Predicting User Churn for an E-commerce Platform

1. Objective

You are given an <u>events dataset</u> containing user activities (view, cart, purchase) on an e-commerce platform. Your goal is twofold:

- 1. **Predict** which users are most likely to churn (i.e., stop returning or purchasing).
- 2. Provide **insights** on the **why** behind their churn, focusing on actionable business takeaways.

The hunt is for **strong problem solvers**—candidates who can go beyond just building a model and demonstrate how they **think about the problem**, **define churn**, and **create features** that capture meaningful aspects of user behavior.

Reference Research Paper: Given is the <u>research paper</u> on **user retention** that outlines theoretical approaches and industry best practices. You are **encouraged** to draw inspiration or methodologies from it to inform your approach.

2. Dataset

File Name: events.csv

Columns:

1. **event_time**: Datetime of the event (e.g., 2020-12-01 09:00:00)

- 2. event_type: Type of the event, one of view, cart, or purchase
- 3. product_id: Identifier of the product
- 4. **category_id**: Identifier of the product's category
- 5. **category_code**: Human-readable category code (if available)
- 6. brand: Brand of the product
- 7. **price**: Price of the product (numerical)
- 8. **user_id**: Identifier of the user who performed the event
- 9. **user_session**: Identifier of the user's session

3. Expected Deliverables

1. Exploratory Data Analysis (EDA) Report

- Overview of the dataset and user behavior.
- Key patterns or anomalies in the data.

2. Churn Definition & Reasoning

- Propose a clear **definition of churn** for this e-commerce context (e.g., no purchases or site visits after X days).
- Explain why you chose this definition and how you handle edge cases or special user types.

3. Feature Engineering

- Create user-level features that capture churn signals from the event stream.
 This is a key part of the assignment.
- Possible feature areas include:
 - **RFM metrics** (Recency, Frequency, Monetary).
 - Session-based metrics (session count, average session duration, bounce rate, etc.).
 - **Product/brand preferences** (most viewed brand, top categories viewed vs. purchased).
 - Behavioral patterns (view-to-cart ratio, cart-to-purchase ratio, etc.).
- Document your feature transformation steps comprehensively. You can also read the given research paper to know more about the possible features.

4. Predictive Modeling

- Build a churn prediction model using any ML algorithm(s) you find appropriate
- Describe your model selection process and how you tune hyperparameters.
- Demonstrate performance metrics (AUC, precision-recall, F1, etc.) to evaluate your model.

5. Interpretability & Insights

- o Identify which features are most influential in predicting churn (e.g., with feature importance or SHAP values).
- o Provide a rationale for why these features matter.

• Highlight **which** products or categories may drive churn and **why**.

6. Business Recommendations

- Connect your modeling insights back to real-world strategies for user retention.
- Suggest possible interventions (personalized offers, product improvements, marketing campaigns, etc.).

7. Code & Documentation

- Well-organized, reproducible code in a Jupyter notebook or script.
- A short write-up summarizing your main findings, methodology, and recommendations.

8. Reference Integration

 Briefly mention how concepts or methods from the provided research paper influenced your approach to churn modeling or feature creation.

4. Example Framework

1. Understanding the Problem

- o Restate the goal in your own words.
- Show how you interpret the research paper's concepts in this context.

2. Data Inspection & Preprocessing

- o Load and clean the dataset.
- o Handle missing, duplicate, or inconsistent entries.
- Parse event_time and ensure correct data types.

3. Exploratory Data Analysis (EDA)

- Event distributions (view, cart, purchase) over time.
- Brand and category popularity.
- User-level summaries (total spend, frequency of visits, time between visits, etc.).

4. Defining Churn

- Propose a threshold-based or time-based definition (e.g., no purchase in last 30 days).
- o Justify the choice with logical or business-based reasoning.

5. Feature Engineering (Important)

- Explain the **logic** behind your feature creation.
- Show how each feature might help identify at-risk users.
- Give examples (e.g., "Users who viewed over 5 products but never carted any item have a higher churn probability.").

6. **Modeling**

- Train at least one model; consider comparing multiple.
- Use an appropriate validation scheme (e.g., train/test split, cross-validation).
- o Optimize hyperparameters if time and resources allow.

7. Interpretation & Explanation

- Use feature importance plots, partial dependence plots, or SHAP.
- Link model results to user behavior themes from the research paper.

8. Recommendations & Conclusions

- Summarize how your model can be integrated into user retention strategies.
- Suggest targeted or personalized interventions to reduce churn.

5. Evaluation Criteria

1. The best model metrics (40%)

 Model's metrics such as Precision, Recall, F1 score, accuracy, log loss, brier loss etc.

2. Problem-Solving Approach (20%)

 How effectively do you define the problem, propose a solution strategy, and iterate through the data?

3. Feature Engineering (20%)

• Are the features you create from the event stream meaningful, creative, and relevant to churn prediction?

4. Code Quality & Documentation(10%)

o Is your code well-structured, clearly commented, and reproducible?

5. Reference Research Utilization(10%)

• Did you leverage insights or methodologies from the provided research paper in a thoughtful way?

6. Tips and Best Practices for Candidates

- 1. **Think Business & Technology**: Combine **domain insight** (from the paper + your own analysis) with robust ML practices.
- 2. **Creativity in Feature Engineering**: This is where you can differentiate yourself. Show us your ability to turn raw event data into powerful predictive signals.
- 3. **Logical Reasoning**: Justify your assumptions, model choices, and recommendations.
- 4. **Keep it Reproducible**: Make sure your code can be run end-to-end. (using constant seed wherever required)
- 5. Be Concise & Clear: We value clarity over complexity.

7. Submission Instructions

1. Format: Submit one Jupyter notebook (preferred) or a GitHub repository link.

2. Content:

- o All relevant code and a step-by-step approach.
- A short summary/report (PDF or markdown) explaining the approach and the final scores.
- o A readme.md explaining clearly to run all the code files.
- 3. Deadline: 9th January 11:59 P.M
- 4. We will evaluate the submitted solutions, followed by an interview round.

Note: We are more interested in understanding your approach to the problem statement than in receiving complete solutions. Can you dig deep and conduct an ultra-fine-grained analysis? This is what will set you apart from the rest of the candidates.

All the very best!

SUBMIT YOUR SOLUTIONS HERE.