

Algèbre Linéaire et Analyse de Données

Examen 2021 - 2022, Durée : 1h45 Licence 2 MIASHS

Guillaume Metzler
Université de Lyon, Université Lumière Lyon 2
Laboratoire ERIC UR 3083, Lyon, France
guillaume.metzler@univ-lyon2.fr

Deux feuilles A4 manuscrites avec vos notes personnelles sont autorisées.

En revanche, l'usage de calculatrice ou de tout autre matériel électronique est interdit.

Résumé

L'examen est volontairement long afin de donner l'opportunité à chacun de trouver des questions qu'il puisse faire pendant le temps imparti.

En outre, il permettra de faire une meilleure distinction entre les étudiants.

A ce titre, il n'est bien sûr pas attendu à ce que vous traitiez tous les exercices!

Les différents exercices qui composent cet examen sont indépendants. La qualité de la rédaction sera prise en compte de l'évaluation de la copie.

Exercice 1

On considère la famille de vecteurs de \mathbb{R}^3 suivante :

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \ \text{et } \mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

- 1. Rappeler la définition de famille libre.
- 2. La famille de vecteurs $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forme-t-elle une famille libre de \mathbb{R}^3 ? Est-elle une famille génératrice de \mathbb{R}^3 ?
- 3. On note $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ la base canonique de \mathbb{R}^3 et soit $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ l'application vérifiant

$$\phi(\mathbf{e}_1) = \mathbf{v}_1, \ \phi(\mathbf{e}_2) = \mathbf{v}_2, \ \text{et } \phi(\mathbf{e}_3) = \mathbf{v}_3.$$

- (a) Déterminer la matrice associée à l'application ϕ dans la base canonique de \mathbb{R}^3 , on la notera $Mat(\phi)$.
- (b) L'application ϕ est-elle inversible? Déterminer son inverse.
- 4. On considère maintenant l'application φ dont la représentation matricielle dans la base canonique $\mathcal B$ est donnée par

$$M = Mat_{\mathscr{B}}(\varphi) = \begin{pmatrix} 1 & 0 & 0 & -3 \\ -2 & -1 & 0 & 5 \\ -1 & 1 & 2 & -2 \end{pmatrix}.$$

- (a) Déterminer une base du noyau de φ et précisez sa dimension.
- (b) Déterminer une base de l'image de φ et préciser sa dimension.

Exercice 2

On note $\mathbf{x}=(x_1,x_2,x_3)$ un vecteur de \mathbb{R}^3 . On considère une application ϕ de \mathbb{R}^3 dans $\mathcal{M}_3(\mathbb{R})$ définie par

$$\phi: \mathbf{x} \mapsto \begin{pmatrix} x_1 & x_1 + x_2 & 0 \\ 0 & x_2 & x_2 + x_3 \\ 0 & 0 & x_3 \end{pmatrix}$$

1. Montrer que l'ensemble

$$E = \left\{ \begin{pmatrix} x_1 & x_1 + x_2 & 0\\ 0 & x_2 & x_2 + x_3\\ 0 & 0 & x_3 \end{pmatrix} \mid x_1, x_2, x_3 \in \mathbb{R} \right\}$$

est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

- 2. Déterminer E', le sous-espace de l'ensemble des matrices inversibles de E.
- 3. Montrer que l'application ϕ est linéaire. Est-elle injective?
- 4. L'application ϕ est-elle surjective?

Exercice 3

On se place dans l'espace vectoriel $E = \mathbb{R}^3$, on note $\mathscr{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ sa base canonique. Soit u un endomorphisme de E dont la représentation matricielle dans la base \mathscr{B} , notée A, est donnée par :

$$A = \begin{pmatrix} 6 & -2 & 2 \\ 0 & 4 & 0 \\ 2 & -2 & 6 \end{pmatrix}$$

On pose $\mathbf{f}_1 = \mathbf{e}_1 + \mathbf{e}_3$, $\mathbf{f}_2 = \mathbf{e}_1 + \mathbf{e}_2$ et $\mathbf{f}_3 = \mathbf{e}_1 - \mathbf{e}_3$.

- 1. Montrer que $\mathscr{B}' = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ une base de E.
- 2. Déterminer la matrice de passage P de la base \mathscr{B} vers la base \mathscr{B}' .
- 3. Déterminer $u(\mathbf{f}_1), u(\mathbf{f}_2)$ et $u(\mathbf{f}_3)$ et en déduire une représentation matricielle de A dans cette nouvelle base \mathscr{B}' . Elle sera appelée D dans la suite.
- 4. Calculer D^n pour tout entier $n \in \mathbb{N}^*$.
- 5. Donner l'expression de A^n pour tout entier $n \in \mathbb{N}^*$ en fonction de la matrice D^n .

Exercice 4

1. Soit $\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$. Considérons la famille de vecteurs $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$

$$\mathbf{v}_1 = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \text{et } \mathbf{v}_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

- (a) Déterminer un vecteur \mathbf{v}_3 tel que la famille $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forme une famille orthogonale de \mathbb{R}^3 .
- (b) Déterminer l'espace orthogonal au vecteur \mathbf{v}_1 dans \mathbb{R}^3 , *i.e.* l'ensemble des vecteurs de \mathbb{R}^3 qui sont orthogonaux au vecteur \mathbf{v}_1 .
- 2. On considère l'application $\phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ par

$$\phi(\mathbf{x}, \mathbf{y}) = (x_1 + y_1)^2 + (x_2 + y_2)^2 - (x_1 - y_1)^2 - (x_2 - y_2)^2$$

- (a) Montrer que l'application ϕ définit un produit scalaire.
- (b) Déterminer la forme quadratique associée et la matrice associée à l'application ϕ .
- (c) La forme quadratique est-elle définie positive?

Exercice 5

Soit q la forme quadratique de \mathbb{R}^3 dans \mathbb{R} de matrice

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

dans la base canonique $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ de \mathbb{R}^3

1. Donner l'expression analytique de q dans la base $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ et expliciter sa forme polaire, *i.e.* déterminer l'expression de $q(\mathbf{x})$ et celle de $\phi(\mathbf{x}, \mathbf{y})$ où ϕ désigne la forme polaire associée.

3

2. Vérifier que la famille $(\mathbf{e}_1',\mathbf{e}_2',\mathbf{e}_3')$ définie par

$$\mathbf{e}_{1}' = \mathbf{e}_{1}, \ \mathbf{e}_{2}' = \mathbf{e}_{1} - \mathbf{e}_{2}, \ \mathbf{e}_{3}' = -\mathbf{e}_{2} + \mathbf{e}_{3}$$

est une base de \mathbb{R}^3 et donner la matrice A' de q dans cette base.

- 3. Expliciter q dans cette base.
- 4. Déterminer le projection du vecteur \mathbf{e}_2' sur le vecteurs \mathbf{e}_1' puis sur le vecteur \mathbf{e}_3' .

Exercice 6

On considère la matrice

$$A = \begin{pmatrix} 1/2 & 1/2 & 0 & 0\\ 1/4 & 1/4 & 1/2 & 0\\ 1/8 & 1/8 & 1/4 & 1/2\\ 1/8 & 1/8 & 1/4 & 1/2 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

- 1. Rappeler le lien entre valeurs propres d'une matrice et sa trace.
- 2. Déterminer la dimension du noyau de la matrice A.
- 3. Quel est le déterminant de A? Préciser le rang de la matrice A.
- 4. Déterminer les valeurs propres de la matrice A.

 Indication: on pourra effectuer les calculs suivants

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad et \quad A \begin{pmatrix} 2 \\ 0 \\ -1 \\ -1 \end{pmatrix}$$

La matrice A est-elle diagonalisable?

Exercice 7

Dire si les matrices suivantes sont diagonalisables ou non

1. La matrice A de $\mathcal{M}_3(\mathbb{R})$ définie par

$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$

2. La matrice B de $\mathcal{M}_3(\mathbb{R})$ définie par

$$B = \begin{pmatrix} 3 & -1 \\ 0 & 3 \end{pmatrix}.$$

3. La matrice C de $\mathcal{M}_3(\mathbb{R})$ définie par

$$C = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 3 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

4