Consecuencia lógica y resolución proposicional

Clase 6

IIC 1253

Prof. Sebastián Bugedo

Outline

Obertura

Consecuencia lógica

Resolución proposicional

Epílogo

Primer Acto: Fundamentos Inducción y lógica

Playlist Primer Acto

Playlist del curso: DiscretiWawos

Además sigan en instagram:

@orquesta_tamen

Formas normales

Definición

Decimos que una fórmula φ está en forma normal disyuntiva (DNF) si es una disyunción de conjunciones de literales; o sea, si es de la forma

$$B_1 \vee B_2 \vee \ldots \vee B_k$$

donde cada B_i es una conjunción de literales, $B_i = (I_{i1} \wedge ... \wedge I_{ik_i})$

Teorema

Toda fórmula es equivalente a una fórmula en DNF.

Formas normales

Definición

Decimos que una fórmula φ está en forma normal conjuntiva (CNF) si es una conjunción de disyunciones de literales; o sea, si es de la forma

$$C_1 \wedge C_2 \wedge \ldots \wedge C_k$$

donde cada C_i es una disyunción de literales, $C_i = (l_{i1} \lor ... \lor l_{ik_i})$

Teorema

Toda fórmula es equivalente a una fórmula en CNF.

Objetivos de la clase

- □ Comprender el concepto de consecuencia lógica
- Demostrar consecuencias sencillas
- Comprender el método de resolución
- □ Demostrar consecuencias lógicas usando resolución

Outline

Obertura

Consecuencia lógica

Resolución proposicional

Epílogo

Conjuntos de fórmulas

Notación

Dado un conjunto de fórmulas Σ en L(P), diremos que una valuación σ satisface Σ , denotado por $\sigma(\Sigma)$ = 1, si para toda fórmula $\varphi \in \Sigma$ se tiene que $\sigma(\varphi)$ = 1.

Definición

Un conjunto de fórmulas Σ es satisfacible si existe una valuación σ tal que $\sigma(\Sigma) = 1$. En caso contrario, Σ es inconsistente.

¿Cuándo decimos que una fórmula se deduce de un conjunto?

Consecuencia lógica

Definición

 ψ es consecuencia lógica de Σ si para cada valuación σ tal que $\sigma(\Sigma)$ = 1, se tiene que $\sigma(\psi)$ = 1.

Lo denotamos por $\Sigma \vDash \psi$.

 ψ debe ser satisfecha en cada "mundo" donde Σ es verdadero

Consecuencia lógica

Ejemplo

La regla de inferencia llamada **Modus ponens** es $\{p,p \rightarrow q\} \vDash q$

p	q	р	$p \rightarrow q$	q
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

Nos tenemos que fijar en las valuaciones que satisfacen al conjunto... En esos mundos, la fórmula "objetivo" también debe ser satisfecha

Ejercicio (propuesto ★)

Demuestre las siguientes reglas de inferencia

- Modus tollens: $\{\neg q, p \rightarrow q\} \vDash \neg p$
- Demostración por partes: $\{p \lor q \lor r, p \to s, q \to s, r \to s\} \models s$

Un resultado fundamental

Teorema

 $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Este teorema combina dos mundos:

la consecuencia lógica y la satisfacibilidad

Un resultado fundamental

Teorema

 $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Demostración

- (\Rightarrow) Supongamos que $\Sigma \vDash \varphi$. Por contradicción, supongamos que $\Sigma \cup \{\neg \varphi\}$ es satisfacible, luego existe una valuación σ tal que $\sigma(\Sigma \cup \{\neg \varphi\}) = 1$. Esto implica que $\sigma(\Sigma) = 1$ y que $\sigma(\neg \varphi) = 1$, y por lo tanto $\sigma(\Sigma) = 1$ y $\sigma(\varphi) = 0$, lo que contradice que $\Sigma \vDash \varphi$.
- $(\Leftarrow) \text{ Sea } \Sigma \cup \{\neg \varphi\} \text{ inconsistente. Debemos demostrar que dada una valuación } \sigma \text{ tal que } \sigma(\Sigma) = 1, \text{ se tiene que } \sigma(\varphi) = 1. \text{ Como } \Sigma \cup \{\neg \varphi\} \text{ es inconsistente y } \sigma(\Sigma) = 1, \text{ necesariamente } \sigma(\neg \varphi) = 0, \text{ y luego } \sigma(\varphi) = 1.$ Hemos demostrado que si σ es tal que $\sigma(\Sigma) = 1$, entonces $\sigma(\varphi) = 1$, por lo que concluimos que $\Sigma \vDash \varphi$.

Un resultado fundamental

El teorema anterior nos permite chequear $\Sigma \vDash \varphi$ estudiando la satisfacibilidad de $\Sigma \cup \{\neg \varphi\}$

- Podemos usar tablas de verdad para esto último. . .
- ... pero es muy lento!

Estudiaremos un método alternativo que no requiere tablas de verdad

Outline

Obertura

Consecuencia lógica

Resolución proposicional

Epílogo

Primer ingrediente: Cláusula vacía

Recordemos: una cláusula es una disyunción de literales

Notación

Denotaremos por

una contradicción cualquiera. La llamaremos cláusula vacía

Teorema

Un conjunto de fórmulas Σ es inconsistente si y sólo si $\Sigma \vDash \Box$.

Primer ingrediente: Cláusula vacía

Teorema

Un conjunto de fórmulas Σ es inconsistente si y sólo si $\Sigma \vDash \square$.

Demostración (propuesta 🛨)

- (\Rightarrow) Dado que Σ es inconsistente, debemos demostrar que $\Sigma \vDash \square$. Como Σ es inconsistente, sabemos que toda valuación σ es tal que $\sigma(\Sigma) = 0$, y luego se cumple trivialmente que $\Sigma \vDash \square$.
- $(\Leftarrow) \ \mathsf{Dado} \ \mathsf{que} \ \Sigma \vDash \square, \ \mathsf{debemos} \ \mathsf{demostrar} \ \mathsf{que} \ \Sigma \ \mathsf{es} \ \mathsf{inconsistente}. \ \mathsf{Por}$ $\mathsf{contradicci\'on}, \ \mathsf{supongamos} \ \mathsf{que} \ \Sigma \ \mathsf{es} \ \mathsf{satisfacible}. \ \mathsf{Luego}, \ \mathsf{existe} \ \mathsf{una}$ $\mathsf{valuaci\'on} \ \sigma \ \mathsf{tal} \ \mathsf{que} \ \sigma(\Sigma) = 1. \ \mathsf{Como} \ \square \ \mathsf{es} \ \mathsf{una} \ \mathsf{contradicci\'on}, \ \mathsf{tenemos} \ \mathsf{que}$ $\sigma(\square) = 0, \ \mathsf{y} \ \mathsf{por} \ \mathsf{lo} \ \mathsf{tanto} \ \mathsf{obtenemos} \ \mathsf{que} \ \sigma(\Sigma) = 1 \ \mathsf{pero} \ \sigma(\square) = 0, \ \mathsf{lo} \ \mathsf{que}$ $\mathsf{contradice} \ \mathsf{que} \ \Sigma \vDash \square.$

Segundo ingrediente: conjuntos equivalentes

Definición

Los conjuntos de fórmulas Σ_1 y Σ_2 son lógicamente equivalentes $(\Sigma_1 \equiv \Sigma_2)$ si para toda valuación σ se tiene que $\sigma(\Sigma_1) = \sigma(\Sigma_2)$.

Observaciones

lacksquare Diremos que Σ es lógicamente equivalente a una fórmula arphi si

$$\Sigma \equiv \{\varphi\}$$

Para todo Σ se cumple

$$\Sigma \equiv \bigwedge_{\varphi \in \Sigma} \varphi$$

Segundo ingrediente: conjuntos equivalentes

Teorema

Todo conjunto de fórmulas Σ es equivalente a un conjunto de cláusulas.

Ejemplo

Pasando las fórmulas de un conjunto Σ a CNF, podemos separar sus cláusulas

$$\{p, q \rightarrow (p \rightarrow r), \neg (q \rightarrow r)\} \equiv \{p, \neg q \lor \neg p \lor r, q, \neg r\}$$

obteniendo un conjunto de cláusulas que es equivalente al original.

Para determinar si $\Sigma \vDash \varphi$, construiremos un conjunto de cláusulas $\Sigma' \equiv \Sigma \cup \{\neg \varphi\}$

La regla de resolución

Notación

Si un literal $\ell=p$, entonces $\bar{\ell}=\neg p$, y si $\ell=\neg p$, entonces $\bar{\ell}=p$.

Regla de resolución

Dadas cláusulas C_1 , C_2 y un literal ℓ ,

$$C_1 \lor \ell \lor C_2$$

$$C_3 \lor \overline{\ell} \lor C_4$$

$$C_1 \lor C_2 \lor C_3 \lor C_4$$

Observaciones

- La regla es correcta: $\{C_1 \lor \ell \lor C_2, C_3 \lor \bar{\ell} \lor C_4\} \vDash C_1 \lor C_2 \lor C_3 \lor C_4$
- \blacksquare ℓ y $\bar{\ell}$ se llaman literales complementarios

La regla de resolución

Regla de resolución

Dadas cláusulas C_1 , C_2 y un literal ℓ ,

$$\begin{array}{c}
C_1 \lor \ell \lor C_2 \\
C_3 \lor \overline{\ell} \lor C_4 \\
\hline
C_1 \lor C_2 \lor C_3 \lor C_4
\end{array}$$

Ejemplo

Algunos casos particulares de resolución

$$\begin{array}{ccc}
C_1 \lor \ell \lor C_2 & \ell \\
\hline
\ell & \hline
C_1 \lor C_2
\end{array}$$

La regla de factorización

Regla de factorización

Dadas cláusulas C_1, C_2, C_3 y un literal ℓ ,

$$\frac{C_1 \vee \ell \vee C_2 \vee \ell \vee C_3}{C_1 \vee \ell \vee C_2 \vee C_3}$$

Observación

■ La regla es **correcta**: $\{C_1 \lor \ell \lor C_2 \lor \ell \lor C_3\} \models C_1 \lor \ell \lor C_2 \lor C_3$

Demostraciones por resolución

Definición

Una demostración por resolución de que Σ es inconsistente es una secuencia de cláusulas C_1, \ldots, C_n tal que

- Para cada $i \leq n$
 - $C_i \in \Sigma$ o
 - existen j, k < i tales que C_i se obtiene de C_j, C_k usando la regla de resolución o
 - existe j < i tal que C_i se obtiene de C_j usando la regla de factorización
- $C_n = \square$

Lo denotamos por $\Sigma \vdash \Box$.

Es decir, existe una demostración por resolución de que Σ es inconsistente

Teorema

Dado un conjunto de cláusulas Σ , se tiene que:

- **Correctitud:** Si $\Sigma \vdash \Box$ entonces $\Sigma \vDash \Box$.
- **Completitud:** Si $\Sigma \vDash \square$ entonces $\Sigma \vdash \square$.

Corolario

Si Σ es un conjunto de cláusulas, entonces $\Sigma \vDash \square$ si y sólo si $\Sigma \vdash \square$.

Corolario (forma alternativa)

Un conjunto de cláusulas Σ es inconsistente si y sólo si existe una demostración por resolución de que es inconsistente.

¡Resolución resuelve nuestro problema!

¡Resolución resuelve nuestro problema de consecuencia lógica!

Corolario

Dados un conjunto de fórmulas Σ y una fórmula φ cualesquiera,

$$\Sigma \vDash \varphi$$
 si y sólo si $\Sigma' \vdash \Box$

donde Σ' es un conjunto de cláusulas tal que $\Sigma \cup \{\neg \varphi\} \equiv \Sigma'$.

Este procedimiento nos permite determinar consecuencia lógica

Ejemplo

Demostremos que $\{p, q \to (p \to r)\} \models q \to r$.

Seguiremos la estrategia planteada

- 1. Agregar $\neg \varphi$ al conjunto
- 2. Transformar todo en $\Sigma \cup \{\neg \varphi\}$ a CNF y separar cláusulas
- 3. Obtener una secuencia de cláusulas por resolución para llegar a 🗆

El desarrollo se deja propuesto 🛨

Ejemplo

Consideremos el conjunto $\{p, q \to (p \to r), \neg(q \to r)\}$ y llamamos

- $\varphi = q \rightarrow (p \rightarrow r)$
- $\psi = \neg (q \rightarrow r)$

Transformamos cada una a conjuntos de cláusulas

 \blacksquare Para φ usamos ley de implicancia material (dos veces) y asociatividad

$$\varphi = q \rightarrow (p \rightarrow r) \equiv \neg q \lor (p \rightarrow r) \equiv \neg q \lor (\neg p \lor r) \equiv \{\neg q \lor \neg p \lor r\}$$

lacksquare Para ψ usamos implicancia y de Morgan

$$\psi = \neg (q \to r) \equiv \neg (\neg q \lor r) \equiv q \land \neg r \equiv \{q, \neg r\}$$

Ejemplo

Tenemos el conjunto de cláusulas

$$\Sigma = \{p, \neg q \lor \neg p \lor r, q, \neg r\}.$$

Basta demostrar que Σ es inconsistente, y como es un conjunto de cláusulas, lo haremos mostrando que $\Sigma \vdash \Box$:

- $\begin{array}{lll} (1) & p & & \in \Sigma \\ (2) & \neg q \vee \neg p \vee r & \in \Sigma \\ (3) & \neg q \vee r & \text{resolución de } (1), (2) \\ (4) & q & & \in \Sigma \\ (5) & r & \text{resolución de } (3), (4) \\ (6) & \neg r & & \in \Sigma \end{array}$
- (7) \Box resolución de (5), (6)

Outline

Obertura

Consecuencia lógica

Resolución proposicional

Epílogo

Objetivos de la clase

- □ Comprender el concepto de consecuencia lógica
- Demostrar consecuencias sencillas
- Comprender el método de resolución
- □ Demostrar consecuencias lógicas usando resolución