Advanced Topics in Computational Complexity

Exercise Session 7

Due 7.12.2015.

Exercise 1

Let K = (W, R, V) be a Kripke model such that $W = \{1, 2, 3, 4\}, R = \{(1, 1), (1, 3), (2, 1), (3, 2)\}, V(p) = \{1, 2\}, \text{ and } V(q) = \{1, 3\}.$ Compute the Hintikka formulas $\chi^2_{K,1}$ and $\chi^1_{K,2}$.

Exercise 2

Let Φ be a finite set of proposition symbols. Show that there are only finitely many non-equivalent Hintikka formulae $\chi_{K,w}^k$ over Φ for each fixed k.

Exercise 3

Let Φ be a set of proposition symbols, and let \mathcal{K} be class of team-pointed Kripke models over Φ . Show that, if \mathcal{K} is definable in $\mathrm{ML}(\emptyset)$, then there is a $k \in \mathbb{N}$ such that \mathcal{K} is closed under k-bisimulation.

Exercise 4

Let Φ be a finite set of proposition symbols and K, w a pointed Kripke model over Φ . Show that, for every $k, K, w \models \chi_{K,w}^k$.