

Conjuntos Numéricos Conceptos preliminares

Algunos conceptos preliminares

Llamaremos **cota superior** de un conjunto A, a cualquier número real C tal que para todo $x \in A$, $x \le C$

Llamaremos cota inferior de un conjunto A, a cualquier número real c tal que para todo $x \in A$, $x \ge c$

Ejemplos	Cotas superiores	Cotas Inferiores
$A = \{1, 2, 3, \dots, 10\}$	C = 10; 25; 10,8; 100	c = 1; 0, -2
$B = \{1, 0, -1, -2,\}$	C = 1; 2; 3,5,1000	no tiene
$C = \{0, 2, -2, 4, -4,\}$	no tiene	no tiene
D = [0,2]	C = 2, 3, 10, 40	$c = 0, -1, -10 \dots$
$\mathcal{C} = (-\infty, 1)$	C = 1; 2; 3,5,1000	no tiene

Algunos conceptos preliminares

Máximo de un conjunto A: es un número M perteneciente al conjunto que verifica que para todo elemento $x \in A$ es $x \le M$

Mínimo de un conjunto A: es un número **m perteneciente al conjunto** que verifica que para todo elemento $x \in A$ es $m \le x$

Ejemplos $A = \{x \in N \mid x \le 10\}$ $A = \{1, 2, 3, ..., 10\}$ M and M

Hay conjuntos que tienen máximo y mínimo, una sola de las dos cosas o ninguna de las dos.

Algunos conceptos preliminares

Llamaremos $\operatorname{supremo}$ de un conjunto A, a la menor de las cotas superiores

Llamaremos **infimo** de un conjunto A, a la mayor de las cotas

inferiores	Supremo	Ínfimo
Ejemplos	Cotas superiores	Cotas Inferiores
$A = \{1, 2, 3, \dots, 10\}$	C = 10; 25; 10,8; 100	c = 1; 0, -2
$B = \{1, 0, -1, -2,\}$	C = 1; 2; 3,5,1000	no tiene
$C = \{0, 2, -2, 4, -4,\}$	no tiene	no tiene
D = [0,2]		$c = 0, -1, -10 \dots$
$C = (-\infty, 1)$	C = 1; 2; 3,5,1000	no tiene

Algunos conceptos preliminares

Un conjunto se llama acotado si tiene cotas superiores e inferiores

Si un conjunto no tiene cotas superiores o inferiores se llama no acotado

Si un conjunto sólo tiene cotas superiores se llama acotado superiormente

y si sólo tienen inferiores se llama acotado inferiormente.

Algunos conceptos preliminares ¿Qué diferencia estas dos definiciones? El máximo de un conjunto A es un número $M \in A$ tal que: para todo $x \in A$ es $x \le M$ Una cota superior de un conjunto A, es cualquier $C \in R$ tal que: para todo $x \in A$, $x \le C$

RESUMIENDO

- Si un conjunto tiene máximo, tiene cotas superiores
- 1

- ¿Cuáles son?
- ➤ Cualquier número mayor o igual que el máximo

 Un conjunto que tiene cotas superiores no necesariamente tiene máximo

• Un conjunto acotado superiormente siempre tiene supremo

 En un conjunto que tiene máximo, el supremo coincide con el máximo Tarea 1: pensar las implicaciones del resumen anterior en relación a los conceptos mínimo, cotas inferiores e ínfimo.

Tarea 2: Analizar si es verdadero o falso y justificar:

Todo conjunto finito tiene máximo y mínimo

Todo conjunto finito es acotado

Todo conjunto finito tiene ínfimo y supremo

Algunos conceptos preliminares

Llamaremos conjunto abierto a aquel que no tiene ni máximo ni mínimo. Gráficamente, son abiertos aquellos conjuntos que no incluyen las fronteras (o no las tienen).

p: A tiene máximo q: A tiene mínimo

<u>Definición</u>: A es cerrado si se verifica $p \land q$

Llamaremos conjunto cerrado a aquel tiene máximo y mínimo. Gráficamente, son cerrados aquellos que incluyen las fronteras.

<u>Definición</u>: A es abierto si se verifica $\sim p \land \sim q$

Algunos conceptos preliminares

Conjuntos semiabiertos o semicerrados: son aquellos que tienen máximo o mínimo pero no ambos.

p: A tiene máximo q: A tiene mínimo

<u>Definición</u>: A es semicerrado o semiabierto si se verifica $p \lor q$

Ya vimos que conjuntos acotados son aquellos que tienen cotas superiores e inferiores, o sea, cuyos elementos pueden «encerrarse» entre dos números reales

Algunos ejemplos			
Conjuntos	Abiertos	Cerrados	Semiabiertos o semicerrados
Acotados		[2, 3] Cualquier conjunto finito {2, 3, 4, 5}	(2, 3] [2, 3)
No acotados	\mathbb{R} \mathbb{Z} $(-\infty,3) \cup [5,+\infty)$	No hay	(-∞,3) [5,+∞) N

Los conceptos que vimos de máximo, mínimo, cotas, etc., pueden aplicarse a funciones.

- Diremos que una función es acotada, si lo es su conjunto de imágenes.
- Diremos que una función alcanza un máximo absoluto, si su conjunto de imágenes tiene máximo.
- Diremos que una función alcanza un mínimo absoluto, si su conjunto de imágenes tiene mínimo.

Funciones acotadas

La función f(x) = 3. sen x tiene dominio en todos los reales, y el conjunto imagen es el intervalo [-3,3]

Esto significa, que para todo $x \in Dom\ f,\ f(x) \in [-3,3]$ o, lo que es lo mismo:

Como el conjunto [-3,3] es acotado, la función $f(x)=3.\sin x$ es acotada.

Ejemplos Funciones acotadas solo inferiormente $Im\ f=[-4,+\infty)$ Conjunto de imágenes acotado inferiormente y tiene mínimo: La función es acotada inferiormente y alcanza un mínimo absoluto

Un intervalo es cualquiera de los siguientes conjuntos de números reales:

$$(a,b) = \{x \in R / a < x < b\}$$
 a b

$$[a,b] = \{x \in R / a \le x \le b\}$$
 a b

$$[a,b) = \{x \in R \mid a \le x < b\}$$
 a b

$$(a,b] = \{x \in R/a < x \le b\}$$
 a b

Intervalos (repaso a la velocidad de la luz)

Un intervalo es cualquiera de los siguientes conjuntos de números reales (sique):

$$(-\infty, b) = \{x \in R / x < b\}$$

$$(a, +\infty] = \{x \in R / x > a\}$$

$$(-\infty, b] = \{x \in R / x \le b\}$$

$$[a, +\infty) = \{x \in R / x \ge a\} \frac{\Box}{a}$$

Intervalos, en resumen...

	Abiertos	Cerrados	Semiabiertos o Semicerrados
Acotados	(a,b)	[a,b]	[a,b) , (a,b]
No acotados	(−∞, b) (a, +∞)		(−∞, b] [a, +∞)

Son intervalos **SÓLO** estos conjuntos

Además de los siguientes casos particulares

R

Ø

(a,a) = Ø

 $[a,a] = \{a\}$

Operaciones con Intervalos

Como los intervalos son conjuntos, las operaciones que definimos para conjuntos en general, se aplican a intervalos, con las mismas definiciones y propiedades:

- Unión
- Intersección
- Diferencia
- Complemento

Intervalo	Abiertos	Cerrados	Semiabiertos o semicerrados
	(a,b)	[a,b]	[a,b) M: no tiene
Acotados	No tiene ni máximo ni mínimo	M = b m = a	m = a (a,b] M = b M: no tiene
	$(-\infty, \mathbf{b})$ $(\mathbf{a}, +\infty)$		[a, +∞) M = no tiene
No acotados	No tienen		m = a

Operaciones con Intervalos

UNION: La unión de dos intervalos es un conjunto (no siempre un intervalo) que reúne a los elementos comunes y no comunes de ambos intervalos

Ejemplo:
$$A = (-3,2]$$
 $B = [0,4]$ $= \{x \in R \ / \ -3 < x \le 2\}$ $= \{x \in R \ / \ 0 \le x \le 4\}$ $B = [0,4]$ $A = \{x \in R \ / \ 0 \le x \le 4\}$ $A = \{x \in R \ / \ 0 \le x \le 4\}$ $A = \{x \in R \ / \ 0 \le x \le 4\}$ $A \cup B = (-3,4] = \{x \in R \ / \ -3 < x \le 4\}$

Operaciones con Intervalos

INTERSECCIÓN: La intersección de dos intervalos es un nuevo intervalo (siempre) que reúne a los elementos comunes a ambos intervalos

Mismo ejemplo:
$$A = (-3, 2]$$

mo ejemplo:
$$A = (-3,2]$$
 $B = [0,4]$ $= \{x \in R / -3 < x \le 2\}$ $= \{x \in R / 0 \le x \le 4\}$

$$A \cap B = [0,2] = \{x \in R / 0 \le x \le 2\}$$

Operaciones con Intervalos

DIFERENCIA: La diferencia de dos intervalos A y Bes un nuevo intervalo (siempre) que reúne a los elementos que pertenecen sólo a A (y no a B)

Mismo ejemplo:
$$A = (-3, 2]$$

= $\{x \in R / -3 < x \le 2\}$

$$B = [0,4]$$

$$= \{x \in R / 0 \le x \le 4\}$$

$$A - B = (-3,0) = \{x \in R / -3 < x \le 0\}$$

Operaciones con Intervalos

COMPLEMENTO de un intervalo A es un nuevo conjunto (no necesariamente un intervalo) que reúne a los elementos del referencial (el conjunto de números reales) que no pertenecen al conjunto A.

Mismo ejemplo:

$$A = (-3,2] = \{x \in R / -3 < x \le 2\}$$

$$\overline{A} = (-\infty, -3] \cup (2, +\infty) = \{x \in R / x \le -3 \ o \ x > 2\}$$

Ecuaciones e Inecuaciones Ver videos en PEDCO

10