### Vectors over GF(2)

Addition of vectors over GF(2):

|   | 1 | 1 | 1 | 1 | 1 |  |
|---|---|---|---|---|---|--|
| + | 1 | 0 | 1 | 0 | 1 |  |
|   | 0 | 1 | 0 | 1 | 0 |  |

For brevity, in doing GF(2), we often write 1101 instead of [1,1,0,1].

**Example:** Over GF(2), what is 1101 + 0111?

Answer: 1010

# Vectors over GF(2): Perfect secrecy

Represent encryption of n bits by addition of n-vectors over GF(2).

### Example:

Alice and Bob agree on the following 10-vector as a key:

$$\mathbf{k} = [0, 1, 1, 0, 1, 0, 0, 0, 0, 1]$$

Alice wants to send this message to Bob:

$$\mathbf{p} = [0, 0, 0, 1, 1, 1, 0, 1, 0, 1]$$

She encrypts it by adding  $\mathbf{p}$  to  $\mathbf{k}$ :

$$\mathbf{c} = \mathbf{k} + \mathbf{p} = [0, 1, 1, 0, 1, 0, 0, 0, 0, 1] + [0, 0, 0, 1, 1, 1, 0, 1, 0, 1]$$

$$\mathbf{c} = [0, 1, 1, 1, 0, 1, 0, 1, 0, 0]$$

When Bob receives  $\mathbf{c}$ , he decrypts it by adding  $\mathbf{k}$ :

$$\mathbf{c} + \mathbf{k} = [0, 1, 1, 1, 0, 1, 0, 1, 0, 0] + [0, 1, 1, 0, 1, 0, 0, 0, 0, 1] = [0, 0, 0, 1, 1, 1, 0, 1, 0, 1]$$
 which is the original message.

### Vectors over GF(2): Perfect secrecy

If the key is chosen according to the uniform distribution, encryption by addition of vectors over GF(2) achieves perfect secrecy. For each plaintext  $\mathbf{p}$ , the function that maps the key to the cyphertext

$$k \mapsto k + p$$

is invertible

Since the key  ${\bf k}$  has the uniform distribution, the cyphertext  ${\bf c}$  also has the uniform distribution.

### Vectors over GF(2): All-or-nothing secret-sharing using GF(2)

- ▶ I have a secret: the midterm exam.
- ▶ I've represented it as an *n*-vector  $\mathbf{v}$  over GF(2).
- ▶ I want to provide it to my TAs Alice and Bob (A and B) so they can administer the midterm while I take vacation.
- One TA might be bribed by a student into giving out the exam ahead of time, so I don't want to simply provide each TA with the exam.
- ▶ *Idea:* Provide pieces to the TAs:
  - the two TAs can jointly reconstruct the secret, but
  - neither of the TAs all alone gains any information whatsoever.
- ► Here's how:
  - ▶ I choose a random n-vector  $\mathbf{v}_A$  over GF(2) randomly according to the uniform distribution
  - ▶ I then compute

$$\mathbf{v}_B := \mathbf{v} - \mathbf{v}_A$$

▶ I provide Alice with  $\mathbf{v}_A$  and Bob with  $\mathbf{v}_B$ , and I leave for vacation.

## Vectors over GF(2): All-or-nothing secret-sharing using GF(2)

- ▶ What can Alice learn without Bob?
- ▶ All she receives is a random *n*-vector.
- ▶ What about Bob?
- ▶ He receives the output of  $f(\mathbf{x}) = \mathbf{v} \mathbf{x}$  where the input is random and uniform.
- ▶ Since  $f(\mathbf{x})$  is invertible, the output is also random and uniform.

# Vectors over GF(2): All-or-nothing secret-sharing using GF(2)

Too simple to be useful, right?
RSA just introduced a product based on this idea:

# RSA® DISTRIBUTED CREDENTIAL PROTECTION

Scramble, randomize and split credentials



- Split each password into two parts.
- Store the two parts on two separate servers.

- input: Configuration of lights
- output: Which buttons to press in order to turn off all lights?

**Computational Problem:** Solve an instance of *Lights Out* 

Represent state using range (5)  $\times$  range (5)-vector over GF(2).

Example state vector:



Represent each button as a vector (with ones in positions that the button toggles)

Example button vector:



Look at  $3 \times 3$  case.



Button vectors for  $3 \times 3$ :



**Computational Problem:** Which sequence of button vectors sum to **s**?

**Computational Problem:** Which sequence of button vectors sum to **s**?

### Observations:

- ▶ By commutative property of vector addition, order doesn't matter.
- ▶ A button vector occuring twice cancels out.

Replace Computational Problem with: Which set of button vectors sum to s?

Replace our original Computational Problem with a more general one:

Solve an instance of *Lights Out*  $\Rightarrow$  Which set of button vectors sum to **s**?

 $\Rightarrow$ 

Find subset of GF(2) vectors  $\mathbf{v}_1, \dots, \mathbf{v}_n$  whose sum equals  $\mathbf{s}$ 

Button vectors for  $2 \times 2$  version:



where the black dots represent ones.

**Quiz:** Find the subset of the button vectors whose sum is

Button vectors for  $2 \times 2$  version:



where the black dots represent ones.

Quiz: Find the subset of the button vectors whose sum is



Answer: