Supplementary material II:

Manual for %SimulateJointFrailty-SAS-Macro

(Associated article: Computational issues in fitting joint frailty models for recurrent events and an associated terminal event, *Computer Methods and Programs in Biomedicine*)

Contents

1	Description	2
2	Arguments	3
	output	3
	nrep	3
	n	3
	seed	3
	frailtydist	3
	theta	3
	gamma	3
	scalerec	3
	shaperec	4
	scaleterm	4
	shapeterm	4
	FU	4
	censprob	4
	beta1	4
	beta2	4
	path	4
3	Output	5
4	Examples	8
	Example 1	8
	Example 2	9

1 Description

The %SimulateJointFrailty-SAS-Macro simulates datasets from a joint frailty model for recurrent events with an associated terminal event. The joint frailty model is given by

$$\lambda_1(t|X,Z) = Z\lambda_{10}(t)\exp(\beta_1 X)$$

$$\lambda_2(t|X,Z) = Z^{\gamma}\lambda_{20}(t)\exp(\beta_1 X)$$

where Z is a gamma or lognormal distributed frailty with E(Z) = 1 and $Var(Z) = \theta$. To imitate the scenario of a two-arm randomized controlled trial (treatment vs. control), only a single Bin(1,0.5)-distributed covariate X is considered. The baseline hazards originate from Weibull-distributions, i.e. the baseline-hazard for the j-th endpoint (1 = recurrent, 2 = terminal) is given by

$$\lambda_{i0}(t) = \lambda_i \nu_i t^{\nu_i - 1},$$

with λ_j being the scale-parameter and ν_j being the shape-parameter. The latter determines, if the hazard is decreasing ($\nu_j < 1$), constant ($\nu_j = 1$) or increasing ($\nu_j > 1$) over time.

2 Arguments

tribution.

```
%macro SimulateJointFrailty(output,nrep,n,seed,frailtydist,theta,gamma,
                                scalerec, shaperec, scaleterm, shapeterm,
                                FU,censprob,beta1,beta2,path);
 %mend SimulateJointFrailty;
output
Name of the large output-dataset containing the nrep stacked single sub-datasets (see Output-
section).
nrep
Number of sub-datasets that are to be simulated.
n
Number of subjects per sub-dataset.
seed
Seed for reproducible random number generation.
frailtydist
Frailty-distribution: You have to specify either frailtydist = lognormal or frailtydist =
gamma.
theta
Variance of the frailty-variable Z (mean is 1).
gamma
Exponent-parameter for the terminal event frailty.
scalerec
```

Scale-parameter for the recurrent event baseline hazard, which originates from a Weibull dis-

shaperec

Shape-parameter for the recurrent event baseline hazard, which originates from a Weibull distribution.

scaleterm

Scale-parameter for the terminal event baseline hazard, which originates from a Weibull distribution.

shapeterm

Shape-parameter for the terminal event baseline hazard, which originates from a Weibull distribution.

FU

Time of administrative censoring, i.e. no subject's follow-up duration can be longer than that time.

censprob

Cumulative probability of random censoring within the time interval [0, FU). Random censoring is modeled as being uniform on [0, FU).

beta1

Treatment-effect of the binary covariate *X* on the recurrent event rate.

beta2

Treatment-effect of the binary covariate *X* on the terminal event rate.

path

This argument specifies the path where to store the output-datasets in csv-format (example: path = C:\documents\results). If no output-datasets should be stored in csv-format, please specify path = none.

3 Output

The macro produces 3 datasets in your SAS-library:

- A large dataset that contains the simulated stacked sub-datasets. Its name is determined by the output-argument.
- A first summary dataset that summarizes the event-number distributions within the nrep sub-datasets (suffix _summary1).
- A second summary dataset that summarizes the subject-number distributions for various recurrent event numbers within the nrep sub-datasets (suffix _summary2).

These three output-datasets may also be stored in csv-format by using the argument path. The argument output determines the name of the large dataset that contains the simulated stacked sub-datasets. At the same time, it determines the prefix of the names for the two summary-datasets. Let's illustrate that by an example: We use the macro to simulate 10 datasets from a joint frailty model, each with 500 subjects, and specify output = Test. The output-datasets are given by:

Т	'e	s	+

sampleid	subjectid	frailty	x	timestart	timestop	eventindicator
1	1	0.174	1	0	1.362	1
1	1	0.174	1	1.362	2	0
1	2	1.863	0	0	0.435	0
1	3	0.962	1	0	0.653	1
1	3	0.962	1	0.653	1.162	1
1	3	0.962	1	1.162	1.872	2
:	:	:	:	:	:	:
1	500	2.653	1	0	2	0
:	:	:	:	:	:	:
10	1	0.763	1	0	0.652	0
:	:	:	:	:	:	:
10	500	1.972	0	0	0.543	1
10	500	1.972	0	0.543	2	2

The output-dataset Test contains the simulated stacked sub-datasets in long format structure (i.e. with multiple rows per subject if recurrent events occur during the follow-up) with the following variables:

- sampleid is the sub-dataset-number. In our example, nrep = 10 sub-datasets are contained in the output-dataset Test, each with n = 500 subjects.
- subjectid is the subject-specific identification number within a sub-dataset.

- frailty is the subject-specific realization of the frailty variable.
- x is the Bin(1,0.5)-distributed, subject-specific covariate.
- timestart is the start-time of a new at-risk-interval.
- timestop is the stop-time of an at-risk-interval, i.e. a time point where anything happened in the subject's follow-up (recurrent event, terminal event, censoring).
- eventindicator specifies the type of event that happened at timestop. The following coding is applied: 0 for censoring, 1 for recurrent event, 2 for terminal event. In the example above, subject 1 from sample 1 has a recurrent event at time 1.362 and is censored at time 2. Subject 2 is censored at time 0.435 without having a recurrent event before. Subject 3 has two recurrent events at times 0.653 and 1.162 before having its terminal event at time 1.872. Importantly, the last line of each subject always contains either 0 or 2 as eventindicator, because the follow-up may only end due to censoring or due to the terminal event.

Test_summary1

eventindicator	X	min	mean	median	max
0	0	186	200.0	199.5	218
0	1	195	213.7	215.0	228
1	0	94	121.1	124.0	134
1	1	81	101.3	97.0	136
2	0	41	53.0	53.0	65
2	1	27	33.3	32.5	42

The output-dataset Test_summary1 shows how the event numbers in different strata, defined by the eventindicator and the binary covariate x, are distributed in the sample of the nrep = 10 sub-datasets. As an example, in our simulated Test-data,

- each sub-dataset has at least 81 recurrent events (eventindicator = 1) in the treatment group (x = 1).
- on average, each sub-dataset has 101.3 recurrent events (eventindicator = 1) in the treatment group (x = 1).
- in median, each sub-dataset has 97 recurrent events (eventindicator = 1) in the treatment group (x = 1).
- each sub-dataset has maximum 136 recurrent events (eventindicator = 1) in the treatment group (x = 1).

Recevents	x	min	mean	median	max
0	0	163	176.0	176.0	189
0	1	164	176.6	176.5	198
1	0	39	48.5	48	59
1	1	41	49.4	50.5	57
2	0	11	18.1	18.5	22
2	1	8	13.9	12.5	22
3	0	4	7	7	10
3	1	2	5.1	4.5	10
4	0	1	2.2	2	3
4	1	1	1.6	1.5	3
>=5	0	1	1.6	2	2
>=5	1	1	1.4	1	3

The output-dataset Test_summary2 shows how the subject numbers in different strata, defined by the recurrent event number Recevents and the binary covariate x, are distributed in the sample of the nrep = 10 sub-datasets. As an example, in our simulated Test-data,

- in each sub-dataset there are at least 2 subjects that are in treatment group x = 1 and have exactly Recevents = 3 recurrent events during follow-up.
- on average, each sub-dataset has 5.1 subjects in treatment group x = 1 that have exactly Recevents = 3 recurrent events during follow-up.
- in median, each sub-dataset has 4.5 subjects in treatment group x = 1 that have exactly Recevents = 3 recurrent events during follow-up.
- in each sub-dataset there are maximum 10 subjects that are in treatment group x = 1 and have exactly Recevents = 3 recurrent events during follow-up.

4 Examples

Example 1

Simulate 1000 stacked sub-datasets, each with 2000 subjects, from a joint frailty model with the following parameter specifications:

- Baseline hazards: $\lambda_1 = 2$, $\nu_1 = 1$, $\lambda_2 = 0.3$, $\nu_2 = 1$
- Treatment effects: $\beta_1 = -0.4$, $\beta_2 = -0.2$
- Gamma-distributed frailty with variance $\theta = 3$ and exponent-parameter $\gamma = 0.8$
- Administrative censoring at time point 4 and cumulative censoring probability 0.15 within the interval [0, 4)

The output-datasets should have the prefix SimJF and be stored in csv-format in the folder C:\documents\results.

```
%SimulateJointFrailty(output = SimJF,
                       nrep = 1000,
                       n = 2000,
                       seed = 4535,
                       frailtydist = gamma,
                       theta = 3,
                       gamma = 0.8,
                       scalerec = 2,
                       shaperec = 1,
                       scaleterm = 0.3,
                       shapeterm = 1,
                       FU = 4,
                       censprob = 0.15,
                       beta1 = -0.4,
                       beta2 = -0.2,
                       path = C:\documents\results);
```

Example 2

15

Simulate 50 stacked sub-datasets, each with 1000 subjects, from a joint frailty model with the following parameter specifications:

- Baseline hazards: $\lambda_1 = 0.7$, $\nu_1 = 1$, $\lambda_2 = 0.3$, $\nu_2 = 1$
- Treatment effects: $\beta_1 = -0.4$, $\beta_2 = -0.2$
- Lognormal-distributed frailty with variance $\theta = 1.45$ and exponent-parameter $\gamma = 1.25$
- Administrative censoring at time point 2 and no additional random censoring within the interval [0,2]

The output-datasets should have the prefix SimJFnew and not be stored in csv-format.

```
%SimulateJointFrailty(output = SimJFnew,
                       nrep = 50,
                       n = 1000,
                       seed = 625373,
                       frailtydist = lognormal,
                       theta = 1.45,
                       gamma = 1.25,
                       scalerec = 0.7,
                       shaperec = 1,
                       scaleterm = 0.3,
                       shapeterm = 1,
                       FU = 2,
                       censprob = 0,
                       beta1 = -0.4,
                       beta2 = -0.2,
                       path = none);
```