Szilárd testek sűrűsége

Mérést végezte: Méhes Máté Mérés időpontja: 2018.10.19. Leadás időpontja: 2018.10.25.

A mérés célja

A szilárd testek sűrűségének megállapítására kétféle módszert alkalmazok. Az első a közvetlen módszer, amikor a testek adataiból közvetlenül megkapom a különböző anyagminták sűrűségét. A második, a közvetett módszer, Mohr-Westphal mérleggel való mérés során kerül meghatározásra a sűrűség. Végül, a hibaszámítások után, összehasonlítom a két módszerrel kapott értékeket egymással és az irodalmi értékekkel is.

Mérés eszközei

- csavarmikrométer
- tolómérő
- analitikus mérleg
- különböző anyagú és formájú minták(3-3)
- Mohr-Westphal mérleg
- kiegészítő súlyok

Mért adatok

Közvetlen mérés

	d [cm]	h [cm]	m [g]
Henger	1,90	1,60	12,55

Δx [cm]	Δm [g]
0,0005	0,0050

	a [cm]	b [cm]	c [cm]	m [g]
1. Hasáb	1,30	1,60	3,20	50,75
2. Hasáb	1,60	1,30	2,90	53,75

Δx [cm]	Δm [g]
0,0010	0,0050

Mohr-Westphal mérleg

Minták	Tömegek [g]									
wintak	10	5	2	1	0,5	0,2	0,1	0,05	0,01	Δm
1. Henger	1	1					1			
2. Henger		1		1		1				0,010
3. Henger		1	1	1		1	1			
	Az	Az adott tömegből használtak darabszámát adia meg!								

Minták	Lovasok pozíciói			
Wiiiilak	Nagy	Köz.	Kicsi	
1. Henger	1	8	1	
2. Henger	1	5	5	
3. Henger	1	5	1	

Egyéb szükséges adatok						
g	9,81	m/s²				
Víz-sűrűség 998,23 kg/m³						

Közvetlen módszer

Csavarmikrométerrel és tolómérővel megmérem a 3 nagyobb test adatait. Aztán a henger térfogatát a következő képlettel határozom meg: $V_h = \frac{\pi \cdot d^2 \cdot h}{4}$. Ahol d az átmérője, h pedig a magassága a hengernek. A hasábok térfogatának meghatározása utána pedig a sűrűséget $\rho = \frac{m}{V}$ így kapjuk.

Közvetlen mérés							
Minta V[cm³] m[g] ρ[g/cm³]							
1. Hasáb	6,656	50,75	7,6246995192				
2. Hasáb	6,032	53,75	8,9108090186				
Henger	4,536	12,55	2,7664744263				

A hibák meghatározásánál a henger esetében figyelembe kell vennünk, hogy az átmérő négyzete szerepel, ezért az átmérő hibáját kétszer kell számolnom.

$$\frac{|\Delta \rho|}{|\rho|} = 2 \frac{|\Delta d|}{|d|} + \frac{|\Delta m|}{|m|} + \frac{|\Delta h|}{|h|}$$

És a hasábok térfogatainak és sűrűségeiknek hibái:

$$\frac{|\Delta V|}{|V|} = \frac{|\Delta a|}{|a|} + \frac{|\Delta b|}{|b|} + \frac{|\Delta c|}{|c|}$$

$$\frac{|\Delta \rho|}{|\rho|} = \frac{|\Delta m|}{|m|} + \frac{|\Delta V|}{|V|}$$

Mindezeket összefoglalva az alábbi táblázatban:

Közvetlen mérés bizonytalanságai							
Minta Δm/m ΔV/V Δρ							
1. Hasáb	9,85221674876847E-005	0,0017067308	0,0137645112				
2. Hasáb	9,30232558139535E-005	0,0017390584	0,0163253293				
Henger	0,0003984064	0,0008388158	0,0034227435				

Közvetett módszer

A hengerek tömegét a súlytányérba rakott súlyok segítéségével határozom meg. 20 g esetén van egyensúlyban a mérleg, tehát addig rakom a segédsúlyokat amíg a 20 grammot nem éri el a tálca tartalma. A térfogatokhoz szükségem van a felhajtóerő meghatározásához ezért a tömegük meghatározása utána a mintákat a merülőtálcába helyezem, így a mérlegem már nem lesz egyensúlyban. Most a lovasok megfelelő elhelyezésével, azok forgatónyomatékával a felhajtóerőt kompenzálom így újra egyensúlyba kerül a mérleg, ezért a következő egyenletet használom.

$$F_{fel} 10 k = G x_{nagy} k + \frac{1}{10} G x_{k\"{o}zepes} k + \frac{1}{100} G x_{kicsi} k$$

F a felhajtó erő, k két vájat közötti távolság, G a legnagyobb lovas súlya ami 10 ml 20 fokos desztillált víznek felel meg, x pedig a lovasok pozícióját jelenti. Az egyenletbe behelyettesítve a felhajtó erő meghatározható. A térfogatot pedig a következő képletből adódik. $F = V \rho_{viz} g$ Ezek után nincs más dolgom, mint a fenti sűrűségképletbe behelyettesíteni.

Mohr-Westphal mérleggel közvetett módon						
Minta m _{hozáadott} [g] m[g] V[cm³] ρ[g/cm³]						
1.Henger	15,1	4,9	1,81	2,70718232		
2.Henger	6,2	13,8	1,55	8,903225806		
3.Henger	8,3	11,7	1,51	7,748344371		

A mérleggel való mérés bizonytalansága:

Közvetett mérés bizonytalanságai					
Minta Δm/m Δρ					
1.Henger	0,0055248619	5,5248619E-005			
2.Henger	0,0064516129	6,4516129E-005			
3.Henger	0,0066225166	6,6225166E-005			

Hibaforrások

Közvetett mérésnél:

- analitikai mérleg pontatlansága 0,05g
- tolómérő pontatlansága 0,01mm
- csavarmikrométer pontatlansága 0,05mm
- leolvasási hiba

Mohr-Westphal mérleggel:

- a műszernél az egyensúlyi helyzet leolvasási hibája
- a mérőműszer lehetséges pontatlan beállítása
- vízben lévő szennyeződések, nem tökéletes desztillált víz

Diszkusszió

A méréseket összevetve egymással belátható, hogy jó közelítéssel a 3-3 test sűrűségét hasonlónak mondható. Az összefoglaló táblázat alapján azonosítom a 3 minta anyagát.

	Közvetle	n mérés	Mohr-W	estphal
Minta	ρ[g/cm³]	Δρ	ρ[g/cm³]	Δρ
1.anyag	7,6246995192	0,0137645112	7,7483443709	6,62252E-005
2.anyag	8,9108090186	0,0163253293	8,9032258065	6,45161E-005
3.anyag	2,7664744263	0,0034227435	2,7071823204	5,52486E-005

Sűrűségek a wikipédiaról	
Cu sűrűség	8,96[g/cm ³]
Fe sűrűség	7,874[g/cm ³]
Al sűrűség	2,7[g/cm ³]

Ezek alapján a vizsgált anyagmintáim a réz, vas és alumínium. A Mohr-Westphal méréssel a sűrűségek pontosabbak kell, hogy legyenek, de az én mérésem során a réz minta eseténél nagy hibát véthettem, mivel a közvetlen mérés eredménye pontosabbnak bizonyult. A vas és az alumínium esetében viszont a közvetett módszer egzaktul pontosabb eredményt ad.

A réz esetén valószínűleg nem pontosan határoztam meg a tömeg egyensúlyi értékét, vagy a lovasokat nem a megfelelő pozícióba raktam, ahol forgatónyomatékaik jobban kiegyenlítik a réz minta felhajtóerejét.

Összességében a Mohr-Westphal mérleggel pontosabb mérési adatokhoz juthatunk, viszont használata körülményes és nehézkes. Ezzel szemben nagy előnye, hogy bármilyen alakú testet mérhetünk vele, nem csak a szabályos alakzatokat, mivel a térfogatot a felhajtóerőből ki tudjuk számolni.