Write your name here Surname	Othe	er names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiar Unit 1: The Core Prin	ry	emistry
Thursday 14 January 2016 Time: 1 hour 30 minutes	– Morning	Paper Reference WCH01/01
Candidates may use a calcula	tor.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

1 Which row in the table shows the number of protons, neutrons and electrons in a fluoride ion, F⁻?

Use the Periodic Table as a source of data.

		Protons	Neutrons	Electrons
X	A	8	9	9
X	В	9	9	10
X	C	9	10	9
X	D	9	10	10

(Total for Question 1 = 1 mark)

2 A sample of oxygen contains the isotopes ¹⁶O, ¹⁷O, ¹⁸O.

How many peaks would there be for the O_2^+ ions in the mass spectrum of this sample of oxygen?

- B 5
- **■ D** 9

(Total for Question 2 = 1 mark)

3 2000 g of a solution contains 0.015 g of solute.

In the solution, the concentration of the solute in parts per million (ppm) is

- A 3.0
- **■ B** 7.5

(Total for Question 3 = 1 mark)

- **4** What is the concentration, in mol dm⁻³, of a solution of 10.6 g of sodium carbonate, Na₂CO₃, in 250 cm³ of solution?

 - **B** 0.25
 - ☑ C 0.10
 - ☑ D 0.025

(Total for Question 4 = 1 mark)

5 An enthalpy level diagram for a reaction is

Which row in the table shows the correct terms for **X** and **Y** and the enthalpy change for this reaction?

	X	Υ	Enthalpy change
⊠ A	products	reactants	endothermic
⋈ B	products	reactants	exothermic
⊠ C	reactants	products	endothermic
■ D	reactants	products	exothermic

(Total for Question 5 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

6 The table shows the mean bond enthalpies for some covalent bonds.

Covalent bond	с—с	c=c	Br—Br	C—Br	С—Н
Mean bond enthalpy / kJ mol ⁻¹	347	612	193	290	413

What is the approximate enthalpy change, in kJ mol⁻¹, for the reaction shown?

- ☑ B -122

(Total for Question 6 = 1 mark)

7 The first six ionization energies, in kJ mol⁻¹, of an element are

1086, 2353, 4621, 6223, 37832, 47278

In which group of the Periodic Table is this element?

- A 2
- **B** 3
- \times C 4
- **■ D** 5

(Total for Question 7 = 1 mark)

Use this space for rough working. Anything you write in this space will gain no credit.

8 Each diagram shows the trend in the ionic radius for four sequences of ions. The diagrams are not to scale.

(a) Which diagram shows the trend in the ionic radius for the sequence Li $^+$, Na $^+$, K $^+$, Rb $^+$?

(1)

- \mathbf{X} A
- X B
- **⋈** C
- ⊠ D
- (b) Which diagram shows the trend in the ionic radius for the sequence Na⁺, Mg²⁺, Al³⁺, Si⁴⁺?

(1)

- X A
- \bowtie B
- \times C
- **⋈** D

(Total for Question 8 = 2 marks)

- **9** Some energy changes involved in a Born-Haber cycle are
 - **A** electron affinity
 - **B** lattice energy
 - **C** standard enthalpy change of atomization
 - **D** standard enthalpy change of formation
 - (a) Which enthalpy or energy change is represented by **p**?

$$K(s) \rightarrow K(g)$$

$$\Delta H^{\oplus} = \mathbf{p}$$

(1)

- A
- \times B
- X C
- \times D
- (b) Which enthalpy or energy change is represented by **q**?

$$K(s) + \frac{1}{2}CI_2(g) \rightarrow KCI(s)$$

$$\Delta H^{\oplus} = \mathbf{q}$$

(1)

- \times A
- \times B
- \times C
- \times D
- (c) Which enthalpy or energy change is represented by r?

$$\frac{1}{2}Cl_2(g) \rightarrow Cl(g)$$

$$\Delta H^{\oplus} = \mathbf{r}$$

(1)

- \blacksquare B
- **X** C
- \bowtie D

(Total for Question 9 = 3 marks)

10 The diagram, which is not drawn to scale, shows the Born-Haber cycle for potassium chloride. The energy changes given are in kJ mol⁻¹.

What is the value for \mathbf{W} , in kJ mol⁻¹?

- **A** -956
- **B** -82
- **C** +82
- **■ D** +956

(Total for Question 10 = 1 mark)

Use this space for rough working. Anything you write in this space will gain no credit.

11 Which row in the table shows the lattice energies, in kJ mol⁻¹, of calcium fluoride, potassium fluoride and potassium iodide?

		Calcium fluoride	Potassium fluoride	Potassium iodide
X	A	-2630	-817	-651
X	В	-2630	-651	-817
X	C	-651	-817	-2630
X	D	-817	-2630	-651

(Total for Question 11 = 1 mark)

12 The experimental value for the lattice energy of beryllium iodide is $-2800 \text{ kJ mol}^{-1}$ and the theoretical value is $-2653 \text{ kJ mol}^{-1}$.

The best explanation for the difference is that the

- A beryllium ion is large and polarizes the iodide ion.
- **B** beryllium ion is small and polarizes the iodide ion.
- ☑ **C** iodide ion is large and polarizes the beryllium ion.
- **D** iodide ion is small and polarizes the beryllium ion.

(Total for Question 12 = 1 mark)

13 Carbon (diamond) and oxygen both form covalent bonds between their atoms in the element.

What is the **best** reason for the fact that diamond has a much higher melting temperature than oxygen?

- A Diamond is a solid but oxygen is a gas at room temperature.
- B Diamond has a giant atomic structure but oxygen has a simple molecular structure.
- ☐ C The covalent bonds between carbon atoms in diamond are stronger than those between oxygen atoms.
- **D** There is a single covalent bond between carbon atoms in diamond but a double covalent bond between oxygen atoms.

(Total for Question 13 = 1 mark)

- **14** The bonding in solid ammonium chloride is
 - **A** ionic only.
 - ☑ B ionic and covalent only.
 - **C** ionic and dative covalent only.
 - D ionic, covalent and dative covalent only.

(Total for Question 14 = 1 mark)

15 One of the isomers with the formula C_4H_8 is

Possible names for this isomer are

- **B** *cis*-but-2-ene and *Z*-but-2-ene.
- ☑ **C** *trans*-but-2-ene and *E*-but-2-ene.
- ☑ **D** *trans*-but-2-ene and *Z*-but-2-ene.

(Total for Question 15 = 1 mark)

- **16** An electrophile is a species that
 - ☑ A can accept a pair of electrons to form a covalent bond.
 - **B** can donate a pair of electrons to form a covalent bond.
 - ☑ C always has a negative charge.
 - **D** always has a positive charge.

(Total for Question 16 = 1 mark)

Use this space for rough working. Anything you write in this space will gain no credit.

17 Alkenes react with hydrogen gas in the presence of a nickel catalyst.

0.2 mol of an alkene reacted completely with 19.2 dm³ of hydrogen gas at room temperature and pressure.

How many C—C bonds are there in a molecule of this alkene?

[The molar volume of a gas is 24.0 dm³ mol⁻¹ at room temperature and pressure]

- \mathbf{X} A
- **■ B** 3

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

	Answer ALL the questions. Write your answers in the spaces provided.	
18 (a) Th	e relative atomic masses of elements can be determined using a mass spectror	neter.
(i)	Define the term relative atomic mass .	
		(3)
(ii)	Describe fully how positive ions are formed from gaseous atoms in a mass spectrometer.	
	mass spectrometer.	(2)

(iii) The following data were obtained from the mass spectrum of a sample of strontium.

Mass / charge ratio	% abundance
84.0	0.56
86.0	9.86
87.0	7.02
88.0	82.56

Calculate the relative atomic mass of strontium in this sample.

Give your answer to **three** significant figures.

(2)

(b) In which block of the Periodic Table is strontium found?

(1)

(c) Draw the dot and cross diagram for strontium chloride.

Show **outer** electrons only.

(2)

(d) A solution of strontium nitrate was prepared from strontium oxide and dilute nitric acid.

Write the equation for this reaction, including state symbols.

(2)

(e) A compound of strontium contains 49.9% strontium, 13.7% carbon and 36.4% oxygen, by mass.

Calculate the empirical formula for this compound.

[Use relative atomic masses: Sr = 87.6, C = 12.0, O = 16.0]

(3)

(Total for Question 18 = 15 marks)

19 The first ionization energies for the elements in Period 3 of the Periodic Table are

Element	Na	Mg	Al	Si	Р	S	Cl	Ar
First ionization energy / kJ mol ⁻¹	496	738	578	789	1012	1000	1251	1521

(a) (i) Complete the electronic configuration of phosphorus, using the electrons-in-boxes notation.

Write the symbols for the sub-shells on the dotted lines.

(2)

1s

*(ii) The first ionization energies generally increase from left to right across the period.

Explain why the first ionization energy of sulfur is **lower** than that of phosphorus.

(2)

(iii) Write an equation, with state symbols, to show the **third** ionization energy of phosphorus.

(2)

*(b) (i) Explain why the first ionization energy of nitrogen is greater than the first ionization energy of phosphorus.	(3)
(ii) Draw a dot and cross diagram to show the bonding in a molecule of nitrogen. Show outer electrons only.	(2)
(c) Solid white phosphorus exists as P_4 molecules. Calculate the number of molecules in 24.8 g of white phosphorus. [The Avogadro constant, $L=6.02\times10^{23}~\text{mol}^{-1}$]	(2)
(Total for Question 19 = 13 ma	ırks)

20 Compound **X** has the molecular formula C_5H_{12} .

(a) Draw the **displayed** formulae of the **three** structural isomers of C_5H_{12} .

(2)

- (b) C_5H_{12} reacts with chlorine to form a mixture of products.
 - (i) Classify the type and mechanism of this reaction.

(2)

(ii) Write the equations for the two propagation steps for this mechanism. Use the molecular formula, C_5H_{12} , in your first equation. Curly arrows are not required.

(2)

(iii) Write the equation for **one** termination step for this mechanism. Curly arrows are not required.

(1)

(c) An experiment was carried out to determine the enthalpy change of combustion of compound \mathbf{X} , C_5H_{12} .

100.0 g of water was heated by burning 0.144 g of compound X.

The temperature rise of the water was 14.5 °C.

(i) Calculate the energy transferred, in **kJ**, in this experiment.

Use the equation

heat energy produced (J) = mass of water \times 4.18 \times temperature change

(1)

energy transferred =

(ii) Calculate the number of moles of compound ${\bf X}$ used in this experiment.

(1)

moles of **X** =

(iii) Calculate the enthalpy change of combustion of compound **X**. Include a sign and units in your answer.

(2)

enthalpy change of combustion =

(iv) The Data Book values for the enthalpy changes of combustion of the three structural isomers with the formula C_5H_{12} are:	
−3509.1 kJ mol ⁻¹	
−3503.4 kJ mol ⁻¹	
−3492.5 kJ mol ⁻¹	
The experimental value calculated in (c)(iii) is very different from these values Give two reasons, other than heat loss, for this large difference.	
	(2)
(v) Explain why it is not possible to deduce which of the isomers is compound X by comparing this experimental value and the Data Book values.	
	(1)

*(d) Complete the Hess cycle and use it to calculate the enthalpy change of combustion of C_5H_{12} from the following data.

Show all of your working.

Standard enthalpy change of formation of C ₅ H ₁₂ (I)	−173.2 kJ mol ⁻¹
Standard enthalpy change of combustion of H ₂ (g)	−285.8 kJ mol ⁻¹
Standard enthalpy change of combustion of carbon(s, graphite)	−393.5 kJ mol ⁻¹

(4)

$$C_5H_{12}(I) + 8O_2(g)$$
 \longrightarrow $5CO_2(g) + 6H_2O(I)$

(Total for Question 20 = 18 marks)

- 21 This question is about alkenes.
 - (a) (i) Give the molecular formula of this alkene.

(1)

(ii) Explain why the alkene in (a)(i) exhibits geometric isomerism.

(2)

(b) Propene reacts with three different reagents.

(i) Give the reagent needed for **Reaction 1**.

(1)

(ii)	Identify, by name or t	formula, the organic	product A formed	l in Reaction 2 .	
					(1)

(iii) State the colour change that you would see when **Reaction 2** is carried out.

(1)

From

(iv) Give the mechanism for **Reaction 3**. Use curly arrows and show any relevant dipoles and lone pairs.

(4)

(c) But-2-ene polymerizes to form poly(but-2-ene).

Draw a section of this polymer, showing **two** repeat units.

(1)

(d) Cyclohexanol forms cyclohexene in the following reaction.

(i) Calculate the percentage atom economy by mass for the production of cyclohexene.

(1)

(ii) Calculate the percentage yield if 10.20 g of cyclohexanol produced 6.15 g of cyclohexene.

(2)

(Total for Question 21 = 14 marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

	V	3
	c	
	a	ر
	٤	=
	ā	ī
i	1	ĭ
ì		
	Ċ	5
	n	
	4	S
	C	2
ŀ	α	3
i	Ĺ	į
:	E	₹
	ř	₹
٠	ř	<
	ñ	ī
1	ĭ	(
	a	ر
	č	=
ŀ	-	-

rted	Rn radon 86	Freeze	xenou 54	131.3 Xe	Krypton 36	39.9 Ar argon 18	20.2 Ne neon 10	(18) 4,0 He helium 2	0 (8)
ееп геро	At astatine 85	10000	iodine 53	126.9	Br bromine 35	35.5 Cl chlorine 17	19,0 F fluorine 9	(17)	1
116 have b ticated	Po polonium 84	2000	tellurium 52	127.6 Te	Se selenium 34	32.1 S sulfur 16	16.0 O oxygen 8	(16)	9
Elements with atomic numbers 112-116 have been reported but not fully authenticated	Bi bismuth 83	0000	antimony 51	121.8 Sb	AS arsenic 33	31.0 P phosphorus 15	14.0 N nitrogen 7	(15)	n
atomic nun but not fu	Pb lead 82	2010	50 th	118.7 Sn	Ge germanium 32	Si Siticon 14	12.0 C carbon 6	(14)	·
ents with	TI thallium 81		indium 49	114.8	Ga gallium 31	27.0 AI atuminium 13	10.8 B boron 5	(13)	71
ЕІет	Hg mercury .80	2000	cadmium 48	112.4 Cd	Z p zinc 30	(21)			
Rg roentgenium	Au gold 79	0 100	silver 47	107.9 Ag	Cu copper 29	(11)			
[271] Ds damstadtium in	Pt platinum 78	, 40,	palladium 46	106.4 Pd	Ni nicket 28	(01)			
[268] Mt metinerium of	Ir iridium 77	2 000	rhodium 45	102.9 Rh	Co cobalt 27	(6)			
Hs Hs hassfum 1	Os osmium 76	2000	ruthenium 44	101.1 Ru	Fe iron 26	(8)		1.0 Hydrogen	
[264] Bh bohrium	Re rhenium 75	2 70,		[98] Tc	Mn manganese 25	(7)			
Sg seaborgium 106	W tungsten 74	2000	molybdenum technetium	95.9 Mo	Cr chromium r 24	(9)	mass ool umber		
Db dubmium s	Ta tantalum 73	0.00	E	92.9 Nb	V vanadium 23	(5)	relative atomic mass atomic symbol name atomic (proton) number	Key	
Rf nutherfordlum 104	Hf hafinium 72	2 000	zirconium 40	91.2 Zr	Ti titanium 22	(4)	relati atoı		
Ac*	La* lanthanum 57	0 000	yttrium 39	6.88.≻	Sc scandium 21	(3)			
Ra radium 88	Ba barium 1 56	22.	strontium 38	87.6 Sr	Ca calcium 20	24.3 Mg magnesium 12	9.0 Be beryllium 4	(2)	7
[223] Fr francium 87	Cs caesium 55	0 00	E	85.5 Rb	K potassium 19	Na Sodium 11	6.9 Li tithium 3	θ)	_

series	
thanide	
+ Lan	
	* Lanthanide series

^{*} Actinide series

Cerium S8	Pr prasecolymium 59	144 Nd neodymium 60	[147] Pm promethium 61	150 Sm samarium 62	152 Eu europium 63	157 Gd gadolinium 64	159 Tb terbium 65	163 Dy dysprosium 66	165 Ho holmium 67	167 Er erbium 68	169 Tm thullum 69	173 Yb ytterbium 70	175 Lu tutetium 71
732 Th horium 90	Pa protactinum 91	238 U uranium 92	[237] Np neptunium 93	[242] Pu plutonium 94	[243] Am americium	[247] Cm curum 96	[245] Bk berkelium 97	[251] Cf californium 98	[254] Es einsteinium 99	[253] Fm fermium 100	[256] Md mendelevium 101	[254] No nobelium 102	[257] Lr tawrencium 103