Assignment 1

2023 - 02 - 24

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
##
        speed
                          dist
##
    Min.
            : 4.0
                    Min.
                               2.00
    1st Qu.:12.0
                    1st Qu.: 26.00
##
    Median:15.0
                    Median : 36.00
##
                            : 42.98
##
    Mean
            :15.4
                    Mean
##
    3rd Qu.:19.0
                    3rd Qu.: 56.00
##
    Max.
            :25.0
                    Max.
                            :120.00
```

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

```
?co2
summary(co2)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 313.2 323.5 335.2 337.1 350.3 366.8

plot(co2)
```


Decomposition of additive time series

plot(decompose(co2, type="multiplicative"))

Decomposition of multiplicative time series

plot(diff(lco2))

plot(diff(lco2, lag=12))

plot(stl(lco2, s.window="periodic"))

 ${\it \# Decomposing the time series shows a positive trend in atmospheric concentrations of {\it CO2} between 1959}$

```
?UKgas
summary(UKgas)
```

Min. 1st Qu. Median Mean 3rd Qu. Max.

plot(UKgas)

n <- decompose(co2)
names(n)</pre>

plot(n)

Decomposition of additive time series

plot(decompose(UKgas, type="additive"))

Decomposition of additive time series

Decomposition of multiplicative time series

1UKgas=log(UKgas)
plot(1UKgas)

plot(diff(lUKgas, lag=12))

plot(stl(lUKgas, s.window="periodic"))

A multiplicative time series decomposition is better suited because the seasonal component increases
The 12 month lag removes the trend and the seasonality.
What is unsatisfactory is that the variance increases over time and cannot be stabilized fully. This
HWUKgas <- HoltWinters(UKgas, seasonal = "mult")
plot(HWUKgas)</pre>

Holt-Winters filtering

plot(fitted(HWUKgas))

fitted(HWUKgas)

 $\textit{\# Using Holt \& Winters exponential smoothing with trend and seasonality we identify a seasonal componential smoothing with trend and seasonality we identify a seasonal componential smoothing with trend and seasonality we identify a seasonal componential smoothing with trend and seasonality we identify a seasonal componential smoothing with the seasonality of the seasonality we identify a seasonal componential smoothing with the seasonality of the seasonality we identify a seasonal componential smoothing with the seasonality of the seas$


```
HWNile <- HoltWinters(Nile, beta=F, gamma=F)</pre>
HWNile
## Holt-Winters exponential smoothing without trend and without seasonal component.
## Call:
## HoltWinters(x = Nile, beta = F, gamma = F)
##
## Smoothing parameters:
    alpha: 0.2465579
    beta : FALSE
    gamma: FALSE
##
##
## Coefficients:
##
         [,1]
## a 805.0389
HWNile$alpha
```

[1] 0.2465579

plot(HWNile, main="Nile data: simple exponential smoothing, alpha=0.24655")

Nile data: simple exponential smoothing, alpha=0.24655

plot(fitted(HWNile))

fitted(HWNile)


```
# The chosen value of alpha is approximately 0.24655.

HWNile1 <- HoltWinters(Nile, alpha=.1, beta=F, gamma=F)
plot(HWNile1, main="Nile data: simple exponential smoothing, alpha=0.1")</pre>
```

Nile data: simple exponential smoothing, alpha=0.1


```
HWNile2 <- HoltWinters(Nile, alpha=.9, beta=F, gamma=F)
plot(HWNile2, main="Nile data: simple exponential smoothing, alpha=0.9")</pre>
```

Nile data: simple exponential smoothing, alpha=0.9


```
# Setting a parameter closer to O allocates less weight to the previous year's observation and more to
mape0 = function(Nile, HWNile){ mean(abs(Nile - HWNile)/Nile) }
mape1 = function(Nile, HWNile1){ mean(abs(Nile - HWNile1)/Nile) }
mape2 = function(Nile, HWNile2){ mean(abs(Nile - HWNile2)/Nile) }
```