Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Основи програмування 1. Базові конструкції»

«Організація розгалужених процесів»

Варіант №13

Виконав студент <u>ІП-14 Котков Тимур Максимович</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>Камінська Поліна Анатоліївна</u> (прізвище, ім'я, по батькові)

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета - дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 13

13. Для $x \in [0, 5]$ з точністю $\varepsilon = 10^-4$ знайти суму парних компонент ряду

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!}.$$

Постановка задачі

Необхідно за формулою $1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\ldots+(-1)^n\frac{x^{2n}}{(2n)!}$.

знайти суму парних компонент ряду при $x \in [0, 5]$ з точністю $\varepsilon = 10^{-4}$ використовуючи ітераційні цикли

Побудова математичної моделі

Відповідно до умови складемо таблицю змінних:

Змінна	Tun	Назва	Призначення
Початкове число х	Дійсний	X	Вхідні дані
Задана точність є	Дійсний	e	Вхідні дані
Номер доданку п	Дійсний	n	Проміжні дані
Лічильник і	Цілий	ind	Проміжні дані
Поточний результат	Дійсний	curr_res	Проміжні дані
Проміжний результат	Дійсний	prev_res	Проміжні дані
Факторіал числа	Цілий	fact	Проміжні дані
Сума	Дійсний	sum	Вихідні дані

Для знаходження значення виразу нам знадобиться використання таких функцій :

- **Abs(a)**, яка знаходить модуль виразу, де **a** заданий вираз
- Pow(a, b), яка підносить задане число a до степеня b

Значення змінної epsilon ϵ сталим і рівним 10^-4

Блок-схема

Випробування коду

Python

```
1
        import math
        x = float(input('Введите значение x: '))
 2
        e = 10**-4
 3
        curr_res = 1
 4
        prev_res = 0
 5
        summ = 1
 6
        n = 1
        fact = 1
 8
        ind = 1
 9
10
11
        while (0 <= x <= 5):</pre>
12
            while abs(prev_res - curr_res) > e:
                for i in range(ind, n * 4 + 1):
13
                     fact *= i
14
                    ind += 1
15
16
                prev_res = curr_res
17
                curr_res = (x ** (4 * n)) / fact
18
                summ += curr_res
19
                n += 1
20
            else:
                break
21
22
        else:
23
            x = float(input('X не пренадлежит промежутку [0, 5]. Введите значение x ещё раз: '))
24
       print(summ)
25
```

```
Введите значение х: 1
1.041691470341644
Введите значение х: 2
1.6730244272678132
Введите значение х: 3
4.538834749588204
Введите значение х: 4
13.327294607576201
Введите значение х: 5
37.24680535500327
Введите значение х: 12
Х не пренадлежит промежутку [0, 5]. Введите значение х ещё раз: -1
Х не пренадлежит промежутку [0, 5]. Введите значение х ещё раз: -1
1.041691470341644
```

Висновок:

Ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій. Навчилися використовувати циклічні програми для знаходження факторіалу числа, зображувати циклічні програми у виглядіблок-схем та коду на мові Python.