三、可编程串行接口Ins 8250

- ▶串行传输,需要并**----**串和串**---**并转换, 并按照传输协议发送和接收每个字符(或数据块)
- ▶ 8250实现了起止式串行异步通信协议,支持全双工通信:
 - □通信字符可选5、6、7、8位数据位
 - □停止位可选1、1.5、2位
 - □可选择奇校验、偶校验、不校验或校验位强制为"1"/"0"
 - □具有奇偶校验错、帧错和溢出等错错误检测电路
- > 8250支持的数据传输速率为50~9600bps
- ▶ **8250**内部有**10**个可寻址的**8**位寄存器,分为**3**类:数据 类,控制类,状态类。

1. 串行数据的发送

双缓冲寄存器结构, 保证数据的连续发送

2. 串行数据的接收

双缓冲寄存器结构,保证数据的连续接收

3. 接收错误的处理

奇偶错误PE(Parity Error)

- 若接收到的字符的"1"的个数不符合奇偶校验要求 帧错误FE(Frame Error)
 - 若接收到的字符格式不符合规定(如缺少停止位)

溢出错误OE (Overrun Error)

- 若接收移位寄存器接收到一个数据,并送至输入缓冲器时,CPU还未取走前一个数据,就会出现数据溢出
- 若接收缓冲器的级数多,则溢出错误的几率就少

4、8250的引脚

- ▶ 连接CPU的部分
- > 连接外设的部分
- ▶注意: 8250不是 Intel公司的产品,所以该芯片引脚名称与前面学习的 8253、8255等Intel产品有所不同,但是引脚功能却是类似的

处理器接口引脚(1)

数据线 D_0 - D_7 : 在CPU与8250之间交换信息

地址线A₀-A₂: 寻址8250内部寄存器

片选线:包括

- 3个片选输入信号CS₀、CS₁、CS₂
- 1个片选输出信号CS_{OUT}。

当3个片选输入都有效时,才选中8250芯片,同时 CS_{OUT}输出高电平有效(作为选中此片的指示)。

地址选通信号ADS: 当该信号低有效时,锁存上述地址线和片选线的输入状态,保证读写期间的地址稳定

处理器接口引脚(2)

读控制线

- 数据输入选通**DISTR**(高有效)和**DISTR**(低有效)中一个信号有效,**CPU**从**8250**内部寄存器读出数据
- 相当于I/O读信号

写控制线

- 数据输出选通**DOSTR**(高有效)和**DOSTR**(低有效)中一个有效,**CPU**就将数据写入**8250**内部寄存器
- 相当于I/O写信号

8250读写控制信号有两对,每对信号作用完全相同,只不过有效电平不同而己

处理器接口引脚(3)

驱动器禁止信号DDIS: CPU从8250读取数据时, DDIS引脚输出低电平,用来禁止外部收发器对 系统总线的驱动;其他时间,DDIS为高电平

主复位线MR: 硬件复位信号

中断请求线INTRPT: 8250有4级中断、共10个中断源,当任一个未被屏蔽的中断源有请求时,INTRPT均输出高电平向CPU请求中断

PC/XT 中 COM_i的中断请求信号

串行异步接口引脚

8250 9个信号的名称与RS232-C信号的名称稍有不同

时钟信号

时钟输入引脚XTAL1: 8250的基准工作时钟

时钟输出引脚XTAL2: 基准时钟信号的输出端

波特率输出引脚BAUDOUT: 基准时钟经8250内部波特率发生器分频后产生发送时钟

接收时钟引脚RCLK:接收外部提供的接收时钟信号。

若采用发送时钟作为接收时钟,则只要将 RCLK引脚和BAUDOUT引脚直接相连

输出线

OUT₁和OUT₂:

- 两个可由用户定义用途的输出信号
- 由调制解调器控制寄存器的D₂和D₃位控制其输出
- 使用时,一般低电平有效,复位时恢复为高

(一) 可编程串行接口Ins 8250 结构

8250的寄存器

- ▶ 8250内部有9种可访问的寄存器,其中,除数寄存器是16位的,占用两个地址连续的8位端口
- ▶ 内部寄存器通过引脚A₀-A₂来进行寻址;
- ▶ 利用通信线路控制寄存器的最高位,即除数寄存器访问位DLAB,来区别共用两个端口地址的不同寄存器
 - DLAB=1, 拟访问除数寄存器的高8位及低8位
 - DLAB=0 , 拟访问其他控制或状态寄存器

(二) 寄存器及寻址 P289 表5.10

A₉A₈A₇A₆ A₅A₄A₃A₂A₁A₀ DLAB(标志位) 寄存器

30 7 30 33 4 3 3 2	0 \			
000	0	写发送寄存器/读接受寄存器		
000	1	除数寄存器低字节		
001	1	除数寄存器高字节		
001	0	中断允许		
010		中断识别		
011		线路控制 D ₇ 为 DLAB		
100		MODEM 控制		
101		线路状态		
110		MODEM 状态		

1111111 COM1 3F8—3FFH

1011111 COM2 2F8—2FFH

(二) 寄存器及寻址 P289 表5.10 注意:

 $A_2A_1A_0 = 011$ 时 访问线路控制寄存器 D_7 位称为 DLAB 除数标志位

当 DLAB = 1 时

 $A_2A_1A_0 = 000$ 时 访问除数寄存器低字节

 $A_2A_1A_0 = 001$ 时 访问除数寄存器高字节

IMB PC/XT 系统 的两个异步串行通信口 COM1 地址 3F8—3FFH, COM2 地址 2F8—2FFH

8250内部寄存器的地址

DLAB	A2 A1 A0	寄存器操作	com1	com2
0	0 0 0	读接收缓冲器/写发送保持寄存器	3F8+0	2F8+0
0	0 0 1	中断允许寄存器	3F8+1	2F8+1
0	0 1 0	中断识别寄存器(只读)	3F8+2	2F8+2
*	0 1 1	通信线路控制寄存器	3F8+3	2F8+3
*	1 0 0	调制解调器控制寄存器	3F8+4	2F8+4
*	1 0 1	通信线路状态寄存器	3F8+5	2F8+5
*	1 1 0	调制解调器状态寄存器	3F8+6	2F8+6
*	1 1 1	不用	3F8+7	2F8+7
1	0 0 0	除数寄存器(低8位)	3F8+0	2F8+ <mark>0</mark>
1	0 0 1	除数寄存器(高8位)	3F8+1	2F8+1

(三)编程——分初始化及工作两部分

初始化顺序

(三)编程——分初始化及工作两部分

1. 初始化步骤:

```
置DLAB=1 (线路控制寄存器D<sub>7</sub> =1;
         COM1—3FBH)
写除数(分高(COM1—3F9)、
        低(COM1-3F8)字节写两次)
写线路控制字(DLAB=0,
 其余位控制数据格式)
```

除数寄存器

除数寄存器保存设定的分频系数 分频系数=基准时钟频率÷(16×比特率)

写除数寄存器 高/低 字节

波特率与除数的关系 (P292表5.11)

波特率	高字节	低字节	
50	09	00	
1800	00	40	
2000	00	3A	

时钟频率除以除数寄存器数得数据发送 器的工作频率,再除以16即得波特率

1. 写线路控制字(DLAB=0, 其余位控制数据格式, P291图5. 55)

(地址: COM1—3FBH)

线路控制寄存器LCR

指定串行异步通信的字符格式

2. 写MODEM控制寄存器

(确定联络信号, P292图5.57)

若用中断须置 $OUT_2=1$

(地址: COM1—3FCH)

调制解调器控制寄存器MCR

为**1** 使**8250**为

循环工作方式

否则为正常工 作方式 为1使OUP2引脚为低,否则为高

为1使OUT1引脚为低,否则为高

为1使RTS引脚为低,否则为高

为1使DTR引脚为低,否则为高

设置8250与数据通信设备之间联络应答的输出信号

3. 写中断允许寄存器

(中断逻辑, P293图5.59)

(地址: COM1—3F9H)

5. MODEM状态寄存器

P293图5.56

(地址: COM1—3FEH)

4级中断(4个优先级、10个源)

- 1. 接收线路状态中断
 - 奇偶错
 - 溢出错
 - 帧错
 - 收到中止字符
- 2. 接收器数据准备好中断
- 3. 发送保持寄存器空中断
- 4. 调制解调器状态中断
 - 清除发送状态改变
 - 数据终端准备好状态改变
 - 振铃接通变成断开
 - 接收线路信号检测状态改变

优先权高

优先权低

6. 中断允许寄存器IER

- 8250设计有4级中断和2个中断寄存器
 - ◆4级中断指优先权的等级为4级,它是按照串行通信过程中事件的紧迫程度安排的、是固定的
 - ◆用户可利用中断允许或禁止进行控制,中断允许寄存器的低4位控制8250这4级中断是否被允许
 - 某位为1,则对应的中断被允许
 - 否则,被禁止

7. 中断识别寄存器IIR

D7-D 3	D2 D1	D ₀
00000	ID1 ID0	IP

标识哪一级有中断

ID1 ID0	优先权	中断类型			
1 1	1	接收线路状态中断			
1 0	2	接收数据准备好中断			
0 1	3	发送保持寄存器空中断			
0 0	4	调制解调器状态中断			

0 有中断

1 无中断

保存正在请求中断的优先权最高的中断级别编码

8. 调制解调器状态寄存器MSR

低4位中某位为1,则说明从上次CPU读取该状态字后,相应输入信号已发生改变,从高变低或反之

MSR反映4个控制输入信号的当前状态及其变化 MSR低4位中任一位置1,均将产生调制解调器状态中断, 当CPU读取该寄存器或复位后,低4位被清零

初始化编程例

例(P296)

; COM1 线路控制寄存器 MOV DX, 3FBH

MOV AL, 80H : DLAB = 1

OUT DX, AL

MOV DX, 3F9H ; 除数高字节

MOV AL, 0

OUT DX, AL

MOV DX, 3F8H ;除数低字节

MOV AL, 30H

OUT DX, AL ; 0030H—波特率2400

MOV DX, 3FBH ;线路控制寄存器

MOV AL, 1AH ; 00011010B

;数据位长7,停止位长1,偶校验

OUT DX, AL

MOV DX, 3FCH ; MODEM 控制寄存器

•••••

2. 工作编程(查询方式通信)

数据的发送与读取:

MOV DX, 3F8H ; COM1 发送/接受R

OUT DX, AL ;发送数据 snt-R

IN AL, DX ;读取数据 rec-R

线路状态的信息采集:

MOV DX, 3FDH; COM1 线路状态

IN AL, DX

9. 接收缓冲寄存器RBR

存放串行接收后转换成并行的数据

10.保持寄存器THR

包含将要串行发送的并行数据

数据读取条件:接受数据就绪

数据有错则进行数据有错处理

数据发送条件:发送寄存器空

以上信息从线路寄存器

(COM1,由3FDH端口读取)得到

11. 线路状态寄存器 P291图5.56

(地址: COM1—3FDH)

D_7	D_{6}	D_{5}	D_4	D_3	D_2	D_1	D_0
0	发送移位 寄存器空	发送寄 存器空	中止符 检 測	帧格 式错	奇偶 错	出 猫 猫	接收数据就绪

接受移位寄存器收全时 $D_0 = 1$

出错时,D₁—D₄的相应位为1

通信线路状态寄存器LSR

提供串行异步通信的当前状态供CPU读取和处理

例 P297 程序

```
WAIT_FOR: mov dx, 3fdH ;线路状态R in al, dx ; test al, 1eH ; P291图5.56 jne ERROR ;非零转移 test al, 1 ;检查是否收到数据 inz RECEIVE ;转接收(非零转移)
```

test al, 20H ; 检查可否发送数据

jz WAIT_FOR ; 重新检查

••••

mov dx, 3f8H ; 发送寄存器

mov al, cl ; 字符

out dx, al

jmp WAIT_FOR

RECEIVE: mov dx, 3f8H ; 接收寄存器

in al, dx

• • • • • •

3. 应用举例——P296-297 例5.2

工作内容: 从键盘读入字符、经8250发送、 由8250自行接收、再在显示器显示 读键盘: MOV AH, 1 ; 看是否被按键,不等待 INT 16H 读按键: MOV AH, 0 ; 读下按键内容 参见P395BIOS调用 INT 16H 发送: MOV DX, 3F8H OUT DX, AL 接收: MOV DX, 3F8H AL, DX IN 显示: MOV AH, 0EH

INT

10H

中断方式举例

以查询方式发送数据,以中断方式接收数据,

INISIR: MOV DX, 3FBH

MOV AL, 80H

OUT DX, AL; 置DLAB=1

MOV DX, 3F8H

MOV AL, OCH

OUT DX, AL

MOV DX, 3F9H

MOV AL, 0 ; 置除数为000CH,

;规定波特率为9600波特

OUT DX, AL

MOV DX, 3FBH

MOV AL, 0AH ; 1 位停止位,7位数据位,奇校验

OUT DX, AL ; 初始化通信控制寄存器

MOV DX, 3FCH

MOV AL, 0BH; 00001011B,

;使OUT2,DTR和RTS有效

; 初始化中断允许寄存器

: 允许接收数据寄存器满产生中断

OUT DX, AL ; 初始化MODEM 寄存器

MOV DX, 3F9H

MOV AL, 01H

OUT DX, AL

STI ; CPU 开中断

中断服务程序段

RECVE PROC FAR

PUSH AX

PUSH BX

PUSH DX

PUSH DS

MOV DX, 3FDH

IN AL, DX

MOV DX, 3F8H

IN AL, DX

AND AL, 7FH

TEST AH, 1EH

JZ SAVEDATA

MOV AL, '?'

MOV AH, AL : 保存接收状态

; 读入接收到的数据

; 7位数据位

: 检查有无错误产生

: 出错的数据用问号替代

SAVEDATA:

MOV DX, SEG BUFFER

MOV DS, DX

MOV BX, OFFSET BUFFER

MOV [BX], AL ; 存数据

MOV AL, 20H ;将EOI命令发给中断控制器8259

OUT 20H,AL ; 中断控制器端口地址

POP DS

POP DX

POP BX

POP AX

STI

IRET

RECVE ENDP

