Preliminary test for IST 718 Advanced Information Analytics

June 27, 2018

Daniel Acuna School of Information Studies, Syracuse University

This test is intended to check whether you have the necessary background to take **IST 718: Advanced Information Analytics**. If you cannot complete these questions in a reasonable amount of time (e.g., 1 hour), you need to seriously consider whether this is the right course for you or put significant extra effort to fullfil the pre-requisites. I do not have the key for this test.

1 Linear algebra

1.1 Systems of equations

Two trains on the same track move on a collision course. At time 0, one train starts at position 0 and moves east at speed v_1 . At time 0, another train starts L miles to the east and moves west at speed v_2 .

- **Question 1**: In a cartesian plane, draw the lines representing the two trajectories using the *x* axis as the time and the *y* axis as the train location.
- Question 2: Write the equations of both lines
- Question 3: What does the slope of the equations mean in terms of the problem?
- **Question 4**: Find the time of collision of both trains by solving for *x*.
- **Question 5**: Find the point of collision by solving for *y*.

1.2 Matrix algebra

Consider the following matrices:

$$X = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ -1 & -2 & 3 \\ 3 & 1 & 0 \end{bmatrix} B = \begin{bmatrix} \frac{1}{2} \\ -1 \\ 2 \end{bmatrix} Y = \begin{bmatrix} 3 \\ 1 \\ 2 \\ -2 \end{bmatrix}$$

- **Question 1:** What are the matrix dimensions of *X*, *B*, and *Y*?
- **Question 2:** Which of the following matrix multiplications are you allowed to do: 1) *XB*, 2) *BX*, 3) *XY*, 4) *YX*, 5) *BY*, 6) *YB*
- Question 3: Show that $(XB)^T$ equations B^TX^T , where T is the matrix transposition operator
- **Question 4:** Compute the value $(XB Y)^T(XB Y)$

2 Programming

You should be able to answer the following questions even though the code is written in Python, which highly legible.

• **Question 1**: What is the result of calling f (5) after defining the following function?:

```
def f(n):
    if n <= 1:
        return 1
    return f(n-1) + f(n-2)</pre>
```

• Question 2: What will the execution of the following code print?:

```
x = 5
y = 6
print(x)
print(y)
def g():
    global y
    x = 6
    x = x - 1
    y = y - 1
    print(x)
    print(y)
g()
print(x)
print(y)
```

• Question 3: What does the following for-loop print?

```
def m(x):
    return x < 3

for i in [1, 2, 3, 4, 5]:
    if not m(i):
        print(i)</pre>
```

• **Question 4**: What does calling z(h, [1, 2, 3]) print out?:

```
def h(x):
    return 2*x

def z(f, L):
    for i in L:
        print(f(i))
```

3 Calculus

Given the following functions

$$f(\mu) = (\mu - x)^2$$
$$g(\mu) = \alpha(\mu - x)^2$$
$$h(\mu, \sigma) = \frac{f(\mu)}{\sigma^2}$$

and where α is a constant.

- **Question 1**: What is the derivative of f with respect to μ
- **Question 2**: Show that the value of μ that makes

$$\frac{df(\mu)}{d\mu} == 0$$

and

$$\frac{dg(\mu)}{du} == 0$$

is the same.

• **Question 3**: Calculate $dh/d\mu$ and $dh/d\sigma$

4 Probability

Consider the sample space $S = \{1, 2, 3, 4\}$ and the random variable X with a discrete probability function

$$p(X = 1) = 0.5$$
 $p(X = 2) = 0.1$ $p(X = 3) = 0.3$ $p(X = 4) = 0.2$

- **Question 1**: What is the probability that *X* is not 1?
- **Question 2**: What is the probability that *X* is either 3 or 4?
- **Question 3 (optional)**: Using the following conditional probability definition P(X|Y) = P(X,Y)/P(Y), what is the probability that X is 1 given that you know that X is less than 4?

5 Statistics

Consider the following data $x = \{1, 2, 3, 4, 5\}$ and $y = \{-1, -2, 0, -4, -5\}$

- **Question 1**: What are the mean, median, and standard deviation of the data *x*?
- **Question 2**: What is the covariance between *x* and *y*?