

AVR Digital Voltmeter

- ❖ ATmega128을 이용한 Digital Voltmeter
- ❖ 개발 목적 :

ATmega 128의 10bit A/D convert 특성을 활용하여 외부 인가 전압을 C프로그램 설계를 통하여 Digital Voltmeter로 구현하므로 U-Com 동작원리와 C프로그램 응용 능력을 향상시킨다.

● ATmega 128의 10bit A/D 변환기를 이용한 Digital 전압계 설계

$$• V_{IN} = \frac{AD\ Count}{FSR} * VREF [V]$$

● ATmega 128의 10bit A/D 변환부분 회로도

● ATmega 128의 10bit A/D 변환부분 회로도

● ATmega 128의 PCB Assy

● Digital Voltmeter 동영상(예시)

O ATmega 128의 LCD Display 사양

(초기 부팅 화면)

(Digital Voltmeter 초기 화면)

(Digital Voltmeter 가변 화면)

● ATmega 128의 10bit A/D 변환기 Register 설정

Bit	7	6	5	4	3	2	1	0	_
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUXo	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Table 97. Voltage Reference Selections for ADC

REFS1	REFS0	Voltage Reference Selection			
0	0	AREF, Internal Vref turned off			
0	1	AVCC with external capacitor at AREF pin			
1	0	Reserved			
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin			

- Bit 5 ADLAR: ADC Left Adjust Result
- Bits 4:0 MUX4:0: Analog Channel and Gain Selection Bits

● ATmega 128의 10bit A/D 변환기 Register 설정

Bit	7	6	5	4	3	2	1	0	_
	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Bit 7 – ADEN: ADC Enable

Bit 6 – ADSC: ADC Start Conversion

Bit 5 – ADFR: ADC Free Running Select

Bit 4 – ADIF: ADC Interrupt Flag

Bit 3 – ADIE: ADC Interrupt Enable

• Bits 2:0 - ADPS2:0: ADC Prescaler Select Bits

MUX40	Single Ended Input
00000	ADC0
00001	ADC1
00010	ADC2
00011	ADC3
00100	ADC4
00101	ADC5
00110	ADC6
00111	ADC7
01000	
01001	

AVR - Programming

• MCU(Micro-Control Unit) 초기화

```
void MCU initialize(void) /* initialize ATmege128 MCU */
MCUCR = 0x80; // Enable external memory and I/O, Disable SLEEP mode
XMCRA = 0x44; // 0x1100 - 0x7FFF (1 wait), 0x8000 - 0xFFFF (0 wait)
XMCRB = 0x80: // Enable bus keeper. Use PC0-PC7 as high byte of address bus
DDRB = 0xF0; // 입력/출력 방향결정, PORTB7..4 = output, PORTB3..0 = Input
PORTB = 0x00; // I/O pin 초기값 지정
                        // Port D7..2 = output, "1= Output, 0= Input"
DDRD = 0xFD;
PORTD = 0x00;
                        // Port D1..0 = Input
DDRE = 0x0A:
                        // Port E1,3 = output, All other PORTs are Input
PORTE = 0xE0;
                        // Port F = Input
DDRF = 0x00;
PORTF = 0x00;
DDRG = 0x1F;
LCD CONTROL = 0x00; // LCD 제어
LCD DATABUS = 0x00;
                       // LCD Data
```


AVR - Programming

Display X.XX number on LCD

```
void LCD_1d2(float number) /* display X.XX number on LCD */
     int i, j;
     j = (int)(number * 100. + 0.5);
     i = j / 100;
     LCD_data(i + '0');
     LCD_data('.');
     i = (i \% 100) / 10;
     LCD_data(i + '0');
     i = j \% 10;
     LCD_data(i + '0');
```