

5

WHAT IS CLAIMED IS:

- part B 10*
1. A compound of formula I:

I

wherein

- 15 A is

or

R³, R⁴, R⁵ and R⁶ are each, independently, H, halogen, NO₂, C₁₋₁₀-alkyl, optionally substituted by halogen up to perhaloalkyl, C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy, C₆₋₁₂ aryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy, or C₅₋₁₂ hetaryl, 20 optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy,

and one of R³-R⁶ can be -X-Y;

or two adjacent R³-R⁶ can together be an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, C₃₋₁₀-cycloalkyl, C₂₋₁₀-alkenyl, C₁₋₁₀-alkanoyl, C₆₋₁₂-aryl, C₅₋₁₂-hetaryl; C₆₋₁₂-aralkyl, C₆₋₁₂-alkaryl, halogen; NR¹R¹;

or a pharmaceutically acceptable salt thereof,

with the proviso that if X is $-O-$ or $-S-$, R^3 and R^6 are H, and Y is phenyl unsubstituted by OH, then R^6 is alkoxy.

- 1
5
2. A compound according to claim 1, having a pKa greater than 10.
 3. A compound according to claim 1, wherein
 R^3 is halogen or C_{1-10} -alkyl, optionally substituted by halogen, up to perhaloalkyl;
 R^4 is H, halogen or NO_2 ;
 - 10 R^5 is H, halogen or C_{1-10} -alkyl; R^6 is H, C_{1-10} -alkoxy, thiophene, pyrole or methyl substituted pyrole,
 4. A compound according to claim 1, wherein
 R^3 is C_{4-10} -alkyl, Cl, F or CF_3 ;
 R^4 is H, Cl, F or NO_2 ;
 - 15 R^5 is H, Cl, F or C_{4-10} -alkyl; and
 R^6 is H or OCH_3 .
 5. A compound according to claim 4, wherein R^3 or R^5 is t-butyl.
 6. A compound according to claim 1, wherein X is $-CH_2-$, $-N(CH_3)-$ or $-$
 - 20 $NHC(O)-$.
 7. A compound according to claim 6, wherein Y is phenyl or pyridyl.
 8. A compound according to claim 1, wherein X is $-O-$.
 9. A compound according to claim 8, wherein Y is phenyl, pyridyl, pyridone or benzothiazole.

10. A compound according to claim 1, wherein X is -S-.
11. A compound according to claim 10, wherein Y is phenyl or pyridyl.
12. A compound of the formula

13. A pharmaceutical composition comprising a compound of claim 1, and a physiologically acceptable carrier.

14. A pharmaceutical composition comprising a compound of claim 12, and a physiologically acceptable carrier.

15. A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula II:

wherein

15 A is

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is

-NO₂; -CF₃; -COOR¹; -NHCOR¹; -CN; -CONR¹R¹; -SO₂R²; -SOR²; -SR²; in which R¹ is H or C₁₋₁₀-alkyl and R² is C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhalo with -S(O₂)- optionally incorporated in the aryl or hetaryl ring;

5 R⁴, R⁵ and R⁶ are independently H, halogen, C₁ - C₁₀ alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁ - C₁₀ alkoxy optionally substituted by halogen up to perhaloalkoxy or -X-Y, and either one of R⁴, R⁵ or R⁶ is -X-Y or two adjacent of R⁴, R⁵ and R⁶ together are a hetaryl ring with 5-12 atoms optionally substituted

10 by C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkanoyl, C₆₋₁₂ aryl, C₅₋₁₂ hetaryl or C₆₋₁₂ aralkyl;

R⁶ is additionally -NHCOR¹, -NR¹COR¹ or NO₂;

R¹ is C₁₋₁₀ alkyl optionally substituted by halogen up to perhalo;

15 R³ is H, halogen, C₁-C₁₀ alkyl optionally substituted by halogen up to perhaloalkyl, C₁-C₁₀ alkoxy, optionally substituted by halogen up to perhaloalkoxy;

X is -CH₂-, -S-, -N(CH₃)-, -NHC(O)-, -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

X is additionally a single bond where Y is pyridyl; and

20 Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodiazane, benzopyridine or benzothiazole, each optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen, OH, -SCH₃, NO₂ or, where Y is phenyl, by

substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n , wherein n is 0-3 and each W is independently selected from the group consisting of $-CN$, $-CO_2R^7$, $-C(O)NR^7R^7$, $-C(O)-R^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-NR^7C(O)R^7$, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_1-C_{10} alkoxy, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_7-C_{24} alkaryl, C_3-C_{13} heteroaryl, C_4-C_{23} alkoheteroaryl, substituted C_1-C_{10} alkyl, substituted C_2-C_{10} alkenyl, substituted C_1-C_{10} alkoxy, substituted C_3-C_{10} cycloalkyl, substituted C_4-C_{23} alkoheteroaryl and $Q-Ar$;

wherein if W is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of $-CN$, $-CO_2R^7$, $-C(O)R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NR^7R^7$, NO_2 , $-NR^7C(O)R^7$, $-NR^7C(O)OR^7$ and halogen up to per-halo;

wherein each R^7 is independently selected from H , C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} hetaryl, C_7-C_{24} alkaryl, C_4-C_{23} alkoheteroaryl, up to per-halosubstituted C_1-C_{10} alkyl, up to per-halo substituted C_2-C_{10} alkenyl, up to per-halosubstituted C_3-C_{10} cycloalkyl, up to per-halosubstituted C_6-C_{14} aryl and up to per-halosubstituted C_3-C_{13} hetaryl,

wherein Q is $-O-$, $-S-$, $-N(R^7)-$, $-(CH_2)_m-$, $-C(O)-$, $-CH(OH)-$, $-(CH_2)_mO-$, $-NR^7C(O)NR^7R^7-$, $-NR^7C(O)-$, $-C(O)NR^7-$, $-(CH_2)_mS-$, $-(CH_2)_mN(R^7)-$, $-O(CH_2)_m-$, $-CHX^a$, $-CX^a_2-$, $-S-(CH_2)_m-$ and $-N(R^7)(CH_2)_m-$,

$m = 1-3$, and X^a is halogen; and

Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} , wherein n_1 is 0 to 3 and each Z is independently selected from the group consisting of $-CN$, $-CO_2R^7$, $-C(O)NR^7R^7$, $-C(O)-NR^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-C(O)R^7$, $-NR^7C(O)R^7$, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} hetaryl, C_7-C_{24} alkaryl, C_4-C_{23} alkoheteroaryl, substituted C_1-C_{10} alkyl, substituted C_3-C_{10} cycloalkyl, substituted C_7-C_{24} alkaryl and substituted C_4-C_{23} alkoheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of $-CN$, $-CO_2R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NO_2$, $-NR^7R^7$, $-NR^7C(O)R^7$ and $-NR^7C(O)OR^7$,

R^4 , R^5 and R^6 are each independently H, halogen, C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl,

or

5 C_1-C_{10} alkoxy, optionally substituted by halogen up to perhaloalkoxy or $-X-Y$, and

either one of R^4 , R^5 or R^6 is $-X-Y$ or two adjacent of R^4 , R^5 and R^6 together are a hetaryl ring with 5-12 atoms optionally substituted by C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl;

10 R^6 is additionally $-NHCOR^1$, $-NR^1COR^1$ or NO_2 ;

15 R^1 is C_{1-10} alkyl optionally substituted by halogen up to perhalo;

20 R^3 is independently H, halogen, C_{1-10} alkyl, optionally substituted by halogen up to perhaloalkyl, C_{1-10} alkoxy, optionally substituted by halogen up to perhaloalkoxy;

X is $-CH_2-$, $-S-$, $-N(CH_3)-$, $-NHC(O)-$, $-CH_2-S-$, $-C(O)-$, or $-O-$;

25 X is additionally a single bond where Y is pyridyl; and

Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodioxane, benzopyridine or benzothiazole, each optionally substituted by

C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, $-SCH_3$, or NO_2 or, where Y is phenyl, by

or a pharmaceutically acceptable salt thereof.

16. A method according to claim 15, comprising administering a compound of formula IIa:

wherein

A is

R³, R⁴, R⁵ and R⁶ are each independently H, halogen, NO₂, C₁₋₁₀-alkyl, optionally substituted by halogen up to perhaloalkyl, or C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy, C₆₋₁₂ aryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy, or C₅₋₁₂ hetaryl, optionally substituted by C₁₋₁₀ alkyl or C₁₋₁₀ alkoxy,

and one of R³-R⁶ can be -X-Y;

or two adjacent R³-R⁶ can together be an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, C₃₋₁₀-cycloalkyl, C₂₋₁₀-alkenyl, C₁₋₁₀-alkanoyl; C₆₋₁₂-aryl, C₅₋₁₂-hetaryl, C₆₋₁₂-alkaryl, halogen; -NR¹R¹; -NO₂; -CF₃; -COOR¹; -NHCOR¹; -CN; -CONR¹R¹; -SO₂R²; -SOR²; -SR²; in which R¹ is H or C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhalo and R² is C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhalo, with SO₂- optionally incorporated in the aryl or hetaryl ring, and R³- R⁶ are as defined in claim 15.

20 17. A method according to claim 16, wherein

R³ is halogen or C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

R⁵ is H, halogen or C₁₋₁₀- alkyl;

R⁶ is H [or] C₁₋₁₀- alkoxy, thiophene, pyrole or methylsubstituted pyrole

R^{3'} is H, halogen, CH₃, or CF₃ and

R^{6'} is H, halogen, CH₃, CF₃ or OCH₃.

5

18. A method according to claim 16, wherein X is -CH₂- , [or] -S-, -N(CH₃)- or -NHC(O)- and Y is phenyl or pyridyl.

19. A method according to claim 16, wherein X is -O- and Y is phenyl,
10 pyridone, pyrimidine, pyridyl or benzothiazole.