Medical Image Analysis

Angshuman Paul

Assistant Professor

Department of Computer Science & Engineering

Annotation-efficient DL for MedIA

Learning a New Concept: Human vs Computer

- Human learning
 - Usually requires only a few instances
 - May efficiently learn visual appearance from semantic description
- Machine Learning (especially deep learning)
 - May require thousands (if not millions) of instances
 - Difficult to train using semantic information for visual understanding

What is Annotation-efficient Machine Learning

- Learning new concepts from only a few or no labeled training data
- Mimicking the human cognitive ability
- Overcoming the curse of large annotation
- Small training set: Difficult to train deep models

Why Annotation-efficient Machine Learning in Medical Images?

- Learn new diseases from a few labeled examples
 - Rare disease diagnosis
- Working solutions with small labeled dataset
 - Reducing the need of manual annotations
 - Expert-dependent
 - Time consuming

Annotation-efficient Machine Learning

Few-shot Learning

Annotation-efficient Machine Learning for Chest X-ray Diagnosis: Challenges

Zero-shot Chest X-ray Diagnosis

Zero-Shot Learning for Medical Images

Common diseases: Large pool of annotated training images

Rare diseases: few or no annotated training images

Use annotated images of common diseases

- Learn new diseases from no examples: use auxiliary information
 - Rare disease diagnosis

Zero-shot Learning

Diseases Diagnosable from Chest X-ray Images

Seen Classes

Annotated
Image Available
During Training

Unseen Classes

Annotated Image Not Available During Training

Zero-shot Learning: Training

Annotated Images of Seen Classes

Generalized Zero-shot Learning: Testing

Zero-shot Learning

Auxiliary Information

Seen Classes

Available During Training **Unseen Classes**

Available During Training

Auxiliary Information for Radiology Diagnosis

Disease Signatures

Signature Generator: Intelligent Word Embedding (IWE)¹

Zero-shot Diagnosis of Chest X-rays

Zero-shot Diagnosis of Chest X-rays

Zero-shot Diagnosis of Chest X-rays

Cross-Modality Semantic Embedding

Process Pipeline

Feature Extractor

• DenseNet-121²

Trained using seen classes

Feature vectors from the penultimate layer

• Feature vectors: likely to be **noisy** for unseen classes

Process Pipeline

Choice of Embedding Network

Embedding Network: Autoencoders³

- Input data x
- Hidden state *z*
- Reconstructed output \hat{x}

Embedding Network: Autoencoders

- Losses
 - Semantic embedding loss L_{se}
 - Semantic saliency loss L_{sal}
 - Reconstruction loss $L_{re} = ||x \hat{x}||$
- Semantic Saliency Preserving Autoencoders (SSP-AE)

Dealing with Noisy Feature Vectors

Ensemble⁴ of Autoencoders

Several autoencoders trained in parallel

- Each autoencoder
 - Explores different feature subspaces
 - Semi-deterministic selection of subspaces
 - Trained with different bootstrap samples⁴

Seen & Unseen Classes

Class

Pneumonia

Nodule

Pneumothorax

Consolidation

Effusion

Infiltration

Edema

Emphysema

Cardiomegaly

Seen Classes

Unseen Classes

Visual Results

		Unseen Class		Seen Class		
CXR Examples			G III	① ■ 100 mm m m m m m m m m m m m m m m m m		
GT	Cardiomegaly	Infiltration Pneumothorax Emphysema	Cardiomegaly Edema	Nodule	Effusion Infiltration	Pneumothorax
D	Cardiomegaly	Emphysema	Nodule	Nodule	Effusion	Pneumonia

Can We Use More Auxiliary Information?

Trait-guided Multi-view Semantic Embedding for Zero-shot Chest X-ray Diagnosis

Visual Traits

- Location: Contains anatomical location information
 - lung, heart, etc.
- Position: Contains information of the pixel position corresponding to the abnormality
 - Upper portion of image, lower portion of image, etc.
- Opacity: high, low, medium
- Distribution: unilateral, bilateral
- Border sharpness: clear margin, indistinct margin
- Size (relative to lung volume)
- Aspect ratio

Semantic Spaces

Seen & Unseen Classes

Unseen Classes

Seen Classes

Class

Pneumonia

Nodule

Infiltration

Consolidation

Effusion

Pneumothorax

Edema

Emphysema

Cardiomegaly

Class

Pneumonia

Nodule

Infiltration

Consolidation

Effusion

Pneumothorax

Edema

Emphysema

Cardiomegaly

Class

Pneumonia

Nodule

Infiltration

Consolidation

Effusion

Pneumothorax

Edema

Emphysema

Cardiomegaly

Combination 1

Combination 3

Visual Results

Dataset	NIH-900		Оре	en-i	РМС			
Image Examples								
Ground Truth	Cardiomegaly	Infiltration	Edema Cardiomegaly	Pneumonia	Consolidation	Nodule	Pneumothorax	
Detected	Cardiomegaly (S)	Infiltration (U)	Edema (S)	Pneumonia (U)	Consolidation (S)	Nodule (U)	Nodule (U)	

VAE for Zero-shot CXR Diagnosis

Figure 1: Overview of our CXR-ML-GZSL model for learning visual representations of chest X-rays. An overview of our network for chest X-ray images. It includes a trainable visual encoder and v- and d-dimensional visual and semantics spaces, respectively. For an input image x and its labels y, the network learns a visual representation guided by semantics extracted by BioBert. We perform end-to-end training of the visual encoder, visual mapping module, and the semantics mapping module, as indicated by the black dashed line.

Few-shot Chest X-ray Diagnosis Using Images from the Published Scientific Literature

Sample X-ray Images in Published Literature

Challenges in Few-shot Learning from Published Literature

- Learning from few images
- Artifacts, low-resolution

Solution: Use of Labeled and Unlabeled Images

- Labeled images from published literature: PubMed Central (PMC)
 - Initial training of few-shot learning model
- Unlabeled images: from NIH CXR dataset
 - High-resolution, less artifacts
- Re-training with pseudo labels for the NIH CXR dataset
 - Dealing with the problem of noisy labels

Process Pipeline

Process Pipeline: Initial Training of Classifier

The Loss Function

Reconstruction Loss L_{re}

• Minimize every
$$d_{ij}$$
 inside each cluster
$$L_{con} = \sum_{\forall c \in C} (\sum_{\forall x_i, x_j \in S_c} d_{ij})$$

• Maximize r_{ab} for every pair of clusters

$$L_{sep} = -\sum_{a,b \in C} r_{ab}$$

- Minimize every d_{ij} inside each cluster (L_{con})
- Maximize r_{ab} for every pair of clusters (L_{sep})
- $L = L_{re} + \lambda_1 L_{con} + \lambda_2 L_{sep}$

Inference for Unlabeled Images: Pseudo Labels

Re-training

Inference

Image Results

Image Examples			PCATABLE	
Ground Truth	Cardiomegaly	Edema	Edema	
Detected	Cardiomegaly	Edema	Cardiomegaly	

FSL Using an Ensemble of Subspaces

FSL Using an Ensemble of Subspaces

Images						
GT	Hernia	Fibrosis	Emphysema	Edema	Pneumonia	
Р	Hernia	Fibrosis	Emphysema	Cardiomegaly	Pneumonia	

Few-shot Learning for Breast Cancer Detection

a) Binary classification on the ICIAR dataset by fine-tuning with ResNet50 V2 pre-trained architecture

(A) (F)

(PT) (TA)

Registrosis (Canvolution Mex-Pool Convolution Mex-Po

Base model as

the feature extractor

Few input images

(BreaKHis dataset)

b) Multi output model for primary and fine-grain classification trained on very few histopathology images from the BreaKHis dataset. Model 1 has been used as the base model.

Model 2

Replaced last few layers

Multi class classification

Lightweight CNN Model for Chest X-ray Diagnosis

~ 0.14M parameters and ~ 550 KB size

Single Image Super-resolution for Chest X-rays

Low Res Image **Ground Truth** Our Model

Federated Learning for Radiology Diagnosis

Local server Local

server

Local

server

		ri score			Accuracy			
Type	Method	NIH	$\mathbf{C}\mathbf{X}$	VB	NIH	$\mathbf{C}\mathbf{X}$	VB	
Local	NIH-L	0.93	0.89	0.64	0.93	0.81	0.68	
	CX-L	0.90	0.90	0.70	0.90	0.84	0.75	
	VB-L	0.80	0.87	0.88	0.83	0.79	0.90	
Global	DN121-SA	0.90	0.89	0.70	0.91	0.82	0.79	
	DN121-TL	0.83	0.88	0.65	0.85	0.81	0.78	
	DN121-VL	0.88	0.88	0.69	0.89	0.81	0.80	
	[⁶]	0.89	0.88	0.49	0.88	0.80	0.61	
	Proposed	0.90	0.90	0.71	0.90	0.84	0.76	