CMSC Project 1 Report

Contributors:

- Christopher Sidell (csidell1@umbc.edu)
- Joshua Standiford (jstand1@umbc.edu)

Psudocode (1)

4-multiply

```
let z1, z2, result be complex numbers
r1 = z1.real * z2.real
r2 = z1.imaginary * z2.imaginary
i1 = z1.real * z2.imaginary
i2 = z2.imaginary * z2.real
result.real = r1 - r2
result.imaginary = i1 + i2
```

3-multiply

```
let z1, z2, result be complex numbers
t = (z1.real + z1.imaginary) * (z2.real + z2.imaginary)
r = z1.real * z2.real
s = z1.imaginary * z2.imaginary

result.real = r - s
result.imaginary = t - result.real
```

Time Analysis Theoretical (2)

(See related file analysis.pdf)

Time Analysis Empirical (3)

All lengths will be tried against 50 pairs of numbers

50 8-bit

Method | Trial, Time

• CMUL4

Mean: 0.0001851 Std Dev: 2.7449 E-5

• CMUL3

Mean: 0.00020416 Std Dev: 4.8762 E-5 50 8-bit

cmul4 0.00013144 2.139616597354181e-06

cmul3 0.0001326799999999999 1.2845137251910088e-05

50 10-bit

cmul4 0.00013516 6.041894553525275e-06

cmul3 0.00013694 1.0116484829530585e-05

50 20-bit

cmul4 0.00016426 1.18989109431348e-05

cmul3 0.00015854 1.293344028288763e-05

50 30-bit

cmul4 0.00019176 8.828432731226758e-06

cmul3 0.00017888 6.258512570238776e-06

50 40-bit

cmul4 0.00020176 1.2011151281290262e-05

cmul3 0.00019098 2.0468482491630987e-05

50 100-bit

cmul4 0.0005741 0.00016098539038797075

cmul3 0.00050008 0.00011840639806210142

50 200-bit

cmul4 0.00143554 0.0001250397830569886

cmul3 0.00115614 0.00011236311581617148

Machine Running Tests (4)

Processor 2GHz Intel Core i5 8GB RAM

Crossover Point for bit length and num of multiplies

Below has graphs for many lists lengths and bit lengths. For a 50 bit number multiplied x times the crossover point is around 30 multiplies and starts to diverge more over increasing length.

For 50 multiplies of x number of bits the cross over point where cmul3 takes over is around 60 bit numbers and begins to diverge more around 75+ bits.

Closer look at 50 bit multiplies (5)

Closer look at x bit 50 multiplies (5)

Graphs for x Bit multiplies (5)

