

1.1.1 GPIO Lab

Objective

- Learn how to setup pin and GPIO port in CubeMX
- How to Generate Code in CubeMX and use HAL functions

Goal

- Configure GPIO pin in CubeMX and Generate Code
- Add in to project HAL_Delay function and HAL_GPIO_Toggle function
- Verify the correct functionality on toggling LED

- Create project in CubeMX
 - Menu > File > New Project
 - Select STM32F0 > STM32F030 > LQFP64 > STM32F030R8
- Configure LED pin as GPIO_Output

- For debug purpose is recommended to select debug pins SWD or JTAG
 - Select can be done in TAB>Pinout>SYS
 - On discovery is available only SWD option
 - If SWD/JTAG is not selected and the Set all free pins as analog
 (MENU>Project>Settings>TAB>Code Generator) is selected, debug is not possible

Clock Configuration

• TAB>Clock Configuration

The Clock configuration tree is interactive version of tree from RM

RM0360 Chapter 7
Reset and clock
control
Page 80

Clock Configuration overview 1

- Clock sources
 - Internal oscillators

Internal oscillators

- GPIO Configuration
 - TAB>Configuration>System>GPIO

GPIO(Pin) Configuration

- Select Push Pull mode
- No pull-up and pull-down
- Output speed to HIGH Is important for faster peripheries like SPI, USART
- Button OK

- GPIO(Pin) output speed configuration
 - Change the rising and falling edge when pin change state from high to low or low to high
 - Higher GPIO speed increase EMI noise from STM32 and increase STM32 consumption
 - It is good to adapt GPIO speed with periphery speed. Ex.: Toggling GPIO on 1Hz is LOW optimal settings, but SPI on 45MHz the HIGH must be set

GPIO output HIGH speed

	OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	x0	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, \lor_{DD} = 2.4 \lor to 3.6 \lor	-	2	MHz
		t _{f(IO)out}	Output high to low level fall time	-C _L = 50 pF, V _{DD} = 2.4 V to 3.6 V		125 ⁽³⁾	- ns
		t _{r(IO)out}	Output low to high level rise time			125 ⁽³⁾	
	01	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2.4 \vee to 3.6 \vee	-	10	MHz
		t _{f(IO)out}	Output high to low level fall time	-C _L = 50 pF, V _{DD} = 2.4 V to 3.6 V	•	25 ⁽³⁾	- ns
		t _{r(IO)out}	Output low to high level rise time			25 ⁽³⁾	
	11	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 30 pF, \lor_{DD} = 2.7 \lor to 3.6 \lor	-	50	MHz
				C_L = 50 pF, \lor_{DD} = 2.7 \lor to 3.6 \lor	-	30	
				C_L = 50 pF, \vee_{DD} = 2.4 \vee to 2.7 \vee	-	20	

- Now we set the project details for generation
 - Menu > Project > Project Settings
 - Set the project name
 - Project location
 - Type of toolchain
- Now we can Generate Code
 - Menu > Project > Generate Code

- Now we open the project in our IDE
 - The functions we want to put into main.c
 - Between /* USER CODE BEGIN 3 */ and /* USER CODE END 3 */ tags
 - Into infinite loop while(1){ }
- For toggling we need to use this functions
 - HAL HAL Delay which create specific delay
 - HAL_GPIO_WritePin or HAL_GPIO_TogglePin

- Now we open the project in our IDE
 - The functions we want to put into main.c
 - Between /* USER CODE BEGIN 3 */ and /* USER CODE END 3 */ tags
 - Into infinite loop while(1){ }
- For toggling we need to use this functions
 - HAL_HAL_Delay which create specific delay
 - HAL_GPIO_WritePin or HAL_GPIO_TogglePin

```
/* USER CODE BEGIN 3 */
  /* Infinite loop */
  while (1)
  {
    HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);
    HAL_Delay(500);

    HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);
    HAL_Delay(500);
  }
  /* USER CODE END 3 */
```


1.1.2 EXTI lab

Objective

- Learn how to setup input pin with EXTI in CubeMX
- How to Generate Code in CubeMX and use HAL functions.

Goal

- Configure GPIO and EXTI pin in CubeMX and Generate Code
- Add into project Callback function and function which turn on led
- Verify the correct functionality by pressing button which turns on LED

Configure EXTI to turn on LED 1.1.2

- Create project in CubeMX
 - Menu > File > New Project
 - Select STM32F0 > STM32F030 > LQFP64 > STM32F030R8
- Configure LED pin as GPIO_Output

Configure EXTI to turn on LED 18 1.1.2

Configure Button pin as GPIO_EXTIX

1.1.2

- In order to run on maximum frequency, setup clock system
- Details in lab 0

- GPIO Configuration
 - TAB>Configuration>System>GPIO

- GPIO(Pin) Configuration
 - Select External Interrupt Mode with Faling edge trigger detection
 - No pull-up or pull-down
 - Button OK

- NVIC Configuration
 - We need to enable interrupts for EXTI
 - TAB>Configuration>System>NVIC

- NVIC Configuration
 - Enable interrupt for EXTI Line4 15
 - Button OK

- Now we set the project details for generation
 - Menu > Project > Project Settings
 - Set the project name
 - Project location
 - Type of toolchain
- Now we can Generate Code
 - Menu > Project > Generate Code

HAL Library work flow 1

HAL Library work flow 2

HAL Library working flow 3

HAL Library work flow 4

HAL Library work flow 5

- Now we open the project in our IDE
 - The functions we want to put into main.c
 - Between /* USER CODE BEGIN 4 */ and /* USER CODE END 4 */ tags
 - We create function which will handle the EXTI interrupts
- The HAL callback function for EXTI
 - void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
- For LED turn on we need to use this functions
 - HAL GPIO WritePin

- Now we open the project in our IDE
 - The functions we want to put into main.c
 - Between /* USER CODE BEGIN 4 */ and /* USER CODE END 4 */ tags
 - We create function which will handle the EXTI interrupts
- The HAL callback function for EXTI
 - void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
- For LED turn on we need to use this functions
 - HAL GPIO WritePin

```
/* USER CODE BEGIN 4 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
  if(GPIO Pin == GPIO PIN 13) {
    HAL GPIO WritePin(GPIOA, GPIO PIN 5, GPIO PIN SET);
  } else {
      __NOP();
  USER CODE END 4 */
```


Appendix B Documents

CubeMX documentation 34

- CubeMX user manual UM1718
 - http://www.st.com/st-webui/static/active/en/resource/technical/document/user_manual/DM00104712.pdf
- CubeMX release note RN0094
 - http://www.st.com/st-webui/static/active/en/resource/technical/document/user_manual/DM00104712.pdf
- CubeMX technical note TN0072
 - http://www.st.com/st-webui/static/active/en/resource/technical/document/technical_note/CD00214439.pdf

B

STM32F429i-Discovery documentation

- STM32F429i-Discovery page
 - http://www.st.com/web/en/catalog/tools/FM116/SC959/SS1532/LN1848/PF259090?s_searchtyp e=keyword
- STM32F429i-Discovery user manual with discovery schematics
 - http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00093903.pdf

