CORRECTION

L'atmosphère de la Terre

Sur 10 points

Thème « Science, climat et société »

Partie 1 – Vénus et la Terre, deux planètes aux conditions physico-chimiques différentes?

1.1 Document 1 : Paramètres physico-chimiques de deux planètes telluriques

Planètes	Composition atmosphérique (en % volumique)	Pression atmosphériques (en Pa)	Température moyenne de surface (en °C)
Vénus	CO2 (96,5 %) N2 (3,5 %)	10 ⁷	+ 470
Terre primitive	H2O (80 %) CO2 (12 %) N2 (5 %) Autres (3 %)	10 ⁷	•••
Terre actuelle	O2 (20 %) N2 (80 %)	10 ⁵	+ 15

1.2Le graphique représente la pression en Pa en fonction de la température en degrés Kelvin. Le tableau nous indique la température en °C.

Température de la terre

Or T(K) = T(C) + 273

T(K) = 15 + 273

T(K) = 288 K

Température de la Venus

T(K) = 470 + 273

T(K) = 943 K

1.3

D'après le tableau du document 1 la pression atmosphérique de la Terre primitive est 10^7 Pa . Or nous savons que l'eau était uniquement sous forme gazeuse.

Graphiquement L'état gazeux de l'eau pour une pression de 10⁷ Pa est possible pour une température supérieure à 600 Kelvin.

Or T(K) = T(C) + 273

T(C) + 273 = T(K)

T(C) = T(K) - 273

T(C) = 600 - 273

 $T(C) = 327 \, ^{\circ}C$

Graphiquement L'état gazeux de l'eau pour une pression de 10^7 Pa est possible pour une température supérieure à 327 °C.

1.4

Comparons Vénus et la Terre primitive:

- La pression de Vénus et celle de la Terre primitive est identique
- La température de Vénus et celle de la Terre primitive est similaire
- L'eau sur Vénus et sur la Terre primitive est sous forme gazeuse
- ▶ L'atmosphère de Vénus contient du CO₂ et du N₂ et la Terre primitive contient du CO₂ et du N₂ également.
- La taille de Vénus et la Terre est similaire.

Ces ressemblances conduisent à l'affirmation : Vénus a longtemps été considérée comme la sœur jumelle de la Terre.

Partie 2 – L'évolution de l'atmosphère terrestre au cours des temps géologiques

2.2

D'après le document 3, la formation des BIF à lieu lorsque l'atmosphère est composé de CO₂ et N₂. Le dioxygène à l'origine de la formation des BIF provient du dioxyde de carbone CO₂.

2.3

D'après mes connaissances et les informations apportées par le document :

- Fin de la formation des océans : cette période est généralement datée d'il y a environ 4 milliards d'années, soit environ 500 millions d'années après la formation de la Terre.
- Apparition de la photosynthèse : il y a environ 3,5 milliards d'années.
- Apparition du dioxygène dans l'atmosphère : il y'a 1500 millions d'année (document 3)