Doppler Spread and Coherence Time

- Two rays will be received (*original+reflection*)
- □ **Doppler Spread** = $2vf/c = 2 \times Doppler shift$
- ☐ They will add or cancel-out each other as the receiver moves
- □ Coherence time: Time during which the channel response is constant = $1/\text{Doppler spread} = c/2vf = \lambda/2v$

©2020 Mahbub Hassan

Example

□ What is the *coherence time* for a 2.4 GHz wifi link connecting a car travelling at 72 km/hr?

 $V=(72 \times 1000)/3600 = 20 \text{ m/s}$ Doppler spread = $2vf/c = (2x20x2.4x10^9)/(3x10^8) = 320 \text{ Hz}$ Coherence time = 1/320 = 0.003125 s = 3.125 ms

©2020 Mahbub Hassan

Duplexing □ Duplex = Bi-Directional Communication ☐ Frequency division duplexing (FDD) (Full-Duplex) Frequency 1 Subscriber Base Frequency 2 □ Time division duplex (TDD): Half-duplex Base Subscriber Many LTE deployments will use TDD. > Allows more flexible sharing of DL/UL data rate > Does not require paired spectrum ➤ Easy channel estimation ⇒ Simpler transceiver design > Con: All neighboring BS should time synchronize ©2020 Mahbub Hassan

Summary

- Electric, Radio, Light, X-Rays, are all electromagnetic waves
- Wavelength and frequency are inversely proportional (wavelength = c/f)
- Historically, wireless communications mostly used frequencies below 6 GHz, but beyond 6 GHz is actively explored in modern wireless networks.
- Hertz and bit rate are related by Nyquist and Shannon's Theorems
- Nyquist's theorem explains capacity for noiseless channels
- Shannon's capacity takes SNR into consideration
- By spreading the original signal bandwidth over a much wider band, spread spectrum can provide better immunity against interference and jamming as well allowing multiple parties to communicate over the same frequency at the same time
- FHSS and DSSS are two fundamental methods of realizing spread spectrum
- Doppler effect explains the shift in frequency experienced by mobile objects
- Doppler spread is twice the Doppler shift
- Channel coherence time is inversely proportional to doppler spread
- FDD and TDD are two fundamental methods of resource allocation between the transmitter and the receiver so they both can exchange information with each other

47

PHY FUNDAMENTALS II

Wireless Signal Propagation

Overview

- Antenna
- Reflection, Diffraction, Scattering
- Fading, Shadowing, Multipath
- Inter-symbol Interference
- Path loss model (Frii's, 2-ray)
- MIMO (Diversity, Multiplexing, Beamforming)
- Orthogonal Frequency Division Multiplexing (OFDM)
- Orthogonal Frequency Division Multiple Access (OFDMA)
- Effect of Frequency

Antenna

- ☐ Transmitter converts electrical energy to electromagnetic waves
- □ Receiver converts electromagnetic waves to electrical energy
- □ Same antenna is used for transmission and reception
- Omni-Directional: Power radiated in all directions
- □ Directional: Most power in the desired direction
- ☐ Isotropic antenna: Radiates in all directions *equally*
- ☐ Antenna Gain = Power at particular point/Power with Isotropic Expressed in dBi ("decibel relative to isotropic")

Omni-Directional

Directional

Isotropic

©2020 Mahbub Hassan

Example

Question: How much stronger a 17 dBi antenna effectively receives (transmits) the signal compared to the isotropic antenna?

Solution

Power of isotropic antenna = P_{iso}

Power of 17 dBi antenna = P

We have

 $17 = 10\log_{10}(P/P_{iso})$

Thus $P/P_{iso} = 10^{1.7} = 50.12$, i.e., the 17 dBi antenna will *effectively* receive (transmit) the signal 50.12 times stronger than the isotropic antenna albeit using the same actual transmit power.

Relationship between antenna size and frequency

- ☐ Antennas are designed to transmit or receive a specific frequency band
 - > Cannot use a TV antenna for wireless router, or vice-versa (why?)
- \square End-to-end antenna length = $\frac{1}{2}$ wavelength
 - > So that electrons can travel back and forth the antenna in
- ☐ If dipole (two rods), each rod is ¼ wavelength