NMMB538 - DÚ5 Jan Oupický

1

- 1. Použijeme lemma R.1. Využijeme předchozího úkolu, kde F' = K(D). Pokud označíme $y_1 \coloneqq \frac{x_2^2 + (g)}{x_1^2 + (g)} = t^2 = u \in K(D), y_2 \coloneqq \frac{x_2(b x_1^2) + (g)}{x_1^2 + (g)} = st = v \in K(D).$ ϕ dle R.1 existuje pokud y_1 nebo y_2 je transcendentní nad K a $f(y_1, y_2) = 0$. Z předchozího úkolu zřejmě platí, že oba prvky jsou transcendentní nad K. Dále jsme v minulém úkolu také ukázali, že platí $f(y_1, y_2) = f(u, v) \in F' = K(D)$.
- 2. Dle R.7 platí $\phi = \sigma^*$, kde $\sigma = (\sigma_1, \sigma_2)$, kde $\sigma_1 = y_1, \sigma_2 = y_2$. Zvolíme reprezentanty (y_1, y_2) například jako $r_1 = \frac{x_2^2}{x_1^2}, r_2 = \frac{x_2(b-x_1^2)}{x_1^2}$.
- 3. Víme, že y_1, y_2 jsou trans. nad K, tedy $\deg(\sigma) < \infty$. Zároveň jsme ukázali, že $K(y_1, y_2) = K(u, v)$ a v minulých úkolech jsme ukázali, že $[F' : K(y_1, y_2)] = 2 \implies$ protože $F' = K(D) \implies [K(D) : K(y_1, y_2)] = 2 = \deg(\sigma)$.
- 4. Pro přehlednost označme P_{∞} ze zadání jako $M_{\infty} \in \mathbb{P}_{K(C)/K}$. Místo $M_{\infty} \in \mathbb{P}_{K(C)/K}$ zřejmě obsahuje $x_1^{-2} + (f)$, jelikož $v_{\infty}(x_1 + (f)) = -2$. Tento prvek se nám pomocí σ^* zobrazí na $\frac{x_1^4 + (g)}{x_2^4 + (g)} = \frac{x_2^{-4} + (g)}{x_1^{-4} + (g)} = u^{-2} \in \operatorname{Im}(\sigma^*) = F \subset F'$. Z minulého úkolu víme, že jediné místo F/K, co obsahuje u^{-2} je $P_{\infty} \in \mathbb{P}_{F/K}$, tedy $\sigma^*(M_{\infty}) = P_{\infty}$. Dále jsme také ukázali, že pro $P_0' \in \mathbb{P}_{K(D)/K}$ platí $P_0' \mid P_{\infty} \implies P_0' \mid \sigma^*(M_{\infty})$.

$5. \Rightarrow :$

Opět použijeme značení M_{α} pro místo K(C)/K. Zvolme $\rho \in K(C)$. Víme, že platí $v_{M_{\alpha}}(\rho) > 0 \iff \rho(\alpha) = 0$. Z předpokladů platí obdobně, že $v_{P'_{\beta}}(\sigma^*(\rho)) > 0 \implies \sigma^*(\rho)(\beta) = 0$. Dle lemma R.8 pokud je $\rho(\sigma(\beta))$ definované, tak platí $\rho(\sigma(\beta)) = \sigma^*(\rho)(\beta) \implies \rho(\sigma(\beta)) = 0 \implies \rho \in M_{\sigma(\beta)}, \ \sigma(\beta) \in C$ tedy musí platit $M_{\sigma(\beta)} = M_{\alpha} \iff \sigma(\beta) = \alpha$.

Pokud $\rho(\sigma(\beta))$ není def. tak musí platit $\beta \notin \mathrm{Dom}(\sigma) \implies \beta_1 = 0 \implies \beta_2 = 0$. Případ $\sigma(\beta) \notin \mathrm{Dom}(\rho)$ nenastane, jelikož ρ můžeme brat jako $\frac{x_1 - \alpha_1 + (f)}{1 + (f)}$ nebo $\frac{x_2 - \alpha_2 + (f)}{1 + (f)}$ tedy $\mathrm{Dom}(\rho) = C$. Tedy v případě $\beta = (0,0)$ máme z 4) $P_0'|P_\infty$.

Dále by tedy P_0' obsahovalo místo P_α což je spor, protože pokud $\alpha_1 \neq 0$, tak $v_{P_\alpha}(u-\alpha_1+(w_D))>0$ a zároveň $v_{P_0'}(u-\alpha_1+(w_D))=\min\{v_{P_0'}(u+(w_D)),v_{P_0'}(-\alpha_1+(w_D))\}=-2$.

Pokud $\alpha_1 = 0$ tak $\alpha_2 = 0$ a v minulém úkolu, jsme ukázali, že P_0' neobsahuje P_0 . \Leftarrow :

Obdobně zvolme $\rho \in M_{\alpha} \implies \rho(\alpha) = 0$. Z předpokladu víme, že $\beta \in \text{Dom}(\sigma)$, tedy je $\rho(\sigma(\beta))$ definováno, jelikož $\text{Dom}(\rho) = C$. Platí tedy $0 = \rho(\alpha) = \rho(\sigma(\beta)) = \sigma^*(\rho)(\beta)$. Neboli $v_{P'_{\beta}}(\sigma^*(\rho)) > 0 \implies P'_{\beta}|\sigma^*(M_{\alpha})$.

6. Vidíme, že $D \setminus \{(0,0)\} = \mathrm{Dom}(r_1) \cap \mathrm{Dom}(r_2)$. Kdyby $\mathrm{Dom}(\sigma) \supset \{(0,0)\}$, tak by dle 5) $P_0'|P_{(0,0)}$ což nejde. Takže $\mathrm{Dom}(r_1) \cap \mathrm{Dom}(r_2) = \mathrm{Dom}(\sigma)$.

Pokud α je kořen polynomu $x^3 + a_4x + a_6$, tak substitucí $x \mapsto x + \alpha$ dostaneme $x^3 + 3\alpha x^2 + (3\alpha^2 + a_4)x + \alpha^3 + a_4\alpha + b$, z definice α platí $\alpha^3 + a_4\alpha + b = 0$, máme tedy polynom $x^3 + 3\alpha x^2 + (3\alpha^2 + a_4)x$.

3

Označme $w_{\tilde{D}}(x,y)=y^2-x^3+x-1$. Kořen x^3-x+1 v \mathbb{Z}_5 je 3. Máme tedy $w_D(x,y)=w_{\tilde{D}}(x+3,y)$ neboli $w_D(x,y)=y^2-x^3-4x^2-x$.

Máme tedy $a = 4, b = 1 \implies w_C(x, y) = y^2 - x^3 - 2x^2 - 2x$ a následně $w_{\tilde{C}}(x, y) = w_C(x - \frac{-3}{3}, y) = w_C(x + 1, y) = y^2 - x^3 - 4x$. Dohromady:

$$w_{\tilde{D}}(x,y) = y^2 - x^3 + x - 1$$

$$w_D(x,y) = y^2 - x^3 - 4x^2 - x$$

$$w_C(x,y) = y^2 - x^3 - 2x^2 - 2x$$

$$w_{\tilde{C}}(x,y) = y^2 - x^3 - 4x$$

Z cvičení 1 známe K-rational map $\sigma': D \to C$, $\deg(\sigma') = 2$. Sestrojíme σ jako složení $\sigma_2 \circ \sigma' \circ \sigma_1: \tilde{D} \to D \to C \to \tilde{C}$.

Dle R.9 pokud σ_1, σ_2 budou konečného stupně, tak bude i σ . Z prvního cvičení víme, že $\sigma' = \left(\frac{x_2^2 + (w_D)}{x_1^2 + (w_D)}, \frac{x_2(1 - x_1^2) + (w_D)}{x_1^2 + (w_D)}\right)$.

Nyní popíšeme σ_1 . Sestrojme $\sigma_1^*: K(D) \to K(\tilde{D})$. Z výše udělané substituce zřejmě:

$$\sigma_1^*(x + (w_D)) = x + 2 + (w_{\tilde{D}})$$
$$\sigma_1^*(y + (w_D)) = y + (w_{\tilde{D}})$$

A následně tedy $\sigma_1 = (x + 2 + (w_{\tilde{D}}), y + (w_{\tilde{D}})).$

Obdobně pro $\sigma_2: \sigma_2^*: K(\tilde{C}) \to K(C), w_C(x,y) = w_{\tilde{C}}(x+4,y) \implies$

$$\sigma_2^*(x + (w_{\tilde{C}})) = x + 4 + (w_C)$$

$$\sigma_2^*(y + (w_{\tilde{C}})) = y + (w_C)$$

 $\sigma_2 = (x + 4 + (w_C), y + (w_C)).$

Zřejmě jsou $x+2+(w_{\tilde{D}}), y+(w_{\tilde{D}}), x+4+(w_C), y+(w_C)$ transcendentní nad K, tedy σ_1, σ_2 jsou konečného stupně. To, že σ' je konečného stupně jsme ukázali v 1). Následně tedy σ je také konečného stupně dle R.9.

Zřejmě $\text{Dom}(\sigma_1) = \tilde{D}, \text{Dom}(\sigma_2) = C.$

Z prvního cvičení víme, že $\text{Dom}(\sigma') = D \setminus \{(0,0)\}.$

Neboli pro $\alpha = (\alpha_1, \alpha_2) \in \text{Dom}(\sigma)$:

$$\sigma(\alpha) = \sigma_2(\sigma'(\sigma_1(\alpha))) = \left(\frac{\alpha_2^2}{(\alpha_1 + 2)^2} + 4, \frac{\alpha_2(1 - (\alpha_1 + 2)^2)}{(\alpha_1 + 2)^2}\right)$$

4

 \mathbb{Z}_5 -racionální body \tilde{D} jsou:

$$(0,1), (0,4), (1,1), (1,4), (3,0), (4,1), (4,4)$$

 \mathbb{Z}_5 -racionální body \tilde{C} jsou:

$$(0,0),(1,0),(2,1),(2,4),(3,2),(3,3),(4,0)$$

Jelikož ve cvičení 3 jsme určili, že $\mathrm{Dom}(\sigma_1) = \tilde{D}$, $\mathrm{Dom}(\sigma_2) = \tilde{C}$ a $\mathrm{Dom}(\sigma') = D \setminus \{(0,0)\}$. Prvek \tilde{D} , který nebude prvkem $\mathrm{Dom}(\sigma)$ je ten, co se pomocí σ_1 zobrazí na (0,0). Z definice to je pouze bod (3,0), jelikož $\sigma_1((3,0)) = (3+2,0) = (0,0)$. Jiný takový bod není.

Zřejmě $\tilde{D} \supset \text{Dom}(\sigma) \implies \tilde{D} \cap \text{Dom}(\sigma) = \text{Dom}(\sigma) \text{ a } \text{Dom}(\sigma) = \tilde{D} \setminus \{(3,0)\}.$ Spočteme tedy obrazy prvků $\{(0,1),(0,4),(1,1),(1,4),(4,1),(4,4)\}$:

$$\sigma((0,1)) = \left(\frac{1^2}{(0+2)^2} + 4, \frac{1(1-(0+2)^2)}{(0+2)^2}\right) = (3,3)$$

$$\sigma((0,4)) = \left(\frac{4^2}{(0+2)^2} + 4, \frac{4(1-(0+2)^2)}{(0+2)^2}\right) = (3,2)$$

$$\sigma((1,1)) = \left(\frac{1^2}{(1+2)^2} + 4, \frac{1(1-(1+2)^2)}{(1+2)^2}\right) = (3,3)$$

$$\sigma((1,4)) = \left(\frac{4^2}{(1+2)^2} + 4, \frac{4(1-(1+2)^2)}{(1+2)^2}\right) = (3,2)$$

$$\sigma((4,1)) = \left(\frac{1^2}{(4+2)^2} + 4, \frac{1(1-(4+2)^2)}{(4+2)^2}\right) = (0,0)$$

$$\sigma((4,4)) = \left(\frac{4^2}{(4+2)^2} + 4, \frac{4(1-(4+2)^2)}{(4+2)^2}\right) = (0,0)$$