initial condition:

$$\frac{Car}{V_{i} = 38 \text{ m/s}} \qquad \frac{CoP}{V_{i} = 0}$$

$$V_{i} = 0$$

$$V_{i} = 38 \text{ m/s}$$

$$V_{f} = 38 \text{ m}$$

$$V_{f} = ?$$

1		
七(5)	X (ar (m)	X cob (w)
	38	0
	76	$X = \frac{1}{2}(2.9)(1)^2 = 1.45$
1	114	$\chi = \frac{1}{2} (2.9) (2)^2 = 5.8$
2	P	• ,
• •	798	540
20	/ / 0	,
δ	3	,
25	988	906
•		,
,	1064	1057
7)		1 (2.9) t
t	36t +35	2 (47)
		, , , , ,

$$38t + 38 = \frac{1}{2}(2.9)t^{2}$$

$$9 = \frac{1}{2}(2.9)t^{2}$$

Chapter 5 - The laws of motion

So far, we have described how objects move

e.g. the car has a = 0 and v = 20 m/s

Now, we will investigate why objects move.

Section 5.1 - the concept of force

A force is basically a push or a pull on some object.

It has magnitude and direction, so it is a vector.

93

2.3

Example

Find the net force on the block.

Find the net force on the block.

Find the net
$$F_{2}$$
 F_{3}
 F

$$\vec{F}_{net} = (9.5 - 4.1)N^{1} + (11.28 + 16.45)N^{3}$$

Sec. 5.2 - Inertial reference frames

see: https://www.youtube.com/watch?v=umLcFAI5SZg

and: https://www.facebook.com/NOVApbs/videos/1900444973591374

<u>Newton's 1st law</u>: When observed from an inertial reference frame, objects move with constant velocity (a = 0) unless a force acts on the object.

A formal definition of force can then be given as:

Force: that which causes a change in motion (velocity) of an object

Sec. 5.3 - Mass

Mass = the property of an object that determines how much it resists changes to its motion (velocity)

Sec. 5.4 - Neuton's
$$2^{nd}$$
 Law

Mass Fx $\frac{dy}{dx}$

No.5 m/s²

And Mass Mass $\frac{dy}{dx}$

No.5 m/s²

And Mass $\frac{dy}{dx}$

No.5 m/s²

No.5

5.5 - Gravitational force (9.ka. weight)

Recall:
$$Q = 9.8 \frac{m}{5^2}$$
 $Q = 9.8 \frac{m}{5^2}$

Where $Q = 9.8 \frac{m}{5^2}$

Newton's $Q = Ma$
 $Q = 9.8 \frac{m}{5^2}$
 $Q = 9.8 \frac{m}{5^2}$

Example:

A man weighs 900 N on Earth. What's his weight on Jupiter where $a_g^T = 25.9\frac{m}{s^2}$?