## Chapter 14

# Periodic Motion

PowerPoint® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman

**Lectures by Wayne Anderson** 

Copyright © 2012 Pearson Education Inc.

#### Introduction

- Our focus so far has been on *unbound* motion: objects that could translate or rotate over an infinite range of displacements and angles.
- In this chapter, we will consider instead *bound* motion: finite oscillations about an equilibrium position in which an object could remain at rest.
- Such oscillations (such as a pendulum, musical vibrations, and pistons in car engines) repeat themselves and are called *periodic motion*.

## What causes periodic motion?

- The spring exerts a *restoring force* which tends to restore the object to its equilibrium position.
- This force causes *oscillation* of the system, or *periodic motion* if the system is undamped (no energy loss to friction).





(c)



## Characteristics of periodic motion

- The *amplitude*, A, is the maximum magnitude of displacement from equilibrium.
- The *period*, *T*, is the time for one cycle.
- The *frequency*, *f*, is the number of cycles per unit time.
- The angular frequency,  $\omega$ , is  $2\pi$  times the frequency:  $\omega = 2\pi f$ .
- The frequency and period are reciprocals of each other: f = 1/T and T = 1/f.

If an object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced 0.120 m from its equilibrium position and released with zero initial speed, then after 0.800 s its displacement is found to be 0.120 m on the opposite side, and it has passed the equilibrium position once during this interval. Find

- a. the amplitude
- b. the period
- c. the angular frequency

- a. The amplitude is equal to the maximum displacement, *A* = 0.120 m.
- b. The period is the time to return to the initial displacement: T = 2(0.800 s) = 1.60 s.
- c. The angular frequency is  $\omega = 2\pi/T = 2\pi/(1.60 \text{ s}) = 3.93 \text{ rad/s}$ .

## Simple harmonic motion (SHM)

- When the restoring force is *directly proportional* to the displacement from equilibrium, the resulting motion is called *simple harmonic motion* (SHM).
- An ideal spring obeys Hooke's law, so the restoring force is  $F_x = -kx$ , which results in simple harmonic motion.



The restoring force exerted by an idealized spring is directly proportional to the displacement (Hooke's law,  $F_x = -kx$ ): the graph of  $F_x$  versus x is a straight line.

**Ideal case:** The restoring force obeys Hooke's law  $(F_x = -kx)$ , so the graph of  $F_x$  versus x is a straight line.



#### **Horizontal SHM**



 A mass m attached to a spring with force constant k with displacement x from equilibrium experiences an acceleration:

$$a_x = d^2x/dt^2 = F_x/m = -(k/m)x$$

 This acceleration is proportional to the displacement. What is the motion x(t), the solution to this 2<sup>nd</sup>-order ordinary differential equation?

## Simple harmonic motion viewed as a projection

- The ball Q moves in a circle in the xy plane with angle  $\theta = \omega t + \phi$ . The x component of the motion is  $x = A \cos \theta$ . Since the ball is in uniform circular motion, its acceleration is  $a = -\omega^2 r$  with x component  $a_x = -\omega^2 x = -\omega^2 A \cos(\omega t + \phi)$ . This is identical to the equation for SHM with  $\omega = \sqrt{(k/m)!}$
- The vector  $\mathbf{A}$  is called a phasor and rotates with angular speed  $\omega$ .



(b) An abstract representation of the motion in (a)



### Displacement as a function of time in SHM

- SHM is described by the equation  $x = A\cos(\omega t + \phi)$ .
- It is periodic with amplitude A, angular frequency  $\omega = \sqrt{(k/m)}$ , frequency  $f = \omega/(2\pi) = (2\pi)^{-1}\sqrt{(k/m)}$ , and period  $T = f^1 = (2\pi)\sqrt{(m/k)}$ .
- The phase  $\phi$  determines the time at which the oscillator reaches  $x_{\text{max}} = +A$ .



## Behavior of $v_x$ and $a_x$ during one cycle

• The figure at right shows how  $v_x$  and  $a_x$  vary during one cycle.



## Graphs of displacement, velocity, and acceleration

- Changing m and k change the period  $T = (2\pi)\sqrt{(m/k)}$ .
- The period is independent of A, the defining characteristic of SHM.
- The initial conditions (ICs) determine the phase through  $x = A\cos(\omega t + \phi)$ .

(a) Increasing *m*; same *A* and *k*Mass *m* increases from curve
1 to 2 to 3. Increasing *m* alone
increases the period.





(a) Displacement x as a function of time t



(b) Velocity  $v_x$  as a function of time t



The  $v_x$ -t graph is shifted by  $\frac{1}{4}$  cycle from the x-t graph.

(c) Acceleration  $a_x$  as a function of time t



The  $a_x$ -t graph is shifted by  $\frac{1}{4}$  cycle from the  $v_x$ -t graph and by  $\frac{1}{2}$  cycle from the x-t graph.

These three curves show SHM with the same period T and amplitude A but with different phase angles  $\phi$ .



An object is undergoing SHM with period 1.200 s and amplitude 0.600 m. At t = 0 the object is at x = 0 and is moving in the negative x direction. How far is the object from the equilibrium position when t = 0.480 s?

The equation for SHM is  $x = A \cos(\omega t + \phi)$ . If the mass is at x = 0 at t = 0, we know  $0 = A \cos \phi$  which implies that  $\phi = \pm \pi/2$ . The velocity is  $dx/dt = -\omega A \sin(\omega t + \phi)$ , implying that at t = 0 we have  $dx/dt = -\omega A \sin \phi$ . For this to be negative,  $\phi = +\pi/2$ :

 $x = A \cos(\omega t + \pi/2) = -A \sin \omega t = -(0.6 \text{ m}) \sin[(2\pi)(t/1.2 \text{ s})]$ 

after inserting the given amplitude and period. Evaluating:

 $x(0.48 \text{ s}) = -(0.6 \text{ m}) \sin[(2\pi)(0.48 \text{ s}/1.2 \text{ s})] = -0.353 \text{ m}$ 

This is between T/4 and T/2 after t = 0, implying that the mass is returning towards the equilibrium position.

## **Energy in SHM**

• Since Hooke's law is a conservative force, the total mechanical energy E = K + U is conserved in SHM:

$$x = A\cos(\omega t + \phi), \ v_x = -\omega A\sin(\omega t + \phi)$$

$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = \text{constant}$$

$$a_x = a_{\text{max}}$$

$$a_x = \frac{1}{2}a_{\text{max}}$$

$$a_x = -\frac{1}{2}a_{\text{max}}$$

$$a_x = -\frac{1}{2}a_{\text{max}}$$

$$a_x = -\frac{1}{2}a_{\text{max}}$$

$$a_x = -a_{\text{max}}$$

$$v_x = \pm \sqrt{\frac{3}{4}}v_{\text{max}}$$

$$v_x = \pm v_{\text{max}}$$

$$v_x = \pm \sqrt{\frac{3}{4}}v_{\text{max}}$$

$$v_x = 0$$

$$E = K + U$$

$$E \text{ is all potential energy.}$$

$$E \text{ is partly potential, partly kinetic energy.}$$

$$E \text{ is all potential energy.}$$

$$E \text{ is all potential energy.}$$

$$E \text{ is all potential energy.}$$

## **Energy diagrams for SHM**

- The conserved energy E determines the turning points  $\pm A$  at which  $U(\pm A) = E$ , K = 0.
- $U = \frac{1}{2}kx^2$ ,  $K = \frac{1}{2}mv^2 = E U = E \frac{1}{2}kx^2$ .
  - (a) The potential energy U and total mechanical energy E for a body in SHM as a function of displacement x

The total mechanical energy E is constant.



**(b)** The same graph as in **(a)**, showing kinetic energy *K* as well

At  $x = \pm A$  the energy is all potential; the kinetic energy is zero.

At x = 0 the energy is all kinetic; the potential energy is zero.



At these points the energy is half kinetic and half potential.

A block with mass m = 0.300 kg is attached to one end of an ideal spring and moves on a horizontal frictionless surface. The other end of the spring is attached to a wall. When the block is at x = +0.240 m, its acceleration is  $a_x = -12.0$  m/s<sup>2</sup> and its velocity is  $v_x = +4.00$  m/s. What are

- a. the spring's force constant *k*
- b. the amplitude of the motion
- c. the maximum speed of the block during its motion
- d. the maximum magnitude of the block's acceleration

a. The force constant can be calculated as

$$k = -F_x/x = -ma/x = -(0.3 \text{ kg})(-12 \text{ m/s}^2)/(0.24 \text{ m}) = 15.0 \text{ N/m}$$
  
 $\omega = (k/m)^{1/2} = [(15 \text{ N/m})/(0.3 \text{ kg})]^{1/2} = 7.07 \text{ rad/s}$ 

b. 
$$E = \frac{1}{2}kA^2 = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

$$A = [(v/\omega)^2 + x^2]^{1/2} = [(4 \text{ m/s/7.07 rad/s})^2 + (0.24 \text{ m})^2]^{1/2}$$
$$= 0.614 \text{ m}$$

c. 
$$\frac{1}{2}mv_{max}^2 = \frac{1}{2}kA^2 \Longrightarrow$$

$$v_{max} = \omega A = (7.07 \text{ rad/s})(0.614 \text{ m}) = 4.35 \text{ m/s}$$

d. 
$$a_{max} = kx_{max}/m = \omega^2 A = (7.07 \text{ rad/s})^2 (0.614 \text{ m}) = 30.7 \text{ m/s}^2$$

#### **Vertical SHM**



- If a body oscillates vertically from a spring, the restoring force has magnitude kx. Therefore the vertical motion is SHM.
- Let's try a PhET!

https://phet.colorado.edu/sims/mass-spring-lab/mass-spring-lab\_en.html

## **Angular SHM**

- A coil spring exerts a restoring torque  $\tau_z = -\kappa \theta$ , where  $\kappa$  is called the *torsion constant* of the spring.
- The result is *angular* simple harmonic motion:

$$I d^2\theta/dt^2 = -\kappa\theta \Longrightarrow \theta(t) = A \cos(\omega t + \phi) \text{ with } \omega = \sqrt{\kappa/I}$$



The spring torque  $\tau_z$  opposes the angular displacement  $\theta$ .

A thin metal disk with mass 2.00 g and radius 2.20 cm is attached at its center to a long fiber. The disk, when twisted and released, oscillates with a period of 1.00 s. Find the torsion constant of the fiber.



The disk has a moment inertia of

 $I = \frac{1}{2}MR^2 = \frac{1}{2}(0.002 \text{ kg})(0.022 \text{ m})^2 = 4.84 \times 10^{-7} \text{ kg} \cdot \text{m}^2$ 

From the angular version of Newton's  $2^{nd}$  law  $I d^2\theta/dt^2 = -\kappa\theta$ , implying SHM with  $\omega = \sqrt{(\kappa/I)}$ . Solving for  $\kappa$ :

 $\kappa = I\omega^2 = I(2\pi/T)^2 = (4.84 \times 10^{-7} \text{ kg} \cdot \text{m}^2)(2\pi/1.0 \text{ s})^2 = 1.91 \times 10^{-5} \text{ N} \cdot \text{m/rad}$ 

#### Vibrations of molecules

- Two atoms a distance r apart exert van der Waals forces on each other with a stable equilibrium point at  $r = R_0$ .
- If they are displaced a small distance x from equilibrium, the restoring force is  $F_r = -(72U_0/R_0^2)x$ , so  $k = 72U_0/R_0^2$  and the motion is SHM:  $x(t) = A\cos(\omega t + \phi)$  with  $\omega = \sqrt{(k/m)}$ .



## The simple pendulum

• A *simple pendulum* consists of a point mass suspended by a massless, string. From Newton's 2<sup>nd</sup> law:

$$m d^2x/dt^2 = mL d^2\theta/dt^2 = -mg \sin \theta$$

• If the pendulum swings with a small amplitude  $\theta$ , sin  $\theta \approx \theta$ :

$$L d^2\theta/dt^2 = -g\theta$$

• The restoring force is linear in  $\theta$  implying SHM with frequency:

$$\omega = \sqrt{(g/L)}$$

(b) An idealized simple pendulum



## The physical pendulum

• A *physical pendulum* is an extended body instead of a point mass whose motion is rotational:

$$I d^2\theta/dt^2 = -mgd \sin \theta$$

For small amplitudes,  $\sin \theta \approx \theta$  and the restoring force is again linear in  $\theta$ . The motion is simple harmonic with frequency  $\omega = \sqrt{(mgd/I)}$ .



We want to hang a thin hoop on a horizontal nail and have the hoop make one complete small-angle oscillation each 2.0 s. What must the hoop's radius be?

A hoop's moment inertia about its center is  $I_{cm} = MR^2$ . By the parallel-axis theorem, its moment of inertia about its edge is:

$$I = I_{cm} + MR^2 = 2MR^2$$
.

Its angular frequency will be

$$\omega^2 = Mgd/I = MgR/(2MR^2) = \frac{1}{2}g/R$$

$$R = \frac{1}{2}g/\omega^2 = \frac{1}{2}g(T/2\pi)^2 = \frac{1}{2}(9.8 \text{ m/s}^2)(2 \text{ s}/2\pi)^2 = 0.496 \text{ m}$$

## **Damped oscillations**

- Real systems have dissipation that act to restore the system to equilibrium.
- The damping force is often proportional to the velocity  $F_x = -b(dx/dt)$ .
- If  $\gamma \equiv b/2m \ge \omega_0 = \sqrt{(k/m)}$ , the system will no longer oscillate and instead will return directly to the equilibrium point.
- For an *underdamped* system, the solution is:

$$x(t) = A e^{-\gamma t} \cos(\omega t + \phi)$$
where  $\omega' = \sqrt{(\omega_0^2 - \gamma^2)}$ .

• Damping causes the amplitude to exponentially decrease and reduces the frequency. The mechanical energy of a damped oscillator decreases continuously.



• The period T increases  $(T_0 = \text{period with zero damping}).$ 

A mass is vibrating at the end of a spring of force constant 225 N/m.

- a. At what times is the mass not moving?
- b. How much energy did this system originally contain?

C. How much energy did the system lose between t = 1.0 s and t = 4.0 s? Where did this energy go? x (cm)



- a. The mass is at rest when its velocity (the slope of the curve) is zero. This occurs at t = 0, 1s, 2s, 3s, 4s, ...
- b. At t = 0, the energy is

$$E = \frac{1}{2}kx^2 = \frac{1}{2}(225 \text{ N/m})(0.07 \text{ m})^2 = 0.551 \text{ J}$$

c. The change in energy between t = 4.0 s and 1.0 s is

$$\Delta E = E_2 - E_1 = \frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2}(225 \text{ N/m})[(0.03 \text{ m})^2 - (0.06 \text{ cm})^2] = -0.304 \text{ J}$$

This energy is lost to dissipation.

#### Forced oscillations and resonance

A forced oscillation occurs if a driving force acts on an oscillator. The amplitude of oscillations driven at frequency  $\omega_d$  is:

$$A = (F_{max}/m)[(\omega_d^2 - \omega_0^2)^2 + (2\gamma\omega_d)^2]^{-1/2}$$

• Resonance occurs if the frequency of the driving force  $\omega_d$  is near the natural frequency  $\omega_0 = \sqrt{(k/m)}$  of the system.

Each curve shows the amplitude A for an oscillator subjected to a driving force at various angular frequencies  $\omega_{\rm d}$ . Successive curves from blue to gold represent successively greater damping.  $b = 0.2 \sqrt{km}$  A lightly damped oscillator exhibits a sharp resonance peak when  $\omega_{\rm d}$  is close to  $\omega$  (the natural angular frequency of an undamped oscillator).  $b = 0.4 \sqrt{km}$  Stronger damping reduces and broadens the peak and shifts it to lower frequencies.  $b = 0.7 \sqrt{km}$  If  $b \geq \sqrt{2km}$ , the peak disappears completely.  $b = 2.0 \sqrt{km}$  If  $b \geq \sqrt{2km}$ , the peak disappears completely.  $b = 2.0 \sqrt{km}$ 

Driving frequency  $\omega_{\rm d}$  equals natural angular

A sinusoidally varying driving force is applied to a damped harmonic oscillator of force constant k and mass m. If the damping constant has a value  $b_1$ , the amplitude is  $A_1$  when the driving frequency  $\omega_d = \omega_0$ . In terms of  $A_1$ , what is the amplitude for the same driving frequency and the same force amplitude  $F_{max}$  if the damping constant is

- a. 3b<sub>1</sub>
- b. ½b<sub>1</sub>

We learned that the driven amplitude is:

$$A = (F_{max}/m)[(\omega_d^2 - \omega_0^2)^2 + (2\gamma\omega_d)^2]^{-1/2}$$

For 
$$\omega_d = \omega_0$$
,  $A = F_{max}/(2\gamma m\omega_0) = F_{max}/(b\omega_0)$ 

- a. Tripling the damping constant b reduces the amplitude by  $\frac{1}{3}$ .
- b. Halving the damping constant b increases the amplitude by a factor of 2.