Seminar W5 - 832

$$cov(X,Y) = \frac{1}{mn} \sum_{i=1}^{m} \int_{i}^{\infty} (X_i - \overline{X}_i) (y_i - \overline{y})$$

$$\frac{1}{\sqrt{1-\frac{1}{2}}} = \frac{1}{\sqrt{1-\frac{1}{2}}} \left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right)^{2}$$

$$\frac{\partial}{\partial y} = \sqrt{\frac{2}{3}} \int_{0}^{1} (y - \overline{y})^{2}$$

The correlation conflicient:
$$\overline{P} = \frac{\cos(x,i)}{\overline{\sigma_x} \overline{\sigma_y}}$$

$$\overline{\mathcal{F}} \in [-1, 1]$$
 $\overline{\mathcal{F}} \subseteq 1$

Exercise 3. The following table represents the annual consumption (between 2000 and 2009) of cheese in the U.S. (in lbs), along with the number of people who died by becoming tangled in their bedsheets, in the same time period.

Year (Y)	Cheese consumed (C)	Bedsheet tanglings (B)		
	(in lbs)	(in deaths)		
2000	29.8	327		
2001	30.1	456		
2002	30.5	509		
2003	30.6	497		
2004	31.3	596		
2005	31.7	573		
2006	32.6	661		
2007	33.1	741		
2008	32.7	809		
2009	32.8	717		

Find the correlation coefficient of (B,C) and the lines of regression of C on B and of B on C.

$$C = \frac{1}{10}$$
, $\sum C_i = 31.52$

$$\bar{b} = 588.6$$

$$\overline{f} = \frac{\cos(C, B)}{\overline{C_C} \cdot \overline{C_B}}$$

$$(ou(C,B) = \frac{1}{10} \sum_{i=1}^{10} (C_i - \overline{C}) (\overline{b}_i - \overline{b}) =$$

$$\frac{1}{\sigma_{c}} = \sqrt{\frac{1}{10} \sum_{i} (c_{i} - c_{i})^{2}} = 1.16773$$

Lines of regrussion:

$$C - \overline{C} = \overline{g} \cdot \overline{C} \cdot (\overline{b} - \overline{b})$$

(regression of C on \overline{B})

$$\overline{b} - \overline{b} = \overline{P} \cdot \overline{B} \cdot (\overline{c} - \overline{c})$$

Exercise 1. According to the International Data Base of the U.S. Census Bureau, the population of the world grows according to the following table:

Year (Y)	Population(P)		
	(million people)		
1950	2558		
1955	2782		
1960	3043		
1965	3350		
1970	3712		
1975	4089		
1980	4451		
1985	4855		
1990	5287		
1995	5700		
2000	6090		
2005	6474		
2010	6864		

Denote by Y and P the year and population, respectively.

- (a) Find the standard deviations $\overline{\sigma}_Y$ and $\overline{\sigma}_P$;
- (b) Find the centroid of the distribution of the characteristic (Y, P);
- (c) Find the corelation coefficient of (Y, P);
- (d) Find the regression lines of Y on P and of P on Y;
- (e) The world population in 2015 was about 7378 million, while in 2020 it was about 7795 million. How well does the line of regression of P on Y predict these values?
- (f) According to this line of regression, in what year did the world population reach the 7 billion milestone?

(a)
$$\overline{y} = 1980 \quad \overline{p} = 4558.077$$

$$\overline{\sigma_{y}} = 18.708$$
 $\overline{\sigma_{p}} = 1389.955$

$$P - \overline{P} = \overline{P} \cdot \frac{\overline{P}}{\overline{Q_{Y}}} \cdot (y - \overline{y})$$

$$=) P = 0.997 \cdot \frac{1389.94}{18.7} (y - 1980) + 4558.027$$

regrission line of You P:

$$y-\bar{y} = \bar{p} \cdot \frac{\bar{c}_y}{\bar{c}_p} \cdot (p-\bar{p})$$

$$=$$
 $y = 1580 + 0.997 $\frac{18.7}{1289.54} \cdot (p - 4558.077)$$

$$P = 0.997 \cdot \frac{1385.5h}{18.7} \left(y - 1980 \right) + 558.077$$

((2015) = 7151.8 real value: 73+

9(7000) = 2012.8

red value: 2011

Exercise 4. In a certain experiment, the vibrations of the high E string of a guitar have been tested. The following contingency table data shows the results of the measurements of the tension T, respectively the speed S:

Tension \setminus Speed	$0.3~\mathrm{km/s}$	$0.35~\rm km/s$	$0.4~\rm km/s$	$0.45~\rm km/s$	$0.5~\rm km/s$	
25 N	8	0	0	0	0	
36 N	2	7	0	0	0	
49 N	1	2	8	0		
64 N	0	1	2	6	0	
81 N	0	0	1	2	10	

Do you suspect that there is a linear correlation between \sqrt{T} and S? Find the conditional means of the two-dimensional characteristic (\sqrt{T} , S), the coefficient of correlation and plot its curves of regression.

			ı				ı
	ケンシ	0.3	0.35	٥. ५	0.45	05	
	5	δ	O	0	9	Ø	8
	þ	_ ک	7	Ö	0	Ø	5
	7	1	2	8	D	0	17
•	8	a	1	2	٦	0	5
	5	6	0	1	2	10	13
		11	10	11	ð	20	50
					0		

(1) The conditional mean of Y, given $X = x_i$, is the value

$$\overline{y}_i = \overline{y}(x_i) = \frac{1}{f_{i.}} \sum_{j=1}^n f_{ij} y_j, \ i = \overline{1, m}.$$

(2) The conditional mean of X, given $Y = y_i$, is the value

$$\overline{x}_j = \overline{x}(y_j) = \frac{1}{f_{\cdot j}} \sum_{i=1}^m f_{ij} x_i, \ j = \overline{1, n}.$$

$$=\frac{1}{11}\left(0.3+0.7+3.2\right)=\frac{4.2}{11}=0.38182$$

The conditional mean of X, given
$$Y = y_{\perp}$$

$$\overline{X}_{2} = \overline{X}(y_{2}) = \frac{1}{10} \cdot (7.6 + 2.7 + 1.8) = \frac{1}{10} \cdot (42 + 14 + 8) = \frac{64}{10} = 6.4$$

$$\frac{7}{9}_{3} = 0.38$$

$$\frac{7}{9}_{1} = 0.3$$

$$\frac{7}{9}_{1} = 0.33899$$

$$\frac{7}{9}_{1} = 0.42778$$

$$\frac{7}{9}_{5} = 0.48077$$

$$\frac{7}{9}_{5} = 0.48077$$