Problema de las dos damas

Pablo Villanueva Domingo

24 de enero de 2022

Índice

1.	Introducción	1
	Casos simples por conteo	2
	2.1. Dos damas en 2x2	6
	2.2. Dos damas en 3x3	
	2.3. Dos damas en 4x4	2
3.	Generalización a N arbitrario	2
	3.1. Dos torres	4
	3.2. Dos alfiles	4
	3.3. Dos damas	
	3.4. Bonus: Dos caballos	_

1. Introducción

Sean dos damas colocadas aleatoriamente en un tablero de ajedrez de $N \times N$. ¿Cuál es la probabilidad de que se amenacen mutuamente? Este problema es isomorfo al siguiente: sea una dama colocada aleatoriamente en un tablero de ajedrez de $N \times N$; si colocamos una pieza aleatoriamente en otra casilla, ¿cuál es la probabilidad de que sea amenazada?

La probabilidad viene dada por

$$P_{2Damas}(N) = \frac{M_{2Damas}(N)}{M_{tot}(N)},\tag{1}$$

donde el número total de posibles estados es

$$M_{tot}(N) = N^2(N^2 - 1),$$
 (2)

y M_{2Damas} es el número total de estados que son amenazados. Se puede escribir simbólicamente como $M_{2Damas} = \sum_{i}^{N^2} A_i$, donde A_i son los estados amenazados por la 1ª dama en cada casilla i, y la suma se realiza sobre todas las posibles casillas donde puede estar la 1ª dama, que son N^2 . Nos centramos en N > 1.

Nótese que el problema presenta las simetrías del grupo dihédrico D_4 , que es el grupo de simetría del cuadrado, conformadas por rotaciones y reflexiones.

Realmente tendríamos que dividir entre las 2! permutaciones en cada caso, para no contar dos veces estados iguales, ya que ambas reinas son idénticas.

2. Casos simples por conteo

Para grids pequeñas, la probabilidad puede obtenerse mediante conteo, aprovechando las simetrías.

2.1. Dos damas en 2x2

La 1^a dama puede estar en 4 estados simétricos, donde amenaza 3 casillas en cada uno, por lo que trivialmente $P_{2Damas}(2) = 1$.

2.2. Dos damas en 3x3

La primera dama tiene 4 posibles estados en las esquinas, donde amenazan 6 cada uno; 4 estados en bordes, donde amenaza también 6, y uno en el centro, donde amenaza 8. Eso da un total de $M_{2Damas}(3) = 56$. El número total de estados son $M_{tot}(3) = 9 \times 8 = 72$, y por tanto la probabilidad es $P_{2Damas}(3) = 7/9 \simeq 0.77$.

2.3. Dos damas en 4x4

Dadas las simetrías del problema, solo hay que centrarse en uno de los 4 cuadrantes, y multiplicar después por 4. En dicho cuadrante, hay 4 posibles posiciones de la dama, que amenaza respectivamente a 9, 9, 9, y 11 casillas (de los cuales dos son simétricos). Por tanto, el total de estados amenazados es $M_{2Damas}(4) = 4 \times (9 + 9 + 9 + 11) = 152$. El número total de estados son $M_{tot}(4) = 16 \times 15 = 240$, y por tanto la probabilidad es $P_{2Damas}(4) = 19/30 \simeq 0,63$.

3. Generalización a N arbitrario

Comencemos estudiando los casos más sencillos de dos torres y dos alfiles antes de considerar el de dos damas.

3.1. Dos torres

Una torre amenaza siempre 2(N-1) casillas, para cualquier casilla en la que esté ubicada. Hay N^2 posibles casillas donde puede estar. Por tanto,

$$M_{2Torres}(N) = 2N^2(N-1) \tag{3}$$

y la probabilidad es

$$P_{2Torres}(N) = \frac{2(N-1)}{(N^2-1)} = \frac{2}{N+1}$$
(4)

Esta probabilidad es válida tanto para N para como para impar. Por ejemplo, para N=2, $P_{2Torres}(2)=2/3$, y para N=3, $P_{2Torres}(3)=1/2$.

3.2. Dos alfiles

La clave es notar que alfiles en cuadrados concéntricos amenazan al mismo número de casillas. Por tanto, podemos escribir

$$M_{2Alfil}(N) = \sum_{i} (\# \text{casillas en cada cuadrado})(\# \text{casillas amenazadas}),$$
 (5)

donde la suma es sobre cada cuadrado concéntrico. Para el cuadrado exterior hay N-1 casillas en cada lado, por 4 lados. Se reduce en 2 unidades el tamaño del lado para cada cuadrado concéntrico. Por otra parte, al mover el alfil de un cuadrado concéntrico al inmediatamente más interior, se aumenta en 2 el número de casillas amenazadas. Para el caso N par, tenemos por tanto

$$M_{2Alfil.even}(N) = 4(N-1)(N-1) + 4(N-1-2)(N-1+2) + 4(N-1-4)(N-1+4) + \dots$$
 (6)

que se condensa en

$$M_{2Alfil,even}(N) = \sum_{i=1}^{N/2} 4(N-1-2(i-1))(N-1+2(i-1)) = \frac{2}{3}N(2N-1)(N-1).$$
 (7)

Nótese además que $\sum_{i=1}^{N/2} 4(N-1-2(i-1)) = N^2$ son todos los posibles estados donde puede estar el 1er alfil. Para el caso impar, aplica la fórmula anterior sumando hasta (N-1)/2 más la casilla central:

$$M_{2Alfil,odd}(N) = 2(N-1) + \sum_{i=1}^{(N-1)/2} 4(N-1-2(i-1))(N-1+2(i-1)) = \frac{2}{3}N(2N-1)(N-1),$$
(8)

que es idéntico al caso par. Por tanto, la probabilidad es

$$P_{2Alfil}(N) = \frac{2(2N-1)(N-1)}{3N(N^2-1)} = \frac{2(2N-1)}{3N(N+1)}$$
(9)

Por ejemplo, para N = 2, $P_{2Alfil}(2) = 1/3$, y para N = 3, $P_{2Alfil}(3) = 5/18$.

3.3. Dos damas

El caso de dos damas es una mezcla de el de dos torres y dos alfiles. Dada la posición de la primera dama, el número de casillas que amenaza es el de la torre más el del alfil, $M_{2Damas}(N) = M_{2Alfil}(N) + M_{2Torres}(N)$, o bien

$$M_{2Damas}(N) = \sum_{i=1}^{N/2} 4(N-1-2(i-1))(N-1+2(i-1)+2(N-1)) = \frac{2}{3}N(5N-1)(N-1)$$
(10)

y por tanto la probabilidad es

$$P_{2Damas}(N) = \frac{2(5N-1)(N-1)}{3N(N^2-1)} = \frac{4}{N+1} - \frac{2}{3N},\tag{11}$$

válida para los casos N par o impar. Nótese que también se cumple $P_{2Damas}(N) = P_{2Torres}(N) + P_{2Alfil}(N)$. Podemos ver que se recuperan los casos simples $P_{2Damas}(2) = 1$, $P_{2Damas}(3) = 7/9$ y $P_{2Damas}(4) = 19/30 \simeq 0.63$.

3.4. Bonus: Dos caballos

Dentro de la subgrid $(N-4) \times (N-4)$, cada caballo puede amenazar siempre a 8 casillas, para N > 4. Para $N \ge 4$, obtenemos

$$M_{2Caballo}(N) = 4(N-1)(2+2\times3+(N-4)\times4)+4(N-3)(4+(N-4)\times6)+(N-4)^2\times8$$
(12)

$$= 4 \left[(N-1) \left(2 + (N-4) \right) + 2 \left(N-3 \right) \left(2 + 3(N-4) \right) + 2(N-4)^2 \right]$$
(13)

$$= 8 \left[6N^2 - 33N + 50 \right] \tag{14}$$

Debido al alcance finito del caballo, el número de estados amenazados va con $\propto N^2$ en vez de N^3 , como con las piezas anteriores. Para N=3,

$$M_{2Caballo}(N=3) = 4(N-1)(2+2) = 16,$$
 (15)

y para N=2, trivialmente $M_{2Caballo}(2)=0$. Por tanto, $P_{2Caballo}(2)=0$, $P_{2Caballo}(3)=16/72=2/9$. Para N=4, $M_{2Caballo}(4)=4(6+4)=40$, y $P_{2Caballo}(4)=40/240=1/8$.