A statistical approach to PVA validation: testing quasiextinction estimation and the IUCN red list criteria

Overview

- Different validation approaches
- Example: a cross-validation study of statespace modeling of stochastic populations
- The database
- Some results

Methods for testing PVAs

from McCarthy et al. 2002. "Testing the Accuracy of PVA" Cons. Bio.

Compare mean or median predictions with observations	Subjective, ignores variability, single trajectories unlikely to be similar to mean
Compare observed vs predicted frequency of events	Only assesses average number or frequency of occurrences within a group, ignores variability
Compare probability distributions of population size or parameters	Assesses both the mean and variability, generally requires transformation of data to a standard variate, lots of data

Diffusion approximation PVA

Let reproduction and survival vary yearly

 $N_t = N_0 \exp(\mu t + \varepsilon t)$ where $\varepsilon \sim Normal(0, \sigma)$

Basic Idea of DA PVA

Parameters of a corrupted DA model – aka a state-space model

 $N_t = N_0^* \exp(\mu t + \epsilon t)$ where $\epsilon \sim N(0, \sigma)$ $N_t = N_0^* \exp(\epsilon_s t)$ where $\epsilon_s \sim f(0, \sigma_{np})$

Parameter that governs the median rate of decline.

"Non-process error"

"Process error"

117 Time series 20-50 yrs long72 are listed species

Cross-validation

Does the DA model predict the frequency of actual declines?

(rel. to size at the start of the eval. period)

Do the projected population sizes follow the expected theoretical

IUCN Red List Criteria

- ♦ A: Population reduction in the form of either
 - 1. Observed X% decline over the last Y yrs
 - 2. Projected X% decline in next Y yrs or Z g
- ♦ B: Pop. fragmented or habitat contracting
- ◆ C: Population below some threshold &
 - 1. Declining and fragmented
 - 2. Projected X% decline within Y yrs
- D: Less than X mature individuals
- E: Extinction risk greater than X% in Y yrs

Expected versus predicted % declines: criteria C1

Criteria: A2

Quasi-extinction: Criteria E

Why does this seem to work?

- Simple model makes many simplifying assumptions
 - density-independence
 - no environmental correlation
 - no trends
 - diffusion approximation of age-structured population

Parameterization performance

- Using a Kalman filter estimator
 - Maximum likelihood estimator for mu, sigma2_p, sigma2_np
 - ◆ Using runsum-slope estimator

Kalman vs slope 10 years of data

Kalman vs slope with 20 yrs data

Kalman vs slope 30 vrs of data

Preliminary conclusions

- State-space model does pretty well for 10-30 year projections
- ◆ Kalman filter estimator does fine since a model with all error attributed to non-process error seems to characterize the 10-30 yr stochastic process pretty well
- ◆ The slope estimator is prone to less errors when estimating the process error from a short time series. This would be important if doing a 100 yr projection from a 10 yr time series which is probably a bad thing to do, however.

Comparison of Kalman and slope performance

	% 0 process error ests Kalman	% 0 process error ests Slope	Correlation between Kalman and slope
10 yrs	68%	21%	0.72
20 yrs	28%	1%	0.90
30 yrs	8%	0%	0.94