

MT6620 Combo Module Application Note_V2

WCN/SE/SA/Wangwei

Outline

- Module features overview
- Module block diagram and interface

Cloure ...

- Module pin description and reference design
- MT6620 ATE test instrument support
- PCB /Antenna layout guide.
- Apply for WiFi MAC address numbers

MT6620 Combo Module Overview

Mee ...

- WiFi/BT/GPS/FM Tx/Rx full-featured combo module
 - WiFi self-calibration function embedded
 - Supported WiFi 11b/g /n features
 - Supported WiFi SDIO 2.0 (4-bits and 1-bit up to 50MHz)
 - Bluetooth specification 3.0+HS (802.11 AMP) compliance (W1126 ready)
 - Supported Bluetooth 4.0, BT Low Energy (LE)
 - GPS/GALILEO/QZSS/SBAS(WAAS/MSAS/EGNOS/GAGAN) support
 - Best GPS sensitivity: -165 dBm tracking sensitivity, -160 hot start sensitivity.
 - Supported FM 76-108MHz band with 50KHz step.
 - Supported FM RDS/RBDS
- Smallest form factor: 8.3×7.4×1.0 mm
- WiFi/BT/GPS share one Ref. clock source.
- Single antenna support for WiFi/Bluetooth/GPS
- RoHS complaint

MT6620 Module Block Diagram Overview Internal Use

Block Diagram

- WiFi / BT / GPS / FM combo
- Size: 8.3 x 7.4x1.0 mm
- Pad Pitch : 0.5mm
- Support Interface:
 - SDIO (WiFi)
 - UART (BT/GPS/FM)
 - PCM / I2S (BT)
 - I2C (FM)
 - FM analog audio input/output
- Ref Clock Source
 - Supported Xtal / TCXO / PCTCXO

MT6620 Module Pin Description

Pin No	Pin name	Pin description	Pin No	Pin name	Pin description	Pin No	Pin name	Pin description
1	SYSRST_B	System reset pin	21	SD1_DATA3	Data pin of SDIO1	41	DVDDIO28	VDD for EEDI / Antenna selection interface
2	BGF_INT_B	BT/GPS/FM interrupt pin	22	UART1_UTXD	TX pin of UART interface	42	GPS_SYNC	external GPS SYNC signal
3	OSC_EN	external clock request	23	UART1_URXD	RX pin of UART interface	43	I2S_DATA_IN	I2S_DATA_IN
4	PMU_EN	PMU enable pin	24	FM_AUOUT_R	FM analog output, R channel	44	I2S_CLK	I2S_CLK
5		antenna selection pin use for external swtich control	25	FM_AUOUT_L	FM analog output, L channel	45	_	12S_WS
6		antenna selection pin use for external swtich control	26	FM_AUIN_L	FM analog input, L channel	46	I2S_DATA_OU T	I2S_DATA_OUT
7	WF_PA_VDD	WiFi PA VDD supply input, 3.3V	27	FM_AUIN_R	FM analog input, R channel	47	PCM1CLK	PCM CLK
8		WiFi PA 3.3V VDD supply output, external 4.7uF required	28	GND2	Ground pin	48	PCM1OUT	PCM OUT
9	DVDDIO18	VDD for digital interface IO	29	FM_TX_OUT	FM TX port / FM short antenna input port	49	PCM1IN	PCM IN
10	WIFI_INT_B	WiFI interrupt pin	30	FM_RX_N	FM differential input- N port. A short trace should be reserved and connected to ground	50	PCM1SYNC	PCM SYNC
11		Built-in SMPS feedback pin, 4.7uF and 2.2uH required	31	FM_RX_P	FM long antenna input port	51	BT_ANT	BT input/output port
12		Built-in SMPS output pin, 4.7uF and 2.2uH required	32		VDD of RTC domain	52	GND4	Ground pin
13	GND_SMPS	Built-in SMPS ground pins	33		RTC xtal	53	WIFI_ANT	WiFi input/output port
14		Vbat input pin	34	RICCLK	RTC xtal / external RTC clock input port	54	FSOURCE	Efuse enable pin
15	DVDD_SD1	VDD for SDIO interface	35		Xtal / TCXO input port	55	ALL_INT_B	All system interrupt pin
16	SD1_DATA0	Data pin of SDIO1	36		2.8V / 1.8V output for external TCXO VDD supply	56	GND5	Ground pin
17	SD1_DATA2	Data pin of SDIO1	37		support PCTCXO temperature voltage measurement	57	GND6	Ground pin
18	SD1_CLK	Clock pin of SDIO1	38		support PCTCXO temperature voltage measurement	58	GND7	Ground pin
19	SD1_CMD	Command pin of SDIO1	39	GPS_ANT_P	GPS input port	59	GND8	Ground pin
20	SD1_DATA1	Data pin of SDIO1	40	EEDI	stripping pin for TCXO_LDO voltage selection	60	GND9	Ground pin

MT6620 Module Reference Design (1/4)

MT6620 FM Application Circuit (2/4)

FM Long Antenna

MT6620 FM Application Circuit (3/4)

Offer gnd path for audio gnd

Place near audio jack. Offer far-chip gnd for differential input.

MT6620 FM Application Circuit (4/4)

Using FM I2S interface, only need to connect Option 1 circuits.

Using FM Analog interface, only need to connect Option 2 circuits.

FM Audio Interface selection

--如果phone沒有ATV function, FM Audio interface 請選用 analog audio interface 享有較小的耗電流.

ProjectConfig.mk 中只要修改底下兩項就可以轉換

interface

[Analog Interface]

MTK_FM_AUDIO = FM_ANALOG_INPUT

[I2S Interface]

MTK_FM_AUDIO = FM_DIGITAL_INPUT

FM Short Antenna Design Guide

- FPC Type FM Short Antenna
- FM Short Antenna Matching

FPC Type FM Short Antenna (1)

- The FM Short Antenna is made of FPC.
- The material of FPC is flexible, easy to bend, and can be designed as arbitrary shapes. It is easy to fit different ID/ME design.
- It is suggested to paste the FPC on the inside wall of the housing or a plastic antenna carrier.
- Reserve the suitable space of FPC in ID/ME design phase.

Giones ...

It is suggested to locate the FPC near the FM chip for shortening RF trace.

FPC Type FM Short Antenna (2)

PCBA

- Suggestion of ID/ME Design
 - FPC is perpendicular to PCBA
 - Distance 1~2mm from PCBA.
 - Distance 3~4mm from Battery.
- PCBA BAT FM Short Antenna

 FM Short Antenna

- FPC is parallel to PCBA
 - Distance 3~4mm from PCBA
 - DO NOT overlap with Battery.
- Reserve over 300mm² area for PFC.
- Keep away from any metal mechanical components, such as shielding cases, speakers, vibrators, card holders, and cameras.
- Only one feed point is enough for FPC type FM short antenna.
- For the layout on FPC, it is an around 500mm~1000mm long and 0.5mm wide strip meandering on the both side of FPC.
- The antenna operates as a monopole.

FPC Type FM Short Antenna (3)

Examples of Implementation

FM Short Antenna Matching

NOUSE ..

The suitable region of FM short antenna matching on smith chart as shown below.

- Usually an parallel 0603 inductor can complete the matching. The possible range of the 0603 inductor is 60nH ~ 90nH. Typically, 72nH(LQW18AN72NG00) is suggested.
- Customers should double check the accuracy of the impedance.

MT6620 WiFi/BT/GPS Single ANT Solution

- Single antenna SAW-Diplexer 目前只有EPCOS single source (B9106)
- 請客戶預留external GPS SAW for LTCC 2nd source diplexer (pin-to-pin with EPCOS)
- GPS Antenna total efficiency >50%, Efficiency in hemisphere>30%
- WIFI /BT Antenna total efficiency >50%

▶ 使用LTCC diplexer (integrated ISM BPF)需要外加GPS SAW filter, LTCC diplexer 與 EPCOS B9106 pin-to-pin.

MT6620 WiFi/BT/GPS Dual ANT Solution

● 客戶可根據phone機構本身設計選擇雙天線架構.

MT6620 SAW QVL for GPS only using

Component	Part Number	Manufacturer	Vendor
	SAFEB1G57KE0F00	Murata	Murata
SAW	B9440(LV01A)	EPCOS	EPCOS
SAVV	856561	SAWTEK	SAWTEK
	TA0757A	TAI_SAW	TAI_SAW

The ISM/GPS Antenna Topology

ISM/GPS Single Antenna

ISM/GPS Dual Antenna

- Summary
 - 2.4GHz/1.575GHz dual antenna shows better performance with less insertion loss
 - 2.4GHz/1.575GHz single antenna is optional for compact layout with less BOM count
 - Cost does not show much difference

MT6620 WIFI BPF QVL

MT6620 2.4GHz Filter Qualified Parts						
		Vendor				
		美磊科技	華新科技	璟德電子	Murata	TDK
		MAG.LAYERS Scientific Technics Co.,Ltd	PSA	ACX	muRata	&TDK
	Frequency	LTB-2012-2G4H6-D14	RFBPF2012080AM0T62	BF2012-L2R4NDA		
Insertion Loss	2400 - 2500MHz	-1.1~-1.3dB	-1.6~ -1.4 dB	-1.6~-1.2dB		
	860 - 960MHz	-37.1~-36.5dB	-38.4~-37.9dB	-38~-37.3dB		
	1545 - 1605MHz	-37.4~-36.5dB	-38.3~-37.4dB	-37.9 ~ -39dB		
Attenuation	1710 - 1990MHz	-44.3~-39.7dB	-44.9~-40.5dB	-43.4 ~ -35.6dB		
	2170MHz	-34dB	-32.5dB	-33.8dB		
	4800 - 5000MHz	-65~-48.5dB	-59.8~-48.4dB	-65 ~-49.9dB		

MediaTek TCXO QVL for MT6620

Component	Part Number	Manufacturer	Vendor
TCXO 2520 2.8V	IT2205AE 26.0MHZ (TX6217)	Rakon	Aurum Tech Inc.
(26MHZ, 0.5ppm)	7L26002009	TXC	TXC
TCXO 2520 1.8V	IT2205AE 26.0MHZ (TX6131)	Rakon	Aurum Tech Inc.
(26MHZ, 0.5ppm)	7L26002009	TXC	TXC

Placement 1 (recommended)

- GPS/BT/WiFi Co-Antenna Application is recommended for effective space utilization and antenna location arrangement.
- The best antenna location of Combo Antenna is in the top of the mobile phone.
- It is also recommended the phone jack and FM short antenna pad near combo chip and in the proper side of combo chip for shortening FM RF traces.
- The combo antenna is recommended to be a dual-band PIFA for GPS and ISM band. Reserve enough space (at least 200 mm² x 6 mm) for dual-band PIFA.
- For better radiation pattern in GPS band, the antenna trace of GPS along top edge is recommended.
- Keep more than 5 mm spacing between combo antenna and other metal and ferromagnetic material components.
- Combo antenna trace can NOT overlap with audio jack or USB connector, otherwise it would cause FM de-sense.

Antenna Feed

Placement 2

- BT/WiFi Co-Antenna application with a GPS Patch Antenna is also an antenna solution.
- The best antenna location of Combo Antenna and GPS Antenna are in the top of the mobile phone.
- It is also recommended the phone jack and FM short antenna pad near combo chip and in the proper side of combo chip for shortening FM RF traces.

Antenna Feed

Gionee

Criteria

- GPS Antenna
 - ❖VSWR < 2, Return Loss < -10 dB</p>
 - ❖Total Efficiency > 50 %
 - ❖ Efficiency in hemisphere > 30%
- BT/WiFi Antenna
 - ❖VSWR < 2, Return Loss < -10 dB</p>
 - ❖Total Efficiency > 50 %

MT6620 MP ATE Instrument Supported

- MT6620 ATE support Multi-tasking. It can test the performance of ISM band(Including WiFi and BT), GPS and FM simultaneously.
- MT6620 ATE support WiFi 11b/g/n, BT Signaling / non-signaling mode testing.
- MT6620 ATE support to use several kinds of instruments for testing.

Functionality	Test Item	Instrument Support
WiFi		- Agilent N4010A - Litepoint IQ2010
Bluetooth	RING/RING IX northronog and Sancitivity	- R&S CBT - Litepoint IQ2010
FM	RX Performance (Audio SINAD, Sensitivity, RSSI) TX performance (TX power, SNR, OBW)	- Litepoint IQ2010
GPS	CNR, Clock stability	- Litepoint IQ2010 - Areoflex GPS-101

MT6620 Conductive Spec For WiFi/BT/GPS Dual Antenna solution

Function	item	Spec (ANT out)
WiFi	Output Power	>14dBm (11g) >16dBm(11b)
	Modulation Accuracy	<-28dB (11g/n/) <-15 dB (11B)
	Frequency Tolerance	10 ppm
	Spectrum Mask	Follow IEEE
	Rx Sensitivity	-73 dBm(54M) <-90 dBm (2M)
Bluetooth	Output Power	>8 dBm
	EDR Relative Transmit Power	Max : 6dB
G	Sensitivity-single slot packets	<-90 dBm
	EDR Sensitivity	<-90 dBm for 2M <-82 dBm for 3M
GPS	C/N (-130dBm)	38 dB

MT6620 Conductive Spec For WiFi/BT/GPS Single Antenna solution (with SAW diplexer)

Function	item	Spec (ANT out)
WiFi	Output Power	>13dBm (11g) >15dBm(11b)
	Modulation Accuracy	<-28dB (11g/n/) <-15 dB (11B)
	Frequency Tolerance	10 ppm
	Spectrum Mask	Follow IEEE
	Rx Sensitivity	<-72 dBm(54M) <-90 dBm (2M)
Bluetooth	Output Power	>7 dBm
	EDR Relative Transmit Power	Max : 6dB
Gi	Sensitivity-single slot packets	<-90 dBm
	EDR Sensitivity	<-90 dBm for 2M <-80 dBm for 3M
GPS	C/N (-130dBm)	37 dB

MT6620 Module Layout Guideline

RF/Analog Part :

- The line width and ground layer reference for RF traces should be kept for better impedance control, which is close to 50ohm line.
- The matching BOMs should be placed as close to chip as possible for better RF performance.
- Using qualified components (ex. switch, diplexer...) for peripheral devices.

Power Line Part :

- The decoupling cap. should be placed as close to chip as possible and using SMD type 2.2uH for bulk out to avoid to de-sense FM performance.
- GND_SMPS, which is DC-DC power ground, should be directly connected to battery ground, instead of sharing ground plane with RF. (important)
- The width of GND_SMPS and AVDD55_SMPS should be wide enough for tolerating 400mA current rating and keep the parasitic resistance smaller than 0.2 ohm
- Keep power trace rule as below .(important)
- WiFi_PA_LDO trace>20mil, VBAT input(M1&L2):25mil Bulk out trace>20 mil,
 OUTBK : 4mil.(important)

Others Layout suggestions:

- keep SDIO/I2S trace routing in a group.
- 2. Give GND via as more as possible for MT6620 in each layer
- 3. Please enclose the SDIO_CLK/SDIO_CLK_FB with GND copper. (Important)
- 4. Follow TCXO layout rule.

MT6620 TCXO Layout Rule

Internal Use

MT6620 Module Outline Drawing

FDD Single Antenna Layout Guide

- ●連接coupler RF trace 要走表層 而且訊號線越短越好.
- ●Ref. GND 請參考第3層. 第2層GND 鋪銅要留禁止區.
- Switch天線端匹配一定要維持 50 ohm, 天線端匹配5 ohm於否對coupler isolation 及co-existence performance 有非常重要的影響, 請務必遵守.另外天線端S11 return loss deep 最好要在中心頻率2437~2442.

WiFi IEEE MAC Address Application

- ◆為何需要申請MAC address?
 - ◆ MAC address又稱MAC位址、硬體位址,用來定義網路設備的位置,若出 現與別人MAC address重複的現象,AP(熱點)也許會認為被攻擊,因此出現無 預警的斷線或是導致網路裝置錯失大量封包,導致難以追查的問題,因此 MAC address必須具有唯一性,不可重複。
- ◆MAC位址定義
 - ◆共48位元(6個位元組),以十六進位表示。
 - ◆高24位元由貴司與IEEE組織申請,低24位元由貴司實際生產時自行產生。
 - ◆舉例來說: 假設貴司申請到的IEEE OUI是0x00-0x01-0x02 , 貴司可以使用 0x00-0x01-0x02-XX-YY-ZZ當作完整MAC address,只要生產時能確定產品 XX-YY-ZZ流水號具惟一性,則此MAC address一定不會發生與他人MAC address產生衝突問題,進而可避免導致網路功能異常。
- ◆適用對象
 - ◆任何有WiFi產品生產之公司.
- ◆寫入方式
 - ◆WiFi CoB客户:請利用MTK SN writer tool.
 - ◆WiFi module客户:請利用ATE "EEPROM copy" function.

34

WiFi IEEE MAC Address Application

- ◆申請步驟
 - http://standards.ieee.org/regauth/oui/forms/
 - ◆1.填寫線上表單
 - https://standards.ieee.org/cgi-bin/wtp/request?rt=OUI
 - ◆2.繳費
 - ◆選擇(支票/匯款/採購單/信用卡)
 - ◆3.費用
 - ◆Publicly Registered OUI (company name and address on the public listing)費用為\$1,650.00(US);相當於一組OUI費用為美金USD\$1,650,每組OUI可有256*256*256 = 16777216個address。相當於一塊美金就可以擁有壹萬個MAC address.
 - ◆完成繳費後,七日內可透過電郵收到IEEE指派給貴司之OUI號碼.
 - ◆其他相關資訊可至下列網站查找.
 - http://standards.ieee.org/regauth/oui/index.shtml

Giones ...

MTK SN Writer Tool 可支援Write MAC Address功能

36

