B. Statistkik

- Qualitative Merkmale:
- Variieren nach Beschaffenheit
- Bspw. Geschlecht
- Quantitative Merkmale:
 - Variieren nach Wert/Zahlen
 - Bspw. Alter, Einkommen
- Diskrete Merkmale:
 - abgestufte Werte
 - Bspw. Einkommensklasse
- Stetige Merkmale:
- können im Intervall jeden reellen Wert annehmen
- Bspw. Körpergröße

Skalenniveaus

- Nominal
 - nur Gleichheit oder Andersartigkeit feststellbar (keine Bewertung)
 - stets qualitativ (Religion, Beruf etc.)
- Ordinal
 - natürliche oder festzulegende Rangfolge
- IQ, Schulnoten
- Kardinal
- numerischer Art
- Ausprägung und Unterschied sind messbar
- verhältnisskaliert (Absoluter Nullpunkt vorhanden; Gewicht, Preis (Doppelt so viel.))
- intervallskaliert (Kein Nullpunkt, nur Differenzen; Temperatur (10 Grad wärmer als gestern))

Werte

- Arithmetisches Mittel \overline{x}
- $-\overline{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}$ Summe aller Abweichungen vom Mittel
- Verschiebung um kostanten Wert a a+

- \overline{x}
- Median \tilde{x}
 - Mittleres Element der geordneten Liste
 - Bei gerader Anzahl, Durchschnitt der mittleren Elemente
- Quartile (FEHLT)
 - Unteres Quartil $\tilde{x}_{0.25}$
 - Oberes Quartil $\tilde{x}_{0.75}$
- Varianz σ^2
 - Populations Varianz

$$\sum_{i=1}^{\infty} (x_i - \mu)^2$$

- Sample Varianz $S_{n-1}^2 = \frac{\sum_{i=1}^n (x_i \overline{x})^2}{1 \text{Altn. Forms}^{1-2}}$
- Eigenschaften:
 - * Immer ≥ 0
 - * Addition mit a. Varianz unverändert
 - * Multiplikation mit b, $Varianz * b^2$
- Standardabweichung σ
- $-\sigma = \sqrt{\sigma^2}$
- StichprobenSDA $S = \sqrt{S_{n-1}^2}$
- Quartilsabstand (FEHLT)

Zweidimensionale Häuffigkeitstabellen

- Statistische Variablen X und Y mit versch.Auspräungen
- Spaltensummen sowie Zeilensummen = n
- Relative Häufigkeit $h_{ij} = \frac{n_{ij}}{n}$
- Randverteilung = Betrachtung einer einzigen Variable
- Z = X + Y: $\overline{z} = \overline{x} + \overline{y}$:

Kovarianz

- Arithmetisches Mittel des Produkts der Abweichung der einzelnen Beobachtungen von ihrem Mittel
- $\bullet C_{XY} := \frac{1}{n} \sum_{j=1}^{n} (x_j \overline{x})(y_j \overline{y})$ $\bullet C_{XY} = \overline{x}\overline{y} \overline{x} * \overline{y}$

- Multiplikation mit konstantem Wert $a \cdot | \bullet C_{XY} > 0$ "große X-Werte zu großen Y-Werten"
 - $C_{XY} < 0$ "große Werte zu kleine Werten"
 - Sind zwei Variablen statistisch unabhängig ist die Kovarianz = 0

Korrelation

- Normal (Pearson) $r_{XY} = \frac{C_{XY}}{\sigma_x * \sigma_y}$ normiertes Maß für Strenge des lin
 - earen statistischen Zusammenhangs
 - $-r_{XY}$ hat das gleiche Vorzeichen wie C_{XY}
 - Bleibt unverändert bei linearer Transformation
 - $r_{XY} = r_{YX}$
- Rangkorrelation (Spearman) $r_{XY}^{Sp} =$
 - $r_{rg(X),rg(Y)}$
 - für ordinale Variablen
 - misst monotonen Anteil des stat. Zusammenhangs
 - Ränge müssen vorher berechnet werden
- Kovarianz und Korrelation deuten nicht zwangsweise eine kausale Beziehung!

Kontingenzkoeffizient

- beschreibt die Stärke des Zusammenhangs zweier Merkmale, nicht deren Rich-
- Chi-Quadrat $QK = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ji} E_{ij})^2}{E_{ij}}$
 - $-E_{ij} = \frac{1}{n} * n_i * n_j = \frac{1}{n} n(x_i) * n(y_i)$ - Siehe Erweiterte Kontingeztabelle
 - -X und Y unabhängig: OK=0
 - Sonst QK > 0
- Für 2x2 Matrix: OK $n(ad-bc)^2$ $\overline{(a+b)(a+c)(b+d)(c+d)}$
- a bis d sind Inhalte der Tabelle, Summen sind Randhäufigkeiten
- Kontingenzkoeffizient $K := \sqrt{\frac{QK}{QK+n}}$ - normiertes Maß
 - X und Y unabhängig: K = 0

- $-0 <= K <= K_{max} = \sqrt{\frac{m-1}{m}} < 1$
- m = Minimum von Zeilenzahl und Spaltenzahl
- Korrigierter K.-koeffizient $K^* := \frac{K}{K_{max}} =$ $\sqrt{\frac{QK*m}{(QK+n)(m-1)}}$
- $\bullet \ \dot{-} \ 0 <= K^* <= 1$
 - Vergleichbar mit anderen K-Tabellen

Regression

- Lineare Regression y(x) = a + bx
 - $-b = \frac{c_{XY}}{s_X^2}$ und $a = \overline{y} b\overline{x}$
 - Interpret: b*x erhöht und Achsenabschnitt(meist nicht anwendbar)
 - Regressionswerte = $\hat{y}_i = y(x_i)$
- Residuen (Fehler) $e_i = y_i \hat{y}_i$
- Andere Regressionen:
 - $-\hat{y} = a + bx + cx^2$ Quadr. Regr.
 - $-\hat{y} = a + x^b$ Potenzfunkt.
- $-\hat{y} = ab^x$ Expo-funkt.
- Meth. kleinste Quadrate
- Varianzzerlegung $SSQ_{Total} = SSQ_{Reg} +$
 - $-SSQ_{Reg} = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2$ (Abweichung von Vorhersage und Mittelwert)
 - $-SSQ_{Total} = \sum_{i=1}^{n} (y_i \overline{y})^2$ (Gesamtab-
 - $-SSQ_{Resi} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ (Abweichung von Vorhersage und y)
- Bestimmtheitsmaß $R^2 = \frac{\dot{SSQ}_{Reg}}{\dot{SSQ}_{Total}} =$
- $-r^2$ gilt nicht für Quadr. Reg. !!!
- Schlecht $0 \le R^2 \le 1$ Gut
- $-R^2 >= 0.8$ akzeptabel
- Multiple Regr.
 - Y wird durch mehrere Variablen erklärt
- $\hat{y} = a + b_1 x_3 + b_2 x_3 + b_3 x_3$
- - Hinzunahme von Params, erhöht den R^2 automatisch, auch wenn es nicht

$$\begin{array}{c|c} n_{ij} & (n_{ij} - E_{ij})^2 \\ \hline n_{ij} - E_{ij} & E_{ij} \end{array}$$

besser wird

- -n = AnzahlderMesswerte
- -k = AnzahlderReg.Params
- $-R_a^2$ kann auch kleiner/negativ werden -> Variable nicht aufnehmen
- Anmerkungen:
- Residualplot: Gutes Modell, wenn kein Mustererkennbar!
- Optimum finden: 1.Ableitung = 0 setzen
- "Faktor Größe" hat nichts mit Einfluss zutun, nur bei standardisierten Daten

Wahrsch. Rech. 3

- Zufallsvariable $X: \Omega > Rmit X(\omega) = x$
- Funktion, die jedem Möglichen Ergenis eine reelle Zahl zuordnet
- Wahrscheinlichkeits-/ Dichtefunktion f: P(X=x)
- Verteiteilungsfunktion $F: P(X \le t)$
- -F ist Stammfunktion für f aber muss mit + C angepasst werden
- Diskrete
 - f: R > [0, 1] mit f(x) = P(X = x)
 - -P(X=X) Wahrscheinlichkeit mit der X die Realisation x annimmt
- $F(t) = P(X \le t) = \sum_{x_i \le t} P(X = t)$ x_i
- Stetige
 - Zufallsvariable ist stetig, wenn

- Wahrscheinlichkeit durch Dichtefunk- 4 Schl. Statistik tion abbilden lässt
- Dichtefunktion, wenn $\int_{-\infty}^{+\infty} f(x)dx = 1$ und f(x) >= 0
- $-F(t) = P(X \le t) = \int_{-\infty}^{t} f(x)dx$
- Erwartungswert
- Diskret: $E(X) = \sum_{\substack{x_{max} \\ x_{min}}}^{n} x_i * f(x_i)$ Stetig: $E(X) = \int_{x_{min}}^{x_{max}} x * f(x) dx$
- Varianz $(Var(X) = \sigma^2)$ & SDA $(\sigma =$
 - $\sqrt{\sigma^2}$
 - Es gilt: $\sigma^2 = E((X E(X))^2) =$ $E(X^2) - (E(X))^2$
 - Diskret: $Var(X) = \sum_{i=1}^{n} (x_i x_i)$ E(X))² * $f(x_i)$
 - Stetig: $Var(X) = \int_{x_{min}}^{x_{max}} (x E(X))^2 *$ f(x)dx
- Rechenregeln
 - -E(a + b * X) = a + b * E(X)
 - $-Var(a+b*X) = b^2*Var(X)$
 - -E(X+Y) = E(X) + E(Y)
- Stichprobe:
 - Stichprobenmittel von unabhängigen Variablen $\overline{X} := \frac{1}{n}(X_1 + \ldots + X_n)$
 - $-E(\overline{X}=\mu)$ und $\sigma_{\overline{X}}=\frac{\sigma}{\sqrt{n}}$
- Normalverteilung
 - SD-normalverteilung mit $\mu = 0$ und
- z-Transformation $z = \frac{x-\mu}{2}$
- Zentr.Grenz.Satz: Für hinreichend großes n jeder Vertilung gilt $\overline{X}_n \tilde{N}(\mu, \frac{\sigma^2}{n})$ "nor- \bullet μ von GG. bekannt malverteilt" $\bullet - t_n = \frac{1}{\sigma_o^2} \sum_{i=1}^n (x_i - \mu)^2$

Anmerkungen

• α meist 5% oder 1%

Mittelwerttest

- Grundgesamtheit ist norm. verteilt oder
- Stichprobenmittel \overline{x} und ggf. probenvarianz s^2 bekannt
- $\bullet~\sigma$ der GG bekannt
- $-z = \sqrt{n} \frac{\overline{x} \mu_0}{\sigma}$ - > Tabelle Norm. Verteilung
- $\bullet \ \sigma$ der GG unbekannt
- $-t=\sqrt{n-1}\frac{\overline{x}-\mu_0}{\overline{x}}$ --> t Tabelle!
- Zweiseitig: $|z| \le z[1-\alpha/2] H_0$ behalten; $|z| > z[1 - \alpha/2] H_0$ verwerfen
- Ober/Rechts: $z \le z[1-\alpha] H_0$ behalten: $z > z[1-\alpha] H_0$ verwerfen
- Unten/Links: $z >= z[1-\alpha] H_0$ behalten; $z < z[1-\alpha] H_0$ verwerfen
- Gleiches für t-1

Varianztest

- Grundgesamtheit ist normalverteilt, α und σ_0 bekannt

- $-H_0: \sigma^2 = \sigma_0^2$ gegen $H_1: \sigma^2 \neq \sigma_0^2$ Krit: $t_n < \chi_n^2[\alpha/2] \text{ und } t_n > \chi_n^2[1 - \alpha/2] - H_0: \sigma^2 >= \sigma_0^2 \text{ gegen } H_1: \sigma^2 < \sigma_0^2$
- Krit: $t_n < \chi_n^2[\alpha]$ $-H_0: \sigma^2 <= \sigma_0^2 \text{ gegen } H_1: \sigma^2 > \sigma_0^2$
- Krit: $t_n > \chi_n^2 [1 \alpha]$
- μ von GG. unbekannt
 - $-t_n = n * \frac{s_n^2}{2}$
 - $-H_0: \sigma^2 = \sigma_0^2$ gegen $H_1: \sigma^2 \neq \sigma_0^2$ Krit:
- $t_n < \chi_{n-1}^2[\alpha/2] \text{ und } t_n > \chi_{n-1}^2[1-\alpha/2] H_0: \sigma^2 >= \sigma_0^2 \text{ gegen } H_1: \sigma^2 < \sigma_0^2$
- Krit: $t_n < \chi^2_{n-1}[\alpha]$ $-H_0: \sigma^2 <= \sigma^2_0 \text{ gegen } H_1: \sigma^2 > \sigma^2_0$ Krit: $t_n > \chi_{n-1}^2 [1 - \alpha]$

Differenztest

 χ^2 Test

- $E_{ij}immer >= 5$
- $H_0 = X$, Y sind unabhängig; $H_1 = X$, Y sind abhängig
- Prüfgröße χ^2 (wie oben, mit erw. Kont.-Tabelle)
- Krit.Wert: $c = \chi^2_{(k-1)(l-1)}[1-\alpha]$
- $\chi^2 <= c \text{ H0 behalten}$
- $\chi^2 > c \text{ H0 verwerfen}$

Taschenrechner

Hallo