PSALTer results panel

$$S = \frac{1}{1} \int \int \int \left(\rho \varphi + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \frac{1}{2} \alpha_{\frac{1}{2}} \partial_{\alpha} \varphi \partial^{\alpha} \varphi + \frac{1}{8} \alpha_{\frac{1}{1}} \left(36 \left(1 + 2 \varphi\right) \partial_{\alpha} \partial^{\alpha} \varphi - 12 \partial_{\alpha} h^{\beta}_{\beta} \partial^{\alpha} \varphi + 18 \partial_{\alpha} \varphi \partial^{\alpha} \varphi + 12 \partial^{\alpha} \varphi \partial_{\beta} h^{\beta}_{\alpha} - 4 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 2 \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\alpha} h^{\alpha\beta}_{\beta} \partial^{\alpha} \varphi - 12 \partial^{\beta} \partial^{\alpha} \varphi \partial_{\alpha} h^{\alpha\beta}_{\beta} \partial^{\alpha} h^{\alpha\beta}_{\beta} \partial^{\alpha} h^{\alpha\beta}_{\alpha} \partial_{\beta} \partial^{\alpha} \varphi - 12 \partial^{\beta} \partial^{\alpha} \varphi \partial_{\alpha} \partial_{\alpha} h^{\alpha\beta}_{\beta} \partial^{\alpha} h^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\alpha}_{\alpha} \partial^{\alpha} h^{\alpha\beta}_{\beta} \partial^{\alpha} h^{\alpha\beta}_{\alpha} \partial^{\beta} \partial^{\alpha} \varphi - 12 \partial^{\beta} \partial^{\alpha} \varphi \partial_{\alpha} \partial^{\alpha} h^{\alpha\beta}_{\beta} \partial^{\alpha} h^{\alpha\beta}_{\alpha} \partial^{\alpha} h^{\alpha\beta}_{\alpha} \partial^{\beta} \partial^{\alpha} \varphi \partial^{\alpha} h^{\alpha\beta}_{\alpha} \partial^{\beta} \partial^{\alpha} \varphi \partial^{\alpha} h^{\alpha\beta}_{\alpha} \partial^{\alpha} h^{\alpha\beta}_{\beta} \partial^{\alpha} h^{\alpha\beta}_{\alpha} \partial^{\alpha} h^{\alpha\beta}_{\beta} \partial^{\alpha} h^{\alpha\beta}_{\beta}$$

Source constraints

Spin-parity form	Covariant form	Multiplicities
° 7 ± == 0	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
1 ⁻ ₋ τ ⁻ == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected g	4	

Massive spectrum

Massive particle

Massive particle

Pole residue:	$\left \frac{4}{\alpha_{1}}\right>0$	Pole residue:	$-\frac{8}{\alpha_{\cdot}} > 0$
Square mass:	$\frac{\frac{\alpha_{.}}{1}}{4(3\alpha_{.}-4\alpha_{.}+\alpha_{.})} > 0$	Square mass:	$\frac{\alpha_{1}}{8\alpha_{1}-8\alpha_{1}}>0$
Spin:	0	Spin:	2
Parity:	Even	Parity:	Even

Massless spectrum

Massless particle

Massless particle

Pole residue: $\left \frac{p^2}{\alpha} \right > 0$	Pole residue: $\left \frac{1+18 p^2}{18 \frac{\alpha_1 + \alpha_2}{2}} > 0 \right $
Polarisations: 2	Polarisations: 1

Unitarity conditions