Paper Review: A Connection Between Score Matching and Denoising Autoencoders

Beomsu Kim*

July 6, 2021

Paper Information.

• Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural Computation, 23(7):1661–1674, 2011.

1 Introduction

- q(x): unknown true pdf, $x \in \mathbb{R}^d$.
- $D_n = \{x^{(1)}, \dots, x^{(n)}\}$: training set of n i.i.d. samples from q(x).
- $q_0(x) = \frac{1}{n} \sum_{i=1}^n \delta(\|x x^{(i)}\|)$: empirical pdf associated with D_n .
- $q_{\sigma}(\tilde{x} \mid x) = \frac{1}{(2\pi)^{d/2}\sigma^d} e^{-\frac{1}{2\sigma^2} \|\tilde{x} x\|^2}$: smoothing kernel or noise model.
- $q_{\sigma}(\tilde{x}, x) = q_{\sigma}(\tilde{x} \mid x)q_0(x)$: joint pdf.
- $q_{\sigma}(\tilde{x}) = \frac{1}{n} \sum_{i=1}^{n} q_{\sigma}(\tilde{x}, x^{(i)})$: Parzen density estimate based on D_n , obtainable by marginalizing $q_{\sigma}(\tilde{x}, x)$.
- $p(x;\theta)$: density model with parameters θ .
- $J_1 \cong J_2$: means $J_1(\theta)$ and $J_2(\theta)$ have the same set of minimizers.
- $\mathbb{E}_{q(x)}[g(x)] = \int_x q(x)g(x) dx$: expectation with respect to distribution q(x).
- softplus $(x) = \log(1 + e^x)$: will be applied elementwise to vectors.
- sigmoid(x) = $\frac{1}{1+e^{-x}}$ = softplus'(x) : will be applied elementwise to vectors.
- I: identity matrix.
- W^{\top} : transpose of matrix W.
- W_i : vector for ith row of W.
- $W_{\cdot,j}$: vector for jth column of $W_{\cdot,j}$

^{*}Department of Mathematical Sciences, KAIST. Email beomsu.kim@kaist.ac.kr

2 Denoising Autoencoders

• A training input $x \in D_n$ is first corrupted by additive Gaussian noise of covariance $\sigma^2 I$ yielding corrupted input $\tilde{x} = x + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$. This corresponds to conditional density

$$q_{\sigma}(\tilde{x} \mid x) = \frac{1}{(2\pi)^{d/2} \sigma^d} e^{-\frac{1}{2\sigma^2} ||\tilde{x} - x||^2}.$$

• The corrupted version \tilde{x} is encoded into a hidden representation h through an affine mapping followed by a nonlinearity.

$$h = \operatorname{encode}(\tilde{x}) = \operatorname{sigmoid}(W\tilde{x} + b)$$

• The hidden representation h is decoded into reconstruction x^r through affine mapping.

$$x^r = \operatorname{decode}(h) = W^{\top}h + c$$

• The parameters $\theta = \{W, b, c\}$ are optimized so that the expected squared reconstruction error $\|x^r - x\|^2$ is minimized, i.e., the objective function being minimized by such a denoising autoencoder (DAE) is

$$J_{DAE_{\sigma}}(\theta) = \mathbb{E}_{q_{\sigma}(\tilde{x},x)}[\|\operatorname{decode}(\operatorname{encode}(\tilde{x})) - x\|^{2}]$$
$$= \mathbb{E}_{q_{\sigma}(\tilde{x},x)}[\|W^{\top}\operatorname{sigmoid}(W\tilde{x} + b) + c - x\|^{2}].$$

3 Score Matching

3.1 Explicit Score Matching (ESM)

• Define the energy-based model

$$p(x;\theta) = \frac{1}{Z(\theta)} \exp(-E(x;\theta)), \qquad Z(\theta) = \int_{x} \exp(-E(x;\theta)) dx.$$

• Define the score function

$$\Psi(x;\theta) = \frac{\partial \log p(x;\theta)}{\partial x}.$$

• Explicit score matching minimizes

$$J_{ESM_q}(\theta) = \mathbb{E}_{q(x)} \left[\frac{1}{2} \left\| \Psi(x; \theta) - \frac{\partial \log q(x)}{\partial x} \right\|^2 \right].$$

3.2 Implicit Score Matching (ISM)

• Define

$$J_{ISM_q}(\theta) = \mathbb{E}_{q(x)} \left[\frac{1}{2} \|\Psi(x;\theta)\|^2 + \sum_{i=1}^d \frac{\partial \Psi_i(x;\theta)}{\partial x_i} \right].$$

• Hyvärinen in Estimation of Non-normalized Statistical Models by Score Matching shows that

$$J_{ESM_a} \cong J_{ISM_a}$$
.

4 Linking Score Matching to the DAE Objective

4.1 Matching the Score of a Non-Parametric Estimator

• Matching $\Psi(x;\theta)$ with the score of Parzen windows density estimator $q_{\sigma}(\tilde{x})$ yields

$$J_{ESM_{\sigma}}(\theta) = \mathbb{E}_{q_{\sigma}(\tilde{x})} \left[\frac{1}{2} \left\| \Psi(\tilde{x}; \theta) - \frac{\partial \log q_{\sigma}(\tilde{x})}{\partial \tilde{x}} \right\|^{2} \right].$$

• $q_{\sigma}(\tilde{x})$ satisfies the regularities conditions for implicit score matching, so

$$J_{ESM_{\sigma}} \cong J_{ISM_{\sigma}}$$
.

• This equivalence breaks in the limit $\sigma \to 0$, because q_{σ} no longer satisfies the regularity conditions, and $J_{ESM_{\sigma}}$ can no longer be computed (whereas $J_{ISM_{\sigma}}$ remains well-behaved).

4.2 Denoising Score Matching (DSM)

• We define the following denoising score matching (DSM) objective

$$J_{DSM_{q_{\sigma}}}(\theta) = \mathbb{E}_{q_{\sigma}(\tilde{x},x)} \left[\frac{1}{2} \left\| \Psi(\tilde{x};\theta) - \frac{\partial q_{\sigma}(\tilde{x} \mid x)}{\partial \tilde{x}} \right\|^{2} \right].$$

- The underlying intuition is that following the gradient Ψ of the log-density at some corrupted point \tilde{x} should ideally move us towards the clean sample x.
- In other words, the model $p(x;\theta)$ should assign higher likelihood to x than \tilde{x} .
- Indeed, with the considered Gaussian kernel we have

$$\frac{\partial \log q_{\sigma}(\tilde{x} \mid x)}{\partial \tilde{x}} = \frac{1}{\sigma^{2}}(x - \tilde{x})$$

and this direction corresponds to moving from \tilde{x} back towards clean sample x.

• We observe that

$$J_{ESM_{\sigma}} \cong J_{DSM_{q_{\sigma}}}$$
.

• Also, for an appropriate choice of $p(x;\theta)$,

$$J_{DSM_{q_{\sigma}}} \cong J_{DAE_{\sigma}}.$$

Proposition 1.

$$J_{ESM_{\sigma}} \cong J_{DSM_{q_{\sigma}}}$$

Proof. Observe that

$$J_{ESM_{\sigma}}(\theta) = \mathbb{E}_{q_{\sigma}(\tilde{x})} \left[\frac{1}{2} \left\| \Psi(\tilde{x}; \theta) - \frac{\partial \log q_{\sigma}(\tilde{x})}{\partial \tilde{x}} \right\|^{2} \right]$$

$$= \mathbb{E}_{q_{\sigma}(\tilde{x})} \left[\frac{1}{2} \left\| \Psi(\tilde{x}; \theta) \right\|^{2} \right] - \mathbb{E}_{q_{\sigma}(\tilde{x})} \left[\left\langle \Psi(\tilde{x}; \theta), \frac{\partial \log q_{\sigma}(\tilde{x})}{\partial \tilde{x}} \right\rangle \right] + C_{1}$$

for a constant C_1 independent of θ . We also have

$$\begin{split} \mathbb{E}_{q_{\sigma}(\tilde{x})} \left[\left\langle \Psi(\tilde{x};\theta), \frac{\partial \log q_{\sigma}(\tilde{x})}{\partial \tilde{x}} \right\rangle \right] &= \int_{\tilde{x}} q_{\sigma}(\tilde{x}) \left\langle \Psi(\tilde{x};\theta), \frac{\partial \log q_{\sigma}(\tilde{x})}{\partial \tilde{x}} \right\rangle d\tilde{x} \\ &= \int_{\tilde{x}} \left\langle \Psi(\tilde{x};\theta), \frac{\partial}{\partial \tilde{x}} q_{\sigma}(\tilde{x}) \right\rangle d\tilde{x} \\ &= \int_{\tilde{x}} \left\langle \Psi(\tilde{x};\theta), \frac{\partial}{\partial \tilde{x}} \int_{x} q_{0}(x) q_{\sigma}(\tilde{x} \mid x) \, dx \right\rangle d\tilde{x} \\ &= \int_{\tilde{x}} \left\langle \Psi(\tilde{x};\theta), \int_{x} q_{0}(x) \frac{\partial q_{\sigma}(\tilde{x} \mid x)}{\partial \tilde{x}} \, dx \right\rangle d\tilde{x} \\ &= \int_{\tilde{x}} \left\langle \Psi(\tilde{x};\theta), \int_{x} q_{0}(x) q_{\sigma}(\tilde{x} \mid x) \frac{\partial \log q_{\sigma}(\tilde{x} \mid x)}{\partial \tilde{x}} \, dx \right\rangle d\tilde{x} \\ &= \int_{\tilde{x}} \int_{x} q_{0}(x) q_{\sigma}(\tilde{x} \mid x) \left\langle \Psi(\tilde{x};\theta), \frac{\partial \log q_{\sigma}(\tilde{x} \mid x)}{\partial \tilde{x}} \right\rangle dx \, d\tilde{x} \\ &= \int_{\tilde{x}} \int_{x} q_{\sigma}(\tilde{x},x) \left\langle \Psi(\tilde{x};\theta), \frac{\partial \log q_{\sigma}(\tilde{x} \mid x)}{\partial \tilde{x}} \right\rangle dx \, d\tilde{x} \\ &= \mathbb{E}_{q_{\sigma}(\tilde{x},x)} \left[\left\langle \Psi(\tilde{x};\theta), \frac{\partial \log q_{\sigma}(\tilde{x} \mid x)}{\partial \tilde{x}} \right\rangle \right]. \end{split}$$

This shows that

$$\begin{split} J_{ESM_{\sigma}}(\theta) &= \mathbb{E}_{q_{\sigma}(\tilde{x})} \left[\frac{1}{2} \left\| \Psi(\tilde{x};\theta) \right\|^{2} \right] - \mathbb{E}_{q_{\sigma}(\tilde{x})} \left[\left\langle \Psi(\tilde{x};\theta), \frac{\partial \log q_{\sigma}(\tilde{x})}{\partial \tilde{x}} \right\rangle \right] + C_{1} \\ &= \mathbb{E}_{q_{\sigma}(\tilde{x},x)} \left[\frac{1}{2} \left\| \Psi(\tilde{x};\theta) \right\|^{2} \right] - \mathbb{E}_{q_{\sigma}(\tilde{x},x)} \left[\left\langle \Psi(\tilde{x};\theta), \frac{\partial \log q_{\sigma}(\tilde{x} \mid x)}{\partial \tilde{x}} \right\rangle \right] + C_{1} \\ &= \mathbb{E}_{q_{\sigma}(\tilde{x},x)} \left[\frac{1}{2} \left\| \Psi(\tilde{x};\theta) - \frac{\partial q_{\sigma}(\tilde{x} \mid x)}{\partial x} \right\|^{2} \right] - \mathbb{E}_{q_{\sigma}(\tilde{x},x)} \left[\frac{1}{2} \left\| \frac{\partial q_{\sigma}(\tilde{x} \mid x)}{\partial x} \right\|^{2} \right] + C_{1} \\ &= J_{DSM_{q_{\sigma}}}(\theta) + C_{1} - C_{2} \end{split}$$

where C_2 is another constant independent of θ . This proves

$$J_{ESM_{\sigma}} \cong J_{DSM_{\sigma\sigma}}$$

Proposition 2.

$$J_{DSM_{q_{\sigma}}} \cong J_{DAE_{\sigma}}$$

Proof. We choose

$$p(x;\theta) = \frac{1}{Z(\theta)} \exp(-E(x;\theta))$$

where for $\theta = \{W, b, c\},\$

$$E(x;\theta) = -\frac{\langle c, x \rangle - \frac{1}{2} ||x||^2 + \sum_{i} \text{softplus}(\langle W_i, x \rangle + b_i)}{\sigma^2}.$$

We then have

$$\begin{split} \Psi_{j}(x;\theta) &= \frac{\partial \log p(x;\theta)}{\partial x_{j}} \\ &= -\frac{\partial E(x;\theta)}{\partial x_{j}} \\ &= \frac{1}{\sigma^{2}} \left(c_{j} - x_{j} + \sum_{i} \operatorname{softplus}'(\langle W_{i}, x \rangle + b_{i}) \frac{\partial (\langle W_{i}, x \rangle + b_{i})}{\partial x_{j}} \right) \\ &= \frac{1}{\sigma^{2}} \left(c_{j} - x_{j} + \sum_{i} \operatorname{sigmoid}(\langle W_{i}, x \rangle + b_{i}) W_{ij} \right) \\ &= \frac{1}{\sigma^{2}} (c_{j} - x_{j} + \langle W_{\cdot,j}, \operatorname{sigmoid}(Wx + b) \rangle) \end{split}$$

which we can write as the single equation

$$\Psi(x; \theta) = \frac{1}{\sigma^2} (W^{\top} \operatorname{sigmoid}(Wx + b) + c - x).$$

It follows that

$$J_{DSM_{q_{\sigma}}}(\theta) = \mathbb{E}_{q_{\sigma}(\tilde{x},x)} \left[\frac{1}{2} \left\| \Psi(\tilde{x};\theta) - \frac{\partial q_{\sigma}(\tilde{x} \mid x)}{\partial x} \right\|^{2} \right]$$

$$= \mathbb{E}_{q_{\sigma}(\tilde{x},x)} \left[\frac{1}{2} \left\| \frac{1}{\sigma^{2}} (W^{\top} \operatorname{sigmoid}(Wx + b) + c - x) - \frac{1}{\sigma^{2}} (x - \tilde{x}) \right\|^{2} \right]$$

$$= \frac{1}{2\sigma^{4}} \mathbb{E}_{q_{\sigma}(\tilde{x},x)} \left[\|W^{\top} \operatorname{sigmoid}(W\tilde{x} + b) + c - x\|^{2} \right]$$

$$= \frac{1}{2\sigma^{4}} J_{DAE_{\sigma}}(\theta)$$

and so

$$J_{DSM_{q_{\sigma}}} \cong J_{DAE_{\sigma}}$$