BÀI 5. GIỚI HẠN CỦA HÀM SỐ

1) KIẾN THỨC NỀN TẢNG

1 ()	1137	1FÁC	tính	oioi	han	vô	đinh	
1.0	uν	uoc	LIIIII	RIOI	пап	Vυ	umm	•

$$x \rightarrow +\infty \Rightarrow x = 10^9$$

•
$$x \rightarrow \infty \Rightarrow x = 10^9$$

$$x \rightarrow x_0^+ \Rightarrow x = x_0 + 10^{-6}$$

•
$$x \rightarrow x_0 \Rightarrow x = x_0$$
 10 6

$$x \rightarrow x_0 \Rightarrow x = x_0 + 10^{-6}$$

2.Giơi hạn hàm lượng giác:
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
, $\lim_{u\to 0} \frac{\sin u}{u} = 1$

3. Giới hạn hàm siêu việt:
$$\lim_{x\to 0} \frac{e^x}{x} = 1$$
, $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$

4.Lênh Casio : CALC

2) VÍ DU MINH HOA

<u>Bài 1</u>-[Thi thử THPT chuyên Ngữ lần 1 năm 2017] Tính giới hạn $\lim_{x\to 0} \frac{e^{2x}-1}{\sqrt{x+4}-2}$ bằng :

A. 1

B. 8

C. 2

D. 4

GIẢI

❖ Cách 1 : CASIO

Vì $x \rightarrow 0 \Rightarrow x = 0 + 10^6$ Sử dụng máy tính Casio với chức năng CALC

Ta nhận được kết quả
$$\frac{1000001}{125000} \approx 8$$

$$\Rightarrow$$
 B là đáp án chính xác

<u>Chú ý</u>: Vì chúng ta sử dụng thủ thuật để tính giới hạn , nên kết quả máy tính đưa ra chỉ xấp xỉ đáp án , nên cần chọn đáp án gần nhất.

<u>Bài 2</u>-[Thi thử chuyên Amsterdam lần 1 năm 2017] Tính giới hạn $\lim_{x\to 0} \frac{e^{\sin x}}{x}$ bằng:

A. 1

B. 1

C. 0

 \mathbf{D} . $+\infty$

GIẢI

❖ Cách 1: CASIO

> Vì
$$x \to 0 \Rightarrow x = 0 + 10^6$$
 Sử dụng máy tính Casio với chức năng CALC (CALC = ALPHA ×10° x ° sin ALPHA) (ALPHA) (CALC 0 + 1 0 x ° = 6) =

1.00000049

- ➤ Ta nhận được kết quả 1.00000049 ≈ 1
 - \Rightarrow **A** là đáp án chính xác

<u>Bài 3</u>: Tính giới hạn: $\lim \frac{n^3 + 4n - 5}{3n^3 + n^2 + 7}$

A. $\frac{1}{3}$

B. 1

C. $\frac{1}{4}$

D. $\frac{1}{2}$

GIẢI

- ❖ Cách 1: CASIO
- \blacktriangleright Đề bài không cho x tiến tới bao nhiều thì ta hiểu đây là giới hạn dãy số và $x \to +\infty$

x² + 7 CALC 1 0 x 9) =

0.3333333332

- Ta nhận được kết quả $0.33333333332 \approx \frac{1}{3}$
 - \Rightarrow **A** là đáp án chính xác

Bài 4: Kết quả giới hạn $\lim \frac{2}{3^n + 2.5^n}$ là:

- A. $\frac{25}{2}$
- **B**. $\frac{5}{2}$

C. 1

D. $\frac{5}{2}$

GIÅI

- ❖ Cách 1: CASIO
- ightharpoonup Đề bài không cho x tiến tới bao nhiều thì ta hiểu đây là giới hạn dãy số và $x \to +\infty$. Tuy nhiên chúng ta chú ý, bài này liên quan đến lũy thừa (số mũ) mà máy tính chỉ tính được số mũ tối đa là 100 nên ta chọn x = 100

 $= 2 - 5 x^{2} \text{ APHA}) + 2 \times 3 x^{2} \text{ APHA}) \rightarrow + 2 \times 5 x^{2} \text{ APHA})$

CALC 1 0 0
$$\equiv$$
 $2-5X+2$
 $3X+2\times5X$
 -25

- ightharpoonup Ta nhận được kết quả $\frac{25}{2}$
 - \Rightarrow **A** là đáp án chính xác

Chú ý : Nếu bạn nào không hiểu tính chất này của máy tính Casio mà cố tình cho $x = 10^9$ thì máy tính sẽ báo lỗi

CALC 1 0 x 9) =

Math ERROR

[AC] :Cancel [4][•]:Goto

Bài 5: Tính giới hạn:
$$\lim_{n \to \infty} \left(1 + \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}\right)$$

A. 3

D. 0

GIÁI

Cách 1: CASIO

Ta không thể nhập vào máy tính Casio cả biểu thức n số hạng ở trong ngoặc được, vì vậy ta phải tiến hành rút gọn.

$$1 + \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = 1 + \frac{2}{1.2} + \frac{3}{2.3} + \dots + \frac{n+1}{n(n+1)}$$

$$= 1 + 1 + \frac{1}{2} + \frac{1}{2} + \frac{2}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} = 2 + \frac{1}{n+1}$$

 \blacktriangleright Đề bài không cho x tiến tới bao nhiều thì ta hiểu đây là giới hạn dãy số và

$$2 - \frac{1}{X+1}$$

1.999999999

- Ta nhận được kết quả 1.999999999 ≈ 2
 - ⇒ C là đáp án chính xác

Bài 6: Cho
$$S = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{(1)^{n+1}}{3^n}$$
. Giá trị của S bằng:

 $\mathbf{B}. \frac{1}{4}$

C. $\frac{1}{2}$

D. 1

GIÁI

Cách 1: CASIO

- \triangleright Ta hiểu giá trị của S bằng $\lim_{n\to+\infty} S$
- Ta quan sát dãy số là một cấp số nhân với công bội $q = \frac{1}{3}$ và $u_1 = \frac{1}{3}$

Vậy
$$S = u_2 \frac{1}{1} \frac{q^n}{q} = \frac{1}{3} \cdot \frac{1}{1} \cdot \left(\frac{1}{3}\right)^n \frac{1}{1} \cdot \left(\frac{1}{3}\right)$$

$$\frac{1}{3} \times \frac{1 - \left[-\frac{1}{3}\right]^{\frac{3}{4}}}{1 - \left[-\frac{1}{3}\right]} \qquad \qquad \frac{1}{4}$$

- Ta nhận được kết quả $\frac{1}{4}$
 - \Rightarrow **B** là đáp án chính xác

<u>Chú ý</u>: Trong tự luận ta có thể sử dụng công thức của cấp số nhân lùi vô hạn để tính

Bài 7: Tính giới hạn :
$$\lim_{x\to 0^+} \frac{2x+\sqrt{x}}{5x-\sqrt{x}}$$

B.
$$\frac{2}{5}$$

GIÅI

❖ Cách 1: CASIO

- ightharpoonup Đề bài cho $x \to 0^+ \Rightarrow x = 0 + 10^{-6}$

 - **-6)**

- ➤ Ta nhận được kết quả $\frac{1002}{999} \approx 1$
 - \Rightarrow **D** là đáp án chính xác

Bài 8: Tính giới hạn:
$$\lim_{x\to 1} \sqrt{\frac{1-x^3}{3x^2+x}}$$

B.
$$\frac{1}{\sqrt{3}}$$

GIÁI

❖ Cách 1 : CASIO

- Đề bài cho $x \rightarrow 1 \implies x = 0 + 10^{-6}$
 - ON $\overline{} = 1$ ALPHA $\nearrow x^*$ 3 $\bigcirc x^*$ 3 ALPHA $\nearrow x^2$ $\bigcirc x^2$ ALPHA $\nearrow x^2$ CALC $\bigcirc x^2$ $\bigcirc x^2$

$$\sqrt{\frac{1-X^3}{3X^2+X}}$$

<u>1–X³</u> 3X²+X 8.660257287×⊡4

- ❖ Ta nhận được kết quả chứa $10^4 \approx 0$
 - \Rightarrow C là đáp án chính xác

Bài 9: Tính giới hạn:
$$L = \lim_{x \to 0} (\cos x + \sin x)^{\cot x}$$

A.
$$L = \infty$$

B.
$$L = 1$$

C.
$$L = e$$

D.
$$L = e^2$$

GIAI

❖ <u>Cách 1</u> : CASIO

→ Đề bài cho $x \to 0 \Rightarrow x = 0 + 10^6$. Phím cot không có ta sẽ nhập phím tan (\bigcirc MPHA)) + \bigcirc Sin APHA)) \bigcirc Tan APHA)) CALC \bigcirc + \bigcirc Math \blacktriangle

Ta nhận được kết quả chứa 2.718... ≈ e
 C là đáp án chính xác.