A.2 – Digital Logic & Signal Basics

Logic Levels

- TTL (5V logic): HIGH \geq 2.0V, LOW \leq 0.8V
- CMOS (3.3V logic): HIGH $\sim 0.7 \times \text{Vcc}$, LOW $\sim 0.3 \times \text{Vcc}$
- Always check datasheet for VIH (min high) & VIL (max low).
- https://www.geeksforgeeks.org/digital-logic/introduction-to-logic-family/
- Logic levels TI FAQ + overview. TI E2E

Analog vs Digital

- Analog: Continuous values (e.g., sensor voltage)
- **Digital:** Only two states (0 or 1)
- https://www.geeksforgeeks.org/digital-logic/difference-between-digital-and-analog-system/

Schmitt Trigger

- Adds hysteresis two thresholds (one for rising, one for falling).
- Prevents multiple triggers from noisy or slow signals.
- Schmitt: Wikipedia

Level Shifting

- Required when devices use different voltages.
- Methods:
 - o Resistor divider (simple, slow)
 - MOSFET-based shifter (I²C/SPI)
 - Dedicated level translator IC
- Level shifting basics: SparkFun guide. learn.sparkfun.com

Practical

- Make AND, OR, NOT truth tables.
- Build MOSFET-based I²C level shifter.
- Test with mixed-voltage devices.

Summary

- Logic thresholds differ always match devices.
- Schmitt triggers improve signal stability.
- Level shifting protects components from over-voltage.

References

- Web:
 - Logic Gate Basics
 - Level Shifting Guide
- YouTube:
 - o Logic Gates Explained
 - o <u>Level Shifting for MCUs</u>