A B C D

## Input

Single-cell phospho and total proteomics from (at least) 2 cell populations



# **Optional input**

Signaling network graph



### **Perturbation experiments**

 $\{\Delta P1, \Delta P2, \Delta P3\}$  + post perturbation phospho and total protein measurements

### **Network modeling**

**Key idea:** Stochastic variation in total protein are perturbations, that propagate through network, allowing reconstruction of a signaling network per population



**Model:** for each population (§) for each cell (a) and each phospho-protein (i), describe phospho-protein levels as a function of upstream inputs and total protein variation



$$R_{i,a} pprox \sum_{i \neq i} r_{ij}^{\xi} \cdot R_{j,a} + s_i^{\xi} \cdot R_{i,a}^{tot}$$

p-protein levels upstream effects Sensitivity to total protein

,a: p-protein i in cell a

 $R_{i,a}^{tot}$ : total protein i in cell a

population ξ

set;

'sensitivity' effect of total protein i on
p-protein i in population ξ

### **scMRA**

# Estimate sparse network per population

Estimate network parameters  $(\mathbf{r}_{ij} \text{ and } \mathbf{s}_{i})$  per population, by solving a MIQP problem that simultaneously minimizes the network edge cost function and the number of edges per population network.

Network Edge Cost Function: Squared sum of differences between measured phospho-protein levels and modeled levels for all phospho-proteins and cells in all populations.

### Output:

 $r^1$ ,  $r^2$ : Interaction strength matrix per population  $s^1$ ,  $s^2$ : sensitivity vector per population



### scCNR

# Estimate sparse network per population with minimal differences between population networks

Estimate network parameters ( $r_{ij}$  and  $s_i$ ) per population, by solving a MIQP problem that simultaneously minimizes the network edge cost function and the differences in edge weights between the networks of the populations

### Output:

 $r^1$ ,  $r^2$ : Interaction strength matrix per population  $s^1$ ,  $s^2$ : sensitivity vector per population

