Université de Montréal ECN 6238 Économétrie des séries chronologiques Examen intra-semestriel

Aucune documentation permise Calculatrice permise

Durée: 3 heures

20 points

- 1. Répondez par VRAI, FAUX ou INCERTAIN à chacune des assertions suivantes, et justifiez brièvement votre réponse. (Maximum : une page par assertion.)
 - (1) Tout processus stationnaire au sens strict est dans L_2 .
 - (2) Tout processus stationnaire au sens strict est aussi stationnaire du second ordre.
 - (3) Tout processus stationnaire d'ordre 3 est aussi stationnaire d'ordre 2.
 - (4) Tout processus asymptotiquement stationnaire d'ordre 3 est aussi asymptotiquement stationnaire d'ordre 2.
 - (5) Un bruit blanc est un processus stationnaire d'ordre 4.

20 points

2. Soit la fonction $\gamma : \mathbb{Z} \to \mathbb{R}$ définie par

$$\begin{array}{rcl} \gamma(k) & = & 1 & , & \mathrm{si} \; k = 0 \\ & = & \rho & , & \mathrm{si} \; |k| = 1 \\ & = & 0 & , & \mathrm{autrement.} \end{array}$$

Montrez que cette fonction est une fonction d'autocovariance si et seulement si $|\rho| \le 0.5$.

40 points

3. Considérez le processus suivants, où $\{u_t : t \in \mathbb{Z}\}$ est un bruit blanc i.i.d. N(0,1):

$$X_t = 10 + 0.7 X_{t-1} - 0.2 X_{t-2} + u_t$$

Répondez aux questions suivantes :

(a) Ce processus est-il stationnaire? Pourquoi?

- (b) Ce processus est-il inversible? Pourquoi?
- (c) Calculez
 - i) $E(X_t)$;
 - ii) $\gamma(k)$, k = 1, 2, ..., 8;
 - iii) $\rho(k)$, k = 1, 2, ..., 8.
- (d) Graphez $\rho(k)$.
- (e) Quels sont les coefficients de u_t , u_{t-1} , u_{t-2} , u_{t-3} et u_{t-4} dans la représentation moyenne mobile de X_t .
- (f) Trouvez la fonction génératrice des autocovariances de X_t .
- (g) Graphez la densité spectrale de X_t .
- (h) Calculez les quatre premières autocorrélations partielles de X_t .

20 points 4. Soit X_1, X_2, \ldots, X_T une série chronologique.

- (a) Définissez:
 - i. les autocorrélations échantillonnales de cette série ;
 - ii. les autocorrélations partielles échantillonnales de cette série.
- (b) Discutez les distributions asymptotiques de ces deux ensembles d'autocorrélations sous l'hypothèse où X_1, X_2, \ldots, X_T sont indépendantes et identiquement distribuées (i.i.d.).
- (c) On vous demande de tester l'hypothèse que X_1, X_2, \ldots, X_T sont i.i.d.
 - i. Décrivez une procédure exacte à borne (qui ne requiert une simulation) pour ce faire.
 - ii. Décrivez une procédure exacte qui ne requiert une borne.