Math 320 HW 9

April 13, 2024

1)

For each of the following sets with the given binary operations, show R is a ring.

a)

Let $R = \{a + bi | a, b \in \mathbb{Z}\} = \mathbb{Z}[i]$ be the set of Gaussian integers (the complex numbers with integer coefficients) under the usual definition of addition and multiplication of complex numbers.

b)

Let X be a set. Let R = P(X) the power set of X. Let $A + B = A \cup B - A \cap B$ (recall this is the symmetric difference) and $AB = A \cap B$.

2)

For each of the rings in 1), determine

a)

Is R commutative?

b)

Does R have any zero divisors?

c)

Does R have a unity? If so, which elements of R are units?

d)

Is R an integral domain?

3)

Consider the ring of polynomials $R = \mathbb{Z}[x]$.

a)

Show $\left\langle x^{2}+1\right\rangle =\left\{ r\left(x^{2}+1\right)|r\in\mathbb{Z}\left[x\right]\right\}$ is an ideal of R.

b)

Show $\mathbb{Z}\left[x\right]/\left\langle x^{2}+1\right\rangle \approx\mathbb{Z}\left[i\right]$. (Hint, the mapping $\phi\left(ax+b+\left\langle x^{2}+1\right\rangle\right)=ai+b$ is one possible isomorphism).

c)

Show $\langle x^2 + 1 \rangle$ is a prime ideal but not a maximal ideal. (Hint: $\mathbb{Z}[x]$ is a commutative ring with unity).

4)

For f(x), g(x) in polynomial ring R, find g(x), r(x) such that f(x) = g(x)q(x) + r(x) and such that $\deg(r(x)) < \deg(g(x))$

 \mathbf{a})

$$g(x) = x^2 + x$$
, $f(x) = x^5 + 4x^2 + 1$, $R = \mathbb{Z}_5[x]$

b)

$$g(x) = x + 1, f(x) = x^5 + x^3 + x^2 + 1, R = \mathbb{Z}_2[x]$$

5)

Show $x^2 + 3$ is irreducible over \mathbb{Z}_5 but is reducible over \mathbb{Z}_7 .

6)

Let R be a ring and let $a, b \in R$. Show the difference of squares formula (a - b)(a + b) = a * a - b * b holds if and only if R is a commutative ring.

7)

Let $r \in R$. Let $S_r = \{x \in R | xr = 0\}$. Show S_r is a subring of R.

8)

Show that if I_1, I_2 are ideals of R, then $I_1 \cap I_2$ is an ideal of R.

9)

If R is a commutative ring, show $\operatorname{Char}(R[x]) = \operatorname{Char}(R)$.