Title: Observation and Verification of nMOS characteristics.

1) Objectives:

- i. To find the MOS model parameters for the transisotrs and then by "pencil & paper" manually calculate the DC characteristics of I_{DS} current vs V_{DS} voltage, using simple current equations for MOS model Level 1 to determine a number of corresponding value pairs of $(I_{DS}; V_{DS})$ with gate-source voltage, $V_{GS} = a$ constant $> V_{th}$.
- ii. Use circuit simulator of Micro-wind to do a DC simulation of the I_{DS} current vs V_{DS} voltage and the result of the two methods compared
- iii. Calculation of the threshold voltage.

2) Aparatus:

- a) Microwind software.
- 3) **Theory:** The nMOS transistor I_{DS} current versus V_{DS} voltage equations are as follows:
 - a) **Cut-off mode**: $I_{DS} = 0$ when $V_{GS} < 0$.
 - b) Triod/Linear region: IDS = $k_n \{ (V_{GS} V_{Th}) V_{DS} \frac{1}{2} V_{DS}^2 \}$ when $V_{DS} < V_{GS} V_{th}$ ----(1)

 In Level 1 SPICE model, IDS = $\mu_{0.} \frac{\epsilon_0 \epsilon_{SiO_2}}{T_{OS}} \cdot \frac{W}{L} \{ (V_{GS} V_{Th}) V_{DS} \frac{1}{2} V_{DS}^2 \}$
 - c) Saturation egion: $I_{DS} = \frac{1}{2} k_n \{ (V_{GS} V_{Th})^2 (1 + \lambda V_{DS}) \}$ when $V_{DS} > V_{GS} V_{th}$ -----(2) In level 1 SPICE model $I_{DS} = \mu_0 \cdot \frac{\epsilon_0 \epsilon_{SiO_2}}{T_{ox}} \cdot \frac{W}{L} (V_{GS} V_{Th})^2$

when channel modulation effect is neglected the drain current equation (2) can be simplified as

$$I_{DS} = \frac{1}{2} k_n \{ (V_{GS} - V_{Th})^2 \}$$
 when $V_{DS} > V_{GS} - V_{th}$ -----(3)

The current gain factor k_n is a constant with unit . This is dependent on MOS transistor geometry (channel length L and channel width W), fabrication process parameters (electron mobility, μ_n and gate-oxide capacitance C_{OX}).

The factor k_n can be calculated as $k_n = k'_n \frac{W}{L}$ where the process conductance parameter

 $k'_n = \mu_n C_{ox} \left[\frac{A}{V^2} \right]$. The parameters C_{ox} stands for gate oxide capacitance per unit area dependent on gate oxide thickness t_{ox} . This can be expressed as $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$ where the $\epsilon_{ox} = 3.97$ is the silicone

dioxide permitivity which can be calculated with the knowledge of relative dielectric constant value of silicon dioxide ϵ_{SiO_2} and dielectric constant of vacuuam ϵ_0 . So $\epsilon_{ox} = \epsilon_{SiO_2} * \epsilon_0$. The additional parameter of the I_{DS} and V_{DS} is the threshold voltage V_T . The threshold voltage with zero source-substrate (bulk) voltage can be expressed as V_{T0} . When the source-substrate (bulk) voltage V_{SB} is not equal to zero then we call it for nMOS transistor is V_{tn} and for pMOS is V_{tp} can be expressed as follows:

$$V_{T_n} = V_{T_{0n}} + \gamma (\sqrt{2 \phi_b + |V_{SB}|} - \sqrt{2 \phi_b})$$

$$V_{T_n} = V_{T_{0n}} + \gamma (\sqrt{2 \phi_b + (V_{DD} + |V_{BS}|}) - \sqrt{2 \phi_b})$$

The table below shows the SPICE MOSFET parameters in level 1

Microwind SPICE symbol	Meaning	Theoritical Symbol	Unit	
VTO	Threshold Voltage	V_{T0}	V	
TOX	Oxide thickness	t_{ox}	nm	
UO	Low-field obility	μ_0	$\frac{m^2}{V.sec}$	
РНІ	Surface potential	2 φ	V	
GAMMA	Body-bias coefficient	γ	V^2	

4) Procedure:

- a) Level 1 MOS model equations to calculate DC values for the drain current I_{DS} vs drain-source voltage V_{DS} .
- First calculate with a gate-source voltage $V_{GS} = +2.0 \text{ V}$, for each drain-source voltage V_{DS} ; 0.5, 1.0, 1.5, 2.0, 2.5 the difference V_{DS} (V_{GS} V_{tn}) to determine in which region transistor work.. Mark in table 2 equation umber 1 or 2 that should be chosen to calculate the drain current I_{DS} for the correspondingpoint (I_{DS} , V_{DS}). If we consider the 0.25um CMOS processing technology then $V_{th} = 0.45 \text{ V}$, $\mu_0 = \mu_p = 0.06$, $\gamma = 0.4$, $t_{ox} = 0.5 \text{ nm}$
- Calculate for the voltages V_{DS} : 0.5, 1.0, 1.5, 2.0, 2.5 volts the drain-current I_{DS} for each point $(I_{DS}; V_{DS})$ after having determined a region the transistor works in (linear or saturated) Fill in corresponding value pairs $(I_{DS}; V_{DS})$ in table 2 for given drain-source DC voltages.

$ m V_{DS}$	0.5	1.0	1.5	2.0	2.5
$V_{\text{DS-}}(V_{\text{GS}}-V_{\text{tn}})$	eqn-1	eqn-1	eqn-1	eqn-2	eqn-2
Manual Calculation I _{DS} (uA)	547.56	884.52	1010.88	1011.933	1011.93

Now plot the characteristics curve using excel based data-values of table 1 the curve is like as shown in figure

Fig 1: Characteristics of nMOS transistor

Use of "Simulate>MOS characteristics" to generate the DC characteristic I_{DSn} vs V_{DSn} for the nMOS transistor in microwind.

- Open the microwind window and check that the selected foundary is 0.25 um CMOS process from file→ select foundary and choose cmos025.rul. Use Level 1 MOS transistor model.
- Now generate the nMOS transistor of width and length ratio is $4\lambda x 2\lambda$ from palate. Then simulate the generated nMOS to check its characteristics curve and compare the curve with the manually generated curve.

Fig 2: Microwind generated nMOS characteristics curve

Conclusion: The characteristics curve of nMOS from manually calculated values of I_{DS} doesn't vary significantly from automatically generated characteristics curve using Micro-wind. Micro-wind being a simulation software can include several influencing factor while plotting the characteristics curve.