03 Feb 2025

Pensacola

Advanced Molecular Detection Southeast Region Bioinformatics

This resource was made possible through funding provided under the Epidemiology and Laboratory Capacity for Prevention and Control of Emerging Infectious Diseases (ELC) Cooperative Agreement (CK24-0002), Project D: Advanced Molecular Detection to the Florida Department of Health. The conclusions, findings, and opinions expressed by authors do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, or the Centers for Disease Control and Prevention.

Updates

2025

February 17
Talbot

March 03
Sarek_mic

2025

Overview

Purpose

 Analyze Candida auris long-read sequences data for Quality Reports, Genome Assembly, Species Identification and Abundance, SNP analysis, Antifungal Resistance reports, and Phylogenetic analysis.

Usage

o To support public health and researchers by providing detailed reports and analyses of the data which enables insights into drug resistance monitoring, genomic research, outbreak surveillance and epidemiological studies.

Dependencies

- Nextflow
- Singularity/Apptainer
- o SLURM
- o Python3
- LongQC
- PacBio SMRTLINK
- Kraken2/Bracken

Workflow

Candida auris longsequencing dataset

Run the pensacola.sh on **HPG**

Analysis of the dataset

QC Reports

Genome **Assembly**

Species Ident. & Abund.

SNP Analysis

Antifungal Resist. Report

Phylogenetic Analysis

Application

Objective

Use Candida auris dataset and analyze using **Pensacola** pipeline

cd /blue/bphl-<state>/<user>/repos/bphl-molecular/
git clone https://github.com/BPHL-Molecular/Pensacola
mkdir analysis/
cd analysis/
cp /blue/bphl-<state>/<user>/repos/bphl-molecular/ Pensacola/
copy .bam and .bam.pbi files to pbbams directory


```
params.yaml

Notel: The parameters are the absolute path. Do not include the "/" at the end of the paths.

input : "/blue/bphl-florida/n.yengalareddy/repos/bphl-molecular/analysis/Pensacola0115/pbbams"
output : "/blue/bphl-florida/n.yengalareddy/repos/bphl-molecular/analysis/Pensacola0115/output"
reference : "/blue/bphl-florida/n.yengalareddy/repos/bphl-molecular/analysis/Pensacola0115/reference"
snpeffconfig : "/blue/bphl-florida/n.yengalareddy/repos/bphl-molecular/analysis/Pensacola0115/configs"

#Note2: For HiperGator users, the following two parameters do not need to be modified. For non-HiperGator users, replace the description of the paths.

db : "/blue/bphl-florida/share/kraken_bracken_database/PlusPF"
qc : "/apps/longqc/1.2.0c/LongQC"
```


1) wget https://downloads.pacbcloud.com/public/software/installers/smrtlink-release-sequel2_13.1.0.221970.zip

Note: Double check that smartlink tools works by entering

"bam2fastq" into the command line

```
galareddy@login8 Pensacola0115]$ bam2fastq
 am2fastq - Converts multiple BAM and/or DataSet files into into gzipped FASTQ file(s).
 bam2fastq [options] <input>
                          STR Input file(s).
                          STR Prefix of output filenames
                               Split output into multiple FASTQ files, by barcode pairs.
  --split-barcodes
                          STR Prefix for sequence IDs in headers
  -p,--seqid-prefix
  --with-biosample-prefix
                               Add BioSample to prefix for sequence IDs in headers
                               Show this help and exit.
                               Show application version and exit.
                          INT Number of threads to use, 0 means autodetection. [0]
  -j,--num-threads
Copyright (C) 2004-2023 Pacific Biosciences of California, Inc.
This program comes with ABSOLUTELY NO WARRANTY; it is intended for
 esearch Use Only and not for use in diagnostic procedures.
[n.yengalareddy@login8 Pensacola0115]$
```


activate conda environment containing Nextflow, Python3
sbatch pensacola.sh

/blue/bphl-florida/n.yengalareddy/repos/bphl-molecular/analysis/Pensacola0115/output-20250115160403/bc2001bc2001/

Name

| Image: A sample | Imag

/blue/bphl-florida/n.yengalareddy/repos/bphl-molecula	r/analysis/Pensacola0115/output-20250115160403/
Name	
<u>=</u>	
assemble assemble	
bc2001bc2001	
bc2002bc2002	
bc2003bc2003	
species_abundance	
variants	
▼ Drug_resistance_report.txt	
pensacola.55938781.out	
pensacola.err	

#rname	startpos	endpos	numreads	covbases	coverage	meandepth	meanbaseq	meanmapq
PEKT02000001_C_auris_B8441	1	1083522	9352	1083188	99.9692	69.597	86.1	60
PEKT02000002_C_auris_B8441	1	1280737	13641	1279564	99.9084	85.9919	85.8	53.4
PEKT02000003_C_auris_B8441	1	1047474	11412	1033718	98.6867	86.1431	86	60
PEKT02000004_C_auris_B8441	1	887381	9538	886816	99.9363	86.9957	85.9	60
PEKT02000005_C_auris_B8441	1	639401	7825	638481	99.8561	94.9978	86.1	59.8
PEKT02000006_C_auris_B8441	1	776876	10316	776387	99.9371	107.672	86.1	60
PEKT02000007_C_auris_B8441	1	3195935	28493	3191857	99.8724	71.366	86.1	59.9
PEKT02000008_C_auris_B8441	1	898131	10741	894257	99.5687	95.8412	85.7	59.6
PEKT02000009_C_auris_B8441	1	1007143	12759	998219	99.1139	102.062	86	59.7
PEKT02000010_C_auris_B8441	1	1402902	15384	1399198	99.736	88.2547	86	60
PEKT02000012_C_auris_B8441	1	65067	978	63688	97.8806	110.579	85.9	59.8
PEKT02000013_C_auris_B8441	1	38216	931	38159	99.8508	166.528	85.9	59.8
PEKT02000014_C_auris_B8441	1	11792	159	11765	99.771	73.7636	85.3	60
PEKT02000011_C_auris_B8441	1	20765	0	0	0	0	0	0
PEKT02000015_C_auris_B8441	1	10617	0	0	0	0	0	0

name

/blue/bphl-florida/n.yengalareddy/repos/bphl-molecular/analysis/Pensacola0115/output-20250115160403/

Conclusion

Fundamentals of Pensacola

Installation and setup of Pensacola in HPG

Successfully executed job query for Pensacola

Generated output files

Advanced Molecular Detection Southeast Region Bioinformatics

Questions?

<u>bphl-sebioinformatics@flhealth.gov</u>

Molly Mitchell, PhD
Bioinformatics Supervisor
Molly.Mitchell@flhealth.gov

Nikhil Reddy, MS
Bioinformatician
Nikhil.Yengala@flhealth.gov

Sam Bernhoft, MPH
Bioinformatician
Samantha.bernhoft@flhealth.gov