RESTER LIVRES

Cheikhou FOFANA

ANALYSE DES VENTES DE « RESTER LIVRES »

- Présentation des fichiers
- Préparation des données
- Analyse des ventes
- Analyse des corrélations
- Conclusion

I- PRÉSENTATION DES FICHIERS

3 fichiers à disposition

Products

Transactions

Customers

products.head()

transact.head()

customers.head()

	$id_{-}prod$	price	categ		id_prod	date	session_id	client_id
0	0_1421	19.99	0	0	0_1483	2021-04-10 18:37:28.723910	s_18746	c_4450
1	0_1368	5.13	0	1	2_226	2022-02-03 01:55:53.276402	s_159142	c_277
2	0_731	17.99	0	2	1_374	2021-09-23 15:13:46.938559	s_94290	c_4270
3	1_587	4.99	1	3	0_2186	2021-10-17 03:27:18.783634	s_105936	c_4597
4	0_1507	3.99	0	4	0_1351	2021-07-17 20:34:25.800563	s_63642	c_1242

	client_id	sex	birth
0	c_4410	f	1967
1	c_7839	f	1975
2	c_1699	f	1984
3	c_5961	f	1962
4	c_5320	m	1943

CUSTOMERS

```
#Proportion d'hommes dans le fichier
customers[customers['sex'] == 'm'].shape

(4132, 3)

#Proportion de femmes
customers[customers['sex'] == 'f'].shape

(4491, 3)
```

On a 8623 clients répartis en 4132 d'hommes et 4491 femmes

Il n'y a pas de doublons dans le fichier: True

TRANSACTIONS

```
#Supprimons les transactions de tests
transact.info()
                                        transact = transact[(transact['client id'] != 'ct 0')
<class 'pandas.core.frame.DataFrame'>
                                                            & (transact['client id'] != 'ct 1')]
Int64Index: 336816 entries, 0 to 337015
Data columns (total 4 columns):
    Column
                Non-Null Count
                                Dtype
    id_prod 336816 non-null object
                                        #Checker l'existence de doublons
            336816 non-null object
    date
                                        print('Il n\'y a pas de doublons dans le fichier:',
   session_id 336816 non-null object
                                              transact.size == transact.drop duplicates('date').size)
    client_id 336816 non-null object
dtypes: object(4)
                                        Il n'y a pas de doublons dans le fichier: True
memory usage: 12.8+ MB
```

PRODUCTS

II- PRÉPARATION DES DONNÉES

```
# Jointure entre transact et products
df = pd.merge(transact, products, on = ['id_prod'], how='outer')
```

Identifier les produits non vendus et les supprimer

categ	0	1	2
price	17.0	2.0	3.0

22 articles n'ont pas été vendus dont 17 de catégorie 0, 2 de la catégorie 1 et 3 de la catégorie 2. Il y a 103 transactions concernant le produit d'id *0_2245* dont on ignore sa

catégorie et son prix.

```
df[(pd.isnull(df['price']) == True) |
   (df['price'] == 0)].groupby(['id_prod']).agg('count')
```

date session_id client_id price categ

id_prod					
0_2245	103	103	103	0	0

```
#Supprimons les 22 produits
#non vendu du dataset
df.dropna(inplace=True)
df.isnull().sum()
```

```
id_prod 0
date 0
session_id 0
client_id 0
price 0
categ 0
```

On décide d'imputer les colonnes *categ* et *price* par respectivement 0 et la moyenne de categ 0.

```
# Imputons les colonnes categ et price par respectivement 0
#et la moyenne de la categ 0 pour le produit 0_2245
df['categ'] = df[['categ']].fillna(value=0)
df['price'] = df[['price']].fillna(value=10.65)
```

Jointure entre notre dataset nettoyé et customers

On dénombre 21 visiteurs sur le site qui n'ont pas acheté.

On les supprime du dataset aussi.

Dataset final avant extraction des valeurs aberrantes **336816** lignes et 13 colonnes

#Le dataset final
df.head()

	client_id	session_id	sex	age	date	id_{prod}	categ	price	year	month	day	n_mois	heure
0	c_4450	s_18746	0	44	2021-04-10 18:37:28.723910	0_1483	0	4.99	2021	4	10	4	18
1	c_4450	s_97382	0	44	2021-09-29 11:14:59.793823	0_1085	0	3.99	2021	9	29	9	11
2	c_4450	s_81509	0	44	2021-08-27 19:50:46.796939	0_1453	0	7.99	2021	8	27	8	19
3	c_4450	s_81509	0	44	2021-08-27 20:07:25.878440	0_1405	0	4.99	2021	8	27	8	20
4	c_4450	s_141302	0	44	2021-12-28 11:45:04.072281	0_1392	0	6.30	2021	12	28	12	11

Valeurs aberrantes sur la colonne age

Distribution des ages des clients par catégorie

Valeurs aberrantes sur la colonne *price*

Distribution des prix des produits par catégorie

Dataset final avec **318436** lignes et 14 colonnes

df.head()

	client_id	session_id	sex	age	date	id_prod	categ	price	year	month	day	n_mois	heure	partie_jour
0	c_4450	s_18746	0	44	2021-04-10 18:37:28.723910	0_1483	0	4.99	2021	4	10	4	18	Afternoon
1	c_4450	s_97382	0	44	2021-09-29 11:14:59.793823	0_1085	0	3.99	2021	9	29	9	11	Morning
2	c_4450	s_81509	0	44	2021-08-27 19:50:46.796939	0_1453	0	7.99	2021	8	27	8	19	Afternoon
3	c_4450	s_81509	0	44	2021-08-27 20:07:25.878440	0_1405	0	4.99	2021	8	27	8	20	Afternoon
4	c_4450	s_141302	0	44	2021-12-28 11:45:04.072281	0_1392	0	6.30	2021	12	28	12	11	Morning

On a la même proportion d'hommes et de femmes.

On observe une suite chute drastique au mois d'Octobre où les commandes des produits de la catégorie 1, c'est dû certainement une anomalie.

Au même moment, on observe une relative stabilité des ventes des autres catégories de produits avec la catégorie 0 qui fait un saut spectaculaire au mois de Septembre.

L'anomalie débute le 2
Octobre et se poursuit
jusqu'au 27 Octobre.
Pas moins de 992 articles n'ont
pas connus la moindre vente
au cours du mois.

Produits vendus au mois entre le 2 et 27 Octobre 2021

On constate l'absence totale des produits de la catégorie 1 dans les ventes entre le 2 et 27 Octobre.

Par conséquent, on décide de ne pas tenir en compte du mois d'Octobre pour la suite de l'analyse.

Les clients les plus actifs ont entre 32 et 55 ans. Les femmes passent 2 fois plus de commandes que les hommes. L'âge le plus représentatif est 41 ans.

Le plus grand nombre de commandes pour la catégorie 0

La catégorie 0 présente près de 2 fois plus de commandes que la catégorie 1 et plus de 8 fois la catégorie 2.

La catégorie 1 génère le plus gros chiffre d'affaires

Répartition du C.A. sur 12 mois par catégorie produits

La catégorie 1 génère le plus gros chiffre d'affaire légèrement devant la catégorie 0.

Les prix varient majoritairement entre 2€ et 25€.

montre une concentration du chiffre d'affaire.
En effet, 20% des produits génèrent 78% du chiffre d'affaire.

Gini = 0,74

montre une
concentration du
chiffre d'affaire.
En effet, 20% des
clients génèrent 48%
du chiffre d'affaire.

Gini = 0,44

IV- ANALYSE DES CORRÉLATIONS

Globalement, il n'y a pas de corrélation entre le genre et la catégorie, néanmoins on observe une certaine corrélation entre le sexe et la catégorie 2.

Les variables sex et categ sont indépendantes donc il n'y a pas de corrélation entre elles car xi_n = 81.73.

Le montant total du panier ne varie pas en fonction de l'âge, donc pas de corrélation.

$$\eta 2 = 0.04$$

On observe une forte corrélation entre l'âge et le panier moyen. En effet, plus l'âge évolue plus le panier moyen diminue.

 $\eta 2 = 0,3$

Absence totale de corrélation entre l'âge des clients t la fréquence d'achats.

 $r^2 = 0.03$

Il n' y a une certaine corrélation entre l'âge des clients et la catégorie.

On constate que la catégorie 1 intéresse tous les âges alors que la catégorie 2 n'intéresse que les jeunes de moins de 40 ans.

 $\eta 2 = 0,12$

V- CONCLUSION

 Les 32 – 55 ans dépensent relativement plus, plus fréquemment et le panier moyen contient plus d'articles que pour les autres tranches d'âge. Mais ils sont davantage intéressés par les catégories 1 et 0, qui ont des prix moins élevés que la catégorie 2.

 Ce sont les 18-30 ans qui achètent davantage des produits de la catégorie 2, qui sont les produits les plus chers.

Ce sont les produits de la catégorie 1 qui intéressent le plus de clients différents, il s'agit d'une "catégorie tout public".

Nous ne pouvons pas déterminer de différence majeur entre chacun les sexes.