4	
	substitute value of a & y in eq (3)
	$\frac{x + y^2 - 2 = 0}{2\lambda_1^2 + \lambda_1^2 - 2 = 0} + \frac{1}{2} = 0 + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = 0 + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = 0 + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = 0 + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0 + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0 + \frac{1}{2} = \frac{1}{$
	$3\lambda_1^2 = 2$ $\lambda_1^2 = 2$
0.5	1 2 = + 19 + 10 = (16, y/2) = "no apages 1-2
	$\frac{3}{3}$
	dut from eq 8b => -21>0 noithness TXX at
	R.C.
	Finding $x + y$ $\int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \right)^2 = \frac{1}{2} \left(\frac{1}$
	y = 21 = potentiamagna (3)
	so optimal value of $(x,y) = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$
	(0.8) - 80> 71= 412 0< 12 0< 12 0
	J.3
	Max value of $f(x,y) = xy = 4.\sqrt{2}$ $3\sqrt{3} = 9$
	0 = x <= dil 10
Ques 36	Me statement & Given a linearly seperable data, the margin of decision boundary produced by SVM will
	always be greater than or equal to the margin of dech boundary produced by any other hyperplane." is
erre) -(4	TRUE because the objective of sum is to identify
	margin. We find the points closest to the line
	from both the classes & these points are k/a support

letter Last winning

min | ||w|| set $y_i = 1, 2, 3$ w, b = 2Given in a = [w, jw21, wz] T Fox inequality constraint we apply KKT. Here we have 3 vectors in 3D space & all are support vectors so equality holds & we can apply Lagerange. 3- constraints so 3 parametores (1, 22 /3) L(w/2)= 1 11w1122 + & 7; (y(w/4(xi)+b)-1) 3 21 y = 0. Putting p(xi) from part (b) we get, A1-12-13-0 10 10 10 10 From above eqn O, W we get [W1=0] -12W2 + W3 + b = -1 J2W2+W3+b=-1 -5. From eq 9.85; we get w==0] Now the weights are (0,0,-2),T margin = $\frac{1}{|W|}$

9	d)_	New constraint = 40 (w (x i)+b) = pul, 1=1,2,3, p=1
0		The value of b & is will change due to new
0		constraint, next all the part will remain same as in
0		part (C) [b=p] &p w=(0,0,-2p)^T
-	o rodini -	The regulate hards no low deline at the
5		& so we'll have the same classifier in both the cases.
-		Only the egn of hyperplane is scaled by a factor of
5		& It's the property of osep hyperplane eqn that it is
-		scale in variant means the ego of hypersplane doesn't
		change by scaling the eqn.
7		
7		Yes it is true for any dataset as it follows gale invariance
3		property. For constraints in (d) we can define new wt
9		vectors w=w/p & b=b/p. so the constraints in
9		new variables becomes (yi (w p(xi) + b) = 1
9		(100 m) (d) 1003 mind jesp? W 270,9
9		
7		(E) - 0 = (he) = SIt, y; (wT (xi) + 6)≥1, i=1,23
9		Because p² is constant multiplying the fun (\overline{w} _2^2 it
9		doesn't change the optimal value As w7x+b > 0 =
9		pw+ pb ≥0 => both gives same hyperplane & descreibe same
9		classifier.
9		Chi = In = d + AW + Will-
9-	Ques 4	a) $K(x,x') = ck'(x,x') = ck'(x,x')$
9	<u>:</u> (-	Let feature map q k be (x,x') = \phi(x)^T \ph(x') - 0
9-		in the το ((x)) = (φ((x)) (x)) φη (α)) = 2(x) φη (α)
9		Forom othis we can weitely -
0		$k(x,x') = \sqrt{c} \phi(x)^T \sqrt{c} \phi(x')$
0		$= C \phi(x)^{T} \cdot \phi(x^{I}).$
9		K(x,x') - C K(x,x') as given x, = valid keenal so this
•		is also a valid kurnal.
6		
10 1/16 V		

		6
b	$K(x,x!) = k'(x,x!) + k^2(x,x!)$	
	LHS: $k(x,x') = z^T \cdot k(x,x') \cdot z > 0$, $\forall z \in \mathbb{R}^n$	5
	from RHS, put value of K(x,x').	
	$= \mathbb{Z}^{T} \left[K'(x,x') + K^{2}(x,x') \right] Z$	
	$= Z^{T} K'(x,x') z + Z^{T} k^{2}(x,x') z > 0$	GI.
	youren k' & K' - Valid tremain & their 11h in the	
	than eq to zero ie. (semi + ve definite)	
	Hence K(x, x1) is a valid kurnal	0
		Sin o
ح	Juhana tia a Ci a and	1
	We know that $K'(x_1x') = \phi'(x) \cdot \phi'(x')$	-
	The given expression can be weitten as	6
	$f(x) \cdot \phi'(x) \cdot \phi'(x') \cdot f(x') - (1)$	-
	Lets assume, $\phi^2(x) = f(x) \cdot \phi'(x)$	
	$\phi^2(x') = f(x') \phi^1(x')$	
	The eq. (1) becomes $K^2(x, x') = \varphi^2(x)$	
	This is a valid kernal as stated in question.	
	Similarly k(x,x') is a valid kurnal.	
٩١	$K(z,x') = K'(z,x') k^2(x,x')$	
	We can write $\kappa'(x,x') = \phi'(x)^T \cdot \phi'(x')$	
	$K^{2}(x, x') = \phi^{2}(x)^{T} \cdot \phi^{2}(x')$	
	where, $\phi'(x) = [\phi_1'(x), \phi_2'(x), -\phi_2'(x)]$	
	$\phi^{2}(x) = (\phi_{1}^{2}(x), \phi_{2}^{2}(x) \dots \phi_{m}^{2}(x))$	
	From this exp, we define	
	$\phi^{3}(x) = \left[\phi^{1}(x) \phi^{2}(x) \phi^{1}(x) \phi^{2}(x) \phi^{2}(x) \phi^{2}(x) \right] $	N
	$=) k(x,x') = b^{3}(x)^{T} \cdot b^{3}(x')$	
	As \$3(2) made from \$1(1) & \$2(2) which are valid kermals	
	feautive vectors so we can say of (a) is a feature vec	
	of valid kernal K/7,x1)	
	K(7,x') is a valid kernal	