Лабораторная работа №4

Управление шаговыми двигателями

1. Цель работы

Целью работы получение практических навыков управления шаговыми двигателями на примере двигателя 28ВҮЈ-48.

2. Теоретические сведения по работе с дисплеем

2.1. Описание шагового двигателя 28ВҮЈ-48

Шаговый двигатель 28BYJ-48 — это четырехфазный, униполярный шаговый двигатель с пятью контактами для подключения, имеющий два режима работы, его внешний вид представлен на рисунке 1.

Рис. 1. Внешний вид шагового двигателя 28ВҮЈ-48

Основные технические характеристики двигателя 28BYJ-48 приведены в таблице 1.

Таблица 1

Технические параметры

Тип мотора	Униполярный шаговый двигатель
Угол одного шага	5,625 °
Напряжение	5 B
Число фаз	4
Частота	100 Гц
Передаточное число редуктора	1:64
Номинальная скорость вращения	15 оборот/мин
Крутящий момент	450 г∙см

Частота холостого хода по часовой стрелке	> 600 Герц
Частота холостого хода против часовой стрелки	> 1000 Герц

Принципиальная схема четырехфазного шагового двигателя 28ВYJ-48 приведена ниже.

Рис. 2. Принципиальная схема шагового двигателя 28ВҮЈ-48

Для организации работы шагового двигателя 28BYJ 48 используют два режима управления.

Полношаговый режим (рисунок 3) — за 1 такт ротор делает 1 шаг, используется 4-тактовая управляющая сигнальная последовательность (таблица 2), 11.25° /шаг, 32 шага приходится на оборот внутреннего вала двигателя.

Рис. 3. Работа шагового двигателя в полношаговом режиме

Такты для организации полношагового режима

Контакт мотора	Такты				
Контакт мотора	1	2	3	4	
4 – Оранжевый	1	1	0	0	
3 – Желтый	0	1	1	0	
2 – Розовый	0	0	1	1	
1 – Синий	1	0	0	1	

Полушаговый режим (рисунок 4) — за 1 такт ротор делает $\frac{1}{2}$ шага, используется 8- тактовая управляющая сигнальная последовательность (таблица 3), 5.625 градусов на шаг, 64 шага приходится на оборот внутреннего вала мотора.

Рис. 4. Работа шагового двигателя в полушаговом режиме

Таблица 3 Такты для организации полушагового режима

Контакт мотора	Такты							
	1	2	3	4	5	6	7	8
4 – Оранжевый	1	1	0	0	0	0	0	1
3 – Желтый	0	1	1	1	0	0	0	0
2 – Розовый	0	0	0	1	1	1	0	0
1 – Синий	0	0	0	0	0	1	1	1

Как правило, шаговый двигатель 28-ВУЈ48 используют в паре с драйвером ULN2003, который представляет собой массив транзисторов, включенных по схеме Дарлингтона и позволяет достаточно просто

управлять мотором 28BYJ-48, используя микроконтроллер. Помимо самой микросхемы ULN2003AN, на плате имеется пятиконтактный разъем для подключения к шаговику и четыре светодиода, показывающих, какая из обмоток запитана в текущий момент времени (рисунок 5).

Рис. 5. Внешний вид ULN2003

Схема подключения шагового двигателя и драйвера приведена на рисунке 6.

Рис. 6. Схема подключения шагового двигателя 28-BYJ48 и драйвера ULN2003

2.2. Описание лабораторного макета

Лабораторный макет представляет собой инструмент для рисования на базе двух шаговых двигателей и одного сервопривода. Внешний вид макета представлен на рисунке 7:

- 1 драйвера шаговых двигателей;
- 2 плата расширения для подключения отладочного макета микроконтроллера;
 - 3 концевики;
 - 4 разъем для подключения концевиков к МК;

- 5 разъемы для подключения линий портов микроконтроллера к драйверам шаговых двигателей;
- 6 разъем для подключения напряжения питания к лабораторному макету.

Рис. 7. Лабораторный макет

Подключение отладочной платы микроконтроллера лабораторному макету (для управления шаговыми двигателями) осуществляется с помощью шлейфа, представленного на рисунке 8. Разъем на 4 линии служит для передачи управляющих сигналов, а разъем на 2 линии необходим для подачи питания на лабораторный макет. При этом если в работе осуществляется управление двумя разъем шаговыми двигателями, то питания подключается лабораторному макету только с одного шлейфа.

Рис. 8. Шлейф для подключения отладочной платы к лабораторному макету для управления шаговыми двигателями

Пример подключения отладочной платы микроконтроллера к лабораторному макету представлен на рисунке 9. На рисунке 9 желтым цветом выделены разъемы для подключения линий микроконтроллера, два ряда коннекторов соединены между собой попарно и обеспечивают возможность подключения осциллографа к соответствующим линиям.

Рис. 8. Шлейф для подключения отладочной платы к лабораторному макету для управления шаговыми двигателями

3. Программа работы

1. Ознакомьтесь с составом отчета по лабораторной работе (раздел 4). Это необходимо для фиксации необходимых программных кодов и результатов их выполнения.

- 2. Ознакомьтесь с теоретической информацией по работе шаговых двигателей 28ВҮЈ-48.
- 3. Внимательно прослушайте информацию о подключении платы с двигателями к отладочному макету.
- 4. Открыть программу *ST Visual Develop*. Создать проект или продолжить работу в Вашем ранее созданном проекте.
- 5. Настроить 4 линии любого порта для управления шаговым двигателем.
- 6. Реализовать в программе функцию задержки с возможностью изменения времени задержки.
- 7. Реализовать программу поворота двигателя по часовой стрелке и против часовой стрелки с одинаковым количеством шагов в каждую сторону. **Режим полношаговый!!!** Количество шагов выбирается согласно варианту в таблице 4. При этом необходимо чтобы задержка между шагами была не менее 1 сек.

Таблица 4 Варианты заданий к пункту 7

Вариант	1	2	3	4	5	6	7	8
Количество шагов двигателя	100	105	110	115	120	125	130	135
Вариант	9	10	11	12	13	14	15	16
Количество шагов двигателя	140	145	150	90	95	100	105	110
Вариант	17	18	19	20	21	22	23	24
Количество шагов двигателя	100	105	110	115	120	125	130	135
Вариант	25	26	27	28	29	30	31	32
Количество шагов двигателя	140	145	150	90	95	100	105	110

- 8. Выполнить компиляцию программы, сборку и ее загрузку в микроконтроллер. Выполнить проверку сигнальных последовательностей на выходе драйвера посредством наблюдения за переключением светодиодов (5-6 шагов). Сделать вывод о корректности формирования сигнальных последовательностей. Показать результат выполнения преподавателю. Сохранить код программы для отчета.
 - 9. Уменьшить задержку до 200 циклов (for).
- 10. Выполнить компиляцию программы, сборку и ее загрузку в микроконтроллер. Выполнить проверку работы двигателя, показать

результат выполнения преподавателю. Сохранить код программы для отчета.

- 11. Настроить еще 4 линии любого порта (отличные от пункта 5) для управления вторым шаговым двигателем.
- 12. Реализовать программу рисования квадрата со сторонами порядка 5x5 см (необходимо подобрать количество шагов самостоятельно). **Режим полношаговый!!!**
- 13. Выполнить компиляцию программы, сборку и ее загрузку в микроконтроллер. Выполнить проверку программы, **показать результат выполнения преподавателю**. Сохранить код программы для отчета.
- 14. Реализовать в программе функцию рисования линии определенной длины (в шагах). **Режим полношаговый!!!** Например:

void sline(char axis, char dir, int length);

axis – выбор оси (горизонтальная, вертикальная)

dir – направление линии (влево, вправо, вверх, вниз)

length – длина линии в шагах

- 15. Реализовать программу рисования квадрата со сторонами порядка 5х5 см, используя функцию из пункта 14.
- 16. Выполнить компиляцию программы, сборку и ее загрузку в микроконтроллер. Выполнить проверку программы, **показать результат выполнения преподавателю**. Сохранить код программы для отчета.
- 17. Реализовать в программе функцию рисования линии по приращению координат (в шагах). **Режим полношаговый!!!** Например:

void aline(char xdir, int dx, char ydir, int dy);

dx – приращение по оси X

dy – приращение по оси Y

xdir – направление линии по оси X

ydir – направление линии по оси Y

- 18. Реализовать программу рисования наклонной линии, используя функцию из пункта 17.
- 19. Выполнить компиляцию программы, сборку и ее загрузку в микроконтроллер. Выполнить проверку работы программы и **показать результат выполнения преподавателю**. Сохранить код программы для отчета.
- 20. Используя функции из пунктов 14 и 17, реализовать программу рисования фигуры согласно варианту (таблица 5). Размер фигуры: L=500 шагов, h=500 шагов.

Вариант	Задание
1	4
2	4
3	4
4	4
5	4
6	J J
7	4

8	
9	ų J
10	r h
11	ų l
12	L L
13	ų —
14	

15	L
16	l L
17	
18	
19	ų -
20	l -
21	L L

22	
23	- L
24	ų l
25	
26	ų l
27	- L
28	- L

21. Выполнить компиляцию программы, сборку и ее загрузку в микроконтроллер. Выполнить проверку работы программы и показать результат выполнения преподавателю. Сохранить код программы для отчета.

4. Отчет

- 1. Титульный лист/
- 2. Коды программ всех заданий/
- 3. Результаты выполнения кода программы (скриншоты, фотографии и т.д.). Результаты представляются для тех заданий, где это возможно.
 - 4. Выводы по пунктам заданий.
- 5. Для пункта 30 необходимо представить алгоритм программы с подробными комментариями.