Bevezetés a számítógépi grafikába

A geometriai modellezés alapjai

Troll Ede Mátyás

Matematikai és Informatikai Intézet Eszterházy Károly Katolikus Egyetem

Eger, 2022

Áttekintés

- Coons felület
- 2 Bézier- és B-Spline felületek
- Subdivision görbék
- 4 Subdivision felületek

Áttekintés

- Coons felület
- 2 Bézier- és B-Spline felületek
- Subdivision görbék
- 4 Subdivision felületek

Legyen adott 4, végpontjaikban egymáshoz csatlakozó görbe

Keressük azt az $\mathbf{s}(u, v)$, $u, v \in [0, 1]$ felületet, melyre teljesülnek az alábbi feltételek:

$$\mathbf{s}(u,0) = \mathbf{a}_1(u), u \in [0,1]$$

$$\mathbf{s}(u,1) = \mathbf{a}_2(u), u \in [0,1]$$

$$\mathbf{s}(0,v) = \mathbf{b}_1(v), v \in [0,1]$$

$$\mathbf{s}(1,v) = \mathbf{b}_2(v), v \in [0,1]$$

A felületet három segédfelület felhasználásával fogjuk előállítani.

Kössük össze egyenes vonalakkal az $\mathbf{a}_1(u)$ és $\mathbf{a}_2(u)$ görbéket az alábbi módon!

$$I_a(u, v) = (1 - v)a_1(u) + va_2(u)$$
, ahol $u, v \in [0, 1]$

Kössük össze egyenes vonalakkal az $\mathbf{a}_1(u)$ és $\mathbf{a}_2(u)$ görbéket az alábbi módon!

$$I_a(u, v) = (1 - v)a_1(u) + va_2(u)$$
, ahol $u, v \in [0, 1]$

Hasonló módon kössük össze egyenes vonalakkal a $\mathbf{b}_1(v)$ és $\mathbf{b}_2(v)$ görbéket az alábbi módon!

$$I_b(u,v) = (1-u)\mathbf{b}_1(v) + u\mathbf{b}_2(v), \text{ ahol } u,v \in [0,1]$$

Az $\mathbf{I}_a(u,v)$ és $\mathbf{I}_b(u,v)$ felületek a 4 görbéből kettő-kettőre illeszkednek (a másikra nem), így szükségünk van egy további felületre, melyet a négy csúcs alapján definiálunk:

$$\begin{split} \mathbf{I}_{ab}(u,v) &= (1-v)((1-u)\mathbf{I}_{a}(0,0) + u\mathbf{I}_{a}(1,0)) + \\ &+ v((1-u)\mathbf{I}_{a}(0,1) + u\mathbf{I}_{a}(1,1)), \text{ ahol } u,v \in [0,1] \end{split}$$

Az $\mathbf{I}_a(u,v)$ és $\mathbf{I}_b(u,v)$ felületek a 4 görbéből kettő-kettőre illeszkednek (a másikra nem), így szükségünk van egy további felületre, melyet a négy csúcs alapján definiálunk:

$$\begin{split} \mathbf{I}_{ab}(u,v) &= (1-v)((1-u)\mathbf{I}_a(0,0) + u\mathbf{I}_a(1,0)) + \\ &+ v((1-u)\mathbf{I}_a(0,1) + u\mathbf{I}_a(1,1)), \text{ ahol } u,v \in [0,1] \end{split}$$

Az előzőek felhasználásával az alábbi módon állítjuk elő a Coons felületet:

$$\mathbf{s}(u,v) = \mathbf{I}_{a}(u,v) + \mathbf{I}_{b}(u,v) - \mathbf{I}_{ab}(u,v)$$

Az előzőek felhasználásával az alábbi módon állítjuk elő a Coons felületet:

$$\mathbf{s}(u,v) = \mathbf{I}_{a}(u,v) + \mathbf{I}_{b}(u,v) - \mathbf{I}_{ab}(u,v)$$

Az előzőek felhasználásával az alábbi módon állítjuk elő a Coons felületet:

$$\mathbf{s}(u,v) = \mathbf{I}_{a}(u,v) + \mathbf{I}_{b}(u,v) - \mathbf{I}_{ab}(u,v)$$

Áttekintés

- Coons felület
- 2 Bézier- és B-Spline felületek
- Subdivision görbék
- 4 Subdivision felületek

Korábban foglalkoztunk olyan paraméteres görbékkel, melyek bizonyos alapfüggvények és kontrollpontok lineáris kombinációi:

$$\mathbf{r}(t) = \sum_{i=0}^{n} A_i^n(t) \mathbf{p}_i$$

Korábban foglalkoztunk olyan paraméteres görbékkel, melyek bizonyos alapfüggvények és kontrollpontok lineáris kombinációi:

$$\mathbf{r}(t) = \sum_{i=0}^{n} A_i^n(t) \mathbf{p}_i$$

A tenzori felületek esetén kontroll poligon helyett kontrollpont rácsot kell definiálnunk. Az előállított felületet elképzelhetjük úgy, mint egy kontrollpont alapú görbét, melynek kontrollpontjai is egy-egy kontrollpont alapú görbén mozognak.

Korábban foglalkoztunk olyan paraméteres görbékkel, melyek bizonyos alapfüggvények és kontrollpontok lineáris kombinációi:

$$\mathbf{r}(t) = \sum_{i=0}^{n} A_i^n(t) \mathbf{p}_i$$

A tenzori felületek esetén kontroll poligon helyett kontrollpont rácsot kell definiálnunk. Az előállított felületet elképzelhetjük úgy, mint egy kontrollpont alapú görbét, melynek kontrollpontjai is egy-egy kontrollpont alapú görbén mozognak.

$$\mathbf{s}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} A_i^n(u) A_j^m(v) \mathbf{p}_{ij}$$

Bézier- és B-Spline felületek

A Bézier- és B-Spline felületek esetén tehát a korábban megismert alapfüggvényeket felhasználva állítjuk elő a felületet:

Bézier felület:
$$\mathbf{s}(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_i^n(u) B_j^m(v) \mathbf{p}_{ij}$$

B-Spline felület:
$$\mathbf{s}(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} N_i(u) N_j(v) \mathbf{p}_{ij}$$

Áttekintés

- Coons felület
- 2 Bézier- és B-Spline felületek
- Subdivision görbék
- Subdivision felületek

A probléma

1995

2019

A probléma

Szükségünk van-e arra, hogy ott legyen a matek?

Van-e szükség paraméteres görbére (és felületre)?

Végül úgyis csak egy "nagyon finom" poligont (poliédert) rajzolunk...

Egy alternatív út

Egy alternatív út

Corner-cutting algoritmus

Induljunk ki egy adott poligonból, és folyamatosan hajtsuk végre az alábbiakat:

Corner-cutting algoritmus

Induljunk ki egy adott poligonból, és folyamatosan hajtsuk végre az alábbiakat:

- Szúrjuk be a poligon minden szakaszára annak $\frac{1}{4}$ és $\frac{3}{4}$ arányú osztópontjait
- Távolítsuk el a korábbi csúcsokat
- Kössük össze az új csúcsokat

Subdivision görbék

Legyen adott a $P^0 = \{\mathbf{p}_i | i \in \mathbb{Z}\}$, melynek **rekurzív finomításával** egy új $P^{j+1} = \{\mathbf{p}_i^{j+1} | i \in \mathbb{Z}\}$ poligont kapunk, ahol $j \geq 0$.

Subdivision görbék

Legyen adott a $P^0 = \{\mathbf{p}_i | i \in \mathbb{Z}\}$, melynek **rekurzív finomításával** egy új $P^{j+1} = \{\mathbf{p}_i^{j+1} | i \in \mathbb{Z}\}$ poligont kapunk, ahol $j \geq 0$.

A görbét a folyamatos finomítások eredményeképpen, igazából a poligonok határgörbéjeként kapjuk.

$$C = \lim_{j \to \infty} P^j$$

1 Induljunk ki egy adott poligonból

- 1 Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)

- Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)
- Sorra átlagoljuk a csúcsokat óramutató járásával megegyezően a szomszédaival (averaging step)

- Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)
- Sorra átlagoljuk a csúcsokat óramutató járásával megegyezően a szomszédaival (averaging step)
- Ugorjunk a 2. lépésre

- Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)
- Sorra átlagoljuk a csúcsokat óramutató járásával megegyezően a szomszédaival (averaging step)
- Ugorjunk a 2. lépésre

- Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)
- Sorra átlagoljuk a csúcsokat óramutató járásával megegyezően a szomszédaival (averaging step)
- Ugorjunk a 2. lépésre

- Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)
- Sorra átlagoljuk a csúcsokat óramutató járásával megegyezően a szomszédaival (averaging step)
- Ugorjunk a 2. lépésre

- Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)
- Sorra átlagoljuk a csúcsokat óramutató járásával megegyezően a szomszédaival (averaging step)
- Ugorjunk a 2. lépésre

- Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)
- Sorra átlagoljuk a csúcsokat óramutató járásával megegyezően a szomszédaival (averaging step)
- Ugorjunk a 2. lépésre

- Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)
- Sorra átlagoljuk a csúcsokat óramutató járásával megegyezően a szomszédaival (averaging step)
- Ugorjunk a 2. lépésre

- Induljunk ki egy adott poligonból
- Szúrjuk be a felezőpontokat a csúcsok közé (splitting step)
- Sorra átlagoljuk a csúcsokat óramutató járásával megegyezően a szomszédaival (averaging step)
- Ugorjunk a 2. lépésre

Subdivision maszkkok

Az ún. $averaging\ step\$ általánosítható, tehát a P^{j+1} pont alakja

$$\mathbf{p}_i^{j+1} = \sum_{m \in \mathbb{Z}} a_m \mathbf{p}_k^j,$$

ahol

$$A=(\ldots,a_{-1},a_0,a_1,\ldots)\,,\ a_m\in\mathbb{R}.$$

Ezen együtthatók összessége a subdivision maszk.

2
$$a_i = a_{n-i}$$

$$\sum_{i=0}^{n} a_i = 1$$

- $a_i = a_{n-i}$
- **3** $a_i > 0, i \in \{0, 1, \dots, n\}$

- $\sum_{i=0}^{n} a_i = 1$
- $a_i = a_{n-i}$
- $a_i > 0$, $i \in \{0, 1, \dots, n\}$ (approximációs esetben)

• $(\frac{1}{2}, \frac{1}{2})$ (Chaikin, corner cutting)

- $(\frac{1}{2}, \frac{1}{2})$ (Chaikin, corner cutting)
- $\frac{1}{2^n} \left(\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n} \right)$ (Lane-Riesenfield, n+1-ed fokú B-Spline görbe)

- $(\frac{1}{2}, \frac{1}{2})$ (Chaikin, corner cutting)
- ullet $\frac{1}{2^n}\left(inom{n}{0},inom{n}{1},\dots,inom{n}{n}
 ight)$ (Lane-Riesenfield, n+1-ed fokú B-Spline görbe)
 - n = 0: (1)

- $(\frac{1}{2}, \frac{1}{2})$ (Chaikin, corner cutting)
- $\frac{1}{2^n}\left(\binom{n}{0},\binom{n}{1},\ldots,\binom{n}{n}\right)$ (Lane-Riesenfield, n+1-ed fokú B-Spline görbe)
 - n = 0: (1)
 - n = 1: $(\frac{1}{2}, \frac{1}{2})$ (kvadratikus B-Spline)

- $(\frac{1}{2}, \frac{1}{2})$ (Chaikin, corner cutting)
- $\frac{1}{2^n} \left(\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n} \right)$ (Lane-Riesenfield, n+1-ed fokú B-Spline görbe)
 - n = 0: (1)
 - n = 1: $(\frac{1}{2}, \frac{1}{2})$ (kvadratikus B-Spline)
 - n = 2: $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ (kubikus B-Spline)

- $(\frac{1}{2}, \frac{1}{2})$ (Chaikin, corner cutting)
- ullet $\frac{1}{2^n}\left(\binom{n}{0},\binom{n}{1},\ldots,\binom{n}{n}\right)$ (Lane-Riesenfield, n+1-ed fokú B-Spline görbe)
 - n = 0: (1)
 - n = 1: $(\frac{1}{2}, \frac{1}{2})$ (kvadratikus B-Spline)
 - n = 2: $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ (kubikus B-Spline)
- $\bullet \ \left(-\frac{2}{16},\frac{5}{16},\frac{10}{16},\frac{5}{16},-\frac{2}{16}\right) \ (\text{Dyn-Levin-Gregory, interpolációs maszk})$

Áttekintés

- Coons felület
- 2 Bézier- és B-Spline felületek
- Subdivision görbék
- Subdivision felületek

Subdivision felületek

Felületek esetén poligon helyett poliéderek finomítása a célunk. A poliéderek alapja általában

- háromszög
- négyszög

Rengeteg subdivision séma létezik: Subdivision Zoo

Loop subdivision

Split each triangle into four

Assign new vertex positions according to weights:

New vertices

Old vertices

Loop subdivision

Köszönöm a figyelmet!