CS/ECE 473 Fall 2020	
Homework 1 Problem	1

Ryan Prendergast (ryanp4) Noah Watson (nwatson3) Lawson (laws)

1.a

Describe an algorithm to find an optimal solution $k_1...k_n$ that runs in time polynomial in k and n.

Solution: We define the function minFuncSum(i,k) which finds the minimum function sum of $T_i...T_n$ subject to the constraint that the non-negative integers $k_i...k_n$ sums to k with the following recurrence:

$$\min \text{FuncSum}(i,k) = \begin{cases} T_i(k) & \text{if } i = N \\ \min_{j=0}^k \{T_i(j) + \min \text{FuncSum}(i+1, k-j) & \text{otherwise} \end{cases}$$

We find the minimum function sum of the original problem by calling minFuncSum(1, k).

The above recurrence runs in expornential time. However we see that each iteration min-FuncSum(i,k) depends on minFuncSum(i + 1, j) for all possible j = 0 to n. We memoize in a 2d, N*k array A with the minimum function sum. We also memoize the value of $0 \le k_i \le k$ at which the minimum was found.

A[i][j].sum holds the minimum of the functions $T_i...T_n$ subject to the constraint that $k_i...k_n$ sums to j; if i = N, then A[n][j].sum $= T_n(j)$. A[i][j].k holds the value of $0 \le k_i \le k$ at which the minimum lies; if i = N, then A[n][j].k = j

Due to the dependency ordering, we can define an iterative algorithm to fill in this N * k array. We iterate from right to left, from i = n to i = 1, filling in the whole column of all possible values of i from 0...k at each iteration.

To get the sequence $k_1...k_n$, we start at A[1][k] after filling in the whole array with the above algo. A[i][k].k is k_1 , then we go to $A[2][k-k_1]$. $A[2][k-k_1]$.k is k_2 . In general, $k_i = A[i][k-\sum_{j=1}^{i-1}k_j]$.

See Algorithm 1 bellow.

Time Complexity As seen in Algorithm 1 bellow, filling in the array requires a nested loop over n and k, and each iteration requires O(k) steps to find the minimum. So, the total runtime is $O(k^2 * N)$.

Space Complexity The space required is dominated by the array A, which is size O(N * k).

Algorithm 1 Iterative Min Function Sum Series

```
for i = n to i = 1 do

for j = 0 to j = k do

if i = n then

A[i][j].sum = F_i(j)

A[i][j].k = j

else

A[i][j].sum = \min_{h=0}^{h=j} \{F_i(h) + A[i+1][j-h]

A[i][j].k = \operatorname{argmin}_{h=0}^{h=j} \{F_i(h) + A[i+1][j-h]

end if

end for

end for

j \leftarrow k

for i = 1 to i = n do

k_i \leftarrow A[i][j].k

j \leftarrow j - k_i

end for
```