GNU/Linux NFS

NFS(Network File System)

即网络文件系统,NFS 最早由 Sun 公司所发展出来的。最大的功能就是可以透过网络,让不同的主机能共享文件。通过使用 NFS ,用户和程序可以像访问本地文件一样访问远端系统上的文件。

NFS:

从 1985 年推出至今, 共发布了 3 个版本:

- 1. NFSv2
- 2. NFSv3
- 3. NFSv4: 含两个次版本 NFSv4.0 及 NFSv4.1

NFS:

经过 20 多年发展,NFS 发生了非常大的变化,最大的变化就是推动者从 Sun 变成 NetApp,NFSv2和 NFSv3 基本上是 Sun 起草的,NetApp 从 NFSv4.0 参与进来,并且主导了 NFSv4.1 标准的制定过程,而 Sun 已经被 Oracle 收购了。

NFS 各版本情况

编号	版本	RFC	时间	页数
1	NFSv2	RFC1094	1989年3月	27 页
2	NFSv3	RFC1813	1995年6月	126 页
3	NFSv4.0	RFC3530	2003年4月	275 页
4	NFSv4.1	RFC5661	2010年1月	617 页

NFS 各版本特点

V2: 第一个以 RFC 形式发布的版本,只是实现了基本的网络共享及存取功能。

NFS 各版本特点

V3:

v3 修正了 NFSv2 的一些 bug。两者有如下一些 差别

(1) NFSv2 对每次读写操作中传输数据的最大长度进行了限制,上限值为 8192 字节, NFSv3 取消了这个限制。

NFS 各版本特点

- (2) NFSv3 对文件名称长度进行了限制,上限值为 255 字节, NFSv3 取消了这个限制。
- (3) NFSv2 对文件长度进行了限制,上限值为 Ox7FFFFFF ,NFSv3 取消了这个限制。
- (4) NFSv2 中文件句柄长度固定为 32B, NFSv3 中文件句柄长度可变, 上限值是 64 字节。

NFS 各版本特点

(5) NFSv2 只支持同步写,如果客户端向服务器端写入数据,服务器必须将数据写入磁盘中才能发送应答消息。 NFSv3 支持异步写操作,服务器只需要将数据写入缓存中就可以发送应答信息了。 NFSv3 增加了 COMMIT 请求, COMMIT 请求可以将服务器缓存中的数据刷新到磁盘中。

NFS 各版本特点

(6) NFSv3 增加了 ACCESS 请求, ACCESS 用来检查用户的访问权限。因为服务器端可能进行 uid 映射,因此客户端的 uid 和 gid 不能正确反映用户的访问权限。 NFSv2 的处理方法是不管访问权限,直接返送请求,如果没有访问权限就出错。 NFSv3 中增加了 ACCESS 请求,客户端可以检查是否有访问权限。

NFS 各版本特点

(7) 一些请求调整了参数和返回信息,毕竟 NFSv3 和 NFSv2 发布的间隔有 6 年,经过长期运行可能觉得 NFSv2 某些请求参数和返回信息需要 改进。

NFS 各版本特点

V4.0

相比 NFSv3,NFSv4 发生了比较大的变化。

最大的变化是 NFSv4 有状态。

NFSv2 和 NFSv3 都是无状态协议,服务区端下需要维护客户端的状态信息。无状态协议的一个优点在于灾难恢复,当服务器出现问题后,客户端只需要重复发送失败请求就可以了,直到收到服务器的响应信息。

NFS 各版本特点

但是某些操作必须需要状态,如文件锁。如果客户端申请了文件锁,但是服务器重启了,但 NFSv3 无状态,客户端再执行锁操作可能就会出错。

NFSv3 需要 NLM 协助才能实现文件锁功能,但是有的时候两者配合不够协调。 NFSv4 设计成了一种有状态的协议,自身实现了文件锁功能,从而不再需要 NLM(Netowrk Lock Manager) 协议

NFS 各版本特点

NFSv4 和 NFSv3 的差别如下:

(1) NFSv4 设计成了一种有状态的协议,自身实现了文件锁功能和获取文件系统根节点功能,不需要 NLM 和 MOUNT 协议协助。

(2) NFSv4 增加了安全性,支持 RPCSEC SS 身份认证。

NFS 各版本特点

- (3) NFSv4 只提供了两个请求 NULL 和COMPOUND,所有的操作都整合进了 COMPOUND中,客户端可以根据实际请求将多个操作封装到一个 COMPOUND 请求中,增加了灵活性。
- (4) NFSv4 文件系统的命令空间发生了变化,服务器端必须设置一个根文件系统 (fsid=0),其他文件系统挂载在根文件系统上导出。

NFS 各版本特点

(5) NFSv4 支持 delegation(代表)。由于多个客 户端可以挂载同一个文件系统,为了保持文件同 步, NFSv3 中客户端需要经常向服务器发起请 求,请求文件属性信息,判断其他客户端是否修改 了文件。如果文件系统是只读的,或者客户端对文 件的修改不频繁,频繁向服务器请求文件属性信息 会降低系统性能。 NFSv4 可以依靠 delegation 实 现文件同步。

NFS 各版本特点

(5) NFSv4 支持 delegation(代表)。

如: 当客户端 A 打开一个文件时, 服务器会分配 给客户端 A 一个 delegation。只要客户端 A 具有 delegation , 就可以认为与服务器保持了一致。如 果另外一个客户端B访问同一个文件,则服务器会 暂缓客户端 B 的访问请求, 向客户端 A 发送 RECALL 请求。当客户端 A 接收到 RECALL 请求时 将本地缓存刷新到服务器中,然后将 delegation 返 回服务器,这时服务器开始处理客户端B的请求。

NFS 各版本特点

(6) NFSv4 修改了文件属性的表示方法。由于NFS 是 Sun 开发的一套文件系统,设计之出 NFS 文件属性参考了 UNIX 中的文件属性,可能Windows 中不具备某些属性,因此 NFS 对操作系统的兼容性不太好。 NFSv4 将文件属性划分成三类:

NFS 各版本特点

(6) NFSv4 修改了文件属性的表示方法。

Mandatory Attributes: 这是文件的基本属性,所有的操作系统必须支持这些属性。

Recommended Attributes: 这是 NFS 建议的

属性,如果可能操作系统尽量实现这些属性。

Named Attributes: 这是操作系统可以自己实

现的一些文件属性。

NFS 各版本特点

v4.1

与 NFSv4.0 相比, NFSv4.1 最大的变化是支持 并行存储了。

在以前的协议中,客户端直接与服务器连接(客户端直接将数据传输到服务器中。当客户端数量较少时这种方式没有问题,但是如果大量的客户端要访问数据时,NFS服务器很快就会成为一个瓶颈,抑制了系统的性能。

NFS 各版本特点

v4.1

NFSv4.1 支持并行存储,服务器由一台元数据服务器 (MDS) 和多台数据服务器 (DS) 构成,元数据服务器只管理文件在磁盘中的布局,数据传输在客户端和数据服务器之间直接进行。由于系统中包含多台数据服务器,因此数据可以以并行方式访问,系统吞吐量迅速提升。

Linux NFS

Linux 上使用标准的 Internet 协议, 此标准是开放的。 NFS 虽然起始与 UNIX 但 NFS 正在积极的扩展 Linux 的权限及文件系统的特性。

RHEL7 支持的是 NFSv4, 默认情况下,如果 NFSv4 不可用,将自动回滚到 NFSv3 和 NFSv2 版本的支持。

Linux NFS

NFSv4 使用 TCP 协议与服务器进行联接及通信,而 NFSv3 及 NFSv2 则将使用 TCP 或 TCP 协议。

NFS 客户端通过 NFS 服务器共享的目录,挂载到 NFS 客户端本地目录上来进行存取。此挂载点必须存在,且最好为空目录

Linux NFS 示意图

NFS server

/tmp/nfssharefile

NFS client1

把 /tmp/nfssharefile

挂载到本地 /mnt/nfs

NFS client2

把 /tmp/nfssharefile 挂载到本地 /root/nfs

Linux NFS

/etc/exports:NFS 的主配置文件. 有的 linux 版本中默认不存在,需要手动建立.

/usr/sbin/exportfs: 维护 NFS 共享资源的命令。

/usr/sbin/showmount: 在 client 来查看 NFS 共享的资源 (exportfs 用在 server 端).

/var/lib/nfs/xtab:NFS 的记录文件,可以客户端查看链接服务器的信息

Linux NFS Server 设置

#vim /etc/exports

语法格式:

共享目录 客户端地址 (IP 或主机名) (设置参数) [家口端地址 (ID 武主机名) (设置参

数)[客户端地址1 (IP或主机名1)(设置

数)]...

Linux NFS Server 设置

#vim /etc/exports

/mnt/exportfs/nfs 192.168.1.123(ro)

/mnt/exportfs/share t1.niliu.edu(rw,no_root_squash)

t2.niliu.edu(ro)

Linux NFS Server 设置

客户机地址可以是

- 1)指定 ip addr:192.168.1.123
- 2) 指定 FQDN:t1.niliu.edu
- 3) 指定网段:192.168.1.0/24
- 4) 指定域中的所有主机:*.niliu.edu
- 5) 指定所有主机:*

Linux NFS Server 权限设置

ro: 只读权限

rw: 可读写的权限

no_root_squash: 如果 root 使用共享目录,则以 root 身份进行操作 (root 权限)

root_squash: 如果是 root 使用共享目录,则 roo 被映射到 nfsnobody 账户,其他账户将不变。

all_squash: 不论登陆者是谁,都映射到 nfspobody

sec=: 指定安全访问形式

Linux NFS Server 权限设置

	no_root_squash	root_squash	all_squash
NFS server	root	nobody	nobody
NFS client	root	root	All user

Linux NFS NFS 的安全访问支持:

安全认证	说明
none	匿名访问文件,如数据写入至服务器上将使用 UID 和 GID 的账户 / 组名为 nfsnobody
sys	基于 Linux 下有效的 UID/GID, 才能访问指定的共享文件 / 共享目录
krb4	客户端必须经过 kerberos 身份验证及共享目录所设置的共享权限许可,才可 访问
krb5i	对所有的数据进行完整性检测,以确保数据的完整性
krb5p	客户端与服务器之间的会话将被加密传输. 但将会影响 NFS 的性能

Linux NFS 权限设置

anonuid: 更改匿名用户 (anonuid=123)

anongid: 更改匿名组 (anongid=1111)

sync: 数据立即同步写入内存和硬盘。

async: 数据先写入内存, 再写到硬盘。

fsid: 将共享目录指定为 NFS 共享的根目录 (fsid=0)

Linux NFS 服务配置

- 1. 将本地 /mnt/share 目录共享, 权限为 ro #vim /etc/exports /exports/share *(ro)
- 2. 将本地目录 /mnt/share 目录共享, 权限为rw,no_root_squash /exports/share *(rw,no_root_squash)

Linux NFS 服务配置

3. 启动 nfs #systemctl enable nfs #systemctl start nfs

Linux NFS

客户端能够共享方式有:

- 1. 通过 mount 命令进行手工挂载
- 2. 如需自动挂载可对 /etc/fstab 进行相关配置
- 3. 根据需求挂载 NFS 共享目录

Linux NFS

1. 查看 NFSv4 的共享信息 #mkdir -v /mnt/nfsroot #mount.nfs4 nfssrv_ip_addr:/ /nfsroot #ls /nfsroot

2. NFSv2 及 v3 可以使用下列命令查看 NFS_Server 的共享信息 #showmount -e nfssrv_ip_addr

Linux NFS

3. 手动挂载 NFS Server 的共享目录 #mkdir /mnt/nfsshare

#mount -t nfs4 -o sync nfssrv_ip_server:/share /nfsshare

Linux NFS

- 4. 自动挂载 NFS Server 的共享目录 #vim /etc/fstab nfssrv_ip_addr:/share /mnt/nfsshare nfs sync_0 0 0
- 5. 卸载 NFS 挂载点 #umount /mnt/nfsshare

Linux NFS

示例 1:

1. 用 nfsv4 挂载 /mnt/share #mount.nfs4 t2.niliu.edu:/exports/share

/mnt/nfs #systemctl start nfs

2. 卸载 NFS 的挂载点 #umount /mnt/nfs

Linux NFS

示例 2:

- 1. 服务器共享 /mnt/share 目录 #vim /etc/exports /mnt/share *(ro,fsid=0,no_root_squash) #systemctl restart nfs
- 2. 客户端 #mount.nfs4 t2.niliu.edu://mnt/nfs

Linux NFS

使用 autofs 自动挂载 nfs 共享目录,使用 autofs 的优点在于:

- 1. 用户不需要 root 权限才能够挂载 / 卸载
- 2. NFS 客户端将自动直接挂载 NFS 共享目录
- 3. 不会向 /etc/fstab 中定义一样, 一直占用系统和网络资源
 - 4. 挂载时使用相同的选项及安全选项

Linux NFS

- 5. 同时支持直接挂载及间接挂载点映射机制,提供比较灵活的挂载机制
- 6. 间接挂载点的创建及删除由 autofs 自行完成,无需手工干预
- 7. NFS 可以挂载除 NFS 外的各种文件系统,只要共享即可
 - 8. 管理 autofs 与其他服务一样便捷、轻松

Linux NFS

autofs 实现自动挂载

1) 安装 autofs 软件程序 #yum install autofs -y

Linux NFS

2) 启动 autofs #systemctl enable autofs #systemctl start autofs

Linux NFS

autofs 实现自动挂载

3) 增加 nfs 的自动挂载配置文件(不用建立客户端本地挂载目录,将由 autofs 自动完成)

#vim /etc/auto.master.d/niliunfs.autofs 客户端所要挂载点根目录 所指定的 NFSIP 及挂载目录存放文件 /local auto.niliufs

Linux NFS

3) 编辑 auto.niliunfs 实现动态挂载点 指定动态挂载点

localdir - 权限 nfs_server_ip:/share

如

nfsshare -rw,sync,nfs4 t2.niliu.edu:/exports/share

- 4) 重启 autofs
- 5) 直接访问 #cd /local/nfsshare #ls

Linux NFS autofs 实现动态自动挂载中,还可以在 niliufs.autofs 中直接使用"/-",可以告知挂载信息在 共享配置中指定 如

#cat /etc/auto.master.d/niliufs.autofs /- /etc/auto.nfs

#cat /etc/auto.nfs
/localshare -rw,sync,nfs4 t2.niliu.edu:/exports/share

Linux NFS

(续) #systemctl restart autofs

#cd /localshare
#ls

Linux NFS autofs 的通配符

*: 意义与众所周知的意义相同

&: 以可以匹配相应的目录

如

/home/snow /home/lisa /home/arisa 在写 auto.niliufs 时候可以用如下格式 /localshare -rw,nfs4 t2.niliu.edu:/home/

Linux NFS

在访问时,可直接替代 snow/lisa/arisa 这些字串。

#cd /home/snow
#ls

上述方式一般用于需要共享在一个路径下的多个目录。

使用 kerberos 验证 NFS 访问 t1.niliu.edu: kerberos Server

t2.niliu.edu:

nfs server(kerberos client)

t3.niliu.edu:

nfs client(kerberos client)

- 2. 建立 NFS Server
 - 1) 将 nfs 客户端加入至 kerberos 中并获得认证 #yum install krb5-workstation pam_krb5 -y
 - 2) 修改 /etc/krb5.conf

- 2. 建立 NFS Server
 - 3) 将 nfs 服务器加入至 kerberos 中并获得认证 #kadmin
 - --- 输入 krb5 管理员密码
 - :addprinc -randkey nfs/t2.niliu.edu
 - :ktadd nfs/t2.niliu.edu
 - :quit

2. 建立 NFS Server

4) 查看 NFS Server 的 krb 票据

#ktutil

:rkt /etc/krb5.keytab

:list

:q

- 2. 建立 NFS Server
 - 5) 建立 nfs 共享目录
 - #vim /etc/exports
 - /exports/share *(ro,no_root_squash,sec=krb5)
 - 6) 检查服务器共享 #exportfs -avr
 - 7) 启用 nfs #systemctl enable nfs-secure-server #systemctl start nfs-secure-server

- 3. NFS Client 配置
 - 1) 安装 kerberos 客户端程序 #yum install krb5-workstation pam_krb5 -y
 - 2) 修改 /etc/krb5.conf

3. NFS Client 配置

- 3) 将 nfs 客户端加入至 kerberos 中并获得认证 #kadmin
- --- 输入 krb5 管理员密码

:addprinc -randkey nfs/t3.niliu.edu

:ktadd nfs/t3.niliu.edu

:quit

3. NFS Client 配置

5) 启动 nfs-secure #systemctl enable nfs-secure #systemctl start nfs-secure

6) 客户端挂载

#moutn -t nfs4 -o sec=krb5 t2.niliu.edu/exports/share/mnt/nfs