Seminariile 10, 11, 12 (Planul și dreapta în spațiu)

- 1. Să se scrie ecuația planului care:
 - a) trece prin $M_0(1,2,3)$ și are normala $N=2\overline{i}-\overline{j}+\overline{k};$
 - b) trece prin origine și are normala $N = -\overline{i} + 2\overline{j} \overline{k}$;
 - c) trece prin punctele $M_1(3,-1,0)$, $M_2(4,1,1)$, $M_3(2,0,1)$;
 - d) taie axele de coordonate în punctele $M_1(3,0,0)$, $M_2(0,-3,0)$, $M_3(0,0,1)$.
- 2. Să se determine unghiul dintre planele: P_1) x+y+z+2=0 și P_2) 2x-y+3z+5=0.
- 3. Să se determine parametrii λ şi μ reali astfel încât planele P_1) $(\lambda + 2) x y + z + 2\mu 1 = 0$ şi P_2) $\lambda x + (4 \mu) y \mu z + \lambda + 2 = 0$ să fie perpendiculare, respectiv paralele.
- 4. Să se scrie ecuația unui plan care trece prin punctul $M_0(7, -5, 1)$ și care taie pe axele de coordonate segmente pozitive și egale între ele.
- 5. Să se determine distanța de la $M_0(1,1,0)$ la planul P) 2x+2y-z-1=0.
- 6. Să se scrie ecuația unui plan care:
 - i) trece prin M_0 (3, -1, 2) și este perpendicular pe vectorul $\overrightarrow{M_0M_1}$, unde M_1 (4, -2, -1);
 - ii) trece prin $M_0(3,2,5)$ şi este paralel cu planul P(3,2,5) şi este paralel cu
 - iii) trece prin $M_0(2,1,3)$ şi este paralel cu vectorii $\overline{a} = 3\overline{i} 4\overline{j} + 2\overline{k}$ şi $\overline{b} = 3\overline{i} + 4\overline{j} 2\overline{k}$;
 - iv) trece prin $M_0(1, -5, -3)$ şi este perpendicular pe planele P_1) 3x y + z + 1 = 0 şi P_2) x + y z 2 = 0;
 - v)
trece prin $M_1\left(2,1,3\right),\ M_2\left(2,2,2\right)$ și este paralel cu vectorul $\overline{u}=3\overline{i}+\overline{j}-4\overline{k}$
 - vi) este paralel cu planul xOz și trece prin punctul $M_0(2, -5, 3)$;
 - vii) trece prin punctele $M_1(0,0,1)$ şi $M_2(3,0,0)$ şi formează un unghi de 60° cu planul xOy;
 - viii) este paralel cu axa Ox și trece prin punctele $M_1(4,0,-2)$ și $M_2(5,1,7)$;
 - ix) trece prin Oz și prin punctul $M_0(-3,1,-2)$.
- 7. Determinați mulțimea punctelor egal depărtate de $M_1(3,-1,3)$ și $M_2(5,1,-1)$.

- 8. Se dau punctele A(3,-1,3), B(5,1,-1) și vectorul $\overline{v}=-3\overline{i}+5\overline{j}-6\overline{k}$. Se cer:
 - i) ecuațiile canonice și parametrice ale dreptei d) ce trece prin A și are vectorul director \overline{v} ;
 - ii) punctele de intersecție ale dreptei d) cu planele de coordonate;
 - iii) ecuațiile canonice ale dreptei AB;
 - iv) distanța de la A la B și vectorul AB;
 - v) măsura unghiului dintre dreptele $AB ext{ si } d$).
- 9. Să se scrie ecuațiile dreptei prin A(2, -5, 3) paralelă cu:
 - i) d_1) $\frac{x-1}{4} = \frac{y-2}{-6} = \frac{z+3}{9}$; ii) axa Oz;

 - iii) d_2) $\begin{cases} 2x y + 3z + 1 = 0 \\ 5x + 4y z 7 = 0 \end{cases}$.
- 10. Să se scrie ecuațiile canonice ale dreptei d) $\begin{cases} 3x y + 2z 6 = 0 \\ 3x + 4y z + 3 = 0 \end{cases}$.
- 11. Se dau punctul M(1,2,-1), dreapta d) $\frac{x-1}{2}=\frac{y-1}{-1}=\frac{z}{3}$ și planul P)x + y + z - 1 = 0. Să se determine:
 - i) ecuațiile dreptei ce trece prin M și este perpendiculară pe planul P);
 - ii) ecuațiile dreptei prin M, paralelă cu dreapta d);
 - iii) ecuația planului ce trece prin M și este perpendicular pe dreapta d);
 - iv) distanța de la M la planul P);
 - v) distanța de la M la dreapta d);
 - vi) ecuația planului ce trece prin M și conține dreapta d);
 - vii) unghiul dintre dreapta d) şi planul P);
 - viii) ecuația planului prin M, paralel cu planul P);
 - ix) coordonatele proiecției punctului M pe dreapta d);
 - x) coordonatele simetricului lui M față de dreapta d);
 - xi) coordonatele proiecției punctului M pe planul P);
 - xii) coordonatele simetricului lui M față de planul P);
 - xiii) ecuațiile proiecției dreptei d) pe planul P).
- 12. Să se afle coordonatele simetricelor punctului M(1,2,-3) față de origine, axele de coordonate şi respectiv planele de coordonate.
- 13. Fie punctul M(-1,2,1). Să se afle coordonatele simetricului lui M față

de punctul M'(-1, -2, 3), ecuația planului prin M paralel cu planul yOz, distanța de la M la planul xOz și ecuația planului prin M care conține axa Ox.

- 14. Se consideră dreapta d) $\frac{x-1}{2} = \frac{y}{3} = \frac{z-7}{-1}$ și planul P) 2x y + z 2 = 0.
 - i) Să se arate că dreapta \overline{d}) este paralelă cu planul P);
 - ii) Să se calculeze distanța de la dreapta d) la planul P);
 - iii) Să se determine ecuațiile proiecției dreptei d) pe planul P) și ecuațiile simetricei dreptei d) față de planul P).
- 15. Să se verifice că punctele A(3,0,1), B(0,2,4), $C(1,\frac{4}{3},3)$ sunt coliniare și să se scrie ecuația dreptei suport.
- 16. Să se scrie ecuația planului determinat de dreptele paralele d_1) $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z+3}{2}$ și d_2) $\frac{x-3}{2} = \frac{y+1}{1} = \frac{z-1}{2}$.
- 17. Să se scrie ecuația planului ce trece prin $M_0\left(1,-1,3\right)$ și este paralel cu dreptele: d_1) $\begin{cases} 5x+y-2z+12=0 \\ x-3=0 \end{cases}$ și d_2) $\begin{cases} x+y-z=0 \\ 2x-5y+3z-1=0 \end{cases}$.
- 18. Să se scrie ecuația unui plan care trece prin dreapta de intersecție a planelor: P_1) 4x y + 3z 1 = 0 și P_2) x + 5y z + 2 = 0 și care:
 - i) trece prin origine;
 - ii) trece prin punctul M(1,1,1);
 - iii) este paralel cu axa Oy;
 - iv) este perpendicular pe planul P') 2x y + 5z 3 = 0.
- 19. Să se afle perpendiculara comună a dreptelor (necoplanare): d_1) $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{1}$ și d_2) $\frac{x+4}{-1} = \frac{y}{-1} = \frac{z+2}{2}$.
- 20. Să se scrie ecuația planului dus prin axa Ox și paralel cu dreapta d) $\begin{cases} x = az + p \\ y = bz + q \end{cases} .$
- 21. Se dă dreapta d) $\begin{cases} 3x 2y + z 3 = 0 \\ 4x 3y + 2z + 1 = 0 \end{cases}$ și planul P) x + 2y + 3z 1 = 0. Să se determine ecuațiile proiecției dreptei d) pe planul P).
- 22. Să se afle distanța dintre planele: P_1) 11x-2y-10z-22=0 și P_2) 11x-2y-10z-45=0.

- 23. Să se afle distanța dintre dreptele d_1): $M_1(-7, -4, 3)$, $\overline{v_1} = 3\overline{i} + 4\overline{j} 2\overline{k}$ și d_2): $M_2(21, -5, 2)$, $\overline{v_2} = 6\overline{i} 4\overline{j} + \overline{k}$.
- 24. Se consideră dreptele d_1) $\frac{x-5}{2} = \frac{y}{1} = \frac{z+5}{-3}$, d_2) $\frac{x-1}{1} = \frac{y}{0} = \frac{z+8}{1}$ și d_3) x = y = z. Să se scrie ecuația planului P), care conține dreapta d_1) și cu proprietatea că proiecția dreptei d_2) pe planul P) este paralelă cu proiecția dreptei d_3) pe planul P).

Probleme propuse

- 1. Stabiliți care dintre perechile de plane sunt paralele:
 - a) P_1) 2x 3y 7 = 0, P_2) 2x 3y + 5z + 3 = 0;
 - b) P_1) 4x + 2y 4z + 5 = 0, P_2) 2x + y 2z + 1 = 0;
 - c) P_1) x 3z + 2 = 0, P_2) x 3z + 5 = 0.

Soluție: a) P_1) și P_2) nu sunt paralele.

- b) $\overline{N}_1 = 2\overline{N}_2$, deci planele sunt paralele.
- c) Planele sunt paralele.
- 2. Se dau punctele M_1 (1, 3, 0), M_2 (3, -2, 1), M_3 (α , 1, -3) și M_4 (7, -2, 3). Să se determine $\alpha \in \mathbb{R}$ astfel încât punctele date să fie coplanare. Să se scrie ecuația planului determinat de ele.

Soluție: $\alpha = -5$, 17x - 34z - 17 = 0 sau x - 2z - 1 = 0.

- 3. Fiind date punctele $A\left(1,2,-3\right)$ și $B\left(3,0,-1\right),$ să se determine:
 - a) vectorul \overrightarrow{AB} , planul mediator al segmentului AB precum şi distanţele de la A şi B la acest plan;
 - b) norma vectorului \overline{v} perpendicular pe \overrightarrow{AB} și care îndeplinește condiția $\overline{v} \times \overrightarrow{AB} = 6 (\overline{i} \overline{k})$.

Rezolvare: a) $\overrightarrow{AB} = \overline{r}_B - \overline{r}_A = 2\overline{i} - 2\overline{j} + 2\overline{k}$; mijlocul segmentului AB fiind C(2,1,-2), planul căutat are ecuația x-y+z+1=0; cele două distanțe sunt egale între ele și au valoarea $\left\|\overrightarrow{AB}\right\|/2 = \sqrt{3}$.

- b) Vectorul $\overline{v}=x\overline{i}+y\overline{j}+z\overline{k}$ este perpendicular pe \overrightarrow{AB} dacă $\overline{v}\cdot\overrightarrow{AB}=2x-2y+2z=0$. Cea de-a doua condiție implică $y+z=3,\ x-z=0$ și x+y=3. Rezolvând sistemul obținut avem $\overline{v}=\overline{i}+2\overline{j}+\overline{k}$ și deci $\|\overline{v}\|=\sqrt{6}$.
- 4. Fiind date punctele A(2,0,0), B(0,1,0) şi C(0,0,-1), să se găsească: a) ecuația planului P) determinat de punctele A, B şi C, distanța de la origine la acest plan şi proiecția originii pe planul P);

- b) simetricul lui A față de axa Oy și ecuațiile medianei din B a triunghiului ABC;
- c) volumul tetraedrului OABC.

Rezolvare: a) Folosind ecuația planului prin tăieturi $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1 = 0$, unde A(a,0,0), B(0,b,0) și C(0,0,c), obținem P) x + 2y - 2z - 2 = 0. Distanța de la origine la planul obținut se calculeaza după formula $dist(O,P) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} = \frac{2}{3}$. Dreapta prin origine perpendiculară pe planul P) are ecuațiile $x = \frac{y}{2} = \frac{z}{-2}$ și intersectează planul în punctul $O'\left(\frac{2}{9}, \frac{4}{9}, -\frac{4}{9}\right)$.

- b) Simetricul lui A față de axa Oy este A'(-2,0,0), mijlocul segmentului AC este D(1,0,-1/2), iar mediana BD are ecuațiile x=1-y=-2z.
- c) Volumul căutat este $\mathcal{V} = \frac{1}{6} \left| \left(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC} \right) \right| = \frac{1}{3}$.
- 5. Fiind date planele P(x+y+z-3)=0 şi Q(x+y+z-9)=0, să se găsească:
 - a) simetricul planului P) față de origine;
 - b) planul R) ce împarte distanța între P) și Q) în raportul 1/3.

Rezolvare: a) Simetricul punctului A(1,1,1) (ce aparține planului P)) față de origine fiind B(-1,-1,-1) ecuația planului căutat este x+y+z+3=0.

- b) Punctul ce împarte segmentul AC, unde C(3,3,3) aparține planului Q), în raportul 1/3 fiind D(3/2,3/2,3/2), planul R) are ecuația x+y+z-9/2=0.
- 6. Fiind date punctul A(1,2,3) și dreapta d) $\left\{ \begin{array}{l} x-y-1=0\\ y-z-2=0 \end{array} \right.$, să se determine:
 - a) paralela prin A la dreapta d) și planul determinat de cele două drepte paralele;
 - b) simetrica dreptei d) față de planul xOy.

Rezolvare: a) Dreapta d) va avea vectorul director $\overline{v} = \overline{N_1} \times \overline{N_2}$, $\overline{N_1}$ şi $\overline{N_2}$ fiind normalele celor două plane, deci $\overline{v} = \overline{i} + \overline{j} + \overline{k}$. Astfel, paralela

prin A la dreapta d) va avea ecuațiile x - 1 = y - 2 = z - 3. Din fascicolul de plane ce trece prin dreapta d), $\lambda (x - y - 1) + \mu (y - z - 2) = 0$ alegem pe acela ce trece prin punctul A, adică 3x - 5y + 2z + 1 = 0.

- b) Intersecția dreptei d) cu planul xOy este punctul B(3,2,0), iar simetricul punctului C(1,0,-2) (aparținând dreptei d)) față de planul xOy este D(1,0,2). Dreapta căutată are ecuațiile x-1=y=2-z.
- 7. Fiind date punctele A(1,2,3) și B(3,1,2), se cere:
 - a) să se arate că triunghiul OAB este isoscel şi să se scrie ecuațiile dreptei AB;
 - b) ecuația planului ce conține triunghiul OAB și ecuațiile perpendicularei pe acest plan prin centrul de greutate al triunghiului;
 - c) ecuațiile planelor prin A paralele cu planele de coordonate precum și ecuațiile paralelelor prin A cu axele de coordonate.

Rezolvare: a) $dist(O, A) = dist(O, B) = \sqrt{14}$, ecuațiile dreptei AB sunt $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{-1}$.

- b) Folosind ecuația planului prin trei puncte necoliniare obținem x+7y-5z=0. Coordonatele centrului de greutate G fiind (4/3,1,5/3), ecuațiile perpendicularei cerute sunt $\frac{x-4/3}{1}=\frac{y-1}{7}=\frac{z-5/3}{-5}$.
- c) Ecuațiile planelor sunt x=1 (paralel cu zOy), y=2 și respectiv z=3. Paralelele la axe sunt $x=1,\ y=2$ (paralelă cu Oz), $y=2,\ z=3$ și respectiv $z=3,\ x=1$.
- 8. Fiind date punctele A(1,0,0), B(0,1,1) şi C(0,0,1), să se determine: a) ecuațiile dreptei d) ce trece prin C şi este paralelă cu AB, ecuația planului P) ce trece prin A şi este perpendicular pe dreapta d) şi simetricul punctului A față de această dreaptă;
 - b) aria triunghiului ABC, unghiul dreptelor AB şi AC, precum şi unghiul dintre OA şi planul triunghiului ABC.

Rezolvare: a) Întrucât $\overrightarrow{AB} = -\overline{i} + \overline{j} + \overline{k}$ rezultă că dreapta d) are ecuațiile -x = y = z - 1. Folosind ecuația planului printr-un punct și de normală dată scriem ecuația planului P) sub forma x - y - z - 1 = 0 și găsim apoi intersecția planului cu dreapta d) în punctul D(2/3, -2/3, 1/3). Coordonatele punctului E simetricul lui A față de D sunt (1/3, -4/3, 2/3).

- b) Întrucât $\overrightarrow{AC} = -\overline{i} + \overline{k}$ şi $\overrightarrow{AB} \times \overrightarrow{AC} = \overline{i} + \overline{k}$ avem $\mathcal{A} = \frac{1}{2} \left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\| = \frac{1}{\sqrt{2}}$, de asemenea, $\cos \varphi = \sqrt{2/3}$, deci $\varphi = \arccos \sqrt{2/3}$; $\overrightarrow{OA} = \overline{i}$ şi normala la plan este $\overline{N} = \overline{i} + \overline{k}$. Prin urmare $\sin \omega = \cos \left(\frac{\pi}{2} \omega \right) = \frac{1}{\sqrt{3}}$, deci $\omega = \arcsin \frac{1}{\sqrt{3}}$.
- 9. Se consideră planul P) x + y + 2z 14 = 0 și dreapta d) $x 1 = \frac{y-2}{2} = z 3$. Să se determine simetrica dreptei d) față de planul P) și unghiul format de cele două drepte.

Rezolvare: Intersecția dreptei d) cu planul P) dă punctul A (2, 4, 4). Proiecția punctului B (1, 2, 3), aparținând dreptei d), pe planul P) este punctul C (11/6, 17/6, 14/3), iar simetricul lui B față de acest punct este E (8/3, 11/3, 19/3). Ecuațiile dreptei căutate, determinată de punctele A și E sunt $\frac{x-2}{2} = \frac{y-4}{-1} = \frac{z-4}{7}$. Unghiul dreptei cu planul fiind dat de relația $\sin \varphi = \cos \left(\frac{\pi}{2} - \varphi\right) = \frac{5}{6}$, unghiul cerut este $\alpha = 2 \arcsin \frac{5}{6}$.

- 10. Fiind date dreptele d_1) $x 1 = 2 y = \frac{z+2}{2}$ şi d_2) $\begin{cases} 2x z 1 = 0 \\ 2y + z + 3 = 0 \end{cases}$, să se afle:
 - a) distanța dintre cele două drepte și planul determinat de ele, dacă există;
 - b) simetricul punctului A(2, -1, 2) față de dreapta d_1), proiecția dreptei d_2) pe planul xOy și unghiul acesteia cu axa Oy.

Rezolvare: a) Deoarece un vector director al dreptei d_2) este $\overline{v_2} = 2\overline{i} - 2\overline{j} + 4\overline{k} = 2\overline{v_1}$, cele două drepte sunt paralele. Alegând punctul B(0,-1,-1) pe d_2) obținem $dist(d_1,d_2) = \frac{5}{\sqrt{3}}$. $(\overrightarrow{CB} = -\overline{i} - 3\overline{j} + \overline{k})$. Din fascicolul de plane ce trece prin d_2), adică $\lambda(2x - z - 1) + \mu(2y + z + 3) = 0$, îl alegem pe acela care trece prin puctul A(1,2,-2), adică 5x - 3y - 4z = 0.

b) Proiecția punctului A pe dreapta d_1), adică punctul C(3,0,2), se află la intersecția planului P) x-y+2z-7=0 (plan ce trece prin A și este perpendicular pe d_1)) cu această dreaptă. Simetricul lui A față de C este D(4,1,2). Intersecția dreptei d_2) cu planul xOy este punctul E(1/2,-3/2,0), iar proiecția lui B pe același plan este F(0,-1,0).

Dreapta căutată are ecuațiile x + y + 1 = 0, z = 0. Vectorul director al axei Oy fiind $\bar{j}(0,1,0)$, unghiul căutat este $\varphi = \arccos(-1/\sqrt{6})$.

- 11. Fiind date punctele A(1,2,3), B(2,3,4), vectorii $\overline{a} = \overline{i} + \overline{j} \overline{k}$, $\overline{b} = \overline{i} \overline{j}$ şi planul P) y = 0, să se determine:
 - a) vectorul \overrightarrow{AB} , ecuațiile paralelei prin origine la vectorul \overline{b} și planul mediator al segmentului AB.
 - b) vectorul \overline{v} paralel cu planul P) pentru care $\overline{v}\times\overline{b}=\overline{a}.$
 - c) simetricul punctului A față de planul P), unghiul format de \overrightarrow{AB} cu planul P), planul Q) ce trece prin A și este paralel cu vectorii \overline{a} și \overline{b} .

Rezolvare:a) $\overrightarrow{AB} = \overline{i} + \overline{j} + \overline{k}$, paralela prin origine la vectorul \overline{b} are ecuațiile x = -y, z = 0, iar planul mediator al segmentului AB, adică planul trece prin punctul C(3/2, 5/2, 7/2), mijlocul segmentului AB, are ecuația x + y + z - 15/2 = 0.

- b) Notând $\overline{v}=x\overline{i}+y\overline{j}+z\overline{k}$, din relația dată obținem z=1 și x+y=1. Din condiția de paralelism cu planul P), adică $\overline{v}\cdot\overline{N}=0$ rezultă y=0 și deci $\overline{v}=\overline{i}+\overline{k}$.
- c) Simetricul lui A față de planul P) este punctul D(1,-2,3), iar unghiul format de AB cu planul P) este $\varphi=\arcsin 1/\sqrt{3}$. Planul Q) are ecuația x+y+2z-9=0.
- 12. Fiind date dreapta d) x = y 1 = z, punctul A(1,0,1) și vectorul $\overline{a} = \overline{j}$, să se găsească:
 - a) planul care trece prin A, perpendicular pe dreapta d) și distanța de la A la această dreaptă;
 - b) simetricul lui A față de axa Ox, vectorul \overrightarrow{OA} și vectorul \overline{v} perpendicular pe axa Ox, care satisface relația $\overline{v} \times \overrightarrow{OA} = \overline{a}$.

Rezolvare:a) Planul căutat are ecuația P) x+y+z-2=0 și intersectează dreapta d) în punctul B(1/3,4/3,1/3). Distanța de la A la B, adică $2\sqrt{2}/\sqrt{3}$ este distanța căutată.

- b) Simetricul lui A față de Ox este punctul C(1,0,-1), vectorul $\overrightarrow{OA} = \overline{i} + \overline{k}$, iar vectorul căutat $\overline{v} = 2\overline{k}$ (din $\overline{v} \times \overrightarrow{OA} = \overline{a}$ a rezultat $\overline{v} = x\overline{i} + (1+x)\overline{k}$).
- 13. Fiind date punctele $A\left(a,1,0\right),\,B\left(b,0,2\right),\,C\left(0,1,3\right)$ și $D\left(1,1,4\right),\,$ să se

determine:

- a) paralela prin A la Ox, planul prin B perpendicular pe \overrightarrow{CD} și unghiul vectorilor \overrightarrow{CB} și \overrightarrow{CD} .
- b) valorile lui a şi b pentru ca vectorii $\{\overrightarrow{CA}, \overrightarrow{CB}, \overrightarrow{CD}\}$ să formeze o bază, iar pentru $a \neq -3$ şi b = 0 să se determine volumul tetraedrului ABCD.

Rezolvare: a) Ecuațiile paralelei prin A la Ox sunt y-1=0, z=0, vectorul $\overrightarrow{CD}=\overline{i}+\overline{k}$, iar planul prin B perpendicular pe \overrightarrow{CD} are ecuația x+z-b-2=0. Unghiul vectorilor \overrightarrow{CD} și $\overrightarrow{CB}=b\overline{i}-\overline{j}-\overline{k}$ este $\varphi=\arccos{(b-1)}/\sqrt{2\,(b^2+2)}$.

- b) Vectorii \overrightarrow{CB} , \overrightarrow{CD} și $\overrightarrow{CA} = a\overline{i} 3\overline{k}$ formează o bază dacă $a \neq -3$. Volumul tetraedrului este $\mathcal{V} = \frac{1}{6} \left| (\overrightarrow{CA}, \overrightarrow{CB}, \overrightarrow{CD}) \right| = \frac{1}{6} |a+3|$.
- 14. Fiind date punctele A(1,0,0), B(0,1,0) și vectorii $\overline{a} = \overline{i} + \overline{j}$ și $\overline{b} = \overline{k}$, să se afle:
 - a) ecuația planului prin A paralel cu vectorii \overline{a} și \overline{b} , simetrica dreptei AB față de Oz și unghiul acesteia cu Ox;
 - b) versorul \overline{v} perpendicular pe \overrightarrow{AB} și satisfăcând ecuația $\overline{v} \times \overline{a} = \overline{b}$.

Rezolvare: a) Planul căutat are ecuația x-y-1=0, iar simetrica lui AB față de Oz, x+y+1=0, z=0 trece prin punctele A'(-1,0,0) și B'(0,-1,0). Unghiul lui $\overrightarrow{AB}=-\overline{i}+\overline{j}$ cu Ox este $\varphi=\frac{3\pi}{4}$.

- b) Întrucât $\overline{b} \cdot \overline{a} = 0$, sistemul $\overline{v} \cdot \overrightarrow{AB} = 0$, $\overline{v} \times \overline{a} = \overline{b}$ admite soluția $\overline{i} + \overline{j}$, iar versorul acestuia este $(\overline{i} + \overline{j}) / \sqrt{2}$.
- 15. Fiind date punctul A(1,2,3) şi vectorul $\overline{v} = \overline{i} + \overline{j} + \overline{k}$, să se determine:
 - a) planul prinA paralel cu \overline{v} și axa Oz;
 - b) distanța de la origine la dreapta ce trece prin A și este paralelă cu \overline{v} .

Rezolvare: a) x - y + 1 = 0.

- b) $\overrightarrow{OA} = \overline{i} + 2\overline{j} + 3\overline{k}$, iar distanța căutată este $\sqrt{2}$.
- 16. Fiind date punctele A(1,2,3), B(2,3,a) și C(3,4,b), să se determine:
 - a) ecuațiile drepteiOA, condiția de coplanaritate a dreptelor OA și

CB, iar pentru a = b = 0 perpendiculara lor comună;

- b) planul determinat de punctele O, A şi B pentru a = 0, aria triunghiului OAB şi versorul \overline{u} perpendicular pe \overrightarrow{OA} şi paralel cu xOy.
- **Rezolvare**: a) Ecuațiile dreptelor OA și CB sunt $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ respectiv $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-a}{b-a}$, iar condiția de coplanaritate a acestora este b-2a+3=0. Direcția perpendicularei comune fiind $\overline{v}=\overline{v_1}\times\overline{v_2}=-3\overline{i}+3\overline{j}-\overline{k}$, ecuațiile acesteia sunt 11x+8y-9z=0 și x-y-6z+1=0.
- b) Planul determinat de cele trei puncte este 9x 6y + z = 0, iar aria triunghiului OAB este $\mathcal{A} = \frac{1}{2} \left\| \overrightarrow{OA} \times \overrightarrow{OB} \right\| = \sqrt{118}$. Un vector \overline{v} paralel cu Oy are forma $x\overline{i} + y\overline{j}$ care din condiția de ortogonalitate cu $\overrightarrow{OA} = \overline{i} + 2\overline{j} + 3\overline{k}$ se reduce la $-2\overline{i} + \overline{j}$. Problema admite două soluții $\frac{1}{\sqrt{5}} \left(-2\overline{i} + \overline{j} \right)$ și $\frac{1}{\sqrt{5}} \left(2\overline{i} \overline{j} \right)$.
- 17. Fiind date punctele A(1,0,1), B(0,2,0), C(0,-1,3) şi vectorul $\overline{a} = \overline{j} \overline{k}$, să se determine:
 - a) vectorul $\overline{b} = \overline{AB} \times \overline{AC}$, planul prin A perpendicular pe \overline{b} şi dreapta prin C paralelă cu \overline{a} ;
 - b) proiecția dreptei AB pe planul xOy, distanța de la C la dreapta AB și aria triunghiului ABC;
 - c) versorii \overline{u} perpendiculari pe \overline{a} şi locul geometric al punctelor D pentru care vectorii \overrightarrow{AB} , \overrightarrow{AD} şi \overline{a} sunt coplanari.
 - **Rezolvare**: a) $\overrightarrow{AB} = -\overline{i} + 2\overline{j} \overline{k}$, $\overrightarrow{AC} = -\overline{i} \overline{j} + 2\overline{k}$, $\overline{b} = 3(\overline{i} + \overline{j} + \overline{k})$ iar planul căutat este x + y + z 2 = 0. Dreapta prin C paralelă cu \overline{a} are ecuațiile x = 0, y z 2 = 0.
 - b) A'(1,0,0) și B'(0,2,0) fiind două puncte ale dreptei căutate, ecuațiile ei sunt $z=0,\ 2x+y-2=0$. Distanța de la C la AB este $\left\|\overrightarrow{CA}\times\overrightarrow{AB}\right\|/\left\|\overrightarrow{AB}\right\|=3\sqrt{2}/2$.
 - c) Un vector \overline{v} perpendicular pe \overline{a} ($\overline{v} \cdot \overline{a} = 0$) fiind de forma $x\overline{i} + y\overline{j} + z\overline{k}$ versorii corespunzători sunt $\overline{u}_{1,2} = \left(x\overline{i} + y\overline{j} + z\overline{k}\right) / \pm \sqrt{x^2 + 2y^2}$. Din condiția de coplanaritate a celor trei vectori (produsul mixt să fie nul) rezultă planul P) x + y + z 2 = 0.
- 18. Fiind date punctele A(1,0,0), B(0,1,1), $C(\alpha,0,\beta)$ şi O(0,0,0) cu α , $\beta \in \mathbb{R}$, să se determine:

- a) ecuațiile dreptei d) ce trece prin A și este paralelă cu BC, ecuațiile planelor prin O paralele cu AB și valorile lui α și β pentru ca dreptele OA și BC să fie coplanare;
- b) simetrica dreptei BC față de punctul O, planul mediator al segmentului BC și versorul normalei la acest plan;
- c) simetricul lui C față de planul OAB și un versor \overline{v} paralel cu xOy și perpendicular pe AB.

Rezolvare: a) $\overrightarrow{BC} = \alpha \overline{i} - \overline{j} + (\beta - 1) \overline{k}$, iar ecuațiile dreptei d) sunt $\frac{z-1}{\alpha} = \frac{y}{-1} = \frac{z}{\beta-1}$, $\overrightarrow{AB} = -\overline{i} + \overline{j} + \overline{k}$ iar normala la planele căutate este $\overline{N} = (\lambda + \mu) \overline{i} + \lambda \overline{j} + \mu \overline{k}$ ($\overline{N} \cdot \overrightarrow{AB} = 0$). Planele căutate au ecuația $(\lambda + \mu) x + \lambda y + \mu z = 0$. Din condiția de coplanaritate a celor patru puncte rezultă $\beta = 0$ și $\alpha \in \mathbb{R}$.

- b) Simetricele lui B și C față de origine fiind B'(0,-1,-1) și $C'(-\alpha,0,-\beta)$, dreapta căutată are ecuațiile $\frac{x}{-\alpha} = \frac{y+1}{1} = \frac{z+1}{1-\beta}$; mijlocul segmentului BC fiind punctul $D(\alpha/2,1/2,(\beta+1)/2)$, ecuația planului mediator acesteia este $\alpha x y + (\beta-1)z (\alpha^2 + \beta^2 2)/2 = 0$; versorul normalei la plan este $\overline{n} = (\alpha \overline{i} \overline{j} + (\beta-1)\overline{k})/\sqrt{\alpha^2 + (\beta-1)^2 + 1}$.
- c) Planul determinat de punctele O, A şi B fiind P) y-z=0, intersecția sa cu perpendiculara prin C pe el d) $x-\alpha=0$, $y+z-\beta=0$ este punctul $C'(\alpha,\beta/2,\beta/2)$. Simetricul căutat are coordonatele $(\alpha,\beta,0)$; din condiția ca \overline{v} paralel cu xOy avem $\overline{v}=\alpha\overline{i}+\beta\overline{j}$, iar din \overline{v} perpendicular pe \overrightarrow{AB} rezultă $\beta=-\alpha$. Prin urmare există doi versori cu proprietățile cerute $\overline{v}_0=(\overline{i}-\overline{j})/\sqrt{2}$ şi $\overline{v}_0=(-\overline{i}+\overline{j})/\sqrt{2}$.
- 19. Fiind date dreptele d_1) x=z=0 și d_2) $\begin{cases} x-1=0 \\ y=z \end{cases}$, să se determine:
 - a) ecuațiile perpendicularei comune d) și distanța dintre cele două drepte (lungimea perpendicularei comune);
 - b) ecuațiile dreptei d_1) pe planele ce determină dreapta d_2) precum şi unghiul diedru al acestor plane;
 - c) unghiul dreptelor d_1) și d_2) și proiecția lui d_2) pe planul yOz.

Rezolvare: a) Direcțiile dreptelor d_1) și d_2) fiind date de $\overline{v}_1 = \overline{j}$ și $\overline{v}_2 = \overline{N}_1 \times \overline{N}_2 = \overline{j} + \overline{k}$ (\overline{N}_1 și \overline{N}_2 fiind normalele planelor ce o determină) un vector director al perpendicularei comune este $\overline{v} = \overline{v}_1 \times \overline{v}_2 = \overline{i}$.

Perpendiculara comună o vom prezenta ca intersecție de două plane. Astfel, din fascicolele de plane ce trec prin d_1) respectiv d_2) adică P_f) $\lambda x + \mu z = 0$ și Q_f) $\lambda (x-1) + \mu (y-z) = 0$ alegem planele paralele cu \overline{v} adică z=0, y-z=0 sau, mai simplu, y=z=0.Întrucât dreapta d) intersectează cele două drepte în O(0,0,0) și A(1,0,0), distanța căutată este OA=1.

- b) Din fascicolul de plane P_f) $\lambda x + \mu z = 0$ alegem planele proiectante pe planele ce determină d_2). Acestea fiind z = 0 respectiv x = 0, dreptele căutate au ecuațiile z = 0, x 1 = 0 și x = 0, y z = 0. De asemenea, $\cos \varphi = \overline{N}_1 \cdot \overline{N}_2 / (\|\overline{N}_1\| \|\overline{N}_2\|) = 0$ și deci $\varphi = \frac{\pi}{2}$.
- c) $\cos \omega = 1/\sqrt{2}$ și deci $\omega = \frac{\pi}{4}$. Folosind din nou fascicolul de plane ce trece prin d_2), obținem x = 0, y z = 0.
- 20. Fiind dată dreapta $d) \left\{ \begin{array}{l} x+z=0 \\ y-z-1=0 \end{array} \right.$, să se determine:
 - a) proiecția dreptei d) pe planul xOy și simetrica ei față de origine;
 - b) perpendiculara comună a dreptelor d) și Ox, distanța dintre aceste drepte și planul prin d) și origine.

Rezolvare: a) Din fascicolul de plane determinate de dreapta d) se alege acela perpendicular pe xOy astfel că ecuațiile priecției sunt z=0, x+y-1=0. Simetricele punctelor A(0,1,0) și B(1,0,-1) (aparținând dreptei d)) față de origine fiind A'(0,-1,0) și B'(-1,0,1), dreapta căutată are ecuațiile -x=y+1=z.

- b) Direcția dreptei d) fiind dată de vectorul $\overline{v}=-\overline{i}+\overline{j}+\overline{k}$, iar a axei Ox de versorul \overline{i} , perpendiculara lor comună va fi paralelă cu vectorul $\overline{w}=\overline{v}\times\overline{i}=\overline{j}-\overline{k}$. Perpendiculara comună va fi din nou prezentată ca intersecție de două plane ce trec respectiv prin d) și Ox și sunt paralele cu \overline{w} , adică $y+z=0,\ 2x-1=0$. Distanța între cele două drepte este $CD=1/\sqrt{2}$, unde C(1/2,0,0) și D(1/2,1/2,-1/2) sunt punctele de intersecție ale perpendicularei comune cu Ox și respectiv d). Din fascicolul de plane ce trec prin d), adică $\lambda(x+z)+\mu(y-z-1)=0$ îl alegem pe x+z=0 adică cel ce trece prin origine.
- 21. Fiind date dreptele d_1) x = y 1 = z și d_2) x 2 = y = z 3, să se determine:
 - a) planul determinat de aceste drepte, dreapta d) aparţinând planului

astfel determinat, paralelă cu cele două drepte și care împarte distanța dintre d_1) și d_2) în raportul 1/4;

- b) unghiurile dreptei d_1) cu axele și planele de coordonate;
- c) distanța dintre dreptele d_1) și d_2), simetrica lui d_1) față de d_2) și locul geometric al punctelor din spațiu egal depărtate de cele două drepte.

Rezolvare: a) Ecuația planului determinat de cele două drepte este 4x-y-3z+1=0. Alegând punctele $A(0,1,0)\in d_1$) și $B(2,0,3)\in d_2$) dreapta căutată trece prin punctul C(2/5,4/5,3/5), care împarte segmentul AB în raportul 1/4. Dreapta căutată este x-2/5=y-4/5=z-3/5 (problema mai admite o soluție x-8/5=y-1/5=z-12/5).

- b) Unghiurile dreptei d_1) cu axele de coordonate $\alpha = \beta = \gamma = \arccos 1/\sqrt{3}$ și unghiurile cu planele de coordonate $\alpha' = \beta' = \gamma' = \arcsin 1/\sqrt{3}$.
- c) $dist(d_1, d_2) = \sqrt{26/3}$. Simetrica dreptei d_1) față de d_2) trece prin punctul D(4, -1, 6), simetricul lui A față de B. Ecuațiile ei vor fi deci x 4 = y + 1 = z 6. Locul geometric căutat este un plan P) ce trece prin F(1, 1/2, 3/2) mijlocul segmentului AB. Normala planului, perpendiculară pe cele două drepte și pe planul determinat de ele este $\overline{N} = 2\overline{i} 7\overline{j} + 5\overline{k}$, iar ecuația acestuia 2x 7y + 5z 6 = 0.
- 22. Fiind date punctele A(3,4,0), B(0,-3,4), C(1,0,1) și O(0,0,0), se cer:
 - a) planul mediator segmentului AC și distanța de la C la dreapta AB;
 - b) să se arate că triunghiul AOB este isoscel şi să se scrie ecuațiile bisectoarei din O a acestuia;
 - c) ecuația planului prin O paralel cu AB și AC, perpendiculara prin O pe acești vectori și proiecția ei pe planul yOz.

Rezolvare: a) Mijlocul segmentului AC este D(2,2,1/2), vectorul $\overrightarrow{AC} = -2\overline{i} - 4\overline{j} + \overline{k}$ și deci planul căutat are ecuația 2x + 4y - z - 23/2 = 0. Obținem $d = \sqrt{458/21}$.

- b) Întrucât $\left\|\overrightarrow{OB}\right\| = \left\|\overrightarrow{OA}\right\| = 5$, bisectoarea unghiului AOB dată de ecuațiile $\frac{x}{3} = y = \frac{z}{4}$ trece și prin mijlocul $E\left(3/2,1/2,2\right)$ al lui AB;
- c) Planul prin O paralel cu \overrightarrow{AB} și \overrightarrow{AC} are ecuația 9x 5y 2z = 0, iar perpendiculara prin O pe acest plan este $\frac{x}{9} = \frac{y}{-5} = \frac{z}{-2}$. Proiectând punctul F(-9,5,2) (ce aparține dreptei obținute) pe planul yOz

și scriind ecuația dreptei prin două puncte, obținem x = 0, 2y - 5z = 0.

23. Fiind date planele P_1) 2x - 2y + 2z + 3 = 0, P_2) 2x + 2y + z - 6 = 0 şi P_3) x - 5y + 2z + 2 = 0, să se scrie ecuația planului ce trece prin dreapta de intersecție a planelor P_1) şi P_2) şi este perpendicular pe planul x = 0.

Rezolvare: Din ecuația fascicolului de plane $\lambda P_1 + \mu P_2 = 0$ alegem planul căutat 4y - z - 9 = 0, plan perpendicular pe yOz.

24. Se cer ecuațiile dreptelor ce aparțin planului P) 2x - y - z - 1 = 0 și sunt perpendiculare pe dreapta d) $\begin{cases} x = z - 1 \\ y + 2z = x \end{cases}$.

Rezolvare: Dreptele căutate se găsesc la intersecția planului P) cu planele Q) perpendiculare pe d). Cum direcția dreptei d) este dată de vectorul $\overline{v} = \overline{i} - \overline{j} + \overline{k}$, ecuațiile acestor drepte vor fi 2x - y - z - 1 = 0, $x - y + z - \lambda = 0$.

25. Să se determine ecuația planului Q) perpendicular pe P) x-y+2z-5=0 și care îl intersectează pe acesta după o dreaptă aparținând planului xOy. Să se scrie apoi sub formă parametrică ecuațiile dreptei de intersecție a celor două plane P) și Q).

Rezolvare: Planul Q) îl alegem din fascicolul de plane λ $(x-y+2z-5)+\mu z=0$ determinat de P) și xOy. Astfel, din condiția de ortogonalitate $\overline{N}_P \cdot \overline{N}_Q = 0$ rezultă Q) x-y-z-5=0. Şi deci dreapta de intersecție $x-y+2z-5=0, \ x-y-z-5=0$ sau echivalent $x-y-z-5=0, \ z=0$. O reprezentare parametrică a acestei drepte este $x=t+5, \ y=t, \ z=0$.

- 26. Fiind date punctele A(1,0,0), B(0,2,0), C(0,0,-3) şi dreapta d) 2x-1=3y=z, se cer:
 - a) planul P) determinat de cele trei puncte, cosinusurile directoare ale normalei sale și distanța de la origine la acest plan;
 - b) unghiul axei Oz cu planul P), simetricul lui P) față de origine şi planul Q) paralel cu P) şi care împarte distanța între origine şi acest plan în raportul 1/2;
 - c) ecuația planului R) ce trece prin centrul de greutate al triunghiului ABC și este perpendicular pe d) și simetrica dreptei d) față de origine.

Rezolvare: a) P) $x + \frac{1}{2}y - \frac{1}{3}z - 1 = 0$; $\cos \alpha = \frac{6}{7}$, $\cos \beta = \frac{3}{7}$, $\cos \gamma = -\frac{2}{7}$; $dist(O, P) = \frac{6}{7}$.

- b) $\varphi = \arcsin \frac{6}{7}$; $x + \frac{1}{2}y \frac{1}{3}z + 1 = 0$; Q) 6x + 3y 2z + 1 = 0.
- c) G(1/3, 2/3, -1), $\overline{v} = 3\overline{i} + 2\overline{j} + 6\overline{k}$ și R) 9x + 6y + 18z + 11 = 0; 2x + 1 = 3y = z.
- 27. Se dau dreapta d) x = y = z și planul P) x + 2y + z 5 = 0 și se cer:
 - a) unghiul dreptei d) cu planul P), ecuația planului Q) ce conține d) și este perpendicular pe P) și simetrica dreptei d) față de planul P);
 - b) ecuațiile planelor paralele cuP) la distanța de două unități de aceasta și simetricul lui P) față de origine;
 - c) planulR) prin Ox și paralel cu d) și simetrica dreptei d) față de axa Oy.

Rezolvare: a) $\varphi = \arcsin(2\sqrt{2}/3)$; Q) x - z = 0; x - 5/4 = (y - 5/4)/5 = z - 5/4.

- b) $x + 2y + z 5 \pm 2\sqrt{6} = 0$.
- c) R) y z = 0; x = -y = z.
- 28. Fiind date punctele A(1,2,3), B(0,1,2) și vectorul $\overline{a} = \overline{j} \overline{k}$, se cer:
 - a) simetrica dreptei AB față de planul xOy, planul prin A și Oz și distanța de la B la acest plan;
 - b) proiecția dreptei AB pe planul yOz și unghiul vectorilor \overline{a} și \overrightarrow{AB} ;
 - c) versorul direcției AB și soluția sistemului de ecuații $\overline{v} \times \overline{a} = \overrightarrow{AB}$, $\overline{v} \cdot \overline{a} = 1$.

Rezolvare: a) x = y - 1 = -z - 2; 2x = y; $d = 1/\sqrt{5}$.

- b) $x = 0, y z + 1 = 0; \varphi = \frac{\pi}{2}$.
- c) $\overline{u} = -(\overline{i} + \overline{j} + \overline{k})/\sqrt{3}; \overline{v} = \overline{j} \overline{k}.$
- 29. Se dau punctele A(1,0,0), B(1,1,0), C(1,1,1) și se cer:
 - a) vectorul $\overrightarrow{AB} \times \overrightarrow{AC}$, aria triunghiului ABC şi ecuația planului ce conține acest triunghi;
 - b) simetrica drepte
iOBfață de planul P) și unghiul drepte
iOCcu acest plan.

Rezolvare: a) $\overrightarrow{AB} \times \overrightarrow{AC} = \overline{i}$; A = 1/2; x = 1.

- b) x + y 2 = 0, z = 1; $\varphi = \arcsin(1/\sqrt{3})$.
- 30. Date fiind punctele A(1,2,3), B(0,1,2) şi dreapta d) x + y = 0, x y 1 = 0, se cer:
 - a) paralela prin A la d) și planul prin d) și origine;
 - b) versorii direcției AB, unghiul lui AB cu axa Oy și simetrica dreptei AB față de planul yOz;
 - c) vectorul \overline{v} perpendicular pe Oz și satisfăcând ecuația $\overline{v} \times \overrightarrow{AB} = \overline{j} \overline{k}$ (rezolvare vectorială).

Rezolvare: a) 1 - x = y - 2 = z - 3; x + y = 0.

- b) $\overline{u} = \pm (\overline{i} + \overline{j} \overline{k}) / \sqrt{3}$, $\varphi = \arccos(-1/\sqrt{3})$, -x 1 = y 1 = z 2.
- c) $\overline{v} = \overline{i}$.
- 31. Fiind date planul P) x+6y-z-2=0 şi dreapta d) x-y-3z+2=0, 2x-y+2z-3=0, se cer:
 - a) paralela prin origine la dreapta d) și planul prin origine paralel cu P);
 - b) unghiul dintre dreaptă și plan și proiecția ortogonală a dreptei pe plan.

Rezolvare: a) $\overline{v} = -5\overline{i} - 8\overline{j} + \overline{k}, \frac{x}{5} = \frac{y}{8} = \frac{z}{-1}, x + 6y - z = 0.$

- b) $\varphi = \arcsin(3/\sqrt{95})$ şi d') x + 6y z 2 = 0, x 2y 11z + 9 = 0 (cel de-al doilea plan trece prin d) şi este perpendicular pe P)).
- 32. Să se determine unghiul dreptei d) $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{1}$ cu planul P) x+y+2z-14=0 și simetrica acesteia față de plan.

Rezolvare: $\varphi = \arcsin 5/6$; dreapta căutată trece prin punctul A(2,4,4) (de intersecție dintre dreaptă și plan) și C(8/3,11/3/19/3) simetricul lui $B(1,2,3) \in d$) față de planul P). Ecuațiile ei vor fi $\frac{x-2}{2} = \frac{y-4}{-1} = \frac{z-4}{7}$.

33. Fiind date punctele A(1, -2, 1), B(2, 1, -1) şi C(3, 2, -6), să se determine: produsul vectorial $\overrightarrow{AB} \times \overrightarrow{AC}$, aria triunghiului ABC şi perpendiculara pe planul triunghiului prin centrul său de greutate.

Rezolvare:
$$\overrightarrow{AB} \times \overrightarrow{AC} = -13\overline{i} + 3\overline{j} - 2\overline{k}, A = \sqrt{182}/2, G(2, 1/3, -2),$$
 $\frac{x-2}{13} = \frac{3y-1}{-9} = \frac{z+2}{2}.$

- 34. Fiind date punctul A(0,1,2), vectorul $\overline{a} = \overline{i} \overline{k}$ şi dreapta d) x+y-3 = 0, y = 1, se cer:
 - a) direcția dreptei d), unghiul acesteia cu axa Oy și simetricul lui A față de dreapta d);
 - b) planul prin d) paralel cu \overline{a} , vectorul \overrightarrow{OA} și ecuațiile proiecției dreptei OA pe planul xOz.

Rezolvare: a) $\overline{v} = -\overline{i} + \overline{k}$; $\varphi = \frac{\pi}{2}$. Planul prin A perpendicular pe d) o intersectează pe aceasta în punctul B(1/2, 1, 5/2), iar simetricul căutat este punctul C(1, 1, 3).

- b) Din fascicolul de plane ce trece prin d) reţinem pe acela paralel cu \overline{a} , adică x+y+z-4=0, $\overrightarrow{OA}=\overline{j}+2\overline{k}$. Proiecţia lui A pe xOz fiind $D\left(0,0,2\right)$ dreapta căutată este axa Oz de ecuaţii x=y=0.
- 35. Se dau dreapta d) x-y-1=0, 2x-z-2=0 și punctul M(1,0,1) și se cer:
 - a) planul P) ce trece prin M și este perpendicular pe d) și distanțele de la M la dreapta d) și la planul yOz;
 - b) simetricul punctului M față de dreapta d) și ecuațiile paralelei prin M la axa Ox.

Rezolvare: a) Direcția lui d) fiind dată de vectorul $\overline{v} = \overline{i} + \overline{j} + 2\overline{k}$, planul P) are ecuația x + y + 2z - 3 = 0; $dist(M, d) = 1/\sqrt{3}$, dist(M, yOz) = 1.

- b) M'(5/3, 2/3, 1/3), y = z 1 = 0.
- 36. Fiind date punctele A(1,0,1), B(-1,2,1), C(1,1,1) şi planul P(x+y+z-6)=0, se cer:
 - a) planul Q) ce trece prin A și este paralel cu planul P), dreapta AC și unghiul acesteia cu planul P);
 - b) coordonatele simetricului lui C față de planul P), aria triunghiului ABC și distanța de la A la P).

Rezolvare: a) Q) x+y+z-2=0; x-1=z-1=0; $\varphi=\arcsin 1/\sqrt{3}$.

- b) Proiecția lui C pe planul P) este D(2,2,2) iar simetricul său față de plan este E(3,3,3); $\mathcal{A} = \frac{1}{2} \|\overrightarrow{AB} \times \overrightarrow{AC}\| = 1$, $dist(A,P) = 4/\sqrt{3}$.
- 37. Să se determine parametrul α astfel ca dreptele d_1) $\frac{x}{2} = y = z$ și d_2) $x 1 = y 2 = z/\alpha$ să fie concurente. Pentru α obținut să se scrie ecuația planului determinat de cele două drepte.

Rezolvare: Sistemul format cu ecuațiile celor două drepte este compatibil dacă $\alpha = 1/3$. În acest caz ecuația planului căutat este 2x - y - 3z = 0.

38. Se dau dreptele d_1) $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z}{-2}$ și d_2) x+2z-1=0, y+2z+1=0. Se cere să se arate că sunt concurente, să se scrie ecuațiile bisectoarelor unghiurilor și să se scrie ecuația planului determinat de acestea.

Rezolvare: $M_1(1,-1,0) \in d_1) \cap d_2$); vectorii directori ai bisectoarelor sunt $\overline{u}_1 = \overline{v}_1 / \|\overline{v}_1\| + \overline{v}_2 / \|\overline{v}_2\| = -\overline{j}/3 - \overline{k}/3$ şi $\overline{u}_2 = \overline{v}_1 / \|\overline{v}_1\| - \overline{v}_2 / \|\overline{v}_2\| = 4\overline{i}/3 + \overline{j} - \overline{k}$, iar ecuațiile acestora x - 1 = 0, y - z + 1 = 0, respectiv (x - 1)/4 = (y + 1)/3 = (1 - z)/3. Planul lor are ecuația 3x - 2y + 2z - 5 = 0.

39. Arătați că dreptele d_1) x - 1 = 2 - y = (z + 1)/3 și d_2) x + y - 1 = 0, 3y + z - 3 = 0 sunt coplanare și scrieți ecuația planului determinat de ele.

Rezolvare: $\overline{v}_1 = \overline{v}_2 = \overline{i} - \overline{j} + 3\overline{k}, x - 2y - z + 2 = 0.$

- 40. Fiind date punctele A(1,0,0), B(0,1,1) şi C(0,0,1), se cer:
 - a) ecuațiile dreptei d) ce trece prin C și este paralelă cu AB, ecuația planului P) ce trece prin A și este perpendicular pe dreapta d) și simetricul punctului A față de dreapta d);
 - b) aria triunghiului ABC, unghiul dreptelor AB şi AC precum şi unghiul dintre OA (O fiind originea sistemului de coordonate) şi planul triunghiului ABC.

Rezolvare: a) $\overrightarrow{AB} = -\overline{i} + \overline{j} + \overline{k}$, d) -x = y = z - 1; P) x - y - z - 1 = 0, d) $\cap P$) = D(2/3, -2/3, 1/3). Simetricul lui A față de d) este E(1/3, -4/3, 2/3).

b) $A = 1/\sqrt{2}$, $\varphi = \arccos \sqrt{2/3}$, $\omega = \arcsin 1/\sqrt{3}$.

41. Arătați că dreptele d_1) x - 1 = y = z și d_2) x - z - 3 = 0, y = 0 sunt necoplanare și determinați ecuația perpendicularei lor comune.

Rezolvare: $\overline{v}_1 = (1,1,1), \ \overline{v}_2 = (1,0,1)$ şi deci dreptele nu sunt paralele. În plus, $(\overline{M_1M_2}, \overline{v}_1, \overline{v}_2) = 2 \neq 0$, unde $M_1(1,0,0) \in d_1$) şi $M_2(3,0,0) \in d_2$). Perpendiculara comună are ecuațiile y = 0, x + z - 1 = 0.

42. Determinați punctul de intersecție dintre dreapta d) $\frac{x-1}{2} = \frac{y+1}{-4} = \frac{z}{-3}$ și planul P) ce trece prin mijlocul segmentului AB cu A(1,2,3) și B(-1,4,1) și este perpendicular pe d).

Rezolvare: Mijlocul segmentului AB este M(0,3,2) iar planul P) are ecuația 2x - 4y - 3z + 18 = 0. Intersecția lui P) cu d) este punctul N(-19/29, 67/29, 72/29).

- 43. Se dau planul P) x-y+z-3=0 și punctul A(1,1,0) și se cer:
 - a) planul ce trece prin A și este paralel cu P) și coordonatele simetricului lui A față de P);
 - b) fascicolul de plane ce trece prin A și este perpendicular pe planul P).

Rezolvare: a) x - y + z = 0, A'(3, -1, 2).

- b) Axa fascicolului x-z-1=0, x+z-1=0 trece prin A şi este perpendiculară pe P), iar ecuația fascicolului este $\lambda \left(x-z-1\right)+\mu \left(y+z-1\right)=0.$
- 44. Se consideră punctul A(1,1,1), dreapta d) x=y-3=z și planul P) 5x-3y+2z+4=0 și se cer ecuațiile dreptei d') ce trece prin punctul A' simetricul lui A față de d) și este perpendiculară pe planul P).

Rezolvare: A'(-1,5,-1) și (x+1)/5 = (5-y)/3 = (z+1)/2.

- 45. Fiind date punctul A(1,0,-1) și dreapta d) x-z-1=0, y+z-1=0, se cer:
 - a) ecuațiile perpendicularei din A pe d);
 - b) distanța de la punctul A la dreapta d).

Rezolvare: a) Dreapta căutată se scrie ca intersecție de două plane:

unul determinat de punctul A și dreapta d), iar celălalt trece prin A și este perpendicular pe d), adică 2x + y - z - 3 = 0 și x - y + z = 0.

- b) $dist(A, d) = \sqrt{2}$.
- 46. Fiind date dreptele d_1) 2x + y 1 = 0, x z 1 = 0 şi d_2) x + z 1 = 0, 2x y 1 = 0, se cer:
 - a) ecuațiile dreptei d) care se sprijină pe d_1) și d_2) și este paralelă cu planul xOz;
 - b) să se arate că intersecția dreptei variabile d) cu planul xOy este o parabolă, iar proiecțiile ortogonale ale lui d_1) și d_2) pe același plan xOy trec prin vârful parabolei.

Rezolvare: a) Punctele $M_1(\lambda, 1-2\lambda, \lambda-1) \in d_1$) și $M_2(\mu, 2\mu-1, 1-\mu) \in d_2$) determină o dreaptă d) variabilă care este paralelă cu xOz dacă $\mu=1-\lambda$. Prin urmare, d) are ecuațiile $(x-\lambda)/(1-2\lambda)=z-\lambda+1$ și $y+2\lambda-1=0$.

- b) z = 0, $y^2 = 2x 1$ cu vârful V(1/2, 0, 0). Se arată că punctul V aparține proiecțiilor pe xOy ale lui d_1) și d_2).
- 47. Arătați că familia de plane P_{λ}) $x/\lambda + y/\sqrt{a^2 \lambda^2} + z b = 0$, cu $\lambda \in \mathbb{R}$ determină pe axele de coordonate segmente având suma pătratelor lungimilor constantă.

Rezolvare: Punctele de intersecție fiind $A(\lambda b, 0, 0)$, $B(0, b\sqrt{a^2 - \lambda^2}, 0)$, C(0, 0, b) avem $OA^2 + OB^2 + OC^2 = b^2(a^2 + 1)$.

48. Pentru ce valori ale lui α , β și γ reali, dreapta d_1) $x/\alpha = y = z/\beta$ se sprijină pe d_2) $(x-1)/\gamma = (y-2)/2 = (z-3)/3$.

Rezolvare: Obţinem a) $\gamma = 1$; $\alpha, \beta \in \mathbb{R}$ şi b) $\beta = 3/2$; $\alpha, \gamma \in \mathbb{R}$. În primul caz ambele drepte trec prin origine.

- 49. Determinați α , $\beta \in \mathbb{R}$ astfel încât planele P_1) 2x y + 3z 1 = 0 și P_2) $x + 2y z + \beta = 0$ și P_3) $x + \alpha y \beta z + 10 = 0$ să îndeplinească condițiile:
 - a) să aibă un singur punct comun;
 - b) să treacă printr-o dreaptă dată;
 - c) să se intersecteze după trei drepte paralele distincte.

Rezolvare: a) Sistemul format de ecuațiile celor trei plane este compatibil determinat dacă $\beta-\alpha+1\neq 0$. b) $\alpha=\sqrt{106}/2,\ \beta=\left(-2+\sqrt{106}\right)/2$ și $\alpha=-\sqrt{106}/2,\ \beta=\left(-2-\sqrt{106}\right)/2$. c) $\alpha=\beta+1$ și $\beta\neq\left(-2\pm\sqrt{106}\right)/2$.

50. Să se scrie ecuația planului paralel cu planul P) x+y+2z=0 și care trece prin punctul de intersecție al planelor 2x+y-z-2=0, x-3y+z+1=0 și x+y+z-3=0.

Rezolvare: Folosind ecuația snopului de plane ce trec prin punctul de intersecție al planelor date, adică $\lambda P_1 + \mu P_2 + \nu P_3 = 0$, se obține planul x + y + 2z - 4 = 0.