Linear Programming IV: More Duality and the Minimax Theorem

The Dual of a Linear Program

To take the dual: Label each primal constraint with a new dual variable. In our new linear program, each dual constraint will correspond to a primal variable. For the left-hand side, count up the appearances of this constraint's primal variable (e.g., x_1) in each of the primal constraints and multiply them by the dual variable for those constraints. That is, if x_1 appears 5 times $(5x_1)$ in constraint for y_1 , then add $5y_1$ to x_1 's constraint. Don't forget to include its appearance in the primal's objective function, but this will be the right-hand side of the constraint. Finally, the dual objective function is given by the right-hand side coefficients and their correspondence to the dual variables via the constraints in the primal.

The following is the normal form for a maximization problem primal and its primal:

$$\begin{array}{lll} \max & \mathbf{c}^T \mathbf{x} & \min & \mathbf{b}^T \mathbf{y} \\ \text{subject to} & \mathbf{A} \mathbf{x} \leq \mathbf{b} & \text{subject to} & \mathbf{A}^T \mathbf{y} \geq \mathbf{c} \\ & \mathbf{x} \geq \mathbf{0} & \mathbf{y} \geq \mathbf{0} \end{array}$$

Example 3: Maximum Matching

Given a graph G = (V, E) choose a maximum size matching—a set of edges S such that no vertex is covered by more than one edge.

Decision variables: x_e indicating whether edge e is in the matching.

Primal Linear Program:

$$\max \sum_{e \in E} x_e$$
 subject to
$$\sum_{e: v \in e} x_e \le 1 \qquad \forall v \text{ (vertex matched at most once)}$$

$$x_e \ge 0 \qquad \forall e \text{ (non-negativity)}$$

Taking the dual of the above primal, we get what linear program?

Conditions for Optimality

Weak Duality

Theorem 1. If \mathbf{x} is feasible in (P) and \mathbf{y} is feasible in (D) then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$.

Give an upper bound on maximum matching:

Give a lower bound on vertex cover:

Strong Duality

Theorem 2 (Strong Duality). A pair of solutions $(\mathbf{x}^*, \mathbf{y}^*)$ are optimal for the primal and dual respectively if and only if $\mathbf{c}^T \mathbf{x}^* = \mathbf{b}^T \mathbf{y}^*$.

Proof.
$$(\Rightarrow)$$
 Skip. (\Leftarrow)

Complementary Slackness

Primal (P): Dual (D):

Theorem 3 (Complementary Slackness). A pair of solutions $(\mathbf{x}^*, \mathbf{y}^*)$ are optimal for the primal and dual respectively if and only if the following complementary slackness conditions (1) and (2) hold:

Proof.

Zero-Sum Games and the Minimax Theorem

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

The Minimax Theorem

Theorem 4 (Minimax Theorem). For every two-player zero-sum game ${\bf A}$,

$$\max_{\mathbf{x}} \left(\min_{\mathbf{y}} \mathbf{x}^T \mathbf{A} \mathbf{y} \right) = \min_{\mathbf{y}} \left(\max_{\mathbf{x}} \mathbf{x}^T \mathbf{A} \mathbf{y} \right). \tag{1}$$

From LP Duality to Minimax

$$\max_{\mathbf{x}} \left(\min_{\mathbf{y}} \mathbf{x}^T \mathbf{A} \mathbf{y} \right) = \max_{\mathbf{x}} \left(\min_{j=1}^n \mathbf{x}^T \mathbf{A} \mathbf{e}_j \right)$$

$$= \max_{\mathbf{x}} \left(\min_{j=1}^n \sum_{i=1}^m a_{ij} x_i \right)$$
(3)

 $\max v$

subject to

$$v - \sum_{i=1}^{m} a_{ij} x_i \le 0$$
 for all $j = 1, \dots, n$
$$\sum_{i=1}^{m} x_i = 1$$

$$x_1, \dots, x_m \ge 0$$
 and $v \in \mathbb{R}$.

subject to

$$w - \sum_{j=1}^{n} a_{ij} y_j \ge 0$$
 for all $i = 1, \dots, m$
$$\sum_{j=1}^{n} y_j = 1$$

$$y_1, \dots, y_n \ge 0$$
 and $w \in \mathbb{R}$.