SEMESTER 6 CIVIL ENGINEERING

SEMESTER S6

QUANTITY SURVEYING AND VALUATION

Course Code	PCCET601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCEL218	Course Type	Theory

Course Objectives:

- 1. To provide a structured and comprehensive framework for the study of two interconnected areas of expertise, Estimation and valuation.
- **2.** To equips students to analyse the rate of various items of work with reference to the standard data and schedule of rate.
- **3.** This course develops the capability of students to prepare detailed estimates of various items of work related to civil engineering construction and also preparation of the valuation of land and buildings.

Module No.	Syllabus Description			
1	Introduction- Quantity Surveying- Basic principles, Role/responsibility of Quantity surveyor at various stages of construction Estimate-Details required, Type of estimate, purposes. Contingencies, Work-charge establishment, Tools and Plant, centage charge, Day work, Prime cost, Provisional sum & provisional Quantity, Overhead charges, Cost index, Contract documents (Brief description only) Bill of Quantity -Typical format-use Item of works- Identify various item of work from the drawings-units of measurement of various materials and works (focus may give to RCC residential building) General rule & method of measurement with reference to Indian Standard Specifications-IS1200.	9		

2	Introduction to the use of CPWD schedule of rates as per latest DSR and Analysis of rate as per latest DAR Specifications-General specification of all items of a residential building. Detailed specifications (CPWD specifications) of major item of work like Earth work excavation in foundation, masonry, Reinforced cement concrete, finishing of building work Analysis of rates for Earth work in excavation for foundation, mortars, reinforced cement concrete Works, finishing work, masonry work, stone works, flooring with reference to latest DSR and latest DAR (Data should be given).	9
3	Detailed Estimate- Preparation of detailed measurement using Centre line method & Short wall long wall (separate wall) method for RCC single-storied building (Flat roof) including stair cabin- Residential/office/school building. BOQ preparation of a single-storied RCC building work. Material quantity calculation of the items of work (Rubble, Brick work, Concrete work, Plastering) in detailed estimate prepared for building work. (Data for unit quantity should be provided from DAR) Bar Bending Schedule- Preparation of BBS of RCC beams, slabs, Column footings, Retaining wall. Road estimation-Estimation of earthwork from longitudinal section-metaled road. Estimation of sanitary and water supply work -Water tank, Septic tank, Manhole (No Detailed estimate needed- concept of item of work, its general specification and unit of measurement). Introduction to software tools for quantity surveying	9
4	Valuation – purpose, factor affecting, introduction to terms-Value, Cost, Price, kinds of values Income- Gross income, net income, outgoings, annuity, sinking fund, Year's purchase, Depreciation, obsolescence -Free hold and leasehold properties. Methods of calculating depreciation – straight line method – constant percentage method, sinking fund method and quantity survey method. Methods of valuation – rental method, direct comparison of capital cost, valuation based on profit, depreciation method. Valuation of land (Brief description only)	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions out of three questions from Module III and Module IV.

Part A	Part B	Total
• 2 Questions from each	• Three questions will be given from Module-III, out	
module I & II	of which 2 questions should be answered. (2 x 20=40	
• Total of 4 Questions, each	Marks)	
carrying 3 marks	• Three questions will be given from Module-IV , out	60
	of which 2 questions should be answered (2 x $4 = 8$	
(4 x 3 = 12 marks)	Marks)	
	(40+8 =48 Marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Define basic terms related to estimation, quantity surveying and contract document	K1
CO2	Interpret the item of work from drawings and explain its general specification and unit of measurement.	K2
CO3	Make use of given data from CPWD DAR/DSR for calculating the unit rate of different items of work associated with building construction.	К3
CO4	Prepare detailed measurements (including BBS) and BoQ of various work like buildings, earthwork for road, sanitary and water supply work	К3
CO5	Explain various basic terms related to the valuation of land and building.	K1
CO6	Prepare valuation of buildings using different methods of valuation.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	2	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Estimation and costing in civil engineering	B. N. Dutta	UBS publishers	28 th Revised Edition, 2020			
2	Estimation Costing and Valuation	Rangwala	Charotar publishing house Pvt. Ltd	2017			
3	Estimation and quantity surveying,	Dr. S. Seetha Raman & M. Chinna swami,	Anuradha publications Chennai.	2015			
4	Estimating, Costing, Specification and valuation	M. Chakraborthy	By Author	2006			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Civil Engineering Estimation and Costing	V N Vazirani& S P Chandola	Khanna Publishers	1968			
2	Methods of measurement of building & civil engineering works	IS 1200-1968	Bureau of Indian Standards, New Delhi	1968			
3	CPWD DAR and DSR		CPWD	2018			
4	CPWD Specifications Vol1 & 2		CPWD	2019			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	Building cost estimation simplified - Course (swayam2.ac.in)				

SEMESTER S6

DESIGN OF STEEL STRUCTURES

Course Code	PCCET602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET501	Course Type	Theory

Course Objectives:

1. The course covers the basic ideas needed to design structural steel members. The students are exposed to many areas related to steel structural design and they learn how to identify and address real-world practical issues.

Module No.	Syllabus Description	Contact Hours
1	Introduction to steel and steel structures, properties of steel, structural steel sections. Introduction to design loads and load combinations, limit state design concepts. Type of Fasteners- Bolts and welds. Types of simple bolted and welded connections-Relative advantages and disadvantages-Modes of failure of bolted connection-Design of bearing type connection and friction connection-Prying forces- Design of bracket connection.	9
2	Welds-specifications and effective area of welds-Fillet and butt connections- Axially loaded connections for plate and angle truss members- Design of bracket connections. Tension Members - Types of sections -Modes of failure-Slenderness ratio- Net area- Concepts of Shear Lag- Design of tension Members-Connections in tension members - Use of lug angles	9
3	Types of compression members and sections–Behaviour and types of failures– Effective Length-Slenderness ratio–Column formula and column curves- Design of solid and built-up columns - Design of Built up laced and battened type	9

	columns . Design of column bases - Slab base and Gusset base	
4	Types of beam sections- Flexural strength and lateral stability of beams- Design of laterally supported and laterally unsupported beams. Design of roof trusses-types-Design loads and load combination- Assessment of wind loads- Design of I section purlin	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

		Assignment/	Internal	Internal	
	Attendance	ance	Examination-1	Examination- 2	Total
		Microproject	(Written)	(Written)	
I	5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the behaviour and properties of structural steel members to resist various structural forces and actions and apply the relevant codes of practice	K2
CO2	Analyse the behaviour of structural steel members and undertake design at both serviceability and ultimate limit states	К3
CO3	Explain the theoretical and practical aspects of design of composite steel structure with design aspects	К3
CO4	Apply a diverse knowledge of design of steel engineering practices applied to real life problems.	К3
CO5	Demonstrate experience in the implementation of design of structures on engineering concepts which are applied in field of Structural Engineering	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	2	3	2	-	-	-	-	-	-	-	-	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-
CO4	2	3	3	-	-	-	-	-	-	-	-	-
CO5	2	3	3	-	-	-	-	-	-	-	-	-

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Steel structures: Design and Practice	N Subramanian	Oxford Publication	2010				
2	Design of Steel structures	Duggal S.K.	Tata McGraw-Hill	2017				
3	Design of Steel structures	A. S. Arya, J.L. Ajmani and Awadesh Kumar	Nem Chand and Bros	2014				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Design of Steel Structures	P. Dayaratnam	Wheeler Publishing	1998				
2	Steel design	William T Segui	Cenage Learning	2017				
3	Design of Steel Structures- Vol I and Vol II	Ramachandra S. and Virendra Gehlot	Standard Book House	2011				
4	IS 800-2007, Code of practice for structural steel design		BIS	2007				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/105/105/105105162/					
2	https://archive.nptel.ac.in/courses/105/105/105105162/					
3	https://archive.nptel.ac.in/courses/105/105/105105162/					
4	https://archive.nptel.ac.in/courses/105/105/105105162/					

SEMESTER S6
ADVANCED DESIGN OF CONCRETE STRUCTURES

Course Code	PECET631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET404 ,PCCET602	Course Type	Theory

Course Objectives:

- 1. Intends to brush-up the fundamentals of design of reinforced concrete and steel structures by limit state design and review the usage of relevant codes
- **2.** Make students competent by covering contemporary engineering practices in the structural design
- **3.** Develop the mixed qualities to students in structural engineering point of view independently handling the design problems and to work in a group for team works

Module No.	Syllabus Description				
1	Design of continuous beams—Redistribution of moments- Detailing Reinforced concrete portal frames: Introduction - Analysis and design of rectangular portal frames for vertical loading Approximate methods for structural Analysis and design for vertical loads, Pattern loading, lateral loads	9			
2	Retaining Structures- Introduction- Functions and types of retaining walls- Structural analysis and design of RCC cantilever type of retaining wall for various types of backfill conditions. Counterfort retaining wall- design principles of components and detailing (design not required) Introduction to Strut and Tie Method; Design of Deep beams, Corbels and Pile cap	9			
3	Introduction to design of water tanks-design philosophy and requirements-joints- IS code recommendations- Design of rectangular circular water tanks using IS code coefficients (IS 3370- 2009). Yield line method of analysis of slabs – Characteristic features of yield lines– analysis by virtual work method – Yield line analysis by equilibrium method.	9			

	Flat slabs – Introduction–components–IS Code recommendations– IS code method of design of interior panel (with and without column drop).	
4	Review of the codes –IS 811(1987), IS 801(1975), SP 6-5(1980) Light gauge sections – Types of cross sections – Local buckling and post buckling – Design of compression and Tension members – Design of flexural member - Types of connections and their design	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	30	10	10	40	

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

		Bloom's
	Course Outcome	Knowledge
		Level (KL)
	Design and detail cantilever retaining wall and understand the design	
CO1	principles of Counter fort retaining wall. And Design and detail deep	K2, K3
	beams and corbels	
CO2	Design and detail water tanks as per IS code provisions	К3
CO3	Explain Concept of yield line theory and design of different slab using	K2, K3
	yield line theory Design of Flat slabs using IS code provisions.	112, 113
CO4	Analyse and design Cold form light gauge section.	К3
CO5	Use of latest industry standard formula, table, design aids used for	K2, K3
603	design of beams and portal frames under pattern loading.	K2, K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	1	-	-	-	1	-	-
CO2	3	1	1	-	-	-	-	-	-	1	-	-
CO3	3	2	3	-	-	-	-	-	-	1	-	-
CO4	3	2	3	-	-	-	-	-	-	1	-	-
CO5	1	3	2	-	-	-	-	2	2	1	-	1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	of the Book Name of the Author/s		Edition and Year		
1	RCC Designs	Punmia, B. C. and Jain	Laxmi Publications	10 th Ed		
		A.K	Ltd.	2015		
2	Design of Steel Structures Vol.	Ramchandra S and	Standard Book House,	12 th Ed		
	Ι	Virendra Gehlot	2007	2018		
3	Advanced Reinforced Concrete	N. Krishna Raju	CBS Publishers &	3rd Ed		
	Design (IS: 456-2000)		Distributors	2016		

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Reinforced Concrete Design	Pillai S.U & Menon D	Tata McGraw Hill	4th Edition
			Book Co.	2021
2	Advanced Reinforced Concrete	Varghese P.C	Prentice Hall of India	2 nd Revised
	Design		Pvt Ltd	Edition
				2010
3	Relevant IS codes (IS 456, IS			
	875, IS 1893, IS 13920, SP 16,			
	SP 34, IS 801)			
4	Design of Steel Structures	N. Subramanian	Oxford University	2 nd Edition
			Press	2016

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/					
2	https://archive.nptel.ac.in/courses/					
3	https://archive.nptel.ac.in/courses/					
4	https://archive.nptel.ac.in/courses/					

SEMESTER S6

IRRIGATION AND DRAINAGE ENGINEERING

Course Code	PECET632	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the concepts of irrigation water scheduling, distribution and system performance.
- **2.** To familiarize the concepts of surface and sub-surface systems for drainage of irrigation lands.
- 3. To study the principles behind the reclamation of saline soils

Module No.	Syllabus Description		
1	Surface Irrigation methods: Classification – Border irrigation: design parameters, evaluation and ideal wetting pattern – Furrow irrigation: design parameters, types of furrows, evaluation, ideal wetting pattern – Basin irrigation: types of basins, ideal wetting pattern, shapes and size – Efficiency of surface irrigation methods. Crop Water Requirements: Infiltration and movement of water in soil—Soil-water-plant relationship –Water requirement of crops – Evapo transpiration (ET) and consumptive use - Effective rainfall – Irrigation requirement, Soil water balance, Yield response to water, Production functions Irrigation Water Distribution: Canal network and canal regulation – Methods of distribution: supply based and demand based – Delivery of water	9	

	to farms -Measurement of water - Scheduling of irrigation - Criteria for	
	scheduling, constraints - Frequency and	
	interval of irrigation.	
	Irrigation System Performance Indicators: Systems classification -	
	Rehabilitation and modernization - Performance indicators - Improving	
	system performance –constraints.	
	Land Drainage systems: necessity-types-surfaces and subsurface	
2	drainage-design considerations.	9
	SoilWater Zone: Description, Flow through soil water zone-Physical	9
	properties of soil-hydraulic conductivity-saturated thickness-drainable pore	
	space-storativity, hydraulic resistance, leakage factor-Ground water data-	
	concepts of ground water hydrograph, ground water maps, Isobath map, water	
	table fluctuation maps etc.	
	Drainage studies-continuity equation,	
	Laplace equation, relaxation method of solution-Typical boundary conditions	
	like impervious layer, plane of symmetry, free water surface, water at rest or	
	slowly moving water, seepage surface- Dupit Forchheimer Theory steady low	
	above an impervious horizontal boundary-Dupits equation-water table subject	
	to recharge.	
3	Flow into open drains-steady state equations-Hooghoudt equation,	9
	Principles, applications for design use of nomographs for homogeneous and	
	layered soils- Earnst equation, concept of horizontal vertical and radial flow,	
	application to layered soils.	
	Unsteady state drainage equations-Glover Dum equation, application,	
	concept of Kraijenhoff Vande Leur Mass land equation, application- analysis	
	for constant recharge, intermittent recharge cases.	
	Layout of open drainage systems: types-Field drains, design considerations	
	of ditch drains- Mole drains, design considerations, suitability- Sub-surface	
	drainage systems- Pipe drainage systems design for uniform and non-uniform	
	flow conditions-transport and dewatering situations. Patterns of drainage	
4	system- Drainage criteria formulation for off season drainage, crop season	9
_	drainage, salt drainage- use of steady state and unsteady state approaches in	,
	formulation criteria for irrigated areaincorporation of intentional and	
	unavoidable losses	
	Salinity and drainage- cause of salinity, salt balance equation, leaching	
	efficiency, salt equilibrium equation and leaching requirement – salt storage	

equation – expressing equations in electrical conductivity terms-Design of a	
drainage system for an irrigated area based on crop water requirement and	
leaching requirement- Dynamic equilibrium concept.	
Gravity outlet structures- types, location.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome						
CO1	Design surface drainage systems for drainage of agricultural lands	К3					
CO2	Understand the concepts of systems used for subsurface drainage of water-logged lands	K2					
CO3	Assess the leaching requirement of salt affected soils	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Irrigation Theory and Practice	Michel A M	Vikas Publishing House	2008							
2	Irrigation Water Management Principles and Practices	Majumdar D P	Prentice Hall of India	2000							

Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Drainage Principles and Applications, Volumes I to IV	H. P. Ritzema	International Institute for Land Reclamation and Improvement (ILRI)	1979						
2	Land Drainage Principles: Methods and Applications	Bhattacharya A K and Michael A M	Konark Publishers Pvt. Ltd.	2003						

	Video Links (NPTEL, SWAYAM)						
Module	Link ID						
1	https://archive.nptel.ac.in/courses/126/105/126105010/						
2	https://archive.nptel.ac.in/courses/126/105/126105010/						
3	https://archive.nptel.ac.in/courses/126/105/126105010/						
4	https://archive.nptel.ac.in/courses/126/105/126105010/						

SEMESTER S6
GROUND IMPROVEMENT TECHNIQUES

Course Code	PECET633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET 504	Course Type	Theory

Course Objectives:

- 1. To introduce engineering properties of soft, weak and compressible deposits, principles of treatment for granular and cohesive soils and various stabilization techniques.
- 2. To understand the need of ground improvement techniques

Module	Syllabus Description	Contact		
No.	Synabus Description			
	Introduction Need for engineered ground improvement, classification of ground modification techniques; suitability, feasibility and desirability of			
1	ground improvement technique; objectives of improving soil. Emerging trends in ground improvement-Different materials used for ground improvement and its property	9		
	Drainage and dewatering : - well point system, shallow & deep well system, vacuum method, electro osmosis method. Comparison between methods			
	Compaction -Introduction, compaction mechanics, Field procedure, surface compaction, Dynamic Compaction, selection of field compaction procedures, compaction quality control.			
2	Drainage Methods- Introduction, Seepage, filter requirements, ground water and seepage control, methods of dewatering systems, Design of dewatering system including pipe line effects of dewatering. Drains, different types of drains. Pre-compression and Vertical Drains: Importance, Vertical drains, Sand	9		
	drains, Drainage of slopes, Electro kinetic dewatering, Preloading.			

3	Chemical Modification- Definition, cement stabilization, sandwich technique, admixtures. Hydration – effect of cement stabilization on permeability, Swelling and shrinkage and strength and deformation characteristics. Criteria for cement stabilization. Stabilization using Fly ash. Lime stabilization – suitability, process, criteria for lime stabilization. Bitumen, tar or asphalt in stabilization. Vibration Methods: Introduction, Vibro compaction – blasting, vibratory probe, Vibro displacement compaction – displacement piles, vibro flotation, sand compaction piles, stone columns, heavy tamping	9
4	Grouting And Injection: Introduction, Effect of grouting. Chemicals and materials used. Types of grouting. Grouting procedure, Applications of grouting. Reinforced earth: - mechanism- types of reinforcing elements-reinforcement-soil interaction – applications- reinforced soil structures with vertical faces Geosynthetics – types of geosynthetics – functions of geosynthetics – properties of geosynthetics. Soil nailing & Micro pile-basic concept-construction sequence-areas of application-design considerations-merit and demerit Earth Reinforcement-Reinforcement materials-reinforced earth wall-design considerations-construction procedure	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A ssignment/	Internal	Internal		
Attendance	Assignment/ Microproject	Examination-1 (Written)	Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Classify the different ground improvement techniques	K1, K2
CO2	Outline the basic concept/ design aspects of various ground improvement methods	K2, K3
CO3	Understand the methods of stabilisation	K2, K3
CO4	Choose different application of geosynthetics and soil stabilisation in Ground improvement	К3
CO5	Understand the methods and properties of reinforced soil	K2, K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-

Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year	
1	Ground Improvement Techniques	P. Purushothama Raj	Laxmi Publications (P) Ltd.	1 st & 1999	
2	Engineering Principles of Ground Modification	Manfred. R. Hausmann	McGraw Hill	1 st & 1989	
3	Reinforced soil and its engineering applications	Swami Saran	I. K. International Pvt Ltd	1 st & 2010	

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Construction and Geotechnical Method in Foundation Engineering	Robert M. Koerner	McGraw Hill	1 st & 1984				
2	Ground Improvement Techniques	Nihar Ranjan Patra	Vikas Publishing house	1st & 2012				
3	Current Practices in Geotechnical Engineering VolI	Alam Singh and Joshi	International Book Traders	1 st & 1985				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc23_ce78/preview						
2	https://onlinecourses.nptel.ac.in/noc23_ce78/preview						
3	https://onlinecourses.nptel.ac.in/noc23_ce78/preview						
4	https://onlinecourses.nptel.ac.in/noc23_ce78/preview						

SEMESTER S6

REPAIR AND REHABILITATION OF STRUCTURES

Course Code	PECET634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCET404	Course Type	Theory

Course Objectives:

- 1. To understand the basic idea about the need of maintenance, repair, rehabilitation and strengthening measures of building structures
- 2. To identify various deterioration mechanisms or damage mechanisms in buildings
- **3.** To study various non-destructive techniques and semi destructive techniques for the damage diagnosis and assessment of a structure at the site
- **4.** To be aware of several practices for maintenance and rehabilitation like surface repair, corrosion protection, structural strengthening etc.
- **5.** To suggest evaluation and repair/maintenance methods for extending the service life of buildings
- **6.** To recognize various demolition methods

Module No.	Syllabus Description						
1	Introduction – Maintenance, importance of maintenance, routine and preventive maintenance, rehabilitation, repair, retrofit and strengthening, need for rehabilitation of structures. Cracks in R.C. buildings - Various cracks in R.C. structures, causes and effects. Damages to masonry structures - Various damages to masonry structures and causes.	9					

	Damage diagnosis and assessment - Various aspects of Inspection,				
	Assessment procedure for evaluating a damaged structure, Visual inspection				
	Non-Destructive Testing of structures: Rebound hammer, Ultra sonic				
	pulse velocity.				
	Semi destructive testing of structures: Probe test, Pull out test, Chloride				
	penetration test, Carbonation, Carbonation depth testing, Corrosion activity				
	measurement, Core test.				
	Strength and Durability of Concrete structures - Quality assurance for				
2	concrete – Strength, Durability and Thermal properties of concrete. Effects				
	due to climate, temperature, Sustained elevated temperature, Corrosion -	9			
	effects of cover thickness.				
	Substrate preparation - Importance of substrate/ surface preparation,				
	General surface preparation methods and procedure, reinforcing steel				
	cleaning.				
	Repair materials -Various repair materials, Criteria for material selection,				
	Methodology of Selection. Health and safety precautions for handling and				
	applications of repair materials.				
	Special mortars and concretes- Polymer concrete, Sulphur infiltrated				
	concrete, Fibre reinforced concrete, High strength concrete, High				
	performance concrete, Vacuum concrete, Self-compacting concrete, Self-				
3	healing concrete, Geopolymer concrete, Reactive powder concrete, Concrete	9			
	made with industrial wastes, Polymer Concrete and Mortar, Quick setting				
	compounds, Gunite and Shot Crete, Expansive cement, Ferro cement,				
	Concrete chemicals.				
	Grouting materials - Gas forming grouts, Salfoaluminate grouts, Polymer				
	grouts, Acrylate and Urethane grouts. Protective coatings - Protective coatings				
	for Concrete and Steel. FRP sheets				
	Crack repair - Various methods of crack repair, Grouting, Routing and				
	sealing, Stitching, Dry packing, Autogenous healing, Overlays, Repair to				
	active cracks, Repair to dormant cracks.				
	Corrosion of embedded steel in concrete – Corrosion of embedded steel in				
4	concrete, Mechanism, Stages of corrosion damage. Repair of various				
	corrosion damages of structural elements by Cathodic protection.	9			
	Jacketing - Column jacketing, Beam jacketing, Beam-Column joint				
	jacketing, Reinforced concrete jacketing, Steel jacketing, FRP jacketing.				
	Strengthening of Structural elements due to fire, Leakage, earthquake-				

Epoxy injection, Shoring, Underpinning.	
Demolition Techniques - Non-explosive and Explosive demolition.	
Engineered demolition techniques for dilapidated structures - Wrecking Ball	
Method, Concrete Sawing Method, Top down method, Hydraulic crusher,	
Implosion by delayed detonation technique.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

Part A	Part B	
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the various distress and damages to concrete and masonry structures	K2
CO2	Examine the damages of the structure using required tests with required surface preparations.	К3
CO3	Understand the types and properties of repair materials and apply various techniques for repairing damaged and corroded structures.	К3
CO4	Proposing wholesome solutions for maintenance /rehabilitation and applying methodologies for repairing and demolishing structures.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	-	-	-	-
CO2	2	2	1	-	-	-	-	-	-	-	-	-
CO3	2	2	1	1	-	-	-	-	-	-	-	-
CO4	2	2	3	2	-	-	-	-	-	-	-	-

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year					
1	Concrete repair and maintenance	Peter. H. Emmons	Galgotia publications Pvt. Ltd.	2001					
2	Repair and protection of concrete structures	Noel P. Mailvaganam	CRC Press.	1991					
3	Earthquake resistant design of structures	Pankaj Agarwal, Manish Shrikande	РНІ	2006					
4	Concrete Structures, Materials, Maintenance and Repair	Denison Campbell, Allen and Harold Roper	Longman Scientific and Technical	1991					

Reference Books					
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year	
1	Failures and repair of concrete structures	S.Champion,	John Wiley and Sons	1961	
2	Diagnosis and treatment of structures in distress	R.N.Raikar	R & D Centre of Structural Designers and Consultants Pvt.Ltd, Mumbai	1994	
3	Handbook on repair and rehabilitation of RCC buildings	CPWD	Government of India	2011	
4	Handbook on seismic retrofit of buildings	A. Chakrabarti et.al.	Narosa Publishing House	2010	

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://youtu.be/NdLwHk-A0hc				
2	https://youtu.be/sjyYppF-uKQ				
3	https://youtu.be/P-PFYAIg-3E				
4	https://youtu.be/geYZYg8csYQ				

SEMESTER S6

SOLID AND HAZARDOUS WASTE MANAGEMENT

Course Code	PECET636	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To create an awareness on different types of solid waste generated, methods of collection, processing and disposal.
- **2.** To study about classification, handling and storage, collection, transportation, treatment of hazardous waste

Module	Syllabus Description	Contact
No.		
1	Introduction Wastes-Sources and characteristics - Categories of wastes- Municipal, Industrial, Bio-medical, Universal, Construction and demolition, Radioactive, e wastes, Agricultural waste. Functional elements of solid waste management	9
2	Functional Elements Characteristics of solid waste, Proximate and ultimate analysis, Generation and factors, Storage of solid waste- factors to be considered Collection systems, Routing, Need for transfer operation. Processing techniques- Mechanical volume and size reduction, chemical volume reduction, component separation Resource conservation and recovery.	9
3	Disposal Of Solid Waste Biochemical methods – Sanitary landfills, composting, anaerobic digesters Sanitary landfills- parts and their functions, design considerations, methods of landfilling advantages and disadvantages, Composting- Stages in aerobic composting, types of composting-Indore and Bangalore process Anaerobic digesters – Stages in anaerobic digestion, Parts of a digester	9

	Thermo chemical methods -incineration, gasification and pyrolysis, types of				
	incinerators -parts of an incinerator-incinerator effluent gas and composition,				
	advantages and disadvantages				
	Hazardous Waste				
4	Hazardous waste –Definition and Identification, Classification, Handling and				
	Storage, Collection, Transportation Treatment and remedial actions,	9			
	Stabilization and Solidification, Thermal methods, Secure Landfill				

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1	Examination- 2	Total
		(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Classify the various categories of solid waste generated from diverse sources and to outline the issues and scopes associated which each type.	K2
CO2	CO2 Illustrate the various aspects of waste management for solid waste.	
СОЗ	Analyse the various options of waste disposal based on the nature of waste, required end product.	К3
CO4	Illustrate the classification, handling and storage, collection, transportation, treatment for hazardous waste.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3	1	2	3	2
CO2	3	2	1	2	1	3	3	3	1	2	3	2
CO3	3	3	2	2	2	3	3	3	1	2	3	2
CO4	3	2	1	2	1	3	3	3	1	2	3	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Hand book of solid waste management	George Tchobanoglous, Frank Kreith	Mc Graw hill publications, New York.	2002		
2	Solid Waste Engineering	William A Worrell, Aarne Vesilind,	Cengage learning	2016		
3	Environmental Engineering	Howard S Peavy, Donald R Rowe, George Tchobanoglous	Mc Graw hill Education	Edition 7, 1985		

	Reference Books					
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year		
1	Waste management Practices	John Pichtel	Taylor& Francis publishers	2015		
2	Introduction to Environmental Engineering	David A. Cornwell and Mackenzie L. Davis	Mc Graw Hill International Edition	Edition 4, 2013		
3	Environmental Science (Earth as a living plant)	Daniel B. Botkin and Edward A. Keller	John Wiley & Sons Inc.	IV Edition, 2003		
4	Hand Book of Environmental Engineering	Robert A. Corbitt	Mc Graw hill publishing Company	1990		

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://nptel.ac.in/courses/105103205			
2	https://nptel.ac.in/courses/105103205			
3	https://nptel.ac.in/courses/105103205			
4	https://nptel.ac.in/courses/105106056			

SEMESTER S6
TRAFFIC ENGINEERING AND MANAGEMENT

Course Code	PECET637	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502	Course Type	Theory

Course Objectives:

- 1. Impart in-depth knowledge pertinent to traffic flow theory, traffic management measures, capacity analysis and road safety
- 2. Enable designing of road intersections and traffic signals

Module	Syllabus Description	
No.		
1	Fundamental parameters- speed, density, volume, travel time, headway, spacing, time-space diagram, time mean speed, space mean speed and their relation. Fundamental diagrams of traffic flow. Single Regime models - Greenshields model, Greenberg logarithmic model. Multi-Regime models - Two and three regime linear models. Need and scope of traffic regulations- Motor Vehicle Act - Regulation of speed- Regulation of vehicles - Regulations concerning driver- General rules concerning traffic- parking regulations- Enforcement of regulations.	9
2	Scope of traffic management measures – restrictions to turning movements – one-way streets – tidal flow operations-Closing side streets – Exclusive bus lanes. Intersections: At-grade intersections- basic forms- conflict points -visibility triangle- design principles- Channelization. Grade separated intersection: Grade separated intersections without interchange, and with interchange- Three leg interchange, Four leg interchange and multileg interchange. Traffic	9

	Control Measures - Traffic Signs, Road Markings, Traffic control aids.	
	General awareness only.	
	Capacity and Level of service (LOS): Concept- Base capacity, Adjusted	
	capacity, LOS definition, Factors Affecting Capacity and LOS, Homogeneous	
	and heterogeneous traffic conditions- vehicle types - Concept of PCU.	
3	Capacity and LOS analysis -Single lane, Intermediate lane and two lane	9
	interurban roads- Base capacity and adjustment factors- Indo HCM (2017)	9
	Approach. Capacity and LOS analysis of Urban roads - Base conditions -	
	Adjustment factors- Indo HCM (2017) approach. Roundabouts- Geometric	
	layout, types- design elements.	
	Traffic Signals - Warrants- pre-timed and traffic actuated. Design of signal	
	timing at isolated intersections- Phase design- optimum cycle time (Webster's	
	approach), green splitting-pedestrian phase -phase diagrams, timing diagram.	
4	Traffic Safety: Road Safety Situation in India, Causes of road accidents -	
4	influence of road, vehicle, driver and environmental factors - Pedestrian	9
	Safety, Collection and statistical analysis of accident data, Collision and	
	condition diagram. Road safety audit- concept and need- organizations	
	involved-stages of road safety audit (brief description only)	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Att	tendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
	5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the relationship among various traffic stream variables.	K2, K3
CO2	Apply traffic management measures and regulations so as to solve issues related to traffic flow in road network.	K2, K3
CO3	Identify the need for intersection control and design of various types.	K2, K3
CO4	Explain the concept of capacity and LOS and its estimation for various traffic facilities.	K2, K3
CO5	Analyse causes of road accidents and suggest preventive measures.	K2, K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	3	-	-	-	-	-	-
CO3	3	2	-	2	-	2	-	-	-	-	-	2
CO4	3	2	3	2	-	2	3	-	-	-	-	2
CO5	3	2	2	3	-	3	-	-	-	-	-	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Traffic Engineering and Transport planning	Kadiyali L.R.	Khanna Publishers	2011		
2	Highway Engineering	Khanna S.K, Justo C.E.G. and A. Veeraragavan	Nem Chand & Bro	10 th , 2018		
3	Transport planning and Traffic Engineering,	CAO Flaherty	Elsevier	2006		
4	Traffic Engineering	Roess, R. R., McShane W R & Prassas E S	Prentice Hall of India	4 th , 2010		

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Traffic Engineering	Pignataro L. J	Prentice Hall of India	1973
2	Transportation Engineering: An Introduction	C. J. Khisty and B. K. Lall	Prentice Hall of India	2002
3	Principles of Transportation Engineering	Chakroborty P. and Das A.	Prentice Hall of India	2003
4	Traffic Flow Fundamentals	A. D. May	Prentice Hall of India	1990
5	Highway Capacity Manual	-	Transportation Research Board, USA	2010
6	Indian Highway Capacity Manual (Indo-HCM)	-	CSIR, New Delhi	2017

	Video Links (NPTEL, SWAYAM)				
Module	Link ID				
No					
1	https://archive.nptel.ac.in/courses/105/105/105105215/				
2	https://archive.nptel.ac.in/courses/105/105/105105215/				
3	https://archive.nptel.ac.in/courses/105/105/105105215/				
4	https://archive.nptel.ac.in/courses/105/105/105105215/				

ADVANCED FOUNDATION ENGINEERING

Course Code	PECET635	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET402 PBCET504	Course Type	Theory

Course Objectives:

- 1. To impart the students a comprehensive understanding of foundation design concept
- **2.** To enable students to acquire proper knowledge for performing the design and analysis of foundation in real life situation

Module	Syllabus Description	Contact
No.	·	Hours
1	Bearing capacity of shallow foundations-Review of technology-IS code formula for safe bearing capacity of shallow foundation. Numerical problems. Footings subjected to moments-effective width concept-Numerical problems. Allowable bearing pressure from N Value-Teng's equations for safe bearing capacity of strip, square and circular footings, Safe bearing pressure for a permissible settlement. Numerical problem- Footings on layered soil concept with Explanation.	9
2	Deep foundations- Geotechnical Design of Piles from SPT and CPT -values- number and spacing-Numerical Problems-Settlement of pile groups in clay- equivalent raft concept-Numerical problem. Settlement of pile groups in sand- Skempton's method-Meyerhof's Method-Numerical problem. Uplift capacity of single piles and group of piles in clay -Numerical problems.	9
3	Under reamed piles-ultimate load carrying capacity in sand and clay-design considerations as per IS. IS formula-single and double bulb -Numerical	9

		problems. Drilled piers (straight shafted and belled) in clay- Design	
		Considerations- Load Transfer Mechanism. Vertical Bearing Capacity and	
		uplift capacity of belled pier -	
		Numerical problems. Types of Sheet Pile Walls-Cantilever Sheet Pile Walls -	
		Cantilever sheet pile walls with cohesion less backfill-deflection diagram-	
		depth of embedment. Cantilever sheet pile walls with cohesive backfill-depth	
		of embedment. Numerical problem- Anchored sheet pile walls-free earth	
		support and fixed earth support analysis (concept only)-Rowe moment	
		reduction factor	
Ì		Behavior of vertical piles under lateral loading – Failure mechanisms of short	
		piles in cohesive and granular soils for restrained and unrestrained conditions,	
		given by (Broms). Failure mechanisms of long piles in sand and clay both free	
		headed and fixed headed given by Broms-Empirical Methods to Determine	
		Lateral Strength of Piles-IS 2911 and Brom's method. IS2911 method-concept	
		and assumptions made- Criteria for	
	4	classification of piles into short rigid piles or long elastic piles: Lateral load	0
	4	test on vertical piles. Details of Broms Method- Chart for estimating the	9
		resistance of short and long piles in clayey soils. Chart for estimating the	
		lateral deflection at ground level for piles in Clayey soils under working loads	
		given by Broms. Chart for estimating the ultimate lateral resistance of short	
		and long piles in sandy soils and Chart for estimating the lateral deflection at	
		ground level for piles in Clayey soils under working loads given by Broms.	
		Numerical problems using Brom's charts alone.	
ı			1

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment

Students should Identify a real word requirement for a special foundation. Design and develop detailed drawing of it. Finally, a complete file with documents including basic requirements, soil exploration data, design specification, design procedure, drawings and concluding remarks.

Criteria for evaluation:

1. Problem Definition (K4 - 4 points)

a. Clearly defines the requirements and constrains.

2. Problem Analysis (K4 - 4 points)

a. Compare and justify the proposed schemes with evidence and logical reasoning.

3. Evaluate (K5 - 4 points)

- a. Thoroughly evaluate the proposed solutions.
- b. Compares trade-offs, advantages, and disadvantages.
- c. Considers feasibility, scalability, and practical implications.

4. Design and drawing (K6 - 8 points)

- a. Demonstrates proficiency in design.
- b. Demonstrates proficiency in creating drawings for technical requirements including approval.

Scoring:

- 1. Accomplished (4 points): Exceptional analysis, clear implementation, and depth of understanding.
- 2. Competent (3 points): Solid performance with minor areas for improvement.
- 3. Developing (2 points): Adequate effort but lacks depth or clarity.
- 4. Minimal (1 point): Incomplete or significantly flawed.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of which	
module.	1 question should be answered. Each question can have a	
• Total of 8 Questions, each	maximum of 3 sub divisions. Each question carries 9	60
carrying 3 marks	marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain allowable soil pressure and safe bearing capacity, evaluate safe bearing capacity of shallow foundations by IS formula.	К3
CO2	Proportion and design pile foundations, evaluate settlement of pile groups, uplift capacity of single and group of piles in clay	K4
CO3	Apply the procedure for the deflection and ultimate lateral load capacity of vertical piles.	К3
CO4	Analyse the load carrying capacity of under reamed piles and load capacity and uplift resistance of belled piers. Analyse the depth of embedment for cantilever sheet pile walls in clay and sand,	K4
CO5	Evaluate the load carrying capacity of under reamed piles and load capacity and uplift resistance of belled piers.	K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-
CO3	3	3	-	2	-	-	-	-	-	-	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-
CO5	3	3	3	-	-	-	-	-	-	2	2	-

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Analysis and design of substructures	Swami Saran	Oxford & IBH publishing Co. Pvt. Ltd.	2013			
2	Foundation Engineering	P.C. Varghese	PHI Learning Private Limited	2012			
3	Principles of Geotechnical Engineering	Das B. M.	Cengage India Pvt. Ltd.	2010			
4	Basic and Applied Soil Mechanics	Ranjan G. and A. S. R. Rao.	New Age International	2002			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Geotechnical Engineering,	Arora K. R.	Standard Publishers.	2006.			
2	Soil Mechanics and Foundation Engineering	Purushothamaraj P.	Dorling Inversely (India) Pvt. Ltd.	2013			
3	Geotechnical Engineering: Principles and practices of Soil Mechanics and Foundation Engineering	Murthy V.N.S	New York: Marcel Dekker	2003			
4	Geotechnical Engineering	Arora K. R.	Standard Publishers	2006			

	Video Links (NPTEL, SWAYAM)					
Sl. No.	Sl. No. Link ID					
1	1 https://archive.nptel.ac.in/courses/105/105/105207/					

CONSTRUCTION PROJECT MANAGEMENT

Course Code	PBCET604	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	4	ESE Marks	40
Credits	3:0:0:1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	-	Course Type	Theory

Course Objectives:

- 1. Introduce students to the fundamentals of construction project management and planning.
- 2. Covers techniques for planning and scheduling construction projects, as well as methods for monitoring and controlling them.
- 3. Provides insights into the applications of Building Information Modelling (BIM) in construction.
- **4.** Ensure that students become proficient in construction project planning and management by combining theoretical concepts with practical exercises using various software tool.

Module No.	Syllabus Description	
1	Construction projects, life cycle of a project – phases in a project. Tendering: types of tenders, stages in tendering. Process of development of plans and schedules – work break-down structure, estimating durations. Types of Schedules – Construction schedule, Material schedule, labour schedule, equipment schedule, financial schedule. Techniques of planning – Bar charts, Mile Stone Charts. Network representation – Activity on Arrow (AoA) or Activity on Node (AoN) Diagram. Network analysis – Critical Path Method (CPM), Programme Evaluation and Review Technique (PERT) – concepts and problems.	9

	Precedence Diagramming Method – types of relationships – concept of lead	
	and lag. Concept only	
2	Handling resources on projects, resource constraints and conflicts, resource allocation and resource levelling. Concept only Time-Cost trade-off on construction projects – Classification of costs, compression of networks, cost optimization through the crashing of a network.	9
3	Updating project schedules. Project control, Schedule/time/progress control, periodic progress reports. Concept of Time-cost monitoring and control using S-curve, Earned value analysis – measures of performance.	9
4	Introduction to BIM Technology: Define BIM and BIM model, describe workflow in using BIM in the building lifecycle, Model-Based cost estimating, Perform Simulations, Apply BIM to reduce error and change orders in projects, Evaluate and communicate ideas related to the use of BIM in the building life cycle, BIM Benefits: Case Studies, Organizational Maturity and Dimensions, Construction Management and Planning using BIM.	9

Suggestion on Project Topics:

Project based learning (8 hrs)

Steps of Detailed Project Planning:

- 1. Develop basic drawings of a construction project (Preferably Residential/small commercial building; G+1 building maximum)-Use drafting software for developing plan
- 2. Approximate estimation of quantities and rates, development of BOQ for the project -Use spread sheet or similar software
- 3. Develop a Gantt chart/ Precedence Network of the project and identify the critical path and floats. (use suitable planning software)
- 4. Develop a resource schedule for the selected project
- 5. Submit the completed files as project planning report

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each question can	
• Total of 8 Questions,	have a maximum of 2 sub divisions. Each question	40
each carrying 2 marks	carries 6 marks.	
(8x2 =16 marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the procedure for planning and executing public works.	K1
CO2	Apply scheduling techniques in construction project planning	К3
CO3	Optimize resource requirements in construction projects.	К3
CO4	Apply earned value analysis for monitoring the schedule and cost performance of construction projects.	К3
CO5	Demonstrate the application of BIM in construction management and planning.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	1	-
CO2	3	3	-	-	2	-	-	1	-	-	2	-
CO3	3	3	-	-	3	-	-	1	-	-	2	-
CO4	3	3	-	-	3	-	-	1	-	-	3	-
CO5	3	3	-	-	3	-	-	1	-	-	-	-

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Construction Project Management Theory & Practice	Jha K. N	Pearson India Education Services Pvt. Ltd.	2nd edition, 2015					
2	Construction Management and Planning	Sengupta B. and Guha H.,	McGraw Hill	1995					
3	BIM and Construction Management: Proven Tools, Methods and Workflows.	Hardin B. and McCool D	John Wiley and Sons Inc.,	2015					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Modern Construction Management	Harris F., McCaffer R., Baldwin A. and Edum- Fotwe F.,	Wiley-Blackwell	8th Edition, 2021				
2	Construction Engineering and Management	Sharma S. C. and Deodhar S. V.	Khanna Publishing	2019				
3	Construction Project Management: Planning, Scheduling and Controlling,	Chitkara, K. K.	Tata McGraw-Hill Education	3rd Edition, 2014				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	archive.nptel.ac.in/courses/105/104/105104161/					
2	archive.nptel.ac.in/courses/105/103/105103093/					

PBL Course Elements

L: Lecture	R: Pr	ulty Members	
(3 Hrs.)	Tutorial	Practical	Presentation
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)
Group discussion	Project Analysis	Data Collection	Evaluation
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

INTRODUCTION TO CONSTRUCTION ENGINEERING

Course Code	OECET611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Identify the properties and applications of different construction materials
- 2. Understand the principles of concrete mix design and production
- 3. Learn various building systems and components
- 4. Comprehend the role of emerging trends and technology innovations in construction

Module No.	Syllabus Description	Contact Hours
1	Construction Materials Mortar – Types – properties – uses. Timber products – properties & uses of plywood, fibre board, particle board. Cement - Manufacturing, chemical composition, Tests on cement – specific gravity, standard consistency, initial and final setting time, fineness, soundness, compressive strength, IS specifications Aggregates – types, Gradation, importance of gradation, bulking of fine aggregate Iron and Steel – Reinforcing steel – types – specifications. Structural steel – specifications Admixtures, uses – mineral admixtures – fly ash and ground granulated blast furnace slag and chemical admixtures – plasticizers, super plasticizers,	Hours 9
	accelerators, retarders (brief discussion only)	
2	Concrete Technology Process of manufacturing concrete – batching, mixing, transportation, placing, compacting, finishing, curing Properties of fresh concrete: Workability, factors affecting workability, test on	9

		workability (slump test), segregation and bleeding (brief discussion)	
		Properties of hardened concrete: Strength, factors affecting strength, tests for	
		strength of concrete in compression, tension and flexure	
		Concrete quality control – statistical analysis of results – standard deviation –	
		acceptance criteria – mix proportioning (B.I.S method) – nominal mixes.	
		Building Construction	
		Preliminary considerations for shallow and deep foundations	
		Masonry – Types of stone masonry	
	2	Lintels and arches – types and construction details.	
	3	Tall Buildings – Framed building – steel and concrete frame – structural systems	9
		-erection of steel work-concrete framed construction- formwork - construction	
		and expansion. joints	
		Introduction to prefabricated construction – slip form construction	
		Construction Technology	
		Cost-effective construction - rapid wall construction, soil-cement block	
		masonry, voided slab technology, filler slab technology	
		Basic concept of prestressing – fundamental understanding of pre-tensioned and	
	4	post-tensioned construction	9
	4	Construction 3D printing (brief discussion only)	9
		Building failures – General reasons – classification – Causes of failures in RCC	
		and Steel structures, Failure due to Fire, Wind and Earthquakes.	
		Foundation failure – failures by alteration, improper maintenance, overloading.	
		Retrofitting of structural components - beams, columns and slabs	
1			1

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the characteristics and uses of common construction materials	K2
CO2	Design and specify concrete mixes for different applications	К3
CO3	Identify and explain various building systems and components	K2
CO4	Describe the impact of emerging trends and innovations on construction	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	1	2	-	-	-	-	3
CO2	3	-	-	-	-	1	2	-	-	-	-	3
CO3	3	-	-	-	-	1	2	-	-	-	-	3
CO4	3	-	-	-	1	1	2	_	-	-	1	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Advanced Construction Technology	Roy Chudley, Roger Greeno	Prentice Hall	4 th Ed, 2006			
2	Architectural Design with SketchUp	Alexander C. Schreyer	John Wiley & Sons	3rd Ed, 2023			
3	Building materials & construction	Anil Kumar Mishra	S. Chand Publishers	1st Ed, 2018			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Building Construction: Materials and Methods	Edward Allen, Joseph Iano	Wiley Publishers	7 th , 2019				

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1	https://nptel.ac.in/courses/105102088					
2	https://archive.nptel.ac.in/courses/105/102/105102012/					

ENVIRONMENTAL LAWS AND POLICY

Course Code	OECET612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To explain the role of law, policy and institutions in the conservation and management of natural resources as well as pollution control
- 2. To introduce the laws and policies both at the national and international level relating to environment
- 3. To equip the students with the skills needed for interpreting laws, policies and judicial decisions
- 4. To familiarise students in the concept of international environmental law

Module	Syllabus Description		
No.			
1	Basic Concepts in Environmental Law An introduction to the legal system; Constitution, Acts, Rules, Regulations; Indian Judiciary, Doctrine of precedents, judicial review, Writ petitions, PIL— liberalization of the rule of locus standi, Judicial activism. Introduction to environmental laws in India; Constitutional provisions, Stockholm conference; Bhopal gas tragedy; Rio conference. General principles in Environmental law: Precautionary principle; Polluter pays principle; Sustainable development; Public trust doctrine. Overview of legislations and basic concepts	9	
2	Forest, Wildlife and Biodiversity related laws Evolution and Jurisprudence of Forest and Wildlife laws; Colonial forest policies; Forest policies after independence 2 Statutory framework on Forests, Wildlife and Biodiversity: IFA, 1927; WLPA, 1972; FCA, 1980;	9	

	Biological Diversity Act, 2002; Forest Rights Act, 2006. Strategies for					
	conservation-Project Tiger, Elephant, Rhino, Modulew leopard.					
	Air, Water and Marine Laws					
	National Water Policy and some state policies Laws relating to prevention of					
	pollution, access and management of water and institutional mechanism:					
3	Water Act, 1974; Water Cess Act, 1977, EPA, 1986. Pollution Control Boards	9				
	Ground water and law Judicial remedies and procedures Marine laws of India;					
	Coastal zone regulations. Legal framework on Air pollution: Air Act,1981;					
	EPA, 1986					
	Hazardous Substances and Activities Legal framework					
	EPA and rules made thereunder; PLI Act, 199 Principles of strict and absolute					
	liability;					
	International Environmental law					
4	An introduction to international law; sources of international law; law of	9				
	treaties; signature, ratification Evolution of international environmental law:					
	Customary principles; Common but differentiated responsibility, Polluter					
	pays.					

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Familiar with the laws, policies and institutions in the field of environment	K1
CO2	Acquire the skills needed for interpreting laws, policies and judicial decisions in a holistic perspective	K2
CO3	Acquire the ability to evaluate the role of law and policy in conservation and management of natural resources and prevention of pollution	К2
CO4	Familiar with the concept of international environmental law	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	2	2	1	-	1	-	2
CO2	2	-	_	-	-	2	2	1	-	1	-	2
CO3	3	-	_	-	-	2	2	1	-	2	-	2
CO4	2	-	-	-	-	2	2	1	-	1	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Environmental Law and Policy in India	Divan S. and Rosencranz A.	Oxford, New Delhi	3 rd , 2022			
2	Environmental Law in India	Leelakrishnan P.	Lexis Nexis, India	6 th , 2022			
3	International Law and the Environment	Birnie P.	Oxford	3 rd , 2009			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Hand Book on Environmental Law- Forest Laws, Wildlife Laws and the Environment; Vols. I, II and III	Upadhyay S. and Upadhyay V	Lexis Nexis- Butterworths-India, New Delhi.	2002			
2	Principles of International Environmental Law,	Sands P	Cambridge	2003			

	Video Links (NPTEL, SWAYAM)					
Module	Link ID					
No.						
1	https://onlinecourses.swayam2.ac.in/cec20_ge12/preview					

DISASTER MANAGEMENT

Course Code	OECET613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To introduce the concept of disasters, their causes and their mitigation and management

Module No.	Syllabus Description	
1	Hazards and disasters: Introduction to key concepts and terminology: hazard, disasters and types of classifications, vulnerability, exposure, risk, crisis, emergency, capacity, resilience, Carbon footprint. Effect of subsystems of earth. Extent and nature of natural hazards, implications of climate change: Earth quakes, Volcanoes, Floods. Coastal disasters- Storm surges, Tsunamis, mitigation methods.	9
2	Landslides, Causes and prediction, Soil and soil degradation, erosion and Desertification, Forest fires, their mitigation methods.	9
3	Impacts and assessment: Risk Management and Assessment and Disaster Management cycle. SWOT Analysis- basic concepts, uses, limitations and advantages. Disaster management plan and reports, participation of community in disaster management.	9
4	Hazard and disaster management plans for floods, storm surges, landslides, earthquakes, forest fires: pre-disaster phase, actual disaster phase, post-disaster phase	9

Relief and Amenities, Relief camps, organization, individual and community	
participation, camp layout, food requirement, water needs, sanitation, security,	
information administration. Technology in disaster management.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	
Attendance	Assignment/	Examination-1	Examination- 2	Total
	Microproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	otal of 8 Questions, each of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain interaction between subsystems of earth that give rise to hazards and their potential for disasters	К2
CO2	Explain the evolving concepts and thoughts of management of hazards and disasters	K2
CO3	Apply the knowledge to find the causes behind natural disasters and evaluate their magnitude and impacts	К3
CO4	Develop management plans for hazards and disasters, and understand the roles of agencies involved	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	1
CO2	3	-	-	-	-	-	-	-	-	-	-	2
CO3	3	3	-	-	-	-	2	-	-	-	-	2
CO4	3	-	3	-	-	-	-	-	-	-	-	1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Disaster Management	Mrinalini Pandey	Wiley	2 nd edition					
2	Disaster Risk Reduction in South Asia	Ariyabandu, M. and Sahni P.	Prentice-Hall (India)	2003					
3	Environmental Geology - Ecology, Resource and Hazard Management	Valdiya, K.S.	McGraw-Hill Education	2013					
4	Disaster Management: Global Problems and Local Solutions	Shaw, R and Krishnamurthy, RR	Springer, Amsterdam	2010					
5	Disaster Management - A Disaster Manager's Handbook	Nick Carter. W.,	Asian Development Bank, Philippines.	1991					
6	Disaster management	Gupta, H.K.	Universities Press (India) Ltd.	2003					
7	Natural and Anthropogenic Disasters- Vulnerability, Preparedness and Mitigation	Jha, M.K.	Springer, Amsterdam.	2010					

Reference Books									
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year					
1	Geological Hazards: Their assessment, avoidance and mitigation	Bell, F.G.	E & FN SPON Routledge, London.	1999					
2	Natural Disasters	Alexander, D.,	Research Press, New Delhi	1993					
3	Handbook of Disaster and Emergency Management	Khorram-Manesh	Kompendiet (Gothenburg).	2017					
4	Disaster Management in India Policies, Institutions, Practices	Rajendra Kumar Pandey	Routledge	2023					

	Video Links (NPTEL, SWAYAM)					
	Link ID					
1	https://nptel.ac.in/courses/105104183					
2	https://onlinecourses.swayam2.ac.in/cec19_hs20/preview					

ENVIRONMENTAL IMPACT ASSESSMENT

Course Code	OECET614	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To study the various types of environmental pollution and their impacts.
- 2. To study the process of environmental impact assessment and impact analysis methodologies.

Module	Syllabus Description						
No.	Synabus Description						
	Introduction						
	Pollution and pollutants - general aspects, scale of impact-Global, local						
	pollutants						
1	History of EIA - Global and Indian scenario, Need for EIA, EIA 2006 key	9					
1	features, General overview of Draft EIA 2020	,					
	EIA procedure in India, Public participation – Significance & steps						
	Environment management plan						
	Role of an Environmental Engineer						
	Impact analysis- Adhoc, checklists, matrix methods, overlay analysis,						
	Fault Tree Analysis method & Event Tree Analysis method						
	EIA case studies						
2	Water Pollution	9					
	Point and Non-point Source of Pollution, Major Pollutants of Water, Physical,						
	chemical and biological characteristics of water, Water borne diseases, Water						
	Quality standards (IS 10500-2012)						
	Solid Waste						
3	Classification and sources of Solid Waste, Characteristics of Solid Waste,	9					
	E-waste, & Radioactive wastes - Types, management/disposal						

	Hazardous waste -waste identification process and characteristics				
	Solid Waste Management Rules 2016				
	Land/Soil Pollution				
	Effects of urbanization on land degradation, Impact of Modern Agriculture on				
	Soil, pesticide pollution, Effect on Environment				
	Air Pollution				
	Classification of Pollution and Pollutants, Primary and Secondary Pollutants,				
	Criteria Pollutants and their impacts on environment, human health, National				
4	Ambient Air Quality Standards by CPCB	9			
4	Noise Pollution	9			
	Sources of Noise, Effects of Noise, measurement of noise, Equivalent sound				
	pressure level, Control measures -Noise pollution (Regulation and control)				
	Rule 2000				

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the process, need and significance of EIA	K2
CO2	Predict and analyse the possible environmental impact assessment on various projects	К3
CO3	Apply assessment methodologies for evaluating environmental impact assessment	К3
CO4	Identify the significant sources of pollution from any upcoming or existing project and their impacts on biotic and abiotic elements in the environment	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	1	3	3	3	1	2	3	2
CO2	3	3	2	2	2	3	3	3	1	2	3	2
CO3	3	3	2	2	2	3	3	3	1	2	3	2
CO4	3	3	2	2	2	3	3	3	1	2	3	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Introduction to EIA	John Glasson, Riki Therivel & S Andrew Chadwick	University College London Press Limited	2005						
2	Environmental Impact Assessment	Larry W Canter	McGraw Hill Inc., New York	1996						
3	Waste Water Engineering	B.C. Punmia	Laxmi Publications Pvt. Ltd	1998						
4	Sewage Treatment & Disposal and Waste water Engineering	P.N. Modi	Standard Book House	15 th , 2008						

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	EIA Analysis Hand Book	Rau G J and Wooten C. D.	McGraw Hill	1979			
2	Introduction to Environmental Engineering	Mackenzie L Davis	McGraw hill Education	2013			
3	Environmental Engineering	Peavy H S, Rowe, D.R. Tchobanaglous	Mc Graw Hill Education	1985			
4	Standard Handbook of Environmental Engineering	Robert A Corbett	McGraw Hill	1999			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/124107160					
2	https://nptel.ac.in/courses/124107160					
3	https://nptel.ac.in/courses/124107160					
4	https://nptel.ac.in/courses/124107160					

STRUCTURAL GEOLOGY

Course Code	OECET 615	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand the evolution of earth from the deformed rocks and structures.
- 2. Identify areas of mineral, oil and gas deposits.
- 3. Get an idea about the structural instabilities which can lead to natural hazards

Module No.	Syllabus Description				
1	Introduction to Structural Geology; Forces causing deformation in Earth's lithosphere; Concept of rock deformation: Stress and Strain in rocks; Strain ellipses of different types and their geological significance; Rheology of rocks; Concept of dip and strike; Outcrop patterns.	9			
2	Foliation and lineation- Description and origin of foliations, axial plane cleavage and its tectonic significance; Description and origin of lineation and relationship with the major structures; Neotectonics-Introduction; Neo tectonic activity in Kerala.	9			
3	Folds- Fold morphology; Geometric and genetic classification of folds; Introduction to the mechanics of folding: Buckling, Bending, Flexural slip and flow folding; Importance of structures in mineral, oil and gas deposits	9			
4	Fractures and faults: Geometric and genetic classification of fractures and faults; Effects of faulting on the outcrops; Geologic/geomorphic criteria for recognition of faults and fault plane solutions; Lineaments- Introduction; Major lineaments in Kerala and its possible implications.	9			

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A agi an man 4/	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1 (Written)	Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand about stress, strain and the deformation of rocks and the causes of deformation of rocks	К2
CO2	Evaluate the basic concepts in tectonics with respect to the geology of Kerala	K5
CO3	Identify the structures with probable mineral, oil and gas deposits	K1
CO4	Acquire the ability to describe and classify brittle and ductile structures, including faults and folds	K4
CO5	Anticipate the possibility of natural hazards	К6

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	1	-	-	-	-	-	-	3
CO2	3	3	-	2	-	1	-	-	1	-	-	3
CO3	3	3	1	2	1		1	1	1	-	-	3
CO4	3	3		2	-	-	-	-	-	-	-	3
CO5	3	3	1	2	1	1	-	1	1	-	-	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Structural Geology	Marland P Billings	Pearson education	2016				
2	Geology of Kerala	K Soman	Geological Society of India	2023				
3	An Introduction to Structural Geology	A.K. Jain	Geological Society of India	2019				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Structural Geology of Rocks and Regions	George H. Davis, Stephen J. Reynolds, Charles F. Kluth	Wiley	3 rd , 2011				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc19_ce47/preview						

APPLIED EARTH SYSTEMS

Course Code	OECET616	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Appreciation of earth as a system of interrelated components
- 2. Understanding mechanisms that give rise to oceanographic and atmospheric phenomena
- **3.** Comprehension of processes that result in characteristic land features in different climatic regimes

Module	Syllabus Description	
No.		
1	Fundamental concepts of equilibrium. Geomorphic agents and processes. Basic concept of Earth as a system and its component sub systems. Climate Change vis-a-vis the interrelationships of the subsystems- Green House Effect and Global warming, basic ideas about their causes and effects.	9
2	Weathering- relevance, influence of and on earth systems, types and controlling factors. Soil- formation and controls, soil profile, soil erosion and conservation methods. Fluvial processes-hydrological cycle, fluvial erosion, transportation and deposition, fluvial landforms. Stages of stream development; Drainage patterns.	9
3	Wagner's ideas of continental drift, Plate Tectonics- seafloor spreading. Plate boundaries and their features, mechanisms of plate movements Basics of oceanography: coastal upwelling and downwelling. Outlines of ocean floor topography, basic outlines of origin and circulation of deep sea surface currents (Atlantic and Pacific Oceans)	9

4	Basics of atmosphere and atmospheric processes: Structure and composition of the atmosphere. Heat budget, factors affecting solar radiation. Fundamental concepts of precipitation, global wind patterns. General weather systems of India, - Monsoon system, cyclone and jet stream	9
---	--	---

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/ Microproject	Internal	Internal		
Attendance		Examination-1 (Written)	Examination- 2 (Written)	Total	
		(written)	(written)		
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the concept of earth as a system of interrelated components and associated exogenic/endogenic processes.	K2
CO2	Appraise geological agents and their respective erosion, transportation and deposition regimes and landforms formed.	К5
CO3	Evaluate/investigate the significance of Plate tectonics theory to explain the geodynamic features and processes of earth's surface.	К5
CO4	Develop an understanding of oceanographic and atmospheric regimes and their sway on other subsystems and process thereof.	К6
CO5	Understand implications of human interaction with the Earth system.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	2	-	3	3	2	-	-	-	3
CO2	3	3	-	3	-	3	3	-	1	-	-	3
CO3	3	3	-	3	-	3	3	-	-	-	-	3
CO4	3	3	2	3	-	3	3	-	-	-	-	3
CO5	3	3	-	3	-	3	3	3	-	-	-	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year			
1	General Climatology	Critchfield H. J.	Prentice Hall, New Delhi	1983			
2	Applied Hydrogeology	Fetter C. W.	CBS New Delhi	1990			
3	Physical geology: Earth Revealed	Carlson D.H., Plummer C. C. and Mc Greary D.	McGraw Hill, New York,	2006			
4	Oceanography–An Introduction to the Planet Oceanus	Pinet P R	West Publishing Co.,	1992			
5	Environmental Geology: Ecology, Resource and Hazard Management	Valdiya K. S.	McGraw-Hill Education (India) Private Limited, New Delhi	2013			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Climatology and oceanography	D. S. Lal	Allahabad Sharda Pustak Bhawan	2001				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc20_ce33/preview						
2	https://onlinecourses.nptel.ac.in/noc20_ce33/preview						
3	https://onlinecourses.nptel.ac.in/noc20_ce33/preview						
4	https://onlinecourses.nptel.ac.in/noc20_ce33/preview						

TRANSPORTATION ENGINEERING LAB

Course Code	PCCEL607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PECET637	Course Type	Lab

Course Objectives:

- 1. To enable students to assess the quality of various pavement materials and their suitability in highway construction
- 2. To make student familiar with mix design and do functional evaluation of pavements

Experiments						
Test on Soil						
California Bearing Ratio Test						
Test on Coarse Aggregate						
Specific Gravity and Water Absorption Test						
Aggregate Impact Test						
Los Angeles Abrasion Test						
Aggregate Crushing Value Test						
Shape Test: Angularity number						
Combined flakiness and elongation index						
Stripping value of road aggregates.						
Test on Bitumen						
Determination of grade of bitumen based on viscosity						
Softening point						
Ductility of bitumen (Demonstration using Aged bitumen)						
Flash and fire point of bitumen						
Design of Bituminous Mix						
Design of bituminous mix by Marshall method of mix design						
Functional Evaluation of Pavement						
Use of MERLIN apparatus to determine road roughness						

Any 12 experiments mandatory

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid				
Preparatory	Execution of work/	inference/	Viva	D	Total	
work/Design/	k/Design/ troubleshooting/		voce	Record	i otai	
Algorithm	Programming	Output				
10	15	10	10	5	50	

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Determine CBR value of the given sample of soil. Comment on its suitability as a subgrade material	К3
CO2	Assess the suitability of aggregates as a pavement construction material based on specifications given relevant codes/guidelines	К3
СОЗ	Assess the suitability of bitumen as a pavement construction material based on specifications given relevant codes/guidelines	К3
CO4	Determine optimum binder content of the given bituminous mix by Marshall method of mix design	К3
CO5	Comment on the condition of road surface by determining the IRI value of the given road surface using MERLIN and comparing with standard values.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	-	-	2	-	-	2	2	1	-
CO2	3	-	2	-	-	2	-	-	2	2	1	-
CO3	3	-	2	-	-	2	-	-	2	2	1	-
CO4	3		2	-	-	2	-	-	2	2	1	-
CO5	3	3	2	1	-	2	-	-	2	2	1	-

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Highway Materials and Pavement Testing	Khanna, S.K., Justo, C.E.G. and Veeraragavan, A	Nem Chand & Bros., Roorkee	2013						
2	Highway Material Testing and Quality Control	Venkatappa Rao, K. Ramachandra Rao, Kausik Pahari and D.V. Bhavanna Rao	I.K. International.	2019						
3	Principles and Practices of Highway Engineering	Kadiyali, L. R. and Lal, N.B.	Khanna Publishers.	2013						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Principles of Highway Engineering and Traffic Analysis, 7th Edition	Fred L. Mannering and Scott S. Washburn	Wiley	2019						

Video Links (NPTEL, SWAYAM)								
No.	No. Link ID							
1	https://ts-nitk.vlabs.ac.in/							

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation
 of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

ENVIRONMENTAL ENGINEERING LAB

Course Code	PCCEL609	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. Perform the experiments to determine water and waste water quality
- 2. Understand the quality of water, waste water, Industrial water

Expt. No.	Experiments
1	Determination of pH and Turbidity
2	Determination of Conductivity and Total dissolved solids
3	Determination of Alkalinity & Acidity
4	Determination of Chlorides
5	Determination and Estimation of total solids, organic solids and inorganic solids
6	Determination of iron
7	Determination of Dissolved Oxygen
8	Determination of Nitrogen
9	Determination of total Phosphorous
10	Determination of B.O.D
11	Determination of C.O.D
12	Determination of Optimum coagulant dose
13	Determination of Chlorine demand
14	Determination of Sulphate
15	Determination of Hardness
16	Presumptive coli form test

Any 12 experiments mandatory

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with				
Preparatory	Execution of work/	valid inference/	Viva	Record	Total	
work/Design/	troubleshooting/	Quality of	voce	Record	Total	
Algorithm	Programming	Output				
10	15	10	10	5	50	

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the equipment used to test water quality	К3
CO2	Perform the experiments for water quality & estimate the quality	К3
CO3	Compare the water quality standards with prescribed standards set by the local governments	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	2	-	-	2	2	-	2
CO2	3	2	-	-	-	2	-	-	2	2	-	2
CO3	3	2	-	-	-	2	-	-	2	2	-	2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Standard Methods for Analysis of water and Waste Water	E.W. Rice, R.B. Baird, A.D. Eaton	АРНА	2017			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Chemistry for Environmental Engineering	Sawyer and Mc. Carty	McGraw Hill	2017		

Video Links (NPTEL, SWAYAM)				
No.	Link ID			
1	https://ee1-nitk.vlabs.ac.in/List%20of%20experiments.html			
2	https://ee2-nitk.vlabs.ac.in/List%20of%20experiments.html			

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

• Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.

 Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted