Hintergrundsegmentierung

Christian Tanzer Jonas Bühlmeyer

15. März 2017

Inhaltsverzeichnis

Self-Balanced SENsitivity SEgmenter

Pixel-Based Adaptive Segmenter

Vergleich

Self-Balanced SENsitivity SEgmenter

Jonas Bühlmeyer

Konzept des Algorithmus

Konzept des Algorithmus

4/32

Konzept des Algorithmus - Hintergrundentscheidung

Farbvergleich – Entscheidung

$$S_t(x) =$$

$$\begin{cases} 1, & \#(I_t(x) - B_n(x) < R, \forall n) < \#min \\ 0, & sonst \end{cases}$$

Farbvergleich – Vergleich der Farbwerte

⇒ die Farbwerte werden durch Subtraktion mit der Referenz verglichen

Farbvergleich – Vergleich der Farbwerte

$$15 < \mathsf{R}_{color} o 1$$

$$30 > R_{\textit{color}} o 0$$

$$80 > R_{\textit{color}} \rightarrow 0$$

- ⇒ einmal pro Referenzwert im Hintergrundmodell
- ⇒ Anzahl der 1 pro Pixel größer als minimal Anzahl
 - \Rightarrow Vordergrund

Farbvergleich – Beispiel

Farbvergleich Segmentierung

Konzept des Algorithmus

LBSP - Raster

Farbvergleich – Vergleich der Farbwerte

 \Rightarrow die Farbwerte werden durch Subtraktion mit der Referenz verglichen

LBSP – Vergleich der Farbwerte

$$15 < \mathsf{R}_{\textit{lbsp}} o \mathsf{Hintergrund}$$

$$30 > R_{lbsp} \rightarrow Vordergrund$$

$$80 > R_{\textit{lbsp}} \rightarrow Vordergrund$$

 \Rightarrow einmal pro Referenzwert im Raster

 \Rightarrow Referenz: 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1

LBSP – Vergleich der Pattern

LBSP – Beispiel

LBSP Segmentierung

Hintergrundmodell

Hintergrundmodell – Beispiel

Konzept des Algorithmus

Aktualisierung des Modells – Hintergrund Dynamik

Eingangsbild

 $Hintergrund\ Dynamik$

$$D_{min}(x) = D_{min}(x) \cdot (1 - \alpha) + d_t(x) \cdot \alpha$$

Aktualisierung des Modells – Blinkende Pixel

Eingangsbild

Blinkende Pixel

$$v(x) = \begin{cases} v(x) + v_{incr}, & X(t) \oplus X(t-1) \\ v(x) - v_{decr}, & sonst \end{cases}$$

Aktualisierung des Modells – Schwellwert

Eingangsbild

Schwellwert

$$R(x) = \begin{cases} R(x) + v(x), & R(x) < (1 + D_{min}(x) \cdot 2)^2 \\ R(x) - \frac{1}{v(x)}, & sonst \end{cases}$$

Aktualisierung des Modells – Schwellwert für den Farbvergleich

Eingangsbild Schwellwert

$$R_{color}(x) = R(x) \cdot R_{color}^0$$

Aktualisierung des Modells – Schwellwert für LBSP

$$R_{lbsp}(x) = 2^{R(x)} + R_{lbsp}^0$$

Aktualisierung des Modells – Wahrscheinlichkeit

Eingangsbild

Schwellwert

$$T(x) = \left\{ egin{array}{ll} T(x) + rac{1}{v(x) \cdot D_{min}(x)}, & S_t(x) = 1 \ T(x) + rac{v(x)}{D_{min}(x)}, & S_t(x) = 0 \end{array}
ight.$$

Aktualisierung des Modells – Aktualisierung

Aktualisier ung sarray

Gesamtalgorithmus – Beispiel

Gesamtsegmentierung

Pixel-Based Adaptive Segmenter

Christian Tanzer

Vergleich SuBSENSE und PBAS

Vergleich - Precision

$$Pr = \frac{TP}{TP + FP}$$

Vergleich – Recall

$$Re = rac{TP}{TP + FN}$$

30/32

Vergleich – Accuracy

$$FM = \frac{2 \cdot Pr \cdot Re}{Pr + Re}$$

31/32

Vergleich – Accuracy

Quellen

- http://www.stern.de/kultur/photoshop-oder-bodypai nting--der-kuenstler-liu-bolin-macht-menschen-un sichtbar-6618586.html, aufgerufen am 1. Dezember 2016
- http: //www.sueddeutsche.de/auto/autonomes-fahren-wasautonome-autos-koennen-und-was-nicht-1.3062258, aufgerufen am 1. Dezember 2016
- Rafael C. Gonzalez, Richard E. Woods: "Digital Image Processing", Addison-Wesley Publishing Company, 1992
- Pierre-Luc St-Charles, Guillaume-Alexandre Bilodeau and Robert Bergevin: SSuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 359-373, Januar 2015