Assignment Project Exam Help Hypothesis Testing: Power

https://powcoder.com

The University of Manchester

Add WeChat powcoder

Assignment her rejecte by the pribitely of one or more random variables.

- The classical theory of hypothesis testing provides a fartern Sor deep with partial properties is correct.
- Within this framework, there are only two possible decisions: the hypothesis of tracor injury. Adecision procedure for such a problem is called a test.

Basic framework

Assume: our hypothesis involves θ , the parameter vector indexing distribution of V, and Θ denote the parameter space with $\Theta \subset \mathbb{R}^p$. Soligenment all two parameters are the parameter space with $\Theta \subset \mathbb{R}^p$.

 $\Theta_0 = \{\theta : \text{ such that the hypothesis is true}\},$ https://powthete-byte-sis-color-

Using this partition, we can state the object as being to test the null hypothesis,

Add WeChatopowcoder

against the alternative hypothesis,

 $H_1: \theta \in \Theta_1.$

Basic framework

Assignment Project Exam Help

Base inference on some test statistic; denoted by S_T .

Assignment Project Exam Help

 $\begin{array}{c} \textbf{1} & \textbf{1} & \textbf{2} & \textbf{3} \\ \textbf{1} & \textbf{1} & \textbf{2} & \textbf{3} \\ \textbf{2} & \textbf{3} & \textbf{3} & \textbf{4} \\ \textbf{3} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{4} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{5} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{5} & \textbf{4} & \textbf{4} & \textbf{4} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{6} & \textbf{6} \\ \textbf{6} & \textbf{6} & \textbf{$

In the companion products discussed how R_0 and R_1 are chosen to control the probability of Type R_1 are chosen to

Now consider the properties of the test under H_1 .

Power of a test

Let $P_{\theta}(\cdot)$ denote the probability of the event in parentheses if the parameter vector takes the value θ .

A sefing (1) probability of a type II error for values of θ that satisfy H_1 .

The power function of the test is: $\frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the test is:}{power function of the test is:} \\ \frac{1}{n} \frac{power function of the$

$\underset{\rightarrow}{Add}\underset{\text{for }\theta_{*}\in\Theta_{1},\ \pi(\theta_{*})\text{ is:}}{\text{MeChat powcoder}}$

- the probability of correctly rejecting H_0 when $\theta = \theta_*$.
- the power of the test against the alternative $\theta = \theta_*$.

Example 2.8 in Lecture Notes

Suppose that:

Assignment Project Exam Help

- wish to test $H_0: \theta = 0$ versus $H_1: \theta \neq 0$.

 https://powcoder.com
 Decision rule: reject $H_0: \theta = 0$ in favour of $H_1: \theta \neq 0$ at the
 - Decision rule: reject H_0 : $\theta = 0$ in favour of H_1 : $\theta \neq 0$ at the 5% significance level if $|\tau_T| > 1.96$.

so powed the text section that powcoder

$$\pi(\theta) = P(|\tau_T| > 1.96 | \theta, \theta \in \Theta_1).$$

Example 2.8 in Lecture Notes

To evaluate $\pi(\theta)$ we need the distribution of τ_T if $\theta \neq 0$.

Assignment Project Exam Help $\tau_T = \frac{\bar{v}_T}{\sqrt{\sigma^2/T}} = \frac{\bar{v}_T - \theta}{\sqrt{\sigma^2/T}} + \frac{\theta}{\sqrt{\sigma^2/T}} \sim N(\mu, 1),$ https://powcoder.com where $\mu = \theta/(\sqrt{\sigma^2/T})$.

Add We Chat powcoder

Next slide shows power for $\theta = \sigma/\sqrt{T}$, i.e. $\mu = 1$.

Example 2.8 in Lecture Notes: power of test when $\theta = \sigma/\sqrt{T}$

Assignment Project Exam Help From plot of power function for this two-sided test we see that:

- · https://powcoder.com
- $P_{\theta}(R_1) > \alpha$ for all $\theta \in \Theta_1 \to \mathsf{test}$ is said to be unbiased.

Add WeChat powcoder

Assignment Project Exam Help

Further discussion of the topics in this podcast can be found in Section 1:105th / pro were oder.com

Add WeChat powcoder