PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-055343

(43) Date of publication of application: 27.02.1996

(51)Int.CI.

G11B 7/007 G11B 7/00 G11B 20/12

(21)Application number: 07-139651

(71)Applicant: MATSUSHITA ELECTRIC IND

CO LTD

(22)Date of filing:

06.06.1995

(72)Inventor: MORIYA MITSURO

YAMAGUCHI OSAMU

FUKUSHIMA YOSHIHISA

HIROSE TSUNEO

(30)Priority

Priority number: 06125086

Priority date: 07.06.1994

Priority country: JP

(54) OPTICAL INFORMATION RECORDING CARRIER AND OPTICAL INFORMATION RECORDING METHOD AS WELL AS OPTICAL INFORMATION REPRODUCING DEVICE UTILIZING THE SAME

(57)Abstract:

PURPOSE: To execute stable tracking control by including plural continuously arranged sectors in tracks and recording the information scrambled in accordance with the initial value meeting the value of the identification information for identifying sector positions in these sectors.

CONSTITUTION: User data is sent from a user data delivery device 501, such as magnetic disk, to an address imparting circuit 502, where the data is segmented by every 2048B and the information on sector addresses and sub-codes is imparted to the respective tops. The data is then sent to an ECC conversion circuit 503. This ECC conversion circuit 503 converts the data to code words and transfers the data successively from above the patterns of the converted code words to a scramble circuit 504. The

| 577 | 332 | 5520 | 7ドッコ | 7トッコ |

data is subjected to scramble processing and randomized in the circuit 504. This data is sent to a modulation circuit 505. This modulation circuit 505 modulates the data by a determined modulation system and sends the data to a frame for matter circuit 506,

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-55343

(43)公開日 平成8年(1996)2月27日

(51) lnt.Cl. ⁶		識別記号	庁内整理番号	FΙ	·	技術表示簡所
G11B	7/007		9464-5D			
	7/00	Q	9464-5D		•	
	20/12		9295-5D			

審査請求 有 請求項の数22 OL (全 17 頁)

(21)出願番号	特膜平7-139651	(71) 出願人 000005821
(22)出顧日	平成7年(1995)6月6日	松下電器產業株式会社 大阪府門真市大字門真1006番地
		(72) 発明者 守屋 充郎
(31)優先権主張番号	特膜平6-125086	大阪府門真市大字門真1006番地 松下電
(32)優先日	平6 (1994) 6月7日	産業株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者 山口 俊
(00) 60,6112312		大阪府門真市大字門真1006番地 松下電
		産業株式会社内
	•	(72)発明者 福島 能久
		大阪府門真市大字門真1006番地 松下電
		産業株式会社内
		(74)代理人
•		最終頁に統

(54)【発明の名称】 光学式情報記録担体及び光学式情報記録方法、ならびにそれらを利用した光学式情報再生装置

(57)【要約】

【目的】 隣接するトラック間での信号相関を低減してクロストークの影響をランダム化することによって、トラックピッチを狭めてもトラックずれ信号に悪影響が生じずに安定したトラッキング制御が行える光学式情報記録担体を提供する。

【構成】 光学式記録担体上に、セクタ単位に分割された情報が記録されているトラックがスパイラル状または同心円状に形成されている。1セクタは複数のフレームより構成され、1つのフレームはリシンクパターン、フレームアドレス、情報領域、ポストアンブルより構成される。第1フレームの情報領域にはセクタの位置を識別する識別情報が記録されている。各フレームの情報領域には、この識別情報の値に基づいてスクランブルされた情報が記録されている。

【特許請求の範囲】

【請求項1】 円盤状の基板と、

該基板の表面にスパイラル状または同心円状に形成された少なくとも一つのトラックと、を備えた光学式情報記録担体であって、

該トラックは複数の連続的に配置されたセクタを含み、 該複数のセクタには、セクタ位置を識別する識別情報の 値に応じた初期値に基づいてスクランブルされた情報が 記録されている光学式情報記録担体。

【請求項2】 前記初期値は、周方向に連続する所定個 10 のセクタ毎に変えられている請求項1の光学式情報記録 担体。

【請求項3】 前記初期値は、2ⁿ個(nは正の<u>整数</u>) のセクタ毎に変えられている請求項2の光学式情報記録 担体。

【請求項4】 前記初期値は、最内周トラックの1周あたりのセクタ数よりも少ない数のセクタ毎に変えられている請求項2の光学式情報記録担体。

【請求項5】 前記トラックがスパイラル状に形成されており、該トラックに含まれる前記複数のセクタのそれ 20 ぞれには前記セクタ位置を識別する連続的なセクタ番号が付与されていて、該セクタ番号を前記識別情報として利用する請求項1の光学式情報記録担体。

【請求項6】 前記初期値は、周方向に連続する所定個のセクタ毎に変えられている請求項5の光学式情報記録担体。

【請求項7】 前記初期値は、2ⁿ個(nは正の整数) のセクタ毎に変えられている請求項6の光学式情報記録 担体。

【請求項8】 前記初期値は、最内周トラックの1周あ 30 たりのセクタ数よりも少ない数のセクタ毎に変えられている請求項6の光学式情報記録担体。

【請求項9】 円盤状の基板の表面にスパイラル状または同心円状に形成された少なくとも一つのトラックに情報を記録する光学式情報記録方法であって、

該トラックは複数の連続的に配置されたセクタを含み、 該方法は、

セクタ位置を識別する識別情報の値に応じた初期値に基 づいて情報をスクランブルするスクランブル工程と、

該複数のセクタに該スクランブルされた情報を記録する 記録工程と、を包含する光学式情報記録方法。

【請求項10】 前記初期値は、周方向に連続する所定 個のセクタ毎に変えられている請求項9の光学式情報記 録方法。

【請求項11】 前記初期値は、25個(nは正の整数)のセクタ毎に変えられている請求項10の光学式情報記録方法。

【請求項12】 前記初期値は、最内局トラックの1周 あたりのセクタ数よりも少ない数のセクタ毎に変えられ ている請求項10の光学式情報記録方法。 【請求項13】 前記スクランブル工程は、

前記情報を前記複数のセクタに対応して分割する工程 と、

2

該分割された情報のそれぞれを、前記識別情報の値に応じた前記初期値に基づいてスクランブルする工程と、

該識別情報と該スクランブルされた情報とを誤り訂正可 能な符号語に変換する工程と、を包含し、

前記記録工程では、該符号語に変換された情報が該複数 のセクタのそれぞれに記録されている請求項9の光学式 情報記録方法。

【請求項14】 前記スクランブル工程は、

前記情報を前記複数のセクタに対応して分割する工程と

前記識別情報と該分割された情報とを誤り訂正可能な符 号語に変換する工程と、

該符号語のそれぞれを、該識別情報の値に応じた前記初 期値に基づいてスクランブルする工程と、を包含し、

前記記録工程では、該スクランブルされた符号語の形式 で該情報が該複数のセクタのそれぞれに記録されている 請求項9の光学式情報記録方法。

【請求項15】 前記トラックがスパイラル状に形成されており、該トラックに含まれる前記複数のセクタのそれぞれには前記セクタ位置を識別する連続的なセクタ番号が付与されていて、該セクタ番号に対応する値を初期値とするシフトレジスタ系列に基づいて前記情報をスクランブルする請求項9の光学式情報記録方法。

【請求項16】 前記初期値は、周方向に連続する所定 個のセクタ毎に変えられている請求項15の光学式情報 記録方法。

【請求項17】 前記初期値は、2ⁿ個(nは正の整数)のセクタ毎に変えられている請求項16の光学式情報記録方法。

【請求項18】 前記初期値は、最内周トラックの1周 あたりのセクタ数よりも少ない数のセクタ毎に変えられ ている請求項16の光学式情報記録方法。

【請求項19】 前記スクランブル工程は、

前記情報を前記複数のセクタに対応して分割する工程と、

該分割された情報のそれぞれを、前記識別情報の値に応じた前記初期値に基づいてスクランブルする工程と、

該識別情報と該スクランブルされた情報とを誤り訂正可 能な符号語に変換する工程と、を包含し、

前記記録工程では、該符号語に変換された情報が該複数 のセクタのそれぞれに記録されている請求項15の光学 式情報記録方法。

【謝求項20】 前記スクランブル工程は、 前記情報を前記複数のセクタに対応して分割する工程

と、

的記載別情報と該分割された情報とを誤り訂正可能な符 50 号語に変換する工程と、

-

. . .

. .

該符号語のそれぞれを、該識別情報の値に応じた前記初期値に基づいてスクランブルする工程と、を包含し、前記記録工程では、該スクランブルされた符号語の形式で該情報が該複数のセクタのそれぞれに記録されている請求項15の光学式情報記録方法。

【請求項21】 円盤状の基板の表面にスパイラル状または同心円状に形成された少なくとも一つのトラックを備える光学式情報記録担体に記録されている情報を再生する光学式記録再生装置であって、

該トラックは複数の連続的に配置されたセクタを含み、 該情報は、該複数のセクタに、セクタ位置を識別する識 別情報の値に応じた初期値に基づいてスクランブルされ た形式で記録されていて、該装置は、

該光学式記録担体から再生された再生信号を復調して復 調信号を生成する復調手段と、

該復調信号より該識別情報を読み取る識別情報読み取り 手段と、

該識別情報読み取り手段で読み取った該識別情報に対応 した値を生成する初期値発生手段と、

該復調信号に基づいてデスクランブルを開始するタイミ 20 ングを示すタイミング信号を発生するタイミング信号発 牛手段と、

該タイミング信号に応答して、該初期値発生手段が生成 した値を該初期値としてデスクランブルのための符号を 生成するデスクランブル符号発生器と、

該デスクランブル符号発生器が生成する符号に基づいて 該復調信号をデスクランブルするデスクランブル手段 と、を備える光学式情報再生装置。

【請求項22】 円盤状の基板の表面にスパイラル状または同心円状に形成された少なくとも一つのトラックを 30 備える光学式情報記録担体に記録されている情報を再生する光学式記録再生装置であって、

該トラックは複数の連続的に配置されたセクタを含み、 該情報は、該複数のセクタに、セクタ位置を識別する識 別情報の値に応じた初期値に基づいてスクランブルされ た形式で記録されていて、該装置は、

該光学式記録担体から再生された再生信号を復調して復 調信号を生成する復調手段と、

該復調信号に含まれる誤りを訂正して訂正済み情報を生 成する誤り訂正手段と、

該訂正済み情報から該識別情報を読み取る識別情報読み 取り手段と、

該識別情報読み取り手段で読み取った該識別情報に対応 した値を生成する初期値発生手段と、

該訂正済み情報に基づいてデスクランブルを開始するタイミングを示すタイミング信号を発生するタイミング信号を発生するタイミング信号発生手段と、

該タイミング信号に応答して、該初期値発生手段が生成 した値を該初期値としてデスクランブルのための符号を 生成するデスクランブル符号発生器と、 該デスクランブル符号発生器が生成する符号に基づいて 該訂正済み情報をデスクランブルするデスクランブル手 段と、を備える光学式情報再生装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、収束された光ビームを 照射して情報の読み取りを行う光学式情報記録担体及び 光学式情報記録方法、並びにそれらを利用した光学式情 報再生装置に関する。

10 [0002]

【従来の技術】近年、再生専用の光学式情報記録担体 (以下、記録担体と呼ぶ)は、大容量のデータを保持 し、再生できることから、音声情報データ・映像情報デ ータ等の各種情報データの媒体として重要な地位を占め つつある。記録担体のさらなる大容量化、あるいは記録 担体を使用した光学式情報再生装置の小型化が求められ ており、これらの要求を満たすためには、記録担体上に おける情報の記録密度をさらに向上させる必要がある。

【0003】従来の記録担体では、円盤状の樹脂基板の表面にピットよりなる情報トラック(以下、単にトラックと称する)がスパイラル状あるいは同心円状に形成されている。さらに、トラックが設けられている基板の表面(情報担体面という)の上には、スパッタリング等の手法で、アルミニウム等からなる反射膜が設けられている。なお、以下の説明では、スパイラル状の1本のトラックであっても、記録担体の中心から異なった半径位置にある部分に言及する場合には、簡単のために複数のトラックとして扱う。

[0004] この種の記録担体から情報を再生するには、半導体レーザから発生した光ビームを記録担体に照射し、その情報担体面上で収束させる。記録担体上の光ビームがトラック上に位置するように制御するトラッキング制御を実行しながら、記録担体からの反射光を検知する。反射光の光量は、記録担体上に情報に対応して形成されたビットによって変化するので、その光量の変化を検出することによって、記録されている情報の読み取りを行う。

[0005] トラッキング制御の制御信号、すなわち記録担体上の光ビームとトラックとの位置ずれ(トラックずれという)に対応したトラックずれ信号の検出方法としては、位相差法及び3ビーム法が知られている。 [0006] このうち、位相差法は、検出面においてトコック原方のにそって十字に4分割し

ラック方向及びトラック幅方向にそって十字に4分割して配置された光検出器で記録担体からの反射光を受光し、相対する検出器の出力の和信号の位相差より、トラックずれ信号を検出する。位相差法は、例えば、特別昭52-93222号公報や特別昭62-20145号公報に開示されている。

【0007】また、3ビーム法では、読み取り用ビーム 50 及び2つの補助ビームの計3つの光ビームを記録担体上 に照射し、記録担体からの反射光を光検出器でそれぞれ 検出する。そして、2つの補助ビームの反射光の光量差 より、トラックずれ信号を検出する。3ビーム法は、例 えば、特公昭53-13123号公報に開示されてい る。

[0008]

【発明が解決しようとする課題】記録担体上の情報記録 密度は、トラックのピッチ、及びトラック方向の情報密 度(すなわち情報の線密度)で決まる。しかしながら、 トラックのピッチを狭くすると、隣接するトラックから 10 のクロストークが増大する。特に、あるトラックに記録 されている信号と、それに隣接するトラックに記録され ている信号との間の相関性が強いと、トラックずれ信号 に疑似的な信号が発生して、トラッキング制御が安定し ないことがある。例えば、ピットが同じ空間周波数で数 周のトラックに渡って記録されている場合には、光ビー ムが位置しているトラックの信号と両隣接トラックに記 録されている信号との間で相関性が非常に強くなり、隣 接トラックからのクロストークによりトラックずれ信号 が乱され、トラッキング制御が不安定となる。

【0009】記録担体上にディジタル画像を記録する場 合を考えると、記録すべき情報には静止画像と動画像と がある。動画像を記録する場合には、記録される情報は 時間と共に様々に変化するので問題は発生しない。しか し、静止画像を記録する場合には、同じ画像(同じ情 報)が数周のトラックに渡って記録されることがある。 その場合には、隣接するトラック間でお互いに相関の強 い信号が記録されることになり、そこでトラッキング制 御が不安定となる。

【0010】コンピュータ等のデータを記録する場合を 30 考えると、記録担体の外周部あるいは内周部の数周分の トラックが、一般にコントロール領域として使用され る。コントロール領域に記録されるコントロールデータ は、記録担体の記録内容に関する情報を含んでいる。こ のコントロール領域において、情報が記録されない空き 領域には、例えば16進表示で「FF」等のデータが一 様に記録される。この場合にも、同じ情報が数周のトラ ックに渡って記録されることがあり、隣接するトラック 間でお互いに相関の強い信号が記録されて、その箇所で トラッキング制御が不安定となる。

【0011】トラッキング制御の制御帯域は一般的に数 k H z 程度であり、この制御帯域内で相関性の強い場所 が存在すると、そこでトラッキング制御が乱れる。例え ば、記録担体の回転数が1800rpmである場合、半 径35mmの位置では、数mmに渡って相関の強い場所 が存在するとトラッキング制御が乱れる。

【00】2】本発明は上記課題を解決するためになされ たものであり、その目的は、トラックピッチを狭めても 良好なトラックずれ信号が得られる光学式情報記録担体 及び光学式情報記録方法、並びにそれらを使用した光学 50

式情報再生装置を提供することである。

[0013]

【課題を解決するための手段】本発明の光学式情報記録 担体は、円盤状の基板と、該基板の表面にスパイラル状 または同心円状に形成された少なくとも一つのトラック と、を備えた光学式情報記録担体であって、該トラック は複数の連続的に配置されたセクタを含み、該複数のセ クタには、セクタ位置を識別する識別情報の値に応じた 初期値に基づいてスクランブルされた情報が記録されて おり、そのことにより上記目的が達成される。

【0014】ある実施例では、前記トラックがスパイラ ル状に形成されており、該トラックに含まれる前記複数 のセクタのそれぞれには前記セクタ位置を識別する連続 的なセクタ番号が付与されていて、該セクタ番号を前記 識別情報として利用する。

【0015】他の実施例では、前記初期値は、周方向に 連続する所定個のセクタ毎に変えられている。

【0016】さらに他の実施例では、前記初期値は、2 n個 (nは正の整数) のセクタ毎に変えられている。

【0017】さらに他の実施例では、前記初期値は、最 20 内周トラックの1周あたりのセクタ数よりも少ない数の セクタ毎に変えられている。

【0018】本発明の光学式情報記録方法は、円盤状の 基板の表面にスパイラル状または同心円状に形成された 少なくとも一つのトラックに情報を記録する光学式情報 記録方法であって、該トラックは複数の連続的に配置さ れたセクタを含み、該方法は、セクタ位置を識別する識 別情報の値に応じた初期値に基づいて情報をスクランブ ルするスクランブル工程と、該複数のセクタに該スクラ ンブルされた情報を記録する記録工程と、を包含してお り、そのことにより上記目的が達成される。

【0019】ある実施例では、前記トラックがスパイラ ル状に形成されており、該トラックに含まれる前記複数 のセクタのそれぞれには前記セクタ位置を識別する連続 的なセクタ番号が付与されていて、該セクタ番号に対応 する値を初期値とするシフトレジスタ系列に基づいて前 記情報をスクランブルする。

【0020】他の実施例では、前記初期値は、周方向に 辿続する所定個のセクタ毎に変えられている。

【0021】さらに他の実施例では、前記初期値は、2 11個 (nは正の整数) のセクタ毎に変えられている。

40

【0022】さらに他の実施例では、前記初期値は、最 内周トラックの1周あたりのセクタ数よりも少ない数の セクタ毎に変えられている。

【0023】さらに他の実施例では、前記スクランブル 工程は、前記情報を前記複数のセクタに対応して分割す る工程と、該分割された情報のそれぞれを、前記賦別情 報の値に応じた前記初期値に基づいてスクランブルする 工程と、該識別情報と該スクランブルされた情報とを誤 り訂正可能な符号語に変換する工程と、を包含し、前記

記録工程では、該符号語に変換された情報が該複数のセクタのそれぞれに記録されている。

【0024】さらに他の実施例では、前記スクランブル工程は、前記情報を前記複数のセクタに対応して分割する工程と、前記識別情報と該分割された情報とを誤り訂正可能な符号語に変換する工程と、該符号語のそれぞれを、該識別情報の値に応じた前記初期値に基づいてスクランブルする工程と、を包含し、前記記録工程では、該スクランブルされた符号語の形式で該情報が該複数のセクタのそれぞれに記録されている。

【0025】本発明の光学式情報再生装置は、円盤状の 基板の表面にスパイラル状または同心円状に形成された 少なくとも一つのトラックを備える光学式情報記録担体 に記録されている情報を再生する光学式記録再生装置で あって、該トラックは複数の連続的に配置されたセクタ を含み、該情報は、該複数のセクタに、セクタ位置を識 別する識別情報の値に応じた初期値に基づいてスクラン ブルされた形式で記録されていて、該装置は、該光学式 記録担体から再生された再生信号を復調して復調信号を 生成する復調手段と、該復調信号より該識別情報を読み 取る識別情報読み取り手段と、該識別情報読み取り手段 で読み取った該識別情報に対応した値を生成する初期値 発生手段と、該復調信号に基づいてデスクランブルを開 始するタイミングを示すタイミング信号を発生するタイ ミング信号発生手段と、該タイミング信号に応答して、 該初期値発生手段が生成した値を該初期値としてデスク ランブルのための符号を生成するデスクランブル符号発 生器と、該デスクランブル符号発生器が生成する符号に 基づいて該復調信号をデスクランブルするデスクランブ ル手段と、を備えており、そのことにより上記目的が達 30 成される。

【0026】本発明の光学式情報再生装置は、円盤状の 基板の表面にスパイラル状または同心円状に形成された 少なくとも一つのトラックを備える光学式情報記録担体 に記録されている情報を再生する光学式記録再生装置で あって、該トラックは複数の連続的に配置されたセクタ を含み、該情報は、該複数のセクタに、セクタ位置を談 別する識別情報の値に応じた初期値に基づいてスクラン ブルされた形式で記録されていて、該装置は、該光学式 記録担体から再生された再生信号を復調して復調信号を 生成する復調手段と、該復調信号に含まれる誤りを訂正 して訂正済み情報を生成する誤り訂正手段と、該訂正済 み情報から該識別情報を読み取る識別情報読み取り手段 と、該識別情報読み取り手段で読み取った該識別情報に 対応した値を生成する初期値発生手段と、該訂正済み情 報に基づいてデスクランブルを開始するタイミングを示 すタイミング信号を発生するタイミング信号発生手段 と、該タイミング信号に応答して、該初期値発生手段が 生成した値を該初期値としてデスクランブルのための符 号を生成するデスクランブル符号発生器と、該デスクラ ンブル符号発生器が生成する符号に基づいて該訂正済み 情報をデスクランブルするデスクランブル手段と、を備 えており、そのことにより上記目的が達成される。 【0027】

8

【作用】本発明の光学式情報記録担体、光学式情報記録方法及び光学式情報再生装置では、円盤状の基板の表面にスパイラル状または同心円状に形成された少なくともトラックに含まれる複数のセクタに、セクタ位置を識別する識別情報の値に応じた初期値に基づいてスクランブルルされた情報を記録する。これによって、スクランブル処理が施されてランダム化されたデータが記録担体上に記録される。隣接するトラック間にはお互いに異なったデータが記録されることになるので、それらの間での信号の相関が低減される。このため、クロストークの影響がランダム化されてトラックずれ信号に与える影響が低減され、トラックピッチを狭めても安定したトラッキング制御を行うことができる。

[0028] 情報のスクランブル化に際して使用する識別情報としては、例えば、複数のセクタのそれぞれに付与されているセクタ番号を使用することができる。セクタ番号は、データの記録に際して必然的に必要になるものであるので、識別情報として容易に使用できる。また、識別情報を生成するための回路などをあらためて設ける必要がない。

【0029】スクランブル化の際の初期値を周方向に連続する所定数のセクタ毎に変えれば、同じ内容のデータを連続して記録する場合でも、スクランブル処理が施されてランダム化されたデータが記録担体上に記録される。

[0030] 初期値を2ⁿ個(nは正の整数)のセクタ毎に変えれば、初期値発生回路の構成を簡略化できる。 [0031] 初期値を、最内周トラックの1周あたりのセクタ数よりも少ない数のセクタ毎に変えれば、最内周部に同じ内容の情報が連続的に記録される場合であっても、実際に記録されるデータが確実にランダム化される。

【0032】スクランブルされた情報の記録にあたって、まず情報を複数のセクタに対応して分割し、分割された情報のそれぞれを識別情報の値に応じた初期値に基づいてスクランブル化した後に、識別情報とスクランブルされた情報とを誤り訂正可能な符号語に変換してもよい。この場合には、符号語に変換された情報が複数のセクタのそれぞれに記録される。これにより、光学式情報記録担体から情報を読み取る際に、エラー訂正を行った後にアドレスを読み取るので、アドレスの読み取りに要する時間が若干投くなるものの、ドロップアウト等によって情報にエラーが生じても正しく訂正される。従って、極めて信頼性よくアドレスを読み取ることができ、確実にデスクランブルすることができる。

【0033】あるいは、スクランブルされた情報の記録

50

にあたって、情報を複数のセクタに対応して分割した後 に、スクランブル処理に先立って識別情報と分割された 情報とを誤り訂正可能な符号語に変換し、得られた符号 語のうち識別情報を除いた部分を、それぞれの識別情報 の値に応じた初期値に基づいてスクランブル化してもよ い。これにより、光学式情報記録担体から情報を読み取 る際に、復調を行うだけでアドレスを読み取ることがで き、従って高速な検索が行え、アドレスを読みとるのに 大容量のメモリを必要としない。

[0034]

【実施例】

(実施例1)以下、図1~10を参照して、本発明の第 1の実施例を説明する。

【0035】図1は、本発明の記録担体の概略平面図で ある。円盤状の記録担体101の表面上には、ピットの 形態で情報が記録されたトラック102がスパイラル状 に設けられている。情報は、トラック102の上の単位 長さ当りの情報密度、すなわち線密度が記録担体101 上の半径方向の位置に関係なく一定となるようなCLV (Constant Linear Velocity) 方式で記録されている。 なお、先にも述べたように、スパイラル状の1本のトラ ックであっても、記録担体の中心から異なった半径位置 にある部分に言及する場合には、簡単のために複数のト ラックとして扱う。

【0036】記録担体101上のトラック102に記録 されている情報のフォーマットについて、図2(a)~ (d)を参照して詳細に説明する。

【0037】図2(a)はトラックフォーマット図であ る。トラック102には、それぞれが同じフォーマット で情報を記録している複数のセクタ(S1、S2、S3、 ……、S_n、S_{n+1}、……)が連続して形成されている。 【0038】図2(b)は、1つのセクタ(例えば、第 1 番目のセクタ S1) のフォーマットを示す。1 セクタ は計60のフレームFR01~FR60よりなり、それ ぞれのフレームは、再生時にフレーム同期をとるための リシンクマーク領域RSO1~RS60、フレーム位置 を識別するためのフレームアドレス領域FAOI~FA 60、情報領域 INFO1~ INF60、及びポストア ンブル領域PAO1~PA60より構成されている。リ シンクマーク領域RS01~RS60のそれぞれ及びフ レームアドレス領域FA01~FA60のそれぞれの容 **量は、いずれも情報領域1NF01~1NF60のデー** タに換算して1B (バイト) の長さである。また、情報 領域 J N F O J ~ J N F 6 O のそれぞれの容量は4 O B である。

【0039】 ポストアンブル領域PA01~PA60に は多数のピットを設けてもよいが、典型的には1~2個 のピットを形成する。例えば、ランレングスリミテッド コードとして知られているRLL (1,7)変調方式 (8 ビットのデータを 1 2 チャンネルビットに変換する 50 B及びサブコード 1 6 Bを加算した計 2 0 8 0 Bであ

コーディング)で情報を記録する場合には、チャンネル クロックをTとすると、ピットの長さ、あるいはピット 間のスペース間隔は、2Tから11Tとなる。しかし、 ポストアンブル領域PA01~PA60には、それぞれ の長さが2Tであるピットとスペースとの組合せを少な

10

【0040】 あるいは、ポストアンブル領域PA01~ PA60のピットは、情報領域INF01~INF60 に記録されている情報の読み取りを容易にするためのも 10 のであるので、その形成を省略することができる。

くとも一組設ければよい。

【0041】リシンクマーク領域RS01~RS60に 形成されるピットは、フレームに含まれる他の領域では 出現しないようなパターンで形成される。例えば、先述 のRLL (1, 7) 変調方式の場合には、12 T以上の 間隔でピットが形成されるように予め決定されている。 【0042】図2(c)は、ひとつの情報領域、例えば 第1フレームFR01の情報領域INF01のフォーマ - ットを示す。情報容量が40Bである第1フレームFR 01の情報領域 INF01には、図2 (c) に示すよう 20 に、セクタの位置を識別するための16Bのセクタアド レス (ヘッダ) を記録するセクタアドレス領域10、管 理情報が記録されている16Bのサブコード領域20、 及び8Bのユーザデータを記録するデータ領域30が設 けられる。

[0043] 図2(d)は、セクタアドレス領域10の フォーマットを示す。セクタアドレス領域10はさらに 第1の領域10a及び第2の領域10bに分かれ、それ ぞれに、CRC符号が付与されたアドレス番号IDOま たはID1が記録されている。 すなわち、アドレス番号 30 は、セクタアドレス領域10の第1及び第2の領域10 a及び10bに2重に記録されている。アドレス番号と しては、具体的には、内周から外周に向けて連続して付 与されたセクタ番号が使用される。

【0044】第1フレームFR01の情報領域INF0 1のうちでセクタアドレス (ヘッダ) 領域10及びサブ コード領域20を除く8B分のデータ領域30、ならび に第2~60フレームFR02~FR60の情報領域I NF02~1NF60に記録されている情報には、後に 詳述するように、データをランダム化するためにスクラ ンブルがかけられている。

図2 (b) においては、

スク ランブルの対象となる領域をX1~X60として示してい

【0045】図3は、1セクタに記録される計2400 B (1フレームあたり40B×60フレーム) の情報の 配列パターンの輪郭を、バリティー領域が付加された後 の誤り訂正符号(以下、ECCと称する)として模式的 に示す。

【0046】1セクタに記録されるオリジナルデータの 容量は、ユーザデータ2048Bにセクタアドレス16

る。ただし、ここでは、「オリジナルデータ」とは符号 語に変換される前のデータを意味するものとする。これ らのデータは1B(1Bは8bit)単位でインターリ ーブされて、行方向104B、列方向20Bのパターン でオリジナルデータ領域40に配列される。具体的に は、図3において、オリジナルデータ領域40の中に実 線で示されたサブ領域40-1~40-104に、オリ ジナルデータが順に配置される。

【0047】このように配置されたオリジナルデータ領 域40のデータに対して、以下のようにしてパリティー 10 領域50が付加される。すなわち、図3において、オリ ジナルデータ領域40の中に点線で示されたサブ領域4 Oa~4Otのそれぞれについて、そのサブ領域(例え ば40a)を構成する104Bの情報点に対して、16 Bの検査点を付与する。すなわち、符号長120B、検 査点数16B、情報点数104BのECCが形成され る。 図3では、それぞれのサブ領域40a~40t に対 して付与された検査点は、パリティー領域50の中に点 線で示されたサブ領域50a~50tとして示されてい-る。これによって、オリジナルデータ領域40に相当し 20 ていたオリジナルデータ2048Bに320Bのパリテ ィー領域50が付与されて符号語領域60を形成して、 1セクタの情報領域の容量は計2400Bになる。上記 のようにして構成される訂正符号は、リードソロモン符 号の一種であって、冗長度16のLDC(Long Distance Code with a degree of redundancy of 16)と呼ばれて

【0048】1セクタの情報を記録する順番について、 図4を参照して説明する。図4は、記録担体101上に 記録される記録データのフォーマットを模式的に示す。 【0049】第1フレームFR01を例にとると、図4 の矢印401の方向に、リシンクマーク領域RSO1、 フレームアドレス領域FA01、情報領域INF01及 びポストアンブル領域PA01の順に配列される。情報 領域INF01には、既に述べたように16Bのセクタ アドレス、16Bのサブコード、及び8Bのユーザデー タが並べられる。

【0050】一つのフレームはそれぞれ2つの列からな るが、第1フレームFR01に相当する2つの列のうち の第1の列には、リシンクマーク領域RSO1、フレー 40 ムアドレス領域FAO1、及び計40Bの情報領域1N F01のうちのセクタアドレス領域10とサブコード領 域20の4B分が並べられる。第1フレームに相当する 2つの列のうちの第2の列には、サブコード領域20の 残り12Bとユーザデータ領域30、及びポストアンブ ル領域PA01が並べられる。

【0051】以下、第2~第60フレームFR02~F R60の情報も、同様のバターンで記録担体101上に 記録される。ただし、第2~第60フレームFR02~ **FR60の情報値域1NF02~1NF60にはセクター50-603、計数回路604及び排他的論理和回路(2を法**

アドレス領域10及びサブコード領域20はなく、すべ てユーザデータが記録されている。

【0052】さらに、図3を参照して説明したように、 実際に記録担体に記録される情報は、オリジナルのデー タ2080B、ならびにそれに対して付加されたパリテ ィー領域の検査点データ320Bである。図4に示す例 では、第1~第52フレームFR01~FR52が、図 3のオリジナルデータ領域40に対応してオリジナルデ ータを記録する。一方、第53~第60フレームFR5 3~FR60が、図3のパリティー領域50に対応す る。

【0053】図5を参照して、情報の記録について説明 する。図5は、記録担体101上に記録する記録データ を作成するフォーマッタ装置500のブロック図であ る。

【0054】ユーザデータは、磁気ディスク等のユーザ データ送出装置501からアドレス付与回路502に送 られる。アドレス付与回路502は、受け取ったユーザ データを2048B毎に区分して、それぞれの先頭にセ クタアドレス及びサブコードの情報32Bを付与し、E CC変換回路503に送る。ECC変換回路503は、 送られてきたデータを図3に示すように配列して、符号 語に変換する。そして、変換された符号語のパターンの 第1列(図4の左側)の上から、順次、スクランブル回 路504にデータを転送する。スクランブル回路504 はデータにスクランブル処理を施してランダム化するも のであり、セクタアドレス及びサブコードに相当する3 2 Bを除いたデータをスクランブルし、変調回路505 に送る。変調回路505は、定められている変調方式で 30 データを変調して、フレームフォーマッタ回路506に 送る。フレームフォーマッタ回路506は、送られて来 るデータを40B単位毎に区分して、その先頭にリシン クパターン及びフレームアドレスを付与し、さらにそれ ぞれの末尾にポストアンブル信号を加えて、記録データ のフォーマットが完成する。完成した記録データは、記 録装置(不図示)に送られる。

【0055】記録装置は、フォトレジスト層が設けられ ている原盤を、線速度が一定となるように半径位置に反 比例した回転数で回転させる。そして、アルゴンレーザ あるいはクリプトンレーザ等の光源から発生する光ビー ムの強度を、フレームフォーマッタ回路506よりの信 号に応じて強弱に変調する。変調された光ビームで回転 している原盤を照射して、信号に応じたパターンのピッ トを形成して、情報を記録する。なお、記録装置につい ては公知であり、その詳細な説明は省略する。

【0056】スクランブル回路504の構成について、 図6のブロック図を参照して説明する。

【0057】スクランブル回路504は、アドレス読み 取り回路601、初期値発生回路602、M系列発生器 とする和回路) 605より構成される。

【0058】アドレス読み取り回路601は、ECC変 換回路503より送られて来るデータからセクタアドレ ス番号を読み取り、初期値発生回路602に読み取った アドレス番号を送る。このアドレス番号は、スクランブ ル化に際して識別情報として使用される。初期値発生回 路602は、受け取ったアドレス番号に応じた初期値を 発生して、M系列発生器603に送る。排他的論理和回 路605は、ECC変換回路503の信号とM系列発生 器603の信号との排他的論理和に従った信号を順次出 10 力する。

【0059】計数回路604は、ECC変換回路503 より送られて来たデータ量を計測するものであって、セ クタの先頭から32B分の情報の送出が完了した時点 で、スクランブル動作の開始信号を発生してM系列発生 器603に送る。すなわち、計数回路604は、スクラ ンブルを開始するタイミングを示すタイミング信号の発 生回路として機能する。M系列発生器603は、この開 始信号を受け取るまでは零を出力している。従って、計 数回路604が開始信号を発生するまでにECC変換回 20 セクタ、外周では1周あたり約60セクタがそれぞれ形 路503より送られてくるデータは、スクランブルされ ずにそのまま排他的論理和回路605から送出される。 一方、計数回路604が開始信号を発生すると、M系列 発生器603はそれに応答して初期値発生回路602よ りの初期値に従ったランダム化信号を発生する。このラ ンダム化信号は、スクランブルのための符号として使用 される。したがって、排他的論理和回路605からは、 ECC変換回路503から送られてくる信号がスクラン ブルされて出力される。

【0060】M系列発生器603の構成について、図7 のブロック図と共に説明する。

【0061】M系列発生器603に含まれるフリップフ ロップ回路FFO~FF17は、全体で18ビットの帰 **還シフトレジスタを構成している。すなわち、フリップ** フロップ回路FFO及びFF7のそれぞれ出力の排他的 論理和を排他的論理和回路701で得て、これをフリッ プフロップ回路FF17の入力としている。アドレス読 み取り回路601は、連続したセクタ番号として付与さ れているアドレスを読み取って、下位4ビットから7ビ ット (A3~A6) の値を初期値発生回路602に送 る。初期値発生回路602は、受け取ったこの4ビット の値に応じて、初期値を発生する。下位4 ビット目の値 A3は8セクタ毎に変化するので、これにより、初期値 発生回路602は8セクタ毎に変化する初期値をM系列 発生器603に送る。計数回路604より開始信号が送 られてくると、初期値発生回路602からの初期値が、 M系列発生器 6 0 3 を構成するフリップフロップ回路F F0~FF17に設定される。

【0062】図7のM系列発生器603は、シフトレジ スタ系列発生器の一種であって、最大長周期系列発生器 50 をかけないのは、記録されている情報の再生時にスクラ

14

とも呼ばれる。この発生器603より発生される系列 を、最大長周期系列、あるいはM系列と呼ぶ。図7のM 系列発生器603は、次式で表される18次の多項式を 生成する。

 $[0063] H (X) = X^{18} + X^7 + 1$

図7のM系列発生器603は、シフトレジスタの段数が 18であるから、その周期は $n = 2^{18} - 1$ 、すなわち約 32768日である。従って、初期値を適当に選ぶこと によって、32768Bまでのデータを完全にランダム 化することができる。

【0064】初期値の設定について、以下に説明する。 【0065】記録担体101の直径を120mmとし て、そのうちの半径25mm~58mmの部分を、トラ ックを形成する情報トラック領域とする。このとき、ト ラックに記録される情報の線密度を0. 3μm/ビッ ト、リシンクマーク、フレームアドレス及びポストアン ブルを含めた1セクタあたりの全情報容量を2530B とすると、1セクタの長さは約6.1mmとなる。この 長さは、記録担体101の内周部では1周あたり約26 成されることを意味する。 先に図7を参照して説明した ように、初期値発生回路602は、アドレス読み取り回 路601で読み取ったアドレスの下位4ピット~7ビッ ト (A3~A6) の値に応じて初期値を変化させるの で、M系列発生器603に与えられる初期値は、下位4 ビット目の値が変わる毎に、すなわち8セクタ毎に変わ

【0066】例えば、M系列発生器603の周期を16 等分した値を、アドレス読み取り回路602で読み取っ たアドレスの下位4ビット~7ビット(A3~A6)の 値に対応させ、アドレスに応じてM系列発生器603を プリセットする場合、同じデータを記録しても、128 セクタ (=16×8) に渡ってデータがランダム化され る。記録担体101の一周当りのセクタ数は、最大で6 0セクタ程度(外周部での値である)であるので、上記 のように128セクタにわたってデータがランダム化さ れれば、隣接するトラック間における記録信号の相関は 極めて低いものとなる。

【0067】先に述べたように、セクタアドレス領域及 40 びサブコード領域のデータには、スクランブルをかけな い。また、リシンクバターン領域やポストアンブル領域 は、スクランブル化処理の後に付与されるので、やはり スクランブル化されていない。 したがって、 これらの領 域が隣接するトラックの半径方向に隣あって存在する と、相関が強くなる。しかし、上記領域の長さは、最も 情報量が多いセクタアドレス領域及びサブコード領域の 合計でも32Bであり、その長さは100μm以下であ るので、問題とはならない。

【0068】なお、セクタアドレス領域にスクランブル

16

ンブルされている情報から元の情報を得る、すなわちデスクランブルするときに、初期値を知る必要であるからである。一方、サブコード領域に記録されているのは、記録されている情報が音声情報であるか、画像情報であるかを示す種別情報等であり、デスクランブルをすることなく短い時間で情報を読み取るためにスクランブルをかけていない。しかし、サブコード領域にスクランブルをかけてもよい。この場合、サブコード領域の読み取りに多少の時間がかかる以外は、何等問題は発生しない。【0069】次に、図8を参照して、記録担体101上 10に記録されている情報の再生について説明する。

【0070】図8は、本発明の第1の実施例における光学式情報再生装置800の一部のブロック図である。光学式情報再生装置800は、復調回路801、デスクランブル回路802及びエラー訂正回路803を含む。

【0071】復調回路801は、光ヘッドを用いて記録担体から再生された再生信号を復調し、この復調した信号をデスクランブル回路802に送る。デスクランブル回路802は、受け取った復調信号からアドレスを読み取って、セクタアドレス領域及びサブコード領域の3220Bのデータを除いた残りのデータをデスクランブルし、エラー訂正回路803に送る。エラー訂正回路803は、デスクランブル回路802より送られてくる情報にエラーが含まれている場合にはそのエラーを訂正し、訂正した読み取りデータを送出する。

【0072】デスクランブル回路802の構成について、図9のブロック図を参照して説明する。

[0073] デスクランブル回路802は、基本的に図6のスクランブル回路504と同じ構成を有しており、アドレス読み取り回路901、初期値発生回路902、M系列発生器903、計数回路904及び排他的論理和回路905より構成される。

【0074】アドレス読み取り回路901は、復調回路801より送られて来る復調信号から、デスクランブル化に際して識別情報として利用するセクタアドレス番号を読み取り、初期値発生回路902にアドレス番号を送る。初期値発生回路902は、受け取ったアドレス番号に応じた初期値を発生して、M系列発生器903に初期値を送る。

【0075】計数回路904は、復調回路801より送 40 られて来たデータ量を計測するものであって、セクタの
先頭から32B分の情報の送出が完了した時点で、デスクランブル動作の開始信号を発生してM系列発生器90 3に送る。すなわち、計数回路904は、デスクランブルを開始するタイミングを示すタイミング信号の発生回路として機能する。M系列発生器903は、この開始信号を受け取るまでは等を出力している。従って、計数回路904が開始福号を発生するまでに復調回路801より送られてくるデータは、デスクランブルされずにその まませのの場合型では原理905かに送出される。一方、計 50 まませいのの場合型では原理9005かに送出される。一方、計 50 50 によりに対している。

数回路904が開始信号を発生すると、M系列発生器903はそれに応答して初期値発生回路902よりの初期値に従ったランダム化信号を発生する。このランダム化信号は、デスクランブルのための符号として使用される。したがって、排他的論理和回路905からは、復調回路801から送られてくる信号がデスクランブルされて出力される。

【0076】M系列発生器903の構成を図10に示す が、図7に示したM系列発生器603と同じである。 【0077】すなわち、M系列発生器903に含まれる フリップフロップ回路FF0~FF17は、全体で18 ビットの帰還シフトレジスタを構成している。すなわ ち、フリップフロップ回路FFO及びFF7のそれぞれ 出力の排他的論理和を排他的論理和回路701で得て、 これをフリップフロップ回路FF17の入力としてい る。アドレス読み取り回路901は、連続したセクタ番 号として付与されているアドレスを読み取って、下位4 ビットから7ビット(A3~A6)の値を初期値発生回 路602に送る。初期値発生回路902は、受け取った この4ビットの値に応じて、初期値を発生する。下位4 ビット目の値A3は8セクタ毎に変化するので、これに より、初期値発生回路902は8セクタ毎に変化する初 期値をM系列発生器903に送る。計数回路904より 開始信号が送られてくると、初期値発生回路902から・ の初期値が、M系列発生器903を構成するフリップフ ロップ回路FF0~FF17に設定される。

【0078】 (実施例2) 以下、図11~14を参照して、本発明の第2の実施例を説明する。

【0079】上記で説明した本発明の第1の実施例にお 30 けるスクランブル処理は、記録担体101から情報を読 み取る際に、復調を行えばアドレスを読み取ることができ、従って、髙速な検索が行える。しかしながら、アドレスが読み取れない場合には初期値が判らないので、デスクランブルをして元のデータを得ることができない。従って、髙いアドレスの読み取りの信頼性が要求される。しかし、一般に、記録担体101では、ドロップアウト、あるいはゴミやほこり等の付着等の原因によって、常に全てのアドレスを読み取ることが困難である。【0080】本発明の第2の実施例では、ドロップアウ 40 ト、ゴミやほこり等の付着があってもアドレスの読み取りが正確にでき、デスクランブルを確実に行えるスクラ

【0081】図11は、本発明の第2の実施例にしたがって、記録担体101上に記録する記録データを作成するフォーマッタ装置1100のブロック図である。尚、図5に示した第1の実施例と同じ構成要素には同一の番号を付与し、その詳細な説明を省略する。

ンブル方式を説明する。

路904が開始福号を発生するまでに復調回路801よ 【0082】ユーザデータは、磁気ディスク等のユーザ り送られてくるデータは、デスクランブルされずにその データ送出装置501からアドレス付与回路502に送 まま排他的論理和匣路905から送出される。一方、計 50 られる。アドレス付与回路502は、受け取ったユーザ

18

データを2048B毎に区分して、それぞれの先頭にセ クタアドレス及びサブコードの情報32Bを付与し、ス クランブル回路1101に送る。スクランブル回路11 01はデータにスクランブル処理を施してランダム化す るものであり、セクタアドレス及びサブコードに相当す る32Bを除いたデータをスクランブルし、ECC変換 回路1102に送る。ECC変換回路1102は、送ら れてきたデータを図3に示すように配列して、符号語に 変換する。そして、変換された符号語のパターンの左端 の第1列の上から、順次、変調回路505にデータを転 10 送する。変調回路505は、定められている変調方式で データを変調して、フレームフォーマッタ回路506に 送る。フレームフォーマッタ回路506は、送られて来 るデータを40B単位毎に区分して、その先頭にリシン クパターン及びフレームアドレスを付与し、さらにそれ ぞれの末尾にポストアンブル信号を加えて、記録データ のフォーマットが完成する。完成した記録データは、記 録装置(不図示)に送られる。

【0083】スクランブル回路1101の構成につい て、図12のブロック図を参照して説明する。

【0084】スクランブル回路1101は、アドレス読 み取り回路1201、初期値発生回路1202、M系列 発生器1203、計数回路1204及び排他的論理和回 路1205より構成される。

【0085】アドレス読み取り回路1201は、アドレ ス付与回路502より送られて来るデータからセクタア ドレス番号を読み取り、初期値発生回路1202に読み 取ったアドレス番号を送る。初期値発生回路1202 は、受け取ったアドレス番号に応じた初期値を発生し て、M系列発生器 1 2 0 3 に送る。排他的論理和回路 1 205は、アドレス付与回路502の信号とM系列発生 器1203の信号との排他的論理和に従った信号を順次 出力する。

【0086】計数回路1204は、アドレス付与回路5 02より送られて来たデータ量を計測するものであっ て、セクタの先頭から32B分の情報の送出が完了した 時点で、スクランブル動作の開始信号を発生してM系列 発生器1203に送る。M系列発生器1203は、この 開始信号を受け取るまでは零を出力している。従って、 計数回路1204が開始信号を発生するまでにアドレス 40 付与回路502より送られてくるデータは、スクランブ ルされずにそのまま排他的論理和回路1205から送出 される。一方、計数回路1204が開始信号を発生する と、M系列発生器1203はそれに応答して初期値発生 回路1202よりの初期値に従ったランダム化信号を発 生する。したがって、排他的論理和厄路 1 2 0 5 から は、アドレス付与回路502から送られてくる信号がス クランブルされて出力される。

【0087】記録担体から情報を読み取る場合には、復 調及びエラー訂正を行った後にアドレスを読み取り、読 50 このため、アドレスの読み取りに要する時間が若干長く

み取ったアドレスに基づいてデスクランブルを行なっ て、元の情報を得る。これについて、図13を参照して 説明する。

【0088】図13は、本発明の第2の実施例における 光学式情報再生装置1300の一部のブロック図であ る。

【0089】光学式情報再生装置1300は、復調回路 1301、デスクランブル回路1302及びエラー訂正 回路1303を含む。.

【0090】復調回路1301は、光ヘッドを用いて記 録担体から再生された再生信号を復調し、この復調した 信号をエラー訂正回路1302に送る。エラー訂正回路 1302は、受け取った復調信号にエラー訂正を施し、 訂正したデータをデスクランブル回路1303に送る。 デスクランブル回路1303は、受け取ったエラー訂正 済みのデータからアドレスを読み取って、セクタアドレ ス領域及びサブコード領域の32Bのデータを除いた残 りのデータをデスクランブルして、読み取りデータを送 出する。

【0091】デスクランブル回路1303の構成につい 20 て、図14のブロック図を参照して説明する。

【0092】デスクランブル回路1303は、基本的に 図12のスクランブル回路1101と同じ構成を有して おり、アドレス読み取り回路1401、初期値発生回路 1402、M系列発生器1403、計数回路1404及 び排他的論理和回路1405より構成される。

【0093】アドレス読み取り回路1401は、エラー 訂正回路1302より送られて来る信号からセクタアド レスの番号を読み取り、初期値発生回路1402にアド レス番号を送る。初期値発生回路1402は、受け取っ たアドレス番号に応じた初期値を発生して、M系列発生 器1403に初期値を送る。

【0094】計数回路1404は、エラー訂正回路13 02より送られて来たデータ量を計測するものであっ て、セクタの先頭から32B分の情報の送出が完了した 時点で、デスクランブル動作の開始信号を発生してM系 列発生器1403に送る。M系列発生器1403は、こ の開始信号を受け取るまでは零を出力している。従っ て、計数回路1404が開始信号を発生するまでにエラ -訂正回路1302より送られてくるデータは、デスク ランブルされずにそのまま排他的論理和回路1405か ら送出される。一方、計数回路1404が開始信号を発 生すると、M系列発生器1403はそれに応答して初期 値発生回路 1402よりの初期値に従ったランダム化信 号を発生する。したがって、排他的論理和回路1405 からは、エラー訂正回路1302から送られてくる信号 がデスクランブルされて出力される。

【0095】以上説明したように、本発明の第2の実施 例では、エラー訂正を行った後にアドレスを読み取る。

なるものの、ドロップアウト等によって情報にエラーが 生じても正しく訂正される。従って、極めて信頼性よく アドレスを読み取ることができ、確実にデスクランブル することができる。ただし、エラー訂正及びデスクラン ブルに先駆けて、あらかじめ1セクタの情報を一旦メモ リにすべて記憶させる必要があり、そのために1セクタ の情報に相当する容量を有するメモリが必要である。こ れに対して第1の実施例では、そのような大容量のメモ リは必要とされない。

【0096】情報を記録する際には、スクランブルをか 10 けた後にECC変換する。そのため、図3に示したパリ ティー領域50にはスクランブルがかからない。しか し、すでにスクランブル処理されてランダム化されたデ ータを対象にパリティー領域50が作成されるので、結 果としてパリティー領域50もランダム化される。従っ て、M系列の周期を短くすることができ、M系列発生器 を簡単にすることができる。

【0097】以上に説明してきた第1及び第2の実施例 では、等周速で記録担体を回転させて情報を記録するC LV記録方式の場合について説明している。しかしなが 20 ら、本発明は、それに何等限定されるものでない。

【0098】例えば、等角速度で記録担体を回転させて、 情報を記録するCAV (Constant Angular Velocity) 記録方式、あるいは、記録担体を複数のゾーンに分割し て各ゾーンの最内周のトラックの情報線密度がほぼ一定 となるように記録するZCAV (Zoned CAV) 記録方式 の場合には、一般的にアドレス番号は、記録担体の一周 を1トラックとして半径方向に順次番号を付与するトラ ック番号と、各トラックに含まれる各セクタに周方向に 順次番号を付与するセクタ番号とから構成される。この 30 場合、セクタが半径方向に並んで配置されるので、隣接 したトラックは、同一のセクタ番号を有することにな る。そこで、トラック番号に基づいて初期値を決定し、 この初期値を基にランダム化信号を発生してスクランブ ルする。これによって、隣接トラック間での信号の相関 を低減することができる。あるいは、トラック番号の最 下位桁ビットとセクタ番号とに基づいて初期値を決定し て、スクランブルしてもよい。

【0099】1セクタの情報容量は、上述した2400。 Bに制限されない。1フレームの情報容量は、上述の4 40 のであるので、識別情報として容易に使用できる。ま OBに制限されない。また、フレームアドレスは、省略 することができる。

【O1OO】また、M系列発生器は、上記で説明した1 8段のシフトレジスタによって構成されるものに限定さ れるものでない。M系列発生器の段数が18段より増加 すれば周期が長くなり、18段より少なくすれば周期が 短くなる。これらの段数は、フォーマットあるいは情報 密度等によって、任意に選択することができる。

【0101】また、M系列発生器の初期値の変更は、上 述した8セクタ毎に限られるものではない。例えば、1-50-【0108】初期値を、最内周トラックの1周あたりの

セクタ毎あるいは16セクタ毎に変更される構成であっ てもよい。具体的には、最内周のトラックの一周当りの セクタ数より小さい数を単位にして初期値が変わる構成 であればよい。このように初期値を変更することによっ て、同じデータが連続的に記録される場合でも、隣接す るトラック間での記録情報の相関性は低減される。ただ し、M系列発生器の初期値を2n個(nは正の整数)の セクタ毎に変えるようにすれば、初期値発生回路の構成 がより簡単になる。

【0102】さらに、スクランブル回路あるいはデスク ランブル回路にて使用できる回路は、上述のM系列発生 器に限定されるものでない。初期値に対して所定の規則 でランダム化信号を発生するものであれば、他の構成で あってもよい。

【0103】また、エラー訂正符号は、積符号、あるい はコンパクトディスクで用いられているCIRC (Cros s Interleave Reed-Solomon code) であってもよい。さ らに、初期値を決定する信号は位置を識別できる識別情 報であればよく、例えば、時間を示すタイムコードでも よい。

[0104]

【発明の効果】以上に説明したように、本発明の光学式 情報記録担体、光学式情報記録方法及び光学式情報再生 装置では、円盤状の基板の表面にスパイラル状または同 心円状に形成された少なくともトラックに含まれる複数 のセクタに、セクタ位置を識別する識別情報の値に応じ た初期値に基づいてスクランブルされた情報を記録す る。これによって、スクランブル処理が施されてランダ ム化されたデータが記録担体上に記録される。隣接する トラック間にはお互いに異なったデータが記録されるこ とになるので、それらの間での信号の相関が低減され る。このため、クロストークの影響がランダム化されて トラックずれ信号に与える影響が低減され、トラックピ ッチを狭めても安定したトラッキング制御を行うことが

【0105】情報のスクランブル化に際して使用する識 別情報としては、例えば、複数のセクタのそれぞれに付 与されているセクタ番号を使用することができる。セク タ番号は、データの記録に際して必然的に必要になるも た、識別情報を生成するための回路などをあらためて設 ける必要がない。

【0106】スクランブル化の際の初期値を周方向に連 続する所定数のセクタ毎に変えれば、同じ内容のデータ を連続して記録する場合でも、スクランブル処理が施さ れてランダム化されたデータが記録担体上に記録され

【0107】初期値を24個(ヵは正の整数)のセクタ 毎に変えれば、初期値発生回路の構成を簡略化できる。

セクタ数よりも少ない数のセクタ毎に変えれば、最内周 部に同じ内容の情報が連続的に記録される場合であって も、実際に記録されるデータが確実にランダム化され

【0109】スクランブルされた情報の記録にあたっ て、まず情報を複数のセクタに対応して分割し、分割さ れた情報のそれぞれを識別情報の値に応じた初期値に基 づいてスクランブル化した後に、識別情報とスクランブ ルされた情報とを誤り訂正可能な符号語に変換してもよ い。この場合には、符号語に変換された情報が複数のセ 10 ク図である。 クタのそれぞれに記録される。これにより、エラー訂正 を行った後にアドレスを読み取るので、アドレスの読み 取りに要する時間が若干長くなるものの、ドロップアウ ト等によって情報にエラーが生じても正しく訂正され る。従って、極めて信頼性よくアドレスを読み取ること ができ、確実にデスクランブルすることができる。

【0110】あるいは、スクランブルされた情報の記録 にあたって、情報を複数のセクタに対応して分割した後 に、スクランブル処理に先立って識別情報と分割された 情報とを誤り訂正可能な符号語に変換し、得られた符号 20 20 サブコード領域 語のうち識別情報を除いた部分を、それぞれの識別情報 の値に応じた初期値に基づいてスクランブル化してもよ い。これにより、光学式情報記録担体から情報を読み取 る際に、復調を行うだけでアドレスを読みとることがで き、従って高速な検索が行え、アドレスを読みとるのに 大容量のメモリを必要としない。

【図面の簡単な説明】

【図1】光学式情報記録担体の概略平面図である。

【図2】光学式情報記録担体に記録される情報のフォー マットを示す図であり、それぞれ、 (a) は1つのトラ 30 503、1102 ECC変換回路 ックのフォーマット、(b) は1つのセクタのフォーマ ット、(c)は第1フレームの情報領域のフォーマッ ト、(d) はセクタアドレスのフォーマットを示す。

【図3】1セクタに記録される計2400Bの情報の配 列パターンの輪郭を、パリティー領域が付加された後の 誤り訂正符号として模式的に示す図である。

【図4】光学式情報記録担体上に記録されている記録デ ータのフォーマットを模式的に示す図である。

【図5】本発明の第1の実施例に従って記録担体に記録 する記録データを作成するフォーマッタ装置のブロック 40 論理和回路 図である。

【図6】図5に示すスクランブル回路のブロック図であ ۵.

【図7】図6に示すスクランブル回路に含まれるM系列

発生器のブロック図である。

【図8】本発明の第1の実施例に従って記録担体に記録 されたデータを再生する再生装置のブロック図である。

【図9】図8に示すデスクランブル回路のブロック図で ある。

【図10】図9に示すデスクランブル回路に含まれるM **系列発生器のブロック図である。**

【図11】本発明の第2の実施例に従って記録担体に記 録する記録データを作成するフォーマッタ装置のブロッ

【図12】図11に示すスクランブル回路のブロック図 である。

【図13】本発明の第2の実施例に従って記録担体に記 録されたデータを再生する再生装置のブロック図であ

【図14】図13に示すデスクランブル回路のブロック 図である。

【符号の説明】

10 セクタアドレス領域

30 データ領域

40 オリジナルデータ領域

50 パリティー領域

60 符号語領域

101 記録担体

102 トラック

500、1100 フォーマッタ装置

501 ユーザデータ送出装置

502 アドレス付与回路

504、1101 スクランブル回路

505 変調回路

506 フレームフォーマッタ回路

601、901、1201、1401 アドレス読み取 り回路

602、902、1202、1402 初期値発生回路

603、903、1203、1403 M系列発生器

604、904、1204、1404 計数回路

605、701、905、1205、1405 排他的

800、1300 再生装置

801、1301 復調回路

802、1303 デスクランブル回路

803、1302 エラー訂正回路

【図1】

【図2】

【図3】

[図4]

[図8]

【図13】

【図6】

【図7】

【図9】

【図10】

[図11]

【図12】

【図14】

フロントページの続き

(72) 好明者 広瀬 凡夫 大阪府門其市大学門真1006番地 松下電器 産業株式会社内