CS114 Lab 2

Kenneth Lai

January 24, 2020

Computers with almost no memory

- Computers with almost no memory
- Useful for morphology (but not syntax)

- Automata
 - ► Output: just accept or reject

- Automata
 - Output: just accept or reject
- Transducers
 - Output: an output string (or anything you want)

▶ Input: a string (containing symbols from some alphabet)

- ▶ Input: a string (containing symbols from some alphabet)
 - Read one symbol at a time from left to right

- ▶ Input: a string (containing symbols from some alphabet)
 - ▶ Read one symbol at a time from left to right
- Start in the start (initial) state

- ▶ Input: a string (containing symbols from some alphabet)
 - ▶ Read one symbol at a time from left to right
- Start in the start (initial) state
- Transition to next state according to current state and read symbol

▶ If you get to the end of the input and you are in:

- ▶ If you get to the end of the input and you are in:
 - ► Accept (final) state: return "accept" /output string

- ▶ If you get to the end of the input and you are in:
 - Accept (final) state: return "accept" / output string
 - Other state: return "reject" /do not output string

 Determinism—exactly one transition for each combination of state/symbol

- Determinism—exactly one transition for each combination of state/symbol
- Nondeterminism—zero or more transitions for each combination of state/symbol

► For transducers, distinguish between nondeterministic transducers and nondeterministic transductions

- ► For transducers, distinguish between nondeterministic transducers and nondeterministic transductions
 - ► Transducer—as before

- For transducers, distinguish between nondeterministic transducers and nondeterministic transductions
 - Transducer—as before
 - Transduction—more than one possible output string for any input string

- For transducers, distinguish between nondeterministic transducers and nondeterministic transductions
 - Transducer—as before
 - Transduction—more than one possible output string for any input string
 - ▶ For PA, make sure all transductions are deterministic

► State diagram

- ► Language recognized by a finite state machine
 - ► Set of input strings for which the machine returns "accept" /output string

- ► Language recognized by a finite state machine
 - ► Set of input strings for which the machine returns "accept" /output string
- ► A language is regular if and only if it is recognized by a finite state machine