С.А.Лифиц

ГЕОМЕТРИЯ-11

Конспекты уроков по теме: "Векторы и координаты-2"

Поурочное планирование (17 часов)

- **Урок 1.** Векторы в пространстве (повторение).
- Урок 2. Векторное произведение векторов.
- **Урок 3.** Векторное произведение в координатах.
- **Урок 4.** Смешанное произведение векторов.
- **Урок 5.** Смешанное произведение векторов в координатах. Нахождение объемов с помощью смешанного произведения векторов.
- **Урок 6.** Решение задач с помощью векторного и смешанного произведения векторов.
- **Урок 7.** *Самостоятельная работа* по теме: "Векторное и смешанное произведение векторов".
- **Урок 8.** Общее уравнение плоскости.
- Урок 9. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- Урок 10. Различные способы задания плоскости.
- **Урок 11.** Параллельные и перпендикулярные плоскости.
- **Урок 12.** Угол между плоскостями. Биссекторная плоскость.
- Урок 13. Пучок и связка плоскостей.
- **Урок 14.** *Самостоятельная работа* по теме: "Уравнения плоскости".
- Урок 15. Обобщающее занятие по теме.
- Урок 16. Контрольная работа.
- Урок 17. Анализ контрольной работы.

Векторное произведение Урок 2.

$1^{\circ}.$ Ориентация тройки векторов

1) Введем понятие ориентации тройки векторов.

Определение.

Пусть в пространстве задана упорядоченная тройка некомпланарных векторов (базис) $\{\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\}$. Отложим векторы базиса от одной точки O. Если для наблюдателя, находящегося на конце вектора \overrightarrow{c} , кратчайший поворот вокруг точки O от вектора \overrightarrow{d} к вектору \overrightarrow{b} виден против часовой стрелки, то тройка $\{\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\}$ называется **правой**. В противном случае, тройка называется левой.

Замечание 1. C подобным подходом κ введению понятия ориентации вы уже встречались в физике (правило буравчика, правило левой руки и т. п.).

Замечание 2. Исторические названия правая и левая происходят от того, что если большой и указательный палец вытянуть в плоскости ладони, а средний палец согнуть в сторону ладони, то на правой руке получится правая система, а на левой – левая.

2) Понятно, что при циклической перестановке векторов ориентация тройки не меняется, т.е. тройки

$$\left\{\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\right\},\left\{\overrightarrow{b},\overrightarrow{c},\overrightarrow{a}\right\},\left\{\overrightarrow{c},\overrightarrow{a},\overrightarrow{b}\right\}$$

имеют одинаковую ориентацию.

Если же мы поменяем местами любые два вектора тройки, то тройка изменит ориентацию на противоположную. Таким образом, тройки

$$\left\{\overrightarrow{b},\overrightarrow{a},\overrightarrow{c}\right\},\left\{\overrightarrow{a},\overrightarrow{c},\overrightarrow{b}\right\},\left\{\overrightarrow{c},\overrightarrow{b},\overrightarrow{a}\right\}$$

имеют ориентацию, противоположную тройкам, рассмотренным ранее.

2° . Понятие векторного произведения

1) Дадим определение векторного произведения:

Определение.

Пусть даны два неколлинеарных вектора \overrightarrow{a} и \overrightarrow{b} . Векторным произведением векторов \overrightarrow{a} и \overrightarrow{b} называется такой вектор \overrightarrow{c} , что

1) $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin(\overrightarrow{a}, \overrightarrow{b})$,
2) $\overrightarrow{c} \perp \overrightarrow{a}$, $\overrightarrow{c} \perp \overrightarrow{b}$,
3) тройка $\{\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\}$ – правая.

1)
$$|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin(\overrightarrow{a}, \overrightarrow{b})$$

2)
$$\overrightarrow{c} \perp \overrightarrow{a}$$
, $\overrightarrow{c} \perp \overrightarrow{b}$

3) тройка
$$\left\{\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right\}$$
 – правая.

- 2) Векторное произведение обозначают $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$ или $\overrightarrow{c} = [\overrightarrow{a}, \overrightarrow{b}]$.
- 3) **Упражнение:** Пусть векторы $\left\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right\}$ образуют правый ортонормированный базис. Найдите $\overrightarrow{i}\times\overrightarrow{j},\overrightarrow{j}\times\overrightarrow{k},\overrightarrow{k}\times\overrightarrow{i}$. Что изменится, если эти векторы будут образовывать левый ортонормированный базис.

3°. Свойства векторного произведения

- 1) Векторное произведение обладает следующими свойствами:
 - (1) $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$ антикоммутативность.

Замечание. Из этого свойства следует, что $\overrightarrow{a} \times \overrightarrow{a} = 0$.

$$(2) \ (\alpha \overrightarrow{a}) \times \overrightarrow{b} = \overrightarrow{a} \times (\alpha \overrightarrow{b}) = \alpha (\overrightarrow{a} \times \overrightarrow{b}) - \text{однородность}.$$

$$(3) \ (\overrightarrow{a_1} + \overrightarrow{a_2}) \times \overrightarrow{b} = \overrightarrow{a_1} \times \overrightarrow{b} + \overrightarrow{a_2} \times \overrightarrow{b} \overrightarrow{a} \times (\overrightarrow{b_1} + \overrightarrow{b_2}) = \overrightarrow{a} \times \overrightarrow{b_1} + \overrightarrow{a} \times \overrightarrow{b_2} -$$
аддитивность.

Замечание. Из свойств (2) и (3) следует линейность векторного произведения как по первому так и по второму сомножителю:

$$(\alpha \overrightarrow{a} + \beta \overrightarrow{b}) \times \overrightarrow{c} = \alpha (\overrightarrow{a} \times \overrightarrow{c}) + \beta (\overrightarrow{b} \times \overrightarrow{c}).$$

Свойства (1) и (2) сразу следуют из определения векторного произведения. Свойство (3) будет нами доказано через урок.

2) Сформулируем еще одно свойство векторного произведения:

Утверждение (Геометрический смысл векторного произведения).

Модуль векторного произведения неколлинеарных векторов численно равен площади параллелограмма, построенного на сомножителях.

3) Сформулируем теперь критерий того, что два вектора коллинеарны:

Утверждение (Критерий коллинеарности векторов).

Векторное произведение равно нулю тогда и только тогда, когда сомножители коллинеарны:

$$\overrightarrow{a} \times \overrightarrow{b} = 0 \Leftrightarrow \overrightarrow{a} \parallel \overrightarrow{b}.$$

4

4°. Упражнения

- 1) Докажите, что векторное произведение не изменится, если к одному из сомножителей прибавить вектор, коллинеарный другому сомножителю.
- 2) Пусть \overrightarrow{a} и \overrightarrow{b} взаимно перпендикулярные единичные векторы. Вычислите площадь параллелограмма, построенного на векторах $\overrightarrow{p}=2\overrightarrow{a}+3\overrightarrow{b}$ и $\overrightarrow{q}=\overrightarrow{a}-4\overrightarrow{b}$.

Домашнее задание

- 1) Пусть \overrightarrow{a} и \overrightarrow{b} данные векторы. Всегда ли можно подобрать такой вектор \overrightarrow{c} , что $\overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{c}$? Сколько решений имеет задача?
- 2) Пусть $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 7$. Найдите $A = \left(\overrightarrow{a} \times \overrightarrow{b}\right)^2 + \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2$.
- 3) Пусть $|\overrightarrow{m}|=5$, $|\overrightarrow{n}|=3$, $\angle(\overrightarrow{m},\overrightarrow{n})=\frac{\pi}{6}$. Вычислите площадь параллелограмма, построенного на векторах $\overrightarrow{AB}=\overrightarrow{m}+2\overrightarrow{n}$ и $\overrightarrow{AD}=\overrightarrow{m}-3\overrightarrow{n}$.
- 4) Пусть \overrightarrow{p} и \overrightarrow{q} взаимно перпендикулярные орты. Зная две стороны треугольника $\overrightarrow{AB}=3\overrightarrow{p}-4\overrightarrow{q}$ и $\overrightarrow{BC}=\overrightarrow{p}+5\overrightarrow{q}$, вычислите длину его высоты, опущенной из вершины C.
- 5) Известно, что для ненулевых векторов \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} справедливы равенства: $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$, $\overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{c}$, $\overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{a}$.

Найдите длины векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} и углы между ними.

6) Докажите, что для трех попарно неколлинеарных векторов \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} равенства $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$ выполняются тогда и только тогда, когда $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$.

Урок 3. Векторное произведение в координатах

1°. Векторное произведение векторов в координатах

1) Вспомним, что такое определитель 3-го порядка и правило его раскрытия по строке (столбцу):

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

2) Докажем очень важную теорему, существенно облегчающую работу с векторным произведением:

Теорема.

Пусть
$$\left\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right\}$$
 – правый ортонормированный базис, и в этом базисе $\overrightarrow{a}=(a_1,a_2,a_3), \quad \overrightarrow{b}=(b_1,b_2,b_3).$

Tог ∂a

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

Замечание. В случае левого ортонормированного базиса в левой части приведенной формулы нужно поставить знак "минус". Если же базис не ортонормированный, то формула неверна.

2°. Упражнения

- 1) Найдите векторное произведение векторов $\overrightarrow{a}=(3;-4;-8)$ и $\overrightarrow{b}=(-5;2;-1).$
- 2) Дан вектор $\overrightarrow{q}=(3\overrightarrow{m}+4\overrightarrow{n}+5\overrightarrow{p})\times(\overrightarrow{m}+6\overrightarrow{n}+4\overrightarrow{p})$, где $\{\overrightarrow{m},\overrightarrow{n},\overrightarrow{p}\}$ левый ортонормированный базис. Найдите $|\overrightarrow{q}|$.
- 3) Найдите площадь треугольника, заданного координатами вершин: $A(3;4;-1),\ B(2;0;4),\ C(-3;5;4).$
- 4) Вычислите синус угла между диагоналями параллелограмма, построенного на векторах $\overrightarrow{a} = 2\overrightarrow{m} + \overrightarrow{n} \overrightarrow{p}$ и $\overrightarrow{b} = \overrightarrow{m} 3\overrightarrow{n} + \overrightarrow{p}$, где $\{\overrightarrow{m}, \overrightarrow{n}, \overrightarrow{p}\}$ ортонормированный базис.

Домашнее задание

- 1) Даны векторы $\overrightarrow{a}=(2;5;7)$ и $\overrightarrow{b}=(1;2;4)$. Найдите их векторное произве-
- 2) Разложите вектор $\overrightarrow{p} = \left(3\overrightarrow{a} + \overrightarrow{b} 2\overrightarrow{c}\right) \times \left(\overrightarrow{a} \overrightarrow{b} + 5\overrightarrow{c}\right)$ по взаимно перпендикулярным ортам \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} , образующим правую тройку.
- 3) На векторах $\overrightarrow{a}=(2;3;1)$ и $\overrightarrow{b}=(-1;1;2)$ построен треугольник. Найдите его площадь и длины высот.
- 4) В пространстве даны три точки A(1;1;1), B(2;2;2) и C(4;3;5). Найдите площадь треугольника ABC.
- 5) Измерения прямоугольного параллелепипеда равны а, b, c. Найдите площадь сечения его плоскостью, проходящей через середины трех ребер, имеющих общую вершину.
- 6) Пусть в некотором базисе $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ для любых двух векторов Пусть в некотором сасыс \overrightarrow{d} (a_1, a_2, a_3) и $\overrightarrow{b} = (b_1, b_2, b_3)$ справедлива формула $\overrightarrow{d} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{e_1} & \overrightarrow{e_2} & \overrightarrow{e_3} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$.

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{e_1} & \overrightarrow{e_2} & \overrightarrow{e_3} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

Верно ли, что базис $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ – правый ортонормированный?

Урок 4. Смешанное произведение

1°. Смешанное произведение трех векторов

1) Рассмотрим три вектора \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} . Поскольку $\overrightarrow{b} \times \overrightarrow{c}$ – это вектор, то мы можем рассмотреть число $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$.

Определение.

 $\left|\begin{array}{c} \textit{Число} \ \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) \ \textit{называют} \ \textit{смешанным} \ \textit{произведением векторов} \ \overrightarrow{a}, \\ \overrightarrow{b}, \ \overrightarrow{c} \ \textit{и} \ \textit{обозначают} \ (\overrightarrow{a}, \ \overrightarrow{b}, \ \overrightarrow{c}). \end{array}\right|$

2) Обсудим геометрический смысл смешанного произведения:

Теорема.

Модуль смешанного произведения некомпланарных векторов численно равен объему параллелепипеда, построенного на сомножителях.

- 3) Несложно понять, что
 - $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) > 0$, если векторы a, b, c образуют правую тройку.
 - $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) < 0$, если векторы a, b, c образуют левую тройку.

Легко также доказать следующий критерий:

Теорема (Критерий компланарности векторов).

Смешанное произведение равно нулю тогда и только тогда, когда сомножители компланарны.

2° . Свойства смешанного произведения

1) Для любых \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c}

$$\begin{split} (\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}) &= (\overrightarrow{c},\overrightarrow{a},\overrightarrow{b}) = (\overrightarrow{b},\overrightarrow{c},\overrightarrow{a}) = \\ &= -(\overrightarrow{a},\overrightarrow{c},\overrightarrow{b}) = -(\overrightarrow{b},\overrightarrow{a},\overrightarrow{c}) = -(\overrightarrow{c},\overrightarrow{b},\overrightarrow{a}). \end{split}$$

2) Смешанное произведение линейно по каждому из сомножителей:

$$(\lambda \overrightarrow{a_1} + \mu \overrightarrow{a_2}, \overrightarrow{b}, \overrightarrow{c}) = \lambda(\overrightarrow{a_1}, \overrightarrow{b}, \overrightarrow{c}) + \mu(\overrightarrow{a_2}, \overrightarrow{b}, \overrightarrow{c}),$$

ит.д.

3°. Аддитивность векторного произведения

Теперь мы легко можем доказать аддитивность векторного произведения:

$$(\overrightarrow{a_1} + \overrightarrow{a_2}) \times \overrightarrow{b} = \overrightarrow{a_1} \times \overrightarrow{b} + \overrightarrow{a_2} \times \overrightarrow{b}.$$

Выберем ортонормированный базис $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ и рассмотрим смешанное произведение $(\overrightarrow{e_i}, \overrightarrow{a_1} + \overrightarrow{a_2}, \overrightarrow{b})$. В силу линейности векторного произведения по второму сомножителю имеем:

$$(\overrightarrow{e_i}, \overrightarrow{a_1} + \overrightarrow{a_2}, \overrightarrow{b}) = (\overrightarrow{e_i}, \overrightarrow{a_1}, \overrightarrow{b}) + (\overrightarrow{e_i}, \overrightarrow{a_2}, \overrightarrow{b}) =$$

$$= \overrightarrow{e_i} \cdot (\overrightarrow{a_1} \times \overrightarrow{b}) + \overrightarrow{e_i} \cdot (\overrightarrow{a_2} \times \overrightarrow{b}) = \overrightarrow{e_i} \cdot (\overrightarrow{a_1} \times \overrightarrow{b} + \overrightarrow{a_2} \times \overrightarrow{b}).$$

С другой стороны

$$(\overrightarrow{e_i}, \overrightarrow{a_1} + \overrightarrow{a_2}, \overrightarrow{b}) = \overrightarrow{e_i} \cdot ((\overrightarrow{a_1} + \overrightarrow{a_2}) \times \overrightarrow{b}).$$

Следовательно, при i = 1, 2, 3 имеем

$$\overrightarrow{e_i} \cdot ((\overrightarrow{a_1} + \overrightarrow{a_2}) \times \overrightarrow{b}) = \overrightarrow{e_i} \cdot (\overrightarrow{a_1} \times \overrightarrow{b} + \overrightarrow{a_2} \times \overrightarrow{b}).$$

Но это означает, что координаты векторов $(\overrightarrow{a_1}+\overrightarrow{a_2})\times\overrightarrow{b}$ и $\overrightarrow{a_1}\times\overrightarrow{b}+\overrightarrow{a_2}\times\overrightarrow{b}$ базисе $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ совпадают. Следовательно, совпадают и сами векторы.

4° . Полезные замечания о смешанном произведении

- 1) Смешанное произведение, имеющее хотя бы два равных сомножителя, равно 0:
 - $(\overrightarrow{a}, \overrightarrow{a}, \overrightarrow{b}) = 0.$
- 2) Смешанное произведение, имеющее хотя бы два коллинеарных сомножителя, равно 0: $\overrightarrow{a} \parallel \overrightarrow{b} \Rightarrow (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = 0.$

Упражнение: Упростите выражение $(\overrightarrow{a}, \overrightarrow{b}, 3\overrightarrow{a} + 2\overrightarrow{b} - 5\overrightarrow{c})$.

- 1) Докажите, что если $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ правый ортонормированный базис, то $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})=1$. Как изменится это равенство в случае левого ортонормированного базиса?
- 2) Упростите выражение: $(\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a})$.

- 3) На трех диагоналях граней параллелепипеда, выходящих из одной вершины, построен как на ребрах новый параллелепипед. Докажите, что его объем вдвое больше объема исходного параллелепипеда.
- 4) Докажите, что если $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{0}$, то векторы \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} компланарны.
- 5) Докажите, что если векторы $\overrightarrow{a} \times \overrightarrow{b}$, $\overrightarrow{b} \times \overrightarrow{c}$ и $\overrightarrow{c} \times \overrightarrow{a}$ компланарны, то они коллинеарны.
- 6) Произведение $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ называется двойным векторным произведением. Докажите, что $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{c}$.

Урок 5. Смешанное произведение в координатах. Вычисление объемов с помощью смешанного произведения

1°. Смешанное произведение в координатах

1) Существует очень удобная формула, позволяющая найти смешанное произведение, если известны координаты векторов в каком-нибудь (не обязательно ортонормированном!) базисе:

Теорема.

 $\overline{\mathit{Hycmb}}\ \{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ — произвольный базис u в этом базисе

$$\overrightarrow{a} = (a_1, a_2, a_3), \quad \overrightarrow{b} = (b_1, b_2, b_3), \quad \overrightarrow{c} = (c_1, c_2, c_3).$$

Tог ∂a

$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \cdot (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}).$$

2) Сформулируем два следствия из доказанной теоремы:

Следствие 1.

 \overrightarrow{Ecnu} $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ — правый ортонормированный базис, то

$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Следствие 2.

Пусть в произвольном базисе

$$\overrightarrow{a} = (a_1, a_2, a_3), \quad \overrightarrow{b} = (b_1, b_2, b_3), \quad \overrightarrow{c} = (c_1, c_2, c_3).$$

Tогда векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарны в том и только том случае, если

$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0.$$

3) Упражнение: Проверьте, компланарны ли векторы $\overrightarrow{p} = 2\overrightarrow{a} + \overrightarrow{b} - 3\overrightarrow{c}$, $\overrightarrow{q} = \overrightarrow{a} - 4\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{r} = 3\overrightarrow{a} - 2\overrightarrow{b} + 2\overrightarrow{c}$ (\overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} – произвольный базис).

2° . Вычисление объемов с помощью смешанного произведения

Применение смешанного произведения часто связано с вычислением объемов геометрических тел. Приведем формулы для вычисления некоторых из них:

1) Объем параллелепипеда, построенного на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} :

$$V = |(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})|.$$

2) Объем треугольной призмы, построенного на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} :

$$V = \frac{1}{2} | (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) |.$$

3) Объем $mempa \ni \partial pa$, построенного на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} :

$$V = \frac{1}{6} |(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})|.$$

3°. Упражнения

- 1) Известно, что $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = 5$. Найдите объем параллелепипеда, построенного на векторах $\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{q} = \overrightarrow{a} + \overrightarrow{b} \overrightarrow{c}$, $\overrightarrow{q} = \overrightarrow{a} \overrightarrow{b} + \overrightarrow{c}$.
- 2) Даны точки A(2;1;-1), B(3;0;2), C(0;-1;3), D(5;1;1). Найдите объем тетраэдра ABCD и длину высоты, опущенной из вершины D.

- 1) Пусть \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} произвольный базис. Являются ли компланарными векторы $\overrightarrow{p} = \overrightarrow{a} 2\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{q} = 3\overrightarrow{a} + \overrightarrow{b} 2\overrightarrow{c}$, $\overrightarrow{r} = 7\overrightarrow{a} + 14\overrightarrow{b} 13\overrightarrow{c}$?
- 2) Векторы \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} некомпланарны. При каких λ компланарны векторы $\overrightarrow{m} = \overrightarrow{a} + 2\overrightarrow{b} + \lambda\overrightarrow{c}$, $\overrightarrow{n} = 4\overrightarrow{a} + 5\overrightarrow{b} + 6\overrightarrow{c}$ и $\overrightarrow{k} = 7\overrightarrow{a} + 8\overrightarrow{b} + \lambda^2\overrightarrow{c}$?
- 3) Найдите объем треугольной призмы, построенной на векторах $\overrightarrow{a} = \overrightarrow{p} 3\overrightarrow{q} + \overrightarrow{r}, \quad \overrightarrow{b} = 2\overrightarrow{p} + \overrightarrow{q} 3\overrightarrow{r}, \quad \overrightarrow{c} = \overrightarrow{p} + 2\overrightarrow{q} + \overrightarrow{r},$ где $\{\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}\}$ ортонормированный базис.
- 4) На векторах $\overrightarrow{AB}=(3;2;-5), \ \overrightarrow{AC}=(1;-1;4), \ \overrightarrow{AD}=(1;-3;1)$ построен параллелепипед. Найдите его объем и длину высоты, опущенной из вершины D.
- 5) Даны точки A(0;0;2), B(3;0;5), C(4;1;2) и D(1;1;0). Найдите объем тетраэдра ABCD и длину высоты, опущенной из вершины C.

6) Вершина параллелепипеда и центры трех не содержащих ее граней являются вершинами некоторого тетраэдра. Найдите отношение его объема к объему данного параллелепипеда.	

Урок 6. Решение задач с помощью векторного и смешанного произведения

1°. Нахождение расстояния от точки до плоскости

- 1) Ранее мы уже умели находить расстояние от точки до плоскости, используя метод неопределенных коэффициентов и скалярное произведение. Как мы это делали?
- 2) На прошлом уроке (и в классе и в д. з.) мы снова столкнулись с этой задачей. Мы находили высоты параллелепипеда, призмы, тетраэдра. Решали мы эти задачи с помощью векторного и смешанного произведений.

В общем виде решение такой задачи можно сформулировать так:

Пусть задана плоскость α и точка $M \not\in \alpha$. Нужно найти $\rho(M,\alpha)$.

Выберем точку O плоскости α , \overrightarrow{a} и \overrightarrow{b} – два неколлинеарных вектора, лежащих в α . Обозначим $\overrightarrow{m} = \overrightarrow{OM}$. Предположим, что векторы \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{m} нам известны (например известны их координаты в некотором базисе). Тогда

$$\rho(M,\alpha) = \frac{\left| \left(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{m} \right) \right|}{\left| \overrightarrow{a} \times \overrightarrow{b} \right|}.$$

- 3) **Упражнение:** В кубе $ABCDA_1B_1C_1D_1$ с ребром a найдите расстояние от центра M грани AA_1B_1B до плоскости BC_1D .
- 4) Через несколько уроков мы познакомимся с еще одним способом решения поставленной задачи, основанным на использовании метода координат в пространстве (этот метод аналогичен нахождению расстояния от точки до прямой на плоскости).

2°. Задача

На боковых ребрах AA_1 , BB_1 , CC_1 призмы $ABCA_1B_1C_1$ выбраны соответственно точки M, N, K так, что сумма длин отрезков AM, BN и CK равна длине бокового ребра призмы. Точка Q – центроид треугольника ABC. Найдите отношение объема призмы и объема тетраэдра QMNK.

3°. Нахождение расстояния между скрещивающимися прямыми

1) Оказывается, при помощи векторного и смешанного произведений можно находить и расстояния между скрещивающимися прямыми. А именно, пусть \overrightarrow{a}

и \overrightarrow{b} – направляющие векторы прямых l и m соответственно, $A \in l, B \in m,$ $\overrightarrow{AB} = \overrightarrow{c}$. Тогда

$$\rho(l,m) = \frac{\left| \left(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \right) \right|}{\left| \overrightarrow{a} \times \overrightarrow{b} \right|}.$$

Доказательство этой формулы см. KT §11.2, стр.438.

Этой формулой удобно пользоваться в случае, когда легко найти как смешанное, так и векторное произведение.

2) **Упражнение:** Найдите расстояние между диагоналями AD_1 и DC_1 граней куба $ABCDA_1B_1C_1D_1$ с ребром a.

- 1) В тетраэдре ABCD точки M, N, P и Q лежат на ребрах BC, AD, AB и CD соответственно, причем AP = PB, AN = ND, CQ = QD, MC = 2BM. Пары точек A_1 , B_1 и C_1 , D_1 выбраны на отрезках NM и PQ соответственно так, что $NA_1 = A_1B_1 = B_1M$ и $PC_1 = C_1D_1 = D_1Q$. Найдите отношение объемов тетраэдров ABCD и $A_1B_1C_1D_1$.
- 2) Даны точки A(2;3;1), B(4;1;-2), C(6;3;7) и D(-5;-4;8). Найдите расстояние от точки D до плоскости ABC.
- 3) Найдите расстояние между прямой, проходящей через точки A(-3;0;1) и B(2;1;-1), и прямой, проходящей через точки C(-2;2;0) и D(1;3;2).
- 4) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ длина ребра AA_1 равна a, угол B_1AB равен α , а угол C_1BC равен β . Найдите
 - а) расстояние от точки A_1 до плоскости BDC_1 ;
 - б) расстояние между прямыми AD_1 и DC_1 .

Урок 8. Общее уравнение плоскости

1°. Уравнение плоскости, задаваемой одной своей точкой и вектором нормали

1) Мы уже встречались с понятием нормали к плоскости. Вспомним соответствующее определение:

Определение.

- 2) Несмотря на то, что вектор нормали к плоскости определен неоднозначно (как по длине, так и по направлению), плоскость однозначно задается указанием какой-либо ее точки и любой нормали (в прошлом году нами было доказано, что через точку пространства проходит ровно одна плоскость, перпендикулярная заданной прямой).
- 3) Пусть A_0 некоторая точка плоскости α с радиус вектором $\overrightarrow{r_0}$, A произвольная точка пространства с радиус вектором \overrightarrow{r} . Точка A лежит в плоскости α тогда и только тогда, когда $\overrightarrow{A_0A} \perp \overrightarrow{n}$. Т. о., мы получаем уравнение плоскости, задаваемой точкой и вектором нормали:

$$(\overrightarrow{r} - \overrightarrow{r_0}) \cdot \overrightarrow{n} = 0.$$

4) Запишем теперь полученной уравнение в декартовой системе координат. Пусть

$$\overrightarrow{n} = (a, b, c), \quad \overrightarrow{r_0} = (x_0, y_0, z_0), \quad \overrightarrow{r} = (x, y, z).$$

Тогда

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

5) **Упражнение:** Напишите уравнение плоскости, проходящей через точку K(-2;7;1) и перпендикулярной вектору \overrightarrow{AB} , где A(-1;2;8) и B(1;-1;3).

2°. Общее уравнение плоскости

1) Преобразуем, полученное ранее, уравнение плоскости $(\overrightarrow{r}-\overrightarrow{r_0})\cdot\overrightarrow{n}=0$. Обозначая $\overrightarrow{r_0}\cdot\overrightarrow{n}=p$, получаем **общее уравнение плоскости**

$$\overrightarrow{r}\cdot\overrightarrow{n}-p=0.$$

2) В декартовой системе координат имеем ax + by + cz - p = 0. Обозначая d = -p, получаем общее уравнение плоскости в координатах

16

$$ax + by + cz + d = 0.$$

3) Уравнение ax + by + cz + d = 0 называется **линейным уравнением** (или **уравнением первой степени**) с тремя переменными. Имеет место следующая теорема:

Теорема.

Всякая плоскость в пространстве может быть задана линейным уравнением ax + by + cz + d = 0 ($a^2 + b^2 + c^2 \neq 0$). Обратно, всякой уравнение такого вида задает в пространстве некоторую плоскость.

- 4) Рассмотрим особые случаи положения плоскости ax + by + cz + d = 0 относительно системы координат.
 - Уравнение ax + by + cz = 0 задает плоскость, проходящую через начало координат.
 - Уравнение ax + by + d = 0 задает плоскость, параллельную оси OZ (т. к. вектор нормали $\overrightarrow{n} = (a, b, 0)$ перпендикулярен этой оси).
 - Уравнение ax + d = 0 задает плоскость, параллельную плоскости YOZ (т. к. вектор нормали $\overrightarrow{n} = (a,0,0)$ перпендикулярен этой плоскости).
- 5) В заключение отметим, что изложенная теория полностью аналогична рассуждениям, позволившим нам в свое время получить общее уравнение прямой на плоскости.

- 1) Укажите особенности в расположении относительно осей координат следующих плоскостей:
 - а) x=0; б) 9y-2=0; в) 3y-5z=0; г) x+z-5=0; д) 2x+3y-7z=0.
- 2) Найдите точки пересечения осей координат с плоскостью 2x + 3y z 5 = 0.
- 3) Найдите уравнение плоскости, проходящей через ось OZ и точку A(-3;1;-2).
- 4) Найдите уравнение плоскости, параллельной оси OX и проходящей через точки A(4;0;-2) и B(5;1;7).
- 5) Найдите уравнение плоскости, проходящей через точку M(-3;8;5) и перпендикулярной вектору $\overrightarrow{p}(1;2;-7)$.
- 6) Найдите уравнение плоскости, проходящей через середину отрезка AB и перпендикулярной этому отрезку, если A(-3;1;5), B(3;9;-1).

7) Пусть P(a;b;c) – основание перпендикуляра, опущенного из начала координат на плоскость α . Найдите уравнение плоскости α в декартовой системе координат.

Урок 9. Нормальное уравнение плоскости. Расстояние от точки до плоскости

1°. Нормальное уравнение плоскости

- 1) Рассмотрим векторное общее уравнение плоскости $\overrightarrow{r} \cdot \overrightarrow{n} p = 0$. Предположим, что $|\overrightarrow{n}| = 1$ и p > 0 (этого всегда можно добиться, выбирая одно из двух возможных направлений нормали). Тогда это уравнение называется **нормальным уравнением плоскости**.
- 2) Точно так же мы поступали, определяя нормальное уравнение прямой на плоскости $\overrightarrow{r} \cdot \overrightarrow{n} p = 0$, где \overrightarrow{n} орт нормали к прямой. Вспомним, что нормальное уравнение прямой использовалось для определения расстояния (отклонения) от данной точки $M(x_1, y_1)$ до прямой $l: \overrightarrow{r} \cdot \overrightarrow{n} p = 0$:

$$\rho(M, l) = |\overrightarrow{r_1} \cdot \overrightarrow{n} - p|.$$

В координатной форме

$$\rho(M, l) = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}.$$

3) Аналогично плоскому случаю, нормальное уравнение плоскости позволяет легко найти расстояние от данной точки пространства до данной плоскости:

Теорема.

Расстояние от точки до плоскости равно абсолютной величине левой части нормального уравнения плоскости, в которой текущий радиус вектор заменяем радиус вектором данной точки:

$$\rho(M,\alpha) = |\overrightarrow{r_1} \cdot \overrightarrow{n} - p|.$$

4) Если в правой части полученного уравнения убрать модуль, то мы получим **отклонение** точки M от плоскости α :

$$\delta(M,\alpha) = \overrightarrow{r_1} \cdot \overrightarrow{n} - p.$$

Значение $\delta(M,\alpha)$ будет положительным, если точка M и начальная точка O находятся по разные стороны от плоскости α , и отрицательным, если точка M и точка O находятся по одну сторону от α .

5) В декартовой системе координат нормальное уравнение плоскости можно получить, если разделить обе части общего уравнения ax + by + cz + d = 0 на $\sqrt{a^2 + b^2 + c^2}$ со знаком, противоположным знаку d:

$$\frac{ax + by + cz - |d|}{\sqrt{a^2 + b^2 + c^2}} = 0.$$

Коэффициенты перед x, y, z в этом уравнении представляют собой координаты орта нормали, т. е. направляющие косинусы этой нормали (вспомним, что направляющие косинусы — это косинусы углов, образованных вектором с осями координат). Поэтому нормальное уравнение плоскости в координатах часто записывают так:

$$x \cdot \cos \alpha + y \cdot \cos \beta + z \cdot \cos \gamma - p = 0.$$

Здесь $p=\frac{|d|}{\sqrt{a^2+b^2+c^2}}$ – длина перпендикуляра, опущенного из начала координат на нашу плоскость.

6) Из вышесказанного следует, что расстояние от точки $M(x_1,y_1,z_1)$ до плоскости может быть найдено с помощью нормального уравнения так:

$$\rho(M,\alpha) = |x_1 \cdot \cos \alpha + y_1 \cdot \cos \beta + z_1 \cdot \cos \gamma - p|.$$

В случае общего уравнения:

$$\rho(M,\alpha) = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Для нахождения отклонения $\delta(M,\alpha)$ нужно убрать модуль в правой части.

2° . Задачи и упражнения

- 1) Найдите расстояние от точки M(-3;1;2)до плоскости $\alpha:3x+4y-12z+2=0$.
- 2) Найдите все такие значения параметра t, при котором отрезок AB не пересекает плоскость 2x + 3y 5z 2 = 0, если A(2t; t + 1; 2), B(3; -5; 3t + 1).
- 3) Даны две точки: A(3;2;1) и B(7;-1;2). Докажите, что отрезок AB пересекает плоскость $\alpha:3x-5y+2z-5=0$ и найдите отношение, в котором плоскость α делит AB.
- 4) Напишите уравнение плоскости, содержащей ось OY, если расстояние от этой плоскости до точки M(-3;8;1) равно 1.

- 1) Даны точки A(-3;0;1), B(2;1;-1), C(-2;2;0) и D(1;3;2). Найдите расстояние от точки D до плоскости ABC.
- 2) Найдите все значения параметра t, при которых точки A(3t;t-2;3) и B(2;1;5t+3) лежат по разные стороны от плоскости 3x+5y-z-1=0.
- 3) Найдите геометрическое место точек, равноудаленных от плоскостей 3x+12y-4z-1=0 и 4x-3y+12z+5=0.

- 4) Напишите уравнение плоскости, проходящей через начало координат и точку A(-6;2;1), если расстояние от плоскости до точки M(1;1;0) равно 1.
- 5) Найдите точку, симметричную началу координат относительно плоскости x+2y-2z-5=0.

Урок 10. Различные способы задания плоскости

1°. Способы здания плоскости

- 1) Мы уже умеем записывать уравнение плоскости, если известны одна ее точка и вектор нормали: $(\overrightarrow{r}-\overrightarrow{r_0})\cdot \overrightarrow{n}=0$. Однако существует много других способов задания плоскости.
- 2) Вспомним, что любой ненулевой вектор, параллельный плоскости α , называется **направляющим** вектором плоскости α . Очевидно, что плоскость можно задать однозначно двумя неколлинеарными направляющими векторами и точкой.

Итак, пусть $A(\overrightarrow{r_0}) \in \alpha, \ \overrightarrow{a} \parallel \alpha, \ \overrightarrow{b} \parallel \alpha.$ тогда уравнение плоскости α может быть записано в виде

$$(\overrightarrow{r} - \overrightarrow{r_0}, \overrightarrow{a}, \overrightarrow{b}) = 0.$$

Запишем это уравнение в декартовой системе координат. Пусть $\overrightarrow{r_0}=(x_0,y_0,z_0), \ \overrightarrow{d}=(a_1,a_2,a_3), \ \overrightarrow{b}=(b_1,b_2,b_3).$ Тогда уравнение плоскости, проходящей через точку $A_0(x_0,y_0,z_0)$ параллельно векторам $\overrightarrow{d}(a_1,a_2,a_3), \ \overrightarrow{b}(b_1,b_2,b_3)$ имеет вид

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0.$$

- 3) **Упражнение:** Напишите уравнение плоскости, параллельной орту \overrightarrow{k} и вектору $\overrightarrow{a}=5\overrightarrow{i}+3\overrightarrow{j}-2\overrightarrow{k}$, которая проходит через точку A(2;4;-3).
- 4) Плоскость можно задать также двумя ее точками $A_1(x_1, y_1, z_1)$ и $A_2(x_1, y_2, z_2)$ и одним направляющим вектором $\overrightarrow{a} = (a_1, a_2, a_3)$. В этом случае удобно записать уравнение плоскости в виде:

$$(\overrightarrow{r} - \overrightarrow{r_1}, \overrightarrow{r_2} - \overrightarrow{r_1}, \overrightarrow{a}) = 0,$$

или в координатах (уравнение плоскости, заданной двумя точками и направляющим вектором)

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & a_2 & a_3 \end{vmatrix} = 0.$$

Замечание. Конечно, можно задать уравнение плоскости и в виде $(\overrightarrow{r} - \overrightarrow{r_1}, \overrightarrow{r} - \overrightarrow{r_2}, \overrightarrow{a}) = 0$, но это уравнение будет нелинейным.

5) **Упражнение:** Составьте уравнение плоскости, проходящей через точки $A(-3;0;1),\ B(2;1;-1)$ параллельно вектору $\overrightarrow{a}(4;-1;-1).$

6) Теперь понятно, как написать уравнение плоскости, проходящей через три заданный точки $A_1(\overrightarrow{r_1}), A_2(\overrightarrow{r_2}), A_3(\overrightarrow{r_3})$:

$$(\overrightarrow{r} - \overrightarrow{r_1}, \overrightarrow{r_2} - \overrightarrow{r_1}, \overrightarrow{r_3} - \overrightarrow{r_1}) = 0.$$

В декартовой системе координат уравнение плоскости, заданной тремя точками имеет вид:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

7) **Упражнение:** Даны точки $A(2;-1;0),\ B(3;2;1),\ C(1;2;2).$ Найдите уравнение плоскости ABC.

2°. Уравнение плоскости в отрезках

1) Пусть плоскость α проходит через три точки A, B, C, лежащие на осях OX, OY и OZ соответственно. Тогда, если координаты этих точек A(a,0,0), B(0,b,0), C(0,0,c), то уравнение плоскости α имеет вид:

$$\begin{vmatrix} x - a & y & z \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} = 0 \Leftrightarrow bc \cdot x + ac \cdot y + ab \cdot z = abc.$$

Разделив обе части на *abc*, получаем *уравнение плоскости в отрезках*:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

Здесь a, b, c – отрезки (ориентированные), отсекаемые плоскостью на осях координат.

Замечание. Это уравнение аналогично уравнению прямой в отрезках на плоскости.

2) Упражнения:

- (1) Запишите общее уравнение плоскости 3x+2y-6z-12=0, как уравнение в отрезках.
- (2) Напишите уравнение плоскости, проходящей через точки M(3;0;0), N(0;-5;0), $K\left(0;0;\frac{1}{8}\right).$
- (3) Через точку P(7; -5; 1) проведите плоскость, которая бы отсекала на осях координат равные положительные отрезки.

Домашнее задание

- 1) Найдите уравнение плоскости, проходящей через начало координат параллельно векторам $\overrightarrow{a}=(4;-1;2)$ и $\overrightarrow{b}=(3;2;-5)$.
- 2) Через точки $A\left(\frac{3}{2};3;-\frac{2}{3}\right)$ и B(4;5;1) проведите плоскость, параллельную вектору $\overrightarrow{a}=(0;6;-1).$
- 3) Точки A(0;0;2), B(3;0;5), C(1;1;0) и D(4;1;2) вершины тетраэдра ABCD, точка N середина ребра AD, а точка M точка пересечения медиан треугольника ACD. Найдите
 - а) общее уравнение плоскости BCD; б) общее уравнение плоскости BMN.
- 4) Запишите уравнения плоскостей
 - a) 5x + y 3z 15 = 0; 6) x 4z + 6 = 0; B) x 7 = 0.

как уравнения в отрезках и найдите отрезки, отсекаемые этими плоскостями на осях координат.

5) Три грани тетраэдра, расположенного во втором октанте (x>0,y<0,z>0), совпадают с координатными плоскостями. Найдите уравнение четвертой грани, если длины ребер, ее ограничивающих, равны AB=6, $BC=\sqrt{29}$ и CA=5 (точка A лежит на оси OX, точка B на оси OY, точка C – на оси OZ).

Урок 11. Параллельные и перпендикулярные плоскости

1° . Параллельные плоскости

- 1) Пусть даны две плоскости $\alpha_1: \overrightarrow{r} \cdot \overrightarrow{n_1} p_1 = 0$ и $\alpha_2: \overrightarrow{r} \cdot \overrightarrow{n_2} p_2 = 0$. Очевидно, что $\alpha_1 \parallel \alpha_2$ тогда и только тогда, когда $\overrightarrow{n_1} \parallel \overrightarrow{n_2}$. Последнее условие можно переписать в виде $\overrightarrow{n_1} \times \overrightarrow{n_2} = 0$ или $\overrightarrow{n_1} = t\overrightarrow{n_2}$.
- 2) Посмотрим, как выглядит условие параллельности плоскостей в координатах. Пусть $\alpha_1: a_1x+b_1y+c_1z+d_1=0$ и $\alpha_2: a_2x+b_2y+c_2z+d_2=0$. Тогда

$$\alpha_1 \parallel \alpha_2 \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Leftrightarrow \begin{cases} a_1 = ta_2, \\ b_1 = tb_2, \\ c_1 = tc_2. \end{cases}$$

3) Примеры:

- (1) Плоскости 2x-3y-4z+11=0 и -4x+6y+8z+36=0 параллельны, т. к. $\frac{2}{-4}=\frac{-3}{6}=\frac{-4}{8}$.
- (2) Плоскости 2x-3z-12=0 и 4x+4y-6z+7=0 не параллельны, т. к. $\frac{2}{4} \neq \frac{0}{4}$.
- 4) Во многих задачах требуется провести через данную точку плоскость, параллельную данной плоскости. В общем виде эта задача решается так:

Пусть $M(x_0,y_0,z_0)$ — данная точка, а $\alpha:ax+by+cz+d=0$ — данная плоскость. Тогда искомая плоскость β задается уравнением:

$$\beta: a(x - x_0) + b(y - y_0) + c(z - z_0) = 0,$$

которое легко приводится к общему виду.

5) Упражнения:

- (1) Напишите уравнение плоскости, проходящей через точку M(1;2;9) параллельно плоскости 2x-3y-z-1=0.
- (2) Даны точки A(-3;0;1), B(2;1;-1), C(-2;2;0), D(1;3;2). Найдите уравнение плоскости, проходящей через точку D параллельно плоскости ABC.
- 6) Часто просят найти расстояние между параллельными плоскостями $\alpha_1: ax+by+cz+d_1=0$ и $\alpha_2: ax+by+cz+d_2=0$. Эту задачу можно решать различными способами.

 $I\ cnoco6$: Выберем произвольную точку $A\in\alpha_1$ (например $\left(0,0,-\frac{d_1}{c}\right)$). Найдем расстояние от нее до плоскости α_2 . Получаем:

$$\rho(\alpha_1, \alpha_2) = \rho(A, \alpha_2) = \frac{|c(-\frac{d_1}{c}) + d_2|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|d_2 - d_1|}{\sqrt{a^2 + b^2 + c^2}}.$$

II способ: Этот же результат можно получить из других соображений. Если начало координат находятся между плоскостями, то искомое расстояние определяется как сумма расстояний от начала координат до каждой из плоскостей. В противном случае – как разность.

7) Упражнения:

- (1) Найдите расстояние между плоскостями $\alpha: 11x-2y-10z+15=0$ и $\beta: 11x-2y-10z-45=0.$
- (2) На расстоянии три от плоскости 3x 6y 2z + 14 = 0 проведите параллельную ей плоскость.

2° . Перпендикулярные плоскости

1) Очевидно, что две плоскости перпендикулярны тогда и только тогда, когда перпендикулярны их нормали. Пусть $\alpha_1: \overrightarrow{r}\cdot\overrightarrow{n_1}-p_1=0$ и $\alpha_2: \overrightarrow{r}\cdot\overrightarrow{n_2}-p_2=0$. Тогда

$$\alpha_1 \perp \alpha_2 \Leftrightarrow \overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0.$$

2) Переходя к координатной записи для плоскостей $\alpha_1: a_1x+b_1y+c_1z+d_1=0$ и $\alpha_2: a_2x+b_2y+c_2z+d_2=0$ получаем:

$$\alpha_1 \perp \alpha_2 \Leftrightarrow a_1 a_2 + b_1 b_2 + c_1 c_2 = 0.$$

3) Примеры:

- (1) Плоскости 3x-2y-2z+7=0 и 2x+2y+z+4=0 перпендикулярны, т. к. $3\cdot 2+(-2)\cdot 2+(-2)\cdot 1=0$.
- (2) Плоскости 3x-2y=0 и y+z=4 не перпендикулярны, т. к. $3\cdot 0+(-2)\cdot 1+0\cdot 1\neq 0.$
- 4) Часто бывает полезным следующее соображение: если плоскости α и β перпендикулярны, то вектор нормали к β является направляющим вектором плоскости α .
- 5) **Упражнение:** Напишите уравнение плоскости, проходящей через начало координат и перпендикулярной плоскостям 2x+3y-z-5=0 и x+2y+z-11=0.

- 1) Через точку M(-2;0;3) проведите плоскость, параллельную плоскости 2x-y-3z+5=0.
- 2) Даны точки A(2;-1;0), B(3;2;1), C(1;2;2) и D(-3;0;4). Найдите уравнение плоскости, проходящей через точку D параллельно плоскости ABC.
- 3) Найдите расстояние между плоскостями 2x+3y-6z+14=0 и 2x+3y-6z-35=0.
- 4) На расстоянии пяти единиц от плоскости с уравнением 4x + 2y 4z 27 = 0 проведите параллельную ей плоскость.
- 5) Составьте уравнение плоскости, проходящей через точку A(0;0;-3) и перпендикулярной к двум плоскостям: $\alpha:x+2y+3z-5=0$ и $\beta:3x-5y+4z-12=0$.
- 6) Составьте уравнение плоскости, проходящей через точки M(1;3;8) и N(2;5;-1) перпендикулярно плоскости $\alpha:2x-y+z=0$.

Урок 12. Угол между плоскостями. Биссекторная плоскость

1°. Угол между плоскостями

- 1) Ранее мы договорились называть углом между двумя пересекающимися плоскостями наименьший из двугранных углов, образованных при их пересечении. Но тогда угол между плоскостями $\alpha_1: \overrightarrow{r} \cdot \overrightarrow{n_1} p_1 = 0$ и $\alpha_2: \overrightarrow{r} \cdot \overrightarrow{n_2} p_2 = 0$ либо равен углу между нормалями $\overrightarrow{n_1}$ и $\overrightarrow{n_2}$, либо дополняет его до 180°. Поэтому $\cos \varphi = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$.
- 2) Последнее соотношение в декартовых координатах принимает вид

$$\cos \varphi = \frac{|a_1 a_2 + b_1 b_2 + c_1 c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}.$$

Здесь $\alpha_1: a_1x + b_1y + c_1z + d_1 = 0$, $\alpha_1: a_2x + b_2y + c_2z + d_2 = 0$.

3) **Пример:** Найдите угол между плоскостями 2x + 2y - z - 2 = 0 и 5x + 12y - 2 = 0.

4) Упражнения:

- (1) Даны точки A(1;0;1), B(-2;2;1), C(2;0;3), D(0;4;-2). Найдите угол между плоскостями ABC и BCD.
- (2) Через точку M(-5; 16; 12) проведены две плоскости: одна из них содержит ось OX, а другая ось OY. Найдите угол между этими двумя плоскостями.
- (3) Составьте уравнение плоскости, проходящей через точки M(0;0;1) и N(3;0;0) и образующей угол 60° с плоскостью XOY.
- 5) Иногда возникает необходимость определить, является ли данный двугранный угол острым или тупым. Ответ на этот вопрос дает следующая теорема:

Теорема.

Двугранный угол, образованный пересекающимися плоскостями $a_1x+b_1y+c_1z+d_1=0$ и $a_2x+b_2y+c_2z+d_2=0$, содержащий точку $A(x_0,y_0,z_0)$, является острым тогда и только тогда, когда

$$(a_1a_2 + b_1b_2 + c_1c_2)(a_1x_0 + b_1y_0 + c_1z_0 + d_1)(a_2x_0 + b_2y_0 + c_2z_0 + d_2) < 0.$$

2° . Биссекторная плоскость

- 1) Ранее мы определяли биссектор двугранного угла как полуплоскость, делящую двугранный угол на два равных угла. Под биссекторной плоскостью мы будем понимать плоскость, делящую пополам каждый из пары вертикальных двугранных углов.
- 2) Найдем уравнение биссекторных плоскостей (они перпендикулярны), делящих пополам двугранные углы между плоскостями $\overrightarrow{r} \cdot \overrightarrow{n_1} p_1 = 0$ и $\overrightarrow{r} \cdot \overrightarrow{n_2} p_2 = 0$. Поскольку биссектор ГМТ, равноудаленных от сторон угла, то

 $\frac{|\overrightarrow{r}\cdot\overrightarrow{n_1}-p_1|}{|\overrightarrow{n_1}|}=\frac{|\overrightarrow{r}\cdot\overrightarrow{n_2}-p_2|}{|\overrightarrow{n_2}|}.$

Раскрывая модули, получим две перпендикулярные плоскости.

3) **Пример:** Напишите уравнения плоскостей, делящих пополам углы между плоскостями 3x - y + 7z - 4 = 0 и 5x + 3y - 5z + 2 = 0.

- 1) Найдите угол между плоскостями 4x 5y + 3z 1 = 0 и x 4y z + 9 = 0.
- 2) Найдите косинусы углов, образованных плоскостью 3x 5y + z 8 = 0 и координатными плоскостями.
- 3) Даны точки $M(2;-5;0),\,N(3;0;4),\,K(-2;2;0)$ и L(3;2;1). Найдите угол между плоскостями MNK и NKL.
- 4) Через ось OZ проведите плоскость, образующую угол 60° с плоскостью $2x+y-\sqrt{5}\,z-7=0.$
- 5) Найдите величину двугранного угла, образованного плоскостями x+2y-2z-7=0 и 3x+4y+12z+1=0 и содержащего начало координат.
- 6) Даны плоскости 8x + 4y + z + 1 = 0 и 2x 2y + z + 1 = 0. Напишите уравнение биссекторной плоскости пары вертикальных двугранных углов, если известно, что
 - а) точка A(1;1;1) лежит в одном из углов этой пары;
 - б) эти углы острые.

Урок 13. Пучок и связка плоскостей

1° . Пучок плоскостей

- 1) Мы знаем, что две плоскости либо параллельны, либо пересекаются по прямой. Рассмотрим множество плоскостей, проходящих через одну прямую. Это множество называют **пучком плоскостей**, а их общую прямую **осью пучка**.
- 2) Имеет место следующая теорема:

Теорема.

 $\Pi y c m b$ ось n y u k a определена как линия пересечения плоскостей α и β :

$$\alpha: a_1x + b_1y + c_1z + d_1 = 0, \quad \beta: a_2x + b_2y + c_2z + d_2 = 0.$$

Тогда:

• При любых $\lambda, \mu \in \mathbb{R}, \lambda^2 + \mu^2 \neq 0$, уравнение

$$\lambda(a_1x + b_1y + c_1z + d_1) + \mu(a_2x + b_2y + c_2z + d_2) = 0 \tag{1}$$

задает плоскость, принадлежащую пучку.

• Обратно, для любой плоскости γ пучка найдутся такие $\lambda, \mu \in \mathbb{R}$, $\lambda^2 + \mu^2 \neq 0$, что уравнение (1) задает плоскость γ .

2° . Упражнения

- 1) Через линию пересечения плоскостей 4x y + 3z 1 = 0 и x + 5y z + 2 = 0 проведите плоскость:
 - а) проходящую через $A_0(1;1;1)$; б) параллельную оси OY; в) перпендикулярно к плоскости 2x-y+5z-3=0.
- 2) Через линию пересечения плоскостей x+5y+z=0 и x-z+4=0 проведите плоскость, образующую угол 45° с плоскостью x-4y-8z+12=0.
- 3) При каких значениях параметров a и d плоскости 2x+y-z+3=0, x-3y+5=0 и ax+y-2z+d=0 принадлежат одному и тому же пучку (т. е. пересекаются по одной прямой)?

3°. Связка плоскостей

1) Три плоскости могут либо пересекаться в одной точке, либо принадлежать одному пучку, либо не иметь общих точек.

2) Для того, чтобы три плоскости пересекались в одной точке, необходимо и достаточно, чтобы их нормали были некомпланарны.

Определение.

|| Совокупность плоскостей, проходящих через данную точку, называется || **связкой** плоскостей, а данная точка – **центром связки**.

3) Если координаты центра связки известны, то связка плоскостей задается уравнением $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$, где a,b,c – вещественные числа такие, что $a^2+b^2+c^2\neq 0$. Но бывает, что центр связки задается уравнениями трех плоскостей, проходящих через него. Тогда уравнение связки записывается в виде:

$$\lambda(a_1x+b_1y+c_1z+d_1)+\mu(a_2x+b_2y+c_2z+d_2)+\nu(a_3x+b_3y+c_3z+d_3)=0,$$
 где $\lambda,\,\mu,\,\nu$ – вещественные числа и $\lambda^2+\mu^2+\nu^2\neq 0.$

4) В принципе, существует формула, позволяющая найти радиус-вектор точки пересечения трех плоскостей:

$$\overrightarrow{r} = \frac{p_1(\overrightarrow{n_2} \times \overrightarrow{n_3}) + p_2(\overrightarrow{n_3} \times \overrightarrow{n_1}) + p_3(\overrightarrow{n_1} \times \overrightarrow{n_2})}{(\overrightarrow{n_1}, \overrightarrow{n_2}, \overrightarrow{n_3})}.$$

Упражнение: Докажите эту формулу.

Однако на практике эту формулу применяют редко. Обычно просто решают систему трех линейных уравнений.

5) Упражнение: Найдите точку пересечения плоскостей:

$$5x + 8y - z - 7 = 0$$
, $x + 2y + 3z - 1 = 0$, $2x - 3y + 2z - 9 = 0$.

Домашнее задание

- 1) Найдите уравнение плоскости, проходящей через точку M(2;5;-3) и линию пересечения плоскостей 3x+y-z-5=0 и x+2z=0.
- 2) Через линию пересечения плоскостей 3x + y 2z 6 = 0 и x 2y + 5z 1 = 0 проведите плоскости, перпендикулярные данным плоскостям.
- 3) Найдите уравнение плоскости, перпендикулярной к плоскости 5x y + 3z 2 = 0

и пересекающей ее по прямой, лежащей в плоскости XOY.

4) Докажите, что плоскости 3x - 4y + 5 = 0, x - 2z + 1 = 0 и 2y - 3z - 1 = 0 пересекаются по одной прямой.

- 5) Имеют ли общие точки следующие четыре плоскости:
 - a) 5x z + 3 = 0, 2x y 4z + 5 = 0, 3y + 2z 1 = 0 if 3x + 4y + 5z 3 = 0;
 - б) 5x + 2y 6 = 0, x + y 3z = 0, 2x 3y + z + 8 = 0 и 3x + 2z 1 = 0?
- 6) Через точку пересечения плоскостей $x+y-z+2=0,\,4x-3y+z-1=0$ и 2x+y-5=0 проведите плоскость:
 - а) проходящую через ось абсцисс;
 - б) параллельную плоскости XOZ;
 - в) проходящую через начало координат и точку P(1;3;2).