hmeq data analysis using logistic regression

Sungho Moon

8/1/2021

Data description

The data set HMEQ reports characteristics and delinquency information for 5,960 home equity loans. A home equity loan is a loan where the obligor uses the equity of his or her home as the underlying collateral. The data set has the following characteristics:

BAD: 1 = applicant defaulted on loan or seriously delinquent; 0 = applicant paid loan LOAN: Amount of the loan request

MORTDUE: Amount due on existing mortgage

VALUE: Value of current property

REASON: DebtCon = debt consolidation; HomeImp = home improvement

JOB: Occupational categories

YOJ: Years at present job

DEROG: Number of major derogatory reports DELINQ: Number of delinquent credit lines CLAGE: Age of oldest credit line in months NINQ: Number of recent credit inquiries

CLNO: Number of credit lines
DEBTINC: Debt-to-income ratio

Loading libraries

library(dplyr)

```
##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

```
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
       first, last
##
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
##
       legend
library(car)
## Loading required package: carData
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
library(lmtest)
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
```

library(PerformanceAnalytics)

```
library(ROCR)
library(ggplot2)
library(corrplot)
## corrplot 0.84 loaded
library(dgof)
##
## Attaching package: 'dgof'
## The following object is masked from 'package:stats':
##
##
       ks.test
library(usdm)
## Loading required package: sp
## Loading required package: raster
##
## Attaching package: 'raster'
## The following objects are masked from 'package:MASS':
##
##
       area, select
## The following object is masked from 'package:dplyr':
##
##
       select
## Attaching package: 'usdm'
## The following object is masked from 'package:car':
##
##
       vif
```

Loading data

```
hmeq.ori <- read.csv("hmeq.csv"); head(hmeq.ori)</pre>
```

```
CLAGE NINQ CLNO
    BAD LOAN MORTDUE VALUE REASON
                                    JOB YOJ DEROG DELINQ
## 1 1 1100 25860 39025 HomeImp Other 10.5
                                               0
                                                      0 94.36667
                                                                    1
                                                                        9
## 2 1 1300 70053 68400 HomeImp Other 7.0
                                                0
                                                      2 121.83333
                                                                        14
## 3 1 1500 13500 16700 HomeImp Other 4.0
                                               0
                                                      0 149.46667
                                                                       10
                                                                    1
```

```
## 4
       1 1500
                   NA
                          NA
                                               NA
                                                     NA
                                                            NA
                                                                           NA
                                                                                 NA
                97800 112000 HomeImp Office 3.0
## 5
       0 1700
                                                      0
                                                             0 93.33333
                                                                            0
                                                                                 14
                30548 40320 HomeImp Other 9.0
## 6
       1 1700
                                                             0 101.46600
                                                                                 8
##
      DEBTINC
## 1
## 2
           NA
## 3
           NA
## 4
           NA
## 5
           NA
## 6 37.11361
```

BAD = 1 means delinquency (default) of one's loan.

Data Cleaning

Omit rows including NA and empty entries

```
hmeq <- na.omit(hmeq.ori)
clean <- c()
for(i in 1:ncol(hmeq)){
   if("" %in% unique(hmeq[,i])){
      clean[i] <- i
   }
   else{
      clean[i] <- 0
   }
}
clean <- unique(clean[clean>0])
for(i in 1:length(clean)){
      hmeq <- subset(hmeq,subset = hmeq[,clean[i]]!="")
}</pre>
```

Set categorical variables as factors

```
for(i in c(1,5,6)){
  hmeq[,i] <- as.factor(hmeq[,i])
}</pre>
```

Exploratory Data Analysis

```
length(c(2:4,7:13))

## [1] 10

par(mfrow=c(2,5))
for(i in c(2:4,7:13)){
   print(colnames(hmeq)[i])
```

```
print(summary(hmeq[,i]))
 print(shapiro.test(hmeq[,i])[2])
 hist(hmeq[,i],main=colnames(hmeq)[i])
## [1] "LOAN"
    Min. 1st Qu. Median
                         Mean 3rd Qu.
     1700 12000
                  17000 19154 23825
##
                                         89900
## $p.value
## [1] 6.474179e-50
## [1] "MORTDUE"
     Min. 1st Qu. Median
                         Mean 3rd Qu.
##
     5076
          49351 67278
                          76250 92987 399412
## $p.value
## [1] 2.340408e-47
## [1] "VALUE"
    Min. 1st Qu. Median Mean 3rd Qu.
                  94454 107501 122339 512650
   21144 71235
## $p.value
## [1] 8.49089e-50
## [1] "YOJ"
   Min. 1st Qu. Median Mean 3rd Qu.
##
                                          Max.
     0.00
            3.00
                  7.00
                         9.11 13.00
## $p.value
## [1] 8.628721e-40
## [1] "DEROG"
   Min. 1st Qu. Median Mean 3rd Qu.
## 0.0000 0.0000 0.0000 0.1468 0.0000 10.0000
## $p.value
## [1] 1.186515e-78
## [1] "DELINQ"
## Min. 1st Qu. Median Mean 3rd Qu.
## 0.0000 0.0000 0.0000 0.2788 0.0000 10.0000
## $p.value
## [1] 7.784152e-75
## [1] "CLAGE"
##
       Min.
            1st Qu.
                      Median
                                  Mean 3rd Qu.
##
     0.4867 118.6879 176.7420 180.9937 230.4022 1168.2336
## $p.value
## [1] 1.613498e-38
## [1] "NINQ"
##
   Min. 1st Qu. Median Mean 3rd Qu.
## 0.000 0.000 1.000 1.037 2.000 13.000
## $p.value
## [1] 2.679141e-62
```

```
## [1] "CLNO"
##
                                Mean 3rd Qu.
      Min. 1st Qu.
                     Median
                                                 Max.
##
             16.00
                      21.00
                                       27.00
                                                64.00
## $p.value
   [1] 4.939999e-28
##
   [1] "DEBTINC"
##
       Min.
              1st Qu.
                        Median
                                    Mean
                                          3rd Qu.
##
     0.8381
             29.3626
                       35.1295
                                34.1354
                                          39.0876 144.1890
## $p.value
## [1] 1.181944e-46
```


par(mfrow=c(1,1))

It seems like the scales of continuous variables are quite different. We meed scaling. All the Shapiro-Wilk tests of normality for each continuous variable have very small p-values. Thus we reject null hypothesis. Data are not distributed normally.

Dealing with outliers

```
for(i in c(2:4,7:13)){
  outliers<-boxplot(hmeq[,i],plot=FALSE)$out
  hmeq <- hmeq[-which(hmeq[,i] %in% outliers),]
}</pre>
```

Delete columns with 98% or more duplicate values

```
hmeq <- hmeq[,-c(8,9)]
```

Data Scaling

Min-Max Normalization for continuous variables

```
normalize <- function(X){
   for(i in 1:ncol(X)){
      X[,i] <- (X[,i]-min(X[,i]))/(max(X[,i])-min(X[,i]))
   }
   return(X)
}
hmeq.n <- normalize(hmeq[,c(2:4,7:11)])
hmeq.n <- cbind(hmeq.n,hmeq[,c(1,5:6)])</pre>
```

```
head(hmeq)
```

Before scaling

```
BAD LOAN MORTDUE VALUE REASON
##
                                       JOB YOJ
                                                   CLAGE NINQ CLNO DEBTINC
## 6
       1 1700
                30548 40320 HomeImp Other
                                             9 101.46600
                                                          1
                                                                8 37.11361
                                     Other
                                           11 88.76603
## 8
       1 1800
                28502 43034 HomeImp
                                                                8 36.88489
## 20
       0 2300 102370 120953 HomeImp Office
                                             2
                                                90.99253
                                                            0
                                                               13 31.58850
## 26
       1 2400
                34863 47471 HomeImp
                                           12 70.49108
                                                               21 38.26360
                                       Mgr
                                                           1
## 27
       0 2400
                98449 117195 HomeImp Office
                                            4 93.81177
                                                            0 13 29.68183
       0 2900 103949 112505 HomeImp Office
## 35
                                            1 96.10233
                                                               13 30.05114
```

```
head(hmeq.n)
```

After scaling

```
##
             LOAN
                    MORTDUE
                                VALUE
                                              YOJ
                                                      CLAGE NINQ CLNO
     0.00000000 0.1732848 0.1152355 0.30000000 0.2267271 0.2 0.150 0.6226247
## 8 0.002538071 0.1593660 0.1315449 0.36666667 0.1910495 0.0 0.150 0.6160672
## 20 0.015228426 0.6618865 0.5997885 0.06666667 0.1973043 0.0 0.275 0.4642183
## 26 0.017766497 0.2026395 0.1582085 0.40000000 0.1397102 0.2 0.475 0.6555951
## 27 0.017766497 0.6352121 0.5772053 0.133333333 0.2052243   0.0 0.275 0.4095534
##
  35 0.030456853 0.6726283 0.5490214 0.03333333 0.2116591 0.0 0.275 0.4201416
##
      BAD REASON
                     J<sub>0</sub>B
## 6
        1 HomeImp Other
## 8
        1 HomeImp Other
## 20
       O HomeImp Office
## 26
        1 HomeImp
## 27
        O HomeImp Office
       O HomeImp Office
## 35
```

Checking Multicollinearity

Checking correlation plot

```
cont.var <- hmeq.n[,-c(9:11)]
M <- cor(cont.var)
corrplot(M, method="number")</pre>
```


Checking VIF

```
vif(cont.var)
```

```
##
     Variables
                     VIF
          LOAN 1.211352
## 1
## 2
       MORTDUE 3.807156
## 3
         VALUE 4.020883
## 4
           YOJ 1.082964
## 5
         CLAGE 1.162206
## 6
          NINQ 1.079784
## 7
          CLNO 1.179997
## 8
       DEBTINC 1.146369
```

MORTDUE and VALUE have quite high VIF compared to other variables. They may be highly correlated. Adding an interaction term may help the model fit better.

Model fitting

Divide data into training / test dataset(7:3)

```
set.seed(2416)
sub <- sample(nrow(hmeq.n),floor(nrow(hmeq.n)*0.7))
train <- hmeq.n[sub,]
test <- hmeq.n[-sub,]</pre>
```

May not be necessary ATM but will use the train/test data later

Fit a Model

```
fit.train <- glm(BAD~(.)+MORTDUE:VALUE,data=train,family=binomial)
summary(fit.train)</pre>
```

Baseline category for dummy variables: JOB=Mgr, REASON=DebtCon

```
##
## Call:
## glm(formula = BAD ~ (.) + MORTDUE: VALUE, family = binomial, data = train)
##
## Deviance Residuals:
      Min
                  Median
                               3Q
               1Q
                                      Max
## -1.2226 -0.3031 -0.1749 -0.0973
                                   3.8054
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
               0.7520 0.9140 0.823 0.410648
## (Intercept)
                -3.6874
                          1.0472 -3.521 0.000429 ***
## LOAN
## MORTDUE
               -6.6555 2.7265 -2.441 0.014645 *
## VALUE
               -8.0901
                         2.5701 -3.148 0.001645 **
               -1.2908
                         0.7581 -1.703 0.088635 .
## YOJ
## CLAGE
               -4.2000 0.8851 -4.745 2.08e-06 ***
               ## NINQ
## CLNO
               -0.8885 0.7739 -1.148 0.250958
                4.0817 0.9442 4.323 1.54e-05 ***
## DEBTINC
                       0.3319 -1.335 0.181955
## REASONHomeImp -0.4430
## JOBOffice
               -0.4544 0.5962 -0.762 0.445995
## JOBOther
               0.1909
                          0.4516 0.423 0.672555
## JOBProfExe
                0.4694
                          0.5028
                                  0.933 0.350589
## JOBSales
               1.8099
                         0.7368
                                 2.457 0.014025 *
             -0.2632 1.2653 -0.208 0.835199
## JOBSelf
## MORTDUE: VALUE 14.7787
                          2.6797 5.515 3.48e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
## Null deviance: 566.12 on 1503 degrees of freedom
## Residual deviance: 443.36 on 1488 degrees of freedom
## AIC: 475.36
##
## Number of Fisher Scoring iterations: 7
```

There are some insignificant variables, and the fit of the model may not the best. Thus, stepwise variable selection (purposeful variable selection later) is required.

Stepwise variable selection (fit1)

```
step(fit.train)
```

```
## Start: AIC=475.36
## BAD ~ (LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ + CLNO + DEBTINC +
##
       REASON + JOB) + MORTDUE: VALUE
##
##
                   Df Deviance
                                   AIC
## - CLNO
                         444.70 474.70
                    1
## - REASON
                         445.20 475.20
                    1
                         443.36 475.36
## <none>
## - JOB
                    5
                         453.36 475.36
## - YOJ
                    1
                         446.51 476.51
## - NINQ
                    1
                         448.16 478.16
## - LOAN
                    1
                         456.43 486.43
## - DEBTINC
                         464.77 494.77
                    1
## - CLAGE
                    1
                         470.97 500.97
## - MORTDUE: VALUE 1
                        471.55 501.55
## Step: AIC=474.7
## BAD ~ LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ + DEBTINC +
       REASON + JOB + MORTDUE: VALUE
##
##
##
                   Df Deviance
                                   AIC
## - JOB
                        454.19 474.19
                    5
## - REASON
                         446.29 474.29
                    1
## <none>
                         444.70 474.70
## - YOJ
                         448.24 476.24
## - NINQ
                    1
                        449.30 477.30
## - LOAN
                         459.37 487.37
                    1
## - DEBTINC
                         465.15 493.15
                    1
## - MORTDUE: VALUE 1
                         476.28 504.28
## - CLAGE
                         476.30 504.30
                    1
##
## Step: AIC=474.19
## BAD ~ LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ + DEBTINC +
       REASON + MORTDUE: VALUE
##
##
##
                   Df Deviance
                                   AIC
## <none>
                         454.19 474.19
## - REASON
                         456.56 474.56
                    1
```

```
## - NINQ
                  1 457.43 475.43
                   1 458.82 476.82
## - YOJ
                      471.30 489.30
## - LOAN
                   1
## - DEBTINC
                     478.01 496.01
                   1
## - CLAGE
                   1
                      484.15 502.15
## - MORTDUE: VALUE 1 485.62 503.62
## Call: glm(formula = BAD ~ LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ +
      DEBTINC + REASON + MORTDUE: VALUE, family = binomial, data = train)
##
## Coefficients:
                                     MORTDUE
##
    (Intercept)
                          LOAN
                                                      VALUE
                                                                       YOJ
                                                                   -1.5301
##
         0.9226
                       -3.9969
                                     -7.6846
                                                    -7.1988
##
          CLAGE
                          NINQ
                                     DEBTINC REASONHomeImp MORTDUE: VALUE
##
        -4.2653
                        1.0330
                                      4.0974
                                                    -0.4895
                                                                   14.5722
## Degrees of Freedom: 1503 Total (i.e. Null); 1494 Residual
## Null Deviance:
                       566.1
## Residual Deviance: 454.2
                              AIC: 474.2
fit.train.step <- glm(formula = BAD ~ LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ +
               DEBTINC + REASON + MORTDUE: VALUE, family = binomial, data = train)
summary(fit.train.step)
##
## Call:
## glm(formula = BAD ~ LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ +
      DEBTINC + REASON + MORTDUE: VALUE, family = binomial, data = train)
##
## Deviance Residuals:
               1Q Median
                                 3Q
      Min
                                         Max
## -1.1723 -0.3096 -0.1884 -0.1036
                                      3.7175
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
                 0.9226 0.7999 1.153 0.24871
## (Intercept)
                 -3.9969
                             0.9983 -4.004 6.24e-05 ***
## LOAN
## MORTDUE
                 -7.6846
                             2.4732 -3.107 0.00189 **
                            2.3902 -3.012 0.00260 **
## VALUE
                 -7.1988
## YOJ
                            0.7454 -2.053 0.04011 *
                 -1.5301
## CLAGE
                 -4.2653
                           0.8619 -4.949 7.47e-07 ***
                                     1.836 0.06634 .
## NINO
                 1.0330
                            0.5626
                          0.9053 4.526 6.01e-06 ***
## DEBTINC
                 4.0974
## REASONHomeImp -0.4895
                         0.3250 -1.506 0.13210
## MORTDUE: VALUE 14.5722
                           2.4609 5.921 3.19e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 566.12 on 1503 degrees of freedom
## Residual deviance: 454.19 on 1494 degrees of freedom
```

```
## AIC: 474.19
##
## Number of Fisher Scoring iterations: 7
```

Here, REASONHomeImp & NINQ seems to be insignificant. Later, remove REASONHomeImp and re-fit the model, to see if it improves the goodness-of-fit or not.

Re-fitting the model (fit2)

```
## Call:
  glm(formula = BAD ~ LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ +
       DEBTINC + MORTDUE: VALUE, family = binomial, data = train)
##
## Deviance Residuals:
                      Median
##
       Min
                 1Q
                                   3Q
                                           Max
## -1.2692 -0.3076 -0.1927 -0.1092
                                        3.6960
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                   0.5802
                              0.7754
                                       0.748 0.454322
                  -3.5292
## LOAN
                              0.9476
                                      -3.725 0.000196 ***
## MORTDUE
                  -7.4464
                              2.4571
                                      -3.031 0.002441 **
## VALUE
                  -6.7930
                              2.3357
                                      -2.908 0.003634 **
## YOJ
                  -1.6850
                              0.7384
                                      -2.282 0.022488 *
## CLAGE
                  -4.1345
                              0.8569
                                      -4.825 1.40e-06 ***
                                       2.043 0.041026 *
## NINQ
                   1.1314
                              0.5537
## DEBTINC
                   3.9542
                              0.8901
                                       4.443 8.89e-06 ***
## MORTDUE: VALUE 13.8576
                              2.3864
                                       5.807 6.36e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 566.12 on 1503
                                       degrees of freedom
## Residual deviance: 456.56
                              on 1495
                                       degrees of freedom
## AIC: 474.56
##
## Number of Fisher Scoring iterations: 7
```

Here, newly fitted model seems to be not so much different in terms of the goodness-of-fit. Since one explanatory variable (dummy) is removed, the p-value of intercept term has increased. On the other hand, statistical significance of NINQ has been stabilized, as its p-value decreased below a conventional significance level (0.05).

Model Diagnostic

Perform likelihood ratio test for fit1 vs. fit2.

```
lrtest(fit.train.step,fit.train.step2)

## Likelihood ratio test

##
## Model 1: BAD ~ LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ + DEBTINC +

## REASON + MORTDUE:VALUE

## Model 2: BAD ~ LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ + DEBTINC +

## MORTDUE:VALUE

## #Df LogLik Df Chisq Pr(>Chisq)

## 1 10 -227.10

## 2 9 -228.28 -1 2.3651 0.1241
```

Since the p-value of the LRT is greater than the conventional significance level, null hypothesis cannot be rejected. Stick with fit1 (considering goodness-of-fit). Yet, more discussion is required regarding the model's predictive power.

Confusion Matrix

```
train.prob1 <- predict(fit.train.step, type="response")
train.pred1 <- ifelse(train.prob1>0.5,"1","0")
table(train.pred1,train$BAD)
```

Confusion matrix of fit1

```
##
## train.pred1 0 1
## 0 1434 66
## 1 0 4

mean(train.pred1==train$BAD)
```

```
## [1] 0.956117
```

```
train.prob2 <- predict(fit.train.step2, type="response")
train.pred2 <- ifelse(train.prob2>0.5,"1","0")
table(train.pred2,train$BAD)
```

Confusion matrix of fit2

```
## ## train.pred2 0 1 ## 0 1433 65 ## 1 1 5
```

```
mean(train.pred2==train$BAD)
```

[1] 0.956117

Comparing the confusion matrices of fit1 and fit2, there exists no big difference. The numbers of wrong predictions from fit1 and fit2 are equal. TPRs(True Positive Rate) are equal.

ROC Curve and AUC

ROC & AUC (using ROCR package) of fit.step

```
train.roc1 <- prediction(train.prob1,train$BAD)
plot(performance(train.roc1,"tpr","fpr"),col="red",main="ROC Curve for train data with fit1")
abline(0,1,lty=8,col="blue")</pre>
```

ROC Curve for train data with fit1


```
train.auc1 <- performance(train.roc1,"auc")
slot(train.auc1,"y.values")</pre>
```

```
## [[1]]
## [1] 0.8282128
```

```
train.roc2 <- prediction(train.prob2,train$BAD)
plot(performance(train.roc2,"tpr","fpr"),col="red",main="ROC Curve for train data with fit2")
abline(0,1,lty=8,col="blue")</pre>
```

ROC Curve for train data with fit2


```
train.auc2 <- performance(train.roc2, "auc")
slot(train.auc2, "y.values")</pre>
```

```
## [[1]]
## [1] 0.8269576
```

AUC_fit1 is greater than AUC_fit2 by 0.0013. Fit1 has a slightly better predictive power than fit2.

KS Statistic (Kolmogorov-Smirnov)

```
train.perf <- performance(train.roc1, "tpr", "fpr")
train.ks <- max(train.perf@y.values[[1]]-train.perf@x.values[[1]])
train.ks</pre>
```

[1] 0.5179319

KS Statistic is 0.5295. Good enough discriminatory power to distinguish "BAD" and "GOOD"

Conclusion

Final model:

```
summary(fit.train.step)
```

```
##
## Call:
## glm(formula = BAD ~ LOAN + MORTDUE + VALUE + YOJ + CLAGE + NINQ +
##
      DEBTINC + REASON + MORTDUE: VALUE, family = binomial, data = train)
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                 3Q
                                         Max
## -1.1723 -0.3096 -0.1884 -0.1036
                                      3.7175
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 0.9226
                            0.7999 1.153 0.24871
## LOAN
                -3.9969
                            0.9983 -4.004 6.24e-05 ***
## MORTDUE
                 -7.6846
                            2.4732 -3.107 0.00189 **
                 -7.1988
                            2.3902 -3.012 0.00260 **
## VALUE
## YOJ
                -1.5301 0.7454 -2.053 0.04011 *
## CLAGE
                 -4.2653 0.8619 -4.949 7.47e-07 ***
                         0.5626
0.9053
## NINQ
                                    1.836 0.06634 .
                 1.0330
## DEBTINC
                 4.0974
                                    4.526 6.01e-06 ***
## REASONHomeImp -0.4895 0.3250 -1.506 0.13210
## MORTDUE: VALUE 14.5722
                            2.4609 5.921 3.19e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 566.12 on 1503 degrees of freedom
## Residual deviance: 454.19 on 1494 degrees of freedom
## AIC: 474.19
## Number of Fisher Scoring iterations: 7
```

Probability of the default ("BAD") is:

$$Pr(Y=1) = 1 / (1+e^x)$$

where x is the attribute vector defined as:

```
X = -(0.9226 - 3.9969 * LOAN - 7.6846 * MORTDUE - 7.1988 * VALUE - 1.5301 * YOJ - 4.2653 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1.000 * 1
```

 ${\tt CLAGE+1.033*NINQ+4.0974*DEBTINC-0.4895*REASONHomeImp+14.5722*MORTDUEiVALUE)}$

Example 1 (using min-max normalized data) Suppose one with almost all the median attributes. That is, LOAN = 0.5, MORTDUE = 0.5, VALUE = 0.5, YOJ = 0.5, CLAGE = 0.5, NINQ = 0.6, DEBTINC = 0.5, REASON = 1 (HomeImp), MORTDUE:VALUE = 0.25. By inserting the values in the function, the resulting output is

$$X = -(0.9226 - 3.9969 * 0.5 - 7.6846 * 0.5 - 7.1988 * 0.5 - 1.5301 * 0.5 - 4.2653 * 0.5 + 1.033 * 0.5 *$$

0.6 + 4.0974 * 0.5 - 0.4895 * 1 + 14.5722 * 0.25) = 5.5932

$$Pr(Y=1) = 1 / (1+e^x) = 1 / (1 + e^(5.5932)) = 0.0037$$

This implies that one with the given median attributes would have 0.37%

chance of resulting delinquency(default).

Example 2 (using min-max normalized data) Suppose one with (intuitively) bad attributes. That is, LOAN = 0.9, MORTDUE = 0.9, VALUE = 0.8, YOJ = 0.1, CLAGE = 0.1, NINQ = 0.2, DEBTINC = 0.8, REASON = 0 (not HomeImp), MORTDUE:VALUE = 0.81. By inserting the values in the function, the resulting output is

$$\mathbf{X} \! = \! -(0.9226 \! - 3.9969 \! * 0.9 \! - \! 7.6846 \! * 0.59 \! - \! 7.1988 \! * 0.8 \! - \! 1.5301 \! * 0.1 \! - \! 4.2653 \! * 0.1 \! + \! 1.033 \! * 0.2 \! + \! 1.033 \! * 0.1 \! + \! 1.033 \! * 0.2$$

4.0974*0.8-0.4895*0+14.5722*0.81)=-1.740898

$$Pr(Y=1) = 1 / (1+e^x) = 1 / (1+e(-1.740898)) = 0.850811$$

This implies that one with such (intuitively) bad attributes would have

85.08% chance of resulting delinquency(default).