

Content

- Introduction
- Data preparation
- Exploratory analysis
- Classification
- Kernel density estimation
- Questions

Introduction

- Questions that we tried to answer:
 - Which features in the data set are significant when accidents occur, correlations?
 - Can we classify certain features in dependence of a subset of other features?
 - Can we find the underlying probability distribution of the samples?
 - and what do they tell us?

Data preparation

- The given data sets are quiet messy.
- The goal is to clean up all the data sets and save them in destinct tables.
- Link the data sets by certain features.
- With additional merging in a separate table.

Data preparation, accidents in Zurich

Drop unimportant columns

Data preparation, accident data

Change strings to integer, and change false/true statements to 0/1

Data preparation, accident data

Merge date objects to one column called Date

Data preparation, meteo data

- Drop unimportant rows and columns
- Take the average of the remaining data, with respect to n measurement locations.

Data preparation, counts of cars on the road

Drop unimportant columns

Data preparation, counts of pedestrians and bicycles on the road

- Drop unimportant columns. (Note: nans were not dropped)
- Add counts together on both sides of the lane to get the total.
- The measurements were taken every 15 min; get the total for one hour.

Data preparation, merging

 The average temperature and rain durations were added to every accident according to the date.

- The count data sets were merged with respect to the location and the date.
- To do this, we located the accidents within a radius of 200m.

Data preparation, merging

- The average temperature and rain durations were added to every accident according to the date.
- The count data sets were merged with respect to the location and the date.
- To do this, we located the accidents within a radius of 200m.

Data preparation

• The merged and cleand data sets are now ready to undergo some analysis.

Date	AccidentType	Severity	Pedestrian	Bicycle	Motorcycle	RoadType	LocationE	LocationN	Temperature	RainDur	SumBiker	SumPedestrian	SumCars
01.01.2011 00:00	0	4	0	0	0	3	2684605	1245194	2.2	0			
01.01.2011 01:00	0	3	0	1	0	3	2682382	1246980	2.3	0	6		
01.01.2011 02:00	0	4	0	0	0	9	2682791	1247749	2.3	0			
01.01.2011 02:00	5	3	0	0	0	3	2681199	1247102	2.3	0			
01.01.2011 03:00	0	4	0	0	0	3	2682479	1250690	2.5	0			
01.01.2011 04:00	3	4	0	0	0	3	2683365	1253681	2.7	0			
01.01.2011 04:00	2	4	0	0	0	3	2681841	1249487	2.7	0			
01.01.2011 05:00	1	4	0	0	0	3	2683299	1247929	2.8	0			
01.01.2011 13:00	7	4	0	0	0	3	2682866	1247664	3.2	0			

Exploratory analysis, technicalities

- To get a grasp of the used data, we used the following modules/methods:
 - Quick matplotlib plots.
 - Seaborn pair plot, to visualize immediate relations between the features.
 - Linear regression via scipy.
 - Kernel density estimation with defaut parameters in seaborn, scipy and sklearn.

All with the help of pandas DataFrame class.

- 0: Accident with skidding or self-accident
- 1: Accident when overtaking or changing lanes
- 2: Accident with rear-end collision
- 3: Accident when turning left or
- 4: Accident when turning-into main road
- 5: Accident when crossing the lane(s)
- 6: Accident with head-on collision
- 7: Accident when parking
- 8: Accident involving pedestrian(s)
- 9: Accident involving animal(s)

• There is no clear clustering visible.

 We se some trends in the scatter plot, but only trivial ones.

- There is no clear clustering visible.
- The class 4 seems to be dominant.

Severity classes:

- 1: Accident with fatalities
- 2: Accident with severe injuries
- 3: Accident with light injuries
- 4: Accident with property damage

- We tried to find some relations via linear regression of a few non ordinal features.
- But we have not pursued it further.

- To see the distribution of the data points in addition with a probability density estimation, we have ploted them on map of Zurich.
- We used seaborn, scipy and sklearn to do this.
 Note the once on the right are ploted via seaborn and scipy.
- For the exploratory part we only used the default parameters.

 We decided to use the sklearn implementation. Since we can use the implemented 2-fold cross validation to estimate the best bandwidth.

Classifications

- Here we tried to predict three distinct features:
 - Severity
 - Accident type
 - Road type
- This has been done via three different methods:
 - Decision tree
 - Random forest
 - Sequential model in Tensorflow

Classifications

- This is a decision tree with a maximal depth of 3.
- We also tried it with a depth of 5 and no maximal depth.

Classifications

 Most important features used for sequential model:

['AccType', 'Severity', 'Pedestrian', 'Bicycle']

Decision tree (sklearn)		Random forest (sklearn)	Sequential (Tensorflow)	
Target:	RoadType	Target:	RoadType	Target:	RoadType
Accuracy:	0.576	Accuracy:	0.601	accuracy:	0.646
importance		importance		Sequential (Tensorflow)	
Temperature	0.530	Temperature	0.619	Target:	RoadType
RainDur	0.221	RainDur	0.180	accuracy:	0.6517
АссТуре	0.175	AccType	0.162		
Severity	0.033	Severity	0.019		
Motorcycle	0.020	Bicycle	0.010		
Bicycle	0.016	Motorcycle	0.005		
Pedestrian	0.005	Pedestrian	0.004		

Kernel density estimation

- As mentioned before, 2-fold cross validation to find an estimation of the bandwidth of the kernel density.
- Further, gaussian kernels were used.

 To display them in a nice manner, we used a simple linear interpolation scheme between the calculated frames.

Kernel density estimation

Kernel density estimation

Questions?

References

- The git repository can be found here: https://github.com/massstab/ESC403_project.git
- Also the raw data and instructions how to tidy up the data and the codebook with the explanation
 of all labels can be found there.
- The main accidents dataset can be found here: https://opendata.swiss/de/dataset/polizeilich-registrierte-verkehrsunfalle-auf-dem-stadtgebiet-zurich-seit-2011/resource/3bf3f12a-bf09-4e69-8cde-0df9e268d54b
- The meteo data can be found here: https://data.stadtzuerich.ch/dataset/ugz_meteodaten_stundenmittelwerte
- The count of the pedestrian/cars/bike data can be found here: https://data.stadtzuerich.ch/dataset/ted_taz_verkehrszaehlungen_werte_fussgaenger_velo