

MACHINE LEARNING III

BY: DIMPLE BOHRA

CONTENTS

- Scheme, Syllabus and CO discussion
- Reference Books/links
- What is machine learning?
- Types of machine learning
- Differences between Supervised, Unsupervised and Reinforcement Learning
- Use cases to identify the correct type of machine learning to solve the problem

SCHEME OF RL

Program: Third Year B.Tech. in Computer Science and Engineering (Data Science)	Semester: VI
Course: Machine Learning – III (Reinforcement Learning)	Course Code: DJ19DSC601
Course: Machine Learning – III Laboratory	Course Code: DJ19DSL601

Teaching Scheme (Hours / week)			Evaluation Scheme							
			Semester End Examination Marks (A)		Continuous Assessment Marks (B)			Total marks		
Lectures	Practical	Tutorial	Total Credits	Theory			Term Test 1	Term Test 2	Avg.	(A+B)
				75			25	25	25	100
				Laboratory Examination		Term work		Total		
3	2	-	4	Oral	Practical	Oral & Practical	Laboratory Work	Tutorial / Mini project / presentation/ Journal	Total Term work	25
			CAS	_	-	<u> </u>	15	10	25	

SYLLABUS

Pre-requisite: Machine Learning-I, Machine Learning-II and Artificial Intelligence.

Course Objectives: To make students learn to build programs that act in a stochastic environment, based on past experience using various Reinforcement Learning methods.

Course Outcomes:

Students will be able to

- 1. Explain basic and advanced Reinforcement Learning techniques.
- 2. Identify suitable learning tasks to which Reinforcement learning and Deep Reinforcement Learning techniques can be applied.
- 3. Apply appropriate Reinforcement Learning method to solve a given problem.

UNIT WISE SYLLABUS

- I. Introduction
- 2. Immediate RL, Bandit Problem
- 3. Full RL, Markov Decision Process (MDP)
- 4. Dynamic programming, Monte Carlo method
- 5. Temporal difference Learning, Eligibility traces
- 6. Deep RL, Function approximation

BOOKS RECOMMENDED

Textbooks

- 1. Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning: An Introduction", MIT Press, 2 nd Edition, 2018.
- 2. Laura Graesser Wah Loon Keng, "Foundations of Deep Reinforcement Learning," Pearson Education, 1 st Edition, 2020.

Reference Books

- 1. Phil Winder, "Reinforcement Learning Industrial Applications of Intelligent Agents", O'Reilly, 1 st Edition, 2020.
- 2. Csaba Szepesvari, "Algorithms for Reinforcement Learning," Morgan & Claypool Publishers, 1 st Edition, 2019.
- 3. Enes Bilgin, "Mastering Reinforcement Learning with Python", Packt publication, 1 st Edition, 2020.
- 4. Brandon Brown, Alexander Zai, "Deep Reinforcement Learning in Action", Manning Publications, 1 st Edition, 2020.
- 5. Micheal Lanham, "Hands-On Reinforcement Learning for Games," Packt Publishing, 1 st Edition, 2020
- Abhishek Nandy, Manisha Biswas, "Reinforcement Learning: With Open AI, TensorFlow and Keras using Python," Apress, 1st Edition, 2018.

MACHINE LEARNING

Machine learning is the science of getting computers to act by feeding them data and letting them learn a few tricks on their own without being explicitly programmed.

TYPES OF MACHINE LEARNING

USE CASE I

Problem Statement: Study a bank credit dataset and make a decision about whether to approve the loan of an applicant based on his profile

```
$ Account.Balance
                                    1121111142...
$ Duration.of.Credit..month.
                              : int 18 9 12 12 12 10 8 6 18 24 ...
                                                                                     KNN algorithm
$ Payment.Status.of.Previous.Credit: int 4 4 2 4 4 4 4 4 4 2 ...
$ Purpose
                              : int 2090000033...
$ Credit, Amount
                              : int 1049 2799 841 2122 2171 2241
$ Value.Savings.Stocks
$ Length.of.current.employment
                             : int 2343324211...
$ Instalment.per.cent
                              : int 4223411241...
$ Sex...Marital.Status
                              : int 2323333322 ...
§ Guarantors
                              : int 1111111111...
$ Duration.in.Current.address
                              : int 4242434444 ...
$ Most.valuable.available.asset
$ Age..years.
                                    21 36 23 39 38 48 39 40 65 23
$ Concurrent.Credits
                              : int 3 3 3 3 1 3 3 3 3 3 ...
                                                                                                    Reject loan
                                                                         Approve loan
$ Type.of.apartment
                              : int 1111212221 ...
$ No. of . Credits . at . this . Bank
                              : int 1212222121 ...
$ Occupation
                              : int 3322222211 ...
$ No. of . dependents
                              : int 1212121211 ...
$ Telephone
                              : int 1111111111...
$ Foreign. Worker
                              : int 1112222211 ...
```

USE CASE II

Problem Statement: To establish a mathematical equation for distance as a function of speed, so you can use it to predict distance when only the speed of the car is known.

USE CASE III

Problem Statement: To cluster a set of movies as either good or average based on their social media out reach

UNSUPERVISED LEARNING

USE CASE IV

Problem Statement: To perform Market Basket Analysis by finding association between items bought at the grocery store

UNSUPERVISED LEARNING

USE CASE V

Problem Statement: Place an agent in any one of the rooms (0,1,2,3,4) and the goal is to reach outside the building (room 5)

REINFORCEMENT LEARNING

THANK YOU!!