

基于Transformers的 NLP解决方案

- (1) 基础组件知识回顾
- (2) 基于Transformers的NLP解决方案
- (3) 显存优化策略, 4G显存跑BERT-Large

基础组件知识回顾

截止目前讲的基础组件

- Pipeline
 - 流水线,用于模型推理,封装了完整的推理逻辑,包括数据预处理、模型预测及后处理
- Tokenizer
 - 分词器,用于数据预处理,将原始文本输入转换为模型的输入,包括input_ids、attention_mask等
- Model
 - 模型,用于加载、创建、保存模型,对Pytorch中的模型进行了封装,同时更好的支持预训练模型
- Datasets
 - 数据集,用于数据集加载与预处理,支持加载在线与本地的数据集,提供了数据集层面的处理方法
- Evaluate
 - 评估函数,用于对模型的结果进行评估,支持多种任务的评估函数
- Trainer
 - 训练器,用于模型训练、评估,支持丰富的配置选项,快速启动模型训练流程

基于Transformers的NLP解决方案

基于Transformers的NLP解决方案

- · 以文本分类为例
 - Step1 导入相关包
 - Step2 加载数据集
 - Step3 数据集划分
 - Step4 数据集预处理
 - Step5 创建模型
 - · Step6 设置评估函数
 - · Step7 配置训练参数
 - Step8 创建训练器
 - Step9 模型训练、评估、预测 (数据集)
 - Step10 模型预测 (单条)

- > General
- > Datasets
- > Datastes
- > Tokenizer + Datasets
- > Model
- > Evaluate
- > TrainingArguments
- > Trainer + Data Collator
- > Trainer
- > Pipeline

Transformers显存优化

显存优化策略, 4G显存也能跑BERT-Large

- · 显存占用简单分析
 - 模型权重
 - 4Bytes * 模型参数量
 - 优化器状态
 - 8Bytes * 模型参数量,对于常用的AdamW优化器而言
 - 梯度
 - 4Bytes * 模型参数量
 - 前向激活值
 - 取决于序列长度、隐层维度、Batch大小等多个因素

Transformers显存优化

显存优化策略, 4G显存也能跑BERT-Large

- · 显存优化策略
 - hfl/chinese-macbert-large, 330M

优化策略	优化对象	显存占用	训练时间
Baseline (BS 32, MaxLength 128)		15.2G	64s
+ Gradient Accumulation (BS 1, GA 32)	前向激活值	7.4G	259s
+ Gradient Checkpoints (BS 1, GA 32)	前向激活值	7.2G	422s
+ Adafactor Optiomizer (BS 1, GA 32)	优化器状态	5.0G	406s
+ Freeze Model (BS 1, GA 32)	前向激活值 / 梯度	3.5G	178s
+ Data Length (BS 1, GA 32, MaxLength 32)	前向激活值	3.4G	126s

关于参数高效微调(如Lora)、cpu offload、flash attention等技巧将在LLM章节 进行讲解