

• Classes non linéairement séparables

• Exemple : fct polynomiale de d° 2 d(x) = tx.A.x + tb.x + cte

avec A une matrice donnant la forme de la frontière

- si 2 val. propres positives : ellipse (hyperellipsoïde)
- si A matrice identité : hypersphère
- si 2 val. propres négatives : hyperhyperboloïde

Cours RF - Di 5

Evaluation – bases de données

- d() est déterminée à partir d'une base d'apprent.
 L'objectif est que d() puisse généraliser aux autres formes. Evaluation sur base de test.
- Pour déterminer certains paramètres, on peut garder certains exemples de la base d'apprent. en une base de validation.

Cours RF - Di 5

Classe réelle	Décision du syst	W ₁	W ₂	W _j	W _K	W ₀ (rejet)
١	N ₁	n ₁₁	n ₁₂		n _{1K}	n ₁₀
١	N ₂	n ₂₁	n ₂₂		n _{2K}	n ₂₀
,	Wi			n _{ij}		
١	N _K	n _{K1}	n _{K2}		n _{KK}	n _{K0}

Approche statistique

Approche statistique

- $\begin{array}{ccc} \bullet \ d : R^n & \longrightarrow & \Omega \\ x & \longmapsto & d(x) \end{array}$
- f : densité de probabilité de x dans Rⁿ

 $\int_A f(x) dx$: proba de trouver x dans la zone A $\in \mathbb{R}^n$

f(x / w) : densité de proba au sein de la classe w

p(w): proba de la classe w

p(w/x): proba qu'une forme $x \in w$

20

Cours RF - Di 5

Théorie bayésienne de la décision

- Fonction de décision bayésienne : on affecte x à la classe pour laquelle p(w / x) est maximum
- $d_1(x) = w_i$ avec $i = arg_{i=1} \underset{a}{\cdot} K max p(w_i / x)$
- d1() n'est pas unique car il peut y avoir plusieurs classes avec la même proba
- Toute fonction de décision bayésienne minimise la proba d'erreur globale

Cours RF - Di 5

Règle pratique de décision bayésienne

- Pb : il est difficile de connaître tous les p(w/x)
- En appliquant le théorème de Bayes
 P(A / B) = P(A).P(B / A) / P(B)
- $\forall w_i \in \Omega$ $p(w)f(x/w) \ge p(w_i)f(x/w_i) \Leftrightarrow d_1(x) = w$ c'est la règle pratique de décision bayésienne
- Cela revient à choisir l'hypothèse maximisant la proba de ce que nous observons
- Il reste à connaître les K valeurs p(w_i) et les K fonctions f(x / w_i)

Cours RF - Di 5

Apprentissage

- Déterminer p(w_i) et f(x / w_i)
- p(w_i)
 - Fréquence sur une base d'apprent.
 - Connaissance extérieure
 - Equiprobabilité
- f(x / w_i)
 - Méthodes paramétriques : on choisit la forme de f puis on calcule au mieux, sur les données d'apprent., les paramètres
 - Méthodes non paramétriques

Cours RF - Di 5

Coût d'une décision

С	W ₁	W ₂	W _o
W ₁	0	5	2
W ₂	20	0	2

- On cherche une fonction de décision qui minimise les coûts de mauvais classement
- $coût(d()) = \int_{\mathbb{R}^n} [\sum_{i=1}^K p(w_i|x).C(w_i,d(x)]f(x)dx$

24

Plus proche voisin

- On peut améliorer les performances du PPV quand les données d'apprentissage sont bruitées ou potentiellement mal étiquetées en prenant les k PPV puis en faisant un vote pour déterminer la classe majoritaire.
- Classe de rejet : rejet d'ambiguïté et rejet de distance

Cours RF - Di 5

Distances inter et intraclasse

- La distance intraclasse est la moyenne des distances des exemples de la classe avec tous les autres exemples de la classe.
 Elle vaut 2 fois la somme des variances sur chaque composante des formes.
- La distance interclasse est la moyenne des distances des exemples d'une classe avec tous les exemples d'une autre classe.
- On cherche à maximiser dist inter / dist intra.

Cours RF - Di 5

K-Means (centres mobiles, nuées dynamiques)

Classification Ascendante Hiérarchique (CAH)

