Introduction to SciLAb

Anuja Nagare

(DJ Sanghvi College of Engineering – IT Dept)

Session 1

Topics

Basics of SCILAB

2. Matrices and arrays

3. Exponential, logarithmic, trigonometric functions

4. Rounding of functions

Introduction to SCILAB

▶ SCIentific LABoratory

High level programming language

Open Source Software

Scilab homepage : http://www.scilab.org

Tutorial 1

- Print 'Welcome To SCILAB'
- Find sum of two numbers
- Escape Characters: \n, \t
- Specifiers: %c, %s, %d, %f
- Input radius and find area of circle.

Creating File: Applications → SciNotes

Creating Script File

File \rightarrow New **or** Ctrl + N

Saving a script file

File \rightarrow Save **or** Ctrl + S

Executing a script file

Execute \rightarrow Save and execute **or** F5

General SCILAB Commands

help	Opens HELP browser
clc	Clear command window.
clear	Removes all variables
clf	Clear or reset the current graphic figure (window) to default values
close	Close a figure or a window
exit	Exit from SCILAB.

Matrix

Row Matrix

$$>> x=[1 2 3]$$

$$>> z=[2, 1, 0]$$

▶ Column Matrix

$$>> y=[1;2;3]$$

Continuation:

▶ Ellipsis (...)

Create matrix G

$$G = \begin{bmatrix} 2 & 6 & 0 & 0 & 0 & 0 \\ 3 & 9 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 & 5 & 3 \end{bmatrix}$$

Tutorial 2

- Perform following operation on matrix G.
 - Delete last row and last column of matrix
 - Extract first 4x4 sub matrix from G
 - ▶ Replace G(5, 5) with 4

Operators

- Arithmetic Operators
 - +, -, *, /, \, ^

- Relational Operators
 - <, >, <=, >=, ==, ~=

- Logical Operators
 - **▶** &, |, ~

Arithmetic Operators

Array Operators

+	Addition
-	Subtraction
*	Multiplication
./	Division
•	Exponentiation

Matrix Operators

+	Addition
-	Subtraction
*	Multiplication
1	Division
٨	Exponentiation

\ Left Division

Used to solve matrix equation

- > x=A\b
- Same as x=inverse(A).b

▶ To solve Ax=b

Tutorial 3

Array addition, multiplication, division, subtraction

Matrix addition, multiplication, division, subtraction,

Tutorial 4

- Perform following:
 - ▶ A(row, column)
 - Size
 - Length
 - Sub-matrix
 - Transpose
 - Inverse
 - Append row or column

Utility Matrices

Zeros = creates zeros matrix

ones = creates ones matrix

eye = creates identity matrix

rand = creates random matrix

Exponential, Logarithms, Trigonometric Functions

- **Exponential Function:**
 - exp(x)

- **Logarithm Functions:**
 - $\triangleright \log(x), \log 10(x)$

- Trigonometric Functions:
 - sin, cos, tan, sec, csc, cot

Example

 e^3

exp(3)

 $\log_{10}(e^3)$

logI0(exp(3))

 $sin(90^{\circ})$

pi=22/7; sin(pi/2);

Round -off functions

Floor = round towards nearest lower int

- Ceil = round towards nearest higher int
- Round = round towards nearest int

- ► <u>Sign</u> = sign
- Fix = round towards zero

Session 2

(15 minutes break)

Topics

Conditional statements

2. Loop statements

3. Plotting statements

4. Creating and executing functions

To learn conditional statements

Tutorial 5

Input salary to calculate bonus: if s>50000=25% if 25000<s<50000 = 40% and if s<25000 = 50% using if else

if statement

```
if exprl then
statements
elseif expri then
statements
else
statements
end
```


select statement

```
select variable
case value I then
instructions I
case value2 then
instructions 2
case valuen then
instructions n
[else instructions]
end
```


To learn loop statements

Tutorial 6

Input a number and find factorial of that number.

FOR statement

```
for variable = Initialization: Update statement: Condition
 statement,
  statement
end
```

While statement

while expression instructions

• • •

instructions end

Linearly Spaced Values

>> linspace(0, 10, 5)

```
ans =
```

0 2.5000 5.0000 7.5000 10.0000

To study plotting Tutorial 7

Equation of st line: y=mx+c

Where, m and c are constants given as m=0.5;
c=-2

And x co-ordinates are given as follows x=0, 1.5, 3, 4, 5, 7, 9, 10

Plot: Linear plot

plot(X,Y)	plots vector Y versus vector X
plot(Y)	plots the columns of Y versus their index
plot(X,Y,S)	where S is a character string made
plot(x, y, '+:r')	plots a cyan dotted line with a plus at each data
	point
plot(x, y, '-y',x, y,	plots the data twice, with a solid yellow line
'og')	interpolating green circles at the data points

Tutorial 8 To study 3D plot & overlay plots

Plot3 function

for $0 \le t \le 20$ plot 3D figure where $x(t)=\sin(t)$; $y(t)=\cos(t)$; z(t)=t;

Overlay plots

for $0 \le x \le \Pi$ $y = \cos(x)$ and $z = 1 - \frac{x^2}{2} + \frac{x^4}{24}$

Tutorial 9

▶ Plot $Y = \sin(X)$, $0 \le X \le 2\Pi$ taking 100 linearly spaced points in given interval.

Label axes & put "plot created by your name" in title.

Creating & Executing Executing Function File

Tutorial 10

Input a number and find factorial of that number.

Function

Syntax for creating function:

```
function [out1, out2, ...] = myfun(in1, in2, ...)
....
end
```

Syntax for executing function:

```
exec('myfun.sci',-1);
f=factr(5)
```

Session 3

(30 minutes - break)

Industrial Robotics

Anuja Nagare

(DJ Sanghvi College of Engineering – IT Dept)

Topics

Rotation & Translation Transformation

2. Screw Transformation

3. Composite Transformation

4. Reach & Stroke of Robot In Given Workspace With the Help of Yaw Pitch Roll

Robotics tool

- ▶ **Download** : <u>RTSX1.0.zip</u>
- Link: http://controlsystemslab.com/rtsx/download/

- Unzip the file. Change Scilab current directory to the parent of unzipped dir, and type
- ▶ exec('startup_rtsx.sce',-1);// load all functions to Scilab workspace
- ▶ rprdemo; // see if things work okay

