Birla Institute of Technology and Science, Pilani

Work Integrated Learning Programmes Division

Mathematical Foundations for AIML

II Semester 2022-23

Homework - 2

Instructions

- Do not copy, either from someone or some internet resourse / book.
- This is for your understanding and you need not submit for correction.
- This is not to be taken as sample questions for the examinations.

Q1 Let $\mathbf{B} = (\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_{r-1}}, \mathbf{b_r}, \mathbf{b_{r+1}}, \dots, \mathbf{b_n})$ be a non-singular matrix. If column $\mathbf{b_r}$ is replace by \mathbf{a} and that the resulting matrix is called $\mathbf{B_a}$ along with $\mathbf{a} = \sum_{i=1}^n y_i \mathbf{b_i}$, then state the necessary and sufficient condition for $\mathbf{B_a}$ to be non-singular.

Q2 Let V be a finite dimensional vector space over \mathbb{R} . If S is a set of elements in V such that $\mathrm{Span}(S) = V$, what is the relationship between S and the basis of V?

- **Q3a)** Let P be a real square matrix satisfying $P = P^T$ and $P^2 = P$.
 - i) Can the matrix P have complex eigenvalues? If so, construct an example, else, justify your answer.
 - ii) What are the eigenvalues of P?
 - **b)** Given the following matrix $A = \begin{pmatrix} 1 & 2 & r \\ c & 1 & 7 \\ c & 1 & 7 \end{pmatrix}$ where c and r are arbitrary real

numbers and $5.5 < r \le 6.5$, and the fact that $\lambda_1 = 3$ is one of the eigenvalues, is it possible to determine the other two eigenvalues? If so, compute them and give reasons for your answer.

Q4 The Fibonacci sequence is defined by $V_n = V_{n-1} + V_{n-2}$ for $n \geq 2$ with starting values $V_0 = 1$ and $V_1 = 1$. Observe that the calculation of V_k requires the calculation of $V_2, V_3, \ldots, V_{k-1}$. To avoid this, could this problem be written as an eigenvalue problem and solved for V_n directly? If so, find the explicit formula for V_n .

Q5 Prove that if A is a square matrix of size $n \times n$, then $A^k \to 0$ as $k \to \infty$ if and only if $|\lambda_i| < 1 \quad \forall i$.

Q6 Construct examples of matrices for which the **defect** is positive, negative and zero wherever possible.