Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

27 февраля 2019 г.

0 Введение

Эти лекции были рассказаны студентам групп M3334–M3337, M3339 в 2018 году в Университете ИТМО, на Кафедре компьютерных технологий Факультета информационных технологий и программирования.

Конспект подготовили студенты Кафедры: Егор Галкин (лекции 1 и 2), Илья Кокорин (лекции 3 и 4), Никита Дугинец (лекции 5 и 6), Степан Прудников (лекции 7 и 8). (возможно, история сложнее)

1 Лекция 1

1.1 λ -исчисление

Определение 1.1 (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

$$\Phi ::= x | (\Phi) | \lambda x. \Phi | \Phi \Phi$$

Иногда для упрощения записи мы будем опускать скобки. В этом случае, перед разбором выражения, следует расставить все опущенные скобки. При их расставлении будем придерживаться правил:

- 1. В аппликации расставляем скобки слева направо: $A \ B \ C \implies (A \ B) \ C$.
- 2. Абстракции жадные поглощают скобками все что могут до конца строки: $\lambda a. \lambda b. a \ b \implies \lambda a. (\lambda b. (a \ b)).$

Пример.
$$\lambda x.(\lambda f.((fx)(fx)\lambda y.(yf)))$$

Договоримся, что:

- Переменные x, a, b, c.
- Термы (части λ -выражения) X, A, B, C.
- Фиксированные переменные обозначаются буквами из начала алфавита, метапеременные— из конца.

Есть понятия связанного и свободного вхождения переменной (аналогично исчислению предикатов).

Определение 1.2. Если вхождение x находится в области действия абстракции по x, то такое вхождение называется связанным, иначе вхождение называется свободным.

Определение 1.3. Терм Q называется свободным для подстановки в Φ вместо x, если после подстановки Q ни одно вхождение не станет связанным.

Пример. $\lambda x.A$ связывает все свободные вхождения x в A.

Определение 1.4. Функция V(A) — множество переменных, входящих в A.

Определение 1.5. Функция FV(A) — множество свободных переменных, входящих в A:

$$\mathrm{FV}(A) = \begin{cases} \{x\} & \text{если } A \equiv x \\ \mathrm{FV}(P) \cup \mathrm{FV}(Q) & \text{если } A \equiv PQ \\ \mathrm{FV}(P) \backslash \{x\} & \text{если } A \equiv \lambda x.P \end{cases}$$

 λ -выражение можно понимать как функцию. Абстракция — это функция с аргументом, аппликация — это передача аргумента.

Определение 1.6 (α -эквивалентность). $A =_{\alpha} B$, если имеет место одно из следующих условий:

- 1. $A \equiv x$, $B \equiv y$ и $x \equiv y$.
- 2. $A \equiv P_1 Q_1$, $B \equiv P_2 Q_2$ if $P_1 =_{\alpha} P_2$, $Q_1 =_{\alpha} Q_2$.
- 3. $A \equiv \lambda x. P_1, \ B \equiv \lambda y. P_2$ и $P_1[x := t] =_{\alpha} P_2[y := t]$, где t новая переменная.

Пример. $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx.$

Доказательство.

- 1. $tz =_{\alpha} tz$ верно по второму условию.
- 2. Тогда получаем, что $\lambda y.ty =_{\alpha} \lambda x.tx$ по третьему условию, так как из предыдущего пункта следует $ty[y:=z] =_{\alpha} tx[x:=z]$.
- 3. Из второго пункта пункта получаем что $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$ по третьему условию, так как $\lambda y.xy[x := t] =_{\alpha} \lambda x.yx[y := t]$.

Определение 1.7 (β -редекс). β -редекс—выражение вида: ($\lambda x.A$) B

Определение 1.8 (β -редукция). $A \to_{\beta} B$, если имеет место одно из следующих условий:

- 1. $A \equiv P_1Q_1, B \equiv P_2Q_2$ и либо $P_1 =_{\alpha} P_2, Q_1 \rightarrow_{\beta} Q_2$, либо $P_1 \rightarrow_{\beta} P_2, Q_1 =_{\alpha} Q_2$
- 2. $A \equiv (\lambda x.P) Q$, $B \equiv P[x := Q]$ причем Q свободна для подстановки вместо x в P
- 3. $A \equiv \lambda x.P$, $B \equiv \lambda x.Q$ и $P \rightarrow_{\beta} Q$

Пример. $(\lambda x.x) y \rightarrow_{\beta} y$

Пример. $a((\lambda x.x)y) \rightarrow_{\beta} ay$

2

1.2 Представление некоторых функций в λ -исчислении

Логические значения легко представить в терминах λ -исчисления. В самом деле, положим:

- True $\equiv \lambda a \lambda b.a$
- False $\equiv \lambda a \lambda b.b$

Также мы можем выражать и более сложные функции

Определение 1.9. If $\equiv \lambda c.\lambda t.\lambda e.(ct)e$

Пример. If T $a \ b \rightarrow_{\beta} a$

Доказательство.

$$((\lambda c.\lambda t.\lambda e.(ct)e) \ \lambda a\lambda b.a) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.(\lambda a\lambda b.a) \ t \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.(\lambda b.t) \ e) \ a \ b \rightarrow_{\beta} (\lambda t.\lambda e.t) \ a \ b \rightarrow_{\beta} (\lambda e.a) \ b \rightarrow_{\beta} a$$

Как мы видим If T действительно возвращает результат первой ветки. Другие логические операции:

Not =
$$\lambda a.a$$
 F T And = $\lambda a.\lambda b.a$ b F Or = $\lambda a.\lambda b.a$ T b

1.3 Черчевские нумералы

Определение 1.10 (черчевский нумерал).

$$\overline{n} = \lambda f. \lambda x. f^n x$$
, где $f^n x = \begin{cases} f\left(f^{n-1}x\right) & \text{при } n > 0 \\ x & \text{при } n = 0 \end{cases}$

Пример.

$$\overline{3} = \lambda f. \lambda x. f(f(fx))$$

Несложно определить прибавление единицы к такому нумералу:

$$(+1) = \lambda n.\lambda f.\lambda x.f(nfx)$$

Арифметические операции:

- 1. IsZero = $\lambda n.n(\lambda x. F) T$
- 2. Add = $\lambda a.\lambda b.\lambda f.\lambda x.a f(b f x)$
- 3. Pow = $\lambda a.\lambda b.b$ (Mul a) $\overline{1}$
- 4. IsEven = $\lambda n.n$ Not T
- 5. Mul = $\lambda a.\lambda b.a$ (Add b) $\overline{0}$

Для того, чтобы определить (-1), сначала определим пару:

$$\langle a, b \rangle = \lambda f. f \, a \, b$$
 First $= \lambda p. p \, T$ Second $= \lambda p. p \, F$

Затем n раз применим функцию $f\left(\langle a,b\rangle\right)=\langle b,b+1\rangle$ и возьмём первый элемент пары:

$$(-1) = \lambda n. \operatorname{First}(n \left(\lambda p. \left\langle \left(\operatorname{Second} p\right), (+1) \left(\operatorname{Second} p\right)\right\rangle\right) \left\langle \overline{0}, \overline{0}\right\rangle)$$

2 Лекция 2

2.1 Формализация λ -термов, классы α -эквивалентности термов

Определение 2.1 (λ -терм). Рассмотрим классы эквивалентности $[A]_{=_{\alpha}}$ Будем говорить, что $[A] \to_{\beta} [B]$, если существуют $A' \in [A]$ и $B' \in [B]$, что $A' \to_{\beta} B'$.

Лемма 2.1. $(=_{\alpha})$ — отношение эквивалентности.

Пусть в А есть β -редекс $(\lambda x.P)Q$, но Q не свободен для подстановки вместо x в P, тогда найдем $y \notin V[P]$, $y \notin V[Q]$. Сделаем замену P[x := y]. Тогда замена P[x := y][y := Q] допустима. То есть, можно сказать, что мы просто переименовали переменную x в P и получили свободу для подстановки, тем самым получив возможность редукции.

Лемма 2.2. $P[x := Q] =_{\alpha} P[x := y][y := Q]$, если замена допустима.

2.2 Нормальная форма, λ -выражения без нормальной формы, комбинаторы $K,\ I,\ \Omega$

Определение 2.2. λ -выражение A находится в нормальной форме, если оно не содержит β -редексов.

Определение 2.3. A — нормальная форма B, если существует последовательность термов $A_1...A_n$ такая, что $B =_{\alpha} A_1 \to_{\beta} A_2 \to_{\beta} ... \to_{\beta} A_n =_{\alpha} A$.

Определение 2.4. Комбинатор — λ -выражение без свободных переменных.

Определение 2.5.

- $I \equiv \lambda x.x$ (Identitant)
- $K \equiv \lambda a. \lambda b. a$ (Konstanz)
- $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$

Лемма 2.3. Ω — не имеет нормальной формы.

Доказательство. Ω Имеет единственный β -редекс, где $A \equiv xx$, $B \equiv (\lambda x.xx)$. Тогда единственный возможный путь редукции — подставить B вместо x в A. Но тогда мы получим Ω . Следовательно у Ω нет нормальной формы, так как в полученном выражении у нас всегда будет β -редекс.

2.3 β -редуцируемость

Определение 2.6. Будем говорить, что $A \to_{\beta} B$, если \exists такие $X_1 \dots X_n$, что $A =_{\alpha} X_1 \to_{\beta} X_2 \to_{\beta} \dots \to_{\beta} X_{n-1} \to_{\beta} X_n =_{\alpha} B$.

 $(\twoheadrightarrow_{\beta})$ — рефлексивное и транзитивное замыкание $(\twoheadrightarrow_{\beta})$. $(\twoheadrightarrow_{\beta})$ не обязательно приводит к нормальной форме

Пример. $\Omega \twoheadrightarrow_{\beta} \Omega$

2.4 Ромбовидное свойство

Определение 2.7 (Ромбовидное свойство). Отношение R обладает ромбовидным свойством, если $\forall a, b, c$, таких, что aRb, aRc, $b \neq c$, $\exists d$, что bRd и cRd.

Пример. (\leq) на множестве натуральных чисел обладает ромбовидным свойством, (>) на множестве натуральных чисел не обладает ромбовидным свойством.

2.5 Теорема Чёрча-Россера, следствие о единственности нормальной формы

Теорема 2.4 (Черча-Россера). $(\twoheadrightarrow_{\beta})$ обладает ромбовидным свойством.

Следствие 2.1. Если у A есть нормальная форма, то она единственная с точностью до $(=_{\alpha})$ (переименования переменных).

Доказательство. Пусть $A \twoheadrightarrow_{\beta} B$ и $A \twoheadrightarrow_{\beta} C$. B, C — нормальные формы и $B \neq_{\alpha} C$. Тогда по теореме Черча-Россера $\exists D \colon B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Тогда $B =_{\alpha} D$ и $C =_{\alpha} D \Rightarrow B =_{\alpha} C$. Противоречие.

Лемма 2.5. Если B — нормальная форма, то не существует Q такой, что $B \to_{\beta} Q$. Значит если $B \to_{\beta} Q$, то количество шагов редукции равно 0.

Лемма 2.6. Если R — обладает ромбовидным свойством, то и R^* (транзитивное, рефлексивное замыкание R) им обладает.

Доказательство. Пусть $M_1R^*M_n$ и M_1RN_1 . Тогда существуют такие $M_2\dots M_{n-1}$, что $M_1RM_2\dots M_{n-1}RM_n$. Так как R обладает ромбовидным свойством, M_1RM_2 и M_1RN_1 , то существует такое N_2 , что N_1RN_2 и M_2RN_2 . Аналогично, существуют такие $N_3\dots N_n$, что $N_{i-1}RN_i$ и M_iRN_i . Мы получили такое N_n , что $N_1R^*N_n$ и $M_nR^*N_n$.

Пусть теперь $M_{1,1}R^*M_{1,n}$ и $M_{1,1}R^*M_{m,1}$, то есть имеются $M_{1,2}\dots M_{1,n-1}$ и $M_{2,1}\dots M_{m-1,1}$, что $M_{1,i-1}RM_{1,i}$ и $M_{i-1,1}RM_{i,1}$. Тогда существует такое $M_{2,n}$, что $M_{2,1}R^*M_{2,n}$ и $M_{1,n}R^*M_{2,n}$. Аналогично, существуют такие $M_{3,n}\dots M_{m,n}$, что $M_{i,1}R^*M_{i,n}$ и $M_{1,n}R^*M_{i,n}$. Тогда $M_{1,n}R^*M_{m,n}$ и $M_{m,1}R^*M_{m,n}$.

Лемма 2.7 (Грустная лемма). (\rightarrow_{β}) не обладает ромбовидным свойством.

Доказательство. Пусть $A = (\lambda x. xx)(\mathcal{I}\mathcal{I})$. Покажем, что в таком случае не будет выполняться ромбовидное свойство:

Рис. 1: Нет такого D, что $B \to_{\beta} D$ и $C \to_{\beta} D$.

Определение 2.8 (Параллельная β -редукция). $A \rightrightarrows_{\beta} B$, если

- 1. $A =_{\alpha} B$
- 2. $A \equiv P_1Q_1$, $B \equiv P_2Q_2$ if $P_1 \rightrightarrows_{\beta} P_2$, $Q_1 \rightrightarrows_{\beta} Q_2$
- 3. $A \equiv \lambda x.P_1$, $B \equiv \lambda x.P_2$ и $P_1 \rightrightarrows_{\beta} P_2$
- 4. $A =_{\alpha} (\lambda x. P_1)Q_1$, $B =_{\alpha} P_2[x \coloneqq Q_2]$ причем Q_2 свободна для подстановки вместо x в P_2 и $P_1 \rightrightarrows_{\beta} P_2$, $Q_1 \rightrightarrows_{\beta} Q_2$

Лемма 2.8. Если $P_1 \rightrightarrows_{\beta} P_2$ и $Q_1 \rightrightarrows_{\beta} Q_2$, то $P_1[x := Q_1] \rightrightarrows_{\beta} P_2[x := Q_2]$

Доказательство. Будем доказывать индукцией по определению ⇒_в. Рассмотрим случаи:

- Пусть $P_1 =_{\alpha} P_2$. Тогда лемма легко доказывается индукцией по структуре выражения.
- Пусть $P_1 \equiv A_1B_1$, $P_2 \equiv A_2B_2$. По определению $(\rightrightarrows_{\beta})$ $A_1 \rightrightarrows_{\beta} A_2$ и $B_1 \rightrightarrows_{\beta} B_2$. Рассмотрим два случая:
 - 1. $x \in FV(A_1)$. По индукционному предположению $A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2]$. Тогда $A_1[x := Q_1]B_1 \rightrightarrows_{\beta} A_2[x := Q_2]B_2$. Тогда $A_1B_1[x := Q_1] \rightrightarrows_{\beta} A_2B_2[x := Q_2]$.
 - 2. $x \in FV(B_1)$. По индукционному предположению $B_1[x := Q_1] \rightrightarrows_{\beta} B_2[x := Q_2]$. Тогда $A_1B_1[x := Q_1] \rightrightarrows_{\beta} A_2B_2[x := Q_2]$.
- Пусть $P_1 \equiv \lambda y. A_1$, $P_2 \equiv \lambda y. A_2$. по определению (\Rightarrow_{β}) $A_1 \Rightarrow_{\beta} A_2$. Тогда по индукционному предположению $A_1[x \coloneqq Q_1] \Rightarrow_{\beta} A_2[x \coloneqq Q_2]$. Тогда $\lambda y. (A_1[x \coloneqq Q_1]) \Rightarrow_{\beta} \lambda y. (A_2[x \coloneqq Q_2])$ по определению (\Rightarrow_{β}) . Следовательно $\lambda y. A_1[x \coloneqq Q_1] \Rightarrow_{\beta} \lambda y. A_2[x \coloneqq Q_2]$ по определению подстановки.
- Пусть $P_1 =_{\alpha} (\lambda y.A_1)B_1$, $P_2 =_{\alpha} A_2[y := B_2]$ и $A_1 \rightrightarrows_{\beta} A_2$, $B_1 \rightrightarrows_{\beta} B_2$. По индукционному предположению получаем, что $A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2]$, $B_1[x := Q_1] \rightrightarrows_{\beta} B_2[x := Q_2]$. Следовательно по определению $(\rightrightarrows_{\beta})$ получаем, что $(\lambda y.A_1[x := Q_1])B_1[x := Q_1] \rightrightarrows_{\beta} A_2[y := B_2][x := Q_2]$

Лемма 2.9. $(\rightrightarrows_{\beta})$ обладает ромбовидным свойством.

 \mathcal{A} оказательство. Будем доказывать индукцией по определению $(\rightrightarrows_{\beta})$. Покажем, что если $M \rightrightarrows_{\beta} M_1$ и $M \rightrightarrows_{\beta} M_2$, то существует M_3 , что $M_1 \rightrightarrows_{\beta} M_3$ и $M_2 \rightrightarrows_{\beta} M_3$. Рассмотрим случаи:

- Если $M \equiv M_1$, то просто возьмем $M_3 \equiv M_2$.
- Если $M \equiv \lambda x.P$, $M_1 \equiv \lambda x.P_1$, $M_2 \equiv \lambda x.P_2$ и $P \rightrightarrows_{\beta} P_1$, $P \rightrightarrows_{\beta} P_2$, то по предположению индукции существует P_3 , что $P_1 \rightrightarrows_{\beta} P_3$, $P_2 \rightrightarrows_{\beta} P_3$, тогда возьмем $M_3 \equiv \lambda x.P_3$.
- Если $M \equiv PQ, M_1 \equiv P_1Q_1$ и по определению $(\rightrightarrows_{\beta}) P \rightrightarrows_{\beta} P_1, Q \rightrightarrows_{\beta} Q_1$, то рассмотрим два случая:
 - 1. $M_2 \equiv P_2 Q_2$. Тогда по предположению индукции существует P_3 , что $P_1 \rightrightarrows_{\beta} P_3, P_2 \rightrightarrows_{\beta} P_3$. Аналогично для Q. Тогда возьмем $M_3 \equiv P_3 Q_3$.
 - 2. $P \equiv \lambda x. P'$ значит $P_1 \equiv \lambda x. P_1'$ и $P' \rightrightarrows_{\beta} P_1'$. Пусть тогда $M_2 \equiv P_2[x := Q_2]$, по определению $(\rightrightarrows_{\beta}) P' \rightrightarrows_{\beta} P_2, Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 2.8 существует $M_3 \equiv P_3[x := Q_3]$ такой, что $P_1' \rightrightarrows_{\beta} P_3, \ Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3, \ Q_2 \rightrightarrows_{\beta} Q_3$.

- Если $M \equiv (\lambda x.P)Q, M_1 \equiv P_1[x := Q_1]$ и $P \rightrightarrows_{\beta} P_1, Q \rightrightarrows_{\beta} Q_1$, то рассмотрим случаи:
 - 1. $M_2 \equiv (\lambda x. P_2)Q_2$, $P \rightrightarrows_{\beta} P_2$, $Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 2.8 существует такой $M_3 \equiv P_3[x := Q_3]$, что $P_1 \rightrightarrows_{\beta} P_3$, $Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3$, $Q_2 \rightrightarrows_{\beta} Q_3$.
 - 2. $M_2 \equiv P_2[x \coloneqq Q_2], \ P \rightrightarrows_{\beta} P_2, \ Q \rightrightarrows_{\beta} Q_2$. Тогда по предположению индукции и лемме 2.8 существует такой $M_3 \equiv P_3[x \coloneqq Q_3],$ что $P_1 \rightrightarrows_{\beta} P_3, \ Q_1 \rightrightarrows_{\beta} Q_3$ и $P_2 \rightrightarrows_{\beta} P_3, \ Q_2 \rightrightarrows_{\beta} Q_3$.

Лемма 2.10.

1.
$$(\rightrightarrows_{\beta})^* \subseteq (\rightarrow_{\beta})^*$$

$$2. (\rightarrow_{\beta})^* \subseteq (\rightrightarrows_{\beta})^*$$

Следствие 2.2. $(\rightarrow_{\beta})^* = (\rightrightarrows_{\beta})^*$

Из приведенных выше лемм и следствия докажем теорему Черча-Россера.

Доказательство. $(\rightarrow_{\beta})^* = (\rightarrow_{\beta})$. Тогда $(\rightarrow_{\beta}) = (\rightrightarrows_{\beta})^*$. Значит из того, что $(\rightrightarrows_{\beta})$ обладает ромбовидным свойством и леммы 2.6 следует, что (\rightarrow_{β}) обладает ромбовидным свойством.

2.6 Нормальный и аппликативный порядок вычислений

Пример. Выражение $KI\Omega$ можно редуцировать двумя способами:

1.
$$\mathcal{K} \mathcal{I} \Omega =_{\alpha} ((\lambda a. \lambda b. a) \mathcal{I}) \Omega \rightarrow_{\beta} (\lambda b. \mathcal{I}) \Omega \rightarrow_{\beta} \mathcal{I}$$

2.
$$\mathcal{K}\mathcal{I}\Omega =_{\alpha} ((\lambda a.\lambda b.a)I)((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} ((\lambda a.\lambda b.a)I)((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} \mathcal{K}\mathcal{I}\Omega$$

Как мы видим, в первом случае мы достигли нормальной формы, в то время как во втором мы получаем бесконечную редукцию. Разница двух этих способов в порядке редукции. Первый называется нормальный порядок, а второй аппликативный.

Определение 2.9 (нормальный порядок редукции). Редукция самого левого β -редекса.

Определение 2.10 (аппликативный порядок редукции). Редукция самого левого β -редекса из самых вложенных.

Теорема 2.11 (Приводится без доказательства). Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

Нормальный порядок хоть и приводит к нормальной форме ,если она существует, но бывает ситуации в которых аппликативный порядок вычисляется быстрее чем нормальный

Пример. Рассмотрим λ -выражение ($\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}$). Попробуем редуцировать его нормальным порядком:

$$(\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}) \to_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} \dots \to_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} \dots \to_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} \dots \to_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{$$

Как мы увидим, в данной ситуации аппликативный порядок редукции оказывается значительно эффективней:

$$(\lambda x.x \ x \ x)(\mathcal{I}\mathcal{I}) \to_{\beta} (\lambda x.x \ x \ x)\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}$$

3 Лекция 3

3.1 Ү-комбинатор

Определение 3.1. Комбинатором называется λ -выражение, не имеющее свободных переменных

Определение 3.2. (Y-комбинатор)

$$Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

Очевидно, У-комбинатор является комбинатором.

Tеорема 3.1. $Yf =_{\beta} f(Yf)$

Доказательство. β -редуцируем выражение Yf

$$=_{\beta} (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))f$$

$$=_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

$$=_{\beta} f((\lambda x.f(xx))(\lambda x.f(xx)))$$

$$=_{\beta} f(Yf)$$

Так как при второй редукции мы получили, что $Yf =_{\beta} (\lambda x. f(xx))(\lambda x. f(xx))$

Следствием этого утверждения является теорема о неподвижной точки для бестипового λ -исчисления

Теорема 3.2. В λ -исчислении каждый терм f имеет неподвижную точку, то есть такое p, что f $p =_{\beta} p$

Доказательство. Возьмём в качестве p терм Yf. По предыдущей теореме, $f(Yf) =_{\beta} Yf$, то есть Yf является неподвижной точкой для f. Для любого терма f существует терм Yf, значит, у любого терма есть неподвижная точка.

3.2 Рекурсия

С помощью Y-комбинатора можо определять рекурсивные функции, например, функцию, вычисляющую факториал Чёрчевского нумерала. Для этого определим вспомогательную функцию

```
fact' \equiv \lambda f.\lambda n.isZero\ n\ \overline{1}(mul\ n\ f((-1)n)) Тогда fact \equiv Yfact'
```

Заметим, что $fact \ \overline{n} =_{\beta} fact' \ (Y \ fact') \ \overline{n} =_{\beta} fact' \ fact \ \overline{n}$, то есть в тело функции fact' вместо функции f будет подставлена fact (заметим, что это значит, что именно функция fact будет применена к $\overline{n-1}$, то есть это соответствует нашим представлениям о рекурсии).

Для понимания того, как это работает, посчитаем fact $\overline{2}$

$$fact \ \overline{2}$$

$$=_{\beta} Y \ fact' \ \overline{2}$$

$$=_{\beta} fact'(Y \ fact') \overline{2}$$

$$=_{\beta} (\lambda f. \lambda n. is Zero \ \overline{1}(mul \ n \ f((-1)n))(Y \ fact') \overline{2}$$

$$=_{\beta} is Zero \ \overline{2} \ \overline{1}(mul \ \overline{2} \ ((Y \ fact')((-1)\overline{2})))$$

$$=_{\beta} mul \ \overline{2} \ ((Y \ fact')((-1)\overline{2}))$$

$$=_{\beta} mul \ \overline{2} \ (Y \ fact' \ \overline{1})$$

$$=_{\beta} mul \ \overline{2} \ (fact' \ (Y \ fact' \ \overline{1}))$$

Раскрывая fact' $(Y \ fact' \ \overline{1})$ так же, как мы раскрывали fact' $(Y \ fact' \ \overline{2})$, получаем

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0}))$$

Посчитаем $(Y fact' \overline{0})$

$$(Y \ fact' \ \overline{0})$$

$$=_{\beta} fact' \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} (\lambda f. \lambda n. is Zero \ n \ \overline{1}(mul \ n \ f((-1)n))) \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} is Zero \ \overline{0} \ \overline{1}(mul \ \overline{0} \ ((Y \ fact'))((-1)\overline{0})) =_{\beta} \overline{1}$$

Таким образом,

$$fact \ \overline{2}$$

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0}))$$

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ \overline{1}) =_{\beta} mul \ \overline{2} \ \overline{1} =_{\beta} \overline{2}$$

3.3 Парадокс Карри

Попробуем построить логику на основе λ -исчисления. Введём логический символ \rightarrow . Будем требовать от этого исчисления наличия следующих схем аксиом:

$$1. \vdash A \rightarrow A$$

$$2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

3.
$$\vdash A =_{\beta} B$$
, тогда $A \to B$

А так же правила вывода МР:

$$\frac{\vdash A \to B, \vdash A}{\vdash B}$$

Не вводя дополнительные правила вывода и схемы аксиом, покажем, что данная логика является противоречивой. Для чего введём следующие условные обозначения:

$$F_{\alpha} \equiv \lambda x.(x \ x) \to \alpha$$

$$\Phi_{\alpha} \equiv F_{\alpha} \ F_{\alpha} \equiv (\lambda x.(x \ x) \to \alpha) \ (\lambda x.(x \ x) \to \alpha)$$

Редуцируя Φ_{α} , получаем

$$\Phi_{\alpha}$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha)$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha) \to \alpha$$

$$=_{\beta} \Phi_{\alpha} \to \alpha$$

Теперь докажем противоречивость введённой логики. Для этого докажем, что в ней выводимо любое утверждение.

$$\begin{array}{lll} 1) \vdash \Phi_{\alpha} \to \Phi_{\alpha} \to \alpha & \operatorname{Tak \ kak \ } \Phi_{\alpha} =_{\beta} \Phi_{\alpha} \to \alpha \\ 2) \vdash (\Phi_{\alpha} \to \Phi_{\alpha} \to \alpha) \to (\Phi_{\alpha} \to \alpha) & \operatorname{Tak \ kak \ } \vdash (A \to (A \to B)) \to (A \to B) \\ 3) \vdash \Phi_{\alpha} \to \alpha & \operatorname{MP} \ 2, \ 3 \\ 4) \vdash (\Phi_{\alpha} \to \alpha) \to \Phi_{\alpha} & \operatorname{Tak \ kak \ } \vdash \Phi_{\alpha} \to \alpha =_{\beta} \Phi_{\alpha} \\ 5) \vdash \Phi_{\alpha} & \operatorname{MP} \ 3, \ 4 \\ 6) \vdash \alpha & \operatorname{MP} \ 3, \ 5 \end{array}$$

Таким образом, введённая логика оказывается противоречивой.

3.4 Импликационный фрагмент интуиционистского исчисления высказываний

Рассмотрим подмножество ИИВ, со следующей грамматикой:

$$\Phi ::= x \mid \Phi \to \Phi \mid (\Phi)$$

То есть состоящее только из переменных и импликаций.

Добавим в него одну схему аксиом

$$\Gamma, \varphi \vdash \varphi$$

И два правила вывода

1. Правило введения импликации:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

2. Правило удаления импликации:

$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Пример. Докажем $\vdash \varphi \rightarrow \psi \rightarrow \varphi$

$$\frac{\varphi,\psi \vdash \varphi}{\varphi \vdash \psi \to \varphi} \text{ (Введение импликации)} \\ \frac{\varphi,\psi \vdash \varphi}{\vdash \varphi \to (\psi \to \varphi)} \text{ (Введение импликации)}$$

Пример. Докажем $\alpha \to \beta \to \gamma$, α , $\beta \vdash \gamma$

$$\frac{\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \alpha \to \beta \to \gamma \qquad \alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \alpha}{\alpha \to \beta \to \gamma, \ \alpha, \ \beta \vdash \beta \to \gamma} \qquad \qquad \alpha \to \beta \to \gamma, \alpha, \ \beta \vdash \beta \to \gamma \qquad \qquad \alpha \to \beta \to \gamma, \alpha, \ \beta \vdash \beta$$

3.5 Просто типизированное по Карри λ -исчисление

Определение 3.3. Тип в просто типизированном λ -исчислении по Карри это либо маленькая греческая буква $(\alpha, \phi, \theta, \ldots)$, либо импликация $(\theta_1 \to \theta_2)$

Таким образом, $\Theta ::= \theta_i | \Theta \to \Theta | (\Theta)$

Импликация при этом считается правоассоциативной операцией.

Определение 3.4. Язык просто типизированного λ -исчисления это язык бестипового λ -исчисления.

Определение 3.5. Контекст Γ это список выражений вида $A:\theta$, где A - λ -терм, а θ - тип.

Определение 3.6. Просто типизированное λ -исчисление по Карри.

Рассмотрим исчисление с единственной схемой аксиом:

$$\Gamma, x : \theta \vdash x : \theta$$
, если x не входит в Γ

И следующими правилами вывода

1. Правило типизации абстракции

$$\frac{\Gamma,x:\varphi \vdash P:\psi}{\Gamma \vdash (\lambda\;x.\;P):\varphi \to \psi} \text{ если } x \text{ не входит в } \Gamma$$

2. Правило типизации аппликации:

$$\frac{\Gamma \vdash P : \varphi \to \psi \qquad \Gamma \vdash Q : \varphi}{\Gamma \vdash PQ : \psi}$$

Если λ -выражение типизируется с использованием этих двух правил и одной схемы аксиом, то будем говорить, что оно типизируется по Карри.

Пример. Докажем $\vdash \lambda x. \lambda y. x: \alpha \rightarrow \beta \rightarrow \alpha$

$$\frac{x:\alpha,y:\beta\vdash x:\alpha}{x:\alpha\vdash\lambda\;y.\;x:\beta\to\alpha}\;\text{(Правило типизации абстракции)}\\ \vdash\lambda\;x.\;\lambda\;y.\;x:\alpha\to\beta\to\alpha\;\;\text{(Правило типизации абстракции)}$$

Пример. Докажем $\vdash \lambda \ x. \ \lambda \ y. \ x \ y: (\alpha \to \beta) \to \alpha \to \beta$

$$\frac{x:\alpha \to \beta, y:\alpha \vdash x:\alpha \to \beta \qquad x:\alpha \to \beta, y:\alpha \vdash y:\alpha}{x:\alpha \to \beta, y:\alpha \vdash x:\alpha \to \beta}$$

$$\frac{x:\alpha \to \beta, y:\alpha \vdash x:\alpha \to \beta}{x:\alpha \to \beta \vdash \lambda y. x:\alpha \to \beta}$$

$$\vdash \lambda x. \lambda y. x: x:\alpha \to \beta \to \alpha \to \beta$$

3.6 Отсутствие типа у Ү-комбинатора

Теорема 3.3. Y-комбинатор не типизируется в просто типизированном по Карри λ -исчислении.

Неформальное доказательство $Y f =_{\beta} f (Y f)$, поэтому Y f и f (Y f) должны иметь одинаковые типы.

Пусть $Y f : \alpha$

Тогда $Y:\beta \to \alpha, f:\beta$

Из $f(Y f): \alpha$ получаем $f: a \to \alpha$ (так как $Y f: \alpha$)

Тогда $\beta = \alpha \to \alpha$, из этого получаем $Y : (\alpha \to \alpha) \to \alpha$

Можно доказать, что $\lambda x. x: \alpha \to \alpha$. Тогда $Y \lambda x. x: \alpha$, то есть любой тип является обитаемым. Так как это невозможно, Y-комбинатор не может иметь типа, так как тогда он сделает нашу логику противоречивой.

Формальное доказательство Докажем от противного. Пусть Y-комбинатор типизируем. Тогда в выводе его типа есть вывод типа выражения x x. Так как x x - абстракция, то и типизирована она может быть только по правилу абстракции. Значит, в выводе типа Y-комбинатора есть такой вывод:

$$\frac{\Gamma \vdash x : \varphi \to \psi \qquad \Gamma \vdash x : \varphi}{\Gamma \vdash xx : \psi}$$

Рассмотрим типизацию $\Gamma \vdash x : \varphi \to \psi$ и $\Gamma \vdash x : \varphi$. x это атомарная переменная, значит, она могла быть типизирована только по единственной схеме аксиом.

Следовательно, x типизируется следующим образом.

$$\frac{\Gamma', x:\varphi \to \psi, x:\varphi \vdash x:\varphi \to \psi \qquad \Gamma', x:\varphi \to \psi, x:\varphi \vdash x:\varphi}{\Gamma', x:\varphi \to \psi, x:\varphi \vdash xx:\psi}$$

Следовательно, в контексте Γ переменная x встречается два раза, что невозможно по схеме аксиом.

3.7 Изоморфизм Карри-Ховарда

Заметим, что аксиомы и правила вывода импликационного фрагмента ИИВ и просто типизированного по Карри λ -исчисления точно соответствуют друг другу.

Просто типизированное λ-исчисление	Импликативный фрагмент ИИВ
$\Gamma, x: \theta \vdash x: \theta$	$\Gamma, \varphi \vdash \varphi$
$\frac{\Gamma, x : \varphi \vdash P : \psi}{\Gamma \vdash (\lambda \ x. \ P) : \varphi \to \psi}$	$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$
$\begin{array}{ c c c }\hline \Gamma \vdash P : \varphi \to \psi & \Gamma \vdash Q : \varphi \\\hline \Gamma \vdash PQ : \psi & \\\hline \end{array}$	$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$

Установим соответствие и между прочими сущностями ИИВ и просто типизированного по Карри λ -исчисления.

Просто типизированное λ-исчисление	Импликативный фрагмент ИИВ
Тип	Высказывание
Терм	Доказательство высказывания
Проверка того, что терм имеет заданный	Проверка доказательства на корректность
тип	
Обитаемый тип	Доказуемое высказывание
Проверка того, что существует терм, име-	Проверка того, что заданное высказыва-
ющий заданный тип	ние имеет доказательство

4 Лекция 4

4.1 Расширение просто типизированного λ -исчисления до изоморфного ИИВ

Заметим, что между просто типизированным по Карри λ -исчислением и имликационным фрагментом ИИВ существует изоморфизм, но при этом в просто типизированном λ -исчислении нет аналогов лжи, а также связок \vee и &.

Для установления полного изоморфизма между ИИВ и просто типизированным λ исчислением введём три необходимые для установления этого изоморфизма сущности:

- 1. Тип "Ложь"(⊥)
- 2. Тип упорядоченной пары A&B, соответсвующий логическому "И"
- 3. Алгебраический тип A|B, соттветсвующий логическому "ИЛИ"

Тип \bot Введём тип \bot , соттветствующий лжи в ИИВ. Поскольку из лжи может следовать что угодно, добавим в исчисление новое правило вывода

$$\frac{\Gamma \vdash A : \bot}{\Gamma \vdash A : \tau}$$

То есть выражение, типизированное как \perp , может быть типизированно так же любым другим типом.

В программировании аналогом этого типа может являться тип Nothing, который является подтипом любого другого типа.

Tun Nothing является необитаемым, им типизируется выражение, никогда не возвращающее свой результат (например, throw new Error() : Nothing).

Тот факт, что выражение, типизированное как Nothing, может быть типизировано любым другим типом, позволяет писать следующие функции:

```
def assertStringNotEmpty(s: String): String = {
  if (s.length != 0) {
    s
  } else {
    throw new Error("Empty string")
  }
}
```

так как throw new Error("Empty string"): Nothing, то

throw new Error("Empty string"): String, поэтому функция может иметь тип String.

Теперь, имея тип \bot , можно ввести связку "Отрицание". Обозначим $\neg A = A \to \bot$, то есть в программировании это будет соответствовать функции

```
def throwError(a: A): Nothing = throw new Error()
```

Упорядоченные пары Введём возможность запаковывать значения в пары. Функция makePair будет выглядеть следующим образом:

```
makePair \equiv \lambda \ first. \ \lambda \ second. \ \lambda \ f. \ f \ first \ second
```

Тогда

$$< first, second > \equiv makePair\ first\ second$$

Надо также написать функции, которые будут доставать из пары упакованные в неё значения. Назовём их Π_1 и Π_2 .

Пусть

$$\Pi_1 \equiv \lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)$$

$$\Pi_2 \equiv \lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ b)$$

Заметим, что

$$\Pi_{1} < A, B >$$

$$=_{\beta} (\lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)) (makePair \ A \ B)$$

$$=_{\beta} (\lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)) ((\lambda \ first. \ \lambda \ second. \ \lambda \ f. \ f \ first \ second) \ A \ B)$$

$$=_{\beta} (\lambda \ Pair. \ Pair \ (\lambda \ a.\lambda \ b. \ a)) (\lambda \ f. \ f \ A \ B)$$

$$=_{\beta} (\lambda \ f. \ f \ A \ B) \ (\lambda \ a.\lambda \ b. \ a) \ A \ B$$

$$=_{\beta} (\lambda \ b. \ A) \ B$$

Аналогично, $\Pi_2 < A, B > =_{\beta} B$

Таким образом, мы умеем запаковывать элементы в пары и доставать элементы из пар. Теперь, добавим к просто типизированному λ -исчислению правила вывода, позволяющие типизировать такие конструкции.

Добавим три новых правила вывода:

1. Правило типизации пары

$$\frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \psi}{\Gamma \vdash < A, B > : \varphi \& \psi}$$

2. Правило типизации первого проектора:

$$\frac{\Gamma \vdash < A, B >: \varphi \& \psi}{\Gamma \vdash \Pi_1 < A, B >: \varphi}$$

3. Правило типизации второго проектора:

$$\frac{\Gamma \vdash < A, B >: \varphi \& \psi}{\Gamma \vdash \Pi_2 < A, B >: \psi}$$

Алгебраические типы Добавим тип, который является аналогом union в C++, или алгебраического типа в любом функциональном языке. Это тип, который может содержать одну из двух альтернатив.

Haпример, тип OptionInt = None | Some of Int может содержать либо None, либо Some of Int, но не обе альтернативы разом, причём в каждый момент времени известно, какую альтернативу он содержит.

Заметим, что определение алгебраического типа похоже на определение дизъюнкции в ИИВ (в ИИВ если выполнено $\vdash a \lor b$, известно, что из $\vdash a$ и $\vdash b$ выполнено).

Для реализации алгебраических типов в λ -исчислении напишем три функции:

- 1. in_1 , создающее экземпляр алгебраического типа из первой альтернативы, то есть запаковывающее первую альтернативу в алгебраический тип
- $2. in_2$, выполняющее аналогичные действия, но со второй альтернативой.
- 3. case, принимающую три параметра: экземпляр алгебраического типа, функцию, определяющую, что делать, если этот экземпляр был создан из первой альтернативы (то есть с использованием in_1), и функцию, определяющую, что делать, если этот экземпляр был создан из второй альтернативы (то есть с использованием in_2)

Аналогом *case* в программировании является конструкция, известная как pattern-matching, или сопоставление с образцом.

Функция in_1 будет выглядеть следующим образом:

$$in_1 \equiv \lambda x. \lambda f. \lambda q. f x$$

 $A in_2$ - следующим:

$$in_2 \equiv \lambda x. \lambda f. \lambda g. g. x$$

То есть in_1 принимает две функции, и применяет первую к x, а in_2 применяет вторую. Тогда case будет выглядеть следующим образом:

$$case \equiv \lambda \ algebraic. \ \lambda \ f. \ \lambda \ g. \ algebraic \ f \ g$$

Заметим, что

```
case (in_{1}A) F G
=_{\beta} (\lambda \ algebraic. \lambda \ f. \lambda \ g. \ algebraic \ f \ g) ((\lambda \ x. \lambda \ h. \lambda \ s. \ h \ x)A) F G
=_{\beta} (\lambda \ algebraic. \lambda \ f. \lambda \ g. \ algebraic \ f \ g) (\lambda \ h. \lambda \ s. \ h \ A) F G
=_{\beta} (\lambda \ f. \lambda \ g. (\lambda \ h. \lambda \ s. \ h \ A) \ f \ g) F G
=_{\beta} (\lambda \ g. (\lambda \ h. \lambda \ s. \ h \ A) F g) G
=_{\beta} (\lambda \ h. \lambda \ s. \ h \ A) F G
=_{\beta} (\lambda \ s. \ F \ A) G
=_{\beta} F A
```

Аналогично, case (in_2B) F $G =_{\beta} G$ B.

То есть case, in_1 и in_2 умеют применять нужную функцию к запакованной в экземпляр алгебраического типа одной из альтернатив.

Теперь добавим к просто типизированному λ -исчислению правила вывода, позволяющие типизировать эти конструкции.

Добавим три новых правила вывода:

1. Правило типизации левой инъекции

$$\frac{\Gamma \vdash A : \varphi}{\Gamma \vdash in_1 \ A : \varphi \lor \psi}$$

2. Правило типизации правой инъекции:

$$\frac{\Gamma \vdash B : \psi}{\Gamma \vdash in_2 \ B : \varphi \lor \psi}$$

3. Правило типизации case:

$$\frac{\Gamma \vdash L : \varphi \lor \psi, \quad \Gamma \vdash f : \varphi \to \tau, \quad \Gamma \vdash g : \psi \to \tau}{case \; L \; f \; g : \tau}$$

4.2 Изоморфизм Карри-Ховарда для расширения просто типизированного λ -исчисления

Заметим точное соответствие только что введённых конструкций аксиомам ИИВ.

Расширенное просто типизированное	ИИВ
λ-исчисление	
$\Gamma \vdash A : \varphi \qquad \Gamma \vdash B : \psi$	
$\Gamma \vdash : \varphi \& \psi$	$\vdash \varphi \to \psi \to \varphi \& \psi$
$\Gamma \vdash < A, B >: \varphi \& \psi$	
$\Gamma \vdash \Pi_1 < A, B >: \varphi$	$\vdash \varphi \& \psi \to \varphi$
$\Gamma \vdash : \varphi \& \psi$	
$\Gamma \vdash \Pi_2 < A, B >: \psi$	$\vdash \varphi \& \psi \to \psi$
D . 4	
$\Gamma \vdash A : \varphi$	
$\Gamma \vdash in_1 \ A : \varphi \lor \psi$	$\vdash \varphi \to \varphi \lor \psi$
$\Gamma + D \cdot d$	
$\frac{\Gamma \vdash B : \psi}{\Gamma \vdash \varphi \vdash \varphi}$	
$\Gamma \vdash in_2 \ B : \varphi \lor \psi$	$\vdash \psi \to \varphi \lor \psi$
$\Gamma \vdash L : \varphi \lor \psi, \ \Gamma \vdash f : \varphi \to \tau, \ \Gamma \vdash g : \psi \to \tau$	
	$\vdash (\varphi \to \tau) \to (\psi \to \tau) \to (\varphi \lor \psi) \to \tau$

4.3 Просто типизированное по Чёрчу λ -исчисление

Определение 4.1. Тип в просто типизированном по Чёрчу λ -исчислении это то же самое, что тип в просто типизированном по Карри λ -исчислении

Определение 4.2. Язык просто типизированного по Чёрчу λ -исчисления удовлетворяет следующей грамматике

$$\Lambda_{\mathbf{q}} ::= x \mid \Lambda_{\mathbf{q}} \Lambda_{\mathbf{q}} \mid \lambda \ x^{\tau}. \ \Lambda_{\mathbf{q}} \mid (\Lambda_{\mathbf{q}})$$

Замечание 4.1. Иногда абстракция записывается не как λ x^{τ} . $\Lambda_{\mathbf{q}}$, а как λ x: τ . $\Lambda_{\mathbf{q}}$

Определение 4.3. Просто типизированное по Чёрчу λ -исчисление.

Рассмотрим исчисление с единственной схемой аксиом:

$$\Gamma, x : \theta \vdash x : \theta$$
, если x не входит в Γ

И следующими правилами вывода

1. Правило типизации абстракции

$$\frac{\Gamma,x:\varphi \vdash P:\psi}{\Gamma \vdash (\lambda\;x:\varphi.\;P):\varphi \to \psi} \text{ если } x \text{ не входит в } \Gamma$$

2. Правило типизации аппликации:

$$\frac{\Gamma \vdash P : \varphi \to \psi \qquad \Gamma \vdash Q : \varphi}{\Gamma \vdash PQ : \psi}$$

Если λ -выражение типизируется с использованием этих двух правил и одной схемы аксиом, то будем говорить, что оно типизируется по Чёрчу.

В исчислении по Чёрчу остаются верными все предыдущие теоремы (в том числе теорема Чёрча-Россера), но правило строгой типизации абстракций позволяет доказать ещё одну теорему:

Теорема 4.1 (Уникальность типов в исчислении по Чёрчу).

- 1. Если $\Gamma \vdash_{\P} M : \theta$ и $\Gamma \vdash_{\P} M : \tau$, то $\theta = \tau$
- 2. Если $\Gamma \vdash_{\P} M : \theta$ и $\Gamma \vdash_{\P} N : \tau$,и $M =_{\beta} N$ то $\theta = \tau$

4.4 Связь типизации по Чёрчу и по Карри

Определение 4.4 (Стирание). Функцией стирания называется следующая функция:

$$|\cdot|:\Lambda_{\mathsf{q}}\to\Lambda_{\mathsf{K}}$$
:

$$|A| = \begin{cases} x & A \equiv x \\ |M| |N| & A \equiv M |N| \\ \lambda x. |P| & A \equiv \lambda |x| : \tau. |P| \end{cases}$$

Лемма 4.2. Пусть $M, N \in \Lambda_{\mathfrak{q}}, M \to_{\beta} N$, тогда $|M| \to_{\beta} |N|$

Лемма 4.3. Если $\Gamma \vdash_{\mathbf{q}} M : \tau$, тогда $\Gamma' \vdash_{\mathbf{k}} |M| : \tau$, где Γ' получается из Γ применением функции стирания к каждому терму из Γ

Теорема 4.4 (Теорема о поднятии).

- 1. Пусть $M,N\in\Lambda_{\mbox{\tiny K}},P\in\Lambda_{\mbox{\tiny Y}},|P|=M,M\to_{\beta}N.$ Тогда найдётся такое $Q\in\Lambda_{\mbox{\tiny Y}}$, что |Q|=N, и $P\to_{\beta}Q$
- 2. Пусть $M \in \Lambda_{\kappa}, \Gamma \vdash_{\kappa} M : \tau$. Тогда существует $P \in \Lambda_{\mathsf{q}},$ что |P| = M, и $\Gamma \vdash_{\mathsf{q}} P : \tau$

5 Лекция 5Изоморфизм Карри-Ховарда (завершение),Унификация

5.1 Изоморфизм Карри-Ховарда

Определение 5.1. Изоморфизм Карри-Ховарда

- 1. $\Gamma \vdash M : \sigma$ влечет $|\Gamma| \vdash \sigma$ т.е. $|\{x_1 : \Theta_1 \ldots x_n : \Theta_n\}| = \{\Theta_1 \ldots \Theta_n\}$
- 2. Если $\Gamma \vdash \sigma$, то существует M и существует Δ , такое что $|\Delta| = \Gamma$, что $\Delta \vdash M : \sigma$, где $\Delta = \{x_\sigma : \sigma \mid \sigma \in \Gamma\}$

Пример. $\{f: \alpha \to \beta, x: \beta\} \vdash fx: \beta$ Применив изоморфизм Карри-Ховарда получим: $\{\alpha \to \beta, \beta\} \vdash \beta$

Доказательство. П.1 доказывается индукцией по длине выражения

- 1. Γ , $x : \Theta \vdash x : \Theta \implies_{KH} |\Gamma|, \Theta \vdash \Theta$
- 2.

$$\frac{\Gamma, \ x: \tau_1 \vdash P: \tau_2}{\Gamma \vdash \lambda x. \ P: \tau_1 \ \rightarrow \ \tau_2} \qquad \Rightarrow_{KH} \qquad \frac{|\Gamma|, \tau_1 \vdash \tau_2}{|\Gamma| \vdash \tau_1 \ \rightarrow \ \tau_2}$$

3.

$$\frac{\Gamma \vdash P : \tau_1 \to \tau_2 \qquad \Gamma \vdash Q : \tau_1}{\Gamma \vdash P \ Q : \tau_2} \qquad \Rightarrow_{KH} \qquad \frac{|\Gamma| \vdash \tau_1 \to \tau_2 \qquad |\Gamma| \vdash \tau_1}{|\Gamma| \vdash \tau_2}$$

П.2 доказывается аналогичным способом но действия обратные.

T.e. отношения между типами в системе типов могут рассматриваться как образ отношений между высказываниями в логической системе, и наоборот.

Определение 5.2. Расширенный полином:

$$E(p, q) = \begin{cases} C, & \text{if } p = q = 0\\ p_1(p), & \text{if } q = 0\\ p_2(q), & \text{if } p = 0\\ p_3(p, q), & \text{if } p, q \neq 0 \end{cases}$$

где C — константа, p_1, p_2, p_3 — выражения, составленные из *, +, p, q и констант.

Пусть $v=(\alpha\to\alpha)\to(\alpha\to\alpha)$, где α -произвольный тип и пусть $F\in\Lambda$, что $F:v\to v\to v$, то существует расширенный полином E, такой что $\forall a,\ b\in\mathbb{N}$ $F(\overline{a},\overline{b})=_{\beta}\overline{E(a,b)}$, где \overline{a} -черчевский нумерал.

Теорема 5.1. У каждого терма в просто типизируемом λ исчислении существует расширенный полином.

Утверждение 5.1. Типы черчевских нумералов

- 1. $0: \lambda f \lambda x. x: a \rightarrow b \rightarrow b$
- 2. $1: \lambda f \lambda x. f x: (a \rightarrow b) \rightarrow a \rightarrow b$
- 3. $2: \lambda f \lambda x. f(f x): (a \rightarrow a) \rightarrow a \rightarrow a$

4.
$$\forall i, i \geq 2$$
 $\lambda f \lambda x. f(\dots(f x)) : (a \rightarrow a) \rightarrow a \rightarrow a$

Доказательство. Пункты 1, 2, 3— очевидно. Рассмотрим более подробно пункт 4: Разберем нумерал и рассмотрим два последних шага—

на шаге 3 становится понятно, что $f:a\to a$ и x:a (\bot в данном контексте означает, что такой терм не типизируем в данном предположении)

Утверждение 5.2. Основные задачи типизации λ -исчисления

- 1. Проверка типа—выполняется ли $\Gamma \vdash M : \sigma$ для контекста Γ , терма M и типа σ (для проверки типа обычно опускают σ и рассматривают п.2).
- 2. Реконструкция типа—можно ли подставить вместо ? и $?_1$ в $?_1 \vdash M$: ? подставить конкретный тип σ в ? и контекст Γ в $?_1$.
- 3. Обитаемость типа—пытается подобрать, такой терм M и контекст Γ , чтобы было выполнено $\Gamma \vdash M : \sigma$.

Определение 5.3. Алгебраический терм

$$\Theta ::= a \mid (f \Theta_1 \ldots \Theta_n)$$

где a-переменная, $(f \Theta_1 \dots \Theta_n)$ -применение функции

5.2 Уравнение в алгебраических термах $\Theta_1 = \Theta_2$ Система уравнений в алгебраических термах

Определение 5.4. Система уравнений в алгебраических термах

$$\left\{egin{aligned} \Theta_1 &= \sigma_1 \ dots \ \Theta_n &= \sigma_n \end{aligned}
ight.$$
где Θ_i и σ_i — термы

Определение 5.5. $\{a_i\} = A$ -множество переменных, $\{\Theta_i\} = T$ -множество термов.

Определение 5.6. Подстановка—отображение вида: $S_0: A \to T$, которое является решением в алгебраических термах.

 $S_0(a)$ может быть либо $S_0(a) = \Theta_i$, либо $S_0(a) = a$.

S то же, что и много if'ов, либо map строк. Доопределим $S:T\to T$, где

1.
$$S(a) = S_0(a)$$

2.
$$S(f(\Theta_1 \dots \Theta_k)) = f(S(\Theta_1) \dots S(\Theta_k))$$

Определение 5.7. Решить уравнение в алгебраических термах—найти такое S, что $S(\Theta_1) = S(\Theta_2)$

Пример.

Заранее обозначим: a, b — переменные f, g, h — функции

- 1. f(a(gb)) = f(he)d имеет решение S(a) = he и S(d) = gb
 - (a) $S(f \ a \ (g \ b)) = f \ (h \ e) \ (g \ b)$
 - (b) S(f(he)d) = f(he)(gb)
 - (c) f(he)(gb) = f(he)(gb)
- 2. fa = gb-решений не имеет

Таким образом, что бы существовало решение необходимо равенство строк полученной подстановки.

5.3 Алгоритм Унификации. Определения

- 1. Система уравнений E_1 эквивалентна E_2 , если они имеют одинаковые решения(унификаторы).
- 2. Любая система E эквивалентна некторому уравнению $\Sigma_1 = \Sigma_2$.

Доказательство. Возьмем функциональный символ f, не использующийся в E,

$$E = \begin{cases} \Theta_1 = \sigma_1 \\ \vdots \\ \Theta_n = \sigma_n \end{cases}$$

это же уравнение можно записать как $-f\Theta_1\ldots\Theta_n=f\sigma_1\ldots\sigma_n$

Если существует подстановка S такая, что

$$S(\Theta_i) = S(\sigma_i) \ \forall i, \text{ To } S(f \Theta_1 \dots \Theta_n) = f S(\sigma_1) \dots S(\sigma_n)$$

Обратное аналогично.

3. Рассмотрим операции

(а) Редукция терма

Заменим уравнение вида-f $\Theta_1 \dots \Theta_n = f$ $\sigma_1 \dots \sigma_n$ на систему уравнений $\Theta_1 = \sigma_1$

:

$$\Theta_n = \sigma_n$$

(b) Устранение переменной

Пусть есть уравнение $x = \Theta$, заменим во всех остальных уравнениях переменную x на терм Θ .

Утверждение 5.3. Эти операции не изменяют множества решений.

Доказательство. Пункт a — доказан выше, докажем теперь пункт b :

Пусть есть решение вида $T = \begin{cases} a = \Theta_a \\ \vdots \end{cases}$ и уравнение вида $f \ a \ \dots \ z = \Theta_c$, тогда,

 $T(f\ a\ \dots\ z)=f\ T(a)\ \dots\ T(z),$ которое в свою очередь является $f\ \Theta_a\ \dots\ T(z)$

Определение 5.8. Система уравнений в разрешенной форме если

- 1. Все уравнения имеют вид $a_i = \Theta_i$
- 2. Каждый из a_i входит в систему уравнений только раз

Определение 5.9. Система несовместна если

- 1. существует уравнение вида $f \Theta_1 \dots \Theta_n = g \sigma_1 \dots \sigma_n$, где $f \neq g$
- 2. существует уравнение вида $a=f\ \Theta_1\dots\Theta_n$, причем a выходит в какой-то из Θ_i

5.4 Алгоритм унификации

- 1. Пройдемся по системе, выберем такое уравнение, что оно удовлетворяет одному из условий:
 - (a) Если $\Theta_i = a_i$, то перепишем, как $a_i = \Theta_i$, Θ_i —не переменная
 - (b) $a_i = a_i$ удалим
 - (c) $f \Theta_1 \dots \Theta_n = f \sigma_1 \dots \sigma_n$ применим редукцию термов
 - (d) $a_i = \Theta_i$ —Применим подстановку переменной подставим во все остальные уравнения Θ_i вместо a_i (Если a_i встречается в системе где-то еще)
- 2. Проверим разрешима ли система, совместна ли система (два пункта несовместимости)
- 3. Повторим пункт 1

Утверждение 5.4. Алгоритм не изменяет множетва решений

Утверждение 5.5. Несовместная система не имеет решений

Утверждение 5.6. Если система имеет решение, то его разрешеная форма единственна

Утверждение 5.7. Система в разрешеной форме имеет решение:

$$\begin{cases} a_1 = \Theta_1 \\ \vdots \\ a_n = \Theta_n \end{cases}$$
 имеет решение –
$$\begin{cases} S_0(a_1) = \Theta_1 \\ \vdots \\ S_0(a_n) = \Theta_n \end{cases}$$

Утверждение 5.8. Алгоритм всегда заканчивается

Доказательство. По индукции, выберем три числа $\langle x y z \rangle$, где

x-количество переменных, которые встречаются строго больше одного раза в левой части некоторого уравнения (b не повлияет на x, а a повлияет в уравнении $f(a(ga)b) = \Theta)$,

у- количество функциональных символов в системе,

z-количество уравнеий типа a=a и $\Theta=b$, где Θ не переменная.

Определим отношение \leq между двумя кортежами, как $\langle x_1y_1z_1\rangle \leq \langle x_2y_2z_2\rangle$ если верно одно из следующих условий:

- 1. $x_1 < x_2$
- $2. \ x_1 = x_2 \& y_1 < y_2$
- 3. $x_1 = x_2 \& y_1 = y_2 \& z_1 < z_2$

Заметим, что операции (a) и (b) всегда уменьшают z и иногда уменьшают x.

Операция (c) всегда уменьшает y иногда x и, возможно, увеличивает z.

Операция (d) всегда уменьшает x, и иногда увеличивает y.

Очевидно, что с каждой операцией a-d данная тройка уменьшается и т.к. $x,y,z\geqslant 0$, то данный алгоритм завершится за конечное время.

Пример.

Исходная система

$$E = \left\{ \begin{array}{c} g(x_2) = x_1 \\ f(x_1, h(x_1), x_2) = f(g(x_3), x_4, x_3) \end{array} \right\}$$

Применим пункт (c) ко второму уравнению верхней системы получим:

$$E = \left\{ \begin{array}{l} g(x_2) = x_1 \\ x_1 = g(x_3) \\ h(x_1) = x_4 \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (d) ко второму уравнению верхней системы (оно изменит 1ое уравнение) получим:

$$E = \left\{ \begin{array}{l} g(x_2) = g(x_3) \\ x_1 = g(x_3) \\ h(g(x_3)) = x_4 \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (c) ко первому ур-ию и пункт (a) к третьему уравнению верхней системы

$$E = \left\{ \begin{array}{c} x_2 = x_3 \\ x_1 = g(x_3) \\ x_4 = h(g(x_3)) \\ x_2 = x_3 \end{array} \right\}$$

Применим пункт (b) к последнему уравнению и получим систему в разрешенной форме

$$E = \left\{ \begin{array}{c} x_2 = x_3 \\ x_1 = g(x_3) \\ x_4 = h(g(x_3)) \end{array} \right\}$$

Решение системы:

$$S = \left\{ \begin{array}{c} (x_1 = g(x_3)) \\ (x_2 = x_3) \\ (x_4 = h(g(x_3)))) \end{array} \right\}$$

Определение 5.10. $S \circ T$ —композиция подстановок, если $S \circ T = S \ (T \ (a))$

Определение 5.11. S—наиболее общий унификатор, если любое решение (R) системы X может быть получено уточнением: $\exists T: R = T \circ S$

Утверждение 5.9. Алгоритм дает наиболее общий унификатор системы, если у нее есть решения. Если решений нет алгоритм окончится неудачей.

Доказательство. Рассмотрим решение в разрешенной форме S и какое-то другое решение R

- 1. Если $S \equiv R$, то тогда T = S
- 2. Иначе R не является решением в разрешенной форме и так как множество решений не изменяется и решение в разрешенной форме единственно, то сведя R к S (например алгоритмом унификации) получим какое-то решение T, которым будет ответом

6 Лекция 6

Реконструкция типов в просто типизированном λ -исчислении комбинаторы

6.1 Алгоритм вывода типов

Пусть есть: ? $\vdash A$: ?, хотим найти пару \langle контекст, тип \rangle **Алгоритм:**

1. Рекурсия по структуре формулы

Построить по формуле A пару $\langle E, \tau \rangle$, где

E-система уравнений, τ -тип A

2. Решение уравнения, получение подстановки S и из решения E и S (τ) получение ответа

Т.е. необходимо свести вывод типа к алгоритму унификации.

Пункт 6.1. Рассмотрим 3 случая

Обозначение → – алгебраический тип

- 1. $A \equiv x \implies \langle \{\}, \alpha_A \rangle$, где $\{\}$ -пустой контекст, α_A -новая переменная нигде не встречавшаяся до этого в формуле
- 2. $A \equiv P Q \implies \langle E_P \cup E_Q \cup \{\tau_P = \rightarrow (\tau_Q \alpha_A)\}, \alpha_A \rangle$, где α_A -новая переменная
- 3. $A \equiv \lambda x.P \implies \langle E_P, \alpha_x \rightarrow \tau_P \rangle$

Пункт 6.2. Алгоритм унификации

Рассмотрим E—систему уравнений, запишем все уравнения в алгебраическом виде т.е. $\alpha \to \beta \Leftrightarrow \to \alpha \beta$, затем применяем алгоритм унификации.

Лемма 6.1. Рассмотрим терм M и пару $\langle E_M, \tau_M \rangle$, Если $\Gamma \vdash M : \rho$, то существует:

- 1. S—решение E_M тогда $\Gamma = \{x: S(\alpha_x) \mid x \in FV(M)\}, FV$ —множество свободных переменных в терме M, α_x – переменная, полученная при разборе терма M $\rho = S(\tau_M)$
- 2. Если S— решение E_M , то $\Gamma \vdash M : \rho$,

 \mathcal{A} оказательство. индукция по структуре терма M

- (a) Если $M \equiv x$, то так как решение существует, то существует и $S(\alpha_x)$, что: $\Gamma, x: S(\alpha_x) \vdash x: S(\alpha_x)$
- (b) Если $M \equiv \lambda x. P$, то по индукции уже известен тип P, контекст Γ и тип x, тогда:

$$\frac{\Gamma, x : S(\alpha_x) \vdash P : S(\alpha_P)}{\Gamma \vdash \lambda x. P : S(\alpha_x) \rightarrow S(\alpha_P)}$$

(c) Если $M \equiv P Q$, то по индукции:

$$\frac{\Gamma \ \vdash \ P : \ S(\alpha_P) \equiv \tau_1 \ \rightarrow \ \tau_2 \qquad \qquad \Gamma \ \vdash \ Q : S(\alpha_Q) \equiv \tau_1}{\Gamma \ \vdash \ P \ Q : \tau_2}$$

 $\langle \Gamma, \rho \rangle$ — основная пара для терма M, если

- 1. $\Gamma \vdash M : \tau$
- 2. Если $\Gamma' \vdash M : \tau'$, то существует $S : S(\Gamma) \subset \Gamma'$

Пример.

Рассмотрим терм: $\lambda f \lambda x. f(f(x))$, построим и пронумеруем его дерево разбора:

- 1. $\langle E_1, \tau_1 \rangle = \langle \{\}, \alpha_x \rangle$
- 2. $\langle E_2, \tau_2 \rangle = \langle \{\}, \alpha_f \rangle$
- 3. $\langle E_3, \tau_3 \rangle = \langle \{\}, \alpha_f \rangle$
- 4. $\langle E_4, \tau_4 \rangle = \langle \{\alpha_f = \rightarrow (\alpha_x \alpha_1)\}, \alpha_1 \rangle$

5.
$$\langle E_5, \tau_5 \rangle = \left\langle \begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}, \, \alpha_2 \right\rangle$$

6.
$$\langle E_6, \tau_6 \rangle = \langle \left\{ \begin{matrix} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{matrix} \right\}, \, \alpha_x \to \alpha_2 \rangle$$

7.
$$\langle E_7, \tau_7 \rangle = \left\langle \begin{cases} \alpha_f = \to (\alpha_x \alpha_1) \\ \alpha_f = \to (\alpha_1 \alpha_2) \end{cases}, \ \alpha_f \to (\alpha_x \to \alpha_2) \right\rangle$$

$$E = \begin{cases} \alpha_f = \rightarrow (\alpha_x \alpha_1) \\ \alpha_f = \rightarrow (\alpha_1 \alpha_2) \end{cases}$$
, решим полученную систему:

1. Решим систему:

(a)
$$\begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}$$

(b)
$$\left\{ \to (\alpha_1 \, \alpha_2) = \to (\alpha_x \, \alpha_1) \right\}$$

(c)
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_1 \end{cases}$$

(d)
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

2. Получим

$$S = \begin{cases} \alpha_f = \rightarrow (\alpha_x \, \alpha_1) \\ \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

- 3. $\Gamma = \{\}$, так как в заданной формуле нет свободных переменных
- 4. Тип терма $\lambda f \lambda x. f(f(x))$ является результат подстановки $S(\to \alpha_f (\alpha_x \to \alpha_2))$, получаем $\tau = (\alpha_x \to \alpha_x) \to (\alpha_x \to \alpha_x)$

6.2 Сильная и слабая нормализации

Определение 6.1. Если существует последовательность редукций, приводящая терм M в нормальную форму, то M—слабо нормализуем. (Т.е. при редуцировании терма M мы можем не прийти в н.ф.)

Определение 6.2. Если не существует бесконечной последовательности редукций терма M, то терм M— сильно нормализуем.

Утверждение 6.1.

1. $KI\Omega$ — слабо нормализуема

Пример.

Перепишем $KI\Omega$ как $((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. x x)(\lambda x. x x)))$, очевидно, что этот терм можно средуцировать двумя разными способами:

(а) Сначала редуцируем красную скобку

i.
$$((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. x x)(\lambda x. x x)))$$

ii.
$$((\lambda y. (\lambda x. x)))(((\lambda x. x x)(\lambda x. x x)))$$

iii.
$$(\lambda x. x)$$

Видно, что в этом случае количество шагов конечно.

- (b) Редуцируем синюю скобку. Очевидно, что комбинатор Ω не имеет нормальной формы, тогда понятно, что в этом случае терм $KI\Omega$ никогда не средуцируется в нормальную форму.
- 2. Ω не нормализуема
- 3. *II* сильно нормализуема

Лемма 6.2. Сильная нормализация влечет слабую.

6.3 Выразимость комбинаторов

Утверждение 6.2. Любое λ -выражение без свободных переменных можно записать с помощью комбинаторов S и K, где

$$S = \lambda x \, \lambda y \, \lambda z. \, (x \, z) \, (y \, z) : (a \to b \to c) \to (a \to b) \to a \to c$$

$$K = \lambda x \, \lambda y. \, x : a \to b \to a$$

Утверждение 6.3. Комбинаторы S и K являются аксиомами в ИИВ

Утверждение 6.4. Соотношение комбинаторов с λ исчислением:

1.
$$T(x) = x$$

2.
$$T(PQ) = T(P)T(Q)$$

3.
$$T(\lambda x.P) = K(T(P)), x \notin FV(P)$$

4.
$$T(\lambda x.x) = I$$

5.
$$T(\lambda x \lambda y.P) = T(\lambda x. T(\lambda y.P))$$

6.
$$T(\lambda x.P Q) = S T(\lambda x.P) T(\lambda x.Q)$$

Утверждение 6.5. Альтернативный базис:

1.
$$B = \lambda x \lambda y \lambda z \cdot x (y z) : (a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow c \rightarrow b$$

2.
$$C = \lambda x \lambda y \lambda z$$
. $((x z) y) : (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c$

3.
$$W = \lambda x \lambda y. ((x y) y) : (a \rightarrow a \rightarrow b) \rightarrow a \rightarrow b$$

7 Лекция 9

Def. Ранг типа m

R(x) — все типа ранга x.

- R(0) все типы без кванторов
- $R(x+1) = R(x) \mid R(x) \rightarrow R(x+1) \mid \forall \alpha . R(x+1)$

Enddef.

Например:

- $\alpha \in R(0)$
- $\forall \alpha. \alpha \in R(1)$
- $(\forall \alpha.\alpha) \to (\forall b.b) \in R(2)$
- $\bullet \ ((\forall \alpha.\alpha) \to (\forall b.b)) \to b \in R(3)$

Утверждение: Пусть x — выражение только с поверхностными кванторами, тогда $x \in R(1)$.

Def. Типовая схема

$$\sigma ::= \forall \alpha_1. \forall \alpha_2. \ldots \forall \alpha_n. \tau$$
, где $\tau \in R(0)$ и, следовательно, $\sigma \in R(1)$.

Enddef.

Def. Частный случай (специализация) типовой схемы

 $\sigma_1 \sqsubseteq \sigma_2$ — типовая схема

 σ_2 — частный случай (специализация) σ_1 , если

- 1. $\sigma_1 = \forall \alpha_1. \forall \alpha_2.... \forall \alpha_n. \tau_1$
- 2. $\sigma_2 = \forall \beta_1. \forall \beta_2.... \forall \beta_m. \tau_1 [\alpha_i := S(\alpha_i)]$
- 3. $\forall i.\beta_i \in FV(\tau_1)$

Enddef.

$$M_1: \forall \alpha.\alpha \to \alpha$$

Возможно, что в ходе замены, все типы будут уточнены (α уточнится как $\beta_1 \to \beta_2$)

Тут видно, если если выражение слева от

знака имликации имеет ранг n, то все выра-

жение будет иметь ранг $\geq (n+1)$.

$$M: \forall \beta_1. \forall \beta_2: (\beta_1 \to \beta_2) \to (\beta_1 \to \beta_2)$$

7.1 Хиндли-Милнер

- 1. Все типы только с поверхностными кванторами (R(1))
- 2. $\overline{HM} ::= p \mid \overline{HM} \ \overline{HM} \mid \lambda p. \overline{HM} \mid let = \overline{HM} \ in \ \overline{HM}$
- $\exists p. \phi = \forall b. (\forall p. (\phi \to b)) \to b$
- $\bullet \ \phi \to \bot \equiv \forall b. (\phi \to b)$

$$\bullet \frac{\Gamma, \forall p. (\phi \to b) \vdash \forall p. (\phi \to b)}{\Gamma, \forall p. (\phi \to b) \vdash \phi [p := \Theta] \to b} \\ \frac{\Gamma, \forall p. (\phi \to b) \vdash b}{\Gamma \vdash (\forall p. (\phi \to b)) \to b} \\ \frac{\Gamma \vdash (\forall p. (\phi \to b)) \to b}{\Gamma \vdash \forall b. (\forall p. (\phi \to b)) \to b}$$

Соглашение:

- σ типовая схема
- τ простой тип

1.
$$\overline{\Gamma, x : \sigma \vdash x : \sigma}$$

2.
$$\frac{\Gamma \vdash e_0 : \tau \to \tau' \qquad \Gamma \vdash e_1 : \tau}{\Gamma \vdash e_0 \ e_1 : \tau'}$$

3.
$$\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x.e : \tau \to \tau'}$$

4.
$$\frac{\Gamma \vdash e_0 : \sigma \qquad \Gamma, x : \sigma \vdash e_1 : \tau}{\Gamma \vdash let \ x = e_0 \ in \ e_1 : \tau} \ , \ let \ x = a \ in \ b \equiv (\lambda x.b) \ a$$

5.
$$\frac{\Gamma \vdash e : \sigma' \qquad \sigma' \sqsubseteq \sigma}{\Gamma \vdash e : \sigma}$$

6.
$$\frac{\Gamma \vdash e : \sigma}{\Gamma \vdash e : \forall \alpha, \sigma} \alpha \notin FV(\Gamma)$$

7.2 Алгоритм вывода типов в системе Хиндли-Милнера W

На вход подаются $\Gamma,\ M,$ на выходе наиболее общая пара (S,τ)

- 1. $M = x, \ x : \tau \in \Gamma$ (иначе ошибка)
 - \bullet Выбросить все кванторы из τ
 - Переименовать все свободные переменные в свежие Например: $\forall \alpha_1.\phi \Rightarrow \phi[\alpha_1:=\beta_1]$, где β_1 свежая переменная

$$(\emptyset, \Gamma(x))$$

- 2. $M = \lambda n.e$
 - au новая типовая переменная
 - $\Gamma' = \Gamma \backslash \{n : _\}$ (т.е. Γ без переменной n)
 - $\Gamma'' = \Gamma' \cup n : \tau$
 - $(S', \tau') = W(\Gamma'', e)$

$$(S', S'(\tau) \to \tau')$$

- 3. M = P Q
 - $(S_1, \tau_1) = W(\Gamma, P)$
 - $(S_2, \tau_2) = W(S_1(\Gamma), Q)$
 - S_3 Унификация $(S_2(\tau_1), \tau_2 \to \tau)$

```
(S_3 \circ S_2 \circ S_3, S_3(\tau))
4. let \ x = P \ in \ Q

• (S, \tau) = W(\Gamma, P)

• \Gamma' = \Gamma \ \text{без} \ x

• \Gamma'' = \Gamma' \cup \{x : \forall \alpha_1 \dots \alpha_k. \tau_1\}, где \alpha_1 \dots \alpha_k все свободные переменные в \tau_1

• (S_2, \tau_2) = W(S_1(\Gamma''), Q)

(S_1 \circ S_2), \tau_2)
```

Надеемся, что логика второго порядка противоречива.

7.3 Рекурсивные типы

Ранее мы уже рассматривали Y-комбинатор, но не могли типизировать его и отказывались. Однако в программировании хотелось бы использовать рекурсию, поэтому тут мы введем его аксиоматически.

```
Yf =_{\beta} f(Y \ f)
Y : \forall \alpha.(\alpha \to \alpha) \to \alpha - аксиома
```

И теперь, когда мы хотим написать какую-то рекурсивную функцию, скажем, на языке Ocaml, то интерпретировать ее можно будет следующим образом:

Рекурсивными могут быть не только функции, но и типы. Как, например, список из целых чисел:

```
type intList = Nil | Cons of int * intList;;
```

На нем мы можем вызывать рекурсивные функции, например, ниже представлен фрагмент кода, позволяющий найти длину списка.

```
let rec length 1 = match 1 with | \ \text{Nil} \ -> \ 0 \ | \ \text{Cons} \ (\textbf{x}, \ \textbf{s}) \ -> \ 1 \ + \ \text{length} \ \textbf{s};; let my_list = Cons(1, Cons (2, Cons (3, Nil)));; print_int (length my_list);; (* output: 3 *) | \ \text{Paccmotpum}, \ \text{что из себя представляет тип списка выше:} \\ Nil = inLeft \ O = \lambda a.\lambda b.a \ O \\ Cons = inRight \ p = \lambda a.\lambda b.b \ p \\ \lambda a.\lambda b.a \ O : \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma \\ \lambda a.\lambda b.b \ O : \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma \\ \delta = \forall \gamma.(\alpha \to \gamma) \to (\beta \to \gamma) \to \gamma \\ \lambda a.\lambda b.b \ (\lambda a.\lambda b.a \ O) : \forall \alpha.(\alpha \to \gamma) \to (\delta \to \gamma) \to \gamma
```

Научимся задавать рекурсивные типы, а именно рассмотрим два способа решения:

1. Эквирекурсивный

```
list = Nil | Cons a * list
```

 $\alpha = f(\alpha)$ — уравнение с неподвижной точкой. Пусть $\mu\alpha.f(\alpha) = f(\mu\alpha.f(\alpha))$. Используем это в типах, а именно f - это и тип список. То есть мы по сути использовали Y-комбинатор, который для выражений, а для типов ввели аналогичный ν .

На практике такой подход используеься и в языке программирования Java:

```
class Enum <extends Enum<E>>
```

Также приведем пример вывода типа $\lambda x.x$ (можно вспомнить, что именно этот терм помешал нам типизировать Y-комбинатор в просто типизированном λ -исчислении):

Пусть
$$\tau = \mu \alpha. \alpha \rightarrow \beta$$
. Если мы раскроем еще раз, то получим $\tau = \tau \rightarrow \beta$. Если раскроем еще раз, то получим
$$\tau = (\tau \rightarrow \beta) \rightarrow \beta.$$

$$\frac{x:\tau \vdash x:\tau \to \beta \qquad x:\tau \vdash x:\tau}{x:\tau \vdash x:x:\beta} \\ \vdash \lambda x.x \ x:\tau \to \beta$$

Ранее мы ввели Y-комбинатор аксиоматически, а можем ли мы его типизировать используя рекурсивные типы? Ответ: Да, можем. Напомним, что $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx)).$

$$\frac{\lambda f: \beta \to \beta, \ x: \tau \vdash f: \beta \to \beta \qquad f: \beta \to \beta, \ x: \tau \vdash x \ x: \beta}{\frac{f: \beta \to \beta \vdash \lambda x. f \ (x \ x): \tau}{\lambda f: \beta \to \beta \vdash \lambda x. f \ (x \ x): \tau}} \underbrace{\frac{f: \beta \to \beta \vdash \lambda x. f \ (x \ x): \tau}{\lambda f: \beta \to \beta \vdash \lambda x. f \ (x \ x): \tau}}_{\frac{f: \beta \to \beta \vdash (\lambda x. f \ (x \ x)) \ (\lambda x. f \ (x \ x)): \beta}{\vdash \lambda f. (\lambda x. f \ (x \ x)) \ (\lambda x. f \ (x \ x)): \forall \beta. (\beta \to \beta) \to \beta}}_{\frac{f: \beta \to \beta \vdash (\lambda x. f \ (x \ x)) \ (\lambda x. f \ (x \ x)): \forall \beta. (\beta \to \beta) \to \beta}{\vdash \lambda f. (\lambda x. f \ (x \ x)) \ (\lambda x. f \ (x \ x)): \forall \beta. (\beta \to \beta) \to \beta}}$$

Загадочка: А можно ли типизировать, скажем $\lambda x : Nat.x(Sx)$?

2. Изорекурсивный

В отличии от эквирекурсивных типов будем считать, что $\mu\alpha.f(\alpha)$ изоморфно $f(\mu\alpha.f(\alpha))$. Такой подход используется в языке программирования С.

```
struct list {
    list* x;
    int a;
}
(*x).(*x).(*x).a
// или, что эквивалентно
x->x->x.a
```

Можно заметить, что выше для работы со списком мы использовали специальную операцию: $*: list* \rightarrow list$ — разыменовывание

В изорекурсивных типах введены специальный операции для работы с этими типами и оператор * из С это как раз был примером одной из них (в частности roll):

- $Roll: Nil|Cons(a*list) \rightarrow list$
- $Unroll: list \rightarrow Nil|Cons(a*list)$

В более общем виде (введение в типовую систему):

```
• roll : f(\alpha) \to \alpha
• unroll : \alpha \to f(\alpha)
```

Можно привести еще пример из языка С:

```
• *: T* \to T

• \&: T \to T*

• T = \alpha

• T* = f(\alpha)
```

7.4 Зависимые типы

Рассмотрим функцию sprintf из языка C:

```
sprintf: string \rightarrow smth \rightarrow string

sprintf"\%d": int \rightarrow string

sprintf"\%f": float \rightarrow string
```

Легко видеть, что тип sprintf определяется первым аргументом. То есть тип этой функции зависит от терма - именно такой тип и называется зависимым (*anen: dependent type*).

Рассмотрим несколько иной пример, а именно список. Предположим, что мы хотим скалярно перемножить два списка:

Было бы очень здорово уметь отлавливать эту ошибку не в рантайме, а во время компиляции программы и зависимые типы могут в этом помочь. Например, в языке Idris можно использовать Vect:

Если подойти к типу функции dot ближе с точки зрения теории типов, то мы бы записали это так (о * речь пойдет в следующей главе [стоит ее воспринимать как тип типа]):

 $Nat:*,\ Integer:*,\ Vect:Nat \rightarrow Integer \rightarrow * \vdash dot:\Pi n:Nat.(Vect\ n\ Integer) \rightarrow (Vect\ n\ Integer) \rightarrow Integer$

7.4.1 П-типы и Σ -типы

- $\Pi x : \alpha.P(x)$ это запись можно читать как (в каком-то смысле в интуиционистском понимании): "У меня есть метод для конструирования объекта типа P(x), использующий любой предоставленный x типа α ". Если же смотреть на эту запись с точки зрения классической логики, то ее можно понимать как бесконечную конъюнкцию $P(x_1)\&P(x_2)\&...$ Данная конъюнкция соответствует декартовому произведению, отсюда и называние Π -типа (иногда в англоязычной литературе можно встретить dependent function type).
- $\Sigma x: \alpha.P(x)$. Аналогично предыдущему пункту рассмотрим значение с интуиционистской точки зрения: "У меня есть объект x тип α , но больше ничего про него не знаю кроме того, что он обладает свойством P(x)". Это как раз в стиле интуиционизма, что нам приходится знать и объект x и его свойство P(x). Это можно представить как пару, а пара бинарное произведение. С точки же зрения классической логики, мы можем принимать эту формулу как бесконечную дизъюнкцию $P(x_1) \vee P(x_2) \vee ...$, которая соответствует алгебраическим типам данных. (иногда в англоязычной литературе можно встретить $dependent\ sum$).

Ранее обсуждалось, что тип может быть сопоставлен множеству его значений, как например тип uint32_t в C++ может быть сопоставлен множеству $\{0,1,...,2^{32}-1\}$. Рассмотрим $\Pi x:\alpha.P(x)$: этому Π -типу можно сопоставить прямое произведение B^A (где A — множество, сопоставленное типу α , а B(a) - множество сопоставленное типу P(a)), которое следует воспринимать, как $B^A = \prod_{a \in A} B(a) = \{f: A \to \bigcup_{a \in A} B(a) \mid f(a) \in B(a), a \in A\}$. Можно отметить, что если B(a) = C = const, то на любой вход $f(a) \in C$, т.е. тип значения f(a) не меняется, собственно поэтому этот тип в таком случае записывают как $A \to P$. Рассмотрим $\Sigma x: \alpha.P(x)$: этому Σ -типу можно сопоставить дизъюнктное объединение $\sqcup_{a \in A} B(a) = \bigcup_{a \in A} \{(a,x)|x \in B(a)\}$, где A — множество, сопоставленное типу A0. Тут также можно отметить, что если B(a) = C = const, то результатом дизъюнктивного объединения будет прямое произведение $A \times B$ 1. В языке программирования Idris примером Σ -типа является зависимая пара:

```
data DPair : (a : Type) -> (P : a -> Type) -> Type where
   MkDPair : {P : a -> Type} -> (x : a) -> P x -> DPair a P
```

Также есть некоторый синтаксический сахар (a : A ** P), который значит, что а типа DPair A P, где P может содержать в себе имя a.

В документации Idris'а есть хороший пример использования: мы хотим отфильтровать вектор (Vect) по какому-то предикату - мы не можем знать заранее длину результатирующего вектора, поэтому зависимая пара выручает:

8 Лекция 10

8.1 Введение

Прежде мы разбирали просто типизированное λ -исчисление, в котором термы зависили от термов, например, терм F M зависит от терма M. После того, как было замечено, что, скажем, \mathcal{I} может иметь разные типы, которые по сути различаются лишь аннотацией, например, $\lambda x.x:\alpha\to\alpha$, $\lambda x.x:(\alpha\to\alpha)\to(\alpha\to\alpha)$, была введена типовая абстракция, то есть термы теперь могли зависеть от типов и такая типовая система была названа System F и можно было писать $\Lambda\alpha.\lambda x:\alpha.x:\forall\alpha.\alpha\to\alpha$. То есть это было своего рода изобретением шаблонов в языке C++. Но на этом все не ограничено. System F_w , в которой типы могут зависить от типов, как, например, скажем, список - алгебраический тип данных, у которого есть две альтернативы $Nil:\forall\alpha.List\alpha$ и $Cons:\forall\alpha.\alpha\to List\alpha\to\alpha$ (рекурсивные типы смотри выше). Для лучшего понимания различия системы F и F_w ниже представлены грамматики для типов:

```
• T_{\rightarrow} ::= \alpha \mid (T_{\rightarrow}) \mid T_{\rightarrow} \rightarrow T_{\rightarrow}
```

- $T_F ::= \alpha \mid \forall \alpha. T_F \mid (T_F) \mid T_F \rightarrow T_F$
- $T_{F_w} ::= \alpha \mid \lambda \alpha. T_{F_w} \mid (T_{F_w}) \mid T_{F_w} \rightarrow T_{F_w} \mid T_{F_w} \mid T_{F_w}$

Ничего не мешает рассматривать типовую систему, в которой тип может зависеть от терма, как это было сделано раньше. Пусть для всех $a:\alpha$ мы можем определить тип β_{α} и пусть существует $b_{\alpha}:\beta_{\alpha}$. Тогда вполне обоснована запись функции $\lambda\alpha:b_{\alpha}$. Тип данного выражения принято записывать как $\Pi a:\alpha.\beta_{\alpha}$ (стоит сделать замечание, что если β_{α} не зависит от α [то есть функция константа], то вместо $\Pi a:\alpha.\beta_{\alpha}$ пишут $\alpha \to \beta$). Примером может быть тип вектора, длина которого зависит от натурального числа и типа (пример из языка Idris):

```
data Vect : (len : Nat) -> (elem : Type) -> Type where
  Nil : Vect Z elem
  (::) : (x : elem) -> (xs : Vect len elem) -> Vect (S len) elem
```

Теперь наша грамматика стало обширной и появилась необходимость более формально говорить о типах, т.е. ввести их в систему. Для этого были придуман род (англ: kind), который обозначают *. Используя * можно задавать типы типовых конструкторов.

Рассмотрим пару примеров, как используется род:

- $\lambda m : \alpha . F \ m : (\alpha \to \beta) : *$
- $\lambda \alpha : *.I_{\alpha} : (\Pi \alpha : *.\alpha \rightarrow \alpha) : *$
- $\lambda n: Nat.A^n \to B: Nat \to *$
- $\lambda a : *.a \rightarrow a : * \rightarrow *$

Попробуем разобраться, что же написано в примерах.

- Первый пример это типизация привычной нам абстракции. Утверждение $a \to b$: * значит $a \to b$ это тип.
- Во втором примере мы рассматриваем λ -выражение, которое принимает на вход тип и возвращает терм I_{α} . Таким образом мы собираемся типизировать терм, зависящий от типа. Для этого как сказано выше мы вводим символ Π , а вот в известной нам системе F тип выражения $\lambda \alpha : *.I_{\alpha}$ был бы $\forall \alpha.(\alpha \to \alpha)$.

- В третьем пункте мы хотим сформировать утверждения для типа, зависящего от терма. Интуитивно понятно, что у такого выражения будет род $Nat \to *$. И заселять его будут конструкторы типов, которые принимают на вход число и возвращают тип, например $\lambda x : Nat.int[x]$ это терм, который заселяет род $Nat \to *$
- В четвертом пункте мы типизируем конструктор типа, который принимает на вход тип. Действительно, его родом будет $* \to *$.

Возникает желание каким-то образом объединить все роды, и это необходимо для дальнейшей формализации происходящего. $* \to *:?$. Что можно поставить на место вопросика? Это не тип, так как иначе бы могли записать $* \to *: *$, однако понятно, что это не так. В частности для этого вводится понятие сорта (ahen. sort), которое можно воспринимать как тип рода и тогда $* \to *: \square$ и $*: \square$. Для любого выражения вида $A \to *$, где A - это что угодно, верно, что оно типизируется \square . Например, $* \to * \to *: \square$ - этот род очень похож на $* \to *$, и действительно, единственное отличие заключается в количестве аргументов нашего типового конструктора. В частности, этот род заселяет конструктор map, $\lambda keyType: *.(\lambda valueType.map < keyType, valueType>)$

Теперь мы ознакомились со всеми необходимыми обозначениями и неформальными определениями. Обобщая все вышесказанное, построим обобщенную типовую систему.

8.2 Обобщенная типовая система

- Copta: {*, □}
 - Выражение "A : *"означает, что A тип. И тогда, если на метаязыке мы хотим сказать "Если A тип, то и $A \to A$ тоже тип" то формально это выглядит как A : * \vdash ($A \to A$) : *
 - $-\Box$ это абстракция над сортом для типов.
 - Например:

$$\begin{array}{l} * \ 5: int: *: \square \\ \\ * \ \square: * \rightarrow *: \square \\ \\ * \ \Lambda M.List < M >: * \rightarrow *: \square \\ \end{array}$$

- $T ::= x \mid c \mid T \mid \lambda x : T \cdot T \mid \Pi x : T \cdot T$
- Аксиома:

• Правила вывода:

1.
$$\frac{\Gamma \vdash A : S}{\Gamma, x : A \vdash x : A} x \notin \Gamma$$
2. $\frac{\Gamma \vdash A : B}{\Gamma, x : C \vdash A : B} - \text{правило ослабления (примерно как } \alpha \to \beta \to \alpha \text{ в И.В.})$
3. $\frac{\Gamma \vdash A : B}{\Gamma \vdash A : B} - \frac{\Gamma \vdash B' : S}{\Gamma \vdash A : B'} - \text{правило конверсии}$
4. $\frac{\Gamma \vdash F : (\Pi x : A.B)}{\Gamma \vdash (F \ a) : B[x := a]} - \text{правило применения}$

• Семейства правила (generic-правила) Пусть $(s_1, s_2) \in S \subseteq \{*, \square\}^2$.

1. П-правило:
$$\frac{\Gamma \vdash A:s_1 \qquad \Gamma, x:A \vdash B:s_2}{\Gamma \vdash (\Pi x:A.B):s_2}$$

2.
$$\lambda$$
-правило: $\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash b : B \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\lambda x : A.b) : (\Pi x : A.B)}$

В одном из примеров мы рассмотрели утверждение $\lambda\alpha:*.I_\alpha:(\Pi\alpha:*.\alpha\to\alpha):*.$ Теперь мы можем до конца понять, почему $(\Pi\alpha:*.\alpha\to\alpha):*$ и что такое $\Pi.$ Неформально говоря, Π -правило говорит нам о том, что выражение $(\Pi x:A.B)$ типизируется либо *, либо \square , а именно тем, чем является B. То есть $(\Pi x:A.B)$ - это либо тип конструктора типа, либо тип конструктора терма. В приведенном примере мы принимаем на вход любой тип α и возвращаем терм, а значит $(\Pi\alpha:*.\alpha\to\alpha):*.$

Еще пару слов по Π . Этот символ является обобщением \to , поэтому во всех рассмотренных ранее родах согласно нашей обобщенной типовой системе можно заменить \to на Π , согласно замечанию выше. Например, $*\to *=\Pi a:*.*$. Важно понимать, что подразумевается под зависимостью тела от аргумента и не путать понятия терм и тип. В $\Pi a:*.*$ тело не зависит от аргумента, потому что тело - это просто звездочка, то есть $\Pi a:*.*$ говорит нам просто о том, что наше выражение принимает тип и выдает тип. В то время как термы, населяющие $\Pi a:*.*$, разумеется могут иметь тело, зависящее от аргумента, как, например, $\lambda a:*.a\to a$

8.3 λ -куб

В обобщенных типовых системах есть generic-правила, которые зависят от выбора s_1 и s_2 из множества сортов. Этот выбор можно проиллюстрировать в виде куба.

Выбор правил означает следующее:

- \bullet (*, *) позволяет записывать термы, которые зависят от термов
- \bullet (\square , *) позволяет записывать термы, которые зависят от типов
- (*, 🗆) позволяет записывать типы, которые зависят от термов
- ullet (\Box , \Box) позволяет записывать типы, которые зависят от типов

На самом деле в данной формулировке под типом понимается не только привычный тип. Потому что для привычного типа верно τ : *. Здесь же τ может типизироваться чем угодно, кроме \square , в частности * \rightarrow *.

Также на этом кубике можно расположить языки программирования, например:

• Haskell будет распологаться на левой грани куба, недалеко от λw

- Idris и Coq, очевидно, будет находиться в λC
- C++ очень ограниченно приближается к λC (мысли вслух):
 - 1. (*, *) без этого не может обойтись ни один язык программирования
 - 2. (\square , *) например, sizeof(type)
 - 3. (∗, □) например, std::array<int, 19> тут есть ограничение на то, значение каких типов можно подставлять.
 - 4. (\square , \square) например, std::vector<int>, int*

8.4 Свойства

Для систем в λ -кубе верны следующие утверждения:

• Th. SN

Обобщенная типовая система сильно нормализуема

- 1. Для любых двух элементов A, B и C, таких, $A \rightarrow B$ и $A \rightarrow C$ верно, что существует D, что $B \twoheadrightarrow D$ и $C \twoheadrightarrow D$
- Тh. Черча-Россера
- 2. Для любых двух элементов A, B, для которых верно $A =_{\beta} B$, существует C, что $A \twoheadrightarrow C$ и $B \twoheadrightarrow C$
- Th. Subject reduction $\Gamma \vdash A : T$ и $A \twoheadrightarrow B$, тогда $\Gamma \vdash B : T$
- Th. Unicity of types
- $\Gamma \vdash A : T$ и $\Gamma \vdash A : T'$ тогда $T =_{\beta} T'$

Примеры:

• $\lambda\omega$:

$$\vdash (\lambda \alpha : *.\alpha \to \alpha) : (* \to *) : \Box$$

Notes:

- $(\lambda x.x): (A \to A)$ implicit typing (Curry style)
- $I_A = \lambda x : A.x$ explicit typing (Church style)

Рассмотрим еще примеры для улучшения понимания λ -куба и обобщенной типовой системы:

• В системе $F(\lambda 2)$ выводимо:

1.
$$\vdash (\lambda \alpha : *.\lambda a : \alpha.a) : (\Pi \alpha : *.(\alpha \rightarrow \alpha)) : *$$

- 2. $A: * \vdash (\lambda \alpha : *.\lambda a : \alpha.a)A : (A \rightarrow A)$
- 3. $A: *, b: A \vdash (\lambda \alpha: *.\lambda a: \alpha.a)Ab: A$

Разумеется, здесь имеет место редукция: $(\lambda \alpha : *.\lambda a : \alpha.a)Ab \rightarrow_{\beta} b$.

- В λw выполняется
 - 1. $\vdash (\lambda \alpha : *.\alpha \to \alpha) : * \to * : \square$
 - 2. $\beta : * \vdash (\lambda \alpha : *.\alpha \rightarrow \alpha)\beta : *$
 - 3. $\beta: *, x: \beta \vdash (\lambda y: \beta.x): (\lambda \alpha: *.\alpha \rightarrow \alpha)\beta$
 - 4. $a:*, f:* \to * \vdash f(fa):*$
 - 5. $a : * \vdash (\lambda f : * \to *.f(fa)) : (* \to *) \to *$
- В λP верно:
 - 1. $A : * \vdash (A \to *) : \Box$
 - 2. Рассмотрим тип A как множество значений типизируемых таким образом и введем $P:A \to *$ Тогда $A:*,P:A \to *,a:A \vdash Pa:*$ Можно рассматривать в таком контексте P как предикат на A. Если для а он возвращает населенный тип, то будем считать это за true, иначе за false. Это теоретико-множественный смысл зависимых типов.

Можно строить утверждения вида ($\Pi a: A.Pa$) - для любого а верен предикат P.

• В λw можно задать конъюнкцию, как мы делали еще в системе F. $a\&b=\Pi\gamma:*.(a\to b\to\gamma)\to\gamma$

Тогда $AND = \lambda a : *.\lambda b : *.a\&b \ K = \lambda a : *.\lambda b : *.\lambda x : a.\lambda y : b.x$

$$\vdash AND : * \rightarrow * \rightarrow *$$

$$\vdash K : (\Pi a : *.\Pi b : *.a \rightarrow b \rightarrow a)$$

Тогда получается доказательство того, что из конъюнкции следует первый аргумент! $a:*,b:* \vdash (\lambda x:AND\;ab.xa(Kab)):(AND\;ab\to a):*$