MODELAGEM E INFERÊNCIA ESTATÍSTICA

Modelos polinomiais

O QUE VOU ESTUDAR HOJE?

Modelo polinomial

Variância estimada e coeficiente de determinação

Intervalos estatísticos e procedimentos de teste

Centralização de valores

MODELO POLINOMIAL

O modelo de regressão polinomial de k-ésimo grau é

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + \varepsilon$$

em que ε é uma variável aleatória com distribuição normal

$$\mu_{\varepsilon} = 0 \text{ e } \sigma_{\varepsilon}^2 = 0$$

$$\begin{array}{l} b_0 n + b_1 \sum x_i + b_2 \sum x_i^2 + \cdots + b_k \sum x_i^k = \sum y_i \\ b_0 \sum x_i + b_1 \sum x_i^2 + b_2 \sum x_i^3 + \cdots + b_k \sum x_i^{k+1} = \sum x_i y_i \\ \vdots & \vdots & \vdots \\ b_0 \sum x_i^k + b_1 \sum x_i^{k+1} + \cdots + b_k \sum x_i^{2k} = \sum x_i^k y_i \end{array}$$

Para estimar os parâmetros:

- Derivadas parciais
- Sistema de equações

MODELO POLINOMIAL

Fonte: (DEVORE, 2018, p. 527)

VARIÂNCIA ESTIMADA E COEFICIENTE DE DETERMINAÇÃO

Para modelos lineares e a estimativa de σ^2 é: $\sigma^2 = s^2 = \frac{sQE}{n-2}$

Para os modelos polinomiais:
$$\sigma^2 = s^2 = \frac{sQE}{n-(k+1)}$$

Coeficiente de determinação múltipla: $R^2 = 1 - \frac{SQE}{SQT}$

Coeficiente de determinação múltipla ajustado:

$$R^{2}$$
(ajustado) = $1 - \frac{n-1}{n-(k+1)} \cdot \frac{\text{SQE}}{\text{SQT}} = \frac{(n-1)R^{2} - k}{n-1-k}$

INTERVALOS ESTATÍSTICOS E PROCEDIMENTOS DE TESTE

Um IC de $100(1-\alpha)$ % para β_i , o coeficiente de x^i na regressão polinomial, é

$$\hat{\beta}_i \pm t_{\alpha/2, n-(k+1)} \cdot s_{\hat{\beta}_i}$$

Um teste de H_0 : $\beta_i = \beta_{i0}$ baseia-se no valor da estatística t

$$t = \frac{\hat{\beta}_i - \hat{\beta}_{i0}}{s_{\beta_i}}$$

O teste tem por base n - (k + 1) gl e é unilateral à direita, unilateral à esquerda ou bilateral, dependendo se a designaldade em H_a é > , < ou \neq .

Fonte: (DEVORE, 2018, p. 531)

INTERVALOS ESTATÍSTICOS E PROCEDIMENTOS DE TESTE

Seja x^* um valor particular de x. Um IC de $100(1-\alpha)\%$ para μ_{y,x^*} é

$$\hat{\mu}_{Y \cdot x^*} \pm t_{\alpha/2, n-(k+1)} \cdot \begin{cases} \text{DP estimado de} \\ \hat{\mu}_{Y \cdot x^*} \end{cases}$$

Com $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x^* + \dots + \hat{\beta}_k (x^*)^k$, \hat{y} representando o valor calculado de \hat{Y} para os dados especificados e $s_{\hat{Y}}$ representando o desvio padrão estimado da estatística \hat{Y} , a fórmula para o IC é mais parecida com a da regressão linear simples:

$$\hat{y} \pm t_{\alpha/2, n-(k+1)} \cdot s_{\hat{y}}$$

Um IP de $100(1-\alpha)\%$ para um valor futuro y a ser observado quando $x=x^*$ é

$$\hat{\mu}_{Y \cdot x^*} \pm t_{\alpha/2, n-(k+1)} \cdot \left\{ s^2 + \left(\frac{\text{DP estimado de}}{\hat{\mu}_{Y \cdot x^*}} \right)^2 \right\}^{1/2} = \hat{y} \pm t_{\alpha/2, n-(k+1)} \cdot \sqrt{s^2 + s_{\hat{Y}}^2}$$

Fonte: (DEVORE, 2018, p. 531)

CENTRALIZAÇÃO DE VALORES

 $\beta_0 \rightarrow \text{valor de y pra x=0}$

 $\beta_1 \rightarrow$ primeira derivada da função em x = 0 (taxa instantânea da mudança de μ_{y,x^*} em x = 0)

Se x_i distante de zero existe a probabilidade de obter informações imprecisas sobre os parâmetros $\beta_0, \beta_1, \beta_2, ..., \beta_k$

$$y = \beta_0 + \beta_1(x - \bar{x}) + \beta_2(x - \bar{x})^2 + \dots + \beta_k(x - \bar{x})^k + \varepsilon$$

Variável $\rightarrow x_i'$

Exemplo

O artigo Propriedades físicas da semente de cominho ("*Physical properties of cumin seed*", J. of Agric. Engr. Res., 1996: 93-98) considerou uma regressão quadrática de y = densidade aparente sobre x = teor de umidade.

		OLS F	Regres	sion Re	esults		
Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Covariance T	ions:	Least Squ Sat, 12 Mar 21:1	2022 12:03 6 3 2	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic Likelihood:):	0.938 0.896 22.51 0.0156 -20.339 46.68 46.05
	=======	std err		 t	P> t	[0.025	0.975]
const x1 x2	403.2396 16.1636 -0.7063	5.451		2.965	0.002 0.059 0.032	-1.185	
Omnibus: Prob(Omnibus Skew: Kurtosis:): 		nan nan 0.679	Jarqu	• •		2.980 0.911 0.634 2.60e+03

```
x = (7,10.3,13.7,16.6,19.8,22)

y = (479,503,487,470,458,412)
```

Exemplo

Responda:

- a. Um gráfico de dispersão dos dados parece consistente com modelo de regressão quadrática?
- b. Que proporção da variação observada na densidade pode ser atribuída à relação do modelo?
- c. Calcule um IC de 95% para a densidade média verdadeira quando o teor de umidade for 13,7, se $\hat{s}_Y = 6,49$.
- d. Calcule um IP de 99% para a densidade média verdadeira quando o teor de umidade for 14.
- e. O preditor quadrático parece fornecer informações úteis? Teste as hipóteses apropriadas no nível de significância 0,05.

Antes de resolver o exercício

1. Definir os dados:

```
1 x=df['x']
2 yp= 533.6984 -4.3981*x
3 plt.plot(x, yp, color = "g")
4 plt.scatter(x, y, color = "m", marker = "o", s = 30)
5 plt.grid(True)
6 x = sm.add_constant(x)
```

2. Se fosse um modelo linear

Antes de resolver o exercício

- 1. Usar a biblioteca **statmodel**
- 2. Obter o polinômio quadrático

```
1 x=df['x']
2 y=df['y']
3 x = sm.add_constant(x)
4 #Manter x + constant
5 from sklearn.preprocessing import PolynomialFeatures
6 #definir o valor de k, isto é o grau do polinômio
7 polynomial_features= PolynomialFeatures(degree=2)
8 xp = polynomial_features.fit_transform(x)
9 xp.shape
(6, 6)
```

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import statsmodels.api as sm
5 from statsmodels.formula.api import ols
6 import seaborn as sns
7 from statsmodels.graphics.gofplots import ProbPlot
8 plt.style.use('seaborn')
9 plt.rc('axes', titlesize=10)
```


Antes de resolver o exercício

Reconstruir x(6,6)

```
1 xp
        1. , 1. , 7. , 1. , 7. , 49. ],
        1. , 1. , 10.3 , 1. , 10.3 , 106.09],
        1. , 1. , 13.7 , 1. , 13.7 , 187.69],
        1. , 1. , 16.6 , 1. , 16.6 , 275.56],
        1. , 1. , 19.8 , 1. , 19.8 , 392.04],
        1. , 1. , 22. , [1. , 22. , 484. ]])
1 xp[:,3:6]
       1. , 7. , 49. ],
array([[
        1. , 10.3 , 106.09],
        1. , 13.7 , 187.69],
        1. , 16.6 , 275.56],
        1. , 19.8 , 392.04],
        1. , 22. , 484. ]])
```

Resposta a) Um gráfico de dispersão dos dados parece consistente com modelo de regressão quadrática?


```
1 #Aplicar a regressão polinomial com o novo x, isto é xp
2 modelpo = sm.OLS(y,xp[:,3:6]).fit()
3 ypred = modelpo.predict(xp[:,3:6])
4 ypred.shape

(6,)

1 x=df['x']
2 plt.scatter(x,y)
3 plt.plot(x,ypred)
```

Resposta b) Que proporção da variação observada na densidade pode ser atribuída à relação do modelo?

$$R^2 = 1 - \frac{SQE}{SQT}$$
 R^2 (ajustado) = $1 - \frac{n-1}{n-(k+1)} \cdot \frac{SQE}{SQT} = \frac{(n-1)R^2 - k}{n-1-k}$

```
1 #@title resposta b)
2 #calcular SQE--> Baseado nos valores esperados
3 \text{ sqe} = \text{np.sum}((\text{ypred} - \text{y})**2)
4 print("SQE=", sqe)
6 #calcular SQT-->Baseado nos valores observados
7 \text{ sqt} = \text{np.sum}((y - y.mean())**2)
                                    SQE= 309.10898960299954
8 print("SQT=", sqt)
                                    SQT= 4946.8333333333333
                                    SOR= 4637.724343730333
10 #calcular SQR
11 sqr = sqt - sqe
                                    Coeficiente de determinação múltippla= 0.9375137651151242
12 print("SQR=",sqr)
                                    R2 ajustado= 0.8958562751918736 ou 89.58562751918736 %
13
14 R2=1-sqe/sqt
15 print("Coeficiente de determinação múltippla=",R2, "ou",R2*100, "%")
16
17 k=modelpo.df_model # grau do modelo
18 n=modelpo.nobs # num. amostras
19 R2adj=((n-1)*R2-k)/(n-1-k)
21 print("R2 ajustado=",R2adj, "ou",R2adj*100, "%")
```

Resposta b) Que proporção da variação observada na densidade pode ser atribuída à relação do modelo?

$$R^2 = 1 - \frac{SQE}{SQT}$$
 R^2 (ajustado) = $1 - \frac{n-1}{n-(k+1)} \cdot \frac{SQE}{SQT} = \frac{(n-1)R^2 - k}{n-1-k}$

- 1 r2d=modelpo.rsquared
- 2 r2adjd=modelpo.rsquared_adj
- 3 print('R2= {0}, R2 ajustado= {1}'.format(r2d,r2adjd))

R2= 0.9375137651151243, R2 ajustado= 0.8958562751918738

Resposta d) Calcule um IP de 99% para a densidade média verdadeira quando o teor de umidade for 14.

- Nos modelos lineares o IC se calcula com a equação $\hat{y} \pm t_{rac{lpha}{2},n-2}\sqrt{s_{\hat{y}}^2+s^2}$
- Nos modelos polinomiais o IC deve ser calculado mediante $\hat{y}\pm t_{rac{lpha}{2'}(n-(k+1))}\sqrt{s_{\hat{y}}^2+s^2}$

```
1 #usar a tabela tstudent pata t
2 from scipy.stats import t
3 alpha = 0.01 # significia = 1%
4 df = n-(k+1) # graus de liberdade
5 v = t.ppf(1 - alpha/2, df)
6 tt=v
7 print(f't_crit=: {v}')

t_crit=: 5.84090929975643
```

```
y = 403,2396 + 16,1636x - 0,7063x^2
\hat{\mathbf{y}} = 6,49. \hat{\mathbf{y}} = \mu_{y,14} = 491,1
```

```
1 s2=sqe/(n-(k+1))
2 s=pow(s2,1/2)
3 s
10.150681251407045
```

$$\mathbf{t}_{(0,005,3)} = 5,841$$

Resposta d) Calcule um IP de 99% para a densidade média verdadeira quando o teor de umidade for 14.

• Nos modelos polinomiais o IC deve ser calculado mediante $\hat{y} \pm t_{\frac{\alpha}{2},(n-(k+1))} \sqrt{s_{\hat{y}}^2 + s^2}$

$$\hat{\mathbf{y}} = \mu_{y,14} = 491,1 \text{ e } \mathbf{t}_{(0,005,3)} = 5,841$$

$$\hat{\mathbf{y}} \pm \mathbf{t}_{\frac{\alpha}{2},(\mathbf{n}-(\mathbf{k}+1))} \sqrt{\mathbf{s}_{\hat{\mathbf{y}}}^2 + \mathbf{s}^2}$$

$$491,1 \pm 5,841(\sqrt{6,49^2+10,45^2})$$

IP de \hat{y} (419,25, 562,95)

Resposta d) Calcule um IP de 99% para a densidade média verdadeira quando o teor de umidade for 14.

```
1 #Intervalos
2 from scipy import stats
3 from statsmodels.sandbox.regression.predstd import wls_prediction_std
4 _, upper,lower = wls_prediction_std(modelpo)
5 plt.scatter(x,y)
6 plt.plot(x,ypred)
7 plt.plot(x,upper,'--',label="Maior") # confid. intrvl
8 plt.plot(x,lower,':',label="Menor")
```

Resposta d) Calcule um IP de 99% para a densidade média verdadeira quando o teor de umidade for 14.

IP de \hat{y} (419,25, 562,95)

Resposta e) O preditor quadrático parece fornecer informações úteis? Teste as hipóteses apropriadas no nível de significância 0,05.

- Definir a hipótese nula H_0 : $\beta_{20} = 0$ frente a H_a : $\beta_{20} \neq 0$.
- Se $|t| \ge t_{crit}$ rejeitar H_0 em favor de H_a : $\beta_{20} \ne 0$.
 - $t_{\text{crit}} = t_{(0,025,3)} = 5,841$
 - |t| = 3.813
 - $3,813 \ge 5,841$?? NÃO
 - Portanto REJEITAR H_0 : $\beta_{20} = 0$
- Comparar se p-valor < α.
 - p-valor 0,032 < 0,05
 - Portanto REJEITAR H_0 : $\beta_{20} = 0$ frente a H_a : $\beta_{20} \neq 0 \rightarrow$ Modelo quadrático.

const 403.2396 36.453 11.062 0.002 287.230 519.3 x1 16.1636 5.451 2.965 0.059 -1.185 33.3 x2 -0.7063 0.185 -3.813 0.032 -1.296 -0.3 Omnibus: nan Durbin-Watson: 2.9 Prob(Omnibus): nan Jarque-Bera (JB): 0.5 Skew: 0.679 Prob(JB): 0.5							
x1 16.1636 5.451 2.965 0.059 -1.185 33. x2 -0.7063 0.185 -3.813 0.032 -1.296 -0.3 Omnibus: nan Durbin-Watson: 2.9 Prob(Omnibus): nan Jarque-Bera (JB): 0.5 Skew: 0.679 Prob(JB): 0.5		coef	std err	t	P> t	[0.025	0.975]
Prob(Omnibus): nan Jarque-Bera (JB): 0.9 Skew: 0.679 Prob(JB): 0.9	x1	16.1636	5.451	2.965	0.059	-1.185	519.249 33.512 -0.117
Kurtosis: 1.658 Cond. No. 2.60e	Prob(Omnibu	us):		nan Jarqu .679 Prob	ue-Bera (JB) (JB):):	2.980 0.911 0.634 2.60e+03

MODELAGEM E INFERÊNCIA ESTATÍSTICA

Modelos polinomiais