```
In [44]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing
   from sklearn.preprocessing import StandardScaler
   from sklearn.metrics import precision_score, classification_report, confusion_mat
   from sklearn.metrics import accuracy_score
   from sklearn.ensemble import RandomForestClassifier
```

In [45]: df = pd.read_csv("worldCup_dataset.csv" , sep = "," , encoding = 'utf-8')

In [46]: df.head(10)

Out[46]:

	Unnamed: 0	date	home_team	away_team	home_score	away_score	tournament	city	С
0	1311	1930- 07-13	Belgium	United States	0.0	3.0	FIFA World Cup	Montevideo	U
1	1312	1930- 07-13	France	Mexico	4.0	1.0	FIFA World Cup	Montevideo	U
2	1313	1930- 07-14	Brazil	Yugoslavia	1.0	2.0	FIFA World Cup	Montevideo	U
3	1314	1930- 07-14	Peru	Romania	1.0	3.0	FIFA World Cup	Montevideo	U
4	1315	1930- 07-15	Argentina	France	1.0	0.0	FIFA World Cup	Montevideo	U
5	1316	1930- 07-16	Chile	Mexico	3.0	0.0	FIFA World Cup	Montevideo	U
6	1317	1930- 07-17	Bolivia	Yugoslavia	0.0	4.0	FIFA World Cup	Montevideo	U
7	1318	1930- 07-17	Paraguay	United States	0.0	3.0	FIFA World Cup	Montevideo	U
8	1320	1930- 07-18	Uruguay	Peru	1.0	0.0	FIFA World Cup	Montevideo	U
9	1321	1930- 07-19	Argentina	Mexico	6.0	3.0	FIFA World Cup	Montevideo	U
4									•

In [47]: df.tail(10)

01	ut	[47]	1:

	Unnamed: 0	date	home_team	away_team	home_score	away_score	tournament	city
890	40287	2018- 07-03	Sweden	Switzerland	1.0	0.0	FIFA World Cup	Saint Petersburg
891	40288	2018- 07-03	Colombia	England	1.0	1.0	FIFA World Cup	Moscow
892	40290	2018- 07-06	Uruguay	France	0.0	2.0	FIFA World Cup	Nizhny Novgorod
893	40291	2018- 07-06	Brazil	Belgium	1.0	2.0	FIFA World Cup	Kazan
894	40292	2018- 07-07	Sweden	England	0.0	2.0	FIFA World Cup	Samara
895	40293	2018- 07-07	Russia	Croatia	2.0	2.0	FIFA World Cup	Sochi
896	40294	2018- 07-10	France	Belgium	1.0	0.0	FIFA World Cup	Saint Petersburg
897	40295	2018- 07-11	Croatia	England	2.0	1.0	FIFA World Cup	Moscow
898	40296	2018- 07-14	Belgium	England	2.0	0.0	FIFA World Cup	Saint Petersburg
899	40297	2018- 07-15	France	Croatia	4.0	2.0	FIFA World Cup	Moscow

4

In [48]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 900 entries, 0 to 899
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	900 non-null	int64
1	date	900 non-null	object
2	home_team	900 non-null	object
3	away_team	900 non-null	object
4	home_score	900 non-null	float64
5	away_score	900 non-null	float64
6	tournament	900 non-null	object
7	city	900 non-null	object
8	country	900 non-null	object
9	neutral	900 non-null	bool
10	target	900 non-null	int64
<pre>dtypes: bool(1),</pre>		float64(2), int	64(2), object(6)

memory usage: 71.3+ KB

```
In [49]: df.isnull().sum()
Out[49]: Unnamed: 0
                        0
         date
                        0
         home_team
                        0
         away_team
                        0
                        0
         home_score
         away_score
                        0
         tournament
                        0
         city
                        0
         country
                        0
                        0
         neutral
                        0
         target
         dtype: int64
```

```
In [50]: plt.figure(figsize=(15,15))
          sns.heatmap(df.isnull())
          plt.xticks(rotation=45)
Out[50]: (array([ 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5]),
           [Text(0.5, 0, 'Unnamed: 0'),
            Text(1.5, 0, 'date'),
            Text(2.5, 0, 'home_team'),
            Text(3.5, 0, 'away team'),
            Text(4.5, 0, 'home_score'),
            Text(5.5, 0, 'away_score'),
            Text(6.5, 0, 'tournament'),
            Text(7.5, 0, 'city'),
            Text(8.5, 0, 'country'),
            Text(9.5, 0, 'neutral'),
            Text(10.5, 0, 'target')])
                                                                                               -0.100
           - 0.075
                                                                                               - 0.050
                                                                                               - 0.025
                                                                                               - 0.000
                                                                                              - -0.025
                                                                                               - -0.050
                                                                                              - -0.075
                                                                                               - -0.100
                      ske three term sweet team three true sweet true threaten day
```

```
In [51]: | df.nunique()
Out[51]: Unnamed: 0
                        900
                        355
         date
                         78
         home_team
                         79
         away_team
                         11
         home_score
                          9
         away_score
                          1
         tournament
                        161
         city
         country
                         17
         neutral
                          2
                          3
         target
         dtype: int64
In [52]: |df['neutral'].unique()
Out[52]: array([ True, False])
In [53]: df['date'] = df["date"].str.split("-", n = 0, expand = True)
In [54]: | df['date'] = df['date'].astype(int)
In [55]: df["neutral"] = df["neutral"].astype(int)
```

In [56]: df

Out[56]:

	Unnamed: 0	date	home_team	away_team	home_score	away_score	tournament	city
0	1311	1930	Belgium	United States	0.0	3.0	FIFA World Cup	Montevideo
1	1312	1930	France	Mexico	4.0	1.0	FIFA World Cup	Montevideo
2	1313	1930	Brazil	Yugoslavia	1.0	2.0	FIFA World Cup	Montevideo
3	1314	1930	Peru	Romania	1.0	3.0	FIFA World Cup	Montevideo
4	1315	1930	Argentina	France	1.0	0.0	FIFA World Cup	Montevideo
895	40293	2018	Russia	Croatia	2.0	2.0	FIFA World Cup	Sochi
896	40294	2018	France	Belgium	1.0	0.0	FIFA World Cup	Saint Petersburg
897	40295	2018	Croatia	England	2.0	1.0	FIFA World Cup	Moscow
898	40296	2018	Belgium	England	2.0	0.0	FIFA World Cup	Saint Petersburg
899	40297	2018	France	Croatia	4.0	2.0	FIFA World Cup	Moscow

900 rows × 11 columns

In [57]: plt.figure(figsize = (35,18))
sns.heatmap(df.corr() , annot = True , cmap = "YlGnBu")

Out[57]: <AxesSubplot:>


```
In [58]:
         home team encoder = preprocessing.LabelEncoder()
          df['home team'] = home team encoder.fit transform(df['home team'])
          away_team_encoder = preprocessing.LabelEncoder()
          df['away_team'] = away_team_encoder.fit_transform(df['away_team'])
          city encoder = preprocessing.LabelEncoder()
          df['city'] = city_encoder.fit_transform(df['city'])
          country_encoder = preprocessing.LabelEncoder()
          df['country'] = country encoder.fit transform(df['country'])
In [59]: df.head()
Out[59]:
             Unnamed:
                        date home_team away_team home_score away_score tournament city country
                                                                           FIFA World
           0
                  1311
                       1930
                                     5
                                               75
                                                           0.0
                                                                      3.0
                                                                                      83
                                                                                              16
                                                                                Cup
                                                                           FIFA World
           1
                  1312 1930
                                    26
                                               42
                                                           4.0
                                                                      1.0
                                                                                      83
                                                                                              16
                                                                                Cup
                                                                           FIFA World
           2
                  1313 1930
                                     8
                                               78
                                                           1.0
                                                                      2.0
                                                                                      83
                                                                                              16
                                                                                Cup
                                                                           FIFA World
                  1314 1930
                                    52
                                               56
                                                           1.0
                                                                      3.0
                                                                                      83
                                                                                              16
                                                                                Cup
                                                                           FIFA World
                  1315 1930
                                     2
                                               25
                                                           1.0
                                                                      0.0
                                                                                      83
                                                                                              16
                                                                                Cup
In [60]: df.drop('Unnamed: 0', inplace=True, axis=1)
          df.drop('tournament', inplace=True, axis=1)
```

df_clean.to_csv('fifa world cup clean.csv', encoding='utf-8', index=False)

In [61]: df clean = df.copy()

```
In [62]: df.hist(bins=50, figsize=(20,15), color='b')
plt.show()
```



```
In [63]: x = df.drop(['target'],axis=1).values
y = df['target'].values
```

```
In [64]: sd_scaler = StandardScaler()
x = sd_scaler.fit_transform(x)
```

In [65]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y,test_size=0.3, shuffle=7)

```
In [66]: print ("x train shape",x_train.shape)
         print ("y train shape",y_train.shape)
         print ("x test shape",x_test.shape)
         print ("y test shape",x_test.shape)
         x train shape (630, 8)
         y train shape (630,)
         x test shape (270, 8)
         y test shape (270, 8)
In [67]: rf = RandomForestClassifier(criterion='entropy',n_estimators=20)
         rf.fit(x_train, y_train)
         rf.score(x_train,y_train)
Out[67]: 1.0
In [68]: y pred = rf.predict(x test)
         print("Accuracy",accuracy_score(y_test,y_pred))
         Accuracy 0.9740740740741
In [69]: |print(classification_report(y_test,y_pred))
                        precision
                                     recall f1-score
                                                        support
                    0
                             0.97
                                       0.92
                                                 0.94
                                                             62
                    1
                             0.98
                                       0.98
                                                 0.98
                                                            131
                             0.97
                                                 0.99
                                                             77
                                       1.00
                                                 0.97
                                                            270
             accuracy
            macro avg
                             0.97
                                       0.97
                                                 0.97
                                                            270
         weighted avg
                             0.97
                                       0.97
                                                 0.97
                                                            270
```

```
In [70]: rf = confusion_matrix(y_test,y_pred)
    ax= plt.subplot()
    sns.heatmap(rf, annot=True, fmt='g', ax=ax); #annot=True to annotate cells, ftm=
    # labels, title and ticks
    ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
    ax.set_title('Confusion Matrix');
```



```
In [109]: from sklearn.tree import DecisionTreeClassifier
    dt_clf = DecisionTreeClassifier(max_depth=4)
    dt_clf.fit(x_train, y_train)
    dt_clf.score(x_train,y_train)
```

```
Out[109]: 0.9952380952380953
```


Accuracy 0.9814814814814815

	precision	recall	f1-score	support
0	1.00	0.94	0.97	62
1	1.00	0.99	1.00	131
2	0.94	1.00	0.97	77
accuracy			0.98	270
macro avg	0.98	0.98	0.98	270
weighted avg	0.98	0.98	0.98	270

```
In [112]: cm = confusion_matrix(y_test,y_pred)
    ax= plt.subplot()
    sns.heatmap(cm, annot=True, fmt='g', ax=ax); #annot=True to annotate cells, ftm=
    # Labels, title and ticks
    ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
    ax.set_title('Confusion Matrix');
```



```
In [99]: cm = confusion_matrix(y_test,knn_pred)
    ax= plt.subplot()
    sns.heatmap(cm, annot=True, fmt='g', ax=ax); #annot=True to annotate cells, ftm=

# Labels, title and ticks
    ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
    ax.set_title('Confusion Matrix');
```



```
In [100]: print(classification_report(y_test,knn_pred))
                         precision
                                       recall f1-score
                                                           support
                      0
                               0.66
                                         0.44
                                                    0.52
                                                                62
                      1
                               0.82
                                         0.95
                                                    0.88
                                                               131
                      2
                               0.83
                                         0.82
                                                    0.82
                                                                77
                                                               270
               accuracy
                                                    0.80
              macro avg
                               0.77
                                         0.74
                                                    0.74
                                                               270
          weighted avg
                               0.78
                                         0.80
                                                    0.78
                                                               270
```

In [81]: from sklearn.linear_model import LogisticRegression

```
In [84]: cm = confusion_matrix(y_test,lr_pred)
    ax= plt.subplot()
    sns.heatmap(cm, annot=True, fmt='g', ax=ax); #annot=True to annotate cells, ftm=
    # labels, title and ticks
    ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
    ax.set_title('Confusion Matrix');
```

