MATH180C: Introduction to Stochastic Processes II

Lecture A00: math-old.ucsd.edu/~ynemish/teaching/180cA Lecture B00: math-old.ucsd.edu/~ynemish/teaching/180cB

Today: MC review. Conditioning on continuous random variables

Next: PK 7.1, Durrett 3.1

Week 4:

- homework 3 (due Saturday, April 23)
- Midterm 1: Friday, April 22

Example: Birth and death processes If we consider the birth and death process, the =901 equation IT Q = 0 takes the following form $C = \mu, \pi + \sigma \kappa \sigma \pi - \sigma \kappa \sigma \sigma$ $=) \quad \pi_2 = \frac{\lambda_1}{\mu_2} \pi_1 = \frac{\lambda_1 \lambda_0}{\mu_2 \mu_1} \pi_0$ $\pi_0 \lambda_0 - \pi_1(\lambda_1 + \mu_1) + \pi_2 \mu_2 = 0$ $\pi_{i+1} = \frac{\lambda_i}{\mu_{i+1}} \pi_i = \dots = \frac{\lambda_i - \lambda_0}{\mu_{i+1}} \pi_0$ πi-1 λi-1 - πi (λirμi) + Ti+1 li+1 = 0 where $\theta_i = \frac{\lambda_{i-1}}{\mu_i} \cdot \frac{\lambda_{i-2}}{\mu_{i-1}} \cdot \frac{\lambda_o}{\mu_i}$, $\theta_o = 1$. 01+1 Then, $\sum_{i=0}^{\infty} \pi_i = 1$ implies that $\pi_0 \stackrel{\circ}{\sum} \theta_i = 1$ If $\Sigma \theta$; $C \infty$, then (X_t) is positive recurrent and $\Pi = \frac{\theta j}{\Sigma \theta}$; If ZOi = oo, then Tij = o Yj.

Example. Linear growth with immigration

Birth and death process, $\lambda_j = \lambda_j + \alpha$, $\mu_j = \mu_j$ (*) Using Kolmogorovis equations we showed (lecture 5)

that $E(X_{\epsilon}) \rightarrow \frac{\alpha}{\mu-\lambda}, t \rightarrow \infty, if \mu>\lambda.$ What is the limiting distribution of X.?

From the previous slide, $T_j = \frac{\theta_j}{2\theta_i}$, $\theta_j = \frac{\lambda_{j-1} - \lambda_0}{\mu_j - \mu_1}$

If we replace lj. u; by (*), we get

 $T_{j} = \left(\frac{\lambda}{\mu}\right)^{j} \left(1 - \frac{\lambda}{\mu}\right)^{\alpha} \sqrt{\frac{\alpha}{\lambda} \left(\frac{\alpha}{\lambda} + 1\right) \cdots \left(\frac{\alpha}{\lambda} + j - 1\right)}, \quad j > 1$

 $\pi_{o} = \left(1 - \frac{\lambda}{\mu}\right)^{-\frac{1}{\lambda}}$

What you should know for midterm I (minimum): - definition of continuous time MC, Markov property, transition probabilities, generator - representations of MC: infinitesima (generator). jump-and-hold, transition probabilities, rate diagram and relations between them (in particular Q and P(t)) - computing absorption probabilities and mean time to absorption - computing stationary distributions for finite and infinite state MCs and interpretation of (Ti:):=0 - basic properties of birth and death processes

Conditioning on continuous r.v.

Def. Let X and Y be jointly distributed continuous random variables with joint probability density function $f_{x,y}(x,y)$. We call the function

$$f_{X|Y}(x|y) := \frac{f_{X|Y}(x|y)}{f_{Y}(y)} \quad \text{for} \quad f_{Y}(y) > 0$$
the conditional probability density function of X

given Y=y.

The function $F_{XIY}(xIy) = \int_{-\infty}^{x} f_{XIY}(sIy) ds$

Conditional expectation

Def. Let X and Y be jointly distributed continuous random variables, let $f_{XIY}(zIY)$ be a conditional distribution of X given Y=Y and let $g: \mathbb{R} \to \mathbb{R}$

be a function for which $E(|g(x)|) < \infty$. Then we call

$$E(g(X)|Y=y):=\int_{-\infty}^{\infty}g(x)f_{X|Y}(x|y)dx \quad \text{if } f_{Y}(y)>0$$
the conditional expectation of $g(X)$ given $Y=y$.

In particular, if $g(x) = 1_A(x)$ indicator of set A, then $E(1_A(X)|Y=y) = P(X \in A|Y=y) = \int_A f_{XY}(x|y) dx$

Remark

If Y is a continuous random variable, then $P(Y=y)=0 \quad \text{for all } y \in \mathbb{R}$

Therefore, we cannot define $P(X \in A \mid Y = y)$ as $P(X \in A \mid Y = y) = \frac{P(X \in A \mid Y = y)}{P(X = y)}$

X, Y i, i.d. X, Y~ Unif [o11] , Z = X-Y

makes perfect sense

Intuitive explanation/derivo	ition
P(X \([z, x + \(\delta \)], Y \(\ext{[y, y + \(\delta \)]} \)	
= fx,y(x,y) Dx Dy	+ o(bx.by)
Using the multiplication rule $P(X \in [x, x + Dx], Y \in [y, y + by])$	(fy(y) >0 on [y, y+ay])
= P(X ∈ [x, x+ bx) Y €	= [y, y + sy]) P (Y e [y, y + sy])
P(XE[x, x+ax] YE[y, y+ay]) =	P(Xe[x, x+6x], Ye[y, y+6y]) P(Ye[y, y+6y]) DZ by
$\int D x \to 0$	$\begin{array}{c} \Delta y \\ \Delta y \rightarrow 0 \end{array}$
" fx (x Ye [y, y+by])" 1 by →0	fx,y (x,y)
"fx(x17=y)"=fx14(x14)	fy (y)