Full-range hepatic fat fraction estimation by using magnitude MRI

Yuri Costa¹
Carlos Przewodowski Filho, MsC²
Gabriela Flores³
Evandro Linhari, PhD¹
Fernando Paiva, PhD³

- ¹ Deparment of Electrical and Computer Engineering
- ² Institute of Mathematics and Computer Sciences
- ³ Physics Institute of São Carlos University of São Paulo

Hepatic Steatosis (Fatty liver disease)

What is it?

Deposits of fat in the liver, distinguished between alcoholic and non-alcoholic types.

May lead to liver fibrosis and cirrhosis.

MRI Diagnostic

- Ultrasound
- Biopsy
- CT
- MRI

Need for quantitative & non-invasive approach

Why magnitude-based?

- Clinically available
- Easy integration
- Off-site processing
- Vendor independent

Estimation limited to 0-50% fat fraction

Fat Fraction Estimation

$$FF = \frac{\rho_f}{\rho_w + \rho_f}$$

Multi interference [1]

- Nonlinear least squares fit
- Considers 3 lipid moieties
- Assumes single T2* decay
- Assumes water dominance
- Current state-of-the-art

[1] T. Yokoo et al. "Nonalchoholic fatty liver disease: diagnostic and fat-grading accuracy of Low-flip-angle multiecho gradiente-recalled-echo MR imaging at 1.5 T", Radiology, vol 251, no 1, pp 67-76, 5 2009

Fat Fraction Estimation

$$FF = \frac{\rho_f}{\rho_w + \rho_f}$$

What is to be improved?

- Convergence depends on initialization parameters
- Tissue parameters may vary
- Looking for robustness to noise
- Explore fat fraction in full range

Fat Fraction Estimation

$$FF = \frac{\rho_f}{\rho_w + \rho_f}$$

What is to be improved?

- Convergence depends on initialization parameters
- Tissue parameters may vary
- Look for robustness to noise
- Explore fat fraction in full range

Proposed Solution

Signal shape as descriptor for fat fraction estimation

Goals:

- Understand how signal changes according to different parameters
- Train an artificial neural network (ANN) for fat fraction regression
- Evaluate results against a stateof-the-art method

Signal Descriptor and Network Training

21 Distances + 21 Angles = 42 features per instance

Input layer = $[D_{1,2}, \theta_{1,2}, ..., D_{6,7}, \theta_{6,7}]$ 3 hidden layers (32, 16, 2) Output layer = Fat fraction

Signal Descriptor and Network Training

Training:

- 100 000 instances
- FF <u>linearly</u> distributed (1000 values each)
- Variable SNR (200 25)

Validating:

- 20 000 instances
- FF <u>uniformly</u> distributed (unique)
- Variable SNR (200 25)

Testing:

- 10 000 instances
- FF <u>uniformly</u> distributed (unique)
- Fixed SNR (200, 100, 50, or 25)

All models described using 6 fat moieties + water [2] each with variable T2* in Gaussian distributions according to literature

Results – 0-45% FF

Results – 0-45% FF

- ANN's expected error is about 80% smaller than multi-interference's at SNR = 200 and 50%smaller at SNR = 25.
- The change in expected error due to SNR is greater for ANN; multiinterference is steadier.

Results – 0-100% FF

Results – ANN 0-100% FF

- ANN's expected error is about the same for half-range or full-range estimation at each SNR.
- There are few outliers which relevance must be investigated with in vivo data

Conclusion

- New path for liver fat estimation;
- Simulation results better than current literature;
- No need for changes in acquisition sequence;
- Future perspective:
 - o In vivo validation
 - Applicability in other tissues
 - Better machine learning

Thank you!

Conflict of interest

The authors have no conflict of interest to declare.

Acknowledgement

This work was supported in part by the Brazilian National Council for Scientific and Technological Development under Grant 153070/2016-1