

FÍSICA NIVEL MEDIO PRUEBA 2	Nombre					
	Número	Número				
Viernes 10 de noviembre del 2000 (tarde)						
1 hora						

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su nombre, apellido(s) y número de alumno en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: Conteste toda la sección A en los espacios provistos.
- Sección B: Conteste una pregunta de la sección B en los espacios provistos.
- Cuando termine el examen, indique en la casilla de abajo el número de la pregunta de la sección B que ha contestado.

PREGUNTAS CONTESTADAS		EXAMINADOR	LÍDER DE EQUIPO	IBCA
SECCIÓN A TODAS		/25	/25	/25
SECCIÓN B		/25	/25	/25
		TOTAL /50	TOTAL /50	TOTAL /50

880-242 20 páginas

Página en blanco

SECCIÓN A

Los alumnos deben contestar todas las preguntas utilizando los espacios provistos.

A1. Órbitas planetarias: análisis gráfico

La figura abajo muestra las órbitas de los cuatro planetas situados más adentro alrededor del sol, con la órbita de Júpiter más alejada.

Órbitas de los cuatro planetas situados más adentro (no está a escala)

Órbita de Júpiter

Kepler trabajó durante muchos años para hallar la relación entre los movimientos de los planetas, examinando posibles combinaciones de los factores que podrían estar implicados. Finalmente en 1619 publicó su tercera ley, estableciendo que los cuadrados de los periodos orbitales T son proporcionales a los cubos de las distancias medias R del sol. Es decir, $T^2 = kR^3$, donde k es una constante. Para comprobar si es válida esta relación podemos representar T^2 en función de R^3 . Los datos para los planetas situados más adentro se hallan representados en la siguiente página.

(Esta pregunta continúa en la siguiente página)

(Pregunta A1 continuación)

	son consecuentes con la relación propuesta por Kepler, o no? Explicar.	[1]
(b)	A partir del gráfico, determinar el valor de la constante k en la relación de Kepler. Incluir las unidades.	[2]
(c)	Júpiter, el primero de los planetas <i>más lejanos</i> , tiene un periodo observado de casi 12 años. Determinar su distancia media desde el sol.	[3]

A2. Levantamiento de un contenedor

Un contenedor de 2000 kg de masa se iza por una grúa accionada eléctricamente como se indica en la **Figura 1**, con el fin de cargarlo a un barco. Inicialmente el contenedor es acelerado hacia arriba brevemente, después de lo cual se iza a una velocidad constante.

	S	Sistema físico	Diagrama de cuerpo libre	Diagrama de cuerpo libre	
]				
			Acelerando hacia arriba	Moviéndose hacia arriba a velocidad constante	
		Figura 1	Figura 2	Figura 3	
(a)	ident de ve	tificando las fuerzas que	actúan sobre el contenedor du zar vectores más largos para fue	erza de cuerpo libre indicando e rante las etapas de aceleración y erzas mayores. Indicar cuál es el	[3]
(b)				000 N. Determinar el máximo	[2]
(c)	-	pués de la aceleración i tante hacia arriba de 0,5		el contenedor a una velocidad	
	(i)	Calcular la potencia de	salida de la grúa durante esta et	apa.	[2]
	(ii)		a grúa funciona a 400 V. Suporriente que pasa por el motor du	oniendo que no haya pérdidas de rante la elevación.	[2]
	(iii)		dor alcanza una altura suficient a energía eléctrica suministrada	te para ser cargado en el barco. al motor?	[1]

A3. Circuito eléctrico

Esta pregunta implica razonamiento físico y cálculos para los circuitos eléctricos.

Las bombillas eléctricas están marcadas con valores de 10 V; 3 W. Supóngase que se conectan tres de las bombillas en serie con un interruptor y una pila de 30 V como se indica en la **Figura 1** abajo. El interruptor **S** está abierto inicialmente.

(a)	primero, porque los electrones del terminal negativo de la pila la alcanzarán primero, y luego continuará encendiendo las bombillas B y A en sucesión. ¿Son esta predicción y razonamiento correctos? ¿Cómo contestaría usted?	[2]
(b)	Exponer cómo se compara uno con otro el brillo de las tres bombillas en el circuito.	[1]

(Pregunta A3 continuación)

(c) El estudiante conecta ahora una cuarta bombilla **D** a través de la bombilla **B** como se indica en la **Figura 2** abajo.

Figura 2

	Cuando conecta D , ¿qué le pasará al brillo de las bombillas A , B y C ? Explicar el razonamiento.	[3]
(d)	Suponiendo que la resistencia de las bombillas permanece constante, calcular la potencia de salida de la bombilla ${\bf B}$ en el circuito modificado en la Figura 2.	[3]

SECCIÓN B

Esta sección consta de cuatro preguntas: B1, B2, y B3. Conteste una pregunta de esta sección.

- **B1.** Esta pregunta tiene **dos** partes. **La Parte 1** es sobre un choque y la **Parte 2** es sobre batidos. Conteste **ambas** partes si elige **B1**.
 - Parte 1. Choque entre un coche y un camión

Un coche y un camión están ambos viajando a la velocidad límite de $60 \text{ km}\,\text{h}^{-1}$ pero en sentido opuesto según se indica. El camión tiene una masa **doble** que la del coche.

Los vehículos chocan de frente y se pegan uno con otro.

(a)	Durante el choque, ¿cómo se compara la fuerza ejercida por el coche sobre el camión con la fuerza ejercida por el camión sobre el coche? Explicar.	[2]
(b)	¿En qué sentido se moverán los vehículos pegados después del choque o permanecerán estacionarios? Basar la respuesta, refiriéndose a un principio físico.	[2]
(c)	Determinar la velocidad (en $\mathrm{km}\mathrm{h}^{-1}$) de los restos combinados inmediatamente después del choque.	[3]

(Pregunta B1 Parte 1 continuación)

(d)	¿Cómo se compara la aceleración del coche con la aceleración del camión durante el choque? Explicar.						
(e)	Ambos conductores llevan puestos los cinturones de seguridad. ¿Cuál de los conductores será más afectado por el choque? Explicar.	[2]					
(f)	La energía cinética total del sistema disminuye como resultado del choque. ¿Se viola el principio de conservación de la energía? Explicar.	[1]					

(Esta pregunta continúa en la siguiente página)

(Pregunta B1 continuación)

Parte 2. Batidos

Esta	pregunta	es	sobre	la	formación	de	batidos	en	ondas	sonoras.
------	----------	----	-------	----	-----------	----	---------	----	-------	----------

(a)	Enunciar el principio de la superposición lineal aplicado a las ondas.							

Dos diapasones $\bf A$ y $\bf B$ de frecuencias ligeramente distintas, suenan simultáneamente, produciendo ondas sonoras de la misma amplitud. La figura de abajo muestra la perturbación en un punto determinado en el aire, en función del tiempo para cada uno de los diapasones por separado, y la perturbación resultante $\bf C$.

(b) Tres puntos en la forma de onda resultante están identificados **P**, **Q** y **R**. Para **cada uno** de estos puntos, comprobar si la forma de onda resultante **C** dibujada es correcta, refiriéndose a las dos ondas componentes. Justificar la respuesta en cada caso. [3]

Punto P :	
Punto Q :	
Punto R :	

1	Pregunta I	B1 Pa	arte 2	continua	ıción)
١	1 . 0 8			Continue	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(c)	Utilizar el diagrama para determinar								
	(i)	las frecuencias de A y B;	[2]						
		A :							
		B:							
	(ii)	la frecuencia de batido.	[2]						
(d)	(i)	Los batidos a esta frecuencia no podrían realmente percibirse como batidos por el oído humano. Explicar por qué no.	[1]						
	(ii)	Con el fin de que los batidos puedan percibirse como tales por el oído, ¿tendría que ser la diferencia en frecuencia entre A y B mayor o menor que en el caso anterior?	[1]						
(e)		licar el uso que podría hacerse de los batidos para sintonizar una cuerda de guitarra con liapasón.	[2]						

B2. Esta pregunta tiene **dos** partes. La **Parte 1** es sobre una piedra que se lanza hacia arriba y la **Parte 2** es acerca de la dispersión de Rutherford. Contestar **ambas** partes si se elige **B2**.

Parte 1. Piedra lanzada hacia arriba desde un acantilado

Una piedra se lanza casi verticalmente hacia arriba a 20 m s⁻¹ desde el borde de un acantilado según se indica. Finalmente aterriza en el suelo en la base del acantilado. El diagrama de la sucesión de abajo muestra la posición de la piedra a intervalos de un segundo. La Imagen 0 es justo después del lanzamiento, y la Imagen 5 es justo antes de aterrizar. Se supone que la aceleración gravitatoria es 10 m s⁻² y se desprecia la resistencia del aire.

(Pregunta B2 Parte 1 continuación)

(a)	Decir siguie				ació	n de	e la j	pied	ra e	s ha	cia	ar.	rib	a, l	hac	ia a	aba	jo	0 (cer	o, e	n c	ada	unc	de lo	os
	(i)	cuai	ndo	la pi	edra	a est	á en	su c	ami	no h	aci	ia a	rri	ba												
	(ii)	cuai	ndo	la pi	edra	ı est	á en	su c	ami	no h	aci	ia a	bą	jo												•
	(iii)	cuai	ndo	la pi	edra	ı est	á en	lo n	nás a	alto	de	su 1	tray	ec	tor	ia										. [3]
(b)	Dibuj instar Presta misme	n tán ir es	ea peci	en es ial at	sa e enc	tapa ión	del al se	mov ntid	vimi o y]	ento).	El '	vec	tor	· er	ı la	pc	sic	iór	1 0	se	hal	la y	a di	bujad	Э.
(c)	Dibuj Identi hacia	fica	r en	la g	ráfic	ca la	is eta	apas	que	e rep	res	sent	an	m	ovi	mi	ent									
		30	П											П		H		H		H						
		20																								
		10																								
v/n	$1 \mathrm{s}^{-1}$	0				1		7	2			3				4				5			6	t/s	8	
	_	-10																								
	_	-20																								
	_	-30	Ш																			Н				
(d)	¿Qué	repr	eseı	nta e	l gra	adie	nte d	el g	ráfic	eo?																[1]
(e)	Deter	mina	ar la	altu	ra d	el a	canti	lado																		[3]
													· • •													
									• • •			• • •	••									••				

(Esta pregunta continúa en la siguiente página)

(Pregunta B2 continuación)

Parte 2. La dispersión de Rutherford y una reacción nuclear

En 1911 Geiger y Marsden bombardearon una fina lámina de oro con partículas alfa desde una fuente radiactiva.

(a)	Basándose en las ideas sobre los átomos en aquel tiempo, los físicos habían esperado que las partículas alfa irían a través de los átomos en la lámina con una deflexión muy pequeña. Se quedaron asombrados de que algunas partículas alfa fueran dispersadas casi completamente hacia atrás. ¿Qué dedujo de esto Rutherford acerca de la estructura del átomo? Explicar.	[2]

El diagrama de abajo muestra cuatro partículas alfa que se aproximan a un núcleo de oro. Se muestra la trayectoria desviada de una de ellas (α_2) . Suponer que puede despreciarse cualquier retroceso del núcleo de oro.

(b)	Dibujar la fuerza(s) que actúan sobre la partícula α_2 cuando está en las posiciones	
	identificadas, k, l y m. Sus vectores fuerza deberán tener las debidas longitudes relativas,	
	considerando que los puntos k y m están a una distancia del núcleo doble que la de l. Indique	[2]
	la fuente de cualquier fuerza representada.	[2]

[2]

(Pregunta B2 Parte 2 continuación)

números atómicos y de masa.

(c)	A medida que α_2 sigue la trayectoria indicada, describir lo que sucede a su energía potencial eléctrica, la energía cinética y la energía total. La energía de retroceso del núcleo de oro es despreciable.	[2]
(d)	En el diagrama, dibujar las trayectorias aproximadas de las partículas alfa identificadas por α_1 , α_3 y α_4 . Justificar las trayectorias dibujadas.	[4]
(e)	Para núcleos de número atómico más bajo, las partículas alfa pueden alcanzar el núcleo y puede tener lugar una reacción nuclear. Así cuando las partículas alfa bombardean el elemento ligero berilio, se producen neutrones.	

 ${}^{9}_{4}\text{Be} + \text{He} = \text{n} +$

Completar la ecuación para la reacción del berilio con una partícula alfa. Incluir todos los

[3]

В3.	Esta pregunta tiene tres partes. La Parte 1 es sobre la mezcla de hielo y agua, la Parte 2 es sobre los procesos de carga y la Parte 3 es sobre la inducción electromagnética. Hay que contestar las tres partes si se elige B3 .							
	Part	te 1. Mezcla de hielo y agua						
	2 kg	de hielo de una congeladora a -15°C	C se mezclan con 10 kg de agua a 30°C.					
	(a)	Determinar la temperatura final de de energía al entorno son desprecia	la mezcla después de alcanzar el equilibrio. Las pérdidas bles.	[4]				
		Datos:						
		Calor específico del hielo: Calor específico del agua Calor latente de fusión del hielo:	$2,1\times10^{3} \text{ J kg}^{-1} {}^{\circ}\text{C}^{-1}$ $4,2\times10^{3} \text{ J kg}^{-1} {}^{\circ}\text{C}^{-1}$ $3,4\times10^{5} \text{ J kg}^{-1}$					
	(b)	En la etapa del proceso mientras s	se funde el hielo, absorbe energía pero su temperatura no					

b)	En la etapa del proceso mientras se funde el hielo, absorbe energía pero su temperatura no aumenta. Justificar, desde el punto de vista molecular, cómo puede ser esto consecuente con el principio de conservación de la energía. Decir qué se ha hecho de la energía absorbida.

(Pregunta B3 continuación)

Parte 2. Procesos de carga

Esta pregunta es sobre dos procesos de carga electrostáticos.

(a)		varilla de goma R está originalmente descarga la se hace positiva. Explicar brevemente cómo la.		<u> </u>	[1]
(b)	metá	ra deseamos utilizar la varilla de goma cargada lica por inducción electrostática. Los diagram eso. Para cada paso, decir lo que ocurre y dibuj lica.	as de abajo n	nuestran los pasos en el	[4]
				Varilla metálica	
	(i)	Se acerca la varilla de goma cargada a la (varilla metálica.	+ + + + +		
	(ii)	Se conecta a tierra la varilla metálica.	+ + + +		
			++		
				Tierra	
	(iii)	Se quita la conexión a tierra.	++		
			++		
	(iv)	Se quita la varilla de goma.			

(Esta pregunta continúa en la siguiente página)

(Pregunta B3 Parte 2 continuación)

(c)	La varilla de goma cargada puede continuar utilizándose para cargar por inducción otras varillas metálicas. ¿Cómo puede ser esto consecuente con el principio de conservación de la carga? Justificar la respuesta, teniendo en cuenta toda la carga antes y después del proceso.	[2]

[1]

(Pregunta B3 continuación)

Parte 3. Inducción electromagnética.

Un avión a reacción vuela con una velocidad v en ángulo recto al campo magnético de la Tierra B cerca del polo norte de la Tierra, como se muestra en la vista plana abajo. La envergadura del avión (distancia entre las puntas del ala) es L. Las puntas de las alas están identificadas por P (babor) y S (estribor).

- (a) Considérese un electrón de magnitud de carga e en el ala metálica del avión, en el punto indicado con un punto negro en la figura.
 - (i) ¿En qué dirección experimentará este electrón una fuerza magnética debida a su movimiento en el campo magnético? Dibujar un vector en la figura para representar la fuerza.

(ii) Dar una expresión para el módulo de la fuerza sobre el electrón en esta situación. [1]

.....

(Esta pregunta continúa en la siguiente página)

(Pregunta B3 Parte 3 continuación)

(b)	Mientras el avión va volando a velocidad constante en el campo magnético, los electrones en el ala experimentan esta fuerza magnética pero no se mueven a lo largo del ala; dicho movimiento es opuesto por un campo <i>eléctrico</i> que se origina en el ala.									
	(i)	Explicar cómo se origina este campo eléctrico, y dibujar un vector en la figura para mostrar su sentido.	[2]							
	(ii)	Explicar por qué la fuerza eléctrica sobre el electrón es exactamente igual a la fuerza magnética, en esta situación. (Consejo: imagine que este no fuera el caso y considere lo que ocurriría a continuación).	[2]							
(c)	Den	nostrar que el módulo del campo eléctrico producido en el ala está dada por $E = vB$.	[1]							
(d)		cular la magnitud del campo eléctrico cuando el avión vuela a $200~{\rm ms^{-1}}~(720~{\rm kmhr^{-1}})$ en ampo de la Tierra de $8\times10^{-5}{\rm T}$ cerca del polo.	[1]							
(e)	įΑ,	parecería también el efecto si el avión volase próximo al ecuador? Explicar.	[1]							
(f)	-	brá también una diferencia de potencial entre el <i>morro</i> y la <i>cola</i> del avión? Explicar por o por qué no.	[2]							