Лекция. Вторая производная, ее геометрический и физический смысл. Нахождение скорости, заданной формулой и графиком.

Вторая производная.

1) Ускорение. Ускорение по своему смыслу есть скорость изменения скорости. Если функция v = v(t) задает скорость движения точки по прямой, то производная этой функции есть ускорение: a(t) = v'(t).

Если задана координата x = x(t) точки, то, чтобы найти ускорение, надо сначала продифференцировать функцию x и получить скорость v, а затем еще раз продифференцировать и получить ускорение. Поэтому ускорение называют второй производной пути (перемещения) по времени и обозначают так:

$$a(t) = \chi''(t)$$
.

Ускорение движения, когда координата х зависит от времени квадратично, постоянно и равно удвоенному коэффициенту при t^2 . Из механики известно и обратное — если ускорение постоянно, то перемещение зависит от t по квадратичному закону. Если ускорение равно a, скорость при t = 0 равна v_0 , а положение точки в начальный момент времени есть x_0 , то путь задается формулой $x(t) = \frac{1}{2}at^2 + v_0t + x_0$. Это объясняет смысл коэффициента в квадратичном законе движения.

Примеры

$$1. x(t) = kt,$$

$$v(t) = \chi'(t) = k,$$

$$a(t) = x''(t) = 0.$$

Такое движение называется равномерным, ускорение в этом случае равно нулю.

$$2. x(t) = At^2 + Bt + C,$$

$$v(t) = x'(t) = 2At + B,$$

$$a(t) = x''(t) = 2A$$
.

Такое движение называется равноускоренным.

3.
$$x(t) = \frac{1}{t+C}$$
,

$$v(t) = x'(t) = -\frac{1}{(t+C)^2}$$

$$v(t) = x'(t) = -\frac{1}{(t+C)^2},$$

$$a(t) = x''(t) = \frac{2}{(t+C)^3}.$$

Такое движение называется равнозамедленным.

Мы видим, что направление ускорения противоположно направлению движения, а модуль ускорения убывает очень быстро.

Рассмотрим несколько примеров.

Пример 1

Пусть прямолинейное движение материальной точки происходит по закону

$$s=\frac{2t^3}{5}$$

где время t выражается в сек, а путь s -- в см.

Найти ускорение w движущейся точки в момент времени t = 4 сек.

Решение.

По формуле:

$$\omega=v_t'=s''$$

Найдем искомое ускорение

$$s'=\left(\frac{2t^3}{5}\right)'=\frac{6t^2}{5}$$

$$\omega=s''=\left(rac{6t^2}{5}
ight)'=rac{12t}{5}$$

Пример 3

Скорость движения тела выражается формулой

$$v = 0,8t^3 - 1,2$$

Найти ускорение тела спустя 12 секунд от начала его движения.

Решение.

Поскольку ускорением является производная от скорости:

$$\omega = v'' = (0, 8t^3 - 1, 2)^{\prime\prime} = 4, 8t$$

Через 12 секунд ускорение составит:

$$\omega=4,8\cdot 12=57,6\text{m/c}^2$$

Правило определения ускорения по графику v(t): Ускорение тела - это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.

График зависимости пути от времени

s(t) равноускоренное движение

s(t) равноускоренное движение

График движения при
$$v_0=5\frac{M}{c}$$
, $a=2\frac{M}{c^2}$. График движения при $v_0=5\frac{M}{c}$, $a=10\frac{M}{c^2}$

s(t) равноускоренное движение

s(t) равноускоренное движение

График движения при
$$v_0=-25\frac{M}{c}$$
, $a=10\frac{M}{c^2}$. График движения при $v_0=20\frac{M}{c}$, $a=-5\frac{M}{c^2}$

Сравнительная таблица графиков

зависимость	равномерное движение	равноускоренное движение
a(t)	a = 0	a = const
v(t)	v = const	$\vec{v} = \vec{v}_o + \vec{a}t$
x(t)	$x = x_0 + \vec{v}t$	$x = x_0 + \bar{v}_0 t + \frac{\bar{a}t^2}{2}$

3) **Геометрический смысл второй производной**. Мы уже отмечали, что понятие выпуклости функции тесно связано с поведением производной. Эту связь легко проследить по графику.

Функция выпукла вверх	↔	Производная возрастает
Функция выпукла вниз	↔	Производная убывает
Точка перегиба	↔	Экстремум производной

Так как необходимым условием экстремума функции является обращение ее производной в нуль, необходимым условием перегиба функции будет обращение в нуль производной от ее производной, т. е. второй производной функции.

Пример. Найти точки перегиба функции $y = x^3 - 3x$.

Вычисляем производные: $y' = 3x^2 - 3$, y'' = 6x, $y'' = 0 \Leftrightarrow x = 0$, т. е. график функции имеет перегиб в начале координат.

Пройдите тест по вариантам

Время прохождения теста 45 минут.

1 вариант

1. Вычислите производную $f'(x)$ при данном значении аргумента х $f(x) = 4x^3 - 3x^2 - x - 1,$ при $x = -1$	A) 17 Б) 21 С) - 5
2. Вычислите производную $f'(x)$ при данном значении аргумента х $f(x) = \sqrt{4-x^2}, \text{при } x = \sqrt{3}$	A) $1 - \sqrt{3}$ B) $-\sqrt{3}$ C) $\sqrt{3}$
3. Точка движется прямолинейно по закону $S = t^3 + 5t^2 + 4 . \ B \ какой момент времени \ t_0$ скорость точки окажется равной нулю?	A) $t_0 = 2$ B) $t_0 = 5$ C) $t_0 = 4$
4. Найдите производную тригонометрических функций $y = sin^2 2x$	A) $2sin 2x$ B) $-2sin^2 2x$ C) $2sin 4x$
5. Исследуйте функцию на экстремум $f(x) = -\frac{1}{4}x^4 + 8x$	A) max(2; 12) B) max(3; 10), min(0; 2) C) max(2; 12), min(-1; 2)
6. Найдите наибольшее, наименьшее значение функции в заданном промежутке $y = x^2 - 6x + 3, \ x \in [0; 5]$	A) $y(-3) = 12, y(0) = 1$ B) $y(3) = -6, y(0) = 3$ C) $y(1) = 2, y(5) = -1$
7. Найдите точки перегиба кривой $f(x) = \frac{1}{3}x^3 - 3x^2 + 8x - 4$	A) (1; 3) Б) (- 2; 1), (1; 6) С) (3; 2)

2 вариант

1. Вычислите производную $f'(x)$ при данном	
значении аргумента х	A) - 4
$f(x) = 3x^4 - 2x^2 + 4x - 1,$	Б) - 2
π ри $x = -1$	C) 5
	A) /2
2. Вычислите производную $f'(x)$ при данном	A) $\sqrt{3}$
значении аргумента х	Б) 2
$f(x) = \sqrt{x^3 + 1}$, при $x = 2$	C) √2
3. Зависимость температуры тела Т от времени t	А) 10 град/с
задана уравнением $T = \frac{1}{2}t^2 - 2t + 3$. С какой	Б) 9 град/c
задана уравнением $I = \frac{-t}{2}t - 2t + 5$. С какои	С) 8 град/с
скоростью нагревается это тело в момент	
времени t =10 c?	
4. Найдите производную тригонометрических	A) sin 2x
функций	Б) $-cos^22x$
$y = cos^2 x$	C) $-\sin 2x$
5. Исследуйте функцию на экстремум	A) $\max\left(-2;\frac{16}{3}\right)$; $\min(2;-\frac{16}{3})$
$f(x) = \frac{1}{3}x^3 - 4x$	Б) $\max(3; \frac{10}{3})$, $\min(0; \frac{2}{3})$
$f(x) = \frac{1}{3}x^3 - 4x$	3
	C) $\max(2; \frac{12)}{7}, \min(-1; \frac{2}{7})$
6. Найдите наибольшее, наименьшее значение	
функции в заданном промежутке	A) $y(-1) = 1, y(0) = 12$
$y = x^2 - 8x + 4, x \in [-2; 2]$	5) y(4) = -12, y(-2) = 24
	C) $y(-2) = -8, y(2) = 8$
7. 11.55	
7. Найдите точки перегиба кривой	A) (1; 31), (2; -8)
$f(x) = x^4 - 8x^3 + 18x^2 - 48x + 31$	Б) (- 9; 0)
	C) (1; -6), (3; -86)
	-) (-, -), (-,)

3 вариант

1. Вычислите производную $f'(x)$ при данном значении аргумента х $f(x) = 1 - x^2 + x^3 - x^4 + x^5$ при $x = 2$ 2. Вычислите производную $f'(x)$ при данном значении аргумента х $f(x) = \sqrt{x^2 - 2x}, \text{при } x = 3$	A) 56 B) 64 C) 46 A) $\frac{\sqrt{2}}{3}$ B) $\frac{2\sqrt{3}}{3}$ C) $\sqrt{\frac{2}{3}}$
3. Сила тока $I(A)$ изменяется в зависимости от времени $t(c)$ по закону $I=3t^2+2t+1$. Найдите скорость изменения силы тока через 8c.	A) 10 A/c B) 40 A/c C) 50 A/c
4. Найдите производную тригонометрических функций $y = tg^2x$	A) $\frac{\sin^2 x}{\cos x}$ B) $\frac{2\sin x}{\cos^2 x}$ C) $\frac{2\sin x}{\cos^3 x}$
5. Исследуйте функцию на экстремум $f(x) = \frac{1}{3}x^3 - x^2$	A) $\max(0; 0)$; $\min(2; -\frac{4}{3})$ B) $\max(3; 0)$, $\min(-1; -\frac{2}{3})$ C) $\max(0; \frac{2}{3}, \min(-1; \frac{1}{3})$
 6. Найдите наибольшее, наименьшее значение функции в заданном промежутке	A) $y(2) = 5$, $y(0) = y(6) = 10$ B) $y(3) = 4$, $y(0) = y(6) = 13$ C) $y(-2) = -8$, $y(4) = 8$
$f(x) = x^4 - 6x^3 + 12x^2 - 10$	A) (1; 1), (2; -1) B) (-9; 0), (1;4) C) (1; -3), (2; 6)

Глава 9 «Начала математического анализа», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. — 4-е изд.,стер. — М. : ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электронно-библиотечной системе.

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. https://spravochnick.ru/
- 3. https://23.edu-reg.ru/