Corrigé des exercices de révisions

Exercice 1: Solution:

1. (a) $S \Rightarrow cA \Rightarrow cc$

$$S \Rightarrow cA \Rightarrow cbA \Rightarrow cbbA \Rightarrow cbbc$$

 $S \Rightarrow abS \Rightarrow ababS \Rightarrow abababS \Rightarrow abababcA \Rightarrow abababcbA \Rightarrow abababcbb$

$$S \Rightarrow abS \Rightarrow ababS \Rightarrow abababS \Rightarrow abababcA \Rightarrow abababcC$$

(b)
$$L(G) = \{(ab)^n c \ b^p c / n \in \mathbb{N}, p \in \mathbb{N}\}$$

2.

$$S \to abSc \mid A$$
$$A \to dA \mid \land$$

3. La grammaire de la question 1. est régulière car toutes ses productions sont de la forme $A \to xB$ ou $A \to x$, avec $x \in \Sigma^*$.

Par contre la grammaire de la question 2. n'est pas régulière car la production $S \to abSc$ n'est d'aucune des deux formes ci-dessus.

Exercice 2: Solution:

La table des transitions est la suivante :

	Q Σ	a	b	c	d
1	q_0		q_1	q_2	
1.	q_1	q_1,q_4			
	q_2	q_0			q_3
	q_3		q_4		
	q_4	q_5			
	q_5				

L'ensemble des états de départ est $D=\{q_0\}$ et celui des états d'acceptation est $A=\{q_0,q_3,q_5\}$.

2. Grammaire engendrant le langage reconnu par l'automate :

$$\begin{array}{ccc} S \rightarrow & bA \mid cB \mid \land \\ A \rightarrow & aA \mid aD \\ B \rightarrow & aS \mid dC \\ C \rightarrow & bD \mid \land \\ D \rightarrow & a \end{array}$$

- 3. $L(\mathcal{A}) = \{(ca)^n/n \in \mathbb{N}\} \cup \{(ca)^n b \ a^{p+2}/n \in \mathbb{N}, p \in \mathbb{N}\} \cup \{(ca)^n c \ d \ (b \ a)^p/n \in \mathbb{N}, p \in \{0,1\}\},$ ou encore : $L(\mathcal{A}) = \{(ca)^n (b \ a^{p+2})^q/n \in \mathbb{N}, p \in \mathbb{N}, q \in \{0,1\}\} \cup \{(ca)^n c \ d \ (b \ a)^p/n \in \mathbb{N}, p \in \{0,1\}\}.$
- 4. Dans la table des transitions de l'automate l'une des cases contient plus d'un état donc l'automate n'est pas déterministe.
- 5. Il y a des cases vides dans la table des transitions donc l'automate n'est pas complet. On construit un automate complet déterministe équivalent à \mathcal{A} en créant un état supplémentaire Ω dans lequel l'automate va passer au lieu de bloquer.

La table des transitions de cet automate est la suivante :

Q Σ	a	b	c	d
q_0	Ω	q_1	q_2	Ω
q_1	q_1, q_4	Ω	Ω	Ω
q_2	q_0	Ω	Ω	q_3
q_3	Ω	q_4	Ω	Ω
q_4	q_5	Ω	Ω	Ω
q_5	Ω	Ω	Ω	Ω
Ω	Ω	Ω	Ω	Ω

On complète le graphe de ${\mathcal A}$:

Exercice 3: Solution:

1. Automate déterministe complet dédié au langage L des mots de Σ^* qui comportent au moins une fois la séquence "pro" :

2. Automate déterministe complet dédié au langage L' des mots de Σ^* qui ne comportent pas la séquence "pro" :

Méthode : dans l'automate précédent, il suffit de transformer en états d'acceptation les états qui ne le sont pas, et vice-versa. L'automate obtenu accepte les mots rejetés par le précédent, et rejette les mots acceptés par le précédent.

3. Automate déterministe complet dédié au langage L" des mots de Σ^* qui comportent exactement une fois la séquence "pro" : il suffit de mettre bout à bout les deux automates précédents :

Exercice 4: Solution:

1. La table des transitions de cet automate est la suivante :

Q Σ	a	b	c
q_0	q_0, q_1, q_2	q_0, q_3	
q_1			q_3
q_2		q_3	
q_3			q_4
q_4	q_3		

2. Automate déterministe complet équivalent :

