Algunas equivalencias lógicas.

Lógica proposicional.

1.
$$\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$$

2.
$$\varphi \to \psi \equiv \neg \varphi \lor \psi$$

3.
$$\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$$

4.
$$\neg(\varphi \wedge \psi) \equiv \neg \varphi \vee \neg \psi$$

5.
$$\neg \neg \varphi \equiv \varphi$$

6.
$$\varphi \lor \psi \equiv \psi \lor \varphi$$

7.
$$\varphi \wedge \psi \equiv \psi \wedge \varphi$$

8.
$$\varphi \lor \varphi \equiv \varphi$$

9.
$$\varphi \wedge \varphi \equiv \varphi$$

10.
$$\varphi \lor (\varphi \land \psi) \equiv \varphi$$

11.
$$\varphi \wedge (\varphi \vee \psi) \equiv \varphi$$

12.
$$\varphi \lor (\psi \lor \chi) \equiv (\varphi \lor \psi) \lor \chi$$

13.
$$\varphi \wedge (\psi \wedge \chi) \equiv (\varphi \wedge \psi) \wedge \chi$$

14.
$$\varphi \wedge (\psi \vee \chi) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$

15.
$$\varphi \lor (\psi \land \chi) \equiv (\varphi \lor \psi) \land (\varphi \lor \chi)$$

Lógica de predicados.

- 1. $\forall x \varphi \equiv \varphi \text{ si } x \text{ no está libre en } \varphi.$
- 2. $\exists x \varphi \equiv \varphi \text{ si } x \text{ no está libre en } \varphi.$ que dan lugar a las cuatro siguientes
- 3. $\forall x \forall x \varphi \equiv \forall x \varphi$.
- 4. $\exists x \exists x \varphi \equiv \exists x \varphi$.
- 5. $\exists x \forall x \varphi \equiv \forall x \varphi$.
- 6. $\forall x \exists x \varphi \equiv \exists x \varphi$.
- 7. $\neg \forall x \varphi \equiv \exists x \neg \varphi$.
- 8. $\neg \exists x \varphi \equiv \forall x \neg \varphi$.
- 9. $\forall x \varphi \equiv \forall y \varphi(x|y)$ si y no aparece en φ .
- 10. $\exists x \varphi \equiv \exists y \varphi(x|y)$ si y no aparece en φ .
- 11. $\forall x\varphi \to \psi \equiv \exists x(\varphi \to \psi)$ si x no está libre en ψ .
- 12. $\exists x \varphi \to \psi \equiv \forall x (\varphi \to \psi)$ si x no está libre en ψ .
- 13. $\varphi \to \forall x \psi \equiv \forall x (\varphi \to \psi)$ si x no está libre en φ .
- 14. $\varphi \to \exists x \psi \equiv \exists x (\varphi \to \psi)$ si x no está libre en φ .

- 15. $\forall x \varphi \lor \psi \equiv \forall x (\varphi \lor \psi)$ si x no está libre en ψ .
- 16. $\forall x \varphi \wedge \psi \equiv \forall x (\varphi \wedge \psi)$ si x no está libre en ψ .
- 17. $\exists x \varphi \lor \psi \equiv \exists x (\varphi \lor \psi)$ si x no está libre en ψ .
- 18. $\exists x \varphi \land \psi \equiv \exists x (\varphi \land \psi)$ si x no está libre en ψ .
- 19. $\forall x\varphi \to \exists x\psi \equiv \exists x(\varphi \to \psi).$
- 20. $\forall x \varphi \wedge \forall x \psi \equiv \forall x (\varphi \wedge \psi)$.
- 21. $\exists x \varphi \lor \exists x \psi \equiv \exists x (\varphi \lor \psi).$