- E' relativamente semplice realizzare una simulazione.
- E' difficile realizzare modelli accurati.
- Esamineremo aspetti relativi alla validazione e verifica dei modelli di simulazione.

Verifica e Validazione

• Riferimento: Law & Kelton, Chapter 5

Outline

- Determinazione del livello di dettaglio del modello di simulazione
- Verifica
 - Realizzare il modello correttamente.
- Validazione
 - Realizzare il giusto modello (rispetto agli obiettivi dello studio)
- Accreditamento
 - Certificazione del M&S da agenzie indipendenti
 - DOD spende più di1B\$ sul versante M&S

M&S gergo

- Conceptual Model
 - Rappresentazione matematica/logica/verbale di un sistema sviluppata per un particolare studio.
 - Creazione di un modello
- Computerized Model
 - Modello concettuale implementato su un computer
 - Realizzazione di un simulatore

• Cosa includere e cosa ignorare nella realizzazione del modello;

- Definire l'utilizzo del modello in termini di problemi da affrontare e di misure di prestazione da valutare:
 - Un modello di sistema di produzione realizzato per studiare il throughput del sistema può non essere in grado di stimare altre misure.

- Non è necessario rappresentare dettagliatamente ogni parte del sistema;
 - Modello di un parcheggio di un centro commerciale e rappresentazione delle operazioni all'interno del centro.
- Iniziare con un modello 'moderatamente dettagliato'
 - Simulazione di una linea di produzione
 - Inizialmente solo un tipo di prodotto
 - Dimensione dei buffer tra diverse macchine
 - Modelli di guasto o di blocco.

- Consultare gli esperti;
- Analisi di sensitività;
- Dati disponibili e livello di dettaglio;
 - Utenti suddivisi in base alle priorità
 - Simulazione di un nuovo sistema vs. simulazione per 'fine-tune' di un sistema esistente.

- Determinare I fattori veramente importanti nella definizione del modello;
 - Utlizzare inizialmente semplici modelli analitici;
 - Utilizzare un semplice modello di simulazione

Definizioni

• Verifica: processo che verifica la corretta implementazione del modello

• Validazione: processo che verifica l'accuratezza del modello proposto.

Credibilità

System View

In a Picture

Verification, Validation & Credibility

Il simulatore è corretto?

Il modello è rappresentativo?

Il modello è rappresentativo rispetto agli obiettivi dello studio?

Gli obiettivi dello studio sono ragionevoli?

Valori dei parametri corretti?

Verifica e Validazione

- Verifica:
 - Debugging del programma
 - Lavoro noioso e costoso

• Validazione: rappresentazione accurata del sistema reale

Credibilità

- Credibilità; il modello di simulazione e I risultati ottenuti sono giudicati credibili dal committente
- Per stabilire la credibilità:
 - Assicurarsi che siano chiare le assunzioni del modello
 - Spiegare il processo di validazione e verfica
 - Coinvolgere il committente nel progetto
 - Reputazione del progettista del modello

Verifica

- 1. Testare accuratamente I singoli moduli del simulatore
- 2. Assicurarsi che più persone controllino il programma.
- 3. Effettuare diversi run di simulazione con condizioni diverse e verificare che i risultati ottenuti siano quelli attesi
 - Example: formula di Little, etc..

Verifica

- 4. Usare le tracce.
- 5. Effettuare esperimenti di simulazione modificando le assunzioni in modo da potersi confrontare con risultati analitici (code, reti di code, etc.)
- 6. Animazione

Validazione

- Il modello deve essere convalidato per essere utilizzato come strumento per supportare decisioni.
- Complessità del modello
- Sistema esistente
- La simulazione non può mai essere considerata valida al 100%
- La validazione è un processo che in genere coinvolge molte persone

Letteratura

(Finlay & Wilson, 1990. Orders of Validation in Mathematical Modelling. *JORS*, 41(2): 103-109)

(Law & Kelton, Simulation Modeling & Analysis, 1991)

(Butler, 1995. Management Science/Operations Research Projects in Health Care: The Administrator's Perspective. *Health Care Management Review*, 20(1): 19-25.)

Validazione: sei passi

- 1. Raccogliere informazioni e dati sul sistema
- 2. Interagire regolarmente con i responsabili
- 3. Documentare le assunzioni fatte sul modello e verificarle con accuratezza
- 4. Validare le singole componenti del modello
- 5. Validare l'output della simulazione
- 6. Animazione

1 Raccogliere informazioni e dati sul sistema

- 'Conversazioni' con differenti esperti
 - Difficile trovare una singola persona o un unico documento in grado di rispondere a tutte le domande.
 - Identificare gli esperti per ogni singolo sottosistema .
- Osservazioni del Sistema
 - Data requirements (tipo, formato, quantità, etc.) devono essere specificati con estrema precisione
 - Capire il processo che produce I dati
 - Rappresentativi? tipo/formato appropriato? Errori nel processo di misurazione/memorizzazione? Dati distorti? Coerenti?
- Teorie di riferimento
 - Processo di arrivo di utenti a un servzio: Poissoniano
- Acquisire risultati da modelli di simulazione già sviluppati
- Esperienza e intuizione del modellista
 - Ipotesi sul comportamento di alcune componenti del sistema, in particolare per quelle non esistenti.

2 Interagire regolarmente con i manager; benefici

- Si riesce a definire meglio la natura del problema da risolvere, ovvero degli obiettivi dello studio.
- Viene assicurato Il coinvolgimento diretto dei responsabili (manager)
- L'interazione continua aumenta la validità del modello
- L'interazione rende più credibile il modello

3 Documentare le assunzioni fatte sul modello e verificarle con accuratezza

- Assumptions document (conceptual model)
 - Overview section
 - Obiettivi generali del progetto
 - Problemi specifici da affrontare nello studio di simulazione
 - Misure di prestazione da studiare
 - Descrizione dettagliata di ciascun sottosistema e delle interazioni tra sottosistemi.
 - Lista delle semplificazioni introdotte.
 - Sintesi dei dati: media, varianza e istogrammi dei dati raccolti.
 - Fonti di importanti (controverse) informazioni

3 Documentare le assunzioni fatte sul modello e verificarle con accuratezza

- Structured walk-through (analisi passo-passo)
 - Assunzioni e descrizioni del sistema sono raccolte da diverse fonti e possono contenere errori
 - Gli analisti (modellisti) analizzano con accortezza il modello concettuale insieme agli esperti e alle persone coinvolte
 - Credibilità e validità del modello ...

4 Validare le singole componenti del modello con tecniche quantitative

- Distribuzioni di probabilità dei dati di input
 - Graphical checks o test (goodness-of-fit)
 - unione di diversi set di dati della stessa variabile casuale: verificare omogeneita'
 - Statistical homogeneity test (Kruskall-Wallis)
- Analisi di sensitività dei vari fattori, identificare I fattori di particolare rilevanza
 - Valore di un parametro, scelta delle distribuzioni di probabilità, ...
 - Usare stessa sequenza di numeri random per caratterizzare l'analisi di sensitività
 - I diversi valori ottenuti sono dovuti solo a valori diversi del paramentro e non alla sequenza random utilizzata .
 - Analisi di sensitività che coinvolge più fattori è difficile e in alcuni casi porta a risultati non corretti.

5 Validare l'output della simulazione

- Il test più significativo: confronto tra i dati ottenuti dalla simulazione e quelli che caratterizzano il sistema reale (proposto).
- Confrontare I risultati della simulazione con quelli del sistema reale (simile); modificare il modello per rappresentare il sistema proposto e studiarlo.
- Procedure statistiche per confrontare I dati.

5 Validare l'output della simulazione

- In caso di discrepanze significative tra i dati (simulazione sistema reale);
 - Asssunzioni errate sulle condizioni operative del sistema
 - Nel modello non sono rappresentate alcune condizioni;
 - I valori di alcuni parametri sono errati

Confronto tra modello e sistema reale

Controllo di base: confrontare i risultati ottenuti da alcuni run di simulazione con quelli del sistema reale.

10 run di simulazione per ottenere stime puntuali di tempi ...

Runs	1	2	3	4	5	6	7	8	9	10
sistema	172.6	134.2	115.5	132.6	155.9	116.0	178.5	152.2	99.2	117.3
simulazione	136.8	159.3	118.1	119.6	112.9	121.6	164.8	126.8	95.0	147.4

Confronto tra modello e sistema reale Basic Inspection

Runs	1	2	3	4	5	6	7	8	9	10
sistema										
	172.6	134.2	115.5	132.6	155.9	116.0	178.5	152.2	99.2	117.3
simulazione										
	136.8	159.3	118.1	119.6	112.9	121.6	164.8	126.8	95.0	147.4

- Non limitare l'analisi a pochi run
- Analizzare I soli Run 2 e 10 ci porta a conclusioni errate

Sommario

- Quasi tutti gli approcci alla convalida assumono l'esistenza di un 'mondo reale' con cui confrontarsi.
- In mancanza di sistemi di riferimento I passi di validazione devono essere effettuati con estrema cura .