CS2002 U202015324 屈绍博

9.

- 1. FFFF8000H
- 2. 020AH
- 3. 0000FFFAH
- 4. 40H
- 5. BF8CCCCCH
- 6. 40250000 00000000H

10.

- 1. -65530
- 2. -8196
- 3. 2^32-6
- 4. (char)'*'
- 5. -800
- 6. -10.25

17.

- 1. 440
- 2. 20
- 3. -424
- 4. -396
- 5. 68
- 6. -312
- 7. 16
- 8. 12
- 9. -276
- 10. 32

21.

M=15

N=4

24.

32 位补码整数形式为: 0000 0000 0000 0001 0000 0000 0010 IEEE754 单精度浮点格式为: 0 10001011 0000 0000 0010 0000 0000 红色部分为相同序列,为 0000 0000 0010

28.

内容 地址	大端机	小端机
100	BEH	00Н
101	00H	00Н
102	00H	00Н
103	00Н	BEH
108	40H	00Н
109	FOH	00Н
110	00H	F0H
111	00H	40H
112	00H	64H
113	64H	00Н

29.

表示	X	x	Y	y	X + Y	x + y	OF	SF	CF	X - Y	x - y	OF	SF	CF
无符号	0xB0	176	0x8C	140	ox3C	60	1	0	1	DXZY	36	D	0	0
带符号	0xB0	-80	0x8C	-116	ox3c	60	1	0	J	oxiv	36	ס	0	O
无符号	0x7E	126	0x5D	93	OXDB	219	1	1	0	ox 21	33	0	0	D
带符号	0x7E	126	0x5D	93	OXDB	-37	1)	D	oxal	33	0	ō	O

31.

无法消除整数溢出漏洞。

修改方案:

int copy_array(int *array, int count) {
int i;

```
unsigned long long arraysize=count*(unsigned long long)sizeof(int);
size t myarraysize=(size t) arraysize;
if (myarraysize!=arraysize)
    return -1;
int *myarray = (int *) malloc(myarraysize);
if (myarray == NULL)
    return -1;
for (i = 0; i < count; i++)
    myarray[i] = array[i];
return count;
}
34.
2. (x-1<0)||x>0
4. x>0||-x>=0
6. x>y==(-x<-y)
8. (int) (ux-uy) = = -(y-x)
10. x*4+y*8==(x<<2)+(y<<3)
12. x*y==ux*uy
14. x*\sim y+ux*uy==-x
35.
1. dx*dx>=0
3. dx+dy == (double)(x+y)
5. dx*dy*dz == dz*dy*dx
```

36.

右规:

对于结果为±1x.xx···x 的情况,需要进行右规。

右规时, 尾数右移一位, 阶码加1 (直接在末位加1), 同时在尾数右移时, 最高位"1"被移到小数点前一位作为隐藏位, 最后一位移出时, 要考虑舍入。

可以表示为: Mb←Mb ×2^-1, Eb←Eb+1。

左规:

对于结果为±0.00…01x…x 的情况, 需要进行左规。

左规时,数值位逐次左移,阶码逐次减 1,直到将第一位"1"移到小数点左边。

假定 k 为结果中"±"和最左边第一个1之间连续 0 的个数,则左规操作可以表示为: $Mb \leftarrow Mb \times 2^k$, $Eb \leftarrow Eb - k$ 。(执行 $Eb \leftarrow Eb - k$ 时,每次都在末位减 1,一共减 k 次)

 $x = 0.75 = 0.110...0B = (1.10...0)_2 \times 2^{-1},$ $y = -65.25 = -1000001.01000...0B = (-1.00000101...0)_2 \times 2^6$ 用 IEEE 754 标准单精度格式表示为: $[x]_{\text{\(\overline{A}\)}} = 0 \ 01111110 \ 10...0 : 阶码 Ex= 01111110, 尾数 Mx= 0(1). 1...0 \\ [y]_{\text{\(\overline{A}\)}} = 1 \ 10000101 \ 000001010...0 : 阶码 Ey= 10000101, 尾数 My =1 (1).000001010...0 \\ 小数点前第一位是符号位,第二位是隐藏位$

1. 0.75+ (- 65.25) 计算结果: Eb = 10000101, Mb = 1(1).00000010…0 故结果为-64.5

2. 0.75- (- 65.25) 计算结果: Eb = 10000101, Mb = 0(1).00001000···0 故结果为+66