DUALITY FOR CROSSED PRODUCTS OF VON NEUMANN ALGEBRAS BY LOCALLY COMPACT GROUPS

BY YOSHIOMI NAKAGAMI

Communicated June 30, 1975

The duality for crossed products of von Neumann algebras by locally compact abelian groups has been obtained by Takesaki [4]. We shall generalize this result to a locally compact (not necessarily abelian) group by using the Fourier algebra in place of the dual group.

Let G denote a locally compact group with a right invariant Haar measure dt, and M denote a von Neumann algebra over a Hilbert space H. By an action of G on M we mean a homomorphism $\sigma\colon t\in G\mapsto \sigma_t\in \operatorname{Aut}(M)$ such that for each $x\in M$ the mapping $t\in G\mapsto \sigma_t(x)$ is σ -strongly* continuous. Let $\{\pi_\sigma,\lambda\}$ be a covariant representation of $\{M,\sigma\}$ on $H\otimes L^2(G)$ defined by

$$\begin{cases} (\pi_{\sigma}(x)\xi)(s) \equiv \sigma_{s}(x)\xi(s), & \xi \in \mathbb{H} \otimes L^{2}(G), \\ \lambda(r)\xi(s) \equiv \xi(sr), & r, s \in G. \end{cases}$$

Then the crossed product $R(M; \pi_{\sigma})$ of M by G is the von Neumann algebra generated by $\pi_{\sigma}(M)$ and $\lambda(G)$.

Theorem 1. A necessary and sufficient condition that a mapping α of M into $M \otimes L^{\infty}(G)$ be induced by an action σ with

$$(\alpha(x)\xi)(s) = \sigma_s(x)\xi(s), \quad x \in M, \xi \in H \otimes L^2(G),$$

is that α be an isomorphism with the commutative diagram:

where $(\delta f)(s, t) \equiv f(st)$ for $f \in L^{\infty}(G)$.

For the right regular representation λ_G of G on $L^2(G)$, i.e.,

$$(\lambda_G(s)f)(t) \equiv f(ts), \quad f \in L^2(G), s, t \in G,$$

let R(G) denote the von Neumann algebra generated by $\lambda_G(G)$. Let γ denote the isomorphism of R(G) into $R(G) \otimes R(G)$ defined by

AMS (MOS) subject classifications (1970). Primary 46L10. Key words and phrases. von Neumann algebra, crossed product, duality.

Copyright © 1975, American Mathematical Society