

MK Artificial Intelligence
Jurusan Teknik Infomratika
FST UIN SGD Bandung
Dian Nuraiman, M.Si., M.Sc.

- Jaringan syaraf tiruan (JST) merupakan terjemah dari artificial neural network (ANN). JST merupakan arsitektur jaringan yang "meniru" cara kerja sistem syaraf manusia (otak).
- Sistem syaraf manusia terdiri dari sekitar 100 miliyar sel syaraf (neuron) dan terhubung dengan skitar 1000 hingga 100.000 sel syaraf yang lain. Suatu sel syaraf (neuron) terdiri dari 3 bagian: dendrite, cell body, dan synapse.
- JST melakukan proses pembelajaran *(learning)* seperti halnya manusia.

Asumsi-asumsi

- Pemrosesan informasi terjadi pada banyak elemen sederhana (neuron)
- Sinyal sikirimkan di antara neuron-neuron melalui penghubung
- Penghubung antar neuron memiliki bobot yang akan memperkuat atau memperlemah sinyal
- Untuk menentukan output, setiap neuron menggunakan fungsi aktivasi

JST ditentukan oleh 3 hal

- Pola hubungan antar neuron (disebut dengan arsitektur jaringan)
- Metode untuk menentukan bobot penghubung (disebut dengan metode training/learning/algoritma)
- Fungsi aktivasi

CONTOH MODEL NEURON

 x_1, x_2, x_3 : neuron input

 w_1, w_2, w_3 : bobot

Y : neuron output

f : fungsi aktivasi

net : besar sinyal yang dikirim dari

neuron input ke neuron output

$$net = x_1 w_1 + x_2 w_2 + x_3 w_3 = \sum_{i=1}^{3} x_i w_i$$

$$Y = f(net)$$

ARSITEKTUR JARINGAN

Ada beberapa arsitektur jaringan:

- 1. Jaringan layar tunggal (single layer network)
- 2. Jaringan layar jamak *(multi layer network)*
- 3. Jaringan recurrent

FUNGSI AKTIVASI

- Fungsi aktivasi digunakan untuk menentukan output suatu neuron.
- Input fungsi aktivasi adalah net (kombinasi linear dari input dan bobot). Jika $net = \sum x_i w_i$, maka fungsi aktivasinya

$$f(net) = f\left(\sum_{i=1}^{n} x_i w_i\right)$$

JENIS-JENIS FUNGSI AKTIVASI

Fungsi treshold (batas ambang)
 Treshold biner

$$f(x) = \begin{cases} 1, & jika \ x \ge a \\ 0, & jika \ x < a \end{cases}$$

Treshold bipolar

$$f(x) = \begin{cases} 1, & jika \ x \ge a \\ -1, & jika \ x < a \end{cases}$$

JENIS-JENIS FUNGSI AKTIVASI

Fungsi sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

fungsi sigmod sering digunakan karena nilai fungsinya terletak antara 0 dan 1 dan dapat diturunkan dengan mudah

$$f'(x) = f(x)(1 - f(x))$$

JENIS-JENIS FUNGSI AKTIVASI

Fungsi identitas

$$f(x) = x$$

fungsi indentitas sering digunakan apabila output yang diinginkan berupa sembarang bilangan real (bukan hanya pada range [0,1] atau [-1,1].

BIAS DAN TRESHOLD

Bias merupakan sebuah unit input yang ditambahkan dan nilainya selalu 1. Bias berfungsi untuk mengubah nilai treshold menjadi 0.

$$net = b + \sum_{i=1}^{n} x_i w_i$$

Fungsi aktivasi treshold menjadi

$$f(net) = \begin{cases} 1, & jika \ net \ge 0 \\ -1, & jika \ net < 0 \end{cases}$$

BIAS DAN TRESHOLD

Contoh

Suatu jaringan layar tunggal terdiri dari 2 input $x_1 = 0.7$, $x_2 = 2.1$ dan memiliki bias. Bobot garis $w_1 = 0.5$, $w_2 = -0.3$ dan bobot bias b=1.2. Tentukan output neuron Y jika fungsi aktivasinya adalah fungsi treshold bipolar.

Jawab

$$net = b + \sum_{i=1}^{2} x_i w_i = 1.2 + (0.7 \times 0.5) + (2.1 \times -0.3) = 0.92$$

Karena $net > 0$, maka $Y = f(net) = f(0.92) = 1$.

PELATIHAN DENGAN DAN TANPA SUPERVISI

Berdasarkan cara memodifikasi bobot, dikenal 2 macam pelatihan yaitu dengan supervisi (supervised learning) da tanpa supervisi (unsupervised learning).

- Pelatihan dengan supervisi: model Hebb, Perceptron, ADALINE, Boltzman, Hopfield, Backpropagation, dll.
- 2. Pelatihan tanpa supervisi: model Competitive, Kohonen, LVQ (learning vector quantization), Neocognitron, dll

MODEL JST BERDASARKAN ARISTEKTUR

- 1. Jaringan layar tunggal: ADALINE, Hopfield, Perceptron, LVQ, dll.
- 2. Jaringan layar jamak: MADALINE, Backpropagation, Neocognitron, dll.
- 3. Jaringan recurrent: BAM *(bidirectional associative memory),* Boltzman Machine, Hopfield, dll

APLIKASI JST

- 1. Klasifikasi: ADALINE, LVQ, Backpropagation, dll.
- 2. Pengenalan pola: ART *(adaptive resonance theory),* LVQ, Backpropagation, Neocognitron, dll.
- 3. Peramalan: ADALINE, MADALINE, Backropagation, dll.
- 4. Optimisasi: ADALINE, Hopfield, Boltzman, Backpropagation, dll.

MODEL HEBB

Dasar algoritma Hebb adalah jika 2 neuron dihubungkan dengan sinapsis secara serentak menjadi aktif (sama-sama bernilai positif atau negatif), maka kekuatan sinapsisnya meningkat. Sebaliknya jika ke dua neuron aktif secara tidak sinkron (salah satu bernilai positif dan yang lain negatif), maka kekuatan sinapsisnya melemah.

ALGORITMA HEBB

Diberikan input x_i (i = 1, ..., n), target t, dan input bias 1

- 1. Inisialisasi semua bobot $w_i = 0$ (i = 1, ..., n) dan bias b = 0
- 2. Untuk semua vektor input, perbaiki bobot dan bias

```
w_i(baru) = w_i(lama) + \Delta w_i \quad (i = 1, ..., n)
di mana \Delta w_i = x_i t
b(baru) = b(lama) + \Delta b
di mana \Delta b = t
```

- 3. Untuk semua vektor input, hitung $net = \sum_{i=1}^{n} x_i w_i + b$
- 4. Hitung output y = f(net), di mana f adalah fungsi aktivasi

Buatlah jaringan Hebb untuk menyatakan fungsi logika AND jika representasi input/output yang dipakai adalah

- a. Input biner, output biner
- b. Input biner, output bipolar
- c. Input bipolar, output bipolar

Penyelesaian: input biner output biner

Inisialisasi bobot: $w_1 = 0$, $w_2 = 0$, b = 0

I	nput		Target	Perub	ahan I	Bobot	Bol	oot B	aru
x_1	x_2	1	t	Δw_1	Δw_2	Δb	w_1	W_2	b
1	1	1	1	1	1	1	1	1	1
1	0	1	0	0	0	0	1	1	1
0	1	1	0	0	0	0	1	1	1
0	0	1	0	0	0	0	1	1	1

Bobot baru: $w_1 = 1$, $w_2 = 1$, b = 1

Bobot baru: $w_1 = 1$, $w_2 = 1$, b = 1

Hitung
$$net = \sum_{i=1}^{n} x_i w_i + b \operatorname{dan} y = f(net) = \begin{cases} 1, & net \ge 0 \\ 0, & net < 0 \end{cases}$$

Inp	out	Output					
x_1	x_2	net	y = f(net)				
1	1	3	1				
1	0	2	1				
0	1	2	1				
0	0	1	1				

Kesimpulan:

Dari output yang dihasilkan, hanya ada 1 input yang outputnya sesuai dengan target yaitu input ke-1. Itu artinya representasi data input biner output biner tidak memberikan respon yang benar untuk menyatakan fungsi logika AND.

Penyelesaian: input biner output bipolar

Inisialisasi bobot: $w_1 = 0$, $w_2 = 0$, b = 0

I	nput		Target	Perub	ahan I	Bobot	Bol	oot Bo	aru
x_1	x_2	1	t	Δw_1	Δw_2	Δb	w_1	W_2	b
1	1	1	1	1	1	1	1	1	1
1	0	1	-1	-1	0	-1	0	1	0
0	1	1	-1	0	-1	-1	0	0	-1
0	0	1	-1	0	0	-1	0	0	-2

Bobot baru: $w_1 = 0$, $w_2 = 0$, b = -2

Bobot baru: $w_1 = 0$, $w_2 = 0$, b = -2

Hitung
$$net = \sum_{i=1}^{n} x_i w_i + b \operatorname{dan} y = f(net) = \begin{cases} 1, & net \ge 0 \\ -1, & net < 0 \end{cases}$$

Inp	out	Output					
x_1	x_2	net	y = f(net)				
1	1	-2	-1				
1	0	-2	-1				
0	1	-2	-1				
0	0	-2	-1				

Kesimpulan:

Dari output yang dihasilkan, hanya ada 1 input yang outputnya tidak sesuai dengan target yaitu input ke-1. Itu artinya representasi data input biner output bipolar masih tidak memberikan respon yang benar untuk menyatakan fungsi logika AND.

Penyelesaian: input bipolar output bipolar

Inisialisasi bobot: $w_1 = 0$, $w_2 = 0$, b = 0

I	nput		Target	Perub	ahan I	Bobot	Bol	oot Bo	aru
x_1	x_2	1	t	Δw_1	Δw_2	Δb	w_1	w_2	b
1	1	1	1	1	1	1	1	1	1
1	-1	1	-1	-1	1	-1	0	2	0
-1	1	1	-1	1	-1	-1	1	1	-1
-1	-1	1	-1	1	1	-1	2	2	-2

Bobot baru: $w_1 = 2$, $w_2 = 2$, b = -2

Bobot baru:
$$w_1 = 2$$
, $w_2 = 2$, $b = -2$

Hitung
$$net = \sum_{i=1}^{n} x_i w_i + b \operatorname{dan} y = f(net) = \begin{cases} 1, & net \ge 0 \\ -1, & net < 0 \end{cases}$$

Inp	out	Output				
x_1	x_2	net	y = f(net)			
1	1	2	1			
1	-1	-2	-1			
-1	1	-2	-1			
-1	-1	-6	-1			

Kesimpulan:

Dari output yang dihasilkan, semua input menghasilkan output yang sesuai dengan target. Itu artinya representasi data input bipolar output bipolar memberikan respon yang benar untuk menyatakan fungsi logika AND.

Diberikan 2 buah pola seperti huruf X dan O. Gunakan model Hebb untuk mengenali pola tersebut.

#	•	•	•	#
•	#	•	#	•
•	•	#	•	•
•	#	•	#	•
#	•	•	•	#

•	#	#	#	•
#	•	•	•	#
#	•	•	•	#
#	•	•	•	#
•	#	#	#	•

Representasi Data

#	•	•	•	#
•	#	•	#	•
•	•	#	•	•
•	#	•	#	•
#	•	•	•	#

-1	1	1	1	-1
1	-1	-1	-1	1
1	-1	-1	-1	1
1	-1	-1	-1	1
- 1	1	1	1	-1

1	- 1	-1	-1	1
-1	1	-1	1	-1
-1	- 1	1	-1	-1
-1	1	-1	1	-1
1	- 1	- 1	-1	1

Pengenelan pola huruf X atau bukan

<u>Input</u>

x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
1	-1	-1	-1	1	-1	1	-1	1	-1	-1	-1	1	-1	-1
- 1	1	1	1	-1	1	-1	-1	-1	1	1	-1	-1	-1	1

<i>x</i> ₁₆	x ₁₇	x ₁₈	<i>x</i> ₁₉	<i>x</i> ₂₀	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅	t
-1	1	-1	1	-1	1	-1	-1	-1	1	1
1	-1	-1	-1	1	-1	1	1	1	-1	-1

Pengenelan pola huruf X atau bukan

Perubahan bobot

4	1 w ₁	Δw_2	Δw_3	Δw_4	Δw_5	Δw_6	Δw_7	Δw ₈	Δw ₉	Δw ₁₀	Δw ₁₁	Δw ₁₂	Δw ₁₃	Δw ₁₄	Δw ₁₅
	1	-1	-1	-1	1	-1	1	-1	1	-1	-1	-1	1	-1	-1
	1	-1	-1	-1	1	-1	1	1	1	-1	-1	1	1	1	-1

Δw_{16}	Δw ₁₇	Δw ₁₈	Δw ₁₉	Δw ₂₀	Δw ₂₁	Δw ₂₂	Δw ₂₃	Δw ₂₄	Δw ₂₅	Δb
-1	1	-1	1	-1	1	-1	-1	-1	1	1
-1	1	1	1	-1	1	-1	-1	-1	1	-1

Pengenelan pola huruf X atau bukan

Bobot baru

w_1	w_2	w_3	w_4	w_5	w_6	w_7	<i>w</i> ₈	W 9	w_{10}	w ₁₁	w_{12}	w ₁₃	w ₁₄	w ₁₅
1	-1	-1	-1	1	-1	1	-1	1	-1	-1	-1	1	-1	-1
2	-2	-2	-2	2	-2	2	0	2	-2	-2	0	2	0	-2

w ₁₆	w ₁₇	w ₁₈	w ₁₉	w_{20}	w_{21}	w_{22}	w_{23}	w_{24}	w ₂₅	b
-1	1	-1	1	-1	1	-1	-1	-1	1	1
-2	2	0	2	-2	2	-2	-2	-2	2	0

Pengenelan pola huruf X atau bukan

x_1	x_2	x_3	<i>x</i> ₄	x_5	x_6	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
1	-1	-1	-1	1	-1	1	-1	1	-1	-1	-1	1	-1	-1
-1	1	1	1	-1	1	-1	-1	-1	1	1	-1	-1	-1	1

<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>x</i> ₂₀	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅	net	y
-1	1	-1	1	-1	1	-1	-1	-1	1	42	1
1	-1	-1	-1	1	-1	1	1	1	-1	-42	-1

Kesimpulan:

Model Hebb berhasil mengenali pola huruf X sesuai dengan target.

LATIHAN 1: MODEL HEBB

Buatlah jaringan Hebb dengan 3 input dan 1 target untuk mengenali pola berikut

	Inp	ut		Target
x_1	x_2	x_3	1	t
1	1	1	1	1
1	1	0	1	0
1	0	1	1	0
0	1	1	1	0

	Inp	ut		Target
x_1	x_2	x_3	1	t
1	1	1	1	1
1	1	0	1	-1
1	0	1	1	-1
0	1	1	1	-1

	Inp	ut		Target
x_1	x_2	x_3	1	t
1	1	1	1	1
1	1	-1	1	-1
1	-1	1	1	-1
-1	1	1	1	-1

LATIHAN 2: MODEL HEBB UNTUK PENGENALAN POLA

Diberikan 2 buah pola seperti huruf X dan +. Gunakan model Hebb untuk mengenali pola huruf X.

#	•	•	•	#
•	#	•	#	•
•	•	#	•	•
•	#	•	#	•
#	•	•	•	#

•	•	#	•	•
•	•	#	•	•
#	#	#	#	#
•	•	#	•	•
•	•	#	•	•

DAFTAR PUSTAKA

• Siang, J. J. 2015. *Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab.* Penerbit Andi.