7회차: 그릭스

Ch.19 그릭문자

실무자들은

- 유러피언 옵션은 Black Scholes Merton 모형으로 구하고.
- 아메리칸 옵션은 이항모형으로 구한다고 합니다.
- 이 챕터에서 변동성은 과거에 관측된 역사적 변동성이 아니라, 자산의 내재변동성(옵션 가격을 이용하여 옵션가격결정모형으로부터 역으로 산출한 자산의 변동성, 또는 예상변 동성) 을 의미.

델타

델타 Δ = 기초자산의 가격변화에 따른 옵션가격의 변화 정도. (Figure 19.2 상에서 접선의 기울기)

 $\Delta = \partial c/\partial S$

(c=콜옵션 가격, S=자산 가격)

 $\Delta * \partial S = \partial c$

Figure 19.2 Calculation of delta.

접선의 기울기

콜옵션 매도포지션의 수익곡선.

콜옵션 매도자(Short Call Position)는 자산가격이 하락하면 이익이지만, 가격이 상승하면 손해다. 이와 같은 가격상승 위험을 상쇄하기 위해 델타헷징을 한다.

델타헷징(=델타중립)

포지션델타= Δ x옵션갯수(매수는 옵션갯수를 양수로, 매도는 옵션갯수를 음수로 표현).

델타헷징(=델타중립화:포지션 전체의 델타를 0으로 맞춰준다) 방법: 포지션델타x(-1)을 더 해주면 됨!

즉, Call Option을 M개 매도했으면 Δ x M개 만큼 자산을 매수하고,

Call Option을 P개 매수했으면 Δ x P개 만큼 자산을 매도하면 된다.

→ S(자산가격)가 상승하면 콜옵션 매도자는 손실 → 헷징 방법: **자산을 매수**한다.

리밸런싱: 자산가격이 오르면 델타가 상승하므로, 델타중립상태를 유지하려면 델타의 증가 분만큼 자산을 더 매입해야 함. (델타증분 x M개) To Figure 19.2

▼ <예시>

콜매도 1,000개, 델타 Δ =0.7 → 0.8 상승한 경우:

리밸런싱 방법은 0.1*1,000=100개 자산매입.

리밸런싱을 자주하면 동적헷지(Dynamic Hedging), 하지 않으면 정적헷지(Static Hedging, Hedge-and-Forget) 라고 한다.

유러피언 주식옵션의 델타

무배당 주식 유러피언 콜옵션 가정.

⇒ BSM방정식:

$$c = S_0 \ N(d_1) - K e^{-rT} \ N(d_2)$$

$$p = Ke^{-rT} \; N(-d_2) - S_0 \; N(-d_1)$$

콜옵션의 델타: $\Delta(call) = N(d_1)$

풋옵션의 델타:
$$\Delta(put) = -N(-d_1) = N(d_1) - 1$$

N(x)= 표준정규분포의 확률누적함수.

$$d_1 = (ln(S_0/K) + (r+\sigma^2/2)T)/\sigma\sqrt{T}$$

$$d_2 = d_1 - \sigma \sqrt{T}$$

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$

Figure 19.3 Variation of delta with stock price for (a) a call option and (b) a put option on a non-dividend-paying stock (K = 50, r = 0, $\sigma = 25\%$, T = 2).

포트폴리오 델타

포트폴리오 $\Delta = \partial \Pi/\partial S$

Ⅱ=포트폴리오 가치, S=자산가격

포트폴리오 $\Delta = \sum w_i \Delta_i$

 w_i : 옵션 갯수

 Δ_i : 옵션 델타

▼ <예제>

콜옵션 매수 100개, 델타=0.5

콜옵션 매도 200개, 델타=0.4

풋옵션 매도 50개, 델타=-0.5

일 때, 포트폴리오 델타는?

델타헷징 방법은?

세타(Theta)

세타: 시간 흐름에 따른 옵션가격or포트폴리오 가치의 변화 정도

$$egin{aligned} \Theta(call) &= -S_0 N'(d_1) \sigma/2 \sqrt{T} - rKe^{-rT} N(d_2) \ \Theta(put) &= -S_0 N'(d_1) \sigma/2 \sqrt{T} + rKe^{-rT} N(-d_2) \ d_1 &= (ln(S_0/K) + (r + \sigma^2/2)T)/\sigma \sqrt{T}, \ d_2 &= d_1 - \sigma \sqrt{T} \ N'(x) &= e^{-0.5x^2}/\sqrt{2\Pi} \ N(-d_2) &= 1 - N(d_2) \ \Theta(put) - \Theta(call) &= rKe^{-rT} \end{aligned}$$

세타의 의미: Θ =-0.5 ⇒ 1일 후 옵션가격이 0.5만큼 하락한다!

Figure 19.5 Variation of theta of a European call option with stock price $(K = 50, r = 0, \sigma = 0.25, T = 2)$.

콜옵션의 세타는 음수 To 엑셀 Theta(3) and Option기본 만기설정

Figure 19.6 Typical patterns for variation of theta of a European call option with time to maturity ($S_0 = 50$, K = 50, r = 0, $\sigma = 25\%$).

만기에 따른 세타의 변화 양상. 내가격,외가격,등가격일 때마다 양상이 다름. To 엑셀 Theta(2)

※ 세타 기간(T)의 2가치 측정 방식

-per calendar day: 1년이 365일.

-per trading day: 1년이 252일.

감마

감마: 자산 가격 변동에 따른 델타의 변화 정도. 델타값을 미분한 값으로, 델타그래프에서 접선의 기울기, 포트폴리오(옵션)의 이계편미분

$$\Gamma = \partial^2 \Pi/\partial S^2 = \partial \Delta/\partial S$$

※감마가 큰 경우 자산 가격 변동에 델타가 민감하게 반응하므로, 감마중립(=0)을 유지시켜 줘야 함.

Figure 19.7 Hedging error introduced by nonlinearity.

자산가격 $S \rightarrow S'$ 이 되면 옵션가격 $C \rightarrow C''$ 이 되어야 하는데, $C \rightarrow C'$ 까지밖에 상승하지 않는 '헷징오차'가 발생. Hedging Error=C''-C'

이 오차는 곡선의 기울기에 따라 달라지는데, 감마가 클수록 곡선이 볼록하다고 해석이 가능!

이 헷징오차를 바로잡는 것이 개념적으로 감마중립

델타중립 포트폴리오에서, 세타와 감마는 아래와 같은 식에서 만남.

$$\Delta\Pi = \Theta\Delta t + 0.5\Gamma\Delta S^2$$

이론적으로는 극히 짧은 시간동안 자산가격이 변동한다고 가정하면 Δt 를 무시한 채로 계산하고, $0.5\Gamma\Delta S^2$ 만 신경쓴다.

포트폴리오 감마

포트폴리오 감마: $w_t\Gamma_t+\Gamma$

 w_t =포트폴리오에 추가되는 옵션의 갯수, Γ_t =그 옵션의 감마, Γ =델타중립상태인 포트폴리오의 감마.

감마중립을 만들기 위한 $\,w_t = -\Gamma/\Gamma_t\,$

▼ <예제>

 $\Delta = 0.62, \Gamma_t = 1.50, \Gamma = -3,000$ 인 매도포트폴리오에서, 감마중립을 달성하기 위한 w_t 를 구하라.

 w_t = -1*-3,000/1.50 = 2,000 개.

Fig 19.8: 감마에 따른 포트폴리오델타와 자산델타의 관계. 곡선의 볼록/오목성이 클수록 Hedging Error가 크다는 것을 추정해볼 수 있음.

Figure 19.8 Relationship between $\Delta\Pi$ and ΔS in time Δt for a delta-neutral portfolio with (a) slightly positive gamma, (b) large positive gamma, (c) slightly negative gamma, and (d) large negative gamma.

감마 계산

$$\Gamma = N'(d_1)/S_0\sigma\sqrt{T}$$

$$N'(x) = e^{-x^2/2}/\sqrt{2\Pi}, d_1 = ln(S_0/K) + (r+\sigma^2/2)T/\sigma\sqrt{T}$$

Figure 19.9 Variation of gamma with stock price for an option $(K = 50, r = 0, \sigma = 25\%, T = 2)$.

주가에 따른 감마의 변화. S=K일 때 감마가 최고점을 찍음. To 엑셀 Delta Gamma (2)

Figure 19.10 Variation of gamma with time to maturity for a stock option ($S_0 = 50$, K = 50, r = 0, $\sigma = 25\%$).

외가격,등가격,내가격일 때 만기에 따른 감마의 변화. 외가격일 때와 내/등가격일 때 감마의 양상이 다름. To 엑셀 Gamma (3)

델타, 세타, 감마의 관계

$$\Delta = \partial \Pi/\partial S, \Theta = \partial \Pi/\partial t, \Gamma = \partial^2 \Pi/\partial S^2$$

세 변수의 관계식:

$$\Theta + rS\Delta + 0.5\sigma^2S^2\Gamma = r\Pi$$

단, 델타중립인 포트폴리오의 경우, $\Delta=0$ 이므로

$$\Theta + 0.5\sigma^2 S^2 \Gamma = r\Pi$$

이 식에 의하면, 세타가 큰 양수(음수)값일수록 감마는 큰 음수(양수)값이다.(반대부호)

베가

베가: 기초자산 가격의 변동성 변화(1%p)에 따른 옵션가격의 변화 정도

옵션가격은 변동성에 비례하므로, 풋/콜에 상관 없이 옵션 매수자는 $\nu>0$, 옵션 매도자는 $\nu<0$

$$u = \partial f/\partial \sigma$$
 (f=옵션가격)

Black-Scholes-Merton 모형에 따른 베가

$$u = S_0 \sqrt{T} N'(d_1)$$

베가중립 포지션: $u/
u_t$

 $(\nu = 포트폴리오베가, \nu_t = 옵션베가)$

 $lpha = \sigma t S^2 \Gamma$ 관계식이 성립하므로, 감마와 베가는 비슷한 양상을 지니며 베가중립과 감마중립이 동의어로 쓰이는 경우가 많다.

로

로(rho): 무위험이자율 변화(1%p)에 따른 옵션가격 변화 정도. 이자율 변화에 따른 포트폴리오 가치의 민감성을 측정하는 문자.

$$egin{aligned}
ho &= \partial f/\partial r \
ho(call) = KTe^{-rT}N(d_2) \
ho(put) &= -KTe^{-rT}N(-d_2) \end{aligned}$$

정리.

Greek Letter	Call Option	Put Option	
Delta	$e^{-qT}N(d_1)$	$e^{-qT}[N(d_1)-1]$	
Gamma	$\frac{N'(d_1)e^{-qT}}{S_0\sigma\sqrt{T}}$	$rac{N'(d_1)e^{-qT}}{S_0\sigma\sqrt{T}}$	
Theta	$-S_0N'(d_1)\sigma e^{-qT}/(2\sqrt{T})$ $+qS_0N(d_1)e^{-qT}-rKe^{-rT}N(d_2)$	$\begin{split} &-S_0N'(d_1)\sigma\!e^{-qT}\left/\!\left(2\sqrt{T}\right)\right.\\ &+qS_0N(-d_1)e^{-qT}+rKe^{-rT}N(-d_2) \end{split}$	
Vega	$S_0 \sqrt{T} N'(d_1) e^{-qT}$	$S_0 \sqrt{T} N'(d_1) e^{-qT}$	
Rho	$KTe^{-rT}N(d_2)$	$-KTe^{-rT}N(-d_2)$	

Ch.20 변동성미소

지금까지의 가정 BSM을 무너뜨리는 개념.

Copyright © 2007 OptionTradingPedia.com

변동성 미소란: 특정 만기를 가진 옵션의 내재변동성(옵션가격결정모형으로 산출한 자산의 변동성)과 행사가격 사이의 관계.

1987년 블랙먼데이사건 발생 이전 옵션시장의 내재변동성: 변동성이 일정하다는 BSM 가정에 부합

블랙먼데이사건 이후, BSM 가정이 무너지며 주식옵션시장의 내재변동성은 비대칭이 됨.

7회차: 그릭스 12

시장이 블랙숄즈 모형대로 움직여 준다면 어느 행사가격으로 내재변동성을 구해도 동일한 값이 나와야 한다. 그러나 실제는 그렇지 않고, 비대칭적인 곡선을 보인다.

내재변동성이 일정하지 않은 이유:

- 1. 기초자산 가격은 블랙숄즈에서 가정한 것처럼 일정한 변동성을 가진 <u>기하브라운운동</u> (GBM)을 따르지 않는다. 시장은 때때로 급등하거나, 급락하는 현상 즉 Jump 현상이 관측된다. GBM은 Jump 현상이 없는 일정한 모형이기 때문에 BSM은 현실을 반영하지 못함.
- 2. 기하브라운운동 (GBM)은 (로그)정규분포 모양이지만, 실제 시장에서 관측되는 분포는 첨도가 높고, 분포의 꼬리가 두터운 모양을 가진다.

3. 시장이 하락하면 위험회피 투자자들로 인해 시장은 더 급락하게 되고, 변동성이 증가한다. 따라서 블랙숄즈 모형처럼 변동성을 일정하게 가정할 수 없다.

풋-콜 패리티(변동성 미소가 Call/Put 관계없이 똑같은 이유)

풋콜패리티 $p + S_0 e^{-qT} = c + K e^{-rT}$ 를 BSM 및 시장에 적용:

가정: 두 식의 K와 T는 같고, arbitrage는 없다.

BSM모델에 따른 풋-콜패리티 $p_{bsm}+S_0e^{-qT}=c_{bsm}+Ke^{-rT}$

시장가에 따른 풋-콜패리티 $p_{mkt} + S_0 e^{-qT} = c_{mkt} + K e^{-rT}$

두 식을 빼면, $p_{bsm}-p_{mkt}=c_{bsm}-c_{mkt}$ 이 성립.

⇒즉, BSM과 MKT의 차이(내재변동성)는 Call옵션이건 Put옵션이건 똑같다.

▼ <예제>

외화(자산)=\$60, 국내무위험이자율(q)=5%, 외국무위험이자율(r)=10%, c_{mkt} =\$2.36, T=1, K=\$59 일 때, 풋-콜 패리티를 이용하여 p_{mkt} 을 구하라. (2분)

힌트:
$$p_{mkt} + S_0 e^{-qT} = c_{mkt} + K e^{-rT}$$

통화옵션

Figure 20.1 Volatility smile for foreign currency options (K = strike price, $S_0 = \text{current}$ exchange rate).

Fig 20.1 그래프를 보면 미소를 띈 듯한 장면이 연상됨. K(행사가격)/S(자산가격)의 비율이 1일 때(등가격) 변동성이 가장 작고, 깊은 내가격 또는 외가격일 땐 내재변동성이 커지는 양상.

Figure 20.2 Implied and lognormal distribution for foreign currency options.

Fig 20.2에 따르면 내재(Implied)의 분포가 Lognormal의 분포보다 첨도가 크고 양쪽 tail이 뚱뚱함. 즉, 극단값의 빈도가 더 많고 그만큼 변동성이 크다고 해석하면 됨

 K_1 이하, K_2 이상의 영역에서는 내재분포>Lognormal분포 이므로, Fig 20.1의 변동성 미소의 그래프가 성립한다.

책의 설명: 깊은 외가격 상태의 환율 콜옵션(행사가격= K_2)을 가정해보자. 환율이 K_2 이상 이어야 수익이 나며, Fig 20.2에 의하면 자산가격이 K2보다 높아질 Implied 확률이 Lognormal 확률보다 크기 때문에 수요가 늘면서 옵션 가격이 비싸짐. \rightarrow 가격이 비싸지면서 Implied Volatility(내재변동성)이 커짐.

경험적 결과

Table 20.1 Percentage of days when daily exchange rate moves are greater than 1, 2, ..., 6 standard deviations (SD = standard deviation of daily change).

	Real world	Lognormal model
>1 SD	23.32	31.73
>2 SD	4.67	4.55
>3 SD	1.30	0.27
>4 SD	0.49	0.01
>5 SD	0.24	0.00
>6 SD	0.13	0.00

Table 20.1: 실제 관측치에 의하면 Lognormal 모델은 극단값의 경우가 발생할 확률을 현실에 비해 과소평가하고 있다.

이유: Lognormal 분포가 성립하려면

- 변동성이 일정하고
- 환율의 급변이 없어야 하는데,

현실 환율시장에서는 변동성 및 환율급변이 종종 발생하므로 Lognormal 분포는 비현실적!

⇒ Lognormal보다 Implied Volatility가 현실에 더 잘 들어맞아.

주식옵션

Figure 20.3 Volatility smile for equities (K = strike price, $S_0 = \text{current equity price}$).

Fig 20.3: 주식옵션의 변동성미소. '변동성 비대칭도' 라고도 함. 행사가격이 낮을수록 내재 변동성이 크며, K(행사가격)이 증가할수록 내재변동성이 감소.

이유:

- 레버리지: 주가가 떨어지면 레버리지가 상승하고, 그 결과로 변동성 상승.
- 변동성 증가 → 투자자 요구수익률(할인률) 증가 → 주가 하락.
- Crashophobia: 시장이 하락한다는 공포심리.

Figure 20.4 Implied distribution and lognormal distribution for equity options.

Fig 20.4: Lognormal에 비해 왼쪽 tail 분포는 뚱뚱하고, 오른쪽 tail의 분포는 작음.

변동성 미소를 규정하는 다른 방법

- Fig20.1, 20.3은 $K=S_0$, 즉 행사가격=자산가격 을 등가격(atm)이라고 봤지만, 실제 트레이더들은 $K=F_0$, 즉 행사가격=선물가격을 등가격(atm)이라고 보는 경우도 많음.
- 50-델타 옵션: 실제 트레이더들은 $\Delta(call)=N(d_1)=0.5, \Delta(put)=N(d_1)-1=-0.5$ 일 때를 등가격으로 보는 경우도 많음.

변동성의 기간구조와 변동성 표면

변동성을 결정짓는 변수: 만기(T) and 행사가격(K)

 Table 20.2
 Volatility surface.

	K/S_0					
	0.90	0.95	1.00	1.05	1.10	
1 month	14.2	13.0	12.0	13.1	14.5	
3 month	14.0	13.0	12.0	13.1	14.2	
6 month	14.1	13.3	12.5	13.4	14.3	
1 year	14.7	14.0	13.5	14.0	14.8	
2 year	15.0	14.4	14.0	14.5	15.1	
5 year	14.8	14.6	14.4	14.7	15.0	

Table 20.2: 책의 예시.

행사가격과 만기가 각각 변동성의 변수가 되고 있다. 만기에 따라, 행사가격에 따라 변동성이 바뀌고 있음.

% 앞선 경우 변동성미소는 내재변동성과 K의 관계로 정의되었는데, 일부 금융공학자들은 변동성미소를 내재변동성과 $ln(K/F_0)/\sqrt{T}$ 사이의 관계로 정의하는 경우도 있다고 합니다.