

팀번호 23

2024-1학기 창의학기제 주간학습보고서 (6주차)

이름 이지민 학습기간 5월 10일 ~ 5월 12일 학번 23012127 학습주차 6 학습시간 학과(전공) 인공지능 과목명 자기주도 창의전공1 수강학점 * 수강학점에 따른 회차별 학습시간 및 10주차 이상 학습 준수 금주 학습목표 지난 주차까지 우리는 정확도를 기준으로 이 모델이 어떻게 생체인식을 수행할 고민했었다. 이번주에는 생체인식 특성상 맞은 것을 틀렸다고 하는 것 보다 틀림맞다고 하는 것이 더 치명적인 오류라고 생각하게 되었다. 때마침 그것을 평가함 confusion matrix에 대한 개념을 인공지능 수학1 시간에 배워 사용하기로 하였 Actual Values Positive (1) Negative (0)	창의과제		
학과(전공) 인공지능 과목명 자기주도 창의전공1 수강학점 * 수강학점에 따른 회차별 학습시간 및 10주차 이상 학습 준수 금주 학습목표 지난 주차까지 우리는 정확도를 기준으로 이 모델이 어떻게 생체인식을 수행할 고민했었다. 이번주에는 생체인식 특성상 맞은 것을 틀렸다고 하는 것 보다 틀림맞다고 하는 것이 더 치명적인 오류라고 생각하게 되었다. 때마침 그것을 평가함 confusion matrix에 대한 개념을 인공지능 수학1 시간에 배워 사용하기로 하였 Actual Values	이름		
* 수강학점에 따른 회차별 학습시간 및 10주차 이상 학습 준수 금주 학습목표 지난 주차까지 우리는 정확도를 기준으로 이 모델이 어떻게 생체인식을 수행할 고민했었다. 이번주에는 생체인식 특성상 맞은 것을 틀렸다고 하는 것 보다 틀림 맞다고 하는 것이 더 치명적인 오류라고 생각하게 되었다. 때마침 그것을 평가함 confusion matrix에 대한 개념을 인공지능 수학1 시간에 배워 사용하기로 하였 Actual Values	학번	3	
금주 학습목표 지난 주차까지 우리는 정확도를 기준으로 이 모델이 어떻게 생체인식을 수행할 고민했었다. 이번주에는 생체인식 특성상 맞은 것을 틀렸다고 하는 것 보다 틀림맞다고 하는 것이 더 치명적인 오류라고 생각하게 되었다. 때마침 그것을 평가함 confusion matrix에 대한 개념을 인공지능 수학1 시간에 배워 사용하기로 하였	학과(전공)	3	
학습목표 지난 주차까지 우리는 정확도를 기준으로 이 모델이 어떻게 생체인식을 수행할 고민했었다. 이번주에는 생체인식 특성상 맞은 것을 틀렸다고 하는 것 보다 틀림맞다고 하는 것이 더 치명적인 오류라고 생각하게 되었다. 때마침 그것을 평가함 confusion matrix에 대한 개념을 인공지능 수학1 시간에 배워 사용하기로 하였	* 수강학점에 따른 회차별 학습시간 및 10주차 이상 학습 준수		
고민했었다. 이번주에는 생체인식 특성상 맞은 것을 틀렸다고 하는 것 보다 틀림맞다고 하는 것이 더 치명적인 오류라고 생각하게 되었다. 때마침 그것을 평가함 confusion matrix에 대한 개념을 인공지능 수학1 시간에 배워 사용하기로 하였			
학습내용 Positive (1) TP FP	학습내용	etrix는 는 수 있는 다. I false false 고 예측한 에서 가장 P와 FN은	

$$sensitivity(recall) = \frac{TP}{TP + FN}$$

$$specificity = \frac{TN}{TN + FP}$$

$$ppv(precision) = \frac{TP}{TP + FP}$$

$$npv = \frac{TN}{TN + FN}$$

$$f1 - score = \frac{recall \times precision}{2(recall + precision)}$$

$$Accuracy = \frac{TP + FN}{TP + FP + FN + TN}$$

수식 1 confusion matrix 관련 각 종 수식

요기서 중요한 것이 f1-score이다. f1-score는 recall과 precision의 조화평균을 활용하기 때문에 불균형한 데이터를 평가할 때 많이 쓰인다.

해당 개념을 적용하여 학습을 진행해본 결과 더 자세한 진행 사항에 대해 알 수 있었다.

그림 2. Epoch 1과 5에서 confusion matrix를 통한 평가 값

우리의 목표는 1종 오류, FP를 줄이는 것이 목적이므로 1종 오류 자체가 줄거나 specificity 혹은 ppv가 높을수록 높을수록 좋은 모델로 학습되고 있음을 알 수 있다. Epoch5에서도 1종오류가 전체 431개 중에서 2개로 낮은 값을 보이고 있음을 알 수 있다. sensitivity와 NPV 또한 각각 0.66, 0.97로 사용자의 얼굴을 인식하지 못하는 경우가 있긴 하지만 아직 그렇게 많진 않음을 알 수 있다.

	Epoch 10/10
	100% 27/27 [00:12<00:00, 2.07it/s]
	train Loss: 0.0614
	100% 15/15 [00:06<00:00, 2.62it/s]
	/var/folders/fx/ngvhqygx7vxbdk cgfnxnz880000gn/T/ipykernel 26510/20 plt.figure(figsize=(10, 5)) # 이미지 크기 설정 val Loss: 3.5062 민감도:0.03 특이도:1.00 PPV:1.00 NPV:0.93 pos_m:1.42 neg_m:1.92 accuracy:0.93 1종오류:0
	그림 3. epoch 10에서 confusion matrix를 통해 구한 평가값
	epoch 10까지 돌렸을 때는 여전히 1종오류가 없는 것을 확인할 수 있음을 통해 다른 사람의 얼굴을 사용자의 얼굴이라고 판단하는 횟수는 적지만 sensitivity와 NPV를 통해 사용자의 얼굴을 다른 사람의 얼굴이라고 판단하는 경우가 많아졌음을 알 수 있다. 앞선 주차에서 웹캠을 통해 실시간으로 얼굴인식 기능을 사용해 보았을 때 성적이 않좋다고 판단한 이유 또한 학습을 너무 많이 시켜서 FN 값이 많이 높은 상태였음을 알 수 있었다.
	이 과정을 통해 앞으로 confusion matrix의 4가지 값을 통해 적정한 값을 찾으면 되겠다고 생각하게 되었다.
학습방법	수업 시간에 배운 내용을 활용하여 코드 구현 후 평가값을 해석함으로써 이전에 학습했던 방법에 어떤 문제점이 있었는지를 알아낸다.
학습성과 및 목표달성도	웹캠을 통한 실시간 얼굴인식 구현에 사용한 학습된 모델이 epoch를 10만큼 돌렸던 것과이번 주차에서 confusion matrix를 통해 epoch10에서 FN값이 아주 높은 상태였다는 것을 알아냄을 통해 이전의 모델이 확실히 오버피팅된 상태였음을 알 수 있었다. 이를 통해 확실히 어떻게 얼굴 인식 모델을 평가해야 하는지 알 수 있었으며 이를 활용하여 최종 목표를 이끌어 낼 수 있을 것이다.
참고자료 및 문헌	https://en.wikipedia.org/wiki/Confusion_matrix 인공지능 수학1 자체 수업 자료
내주 계획	fine-tuning과 관령하여 현재 사용하고 있는 pre-train model보다 더 좋은 방법이 있는지 알아보고 최종적으로 어느정도 신빙성있는 얼굴 인식모델을 구현하는 것을 목표로 계획한다.

년 월 일

지도교수 (인)