50.241	4315.374	3032.0077	240	. 2 1 2	13.307	0.000	33
NYM	4313.374	-9455.9259	252	.469	-37.454	0.000	-99
50.755	-8961.096	-7433.7237	252	. 405	-57.454	0.000	- 5 5
NYY	0301.030	702.1230	208	.925	3.361	0.001	2
92.638	1111.608	, 0 = 0 = 0		.,	0.002	0.007	_
OAK		-1.987e+04	299	565	-66.320	0.000	-2.
05e+04	-1.93e+04						
Wins		127.2774	8	741	14.562	0.000	1
10.146	144.409						
Losses		-116.3835	9	.158	-12.709	0.000	-1
34.332	-98.435						
======		=========	======	=====	========	=====	
======							
Omnibus	•	20	9.598	Durb	in-Watson:		
1.085				_			
Prob(Omr	nibus):	1	0.000	Jarq	ue-Bera (JB):		
401.127			0 247	D1-	/ TD \ •		
Skew:	0	1	0.247	Prob	(JB):		
7.88e-88	5						

1.02e+03

======

Warnings:

- [1] Standard Errors are heteroscedasticity robust (HC3)
- [2] The condition number is large, 1.02e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

			Regress				
=======	=======	=========		====	=========	======	
Dep. Vari 0.758	able:	Attend	dance	R-sq	uared:		
Model:			OLS	Adj.	R-squared:		
0.757							
Method:		Least Squ	ıares	F-st	atistic:		
980.0		mb 10 Dan	2010	D1-	(B1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		
Date: 0.00		Thu, 19 Dec	2019	Prob	(F-statistic):		
Time:		10:1	16:30	Tog-	Likelihood:		
-63344 .		10.1		дод .	EINCIIII00 u •		
No. Obser	vations:		6372	AIC:			1.
267e+05							
Df Residu	als:		6353	BIC:			1.
269e+05							
Df Model:			18				
Covarianc ======		=========	HC3 ======	====	=========	======	=====
	=======						
[0.025	0.975]				Z		
Intercept		3.744e+04	822.	.133	45.534	0.000	3.
	3.9e+04						
Win_Per_S	ame_Mkt_Te	am -21.3123	8.	053	-2.647	0.008	_
	-5.529						
Win_Per		12.5437	13.	358	0.939	0.348	_
	38.725	2000 2026	170	000	16.060	0 000	2.2
CHC 41 823	-2536.942	-2889.3826	1/9.	820	-16.068	0.000	-32
CHW	-2330.942	-1.659e+04	248.	760	-66.698	0.000	-1.
	-1.61e+04	1,000,01	210	. ,	00.030		
LAA		-1894.3620	188.	835	-10.032	0.000	-22
64.472	-1524.252						
LAD		3809.1754	245.	882	15.492	0.000	33
27.255	4291.095						
NYM	0001 010	-9491.0096	239.	.800	-39.579	0.000	-99
	-9021.010	697.2456	204	E C O	3.409	0.001	2
NYY 96.316	1098.175	097.2430	204.	. 300	3.409	0.001	2
OAK	1070.173	-1.988e+04	281.	160	-70.707	0.000	-2.
	-1.93e+04	213000101			, , , , , ,		
Wins		124.3029	8.	375	14.841	0.000	1
07.887	140.718						
Losses		-114.4338	8.	752	-13.075	0.000	-1
31.587	-97.280						
Night	402 052	147.3633	176.	.375	0.836	0.403	-1
98.326	493.053	F10 1007	275	.013	1.884	0.060	
Tuesday 20.815	1057.215	518.1997	275.	.013	1.004	0.000	_
Z0.015 Wednesday		519.4735	275.	668	1.884	0.060	_
20.826	1059.773		_, 5				
Thursday		946.2944	302.	032	3.133	0.002	3
54.323	1538.266						

Friday	2041 606	3424.7178	263.764	12.984	0.000	29
07.749 Saturday	3941.686	5459.1360	280.593	19.456	0.000	49
09.184	6009.088					
Sunday		3811.2748	299.608	12.721	0.000	32
24.055	4398.495					
=======	=======	=========	=======	=======	=======	====
======						
Omnibus:		354.2	212 Durbi	n-Watson:		
1.129						
Prob(Omni	bus):	0.0	000 Jarqu	e-Bera (JB):		
733.638						
Skew:		0.3	384 Prob(JB):		4.
93e-160						
Kurtosis:		4.	475 Cond.	No.		
1.10e+03						
=======	========	=========	=======	========	=======	====
======						

Warnings:

- [1] Standard Errors are heteroscedasticity robust (HC3)
- [2] The condition number is large, 1.1e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

		ОПО	Regress.	LOII K	esuics		
=======		=========	======	=====	========	======	:=====
Dep. Var	riable:	Attend	dance	R-sq	uared:		
Model:			OLS	Adj.	R-squared:		
0.758							
Method: 885.7		Least Squ	ıares	F-st	atistic:		
Date:		Thu. 19 Dec	2019	Prob	(F-statistic)	:	
0.00					(= ====================================		
Time:		12:0	80:80	Log-	Likelihood:		
-63336.	ervations:		6372	AIC:			1.
267e+05	er vacions.		0372	AIC.			1.
Df Resid	luals:		6351	BIC:			1.
269e+05							
Df Model	: nce Type:		20 HC3				
		========		=====	========	======	=====
======	=======						
	0.0751	coef	std	err	Z	P> z	
-	0.975]						
Intercep		3.665e+04	934	.075	39.233	0.000	3.
	3.85e+04	0.0100		175	0.707	0 405	
	_Same_Mkt_Te 12.991	am -8.9123	11.	.1/5	-0.797	0.425	_
Win Per		13.1137	13.	.491	0.972	0.331	_
	39.555						
CHC	0.64.4.4.0.0	-2960.6463	178	.323	-16.603	0.000	-33
10.153 CHW	-2611.139	-1.663e+04	247	928	-67.069	0.000	-1.
	-1.61e+04	-1:0036104	21/	. 720	-07.009	0.000	-1.
LAA		-1868.7716	188	662	-9.905	0.000	-22
38.542	-1499.001	2015 0605	244	410	15 612	0 000	2.2
LAD 36.928	4294.997	3815.9625	244	.410	15.613	0.000	33
NYM	1231.337	-9436.3690	239	629	-39.379	0.000	-99
06.033	-8966.705						
NYY	1114 010	712.1878	205	.424	3.467	0.001	3
09.564 OAK	1114.812	-1.991e+04	280	351	-71.019	0.000	-2.
05e+04	-1.94e+04	1000101	200	.001	, 10013	0.000	
Wins		271.4754	44.	.637	6.082	0.000	1
83.989	358.962	27 1647	4.4	754	0.000	0 106	
Losses 50.552	124.881	37.1647	44.	.754	0.830	0.406	_
Night	121.001	154.5391	176	.510	0.876	0.381	-1
91.414	500.492						
Tuesday	1025 262	497.0178	274	.671	1.810	0.070	-
41.327 Wednesda	1035.362	499.9431	275	505	1.815	0.070	_
40.037	1039.924	155.5151	2,3		11013	0.070	
Thursday	7	960.3424	301	715	3.183	0.001	3
68.992	1551.693						

Friday	3399.1808	263.730	12.889	0.000	28
82.279 3916.083	F.4.2.6	000 551	10.000	0.000	4.0
Saturday 85.937 5986.540	5436.2385	280.771	19.362	0.000	48
85.937 5986.540 Sunday	3791.5175	299.676	12.652	0.000	32
04.163 4378.872	3791.3173	299.070	12.052	0.000	32
Wins Same Mkt Team	-164.3464	44.570	-3.687	0.000	-2
51.701 -76.992					
Losses_Same_Mkt_Team	-133.7164	44.566	-3.000	0.003	-2
21.064 -46.369					
	:=======	=======	:=======	======	====
 Omnibus:	369.	875 Durhin	-Watson:		
1.131	307.	ors buildin	-wacson:		
Prob(Omnibus):	0.	000 Jarque	-Bera (JB):		
766.531		-	` '		
Skew:	0.	399 Prob(J	B):		3.
55e-167					
Kurtosis:	4.	500 Cond.	No.		
1.42e+03					
		==		=	

======

Warnings:

- [1] Standard Errors are heteroscedasticity robust (HC3)
- [2] The condition number is large, 1.42e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

=======================================	========			========	======	=====
======						
Dep. Variable: 0.722	Atter	ndance	R-sq	uared:		
Model:		OLS	Adj.	R-squared:		
0.722 Method:	Least So	quares	F-st	atistic:		
1248.						
Date: 0.00	Thu, 19 Dec	2019	Prob	(F-statistic):	
Time:	12:	:49:46	Log-	Likelihood:		
-63785. No. Observations:		6372	AIC:			1.
276e+05						
Df Residuals: 277e+05		6360	BIC:			1.
Df Model:		11				
Covariance Type:		нс3				
=======================================	========			=========	======	=====
=============						
[0.025 0.975]	coei	std	err	Z	P> z	
Intercept 8e+04 3.95e+04	3.916e+04	175.	.897	222.646	0.000	3.8
Wins_Same_Mkt_Team 1.358 -118.366	-209.8621	46.	.683	-4.496	0.000	-30
Losses_Same_Mkt_Team	-170.4447	47.	.043	-3.623	0.000	-26
2.647 -78.242	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- / .		0.000		
Wins 412 206	321.6648	46.	.797	6.874	0.000	22
9.944 413.386 Losses	70.1336	46.	.801	1.499	0.134	-2
1.594 161.861						
CHC 9.137 -2664.277	-3006.7073	174.	.712	-17.209	0.000	-334
CHW	-1.66e+04	261.	.115	-63.564	0.000	-1.7
1e+04 -1.61e+04						
LAA 7.067 -1520.362	-1893.7148	190.	.489	-9.941	0.000	-226
LAD	3852.1668	244.	505	15.755	0.000	337
2.945 4331.388 NYM	-9399.3493	252.	760	-37.186	0.000	-989
4.765 -8903.933	-9399.3493	232	. 700	-37.180	0.000	-303
NYY	728.2551	209.	.107	3.483	0.000	31
8.412 1138.098	1 002-104	200	226	66 800	0 000	2 0
OAK 5e+04 -1.93e+04	-1.992e+04	298.	.236	-66.800	0.000	-2.0
==========	========		=====	=========	======	=====
======						
Omnibus:	22	24.629	Durb	in-Watson:		
1.087 Prob(Omnibus):		0.000	Jarq	ue-Bera (JB):		
429.410		0.266	D 1	(TD) -		
Skew: 5.69e-94		0.266	Prob	(JB):		

Kurtosis: 789.	4.155	Cond.	No.
======	======	=====	
Warnings:			

[1] Standard Errors are heteroscedasticity robust (HC3)