TRANSFORMER MODEL PERFORMANCE ON AUTOMATIC SPEECH RECOGNITION OF INDIAN NEWS BULLETINS IN 30 LANGUAGES

CHARLES REDMON

ABSTRACT. Four Transformer-based automatic speech recognition (ASR) models – Whisper, AI4Bharat, ... – were evaluated against a corpus of news bulletins from All India Radio spanning 30 languages and 60 locations.

1. Introduction

The past five years have seen a rapid rise in ASR model performance with relatively minimal feature engineering as a consequence of the Transformer model [] and wav2vec embeddings from speech [], among other architectural advances [other key citations here].

1.1. Model summaries.

$1.1.1.\ Whisper.$

There now is your insular city of the Manhattoes, belted round by wharves as Indian isles by coral reefs - commerce surrounds it with her surf. Right and left, the streets take you waterward. Its extreme down-town is the battery, where that noble mole is washed by waves, and cooled by breezes, which a few hours previous were out of sight of land. Look at the crowds of water-gazers there.

Anyone caught using formulas such as $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$ or $\frac{1}{x+y} = \frac{1}{x} + \frac{1}{y}$ will fail.

The binomial theorem is

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

A favorite sum of most mathematicians is

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Likewise a popular integral is

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}$$

Theorem 1.1.1.1. The square of any real number is non-negative.

Proof. Any real number x satisfies x > 0, x = 0, or x < 0. If x = 0, then $x^2 = 0 \ge 0$. If x > 0 then as a positive time a positive is positive we have $x^2 = xx > 0$. If x < 0 then -x > 0 and so by what we have just done $x^2 = (-x)^2 > 0$. So in all cases $x^2 \ge 0$.

2. Introduction

This is a new section. You can use tables like.

2.1. Things that need to be done.

Prove theorems, such as Theorem 2.1.1.

Theorem 2.1.1. The Riemann hypothesis is true.

Proof. This is left as an exercise to the reader, given the complexity of the theorem. \Box

Department of Language and Linguistics, University of Essex

Email address: c.redmon@essex.ac.uk
URL: lab.speechsystems.org/usr/redmon