GUÍA DE COLOQUIO Nº 5

PROBLEMAS RESUELTOS

EJEMPLO Nº 1;

Definir a partir de los cuatro números cuánticos, todos los electrones que integran un átomo de Mg.

Solución:

Para $_{12}Mg$

$$E_{n=1}$$
 < $E_{n=2}$ < $E_{n=3}$ < $E_{n=4}$
 $E_{n_i S_i}$ < $E_{n_i p_i}$ < $E_{n_i d_i}$ < $E_{n_i f_i}$
 $E_{n_i S_i}$ < $E_{n_{i-1} d_{i-1}}$
 $E_{n_i S_i}$ < $E_{n_{i-2} f_{i-2}}$
 $E_{n_i p_i}$ < $E_{n_{i-1} f_{i-1}}$

De acuerdo al Principio de exclusión de Pauli y la Regla de máxima multiplicidad de Hundt:

	12 0			
<u>N</u> °		<u>n</u>	1	<u>m</u>

Nº	<u>n</u>	<u>1</u>	<u>m</u>	$\underline{m}_{\underline{s}}$
1	1	0	0	+ 1/2
2	1	0	0	- 1/2
3	2	0	0	+ 1/2
4	2	0	0	- 1/2
5	2	1	-1	+ 1/2
6	2	1	0	+ 1/2
7	2	1	+1	+ 1/2
8	2	1	-1	- 1/2
9	2	1	0	- 1/2
10	2	1	+1	- 1/2
11	3	0	0	+ 1/2
12	3	0	0	- 1/2

EJEMPLO Nº 2:

Desarrollar la configuración electrónica abreviada para átomos de Mg y Hg. **Solución:**

<u>Mg:</u>

$$z = 12$$

$$1s^2 \ 2s^2 \ 2p^6 \ 3s^2$$

<u>Hg:</u>

$$Z = 80$$

$$1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^{10}\ 4s^2\ 4p^6\ 4d^{10}\ 4f^{14}\ 5s^2\ 5p^6\ 5d^{10}\ 6s^2$$

EJEMPLO Nº 3:

Mediante la representación de Lewis esquematizar las siguientes especies: a) H_2 b) O_2 c) N_2 d) SO_2 e) SO_3 f) P_2O_3 g) P_2O_5 h) SO_4H_2 i) CINa j) PO_4H^- .

Solución:

a)

b)

c)

d)

e)

f)

g)

h)

i)

Cl Na

j)

PROBLEMAS PROPUESTOS

PROBLEMA N° 1:

Definir a partir de	los 4 Nº cuánticos,	todos los electrones	que integran	un átomo de:
---------------------	---------------------	----------------------	--------------	--------------

- a) C
- b) S

PROBLEMA Nº 2:

Dar la configuración electrónica en su forma abreviada para los átomos de:

- a) N
- b) Ar
- c) As
- d) Fe
- e) Pb

PROBLEMA N° 3:

Indicar Nº de electrones que debería ganar, perder o compartir para llegar a su estructura de mayor estabilidad un átomo de:

- a) F
- b) Na
- c) O
- d) Kr
- e) N

PROBLEMA N° 4:

Desarrollar por medio de "Estructuras de Lewis" los enlaces para las moléculas que se indican:

a) NaI

b) MgO

c) K₂O

d) CaF₂ h) Cl₂O

e) S₂ i) Cl₂O₃ f) N₂O₃ j) AlCl₃ g) Cl₂ k) SeO₃

1) Cl₂O₅

 $m) N_2 O_5$

 $(NH_4)C1$

PROBLEMA N° 5:

Idem del problema anterior para:

NaClO H₂SO₃

 H_3PO_4

Na(OH) H₄P₂O₇ Ca(OH)₂ Al₂ (SO₄)₃ $Ca(NO_3)_2$

Hidróxido de bario.

Bromito de magnesio

Ácido carbónico

Clorato plúmbico.

PROBLEMA N° 6:

Para	los	coı	npu	estos	bin	arios	que	se	indic	an,	predecir	si	los	enlaces	for	mac	los s	serái	1
coval	enci	as	no	polar	es,	coval	lencia	as	polar	o	electroval	len	cias,	utilizar	ıdo	la	tabla	a de	е
electr	one	gati	vida	ades d	e Pa	auling													

a) Ag₂O

b) O₂

c) CH₄ d) MgO e) CO

f) NaF

g) N₂

PROBLEMA Nº 7:

Desarrollar estructuras de Lewis para los siguientes compuestos:

a) HNO₂

b) Li(OH)

c)H₄SiO₄

 $d)Ba(OH)_2$

 $e)K_2SO_4$

f) $Ca(CLO_4)_2$

PROBLEMA N° 8:

Indique cuales son los elementos que cumplen las siguientes condiciones:

- a) Pertenece al segundo período y grupo V.
- b) Metal monovalente del tercer período.
- c) mar(s) < mar(x) < mar(Ca) y carácter no metálico.
- d) Igual grupo que el silicio con 4 e en el 5º nivel.
- e) Se conoce que cuenta con 6 p³.
- f) Segundo elemento de transición del período 5°.
- g) Último nivel con estructura de mayor estabilidad e isótopo más probable con 48 neutrones en núcleo.

PROBLEMA N° 9:

Desarrolle la configuración electrónica simplificada de:

Mg

Zn

- As -

Xe -

Br

W

Pb

PROBLEMA Nº 10:

Determine la diferencia de electronegatividad entre los átomos de los elementos que forman las siguientes moléculas y en función de ello indique el tipo de enlace que forman:

KCl -

 Cl_2

SO

- H_2O - AlF_3 -

 N_2