



### Vision Transformer Adapters for Generalizable Multitask Learning

Deblina Bhattacharjee, Sabine Süsstrunk, and Mathieu Salzmann

IVRL and CVLab, EPFL, Switzerland





Depth



#### Task Representation Optimization Algorithm (TROA)

Motivation: Finds gradient-based task affinities



#### Feature-wise Linear Modulation



#### Task-Adapted Attention (TAA)

Motivation: Combines task affinities with image attention



#### Task-Adapted Attention (TAA)



#### Vision Transformer Adapters

Motivation: Learns to perform multitasking in a parameterefficient way; learns transferrable task affinities

To match the scales of different tasks

Normalizes across all features, more stable



#### Task-Scaled Norm

Motivation: TSN balances the different scales of the tasks. Balancing the task scales is necessary to avoid learning interference in MTL.

$$TSN_{t} = \frac{1}{\sigma} (a_{t} - \mu) \hat{\gamma}_{t} (\widetilde{\omega}_{t}) + \beta_{t} (\widetilde{\omega}_{t})$$

$$\hat{\gamma}_t (\widetilde{\omega}_t) = \gamma' \gamma_t (\widetilde{\omega}_t) + \beta'$$

Swin's layer norm weights (for initialization)

Swin's Layer Norm: Fixed

Ours: Trained, based on the equation above



# Zero-shot Task Transfer



#### Unsupervised Domain Adaptation Method



## Domain Adaptation Unsupervised



#### **TEAM**











FONDS NATIONAL SUISSE
SCHWEIZERISCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO
SWISS NATIONAL SCIENCE FOUNDATION

Thank you!



This work was supported by the Swiss National Science Foundation via the Sinergia grant CRSII5-180359.