PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-211346

(43)Date of publication of application: 31.07.2002

(51)Int.CI. B60R 21/26 B01J 7/00

(21)Application number: 2001-006583 (71)Applicant: TAKATA CORP (22)Date of filing: 15.01.2001 (72)Inventor: MIZUNO HIDEKI

YANO KANJI

(54) INFLATOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an inflator capable of linearly injecting/supplying gas in a bottle shaft direction.

SOLUTION: A diffuser 12 is joined to a mouth 5 of a bottle 3 of the inflator 1 via a ring 6. A housing 17 is mounted on a side peripheral surface of the diffuser 12. An initiator 11 is held in an external part 17B of the housing 17. A barrel 21 is fixed in an internal part 17A of the housing 17. A piston 23 is slidably arranged within an inner hole of the barrel 21. When the initiator 11 generates blast, the blast flows by curving within the internal part 17A of the housing 17 and within a large diameter part 21A of the barrel 21. Receiving the blast, the piston 23 breaks a sealing plate 9 mounted on the ring 6. High pressure gas within the bottle 3 linearly flows within the diffuser 12 and flows out of a gas injection hole 15.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号 特開2002-211346

(P2002-211346A)(43)公開日 平成14年7月31日(2002.7.31)

(51) Int. Cl. 7

識別記号

FI

テーマコード(参考)

B60R 21/26

B01J 7/00

B60R 21/26

3D054

B01J 7/00

A 4G068

審査請求 未請求 請求項の数3 OL (全8頁)

(21)出願番号

(22)出願日

特願2001-6583(P2001-6583)

平成13年1月15日(2001.1.15)

(71)出願人 000108591

タカタ株式会社

東京都港区六本木1丁目4番30号

(72)発明者 水野 秀樹

東京都港区六本木1丁目4番30号 タカタ

株式会社内

(72)発明者 矢野 完侍

東京都港区六本木1丁目4番30号 タカタ

株式会社内

(74)代理人 100100413

弁理士 渡部 温

Fターム(参考) 3D054 DD13 DD17 DD30 FF16

4G068 DA08 DB08 DB23

(54)【発明の名称】インフレータ

(57)【要約】

【課題】 ガスをボトル軸方向に直線的に噴射・供給で きるインフレータを提供する。

【解決手段】 インフレータ1のボトル3の口5には、 リング6を介してディフューザ12が接合されている。 ディフューザ12の側周面にはハウジング17が取り付 けられている。ハウジング17の外部分17Bの中には イニシエータ11が保持されている。ハウジング17の 内部分17Aにはパレル21が固定されている。パレル 21の内孔内にはピストン23が摺動可能に配置されて いる。イニシエータ11が爆風を発生させると、この爆 風がハウジング17の内部分17A内及びバレル21の 大径部21A内を湾曲して流れ、この爆風を受けてピス トン23がリング6に取り付けられた封止板9を打ち破 る。すると、ボトル3内の高圧ガスがディフューザ12 内を直線的に流れてガス噴出孔15から流出する。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 髙圧ガスが充填される、口を有するボト ルと、

該ボトルの口を封止する封止板と、

該封止板を破る原動力となる爆風を発生させるイニシエ ータと、

該イニシエータの爆風によって加速され前記封止板を打 ち破るピストンと、

を具備するインフレータであって、

さらに、前記イニシエータの爆風を前記ピストンへと導 10 く湾曲した通路を具備することを特徴とするインフレー 夕。

【請求項2】 高圧ガスが充填される、口を有するボト ルと、

該ボトルの口を封止する封止板と、

該封止板を破る原動力となる爆風を発生させるイニシエ ータと、

該イニシエータの爆風によって加速され前記封止板を打 ち破るピストンと、

を具備するインフレータであって、

前記ボトルが筒状であって、該ボトルの前記口の先に、 前記イニシエータを取り付けるとともに、ガス噴出口を 有する筒状ディフューザが延設されており、

前記イニシエータが前記ディフューザの側周面に取り付 けられており、前記ガス噴出口が前記ディフューザの反 ボトル側先端部に設けられていることを特徴とするイン フレータ。

前記ピストンを案内する内孔を有するバ 【請求項3】 レルをさらに具備し、該バレルの前記ボトル側の端面が 前記封止板に接していることを特徴とする請求項1又は 30 を介して制御装置に接続されている。 2記載のインフレータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、エアバッグの膨張 展開等用のガスを発生するインフレータに関する。特に は、ガスをボトル軸方向に直線的に噴射・供給できる等 の利点を有するインフレータに関する。

[0002]

【従来の技術】インフレータは、車両用エアバッグの展 開用のガス等の発生器である。インフレータには、大き 40 は、ガス噴出口104の先にエアバッグ本体(図示され く分けて、容器内に充填された髙圧ガスを噴出させ、こ のガスをバッグ本体内に供給するタイプ(ハイブリッド タイプとストアーガスタイプ)のものと、ガス発生剤 (プロペラント)を燃焼させて化学反応によりガス発生 するもの(燃焼タイプ)がある。

【0003】ストアーガスタイプのインフレータには、 例えば図6に示すものがある。図6は、特開平10-2 50525号公報等に開示されている従来のストアーガ スタイプのインフレータの一例を模式的に示す側面断面 図である。この図に示すインフレータ100は、内部に 50 ーブ109内に流出する。このガスは、スリーブ109

高圧ガスが充填されるボトル101を備えている。ボト ル101の一端(図の右端)は閉塞面102となってお り、他端(図の左端)は口103が開口している。ボト ル101の口103には、円環状のリング106を介し てスリーブ109が一体に接合されている。リング10 6の内孔106a寄り端縁は、ボトル101及びスリー ブ109の内周面から突出している。

【0004】リング106の左面側(スリーブ109 側)側には、バーストディスク107が溶接等により取 り付けられている。バーストディスク107は、厚さ 0. 3 mm程度の鋼板製である。バーストディスク10 7は、ボトル101内のガスの充填圧を受けて、図のよ うにスリーブ109側に膨らんだ状態となっている。イ ンフレータ100が作動していない通常時には、このバ ーストディスク107により、ボトル101内のガスが 封止される。

【0005】スリーブ109の外周面には、インフレー タ100の作動時にボトル101内の高圧ガスを通すガ ス噴出孔104が複数形成されている。スリーブ109 20 の端部 (図の左側開口端) には、ハウジング110が取 り付けられている。このハウジング110は、スリーブ 109の端部に嵌め込まれるイニシエータ固定部110 aと、この固定部110aから突出した筒部110bと を有する。ハウジング110のイニシエータ固定部11 0 aには、イニシエータ112が埋め込まれて保持され ている。イニシエータ112の先端部(右端側)112 aは、ハウジング110の固定部110aを突き抜けて 筒部110b内側に入り込んでいる。イニシエータ11 2の後端部(左端側)の端子112bは、図示せぬ配線

【0006】ハウジング110の筒部110b内には、 ピストン115が配置されている。ピストン115の先 端115aは、先細りで鋭利に形成されている。ピスト ン115の後端面には孔115bが形成されており、こ の孔115b内にイニシエータ112の先端部112a が入り込んでいる。ハウジング110の筒部110bの 先端110cとバーストディスク107とは、図に示す ように所定間隔離れている。

【0007】このようなインフレータ100において ず)が連通するように取り付けられる。ボトル101内 のガスは、通常時はバーストディスク(封止板)107 により封止されて密封されている。車両の衝撃時に、図 示せぬセンサが作動してイニシエータ112が爆風を発 生させると、この爆風を受けたピストン115が図の右 側に押し出される。すると、押し出されたピストン11 5の先端115aがパーストディスク107の中心部を 打ち破り、バーストディスク107は全体が破れて大き く開口する。そして、ボトル101内の髙圧ガスがスリ

外周面のガス噴出孔104を通ってバッグ本体内に噴射 ・供給される。

[0008]

【発明が解決しようとする課題】上述した従来のインフ レータ100は、イニシエータ112、ピストン115 及びバーストディスク107の中心を直線的に配置し、 イニシエータ112からの爆風を受けたピストン115 が直進してバーストディスク107を破る構造となって いる。しかしながら、このような構造では、ガスがポト ル101の口103を通ってスリーブ109内へ噴出す 10 る方向(図の左右方向)と、ガスがスリーブ109内か らガス噴出口104を通ってバッグ内に噴出する方向 (図の上下方向)とがほぼ直角に交錯する。そのため、 ガスが直線的にスムースに流れず、ガス流の方向を変え

【0009】これに対し、特開平9-58394号公報 には、ボトルの先端側(反イニシエータ側)から、ボト ルの軸方向に直線的にガスを噴出できるガス発生装置が 開示されている。しかしながら、この公報のガス発生装 20 置は、ボトルを含む装置全体を収容する大きいケースを ボトルの外側に追設しているため大型になり、また製造 コストも増加するという問題がある。

るためには部品を追加しなければならないという課題が

【0010】本発明は、上記の事情に鑑みてなされたも のであって、大型化やコスト増加等を引き起こすことな く、ガスをボトル軸方向に直線的に噴射・供給できるイ ンフレータを提供することを目的とする。

[0011]

あった。

【課題を解決するための手段】上記課題を解決するた め、本発明の第1態様のインフレータは、高圧ガスが充 30 填される、口を有するボトルと、 該ボトルの口を封止 する封止板と、 該封止板を破る原動力となる爆風を発 生させるイニシエータと、 該イニシエータの爆風によ って加速され前記封止板を打ち破るピストンと、 を具 備するインフレータであって、 さらに、前記イニシエ ータの爆風を前記ピストンへと導く湾曲した通路を具備 することを特徴とする。

【0012】本発明によれば、イニシエータからの爆風 が湾曲した通路を通って非直線的にピストンに作用して ピストンを加速する。そして、加速されたピストンが封 40 止板を打ち破り、ボトル内の高圧ガスが噴出する。つま り、ボトルの軸方向にイニシエータを配置しなくても済 む。そのため、髙圧ガスをボトルの軸方向に向けて直線 的に噴射・供給する等の設計の自由度が得られる。

【0013】本発明の他の態様のインフレータは、髙圧 ガスが充填される、口を有するボトルと、 該ボトルの 口を封止する封止板と、 該封止板を破る原動力となる 爆風を発生させるイニシエータと、 該イニシエータの 爆風によって加速され前記封止板を打ち破るピストン

が筒状であって、該ボトルの前記口の先に、前記イニシ エータを取り付けるとともに、ガス噴出口を有する筒状 ディフューザが延設されており、 前記イニシエータが 前記ディフューザの側周面に取り付けられており、前記 ガス噴出口が前記ディフューザの反ボトル側先端部に設 けられていることを特徴とする。

【0014】本発明によれば、イニシエータがボトルの 口の先のディフューザの側周面に取り付けられており、 イニシエータが高圧ガスの噴出方向には配置されていな い。このため、高圧ガスをボトルの軸方向に向けて直線 的に噴射・供給できる。ボトル内から噴射された高圧ガ スは、ディフューザ内を直線的に流れてディフューザの 反ボトル側先端部のガス噴出口から流出する。

【0015】本発明のインフレータにおいては、前記ピ ストンを案内する内孔を有するバレルをさらに具備し、 そのパレルのボトル側の端面が前記封止板に接している ものとすることができる。この場合、ボトル内のガスの 充填圧のかなりの部分をバレルにより受けることができ るので、封止板の厚さが薄くても高圧に耐えることがで きる。なお、封止板が破れた後、ガスはディフューザ内 面とパレルの外側との間のスペースを通って流れ、ガス 噴出口から流出する。

[0016]

【発明の実施の形態】以下、図面を参照しつつ説明す る。図1は、本発明の1実施例に係るインフレータの作 動前の状態を示す断面図である。図2は、同インフレー 夕の作動開始直後の状態を示す断面図である。図3は、 同インフレータの作動中の状態を示す断面図である。図 4は、同インフレータの分解斜視図である。なお、以下 の説明における上下左右とは、各図における上下左右方 向を指す。

【0017】これらの図に示すインフレータ1は、鋼製 の円筒状をしたボトル3を備えている。ボトル3の右端 部はほぼ半球面状をした端面4となっており、ボトル3 の左端部には口5が形成されている。ボトル3の端面4 には、孔4aが形成されている。この孔4aを介して、 ボトル3の内部3Cに不活性ガス等が高圧充填される。 この孔4aは、ガスの充填後にガスシール用の鋼球4b で塞がれる。

【0018】ボトル3の口5には、円環状の鋼製平板等 からなるリング6を介してディフューザ12が接合され ている。ボトル3、リング6及びディフューザ12は等 外径であって、溶接等により一体化されている。図1~ 図3に示すように、リング6の内孔6a寄り端縁は、ボ トル3及びディフューザ12の内周面から突出してい る。リング6の右面(ボトル3側の面)には、鋼板製の 円盤状をした封止板 (パーストディスク) 9が溶接等に より取り付けられている。この封止板9により、リング 6の内孔6a(ボトル3の口5)が封止される。封止板 と、 を具備するインフレータであって、 前記ボトル 50 9の厚さは、0.2~0.4mm(一例)である。

6

【0019】ディフューザ12は、鋼製等の円筒状部材 である。ディフューザ12の右端部(リング6との接合 端部)は、ストレートな円筒状である。ディフューザ1 2 の左端部はテーパ状になっていて、その先にガス噴出 口15が形成されている。ガス噴出口15は、インフレ ータ1の作動時にボトル3内の高圧ガスが噴出する孔で ある。ガス噴出口15の内端緑には、内フランジ15a が形成されている。ガス噴出口15の外周面には、おね じ15 bが切られている。このおねじ15 bには、エア バッグ本体(図示されず)の開口端を固定するための固 10 定フランジ部材25(図4参照)が螺着される。

【0020】ディフューザ12の側周面(各図の下側 面)には、貫通孔12aが形成されている。この貫通孔 12 aには、ハウジング17が挿通されている。図4に 分かり易く示すように、ハウジング17は、ディフュー・ ザ12の内部に配置される内部分17Aと、ディフュー ザ12の外側に配置される外部分17Bとに二分割され た構成を有する。これら内外部分17A、17Bは、ね じ結合あるいは溶接、カシメ等により一体になる。ハウ ジング17の上端面(内部分17A側の上端面)は閉塞 20 端面であり、下端面(外部分17B側の下端面)は開口 している。

【0021】ハウジング17の外部分17Bの中には、 イニシエータ11が保持されている。イニシエータ11 は、先端側がハウジング内部分17A内に入り込んでい る。イニシエータ11には、図示せぬ制御装置に繋がる 配線が接続されている。イニシエータ11は、インフレ ータ1の作動時に封止板9を破る原動力となる爆風を発 生させる。

は、図4に分かり易く示すように貫通孔17Cが形成さ れている。この貫通孔17Cの内周にはねじが切られて おり、このねじに筒状をしたパレル21がねじ込まれて 固定されている。図1~図3に示すように、ハウジング 17とバレル21が一体になった状態では、内部に湾曲 した通路を有する径違いエルボのような構成となる。バ レル21の先端(図1の右端)は、封止板9左面に接触 している。これにより、ボトル3内のガスの充填圧が封 止板9にかかる力のかなりの部分をパレル21により受 程度であっても髙圧に耐えることができる。

【0023】図1~図3に示すように、パレル21の内 孔は、基端側(ハウジング17側)の大径部21Aと、 先端側(封止板9側)の小径部21Bとに分かれてい る。このバレル21の内孔内には、ピストン23が摺動 可能に配置されている。ピストン23は、軸部23aと フランジ部23bとを有する。軸部23aの外径はバレ ル小径部21B内径より若干小さく、フランジ部23b の外径はバレル大径部21A内径より若干小さい。ピス トン23の先端は、先細りで鋭利に形成されている。

【0024】次に、上記の構成からなるインフレータ1 の作用について説明する。図1に示すように、インフレ ータ1の作動しない通常時は、ボトル3の中空部3C内 にガスが充填されており、このガスが封止板9により封 止された状態となっている。このとき、封止板9は、ガ スがボトル3の口5から漏れるのを防ぐシールの役割を 果たす。ピストン23は、バレル21内において図1に 示す定位置に保持されている。この定位置においては、 バレル21右端は封止板9に接しているが、ピストン2 3の先端は封止板9に接していない。

【0025】図1の状態から車両に衝撃が加わると、イ ンフレータ1が作動してボトル3内の高圧ガスをバッグ 本体(図示されず)内に供給する。この車両の異常時に は、制御装置(図示されず)から電気的な点火信号が発 信され、この点火信号に基づきイニシエータ11が爆風 を発生させる。すると、図2に示すように、この爆風が ハウジング17の内部分17A内及びパレル21の大径 部21A内を湾曲して流れ、この爆風を受けてピストン 23が図の右側に向けて押される。

【0026】次いで、図3に示すように、爆風を受けて 押されたピストン23の先端が封止板9を打ち破る。す ると、封止板9全体が破れてボトル3内の高圧ガスが流 出し、バレル21外側とリング6の内孔6a間を通って ディフューザ12内へと流れる。このガスは、さらにガ ス噴出孔15を通ってバッグ本体(図示されず)内に噴 射・供給される。これにより、バッグが膨張展開する。 以上のように、ガスがボトル3内からディフューザ12 内を流れてパッグ本体内に供給される過程で、ガスの流 れは直線的である。なお、インフレータ11の爆風に押 【0022】ハウジング17の内部分17Aの右側面に 30 されたピストン23は、フランジ部23bがバレル21 内の大径部21Aと小径部21B間の段部に当たって抜 け止めされる。

> 【0027】ピストン及びバレルの変形例について説明 する。図5(A)、(B)は本発明に係るインフレータ のピストンの他の例を示す斜視図であり、図5(C)、

(D) は本発明に係るインフレータのバレルの他の例を 示す斜視図であり、図5(E)は図5(D)の作動前の 断面図であり、図5(F)は図5(D)の作動後の断面 図である。図5(A)に示すピストン30は、軸部30 けることができ、封止板 9 の厚さが 0 . $2\sim0$. 4 mm 40 aとフランジ部 3 0 bとを有する。軸部 3 0 aの先端は 先細りに鋭利に形成されている。フランジ部30bの外 周面には、フランジ厚さ方向に沿う溝30cが複数形成 されている。このようなピストン30によれば、イニシ エータ作動時の爆風が溝30cを通ってピストン先端側 へと抜ける。このため、バレル内の内圧を逃すことがで き、バレルの耐圧強度を低くできる。

> 【0028】図5 (B) に示すピストン35は、軸部3 5 a とフランジ部35 b とを有する。ピストン35 内部 には、軸心(軸部35a及びフランジ部35bの中心) 50 に沿う中空部35cが形成されている。このようなピス

トン35によれば、イニシエータ作動時の爆風が中空部 35 cを通って封止板に抜けるため、封止板の中心がほ ぼ円形に破れる。このため、封止板の破断形状が毎回同 じになる。

【0029】図5(C)に示すバレル40は、円筒状の 本体41のボトル側の端部(封止板側の端部;図の右 端)にフランジ42を備えている。このフランジ42に は、複数の孔(オリフィス)42aが形成されている。 このようなバレル40によれば、フランジ42の広い端 面が封止板に接する。このため、封止板をより効果的に 10 サポートすることができる。パレル40内を摺動したピ ストンにより封止板が破れた後は、複数の孔42aを通 ってボトル内のガスが流出する。

【0030】図5(D)、(E)、(F)に示すパレル 45は、円筒状の本体46のボトル側の端部47(封止 板側の端部:図の右端)が先細りに形成されているとと もに、反ボトル側の端部48(ハウジング側の端部;図 の左端) がラッパ状に形成されている。このようなバレ ル45は、作動前は図5(E)のようにピストン50の 先端がバレル45内に位置しており、作動後に図5

(F) のようにバレル45の端部47の開口部からピス トン50先端が突出する。本体46内を摺動したピスト ン50は、先細りの端部47に係合して抜け止めされ る。このようなバレル45には、ピストン後端のフラン ジ部をなくして、ピストンの形状を単純化できるという 利点がある。

【0031】なお、上記のインフレータは、例えば以下 のような改変が可能である。

- (1) イニシエータを設けず、手動でピストンを移動さ せて封止板を破る構造。これは、インフレータを自動車 30 用エアバッグ装置以外に適用するとき(例えば消火器、 ライフジャケット等の機器)に有効である。
- (2) ピストンをボトル側に配置する構造。
- (3) ハウジングをボトルの側面に配置し、このハウジ ングを介して固体、液体、燃料等によりボトル内の内圧 を上げ、封止板を破る構造。この場合は、ピストンは設 けなくてよい。

[0032]

【発明の効果】以上の説明から明らかなように、本発明 によれば、大型化やコスト増加等を引き起こすことな く、ガスをボトル軸方向に直線的に噴射・供給できるイ

ンフレータを提供できる。

【図面の簡単な説明】

【図1】本発明の1実施例に係るインフレータの作動前 の状態を示す断面図である。

【図2】同インフレータの作動開始直後の状態を示す断 面図である。

【図3】同インフレータの作動中の状態を示す断面図で ある。

【図4】同インフレータの分解斜視図である。

【図5】図5(A)、(B)は本発明に係るインフレー タのピストンの他の例を示す斜視図であり、図5

(C)、(D)は本発明に係るインフレータのバレルの 他の例を示す斜視図であり、図5(E)は図5(D)の 作動前の断面図であり、図5(F)は図5(D)の作動 後の断面図である。

【図6】特開平10-250525号公報等に開示され ている従来のストアーガスタイプのインフレータの一例 を模式的に示す側面断面図である。

【符号の説明】

20

1 インフレータ	
3 ボトル	4 端面
4 a 孔	4 b 鋼
球	
5 □	
6 リング	6 a 内
孔	
9 封止板(バーストディスク)	
11 イニシエータ	12 デ
ィフューザ	
15 ガス噴出口	17 ハ
ウジング	
17A 内部分	1 7 B
外部分 .	
21 バレル	
, 2 1 A 大径部	2 1 B
小径部	
23 ピストン	
2 3 a 軸部	2 3 b

40 25 固定フランジ部材

フランジ部

特開2002-211346

【図1】

(6)

[図2]

(7)

【図3】

【図4】

[図6]..

[図5]

(B)

(C)

(D)

(E)

(F)

