Spatial factor analysis

James T. Thorson

```
library(tinyVAST)
library(fmesher)
set.seed(101)
```

tinyVAST is an R package for fitting vector autoregressive spatio-temporal (VAST) models. We here explore the capacity to specify a spatial factor analysis, where the spatial pattern for multiple variables is described via their estimated association with a small number of spatial latent variables.

Spatial factor analysis

We first explore the ability to specify two latent variables for five manifest variables. To start we simulate two spatial latent variables, project via a simulated loadings matrix, and then simulate a Tweedie response for each manifest variable:

```
# Simulate settings
theta_xy = 0.4
n_x = n_y = 10
n_c = 5
rho = 0.8
resid_sd = 0.5

# Simulate GMRFs
R_s = exp(-theta_xy * abs(outer(1:n_x, 1:n_y, FUN="-")))
R_ss = kronecker(X=R_s, Y=R_s)
delta_fs = mvtnorm::rmvnorm(n_c, sigma=R_ss)

#
L_cf = matrix( rnorm(n_c^2), nrow=n_c )
L_cf[,3:5] = 0
L_cf = L_cf + resid_sd * diag(n_c)

#
d_cs = L_cf %*% delta_fs
```

We then specify the model as expected by tiny VAST:

```
# Shape into longform data-frame and add error
Data = data.frame( expand.grid(species=1:n_c, x=1:n_x, y=1:n_y), "var"="logn", z=exp(as.vector(d_cs)) )
Data$n = tweedie::rtweedie( n=nrow(Data), mu=Data$z, phi=0.5, power=1.5 )
mean(Data$n==0)
#> [1] 0.03
```

```
# make mesh
mesh = fm_mesh_2d( Data[,c('x','y')] )
#
sem = "
   f1 -> 1, 11
   f1 -> 2, 12
   f1 -> 3, 13
   f1 -> 4, 14
   f1 -> 5, 15
    f2 -> 2, 16
    f2 -> 3, 17
    f2 -> 4, 18
    f2 -> 5, 19
    f1 <-> f1, NA, 1
   f2 <-> f2, NA, 1
    1 <-> 1, NA, 0
    2 <-> 2, NA, 0
    3 <-> 3, NA, 0
   4 < -> 4, NA, 0
    5 <-> 5, NA, 0
# fit model
out = fit( sem = sem,
                           data = Data,
                           formula = n ~ 0 + factor(species),
                           spatial_graph = mesh,
                           family_link = rbind("obs"=c(1,1)),
                           variables = c( "f1", "f2", 1:n_c ),
                           data_colnames = list(spatial = c("x","y"), variable = "species", time = "time", distribution
                           control = tinyVASTcontrol(quiet=TRUE, trace=0, gmrf="proj") )
out
#> $call
\# fit(data = Data, formula = n \sim 0 + factor(species), sem = sem,
                 family\_link = rbind(obs = c(1, 1)), data\_colnames = list(spatial = c("x", ata_colnames = c("x", ata
                            "y"), variable = "species", time = "time", distribution = "dist"),
#>
#>
                 variables = c("f1", "f2", 1:n_c), spatial\_graph = mesh, control = tinyVASTcontrol(quiet = TRUE,
                           trace = 0, gmrf = "proj"))
#>
#>
#> $opt
#> $opt$par
                                                                                                                                         alpha_j
                                                                                                                                                                     theta\_z
#>
                 alpha_j
                                                                            alpha\_j
                                                                                                        alpha\_j
                                                                                                                                                                                                   theta\_z
                                                                                                                                                                                                                                  theta\_z
                                            alpha\_j
#> 0.07570783 -0.02014888 0.22318277 0.14728087 -0.26514652 0.68016356 0.68285927 0.31701846 0.5
#>
                  theta_z log_sigma
                                                                     log_sigma
                                                                                                   log\_kappa
#> -0.21613586 -0.52205331 0.21851154 -0.26761196
#>
#> $opt$objective
#> [1] 631.3721
#> $opt$convergence
#> [1] 0
#>
```

```
#> $opt$iterations
#> [1] 71
#>
#> $opt$evaluations
#> function gradient
        84
#>
#> $opt$message
#> [1] "relative convergence (4)"
#>
#> $sdrep
#> sdreport(.) result
           Estimate Std. Error
#>
#> alpha_j 0.07570783 0.31850774
#> alpha_j -0.02014888 0.39763412
#> alpha_j 0.22318277 0.21847161
#> alpha_j 0.14728087 0.27057852
#> alpha_j -0.26514652 0.14638317
#> theta_z      0.68016356 0.11510781
#> theta_z 0.68285927 0.15773444
#> theta_z 0.31701846 0.10358197
#> theta_z 0.52123769 0.10914344
#> theta_z 0.14819781 0.09200614
#> theta_z 0.51873790 0.13709521
#> theta z -0.31998633 0.10049164
#> theta z 0.23601680 0.10640963
#> theta_z -0.21613586 0.09652980
#> log_sigma -0.52205331 0.06761637
#> log_sigma 0.21851154 0.13313019
#> log_kappa -0.26761196 0.21030826
#> Maximum gradient component: 0.002233932
#>
#> $run_ time
#> Time difference of 2.896204 secs
```

We can compare the true loadings (rotated to optimize comparison):

with the estimated loadings

```
# Extract and rotate estimated loadings
Lhat_cf = matrix( 0, nrow=n_c, ncol=2 )
Lhat_cf[lower.tri(Lhat_cf,diag=TRUE)] = as.list(out$sdrep, what="Estimate")$theta_z
Lhat_cf = rotate_pca( L_tf=Lhat_cf, order="decreasing" )$L_tf
#> Warning in sqrt(Eigen$values): NaNs produced
```

```
# Print
Lhat_cf

#> [,1] [,2]

#> [1,] 0.64115842 -0.22702059

#> [2,] 0.81684052 0.26106964

#> [3,] 0.19203553 -0.40744854

#> [4,] 0.57012258 0.04850667

#> [5,] 0.06755873 -0.25320569
```

Or we can specify the model while ensuring that residual spatial variation is also captured:

```
sem = "
 f1 -> 1, 11
 f1 -> 2, 12
 f1 -> 3, 13
 f1 -> 4, 14
 f1 -> 5, 15
 f2 -> 2, 16
 f2 -> 3, 17
 f2 -> 4, 18
 f2 -> 5, 19
 f1 <-> f1, NA, 1
 f2 <-> f2, NA, 1
 1 <-> 1, sd_resid
 2 <-> 2, sd_resid
 3 <-> 3, sd_resid
 4 <-> 4, sd_resid
 5 <-> 5, sd_resid
# fit model
out = fit( sem = sem,
           data = Data,
           formula = n ~ 0 + factor(species),
           spatial_graph = mesh,
           family_link = rbind("obs"=c(1,1)),
           variables = c( "f1", "f2", 1:n_c ),
           data_colnames = list(spatial = c("x","y"), variable = "species", time = "time", distribution
           control = tinyVASTcontrol(quiet=TRUE, trace=0, gmrf="proj") )
# Extract and rotate estimated loadings
Lhat_cf = matrix( 0, nrow=n_c, ncol=2 )
Lhat_cf[lower.tri(Lhat_cf,diag=TRUE)] = as.list(out$sdrep, what="Estimate")$theta_z
#> Warning in Lhat_cf[lower.tri(Lhat_cf, diag = TRUE)] = as.list(out$sdrep, : number of items to replac
Lhat_cf = rotate_pca( L_tf=Lhat_cf, order="decreasing" )$L_tf
#> Warning in sqrt(Eigen$values): NaNs produced
# Print
Lhat cf
                          [,2]
              [,1]
#> [1,] 0.69107303 -0.17789472
#> [2,] 0.74310396  0.22625726
```

- #> [3,] 0.07164183 -0.42390919 #> [4,] 0.47345070 -0.02104359 #> [5,] 0.06781277 -0.07169282