

Elektronika pre informačné technológie

Semestrálny projekt 2015/2016

Obsah

1	Príklad 1	1
2	Príklad 2	3
3	Príklad 3	4
4	Príklad 4	6
5	Príklad 5	9
6	Tabuľka výsledkov	11

Zadanie

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu postupného zjednodušování obvodu.

sk.	U[V]	$R1[\Omega]$	$R2[\Omega]$	$R3[\Omega]$	$R4[\Omega]$	$R5[\Omega]$	$R6[\Omega]$	$R7[\Omega]$	$R8[\Omega]$
G	130	380	420	330	440	450	650	410	275

Schéma obvodu

- 1. Pomocou metódy postupného zjednodušovania vyjadríme hodnotu celkového odporu rezistorov R_{ekv} obvodu.
- 2. Pomocou Ohmovho zákona vypočítame prúd $I,\,\mathrm{ktor\acute{y}}$ prechádza obvodom.
- 3. Opačným postupom vypočítame napätie U_{R3} a prúd I_{R3} .

$$R_A = \frac{R_2.R_3}{R_2 + R_3 + R_4} = 116.4706\Omega$$

$$R_B = \frac{R_2.R_4}{R_2 + R_3 + R_4} = 155.2941\Omega$$

$$R_C = \frac{R_3.R_4}{R_2 + R_3 + R_4} = 122.0168\Omega$$

$$R_{1A} = R_1 + R_A = R_1 + \frac{R_2.R_3}{R_2 + R_3 + R_4} = 496.4706\Omega$$

$$R_{57} = R_5 + R_7 = 860\Omega$$

$$R_{68} = \frac{R_6.R_8}{R_6 + R_8} = 193.2432\Omega$$

$$R_{B57} = R_B + R_{57} = R_5 + R_7 + \frac{R_2.R_4}{R_2 + R_3 + R_4} = 1015.2961\Omega$$

$$R_{C68} = R_C + R_{68} = \frac{R_6.R_8}{R_6 + R_8} + \frac{R_3.R_4}{R_2 + R_3 + R_4} = 315.26\Omega$$

$$R_X = \frac{R_{C68}.R_{B57}}{R_{C68} + R_{B57}} = \frac{(\frac{R_6.R_8}{R_6 + R_8} + \frac{R_3.R_4}{R_2 + R_3 + R_4}).(R_5 + R_7 + \frac{R_2.R_4}{R_2 + R_3 + R_4})}{(\frac{R_6.R_8}{R_6 + R_8} + \frac{R_3.R_4}{R_2 + R_3 + R_4}) + (R_5 + R_7 + \frac{R_2.R_4}{R_2 + R_3 + R_4})} = 240.5628\Omega$$

$$R_{EKV} = R_{1A} + R_X = 737.0334\Omega$$

$$I = \frac{U}{R_{EKV}} = \frac{125}{931,9453} = 0,1764A$$

$$-U + U_{R1} + U_{R2} + U_{R8} = 0 \implies U_{R3} = U - U_{R1} - U_{R8} = 36.953V$$

$$I_{R3} = \frac{U_{R3}}{R_3} = \underline{0.1119A}$$

Zadanie

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Theveninovy věty.

sk.	U[V]	$R1[\Omega]$	$R2[\Omega]$	$R3[\Omega]$	$R4[\Omega]$	$R5[\Omega]$
A	50	525	620	210	530	130

Schéma obvodu

- 1. Pomocou II. Kirchoffoveho zákona si zostavíme smyčky na vyjadrenie U_i
- 2. Spočítame hodnotu odporu R_i odporu medzi bodmi A,B (bez odporu R_3), pritom napätia sú "skratované".
- 3. Vypočítame veľkosť napätí U_{R1} a U_{R2} , ktoré sa nachádzajú na rezistoroch v prvej smyčke.
- 4. Vypočítame hodnotu napätia U_i naprázdno medzi bodmi A,B
- 5. Vypočítame prúd I_3 a napätie U_3

$$U_{R1} + U_i - U_{R2} = 0 \implies U_i = U_{R2} - U_{R1}$$

$$U_i + U_{R4} - U_{R5} = 0$$

$$R_i = \frac{R_1.R_4}{R_1 + R_4} + \frac{R_2.R_5}{R_2 + R_5} = 371.2108\Omega$$

$$U_{R1} = R1.\frac{U}{R_1 + R_4} = 24.8815V$$

$$U_{R2} = R2.\frac{U}{R_2 + R_5} = 41.53V$$

$$U_i = U_{R2} - U_{R1} = 16.4518V$$

$$I_{R3} = \frac{U_i}{R_i + R_3} = \underline{0.0283A}$$
 $U_{R3} = R_3.I_3 = \underline{5.9443V}$

Zadanie

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	$I_1[A]$	$I_2[A]$	$R1[\Omega]$	$R2[\Omega]$	$R3[\Omega]$	$R4[\Omega]$	$R5[\Omega]$
A	120	0.9	0.7	530	490	650	390	320

Schéma obvodu

- 1. Zostavíme rovnice pre uzly A,B,C podľa I. Kirchhoffovho zákona.
- 2. Zostavíme rovnicu pre každú vetvu s odporom a rovnice dosadíme do uzlových rovníc zostavených v predošlom bode.
- 3. Vypočítame veľkosť napätia U_A, U_B, U_C naprázdno medzi bodmi A,B
- 4. Vypočítame prúd ${\cal I}_{R2}$ a napätie ${\cal U}_{R2}$

$$A: I_{1} + I_{R2} - I_{R1} - I_{R3} = 0$$

$$B: I_{R3} + I_{2} - I_{R2} - I_{R5} = 0$$

$$C: I_{2} + I_{R4} - I_{R5} = 0$$

$$I_{R1}.R_{1} - U_{A} = 0 \qquad \Longrightarrow I_{R1} = \frac{U_{A}}{R_{1}}$$

$$I_{R2}.R_{2} - U + U_{A} - U_{B} = 0 \qquad \Longrightarrow I_{R2} = \frac{U + U_{B} - U_{A}}{R_{2}}$$

$$I_{R3}.R_{3} - U_{B} - U_{A} = 0 \qquad \Longrightarrow I_{R3} = \frac{U_{A} - U_{B}}{R_{3}}$$

$$I_{R4}.R_{4} - U_{C} = 0 \qquad \Longrightarrow I_{R4} = \frac{U_{C}}{R_{4}}$$

$$I_{R5}.R_{5} + U_{C} - U_{B} = 0 \qquad \Longrightarrow I_{R5} = \frac{U_{B} - U_{C}}{R_{5}}$$

$$A: I_{1} + \frac{U + U_{B} - U_{A}}{R_{2}} - \frac{U_{A}}{R_{1}} - \frac{U_{A} - U_{B}}{R_{3}} = 0$$

$$B: \frac{U_{A} - U_{B}}{R_{3}} + I_{2} - \frac{U + U_{B} - U_{A}}{R_{2}} - \frac{U_{B} - U_{C}}{R_{5}} = 0$$

$$C: I_{2} + \frac{U_{C}}{R_{4}} - \frac{U_{B} - U_{C}}{R_{5}} = 0$$

Dostali sme 3 rovnice s 3 neznámymi, bude vhodné použiť maticu. Do matice dosadíme známe hodnoty a upravujeme.

$$\begin{pmatrix} -9227 & 6042 & 0\\ 3648 & -6833 & 3185\\ 0 & -39 & 71 \end{pmatrix} \begin{pmatrix} U_A\\ U_B\\ U_C \end{pmatrix} = \begin{pmatrix} -1932645\\ -463840\\ -8736 \end{pmatrix}$$

Po prevedení Gauss-Jordanovej eliminácie dostaneme jednoznačné výsledky v tvare :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} \frac{7146891}{17321} \\ \frac{5373886}{17321} \\ \frac{820638}{17321} \end{pmatrix}$$

$$U_A = 412.6142V$$

 $U_B = 310.2515V$
 $U_C = 47.3782V$

$$U_{R3} = U_A - U_B = \underline{102.3672V}$$
 $I_{R3} = \underline{\frac{U_3}{R_3}} = \underline{0.1575A}$

Zadanie

Pro napájecí napětí platí: $u_1=U_1.sin(2\pi ft),~u_2=U_2.sin(2\pi ft).$ Ve vztahu pro napětí $u_{C2}=U_{C2}.sin(2\pi ft+\varphi C_2)$ určete $|U_{C2}|$ a φ_{C2} . Použijte metodu smyčkových

Pozn.: Pomocné "směry šipek napájecích zdrojů platí pro speciálny časový okamžik $\left(t = \frac{\pi}{2\omega}\right)$."

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$L_1[\mathrm{mH}]$	$L_2[\mathrm{mH}]$	$C_1[\mu \text{ F}]$	$C_2[\mu \text{ F}]$	f[Hz]
G	55	50	130	125	140	60	160	80	60

Schéma obvodu

- 1. Vypočítame si impedanciu \mathbb{Z}_1 až \mathbb{Z}_5
- 2. Vytvoríme si slučky podľa II.Kirchoffoveho zákona na stanovenie rovníc pre každý prúd pretekajúci obvodom
- 3. Zostavíme si matice na výpočet prúdu I_C
- 4. Určíme amplitúdu napätia U_{C2} a uhol φ

$$\begin{split} Z_1 &= R_1 + j X_{L1} \implies Z_1 = R_1 + j.2\pi f L_1 = 130 + 52.7788j \\ Z_2 &= j X_{L2} \implies Z_2 = j.2\pi f L_2 = 22.6195j \\ Z_3 &= R_2 = 125 \\ Z_4 &= -j X_{C1} \implies Z_4 = -j\frac{1}{j.2\pi f C_1} = -16.5786j \\ Z_5 &= -j X_{C2} \implies Z_5 = -j\frac{1}{j.2\pi f C_2} = -33.1573j \\ I_A Z_1 - U_2 + (I_A - I_C)Z_2 - U_1 = 0 \\ I_A Z_1 - U_2 + I_A Z_2 - I_C Z_2 - U_1 = 0 \\ I_A (Z_1 + Z_2) - I_C Z_2 = U_1 + U_2 \\ I_A (130 + 75.3983j) - I_C (22.6195j) = 105 \\ I_B Z_4 + U_1 + (I_B - I_C)Z_3 = 0 \\ I_B Z_4 + U_1 + I_B Z_3 - I_C Z_3 = 0 \\ I_B (Z_3 + Z_4) - I_C Z_3 = -U_1 \\ I_B (125 - 16.5786j) - I_C (125) = -55 \\ I_C Z_5 + (I_C - I_B)Z_3 + (I_C - I_A)Z_2 = 0 \\ I_C Z_5 + I_C Z_3 - I_B Z_3 + I_C Z_2 - I_A Z_2 = 0 \\ I_C (Z_5 + Z_3 + Z_2) - I_B (Z_3) - I_A (Z_2) = 0 \\ -I_A (22.6195j) - I_B (125) - I_A (125 - 10.538j) = 0 \end{split}$$

$$M_1 = \begin{pmatrix} 130 + 75.398j & 0 & -22.6195j \\ -22.6195j & -125 & 125 - 10.538j \\ 0 & 125 - 16.579j & -125 \end{pmatrix}$$

 $|M_1| = ((130 + 75.398j)(-125)(-125)) + 0 + (-22.6195j)(-22.6195j)(125 - 16.579j) - (0 + 0 + (130 + 75.398j)(125 - 10.538j)(125 - 16.579j)) = -296813.7635 + 462306.4836j$

$$M_4 = \begin{pmatrix} 130 + 75.398j & 0 & 105 \\ -22.6195j & -125 & 0 \\ 0 & 125 - 16.579j & -55 \end{pmatrix}$$

 $|M_4| = ((130 + 75.398j)(-125)(-55) + 0 + (105)(-22.6195j)(125 - 16.579j)) - (0 + 0 + 0) = 854374.1397 + 221480.7062j$

$$\begin{split} I_C &= \frac{\det(M_4)}{\det(M_1)} \\ I_C &= \frac{854374.1397 + 221480.7062j}{-296813.7635 + 462306.4836j} \\ I_C &= I_{C2} = -0.5009 - 1.5264j \\ \\ U_{C2} &= I_{C2}.Z_5 \\ U_{C2} &= (-0.5009 - 1.5264j).(-33.1573j) \\ U_{C2} &= -50.614 - 16.61j \\ \\ \varphi C2 &= \pi - arctg(\frac{16.61}{50.614}) \\ \varphi C2 &= \pi - 0.3171rad = 161.831929deg \\ \varphi C2 &= 2.8245rad \\ \\ U_{m_{C2}} &= |U_{C2}| \\ U_{m_{C2}} &= \sqrt{50.614^2 + 16.61^2} \end{split}$$

$$U_{m_{C2}} = \underline{53.27V}$$

$$U_{m_{C2}} = 53.27.sin(\omega t + 2.8245rad)$$

Zadanie

Sestavte diferenciální rovnici popisujúcí chování obvodu na obrázku, dále ji upravte dosazením hodnot parametru. Vypočítejte analytické řešení $u_C = f(t)$. Proveď te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	C[F]	$R[\Omega]$	$u_C(0)[A]$
ĺ	A	20	40	10	9

Schéma obvodu

- 1. Zostavíme rovnicu podľa II. Kirchhoffovho zákona pre obvod
- 2. Rovnicu dosadíme do axiómu a následne derivujeme

$$U_R + u_C - U = 0$$

$$i = \frac{U - u_C}{R}$$
Axióm : $u'_C = \frac{1}{C}$

$$u'_C = \frac{U - u_C}{RC}$$

$$u'_C = \frac{20 - u_C}{400}$$

$$u'_C + \frac{1}{400}u_C = \frac{1}{40}$$

Zostavíme charakteristickú rovnicu

$$\lambda + \frac{1}{400} = 0$$

$$\lambda = -\frac{1}{400}$$

Očakávaný tvar riešenia

$$u_C(t) = c(t)e^{\lambda t}$$

$$u_C(t) = c(t)e^{-\frac{1}{400}t}$$

$$u_c'(t) = c'(t)e^{-\frac{1}{400}t} + c(t)e^{-\frac{1}{400}t}.(-\frac{1}{400})$$

$$u_c'(t) + \frac{1}{400}u_C(t) = \frac{20}{400}$$

$$c'(t)e^{-\frac{1}{400}t} - c(t)e^{-\frac{1}{400}t} + c(t)e^{-\frac{1}{400}t} = \frac{20}{400}$$

$$c'(t)e^{-\frac{1}{400}t} = \frac{20}{400}$$

$$c'(t) = \frac{20}{400} e^{\frac{1}{400}t}$$

$$\int c'(t)dt = \int \frac{20}{400} e^{\frac{1}{400}t} dt$$

$$c(t) + K_1 = \frac{20}{400} \cdot 400 \cdot e^{\frac{1}{400}t} + K_2$$

$$c(t) = 20.e^{\frac{1}{400}t} + K$$

$$u_C(t) = (20.e^{\frac{1}{400}t} + K).e^{-\frac{1}{400}t}$$

$$u_C(t) = 20 + K.e^{-\frac{1}{400}t}$$

Pre
$$u_C(0) = 9$$

$$u_C(0) = 20 + K$$

$$9 = 20 + K$$

$$-11 = K$$

$$u_C(t) = 20 - 11.e^{-\frac{1}{400}t}$$

6 Tabuľka výsledkov

Číslo príkladu	Skupina	Výsledky
1	G	$U_{R3} = 36.953V \ I_{R3} = 0.1119A$
2	A	$I_{R3} = 0.0283A \ U_{R3} = 5.9443V$
3	A	$U_A = 412.6142V \ U_B = 310.2515V \ U_C = 47.3782V$
4	G	$U_{C2} = 53.27 \varphi = 2.8245 rad$
5	A	$u_C(t) = 20 - 11.e^{-\frac{1}{400}t}$