Hierarchical Classification via Orthogonal Transfer

Dengyong Zhou, Lin Xiao and Mingrui Wu

Microsoft Research

NIPS Workshop on Optimization for Machine Learning December 10, 2010

Hierarchical classification

- multi-class classification with hierarchical structure
 - set of labels $\mathcal{Y} = \{1, 2, \dots, L\}$ organized as category tree
 - training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i \in \mathbf{R}^n$, $y \in \mathcal{Y}$
 - need to learn classification function $f: \mathbf{R}^n \to \mathcal{Y}$

Flat multi-class SVM

- ignoring hierarchical structure, only consider leaf categories
- multi-class SVM (Weston & Watkins, 1999; Crammer & Singer, 2001)

$$\begin{split} & \text{minimize} & & \frac{1}{2} \sum_{v \in \mathcal{L}} \|\mathbf{w}_v\|^2 + \frac{C}{m} \sum_{i=1}^m \xi_i \\ & \text{subject to} & & \mathbf{w}_{y_i}^T \mathbf{x}_i - \mathbf{w}_v^T \mathbf{x}_i \geq 1 - \xi_i, \ \forall \ v \neq y_i, \ \forall \ i = 1, \dots, m \end{split}$$

Exploiting hierarchical structure

- question: can we improve accuracy using hierarchical structure?
- previous work
 - decomposition: solve separate, independent multi-class SVMs at each non-leaf node (Koller and Sahami, 1997; Weigend, Wiener and Pedersen, 1999; Dumais and Chen, 2000)
 - hierarchy-induced regularization: force classifiers at adjacent nodes to be similar (McCallum, Rosenfeld, Mitchell and Ng, 1998; Cai and Hofmann, 2004; Evgeniou, Micchelli and Pontil, 2005)
 - tree-induced loss: penalize classification errors between two classes by amounts proportional to their graph distance (Cai and Hofmann, 2004; Dekel, Keshet and Singer, 2004)

– ...

Exploiting hierarchical structure

- question: can we improve accuracy using hierarchical structure?
- previous work
 - decomposition: solve separate, independent multi-class SVMs at each non-leaf node (Koller and Sahami, 1997; Weigend, Wiener and Pedersen, 1999; Dumais and Chen, 2000)
 - hierarchy-induced regularization: force classifiers at adjacent nodes to be similar (McCallum, Rosenfeld, Mitchell and Ng, 1998; Cai and Hofmann, 2004; Evgeniou, Micchelli and Pontil, 2005)
 - tree-induced loss: penalize classification errors between two classes by amounts proportional to their graph distance (Cai and Hofmann, 2004; Dekel, Keshet and Singer, 2004)

– ...

none could really outperform flat multi-class SVM in accuracy

Key observation

- classification at different levels of hierarchy may rely on
 - very different features
 - different combinations of same features

Key observation

- classification at different levels of hierarchy may rely on
 - very different features
 - different combinations of same features
- idea: make classifiers at different levels different (orthogonal)

Outline

- hierarchical SVM with orthogonal transfer
- a sufficient condition for convexity
- · optimization algorithm: regularized dual averaging method
- preliminary experiments

Problem setting

- some tree notations
 - C(v): set of children of v
 - S(v): set of siblings of v
 - $\mathcal{A}(v)$: set of ancestors of v
 - $\mathcal{A}^+(v) = \mathcal{A}(v) \cup \{v\}$
 - $\mathcal{D}(v)$: set of descendants of v
 - $\mathcal{D}^+(v) = \mathcal{D}(v) \cup \{v\}$

Problem setting

- some tree notations
 - C(v): set of children of v
 - S(v): set of siblings of v
 - $\mathcal{A}(v)$: set of ancestors of v
 - $\mathcal{A}^+(v) = \mathcal{A}(v) \cup \{v\}$
 - $\mathcal{D}(v)$: set of descendants of v
 - $\mathcal{D}^+(v) = \mathcal{D}(v) \cup \{v\}$

recursive classifier

$$f(\mathbf{x}) = \left\{ \begin{array}{l} \textbf{initialize } v := 0 \\ \textbf{while } \mathcal{C}(v) \text{ is not empty} \\ v := \underset{u \in \mathcal{C}(v)}{\operatorname{argmax}} \ \mathbf{w}_{u}^{\top} \mathbf{x} \\ \mathbf{return } v \end{array} \right\}$$

Hierarchical SVM with Orthogonal Transfer

idea: make normal vectors of hyperplanes **orthogonal** to those at its ancestors as much as possible

$$\begin{aligned} & \text{minimize} & & \frac{1}{2} \sum_{v \in \mathcal{Y}} k(v, v) \|\mathbf{w}_v\|^2 + \sum_{v \in \mathcal{Y}} \sum_{u \in \mathcal{A}(v)} k(u, v) |\mathbf{w}_u^\top \mathbf{w}_v| + \frac{C}{m} \sum_{i=1}^m \xi_i \\ & \text{subject to} & & \mathbf{w}_v^\top \mathbf{x}_i - \mathbf{w}_u^\top \mathbf{x}_i \geq 1 - \xi_i, \ \forall \ u \in \mathcal{S}(v), \ \forall \ v \in \mathcal{A}^+(y_i), \\ & & \xi_i \geq 0, \quad i = 1, \dots, m \end{aligned}$$

- penalizing $|\mathbf{w}_u^T \mathbf{w}_v|$ encourages orthogonality
- $k(u, v) \ge 0$ are given parameters
- (x_i, y_i) used for discriminating y_i and its ancestors from their own siblings
- classifiers that are not siblings never appear in same constraint

A sufficient condition for convexity

it suffices to establish convexity of

$$\Omega(\mathbf{w}) = \sum_{v \in \mathcal{Y}} k(v, v) \|\mathbf{w}_v\|^2 + \sum_{u \neq v} k(u, v) |\mathbf{w}_u^\top \mathbf{w}_v|$$

• Theorem. If the symmetric matrix \bar{k} defined by

$$\bar{k}(u,v) = \begin{cases} k(v,v) & \text{if } u = v, \\ -|k(u,v)| & \text{otherwise} \end{cases}$$

is positive semidefinite, then $\Omega(\mathbf{w})$ is convex

- for example, $\Omega(\mathbf{w})$ convex if k(u, v) is diagonally dominant
- $\Omega(\mathbf{w})$ strictly convex if \bar{k} positive definite

A sufficient condition for convexity

proof idea: directly use definition of convexity

• for any two vectors $\mathbf{s},\mathbf{t}\in\mathbf{R}^{nL}$ and any $lpha\in[0,1]$,

$$\alpha\Omega(\mathbf{s}) + (1 - \alpha)\Omega(\mathbf{t}) - \Omega(\alpha\mathbf{s} + (1 - \alpha)\mathbf{t})$$

$$\geq \dots$$

$$\geq \alpha(1 - \alpha)\left(\sum_{u} k(u, u) \|\mathbf{s}_{u} - \mathbf{t}_{u}\|^{2} - \sum_{u \neq v} k(u, v) \|\mathbf{s}_{u} - \mathbf{t}_{u}\| \|\mathbf{s}_{v} - \mathbf{t}_{v}\|\right)$$

$$= \alpha(1 - \alpha)\sum_{u, v} \bar{k}(u, v) \|\mathbf{s}_{u} - \mathbf{t}_{u}\| \|\mathbf{s}_{v} - \mathbf{t}_{v}\|$$

$$\geq 0$$

• in fact, we only need \bar{k} to be *copositive*

Representer theorem

• Theorem. If \bar{k} is positive definite, then the solution admits a representation of the form

$$\mathbf{w}_{v} = \sum_{i=1}^{m} c_{vi} \mathbf{x}_{i}, \qquad \forall \, v \in \mathcal{Y}$$

 possible to extend in more general reproducing kernel Hilbert space (RKHS) with nonlinear classifiers

How to solve it efficiently?

hierarchical SVM with orthogonal transfer

minimize
$$\frac{1}{2} \sum_{v \in \mathcal{Y}} k(v, v) \|\mathbf{w}_v\|^2 + \sum_{v \in \mathcal{Y}} \sum_{u \in \mathcal{A}(v)} k(u, v) |\mathbf{w}_u^\top \mathbf{w}_v| + \frac{C}{m} \sum_{i=1}^m \xi_i$$
 subject to
$$\mathbf{w}_v^\top \mathbf{x}_i - \mathbf{w}_u^\top \mathbf{x}_i \ge 1 - \xi_i, \ \forall \ u \in \mathcal{S}(v), \ \forall \ v \in \mathcal{A}^+(y_i),$$

$$\xi_i > 0, \quad i = 1, \dots, m.$$

How to solve it efficiently?

hierarchical SVM with orthogonal transfer

minimize
$$\frac{1}{2} \sum_{v \in \mathcal{Y}} k(v, v) \|\mathbf{w}_v\|^2 + \sum_{v \in \mathcal{Y}} \sum_{u \in \mathcal{A}(v)} k(u, v) |\mathbf{w}_u^\top \mathbf{w}_v| + \frac{C}{m} \sum_{i=1}^m \xi_i$$
 subject to
$$\mathbf{w}_v^\top \mathbf{x}_i - \mathbf{w}_u^\top \mathbf{x}_i \ge 1 - \xi_i, \ \forall \ u \in \mathcal{S}(v), \ \forall \ v \in \mathcal{A}^+(y_i),$$

$$\xi_i \ge 0, \quad i = 1, \dots, m.$$

an equivalent unconstrained optimization problem

$$\begin{aligned} & \underset{\mathbf{w} \in \mathbf{R}^{nL}}{\text{minimize}} & & & \frac{1}{2} \sum_{v \in V} k(v, v) \|\mathbf{w}_v\|^2 + \sum_{v \in V} \sum_{u \in A(v)} k(u, v) |\mathbf{w}_u^T \mathbf{w}_v| \\ & & & + \frac{C}{m} \sum_{i=1}^m \max \left\{ 0, \max_{u \in S(v), v \in A^+(y_i)} \left\{ 1 - \mathbf{w}_v^T \mathbf{x}_i + \mathbf{w}_u^T \mathbf{x}_i \right\} \right\} \end{aligned}$$

Splitting objective function

define

$$J(\mathbf{w}) \triangleq \frac{1}{2} \sum_{v \in V} k(v, v) \|\mathbf{w}_v\|^2 + \sum_{v \in V} \sum_{u \in A(v)} k(u, v) |\mathbf{w}_u^T \mathbf{w}_v| + \cdots$$

- assume \bar{k} positive definite, and $\lambda_{\min}(\bar{k})$ is smallest eigenvalue
- split as $J(\mathbf{w}) = \phi(\mathbf{w}) + \Psi(\mathbf{w})$

$$\phi(\mathbf{w}) = \frac{1}{2} \sum_{v \in \mathcal{Y}} (k(v, v) - \lambda_{\min}) \|\mathbf{w}_v\|^2 + \sum_{v \in V} \sum_{u \in A(v)} k(u, v) |\mathbf{w}_u^T \mathbf{w}_v| + \cdots$$

$$\Psi(\mathbf{w}) = \frac{\lambda_{\min}}{2} \sum_{v \in \mathcal{V}} \|\mathbf{w}_v\|^2 = \frac{\lambda_{\min}}{2} \|\mathbf{w}\|^2$$

Optimization of composite objective

consider generic optimization problem

$$\underset{\mathbf{w} \in \mathcal{W}}{\mathsf{minimize}} \quad J(\mathbf{w}) = \phi(\mathbf{w}) + \Psi(\mathbf{w})$$

- ϕ convex, possibly nonsmooth
- ullet Ψ strongly convex with convexity parameter σ
- Ψ simple: given g, it is easy to solve

$$\underset{\mathbf{w} \in \mathcal{W}}{\mathsf{minimize}} \quad \langle \mathbf{g}, \mathbf{w} \rangle + \Psi(\mathbf{w})$$

if **g** is subgradient of ϕ , this also gives a lower bound of $J(\mathbf{w}^*)$

Regularized dual averaging method

input:
$$\epsilon>0$$
 initialize: $t=1$, $\mathbf{w}(1)=0$, $\mathbf{\bar{g}}(0)=0$, $\overline{J}(1)=C$, $\underline{J}(1)=0$ repeat

- 1. compute $\mathbf{g}(t) \in \partial \phi(\mathbf{w}(t))$, and $\bar{\mathbf{g}}(t) = \frac{t-1}{t}\bar{\mathbf{g}}(t-1) + \frac{1}{t}\mathbf{g}(t)$
- 2. compute $\mathbf{w}(t+1) = \underset{\mathbf{w} \in \mathcal{W}}{\operatorname{argmin}} \left\{ \bar{\mathbf{g}}(t)^{\top} \mathbf{w} + \Psi(\mathbf{w}) \right\}$
- 3. update upper bound $\overline{J}(t+1)$ and lower bound $\underline{J}(t+1)$

until
$$\overline{J}(t+1) - \underline{J}(t+1) \leq \epsilon$$

Regularized dual averaging method

input:
$$\epsilon > 0$$
 initialize: $t = 1$, $\mathbf{w}(1) = 0$, $\mathbf{\bar{g}}(0) = 0$, $\mathbf{\bar{J}}(1) = C$, $\mathbf{\underline{J}}(1) = 0$ repeat

- 1. compute $\mathbf{g}(t) \in \partial \phi(\mathbf{w}(t))$, and $\bar{\mathbf{g}}(t) = \frac{t-1}{t}\bar{\mathbf{g}}(t-1) + \frac{1}{t}\mathbf{g}(t)$
- 2. compute $\mathbf{w}(t+1) = \underset{\mathbf{w} \in \mathcal{W}}{\operatorname{argmin}} \left\{ \bar{\mathbf{g}}(t)^{\top} \mathbf{w} + \Psi(\mathbf{w}) \right\}$
- 3. update upper bound $\overline{J}(t+1)$ and lower bound $\underline{J}(t+1)$

until
$$\overline{J}(t+1) - \underline{J}(t+1) \leq \epsilon$$

- extends Nesterov (2005) to strongly convex functions
- iteration complexity: $O(\ln(t)/t)$ (c.f. Pegasos by Shalev-Shwartz, Singer and Srebro, 2007)

Preliminary experiments

- text categorization data sets:
 - RCV1-v2 (Lewis, Yang, Rose and Li, 2004)
 - 20-newsgroups
- all formulations solved by regularized dual average method
- classification error rates on testing sets (average performance over 50 rounds of random splitting of training/testing datasets)

Methods	MACT	CCAT	ECAT	20-news
Flat Multiclass SVM	$5.26(\pm0.20)$	$21.49(\pm0.27)$	$11.85(\pm0.29)$	$11.50(\pm 0.50)$
Hier. Multiclass SVM	$4.87(\pm0.18)$	$21.48(\pm 0.31)$	$12.09(\pm 0.34)$	$11.37(\pm 0.49)$
Hier. Multitask SVM	$4.73(\pm0.18)$	$21.99(\pm 0.32)$	$12.05(\pm0.33)$	$11.36(\pm0.48)$
Hier. SVM (path loss)	$13.55(\pm0.60)$	$26.48(\pm0.42)$	$15.40(\pm0.43)$	$33.22(\pm 1.14)$
Hier. SVM (0/1 loss)	$6.65(\pm0.22)$	$22.21(\pm 0.31)$	$13.01(\pm 0.32)$	$11.95(\pm 0.54)$
Orthogonal Transfer	3.03(±0.13)	$17.53(\pm 0.55)$	$10.01(\pm 0.28)$	$11.19(\pm 0.46)$

Summary

- hierarchical classification via orthogonal transfer
 - key observation: classification at different levels often rely on different features, or different combinations of same features
 - convexity condition for orthogonality regularization
 - preliminary experiments very promising

Summary

- hierarchical classification via orthogonal transfer
 - key observation: classification at different levels often rely on different features, or different combinations of same features
 - convexity condition for orthogonality regularization
 - preliminary experiments very promising
- results of independent interests:
 - optimizing for orthogonality

$$\begin{array}{ll}
\text{minimize} \\
(\mathbf{w}_1, ..., \mathbf{w}_m) \in \mathcal{W}
\end{array} \quad \sum_{i, j} k_{ij} |\mathbf{w}_i^T \mathbf{w}_j|$$

new variant of regularized dual averaging method

Summary

- hierarchical classification via orthogonal transfer
 - key observation: classification at different levels often rely on different features, or different combinations of same features
 - convexity condition for orthogonality regularization
 - preliminary experiments very promising
- results of independent interests:
 - optimizing for orthogonality

$$\underset{(\mathbf{w}_1,...,\mathbf{w}_m) \in \mathcal{W}}{\text{minimize}} \quad \sum_{i,j} k_{ij} |\mathbf{w}_i^T \mathbf{w}_j|$$

new variant of regularized dual averaging method

future work

- extensive computational experiments
- analysis from learning theory perspective