

Please type a plus sign (+) inside this box → +

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b))

Attorney Docket No. Y0999-331 (8728-310)

First Inventor or Application Identifier Rama swamy

Title Method and System for Ensuring...

Express Mail Label No. EL192803777US

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. * Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)

2. Specification [Total Pages 47]

- Descriptive title of the Invention
- Cross References to Related Applications
- Statement Regarding Fed sponsored R & D
- Reference to Microfiche Appendix
- Background of the Invention
- Brief Summary of the Invention
- Brief Description of the Drawings (if filed)
- Detailed Description
- Claim(s)
- Abstract of the Disclosure

3. Drawing(s) (35 U.S.C. 113) [Total Sheets 7]

4. Oath or Declaration [Total Pages 6]

- a. Newly executed (original or copy)
- b. Copy from a prior application (37 C.F.R. § 1.63(d))
 - i. DELETION OF INVENTOR(S)

Signed statement attached deleting

inventor(s) named in the prior application,

see 37 C.F.R. §§ 1.63(d)(2) and 1.33(b).

*NOTE FOR ITEMS 1 & 13: IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R. § 1.28).

ADDRESS TO: Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

5. Microfiche Computer Program (Appendix)

6. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)

- a. Computer Readable Copy
- b. Paper Copy (identical to computer copy)
- c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

7. Assignment Papers (cover sheet & document(s))

8. 37 C.F.R. § 3.73(b) Statement Power of
(when there is an assignee) Attorney

9. English Translation Document (if applicable)

10. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS
Statement (IDS)/PTO-1449 Citations

11. Preliminary Amendment

12. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)

13. Small Entity Statement(s) Statement filed in prior application,
(PTO/SB/09-12) Status still proper and desired

14. Certified Copy of Priority Document(s)
(if foreign priority is claimed)

15. Other: Associate Power of Attorney

16. If a CONTINUATING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:
 Continuation Divisional Continuation-in-part (CIP) of prior application No: _____

Prior application information: Examiner _____

Group / Art Unit: _____

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

<input type="checkbox"/> Customer Number or Bar Code Label	(Insert Customer No. or Attach bar code label here)				<input type="checkbox"/> Correspondence address below
Name	James J. Bitetto				
Address	F. Chau & Associates, LLP 1900 Hempstead Turnpike, Suite 501				
City	East Meadow	State	New York	Zip Code	11554
Country	USA	Telephone	(516) 357-0091	Fax	(516) 357-0092

Name (Print/Type)	James J. Bitetto	Registration No. (Attorney/Agent)	40,513
Signature			Date 7/3/99

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

A
+
JCS 09/03/99
09/03/99
PTO

Assistant Commissioner for Patents
Washington, D.C. 20231
Sir:

ATTORNEY DOCKET NO. YO999-331 (8728-310)
Date: June 9, 1999
Express Mail Label: EL192803511US
Date of Deposit: June 9, 1999

Transmitted herewith for filing is the Patent Application of:

Inventors: Ganesh N. Ramaswamy, Kyle A. Jamieson, Jan Kleindienst
For: METHOD AND SYSTEM FOR ENSURING ROBUSTNESS IN NATURAL LANGUAGE UNDERSTANDING

Enclosed are: [X] 31 sheets of specification; [X] 1 sheet(s) of Abstract; [X] 15 sheet(s) of claims; [X] 7 sheet(s) of drawing(s);

[X] An assignment of the invention to International Business Machines Corporation with Recordation Form.
[X] Declaration and Power of Attorney.
[] A certified copy of a _____ application, from which priority under Title 35 USC §119 is claimed.
[X] Associate Power of Attorney.

The filing fee has been calculated as shown below:

	(Col. 1)	(Col. 2)
FOR:	NO. FILED	NO. EXTRA
BASIC FEE		
TOTAL CLAIMS	50 -20 =	30
INDEP CLAIMS	5 -3 =	2
MULTIPLE DEPENDENT CLAIMS PRESENTED		

OTHER THAN A SMALL ENTITY	
RATE	FEES
	\$760.00
X \$18 =	\$540.00
X \$78 =	\$156.00
+ 260 =	
TOTAL	\$1456.00

If the difference in Col. 1 is less than zero, enter "0" in Col. 2.

[] Checks in the amount of \$____ and \$____ to cover the filing fee(s) and recording fee are enclosed.
[X] Please charge my Deposit Account No. 50-0510/IBM (Yorktown Heights) in the amount of \$1456.00.
[X] The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 50-0510/IBM (Yorktown Heights). A duplicate copy of this sheet is enclosed.
[X] Any additional filing fees required under 37 CFR 1.16.
[X] Any patent application processing fees under 35 CFR 1.17.

Respectfully submitted,

By:

James J. Bitetto
Registration No. 40,513
Attorney for:
IBM Corporation
Intellectual Property Law Dept.
P.O. Box 218
Yorktown Heights, NY 10598

CERTIFICATION UNDER 37 C.F.R. § 1.10

I hereby certify that this Application transmittal and the documents referred to as enclosed are being deposited with the United States Postal Service on this date September 3, 1999 in an envelope as "Express Mail Post Office to Addressee" Mailing Label Number EL192803777US addressed to: Assistant Commissioner for Patents, Box Patent Application, Washington, D.C. 20231.

James J. Bitetto

METHOD AND SYSTEM FOR ENSURING ROBUSTNESS IN NATURAL
LANGUAGE UNDERSTANDING

BACKGROUND OF THE INVENTION

5

1. Field of the Invention

The present invention relates to computer systems with natural language understanding capabilities, and more particularly to a method and system for ensuring robustness for these systems.

10 2. Description of the Related Art

For computer systems with natural language understanding (NLU) capabilities, errors can be made by the system in translating the user's input, resulting in an incorrect action being executed by the system. Presently, a typical natural language understanding system which receives a command which is incorrect carries out the command. If the system carries out this action, problems may be encountered. For example, data may be changed, memory updated or erased, or other detrimental events may occur. The occurrence of these events may require undoing the

previous command or redoing a sequence of commands to return the system to a desired state. This results in lost time and annoyance of the user.

Therefore, a need exists for a system and method for ensuring robustness in natural language understanding by determining incorrect commands and preventing their execution.

SUMMARY OF THE INVENTION

A method, which may be implemented by employing a program storage device readable by machine, and tangibly embodying a program of instructions executable by the machine to perform method steps for ensuring robustness of a natural language understanding (NLU) system, includes tagging recognized words of a command input to the NLU system to associate the command with a context, and translating the command to at least one formal command based on the tagged words. A top ranked formal command is determined based on scoring of the tagged recognized words and scoring translations of the at least one formal command. Whether the top ranked formal command is accepted is determined by comparing a feature vector of the top ranked

formal command to representations of feature vectors stored in an accept model. The top ranked formal command is executed if accepted and incorrect commands are prevented from execution to provide a robust NLU system.

5 In other methods, which may be implemented by employing the program storage device, the step of determining a top ranked formal command may include the step of ranking formal commands based on a product of scores of the tagged words and scores of translations of the at least one formal command. The step of determining a top ranked formal command may include the step of ranking N formal commands where N is a selectable system parameter. The step of determining whether the top ranked formal command is rejected by comparing the feature vector of the top ranked formal command to feature vector representations stored in a reject model may be included. The step of providing the reject model by including representations of feature vectors of formal commands corresponding to words or sentences to be rejected may also be included.

10

15

20 The reject model may include a cluster of models. The step of clustering the cluster of models based on at least one of mistakes in commands, mistakes in arguments of the

command, and processing mistakes may further be included.

The method steps may include providing the accept model by including representations of feature vectors of formal commands corresponding to words or sentences to be accepted.

5 The step of determining whether the top ranked formal command is accepted may include the step of computing a probability of acceptance for the command. The step of computing a probability of acceptance for the command may include the steps of computing a probability of rejection for the command and comparing the probability of acceptance to the probability of rejection to determine if the command is to be executed. The step of computing a probability of acceptance for the command may include the step of comparing the probability of acceptance to a threshold probability to determine if the command is to be executed. The threshold may be modified by the user.

In other method steps, the accept model may include a cluster of models. The step of clustering the cluster of models based on at least one of mistakes in commands, mistakes in arguments of the command, and processing mistakes may be included. The step of preventing incorrect commands from execution to provide a robust NLU system, may

include executing a do nothing command responsive to the incorrect commands.

A method for building an evaluation corpus for checking commands in a natural language understanding (NLU) system includes providing a training corpus of words and sentences.

The words and sentence have a user input form and a corresponding formal command associated with the user input form. At least some of corresponding formal commands include a do nothing command for incomplete and/or incorrect commands. The words and sentences of the training corpus are passed to the natural language understanding system to determine a top ranked command. The top ranked command is compared to the corresponding formal command to determine if a match exists. If a match exists, the word or sentence is placed in the accept corpus, otherwise in the reject corpus. Features from the words or sentences of the accept corpus and the reject corpus are extracted to construct a feature vector for each word or sentence, and an accept model and a reject model are constructed from the extracted feature vectors.

In other methods, the feature vectors may include tagging scores for recognized words of the word or sentence

represented by the feature vectors or translation scores for
formal commands associated with the word or sentence
represented by the feature vector. The feature vectors may
include a do nothing score associated with words and
sentences. The do nothing score indicates a probability
that the do nothing command is present for associated words
and sentences. The feature vectors may include a top
command similarity measure for counting identical formal
commands, and/or a parameter mismatch feature for measuring
a number of command arguments in a translation of a command.
The method may further include the step of clustering
feature vectors according to selected characteristics and
conditions to provide at least one of a cluster of accept
models and a cluster of reject models. The accept model and
the reject model may consist of mean vectors and covariance
matrices of feature vectors representing the words and
sentences and a number of words and sentences stored in the
model.

A natural language understanding (NLU) system includes
20 a tagger adapted for tagging recognized words of a command
input to the NLU system to associate the command with a
context, and a translator adapted for translating the

command to at least one formal command based on the tagged words. A robustness checker is included for determining a top ranked formal command based on scoring of the tagged recognized words and scoring translations of the at least one formal command. The robustness checker determines whether the top ranked formal command is accepted by comparing a feature vector of the top ranked formal command to feature vector representations stored in an accept model. A command executor executes the top ranked formal command if accepted and prevents incorrect commands from execution to provide a robust NLU system.

In alternate embodiments, the top ranked formal command may be ranked based on a product of scores of the tagged words and translation scores of the at least one formal command. The top ranked formal command may be selected from a ranked list of N formal commands where N is a selectable system parameter. An accept model for storing feature vector representations of accept commands may be included, and the feature vector representations may be employed to determine an acceptance probability of formal commands. The accept model may include a cluster of models.

The system may include a reject model for storing feature vector representations of reject commands. The feature vector representations are employed to be compared to a rejection probability of formal commands. The reject model

5 may include a cluster of models. The robustness checker may include a feature extractor for extracting feature vectors from the command input. The feature vectors may include tagging scores for recognized words of a word or sentence represented by the feature vector and/or translation scores for formal commands associated with the word or sentence represented by the feature vector. The feature vectors may also include a do nothing score associated with words and sentences. The do nothing score for indicates a probability that a do nothing command is present for associated words and sentences. The do nothing command is associated with incomplete or incorrect commands which may be input as a command. The feature vectors may include a top command similarity measure for counting identical formal commands and/or a parameter mismatch feature for measuring a number

10 of command arguments in a translation of a command. The robustness checker may include a robustness evaluator for determining whether the top ranked formal command is

15

20

accepted by comparing the top ranked formal command to
feature vectors stored in an accept model.

3 A natural language understanding system includes a
corpus of rejectable commands corresponding to incorrect
commands capable of being input by a user and do nothing
commands corresponding to the incorrect commands input to
the system which maintain the system in an idle state and/or
8 prompt the user to input a response.

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings.

BRIEF DESCRIPTION OF DRAWINGS

The invention will be described in detail in the
following description of preferred embodiments with
reference to the following figures wherein:

40 FIG. 1 is a block/flow diagram of a system/method for a
natural language understanding (NLU) system employing a
robustness checker in accordance with the present invention;

FIG. 2 is an illustrative example of output from a
2 tagger and a translator in accordance with the present
invention;

FIG. 3 is a block/flow diagram illustratively showing
the construction of an accept corpus and a reject corpus in
accordance with the present invention;

7 FIGS. 4A and 4B are block/flow diagrams showing a
system/method for constructing accept and reject models in
accordance with the present invention;

FIG. 5 is a block/flow diagram showing a robustness
checker in accordance with the present invention;

12 FIGS. 6A and 6B are block/flow diagrams showing a
system/method for clustering accept and reject models in
accordance with the present invention; and

17 FIG. 7 is a block/flow diagram showing a robustness
checker employing clustered models in accordance with the
present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention ensures robustness in computer systems by automatically recognizing the inputs that are likely to result in an incorrect action, and taking

preventive measures. For natural language systems, where a command is misinterpreted or incorrectly given, the present invention determines the incorrectness of the command prior to its execution and takes appropriate action. For example, 5 incorrectly interpreted utterances are identified and mapped to a "do nothing" command, and thus the execution of a potentially incorrect command is avoided. The system can remain idle for a do nothing command or the system may prompt a user for more information.

Although confidence scoring for speech recognition systems is employed in recognizing speech, these solutions do not address the errors caused by the natural language understanding systems, do not use feature extraction based on natural language understanding, and do not have a "do nothing" command built-in explicitly into the system. These solutions are also specific to systems with spoken input only, and are not relevant to systems where the input may have come from another source, such as a typed input or a handwritten input. The present invention accommodates input 10 from a plurality of different sources for example, handwriting recognition devices, speech recognition systems, 15 typed text. Input devices may include a variety of devices

such as, telephones, personal digital assistants, computers,
etc.

The invention provides a method and apparatus to build
a statistically trainable system, which will be called a
robustness checker, hereinafter, that is part of a natural
language understanding system, and is capable of recognizing
user inputs that are likely to have been incorrectly
translated by a natural language understanding (NLU) system.
The robustness checker is statistically trained using the
same training data that is used to build models for the NLU
system. The NLU system may include a tagger component and a
translator component. When deployed as part of a real-time
conversational interface, the NLU systems will produce the
best choice, along with N-1 other choices (for a total of N
choices) for the formal command corresponding to the user's
input. The training data will include utterances for which
no legal formal language statement exists, and these
utterances will be mapped to a "do_nothing" command.

All the training data that was used to build the NLU
models are subjected to the NLU, and on the basis of the
results, the training sentences may be divided into two
categories: the accept category, and the reject category.

The accept category includes all the sentences for which the NLU's first choice of formal command is correct, and the reject category includes all the sentences for which the first choice of formal command is not correct.

5 A feature vector is computed for each of the utterances. The feature vector may include one or more of the following: tagger scores, translator scores, the normalized score for the "do_nothing" command for each tagging, a command similarity measure of the N choices of formal commands from the NLU, and a parameter mismatch factor between the tagger output and the translator output. For each of the accept and reject categories, statistical models are built using the feature vectors from that category. These models are used by the robustness checker to make a decision on whether to accept or reject a formal command produced by the NLU corresponding to a new user input. When appropriate, more than one model may be built for each category to allow for clustered modeling.

10
15 When deployed as part of a real-time system, the robustness checker will first calculate the feature vector corresponding to each input sentence from the user, and map

the formal command produced by the NLU for that input sentence to either the accept category or the reject category. If the formal command is mapped to the accept category, then the formal command is submitted for execution. If the command is mapped to the reject category, then it is rejected and the user may be asked to repeat the input.

It should be understood that the elements shown in FIGS. 1 and 3-7 may be implemented in various forms of hardware, software or combinations thereof. Preferably, these elements are implemented in software on one or more appropriately programmed general purpose digital computers having a processor and memory and input/output interfaces. Referring now to the drawings in which like numerals represent the same or similar elements and initially to FIG. 1, a block/flow diagram an NLU system 10 and method employing a robustness checker is shown in accordance with the present invention. A user (or users) submits an input to the system 10 via user interface 100. The input from user may be in text, either typed or recognized from speech or recognized or generated from another medium. The input may also be in spoken/acoustic form or handwritten form. If

the input is in text form, such as an input submitted using
a computer keyboard or personal digital assistant/telephone
keypad, then the text is sent to tagger 200. If the input
is not in text form, such as a spoken input or a handwritten
input, then the input (from a speaker, acoustic signal or
visual signal) is translated to text form using speech
recognition or handwriting recognition in block 150. The
recognized text is then sent to tagger 200. Techniques for
speech recognition and handwriting recognition may be
employed as known in the art.

Tagger 200 is responsible for recognizing classes of
words and phrases present in the input sentence. For
example, in a natural language interface to an electronic
mail application, the user's input may be:

forward this message to David

The corresponding output from tagger 200 may be:

forward this message to NAME

where "David" has been tagged as "NAME". Tagger 200 may be
built using statistical parsing techniques, such as those
described in Ward, T., et al., "Towards Speech Understanding
Across Multiple Languages," International Conference on

Spoken Language Processing, Sydney, Australia, December
1998, incorporated herein by reference.

The output from tagger 200 is sent to translator 300
which will assign the tagged sentence to a formal command.

5 For example, the illustrative sentence described above may
be assigned to a formal command of the form:

forward_message(message=current, recipient=NAME)

Translator 200 may be built using the techniques described
in Papineni, K., et al., "Feature-Based Language
Understanding", Eurospeech, Rhodes, Greece, September 1997,
incorporated herein by reference.

Referring to FIG. 2, an illustrative example of the
output from tagger 200 and translator 300 is shown. In this
example, the user's input is "close the message log folder",
and tagger 200 produces three possible tagged outputs 202,
and associated scores 204. For example, the first choice of
tagger 200 is "CLOSE the FNAME FOLDER" with a score of
0.873911, which also happens to be the correct tagging for
this sentence. In this example, for each of the three
15 tagged sentences, the translator 300 produces five choices
of formal commands 302 and associated scores 304. The first
choice of translator 300 for the first tagged sentence is

"close_folder(name=FNAME)" with a score of 0.96887374,
which also happens to be the correct translation for this
sentence. The selected formal command is "close_folder(
name="message log"), with a final score of 0.846709646214,
5 which is calculated as the multiplicative product of the
scores from tagger 200 and translator 300. In this example,
tagger 200 produces three choices, and translator 300
produces five choices for each of the three choices from
tagger 200, for a total of fifteen choices. In the general
case, there will be N choices of formal commands, and the
value of N is a system parameter.

In one embodiment of the invention, N is fifteen, as
in the example given in FIG. 2. The final choice of the
formal command is selected using the tagger output and the
translator output for which the combined multiplicative
score is the highest, and this command will be called the
top ranking formal command.

Returning to FIG. 1, the output from the tagger 200 and
translator 300, which may be of the form given in FIG. 2, is
20 sent to a robustness checker 400. The robustness checker
400 is responsible for determining if the top ranking formal
command should be accepted or rejected. If the command is

to be accepted, then it is sent to command executor 500 and the command is executed. If the command is to be rejected, then the command is not executed and the user may have to resubmit the input, perhaps using a different choice of words.

5

Referring to FIG. 3, an illustrative block/flow diagram shows building accept and reject corpora, according to the present invention. A training corpus 601 includes data that is used for training tagger 200a and translator 300a models.

The contents of training corpus 601 include both input sentences and the associated formal commands. In a natural language interface for an electronic mail application, for example, the contents of training corpus 601 may illustratively include the following:

10
do I have any new mail // check_new_mail()
forward this to David // forward_message(message=current,
recipient=David)
15
do I have any uh err // do_nothing()
it is a nice day // do_nothing()

20

The left side (before the "://" sign) includes the actual input sentences from the user, and the right side includes a

corresponding correct formal command. In accordance with
the present invention, some of the sentences are mapped to a
"do_nothing" command, either because they are clearly out of
the domain, or because they are not complete enough to form
a command, etc. The "do_nothing" command is one way
robustness is ensured for the natural language system 10.
All of the sentences in the training corpus 601 are
subjected to tagger 200a and translator 300a. Tagger 200a
is functionally equivalent to tagger 200 from FIG. 1, and
translator 300a is functionally equivalent to translator 300
from FIG. 1. For each sentence in the training corpus 601,
the output of the translator 300a is examined by the
translation checker 600. If the output is correct (i.e. the
correct formal command is selected by the system which
corresponds to the correct command in the training corpus),
then the sentence is added to the accept corpus 602. If the
output is incorrect, then the sentence is added to the
reject corpus 603.

Referring to FIGS. 4A and 4B, an example of the process
and system for building accept and reject models are
illustratively depicted, according to the present invention.
Each of the sentences in the accept corpus 602 and the

reject corpus 603 are subjected to feature extractors 401a and 401b, respectively, both of which are functionally equivalent to each other. The feature extractors 401a and 401b are responsible for extracting a set of features for each sentence, and constructing a feature vector, v.

In one embodiment of the invention, the following features are used to construct the feature vector, v. All tagging scores and all translation scores from the output are included (see FIG. 2) in the feature vector, v. The next j features are the normalized cumulative do_nothing scores for taggings 1 through j , where j is the total number of taggings. The do_nothing score for tagging j could be written as

$$DNS_j = \sum_{i=1}^{k_j} \frac{1}{l_{ij} + 1} \quad \dots \quad (1)$$

where l_{ij} is the translation rank of the i th do_nothing command in tagging and k_j is the number of do_nothing translations of tagging j . In the example of FIG. 2, three taggings are given. DNS_1 , DNS_2 and DNS_3 are calculated. The do_nothing score increases when more do_nothing translations are present in a tagging or when a do_nothing translation is

assigned a higher ranking in the translations of a tagging.

Another feature is a top command similarity measure, TCS.

This TCS feature counts the number of formal commands that
5 are identical to the top command of the top tagging, without
considering the arguments of the command. For the example
in FIG. 2, close_folder(name=FNAME) and
close_folder (folder =current) would be considered
identical. This feature can be written as

$$TCS = \sum_{i=1}^k \frac{1}{k_i + 1} \quad \dots \quad (2)$$

where k_i is the index of the i th translation that is
identical to the first, and k is the number of translations
identical to the first tagging.

Another feature includes a parameter mismatch feature,
15 which measures the number of command arguments that are
present in the translation of a command, but are not
available in the tagging of that command. For example, in
FIG. 2, where the selected formal command is close_folder
(name=FNAME) and the argument FNAME maps to "message log",
20 the parameter mismatch would be 0. On the other hand, if

none of the words were tagged as FNAME then argument will be incomplete, and in this case the parameter mismatch would be 1. For commands with more than one argument, the parameter mismatch may be greater than 1.

5 The feature extractor 401a extracts the features and constructs the feature vector for each sentence and submits the feature vector to a model constructor 604a. Similarly, the feature extractor 401b submits the feature vector to model constructor 604b. Model constructors 604a and 604b are functionally equivalent to each other. In one embodiment of the invention, model constructor 604a computes an accept mean vector m_A and accept covariance matrix Σ_A for all the feature vectors produced by the feature extractor 401a, corresponding to all the sentences in the accept corpus 602. An accept model 605 includes the accept mean vector m_A , the accept covariance matrix Σ_A , and the total number of sentences n_A in the accept corpus 602. Similarly, model constructor 604b computes a reject mean vector m_R and reject covariance matrix Σ_R for all the feature vectors produced by the feature extractor 401b, corresponding to all the sentences in the reject corpus 603.

The reject model 605 includes the reject mean vector m_R , the reject covariance matrix Σ_R , and the total number of sentences n_R in the reject corpus 603.

Referring to FIG.5, a robustness checker 400 is schematically shown in accordance with the present invention. Robustness checker 400 connects to translator 300. Robustness checker 400 include feature extractor 401, robustness evaluator 402, accept model 605 and reject model 606. Feature extractor 401 is functionally equivalent to feature extractors 401a and 401b described previously with reference to FIGS. 4A and 4B.

Robustness evaluator 402 is responsible for evaluating a given feature vector, calculated by feature extractor 401 using the output from translator 300 for a new sentence from the user, and determining if the corresponding formal command should be accepted (i.e. submitted for execution), or rejected.

The robustness evaluator 402 first calculates $P(A)$, the prior probability for command acceptance, and $P(R)$, the prior probability for command rejection. In one embodiment of the invention, $P(A)$ and $P(R)$ are calculated using

$$P(A) = n_A / (n_A + n_R) \dots (3)$$

$$P(R) = n_R / (n_A + n_R) \dots (4)$$

where n_A and n_R are the number of sentences in the accept
5 corpus 602 and reject corpus 603, respectively.

Given a feature vector v produced by the feature extractor 401, the robustness evaluator 402 calculates the conditional probabilities $P(v|A)$ and $P(v|R)$, using

$$P(v|A) = \frac{e^{-\frac{1}{2}(v-m_A)^T \Sigma_A^{-1} (v-m_A)}}{(2\pi)^{\frac{n_A}{2}} |\Sigma_A|^{\frac{1}{2}}} \dots (5)$$

$$P(v|R) = \frac{e^{-\frac{1}{2}(v-m_R)^T \Sigma_R^{-1} (v-m_R)}}{(2\pi)^{\frac{n_R}{2}} |\Sigma_R|^{\frac{1}{2}}} \dots (6)$$

T represents the transpose operator for vector $v-m_A$ and Σ^{-1} is an inverse matrix. The classification rule is simple. A formal command with feature vector v is accepted if:

$$P(A) P(v|A) > P(R) P(v|R) \dots (7)$$

and rejected otherwise. If the command is to be executed, then it is submitted to a command executor 500.

Variations to the classification mechanism specified by Equations (3) - (7) above will now be described in greater detail. One variation is to permit the user to modify the values of $P(A)$ and $P(R)$. In one embodiment of the invention, the user interface 100 (FIG. 1) permits the user to modify the values of $P(A)$ and $P(R)$. By changing the values of $P(A)$ and/or $P(R)$, users can modify the system behavior to suit desired preference. For example, if the user feels that too many commands are being rejected by the system, then increasing the value of $P(A)$ (or equivalently, decreasing the value of $P(R)$) would increase the acceptance rate of the commands. An extreme case is when the value of $P(R)$ is set to 0, where all commands will be accepted. Once the user modifies the values for $P(A)$ and/or $P(R)$, the classification rule of EQ. (7) is applied with the new values.

Another variation includes not using the reject model 606 at all, and basing all decisions on the accept model 605 only. With this variation, the reject model 606 is not constructed, and the formal command will be accepted if

$$P(A) P(v|A) > P_{th} \quad \dots \quad (8)$$

where P_{th} is a predetermined threshold. Determining the value for P_{th} is subjective and may be defined using trial-and-error experiments or other determination techniques. The designer of the system may choose a default value for P_{th} by trying out different values for P_{th} , and choose a value that gives a reasonable or desirable system behavior. Again, the user may be permitted to modify the value for P_{th} via the user interface 100.

Another variation includes the use of clustered accept and reject models. Referring to FIGS. 6A and 6B, schematically illustrated is an example of a process for building clustered accept and reject models, in accordance with the present invention. In this embodiment, a plurality of accept models 605 and/or reject models 606 are employed. This embodiment may be adjusted to accommodate different sets of conditions that may lead to acceptance or rejection of a command. For example, a command may be rejected due to processing errors, e.g., because of an error made by the tagger 200 (FIG. 1) or because of an error made by the translator 300 (FIG. 1). Further, different errors may be distinguished based on the type of error. For example, the

command itself could be wrong, or perhaps the command is correct but the arguments are incorrect.

The training data from accept corpus 602 is partitioned into one or more accept clusters 608 by a cluster assigner 607a which is coupled to the feature extractor 401a. A similar operation is performed for the reject corpus 603 by a cluster assigner 607b which is coupled to the feature extractor 401b. The number of clusters to be used in each case is a system parameter that needs to be selected by the designer of the system, which may be based on trial-and-error experiments or other methods.

In one embodiment of the invention, 3 clusters for both the accept clusters 608 and the reject clusters 609 (the number of clusters does not have to be the same for the accept and reject models). Assigning the data to one of the clusters can be done using rules (e.g. what kind of error resulted in the rejection), or using clustering techniques such as a K-means clustering algorithm, which is known in the art. Once the data is partitioned into the desired number of clusters, model constructors 604a and 604b construct the desired number of accept models 605 and reject models 606. Each model will have its own mean vector,

covariance matrix and number of sentences. For example, if we have 3 accept models, then accept model 1 will have accept mean vector m_{A1} , covariance matrix Σ_{A1} and number of sentences n_{A1} , and similarly for accept models 2 and 3 (and reject models as well).

Referring to FIG. 7, a robustness checker is illustratively shown employing clustered models in accordance with the present invention. Robustness evaluator 402 of robustness checker 400 calculates the values $P(A_j)$ for each accept model j using:

$$P(A_j) = n_{Aj} / n_{total} \dots (9)$$

where n_{Aj} is the number of sentences in accept cluster j , and n_{total} is the total number of sentences in all of the accept clusters and reject clusters. Similarly, robustness evaluator 402 calculates the values $P(R_k)$ for each reject model k using:

$$P(R_k) = n_{Rk} / n_{total} \dots (10)$$

where n_{Rk} is the number of sentences in reject cluster k, and n_{total} is the total number of sentences in all of the accept clusters and reject clusters.

Given a feature vector v produced by the feature extractor 401, the robustness evaluator 402 calculates the conditional probabilities $P(v|A_j)$ and $P(v|R_k)$ for each accept cluster j and reject cluster k, using:

$$P(v|A_j) = \frac{e^{-\frac{1}{2}(v-m_{A_j})^T \Sigma_{A_j}^{-1} (v-m_{A_j})}}{(2\pi)^{\frac{n_{A_j}}{2}} |\Sigma_{A_j}|^{\frac{1}{2}}} \dots \quad (11)$$

$$P(v|R_k) = \frac{e^{-\frac{1}{2}(v-m_{R_k})^T \Sigma_{R_k}^{-1} (v-m_{R_k})}}{(2\pi)^{\frac{n_{R_k}}{2}} |\Sigma_{R_k}|^{\frac{1}{2}}} \dots \quad (12)$$

The classification rule is as follows. A formal command with feature vector v is accepted if the

$$\max(P(A_j) P(v|A_j)) \text{ (over all } j) > \max(P(R_k) P(v|R_k)) \text{ (over all } k) \dots \quad (13)$$

and rejected otherwise. If the command is to be executed, it is submitted to the command executor 500 (FIG. 1) as described above.

The present invention presents a robustness checker
that can be employed by a natural language understanding
system to determine if the user's natural language input has
been understood correctly by the system. The robustness
5 checker is statistically trained using the same training
data that was used to build the natural language
understanding system. The robustness checker calculates a
feature vector for each input from the user, compares the
feature vector against a set of statistical models and
determines if the input should be accepted or rejected.
When the input is accepted, the command associated with the
input is executed. When the input is rejected, the command
is not executed, and the user may have to resubmit the
input.

Having described preferred embodiments of a system and
method for ensuring robustness in natural language
understanding (which are intended to be illustrative and not
limiting), it is noted that modifications and variations can
be made by persons skilled in the art in light of the above
teachings. It is therefore to be understood that changes
20 may be made in the particular embodiments of the invention
disclosed which are within the scope and spirit of the

invention as outlined by the appended claims. Having thus described the invention with the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended

5 claims.

SEARCHED SERIALIZED INDEXED
10
FILED

WHAT IS CLAIMED IS:

1. A method for ensuring robustness of a natural language understanding (NLU) system comprising the steps of:

5 tagging recognized words of a command input to the NLU system to associate the command with a context;

translating the command to at least one formal command based on the tagged words;

determining a top ranked formal command based on scoring of the tagged recognized words and scoring translations of the at least one formal command;

determining whether the top ranked formal command is accepted by comparing a feature vector of the top ranked formal command to representations of feature vectors stored in an accept model; and

15 executing the top ranked formal command if accepted and preventing incorrect commands from execution to provide a robust NLU system.

2. The method as recited in claim 1, wherein the step of determining a top ranked formal command includes the step of ranking formal commands based on a product of scores of

the tagged words and scores of translations of the at least one formal command.

3. The method as recited in claim 1, wherein the step
5 of determining a top ranked formal command includes the step of ranking N formal commands where N is a selectable system parameter.

4. The method as recited in claim 1, further comprising the step of determining whether the top ranked formal command is rejected by comparing the feature vector of the top ranked formal command to representations of feature vectors stored in a reject model.

15 5. The method as recited in claim 4, further comprising the step of providing the reject model by including representations of feature vectors of formal commands corresponding to words or sentences to be rejected.

20 6. The method as recited in claim 4, wherein the reject model includes a cluster of models.

7. The method as recited in claim 6, further comprising the step of clustering the cluster of models based on at least one of mistakes in commands, mistakes in arguments of the command, and processing mistakes.

5

8. The method as recited in claim 1, further comprising the step of providing the accept model by including representations of feature vectors of formal commands corresponding to words or sentences to be accepted.

9. The method as recited in claim 1, wherein the step of determining whether the top ranked formal command is accepted includes the step of computing a probability of acceptance for the command.

10. The method as recited in claim 9, wherein the step of computing a probability of acceptance for the command includes the steps of:

computing a probability of rejection for the command and comparing the probability of acceptance to the probability of rejection to determine if the command is to be executed.

11. The method as recited in claim 9, wherein the step
of computing a probability of acceptance for the command
includes the step of comparing the probability of acceptance
to a threshold probability to determine if the command is to
5 be executed.

12. The method as recited in claim 11, further
comprising the step of modifying the threshold by the user.

13. The method as recited in claim 1, wherein the
accept model includes a cluster of models.

14. The method as recited in claim 13, further
comprising the step of clustering the cluster of models
based on at least one of mistakes in commands, mistakes in
15 arguments of the command, and processing mistakes.

15. The method as recited in claim 1, wherein the step
of preventing incorrect commands, includes executing a do
nothing command responsive to the incorrect commands.
20

16. A method for building an evaluation corpus for
checking commands in a natural language understanding (NLU)
system comprising the steps of:

5 providing a training corpus of words and sentences, the
words and sentence having a user input form and a
corresponding formal command associated with the user input
form, at least some of corresponding formal commands
including a do nothing command for one of incomplete and
incorrect commands;

10 passing the words and sentences of the training corpus
to the natural language understanding system to determine a
top ranked command;

15 comparing the top ranked command to the corresponding
formal command to determine if a match exists;

if a match exists, the word or sentence is placed in
the accept corpus, otherwise in the reject corpus;

20 extracting features from the words or sentences of the
accept corpus and the reject corpus to construct a feature
vector for each word or sentence; and

constructing an accept model and a reject model,
respectively, from the extracted feature vectors.

17. The method as recited in claim 16, wherein the
feature vectors include at least one of tagging scores for
recognized words of the word or sentence represented by the
feature vector and translation scores for formal commands
associated with the word or sentence represented by the
feature vector.

18. The method as recited in claim 16, wherein the
feature vectors include a do nothing score associated with
words and sentences, the do nothing score for indicating a
probability that the do nothing command is present for
associated words and sentences.

19. The method as recited in claim 16, wherein the
feature vectors include a top command similarity measure for
counting identical formal commands.

20. The method as recited in claim 16, wherein the
feature vectors include a parameter mismatch feature for
measuring a number of command arguments in a translation of
a command.

5

21. The method as recited in claim 16, further comprising the step of clustering feature vectors according to selected characteristics and conditions to provide at least one of a cluster of accept models and a cluster of reject models.

10

22. The method as recited in claim 16, wherein the accept model and the reject model consist of mean vectors and covariance matrices of feature vectors representing the words and sentences and a number of words and sentences stored in the model.

15

23. A program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for ensuring robustness of a natural language understanding (NLU) system, the method steps comprising:

20

tagging recognized words of a command input to the NLU system to associate the command with a context;

translating the command to at least one formal command based on the tagged words;

determining a top ranked formal command based on scoring of the tagged recognized words and scoring translations of the at least one formal command;

5 determining whether the top ranked formal command is accepted by comparing a feature vector of the top ranked formal command to representations of feature vectors stored in an accept model; and

executing the top ranked formal command if accepted and preventing incorrect commands from execution to provide a robust NLU system.

10 24. The program storage device as recited in claim 23, wherein the step of determining a top ranked formal command includes the step of ranking formal commands based on a product of scores of the tagged words and scores of translations of the at least one formal command.

15 25. The program storage device as recited in claim 23, wherein the step of determining a top ranked formal command includes the step of ranking N formal commands where N is a selectable system parameter.

26. The program storage device as recited in claim 23,
further comprising the step of determining whether the top
ranked formal command is rejected by comparing the feature
vector of the top ranked formal command to representations
of feature vectors stored in a reject model.

5
10
27. The program storage device as recited in claim 26,
further comprising the step of providing the reject model by
including representations of feature vectors of formal
commands corresponding to words or sentences to be rejected.

15
28. The program storage device as recited in claim 26,
wherein the reject model includes a cluster of models.

20
20
15
29. The program storage device as recited in claim 28,
further comprising the step of clustering the cluster of
models based on at least one of mistakes in commands,
mistakes in arguments of the command, and processing
mistakes.

20
30. The program storage device as recited in claim 23,
further comprising the step of providing the accept model by

including representations of feature vectors of formal commands corresponding to words or sentences to be accepted.

5

31. The program storage device as recited in claim 23,
wherein the step of determining whether the top ranked
formal command is accepted includes the step of computing a
probability of acceptance for the command.

10
15
20

32. The program storage device as recited in claim 31,
wherein the step of computing a probability of acceptance
for the command includes the steps of:

computing a probability of rejection for the command
and comparing the probability of acceptance to the
probability of rejection to determine if the command is to
be executed.

20

33. The program storage device as recited in claim 31,
wherein the step of computing a probability of acceptance
for the command includes the step of comparing the
probability of acceptance to a threshold probability to
determine if the command is to be executed.

34. The program storage device as recited in claim 33,
further comprising the step of modifying the threshold by
the user.

5 35. The program storage device as recited in claim 23,
wherein the accept model includes a cluster of models.

10 36. The program storage device as recited in claim 35,
further comprising the step of clustering the cluster of
models based on at least one of mistakes in commands,
mistakes in arguments of the command, and processing
mistakes.

15 37. The program storage device as recited in claim 23,
wherein the step of preventing incorrect commands, includes
executing a do nothing command responsive to the incorrect
commands.

20 38. A natural language understanding (NLU) system
comprising:

means for tagging recognized words of a command input
to the NLU system to associate the command with a context;

means for translating the command to at least one formal command based on the tagged words;

a robustness checker for determining a top ranked formal command based on scoring of the tagged recognized words and scoring translations the at least one formal command, the robustness checker for determining whether the top ranked formal command is accepted by comparing a feature vector of the top ranked formal command to representations feature vectors stored in an accept model; and

10 a command executor for executing the top ranked formal command if accepted and preventing incorrect commands from execution to provide a robust NLU system.

15 39. The system as recited in claim 38, wherein the top ranked formal command is ranked based on a product of scores of the tagged words and scores of translations of the at least one formal command.

20 40. The system as recited in claim 38, wherein the top ranked formal command is selected from a ranked list of N formal commands where N is a selectable system parameter.

5

41. The system as recited in claim 38, further comprising an accept model for storing representations feature vectors of accept commands, the representations of feature vectors being employed to compare with a user input command to determine an acceptance probability of formal commands.

42. The method as recited in claim 41, wherein the accept model includes a cluster of models.

10

43. The system as recited in claim 38, further comprising a reject model for storing representations of feature vectors of reject commands, the feature vectors being employed to compare with a user input command to determine a rejection probability of formal commands.

44. The system as recited in claim 43, wherein the reject model includes a cluster of models.

20

45. The system as recited in claim 38, wherein the robustness checker includes a feature extractor for extracting feature vectors from the command.

5

46. The system as recited in claim 38, wherein the feature vectors include tagging scores for recognized words of a word or sentence represented by the feature vector and translation scores for formal commands associated with the word or sentence represented by the feature vector.

47. The system as recited in claim 38, wherein the feature vectors include a do nothing score associated with words and sentences, the do nothing score for indicating a probability that a do nothing command is present for associated words and sentences, the do nothing command being associated with incomplete or incorrect commands which may be input as a command.

10
15
20

48. The system as recited in claim 38, wherein the feature vectors include at least one of a top command similarity measure for counting identical formal commands and a parameter mismatch feature for measuring a number of command arguments in a translation of a command.

49. The system as recited in claim 38, wherein the robustness checker includes a robustness evaluator for

determining whether the top ranked formal command is accepted by comparing the top ranked formal command to feature vectors stored in an accept model.

5

50. A natural language understanding system comprising:

a corpus of rejectable commands corresponding to incorrect commands capable of being input by a user; and do nothing commands corresponding to the incorrect commands input to the system which at least one of maintain the system in an idle state and prompt the user to input a response.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000

METHOD AND SYSTEM FOR ENSURING ROBUSTNESS IN NATURAL
LANGUAGE UNDERSTANDING

ABSTRACT OF THE DISCLOSURE

5 A method and system, which may be implemented by employing a program storage device readable by machine, and tangibly embodying a program of instructions executable by the machine to perform method steps for ensuring robustness of a natural language understanding (NLU) system, includes tagging recognized words of a command input to the NLU system to associate the command with a context, and translating the command to at least one formal command based on the tagged words. A top ranked formal command is determined based on scoring of the tagged recognized words and scoring translations of the at least one formal command. Whether the top ranked formal command is accepted is determined by comparing a feature vector of the top ranked formal command to representations of feature vectors stored in an accept model. The top ranked formal command is executed if accepted and incorrect commands are prevented from execution to provide a robust NLU system.

10

15

20

FIG. 1

Y0999-331(8728-310)

DEC: close_folder(name="message log")
 COR: close_folder(name="message log").

TDEC: [CLOSE close CLOSE] the -[FNAME message log FNAME] [FOLDER folder FOLDER]
 TCOR: [CLOSE close CLOSE] the [FNAME message log FNAME] [FOLDER folder FOLDER]
 Complete match

1. CLOSE the FNAME FOLDER (Tagging score: 0.873911) ~ 204

1	0.96887374	close_folder(name=FNAME)
2	304 { 0.011986108	close_folder(folder=current)
3	0.005749428	close_object(object=current)
4	0.0053696297	open_folder(name=FNAME)
5	0.0033040044	close_window(window=current) ~ 204

2. CLOSE the MSG FNAME FOLDER (Tagging score: 0.03781)

1	0.791468	close_folder(name=FNAME)
2	304 { 0.15737012	close_message_window(message=current)
3	0.025178693	close_folder(folder=current)
4	0.006940578	close_window(window=current)
5	0.004540644	close_application(application=mail)

3. CLOSE the FNAME (Tagging score: 0.00714398) ~ 204

1	0.84850997	close_folder(name=FNAME)
2	0.1393669	close_object(object=current)
3	304 { 0.0047025573	open_folder(name=FNAME)
4	0.002893546	close_window(window=current)
5	0.001893007	close_application(application=mail)

FIG. 2

3/7

Y0999-331 (8728-310)

FIG. 3

FIG. 4A

FIG. 4B

FIG. 5

FIG. 6A

FIG. 6B

FIG. 7

AS A BELOW NAMED INVENTOR, I hereby declare that:

My residence, post office address and citizenship are as stated next to my name.

I believe that I am the original, first and sole (*if only one name is listed below*), or an original, first and joint inventor (*if plural names are listed below*), of the subject matter which is claimed and for which a patent is sought on the invention entitled:

**TITLE: METHOD AND SYSTEM FOR ENSURING ROBUSTNESS
IN NATURAL LANGUAGE UNDERSTANDING**

the specification of which either is attached hereto or indicates an attorney docket no. YO999-331 (8728-310), or:

was filed in the U.S. Patent & Trademark Office on _____ and assigned Serial No. _____,

and (*if applicable*) was amended on _____,

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to patentability and to the examination of this application in accordance with Title 37 of the Code of Federal Regulations §1.56. I hereby claim foreign priority benefits under Title 35, U.S. Code §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate, or §365(a) of any PCT international application which designated at least one country other than the United States, or §119(e) of any United States provisional application(s), listed below and have also identified below any foreign applications for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

<u>(Application Number)</u>	<u>(Country)</u>	<u>Priority Claimed:</u>
		Yes [] No []

<u>(Application Number)</u>	<u>(Country)</u>	<u>(Day/Month/Year filed)</u>	<u>Yes [] No []</u>

I hereby claim the benefit under Title 35, U.S. Code, §120, of any United States application(s), or §365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application(s) in the manner provided by the first paragraph of Title 35, U.S. Code, §112, I acknowledge the duty to disclose information material to patentability as defined in Title 37, The Code of Federal Regulations, §1.56(a) which became available between the filing date of the prior application and the national or PCT international filing date of this application:

<u>(Application Serial Number)</u>	<u>(Filing Date)</u>	<u>(STATUS: patented, pending, abandoned)</u>

<u>(Application Serial Number)</u>	<u>(Filing Date)</u>	<u>(STATUS: patented, pending, abandoned)</u>

I hereby appoint the following attorneys: **MANNY W. SCHECTER**, Reg. No. 31,722; **TERRY J. ILARDI**, Reg. 29,936; **CHRISTOPHER A. HUGHES**, Reg. No. 26,914; **EDWARD A. PENNINGTON**, Reg. No. 32,588; **JOHN E. HOEL**, Reg. No. 26,279; **JOSEPH C. REDMOND, Jr.**, Reg. No. 18,753; **KEVIN M. JORDAN**, Reg. No. 40,277; **STEPHEN C. KAUFMAN**, Reg. No. 29,551; **JAY P. SBROLLINI**, Reg. No. 36,266; **DAVID M. SHOFI**, Reg. No. 39,835; **ROBERT M. TREPP**, Reg. No. 25,933; **LOUIS P. HERZBERG**, Reg. No. 41,500; **DANIEL P. MORRIS**, Reg. No. 32,053; **DOUGLAS W. CAMERON**, Reg. No. 31,596; **LOUIS J. PERCELLO**, Reg. No. 33,206; and **PAUL J. OTTERSTEDT**, Reg. No. 37,411; each of them of **INTERNATIONAL BUSINESS MACHINES CORPORATION**, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598; to prosecute this application and to transact all business in the U.S. Patent and Trademark Office connected therewith and with any divisional, continuation, continuation-in-part, reissue or re-examination application, with full power of appointment and with full power to substitute an associate attorney or agent, and to receive all patents which may issue thereon, and request that all correspondence be addressed to:

Frank Chau, Esq.
F. CHAU & ASSOCIATES, LLP
1900 Hempstead Turnpike, Suite 501
East Meadow, New York 11554
Tel.: 516-357-0091

I HEREBY DECLARE that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under §1001 of Title 18 U.S. Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

FULL NAME OF FIRST OR SOLE INVENTOR: Ganesh N. Ramaswamy Citizenship Malaysia

Inventor's signature: Ganesh N. Ramaswamy Date: August 26, 1999
Residence & Post Office Address: 23 Lee Avenue, Ossining, NY 10562

FULL NAME OF SECOND JOINT INVENTOR: Kyle A. Jamieson Citizenship _____

Inventor's signature: _____ Date: _____
Residence & Post Office Address:

FULL NAME OF THIRD JOINT INVENTOR: Jan Kleindienst Citizenship _____

Inventor's signature: _____ Date: _____
Residence & Post Office Address:

U.S. GOVERNMENT USE ONLY

AS A BELOW NAMED INVENTOR, I hereby declare that:

My residence, post office address and citizenship are as stated next to my name.

I believe that I am the original, first and sole (*if only one name is listed below*), or an original, first and joint inventor (*if plural names are listed below*), of the subject matter which is claimed and for which a patent is sought on the invention entitled:

**TITLE: METHOD AND SYSTEM FOR ENSURING ROBUSTNESS
IN NATURAL LANGUAGE UNDERSTANDING**

the specification of which either is attached hereto or indicates an attorney docket no. YO999-331 (8728-310), or:

was filed in the U.S. Patent & Trademark Office on _____ and assigned Serial No. _____,

and (*if applicable*) was amended on _____,

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to patentability and to the examination of this application in accordance with Title 37 of the Code of Federal Regulations §1.56. I hereby claim foreign priority benefits under Title 35, U.S. Code §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate, or §365(a) of any PCT international application which designated at least one country other than the United States, or §119(e) of any United States provisional application(s), listed below and have also identified below any foreign applications for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Priority Claimed:

Yes [] No []

(Application Number)	(Country)	(Day/Month/Year filed)
----------------------	-----------	------------------------

Yes [] No []

(Application Number)	(Country)	(Day/Month/Year filed)
----------------------	-----------	------------------------

I hereby claim the benefit under Title 35, U.S. Code, §120, of any United States application(s), or §365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application(s) in the manner provided by the first paragraph of Title 35, U.S. Code, §112, I acknowledge the duty to disclose information material to patentability as defined in Title 37, The Code of Federal Regulations, §1.56(a) which became available between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial Number)	(Filing Date)	(STATUS: patented, pending, abandoned)
-----------------------------	---------------	--

(Application Serial Number)	(Filing Date)	(STATUS: patented, pending, abandoned)
-----------------------------	---------------	--

I hereby appoint the following attorneys: MANNY W. SCHECTER, Reg. No. 31,722; TERRY J. ILARDI, Reg. 29,936; CHRISTOPHER A. HUGHES, Reg. No. 26,914; EDWARD A. PENNINGTON, Reg. No. 32,588; JOHN E. HOEL, Reg. No. 26,279; JOSEPH C. REDMOND, Jr., Reg. No. 18,753; KEVIN M. JORDAN, Reg. No. 40,277; STEPHEN C. KAUFMAN, Reg. No. 29,551; JAY P. SBROLLINI, Reg. No. 36,266; DAVID M. SHOFI, Reg. No. 39,835; ROBERT M. TREPP, Reg. No. 25,933; LOUIS P. HERZBERG, Reg. No. 41,500; DANIEL P. MORRIS, Reg. No. 32,053; DOUGLAS W. CAMERON, Reg. No. 31,596; LOUIS J. PERCELLO, Reg. No. 33,206; and PAUL J. OTTERSTEDT, Reg. No. 37,411; each of them of INTERNATIONAL BUSINESS MACHINES CORPORATION, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598; to prosecute this application and to transact all business in the U.S. Patent and Trademark Office connected therewith and with any divisional, continuation, continuation-in-part, reissue or re-examination application, with full power of appointment and with full power to substitute an associate attorney or agent, and to receive all patents which may issue thereon, and request that all correspondence be addressed to:

Frank Chau, Esq.
F. CHAU & ASSOCIATES, LLP
1900 Hempstead Turnpike, Suite 501
East Meadow, New York 11554
Tel.: 516-357-0091

I HEREBY DECLARE that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under §1001 of Title 18 U.S. Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

FULL NAME OF FIRST OR SOLE INVENTOR: Ganesh N. Ramaswamy Citizenship _____

Inventor's signature: _____ Date: _____

Residence & Post Office Address:

FULL NAME OF SECOND JOINT INVENTOR: Kyle A. Jamieson Citizenship USA

Inventor's signature: Kyle A. Jamieson Date: 8/28/99

Residence & Post Office Address: 57 Model Avenue, Hopewell, New Jersey 08525

FULL NAME OF THIRD JOINT INVENTOR: Jan Kleindienst Citizenship _____

Inventor's signature: _____ Date: _____

Residence & Post Office Address:

Commonwealth of Massachusetts
Middlesex, S.S. Date 8/28/99
Then personally appeared the above named
KYLE A. JAMIESON
and acknowledged the foregoing instrument
to be his/her free act and deed, before me
RICHARD L. BREWER, Notary Public
My Commission Expires August 4, 2000

Richard L. Brewer

AS A BELOW NAMED INVENTOR, I hereby declare that:

My residence, post office address and citizenship are as stated next to my name.

I believe that I am the original, first and sole (*if only one name is listed below*), or an original, first and joint inventor (*if plural names are listed below*), of the subject matter which is claimed and for which a patent is sought on the invention entitled:

**TITLE: METHOD AND SYSTEM FOR ENSURING ROBUSTNESS
IN NATURAL LANGUAGE UNDERSTANDING**

the specification of which either is attached hereto or indicates an attorney docket no. YO999-331 (8728-310), or:

was filed in the U.S. Patent & Trademark Office on _____ and assigned Serial No. _____,

and (*if applicable*) was amended on _____,

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to patentability and to the examination of this application in accordance with Title 37 of the Code of Federal Regulations §1.56. I hereby claim foreign priority benefits under Title 35, U.S. Code §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate, or §365(a) of any PCT international application which designated at least one country other than the United States, or §119(e) of any United States provisional application(s), listed below and have also identified below any foreign applications for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Priority Claimed:		
(Application Number)	(Country)	(Day/Month/Year filed)
_____	_____	_____

Yes [] No []

Yes [] No []		
(Application Number)	(Country)	(Day/Month/Year filed)
_____	_____	_____

I hereby claim the benefit under Title 35, U.S. Code, §120, of any United States application(s), or §365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application(s) in the manner provided by the first paragraph of Title 35, U.S. Code, §112, I acknowledge the duty to disclose information material to patentability as defined in Title 37, The Code of Federal Regulations, §1.56(a) which became available between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial Number)	(Filing Date)	(STATUS: patented, pending, abandoned)
_____	_____	_____

(Application Serial Number)	(Filing Date)	(STATUS: patented, pending, abandoned)
_____	_____	_____

I hereby appoint the following attorneys: MANNY W. SCHECTER, Reg. No. 31,722; TERRY J. ILARDI, Reg. 29,936; CHRISTOPHER A. HUGHES, Reg. No. 26,914; EDWARD A. PENNINGTON, Reg. No. 32,588; JOHN E. HOEL, Reg. No. 26,279; JOSEPH C. REDMOND, Jr., Reg. No. 18,753; KEVIN M. JORDAN, Reg. No. 40,277; STEPHEN C. KAUFMAN, Reg. No. 29,551; JAY P. SBROLLINI, Reg. No. 36,266; DAVID M. SHOFI, Reg. No. 39,835; ROBERT M. TREPP, Reg. No. 25,933; LOUIS P. HERZBERG, Reg. No. 41,500; DANIEL P. MORRIS, Reg. No. 32,053; DOUGLAS W. CAMERON, Reg. No. 31,596; LOUIS J. PERCELLO, Reg. No. 33,206; and PAUL J. OTTERSTEDT, Reg. No. 37,411; each of them of INTERNATIONAL BUSINESS MACHINES CORPORATION, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598; to prosecute this application and to transact all business in the U.S. Patent and Trademark Office connected therewith and with any divisional, continuation, continuation-in-part, reissue or re-examination application, with full power of appointment and with full power to substitute an associate attorney or agent, and to receive all patents which may issue thereon, and request that all correspondence be addressed to:

Frank Chau, Esq.
F. CHAU & ASSOCIATES, LLP
1900 Hempstead Turnpike, Suite 501
East Meadow, New York 11554
Tel.: 516-357-0091

I HEREBY DECLARE that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under §1001 of Title 18 U.S. Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

FULL NAME OF FIRST OR SOLE INVENTOR: Ganesh N. Ramaswamy Citizenship _____

Inventor's signature: _____ Date: _____

Residence & Post Office Address:

FULL NAME OF SECOND JOINT INVENTOR: Kyle A. Jamieson Citizenship _____

Inventor's signature: _____ Date: _____

Residence & Post Office Address:

FULL NAME OF THIRD JOINT INVENTOR: Jan Kleindienst Citizenship Czech Republic

Inventor's signature: Jan Kleindienst Date: 30.8.99

Residence & Post Office Address: Jerevanska 2590 Kladno-Krochehlav 270 04 Czech Republic

Poštové očkořovací knihy č. 3504/1
Vlastník poštového očkořovacího knihy
Ing. Jan Kleindienst

číslo očkořovací knihy 691106/10662
Kladno, Jerevanská 2590
jehož vlastníkem je České poštové očkořovací knihy
IP 667046
V Praze 10 dne 21. VIII. 1999

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT(S): Ramaswamy et al.

SERIAL NO.: Unassigned

FILED: Concurrently herewith

FOR: METHOD AND SYSTEM FOR ENSURING ROBUSTNESS
IN NATURAL LANGUAGE UNDERSTANDING

ASSOCIATE POWER OF ATTORNEY

Please recognize **FRANK CHAU**, Reg. No. 34,136; **JAMES J. BITETTO**, Reg. No. 40,513; **FRANK V. DeROSA**, Reg. No. 43,584; and **GASPARE J. RANDAZZO**, Reg. No. 41,528; each of them of **F. CHAU & ASSOCIATES, LLP**, 1900 Hempstead Turnpike, Suite 501, East Meadow, New York 11554 as associate attorneys in the above-mentioned application, with full power to prosecute said application, to make alterations and amendments therein, and to transact all business in the Patent and Trademark Office connected therewith.

Telephone calls should be made to Frank Chau by dialing (516) 357-0091.

All written communications are to be sent to Frank Chau, Esq.,
F. Chau & Associates, LLP, 1900 Hempstead Turnpike, Suite 501, East Meadow, New York 11554.

International Business Machines
Corporation
T.J. Watson Research Center
Route 134 and Kitchawan Road
Yorktown Heights, New York 10598

Manny W. Schecter
Registration No. 31,722
Paul J. Otterstedt
Registration No. 37,411
Attorney for Applicant(s)