## Test case 1 (without deadlock):

| PID | Arrival Time | Priority | CPU / IO Bursts        |
|-----|--------------|----------|------------------------|
| 0   | 0            | 0        | CPU{10} IO{30} CPU{10} |
| 1   | 0            | 0        | CPU{20}                |

## **Gantt Chart**

|   | P0 | P1  | idle | PO   |
|---|----|-----|------|------|
| 0 | 1  | 0 3 | ) 4  | 0 50 |

## Test case 2 (with deadlock):

Assume the time quantum q = 10, and a lower priority number implies a higher priority

| PID | Arrival Time | Priority | CPU / IO Bursts                     |
|-----|--------------|----------|-------------------------------------|
| 0   | 0            | 1        | CPU{R[1], 15, R[2], 10, F[1], F[2]} |
| 1   | 0            | 1        | CPU[5, R[2], R[1], 10, F[2], F[1]]  |
| 2   | 0            | 0        | CPU{50}                             |

Deadlocked processes: P0 and P1

Gantt Chart (assuming that deadlock detection is applied whenever a resource is requested and deadlock recovery is achieved by terminating P1, i.e., P1 should run again from the beginning)



Deadlock is detected, P1 is terminated

and resource 2 is preempted