URC-B-STSC

सांख्यिकी (प्रश्न-पत्र-II)

समय : तीन घण्टे

अधिकतम अंक : 250

प्रश्न-पत्र सम्बन्धी विशेष अनुदेश

(उत्तर देने के पूर्व निम्नलिखित निर्देशों को कृपया सावधानीपूर्वक पढ़ें)

इसमें आठ प्रश्न हैं जो दो खण्डों में विभाजित हैं तथा हिन्दी और अंग्रेजी दोनों में छपे हैं। उम्मीदवार को कुल पाँच प्रश्नों के उत्तर देने हैं।

प्रश्न संख्या 1 और 5 अनिवार्य हैं तथा बाकी प्रश्नों में से प्रत्येक खण्ड से कम-से-कम **एक** प्रश्न चुनकर **तीन** प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न/भाग के लिए नियत अंक उसके सामने दिए गए हैं।

प्रश्नों के उत्तर उसी प्राधिकृत माध्यम में लिखे जाने चाहिए, जिसका उल्लेख आपके प्रवेश-पत्र में किया गया है, और इस माध्यम का स्पष्ट उल्लेख प्रश्न-सह-उत्तर (क्यू॰ सी॰ ए॰) पुस्तिका के मुखपृष्ठ पर निर्दिष्ट स्थान पर किया जाना चाहिए। प्राधिकृत माध्यम के अतिरिक्त अन्य किसी माध्यम में लिखे गए उत्तर पर कोई अंक नहीं मिलेंगे।

किसी प्रश्न का उत्तर देने के लिए जहाँ जरूरत हो, आँकड़े मान लीजिए तथा उसको स्पष्ट रूप से सूचित कीजिए। चार्ट/चित्र, जहाँ आवश्यक हो, प्रश्न के उत्तर देने की जगह पर ही अंकित किए जाएँ।

प्रश्नों के उत्तरों की गणना क्रमानुसार की जाएगी। यदि काटा नहीं हो, तो प्रश्न के उत्तर की गणना की जाएगी चाहे वह उत्तर अंशतः दिया गया हो। प्रश्न-सह-उत्तर पुस्तिका में खाली छोड़ा हुआ पृष्ठ या उसके अंश को स्पष्ट रूप से काटा जाना चाहिए।

STATISTICS (PAPER-II)

Time Allowed: Three Hours

Maximum Marks: 250

QUESTION PAPER SPECIFIC INSTRUCTIONS

(Please read each of the following instructions carefully before attempting questions)

There are EIGHT questions divided in two Sections and printed both in HINDI and in ENGLISH.

Candidate has to attempt FIVE questions in all.

Question Nos. 1 and 5 are compulsory and out of the remaining, THREE are to be attempted choosing at least ONE question from each Section.

The number of marks carried by a question/part is indicated against it.

Answers must be written in the medium authorized in the Admission Certificate which must be stated clearly on the cover of this Question-cum-Answer (QCA) Booklet in the space provided. No marks will be given for answers written in a medium other than the authorized one.

Wherever any assumptions are made for answering a question, they must be clearly indicated. Charts/figures, wherever required, shall be drawn in the space provided for answering the question itself.

Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

1. (a) किसी तंत्र की विश्वसनीयता को एक उदाहरण सहित परिभाषित कीजिए, साथ ही इसको प्रभावित करने वाले मापदण्डों की व्याख्या कीजिए।

Define reliability of a system with an example along with the criteria affecting it.

- (b) खेल सिद्धान्त की विशेषताओं पर एक टिप्पणी लिखिए तथा इसकी सीमाओं का वर्णन कीजिए।

 Write a note on the characteristics of game theory and discuss its limitations.
- (c) रैखिक प्रोग्रामन समस्या में द्वैत की संकल्पना को परिभाषित कीजिए। निम्नलिखित रैखिक प्रोग्रामन समस्या का द्वैत लिखिए:

अधिकतमीकरण $Z = 2x_1 + 5x_2 + 6x_3$

निम्न प्रतिबन्धों के अंतर्गत

$$5x_1 + 6x_2 - x_3 \le 3$$

$$-2x_1 + x_2 + 4x_3 \le 4$$

$$x_1 - 5x_2 + 3x_3 \le 1$$

$$-3x_1 - 3x_2 + 7x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

Define the concept of duality in Linear Programming Problem (LPP). Write down the dual of the following LPP:

 $Maximize \quad Z = 2x_1 + 5x_2 + 6x_3$

subject to the constraints

$$5x_1 + 6x_2 - x_3 \le 3$$

$$-2x_1 + x_2 + 4x_3 \le 4$$

$$x_1 - 5x_2 + 3x_3 \le 1$$

$$-3x_1 - 3x_2 + 7x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

10

10

(d) मारकोव शृंखला तथा संक्रमण प्रायिकता आव्यूह का एक उदाहरण के साथ वर्णन कीजिए। निम्नलिखित संक्रमण प्रायिकता आव्यूह में A और B ब्रैन्ड के बाजार-अंश, समय O से 1 के लिए, ज्ञात कीजिए, जब उनका प्रारम्भिक बाजार-अंश ब्रेकडाउन 50% है:

तक से	Α	В		
A	0.9	0.1		
В	0.5	0.5		

Discuss Markov chain and transition probability matrix with an example. For the following transition probability matrix, determine the market share of brands A and B from period 0 to 1, when their initial market share breakdown is 50%:

To From	Α	В
Α	0.9	0.1
В	0.5	0.5

10

(e) उदाहरणों के साथ प्रक्रम-नियंत्रण एवं उत्पाद-नियंत्रण में विभेद कीजिए।

Differentiate between process control and product control with examples.

10

2. (a) प्रतिचयन आयोजना क्या है? उपभोक्ता-जोखिम, उत्पादक-जोखिम तथा कार्य-दक्षता (ओ॰ सी॰) वक्र को परिभाषित कीजिए। एक दोहरी प्रतिचयन आयोजना में, जहाँ $N=1000,\ n_1=50,\ c_1=3,\ n_2=100$ और $c_2=7$ हैं, विवेचना कीजिए कि आप इसका निष्कर्ष किस प्रकार ज्ञात करेंगे।

What are sampling plans? Define consumer's risk, producer's risk and OC curve. In a double sampling plan with N = 1000, $n_1 = 50$, $c_1 = 3$, $n_2 = 100$ and $c_2 = 7$, explain how you would draw your conclusion.

15

(b) चरघातांकी एवं लघुगणक प्रसामान्य बंटनों के लिए विश्वसनीयता और संकट फलन प्राप्त कीजिए।

Obtain reliability and hazard functions of exponential and lognormal distributions.

15

(c) गुणों (एट्रिब्यूट्स) के लिए नियंत्रण संचित्र क्या हैं? p-संचित्र और c-संचित्र का वर्णन कीजिए। निम्नलिखित ऑकड़े 10 प्रतिदशों, जिनमें प्रत्येक का आकार 100 मद है, की दोषपूर्ण इकाइयों को प्रदर्शित करते हैं। एक यथोचित नियंत्रण संचित्र बनाइए तथा उसकी नियंत्रण सीमाओं की विवेचना कीजिए:

प्रतिदर्श संख्या : 1 2 3 4 5 6 7 8 9 10

दोषपूर्ण इकाइयों की संख्या : 4 8 11 3 11 7 7 16 12 6

What are control charts for attributes? Discuss p and c charts. The following data refer to number of defectives in 10 samples each of size 100 items. Construct an appropriate control chart and interpret the control limits:

Sample No. : 1 2 3 4 5 6 7 8 9 10

No. of Defectives : 4 8 11 3 11 7 7 16 12 6

3. (a) नियतन समस्या का वर्णन कीजिए। पाँच व्यक्तियों में पाँच कार्यों के आबंटन की समस्या पर विचार कीजिए। नियतन मूल्य निम्नवत् हैं :

				कार्य		
		1	2	3	4	5
	Α	8	4	2	6	1
	B	0	9	5	5	4
व्यक्ति	C	3	8	9	2	6
	D	4	3	1	0	3
	E	9	5	8	9	5

इष्टतम नियतन शिड्यूल ज्ञात कीजिए।

Discuss Assignment Problem. Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows:

			Job					
		1	2	3	4	5		
	Α	8	4	2,	6	1		
	\boldsymbol{B}	0	9	5	5	4		
Person	C	3	8	9	2	6		
	D	4	3	1	0	3		
	\boldsymbol{E}	9	5	8	9	5		

Determine the optimum assignment schedule.

15

(b) निम्नलिखित परिवहन समस्या का MODI विधि से हल निकालिए:

		D_1	D_2	D_3	D_4	प्राप्यता
	O_1	1	2	1	4	30
उद्गम	O_2	3	3	2	1	50
	O_3	4	2	5	9	20
	माँग	20	40	30	10	

Solve the following Transportation Problem by MODI method:

			Desti	nation		
		D_1	D_2	D_3	D_4	Availability
	O_1	1	2	1	4	30
Origin	O_2	3	3	2	1	50
	O_3	4	2	5	9	20
Demand		20	40	30	10	

(c) सामान्य रैखिक प्रोग्रामन समस्या की व्याख्या कीजिए। निम्नलिखित रैखिक प्रोग्रामन समस्या का हल चार्नस की बिग-M विधि से कीजिए:

न्यूनतमीकरण
$$Z = 2x_1 + x_2$$

निम्न प्रतिबन्धों के अंतर्गत

$$3x_1 + x_2 = 3$$

 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 3$
 $x_1 \ge 0, x_2 \ge 0$

Explain the general Linear Programming Problem. Solve the following LPP by Charnes' Big-M method:

Minimize $Z = 2x_1 + x_2$

subject to the constraints

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 3$$

$$x_1 \ge 0, x_2 \ge 0$$

20

4. (a) द्वि-व्यक्ति शून्य-योगी खेल तथा भुगतान आव्यूह के पत्याण बिन्दु को परिभाषित कीजिए। निम्नलिखित खेल को हल कीजिए:

			खिलाड़ी B						
		1	2	3	4	5			
	I	3	5	4	9	6			
खिलाड़ी A	П	5	6	3	7	8			
	Ш	8	7	9	8	7			
	IV	4	2	8	5	3			

Define two-person zero-sum game and saddle point of a payoff matrix. Solve the following game :

		Player B								
		1 2 3 4 5								
	I	3	5	4	9	6				
Dianor A	П	5	6	3	7	8				
Player A	Ш	8	7	9	8	7				
	IV	4	2	8	5	3				

15

(b) पंक्ति सिद्धान्त से आप क्या समझते हैं? इसके क्या लाभ हैं? M/M/1 मॉडल की विशेषताओं का वर्णन कीजिए। What do you understand by queuing theory? What are its advantages? Discuss the characteristics of M/M/1 model.

(c) प्रसामान्य बंटन में किसी उपकरण की विफलता दर ज्ञात कीजिए। माना किसी उपकरण के वय का बंटन प्रसामान्य है, जिसके माध्य 100 घंटे तथा मानक विचलन 20 घंटे हैं। इस उपकरण का वय कम-से-कम 130 घंटे हो, इसकी प्रायिकता क्या है? (प्रसामान्य बंटन सारणी पृष्ठ सं० 9 में दी गई है)

Derive failure rate of a device assuming normal distribution. Suppose the life of an equipment is known to be normally distributed with mean 100 hours and standard deviation 20 hours. What is the probability that the equipment would last at least 130 hours? (Normal Distribution Table is given in Page No. 9)

20

10

खण्ड—B / SECTION—B

- 5. (a) किसी परीक्षण की वैधता की संकल्पना को स्पष्ट कीजिए। वैधता के विभिन्न प्रकारों की विवेचना कीजिए।

 Explain the concept of validity of a test. Describe various types of validity. 10
 - (b) काल श्रेणी को परिभाषित कीजिए। स्थावर तथा अस्थावर काल श्रेणी में विभेद कीजिए। स्थावर एवं अस्थावर काल श्रेणी का एक-एक उदाहरण दीजिए।
 - Define time series. Distinguish between stationary and non-stationary time series. Give an example of stationary and non-stationary time series.
 - (c) विचरान्तर विधि का एक अनुप्रयोग के साथ वर्णन कीजिए।

 Discuss variate difference method with an application.
 - (d) अशोधित मृत्यु दर को परिभाषित कीजिए। इसके गुणों एवं दोषों को लिखिए। सामान्यतः अशोधित मृत्यु दर की सीमा क्या है? क्या महिला एवं पुरुष अशोधित मृत्यु दर में कोई सम्बन्ध है? यदि हाँ, तो इस सम्बन्ध को बताइए।

 Define Crude Death Rate. Write its merits and demerits. Generally, what is the range of Crude Death Rate? Is there any relation between female CDR and male CDR? If yes, then state the relation.
 - (e) निम्नलिखित आँकड़ों से सकल प्रजनन-दर एवं निवल प्रजनन-दर का आकलन कीजिए, यह मानते हुए कि जन्म के समय लिंगानुपात 105 पुरुषों पर 100 महिलाएँ है :

<i>आयु</i> (वर्षों में)	आयु-विशेष जनन-दर	महिला वय सारणी स्थावर जनसंख्या
15–19	0.0696	4180
20–24	0.2346	4123
25–29	0.1897	4063
30–34	0.1143	4001
35–39	0.0611	3934
40-44	0.0285	3860
45-49	0.0101	3763

Calculate gross and net reproduction rates from the following data considering sex ratio at birth to be 105 males to 100 females:

Age (in years)	Age-Specific Fertility Rate	Female Life Table Stationary Population	
15–19	0.0696	4180	
20-24	0.2346	4123	
25-29	0.1897	4063	
30–34	0.1143	4001	
35–39	0.0611	3934	
40-44	0.0285	3860	
45-49	0.0101	3763	

10

6. (a) अभिनिर्धारण समस्या क्या है? एक उदाहरण सहित समझाइए। अभिनिर्धारणता के लिए कोटि एवं क्रम प्रतिबन्ध को स्थापित कीजिए।

What is the problem of identification? Explain it with the help of an example. Establish rank and order conditions of identifiability.

15

(b) स्वसमाश्रयी तथा गतिमान माध्य पर्दो का क्रम, जबिक काल श्रेणी का अन्वायोजन ARIMA मॉडल से हो, आप कैसे ज्ञात करेंगे, संक्षेप में वर्णन कीजिए।

Explain in brief how you will determine orders of autoregressive and moving average terms while fitting time series using ARIMA modelling.

15

(c) डिकी-फुलर (डी॰ एफ॰) परीक्षण क्या है? विवेचना कीज़िए कि आप इस परीक्षण का प्रयोग किसी दी गई काल श्रेणी की स्थावरता के परीक्षण के लिए कैसे करेंगे।

What is Dickey-Fuller (DF) test? Describe how you will use this test for testing stationarity of any given time series.

20

7. (a) एक पूर्ण वय सारणी एवं एक संक्षिप्त वय सारणी में विभेद कीजिए। वय सारणी में प्रयुक्त पर्दो का वर्णन कीजिए। एक स्थान के प्रतिदर्श सर्वेक्षण में 45 वर्ष एवं 46 वर्ष के पुरुषों की संख्या क्रमशः 30450 तथा 30320 है। q_{45} का आकलन कीजिए।

Differentiate between a complete life table and an abridged life table. Explain the terms involved in life table. In a sample survey of a locality, the number of males of ages 45 and 46 were 30450 and 30320 respectively. Calculate q_{45} .

15

(b) गोम्पर्ज जन-वृद्धि वक्र की विस्तार से व्याख्या कीजिए और इसकी अन्वायोजन की पद्धित समझाइए।

Discuss in detail Gompertz curve for population growth and explain the method of its fitting.

(c)	पराक्षण मदा के मापक्रमण से आप क्या समझते हैं? यथाप्राप्त समक, मानक समक तथा T समक क्या है?	
	समझाइए। छात्रों के एक समूह के व्यवहारवादी अध्ययन, जिसका माध्य 86 तथा मानक विचलन 15 है, में राम	
	और श्याम के समंक क्रमशः 91 और 83 हैं। इन यथाप्राप्त समंकों को मानक समंकों में व्यक्त कीजिए, जब माध्य	
	500 तथा मानक विचलन 100 हैं।	
	What do you understand by scaling of test items? What are raw scores,	
	standard scores and T scores? Explain. In a behavioural study on a group of	
	students with mean 86 and standard deviation 15, Ram scored 91 and Shyam	
	scored 83. Express these raw scores as standard scores with mean 500 and	
	standard deviation 100.	20

8. (a) सामान्य रेखीय मॉडल में बहुसंरेखता की संकल्पना का वर्णन कीजिए। आप इसे कैसे ज्ञात करेंगे? साधारण न्यूनतम वर्ग आकलकों तथा इनके प्रसरण पर इसके प्रभाव को समझाइए।

Explain the concept of multicollinearity in general linear model. How will you detect it? Discuss its impact on OLS estimators and their variances.

you 15

(b) जनसंख्या प्रक्षेपण के लिए वृद्धिघात वक्र को समझाइए। किसी एक विधि द्वारा वृद्धिघात वक्र के जनसंख्या आँकड़ों पर समंजन का वर्णन कीजिए।

Explain logistic curve for population projection. Describe any one method for fitting logistic curve to the population data.

15

(c) केन्द्रीय सांख्यिकी कार्यालय (सी॰ एस॰ ओ॰) तथा विभिन्न राज्यों में स्थापित आर्थिक एवं सांख्यिकी निदेशालयों के मुख्य कार्य क्या हैं? विस्तारपूर्वक समझाइए।

What are the main functions of Central Statistics Office (CSO) and Directorate of Economics and Statistics established in different States? Explain in detail. 20

عالما لما

सारणी : संचयी प्रसामान्य बंटन

Table: Cumulative Normal Distribution

$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

X ·00 ·01 ·02 ·03 ·04 ·05 ·06 ·07 ·08 ·09 0 ·5000 ·5000 ·5080 ·5120 ·5160 ·5199 ·5239 ·5279 ·5319 ·5714 ·5753 2 ·5793 ·5832 ·5871 ·5910 ·5948 ·5987 ·6026 ·604 ·6103 ·6111 3 ·6179 ·6217 ·6255 ·6293 ·6331 ·6386 ·6406 ·6443 ·6480 ·6511 4 ·6554 ·6591 ·6628 ·6664 ·6700 ·6736 ·6772 ·6808 ·6844 ·6879 5 ·6915 ·6950 ·6985 ·7019 ·7054 ·7088 ·7123 ·7157 ·7190 ·7224 6 ·7257 ·7291 ·7324 ·7357 ·7389 ·7422 ·7444 ·7823 ·7852 7 ·7580 ·7611 ·7642 ·7673 ·7704 ·7734 ·7764											
1		.00		∙02	·03	.04	·05	·06	·07	.08	-09
1-2					·5120	·5160	·5199	·5239	.5279	·5319	·5359
1-12				·5478	·5517	·5557	·5596	·5636	-5675	·5714	·5753
-4 -6554 -6591 -6628 -6664 -6700 -6736 -6772 -6808 -6844 -6879 -5 -6915 -6950 -6985 -7019 -7054 -7088 -7123 -7157 -7190 -7224 -6 -7257 -7291 -7324 -7357 -7389 -7422 -7454 -7486 -7517 -7549 -7 -7580 -7611 -7642 -7673 -7704 -7734 -7764 -7794 -7823 -7852 -8 -7881 -7910 -7993 -7967 -7995 8023 8051 -8078 8106 8133 -9 -8159 -8186 -8212 -8238 8264 -8289 8315 8340 -8365 8389 1-0 -8413 -8438 8461 -8485 -8508 8531 -8554 -8577 -8599 -8621 1-1 -8433 -8665 -86888 8907 -8925 -8944					·5910		-5987	·6026	·6064	·6103	·6141
-5					.6293		·6368	·6406	·6443	∙6480	∙6517
1-6	•4	.6554	·6591	.6628	·6664	·6700	·6736	·6772	·6808	∙6844	.6879
1-6											
							·7088	·7123	·7157	·7190	·7224
-8 -7881 -7910 -7939 -7967 -7995 -8023 -8051 -8078 -8106 -8133 -9 -8159 -8186 -8212 -8238 -8264 -8289 -8315 -8340 -8365 -8389 1-0 -8413 -8438 -8461 -8485 -8508 -8531 -8554 -8577 -8599 -8621 1-1 -8643 -8665 -8686 -8708 -8729 -8749 -8770 -8790 -8810 -8830 1-2 -8849 -8869 -8888 -8907 -8925 -8944 -8962 -8980 -8880 -8830 1-3 -9032 -9049 -9066 -9082 -9099 -9115 -9147 -9162 -9171 1-4 -9192 -9207 -9222 -9236 -9251 -9265 -9279 -9292 -9306 -9319 1-5 -9332 -9345 -9573 -9522 -9595 -9515 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>·7549</td></th<>											·7549
-9											
1·0											
1·1 8643 8665 8686 8708 8729 8749 8770 8790 8810 8830 1·2 8849 8869 8888 8907 8925 8944 8962 8980 8997 9015 1·3 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177 1·4 9192 9207 9222 9236 9251 9265 9279 9292 9306 9319 1·5 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441 1·6 9452 9463 9474 9484 9495 9505 9515 9525 9525 9535 9545 1·7 9554 9564 9573 9582 9591 9599 9608 9616 9625 9633 1·8 9641 9649 9656 9664 9671 9678 9686 9693 9699 9706 1·9 9772 9778 9783 9788	.9	.8159	.8186	·8212	·8238	.8264	.8289	.8315	·8340	∙8365	·8389
1·1 8643 8665 8686 8708 8729 8749 8770 8790 8810 8830 1·2 8849 8869 8888 8907 8925 8944 8962 8980 8997 9015 1·3 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177 1·4 9192 9207 9222 9236 9251 9265 9279 9292 9306 9319 1·5 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441 1·6 9452 9463 9474 9484 9495 9505 9515 9525 9525 9535 9545 1·7 9554 9564 9573 9582 9591 9599 9608 9616 9625 9633 1·8 9641 9649 9656 9664 9671 9678 9686 9693 9699 9706 1·9 9772 9778 9783 9788	1.0	.0/12	.0420	.0461	.0405	.0500	0501	0554	0.577	0500	0601
1-2 -8849 -8869 -8888 -8907 -8925 -8944 -8962 -8980 -8997 -9015 1-3 -9032 -9049 -9066 -9082 -9099 -9115 -9131 -9147 -9162 -9177 1-4 -9192 -9207 -9222 -9236 -9251 -9265 -9279 -9292 -9306 -9319 1-5 -9332 -9345 -9357 -9370 -9382 -9394 -9406 -9418 -9429 -9441 1-6 -9452 -9463 -9474 -9484 -9495 -9505 -9515 -9525 -9535 -9545 1-7 -9554 -9564 -9573 -9582 -9591 -9599 -9608 -9616 -9625 -9633 1-8 -9641 -9649 -9656 -9664 -9671 -9678 -9686 -9693 -9699 -9706 1-9 -9712 -9778 -9783 -9788 -9793 -9784 -9850 -9850 -9851 -9857 -9850 -9850 -9850 <td></td>											
1.3											
1.4											
1.5											
1·6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 1·7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 1·8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 1·9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 2·0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 2·1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 2·2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 2·3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2·4 .9918	1 7	9192	9201	9444	9230	9231	9203	9219	9292	-9300	.9319
1·6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 1·7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 1·8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 1·9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 2·0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 2·1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 2·2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 2·3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2·4 .9918	1.5	-9332	·9345	·9357	9370	-9382	-0304	.9406	-0418	-0420	.0441
1.7											
1.8 -9641 -9649 -9656 -9664 -9671 -9678 -9686 -9693 -9699 -9706 1.9 -9713 -9719 -9726 -9732 -9738 -9744 -9750 -9756 -9761 -9767 2.0 -9772 -9778 -9783 -9788 -9793 -9798 -9803 -9808 -9812 -9817 2.1 -9821 -9826 -9830 -9834 -9838 -9842 -9846 -9850 -9854 -9857 2.2 -9861 -9864 -9868 -9871 -9875 -9878 -9881 -9884 -9887 -9890 2.3 -9893 -9896 -9898 -9901 -9904 -9906 -9909 -9911 -9913 -9916 2.4 -9918 -9920 -9922 -9927 -9929 -9931 -9932 -9934 -9936 2.5 -9938 -9940 -9941 -9943 -9945 -9964 <											
1·9											
2·0											
2·1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 2·2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 2·3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2·4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 2·5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 2·6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 2·7 .9965 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9973 .9981 2·9 .9981 .9982 .9982 .9983 .9984 .9985 .9985 .9986 .9986 3·0 .9987 .9987								,,,,,	3.00	3.01	3.01
2·1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 2·2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 2·3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2·4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 2·5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 2·6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 2·7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 2·9 .9981 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 3·0 .9987 .9987	2.0	.9772	·9778	·9783	·9788	·9793	·9798	·9803	·9808	.9812	.9817
2·2 ·9861 ·9864 ·9868 ·9871 ·9875 ·9878 ·9881 ·9884 ·9887 ·9890 2·3 ·9893 ·9896 ·9898 ·9901 ·9904 ·9906 ·9909 ·9911 ·9913 ·9916 2·4 ·9918 ·9920 ·9922 ·9925 ·9927 ·9929 ·9931 ·9932 ·9934 ·9936 2·5 ·9938 ·9940 ·9941 ·9943 ·9945 ·9946 ·9948 ·9949 ·9951 ·9952 2·6 ·9953 ·9955 ·9956 ·9957 ·9959 ·9960 ·9961 ·9962 ·9963 ·9964 2·7 ·9965 ·9966 ·9967 ·9968 ·9969 ·9970 ·9971 ·9972 ·9973 ·9974 2·8 ·9974 ·9975 ·9976 ·9977 ·9977 ·9978 ·9985 ·9986 ·9986 3·0 ·9987 ·9987 ·9988 ·9984 ·9985 ·9985 ·9993 ·9993 ·9993 ·9993 ·9993 ·9993 ·9995 ·9995 <td>2.1</td> <td>.9821</td> <td>·9826</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2.1	.9821	·9826								
2·3	2.2	.9861	-9864	·9868	·9871	·9875	·9878	·9881			
2·4	2.3	.9893	·9896	.9898	·9901	·9904	.9906	.9909			
2·6 ·9953 ·9955 ·9956 ·9957 ·9959 ·9960 ·9961 ·9962 ·9963 ·9964 2·7 ·9965 ·9966 ·9967 ·9968 ·9969 ·9970 ·9971 ·9972 ·9973 ·9974 2·8 ·9974 ·9975 ·9976 ·9977 ·9977 ·9978 ·9979 ·9980 ·9980 ·9981 2·9 ·9981 ·9982 ·9982 ·9983 ·9984 ·9984 ·9985 ·9985 ·9986 ·9986 3·0 ·9987 ·9987 ·9988 ·9988 ·9989 ·9989 ·9989 ·9990 ·9990 ·9990 3·1 ·9990 ·9991 ·9991 ·9991 ·9991 ·9992 ·9992 ·9992 ·9993 ·9993 ·9993 3·2 ·9993 ·9993 ·9994 ·9994 ·9994 ·9994 ·9995 ·9995 ·9995 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·99	2.4	·9918	·9920	.9922	·9925	.9927	.9929	.9931	.9932	.9934	.9936
2·6 ·9953 ·9955 ·9956 ·9957 ·9959 ·9960 ·9961 ·9962 ·9963 ·9964 2·7 ·9965 ·9966 ·9967 ·9968 ·9969 ·9970 ·9971 ·9972 ·9973 ·9974 2·8 ·9974 ·9975 ·9976 ·9977 ·9977 ·9978 ·9979 ·9980 ·9980 ·9981 2·9 ·9981 ·9982 ·9982 ·9983 ·9984 ·9984 ·9985 ·9985 ·9986 ·9986 3·0 ·9987 ·9987 ·9988 ·9988 ·9989 ·9989 ·9989 ·9990 ·9990 ·9990 3·1 ·9990 ·9991 ·9991 ·9991 ·9991 ·9992 ·9992 ·9992 ·9993 ·9993 ·9993 3·2 ·9993 ·9993 ·9994 ·9994 ·9994 ·9994 ·9995 ·9995 ·9995 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·99											
2·7 ·9965 ·9966 ·9967 ·9968 ·9969 ·9970 ·9971 ·9972 ·9973 ·9974 2·8 ·9974 ·9975 ·9976 ·9977 ·9977 ·9978 ·9979 ·9979 ·9980 ·9981 2·9 ·9981 ·9982 ·9982 ·9983 ·9984 ·9984 ·9985 ·9985 ·9986 ·9986 3·0 ·9987 ·9987 ·9988 ·9988 ·9989 ·9989 ·9989 ·9990 ·9990 ·9990 3·1 ·9990 ·9991 ·9991 ·9991 ·9992 ·9992 ·9992 ·9993 ·9993 ·9993 3·2 ·9993 ·9994 ·9994 ·9994 ·9994 ·9995 ·9995 ·9995 ·9995 3·3 ·9995 ·9995 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9997 3·4 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9995 ·9995 ·9995 ·99995 ·99995 ·9999	2.5	-9938	·9940	.9941	·9943	·9945	.9946	.9948	.9949	·9951	.9952
2·8 ·9974 ·9975 ·9976 ·9977 ·9977 ·9978 ·9979 ·9979 ·9980 ·9981 2·9 ·9981 ·9982 ·9982 ·9983 ·9984 ·9984 ·9985 ·9985 ·9986 ·9986 3·0 ·9987 ·9987 ·9988 ·9988 ·9989 ·9989 ·9989 ·9990 ·9990 3·1 ·9990 ·9991 ·9991 ·9991 ·9992 ·9992 ·9992 ·9992 ·9993 ·9993 ·9993 3·2 ·9993 ·9994 ·9994 ·9994 ·9994 ·9994 ·9995 ·9995 ·9995 3·3 ·9995 ·9995 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9995 ·9995 ·9995 ·9995 ·9995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 <td>2.6</td> <td>.9953</td> <td>·9955</td> <td>.9956</td> <td>·9957</td> <td>·9959</td> <td>·9960</td> <td>·9961</td> <td>·9962</td> <td>·9963</td> <td>·9964</td>	2.6	.9953	·9955	.9956	·9957	·9959	·9960	·9961	·9962	·9963	·9964
2·9	2.7	9965	·9966	·9967	·9968	·9969	·9970	.9971	.9972	·9973	.9974
3·0 ·9987 ·9987 ·9987 ·9988 ·9988 ·9989 ·9989 ·9989 ·9990 ·9990 ·9990 3·1 ·9990 ·9991 ·9991 ·9991 ·9992 ·9992 ·9992 ·9992 ·9993 ·9993 ·9993 3·2 ·9993 ·9993 ·9994 ·9994 ·9994 ·9994 ·9995 ·9995 ·9995 3·3 ·9995 ·9995 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9996 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9997 ·9998 ·9998 ·9997 ·9997 ·9998 ·9997 ·9997 ·9998 ·9997 ·9997 ·9998 ·9997 ·9997 ·9998 ·9998 ·9997 ·9997 ·9998 ·9998 ·9997 ·9997 ·9998 ·9998 ·9999 ·9995 ·9995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 ·99995 <td< td=""><td>2.8</td><td>·9974</td><td>·9975</td><td>·9976</td><td>·9977</td><td>·9977</td><td>.9978</td><td>.9979</td><td>.9979</td><td>∙9980</td><td>.9981</td></td<>	2.8	·9974	·9975	·9976	·9977	·9977	.9978	.9979	.9979	∙9980	.9981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.9	·9981	-9982	.9982	.9983	·9984	·9984	·9985	-9985	∙9986	.9986
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										-9993	.9993
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
x 1·282 1·645 1·960 2·326 2·576 3·090 3·291 3·891 4·417 φ(x) ·90 ·95 ·975 ·99 ·995 ·999 ·9995 ·99995 ·999995 ·999995											-9997
$\phi(x)$ ·90 ·95 ·975 ·99 ·995 ·9995 ·99995 ·99995	3.4	·9997	·9997	·9997	-9997	.9997	·9997	·9997	-9997	-9997	-9998
	x							3.29)1 ;	3.891	4.417
$2[1-\phi(x)]$ ·20 ·10 ·05 ·02 ·01 ·002 ·001 ·0001											
	$2[1-\phi(x)]$.20	·10	-05	·02	·01	·002	-00	1	-0001	·000001

