

#### **Knowledge-Based Systems**

# A Formal Introduction to Description Logic (II)

Jeff Z. Pan

http://homepages.abdn.ac.uk/jeff.z.pan/pages/



## Roadmap



- Foundation
  - KR, ontology and rule; set theory
- Knowledge capture
- Knowledge representation
  - Ontology: Semantic Web standards RDF and OWL, Description Logics
  - Rule: Jess
- Knowledge reasoning
  - Ontology: formal semantics, tableaux algorithm
  - Rule: forward chaining, backward chaining
- Knowledge reuse and evaluation
- Meeting the real world
  - Jess and Java, Uncertainty, Invited talk



## Schema in a Knowledge Based System

1) Allow schema constraints, such as DisjointClasses (UndgStudent MastStudent)

| UndgStudent ID | Name | take-course |  |
|----------------|------|-------------|--|
| csd:p001       | John | csd:cs3014  |  |
| csd:p002       | Tom  | csd:cs3025  |  |

| MastStudent ID | Name | take-course |  |
|----------------|------|-------------|--|
| csd:p008       | Yuan | csd:cs5010  |  |
| csd:p002       | Tom  | csd:cs5017  |  |



## Schema in a Knowledge Based System

2) Allow some reasoning based on axioms (open world assumption), such as SubClassOf (MastStudent Student)

| Student ID | Name | take-course |  |
|------------|------|-------------|--|
| csd:p001   | John | csd:cs3015  |  |
| csd:p002   | Tom  | csd:cs3025  |  |

| MastStudent ID | Name | take-course |
|----------------|------|-------------|
| csd:p008       | Yuan | csd:cs5010  |
| csd:p002       | Tom  | csd:cs5017  |

thus all the students include csd:p001, csd:p002, and csd:p008



# rdf:range and Foreign Key: Revisit

- They are quite similar but not exactly the same,
  - due to the difference between open and closed world assumptions

| Student<br>ID | Name | take-<br>course   |
|---------------|------|-------------------|
| p001          | John | <del>cs3015</del> |
| p002          | Tom  | cs3025            |

| Course ID | Title | coordinator |
|-----------|-------|-------------|
| cs3017    | AIS   | AS          |
| cs3025    | KBS   | JP          |

- Semantics of rdfs:range ([rdfs3])
  - [p rdfs:range D .] [a p b .] => [b rdf:type D .]



### **Lecture Outline**

- Motivation
- Introduction to Semantics of DL axioms
- More detailed discussions on DL Semantics
- Practical



[Chapter 4]



[Sections: 2.2.1.1, 2.2.1.2, 2.2.2.1 2.2.2.2]



## **Motivations:**



- DL representation and reasoning
  - DL syntax
  - Semantics
  - Reasoning
- The role of semantics
  - To give formal meaning for the valid sentences/axioms
  - To provide a foundation for defining reasoning problems



### **Lecture Outline**

- Motivation
- Introduction to Semantics of DL axioms
  - The big picture
- More detailed discussions on DL Semantics
- Practical



# **DL** Interpretations

- An interpretation I is written as (Δ<sup>I</sup>, •<sup>I</sup>)
  - $-\Delta^{I}$  is the domain (similar to universal set)
  - •I is the interpretation function
    - all individuals are members of the domain:  $o^{I} \in \Delta^{I}$
    - all classes are subsets of the domain  $A^{I} \subseteq \Delta^{I}$ 
      - e.g., Employee<sup>l</sup>= {E1, E2, E3, E4}
    - all properties are subsets R<sup>I</sup> ⊆ Δ<sup>I</sup> \*Δ<sup>I</sup>

```
e.g., Works-for<sup>I</sup>= {<E1,P1>, <E2,P1>, <E2,P2>, <E3,P1>, <E3,P2>, <E4,P2>}
```

- Domain is a mathematical representation of the world
- Interpretation function allows us to consider all possible assignment of class and property memberships
  - all possible databases for the given schema



# **Example: DL Interpretations**



[Picture Credit: Protégé Team]



# **Example: DL Interpretations (II)**





- ∆¹ = {Elvis, Holger, ...}
- Named objects
  - Elvis<sup>I</sup> = Elvis
  - Holger<sup>I</sup> = Holger
  - **–** ...
- Named classes
  - Animal<sup>I</sup> = {Flipper, Rudolph}
  - Person<sup>I</sup> = {Elvis,Holger,Kylie,Hai,S.Claus}
  - Country<sup>I</sup> = {Belgium,Paraguar,Latvia, China}
- Named properties
  - has\_pet<sup>I</sup> = {<Hai,Plipper>, <S.Claus,Rudolph>}
  - lives\_in<sup>I</sup> = {<Elvis,Brlgium>, <Kylie,Paraguar>, <Hai, China> }



# **Example: DL Interpretations (III)**





- Suppose we extend the vocabulary with
  - Young
- Given the following interpretation of Young:
  - Young<sup>I</sup> ={Holger, Hai, Kylie, Flipper}
  - How about the interepretation of the OWL class description?
    - Young □ Person = {Holger, Hai, Kylie}
    - Has\_pet.Young = {Hai}



## **Axioms**



- Axioms are used to "filter out" invalid interpretations from valid ones
  - An interpretation I is a model for an ontology O if it satisfies all its axioms
  - An ontology O is consistent if it has some model (valid interpretation).





# **Interpretations of Class Axioms**



- Class inclusion axioms
  - − An interpretation I satisfies a class inclusion axiom  $C \sqsubseteq D$  if  $C^I \subseteq D^I$
- Class equivalence axioms
  - An interpretation I satisfies a class equivalence axiom C ≡D if C<sup>I</sup> = D<sup>I</sup>
- Does the given interpretation satisfy the following class axioms?

  - Person≡Animal false
  - Person 

    ¬Animal true





# Interpretations of Property Axioms



Property inclusion axioms

– Ån interpretation I satisfies a property inclusion axiom
 R1 □ R2 if R1 □ CR2 I

Property equivalence axioms

 An interpretation I satisfies a property equivalence axiom R1 ≡R2 if R1<sup>I</sup> = R2<sup>I</sup>

Does the given interpretation satisfy the following property axioms?

has\_pet ⊑ lives\_in
has\_pet ≡ lives\_in
false
true
dans
false
false
true





# Interpretations of Property Axioms (II)



Transitive Property axioms

An interpretation I satisfies a transitive property axiom Trans(R) if, for any a, b, c, <a,b> ∈ R<sup>I</sup> and <b,c> ∈ R<sup>I</sup> implies <a.c> ∈ R<sup>I</sup>

Functional Property axioms

– An interpretation I satisfies a functional property axiom Func(R) if, for all x,  $\#\{y|< x,y> ∈ R^I\} ≤ 1$ 

Does the given interpretation satisfy the following exists?

following axioms?

Func(lives\_in)true





# Interpretations of Individual Axioms

- Class assertions
  - An interpretation I satisfies a class assertion a:C if  $a^I \in C^I$



- Property assertions
  - An interpretation I satisfies a property assertion <a,b>:R if <  $a^{I}$  ,  $b^{I}$  >  $\in$   $R^{I}$







# Interpretations of Individual Axioms



- Class assertions
  - − An interpretation I satisfies a class assertion a:C if  $a^{I} \in C^{I}$
- Property assertions
  - An interpretation I satisfies a property assertion <a,b>:R if <  $a^{I}$  ,  $b^{I}$  >  $\in$   $R^{I}$
- Equality assertions
  - An interpretation I satisfies an equality assertion a=b if  $a^{I} = b^{I}$
- Inequality assertions
  - An interpretation I satisfies an inequality assertion a≠b if a¹ ≠ b¹
- Does the given interpretation satisfy the following individual axioms

| _ | UK:Country                          | false |
|---|-------------------------------------|-------|
| _ | <hai,flipper>:has_pet</hai,flipper> | true  |
|   | Hai=Flipper                         | false |
| _ | Hai≠Flipper                         | true  |





# Architecture of Knowledge Based **Systems**

#### **Application API**

**Knowledge Acquisition /** Integration

**Knowledge Consumption /** Reasoning

**Schema Repository** 

**Data Repository** 



## **Ontology and Reasoning**



Ontology contains

- knowledge and data that
- we know that we know
- we know that we don't know or partially know
- Reasoning helps to find out
  - things that we might not know that we know



# Interpretations of Ontologies



- An interpretation I satisfies an ontology O if I satisfies all axioms in O
  - I is called an interpretation of O
- An ontology O is called **consistent** if there exists (at least)
- one interpretation that satisfies O
  A class C is satisfiable (w.r.t an ontology O) if there exists
  one interpretation I of O, such that C is not empty
- Entailment (|=): given an axiom  $\alpha$ , we say an ontology O entails the axiom  $\alpha$  if and only if all interpretation I of O satisfy α.



## **Entailments of Axioms**



Entailment (|=): given an axiom α, we say an ontology O entails the axiom α if and only if all interpretation I of O satisfy α.





## Standards DL Reasoning Services

"Easier" reasoning services



- whether O is consistent
- whether a given class is satisfiable
- "Harder" reasoning services
  - whether O entails a class inclusion axiom
    - such as Class (English partial People)
  - whether O entails an individual axiom
    - such as Individual (Bill type (English))



## **Lecture Outline**

- Motivation
- Introduction to Semantics of DL Axioms
- More detailed discussions on DL Semantics
- Practical



# "Harder" Reasoning Services

How to support the "harder" reasoning services



- by proofs
  - with the help of class equivalence (next slide)
- by reduction to the "easier" reasoning services



# Class Equivalence



Two class descriptions are called "equivalent" (written as C≡D) if for every single interpretation I we have C<sup>I</sup>=D<sup>I</sup>.

$$C \sqcap D \equiv D \sqcap C \qquad C \sqcup D \equiv D \sqcup C$$

$$(C \sqcap D) \sqcap E \equiv C \sqcap (D \sqcap E) \quad (C \sqcup D) \sqcup E) \equiv C \sqcup (D \sqcup E)$$

$$C \sqcap C \equiv C \qquad C \sqcup C \equiv C$$

$$(C \sqcup D) \sqcap E \equiv (C \sqcap E) \sqcup (D \sqcap E) \qquad (C \sqcup D) \sqcap C \equiv C$$

 $(C \sqcap D) \sqcup C \equiv C$ 

$$\neg \neg C \equiv C \qquad \neg \exists r.C \equiv \forall r. \neg C \\ \neg \forall r.C \equiv \exists r. \neg C \qquad \geqslant 0 \\ \neg (C \sqcap D) \equiv \neg D \sqcup \neg C \qquad \neg \leqslant nr.C \equiv \geqslant (n+1)r.C \qquad \geqslant 1 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \equiv \leqslant nr.C \qquad \leqslant 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \equiv \leqslant nr.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \equiv \leqslant nr.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \equiv \leqslant nr.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \equiv (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \equiv (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \equiv (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \equiv (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Leftrightarrow 0 \\ \neg (C \sqcup D) \equiv \neg D \sqcap \neg C \qquad \neg \geqslant (n+1)r.C \qquad \Rightarrow (n+1)r.C \qquad$$

 $(C \sqcap D) \sqcup E \equiv (C \sqcup E) \sqcap (D \sqcup E)$ 



### **Prove it!**

#### Prove if the following equivalences hold



$$C \sqcap D \equiv D \sqcap C$$
 $(C \sqcap D)^{I} = C^{I} \cap D^{I}$ 
 $(D \sqcap C)^{I} = D^{I} \cap C^{I} = C^{I} \cap D^{I}$ 
 $(C \sqcap D) \sqcap E \equiv C \sqcap (D \sqcap E)$ 
 $C \sqcap (D \sqcup E) \equiv (C \sqcap D) \sqcup E$ 



## Class Subsumption Checking

Given an ontology O, check if, for every interpretation I of O, I |= C<sup>I</sup> ⊆ D<sup>I</sup>



- Question: Given the following ontology O,
  - Class (C complete complementOf ( restriction (eats someValuesFrom (Plant))))
  - Class (D complete restriction (eats allValuesFrom (complementOf (Plant)))

Does O entail Class(C partial D)?

Does O entails ¬∃eats.Plant ⊑ ∀eats.(¬Plant)? true



## Class Instance Checking



 Given an ontology O, a class C and an individual x, check if for every interpretation I of O, x<sup>I</sup> is in C<sup>I</sup>

- Question: given the following ontology O,
  - Class (OldLady partial restriction (hasPet allValuesFrom (Cat)))
  - Individual (Minnie type (OldLady)value (hasPet Tom))
- Does O entail Individual (Tom type (Cat)) ?



## **Class Instance Checking**



- Can we reduce class instance checking to another reasoning task?
- How about Ontology Consistency Checking
  - If O entails C(x), then in every interpretation I of O, we have x<sup>I</sup> is in C<sup>I</sup>
  - It means O U O $\{\neg C(x)\}$  is inconsistent



## **Class Instance Checking**



- Question: given the following ontology O,

  - OldLady(Minnie)
  - hasPet(Minnie, Tom)
    - ¬Cat(Tom)
- Does O entail Individual (Tom type (Cat))?



## **Practical**



- Interpretations in DL
- Reasoning based on understanding of DL interpretations



### **After-Lecture Exercise**

Class(Animal partial)

Class(Plant partial)

DisjointClasses(Animal Plant)

ObjectProperty(eats domain(Animal))

Class(Herbivore complete restriction(eats allValuesFrom(Plant)))

Class(Carnivore complete restriction(eats allValuesFrom(Animal)))

Class(CarnivorousPlant complete intersectionOf(Plant Carnivore))



### **After-Lecture Exercise**



- Input the above ontology in Protégé
- Feel free to send me an email on:
  - Why Plant is a subclass of Herbivore and Carnivore?
  - How to solve the problem?
  - Are there any other problems in your revised ontology?



## Summary



- DL semantics
  - Interpretation
  - Interpretations of descriptions
  - Interpretations of axioms
  - Interpretations of ontologies
- Reasoning is based on semantics



"Billy, I'm not going to argue the semantics of biting. Whether or not you penetrated skin, I'm calling your mother."