# برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

# عنوان

| ix |                                                | ديباچه     |
|----|------------------------------------------------|------------|
| 3  | <i>ڡ</i> ؙ <i>ڹ</i>                            | 1 بنیادی خ |
| 3  | ينياد ي اکائيال                                | 1.1        |
| 3  | غيرستى                                         | 1.2        |
| 4  | سمتير                                          | 1.3        |
| 5  |                                                | 1.4        |
| 5  | 1.4.1 كارتيسى محدد ي نظام                      |            |
| 7  | 1.4.2 نىکى محددى نظام                          |            |
| 9  | سمتيررقبر                                      | 1.5        |
| 11 | رقبه عمودی تراش                                | 1.6        |
| 12 | ىر قى اور مقناطىيى مىدان                       | 1.7        |
| 12 | 1.7.1 برتی میدان اور برتی میدان کی شدت         |            |
| 13 | 1.7.2 متناطیسی میدان اور مقناطیسی میدان کی شدت |            |

iv

| 13                                                               | سطحی اور محجمی کثافت                                                                                                                                                           | 1.8                                    |   |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|
| 13                                                               | 1.8.1 سطى كثافت                                                                                                                                                                |                                        |   |
| 14                                                               | حجى كثافت                                                                                                                                                                      | 1.9                                    |   |
| 15                                                               | صليبي ضرب اور ضرب نقطه                                                                                                                                                         | 1.10                                   |   |
| 15                                                               | 1.10.1 صلیبی ضرب                                                                                                                                                               |                                        |   |
| 17                                                               | 1.10.2 نقطی ضرب                                                                                                                                                                |                                        |   |
| 20                                                               | تفرق اور جزوی تفرق                                                                                                                                                             | 1.11                                   |   |
| 20                                                               | خطی تکمل                                                                                                                                                                       | 1.12                                   |   |
| 21                                                               | سطى تكمل                                                                                                                                                                       | 1.13                                   |   |
| 22                                                               | مر حلی سمتیه                                                                                                                                                                   | 1.14                                   |   |
|                                                                  |                                                                                                                                                                                |                                        |   |
| 27                                                               | ادوار                                                                                                                                                                          | 2 مقناطیسی                             | 2 |
| <ul><li>27</li><li>27</li></ul>                                  | اد دار<br>مزاحمت اور نچکچا ہٹ                                                                                                                                                  |                                        | 2 |
|                                                                  |                                                                                                                                                                                | 2.1                                    | 2 |
| 27                                                               | مزاحمت اور پچکچا بٹ                                                                                                                                                            | 2.1                                    | 2 |
| 27<br>28                                                         | مزاحمت اور نچکچاہٹ                                                                                                                                                             | 2.1<br>2.2<br>2.3                      | 2 |
| <ul><li>27</li><li>28</li><li>30</li><li>32</li></ul>            | مزاحمت اور نچکپا به شد                                                                                                                                                         | 2.1<br>2.2<br>2.3<br>2.4               | 2 |
| <ul><li>27</li><li>28</li><li>30</li><li>32</li><li>34</li></ul> | مزاحمت اور انگیاپت<br>گافت برقی رواور برقی میدان کی شدت<br>برقی ادوار<br>مقناطیسی دور حصه اول<br>گافت ِمقناطیسی بهاواور مقناطیسی میدان کی شدت                                  | 2.1<br>2.2<br>2.3<br>2.4               | 2 |
| 27<br>28<br>30<br>32<br>34<br>36                                 | مزاحمت اور نچکپا به شد<br>کثافت برقی رواور برقی میدان کی شدت<br>برقی اد وار<br>متناطیسی دور حصد اول<br>کثافت ِ مقناطیسی بهاو اور مقناطیسی میدان کی شدت<br>متناطیسی دور حصد دوم | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6 | 2 |
| 27<br>28<br>30<br>32<br>34<br>36<br>40                           | مزاحمت اور نیکچا په ت<br>کثافت برقی رواور برقی میدان کی شدت<br>برقی اد وار<br>متناطیسی دور حصه اول<br>کثافت ِمتناطیسی بهاوادر متناطیسی میدان کی شدت<br>متناطیسی دور حصه دوم    | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6 | 2 |

عـــنوان

| 57  |  |  |   |   |  |   |  |  |   |  |   |   |      |      |     |      |        |        |       |        |        |         |             |         |          |        |       | 1     | سفارم | ٹرانہ | 3 |
|-----|--|--|---|---|--|---|--|--|---|--|---|---|------|------|-----|------|--------|--------|-------|--------|--------|---------|-------------|---------|----------|--------|-------|-------|-------|-------|---|
| 58  |  |  |   |   |  |   |  |  |   |  |   |   | <br> |      |     |      |        |        |       |        |        |         |             | ىيت     | جار      | مرک    | سفار  | ٹرانہ | 3     | 3.1   |   |
| 61  |  |  | • | • |  |   |  |  |   |  |   | • |      |      |     |      |        |        |       |        |        |         | . (         | قسام    | کےا      | مر ـ   | سفار  | ٹرانہ | 3     | 3.2   |   |
| 61  |  |  |   |   |  |   |  |  |   |  |   |   | <br> |      |     |      |        |        |       |        |        |         |             |         | į        | د باد  | برق   | امالی | 3     | 3.3   |   |
| 63  |  |  |   |   |  |   |  |  |   |  |   |   |      |      |     |      |        |        |       | ξ      | نسيار  | لبی:    | ر قا        | رواو    | _ تی     | يزب    | ناتگ  | بيجار | 3     | 3.4   |   |
| 66  |  |  |   |   |  |   |  |  |   |  |   |   |      |      |     |      |        |        | ثواحر | ;<br>_ | ارو.   | برق     | وله         | ورتبا   | باواه    | تى د   | له بر | تبادا | 3     | 3.5   |   |
| 70  |  |  |   |   |  |   |  |  |   |  |   |   | <br> |      |     |      |        |        |       | اثر    | نب     | ئىجا    | بندا        | ه کاا:  | بوج      | نب     | ىجا   | ثانوأ | 3     | 3.6   |   |
| 71  |  |  |   |   |  |   |  |  |   |  |   |   | <br> |      |     |      |        |        | ب     | امطا   | ںکا    | نقطو    | ز<br>پر     | إمت     | باعلا    | مرک    | سفار  | ٹرانہ | 3     | 3.7   |   |
| 71  |  |  |   |   |  |   |  |  |   |  |   |   | <br> |      |     |      |        |        |       |        |        |         |             |         | دله      | كاتباه | رك ً  | رکاو  | 3     | 8.8   |   |
| 76  |  |  |   |   |  |   |  |  |   |  |   |   |      |      |     |      |        |        |       |        |        | بيئر    | <u>-ايم</u> | ك.      | اوول     | مركا   | سفار  | ٹرانہ | 3     | 3.9   |   |
| 78  |  |  |   |   |  |   |  |  |   |  |   |   | <br> |      |     |      |        | . J.   | ی د و | ساوأ   | ے.     | _<br>_U | ورا         | ماليدا  | کے ا     | مر ـ   | سفار  | ٹرانہ | 3.    | 10    |   |
| 78  |  |  |   |   |  |   |  |  |   |  | • |   | ı    | كرنا | ره  | عليى | امليه  | متع    | ى كى  | دراك   | تاو    | إحمد    | امز         | مجھے کے | ļ        | 3.     | 10    | ).1   |       |       |   |
| 80  |  |  |   |   |  | • |  |  | • |  |   |   |      |      |     |      |        |        |       |        |        |         | لہ          | ستااما  | ļ        | 3.     | 10    | 0.2   |       |       |   |
| 80  |  |  |   |   |  | • |  |  | • |  |   |   |      |      |     | ٢    | رات    | کے اثر |       | فالب   | ور     | )روا    | برق         | نوی     | ť        | 3.     | 10    | 0.3   |       |       |   |
| 82  |  |  |   |   |  |   |  |  |   |  |   |   | ٠    |      |     |      |        |        | د باو | برقی   | مالی ٔ | . کی ا  | لجھے        | نوی     | ť        | 3.     | 10    | ).4   |       |       |   |
| 83  |  |  |   |   |  |   |  |  |   |  |   |   | ,    | ات   | ثرا | کےا  | ملیہ۔  | نتعا   | اور   | ئت     | زاج    | .کی.    | لجھ         | نوی     | ť        | 3.     | 10    | ).5   |       |       |   |
| 83  |  |  |   |   |  |   |  |  |   |  |   |   |      |      |     | دله  | . تباه | انب    | ی جا  | إثانو' | ائی؛   | ابتد    | ك كا        | كاور    | ,        | 3.     | 10    | 0.6   |       |       |   |
| 86  |  |  |   |   |  |   |  |  |   |  |   |   |      |      |     | دور  | وی     | مساه   | ين.   | ده تر  | ےسا    | ر ک     | ارم         | رانسف   | رُ       | 3.     | 10    | ).7   |       |       |   |
| 87  |  |  |   |   |  |   |  |  |   |  |   |   | <br> |      |     |      |        |        |       |        | عائن   | ورم     | سردا        | اور ک   | ئغدا     | معا    | ، دور | كط    | 3.    | 11    |   |
| 88  |  |  |   |   |  |   |  |  |   |  |   |   |      |      |     |      |        |        |       |        | نہ .   | عائه    | ورم         | لطے و   | _        | 3.     | 11    | .1    |       |       |   |
| 90  |  |  |   |   |  |   |  |  |   |  |   |   |      |      |     |      |        |        |       |        | . ,    | نا ئن   | ر مو        | سرِدو   | <u> </u> | 3.     | 11    | .2    |       |       |   |
| 94  |  |  |   |   |  |   |  |  |   |  |   |   | <br> |      |     |      |        |        |       |        |        |         | . /         | غار •   | رانہ     | عليه ٹ | )مر,  | تين   | 3.    | 12    |   |
| 101 |  |  |   |   |  |   |  |  |   |  |   |   | <br> |      |     | زر   | کا گز  | ارو    | برقی  | ز کی   | ده مح  | . زیا   | غ لمح       | ر       | بالوك    | مرہ    | ىفار  | ٹرانہ | 3.    | 13    |   |

vi

| ييكا في توانا كي كا باجمي تبادله                  | برقی اور • | 4 |
|---------------------------------------------------|------------|---|
| مقناطیسی نظام میں قوت اور قوت مروڑ                | 4.1        |   |
| تبادليه توانائي والاايك لجھے كانظام               | 4.2        |   |
| توانائي اور ۾مه توانائي                           | 4.3        |   |
| متعدد کیجھول کامتناطیسی نظام                      | 4.4        |   |
| شین کے بنیاد کی اصول 127                          | گھومتے م   | 5 |
| تانونِ فيرادُك                                    | 5.1        |   |
| معاصر مشين                                        | 5.2        |   |
| محرک برقی دیاد                                    | 5.3        |   |
| ت ي لي لحجه اور سائن نمامقناطيسي دياو             | 5.4        |   |
| 5.4.1 بدلتي رووالے مشين                           |            |   |
| مقناطیسی د باو کی گھومتی موجیں                    | 5.5        |   |
| 5.5.1 ایک دورکی لینی مشین                         |            |   |
| 5.5.2 تين دور کي ليځي مشين کا تخليلي تجربي        |            |   |
| 5.5.3 تين دور کي لپځي مشين کاتر سيې تجربيه        |            |   |
| محرک بر تی د باو                                  | 5.6        |   |
| 5.6.1 بدلتی روبر قی جزیئر                         |            |   |
| 5.6.2 کیک سمتی روبرتی جزیئر                       |            |   |
| جموار قطب مشينول ميں قوت مروڑ                     | 5.7        |   |
| 5.7.1 توانائی کے طریقے سے میکانی قوت مروڑ کا حماب |            |   |
| 5.7.2 متناطبی بهاوی میکانی قوت مر وژکاحیاب        |            |   |

vii

| 177                           | 6 كيسال حال، بر قرار چالومعاصر مثين |
|-------------------------------|-------------------------------------|
| 178                           | 6.1 متعدد مرحله معاصر مشین          |
| 181                           | 6.2 معاصر مشین کے امالہ             |
| 182                           | 6.2.1 نحوداماله                     |
| 183                           | 6.2.2 مشتر كه اماله                 |
| 185                           | 6.2.3 معاصراماله .                  |
| ياضى نمونه                    | 6.3 معاصر مشین کامساوی دوریار       |
| 189                           | 6.4 برقی طاقت کی منتقلی             |
| ے خصوصیات                     | 6.5 كيسال حال، برقرار چالومشين      |
| 194                           | 6.5.1 معاصر جزیٹر:                  |
| $I_{\ell}$ بالقابل $I_{m}$ خط | 6.5.2 معاصر موٹر: <sub>a</sub>      |
| 197                           | 6.6 کھلے دوراور کسرِ دور معائنہ     |
| 197                           | 6.6.1 گھلے دور معائنہ               |
| 198                           | 6.6.2 کسر دور معائنه                |

| 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | امالی مشین | 7     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| ساكن لمچهول كي گھومتى متناطبيعى موج                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1        |       |
| مثنین کی سر کنے اور گھومتی موجول پر تبصرہ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.2        |       |
| ساكن كيچمول مين امالي برقى دياو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3        |       |
| ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیدا امالی برقی دباد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.4        |       |
| گھومتے کچھوں کی گھومتی متناطبی دیاو کی موج                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.5        |       |
| گھومتے کچھوں کے مساوی فرضی ساکن کچھے                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.6        |       |
| المالي موٹر كامسادى برقى دور                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.7        |       |
| ساوى برتى دور پر غور                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.8        |       |
| المالي موٹر كامساوى تھونن دورياريا ضي نمونه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.9        |       |
| ينجر انماامالي موٹر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.10       |       |
| بے یو چھ موٹر اور جامد موٹر کے معائنہ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.11       |       |
| 7.11.1 كِ يوجِه موثر كامعائد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       |
| 7.11.2 جامد موثر کا معاتند                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |       |
| رومشين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | يك سمتى،   | 8     |
| ميكانى ست كاركي بنيادى كاركردگى                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.1        |       |
| 8.1.1 ميكاني ست كاركي تفصيل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |       |
| يك سمتى جزيير كى برقى دباد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.2        |       |
| قوت مرور المرابع المرا | 8.3        |       |
| بير وني بيجان اور خود بيجان يك سمتى جزير شر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.4        |       |
| يك سمتى مشين كى كاركرد گى كے خط                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.5        |       |
| 8.5.1 حاصل برتی د باوبالمقابل برتی بوجه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |       |
| 8.5.2 رفار بالمقابل قوت مرور                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |       |
| 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | لُ         | فرہنگ |

عـــنوان

0.8.3

## باب3

## ٹرانسفار مر

ٹرانسفار مر وہ آلہ ہے جو بدلتا برقی دباو کو تبدیل کرتا ہے۔ یہ دویا دوسے زیادہ کچھوں پر مشمل ہوتا ہے جو مقناطیسی قالب اپر لیلئے ہوتے ہیں۔ یہ کچھے عموماً آپس میں جڑے ہوئے نہیں ہوتے۔ شکل 3.1-الف میں ٹرانسفار مرکی علامت د کھائی گئی ہے۔ دو کچھوں کے در میان متوازی ککیریں مقناطیسی قالب کو ظاہر کرتی ہیں۔

دستیاب برقی د باو<sup>2</sup> پر ٹرانسفار مر کے ایک کچھے کو برقی طاقت فراہم کی جاتی ہے اور باقی کچھوں سے مختلف برقی د باو پر یہی برقی طاقت حاصل کی جاتی ہے۔ جس کچھے پر برقی د باو لا گو کیا جائے اسے ابتدائیے کچھا<sup>3</sup> کہتے ہیں اور ٹرانسفار مرکی اس جانب کو ابتدائی جانب<sup>4</sup> کہتے ہیں۔اس طرح جس کچھے (کچھوں) سے برقی طاقت حاصل کی جاتی ہے اسے (انہیں) اگونوںے کچھا<sup>3</sup> (کچھے) کہتے ہیں اور اس جانب کو اگونوںے جانب<sup>6</sup> کہتے ہیں۔اییا شکل 3.1-ب میں دکھایا گیا ہے۔ٹرانسفار مرکی علامت میں ابتدائی جانب کو ہائیں طرف اور ٹانوی جانب کو دائیں طرف دکھایا جاتا ہے۔

بڑے ٹرانسفار مر عموماً صرف دو لچھوں پر مشمثل ہوتے ہیں۔اس کتاب میں مقناطیسی قالب پر لیٹے ہوئے دو لچھوں کے قوی ٹرانسفار مریر تبصرہ کیا جائے گا۔

magnetic core<sup>1</sup>

<sup>2</sup> بدلتی برقی د باوکی علامت میں مثبت اور منفی نشان وقت صفر پر برقی د باوکی مثبت اور منفی سرے ظاہر کرتے ہیں۔

primary coil<sup>3</sup>

primary side<sup>4</sup>

secondary coil<sup>5</sup>

secondary side<sup>6</sup>

58 پاپ. 3. ٹرانسفار مے



شكل 3.1: ٹرانسفار مركى علامت۔

ٹرانسفار مرکے کم برقی دباو کے کچھے کو کم برقی دباو کا کچھا<sup>7</sup> کہتے ہیں اور ٹرانسفار مرکی اس جانب کو کم برقی دباو والی جانب کہتے ہیں جبکہ ٹرانسفار مرکے زیادہ برقی دباو کے کچھے کو زیادہ برقی دباو کا کچھا<sup>8</sup> کہتے ہیں اور ٹرانسفار مرکی اس جانب کو زیادہ برقی دباو والی جانب کہتے ہیں۔

یوں اگر ٹرانسفار مرکے کم برقی دباو جانب برقی دباو لا گو کیا جائے اور زیادہ برقی دباو جانب سے برقی دباو حاصل کیا جائے تو ٹرانسفار مرکی کم برقی دباو جانب کو ابتدائی جانب کہیں گے اور اس کی زیادہ برقی دباو جانب کو ثانوی جانب کہیں گے۔ کہیں گے۔

#### 3.1 ٹرانسفار مرکی اہمیت

برلتے رو کی برقی طاقت ایک مقام سے دوسرے مقام با آسانی اور نہایت کم برقی طاقت کی ضیاع سے منتقل کی جا سکتی ہے۔ یہی اس کی مقبولیت کا راز ہے۔ ٹرانسفار مر کے تبادلہ برقی دباو<sup>9</sup> کی خصوصیت ایسا کرنے میں کلیدی کردہر ادا کرتی ہے جسے درج ذیل مثال کی مدد سے سمجھتے ہیں۔

مثال 3.1: شکل 3.2 سے رجوع کریں۔ برتی دباو اور برتی روکی حاصل ضرب برتی طاقت ہوتی ہے:

 $p = v_1 i_1 = v_2 i_2$ 

تصور کریں کہ تربیلا ڈیم سے 500 MW برقی طاقت لاہور 10 شہر کے گھریلو صارفین کو 220 وولٹ پر مہیا کرنی

low voltage coil<sup>7</sup> high voltage coil<sup>8</sup>

voltage transformation property<sup>9</sup>

10 صلع صوابی میں بھی لاہورایک تحصیل ہے لیکن اس شہر کواتنی طاقت نہیں در کار

3.1. ٹرانسفار مسر کی اہمیت



شكل 3.2: برقى طاقت كى منتقلى ـ

ہے۔اگر ہم اس طاقت کو 220 وولٹ پر ہی منتقل کرنا چاہیں تب برقی رو

$$i = \frac{p}{v} = \frac{500\,000\,000}{220} = 2\,272\,727\,\mathrm{A}$$

ہو گی۔ برقی تار میں کثافتِ برقی رو  $J_{au}$  تقریباً 5 ایمپیئر فی مربع ملی میٹر  $\frac{A}{mm^2}$  کی مربع ملی میٹر  $J_{au}=5$  ممکن ہوتی ہے۔ یہ ایک محفوظ کثافتِ برقی رو ہے۔ اگر برقی تار میں اس سے زیادہ برقی رو گزاری جائے تو اس کی مزاحمت میں برقی طاقت کے ضیاع سے یہ گرم ہو کر پھل سکتی ہے۔ اس طرح صفحہ 14 پر مساوات 1.23 سے برقی تار کا رقبہ عمودی تراش

$$A = \frac{i}{J_{au}} = \frac{2272727}{5} = 454545 \,\text{mm}^2$$

ہو گا۔ گول تار تصور کریں تو اس کا رداس درج ذیل ہو گا۔

$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{454545}{\pi}} = 380 \,\mathrm{mm} = 0.38 \,\mathrm{m}$$

ا تنی موٹی برقی تار کہیں نہیں پائی جاتی ہے $ho_v=2700~{
m \frac{kg}{m^3}}$  کی بنی ہو جس کی کثافت  $ho_v=2700~{
m \frac{kg}{m^3}}$  ہوتی ہے تب ایک میٹر کبی تار کی کمیت

$$m = 2700 \times \pi \times 0.38^2 \times 1 = 1224 \,\mathrm{kg}$$

یعنی 1.2 ٹن ہو گی۔المو ٹیم اتنی مہنگی ہے کہ اس صورت میں اتنی برقی طاقت کو لاہور پہنچانا ممکن نہیں ہو گا<sup>12</sup>۔

<sup>11</sup> آپ مانیں بانیہ مانیں، آپ نے بھی اتنی موٹی بر قی تاریکھی نہیں دیکھی ہوگی۔ 12 آج کل لاہور میں بکلی کی معطلی اس وجہ سے نہیں ہے۔

آئیں اب ٹرانسفار مر استعال کر کے دیکھتے ہیں۔ ڈیم پر ایک ٹرانسفار مر نسب کر کے برقی دباو کو بڑھا کر 000 132 وولٹ یعنی 132 کلو وولٹ کیا جاتا ہے۔ یوں برقی رو درج ذیل ہو گا

$$i = \frac{p}{v} = \frac{500\,000\,000}{132\,000} = 3788\,\mathrm{A}$$

جس کے لئے درکار برقی تار

$$A = \frac{i}{J_{au}} = \frac{3788}{5} = 758 \,\text{mm}^2$$
$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{1667}{\pi}} = 15.5 \,\text{mm}$$

صرف 15.5 ملی میٹر رداس کی ہو گی۔

اس مثال میں اگر تربیلا ڈیم میں نسب جزیٹر 11000 وولٹ برقی دباو پیدا کر رہا ہو تو تربیلا ڈیم پر نسب ٹرانسفار مر برقی دباو کو 11000 وولٹ سے بڑھا کر 132 کلو وولٹ کرے گا جبکہ لاہور شہر میں نسب ٹرانسفار مر 132 کلو وولٹ کو واپس 11000 وولٹ کرے گا۔

اسی مثال کو بڑھاتے ہیں۔شہر میں 220 وولٹ کی بجائے 11000 وولٹ صارف کے قریب پہنچا کر محلہ میں نسب بڑانسفار مر کی مدد سے 11000 وولٹ کو مزید گھٹا کر 220 وولٹ کیا جائے گا جو صارف کو فراہم کیے جائیں گ

شکل 3.2 میں ڈیم سے شہر تک کا نظام دکھایا گیا ہے جہاں ڈیم پر نسب ٹرانسفار مر کو برقی دباو بڑھا ٹرانسفار مر<sup>13</sup> اور لاہور میں نسب ٹرانسفار مر کو برقی دباو گھٹا ٹرانسفار مر<sup>14</sup> کہا گیا ہے۔

برتی طاقت عموماً 11 کلو وولٹ اور 25 کلو وولٹ کے مابین پیدا کی جاتی ہے۔اس کی منتقلی 110 کلو وولٹ اور 1000 کلو وولٹ سے کم پر کیا جاتا ہے۔ 1000 کلو وولٹ کے چیج کی جاتی ہے جبکہ اس کا استعال 1000 وولٹ سے کم پر کیا جاتا ہے۔

step up  $transformer^{13}$ step down  $transformer^{14}$ 

3.2. ٹرانسفار مسرکے اقسام

### 3.2 ٹرانسفار مرکے اقسام

گھروں اور کارخانوں کو برقی طاقت فراہم کرنے والے ٹرانسفار مر مقناطیسی قالب پر پیٹے جاتے ہیں۔ یہ عموماً تیرین مرحلہ 15 ہوتے ہیں۔ ہوتے ہیں جنہیں لوہے کے قالب والے تاہین مرحلہ قومی ٹرانسفار م<sup>16</sup> کہتے ہیں۔

نہایت جھوٹے ٹرانسفار مر عموماً لوہے کے قالب پر بنائے جاتے ہیں اور یک مرحلہ 17 ہوتے ہیں۔ یہ گھر یلو استعال کے برقی مشین، مثلاً موبائل چارجر، وغیرہ میں نب ہوتے ہیں اور 220 وولٹ سے برقی دباو مزید گھٹاتے ہیں۔

برتی دباوکی پیائش کے لئے مستعمل ٹرانسفار مر، جو دباو کے ٹرانسفار مر<sup>18</sup> کہلاتے ہیں، کے ثانوی اور ابتدائی برتی دباو کی تناسب پر خاص توجہ دی جاتی ہے۔ای طرح برتی روکی پیائش کے لئے مستعمل ٹرانسفار مر، جو روکے ٹرانسفار مر<sup>19</sup> کہلاتے ہیں، کے ثانوی اور ابتدائی روکی تناسب پر خاص توجہ دی جاتی ہے۔ ویسے تو ہر ٹرانسفار مرکسی تناسب سے برقی دباویا برقی روکم یا زیادہ کرتا ہے لیکن جیسا پہلے ذکر کیا گیا، ان دو اقسام کے ٹرانسفار مروں میں کم اور زیادہ کرنے کی تناسب پر خاص توجہ دی جاتی ہے۔ان دو اقسام کے ٹرانسفار مروں کی برقی سکت<sup>20</sup> نہایت کم <sup>21</sup> ہوتی ہے۔

ٹرانسفار مر کے کچھوں کے مابین مشتر کہ مقناطیسی بہاو خلاء کے ذریعہ بھی ممکن ہے۔انہیں ظلائمے قالب ٹرانسفار مروں کہتے ہیں۔ ایسے ٹرانسفار مر ذرائع ابلاغ <sup>23</sup> کے ادوار، لیعنی ریڈیو، ٹی وی وغیرہ میں پائے جاتے ہیں۔ان ٹرانسفار مروں کی علامت شکل 3.3 میں دکھائی گئی ہے جس میں قالب ظاہر کرنے والی متوازی کلیریں نہیں پائی جاتی ہیں۔

### 3.3 امالى برتى دباو

اس جھے کا بنیادی مقصد بیرونی برقی دباو v اور اندرونی امالی برقی دباو e میں فرق واضح کرنا اور ان سے متعلق سمتیکی اصطلاحات کا تعارف ہے۔

three  $phase^{15}$ 

iron core, three phase power  $transformer^{16}$ 

single phase<sup>17</sup>

 $potential\ transformer^{18}$ 

current transformer 19

electrical rating  $^{20}$ 

<sup>21</sup> يم عموماً تقريباً بجيس وولث -ايمپيئر سكت ركھتے ہيں۔

air core transformer<sup>22</sup>

communication transformer<sup>23</sup>



شکل 3.4 میں بے بوجھ 24 ٹرانسفار مر دکھایا گیا ہے، یعنی اس کا ثانوی کچھا کھلے دور رکھا گیا ہے۔ ابتدائی کچھے کی مزاحمت  $R_1$  ہے جس کو بیرونی جزو دکھایا گیا ہے۔ابتدائی کچھے پر  $v_1$  برتی دباو لا گو کرنے سے ابتدائی کچھے میں بیجان انگیز 25 برتی رو ہی گذرے گا۔اس بیجان انگیز برتی رو سے پیدا مقناطیسی دباو ہی تالب میں مقناطیسی بہاو م پیدا کے گا۔ یہ بداتا مقناطیسی بہاو ابتدائی کچھے میں امالی برتی دباو  $e_1$  پیدا کرتا ہے جسے درج ذیل مساوات پیش کرتی ہے۔

(3.1) 
$$e_1 = -\frac{\mathrm{d}\lambda}{\mathrm{d}t} = -N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

اس مساوات میں

- $\lambda$  ابتدائی کیجے کی مقناطیسی بہاو کے ساتھ ارتباط بہاو ہے،
- $\varphi$  مقناطیسی قالب میں مقناطیسی بہاو جو دونوں کیھوں میں سے گزرتی ہے،
  - ابتدائی کچھے کے چکر ہیں۔  $N_1$

ابتدائی کچھے کی مزاحمت  $R_1$  صفر نہ ہونے کی صورت میں کرخوف کے قانون برائے برقی دباو کے تحت درج ذیل ہو گا۔

$$(3.2) v_1 = i_{\varphi} R_1 + e_1$$

 $\begin{array}{c} unloaded^{24} \\ excitation \ current^{25} \end{array}$ 

شکل 3.4 میں اس مزاحت کو بطور بیرونی جزو، ٹرانسفار مر کے باہر، و کھایا گیا ہے۔اس کچھے کی رستا متعاملہ بھی ہو گی جے نظرانداز کیا گیا ہے۔عموماً طاقت کے ٹرانسفار مرول اور موٹرول میں  $i_{\varphi}R_1$  کی قیمتوں سے بہت کم ہوتی ہے لہٰذا اسے نظرانداز کیا جا سکتا ہے۔ ایسا کرتے ہوئے درج ذیل کھا جا سکتا ہے۔

$$(3.3) v_1 = e_1 = -N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

مساوات 3.2 سے ثابت ہوتا ہے کہ بیرونی لا گو برقی دباو  $v_1$  اور اندرونی امالی برقی دباو  $e_1$  ہوتا ہے کہ بیرونی لا گو برقی دباو  $v_1$  اور  $v_1$  کی مطلق قیمتیں (تقریباً) ایک ہیں۔ یہ بات سمجھ لینا بہت ضروری ہے۔مساوات 3.3 کے تحت  $v_1$  اور  $v_1$  کی مطلق قیمتیں (تقریباً) ایک دوسرے کے برابر ہوتی ہیں  $v_2$ مساوات 3.3 میں دائیں ہاتھ منفی کی علامت پائی جاتی ہے۔ (ہمیں عموماً برقی دباو کی مطلق قیمت درکار ہوتی ہے ناکہ اس کی علامت للذا اس کتاب میں مساوات 3.3 طرز کی مساواتوں میں دائیں ہاتھ منفی کی علامت عموماً نہیں کھی گئی ہے۔)

لچھا ہیجارے <sup>27</sup> کرنے سے مراد اس پر بیرونی برقی دباو لا گو کرنا ہے جبکہ کچھے پر لا گو بیرونی برقی دباو کو ہیجارے انگیز برقی دباو<sup>28</sup> کہتے ہیں۔کچھے کو ہیجارے شدہ کچھا<sup>29</sup> جبکہ اس میں رواں برقی رو کو ہیجارے انگیزبرقی رو<sup>30</sup> کہتے ہیں۔

کچھ میں گزرتی مقناطیسی بہاو کی تبدیلی سے برقی دباو حاصل کیا جا سکتا ہے۔ ٹرانسفار مروں میں ساکن کچھا سے برقی دباو <sup>31</sup> اللہ برقی دباو <sup>31</sup> کہتے ہیں۔ برقی دباو کا حصول مقناطیسی میدان میں کچھے کی حرکت سے بھی ممکن ہے۔ ایسے برقی دباو کو محرکھ برقی دباو<sup>32</sup> کہتے ہیں۔یاد رہے ان برقی دباو میں کسی قشم کا فرق نہیں ہوتا۔انہیں مختلف نام صرف بیجان کی خاطر دئے جاتے ہیں۔

## 3.4 سيجان انگيزېرقى رواور قالبى ضياع

جہال مقناطیسی قالب میں براتا مقناطیسی بہاو ٹانوی لیجھوں میں فائدہ مند برقی دباو پیدا کرتا ہے وہاں یہ مقناطیسی قالب میں نقصان دہ برقی دباو کو بھی جنم دیتا ہے جس سے مقناطیسی قالب میں بھورنا برقی رو<sup>33</sup> پیدا ہوتا ہے۔ بھنور نما برقی

<sup>26</sup>جس سے طلبہ کی ذہن میں پیے غلط فہمی پیداہوتی ہے کہ بیدا یک بی برق دیاو کے دومختلف نام ہیں۔ excite<sup>27</sup>

excitation voltage<sup>28</sup>

excited coil<sup>29</sup> citation current<sup>30</sup>

excitation current<sup>30</sup> induced voltage<sup>31</sup>

electromotive force, emf<sup>32</sup>

eddy currents<sup>33</sup>



شکل 5. 3: قالبی پتری کے اشکال اور ان کو تہہ در تہہ رکھنے کاطریقہ۔

رو مقناطیسی قالب میں برقی طاقت کے ضیاع کا سبب بنتا ہے جے بھور نما برقی رو کا ضیاع  $^{36}$  یا مخضراً قالبی ضیاع  $^{35}$  کہتے ہیں۔ قالبی ضیاع کو کم سے کم کرنے کے لئے مقناطیسی قالب کو باریک لوہے کی پیزیان  $^{36}$  تہہ در تہہ رکھ کر بنایا جاتا ہے۔ان پتریوں پر غیر موصل روغن  $^{37}$  کی تہہ لگائی جاتی ہے تا کہ بھنور نما برتی روکو روکا جا سکے۔آپ ویکھیں گے کہ برتی مشین کا قالب عموماً اسی طرح بنایا جاتا ہے۔شکل 2.15 اور جدول 2.1 میں  $^{3048}$  میں میٹر موٹی کا کہ برتی موٹ کا  $^{37}$  کے مواد دیا گیا ہے۔

شکل 3.5-الف میں قالبی پتریوں کے دو اشکال دکھائے گئے ہیں۔ان کی صورت کی وجہ سے انہیں ایک اور تہیں ایک اور تہین ہتریوں کو دو طرح آپس میں رکھا گیا ہے۔ان دو طریق ہتری کہتے ہیں۔ شکل 3.5-ب میں ایک پتریوں اور تین پتریوں کو دو طرح آپس میں رکھا گیا ہے۔ان دو طریقوں سے انہیں تہہ در تہہ رکھا جاتا ہے۔الہٰذا اگر پہلی تہہ میں ایک دائیں جانب اور تین بائیں جانب رکھا جائے تو اس کے اوپر دوسری تہہ میں ایک کو بائیں جانب اور تین کو دائیں جانب رکھا جائے گا۔ تیسری تہہ میں پھر ایک کو دائیں اور تین کو بائیں جانب رکھا جائے گا، وغیرہ۔اسی طرح انہیں جوڑ کر شکل 3.5-پ میں دکھایا گیا قالب حاصل کیا جاتا ہے۔

میجان انگیز برقی رو بے بوجھ اور بوجھ بردار ٹرانسفار مر میں یکسال ہوتا ہے ۔جیسا کہ پہلے بھی ذکر کیا گیا ہے، قوی ٹرانسفار مر اور موٹرول میں برقی دباو اور مقناطیسی بہاو سائن نما ہوتے ہیں جبکہ ان میں بیجان انگیز برقی رو غیر سائن نما ہوتا ہے۔ بول اگر

(3.4) 
$$\varphi = \phi_0 \sin \omega t = \phi_0 \cos (\omega t - 90^\circ)$$
$$\hat{\varphi} = \phi_0 / -90^\circ$$

eddy current loss<sup>34</sup>

core loss<sup>35</sup>

 $laminations^{36} \\$ 

 $enamel^{37}$ 

 $<sup>\</sup>mathrm{E.I}^{38}$ 



شکل3.6: مختلف مرحلی سمتیوں کے زاویے۔

ہو تب

(3.5) 
$$e_1 = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \omega N_1 \phi_0 \cos \omega t$$
$$\hat{E_1} = \omega N_1 \phi_0 / 0$$

ہو 39 گا۔ یہاں  $\phi_0$  مقناطیسی بہاو کے حیطہ کو ظاہر کرتی ہے اور  $\omega$  زاویائی تعداد ارتعاش یعنی  $2\pi f$  کو ظاہر کرتی ہے  $\phi_0$  اور  $\phi_0$  گا  $\phi_0$  بہال  $\phi_0$  تعداد ارتعاش ہے جسے ہر ٹر Hz میں ناپا جاتا ہے۔ جیسا شکل 3.6 میں دکھایا گیا ہے  $\phi_0$  اور  $\phi_0$  کے بھی  $\phi_0$  کا زادیہ ہو گا۔  $\phi_0$  برتی دباو کی موثر قیت  $\phi_0$ 

(3.6) 
$$E_{rms} = \frac{\omega N_1 \phi_0}{\sqrt{2}} = 4.44 f N_1 \phi_0$$

ہے جس سے درج ذیل لکھا جا سکتا ہے۔

(3.7) 
$$\phi_0 = \frac{E_{rms}}{4.44f N_1 \phi_0}$$

یہاں رکھ کر دوبارہ نظر ثانی کرتے ہیں۔ اگر ایک کچھ پر  $E_{rms}$  موثر برقی دباو لا گو کیا جائے تو یہ کچھا اتنا ہجان انگیز برقی رو  $i_{\varphi}$  گزرنے دیتا ہے جس سے نمودار ہونے والا مقناطیسی بہاو مساوات 3.7 میں دیے گئے مقناطیسی بہاو  $\phi_0$  کے برابر ہو۔ یہ حقیقت نہ صرف ٹرانسفار مر بلکہ کسی بھی مقناطیسی دور کے لئے درست اور لازم ہے۔  $\phi_0$ 

نیر سائن نما ہیجان انگیز برتی رو  $i_{\varphi}$  کو فوریئر تسلسل  $^{40}$  سے درج ذیل لکھا جا سکتا ہے۔  $i_{\varphi} = \sum_{n} \left(a_{n} \cos n\omega t + b_{n} \sin n\omega t\right)$  (3.8)

<sup>&</sup>lt;sup>39</sup>ن مساوات میں اوران کے بعد پوری کتاب میں امالی برتی دیاد کے ساتھ منفی علامت نہیں لگائی گئی ہے۔ Fourier series <sup>40</sup>

اس تسلسل میں  $(a_1\cos\omega t + b_1\sin\omega t)$  کو بنیادی جزو<sup>44</sup> جبکہ باقی حصہ کو موسیقائی جزو<sup>44</sup> کہتے ہیں۔ بنیادی جزو میں  $(a_1\cos\omega t + b_1\sin\omega t)$  کہ مقدم ہے اور دونوں  $(a_1\cos\omega t + b_1\sin\omega t)$  کہ مقاطیسی بہاو سے وجود میں آنے والے امالی برقی دباو،  $(a_1\cos\omega t + b_1\sin\omega t)$  ہے ہم قدم ہے اور دونوں ایک ساتھ بڑھتے اور گھتے ہیں جبکہ  $(a_1\cos\omega t + b_1\sin\omega t)$  نے اس جزو کو جزوقالبی ضیاع  $(a_1\cos\omega t + a_1\cos\omega t)$  بنا برقی طاقت کی ضائع، کو  $(a_1\cos\omega t + a_1\cos\omega t)$  فی سے اس جزو کو جزوقالبی ضیاع  $(a_1\cos\omega t + a_1\cos\omega t)$  کے اس جزو کو جزوقالبی ضیاع  $(a_1\cos\omega t + a_1\cos\omega t)$  کہ تیسر کی رو یا مقناطیسی برقی رو  $(a_1\cos\omega t + a_1\cos\omega t)$  کے تیسر کی تیسر کی موسیقائی جزو سب سے زیادہ اہم ہے۔ قوی ٹرانسفار مروں میں تیسر اموسیقائی جزو عموماً کل بیجان انگیز برقی رو کا 40 فی صد ہوتا ہے۔

ماسوائے جب بیجان انگیز برتی رو کے اثرات پر غور کیا جا رہا ہو، ہم بیجان انگیز برتی رو کے غیر سائن نما ہونے کو نظرانداز کرتے ہیں۔ قوی ٹرانسفار مرکا بیجان انگیز برتی رو اس کے کل برقی رو  $^{45}$ کا تقریباً  $^{5}$  فی صد ہوتا ہے لمذا اس کا اثر بہت کم ہوتا ہے۔ یوں ہم بیجان انگیز برتی رو کو سائن نما تصور کر کے اس کے اثرات پر غور کرتے ہیں۔ایسا کرنے سے مسئلہ پر غور کر نا آسان ہو جاتا ہے۔ اس فرضی سائن نما بیجان انگیز برتی رو  $^{6}$  کی موثر قیمت کے برابر رکھی جاتی ہے جبکہ اس کا زاویہ  $^{6}$  یوں رکھا جاتا ہے کہ اس سے ماصل برتی ضیاع اصل برتی ضیاع کے برابر ہو۔ شکل  $^{6}$  کی مدد سے یہ بات سیحفی زیادہ آسان ہے۔ قالبی ضیاع ہو ہونے کی صورت میں  $^{6}$  کی قیمت یوں منتخب کی جائے گی کہ درج ذیل مساوات درست ہو۔

 $(3.9) p_c = E_{rms} I_{\varphi,rms} \cos \theta_c$ 

و باو  $\hat{I}_{arphi}$  و باو  $\hat{I}_{arphi}$  و باو  $\hat{I}_{arphi}$ 

#### 3.5 تبادله برقی د باواور تبادله برقی روکے خواص

 $N_2$  اور ثانوی کچھا  $N_1$  اور ثانوی کچھا  $N_2$  ہم شکل  $N_3$  کی مدد سے ٹرانسفار مرکا مطالعہ کرتے ہیں۔ ہم فرض کرتے ہیں کہ ابتدائی کچھا  $N_1$  اور ثانوی کچھا ورہتا اور چکر کا ہے اور دونوں کچھوں کی مزاحمتیں صفر ہیں۔ ہم مزید فرض کرتے ہیں کہ یورا مقناطیسی بہاو قالب میں رہتا اور

 $fundamental\ component^{41}$ 

harmonic components<sup>42</sup>

 $core loss component^{43}$ 

 $<sup>{\</sup>rm magnetizing}\ {\rm current}^{44}$ 

<sup>&</sup>lt;sup>45</sup>کل بر تی روے مرادوہ بر تی روہ جو کل بر تی بوچھ لادنے سے حاصل ہو تا ہے۔ <sup>46</sup>یعنی بدلتی بر تی رو<sub>ن</sub> نو کواب مرحلی سمتیہ کی مدد سے می آگھتے ہیں



شكل 3.7: كامل بوجھ بردارٹرانسفار مر۔

دونوں کچھوں سے گزرتا ہے، قالب میں برقی توانائی ضائع نہیں ہوتی اور قالب کا مقناطیسی مستقل اتنا بڑا ہے کہ بیجان انگیز برقی رو قابل نظر انداز ہے۔ برقی رو  $i_1$  اور  $i_2$  کے رخ یوں رکھے گئے ہیں کہ ان سے پیدا مقناطیسی بہاو ایک دوسرے کے مخالف رخ ہیں۔ اصل ٹرانسفار مر ان باتوں پر تقریباً پورا اترتا ہے۔ ایسے ٹرانسفار مر کو کامل ٹرانسفار مر  $t_1$  کہتے ہیں۔

کامل ٹرانسفار مر کے ابتدائی کچھے پر بدلتا برتی دباو  $v_1$  لا گو کرنے سے قالب میں بدلتا مقناطیسی بہاو  $\varphi_m$  پیدا ہو گا جو ابتدائی کچھے میں ، لا گو برتی دباو  $v_1$  براب، امالی برتی دباو  $v_1$  پیدا کرتا ہے۔

$$(3.10) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

یمی مقناطیسی بہاو دوسرے کیجے سے بھی گزرے گا اور اس میں  $e_2$  امالی برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو  $v_2$  کی صورت میں نمودار ہو گا۔

$$(3.11) v_2 = e_2 = N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

مساوات 3.10 کو مساوات 3.11 سے تقسیم کرتے ہوئے درج ذیل رشتہ حاصل ہوتا ہے

$$\frac{v_1}{v_2} = \frac{N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}}{N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}} = \frac{N_1}{N_2}$$

جس کے تحت کامل ٹرانسفار مر دونوں لچھوں کے چکروں کی نسبت سے تبادلد برقی دباو<sup>48</sup> کرتا ہے۔

کامل ٹرانسفار مر میں طاقت کا ضیاع نہیں ہوتا ہے لہذا اس کو ابتدائی جانب جنتی برقی طاقت فراہم کی جائے وہ اتنی برقی طاقت ثانوی جانب دے گا:

$$(3.13) p = v_1 i_1 = v_2 i_2$$

 $ideal\ transformer^{47}$  voltage transformation<sup>48</sup>

68 پاپ 3. ٹرانسفار مسر

درج بالا مساوات سے

$$\frac{v_1}{v_2} = \frac{i_2}{i_1}$$

کھا جا سکتا ہے جس کو مساوات 3.12 کے ساتھ ملا کر درج ذیل حاصل ہوتا ہے۔

$$\frac{v_1}{v_2} = \frac{i_2}{i_1} = \frac{N_1}{N_2}$$

مساوات 3.15 ٹرانسفار مر کی تبادلہ برقی دباو اور تبادلہ برقی رو<sup>49</sup> کی خاصیت پیش کرتی ہے جسے عموماً دو حصوں میں پوں لکھا جاتا ہے:

$$(3.16)$$
  $rac{v_1}{v_2}=rac{N_1}{N_2}$  تبادلہ برتی دیاہ  $rac{i_1}{i_2}=rac{N_2}{N_1}$  تبادلہ برتی رو

اس مساوات کا پہلی جزو کہتا ہے کہ ٹرانسفار مر کی دونوں جانب برقی دباو دونوں اطراف چکروں کا راست متناسب ہو گا جبکہ مساوات کا دوسری جزو کہتا ہے کہ ٹرانسفار مر کے دونوں اطراف برقی رو چکروں کا بالعکس متناسب ہو گا۔

مثال 3.2: شکل 3.7 میں درج ذیل لیتے ہوئے ٹرانسفار مرکی دونوں جانب برقی دباو اور برقی رو معلوم کریں۔

$$\hat{V}_1 = 220/0$$
 $N_1 : N_2 = 220 : 22$ 
 $Z = R = 10 \Omega$ 

حل: اہتدائی جانب برقی دباو 220 وولٹ دیا گیا ہے۔ ہم ثانوی جانب برقی دباو کو مساوات 3.16 کے پہلی جزو کی مدد سے حاصل کرتے ہیں۔

$$\hat{V}_2 = \frac{N_2}{N_1} \hat{V}_1 = \frac{22}{220} \times 220 / 0 = 22 / 0$$

ثانوی دباو 22 وولٹ ہے جو ابتدائی دباو کے ہم قدم ہے۔ ثانوی برقی دباو 10 اوہم کی مزاحمت میں برقی رو پیدا کرے گا جے اوہم کے قانون سے حاصل کرتے ہیں:

$$\hat{I}_2 = \frac{22/0}{10} = 2.2/0$$

 $current\ transformation^{49}$ 

ثانوی رو 2.2 ایمپیئر ہے۔ ابتدائی رو مساوات 3.16 کے دوسری جزوسے حاصل کرتے ہیں۔

$$\hat{I}_1 = \frac{N_2}{N_1} \hat{I}_2 = \frac{22}{220} \times 2.2 / 0 = 0.22 / 0$$

اس مثال کے نتائج ایک جگہ لکھ کر ان پر غور کرتے ہیں۔

$$\hat{V}_1 = 220/0$$
,  $\hat{V}_2 = 22/0$ ,  $\hat{I}_1 = 0.22/0$ ,  $\hat{I}_2 = 2.2/0$ 

ابتدائی دباو ثانوی دباو کے دس گنا ہے جبکہ برقی رو میں قصہ الٹ ہے۔ ثانوی رو ابتدائی رو کے دس گنا ہے۔ طاقت دونوں اطراف برابر ہے۔ یہاں رک کر اس بات کو اچھی طرح سمجھ لیں کہ جس جانب برقی دباو زیادہ ہوتا ہے اس جانب برقی رو کم ہو گا۔ یوں زیادہ دباو لچھا کے چکر زیادہ ہوں گے اور اس کچھے میں نسبتاً باریک برقی تار استعال ہو گی جبکہ کم دباو لچھا کم چکر کا ہو گا اور اس میں نسبتاً موٹی برقی تار استعال ہو گی۔ موٹی تار زیادہ رو گزارنے کی سکت رکھتی ہے۔

مثال 3.3: صفحہ 73 پر شکل 3.9-الف میں رکاوٹ  $Z_2$  کو بدلتے برقی دباو  $\hat{V}_1$  کے ساتھ ایک ٹرانسفار مرک ذریعہ جوڑا گیا ہے۔درج ذیل معلومات کی روشنی میں رکاوٹ میں برقی رو اور طاقت کا ضیاع دریافت کریں۔

$$\hat{V}_1 = 110 / 0, \quad Z_2 = R + jX = 3 + j2, \quad N_1 : N_2 = 220 : 22$$

حل: ٹرانسفار مرکی تبادلہ برقی دباوکی خاصیت کے تحت ابتدائی 110 وولٹ دباو ٹانوی جانب درج ذیل دباو  $\hat{V}_s$  دے گا۔

$$\hat{V_s} = \frac{N_2}{N_1} \hat{V_1} = \frac{22}{220} \times 110 / 0 = 11 / 0$$

یوں ثانوی رو

$$\hat{I}_2 = \frac{\hat{V}_s}{Z} = \frac{11\underline{/0}}{3+i2} = 3.05\underline{/-33.69}^{\circ}$$

اور رکاوٹ میں برقی طاقت کا ضیاع  $p_z$  درج ذیل ہو گا۔

$$p_z = I_2^2 R = 3.05^2 \times 3 = 27.9 \,\mathrm{W}$$

#### 3.6 ثانوي جانب بوجھ كاابتدائي جانب اثر

یہاں صفحہ 67 پر دکھائے گئے شکل 3.7 سے رجوع کریں۔ہم حصہ 3.3 میں دیکھ بچکے ہیں کہ بے بوچھ ٹرانسفار مر کے ابتدائی کچھے پر بدلتا برقی دباو  $v_1$  لاگو کرنے سے اس کچھے میں بیجان انگیز برقی رو  $v_1$  گزرتا ہے جس کا مقناطیسی دباو  $v_1$  قالب میں مقناطیسی بہاو  $v_2$  پیدا کرتا ہے۔بہاو  $v_3$  ابتدائی کچھے میں  $v_3$  امالی برقی دباو پیدا کرے گا جو، کچھے کی مزاحمت صفر ہونے کی صورت میں، فراہم کردہ دباو کے برابر ہوگا:

$$(3.17) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

اب ہم ثانوی جانب برقی ہو جھ لادتے ہیں۔ ہو جھ بردار ٹرانسفار مر 51 کے ثانوی جانب برقی رو  $i_2$  رواں ہو گا جس کی وجہ سے  $N_2i_2$  مقناطیسی دباو وجود میں آئے گا۔ اس مقناطیسی دباو کی وجہ سے قالب میں مقناطیسی بہاو کا پچھ نہ کیا جائے تو قالب میں پہلے سے موجود مقناطیسی بہاو تبدیل ہو کر بوجہ پیدا ہو گا۔ اگر اس مقناطیسی بہاو کا پچھ نہ کیا جائے تو قالب میں پہلے سے موجود مقناطیسی بہاو تبدیل ہو کر بوجہ  $\varphi_m - \varphi_m = i$  ہو جائے گا اور بول ابتدائی کچھ میں امالی دباو تبدیل ہو کر فی ہو جائے گا۔ یول ابتدائی جانب اب امالی دباو اور لا گو برقی دباو ایک دوسرے کے برابر نہیں ہوں گے جو مساوات  $N_2i_2$  تحت ناممکن ہے۔ لمذا بوجہ کے ابتدائی کچھ میں برقی رو  $i_1$  نمودار ہو گا جو مقناطیسی دباو  $N_2i_2$  کے اثر کو ختم کر

$$(3.18) N_1 i_1 = N_2 i_2$$

ہیہ وہ ذریعہ ہے جس کی مدد سے ابتدائی لچھا جان پاتا ہے کہ ثانوی کچھے پر بوجھ لدا ہے۔ شکل 3.7 میں دونوں کچھوں میں مثبت برتی رو کی سمتیں یوں ہیں کہ ان کے مقناطیسی بہاو آپس میں مخالف رخ ہیں لہٰذا قالب میں دوبارہ مقناطیسی بہاو  $\varphi$  کے برابر ہو گا جیبیا کہ ہونا چاہئے تھا۔ مساوات 3.18 سے تبادلہ روکا کلیہ اخذ کیا جا سکتا ہے:

$$\frac{i_1}{i_2} = \frac{N_2}{N_1}$$

ار کیاں  $\varphi_m$  کہا گیاہے۔  $\varphi^{50}$  loaded transformer  $\varphi^{51}$ 



شكل 3.8: ٹرانسفار مركى علامت ميں نقطوں كامفہوم۔

#### 3.7 ٹرانسفار مرکی علامت پر نقطوں کامطلب

شکل 3.8 میں جس لمحہ ابتدائی لیچھے کا بالائی سر مثبت برتی دباو پر ہو، اس لمحہ ثانوی کیچھے کا بالائی سر مثبت دباو پر ہے۔ اس حقیقت کو کچھوں پر نقطوں سے ظاہر کیا گیا ہے۔ یوں نقطی سروں پر دباو ہم قدم ہوں گے۔

مزید ابتدائی کچھے کے نقطی سر سے مثبت برتی رو داخل جبکہ ثانوی کچھے کے نقطی سر سے مثبت برتی رو خارج ہو گی۔

#### 3.8 ركاوك كاتبادله

اس حصہ میں کامل ٹرانسفار مر میں رکاوٹ کے تباولہ پر غور کیا جائے گا۔ شکل 3.9-الف میں ایک ٹرانسفار مر و کھایا گیا ہے جس کی ابتدائی جانب سائن نما برتی دباو  $\hat{V}_1 = V_1/\theta$  لاگو کیا گیا ہے۔ یہاں مرحلی سمتیہ استعال کئے جائیں گیا ہے۔

جیسے اوپر ذکر ہوا، برقی دباو  $\hat{V}_1$  اور  $\hat{V}_2$  آپس میں ہم قدم ہیں اور اسی طرح برقی رو  $\hat{I}_1$  اور  $\hat{I}_2$  آپس میں ہم قدم ہیں۔ مساوات 3.12 اور مساوات 3.12 کو مرحلی سمتیہ کی مدد سے لکھتے ہیں۔

$$(3.20) \qquad \hat{V_1} = \left(\frac{N_1}{N_2}\right) \hat{V_2}$$

$$\hat{I_1} = \left(\frac{N_2}{N_1}\right) \hat{I_2}$$

خارجی دباو، رو اور رکاوٹ کا تعلق قانون اہم سے کھتے ہیں۔

(3.21) 
$$Z_2 = \frac{\hat{V_2}}{\hat{I_2}} = |Z_2| / \underline{\theta_z}$$

مساوات 3.20 سے درج ذیل لکھا جا سکتا ہے جہاں آخری قدم پر رکاوٹ کی قیمت پر کی گئی ہے۔

(3.22) 
$$\frac{\hat{V_1}}{\hat{I_1}} = \left(\frac{N_1}{N_2}\right)^2 \frac{\hat{V_2}}{\hat{I_2}} = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

يوں داخلي رو درج ذيل ہو گا۔

$$\hat{I}_1 = \frac{\hat{V}_1}{(N_1/N_2)^2 Z_2}$$

 $Z_2'$  کو فراہم کیا گیا ہے۔  $\hat{V}_1$  درج ذیل قیت کے رکاوٹ  $Z_2'$  کو فراہم کیا گیا ہے۔

(3.24) 
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

آپ تىلى كركيس كە اس دور ميں جى  $\hat{V}_1$  كا برقى رو مساوات 3.23 دىتى ہے۔

ماوات 3.23 سے نسبت  $\frac{\hat{V_1}}{\hat{I_1}}$  کھتے ہیں جو شکل 3.9-ب کے تحت  $Z_2'$  کے برابر ہے۔

(3.25) 
$$\frac{\hat{V_1}}{\hat{I_1}} = Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

دونوں ادوار سے  $\hat{V_1}$  کی طاقت درج ذیل حاصل ہوتی ہے۔

(3.26) 
$$p = \hat{V_1} \cdot \hat{I_1} = \frac{V_1^2 \cos \theta_z}{\left(\frac{N_1}{N_2}\right)^2 |Z_2|}$$

یوں حساب کرنے کے نقطہ نظر سے ہم  $\hat{V}_1$  کو مساوات 3.24 میں دی گئی قیمت کے رکاوٹ  $Z_2'$  پر لا گو کرتے ہوئے  $\hat{V}_1$  کا برتی رو اور طاقت جان سکتے ہیں۔

3.8. ر کاوٹ کاتب دلہ



شكل3.9: ٹرانسفار مركى خاصيت تبادلەر كاوك۔

 $Z_2$  منبع  $\hat{V}_1$  کو شکل 3.9-الف اور ب میں کوئی فرق نظر نہیں آتا ہے۔اس کے ساتھ ٹرانسفار مر کے ذریعہ جوڑنا یا بغیر ٹرانسفار مر  $\hat{V}_1$  جوڑنا یا بغیر ٹرانسفار مر  $\hat{V}_2$  جوڑنا ایک برابر ہے۔ ٹرانسفار مر  $\hat{V}_2$  کو یوں تبدیل کرتا ہے کہ  $\hat{V}_1$  کو رکاوٹ  $Z_2'$  نظر آتا ہے۔ ٹرانسفار مر کی اس خاصیت کو تبادلہ رکاوٹ  $S_2'$  خاصیت کہتے ہیں جس کو درج ذیل مساوات بیان کرتی ہے۔ ٹرانسفار مر کی اس خاصیت کو تبادلہ رکاوٹ  $S_2'$ 

(3.27) 
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

ہم حساب کرنے کی خاطر رکاوٹ کوٹرانسفار مرکی ایک جانب سے دوسری جانب منتقل کر سکتے ہیں۔

مثال 3.4: شکل 3.10-الف میں رکاوٹ  $Z_B$  کا برقی بوجھ ایک جزیٹر پر لدا ہے۔بوجھ تک برقی طاقت دو برقی تاروں کے ذریعہ منتقل کیا گیا ہے۔ان تاروں کا مجموعہ رکاوٹ  $Z_t$  ہے۔

شکل-ب میں جزیئر کے قریب نب برقی دباو بڑھانے والا ٹرانسفار مر برقی دباو کو دس گنا بڑھاتا ہے اور برقی بوجھ کے قریب نب برقی دباو گھٹانے والا ٹرانسفار مر برقی دباو کو دس گنا گھٹاتا ہے۔دونوں ٹرانسفار مروں کے گئے تاروں کا مجموعہ رکاوٹ  $Z_t$  ہے جبکہ باقی مستعمل تاروں کی رکاوٹ قابل نظر انداز ہے۔دونوں اشکال میں

$$Z_B = 2 + j4$$
,  $Z_t = 0.1 + j0.15$ ,  $\hat{V} = 415/0$ 

لیتے ہوئے

 $impedance\ transformation^{52}$ 





شكل 3.10: برقى طاقت كى منتقلي ـ



3.8 رکاوٹ کاتب دلہ

- برقی بوجھ پر برقی دباو معلوم کریں،
- برقی تاروں میں برقی طاقت کا ضیاع معلوم کریں۔

حل الف:

$$\hat{I_G} = \hat{I_t} = \hat{I_B} = \frac{\hat{V}}{Z_t + Z_B} = \frac{415\underline{/0}}{0.1 + j0.15 + 2 + j4}$$
$$= \frac{415\underline{/0}}{2.1 + j4.15} = 89.23\underline{/-63.159^{\circ}}$$
$$= 40.3 - j79.6$$

يول رکاوٹ پر برقی دباو

$$\hat{V}_B = \hat{I}_B Z_B = (40.3 - j79.6) (2 + j4)$$
  
= 399 + j2 = 399/0.287°

اور برقی تارول میں برقی طاقت کا ضیاع درج ذیل ہو گا۔

$$p_t = I_t^2 R_t = 89.23^2 \times 0.1 = 796 \,\mathrm{W}$$

حل ب: شکل 3.10 اور شکل 3.11 سے رجوع کریں۔ شکل 3.10 میں ٹرانسفار مر $T_2$  ثانوی رکاوٹ کو مساوات 3.24 کی مدد سے ابتدائی جانب منتقل کرتے ہیں۔

$$Z'_B = \left(\frac{N_3}{N_4}\right)^2 Z_B = \left(\frac{10}{1}\right)^2 (2+j4) = 200 + j400$$

یوں شکل 3.11-الف حاصل ہوتا ہے جس میں برقی تار کا رکاوٹ اور تبادلہ شدہ رکاوٹ سلسلہ وار جڑے ہیں۔ان کے مجموعہ کو اج

$$Z' = Z_t + Z_B' = 0.1 + j0.15 + 200 + j400 = 200.1 + j400.15$$

لکھتے ہوئے شکل 3.11-ب حاصل ہوتا ہے۔ایک مرتبہ دوبارہ مساوات 3.24 استعال کرتے ہوئے کا کو گرانسفار مرکے ابتدائی جانب منتقل کرتے ہوئے

$$Z'' = \left(\frac{N_1}{N_2}\right)^2 Z' = \left(\frac{1}{10}\right)^2 (200.1 + j400.15) = 2.001 + j4.0015$$

شکل 3.11-پ حاصل ہو گا جس سے جزیر کا برتی رو درج ذیل ہو گا۔

$$\hat{I_G} = \frac{\hat{V}}{Z''} = \frac{415/0}{2.001 + j4.0015} = 92.76 / -63.432^{\circ}$$

شکل  $\hat{I}_t$ ب میں جزیڑ کا برقی رو جانتے ہوئے تبادلہ برقی رو سے  $\hat{I}_t$  حاصل کرتے ہیں۔

$$\hat{I}_t = \left(\frac{N_1}{N_2}\right)\hat{I_G} = \left(\frac{1}{10}\right)92.76 / -63.432^\circ = 9.276 / -63.432^\circ$$

یوں برقی تار میں طاقت کا ضاع درج ذیل ہو گا۔

$$p_t = I_t^2 R_t = 9.276^2 \times 0.1 = 8.6 \,\mathrm{W}$$

اسی طرح شکل 3.10 میں  $\hat{I}_t$  جانتے ہوئے تبادلہ برقی رو سے

$$\hat{I}_B = \left(\frac{N_3}{N_4}\right) \hat{I}_t = \left(\frac{10}{1}\right) 9.276 / -63.432^\circ$$

$$= 92.76 / -63.432^\circ = 41.5 - j82.9$$

حاصل کیا جا سکتا ہے۔رکاوٹ پر برقی دباو درج ذیل ہو گا۔

$$\hat{V}_B = \hat{I}_B Z_B = (41.5 - j82.9)(2 + j4) = 414 + j0.2$$

بغیر ٹرانسفار مر استعال کیے برقی تاروں میں طاقت کا ضیاع 796 واٹ جبکہ ٹرانسفار مر استعال کرتے ہوئے صرف 8.6 ا واٹ یعنی 92 گنا کم ہے۔اسی میں ٹرانسفار مر کی مقبولیت کا راز ہے۔

#### 3.9 ٹرانسفار مر کاوولٹ-ایمپیئر

ٹرانسفار مرکی دونوں جانب برقی دباو کچھوں کے چکروں پر مخصر ہوتا ہے۔ٹرانسفار مر ایک مخصوص برقی دباو اور برقی رو کے لئے بنایا جاتا ہے۔ٹرانسفار مر بناوٹی برقی دباو پر بھی استعال کیا جا سکتا ہے اگرچہ عموماً اسے بناوٹی برقی دباو پر بھی جا جا سکتا ہے اگرچہ عموماً سناوٹی برقی رو پر بھی استعال کیا جا سکتا ہے۔ حقیقی استعال میں ٹرانسفار مرکا برقی روعموماً بناوٹی قیمت سے کم ہوتا ہے۔

ٹرانسفار مرکی ایک جانب کے برقی دباو اور برقی رو کا حاصل ضرب دوسری جانب کے برقی دباو اور برقی رو کا حاصل ضرب کا برابر ہوتا ہے۔

$$(3.28) V_1 I_1 = V_2 I_2$$

برقی دباہ اور برقی رو کے حاصل ضرب،  $V_1I_1$  یا  $V_2I_2$ ، کوٹرانسفار مرکا وولٹ ضرب ایمپیئر یا مختصراً وولھے۔ایمپیئر  $V_2I_2$  بہتے ہیں  $V_2I_3$  جوٹرانسفار مر کے برقی سکت کا ناپ ہے۔ٹرانسفار مر اور دیگر برقی مشین، مثلاً موٹر اور جزیئر جوٹرانسفار مرکے بین ، پر نسب معلوماتی شختی پر ان کا سکت، بناوٹی برقی دباہ اور بناوٹی تعداد لکھا جاتا ہے۔ یوں ٹرانسفار مرکا وولٹ۔ایمپیئر درج ذیل ہوگا۔

$$(3.29) V_1 I_1 = V_2 I_2$$

مثال 3.5: ایک 25000 وولٹ-ایمپیئر اور 220: 11000 وولٹ برقی سکت کے ٹرانسفار مر کے زیادہ برقی د باو کی جانب 11000 وولٹ لا گو ہیں۔

- اس کی ثانوی جانب زیادہ سے زیادہ کتنی برقی بوجھ ڈالی جا سکتی ہے۔
- اس زیادہ سے زیادہ برقی بوجھ پر اس کے ابتدائی کچھے میں برقی رو حاصل کریں۔

حل: اس ٹرانسفار مر کی معلومات میہ ہیں

25 kV A. 11000 : 220 V

اس کی ثانوی جانب برقی دباو تبادلہ برقی دباو کی مساوات سے 220 وولٹ حاصل ہوتا ہے۔یوں اس کی ثانوی جانب یعنی کم برقی دباو کی جانب زیادہ سے زیادہ برقی رو مساوات 3.29 سے حاصل کیا جاتا ہے۔

$$I_2 = \frac{25000}{220} = 113.636 \,\mathrm{A}$$

اسی طرح اس کی ابتدائی جانب زیادہ سے زیادہ برقی رواسی مساوات سے یوں حاصل ہوتی ہے

$$I_1 = \frac{25000}{11000} = 2.27 \,\mathrm{A}$$

ٹرانسفار مرکی دونوں جانب کچھوں میں استعال برقی تارکی موٹائی یوں رکھی جاتی ہے کہ ان میں کثافتِ برقی رو 55 کیساں ہو۔ کچھوں کی مزاحمت میں برقی رو گزرنے سے برقی طاقت کا ضیاع ہوتا ہے جس سے یہ گرم ہوتے

volt-ampere, VA<sup>53</sup>

<sup>&</sup>lt;sup>54</sup> وولٹ -ایمپیئر کو عموماً کلووولٹ -ایمپیئر یعنی kV A میں بیان کیاجاتا ہے۔

پ این میں گافت برقی رو تقریبات کا میں کی ایک میں کی ایک این کا میں کی ایک این کا میں کا این کا میں کا این کا میں کی ایک کا میں کی ایک کا میں کی ایک کا میں کی ایک کا میں کی کا میں کا میں کا کہ میں کا کہ کان

ہیں۔ٹرانسفار مرکی برقی رو کی حد کچھوں کی گرمائش پر منحصر ہوتی ہے۔ان کی زیادہ سے زیادہ حرارت کو محفوظ حد کے اندر رکھا جاتا ہے۔

ٹرانسفار مرجس برقی دباو کے لئے بنایا جائے یہ اس پر لگی شختی پر لکھا جاتا ہے۔اس سے حاصل برقی رو کی حد کو ایک مختلف طریقے سے لکھا جاتا ہے۔

#### 3.10 ٹرانسفار مرکے امالہ اوراس کے مساوی دور

3.10.1 کیھے کی مزاحمت اوراس کی متعاملہ علیحدہ کرنا

ٹرانسفار مرکی ابتدائی کچھے کی مزاحمت  $R_1$  کو ہم نے حصہ 3.3 مساوات 3.2 میں دیکھا۔ کچھے کی مزاحمت کو کچھے سے باہر کچھے کے ساتھ سلسلہ وار جڑا دکھایا گیا تھا۔ دیکھتے ہیں یہ کیسے ممکن ہوتا ہے۔

شکل 3.12-الف میں ایک لچھے پر بدلتی برقی دباو لا گو کا گیا ہے۔اگر لچھے کی برقی تارکو نہایت چھوٹے گلڑوں میں تقتیم کیا جائے تو اس کے ہر گلڑے کی نہایت کم مزاحمت اور متعاملہ ہو گی۔اییا ایک گلڑا شکل-ب میں دکھایا گیا ہے۔چونکہ لچھا ان سب گلڑوں کے سلسلہ وار جڑنے سے بنا ہے للذا شکل-الف کو ہم شکل-پ کی طرح بنا سکتے ہیں جہاں کچھے کے n گلڑے کیے ہیں۔

اس دور کی مساوات لکھ کر حل کرتے ہیں۔

$$\hat{V}_1 = \hat{I}_1 \left( \Delta R_1 + j \Delta X_1 + \Delta R_2 + j \Delta X_2 + \cdots \Delta R_n + j \Delta X_n \right)$$

$$= \hat{I}_1 \left( \Delta R_1 + \Delta R_2 + \cdots \Delta R_n \right) + \hat{I}_1 \left( j \Delta X_1 + j \Delta X_2 + \cdots j \Delta X_n \right)$$

$$= \hat{I}_1 \left( R + j X \right)$$



شكل 3.12: لحصے كى مزاحت اور متعامله۔



جہاں

$$R = \Delta R_1 + \Delta R_2 + \cdots \Delta R_n$$
$$X = \Delta X_1 + \Delta X_2 + \cdots \Delta X_n$$

اس سے شکل 3.13 حاصل ہوتا ہے جس سے ثابت ہوتا ہے کہ حساب کتاب کی غرض سے کچھے کی مزاحمت اور متعاملہ علیحدہ کیے جا سکتے ہیں۔ 80 پاپ 3. ٹرانسفار مسر

3.10.2 بستااماله

اوپر ایک کامل ٹرانسفار مر زیر بحث رہا۔ اب ہم ٹرانسفار مر میں ان عناصر کا ذکر کرتے ہیں جن کی وجہ سے ٹرانسفار مر غیر کامل ہو جاتا ہے۔ بہت سی جگہول پر ٹرانسفار مر استعال کرتے وقت ان عناصر کو مدِ نظر رکھ کر ہی اس کا صحیح استعال ممکن ہوتا ہے۔ ان عناصر کے اثر کو شامل کرنے کے لئے ہم ٹرانسفار مرکا مساوی دور بناتے ہیں۔

ابتدائی کچھے کے مقناطیسی بہاو کو دو حصول میں تقسیم کیا جا سکتا ہے۔ پہلا حصہ وہ جو قالب سے گزر کر ابتدائی اور ثانوی کچھے کے دونوں سے گزرتا ہے۔ یہ ان کا مشتر کہ مقناطیسی بہاو ہے اور دوسرا حصہ وہ جو صرف ابتدائی کچھے سے گزرتا ہے اور زیادہ تر قالب کے باہر خلاء میں ہی رہتا ہے۔ اس کو رستا مقناطیسی بہاو <sup>56</sup> کہتے ہیں۔ یہ شکل میں دکھایا گیا ہے۔ چونکہ ہوا میں مقناطیسی مستقل  $\mu_0$  مقررہ ہے لہذا یہاں بچکچاہٹ بھی مقررہ ہے۔ یوں رستا مقناطیسی بہاو ابتدائی کے کی برتی رو کے براہ راست متناسب ہوتی ہے۔

اس کے اثر کو بالکل کچھے کی مزاحمت کی طرح کچھے سے باہر رستا امالہ 57  $L_1$  یا رستا متعاملہ 88  $X_1=2\pi f L_1$  سے ظاہر کیا جاتا ہے۔

ٹرانسفار مر کے ابتدائی کچھے میں برقی رو  $\hat{I}_1$  گزرنے سے رستا متعاملہ میں  $\hat{V}_{X1}=j\hat{I}_1X_1$  برقی دباو اور کچھے کے تارکی مزاحمت  $\hat{V}_{R1}=\hat{I}_1R_1$  میں  $\hat{V}_{R1}=\hat{I}_1R_1$  برقی دباو گھٹتا ہے۔

یوں ابتدائی کچھے پر لاگو برتی دباو  $\hat{V}_1$  میں سے پچھ برتی دباو  $R_1$  میں کم ہو گا، پچھ متعاملہ  $X_1$  میں کم ہو گا اور بقایا  $\hat{E}_1$  بقایا  $\hat{E}_1$  بقایا  $\hat{E}_2$  برابر ہو گا۔ بیہ شکل  $\hat{V}_1$  میں دکھایا گیا ہے۔

3.10.3 ثانوی برقی رواور قالب کے اثرات

قالب میں دونوں کچھوں کا مشتر کہ مقناطیسی بہاوان کے مجموعی مقناطیسی دباوکی وجہ سے وجود میں آتا ہے۔ البتہ اگر ہم کہتے ہیں کہ ابتدائی برقی روکو دو شرائط پوری کرنی ہونگی۔ پہلی میہ کہ ابتدائی برقی روکو دو شرائط پوری کرنی ہونگی۔ پہلی میہ کہ اسے قالب میں جیجانی مقناطیسی بہاو وجود میں لانا ہوگا اور دوسری میہ کہ اسے ثانوی کیجھ کے پیدا کردہ مقناطیسی بہاوکو

leakage magnetic  $flux^{56}$  leakage inductance<sup>57</sup>

leakage reactance<sup>58</sup>



شكل3.14; ٹرانسفار م مساوى دور، حصه اول۔

ختم کرنا ہو گا۔ لہذا ابتدائی برقی رو کو ہم دو حصوں میں تقسیم کر سکتے ہیں۔ ایک حصہ  $i_{arphi}$  جو ہیجانی مقناطیسی بہاو پیدا کرے اور دوسرا  $\hat{I}_2'$  جو ثانوی کیجھے کے مقناطیسی دباو کے اثر کو ختم کرے۔ لہذا

$$\hat{I}_2' = \frac{N_2}{N_1} \hat{I}_2$$

اس باب کے حصہ 3.6 میں اس پر تفصیل سے غور کیا گیا ہے۔ برقی رو $_{\phi}$  غیر سائن نما ہوتی ہے لیکن پھر بھی ہم اس بائن نما $_{\phi}$  ہی تصور کرتے ہیں۔ اس کو ہم دو حصول میں تقسیم کر سکتے ہیں یعنی

$$\hat{I}_{\varphi} = \hat{I}_c + \hat{I}_m$$

جہاں  $\hat{I}_c$  اس کا وہ حصہ ہے جو ابتدائی کچھے کی امالی برتی دباو  $\hat{E}_1$  کے ہم قدم ہے اور یہ قالب میں برتی توانائی کے ضیاع کو ظاہر کرتا ہے جبکہ ساآ اس کا وہ حصہ ہے جو  $\hat{E}_1$  سے نوے درجہ زاویہ پیٹھ  $\hat{E}_2$  ہے اور کچھے میں مقناطیسی بہاو کو جنم دیتا ہے۔ برتی رو کے ان حصول کو ہم ایک مزاحت  $R_c$  اور ایک  $X_m$  اور ایک  $X_m$  سے پیش کرتے ہیں۔ یہ شکل میں دکھایا گیا ہے۔ برتی مقدار اتنی رکھی جاتی ہے کہ اس میں برقی طاقت کا ضیاع اصل قالبی ضیاع کے برابر ہو لیعنی دکھایا گیا ہے۔  $R_c$  اس طرح  $X_m$  کی مقدار اتنی رکھی جاتی ہی مقدار اتنی رکھی جاتی ہیں۔ یہ شکل  $X_m$  کی مقدار اصل برتی دباو اور تعدد پر حاصل کئے جاتے ہیں۔ یہ شکل  $X_m$  کی مقدار اصل برتی دباو اور تعدد پر حاصل کئے جاتے ہیں۔ یہ شکل  $X_m$  کی مقدار اصل برتی دباو اور تعدد پر حاصل کئے جاتے ہیں۔ یہ شکل  $X_m$  کے مقدار اصل برتی دباو اور تعدد پر حاصل کئے جاتے ہیں۔ یہ شکل  $X_m$ 

<sup>&</sup>lt;sup>59</sup>سائن نمابر قی رو کو مرحلی سمتیہ سے ظاہر کیاجاتا ہے lagging<sup>60</sup>





3.10.4 ثانوى لچھے كى امالى برقى دباو

قالب میں مشتر کہ مقناطیسی بہاو ثانوی کچھ میں امالی برقی دیاو  $\hat{E}_2$  پیدا کرے گی اور چونکہ یہی مقناطیسی بہاو ابتدائی کچھ میں ا $\hat{E}_1$  مالی پیدا کرتی ہے لہذا

$$\frac{\hat{E}_1}{\hat{E}_2} = \frac{N_1}{N_2}$$

مساوات 3.31 اور مساوات 3.32 کو ایک کامل ٹرانسفار مرسے ظاہر کیا جا سکتا ہے۔ یہ شکل 3.16 میں دکھایا گیا ہے۔



3.10.5 ثانوی کھے کی مزاحت اور متعاملہ کے اثرات

 $R_2$  ثانوی کچھے کے سروں پر البتہ  $\hat{E}_2$  برقی دباو نہیں ہو گا چونکہ ثانوی کچھے کے، بالکل ابتدائی کچھے کی طرح، مزاحمت وادر متعاملہ  $jX_2$  ہوں گے جن میں ثانوی برقی رو $\hat{I}_2$  کی وجہ سے برقی دباو گھٹے گا۔ لہذا ثانوی کچھے کے سروں پر برقی دباو کھٹے گا۔ لہذا ثانوی کچھے کے سروں پر برقی دباو  $\hat{V}_2$  قدرِ کم ہو گا۔ لینی

$$\hat{V}_2 = \hat{E}_2 - \hat{I}_2 R_2 - j \hat{I}_2 X_2$$

یوں حاصل ٹرانسفار مر کا مکمل مساوی دور یا ریاضی نمونه 61 شکل 3.17 میں دکھایا گیا ہے۔

3.10.6 ركاوك كالبندائي ياثانوي جانب تبادله

شکل 3.17 میں دکھائے دور کے سب جزو کا تبادلہ ایک جانب سے دوسری جانب کیا جا سکتا ہے۔ یہ کرنے سے کامل ٹرانسفار مر کو مساوی دور کی بائیں یا دائیں جانب لے جایا جا سکتا ہے۔ شکل 3.18 میں ثانوی جانب کی رکاوٹ کا ابتدائی جانب تبادلہ کیا گیا ہے۔اس کا ابتدائی جانب تبادلہ کیا گیا ہے۔اس طرح حاصل مساوی دور میں عموماً کامل ٹرانسفار مر بنایا ہی نہیں جاتا۔ یہی شکل 3.19 میں کیا گیا ہے۔

تبادلہ شدہ رکاوٹ Z کو Z' سے ظاہر کیا جاتا ہے۔ یوں  $R_2$  کے ٹرانسفار مرکی دوسری جانب تبادلہ کے بعد اسے  $R'_2$  سے ظاہر کیا گیا ہے۔

ابیا دور استعال کرتے وقت یہ ذہن میں رکھنا ہوتا ہے کہ ٹرانسفار مر کے کس جانب دور حل کیا جا رہا ہے۔

84 باب 3. ٹرانسفار مسر





مثال 3.6: ایک 50 کلو وولٹ-ایمپیئر اور 220: 2200 وولٹ برقی سکت کے ٹرانسفار مرکی زیادہ برقی وباوکی جانب کی رستار کاوٹ  $Z_1=0.0089+j0.011$  جانب کی رستار کاوٹ  $Z_1=0.9+j1.2$  اور تم ہو تو اس کی جانب کی پیشار کا وہ میں استعال ہوتا ہوں کہ  $R_c=6.4\,\mathrm{k}\Omega$  میں استعال ہونے والے جزو معلوم کریں۔

حل حصه اول: معلومات:

 $50\,\mathrm{kV\,A},\quad 50\,\mathrm{Hz},\quad 2200:220\,\mathrm{V}$ 

ٹرانسفار مر کے دونوں جانب کی برقی دباہ کچھوں کے چکروں کی نسبت سے ہوتے ہیں للمذا  $\frac{N_1}{N_0} = \frac{2200}{220} = \frac{10}{1}$ 

یوں اگر ٹرانسفار مرکی رکاوٹ کا زیادہ برقی دباد کی جانب تبادلہ کیا جائے تو

$$R'_{2} + jX'_{2} = \left(\frac{N_{1}}{N_{2}}\right)^{2} (R_{2} + jX_{2})$$

$$= \left(\frac{10}{1}\right)^{2} (0.0089 + j0.011)$$

$$= 0.89 + j1.1$$

جبکہ اس کی بقایار کاوٹ وہی رہیں گے۔یوں شکل 3.18 کے جزو حاصل ہوئے۔

حل حصه دوم: اگر مساوی دور کی رکاوٹ کا کم برقی دباو کی جانب تبادله کیا جائے تب

$$R'_1 + jX'_1 = \left(\frac{N_2}{N_1}\right)^2 (R_1 + jX_1)$$
$$= \left(\frac{1}{10}\right)^2 (0.9 + j1.2)$$
$$= 0.009 + j0.012$$

اسی طرح

$$R'_c = \left(\frac{N_2}{N_1}\right)^2 R_c = 64$$
$$X'_m = \left(\frac{N_2}{N_1}\right)^2 X_m = 470$$

 $mathematical model^{61}$ 

86 باب. 3. ٹرانسفار مسسر



 $\square$  جبکه  $Z_2$  و بی رہے گا۔

#### 3.10.7 ٹرانسفار مرکے سادہ ترین مساوی دور

ایک انجنیر کو جب ایک ٹرانسفار مر استعال کرنا ہو تو وہ حساب کرتے وقت شکل 3.18 میں دیے گئے دور کو استعال کر سکتا ہے۔ لبتہ جہاں ہمیں نہایت صحیح جواب مطلوب نہ ہوں کر سکتا ہے۔ یہ دور کی سادہ اشکال بھی استعال کی جا سکتیں ہیں۔ اس باب میں ہم ایسے ہی سادہ مساوی دوروں کا ذکر کریں گے۔

 $\frac{20}{100}$  گل  $\frac{3.20}{100}$  اور  $\frac{100}{100}$  کو بائیں یا دائیں طرف لے جانے سے شکل  $\frac{3.20}{100}$  اور شکل  $\frac{3.20}{100}$  حاصل ہوتے ہیں۔ چونکہ  $\hat{I}_{\varphi}$  کی مقدار نہایت کم  $\frac{62}{100}$  ہوتی ہے اس لئے ایسا کرنے سے حاصل جواب پر کوئی خاص فرق نہیں پڑتا۔  $\hat{I}_{\varphi}$  مقدار نہایہ کے مرف دوجے فی مدہوتی ہے مرف دوجے فی مدہوتی ہے۔



شکل3.22:ٹرانسفار مرکے سادہ مساوی ادوار۔

چونکہ اس شکل میں  $X_1$  ،  $R_2$  ،  $R_1$  اور  $X_2$  سلسلہ وار ہیں اس لئے ان کو جمع کیا جا سکتا ہے شکل میں ان کو مساوی مزاحمت  $R_m$  اور مساوی متعاملہ  $R_m$  کہا گیا ہے۔اس قسم کے ادوار شکل  $R_m$  سے بھی حاصل ہوتے ہیں۔

ہم ایک قدم اور آگے جا سکتے ہیں اور  $\hat{I}_{\varphi}$  کو مکمل طور پر نظر انداز کر سکتے ہیں لیعنی اس کو ہم صفر تصور کر لیتے ہیں۔ اس کا مطلب ہے کہ مساوی دور میں  $R_c$  اور  $R_c$  وونوں کو کھلے دور کیا جاتا ہے لیعنی انہیں مساوی دور سے ہٹا دیا جاتا ہے۔ شکل 3.22-الف میں ایسا کیا گیا ہے۔ اس دور میں قالب کے اثرات کو مکمل طور پر نظر انداز کیا گیا ہے۔ سے جہ

بیشتر وقت ہمیں اس سے بھی کم صحیح جواب مطلوب ہوتا ہے۔ چونکہ  $X_m\gg R_c$  لہذا ہم وکم کو بھی نظر انداز کر سکتے ہیں۔ یوں شکل 3.22-ب حاصل ہوتا ہے۔

## 3.11 كطيح دور معائنه اور كسرِ دور معائنه

پچھلے جھے میں بیان کئے گئے ٹرانسفار مر کے مساوی دور کے جزو ٹرانسفار مر کے دو معائنوں سے حاصل کئے جا سکتے ہیں۔ ان معائنوں کو کھلے دور معائنہ اور کسرِ دور معائنہ کہتے ہیں۔اس جھے میں انہیں پر غور کیا جائے گا۔ 88 باب 3. ٹرانسفار مسسر

#### 3.11.1 كطيح دور معائنه

کھلے دور معائنہ 63 جیسا کہ نام سے واضح ہے، ٹرانسفار مرکی ایک جانب کچھے کے سروں کو آزاد رکھ کر کیا جاتا ہے۔ یہ معائنہ اتنی برتی دباو اور تعدد یا ان کے قریب ترین مقداروں پر کیا جاتا ہے جینے پر ٹرانسفار مرکی بناوٹ 64 ہو۔ اگرچپہ یہ معائنہ ٹرانسفار مرکے کسی بھی جانب کے کچھے پر کیا جا سکتا ہے، حقیقت میں اسے کم برقی دباو والی جانب کے کچھے پر کرنا آسان ہوتا ہے۔ یہ بات ایک مثال سے زیادہ آسانی سے سمجھ آتی ہے۔

مثلاً ہم 4 4 5 اور V 220 V : 11000 کا 50 Hz پر چلنے والے ایک دور کے ٹرانسفار مرکا معائنہ کرنا چاہتے ہیں۔ اگر یہ معائنہ اس کے گیارہ ہزار کے لیجھے پر کیا جائے تو گیارہ ہزار برتی دباو کے لگ بھگ برتی دباو استعال کیا جائے گا اور اگر دو سو بیس برتی دباو والے لیجھے پر کیا جائے تو دو سو بیس برتی دباو کے لگ بھگ برتی دباو والے استعال کیا جائے گا۔ دونوں صورتوں میں تعدد 50 Hz کی گھگ رکھا جائے گا۔ 11 kV کی برتی دباو پر کام کرنا نہایت خطرناک ثابت ہو سکتا ہے۔ یہی وجہ ہے کہ اس معائنہ کو کم برتی دباو والے لیجھے پر ہی کیا جاتا ہے۔

جس برقی دباو پر ٹرانسفار مر عام حالات میں استعال ہوتا ہے اس معائنہ میں کم برقی دباو والی جانب کے لیجھے پر استے ہی یا اس کی قریب مقدار کی برقی دباو کو  $V_t$  لا گو کر کے کھے دور برقی طاقت  $p_t$  اور کھلے دور برقی رو  $I_t$  ناپی جاتے ہیں۔ معائنہ حقیقت میں استعال کے دوران برقی دباو کے جتنے قریب برقی دباو پر کیا جائے اتنا بہتر جواب حاصل ہوتا ہے۔ ٹرانسفار مر کی دوسری جانب لیجھ کے سرے چونکہ آزاد رکھے جاتے ہیں اس لئے اس میں برقی رو صفر ہو گا۔ لگذا ناپا گیا برقی رو صرف بیجان انگیز برقی رو  $\hat{\rho}_t$  ہو گا۔ ٹرانسفار مر جتنی برقی رو کے لئے بنایا گیا ہو یہ برقی رو اس کے تقریباً دو سے چھ فی صد ہوتا ہے۔ شکل 3.18 کو مدِ نظر رکھتے ہوئے اگر ہم بائیں جانب کو کم برقی دباو والی جانب تصور کریں تو شکل میں  $V_t$  کو برگی جائہ لا گو کرنا ہو گا۔ یوں ہم جو برقی رو ناپیں گے وہ غیر سمتی 50  $I_1$  ہو گا۔ چونکہ  $I_2$  صفر کے برابر ہے لہذا  $I_1$  در حقیقت  $\hat{I}$  کے مقدار  $I_2$  کے برابر ہو گا۔ یعنی اس طرح

$$I_t = I_1 = I_{\varphi}$$

ا تنی کم برقی رو سے کیجے کی رکاوٹ میں نہایت کم برقی دباو گھٹتا ہے،لہذا اسے نظر انداز کیا جاتا ہے لیتی  $V_{R1}=I_tR_1=I_{\varphi}R_1pprox 0$ 

يوں  $R_c$  اور  $X_m$  پر تقريباً  $V_t$  برتی و باو پايا جائے گا۔ يہ شکل  $R_c$  سے ظاہر ہے۔ان حقائق کو مد نظر رکھتے ہوئے شکل  $R_c$  حاصل ہوتا ہے۔

 $V_{X1} = I_1 X_1 = I_{\omega} X_1 \approx 0$ 

open circuit test<sup>63</sup> design<sup>64</sup>

scalar<sup>65</sup>



چونکہ برقی طاقت کا ضیاع صرف مزاحمت میں ہی ممکن ہے لہذا  $p_t$  صرف  $R_c$  میں ہی ضائع ہو گی۔ یوں  $p_t = \frac{V_t^2}{R_c}$ 

لکھا جائے گا۔ پوں

$$(3.34) R_c = \frac{V_t^2}{p_t}$$

حاصل ہوتا ہے۔

اسی طرح چونکہ برقی دباہ اور برقی رو کی مقداروں کے تناسب کو برقی رکاوٹ کی مقدار کہتے ہیں للذا  $|Z_t|=rac{V_t}{I_t}$ 

مگر شکل 3.23 سے واضح ہے کہ

$$\frac{1}{Z_t} = \frac{1}{R_c} + \frac{1}{jX_m}$$

للذا

$$Z_t = \frac{jR_c X_m}{R_c + jX_m}$$
$$|Z_t| = \frac{R_c X_m}{\sqrt{R_c^2 + X_m^2}}$$

90 باب 3. ٹرانسفار مسسر

$$\begin{array}{c|c}
I_t & R_{ms} & jX_{ms} \\
+ & & \\
\hat{V}_t & R_{ms} = R'_1 + R_2 \\
- & X_{ms} = X'_1 + X_2
\end{array}$$

شكل3.24: كسر دور معائنه به

جس سے حاصل ہوتا ہے

(3.35) 
$$X_m = \frac{R_c |Z_t|}{\sqrt{R_c^2 - |Z_t|^2}}$$

مساوات  $3.34 سے <math>R_c$  اور مساوات  $3.35 سے <math>X_m$  کا حساب لگایا جاتا ہے۔

یاد رہے کہ حاصل کردہ  $R_c$  اور  $X_m$  اور  $X_m$  ٹرانسفار مر کے اس جانب کے لئے درست ہیں جس جانب انہیں حاصل کیا گیا ہو۔ا گر ان کی قیمتیں دوسری جانب درکار ہوں تب تبادلہ رکاوٹ کا استعال کرتے ہوئے اس جانب کی قیمتیں حاصل کی جاسکتی ہیں۔

#### 3.11.2 كسر دور معائنه

یہ معائنہ بھی پچھلے معائنہ کی طرح ٹرانسفار مر کے کسی بھی طرف کیا جا سکتا ہے مگر حقیقت میں اسے زیادہ برقی دباو کے لیچے پر ہی کرنا زیادہ آسان ہوتا ہے۔ یہ معائنہ جینے برقی رو کے لئے ٹرانسفار مر بنایا گیا ہو اتنی برقی رو یا اس کے قریب مقدار پر کیا جاتا ہے۔ یعنی اس معائنہ میں کوشش ہوتی ہے کہ ٹرانسفار مر کے لیچھے میں اتنی برقی رو گزرے جتنی کے لئے یہ بنایا گیا ہو۔ للذا اگر ہم پچھلے معائنہ میں استعال ہونے والے ٹرانسفار مرکی بات آگے بڑھائیں تو اس کا زیادہ برقی دباو کا لچھا A 113.63 کے لئے بنایا گیا ہے۔ للذا اگر یہ معائنہ کم برقی دباو کچھے پر کیا جائے تو صرف A 2.2727 کرنا ہو گا اور اگر زیادہ برقی دباو کچھے پر کیا جائے تو صرف A 2.2727 کرنا ہو گا اور اگر زیادہ برقی دباو کچھے پر کیا جائے تو صرف A 2.2727 کرنا ہو گا جو کہ ذیادہ ترقی دباو کچھے کہ کرنا ہو گا جو کہ ذیادہ آسان ہے۔

اس معائنہ میں کم برقی دباو کچھے کے دونوں سروں کو آپس میں جوڑا جاتا ہے بعنی انہیں کسرِ دور کر لیا جاتا ہے اور زیادہ برقی دباو کچھے پر اس جانب کی ڈیزائن کردہ برقی دباو کے دو سے بارہ فی صد کا برقی دباو  $V_t$  لاگو کر کے کسرِ

دور برتی رو  $I_t$  اور کسرِ دور برتی طاقت  $p_t$  ناپ جاتے ہیں۔ جس کچھ کے سرے آپس میں کسرِ دور ہوتے ہیں اس میں سے برتی رو گزرتی ہے اور اس کا عکس دوسری جانب بھی موجود ہوتا ہے۔ یہ برتی رو ٹرانسفار مر کے ڈیزائن کردہ برتی رو گزرتی ہوتا ہے۔ اس معائنہ کا دور شکل 3.24 میں دکھایا گیا ہے۔ کھلے سرے معائنے کی طرح اگر کسر دور معائنے میں بھی شکل 3.18 کے بائیں جانب کو کم برتی دباو والی جانب تصور کریں تو  $V_t$  کی جگہ لا گو کرنا ہو گا۔

چونکہ یہ معائنہ بہت کم برقی دباو پر کیا جاتا ہے للذا اس معائنہ میں بیجان انگیز برقی رو کو مکمل طور پر نظرانداز کیا جا سکتا ہے۔ شکل سے ہم دیکھتے ہیں کہ چونکہ برقی طاقت صرف مزاحمت میں ہی ضائع ہو سکتی ہے للذا

$$p_t = I_t^2 \left( R_{ms} \right)$$

ہو گا جس سے

$$(3.36) R_{ms} = \frac{p_t}{I_*^2}$$

حاصل ہوتا ہے۔

کسرِ دور برقی رو اور برقی دباو سے ہمیں ملتی ہے

$$|Z_t| = \frac{V_t}{I_t}$$

مگر شکل سے واضح ہے کہ

$$Z_t = R_{ms} + jX_{ms}$$
$$|Z_t| = \sqrt{R_{ms}^2 + X_{ms}^2}$$

للذا

$$(3.37) X_{ms} = \sqrt{|Z_t|^2 - R_{ms}^2}$$

مساوات 3.36 کل مزاحمت دیتا ہے البتہ اس سے  $R_1$  یا  $R_2$  حاصل نہیں کیا جا سکتا۔ اس طرح مساوات 3.36 کل مزاحمت دیتا ہے البتہ اس سے  $R_1$  یا  $R_2$  حاصل کریا ممکن ہے۔ حقیقت میں سے  $R_2$  اتن معلومات کافی ہوتی ہے۔ اگر ان اجزاء ک علیحدہ علیحدہ قیمتیں درکار ہوں تو ایس صورت میں تصور کیا جاتا ہے کہ

$$R_1' = R_2$$
$$X_1' = X_2$$

92 باب. 3. ٹرانسفار مسر

ہیں۔

چونکہ یہ معائنہ عموماً جہاں ٹرانسفار مر موجود ہو وہیں کرنا پڑتا ہے للذا یہ ممکن نہیں ہوتا کہ ٹرانسفار مر کو بالکل اتنا برقی دباو دیا جائے جتنا درکار ہو بلکہ جو برقی دباو موجود ہو اس سے کام چلانا پڑتا ہے۔ لیکن اس بات کا خیال بہت ضروری ہے کہ جو برقی دباو ٹرانسفار مر کو دیا جا رہا ہو وہ ڈیزائن کردہ برقی دباو کے دو سے بارہ فی صد ہو۔ مثلاً اگر اس کا 220 V اور 220 V وہ بات کی جائے تو اس کے زیادہ برقی دباو کچھ پر 20 V اور 20 V اور 20 V کے در میان کوئی بھی برقی دباو دیا جا سکتا ہے۔ چونکہ ہمارے ہاں 20 کو اور 440 V عام پائے جاتے ہیں للذا ہم 20 V میا ساتعال کریں گے۔

یہاں یہ ایک مرتبہ دوبارہ یاد دھیانی کراتا جاول کہ ٹرانسفار مرکی ایک جانب کچھے کے سرے آپس میں جوڑ کر، یعنی انہیں کسرِ دور کر کے، دوسری جانب کچھے پر کسی بھی صورت میں اس جانب کی پوری برقی دباو لا گو نہیں کرنا۔ ایبا کرنا شدید خطرناک اور جان لیوا ثابت ہو سکتا ہے۔

یاد رہے کہ حاصل کردہ  $R_c$  اور  $X_m$  اور  $X_m$  ٹرانسفار مر کے اس جانب کے لئے درست ہیں جس جانب انہیں حاصل کیا گیا ہو۔ا گر ان کی قیمتیں دوسری جانب در کار ہوں تب تبادلہ رکاوٹ کا استعال کرتے ہوئے اس جانب کی قیمتیں حاصل کی جاسکتی ہیں۔

مثال 3.7: ایک 25 کلو وولٹ-ایمبیئر، 220 : 11000 وولٹ اور 50 ہر ٹز پر چلنے والے ٹرانسفار مر کے کھلے دور اور کسر دور معائنہ کئے جاتے ہیں جن کے نتائج ہیہ ہیں۔

- کھلے دور معائنہ کرتے وقت کم برقی دباو کی جانب V 220 لا گو گئے جاتے ہیں۔اسی جانب برقی رو 39.64 A اور طاقت کا ضیاع W 600 ناپے جاتے ہیں۔
- کسرِ دور معائنہ کرتے وقت زیادہ برقی دباو کی جانب V  $440 \,\mathrm{V}$  لا گو کئے جاتے ہیں۔ اس جانب برقی رو  $2.27\,\mathrm{A}$  اور طاقت کا ضیاع  $560\,\mathrm{W}$  ناپے جاتے ہیں۔

کھلے دور حل:

$$\begin{split} |Z_t| &= \frac{220}{39.64} = 5.55\,\Omega \\ R_c &= \frac{220^2}{600} = 80.67\,\Omega \\ X_m &= \frac{80.67\times5.55}{\sqrt{80.67^2-5.55^2}} = 5.56\,\Omega \end{split}$$



شکل 25.8: کھلے دوراور کسر دور معائنہ سے کم برقی دیاو جانب مساوی دور۔

کسر دور حل:

$$Z_t = \frac{440}{2.27} = 193.83 \,\Omega$$
 
$$R_{ms} = \frac{560}{2 \times 2.27^2} = 108.68 \,\Omega$$
 
$$X_{ms} = \sqrt{193.83^2 - 108.68^2} = 160 \,\Omega$$

ان نتائج کو کم برقی دباو جانب منتقل کرتے ہوئے

$$\left(\frac{220}{11000}\right)^2 \times 108.68 = 43.47 \,\mathrm{m}\Omega$$
 
$$\left(\frac{220}{11000}\right)^2 \times 160 = 64 \,\mathrm{m}\Omega$$

يعني

$$R_1 = R_2' = \frac{43.47 \,\mathrm{m}\Omega}{2} = 21.7 \,\mathrm{m}\Omega$$
  
 $X_1 = X_2' = \frac{64 \,\mathrm{m}\Omega}{2} = 32 \,\mathrm{m}\Omega$ 

حاصل ہوتا ہے۔ان نتائج سے حاصل کم برقی دباو جانب مساوی دور شکل 3.25 میں د کھایا گیا ہے۔

94 باب 3. ٹرانسفار مسر



شكل3.26: ايك ہى قالب پر تين ٹرانسفار مر۔

## 3.12 تين مرحله ٹرانسفار مر

اب تک ہم ایک مرحلہ 66 ٹرانسفار مر پر غور کرتے رہے ہیں۔ حقیقت میں برقی طاقت کی منتقلی میں عموماً تاہین مرحلہ ہو ٹرانسفار مر بیایا جا سکتا ٹرانسفار مر استعال ہوتے ہیں۔ تین مرحلہ ٹرانسفار مر خراب ہو جائے تو اس کو ٹھیک ہونے کے لئے ہٹا کر بقایا دو ٹرانسفار مر دوبارہ چالو کئے جا سکتے ہیں۔ تین مرحلہ ٹرانسفار مر بنانے کا اس سے بہتر طریقہ شکل 3.26 میں دکھایا گیا ہے جہاں ایک ہی مقناطیسی جا سکتے ہیں۔ تین مرحلہ ٹرانسفار مر کے لیچھے لیٹے گئے ہیں۔ اس شکل میں  $\hat{V}_{i1}$  پہلے ٹرانسفار مر کا ابتدائی لیچھا جبہ  $\hat{V}_{i1}$  اس کا خانوی لیچھا ہے۔ اس طرح کے تین مرحلہ ٹرانسفار مرستے، ملکے اور چھوٹے ہونے کی وجہ سے عام ہو گئے ہیں اور آپ کو روز مرہ زندگی میں یہی نظر آئیں گے۔ ان میں برتی ضیاع بھی قدر کم ہوتی ہے۔

شکل 3.27-الف میں تین ٹرانسفار مر دکھائے گئے ہیں۔ان تین ٹرانسفار مر کے ابتدائی کچھے آپیں میں دو طریقوں سے جوڑے جا سکتے ہیں۔ای کو ستارہ نما جوڑ 80 Y اور دوسرے کو تکونی جوڑ 60  $\Delta$  کہتے ہیں۔ای طرح ان سینوں ٹرانسفار مرول کے ثانوی کچھے انہیں دو طریقوں سے جوڑے جا سکتے ہیں۔یوں انہیں جوڑنے کے چار ممکنہ طریقے ہیں یعنی

- $Y:\Delta$  ستاره: تکونی •
- Y:Y ستاره: ستاره  $\bullet$
- $\Delta:\Delta$   $\Xi$

single phase<sup>66</sup> three phase<sup>67</sup>

star connected<sup>68</sup>

delta connected<sup>69</sup>



شكل3.27: تين مر حله ستاره- تكوني ٹرانسفار مر

### $\Delta: Y$ تکونی: ستاره $\Delta: Y$

شکل 3.27-الف میں ان تین ٹرانسفار مرول کے ابتدائی کیجھوں کو ستارہ نما جوڑا گیا ہے جبکہ ان کی ثانوی کیجھوں کو تکونی جوڑا گیا ہے۔شکل-ب میں تینوں ٹرانسفار مرکی ابتدائی کیجھوں کو ستارہ نما دکھایا گیا ہے۔اسی طرح ثانوی کیجھوں کو تکونی دکھایا گیا ہے۔انہی شکلوں کی وجہ سے ان کو ستارہ نما جوڑ اور تکونی جوڑ کہتے ہیں۔

الیی شکل بناتے وقت تینوں ٹرانسفار مرول کے ابتدائی کچھے کو جس زاویہ پر بنایا جاتا ہے اس کے ثانوی کچھے کو بھی اس ناوی پر بنایا جاتا ہے۔ یوں شکل کے حصہ الف میں سب سے اوپر ٹرانسفار مرجس کے ابتدائی جانب کے سرے اس اور ثانوی جانب کے سرے 'a'n ہیں کو حصہ با میں صفر زاویہ پر بنایا گیا ہے۔ تین مرحلہ ٹرانسفار مرول کو اس طرح کی علامتوں سے ظاہر کیا جاتا ہے اور ان میں قالب نہیں دکھایا جاتا۔

ٹرانسفار مرکے جوڑ بیان کرتے وقت بائیں جانب کے جوڑ کو پہلے اور دائیں جانب کی جوڑ کو بعد میں پکارتے ہیں۔ یوں شکل میں ٹرانسفار مرکو ستارہ۔ تکونی جڑا ٹرانسفار مرکہیں گے۔اسی طرح ابتدائی جانب کو بائیں اور ثانوی جانب کو دائیں ہاتھ بنایا جاتا ہے۔یوں اس شکل میں ابتدائی جانب ستارہ نما ہے جبکہ ثانوی جانب تکونی ہے۔

تارہ نما جڑی جانب سے چار برقی تاریں لکلتی ہیں۔اس جانب کچھوں کے مشتر کہ سرا n کو عموماً ٹرانسفار مر کے

96 باب. 3. ٹرانسفار مسر

زدیک زمین میں گہرائی تک دھنسا دیا جاتا ہے۔اس تار کو زمینی تار $^{70}$  یا صرف زمین  $^{71}$  کہتے ہیں۔عام فہم میں اسے شمندی تار $^{72}$  کہتے ہیں۔ باقی تین لیعنی a,b,c گرم تار $^{73}$  کہلاتے ہیں۔

ٹرانسفار مرکی کچھے پر برقی دباو کو یکے مرحلہ برقی دباو <sub>کیر حلہ</sub> <sup>74</sup> کہتے ہیں اور کچھے میں برقی رو کو یکے مرحلہ برقی رو کئے مرحلہ برقی رو گرم تاروں کے مابین برقی دباو کو تارکی برقی دباو <sub>تار</sub> 76 کہتے ہیں۔ جبکہ ٹرانسفار مرسے باہر نکلتی کسی دو گرم تاروں کے مابین برقی دباو کو تارکی برقی دو رہن <sup>76</sup> کہتے ہیں۔ زینی تار میں برقی رو کو زمینی برقی رو <sub>دین</sub> آ<sup>8</sup> کہتے ہیں۔

ستارہ نما Y جانب یک مرحلہ مقداروں اور نار کی مقداروں کا آپس میں یوں رشتہ ہے

(3.38) 
$$V_{\text{J}\text{t}} = \sqrt{3}V_{\text{J}\text{d}}$$
 
$$I_{\text{J}\text{t}} = I_{\text{J}}$$

جبکہ تکونی ∆ جانب یک مرحلہ اور تار کی مقداروں کا آپس میں یوں رشتہ ہے

$$V_{\text{jt}} = V_{\text{jt}}$$
 (3.39)  $I_{\text{jt}} = \sqrt{3}I_{\text{jt}}$ 

یہ مرحلی سمتیہ کے رشتے نہیں بلکہ ان کی غیر سمتی قیتوں کے رشتے ہیں۔ان دو مساواتوں سے حاصل ہوتا ہے

$$(3.40) V_{J_{\tau}}I_{J_{\tau}} = \sqrt{3}V_{J_{\tau}}I_{J_{\tau}}$$

چونکہ ایک مرحلہ ٹرانسفار مرکی وولٹ-ایمپیئر <sub>کیرطہ</sub> I <sub>کیمرطہ</sub> کا بیں اور ایسے تین ٹرانسفار مر مل کر ایک تین مرحلہ ٹرانسفار مر بناتے ہیں لہٰذا تین مرحلہ ٹرانسفار مرکی وولٹ-ایمپیئر اس کے تین گنا ہوں گے یعنی

(3.41) 
$$3V_{\rm J} = 3V_{\rm J} = 3V_{\rm J} = 3 \times \frac{V_{\rm J} I_{\rm J} r}{\sqrt{3}} = \sqrt{3} V_{\rm J} I_{\rm J} r$$

ground<sup>70</sup>

ground, earth, neutral<sup>71</sup>

 $neutral^{72}$ 

live wires<sup>73</sup>

phase voltage<sup>74</sup>

phase current<sup>75</sup>

line to line voltage<sup>76</sup>

line current<sup>77</sup>

ground current<sup>78</sup>



شکل 28. 3: ابتدائی اور ثانوی جانب تاراور یک مرحله مقداروں کے رشتے۔

یہ مساوات تاہی مرحلہ ادوار میں عام استعال ہوتی ہے۔

ٹرانسفار مرکسی طرح بھی جوڑے جائیں وہ اپنی بنیادی کارکردگی تبدیل نہیں کرتے للذا انہیں سارہ نما یا تکونی جوڑنے کے بعد بھی ان میں ہر ایک ٹرانسفار مر انفرادی طور پر صفحہ 68 پر دئے مساوات 3.16 اور صفحہ 72 پر دئے مساوات 3.24 پر پورے اترے گا۔ انہیں استعال کر کے شکل 3.28 میں دیۓ گئے ٹرانسفار مروں کے ابتدائی اور ثانوی جانب کی یک مرحلہ اور تارکی مقداروں کے رشتے حاصل کئے جا سکتے ہیں۔اس شکل میں  $N_1/N_2$  ہماں جہاں جہاں  $N_1:N_2$  ان میں ایک مرحلہ ٹرانسفار مر کے چکر کی نسبت ہے۔ تین مرحلہ ٹرانسفار مر پر گئی شختی پر دونوں جانب تارکی برقی دباو کی نسبت کھی جاتی ہے۔

جیسے شکل 3.28 میں و کھایا گیا ہے سارہ- تکونی ٹرانسفار مرکی تاریر برقی و باوکی نسبت

$$\frac{V_{\dot{\mathcal{G}}|\mathcal{E}|}}{V_{\dot{\mathcal{G}}|\dot{\mathcal{E}}|}} = \sqrt{3}a = \sqrt{3}\left(\frac{N_1}{N_2}\right)$$

جبکه ستاره-ستاره کا

$$\frac{V_{\dot{\mathcal{S}}|\mathcal{E}|}}{V_{\dot{\mathcal{S}};\dot{\mathcal{E}}}} = a = \left(\frac{N_1}{N_2}\right)$$

تکونی-ستاره کا

$$\frac{V_{\acute{\mathcal{J}}_{\mathcal{J}_{\mathcal{F}}}}}{V_{\mathcal{J}_{\mathcal{F}}}} = \frac{a}{\sqrt{3}} = \frac{1}{\sqrt{3}} \left(\frac{N_1}{N_2}\right)$$

98 باب. 3. ٹرانسفار مسر

اور تکونی- تکونی کا

$$\frac{V_{\acute{\mathcal{G}}, \breve{\mathcal{G}}}}{V_{\mathcal{G}, \breve{\mathcal{G}}}} = a = \left(\frac{N_1}{N_2}\right)$$

-4

مثال 3.8: یک مرحله تین یکسال ٹرانسفار مروں کو ستارہ-تکونی کY:Y: جوڑ کر تین مرحله ٹرانسفار مربنایا گیا ہے۔ ایک مرحله ٹرانسفار مرکی برقی سکھے 79 درج ذیل ہے:

 $50 \,\mathrm{kV} \,\mathrm{A}$ ,  $6350 : 440 \,\mathrm{V}$ ,  $50 \,\mathrm{Hz}$ 

شارہ- تکونی ٹرانسفار مرکی ابتدائی جانب 11000 وولٹ کی تین مرحلہ تارکی برقی دباو لا گو کیا گیا۔اس تین مرحلہ ٹرانسفار مرکی ثانوی جانب تار کا برقی دباو معلوم کریں۔

حل: حل کرتے وقت ہم ایک عدد یک مرحلہ ٹرانسفار مر پر نظر رکھیں گے۔ ابتدائی جانب اگر یک مرحلہ ٹرانسفار مر پر غور کیا جائے تو

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{6350}{440}$$

اور اس پر لا گو برقی دباو مساوات 3.38 کی مدد سے

$$V_{\rm limit} = \frac{V_{\rm lt}}{\sqrt{3}} = \frac{11000}{\sqrt{3}} = 6350.85\,{\rm V}$$

ہے لہٰذا اس یک مرحلہ ٹرانسفار مرکی ثانوی جانب مساوات 3.16 کی مدد سے

$$V_{\rm GJr} = \frac{N_2}{N_1} V_{\rm GLI} = \frac{440}{6350} \times 6350.85 \approx 440 \, {
m V}$$

ہیں۔چونکہ ثانوی جانب ان تین یک مرحلہ ٹرانسفار مرول کو تکونی جوڑا گیا ہے للذا مساوات 3.39 کی مدد سے اس جانب تار کی برقی دباویہی ہو گی۔اس تین مرحلہ ٹرانسفار مرکی تاریر برقی دباو کی نسبت

 $rating^{79}$ 

ہے۔چو نکہ یک مرحلہ ٹرانسفار مر 50 کلو وولٹ-ایمپیئر کا ہے للذا بیہ تین مرحلہ ٹرانسفار مر 150 کلو وولٹ-ایمپیئر کا ہو گا۔یول اس تین مرحلہ ٹرانسفار مر کی سکت<sup>80</sup>

 $150 \,\mathrm{kV} \,\mathrm{A}$ ,  $11000 : 440 \,\mathrm{V}$ ,  $50 \,\mathrm{Hz}$ 

ہو گیا۔

ٹرانسفار مر پر لگی شختی 81 پر اس کی سکت بیان ہوتی ہے جس میں ٹرانسفار مر کے دونوں جانب تار کے برقی دباو کھنے جاتے ہیں نہ کہ کچھوں کے چکر۔

ستارہ-ستارہ بڑے ٹرانسفار مر عام طور استعال نہیں ہوتے۔اس کی وجہ یہ ہے کہ اگرچہ ان کی تین مرحلہ برقی دباو کے بنیادی جزو آپس میں °120 زاویائی فاصلے پر ہوتے ہیں لیکن ان کی تیسری موسیقائی جزو آپس میں ہم قدم ہوتی ہیں۔ قالب کی غیر بتدر سج خصوصیات کی وجہ سے ٹرانسفار مر میں ہر صورت تیسری موسیقائی جزو پائے جاتے ہیں۔ تیسری موسیقائی جزو ہم قدم ہونے کی وجہ سے جمع ہوکر ایک نہایت بڑی برقی دباوکی موج پیدا کرتے ہیں جو کہی کبھی کبھی برقی دباوکی بنیادی جزو سے بھی زیادہ بڑھ جاتی ہے۔

بقایا تین قشم کے جڑے ٹرانسفار مرول میں برتی دباو کی تیسری موسیقائی جزو مسئلہ نہیں کرتیں چونکہ ان میں تکونی جڑے کچھوں میں برتی رو گھومنے شروع ہو جاتی ہے جو ان کے اثر کو ختم کر دیتی ہے۔

تین مرحلہ ٹرانسفار مر کے متوازن دور حل کرتے وقت ہم تصور کرتے ہیں کہ ٹرانسفار مرستارہ نما جڑا ہے۔ یول اس کے ایک مرحلہ پر لا گو برقی دباو، یک مرحلہ برقی دباو ہو گا۔ای مرحلہ پر لا گو برقی دباو، یک مرحلہ برقی دباو ہو گا۔ای طرح ہم تصور کرتے ہیں کہ اس پر لدا برقی بوجھ بھی ستارہ نما جڑا ہے۔ یوں تین مرحلہ کی جگہ ہم یک مرحلہ دور کا نسبتاً آسان مسئلہ حل کرتے ہیں۔ ایسا کرنے سے مسئلہ پر غور کرنا آسان ہو جاتا ہے۔ یہ ایک مثال سے زیادہ بہتر سمجھ آئے گا۔

مثال 3.9: ایک تین مرحلہ  $Y:\Delta 0000$  کلو وولٹ-ایمپیئر، 600: 11000 وولٹ اور 50 ہر ٹرز پر چلنے والا کامل ٹرانسفار مرتین مرحلہ کے متوازن برقی بوجھ کو طاقت مہیا کر رہا ہے۔ یہ بوجھ تکونی جڑا ہے جہاں بوجھ کا ہر حصہ (0.504+j0.1917) کے برابر ہے۔ شکل 3.29 میں یہ دکھایا گیا ہے۔

• اس شکل میں ہر جگہ برقی رو معلوم کریں۔

100 باب 3. ٹرانسفار مسر



شكل 29.2: ٹرانسفار مر تكونی متوازن بوجھ كوطاقت فراہم كرر ہاہے۔

• برقی بوجه <sup>82</sup> کو در کار طاقت معلوم کریں

حل:

پہلے تکونی بوجھ کو ستارہ نما بوجھ میں تبدیل کرتے ہیں

$$Z_Y = \frac{Z_\Delta}{3} = \frac{0.504 + j0.1917}{3} = 0.168 + j0.0639$$

اس بوجھ کو سارہ نما جڑا شکل 3.30 میں دکھایا گیا ہے۔اس شکل میں ایک برتی تار جے نقطہ دار کئیر سے ظاہر کیا گیا ہے کو ٹرانسفار مرکی زمینی نقطہ سے بوجھ کے مشتر کہ سرے کے در میان جڑا دکھایا گیا ہے۔متوازن دور میں اس تار میں برقی رو صفر ہوگی۔ حل کرنے کی نیت سے ہم اس متوازن دور سے ایک مرحلہ لے کر حل کرتے ہیں۔

یوں مساوی برقی بوجھ میں برقی رو

$$I = \frac{346.41}{0.168 + j0.0639} = 1927.262 / -20.825^{\circ}$$

ہو گی اور اس ایک مرحلہ میں طاقت

 $p = 346.41 \times 1927.262 \times \cos(-20.825^{\circ}) = 624\,007\,\mathrm{W}$ 

ہو گی۔ یوں برقی بوجھ کو پوری درکار برقی طاقت اس کے تین گنا ہو گی یعنی 1872 kW اس بوجھ کا جزو طاقت <sup>83</sup>

$$\cos(-20.825^{\circ}) = 0.93467$$

 $^{\rm rating^{80}}$  name plate<sup>81</sup>

electrical load<sup>82</sup>

power factor<sup>83</sup>



شكل 3.30 : تكونى بوجھ كومساوى ستاره بوجھ ميں تبديل كيا گياہے۔

ہے۔

میں برتی رو 1112.7
$$\frac{1927.262}{\sqrt{3}} = 1112.7$$
 ایمپیئر ہو گی۔ ٹرانسفار مر کی ابتدائی جانب برتی تاروں میں برتی رو  $\left(\frac{600}{11000}\right) \times 1927.262 = 105.12$ 

ايمبيير ہو گی۔

اس مثال میں جزو طاقت 0.93467 ہے۔اس کتاب کے لکھتے وقت پاکستان میں اگر صنعتی کارخانوں کی برقی بوجھ کی جزو طاقت 0.9 سے کم ہو جائے تو برقی طاقت فراہم کرنے والا ادارہ (واپڈا) جرمانہ نافذ کرتا ہے۔

## 3.13 ٹرانسفار مرچالو کرتے لمحہ زیادہ محرکی برقی روکا گزر

ہم دکھ چکے ہیں کہ اگر ٹرانسفار مرکے قالب میں کثافتِ مقناطیسی بہاو سائن نما ہو لیعنی  $B=B_0\sin\omega t$  تو اس کے لئے ہم لکھ سکتے ہیں

$$v = e = N \frac{\partial \varphi}{\partial t} = N A_c \frac{\partial B}{\partial t}$$
$$= \omega N A_c B_0 \cos \omega t$$
$$= V_0 \cos \omega t$$

102 باب. 3. ٹرانسفار مسر

لعني

$$(3.46) B_0 = \frac{V_0}{\omega N A_c}$$

یہ مساوات بر قرار چالو<sup>84</sup> ٹرانسفار مر کے لئے درست ہے۔

تصور کریں کہ ایک ٹرانسفار مر کو چالو کیا جا رہا ہے۔ چالو ہونے سے پہلے قالب میں مقناطیسی بہاو صفر ہے اور جس لمحہ اسے چالو کیا جائے اس لمحہ بھی یہ صفر ہی رہتا ہے۔

جس لمحه ٹرانسفار مر کو چالو کیا جائے اس لمحه لا گو برقی دباو

 $v = V_0 \cos(\omega t + \theta)$ 

ہے۔اگر $\pi/2$  ہیں کھہ ہو تو آدھے دوری عرصہ  $^{85}$  کے بعد قالب میں کثافتِ مقاطیسی بہاو heta

$$B = \frac{1}{NA_c} \int_0^{\pi/\omega} V_0 \cos(\omega t + \pi/2) dt$$
$$= \frac{V_0}{\omega NA_c} \sin(\omega t + \pi/2)_0^{\pi/\omega}$$
$$= -\left(\frac{2V_0}{\omega NA_c}\right)$$

ینی کثافتِ مقناطیسی بہاو کا طول معمول سے دگنا ہو گا۔ اگر یہی حساب  $\theta=\theta$  لمحہ کے لئے کیا جائے تو زیادہ سے زیادہ کثافتِ مقناطیسی بہاو بالکل مساوات 3.46 کے عین مطابق ہو گا۔ ان دو زاویوں کے مابین زیادہ سے زیادہ کثافتِ مقناطیسی بہاو ان دو حدوں کے در میان رہتا ہے۔

قالب کی B-H خط غیر بندر تک بڑھتا ہے۔ لہذا B دگنا کرنے کی خاطر H کو کئی گنا بڑھانا ہو گا جو کچھے میں محرک برتی رو بڑھانے سے ہوتا ہے  $^{88}$  یہاں صنحہ 53 پر دکھائے شکل 2.17 سے رجوع کریں۔ قوی ٹرانسفار مروں میں بیجانی کثافتِ مقناطیسی بہاو کی چوٹی 1.3  $B_0 \leq 1.3$  ہوتی ہے۔ ٹرانسفار مرچالو کرتے لمحہ یوں کثافتِ مقناطیسی بہاو کے  $B_0 \leq 1.3$  بہاو کے سے جس کے لئے درکار بیجان انگیز برتی رو نہایت زیادہ ہوگی۔

steady state<sup>84</sup> time period<sup>85</sup>

<sup>2000&</sup>lt;sup>86</sup> کاروولٹ -ایمبیئر ٹرانسفار مرسے چالو کرتے وقت تھر تھراہٹ کی آواز آتی ہے

266 باب. 3. ٹرانسٹار مسر

# فرہنگ

| oarth 04                           | ampara turn 39                             |
|------------------------------------|--------------------------------------------|
| earth, 94<br>eddy current loss, 62 | ampere-turn, 32<br>armature coil, 131, 251 |
| ,                                  | armature con, 131, 231<br>axle, 161        |
| eddy currents, 62, 126             | axie, 101                                  |
| electric field                     | carbon bush, 177                           |
| intensity, 10                      | cartesian system, 4                        |
| electrical rating, 59              | charge, 10, 136                            |
| electromagnet, 131                 | circuit breaker, 178                       |
| electromotive force, 61, 137       | coercivity, 46                             |
| emf, 137                           | coil                                       |
| enamel, 62                         | high voltage, 56                           |
| energy, 43                         | low voltage, 56                            |
| Euler, 21                          | primary, 55                                |
| excitation, 61                     | secondary, 55                              |
| excitation current, 50, 60, 61     | commutator, 164, 241                       |
| excitation voltage, 61             |                                            |
| excited coil, 61                   | conductivity, 25                           |
|                                    | conservative field, 108                    |
| Faraday's law, 38, 125             | core, 55, 126                              |
| field coil, 131, 251               | core loss, 62                              |
| flux, 30                           | core loss component, 64                    |
| Fourier series, 63, 142            | Coulomb's law, 10                          |
| frequency, 130                     | cross product, 13                          |
| fundamental, 142                   | cross section, 9                           |
| fundamental component, 64          | current                                    |
| • ,                                | transformation, 66                         |
| generator                          | cylindrical coordinates, 5                 |
| ac, 159                            | dolta connected 02                         |
| ground current, 94                 | delta connected, 92<br>design, 195         |
| ground wire, 94                    | <u> </u>                                   |
| 0                                  | differentiation, 18                        |
| harmonic, 142                      | dot product, 15                            |
| harmonic components, 64            | E,I, 62                                    |
| marinomo componento, or            |                                            |

نــرانگــــ 268

| parallel connected, 253    | Henry, 39                    |
|----------------------------|------------------------------|
| permeability, 26           | hunting, 178                 |
| relative, 26               | hysteresis loop, 46          |
| phase current, 94          |                              |
| phase difference, 23       | impedance transformation, 71 |
| phase voltage, 94          | in-phase, 69                 |
| phasor, 21                 | induced voltage, 38, 49, 61  |
| pole                       | inductance, 39               |
| non-salient, 140           |                              |
| salient, 140               | Joule, 43                    |
| power, 43                  |                              |
| power factor, 23           | lagging, 22                  |
| lagging, 23                | laminations, 31, 62, 126     |
| leading, 23                | leading, 22                  |
| power factor angle, 23     | leakage inductance, 79       |
| power-angle law, 188       | leakage reactance, 79        |
| primary                    | line current, 94             |
| side, 55                   | line voltage, 94             |
| ,                          | linear circuit, 226          |
| rating, 96, 97             | load, 98                     |
| rectifier, 164             | Lorentz law, 136             |
| relative permeability, 26  | Lorenz equation, 102         |
| relay, 101                 |                              |
| reluctance, 25             | magnetic constant, 26        |
| residual magnetic flux, 45 | magnetic core, 31            |
| resistance, 25             | magnetic field               |
| rms, 49, 164               | intensity, 11, 33            |
| rotor, 36                  | magnetic flux                |
| rotor coli, 104            | density, 33                  |
| rpm, 155                   | leakage, 78                  |
|                            | magnetizing current, 64      |
| saturation, 47             | mmf, 30                      |
| scalar, 1                  | model, 81, 207               |
| self excited, 251          | mutual flux linkage, 43      |
| self flux linkage, 42      | mutual inductance, 42        |
| self inductance, 42        | _                            |
| separately excited, 251    | name plate, 97               |
| side                       | non-salient poles, 177       |
| secondary, 55              |                              |
| single phase, 23, 59       | Ohm's law, 26                |
| slip, 209                  | open circuit test, 86        |
| slip rings, 176, 229       | orthonormal, 3               |

ف رہنگ \_\_\_\_

| unit vector, 2        | star connected, 92          |
|-----------------------|-----------------------------|
|                       | stator, 36                  |
| VA, 75                | stator coil, 104, 127       |
| vector, 2             | steady state, 175           |
| volt, 137             | step down transformer, 58   |
| volt-ampere, 75       | step up transformer, 58     |
| voltage, 137          | surface density, 11         |
| DC, 164               | synchronous, 130            |
| transformation, 66    | synchronous inductance, 184 |
| 07411620111401011, 00 | synchronous speed, 155, 176 |
| Watt, 43              | synchronous speed, 155, 170 |
| Weber, 32             | Tesla, 33                   |
| winding               | theorem                     |
| distributed, 140      | maximum power transfer, 229 |
| winding factor, 147   | Thevenin theorem, 226       |
| mang motor, 111       | •                           |
|                       | three phase, 59, 92         |
|                       | time period, 100, 142       |
|                       | torque, 165, 209            |
|                       | pull out, 178               |
|                       | transformer                 |
|                       | air core, 59                |
|                       | communication, 59           |
|                       | ideal, 65                   |
|                       | transient state, 175        |
|                       |                             |

| پترياں،62                         | ابتدائی                      |
|-----------------------------------|------------------------------|
| يورابوجھ،197                      | جانب،55                      |
| پنجھے،80                          | المحياء 55                   |
| يەپ<br>پىش زادىيە،22              | ارتباط بهاو، 39              |
| 22.25.00.                         | اضافی                        |
| تاخير ي زاويه ، 22                | زاويا کې ر فټار ، 212        |
| تار کی بر تی د باو،94             | اکائی سمتىيە، 2              |
| تار کی بر تی رو،94                | المالية، 39                  |
| تانبا،28                          | امالى بر قى د باو، 49،48، 61 |
| تبادليه                           | اوہم میٹر، 237               |
| ر کاوٹ، 71                        | ايكٰ، تين پترياں،62          |
| منختی،97                          | ايك مرحله،59                 |
| تدریکی تفرق،113                   | ايْمْبِيئر - چَكِر، 32       |
| تعدد،130                          |                              |
| تعقب،178                          | بر،136                       |
| تفرق،18                           | بر قرار چالو،100 ، 175       |
| جزوی،18                           | برتی بر، 136، 136            |
| تلمل،18                           | برتي د باد، 28، 137          |
| تكوني جوڙ،92                      | تبادله، 66،56                |
| توانائی،43                        | مُحرَك،137                   |
| تين مر حله ،92،59                 | بيجاني، 185                  |
| ط باز ها .                        | يك سمتى،164                  |
| ٹرانسفار مر<br>قب میں 50          | بر تى رو، 28                 |
| برقی د باووالا، 59                | بھنور نما،126                |
| بوجھ بردار،68<br>خلائی قالب،59    | تبادله،66                    |
| •                                 | پيجان انگيز ،50              |
| د باوبڑھاتا،58<br>د باو گھٹاتا،58 | ىرقى سكت،59                  |
| دباو هنانا،36<br>ذرائع ابلاغ،59   | برقی میدان،10                |
| دوال آبوان ، و د<br>رووالا ، 59   | شدت،28،10                    |
| كالل،65                           | بش،177                       |
| ئىلا،33<br>ئىلا،33                | بناوٹ،86                     |
| ځهن <b>د</b> ی تار،94             | بنیادی جزو، 44، 64، 142      |
| J 19403                           | بو جھ، 98                    |
| ثانوی جانب،55                     | <sup>بھ</sup> ٹی،114         |
|                                   | بھنور نما<br>                |
| جاول،43                           | بر قی رو، 62                 |
| 97.                               | فياع،62                      |
| پھيلاو،147                        | بھنور نمابر قی رو،126        |
| جزوطاقت،23                        | بي بيرية بالم                |
| پي <i>ڻ،</i> 23                   |                              |
| تاخيرى،23                         | پترى،31،316                  |

ف ن رائل

| سرك چىلە،176،229<br>سطى تكمل،181                                              | جزیٹر<br>بدلتی رو،159                                                 |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| سطى كثافت،111<br>سطى كثافت،11<br>سكت،96،96<br>سلىلە دار،145                   | جزیئر<br>بدلتی رو،159<br>جوڑ<br>شکونی،92<br>ستارہ نما،92              |
| ست كار، 241<br>بر تياتى، 164<br>ميكانى، 164                                   | چىر نى مىك، 126<br>چە ئى، 211                                         |
| سمتىي،2<br>عمودىاكائى،3<br>ستىر نقار،102<br>سىرايت،47                         | خطی<br>بر تی دور،226<br>خودار تباط بهاو،42<br>خوداماله،42             |
| ضرب<br>نقطہ:15<br>ضرب صلیبی،13                                                | داخلی بیجان<br>سلسله دار، 253<br>متوازی، 253<br>مرکب، 253             |
| طاقت،43<br>طاقت بالتقابل زاويه،188<br>طول موج،18                              | دوربری مرکب،253<br>دورشکن،178<br>دوری عرصه،142،100                    |
| عارضی صورت،175<br>عمودی تراش،9<br>رقبہ،9                                      | دهراه 161<br>رستا<br>اماله 79                                         |
| غير سمتى، 1<br>غير معاصر، 178                                                 | ۱۳۰۰ می ۱۳۰۰<br>متعاملیت، 217<br>رفتار                                |
| فورئير،250<br>فورييزنشلس،142،63<br>فيراڈے<br>قانون،125،38                     | اضا فی زاویا ئی، 212<br>روغن، 62<br>ریاضی نمونه، 207،81<br>ریالی، 101 |
| قالب،126<br>قالجی ضیاع،62<br>جزو،64<br>قانون<br>اوہم،26                       | زاویه جزوطاقت،23<br>زمین،94<br>زمین بر قی رو،94<br>زمین تار،94        |
| کولب،10<br>کولب،136<br>لوریز،136<br>قدامت پسندمیدان،108<br>قریب بزگی مرکب،253 | ساكن حصه،36<br>ساكن لچچاه 127،104<br>ستاره نماجوژه 92<br>سرك،209      |

عنرہنگ

| مر حلی فرق،23                                | قطب                                |
|----------------------------------------------|------------------------------------|
| مر کب جزیٹر،253                              | ا بھر ہے، 140، 177                 |
| مزاحمت، 25                                   | بموار،140،177                      |
| مساوات لورينز،102                            | قوت مر وژ <sup>ه</sup> وِ209،165   |
| مسئله                                        | انتِها کی، 178                     |
| تھونن،226                                    | قوى اليكشر الكس، 241،207           |
| زیادہ کے زیادہ طاقت کی منتقلی، 228           | قوى <u>لچ</u> ھے، 251              |
| مشتر كه ارتباط اماله ، 43                    |                                    |
| مشتر که اماله، 42                            | كارين بش، 177                      |
| معاصر،130                                    | کار گزاری،200                      |
| معاصراماليه، 184                             | <sup>ى</sup> پيىٹر،194<br>سىشە.    |
| معاصر رفتار،155،176                          | كثافتُ                             |
| معائنه                                       | برقی رو، 27                        |
| گھلے دور ،86                                 | کثافت مقناطیسی بہاو                |
| معائنه<br>کطید دور، 86<br>متناطیس<br>متناطیس | بقایا، 45                          |
| 131,0%                                       | كسر دور ، 38                       |
| چال کادائرہ،46                               | 04 (                               |
| خاتم شدت،46                                  | گرم تار،94                         |
| مقناطیسی برقی رو،64                          | گومتاحصه ،36                       |
| مقناطیسی بهاو،30                             | گھومتالچھا،104                     |
| رىتا،78                                      | . J                                |
| كثافت،33                                     | لچھا<br>نہ ہے۔                     |
| مقناطيسي چال،52                              | ابتدائي،55                         |
| مقناطیسی د باو،30                            | <u>ميلے</u> ،140                   |
| ست، 141                                      | پیچیار، 40<br>دان                  |
| مقناطيسي قالب، 55،31                         | ځانوی، 55<br>                      |
| مقناطيسي مستقل،166،26                        | زياده بر قي د باو، 56              |
| 31,26,9%                                     | ساكن،104                           |
| بروه ۱۶۲۵<br>مقناطیسی میدان                  | سمت،133<br>تا 131                  |
| شعا <sup>ب</sup> محمیران<br>شدت، 33،11       | قوی، 131<br>کمر قرب ع              |
| موژ،49،19                                    | گم برتی د باد،56<br>گسته ۱۵۸       |
| نور.بود.<br>موثر قیت،164                     | گھومتا، 104                        |
| وریت ،104<br>موسیقائی <i>جزو</i> ،142،64     | ميداني،131                         |
| و بیگنان بروم.<br>موصلیت، 25                 |                                    |
| ميداني ليحية 251<br>ميداني ليحية 251         | محد د<br>کار تیسی، 4               |
| 251-4002                                     | قار شى،4<br>ئىكى،5                 |
| واٹ، 43                                      | ى، د<br>محرك برقى دېلو، 61         |
| وب.<br>دولك،137                              | گور، 161<br>محور، 161              |
| وولٹ-ایمپیئر،75                              | مخلوط عدد ، 192<br>مخلوط عدد ، 192 |
| ويبر، 32                                     | مرحلي سمتيه، 186،21                |
| - /•"                                        | · ·                                |

> ك سمتى رو مشين، 241 ك مر حله، 23 ك مر حله برقى د باو، 94 كي مر حله برقى د و، 94 يولر مساوات، 21

39، چکر، 39 نگلچاب ، 30،25 بم قدم، 69 بم قدم، 61 چیان، 13 خود، 251 پیچان انگیز برتی دو، 16 برتی دو، 16