SOLUTIONS

Ex 14: Construction graphique

Ex 15: Construction graphique - cas d'un objet virtuel

Ex 16: Relation de conjugaison et grandissement

On peut calculer la position de l'image à l'aide de la relation de Newton : $\overline{FA} \cdot \overline{FA'} = f^2$

$$\overline{FA'} = \frac{f^2}{\overline{FA}}$$
 avec $\overline{FA} = \overline{FS} + \overline{SA} = -f + \overline{SA} = -600 \, mm$ $\overline{FA'} = -16,7 \, mm$

Grandissement transversal:
$$g_y = -\frac{f}{\overline{FA}}$$
 $g_y = 0, 167$

Ex 17 : Image formée par un miroir sphérique

1. Distance focale du miroir : $f = \frac{\overline{SC}}{2}$ $f = -200 \, mm$

3.1. Relation de conjugaison avec origine au sommet :

$$\frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{1}{\overline{SF}}$$
 donc $\overline{SA'} = \frac{\overline{SA}.\overline{SF}}{\overline{SA} - \overline{SF}}$ $\overline{\overline{SA'}} = -300 \, mm$

3.2. Relation de conjugaison avec origine en C:

$$\frac{1}{\overline{CA'}} + \frac{1}{\overline{CA}} = \frac{2}{\overline{CS}} = \frac{1}{\overline{FS}} \quad \text{on obtient} : \quad \overline{CA'} = \frac{\overline{CA}.\overline{FS}}{\overline{CA} - \overline{FS}}$$

$$\overline{CA} = \overline{CS} + \overline{SA} = -200 \, mm \qquad \overline{CA'} = +100 \, mm$$

On vérifie la cohérence avec le calcule précédent : $\overline{SA'} = \overline{SC} + \overline{CA'} = -300 \, mm$

3.3. Relation de Newton : $\overline{FA} \cdot \overline{FA} = f^2$ donc $\overline{FA'} = \frac{f^2}{\overline{FA}}$

$$\overline{FA} = \overline{FS} + \overline{SA} = -400 \, mm \qquad \boxed{\overline{FA'} = -100 \, mm} \qquad \overline{SA'} = \overline{SF} + \overline{FA'} = -300 \, mm$$

- 4. Grandissement transversal : $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{SA'}}{\overline{SA}} = -0, 5$
- 5. Pour obtenir un grandissement égal à -1, il faut placer l'objet en C. L'image est alors également située en C comme le montre la relation de conjugaison :

$$\frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}} - \frac{1}{\overline{SC}} = \frac{1}{\overline{SC}} \quad \text{donc} \quad \overline{SA'} = \overline{SC} \text{ et } A' = C$$

Le grandissement transversal est bien égal à -1 puisque $g_y=-\frac{\overline{SA'}}{\overline{SA}}$

Ex 18 : Objectif d'un télescope de Newton

- 1. Image intermédiaire A_1B_1 donnée par M_1 de l'objet AB à l'infini
 - 1.1. L'objet est à l'infini, l'image intermédiaire formée par le miroir sphérique est donc située dans son plan focal : $A_1 = F$.

- 1.2. Pour obtenir graphiquement A_1B_1 , il suffit de prolonger le rayon issu de B et passant par le foyer F de M_1 . Ce rayon est réfléchi parallèlement à l'axe optique et coupe le plan focal en B_1 .
- 1.3. Dans le triangle rectangle (A_1B_1I) : $\tan \alpha = \frac{A_1B_1}{f}$ donc $A_1B_1 = \tan \alpha.f$ Dans les conditions de Gauss, α est très petit, donc $\tan \alpha \simeq \alpha$: $A_1B_1 = \alpha.f$

2. Image finale A'B' donnée par le miroir plan

- **2.1.** L'image finale A'B' est symétrique de A_1B_1 par rapport au plan du miroir M_2 . A_1B_1 est un objet virtuel pour le miroir M_2 , l'image A'B' est donc réelle.
- **2.2.** Si l'on plaçait M_2 avant le foyer F du miroir M_1 , A_1B_1 se comporterait comme un objet réel vis à vis du miroir M_2 et l'image A'B' serait donc virtuelle.

Ex 19 : Objectif d'un télescope de Cassegrain

1. Position et dimension de l'image finale A'B'

1.1.
$$\overline{S_2 A_1} = \overline{S_2 S_1} + \overline{S_1 A_1} = e + f_1$$
 $\overline{S_2 A_1} = -108 \, mm$

1.2. Relation de conjugaison appliquée au miroir M_2 : $\frac{1}{\overline{S_2A_1}} + \frac{1}{\overline{S_2A'}} = \frac{1}{f_2'}$

$$\frac{1}{\overline{S_2 A'}} = \frac{1}{f_2'} - \frac{1}{\overline{S_2 A_1}} = \frac{\overline{S_2 A_1} - f_2'}{f_2'.\overline{S_2 A_1}} \qquad \overline{S_2 A'} = \frac{f_2'.\overline{S_2 A_1}}{\overline{S_2 A_1} - f_2'} \qquad \overline{\overline{S_2 A'}} = 332 \, mm$$

2. Grandissement de l'image finale A'B' par rapport à l'image intermédiaire :

$$g_{y\,2} = \frac{\overline{A'B'}}{\overline{A_1B_1}} = -\frac{\overline{S_2A'}}{\overline{S_2A_1}} \qquad \boxed{g_{y\,2} = 3,1}$$

4. Taille de l'image intermédiaire A_1B_1 (voir exercice n° 18) :

$$\overline{A_1B_1} = \alpha.f_1'$$
 $\alpha = 0, 5^{\circ} = 8, 7.10^{-3} \, rad$ $\overline{A_1B_1} = 2, 8 \, mm$

La taille de l'image finale A'B' est donc : $\overline{A'B'} = \overline{A_1B_1} \times g_y$ $\overline{A'B'} = 8,7 \, mm$

- 5. Image finale dans le plan du miroir principal
 - **5.1.** Sur le schéma, on voit que : $\overline{S_2A'} = e$ et $\overline{S_2A_1} = f_1' + e$
 - 5.2. La relation de conjugaison appliquée au miroir M_2 donne :

$$\frac{1}{\overline{S_2 A_1}} + \frac{1}{\overline{S_2 A'}} = \frac{1}{f_2'} \quad \text{donc} \quad \frac{1}{f_1' + e} + \frac{1}{e} = \frac{1}{f_2'} \quad \frac{2e + f_1'}{e \cdot (f_1' + e)} = \frac{1}{f_2'}$$

On obtient une équation du second degré : $e^2 + (f_1' - 2f_2').e - f_1'.f_2' = 0$ dont la solution positive est : $e = 233 \, mm$

5.3. On obtient alors: $\overline{S_2A_1} = f_1' + e = -95 \, mm$ et $\overline{S_2A'} = e = 233 \, mm$ Le grandissement transversal vaut alors: $g_y = -\frac{\overline{S_2A'}}{\overline{S_2A_1}}$ $g_y = 2,45$