DOS APROXIMACIONES EQUIVALENTES A LA NOCIÓN DE HAZ

Juan Camilo Lozano Suárez ¹

RESUMEN. Introducimos la noción de haz de dos maneras en principio independientes; primero como un funtor contravariante con buenas propiedades de pegado y luego como espacio fibrado o étalé. Posteriormente probaremos que las categorías que cada una produce son equivalentes.

PALABRAS CLAVE. Haz; espacio étalé; homeomorfismo local; manojo; hacificación; equivalencia de categorías; local vs global.

1 Haz como funtor

1.1 Un ejemplo como motivación

Una constante en el quehacer matemático es el tránsito entre aspectos locales y aspectos globales. Consideremos un ejemplo enmarcado en el área de la topología. Sean X un espacio topológico y U un subconjunto abierto de X, al cual dotamos con un cubrimiento $\{U_i\}_{i\in I}$ de subconjuntos abiertos de U. Una función continua $f:U\to\mathbb{R}$ se presenta como una herramienta para entender globalmente el conjunto U, y fácilmente nos permite pasar al conocimiento local de U en el siguiente sentido:

(P1) Si $V \subseteq U$ entonces $f|_V : V \to \mathbb{R}$ es también una función continua.

De forma recíproca, gracias al lema de pegado (Teorema 2.0.1), f nos permite pasar de un apropiado conocimiento local de U a un conocimiento global, en la siguiente forma:

Email: jclozanos@unal.edu.co

¹Estudiante de pregrado en matemáticas, Universidad Nacional de Colombia.

(P2) Sea $\{U_i\}_{i\in I}$ un cubrimiento abierto de U. Si $f_i: f|_{U_i}: U_i \to \mathbb{R}$ es continua para todo $i \in I$, entonces $f: U \to \mathbb{R}$ es continua.

Las propiedades (**P1**) y (**P2**) pueden ser capturadas en lenguaje categórico. Para esto, consideremos la categoría $\mathcal{O}(X)$ que tiene como objetos los subconjuntos abiertos de X, y en la cual, dados $U, V \in \mathcal{O}(X)$, hay una flecha de V en U si y solo si $V \subseteq U$; dicha flecha en $\mathcal{O}(X)$ (que será la única de V en U) la representamos igualmente mediante " $V \subseteq U$ ". Ahora, para cada $U \in \mathcal{O}(X)$ definimos el conjunto CU de todas las funciones reales continuas sobre U:

$$CU := \{ f : U \to \mathbb{R} \mid f \text{ es continua} \},$$

y para cualquier flecha $V \subseteq U$ en $\mathcal{O}(X)$, definimos la función de conjuntos

$$C(V \subseteq U): CU \to CV$$

 $f \mapsto f|_V^U$

que a cada función continua de U en \mathbb{R} le asigna su respectiva función restricción al subconjunto V, que a su vez es una función continua de V en \mathbb{R} . Tendremos entonces la siguiente propiedad:

Proposición 1.1.1. La regla C que a cada $U \in \mathcal{O}(X)$ le asigna el conjunto CU y a cada flecha $V \subseteq U$ en $\mathcal{O}(X)$ le asigna la función restricción de V en U, $C(V \subseteq U) : CU \to CV$, es un funtor contravariante de $\mathcal{O}(X)$ en **Set**.

Prueba. • Trivialmente se tiene que C respeta identidades, pues para cualquier $U \in \mathcal{O}(X)$ tenemos

$$C(1_U): CU \longrightarrow CU$$

 $f \mapsto f|_U^U = f$

es decir, $C(1_U) = 1_{C(U)}$.

• Supongamos que en $\mathcal{O}(X)$ tenemos $W \subseteq V \subseteq U$. Entonces $W \subseteq U$ y en **Set** tenemos la función restricción de U en W, $C(W \subseteq U) : CU \to CW$. Tenemos ademas en **Set** la composición $C(W \subseteq V) \circ C(V \subseteq U) : CU \to CW$. Para cada $f \in CU$ se tiene

$$\begin{split} (C(W \subseteq V) \circ C(V \subseteq U))(f) &= C(W \subseteq V)(C(V \subseteq U)(f)) \\ &= C(W \subseteq V)(f|_V^U) \\ &= (f|_V^U)|_W^V \\ &= f|_W^U \\ &= C(W \subseteq U)(f), \end{split}$$

con lo cual $C(W \subseteq V) \circ C(V \subseteq U) = C(W \subseteq U)$ y C respeta composiciones.

Con lo anterior, podemos decir que C es un **prehaz** (de conjuntos):

Definición 1.1.2 (Prehaz). Un prehaz (de conjuntos) sobre un espacio topológico X es un funtor contravariante de $\mathcal{O}(X)$ en **Set**.

La Proposición 1.1.1 permite capturar de manera categórica la propiedad (**P1**). Para lograr hacer lo mismo con la propiedad (**P2**) introducimos el concepto categórico de *iqualadores*.

1.2 Igualadores

Definición 1.2.1. En una categoría arbitraria C, sean $f, g: A \to B$ flechas paralelas. Un igualador de f y g es una pareja $\langle E, e \rangle$, con $E \in C$ y $e: E \to A$ en C, tal que $f \circ e = g \circ e$, y que es universal con esta propiedad, en el sentido de que si hay otra pareja $\langle U, u \rangle$ con $U \in C$ y $u: U \to A$ en C, tal que $f \circ u = g \circ u$, entonces existe una única flecha $v: U \to E$ en C tal que $e \circ v = u$.

El siguiente diagrama conmutativo, que denominamos como "diagrama igualador", se resume la anterior definición:

$$E \xrightarrow{e} A \xrightarrow{f} B$$

$$V \downarrow u$$

$$U$$

Los ejemplos de igualadores que más estaremos trabajando son aquellos que aparecen en la categoría **Set**:

Ejemplo 1.2.2. Sean A y B conjuntos y f, g funciones de A en B. Verifiquemos que un igualador de f y g está dado por $\langle E, e \rangle$, donde $E = \{a \in A \mid f(a) = g(a)\}$ y e es la función inclusión de E en A:

- Dado $x \in E$ se tiene $(f \circ e)(x) = f(e(x)) = f(x) = g(x) = g(e(x)) = (g \circ e)(x)$, es decir, $f \circ e = g \circ e$.
- Supongamos que existe ⟨U,u⟩ con U ∈ Set y u : U → A en Set, tal que f ∘ u = g ∘ u. Podemos definir v : U → E vía v(x) = u(x) para todo x ∈ U, e inmediatamente se tendrá e ∘ v = u; igualmente, si v' es una fleca de U → E en Set tal que e ∘ v' = u entonces para cada x ∈ U se tiene v'(x) = e(v'(x)) = u(x) = e(v(x)) = v(x), de modo que v = v'.

 \Diamond

En la práctica, si no hay lugar a confusiones, nos referimos indistintamente por "igualador" tanto al par $\langle E, e \rangle$ como simplemente a la flecha e. Directamente de la definición de igualadores, podemos derivar algunas propiedades que serán útiles más adelante:

Proposición 1.2.3. En cualquier categoría, todo igualador es un monomorfismo.

Prueba. Sean **C** una categoría, $f, g: A \to B$ flechas paralelas en **C** y $\langle E, e \rangle$ un igualador de f y g. Supongamos que existen flechas $i, j: F \to E$ en **C** tales que $e \circ i = e \circ j$. Tenemos $(f \circ e) \circ j = (g \circ e) \circ j$, es decir, $f \circ (e \circ j) = g \circ (e \circ j)$. Como e es un igualador de f y g, existe una única flecha $k: F \to E$ en **C** tal que $e \circ k = e \circ j$; trivialmente j cumple esta propiedad, pero también lo hace i, pues por hipótesis $e \circ i = e \circ j$. Se sigue que i = j y por tanto e es un monomorfismo en **C**.

Como en **Set**, para una flecha es lo mismo ser monomorfismo que ser una función inyectiva, como corolario de lo anterior obtenemos que cualquier igualador en **Set** es una función inyectiva.

Proposición 1.2.4. Supongamos que en Set el siguiente es un diagrama igualador:

$$E \xrightarrow{e} A \xrightarrow{f} B$$

Entonces, para todo $a \in A$ tal que f(a) = g(a), existe $\alpha \in E$ tal que $e(\alpha) = a$.

Prueba. Definimos $F := \{x \in A \mid f(x) = g(x)\} \ (\subseteq A)$. Por la Proposición 1.2.3, sabemos que $\langle F, in_{F,A} \rangle$ (donde $in_{F,A}$ es la función inclusión de F en A), es un igualador de f y g, con lo cual, existe una única flecha $v : F \to E$ tal que $e \circ v = in_{F,A}$. Como $a \in F$, tenemos $\alpha := v(a) \in E$ y $e(\alpha) = e(v(a)) = in_{F,A}(a) = a$.

2 Anexos

Teorema 2.0.1 (Lema de pegado). Sean X y Y espacios topológicos. Sean $U \subseteq X$, $\{U_i\}_{i \in I}$ un cubrimiento abierto de U y $\{f_i\}_{i \in I}$ una familia de funciones, de modo que para cada $i \in I$, $f_i : U_i \to Y$ es una función continua. Además suponemos la siguiente "condición de pegado": para cualesquiera $i, j \in I$ se tiene $f_i(x) = f_j(x)$ para todo $x \in U_i \cap U_j$. Entonces, $f := \bigcup_{i \in I} f_i$ es una función continua de U en Y.

- **Prueba.** Veamos que f es en efecto una función de U en Y. Sea $x \in U = \bigcup_{i \in I} U_i$. Existe $j \in I$ tal que $x \in U_j$, luego $\langle x, f_j(x) \rangle \in f_j \subseteq \bigcup_{i \in I} f_i = f$. Como $f_j(x) \in Y$, obtenemos que f relaciona a x con un elemento de Y. Supongamos que para $y, y' \in Y$ se tiene $\langle x, y \rangle, \langle x, y' \rangle \in f = \bigcup_{i \in I} f_i$. Existen $j, k \in I$ tales que $\langle x, y \rangle \in f_j$ y $\langle x, y' \rangle \in f_k$, es decir $x \in I_j$ y $y = f_j(x)$, y, $x \in U_k$ y $y' \in f_k(x)$; entonces $x \in U_j \cap U_k$ y por la condición de pegado se tiene $y = f_j(x) = f_k(x) = y'$, con lo cual $\langle x, y \rangle = \langle x, y' \rangle$. Lo anterior nos muestra que f relaciona cada elemento de f con un único elemento de f es una función de f en f.
 - Probemos que $f:U\to Y$ es continua mostrando que devuelve abiertos de Y en abiertos de U por la imagen recíproca . Sea $V\subseteq Y$. Notemos que $f^{-1}(V)=\bigcup_{i\in I}f_i^{-1}(V)$:

- \subseteq : Sea $x \in f^{-1}(V) \subseteq U$, es decir, $f(x) \in V$. Existe $j \in I$ tal que $x \in U_j$, luego $f_j(x) = f(x) \in V$, y $x \in f_j^{-1}(V) \subseteq \bigcup_{i \in I} f_i^{-1}(V)$.
- \supseteq : Sea $x \in \bigcup_{i \in I} f_i^{-1}(V)$, es decir $x \in f_j^{-1}(V)$ para algún $j \in I$. Entonces $f(x) = f_j(x) \in V$ y $x \in f^{-1}(V)$.

Ahora bien, para cada $i \in I$ tenemos $f_i^{-1}(U) \stackrel{ab}{\subseteq} U_i$, luego $f_i^{-1}(V) = W_i \cap U_i$ con $W_i \stackrel{ab}{\subseteq} U$. Como $U_i \stackrel{ab}{\subseteq} U$ entonces $f_i^{-1}(V) \stackrel{ab}{\subseteq} U$, de modo que

$$f^{-1}(V) = \bigcup_{i \in I} f_i^{-1}(V) \stackrel{ab}{\subseteq} U.$$

Con esto, concluimos que $f=\bigcup_{i\in I}f_i:U\to Y$ es continua.