Zeta-values from Euler to Weil-étale cohomology

Alexey Beshenov Université de Bordeaux / Universiteit Leiden

Advised by Baptiste Morin and Bas Edixhoven

15 May 2017, Leiden

► XVIII century mathematics: $\sum_{n\geq 1} \frac{1}{n^{2k}}$.

- ► XVIII century mathematics: $\sum_{n>1} \frac{1}{n^{2k}}$.
- ▶ XIX century mathematics: $\zeta(s)$ and $\zeta_F(s)$.

- ► XVIII century mathematics: $\sum_{n\geq 1} \frac{1}{n^{2k}}$.
- ▶ XIX century mathematics: $\zeta(s)$ and $\zeta_F(s)$.
- ▶ XX century mathematics: $\zeta_X(s)$.

- ► XVIII century mathematics: $\sum_{n\geq 1} \frac{1}{n^{2k}}$.
- ▶ XIX century mathematics: $\zeta(s)$ and $\zeta_F(s)$.
- ▶ XX century mathematics: $\zeta_X(s)$.
- ► Algebraic *K*-theory.

- ► XVIII century mathematics: $\sum_{n\geq 1} \frac{1}{n^{2k}}$.
- ▶ XIX century mathematics: $\zeta(s)$ and $\zeta_F(s)$.
- ▶ XX century mathematics: $\zeta_X(s)$.
- ► Algebraic *K*-theory.
- ► Motivic cohomology.

- ► XVIII century mathematics: $\sum_{n\geq 1} \frac{1}{n^{2k}}$.
- ▶ XIX century mathematics: $\zeta(s)$ and $\zeta_F(s)$.
- ▶ XX century mathematics: $\zeta_X(s)$.
- ► Algebraic *K*-theory.
- ► Motivic cohomology.
- Weil-étale cohomology.

▶ Pietro Mengoli, 1644, the "Basel problem":

$$\sum_{n\geq 1} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots = ?????$$

- ▶ **Pietro Mengoli**, 1644, the "Basel problem": $\sum_{n\geq 1} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \cdots = ?????$
- ► **Euler** ("De summis serierum reciprocarum", 1740): $\frac{\pi^2}{6}$.

- ▶ **Pietro Mengoli**, 1644, the "Basel problem": $\sum_{n>1} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \cdots = ??????$
- ► Euler ("De summis serierum reciprocarum", 1740): $\frac{\pi^2}{6}$.
- ► In general (ibid.), $\sum_{n\geq 1} \frac{1}{n^{2k}} = (-1)^{k+1} B_{2k} \frac{2^{2k-1}}{(2k)!} \pi^{2k}.$

- ▶ **Pietro Mengoli**, 1644, the "Basel problem": $\sum_{n>1} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \cdots = ??????$
- ► Euler ("De summis serierum reciprocarum", 1740): $\frac{\pi^2}{6}$.
- ► In general (ibid.), $\sum_{n\geq 1} \frac{1}{n^{2k}} = (-1)^{k+1} B_{2k} \frac{2^{2k-1}}{(2k)!} \pi^{2k}.$
- ► Bernoulli numbers:

$$B_0 = 1$$
, $B_1 = \frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_3 = 0$, $B_4 = -\frac{1}{30}$, $B_5 = 0$, $B_6 = \frac{1}{42}$, $B_7 = 0$, $B_8 = -\frac{1}{30}$, $B_9 = 0$, $B_{10} = \frac{5}{66}$, ... (Jacob Bernoulli, "Ars Conjectandi", 1713).

- ▶ **Pietro Mengoli**, 1644, the "Basel problem": $\sum_{n>1} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \cdots = ??????$
- ► Euler ("De summis serierum reciprocarum", 1740): $\frac{\pi^2}{6}$.
- ► In general (ibid.), $\sum_{n\geq 1} \frac{1}{n^{2k}} = (-1)^{k+1} B_{2k} \frac{2^{2k-1}}{(2k)!} \pi^{2k}.$
- ► Bernoulli numbers:

$$B_0 = 1$$
, $B_1 = \frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_3 = 0$, $B_4 = -\frac{1}{30}$, $B_5 = 0$, $B_6 = \frac{1}{42}$, $B_7 = 0$, $B_8 = -\frac{1}{30}$, $B_9 = 0$, $B_{10} = \frac{5}{66}$, ... (Jacob Bernoulli, "Ars Conjectandi", 1713).

Faulhaber's formula: $\sum_{1 \leq i \leq n} i^k = \frac{1}{k+1} \sum_{0 \leq i \leq k} \binom{k+1}{i} B_i n^{k+1-i}$ (**Johann Faulhaber**, "Academia Algebræ", 1631; Bernoulli, 1713).

$$\blacktriangleright \ \zeta(s) := \textstyle \sum_{n \geq 1} \frac{1}{n^s} \qquad (\operatorname{Re} s > 1).$$

- ► $\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$ (Re s > 1).
- ► Euler ("Variæ observationes circa series infinitas", 1744):

$$=\prod_{p \text{ prime }} \frac{1}{1-p^{-s}}.$$

- ► $\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$ (Re s > 1).
- ► Euler ("Variæ observationes circa series infinitas", 1744): $= \prod_{D \text{ prime } \frac{1}{1-D^{-s}}}.$
- ▶ Meromorphic continuation to \mathbb{C} with one simple pole at s = 1.

- $\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$ (Re s > 1).
- ► **Euler** ("Variæ observationes circa series infinitas", 1744): $= \prod_{p \text{ prime } \frac{1}{1-p^{-s}}}.$
- ▶ Meromorphic continuation to \mathbb{C} with one simple pole at s = 1.
- ► Functional equation

$$\zeta(1-s) = 2(2\pi)^{-s} \Gamma(s) \cos\left(\frac{\pi s}{2}\right) \zeta(s).$$

Riemann, "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse" (1859):

- $\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$ (Re s > 1).
- ► **Euler** ("Variæ observationes circa series infinitas", 1744): $= \prod_{p \text{ prime } \frac{1}{1-p^{-s}}}.$
- ▶ Meromorphic continuation to \mathbb{C} with one simple pole at s = 1.
- ► Functional equation

$$\zeta(1-s) = 2(2\pi)^{-s} \Gamma(s) \cos\left(\frac{\pi s}{2}\right) \zeta(s).$$

► (Trivial) simple zeros at s = -2, -4, -6, ...

- $\zeta(s) := \sum_{n>1} \frac{1}{n^s}$ (Re s > 1).
- ► Euler ("Variæ observationes circa series infinitas", 1744): $=\prod_{p \text{ prime}} \frac{1}{1-p^{-s}}.$
- ► Meromorphic continuation to C with one simple pole at s=1.
- Functional equation

$$\zeta(1-s) = 2(2\pi)^{-s} \Gamma(s) \cos\left(\frac{\pi s}{2}\right) \zeta(s).$$

- ► (Trivial) simple zeros at $s = -2, -4, -6, \dots$ ► Euler's calculation $\zeta(2k) = (-1)^{k+1} B_{2k} \frac{2^{2k-1}}{(2k)!} \pi^{2k}$ becomes

$$\zeta(-n) = -\frac{B_{n+1}}{n+1}$$
 for $n = 1, 2, 3, 4, \dots$

▶ **Roger Apéry**, 1977: $\zeta(3) = 1.2020569...$ is irrational.

- ▶ **Roger Apéry**, 1977: $\zeta(3) = 1.2020569...$ is irrational.
- ► **Tanguy Rivoal**, 2000: infinitely many irrationals $\zeta(2k+1)$.

- ► **Roger Apéry**, 1977: *ζ*(3) = 1.2020569... is irrational.
- ▶ **Tanguy Rivoal**, 2000: infinitely many irrationals $\zeta(2k+1)$.
- ▶ **Wadim Zudilin**, 2001: at least one irrational among $\zeta(5)$, $\zeta(7)$, $\zeta(9)$, $\zeta(11)$ (which one?)

- ► **Roger Apéry**, 1977: *ζ*(3) = 1.2020569... is irrational.
- ► **Tanguy Rivoal**, 2000: infinitely many irrationals $\zeta(2k+1)$.
- ▶ **Wadim Zudilin**, 2001: at least one irrational among $\zeta(5)$, $\zeta(7)$, $\zeta(9)$, $\zeta(11)$ (which one?)
- ► Conjecture: $\zeta(2k+1)$ are transcendental, algebraically independent.

▶ F/\mathbb{Q} — number field, $\mathcal{O}_F :=$ the ring of integers.

- ▶ F/\mathbb{Q} number field, $\mathcal{O}_F :=$ the ring of integers.
- Dedekind, appendix to Dirichlet's "Vorlesungen über Zahlentheorie" (1863):

$$\zeta_F(s) := \sum_{\substack{\mathfrak{a} \subset \mathcal{O}_F \\ \mathfrak{a} \neq 0}} \frac{1}{N_{F/\mathbb{Q}}(\mathfrak{a})^s} = \prod_{\substack{\mathfrak{p} \subset \mathcal{O}_F \\ \text{prime}}} \frac{1}{1 - N_{F/\mathbb{Q}}(\mathfrak{p})^{-s}}. \quad (\text{Re}\, s > 1)$$

- ▶ F/\mathbb{Q} number field, $\mathcal{O}_F :=$ the ring of integers.
- Dedekind, appendix to Dirichlet's "Vorlesungen über Zahlentheorie" (1863):

$$\zeta_F(s) := \sum_{\substack{\mathfrak{a} \subset \mathcal{O}_F \\ \mathfrak{a} \neq 0}} \frac{1}{N_{F/\mathbb{Q}}(\mathfrak{a})^s} = \prod_{\substack{\mathfrak{p} \subset \mathcal{O}_F \\ \text{prime}}} \frac{1}{1 - N_{F/\mathbb{Q}}(\mathfrak{p})^{-s}}. \quad (\text{Re}\, s > 1)$$

▶ Note: $\zeta_{\mathbb{O}}(s) = \zeta(s)$.

► **Hecke**, "Über die Zetafunktion beliebiger algebraischer Zahlkörper", 1917: meromorphic continuation with simple pole at s = 1; functional equation

$$\zeta_F(1-s) = |\Delta_F|^{s-1/2} \left(\cos\frac{\pi s}{2}\right)^{r_1+r_2} \left(\sin\frac{\pi s}{2}\right)^{r_2}$$

$$\left(2(2\pi)^{-s} \Gamma(s)\right)^d \zeta_F(s),$$

where

 $r_1:=$ real places, $r_2:=$ conjugate pairs of complex places; $d:=[F:\mathbb{Q}]=r_1+2\,r_2$ and $\Delta_F:=$ discriminant.

► **Hecke**, "Über die Zetafunktion beliebiger algebraischer Zahlkörper", 1917: meromorphic continuation with simple pole at s = 1; functional equation

$$\zeta_F(1-s) = |\Delta_F|^{s-1/2} \left(\cos\frac{\pi s}{2}\right)^{r_1+r_2} \left(\sin\frac{\pi s}{2}\right)^{r_2}$$

$$\left(2(2\pi)^{-s} \Gamma(s)\right)^d \zeta_F(s),$$

where

 $r_1:=$ real places, $r_2:=$ conjugate pairs of complex places; $d:=[F:\mathbb{Q}]=r_1+2\,r_2$ and $\Delta_F:=$ discriminant.

► **Hecke**, "Über die Zetafunktion beliebiger algebraischer Zahlkörper", 1917: meromorphic continuation with simple pole at s = 1; functional equation

$$\zeta_F(1-s) = |\Delta_F|^{s-1/2} \left(\cos\frac{\pi s}{2}\right)^{r_1+r_2} \left(\sin\frac{\pi s}{2}\right)^{r_2}$$

$$\left(2(2\pi)^{-s} \Gamma(s)\right)^d \zeta_F(s),$$

where

 $r_1 := \text{real places}, r_2 := \text{conjugate pairs of complex places};$ $d := [F : \mathbb{Q}] = r_1 + 2r_2$ and $\Delta_F := \text{discriminant}.$

► (Trivial) zeros:

S :	0	-1	-2	-3	-4	-5	
order:	$r_1 + r_2 - 1$	r_2	$r_1 + r_2$	<i>r</i> ₂	$r_1 + r_2$	r_2	• • •

Class number formula

Dirichlet, "Recherches sur diverses applications de l'analyse infinitésimale à la théorie des nombres" (1839);

* Gauss, "Disquisitiones Arithmeticæ" (1801):

Class number formula

Dirichlet, "Recherches sur diverses applications de l'analyse infinitésimale à la théorie des nombres" (1839);

- * Gauss, "Disquisitiones Arithmeticæ" (1801):
 - ► Pole at s = 1:

$$\lim_{s\to 1} (s-1)\,\zeta_F(s) = \frac{2^{r_1}\,(2\pi)^{r_2}\,\#\,\mathrm{Cl}(F)}{\#\mu_F\cdot\sqrt{|\Delta_F|}}\,R_F,$$

where CI(F) — class group; $\mu_F \subset \mathcal{O}_F^{\times}$ — roots of unity; R_F — Dirichlet regulator.

Class number formula

Dirichlet, "Recherches sur diverses applications de l'analyse infinitésimale à la théorie des nombres" (1839);

- * Gauss, "Disquisitiones Arithmeticæ" (1801):
 - ▶ Pole at s = 1:

$$\lim_{s\to 1} (s-1) \zeta_F(s) = \frac{2^{r_1} (2\pi)^{r_2} \# \operatorname{Cl}(F)}{\# \mu_F \cdot \sqrt{|\Delta_F|}} R_F,$$

where Cl(F) — class group; $\mu_F \subset \mathcal{O}_F^{\times}$ — roots of unity; R_F — Dirichlet regulator.

➤ Zero at s = 0:

$$\lim_{s\to 0} s^{-(r_1+r_2-1)} \zeta_F(s) = -\frac{\# \operatorname{Cl}(F)}{\# \mu_F} R_F.$$

▶ If *F* is totally real $(r_2 = 0)$, then $\zeta_F(-n) \neq 0$ for odd *n*.

- ▶ If *F* is totally real $(r_2 = 0)$, then $\zeta_F(-n) \neq 0$ for odd *n*.
- ▶ "Siegel–Klingen theorem", 1961: $\zeta_F(-n) \in \mathbb{Q}$.

- ▶ If *F* is totally real $(r_2 = 0)$, then $\zeta_F(-n) \neq 0$ for odd *n*.
- ▶ "Siegel–Klingen theorem", 1961: $\zeta_F(-n) \in \mathbb{Q}$.
- Günter Harder, "A Gauss-Bonnet formula for discrete arithmetically defined groups", 1971:

$$\chi(\operatorname{Sp}_{2n}(\mathcal{O}_F)) = \frac{1}{2^{n(d-n)}} \prod_{1 \leq i \leq n} \zeta_F(1-2n).$$

- ▶ If *F* is totally real $(r_2 = 0)$, then $\zeta_F(-n) \neq 0$ for odd *n*.
- ▶ "Siegel–Klingen theorem", 1961: $\zeta_F(-n) \in \mathbb{Q}$.
- ► **Günter Harder**, "A Gauss–Bonnet formula for discrete arithmetically defined groups", 1971:

$$\chi(\operatorname{Sp}_{2n}(\mathcal{O}_F)) = \frac{1}{2^{n(d-n)}} \prod_{1 \le i \le n} \zeta_F(1-2n).$$

► Example: $F = \mathbb{Q}$, n = 1, $Sp_2 = SL_2$,

$$\chi(SL_2(\mathbb{Z})) = -\frac{1}{12} = -\frac{B_2}{2} = \zeta(-1)$$

("orbifold Euler characteristic" of $\mathcal{H}/\operatorname{SL}_2(\mathbb{Z})$).

▶ $X \to \operatorname{Spec} \mathbb{Z}$ — arithmetic scheme (separated, of finite type).

- X → Spec Z arithmetic scheme (separated, of finite type).
- ▶ $\zeta_X(s) := \prod_{x \in X_0} \frac{1}{1 N(x)^{-s}}$. (Re $s > \dim X$). $X_0 := \text{closed points}; N(x) := \#\text{residue field at } x$.

- X → Spec Z arithmetic scheme (separated, of finite type).
- ▶ $\zeta_X(s) := \prod_{x \in X_0} \frac{1}{1 N(x)^{-s}}$. (Re $s > \dim X$). $X_0 := \text{closed points}; N(x) := \#\text{residue field at } x$.
- ▶ Note: $\zeta_{\text{Spec }\mathbb{Z}}(s) = \zeta(s)$ and $\zeta_{\text{Spec }\mathcal{O}_F}(s) = \zeta_F(s)$.

- X → Spec Z arithmetic scheme (separated, of finite type).
- ▶ $\zeta_X(s) := \prod_{x \in X_0} \frac{1}{1 N(x)^{-s}}$. (Re $s > \dim X$). $X_0 := \text{closed points}; N(x) := \#\text{residue field at } x$.
- ▶ Note: $\zeta_{\text{Spec }\mathbb{Z}}(s) = \zeta(s)$ and $\zeta_{\text{Spec }\mathcal{O}_F}(s) = \zeta_F(s)$.
- ► Conjecture (!): meromorphic continuation and a functional equation $\zeta_X(s) \leftrightarrow \zeta_X(\dim X s)$.

- X → Spec Z arithmetic scheme (separated, of finite type).
- $\zeta_X(s) := \prod_{x \in X_0} \frac{1}{1 N(x)^{-s}}.$ (Re $s > \dim X$). $X_0 :=$ closed points; N(x) := # residue field at x.
- ▶ Note: $\zeta_{\text{Spec }\mathbb{Z}}(s) = \zeta(s)$ and $\zeta_{\text{Spec }\mathcal{O}_F}(s) = \zeta_F(s)$.
- ► Conjecture (!): meromorphic continuation and a functional equation $\zeta_X(s) \leftrightarrow \zeta_X(\dim X s)$.
- Special values may be studied via K-theory K_n(X) or motivic cohomology Hⁱ(X, Z(n)).

Input: an "exact category" C.
Examples: VB(X) and R-Proj_{fa} ≃ VB(Spec R).

- Input: an "exact category" C.
 Examples: VB(X) and R-Proj_{fq} ≃ VB(Spec R).
- ► **Grothendieck**, 1957 (work on [Grothendieck–Hirzebruch]–Riemann–Roch):

$$\mathsf{K}_0(\mathcal{C}) := \frac{\mathbb{Z} \left\langle \text{isomorphism classes of objects of } \mathcal{C} \right\rangle}{[B] = [A] + [C] \text{ for each s.e.s. } 0 \to A \to B \to C \to 0}.$$

- Input: an "exact category" C.
 Examples: VB(X) and R-Proj_{fq} ≃ VB(Spec R).
- ► **Grothendieck**, 1957 (work on [Grothendieck–Hirzebruch]–Riemann–Roch):

$$\textit{K}_0(\mathcal{C}) := \frac{\mathbb{Z} \left\langle \text{isomorphism classes of objects of } \mathcal{C} \right\rangle}{[B] = [A] + [C] \text{ for each s.e.s. } 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0}.$$

► Quillen, 1973:

$$K_0(\mathcal{C}) \cong \pi_1(BQ\mathcal{C}, 0),$$

 $K_n(\mathcal{C}) := \pi_{n+1}(BQ\mathcal{C}, 0);$

Q — Quillen's "Q-construction",

B — geometric realization of the nerve.

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

© Sidney Harris

► Quillen, 1972:

$$egin{aligned} K_0(\mathbb{F}_q)&\cong\mathbb{Z},\ K_{2n}(\mathbb{F}_q)&=0,\ K_{2n-1}(\mathbb{F}_q)&\cong\mathbb{Z}/(q^n-1)\mathbb{Z}. \end{aligned}$$

▶ Quillen, 1972:

$$egin{aligned} \mathcal{K}_0(\mathbb{F}_q)&\cong\mathbb{Z},\ \mathcal{K}_{2n}(\mathbb{F}_q)&=0,\ \mathcal{K}_{2n-1}(\mathbb{F}_q)&\cong\mathbb{Z}/(q^n-1)\mathbb{Z}. \end{aligned}$$

► Note: $\#K_{2n-1}(\mathbb{F}_q) = -\zeta_{\mathbb{F}_q}(-n)^{-1}$.

Quillen, 1972:

$$egin{aligned} K_0(\mathbb{F}_q)&\cong\mathbb{Z},\ K_{2n}(\mathbb{F}_q)&=0,\ K_{2n-1}(\mathbb{F}_q)&\cong\mathbb{Z}/(q^n-1)\mathbb{Z}. \end{aligned}$$

- ► Note: $\#K_{2n-1}(\mathbb{F}_q) = -\zeta_{\mathbb{F}_q}(-n)^{-1}$.
- ▶ **Quillen**, 1973: $K_n(\mathcal{O}_F)$ are finitely generated.

Quillen, 1972:

$$egin{aligned} K_0(\mathbb{F}_q)&\cong\mathbb{Z},\ K_{2n}(\mathbb{F}_q)&=0,\ K_{2n-1}(\mathbb{F}_q)&\cong\mathbb{Z}/(q^n-1)\mathbb{Z}. \end{aligned}$$

- ▶ Note: $\#K_{2n-1}(\mathbb{F}_q) = -\zeta_{\mathbb{F}_q}(-n)^{-1}$.
- ▶ **Quillen**, 1973: $K_n(\mathcal{O}_F)$ are finitely generated.
- ► Armand Borel, 1974:

$$\operatorname{rk} K_n(\mathcal{O}_F) = \begin{cases} 0, & n = 2k, \\ r_1 + r_2, & n = 4k + 1, \\ r_2, & n = 4k - 1. \end{cases} (k > 0)$$

Quillen, 1972:

$$egin{aligned} K_0(\mathbb{F}_q)&\cong\mathbb{Z},\ K_{2n}(\mathbb{F}_q)&=0,\ K_{2n-1}(\mathbb{F}_q)&\cong\mathbb{Z}/(q^n-1)\mathbb{Z}. \end{aligned}$$

- ► Note: $\#K_{2n-1}(\mathbb{F}_q) = -\zeta_{\mathbb{F}_q}(-n)^{-1}$.
- ▶ **Quillen**, 1973: $K_n(\mathcal{O}_F)$ are finitely generated.
- ► Armand Borel, 1974:

$$\operatorname{rk} K_n(\mathcal{O}_F) = \begin{cases} 0, & n = 2k, \\ r_1 + r_2, & n = 4k + 1, \\ r_2, & n = 4k - 1. \end{cases} (k > 0)$$

▶ Note: $\operatorname{rk} K_{2n+1}(\mathcal{O}_F) = \operatorname{order} \operatorname{of} \operatorname{zero} \operatorname{of} \zeta_F(s)$ at s = -n.

Torsion in the K-theory of $\ensuremath{\mathbb{Z}}$

▶ Milnor, 1971: $K_2(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.

- ▶ Milnor, 1971: $K_2(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.
- ▶ Lee, Szczarba, 1976: $K_3(\mathbb{Z}) \cong \mathbb{Z}/48\mathbb{Z}$.

- ▶ Milnor, 1971: $K_2(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.
- ▶ Lee, Szczarba, 1976: $K_3(\mathbb{Z}) \cong \mathbb{Z}/48\mathbb{Z}$.
- ▶ Rognes, 2000: $K_4(\mathbb{Z}) = 0$.

- ▶ Milnor, 1971: $K_2(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.
- ▶ Lee, Szczarba, 1976: $K_3(\mathbb{Z}) \cong \mathbb{Z}/48\mathbb{Z}$.
- ▶ Rognes, 2000: $K_4(\mathbb{Z}) = 0$.
- ▶ Elbaz-Vincent, Gangl, Soulé, 2002: $K_5(\mathbb{Z}) \cong \mathbb{Z}$.

- ▶ Milnor, 1971: $K_2(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.
- ▶ Lee, Szczarba, 1976: $K_3(\mathbb{Z}) \cong \mathbb{Z}/48\mathbb{Z}$.
- ▶ Rognes, 2000: $K_4(\mathbb{Z}) = 0$.
- ▶ Elbaz-Vincent, Gangl, Soulé, 2002: $K_5(\mathbb{Z}) \cong \mathbb{Z}$.
- ► Using the Bloch-Kato conjecture (Voevodsky, Rost, ...):

n :	2	3	4	5
$K_n(\mathbb{Z})$:	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/48\mathbb{Z}$	0	$\mathbb Z$
n:	6	7	8	9
$K_n(\mathbb{Z})$:	0	$\mathbb{Z}/240\mathbb{Z}$	(0?)	$\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$
n:	10	11	12	13
$K_n(\mathbb{Z})$:	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/1008\mathbb{Z}$	(0?)	$\mathbb Z$
n:	14	15	16	17
$K_n(\mathbb{Z})$:	0	$\mathbb{Z}/480\mathbb{Z}$	(0?)	$\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$
n:	18	19	20	21
$K_n(\mathbb{Z})$:	$\mathbb{Z}/2\mathbb{Z}$	$\mathbb{Z}/528\mathbb{Z}$	(0?)	$\mathbb Z$
n:	22	23	24	25
$K_n(\mathbb{Z})$:	$\mathbb{Z}/691\mathbb{Z}$	$\mathbb{Z}/65520\mathbb{Z}$	(0?)	$\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$

▶ Easy: $K_0(\mathcal{O}_F) \cong Cl(F) \oplus \mathbb{Z}$.

- ▶ Easy: $K_0(\mathcal{O}_F) \cong Cl(F) \oplus \mathbb{Z}$.
- ▶ Not-so-easy (Bass, Milnor, Serre, 1967): $K_1(\mathcal{O}_F) \cong \mathcal{O}_F^{\times}$.

- ▶ Easy: $K_0(\mathcal{O}_F) \cong Cl(F) \oplus \mathbb{Z}$.
- ▶ Not-so-easy (**Bass**, **Milnor**, **Serre**, 1967): $K_1(\mathcal{O}_F) \cong \mathcal{O}_F^{\times}$.
- ▶ Dirichlet's unit theorem: $\mathcal{O}_F^{\times} \cong \mathbb{Z}^{r_1+r_2-1} \oplus \mu_F$.

- ▶ Easy: $K_0(\mathcal{O}_F) \cong Cl(F) \oplus \mathbb{Z}$.
- ▶ Not-so-easy (**Bass**, **Milnor**, **Serre**, 1967): $K_1(\mathcal{O}_F) \cong \mathcal{O}_F^{\times}$.
- ▶ Dirichlet's unit theorem: $\mathcal{O}_F^{\times} \cong \mathbb{Z}^{r_1+r_2-1} \oplus \mu_F$.
- ► Class number formula:

$$\lim_{s\to 0} s^{-(r_1+r_2-1)} \zeta_F(s) = -\frac{\#K_0(\mathcal{O}_F)_{tors}}{\#K_1(\mathcal{O}_F)_{tors}} R_F.$$

Lichtenbaum's conjecture

- ▶ Easy: $K_0(\mathcal{O}_F) \cong Cl(F) \oplus \mathbb{Z}$.
- ▶ Not-so-easy (**Bass**, **Milnor**, **Serre**, 1967): $K_1(\mathcal{O}_F) \cong \mathcal{O}_F^{\times}$.
- ▶ Dirichlet's unit theorem: $\mathcal{O}_F^{\times} \cong \mathbb{Z}^{r_1+r_2-1} \oplus \mu_F$.
- ▶ Class number formula:

$$\lim_{s\to 0} s^{-(r_1+r_2-1)} \zeta_F(s) = -\frac{\#K_0(\mathcal{O}_F)_{tors}}{\#K_1(\mathcal{O}_F)_{tors}} R_F.$$

► Lichtenbaum, 1973:

$$\lim_{s \to n} (n-s)^{-\mu_n} \zeta_F(-s) = \pm 2^{?} \frac{\# K_{2n}(\mathcal{O}_F)}{\# K_{2n+1}(\mathcal{O}_F)_{tors}} R_{F,n}.$$

 $R_{F,n}$ — "higher regulators" (Borel, Beĭlinson).

Lichtenbaum's conjecture

- ▶ Easy: $K_0(\mathcal{O}_F) \cong Cl(F) \oplus \mathbb{Z}$.
- ▶ Not-so-easy (**Bass**, **Milnor**, **Serre**, 1967): $K_1(\mathcal{O}_F) \cong \mathcal{O}_F^{\times}$.
- ▶ Dirichlet's unit theorem: $\mathcal{O}_F^{\times} \cong \mathbb{Z}^{r_1+r_2-1} \oplus \mu_F$.
- ► Class number formula:

$$\lim_{s\to 0} s^{-(r_1+r_2-1)} \zeta_F(s) = -\frac{\#K_0(\mathcal{O}_F)_{tors}}{\#K_1(\mathcal{O}_F)_{tors}} R_F.$$

► Lichtenbaum, 1973:

$$\lim_{s \to n} (n-s)^{-\mu_n} \zeta_F(-s) = \pm 2^{?} \frac{\# K_{2n}(\mathcal{O}_F)}{\# K_{2n+1}(\mathcal{O}_F)_{tors}} R_{F,n}.$$

 $R_{F,n}$ — "higher regulators" (Borel, Beĭlinson).

► Example:
$$\zeta(-1) = -\frac{B_2}{2} = -\frac{1}{12}, \frac{\#K_2(\mathbb{Z})}{\#K_3(\mathbb{Z})} = \frac{\#\mathbb{Z}/2}{\#\mathbb{Z}/48} = \frac{1}{24}.$$

Lichtenbaum's conjecture

- ▶ Easy: $K_0(\mathcal{O}_F) \cong Cl(F) \oplus \mathbb{Z}$.
- ▶ Not-so-easy (Bass, Milnor, Serre, 1967): $K_1(\mathcal{O}_F) \cong \mathcal{O}_F^{\times}$.
- ▶ Dirichlet's unit theorem: $\mathcal{O}_F^{\times} \cong \mathbb{Z}^{r_1+r_2-1} \oplus \mu_F$.
- ► Class number formula:

$$\lim_{s\to 0} s^{-(r_1+r_2-1)} \zeta_F(s) = -\frac{\#K_0(\mathcal{O}_F)_{tors}}{\#K_1(\mathcal{O}_F)_{tors}} R_F.$$

► Lichtenbaum, 1973:

$$\lim_{s \to n} (n-s)^{-\mu_n} \zeta_F(-s) = \pm 2^{?} \frac{\# K_{2n}(\mathcal{O}_F)}{\# K_{2n+1}(\mathcal{O}_F)_{tors}} R_{F,n}.$$

 $R_{F,n}$ — "higher regulators" (Borel, Beĭlinson).

► Example:
$$\zeta(-1) = -\frac{B_2}{2} = -\frac{1}{12}, \frac{\#K_2(\mathbb{Z})}{\#K_3(\mathbb{Z})} = \frac{\#\mathbb{Z}/2}{\#\mathbb{Z}/48} = \frac{1}{24}.$$

► Example:
$$\zeta(-11) = -\frac{B_{12}}{12} = \frac{691}{12 \cdot 2730} = \frac{691}{2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13},$$

 $\frac{\#K_{22}(\mathbb{Z})}{\#K_{23}(\mathbb{Z})} = \frac{691}{65520} = \frac{691}{2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13}.$

▶ **Bloch**, 1986: complexes of Zariski / étale sheaves $\mathbb{Z}(n)$.

- ▶ **Bloch**, 1986: complexes of Zariski / étale sheaves $\mathbb{Z}(n)$.
- ▶ $H^i(X_{Zar}, \mathbb{Z}(n)), H^i(X_{\text{\'et}}, \mathbb{Z}(n))$ (hyper)cohomology groups.

- ▶ **Bloch**, 1986: complexes of Zariski / étale sheaves $\mathbb{Z}(n)$.
- ► $H^i(X_{Zar}, \mathbb{Z}(n)), H^i(X_{\text{\'et}}, \mathbb{Z}(n))$ (hyper)cohomology groups.
- ► Finite generation, boundedness for arithmetic *X*: conjectures.

- ▶ **Bloch**, 1986: complexes of Zariski / étale sheaves $\mathbb{Z}(n)$.
- ► $H^i(X_{Zar}, \mathbb{Z}(n)), H^i(X_{\text{\'et}}, \mathbb{Z}(n))$ (hyper)cohomology groups.
- ► Finite generation, boundedness for arithmetic *X*: conjectures.
- Possible motivation (no pun intended):

$$E_2^{pq} = H^p(X, \mathbb{Z}(q)) \Longrightarrow K_{2q-p}(X),$$

similar to the Atiyah-Hirzebruch spectral sequence.

- ▶ **Bloch**, 1986: complexes of Zariski / étale sheaves $\mathbb{Z}(n)$.
- ► $H^i(X_{Zar}, \mathbb{Z}(n)), H^i(X_{\text{\'et}}, \mathbb{Z}(n))$ (hyper)cohomology groups.
- ► Finite generation, boundedness for arithmetic *X*: conjectures.
- Possible motivation (no pun intended):

$$E_2^{pq} = H^p(X, \mathbb{Z}(q)) \Longrightarrow K_{2q-p}(X),$$

similar to the Atiyah-Hirzebruch spectral sequence.

▶ $H^i(X_{\text{\'et}}, \mathbb{Z}(n))$ might be better for studying the zeta-values.

For an arithmetic scheme X there should (!) exist abelian groups $H^i_{W,c}(X,\mathbb{Z}(0))$ and real vector spaces $H^i_W(X,\widetilde{\mathbb{R}}(0))$, $H^i_{W,c}(X,\widetilde{\mathbb{R}}(0))$ such that

For an arithmetic scheme X there should (!) exist abelian groups $H^i_{W,c}(X,\mathbb{Z}(0))$ and real vector spaces $H^i_W(X,\widetilde{\mathbb{R}}(0))$, $H^i_{W,c}(X,\widetilde{\mathbb{R}}(0))$ such that

1. $H^{i}_{W,c}(X,\mathbb{Z}(0))$ are f.g., almost all zero.

For an arithmetic scheme X there should (!) exist abelian groups $H^i_{W,c}(X,\mathbb{Z}(0))$ and real vector spaces $H^i_W(X,\widetilde{\mathbb{R}}(0))$, $H^i_{W,c}(X,\widetilde{\mathbb{R}}(0))$ such that

- 1. $H^{i}_{W,c}(X,\mathbb{Z}(0))$ are f.g., almost all zero.
- 2. $H^{i}_{W,c}(X,\mathbb{Z}(0))\otimes \mathbb{R} \stackrel{\cong}{\to} H^{i}_{W,c}(X,\widetilde{\mathbb{R}}(0)).$

For an arithmetic scheme X there should (!) exist abelian groups $H^i_{W,c}(X,\mathbb{Z}(0))$ and real vector spaces $H^i_W(X,\widetilde{\mathbb{R}}(0))$, $H^i_{W,c}(X,\widetilde{\mathbb{R}}(0))$ such that

- 1. $H^{i}_{Wc}(X,\mathbb{Z}(0))$ are f.g., almost all zero.
- 2. $H^{i}_{W,c}(X,\mathbb{Z}(0))\otimes \mathbb{R} \xrightarrow{\cong} H^{i}_{W,c}(X,\widetilde{\mathbb{R}}(0)).$
- 3. For a canonical class $\theta \in H^1_W(X, \widetilde{\mathbb{R}}(0))$

$$\cdots \xrightarrow{\cup \theta} H^i_{W.c}(X,\widetilde{\mathbb{R}}(0)) \xrightarrow{\cup \theta} H^{i+1}_{W.c}(X,\widetilde{\mathbb{R}}(0)) \xrightarrow{\cup \theta} \cdots$$

a bounded acyclic complex of f.d. vector spaces.

For an arithmetic scheme X there should (!) exist abelian groups $H^i_{W,c}(X,\mathbb{Z}(0))$ and real vector spaces $H^i_W(X,\widetilde{\mathbb{R}}(0))$, $H^i_{W,c}(X,\widetilde{\mathbb{R}}(0))$ such that

- 1. $H^{i}_{Wc}(X,\mathbb{Z}(0))$ are f.g., almost all zero.
- 2. $H^{i}_{W,c}(X,\mathbb{Z}(0))\otimes \mathbb{R} \xrightarrow{\cong} H^{i}_{W,c}(X,\widetilde{\mathbb{R}}(0)).$
- 3. For a canonical class $\theta \in H^1_W(X, \widetilde{\mathbb{R}}(0))$

$$\cdots \xrightarrow{\cup \theta} H^i_{W,c}(X,\widetilde{\mathbb{R}}(0)) \xrightarrow{\cup \theta} H^{i+1}_{W,c}(X,\widetilde{\mathbb{R}}(0)) \xrightarrow{\cup \theta} \cdots$$

a bounded acyclic complex of f.d. vector spaces.

4.
$$\operatorname{ord}_{s=0} \zeta(X,s) = \sum_{i\geq 0} (-1)^i \cdot i \cdot \operatorname{rk}_{\mathbb{Z}} H^i_{W,c}(X,\mathbb{Z}(0)).$$

For an arithmetic scheme X there should (!) exist abelian groups $H^i_{W,c}(X,\mathbb{Z}(0))$ and real vector spaces $H^i_W(X,\widetilde{\mathbb{R}}(0))$, $H^i_{W,c}(X,\widetilde{\mathbb{R}}(0))$ such that

- 1. $H^{i}_{Wc}(X,\mathbb{Z}(0))$ are f.g., almost all zero.
- 2. $H^{i}_{W,c}(X,\mathbb{Z}(0))\otimes \mathbb{R} \xrightarrow{\cong} H^{i}_{W,c}(X,\widetilde{\mathbb{R}}(0)).$
- 3. For a canonical class $\theta \in H^1_W(X,\widetilde{\mathbb{R}}(0))$

$$\cdots \xrightarrow{\cup \theta} H^i_{W.c}(X,\widetilde{\mathbb{R}}(0)) \xrightarrow{\cup \theta} H^{i+1}_{W.c}(X,\widetilde{\mathbb{R}}(0)) \xrightarrow{\cup \theta} \cdots$$

a bounded acyclic complex of f.d. vector spaces.

- 4. $\operatorname{ord}_{s=0} \zeta(X,s) = \sum_{i>0} (-1)^i \cdot i \cdot \operatorname{rk}_{\mathbb{Z}} H^i_{W,c}(X,\mathbb{Z}(0)).$
- $$\begin{split} 5. \ \ \mathbb{Z} \cdot \lambda(\zeta^*(X,0)^{-1}) &= \bigotimes_{i \in \mathbb{Z}} \det_{\mathbb{Z}} H^i_{W,c}(X,\mathbb{Z}(0))^{(-1)^i}, \\ \text{where } \lambda \colon \mathbb{R} \xrightarrow{\cong} \left(\bigotimes_{i \in \mathbb{Z}} \det_{\mathbb{Z}} H^i_{W,c}(X,\mathbb{Z}(0))^{(-1)^i} \right) \otimes \mathbb{R}. \end{split}$$

▶ **Geisser**, 2004; **Lichtenbaum**, 2005: construction of $H^{i}_{W.c}(X, \mathbb{Z}(n))$ for smooth varieties over finite fields.

- ▶ **Geisser**, 2004; **Lichtenbaum**, 2005: construction of $H^{i}_{W.c}(X, \mathbb{Z}(n))$ for smooth varieties over finite fields.
- ▶ **Lichtenbaum**, 2009: $H^{i}_{W,c}(X,\mathbb{Z}(0))$ for $X = \operatorname{Spec} \mathcal{O}_{F}$.

- ▶ **Geisser**, 2004; **Lichtenbaum**, 2005: construction of $H^{i}_{W.c}(X, \mathbb{Z}(n))$ for smooth varieties over finite fields.
- ▶ Lichtenbaum, 2009: $H^{i}_{W,c}(X,\mathbb{Z}(0))$ for $X = \operatorname{Spec} \mathcal{O}_{F}$.
- ▶ **Morin**, 2012: $H^{i}_{W,c}(X,\mathbb{Z}(0))$ for proper regular arithmetic schemes.

- ▶ **Geisser**, 2004; **Lichtenbaum**, 2005: construction of $H^{i}_{W,c}(X,\mathbb{Z}(n))$ for smooth varieties over finite fields.
- ▶ Lichtenbaum, 2009: $H^{i}_{W,c}(X,\mathbb{Z}(0))$ for $X = \operatorname{Spec} \mathcal{O}_{F}$.
- ► **Morin**, 2012: $H^{i}_{W,c}(X,\mathbb{Z}(0))$ for proper regular arithmetic schemes.
- ► Flach, Morin, 2016: $H^{i}_{W,c}(X,\mathbb{Z}(n))$ for $n \in \mathbb{Z}$ for proper regular arithmetic schemes.

- ▶ **Geisser**, 2004; **Lichtenbaum**, 2005: construction of $H^i_{W,c}(X,\mathbb{Z}(n))$ for smooth varieties over finite fields.
- ▶ Lichtenbaum, 2009: $H^{i}_{W,c}(X,\mathbb{Z}(0))$ for $X = \operatorname{Spec} \mathcal{O}_{F}$.
- ► Morin, 2012: $H^{i}_{W,c}(X,\mathbb{Z}(0))$ for proper regular arithmetic schemes.
- ▶ Flach, Morin, 2016: $H^{i}_{W,c}(X,\mathbb{Z}(n))$ for $n \in \mathbb{Z}$ for proper regular arithmetic schemes.
- ► My thesis, work in progress: $H^{i}_{W,c}(X,\mathbb{Z}(n))$
 - for any arithmetic scheme (makes things harder)
 - ▶ and $n = -1, -2, -3, -4, \dots$ (makes things easier)

- ▶ **Geisser**, 2004; **Lichtenbaum**, 2005: construction of $H^{i}_{W.c}(X, \mathbb{Z}(n))$ for smooth varieties over finite fields.
- ▶ Lichtenbaum, 2009: $H^{i}_{W.c}(X,\mathbb{Z}(0))$ for $X = \operatorname{Spec} \mathcal{O}_{F}$.
- ► Morin, 2012: $H^{i}_{W,c}(X,\mathbb{Z}(0))$ for proper regular arithmetic schemes.
- ▶ Flach, Morin, 2016: $H^{i}_{W,c}(X,\mathbb{Z}(n))$ for $n \in \mathbb{Z}$ for proper regular arithmetic schemes.
- ► My thesis, work in progress: $H^{i}_{W,c}(X,\mathbb{Z}(n))$
 - ▶ for any arithmetic scheme (makes things harder)
 - ▶ and $n = -1, -2, -3, -4, \dots$ (makes things easier)
- ► Construction via the cycle complexes $\mathbb{Z}(n)$, following Flach and Morin (input: conjectures on finite generation and boundedness).

Thank you!