DM-IMECC-UNICAMP, MA502/Análise I, PROF. Marcelo M. Santos

1a. prova, 04/04/2012

Aluno: ______ RA: _____

Assinatura, como no RG: ______
Observações: Tempo de prova: 100min; Justifique sucintamente todas as suas afirmações.

- 1. Seja X o conjunto dos números naturais n tais que existe uma bijeção de um subconjunto próprio de I_n e I_n . $(I_n = \{1, 2, \dots, n\}.)$ Sabemos que X é um conjunto vazio (Teorema), mas sem admitir este fato,
 - a) (0,5 pontos) mostre que $1 \in X$;
- b) (1,5) mostre que se n é um elemento de X então n-1 também é um elemento de X;
 - c) (0,5) conclua que X é vazio.
- **2.** a) (1,0) Seja K um corpo ordenado. Mostre que todo subconjunto de K limitado superiormente tem um supremo (uma menor cota superior) se, e somente se, todo subconjunto de K limitado inferiormente tem um ínfimo (uma maior cota inferior).
- b) (1,0) Seja $X \subset \mathbb{R}$ um conjunto limitado inferiormente. Mostre que $-X := \{-x \; ; \; x \in X\}$ é limitado superiormente e inf $X = -\sup(-X)$.
- **3.** (2,0) Seja (x_n) a sequência definida por $x_1 = 1$ e $x_{n+1} = 1/(1+x_n) + 1$. Mostre que (x_n) tem uma subsequência convergente para $\sqrt{2}$. (*Dica*: $0 < x_n < 2$.)
- **4. (2,0)** Mostre que a série harmônica $\sum \frac{1}{n}$ é divergente e que a série alternada $\sum (-1)^n \frac{1}{n}$ é convergente. Conclua que a série alternada $\sum (-1)^n \frac{1}{n}$ é condicionalmente convergente (i.e. pondo $a_n = (-1)^n \frac{1}{n}$, temos $\sum a_n$ convergente, mas $\sum |a_n| = \infty$).
- **5.** (2,0) Usando o Teorema dos Intervalos Encaixados, mostre que o conjunto dos números reais \mathbb{R} não é enumerável.

Não esqueça de justificar todas as suas afirmações.

Boa prova!

Gabarito

Questão 1 (Sobre o <u>Teorema</u>: Não existe uma bijeção de um subconjunto próprio de I_n (ou de um conjunto finito) nele mesmo.)

Seja X o conjunto dos números naturais n tais que existe uma bijeção de um subconjunto próprio de I_n e I_n . ($I_n = \{1, 2, \dots, n\}$.) Sabemos que X é um conjunto vazio (Teorema), mas sem admitir este fato,

a) (0,5 pontos) mostre que $1 \notin X$;

Seja A um subconjunto próprio de I_1 . Como $I_1 = \{1\}$, temos que $A = \emptyset$, logo, não existe uma bijeção $f: A \to I_1$. (Caso existisse teríamos 1 = f(a) para algum $a \in A$, mas isto não pode acontecer haja vista que $A = \emptyset$.) Portanto $1 \notin X$, pois, pela definção de X, se 1 pertencesse a X deveria existir uma bijeção de um subconjunto próprio de I_1 e I_1 .

b) (1,5) mostre que se n é um elemento de X então n-1 também é um elemento de X;

Seja n um elemento de X. Como, pelo item a), $1 \notin X$, temos que $n \ge 2$. (+ 0,1 pontos até aqui)

Então, pela definição de X, existem um subconjunto próprio A de I_n e uma bijeção $f: A \to I_n$. Para mostrar que n-1 também é um elemento de X, considera-se os dois casos:

Caso 1: $n \in A$. Neste caso, existe também uma bijeção $g: A \in I_n$ tal que g(n) = n; v. Lema. Daí, a restrição $g|A - \{n\} \to I_n - \{n\} = I_{n-1}$ também é uma bijeção. Logo, $n-1 \in X$, já que $A \subsetneq I_n$, $n \in A \Rightarrow A - \{n\} \subsetneq I_{n-1}$.

(+0.7 pontos)

Caso 2: $n \notin A$. Neste caso, tomando-se $a \in A$ tal que f(a) = n (existe este elemento a em A tendo em vista que $f: A \to I_n$ é uma bijeção - em particular, uma função sobrejetiva) a restrição $g|A - \{a\} \to I_n - \{n\} = I_{n-1}$ também é uma bijeção.

(+ 0.5)

Além disso, como $n \notin A$ temos que $a \neq n$, logo $A - \{a\}$ é um subconjunto próprio de I_{n-1} . Então $n-1 \in X$.

(+ 0,2)

c) (0,5) conclua que X é vazio.

Pelo item b), X não tem um menor elemento. (0,2)

Como todo subconjunto dos números naturais diferente do vazio tem um menor elemento (v. Teorema), concluimos que $X = \emptyset$. (+ **0,3**)

Questão 2 (Sobre corpo ordenado completo.)

a) (1,0) Seja K um corpo ordenado. Mostre que todo subconjunto de K limitado superiormente tem um supremo (uma menor cota superior) se, e somente se, todo subconjunto de K limitado inferiormente tem um ínfimo (uma maior cota inferior).

Suponhamos que todo subconjunto de K limitado superiormente tenha um supremo. Seja A um subconjunto qualquer de K limitado inferiormente. Dada uma cota inferior c de A temos que -c é uma cota superior de $-A := \{-x; x \in A\}$. Com efeito, $x \in A \Rightarrow x \ge c \Rightarrow -x \le -c$. Então -A é limitado superiormente. Daí e da hipótese (de que todo subconjunto de K limitado superiormente tem um supremo) existe $s = \sup(-A)$. Vejamos que $-s = \inf A$. Como $s = \sup(-A)$, temos que, em particular, s é uma cota superior de -A, $s \Rightarrow x \ge -s$. Logo, -s é uma cota inferior de A. Além disso, se c > -s então -c < s, logo, pela definição de supremo e por ser $s = \sup(-A)$, existe $y \in -A$ tal que $-c < y \le s$. Mas $y \in -A$ implica em y = -x para algum $x \in A$, logo existe $x \in A$ tal que $-c < -x \le s$, donde vem que $-s \le x < c$ e $x \in A$. Então -s é a maior cota inferior de A, (+0,2)ou seja, o ínfimo de A.

Analogamente, mostra-se a recíproca. Suponhamos que todo subconjunto de K limitado inferiormente tenha um ínfimo. Seja A um subconjunto qualquer de K limitado superiormente. Se c é uma cota superior de A então -c é uma cota inferior de -A ($x \in A \Rightarrow x \le c \Rightarrow -x \ge -c$). Então -A é limitado inferiormente. Seja $s = \inf(-A)$. Vejamos que $-s = \sup A$. $x \in A \Rightarrow -x \in -A \Rightarrow -x \ge s \Rightarrow x \le -s$. Logo, -s é uma cota superior de A. Além disso, se c < -s então s < -c, logo, pela definição de ínfimo e por ser $s = \inf(-A)$, existe $x \in A$ tal que $s \le -x < -c$, donde que $c < x \le -s$. Então -s é a menor cota superior de A, ou seja, o supremo de A. (+ 0,3)

b) (1,0) Seja $X \subset \mathbb{R}$ um conjunto limitado inferiormente. Mostre que $-X := \{-x \; ; \; x \in X\}$ é limitado superiormente e inf $X = -\sup(-X)$.

(Feito no item a).) Dada uma cota inferior c de X temos que -c é uma cota superior de -X. Com efeito, $x \in X \Rightarrow x \geq c \Rightarrow -x \leq -c$. Então -X é limitado superiormente. (0,3) Seja $s = \inf X$. Vejamos que $-s = \sup(-X)$, i.e. $s = \inf X = -\sup(-X)$. Como $s = \inf X$, temos que, em particular, s é uma cota inferior de X, logo, como vimos acima, -s é uma cota superior de -X. (+ **0,2**) Além disso, se c < -s então s < -c, logo, pela definição de ínfimo e por ser $s = \inf X$, existe $x \in X$ tal que $s \le x < -c$, ou seja, $c < -x \le -s$. Como $-x \in -X$, segue que -s é a menor cota superior de -X, ou seja, o supremo de -X. (+ **0,5**)

Questão 3 (2,0). Seja (x_n) a sequência definida por $x_1 = 1$ e $x_{n+1} = 1/(1+x_n) + 1$. Mostre que (x_n) tem uma subsequência convergente para $\sqrt{2}$. (Dica: $0 < x_n < 2$.)

Provemos por indução que $0 < x_n < 2 \ (\forall n \in \mathbb{N})$. Seja $X = \{n \in \mathbb{N}; 0 < x_n < 2\}$. Como $x_1 = 1$, temos que $1 \in X$.

 $({\bf 0},{f 2})$

Suponhamos que $n \in X$ ('hipótese da indução'), ou seja, $0 < x_n < 2$. De $x_n > 0$, temos que $1 + x_n > 0$, visto que 1 > 0, logo, também $1/(1 + x_n) = (1 + x_n)^{-1} > 0$ e $x_{n+1} = 1/(1 + x_n) + 1 > 0$. Além disso, $1 + x_n > 1$, pois $x_n > 0$, então $1/(1 + x_n) < 1$ e $x_{n+1} = 1/(1 + x_n) + 1 < 1 + 1 = 2$. Logo, $n + 1 \in X$. $(+ \mathbf{0,5})$

Portanto, pelo Princípio da Indução ('3o. axioma' de Peano), concluimos que $X = \mathbb{N}$, ou seja, $0 < x_n < 2$ para todo n. (+0,1)

Sendo $0 < x_n < 2$ para todo n, temos que (x_n) é uma sequência limitada, logo, pelo Teorema de Bolzano-Weierstrass, tem uma subsequência (x_{n_k}) convergente. (+0,6)

Sela $l = \lim x_{n_k}$. Daí e da definição de x_n , temos $x_{n_k+1} = 1/(1+x_{n_k})+1$, $l = \lim x_{n_k+1} = \lim (1/(1+x_{n_k})+1) = 1/(1+\lim x_{n_k})+1 = 1(1+l)+1$, logo, l-1=1/(1+l), (l-1)(1+l)=1, $l^2-1=1$, $l^2=2$, ou seja, $l=\sqrt{2}$. (l>0, pois na verdade $x_n \geq 1$ para todo n, logo, $l=\lim x_{n_k} \geq 1$.) (+0,6)

Questão 4 (2,0) Mostre que a série harmônica $\sum \frac{1}{n}$ é divergente e que a série alternada $\sum (-1)^n \frac{1}{n}$ é convergente. Conclua que a série alternada $\sum (-1)^n \frac{1}{n}$ é condicionalmente convergente (i.e. pondo $a_n = (-1)^n \frac{1}{n}$, temos $\sum a_n$ convergente, mas $\sum |a_n| = \infty$).

Seja s_n a soma parcial de ordem n da série harmônica $\sum_{n=1}^{\infty} 1/n$.

Tomando a diferença entre
$$s_{2n}$$
 e s_n , temos:
$$s_{2n} - s_n = \frac{1}{n+1} + \dots + \frac{1}{2n}$$

$$\geq \frac{1}{2n} + \dots + \frac{1}{2n}$$

$$= \frac{2n}{2n} = \frac{1}{2},$$

$$\log não pode existir o limite $\lim s_n = \sum_{n=1}^{\infty} 1/n$, pois caso existisse teríamos $\lim s_n = \lim s_n > \frac{1}{2}$$$

 $\lim s_{2n} - \lim s_n \ge \frac{1}{2}$

já que (s_{2n}) é uma subsequência de (s_n) (+0,2)

(+0,1)e então, $0 \ge 1/2$.

A série alternada $\sum (-1)^n \frac{1}{n}$ é convergente pelo Teste da Série Alternada (Teorema de Leibniz).

Com efeito, pondo $a_n = 1/n$, temos $a_{n+1} = 1/(n+1) < 1/n = a_n$ (a sequência é monótona decrescente) (+ 0,3)

e $\lim a_n = \lim 1/n = 0 \text{ (inf}\{1/n; n \in \mathbb{N}\} = 0; \text{ v. Teorema)},$ (+ 0,3)ou seja, as hipóteses do Teorema de Leibniz se verificam para a série $\sum (-1)^n \frac{1}{n}$

Como $\sum |(-1)^n \frac{1}{n}| = \sum \frac{1}{n}$ e esta última é uma série divergente, concluimos que a série alternada é condicionalmente convergente, ou seja $\sum (-1)^n \frac{1}{n}$ é convergente mas $\sum |(-1)^n \frac{1}{n}|$ é divergente. (+0,2)

Questão 5 (2,0) (Teorema) Usando o Teorema dos Intervalos Encaixados, mostre que o conjunto dos números reais \mathbb{R} não é enumerável.

(V. a demonstração no livro-texto:) Seja $f: \mathbb{N} \to \mathbb{R}$ uma função qualquer. Vejamos que f não pode ser sobrejetiva (logo, \mathbb{R} não é enumerável, haja vista a definição de conjunto enumerável e que f é arbitrária). Tomemos um intervalo qualquer $[a_1, b_1]$ tal que $f(1) \notin [a_1, b_1]$, em seguida um intervalo $[a_2,b_2]$ tal que $[a_1,b_1]\supset [a_2,b_2]$ e $f(2)\not\in [a_2,b_2]$ e, assim por

dado $[a_n, b_n]$ tal que $f(n) \not\in [a_n, b_n]$, tomamos $[a_{n+1}, b_{n+1}]$ tal que $[a_n, b_n] \supset$ $[a_{n+1}, b_{n+1}] \in f(n+1) \not\in [a_{n+1}, b_{n+1}].$ (+ 0,2)

Como $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ (para todo n), pelo Teorema dos Intervalos Encaixados concluimos que existe $c \in \mathbb{R}$ tal que $c \in \bigcap_{n=1}^{\infty} [a_n, b_n]$. (+0,6)

Temos que $c \neq f(n)$ qualquer que seja $n \in \mathbb{N}$, $(+\ 0,2)$

pois $f(n) \notin [a_n, b_n]$, logo f não é sobrejetiva. (+ 0,3)