Problem (a)

Problem (b)

(i) Assuming the first character is at position 0, i.e. is even:

Problem (c)

Problem (d)

Problem (e)

- (b) $0^* 1 0^* 1 0^* 1 (0 \cup 1)^*$
- (g) $(0 \cup 1 \cup \epsilon)^5$
- (i) $((0 \cup 1) 1)^*(0 \cup 1 \cup \epsilon)$

Problem (f)

(b) Includes: ab, aab; Doesn't include: ba, bba

(f) Includes: aba, bab; Doesn't include: a, b

(h) Includes: aa, bba; Doesn't include: b, ε

Problem (g)

(a) Assume that A_1 is regular. Let $s = 0^p 1^p 2^p$, where p is the pumping length given by the pumping lemma. Because $s \in A_1$ and |s| > p, the pumping lemma guarantees that s can be split into three parts, s = xyz, where (1) $xy^iz \in A_1 \ \forall i \ge 0$, (2) |y| > 0, and (3) $|xy| \le p$.

Case 1: y contains all 0's. Then xyyz would have more 0's than 1's or 2's, breaking condition (1).

Case 2: y contains letters other than 0. Then |xy| > p, breaking condition (3).

A contradiction is unavoidable, so A_1 must not be regular.

(b) Assume that A_2 is regular. Let $s = w_1 w_2 w_3$, where $w_1 = w_2 = w_3 = \{a, b\}^*$, $|w_1| < p/2$, and p is the pumping length given by the pumping lemma. Because $s \in A_2$ and |s| > p, the pumping lemma guarantees that s can be split into three parts, s = xyz, where (1) $xy^iz \in A_2 \ \forall i \ge 0$, (2) |y| > 0, and (3) $|xy| \le p$.

Case 1: $y = w_2$. Then xyyz would have too many repetitions of w_1 , breaking condition (1).

Case 2: y contains only part of w_2 . Then xyyz would not contain the middle letters in the correct order, breaking condition (1).

Case 3: y contains none of w_2 , but part of w_1 . Same as Case 2.

Case 4: y contains none of w_2 , but part of w_3 . Then |xy| > p, which breaks condition (3).

A contradiction is unavoidable, so A₂ must not be regular.

(c) (I'm not sure that this one is correct.)

Assume that A_3 is regular. Let $s = a^{2^p}$, where p is the pumping length given by the pumping lemma. Because $s \in A_3$ and |s| > p, the pumping lemma guarantees that s can be split into three parts, s = xyz, where (1) $xy^iz \in A_2 \ \forall i \ge 0$, (2) |y| > 0, and (3) $|xy| \le p$.

To satisfy condition (1), it must be true that $|xyyz| = 2^k$ for some integer k > 1. However, condition (2) requires that |y| > 0, so $|xyyz| > 2^p$, while condition (3) requires that |xy| < p, so $|xyyz| < 2^{p+1}$. There is no integer k such that p > k > p + 1, so xyyz cannot be in A₃, breaking condition (1). Thus, A₃ must not be regular.