Homework 2 Tom (wonsuk) Jeong

June 10, 2024

1 Question 1

Let $a_1=1$ and $a_{n+1}=1+\frac{1+a_n}{1+a_n}$. Find $\lim_{n\to\infty}a_n$. hint: Observe that $a_{n+1}=1+\frac{2a_n}{1+a_n}$. Then write $a_{n+k}=\frac{A_k+B_ka_n}{C_k+D_ka_n}$ and find a formula for A_n,B_n,C_n,D_n . Then observe you can write $a_{n+1}=\frac{A_n+B_n}{C_n+D_n}$. finding the $\lim a_n$

$$a_{n+1} = 1 + \frac{2a_n}{1 + a_n}$$

$$a_{n+2} = 1 + \frac{2a_{n+1}}{1 + a_{n+1}}$$

$$= 1 + \frac{2\left(1 + \frac{2a_n}{1 + a_n}\right)}{1 + 1 + \frac{2a_n}{1 + a_n}}$$

$$= 1 + \frac{2 + \frac{4a_n}{1 + a_n}}{2 + \frac{2a_n}{1 + a_n}}$$

$$= 1 + \frac{2 + 4a_n}{2 + 2a_n}$$

$$a_{n+3} = 1 + \frac{2 + 4a_{n+1}}{2 + 2a_{n+1}}$$

$$= 1 + \frac{2 + 4\left(1 + \frac{2a_n}{1 + a_n}\right)}{2 + 2\left(1 + \frac{2a_n}{1 + a_n}\right)}$$

$$= 1 + \frac{2 + 4 + \frac{8a_n}{1 + a_n}}{2 + 2 + \frac{4a_n}{1 + a_n}}$$

$$= 1 + \frac{6 + 8a_n}{4 + 4a_n}$$

generalizing the pattern we get

$$a_{n+k} = 1 + \frac{2k + 2a_n}{k + a_n}$$

we can write $a_{n+k} = \frac{A_k + B_k a_n}{C_k + D_k a_n}$ by setting $A_k = 2k + 2, B_k = 1, C_k = k, D_k = 1$.

$$a_{n+k} = \frac{2k+2+a_n}{k+a_n}$$

then $a_{n+1} = \frac{A_n + B_n}{C_n + D_n}$ by setting $A_n = 2 + 2$, $B_n = 1$, $C_n = 1$, $D_n = 1$.

$$a_{n+1} = \frac{4 + a_n}{1 + a_n}$$

to find the limit of a_n we can set $a_{n+1} = a_n = a$ and solve for a.

$$a = \frac{4+a}{1+a}$$

$$a + a^2 = 4+a$$

$$a^2 = 4$$

$$a = 2, -2$$

since $a_1 = 1$ we have a = 2.

$$\lim_{n \to \infty} a_n = 2$$

2 question 2

Let $0 < x_1 \le x_2 \le \dots \le x_k$ prove that $\lim_{n \to \infty} (x_1^n + x_2^n + \dots + x_k^n)^{1/n} = x_k$.

Proof 2.1. Consider the sequence $\{a_n\}$ defined by

$$a_n = (x_1^n + x_2^n + \dots + x_k^n)^{1/n}.$$

We want to show that

$$\lim_{n \to \infty} a_n = x_k.$$

First, observe that since $0 < x_1 \le x_2 \le \cdots \le x_k$, we have:

$$x_k^n \le x_1^n + x_2^n + \dots + x_k^n \le kx_k^n.$$

Taking the n-th root of each part of the inequality, we get:

$$(x_k^n)^{1/n} \le (x_1^n + x_2^n + \dots + x_k^n)^{1/n} \le (kx_k^n)^{1/n}$$

Simplifying:

$$x_k \le (x_1^n + x_2^n + \dots + x_k^n)^{1/n} \le k^{1/n} \cdot x_k.$$

lhs, $\lim_{n\to\infty} x_k = x_k$ and rhs, $\lim_{n\to\infty} k^{1/n} \cdot x_k = x_k$. Thus, by squeeze theorem the limit of a_n is x_k .

3 question 3

Let $k \in \mathbb{N}$ and suppose $\sum_{n=1}^{\infty} |a_{n+k} - a_n|$ converges. Prove that (a_n) has a convergent subsequence. Hint: Use Bolzano Weierstrass, and that the tail end of a convergent series must go to 0

given that $\sum_{n=1}^{\infty} |a_{n+k} - a_n|$ converges, we can write the partial sums by $S_N = \sum_{n=1}^N |a_{n+k} - a_n|$. Since this series converges and (S_N) is bounded there exists some M > 0 s.t.:

$$S_N \leq M \quad \forall N.$$

since the series $\sum_{n=1}^{\infty} |a_{n+k} - a_n|$ converges, $|a_{n+k} - a_n| \to 0$

$$\lim_{n \to \infty} |a_{n+k} - a_n| = 0.$$

The BW states that every bounded sequence in \mathbb{R} has a convergent subsequence. To apply this we show that (a_n) is bounded.

Since $\sum_{n=1}^{\infty} |a_{n+k} - a_n|$ converges, and we know $\lim_{n\to\infty} |a_{n+k} - a_n| = 0$, we have:

$$|a_{n+k} - a_n| < \epsilon$$
 for large large n .

This means that for large n, a_{n+k} becomes closer too a_n . we have

1. The first k terms a_1, a_2, \ldots, a_k which form a finite set and bounded. 2. For n > k, each a_n is close to some a_{n-k} due to the convergence to 0 of the differences.

We can cover the sequence by finite bounds up to a_k and then note that subsequent terms stay close to these, which makes the entire sequence bounded.

Given that (a_n) is bounded, by BW, there exists a convergent subsequence (a_{n_j}) of (a_n) . thus, the sequence (a_n) has a convergent subsequence.

4 question 4

Prove that a sequence in a finite set has a constant subsequence.

Let S be a finite set. Then $S = \{a_1, a_2, \dots, a_n\}$ for some $n \in \mathbb{N}$. Consider a sequence (a_n) in S. Since S is finite, the sequence (a_n) will repeat. so there exists some $N \in \mathbb{N}$ st $a_n = a_{n+k} \ \forall n \geq N$ and some $k \in \mathbb{N}$.

5 question 5

let (n_k) be a sequence of positive integers which contains every positive integer exactly once. prove that $\lim_k \sup a_{n_k} = \lim_n \sup a_n$ and $\lim_k \inf a_{n_k} = \lim_n \inf a_n$.

let (n_k) be sequence of positive integers that contains every positive integer once we show that 1.

$$\lim_{k} \sup a_{n_k} = \lim_{n} \sup a_n$$

2.

$$\lim_{k} \inf a_{n_k} = \lim_{n} \inf a_n.$$

so, we show that

$$\lim_{k} \sup a_{n_k} \le \lim_{n} \sup a_n.$$

Let $M = \lim_n \sup a_n$. Then, $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that

$$a_n < M + \epsilon \quad \forall n > N.$$

Since (n_k) contains every positive integer exactly once, there exists $K \in \mathbb{N}$ such that

$$n_k \ge N \quad \forall k \ge K.$$

thus, $\forall k \geq K$, we have

$$a_{n_k} < M + \epsilon$$
.

Taking the supremum over all $k \geq K$, we get

$$\sup_{k \ge K} a_{n_k} \le M + \epsilon.$$

$$\lim_{k} \sup a_{n_k} \le \lim_{n} \sup a_n.$$

we show that

$$\lim_k \sup a_{n_k} \ge \lim_n \sup a_n.$$

Let $M = \lim_n \sup a_n$. $\forall \epsilon > 0$, by the definition of \limsup , there are infinitely many n such that

$$a_n > M - \epsilon$$
.

Since (n_k) contains every positive integer exactly once, there are infinitely many k such that

$$a_{n_k} > M - \epsilon$$
.

Taking the supremum the subsequence,

$$\sup a_{n_k} \ge M - \epsilon.$$

Since $\epsilon > 0$ we have

$$\lim_{k} \sup a_{n_k} \ge \lim_{n} \sup a_n.$$

Combining the two inequalities, we have

$$\lim_{k} \sup a_{n_k} = \lim_{n} \sup a_n.$$

Now, we show that

$$\lim_{k} \inf a_{n_k} \le \lim_{n} \inf a_n.$$

Let $m = \lim_n \inf a_n$. Then $\forall \epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$a_n > m - \epsilon \quad \forall n \ge N.$$

Since (n_k) contains every positive integer exactly once, there exists $K \in \mathbb{N}$ such that

$$n_k \ge N \quad \forall k \ge K.$$

Therefore, $\forall k \geq K$, we have

$$a_{n_k} > m - \epsilon$$
.

Taking the infimum over all $k \geq K$, we get

$$\inf_{k \ge K} a_{n_k} \ge m - \epsilon.$$

Since $\epsilon > 0$, we have

$$\lim_{k} \inf a_{n_k} \le \lim_{n} \inf a_n.$$

now we show that

$$\lim_{k}\inf a_{n_{k}}\geq \lim_{n}\inf a_{n}.$$

Let $m = \lim_n \inf a_n$. And $\forall \epsilon > 0$, by definition of \liminf , there are infinitely many n such that

$$a_n < m + \epsilon$$
.

Since (n_k) contains every positive integer exactly once, there are infinitely many k st

$$a_{n_k} < m + \epsilon$$
.

Taking the infimum over these values, we get

$$\inf a_{n_k} \leq m + \epsilon.$$

Since $\epsilon > 0$ we have

$$\lim_{k} \inf a_{n_k} \le \lim_{n} \inf a_n.$$

Combining the two inequalities, we get

$$\lim_{k} \inf a_{n_k} = \lim_{n} \inf a_n.$$

thus, we have proved that

$$\lim_k \sup a_{n_k} = \lim_n \sup a_n$$

and

$$\lim_{k} \inf a_{n_k} = \lim_{n} \inf a_n.$$