Chapter 6: Hypothesis testing

1

Test if new drug has a clinical effect

Hypothesis testing

 Hypothesis testing compares data to what we would expect to see if a specific null hypothesis were true. If the data are too unusual, compared to what we expect to see if the null hypothesis were true, then the null hypothesis is rejected

3

Hypotheses

- The null hypothesis is a specific statement about a population parameter made for the purposes of argument. A good null hypothesis is a statement that would be interesting to reject
- "default" hypothesis that has an interest of zero
 - e.g., no effect, no preference, no correlation, no difference
- Abbreviated as H₀

Hypotheses

- The alternative hypothesis includes all other feasible values for the population parameter besides the value stated in the null hypothesis
- Includes possibilities that are biologically interesting
 - e.g., there IS an effect, preference, correlation, difference
- Abbreviated as H_A

5

Reject H_0 or not

- The H₀ is what is being tested
- If data are consistent with H₀ then you "fail to reject" it
- If data are inconsistent with H₀ then you reject it
 - "rule out" the null hypothesis
- You do not "prove" the H_A, you can only "reject" or "fail to reject" the H₀

Ex 6.2: The right hand of toad

- Tested if individual toads prefer to use one forelimb over another (display "handedness")
- Data showed that individuals show preference for a particular forelimb

7

Null hypothesis

- Question: Do right- and left-handed toads differ in frequency?
- H₀: Right and left-handed toads are equally frequent
- ...or H_0 : $p_R = p_L$
- ...or H_0 : $p_R = 0.5$
- ...or H_0 : $p_L = 0.5$

Null and alternative hypotheses

- H_0 : $p_R = 0.5$
- There are two alternative possibilities: $p_R < 0.5$ and $p_R > 0.5$
- In a two-sided (or two-tailed) test, the alternative hypothesis includes parameter values on both sides of the parameter value specified by the null hypothesis
- H_A : $p_R \neq 0.5$

9

Test statistic

- The test statistic is a number calculated from the data that is used to evaluate how compatible the data are with the result expected under the null hypothesis
- In study, 18 toads were sampled and 14 were observed to be right-handed
- In this case the test statistic is 14 (or p_R = 14/18 = 0.7778)

Null distribution

- Test statistic = 14
- Null expectation = 9 (with $H_0 p_R = 0.5$ and 18 observations)
- Samples have error... so it's possible that the null hypothesis is true and by chance you observed 14 righthanded toads
- The null distribution is the sampling distribution of outcomes for a test statistic under the assumption that the null hypothesis is true

11

- Is 14 different enough from 9, given the null distribution, to reject the null hypothesis?
- The P-value is the probability of obtaining the data (or data showing as great or greater difference from the null hypothesis) given that the null hypothesis were true

13

TABLE 6.2-1 All possible outcomes for the number of right-handed toads when 18 toads are sampled, and their probabilities under the null hypothesis.

Number of rig	ght-handed toads	Probability
	0	0.000004
	1	0.00007
	2	0.0006
	3	0.0031
	4	0.0117
	5	0.0327
	6	0.0708
	7	0.1214
	8	0.1669
	9	0.1855
	10	0.1669
	11	0.1214
	12	0.0708
	13	0.0327
	14	0.0117
	15	0.0031
	16	0.0006
	17	0.00007
	18	0.000004
T	otal	1.0

- Observations of 0, 1, 2, 3, etc. righthanded toads are mutually exclusive
- So **sum probabilities** of getting values as extreme as 14
 - Pr[14 or more right-handed] = Pr[14] + Pr[15] + Pr[16] + Pr[17] + Pr[18]
- Pr[14 or more right-handed] = 0.0155

15

TABLE 6.2-1 All possible outcomes for the number of right-handed toads when 18 toads are sampled, and their probabilities under the null hypothesis.

Number of right-handed toads	Probability
0	0.000004
1	0.00007
2	0.0006
3	0.0031
4	0.0117
5	0.0327
6	0.0708
7	0.1214
8	0.1669
9	0.1855
10	0.1669
11	0.1214
12	0.0708
13	0.0327
14	0.0117
15	0.0031
16	0.0006
17	0.00007
18	0.000004
Total	1.0

P-value

- But test is two-sided, so you need to also account for getting values as extreme in the other direction
 - i.e., values ≤ 4
- Quickest way to calculate is to multiply Pr[14 or more right-handed] by 2
- $P = 0.0155 \times 2 = 0.031$

- P = 0.031
 - There is a 3.1% chance of the observed data given that the null hypothesis is true
- Is this a small enough probability to reject the null?
- In many areas of biology, a P-value < 0.05 is small enough to reject the null hypothesis
- The **significance level**, α, is a probability used as a criterion for rejecting the null hypothesis.
 - If the *P*-value is less than or equal to α , then the null hypothesis is *rejected*. If the *P*-value is greater than α , then the null hypothesis is *not rejected*.

Errors in hypothesis testing

TABLE 6.3-1 Types of error in hypothesis testing.

Reality			_
Conclusion	H ₀ true	H ₀ false	
Reject H ₀	Type I error	Correct	power
Do not reject H ₀	Correct	Type II error	_

- **Type I error** is rejecting a true null hypothesis. The significance level α sets the probability of committing a Type I error.
- Type II error is failing to reject a false null hypothesis.
- The power of a test is the probability that a random sample will lead to rejection of a false null hypothesis

Ex 6.4: The genetics of mirror-image flowers

- To avoid self-fertilization, some species have mixture of right and left "handed" flowers
- · Study of genetics of this trait
 - Produce pure strains right/left individuals
 - Crossing pure strain of left X pure strain of right produced all right-handed offspring
 - Crossed these offspring and expected 1:3 of left:right
 F2 under simple model of inheritance

21

Ex 6.4: The genetics of mirror-image flowers

- · Study of genetics of this trait
 - Produce pure strains right/left individuals
 - Crossing pure strain of left X pure strain of right produced all right-handed offspring (F1)
 - Crossed these offspring and expected 1:3 of left:right
 F2 under simple model of inheritance

S		R	R
cross	L	RL	RL
ls	L	RL	RL

SS		R	L
cross	R	RR	RL
Sugar Suga Sugar Sugar Sugar Sugar Sugar Sugar Sugar Sugar Sugar Sugar Suga Sugar Sugar Sugar Sugar Sugar Sugar Sugar Sugar Sugar Sugar S	L	RL	LL

Hypotheses and test statistic

- H₀: left and right-handed offspring occur at 1:3 ratio
 - $H_0: p_L = 0.25$

- $H_A: p_L \neq 0.25$
- Study resulted in sample of 27 offspring with 6 that were left handed
 - Test statistic: $p_1 = 6/27 = 0.222$

23

Null distribution

- Test statistic: $p_L = 6/27 = 0.222$
- Expectation with sample of 27:
 - $-27 \times 0.25 = 6.75$

Fig 6.4-1

Fig 6.4-1

- $Pr[num \ left \le 6] = Pr[6] + Pr[5] + Pr[4] ... Pr[0]$
- $Pr[num \ left \le 6] = 0.471$
- · But test is two-sided
- $P = 0.471 \times 2 = 0.942$

25

Interpreting a non-significant result

• $P = 0.471 \times 2 = 0.942$

- Data are compatible or consistent with the null hypothesis
- "Fail to reject" the null hypothesis

One-sided tests

- In a one-sided (or one-tailed) test, the alternative hypothesis includes parameter values on only one side of the value specified by the null hypothesis
- H₀ is rejected only if the data depart from it in the direction stated by H_A
- In practice one-sided tests are used sparingly
- For this course, all hypothesis testing will be done using a two-tailed test

Hypothesis testing vs confidence intervals

- Recall that 95% confidence interval puts bounds on the most plausible population parameter based on your random sample
- Almost always, the 95% confidence interval and a hypothesis test give the same answer
- Example: null that $p_R = 0.5$
 - If p-value < 0.05 then you reject the null hypothesis
 - If 95% confidence interval does not include 0.5 then the data are inconsistent with the population proportion being 0.5

29

Hypothesis testing vs confidence intervals

- Magnitude:
 - Confidence interval has added benefit of giving actual magnitude (e.g., how far away is 0.5 from 95% CI)
 - P-value gives qualitative magnitude (smaller p-value means greater ability to reject the null)
- Generally, a hypothesis test is used more often, but both are good approaches