

Proseminar Sicherheit in Computersystemen

Zero Knowledge Proofs

28.05.2019

Max Ostermann

Inhalt

- Einführung
- Grundlagen
- Protokolle
- Simulierbarkeit
- Nicht-interaktive Zero Knowledge Proofs
- Moderne Anwendung
- Angriffsvektoren

Einführung

Historisch

Niccolo Tartaglia fand 1535 eine Formel zum Lösen von Polynomen dritten Grades

Alibabas Höhle

Grundlegende Definitionen

Korrektheit/Soundness

Wahrscheinlichkeit eine Aussage ohne Kenntnis des Geheimnisses zu beweisen ist vernachlässigbar gering

Wahrscheinlichkeit: 1 / 2ⁿ

Vollständigkeit/Completeness

Protokoll führt mit überwältigender Wahrscheinlichkeit zum Erfolg

Wahrscheinlichkeit: $1 - (1/2^n)$

Genereller Ablauf:

Schritt 1: $P \rightarrow V$ Commitment a

Schritt 2: $P \leftarrow V$ Challenge c

Schritt 3: $P \rightarrow V$ Reponse z

Protokollübersicht

- Graphisomorphismus
- Hamiltonsche Graphen
- Diskrete Logarithmen
- Quadratische Reste

Protokoll: Quadratische Reste

Schlüsselgenerierung

Sei $n = p \cdot q$ das Produkt zweier zufälliger, verschiedener Primzahlen.

Der Beweiser \mathcal{P} wählt $w \in_{\mathbb{R}} \mathbb{Z}_n^*$ und berechnet $x = w^2 \mod n$. Die Werte (n, x) werden als öffentlicher Schlüssel veröffentlicht, w bildet das Geheimnis von \mathcal{P} .

Protokoll

Beweiser

geg.: (n,x)w

Verifizierer

geg.: (n, x)

wählt s zufällig in \mathbb{Z}_n^*

be rechnet $a = s^2 \bmod n$

$$\xrightarrow{a}$$

wählt $c \in_R \{0, 1\}$

 $\leftarrow c$

berechnet $z = s \cdot w^c \mod n$

überprüft ob $z^2 \stackrel{?}{=} a \cdot x^c \mod n$

[2]

Simulierbarkeit

- Simulation der Wahrscheinlichkeitsverteilung ohne Kenntnis des Geheimnisses
- Ununterscheidbarkeit simulierter und echter Abläufe

Nicht-interaktive Zero Knowledge Proofs

- Zero Knowledge Proof in "einer Postkarte"
- Fiat-Shamir Heuristik
 - → Challenges über Hashfunktion
 - → Rundenzahl von >64
- Beweis über das ,Random Oracle Model'
- Zero-Knowledge Eigenschaft nicht in der "realen" Welt beweisbar

Moderne Anwendung

- Authentifizierung
- Blockchain
- Signaturen
- Nachweis privater Angelegenheiten

Angriffsvektoren

- Große, koordinierte Angreifernetzwerke
- Man in the middle

[4]

Danke für eure Aufmerksamkeit

Fragen?

Quellen

Bildquellen:

- [1]: https://en.wikipedia.org/wiki/Zero-knowledge_proof#/media/File:Zkip_alibaba1.png
- [2]: https://tu-dresden.de/ing/informatik/sya/ps/ressourcen/dateien/studium/materialien/mat_kp_datensicherheit/v11_doku.pdf?lang=de Abbildung 9
- [3]: https://tu-dresden.de/ing/informatik/sya/ps/ressourcen/dateien/studium/materialien/mat_kp_datensicherheit/v11_doku.pdf?lang=de Abbildung 6
- [4]: https://tu-dresden.de/ing/informatik/sya/ps/ressourcen/dateien/studium/materialien/mat_kp_datensicherheit/v11_doku.pdf?lang=de Abbildung 12

Hauptquellen

- https://tu-dresden.de/ing/informatik/sya/ps/ressourcen/dateien/studium/materialien/mat_kp_datensicherheit/v11_doku.pdf?lang=de
- "How to explain Zero-Knowledge Protocols to your children" Quisquater et al. Advances in Cryptology Crypto '89 p.628 631

