ОСНОВНЫЕ ПОНЯТИЯ В ОБЛАСТИ ТЕХНИЧЕСКОГО РЕГУЛИРОВАНИЯ

Техническое регулирование — форма регулирования отношений в области разработки и применения правил и характеристик в целях их добровольного многократного использования, направленная на достижение упорядоченности в сферах производства и обращения продукции и повышение конкурентоспособности продукции, работ или услуг.

Основные понятия технического регулирования сформулированы в ФЗ «О техническом регулировании» (2003г). Основными формами технического регулирования являются стандартизация и сертификация.

Стандартизация- деятельность по установлению требований к объектам технического регулирования с целью их многократного использования в сферах производства и обращения продукции.

Головной организацией, курирующей деятельность по стандартизации в Российской федерации является Федеральное агентство по техническому регулированию и метрологии (Росстандарт).

В соответствии с Законом «О техническом регулировании» стандартизация осуществляется в целях

- повышения уровня безопасности жизни или здоровья граждан, имущества физических или юридических лиц, государственного или муниципального имущества, экологической безопасности, безопасности жизни или здоровья животных и растений и содействия соблюдению требований технических регламентов;
- -повышения уровня безопасности объектов с учетом риска возникновения чрезвычайных ситуаций природного и техногенного характера;
 - -обеспечения научно-технического прогресса;
 - -повышения конкурентоспособности продукции, работ, услуг;
 - -рационального использования ресурсов;
 - -технической и информационной совместимости;

- -сопоставимости результатов исследований (испытаний) и измерений, технических и экономико-статистических данных;
 - -взаимозаменяемости продукции;
 - информационной совместимости;
 - -обеспечения единства методов контроля и маркировки

Основной проблемой при реализации целей стандартизации является преодоление противоречия между максимумом разнообразия и минимумом различия объектов.

К объектам стандартизациив области метрологии, радиотехники и приборостроения относятся:

- терминология в области метрологии;
- методики выполнения измерений;
- радиоэлектронные устройства и системы, измерительные приборы и их элементная база;
 - -процессы проектирования и испытания аппаратуры;

Основными документами в области метрологии являются:

- Федеральный закон от 26.06.2008 г. № 102«Об обеспечении единства измерений»;Межгосударственная система стандартизации
- -РМГ 29-99. Государственная система обеспечения единства измерений. Метрология. Основные термины и определения;
- Межгосударственный стандарт ГОСТ 8.009-84. Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерений"

Сертификация- подтверждение соответствия объекта технического требованиям технических регламентов, регулирования стандартов технических условий или условиям договоров между хозяйствующими субъектами. Сертификация может быть обязательной и добровольной. Обязательная сертификация В отношении объектов, проводится производимых по техническим регламентам.

Основными документами в области технического регулирования и являются:

- технические регламенты, государственные и отраслевые стандарты, стандарты организаций и технические условия.

Технический регламент- документ, устанавливающий обязательные для применения требования к объектам технического регулирования Целью принятия технических регламентов является обеспечение безопасности применения продукции. Различают механическую. электрическую, термическую химическую и другие виды безопасности. Перечень объектов, производимых по техническим регламентам устанавливается Правительством РФ.

Стандарт- документ, в котором изложены требования к объектам технического регулирования, которые выполняются на добровольной основе. Сертификация продукции на соответствие стандартам осуществляется добровольной c также на основе целью повышения конкурентоспособности. Однако если стандарт введен в действие на территории организации приказом вышестоящей инстанции, то выполнение требований стандарта, а, следовательно, и сертификация продукции становятся обязательными.

Обозначение стандарта состоит из индекса «ГОСТ Р», регистрационного номера и отделенных от него тире четырех цифр года утверждения (принятия) стандарта (года его регистрации). Пример: ГОСТ Р 8724-2002.

Технические условия – документ, в котором изложены требования к продукции, согласованные между производителем и покупателем продукции.

Покупателем продукции могут выступать, например, крупные торговые сети.

Пример обозначения технических условий: ТУ 28.14.16-017-38576343-2013, где 28.14.16 — код ОКПД2, 017 — порядковый номер, присвоенный разработчиком, 38576343 — код ОКПО, 2013 — год утверждения. (ОКПД-«Общероссийский Классификатор Продукции по видам экономической

Стандарт организации(СТО)-документ, в котором изложены требования к проектированию, производству, эксплуатации изделий внутри данного предприятия. Стандарт организации вводится в действии приказом руководителя организации.

В настоящее время на территории Российской Федерации, наряду со стандартами РФ, действуют стандарты СССР, если они не противоречат действующему законодательству.

МЕТОДЫ СТАНДАРТИЗАЦИИ

Под методом стандартизации понимается прием или совокупность приемов, обеспечивающих достижение целей стандартизации. В радиотехнике и приборостроении наибольшее распространение такие методы, как, параметрическая стандартизация и унификация.

Параметрическая стандартизация — это деятельность, направленная на выбор и установление целесообразных численных значений параметров, подчиняющихся строго определенной математической закономерности. Параметрическая стандартизация основана на использовании рядов предпочтительных чисел (параметрических рядов), которыеудовлетворяют следующим требованиям: предоставляют рациональную систему градаций, которая отвечаетпотребности производства и эксплуатации; являются неограниченнымикак в направлении уменьшения, так и в направлении увеличения чисел,т. е. допускают неограниченное развитие параметров или размеров в направлении увеличения и направлении уменьшения; включают все десятичные кратные или дробные значения любого числа, также единицу являются простыми легко a И запоминаются. Диапазон параметрического ряда определяется практической потребностью в изделиях данного вида. Крайние члены выбираются так, чтобы была покрыта значительная часть потребностей в стандартизуемых изделиях в настоящем и будущем.

Перечисленными свойствами обладают числа, которые являются геометрическими прогрессиями.

Международная электротехническая комиссия (МЭК) установила предпочтительные числа по рядам *E*3, *E*6, *E*12, *E*24, *E*48, *E*96 и *E*192 Наиболее широкое применение имеют первые четыре ряда.

Ряды E построены на базе геометрической прогрессии сознаменателями:

$$E3-\varphi=\sqrt[3]{10}\approx 2.2$$
; $E6-\varphi=\sqrt[6]{10}\approx 1.5$; $E12-\varphi=\sqrt[12]{10}\approx 1.2$; $E24-\varphi=\sqrt[24]{10}\approx 1.1$.

На основе указанных рядов строятся шкалы номинальных значений электрорадиокомпонентов (резисторов, конденсаторов и др.), серийно выпускаемых промышленностью. Пример шкалы номиналов, образованной в соответствии с рядом Е24 приведен в таблице 1.

Таблица. Шкала номиналов резисторов, построенная в соответсвии с параметрическим рядом E24.

Ряд Е24										Raschet.info	
номинал	допуск	номинал	допуск								
1 Ом	5%	10 Ом	1%	100 Ом	5%	1 кОм	5%	10 кОм	1%	100 кОм	5%
1,1 Ом	5%	11 Ом	5%	110 Ом	5%	1,1 кОм	5%	11 кОм	5%	110 кОм	1%
1,2 Ом	5%	12 Ом	5%	120 Ом	5%	1,2 кОм	5%	12 кОм	5%	120 кОм	5%
1,3 Ом	1%	13 Ом	5%	130 Ом	5%	1,3 кОм	1%	13 кОм	5%	130 кОм	5%
1,5 Ом	1%	15 Ом	5%	150 Ом	5%	1,5 кОм	5%	15 кОм	5%	150 кОм	1%
1,6 Ом	1%	16 Ом	5%	160 Ом	5%	1,6 кОм	5%	16 кОм	5%	160 кОм	1%
1,8 Ом	5%	18 Ом	5%	180 Ом	5%	1,8 кОм	1%	18 кОм	5%	180 кОм	5%
2 Ом	5%	20 Ом	5%	200 Ом	5%	2 кОм	5%	20 кОм	5%	200 кОм	5%
2,2 Ом	5%	22 Ом	5%	220 Ом	5%	2,2 кОм	5%	22 кОм	5%	220 кОм	1%
2,4 Ом	5%	24 Ом	5%	240 Ом	5%	2,4 кОм	5%	24 кОм	5%	240 кОм	5%
2,7 Ом	5%	27 Ом	5%	270 Ом	1%	2,7 кОм	1%	27 кОм	5%	270 кОм	5%
3 Ом	5%	30 Ом	5%	300 Ом	5%	3 кОм	5%	30 кОм	1%	300 кОм	5%
3,3 Ом	5%	33 Ом	5%	330 Ом	1%	3,3 кОм	5%	33 кОм	5%	330 кОм	5%
3,6 Ом	5%	36 Ом	5%	360 Ом	5%	3,6 кОм	5%	36 кОм	1%	360 кОм	5%
3,9 Ом	5%	39 Ом	5%	390 Ом	5%	3,9 кОм	5%	39 кОм	5%	390 кОм	5%
4,3 Ом	1%	43 Ом	5%	430 Ом	5%	4,3 кОм	5%	43 кОм	5%	430 кОм	1%
4,7 Ом	5%	47 Om	5%	470 Ом	5%	4,7 кОм	5%	47 кОм	5%	470 кОм	1%
5,1 Ом	5%	51 Ом	5%	510 Ом	5%	5,1 кОм	5%	51 кОм	5%	510 кОм	1%
5,6 Ом	5%	56 Ом	1%	560 Ом	5%	5,6 кОм	5%	56 кОм	5%	560 кОм	1%
6,2 Ом	5%	62 Ом	5%	620 Ом	5%	6,2 кОм	5%	62 кОм	1%	620 кОм	5%
6,8 Ом	5%	68 Ом	5%	680 Ом	5%	6,8 кОм	5%	68 кОм	5%	680 кОм	5%
7,5 Ом	5%	75 Om	5%	750 Ом	5%	7,5 кОм	5%	75 кОм	5%	750 кОм	1%
8,2 Ом	5%	82 Ом	5%	820 Ом	5%	8,2 кОм	1%	82 кОм	5%	820 кОм	1%
9,1 Ом	5%	91 Ом	5%	910 Ом	5%	9,1 кОм	5%	91 кОм	5%	910 кОм	5%

Аналогичным образом строятся шкалы номиналов для конденсаторов. Если в таблице отсутствует сопротивление или емкостьнеобходимого значения, то пользуются подстроечными резисторами и емкостями, номиналы которых

так же выбираются в соответствии с соответствующим рядом предпочтительных чисел.

Унификация продукции— это деятельность, направленная на сокращение числа типов объектов одного и того же назначения и обеспечение взаимозаменяемости изделий одного функционального назначения.

быть Взаимозаменяемостьпригодность одного изделия использованным для полноценной замены другого изделия одного и того же назначения. Различают функциональную И геометрическую Функциональная взаимозаменяемость. взаимозаменяемость связана возможностью выполнения изделиями одних И тех функций. Геометрическая взаимозаменяемость связана с возможностью замены одного изделия на другое, отличающееся по конструкции, но имеющее приемлемые габариты и одинаковые присоединительные размеры. Например, элементы электрооборудования в отечественных автомобилях могут быть заменены на изделия аналогичного назначения от импортных автомобилей, имеющих иное конструктивное исполнение, но одинаковые посадочные размеры.

Примерами унифицированных объектов в электронике могут служить параметры сигналов интерфейсов измерительных, вычислительных систем и (RS232,RS485, ARINC429), и систем связи (Ethernet), присоединительные размеры электрических разъемов, номинальные значения частоты и амплитуды питающих напряжений (3,3B, \pm 5B, \pm 12B, 27 B,220B,50 Γ ц и др).

Опережающая стандартизация

Темпы научно-технической революции XX в. привели к резкому сокращению времени между появлением научной идеи и ее реализацией. Так, для радио период воплощения идеи в практику был равен приблизительно 35 годам (1867—1902 гг.), для телевидения 14 (1922—1936 гг.), а для транзисторов только 5 годам (1948—1953 гг.). На современном этапе коренные изменения в области технологий микроэлектроники, средств

вычислительной, измерительной техники и средств связи происходят в гораздо более сжатые сроки. В связи с этим при разработке стандартов применяется метод опрережающей стандартизации, заключающийся в установлении повышенных по отношению к уже достигнутому на практике уровню норм, требований к объектам стандартизации, которые согласно прогнозам будут оптимальными в последующее планируемое время. При этом может быть предусмотрено поэтапное введение повышенных требований к объектом стандартизации.

Международное сотрудничество в области стандартизации

В соответствии с Федеральным законом «О техническом регулированииРоссийскую Федерацию в международных и региональных организациях, осуществляющих деятельность в области стандартизации представляет Федеральное агентство по техническому регулированию и метрологии (Росстандарт).

Основными международными организациями в области стандартизации являются Международная организация по стандартизации ИСО, Международня электротехническая комиссияМЭК,, а также Международная организация мер и весов (МОМВ)

Международная организация по стандартизации (ИСО, англ. аббревиатура ISO) была создана в 1946 г. на заседании Комитета ООН по координации стандартов ООН.

Целью ИСО является содействие развитию стандартизации в мировом масштабе для облегчения международного товарообмена и взаимопомощи, а также для расширения сотрудничества в области интеллектуальной, научной, технической и экономической деятельности.

Вся область деятельности ИСО разделена между техническими комитетами, которыми разработаны свыше 7000 международных стандартов. Сегодня практически нет такой области техники, кроме стандартов, разработанных МЭК, в которой ни были бы разработаны стандарты ИСО.

В последние годы во всех странах большое внимание уделяется вопросам

создания на предприятиях современных систем обеспечения качества продукции, которые максимально гарантировали бы потребителю полное соответствие выпускаемой продукции требованиям стандартов. С целью разработки единообразного подхода к решению вопросов качества продукции на предприятиях используются стандарты ИСО 9000... ИСО 9004:

Международная электротехническая комиссия (МЭК) —координирует международное сотрудничеств в области электротехники. Основной задачей комиссии является разработка международных стандартов в области электротехники, электроники, информационных технологий, радиосвязи и приборостроения,

Сферы деятельности ИСО и МЭК четко разграничены — МЭК занимается стандартизацией в указанных выше областях, ИСО — во всех остальных.

Международная организация мер и весов (МОМВ) — старейшая межправительственная научно-техническая организация — основана в1875 г. в соответствии с подписанной 17 странами (в том числе и Россией) Метрической конвенцией с целью унификации применяемых в разных странах систем единиц измерения, установления фактического единообразия эталонов длины и массы (метра и килограмма).

МОМВ осуществляет деятельность практическому распространению метрической системы мер в международном масштабе, хранению международных прототипов эталонов метра, килограмма и других единиц измерения, проводить их исследования и сличать с ними национальные эталоны, а также вести научные работы по совершенствованию метрической системы.

В соответствии с Законом РФ «О техническом регулировании», если международным договором РФ установлены иные правила, чем те, которые содержатся в законодательстве Российской Федерации по стандартизации, то применяются правила международного договора. Например, если в международном договоре на поставку продукции за рубеж российским

предприятием, то оно должно производить и сертифицировать продукцию на соответствие стандартам ИСО или МЭК, а не внутренним стандартам РФ.