Análisis complejo

Taller 6

Singularidades aisladas; funciones meromorfas; serie de Laurent.

Fecha de entrega: 19 de septiembre de 2024

- 1. Sea P un polinomio grado n y R>0 tal que |z|< R para todo z con P(z)=0. Defina $\gamma:[0,1]\to\mathbb{C},\ \gamma(t)=R\mathrm{e}^{2\pi\mathrm{i}t}.$ Calcule $\oint_{\gamma}\frac{P'}{P}\,\mathrm{d}z.$
- 2. Determine todas las funciones biholomorfas $\mathbb{C} \to \mathbb{C}$. Hint. Suponga que f es una función biholomorfa $\mathbb{C} \to \mathbb{C}$. Considere f(1/z).
- 3. Sea f una función meromorfa en \mathbb{C} . Se dice que que f es meromofa en ∞ si la función $z\mapsto g(z):=g(1/z)$ es meromorfa en una vecindad de 0.
 - (a) Demuestre que una función racional es meromorfa en \mathbb{C} y en ∞ .
 - (b) Demuestre que una función meromorfa en $\mathbb C$ y en ∞ es una función racional.
- 4. Sean $0 \le r < R$, $z_0 \in \mathbb{C}$ y sea f un función holomorfa en el anillo $A = \{r < |z z_0| < R\}$ con serie de Laurent $f(z) = \sum_{n = -\infty}^{\infty} c_n (z z_0)^n$. Suponga que f tiene una antiderivada en A. Demuestre que $c_{-1} = 0$.