Elliptic Curves

Giulia Mauri

Politecnico di Milano

email: giulia.mauri@polimi.it website: http://home.deib.polimi.it/gmauri

May 13, 2015

Overview

- Elliptic Curves
- 2 Logarithm Problems on EC
 - Baby Step, Giant Step
 - Pohlig-Hellman Method
- 3 Elliptic Curve Cryptosystems
 - ElGamal Cryptosystem
 - ECDHKE
 - ECIES

Elliptic Curve

Definition (Elliptic Curve)

An elliptic curve E is the graph of an equation:

$$E: y^2 = x^3 + ax^2 + bx + c$$

Definition (Addition Law)

Let E given by $y^2 = x^3 + bx + c$ and let $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$.

Then $P_1 + P_2 = P_3 = (x_3, y_3)$, where:

$$x_3 = m^2 - x_1 - x_2$$

$$y_3 = m(x_1 - x_3) - y_1$$

$$m = \begin{cases} (y_2 - y_1)(x_2 - x_1)^{-1} & \text{if } P_1 \neq P_2 \\ (3x_1^2 + b)(2y_1)^{-1} & \text{if } P_1 = P_2 \end{cases}$$

If the slope m is infinite, then $P_3 = \infty$. There is one additional law:

$$\infty + P = P$$
 for all points P .

3 / 34

Exercise

- 1 List the points on the elliptic curve $E: y^2 \equiv x^3 2 \pmod{7}$.
- 2 Given P = (3,2) and Q = (5,5), find the sum P + Q on E.
- 3 Given P = (3,2) and Q = P, find the sum P + Q on E.
- 4 Verify if P is a primitive generator.

Solution

[1]

X	$y^2 \equiv a$	(mod 7)	$a^{\frac{p-1}{2}}$	(mod 7)	$y\equiv a^{\frac{p+1}{4}}$	(mod 7)
0		5		-1		
1		6		-1		_
2		6		-1		_
3		4		1		± 2
4		6		-1		_
5		4		1		± 2
6		4		1		± 2
∞		_		_		∞

So the points are: $(3,2), (3,5), (5,2), (5,5), (6,2), (6,5), \infty$.

4 D > 4 同 > 4 目 > 4 目 > 目 9 9 Q P

Solution

[2]
$$m \equiv (5-2) \cdot (5-3)^{-1} \equiv 3 \cdot 2^{-1} \equiv 5 \pmod{7}$$

 $x_3 \equiv 5^2 - 5 - 3 \equiv 3$
 $y_3 \equiv 5(3-3) - 2 \equiv 5$

So
$$P + Q = (3,5)$$
.

[3]
$$m \equiv (3 \cdot 9 + 0)(4)^{-1} \equiv 6 \cdot 4^{-1} \equiv 5 \pmod{7}$$

 $x_3 \equiv 5^2 - 3 - 3 \equiv 5$
 $y_3 \equiv 5(3 - 5) - 2 \equiv 2$

So
$$2P = (5, 2)$$
.

[4] The number of points is 7 that is prime, so P is primitive and it has order 7.

Giulia Mauri (DEIB) Exercises May 13, 2015 6 / 34

Exercise

Given an elliptic curve E over \mathbb{Z}_{29} and the base point P = (8, 10):

$$E: y^2 = x^3 + 4x + 20 \mod 29.$$

Calculate the following point multiplication $k \cdot P$ using the Double-and-Add algorithm. Provide the intermediate results after each step. Use k = 9 and k = 20.

Solution

$$9P = (1001)_2 P$$

$$\begin{array}{c|c}
1 & P = (8, 10) \\
0 & 2P = 2(8, 10) = (0, 22) \\
0 & 2P + 2P = 2(0, 22) = (6, 17) \\
1 & 4P + 4P + P = 2(6, 17) + (8, 10) = (4, 10)
\end{array}$$

Solution

$$\begin{array}{c|c}
20P = (10100)_{2}P \\
\hline
1 & P = (8, 10) \\
0 & 2P = 2(8, 10) = (0, 22) \\
1 & 2P + 2P + P = 2(0, 22) + (8, 10) = (20, 3) \\
0 & 5P + 5P = 2(20, 3) = (17, 19) \\
1 & 10P + 10P + P = 2(17, 19) + (8, 10) = (19, 13)
\end{array}$$

4□ > 4□ > 4 = > 4 = > = 90

BSGS

We have Q=kP and we would like to find k over the Elliptic Curve. This method requires approximately \sqrt{M} steps and around \sqrt{M} storage. The procedure is as follows:

- Fix an integer $M \ge \lceil \sqrt{N} \rceil$, where N is the number of points of the curve.
- ② Make and store a list of iP for $0 \le i < M$.
- **3** Compute the points Q jMP for j = 0, 1, ... M 1 until one matches an element from the stored list.
- **1** If iP = Q jMP, we have Q = kP with $k \equiv i + jM \pmod{N}$.

Exercise

Alice and Bob exchange a session key using the Diffie-Hellman protocol. They publish an elliptic curve $E: y^2 \equiv x^3 + x + 2 \pmod{13}$. This curve has N = 12 points. They also publish P = (6, 4)

This curve has N = 12 points. They also publish P = (6,4).

Alice sends the message A = aP = (7, 12) and receives the message B = bP = (7, 1).

Compute b.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Giulia Mauri (DEIB) Exercises May 13, 2015 10 / 34

Solution

We use the baby step, giant step algorithm. We choose $M = \lceil \sqrt{12} \rceil = 4$. We compute

$$-MP = 4(-P) = 4(6,9) = (9,5)$$

and build the table:

We find out that $3P = B - 1 \cdot 4P$, therefore B = (3 + 4)P = 7P and b = 7.

- 《ロ》《趣》《意》《意》 (E) - 例の(

Giulia Mauri (DEIB) Exercises May 13, 2015 11 / 34

PH Method

As before, P, Q are elements in a group G and we want to find an integer k with Q = kP. We also know the order O of P and we know the prime factorization:

$$O = \prod_i q_i^{e_i}$$

The idea of Pohlig-Hellman is to find $k \pmod{q_i^{e_i}}$ for each i, then use the Chinese Remainder theorem to combine these and obtain $k \pmod{O}$. We write k as:

$$k = \sum_{i} a_{i} O_{i} y_{i} \bmod O$$

where $O=ord(P), \quad O_i=O/q_i^{e_i}, \quad y_i=O_i^{-1} \bmod q_i^{e_i}$ and $O_iQ=a_iO_iP.$

(ロ) (部) (差) (差) 差 から(*)

Exercise

Consider the previous problem B=bP and compute b using the Pohlig-Hellman method.

Solution

Since n = 12, the order of P could be 2,3,12.

$$2P = 2(6,4) = (2,5)$$

$$3P = (2,5) + (6,4) = (1,11)$$

So the order is 12. $O = ord(P) = 2^2 \cdot 3$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Solution

$$O_i = O/q_i^{e_i} o O_1 = 12/4 = 3, \quad O_2 = 12/3 = 4$$
 $y_i = O_i^{-1} \mod q_i^{e_i} o y_1 = 3^{-1} \mod 4 = 3, \quad y_2 = 4^{-1} \mod 3 = 1$
 $O_1B = a_1O_1P o 3B = a_1 \cdot 3P o (1,2) = a_1(1,11) o a_1 = 3$
 $O_2B = a_2O_2P o 4B = a_2 \cdot 4P o (9,8) = a_2(9,8) o a_2 = 1$
 $b = \sum_i a_iO_iy_i \mod O o b = 3 \cdot 3 \cdot 3 + 1 \cdot 4 \cdot 1 \mod 12 = 7$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Giulia Mauri (DEIB) Exercises May 13, 2015 14 / 34

ElGamal Cryptosystem

Alice wants to send a message to Bob.

The public parameters are: the curve E, the prime p, and the points A and B = Aa.

Bob's secret parameter is the integer a.

To send a message to Bob, Alice does the following:

- **1** Alice's message is a point P_m on E.
- ② Alice chooses a random integer k, computes: $Y_1 = kA$ and $Y_2 = P_m + kB$.
- **3** She sends the pair Y_1 , Y_2 to Bob.

Bob decrypts by calculating: $P_m = Y_2 - aY_1$.

Exercise

Alice uses the public key ElGamal cryptosystem. She publishes the curve $E: y^2 \equiv x^3 + 2x + 2 \pmod{13}$ and the point A = (3,3) of order 15. She also chooses a secret number a = 7 and publishes the point B = aA. Bob wants to send to Alice a message corresponding to the point $P_m = (8,6)$. Questions:

- Calculate B.
- ② Cipher the message using k = 3.
- Oecipher the message.
- Using the repeated nonce, decipher the ciphered message $(Y_{1,2} = (6, -3), Y_{2,2} = (2, 1))$

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 2 差 9 4 0 0

Solution

[1]

$$B = 7A = 2^3A - A = 2^2(4,3) - (3,3) =$$

= 2(8,7) + (3,-3) = (11,9) + (3,-3) = (11,4)

[2] Bob computes:

$$Y_1 = kA = 3(3,3) = 2(3,3) + (3,3) = (4,3) + (3,3) = (6,-3)$$

 $Y_2 = P_m + kB = (8,6) + 3(11,4) = (8,6) + (3,-3) + (11,4) = (4,3)$

[3] Alice deciphers:

$$P_m = Y_2 - aY_1 = (4,3) - 7(6,-3) = (4,3) + 8(6,3) + (6,-3) =$$

= $4(2,1) + (12,8) = (2,12) + (12,8) = (8,6)$

Giulia Mauri (DEIB) Exercises May 13, 2015 17 / 34

Solution

[4] We have

$$Y_{2,1} - P_{m,1} = kB = Y_{2,2} - P_{m,2}$$

 $P_{m,2} = Y_{2,2} - Y_{2,1} + P_{m,1}$
 $= (2,1) - (4,3) - (8,6) = (6,10)$

Giulia Mauri (DEIB) Exercises May 13, 2015 18 / 34

ECDHKE

Alice and Bob want to agree on a common key that they can use for exchanging data via a symmetric encryption scheme. One way to establish a secret key is the following method:

- Alice and Bob agree on public parameters: the curve E, over the finte field, the prime p, the basepoint P, and the points $A = N_A P$ and $B = N_B P$.
- ② While they keep secret the parameters: the integers N_A (Alice's), and N_B (Bob's).
- **3** Alice gets the key as follows: $k_A = B \cdot N_A$.
- **9** Bob gets the key as follows: $k_B = A \cdot N_B$. Notice that they have the same key, namely $k_A = k_B$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Exercise

Your task is to a compute a session key in the DHKE protocol based on elliptic curves. Your private key is a = 6. You receive Bob's public key B = (5,9). The elliptic curve being used is defined by

$$y^2 \equiv x^3 + x + 6 \bmod 11$$

Solution

$$k=aB=6(5,9)$$

1
$$B = (5,9)$$

1 $2B + B = 2(5,9) + (5,9) = (7,2)$
0 $3B + 3B = 2(7,2) = (2,7)$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - かくで

Exercise

Alice and Bob exchange a session key using the Diffie-Hellman protocol. They publish an elliptic curve $E: y^2 \equiv x^3 + 3x + 5 \pmod{11}$. This curve has N = 9 points. They also publish P = (1,3).

Alice sends the message A = aP = (0,7) and receives the message B = bP = (0,4).

- **1** Verify that P is a primitive generator.
- 2 Enumerate the points of the curve.
- Ompute b using the Baby Step, Giant Step algorithm.
- Compute the session key.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Solution

[1] The number of points $N=9=3^2$ is not prime. If P is primitive, it has order 9, which implies that $(9/3)P=3P\neq\infty$ Here we have:

$$2P = 2(1,3) = (10,10)$$

 $3P = 2P + P = (4,2)$

P is primitive.

Solution

[2]

X	$y^2 \equiv a$	(mod 11)	$a^{\frac{p-1}{2}}$	(mod 11)	$y \equiv a^{\frac{p+1}{4}}$	(mod 11)
0		5		1		±4
1		9		1		± 3
2		8		-1		_
3		8		-1		_
4		4		1		± 9
5		2		-1		_
6		8		-1		_
7		6		-1		_
8		2		-1		_
9		2		-1		_
10		1		1		± 1
∞		_		_		∞

Solution

The points are:

$$(0,4),(0,7),(1,3),(1,8),(4,2),(4,9),(10,1),(10,10),\infty$$

[3] We use the baby step, giant step algorithm. We choose $M = \lceil \sqrt{9} \rceil = 3$. We compute

$$-MP = 3(-P) = 3(1,8) = (4,9)$$

and build the table:

$$\begin{array}{c|c|c} i,j & iP & B-jMP=B+j(-MP) \\ \hline 0 & \infty & (0,4) \\ 1 & (1,3) & (0,4)+(4,9)=(1,3) \\ 2 & (10,10) & \cdots \\ 3 & (4,2) & \cdots \\ \hline \end{array}$$

Solution

We find out that $iP = Q - jMP \rightarrow P = B - 1 \cdot 3P$, therefore B = (1+3)P = 4P and b = 4.

[4] The session key is the point K = bA = 4(0,7) = (10,10).

Exercise

Consider the elliptic curve E:

$$E: y^2 \equiv x^3 + x + 1 \pmod{11}$$

where we choose the point P = (4,5). The curve has 14 points. Alice and Bob use the ECDHKE. Alice chooses the secret number a = 3 e receives from Bob the point B = bP = (2,0). At the end of the protocol, Alice and Bob have a secret, S, with coordinates (x_S, y_S) . From that point they obtain a secret key, k, computed as follows:

$$k = 2x_S + (y_S \bmod 2)$$

if $S = \infty$, then k = 22.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Giulia Mauri (DEIB) Exercises May 13, 2015 26 / 34

Exercise

- Find, if there exist, the points with coordinate x = 5 and x = 8. Use the square root formula.
- 2 Compute the order of P.
- Compute the point A sent by Alice.
- Compute the key at the end of the exchange.
- Using Pohlig-Hellman algorithm, compute b.
- Given the point B from Bob, how many keys is it possible to obtain? Specify which are they.

Solution

- 1 For x = 5, we have $y^2 = 10$. Since $10^5 \mod 11 = -1$, there aren't square roots.
 - For x = 8, we have $y^2 = 4$. Since $4^5 \mod 11 = 1$, there are two points with coordinate $y = 4^3 \mod 11 = \pm 2$.
- 2 The order of P could be 2, 7, 14.

$$2P = (6,5)$$

$$7P = (2,0)$$

So the order is 14.

- 3 A = aP = 3(4,5) = (1,6)
- 4 S = aB = 3(2,0) = (2,0) from that k = 4

Solution

$$5 O = 2 \cdot 7 = 14$$

$$y_i = O_i^{-1} \mod q_i^{e_i} \to y_1 = 7^{-1} \mod 2 = 1, \quad y_2 = 2^{-1} \mod 7 = 4$$
 $O_1B = a_1O_1P \to 7B = a_1 \cdot 7P \to (2,0) = a_1(2,0) \to a_1 = 1$
 $O_2B = a_2O_2P \to 2B = a_2 \cdot 2P \to \infty = a_2(6,5) \to a_2 = 0$
 $b = \sum a_iO_iy_i \mod O \to b = 1 \cdot 7 \cdot 1 + 0 \cdot 2 \cdot 4 \mod 14 = 7$

 $O_i = O/q_i^{e_i} \rightarrow O_1 = 14/2 = 7, \quad O_2 = 14/7 = 2$

6 The order of B is 2, so there are two possible keys.

ECIES

Alice wants to send a message m to Bob. First, Bob establishes his public key. He chooses an Elliptic Curve E over a finite field \mathcal{F}_q and a point A on E of large prime order N. He then chooses a secret integer s and computes B=sA. The public key is (q,E,N,A,B). The private key is s. The algorithm also needs two cryptographic hash functions, H_1 and H_2 , and a symmetric encryption function E_k that are publicly agreed upon.

To encrypt and send her message, Alice does the following:

- Downloads Bob's public key.
- **2** Chooses a random integer k with $1 \le k \le N 1$.
- **3** Computes R = kA and Z = kB.
- Writes the output of $H_1(R, Z)$ as $k_1 || k_2$, where k_1 and k_2 have specified lengths.
- **5** Computes $C = E_{k_1}(m)$ and $t = H_2(C, k_2)$.
- Sends (R, C, t) to Bob.

4 D > 4 D > 4 B > 4 B > B 9 Q P

ECIES

To decrypt, Bob does the following:

- Computes Z = sR, using his knowledge of the secret key s.
- ② Computes $H_1(R, Z)$ and writes the output as $k_1 || k_2$.
- **3** Computes $H_2(C, k_2)$. If it does not equal t, Bob stops and rejects the ciphertext. Otherwise, he continues.
- **3** Computes $m = D_{k_1}(C)$, where D_{k_1} is the decryption function for E_{k_1} .

Exercise

Alice uses the ECIES cryptosystem. She publishes the elliptic curve E:

$$E: y^2 = x^3 + 3x - 1 \pmod{23}$$

which has N=33 points, and the base point A=(2,6). Alice chooses the secret number a=4 and publishes the point B=aA=(14,5).

To compute the session key, Bob chooses a nonce k and computes R = kA = (21, 13) and S = kB. The point S si the session key. Bob sends to Alice the point R and the message m, ciphered with the session key.

- Compute the curve points corresponding to x = 4, 9, 16.
- Compute the order of A.
- Write the formulas used by Alice to compute the session key and then find it.
- Compute k by using PH.

Solution

[1]

[2] The order of A could be 3, 11 or 33.

Thus, 3(2,6) = (8,12), 11(2,6) = (1,7). Then, the order is 33.

[3]
$$S = kB = kaA = aR = 4(21, 13) = (20, 3)$$
.

Giulia Mauri (DEIB) Exercises May 13, 2015 33 / 34

Solution

$$[4] \ O = 3 \cdot 11 = 33,$$

$$O_i = O/q_i^{e_i} \to O_1 = 33/3 = 11, \quad O_2 = 33/11 = 3$$

$$y_i = O_i^{-1} \bmod q_i^{e_i} \to y_1 = 11^{-1} \bmod 3 = 2, \quad y_2 = 3^{-1} \bmod 11 = 4$$

$$O_1S = a_1O_1B \to 11S = a_1 \cdot 11B \to \infty = a_1(1,7) \to a_1 = 0$$

$$O_2S = a_2O_2B \to 3S = a_2 \cdot 3B \to (21,13) = a_2(21,13) \to a_2 = 1$$

$$k = \sum_i a_iO_iy_i \bmod O \to k = 0 \cdot 11 \cdot 2 + 1 \cdot 3 \cdot 4 \bmod 33 = 12$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Giulia Mauri (DEIB) Exercises May 13, 2015 34 / 34