Question Review

ΑII

$$\int \cos(\ln x) dx =$$

- $\frac{x}{2}(\cos \ln x \sin \ln x) + c$
- $\frac{x}{2}(\cos \ln x + \sin \ln x) + c$
- $\frac{x}{2}(\sin \ln x \cos \ln x) + c$
- onone of these

EXPLANATIONS

Report (

57 % were correct!

Using integration by parts,

$$egin{aligned} I &= \int \cos(\ln x) dx = x \cos \ln x + \int \sin \ln x dx \ &= x \cos \ln x + x \sin \ln x - \int \cos \ln x dx \ &= x [\cos \ln x + \sin \ln x] - I \end{aligned}$$

So,

$$I=rac{x}{2}(\cos \ln x + \sin \ln x) + c$$

If a unit vector lies in yz-plane and makes angles of 30^{o} and 60^{o} with the positive y-axis and z-axis respectively, then its components along the co-ordinate axes will be

- $\bigcirc \frac{\sqrt{3}}{2}, 0, \frac{1}{2}$
- $0, \frac{1}{2}, \frac{\sqrt{3}}{2}$

EXPLANATIONS

Report !

65 % were correct!

Let the unit vector be:

 $\hat{u}=mj+nk$ such that $m^2+n^2=1$

[Since the vector makes 90° with X-axis, $l=\cos(\pi/2)=0$]

But by given:

$$m=\cos 30^\circ=rac{\sqrt{3}}{2}$$

$$n=\cos 60^\circ=rac{1}{2}$$

[Since the vector lies in yz- plane, so it will be either $0i+\frac{\sqrt{3}}{2}j+\frac{1}{2}k$ or $0i+\frac{1}{2}j+\frac{\sqrt{3}}{2}k$. But the vector $\frac{\sqrt{3}}{2}j+\frac{1}{2}k$ makes angle 30° with y- axis and that of 60° with z-axis.]

If $an^{-1}x+ an^{-1}y=rac{\pi}{4}$ then:

x + y - xy + 1 = 0

EXPLANATIONS Report !

65 % were correct!

$$an^{-1}x+ an^{-1}y=rac{\pi}{4}$$

$$\Rightarrow an^{-1}igg(rac{x+y}{1-xy}igg) = an^{-1} 1$$

$$\Rightarrow rac{x+y}{1-xy} = 1$$

$$\Rightarrow x + y + xy = 1$$

 $\int_0^{\pi/2} \sqrt{\cos\theta} \sin^3\theta \, d\theta =$

 $\frac{20}{21}$

821

\bigcirc	20
	21

$$-\frac{8}{21}$$

EXPLANATIONS

Report !

67 % were correct!

Let
$$I=\int_0^{\pi/2}\sqrt{\cos heta}\sin^3 heta\;d heta$$

Put $t=\cos heta\Rightarrow dt=-\sin heta\;d heta,$ then

$$I\!=\!-\int_{1}^{0}t^{1/2}(1-t^{2})dt=\int_{0}^{1}(t^{1/2}-t^{5/2})dt$$

$$I$$
 = $\left[rac{2}{3}t^{3/2} - rac{2}{7}t^{7/2}
ight]_0^1 = rac{8}{21}$

 16^{th} term in the expansion of $(\sqrt{x}-\sqrt{y})^{17}$ is

- 136xy⁷
- 136xy
- −136xy¹⁵/2
- \bigcirc -136xy²

EXPLANATIONS

Report !

78 % were correct!

$$egin{align} T_{16} = &^{17} C_{15} (\sqrt{x})^2 (-\sqrt{y})^{15} \ = & -rac{17 imes 16}{2 imes 1} imes xy^{15/2} = -136xy^{15/2} \ \end{array}$$

The angle between the lines represented by the equation $ax^2+xy+by^2=0$ will be 45° , if

- \bigcirc a = 1, b = 6
- $oldsymbol{a} = 1, b = -6$
- \bigcirc a = 6, b = 1
- none of these

EXPLANATIONS

Report !

63 % were correct!

$$an 45^\circ = rac{2 imes\sqrt{rac{1}{4}-ab}}{a+b}$$

$$\Rightarrow (a+b)^2=(1-4ab)\Rightarrow a^2+b^2+6ab-1=0$$

which is obviously satisfied by a=1 and b=-6

The ratio in which the plane x-2y+3z=17 divides the line joining the points (-2, 4, 7) and $(3,-5,\,8)$ is:

- O 10:3
- 3:1
- 3:10
- 0 10:1

EXPLANATIONS

Report (

49 % were correct!

The ratio in which the plane Ax+By+Cz+D=0 divides the join of points (x_1,y_1,z_1) and (x_2,y_2,z_2) is:

$$r=-\left(rac{Ax_1+By_1+Cz_1+D}{Ax_2+By_2+Cz_2+D}
ight)$$

$$\Rightarrow r = -\left(rac{-2-8+21-17}{3+10+24-17}
ight)$$

$$\Rightarrow r = \frac{6}{20}$$

$$\Rightarrow r = 3:10$$

The diagonals of a parallelogram are given by \vec{a} and \vec{b} . The area of the parallelogram is:

- la× d
- \bigcirc 2 $|\vec{a} \times \vec{b}|$
- 1/2|a× d
- 3la× b

EXPLANATIONS Report []

67 % were correct!

With reference to the figure, $ec{b}=ec{c}+ec{d}$ and $ec{a}=ec{d}-ec{c}$

So,
$$|ec{a} imesec{b}|=|(ec{c}+ec{d}^{}) imes(ec{d}^{}-ec{c})|$$

Expanding and making cross product of equal vectors zero,

$$|ec{a} imesec{b}|=2|ec{c} imesec{d}\,|$$

Therefore, the area $= |ec{c} imes ec{d}| = rac{1}{2} |ec{a} imes ec{b}|$

Oxidation state of ` S ' in H_2SO_3

- + 3
- + 6
- 0 + 4
- + 2

<u>Report</u> []

83 % were correct!

 $H_2\overset{*}{S}O_3$

$$+2+x-2 imes 3=0$$

$$x = 6 - 2 = +4$$
.

The shape of 2p orbital is

- Spherical
- Ellipsoidal
- Dumb-bell
- Pyramidal

EXPLANATIONS Report !

83 % were correct!

The shape of 2p orbital is dumb-bell.

Nitrogen atom has an atomic number of 7 and oxygen has an atomic number 8. The total number of electrons in a nitrate ion will be
○ 8
O 16
○ 32
O 64
EXPLANATIONS Report (!)
Number of electrons in nitrogen = 7 and number of electron is oxygen = 8 we know that formula of nitrate ion is NO_3^- we also know that number of electron = (1 × Number of electrons in nitrogen) + (3 × number of electrons in oxygen) + 1 = (1 × 7) + (3 × 8) + 1 = 32.
Laughing gas is prepared by heating
O NH4CI
○ (NH4) ₂ SO ₄
○ NH ← NaNO3
ONH4NO3
EXPLANATIONS Report (
$NH_4NO_3 \stackrel{ m heat}{\longrightarrow} N_2O + 2H_2O$
The simplest formula of a compound containing 50% of element X (atomic mass 10) and 50% of element Y (atomic mass 20) is
O XY
○ XY3
○ X 2Y3

EXPLANATIONS Report !

71 % were correct!

Element	%(a)	At Wt(b)	a/b	Ratio
Х	50	10	5	2
Υ	50	20	2.5	1

SIMPLEST FORMULA = X_2Y

1.12 *ml* of a gas is produced at STP by the action of 4.12 *mg* of alcohol, with methyl magnesium iodide. The molecular mass of alcohol is

- O 16.0
- 41.2
- 0 82.4
- O 156.0

EXPLANATIONS Report !

54 % were correct!

$$ROH + CH_3MgI
ightarrow CH_4 + Mg egin{array}{c} OR \ I \ & 1 mol = 22400 \ cc \end{array}$$

1.12 mL is obtained from 4.12 mg

.:.22400 will be obtained from

$$rac{4.12}{1.12} imes 22400\,mg = 84.2\,g$$

At 90^oC pure water has $[H_3O^+]=10^{-6}\,M,$ the value of K_w at this temperature will be

- 0.10^{-6}
- o 10⁻¹²
- 0.10^{-14}
- 0.10^{-8}

Report (!) **EXPLANATIONS**

60 % were correct!

For pure water $[H^+]=[OH^-]$

$$K_w = [H^+][OH^-]$$

$$\therefore \, K_w = 10^{-12}$$

An electrolytic cell contains a solution of Ag_2SO_4 and have platinum electrodes. A current is
passed until 1.6 gm of O_2 has been liberated at anode. The amount of silver deposited at
cathode would be

- O 107.88 gm
- 1.6 gm
- 0.8 gm
- o 21.60 gm

EXPLANATIONS Report !

44 % were correct!

At cathode: $Ag^+ + e^- o Ag$

At Anode: $2OH^- o H_2O+rac{1}{2}O_2+2e^-$

$$E_{Ag}=rac{108}{1}=108;\; E_{O_2}=rac{rac{1}{2} imes 32}{2}=8 \ rac{W_{Ag}}{E_{Ag}}=rac{W_{O_2}}{E_{O_2}} \ W_{Ag}=rac{1.6 imes 108}{8}=21.6\; gm.$$

You disqualified from the competition if you don't do better.

- would be
- would have been
- will be
- O were

EXPLANATIONS Report !

77 % were correct!

Here, the 'if' clause' is in simple present. Then, the pattern is:

if-clause: simple present

result-clause: simple present/ simple future

So, 'are/will be' is the correct answer.

0	saw	
0	had seen	
0	have seen	
0	had been seeing	
'Sh	ne was writing a poem.'	
Th	e corresponding passive voice is:	
0	A poem was writing by her.	
0	A poem was writing by she.	
0	A poem was being written by her.	
0	A poen had been written by her.	
PLA	NATIONS Repo	<u>rt</u> (!
	% were correct! e correct pattern is:	
	tive: Subject + verb + object.	
Pas	ssive: Object + be-verb + past participle (v_3) + by subject.	
The	e tense and the aspect should be unchanged. That means the past continuous tense should be maintained.	
	skin is a sensitive organ.	
0	A	
0	An	
0	The	
0	None	