Intro to KNN X: Independent variable Y: Dependent variable Value Label **Basic Service** E-Service Plus Service **Total Service**

IBM Developer

IBM Developer

IBM Developer

Determining the class using 1st KNN

IBM Developer

Determining the class using 1st KNN

Determining the class using 1st KNN

IBM Developer

Determining the class using the 5 KNNs

IBM Developer

SKILLS NETWORK

Determining the class using the 5 KNNs

5-NN -> 3: Plus Service

IBM Developer

Determining the class using the 5 KNNs

IBM Developer

What is K-Nearest Neighbor (or KNN)?

- A method for classifying cases based on their similarity to other cases
- Cases that are near each other are said to be "neighbors"
- · Based on similar cases with same class labels are near each other

IBM Developer

The K-Nearest Neighbors algorithm

- 1. Pick a value for K.
- Calculate the distance of unknown case from all cases.
- 3. Select the K-observations in the training data that are "nearest" to the unknown data point.
- 4. Predict the response of the unknown data point using the most popular response value from the K-nearest neighbors.

IBM Developer

Calculating the similarity/distance in a 1dimensional space

IBM Developer

Calculating the similarity/distance in a 2dimensional space

IBM Developer

Calculating the similarity/distance in a multi-dimensional space

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

= $\sqrt{(34-30)^2 + (190-200)^2 + (3-8)^2} = 11.87$

IBM Developer

What is the best value of K for KNN?

IBM Developer

SKILLS NETWORK

This is a bad prediction

What is the best value of K for KNN?

IBM Developer

Computing continuous targets using KNN

• KNN can also be used for regression

IBM Developer

