INICIAÇÃO CIENTÍFICA

RELATÓRIO FINAL

Desigualdades de Clarkson

Universidade de São Paulo Instituto de Ciências Matemáticas e Computação

Aluno: Lucas Giraldi Almeida Coimbra

Orientador: Éder Rítis Aragão Costa

Agosto de 2024 São Carlos

Conteúdo

1	Teo	ria da Medida e Espaços L^p	2
	1.1	O problema da medida em \mathbb{R}^n	2
	1.2	Álgebras, medidas e Lebesgue	4

1 Teoria da Medida e Espaços L^p

O primeiro passo para o estudo das desigualdades de Clarkson é a construção de alguns conceitos de teoria da medida.

1.1 O problema da medida em \mathbb{R}^n

Considere a família $\mathcal{P}(\mathbb{R}^n)$ de todos os subconjuntos de \mathbb{R}^n . Se $\{a_i\}_{i=1}^n$ e $\{b_i\}_{i=1}^n$ são conjuntos em \mathbb{R} tais que $a_i < b_i$ para todo $i = 1, \ldots, n$, então podemos definir

$$\ell\left(\prod_{i=1}^{n} [a_i, b_i)\right) = \prod_{i=1}^{n} |b_i - a_i|$$

como o volume do n-retângulo dado pelo cartesiano acima. O que procuramos a seguir é uma função $\ell \colon \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$ que estenda de maneira "minimamente razoável" o volume de n-retângulos em \mathbb{R}^n . Com "minimamente razoável", queremos dizer que a nossa esperança é de que:

• se $x \in \mathbb{R}^n$ e $A \subset \mathbb{R}^n$, então

$$\ell(A+x) = \ell(A);$$

• se $\{A_i\}_{i=1}^n \subset \mathcal{P}(\mathbb{R}^n)$ é tal que $A_i \cap A_j = \emptyset$ para $i \neq j$, então

$$\ell\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \ell(A_i).$$

O texto produzido aqui pode ser de cunho acadêmico, mas o que seria de nós, autores, se não ensinássemos alguma coisa sobre a vida fora da matemática? Nossa primeira lição, portanto, é que esperança não serve de nada. Provaremos isso mostrando que tal extensão ℓ não pode existir. Para cumprir tal tarefa, definimos uma relação: se $x, y \in \mathbb{R}^n$ escrevemos

$$x \sim y$$
 se, e somente se, $x - y \in \mathbb{Q}^n$.

Proposição 1. A relação definida acima é de equivalência.

Demonstração. De fato,

- a relação é simétrica, já que $x x = 0 \in \mathbb{Q}^n$;
- a relação é reflexiva, já que se $x-y\in\mathbb{Q}^n$, então $-(x-y)\in\mathbb{Q}^n$, e-(x-y)=y-x;
- a relação é transitiva, já que se $x-y,y-z\in\mathbb{Q}^n$, então $x-z=(x-y)-(y-z)\in\mathbb{Q}^n$.

Dado $x \in \mathbb{R}^n$, denotamos sua classe de equivalência sob a relação definida acima por [x]. Definimos $\{x\} \in [0,1)^n$ como o vetor que, em cada coordenada, possui a parte fracionária da respectiva entrada de x. Como $x - \{x\} \in \mathbb{Z}^n$, então $\{x\} \sim x$. Dessa forma podemos, utilizando o axioma da escolha, construir um conjunto $I \subset [0,1)$ que possui precisamente um elemento para representar cada classe de equivalência de \sim . O próximo passo então é definir, para cada $x \in \mathbb{Q}^n$, um conjunto

$$I_x = \{y + x \pmod{1} \mid y \in I\}$$

e supor que a função ℓ procurada de fato existe, para chegarmos em uma contradição.

Proposição 2. Para cada $x \in (\mathbb{Q} \cap [0,1))^n$, vale que $\ell(I_x) = \ell(I)$.

Demonstração. Para provarmos a proposição, iremos particionar I_x em 2^n pedaços. Para cada $i = 0, \dots, 2^n - 1$ definimos e_i como sendo o vetor que contém, da esquerda para a direita em cada coordenada, a representação em base 2 do número i. Definimos então $V_i = [0,1)^n + e_i$. Note que

$$[0,2)^n = \bigsqcup_{i=1}^{2^n} V_i$$

e portanto, definindo $U_i = (I + x) \cap V_i$, temos

$$I + x = \bigsqcup_{i=1}^{2^n} U_i.$$

O objetivo agora é provar que

$$I_x = \bigsqcup_{i=1}^{2^n} U_i - e_i.$$

Primeiro, note que a união é disjunta, afinal, se $x \in (U_i - e_i) \cap (U_j - e_j)$ para $i \neq j$, então $x = v_i - e_i = v_j - e_j$ para $v_i \in U_i$ e $v_j \in U_j$. Dessa maneira, $(v_i - x) = (v_j - x) + (e_i - e_j)$ e portanto $v_i - x \sim v_j - x$. Acontece, porém, que $v_i, v_j \in I + x$, portanto $v_i - x, v_j - x \in I$ e, como estes são equivalentes sob a relação definida, obrigatoriamente são iguais, da onde segue que $v_i = v_j$ e assim $v_i - e_i = v_i - e_j$, assim $e_i = e_j$ e portanto i = j, o que é um absurdo.

Agora, provamos a igualdade desejada. Se $z \in I_x$, então existe $y \in I$ tal que $z = y + x \pmod{1}$. Tal y é único, afinal, se existissem y_1 e y_2 satisfazendo a igualdade, então teríamos $y_1 \sim y_2$ com ambos em I, o que é um absurdo. Sabemos ainda que existe $i = 0, \ldots, 2^n - 1$ com $y - e_i \in [0, 1)^n$, ou seja, $y - e_i$ é a redução de y módulo 1, ou seja, $y - e_i = z - x$. Note agora que $y + x \in U_i$, afinal, y + x pertence a I + x e $y + x - e_i = z \in I_x \subset [0, 1)^n$, assim $y + x \in V_i$. Dessa forma, $z \in U_i - e_i$, assim

$$I_x \subset \bigsqcup_{i=1}^{2^n} U_i - e_i.$$

Para a outra inclusão, se $z \in U_j - e_j$ para algum j, então $z \in [0,1)^n$, afinal, $z = u - e_j$ para algum $u \in U_j$ e, como $u \in V_j = [0,1)^n + e_j$, segue que $u - e_j = z \in [0,1)^n$. Mais ainda, $u \in U_j$, ou seja, $u \in I + x$ e assim u = y + x para $y \in I$, assim z = y + x (mod 1), portanto $z \in I_x$, da onde segue que

$$I_x \supset \bigsqcup_{i=1}^{2^n} U_i - e_i.$$

Com a igualdade provada, o resultado segue, afinal,

$$\ell(I_x) = \ell\left(\bigsqcup_{i=1}^{2^n} U_i - e_i\right) = \sum_{i=1}^{2^n} \ell(U_i - e_i) = \sum_{i=1}^{2^n} \ell(U_i) = \ell\left(\bigsqcup_{i=1}^{2^n} U_i\right) = \ell(I + x) = \ell(I).$$

Antes de prosseguirmos, precisamos clarificar uma questão de notação: $x = y \pmod{k}$ significa que x é o resto da divisão de y por k, enquanto $x \equiv y \pmod{k}$ significa que x e y possuem o mesmo resto quando divididos por k.

Proposição 3. Se $Q = \mathbb{Q}^n \cap [0,1)^n$, então vale a igualdade

$$[0,1)^n = \bigsqcup_{x \in Q} I_x.$$

Demonstração. Uma das inclusões é simples, afinal, $I_x \subset [0,1)^n$ para todo $x \in Q$. Para a outra inclusão, se $z \in [0,1)^n$, então tome y como sendo o único representante de [z] em I. Sabemos que z=y+x para algum \mathbb{Q}^n . Mais do que isso, se $k=x \pmod 1$, então $k \in Q$ e $z=y+k \pmod 1$, portanto $z \in I_k$ e assim

$$[0,1)^n = \bigcup_{x \in Q} I_x.$$

Resta agora provarmos que essa união é disjunta. Se $z \in I_x \cap I_y$ com $x \neq y$, então $z = i_1 + p$ e $z = i_2 + q$ com $i_1, i_2 \in I$, $p, q \in \mathbb{Q}^n$, $x = p \pmod 1$ e $y = q \pmod 1$. Dessa forma, $i_1 - i_2 = q - p \in \mathbb{Q}^n$, portanto $i_1 \sim i_2$ e assim $i_1 = i_2$ pois ambos estão em I, da onde segue que q - p = 0 e portanto p = q, assim, como $x = p \pmod 1$ e $y = q \pmod 1$, então x = y, o que é um absurdo.

Com estas duas proposições, podemos concluir o absurdo. Pela Proposição 3 temos

$$\ell([0,1)^n) = \ell\left(\bigsqcup_{x \in Q} I_x\right) = \sum_{x \in Q} \ell(I_x) = \sum_{x \in Q} \ell(I)$$

e, como $\ell([0,1)^n)=1$, a igualdade é um absurdo, afinal, se $\ell(I)>0$ então a soma explode ao infinito, e se $\ell(I)=0$ então a soma é nula. Todo esse absurdo foi gerado por uma simples suposição: existe esse mapa $\ell\colon \mathcal{P}(\mathbb{R}^n)\to [0,\infty]$. Provada a sua não-existência, a pergunta que nos resta é: será que é possível estender a noção de volume para uma classe menor de subconjuntos?

1.2 Álgebras, medidas e Lebesgue

Dado um conjunto Ω , uma σ -álgebra em Ω é uma família \mathcal{F} que satisfaz algumas condições:

- $\Omega \in \mathcal{F}$;
- se $A \in \mathcal{F}$, então $\Omega \setminus A \in \mathcal{F}$;
- se $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, então

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$$

Teoria da medida compartilha muito de suas bases com a teoria de probabilidade (que se resume, em certo sentido, à teoria de medidas finitas), e dessa forma podemos pensar em σ -álgebras como objetos extremamente probabilísticos. Essa família de subconjuntos de Ω representa a família de todos os eventos dos quais queremos calcular a probabilidade de acontecimento. Com essa visão, as propriedades se traduzem para:

- o evento "qualquer coisa acontece" existe e podemos calcular sua probabilidade;
- se podemos calcular a probabilidade de um evento A acontecer, então podemos calcular a probabilidade de A não acontecer, ou seja, a probabilidade de $\Omega \setminus A$ acontecer;
- se é possível calcular a probabilidade de cada A_i acontecer para cada $i \in \mathbb{Z}_{>0}$, então podemos calcular a probabilidade de acontecer ao menos um dentre todos esses eventos, ou seja, a probabilidade de

$$\bigcup_{i=1}^{\infty} A_i$$

acontecer.

Elementos de uma σ -álgebra \mathcal{F} são chamados de conjuntos \mathcal{F} -mensuráveis ou apenas \mathcal{F} -mensuráveis. O nome da σ -álgebra pode ser e será omitido quando esta for clara a partir do contexto. O próximo passo agora é arranjar uma maneira de calcular probabilidades. Se \mathcal{F} é uma σ -álgebra em Ω , dizemos que o par (Ω, \mathcal{F}) é um espaço mensurável. Uma medida em (Ω, \mathcal{F}) é um mapa $\mu \colon \mathcal{F} \to [0, \infty]$ que é σ -aditivo, ou seja, tal que

$$\mu\left(\bigsqcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

para qualquer coleção $\{A_i\}_{i=1}^{\infty}$ de mensuráveis disjuntos dois a dois. A tripla $(\Omega, \mathcal{F}, \mu)$ é dita um espaço de medida. Temos ainda os casos especiais:

- se $\mu(\Omega) < \infty$, dizemos que μ é finita e $(\Omega, \mathcal{F}, \mu)$ é um espaço de medida finita;
- se $\mu(\Omega) = 1$, dizemos que μ é uma medida de probabilidade e $(\Omega, \mathcal{F}, \mu)$ é um espaço de probabilidade. Nesse caso, costumamos trocar a notação μ por \mathbb{P} ;
- se existe uma família $\{A_i\}_{i=1}^{\infty}$ de mensuráveis tais que $\mu(A_i) < \infty$ para todo i e

$$\Omega = \bigcup_{i=1}^{\infty} A_i,$$

dizemos que μ é σ -finita e $(\Omega, \mathcal{F}, \mu)$ é um espaço de medida σ -finita.

Existem diversos exemplos de espaços mensuráveis e de medida. Esse texto tem o objetivo de fazer as construções necessárias apenas para ter os pré-requisitos durante o estudo das desigualdades de Clarkson. Dessa maneira, vamos ignorar alguns exemplos que são costumeiramente feitos e focar logo nos dois mais importantes.

Se $S \subset \mathcal{P}(\Omega)$ então, como $\mathcal{P}(\Omega)$ é claramente uma σ -álgebra, a família \mathcal{A} de todas as σ -álgebras contendo S é não vazia. Dessa maneira, podemos definir

$$\sigma(S) = \bigcap_{A \in \mathcal{A}} A.$$

Esse conjunto é também uma σ -álgebra, chamada de σ -álgebra gerada por S. Supondo agora que Ω é topológico e τ é o conjunto de seus abertos, chamamos $\sigma(\tau)$ de σ -álgebra de Borel em Ω .

Referências

[1] Masters Program: Measure Theory (2018) - YouTube. Acessado: 10-09-2023. URL: https://www.youtube.com/playlist?list=PLo4jXE-LdDTQq8ZyA8F8reSQHej3F6RFX.