

Lastenheft

Fennec Bot

Hien Anh Nguyen Manh Son Khue Nguyen Umut Uzunoglu Lukas Evers

Ein insgesamt sehr gutes Lastenheft. Kleine Anmerkungen siehe unten!

Wertung PH: 10 Punkte

Inhaltsverzeichnis

1.	Einleitung	4
2.	Ausgangssituation	4
3.	Zielsetzung	4
4.	Anforderungen	5
	4.1 Funktionale Anforderungen	5
	4.2 Technische Anforderungen	6
	4.3 Nicht-Funktionale Anforderungen	6
	4.4 Konstruktive Anforderungen	7
	4.5 Angestrebte Lösungsskizze	7
5.	Abnahmekriterien	8
6.	Ansprechpartner für Rückfragen	9
7.	Wer hat was gemacht	9

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Version Historie

Version:	Datum:	Verantwortlich	Änderung
0.1	15.04.2021	Alle	Initiale Dokumenterstellung
0.2	16.04.2021	Alle	Erweiterungen
0.3	17.04.2021	Alle	Erweiterungen
0.4	20.04.2021	Alle	Endgültiger Entwurf
1.0	27.04.2021	Alle	Finalisierung

Tabelle 1: Veränderungsverlauf des Lastenheftes

1 Einleitung

Unsere Firma benötigt einen Modellnachbau unseres beliebten Computerspiel-Fahrzeugmodells "Fennec". Mit einer durchschnittlichen aktiven Anzahl von ca. 1.000.000 Spielern gehört unser Spiel zu den Beliebtesten in seinem Genre. Im Computerspiel geht es im Grunde darum einen Ball ins gegnerische Tor zu befördern. Die Akteure sind jedoch anstatt Feldspielern, ferngesteuerte Autos, die mit einem überdimensionierten Ball in einem abgeschlossenen Rechteck auf in zwei Teams auf Tore spielen. Das Auto soll autonom einen Ball "kicken" können und ihn in ein Tor führen.

2 Ausgangssituation

Als Basis für das Modellauto kann ein "Waveshare JetRacer Al Racing Robot" genommen werden, welcher mit einem Nvidia Jetson Nano als Mikrocontroller und einer RGB - Kamera ausgestattet ist. Das Auto hat zwei Gleichstrommotoren an der Hinterachse und einen Servomotor für die Lenkung an der Vorderachse. Das Auto ist ungefähr 25 cm lang und 17 cm breit. Drei 18650 Li-lon Zellen versorgen den Jetson und die Motoren mit Strom.

Abbildung 1: Waveshare JetRacer Darstellung

3 Zielsetzung

Das Ziel ist es das Videospiel mit kleinen Nachbauten der im Spiel benutzten Fahrzeugmodelle darzustellen. Die Autos sollen autonom über das Spielfeld fahren und den Ball kicken. Dazu soll ein Modell erstellt werden, welches verschiedene Funktionen in Anlehnung an das Computerspiel besitzt. In zukünftigen Projekten sollen weitere Fahrzeugmodelle entwickelt werden, sodass gleichzeitig mehrere Fahrzeuge das Spiel im Team und gegeneinander spielen können.

4 Anforderungen

4.1 Funktionale Anforderungen

Nr.	Gruppe	Beschreibung	Priorität
FA-1	Intelligenz		
FA-1.1		Der "Fennec" soll einen Ball erkennen können.	hoch
FA-1.2		Der "Fennec" soll eine Linie auf dem Boden autonom abfahren können.	hoch
FA-1.3		Der "Fennec" soll gegen den Ball fahren und ihn so schieße.	hoch
FA-1.4		Ist kein Ball in Sichtnähe, soll dieser autonom gesucht werden.	hoch
FA-1.5		Der "Fennec" kann auch manuell über Controller ferngesteuert werden	hoch
FA-1.6		Hindernisse zwischen Ball und Fahrzeug sollen selbstständig umfahren werden können.	mittel
FA-1.7		Der "Fennec" ist in der Lage Tore zu erkennen.	mittel
FA-1.71		Der Ball soll in das richtige Tor befördert werden.	mittel
FA-1.72		Der "Fennec" soll nicht auf sein eigenes Tor schießen.	mittel
FA-1.73		Der "Fennec" kann das erkannte Tor auf einer Karte lokalisieren.	mittel
FA-1.8		Der "Fennec" soll mit variierender Geschwindigkeit entsprechend der Umgebung fahren können.	niedrig
FA-1.9		Rückwärts fahren und autonomes Rangieren sind möglich.	niedrig
FA-2	User-Experience		
FA-2.1		Teleoperation über Controller soll mit wenigen Tasten bedienbar sein.	mittel
FA-2.2		Soundausgabe für Soundeffekte.	niedrig
FA-2.3		LED-Scheinwerfer beim Einschalten.	niedrig

Tabelle 3: Funktionale Anforderungen des Projektes

4.2 Technische Anforderungen

Nr.	Gruppe	Beschreibung	Priorität
TA-1	Lauffähigkeit		
TA-1.1		Einsatz von Ubuntu 18.04	hoch
TA-2	Soft- und Hardware		
TA-2.1		Einsatz von ROS (Robot Operating System)	hoch
TA-2.2		Einsatz einer SD-Karte als Hard Drive	hoch
TA-2.3		Einsatz von Machine Learning für die Bilderkennung	hoch

Tabelle 3: Technische Anforderungen des Projektes

4.3 Nicht-Funktionale Anforderungen

Nr.	Gruppe	Beschreibung	Priorität
NFA 1	Zuverlässigkeit		
NFA-1.1		Das Chassis soll in Anlehnung des "Fennec" als 3D-Druck erstellt werden.	hoch
NFA-1.2		Hardware muss vor physischen Schäden geschützt werden.	hoch
NFA-2	Benutzbarkeit		
NFA-2.1		Inbetriebnahme des Roboters in unter 2 Minuten nach dem Einschalten.	hoch
NFA-2.2		Benutzerhandbuch erstellen.	mittel
NFA-2.3		Controller ist einfach zu bedienen, Verwendung von maximal 8 Tasten.	mittel
NFA-3	Effizienz		
NFA-3.1	EITIZICIIZ	Der Roboter soll flüssig fahren (nicht länger als 0,5 Sekunden Standzeit zwischen Aktionen).	hoch
NFA-3.2		Der Roboter darf während dem Betrieb nicht überhitzen. Überhitzung ist dann erreicht, wenn der Jetson Nano als Schutz herunterfährt um sich zu kühlen.	hoch
NFA-4	Martung		
	Wartung	Die Ceftuurus des Debeteus ist sinfeels ändeut zu durch	la a ala
NFA-4.1		Die Software des Roboters ist einfach änderbar durch Zugriff über SSH.	hoch
NFA-4.1		Einfaches Aufladen der Batterien ohne das Chassis demontieren zu müssen.	hoch

Tabelle 4: Nicht-Funktionale Anforderungen des Projektes

4.4 Konstruktive Anforderungen

Nr.	Gruppe	Beschreibung	Priorität
KA 1	3D-Konstruktion		
KA-1.1		Das Chassis soll in Anlehnung des "Fennec" als 3D-Druck erstellt werden.	hoch
KA-1.2		Hardware muss vor physischen Schäden relativ gut geschützt werden.	hoch
KA-1.3		Das Gehäuse darf die Funktion nicht beeinträchtigen.	hoch
KA-1.4		Das Chassis kann abmontiert werden, um auf die Hardware zugreifen zu können.	hoch
KA-1.5		Möglichkeit zum Aufladen ohne Abmontage des Chassis.	hoch
KA-1.6		Chassis muss so designt sein, sodass es nicht im Inneren des Fahrzeugs zu Erwärmungen kommt.	hoch
KA-1.7		WiFi - Antennen können an-/abmontiert werden.	niedrig

Tabelle 5: Konstruktive Anforderungen des Projektes

4.5 Angestrebte Lösungsskizze

Als finales Produkt, wünschen wir uns eine Nachbildung des "Fennec" aus dem Videospiel "Rocket League" mit den in 4.1 bis 4.4 genannten Anforderungen.

5 Abnahmekriterien

Der Fennec kann eine Linie selbständig bzw. autonom abfahren sowie einen Ball über Bilderkennungssoftware erkennen. Außerdem kann der Fennec einen erkannten Ball verfolgen und entsprechend die Geschwindigkeit erhöhen und auch reduzieren. Darüber hinaus beachtet der Fennec selbstständig sämtliche ihm auferlegten Einschränkungen, wie zum Beispiel Feldlinien und Tore. Das konstruierte Gehäuse ermöglicht alle Funktionen und ist ausreichend stabil um die Elektronik vor leichten Zusammenstößen zu schützen.

6 Ansprechpartner für Rückfragen

Name	Lukas Evers, Umut Uzunoglu, Son Khue Nguyen, Hien Anh Nguyen Manh
Funktion	Studenten der HTW Berlin
Email	ForROS@gmail.com

Tabelle 6: Ansprechpartnerliste

7 Wer hat was gemacht

Autor	Aufgabe/Kapitel	Anteil
Hien	Kapitel 1-7	25%
Khue	Kapitel 1-7	25%
Lukas	Kapitel 1-7	25%
Umut	Kapitel 1-7	25%

