

Mark Scheme (Results) January 2010

GCE

Statistics S1 (6683)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010
Publications Code UA023026
All the material in this publication is copyright
© Edexcel Ltd 2010

January 2010 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
Q1 (a)	Red $ \frac{\frac{1}{3}}{\frac{1}{3}} $ Red $ \frac{\frac{1}{3}}{\frac{1}{3}} $ Blue $ \frac{\frac{1}{4}}{\frac{1}{4}} $ Blue $ \frac{\frac{2}{3}}{\frac{1}{3}} $ Red $ \frac{\frac{2}{3}}{\frac{1}{3}} $ Red $ \frac{1}{3} $ Green $ \frac{1}{4} $ Green $ \frac{2}{3} $ Red $ \frac{1}{3} $ Blue $ \frac{1}{3} $ Blue	M1 A1 A1 (3)
(b)	P(Blue bead and a green bead) = $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right) = \frac{1}{6}$ (or any exact equivalent)	M1 A1 (2) Total [5]
Q1 (a)	M1 for shape and labels: 3 branches followed by 3,2,2 with some R , B and G seen Allow 3 branches followed by 3, 3, 3 if 0 probabilities are seen implying that 3, Allow blank branches if the other probabilities imply probability on blanks is zeen Ignore further sets of branches 1st A1 for correct probabilities and correct labels on 1st set of branches. 2nd A1 for correct probabilities and correct labels on 2^{nd} set of branches. (accept 0.33, 0.67 etc or better here) M1 for identifying the 2 cases BG and GB and adding 2 products of probabilities. These cases may be identified by their probabilities e.g. $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right)$ NB $\frac{1}{6}$ (or exact equivalent) with no working scores $2/2$	2, 2 intended
Special Case	With Replacement (This oversimplifies so do not apply Mis-Read: max mark 2/5) (a) B1 for 3 branches followed by 3, 3, 3 with correct labels and probabilities of $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$. (b) M1 for identifying 2, possibly correct cases and adding 2 products of probabilities wrong answer $\left[\left(\frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{4} \times \frac{1}{4}\right)\right]$ will be sufficient for M1A0 here but $\frac{1}{4} \times \frac{1}{2} + \dots$ would score	but A0 for

Question Number		Scheme	Marks		
Q2	(a)	Median is 33	B1 (1)		
	(b)	$Q_1 = 24, Q_3 = 40, IQR = 16$	B1 B1 B1ft (3)		
	(c)	$Q_1 - IQR = 24 - 16 = 8$	M1		
		So 7 is only outlier	A1ft		
	(d)	Box Outlier Whisker 0 5 10 15 20 25 30 35 40 45 50 55 60 Score	(2) B1ft B1 B1ft		
	(accept either whisker)				
			Total [9]		
Q2	(b)	1 st B1 for $Q_1 = 24$ and 2 nd B1 for $Q_3 = 40$ 3 rd B1ft for their IQR based on their lower and upper quartile. Calculation of range $(40 - 7 = 33)$ is B0B0B0 Answer only of IQR = 16 scores 3/3. For any other answer we must see working in (b) or on stem and leaf diagram			
	(c)	M1 for evidence that Q_1 -IQR has been attempted, their "8" (>7) seen or clearly attempted is sufficient A1 ft must have seen their "8" and a suitable comment that only one person scored below this.			
	(d)	1st B1ft for a clear box shape and ft their Q_1,Q_2 and Q_3 readable off the scale. Allow this mark for a box shape even if $Q_3 = 40$, $Q_1 = 7$ and $Q_2 = 33$ are used 2^{nd} B1 for only one outlier appropriately marked at 7 for either lower whisker. If they choose the whisker to their lower limit for out follow through their "8". (There should be no upper whisker unless their $Q_3 < 40$, in which case there s whisker to 40) A typical error in (d) is to draw the lower whisker to 7, this can only score B1	ntliers then		

Question Number		Scheme			
Q3	(a)	7	B1 B1 (2)		
	(b)	Mean birth weight = $\frac{4841}{1500}$ = 3.2273 awrt 3.23	M1 A1 (2)		
	(c)	Standard deviation = $\sqrt{\frac{15889.5}{1500} - \left(\frac{4841}{1500}\right)^2} = 0.421093$ or $s = 0.4212337$	M1 A1ft A1 (3)		
	(d)	$Q_2 = 3.00 + \frac{403}{820} \times 0.5 = 3.2457$ (allow 403.5 \rightarrow 3.25)	M1 A1 (2)		
	(e)	Mean(3.23) <median(3.25) (or="" close)<="" td="" very=""><td>B1ft</td></median(3.25)>	B1ft		
		Negative Skew (or symmetrical)	dB1ft		
			(2) Total [11]		
Q3	(b)	M1 for a correct expression for mean. Answer only scores both.			
	(c)	M1 for a correct expression (ft their mean) for sd or variance. Condone mis-labelling eg sd= with no square root or no labelling 1^{st} A1ft for a correct expression (ft their mean) including square root and no mis-labelling Allow 1^{st} A1 for $\sigma^2 = 0.177 \rightarrow \sigma = 0.42$ 2^{nd} A1 for awrt 0.421. Answer only scores 3/3			
	(d)	M1 for a correct expression (allow 403.5 i.e. use of $n + 1$) but must have 3.00, 820 and 0.5 A1 for awrt 3.25 provided M1 is scored. NB 3.25 with no working scores 0/2 as some candidates think mode is 3.25.			
	(e)	1st B1ft for a comparison of their mean and median (may be in a formula but if \pm (mean - median) is calculated that's OK. We are not checking the <u>value</u> but the <u>sign</u> must be consistent.) Also allow for use of quartiles <u>provided correct values seen:</u> $Q_1 = 3.02, Q_3 = 3.47$			
		[They should get $(0.22 =) Q_3 - Q_2 < Q_2 - Q_1 (= 0.23)$ and say (slight) negative skew or symmetric] 2^{nd} dB1ft for a compatible comment based on their comparison. Dependent upon a suitable, correct comparison. Mention of "correlation" rather than "skewness" loses this mark.			

Question Number	Scheme				
4 (a)	S 3 closed curves and 4 in centre Evidence of subtraction 31,36,24 41,17,11 Labels on loops, 16 and box	M1 M1 A1 A1 B1			
(b)	P(None of the 3 options)= $\frac{16}{180} = \frac{4}{45}$	(5) B1ft (1)			
(c)	$P(\text{Networking only}) = \frac{17}{180}$	B1ft (1)			
(d)	P(All 3 options/technician)= $\frac{4}{40} = \frac{1}{10}$	M1 A1 (2) Total [9]			
4 (a)	2 nd M1 There may be evidence of subtraction in "outer" portions, so with 4 in the centre then 35, 40 28 (instead of 31,36,24) along with 33, 9, 3 can score this mark but A0A0 N.B. This is a common error and their "16" becomes 28 but still scores B0 in part (a)				
(b)	B1ft for $\frac{16}{180}$ or any exact equivalent. Can ft their "16" from their box. If there is no value for their "16" in the box only allow this mark if they have <u>shown</u> some working.				
(c)	B1ft ft their "17". Accept any exact equivalent				
(d)	If a probability greater than 1 is found in part (d) score M0A0 M1 for clear sight of $\frac{P(S \cap D \cap N)}{P(S \cap N)}$ and an attempt at one of the probabilities, ft their values. Allow P(all 3 $S \cap N$) = $\frac{4}{36}$ or $\frac{1}{9}$ to score M1 A0.				
	Allow a correct ft from their diagram to score M1A0 e.g. in 33,3,9 case in (a): \(\frac{4}{44}\) or \(\frac{1}{11}\) is M1A0 A ratio of probabilities with a product of probabilities on top is M0, even with a correct formula. Allow \(\frac{4}{40}\) or \(\frac{1}{10}\) or an exact equivalent Allow \(\frac{4}{40}\) or \(\frac{1}{10}\) to score both marks if this follows from their diagram, otherwise some explanation (method) is required.				

Question Number		Scheme	Marks		
Q5	(a)	k + 4k + 9k = 1 $14k = 1$	M1		
		$k = \frac{1}{14} **given** $ cso	A1 (2)		
	(b)	$P(X \ge 2)$ = 1-P(X = 1) or $P(X = 2) + P(X = 3)$	M1		
	(-)	$=1-k=\frac{13}{14} \text{ or } 0.92857$ awrt 0.929	A1 (2)		
	(c)	$E(X) = 1 \times k + 2 \times k \times 4 + 3 \times k \times 9 \text{or } 36k$ $= \frac{36}{14} = \frac{18}{7} \text{ or } 2\frac{4}{7} \qquad \text{(or exact equivalent)}$	M1 A1 (2)		
	(d)	$Var(X) = 1 \times k + 4 \times k \times 4 + 9 \times k \times 9, -\left(\frac{18}{7}\right)^2$	M1 M1		
		Var(1-X) = Var(X)	M1		
		$=\frac{19}{49}$ or 0.387755 awrt 0.388	A1 (4)		
			Total [10]		
Q5	(a)	M1 for clear attempt to use $\sum p(x) = 1$, full expression needed and the "1" must be	clearly seen.		
		This may be seen in a table. Alcso for no incorrect working seen. The sum and "= 1" must be explicitly seen somewhere.			
		A verification approach to (a) must show addition for M1 and have a suitable comment e.g. "therefore $k = \frac{1}{14}$ " for A1 cso			
	(b)	M1 for 1- $P(X \le 1)$ or $P(X = 2) + P(X = 3)$ A1 for awrt 0.929. Answer only scores 2/2			
	(c)	M1 for a full expression for E(X) with at least two terms correct. NB If there is evidence of division (usually by 3) then score M0 for any exact equivalent - answer only scores 2/2			
	(d)	1st M1 for clear attempt at $E(X^2)$, need at least 2 terms correct in $1 \times k + 4 \times 4k + 9 \times 9k$	or $F(X^2) = 7$		
	(α)	2^{nd} M1 for their $E(X^2)$ –(their μ) ²	of $L(X) = I$		
		3^{rd} M1 for clearly stating that $Var(1 - X) = Var(X)$, wherever seen			
		A1 accept awrt 0.388. All 3 M marks are required. Allow 4/4 for correct answer only but must be for $Var(1-X)$.			

Question Number		Scheme	Marks	
Q6	(a)	$S_{pp} = 106397 - \frac{833^2}{7} = 7270$	M1 A1	
		$S_{tp} = 42948 - \frac{341 \times 833}{7} = 2369$, $S_{tt} = 18181 - \frac{341^2}{7} = 1569.42857$ or $\frac{10986}{7}$	A1 A1 (4)	
	(b)	$r = \frac{2369}{\sqrt{7270 \times 1569.42857}}$	M1 A1ft	
		= 0.7013375 awrt (0.701)	A1 (3)	
	(c)	(Pmcc shows positive correlation.) Older patients have higher blood pressure	B1 (1)	
	(d)	(d) Points plotted correctly on graph: -1 each error or omission	(1) B2	
	+ (f)	(within one square of correct position)* see diagram below for correct points		
		(f) Line drawn with correct intercept, and gradient		
	(e)	$b = \frac{2369}{1569.42857} = 1.509466$	M1 A1	
		$a = \frac{833}{7} - b \times \frac{341}{7} = 45.467413$	M1	
		p = 45.5 + 1.51t	A1 (1)	
	(g)	t = 40, p = 105.84 from equation or graph. awrt 106	(4) M1 A1 (2)	
01	()	N11 6 11 1	Total [18]	
Q6	(a)	M1 for at least one correct expression 1^{st} A1 for $S_{pp} = 7270$, 2^{nd} A1 for $S_{tp} = 2369$ or 2370, 3^{rd} A1 for $S_{tt} = \text{awrt } 1570$	120.10	
	(b)	M1 for attempt at correct formula and at least one correct value (or correct ft) M0 for $\frac{42948}{\sqrt{106397 \times 18181}}$		
		Alft All values correct or correct ft. Allow for an answer of 0.7 or 0.70 Answer only: awrt 0.701 is 3/3, answer of 0.7 or 0.70 is 2/3		
	(c)	B1 for comment in context that <u>interprets</u> the fact that correlation is positive, as in scheme. Must mention age and blood pressure in words, not just "t" and "p".		
	(d)	Record 1 point incorrect as B1B0 on epen. [NB overlay for (60, 135) is slightly wrong]		
	(e)	1^{st} M1 for use of the correct formula for b , ft their values from (a) 1^{st} A1 allow 1.5 or better 2^{nd} M1 for use of $\overline{y} - b\overline{x}$ with their values		
		2^{nd} A1 for full equation with $a = \text{awrt } 45.5$ and $b = \text{awrt } 1.51$. Must be p in terms of t	, not x and y .	
	(f)	1^{st} B1ft ft their intercept (within one square). You may have to extend their line. 2^{nd} B1 for correct gradient i.e. parallel to given line (Allow 1 square out when $t = 80$))	
	(g)	M1 for clear use of their equation with $t = 40$ or correct value from their graph. A1 for awrt 106. Correct answer only (2/2) otherwise look for evidence on graph to a	award M1	

Question Number		Scheme	Marks			
Q7	(a)	bell shaped, must have inflexions	B1			
		30% 154,172 on axis	B1			
		μ 172 5% and 30%	B1 (3)			
	(b)	P(X < 154) = 0.05				
		$\frac{154 - \mu}{\sigma} = -1.6449$ or $\frac{\mu - 154}{\sigma} = 1.6449$	M1 B1			
		$\mu = 154 + 1.6449\sigma$ **given**	A1 cso (3)			
	(c)	$172 - \mu = 0.5244\sigma$ or $\frac{172 - \mu}{\sigma} = 0.5244$ (allow $z = 0.52$ or better here but	B1			
		solving gives $\sigma = 8.2976075$ (awrt 8.30) and $\mu = 167.64873$ (awrt 168)				
	(d)	P(Taller than 160cm) = $P\left(Z > \frac{160 - \mu}{\sigma}\right)$	(4) M1			
		= P(Z < 0.9217994)	B1			
		= 0.8212 awrt 0.82	A1			
			(3) Total [13]			
(a)		$2^{\rm nd}$ B1 for 154 and 172 marked but 154 must be $<\mu$ and 172 $>\mu$. But μ need not be marked.				
		Allow for $\frac{154-\mu}{\sigma}$ and $\frac{172-\mu}{\sigma}$ marked on appropriate sides of the peak.				
		3 rd B1 the 5% and 30% should be clearly indicated in the correct regions i.e. LH tail a				
(b)		M1 for $\pm \frac{(154 - \mu)}{\sigma} = z$ value (z must be recognizable e.g. 1.64, 1.65, 1.96 but NO	Γ 0.5199 etc)			
		B1 for ± 1.6449 seen in a line before the final answer.				
		Alcso for no incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ , σ) equating a z value and a probability or incorrect statements (in μ).	correct signs			
		e.g. $\frac{154-\mu}{\sigma} = 0.05$ or $\frac{154-\mu}{\sigma} = 1.6449$ or $P(Z < \frac{\mu-154}{\sigma}) = 1.6449$				
(c)		B1 for a correct 2^{nd} equation (NB $172 - \mu = 0.525\sigma$ is B0, since z is incorrect)				
		M1 for solving their two linear equations leading to $\mu =$ or $\sigma =$				
		1^{st} A1 for σ = awrt 8.30, 2^{nd} A1 for μ = awrt 168 [NB the 168 can come from false w				
		These A marks require use of correct equation from (b), and a z value for "0.5244" in (c)]				
		NB use of $z = 0.52$ will typically get $\sigma = 8.31$ and $\mu = 167.67$ and score B1M1A0A1 No working and both correct scores 4/4, only one correct scores 0/4				
		Provided the M1 is scored the A1s can be scored even with B0 (e.g. for $z = 0.5$)	25)			
(d)		M1 for attempt to standardise with 160, their μ and their $\sigma(>0)$. Even allow with symbols $\sigma(>0)$ for $z = \operatorname{awrt} \pm 0.92$				
		No working and a correct answer can score 3/3 provided σ and μ are correct to	281.			

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code UA023026 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH