0.1 Cyclopentyl alcohol derivatives

0.1.1 Synthesis of the cyclopentyl alcohol head groups

Synthesis of the cyclopentyl alcohol derivatives began with the synthesis of (1R,2R)-2-aminocyclopentan-1-ol **115** and (1S,2S)-2-aminocyclopentan-1-ol **114** (see **??**). These were synthesised by opening cyclopentene **110** oxide using (S)-1-phenylethan-1-amine **111** to give approximately equal amounts of two diastereomers, **113** and **112**, which were separated using column chromatography. The methylbenzyl group was then removed by hydrogenation to give the two enantiomers of 2-aminocyclopentan-1-ol, **115** and **114**, both in quantitative yield.

this
was optimised
maybe
add

that?

Scheme 1: Synthesis of (1S,2S)-2-aminocyclopentan-1-ol **114** and (1R,2R)-2-aminocyclopentan-1-ol **115** a) AlMe₃, CH₂Cl₂, 0 °C. **112** : 35.2 %, **113** : 32.1 %. b) Pd(OH)₂, MeOH, H₂, 5 atm, r.t., 1 d, **114** : 100 %, **115** : 100 %.

0.1.2 Initial branching strategy

An initial retrosynthesis of the conjugates is shown in Scheme 2, and follows a similar path to previous conjugates.

Scheme 2: Retrosynthesis of the cyclopentyl alcohol-CipMe conjugates (RR) **121** and (SS) **120**, and the cyclopentyl alcohol-Cip triazole conjugates (RR) **124** and (SS) **123**. SS enantiomers are shown, but both will be synthesised.

Synthesis of Br-C₄-cyclopentanol(SS) 116 from (1S,2S)-2-aminocyclopentan-1-ol 114 and 4-bromobutyryl chloride 58 was attempted using Schotten-Baumann conditions (see Scheme 3). However, a large number of impurities were observed by LCMS (see Figure 1), and so three new strategies were attempted: protection of the alcohol (see 0.1.3), installing the linker on methyl ciprofloxacin 92 and then attaching the head group by peptide coupling (see 0.1.4), and using 4-chlorobutyryl chloride 139 as the linker instead of 4-bromobutyryl chloride 58 (see 0.1.5).

Scheme 3: Synthesis of Br-C₄-cyclopentanol(SS) 116. a) NaHCO₃, CH₂Cl₂, H₂O, 0 °C, 2 h.

Figure 1: Impurities formed during the synthesis of $Br-C_4$ -cyclopentanol(SS) 116.

0.1.3 TBS protection strategy

0.1.3.1 Initial

Want to protect alcohol to stop side reactions

Scheme 4: Retrosynthesis of the cyclopentyl alcohol-CipMe conjugates (RR) **121** and (SS) **120**, and the cyclopentyl alcohol-Cip triazole conjugates (RR) **124** and (SS) **123** using a TBS protection strategy. SS enantiomers are shown, but both will be synthesised.

Conditions	Temperature	Time	Result
TBDMSCl, DMAP, TEA, $\mathrm{CH_2Cl_2}$	r.t.	18 h	Trace of product?
TBDMSCl, DMAP, TEA, $\mathrm{CH_2Cl_2}$	r.t.	1 d	Didn't go to completion, lost on prep TLC
TBDMSCl, imidazole, $\mathrm{CH_2Cl_2}$	0 °C	1 h	S.M. salt in aq layer?
TBDMSCl, DBU, MeCN	0 °C	1 d	S.M.
TBDMSOTf, TEA	0 °C	4 h	Product possibly seen but lost in workup
TBDMSOTf, in 2 portions TEA,	0 °C	6 h	Product salt?
NH ₄ Cl workup			
TBDMSOTf, in 2 portions TEA, aq	0 °C	6 h	Product! 85 %
workup then column			

Table 1: Conditions attempted for the synthesis of (1S,2S)-2-((tert-butyldimethylsilyl)oxy)cyclopentan-1-amine **125** (see Scheme 5).

Scheme 5: The synthesis of Br-C₄-cyclopentanol-TBS(SS) 127 (see Table 1).

Protection optimisation

Still get side-reactions when adding tail

0.1.3.2 Triazoles by two-step reaction

Talk about moving to two-step reaction.

Scheme 6

Scheme 7

Did click, then failed to deprotect.

0.1.4 Attaching the linker to ciprofloxacin first

Given the side-reactions and low yields associated with the literate synthesis of the S_N2 conjugates proposed by Ganguly et. al,⁴ we investigated a second synthesis, building up the linker on the ciprofloxacin side before coupling with the head group (see ??).

Scheme 8: Retrosynthesis of the cyclopentyl alcohol-CipMe conjugates (RR) **121** and (SS) **120**. SS enantiomers are shown, but both will be synthesised.

0.1.4.1 Synthesis of methyl-protected ciprofloxacin with linker with terminal carboxylate

Scheme 9: Synthesis of ${f 120}$. a) .

0.1.5 Triazoles from the chloride

Scheme 10: Retrosynthesis of the cyclopentyl alcohol-CipMe conjugates (RR) **121** and (SS) **120**, and the cyclopentyl alcohol-Cip triazole conjugates (RR) **124** and (SS) **123** using Cl-C₄-cyclopentanol(SS) **140**. SS enantiomers are shown, but both will be synthesised.

Scheme 11: Synthesis of N₃-C₄-cyclopentanol(SS) 118. a) TEA, CH₂Cl₂, 0 °C, 2 h. b) NaN₃, acetonitrile, 50 °C, 24 h, 45.0 %.

Scheme 12: Synthesis of the cyclopentyl alcohol-Cip triazole conjugate ${\bf 123}$. a) CuSO₄, THPTA, sodium ascorbate, H₂O, t-BuOH, CH₂Cl₂, r.t., 3 d, 22.2 %.

 $This \ worked.$

0.2 Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 92

Ciprofloxacin 28 (10.0 g, 30 mmol, 1 eq.) and p-toluenesulfonic acid (8.60 mg, 44.5 mmol, 1.5 eq.) were refluxed in methanol (500 ml) for 72 h. The mixture was cooled to room temperature and NaHCO₃ (sat., aq., 100 ml) and water (300 ml) were added. The product was extracted with CH_2Cl_2 (2×400 ml). The combined organic fractions were dried over MgSO₄ and evaporated under reduced pressure. 92 was obtained as a white amorphous solid (9.16 g, 26.5 mmol, 83.3 %).

TLC $R_f = 0.13 \ (5 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2947.9 (C-H), 2834.9 (C-H), 1720.9 (ester C=O), 1616.8 (quinolone C=O)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 8.55 (s, 1 H, ortho to C(=O)OCH₃), 7.71 (d, J = 13.5 Hz, 1 H, ortho to F), 7.41 (d, J = 7.2 Hz, 1 H, meta to F), 3.83 (s, 3 H, C $\underline{\text{H}}_3$), 3.62 (tt, J = 7.4, 3.5 Hz, 1 H, NC $\underline{\text{H}}_4$ (CH₂)₂), 3.24 - 3.29 (m, 4 H, HN(CH₂C $\underline{\text{H}}_2$)CH₂CH₂), 3.02 - 3.10 (m, 4 H, HN(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$), 1.31 - 1.38 (m, 2 H, NCH(C $\underline{\text{H}}_3$)), 1.12 - 1.20 (m, 2 H, NCH(CH $\underline{\text{H}}_3$))

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.2 ($\underline{\mathbf{C}}(=\mathrm{O})\mathrm{CC}(=\mathrm{O})\mathrm{OCH_3}$), 166.8 ($\underline{\mathbf{C}}(=\mathrm{O})\mathrm{OCH_3}$), 154.9 (d, $J=248.0~\mathrm{Hz}$, ipso to F), 150.1 ($\underline{\mathbf{C}}=\mathrm{CC}(=\mathrm{O})\mathrm{OCH_3}$), 146.6 (d, $J=10.4~\mathrm{Hz}$, ipso to piperazine), 139.9 (para to F), 123.3 (d, $J=6.9~\mathrm{Hz}$, para to piperazine), 113.0 (d, $J=23.4~\mathrm{Hz}$, ortho to C=O and ortho to F), 110.1 ($\underline{\mathbf{C}}\mathrm{C}(=\mathrm{O})\mathrm{OCH_3}$), 107.1 (d, $J=3.5~\mathrm{Hz}$, meta to C=O and meta to F), 52.3 ($\underline{\mathbf{C}}\mathrm{H_3}$), 51.7 ($\mathrm{HN}(\mathrm{CH_2}\underline{\mathbf{C}}\mathrm{H_2})\mathrm{CH_2}\mathrm{CH_2}$), 51.6 ($\mathrm{HN}(\mathrm{CH_2}\mathrm{CH_2})\mathrm{CH_2}\mathrm{CH_2}$), 46.5 ($\mathrm{HN}(\underline{\mathbf{C}}\mathrm{H_2})\underline{\mathbf{C}}\mathrm{H_2}$), 36.4 ($\mathrm{N}\underline{\mathbf{C}}\mathrm{H}(\mathrm{CH_2})\mathrm{2}$), 8.7 ($\mathrm{N}\mathrm{CH}(\underline{\mathbf{C}}\mathrm{H_2})\mathrm{2}$)

 19 **F NMR** (376.45 MHz, MeOD) δ / ppm = -124.8 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 346.1569, [M+H]⁺ found, [C₁₈H₂₁FN₃O₃]⁺ requires 346.1567

The data are consistent with the literature.⁵

0.3 4-Bromo-N-(2-oxotetrahydrothiophen-3-yl)butanamide 94

$$S \xrightarrow{O} H$$
 N
 O
 Br

3-Aminodihydrothiophen-2(3H)-one hydrochloride **93** (15.0 g, 97.6 mmol, 1 eq.) and NaHCO₃ (16.4 g, 195 mmol, 2 eq.) were added to CH₂Cl₂ (150 ml) and water (150 ml). 4-Bromobutyryl chloride **58** (11.3 ml, 107 mmol, 1.1 eq.) was added dropwise over 45 min at 0 $^{\circ}$ C and the mixture was stirred for a further 1 h. The

organic layer was separated and the aqueous layer was extracted with a second portion of $\mathrm{CH_2Cl_2}$ (150 ml). The combined organic layers were dried over $\mathrm{MgSO_4}$ and evaporated under reduced pressure. **94** was obtained as a white, amorphous solid (22.7 g, 85.8 mmol, 87.9 %).

TLC $R_f = 0.19 \ (50 \% \ EtOAc/PE)$

IR (neat) ν_{max} / cm⁻¹ = 3265.9 (amide N-H), 3063.2 (amide N-H), 1694.3 (thiolactone C=O), 1650.5 (amide C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 6.08 (d, J = 6.1 Hz, 1 H, N<u>H</u>), 4.54 (dt, J = 12.9, 6.5 Hz, 1 H, C<u>H</u>NH), 3.49 (t, J = 6.4 Hz, 2 H, C<u>H</u>₂Br), 3.37 (ddd, J = 12.2, 11.5, 5.3 Hz, 1 H, SC<u>H</u>H), 3.26 (ddd, J = 11.5, 6.9, 1.3 Hz, 1 H, SCH<u>H</u>), 2.91 (dddd, J = 12.5, 6.7, 5.3, 1.3 Hz, 1 H, SCH₂C<u>H</u>H), 2.45 (t, J = 7.4 Hz, 1 H, C(=O)C<u>H</u>H), 2.45 (t, J = 6.8 Hz, 1 H, C(=O)CH<u>H</u>), 2.20 (quin, J = 6.7 Hz, 1 H, C(=O)CH₂C<u>H</u>₂), 1.96 (dddd, J = 12.7, 12.5, 12.2, 7.0 Hz, 1 H, SCH₂CH<u>H</u>)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 205.4 (SC(=O)), 172.1 (NHC(=O)), 59.4 (CHNH), 34.1 (C(=O)CH₂), 33.1 (CH₂Br), 31.8 (SCH₂CH₂), 28.0 (C(=O)CH₂CH₂), 27.5 (SCH₂)

HRMS (ESI⁺) The compound does not ionise.

The compound has been synthesised previously 4,6 but characterisation was not published.

0.4 Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 95

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate $\bf 92$ (50 mg, 0.145 mmol, 1 eq.), 4-bromo-N-(2-oxotetrahydrothiophen-3-yl)butanamide $\bf 94$ (34.5 mg, 0.145 mmol, 1 eq.) and $\rm K_2CO_3$ (20 mg, 0.145 mmol, 1 eq.) were stirred in acetonitrile (2 ml) at 50 °C under argon. After 24 h a further portion of $\bf 94$ (34.5 mg, 0.145 mmol, 1 eq.) was added. After another 24 h a further portion was added (69.0 mg, 0.290 mmol, 2 eq.). After another 24 h the temperature was raised so the mixture was at reflux. After a final 24 h the precipitate was filtered off and the filtrate was purified by column chromatography (SiO₂, 5-10 % MeOH/CH₂Cl₂) followed by preparatory HPLC (5-95 % acetonitrile/water over 20 min). $\bf 95$ was obtained as a cream-coloured amorphous solid (9.4 mg, 0.018 mmol, 12.2 %).

TLC $R_f = 0.47 (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2944.2 (C-H), 2832.4 (C-H), 1722.4 (ester C=O), 1700.4 (thiolactone C=O), 1669.6 (amide C=O), 1617.3 (quinolone C=O)

¹H NMR (500 MHz, MeOD) δ / ppm = 8.53 (s, 1 H, ortho to C(=O)OCH₃), 7.68 (d, J=13.4 Hz, 1 H, ortho to F), 7.41 (d, J=7.3 Hz, 1 H, meta to F), 4.67 (dd, J=12.9, 6.9 Hz, 1 H, CHNH), 3.83 (s, 3 H, OCH₃), 3.61 (tt, J=6.9, 4.1 Hz, 1 H, NCH(CH₂)₂), 3.39 - 3.49 (m, 5 H, SCHH), 3.26 - 3.33 (m, 1 H, SCHH and CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.93 - 3.03 (m, 4 H, CH₂CH₂CH₂N(CH₂)CH₂), 2.79 (br. t, J=7.2, 7.2 Hz, 2 H, C(=O)CH₂CH₂CH₂), 2.59 (dddd, J=12.4, 6.9, 5.4, 1.4 Hz, 1 H, SCH₂CHH), 2.39 (t, J=7.20 Hz, 1 H, C(=O)CHH), 2.38 (t, J=6.94 Hz, 1 H, C(=O)CHH), 2.18 (qd, J=12.4, 7.0 Hz, 1 H, SCH₂CHH), 1.97 (quin, J=7.2 Hz, 2 H, C(=O)CH₂CH₂), 1.32 - 1.37 (m, 2 H, NCH(CHH)₂), 1.13 - 1.19 (m, 2 H, NCH(CHH)₂)

¹³C NMR (126 MHz, MeOD) δ / ppm = 207.0 (SC(=O)), 175.7 (NHC(=O)), 175.1 (C(=O)CC(=O)OCH₃), 166.6 (C(=O)OCH₃), 154.7 (d, J=249.0 Hz, *ipso* to F), 150.2 (s, CH=CC(=O)OCH₃), 145.6 (d, J=10.6 Hz, *ipso* to piperazine), 139.8 (*para* to F), 123.5 (d, J=6.9 Hz, *para* to piperazine), 113.1 (d, J=23.6 Hz, *ortho* to C=O and *ortho* to F), 110.0 (CC(=O)OCH₃), 107.4 (*meta* to C=O and *meta* to F), 60.2 (CHNH), 58.5 (C(=O)CH₂CH₂CH₂), 53.8 (CH₂CH₂CH₂N(CH₂CH₂), 52.3 (OCH₃), 50.1 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 50.0 (CH₂CH₂CH₂N(CH₂CH₂), 36.5 (NCH(CH₂)₂), 34.5 (C(=O)CH₂), 31.7 (SCH₂CH₂), 28.1 (SCH₂), 22.9 (C(=O)CH₂CH₂CH₂), 8.7 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -125.4 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 531.2083, [M+H]⁺ found, [C₂₆H₃₂FN₄O₅S]⁺ requires 531.2077

The compound has been synthesised previously.^{4,6} Only HRMS characterisation was published, and this agrees with the result above.

0.5 4-Azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide 96

$$S \xrightarrow{O} H$$
 N
 N_3

4-Bromo-N-(2-oxotetrahydrothiophen-3-yl)butanamide $\bf 94$ (6.00 g, 27.0 mmol, 1 eq.) and NaN $_3$ (3.51 g, 54.1 mmol, 2 eq.) were refluxed in acetonitrile (120 ml) for 1.5 h. The solvent was evaporated under reduced pressure and the residue was partitioned between water (150 ml) and ${\rm CH}_2{\rm Cl}_2$ (150 ml). The aqueous layer was extracted twice more with ${\rm CH}_2{\rm Cl}_2$ (2×150 ml) and the combined organic fractions were dried with MgSO $_4$ and evaporated under reduced pressure. $\bf 96$ was obtained as a yellow, sticky solid (4.60 g, 20.1 mmol, 89.3 %).

TLC $R_f = 0.19 (50 \% \text{ EtOAc/PE})$

IR (neat) ν_{max} / cm⁻¹ = 3285.6 (N-H), 2963.9 (C-H), 2100.2 (azide), 1697.4 (thiolactone C=O), 1647.4 (amide C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 6.71 (d, J = 7.3 Hz, 1 H, N<u>H</u>), 4.54 (dt, J = 13.0, 7.0 Hz, 1 H, C<u>H</u>NH), 3.30 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂N₃), 3.31 (td, J = 11.7, 5.3 Hz, 1 H, 1 H, SC<u>H</u>H), 3.19 (ddd, J = 11.3, 7.0, 1.2 Hz, 1 H, SCH<u>H</u>), 2.70 (dddd, J = 12.4, 6.8, 5.3, 1.2 Hz, 1 H, SCH₂C<u>H</u>H), 2.29 (t, J = 7.5 Hz, 1 H, C(=O)C<u>H</u>H), 2.28 (t, J = 7.1 Hz, 1 H, C(=O)CH<u>H</u>), 1.97 (qd, J = 12.4, 7.0 Hz, 1 H, SCH₂CH<u>H</u>), 1.85 (quin, J = 6.9 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 205.4 (S<u>C</u>(=O)), 172.3 (NH<u>C</u>(=O)), 59.4 (<u>C</u>HNH), 50.6 (<u>C</u>H₂N₃), 32.8 (C(=O)<u>C</u>H₂), 31.8 (SCH₂<u>C</u>H₂), 27.5 (S<u>C</u>H₂), 24.6 (C(=O)CH₂<u>C</u>H₂)

HRMS (ESI⁺) m/z / Da = 251.0565, [M+Na]⁺ found, [C₈H₁₂N₄NaO₂S]⁺ requires 251.0573

The compound has not been reported previously.

0.6 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinol ine-3-carboxylic acid 97

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (15 mg, 36.7 μ mol, 1 eq.) and 4-azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide **96** (12.5 mg, 55.1 μ mol, 1.5 eq.) were dissolved in 1:9:10 water/t-BuOH/DMSO (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (182 μ l, 18.2 μ mol, 0.5 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (367 μ l, 36.7 μ mol, 1 eq., 100 mM, aq.). The mixture was stirred at r.t. under argon for 4 d. Water (10 ml) and 10 % i-PrOH/CHCl₃ (10 ml) were added, the organic layer was separated and the aqueous layer was extracted again with 10 % i-PrOH/CHCl₃ (2×10 ml). The combined organic layers were dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-95 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 50 ml) and 10 % i-PrOH/CHCl₃ (50 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **97** was obtained as a white amorphous solid (16.5 mg, 25.9 μ mol, 70.6 %).

IR (neat) ν_{max} / cm⁻¹ = 2918.8 (C-H), 1712.7 (carboxylic acid C=O and thiolactone C=O), 1657.6 (amide C=O), 1626.8 (quinolone C=O), 1616.2 (triazole)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 15.23 (br s, 1 H, C(=O)O<u>H</u>), 8.66 (s, 1 H, ortho to C(=O)OH), 8.23 (d, J=8.5 Hz, 1 H, N<u>H</u>), 7.90 (d, J=13.4 Hz, 1 H, ortho to F), 7.84 (s, 1 H, C<u>H</u>=CCH₂), 7.56 (d, J=7.5 Hz, 1 H, meta to F), 4.59 (ddd, J=12.7, 8.4, 6.8 Hz, 1 H, C<u>H</u>NH), 4.31 (t, J=7.0 Hz, 2 H, C<u>H</u>₂NCH=C), 3.80 - 3.86 (6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.34 - 3.37 (m, 1 H, SC<u>H</u>H), 3.32 (br t, J=4.1 Hz, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 3.27 (ddd, J=11.1, 6.9, 1.4 Hz, 1 H, SC<u>H</u><u>H</u>), 2.64 (t, J=7.6 Hz, 2 H, CH=CC<u>H</u>₂), 2.57 (br t, J=4.7 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.34 - 2.44 (m, 3 H, SCH₂C<u>H</u>H and CH=CCH₂CH₂CH₂CH₂CH₂), 2.12 (t, J=7.9 Hz, 1 H, C(=O)C<u>H</u>H), 2.12 (t, J=7.0 Hz, 1 H, C(=O)CH<u>H</u>), 2.04 (m, 3 H, SCH₂CH<u>H</u> and C(=O)CH₂C<u>H</u>₂), 1.64 (quin, J=7.5 Hz, 2 H, CH=CCH₂CH₂), 1.51 (quin, J=7.5 Hz, 2 H, CH=CCH₂CH₂CH₂), 1.28 - 1.34 (m, 2 H, NCH(C<u>H</u>H)₂), 1.15 - 1.20 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 205.6 (S<u>C</u>(=O)), 176.4 (<u>C</u>(=O)CC(=O)OH), 171.4 (NH<u>C</u>(=O)), 166.0 (<u>C</u>(=O)OH), 153.1 (d, J=249.3 Hz, ortho to F), 148.0 (<u>C</u>H=CC(=O)OH), 146.9 (CH=<u>C</u>CH₂), 145.3

(d, J=10.1 Hz, *ipso* to piperazine), 139.2 (*para* to F), 121.8 ($\underline{\text{CH}}=\text{CCH}_2$), 118.6 (d, J=7.7 Hz, *para* to piperazine), 111.0 (d, J=23.3 Hz, *ortho* to C=O and *ortho* to F), 106.7 ($\underline{\text{CC}}(\text{=O})\text{OH}$), 106.4 (d, J=2.9 Hz, *meta* to C=O and *meta* to F), 58.2 ($\underline{\text{SC}}(\text{=O})\underline{\text{C}}\text{HNH}$), 57.4 ($\underline{\text{CH}}=\text{CCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{N}$), 52.4 ($\underline{\text{CH}}_2\text{CH}_2\text{N}(\underline{\text{CH}}_2)\underline{\text{C}}\text{H}_2$), 49.5 ($\underline{\text{CH}}_2\text{CH}_2\text{N}(\text{CH}_2\text{CH}_2)\text{CH}_2$), 49.5 ($\underline{\text{CH}}_2\text{CH}_2\text{N}(\text{CH}_2\text{CH}_2)\text{CH}_2$), 48.6 ($\underline{\text{CH}}_2\text{N}\text{CH}=\text{C}$), 35.9 ($\underline{\text{NCH}}(\text{CH}_2)_2$), 31.9 ($\underline{\text{NHC}}(\text{=O})\underline{\text{C}}\text{H}_2$), 30.1 ($\underline{\text{CH}}_2\text{CH}\text{NH}$), 26.9 ($\underline{\text{CH}}=\text{CCH}_2\underline{\text{C}}\text{H}_2$), 26.8 ($\underline{\text{SC}}\text{H}_2$), 25.9 ($\underline{\text{NHC}}(\text{=O})$) CH₂CH₂), 25.8 ($\underline{\text{CH}}=\text{CCH}_2\underline{\text{C}}\text{H}_2$), 25.0 ($\underline{\text{CH}}=\text{CC}\underline{\text{C}}\text{H}_2$), 7.6 ($\underline{\text{NCH}}(\underline{\text{C}}\text{H}_2)_2$)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -124.9 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 640.2739, [M+H]⁺ found, [C₃₁H₃₉FN₇O₅S]⁺ requires 640. 2712

0.7 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(((4-(1-(4-oxo-4-((2-oxotetrahydrothioph en-3-yl)amino)butyl)-1H-1,2,3-triazol-4-yl)butanoyl)oxy)methoxy)carbonyl) piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 99

1-Cyclopropyl-6-fluoro-7-(4-(((hex-5-ynoyloxy)methoxy)carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **98** (203 mg, 0.407 mmol, 1 eq.), 4-azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide **96** (92.8 mg, 0.407 mmol, 1 eq.), CuI (40 mg, 0.190 mmol, 0.5 eq.) and DIPEA (0.356 ml, 0.264 mg, 2.04 mmol, 5 eq.) were stirred in $\mathrm{CH_2Cl_2}$ (18.6 ml) at r.t. under Ar for 3 h. The mixture was fitered and the filtrate was dry-loaded onto $\mathrm{SiO_2}$ and purified by column chromatography ($\mathrm{SiO_2}$, 5-10 % MeOH/CH₂Cl₂). **99** was obtained as pale brown/yellow amorphous solid (14.7 mg, 20.2 μ mol, 5.0 %).

TLC $R_f = 0.40 \ (5 \% \ \text{CH}_2\text{Cl}_2/\text{MeOH})$

IR (neat) ν_{max} / cm⁻¹ = 3054.9 (C-H), 1715.8 (carboxylic acid C=O and ester C=O), 1696.2 (carbamate C=O and thiolactone C=O), 1651.2 (amide C=O), 1629.2 (quinolone C=O)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 205.5 (SC(=O)), 176.4 (C(=O)CC(=O)OH), 171.8 (C(=O)OCH₂O), 171.3 (NHC(=O)), 165.9 (C(=O)OH), 152.8 (d, J = 249.7 Hz, ipso to F), 152.9 (OC(=O)N), 148.1 (CH=CC(=O)

OH), 146.0 (CH= \underline{C} CH₂), 144.9 (d, J=9.6 Hz, ipso to piperazine), 139.1 (para to F), 122.0 (\underline{C} H=CCH₂), 118.9 (d, J=7.5 Hz, para to piperazine), 111.0 (d, J=23.5 Hz, ortho to C=O and ortho to F), 106.8 (\underline{C} C(=O)OH, and meta to C=O and meta to F), 80.3 (O \underline{C} H₂O), 58.2 (\underline{C} HNH), 49.1 (C(=O)N(CH₂ \underline{C} H₂)CH₂CH₂), 49.1 (C(=O)N(CH₂CH₂)CH₂CH₂), 48.6 (C(=O)CH₂CH₂CH₂N), 43.4 (N(\underline{C} H₂)CH₂), 43.0 (N(CH₂) \underline{C} H₂), 35.9 (N \underline{C} H (CH₂)₂), 32.7 (CH= \underline{C} CH₂CH₂C(=O)), 31.8 (NH \underline{C} (=O) \underline{C} H₂), 30.1 (SCH₂ \underline{C} H₂), 26.8 (S \underline{C} H₂), 25.8 (C(=O)CH₂ \underline{C} H₂CH₂CH₂N), 24.2 (CH= \underline{C} CH₂CH₂CH₂C(=O)), 24.0 (CH= \underline{C} CH₂CH₂C(=O)), 7.6 (NCH(\underline{C} H₂)₂)

HRMS (ESI⁺) m/z / Da = 728.2502, [M+H]⁺ found, [C₃₃H₃₉FN₇O₉S]⁺ requires 728.2503

The compound has not been reported previously.

0.8 4-Bromo-*N*-(2-methoxyphenyl)butanamide 101

2-Methoxyaniline **100** (9.12 ml, 10.0 g, 81.2 mmol, 1 eq.) and NaHCO₃ (8.19 g, 97.4 mmol, 1.2 eq.) were dissolved in water (100 ml) and $\rm CH_2Cl_2$ (100 ml). The mixture was cooled to 0 °C and 4-bromobutyryl chloride **58** (9.40 ml, 15.1 g, 81.2 mmol, 1 eq.) was added dropwise over 15 min. The mixture was stirred at 0 °C for 1.5 h, then the aqueous layer was removed. The organic layer was dried with MgSO₄ and purified by column chromatography (SiO₂, 5-25 % EtOAc/P.E.). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **101** was obtained as an initially colourless liquid which slowly turned blue then black if left out on the bench (11.0 g, 40.6 mmol, 50.0 %).

TLC $R_f = 0.16 \ (10 \% \ \text{EtOAc/P.E.})$

IR (neat) ν_{max} / cm⁻¹ = 3410.2 (N-H), 3313.4 (N-H), 2961.6 (C-H), 2939.5 (C-H), 2902.5 (C-H), 1676.4 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.32 (dd, J = 8.0, 1.7 Hz, 1 H, ortho to NH), 7.85 (br s, 1 H, N<u>H</u>), 7.02 (td, J = 7.9, 1.7 Hz, 1 H, para to NH), 6.93 (td, J = 7.7, 1.4 Hz, 1 H, para to OCH₃), 6.85 (dd, J = 8.1, 1.5 Hz, 1 H, ortho to OCH₃), 3.85 (s, 3 H, C<u>H</u>₃), 3.50 (t, J = 6.4 Hz, 2 H, C<u>H</u>₂Br), 2.56 (t, J = 7.1 Hz, 2 H, C(=O)C<u>H</u>₂), 2.25 (quin, J = 6.7 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 169.4 (<u>C</u>(=O)), 147.6 (*ipso* to OCH₃), 127.2 (*ipso* to NH), 123.5 (*para* to NH), 120.7 (*para* to OCH₃), 119.6 (*ortho* to NH and *meta* to OCH₃), 109.8 (*ortho* to OCH₃ and *meta* to NH), 55.5 (<u>C</u>H₃), 35.4 (C(=O)<u>C</u>H₂), 33.1 (<u>C</u>H₂Br), 27.9 (C(=O)CH₂<u>C</u>H₂)

HRMS (ESI⁺) m/z / Da = 272.0287, [M+H]⁺ found, [C₁₁H₁₅BrNO₂]⁺ requires 272.0286

0.9 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-((2-methoxyphenyl)amino)-4-oxobutyl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 102

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate $\bf 92$ (500 mg, 1.45 mmol, 1 eq.), 4-bromo-N-(2-methoxyphenyl)butanamide $\bf 101$ (788 mg, 2.90 mmol, 2 eq.), DIPEA (1.28 ml, 950 mg, 7.35 mmol, 5 eq.), NaI (275 mg, 1.83 mmol, 1.3 eq.) and acetonitrile (10 ml) were stirred in a microwave reactor at 100 °C for 4 h. The mixture was dry-loaded onto ${\rm SiO_2}$ and purified by column chromatography (${\rm SiO_2}$, 4 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. $\bf 102$ was obtained as a bright pink glass (79.7 mg, 0.149 mmol, 10.2 %).

TLC $R_f = 0.40 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2947.1 (C-H), 2833.7 (C-H), 1718.9 (ester C=O), 1685.3 (amide C=O), 1617.3 (quinolone C=O)

¹H NMR (400 MHz, CDCl₃ d₁) δ / ppm = 8.48 (s, 1 H, ortho to C(=O)OCH₃), 8.36 (d, J = 7.9 Hz, 1 H, ortho to NH), 7.87 - 7.99 (m, 2 H, ortho to F and NH), 7.19 (d, J = 6.5 Hz, 1 H, meta to F), 7.01 (t, J = 7.5 Hz, 1 H, para to NH), 6.93 (t, J = 7.7 Hz, 1 H, para to OCH₃), 6.85 (d, J = 7.9 Hz, 1 H, ortho to OCH₃), 3.88 (s, 3 H, C(=O)OCH₃), 3.85 (s, 3 H, aromatic OCH₃), 3.41 (tt, J = 6.9, 4.0 Hz, 1 H, NCH(CH₂)₂), 3.25 (br t, J = 5.0, 5.0 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.67 (br t, J = 5.0, 5.0 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂CH₂N), 2.47 (t, J = 7.1 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 1.97 (quin, J = 6.8 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 1.25 - 1.33 (m, 2 H, NCH(CHH)₂), 1.07 - 1.14 (m, 2 H, NCH(CHH)₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 172.9 (\underline{C} (=O)CC(=O)OCH₃), 170.8 (NH \underline{C} (=O)), 166.2 (\underline{C} (=O)O CH₃), 153.3 (d, J = 248.0 Hz, ipso to F), 148.2 (\underline{C} =CC(=O)OCH₃), 147.6 (ipso to OCH₃), 144.4 (d, J = 10.4 Hz, ipso to piperazine), 137.9 (para to F), 127.6 (ipso to NH), 123.4 (para to NH), 122.7 (d, J = 7.8 Hz, para to piperazine), 121.0 (para to OCH₃), 119.7 (ortho to NH and meta to OCH₃), 113.0 (d, J = 22.5 Hz, ortho to C=O and ortho to F), 109.8 (ortho to OCH₃ and meta to NH, and \underline{C} C(=O)OCH₃), 104.7 (meta to C=O and meta to F), 57.2 (CH₂CH₂CH₂N), 55.6 (aromatic OCH₃), 52.7 (CH₂CH₂CH₂N(\underline{C} H₂) \underline{C} H₂), 51.9 (C(=O)OCH₃), 49.8 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 49.8 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 35.5 (\underline{C} H₂ CH₂CH₂N), 34.5 (NCH(CH₂)₂), 22.3 (CH₂CH₂CH₂N), 8.0 (NCH(\underline{C} H₂)₂)

HRMS (ESI⁺) m/z / Da = 537.2523, [M+H]⁺ found, $[C_{29}H_{34}FN_4O_5]^+$ requires 537.2513

0.10 4-Azido-N-(2-methoxyphenyl)butanamide 103

$$N_3$$

4-Bromo-N-(2-methoxyphenyl) butanamide ${\bf 101}$ (2.05 g, 7.51 mmol, 1 eq.) and NaN₃ (1.17 g, 18.0 mmol, 2.4 eq.) were refluxed in acetonitrile (100 ml) for 2 h. The mixture was cooled and filtered, and the fit rate was dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 8-14 % then hold at 14 % EtOAc/P.E.). ${\bf 103}$ was obtained as an initially colour less liquid which slowly turned blue then black if left out on the bench (0.469 g, 2.00 mmol, 26.7 %).

TLC $R_f = 0.20 \ (25 \% \ \text{EtOAc/P.E.})$

IR (neat) ν_{max} / cm⁻¹ = 3419.7 (N-H), 3329.6 (N-H), 2094.8 (azide), 1672.3 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.32 (dd, J = 7.9, 1.0 Hz, 1 H, ortho to NH), 7.86 (br s, 1 H, N<u>H</u>), 7.00 (td, J = 7.5, 1.5 Hz, 1 H, para to NH), 6.90 (td, J = 7.7, 1.1 Hz, 1 H, para to OCH₃), 6.83 (dd, J = 8.1, 1.4 Hz, 1 H, ortho to OCH₃), 3.81 (s, 3 H, C<u>H</u>₃), 3.33 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂Br), 2.42 (t, J = 7.2 Hz, 2 H, C(=O)C<u>H</u>₂), 1.94 (quin, J = 6.9 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 169.5 (\underline{C} (=O)), 147.6 (*ipso* to OCH₃), 127.1 (*ipso* to NH), 123.4 (*para* to NH), 120.5 (*para* to OCH₃), 119.5 (*ortho* to NH and *meta* to OCH₃), 109.6 (*ortho* to OCH₃ and *meta* to NH), 55.2 (CH₃), 50.3 (CH₂N₃), 33.9 (C(=O)CH₂), 24.3 (C(=O)CH₂CH₂)

HRMS (ESI⁺) m/z / Da = 257.1010, [M+H]⁺ found, [C₁₁H₁₄N₄NaO₂]⁺ requires 257.1014

The data are consistent with the literature.⁷

0.11 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-((2-methoxyphenyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carb oxylic acid 104

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (24.1 mg, 58.6 μ mol, 1 eq.) and 4-azido-N-(2-methoxyphenyl)butanamide **103** (13.7 mg, 58.5 μ mol, 1 eq.) were dissolved in water (3 ml), t-BuOH (9 ml) and CH₂Cl₂ (9 ml), and the mixture was degassed by bubbling through N₂. A solution of CuSO₄ and THPTA (117 μ l, 5.85 μ mol, 0.1 eq., 50 mM, aq.) was added, followed by a solution

of sodium ascorbate (234 μ l, 11.7 μ mol, 0.2 eq., 50 mM, aq.). The mixture was stirred at room temperature under argon for 16 h. Water (25 ml), CH₂Cl₂ (25 ml) and MeOH (5 ml) were added and the organic layer was separated off, dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 3-23 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **104** was obtained as a clear glass (14.7 mg, 22.8 μ mol, 39.0 %).

TLC $R_f = 0.28 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2926.5 (C-H), 2846.6 (C-H), 1723.4 (carboxylic acid C=O), 1682.0 (amide C=O), 1625.8 (quinolone C=O), 1612.8 (triazole)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 15.05 (br s, 1 H, C(=O)O<u>H</u>), 8.76 (s, 1 H, ortho to C(=O)OH), 8.31 (dd, J = 8.0, 1.7 Hz, 1 H, ortho to NH), 8.00 (d, J = 13.0 Hz, 1 H, ortho to F), 7.83 (br s, 1 H, N<u>H</u>), 7.37 (s, 1 H, C<u>H</u>=CCH₂), 7.35 (d, J = 7.2 Hz, 1 H, meta to F), 7.04 (td, J = 7.7, 1.7 Hz, 1 H, para to NH), 6.95 (td, J = 7.8, 1.5 Hz, 1 H, para to OCH₃), 6.88 (dd, J = 8.1, 1.4 Hz, 1 H, ortho to OCH₃), 4.47 (t, J = 6.7 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 3.88 (s, 3 H, C<u>H</u>₃), 3.54 (tt, J = 6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.35 (br t, J = 4.7 Hz, 4 H, CH=CCH₂CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂CH₂), 2.76 (t, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 2.46 (t, J = 6.8 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 2.32 (quin, J = 6.7 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.75 (quin, J = 7.6 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.61 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.35 - 1.42 (m, 2 H, NCH(C<u>H</u>H)₂), 1.17 - 1.22 (m, 2 H, NCH(CH<u>H</u>)₂)

¹⁹**F NMR** (376.45 MHz, CDCl₃) δ / ppm = -120.7 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 646.3132, [M+H]⁺ found, [C₃₄H₄₁FN₇O₅]⁺ requires 646.3153

The compound has not been reported previously.

0.12 4-Bromo-N-(3-methoxyphenyl)butanamide 106

3-Methoxyaniline **105** (3.04 ml, 3.33 g, 27.1 mmol, 1 eq.) and NaHCO₃ (2.73 g, 32.5 mmol, 1.2 eq.) were dissolved in water (30 ml) and $\mathrm{CH_2Cl_2}$ (30 ml). The mixture was cooled to 0 °C and 4-bromobutyryl chloride **58** (3.13 ml, 5.03 g, 27.1 mmol, 1 eq.) was added dropwise over 5 min. The mixture was stirred at 0 °C for 1 h, then the aqueous layer was removed. The organic layer was dry-loaded onto $\mathrm{SiO_2}$ and purified by column chromatography using a Combiflash ($\mathrm{SiO_2}$, 0-100 % $\mathrm{EtOAc/P.E.}$). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **106** was obtained as a pale pink amorphous solid (3.66 g, 13.5 mmol, 49.6 %).

TLC $R_f = 0.18~(25~\%~{\rm EtOAc/P.E.})$

IR (neat) ν_{max} / cm⁻¹ = 1670.9 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.45 (s, 1 H, N<u>H</u>), 7.27 (t, J = 2.2 Hz, 1 H, ortho to OCH₃ and ortho to NH), 7.14 (t, J = 8.1 Hz, 1 H, meta to OCH₃ and meta to NH), 7.02 (d, J = 8.3 Hz, 1 H, para to OCH₃), 6.62 (dd, J = 8.2, 2.1 Hz, 1 H, para to NH), 3.71 (s, 3 H, C<u>H</u>₃), 3.42 (t, J = 6.5 Hz, 2 H, C<u>H</u>₂Br), 2.51 (t, J = 6.9 Hz, 2 H, C(=O)C<u>H</u>₂), 2.19 (quin, J = 6.8 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 170.3 (\underline{C} (=O)), 159.9 (*ipso* to OCH₃), 139.0 (*ipso* to NH), 129.5 (*meta* to OCH₃ and *meta* to NH), 112.1 (*para* to OCH₃), 109.9 (*para* to NH), 105.7 (*ortho* to OCH₃ and *ortho* to NH), 55.2 (\underline{C} H₃), 35.3 (\underline{C} (=O) \underline{C} H₂), 33.2 (\underline{C} H₂Br), 28.0 (\underline{C} (=O) \underline{C} H₂)

HRMS (ESI⁺) The compound does not ionise.

The compound has not been reported previously.

0.13 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-((3-methoxyphenyl)amino)-4-oxobutyl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 107

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate $\bf 92$ (500 mg, 1.45 mmol, 1 eq.), 4-bromo-N-(3-methoxyphenyl)butanamide $\bf 106$ (788 mg, 2.90 mmol, 2 eq.), DIPEA (1.28 ml, 950 mg, 7.35 mmol, 5 eq.), NaI (275 mg, 1.83 mmol, 1.3 eq.) and acetonitrile (10 ml) were stirred in a microwave reactor at 100 °C for 4 h. The mixture was evaporated under reduced pressure and partitioned between $\rm CH_2Cl_2$ (50 ml) and water (50 ml). The organic layer was separated off and the aqueous layer was extracted again with $\rm CH_2Cl_2$ (50 ml). The combined organic layers were dried with $\rm MgSO_4$ and purified by column chromatography (SiO₂, 0-4 % MeOH/CH₂Cl₂). The combined pure fractions were dried with $\rm MgSO_4$ and evaporated under reduced pressure. $\bf 107$ was obtained as an off-white amorphous solid (81.7 mg, 0.152 mmol, 10.5 %).

TLC $R_f = 0.38 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3270.8 (amide N-H) 2943.8 (C-H), 2817.0 (C-H), 1729.5 (ester C=O), 1682.0 (amide C=O), 1613.5 (quinolone C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 8.56 (s, 1 H, ortho to C(=O)OCH₃), 8.06 (d, J = 13.3 Hz, 1 H, ortho to F), 8.02 (br s, 1 H, NH), 7.34 (t, J = 1.7 Hz, 1 H, ortho to OCH₃ and ortho to NH), 7.25 (d, J = 7.0 Hz, 1 H, meta to F), 7.20 (t, J = 8.2 Hz, 1 H, meta to OCH₃ and meta to NH), 6.98 (dd, J = 7.8, 1.7 Hz, 1 H, para to OCH₃), 6.65 (dd, J = 8.2, 2.1 Hz, 1 H, para to NH), 3.93 (s, 3 H, C(=O)OCH₃), 3.80 (s, 3 H, aromatic OCH₃), 3.42 (tt, J = 6.8, 3.7 Hz, 1 H, NCH(CH₂)₂), 3.31 (br t, J = 4.3, 4.3 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂)CH₂CH₂), 2.73 (br t, J = 4.5, 4.5 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂)CH₂), 2.58 (t, J = 6.5 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 2.48 (t, J = 6.8 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 2.00 (quin, J = 6.8 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 1.29 - 1.36 (m, 2 H, NCH(CHH)₂), 1.11 - 1.17 (m, 2 H, NCH(CHH)₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.1 (\underline{C} (=O)CC(=O)CC(=O)CCH₃), 170.9 (NH \underline{C} (=O)), 166.3 (\underline{C} (=O)OCH₃), 160.1 (*ipso* to OCH₃), 153.3 (d, J=250.1 Hz, *ipso* to F), 148.4 (\underline{C} =CC(=O)OCH₃), 144.1 (d, J=10.1 Hz, *ipso* to piperazine), 139.4 (*ipso* to NH), 138.0 (*para* to F), 129.6 (*meta* to NH and *meta* to OCH₃), 123.3 (d, J=6.4 Hz, *para* to piperazine), 113.4 (d, J=23.3 Hz, *ortho* to C=O and *ortho* to F), 111.8 (*para* to OCH₃), 110.0 (\underline{C} C(=O)OCH₃), 109.8 (*para* to NH), 105.5 (*ortho* to OCH₃ and *ortho* to NH), 105.0 (*meta* to C=O and *meta* to F), 57.0 (CH₂CH₂CH₂N), 55.3 (aromatic OCH₃), 52.6 (CH₂CH₂CH₂N(\underline{C} H₂)CH₂), 52.1 (C(=O)OCH₃), 49.2 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 35.2 (\underline{C} H₂CH₂CH₂N), 34.6 (NCH(CH₂)₂), 21.7 (CH₂CH₂CH₂N), 8.2 (NCH(\underline{C} H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -123.5 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 537.2500, [M+H]⁺ found, [C₂₉H₃₄FN₄O₅]⁺ requires 537.2513

The compound has not been reported previously.

0.14 4-Azido-N-(3-methoxyphenyl)butanamide 108

$$\bigcup_{O} \bigvee_{H} \bigcup_{O} N_3$$

4-Bromo-N-(3-methoxyphenyl) butanamide **106** (2.05 g, 7.51 mmol, 1 eq.) and NaN₃ (1.17 g, 18.0 mmol, 2.4 eq.) were refluxed in acetonitrile (100 ml) for 7 h. The mixture was cooled and filtered, and the fit rate was dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-100 % EtOAc/P.E.). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **108** was obtained as an straw-coloured liquid (0.294 g, 1.25 mmol, 16.7 %).

TLC $R_f = 0.37 (50 \% \text{ EtOAc/P.E.})$

IR (neat) ν_{max} / cm⁻¹ = 3298.3 (N-H), 2094.7 (azide), 1661.7 (amide C=O)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 8.63 (br s, 1 H, N<u>H</u>), 7.26 (t, J = 2.3 Hz, 1 H, ortho to OCH₃ and ortho to NH), 7.15 (t, J = 8.1 Hz, 1 H, meta to OCH₃ and meta to NH), 7.01 (dd, J = 7.8, 1.6 Hz, 1 H, para to OCH₃), 6.63 (dd, J = 8.2, 1.9 Hz, 1 H, para to NH), 3.69 (s, 3 H, C<u>H</u>₃), 3.28 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂N₃),

2.39 (t, J = 7.4 Hz, 2 H, C(=O)C $\underline{\text{H}}_2$), 1.91 (quin, J = 7.0 Hz, 2 H, C(=O)CH₂C $\underline{\text{H}}_2$)

¹³C NMR (101 MHz, MeOD) δ / ppm = 170.8 (<u>C</u>(=O)), 159.6 (*ipso* to OCH₃), 138.9 (*ipso* to NH), 129.2 (*meta* to OCH₃ and *meta* to NH), 112.3 (*para* to OCH₃), 109.5 (*para* to NH), 106.0 (*ortho* to OCH₃ and *ortho* to NH), 54.8 (<u>C</u>H₃), 50.4 (<u>C</u>H₂N₃), 33.6 (C(=O)<u>C</u>H₂), 24.4 (C(=O)CH₂<u>C</u>H₂)

HRMS (ESI⁺) The compound does not ionise.

The compound has not been reported previously.

0.15 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-((3-methoxyphenyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carb oxylic acid 109

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (24.1 mg, 58.6 μ mol, 1 eq.) and 4-azido-N-(3-methoxyphenyl)butanamide **108** (13.7 mg, 58.5 μ mol, 1 eq.) were dissolved in water (1 ml), t-BuOH (9 ml) and CH₂Cl₂ (10 ml), and the mixture was degassed by bubbling through N₂. A solution of CuSO₄ and THPTA (58.5 μ l, 5.85 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (117 μ l, 11.7 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 2 h, then the solvent was removed under reduced pressure. The resudue was partitioned between water (15 ml) and CH₂Cl₂ (15 ml), and the aqueous layer was extracted a further four times with CH₂Cl₂ (4×15 ml). The combined organic layers were dried with MgSO₄, dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 0-10 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **109** was obtained as a clear glass (1.9 mg, 2.9 μ mol, 5.0 %).

TLC $R_f = 0.22 \ (10 \% \ \text{MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2922.8 (C-H), 2849.5 (C-H), 1725.8 (carboxylic acid C=O), 1684.7 (amide C=O), 1624.5 (quinolone C=O), 1612.2 (triazole)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 15.23 (br s, 1 H, C(=O)O<u>H</u>), 9.89 (s, 1 H, N<u>H</u>), 8.66 (s, 1 H, ortho to C(=O)OH), 7.90 (d, J = 13.4 Hz, 1 H, ortho to F), 7.88 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J = 7.6 Hz, 1 H, meta to F), 7.27 (t, J = 2.1 Hz, 1 H, ortho to C=O and ortho to F), 7.16 (t, J = 8.1 Hz, 1 H, meta to OCH₃ and meta to NH), 7.08 (d, J = 7.8 Hz, 1 H, para to OCH₃), 6.59 (ddd, J = 8.1, 2.4, 0.7 Hz, 1 H, para to NH), 4.36 (t, J = 6.9 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 3.81 (tt, J = 6.7, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.70 (s, 3 H, C<u>H</u>₃), 3.28 - 3.32 (m, 4 H, CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.64 (t, J = 7.5 Hz, 2 H, CH=C<u>C</u>H₂), 2.56 (m, J = 4.2, 4.2 Hz, 4 H, CH=CCH₂CH₂CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.38 (t, J = 7.3 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂N), 2.10 (quin, J = 7.1 Hz, 2 H, C(=O)CH₂C<u>H</u>₂CH₂CH₂N), 1.64 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H,

 $CH = CCH_2CH_2CH_2CH_2N$), 1.27 - 1.33 (m, 2 H, $NCH(C\underline{H}H)_2$), 1.15 - 1.20 (m, 2 H, $NCH(CH\underline{H})_2$)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.3 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 170.1 (NH $\underline{\mathbf{C}}$ (=O)), 165.9 ($\underline{\mathbf{C}}$ (=O)OH), 159.4 (*ipso* to OCH₃), 153.0 (d, J = 248.6 Hz, *ipso* to F), 148.0 (CH= $\underline{\mathbf{C}}$ CH₂), 146.9 ($\underline{\mathbf{C}}$ =CC(=O)OH), 145.2 (d, J = 10.7 Hz, *ipso* to piperazine), 140.3 (*para* to F), 139.2 (*ipso* to NH), 129.4 (*meta* to OCH₃ and *meta* to NH), 121.7 ($\underline{\mathbf{C}}$ H=CCH₂), 118.5 (d, J = 7.5 Hz, *para* to piperazine), 111.3 (*para* to OCH₃), 110.9 (d, J = 22.4 Hz, *ortho* to C=O and *ortho* to F), 108.4 (*para* to NH), 106.7 ($\underline{\mathbf{C}}$ C(=O)OH), 106.3 (*meta* to C=O and *meta* to F), 104.8 (*ortho* to OCH₃ and *ortho* to NH), 57.3 (CH=CCH₂CH₂CH₂CH₂CH₂N), 54.9 ($\underline{\mathbf{C}}$ H₃), 52.4 (CH=CCH₂CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂N($\underline{\mathbf{C}}$ H₂)CH₂), 49.5 (CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 49.4 (CH=CCH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 48.7 (C(=O)CH₂CH₂CH₂CH₂N), 35.8 (NCH(CH₂)₂), 32.9 (C(=O)CH₂CH₂CH₂CH₂N), 26.8 (CH=CCH₂CH₂CH₂CH₂N), 25.7 (CH=CCH₂CH₂CH₂CH₂N), 25.5 (C(=O)CH₂CH₂CH₂N), 26.9 (CH=CCH₂CH₂CH₂N), 7.6 (NCH($\underline{\mathbf{C}}$ H₂)₂)

 $^{19}\mathbf{F}$ NMR (376.45 MHz, DMSO d₆) δ / ppm = -121.5 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 646.3159, [M+H]⁺ found, [C₃₄H₄₁FN₇O₅]⁺ requires 646.3153

The compound has not been reported previously.

0.16 Methyl 7-(4-(4-(tert-butoxy)-4-oxobutyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate 136

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate $\bf 92$ (200 mg, 0.579 mmol, 1 eq.), tert-butyl 4-bromobutanoate $\bf 135$ (103 μ l, 130 mg, 0.581 mmol, 1 eq.), NaI (86.9 mg, 0.580 mmol, 1 eq.), TEA (316 μ l, 229 mg, 2.27 mmol, 4 eq.) and acetonitrile (10 ml) were stirred in a microwave reactor at 100 °C for 8 h. A second portion of tert-butyl 4-bromobutanoate $\bf 150$ (103 μ l, 130 mg, 0.581 mmol, 1 eq.) was added, and the mixture was stirred in the microwave reactor at 100 °C for a further 8 h. The mixture was then dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 0-4 % MeOH/CH₂Cl₂). $\bf 136$ was obtained as a white amorphous solid (141 mg, 0.289 mmol, 49.9 %).

TLC $R_f = 0.12 \ (4 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2961.6 (C-H), 2830.5 (C-H), 1732.2 (*t*-Bu ester C=O) 1717.2 (ciprofloxacin ester C=O), 1620.6 (quinolone C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 8.39 (s, 1 H, ortho to C(=O)OCH₃), 7.82 (d, J = 13.3 Hz, 1 H, ortho to F), 7.17 (d, J = 7.2 Hz, 1 H, meta to F), 3.83 (s, 3 H, C $\underline{\text{H}}_3$), 3.40 (tt, J = 7.2, 3.6 Hz, 1 H, NC $\underline{\text{H}}$ (CH₂)₂), 3.22 (t, J = 4.3 Hz, 4 H, CH₂N(CH₂C $\underline{\text{H}}_2$)CH₂C $\underline{\text{H}}_2$), 2.63 (t, J = 4.4 Hz, 4 H, CH₂N(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$), 2.41 (t, J = 7.3 Hz, 2 H, C $\underline{\text{H}}_2$ N(CH₂)CH₂), 2.25 (t, J = 7.4 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.78 (quin, J = 7.3 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.41 (s, 9 H, C((C $\underline{\text{H}})$ 3)₃), 1.24 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.09 (m, 2 H, NCH(CH $\underline{\text{H}}$ 1)₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 172.7 ($\underline{\mathbf{C}}$ (=O)CC(=O)OCH₃), 172.6 ($\underline{\mathbf{C}}$ (=O)OC(CH₃)₃), 165.9 ($\underline{\mathbf{C}}$ (=O)OCH₃), 153.1 (d, J = 249.7 Hz, ipso to F), 148.1 ($\underline{\mathbf{C}}$ =CC(=O)OCH₃), 144.3 (d, J = 10.4 Hz, ipso to piperazine), 137.7 (para to F), 122.5 (d, J = 6.9 Hz, para to piperazine) 112.6 (d, J = 22.5 Hz, ortho to C=O and ortho to F), 109.5 ($\underline{\mathbf{C}}$ CC(=O)OCH₃) 104.7 (meta to C=O and meta to F), 80.0 ($\underline{\mathbf{C}}$ (CH₃)₃), 57.4 (C(=O)CH₂CH₂CH₂N), 52.7 (C(=O)CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂) $\underline{\mathbf{C}}$ H₂), 51.7 ($\underline{\mathbf{C}}$ H₃), 49.7 (C(=O)CH₂CH₂CH₂N(CH₂CH₂N($\underline{\mathbf{C}}$ H₂)CH₂CH₂), 34.4 ($\underline{\mathbf{N}}$ CH(CH₂)₂), 33.2 (C(=O) $\underline{\mathbf{C}}$ H₂), 28.0 (C($\underline{\mathbf{C}}$ H₃)₃), 22.0 (C(=O)CH₂CH₂CH₂), 7.9 ($\underline{\mathbf{N}}$ CH($\underline{\mathbf{C}}$ H₂)₂)

¹⁹**F NMR** (376.45 MHz, CDCl₃) δ / ppm = -123.5 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 488.2562, [M+H]⁺ found, [C₂₆H₃₅FN₃O₅]⁺ requires 488.2561

The compound has not been reported previously.

0.17 4-(4-(1-Cyclopropyl-6-fluoro-3-(methoxycarbonyl)-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-yl)butanoic acid trifluoroacetate 137

Methyl 7-(4-(4-(tert-butoxy)-4-oxobutyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-car-boxylate **136** (20 mg, 41.0 μ mol) and TFA (0.2 ml) were stirred in CH₂Cl₂ (1.8 ml) at r.t. for 16 h then evaporated under reduced pressure. **137** was obtained as a white solid (21.4 mg, 39.2 μ mol, 95.6 %).

mp $T / ^{\circ}C = 225-231 (CH_2Cl_2, decomposes)$

IR (neat) ν_{max} / cm⁻¹ = 1722.7 (ciprofloxacin ester C=O), 1699.0 (alkyl carboxylic acid C=O), 1673.3 (TFA C=O), 1614.6 (quinolone C=O)

¹**H NMR** (400 MHz, DMSO d₆) δ / ppm = 8.47 (s, 1 H, ortho to C(=O)OH), 7.80 (d, J = 13.2 Hz, 1 H, ortho to F), 7.47 (d, J = 7.4 Hz, 1 H, meta to F), 3.73 (s, 3 H, C $\underline{\text{H}}_3$), 3.66 (tt, J = 7.2, 3.7 Hz, 1 H, NC $\underline{\text{H}}$ (CH₂)2), 3.30 - 3.54 (br s, 8 H, CH₂N(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$ and CH₂N(CH₂C $\underline{\text{H}}_2$)CH₂C $\underline{\text{H}}_2$) 3.13 - 3.22 (m, 2 H, C $\underline{\text{H}}_2$ N(CH₂)CH₂), 2.36 (t, J = 7.1 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.87 - 1.98 (m, 2 H, C $\underline{\text{H}}_2$ CH₂N(CH₂)CH₂), 1.22 - 1.30 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.06 - 1.15 (m, 2 H, NCH(CH $\underline{\text{H}}$)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 173.5 (CH₂C(=O)OH), 171.6 (C(=O)CC(=O)OCH₃), 164.9 (C(=O)OCH₃), 158.2 (q, J = 31.5 Hz, CF₃C(=O)OH), 152.5 (d, J = 247.6 Hz, ipso to F), 148.5 (C=CC(=O)OH), 142.3 (d, J = 10.7 Hz, ipso to piperazine), 138.0 (para to F), 122.6 (d, J = 6.4 Hz, para to piperazine), 117.2 (q, J = 299.8 Hz, CF₃), 111.9 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 109.1 (C(=O)OCH₃), 106.9 (meta to C=O and meta to F), 55.1 (C(=O)CH₂CH₂CH₂N), 51.4 (CH₃), 50.8 (C(=O)CH₂CH₂CH₂N(CH₂CH₂), 46.7 (C(=O)CH₂CH₂CH₂CH₂N(CH₂CH₂), 34.9 (NCH (CH₂)₂), 30.6 (C(=O)CH₂), 19.1 (C(=O)CH₂CH₂CH₂), 7.6 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -73.6 (s, C<u>F</u>₃), -124.6 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 432.1921, [M+H]⁺ found, [C₂₂H₂₇FN₃O₅]⁺ requires 432.1935

The compound has not been reported previously.

0.18 (1R,2R)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 113 and (1S,2S)-2-(((S)-1-phenylethyl)amino)cyclopentan-1-ol 112

(S)-1-Phenylethan-1-amine 111 (7.85 ml, 7.38 g, 60.9 mmol, 1 eq.) was dissolved in CH_2Cl_2 (50 ml) and stirred rapidly at 0 °C. A solution of AlMe₃ (31 ml, 2.0 M in heptane, 60.9 mmol) was added dropwise and the mixture was stirred at 0 °C for 1 h. A solution of cyclohexene oxide 110 (5.71 ml, 5.50 g, 65.4 mmol, 1.1 eq.) in CH_2Cl_2 (50 ml) was then added dropwise, and the mixture was stirred at 0 °C for a further 3 h, followed by 48 h at r.t.. The mixture was cooled to 0 °C and NaF (11 g, 262 mmol, 4.3 eq.) was added portionwise, followed by water (7.00 ml, 7.00 g, 389 mmol, 6.4 eq.) and CH_2Cl_2 (50 ml). The suspension was allowed to warm to r.t. and stirred for 1 h, then filtered through Celite and washed with CH_2Cl_2 (500 ml). The filtrate was dried with K_2CO_3 , concentrated under reduced pressure and purified by column chromatography (SiO₂, 20:5:1 hexane:EtOAc:TEA). 113 was obtained as a pale yellow oil (4.08 g, 19.9 mmol, 32.6 %). 112 was obtained as pale yellow crystals (4.48 g, 21.8 mmol, 35.8 %).

(1R,2R)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 113

TLC $R_f = 0.25$ (15:5:1 hexane:EtOAc:TEA)

IR (neat)
$$\nu_{max}$$
 / cm⁻¹ = 3300.0 (br, O-H), 2959.7 (C-H), 2870.1 (C-H)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 7.28 - 7.38 (m, 4 H, ortho and meta to CHCH₃), 7.21 - 7.28 (m, 1 H, para to CHCH₃), 3.83 (q, J = 6.6 Hz, 1 H, CHCH₃), 3.78 (q, J = 7.0 Hz, 1 H, CHOH), 2.62 (dt, J = 8.2, 7.2 Hz, 1 H, CHNH), 1.97 (quin, J = 6.7 Hz, 1 H, CH₂CHNH), 1.90 (quin, J = 6.9 Hz, 1 H, CH₂CHOH), 1.56 - 1.68 (m, CH₂CH₂CHOH), 1.43 (dq, J = 12.5, 8.0 Hz, 1 H, CH₂CHOH), 1.37 (d, J = 6.6 Hz, 3 H, CH₃), 1.25 - 1.36 (m, 1 H, CH₂CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 144.75 (*ipso* to CHCH₃), 128.26 (*meta* to CHCH₃), 126.72 (*para* to CHCH₃), 126.30 (*ortho* to CHCH₃), 77.65 (<u>C</u>HOH), 63.38 (<u>C</u>HNH), 56.20 (<u>C</u>HCH₃), 31.74 (<u>C</u>H₂CHOH), 29.22 (<u>C</u>H₂CHNH), 24.58 (<u>C</u>H₃), 19.57 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 206.1554, [M+H]⁺ found, [C₁₃H₂₀NO]⁺ requires 206.1545

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -92.8 \ (c / \text{g}(100 \text{ ml})^{-1} = 1.19, \text{MeOH})$$

(1S,2S)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 112

TLC $R_f = 0.36$ (15:5:1 hexane:EtOAc:TEA)

mp $T / ^{\circ}C = 66-71.5$ (hexane, EtOAc, TEA)

IR (neat) ν_{max} / cm⁻¹ = 3150.0 (br, O-H), 2950.9 (C-H), 2868.2 (C-H)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 7.28 - 7.34 (m, 4 H, ortho and meta to CHCH₃), 7.20 - 7.26 (m, 1 H, para to CHCH₃), 3.86 (q, J = 6.6 Hz, 1 H, CHCH₃), 3.85 (q, J = 6.6 Hz, 1 H, CHOH), 2.83 (td, J = 7.6, 5.7 Hz, 1 H, CHNH), 1.85 - 1.97 (m, 1 H, CHHCHOH), 1.77 (dtd, J = 12.9, 7.9, 7.9, 4.9 Hz, 1 H, CHHCHNH), 1.55 - 1.68 (m, 2 H, CH₂CH₂CHOH), 1.47 - 1.55 (m, 1 H, CHHCHOH), 1.36 (d, J = 6.6 Hz, 3 H, CH₃), 1.12 (dq, J = 12.7, 8.1 Hz, 1 H, CHHCHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 145.61 (*ipso* to CHCH₃), 128.08 (*meta* to CHCH₃), 126.61 (*para* to CHCH₃), 126.33 (*ortho* to CHCH₃), 77.43 (<u>C</u>HOH), 64.45 (<u>C</u>HNH), 56.62 (<u>C</u>HCH₃), 32.01 (<u>C</u>H₂CHOH), 30.56 (<u>C</u>H₂CHNH), 23.30 (<u>C</u>H₃), 20.06 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 206.1553, [M+H]⁺ found, [C₁₃H₂₀NO]⁺ requires 206.1545

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -23.9 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.96 \ \text{, MeOH})$$

The compounds have been synthesised previously, ^{1,2} but NMR data were not published. The enantiomers of both compounds have also been synthesised previously, and the ¹H NMR data for these are consistent with the the above data.³

$0.19 \quad (1R,2R)$ -2-Aminocyclopentan-1-ol 115

(1R,2R)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol **113** (3.90 g, 19.0 mmol, 1 eq.), $Pd(OH)_2$ (20 wt. % on C, moistened with 50 wt. % water, 1 g, 0.712 mmol, 0.04 eq.) and MeOH (50 ml) were stirred in a Paar hydrogenator at r.t. and 3 atm for 2 days. The mixture was then filtered through Celite and evaporated under reduced pressure. **115** was obtained as a yellow oil (1.92 g, 19.0 mmol, 100 %).

TLC $R_f = 0.10 \ (10 \% \ \mathrm{MeOH/CH_2Cl_2})$

IR (neat)
$$\nu_{max}$$
 / cm⁻¹ = 3300.0 (br, O-H), 2958.3 (C-H), 2871.5 (C-H)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 3.77 (ddd, J=6.6, 6.2, 5.6, 1 H, C<u>H</u>OH), 3.00 (td, J=7.3, 5.6 Hz, 1 H, C<u>H</u>NH₂), 2.00 (dtd, J=13.0, 7.7, 7.7, 5.6 Hz, 1 H, C<u>H</u>HCHNH₂), 1.97 (ddt, J=13.0, 8.7, 6.6, 6.6 Hz, 1 H, C<u>H</u>HCHOH), 1.63 - 1.77 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.53 (ddt, J=13.0, 9.5, 6.2, 6.2 Hz, 1 H, CH<u>H</u>CHOH), 1.37 (ddt, J=13.0, 8.3, 7.8, 7.8 Hz, 1 H, CH<u>H</u>CHNH₂)

 $^{13}\mathbf{C}$ NMR (101 MHz, MeOD) δ / ppm = 80.7 (<u>C</u>HOH), 60.8 (<u>C</u>HNH₂), 33.2 (<u>C</u>H₂CHOH), 32.1 (<u>C</u>H₂CHNH₂), 21.2 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 102.0917, [M+H]⁺ found, [C₅H₁₂NO]⁺ requires 102.0913

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -30.9 \ (c / \text{g}(100 \text{ ml})^{-1} = 1.5 \ , \text{EtOH})$$

The data are consistent with the literature. 2,8

0.20 (1S,2S)-2-Aminocyclopentan-1-ol 114

(1S,2S)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol **112** (3.00 g, 14.6 mmol, 1 eq.), $Pd(OH)_2$ (20 wt. % on C, moistened with 50 wt. % water, 0.5 g, 0.356 mmol, 0.025 eq.) and MeOH (50 ml) were stirred in a Paar hydrogenator at r.t. and 2.5 atm for 2 days. The mixture was then filtered through Celite and evaporated under reduced pressure. **114** was obtained as a yellow oil (1.48 g, 14.6 mmol, 100 %).

TLC $R_f = 0.10 \ (10 \% \ \text{MeOH/CH}_2\text{Cl}_2)$

IR (neat)
$$\nu_{max}$$
 / cm⁻¹ = 3300.0 (O-H), 2969.2 (C-H), 2872.7 (C-H)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 3.77 (ddd, J=6.6, 6.2, 5.6, 1 H, C<u>H</u>OH), 3.00 (td, J=7.4, 5.6 Hz, 1 H, C<u>H</u>NH₂), 2.00 (dtd, J=13.0, 7.7, 7.7, 5.6 Hz, 1 H, C<u>H</u>HCHNH₂), 1.97 (ddt, J=13.0, 8.7, 6.4, 6.4 Hz, 1 H, C<u>H</u>HCHOH), 1.64 - 1.77 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.53 (ddt, J=13.0, 9.5, 6.2, 6.2 Hz, 1 H, CH<u>H</u>CHOH), 1.37 (ddt, J=12.8, 8.5, 7.7, 7.7 Hz, 1 H, CH<u>H</u>CHNH₂)

 $^{13}\mathbf{C}$ NMR (101 MHz, MeOD) δ / ppm = 80.6 (<u>C</u>HOH), 60.7 (<u>C</u>HNH₂), 33.2 (<u>C</u>H₂CHOH), 32.2 (<u>C</u>H₂CHNH₂), 21.2 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 102.0915, [M+H]⁺ found, [C₅H₁₂NO]⁺ requires 102.0913

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 33.4 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.5, \text{ EtOH})$$

The data are consistent with the literature. 2,8

0.21 (1S,2S)-2-((tert-Butyldimethylsilyl)oxy)cyclopentan-1-amine 125

(1S,2S)-2-Aminocyclopentan-1-ol **114** (0.480 g, 4.75 mmol) was stirred in dry CH_2Cl_2 (20 ml) under N_2 at 0 °C. TEA (3.14 ml, 2.28 g, 22.5 mmol, 5 eq.) was added dropwise, followed by TBDMSOTf (3 ml, 3.45 g, 13.1 mmol, 3 eq.) dropwise. The reaction was allowed to reach r.t. and stirred for 1 h. The reaction was quenched with NH_4Cl , diluted with CH_2Cl_2 (20 ml) and washed with water (20 ml). The organic phase was dried with Na_2SO_4 , concentrated under reduced pressure and purified by column chromatography (SiO₂, 4 % MeOH/CH₂Cl₂). **125** was obtained as a yellow oil (1.00 g, 4.64 mmol, 97.7 %).

TLC $R_f = 0.23 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2953.6 (C-H), 2931.1 (C-H), 2888.4 (C-H), 2858.8 (C-H), 1625.2 (N-H bend)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 4.13 (q, J = 5.8 Hz, 1 H, CHOSi), 3.31 (td, J = 7.1, 5.2 Hz, 1 H, CHNH₂), 2.09 - 2.19 (m, 1 H, CHHCHNH₂), 1.97 (ddq, J = 8.8, 7.0, 6.0, 6.0, 6.0 Hz, 1 H, CHHCHOSi), 1.74 - 1.86 (m, 2 H, CH₂CH₂CHOSi), 1.64 - 1.74 (m, 1 H, CHHCHOSi), 1.58 (ddt, J = 13.2, 9.1, 6.0, 6.0 Hz, 1 H, CHHCHNH₂), 0.88 (s, 9 H, C(CH₃)₃), 0.09 (s, 3 H, SiCH₃), 0.07 (s, 3 H, SiCH₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 76.3 (<u>C</u>HOSi), 59.7 (<u>C</u>HNH), 32.2 (<u>C</u>H₂CHOSi), 26.8 (<u>C</u>H₂CHNH₂), 25.6 (<u>C</u>(<u>C</u>H₃)₃), 19.7 (<u>C</u>H₂CH₂CHOSi), 17.7 (<u>C</u>(CH₃)₃), -4.8 (Si<u>C</u>H₃), -5.2 (Si<u>C</u>H₃)

HRMS (ESI⁺) m/z / Da = 216.1785, [M+H]⁺ found, [C₁₁H₂₆NOSi]⁺ requires 216.1784 The compound has not been reported previously.

0.22 4-Chloro-N-((1R,2R)-2-hydroxycyclopentyl) butanamide 141

(1R,2R)-2-Aminocyclopentan-1-ol **115** (500 mg, 4.94 mmol, 1 eq.), TEA (827 μ l, 600 mg, 5.93 mmol, 1.2 eq.) and CH₂Cl₂ (20 ml) were stirred at 0 °C and 4-chlorobutyryl chloride **139** (608 μ l, 766 mg, 5.43 mmol, 1.1 eq.) was added dropwise over 5 min. The mixture was stirred at 0 °C for 30 min, then water (50 ml) was added. The organic layer was separated off, and the aqueous layer was extracted with CH₂Cl₂ (7×50 ml). The combined organic layers were dried with MgSO₄, concentrated under reduced pressure and purified by column chromatography (SiO₂, Et₂O). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **141** was obtained as a white amorphous solid (651 mg, 3.16 mmol, 64.1 %).

TLC $R_f = 0.35$ (EtOAc)

IR (neat) ν_{max} / cm⁻¹ = 3277.6 (N-H and O-H), 2962.2 (C-H), 2876.0 (C-H), 1636.3 (amide C=O)

 $^{1}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz}, \ \mathrm{CDCl_{3}}) \ \delta \ / \ \mathrm{ppm} = 6.12 \ (\mathrm{br} \ \mathrm{s}, \ 1 \ \mathrm{H}, \ \mathrm{N\underline{H}}), \ 4.42 \ (\mathrm{br} \ \mathrm{s}, \ 1 \ \mathrm{H}, \ \mathrm{O\underline{H}}), \ 3.94 \ (\mathrm{q}, \ J = 6.6 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{C\underline{H}OH}), \ 3.82 \ (\mathrm{tt}, \ J = 8.4, \ 5.3 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{C\underline{H}NH}), \ 3.60 \ (\mathrm{t}, \ J = 6.2 \ \mathrm{Hz}, \ 2 \ \mathrm{H}, \ \mathrm{C\underline{H}_{2}Cl}), \ 2.38 \ (\mathrm{t}, \ J = 7.2 \ \mathrm{Hz}, \ 2 \ \mathrm{H}, \ \mathrm{C\underline{H}_{2}Cl}), \ 2.05 \ - 2.16 \ (\mathrm{m}, \ 3 \ \mathrm{H}, \ \mathrm{C\underline{H}HCHNH} \ \mathrm{and} \ \mathrm{C\underline{H}_{2}CH_{2}Cl}), \ 1.96 \ - 2.04 \ (\mathrm{m}, \ 1 \ \mathrm{H}, \ \mathrm{C\underline{H}HCHOH}), \ 1.74 \ - 1.85 \ (\mathrm{m}, \ 1 \ \mathrm{H}, \ \mathrm{C\underline{H}HCH_{2}CHOH}), \ 1.58 \ - 1.73 \ (\mathrm{m}, \ 2 \ \mathrm{H}, \ \mathrm{C\underline{H}\underline{H}CH_{2}CHOH} \ \mathrm{and} \ \mathrm{C\underline{H}\underline{H}CHOH}), \ 1.43 \ (\mathrm{dq}, \ J = 12.7, \ 8.3 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{C\underline{H}\underline{H}CHNH})$

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 79.4 (<u>C</u>HOH), 60.6 (<u>C</u>HNH), 44.4 (<u>C</u>H₂Cl), 32.8 (<u>C</u>H₂C=O), 32.4 (<u>C</u>H₂CHOH), 30.1 (<u>C</u>H₂CHNH), 28.0 (<u>C</u>H₂CH₂Cl), 21.1 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 228.0787, [M+Na]⁺ found, [C₉H₁₆ClNNaO₂]⁺ requires 228.0762

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \mathrm{cm}^2 \mathrm{g}^{-1} = -13.0 \ (c / \mathrm{g}(100 \ \mathrm{ml})^{-1} = 0.5, \mathrm{MeOH})$$

The compound has not been reported previously.

0.23 4-Chloro-N-((1S,2S)-2-hydroxycyclopentyl)butanamide 140

(1S,2S)-2-Aminocyclopentan-1-ol **114** (72.3 mg, 716 μ mol, 1 eq.), TEA (500 μ l, 363 mg, 3.58 mmol, 5 eq.) and CH₂Cl₂ (5 ml) were stirred at 0 °C, and 4-chlorobutyryl chloride **139** (179 μ l, 226 mg, 1.60 mmol, 1.1 eq.) was added dropwise over 5 min. The mixture was stirred at 0 °C for 30 min, then water (10 ml) was added. The organic layer was separated off, and the aqueous layer was extracted with 10 % *i*-PrOH/CHCl₃ (2×10 ml). The combined organic layers were dried with MgSO₄, concentrated under reduced pressure and purified by column chromatography (SiO₂, Et₂O). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **140** was obtained as a white amorphous solid (35.6 mg, 173 μ mol, 24.2 %).

TLC $R_f = 0.35$ (EtOAc)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 6.05 (br s, 1 H, N<u>H</u>), 4.55 (br s, 1 H, O<u>H</u>), 3.95 (q, J=6.6 Hz, 1 H, C<u>H</u>OH), 3.82 (tt, J=8.4, 5.3 Hz, 1 H, C<u>H</u>NH), 3.60 (t, J=6.2 Hz, 2 H, C<u>H</u>₂Cl), 2.38 (t, J=7.0 Hz, 2 H, C<u>H</u>₂C=O), 2.05 - 2.17 (m, 3 H, C<u>H</u>HCHNH and C<u>H</u>₂CH₂Cl), 1.94 - 2.05 (m, 1 H, C<u>H</u>HCHOH), 1.74 - 1.86 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.58 - 1.74 (m, 2 H, CH<u>H</u>CH₂CHOH and CH<u>H</u>CHOH), 1.42 (dq, J=12.5, 8.4 Hz, 1 H, CH<u>H</u>CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 79.4 (<u>C</u>HOH), 60.6 (<u>C</u>HNH), 44.4 (<u>C</u>H₂Cl), 32.8 (<u>C</u>H₂C=O), 32.4 (<u>C</u>H₂CHOH), 30.2 (<u>C</u>H₂CHNH), 28.0 (<u>C</u>H₂CH₂Cl), 21.2 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 206.0939, [M+H]⁺ found, [C₉H₁₇ClNO₂]⁺ requires 206.0948

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 10.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.05, \text{MeOH})$$

0.24 4-Azido-N-((1S,2S)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)butanamide 129

(1S,2S)-2-((tert-Butyldimethylsilyl)oxy)cyclopentan-1-amine **125** (50 mg, 0.232 mmol, 1 eq.) and NaHCO₃ (22.0 mg, 0.262 mmol, 1.1 eq.) were added to CH₂Cl₂ (3 ml) and water (3 ml) at 0 °C, and 4-bromobutyryl chloride (25.3 ml, 40.5 mg, 0.219 mmol, 0.95 eq.) was added dropwise. The mixture was stirred for 3 h at 0 °C. The aqueous layer was removed and NaN₃ (100 mg, 1.54 mmol, 6.6 eq.) and DMF (3 ml) were added. The mixture was then stirred at 40 °C for 6 h. The solvents were then evaporated using a N₂ stream and the residue was purified by column chromatography (SiO₂, 0.5 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **129** was obtained as a clear liquid (71 mg, 0.217 mmol, 99.2 %).

TLC $R_f = 0.84 (1 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3287.9 (N-H), 2953.4 (C-H), 2933.2 (C-H), 2882.7 (C-H), 2857.1 (C-H), 2094.9 (azide), 1639.4 (amide C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 5.35 (d, J = 5.1 Hz, 1 H, N<u>H</u>), 3.97 - 4.01 (m, 1 H, C<u>H</u>OSi), 3.93 - 3.98 (m, 1 H, C<u>H</u>NH), 3.35 (t, J = 6.6 Hz, 2 H, C<u>H</u>₂N₃), 2.24 (t, J = 7.0 Hz, 2 H, C<u>H</u>₂C=O), 2.09 - 2.19 (m, 1 H, C<u>H</u>HCHNH), 1.89 - 1.97 (quin, J = 6.8 Hz, 2 H, C<u>H</u>₂CH₂N₃), 1.74 - 1.84 (m, 2 H, C<u>H</u>HCHOSi and C<u>H</u>HCH₂CHOSi), 1.60 - 1.70 (m, 1 H, CH<u>H</u>CH₂CHOSi), 1.51 - 1.61 (m, 1 H, CH<u>H</u>CHOSi), 1.31 - 1.39 (m, 1 H, CH<u>H</u>CHNH), 0.87 (s, 9 H, C(C<u>H</u>₃)₃), 0.08 (s, 3 H, SiC<u>H</u>₃), 0.06 (s, 3 H, SiC<u>H</u>₃)

 $\begin{array}{l} ^{13}\mathbf{C} \ \mathbf{NMR} \ (101 \ \mathrm{MHz}, \mathrm{CDCl_3}) \ \delta \ / \ \mathrm{ppm} = 171.17 \ (\underline{\mathrm{C}} = \mathrm{O}), \ 77.80 \ (\underline{\mathrm{C}} \mathrm{HOSi}), \ 58.36 \ (\underline{\mathrm{C}} \mathrm{HNH}), \ 50.77 \ (\underline{\mathrm{C}} \mathrm{H_2N_3}), \ 33.29 \\ (\underline{\mathrm{C}} \mathrm{H_2C} = \mathrm{O}), \ 32.57 \ (\underline{\mathrm{C}} \mathrm{H_2C} \mathrm{HOSi}), \ 29.36 \ (\underline{\mathrm{C}} \mathrm{H_2C} \mathrm{HNH}), \ 25.72 \ (\mathrm{C}(\underline{\mathrm{C}} \mathrm{H_3})_3), \ 24.77 \ (\underline{\mathrm{C}} \mathrm{H_2C} \mathrm{H_2N_3}), \ 20.40 \ (\underline{\mathrm{C}} \mathrm{H_2C} \mathrm{H_2C} \mathrm{HOSi}), \ 17.95 \ (\underline{\mathrm{C}} (\mathrm{CH_3})_3), \ -4.75 \ (\mathrm{Si} \underline{\mathrm{C}} \mathrm{H_3}) \end{array}$

HRMS (ESI⁺) m/z / Da = 327.2221, [M+H]⁺ found, [C₁₅H₃₁N₄O₂Si]⁺ requires 327.2216

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 12.4 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.5, \text{MeOH})$$

The compound has not been reported previously.

0.25 4-Azido-N-((1R,2R)-2-hydroxycyclopentyl)butanamide 119

$$OH$$
 H
 O
 N_3

4-Chloro-N-((1R,2R)-2-hydroxycyclopentyl)butanamide **141** (200 mg, 0.972 mmol, 1 eq.) and NaN₃ (126 mg, 1.94 mmol, 2 eq.) were stirred in acetonitrile (4 ml) at 50 °C for 16 h. The solvent was then evaporated under reduced pressure and the residue was partitioned between water (20 ml) and 10 % i-PrOH/CHCl₃ (20 ml). The aqueous layer was extracted again with 10 % i-PrOH/CHCl₃ (3×20 ml) and the combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. **119** was obtained as white needles (181 mg, 0.852 mmol, 87.6 %).

TLC $R_f = 0.35$ (EtOAc)

mp $T / {}^{\circ}\text{C} = 56.0\text{-}59.5 \ (i\text{-PrOH, CHCl}_3)$

IR (neat) ν_{max} / cm⁻¹ = 3279.9 (N-H and O-H), 2965.6 (C-H), 2875.4 (C-H), 2094.6 (azide), 1636.8 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.72 (d, J = 4.4 Hz, 1 H, N<u>H</u>), 4.82 (br. s., 1 H, O<u>H</u>), 3.88 (q, J = 6.6 Hz, 1 H, C<u>H</u>OH), 3.75 (tdd, J = 8.4, 8.4, 6.6, 4.4 Hz, 1 H, C<u>H</u>NH), 3.28 (t, J = 6.6 Hz, 2 H, C<u>H</u>₂N₃), 2.23 (t, J = 7.3 Hz, 2 H, C<u>H</u>₂C=O), 2.04 (dtd, J = 13.0, 8.0, 8.0, 4.9 Hz, 1 H, C<u>H</u>HCHNH), 1.92 (dtd, J = 13.0, 7.6, 7.6, 5.8 Hz, 1 H, C<u>H</u>HCHOH), 1.84 (quin, J = 7.0 Hz, 2 H, C<u>H</u>₂CH₂N₃), 1.59 - 1.77 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.54 (ddt, J = 12.7, 9.0, 6.7, 6.7 Hz, 1 H, CH<u>H</u>CHOH), 1.39 (dq, J = 12.9, 8.4 Hz, 1 H, CH<u>H</u>CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 78.8 (<u>C</u>HOH), 59.9 (<u>C</u>HNH), 50.5 (<u>C</u>H₂N₃), 32.5 (<u>C</u>H₂C=O), 32.0 (<u>C</u>H₂CHOH), 29.5 (<u>C</u>H₂CHNH), 24.6 (<u>C</u>H₂CH₂N₃), 20.7 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 235.1174, [M+Na]⁺ found, [C₉H₁₆N₄NaO₂]⁺ requires 235.1171

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -10.2 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.5, \text{MeOH})$$

The compound has not been reported previously.

0.26 4-Azido-N-((1S,2S)-2-hydroxycyclopentyl)butanamide 118

4-Chloro-N-((1S,2S)-2-hydroxycyclopentyl)butanamide **140** (35.0 mg, 0.170 mmol, 1 eq.) and NaN $_3$ (22.1 mg, 0.340 mmol, 2 eq.) were stirred in acetonitrile (2 ml) at 50 °C for 24 h. The reaction mixture was then partitioned between water (20 ml) and 10 % i-PrOH/CHCl $_3$ (5 ml). The aqueous layer was extracted again with 10 % i-PrOH/CHCl $_3$ (2×5 ml) and the combined organic fractions were dried with MgSO $_4$ and evaporated under reduced pressure. **118** was obtained as white needles (16.2 mg, 0.0764 mmol, 45.0 %).

TLC $R_f = 0.35$ (EtOAc)

IR (neat) ν_{max} / cm⁻¹ = 3286.7 (N-H and O-H), 2957.6 (C-H), 2930.6 (C-H), 2860.7 (C-H), 2094.7 (azide), 1642.2 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 5.82 (br s, 1 H, N<u>H</u>), 4.45 (br. s., 1 H, O<u>H</u>), 3.96 (q, J=6.6 Hz, 1 H, C<u>H</u>OH), 3.83 (tdd, J=8.5, 8.5, 6.0, 4.6 Hz, 1 H, C<u>H</u>NH), 3.37 (t, J=6.4 Hz, 2 H, C<u>H</u>₂N₃), 2.31 (t, J=7.2 Hz, 2 H, C<u>H</u>₂C=O), 2.09 - 2.19 (m, 1 H, C<u>H</u>HCHNH), 1.99 - 2.06 (m, 1 H, C<u>H</u>HCHOH), 1.90 - 1.97 (m, 2 H, C<u>H</u>₂CH₂N₃), 1.60 - 1.85 (m, 3 H, C<u>H</u>₂CH<u>H</u>CHOH), 1.42 (dq, J=12.8, 8.3 Hz, 1 H, CH<u>H</u>CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 79.7 (<u>C</u>HOH), 61.0 (<u>C</u>HNH), 50.7 (<u>C</u>H₂N₃), 32.8 (<u>C</u>H₂C=O), 32.6 (<u>C</u>H₂CHOH), 30.5 (<u>C</u>H₂CHNH), 24.7 (<u>C</u>H₂CH₂N₃), 21.3 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 235.1178, [M+Na]⁺ found, [C₉H₁₆N₄NaO₂]⁺ requires 235.1171

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 10.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.01, \text{MeOH})$$

The compound has not been reported previously.

0.27 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((1R,2R)-2-hydroxycyclopentyl)amin o)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 121

4-(4-(1-Cyclopropyl-6-fluoro-3-(methoxycarbonyl)-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-yl)butanoic acid trifluoroacetate 137 (200 mg, 0.367 mmol, 1 eq.), (1R,2R)-2-aminocyclopentan-1-ol 115 (80 mg, 0.791 mmol, 2.1 eq.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (112 mg, 0.584 mmol, 1.6 eq.), 1-hydroxyben zotriazole (96 mg, 0.710 mmol, 1.9 eq.) and DIPEA (192 μ l, 142 mg, 1.10 mmol, 3 eq.) were dissolved in DMF (5 ml) and stirred at r.t. for 16 h. The solvent was removed using a stream of N₂ and the residue was purified by preparatory HPLC (5-60 % acetonitrile/water over 12 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and CH₂Cl₂ (10 ml). The organic layer was removed and the aqueous layer was extracted twice more with CH₂Cl₂ (2×10 ml). The combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. 121 was obtained as a white amorphous solid (73.0 mg, 0.142 mmol, 38.7 %).

TLC $R_f = 0.43 (30 \% \text{ MeOH/EtOAc})$

IR (neat) ν_{max} / cm⁻¹ = 2972.9 (C-H), 2901.5 (C-H), 1728.4 (ester C=O), 1656.3 (amide C=O), 1612.9 (quinolone C=O)

¹**H NMR** (400 MHz, DMSO d₆) δ / ppm = 8.44 (s, 1 H, ortho to C(=O)OC $\underline{\text{H}}_3$), 7.75 (d, J = 13.5 Hz, 1 H, ortho to F), 7.70 (d, J = 7.2 Hz, 1 H, CHN $\underline{\text{H}}$), 7.43 (d, J = 7.5 Hz, 1 H, meta to F), 4.74 (d, J = 4.0 Hz, 1 H, CHO $\underline{\text{H}}$), 3.78 - 3.82 (m, 1 H, C $\underline{\text{H}}$ OH), 3.74 - 3.78 (m, 1 H, C $\underline{\text{H}}$ NH), 3.74 (s, 3 H, C $\underline{\text{H}}_3$), 3.65 (tt, J = 7.2, 3.9 Hz, 1 H, NC $\underline{\text{H}}$ (CH₂)₂), 3.25 (t, J = 4.8 Hz, 4 H, CH₂N(CH₂C $\underline{\text{H}}_2$)CH₂CH₂D, 2.57 (br s, 4 H, CH₂N(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$), 2.34 (t, J = 7.4 Hz, 2 H, C $\underline{\text{H}}_2$ N(CH₂)CH₂), 2.11 (t, J = 7.4 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.92 (dddd, J = 13.0, 8.7, 7.3, 6.0 Hz, 1 H, C $\underline{\text{H}}$ HCHNH), 1.78 (dddd, J = 12.6, 8.9, 6.3, 6.3 Hz, 1 H, C $\underline{\text{H}}$ HCHOH), 1.69

(quin, J = 7.3 Hz, 2 H, CH₂CH₂N(CH₂)CH₂), 1.54 - 1.65 (m, 2 H, CH₂CH₂CHOH), 1.42 (ddt, J = 13.1, 8.2, 5.3, 5.3 Hz, 1 H, CHHCHOH), 1.32 (dddd, J = 13.4, 8.5, 6.8, 5.8 Hz, 1 H, CHHCHNH), 1.21 - 1.29 (m, 2 H, NCH(CHH)₂), 1.07 - 1.13 (m, 2 H, NCH(CHH)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 171.9 (CH₂C(=O)NH), 171.6 (C(=O)CC(=O)OCH₃), 165.0 (C(=O)OCH₃), 152.6 (d, J = 246.5 Hz, ipso to F), 148.3 (C=CC(=O)OCH₃), 143.9 (d, J = 10.7 Hz, ipso to piperazine), 138.1 (para to F), 121.8 (d, J = 6.4 Hz, para to piperazine), 111.5 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 109.0 (CC(=O)OCH₃), 106.2 (meta to C=O and meta to F), 76.3 (CHOH), 57.6 (CHNH), 57.2 (CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N(CH₂)CH₂), 51.3 (CH₃), 49.6 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 34.8 (NCH(CH₂)₂), 33.3 (C(=O)CH₂), 32.2 (CH₂CHOH), 29.5 (CH₂CHNH), 22.5 (C(=O)CH₂CH₂), 20.6 (CH₂CH₂CHOH), 7.6 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -124.3 (ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 515.2661, [M+H]⁺ found, [C₂₇H₃₆FN₄O₅]⁺ requires 515.2670

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -6.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.05, \text{MeOH})$$

The compound has not been reported previously.

0.28 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 120

4-(4-(1-Cyclopropyl-6-fluoro-3-(methoxycarbonyl)-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-yl)butanoic acid trifluoroacetate 137 (52.1 mg, 95.5 μ mol, 1 eq.), (1S,2S)-2-aminocyclopentan-1-ol 114 (19.5 mg, 193 μ mol, 2 eq.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (29.7 mg, 155 μ mol, 1.6 eq.), 1-hydroxyben zotriazole (25.8 mg, 191 μ mol, 2 eq.) and DIPEA (33.3 μ l, 24.7 mg, 191 μ mol, 2 eq.) were dissolved in DMF (2 ml) and stirred at r.t. for 16 h. The solvent was removed using a stream of N₂ and the residue was purified by preparatory HPLC (5-50 % acetonitrile/water over 15 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 5 ml) and CH₂Cl₂ (5 ml). The organic layer was removed and the aqueous layer was extracted twice more with CH₂Cl₂ (2×5 ml). The combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. 120 was obtained as a white amorphous solid (4.9 mg, 9.5 μ mol, 9.9 %).

TLC $R_f = 0.38 \ (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2937.7 (C-H), 1721.4 (ester C=O), 1620.5 (amide C=O and quinolone C=O)

¹**H NMR** (500 MHz, DMSO d₆) δ / ppm = 8.44 (s, 1 H, ortho to C(=O)OC<u>H</u>₃), 7.75 (d, J=13.5 Hz, 1 H, ortho

to F), 7.69 (d, J=6.9 Hz, 1 H, CHN $\underline{\text{H}}$), 7.43 (d, J=7.6 Hz, 1 H, meta to F), 4.73 (br s, 1 H, CHO $\underline{\text{H}}$), 3.77 - 3.81 (m, 1 H, C $\underline{\text{H}}$ OH), 3.74 - 3.77 (m, 1 H, C $\underline{\text{H}}$ NH), 3.73 (s, 3 H, C $\underline{\text{H}}_3$), 3.65 (tt, J=6.9, 4.0 Hz, 1 H, NC $\underline{\text{H}}$ (CH₂)₂), 3.24 (br. t, J=4.2, 4.2 Hz, 4 H, CH₂N(CH₂C $\underline{\text{H}}_2$)CH₂C $\underline{\text{H}}_2$), 2.55 (br t, J=5.0, 5.0 Hz, 4 H, CH₂N(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$), 2.32 (t, J=7.2 Hz, 2 H, C $\underline{\text{H}}_2$ N(CH₂)CH₂), 2.10 (t, J=7.4 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂CH₂N(CH₂)CH₂), 1.92 (dddd, J=13.0, 8.7, 7.3, 6.0 Hz, 1 H, C $\underline{\text{H}}$ HCHNH), 1.77 (ddt, J=12.6, 8.9, 6.3, 6.3 Hz, 1 H, C $\underline{\text{H}}$ HCHOH), 1.68 (quin, J=7.4 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.53 - 1.64 (m, 2 H, C $\underline{\text{H}}_2$ CH₂CHOH), 1.42 (ddt, J=12.9, 8.4, 5.2, 5.2 Hz, 1 H, CH $\underline{\text{H}}$ CHOH), 1.31 (ddt, J=13.0, 8.6, 6.4, 6.4 Hz, 1 H, CH $\underline{\text{H}}$ CHNH), 1.22 - 1.28 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.06 - 1.12 (m, 2 H, NCH(CH $\underline{\text{H}}$)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 171.9 (NHC(=O)CH₂), 171.5 (C(=O)CC(=O)OCH₃), 165.0 (C(=O)OCH₃), 152.6 (d, J=247.4 Hz, ipso to F), 148.2 (C=CC(=O)OCH₃), 143.9 (d, J=10.3 Hz, ipso to piperazine), 138.1 (para to F), 121.7 (d, J=6.4 Hz, para to piperazine), 111.5 (d, J=23.0 Hz, ortho to C=O and ortho to F), 109.0 (CC(=O)OCH₃), 106.2 (meta to C=O and meta to F), 76.2 (CHOH), 57.6 (CHNH), 57.2 (CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N(CH₂)CH₂), 51.3 (CH₃), 49.6 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 49.6 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 34.7 (NCH(CH₂)₂), 33.2 (C(=O)CH₂), 32.2 (CH₂CHOH), 29.5 (CH₂CH NH), 22.5 (C(=O)CH₂CH₂), 20.6 (CH₂CH₂CHOH), 7.5 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -125.5

HRMS (ESI⁺) m/z / Da = 515.2667, [M+H]⁺ found, [C₂₇H₃₆FN₄O₅]⁺ requires 515.2670

$$[\alpha]_D^{20}$$
 / °10⁻¹cm²g⁻¹ = 8.0 (c / g(100 ml)⁻¹ = 0.05, MeOH)

The compound has not been reported previously.

0.29 Methyl (S)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclopentyl)amin o)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 122

Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate **120** (20.0 mg, 38.9 μ mol, 1 eq.) and Dess-Martin Periodane (32.8 mg, 77.4 μ mol, 2 eq.) were stirred in CH₂Cl₂ (3 ml) for 6 h. The solvent was removed under reduced pressure and the residue was purified by preparatory HPLC (5-50 % acetonitrile/water over 10 min). The combined pure fractions were evaporated under reduced pressure, then NaHCO₃ (aq., sat., 30 ml) and 10 % *i*-PrOH/CHCl₃ (30 ml) were added. The organic layer was removed and dried with MgSO₄, then evaporated under reduced pressure. **122** was obtained as a white amorphous solid (11.3 mg, 22.0 μ mol, 56.7 %).

¹**H NMR** (500 MHz, DMSO d₆) δ / ppm = 8.46 (s, 1 H, ortho to C(=O)OC \underline{H}_3), 7.78 (d, J=13.5 Hz, 1 H, ortho to F), 7.45 (d, J=7.4 Hz, 1 H, meta to F), 4.02 (dt, J=11.1, 8.2 Hz, 1 H, C \underline{H} NH), 3.73 (s, 3 H, C \underline{H}_3), 3.65 (tt, J=6.9, 3.9 Hz, 1 H, NC \underline{H} (CH₂)₂), 3.40 (s, 10 H, CH₂CH₂CH₂N(C \underline{H}_2 CH₂CH₂)C \underline{H}_2 CH₂), 2.05 - 2.29 (m, 5

H, NHC(=O)C $\underline{\text{H}}_2$, C $\underline{\text{H}}_2$ C(=O)CHNH and C $\underline{\text{H}}$ HCHNH), 1.89 - 1.96 (m, 1 H, C $\underline{\text{H}}$ HCH $_2$ CHNH), 1.69 - 1.80 (m, 3 H, CH $\underline{\text{H}}$ CH $_2$ CHNH, CH $\underline{\text{H}}$ CHNH and NHC(=O)CH $_2$ C $\underline{\text{H}}_2$), 1.24 - 1.29 (m, 2 H, NCH(C $\underline{\text{H}}$ H) $_2$), 1.07 - 1.12 (m, 2 H, NCH(CH $\underline{\text{H}}$) $_2$)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 215.2 (\underline{C} (=O)CHNH), 171.7 (NH \underline{C} (=O)CH₂), 171.7 (\underline{C} (=O)CC (=O)OCH₃), 165.1 (\underline{C} (=O)OCH₃), 152.6 (d, J=246.6 Hz, *ipso* to F), 148.4 (\underline{C} =CC(=O)OCH₃), 138.1 (*para* to F), 109.1 (\underline{C} C(=O)OCH₃), 56.3 (\underline{C} HNH), 51.4 (\underline{C} H₃), 35.6 (\underline{C} H₂C(=O)CHNH), 34.8 (N \underline{C} H(CH₂)₂), 28.8 (\underline{C} H₂CHNH), 18.1 (\underline{C} H₂CH₂CHNH), 7.6 (NCH(\underline{C} H₂)₂)

 $^{19}\mathbf{F}$ NMR (376.45 MHz, MeOD) δ / ppm = -124.3

HRMS (ESI⁺) m/z / Da = 513.2495, [M+H]⁺ found, [C₂₇H₃₄FN₄O₅]⁺ requires 513.2513

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 6.7 (c / \text{g}(100 \text{ ml})^{-1} = 0.075, \text{MeOH})$$

The compound has not been reported previously.

0.30 7-(4-(4-(1-(4-(((1S,2S)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 133

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (42.9 mg, 104 μ mol, 1 eq.) and 4-azido-N-((1S,2S)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)butanamide **129** (33.9 mg, 104 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (104 μ l, 10.4 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (208 μ l, 20.8 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 16 h, then solvent was removed under reduced pressure. The resudue was partitioned between water (10 ml) and CH₂Cl₂ (10 ml), the organic layer was separated and the aqueous layer was extracted again with CH₂Cl₂ (10 ml). The combined organic layers were dried with MgSO₄ and evaporated under reduced pressure. **133** was obtained as a clear glass (67.1 mg, 90.9 μ mol, 87.4 %).

IR (neat) ν_{max} / cm⁻¹ = 2951.3 (C-H), 2929.2 (C-H), 2855.5 (C-H), 1741.0 (carboxylic acid C=O), 1640.3 (amide C=O), 1626.6 (quinolone C=O), 1612.3 (triazole)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 8.67 (s, 1 H, ortho to C(=O)OH), 7.87 (d, J = 13.1 Hz, 1 H, ortho to F), 7.34 (s, 1 H, C<u>H</u>=CCH₂), 7.33 (d, J = 8.2 Hz, 1 H, meta to F), 5.92 (t, J = 6.6 Hz, 1 H, CHN<u>H</u>), 4.35 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂NCH=C), 3.96 - 4.02 (m, 1 H, C<u>H</u>OSi), 3.90 - 3.96 (m, 1 H, C<u>H</u>NH), 3.55 (tt, J = 6.7, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.34 (br t, J = 5.0 Hz, 4 H, CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.71 (t, J = 7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.66 (br s, 4 H, CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.46 (t, J = 7.3 Hz, 2 H, C<u>H</u>₂N(CH₂)CH₂), 2.03 - 2.22

(m, 5 H, C<u>H</u>HCHNH, C(=O)C<u>H</u>₂ and C(=O)CH₂C<u>H</u>₂), 1.65 - 1.83 (m, 4 H, C<u>H</u>HCHOSi, C<u>H</u>HCH₂CHOSi and NCH=CCH₂C<u>H</u>₂), 1.47 - 1.65 (m, 4 H, CH<u>H</u>CHOSi, CH<u>H</u>CH₂CHOSi and NCH=CCH₂CH₂C<u>H</u>₂), 1.33 - 1.41 (m, 3 H, CH<u>H</u>CHNH and NCH(C<u>H</u>H)₂), 1.14 - 1.20 (m, 2 H, NCH(CH<u>H</u>)₂), 0.82 (s, 9 H, C(C<u>H</u>₃)₃), 0.03 (s, 3 H, SiC<u>H</u>₃), 0.01 (s, 3 H, SiC<u>H</u>₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 176.9 (\underline{C} (=O)CC(=O)OH), 170.9 (CH₂ \underline{C} (=O)NH), 166.9 (\underline{C} (=O)OH), 153.5 (d, J = 251.4 Hz, ipso to F), 147.9 (CH= \underline{C} CH₂), 147.2 (\underline{C} =CC(=O)OH), 145.8 (d, J = 10.4 Hz, ipso to piperazine), 139.0 (para to F), 120.9 (N \underline{C} H=CCH₂), 119.4 (d, J = 7.8 Hz, para to piperazine), 112.0 (d, J = 23.4 Hz, ortho to C=O and ortho to F), 107.7 (\underline{C} C(=O)OH), 104.7 (d, J = 3.5 Hz, meta to C=O and meta to F), 77.7 (\underline{C} HOSi), 58.2 (\underline{C} HNH), 57.9 (CH=CCH₂CH₂CH₂CH₂N), 52.6 (CH=CCH₂CH₂CH₂CH₂CH₂N(\underline{C} H₂), 49.5 (d, J = 6.1 Hz, CH=CCH₂CH₂CH₂CH₂N(CH₂ \underline{C} H₂)CH₂CH₂DH₂), 48.9 (d, J = 3.5 Hz, \underline{C} H₂NCH=CCH₂), 35.3 (N \underline{C} H(CH₂), 32.6 (C(=O) \underline{C} H₂), 32.6 (\underline{C} H₂CHOSi), 29.3 (\underline{C} H₂CHNH), 27.2 (CH=CCH₂ \underline{C} H₂), 26.0 - 26.3 (C(=O)CH₂ \underline{C} H₂ and CH=CCH₂CH₂ \underline{C} H₂), 25.6 (C(\underline{C} H₃)₃), 25.4 (CH=C \underline{C} H₂), 20.4 (\underline{C} H₂CH₂CHOSi), 17.8 (\underline{C} (CH₃)₃), 8.1 (NCH(\underline{C} H₂)₂), -4.8 (Si \underline{C} H₃)

HRMS (ESI⁺) m/z / Da = 738.4164, [M+H]⁺ found, [C₃₈H₅₇FN₇O₅Si]⁺ requires 738.4169

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 4.5 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.2, \text{MeOH})$$

The compound has not been reported previously.

0.31 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquin oline-3-carboxylic acid 124

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (42.9 mg, 104 μ mol, 1 eq.) and 4-azido-N-((1R,2R)-2-hydroxycyclopentyl)butanamide **119** (22.0 mg, 104 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (104 μ l, 10.4 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (208 μ l, 20.8 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 16 h. Water (30 ml) and CH₂Cl₂ (30 ml) were added, the organic layer was separated and the aqueous layer was extracted again with CH₂Cl₂ (4×30 ml). The combined organic layers were dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-95 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **124** was obtained as a white amorphous solid (17.6 mg, 28.2 μ mol, 27.1 %).

IR (neat) ν_{max} / cm⁻¹ = 2967.0 (C-H), 2902.2 (C-H), 1721.4 (carboxylic acid C=O), 1646.7 (amide C=O),

¹H NMR (700 MHz, DMSO d₆) δ / ppm = 8.64 (s, 1 H, ortho to C(=O)OH), 7.87 (d, J = 13.3 Hz, 1 H, ortho to F), 7.84 (s, 1 H, CH=CCH₂), 7.75 (d, J = 7.1 Hz, 1 H, CHNH), 7.54 (d, J = 7.5 Hz, 1 H, meta to F), 4.73 (d, J = 3.8 Hz, 1 H, CHOH), 4.29 (t, J = 6.9 Hz, 2 H, CH₂NCH=C), 3.78 - 3.83 (m, 1 H, NCH(CH₂)₂), 3.75 - 3.78 (m, 1 H, CHOH), 3.71 - 3.75 (m, 1 H, CHNH), 3.31 (br t, J = 4.3 Hz, 4 H, CH₂N(CH₂CH₂)CH₂CH₂CH₂), 2.63 (t, J = 7.5 Hz, 2 H, CH=CCH₂), 2.56 (br t, J = 4.2 Hz, 4 H, CH₂N(CH₂)CH₂), 2.37 (t, J = 7.3 Hz, 2 H, CH₂N(CH₂)CH₂), 2.03 - 2.06 (m, 2 H, C(=O)CH₂), 1.97 - 2.02 (m, 2 H, C(=O)CH₂CH₂), 1.89 (dddd, J = 13.1, 8.9, 7.4, 5.7 Hz, 1 H, CHHCHNH), 1.75 (ddt, J = 13.0, 8.9, 6.4, 6.4 Hz, 1 H, CHHCHOH), 1.61 - 1.66 (m, 2 H, CH=CCH₂CH₂), 1.57 - 1.61 (m, 1 H, CHHCH₂CHOH), 1.54 - 1.57 (m, 1 H, CHHCHOH), 1.49 - 1.53 (m, 2 H, CH=CCH₂CH₂CH₂), 1.40 (ddt, J = 13.0, 8.4, 5.3, 5.3 Hz, 1 H, CHHCHOH), 1.29 - 1.32 (m, 2 H, NCH(CHH)₂), 1.25 - 1.29 (m, 1 H, CHHCHNH), 1.13 - 1.20 (m, 2 H, NCH(CHH)₂)

¹³C NMR (175 MHz, DMSO d₆) δ / ppm = 176.3 ($\underline{\mathbf{C}}(=\mathrm{O})\mathrm{CC}(=\mathrm{O})\mathrm{OH}$), 170.9 (NH $\underline{\mathbf{C}}(=\mathrm{O})\mathrm{CH}_2$), 166.1 ($\underline{\mathbf{C}}(=\mathrm{O})\mathrm{OH}$), 153.0 (d, J=251.4 Hz, ipso to F), 147.9 ($\underline{\mathbf{C}}=\mathrm{CC}(=\mathrm{O})\mathrm{OH}$), 146.9 (CH= $\underline{\mathbf{C}}\mathrm{CH}_2$), 145.2 (d, J=8.7 Hz, ipso to piperazine), 139.2 (para to F), 121.7 (N $\underline{\mathbf{C}}\mathrm{H}=\mathrm{CCH}_2$), 118.7 (d, J=5.8 Hz, para to piperazine), 111.0 (d, J=23.3 Hz, ortho to C=O and ortho to F), 106.3 (meta to C=O and meta to F and $\underline{\mathbf{C}}\mathrm{C}(=\mathrm{O})\mathrm{OH}$), 76.2 ($\underline{\mathbf{C}}\mathrm{HOH}$), 57.4 (CH= $\mathrm{CCH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{N}$), 52.5 (CH= $\mathrm{CCH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{N}(\underline{\mathbf{C}}\mathrm{H}_2)$, 49.5 (d, J=4.4 Hz, CH= $\mathrm{CCH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{N}(\mathrm{CH}_2\underline{\mathrm{C}}\mathrm{H}_2)$), 48.8 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{N}\mathrm{CH}=\mathrm{CCH}_2$), 35.8 (N $\underline{\mathbf{C}}\mathrm{H}(\mathrm{CH}_2)_2$), 32.2 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{CHOH}$), 32.0 (C(=O) $\underline{\mathbf{C}}\mathrm{H}_2$), 29.5 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{CH}\mathrm{NH}$), 26.9 (CH= $\mathrm{CCH}_2\underline{\mathbf{C}}\mathrm{H}_2$), 26.0 (C(=O)CH₂ $\underline{\mathbf{C}}\mathrm{H}_2$), 25.8 (CH= $\mathrm{CCH}_2\mathrm{CH}_2\underline{\mathbf{C}}\mathrm{H}_2$), 25.0 (CH= $\mathrm{CC}\mathrm{H}_2\mathrm{C}\mathrm{H}_2$), 20.5 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{C}\mathrm{H}_2\mathrm{C}\mathrm{H}_0\mathrm{H}$), 7.6 (NCH($\underline{\mathbf{C}}\mathrm{H}_2$)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -122.1 (s, ciprofloxacin F)

HRMS (ESI⁺)
$$m/z$$
 / Da = 624.3314, [M+H]⁺ found, [C₃₂H₄₃FN₇O₅]⁺ requires 624.3310

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \mathrm{cm}^2 \mathrm{g}^{-1} = -3.6 \ (c / \mathrm{g}(100 \ \mathrm{ml})^{-1} = 0.0833, \mathrm{MeOH})$$

The compound has not been reported previously.

0.32 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquin oline-3-carboxylic acid 123

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid $\bf 70$ (82.0 mg, 199 μ mol, 4 eq.) and 4-azido-N-((1S,2S)-2-hydroxycyclopentyl)butanamide $\bf 118$ (11.0 mg, 51.8 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (156 μ l, 15.6 μ mol, 0.3 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (312 μ l, 31.2 μ mol, 0.6 eq., 100 mM, aq.). The mixture was stirred at room temperature under

argon for 3 d. Water (10 ml) and 10 % i-PrOH/CHCl₃ (10 ml) were added, then the organic layer was separated and dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-95 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **123** was obtained as a white amorphous solid (7.2 mg, 11.5 μ mol, 22.2 %).

IR (neat) ν_{max} / cm⁻¹ = 2954.9 (C-H), 2917.9 (C-H), 2850.2 (C-H), 1722.1 (carboxylic acid C=O), 1647.3 (amide C=O), 1626.7 (quinolone C=O) 1611.9 (triazole)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 15.22 (br s, 1 H, C(=O)O<u>H</u>), 8.67 (s, 1 H, ortho to C(=O)OH), 7.91 (d, J=13.3 Hz, 1 H, ortho to F), 7.84 (s, 1 H, C<u>H</u>=CCH₂), 7.74 (d, J=6.7 Hz, 1 H, CHN<u>H</u>), 7.56 (d, J=7.4 Hz, 1 H, meta to F), 4.71 (d, J=3.7 Hz, 1 H, CHO<u>H</u>), 4.29 (t, J=6.6 Hz, 2 H, C<u>H</u>₂NCH=C), 3.82 (tt, J=6.5, 4.3 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.69 - 3.79 (m, 2 H, C<u>H</u>OH and C<u>H</u>NH), 3.30 - 3.34 (m, 6 H, CH=CCH₂CH₂CH₂C(C<u>H</u>₂C(C<u>H</u>₂C(C<u>H</u>₂C(C<u>H</u>₂C(C<u>H</u>₂C(C(CH₂C(C))), 1.89 (dddd, J=12.8, 8.9, 7.4, 5.8 Hz, 1 H, C(C(C(C))), 1.75 (ddt, J=12.7, 9.0, 6.2, 6.2 Hz, 1 H, C(C(C(C))), 1.48 - 1.68 (m, 6 H, C(C(C(C))), 1.24 - 1.31 (m, 1 H, C(C(C(C))), 1.15 - 1.21 (m, 2 H, NCH(C(C(C))))

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.4 ($\underline{C}(=O)CC(=O)OH$), 170.9 (NH $\underline{C}(=O)CH_2$), 166.0 ($\underline{C}(=O)OH$), 153.0 (d, J=249.6 Hz, *ipso* to F), 148.1 ($\underline{C}=CC(=O)OH$), 146.7 (CH= $\underline{C}CH_2$), 145.2 (d, J=8.3 Hz, *ipso* to piperazine), 139.2 (*para* to F), 121.8 (N $\underline{C}H=CCH_2$), 118.7 (*para* to piperazine), 111.0 (d, J=23.2 Hz, *ortho* to C=O and *ortho* to F), 106.7 ($\underline{C}C(=O)OH$), 106.5 (*meta* to C=O and *meta* to F), 76.2 ($\underline{C}HOH$), 57.5 ($\underline{C}HNH$), 57.4 (br s, CH=CCH₂CH₂CH₂CH₂N), 52.3 (br s, CH=CCH₂CH₂CH₂CH₂N($\underline{C}H_2$), 49.3 (br s, CH=CCH₂CH₂CH₂CH₂CH₂N(CH₂CH₂), 48.8 ($\underline{C}H_2NCH=CCH_2$), 35.9 (N $\underline{C}H(CH_2)_2$), 32.2 ($\underline{C}H_2CHOH$), 32.0 (C(=O) $\underline{C}H_2$), 29.4 ($\underline{C}H_2CHNH$), 26.7 (CH=CCH₂ $\underline{C}H_2$), 26.0 (C(=O)CH₂ $\underline{C}H_2$), 25.5 (CH=CCH₂CH₂CH₂), 24.9 (CH=C $\underline{C}H_2$), 20.5 ($\underline{C}H_2CH_2CHOH$), 7.6 (NCH($\underline{C}H_2$)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -121.5

HRMS (ESI⁺) m/z / Da = 624.3298, [M+H]⁺ found, [C₃₂H₄₃FN₇O₅]⁺ requires 624.3310

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -25.0 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.08, \text{MeOH})$$

The compound has not been reported previously.

0.33 (trans)-2-Aminocyclohexan-1-ol 143

Cyclohexene oxide 142 (10 ml, 9.70 g, 98.8 mmol, 1 eq.), NH $_3$ (90 ml, 35 % w/w aq., 27.7 g, 791 mmol, 8 eq.) and MeOH (100 ml) were stirred at r.t. for 72 h. The solvent was removed by blowing a stream of N $_2$ over it, followed by evaporation under high vacuum.143 was obtained as a white amorphous solid (9.90 g, 85.2 mmol,

86.2 %)

TLC $R_f = 0.04 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3350.4 (N-H), 3306.2 (br, O-H), 2926.9 (C-H), 2852.6 (C-H)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 3.01 (td, J = 9.4, 4.8 Hz, 1 H, C<u>H</u>OH), 2.80 - 2.92 (m, 2 H, O<u>H</u> and N<u>H</u>₂), 2.35 (ddd, J = 11.1, 9.1, 4.1 Hz, 1 H, C<u>H</u>NH₂), 1.77 - 1.84 (m, 1 H, C<u>H</u>HCHOH), 1.69 - 1.76 (m, 1 H, C<u>H</u>HCHNH₂), 1.56 - 1.66 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.45 - 1.56 (m, 1 H, C<u>H</u>HCH₂CHNH₂), 1.07 - 1.19 (m, 3 H, CH<u>H</u>CH₂CHOH, CH<u>H</u>CH₂CHNH₂ and CH<u>H</u>CHOH), 0.94 - 1.05 (m, 1 H, CH<u>H</u>CHNH₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 75.4 (<u>C</u>HOH), 56.6 (<u>C</u>HN₂), 33.8 (<u>C</u>H₂CHOH and <u>C</u>H₂CHN₂), 24.7 (<u>C</u>H₂CH₂CH₂CHN₂), 24.6 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 116.1070, [M+H]⁺ found, [C₆H₁₄NO]⁺ requires 116.1070

The data are consistent with the literature.⁹

0.34 4-Chloro-N-((trans)-2-hydroxycyclohexyl)butanamide 144

(trans)-2-Aminocyclohexan-1-ol **143** (1.04 g, 9.03 mmol, 1 eq.), TEA (1.65 ml, 1.20 g, 11.8 mmol, 1.3 eq.) and CH₂Cl₂ (50 ml) were stirred at 0 °C. 4-Chlorobutyryl chloride **139** (1.22 ml, 1.54 g, 10.9 mmol, 1.2 eq.) was added dropwise over 5 min. The mixture was stirred at 0 °C for 30 min, then water (50 ml) was added. The organic layer was separated off, and the aqueous layer was extracted with 10 % i-PrOH/CHCl₃ (2×50 ml). The combined organic layers were dried with MgSO₄, concentrated under reduced pressure and purified by column chromatography (SiO₂, 0-100 % EtOAc/Et₂O). The combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. **144** was obtained as white needles (1.51 g, 6.87 mmol, 76.1 %).

TLC $R_f = 0.19 \; (\text{Et}_2\text{O})$

mp $T / {}^{\circ}\text{C} = 72.5 - 75.7 \ (i\text{-PrOH, CHCl}_3)$

IR (neat) ν_{max} / cm⁻¹ = 3289.9 (N-H), 3250.0 (O-H), 2927.6 (C-H), 2857.1 (C-H), 1629.2 (amide C=O)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 3.60 (t, J = 6.6 Hz, 2 H, C<u>H</u>₂Cl), 3.51 - 3.60 (m, 1 H, C<u>H</u>NH), 3.28 - 3.39 (m, 1 H, C<u>H</u>OH), 2.37 (td, J = 7.4, 2.3 Hz, 2 H, C(=O)C<u>H</u>₂), 2.06 (quin, J = 7.0 Hz, 2 H, C(=O)CH₂C<u>H</u>₂), 1.97 - 2.01 (m, 1 H, C<u>H</u>HCHOH), 1.85 - 1.93 (m, 1 H, C<u>H</u>HCHNH), 1.70 - 1.77 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.64 - 1.70 (m, 1 H, C<u>H</u>HCH₂CHNH), 1.24 - 1.35 (m, 3 H, CH<u>H</u>CH₂CHOH, CH<u>H</u>CH₂CHNH and CH<u>H</u>CHOH), 1.13 - 1.25 (m, 1 H, CH<u>H</u>CHNH₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.0 (<u>C</u>(=O)), 74.1 (<u>C</u>HOH), 56.3 (<u>C</u>HNH), 45.3 (<u>C</u>H₂Cl), 35.6 (<u>C</u>H₂CHOH), 34.5 (C(=O)<u>C</u>H₂), 32.7 (<u>C</u>H₂CHNH), 30.1 (C(=O)CH₂<u>C</u>H₂), 25.8 (<u>C</u>H₂CH₂CHNH), 25.5

 $(\underline{C}H_2CH_2CHOH)$

HRMS (ESI⁺) m/z / Da = 242.0925, [M+Na]⁺ found, [C₁₀H₁₈ClNNaO₂]⁺ requires 242.0924

The compound has not been reported previously.

0.35 4-Azido-N-((trans)-2-hydroxycyclohexyl)butanamide 145

$$\begin{array}{c|c}
 & O \\
 & N \\
 & H
\end{array}$$

$$\begin{array}{c|c}
 & N_3 & (\pm)
\end{array}$$

4-Chloro-N-((trans)-2-hydroxycyclohexyl)butanamide **144** (345 mg, 1.57 mmol, 1 eq.) and NaN₃ (180 mg, 2.77 mmol, 1.75 eq.) were stirred in DMF (12 ml) at 50 °C for 16 h. Water (50 ml) and 10 % i-PrOH/CHCl₃ (50 ml) were added, and the organic layer was removed. The aqueous layer was extracted again with 10 % i-PrOH/CHCl₃ (50 ml) and the combined organic fractions were dried with MgSO₄. The solvent was evaporated under reduced pressure, and then by using a N₂ stream. **145** was obtained as large white prisms (347 mg, 1.53 mmol, 97.5 %).

TLC $R_f = 0.23$ (EtOAc)

mp $T / {}^{\circ}\text{C} = 74.5 - 75.7 (i-\text{PrOH, CHCl}_3)$

IR (neat) ν_{max} / cm⁻¹ = 3299.0 (N-H), 3207.8 (O-H), 2944.3 (C-H), 2927.9 (C-H), 2859.2 (C-H), 2089.2 (azide), 1624.0 (amide C=O)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 7.87 (d, J = 7.9 Hz, 1 H, N<u>H</u>), 5.27 (d, J = 4.3 Hz, 1 H, O<u>H</u>), 3.56 (td, J = 10.5, 4.4 Hz, 1 H, C<u>H</u>NH), 3.28 - 3.41 (m, 3 H, C<u>H</u>OH and C<u>H</u>₂N₃), 2.30 (td, J = 7.4, 2.7 Hz, 2 H, C(=O)C<u>H</u>₂), 1.95 - 2.03 (m, 1 H, C<u>H</u>HCHOH), 1.87 (m, 3 H, C(=O)CH₂C<u>H</u>₂ and C<u>H</u>HCHNH), 1.70 - 1.76 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.63 - 1.70 (m, 1 H, C<u>H</u>HCH₂CHNH), 1.25 - 1.38 (m, 3 H, CH<u>H</u>CH₂CHOH, CHHCH₂CHNH and CHHCHOH), 1.14 - 1.24 (m, 1 H, CHHCHNH₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.1 ($\underline{C}(=O)$), 74.0 ($\underline{C}HOH$), 56.3 ($\underline{C}HNH$), 52.0 ($\underline{C}H_2N_3$), 35.5 ($\underline{C}H_2CHOH$), 34.3 ($\underline{C}(=O)\underline{C}H_2$), 32.7 ($\underline{C}H_2CHNH$), 26.3 ($\underline{C}(=O)\underline{C}H_2\underline{C}H_2$), 25.8 ($\underline{C}H_2CH_2CHNH$), 25.5 ($\underline{C}H_2CH_2CHOH$)

HRMS (ESI⁺) m/z / Da = 249.1331, [M+Na]⁺ found, [C₁₀H₁₈N₄NaO₂]⁺ requires 249.1327

0.36 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 146

$$\bigcap_{OH} \bigcap_{H} \bigcap_{N} \bigcap_{$$

4-(4-(1-Cyclopropyl-6-fluoro-3-(methoxycarbonyl)-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-yl)butanoic acid trifluoroacetate 137 (200 mg, 0.367 mmol, 1 eq.), (trans)-2-aminocyclohexan-1-ol 143 (91.1 mg, 0.791 mmol, 2.1 eq.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (112 mg, 0.584 mmol, 1.6 eq.), 1-hydroxyben zotriazole (96 mg, 0.710 mmol, 1.9 eq.) and DIPEA (192 μ l, 142 mg, 1.10 mmol, 3 eq.) were dissolved in DMF (5 ml) and stirred at r.t. for 16 h. The solvent was removed using a stream of N₂ and the residue was purified by preparatory HPLC (5-50 % acetonitrile/water over 10 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and CH₂Cl₂ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. 146 was obtained as a white amorphous solid (73.0 mg, 0.142 mmol, 38.7 %).

IR (neat) ν_{max} / cm⁻¹ = 3302.5 (N-H), 2929.8 (C-H), 2850.6 (C-H), 2832.9 (C-H), 1698.1 (ester C=O), 1646.4 (amide C=O), 1613.8 (quinolone C=O)

¹H NMR (400 MHz, MeOD) δ / ppm = 8.60 (s, 1 H, ortho to C(=O)OC \underline{H}_3), 7.79 (d, J = 13.5 Hz, 1 H, ortho to F), 7.46 (d, J = 7.2 Hz, 1 H, meta to F), 3.84 (s, 3 H, C \underline{H}_3), 3.62 - 3.68 (m, 1 H, NC \underline{H} (CH₂)₂), 3.58 (td, J = 10.3, 4.2 Hz, 1 H, C \underline{H} NH), 3.38 (br s, 4 H, CH₂N(CH₂C \underline{H}_2)CH₂CH₂), 3.32 - 3.36 (m, 1 H, C \underline{H} OH), 2.83 (br s, 4 H, CH₂N(C \underline{H}_2)C \underline{H}_2), 2.60 (t, J = 7.3 Hz, 2 H, C(=O)CH₂CH₂C \underline{H}_2 N), 2.32 (td, J = 7.1, 3.1 Hz, 2 H, C(=O)C \underline{H}_2), 1.96 - 2.04 (m, 1 H, C \underline{H} HCHOH), 1.87 - 1.96 (m, 3 H, C \underline{H} HCHNH and C(=O)CH₂C \underline{H}_2), 1.72 - 1.77 (m, 1 H, C \underline{H} HCH₂CHOH), 1.66 - 1.72 (m, 1 H, C \underline{H} HCH₂CHNH), 1.25 - 1.39 (m, 5 H, CH \underline{H} CHOH, CH \underline{H} CHOH, CH \underline{H} CHOH, CH \underline{H} CHNH and NCH(CH \underline{H})₂), 1.15 - 1.25 (m, 3 H, CH \underline{H} CHOH and NCH(CH \underline{H})₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.8 (CH₂C(=O)NH), 175.3 (C(=O)CC(=O)OCH₃), 166.8 (C(=O)OCH₃), 154.9 (d, J = 248.8 Hz, ipso to F), 150.2 (C=CC(=O)OCH₃), 146.1 (d, J = 10.8 Hz, ipso to piperazine), 139.9 (para to F), 123.5 (d, J = 7.5 Hz, para to piperazine), 113.2 (d, J = 23.2 Hz, ortho to C=O and ortho to F), 110.2 (CC(=O)OCH₃), 107.2 (meta to C=O and meta to F), 74.1 (CHOH), 58.9 (C(=O)CH₂CH₂CH₂N), 56.4 (CHNH), 54.0 (C(=O)CH₂CH₂CH₂N(CH₂)CH₂), 52.3 (CH₃), 50.5 (d, J = 5.0 Hz, C(=O)CH₂CH₂CH₂N(CH₂CH₂N(CH₂CH₂CH₂N), 36.4 (NCH(CH₂)₂), 35.7 (CH₂CHOH), 35.1 (C(=O)CH₂), 32.8 (CH₂CHNH), 25.9 (CH₂CH₂CHNH), 25.5 (CH₂CH₂CHOH), 23.5 (C(=O)CH₂CH₂CH₂), 8.7 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -124.7 (ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 529.2827, [M+H]⁺ found, [C28H38FN4O5]⁺ requires 529.2826

0.37 Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 147

$$\bigcap_{N} \bigcap_{H} \bigcap_{N} \bigcap_{N$$

Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1, 4-dihydroquinoline-3-carboxylate **146** (5.2 mg, 9.84 μ mol, 1 eq.) and Dess-Martin periodane (16.4 mg, 38.7 μ mol, 4 eq.) were stirred in CH₂Cl₂ (3 ml) for 6 h. The solvent was removed under reduced pressure and the residue was purified by preparatory HPLC (5-95 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure to a volume of 20 ml, then NaHCO₃ (aq., sat., 30 ml) and 10 % i-PrOH/CHCl₃ (30 ml) were added. The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **147** was obtained as a white amorphous solid (3.6 mg, 6.8 μ mol, 69.1 %).

TLC $R_f = 0.74 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2921.2 (C-H), 2851.6 (C-H), 1721.4 (ketone C=O), 1698.0 (ester C=O), 1639.3 (amide C=O), 1620.0 (quinolone C=O)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 8.45 (s, 1 H, ortho to C(=O)OC<u>H</u>₃), 7.87 (d, J = 6.2 Hz, 1 H, N<u>H</u>), 7.76 (d, J = 13.4 Hz, 1 H, ortho to F), 7.44 (d, J = 7.5 Hz, 1 H, meta to F), 4.42 (dddd, J = 13.0, 7.6, 6.0, 1.0 Hz, 1 H, C<u>H</u>NH), 3.73 (s, 3 H, C<u>H</u>₃), 3.65 (tt, J = 7.1, 3.9 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.25 (br s, 4 H, CH₂N(CH₂C<u>H₂)CH₂)CH₂CH₂), 2.58 (br s, 4 H, CH₂N(C<u>H₂)CH₂), 2.45 - 2.53 (m, 1 H, C<u>H</u>HC(=O)CHNH), 2.36 (br s, 2 H, C(=O)CH₂CH₂CH₂N), 2.26 (dtt, J = 13.4, 2.6, 2.6, 1.6, 1.6 Hz, 1 H, C<u>H</u>HC(=O)CHNH), 2.16 - 2.22 (m, 2 H, C(=O)C<u>H₂CH₂CH₂N</u>), 2.12 (ddq, J = 12.7, 6.0, 2.8, 2.8, 2.8 Hz, 1 H, C<u>H</u>HCHNH), 2.00 (ddquin, J = 13.2, 6.0, 2.9, 2.9, 2.9, 2.9 Hz, 1 H, C<u>H</u>HCH₂C(=O)), 1.65 - 1.83 (m, 4 H, C<u>H</u>₂CH₂CHNH), 1.41 - 1.56 (m, 2 H, CH<u>H</u>CHNH and CH<u>H</u>CH₂C(=O)), 1.20 - 1.30 (m, 2 H, NCH(C<u>H</u>H)₂), 1.05 - 1.13 (m, 2 H, NCH(CH<u>H</u>)₂)</u></u>

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 207.5 (\underline{C} (=O)CHNH), 171.7 (\underline{C} (=O)CC(=O)OCH₃), 171.6 (CH₂ \underline{C} (=O)NH), 165.0 (\underline{C} (=O)OCH₃), 152.6 (d, J = 247.6 Hz, ipso to F), 148.3 (\underline{C} =CC(=O)OCH₃), 143.9 (br s, ipso to piperazine), 138.1 (para to F), 121.8 (d, J = 6.4 Hz, para to piperazine), 111.5 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 109.0 (\underline{C} C(=O)OCH₃), 106.3 (meta to C=O and meta to F), 57.0 (\underline{C} HNH and C(=O)CH₂CH₂CH₂N), 52.3 (br s, C(=O)CH₂CH₂CH₂N(\underline{C} H₂), 51.3 (\underline{C} H₃), 49.5 (br s, C(=O)CH₂CH₂CH₂N(CH₂CH₂), 40.6 (\underline{C} H₂C(=O)CHNH), 34.8 (\underline{N} CH(CH₂)₂), 33.9 (\underline{C} H₂CHNH), 32.9 (C(=O) \underline{C} H₂CH₂CH₂CH₂N), 27.2 (\underline{C} H₂CH₂C(=O)CHNH), 23.8 (\underline{C} H₂CH₂CHNH), 22.4 (br s, C(=O)CH₂CH₂CH₂N), 7.6 (\underline{N} CH(CH₂)₂)

 19 F NMR (376.45 MHz, DMSO d₆) δ / ppm = -124.3 (ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 527.2654, [M+H]⁺ found, [C₂₈H₃₆FN₄O₅]⁺ requires 527.2670

0.38 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquino-line-3-carboxylic acid 148

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (40 mg, 97.2 μ mol, 1 eq.) and 4-azido-N-((trans)-2-hydroxycyclohexyl)butanamide **145** (22.0 mg, 97.2 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (97.2 μ l, 9.72 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (194 μ l, 19.4 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at r.t. under argon for 16 h. Water (50 ml) and 10 % i-PrOH/CHCl₃ (50 ml) were added, then the organic layer was separated, dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-70 % acetonitrile/water over 15 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 50 ml) and 10 % i-PrOH/CHCl₃ (50 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **148** was obtained as a white amorphous solid (30.3 mg, 47.5 μ mol, 48.9 %).

IR (neat) ν_{max} / cm⁻¹ = 3345.4 (N-H), 2927.6 (C-H), 2859.6 (C-H), 2814.7 (C-H), 1727.0 (carboxylic acid C=O), 1641.7 (amide C=O), 1625.8 (quinolone C=O), 1619.0 (triazole)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.4 ($\underline{\mathbf{C}}(=O)CC(=O)OH$), 170.9 ($\underline{\mathbf{CH}}_2\underline{\mathbf{C}}(=O)NH$), 166.0 ($\underline{\mathbf{C}}(=O)OH$), 153.1 (d, J=252.1 Hz, ipso to F), 148.0 ($\underline{\mathbf{C}}=CC(=O)OH$), 146.9 ($\underline{\mathbf{CH}}=\underline{\mathbf{C}}CH_2$), 145.3 (d, J=10.0 Hz, ipso to piperazine), 139.2 (para to F), 121.8 ($\underline{\mathbf{N}}\underline{\mathbf{C}}\underline{\mathbf{H}}=CCH_2$), 118.5 (d, J=8.3 Hz, para to piperazine), 110.9 (d, J=23.2 Hz, ortho to C=O and ortho to F), 106.7 ($\underline{\mathbf{C}}C(=O)OH$), 106.3 (d, J=3.3 Hz, meta to C=O and meta to F), 71.4 ($\underline{\mathbf{C}}\underline{\mathbf{H}}OH$), 57.4 ($\underline{\mathbf{C}}\underline{\mathbf{H}}=CCH_2CH_2CH_2D$), 54.2 ($\underline{\mathbf{C}}\underline{\mathbf{H}}NH$), 52.4 ($\underline{\mathbf{C}}\underline{\mathbf{H}}=CCH_2CH_2CH_2N(\underline{\mathbf{C}}\underline{\mathbf{H}}_2)\underline{\mathbf{C}}\underline{\mathbf{H}}_2$), 49.5 ($\underline{\mathbf{C}}\underline{\mathbf{H}}=CCH_2CH_2CH_2CH_2N(\underline{\mathbf{C}}\underline{\mathbf{H}}_2)\underline{\mathbf{C}}\underline{\mathbf{H}}_2$), 49.5 ($\underline{\mathbf{C}}\underline{\mathbf{H}}=CCH_2CH_2CH_2N(\underline{\mathbf{C}}\underline{\mathbf{H}}_2)\underline{\mathbf{C}}\underline{\mathbf{H}}_2$), 48.8 ($\underline{\mathbf{C}}(\underline{\mathbf{C}}\underline{\mathbf{H}})\underline{\mathbf{C}}\underline{\mathbf{H}}_2\underline{\mathbf{C}}\underline{\mathbf{H}}_2$), 35.9 ($\underline{\mathbf{N}}\underline{\mathbf{C}}\underline{\mathbf{H}}(\underline{\mathbf{C}}\underline{\mathbf{H}}_2)$), 34.1 ($\underline{\mathbf{C}}\underline{\mathbf{H}}_2\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{H}}_2\underline{\mathbf{$

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -121.4 (ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 638.3480, [M+H]⁺ found, [C₃₃H₄₅FN₇O₅]⁺ requires 638.3466

The compound has not been reported previously.

0.39 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(4-oxo-4-((2-oxocyclohexyl)amino)bu tyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carbo xylic acid 149

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

IR (neat) ν_{max} / cm⁻¹ = 2941.2 (C-H), 2859.8 (C-H), 1719.8 (carboxylic acid C=O and ketone C=O), 1656.8 (amide C=O), 1625.6 (quinolone C=O), 1613.5 (triazole)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.65 (s, 1 H, ortho to C(=O)OH), 7.94 (d, J=7.7 Hz, 1 H, N $\underline{\text{H}}$), 7.88 (d, J=13.4 Hz, 1 H, ortho to F), 7.85 (s, 1 H, C $\underline{\text{H}}$ =CCH₂), 7.55 (d, J=7.3 Hz, 1 H, meta to F), 4.40 (dddd, J=12.8, 7.6, 6.1, 1.1 Hz, 1 H), 4.31 (t, J=7.0 Hz, 1 H, C(=O)CH₂CH₂C $\underline{\text{H}}$ HN), 4.31 (t, J=6.9 Hz, 1 H, C(=O)CH₂CH₂CH $\underline{\text{H}}$ 2N), 3.74 - 3.84 (m, 1 H, NC $\underline{\text{H}}$ (CH₂)₂), 3.31 (br. s, 4 H, CH₂CH₂CH₂N(CH₂C $\underline{\text{H}}$ 2)CH₂CH₂CH₂), 2.64 (t, J=7.5 Hz, 2 H, CH=CC $\underline{\text{H}}$ 2), 2.56 (br t, J=5.0, 5.0 Hz, 4 H, CH₂CH₂CH₂N(C $\underline{\text{H}}$ 2)C $\underline{\text{H}}$ 2), 2.45 - 2.52 (m, 1 H, C $\underline{\text{H}}$ HC(=O)), 2.38 (t, J=7.1 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂N), 2.25 (dtt, J=13.4, 2.6, 2.6, 1.6, 1.6 Hz, 1 H, CH $\underline{\text{H}}$ C(=O)), 2.07 - 2.17 (m, 3 H, C(=O)C $\underline{\text{H}}$ 2CH₂CH₂CH₂N and C $\underline{\text{H}}$ HCHNH), 1.96 - 2.05 (m, 3 H, C(=O)CH₂CH₂CH₂CH₂N) and C $\underline{\text{H}}$ HCHNH), 1.64 (quin, J=7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂CH₂N)), 1.68 - 1.81 (m, 2 H, C $\underline{\text{H}}$ HCHNH and CH=CCH₂CH₂CH₂CH₂N), 1.27 - 1.34 (m, 2 H, NCH(C $\underline{\text{H}}$ H)2), 1.13 - 1.20 (m, 2 H, NCH(CH $\underline{\text{H}}$)2)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 207.4 (\underline{C} (=O)CHNH), 176.3 (\underline{C} (=O)CC(=O)OH), 170.8 (CH₂ \underline{C} (=O)NH), 166.0 (\underline{C} (=O)OH), 153.0 (d, J=246.4 Hz, *ipso* to F), 147.9 (\underline{C} =CC(=O)OH), 146.8 (CH= \underline{C} CH₂), 145.1 (d, J=10.1 Hz, *ipso* to piperazine), 139.1 (*para* to F), 121.7 (NCH=CCH₂), 118.7 (d, J=6.9 Hz, *para* to piperazine), 110.9 (d, J=23.0 Hz, *ortho* to C=O and *ortho* to F), 106.3 (\underline{C} C(=O)OH, and *meta* to C=O and *meta* to F), 57.3 (CH=CCH₂CH₂CH₂CH₂N), 57.0 (\underline{C} HNH), 52.4 (CH₂CH₂CH₂N(\underline{C} H₂)CH₂), 49.5 (CH₂CH₂CH₂N (CH₂CH₂), 48.7 (C(=O)CH₂CH₂CH₂NCH=C), 40.5 (\underline{C} H₂CH₂CH₂CH₂O), 35.8 (NCH(CH₂)₂), 33.7 (\underline{C} H₂CHNH), 31.8 (C(=O)CH₂CH₂CH₂NCH=C), 27.1 (\underline{C} H₂CH₂C(=O)),

 $26.9 \ (CH=CCH_{2}CH_{2}CH_{2}CH_{2}N), \ 26.0 \ (C(=O)CH_{2}\underline{C}H_{2}CH_{2}NCH=C), \ 25.7 \ (CH=CCH_{2}CH_{2}CH_{2}CH_{2}N), \ 24.9 \ (CH=C\underline{C}H_{2}CH_{2}CH_{2}N), \ 23.8 \ (\underline{C}H_{2}CH_{2}CHNH), \ 7.6 \ (NCH(\underline{C}H_{2})_{2})$

 $^{19}\mathbf{F}$ NMR (376 MHz, DMSO d₆) δ / ppm = -121.7 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 636.3303, [M+H]⁺ found, [C₃₃H₄₃FN₇O₅]⁺ requires 636.3310

1 References

- [1] J. Aubé, Michael S. Wolfe, R. K. Yantiss, S. M. Cook, F. Takusagawa, M. S. Wolfe, R. K. Yantiss, S. M. Cook and F. Takusagawa. Synthesis of Enantiopure N-tert-Butoxycarbonyl-2- aminocycloalkanones. *Synthetic Communications*, 22(20):3003–3012. 1992.
- [2] L. E. Overman, S. Sugai, L. E. Overman and S. Sugai. A Convenient Method for Obtaining trans -2-Aminocyclohexanol and trans -2-Aminocyclopentanol in Enantiomerically Pure Form. The Journal of Organic Chemistry, 50:4154–4155. 1985.
- [3] L. E. Overman and S. Sugai. Total Synthesis of (-)-Crinine. Use of Tandem Cationic Aza-Cope Rearrange-ment/Mannich Cyclizations for the Synthesis of Enantiomerically Pure Amaryllidaceae Alkaloids. *Helvetica Chimica Acta*, 68(3):745–749. 1985.
- [4] K. Ganguly, R. Wu, M. Ollivault-Shiflett, P. M. Goodwin, L. A. Silks and R. Iyer. Design, synthesis, and a novel application of quorum-sensing agonists as potential drug-delivery vehicles. *Journal of Drug Targeting*, 19(7):528–539. 2011.
- [5] K. Sachin, E.-M. Kim, S.-J. Cheong, H.-J. Jeong, S. T. Lim, M.-H. Sohn and D. W. Kim. Synthesis of N₄'-[¹⁸F]fluoroalkylated ciprofloxacin as a potential bacterial infection imaging agent for PET study. *Bioconjugate Chemistry*, 21(12):2282–2288. 2010.
- [6] R. Iyer, K. Ganguly and L. A. Silks. Synthetic analogs of bacterial quorum sensors. Los Alamos National Laboratory. 2012.
- [7] R. Srinivasan, L. P. Tan, H. Wu, P.-Y. Yang, K. A. Kalesh and S. Q. Yao. High-throughput synthesis of azide libraries suitable for direct "click" chemistry and in situ screening. *Organic & Biomolecular Chemistry*, 7(9):1821. 2009.
- [8] I. Schiffers, T. Rantanen, F. Schmidt, W. Bergmans, L. Zani and C. Bolm. Resolution of racemic 2-aminocyclohexanol derivatives and their application as ligands in asymmetric catalysis. *The Journal of Organic Chemistry*, 71(1):2320–2331. 2006.
- [9] F. Xue and C. T. Seto. Structure-activity studies of cyclic ketone inhibitors of the serine protease plasmin: Design, synthesis, and biological activity. *Bioorganic & Medicinal Chemistry*, 14:8467–8487. 2006.

Todo list

this was optimised, ma	aybe add that?
------------------------	----------------