Paul Gustafson Texas A&M University - Math 641 Instructor - Fran Narcowich

HW₆

1 Let $(y_j)_{j=0}^n \subset \mathbb{R}$. Consider the cubic-Hermite spline $s(x) \in S^h(3,1)$, with h = 1/n, that satisfies $s(j/n) = y_j$ and minimizes $\int_0^1 (s'')^2 dx$. Show that $s(x) \in S^h(3,2)$.

Proof. Let $V=\{f\in S^h(3,1): f(0)=f(1)=0 \text{ for all } j\}$. Define $\langle\cdot,\cdot\rangle_V: V\times V\to\mathbb{R}_{\geq 0}$ by $\langle f,g\rangle_V=\int_0^1f''(x)g''(x)\,dx$. This function is bilinear, and $\langle f,f\rangle_V=0$ implies f''=0 which implies that f=0 since f(0)=f(1)=0. Hence, $\langle\cdot,\cdot\rangle_V$ is an inner product.

Let $W = \{f \in S^h(3,1) : f(j/n) = 0 \text{ for all } j\}$. Pick any $l \in S^h(3,1)$ interpolating the points $((j/n,y_j))_j$, then l+W is the space of all such interpolants.

We have s = w + v for some $w \in W$ and $v \in W^{\perp}$. Hence $v = s - w \in l + W$, and $\|s\|_V^2 = \|w\|_V^2 + \|v\|_V^2$. Hence, $\|v\|_V \leq \|s\|_V$ with equality iff w = 0. Thus, since s minimizes $\|s\|_V$ over l + W, we must have s = v. Thus $s \in W^{\perp}$.

Now suppose that $s \notin S^h(3,2)$. Let j_0 be a knot for which s'' is discontinuous. I claim there exists $u \in W$ such that $u'(j_0) = 1$ and u'(j) = 0 for all $j \neq j_0$. To construct such a u, for $x \in [(j_0 - 1)/n, j_0/n]$ let $u(x) = \int_{(j_0 - 1)/n}^x A(t - (j_0 - 1)/n)^2 + B(t - (j_0 - 1)/n) dt$ where real numbers A, B are chosen such that $u'(j_0/n) = A(1/n)^2 + B(1/n) = 0$, and $u(j_0) = A/(3n^3) + B/(2n^2) = 0$. We can do similarly for $x \in [j_0/n, (j_0 + 1)/n]$. Lastly, set u(x) = 0 for all other x.

Then we have

$$\langle s, u \rangle = \int_0^1 s'' u'' \, dx$$

$$= \sum_j \int_{j/n}^{(j+1)/n} s'' u'' \, dx$$

$$= \sum_j [s'' u']_{x=j/n}^{(j+1)/n} - \int_{j/n}^{(j+1)/n} s''' u' \, dx$$

$$= \sum_j [s'' u']_{x=j/n}^{(j+1)/n} - s''' \int_{j/n}^{(j+1)/n} u' \, dx$$

$$= \sum_j [s'' u']_{x=j/n}^{(j+1)/n}$$

$$= \lim_{x \to j_0^+} s'' - \lim_{x \to j_0^-} s''$$

$$\neq 0,$$

which contradicts the fact that $s \in W^{\perp}$.

2 We want to solve the boundary value problem (BVP):

$$-u'' = f(x), u(0) = u(1) = 0, f \in C[0, 1]$$

.

a. Let H be the set of all continuous functions vanishing at x=0 and x=1, and having L^2 derivatives. Also let H have the inner product

$$\langle f, g \rangle_H = \int_0^1 f'(x)g'(x) dx.$$

Use integration by parts to convert the BVP into its "weak" form:

$$\langle u, v \rangle_H = \int_0^1 f(x)v(x) dx$$
 for all $v \in H$.

Proof. We have $\langle u,v\rangle_H=\int_0^1 u'v'\,dx=-\int_0^1 u''v\,dx=\int_0^1 fv\,dx$ for all $v\in\mathcal{H}$.

b. Conversely, suppose that $u \in H$ is also in $C^2[0,1]$ and

$$\langle u, v \rangle_H = \int_0^1 f(x)v(x) \, dx$$
 for all $v \in H$.

Show that u satisfies the BVP.

Proof. Suppose not. Then $-u''(x_0) \neq f(x_0)$ for some $x_0 \in (0,1)$. WLOG assume $u''(x_0) + f(x_0) > 0$. By continuity, this inequality holds on some interval $(x_0 - \delta, x_0 + \delta)$. Let $v \in H$ be a nonnegative with support in $(x_0 - \delta, x_0 + \delta)$ and $v(x_0) > 0$. Then $\int fv \, dx - \langle u, v \rangle_H = \int fv \, dx + \int u''v \, dx > 0$, a contradiction. \square

c. Let $V = S^h(1,0)$, with h = 1/n. Thus, V is spanned by $\phi_j(x) := N_2(nx - j + 1)$, $1 \le j \le n - 1$ Show that the least squares approximation to u from V is $y = \sum_j \alpha_j \phi_j(x) \in V$, where $G\alpha = \beta$ for $\beta_j = \langle y, \phi_j \rangle_H$ and $G_{kj} = \langle \phi_j, \phi_k \rangle_H$.

Proof. This is just the definition of the normal equations, which was proved in HW 1. $\hfill\Box$

d. Show that $G_{kj} = \langle \phi_j, \phi_k \rangle_H$ is given by $G_{j,j} = 2n$, $G_{j,j-1} = -n$, and $G_{j,j+1} = n$ and $G_{j,k} = 0$ for all other k.

Proof. Recall that $N_2(x) = x_+ - 2(x-1)_+ + (x-2)_+$. Thus, for all j, we have $\phi'_j = n\chi_{[(j-1)h,jh]} - n\chi_{[jh,(j+1)h]}$. Hence,

$$\begin{split} \langle \phi_j, \phi_k \rangle &= \int (n\chi_{[(j-1)h, jh]} - n\chi_{[jh, (j+1)h]}) (n\chi_{[(k-1)h, kh]} - n\chi_{[kh, (k+1)h]}) \, dx \\ &= \int (n^2 \delta_{j,k} - n^2 \delta_{j-1,k}) \chi_{[(j-1)h, jh]} + (-n^2 \delta_{j,k}) \chi_{-1} + n^2 \delta_{j,k} \chi_{-1} + n^2 \delta_{j,k}$$

3 Let $S = \{s \in C^2(\mathbb{R}) : \forall j \in \mathbb{Z} \mid s \text{ is a cubic on } [j, j+1]\}$. Suppose that $s \in S$ has compact support in [0, M]. Determine the smallest value of M such that $s \not\equiv 0$.

Proof. Suppose $s \in S$ with nonnegative compact support. Since s''' is piecewise constant with knots at the integers, the support of s must be an interval of the form [a,b] for $a,b \in \mathbb{N}$. Further suppose that $s \not\equiv 0$ and M=b is minimized by s. Then a=0 since otherwise $s(x+a) \in S$ with support [0,M-a]. Hence the support of s is precisely [0,M] for some $M \in \mathbb{N}$.

For $j \in \mathbb{Z}$, let s_j be the cubic defined by s on [j, j+1]. Since $s \in C^2$, we have $s''_j(j) - s''_{j-1}(j) = s'_j(j) - s'_{j-1}(j) = s_j(j) - s_{j-1}(j) = 0$ for all j. Thus, by comparing Taylor expansions at x = j, we have $s_j = s_{j-1} + a_j(x-j)^3$ for some $a_j \in \mathbb{R}$. Since $s_{-1} = 0$, we have $s_j = \sum_{k=0}^{j} a_k(x-k)^3$ for $j \geq 0$.

Let P^3 be the vector space of polynomials of degree 3 or less. Let $T: P^3 \to P^3$ be defined by the matrix $T_{j,k} = (-1)^{k-j} \binom{k}{j}$ for $0 \le j, k \le 3$ with respect to the basis $(1, x, x^2, x^3)$. Then $Tx^k = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} x^j = (x-1)^k$ for all $0 \le k \le 3$. Thus $s_j = \sum_{k=0}^j a_k T^k x^3$.

 $0 \le k \le 3$. Thus $s_j = \sum_{k=0}^j a_k T^k x^3$. Thus, M is equal to the degree of the minimal nonzero polynomial f such that $f(T^k)x^3 = 0$. Note that $(T - I)x^k = (x - 1)^k - x^k$, so if $\deg(g) = k > 0$ then $\deg((T - I)g) = k - 1$. Thus, $((T - I)^n x^3)_{n=0}^3$ forms a basis for P^3 . Hence $(T^n x^3)_{n=0}^3$ forms a basis for P^3 . Hence $M = \deg(f) = 4$.

- **4** Let $U := \{u_j\}_{j=1}^{\infty}$ be an orthonormal set in a Hilbert space \mathcal{H} . Show that the following are equivalent:
- i. U is maximal in the sense that there is no non-zero vector in \mathcal{H} that is orthogonal to U.
 - ii. Every vector in \mathcal{H} may be uniquely represented as the series $f = \sum_{j=1}^{\infty} \langle f, u_j \rangle u_j$.

Proof. Suppose (i) holds but (ii) does not. Then there exists $f \in \mathcal{H}$ with $f \neq \sum_{j=1}^{\infty} \langle f, u_j \rangle u_j =: v$. Let g = f - v. Then if $u_j \in U$, then $\langle g, u_j \rangle = \langle f, u_j \rangle - \langle v, u_j \rangle = \langle f, u_j \rangle - \langle f, u_j \rangle = 0$. Thus g is a non-zero vector orthogonal to U, a contradiction.

For the converse, suppose (ii) holds but (i) does not. Let w be a nonzero vector orthogonal to U. By (ii), $w = \sum_{j=1}^{\infty} \langle w, u_j \rangle u_j = 0$, a contradiction.

5 Show that every separable Hilbert space \mathcal{H} has an o.n. basis.

Proof. Let \mathcal{U} be the poset of all o.n. subsets of mH. If \mathcal{L} is a chain in \mathcal{U} , then $\bigcup \mathcal{L}$ is orthonormal. Hence, by Zorn's Lemma, \mathcal{U} contains a maximal element U.

I claim that U is countable. Suppose not. If $u,v\in U$ with $u\neq v$, then $\|u-v\|^2=\|u\|^2-\langle u,v\rangle-\langle v,u\rangle+\|v\|^2=2$. This implies that U is not separable, a contradiction.

Hence U satisfies condition (i) of Exercise 4, so U is a basis.