Esercizi di formulazione

M.Caramia, G.Stecca 16/03/2021

1 Esercizi

1.1 Dieta e miscelazione

Si vuole minimizzare il costo di una colazione con dei limiti sull'apporto di calorie, vitamina A e fibre. Gli alimenti a disposizione sono biscotti integrali, latte e cornflakes. I relativi costi sono $c = \{0.5, 0.4, 0.7\}$ EURO per 100g. I valori nutrizionali per 100g sono i seguenti:

-	bis	lat	cor
kilocalorie	452	64	365
fibre (g)	8	0	2.3
vitamina A (U)	0	47	1.8

I valori nutrizionali minimi sono 10 per le fibre e 10 per la vitamina A. I limiti minimi e massimi di apporto calorico sono 400 e 600 rispettivamente.

Si formuli il problema (ottimo pari a 0.7, biscotti = 1.25, latte = 0.21).

1.2 Product mix

Un'azienda di lavatrici produce due diversi modelli con livello di qualità medio (STD) e premium (HIQ) rispettivamente. Per la produzione sono necessari due diversi macchinari rispettivamente per Assemblaggio (ASM) e Testing (TST), oltre a dei Materiali (MAT). Il profitto per la vendita di ciascuna unità di STD è 12 Euro, mentre il profitto per la vendita di un'unità di HIQ è 16 Euro. L'azienda richiede la pianificazione del mix di produzione che massimizzi il profitto tenendo conto dei vincoli tecnologici di produzione e i limiti massimi di utilizzo delle risorse (macchinari e materiali, indicato con MAX_RES).

Tabella 1: Vincoli tecnologici

RES	STD	HIQ	MAX_RES
ASM	3	2	80
TST	2	4	60
MAT	4	4	70

Formulare il problema considerando il numero di modelli da produrri nel campo continuo (ottimo profitto 260, corrispondente a $12.5~{\rm HIQ}~{\rm e}~5~{\rm STD}$)

1.3 Trasporto

Dato il network in figura trovare l'allocazione di trasporto tra impianti p_1, p_2 , magazzini w_1, w_2 e clienti c_1, c_2, c_3 tale che la somma dei costi di trasporto sia minimizzata e tale che:

- 1. la domanda clienti $d = \{50000, 100000, 50000\}$ sia soddisfatta
- 2. la capacità degli impianti $p = \{150000, 60000\}$ sia rispettata
- 3. i vincoli di flusso siano rispettati

Figura 1: network di distribuzione

1.4 Multiperiodo

Un'azienda deve pianificare la produzione per le prossime 5 settimane in modo da evadere senza stockout i seguenti quantitativi di domanda $d_t = \{30, 60, 40, 70, 50\}$

Formulare il problema di pianificazione multiperiodo per la minimizzazione della somma dei costi totali considerando costi unitari di produzione $c_t = \{8, 8, 10, 10, 20\}$ e costi unitari di stoccaggio per unità di tempo pari a $h_t = \{1, 1, 2, 2, 2\}$.

Considerare inoltre che le scorte al periodo iniziale sono 0 e che la capacità massima del magazzino è 30 unità.

1.5 Curve fitting

Nella tabella 2, diagrammata in Figura 2 viene riportato un campionamento di dati.

- 1. Trovare il miglior "fitting" della curva lineare y=mx+a dal set di punti riportati minimizzando la somma delle deviazioni assolute dai punti.
- 2. Trovare il miglior "fitting" lineare minimizzando la massima deviazione di punti dati.
- 3. Trovare la migliore curva quadratica $y = cx^2 + mx + a$ considerando rispettivamente gli obiettivi (1) e (2).

```
\frac{2}{12.2}
     2.7
                                                   1.1
7.3
            0.7
                     4.3
                             4.5
                                    0.3
                                             5.0
                                                            3.5
x_i
      12
               6
                   19.5
                            13.3
                                    5.3
                                           16.2
                                                           15.4
                                                                   7.1
y_i
```

Tabella 2: valori campionati

Figura 2: diagramma dei punti campionati in tabella 2