```
In [31]:
import pandas as pd
import numpy as np
In [32]:
df= pd.read csv("/content/uber.csv")
In [33]:
df.head()
Out[33]:
   Unnamed:
                          key fare_amount pickup_datetime pickup_longitude pickup_latitude dropoff_longitude drop
                    2015-05-07
                                               2015-05-07
    24238194
                                       7.5
                                                                -73.999817
                                                                               40.738354
                                                                                               -73.999512
               19:52:06.0000003
                                              19:52:06 UTC
                    2009-07-17
                                                2009-07-17
    27835199
                                       7.7
                                                                -73.994355
                                                                               40.728225
                                                                                               -73.994710
               20:04:56.0000002
                                              20:04:56 UTC
                    2009-08-24
                                               2009-08-24
                                                                -74.005043
                                                                                               -73.962565
    44984355
                                      12.9
                                                                               40.740770
              21:45:00.00000061
                                              21:45:00 UTC
                    2009-06-26
                                               2009-06-26
    25894730
                                       5.3
                                                                -73.976124
                                                                               40.790844
                                                                                               -73.965316
               08:22:21.0000001
                                              08:22:21 UTC
                    2014-08-28
                                               2014-08-28
                                                                -73.925023
                                                                               40.744085
                                                                                               -73.973082
    17610152
                                      16.0
             17:47:00.00000188
                                              17:47:00 UTC
In [34]:
df.isnull().sum()
Out[34]:
Unnamed: 0
                          0
                          0
key
fare amount
                          0
pickup datetime
                          1
pickup longitude
                          1
pickup latitude
                          1
dropoff_longitude
dropoff_latitude
                          2
                          2
passenger count
                          1
dtype: int64
In [35]:
df.dropna(inplace=True)
In [36]:
df.drop(labels='Unnamed: 0',axis=1,inplace=True)
In [37]:
df.drop(labels='key',axis=1,inplace=True)
In [38]:
df.head()
Out[38]:
```

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1.0
1	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1.0
2	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	1.0
3	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	3.0
4	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	5.0

In [39]:

df["pickup_datetime"] = pd.to_datetime(df['pickup_datetime'])

In [40]:

df.head()

Out[40]:

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	7.5	2015-05-07 19:52:06+00:00	-73.999817	40.738354	-73.999512	40.723217	1.0
1	7.7	2009-07-17 20:04:56+00:00	-73.994355	40.728225	-73.994710	40.750325	1.0
2	12.9	2009-08-24 21:45:00+00:00	-74.005043	40.740770	-73.962565	40.772647	1.0
3	5.3	2009-06-26 08:22:21+00:00	-73.976124	40.790844	-73.965316	40.803349	3.0
4	16.0	2014-08-28 17:47:00+00:00	-73.925023	40.744085	-73.973082	40.761247	5.0

In [41]:

df.describe()

Out[41]:

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	169841.000000	169841.000000	169841.000000	169841.000000	169841.000000	169841.000000
mean	11.359839	-72.518528	39.932778	-72.516686	39.916603	1.684158
std	9.820235	11.527704	7.999118	13.574784	6.945321	1.398148
min	-52.000000	-1340.648410	-74.015515	-3356.666300	-881.985513	0.000000
25%	6.000000	-73.992065	40.734840	-73.991397	40.733822	1.000000
50%	8.500000	-73.981812	40.752625	-73.980080	40.753020	1.000000
75%	12.500000	-73.967094	40.767182	-73.963623	40.768037	2.000000
max	350.000000	57.418457	1644.421482	1153.572603	872.697628	208.000000

In [42]:

```
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
III [40]:
```

```
sns.distplot(df['fare_amount']);
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please ada pt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [44]:

```
plt.subplots(figsize=(15,10))
df.boxplot();
```


In [45]:

```
correlation_matrix = df.corr().round(2)
sns.heatmap(df.corr(),annot=True, annot_kws={'size': 12});
```

```
fare_amount - 1 0.0094-0.00710.0084 -0.01 0.0092 -0.75
pickup_longitude - 0.0094 1 -0.81 0.83 -0.84 0.0018 -0.50
```

```
-0.25
  pickup_latitude --0.0071 -0.81
                                                      -0.76
                                                                 0.67 -0.0027
                                                                                            0.00
dropoff_longitude - 0.0084 0.83
                                            -0.76
                                                                 -0.91
                                                                          0.0011
                                                                                             -0.25
                       -0.01
                                 -0.84
                                             0.67
                                                       -0.91
                                                                          -0.0017
  dropoff latitude -
                                                                                             -0.50
passenger_count - 0.0092 0.0018-0.0027 0.0011 -0.0017
                                                                                             -0.75
                                                                  dropoff_latitude
                         fare_amount
                                   pickup_longitude
                                                        dropoff_longitude
                                                                             passenger_count
                                              pickup_latitude
```

```
In [45]:
```

```
In [45]:
```

In [45]:

In [46]:

df.drop(["pickup_datetime"], axis=1, inplace=True)

In [47]:

from sklearn.model selection import train test split

In [48]:

```
x=df.drop("fare amount", axis=1)
```

In [49]:

```
y=df['fare_amount']
```

In [50]:

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=101)

In [51]:

x train.head()

Out[51]:

	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
118512	-73.973255	40.785025	-73.982225	40.769455	1.0
28135	-73.862902	40.769310	-73.804105	40.762363	5.0
95279	-73.987110	40.739508	-73.982597	40.757473	1.0
19825	-73.979821	40.739303	-73.994062	40.732078	1.0
169707	-73.984305	40.695783	-73.985131	40.713346	1.0

In [52]:

```
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
```

```
lm.fit(x_train,y_train)
Out[52]:
LinearRegression()
In [53]:
ypred = lm.predict(x test)
In [54]:
plt.scatter(y_test,ypred)
plt.xlabel('Y Test')
plt.ylabel('Predicted Y');
  50
Predicted
  30
  20
  10
                   100
               50
                        150
                             200
                                 250
                                      300
                                           350
                        Y Test
In [72]:
from sklearn import metrics
from sklearn.metrics import r2 score
print('MAE:', metrics.mean_absolute_error(y_test, ypred))
print('MSE:', metrics.mean_squared_error(y_test, ypred))
print('RMSE:', np.sqrt(metrics.mean squared error(y test, ypred)))
r2 = r2 \ score(y \ test, \ ypred)
print('r2 score:', r2)
MAE: 6.046505617639961
MSE: 98.61243256389584
RMSE: 9.930379275933817
r2 score: -0.00021133230598224806
In [56]:
from sklearn.ensemble import RandomForestRegressor
rfrmodel = RandomForestRegressor(n estimators=100, random state=101)
In [67]:
rfrmodel.fit(x_train,y_train)
rfrmodel pred= rfrmodel.predict(x test)
In [73]:
from sklearn.metrics import mean squared error
from sklearn.metrics import r2 score
print('MAE:', metrics.mean absolute error(y test, rfrmodel pred))
rfrmodel rmse=np.sqrt(mean squared error(rfrmodel pred, y test))
```

MAE: 2.2716559315710136 RMSE: 5.122660388682641

print('r2 score:', r2)

print("RMSE:", rfrmodel rmse)

r2 = r2_score(y_test,rfrmodel_pred)

print('MSE:', metrics.mean squared error(y test, rfrmodel pred))

MSE: 26.241649457778195 r2 score: 0.7338348270735129

In [30]: