Due Tuesday 26 September 2023, 11 AM

Linear Algebra, Math 2101-003 Homework set #4

1. (3.5 points).

Let
$$x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$, and $M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Compute the following

- (a) $x^T y$.
- (b) xy^T .
- (c) AA^T , and confirm that the result is symmetric.
- (d) $A^T A$, and confirm that the result is symmetric.
- (e) *MA*.
- (f) $(MA)^T$ and A^TM^T , and confirm that $(MA)^T = A^TM^T$.

2. (4.5 + 1 points).

Let
$$M = \begin{bmatrix} 1 & 1/2 & 0 \\ 1/2 & 1 & 1/2 \\ 0 & 0 & 1 \end{bmatrix}$$
, and $A = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{bmatrix}$. Compute the following,

- (a) M^2 .
- (b) $M^T M$, and confirm that the result is symmetric.
- (c) A^2 , A^4 , A^{16} .
- (d) (extra credit) $\lim_{k\to\infty} A^k$.
- **3.** (2 points).

Let A be and $m \times n$ matrix, and let the two linear systems Ax = b and Ax = c be consistent. Prove that Ax = (b + c) is also consistent. 4. (extra credit 2 points) Let Π_3 , Π_2 be the set of polynomials of degree at most 3 and 2, respectively. Consider the derivative as the linear map

$$\frac{d}{dx}: \Pi_3 \to \Pi_2, \quad \frac{d}{dx}p(x) = q(x).$$

Consider $p(x) \in \Pi_3$ as $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, and $q(x) \in \Pi_2$ as $q(x) = b_0 + b_1x + b_2x^2$. Write a matrix A mapping

$$a = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} \text{ onto } b = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix},$$

so that A represent the linear map $\frac{d}{dx}$.

Write explicitly the matrix A with its numerical values.

(a)
$$x^{T}y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1(1) + 1(2) + 1(3) \end{bmatrix} = \begin{bmatrix} 6 \end{bmatrix}$$

(b)
$$xy^{T} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1(1) & 2(1) & 3(1) \\ 1(1) & 2(1) & 3(1) \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

(c)
$$AA^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1(1)+1(1) & 1(1)+1(2) & 1(1)+1(3) \\ 1(1)+2(1) & 1(1)+2(2) & 1(1)+2(3) \\ 1(1)+3(1) & 1(1)+3(2) & 1(1)+3(3) \end{bmatrix}$$

[2 3 4] = 3 5 7 is symmetric since
$$a_{ij} = a_{ji} \forall i, j = 1, 2, 3 (i \neq j)$$

(d)
$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1(1)+1(1)+1(1) & 1(1)+1(2)+1(3) \\ 1(1)+2(1)+3(1) & 1(1)+2(2)+3(3) \end{bmatrix}$$

=
$$\begin{bmatrix} 3 & 6 \end{bmatrix}$$
 is symmetric since $a_{ij} = a_{ji} \forall i,j = 1,2; i \neq j$

(e)
$$MA = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1(1) + 1(1) + 1(1) & 1(1) + 1(2) + 1(3) \\ 0(1) + 1(1) + 1(1) & 0(1) + 1(2) + 1(3) \\ 1(1) + 0(1) + 1(1) & 1(1) + 0(2) + 1(3) \end{bmatrix}$$

$$(f) (MA)^{T} = \begin{pmatrix} 3 & 6 \\ 2 & 5 \\ 2 & 4 \end{pmatrix}^{T} = \begin{bmatrix} 3 & 2 & 2 \\ 6 & 5 & 4 \end{bmatrix}$$

match
$$A^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}, M^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A^{T}M^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1(1)+1(1)+1(1)&1(0)+1(1)+1(1)&1(1)+1(0)+1(1)\\ 1(1)+2(1)+3(1)&1(0)+2(1)+3(1)&1(1)+2(0)+3(1) \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 2 & 2 \\ 6 & 5 & 4 \end{bmatrix} :: (MA)^{T} = A^{T}M^{T}$$

(a)
$$M^2 = M. M = \begin{bmatrix} 1 & 1/2 & 0 \\ 1/2 & 1 & 1/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1/2 & 0 \\ 1/2 & 1 & 1/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1(1) + \frac{1}{2}(\frac{1}{2}) + 0(0) & 1(\frac{1}{2}) + \frac{1}{2}(1) + 0(0) & 1(0) + \frac{1}{2}(\frac{1}{2}) + 0(1) \\ = \frac{1}{2}(1) + \frac{1}{2}(\frac{1}{2}) + \frac{1}{2}(0) & \frac{1}{2}(\frac{1}{2}) + \frac{1}{2}(0) & \frac{1}{2}(0) + \frac{1}{2}(\frac{1}{2}) + \frac{1}{2}(1) \\ = \frac{1}{2}(1) + \frac{1}{2}(\frac{1}{2}) + \frac{1}{2}(0) & \frac{1}{2}(0) + \frac{1}{2}(0) & \frac{1}{2}(0) + \frac{1}{2}(0) + \frac{1}{2}(0) & \frac{1}{2}(0) & \frac{1}{2}(0) + \frac{1}{2}(0) & \frac{1}{2}(0) + \frac{1}{2}(0) & \frac{1$$

(b)
$$M^{T}M = \begin{bmatrix} 1 & 1/2 & 0 \\ 1/2 & 1 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1/2 & 0 \\ 1/2 & 1 & 1/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1(1) + \frac{1}{2}(\frac{1}{2}) + 0(0) & 1(\frac{1}{2}) + \frac{1}{2}(1) + 0(0) & 0(1) + \frac{1}{2}(\frac{1}{2}) + 1(0) \\ \frac{1}{2}(1) + 1(\frac{1}{2}) + 0(0) & \frac{1}{2}(\frac{1}{2}) + 1(1) + 0(0) & 0(\frac{1}{2}) + \frac{1}{2}(1) + 1(0) \\ 0(1) + \frac{1}{2}(\frac{1}{2}) + 1(0) & 0(\frac{1}{2}) + \frac{1}{2}(1) + 1(0) & 0(0) + \frac{1}{2}(\frac{1}{2}) + 1(1) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{5}{4} & 1 & \frac{1}{4} \\ 1 & \frac{5}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{5}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
is symmetric since $a_{ij} = a_{ji} \forall i, j = 1, 2, 3; i \neq j$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} 1(1) + 1(0) + 0(1) & 1(1) + 1(1) + 0(0) & 1(0) + 1(1) + 0(1) \\ 0(1) + 1(0) + 1(1) & 0(1) + 1(0) & 1(0) + 0(1) + 1(1) \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2$$

 $A^{8} = A^{4} \cdot A^{4} = \frac{1}{16} \begin{bmatrix} 6 & 5 & 5 & 1 \\ 6 & 5 & 5 & 16 \\ 6 & 7 & 7 & 16 \end{bmatrix} \begin{bmatrix} 5 & 5 & 6 \\ 6 & 5 & 5 \\ 6 & 7 & 7 & 7 \end{bmatrix} \begin{bmatrix} 5 & 5 & 6 \\ 6 & 5 & 5 \\ 6 & 7 & 7 \end{bmatrix} \begin{bmatrix} 5 & 5 & 6 \\ 6 & 5 & 5 \\ 6 & 7 & 7 \end{bmatrix} \begin{bmatrix} 5 & 5 & 6 \\ 6 & 5 & 5 \\ 7 & 7 & 7 \end{bmatrix} \begin{bmatrix} 5 & 5 & 6 \\ 6 & 5 & 5 \\ 7 & 7 & 7 \end{bmatrix}$

$$A^{16} = A^{8}. A^{8} = \frac{1}{256} \begin{bmatrix} 85 & 86 & 85 \\ 85 & 85 & 86 \end{bmatrix} \frac{1}{256} \begin{bmatrix} 85 & 86 & 85 \\ 86 & 85 & 85 \end{bmatrix}$$

$$= \frac{1}{65536} \begin{bmatrix} 85^2 + 2(86)(85) & 85^2 + 2(86)(85) & 2(85)^2 + 86^2 \\ 2(85)^2 + 86^2 & 85^2 + 2(86)(85) & 85^2 + 2(86)(85) \\ 85^2 + 2(86)(85) & 2(85)^2 + 86^2 & 85^2 + 2(86)(85) \end{bmatrix}$$

$$= \frac{1}{65536} \begin{bmatrix} 21845 & 21845 & 21846 \\ 21846 & 21845 & 21845 \\ 21845 & 21846 & 21845 \end{bmatrix}$$

(d) Each entry in
$$A^{16}$$
 is approximately 0.3333 which is around $\frac{1}{3}$. Im $A^{k} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Let A be mxn matrix

Since Ax = b is consistent, b is a linear combination of columns of A Ax = c is consistent, c is a linear combination of columns of A

i.e.
$$b = \sum_{i=1}^{n} \mathcal{B}_{i} A_{*bi}$$
 and $c = \sum_{i=1}^{n} \alpha_{i} A_{*bi}$ where A_{*bi} are basic columns
 $b + c = \sum_{i=1}^{n} \mathcal{B}_{i} A_{*bi} + \sum_{i=1}^{n} \alpha_{i} A_{*bi} = \sum_{i=1}^{n} (\mathcal{B}_{i} + \alpha_{i}) A_{*bi} = \sum_{i=1}^{n} \delta_{i} A_{*bi}$

:. By definitions, (b+c) is a linear combination of columns of A

$$Ax = (b+c)$$
 is also consistent QED!

For $p(x) \in \Pi_3$ basis elements $\{1, x, x^2, x^3\}$ coefficients $\{a_0, a_1, a_2, a_3\}$ For $q(x) \in \Pi_2$ basis elements $\{1, x, x^2\}$ coefficients $\{b_0, b_1, b_2\}$

To express linear combination of basis elements of Π_2 , need to compute derivative of each basis element of Π_3 w.r.t x

$$\frac{d}{dx} p_1(x) = \frac{d}{dx} (1) = 0 \qquad \therefore q_1(x) = 0(1) + 0(x) + 0(x^2) \qquad \therefore A_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\therefore (b_0, b_1, b_2) = (0, 0, 0)$$

$$\frac{d}{dx} p_2(x) = \frac{d}{dx} (x) = 1 \qquad \therefore q_2(x) = 1(1) + 0(x) + 0(x^2) \qquad \therefore A_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\therefore (b_0, b_1, b_2) = (1, 0, 0)$$

$$\frac{d}{dx} \rho_3(x) = \frac{d}{dx} (x^2) = 2x \quad \therefore \quad q_3(x) = 0(1) + 2(x) + 0(x^2) \quad \therefore \quad A_3 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$\therefore \quad (b_0, b_1, b_2) = (0, 2, 0)$$

$$A_{3\times4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$
 which aligns with mapping $a_{4\times1}$ onto $b_{3\times1}$ to get a 3×4 matrix