# TEMA 2: Representación en frecuencia



### Índice

#### Contenido:

- 3. Propiedad de escalado en tiempo
- 4. Propiedad de linealidad
- 5. Propiedad de desplazamiento en tiempo
- 6. Propiedad de desplazamiento en frecuencia
- 7. Relación de Parseval Cálculo de la energía
- 8. Propiedad de convolución

3

Propiedad de escalado en tiempo

### Propiedad de escalado en tiempo

• Sea x(t) una señal cuya Transformada de Fourier (TF) es  $X(\omega)$ . La propiedad de escalado en tiempo de la TF dice lo siguiente:

$$x(at) \xrightarrow{TF\{\cdot\}} \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$$

- Cuando a > 1  $1/a < 1 \rightarrow$  la señal se comprime en tiempo y se expande en frecuencia
- Cuando a < 1  $1/a > 1 \rightarrow$  la señal se expande en tiempo y se comprime en frecuencia

### Concepto de ancho de banda

- El ancho de banda de una señal (W) es el rango de frecuencias en la que  $X(\omega)$  concentra mayor energía.
- Técnicamente, el ancho de banda de  $X(\omega)$  es infinito pero en la práctica podemos asumir que  $X(\omega) \approx 0$  cuando  $\omega > W$ . En este caso, W es el ancho de banda.
- Observar que W es un límite de las **frecuencias positivas**. Debido a la simetría en el dominio de la frecuencia, existe un límite simétrico en las frecuencias negativas.

# Ancho de banda de un pulso rectangular



- Técnicamente, el ancho de banda es infinito pero podemos aproximarlo por la frecuencia  $W=2\pi/T$  rad/s que es la primera frecuencia en la que  $X(\omega)=0$
- Es una aproximación razonable ya que el lóbulo principal del pulso sinc en frecuencia ocupa el intervalo  $\left[-\frac{2\pi}{T} \ \frac{2\pi}{T}\right]$



#### Ancho de banda de una señal sinc



- W define de forma clara y precisa el ancho de banda del pulso rectangular en frecuencia.
- El primer paso por cero de x(t) tiene lugar en  $\pi/W$ , i.e. el valor  $\pi/W$  segundos da una idea de la anchura en tiempo (duración) de x(t).

### Comunicaciones



4

Propiedad de linealidad

### Propiedad de linealidad

• Sean  $x_1(t)$  y  $x_2(t)$  dos señales cuya Transformada de Fourier (TF) es  $X_1(\omega)$  y  $X_2(\omega)$ , respectivamente:

$$x_1(t) \stackrel{TF\{\cdot\}}{\longleftrightarrow} X_1(\omega)$$

$$x_2(t) \stackrel{TF\{\cdot\}}{\longleftrightarrow} X_2(\omega)$$

• La propiedad de linealidad de la TF dice lo siguiente:

$$a_1x_1(t) + a_2x_2(t) \stackrel{TF\{\cdot\}}{\longleftrightarrow} a_1X_1(\omega) + a_2X_2(\omega)$$

donde  $a_1$  y  $a_2$  son dos constantes cualesquiera.

#### Comunicaciones

#### Representación en el dominio del tiempo



## Comunicaciones (cont.)



5

Propiedad de desplazamiento en tiempo

# Propiedad de desplazamiento en tiempo

$$x(t) \stackrel{TF\{\cdot\}}{\longleftrightarrow} X(\omega)$$

$$x(t-t_0) \stackrel{TF\{\cdot\}}{\longleftrightarrow} X(\omega)e^{-j\omega t_0}$$

• Un desplazamiento en tiempo cambia la fase de  $X(\omega)$  pero no su módulo

$$X(\omega)e^{-j\omega t_0} = |X(\omega)|e^{j\angle X(\omega)}e^{-j\omega t_0} = |X(\omega)|e^{j(\angle X(\omega)-\omega t_0)}$$

### Impulso unidad desplazado

Impulso unidad desplazado  $\delta(t-t_0)$ 

$$\delta(t) \overset{TF\{\cdot\}}{\longleftrightarrow} 1 \qquad \text{TF básica}$$
 
$$x(t-t_0) \overset{TF\{\cdot\}}{\longleftrightarrow} X(\omega)e^{-j\omega t_0} \qquad \text{Propiedad}$$

$$\delta(t - t_0) \stackrel{TF\{\cdot\}}{\longleftrightarrow} e^{-j\omega t_0}$$

#### Tren de deltas

Tren de deltas

$$\sum_{k=-\infty}^{\infty} \delta(t - kT)$$

$$\delta(t) \stackrel{TF\{\cdot\}}{\longleftarrow} 1$$
 TF básica

$$x(t-t_0) \xrightarrow{TF\{\cdot\}} X(\omega)e^{-j\omega t_0} \quad \text{Propiedad}$$
 
$$a_1x_1(t) + a_2x_2(t) \xrightarrow{TF\{\cdot\}} a_1X_1(\omega) + a_2X_2(\omega)$$

$$\sum_{k=-\infty}^{\infty} \delta(t - kT) \qquad TF\{\cdot\} \qquad \sum_{k=-\infty}^{\infty} e^{-j\omega kT}$$

#### **Pulsos**



#### Comunicaciones

#### Representación en el dominio del tiempo

$$x_1(t)$$



Representación en el dominio de la frecuencia (módulo)



## Comunicaciones (cont.)

#### Representación en el dominio del tiempo



Representación en el dominio de la frecuencia (módulo)



## Comunicaciones (cont.)

#### Multiplexación por división en tiempo



GSM (Global System for Mobile Communication, en el que se emplea junto con saltos en frecuencia o frequency hopping).

6

Propiedad de desplazamiento en frecuencia

# Propiedad de desplazamiento en frecuencia

$$x(t) \stackrel{TF\{\cdot\}}{\longleftrightarrow} X(\omega)$$

$$x(t)e^{j\omega_0 t} \stackrel{TF\{\cdot\}}{\longleftrightarrow} X(\omega - \omega_0)$$

$$x(t)e^{-j\omega_0 t} \stackrel{TF\{\cdot\}}{\longleftrightarrow} X(\omega + \omega_0)$$

- Multiplicar por una exponencial compleja de frecuencia  $\omega_0$  equivale a desplazar en frecuencia  $X(\omega)$ .
- Es la propiedad dual a la de desplazamiento en tiempo.

#### Coseno

$$x(t) = \cos(\omega_0 t)$$

$$\cos(\omega_0 t) = \frac{1}{2} \left( e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$
 Relación de Euler

$$1 \stackrel{TF\{\cdot\}}{\longleftrightarrow} 2\pi\delta(\omega)$$
 Transformada básica

$$e^{j\omega_0 t} \stackrel{TF\{\cdot\}}{\longleftrightarrow} 2\pi\delta(\omega-\omega_0)$$
 Desplazamiento en frecuencia

$$e^{-j\omega_0 t} \stackrel{TF\{\cdot\}}{\longleftrightarrow} 2\pi\delta(\omega+\omega_0)$$

$$e^{j\omega_0t} + e^{-j\omega_0t} \xrightarrow{TF\{\cdot\}} 2\pi\delta(\omega-\omega_0) + 2\pi\delta(\omega+\omega_0) \quad \text{Linealidad}$$

$$\cos(\omega_0 t) = \frac{1}{2} e^{j\omega_0 t} + \frac{1}{2} e^{-j\omega_0 t} \iff \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

#### Coseno (cont.)

$$\cos(\omega_0 t) = \frac{1}{2} e^{j\omega_0 t} + \frac{1}{2} e^{-j\omega_0 t} \iff \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$



Es importante observar que la fase es cero.

#### Comunicaciones

#### Representación en el dominio del tiempo



### Comunicaciones (cont.)

#### Representación en el dominio de la frecuencia



# Comunicaciones (cont.)

#### Multiplexación por división en frecuencia

Frequency Division Multiple Access



7

Relación de Parseval

#### Relación de Parseval

• La energía de una señal real x(t) se puede calcular de la siguiente manera

$$E_x = \int_{-\infty}^{\infty} x^2(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

•  $|X(\omega)|^2$  se conoce con el nombre de densidad espectral de energía.

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

$$E_x = \int_{-\infty}^{\infty} x^2(t) dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$
 julios/Hz

# Energía de un pulso rectangular



$$E_x = \int_{-\infty}^{\infty} x^2(t)dt = A^2T$$

### Energía de una sinc

Calcular la energía de un pulso sinc

$$x(t) = \frac{\sin Wt}{\pi t} \qquad \stackrel{TF\{\cdot\}}{\longleftarrow}$$

$$-W$$

$$E_{x} = \int_{-\infty}^{\infty} x^{2}(t)dt = \int_{-\infty}^{\infty} \left(\frac{\sin Wt}{\pi t}\right)^{2} dt$$

$$E_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^{2} d\omega = \frac{1}{2\pi} \int_{-W}^{W} 1^{2} d\omega = \frac{2W}{2\pi} = \frac{W}{\pi}$$

8

Propiedad de convolución

#### Propiedades de convolución

Sean x(t) y h(t) dos señales cuya Transformada de Fourier (TF) es  $X(\omega)$  y  $H(\omega)$ , respectivamente:

$$TF\{\cdot\}$$

$$x(t) * h(t) \longleftrightarrow X(\omega) . H(\omega)$$

#### Convolución de dos sinc

$$y(t) = x(t) * h(t) = \left(\frac{\sin Wt}{\pi t}\right) * \left(\frac{\sin(Wt/2)}{\pi t}\right)$$
  $X(\omega)$ 

$$x(t) = \frac{\sin Wt}{\pi t} \qquad \underbrace{TF\{\cdot\}}$$

$$h(t) = \frac{\sin(Wt/2)}{\pi t} \xrightarrow{TF\{\cdot\}}$$

$$y(t) = x(t) * h(t) \longleftrightarrow$$



$$-\frac{W}{2} \qquad \frac{W}{2}$$

# TEMA 2: Representación en frecuencia

