Rechenanlagen - Übungsblatt 2

Lukas Vormwald Noah Mehling Gregor Seewald

Übung: Dienstag 14:00

Aufgabe 2.1

- a) R^i ist die Menge aller Knoten, die in einem Radius von i-Verbindungen vom Startknoten aus liegen.
 - \mathbb{R}^* ist die Menge aller Knoten-Tupel die vom Startknoten erreichbar sind.
- b) n = 3, da wenn man von Knoten 7, 8, 9 startet, nur drei Tupel möglich sind: $\{(7,8),(8,9),(9,7)\}$
- c) Diese Relation beschreibt die Tupel, die in der Teilmenge C verbunden sind und die leere Verbindung. Die Menge {(7,8), (8,9), (9,7)} bildet eine Äquivalenzrelation.
 - Reflexivität: Da die leere Verbindung eine Verbindung eines Knotens auf sich selbst definiert ist, ist die Reflexivität gegeben.
 - Transitivität: Aus der Definition von R^i folgt, dass Knoten, die über einen anderen Knoten verbunden sind ebenfalls verbunden sind, somit gilt: $a \to b, b \to c, a \Rightarrow c$
 - Symmetrie: Die angegebene Menge ist ein Ring aus Verbindungen, daher erreicht man über Umwege immer wieder das Ausgangselement.

Aufgabe 2.2

- a) wähle a=01 und b=11. Ohne führende Nullen gelesen ist der Text "11" sowohl als $\ddot{a}a$ " als auch als "b" interpretierbar und somit nicht eindeutig, also auch keine Codierung.
- b) Da 0^x immer 0 ist (für x > 0) ist diese Abbildung immer eine Abbildung auf 0 für $a_0...a_{n-2}$ und somit ebenfalls nicht eindeutig definiert.

Aufgabe 2.3

	kein Verband	nicht distributiv	nicht komplementär	weder distributiv noch komplementär	inf	sup
1.	X				a	e
2.	X	X		X	a	е
3.						

1.
$$c \lor (b \cdot d) = (c \lor b) \cdot (c \lor d)$$

$$c \vee a = a \cdot d$$

 $c = d \Rightarrow$ nicht distributiv.

- e hat kein Komplement, da $inf(e,\bar{e})$ immer \bar{e} ist und nicht $0 \Rightarrow$ nicht komplementär.
- 2. e hat kein Komplement, da $\inf(e,\bar{e})$ immer \bar{e} ist und nicht $0\Rightarrow$ nicht komplementär.
- 3. sup(b,d) existiert nicht \Rightarrow kein Verband