

Монгол Улсын Их Сургууль Мэдээллийн Технологийн Сургууль Dipl.-Ing. Dipl.-Inf. Б.Батням

Програм хангамжийн инженерчлэлийн үндэс

Хаврын улирал 2019

ХБНГУ-ын Стүтгарт хотын Их Сургуулийн Автоматжуулалт, Програм хангамжийн технологийн институтийн лекцийн материалыг зохиогчийн зөвшөөрөлтэйгээр ашиглав.

www.ias.uni-stuttgart.de

§ 3 ОХ шинжилгээний статик ойлголт

Зорилт

- Холбоос гэж юуг тайлбарлаж чадах
- Холбоос класс болон бүлэглэсэн холбоос гэж юуг тайлбарлаж чадах
- Бүрдэл болон нийлмэл гэж ямар утгатайг тайлбарлаж чадах
- Удамшил гэж юуг тайлбарлаж чадах
- Багц гэж юуг тайлбарлаж чадах
- ЗНХ-ийн холбоос, удамшил болон багцад зориулсан тэмдэглэгээг хэрэглэж чадах
- Холбоос болон удамшилийг текстээс олж мөн дүрсэлж чадах
- Классыг багцад бүлэглэж чадах

§ 3 ОХ шинжилгээний статик ойлголт

- 3.1 Статик болон динамик ойлголтын харьцуулалт
- 3.2 Холбоос
- 3.3 Бүрдмэл болон Нийлмэл-Composition
- 3.4 Удамшил
- 3.5 Багц
- 3.6 ЗНХ-ийг өргөтгөсөн механизм (Бие даалт)
- 3.7 Дүгнэлт

ОХШ-Загвар (шинжилгээний загвар):

ОХШ-Загвар (шинжилгээний загвар):

- Статик загвар бүтцийг харуулдаг
 - Класс нь бизнес ойлголтын элементыг тайлбарлан бичдэг
 - Холбоос нь тэдгээр элементын харилцааг тайлбарлан бичдэг
 - Удамшил нь классын ерөнхийлэлтийг тайлбарлан бичдэг
 - Шинж нь классын шинжийг (Системийн өгөгдөл) тайлбарлан бичдэг
 - Багц нь системийг дэд системд хуваадаг
- Динамик загвар ажиллагааны үйл явцыг харуулдаг
 - **Ажлын явц** нь гүйцэтгэж буй даалгаварыг хийсвэрлэлийн маш өндөр түвшинд тайлбарлан бичдэг
 - Сценарь нь тодорхой даалгаварыг гүйцэтгэхийн тулд объект хэрхэн хоорондоо харьцаж буйг харуулдаг
 - Төлөвийн автомат нь төрөл бүрийн үзэгдэлд объект хэрхэн хариу үйлдэл үзүүлж буйг тайлбарлан бичдэг

Video: Static Model with UML-tool Poseidon

3.12ийн асуулт: Статик эсвэл динамик загвар

Дараах өгүүлбэрийг статик эсвэл динамик загварт хамруул

Өгүүлбэр	Статик загвар	Динамик загвар
Хөгжүүлж буй пх-ийн системийн төлөв байдлыг тайлбарлан бичдэг		×
OX загварын тогтвортой цөмийг үүсгэдэг	×	
Класс хоорондын харьцааг тайлбарлан бичдэг (өөрөөр хэлбэл тэдгээрийн объектын)	×	
Тодорхой даалгаварыг гүйцэтгэхийн тулд объект хэрхэн хоорондоо харьцаж буйг харуулдаг		×
ПХ-ийн системийн бүтцийг загварчилдаг	×	
Төрөл бүрийн үзэгдэлд объект хэрхэн хариу үйлдэл үзүүлж буйг тайлбарлан бичдэг		×
Дэд системд жижиглэсэн системийн хуваалтыг агуулдаг	×	

§ 3 ОХ шинжилгээний статик ойлголт

- 3.1 Статик болон динамик ойлголтын харьцуулалт
- 3.2 Холбоос
- 3.3 Бүрдмэл болон Нийлмэл-Composition
- 3.4 Удамшил
- 3.5 Багц
- 3.6 ЗНХ-ийг өргөтгөсөн механизм (Бие даалт)
- 3.7 Дүгнэлт

3.2 Холбоос гэж юу вэ?

Тодохойлолт:

Холбоос нь нэг эсвэл хэд хэдэн классын объект хоорондын хэлхээ холбоог загварчилдаг.

Холбоос нь объект хоорондын хэлхээ холбоог загварчилдаг, класс хоорондын биш!

Жишээ:

Оюутан гэх классын объект (ж. нь Дорж, Долгор эсвэл Санж) нь хичээл гэх классын объекттой ямар нэгэн холбоотой (ж. нь ПХИҮ мягмар гарагт)

Жишээ: Торх болон крант хоорондын холбоо

Класс диаграм

Класс болон тэдгээрийн харьцааг харуулдаг (статик загвар)

Объект диаграм

⇒ Бүх харьцааны олонлогийг торх болон крант классын объект хоорондын холбоос гэдэг.

Хобоосын шинж чанар

- Хоёртын (2 объектын хоорондох) болон өндөр эрэмбийн холбоос байдаг
- Нэг ижил классын объект хооронд рефлексив холбоос байдаг
- Холбоос нь чиглэлтэй (жолоодож болохуйц байдал)
 - "Ямар объект харьцааны талаар мэдээлэх вэ?"
 - Нэг чиглэлтэй
 - Хоёр чиглэлтэй
 - Холбоос нь системийн шинжилгээнд бараг л хоёр чиглэлтэй

Объект нэг нэгнээ "танидаг"

- Холбоосын 3 төрөл
 - Энгийн холбоос
 - Бүрдмэл
 - Нийлмэл

ЗНХ-ийн холбоосын тэмдэглэгээ

- Хоёртын холбоо
 - Нэг эсвэл хоёр классын хоорондох шулуун
 - Холбоосын нэр
 - Шулууны төгсгөл бүрт харьцааны тоо байдаг (multiplicity)

 "Нэгэн тодорхой объект хичнээн объектыг таниж чадах вэ? "
 - Төгсгөл бүрт үүргийн нэр байж болно

Объект диаграмын холбоос (Бичиж авна)

– Асуулт: Энэ объект диаграмын класс диаграм ямар байх вэ?

Холбоосын нэр

- Холбоосын агуулгыг (утга учир) тодорхойлон бичдэг
- Ихэнхдээ холбоосын зөвхөн нэг чиглэлийг тайлбарладаг
- Хар гурвалжин унших чиглэлийг өгдөг
- Хэрэв холбоосын утга нь илэрхий бол нэрийг орхиж болно

ЗНХ-ийн харьцааны тооны тэмдэглэгээ (Элементийн тоо)

Харьцааны тооны утга учир

- Байж болох-Холбоос
 - Доод хязгаар: Харьцааны тоо 0
- Зайлшгүй-Холбоос
 - Доод хязгаар: Харьцааны тоо 1 эсвэл түүнээс олон

- ⇒ Процессор олон санах ойтой байж болно
- ⇒ Санах ойгүй процессор байж болно
- ⇒ Санах ой бүр яг ямар нэгэн процессорт харъяалагдана

⇒ Процессор бүр ядаж нэг санах ойтой

Үүргийн нэр (1)

- Харьцаанд буй объектын утга санааг илэрхийлдэг
- Хоёртын холбоос нь хамгийн ихдээ 2 үүрэгтэй
- Холбоос дах үүргийн утгыг тайлбарлаж буй классын талд, холбоосын төгсгөлд бичиж өгдөг
- Классын диаграмын жишээ

Хэрэгжүүлэлтийн жишээ

→ Үүргийн нэр нь загварыг холбоосын нэрнээс илүү ойлгомжтой болгоход хэрэглэдэг.

Үүргийн нэр (2)

- Үүргийн нэр нь нэмэгдэл биш ...
 - Хоёр классын хооронд нэгээс дээш холбоос байвал

• Рефлексив холбоос

Чиглэлтэй холбоос

- Зөвхөн нэг объектод харьцааны тухай мэдээлсэн (Нэг чиглэлт жолоодож болно)
- Зөвхөн жолоодох чиглэлд зурвас явуулж болно.
- Сумаар тэмдэглэдэг

⇒ Дуут дохионы хувьд ямар торх түүнийг аюулын дохио болгож хэрэглэх нь мэдэгдэхгүй.

 Хоёр чиглэлт холбоос бүрийг хоёр нэг чиглэлт холбоосоор илэрхийлж болно

⇒ Жолоодож болохуйц байдлыг шинжилгээний үед зөвхөн онцгой тохиолдолд тогтоодог

Эрэмблэгдсэн холбоос

- Объектын холбоосын олонлог эрэмблэгдсэн гэдгийг харуулдаг
- Харьцааны тоо нэгээс дээш байхад боломжтой
- Эрэмбийг (ordered) гэсэн түлхүүр үгээр тэмдэглэдэг

Эрэмбийг хэрхэн тодорхойлох (z.B. хугацаа, үсгийн дарааллаар) тухай мэдээлдэггүй

Холбоосын хязгаарлалт (constraint)

- Дандаа биелэгдэх ёстой нөхцөл
- Загварын элементийн агуулгын байж болох хязгаарлалт

Холбоосын хязгаарлалт - or

- Хугацааны дурын цэг бүрт боломжит олон холбоосын зөвхөн нэг нь хүчинтэй
- or- хязгаарлалт нь хоёроос илүү олон холбоосыг хамааруулж болно
- Чухал: Авч үзэж буй класс нь ялгаатай үүргийн нэртэй байх ёстой

Үүргийн нэр үгүй бол, дараах хүчинтэй: Клаасын нэр= Үүргийн нэр

subset- Холбоосын хязгаарлалт

or-хязгаарлалтын жишээ: Салаалагч крант (бичиж авах)

Холбоос класс (association class)

- Холбоос нь классын шинжтэй байж болно
- Классын тэмдэглэгээ болон тасархай шулуун
- Холбоос болон холбоос классын нэр нь үргэлж адилхан

Холбоос классын хэрэглээ (1)

- Зөвхөн шинжилгээний үед хэрэглэдэг
- Зохиомжийн үед тохирсон класст хувиргадаг

Холбоос классын хэрэглээ (2)

– Жишээ: Холбоос класст хувиргах

Бүлэглэсэн холбоос

- Холбогдож буй объектын олонлогыг тусгай шинжээр хуваах, түүний утга нь эсрэг талдаа нэг эсвэл хэд хэдэн утгыг ялгадаг
- Классын загварын мэдээллийн агуулгыг өсгөдөг
- Бүлэглэсэн шинжийг тухайн классын талд тэгш өнцөгтөөр тэмдэглэдэг

Бүлэглэсэн холбоос нь харьцааны тоог өөрчилж болно!

Бүлэглэсэн холбоосын жишээ

– Бүлэглээгүй

PC-Bus нь интерфэйсийн олон картыг хэрэглэдэг

– Бүлэглэсэн

PC-Bus-Объект нь суурийн дугаартай хамтдаа яг нэг интерфэйсийн картыг сонгоно

Ойлгомжтой болгох:

Нэр (Карт)	эр (Карт) Суурийн Дугаар. Төрөл (PC-Bus)	
График карт	1	IDE-Bus
Дууний карт	2	IDE-Bus
Хатуу дискний удирдла	ra 5	SCSI-Bus

<u>Video: Хэрэглээний жишээ Эрэмблэх тууз - холбоос</u>

3.2-ийн асуулт

Дараах зурагт дүрсэлсэн загварын хоёр классын хооронд ямар төрлийн харилцаа байгааг өөрийн үгээр тайлбарла.

Хариулт

- Хүн болон иргэдийн дээд сургуулийн хооронд 2 чиглэлт холбоос байна
- Нэг хүн тэг эсвэл олон сургуулийн курст суралцаж болно
- Курс бүр ядаж нэг оролцогчтой байна

3.2-ийн асуулт

Дараах диаграм өгөгдсөн:

- а) "-д ажиллана", b) "-тай байна",
- с) "ашиглана", d) "-ийн гишүүн юм",
- е) "-тэй найзалдаг",
- f) "боолт эргүүлэх"

Холбоосын нэр нь ямар байж болох вэ?

Хариулт

§ 3 ОХ шинжилгээний статик ойлголт

- 3.1 Статик болон динамик ойлголтын харьцуулалт
- 3.2 Холбоос
- 3.3 Бүрдмэл болон Нийлмэл-Composition
- 3.4 Удамшил
- 3.5 Багц
- 3.6 ЗНХ-ийг өргөтгөсөн механизм (Бие даалт)
- 3.7 Дүгнэлт