Modellbildung Beispielsammlung

4.Semester ET-Studium Oktober 2019

Inhaltsverzeichnis

1	Einleitung	3
2	Prüfungen	3
	2.1 17.05.2019	3
	2.2 12.07.2019	6

1 Einleitung

In dieser Ausarbeitung befinden sich sämtliche Rechenwege der Modellbildungsprüfung beginnend ab dem Jahr 2015. Die Angaben zu den hier ausgearbeiteten Prüfungen befinden sich auf der Homepage des ACIN. Sämtlichen verwendeten Formeln befinden sich in der Formelsammlung, welche ebenfalls auf der Homepage des ACIN zu finden ist. Ich hoffe durch dieses Dokument hilft euch weiter.

2 Prüfungen

$2.1 \quad 17.05.2019$

Beispiel 2

a)

Beispiel 3

a)

Der Vektor vom Ursprung zum Schwerpunkt des Rades kann direkt aus Angabe abgelesen werden und lautet deshalb:

$$\mathbf{r}_r = \begin{bmatrix} p\cos\alpha - r\sin\alpha \\ p\sin\alpha + r\cos\alpha \end{bmatrix}$$

Der translatorische Geschwindigkeitsvektor erhält man durch die Ableitung vom Ortsvektor nach den Freiheitsgraden.

Translatorischer Geschwindigkeitsvektor:

$$\mathbf{v}_r = \dot{\mathbf{r}_r} = \begin{bmatrix} \dot{p}\cos\alpha\\ \dot{p}\sin\alpha \end{bmatrix}$$

Die rotatorische Geschwindigkeit lautet:

$$\omega_r = \frac{\dot{p}}{r}$$

b)

Der Vektor zum Schwerpunkt des Stabes kann ebenfalls aus der Angabe abgelesen werden und lautet deshalb:

$$\mathbf{r}_S = \begin{bmatrix} p\cos\alpha - r\sin\alpha + l_s\sin\varphi \\ p\sin\alpha + r\cos\alpha + l_s\cos\varphi \end{bmatrix}$$

Analog zu a) lautet der translatorische Geschwindigkeitsvektor:

$$\mathbf{v}_S = \dot{\mathbf{r}_S} = \begin{bmatrix} \dot{p}\cos\alpha + l_s\cos\varphi\dot{\varphi} \\ \dot{p}\sin\alpha - l_s\sin\varphi\dot{\varphi} \end{bmatrix}$$

c)

Als erstes wird die translatorische kinetische Energie des System wie folgt ermittelt:

Vereinfachungen:

$$\dot{\mathbf{r}_r}^T \dot{\mathbf{r}_r} = \begin{bmatrix} \dot{p} \cos \alpha & \dot{p} \sin \alpha \end{bmatrix} \begin{bmatrix} \dot{p} \cos \alpha \\ \dot{p} \sin \alpha \end{bmatrix}$$

$$= \dot{p}^2 \cos^2 \alpha + \dot{p}^2 \sin^2 \alpha$$

$$= \dot{p}^2 \underbrace{\left(\cos^2 \alpha + \sin^2 \alpha\right)}_{=1}$$

$$= \dot{p}^2$$

$$\begin{split} \dot{\mathbf{r}_S}^T \dot{\mathbf{r}_S} &= \left[\dot{p} \cos \alpha + l_s \cos \varphi \dot{\varphi} \quad \dot{p} \sin \alpha - l_s \sin \varphi \dot{\varphi} \right] \begin{bmatrix} \dot{p} \cos \alpha + l_s \cos \varphi \dot{\varphi} \\ \dot{p} \sin \alpha - l_s \sin \varphi \dot{\varphi} \end{bmatrix} \\ &= \left(\dot{p} \cos \alpha + l_s \cos \varphi \dot{\varphi} \right)^2 + \left(\dot{p} \sin \alpha + l_s \sin \varphi \dot{\varphi} \right)^2 \\ &= \dot{p}^2 \cos^2 \alpha + 2 l_s \dot{p} \dot{\varphi} \cos \alpha \cos \varphi + l_s^2 \dot{\varphi}^2 \cos^2 \varphi + \dot{p}^2 \sin^2 \alpha - 2 l_s \dot{p} \dot{\varphi} \sin \alpha \sin \varphi + l_s^2 \sin^2 \varphi \dot{\varphi}^2 \\ &= \dot{p}^2 \underbrace{\left(\sin^2 \alpha + \cos^2 \alpha \right)}_{=1} + 2 l_s \dot{p} \dot{\varphi} \underbrace{\left(\cos \varphi \cos \alpha - \sin \varphi \sin \alpha \right)}_{=0} + l_s^2 \dot{\varphi}^2 \underbrace{\left(\sin^2 \varphi + \cos^2 \varphi \right)}_{=1} \\ &= \dot{p}^2 + 2 l_s \dot{p} \dot{\varphi} \cos \left(\varphi + \alpha \right) + l_s^2 \dot{\varphi}^2 \end{split}$$

Nun kann man schließlich die translatorische kinetischen Energie des Rades und des Stabes bestimmen.

$$\begin{split} T_{trans,r} &= \frac{1}{2} m_r \dot{p}^2 \\ T_{trans,s} &= \frac{1}{2} m_s \left(\dot{p}^2 + l_s^2 \dot{\varphi}^2 + 2 l_s \dot{p} \dot{\varphi} \cos \left(\varphi + \alpha \right) \right) \end{split}$$

Die kinetische Energie besitzt jedoch auch einen rotatorischen Anteil. Dieser lautet für die beiden Teilsysteme:

$$T_{rot,r} = \frac{1}{2}\Theta_r \frac{\dot{p}^2}{r^2}$$
$$T_{rot,s} = \frac{1}{2}\Theta_s \dot{\varphi}^2$$

Da wir nun sämtliche Teilenergien ermittelt haben, beträgt die gesamte kinetische Energie des vorliegenden Systems:

$$\begin{split} T &= T_{trans,r} + T_{rot,r} + T_{trans,s} + T_{rot,s} \\ &= \frac{1}{2} m_r \dot{p}^2 + \frac{1}{2} \Theta_r \frac{\dot{p}^2}{r^2} + \frac{1}{2} m_s \left(\dot{p}^2 + l_s^2 \dot{\varphi}^2 + 2 l_s \dot{p} \dot{\varphi} \cos \left(\varphi + \alpha \right) \right) + \frac{1}{2} \Theta_s \dot{\varphi}^2 \end{split}$$

Als nächstes wird nun die gesamte potentielle Energie des gegebenen System ermittelt. Zuerst berechnet man wieder die Energien der Teilsysteme und addiert dieser zum Schluss wieder zusammen.

$$\begin{split} V_r &= m_r g \left(p \sin \alpha + r \cos \alpha \right) \\ V_s &= m_s g \left(p \sin \alpha + r \cos \alpha + l_s \cos \varphi \right) \\ V &= V_r + V_s = m_r g \left(p \sin \alpha + r \cos \alpha \right) + m_s g \left(p \sin \alpha + r \cos \alpha + l_s \cos \varphi \right) \end{split}$$

d)

Um den Vektor der generalisierten Kräfte zu bestimmen benötigt man zuerst den Richtungsvektor zu den Angriffspunkten der extern wirkenden Kräfte, hier f_{ext} .

Angriffspunkt der Kraft:

$$\mathbf{r}_f = \begin{bmatrix} p\cos\alpha - r\sin\alpha + 2l_s\sin\varphi \\ p\sin\alpha + r\cos\alpha + 2l_s\cos\varphi \end{bmatrix}$$

Weiters benötigt man auch den Vektor der externen Kräfte.

Kraftvektor:

$$\mathbf{f}_{ext}^T = f_{ext} \begin{bmatrix} \cos \beta & \sin \beta \end{bmatrix}$$

Nun werden die partiellen Ableitung nach ${f q}$ vom Angriffspunkt der Kraft gebildet:

$$\frac{\partial \mathbf{r}_f}{\partial \varphi} = \begin{bmatrix} 2l_s \cos \varphi \\ -2l_s \sin \varphi \end{bmatrix} \qquad \frac{\partial \mathbf{r}_f}{\partial p} = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$$

Der Vektor der generalisierten Kräfte wird nun wie folgt ermittelt:

$$\mathbf{f}_q = \mathbf{f}_{ext}^T rac{\partial \mathbf{r}_f}{\partial \mathbf{q}}$$

generalisierte Kräfte:

$$f_{q,\varphi} = f_{ext} \left[\cos \beta \quad \sin \beta \right] \begin{bmatrix} 2l_s \cos \varphi \\ -2l_s \sin \varphi \end{bmatrix}$$

$$= f_{ext} \left(2l_s \cos \beta \cos \varphi - 2l_s \sin \beta \sin \varphi \right)$$

$$= f_{fext} 2l_s \underbrace{\left(\cos \beta \cos \varphi - 2l_s \sin \beta \sin \varphi \right)}_{\cos(\beta + \varphi)}$$

$$= f_{ext} 2l_s \cos (\beta + \varphi)$$

$$f_{q,p} = f_{ext} \left[\cos \beta \quad \sin \beta \right] \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$$
$$= f_{ext} \underbrace{\left(\cos \beta \cos \alpha + \sin \beta \sin \alpha \right)}_{\cos(\beta - \alpha)}$$
$$= f_{ext} \cos (\beta - \alpha)$$

gesamter Vektor:

$$\mathbf{f}_{q} = f_{ext} \begin{bmatrix} 2l_{s} \cos(\beta + \varphi) \\ \cos(\beta - \alpha) \end{bmatrix}$$

e)

Zum Schluss sollen noch die Bewegungsgleichungen mithilfe des Euler-Lagrange-Formalismus bestimmt werden.

$$L = T - V$$

$$= \frac{1}{2} m_r \dot{p}^2 + \frac{1}{2} \Theta_r \frac{\dot{p}^2}{r^2} + \frac{1}{2} m_s \left(\dot{p}^2 + l_s^2 \dot{\varphi}^2 + 2 l_s \dot{p} \dot{\varphi} \cos \left(\varphi + \alpha \right) \right) + \frac{1}{2} \Theta_s \dot{\varphi}^2$$

$$- m_r g \left(p \sin \alpha + r \cos \alpha \right) - m_s g \left(p \sin \alpha + r \cos \alpha + l_s \cos \varphi \right)$$

Bewegungsgleichungen:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}} \right) - \left(\frac{\partial L}{\partial \varphi} \right) = 2l_s f_{ext} \cos \left(\beta + \varphi \right)$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{p}} \right) - \left(\frac{\partial L}{\partial p} \right) = f_{ext} \cos \left(\beta - \alpha \right)$$

Zwischenschritte:

$$\begin{split} \frac{\partial L}{\partial \dot{\varphi}} &= m_s \left(l_s^2 \dot{\varphi} + l_s \dot{p} \cos \left(\varphi + \alpha \right) \right) + \Theta_s \dot{\varphi} \\ \frac{\partial L}{\partial \dot{p}} &= m_r \dot{p} + \frac{\Theta_r}{r^2} \dot{p} + m_s \left(\dot{p} + 2 l_s \dot{\varphi} \cos \left(\varphi + \alpha \right) \right) \end{split}$$

auftretende Ableitungen:

$$\begin{split} \frac{\partial L}{\partial \varphi} &= -m_s l_s \sin \left(\varphi + \alpha\right) \dot{p} \dot{\varphi} + m_s g l_s \sin \varphi \\ \frac{\partial L}{\partial p} &= -g \left(m_s + m_r\right) \sin \alpha \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}}\right) &= m_s l_s \cos \left(\varphi + \alpha\right) \ddot{p} + \left(m_s l_s^2 + \Theta_s\right) \ddot{\varphi} - m_s l_s \dot{p} \sin \left(\varphi + \alpha\right) \dot{\varphi} \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{p}}\right) &= \left(m_r + \frac{\Theta_r}{r^2} + m_s\right) \ddot{p} + m_s l_s \left(\ddot{\varphi} \cos \left(\varphi + \alpha\right) - \dot{\varphi} \sin \left(\varphi + \alpha\right) \dot{\varphi}\right) \end{split}$$

$2.2 \quad 12.07.2019$