Chapitre 6 : Géométrie du plan

Dans toute la leçon, on se donne un repère orthonormé direct (r.o.n.d.) $(O, \overrightarrow{i}, \overrightarrow{j})$. Cela signifie que $\|\overrightarrow{i}\| = \|\overrightarrow{j}\| = 1^1$ et que l'on amène \overrightarrow{i} sur \overrightarrow{j} en tournant de $\frac{\pi}{2}$ dans le sens direct.

Dans ce cas, pour tout point M du plan, il existe un unique couple (x, y) de réels tels que

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$$
.

Le couple (x, y) sont les coordonnées de M dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

Produit scalaire

On rappelle dans cette section ce qui a été vu en classe de 1^{re}.

Définition 1

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan. Le produit scalaire de \overrightarrow{u} et \overrightarrow{v} , noté $\overrightarrow{u} \cdot \overrightarrow{v}$, est défini de la façon suivante : si \overrightarrow{u} et \overrightarrow{v} sont non nuls,

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| ||\overrightarrow{v}|| \cos(\overrightarrow{u}, \overrightarrow{v})$$

et $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ sinon.

La nullité du produit scalaire caractérise l'orthogonalité:

Théorème 1

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si, et seulement si, $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Remarque. Par convention, le vecteur nul est orthogonal à tout vecteur.

Proposition 1 (symétrie et bilinéarité)

Pour tous vecteurs \vec{u} , \vec{v} , \vec{w} , pour tous réels λ,μ :

- 1. $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$.
- **2.** $\overrightarrow{u} \cdot (\lambda \overrightarrow{v} + \mu \overrightarrow{w}) = \lambda \overrightarrow{u} \cdot \overrightarrow{v} + \mu \overrightarrow{u} \cdot \overrightarrow{w}$.
- 3. $(\lambda \overrightarrow{u} + \mu \overrightarrow{v}) \cdot \overrightarrow{w} = \lambda \overrightarrow{u} \cdot \overrightarrow{w} + \mu \overrightarrow{v} \cdot \overrightarrow{w}$.

Proposition 2

Si
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors

$$\overrightarrow{u}\cdot\overrightarrow{v}=xx'+yy'.$$

Remarque.

$$\overrightarrow{u} \cdot \overrightarrow{u} = \|\overrightarrow{u}\|^2$$
.

^{1.} On rappelle que $\|\vec{u}\|$ désigne la norme, ou longueur, du vecteur \vec{u} .

Exemple 1

ABCD est un carré de côté 3, AEFG est un carré de côté 2, avec D, A et G alignés, ainsi que B, A et E comme sur la figure ci-dessous. Le point I est le milieu du segment [DE].

On souhaite prouver que (AI) est orthogonale à (GB).

On utilise un r.o.n.d. (A, \vec{i}, \vec{j}) , dans lequel A(0;0), B(3;0), G(0;-2), E(-2;0) et D(0;3).

I est le milieu de [ED], donc $I\left(\frac{-2+0}{2};\frac{0+3}{2}\right)$ I(-1;1,5).

On a donc
$$\overrightarrow{AI} \begin{pmatrix} -1 \\ 1,5 \end{pmatrix}$$
 et $\overrightarrow{GB} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, puis

$$\overrightarrow{AI} \cdot \overrightarrow{GB} = -1 \times 3 + 1, 5 \times 2 = 0.$$

On en déduit que (AI) est orthogonale à (GB).

Exemple 2

ABCD est un carré de côté 4, I est le milieu du segment [BC] et J celui de [CD].

On calcule une mesure à 1° près de l'angle \widehat{IAJ} , que l'on note θ .

On utilise un r.o.n.d. $(A, \overrightarrow{i}, \overrightarrow{j})$, dans lequel A(0;0), I(4;2), J(2;4). On a donc $\overrightarrow{AI}\begin{pmatrix} 4\\2 \end{pmatrix}$ et On en déduit $\overrightarrow{AJ} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$.

On calcule les longueurs grâce au théorème de Pythagore:

$$AI = AJ = \sqrt{4^2 + 2^2} = \sqrt{20}$$

puis le produit scalaire :

$$\overrightarrow{AI} \cdot \overrightarrow{AJ} = 4 \times 2 + 2 \times 4 = 16.$$

Par définition du produit scalaire

$$\overrightarrow{AI} \cdot \overrightarrow{AJ} = \left\| \overrightarrow{AI} \right\| \left\| \overrightarrow{AJ} \right\| \cos \theta$$
$$16 = \sqrt{20} \times \sqrt{20} \cos \theta$$

$$\cos \theta = \frac{16}{20} = 0.8$$
 $\theta = \arccos(0.8) \approx 37^{\circ}$.

Remarque (à lire après le chapitre 8!).

La fonction arccos est à valeurs dans $[0;\pi]$, donc il n'y a aucun risque à utiliser arccos pour la mesure des angles géométriques (entre 0° et 180°). En revanche, arcsin peut poser problème : si on sait par exemple que $\sin \alpha = 0.5$, alors α peut valoir 30° ou 150° .

II. Déterminant

Définition 2

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan. Le déterminant de \overrightarrow{u} et \overrightarrow{v} , noté $\det(\overrightarrow{u},\overrightarrow{v})$, est défini de la façon suivante : si \overrightarrow{u} et \overrightarrow{v} sont non nuls,

$$\det(\overrightarrow{u},\overrightarrow{v}) = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \sin(\overrightarrow{u},\overrightarrow{v})$$

et $\det(\overrightarrow{u}, \overrightarrow{v}) = 0$ sinon.

Le déterminant peut être calculé avec les coordonnées et, au signe près, il s'interprète comme l'aire d'un parallélogramme :

Proposition 3

Si
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors

$$\det(\overrightarrow{u},\overrightarrow{v}) = xy' - x'y.$$

Ce nombre est noté $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix}$.

La proposition ci-dessous est démontrée en exercice :

Proposition 4

Soient A, B, C trois points du plan, et soit D le point tel que ABDC soit un parallélogramme (éventuellement aplati). Alors $\left|\det\left(\overrightarrow{AB},\overrightarrow{AC}\right)\right|$ est l'aire du parallélogramme ABDC.

Exercices 9 et 10

Proposition 5 (antisymétrie et bilinéarité)

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} , pour tous réels λ , μ :

- 1. $\det(\overrightarrow{u}, \overrightarrow{v}) = -\det(\overrightarrow{v}, \overrightarrow{u})$.
- 2. $\det(\overrightarrow{u}, \lambda \overrightarrow{v} + \mu \overrightarrow{w}) = \lambda \det(\overrightarrow{u}, \overrightarrow{v}) + \mu \det(\overrightarrow{u}, \overrightarrow{w})$.
- 3. $\det(\lambda \overrightarrow{u} + \mu \overrightarrow{v}, \overrightarrow{w}) = \lambda \det(\overrightarrow{u}, \overrightarrow{w}) + \mu \det(\overrightarrow{v}, \overrightarrow{w}).$

Deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} sont dits colinéaires s'il existe un nombre réel k tel $\overrightarrow{v} = k \overrightarrow{u}$.

Définition 3

Par convention, le vecteur nul est colinéaire à tout vecteur.

La nullité du déterminant caractérise la colinéarité :

Théorème 2

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si, et seulement si, $\det(\overrightarrow{u}, \overrightarrow{v}) = 0$.

On rappelle l'utilisation de la colinéarité en géométrie élémentaire :

Proposition 6

- 1. Deux droites (AB) et (CD) sont parallèles si, et seulement si, \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- **2.** Trois points A, B, C sont alignés si, et seulement si, \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Exemple 3

Soient O(0;0), A(3;2), C(3;-1) et D(5;0,5). Les droites (OA) et (CD) sont-elles parallèles?

On utilise le déterminant : $\overrightarrow{OA} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ et $\overrightarrow{CD} \begin{pmatrix} 2 \\ 1,5 \end{pmatrix}$ donc

$$\det\left(\overrightarrow{OA},\overrightarrow{CD}\right) = \begin{vmatrix} 3 & 2 \\ 2 & 1,5 \end{vmatrix} = 3 \times 1,5 - 2 \times 2 = 0,5.$$

Conclusion : comme le déterminant est non nul, \overrightarrow{OA} et \overrightarrow{CD} ne sont pas colinéaires; et donc (OA) et (CD) ne sont pas parallèles.

Pour conclure cette section, on introduit le vocabulaire de l'algèbre linéaire (étudiée au 2^e semestre).

Définition 4

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont dits linéairement dépendants s'il existe un couple de réels $(\lambda, \mu) \neq (0, 0)$ tels que

$$\lambda \overrightarrow{u} + \mu \overrightarrow{v} = \overrightarrow{0}$$
.

Dans le cas contraire, ils sont dits linéairement indépendants.

On démontre en exercice la propriété cidessous:

Proposition 7

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont linéairement dépendants si, et seulement si, ils sont colinéaires.

Remarques.

- Le fait que $(\lambda, \mu) \neq (0, 0)$ signifie que λ et μ ne peuvent être nuls **tous les deux**. Mais l'un d'eux peut être nul.
- Lorsque \overrightarrow{u} et \overrightarrow{v} sont linéairement dépendants, on dit que la famille $(\overrightarrow{u}, \overrightarrow{v})$ est liée; sinon on dit qu'elle est libre.

III. Barycentre

On commence par le barycentre de deux points :

Déf.5

Soient A, B deux points du plan, α , β deux réels tels que $\alpha + \beta \neq 0$. Il existe un unique point G tel que $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$. On dit que le point G est le barycentre du système (A, α) , (B, β) . On note G = bary $A_{\alpha}B_{\beta}$.

Proposition 8

Soient A, B deux points du plan, α , β deux réels tels que $\alpha + \beta \neq 0$. Alors $G = \text{bary} A_{\alpha} B_{\beta}$ si, et seulement si, $\overrightarrow{AG} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB}$.

Démonstration (de la proposition 8)

$$G = \text{bary} A_{\alpha} B_{\beta} \iff \alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$$

$$\iff \alpha \overrightarrow{GA} + \beta \left(\overrightarrow{GA} + \overrightarrow{AB} \right) = \overrightarrow{0}$$

$$\iff (\alpha + \beta) \overrightarrow{GA} + \beta \overrightarrow{AB} = \overrightarrow{0}$$

$$\iff \beta \overrightarrow{AB} = -(\alpha + \beta) \overrightarrow{GA}$$

$$\iff \beta \overrightarrow{AB} = (\alpha + \beta) \overrightarrow{AG}$$

$$\iff \overrightarrow{AG} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB}$$

Exemple 4

Soient A, B deux points du plan. On construit $G = \text{bary} A_1 B_3$, $H = \text{bary} A_1 B_1$, $I = \text{bary} A_2 B_{-1}$:

- $\overrightarrow{AG} = \frac{3}{1+3}\overrightarrow{AB} = \frac{3}{4}\overrightarrow{AB}$, donc G est aux trois-quarts du segment [AB] en partant de A.
- $\overrightarrow{AH} = \frac{1}{1+1}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AB}$, donc H est le milieu du segment [AB].
- $\overrightarrow{AI} = \frac{-1}{2+(-1)}\overrightarrow{AB} = -\overrightarrow{AB}$, donc I est le symétrique de B par rapport à A.

On interprète le barycentre comme un centre de gravité, avec deux poids α et β aux points A et B^a : le point B0 et le milieu de A0, car les poids sont égaux; et pour B0, il faut se référer à la figure ci-dessous :

a. bary vient du grec barús (« lourd »).

Remarques.

- Si $G = \text{bary} A_{\alpha} B_{\beta}$, alors \overrightarrow{AG} et \overrightarrow{AB} sont colinéaires, donc A, B, G sont alignés.
- On ne change pas le barycentre si on multiplie les masses α , β par un réel non nul (cela revient seulement à « changer l'unité de mesure de la masse »). Par exemple : $G = \text{bary} A_1 B_3 = \text{bary} A_{2\times 1} B_{2\times 3} = \text{bary} A_2 B_6$.

Proposition 9

Si $G = \text{bary} A_{\alpha} B_{\beta}$, alors le point G a pour coordonnées :

$$\left(\frac{\alpha x_A + \beta x_B}{\alpha + \beta}; \frac{\alpha y_A + \beta y_B}{\alpha + \beta}\right).$$

Démonstration

On pourrait travailler avec les vecteurs et leurs coordonnées, mais il est plus agréable de travailler dans le plan complexe : la relation $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$ se traduit par l'égalité

$$\alpha (z_A - z_G) + \beta (z_B - z_G) = 0.$$

On développe et on isole z_G :

$$\alpha z_A - \alpha z_G + \beta z_B - \beta z_G = 0 \iff \alpha z_A + \beta z_B = (\alpha + \beta) z_G \iff z_G = \frac{\alpha z_A + \beta z_B}{\alpha + \beta}.$$

Il ne reste plus qu'à écrire $z_A = x_A + iy_A$, $z_B = x_B + iy_B$ et à séparer partie réelle et partie imaginaire pure pour pouvoir conclure.

On définit de la même façon le barycentre de trois points :

?

Soient A, B, C trois points du plan, α , β , γ trois réels tels que $\alpha + \beta + \gamma \neq 0$. Il existe un unique point G tel que $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$. On dit que le point G est le barycentre du système (A, α) , (B, β) , (C, γ) . On note G = bary $A_{\alpha}B_{\beta}C_{\gamma}$.

Proposition 10

Soient A, B, C trois points du plan, α , β , γ trois réels tels que $\alpha + \beta + \gamma \neq 0$ et $G = \text{bary} A_{\alpha} B_{\beta} C_{\gamma}$. Alors :

1.
$$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \gamma} \overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \gamma} \overrightarrow{AC}$$
.

2. Les coordonnées de G sont :

$$\left(\frac{\alpha x_A + \beta x_B + \gamma x_C}{\alpha + \beta + \gamma}; \frac{\alpha y_A + \beta y_B + \gamma y_C}{\alpha + \beta + \gamma}\right).$$

Exemple 5

ABC est un triangle. On construit $G = bary A_1 B_1 C_2$.

$$\alpha + \beta + \gamma = 1 + 1 + 2 = 4$$
, donc

$$\overrightarrow{AG} = \frac{\beta}{\alpha + \beta + \gamma} \overrightarrow{AB} + \frac{\gamma}{\alpha + \beta + \gamma} \overrightarrow{AC} = \frac{1}{4} \overrightarrow{AB} + \frac{2}{4} \overrightarrow{AC}.$$

Exemple 6

Soient A(1;2), B(5;0) et C(3;4) dans un r.o.n.d. du plan. Les coordonnées de $G = \text{bary} A_1 B_1 C_1$ sont

$$\left(\frac{\alpha x_A + \beta x_B + \gamma x_C}{\alpha + \beta + \gamma}; \frac{\alpha y_A + \beta y_B + \gamma y_C}{\alpha + \beta + \gamma}\right)$$
$$\left(\frac{1 \times 1 + 1 \times 5 + 1 \times 3}{1 + 1 + 1}; \frac{1 \times 2 + 1 \times 0 + 1 \times 4}{1 + 1 + 1}\right)$$

Conclusion: G(3;2).

On remarque que G est sur chacune des médianes : c'est le centre de gravité du triangle (voir exercices).

Pour terminer cette section, on généralise avec le barycentre de n points :

Déf.7

Soient A_1, \ldots, A_n n points du plan, $\alpha_1, \ldots, \alpha_n$ n réels dont la somme $\alpha_1 + \cdots + \alpha_n$ est non nulle. Il existe un unique point G tel que

$$\alpha_1 \overrightarrow{GA_1} + \cdots + \alpha_n \overrightarrow{GA_n} = \overrightarrow{0}$$
.

On dit que le point G est le barycentre du système $(A_1, \alpha_1), \ldots, (A_n, \alpha_n)$.

Proposition 11

Si G est le barycentre du système $(A_1,\alpha_1),\ldots,(A_n,\alpha_n)$, alors

$$G\left(\frac{\alpha_1 x_{A_1} + \cdots + \alpha_n x_{A_n}}{\alpha_1 + \cdots + \alpha_n}; \frac{\alpha_1 y_{A_1} + \cdots + \alpha_n y_{A_n}}{\alpha_1 + \cdots + \alpha_n}\right).$$

Déf.8

Lorsque $\alpha_1 = \cdots = \alpha_n$, le point G est appelé isobarycentre du système.

Remarques.

- L'isobarycentre de deux points A, B est le milieu de [AB].
- L'isobarycentre de trois points A, B, C est le centre de gravité du triangle ABC.

IV. Droites

Proposition 12 (équation cartésienne de droite)

• Toute droite Δ a une équation, dite cartésienne, de la forme

$$ax + by + c = 0$$
,

où a, b, c sont trois nombres réels et $(a, b) \neq (0, 0)$.

• Réciproquement, si a, b, c sont trois réels tels que $(a,b) \neq (0,0)$, alors l'ensemble des points du plan de coordonnées (x; y) tels que

$$ax + by + c = 0$$

est une droite Δ .

Exemple 7

Sur la figure ci-contre on a tracé les droites :

- $D_1: y = 2x + 1$.
- $D_2: x = -3$.

Tableau pour le tracé de D_1 :

Calculs correspondants:

 $2 \times 0 + 1 = 1$ $2 \times 2 + 1 = 5$

Les deux équations sont écrites « sous forme réduite ». En transposant, on peut écrire :

- $D_1: -2x + 1y 1 = 0$.
- $D_2: 1x + 0y + 3 = 0$.

Exercices

Exercices 20 et 21

Remarque.

Il y a un petit abus lorsqu'on parle de **l**'équation cartésienne, car elle n'est pas unique. Par exemple, l'équation $\Delta: 6x - 9y + 12 = 0$ peut se réécrire $\Delta: 2x - 3y + 4 = 0$ en divisant les deux membres par 3. On aura d'ailleurs intérêt dans les exercices à faire ce type de simplification pour éviter des calculs trop compliqués.

Soient A, B deux points distincts du plan et soient \overrightarrow{n} , \overrightarrow{u} deux vecteurs non nuls. On dit que :

- \overrightarrow{n} est normal (ou orthogonal) à (AB) si $\overrightarrow{n} \cdot \overrightarrow{AB} = 0$.
- \overrightarrow{u} est un vecteur directeur de (AB) si \overrightarrow{u} et \overrightarrow{AB} sont colinéaires.

Théorème 3

Soient A, B deux points distincts du plan et soient a, b deux nombres réels tels que $(a,b) \neq (0,0)$. Les assertions suivantes sont équivalentes :

- Il existe $c \in \mathbb{R}$ tel que (AB) ait une équation de la forme ax + by + c = 0;
- $\overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de (AB);
- $-\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$ est normal à (AB).

Exemple 8

Soient A(-1;-1) et B(2;3). On note Δ la perpendiculaire à (AB) passant par C(-1;2). On va déterminer l'équation cartésienne des droites (AB) et Δ .

On cherche d'abord l'équation de (AB).

Le vecteur $\overrightarrow{AB} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \frac{-b}{a}$ est (bien sûr!) un vecteur directeur de (*AB*), donc d'après le théorème 3, (*AB*) a une équation de la forme

$$4x - 3y + c = 0.$$

 $A(-1;-1) \in (AB)$, donc $4 \times (-1) - 3 \times (-1) + c = 0$, soit -1 + c = 0 et finalement c = 1.

Conclusion : (AB) : 4x - 3y + 1 = 0.

On cherche ensuite l'équation de Δ .

Le vecteur $\overrightarrow{AB} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \frac{a}{b}$ est (bien sûr!) un vecteur normal à Δ , donc d'après le théorème 3, Δ a une équation de la forme

$$3x + 4y + c = 0.$$

a.
$$-b = 3$$
, donc $b = -3$.

 $C(-1;2) \in \Delta$, donc $3 \times (-1) + 4 \times 2 + c = 0$, ce qui donne c = -5.

Conclusion : Δ : 3x + 4y - 5 = 0.

Remarque.

Pour déterminer le point d'intersection des droites (AB) et Δ , on peut :

- soit résoudre le système $\begin{cases} 4x 3y + 1 = 0 \\ 3x + 4y 5 = 0 \end{cases}$;
- soit utiliser la représentation paramétrique de Δ (voir ci-dessous).

Les deux techniques seront étudiées en exercice.

Soit *D* une droite passant par un point *A* et diri- | Cette égalité se réécrit gée par un vecteur $\overrightarrow{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. Un point M(x; y) appartient à la droite D si, et seulement si, \overrightarrow{AM} et \overrightarrow{u} sont colinéaires; donc si, et seulement s'il existe un réel t tel que $AM = t \vec{u}$.

$$\begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix} = t \begin{pmatrix} \alpha \\ \beta \end{pmatrix},$$

soit après développement et transposition:

$$\begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \end{cases}$$
 (1)

Dans la situation qui précède, on dit que (1) est la représentation paramétrique de la droite D. Cela signifie que les points M(x; y)qui appartiennent à D sont ceux qui vérifient (1) pour une certaine valeur de t.

$$\begin{array}{ccc}
A & \overrightarrow{u} \\
t = 0 & t = 1
\end{array}$$

Exemple 9

On considère les points A(4;2) et B(0;3). Comme $\overrightarrow{AB}\begin{pmatrix} -4\\1 \end{pmatrix}$, une représentation paramétrique de (AB) est

$$\begin{cases} x = x_A + t \times (-4) \\ y = y_A + t \times 1 \end{cases}, \ t \in \mathbb{R} \qquad \text{soit} \qquad \begin{cases} x = 4 - 4t \\ y = 2 + t \end{cases}, \ t \in \mathbb{R}.$$

Lorsqu'on prend t=0, on obtient $\begin{cases} x = 4-4\times 0=4 \\ y = 2+0=2 \end{cases}$. Il s'agit bien sûr du point A. Et si on prend t=1, on obtient $\begin{cases} x = 4-4\times 1=0 \\ y = 2+1=3 \end{cases}$. Cette fois, il s'agit du point B. C'est là aussi une évidence :

nous sommes partis de A et avons ajouté 1 fois le vecteur \overrightarrow{AB} . Enfin, si t = 0,5, on vérifie sans peine que le point obtenu est le milieu du segment [AB].

Demandons-nous à présent si le point K(8;1) appartient, ou non, à la droite (AB). Pour répondre, il suffit de savoir s'il existe un réel t tel que

$$\begin{cases} 8 = 4 - 4t \\ 1 = 2 + t \end{cases}.$$

Il est (assez) clair que t=-1 convient, donc $K\in D$. On peut même dire (puisque t=-1) que Kest le symétrique de *B* par rapport à *A* (cf la figure qui précède cet exemple).

V. Cercles

Considérons un cercle \mathscr{C} de centre $I(x_I; y_I)$ et de l'égalité IM = R se réécrit : rayon R. Un point M(x; y) appartient à \mathscr{C} si, et seulement si, la longueur IM vaut R.

Avec la formule pour la longueur d'un segment,

$$\sqrt{(x - x_I)^2 + (y - y_I)^2} = R.$$

On élève au carré:

$$(x - x_I)^2 + (y - y_I)^2 = R^2$$
.

Autrement dit, on vient de démontrer :

Théorème 4 (équation de cercle)

Le cercle \mathscr{C} de centre $I(x_I; y_I)$ et de rayon Ra pour équation

$$\mathscr{C}: (x - x_I)^2 + (y - y_I)^2 = R^2.$$

Exemple 10

Le cercle de centre D(2;-1) de rayon 3 a pour équation

$$(x - x_D)^2 + (y - y_D)^2 = R^2$$
$$(x - 2)^2 + (y - (-1))^2 = 3^2$$
$$(x - 2)^2 + (y + 1)^2 = 9.$$

Remarque.

Si on le souhaite on peut développer :

$$x^2 - 4x + 4 + y^2 + 2y + 1 = 9$$
,

puis transposer et réduire

$$x^2 - 4x + y^2 + 2y - 4 = 0.$$

Pour trouver le centre et le rayon d'un cercle dont l'équation est donnée sous forme développée, on a besoin d'écrire des expressions du second degré sous une forme particulière, appelée forme canonique. Étant donnés deux réels b, c, il s'agit de trouver deux autres réels α , β tels que

$$x^2 + bx + c = (x + \alpha)^2 + \beta.$$

Expliquons comment trouver α et β avec deux exemples :

Exemples 11

1. On écrit $x^2 - 6x + 5$ sous forme canonique. Pour cela, on reconnaît le début d'une identité remarquable que l'on « compense » : dans $x^2 - 6x$, on reconnaît le début de l'identité remarquable

$$(x-3)^2 = x^2 - 2 \times x \times 3 + 3^2 = x^2 - 6x + 9.$$

On écrit alors:

$$x^{2}-6x+5=(x^{2}-6x+9)-4=(x-3)^{2}-4.$$

L'expression de droite est l'écriture sous forme canonique. Avec les notations ci-dessus, $\alpha = -3$ et $\beta = -4$.

2. On écrit $x^2 + x - 1$ sous forme canonique. Dans $x^2 + x$, on reconnaît le début de l'identité remarquable

$$(x+0,5)^2 = x^2 + 2 \times x \times 0, 5+0, 5^2 = x^2 + x + 0, 25.$$

On écrit alors:

$$x^{2} + x - 1 = (x^{2} + x + 0.25) - 1.25 = (x + 0.5)^{2} - 1.25.$$

Retournons aux équations de cercles :

Exemple 12

On prouve que $x^2 + 6x + y^2 - 2y + 5 = 0$ est l'équation d'un cercle et on détermine son centre I et son rayon R.

Pour cela on écrit $x^2 + 6x$ et $y^2 - 2y$ sous forme canonique :

$$x^{2} + 6x = (x^{2} + 6x + 9) - 9 = (x + 3)^{2} - 9$$
 , $y^{2} - 2y = (y^{2} - 2y + 1) - 1 = (y - 1)^{2} - 1$.

Donc l'égalité $\underbrace{x^2 + 6x}_{(x+3)^2 - 9} + \underbrace{y^2 - 2y}_{(y-1)^2 - 1} + 5 = 0$ est équivalente à $(x+3)^2 - 9 + (y-1)^2 - 1 + 5 = 0$, soit $(x+3)^2 - 9 + (y-1)^2 - 1 + 5 = 0$

$$(3)^2 + (y-1)^2 = 5$$
, soit enfin

$$(x-(-3))^2 + (y-1)^2 = \sqrt{5}^2$$
.

Il s'agit bien de l'équation d'un cercle, de centre I(-3;1) et de rayon $R=\sqrt{5}$.

/ Attention

Compte tenu du théorème 4, il faut faire apparaître des « – » pour avoir les coordonnées du centre, et un carré pour avoir le rayon :

$$(x-(-3))^2 + (y-1)^2 = \sqrt{5}^2$$

$$(x - x_I)^2 + (y - y_I)^2 = R^2$$

Remarque.

On peut démontrer que, de façon générale, $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$. Cette écriture permet :

- De montrer que le sommet de la parabole d'équation $y = ax^2 + bx + c$ est le point de coordonnées $\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$ on peut aussi démontrer ce résultat avec la dérivation.
- D'obtenir les formules pour les solutions de l'équation $ax^2 + bx + c = 0$. On réécrit cette équation $\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$, puis on distingue les trois cas habituels : $\Delta > 0$, $\Delta = 0$ et $\Delta < 0$. La même technique fonctionne dans $\mathbb C$, pour l'équation $az^2 + bz + c = 0$.
- D'obtenir la factorisation de $ax^2 + bx + c$.

Pour conclure la leçon, on s'intéresse à la représentation paramétrique d'un cercle $\mathscr C$, de centre I et de rayon r. On travaille avec les affixes : un point M d'affixe z est sur $\mathscr C$ si, et seulement si, IM = r; ce qui se réécrit $|z - z_I| = r$. Or les points du plan complexe de module r sont les $re^{\mathrm{i}\theta}$, avec $\theta \in \mathbb R$ (ou $\theta \in [0;2\pi[$, si l'on ne veut parcourir le cercle qu'une fois).

Conclusion:

$$M \in \mathscr{C} \iff IM = r \iff |z - z_I| = r \iff z - z_I = re^{i\theta} \iff z = z_I + re^{i\theta}.$$

Proposition 13

Le cercle \mathscr{C} , de centre I et de rayon r, a pour représentation paramétrique

$$z = z_I + re^{i\theta}, \ \theta \in \mathbb{R}.$$

Ou encore, avec les coordonnées cartésiennes :

$$\begin{cases} x = x_I + r \cos \theta \\ y = y_I + r \sin \theta \end{cases}, \ \theta \in \mathbb{R}.$$

VI. Exercices

Exercice 1 $(\hat{\mathbf{m}})$.

Soient A(0; -4), B(3; 0, 5), C(-2; 2) et D(1; 0).

Prouver que les droites (AB) et (CD) sont perpendiculaires.

Exercice 2 $(\hat{\mathbf{m}})$.

ABCD est un carré de côté 4, I est le milieu de [AB], J le milieu de [BC].

Démontrer que les droites (CI) et (DJ) sont perpendiculaires.

Exercice 3 $(\hat{\mathbf{m}})$.

Les questions 1 à 3 sont indépendantes.

- 1. Soient A(0;-1), B(6;3) et C(2;4). Calculer \widehat{BAC} à 1° près.
- **2.** ABCD est un parallélogramme tel que AB = 5, AC = 6 et $\widehat{BAC} = 60^{\circ}$. En développant $\overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AB} \cdot (\overrightarrow{AC} + \overrightarrow{CD})$, prouver que $\overrightarrow{AB} \cdot \overrightarrow{AD} = -10$.
- **3.** ABC est isocèle en C et AB = 6. Calculer \overrightarrow{AB} . \overrightarrow{AC} .

Exercice 4.

Soit \vec{F} une force appliquée sur un point matériel M le long d'un chemin \overrightarrow{AB} .

- 1. Quel est le travail W de la force sur le déplacement \overrightarrow{AB} ?
- **2.** On suppose AB = 10 m, $\|\vec{F}\| = 20 \text{ N et } W =$ 1,6.10² J. Déterminer une valeur approchée de θ à 1° près.

Exercice 5.

Quel est le travail du poids d'une personne de 80 kg qui se déplace de A vers B dans le champ de pesanteur terrestre?

Données numériques : g = 9,81, $z_A - z_B = 100$ m.

Exercice 6 ($\underline{\hat{\mathbf{m}}}$ δ).

On se propose de démontrer la propriété bien connue:

Les hauteurs d'un triangle sont concourantes.

- 1. Construire un triangle ABC, puis H le point d'intersection des hauteurs issues de B et C.
- 2. Justifier l'égalité:

$$\overrightarrow{HC} \cdot \overrightarrow{AB} + \overrightarrow{HA} \cdot \overrightarrow{BC} + \overrightarrow{HB} \cdot \overrightarrow{CA} = 0.$$

Indication : Écrire $\overrightarrow{HC} = \overrightarrow{HA} + \overrightarrow{AC}$, $\overrightarrow{HB} = \overrightarrow{HA} + \overrightarrow{AC}$ \overrightarrow{AB} , développer, puis simplifier.

3. En déduire que (HA) est la hauteur issue de A.

Exercice 7 (**1 6**).

 \mathscr{C} est un cercle de **1.** Soit M un point du centre I, de rayon R et de diamètre [AB].

plan. En remarquant que $\overrightarrow{MA} = \overrightarrow{MI} + \overrightarrow{IA}$ et $\overrightarrow{MB} = \overrightarrow{MI} + \overrightarrow{IB}$, démontrer que

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - R^2.$$

2. En déduire l'équivalence:

$$M\in\mathcal{C}\iff\overrightarrow{MA}\cdot\overrightarrow{MB}=0.$$

Exercice 8 (8).

Dans tout l'exercice, on munit le plan de son r.o.n.d. habituel (O, \vec{i}, \vec{j}) .

- 1. a. Soient A(3;2) et M(5;-1). Quelles sont les coordonnées de M dans le repère $(A, \overrightarrow{i}, \overrightarrow{j})$?
 - **b.** On généralise : soient $A(x_A; y_A)$ et $M(x_M; y_M)$. Quelles sont les coordonnées de M dans le repère $(A, \overrightarrow{i}, \overrightarrow{j})$?
- **2.** On se donne à présent un nouveau r.o.n.d. $(A, \overrightarrow{u}, \overrightarrow{v})$.

Prouver que pour tout vecteur \overrightarrow{w} :

$$\overrightarrow{w} = \left(\overrightarrow{w} \cdot \overrightarrow{u}\right) \overrightarrow{u} + \left(\overrightarrow{w} \cdot \overrightarrow{v}\right) \overrightarrow{v}$$

Exercice 9 (démonstration du cours).

Soit ABDC un parallélogramme et soit H le projeté orthogonal de C sur (AB). On note $\theta = \widehat{BAC}$.

- 1. Faire une figure et exprimer la longueur CH en fonction de l'angle θ et de la longueur AC.
- **2.** En déduire que l'aire de ABDC est égale à $\left|\det\left(\overrightarrow{AB},\overrightarrow{AC}\right)\right|$.
- **3. Étude d'un exemple.** Calculer l'aire du triangle ABC, où A(1;1), B(3;0), C(4;3).

Exercice 10.

Soient
$$\overrightarrow{u} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\overrightarrow{v} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ et $\overrightarrow{w} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.

- 1. Calculer le déterminant de \overrightarrow{u} et \overrightarrow{v} . Interpréter géométriquement.
- 2. Calculer le déterminant de \overrightarrow{u} et \overrightarrow{w} . Interpréter géométriquement.

Exercice 11 (1).

Soient O(0;0), A(3;2), B(4,5;3), C(3;-2,5) et D(7;-1,5).

- 1. Les points O, A, B sont-ils alignés?
- **2.** Les droites (*OC*) et (*AD*) sont-elles parallèles?

Exercice 12 (demonstration du cours).

Démontrer la proposition 7 : deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont linéairement dépendants si, et seulement si, ils sont colinéaires.

Exercice 13 (11).

Construire un segment [AB] et placer les points $G = \text{bary} A_3 B_2$, $I = \text{bary} A_2 B_2$, $K = \text{bary} A_{-1} B_3$.

Exercice 14 (11).

Soient A(-2;1), B(2;3) et C(4;0).

- 1. Calculer les coordonnées de $G = \text{bary} A_1 B_3 C_4$ et faire une figure.
- **2.** Soit $I = \text{bary} A_1 B_3$. Calculer les coordonnées de I et vérifier que G est le milieu du segment [IC].

Exercice 15 (11).

Tracer un triangle quelconque ABC, puis construire $G = \text{bary } A_2B_1C_1$.

Exercice 16 (11).

GAB est un triangle, I est le milieu du segment [AB]. Prouver que

$$\overrightarrow{GA} + \overrightarrow{GB} = 2\overrightarrow{GI}$$

de deux façons différentes:

- en utilisant la relation de Chasles et le calcul vectoriel;
- en utilisant les affixes des vecteurs.

Exercice 17 $(\hat{\mathbf{1}})$.

ABC est un triangle, I est le milieu du segment [AB] et G est l'isobarycentre de A, B, C.

- **1.** Rappeler la définition de *G*.
- 2. En utilisant l'exercice 16, prouver que $2\overrightarrow{GI} + \overrightarrow{GC} = \overrightarrow{0}$.
- **3.** Compléter les pointillés $G = \text{bary}I_{\dots}C_{\dots}$, puis construire G.

Exercice 18 (11).

ABC est un triangle, I est le milieu du segment [AB] et $G = bary A_1 B_1 C_2$.

- **1.** Rappeler la définition de G.
- **2.** En utilisant l'exercice 16, prouver que $G = \text{bary } I_2C_2$. Construire G.

Exercice 19 (8).

En utilisant les idées des exercices précédents, donner la méthode de construction de l'isobary-centre G de quatre points A, B, C, D.

Exercice 20.

1. Écrire les équations sous forme cartésienne :

$$D: y = 2x - 4,$$
 $D': x = 3.$

2. Écrire les équations sous forme réduite :

$$\Delta: -5x + y + 3 = 0,$$
 $\Delta': 3x + 4y = 0.$

Exercice 21.

- 1. Tracer les droites $D_1: 3x + 2y 5 = 0$ et $D_2: -x + y + 3 = 0$.
- **2.** Déterminer les coordonnées du point d'intersection des droites D_1 et D_2 .

Exercice 22 (11).

Les deux questions sont indépendantes.

- 1. Soient A(-1;0), B(2;4) et C(5;-1). Déterminer l'équation cartésienne de (BC), puis de la perpendiculaire Δ à (BC) passant par A.
- **2.** Soient A(0;-2) et B(4;3). Déterminer l'équation cartésienne de la médiatrice Δ du segment [AB].

Exercice 23 (11).

Tracer les droites $\Delta: 3x - 2y + 3 = 0$ et $\Delta': 4x + 6y + 12 = 0$. Ces droites sont-elles orthogonales?

Exercice 24 (11).

On considère dans un repère de centre O les points A(8;0) et B(0;6), le milieu I de [AB] et le projeté orthogonal H de O sur (AB).

- 1. Faire une figure.
- **2. a.** Déterminer les équations cartésiennes de (*AB*) et (*OH*).
 - **b.** En déduire les coordonnées de *H*.
- **3.** Le point *H* se projette orthogonalement en *E* sur l'axe des abscisses et en *F* sur l'axe des ordonnées.

Démontrer que les droites (OI) et (EF) sont perpendiculaires.

Exercice 25 (11).

- **1.** On considère les points A(2;-1) et B(1;1).
 - **a.** Donner une représentation paramétrique de la droite (*AB*).
 - **b.** Le point K(0;3) appartient-il à (AB)?
- **2.** Donner une représentation paramétrique de la droite (*D*) passant *C* (2;3) et dirigée par $\overrightarrow{u} \begin{pmatrix} 2 \\ -4 \end{pmatrix}$.
- **3.** Les droites (*D*) et (*AB*) sont-elles parallèles? Sont-elles orthogonales?

Exercice 26 $(\hat{\mathbf{m}})$.

Soient D: 2x - y - 1 = 0 et C(-1;3).

- 1. Faire une figure.
- **2.** Déterminer une représentation paramétrique de la perpendiculaire Δ à D passant par C.
- **3.** Le point *C* se projette orthogonalement en *H* sur *D*. Construire *H* et calculer ses coordonnées
- **4.** Calculer la distance du point *C* à la droite *D*.

Exercice 27 $(\hat{\mathbf{m}})$.

On fera une figure.

- 1. Déterminer l'équation des cercles :
 - **a.** \mathcal{C}_1 de centre I(-2;3) de rayon 3.
 - **b.** \mathscr{C}_2 de centre J(1;-1) passant par A(3;1).
 - **c.** \mathscr{C}_3 de diamètre [BC], où B(2;2) et C(6;0).
- **2.** Le point G(-3,5; 0,5) appartient-il au cercle \mathcal{C}_1 ?
- 3. Déterminer les coordonnées des points d'intersection du cercle \mathcal{C}_3 avec l'axe des abscisses.

Exercice 28 (11).

Mettre chacune des expressions suivantes sous forme canonique:

Exercice 29 (血).

- Déterminer le centre et le rayon du cercle \(\Cap : \)
 x² 4x + y² + y 2 = 0.
 Déterminer le centre et le rayon du cercle \(\Cap ' : \)
 x² + 3x + y² 6y 1 = 0.