

Ma/CS 6a

Class 26: More Partitions

By Adam Sheffer

Shameless Advertising

- Where can you see more discrete mathematics and more of Adam?
 - Winter quarter. Ma/CS 6b. More graphs, more algorithms, etc.
- For the more ambitious.
 - Spring quarter. A graduate level course on very recent algebraic methods in discrete math (completely different from the Ma/CS 6 material, and more advanced).
 - Summer research projects.

- For a positive integer n, we denote by p(n) the number of ways to write n as a sum of positive integers.
- Example. We can write n=5 as

5,
$$4+1$$
, $3+2$, $3+1+1$, $2+2+1$, $1+1+1+1$.

so
$$p(5) = 7$$
.

- p(20) = 627.
- p(100) = 190569292.

Recall: Ferrers Diagrams

 Ferrers diagrams are a graphic way of representing partitions.

$$P(x) = p(0) + p(1)x + p(2)x^{2} + \cdots$$

$$= \prod_{i=1}^{\infty} (1 - x^{i})^{-1}$$

$$= (1 + x + x^{2} + \cdots)(1 + x^{2} + x^{4} + \cdots)(1 + x^{3} + x^{6} + \cdots)(1 + x^{4} + x^{8} + \cdots)\cdots$$

Intuitive Explantion

• When opening the parentheses, p(4) is the coefficient of x^4 .

$$(1+x+x^{2}+\cdots)(1+x^{2}+x^{4}+\cdots)(1+x^{3}+x^{6}+\cdots)(1+x^{4}+x^{8}+\cdots)\cdots 1+1+2 (1+x+x^{2}+\cdots)(1+x^{2}+x^{4}+\cdots)(1+x^{3}+x^{6}+\cdots)(1+x^{4}+x^{8}+\cdots)\cdots 4 (1+x+x^{2}+\cdots)(1+x^{2}+x^{4}+\cdots)(1+x^{3}+x^{6}+\cdots)(1+x^{4}+x^{8}+\cdots)\cdots 1+3$$

- Consider partitions of n with no more than k identical parts.
- For example, when n = 12 and k = 2:
 - \circ 3 + 3 + 3 + 3 and 4 + 4 + 4 are not valid.
 - \circ 5 + 5 + 2 and 2 + 2 + 4 + 4 are valid.
- Problem. What is the generating function of partitions that have no more than k identical parts?

$$\prod_{n=1}^{\infty} (1 + x^n + x^{2n} + x^{3n} + \cdots).$$

Restricted Partitions #1 (cont.)

- Special case. Taking k=1, we get the generating function for $p(n \mid \text{each part is distinct})$: $(1+x)(1+x^2)(1+x^3)\cdots$
- What about the case of a general k?

$$\prod_{n=1}^{\infty} (1 + x^n + x^{2n} + \dots + x^{kn}).$$

- Consider partitions of n with only odd parts.
- For example, when n = 12:
 - \circ 1 + 1 + 1 + \cdots + 1, 3 + 3 + 3 + 3, 11 + 1, etc...
- Problem. What is the generating function of partitions with only odd parts?

$$(1-x)^{-1}(1-x^3)^{-1}(1-x^5)^{-1}\cdots$$
$$= \prod_{n=1}^{\infty} (1-x^{2n-1})^{-1}.$$

Restricted Partitions #3

- Consider partitions of n with only even parts.
- For example, when n = 12:

$$\circ$$
 10 + 2, 2 + 2 + \cdots + 2, 4 + 4 + 4, etc...

 Problem. What is the generating function of partitions with only even parts?

$$(1-x^2)^{-1}(1-x^4)^{-1}(1-x^6)^{-1}\cdots$$

$$= \prod_{n=1}^{\infty} (1-x^{2n})^{-1}.$$

- Consider partitions of n with each part equals to at most k.
- For example, when n=12 and k=4: • 5+5+2 and 10+1+1 are not valid.
- Problem. What is the generating function of partitions whose parts equal to at most k?

$$(1-x)^{-1}(1-x^2)^{-1}(1-x^3)^{-1}\cdots(1-x^k)^{-1}$$
$$=\prod_{n=1}^k (1-x^n)^{-1}.$$

Are These the Same? #1

 The generating function of p(n | each part is odd) is

$$\prod_{n=1}^{\infty} (1 - x^{2n-1})^{-1}.$$

 The generating function of p(n | each part is even) is

$$\prod_{n=1}^{\infty} (1 - x^{2n})^{-1}.$$

Does p(n | each part is odd)
 = p(n | each part is even) for every n?

Answer

- No!
 - For example, when n is odd the number of even partitions is zero and the number of odd partitions is not.

Are These the Same? #2

• The generating function of $p(n \mid \text{each part is odd})$ is

$$\prod_{n=1}^{\infty} (1 - x^{2n-1})^{-1}.$$

• The generating function of $p(n \mid \text{ each part is } \text{distinct}) \text{ is }$ $\prod_{n=1}^{\infty} (1 + x^n).$

$$\prod_{n=1}^{\infty} (1+x^n)$$

• Does $p(n \mid \text{each part is odd})$ $= p(n \mid \text{each part is } \text{distinct}) \text{ for every } n?$

Yes! We now prove that

$$\prod_{n=1}^{\infty} (1 - x^{2n-1})^{-1} = \prod_{n=1}^{\infty} (1 + x^n).$$

• **Proof.** Since $1 + y = (1 - y^2)/(1 - y)$, we have

$$\prod_{n=1}^{\infty} (1+x^n) = \frac{\prod_{n=1}^{\infty} (1-x^{2n})}{\prod_{n=1}^{\infty} (1-x^n)}$$
$$= \prod_{n=1}^{\infty} (1-x^{2n-1})^{-1}$$

Odd VS Even Number of Parts

We define

 $e_n = p(n \mid \text{distinct parts and their # is even})$

 $o_n = p(n \mid \text{distinct parts and their # is odd}).$

• **Problem.** What is $e_n - o_n$?

• When
$$n = 2$$
, $e_n - o_n = 0 - 1 = -1$.

• When
$$n = 3$$
, $e_n - o_n = 1 - 1 = 0$.

• When
$$n = 4$$
, $e_n - o_n = 1 - 1 = 0$.

• When
$$n = 5$$
, $e_n - o_n = 2 - 1 = 1$.

• When
$$n = 6$$
, $e_n - o_n = 2 - 2 = 0$.

• Claim.
$$Q(x) = (1-x)(1-x^2)(1-x^3)\cdots$$

- Proof.
 - A partition $n = s_1 + \cdots + s_k$ (where the parts are distinct), corresponds to $(-x^{s_1})(-x^{s_2})\cdots(-x^{s_k})$.
 - That is, every even partition of n contributes x^n and every odd partition contributes $-x^n$.

The Correct Bound

• Theorem. We have

$$e_n - o_n = \begin{cases} (-1)^m, & \text{if } n = \frac{1}{2}m(3m \pm 1), \\ 0, & \text{otherwise.} \end{cases}$$

- Proof.
 - $^{\circ}$ Refer to partitions that are counted in e_n as even, and partitions that are counted in o_n as odd.
 - We define a map from even to odd partitions, or from odd to even partitions, which is almost a bijection.

- λ a partition with distinct parts.
- $s(\lambda)$ the size of the smallest part of λ .
- $t(\lambda)$ the length of the sequence that starts with the first part of λ and continues as long as parts decrease by 1 at each step.

$$s(\lambda) = 1$$

$$t(\lambda) = 3$$

The Mapping – Case 1

• If $s(\lambda) \le t(\lambda)$, we remove the last part of λ and add 1 to each of the first $s(\lambda)$ parts.

 This map takes an even partition to an odd partition (or vice versa).

• If $s(\lambda) > t(\lambda)$, we remove 1 from each of the $t(\lambda)$ largest parts, and add a new smallest part of size $t(\lambda)$.

 Once again, the map takes an even partition to an odd partition (or vice versa).

Examining Case 1

• When does the mapping of case 1 fails? (assuming that $s(\lambda) \le t(\lambda)$).

• When $s(\lambda) = t(\lambda)$ = the number of parts of λ .

- For what values of n can the problem in case 1 occur?
 - Write the number of parts as $m = s(\lambda) = t(\lambda)$. $\mathbf{n} = m + (m+1) + (m+2) + \dots + (2m-1)$ $= \frac{1}{2}m(3m-1)$.
- That is, when $n = \frac{1}{2}m(3m-1)$ (for some $m \in \mathbb{N}$), case 1 fails to map one partition.

Examining Case 2

• When does the mapping of case 1 fails? (assuming that $s(\lambda) > t(\lambda)$).

• When $s(\lambda) - 1 = t(\lambda)$.

- For what values of n can the problem in case 2 occur?
 - The number of parts: $m = s(\lambda) 1 = t(\lambda)$. $n = (m+1) + (m+2) + \cdots + m$ $= \frac{1}{2}m(3m+1).$
- That is, when $n = \frac{1}{2}m(3m+1)$ (for some $m \in \mathbb{N}$), case 2 fails to map one partition.

Concluding the Proof

- If $n \neq \frac{1}{2}m(3m \pm 1)$, then the mapping is a bijection and thus $e_n o_n = 0$.
- If $n = \frac{1}{2}m(3m \pm 1)$, then
 - If m is even, the mapping takes the even partitions to distinct odd partitions, with one exception, so $e_n o_n = 1$.
 - If m is odd, the mapping takes the odd partitions to distinct even partitions, with one exception, so $e_n o_n = -1$.

A Simple Observation

- Recall.
 - The partitions generating function is

$$P(x) = \prod_{n=1}^{\infty} (1 - x^n)^{-1}.$$

 \circ The generating function of e_n-o_n is

$$Q(x) = \prod_{n=1}^{\infty} (1 - x^n).$$

We thus have

$$P(x) \cdot Q(x) = 1.$$

Consequences of the Observation

- We have $P(x) \cdot Q(x) = 1$. Equivalently, $(1 + p(1)x + p(2)x^2 + \cdots)(1 x x^2 + x^5 + x^7 x^{12} + \cdots) = 1.$
- That is, for any $n \ge 1$, the coefficient of x^n in the product is zero.
- For example, by considering the coefficient of x^{13} , we have p(13)-p(12)-p(11)+p(8)+p(6)-p(1)=0.• or

$$p(13) = p(12) + p(11) - p(8) - p(6) + p(1).$$

• The above technique gives us an efficient recursive method for computing p(n).

n	7	8	9	10	11	12	13	14
p(n-1)	11	15	22	30	42	56	77	101
p(n-2)	7	11	15	22	30	42	56	77
p(n-5)	2	3	5	7	11	15	22	30
p(n-7)	1	1	2	3	5	7	11	15
p(n-12)	-	-	-	-	-	1	1	2
p(n)	15	22	30	42	56	77	101	135

