PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06344963 A

(43) Date of publication of application: 20.12.94

(51) Int. CI

B62D 65/00 B23P 21/00 B25J 15/00

(21) Application number: 06052686

(71) Applicant:

MAZDA MOTOR CORP

(22) Date of filing: 25.02.94

(72) Inventor:

FUJII KANJI

(30) Priority:

15.04.93 JP 05 88449

FUJIWARA HIDEKI

(54) MOUNTING OF VEHICULAR SEAT ON VEHICLE AND ROBOT HAND FOR HOLDING VEHICLE SEAT

(57) Abstract:

PURPOSE: To easily mount a vehicular seat in the interior of a vehicle without spatial restraint caused by the small interior of the vehicle.

CONSTITUTION: A robot hand has a holding part 50 having the front and rear clamping hooks 59 and 63 in pair, and the holding part 50 is inserted between a seat back 14 and a seat cushion 15 through the front space (upper space of the seat cushion 15) K of the seat back 14. After this insertion, a cylinder 55 installed in the holding part 50 is extended, and the clamping hooks 59 and 63 are set at the erection positions. Accordingly, the lower edge part and the front and rear parts at the lower part of the seat back 14 are three-point-held by the holding part 50.

COPYRIGHT: (C)1994,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-344963

(43)公開日 平成6年(1994)12月20日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
B62D	65/00	Н			
B 2 3 P	21/00	303 B	7181 -3 C		
В 2 5 Ј	15/00	Α	8611-3F	•	

審査請求 未請求 請求項の数15 FD (全 11 頁)

(21)出顧番号	特額平6-52696	(71)出願人	000003137
•			マツダ株式会社
(22)出願日	平成6年(1994)2月25日		広島県安芸郡府中町新地3番1号
		(72)発明者	藤井 寛治
(31)優先権主張番号	特顧平5-88449		広島県安芸郡府中町新地3番1号 マツダ
(32)優先日	平5 (1993) 4月15日		株式会社内
(33)優先権主張国	日本(JP)	(72)発明者	藤原 英樹
			広島県安芸郡府中町新地3番1号 マツダ
			株式会社内
		(74)代理人	弁理士 村田 実
		1	

(54) 【発明の名称】 車両シートの車両への搭載方法および車両シート把持用ロポットハンド

(57)【要約】

【目的】車両内部という狭い空間の制約を受けることなく、車両シートを車両内部に容易に搭載できるようにする。

【構成】ロボットハンド9に、前後一対のクランプ爪59、63を有する保持部50が設けられる。保持部50が、シートパック14の前方空間(シートクッション15の上方空間)Kを通して、シートバック14とシートクッション15との間に挿入される。この挿入後、保持部50に設けたシリンダ55が伸長されて、各グランプ爪59、63が起立位置とされる。これにより、シートパック14の下端部と下部前と下部後とが、保持部50によって3点保持される。

【特許請求の範囲】

【請求項1】シートパックとシートクッションとからな る車両シートを、ロボットハンドに把持させつつ車両内 部に搭載するようにした車両シートの車両への搭載方法 において、

前記ロボットハンドによる前記車両シートの把持が、

前記ロボットハンドに設けられた保持手段を、前記シー トバックとシートクッションとの間に形成されている間 隙に対して、前記シートパックの前方に形成される前方 空間側から挿入し、

この後、前記保持手段に設けられた前後一対の折曲部を 作動させて、該一対の折曲部によって前記シートパック の下端部を前後方向から挟持させる、ことによって行わ れる、ことを特徴とする車両シートの車両への搭載方

【請求項2】請求項1において、

前記ロボットハンドによる前記車両シートの把持が、さ らに、前記ロボットハンドに設けられて前記シートバッ クの前方から眩シートパックに接近される左右一対の挟 **持手段によって該シートパックの左右両端を挟持させる 20** ことによって行われるもの。

【蘭求項3】 請求項1において、

前記ロボットハンドによる前記車両シートの把持が、さ らに、前記ロボットハンドに設けた前面支持手段によっ て、前記シートパックの前面を押圧することによって行 なわれるもの。

【請求項4】 請求項1ないし請求項3のいずれか1項に

車両が搬送される車両用搬送ラインに沿って、前記シー トバックが上下方向に伸びかつ前記シートクッションが 30 ほば水平方向に伸びた状態で前記車両シートを搬送する シート用搬送ラインが設けられ、

前記ロボットハンドが、前記シート用搬送ライン上の車 阿シートを把持して、前記車両用搬送ライン上の車両に 対して移載するもの。

【請求項5】シートパックとシートクッションとの間に 形成される間隙に挿入される保持手段と、

前配保持手段に設けられ、前配シートバックの下端部を 前後方向から挟持するための前後一対の折曲機構と、

前記折曲機構を作動させるための駆動手段と、備えてい 40 るものである。 ることを特徴とする車両シート把持用ロボットハンド。

【請求項6】請求項5において、

前記折曲機構が、前配保持手段にそれぞれ回動自在に設 けられると共に互いに連動された前後一対のクランプ爪 を備え、

前配駆動手段により前配前後一対クランプ爪が、前配シ ートパックの下端部を前後から挟持するための起立位置 と、前記間隙から抜き差しするときの倒立位置との間で 切換えが行われるもの。

【請求項7】請求項5において、

前記保持手段が前記間隙に所定深さ挿入されたか否かを 検出するための検出手段を備えているもの。

【讃求項8】讃求項5において、

前記ロボットハンドが、把持した車両シートを、車両搬 送ライン上を搬送される車両の内部に移載するもの。

【請求項9】請求項5において、

ロボットハンドが、フローティング機構を介してロボッ トアームに保持されているもの。

【請求項10】請求項9において、

10 前記フローティング機構により、前後、左右および上下 の3次元方向に前記ロボットハンドを移動可能としてい るもの。

【請求項11】請求項10において、

前記フローティング機構が、前記ロボットハンドを下方 から支承する支承手段を備えているもの。

【請求項12】請求項10において、

前記フローティング機構が、前記ロボットハンドを所定 の基準位置に復帰させる基準位置復帰手段を備えている もの。

【請求項13】請求項5において、

前記シートパックを左右両端から挟持する左右一対の挟 持手段をさらに備えているもの。

【請求項14】請求項13において、

前記左右一対の挟持手段は、互いに左右対称に動くよう に連結され、

前記左右一対の挟持手段の最大間隔が、前記シートバッ クの左右幅よりも所定分大きくなるように設定され、

前記左右一対の挟持手段の間隔を変更するための駆動手 段が設けられ、

前記ロボットハンドは、フローティング機構により、少 なくとも前記シートパックの左右方向に変移可能として ロボットアームに保持されているもの。

【請求項15】請求項5において、

前記シートパックの前面に押圧される前面支持手段をさ らに備えているもの。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、車両シートの車両への 搭載方法および車両シート把持用ロボットハンドに関す

【従来技術】従来の車両シートの把持用ロボットハンド としては、例えば特開昭62-218289号公報に開 示されたものがある。同公報に示された車両シートの把 持用ロポットハンドは、図12に示すように、シートバ ック101の上部を挟持するために、シートパック10 1の前面から当接するピストンロッド102と背面から 当接するクランプアーム103とを有し、これら当接部 位を押圧挟持するシートパック保持機構104を備えて 50 いる。上記のクランプアーム103は、シートバック1

01の上側から後側に回り込む状態でシートパック10 1の背面を押圧するようになっている。

【0003】また、上記の把持用ロボットハンドは、シートクッション105の前部を挟持するために、シートクッション105の前側の座面を押圧するクランプレバー106と、シートクッション105の前側の下面に当接するクランプアーム107とによって当接部位を押圧挟持するシートクッション把持機構108を備えている。

【0004】さらに、上記の把特用ロボットハンドは、シートパック101とシートクッション105との基部間僚内に進入してシートパック101の下端部を支持する支持機構109を備えている。

【0005】したがって、上記の把持用ロボットハンドは、支持機構109にてシートパック101とシートクッション105との間に挿入することによる下端部の支持を付加したことによって、車両シートを確実に把持しながら、車両シートを車両内部に搬入できるようになっている。そして、搭載後は、各支持及び把持を解除した後、車両外に脱出するようになっている。

[0006]

【発明が解決しようとする課題】しかしながら、上記従来の車両シートの把持用ロボットハンドでは、シートバック101の背面を押圧して支持するために、シートバック101の上側から背後に回り込む構造となっているので、車両シートの搭載後に把持用ロボットハンドを脱出させる際に、天井高さの低い車種では、クランプアーム103の車両外への回収が困難であるため、適用車種が制限されるという問題点を有している。

【0007】また、上記のシートクッション把持機構1 3008は、シートクッション105の前側から覆い被さる 状態で挟持する構造となっているので、シートクッション105の前方に充分な空間がない車種では、クランプアーム107の回収が困難であり、上記同様、適用車種が制限されるという問題点を有している。

【0008】本発明は、上配従来の問題点にみなされたものであって、その目的は、車両シートを確実に把持できると共に、天井高さの低い車種や、シートクッション前方に充分な空間がない車種においても、車両シート搭載後の装置の回収を容易に行ってい得る車両シートの車 40両への搭載方法および車両シート把持用ロボットハンドを提供することにある。

[0009]

 を、前記シートバックとシートクッションとの間に形成されている間隙に対して、前記シートバックの前方に形成される前方空間側から挿入し、この後、前配保持手段に設けられた前後一対の折曲部を作動させて、該一対の折曲部によって前記シートバックの下端部を前後方向から挟持させる、ことによって行われる、ような構成としてある。上記構成を前提とした、本発明の好ましい娘様は、特許請求の範囲における請求項2~請求項4に記載の通りである。

【0010】前記目的を達成するため、本発明によるロボットハンドは、次のような構成としてある。すなわち、シートパックとシートクッションとの間に形成される間隙に挿入される保持手段と、前記保持手段に設けられ、前記シートパックの下端部を前後方向から挟持するための前後一対の折曲機構と、前記折曲機構を作動させるための駆動手段と、を備えた構成としてある。上記構成を前提とした本発明の好ましい態様は、特許請求の範囲における請求項6以下に記載の通りである。

[0011]

20 【発明の効果】請求項1に記載された発明によれば、シートの保持を、シートパックとシートクッションとの間に形成される間隙に保持手段を挿入して、当該保持手段により、シートパックの下端部と下部前と下部後との3点位置で保持することにより行うので、シートの保持を確実に行うことができる。

【0012】そして、保持手段の上記間隙に対する挿入は、シートバックの前方空間を通してのみ行うことができるので、車両に車両シートを搭載した状態で、車両の天井が低くてもあるいはシートクッションの前方に十分な空間が存在しなくとも、当該保持手段を容易に車両外部へ回収つまり退避させることができる。

【0013】 請求項2に記載したような構成とすることにより、左右一対の挟持板を利用して、車両シートをより一層確実に保持することができる。また、この挟持板も、シートバックの前方空間を通してのみ当該シートバックに接近あいは退避させることができるので、請求項1で得られる効果をそのまま奏するものとなる。

【0014】 請求項3に配載したような構成とすることにより、押圧手段によってシートパックの前方への倒れというものを防止して、車両シートをさらに一層確実に保持する上で好ましいものとなる。また、この押圧手段も、シートパックの前方空間を通してのみ当該シートパックに接近あいは退避させることができるので、請求項1で得られる効果をそのまま奏するものとなる。

【0015】 請求項4に記載したような構成とすることにより、シート用搬送ライン上においてもっとも一般的な姿勢状態にある車両シートを、車両に搭載する上で好ましいものとなる。

法において、前記ロボットハンドによる前記車両シート 【0016】請求項5に記載された発明によれば、請求の把持が、前記ロボットハンドに設けられた保持手段 50 項1での方法を実行するのに好適なロボットハンドを提

(4)

供することができる。

【0017】 請求項6に記載したような構成とすることにより、起立位置にある折曲機構を利用してシートパックの保持を確実に行いつつ、折曲機構を含む保持手段の抜き差しを当該折曲機構を倒伏位置とすることにより容易に行うことができる。

5

【0018】 請求項7に記載したような構成とすることにより、検出手段を利用して、シートパックが確実に保持することが可能な状態となったか否かを容易に知ることができる。

【0019】請求項8に記載したような構成とすることにより、請求項1に記載されたロボットハンドを利用して、車両に搭載された状態では車両シートの周囲に狭い空間しか存在しないような場合においても、車両シートを車両に容易に搭載することができる。

【0020】 請求項9に記載したような構成とすることにより、フローティング機構を利用して、ロボットハンドと車両シートとの間での相対位置関係のずれを吸収して、ロボットハンドで車両シートを把持する上で好ましいものとなる。

【0021】請求項10に記載したような構成とすることにより、3次元方向でのフローティング機構とすることにより、車両シートとロボットハンドとの3次元方向での相対位置ずれを吸収する上で好ましいものとなる。

【0022】 請求項11に記載したような構成とすることにより、かなりの重量物となるロボットハンドを、支承手段を利用して確実に支承して、フローティング機構による相対位置ずれ吸収機能を十分発揮させる上で好ましいものとなる。

【0023】 請求項12に記載したような構成とするこ 30 とにより、フローティング機構を利用してロボットハンドと車両シートとの間での相対位置ずれを吸収しつつ、基準位置復帰手段を利用して上記相対位置ずれをなくして、ロボットハンドとこれに把持された車両シートと位置関係を所定の基準位置の関係とする上で好ましいものとなる。

【0024】 請求項13に記載したような構成とすることにより、請求項2の効果が得られるロボットハンドを提供することができる。

【0025】 請求項14に配載したような構成とするこ 40 とにより、ロボットハンドに把持された車両シートを、 ロボットハンドに対して左右方向においてきちんと位置 決めされた状態とすることができる。

【0026】 請求項15に記載したような構成とすることにより、請求項3で得られる効果と同様の効果を得ることができる。

[0027]

【実施例】

全体の概要

以下、本発明の実施例を添付した図面に基づいて説明す 50 それぞれ、ガイド23が褶動自在に支持されている。ま

る。車両の組み立てラインを示す図9~図11において、1はロボット、2は車両3が搬送される車両用搬送ラインとしての車両搬送コンペア、4は車両シート5を搬送するためのシート搬送ラインとしてのシートコンペアである。シートコンペア4は、フロントシートを搬送するもので、車両用コンペア2に沿って左右一対設けられており、一方のシート用コンペアによって搬送されるシートが運転席用とされ、他方のシート用コンペアによって搬送されるシートが助手席用とされている。

10 【0028】シートコンペア4により搬送されるシート 5は、シートバック14と、シートクッション15とか らなり、シートクッション15がほぼ水平方向に伸び、 かつシートバック14が上下方向に伸びる状態で搬送される(車両3に搭載される姿勢状態での搬送)。また、 車両3は、その前部が搬送方向を向くように搬送され、 これに応じて、シート5も、前向きの状態で搬送される。

【0029】ロボット1は、後述するように、シート用コンペア4上のシート5を把持して、車両3の内部所定位置に搬入するが、左右のシート5を同時に車両3内部に搬入するため、左右一対設けられている。このロボット1は、各シート用コンペア4の外側に設けられた架台6上に設置された基体7と、基体7から伸びるアーム8と、アーム8の先端に取付けられたハンド(ロボットハンド)9とを有する。アーム8は、互いに上下方向に回動自在に連結された基部アーム8 a と端部アーム8 b とからなり、基部アーム8 a は、基体7に対して上下方に回動自在に取付けられ、端部アーム8 b の先端部にハンド9が取付けられている。このような、アーム8 a、8 b の回動と、ハンド9の移動とによって、シート5が、車両3の内部に搬入される。

【0030】ロボットハンド9は、基準位置制御部10と、シート5を保持および把持するための保持装置11と、該両者10と11とを締結する連結アーム12と、を有する。

基準位置制御部10の詳細

上記基準位置制御部10は、端部アーム8bに対して、連結アーム12つまり保持装置11をフローティング結合するためのフローティング構造となっており、実施例では、前後方向(X-X方向)、左右方向(Y-Y方向)および上下方向(Z-Z方向)の3方向に3次元的にフローティング結合する構造となっている。

【0031】フローティング構造とされた基準位置制御部10の詳細について、図1~図3を参照しつつ説明する。先ず、図2に示すように、制御部10は、基台22と、該基台22の下方に配設された可動部25とを有し、基台22が端部アーム8bに取付けられている。この基台22の下面に、一対の左右移動用レール21が左右方向に伸ばして構成されて、該各レール21に対してそれぞれ、ガイド23が探動自在に支持されている。ま

た、上記可動部25の上面板26上面には、一対の前後 用レール24が前後方向に伸ばして構成され、このレー ル24に対しても、前記ガイド23が摺動自在に支持さ れている。

【0032】前記可動部25のうち、連結アーム12側 の垂直壁40には、上下方向に伸びる一対の上下移動用 レール27が構成されている。また、連結アーム12の うち、上記垂直壁40側の端部には、接続プレート29 が構成され、この接続プレート29に一体的に支持され たガイド28が、上記レール27に摺動自在に支持され 10 ている。このように、各レール21、24、27および ガイド23、28により、連結アーム12つまり保持装 置11が、制御部10を介して、端部アーム8 bに対し て3次元方向に変位可能としてフローティング支持され

【0033】上記フローティング支持された連結アーム 12を、端部アーム8bに対して所定の基準位置に復帰 させるための、基準位置復帰用のシリンダが設けられて いる。この復帰用シリンダは、前後位置復帰用のシリン ダ30と、左右方向復帰用の2個のシリンダ34と、上 20 クランプ爪59が回動自在に取付けられている。上記延 下位置復帰用のシリンダ37、38とからなる。

【0034】前後位置復帰用のシリンダ30は、基台2 2の上面に突設された取付具31に取付けられている。 また、シリンダ30のロッド32先端が、可動部25の 上面板26に突設されたブレート33を押圧可能となっ ており、当該プレート33が、基台22の開口録(スト ッパ部) 22に当接された状態が、前後方向の基準位置 とされる。

【0035】左右位置復帰用の2個のシリンダ34は、 可動部25の上面板26に同軸上に設けられている。左 30 右方向に隔置された各シリンダ34のロッド35の間に は、基台22の下面に取付けたプレート46が位置され ている。所定伸長長さとされた一対のロッド35で当該 プレート46を上下方向から挟持、押圧した状態が、左 右方向の基準位置とされる。

【0036】上下位置復帰用のシリンダ37、38は、 互いに上下方向に隔置されている。シリンダ38は、可 **動部25の下部水平プレート39に支持され、シリンダ** 37は、上面板26の下面に取付けられている。シリン ダ37のロッド43とシリンダ38のロッド44との間 40 には、連結アーム12と一体の前記接続プレート29か ら延設されたプレート41が、位置されている。そし て、所定伸長長さとされた一対のロッド43、と44と でプレート41を挟持、押圧した状態が、上下方向基準 位置となる。

【0037】保持装置11を保持した連結アーム12 は、かなりの重量物となる。このため、制御部10に は、上下方向の基準位置復帰用シリンダ37、38の他 に、連結アーム12を下方から支承するための大型のパ ランスシリンダ36が設けられている。このシリンダ3 *50* れている。この連結部材57は、クランプ爪59の前端

6は、前記下部水平プレート39に取付けられており、 当該シリンダ36のロッド42は、前記プレート41を 下方から支承するようになっている。なお、前述した各 シリンダ30、34、36、37、38は、それぞれ精

8

【0038】保持装置11の詳細

密制御用シリンダにより構成されている。

前記保持装置11の詳細について説明する。この保持装 置11は、シートパック14とシートクッション15と の間に形成される間隙に挿入される保持部50と、シー トパック14の左右両端を挟持する把持装置13と、シ ートパック14の前面を押圧支持するシートパック支持 部80とを有する。

【0039】(1)保持部50の詳細

前記保持部50は、図4~図8に示すように、連結アー ム12と一体の連結プレート53によって支持されてい る。連結プレート53に一体化された基体54からは、 左右一対の突出板60が突設され、この各突設板60に それぞれ、延長プレート64が一体化されている。上記 突設板60には、左右方向に伸びる軸61を介して、前 長プレート64には、左右方向に伸びる軸65を介し て、後クランプ爪63が回動自在に取付けられている。 各クランプ爪59と63とは、左右方向に伸びる軸62 によって回動自在に連結され、このクランプ爪59、6 3によって折曲機構が構成される。

【0040】各クランプ爪59、60は、それぞれ略 『く』の字状とされていて、図5に示す倒伏位置と、図 6に示す起立位置とをとりえるようになっている。倒伏 位置は、シートパック14とシートクッション15との 間に形成される間隙に挿入し易いように、部材60、6 4をも含めて、全体として極力直線状態になるような形 状とされる。また、起立位置では、各クランプ爪59、 60の軸62とは反対側端部が、それぞれ上方へ向けて 大きく起立されるような形状とされる。

【0041】起立位置においては、前後のクランプ爪5 9と63とで、シートバック14の下端部を前後方向か ら挟持する。シートパック14の下端部内には、左右方 向に伸びるフレーム68、69が装備されているので、 クランプ爪59、63による大きな挟持力を受ても何ら 問題のないものである。なお、クランプ爪59に形成さ れて軸61が挿入される孔61aは、長孔とされて、倒 伏位置と起立位置との間での寸法変化が当該長孔61a によって吸収される。

【0042】前記倒伏位置と起立位置とを切換、駆動す るため、エアシリンダ55が設けられている。このシリ ンダ55は、基体54から突設された取付板66に回動 自在に取付けられている。また、シリンダ55のロッド 56先端部が、連結部材57に対して螺合され、ロッド 56と連結部材57とは、ナット67を利用して固定さ

部に対して、左右方向に伸びる軸58を介して、回転自 在に連結されている。これにより、シリンダ55を縮長 させたときに前記倒伏位置とされ、シリンダ55を伸長 させたときに、前配起立位置とされる。

【0043】(2)把持装置13の詳細

保持部50の上方には、把持装置13が構成されてい る。把持装置13は、図1~図3に示すように、シート パック14の左右両端を把持する把持手段としての把持 部70と、シートパック14を前から支持するシートパ ック支持部80と、保持部50のシートパック14とシ 10 ートクッション15との間への挿入深さを検出するため の、上下一対のスイッチ機構92、98とから構成され ている。

【0044】把持部70は、角パイプからなる把持基体 71を有しており、この把持基体71は、前記一対の連 結プレート53の上端部に架設された固定板52に取付 けられている。把持体71の中央部には、支持軸72 が、シートパック14側へ突出して設けられており、こ の支持軸72に、カムリンク73の中間部が回動自在に 取付けられている。このカムリンク73の各端部には、 それぞれリンク74が回動自在に連結されて、この各リ ンク74は、左右一対の挟持板75に回動自在に連結さ れている。

【0045】上記一対の挟持板75の間には、把持用の エアシリンダ76が配設されている。この把持シリンダ 76は、その一端が一方の挟持板75に連結され、その 他端が他方の挟持板75に連結されている。把持シリン ダ76を縮長させることによって、一対の挟持板75の 間隔が狭くなり、把持シリンダ76を伸長させることに よって、一対の挟持板75の間隔が広くなる。このよう 30 な、一対の挟持板75の間隔の変更は、前記カムリンク 73によって、一対の挟持板75が左右対称に変位する ように行なわれる(所定の基準位置に対して、左右の挟 持板 7 5 が、左右方向に同じ量だけ離れるあるいは近づ く)。なお、把持シリンダ76は、プレーキ機構を有し ていて、一対の挟持板75によってシートパック14を 左右両端から所定の押圧力で挟持した状態で当該プレー キ機構が作動されて、この挟持状態が強固に維持され る。

【0046】左右一対の挟持板75の最大間隔は、シー 40 トパック14の左右幅よりも所定分大きくなるように設 定されている。これにより、シート用搬送コンペア4上 にあるシート5が、左右方向に若干位置ずれして搬送さ れたとしても、左右の挟持版75間に確実に、シートバ ック14を位置させることができる。そして、一対の挟 持板75の間隔を狭めることによって、当該挟持板75 が左右対称に変位して、当該一対の挟持板75によって シートパック14を左右から強固に挟持したときは、シ ートパック14は、把持装置13に対して左右方向に位

部50の左右幅は、シートパック14の左右幅に比して 十分小さくされていて、上記一対の挟持板75によるシ ートパック14の左右の位置決めの際に、当該保持部5 0が邪魔しないようになっている。

10

【0047】ここで、シート用コンペア4によって搬送 されてくるシート5の位置が、左右にずれている場合の 把持部70および基準位置制御部10の動作について説 明する。シートバック14の把持前においては、一対の 挟持板75の間隔は最大に広げられている。そして、例 えば、シートバック14の位置が正規の基準位置よりも 15mm程度右にずれている場合に、シートパック14 を把持すべく、挟持板75の間隔を狭めると、シートパ ック14および基準位置制御部10の基台22は動かな いので、挟持板75のシートパック14への把持動作に 伴い、ロック解除された基準位置制御部10の可勤部2 5が右に移動する。そして、この右方向への移動は、シ ート5を持ち上げたとき、基準位置に戻される。 すなわ ち、図3に示すように、基準位置制御部10に設けられ た左右用シリンダ34をONすることによって、後退し ていた左右シリンダロッド35が伸びて、基台22の下 面に取付けられたプレート46を押圧して挟持し、可動 部25が左右方向の基準位置に戻る。その結果。シート 5が正規の基準位置に復帰する。

【0048】(3)シートパック支持部80の詳細 前記シートパック支持部80は、シート5の搬入時等 に、シートパック14を前方から押圧、支持することに より、シートパック14が前方に倒れるのを防止するよ うになっている。すなわち、シートパック14とシート クッション15との組立体は、その全体の重心位置が、 シートパック14の前面よりもかなり前側に位置され る。したがって、上記シートバック14の前方への倒れ というものを考慮しておくのが好ましく、このためにシ ートパック支持部80を設けてある。

【0049】上記支持部80は、図1に示すように、把 持基体71に溶接された取付板81の先端に取付けられ ており、図3に示すように、ロッド82と、ロッド82 の先端に取付けられたパッド部材83とから構成されて

【0050】(4) スイイチ機構92、98

前記取付板81には、図2に示すように、スイッチ取付 板91が立設されており、このスイッチ取付板91に は、上部スイッチ機構92が設けられている。上部スイ ッチ機構92は、パネ93によってシートパック14側 に付勢される当接部材94と、シャフト95と、シャフ ト95の端部に設けられる検出部96と、検出部96の 近傍に設けられた検出器97とから構成されている。こ の上部スイッチ機構9.2は、普段は、パネ93によって 当接部材94が、シートパック14側に付勢され、もっ とも突出した状態となっている。その後、保持部50の **徴決めされた状態で挟持されることになる。なお、保持 50 シートパック14側への挿入により、当接部材94がシ**

ートバック14側に押圧され、これにより、シャフト95がシートバック14とは反対側に移動し、やがて検出器97が検出部96を検出してスイッチ92がONとなる。

【0051】下部スイッチ機構98も、上部スイッチ機構92と同じように構成されており、これら上部および下部の各スイッチ92、98が共にONとなることによって、保持部50が所定位置まで挿入されたと判断される。

【0052】全体の作用

前述した構成とされたロボットハンドの動作を説明する。まず図9に示すように、シート5が車両3の横に到着すると、ロボット1のアーム8が回動して、保持装置11をシート用コンペア4上のシート5の前方、つまりシートパック14の前方空間K(シートクッション15の上方空間)に位置させる。次いで、基準位置制御部10の前後用シリンダ30、上下用シリンダ37、38、左右用シリンダ34、パランスシリンダ36をそれぞれ低圧もしくはロック解除の状態にする(外力が作用したときに、シリンダが抵抗とならないようにする)。また、保持装置11の前後クランプ用シリンダ55および左右挟持用のシリンダ76も、同様に、低圧もしくはロック解除の状態とされる(一対の挟持板75は、最大間隔の状態)。

【0053】この状態で、図1に示すように、シートバック14とシートクッション15との間(に形成される間隙)に、前配前方空間K側から、保持部50を挿入する。挿入に際して、上部スイッチ機構92、下部スイッチ機構98が共にONとなるまで、保持部50の挿入動作が行なわれる。挿入が完了した時点で(図5、図4の30 実線の状態)、図4に示すように、保持部シリンダ55のソレノイドを切換えることにより、当該シリンダ55を伸長させて、クランプ爪59を押圧する。これにより、前後のクランプ爪59と63とにより、シートバック14の下端部が前後方向から挟持される(図6、図4の二点鎖線の状態)。

【0054】また、このとき、保持装置11の把持部70では、図2に示すように、把持シリンダ76を縮長させることにより、一対の挟持板75によるシートバック14の挟持が行なわれる。勿論、挟持板75のシートバック14に対する接近も、前記前方空間K側から、保持部50の挿入動作時に合わせて行なわれる。把持シリンダ76に所定圧力を付与することにより、一対の挟持板75が、シートバック14の左右両端部を確実に把持した状態となり、この時点でシートバック14が持ち上げられる。このとき、基準位置制御部10の各シリンダ30、34、36、37、38が高圧にされて、可動部25がロック状態となる。これにより、上記把持部70による把持動作の際に、シート5の位置がずれていた場合にも、シート5が基準位置に戻される。50

【0055】この状態にて、アーム8を設定移動量だけ駆動することにより、シート5が車両3の内部の所定位置まで挿入される。なお、最近のシート5は大型化しており、シート5を水平に維持した状態では車両3の開口部を通すことができない。この場合は、シート5を傾斜させて、車両3の関口縁に接触しないように、車両3の内部にシート5を搬入すればよい。

12

【0056】車両3の内部にシート5が搬入されると、可動部25の各ロックが解除される。この後、シート5は、取付作業者によって、微調節が行われながら車両3の所定位置に搭載(固定)される。シート5の車両3への取付けが完了すると、保持部シリンダ55および把持部シリンダ76のソレノイドをそれぞれ切換えて、クランプ爪59、63による保持と、一対の挟持板75による挟持とが解除される。

【0057】この後、保持部50および把持部70を有する保持装置11の回収が行なわれる。保持部50のクランプ爪63および把持部70の挟持板75は、シートパック14の前方からそのまま引き抜くことができる。つまり、シートパック14の前方空間K(シートクッション15の上部空間)のみを通して上記引き抜き動作を行なうことができる。したがって、保持部50や把持部70が、車両3の天井やシートクッション15の前方にあるものに接触することなく、当該保持部50、把持部70を容易に車両3の外部に回収することができる。車両3の外部に保持装置11が退避された後、可動部25が再度ロック状態とされて基準位置に戻され、次ぎのシート5の搭載に備える。

【0058】以上説明したように、シートパック14とシートクッション15との間に挿入された保持部50により、シートパック14の下端および下部前後の3位置でシート5が保持されるので、シート5の保持が確実に行われる。また、保持部50は、シートパック14の前方空間K(シートクッション15の上方空間)を利用してその移動が行われるので、当該保持部50が車両3の天井等に接触することがなく、天井の低い車両3に対しても容易に適用することができる。

【0059】また、把持部70により、シートバック14の左右両端を把持することにより、保持部50による保持と合せて、シート5の保持をより一層確実に行なうことができる。この把持部70も、保持部50と同様に、シートバック14の前方空間K(シートクッション15の上方空間)を利用してその移動が行なわれるので、シートクッション15の前方に大きな余裕空間がない車両に対しても容易に適用することができる。

【0060】さらに、シートパック支持部80によりシート5を支持することにより、シート5の保持をさらに一層確実に保持することができる。このシートパック支持部80も、シートパック14の前方空間K(シートクッション15の上方空間)を利用して移動されるので、

車両3との干渉という点で、何ら問題のないものとなる。

【0061】なお、保持部50のみを設けるようにして もよく、この場合は、全体として極めてコンパクトな構 造とすることができる。

【図面の簡単な説明】

【図1】本発明の一実施例を示すものでシートを保持した状態の側面図。

【図2】図1を左方から見たときの正面図。

【図3】図1を上方から見たときの上面図

【図4】シートパックの下端部を保持する保持部を示す 要郵側面図。

【図5】保持部に設けられた折曲機構が倒伏位置にある ときの状態を示す図。

【図6】保持部に設けられた折曲機構が起立位置にあるときの状態を示す図。

【図7】保持部を上方から見たときの上面図。

【図8】図7のX8-X8線相当断面図。

【図9】車両用搬送コンペアとシート用搬送コンペアとロボットとを示す上面図。

【図10】車両用搬送コンベアとシート用搬送コンベアとロボットとを示す正面図。

【図11】図10の要部拡大正面図。

【図12】従来の車両シート搭載装置を示す側面図。

【符合の説明】

1:ロボット

2:車両用搬送コンペア

3:車両

4:シート用搬送コンペア

5:フロントシート

8:ロボットアーム

9:ロボットハンド

10:基準位置制御部(フローティング構造)

13:把持装置

10 14:シートパック

15:シートクッション

36:パランスシリンダ(下方からの支承手段)

5.0:保持部 (シートパックとシートクッションとの間への挿入用)

14

55:シリンダ (クランプ爪駆動手段)

59:前クランプ爪

63:後クランプ爪

70:把持部

73:カムリンク(挟持板運動用)

20 74:リンク(挟持板連動用)

75:挟持板

76:シリンダ (挟持板駆動用)

80:シートパック支持部

92:上部スイッチ機構(挿入深さ検出手段)

98:スイッチ機構(挿入深さ検出手段)

[図1]

【図4】

[図5]

[図8]

【図10】

(図11)

【図12】

