Bret Young

DSC 640

Assignment 4.2

25 October 2020

- scatter plot
- bubble plot
- density plot

```
In [1]: # Import required packages
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt

In [2]: # Load dataset
    url = '~/Desktop/DSC 640/ex4-2/crimerates-by-state-2005.csv'
    data = pd.read_csv(url, sep = ',')
In [3]: data.head()
```

Out[3]:

	state	murder	forcible_rape	robbery	aggravated_assault	burglary	larceny_theft	motor
0	United States	5.6	31.7	140.7	291.1	726.7	2286.3	_
1	Alabama	8.2	34.3	141.4	247.8	953.8	2650.0	
2	Alaska	4.8	81.1	80.9	465.1	622.5	2599.1	
3	Arizona	7.5	33.8	144.4	327.4	948.4	2965.2	
4	Arkansas	6.7	42.9	91.1	386.8	1084.6	2711.2	

```
In [4]: # Remove District of Columbia & United States
data_filter = data[(data['state'] != 'United States') & (data['state'] != 'District of Columbia')]
```

```
In [5]: # loading required libraries
import scipy.stats as stats
import statsmodels.api as sm

# creating LOESS curve
lowess = sm.nonparametric.lowess
w = lowess(data_filter['burglary'], data_filter['murder'], frac = 0.5)
```

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site -packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.ut il.testing is deprecated. Use the functions in the public API at pan das.testing instead.

import pandas.util.testing as tm

```
In [6]: # Create axes and figure
        fig = plt.figure()
        ax1 = fig.add subplot(111)
        # Set figure size
        fig.set size inches(18.5, 10.5)
        # Add plot to figure
        ax1.scatter(data filter['murder'], data filter['burglary'], color = 'g
        ax1.plot(w[:,0], w[:,1])
        # Set titles, caption and axis labels
        fig.suptitle("Murders Vs Burglaries For States in U.S.", x = 0.31, y =
        0.95, fontsize=20)
        fig.text(.87, .08, 'Source: Data Collected By Nathan Yau from U.S. Cen
        sus Bureau', ha = 'right', color = 'gray')
        ax1.set title("Higher muder rates are usually associated with higher b
        urglary rates.", y = 1.02, loc='left', color = 'gray')
        ax1.set xlabel("Murders per 100,000 residents")
        ax1.set ylabel("Burglaries\nper 100,000\nresidents", rotation = 0, ha
        = 'right')
        # Remove frame
        ax1.spines['right'].set visible(False)
        ax1.spines['top'].set visible(False)
        # Show plot
        plt.show
        # save file
        fig.savefig("python scatter.png")
```

Murders Vs Burglaries For States in U.S.

Higher muder rates are usually associated with higher burglary rates.


```
In [7]: # Create axes and figure
        fig = plt.figure()
        ax1 = fig.add subplot(111)
        # Set figure size
        fig.set size inches(18.5, 10.5)
        # Add plot to figure
        ax1.scatter(data filter['murder'], data filter['burglary'], color = 's
        kyblue', s = data filter['population']/3500, alpha = 0.5)
        # add a label inside the bubbles
        for line in range(0, data filter.shape[0]):
            try:
                if data filter['population'][line] >= 3000000:
                    ax1.text(data filter['murder'][line], data filter['burglar
        y'][line], data filter['state'][line], horizontalalignment='center', s
        ize='medium', color='black')
                else:
                    continue
            except KeyError:
                continue
        # Set titles, caption and axis labels
        fig.suptitle("Murders Vs Burglaries For States in U.S.", x = 0.31, y =
        0.95, fontsize=20)
        fig.text(.87, .08, 'Source: Data Collected By Nathan Yau from U.S. Cen
        sus Bureau', ha = 'right', color = 'gray')
        ax1.set title("Higher muder rates are usually associated with higher b
        urglary rates.", y = 1.02, loc='left', color = 'gray')
        ax1.set xlabel("Murders per 100,000 residents")
        ax1.set ylabel("Burglaries\nper 100,000\nresidents", rotation = 0, ha
        = 'right')
        # Remove frame
        ax1.spines['right'].set_visible(False)
        ax1.spines['top'].set visible(False)
        # Show plot
        plt.show
        # save file
        fig.savefig("python bubble.png")
```

Murders Vs Burglaries For States in U.S.

In [9]: data_2.head()

Out[9]:

	Country	1960	1961	1962	1963	1964	1965	1966	1967	1968	 19
0	Aruba	36.400	35.179	33.863	32.459	30.994	29.513	28.069	26.721	25.518	 15.0
1	Afghanistan	52.201	52.206	52.208	52.204	52.192	52.168	52.130	52.076	52.006	 51.2
2	Angola	54.432	54.394	54.317	54.199	54.040	53.836	53.585	53.296	52.984	 48.6
3	Albania	40.886	40.312	39.604	38.792	37.913	37.008	36.112	35.245	34.421	 17.7
4	Netherlands Antilles	32.321	30.987	29.618	28.229	26.849	25.518	24.280	23.173	22.230	 15.8

5 rows × 50 columns

```
In [10]: # load package needed to create density plot
    from scipy.stats import gaussian_kde

# generate density curve
    density = gaussian_kde(data_2['2008'].dropna(how='all'))
    density.covariance_factor = lambda : .1
    xs = np.linspace(0,62,200)
    density._compute_covariance()
```

```
In [11]: # Create axes and figure
         fig = plt.figure()
         ax1 = fig.add subplot(111)
         # Set figure size
         fig.set size inches(18.5, 10.5)
         # Add plot to figure
         ax1.plot(xs,density(xs))
         ax1.fill(xs, density(xs), color = 'skyblue')
         # Set titles, caption and axis labels
         fig.suptitle("Birthrate Density Plot for 2008", x = 0.24, y = 0.91, fo
         ntsize=20)
         fig.text(.87, .08, 'Source: Data Collected By Nathan Yau from World Ba
         nk', ha = 'right', color = 'gray')
         ax1.set xlabel("Birth Rate")
         ax1.set ylabel("Density", rotation = 0, ha = 'right')
         # Remove frame
         ax1.spines['right'].set visible(False)
         ax1.spines['top'].set visible(False)
         # Show plot
         plt.show
         # save file
         fig.savefig("python density.png")
```


In []: