Unsupervised Learning & Data Clustering

Unsupervised Learning – Part 1: Problem Set-up

Objective

Objective

Define the set-up of unsupervised learning

Learning from Unlabeled Data

Given a training set of *n* unlabeled samples {**x**⁽ⁱ⁾}

- What can we learn from the samples?
- We could estimate the overall distribution of the data without knowing their label.
- → We could figure out the groupings of the samples (if any).
- → We could identify some features that may be more important than others.

. . .

An Example

Illustrating structures/groupings of unlabeled samples may relate to the (unknown) labels of the samples

→ If we know the labels, we may find the densities of the classes →

→ What may we see if we have no label for the data samples?

Another Example

A density estimated from unlabeled samples may help us to identify densities of different classes

If we know there are three classes in the data, each having a normal distribution ...

A Mixture-Density Model

Assume a parametric model like this:

- The samples come from C classes.
- The prior probabilities $P(\omega_j)$ for each class are known, for j = 1, ..., C.
- -The form of $p(\mathbf{x} \mid \omega_j, \theta_j)$ (j = 1, ..., C) are known.
- -The C parameter vectors θ_1 , θ_2 , ..., θ_C are unknown.

Samples from this distribution are given, but the labels of the training samples are unknown.

A Mixture-Density Model (cont'd)

What is the PDF of the unlabeled samples?

$$p(\mathbf{x} \mid \mathbf{\theta}) = \sum_{j=1}^{C} p(\mathbf{x} \mid \omega_j, \mathbf{\theta}_j) P(\omega_j)$$

where
$$\theta = (\theta_1, \theta_2, ..., \theta_c)$$

Can we learn θ from unlabeled samples from this **mixture density**?

Illustrating Mixture-Density Model

An example: with the assumption of 4 classes

Illustrating Mixture-Density Model

An example: with the assumption of 2 classes

The Question of Identifiability

Can we learn a unique θ from a set of unlabeled samples from a mixture density?

 For continuous features (with PDFs), the answer is often "Yes".

An example in discrete case (with PMF).

- Two coins with P(head) being p & q respectively.
- Randomly pick one and toss it; Record the outcome.
- With only the outcomes of N tosses, but not knowing which coin was used each time (→ unsupervised), can we figure out p and q?