Joins

Daniel Anderson

Week 3, Class 2

Learning Objectives

- Understand and be able to identify keys
- Understand different types of joins
 - left, right, inner, full
 - one-to-one, one-to-many
- Understand common ways joins fail
- Understand the difference between mutating and filtering joins

Before we get started

- Today we'll talk about both mutating and filtering joins
- Mutating joins are more common, but filtering joins can be really powerful
- Mutating joins add columns to a dataset

What if I want to add rows?

 Not technically a join (no key involved, which we'll talk about momentarily)

Quick example, binding rows

```
g3

## # A tibble: 3 x 3
## sid grade score
## <int> <dbl> <int> ## 1 1 3 215 ## 1 9 4 213
## 2 2 3 203 ## 2 10 4 191
## 3 3 3 200 ## 3 11 4 209
```

bind_rows

- In examples like the previous datasets, we just want to "staple" the rows together.
- We can do so with bind_rows.

bind_rows(g3, g4)

Optional . id argument

- What if we knew the grade, but didn't have a variable in each dataset already?
- Use .id to add an index for each dataset

```
bind_rows(g3[,-2], g4[,-2], .id = "dataset")
```

```
bind_rows(g3[ ,-2], g4[ ,-2], .id = "dataset") %>%
  mutate(grade = ifelse(dataset == 1, 3, 4))
```

Even better usage

```
bind_rows(g3 = g3[ ,-2], g4 = g4[ ,-2], .id = "grade")
```

What if columns don't match exactly?

Pad with NA

```
bind_rows(g3, g4[,-2], .id = "dataset")
```

```
## # A tibble: 6 x 4
## dataset sid grade score
## <chr> <int> <dbl> <int>
                     3 215
## 1 1
## 2 1
                    3 203
                    3 200
## 3 1
## 4 2
                   NA 213
## 5 2
              10
                   NA 191
## 6 2
              11
                    NA 209
```

Last note — read in a bunch of files

- We'll talk about this a lot more in the next course
- purrr::map_df uses bind_rows in the background

```
## [1] "cyl4.csv" "cyl6.csv" "cyl8.csv"
```

Read in files

```
Use purrr::map_df with the file names Note fs::dir_ls
is equivalent to list.files, but plays nicer with
purrr::map_df
new_mtcars <- map_df(fs::dir_ls("tmp"), rio::import, setclass =</pre>
                    .id = "file")
new mtcars %>%
  select(file, mpg, cyl) %>%
  slice(1:3)
## # A tibble: 3 \times 3
## file mpg cyl
## <chr> <dbl> <int>
## 1 tmp/cyl4.csv 22.8
## 2 tmp/cyl4.csv 24.4
## 3 tmp/cyl4.csv 22.8
unlink("tmp", recursive = TRUE)
```

Joins

(not to be confused with row binding)

Keys

- Uniquely identify rows in a dataset
- Variable(s) in common between two datasets to be joined
- A key can be more than one variable

Types of keys

- Small distinction that you probably won't have to worry about much, but is worth mentioning:
 - Primary keys: Uniquely identify observations in their dataset
 - Foreign keys: Uniquely identify observations in other datasets.

What's the primary key

here?

```
## # A tibble: 984 x 33
## child id teacher id school id k type school type sex ethnic
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 0842021C 0842T02 0842 full-day public
                                                     male BLACK OR AFF
## 2 0905002C 0905T01 0905
## 3 0150012C 0150T01 0150
                                 full-day private male ASIAN full-day private female BLACK OR AFF
## 4 0556009C 0556T01 0556
                                 full-day private
                                                     female HISPANIC, RA
## 5 0089013C 0089T04 0089
                                 full-day public
                                                     male WHITE, NON-F
## 6 1217001C 1217T13 1217
                                 half-day public
                                                     female NATIVE HAWAI
## # ... with 978 more rows, and 26 more variables: famtype <chr>, numsibs <c
## # SES cat <chr>, age <dbl>, T1RSCALE <dbl>, T1MSCALE <dbl>, T1GSCALE <
## # T2MSCALE <dbl>, T2GSCALE <dbl>, IRTreadgain <dbl>, IRTmathgain <dbl>
####
     T1ARSLIT <dbl>, T1ARSMAT <dbl>, T1ARSGEN <dbl>, T2ARSLIT <dbl>, T2AF
## # ARSlitgain <dbl>, ARSmathgain <dbl>, ARSgkgain <dbl>, testdate1 <dat
## #
      elapse <dbl>
```

Double-checking

```
ecls %>%
count(child_id)
```

```
ecls %>%
  count(child_id) %>%
  filter(n > 1)
```

```
## # A tibble: 0 x 2
## # ... with 2 variables: child_id <chr>, n <int>
```

What about here?

income_ineq <- read_csv(here("data", "incomeInequality_tidy.csv")
print(income_ineq, n = 15)</pre>

```
## # A tibble: 726 x 6
##
       Year Number.thousands realGDPperCap PopulationK percentile
                                                                       incon
##
      <dbl>
                       <dbl>
                                      <dbl>
                                                  <dbl>
                                                             <dbl>
                                                                         <db]
   1 1947
                                  14117.32
##
                       37237
                                                 144126
                                                             20
                                                                     14243
##
   2 1947
                       37237
                                  14117.32
                                                             40
                                                                     22984
                                                 144126
##
    3 1947
                                                             60
                       37237
                                  14117.32
                                                 144126
                                                                     31166
##
    4 1947
                                                             80
                       37237
                                  14117.32
                                                 144126
                                                                     44223
##
    5 1947
                                                                     26764.1
                       37237
                                  14117.32
                                                 144126
                                                             50
##
    6 1947
                       37237
                                  14117.32
                                                 144126
                                                             90
                                                                     41477
##
   7 1947
                       37237
                                                 144126
                                                             95
                                  14117.32
                                                                     54172
##
    8 1947
                                                             99
                                                                    134415
                       37237
                                  14117.32
                                                 144126
##
    9 1947
                                                             99.5
                                                                    203001
                       37237
                                  14117.32
                                                 144126
      1947
                                                             99.9
##
  10
                       37237
                                  14117.32
                                                 144126
                                                                    479022
      1947
## 11
                       37237
                                  14117.32
                                                 144126
                                                             99.99 1584506
## 12
      1948
                       38624
                                  14451.94
                                                 146631
                                                             20
                                                                     13779
## 13
      1948
                       38624
                                  14451.94
                                                 146631
                                                             40
                                                                     22655
## 14
      1948
                       38624
                                  14451.94
                                                 146631
                                                             60
                                                                     30248
## 15 1948
                       38624
                                  14451.94
                                                 146631
                                                             80
                                                                     42196
## # ... with 711 more rows
```

```
income_ineq %>%
   count(Year, percentile) %>%
   filter(n > 1)
```

```
## # A tibble: 0 x 3
## # ... with 3 variables: Year <dbl>, percentile <dbl>, n <int>
```

Sometimes there is no key

These tables have an *implicit* id – the row numbers. For example:

```
install.packages("nycflights13")
library(nycflights13)
```

head(flights)

```
## # A tibble: 6 x 19
##
    year month day dep time sched dep time dep delay arr time sched arr
##
    <int> <int> <int> <int>
                                      <int>
                                               <dbl>
                                                        <int>
## 1 2013
                          517
                                        515
                                                          830
## 2 2013
                     533
                                        529
                                                          850
  3 2013 1 1
##
                     542
                                       540
                                                          923
## 4 2013 1 1
                         544
                                        545
                                                         1004
## 5 2013 1
                          554
                                        600
                                                         812
## 6 2013
                          554
                                        558
                                                  -4
                                                         740
## # ... with 8 more variables: tailnum <chr>, origin <chr>, dest <chr>, air
      hour <dbl>, minute <dbl>, time hour <dttm>
```

```
flights %>%
  count(year, month, day, flight, tailnum) %>%
  filter(n > 1)
```

```
## # A tibble: 11 x 6
## year month day flight tailnum
                                  n
## <int> <int> <int> <int> <int>
## 1 2013
                 9 303 <NA>
            2
                                  2
            2 9 655 <NA>
## 2 2013
## 3 2013 2 9 1623 <NA>
                                  2
## 4 2013 6 8 2269 N487WN
                                  2
                                  2
## 5 2013 6 15 2269 N230WN
## 6 2013 6 22 2269 N440LV
## # ... with 5 more rows
```

Create a key

• If there is no key, it's often helpful to add one. These are called *surrogate* keys.

6 6 2013 1 2013-01-01 05:00:00

... with 336,770 more rows

Mutating

Mutating joins

- In *tidyverse*, we use **mutate()** to create new variables within a dataset.
- A mutating join works similarly, in that we're adding new variables to the existing dataset through a join.
- Two tables of data joined by a common key

Four types of joins

- left_join: Keep all the data in the left dataset, drop any non-matching cases from the right dataset.
- right_join: Keep all the data in the right dataset, drop any non-matching cases from the left dataset.
- inner_join: Keep only data that matches in both datasets
- full_join: Keep all the data in both datasets. This is also sometimes referred to as an *outer* join.

If the keys match exactly in the two tables (datasets), all of these will result in the exact same result.

Using joins to recode

Say you have a dataset like this

Codes

Code	Disability
00	'Not Applicable'
10	'Intellectual Disability'
20	'Hearing Impairment'
40	'Visual Impairment'
43	'Deaf-Blindness'
50	'Communication Disorder'
60	'Emotional Disturbance'
70	'Orthopedic Impairment'
74	'Traumatic Brain Injury'

Code	Disability
80	'Other Health Impairments'
82	'Autism Spectrum Disorder'
90	'Specific Learning Disability'
96	'Developmental Delay 0-2yr'
98	'Developmental Delay 3-4yr'

One method

```
dis_tbl %>%
  mutate(disability = case_when(
    dis_code == "10" ~ "Intellectual Disability",
    dis_code == "20" ~ 'Hearing Impairment',
    ...,
    TRUE ~ "Not Applicable"
    )
)
```

Joining method

```
dis code tbl <- tibble(</pre>
  dis_code = c(
    "00", "10", "20", "40", "43", "50", "60",
    "70", "74", "80", "82", "90", "96", "98"
    ),
  disability = c(
    'Not Applicable', 'Intellectual Disability',
    'Hearing Impairment', 'Visual Impairment',
    'Deaf-Blindness', 'Communication Disorder',
    'Emotional Disturbance', 'Orthopedic Impairment',
    'Traumatic Brain Injury', 'Other Health Impairments',
    'Autism Spectrum Disorder', 'Specific Learning Disability',
    'Developmental Delay 0-2yr', 'Developmental Delay 3-4yr'
```

dis_code_tbl

Join the tables

left_join(dis_tbl, dis_code_tbl)

Imperfect key match?

Consider the following

```
gender <- tibble(key = 1:3, male = rbinom(3, 1, .5))
sped <- tibble(key = c(1, 2, 4), sped = rbinom(3, 1, .5))</pre>
```

gender

sped

left_join()?

left_join(gender, sped)

right_join()?

right_join(gender, sped)

inner_join()?

inner_join(gender, sped)

full_join()?

full_join(gender, sped)

Animations

All of the following animations were created by Garrick Aden-Buie and can be found here

Animated left_join()

Animated right_join

Animated inner_join

Animated full_join

What if the key is not unique?

- Not a problem, as long as they are unique in one of the tables.
 - In this case, it's called a one-to-many join

Animated one-to-many join

Example

A dataset with school IDs

```
stu <- tibble(
    sid = 1:9,
    scid = c(1, 1, 1, 1, 2, 2, 3, 3, 3),
    score = c(10, 12, 15, 8, 9, 11, 12, 15, 17)
    )
stu</pre>
```

A school-level dataset

```
schl <- tibble(
    scid = 1:3,
    stu_tch_ratio = c(22.05, 31.14, 24.87),
    per_pupil_spending = c(15741.08, 11732.24, 13027.88)
)
schl</pre>
```

One to many

left_join(stu, schl)

```
## # A tibble: 9 x 5
##
       sid scid score stu tch ratio per pupil spending
## <int> <dbl> <dbl>
                              <dbl>
                                                 <dbl>
## 1
                              22.05
                   10
                                              15741.08
## 2
                              22.05
                12
                                              15741.08
## 3 3 1
## 4 4 1
## 5 5 2
                15
                              22.05
                                              15741.08
                              22.05
                                              15741.08
                   9
                              31.14
                                              11732.24
## 6
                   11
                              31.14
                                              11732.24
## # ... with 3 more rows
```

What if key is not unique to either table?

Generally this is an error Result is probably not going to be what you want (cartesian product).

Example

```
seasonal_means <- tibble(
  scid = rep(1:3, each = 3),
  season = rep(c("fall", "winter", "spring"), 3),
  mean = rnorm(3*3)
)
seasonal_means</pre>
```

left_join(stu, seasonal_means)

How do we fix this?

In some cases, the solution is obvious. In others, it's not. But you must have at least one unique key to join the datasets.

In this case

Move the dataset to wide before joining

Move to wide

Join

One to many join

left_join(stu, seasonal_means_wide)

```
## # A tibble: 9 x 6
##
       sid scid score
                          fall winter
                                                spring
## <int> <dbl> <dbl> <dbl>
                                                      <dbl>
                                          <dbl>
## 1
                      10 0.3447951 1.539648 -0.3295142
## 2 2 1 12 0.3447951 1.539648 -0.3295142
## 3 3 1 15 0.3447951 1.539648 -0.3295142
## 4 4 1 8 0.3447951 1.539648 -0.3295142
          5 2 9 0.9483894 -0.4792556 -1.514887
## 5
## 6
                     11 0.9483894 -0.4792556 -1.514887
## # ... with 3 more rows
```

Move longer again?

If we did, we'd be exactly where we were with the first join.

You could make the argument it *might* make sense here

I'd still argue for *this* approach, not the cartesian product approach

More systematic, more predictable, and ultimately less error prone

Another example

- Often you want to add summary info to your dataset.
- You can do this easily with by piping arguments

ECLS-K reminder

ecls

```
## # A tibble: 984 x 33
## child id teacher id school id k type school type sex ethnic
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 0842021C 0842T02 0842
                                 full-day public
                                                     male BLACK OR AFF
## 2 0905002C 0905T01 0905
                                 full-day private
                                                     male ASIAN
## 3 0150012C 0150T01 0150
## 4 0556009C 0556T01 0556
                                 full-day private female BLACK OR AFF full-day private female HISPANIC, RA
## 5 0089013C 0089T04 0089
                                 full-day public
                                                     male WHITE, NON-F
## 6 1217001C 1217T13 1217
                                 half-day public
                                                     female NATIVE HAWAI
## # ... with 978 more rows, and 26 more variables: famtype <chr>, numsibs <c
## # SES cat <chr>, age <dbl>, T1RSCALE <dbl>, T1MSCALE <dbl>, T1GSCALE <
## # T2MSCALE <dbl>, T2GSCALE <dbl>, IRTreadgain <dbl>, IRTmathgain <dbl>
## # T1ARSLIT <dbl>, T1ARSMAT <dbl>, T1ARSGEN <dbl>, T2ARSLIT <dbl>, T2AF
## # ARSlitgain <dbl>, ARSmathgain <dbl>, ARSgkgain <dbl>, testdate1 <dat
## # elapse <dbl>
```

Compute group means

4 0013 42.321 ## 5 0016 17.55100 ## 6 0022 17.8465 ## # ... with 509 more rows

Join right within pipeline

```
ecls %>%
  group_by(school_id) %>%
  summarize(sch_pre_math = mean(T1MSCALE)) %>%
  left_join(ecls) %>%
  select(school id:k type) # Just for space
## # A tibble: 984 x 5
## school id sch pre math child id teacher id k type
## <chr>
                   <dbl> <chr> <chr>
                                          <chr>
## 1 0001
            20.45800 0001010C 0001T01
                                          full-day
## 2 0002
                14.977 0002010C 0002T01
                                          half-day
                18.82 0009026C 0009T01
## 3 0009
                                          half-day
## 4 0009
         18.82 0009014C 0009T02
                                          half-day
## 5 0009
         18.82 0009005C 0009T01
                                          half-day
## 6 0013
         42.321 0013003C 0013T01
                                          full-day
## # ... with 978 more rows
```

Default join behavior

By default, the *_join functions will use all columns with common names as keys.

left_join(flights2, weather)

```
## Joining, by = c("year", "month", "day", "hour", "origin")
## # A tibble: 336,776 x 18
    year month day hour origin dest tailnum carrier temp dewp humic
##
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <
## 1
                       5 EWR IAH N14228 UA
                                                  39.02 28.04 64.43
     2013 1
                  1
## 2 2013
                   5 LGA IAH N24211 UA
                  1
                                                  39.92 24.98 54.81
## 3 2013 1
                    5 JFK MIA N619AA AA
                                                  39.02 26.96 61.63
## 4
     2013 1
                    5 JFK BQN N804JB B6
                                                  39.02 26.96 61.63
## 5 2013 1
              1
                      6 LGA ATL N668DN DL
                                                  39.92 24.98 54.81
## 6 2013 1
              1
                       5 EWR ORD N39463 UA
                                                  39.02 28.04 64.43
## # ... with 336,770 more rows, and 4 more variables: precip <dbl>, pressure
## # time hour <dttm>
```

Use only some vars?

If we were joining *flights2* and *planes*, we would not want to use the **year** variable in the join, because **it means different things in each dataset**.

head(planes)

```
## # A tibble: 6 x 9
##
  tailnum year type
                                           manufacturer
                                                            model
                                                                      engir
##
  <chr> <int> <chr>
                                           \langle chr \rangle
                                                            <chr>
                                                                        <ir
## 1 N10156 2004 Fixed wing multi engine EMBRAER
                                                            EMB-145XR
## 2 N102UW 1998 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
            1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
## 3 N103US
            1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
## 4 N104UW
## 5 N10575
            2002 Fixed wing multi engine EMBRAER
                                                            EMB-145LR
## 6 N105UW
             1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
```

How?

Specify the variables with by

```
left_join(flights2, planes, by = "tailnum")
```

```
## # A tibble: 336,776 x 16
##
   year.x month
                day hour origin dest tailnum carrier year.y type
     <int> <int> <int> <dbl> <chr> <chr>
##
                                           <chr> <int> <chr>
## 1
     2013
                  1
                       5 EWR
                               IAH
                                   N14228
                                           UA
                                                   1999 Fixed wir
## 2 2013
                    5 LGA IAH N24211
                                           UA
                                                   1998 Fixed wir
## 3 2013 1 1 5 JFK MIA N619AA
                                           AA
                                                 1990 Fixed wir
## 4 2013 1 1 5 JFK BQN N804JB
                                           B6 2012 Fixed wir
## 5 2013
                    6 LGA ATL N668DN
                                           \mathsf{DL}
                                                1991 Fixed wir
## 6 2013
                       5 EWR
                               ORD N39463 UA
                                                   2012 Fixed wir
## # ... with 336,770 more rows, and 5 more variables: model <chr>, engines <
## #
     speed <int>, engine <chr>
```

Mismatched names?

What if you had data to merge like this?

```
names(schl)[1] <- "school_id"
schl</pre>
```

stu

```
## # A tibble: 9 x 3
## sid scid score
## 
## 1 1 1 1 10
## 2 2 1 12
## 3 3 1 15
## 4 4 1 8
## 5 5 2 9
## 6 6 2 11
## # ... with 3 more rows
```

Join w/mismatched names

```
left_join(stu, schl, by = c("scid" = "school_id"))
```

```
## # A tibble: 9 x 5
##
      sid scid score stu tch ratio per pupil spending
## <int> <dbl> <dbl>
                          <dbl>
                                          <dbl>
                          22.05
## 1
                10
                                       15741.08
## 2 2 1 12
## 3 3 1 15
## 4 4 1 8
## 5 5 2 9
                          22.05
                                       15741.08
                          22.05
                                       15741.08
                        22.05
                                       15741.08
                      31.14 11732.24
       6 2 11
## 6
                          31.14
                                       11732.24
## # ... with 3 more rows
```

filtering joins

Filtering joins

- semi_join() works just like left_join or inner_join but you don't actually add the variables.
- Let's filter classrooms with extremely high math pretest average scores.

First, calculate averages

Next, filter for means 3 standard deviations above the mean.

```
extr_high <- av_pre_mth %>%
    ungroup() %>%
    filter(av_pre_mth > cut_high)
extr_high
```

Finally, use **semi_join** to show the full data for these cases

semi_join(ecls, extr_high)

Filtering joins

anti_join() does the opposite of semi_join, keeping
any rows that do not match.

```
nrow(ecls)

## [1] 984

extr_low_ecls <- anti_join(ecls, extr_high)
nrow(extr_low_ecls)

## [1] 980</pre>
```

Why is this so beneficial?

- Sometimes the boolean logic for **filter** can be overly complicated.
- Instead, create a data frame that has only the groups you want, and semi_join it with your original data
- Alternatively, create a data frame that has all but the values you want.

Stop Words

One more quick example

This one is probs more realistic

Jane Austen Books

```
# install.packages(c("tidytext", "janeaustenr"))
library(tidytext)
library(janeaustenr)
austen books()
## # A tibble: 73,422 x 2
## text
                             book
## * <chr>
                             <fct>
## 1 "SENSE AND SENSIBILITY" Sense & Sensibility
## 2 ""
                             Sense & Sensibility
## 3 "by Jane Austen"
                             Sense & Sensibility
## 4 ""
                             Sense & Sensibility
## 5 "(1811)"
                             Sense & Sensibility
## 6 ""
                             Sense & Sensibility
## # ... with 73,416 more rows
```

Get words

```
austen_books() %>%
  unnest_tokens(word, text)
```

Count words

5 a 13408 ## 6 her 13055

... with 14,514 more rows

```
austen_books() %>%
   unnest_tokens(word, text) %>%
   count(word, sort = TRUE)

## # A tibble: 14,520 x 2
## word n
## <chr> <int>
## 1 the 26351
## 2 to 24044
## 3 and 22515
## 4 of 21178
```

Plot top 15 words

```
austen_books() %>%
  unnest_tokens(word, text) %>%
  count(word, sort = TRUE) %>%
  mutate(word = fct_reorder(word, n)) %>%
  slice(1:15) %>%
  ggplot(aes(word, n)) +
  geom_col() +
  coord_flip()
```


Stop words

stop_words

```
## # A tibble: 1,149 x 2
## word lexicon
## <chr> <chr> ## 1 a SMART
## 2 a's SMART
## 3 able SMART
## 4 about SMART
## 5 above SMART
## 6 according SMART
## # ... with 1,143 more rows
```

Remove stop words

```
austen_books() %>%
  unnest_tokens(word, text) %>%
  anti_join(stop_words) %>%
  count(word, sort = TRUE)
```

```
## # A tibble: 13,914 x 2
## word n
## <chr> <int>
## 1 miss 1855
## 2 time 1337
## 3 fanny 862
## 4 dear 822
## 5 lady 817
## 6 sir 806
## # ... with 13,908 more rows
```


By book

Wrapping up

- Homework 1 assigned today
 - Be careful about keys. Likely to be rather tricky.
- Next time: Visual perception