Tutorial: Descriptive Analysis for Network Graphs - hints

MSc in Statistics for Smart Data – Introduction to graph analysis and modeling Julien Chiquet, November the 6th, 2018

1 Packages requirements

```
library(tidygraph)
library(scholar)
library(igraph)
library(ggraph)
library(viridis)
```

2 Network extraction

I found working with my co-authors' network was more fun: I use the **scholar** package to extract it.

```
chiquet <- "FM2gRsYAAAAJ"
my_coauthors_network <-
   scholar::get_coauthors(chiquet, n_coauthors = 10, n_deep = 1) %>%
   graph_from_data_frame(directed = FALSE) %>%
   igraph::simplify(remove.multiple = TRUE, remove.loops = TRUE)
```

Here is a fancy representation of this network with the **ggraph** package:

3 Spectral Analysis

3.1 Simple community network

Let us star by studying toy examples to better understand th spectral graph theory:

community <- igraph::sample_sbm(40, matrix(c(.25, .01, .01, .25), 2, 2), c(20, 20))
plot(community)</pre>

L <- graph.laplacian(community, normalized = TRUE)
Matrix::image(L)</pre>

By, looking at space spawned by the first two eigen vector of L, we see that the clustering problem is outrageously easy (all point from the same community are superimposed)

```
U <- eigen(L)$vectors
Q <- 2
U <- U[,c((ncol(U)-Q+1):ncol(U))]
U <- U / rowSums(U^2)^(1/2)
plot(U[, 1], U[, 2])</pre>
```


3.2 Spectral clustering of coauthorship network

Hereafter, an implementation of the spectral clustering algorithm studied during last session,

```
SpectralClustering <- function (A,Q) {</pre>
  p \leftarrow ncol(A)
  if (Q > 1) {
    ## Normalized Laplacian
    L <- graph.laplacian(A, normalized = TRUE)
    ## go into eigenspace
    U <- eigen(L)$vectors
    U \leftarrow U[,c((ncol(U)-Q+1):ncol(U))]
    U \leftarrow U / rowSums(U^2)^(1/2)
    ## Applying the K-means in the eigenspace
    cl <- kmeans(U, Q, nstart = 10, iter.max = 30)$cluster</pre>
  } else {
    cl <- as.factor(rep(1,ncol(A)))</pre>
  }
  cl
}
cl_list <- lapply(2:7, function(Q)</pre>
  SpectralClustering(my_coauthors_network, Q)
A <- as_adj(my_coauthors_network)
lapply(cl_list, function(cl)
  Matrix::image(
    A[order(cl), order(cl)],
    main = paste('number of cluster =',length(unique(cl)))
  )
)
## [[1]]
```


[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

