Corso di Laurea: Ingegneria Informatica

 ${\operatorname{Testo}}\ {\operatorname{n.xx}}$ - Esame di Fisica Generale sessione del 11/09/2024

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 - Meccanica

(Figura qualitative e non in scala a scopo illustrativo)

Con riferimento alla figura, un corpo di massa $m_1 = m$, assimilabile a un punto materiale, viene lanciato da una base orizzontale con velocità verticale di modulo $v_i = 6 \ m/s$. Il corpo è vincolato all'estremo di un filo ideale di lunghezza l che ha l'altro estremo fissato sul bordo libero della base. La lunghezza del filo è quella massima ($l = l_{max}$) che, data velocità iniziale, permette al corpo di muoversi su una traiettoria circolare. La base è fissata ad una quota h = l su un piano orizzontale scabro. Si determini:

1.1 la lunghezza l_{max} del filo che, data la velocità iniziale, permette al corpo di muoversi su una traiettoria circolare

 $l_{max} = \dots$

Sul piano scabro (vedi figura), sotto l'estremo fisso del filo, è posto in quiete in B un altro corpo identico al primo, di massa $m_2 = m$.

Supponendo che l'urto tra i due corpi sia elastico e che il corpo urtato di massa m_2 si arresti dopo aver percorso un tratto di lunghezza $3l_{max}$, si determini:

1.2 la velocità un istante dopo l'urto rispettivamente di m_1 , v_1 , e di m_2 , v_2 , specificando quali leggi di conservazione avete utilizzato

 $v_1 = \dots v_2 = \dots v_2 = \dots$

1.3 il coefficiente di attrito dinamico μ tra il piano e il corpo di massa m_2 ,

 μ =

Nota Bene: assumere per i calcoli $g = 9,81 \text{ m/s}^2$

(Figura qualitativa a solo scopo illustrativo)

Una carica puntiforme $q_1 = 3 \cdot 10^{-5} \ C$ è posta nel centro di un guscio sferico conduttore inizialmente scarico, di raggio interno $R_1 = 10 \ cm$ e raggio esterno $R_2 = 2R_1 = 20 \ cm$. Determinare:

2.1 le espressioni a regime del campo elettrico \overrightarrow{E} e del potenziale V nelle tre regioni $r < R_1, \, R_1 < r < R_2, \, r > R_2$

$$\overrightarrow{E}$$
= V =

Successivamente, una quantità di carica $q_2=3q_1$ viene depositata sul conduttore sferico esterno. Determinare:

2.2 la nuova espressione a regime del campo elettrico \overrightarrow{E}' nelle tre regioni $r < R_1, R_1 < r < R_2, r > R_2$ e il modulo del campo elettrico, $E'_{\underline{R_1}}$, per $r = 0.5R_1$

$$\overrightarrow{E}' = \dots \qquad E'_{\frac{R_1}{2}} = \dots$$

2.2 la nuova espressione a regime del potenziale V' nelle tre regioni $r < R_1, R_1 < r < R_2, r > R_2$ e il potenziale, $V'_{\frac{R_1}{2}}$, per $r = 0.5R_1$

$$V' = \dots V'_{\frac{R_1}{2}} = \dots$$

Costanti Utili: $\varepsilon_0 = 8.85 \ 10^{-12} \ \mathrm{F/m}$

Soluzione Esercizio 1

(Figura qualitativa e non in scala a scopo illustrativo)

Domanda 1.1

Nel moto si conserva l'energia meccanica. Inoltre, affinchè la traiettoria del p.m. lanciato verticalmente sia circolare, il filo deve essere sempre in tensione. Quindi la sua lunghezza massima, l_{max} , si ricava annullando il valore della tensione nel punto più alto della traiettoria (A), dove la tensione è minima.

Dalla conservazione dell'energia, prendendo l'origine dell'energia potenziale sul piano scabro, si ottiene:

$$\frac{1}{2}mv_i^2 + mgl_{max} = \frac{1}{2}mv_A^2 + 2mgl_{max} \quad \frac{1}{2}mv_i^2 - \frac{1}{2}mv_A^2 = mgl_{max}$$

Con riferimento alla figura, annullando la tensione nel punto A

$$-m_1g - T = -m_1 \frac{v_A^2}{l_{max}} \quad \Rightarrow \quad g = \frac{v_A^2}{l_{max}} \quad \Rightarrow \quad v_A^2 = gl_{max}$$

Sostituendo l'espressione di v_A in funzione di l_{max} nella prima equazione si ottiene:

$$l_{max} = \frac{v_i^2}{3g} = 1.22 \ m$$

Domanda 1.2

Nel moto della massa m_1 dalla posizione iniziale al punto B si conserva l'energia. Mentre nell'urto che è elastico si conserva l'energia cinetica e la quantità di moto del sistema di punti materiali. Essendo le masse m_1 e m_2 identiche ed essendo m_2 ferma i due punti materiali si scambiano la velocità.

Per cui dalla conservazione dell'energia tra la posizione iniziale e la posizione in B per il corpo di massa m_1 si ottiene:

$$\frac{1}{2}m_1v_B^2 - \frac{1}{2}m_1v_i^2 = mgl_{max} = \frac{1}{3}m_1v_i^2 \quad \Rightarrow \quad \frac{1}{2}m_1v_B^2 = \frac{5}{6}m_1v_i^2 \quad \Rightarrow \quad v_B = \sqrt{\frac{5}{3}}v_i$$

dove v_B è la velocità di m_1 prima dell'urto. Applicando la conservazione dell'energia cinetica e della quantità di moto si ottiene

$$v_1 = 0$$
 $v_2 = v_B = \sqrt{\frac{5}{3}}v_i = 7.75 \ m/s$

Domanda 1.3

Conoscendo la distanza di arresto (pari a $3l_{max}$), il coefficiente di attrito dinamico con il piano si determina utilizzando il teorema delle forze vive:

$$-\frac{1}{2}m_2v_B^2 = -3m_2\mu gl_{max} \quad \Rightarrow \quad \mu = \frac{1}{6}\frac{v_B^2}{gl_{max}} = \frac{5}{18}\frac{v_i^2}{gl_{max}} = \frac{5}{6} = 0.83$$

Soluzione Esercizio 2

Domanda 2.1

All'equilibrio, essendo il guscio un conduttore, il campo elettrico per $R_1 < r < R_2$, è nullo. Di conseguenza prendendo una sfera di Gauss con centro in O e raggio r tale che $R_1 < r < R_2$, indicando con Q_{R_1} la carica sulla superfice sferica interna del guscio di raggio R_1 , la carica interna a tale sfera, che è pari a $q_1 + Q_{R_1}$, deve essere nulla. Per cui $Q_{R_1} = -q_1$.

Per la conservazione della carica, poichè la carica iniziale del sistema era pari a $Q_i = q_1$, raggiunto l'equilibrio per la carica finale del sistema vale:

$$Q_f = q_1 + Q_{R_1} + Q_{R_2} = Q_i = q_1 \quad \Rightarrow \quad Q_{R_2} = q_1$$

dove abbiamo indicato con Q_{R_2} la carica sulla superfice sferica esterna del guscio di raggio R_2 .

Per la simmetria sferica della distribuzione di carica (la distribuzione di carica è invariante per rotazioni intorno a qualsiasi asse passante per O) il campo è radiale in coordinate sferiche con centro in $O: \overrightarrow{E} = E_r \hat{r}$.

Applicando la legge di Gauss ad una sfera di raggio r concentrica al sistema, si ottiene il campo elettrostatico E_r che ha un diverso andamento nelle 3 regioni (0 < r < R_1 , R_1 < r < R_2 , r > R_2).

$$\phi(\overrightarrow{E}) = E_r(r) 4\pi r^2 = \frac{Q_{int}}{\varepsilon_0} \qquad Q_{int} = \begin{cases} q_1 & 0 < r < R_1 \\ 0 & R_1 < r < R_2 \\ q_1 & r > R_2 \end{cases} \qquad \overrightarrow{E} = E_r \hat{r} \quad \Rightarrow E_r(r) = \begin{cases} \frac{q_1}{4\pi\varepsilon_0 r^2} & 0 < r < R_1 \\ 0 & R_1 < r < R_2 \\ \frac{q_1}{4\pi\varepsilon_0 r^2} & r > R_2 \end{cases}$$

dove Q_{int} è la carica interna alla sfera di Gauss in ciascuna delle 3 regioni.

Il campo, quando non è nullo, è diretto sempre nella direzione radiale, con verso uscente dal centro (O) del sistema (poichè $q_1 > 0$).

Assumendo il potenziale nullo all'infinito determiniamo il potenziale nelle tre regioni.

Per $r > R_2$:

$$V(r) - V(\infty) = \int_r^\infty \frac{q_1}{4\pi\varepsilon_0 r'^2} dr' \quad \Rightarrow \quad V(r) = \frac{q_1}{4\pi\varepsilon_0 r}$$

per $r = R_2 \ V(R_2) = \frac{q_1}{4\pi\varepsilon_0 R_2}$.

Per $R_1 < r < R_2$: il potenziale resta costante poiché il c.e. è nullo e pari a $V(R_2)$.

Per $0 < r < R_1$:

$$V(r) - V(R_1) = \int_r^{R_1} \frac{q_1}{4\pi\varepsilon_0 r'^2} dr' \quad \Rightarrow \quad V(r) - \frac{q_1}{4\pi\varepsilon_0 R_2} = \frac{q_1}{4\pi\varepsilon_0 r} - \frac{q_1}{4\pi\varepsilon_0 R_1} \quad \Rightarrow \quad V(r) = \frac{q_1}{4\pi\varepsilon_0 r} - \frac{q_1}{4\pi\varepsilon_0 R_1} + \frac{q_1}{4\pi\varepsilon_0 R_2} + \frac{q_1}{4\pi\varepsilon_0 R_2} + \frac{q_2}{4\pi\varepsilon_0 R_$$

Domanda 2.2

La carica q_2 va a modificare solo la carica sulla superficie esterna del conduttore. Il campo elettrico sarà pertanto diverso solo all'esterno del conduttore:

$$\overrightarrow{E}' = E_r' \hat{r} \quad \Rightarrow \quad E_r' (r) = \left\{ \begin{array}{ll} \frac{q_1}{4\pi\varepsilon_0 r^2} & 0 < r < R_1 \\ 0 & R_1 < r < R_2 \\ \frac{4q_1}{4\pi\varepsilon_0 r^2} & r > R_2 \end{array} \right.$$

Per $r=\frac{R_1}{2}$ otteniamo $E'_{\frac{R_1}{2}}=1.08\times 10^8~V/m$

Domanda 2.3

Assumendo il potenziale nullo all'infinito determiniamo il potenziale nelle tre regioni.

Per $r > R_2$:

$$V(r) - V(\infty) = \int_{r}^{\infty} \frac{4q_1}{4\pi\varepsilon_0 r'^2} dr' \quad \Rightarrow \quad V(r) = \frac{4q_1}{4\pi\varepsilon_0 r}$$

per $r = R_2 V(R_2) = \frac{4q_1}{4\pi\varepsilon_0 R_2}$.

Per $R_1 < r < R_2$: il potenziale resta costante poiché il c.e. è nullo e pari a $V(R_2)$.

Per $0 < r < R_1$:

$$V(r)-V(R_1) = \int_r^{R_1} \frac{q_1}{4\pi\varepsilon_0 r'^2} dr' \quad \Rightarrow \quad V(r) - \frac{4q_1}{4\pi\varepsilon_0 R_2} = \frac{q_1}{4\pi\varepsilon_0 r} - \frac{q_1}{4\pi\varepsilon_0 R_1} \quad \Rightarrow \quad V(r) = \frac{q_1}{4\pi\varepsilon_0 r} - \frac{q_1}{4\pi\varepsilon_0 R_1} + \frac{4q_1}{4\pi\varepsilon_0 R_2} = \frac{q_1}{4\pi\varepsilon_0 R_2} - \frac{q_1}{4\pi\varepsilon_0 R_2} - \frac{q_1}{4\pi\varepsilon_0 R_2} = \frac{q_1}{4\pi\varepsilon_0 R_2} - \frac{q_1}{4\pi\varepsilon_0 R_2} = \frac{q_1}{4\pi\varepsilon_0 R_2} - \frac{q_1}{4\pi\varepsilon_0 R_2} - \frac{q_1}{4\pi\varepsilon_0 R_2} = \frac{q_1}{4\pi\varepsilon_0 R_2} - \frac{q_1}{4\pi\varepsilon_0 R_$$

Per $r=\frac{R_1}{2}$ otteniamo $V_{R_1}'=8.09\times 10^6~V$