Assignment Overview

Title: Unsupervised Clustering and Self-Learning in Autonomous Driving

Objective: To develop and apply unsupervised learning models for clustering highway driving scenarios, utilizing both image data and telemetric data.

Data Provided:

Images: 100 images from a <u>Carla</u> simulator highway driving scenario, stored in a folder named "Images". Each image is named after its frame.

CSV Data File: Contains various parameters related to the vehicles in each frame, including positional data, velocities, lane associations, and the ego vehicle's status. See <u>Appendix</u>

Tasks

Framework Specification:

- Please use *PyTorch* for developing your clustering models.
- You are free to use any supporting code libraries as needed.

Task 1: Initial Clustering Model

- Objective: Create a model that clusters all frames into 5 distinct clusters.
- **Data Utilization**: You can choose which columns from the provided CSV file to use. The use of images is optional.
- Deliverables:
 - a. **Clustered Frames**: Save each frame into one of 5 folders corresponding to the clusters.
 - b. **Visualization**: Develop a method to visualize your clustering. This could include plots showing clusters in feature space or other creative visual representations.
 - c. **Code**: Include all code used for the tasks (files or link to notebook). It should be well-commented and organized.
 - d. **Documentation**: Provide a brief explanation of your approach, including the rationale behind the chosen features and clustering technique.
 - e. **Submission Folder**: Save all deliverables under a folder named *task_1*.

Task 2: Advanced Clustering Approach

- **Objective**: Propose and implement a more sophisticated clustering approach. The number of clusters is at your discretion.
- Motivation for Clustering:
 - a. **Explainability for Human Driver**: Clusters should provide insights that are understandable and useful for a human driver.
 - b. **Training Multiple Agents**: The clusters should be beneficial for training autonomous driving algorithms.
- Deliverables:
 - a. Same as above, with a folder per cluster. Call the main folder *task_2*.

Appendix - Data Column Explanation

- data.csv contains:
 - frame: Frame name, corresponding to image names.
 - object_id: Identifier for each vehicle across all frames (Ids are kept the same for each vehicle during all frames but each frame might have a different amount of objects).
 - lat_dist: Lateral distance of the vehicle relative to the ego vehicle (positive to the right).
 - long dist: Longitudinal distance from the vehicle to the ego vehicle.
 - abs vel: Absolute longitudinal velocity of the vehicle.
 - rel vel: Longitudinal velocity of the vehicle relative to the ego vehicle.
 - is cipv: Indicator if the vehicle is the Closest in Path Vehicle (1 for yes).
 - lane_association: Lane position of the vehicle (1 for ego lane, 2 for left, 3 for right).
 - lane_right_boundary: Lateral distance of the right boundary of the ego lane from the center of the ego vehicle.
 - lane_left_boundary: Lateral distance of the left boundary of the ego lane from the center of the ego vehicle.
 - ego vel: Longitudinal velocity of the ego vehicle.
 - ego acc: Longitudinal acceleration of the ego vehicle.
 - ego yaw: Yaw rate of the ego vehicle.
- Note: Units for all fields are considered irrelevant for this task.