Lecture 10: Encryption

How messages being sent?

- Packet switching via many routers.
- Routers sitting between source and destination computers can access the content of the packets.
- To ensure the privacy of the message, the text can be encrypted.

Cryptography and Cryptanalysis

- Cryptography study of methods to encrypt text.
- Cryptanalysis study of how to decode an encrypted text.

Conventional encryption

 Conventional encryption or single key encryption – a simple algorithm is used to transform the clear text into encrypted text.

Substitution cipher

- Substitution cipher each letter of the alphabet is substituted with a different letter or symbol.
- Ceasar's method replace every letter in the alphabet with the letter 3 away:
 - □ A -> D
 - □ B->E
 - □ C->F
 - ...
 - □ X->A
 - □ Y->B
 - □ Z->C

"CIS" will encrypted as "FLV"

 Other substitution ciphers assign random substitutions, so they are a bit harder to crack.

Schematic diagram of a cryptosystem

Point where information is transmitted or stored; could be snooped here

The Ceasar's Example

- The secrete key $K_{SR} = 3$
- The encryption algorithm: C=E_{SR}(T) = T + K_{SR}
- The decryption algorithm: T=D_{SR}(C) = T K_{SR}

Encryption and decryption procedure

- The sender applies the encryption algorithm to encrypt the clear message using a private-key.
- The sender transmits the encrypted message to the receiver.
- The receiver uses the private-key to decrypt the encrypted message back to the clear message.

The key exchange problem

- The sender and the receiver must pre-agree on a private key ahead of time.
- They have to meet or at least communicate for the purpose of selecting the key.
- If they don't meet, the communication to negotiate a private-key can not be made secure.
- Key exchange is a stopper for e-commerce application in Internet where the company and customer cannot meet ahead.

Public-key encryption

- Uses two keys: public-key and private key
- The receiver publishes a public-key.
- The sender uses the public-key to encrypt the clear message.
- The sender transmits the encrypted message to the receiver.
- The receiver decrypt the encrypted message using the private-key associating with the public-key.

10

Schematic diagram of a public key cryptosystem (PKC) K_R is the public key

 K_R is the public key K_S is the secret key

Point where information is transmitted or stored; could be snooped here

Well-known public-key systems

- Elgamal invented by Taher Elgamal
- RSA invented by Ron Rivest, Adi Shamir and Leonard Adelman
- DSA Digital Signature Algorithm by David kravitz
- PGP Pretty Good Privacy: uses both conventional and public-key cryptography

One-way trap-door function

- A one-way function is a function that is easy to compute, but the inverse is hard to compute.
- A one-way trap-door function is also a function that is easy to compute, but the inverse is hard compute; however, if some piece of information is known (the key), the inverse becomes easy to compute as well.
 - □ Encryption function an one-way trap-door function
 - □ Decryption function inverse of an one-way trapdoor function

100

The Math – An Instance of Oneway Trap-door Function (RSA)

- Public-key K_R = p * q (where p, q are two very large prime number)
- Encryption $C=E_R(T) = T^3 \mod K_R$, namely $T^3 = K_R * t + C$, where t is the quotient of T^3 divided by K_R , and C is the reminder.
- Decryption T = D_{SR}(C)=C^s mod K_R, where s = (1/3) (2(p-1)(q-1) + 1) is actually the private-key

Why a one-way trap-door function?

- $T^3 = K_R * t + C$, T is the clear text, and C is the encrypted text
- If the code cracker had the quotient t and the remainder C, he or she could simply
 - \square multiply the quotient by the key K_R * t
 - □ add in the remainder C to produce T³,
 - □ then find the cube root of it to obtain T.
- But the cracker only has the reminder C and K_R, it is hard to compute the clear text T.
 - □ Factoring a large number is hard! It is hard to obtain p and q from K_R =p*q, where p and q are both large primes.
- For the receiver, he has both p and q, which is a trap-door to compute T following Euler's theorem.

v

The Math behind: Euler's Theorem

- Euler's theorem (1736): Let p and q be two distinct primes, K=pq, 0 <= T < K, and r >0. If T^{r(p-1)(q-1)+1} is divided by K, the remainder is T.
- In the above PKC cryptosystem, r is set to 2:
 - $(T^3)^s = (T^3)^{(1/3)[2(p-1)(q-1) + 1]}$ $= T^{2(p-1)(q-1) + 1}$
 - $(T^3)^s = (K_R * t + C)^s = K_R * (...) + C^s, \text{ therefore } \mathbf{C}^s \mod K_R = (T^3)^s \mod K_R = T$
- Reminder: A prime number (or a prime) is a <u>natural</u> <u>number</u> that has exactly two (distinct) natural number <u>divisors</u>, which are <u>1</u> and the prime number itself.

PGP - Pretty Good Privacy

At the sending end:

- 1. PGP compresses the message to save transmission time and increase the security
- 2. PGP creates a session key that is used only once during this transmission session. It is created from randomly selected mouse movements and keystrokes.
- 3. Session key is used to conventionally encrypt the message.
- 4. The receiver's public key is used to encrypt the session key.
- 5. The encrypted message and encrypted session key are sent to the receiver.

At the receiving end:

- 1. Receiver uses private key to decrypt the session key.
- 2. The session key is used to decrypt the encrypted message.
- 3. The text is decompressed.
- 4. Session key is discarded.

Advantages:

- Only a very small content is publicly encrypted
- □ The session key is used just once hard to decode by repeated attacks
- □ Conventional encryption is roughly 10,000 times faster than the public-key encryption.

Summary

- Conventional encryption, single key encryption
- Public-key encryption
- RSA: depend on Euler's theorem and the difficulty of large number factoring
- One-way trap-door function
- PGP combination of single key encryption and public-key encryption