Chapitre

Intégrales

4. Primitives

4.1. Définition

Soit $f:[a,b]\to\mathbb{R}$ une fontion définie sur [a,b] et soit $F:[a,b]\to\mathbb{R}$ une fonction. F est une primitive de f si F est dérivable sur [a,b] et F'=f, i.e $\forall x\in[a,b], F'(x)=f(x)$.

4.1. Propriétés

Existence des primitives

Il n'existe pas forcément une primitive aux fonctions.

Si F et G sont 2 primitives de f sur [a,b], alors $\exists k \in \mathbb{R}, \forall x \in [a,b], F(x) = G(x) + k$, i.e f et g diffèrent d'une constante

Preuve 1.1

Soit F, G deux primitives de f de $[a,b] \to \mathbb{R}$. Donc F, G sont continues et dérivables sur [a,b] et $\forall x \in [a,b], F'(x) = f(x) = G'(x)$.

Donc
$$(F'-G')(x)=0 \forall x \in [a,b].$$

Montrons que (F - G)(x) = (F - G)'(a)

Considérons $F - G : [a, b] \to \mathbb{R}$ et soit $x \in]a, b]$

• F - G est continue sur [a, x]

• F-G est dérivable sur]a,x[

Donc d'après le TAF, $\exists c \in]a,b[\text{, tel que }(F-G)'(c) = \frac{(F-G)(x)-(F-G)(a)}{x-a}$

Donc, $F-G)(x)=(F-G)(a)=K, \forall x\in [a,b] \ \text{et} \ \forall x\in [a,b], F(x)=G(x)+k.$

4.2 echniques

On note $\int f$ une primitive de f.

4.2. Intégration par parties

Soient u,v 2 fonctions C^1 (continues de dérivée continues) sur [a,b]. Alors

Théorème 2.1 : Formule

$$\int_a^b u(x)v'(x) dx = \left[u(x)v(x)\right]_a^b - \int_a^b u'(x)v(x) dx$$

Classe \mathbb{C}^n

 $\begin{array}{l} f \text{ est } C^n \text{ sur } [a,b] \text{ si } f \text{ est } n \text{ fois dérivables sur } [a,b] \text{ et } f^n \text{ est continue sur } [a,b]. \ C^\infty \text{ si } \forall n \in \mathbb{N}, f^n \text{ existe.} \end{array}$

4.2. Formulaire

e de	5: 10:
Fonction	Primitive
Primitive de x^n	$\frac{1}{n+1}x^{n+1} + k \text{ si } n \neq -1$
Primitive de $\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}} + k$
Primitive de $\frac{a}{x}$	$a \ln x + k$
Primitive de $\frac{1}{\sqrt{x}}$	$2\sqrt{x} + k$
Primitive de $\cos x$	$\sin x + k$
Primitive de $\sin x$	$-\cos x + k$
Primitive de e^x	$e^x + k$
Primitive de $u^\prime u^n$	$\frac{1}{n+1}u^{n+1} + k$
Primitive de $\frac{u'}{u^n}$	$-\frac{1}{n-1} \times \frac{1}{u^{n-1}} + k$
Primitive de $\frac{u'}{\sqrt{u}}$	$2\sqrt{u} + k$
Primitive de $u'\cos u$	$\sin u + k$
Primitive de $u'\sin u$	$-\cos u + k$
Primitive de $\frac{u'}{u}$	$\ln u + k$
Primitive de $u'\sqrt{u}$	$\frac{2}{3}(u)^{3/2} + k$
Primitive de $u^\prime e^u$	e^u
Primitive de $u' \cosh u$	$\sinh u$
Primitive de $u' \sinh u$	$\cosh u$
Primitive de $\frac{1}{1+x^2}$	$\tan^{-1}(x)$
Primitive de $\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}(x)$

4.3

Les fonction f désignent une fonction définie et bornée sur [a,b]. C'est à dire les fonctions continues ou monotones.

4.3. Întégrale de Riemann

Idée: On sait calculer l'aire d'un rectangle, donc de plusieurs rectangles

Si c'est intégrable, la plus petite aire des fonctions escalier vaut la plus grande.

4.3. Intégrales des fontions en escalier subidvision d'un intervalle

π Théor

Théorème 3.1 : Définition

Une subdivision de l'intervalle [a,b] est une suite finie de réels strictement croissant, $\sigma=(x_k)$ et $x_0=a< x_1< x_2< \cdots < x_{n-1}< x_n=b$

Le pas de la subdivision δ est le nombre $\max_{i=0...,n-1}(x_{i+1}-x_i)$

Exemple : Subidivision régulière : $\delta = \frac{b-a}{n}$. Alors $x_0 = a, x_1 = a + \frac{b-a}{n}, x_2 = a + 2\frac{b-a}{n}, x_k = a + k\frac{b-a}{n}$.

Théorème 3.2 : Définition d'une fonction en escalier

Une fonction φ est dite enescalier s'il existe sur [a,b] une subdivision $\sigma=(x_k)$ de [a,b] telle que φ est constante sur $]x_i,x_{i-1}[,\forall i\in 0,\ldots,-n-1,$ i.e. $\forall i\in 0,\ldots,-n-1,\exists \varphi_i\in \mathbb{R}$ telle que $\varphi(t)=\varphi_i\forall t\in]x_i,x_{i+1}[$.

On défini alors pour une telle fonction φ le nombre $S(\varphi,\sigma)=\sum_{k=0}^{n-1}\varphi_k(x_{kh}-x_k)$ = aire sous la courbe en escalier

Schéma 2

Ce qui nous interrese est la valeur sur les intervalles et non aux bornes de ces intervalles.

Théorème 3.3: Proposition

 $S(\varphi,\sigma)$ ne dépend pas de σ . On note alors $S(\varphi,\sigma)=S(\varphi)$ qui est l'aire sous la courbe de $y=\varphi(t)$

On note alors $\int_a^b \varphi(t) dt = S(\varphi)$

4.3. Propriétés de l'intégrale

Soient φ, ψ 2 fonction en escalier

- · \int est linéaire : $\int_{b}^{a} \varphi + \lambda \psi(t) dt = \int_{b}^{a} dt + \lambda \int_{b}^{a} \psi(t) dt$
- $m{\cdot} \in ^a_b$ est croissante sur les fonctions. Donc si $arphi \geq 0$, alors $\int_a^b arphi(t) \mathrm{d}t \geq 0$ et si $arphi \leq \psi, \int arphi \leq \int \psi$
- Inégalité triangulaire : $|\int_{b}^{a} \varphi(t)| \leq \int_{b}^{a} |\varphi(t)|$
- Relation de Chasle : $\int_x^y \varphi + \int_y^z = \int_x^z \varphi$: $\int_x^x \varphi = 0$ et $\int_y^x \varphi = -\int_x^y \varphi$.

π Preuve 3.1

Soit φ est escalier sur $\sigma = (x_k)$. On a : $\varphi(t) = \varphi_k$.

$$\varphi \geq 0 \iff \forall k \in [c,n-1], \varphi_k \geq 0$$
, donc $\int_a^b \varphi = \sum_{k=0}^{n-1} \varphi_k(x_{k+1} - x_k) \geq 0$.

Si φ est en escalier sur σ , alors $|\varphi|$ est aussi en escalier.

$$|\int_a^b \varphi| = |\sum_{k=0}^{n-1} \varphi_k(x_{k+1} - x_k)| \le \sum_{k=0}^{n-1} |\varphi_k|(x_{k+1} - x_k) = \int_a^b \varphi.$$

Linéarité φ, ψ 2 fonctions en escalier, avec $\sigma=(x_k)$ subdivision associée à φ et $\tau=(y_k)$ celle associée à ψ . On se demande s'il existe une subdivision θ telle que $\varphi+\lambda\psi$ soit constante.

Il existe donc une subdivision plus fine de σ, τ qui soitn adaptée à φ et ψ pour laquelle ψ et φ sont en escalier. $\sigma=(z_k)$, alors $\forall t \in]z_k, z_{k+1}[$ et $\varphi+\lambda\psi=\varphi_k+\lambda\psi.$ Donc $\sum (\varphi_k+\lambda\psi_k)(z_{k+1}-z_k)=\int_a^b \varphi+\lambda \int_a^b \psi.$

Relation de Chasle

4.3.4ntégrale d'une fonction définie sur [a,b] et bornée sur [a,b]

Théorème 3.4 : Définitoon

Une fonction f est intégrable sur [a,b] s'il existe $\forall \varepsilon > 0$ 2 fonctions en escalier φ, ψ , telles que $\varphi \leq f \leq \psi$ et $\int_a^b (\psi(t) - \varphi(t) \mathrm{d}t < \varepsilon$

Dans ce cas, on peut définir le plus grand des minorants et le plus petit des majorants, qui sont égaux : $\int_a^b \varphi = \int_a^b \psi$.

4.3. Autres

• Les fonctions monotones ou contnues sont intégrables sur [a,b].

Preuve 3.2

Supposons f croissante. On choisit φ, ψ définies sur (x_k) par $\varphi(t) = f(x_k) \forall t \in [xk, x_{k+1}]$ et $\varphi(t) = f(x_{k+1}) \forall t \in [x, x_{k+1}]$.

Comme f est croissante, $\varphi \leq f \leq \psi$ et $\int_a^b (\psi(t) - \varphi(t) \mathrm{d}t = \sum_{k=0}^{n-1} (f(x_{k+1}) - f(x_k))(\frac{b-a}{n}) = (\frac{b-a}{n}) \sum_{k=0}^n f(x_{k+1}) - f(x_k) = \frac{b-a}{n} (f(b) - f(a)).$

Donc $\forall \varepsilon$, on choisit $n \in \mathbb{N}$ assez grand pour que $\frac{b-a}{n}(f(b)-f(a)) < \varepsilon$. Donc $\forall \varepsilon > 0, \exists \psi, \varphi$ en escalier sur [a,b] telle que $\int_a^b \psi - \varphi < \varepsilon$.

A savoir refaire

L'intégrale des fonctions intégrables sur [a,b] présente les mêmes prorpéiéts que l'intégrale des fonctions en escalier, c'est à dire linéarité, croissance, inégalité triangulaire, relation de Chasle.

4.3. Théorème fondamental de l'analyse

Théorème 3.6 : Théorème

Soit f une fonction de $[a;b] \to \mathbb{R}$ continue sur [a,b]. Alors, la fonction $F:[a,b] \to \mathbb{R}, x \to \int_a^x f(t_{\mathrm{d}}t)$ est une primitive de f. Donc F est dérivable sur [a,b] et F'=f. De plus, si G est une primitive de f alors $\int_a^b f(t) \mathrm{d}t = G(b) - G(a)$.

π Preuve 3.3

On suppose f une fonction C^1 , donc intégrable sur [a,b]. On considère $F:[a,b]\to\mathbb{R}, x\to\int_a^x f(t)\mathrm{d}t$.

Soit $x_0\in]a,b[$. On doit démontrer que F est dérivable en x_0 et $F'(x_0)=f(x_0).$ On étudie si $\lim_{h\to 0} \frac{F(x_0+h)-F(x_0)}{h}-f(x_0)=0.$

Calculons d'abord la différence $F(x_0 + h - F(x_0))$:

$$\begin{split} F(x_0+h) - F(x_0) &= \int_a^{x+h} f(t) \mathrm{d}t - \int_a^x f(t) \mathrm{d}t \\ &= (\int_a^x f(t) \mathrm{d}t + \int_x^{x+h} f(t) \mathrm{d}t) - \int_a^x f(t) \mathrm{d}t \text{ Relation de Chasles} \\ &= \int_x^{x+h} f(t) \mathrm{d}t \end{split}$$

f est continue, d'après le théorème de la moyenne, conséquence du TAF, $\exists c \in [x;x+h]$ pour lequel

$$\frac{1}{(x+h)-x} \int_{x}^{x+h} f(t) dt = f(c) \iff \int_{x}^{x+h} f(t) dt = f(c)((x+h)-x) = f(c) \times h$$

Revenons à la limite :

$$\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) = \lim_{h \to 0} \frac{f(c) \times h}{h} - f(x_0) = \lim_{h \to 0} f(c) - f(x_0)$$

Quand $h \to 0$, l'intervalle $[x_0, x_0 + h]$ contenant c tend vers x. Donc la limite est nulle, le résultat est démontré.