

IN THE CLAIMS:

Please cancel without prejudice claim 7.

Also kindly change claims 1 through 6, and claim 21, all to read as follows.

1 1. (currently amended) Apparatus for printing images on
2 a printing medium, by construction from individual marks;
3 said apparatus being characterized by a design value for
4 printhead-to-printing-medium spacing (PPS), and
5 comprising:

6 printheads carried on a scanning carriage next to a
7 printing-medium position;

8 a single-channel optical sensor having:

9

10 plural lamps emitting substantially incoherent
11 light,

12

13 means, including a photosensitive stage, for
14 receiving and responding to the substantially incoherent light, and for developing
15 therefrom a sensor output signal representing at least one difference between
16 PPS measurements with a corresponding pair of the lamps;

17

18 said photosensitive stage being calibrated, with each of the plural lamps, at the design value of PPS; and
19 means for interpreting the at least one difference signal as a PPS displacement from the design PPS value,
20 to determine actual PPS in the printer

21

27 a platen locating such medium;
28 at least one printhead marking on such medium;
29 a carriage holding the head;
30 a rod supporting the carriage for scanning motion
31 across such medium;
32 a sensor, at least partially mounted to the car-
33 riage, measuring relative distances between the sensor
34 and the platen or such medium; said sensor comprising
35 first processor portions interpreting intensity of
36 reflected radiation, at each of plural positions along
37 the scanning motion respectively, as a measure of respec-
38 tive transmission distances from the source to the sensor
39 via reflection from the platen or such medium; and
40 second microprocessor portions modifying the marking
41 by the head to compensate for variation of the measured
42 distances during the scanning motion.

1 2. (currently amended) The apparatus of claim 1, where-
2 in:
3 the receiving and responding means comprise means
4 for using the sensor with:
5
6 the pair of lamps in alternation to develop an
7 a. c. signal output representing said at
8 least one difference, and
9
10 another pair of lamps in alternation to develop
11 another a. c. signal output representing
12 another difference;
13
14 the interpreting means comprise means for computing
15 a mean of the differences; and
16 the computing means comprise means for weighting the
17 differences in an inverse relation to signal noise asso-
18 ciated with each difference
19
20 the sensor further comprises:
21 a radiation source emitting radiation toward the
22 platen or such medium;
23 a detector receiving source radiation reflected from
24 the platen or such medium.

1 3. (currently amended) The apparatus of claim 1, fur-
2 ther comprising:
3 means for applying a signal from the sensor to com-
4 pute a profile of said PPS along said scanning, using a
5 known correlation function;
6 means for measuring intensity variations of re-
7 flected radiation received on the surface along said
8 scanning;
9 means for interpreting the intensity variations as
10 directly due to attenuation in travel of the radiation
11 toward the printing-medium position and back;
12 means for retaining the interpreted intensity-varia-
13 tion information for use in compensating imperfection;
14 and
15 means for adjusting marking positions of the print-
16 heads, based on the computed PPS profile
17
18 wherein:
19 the radiation source emits substantially incoherent
20 radiation; and
21 the sensor is a single-channel device.

1 4. (currently amended) A method of compensating opera-
2 tion of a printer, which printer has printheads carried
3 on a scanning carriage next to a printing-medium posi-
4 tion; said method comprising the steps of:
5 scanning a surface substantially at the printing-
6 medium position using a single-channel, plural-lamp opti-
7 cal sensor operating with substantially incoherent light;
8 defining a design value for printhead-to-printing-
9 medium spacing in the printer;
10 calibrating the sensor, with each of plural lamps
11 associated with the sensor, respectively, at the design
12 PPS value;
13 installing the calibrated sensor in the printer;
14 operating the sensor, with each of the plural lamps
15 respectively, in such a way as to develop a sensor output
16 signal representing at least one difference between PPS
17 measurements with a corresponding pair of the lamps; and
18 interpreting the at least one difference signal as a
19 PPS displacement from the design PPS value, to determine
20 actual PPS in the printer
21
22 The apparatus of claim 1, wherein:
23 the sensor comprises means for measuring the rela-
24 tive distances without printing on such medium.

1 5. (currently amended) The method apparatus of claim 4
2 [[1]], wherein:
3 the operating step comprises using the sensor with:
4
5 the pair of lamps in alternation to develop an
6 a. c. signal output representing said at
7 least one difference; and
8
9 another pair of lamps in alternation to develop
10 another a. c. signal output representing
11 another difference;
12
13 the interpreting step comprises computing a mean of
14 the differences; and
15 the computing comprises weighting the differences in
16 an inverse relation to signal noise associated with each
17 difference
18
19 the sensor comprises means for measuring the rela-
20 tive distances at multiple positions substantially along
21 the length of the rod.

1 6. (currently amended) The method apparatus of claim 4,
2 further comprising the steps of:
3 applying a signal from the sensor to compute a pro-
4 file of said PPS along said scanning, using a known cor-
5 relation function;
6 measuring intensity variations of reflected radia-
7 tion received on the surface along said scanning;
8 interpreting the intensity variations as directly
9 due to attenuation in travel of the radiation toward the
10 printing-medium position and back;
11 retaining the interpreted intensity-variation
12 information for use in compensating imperfection; and
13 adjusting marking positions of the printheads, based
14 on the computed PPS profile

15

16 i, wherein the modifying means comprise:
17 memory storing the respective transmission-distance
18 measures for the plural positions; and
19 third microprocessor portions for retrieving the
20 transmission-distance measures for the plural positions,
21 to use in compensation, by the second portions, for cor-
22 responding positions along the rod respectively.

1 7. (canceled)

1 8. (original) A method of compensating operation of a
2 printer, which printer has printheads carried on a scan-
3 ning carriage next to a printing-medium position; said
4 method comprising the steps of:

5 scanning a surface substantially at the printing-
6 medium position using a single-channel optical sensor
7 operating with substantially incoherent light;

8 applying a signal from the sensor to compute a
9 printhead-to-printing-medium spacing (PPS) profile along
10 said scanning, using a known correlation function;

11 adjusting marking positions of the printheads, based
12 on the computed PPS profile.

1 9. (original) The method of claim 8:

2 further comprising the step of loading unprinted,
3 bare printing medium into the printer; and

4 wherein the surface-scanning step comprises scanning
5 the unprinted, bare medium.

1 10. (original) A method of calibrating a printer, which
2 printer has printheads carried on a scanning carriage
3 next to a printing-medium position, and has a carriage
4 support-and-guide rod subject to imperfection in geomet-
5 rical relation with the printing-medium position; said
6 method comprising the steps of:

7 projecting radiation from the carriage toward the
8 printing-medium position for reflection back toward the
9 carriage, at plural locations of the carriage along the
10 rod;

11 measuring intensity variations of reflected radia-
12 tion received on the carriage at the plural locations;

13 interpreting the intensity variations as directly
14 due to attenuation in travel of the radiation through the
15 distance from the carriage toward the printing-medium
16 position and back to the carriage; and

17 retaining the interpreted intensity-variation infor-
18 mation for use in compensating the imperfection.

1 11. (original) The method of claim 10, wherein:

2 the projecting step comprises projecting the radia-
3 tion to a printing medium disposed at the printing-medium
4 position;

5 the measuring step comprises receiving the radiation
6 reflected from the printing medium; and

7 the attenuation is due to scattering of the radia-
8 tion in the reflection, and divergence of the radiation
9 during said travel.

1 12. (original) The method of claim 11, wherein, during
2 said projecting and receiving :
3 substantially nothing has been printed on the print-
4 ing medium;
5 whereby the printing medium is substantially bare
6 printing medium.

1 13. (original) The method of claim 10, wherein:
2 the projecting step comprises projecting the radia-
3 tion to a platen disposed substantially at the printing-
4 medium position; and
5 the measuring step comprises receiving the radiation
6 reflected from the platen.

1 14. (original) The method of claim 13, wherein:
2 the interpreting step comprises making a distance
3 allowance for thickness of printing medium absent from
4 the platen.

1 15. (original) The method of claim 10, wherein:
2 the interpreting step comprises referring to a
3 previously determined correlation function between inten-
4 sity variation information and printhead-to-printing-
5 medium spacing.

1 16. (original) A method of determining printhead-to-
2 printing-medium spacing (PPS) in an incremental printer,
3 using a plural-lamp sensor; said method comprising the
4 steps of:

5 defining a design value for PPS in the printer;
6 calibrating the sensor, with each lamp of the
7 plurality respectively, at the design PPS value;
8 installing the calibrated sensor in the printer;
9 operating the sensor, with each lamp of the plural-
10 ity respectively, in such a way as to develop a sensor
11 output signal representing at least one difference be-
12 tween PPS measurements with a corresponding pair of the
13 lamps; and
14 interpreting the at least one difference signal as a
15 PPS displacement from the design PPS value, to determine
16 actual PPS in the printer.

1 17. (original) The method of claim 16, wherein the
2 operating step comprises:

3 using the sensor with the pair of lamps in alterna-
4 tion to develop an a. c. signal output representing said
5 at least one difference.

1 18. (original) The method of claim 17, wherein:
2 the operating step further comprises using the sen-
3 sor with another pair of lamps in alternation to develop
4 another a. c. signal output representing another differ-
5 ence; and
6 the interpreting step comprises computing a mean of
7 the differences.

1 19. (original) The method of claim 18, wherein:
2 the computing comprises weighting the differences in
3 an inverse relation to signal noise associated with each
4 difference.

1 20. (original) The method of claim 19, wherein:
2 the computing comprises finding said mean as a root-
3 mean-square of the weighted differences.

1 21. (currently amended) Apparatus for printing an image
2 on a printing medium, by construction from individual
3 marks; said apparatus comprising:
4 a platen locating such medium;
5 an array of printing elements marking on such
6 medium, said array being of length at least as great as
7 width of such image;
8 an advance mechanism providing relative motion of
9 such medium and the array, substantially at right angles
10 to the array length;
11 a carriage scanning lengthwise along the array;
12 a sensor, at least partially mounted to the car-
13 riage, measuring relative distances between the sensor
14 and the platen or such medium; said sensor comprising
15 first processor portions interpreting intensity of
16 reflected radiation, at each of plural positions along
17 the scanning motion respectively, as a measure of respec-
18 tive transmission distances from a [[the]] source to the
19 sensor via reflection from the platen or such medium; and
20 second microprocessor portions modifying the marking
21 by the array to compensate for variation of the measured
22 distances along the array length.

1 22. (original) The apparatus of claim 21, wherein:
2 the carriage carries exclusively the sensor or por-
3 tions thereof, not the array.