Data Mining 第二次作業

第一大題

(—)

資料設定

有一組二維資料點,還有一個新資料點 x=(1.4,1.6)x=(1.4,1.6)x=(1.4,1.6) 作為查詢點 (query)。

題目

|點|向量 (A₁, A₂)|

|---|

|q|(1.4, 1.6)|

 $|\mathbf{x_1}|(1.5, 1.7)|$

 $|x_2|(2.0, 1.9)|$

 $|\mathbf{x_3}|(1.6, 1.8)|$

 $|\mathbf{x_4}|(1.2, 1.5)|$

 $|x_5|(1.5, 1.0)|$

(a) 計算歐式距離 $d(\mathbf{x}, \mathbf{q})$

$$d(\mathbf{x},\mathbf{q}) = \sqrt{(A_1^x - A_1^q)^2 + (A_2^x - A_2^q)^2}.$$

點	ΔA_1	ΔA_2	$(\Delta A_1)^2$	$(\Delta A_2)^2$	$(\Delta A_1)^2 + (\Delta A_2)^2$	d
x_1	1.5 - 1.4 = 0.1	1.7 - 1.6 = 0.1	0.01	0.01	0.02	$\sqrt{0.02} = 0.1414$
x_2	2.0 - 1.4 = 0.6	1.9 - 1.6 = 0.3	0.36	0.09	0.45	$\sqrt{0.45} = 0.6708$
x_3	1.6 - 1.4 = 0.2	1.8 - 1.6 = 0.2	0.04	0.04	0.08	$\sqrt{0.08} = 0.2828$
x_4	1.2 - 1.4 = -0.2	1.5 - 1.6 = -0.1	0.04	0.01	0.05	$\sqrt{0.05} = 0.2236$
x_5	1.5 - 1.4 = 0.1	1.0 - 1.6 = -0.6	0.01	0.36	0.37	$\sqrt{0.37} = 0.6083$

排序(由近到遠)

$$x_1 < x_4 < x_3 < x_5 < x_2.$$

(b) 餘弦相似度

$$\cos(\mathbf{x},\mathbf{q}) = rac{\mathbf{x}\cdot\mathbf{q}}{\|\mathbf{x}\|\,\|\mathbf{q}\|}, \qquad \mathbf{x}\cdot\mathbf{q} = A_1^xA_1^q + A_2^xA_2^q.$$

算查詢點的長度(下方):

$$\|\mathbf{q}\| = \sqrt{1.4^2 + 1.6^2} = \sqrt{1.96 + 2.56} = \sqrt{4.52} = 2.1260.$$

點	內積 x·q	$\ \mathbf{x}\ $	分母 x q	cos
x_1	$1.5 \cdot 1.4 + 1.7 \cdot 1.6 = 2.1 + 2.72 = 4.82$	$\sqrt{1.5^2 + 1.7^2} = \sqrt{2.25 + 2.89} = 2.2689$	$2.2689 \times 2.1260 = 4.8220$	$\frac{4.82}{4.8220} = 0.9990$
x_2	$2.0 \cdot 1.4 + 1.9 \cdot 1.6 = 2.8 + 3.04 = 5.84$	$\sqrt{2.0^2 + 1.9^2} = \sqrt{4 + 3.61} = 2.7580$	$2.7580 \times 2.1260 = 5.8670$	$\frac{5.84}{5.8670} = 0.9954$
x_3	$1.6 \cdot 1.4 + 1.8 \cdot 1.6 = 2.24 + 2.88 = 5.12$	$\sqrt{1.6^2 + 1.8^2} = \sqrt{2.56 + 3.24} = 2.4083$	$2.4083 \times 2.1260 = 5.1260$	$\frac{5.12}{5.1260} = 0.9988$
x_4	$1.2 \cdot 1.4 + 1.5 \cdot 1.6 = 1.68 + 2.40 = 4.08$	$\sqrt{1.2^2 + 1.5^2} = \sqrt{1.44 + 2.25} = 1.9203$	$1.9203 \times 2.1260 = 4.0790$	$\frac{4.08}{4.0790} = 0.9990$
x_5	$1.5 \cdot 1.4 + 1.0 \cdot 1.6 = 2.10 + 1.60 = 3.70$	$\sqrt{1.5^2 + 1.0^2} = \sqrt{2.25 + 1.00} = 1.8028$	$1.8028 \times 2.1260 = 3.8330$	$\frac{3.70}{3.8330} = 0.9654$

排名(相似度大→小):

(二) 做向量正規化

單位化公式

$$\widehat{\mathbf{x}} = \frac{\mathbf{x}}{\|\mathbf{x}\|}, \qquad \widehat{\mathbf{q}} = \frac{\mathbf{q}}{\|\mathbf{q}\|}.$$

(a) 求單位向量

點	$\ \mathbf{x}\ $	$\widehat{\mathbf{x}} = (A_1/\ \mathbf{x}\ ,\ A_2/\ \mathbf{x}\)$
x_1	2.2689	(0.6610, 0.7504)
x_2	2.7580	(0.7251, 0.6887)
x_3	2.4083	(0.6644, 0.7474)
x_4	1.9203	(0.6245, 0.7809)
x_5	1.8028	(0.8321, 0.5546)

查詢點

$$\hat{\mathbf{q}} = (1.4/2.1260, \ 1.6/2.1260) = (0.6587, \ 0.7524).$$

(b) 歐氏距離於單位空間

點	ΔA_1	ΔA_2	$(\Delta A_1)^2$	$(\Delta A_2)^2$	距離 $d(\widehat{\mathbf{x}},\widehat{\mathbf{q}})$
x_1	0.0023	-0.0020	$5.3 imes10^{-6}$	$4.0 imes10^{-6}$	0.0041
x_3	0.0057	-0.0050	$3.3 imes10^{-5}$	2.5×10^{-5}	0.0078
x_4	-0.0342	0.0285	$1.17 imes10^{-3}$	$8.12 imes 10^{-4}$	0.0441
x_2	0.0664	-0.0637	$4.41 imes10^{-3}$	$4.06 imes10^{-3}$	0.0922
x_5	0.1734	-0.1978	$3.01 imes10^{-2}$	$3.91 imes 10^{-2}$	0.2632

$$x_1 < x_3 < x_4 < x_2 < x_5.$$

第二大題

(1) 三種常見 OLAP Operation 與醫院倉儲

有Roll-up Drill-down Slice/Dice

操作	說明	醫院倉儲		
Roll-up	由細節層級 較高層級聚合	先以 Time=day 彙總,再 roll-up 到 month → 查看 2023 各月 總 revenue		
Drill-down	與 roll-up 相反,向下查看更細節	已在 year 粒度檢視成本後,drill-down 到 quarter,進一步比較 Q1~Q4		
Slice	固定單一維度的一個成員,抽出子立方體	slice Patient.age_group = '60+' → 只保留高齡病患的 cost / revenue		

(2)設計 Snowflake Schema

(3)OLAP 操作序列(針對本題為例)

OLAP Operations Sequence

起點: Base Cuboid (= 全部維度最細粒度)

操作序列

```
1. Slice

• Patient.age_group = '60+'

• Time.year = 2023

2. Roll-up 時間維 → 不需要 month/quarter/day, 保留 year (已 slice)。

3. Roll-up 醫師維 → 由 doctor_id 聚合到 department。

4. Roll-up 手術維 → 由 procedure_type 聚合到 category。

5. Dice / Projection 移除與查詢無關的維度 (Hospital , 其餘時間層級等)。

6. Aggregate (sum) → 計算 ∑ revenue 於二維切面 (procedure.category, doctor.department)。
```

(4)SQL查詢寫法

```
SELECT
                     AS procedure_category,
AS doctor_department,
      p.category
2
3
      d.department
      SUM(f.revenue)
                      AS total_revenue
5
      billing_fact
6
7
8
      JOIN dim_patient pa ON f.patient_key = pa.patient_key
      9
      JOIN dim_procedure p ON f.procedure_key = p.procedure_key
10
11 WHERE
      t.year = 2023 -- 時間 Slice
12
      AND pa.age_group = '60+' -- 病患 Slice
13
  GROUP BY
14
      p.category,
15
16
      d.department
17
   ORDER BY
      total_revenue DESC;
18
```

第三大題

department	status	age range	salary range	count
sales	senior	3135	46K…50K	30
sales	junior	26…30	26K…30K	40
sales	junior	3135	31K…35K	40
systems	junior	2125	46K…50K	20
systems	senior	3135	66K…70K	5
systems	junior	26…30	46K…50K	3
systems	senior	41…45	66K…70K	3
marketing	senior	36…40	46K…50K	10
marketing	junior	3135	41K···45K	4
secretary	senior	46…50	36K···40K	4
secretary	junior	26…30	26K…30K	6

總筆數:

$$N = \sum count = 165, \qquad N_{
m senior} = 52, \; N_{
m junior} = 113$$

(1) count 參與決策樹演算法

以 ID3 / C4.5 為例,只需把每筆樣本的「詞頻」改成「加權詞頻」。

1. 節點熵 (或基尼)

$$H(S) = - \sum_{c \in \{ ext{senior,junior}\}} rac{\sum\limits_{i \in c} count_i}{\sum\limits_{i} count_i} ext{log}_2\left(rac{\sum\limits_{i \in c} count_i}{\sum\limits_{i} count_i}
ight)$$

2. 分割後的加權熵

$$H_{ ext{split}} = \sum_{v \in ext{values}(A)} rac{\sum\limits_{i \in v} count_i}{N} \ H(S_v)$$

3. 資訊增益 / 增益率 / 基尼減少量

與原演算法公式相同,只是所有頻數都以 count 欄 相加。

4. 其餘流程(選最佳屬性、遞迴建樹、剪枝)全部不變。

主要是把一列代表中的一個樣本 ➤一列代表 count 個樣本。

(2)

(a)選根節點

計算三個屬性的資訊增益(以熵為例):

屬性	加權熵 $H_{ m split}$	信息增益 $=H({ m root})-H_{ m split}$
salary	0.362	0.536
age	0.473	0.425
department	0.851	0.047

最大增益 → salary 為根。

(b)依照 salary 列表去做劃分

除 46K···50K 外, 其餘葉節點皆純 (熵 = 0):

salary range	筆數	senior	junior	標籤
26K…30K	46	0	46	junior
31K···35K	40	0	40	junior
36K···40K	4	4	0	senior
41K···45K	4	0	4	junior
66K…70K	8	8	0	senior
46K…50K	63	40	23	── 需再分裂

(c) 分裂 46K···50K

在該subset中, department 或 age 任一皆能產生純葉。

department	senior	junior	標籤
sales	30	0	senior
systems	0	23	junior
marketing	10	0	senior

(d) 最後得出以下Decision Tree:

```
1 salary?
2 ├── 26 ... 30K → junior
3 ├── 31 ... 35K → junior
4 ├── 36 ... 40K → senior
5 ├── 41 ... 45K → junior
6 ├── 46 ... 50K
7 ├── department = sales → senior
```

(3) naïve Bayesian

欲分類樣本

 $(X = department = systems, age = 26 \cdot \cdot \cdot 30, salary = 46K \cdot \cdot \cdot 50K)$

(a)先驗機率

$$P(\text{senior}) = \frac{52}{165} = 0.315, \quad P(\text{junior}) = \frac{113}{165} = 0.685$$

(b)條件機率

條件	senior	junior
(P(dept=systems)	$\frac{8}{52} = 0.154$	$\frac{23}{113} = 0.204$
$(P(\text{age }26\cdot\cdot\cdot30)$	$\frac{0}{52} = 0$	$\frac{49}{113} = 0.434$
$(P(\text{salary } 46 \cdot \cdot \cdot 50\text{K})$	$\frac{40}{52} = 0.769$	$\frac{23}{113} = 0.204$

若不加平滑,senior 類因年齡條件為 0 而直接歸零 ,反之,也遠低於零。

(c)後驗比例

$$\begin{split} & \Pr(\text{senior} \mid X) \propto 0.315 \times 0.154 \times 0 \times 0.769 = 0, \\ & \Pr(\text{junior} \mid X) \propto 0.685 \times 0.204 \times 0.434 \times 0.204 \approx 1.236 \times 10^{-2}. \end{split}$$

(d)預測結果

$$status = junior$$

基本上與上一節決策樹結論一樣。即使使用了 Laplace 平滑,Pr(senior | X) 仍低於 Pr(junior | X),且十分顯著。

第四大題

(a) 二元分類混淆矩陣符號

	實際 Positive (P)	實際 Negative (N)	合計
預測 Positive	True Positive (TP)	False Positive (FP)	TP+FP
預測 Negative	False Negative (FN)	True Negative (TN)	FN+TN
合計	TP+FN	FP+TN	N

• 靈敏度 (Sensitivity, Recall)

$$\mathrm{Se} = rac{TP}{TP + FN}.$$

• 特異度 (Specificity)

$$\mathrm{Sp} = \frac{TN}{TN + FP}.$$

• 整體準確率 (Accuracy)

$$\mathrm{Acc} = \frac{TP + TN}{N}, \qquad N = TP + FP + TN + FN.$$

(b) 以 Sensitivity、Specificity 表達 Accuracy

1. 記 患病率 (Prevalence)

$$\pi = rac{TP + FN}{N}.$$

2. 把TP、TN 改寫成 (Se, Sp, π) 之函數

•

$$TP = \mathrm{Se}\left(TP + FN\right) = \mathrm{Se}\,\pi N.$$

•

$$TN = \operatorname{Sp}(TN + FP) = \operatorname{Sp}(1 - \pi)N.$$

3. 代回 Accuracy 定義

$$\begin{split} &\operatorname{Acc} = \frac{TP + TN}{N} \\ &= \frac{\operatorname{Se} \pi N + \operatorname{Sp} (1 - \pi) N}{N} \\ &= \boxed{\pi \operatorname{Se} \, + \, (1 - \pi) \operatorname{Sp}}. \end{split}$$

(c) 結論

- 在某一固定的 患病率 π (或稱 positive class prevalence) 下,
 準確率 Acc 僅由 Sensitivity 與 Specificity 線性決定。
- 可寫成以下方式:

$$\mathrm{Acc} = (1-\pi)\,\mathrm{Sp} + \pi\,\mathrm{Se}.$$

因此 Accuracy 是 (Se, Sp) 的函數 (以 π 為固定參數)。