RENSSELAER POLYTECHNIC INST TROY N Y DEPT OF MATERIA--ETC F/G 11/2 CHEMICAL DURABILITY IMPROVEMENT AND STATIC FATIGUE OF GLASSES. (U) MAR 79 M TOMOZAWA N00014-78-C-0315 AD-A066 978 MAR 79 M TOMOZAWA NL UNCLASSIFIED | OF | AD A066978 END DATE FILMED 6-79 DDC

LETE 12

ANNUAL REPORT NO. 1

For the Period Ending: February 28, 1979

11) Mar 79 (

CHEMICAL DURABILITY IMPROVEMENT AND STATIC FATIGUE OF GLASSES.

9 Annual reptino, 7. 12 Apr 78-28 Feb 715

(12) 33 P1

AD AO 66978

FILE COPY

Office of Naval Research No. N00014-78-C-0315

supported by

(15)

APR 4 1979

APR 4 1979

Principal Investigator

DISTRIBUTION STATEMENT A

Minoru Tomozawa Distribution Unlimited

Associate Professor Rensselaer Polytechnic Institute Troy, New York 12181

302 125 79 03 12 132

I. SUMMARY

The Surface layer of heat-treated borosilicate glasses exhibited lower HF etching rate compared with the bulk. The chemical analysis of the same glass indicated an excess ${\rm Al}_2{\rm O}_3$ concentration in the surface layer. The low HF etching rate was attributed to the lowering of the immiscibility dome by the excess ${\rm Al}_2{\rm O}_3$ and the consequent shift of the composition.

A prolonged heat-treatment of glasses produced a surface stress layer. This surface stress was found to change its sign when the glass was heat-treated in wet atmosphere. The surface stress was attributed to the different water content in the surface layer from that in the bulk.

Chemical durability, especially the etching rate of a glass in hot NaOH solution was found to be reduced by coating the glass with Zr alcoxide. The Zr compound appears to deposit on the etched surface continuously protecting the glass.

Direct confirmation of the stress corrosion, i.e., the stress-accelerated reaction of glass with aqueous solution was attempted. Preliminary investigation showed that reactions are accelerated by tensile stress and retarded by compressive stress.

II. RESEARCH AND RESULTS

1. Surface Structure of Glasses

The Surface layer of some commercial glasses was found to have different properties from those of the bulk. The origins of these phenomena were investigated.

(a) HF etch rate of phase separated glasses.

The Surface layer of heat-treated borosilicate glasses showed a higher chemical (HF) durability compared with the bulk. This surface layer

was observed only for as-received glass rods and only for glass compositions which give the interconnected microstructure upon heat-treatment. The chemical analysis revealed the excess ${\rm Al}_2{\rm O}_3$ concentration in the surface layer. The ${\rm Al}_2{\rm O}_3$ is known to suppress the immiscibility tendency of borosilicate glasses. Thus the excess ${\rm Al}_2{\rm O}_3$ content in the surface layer is expected to reduce the composition range of the phase separation, reducing the alkali-borate concentration of the alkali-borate rich phase. Since the chemical durability is primarily controlled by the composition of the continuous alkali-borate phase, the higher chemical durability results.

(b) Surface stress

When a glass containing alkali was heat-treated for an extended period of time the surface layer showed a residual stress which cannot be eliminated by annealing. This stress layer was observed regardless of the presence of phase separation or of the prior etching of the original surface. The sign of the surface stress was observed to reverse itself when the glass was heat-treated in wet atmosphere. The origin of this surface stress was attributed to the decrease (or increase) of water content in the surface layer of the glass. Although the evaporation of Na from the glass surface can cause the similar stress, this effect was considered secondary because of the stress sign reversal due to wet atmosphere and the comparatively thicker stressed layer than the alkali deficiency layer.

These investigation on the glass surface will be published in July - August issue of the American Ceramic Society (1979). The manuscript is attached to this report as Appendix I.

2. Chemical Durability Improvement by Coating

 ${\rm ZrO}_2$ component in glass is known to improve the chemical durability of glasses substantially. Here coating of glass with Zr containing compounds

was studied. Soda-lime slide glass was coated with Zr alcoxide by dipping it into the alcohol solution of Zr alcoxide. The etching rate of the slide glass in 10% NaOH at 80°C was determined by measuring the weight loss per unit surface area. With the Zr alcoxide coating the etching rate was observed to become lower by 20 ~ 30%. This is shown in a figure as Appendix II. Similar result was obtained for fused silica also. Since the coating thickness is far less than the etched layer, Zr compound is probably seeking and depositing itself on the etched glass surface. To confirm this possibility, a small amount of Zr alcoxide was placed in NaOH solution and detching experiment was conducted and similar improvement in durability was observed. This result will be presented at the 31st Annual Meeting of the American Ceramic Society, to be held in May 1979, in Cincinnati, Ohio. At present, the exact mechanism of durability improvement by Zr alcoxide coating is being investigated.

3. Stress Corrosion

Even though the static fatigue of glass is believed to be caused by the stress accelerated reaction of glass with atmospheric water, very little experimental evidence exists on the stress accelerated reaction itself. Here, the direct study of the stress accelerated reaction of glass with various aqueous media is made. To this end, glass plate is subjected to the known amount of stress in a specially designed four point loading cell and is immersed in various aqueous solutions. So far preliminary results indicated that the ion-exchange reaction rate of water and alkali as well as the leaching reaction rate of a phase separated glass with HCl were stress dependent. With the aid of an ellipsometer, to be purchased, it is anticipated that the quantitative measurement of the reacted layer thickness will become possible and that the stress rate dependency of the reaction will be clarified.

III. PERSONNEL

Minoru Tomozawa Principal Investigator Associate Professor of Materials Engineering

Yoshio Oka Postdoctoral Research Associate

Karl Ricker Research Assistant

IV. PUBLICATION

"Relation of Surface Structure of Glass to HF Acid Attack and Stress State", M. Tomozawa and T. Takamori (to appear in J. Am. Ceram. Soc.).

V. ORAL PRESENTATION

"Chemical Durability Improvement by Coating", by K. Ricker, Y. Oka and M. Tomozawa (to be presented at the 81st Annual Meeting of the American Ceramic Society, May 1979, Cincinnati, Ohio).

To appear . A. Corner Son

RELATION OF SURFACE STRUCTURE OF GLASS TO HF ACID ATTACK AND STRESS STATE

Minoru Tomozawa

Materials Engineering Dept.

Rensselaer Polytechnic Institute

Troy, New York 12181

and

Takeshi Takamori

IBM Corporation

Thomas J. Watson Research Center

Yorktown Heights, New York 10598

ABSTRACT

The surfaces of commercial glasses, mainly borosilicate glasses, were investigated by HF etching and surface stress measurement. The HF etch rate was slow at the surface for some phase-separated glasses; this was attributed to excess alumina in the surface layer produced during the glass manufacture. After heat treatment of the glass rods either with or without the as-received surfaces, compressive (tangential) stresses were observed in all the glasses studied. This is most likely due to the evaporation of water from the surface during the heat-treatment.

. I. INTRODUCTION

The surface condition of glasses has a strong influence on the chemical and mechanical properties of the bulk samples. Hood and Nordberg¹ noted during the production of Vycortype glasses that the leaching process of a phase-separated borosilicate glass is hindered by the surface layer; if the original surface layer is removed prior to heat treatment this effect is almost completely eliminated. Eguchi et al.² established for a glass a ternary Na₂O-B₂O₃-SiO₂ composition that selective evaporation of the components, Na₂O and B₂O₃, takes place from the hydrated surface during heat treatment, leaving a silica layer of up to 1000Å thickness on the glass surface. A much thicker surface layer of 100 µm was reported by Utsumi et al.³ on a phase-separated glass of similar composition on the basis of bending strength measurements. In the course of a study of thermal strains Takamori⁴ observed the formation of a surface layer after the heat treatment for phase separation.

In the present work, two experimental methods, i.e. chemical etching rate and stress measurements, are employed to reveal surface characteristics different from the bulk properties of selected commercial glasses, particularly in the case of phase-separated borosilicate glasses. An attempt is made to clarify the separate roles of various components in the formation of such surface layers.

II. EXPERIMENTAL PROCEDURE

The compositions (mostly obtained from the published literature⁵) of the commercial glasses used in the present experiments are shown in Table 1. Glasses I to III are borosilicate glasses which can be phase-separated by appropriate heat treatments, while Glass IV is a soda-lime glass which has no tendency toward phase separation. As-received glass rods of 4-6 mm in diameter were cut into an approximate length of 60mm and heat-treated in air at 600°C for various lengths of time to induce phase separation (where possible), and were furnace cooled (cooling rate ≈50°C/hr). For comparison, some samples were simply annealed by

furnace-cooling from their annealing temperatures. The HF etch rate of the surface layer of the heat-treated glass specimens was determined as a function of the depth from the glass surface. Each specimen was exposed to the etching solution, 10% or 2% HF, for 30-60 sec. at $20 \pm 1^{\circ}$ C and was washed with alcohol. The etch rate was determined from the weight change per unit area and the density of the glasses.

After heat treatment the surface layer (to a depth of 50-100µm) showed compressive (tangential) stresses, ⁴ as illustrated in Fig. 1 for a cross section of Glass I rod. This surface stress on the rods of 6mm in diameter was measured as a function of heat treatment time by a polarimeter. The chemical composition of the surface layers was determined for a selected glass specimen as a function of the depth from the surface. Specifically for Glass I, Si and K were analyzed with an electron microprobe analyzer, Na and Al with an atomic absorption spectrometer. For the latter, sample rods were etched off with 10% HF successively from the surface, and the Na and Al contents in each HF solution were determined as a function of the depth from the sample surface. The similar measurements were made for Na and Ca in Glass IV. Two stage replica electron microscopy was used to look into the microstructures.

III. RESULTS

(1) Etch Rate Measurement

Typical results of chemical durability are shown in Figs. 2, 3, and 4 for Glass I, II and III, respectively. The HF etch rate of Glass I and II increases with the depth from the surface after the glasses were heat-treated for phase separation (Fig. 2, curve B, and Fig. 3). The specimens simply annealed show a constant etch rate (Fig. 2, curve A). Thus in Glasses I and II, surface layers 4-5 µm thick have a different chemical durability from the bulk. This

^{*}Model C36 comparator polarimeter, Polarizing Instrument Co., Inc., Irvington-on-Hudson, New York.

difference is revealed only after the specimens were heat-treated for phase separation. The thickness of the surface layer was found to vary slightly depending upon the specimen lot as well as on the specimen diameter. When the surface layer of the as-received glass rods was etched off prior to the heat treatment, this change of the HF etch rate with depth was almost entirely eliminated.

In contrast to Glasses I and II, in Glass III the etch rate is independent of depth, even after the heat treatment for phase separation. This is also true for Glass IV, which does not phase separate.

(2) Stress Measurement

The surface stress in all four glasses examined after the heat treatment for phase separation was found to increase with the duration of the heat treatment. As shown in curves A and B in Fig. 4 for Glass I, the magnitude of the surface stress varies from lot to lot. In contrast to the etch rate, the surface stress produced by the heat treatment was not altered by the elimination of the original surface layer (through HF etching) prior to the heat treatment. The thickness of the stressed surface was estimated to be $\sim 100 \mu m$.

(3) Surface Composition and Structure

The concentrations of selected components (Si, K, Na) in the surface layer of the heat-treated Glass I as a function of the depth from the surface were found constant within experimental errors. On the other hand, the Al concentration was found to be higher in the surface layer of Glass I, as shown in Fig. 5. The concentration of Na and Ca in Glass IV showed a slight decrease in the surface layer of $\approx 2\mu m$ depth after heat-treatment at 550° C for 100 hrs., similarly to the reported data by Sieger⁷.

The electron micrographs of fractured and etched surfaces of Glasses II and III shown in Fig. 6 (A) and (B) provide evidence about the structure of these glasses. The heat treatment for phase separation induces an interconnected structure in Glass II (Fig. 6 (A)), and a discrete structure in Glass III (Fig. 6 (B)).

IV. DISCUSSION

Only some of the phase-separated glasses exhibit a variation in etch rate as a function of depth from the surface. However, in all glasses an increase in heat treatment time results in a corresponding increase in surface strain. Since it is evident that the two phenomena do not share the same origin, they will be discussed separately.

(1) Etch Rate

A) Effect of Microstructure

Among various commercial borosilicate glasses, Glasses I and II showed a surface layer with an etch rate different from that of the inside, while Glass III did not. This etch rate characteristic correlates well with the microstructure of phase separated glasses. Simmons et al.⁸ observed an interconnected microstructure for Glass I heat-treated at 600°C; Fig. 6 (A) shows that Glass II also displays an interconnected structure upon phase separation. With this type of microstructure, the HF etch rate of the bulk sample has been shown to vary with composition changes of the chemically less durable (lower SiO₂ content) phase.⁹ On the other hand, Fig. 6(B) shows that Glass III produces a dispersed minor phase embedded in a silica-rich matrix. With this microstructure, the HF etch rate of the bulk sample has been shown⁹ to remain essentially constant through the progress of phase separation.

B) Composition Shift

As mentioned above, an excess of Al₂O₃, apparently produced during glass manufacture, was observed in the surface layer. (The density change caused by this composition change is small, therefore the etch rate measurement in Figs. 2, and 3 is not affected.) The observed variations in the surface etch rate can be explained by this high concentration of Al₂O₃. It is known that the addition of small amounts of Al₂O₃ to alkaliborosilicate glass¹⁰ system as well as alkali silicate systems¹¹ suppresses the immiscibility dome. The surface layer with higher Al₂O₃ content will therefore have smaller composition variations than the bulk when heat-treated at the same temperature. Hence, from the direction of the tie line in the phase diagram,^{9,12} the composition of the chemically less durable phase in the surface layer will have a higher SiO₂ content than the bulk. This is illustrated schematically in Fig. 7. Since the HF etch rate of these phase separated glasses I and II is primarily controlled by the SiO₂ content of the chemically less durable phase,⁹ after phase separation the surface layer will have a lower etch rate than the bulk. For Glass III, the shift of composition of the chemically less durable phase has no effect on the HF etch rates because of its microstructure with discrete second phase particles.

Alkali oxides and boron oxides are known to volatilize together¹³. Since the analytical results indicate no alkali deficiency in the surface of the borosilicate glass rods it is anticipated that there is also very little boron deficiency. Furthermore, the shift of the chemically less durable phase composition would be small even if the slight boron deficiency existed (cf. Fig. 7).

(2) Surface Stress

Surface stresses were produced by an extensive heat treatment regardless of whether or not the specimen is phase separated. Since the prior etching of the surface of glass rods did not cause any change in the surface stress, it is apparent that variations of composition in the surface layer produced during manufacturing is not the cause of the stress. The decrease in concentration of Na in the surface layer observed in heat-treated Glass IV may be involved in the surface stress formation. The alkali deficiency would reduce the thermal expansion coefficient of the surface layer producing the surface compressive (tangential) stresses which are observed. This possibility can not be rejected since a glass specimen with no alkali component showed practically no surface stress after the heat-treatment.

However, the major cause of the surface stress formation has to be looked for elsewhere, since no alkali deficiency was observed in Glass I after the heat-treatment and also the thickness of the surface strain layer was far greater ($\approx 100 \mu m$) than the thickness of Na deficiency layer ($\approx 2 \mu m$) observed in Glass IV after heat-treatment.

It is suggested that the cause of the surface strain is the difference in water content between the surface layer and the bulk. The specimen heat-treated in dry atmosphere is expected to have a low water content in the surface layer. The low water content in the surface layer of glass leads to the low thermal expansion¹⁴ (or contraction) which, upon cooling, produces surface compressive (tangential) stresses.

To test this hypothesis, samples of Glasses I and IV were heat-treated in an atmosphere of water vapor in order to increase the water content of the surface layers. As expected, the resulting surface stresses were reversed in sign in comparison with the surface stresses observed in specimens heat-treated in air. Thus, the compressive stress in the surface of glasses after an extensive heat treatment in air can be attributed to a decrease of water content due to evaporation.

Acknowledgement

Financial support of ONR under contract No. N00014-78-C-0315 for one of the authors (M. T.) is greatly appreciated. Thanks are due to C. F. Aliotta for electron microscopy, B. L. Olson for chemical analysis, and J. B. Landermann for experimental assistance. Critical review of the manuscript by F. M. d'Heurle is also acknowledged.

TABLE 1 CHEMICAL COMPOSITION OF GLASSES (WT %)

GLASS	SiO ₂	B_2O_3	CaO	MgO	Al_2O_3	Na ₂ O	K ₂ O	Li ₂ O	PbO	BaO	Code	Ref.
1	80.5	12.9			2.2	3.8	0.4				Corning 7740	5(a)
	80	13			2	4						5(b)
u	73.0	16.5			2.0	4.5			4.0		Corning 7720	5(b)
m	70.0	28.0			1.1		0.5	1.2			Corning 7070	5(a)
IV	69.0	1.8	4.2	4.1	2.4	16.1	0.5			1.9	Owens-Illin R-6	ois •

Chemical analysis at IBM.

Figure Captions

- Fig. 1 An example of surface stress observed by polariscope. Cross-section of Glass I, heat-treated at 600°C for 100 hours, and rate.
- Fig. 2 10% HF etch rate of the surface layer of Glass I

 (A) annealed at 550°C for 1 hour, and

 (B) heat-treated at 600°C for 24 hours.
- Fig. 3

 2% HF etch rate of the surface layer of Glass II

 (A) heat-treated at 600°C for 2 hrs.

 (B) heat-treated at 600°C for 11 hrs.
- Fig. 4 Surface stress vs. heat-treatment time at 600°C for Glass I. A and B refer to two different lots of the same glass.
- Fig. 5 Al₂O₃ concentration as a function of the depth from the surface for Glass I, as received.
- Fig. 6 Two-stage replica electron micrograph of fractured and etched surface of (A) Glass II and (B) Glass III, both heat-treated at 600°C for 100 hours. The latex sphere has a diameter of 0.5μm.
- Fig. 7 Metastable immiscibility boundary of SiO₂-B₂O₃-Na₂O system (wt%, after Ref. 9). Dotted line indicates a likely position of the immiscibility boundary at 600°C with a small addition of Al₂O₃. The chemically less durable composition will move from point A to B with Al₂O₃ addition at 600°C.

References:

- H. P. Hood and M. E. Nordberg, "Method of Treating Borosilicate Glasses", U. S. Pat. 2,215,039 (1940).
- 2. K. Eguchi, S. Tabata and S. Tarumi, "Effect of Volatilization on the Rate of Acid-leaching in Phase-separable Borosilicate Glass", Yogyokyokai-shi, 78, (11) 275-81 (1970).
- Y. Utsumi, S. Sakka, and M. Tashiro, "Experimental Study on the Bending Strength of Glass in Relation to Liquid-Liquid Phase Separation", Glass Technology, <u>11</u> (3) 80-85 (1970).
- Takeshi Takamori, "Relaxation of Thermal Stress in Phase-Separated Borosilicate Glasses", J. Am. Ceram. Soc., 59, (3-4) 121-123 (1976).
- (a) E. B. Shand, <u>Glass Engineering Handbook</u>, McGraw-Hill, New York (1958).
 (b) W. Espe, <u>Materials of High Vacuum Technology</u>, Vol. 2, Pergamon Press, New York (1968).
- 6. C. E. Hall, Introduction to Electron Microscopy, McGraw-Hill, New York (1966).
- J. S. Sieger, "Chemical Characteristics of Float Glass Surfaces" J. Non-Crystalline Solids 19, 213 (1975).
- J. H. Simmons, S. A. Mills, and A. Napolitano, "Viscous Flow in Glass During Phase Separation", J. Am. Ceram. Soc., <u>57</u> (3) 109-17 (1974).
- Minoru Tomozawa and Takeshi Takamori, "Effect of Phase Separation on HF Etch Rate of Borosilicate Glasses", J. Am. Ceram. Soc., 60, (7-8) 301-304 (1977).
- J. H. Simmons, A. Napolitano and P. B. Macedo, "Supercritical Viscosity Anomaly in Oxide Mixtures", J. Chem. Phys., <u>53</u>, 1165 (1970).
- Minoru Tomozawa and Richard A. Obara "Effect of Minor Third Components on Metastable Immiscibility Boundaries of Binary Glasses" J. Am. Ceram. Soc. <u>56</u>, 378 (1973).

- O. V. Mazurin and M. V. Streltsina, "Determination of the Tie-Line Directions in the Metastable Phase-Separation Regions of Ternary Systems", J. Non-Cryst. Solids, 11 (3) 199-218 (1972).
- M. Shinbo, "Volatilization Loss of Sodium Borosilicate Ternary Glasses", J. Ceram.
 Assoc Japan, 74 (11) 346-53 (1966).
- 14. H. Scholze, "Gases and Water in Glass", Glass Ind., 47 546; 622; 670 (1966).

Fig.

Fg. 5

The state of the s

The property of the same of the same of the same of

۶:۶.6

NaOH etching rate of soda lime glass with and without Zr-alcoxide coating.

	REPORT DOCUMENTATI	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1.	REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
4	Chemical Durability Improvement	5 TYPE OF REPORT & PERIOD COVERED Annual Report No.1 April 1, 1978-February 28,19		
7.	Fatigue of Glasses		8. CONTRACT OR GRANT NUMBER(*)	
	Minoru Tomozawa		No. N00014-78-C-0315 NW	
9.	Rensselaer Polytechnic Institute Materials Engineering Department Troy, New York 12181	ute / 3,4 /4 /4	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
1	Metallugry and Ceramics Progr Office of Naval Research, Dep Arlington, Virginia 22217	March 1979 13. NUMBER OF PAGES 24		
•	4. MONITORING AGENCY NAME & ADDRESS(II di	Herent from Controlling Office)	Unclassified 15. DECLASSIFICATION DOWNGRADING SCHEDULE	

.....

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Glass Surface Chemical Durability Coating

Stress Corrosion

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The Surface layer of heat-treated borosilicate glasses exhibited lower HF etching rate compared with the bulk. The chemical analysis of the same glass indicated an excess Al_2^{00} concentration in the surface layer. The low HF etching rate was attributed to the lowering of the immiscibility dome by the excess Al_2^{00} and the consequent shift of the composition.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. Abstract (continued)

A prolonged heat-treatment of glasses produced a surface stress layer. This surface stress was found to change its sign when the glass was heat-treated in wet atmosphere. The surface stress was attributed to the different water content in the surface layer from that in the bulk.

Chemical duarability, especially the etching rate of a glass in hot NaOH solution was found to be reduced by coating the glass with Zr alcoxide. The Zr compund appears to deposit on the etched surface continuously protecting the glass.

Direct confirmation of the stress corrosion, i.e., the stress-accelerated reaction of glass with aqueous solution was attempted. Preliminary investigation showed that reactions are accelerated by tensile stress and retarded by compressive stress.

Unclassified

BASIC DISTRIBUTION LIST

Technical and Summary Reports

April 1978

Organization	Copies	Organization	Copies
Defense Documentation Center Cameron Station Alexandria, VA 22314	12	Naval Air Propulsion Test Center Trenton, NJ 08628 ATTN: Library	. 1
Office of Naval Research Department of the Navy 800 N. Quincy Street Arlington, VA 22217		Naval Construction Batallion Civil Engineering Laboratory Port Hueneme, CA 93043 ATTN: Materials Division	1
ATTN: Code 471 Code 102 Code 470	1	Naval Electronics Laboratory San Diego, CA 92152 ATTN: Electron Materials Sciences Division	1
Commanding Officer Office of Naval Research Branch Office Building 114, Section D 666 Summer Street Boston, MA 02210	1	Naval Missile Center Materials Consultant Code 3312-1 Point Mugu, CA 92041	1
Commanding Officer Office of Naval Research Branch Office 536 South Clark Street Chicago, IL 60605	1	Commanding Officer Naval Surface Weapons Center White Oak Laboratory Silver Spring, MD 20910 ATTN: Library	1
Office of Naval Research San Francisco Area Office 760 Market Street, Room 447 San Francisco, CA 94102	1	David W. Taylor Naval Ship Research and Development Center Materials Department Annapolis, MD 21402	1
Naval Research Laboratory Washington, DC 20375		Naval Undersea Center San Diego, CA 92132 ATTN: Library	1
ATTN: Codes 6000 6100 6300 6400	1	Naval Underwater System Center Newport, RI 02840 ATTN: Library	1
2627 Naval Air Development Center Code 302	i	Naval Weapons Center China Lake, CA 93555 ATTN: Library	1
Warminster, PA 18964 ATTN: Mr. F. S. Williams	1	Naval Postgraduate School Monterey, CA 93940 ATTN: Mechanical Engineering Department	1

BASIC DISTRIBUTION LIST (cont'd)

Organization	Copies	Organization	Copies
Naval Air Systems Command Washington, DC 20360 ATTN: Codes 52031 52032	1	NASA Headquarters Washington, DC 20546 ATTN: Code RRM	1
Naval Sea System Command Washington, DC 20362 ATTN: Code 035	1	NASA Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 ATTN: Library	1
Naval Facilities Engineering Command Alexandria, VA 22331 ATTN: Code 03	١	National Bureau of Standards Washington, DC 20234 ATTN: Metallurgy Division Inorganic Materials Div.	1
Scientific Advisor Commandant of the Marine Corps Washington, DC 20380 ATTN: Code AX	1	Director Applied Physics Laborato University of Washington 1013 Northeast Forthieth Street Seattle, WA 98105	ory 1
Naval Ship Engineering Center Department of the Navy Washington, DC 20360 ATTN: Code 6101 Army Research Office	1	Defense Metals and Ceramics Information Center Battelle Memorial Institute 505 King Avenue Columbus, OH 43201	1
P.O. Box 12211 Triangle Park, NC 27709 ATTN: Metallurgy & Ceramics Program Army Materials and Mechanics	1	Metals and Ceramics Division Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37380	1
Research Center Watertown, MA 02172 ATTN: Research Programs Office	1	Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, NM 87544	
Air Force Office of Scientific Research Bldg. 410 Bolling Air Force Base Washington, DC 20332		ATTN: Report Librarian Argonne National Laboratory Metallurgy Division P.O. Box 229	1
ATTN: Chemical Science Directorate Electronics & Solid State Sciences Directorate	1	Lemont, IL 60439 Brookhaven National Laboratory Technical Information Division	1
Air Force Materials Laboratory Wright-Patterson AFB Dayton, OH 45433	1	Upton, Long Island New York 11973 ATTN: Research Library Office of Naval Research	1
Building 50, Rm 134 Lawrence Radiation Laboratory Berkeley, CA	1	Branch Office 1030 East Green Street Pasadena, CA 91106	1

SUPPLEMENTARY DISTRIBUTION LIST

Technical and Summary Reports

Organization	No. of Copies	Organization	No. of Copies
Dr. W.F. Adler		Professor A.H. Heuer	
Effects Technology Inc.		Case Western Reserve University	
5383 Hollister Avenue		University Circle	
P.O. Box 30400		Cleveland, OH 44106	(1)
Santa Barbara, CA 92105	(1)	01010101101, 011 111111	(-/
	/	Dr. R. Hoagland	
Dr. G. Bansal		Battelle	
Battelle		505 King Avenue	
505 King Avenue		Columbus, OH 43201	(1)
Columbus, OH 43201	(1)		
		Dr. R. Jaffee	
Dr. R. Bratton		Electric Power Research Institute	
Westinghouse Research Lab.		Palo Alto, CA	(1)
Pittsburgh, PA 15235	(1)		
		Dr. P. Jorgensen	
Dr. A.G. Evans		Stanford Research Institute	
Rockwell International		Poulter Laboratory	
P.O. Box 1085		Menlo Park, CA 94025	(1)
1049 Camino Dos Rios			
Thousand Oaks, CA 91360	(1)	Dr. R.N. Katz	
Mr. F. Fisher		Army Materials and Mechanics	
Mr. E. Fisher Ford Motor Co.		Research Center	(1)
Dearborn, MI	(1)	Watertown, MA 02171	(1)
bearborn, mr	(1)	Dr. H. Kirchner	
Dr. P. Gielisse		Ceramic Finishing Company	
University of Rhode Island		P.O. Box 498	
Kingston, RI 02881	(1)	State College, PA 16801	(1)
Kingston, Ki ottol	(1)	beate correge, in 10001	(-)
Dr. M.E. Gulden		Dr. B. Koepke	
International Harvester Company		Honeywell, Inc.	
Solar Division		Corporate Research Center	
2200 Pacific Highway		500 Washington Avenue, South	
San Diego, CA 92138	(1)	Hopkins, MN 55343	(1)
Dr. D.P.H. Hasselman		Mr. Frank Koubek	
Montana Energy and MHD Research		Naval Surface Weapons Center	
and Development Institute		White Oak Laboratory	
P.O. Box 3809		Silver Spring, MD 20910	(1)
Butte, Montana 59701	(1)		
		E. Krafft	
Mr. G. Hayes		Carborundum Co.	
Naval Weapons Center	• .	Niagara Falls, NY	(1)
China Lake, CA 93555	(1)		

	No. of		No. of
Organization	Copies	Organization	Copies
Dr. F.F. Lange		Dr. J. Ritter	
Rockwell International		University of Massachusetts	
P.O. Box 1085		Department of Mechanical Engineering	
- 1049 Camino Dos Rios		Amherst, MA 01002	(1)
Thousand Oaks, CA 91360	(1)		
		Professor R. Roy	
Dr. J. Lankford		Pennsylvania State University	
Southwest Research Institute		Materials Research Laboratory	
8500 Culebra Road		University Park, PA 16802	(1)
San Antonio, TX 78284	(1)		
		Dr. R. Ruh	
Library		AFML	
Norton Company		Wright-Patterson AFB	
Industrial Ceramics Division		Dayton, OH 45433	(1)
Worcester, MA 01606	(1)		
		Mr. J. Schuldies	
State University of New York		AiResearch	
College of Ceramics at Alfred		Phoenix, AZ	(1)
University			
Attn: Library		Professor G. Sines	
Alfred, NY 14802	(1)	University of California, Los Angeles	
		Los Angeles, CA 90024	(1)
Dr. L. Hench			,-,
University of Florida		Dr. N. Tallan	
Ceramics Division		AFML	
Gainesville, FL 32601	(1)	Wright-Patterson AFB	
		Dayton, OH 45433	(1)
Dr. N. MacMillan			(-,
Materials Research Laboratory		Dr. T. Vasilos	
Pennsylvania State University		AVCO Corporation	
College Park, PA 16802	(1)	Research and Advanced Development	
,	(-/	Division	
Mr. F. Markarian		201 Lowell Street	
Naval Weapons Center		Wilmington, MA 01887	(1)
China Lake, CA 93555	(1)	Wilmington, 124 01007	(1)
onina bake, on 75555	(1)	Mr. J.D. Walton	
Dr. Perry A. Miles		Engineering Experiment Station	
Raytheon Company		Georgia Institute of Technology	
Research Division		Atlanta, GA 30332	(1)
28 Seyon Street		Actalica, GA 30332	(1)
Waltham, MA 02154	(1)	Dr. S.M. Widerhorn	
Halenday In Octor	(1)	Inorganic Materials Division	
• Mr. R. Rice		National Bureau of Standards	
Naval Research Laboratory		Washington, DC 20234	(1)
Code 6360		Hadii Ington, DC 20234	(1)
*Washington, D.C. 20375	(1)		
washington, D.o. 20075	(1)		

	Organization	No. of Copies	Organization	No. of Copies
Dr. S.A. Bortz			Major W. Simmons	
	IITRI		Air Force Office of Scientific	
	10 W. 35th Street		Research	
	Chicago, IL 60616	(1)	Building 410	
	chicago, in doord	(1)	Bolling Air Force Base	
	Mr. G. Schmitt		Washington, DC 20332	(1)
	Air Force Materials Laboratory		washington, be tosse	(-)
	Wright-Patterson AFB		Dr. P. Becher	
	Dayton, OH 45433	(1)	Naval Research Laboratory	
	- u, ton, on 45455	(-)	Code 6362	
	Dr. D.A. Shockey		Washington, DC 20375	(1)
	Stanford Research Institute		washington, be 20075	(-)
	Poulter Laboratory		Mr. L.B. Weckesser	
	Menlo Park, CA 94025	(1)	Applied Physics Laboratory	
	nento rark, an 54025	(1)	Johns Hopkins Road	
	Dr. W.G.D. Frederick		Laurel, MD 20810	(1)
	Air Force Materials Laboratory		Laurer, MD 20010	(1)
	Wright-Patterson AFB		Mr. D. Richarson	
	Dayton, OH 45433	(1)	AiResearch Manufacturing Company	
	Daycon, on 45455	(1)	4023 36th Street	
	Dr. P. Land		P.O. Box 5217	
	Air Force Materials Laboratory		Phoenix, AZ 85010	(1)
	Wright-Patterson AFB		Thousand, the cools	(-)
	Dayton, OH 45433	(1)	Dr. H.E. Bennett	
	buyton, on 15155	(-)	Naval Weapons Center	
	Mr. K. Letson		Code 3818	
	Redstone Arsenal		China Lake, CA 93555	(1)
	Huntsville, AL 35809	(1)		(-/
		(-/	Mr. G. Denman	
	Dr. S. Freiman		Air Force Materials Laboratory	
	Naval Research Laboratory		Code LPJ	
	Code 6363		Wright-Patterson AFB	
	Washington, DC 20375	(1)	Dayton, OH 45433	(1)
		,-/		(-/
	Director		Dr. D. Godfrey	
	Materials Sciences		Admiralty Materials Laboratory	
	Defense Advanced Research Project	S	Polle, Dorset BH16 6JU	
	Agency		UNITED KINGDOM	(1)
	1400 Wilson Boulevard			
	Arlington, VA 22209	(1)	Dr. N. Corney	
			Ministry of Defense	
	Dr. James Pappis		The Adelphi	
-	Raytheon Company		John Adam Street	
	Research Division		London WC2N 6BB	
	· 28 Seyon Street		UNITED KINGDOM	(1)
	Waltham, MA 02154	(1)		

SUPPLEMENTARY DISTRIBUTION LIST (Cont'd)

October 1977

Organization

No. of Copies

Organization

No. of Copies

Dr. L.M. Gillin Aeronautical Research Laboratory P.O. Box 4331 Fisherman's Bend Melbourne, VIC 3001 AUSTRALIA

(1)