ASSIGNMENT 9

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ 2022 JULY 26, SHIFT 1

1)	If $z \neq 0$	be a complex	number	such that	z-	$\frac{1}{z} = 2,$	then	the	maximum	value	of
	z is:										

a)
$$\sqrt{2}$$

c)
$$\sqrt{2} - 1$$

c)
$$\sqrt{2} - 1$$
 d) $\sqrt{2} + 1$

1

2) Which of the following matrices can NOT be obtained from the matrix $\begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$ by a single elementary row operation?

a)
$$\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

a)
$$\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$
 b) $\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ c) $\begin{bmatrix} -1 & 2 \\ -2 & 7 \end{bmatrix}$ d) $\begin{bmatrix} -1 & 2 \\ -1 & 3 \end{bmatrix}$

c)
$$\begin{bmatrix} -1 & 2 \\ -2 & 7 \end{bmatrix}$$

$$d) \begin{bmatrix} -1 & 2 \\ -1 & 3 \end{bmatrix}$$

3) The system of equations

$$x + y + z = 6$$

$$2x + 5y + \alpha z = \beta$$
$$x + 2y + 3z = 14$$

has infinitely many solutions. Then $\alpha + \beta$ is equal to:

4) Let the function $f(x) = \begin{cases} \frac{\log_e(1+5x) - \log_e(1+ax)}{x}, & \text{if } x \neq 0 \\ 10, & \text{if } x = 0 \end{cases}$ be continuous at x = 0. The α is equal to:

a) 10

5) If [t] denotes the greatest integer $\leq t$, then $\int_0^1 \left[2x-13x^2-5x+21+1\right] dx$ is: value of

a)
$$\frac{\sqrt{37}+\sqrt{13}-4}{6}$$

b)
$$\frac{\sqrt{37}-\sqrt{13}-4}{6}$$

a)
$$\frac{\sqrt{37}+\sqrt{13}-4}{6}$$
 b) $\frac{\sqrt{37}-\sqrt{13}-4}{6}$ c) $\frac{-\sqrt{37}-\sqrt{13}+4}{6}$ d) $\frac{-\sqrt{37}+\sqrt{13}+4}{6}$

d)
$$\frac{-\sqrt{37}+\sqrt{13}+4}{6}$$

6) Let $[a_n]_{n=0}^{\infty}$ be a sequence such that $a_0 = a_1 = 0$ and $a_{n+2} = 3a_{n+1} - 2a_n + 1$, $\forall n \geq 0$. Then $a_{25} - 2a_{23} - 2a_{22} + 4a_{24}$ is equal to:

a) 483

b) 528

c) 575

d) 624

7) $\sum_{r=1}^{20} (r^2 + 1) (r!)$ is equal to:

	c) $2 \tan^{-1} \left(\frac{1}{k+1} \right) = \log_e \left(k^2 + 2k + 2 \right)$								
	d) $2\tan^{-1}\left(\frac{1}{k}\right) = \log k$	$g_e\left(\frac{k^2+1}{k^2}\right)$							
10)	Let $y = y(x)$ be the $\frac{x+3}{x+1}$, $x > -1$, which	solution curve of the h passes through the	differential equation $\frac{dy}{dz}$ point $(0,1)$. Then y (1)	$\frac{y}{x} + \frac{2x^2 + 11x + 13}{x^3 + 6x^2 + 11x + 6}y = 1$ is equal to:					
	a) $\frac{1}{2}$	b) $\frac{3}{2}$	c) $\frac{5}{2}$	d) $\frac{7}{2}$					
11)	such that $a^2 + 11$ $(10(\cos \alpha - \sin \alpha),$	$a + 3(m_1^2 + m_2^2)$ 10(\sin \alpha + \cos \alpha)), \cdot \sin \alpha) x + (\sin \alpha +	adjacent sides of a $=220$. If one verte where $\alpha \in (0, \frac{\pi}{2})$, and $\cos \alpha) y = 10$, then 72	ex of the square is d the equation of one					
	a) 119	b) 128	c) 145	d) 155					
12)	The number of elen	nents in the set $S =$	$\left[x \in \mathbb{R} : 2\cos\left(\frac{x^2 + x}{6}\right)\right]$	$=4^x + 4^{-x}$] is:					
	a) 1	b) 3	c) 0	d) infinite					
13)	Let $A(\alpha, -2)$, $B(\alpha, -2)$ circumcentre of $\triangle A$	$(\alpha, 6)$, and $C\left(\frac{\alpha}{4}, -2\right)$ (BC), then which of t	be vertices of a $\triangle A$ he following is NOT c	BC . If $(5, \frac{\alpha}{4})$ is the orrect about $\triangle ABC$:					
	a) area is 24b) perimeter is 25	c) circumradius is 5	d) inradius is 2						
14)		R is a point on the p	wn from the point P plane such that $\angle PRQ$						

a) 22! - 21! b) 22! - 2(21!) c) 21! - 2(20!) d) 21! - 20!

9) If the solution curve of the differential equation $\frac{dy}{dx}=\frac{x+y-2}{x-y}$ passes through the point (2,1) and (k+1,2), k>0, then

8) For $I(x) = \int \frac{\sec^2 x - 2022}{\sin^{2022} x} dx$, if $I(\frac{\pi}{4}) = 2^{1011}$, then

a) $3^{1010}I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0$ b) $3^{1010}I\left(\frac{\pi}{6}\right) - I\left(\frac{\pi}{3}\right) = 0$ c) $3^{1011}I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0$ d) $3^{1011}I\left(\frac{\pi}{6}\right) - I\left(\frac{\pi}{3}\right) = 0$

a) $2 \tan^{-1} \left(\frac{1}{k} \right) = \log_e \left(k^2 + 1 \right)$ b) $\tan^{-1} \left(\frac{1}{k} \right) = \log_e \left(k^2 + 1 \right)$

b) $\sqrt{3}$ c) $2\sqrt{3}$ d) 3

15) If (2,3,9), (5,2,1), $(1,\lambda,8)$, and $(\lambda,2,3)$ are coplanar, then the product of all possible values of λ is:

a) $\frac{21}{2}$ b) $\frac{59}{8}$ c) $\frac{57}{8}$