

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14110092703

FCC REPORT (WIFI)

Applicant: WirelessMe Limited

Address of Applicant: B210 Languang Building,NO.7 Xinxi Road, High-tech Park

North, Nanshan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Smart Watch

Model No.: Wi-Watch A3

Trade mark: WiMe

FCC ID: 2AC3S-WI-WATCH-A3

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 07 Nov., 2014

Date of Test: 07 Nov., to 03 Dec., 2014

Date of report issued: 04 Dec., 2014

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	04 Dec., 2014	Original

Prepared by: Date: 04 Dec., 2014

Report Clerk

Reviewed by: 04 Dec., 2014

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
J			
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5 5.6	LABORATORY LOCATION	
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1	00.1000.000 =00.100	
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	60
7	TES	T SETUP PHOTO	68
8	EUT	CONSTRUCTIONAL DETAILS	69

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	WirelessMe Limited
Address of Applicant:	B210 Languang Building, NO.7 Xinxi Road, High-tech Park North, Nanshan District, Shenzhen, China
Manufacturer/Factory:	WirelessMe Limited
Address of Manufacturer/Factory:	B210 Languang Building, NO.7 Xinxi Road, High-tech Park North, Nanshan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Smart Watch
Model No.:	Wi-Watch A3
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.30 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-520mAh
Test Voltage:	AC 120V/60Hz

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS14110092703

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS14110092703

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	04-01-2015		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015		
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015		
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015		
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015		

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-10-2015	
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.30 dBi.

6.2 Conducted Emission

Toot Paguiroment:	FCC Part 15 C Section 15.207	7			
Test Requirement:					
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Frequency range (MHz)	dBuV)			
	0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*		
	0.13-0.3	56	46		
	5-30	60	50		
	* Decreases with the logarithm				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test setup:		ence Plane			
	LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line impedence Stabilization Network				
	Test table height=0.8m				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Neutral:

Trace: 11

Site

: FCC PART15 B QP LISN NEUTRAL Condition

: Smart Watch : Wi-Watch A3 EUT Model Test Mode : WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Garen

Freq			Cable Loss	Level	Limit Line	Over Limit	Remark	
MHz	dBu∀	₫B	dB	dBuV	dBu∀	₫B		_
0.166	34.98	0.25	0.00	35.23	65.16	-29.93	Average	
0.178	30.36	0.25	10.77	41.38	64.59	-23.21	QP	
0.242	34.29	0.25	0.00	34.54	62.04	-27.50	Average	
0.346	29.91	0.25	10.73	40.89	59.05	-18.16	QP	
0.608	28.49	0.23	0.00	28.72	56.00	-27.28	Average	
2.554	30.87	0.29	10.94	42.10	56.00	-13.90	QP	
2.664	32.36	0.29	0.00	32.65	56.00	-23.35	Average	
3.310	30.02	0.29	10.91	41.22	56.00	-14.78	QP	
4.647	28.10	0.28	10.86	39.24	56.00	-16.76	QP	
14.907	37.61	0.25	0.00	37.86	60.00	-22.14	Average	
15.635	28.50	0.25	10.91	39.66	60.00	-20.34	QP	
28.603	38.07	0.76	0.00	38.83	60.00	-21.17	Average	
	Freq 0.166 0.178 0.242 0.346 0.608 2.554 2.664 3.310 4.647 14.907	Read Freq Level MHz dBuV 0.166 34.98 0.178 30.36 0.242 34.29 0.346 29.91 0.608 28.49 2.554 30.87 2.664 32.36 3.310 30.02 4.647 28.10 14.907 37.61 15.635 28.50	Read LISN Level Factor MHz dBuV dB 0.166 34.98 0.25 0.178 30.36 0.25 0.242 34.29 0.25 0.346 29.91 0.25 0.608 28.49 0.23 2.554 30.87 0.29 2.664 32.36 0.29 3.310 30.02 0.29 4.647 28.10 0.28 14.907 37.61 0.25 15.635 28.50 0.25	Read LISN Cable Level Factor Loss MHz dBuV dB dB	Read LISN Cable Level Factor Loss Level	Read LISN Cable Limit	Read LISN Cable Limit Over Level Factor Loss Level Line Limit	Read LISN Cable Limit Over

Line:

Site Condition

: FCC PART15 B QP LISN LINE

EUT Smart Watch Model : Wi-Watch A3 Test Mode : WIFI Mode Power Rating: AC 120V/60Hz

Environment: Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Garen

1031	Freq	Read	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	<u>dB</u>	dBu₹	dBu₹	<u>d</u> B	
1	0.166	34.48	0.27	0.00	34.75	65.16	-30.41	Average
2	0.202	25.89	0.28	10.76	36.93	63.54	-26.61	QP
2	0.242	32.72	0.27	0.00	32.99	62.04	-29.05	Average
4 5 6 7	0.330	24.04	0.27	10.73	35.04	59.44	-24.40	QP
5	0.361	26.74	0.27	0.00	27.01	58.69	-31.68	Average
6	3.241	27.88	0.27	10.91	39.06	56.00	-16.94	QP
7	4.574	28.92	0.29	0.00	29.21	56.00	-26.79	Average
8	4.647	26.80	0.29	10.86	37.95	56.00	-18.05	QP
9	14.517	21.15	0.32	10.90	32.37	60.00	-27.63	QP
10	14.986	26.75	0.32	0.00	27.07	60.00	-32.93	Average
11	28.152	24.76	0.74	10.87	36.37	60.00	-23.63	QP
12	28, 452	34.68	0.75	0.00	35.43	60.00	-24.57	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

	Maximum Conducted Output Power (dBm)					
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	13.52	9.14	9.16	7.84		
Middle	13.46	11.28	11.06	9.79	30.00	Pass
Highest	13.12	9.47	9.24	7.82		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

-		6dB Emission	Bandwidth (MHz)		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.26	16.11	17.39	36.07		
Middle	10.26	16.27	17.23	36.07	>500	Pass
Highest	10.26	16.51	17.31	36.23		

T (0)		99% Occupy		D 11		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	13.07	16.43	17.64	35.75		
Middle	13.31	16.51	17.64	36.07	N/A	N/A
Highest	13.71	16.51	17.64	35.71		

Test plot as follows:

6dB EBW

Lowest channel

Middle channel

Highest channel

Highest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

99% **OBW**

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Highest channel

11.NOV.2014 10:54:13

Highest channel

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T O		Power Spec		5		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	3.17	-3.22	-3.50	-7.69		
Middle	3.16	-1.14	-0.80	-5.60	8.00	Pass
Highest	2.95	-3.02	-2.99	-7.36		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:					
	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
119		Peak	1MHz	10Hz	Average Value
Limit:	Frequency Above 1GHz		Limit (dBuV/m @3m)		Remark
			54.00		Average Value
			74.00		Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 				
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Watch Condition

EUT : Wi-Watch A3 : Wifi B-L MODE Model Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Garen

REMARK

Freq	Freq	Read Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
372	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2390,000 2390,000									

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

CONDITION: FOU PART 15 (PK) 3m Bin EUT: Smart Watch Model: Wi-Watch A3
Test mode: Wifi B-L MODE
Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK

יונטווים	ь .	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						
	MHz	dBuV	$-\overline{dB}/m$	dB	dB	dBuV/m	dBu√/m	dB	
1	2390.000	23.76	27.58	5.67	0.00	57.01	74.00	-16.99	Peak
2	2390.000	12.16	27.58	5.67	0.00	45.41	54.00	-8.59	Average

Test channel: Highest

Horizontal:

	7,000		Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
32	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	₫B		-
	2483.500									
2	2483, 500	12.66	27.52	5, 711	11. 1111	45. 88	54.1111	-8.12	Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Watch
Model : Wi-Watch A3
Test mode : Wifi B-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK :

LARME	A :									
	Freq		Antenna Factor							
32	MHz	dBu₹	<u>dB</u> /m		<u>dB</u>	dBu√/m	dBuV/m	<u>d</u> B		200
1	2483.500	23.46	27.52	5.70	0.00	56.68	74.00	-17.32	Peak	
2	2483.500	11.67	27.52	5.70	0.00	44.89	54.00	-9.11	Average	

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Watch Condition

EUT

			Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∇	dB/m	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000						74.00 54.00		

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Smart Watch

Model : Wi-Watch A3
Test mode : Wifi G-L MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK :

шини									
	Freq		Antenna Factor						
32	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000	33.44	27.58	5.67	0.00	66.69	74.00	-7.31	Peak
2	2390,000	17.45	27.58	5.67	0.00	50.70	54.00	-3.30	Average

Test channel: Highest

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Condition EUT : Smart Watch : Smart Watch
Model : Wi-Watch A3
Test mode : Wifi G-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK

REMARK

	Freq		Antenna Factor					
	MHz	dBu∇	<u>dB</u> /m	 <u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500					74.00 54.00		

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: FCC PART 15 (PK) 3m B
EUT : Smart Watch
Model : Wi-Watch A3
Test mode : Wifi G-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK :

	Freq		Antenna Factor						
	MHz	dBu₹	—dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition EUT

: Smart Watch Model : Wi-Watch A3 Test mode : Wifi N20-L MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen

REMARK

			Antenna Factor							
-	MHz	dBu∇	<u>dB</u> /m	<u>dB</u>	<u>ab</u>	dBuV/m	$\overline{dBuV/m}$	<u>ab</u>		_
	2390.000									
2	2390.000	17.97	27.58	5.67	0.00	51.22	54.00	-2.78	Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition

EUT : Wi-Watch A3 : Wifi N20-L MODE Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Garen

REMARK

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	2390.000	35.87	27.58	5.67	0.00	69.12	74.00	-4.88	Peak
2	2390.000	17.61	27.58	5.61	0.00	50.86	54.00	-3.14	Average

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Watch
Model : Wi-Watch A3
Test mode : Wifi N20-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Hun
Test Engineer: Garen
REMARK :

Huni:55%

лици	N 160	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	—dBu∜		<u>d</u> B	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500	29.91 14.41	27.52 27.52	5.70 5.70	0.00 0.00	63.13 47.63	74.00 54.00	-10.87 -6.37	Peak Average

1 2

ICI	Freq		Antenna Factor							
	MHz	—dBu∜	<u>d</u> B/m	<u>dB</u>	ā	dBuV/m	dBuV/m	<u>d</u> B		22
			27.52 27.52						Peak Average	

802.11n (H40)

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Watch Condition

: Smart Watch
Model : Wi-Watch A3
Test mode : Wifi N40-L MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Hun
Test Engineer: Garen
REMARK :

Huni:55%

	Freq		Antenna Factor						
3	MHz	dBu₹	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	 -
	2390.000 2390.000								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Watch : Wi-Watch A3 : Wifi N40-L MODE EUT Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Garen REMARK:

1 2

 500	Read	Antenna	Cable	Preamn		Limit	Over		
Freq		Factor							
MHz	dBu₹	<u>dB</u> /m	dB	dB	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>		-
2390.000	31.44	27.58	5.67	0.00	64.69	74.00	-9.31	Peak	
2390.000	19.51	27.58	5.67	0.00	52.76	54.00	-1.24	Average	

Test channel: Highest Horizontal:

Site Condition EUT : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Smart Watch Model : Wi-Watch A3 Test mode : Wifi N40-H MODE Power Rating : AC120V/60Hz Environment : Temp:25.5°C Hur

Huni:55%

Test Engineer: Garen REMARK :

			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	$\overline{dB}/\overline{m}$		dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
0.000	2483.500 2483.500	00707490 7879							Printer Control Control

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smart Watch Model Wi-Watch A3 Model
Test mode : Wifi N40 ...
Power Rating : AC120V/60Hz
Temp: 25.5°C : Wifi N40-H MODE Huni:55%

Test Engineer: Garen REMARK

ReadAntenna Cable Preamp Limit Over Loss Factor Level Line Limit Remark Freq Level Factor MHz dBuV dB/m ďΒ dB dBuV/m dBuV/m dB 0.00 61.22 74.00 -12.78 Peak 0.00 48.43 54.00 -5.57 Average 2483.500 28.00 27.52 5.70 2 2483.500 27.52 5.70 15.21

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b

Lowest channel

Date: 12.NOV.2014 08:04:29

30MHz~25GHz

Middle channel

Date: 12.NOV.2014 08:05:09

30MHz~25GHz

Date: 12.NOV.2014 08:05:37

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 12.NOV.2014 08:07:15

30MHz~25GHz

Date: 12.NOV.2014 08:06:42

30MHz~25GHz

Date: 12.NOV.2014 08:06:10

30MHz~25GHz

Test mode: 802.11n(H20)

Lowest channel

Date: 12.NOV.2014 08:08:21

30MHz~25GHz

Middle channel

Date: 12.NOV.2014 08:08:46

30MHz~25GHz

Date: 12.NOV.2014 08:09:51

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 12.NOV.2014 08:12:32

30MHz~25GHz

Date: 12.NOV.2014 08:13:15

30MHz~25GHz

Date: 12.NOV.2014 08:14:28

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205							
Test Method:	ANSI C63.4:200	03								
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:										
, , , , , , , , , , , , , , , , , , ,	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz									
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	7.5575 151.2	Peak 1MHz 10Hz Average Value								
Limit:										
	Freque		Limit (dBuV		Remark					
	30MHz-8 88MHz-21		40.0 43.5		Quasi-peak Value Quasi-peak Value					
	216MHz-9		46.0		Quasi-peak Value					
	960MHz-		54.0		Quasi-peak Value					
			54.0		Average Value					
	Above 1	GHz	74.0)	Peak Value					
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the normal and to find the normal and to determine the normal and to determine the normal and the	at a 3 meter come the position was set 3 meter which was mount a height is varied to determine to the and vertice measurement. The author of the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reported to the position of the would be reported to the terminal than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified than the ecified than the sion level of the ecified than the sion level of the ecified than the	amber. The softhe highests away from the on the total from one he maximum all polarizations in the EU awas turned sing, was set to Paximum Har EUT in peasiting could borted. Otherwas tere-tested	table was rost radiation. the interfer op of a variate meter to for a value of the and to heights if from 0 degreeak Detect old Mode. It was arranged to heights if from 0 degreeak Detect old Mode. It mode was the stopped a vise the eminone by one	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to aged to its worst from 1 meter to 4 the es to 360 degrees. Function and s 10dB lower than and the peak values assions that did not the using peak, quasi-ported in a data					

Below 1GHz

Horizontal:

Site Condition EUT

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL

: Smart Watch : Wi-Watch A3 Model Test mode : WIFI Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

CHILITAL	9 Y9 . €YY								
	Freq		Antenna Factor				Limit Line	Over Limit	
-	MHz	dBu₹	$-\overline{dB/m}$	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	109.796	36.56	12.25	1.04	29.46	20.39	43.50	-23.11	QP
2	239.987	34.28	12.09	1.58	28.59	19.36	46.00	-26.64	QP
2	312.179	36.34	13.22	1.81	28.48	22.89	46.00	-23.11	QP
4	336.035	40.95	13.99	1.89	28.53	28.30	46.00	-17.70	QP
4 5	564.639	34.04	17.83	2.56	29.05	25.38	46.00	-20.62	QP
6	903.309	40.73	21.12	3.36	27.87	37.34	46.00	-8.66	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Smart Watch Model : Wi-Watch A3
Test mode : WIFI Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C

Huni:55%

Test Engineer: Garen

REMARK

CHULL									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	59.232	32.88	12.75	0.68	29.77	16.54	40.00	-23.46	QP
2	120.277	38.14	10.38	1.12	29.39	20.25	43.50	-23.25	QP
2	377.259				28.68				
4	564.639	38.22	17.83	2.56	29.05	29.56	46.00	-16.44	QP
5	903.309	37.46	21.12	3.36	27.87	34.07	46.00	-11.93	QP
6	996.500	35.67	21.71	3.53	27.45	33.46	54.00	-20.54	QP

Above 1GHz

Test mode: 80	02.11b		Test channe	el: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.54	31.53	8.90	40.24	49.73	74.00	-24.27	Vertical	
4824.00	48.67	31.53	8.90	40.24	48.86	74.00	-25.14	Horizontal	
Test mode: 80	02.11b		Test channel: Lowest			Remark: A	verage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.87	31.53	8.90	40.24	41.06	54.00	-12.94	Vertical	
4824.00	39.74	31.53	8.90	40.24	39.93	54.00	-14.07	Horizontal	

Test mode: 802	2.11b		Test channe	el: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.65	31.58	8.98	40.15	49.06	74.00	-24.94	Vertical	
4874.00	49.21	31.58	8.98	40.15	49.62	74.00	-24.38	Horizontal	
Test mode: 802	2.11b		Test channe	el: Middle		Remark: Av	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.32	31.58	8.98	40.15	40.73	54.00	-13.27	Vertical	
4874.00	41.56	31.58	8.98	40.15	41.97	54.00	-12.03	Horizontal	

Test mode: 802	2.11b		Test channe	el: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.32	31.69	9.08	40.03	49.06	74.00	-24.94	Vertical
4924.00	50.26	31.69	9.08	40.03	51.00	74.00	-23.00	Horizontal
Test mode: 802	2.11b		Test channel: Highest			Remark: A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	41.21	31.69	9.08	40.03	41.95	54.00	-12.05	Vertical
4924.00	40.66	31.69	9.08	40.03	41.40	54.00	-12.60	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.	11g		Test channe	el: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	47.84	31.53	8.90	40.24	48.03	74.00	-25.97	Vertical
4824.00	48.12	31.53	8.90	40.24	48.31	74.00	-25.69	Horizontal
Test mode: 802.	11g		Test channel: Lowest			Remark: Av	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.45	31.53	8.90	40.24	37.64	54.00	-16.36	Vertical
4824.00	39.44	31.53	8.90	40.24	39.63	54.00	-14.37	Horizontal

Test mode: 802	2.11g		Test chann	el: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.21	31.58	8.98	40.15	47.62	74.00	-26.38	Vertical	
4874.00	48.56	31.58	8.98	40.15	48.97	74.00	-25.03	Horizontal	
Test mode: 802	2.11g		Test channel: Middle			Remark: A	verage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	41.57	31.58	8.98	40.15	41.98	54.00	-12.02	Vertical	
4874.00	41.85	31.58	8.98	40.15	42.26	54.00	-11.74	Horizontal	

Test mode: 802.11g			Test channe	al: Highaet		Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	48.45	31.69	9.08	40.03	49.19	74.00	-24.81	Vertical		
4924.00	48.06	31.69	9.08	40.03	48.80	74.00	-25.20	Horizontal		
Test mode: 8	Test mode: 802.11g			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	38.41	31.69	9.08	40.03	39.15	54.00	-14.85	Vertical		
4924.00	40.19	31.69	9.08	40.03	40.93	54.00	-13.07	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	48.28	31.53	8.90	40.24	48.47	74.00	-25.53	Vertical		
4824.00	48.09	31.53	8.90	40.24	48.28	74.00	-25.72	Horizontal		
Test mode: 8	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	38.98	31.53	8.90	40.24	39.17	54.00	-14.83	Vertical		
4824.00	38.21	31.53	8.90	40.24	38.40	54.00	-15.60	Horizontal		

Test mode: 8	Test mode: 802.11n(H20)			el: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.69	31.58	8.98	40.15	49.10	74.00	-24.90	Vertical	
4874.00	50.44	31.58	8.98	40.15	50.85	74.00	-23.15	Horizontal	
Test mode: 8	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	41.85	31.58	8.98	40.15	42.26	54.00	-11.74	Vertical	
4874.00	42.46	31.58	8.98	40.15	42.87	54.00	-11.13	Horizontal	

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	49.09	31.69	9.08	40.03	49.83	74.00	-24.17	Vertical	
4904.00	48.54	31.69	9.08	40.03	49.28	74.00	-24.72	Horizontal	
Test mode: 8	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	39.74	31.69	9.08	40.03	40.48	54.00	-13.52	Vertical	
4924.00	37.46	31.69	9.08	40.03	38.20	54.00	-15.80	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	48.49	31.53	8.90	40.24	48.68	74.00	-25.32	Vertical		
4844.00	48.78	31.53	8.90	40.24	48.97	74.00	-25.03	Horizontal		
Test mode: 8	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	38.65	31.53	8.90	40.24	38.84	54.00	-15.16	Vertical		
4844.00	38.68	31.53	8.90	40.24	38.87	54.00	-15.13	Horizontal		

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	50.22	31.58	8.98	40.15	50.63	74.00	-23.37	Vertical		
4874.00	50.63	31.58	8.98	40.15	51.04	74.00	-22.96	Horizontal		
Test mode: 8	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	48.65	31.69	9.08	40.03	49.39	74.00	-24.61	Vertical		
4904.00	49.68	28.54	6.04	40.24	44.02	74.00	-29.98	Horizontal		

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	48.65	31.69	9.08	40.03	49.39	74.00	-24.61	Vertical	
4904.00	49.68	28.54	6.04	40.24	44.02	74.00	-29.98	Horizontal	
Test mode: 8	302.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	38.45	31.69	9.08	40.03	39.19	54.00	-14.81	Vertical	
4904.00	38.72	31.69	9.08	40.03	39.46	54.00	-14.54	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.