1

AI1103-Assignment 1

Name: Ramanathan Annamalai Roll Number: BM20BTECH11011

Download all python codes from

https://github.com/Ramanathan-Annamalai/AI1103
-Probability_and_Random_Variables/tree/
main/Assignment%201/Codes

and latex-tikz codes from

https://github.com/Ramanathan-Annamalai/AI1103
-Probability_and_Random_Variables/blob/
main/Assignment%201/Assignment 1.tex

QUESTION

Two cards are drawn successively with replacement from a well shuffled deck of 52 cards. Find the probability distribution of the number of aces.

Solution

A deck of 52 cards contains 4 Aces i.e 1 from each suit.

Let probability of picking an ace from a well shuffled deck be p

$$p = \frac{\text{No. of favourable cases}}{\text{Total no. of cases}}$$
$$= \frac{4}{52} = \frac{1}{13}$$
(0.0.1)

Probability of not picking an ace from the deck will be represented by q

$$q = (1 - p)$$

$$= \frac{48}{52} = \frac{12}{13}$$
 (0.0.2)

We are drawing two card from the deck, with replacement. Let $X \in \{0, 1, 2\}$ represent the random variable, where

- 1) 0 represents drawing no aces
- 2) 1 represents drawing one ace
- 3) 2 represents drawing two aces

Now, let us find the probability distribution:

1) Drawing no aces:

$$Pr(X = 0) = q \times q = q^2$$
 (0.0.3)

$$=\frac{144}{169}\tag{0.0.4}$$

2) Drawing one ace:

$$Pr(X = 1) = p \times q + q \times p \tag{0.0.5}$$

$$=2pq = \frac{24}{169} \tag{0.0.6}$$

3) Drawing both aces:

$$Pr(X = 2) = p \times p = p^2$$
 (0.0.7)

$$=\frac{1}{169} \tag{0.0.8}$$

Random Variable [X]	Probability [Pr(X)
0	$q^2 = \frac{144}{169}$
1	$2pq = \frac{24}{169}$
2	$p^2 = \frac{1}{169}$

TABLE 3: Probability distribution values for the outcomes of the event.

Fig. 3: Representation of Theory

Fig. 3: Theory vs Simulation