8강_BFPN Representation/9강 _BFPN Arithmetic

Single Precision 단정밀도 : float number / Double Precision 배정 밀도 : double number

floating point number 부동소수점 (소수점 이동 가능) sign / exponent(지수)(지수10) / mantissa(가수) (9) 9*10^10

표현 가능한 수의 범위를 결정하는데 exponent

Mantissa의 Bit를 많이 할당하면 Exponent의 Bit가 작아져야되고요. 그 반대의 경우가 생길수도 있겠죠.

BFPN Representation: Single Precision BFPN with Biased Exponent

Why Biased Exponent?

○ E의 값이 아주 작은 음수라면 전체 숫자는 거의 0에 가까워 짐

- 0에 대한 표현에서 모든 Bit들이 0이 되게 하여, Zero-Test(ZT)가 정수에서와 같은 방법으로 가능하게 하기 위함
- If M = 000_0000_0000_0000_0000 then BFPN=0
 ∴ 일반적인 경수와 동일한 방법으로 ZT 가능
- If E = 1000_0000(BFPN에서 가장 작은 음수) then BFPN=0
 일반적인 정수와 동일한 방법으로 ZT 불가능
- If E = 0000_0000(BFPN with Biased 128에서 가장 작은 음수) then BFPN=0

 ∴ 일반적인 정수와 동일한 방법으로 ZT 가능

○ E의 값이 아주 작은 음수라면 전체 숫자는 거의 0에 가까워 짐

- 0에 대한 표현에서 모든 Bit들이 0이 되게 하여, Zero-Test(ZT)가 경수에서와 같은 방법으로 가능하게 하기 위함
- If E = 1000_0000(BFPN에서 가장 작은 음수) then BFPN=0
 : 일반적안 청수와 동일한 방법으로 ZT 불가능
- If E = 0000_0000(BFPN with Biased 128에서 가장 작은 음수) then BFPN=0
 일반적인 정수의 동일한 방법으로 ZT 가능

Exponent ##11	철대장	실제 Exponent 값	
		Bias=127	Bias=128
tititia 1	255	1128	+127
11111110	254	+127	+126
10000001	129	12	+1
10000000	128	+1	0
01111111	127	0	-1
01111110	126	-1	-2
00000001	1	-126 /	-127
00000000	(0)	-127	-128

9강

BFPN Arithmetic Operation

곱셈/나눗셈

- 주어진 예
 - $(0.1011 \times 2^{3}) \times (0.1001 \times 2^{5}) = 0.1100011 \times 2^{7}$
- Mantissa Multiplication/Division
- : 1011 x 1001 = 01100011
- Exponent Addition/Subtraction
- : 3 + 5 = 8
- Normalization
 - : 0.01100011 x 28 = 0.1100011 x 27

산술연산에서 발생 가능한 문제들

- Exponent Overflow : +∞, -∞로 Set
- Set Exponent Underflow : 0으로 Set
- Mantissa Overflow : Normalization
- Mantissa Underflow : Rounding(내림)