CMPT 365 Multimedia Systems

Media Representations - Video

Spring 2024

Outline

- Analog Video
- □ Digital Video
- □ Video Interfaces
- HDTV
- Further Exploration

Analog Video

- \square An analog signal f(t) samples a time-varying image
- Progressive scanning
 - traces through a complete picture (a frame) row-wise for each time interval.
- Interlaced scanning
 - Odd-numbered lines traced first, and then the evennumbered lines.
 - "odd" and "even" fields two fields make up one frame
 - Widely used in traditional (non-digital) TV

Digital vs Analog TV Signal

Interlaced Scan

- First the solid (odd) lines are traced, P to Q, then R to S, etc., ending at T; then the even field starts at U and ends at V.
- The jump from Q to R, etc. is called the horizontal retrace, during which the electronic beam in the CRT is blanked.
- The jump from T to U or V to P is called the vertical retrace

https://en.wikipedia.org/wiki/Interlaced_video

- First the solid (odd) lines are traced, P to Q, then R to S, etc., ending at T; then the even field starts at U and ends at V.
- The jump from Q to R, etc. is called the horizontal retrace, during which the electronic beam in the CRT is blanked.
- The jump from T to U or V to P is called the vertical retrace

De-interlacing

https://en.wikipedia.org/wiki/Interlaced_video

Example of Interlaced Scan

Fig. 5.2: Interlaced scan produces two fields for each frame. (a) The video frame, (b) Field 1, (c) Field 2, (d) Difference of Fields

NTSC Video

- NTSC (National Television System Committee) TV standard is mostly used in North America and Japan
 - YIQ color model
 - 4:3 aspect ratio (i.e., the ratio of picture width to its height)
 - 525 scan lines per frame at 30 frames per second (fps).
- Interlaced scanning, and each frame is divided into two fields, with 262.5 lines/field
 - horizontal sweep frequency is 525x29.97 = 15,734 lines/sec,
 - each line is swept out in 1/15,734 = 63.6 us
 - the horizontal retrace takes 10.9 us, this leaves 52.7 us for the active line signal during which image data is displayed
- PAL in Asia/Europe, SECAM in Europe
- All faded out (Canada, Aug 31, 2011)

Outline

- Analog Video
- □ Digital Video
- □ Video Interfaces
- HDTV
- Further Exploration

<u>Digital Video</u>

- Why digital video?
- Advantages
 - Stored on digital device or in memory
 - Faithful duplication in digital domain
 - · Good or bad?
 - Direct (random) access,
 - nonlinear video editing achievable as a simple, rather than a complex task
 - Ease of manipulation (noise removal, cut and paste, etc.)
 - Ease of encryption and better tolerance to channel noise
 - Multimedia communications
 - Integration to various multimedia applications

ITU-R digital video specifications

	CCIR 601 525/60 NTSC	CCIR 601 625/50 PAL/SECA M	CIF	QCIF
Luminance resolution	720 × 480	720 × 576	352 x 288	176 × 144
Chrominance resolution	360 × 480	360 × 576	176 × 144	88 x 72
Colour Subsampling	4:2:2	4:2:2	4:2:0	4:2:0
Fields/sec	60	50	30	30
Interlaced	Yes	Yes	No	No

Note, CIF is a compromise of NTSC and PAL in that it adopts the 'NTSC frame rate and half of the number of active lines as in PAL.

CCIR-601

- □ CCIR-601 for component digital video
 - specified by Consultative Committee for International Radio (CCIR)
 - aspect ratio of 4:3
 - interlaced scan, so each field has only half as much vertical resolution
 - Now become standard ITU-R-601, adopted by many digital video formats including the popular DV video.

CIF

- CIF: Common Intermediate Format
 - Specified by CCITT (Comité Consultatif International Téléphonique et Télégraphique).
- A format for lower bitrate
 - CIF is about the same as VHS quality.
 - Progressive (non-interlaced) scan.
- QCIF: "Quarter-CIF"
- □ CIF/QCIF resolutions are evenly divisible by 8, and all except 88 are divisible by 16; this provides convenience for block-based video coding in H.261 and H.263, discussed later

Chroma Subsampling

- Since humans see color with much less spatial resolution than they see black and white, it makes sense to subsample chrominance signal
- □ Interesting (but not necessarily informative!) names have arisen to label the different schemes used.
 - **4:4:4**
 - **4:2:2**
 - **4:1:1**
 - 4:2:0
- □ To begin with, numbers are given stating how many pixel values, per four original pixels, are actually sent:
 - The chroma subsampling scheme 4:4:4 indicates that no chroma subsampling is used: each pixel's Y, Cb and Cr values are transmitted, 4 for each of Y, Cb, Cr.

Chroma Subsampling cont'd

- Pixel with only Y value
 - Pixel with only Cr and Cb values
 - Pixel with Y, Cr, and Cb values

- 4:2:2: horizontal subsampling of the Cb, Cr signals by a factor of 2.
 - of four pixels horizontally labelled as 0 to 3, all four Ys are sent, and every two Cb's and two Cr's are sent, as (CbO, YO)(CrO, Y1)(Cb2,

Y2)(Cr2, Y3)(Cb4, Y4), and so on (or averaging is

■ 4:2:0: subsamples in both the horizontal and vertical dimensions by a factor of 2.

used).

- an average chroma pixel is positioned between the rows and columns.
- □ Scheme 4:2:0 along with other schemes is commonly used in JPEG and MPEG (more later).

Outline

- Analog Video
- □ Digital Video
- □ Video Interfaces
- HDTV
- Further Exploration

Analog Video Display Interfaces

Component video, Composite video, S-video, VGA

Component video

- Component video: three separate video signals for the red, green, and blue image planes. Each color channel is sent as a separate video signal.
 - For higher-end video systems
 - Supported by most computer systems
 - Best color reproduction
 - · no "crosstalk" between the three channels.
 - But more bandwidth and good synchronization

Composite Video - 1 Signal

- Composite video: color ("chrominance") and brightness ("luminance") signals are mixed into a single wire
 - Chrominance (I and Q, or U and V).
 - Combined into a chroma signal, and then put at the high-frequency end of the signal shared with the luminance signal Y.
 - Chrominance and luminance components separated at the receiver end and then two color components be further recovered.
 - Only one wire for video signal
 - Audio signals added through separate wires
- □ Interference is inevitable.

S-Video - 2 Signals

- □ S-Video: Separated video, or Super-video
 - o a compromise, with two wires
 - one for luminance and another for a composite chrominance signal.
 - Less crosstalk between color and the crucial gray-scale information.
- Reason for placing luminance into its own part
 - black-and-white is most crucial for visual perception.
 - Both in terms of brightness and spatial resolution
 - · Less information for color is fine

VGA (Video Graphics Array)

- Analog only
- □ Introduced with IBM x86 machines (1987), but became a universal analog display interface
- R, G, B, plus power, syn, control etc
- □ A VGA (D-sub) connector

Digital Display Interfaces

Digital interfaces emerged in 1980s (e.g., Color Graphics Adapter (CGA), and evolved rapidly.

Connectors of different digital display interfaces: DVI, HDMI, DisplayPort.

DVI (Digital Visual Interface)

- Uncompressed digital video
- Almost a ubiquitous computer display link replacing VGA (since 1999)
- Uncompressed video only
 - R, G, B (both digital and analog)
 - plus clock, syn, power, control etc.
- □ Single link: 1920x1080 60Hz
- Dual link: 2560x1600 60Hz

HDMI (High-Definition Multimedia Interface)

- (2002) backwardcompatible with DVI
- RGB or YCbCr + digital audio
 - + bidirectional audio, ethernet
- High bandwidth digital content protection (HDCP)
- ☐ HDMI 1.3 2560×1600

Display Port

- (2006) Packetized transmission (like Internet)
 - 4K video support
- Royalty-free (HDMI is not!)

■Variation/enhancement: Thunderbolt

Example: DVD Player

Example: Home Theatre Receiver

Example: Xbox 360

□ Simple package vs premium package

Example: PS4

Outline

- Analog Video
- □ Digital Video
- □ Video Interfaces
- HDTV
- Further Exploration

HDTV

- Main objective of HDTV (High Definition TV)
 - o not necessary to increase the "definition" in each unit area
 - but rather to increase the visual field especially in its width.
- First generation of HDTV
 - an analog technology developed by Sony and NHK in Japan in the late 1970s.
- MUSE (MUltiple sub-Nyquist Sampling Encoding)
 - an improved NHK HDTV with hybrid analog/digital technologies in the 1990s.
 - 1,125 scan lines, interlaced (60 fields per second), and 16:9 aspect ratio.
- Need for compressions
 - uncompressed HDTV will easily demand more than 20 MHz bandwidth, which will not work in the current 6 MHz or 8 MHz channels
 - high quality HDTV signals would be transmitted using more than one channel even after compression.

More about HDTV

- □ For video, MPEG-2 is chosen as the compression standard.
- \square For audio, AC-3 is the standard
 - supports 5.1 channel Dolby surround sound -- 5 surround channels plus a subwoofer channel
- Difference between conventional TV and HDTV:
 - Much wider aspect ratio of 16:9 instead of 4:3.
 - All progressive (non-interlaced) scan
 - interlacing introduces serrated edges to moving objects and flickers along horizontal edges
 - Upsampling ? 120 Hz, 200 Hz ?

HDTV in North America

- 1987: FCC (Federal Communications Commission) decided that HDTV standards must be compatible with existing NTSC and be confined to the existing VHF (Very High Frequency) and UHF (Ultra High Frequency) bands.
- 1990: FCC announced a very different initiative
 - preference for a full-resolution HDTV
 - HDTV would be simultaneously broadcast with the existing NTSC TV and eventually replace it.
- □ 1993: after a boom of proposals for digital HDTV, the FCC made a key decision to go all-digital.
 - A "grand alliance" was formed that included four main proposals, by General Instruments, MIT, Zenith, and AT&T, and by Thomson, Philips, Sarnoff and others.
 - This eventually led to the formation of the ATSC (Advanced Television Systems Committee) -- responsible for the standard for TV broadcasting of HDTV.
- 1995: U.S. FCC Advisory Committee on Advanced Television Service recommended that the ATSC Digital Television Standard be adopted.

Advanced Digital Formats by ATSC

# of Active Pixels per line	# of Active Lines	Aspect Ratio	Picture Rate	
1,920	1,080	16:9	60P 60I 30P 24P	
1,280	720	16:9	60P 30P 24P	
704	480	16:9 or 4:3	60P 60I 30P 24P	
640	480	4:3	60P 60I 30P 24P	

"I": interlaced scan

"P": progressive (non-interlaced) scan

Recent Advances

- □ The FCC (Federal Communications Commission) has planned to replace all analog broadcast services with digital TV broadcasting by the year 2006.
 - later delayed to June 12,2009 in US
 - Canada: August 31, 2011 (one year extension for some CBC transmitters)
- ☐ The services provided will include:
 - SDTV (Standard Definition TV): the current NTSC TV or higher
 - EDTV (Enhanced Definition TV): 480 active lines or higher, i.e., the third and fourth rows in the Table
 - HDTV (High Definition TV): 720 active lines or higher

<u>Ultra High Definition TV (UHD, or 4K)</u>

- Announced in 2012
 - 4K UHDTV: 2160P (3,840×2,160, progressive scan) and 8K UHDTV: 4320P (7,680×4,320, progressive scan).
- □ Aspect ratio is 16:9. Bit-depth can be up to 12 bits, and the chroma subsampling can be 4:2:0 or 4:2:2.
- Supported frame rate has been gradually increased to 120 fps.

UHDTV will provide superior picture quality, comparable to IMAX movies, but it will require a much higher bandwidth and bitrate - 40MBps encoded!

VR/AR? 16K video?

Ultra High Definition TV (UHD, or 4K)

8K UHD 4K UHD 1080p HD SD

CCD/CMOS Image Sensor Size

Common Sensor Sizes								
	•	•						
Sensor Type	1/2.5"	1/1.8"	2/3"	4/3"	APS-C	35mm		
Aspect Ratio	4:3	4:3	4:3	4:3	2:3	2:3		
Diagonal (mm)	7.2	8.9	11	22.5	27.3	43.3		
Width (mm)	5.8	7.2	8.8	18	22.7	36		
Height (mm)	4.3	5.3	6.6	13.5	15.1	24		

Outline

- Types of Video Signals
- □ Analog Video
- □ Digital Video
- HDTV
- Further Exploration

Further Exploration

□ Chapter 5.1, 5.2, 5.3