Code	Name and Key Concepts
MMu1t1	Functions and graphs: Lines, Quadratics, Inverse Proportions, Polynomials, Relations, Translations and Dilations
MMu1t2 MMu1t3	Trigonometric functions : Unit Circle, Radians, SOH CAH TOA, Sine Rule, Exact Values, Amplitude/Period/Phase, Sum of Angles Identities Counting and probability : Binomial Coefficients, Set Complement Intersection and Union, Probability, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
MMu2t1	B), Conditional Probability, Independence Exponential functions: Index Laws, Fractional Indices, Functions, Asymptotes, Graphs
MMu2t2	Arithmetic and geometric sequences and series: Arithmetic and Geometric Sequences as Recurrence Relations, Limiting Behaviour, and Partial Sum Formulae, Growth and Decay
MMu2t3	Introduction to differential calculus Average Rate of Change, First Principles, Leibniz Notation, Instantaneous Rate of Change, Slope of Tangent, Derivitive of Polynomials, Linearity of Differentiation, Optimi-
MMu3t1	sation, Anti-Derivitives, Interpret Position-Time Graphs Further differentiation and applications: Define e as a s.t. $\lim_{h\to 0}\frac{a^h-1}{h}=1$, Derivitives of $e^x\sin(x)$ and $\cos(x)$, Chain Product
MMu3t2	and Quotient Rules, Second Derivitives Integrals: Integrate Polynomial Exponential and Trigonometric Functions, Linearity of Integration, Determine Displacement given Velocity,
MMu3t3	Definite Integrals, Fundamental Theorem of Calculus, (signed) Area Under a Curve Discrete random variables: Frequencies, General Properties, Ex-
MMu4t1	pected Value, Variance, Standard Deviation, Bernoulli and Binomial Distribtions The logarithmic function: Logs as Inverse of Exponentials, Log-
MMu4t2	Scales, Log Function Graphs, Natural Log, $\frac{d}{dx}\ln(x)=\frac{1}{x}$, $\int \frac{1}{x}dx=\ln(x)+c$ for $x>0$ Continuous random variables and the normal distribution: Prob-
	ability Density Function, Cumulative Distribution Function, Probabilites Expected Value, Variance and Standard Deviation as Integrals, Linear Transformation of Random Variables, Normal Distribution using Tech-
MMu4t3	Interval estimates for proportions Simple Random Sampling, Bias, Sample Proportion, Normal Approximation to the Binomial Proportion,
CNA 1.1	Wald Confidence Interval, Trade-Off Between Width and Level of Confidence
SMu1t1 SMu1t2	Combinatorics Multiplication of Possibilities, Factorial Notation, Permutations with and without Repeated Objects, Union of Three Sets, Pigeon-Hole Principle, Combinations, Pascals Triangle Vectors in the plane: Magnetude and Direction, Scalar Multiplication, Proceedings of the Principles of the Plane.
SIVIU112	Vectors in the plane : Magnetude and Direction, Scalar Multiplication, Addition and Substraction as a Triangle, Vector Notation, $a\mathbf{i} + b\mathbf{j}$ Notation, Scalar Dot Product, Projection, Parallel and Perpendicular Vectors
SMu1t3	Geometry : Notation for Implication (\Rightarrow) and Equivalence (\Leftrightarrow), Converse ($B \Rightarrow A$) Negation ($\neg A \Rightarrow \neg B$) and Contrapositive ($\neg B \Rightarrow \neg A$), Proof by Contradiction, \forall and \exists Notation, Counter-Examples, Circle
SMu2t1	Theorems, Quadrilateral Proofs in \mathbb{R}^2 Trigonometry: Graph and Solve Trig Functions, Prove Various Trig Indentities, Reciprocal Trig Functions
SMu2t2	Matrices: Notation, Addition and Scalar Multiplication of Matrices, Multiplicative Identity and Inverse, Determinant, Matrices as Transformations
SMu2t3	Real and complex numbers : Rationality and Irrationality, Induction, $i = \sqrt{-1}$, Complex Numbers $a + bi$ and Arithmetic $(+, -, \times, \div)$, Complex Conjugates, Complex Plane, Complex Conjugate Roots of
SMu3t1	Polynomials Complex numbers: Modulus and Argument, Arithmetic $(\times, \div, \text{ and } z^n)$ in Polar Form, Convert between Polar and Cartesian Form, De
SMu3t2	Moivre's Theorem, Roots of Complex Numbers, Factorising Polynomials Functions and sketching graphs: Composition of Functions, One-to-One, Inverse Functions, Absolute Value Function, Rational Functions
SMu3t3	Vectors in three dimensions : $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ Notation, Equation for Spheres, Parameterised Vector Equations, Equations of Lines, the Cross Product, Equation for a Plane, Systems of Linear Equation (Elimina-
SMu4t1	tion Method) and Geometric Interpretation of Solutions, Kinematics via Differentiation of Vector Equations, Projectile and Circular Motion Integration and applications of integration Substitution, $\int \frac{1}{x} dx = \ln x + c$ for $x \neq 0$. Inverse Trig Functions and their Derivitives. Integrate
SNAa.c	$\ln x + c$ for $x \neq 0$, Inverse Trig Functions and their Derivitives, Integrate $\frac{\pm 1}{\sqrt{a^2 - x^2}}$ and $\frac{a}{a^2 + x^2}$, Partial Fractions, Integration by Parts, Volume of Solids of Revolution, Numerical Integration using Technology
SMu4t2 SMu4t3	Rates of change and differential equations: Implicit Differentiation, First-Order Seperable Differential Equations, The Logistic Equation, Kinematics (Rates of Change) Statistical inference: Central Limit Theorem and the Resulting Con-
SMu4t3 S1M1	Statistical inference: Central Limit Theorem and the Resulting Confidence Interval for a Mean Functions and graphs: Equations for a Line, Slope, y-intercept, In-
\$1M1 \$1M2	tersection of Lines, Reciprocal Function, Asymptotes, Functions vs Relations, Domain, Range, Function Notation Polynomials: Quadratic Equations in Vertex and Factorised Forms,
S1M3	Quadratic Equations in Vertex and Factorised Forms, Quadratic Formula, Completing the Square, The Leading Coefficient and Degree of a Polynomials, Cubics, Quartics Trigonometry: Pythagoras, SOH CAH TOA, Cosine Rule, Sine Rule,
S1M4	Unit Circle, Sine and Cosine Functions, Radians, Length of Arc, Area of Sector, Amplitude, Period, Phase, $\tan(x) = \frac{\sin(x)}{\cos(x)}$ Counting and statistics: Factorial, Permutations, Multiplication Prin-
	ciple, Combinations, Discrete vs Continuous Random Variables, Mean, Median, Mode, Range, Interquartile Range, Standard Deviation, Normal Distribution,
S1M5 S1M6	Growth and decay : Index and Logarithm Laws, Exponential Functions and their Graphs Introduction to differential calculus: Average Rate of Change, First
	Principles, Notation $f'(x)=\frac{df}{dx}$, $\frac{d}{dx}x^n=nx^{n-1}$, Linearity of Differentiation, Slope of Tangent, Increasing vs Decreasing, Local and Global Maxima and Minima, Stationary Points, Sign Diagram
S1M7	Arithmetic and geometric sequences and series : Arithmetic and Geometric Series as Recurrance Relations and Explicit Expressions, Partial Sums, Limiting Behaviour
S1M8 S1M9	Geometry : Circle Properties, Proofs (Direct, Contradiction, and Contrapositive) Vectors in the plane : Component (column) vs $ai + bj$ Notation,
C114	Length and Direction, Linear Combinations of Vectors, Scalar Dot Product, Projection, Angle Between Two Vectors and Parallel/ Perpendicular, Geometric Proof Further Trigonometry: Sketch Trigonometric Functions with Trans
S1M10 S1M11	Further Trigonometry: Sketch Trigonometric Functions with Translations and Dilations, Solve for Angles, Trigonometric Identities, Reciprocal Trigonometric Functions Matrices: Linear Combinations of Matrices, Matrix Multiplication, The
	Identity, Inverse Matrices, The 2×2 Inverse, The 2×2 Determinant, Linear Transformations (including rotations, reflections and composition)
S1M12	Real and complex numbers: Rationals, Irrationals, Interval Notation, Induction, $i=\sqrt{-1}$, Real and Imaginary Components, Complex Conjugates and Arithmetic, Argand Diagram, Modulus, Complex Roots of Polynomals
S2MM1	Further differentiation and applications: S1M6, Chain Product and Quotient Rules, $e=2.718\ldots$, $\frac{d}{dx}e^x=e^x$, $\frac{d}{dx}\sin(x)=\cos(x)$,
S2MM2	$\frac{d}{dx}\cos(x)=-\sin(x)$, Second Derivatives, Concavity and Points of Inflection Discrete random variables: Random Variables, Discrete vs Contin-
	uous, Probability Functions and Distributions, Properties of Probabilities, Frequency, Expected Value $E[X] = \sum xp(x) = \mu_X$, Standard Deviation $\sigma_X = \sqrt{\sum (x - \mu_X)^2 p(x)}$, Uniform Bernoulli and Binomial
S2MM3	Distributions Integral calculus: Anti-differentiation, If $F'(x) = f(x)$ then $\int f(x)dx = F(x) + c$, Reversing Chain Rule for $\int f(ax+b)dx$, Lin-
	earity of Integration, Finding the Constant of Integration, Area Under the Curve as Upper and Lower Sum Approximations, Definite Integral, Area Between Two Functions and Between a Negative Function and the
S2MM4	x-axis, Fundamental Theorem of Calculus, Logarithmic functions : Sketching $y=a\ln(b(x-c))$, $\frac{d}{dx}\ln(x)=\frac{1}{x}$, For $x>0$ $\int \frac{1}{x}dx=\ln(x)+c$
S2MM5	Continuous random variables and the normal distribution: $P(X=x)=0$, Probability Density Function, $\mu_X=\int_{-\infty}^{\infty}xf(x)dx$, $\sigma_X=\int_{-\infty}^{\infty}(x-\mu_X)^2f(x)dx$, $f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$, Standard Normal
	$Z = \frac{X - \mu}{\sigma}, \text{ Simple Random Sampling, For } X \sim (\mu, \sigma) \text{ and } X_i \sim iidX$ Sampling Distributions of $S_n = \sum_{i=1}^n X_i \ (n\mu, \sigma\sqrt{n}) \text{ and } \bar{X}_n = \frac{S_n}{n} \ (\mu, \frac{\sigma}{\sqrt{n}}), \text{ If } X \text{ is Normally Distributed, then so are } S_n \text{ and } \bar{X}_n, \text{ Censplication}$
S2MM6	tral Limit Theorem (CLT) Sampling and confidence intervals : Confidence Interval for a Mean using CLT $\left(\bar{x}-z^*\frac{s}{\sqrt{n}}\right) \leq \mu \leq \left(\bar{x}+z^*\frac{s}{\sqrt{n}}\right)$, Wald Interval for a Pro-
S2SM1	portion
S2SM2	Complex numbers : Cartesian vs Polar Form, Real and Imaginary Components, Modulus and Argument, Arithmetic in both Cartesian and Polar Forms, de Moivre's Theorem including Negative and Fractional Pow-
_	ers, Geometric Properties of the Argand Plane, Complex Arithmetic as Transformations, $n^{\rm th}$ Roots of a Complex Number, Factorising Polynomials with Complex Roots
S2SM3	Functions and sketching graphs: Function Composition, Informal Intro to Domain and Range, One-to-One, Inverse Functions, Absolute Value Function, Graphing Rational Functions Vectors in three dimensions: Notation, Equations of a Line in P3
S2SM4	Vectors in three dimensions : Notation, Equations of a Line in \mathbb{R}^3 , Scalar Dot Product, Vector Cross Product, $ \mathbf{a} \times \mathbf{b} $ is the Area of their Parallelogram, Equation for a Plane in \mathbb{R}^3 , Systems of Linear Equations, Geometric Interpretation of No/Unique/Infinite Solutions to a System
S2SM5	Geometric Interpretation of No/Unique/Infinite Solutions to a System of Linear Equations in \mathbb{R}^3 Integration techniques and applications: Integration by Substitution, Using Trigonometric Identities for Integration, Derivatives of In-
S2SM6	verse Trigonometric Identities for Integration, Derivatives of Inverse Trigonometric Functions (so $\int \frac{\pm 1}{\sqrt{a^2-x^2}} dx$ and $\int \frac{a}{a^2+x^2} dx$, Integration by Parts, Area Between two Curves, Volume of Solids of Revolution Rates of change and differential equations: Implicit Differential
_ _ 	tion, First-Order Seperable Differential Equations: Implicit Differential- tion, First-Order Seperable Differential Equations, The Logistic Differential Equation, Parameterised Curves, Example: if $\mathbf{v} = \frac{d}{dt}(x(t), y(t))$ is Velocity, $ \mathbf{v} $ is Speed, and so the Arc Length along the Parameterised
	Curve is $\int_a^b \sqrt{\mathbf{v} \cdot \mathbf{v}} dt$, Trigonometric Parameterisations (unit circle, and non-circular parameterisations)
MS1 MS2	Numbers & Functions: Natural Numbers, Integers, Rational Numbers, Real Numbers, Functions, Intervals Linear Functions: Equation for Linear Functions, Simultaneous Linear
MS3	Equations, Sketching Linear Inequalities Quadratic Functions: Sketching a Parabola, General Form of a Quadratic, Translations and Dilations
MS4 MS5	Rational Functions: Sketching Reciprocal Functions (Hyperbola), Lines of Symmetry, Limits and Asymptotes Trigonometry I: Pythagoras, Similar Triangles, SOH CAH TOA,
MS6	Trigonometric and Inverse Trigonometric Functions using Technology, Exact Values Trigonometry II: Unit Circle, Sketching Trigonometric Functions, Finding all Solutions to Trigonometric Equations. The Sine Rule. The
MS7	Finding all Solutions to Trigonometric Equations, The Sine Rule, The Cosine Rule, Introductory Trigonometric Identities, Radians Exponential Functions : Index Laws, Sketching Exponential Functions, $e=2.718\ldots$, Growth and Decay
MS8	Logarithms: Natural Logarithm, Logarithm Laws, Using Logarithm to Fit Growth/Decay Functions, Half-Life/Doubling Time
MT1	Polynomials: Polynomial Division and "Remainder Theorem", Factor Theorem Linking Zeros to Factors, Continuous vs Discontinuous Functions, Smoothness, Sketching Factorised Form of Polynomials, Factoris-
МТ2	ing Polynomials, The Quadratic Formula Matrices: Order, Notation, Linear Combinations of Matrices, Matrix Multiplication (Associative but not Commutative, Distributes across Lin-
	ear Combinations), The Identity Matrix, Powers of Square Matrices, Matrix Transpose, Systems of Linear Equations, Matrix Inverse, 2×2 determinant, The 2×2 Inverse, $n\times n$ Inverses, Elementary Row Oper-
МТ3	ations, Vectors and Applications: Directed Line Segment Notation for Vectors, Magnetude/ Length and Direction, Linear Combinations of Vectors,
MT4	tors, Component and $a\mathbf{i} + b\mathbf{j}$ Notation, Vectors in \mathbb{R}^2 and \mathbb{R}^3 , Scalar Dot Product, Equation for a Plane in \mathbb{R}^3 Systems of Linear Equations: Augmented Matrix for Systems of
	Linear Equations, Elementary Row Operations, Row-Echelon Form, Solutions to Systems of Linear Equations and Geometric Interpretations in \mathbb{R}^2 and \mathbb{R}^3 , Matrix Inverses by Gauss-Jordan Elimination
МТ6	Differentiation : Rates of Change, Gradient, First Principles, Limit Notation, Derivative Notation, $\frac{d}{dx}x^n = nx^{n-1}$ (including $n=0$ and $n=1$), Linearity of Differentiation, Product Rule, Quotient Rule, Chain Puls Implicit Differentiation, Normal to a Curve
МТ7	Rule, Implicit Differentiation, Normal to a Curve Applications of Differentiation: Sketching Polynomials and Rational Functions (Intercepts and Asymptotes), Continuity, Sign Diagrams, Increasing and Decreasing Stationary Points, Points of Inflection, Con-
МТ8	Increasing and Decreasing, Stationary Points, Points of Inflection, Concavity, Optimisation, Exponential and Logarithm Functions : Sketching Exponential Functions $e = 2.718$ $\frac{d}{dt}e^x = e^x$ Natural Logarithm $\frac{d}{dt}\ln(x) = \frac{1}{2}$
МТ9	Functions, $e=2.718\ldots, \frac{d}{dx}e^x=e^x$, Natural Logarithm, $\frac{d}{dx}\ln(x)=\frac{1}{x}$, Growth and Decay, Surge Models, Logistic Models Integration: Area Under a Curve, Lower and Upper Sums, Definite Integrals, Definite Integrals of Negative Functions, Linearity of Integra-
	tion, Properties of Definite Integrals, Fundamental Theorem of Calculus, Antiderivatives, Indefinite Integrals, Integrating by Reversing the Chain
	Rule, Integration by Substitution, Area Between two Curves, Summation