Lecture 6 Notes for STT861

Kenyon Cavender

1 Review

	WOR	$\mathbf{W}\mathbf{R}$
Ordered	$\frac{n!}{(n-r)!}$	n^r
Unordered	$\frac{n!}{r!(n-r)!} = \binom{n}{r}$	$\binom{n+r-1}{r}$

2 Class Notes

Lots of Examples.

<u>Def</u> If A, B are two events with P(B) > 0, then the **conditional probability** of A|B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

If P(B) = 0, P(A|B) is undefined

 $P(A \cap B) = P(B)P(A|B)$

 $P(A \cap B) = P(A)P(B|A)$

 $\underline{\mathbf{Def}}$ If $E_1, E_2, ..., E_n$ are events,

 $P(E_1 \cap E_2 \cap ... \cap E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1 \cap E_2)...P(E_n|E_1 \cap E_2 \cap E_3 \cap ... \cap E_{n-1})$