第1章

線形写像の階数

線形写像の像と列空間

ベクトル $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$ の張る空間の記号を用いると、ベクトルの張る空間と $\operatorname{Im} A$ に関する考察は次のようにまとめられる。

$$\operatorname{Im} A = \langle \boldsymbol{a}_1, \ldots, \boldsymbol{a}_n \rangle$$

つまり、A の列ベクトルが張る空間が $\operatorname{Im} A$ である。 このことから、 $\operatorname{Im} A$ を A の列空間と呼ぶこともある。

最 線形写像の像と表現行列の列空間の一致 線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の像 $\operatorname{Im} f$ は、f の表現行列の列ベクトルが張る空間である。

証明

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を $A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n)$ とするとき、 $\boldsymbol{v} \in \mathbb{R}^n$ に対して、

$$f(\boldsymbol{v}) = A\boldsymbol{v} = v_1\boldsymbol{a}_1 + v_2\boldsymbol{a}_2 + \cdots + v_n\boldsymbol{a}_n$$

なので、

$$\boldsymbol{u} \in \operatorname{Im} f$$
 $\iff \exists \boldsymbol{v} \in \mathbb{R}^n \ s.t. \ \boldsymbol{u} = f(\boldsymbol{v})$
 $\iff \exists v_1, \dots, v_n \in \mathbb{R} \ s.t. \ \boldsymbol{u} = v_1 \boldsymbol{a}_1 + \dots + v_n \boldsymbol{a}_n$
 $\iff \boldsymbol{u} \in \langle \boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n \rangle$

したがって、

$$\operatorname{Im} f = \operatorname{Im} A = \langle \boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n \rangle$$

が成り立つ。

上述の証明の

$$\boldsymbol{u} \in \operatorname{Im} f \Longleftrightarrow \exists \boldsymbol{v} \in \mathbb{R}^n \ s.t. \ \boldsymbol{u} = f(\boldsymbol{v})$$

という変形に着目すると、この定理は次のように線型方程式の文脈で言い換えられる。

 $oldsymbol{\$}$ 線形写像の像空間と方程式の解の存在 $oldsymbol{b} \in \mathbb{R}^m$ に対して

 $\boldsymbol{b} \in \operatorname{Im} A \iff$ 方程式 $A\boldsymbol{x} = \boldsymbol{b}$ が解を持つ

 $\mathbf{b} \in \mathbb{R}^m$ が $\operatorname{Im} A$ に属するかどうかを調べるためには階数による判定条件が使える。

線形写像の像空間の基底

線形写像の像空間は表現行列の列ベクトルによって張られるが、列ベクトルの集合は一般に は線型独立ではない。

像空間の基底を得るためには、列ベクトルの部分集合、たとえば主列ベクトルを考えるのが 自然である。

・・ 主列ベクトルによる像空間の基底の構成 行列 *A* の主列ベクトルの集合は Im *A* の基底である。

証明

「Todo 1: book: 行列と行列式の基礎 p97 定理 3.1.10]

線形写像の階数

次の定理は、行列の階数のさらに本質的な意味を明らかにし、行列の階数が行変形の仕方に よらずに決まることを念押しするような定理である。

rank A = dim Im A

証明

主列ベクトルによる像空間の基底の構成で示したように、A の主列ベクトル $oldsymbol{a}_{i_1},oldsymbol{a}_{i_2},\ldots,oldsymbol{a}_{i_r}$ は $\operatorname{Im} A$ の基底を成す。

よってその個数 $r = \operatorname{rank} A$ は $\operatorname{Im} A$ の次元である。

この定理から、線形写像に対して、像空間の次元をその階数と定める。

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とするとき、f の<mark>階数</mark>を rank $f=\dim \operatorname{Im} f$

と定義する。

核空間と斉次形方程式の解空間

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を A とするとき、

$$\operatorname{Ker} f = \{ \boldsymbol{v} \in \mathbb{R}^n \mid A\boldsymbol{v} = \boldsymbol{o} \}$$

と定めると、 $f(\boldsymbol{v}) = A\boldsymbol{v}$ という関係から、 $\operatorname{Ker} f$ と $\operatorname{Ker} A$ は同じものを指す。

Ker A すなわち Ker f とは、f によって o に写ってしまうような、つまり Ax = o となるような x すべての集合である。

つまり、Ker A とは、斉次形の方程式 Ax = o の解空間そのものである。

核空間と一般解のパラメータ表示

解のパラメータ表示の再解釈で述べたように、Ax = b の解をすべて見つけるには、

- 1. 1 つの解(特殊解) **な**0 を見つける
- 2. Ax = 0 の一般解を求める
- 3. それらの和が Ax = b の一般解となる

という考え方を使うことができた。

このことを Ker A を用いて定式化できる。

* 特殊解と核の元による別解の構成 \boldsymbol{x}_0 が $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ の解であるとき、 $\operatorname{Ker} \boldsymbol{A}$ に属する任意のベクトル \boldsymbol{u} を用いて、 $\boldsymbol{x}_0 + \boldsymbol{u}$ もまた $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$ の解となる。

証明

 \mathbf{x}_0 が $A\mathbf{x} = \mathbf{b}$ の解であることから、

$$A\mathbf{x}_0 = \mathbf{b}$$

 $\exists c, u \in \operatorname{Ker} A \exists b,$

よって、

$$A(\boldsymbol{x}_0 + \boldsymbol{u}) = A\boldsymbol{x}_0 + A\boldsymbol{u}$$
$$= A\boldsymbol{x}_0 + \boldsymbol{o}$$
$$= \boldsymbol{b}$$

となり、 $\mathbf{x}_0 + \mathbf{u}$ もまた $A\mathbf{x} = \mathbf{b}$ の解であることがわかる。

そして、どんな解もこの方法で作ることができる。

・ 特殊解と核空間による一般解の構成 $A\mathbf{x} = \mathbf{b}$ を満たす 1 つの解 \mathbf{x}_0 が見つかれば、 $A\mathbf{x} = \mathbf{b}$ の一般解は、 $A\mathbf{x} = \mathbf{o}$ の一般解 \mathbf{u} を用いて、 $\mathbf{x}_0 + \mathbf{u}$ と表される。

証明

 $A\mathbf{x} = \mathbf{b}$ の 1 つの解を \mathbf{x}_0 、もう 1 つの解を \mathbf{x}_1 とおくと、

$$A\boldsymbol{x}_0 = \boldsymbol{b}, A\boldsymbol{x}_1 = \boldsymbol{b}$$

が成り立つので、

$$A\boldsymbol{x}_1 - A\boldsymbol{x}_0 = \boldsymbol{b} - \boldsymbol{b} = \boldsymbol{o}$$

 $\therefore A(\boldsymbol{x}_1 - \boldsymbol{x}_0) = \boldsymbol{o}$

となり、 $\mathbf{x}_1 - \mathbf{x}_0$ は $A\mathbf{x} = \mathbf{o}$ の解である。

ここで、 $A\mathbf{x} = \mathbf{o}$ の一般解 \mathbf{u} が得られているなら、 $\mathbf{x}_1 - \mathbf{x}_0$ も \mathbf{u} で表すことができる。

したがって、 $\mathbf{x}_0 + \mathbf{u}$ は $A\mathbf{x} = \mathbf{b}$ のすべての解を網羅する。

解が1つ見つかれば、その解 \boldsymbol{x}_0 は固定して、 $\ker A$ に属するベクトル \boldsymbol{u} をいろいろ変えることにより、 $\boldsymbol{x}_0 + \boldsymbol{u}$ ですべての解が得られる。

核空間の基底と基本解

「**u** をいろいろ変えることにより」という部分をもう少し精密に述べよう。

いろいろ動かしてすべての解を網羅するには、解空間 $\ker A$ の基底が必要である。すなわち、 \mathbf{u} は $\ker A$ の基底 \mathbf{u}_i を用いた次のような形で表される。

$$\boldsymbol{u} = c_1 \boldsymbol{u}_1 + \cdots + c_d \boldsymbol{u}_d$$

ここで、 c_1, \ldots, c_d は任意であるので、この式は斉次形方程式 Ax = o の基本解のパラメータ表示そのものである。

 $oldsymbol{\$}$ 斉次形方程式の基本解と核空間の基底 A を $m \times n$ 型行列とし、 $oldsymbol{u}_1, \ldots, oldsymbol{u}_d$ を $Aoldsymbol{x} = oldsymbol{o}$ の基本解とするとき、 $\{oldsymbol{u}_1, \ldots, oldsymbol{u}_d\}$ は $Ker\ A$ の基底である。

言い換えると、 $\operatorname{Ker} A$ の元 \boldsymbol{u} は、 $\operatorname{A}\boldsymbol{x} = \boldsymbol{o}$ の基本解 $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_d$ を使ってパラメータ表示できる。

パラメータの空間と座標部分空間

つまり、基本解 $m{u}_1,\ldots,m{u}_d$ を基準として固定すれば、 $\ker A$ の元を 1 つ指定することは、パラメータの値の組

$$\begin{pmatrix} t_1 \\ \vdots \\ t_d \end{pmatrix} \in \mathbb{R}^d$$

を指定することと同じである。

斉次形方程式 $A\boldsymbol{x} = \boldsymbol{o}$ の主変数を x_{i_1}, \ldots, x_{i_r} 、自由変数を x_{j_1}, \ldots, x_{j_d} とすると、解のパラメータの空間は座標部分空間 $\mathbb{R}^{\{j_1,\ldots,j_d\}}$ である。

そして、そのパラメータ付けは、

$$\mathbb{R}^{\{j_1,\ldots,j_d\}}
igesize \sum_{k=1}^d t_k oldsymbol{e}_{j_k} \longmapsto \sum_{k=1}^d t_k oldsymbol{u}_k \in \operatorname{\mathsf{Ker}} A$$

によって与えられる。

核空間の次元と解の自由度

 $m{b} = m{o}$ でない一般の連立方程式 $m{A} m{x} = m{b}$ においても、基本解の個数 $m{d}$ は解の自由度であり、 $m{u}_1, \ldots, m{u}_d$ は Ker $m{A}$ の基底をなすため、

Ker A の次元は、Ax = b の解の自由度と一致する

ということがいえる。

次元定理

連立方程式 Ax = b の解の自由度は、

解の自由度 = (変数の個数) -
$$rank(A)$$

で表された

この関係は、b = 0、すなわち斉次形の場合にも成り立つ

そこで、変数の個数をnとおくと、次のようにも書き換えられる

$$\operatorname{rank}(A) = n - (A\boldsymbol{x} = \boldsymbol{0} \,$$
の解の自由度)

線型方程式と階数に関するこの関係を、線形写像と次元の言葉で言い換えたい

次のような線形写像

を考えると、

- 事像 f は、行列 A に対応する
- \bullet 変数の個数は、 \boldsymbol{x} の動く空間 \mathbb{R}^n の次元 n に対応する
- Ax = 0 の解の自由度は、写像 f で 0 になってしまうものの次元に対応する

という関係が読み取れる

ここで、写像 f で $\mathbf{0}$ になってしまう $\frac{\mathbf{k}}{\mathbf{k}}$ するものは、写像 f の $\frac{\mathbf{k}}{\mathbf{k}}$ Ker(f) であるこのことを用いて関係式を表現し直すと、次のようになる

$$rank(f) = n - dim Ker(f)$$

証明

A を f の表現行列とし、 $\mathrm{rank}(f)=r$ とする このとき、 $\mathrm{Ker}(f)$ の次元は $A \mathbf{x}=\mathbf{0}$ の解空間の自由度 n-r と一致するため、

$$\dim \operatorname{Ker}(f) = n - r$$

$$= n - \operatorname{rank}(f)$$

$$\therefore \operatorname{rank}(f) = n - \dim \operatorname{Ker}(f)$$

となり、定理が成り立つ

核空間の次元による正則の判定

次元定理から、次のような正則判定法が得られる。

ightharpoonup 核空間の次元による正則判定 n 次正方行列 A に対して、

$$A$$
 が正則行列 \iff $\operatorname{Ker} A = \{o\}$ \iff $\operatorname{dim} \operatorname{Ker} A = 0$

証明

階数による正則判定より、A が正則であることは、

rank A = n

であることと同値である。

ここで、次元定理より、

 $\operatorname{rank} A + \dim \operatorname{Ker} A = n$

rank A = n を代入し、整理すると、

 $\dim \operatorname{Ker} A = 0$

が得られる。

階数の性質

3 2 つの行列の階数の和 A, B を同じ型の行列とするとき、

 $rank(A + B) \le rank(A) + rank(B)$

証明

[Todo 2: book: 行列と行列式の基礎 p44 問 1.15]

Zebra Notes

Туре	Number
todo	2