ПОПРАВИТЕЛЕН ИЗПИТ ПО ИЗБИРАЕМИЯ УЧЕБЕН ПРЕДМЕТ "ИЗБРАНИ ГЛАВИ ОТ КОМБИНАТОРИКАТА И ТЕОРИЯТА НА ГРАФИТЕ" (СУ "СВЕТИ КЛИМЕНТ ОХРИДСКИ", ФМИ)

27 АВГУСТ 2021 Г.

Задача 1. По колко начина числото 2^k може да се представи във вида $2^k = a_0 + a_1 \cdot 2^1 + a_2 \cdot 2^2 + \ldots + a_{n-1} \cdot 2^{n-1}$, където $a_i \in \{-1; 0; +1\}$, $\forall i$? Отговорът да се даде като явна функция на k и n, $0 \le k < n$.

Задача 2. Ако n е цяло неотрицателно число, намерете броя на полиномите P(x) с коефициенти от множеството $\{0; 1; 2; 3\}$, за които P(2) = n.

Задача 3. Дядо Коледа раздава n подаръка на n деца и i-тото дете харесва x_i подаръка, $x_i > 0$ за всяко $i \in \{1; 2; 3; \dots; n\}$ и

$$\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} \le 1.$$

Докажете, че Дядо Коледа може да раздаде подаръците по един на всяко дете така, че всяко дете да получи подарък, който харесва.

Задача 4. Колко са множествата от k думи, образувани от общо n букви, ако буквите са две по две различни и всяка буква се използва точно един път? Намерете явна формула. Думите са редици от букви, k и n са цели числа и $0 \le k \le n$.

Време за работа: 120 минути.

СХЕМА ЗА ОЦЕНЯВАНЕ

Всяка задача носи една точка само ако е решена изцяло. Оценката = 2 + q, където q е броят на точките, събрани от всички задачи.

РЕШЕНИЯ

Задача 1. Нека $2^k = a_0 + a_1 \cdot 2^1 + a_2 \cdot 2^2 + \ldots + a_{n-1} \cdot 2^{n-1}$, $0 \le k < n$. Следователно $a_0 + a_1 \cdot 2^1 + a_2 \cdot 2^2 + \ldots + a_{k-1} \cdot 2^{k-1}$ се дели на 2^k , защото лявата страна и всички други събираеми в дясната страна на равенството се делят на 2^k . Тъй като $a_i \in \{-1; 0; +1\}$ за всяко i, то $-1 - 2^1 - \ldots - 2^{k-1} \le a_0 + a_1 \cdot 2^1 + \ldots + a_{k-1} \cdot 2^{k-1} \le 1 + 2^1 + \ldots + 2^{k-1}$, тоест

$$-(2^{k}-1) \le a_0 + a_1 \cdot 2^1 + \dots + a_{k-1} \cdot 2^{k-1} \le 2^{k}-1$$
.

От числата в този интервал само числото 0 се дели на 2^k . Затова

$$a_0 + a_1 \cdot 2^1 + \dots + a_{k-1} \cdot 2^{k-1} = 0.$$

Изоставяме нулевите събираеми и прехвърляме в дясната страна на равенството отрицателните събираеми. Получаваме два равни сбора, съставени от различни степени на двойката. Тъй като всяко цяло неотрицателно число (вкл. стойността на лявата и дясната страна на равенството) се представя по единствен начин в двоичната бройна система, то няма друга възможност, освен двата сбора да са празни (тогава тяхната стойност е 0). Тоест $a_0 = a_1 = \ldots = a_{k-1} = 0$ и

$$2^{k} = a_{k} \cdot 2^{k} + a_{k+1} \cdot 2^{k+1} + a_{k+2} \cdot 2^{k+2} + \dots + a_{n-1} \cdot 2^{n-1}$$

Допускането, че $a_k = 0$, води (след прехвърляне на отрицателните събираеми от другата страна) до същото противоречие — че едно и също число притежава различни представяния в двоичната бройна система. Значи $a_k = 1$ или $a_k = -1$. Ако $a_k = 1$, то същото съображение (за единствеността на двоичния запис) показва, че $a_{k+1} = a_{k+2} = \ldots = a_{n-1} = 0$. Ако $a_k = -1$, то

$$2^{k+1} = a_{k+1} \cdot 2^{k+1} + a_{k+2} \cdot 2^{k+2} + \dots + a_{n-1} \cdot 2^{n-1}$$

Аналогично правим извод, че $a_{k+1} = 1$ и $a_{k+2} = a_{k+3} = \ldots = a_{n-1} = 0$ или $a_{k+1} = -1$. Във втория случай веригата от еднотипни разсъждения продължава и в крайна сметка води до извода, че единствените равенства от желания вид са

$$2^{k} = -2^{k} - 2^{k+1} - 2^{k+2} - \dots - 2^{j-1} + 2^{j}, k \le j \le n-1.$$

Тези равенства са колкото допустимите стойности на j, тоест n-k.

Тази задача е дадена под номер 3, подусловие "a", на състезателите от X клас на Зимните математически състезания в гр. Русе през 2008 г.

Задача 2 (Китай, 1996 г.). Търсим броя на представянията на n като сбор от степени на двойката с коефициенти 0, 1, 2 и 3. Тези коефициенти са тъкмо допустимите цифри в позиционната бройна система с основа 4. Затова сменяме степените на 2 със степени на 4. За степените с четен показател е ясно как се прави това: $2^{2k} = 4^k$. При нечетен показател изнасяме една двойка пред скоби: $2^{2k+1} = 2 \cdot 4^k$. Така получаваме равенството a + 2b = n.

В това равенство множителят 2 е двойката, изнесена пред скоби, а пък a и 2b са стойностите на сборовете от степените на 2 с четни и нечетни показатели съответно.

Получената биекция ни дава право да търсим броя на представянията на n във вида a+2b=n, където a и b са цели неотрицателни числа. Ясно е, че числото a=n-2b е цяло за всяко цяло b и е неотрицателно, ако и само ако $b \le n/2$. С други думи, числото b може да приема само следните стойности: $0, 1, 2, 3, \ldots, \lfloor n/2 \rfloor$. Броят им е $1+\lfloor n/2 \rfloor$, колкото е също броят на представянията на числото n във вида a+2b=n. Така отговорът на задачата е $1+\lfloor n/2 \rfloor$.

Задача 3. Разглеждаме двуделен граф: върховете от единия дял са децата, върховете от другия дял са подаръците, ребрата показват кое дете кой подарък харесва. По условие всеки дял на графа има n върха.

Избираме произволни k деца. Да допуснем, че всяко от тях харесва по-малко от k подаръка. Тогава техните хиксове (k на брой) са по-малки от k, затова реципрочните им стойности са по-големи от 1/k и сборът им е по-голям от 1. Понеже всички хиксове са положителни, то сборът им също е по-голям от 1, което противоречи на неравенството от условието.

Следователно направеното допускане не е вярно. Вярно е противното: които и k деца да изберем, поне едно от тях ще харесва поне k подаръка. Толкова повече всичките k избрани деца харесват общо поне k подаръка. От теоремата на Хол за сватбите следва, че графът има съвършено съчетание, т.е. множество от n ребра без общи краища. Това съчетание представлява начин да се разпределят подаръците по един на дете така, че всяко дете да получи подарък, който харесва.

Задача 4. Съществуват n! пермутации без повторение на дадените n букви. Във всяка от тях има n-1 места между буквите. Можем да изберем k-1 места по $\binom{n-1}{k-1}$ начина. На всяко от избраните k-1 места слагаме един разделител.

Така получаваме k думи. Според правилото за умножение дотук разполагаме с $n! \binom{n-1}{k-1}$ възможности да образуваме k думи. Но самите думи нямат наредба:

по условие имаме множество, а не редица от думи. Тъй като всяко множество поражда k! редици от думи, то всяко множество е броено k! пъти, следователно трябва да разделим получения резултат на k! и така намираме верния резултат:

$$\frac{n!}{k!} \binom{n-1}{k-1}.$$

Тези числа са известни като числа на Лах без знак.