Tutorial 3

- Q1. Using the 18 electron rule, determine whether the following complexes are electron precise or not.
- 1)
- $\frac{\mathrm{Cr(CO)}_{6}}{(\eta^{5}\text{-}\mathrm{C}_{5}\mathrm{H}_{5})\mathrm{Fe(CO)}_{2}\mathrm{Cl}}$ 2)
- $[Mn(CO)_6]^{\dagger}$ 3)
- $(CO)_5Mn-Mn(CO)_5$ 4)
- Q2. Using the bonding schemes for metal carbonyl and metal phosphine complexes explain the difference observed in v(CO) by FTIR spectroscopy for the trans-CO ligand of the following complexes.

$$v(CO)_{trans} = 2056 \text{ cm}^{-1}$$

$$v(CO)_{trans} = 2111 \text{ cm}^{-1}$$

- Q3. The carbon-carbon bond distance in ethylene is 133.7 pm compared to 137.5 pm in $[PtCl_3(C_2H_4)]^{-1}$ and 143 pm in $[Pt(PPh_3)_2C_2H_4]$. Explain this observation.
- Q4. Assuming that the following complexes are electron precise (the 18 electron rule is obeyed), determine the identity of the transition metal M.
 - a) $(\eta^4 C_4H_6)M(CO)_3$ (Hint: $\eta^4 C_4H_6$ is 1,4-butadiene)
 - b) $[(\eta^5 C_5H_5)M(CO)_2]_2$ (Hint: Assume M=M double bond)
- Q5. Rationalize the trend in each of the following sets of IR-active CO stretching frequencies (cm⁻¹):

(a)

Ni(CO)₄ 2040

 $[Co(CO)_4]^-1890$

[Fe(CO)₄]²⁻ 1730

[Mn(CO)4]³⁻ 1670

(b)

 $[(\eta^6-C_6H_6)Cr(CO)_3]$ 1980, 1908

[CpMn(CO)₃] 2027, 1942

Q6. Consider the complex ions $[Fe(NH_3)_6]^{3+}$, $[Ru(NH_3)_6]^{3+}$, $[Co(NH_3)_6]^{2+}$ and $[Ir(NH_3)_6]^{2+}$. Which **ONE** of these complexes will definitely **NOT** show a **Jahn-Teller distortion**? Explain why.

[HINT: the magnetic moments of the Fe and Co complexes are *considerably* higher than those of their heavier congeners, Ru and Ir, respectively.]

Q7. Explain why $[\mathbf{FeF_6}]^{3-}$ is colourless while $[\mathbf{CoF_6}]^{3-}$ is coloured.