Representation of follow-up

Bendix Carstensen

Steno Diabetes Center Copenhagen

Gentofte, Denmark

http://BendixCarstensen.com

IARC, Lyon,

June 2018

http://BendixCarstensen.com/SPE

Representation of follow-up

Bendix Carstensen

Representation of follow-up

IARC, Lyon,

June 2018

http://BendixCarstensen.com/SPE

Follow-up and rates

- In follow-up studies we estimate rates from:
 - ▶ *D* events, deaths
 - ▶ *Y* person-years
 - $\hat{\lambda} = D/Y$ rates
 - ... empirical counterpart of intensity estimate
- Rates differ between persons.
- Rates differ within persons:
 - By age
 - By calendar time
 - By disease duration
 - **•** ...
- Multiple timescales.
- ▶ Multiple states (little boxes later)

Examples: stratification by age

If follow-up is rather short, age at entry is OK for age-stratification.

If follow-up is long, use stratification by categories of **current age**, both for:

No. of events, D, and Risk time, Y.

— assuming a constant rate λ throughout.

Representation of follow-up data

A cohort or follow-up study records:

Events and Risk time.

The outcome is thus **bivariate**: (d, y)

Follow-up **data** for each individual must therefore have (at least) three variables:

Date of entry entry date variable Date of exit exit date variable Status at exit fail indicator (0/1)

Specific for each **type** of outcome.

$$P(d \text{ at } t_x|\text{entry } t_0)$$

$$= P(\mathsf{surv}\ t_0 o t_1 | \mathsf{entry}\ t_0)$$

$$imes P(\mathsf{surv}\ t_1 o t_2 | \mathsf{entry}\ t_1)$$

$$\times P(d \text{ at } t_{\mathsf{x}}|\text{entry } t_2)$$

$$d\log(\lambda) - \lambda y$$

$$=0\log(\lambda)-\lambda y_1$$

$$+0\log(\lambda) - \lambda y_2$$

$$+d\log(\lambda) - \lambda y_3$$

P(surv
$$t_0 \rightarrow t_x$$
|entry t_0)

$$= P(\mathsf{surv}\ t_0 \to t_1 | \mathsf{entry}\ t_0)$$

$$\times P(\mathsf{surv}\ t_1 o t_2 | \mathsf{entry}\ t_1)$$

$$imes P(\mathsf{surv}\ t_2 o t_\mathsf{x} | \mathsf{entry}\ t_2)$$

$$0\log(\lambda) - \lambda y$$

$$=0\log(\lambda)-\lambda y_1$$

$$+0\log(\lambda) - \lambda y_2$$

$$+0\log(\lambda) - \lambda y_3$$

P(event at
$$t_x$$
|entry t_0)

$$= P(\mathsf{surv}\ t_0 o t_1 | \mathsf{entry}\ t_0)$$

$$\times P(\mathsf{surv}\ t_1 \to t_2 | \mathsf{entry}\ t_1)$$

$$imes P(ext{event at } t_{\mathsf{x}}| ext{entry } t_2)$$

$$1\log(\lambda) - \lambda y$$

$$=0\log(\lambda)-\lambda y_1$$

$$+0\log(\lambda) - \lambda y_2$$

$$+1\log(\lambda) - \lambda y_3$$

$$P(d \text{ at } t_x|\text{entry } t_0)$$

$$= P(\mathsf{surv}\ t_0 \to t_1 | \mathsf{entry}\ t_0)$$

$$imes P(\mathsf{surv}\ t_1 o t_2 | \mathsf{entry}\ t_1)$$

$$imes \mathrm{P}(d \; \mathsf{at} \; t_{\mathsf{x}} | \mathsf{entry} \; t_2)$$

$$d\log(\lambda) - \lambda y$$

$$=0\log(\lambda)-\lambda y_1$$

$$+0\log(\lambda) - \lambda y_2$$

$$+d\log(\lambda) - \lambda y_3$$

$$P(d \text{ at } t_{x}|\text{entry } t_{0})$$

$$= P(\mathsf{surv}\ t_0 \to t_1 | \mathsf{entry}\ t_0) \\ \times P(\mathsf{surv}\ t_1 \to t_2 | \mathsf{entry}\ t_1)$$

$$\sum_{i=1}^{n} \frac{\mathbf{D}(A_i + A_i) - \mathbf{D}(A_i + A_i)}{\mathbf{D}(A_i + A_i)} = \frac{\mathbf{D}(A_i + A_i) - \mathbf{D}(A_i + A_i)}{\mathbf{D}(A_i + A_i)}$$

$$imes \mathrm{P}(d ext{ at } t_{\mathsf{x}} | \mathsf{entry} \ t_2)$$

log-Likelihood

$$d\log(\lambda) - \lambda y$$

$$=0\log(\lambda_1)-\lambda_1y_1$$

$$+0\log(\lambda_2)-\lambda_2y_2$$

$$+d\log(\lambda_3) - \lambda_3 y_3$$

— allows different rates (λ_i) in each interval

Dividing time into bands:

If we want to compute D and Y in intervals on some timescale we must decide on:

Origin: The date where the time scale is 0:

- ▶ Age 0 at date of birth
- ▶ Disease duration 0 at date of diagnosis
- Occupation exposure 0 at date of hire

Intervals: How should it be subdivided:

- 1-year classes? 5-year classes?
- Equal length?

Aim: Separate rate in each interval

Example: cohort with 3 persons:

```
Id Bdate Entry Exit St
1 14/07/1952 04/08/1965 27/06/1997 1
2 01/04/1954 08/09/1972 23/05/1995 0
3 10/06/1987 23/12/1991 24/07/1998 1
```

- Age bands: 10-years intervals of current age.
- Split Y for every subject accordingly
- Treat each segment as a separate unit of observation.
- Keep track of exit status in each interval.

Splitting the follow up

	subj. 1	subj. 2	subj. 3
Age at E ntry: Age at e X it: S tatus at exit:	13.06	18.44	4.54
	44.95	41.14	11.12
	Dead	Alive	Dead
$Y \\ D$	31.89	22.70	6.58
	1	0	1

	subj	. 1	subj	. 2	subj	. 3	\sum	<u> </u>
Age	\overline{Y}	D	Y	D	Y	D	Y	D
0-	0.00	0	0.00	0	5.46	0	5.46	0
10-	6.94	0	1.56	0	1.12	1	8.62	1
20-	10.00	0	10.00	0	0.00	0	20.00	0
30-	10.00	0	10.00	0	0.00	0	20.00	0
40-	4.95	1	1.14	0	0.00	0	6.09	1
$\overline{\sum}$	31.89	1	22.70	0	6.58	1	60.17	2

Splitting the follow-up

id	Bdate	Entry	Exit	St	risk	int
1 1	14/07/1952 14/07/1952	03/08/1965 14/07/1972	14/07/1972 14/07/1982	0	6.9432 10.0000	10 20
1	14/07/1952	14/07/1982	14/07/1992	Ö	10.0000	30
1	14/07/1952	14/07/1992	27/06/1997	1	4.9528	40
2	01/04/1954	08/09/1972	01/04/1974	0	1.5606	10
2	01/04/1954	01/04/1974	31/03/1984	0	10.0000	20
2	01/04/1954	31/03/1984	01/04/1994	0	10.0000	30
2	01/04/1954	01/04/1994	23/05/1995	0	1.1417	40
3	10/06/1987	23/12/1991	09/06/1997	0	5.4634	0
3	10/06/1987	09/06/1997	24/07/1998	1	1.1211	10

Keeping track of calendar time too?

Timescales

- ► A timescale is a variable that varies **deterministically** *within* each person during follow-up:
 - Age
 - Calendar time
 - Time since treatment
 - Time since relapse
- All timescales advance at the same pace (1 year per year . . .)
- ▶ Note: Cumulative exposure is **not** a timescale.

Follow-up on several timescales

- ▶ The risk-time is the same on all timescales
- Only need the entry point on each time scale:
 - Age at entry.
 - Date of entry.
 - Time since treatment at entry.
 - if time of treatment is the entry, this is 0 for all.
- Response variable in analysis of rates:

$$(d, y)$$
 (event, duration)

- Covariates in analysis of rates:
 - timescales
 - other (fixed) measurements
- ...do not confuse duration and timescale!

Follow-up data in Epi — Lexis objects

```
> thoro[1:6.1:8]
 id sex birthdat contrast injecdat volume
                                       exitdat exitstat
      2 1916,609
                       1 1938, 791
                                    22 1976,787
  2 2 1927.843
                       1 1943,906
                                 80 1966.030
  3 1 1902,778
                       1 1935,629
                                 10 1959.719
  4 1 1918.359
                       1 1936.396
                                 10 1977.307
 5 1 1902.931
                       1 1937.387
                                 10 1945.387
  6 2 1903.714
                       1 1937.316
                                 20 1944 738
```

Timescales of interest:

- Age
- Calendar time
- ▶ Time since injection

Definition of Lexis object

entry is defined on three timescales,
but exit is only needed on one timescale:
Follow-up time is the same on all timescales:

exitdat - injecdat

One element of entry and exit must have same name (per).

The looks of a Lexis object

```
> thL[1:4.1:9]
                tfi lex.dur lex.Cst lex.Xst lex.id
    age
1 22 18 1938 79
                      37.99
2 49.54 1945.77
                      18.59
3 68.20 1955.18
                  0 1.40
4 20.80 1957.61
                    34.52
> summary( thL )
Transitions:
     To
            1 Records:
                        Events:
From
                                  Risk time:
                                              Persons:
                                    51934.08
   0 504 1964
                  2468
                            1964
                                                  2468
```


> plot(thL, lwd=3)

EINLEITUNG

IN DIE

THEORIE

DE

BEVÖLKERUNGSSTATISTIK

VON

W. LEXIS

DR. DER STAATSWISSERSCHAFTEN UND DER FRILOSOFRI

O. PROFESSOR DER STATISTIK IN DORPAT.

STRASSBURG

KARL J. TRÜBNER

1875.

Splitting follow-up time

```
> spl1 <- splitLexis(thL, breaks=seg(0,100,20),
>
                           time.scale="age" )
> round(spl1,1)
                                              id sex birthdat contrast injecdat vol
               tfi lex.dur lex.Cst lex.Xst
   age
1 22.2 1938.8
               0.0
                      17.8
                                                       1916.6
                                                                         1938.8
2 40.0 1956.6 17.8
                      20.0
                                                       1916.6
                                                                         1938.8
3 60.0 1976.6 37.8
                    0.2
                                                       1916.6
                                                                         1938.8
4 49.5 1945.8 0.0
                    10.5
                                            640
                                                       1896.2
                                                                         1945.8
5 60.0 1956.2 10.5
                       8.1
                                             640
                                                       1896.2
                                                                         1945.8
6 68.2 1955.2
                       1.4
                                          1 3425
                                                       1887.0
                                                                         1955.2
7 20.8 1957.6 0.0
                      19.2
                                          0 4017
                                                       1936.8
                                                                         1957.6
8 40.0 1976.8 19.2
                                          0 4017
                                                       1936.8
                                                                         1957.6
                      15.3
```

. . .

3 68.2 1955.2

3 69.2 1956.2

4 20.8 1957.6

4 21.8 1958.6

4 25.8 1962.6

Representation of follow Aup 40 me 8 sp 1977.6 20.0

4 40.0 1976.8 19.2

11

12

13

14

15

16

```
Split on another timescale
   > spl2 <- splitLexis( spl1, time.scale="tfi",
                               breaks=c(0,1,5,20,100))
   > round( spl2, 1 )
      lex.id age
                          tfi lex.dur lex.Cst lex.Xst
                     per
           1 22.2 1938.8
                          0.0
                                  1.0
           1 23.2 1939.8
                          1.0
                                  4.0
           1 27.2 1943.8
                         5.0
                                 12.8
           1 40.0 1956.6 17.8
                                  2.2
           1 42.2 1958.8 20.0
                                 17.8
           1 60.0 1976.6 37.8
                                  0.2
           2 49.5 1945.8
                                  1.0
                                                       640
   8
           2 50.5 1946.8
                         1.0
                                  4.0
                                                       640
           2 54.5 1950.8
                                  5.5
                         5.0
                                                       640
   10
           2 60.0 1956.2 10.5
                                  8.1
                                                       640
```

0.0

1.0

0.0

1.0

5.0

1.0

0.4

1.0

4.0

14.2

0.8

14.5

id sex birthdat contrast inje

19

19

19

19

19

19

19

1916.6

1916.6

1916.6

1916.6

1916.6

1916.6

1896.2

1896.2

1896.2

1896.2

1887.0

1887.0

1936.8

1936.8

1936.8

1936.8

1936.8

3425

1 3425

0 4017

0 4017

0 4017

0 4017

4017

 age
 tfi
 lex.dur
 lex.Cst
 lex.Xst

 22.2
 0.0
 1.0
 0
 0

 23.2
 1.0
 4.0
 0
 0

 27.2
 5.0
 12.8
 0
 0

 40.0
 17.8
 2.2
 0
 0

 42.2
 20.0
 17.8
 0
 0

 60.0
 37.8
 0.2
 0
 1

Likelihood for a constant rate

- ► This setup is for a situation where it is assumed that rates are constant in each of the intervals.
- ► Each observation in the dataset contributes a term to the likelihood.
- ► Each term looks like a contribution from a Possion variate (albeit with values only 0 or 1)
- Rates can vary along several timescales simultaneously.
- Models can include fixed covariates, as well as the timescales (the left end-points of the intervals) as continuous variables.
- ▶ The latter is where we will need splines.

The Poisson likelihood for split data

▶ Split records (one per **p**erson-**i**nterval (p, i)):

$$\sum_{p,i} (d_{pi}\log(\lambda) - \lambda y_{pi}) = D\log(\lambda) - \lambda Y$$

- Assuming that the death indicator $(d_{pi} \in \{0,1\})$ is Poisson, a model with with offset $\log(y_{pi})$ will give the same result.
- If we assume that rates are constant we get the simple expression with $(D,\,Y)$
- ... but the split data allows models that assume different rates for different (d_{pi}, y_{pi}) , so rates can vary **within** a person's follow-up.

Where is (d_{pi}, y_{pi}) in the split data?

```
> spl1 <- splitLexis( thL , breaks=seq(0,100,20) , time.scale="age" )</pre>
> spl2 <- splitLexis( spl1, breaks=c(0,1,5,20,100), time.scale="tfi" )
> options( digits=5 )
> spl2[1:10,1:11]
                        tfi lex.dur lex.Cst lex.Xst id sex birthdat contrast
   lex.id
             age
                    per
        1 22.182 1938.8
                         0.000
                                1.00000
                                                                 1916.6
        1 23.182 1939.8
                        1.000
                                4.00000
                                                               1916.6
                                                             2 1916.6
        1 27, 182 1943, 8
                         5.000
                              12.81793
                                                             2 1916.6
        1 40.000 1956.6
                       17.818
                                2.18207
5
                                                             2 1916.6
        1 42.182 1958.8 20.000
                              17, 81793
6
        1 60,000 1976.6 37.818
                                0.17796
                                                             2 1916.6
                                                             2 1927.8
        2 16 063 1943 9
                        0.000
                               1.00000
                                                           2 1927.8
        2 17.063 1944.9
                        1.000
                                2.93703
                                                           2 1927.8
        2 20,000 1947.8
                        3.937
                               1.06297
10
        2 21 063 1948 9
                        5.000 15.00000
                                                                1927.8
```

— and what are covariates for the rates?

Analysis of results

- ▶ d_{pi} events in the variable: lex.Xst: In the model as response: lex.Xst==1
- ▶ y_{pi} risk time: lex.dur (duration): In the model as offset $\log(y)$, $\log(\text{lex.dur})$.
- Covariates are:
 - timescales (age, period, time in study)
 - other variables for this person (constant or assumed constant in each interval).
- Model rates using the covariates in glm:
 - no difference between time-scales and other covariates.

Fitting a simple model

```
> stat.table( contrast.
            list(D = sum(lex.Xst).
                  Y = sum(lex.dur).
               Rate = ratio( lex.Xst, lex.dur, 100 ) ),
            margin = TRUE,
            data = spl2)
                             Rate
contrast
         928.00 20094.74 4.62
          1036.00 31839.35 3.25
Total 1964.00 51934.08 3.78
```

Fitting a simple model

contrast	D	Y	Rate
1 2	020.00	20094.74 31839.35	4.62 3.25

SMR

Bendix Carstensen

Representation of follow-up

IARC, Lyon,

June 2018

http://BendixCarstensen.com/SPE

Cohorts where all are exposed

When there is no comparison group we may ask: Do mortality rates in cohort differ from those of an **external** population, for example:

Rates from:

- Occupational cohorts
- Patient cohorts

compared with reference rates obtained from:

- Population statistics (mortality rates)
- Hospital registers (disease rates)

SMR (SMR) 31/ 41

Cohort rates vs. population rates: RSR

- Additive: $\lambda(a) = \delta(a) + \lambda_P(a)$
- ▶ Note that the survival (since $a = a_0$, say) is:

$$S(a) = \exp\left(\int_{a_0}^a -\delta(a) - \lambda_P(a) da\right)$$
$$= \exp\left(\int_{a_0}^a -\delta(a) da\right) \times S_P(a)$$
$$\Rightarrow r(a) = S(a)/S_P(a) = \exp\left(\int_{a_0}^a -\delta(a) da\right)$$

▶ Additive model for rates ⇔ Relative survival model.

SMR (SMR) 32/41

Cohort rates vs. population rates: SMR

- ▶ Multiplicative: $\lambda(a) = \theta \lambda_P(a)$
- ▶ Cohort rates proportional to reference rates: $\lambda(a) = \theta \times \lambda_P(a)$ θ the same in all age-bands.
- ▶ D_a deaths during Y_a person-years an age-band a gives the likelihood:

$$D_a \log(\lambda(a)) - \lambda(a) Y_a = D_a \log(\theta \lambda_P(a)) - \theta \lambda_P(a) Y_a$$

=
$$D_a \log(\theta) + D_a \log(\lambda_P(a)) - \theta(\lambda_P(a) Y_a)$$

▶ The constant $D_a \log(\lambda_P(a))$ does not involve θ , and so can be dropped.

SMR (SMR) 33/ 41

 $\lambda_P(a) Y_a = E_a$ is the "expected" number of cases in age a, so the log-likelihood contribution from age a is:

$$D_a \log(\theta) - \theta(\lambda_P(a) Y_a) = D_a \log(\theta) - \theta(E_a)$$

- ▶ **Note:** $\lambda_P(a)$ is known for all values of a.
- ► The log-likelihood is similar to the log-likelihood for a rate, except that person-years *Y* is replaced by expected numbers, *E*, so:

$$\hat{\theta} = \frac{D}{\lambda_P Y} = \frac{D}{E} = \frac{\text{Observed}}{\text{Expected}} = \text{SMR}$$

► SMR is the maximum likelihood estimator of the relative mortality in the cohort.

SMR (SMR) 34/ 4

Modelling the SMR in practise

- As for the rates, the SMR can be modelled using individual data.
- ▶ Response is d_i , the event indicator (lex.Xst).
- ▶ log-offset is the expected value for each piece of follow-up, $e_i = y_i \times \lambda_P$ (lex.dur * rate)
- $ightharpoonup \lambda_P$ is the population rate corresponding to the age, period and sex of the follow-up period y_i .

SMR (SMR) 35/41

SMR (SMR) 36/41

SMR (SMR) 37/ 41

Split the data to fit with population data

```
> tha <- splitLexis(thL, time.scale="age", breaks=seq(0,90,5) )
> thap <- splitLexis(tha, time.scale="per", breaks=seq(1938,2038,5) )
> dim( thap )
[1] 23094 21
```

Create variables to fit with the population data

SMR (SMR) 38/ 41

```
> data( gmortDK )
> gmortDK[1:6,1:6]
 agr per sex
                risk
                         dt
                                rt
       38
            1 996019 14079 14.135
   5
       38
            1 802334
                        726
                             0.905
  10
       38
           1 753017
                      600
                             0.797
  15
       38
           1 773393
                       1167
                            1.509
  20
       38
           1 813882
                       2031
                            2.495
  25
       38
            1 789990 1862
                            2.357
> gmortDK$cal <- gmortDK$per+1900</pre>
> #
> thapx <- merge( thap, gmortDK[,c("agr","cal","sex","rt")] )</pre>
> #
> thapx$E <- thapx$lex.dur * thapx$rt / 1000</pre>
```

SMR (SMR) 39/ 41

```
> stat.table( contrast,
            list(D = sum(lex.Xst),
                  Y = sum(lex.dur).
                 E = sum(E)
                SMR = ratio( lex.Xst, E ) ),
             margin = TRUE,
               data = thapx)
contrast
           923.00 20072.53 222.01 4.16
          1036.00 31839.35 473.88 2.19
Total 1959.00 51911.87 695.89 2.82
```

SMR (SMR) 40/ 41

```
contrast
                                      SMR.
            923.00 20072.53 222.01 4.16
           1036.00 31839.35 473.88 2.19
 Total 1959.00 51911.87 695.89 2.82
> m.SMR <- glm( lex.Xst ~ factor(contrast) - 1.
               offset = log(E),
               family = poisson,
                data = thapx)
> round( ci.exp( m.SMR ), 2 )
                exp(Est.) 2.5% 97.5%
factor(contrast)1 4.16 3.90 4.43
factor(contrast)2 2.19 2.06 2.32
```

- Analysis of SMR is like analysis of rates:
- ▶ Replace Y with E that's all!

SMR (SMR) 41/41