Measures

An extended real-valued function on a class of subsets of a nonempty set Ω is a **set function**. A set function μ on an algebra \mathcal{F} on Ω is a measure if (1) $\mu(A) \in [0, \infty], \forall A \in \mathcal{F}$, (2) $\mu(\emptyset) = 0$, (3) $A_1,A_2,\dots\in\mathcal{L}$ disjoint with $\bigcup_{n=1}^{\infty}A_n\in\mathcal{F}$, then $\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}\mu(A_n)$.

If $\mu(\Omega)=1$, then μ is a probability measure. If $\exists B_1,B_2\in\mathcal{F}$ such that $\Omega=\bigcup_{n=1}^\infty B_n$ and $\mu(B_i) < \infty$, $\forall i > 1$, then μ is σ -finite.

Extensions of Measures: If μ is σ -finite meas on alg \mathcal{F} , then \exists unique extsn of μ to $\sigma(\mathcal{F})$.

Monotonicity: If $A, B \in \mathcal{F}$ such that $A \subset B$, then $P(A) \leq P(B)$.

Inclusion-exclusion formula: If $A_1,A_2,\ldots,A_n\in\mathcal{F}$, then

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n).$$

Countable subadditivity: If $A_1, A_2, \dots \in \mathcal{F}$ such that $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$, then $P\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} P(A_n).$

Monotone continuity from below (mcfb): If $A,A_1,A_2,\dots\in\mathcal{F}$ such that $A_n\uparrow A$ (i.e., $A_n\subset A_{n+1}$ and $A=\bigcup A_n$), then $P(A_n)\uparrow P(A)$.

Monotone continuity from above (mcfa): If $A,A_1,A_2,\dots\in\mathcal{F}$ such that $A_n\downarrow A$ (i.e., $A_n \supset A_{n+1}$ and $A = \bigcap A_n$), then $P(A_n) \downarrow P(A)$.

Measurable Transformations

If $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$ are measurable spaces, then $T: \Omega_1 \to \Omega_2$ is $\langle \mathcal{F}_1, \mathcal{F}_2 \rangle$ -measurable if $T^{-1}(A) \equiv \{\omega \in \Omega_1 : T(\omega) \in A\} \in \mathcal{F}_1 \text{ (equivalently, } T^{-1}(\mathcal{F}_2) \subset \mathcal{F}_1 \text{)}.$

Let (Ω, \mathcal{F}, P) be a psp. Then, $X : \Omega \to \mathbb{R}$ is a **r.v.** if it is $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$ -measurable.

Checking for measurability: $T: \mathbb{R} \to \mathbb{R}$ is $\langle \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}) \rangle$ -measurable $\iff T^{-1}(-\infty, r) = \mathbb{R}$ $\{\omega \in \mathbb{R} : T(\omega) < r\} \in \mathcal{B}(\mathbb{R}) \ \forall r \in \mathbb{R}.$

If T_i is $\langle \mathcal{F}_i, \mathcal{F}_{i+1} \rangle$ -measurable for i=1,2, then the composition $T=T_1 \circ T_2 = T_1(T_2(\cdot))$ is $\langle \mathcal{F}_1, \mathcal{F}_3 \rangle$ -measurable.

If $f: \mathbb{R}^k \to \mathbb{R}^p$ is continuous, then f is $\langle \mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}) \rangle$ -measurable.

If f_1, f_2, \ldots, f_n are each $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -measurable transformations from Ω to \mathbb{R} , then $f = (f_1, f_2, \dots, f_n)'$ is $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -measurable. Also, $\sum_{i=1}^n f_i$, $\prod_{i=1}^n f_i$, $\sup_n f_n$, $\inf_n f_n$, $\lim \sup f_n$, $\lim \inf f_n$, and $\mathbb{I}_{\{\omega \in \Omega: \lim_{n \to \infty} f_n(\omega) \text{ finitely exists}\}} \lim_{n \to \infty} f_n$

Induced Measures & Distribution Functions

If $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$ are measurable spaces and $T: \Omega_1 \to \Omega_2$ is $\langle \mathcal{F}_1, \mathcal{F}_2 \rangle$ -measurable, then for any measure μ on $(\Omega_1, \mathcal{F}_1)$, the set function μT^{-1} defined by $\mu T^{-1}(A) = \mu \circ T^{-1}(A) = \mu(T^{-1}(A)), \quad \forall A \in \mathcal{F}_2 \text{ is a measure on } \mathcal{F}_2 \text{ and is called the}$ measure induced by T under μ on \mathcal{F}_2 .

For a r.v. X on a psp (Ω, \mathcal{F}, P) , the probability **distribution** of X (or the law of X), denoted P_{Y} , is the induced measure of X under P on $\mathcal{B}(\mathbb{R})$, i.e.,

$$P_X(A) = P(X^{-1}(A)) = P(\{\omega \in \Omega : X(\omega) \in A\}) = P(X \in A), \quad A \in \mathcal{B}(\mathbb{R}).$$

The cumulative distribution function (cdf) of a r.v. \boldsymbol{X} is $F(x) = P_X((-\infty, x]) = P(X \le x), \quad x \in \mathbb{R}.$ (1) F is right continuous: if $x_n \downarrow x_0$ and $x_n \geq x$ then $F(x_n) = P_X((-\infty,x_n]) \downarrow P_X((-\infty,x_0]) = F(x_0) \text{ by mcfa.}$ (2) F is monotone nondecreasing: if $x \leq y \implies (-\infty, x] \subset (-\infty, y]$ then $F(x) = P_X\left((-\infty, x]\right) \leq P_X\left((-\infty, y]\right) = F(y)$ by monotonicity (3) $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$: show using argument similar to (1).

If $F:\mathbb{R}\to [0,1]$ satisfies (1)-(3) above, then there exists a r.v. X on a psp (Ω,\mathcal{F},P) such that F is the cdf of X

Integrals

A measurable function $f:\Omega\to\overline{\mathbb{R}}$ on (Ω,\mathcal{F},μ) is μ -integrable if $\int_{\Omega}|f|\ d\mu<\infty$.

If $(\Omega, \mathcal{F}, \mu)$ is a msp and $f: \Omega \to \mathbb{R}$ is measurable and either μ -integrable or nonnegative. Then, for any $A \in \mathcal{F}$, $\int_A f d\mu = \int_{\Omega} \mathbb{I}_A f d\mu$.

Using the DCT (see next section), it can be shown that for **disjoint** $A_1,A_2,\dots\in\mathcal{F}$ and measurable $f:\Omega \to \mathbb{R}$ either μ -integrable or nonnegative, then $\int_{\Omega} f \mathbb{I}_{\bigcup_{n=1}^{\infty} A_n} d\mu = \sum_{n=1}^{\infty} \int_{A_i} f d\mu$.

Convergence Theorems

Monotone Convergence Theorem (MCT): If $f_n:\Omega \to \overline{\mathbb{R}}$ is an increasing sequence of nonnegative measurable functions, i.e., $f_n(\omega) \leq f_{n+1}(\omega) \ \forall \omega \in \Omega \ \text{and} \ f_n(\omega) \uparrow f(\omega) \ \text{a.e.}(\mu)$, then $\int_{\Omega} f_n \, d\mu \uparrow \int_{\Omega} f \, d\mu. \text{ That is, } \int_{\Omega} f \, d\mu = \int_{\Omega} \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu..$

Fatou's Lemma: If $f_n:\Omega\to\overline{\mathbb{R}}$ is a sequence of nonnegative functions, then $\int_{\Omega} \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_{\Omega} f_n d\mu.$

Dominated Convergence Theorem (DCT): Suppose (1) $g:\Omega\to\overline{\mathbb{R}}$ is a nonnegative, μ -integrable function; (2) $|f_n| \leq g$ a.e. $(\mu) \ \forall n \geq 1$; and (3) $f_n \rightarrow f$ a.e. (μ) . Then, f is μ -integrable and $\lim_{n\to\infty}\int_{\Omega}|f_n-f|\,d\mu=0$ and $\lim_{n\to\infty}\int_{\Omega}f_n\,d\mu=\int_{\Omega}f\,d\mu$.

Result under weaker conditions, UI and $\mu(\Omega) < \infty$: If $(\Omega, \mathcal{F}, \mu)$ is a msp with $\mu(\Omega) < \infty$ and $f,f_n:\Omega o\overline{R}$ are measurable such that $f_n o f$ a.e. (μ) and $\{f_n:n\ge 1\}$ is UI (see next section), then f is μ -integrable and $\lim_{n\to\infty}\int_{\Omega}f_n\,d\mu=\int_{\Omega}f\,d\mu$.

Note: for a nonnegative measurable real-valued function f on a msp $(\Omega, \mathcal{F}, \mu)$, $\nu(A)=\int_A f d\mu \ \forall A \in \mathcal{F}$ is a measure on (Ω,\mathcal{F}) and f is a density of the measure ν .

Scheffe's Theorem: Let (Ω,\mathcal{F},μ) be a msp and for $n\geq 0$, let $\nu_n(A)=\int_A f_n d\mu \ \forall A\in\mathcal{F}$ be finite measures on \mathcal{F} with densities $f_n\geq 0$. If $\nu_n(\Omega)=\nu_0(\Omega)<\infty$ for all $n\geq 1$ and $f_n\to f$ a.e. (μ) , then $\lim_{n\to\infty}\int_{\Omega}|f_n-f_0|\,d\mu=0$.

Also, $\sup_{A \in \mathcal{F}} |\nu_n(A) - \nu_0(A)| = \frac{1}{2} \int_{\Omega} |f_n - f_0| d\mu \to 0 \text{ as } n \to \infty.$

Uniform Integrability

Recall if $f:\Omega \to \mathbb{R}$ is μ -integrable, then by the DCT $\lim_{n\to\infty} \int_{|f|>n} |f| d\mu = \lim_{n\to\infty} \int_{\Omega} \mathbb{I}_{|f|>n} |f| d\mu = 0.$

A family of μ -integrable functions $\{f_{\lambda}:\lambda\in\Lambda\}$ on a msp (Ω,\mathcal{F},μ) is **uniformly integrable** (UI) w.r.t. μ if $\sup_{\lambda \in \Lambda} \int_{|f_{\lambda}| > t} |f_{\lambda}| d\mu \to 0 \text{ as } t \to \infty.$

Suppose $\mathcal{A}\equiv\left\{f_{\lambda}:\lambda\in\Lambda\right\}$ is a collection of μ -integrable functions on a msp (Ω,\mathcal{F},μ) . Then, (1) if Λ is a finite set, then $\mathcal A$ is UI; (2) if $\exists \varepsilon>0$ such that $\sup\left\{\int \left|f_\lambda\right|^{1+\varepsilon} d\mu:\lambda\in\Lambda\right\}<\infty$, then $\mathcal A$ is UI; (3) if $|f_{\lambda}| \leq f$ a.e. (μ) and $\int f d\mu < \infty$, then $\mathcal A$ is UI; (4) if $\mathcal A$ is UI and $\mu(\Omega) < \infty$, then $\exists M>0 \text{ such that } \sup\left\{ \int \left|f_{\lambda}\right| d\mu: \lambda \in \Lambda \right\} \leq M; \text{ (5) if } \left\{f_{\lambda}: \lambda \in \Lambda \right\} \text{ and } \left\{g_{\lambda}: \lambda \in \Lambda \right\} \text{ are } \left\{g_{\lambda}: \lambda \in \Lambda \right\} \text{ are } \left\{g_{\lambda}: \lambda \in \Lambda \right\}$ both UI, then $\left\{f_{\lambda}+g_{\lambda}:\lambda\in\Lambda\right\}$ is also UI.

Independence

A collection $A_i,\ i\in I$ of sets in ${\cal F}$ are **ind** if $\forall i_1,i_2,\ldots,i_n\in I$ distinct indices and fixed $1 \leq n < \infty$, $P\left(\bigcap_{i=1}^{n} A_{i,i}\right) = \prod_{i=1}^{n} P\left(A_{i,i}\right)$. $(2^{n} - n - 1)$ ind conditions!)

Suppose $\mathcal{G}_i \subset \mathcal{F}$ is a collection of measurable sets for each $i \in I$. Then the family of sets $\{\mathcal{G}_i : i \in I\}$ is called **ind** if any possible collection $\{A_i:i\in I\}$ of sets are ind, where $\{A_i:i\in I\}$ is formed by choosing an arbitrary set A_i from \mathcal{G}_i for each $i \in I$. That is, $\forall i_1, i_2, \ldots, i_n \in I$ distinct indices, fixed $1 \leq n < \infty$ and $\forall A_{i_1}, A_{i_2}, \ldots, A_{i_n} \in \mathcal{G}_{i_n}, P\left(\bigcap_{j=1}^n A_{i_j}\right) = \prod_{j=1}^n P\left(A_{i_j}\right)$. Note the family of sets $\{\mathcal{G}_i: i \in I\}$ are ind iff for each finite $T \subset I$, $\{\mathcal{G}_i: i \in T\}$ are ind.

A collection of r.v.'s X_i , $i \in I$ on (Ω, \mathcal{F}, P) are **ind** if the family $\{\sigma(X_i) : i \in I\}$ is ind, where $\sigma(X_i) = \left\{X_i^{-1}(B): B \in \mathcal{B}(\mathbb{R})\right\} = X_i^{-1}(\mathcal{B}(\mathbb{R})) \text{ is the σ-algebra generated by } X_i. \text{ That is, }$ $\forall i_1,i_2,\ldots,i_n\in I \text{ distinct indices, fixed } 1\leq n<\infty \text{ and } \forall B_{i_1},B_{i_2},\ldots,B_{i_n}\in \mathcal{B}(\mathbb{R}),$ $P\left(X_{i_1} \in B_{i_1}, X_{i_2} \in B_{i_2}, \dots, X_{i_n} \in B_{i_n}\right) = \prod_{j=1}^n P\left(X_{i_j} \in B_{i_j}\right). \text{ In terms of distribution functions, } X_i, i \in I \text{ are ind iff } \forall x_1, x_2, \dots, x_n \in \mathbb{R} \text{ and } \forall i_1, i_2, \dots, i_n \in I$ distinct indices, $P\left(X_{i_1} \leq x_1, X_{i_2} \leq x_2, \dots, X_{i_n} \leq x_n\right) = \prod_{i=1}^n P\left(X_{i_i} \leq x_i\right)$.

Independence of generated σ -algebras: If (Ω, \mathcal{F}, P) is a psp, $\mathcal{G}_i \subset \mathcal{F}$ is a π -class for each index $i \in I$, and the family $\{G_i: i \in I\}$ is ind. Then, the family $\{\sigma(G_i): i \in I\}$ is ind.

Borel-Cantelli Lemmas

If (Ω,\mathcal{F}) be a measurable space and $A_1,A_2,\dots\in\mathcal{F}$, then $\limsup_{n \to \infty} A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n \in \mathcal{F}$ and $\liminf_{n\to\infty}A_n=\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}A_n\in\mathcal{F}.$ Also $\liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n,$ $("A_n \text{ i.o"})^c = (\overline{\lim} A_n)^c = \underline{\lim} A_n^c = "A_n^c \text{ eventually,", and }$ $("A_n \text{ eventually"})^c = (\underline{\lim} A_n)^c = \overline{\lim} A_n^c = "A_n^c \text{ i.o."}.$

Borel-Cantelli Lemma: Let (Ω,\mathcal{F},P) be a psp and $A_1,A_2,\dots\in\mathcal{F}$. (1) If $\sum_n P(A_n)<\infty$, then $P\left(\overline{\lim}A_n\right)=0$. (2) If $\{A_n\}$ are ind and $\sum_n P(A_n) = \infty$, then $P\left(\overline{\lim}A_n\right) = 1$.

Borel 0-1 Law: If A_1, A_2, \ldots are ind events, then $P(\overline{\lim}A_n) = P(A_n \text{ i.o.}) = \begin{cases} 0 & \text{iff } \sum_n P(A_n) < \infty, \\ 1 & \text{iff } \sum_n P(A_n) = \infty. \end{cases}$

Tail Events & K's 0-1 Law

The **tail** σ -algebra of a sequence of r.v.'s X_1, X_2, \ldots on a psp (Ω, \mathcal{F}, P) is $\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma \left\langle \left\{ X_j : j \geq n \right\} \right\rangle$, where $\sigma\left\langle\left\{X_j:j\geq n\right\}\right\rangle = \sigma\left\langle\left\{X_j^{'-1}:B\in\mathcal{B}(\mathbb{R}),j\geq n\right\}\right\rangle \text{ is the σ-algebra generated by } X_j,j\geq n. \text{ Any set (event) } A\in\mathcal{T} \text{ is a tail event.}$

An extended real-valued r.v. $T:\Omega\to\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty,\infty\}$ is a tail r.v. if T is $\langle\mathcal{F},\mathcal{B}(\overline{\mathbb{R}})\rangle$ -measurable. That is, $\forall r \in \mathbb{R}, \ T^{-1}([-\infty, r]) = \{\omega \in \Omega : T(\omega) < r\} \in \mathcal{T}.$

Kolmogorov's 0-1 Law: Tail events of a seq X_1, X_2, \ldots of ind r.v.'s have probs 0 or 1, i.e., if $\{X_n\}_{n\geq 1}$ are ind and $A\in\mathcal{T}=\bigcap_n\sigma\langle\left\{X_j:j\geq n\right\}\rangle$, then $P(A)\in\{0,1\}$.

Corollary: For a psp (Ω, \mathcal{F}, P) and tail σ -algebra \mathcal{T} defined by a sequence X_1, X_2, \ldots of ind r.v.'s, if $T:\Omega \to \overline{\mathbb{R}}$ is a tail r.v. (that is, T is $\langle \mathcal{T},\mathcal{B}(\overline{\mathbb{R}}) \rangle$ -measurable), then T is degenerate. That is, $\exists c \in \overline{\mathbb{R}}$ such that P(T = c) = 1.

Convergence of r.v.'s

A sequence of r.v.'s X_1,X_2,\ldots on a psp (Ω,\mathcal{F},P) converge almost surely to a r.v. X_0 on (Ω,\mathcal{F},P) if $P\left(\{\lim_{n\to\infty}X_n(\omega)=X_0(\omega)\}\right)=1$.

(2) $P(|X_n| > \varepsilon \text{ i.o}) = 0 \text{ for all } \varepsilon > 0$,

(3) $\sup_{j > n} |X_j - X_0| \xrightarrow{p} 0 \text{ as } n \to \infty$,

(4) $\lim_{n\to\infty} P\left(\bigcap_{i=n}^{\infty} \left[\left| X_i - X_0 \right| \le \varepsilon \right] \right) = 1 \text{ for all } \varepsilon > 0.$

A sequence of r.v.'s X_1,X_2,\ldots on a psp (Ω,\mathcal{F},P) converge in probability to a r.v. X_0 on (Ω,\mathcal{F},P) if $\lim_{n\to\infty} P\left(|X_n-X_0|>\varepsilon\right)=0,\quad\forall \varepsilon>0.$

(1) $X_n \stackrel{\mathsf{p}}{\longrightarrow} 0$.

(2) $\sup_{m \ge n} (|X_m - X_n| > \varepsilon) \to 0 \text{ as } n \to \infty \text{ for all } \varepsilon > 0$,

(3) $\forall \left\{ n_j \right\}$ of $\left\{ X_n \right\}$, $\exists \left\{ n_{j_k} \right\}$ such that $X_{n_{j_k}} \xrightarrow{\text{a.s.}} X_0$.

For a sequence of r.v.'s X_1, X_2, \ldots on a psp (Ω, \mathcal{F}, P) , (1) if $X_n \xrightarrow{\text{a.s.}} X_0$ and $g: \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \xrightarrow{\text{a.s.}} g(X_0)$,

(2) if $X_n \xrightarrow{p} X_0$ and $g: \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \xrightarrow{p} g(X_0)$.

A sequence X_1, X_2, \ldots of $\mathcal{L}_r(\Omega, \mathcal{F}, P) \equiv \{ \text{mble } X \in \mathbb{R} : \int_{\Omega} |X|^r dP < \infty \}$ funcs converges in \mathcal{L}_r to a mble func X if $\lim_{n\to\infty} \int_{\Omega} |X_n - X|^r dP = 0$.

If $X \in \mathcal{L}_r$, then $t^T P(|X| > t) \to 0$ as $t \to \infty$, that is, $\uparrow r \implies$ faster convergence. If $\exists p \in (0, \infty)$ such that $t^p P(|X| > t) \to 0$, then $X \in \mathcal{L}_r \ \forall r \in (0, p)$.

If the r.v.'s $X_1, X_2, \dots \in \mathcal{L}_r$, then $\exists X \in \mathcal{L}_r$ such that $X_n \xrightarrow{\mathcal{L}_T} X$ iff $\sup_{m \geq n} \mathrm{E} \left| X_m - X_n \right|^T \to 0$ as $n \to \infty$.

For a r.v. X, the fixed, real-valued m(X) is a **median** if $P(X \geq m(X)) \geq 1/2$ and $P(X \leq m(X)) \geq 1/2$. Can be defined as $\inf \{x \in \mathbb{R} : P(X \leq x) \geq 1/2\}$. If $P(|X| > c) < \varepsilon < 1/2 \text{ then } |m(X)| < c.$

Levy's Inequality: If X_1, X_2, \ldots, X_n are ind r.v.'s on a psp (Ω, \mathcal{F}, P) and

 $S_j = \sum_{i=1}^j X_i, 1 \le j \le n$, then $\forall \varepsilon > 0$,

(1) $P\left(\max_{1 \le j \le n} \left[S_j - m(S_j - S_n) \right] \ge \varepsilon \right) \le 2P(S_n \ge \varepsilon)$,

 $(2) P\left(\max_{1 \leq j \leq n} \left\lceil S_j - m(S_j - S_n) \right\rceil \geq \varepsilon\right) \leq 2P(|S_n| \geq \varepsilon).$

Levy's Theorem: If X_1, X_2, \ldots are ind r.v.'s on a psp (Ω, \mathcal{F}, P) and $S_n = \sum_{i=1}^n X_i, n \geq 1$, then S_n converges a.s.(P) iff S_n converges in probability.

Khintchine-Kolmogorov Convergence Theorem: If X_1, X_2, \ldots are ind r.v.'s on a psp (Ω, \mathcal{F}, P) with $\mathrm{E}(X_n)=0$ and $\mathrm{E}(X_n^2)<\infty$ for all $n\geq 1$ and $\sum_n \mathrm{E}(X_n^2)<\infty$, then $S_n = \sum_{i=j}^n X_j, n \geq 1$ converges a.s.(P) and in \mathcal{L}_2 to some random variable $S = \sum_n X_n$. Also, $E(S) = 0, E(S^2) = \sum_{n} E(X_n^2).$

Corollary: If X_1,X_2,\ldots are ind r.v.'s on a psp (Ω,\mathcal{F},P) with $\sum_n \mathrm{E}(X_n)<\infty$ and $\sum_{n} \sigma_{X_n}^2 < \infty$, then $S_n = \sum_{i=1}^n X_i$, $n \ge 1$ converges a.s.(P) to $S = \sum_{n} X_n$.

Two sequences of r.v.'s $\{X_n\}$ and $\{Y_n\}$ are tail equivalent if $\sum_n P(X_n \neq Y_n) < \infty$. If $\{X_n\}$ and $\{Y_n\}$ are tail equivalent, then

(1) By Borel-Cantelli, $P(\overline{\lim}(X_n \neq Y_n)) = 0 \implies P(X_n = Y_n \text{ for large } n) = 1$,

(2) $S_n = \sum_{j=1}^n X_j \xrightarrow{a.s.} S \iff S'_n = \sum_{j=1}^n Y_j \xrightarrow{a.s.} S',$ (3) If $b_n \to \infty$, then $\frac{\sum_{j=1}^n X_j}{b_n} \xrightarrow{a.s.} 0 \iff \frac{\sum_{j=1}^n Y_j}{b_n} \xrightarrow{a.s.} 0.$

Berry-Esseen Lemma: If X_1, X_2, \ldots, X_n are ind r.v.'s with $\mathrm{E}(X_i) = 0$ and $\mathbb{E}|X_i|^3 < \infty, 1 \le i \le n$, then $\forall n \ge 4$, $\sup_{x \in \mathbb{R}} \left| P\left(\frac{S_n}{\sigma_n} \le x \right) - \Phi(x) \right| \le \frac{2.75}{\sigma_n^3} \sum_{i=1}^n \mathbb{E} \left| X_i \right|^3$, where

 $S_n = \sum_{i=1}^n X_i$, $\sigma_n^2 = \operatorname{Var}(S_n) = \sum_{i=1}^n \operatorname{E}(X_i^2)$, and $\Phi(\cdot)$ is the $\mathcal{N}(0,1)$ cdf.

Kolmogorov's 3-Series Theorem: If X_1, X_2, \ldots are ind r.v.'s on a psp (Ω, \mathcal{F}, P) , for fixed c > 0, $\text{define } \sum_n P(|X_n| > c), \quad \sum_n \mathrm{E}(X_n^{(c)}), \quad \sum_n \mathrm{Var}(X_n^{(c)}), \text{ where } X_n^{(c)} = X_n \mathbb{I}_{|X_n| < c}$ (1) if the 3 series conv for some c>0, then $S_n=\sum_{i=1}^n S_i$, $n\geq 1$ conv a.s.(P), (2) if $S_n = \sum_{i=1}^n S_i$, $n \ge 1$ converges a.s.(P), then the 3 series converge for all c > 0.

Corollary: If X_1, X_2, \ldots are ind r.v.'s on a psp (Ω, \mathcal{F}, P) with $\mathrm{E}(X_n) = 0$, then (1) if $\sum_n \left[\mathrm{E}(X_n^{(c)})^2 + \mathrm{E} \left| X_n \right| \mathbb{I}_{|X_n|>c} \right] < \infty$ for some c>0, then $S_n = \sum_{j=1}^n X_j \text{ a.s.}(P),$ $(2) \text{ if } \sum_n \operatorname{E} |X_n|^{\alpha_n} < \infty \text{ for some } \{\alpha_n\} \subset [1,2], \text{ then } S_n = \sum_{j=1}^n X_j \text{ conv a.s.}(P).$

Useful Inequalities

For positive a, b, p, $(a+b)^p \le 2^p (a^p + b^p)$

Markov's: if X is a nonnegative r.v. and a>0, then $P(X\geq a)\leq \mathrm{E}(X)/a$.

Holder's: If 1/p + 1/q = 1, then for measurable $f, g, ||fg||_1 \le ||f||_p ||g||_q$.

 $\text{Jensen's: } \forall r \in (0,q), \, \phi(x) = x^{q/r} \text{ is convex } \implies \big\lceil \mathrm{E} \, |X|^q \big\rceil^{1/q} > \big\lceil \mathrm{E} \, |X|^r \big\rceil^{1/r} \, .$

Laws of Large Numbers

 $\{X_n\}$ obeys the LLN if \exists $\{b_n\}$ \subset \mathbb{R} and $0 < a_n \uparrow$ such that

SLLN:
$$\frac{S_n - b_n}{a_n} \xrightarrow{\text{a.s.}} 0 \text{ WLLN: } \frac{S_n - b_n}{a_n} \xrightarrow{\text{p}} 0.$$

Kronecker's Lemma: If $\{a_n\}$, $\{b_n\}\subset\mathbb{R}$ such that $0< b_n\uparrow\infty$ and $\sum_{n=1}^\infty a_n/b_n$ converges, then $\frac{1}{h_n} \sum_{i=1}^n a_i \to 0 \text{ as } n \to \infty.$

Cesaro's Mean Summability Theorem: If $\{x_n\}\subset\mathbb{R}$ such that $\lim_{n\to\infty}x_n=x<\infty$, then $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} x_i = x.$

Theorem 4.14: If $\{X_n\}$ ind such that $\sum_{n=1}^{\infty} \mathrm{E} |X_n|^{\alpha_n} / n^{\alpha_n} < \infty$ for $\alpha_n \in [1,2]$, then $\frac{S_n - \operatorname{E} S_n}{n} = \frac{1}{n} \sum_{i=1}^n (X_i - \operatorname{E} X_i) \xrightarrow{\mathsf{a.s.}} 0.$

Marcinkiewicz-Zygmund SLLN: Let $\{X_n\}$ be iid, $S_n = \sum_{j=1}^n X_n$, and $p \in (0,2)$.

(1) If $\frac{S_n-nc}{n^{1/p}} \xrightarrow{\text{a.s.}} 0$ for some $c \in \mathbb{R}$, then $\mathbf{E} \mid X_1 \mid^p < \infty$.

(2) If $E[X_1]^p < \infty$, then (2) holds with $c = E[X_1]$ if $p \in [1, 2)$ and (2) holds for any $c \in \mathbb{R}$ if

Kolmogorov's SLLN: If $\{X_n\}$ are iid, then

$$\bar{X}_n = \frac{S_n}{n} \xrightarrow{\text{a.s.}} \operatorname{E} X_1 \iff \operatorname{E} |X_1| < \infty \iff \frac{S_n - n \operatorname{E} X_1}{n} \xrightarrow{\text{a.s.}} 0.$$

 $\label{eq:Useful Theorem: For any r.v. } X \text{ and } r \, > \, 0,$

$$\sum_{n=1}^{\infty} P(|X| > n^{1/r}) \le E|X|^r \le \sum_{n=0}^{\infty} P(|X| > n^{1/r}).$$

Etemaldi's SLLN: If $\{X_n\}$ are *pairwise* ind and identically distributed, then

$$\bar{X}_n = \frac{S_n}{n} \xrightarrow{\text{a.s.}} E X_1 \iff E |X_1| < \infty.$$

Theorem 4.18 (general WLLN): $\{X_n\}$ ind and put $S_n = \sum_{i=1}^n X_i$. If $\sum_{j=1}^n P(\left|X_j\right|>n)\to 0 \quad \text{and} \quad \frac{1}{n^2}\sum_{j=1}^n EX_j^{\binom{n}{2}} \xrightarrow{j} 0, \text{ then } \frac{S_n-a_n}{n} \xrightarrow{\frac{p}{n}} 0, \text{ where } n \to \infty$ $a_n = \sum_{i=1}^n \operatorname{E} X_i^{(n)}$ and $X_i^{(n)} \equiv X_i I(|X_i| \leq n)$.

[Corollary] Feller's WLLN (without a 1st moment hypothesis): if $\{X_n\}$ iid with $\lim_{n\to\infty} xP(|X_1|>x)=0$, then $\frac{S_n}{n}-\operatorname{E} X_1^{(n)}\stackrel{\mathsf{p}}{\longrightarrow} 0$.

Empirical Distributions

The **empirical cdf** of X_1,\ldots,X_n is the random cdf is the proportion of observations no larger than a fixed $x: F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x), \quad x \in \mathbb{R}.$

(1) With X_i 's on (Ω, \mathcal{F}, P) , for each $\omega \in \Omega$, $F_n(x, \omega) = \frac{1}{n} \sum_{i=1}^n I(X_i(\omega) \leq x)$. (2) $F_n(x)$ is a right-continuous, nondecreasing function of $x \in \mathbb{R}$,

(3) For any $x \in \mathbb{R}$, $F_n(x)$ is a r.v., i.e., is $\langle \mathcal{F}, \mathcal{B}(\mathbb{R}) \rangle$ -mble:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i^{-1}(-\infty, x])(\omega).$$

Glivenko-Cantelli Theorem: $\{X_n\}$ iid with cdf $F(\cdot)$. Let $F_n(\cdot)$ be the empirical cdf based on X_1,\ldots,X_n and define $D_n=\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|$. Then, (i) D_n is a r.v. for any $n\geq 1$ and (ii) $D_n \xrightarrow{\text{a.s.}} 0$ as $n \to \infty$.

Quantile Function: $\phi(u)=\inf\{x\in\mathbb{R}:F(x)\geq u\}\equiv F^{-1}(u),\ u\in(0,1)$ which implies $F(x)\geq u\iff x\geq\phi(u)$ and $F(\phi(u)-)\leq u\leq F(\phi(u)).$

Convergence in Distribution

Let μ_n , $n \geq 0$ be probability measures on $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ for some $1 \leq k < \infty$.

(1) For
$$\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$$
, the cdf of μ_n is $F_n(\mathbf{x}) = \mu_n((-\infty, x_1] \times \dots \times (-\infty, x_n])$.

 $F_n(\mathbf{x}) = \mu_n ((-\infty, x_1] \times \cdots \times (-\infty, x_n])$

If a random vector X_n has probability distribution μ_n [i.e., $P(X_n \in A) = \mu_n(A), A \in \mathcal{B}(\mathbb{R}^k)$], then F_{∞} is also called the cdf of X_{∞}

(2) A sequence of prob measures μ_n (or cdfs F_n) converges weakly to μ_o (to F_0), denoted as $\mu_n \Rightarrow \mu_0$ (or as $F_n \Rightarrow F_0$), if $\lim_{n \to \infty} F_n(\mathbf{x}) = F_0(\mathbf{x}) \quad \forall \mathbf{x} \in C(F_0)$, where $C(F_0) = \{ \mathbf{x} \in \mathbb{R}^k : F_0 \text{ is continuous at } \mathbf{x} \}.$

(3) A sequence of random vectors X_n in \mathbb{R}^k (with distributions μ_n) converges in distribution (law) to a random variable X_0 (with distribution μ_0) if $\mu_n \Rightarrow \mu_0$, denoted by $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$. That is, if $X_n = (X_{n,1}, \dots, X_{n,i})$ has cdf $F_n, n \ge 0$, then

$$\begin{split} &\lim_{n\to\infty} F_n(\mathbf{x}) = \lim_{n\to\infty} P(X_{n,1} \le x_1, \dots, X_{n,k} \le x_k) \\ &= P(X_{0,1} \le x_1, \dots, X_{0,k} \le x_k) = F_0(\mathbf{x}) \quad \forall \mathbf{x} \in C(F_0). \end{split}$$

Note that (1) $\mathbf{x} = (x_1, \dots, x_k) \in C(F_0) \iff F_0(\mathbf{x}) = P(X_{0,1} < x_1, \dots, X_{0,k} < x_1, \dots, x_{0,k})$ $x_k = F_0(\mathbf{x} - 1)$ i.e., if also left continuous; (2) $C(F_0)^c$ is at most countable; (3) $X_n \stackrel{\mathsf{p}}{\longrightarrow} X_0 \implies X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$ but not the other direction, unless X_0 is degenerate.

Skorohod's Embedding Theorem: If μ_n , $n\geq 0$ are probability measures on $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ for some $1\leq k<\infty$ such that $\mu_n\Rightarrow \mu_0$, then \exists random vectors $\{Y_n\}_{n\geq 0}$ on a *common* probability space such that Y_n has probability distribution μ_n for all $n \geq 0$ and $Y_n \xrightarrow{\text{a.s.}} Y_0$. That is, $P(Y_n \in A) = \mu_n(A), A \in \mathcal{B}(\mathbb{R}^k), n > 0.$

Continuous Mapping Theorem:

Version (a): Let μ_n , $n \geq 0$ be probability measures on $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ for $1 \leq k < \infty$ and let $h: \mathbb{R}^k \to \mathbb{R}^m$ for $1 \le m < \infty$ be a $\langle \mathcal{B}(\mathbb{R}^k), \mathcal{B}(\mathbb{R}^m) \rangle$ -mble function such that $\mu_0(D_h) = 0$, where $D_n \in \mathcal{B}(\mathbb{R}^k)$ denotes the set of all points of discontinuities of the function h. If $\mu_n \Rightarrow \mu_0$, then the induced measures converge weakly: $\mu_n\,h^{-1} \, \Rightarrow \, \mu_0\,h^{-1}$. Version (b): Let X_n , $n \geq 0$ be \mathbb{R}^k -valued random vectors and let measurable $h: \mathbb{R}^k \to \mathbb{R}^m$ be such

that $P(X_0 \in D_h) = 0$, where D_h is as above. If $X_n \xrightarrow{d} X_0$, then $h(X_n) \xrightarrow{d} h(X_0)$.

Corollary: If $X_n, Y_n, n \ge 0$ be r.v.'s such that $(X_n, Y_n) \xrightarrow{d} (X_0, Y_0)$, then (1) $X_n + Y_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 + Y_0$, (2) $X_n Y_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 Y_0$, (3) $X_n/Y_n \xrightarrow{d} X_0/Y_0 \text{ if } P(Y_0 = 0) = 0.$

some $a \in \mathbb{R}$, then (1) $X_n + Y_n \xrightarrow{d} X + a$, (2) $X_n Y_n \xrightarrow{d} aX$, (3) $X_n/Y_n \xrightarrow{\mathsf{d}} X/a \text{ if } a \neq 0.$

Characterizations of Convergence in Distribution

For a probability measure μ on $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$, a set $A \in \mathcal{B}(\mathbb{R}^k)$ is called a μ -continuity set if $\mu(\partial A) = 0$, where $\partial A = \overline{A} \setminus \text{int} A$. E.g., $\partial (-\infty, x] = (-\infty, x] \setminus (-\infty, x) = \{x\}$.

Helly-Bray Theorem: If μ_n , $n \geq 0$ are probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then $(1)\ \mu_n \Rightarrow \mu_0 \iff \mu_n(A) \to \mu_0(A)\ \forall A \in \mathcal{B}(\mathbb{R}) \ni \mu_0(\partial A) = 0.$ (2) $\mu_n \Rightarrow \mu_0 \iff \int f d\mu_n \to \int f d\mu_0$ for all bounded cont. func. $f: \mathbb{R} \to \mathbb{R}$. $\text{Remarks: (1) } \mu_n \Rightarrow \mu_0 \not \Longrightarrow \ \mu_n(A) \to \mu_0(A) \forall A \in \mathcal{B}(\mathbb{R}^k) \text{, (2) Holds for } (\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k)) \text{, (3)}$

Lemma 5.8: If $\mu_n \Rightarrow \mu_0$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $f: \mathbb{R} \to \mathbb{R}$ is a bounded, Borel-mble function with $\mu_0(D_f)$ (where $D_f \in \mathcal{B}(\mathbb{R})$ is the set of discontinuity points of f), then $\int f d\mu_n \to \int f d\mu_0$ as $n \to \infty$.

A seq of prob measures $\{\mu_n\}$ on $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$ is **tight** if $\forall \varepsilon>0,\,\exists M_{\varepsilon}>0$ such that

$$\sup_{n \ge 1} \mu_n \left(\left\{ x \in \mathbb{R}^k : ||x|| > M_{\varepsilon} \right\} \right) < \varepsilon.$$

For a single prob measure on \mathbb{R} , given ε , we can find M_{ε} such that $\mu([-M_{\varepsilon},M_{\varepsilon}])<\varepsilon$ and note $\mu([-M_{\varepsilon}, M_{\varepsilon}]) \uparrow \mu(\mathbb{R}) = 1.$

A seq of R^k -valued random vectors $\{X_n\}$ is **tight** or **stochastically bounded** if their corresponding $\{\mu_n\}$ is

$$\sup_{n\geq 1}P(\|X_n\|>M_{\mathcal{E}})=\sup_{n\geq 1}\mu_n\left(\left\{x\in\mathbb{R}^k:\|x\|>M_{\mathcal{E}}\right\}\right)<\varepsilon,$$

where $\mu_n(A) = P(X_n \in A), A \in \mathcal{B}(\mathbb{R}^k)$.

A sequence of random vectors $\{X_n\}$ is **uniformly integrable** if $\forall \varepsilon>0, \exists t_{\varepsilon}>0$ such that

$$\sup_{n>1} \mathbb{E} \|X_n\| I(\|X_n\| > t_{\varepsilon}) = \sup_{n>1} \int_{\|x\| > t_{\varepsilon}} \|x\| d\mu_n < \varepsilon,$$

where $\mu_n(A) = P(X_n \in A), A \in \mathcal{B}(\mathbb{R}^k).$

Proposition 5.9: Let $\{X_n\}$ be r.v.'s.

- (1) If $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$, then $\{X_n\}$ is tight.
- (2) If $\{X_n\}$ is tight and $Y_n \stackrel{p}{\longrightarrow} 0$ for X_n, Y_n defined on $(\Omega_n, \mathcal{F}_n, P_n)$, then $X_n Y_n \stackrel{p}{\longrightarrow} 0$. (3) But, weak convergence "almost" implies tightness see Prokhorov's theorem.

Theorem 5.10: A sequence of r.v.'s $\{X_n\}$ (or probability measures $\{\mu_n\}$) is tight iff for any subsequence X_{n_k} of X_n there exists a further subsequence $X_{n_{k_j}}$ of X_{n_k} and a r.v. (or probability measure μ_0)

such that $X_{n_{k_i}} \stackrel{\mathsf{d}}{\longrightarrow} X_0$ (or $\mu_{n_{k_i}} \Rightarrow \mu_0$). Note: X_0 (or μ_0) depends on the particular subsequence

Corollary: If $\{X_n\}$ is tight and all its convergent subsequences converge in distribution to the same r.v. X_0 . then $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$.

 $\hbox{ Theorem 5.12 (conv in dist} + \hbox{UI} \implies \hbox{conv in mean}) \hbox{: } \hbox{If } \{X_n\} \ , \ n \geq 1 \hbox{ is UI and } X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 \hbox{, then}$

Corollary 5.13 If $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$ and $\sup_{n \geq 1} \mathrm{E} \, |X_n|^{r+\delta} < \infty$ for some integer $r \geq 1$ and real $\delta > 0$, then $\mathbf{E} |X_0|^r < \infty$ and $\mathbf{E} X_n^r \to \mathbf{E} X_0^r$ (recall that $\sup_{n > 1} \mathbf{E} |Z_n|^{1+\delta} \implies \{Z_n\}$

Fréchet-Shohat Theorem: If $\lim_{n\to\infty} \operatorname{E} X_n^r = \beta_r \in \mathbb{R}$ for all integers $r\geq 1$ and if $\{\beta_r: r\geq 1\}$ are the moments of a unique r.v. X_0 , then $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0$.

Moments uniquely determine distribution when Cardeman's condition is met, $\sum_{r=1}^{\infty} \beta_{2r}^{-1/(2r)} = \infty$, or if the MGF $M_{X}(t)=\operatorname{E}e^{tX}<\infty\; \forall\; |t|<arepsilon\;$ for some arepsilon>0. Recall: $EX^{r} = \frac{d^{r}}{dt^{r}}M_{X}(t)$

Characteristic Functions

A complex number is a+ib, where $a,b\in\mathbb{R}$ and $i=\sqrt{-1}$. If a+bi and c+di are complex, then their sum is (a + b) + (c + d)i, their product is (ac - bd) + (ad + bc)i, and the modulus is $|a+bi| = \sqrt{a^2 + b^2} = \sqrt{(a+bi)(a-bi)}$. IMPORTANT! For any $b \in \mathbb{R}$, $e^{bi} = \cos(b) + i\sin(b)$ and $|e^{bi}| = \sqrt{\cos^2(b) + \sin^2(b)} = 1$ and $e^{ai}e^{bi} = e^{(a+b)i}$ for $a,b\in\mathbb{R}$. ALSO, for fixed $b\in\mathbb{R}$, the function $q(t)=e^{tbi}:\mathbb{R}\to\mathbb{C}$ is infinitely differentiable in t with nth derivative $(bi)^n e^{tbi}$.

For a random vector X in \mathbb{R}^k , the characteristic function (CF) is defined as

$$\phi_X(t) = \operatorname{E} e^{it'X} = \operatorname{E} \cos(t'X) + i \operatorname{E} \sin(t'X), \quad t \in \mathbb{R}^k, i = \sqrt{-1}.$$

Note that $\phi_X(0)=1$ and $\phi_X(t)$ is uniformly continuous on \mathbb{R}^k : by the BCT,

$$\begin{split} &\sup_{t\in\mathbb{R}^{k}}\left|\phi_{X}(t+h)-\phi_{X}(t)\right| = \sup_{t\in\mathbb{R}^{k}}\left|\operatorname{E}e^{i(t+h)'X}-\operatorname{E}e^{it'X}\right| \\ &\leq \operatorname{E}\left|e^{ih'X-1}\right| = \int_{R^{k}}\left|e^{ih'x}-1\right|d\mu_{X}(x) \to 0 \text{ as } |h| \to 0. \end{split}$$

Theorem 5.15: If X is a r.v. with $\mathrm{E}\left|X\right|^{r}<\infty$ for some $r\geq1$, then $\phi_{X}(t)$ is r-times differentiable on \mathbb{R} and $\phi_{\mathbf{Y}}^{(r)}(t) = \mathrm{E}(iX)^r e^{itX}, \quad t \in \mathbb{R}.$

Riemann-Lebesgue Lemma: If the distribution of a r.v. X has a density f w.r.t. the Lebesgue measure on \mathbb{R} , then $\phi_X(t) \to 0$ as $|t| \to \infty$.

Levy Inversion Formula (use CF to recover dist): If X is a r.v. with CF ϕ_X , then for any $a,b\in\mathbb{R}$ with

$$P(a < X \le b) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt.$$

Corollary: If we also assume $\int \left|\phi_X(t)\right|\,dt < \infty$ (which implies $C(F) = \mathbb{R}$), then X has a pdf f w.r.t. the Lebesgue measure on \mathbb{R} given by

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi_X(t) dt.$$

Levy Continuity Theorem: suppose $\{X_n\}$ is a sequence of r.v.'s each with CF ϕ_{X_n} ,

- $\begin{array}{ll} \text{(1) If } X_n \stackrel{\mathsf{d}}{\longrightarrow} X_o \text{, then for any } T>0, \sup_{|t|< T} \left|\phi_{X_n}(t) \phi_{X_0}(t)\right| \rightarrow 0 \text{ as } n \rightarrow \infty. \\ \text{(2) If } \phi_{X_n}(t) \rightarrow g(t) \text{ as } n \rightarrow \infty \text{ for all } t \in \mathbb{R} \text{ and } g(\cdot) \text{ is continuous at zero, then } g(\cdot) \text{ is a CF and } g(\cdot) \text{ or } f(t) \text{ and } f(t) \text{ or } f(t) \text{ and } f(t) \text{ or } f(t) \text{ and } f(t) \text{ or } f(t)$ $X_n \xrightarrow{d} X_0$, where X_0 is the r.v. with CF $g(\cdot)$.
- Corollary 5.20: $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 \iff \phi_{X_n}(t) \to \phi_{X_0}(t) \text{ as } n \to \infty \text{ for all } t \in \mathbb{R}.$

Inversion Formula in \mathbb{R}^k : Let X be a \mathbb{R}^k -valued r.v. with CF $\phi_X(t)$ for $t=(t_1,\ldots,t_k)\in\mathbb{R}^k$. Then, \forall rectangle $A=(a_1,b_1]\times\cdots\times(a_k,b_k]$ with $P(X\in\partial A)=0$,

$$P(X \in A) = \lim_{T \to \infty} \frac{1}{(2\pi)^k} \int_{-T}^T \cdots \int_{-T}^T \prod_{i=1}^k \frac{e^{-it_j a_j} - e^{-it_j b_j}}{it_j} \phi_X(t_1, \dots, t_k) dt_1 \dots$$

Also, if $\int_{\mathbb{R}^k} |\phi_X(t_1,\ldots,t_k)| dt_1\ldots dt_k < \infty$, then X has a bounded, continuous density $f_{\mathbf{Y}}(x)$ w.r.t. the Lebesgue measure in \mathbb{R}^k given by

$$f_X(x) = \frac{1}{(2\pi)^k} \int_{\mathbb{R}^k} e^{-i\sum_{j=1}^k x_j t_j} \phi_X(t_1,\ldots,t_k) dt_1 \cdots dt_k, \quad x = (x_1,\ldots,x_k) \in \mathbb{R}^k$$
 Theorem 5.22: On a psp (Ω,\mathcal{F},P) , r.v.'s X_1,\ldots,X_k are ind iff for all $t_1,\ldots,t_k \in \mathbb{R}$,

 $\phi_{X_1,...,X_k}(t_1,...,t_k) \equiv \mathbb{E} e^{i\sum_{j=1}^k X_j t_j} = \prod_{j=1}^k \mathbb{E} e^{iX_j t_j} = \prod_{j=1}^k \phi_{X_j}(t_j).$

Theorem 5.23: For a sequence $\{X_n\}$, $n\geq 0$ of \mathbb{R}^k -valued random vectors,

- (1) $X_n \xrightarrow{\mathsf{d}} X_0 \iff \phi_{X_n}(t) \to \phi_{X_0}(t) \ \forall t \in \mathbb{R}^k$,
- (2) (Cramer-Wold device) $X_n \stackrel{\mathsf{d}}{\longrightarrow} X_0 \iff t'X_n \stackrel{\mathsf{d}}{\longrightarrow} t'X_0 \ \forall t \in \mathbb{R}^k$.