

BÀI THỰC HÀNH SỐ 2

I. Mục tiêu

Trong bài thực hành này, sinh viên sẽ thực hành lệnh **assign** (continuous assignment) và cách gọi module theo thứ bậc để thiết kế các mạch tổ hợp.

II. Chuẩn bị thực hành

- Sinh viên phải chuẩn bị code Verilog cho tất cả các câu trong phần nội dung thực hành và nộp cho GVHD vào đầu buổi học.
- Sinh viên nào không có bài chuẩn bị được xem là vắng buổi học hôm đó.
- Bài chuẩn bi được tính vào điểm bài báo cáo của Lab.

III. Nội dung thực hành

Câu 1.

a) Thiết kế bộ Mux_2to1 1-bit:

b) Sử dụng bộ Mux_2to1 1-bit để thiết kế bộ Mux_2to1_8-bit như sau:

Yêu cầu: Nạp mạch và kiểm tra trên kit DE2

Câu 2.

a) Thực hiện bộ Mux 5to1_1-bit từ các Mux 2to1_bit

Yêu cầu:

Thực hiện mô phỏng với Vector Waveform cho mạch Mux_5to1 trên

b) Thiết kế bộ Mux_5to1_3-bit

Yêu cầu:

Nạp mạch và kiểm tra trên kit DE2

<u>Câu 3.</u>

a) Hiện thực bộ Decoder cho Led 7 đoạn (7-segment) có chức năng giải mã giá trị nhị phân 3 bit như trong bảng sự thật bên dưới.

Thực hành: Thiết kế Vi mạch với HDL (CE221)

Tín hiệu nhập là ba bit c2,c1,c0 nối vào các SW[17:15]. Tín hiệu xuất ra led 7 đoạn HEX0[6:0]

b) Kết hợp với mạch trong câu **a** và mạch trong câu 3 để thiết kế mạch sau:

Chọn lựa các giá trị Switch SW[14:0] thích hợp để HEX0 hiển thị lần lượt các chữ H, E, L, L, O khi chuyển các switch SW[17:15].

c) Sử dụng thêm các HEX4, HEX3, HEX2, HEX1 và HEX0 để hiển thị mạch theo bảng sau:

cur cur cur	Character pattern HEX4 HEX3 HEX2 HEX1 HEX0				
$SW_{17} SW_{16} SW_{15}$	HEX4	HEX3	HEX2	HEX1	HEX0
000	Н	E	L		O
001	E	L	L	O	Н
010	L	L	O	Н	E
011	L	O	Η	E	L
100	O	Н	E	L	L

Nạp mạch xuống KIT DE2 để kiểm tra kết quả.

Gợi ý: sử dụng 5 bộ (Mux + Decoder) trong câu b và kết nối các SW hợp lí.

d) Sử dụng hết 8 Led 7 đoạn trên KIT DE2 để thiết kế mạch hiển thị theo bảng sau

Thực hành: Thiết kế Vi mạch với HDL (CE221)

	Character pattern							
$SW_{17} SW_{16} SW_{15}$	H 7	H6	H5	H4	Ĥ3	H2	H1	H0
000				Н	E	L	L	О
001			Н	E	L	L	O	
010		Η	E	L	L	O		
011	Н	E	L	L	O			
100	Е	L	L	O				Н
101	L	L	O				Н	E
110	L	O				Η	E	L
111	О				Н	E	L	L

<u>Câu 4.</u>
Thiết kế mạch chuyển đổi số Binary sang số Decimal như bảng sau:

Binary value SW[3:0]	Decimal digits HEX1 HEX0			
0000	0	0		
0001	0	1		
0010	0	2		
1001	0	9		
1010	1	0		
1011	1	1		
1100	1	2		
1101	1	3		
1110	1	4		
1111	1	5		

Gợi ý: Mạch chuyển đổi có thể được thiết kế theo sơ đồ bên dưới.

Mạch Comparator để kiểm tra số nhập với 9. Ngõ ra Comparator z=0 nếu số nhỏ hơn 9, và z=1 nếu số lớn hơn 9.

<u>Câu 5.</u>

a) Thực hiện mạch D-latch có sơ đồ như sau:

Yêu cầu: Kiểm tra bằng mô phỏng sau đó nạp mạch xuống KIT DE2 và kiểm tra kết quả. Gợi ý gán chân:

- -D = SW[0]
- -Clk = SW[1]
- -Q = LEDR[0]

b) Sử dụng D-latch trong câu a để thiết kế D-Flipflop kích cạnh lên theo dạng Master-Slave có sơ đồ như sau:

Yêu cầu: Kiểm tra bằng mô phỏng sau đó nạp mạch và kiểm tra trên KIT DE2

c) Thực hiện mạch sau:

Yêu cầu: Thực hiện mô phỏng Vector Waveform để so sánh giá trị 3 ngõ ra Qa, Qb, Qc

Lưu ý: SV chỉ sử dụng lệnh Continuous assignment để thiết kế cho các bài tập trên.

TÀI LIỆU THAM KHẢO

Digital_Logic lab của **Altera**.