# **Probability Plots**

Keegan Korthauer

Department of Statistics

UW Madison

## Recap

# **Summary Statistics**

- Measuring central tendency
  - Mean
  - Median
  - Mode
- Measuring spread
  - Standard deviation
  - Percentiles
- Graphical summary
  - Histogram
  - Box plot

#### **Probability**

- Conditional probability
  - Total probability
  - Bayes rule
- Distributions
  - Discrete: Binomial, Poisson, Geometric
  - Continuous: Normal, Uniform, Exponential

# Statistical Inference

- Point estimation
- Central Limit Theorem
- Confidence intervals
- Hypothesis testing
- Simple Linear Regression
- Multiple Regression

#### **PROBABILITY PLOTS**

How to construct Interpretation

#### How to Choose a Distribution?

- So far we've considered two scenarios:
  - 1. We know what distribution our data follow and are given the parameter values
  - 2. We know that our data come from a certain distribution but do not know the parameter values so we estimate them (e.g.  $\hat{p} = X / n$  in the binomial case) and their uncertainty
- A third scenario to consider: we suspect that our data follow a certain distribution, but we don't know for sure.
   How do we check?

# Comparing Sample Distributions to Population Distributions

 Say we have a sample of 5 measurements that we suspect come from a normal distribution:

3.01, 3.35, 4.79, 5.96, 7.89

 Compare the distribution of our sample with the distribution of the suspected population (normal, in this case) to see if they are similar using a probability plot!

## Intuition Behind the Probability Plot

- For each original observation X<sub>i</sub> in our sample, find its percentile
- For each of these percentiles, find the quantile Q<sub>i</sub> of the suspected distribution that corresponds to it
- Examine the ordered pairs (X<sub>i</sub>, Q<sub>i</sub>)
  - If the data do come from the suspected distribution, they will lie close to a straight line
  - If they come from some other distribution, the points could be far from a straight line

# How to Construct a Probability Plot

- First find the sample 'percentiles'
- For each of these find the quantile of the suspected normal distribution
  - for i=1, we find Q<sub>1</sub> such that  $P(X \le Q_1)=0.1$  when X ~  $N(μ,σ^2)$
  - best guess for  $\mu$  = 5 and  $\sigma$  = 2 (sample mean and standard deviation)
  - Standardize:  $P(Z \le (Q_1-5)/2)=0.1$
  - From table:  $P(Z \le -1.28) \approx 0.1$
  - $So Q_1 = 2*(-1.28)+5 = 2.44$

| i | X <sub>i</sub> | "Percentiles"<br>(i-0.5)/n | Q <sub>i</sub> |
|---|----------------|----------------------------|----------------|
| 1 | 3.01           | 0.1                        | 2.44           |
| 2 | 3.35           | 0.3                        | 3.95           |
| 3 | 4.79           | 0.5                        | 5.00           |
| 4 | 5.96           | 0.7                        | 6.05           |
| 5 | 7.89           | 0.9                        | 7.56           |



# Visualizing Q<sub>i</sub>



**FIGURE 4.21** The curve is the cdf of  $N(5, 2^2)$ . If the sample points  $X_1, \ldots, X_5$  came from this distribution, they are likely to lie close to the curve.

# **Probability Plots**

The **probability plot** consists of the points  $(X_i, Q_i)$ . Since the distribution that generated the  $Q_i$  was a normal distribution, this is called a **normal probability plot**.



**FIGURE 4.22** Normal probability plots for the sample  $X_1, \ldots, X_5$ . The plots are identical, except for the scaling on the vertical axis. The sample points lie approximately on a straight line, so it is plausible that they came from a normal population.

## Sample Size

 With a small sample, probability plots will only show large departures from the suspected distribution

 Rule of thumb: sample size of 30 or more will yield a reliable probability plot

Use computer program (like R) to generate plots

# Example – Sample of Size 10 vs 500





# **Example - Normal Probability Plots**



**FIGURE 4.23** Two normal probability plots. (a) A plot of the monthly productions of 255 gas wells. These data do not lie close to a straight line, and thus do not come from a population that is close to normal. (b) A plot of the natural logs of the monthly productions. These data lie much closer to a straight line, although some departure from normality can be detected. See Figure 4.16 for histograms of these data.

## **Example - Normal Probability Plots**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



# Interpretation of Probability Plots

- No hard-and-fast rules use the 'eye-ball' method
- Look for strong trends
- Common for a few points at the ends to stray
- Outliers will be far from the line when most of the others are close

### Now What?

- Your plot shows strong departure from your suspected distribution. So what can you do?
  - Try plotting against the quantiles of a different distribution
  - Transform your data more on this in Chapter 7
    - log-transformation
    - square root transformation
    - power transformation

### Next

Central Limit Theorem

• Introduction to R

• Exam 1 Review