Tutorial 1

Elemental Analysis (Question 1)

This technique determines the mass percents of certain elements. The combustion of a sample with a known mass is carried out in excess oxygen.

$$CxHy + excess O_2 + heat \rightarrow xCO_2 + \frac{1}{2} y H_2O$$

i.e.
$$CH_3CH_2CH_3 + \underline{\hspace{1cm}} O_2 + heat \rightarrow \underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} 4H_2O$$

The mass of CO₂ and H₂O can be measured, which can then be used to find the mass of C and H in the original sample.

$$CxHyOz + excess O_2 + heat \rightarrow xCO_2 + \frac{1}{2} y H_2O$$

How to find amount of oxygen in the original sample?

Mass %
$$C + Mass % H + Mass % O = 100.00%$$

Question 1 continued

A monomer is a molecule that is reacted to make a polymer (it is the starting block)

A 0.02454 g sample of a monomer gave 0.07484 g CO₂ and 0.03675 g H₂O on combustion.

- (a) What is the %C in the organic compound?
- (b) What is the percent hydrogen?
- (c) Does the compound contain any elements besides carbon and hydrogen?

Question 2 How many protons, neutrons are there for the following isotopes

• ${}^{13}_{6}C$, ${}^{43}_{20}C$, ${}^{12}_{6}C$, ${}^{47}_{27}Co$, ${}^{59}_{27}Co$, ${}^{13}_{6}C$, ${}^{40}_{17}Ca$, ${}^{40}_{18}Ar$

Question 3 Draw the following

Condensed Formula /	Lewis structure	Line-Wedge Drawing
Molecular Formula		
(name)		
H ₂ CCH ₂		
H2CCH2		
(ethene)		
HCCCH₃		
(nranzma)		
(propyne)		
CH CH OH		
CH ₃ CH ₂ OH		
(ethanol)		
	• •	
CH₃CHO	_	
(athoral)		
(ethanal)		
CII CII CO II		
CH ₃ CH ₂ CO ₂ H		
(propanoic acid)		

CH ₃ NH ₂	
(methyl amine)	

Question 4

- e.g. A chemical reaction is used to identify limestone. The reaction of hydrochloric acid with limestone (mostly calcium carbonate) is seen through an effervescence - a bubbling due to the liberation of carbon dioxide gas. What is your plan? What are the relationships?
 - a) How many moles of CaCO_{3(s)} are consumed in a reaction with 225 mL of 3.25 M HCI?
 - b) How many mL)of 3.25 M HCl are consumed in a reaction with excess CaCO₃ to produce 1.00 mol CO₂?
 - c) How many moles of CO_{2(g)} are produced in the reaction of 175 mL of 3.25 M HCl with 45.0 g CaCO₃

Question 5

Mini-ME (Mind Exploration) – discuss the answer with the instructor In the Haber synthesis of ammonia, N_2 and H_2 react at high temperature, but they never react completely. In a typical reaction, 24.0 kg of H_2 and 84.0 kg of N_2 react to produce 68 kg of N_3 . Find the theoretical yield, the percent yield and the remaining masses of N_2 and H_2 (assume that there are no side reactions).