Linear Regression

Ata Kaban

Example of a regression problem

• Let's look at some fun data. Can we predict the long-jump Gold winning distance 125 years after the first modern Olympic games?

Data from: Rogers & Girolami. A First Course in Machine Learning. 2nd edition. Chapman & Hall/CRC, 2017

Example of a regression problem

Let's look at more fun data. Can we predict people's weight from their

height?

Height(cm)	Weight(kg)
150.00686	69.73347
151.64326	69.83261
155.54032	71.55730
158.80535	71.92875
161.17561	72.92118
:	
175.15167	79.48533
182.32900	80.52182
191.11317	83.67998
193.21947	84.72086
202.68705	89.64049

Regression

 Regression means learning a function that captures the "trend" between input and output

We then use this function to predict target values for new inputs

Univariate linear regression

- Visually, there appears to be a trend
- A reasonable model seems to be the class of linear functions (lines)
- We have one input attribute (year) hence the name univariate

$$y = f(x; w_0, w_1) = w_1 x + w_0$$
 dependent variable free parameters

• Any line is described by this equation by specifying values for w_1, w_0 .

Check your understanding

Suppose that from historical data someone already calculated the parameters of our linear model are $w_0=1.68,\ w_1=0.44.$ A new person (James) has height x=178cm. Using our model, we can predict James' weight is 0.44*178+1.68=80kg.

https://becominghuman.ai/univariate-linear-regression-clearly-explained-with-example-4164e83ca2ee

Play around with linear functions

- Go to https://www.desmos.com/calculator
- Type: $y = w_1 x + w_0$
- Plug in some values for the free parameters, or use the slider to see their effect
- What is the role of the free parameters?
 - w_1 is the slope of the line
 - w_0 is the intercept with the y-axis
- Fixing concrete numbers for these parameters gives you specific lines

Equation of a straight line with slope m and intercept c.

This is why:
$$f(x + \Delta x) = m(x + \Delta x) + c = mx + m \cdot \Delta x + c = f(x) + m \cdot \Delta x$$
$$\Rightarrow m = \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{\Delta y}{\Delta x}$$

Our goal: Find the "best" line

- Which is the "best" line? That captures the trend in the data.
- Determine the "best" values for w_1, w_0 .

Loss functions (or cost functions)

• We need a criterion that, given the data, for any given line will tell us how bad is that line.

 Such criterion is called a loss function. It is a function of the free parameters!

Terminology

• Loss function = cost function = loss = cost = error function

We average the losses on all training examples

For each training example (point) n = 1, ..., N,

The loss on the n-th point is the mismatch between the output of the model for this point $f(x^{(n)}; w_0, w_1)$ and the observed target $y^{(n)}$.

Average these losses.

Square loss (L2 loss)

- The loss expresses an error, so it must be always non-negative
- Square loss is a sensible choice to measure mismatch for regression
- Mean Square Error (MSE)

$$g(w_0, w_1) = \frac{1}{N} \sum_{n=1}^{N} (f(x^{(n)}; w_0, w_1) - y^{(n)})^2$$

loss for the n-th training example

and recall that, for any x, we have $f(x; w_0, w_1) = w_1 x + w_0$

Cost function depends on the free parameters

Check your understanding

- Suppose a linear function with parameters $w_0 = 0.5$, $w_1 = 0.5$
- Compute the loss function value for this line at the training example: (1,3).
- $f(x^{(1)}; 0.5, 0.5) = 0.5 * 1 + 0.5 = 1$ (output of the model)
- $y^{(1)} = 3$ (actual target)
- Square loss for this point: $(1-3)^2 = 4$.
- Cost = 4.

Univariate linear regression – what we want to do

Given training data

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)})$$

Fit the model

$$y = f(x; w_0, w_1) = w_1 x + w_0$$

By minimising the cost function

$$g(w_0, w_1) = \frac{1}{N} \sum_{n=1}^{N} ((w_1 x^{(n)} + w_0) - y^{(n)})^2$$

Univariate linear regression – what we want to do

• Every combination of w_0 and w_1 has an associated cost.

• To find the 'best fit' we need to find values for w_0 and w_1 such that the cost is minimum.

Gradient Descent

Gradient Descent

• A general strategy to minimise cost functions.

Goal: Minimise cost function $g(w_0, w_1)$

Start at say $w_0 \coloneqq 0$, $w_1 \coloneqq 0$ Repeat until no change occurs Update w_0 , w_1 by taking a <u>small step</u> in the <u>direction of the steepest descent</u> Return w_0 , w_1

Gradient descent – the general algorithm

• Goal: Minimise cost function $g(\mathbf{w})$, where $\mathbf{w} = (w_0, w_1, \dots)$

```
Input: \alpha>0
Initialise \boldsymbol{w} // at 0 or some random value
Repeat until convergence
\boldsymbol{w}\coloneqq\boldsymbol{w}-\alpha \ \nabla g(\boldsymbol{w})
Return \boldsymbol{w}

step size direction
```

 α is called "learning rate" = "step size", for instance 0.01

How to find the best direction?

- First, recall from calculus that the derivative of a function is the change in function value as the argument of the function changes by a minimal amount.
- The derivative evaluated at a given location gives us the <u>slope of the tangent line</u> at that point.
- The negative of the slope points towards the minimum point. Check!

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
$$\Delta x \to 0$$

Demo example for gradient descent algorithm

Gradient

- **Partial derivative** with respect to w_0 is $\frac{\delta g(w_0,w_1)}{\delta w_0}$. It means the derivative function of $g(w_0,w_1)$ when w_1 is treated as constant.
- **Partial derivative** with respect to w_1 is $\frac{\delta g(w_0, w_1)}{\delta w_1}$. It means the derivative function of $g(w_0, w_1)$ when w_0 is treated as constant.
- The vector of partial derivatives is called the gradient.

$$\nabla g(w) = \begin{pmatrix} \frac{\delta g(w_0, w_1)}{\delta w_0} \\ \frac{\delta g(w_0, w_1)}{\delta w_1} \end{pmatrix} \quad \text{where } w = \begin{pmatrix} w_0 \\ w_1 \end{pmatrix}$$

- The negative of the gradient evaluated at a location $(\widehat{w_0}, \widehat{w_1})$ gives us the direction of the **steepest descent** from that location.
- We take a small step in that direction.

Gradient Descent applied to solving Univariate Linear Regression

Computing the gradient for our L2 loss

- Recall the cost function $g(w_0, w_1) = \frac{1}{N} \sum_{n=1}^{N} ((w_1 x^{(n)} + w_0) y^{(n)})^2$
- Using the chain rule, we have*:

$$\frac{\delta g(w_0, w_1)}{\delta w_0} = \frac{2}{N} \sum_{n=1}^{N} (w_1 x^{(n)} + w_0) - y^{(n)}$$

$$\frac{\delta g(w_0, w_1)}{\delta w_1} = \frac{2}{N} \sum_{n=1}^{N} ((w_1 x^{(n)} + w_0) - y^{(n)}) x^{(n)}$$

^{*}For a very detailed explanations of all steps watch: https://www.youtube.com/watch?v=sDv4f4s2SB8

Algorithm for univariate linear regression using GD

• Goal: Minimise $g(w_0, w_1) = \frac{1}{N} \sum_{n=1}^{N} ((w_1 x^{(n)} + w_0) - y^{(n)})^2$

Return w_0, w_1

```
Input: \alpha > 0, training set \{(x^{(n)}, y^{(n)}) : n = 1, ..., N\}

Initialise w_0 \coloneqq 0, w_1 \coloneqq 0

Repeat

For n = 1, ..., N // more efficient to update after each data point
w_0 \coloneqq w_0 - \alpha \cdot ((w_1 x^{(n)} + w_0) - y^{(n)})
w_1 \coloneqq w_1 - \alpha \cdot ((w_1 x^{(n)} + w_0) - y^{(n)}) x^{(n)}
Until change remains below a very small threshold
```

Effect of the learning rate

Extensions & variants of regression problems

- We change the model
- The loss and cost function remains the same

Multivariate linear regression

$$\mathbf{w} := \binom{w_0}{w_1} \qquad \mathbf{x} := \binom{1}{x}$$
 with

Univariate nonlinear regression

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + ... + w_m x^m = \mathbf{w}^T \mathbf{x}$$
 with

$$\mathbf{w} := \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_m \end{pmatrix} \qquad \mathbf{x} := \begin{pmatrix} 1 \\ x \\ x^2 \\ \dots \\ x^m \end{pmatrix}$$

This is an *m*-th order polynomial regression model.

Figure from: https://www.r-bloggers.com/first-steps-with-non-linear-regression-in-r

Advantages of vector notation

- Vector notation in concise
- With the vectors \mathbf{w} and \mathbf{x} populated appropriately (and differently in each case, as on the previous 2 slides), these models are still linear in the parameter vector.
- The cost function is the L2 as before
- So the gradient in both cases is:

$$\nabla g(\mathbf{w}) = 2(\mathbf{w}^T \mathbf{x}^{(n)} - y^{(n)}) \mathbf{x}^{(n)}$$

Ready to be plugged into the general gradient descent algorithm

Don't get too carried away with nonlinearity

Reference Acknowledgement

Several figures and animations on these slides are taken from:

• Jeremy Watt et al. Machine Learning Refined. Cambridge University Press, 2020.

https://github.com/jermwatt/machine learning refined