car-price-prediction-1

September 3, 2023

[417]:

import numpy as np

```
import pandas as pd
       import seaborn as sns
       import matplotlib.pyplot as plt
       sns.set()
       %matplotlib inline
       car=pd.read_csv(r"C:\Users\shilp\Downloads\archive\CarPrice_Assignment.csv")
       car.shape
       import warnings
       warnings.filterwarnings('ignore')
       car.head()
       car.shape
[417]: (205, 26)
[418]:
       car.describe()
[418]:
                                                       carlength
                                                                                 carheight
                   \mathtt{car}_{\mathtt{ID}}
                             symboling
                                          wheelbase
                                                                     carwidth
       count
               205.000000
                            205.000000
                                         205.000000
                                                     205.000000
                                                                  205.000000
                                                                               205.000000
       mean
               103.000000
                              0.834146
                                          98.756585
                                                     174.049268
                                                                    65.907805
                                                                                53.724878
       std
                59.322565
                              1.245307
                                          6.021776
                                                       12.337289
                                                                     2.145204
                                                                                  2.443522
       min
                 1.000000
                             -2.000000
                                          86.600000
                                                     141.100000
                                                                    60.300000
                                                                                47.800000
       25%
               52.000000
                              0.000000
                                          94.500000
                                                     166.300000
                                                                    64.100000
                                                                                52.000000
       50%
               103.000000
                              1.000000
                                          97.000000
                                                      173.200000
                                                                    65.500000
                                                                                54.100000
       75%
               154.000000
                              2.000000
                                         102.400000
                                                      183.100000
                                                                    66.900000
                                                                                55.500000
       max
               205.000000
                              3.000000
                                         120.900000
                                                      208.100000
                                                                    72.300000
                                                                                59.800000
                curbweight
                             enginesize
                                          boreratio
                                                                    compressionratio
                                                           stroke
                205.000000
                            205.000000
                                                                          205.000000
       count
                                          205.000000
                                                      205.000000
       mean
               2555.565854
                            126.907317
                                            3.329756
                                                         3.255415
                                                                           10.142537
       std
               520.680204
                              41.642693
                                            0.270844
                                                         0.313597
                                                                            3.972040
       min
               1488.000000
                              61.000000
                                            2.540000
                                                         2.070000
                                                                            7.000000
       25%
               2145.000000
                              97.000000
                                            3.150000
                                                         3.110000
                                                                            8.600000
       50%
               2414.000000
                             120.000000
                                            3.310000
                                                         3.290000
                                                                            9.000000
```

2935.000000	141.000000	3.580000	3.410000	9.400000
4066.000000	326.000000	3.940000	4.170000	23.000000
horsepower	${\tt peakrpm}$	citympg	highwaympg	price
205.000000	205.000000	205.000000	205.000000	205.000000
104.117073	5125.121951	25.219512	30.751220	13276.710571
39.544167	476.985643	6.542142	6.886443	7988.852332
48.000000	4150.000000	13.000000	16.000000	5118.000000
70.000000	4800.000000	19.000000	25.000000	7788.000000
95.000000	5200.000000	24.000000	30.000000	10295.000000
116.000000	5500.000000	30.000000	34.000000	16503.000000
288.000000	6600.000000	49.000000	54.000000	45400.000000
	4066.000000 horsepower 205.000000 104.117073 39.544167 48.000000 70.000000 95.000000 116.000000	4066.000000 326.000000 horsepower peakrpm 205.000000 205.000000 104.117073 5125.121951 39.544167 476.985643 48.000000 4150.000000 70.000000 4800.000000 95.000000 5200.000000 116.000000 5500.000000	4066.000000 326.000000 3.940000 horsepower peakrpm citympg 205.000000 205.000000 205.000000 104.117073 5125.121951 25.219512 39.544167 476.985643 6.542142 48.000000 4150.000000 13.000000 70.000000 4800.000000 19.000000 95.000000 5200.000000 24.000000 116.000000 5500.000000 30.000000	4066.000000 326.000000 3.940000 4.170000 horsepower peakrpm citympg highwaympg 205.000000 205.000000 205.000000 205.000000 104.117073 5125.121951 25.219512 30.751220 39.544167 476.985643 6.542142 6.886443 48.000000 4150.000000 13.000000 16.000000 70.000000 4800.000000 19.000000 25.000000 95.000000 5200.000000 24.000000 30.000000 116.000000 5500.000000 30.000000 34.000000

[419]: car.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype			
0	car_ID	205 non-null	int64			
1	symboling	205 non-null	int64			
2	CarName	205 non-null	object			
3	fueltype	205 non-null	object			
4	aspiration	205 non-null	object			
5	doornumber	205 non-null	object			
6	carbody	205 non-null	object			
7	drivewheel	205 non-null	object			
8	enginelocation	205 non-null	object			
9	wheelbase	205 non-null	float64			
10	carlength	205 non-null	float64			
11	carwidth	205 non-null	float64			
12	carheight	205 non-null	float64			
13	curbweight	205 non-null	int64			
14	enginetype	205 non-null	object			
15	cylindernumber	205 non-null	object			
16	enginesize	205 non-null	int64			
17	fuelsystem	205 non-null	object			
18	boreratio	205 non-null	float64			
19	stroke	205 non-null	float64			
20	compression ratio	205 non-null	float64			
21	horsepower	205 non-null	int64			
22	peakrpm	205 non-null	int64			
23 citympg		205 non-null	int64			
24 highwaympg		205 non-null	int64			
25	price	205 non-null	float64			
<pre>dtypes: float64(8), int64(8), object(10)</pre>						

```
memory usage: 41.8+ KB
```

```
[420]: #Checking for null values in data
       car.isnull().sum()
[420]: car_ID
                           0
       symboling
                           0
       CarName
                           0
       fueltype
                           0
       aspiration
                           0
       doornumber
                           0
       carbody
       drivewheel
       enginelocation
                           0
       wheelbase
                           0
       carlength
                           0
                           0
       carwidth
       carheight
                           0
       curbweight
                           0
       enginetype
                           0
       cylindernumber
                           0
       enginesize
                           0
       fuelsystem
                           0
       boreratio
                           0
       stroke
                           0
       compressionratio
      horsepower
                           0
       peakrpm
                           0
       citympg
                           0
                           0
       highwaympg
       price
                           0
       dtype: int64
[421]: car.columns
       #Drop Car Id as it is not significant
       car.drop('car_ID',axis=1,inplace=True)
[422]: #Separate Car Name from model
       CompanyName = car['CarName'].apply(lambda x : x.split(' ')[0])
       car.insert(3,"CompanyName",CompanyName)
       car.drop(['CarName'],axis=1,inplace=True)
       car.head()
```

```
[422]:
          symboling fueltype CompanyName aspiration doornumber
                                                                          carbody \
       0
                                alfa-romero
                                                     std
                                                                      convertible
                   3
                          gas
                                                                 two
                   3
       1
                           gas
                                alfa-romero
                                                     std
                                                                 two
                                                                      convertible
       2
                   1
                          gas
                                alfa-romero
                                                     std
                                                                 two
                                                                        hatchback
       3
                   2
                                                                             sedan
                                        audi
                                                     std
                                                                four
                          gas
                   2
       4
                          gas
                                        audi
                                                     std
                                                                four
                                                                             sedan
         drivewheel enginelocation wheelbase
                                                  carlength
                                                              •••
                                                                  enginesize \
       0
                 rwd
                               front
                                            88.6
                                                       168.8
                                                                         130
                                                       168.8 ...
       1
                 rwd
                               front
                                            88.6
                                                                         130
       2
                                            94.5
                 rwd
                               front
                                                       171.2 ...
                                                                         152
       3
                 fwd
                               front
                                            99.8
                                                       176.6 ...
                                                                         109
       4
                                            99.4
                 4wd
                               front
                                                       176.6 ...
                                                                         136
          fuelsystem
                       boreratio stroke compressionratio horsepower peakrpm
                                                                                   citympg
                             3.47
                                                                             5000
       0
                 mpfi
                                     2.68
                                                        9.0
                                                                     111
                                                                                         21
       1
                 mpfi
                             3.47
                                    2.68
                                                        9.0
                                                                     111
                                                                             5000
                                                                                         21
       2
                             2.68
                                    3.47
                                                        9.0
                                                                     154
                                                                             5000
                                                                                         19
                 mpfi
       3
                 mpfi
                             3.19
                                     3.40
                                                       10.0
                                                                     102
                                                                             5500
                                                                                         24
       4
                                    3.40
                                                        8.0
                                                                     115
                                                                             5500
                                                                                         18
                 mpfi
                             3.19
          highwaympg
                         price
                       13495.0
       0
                   27
       1
                   27
                       16500.0
       2
                   26
                       16500.0
       3
                   30
                       13950.0
       4
                   22
                       17450.0
       [5 rows x 25 columns]
[423]: car['CompanyName'].value_counts()
[423]: toyota
                       31
                       17
       nissan
       mazda
                       15
       honda
                       13
       mitsubishi
                       13
                       12
       subaru
       peugeot
                       11
       volvo
                       11
       volkswagen
                        9
       dodge
                        9
       buick
                        8
       bmw
                        8
       audi
                        7
                        7
       plymouth
       saab
```

```
isuzu
porsche
alfa-romero
                3
chevrolet
                3
                3
jaguar
                2
vw
maxda
                2
renault
                2
toyouta
                1
vokswagen
                1
Nissan
                1
mercury
                1
porcshce
                1
```

Name: CompanyName, dtype: int64

[424]: #Drop the duplicate values car.drop_duplicates(inplace=True) car.count() # No Duplicates car.info()

> <class 'pandas.core.frame.DataFrame'> Int64Index: 205 entries, 0 to 204 Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	fueltype	205 non-null	object
2	${\tt CompanyName}$	205 non-null	object
3	aspiration	205 non-null	object
4	doornumber	205 non-null	object
5	carbody	205 non-null	object
6	drivewheel	205 non-null	object
7	enginelocation	205 non-null	object
8	wheelbase	205 non-null	float64
9	carlength	205 non-null	float64
10	carwidth	205 non-null	float64
11	carheight	205 non-null	float64
12	curbweight	205 non-null	int64
13	enginetype	205 non-null	object
14	cylindernumber	205 non-null	object
15	enginesize	205 non-null	int64
16	fuelsystem	205 non-null	object
17	boreratio	205 non-null	float64
18	stroke	205 non-null	float64
19	compression ratio	205 non-null	float64
20	horsepower	205 non-null	int64
21	peakrpm	205 non-null	int64

```
22 citympg
                                               int64
       23 highwaympg
                             205 non-null
       24 price
                              205 non-null
                                              float64
      dtypes: float64(8), int64(7), object(10)
      memory usage: 41.6+ KB
[425]: car.columns
[425]: Index(['symboling', 'fueltype', 'CompanyName', 'aspiration', 'doornumber',
              'carbody', 'drivewheel', 'enginelocation', 'wheelbase', 'carlength',
              'carwidth', 'carheight', 'curbweight', 'enginetype', 'cylindernumber',
              'enginesize', 'fuelsystem', 'boreratio', 'stroke', 'compressionratio',
              'horsepower', 'peakrpm', 'citympg', 'highwaympg', 'price'],
             dtype='object')
[426]: #Use ANOVA Testing to check significance of variable
       import statsmodels.api as sm
       from statsmodels.formula.api import ols
       mymod_id = ols('price ~ symboling', data = car).fit()
       # performing type 2 anova test
       aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
       print(aovtable) #PR=6.414987e-16(<0.05) a significant variable cannot be
        \hookrightarrow dropped
       import statsmodels.api as sm
       from statsmodels.formula.api import ols
       mymod_id = ols('price ~ CompanyName', data = car).fit()
       # performing type 2 anova test
       aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
       print(aovtable) #PR=6.414987e-16(<0.05) a significant variable cannot be
        \hookrightarrow dropped
       import statsmodels.api as sm
       from statsmodels.formula.api import ols
       mymod_id = ols('price ~ wheelbase', data = car).fit()
       # performing type 2 anova test
       aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
       print(aovtable) #PR=6.414987e-16(<0.05) a significant variable cannot be
        \hookrightarrow dropped
       import statsmodels.api as sm
       from statsmodels.formula.api import ols
       mymod_id = ols('price ~ carlength', data = car).fit()
       # performing type 2 anova test
       aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
```

205 non-null

int64

```
print(aovtable) #PR=6.414987e-16(<0.05) a significant variable cannot be
 \hookrightarrow dropped
import statsmodels.api as sm
from statsmodels.formula.api import ols
mymod id = ols('price ~ carwidth', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=6.414987e-16(<0.05) a significant variable cannot be
 \hookrightarrow dropped
import statsmodels.api as sm
from statsmodels.formula.api import ols
mymod_id = ols('price ~ carheight', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=6.414987e-16(<0.05) a significant variable cannot be
 \hookrightarrow dropped
import statsmodels.api as sm
from statsmodels.formula.api import ols
mymod id = ols('price ~ curbweight', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova lm(mymod id, typ = 1)
print(aovtable) #PR=6.414987e-16(<0.05) a significant variable cannot be
 \hookrightarrow dropped
mymod_id = ols('price ~ fueltype', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova lm(mymod id, typ = 1)
print(aovtable) #PR=0.131536(>0.05) not a significant variable can be dropped
mymod_id = ols('price ~ aspiration', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=0.0.0107(<0.05) a significant variable cannot be dropped
mymod_id = ols('price ~ doornumber', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=0.650448(>0.05) not a significant variable can be dropped
```

```
mymod_id = ols('price ~ carbody', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=0.000005(>0.05) a significant variable cannot be dropped
mymod_id = ols('price ~ drivewheel', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=6.632887e-24(>0.05) not a significant variable can be_
 \hookrightarrow dropped
mymod_id = ols('price ~ enginelocation', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova lm(mymod id, typ = 1)
print(aovtable) #PR=0.000002(<0.05) a significant variable cannot be dropped
mymod_id = ols('price ~ enginetype', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=4.692665e-09(>0.05) not a significant variable can be
 \hookrightarrow dropped
mymod_id = ols('price ~ cylindernumber', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=8.065780e-41(>0.05) not a significant variable can be
 \hookrightarrow dropped
mymod_id = ols('price ~ fuelsystem', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=2.990386e-16(>0.05) not a significant variable can be
 \hookrightarrow dropped
mymod_id = ols('price ~ boreratio', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=2.990386e-16(>0.05) not a significant variable can be
 \hookrightarrow dropped
```

```
mymod_id = ols('price ~ stroke', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=2.990386e-16(>0.05) not a significant variable can be
 \hookrightarrow dropped
mymod_id = ols('price ~ compressionratio', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=2.990386e-16(>0.05) not a significant variable can be_
 \hookrightarrow dropped
mymod_id = ols('price ~ horsepower', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=2.990386e-16(>0.05) not a significant variable can be
  \hookrightarrow dropped
mymod_id = ols('price ~ peakrpm', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova lm(mymod id, typ = 1)
print(aovtable) #PR=2.990386e-16(>0.05) not a significant variable can be
 \hookrightarrow dropped
mymod_id = ols('price ~ citympg', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=2.990386e-16(>0.05) not a significant variable can be
 \hookrightarrow dropped
mymod_id = ols('price ~ highwaympg', data = car).fit()
# performing type 2 anova test
aovtable = sm.stats.anova_lm(mymod_id, typ = 1)
print(aovtable) #PR=2.990386e-16(>0.05) not a significant variable can be
  \hookrightarrow dropped
                                                       F
                                                             PR(>F)
              df
                         sum_sq
                                      mean_sq
             1.0 8.328034e+07 8.328034e+07 1.306852 0.254312
symboling
Residual
           203.0 1.293636e+10 6.372591e+07
                                                     NaN
                                                                NaN
                df
                                                          F
                                                                    PR(>F)
                           sum_sq
                                         mean_sq
CompanyName
              27.0 1.056711e+10 3.913744e+08 28.245639
                                                             1.655369e-50
Residual
             177.0 2.452530e+09 1.385610e+07
                                                        NaN
                                                                       NaN
                                                         F
                                      mean_sq
                                                                   PR(>F)
              df
                         sum sq
             1.0 4.346878e+09 4.346878e+09 101.745716 1.182820e-19
wheelbase
Residual 203.0 8.672761e+09 4.272296e+07
                                                       {\tt NaN}
                                                                      NaN
```

```
df
                        sum_sq
                                     mean_sq
                                                       F
             1.0 6.072096e+09
                               6.072096e+09
                                             177.420344
                                                         1.678707e-29
carlength
           203.0 6.947543e+09
Residual
                               3.422435e+07
                                                     NaN
                                                                   NaN
            df
                                                      F
                                                               PR(>F)
                       sum_sq
                                    mean_sq
            1.0 7.506797e+09 7.506797e+09 276.423646
                                                         9.627438e-40
carwidth
          203.0 5.512842e+09 2.715686e+07
Residual
                                                    NaN
                                                                  NaN
             df
                                                     F
                                                          PR(>F)
                        sum sq
                                     mean sq
             1.0
carheight
                  1.854144e+08 1.854144e+08 2.932716
                                                        0.088328
Residual
           203.0 1.283422e+10 6.322278e+07
                                                   NaN
                                                             NaN
                                                                 PR(>F)
               df
                         sum_sq
                                      mean_sq
                                                        F
              1.0 9.084248e+09 9.084248e+09 468.594431
                                                          1.214445e-54
curbweight
Residual
            203.0 3.935391e+09
                                 1.938616e+07
                                                      {\tt NaN}
                                                                    NaN
                                                    F
            df
                                                         PR(>F)
                       sum_sq
                                    mean_sq
            1.0 1.454053e+08 1.454053e+08
                                             2.292741 0.131536
fueltype
         203.0 1.287423e+10 6.341987e+07
Residual
                                                  NaN
               df
                                                      F
                                                         PR(>F)
                         sum_sq
                                      mean_sq
aspiration
              1.0 4.121724e+08 4.121724e+08
                                              6.636622
                                                         0.0107
            203.0 1.260747e+10
Residual
                                 6.210575e+07
                                                    NaN
               df
                                                      F
                                                           PR(>F)
                         sum_sq
                                      mean_sq
doornumber
              1.0 1.319520e+07
                                1.319520e+07
                                               0.205946
                                                         0.650448
Residual
            203.0 1.300644e+10
                                 6.407115e+07
                                                    NaN
             df
                       sum sq
                                    mean sq
                                                         PR(>F)
                                                       0.000005
carbody
            4.0 1.801997e+09 4.504992e+08 8.031976
Residual 200.0 1.121764e+10 5.608821e+07
                                                  NaN
               df
                                                       F
                                                                PR(>F)
                         sum_sq
                                      mean_sq
              2.0 5.344065e+09 2.672033e+09
                                              70.320553
                                                          6.632887e-24
drivewheel
            202.0 7.675574e+09 3.799789e+07
                                                     NaN
Residual
                                                                   NaN
                                                          F
                   df
                             sum_sq
                                          mean_sq
                                                               PR(>F)
                  1.0
                      1.374973e+09
                                    1.374973e+09
                                                             0.000002
enginelocation
                                                   23.96974
Residual
                203.0
                      1.164467e+10 5.736289e+07
                                                        NaN
               df
                                      mean_sq
                                                     F
                                                              PR(>F)
                         sum_sq
enginetype
              6.0 2.880743e+09 4.801239e+08 9.37622
                                                        4.692665e-09
            198.0 1.013890e+10 5.120655e+07
Residual
                                                   NaN
                                                                 NaN
                   df
                                                           F
                                          mean_sq
                                                                    PR(>F)
                             sum_sq
                  6.0
                      8.275757e+09
                                    1.379293e+09 57.568881
                                                              8.065780e-41
cylindernumber
Residual
                198.0 4.743882e+09 2.395900e+07
                                                         NaN
                                                                       NaN
               df
                                                       F
                                      mean sq
                         sum_sq
fuelsystem
              7.0 4.651199e+09
                                 6.644569e+08
                                              15.641865
                                                         2.990386e-16
Residual
            197.0 8.368441e+09
                               4.247939e+07
                                                                   NaN
                                                     NaN
              df
                                                     F
                                                              PR(>F)
                        sum_sq
                                     mean_sq
boreratio
             1.0
                 3.984018e+09
                                3.984018e+09
                                             89.50747 7.907922e-18
           203.0 9.035622e+09 4.451045e+07
Residual
                                                                 NaN
                                                   NaN
             df
                                                    F
                                                         PR(>F)
                       sum_sq
                                    mean_sq
            1.0 8.216959e+07 8.216959e+07
                                                       0.257514
stroke
                                             1.289311
          203.0 1.293747e+10 6.373138e+07
Residual
                                                  NaN
                                                            NaN
                     df
                               sum_sq
                                            mean_sq
                                                            F
                                                                 PR(>F)
compressionratio
                    1.0 6.017361e+07 6.017361e+07 0.942573 0.332772
Residual
                  203.0 1.295947e+10 6.383973e+07
                                                          NaN
                                                                    NaN
```

```
sum_sq
                                            mean_sq
                    1.0 8.502975e+09
                                      8.502975e+09
                                                     382.163409 1.483437e-48
      horsepower
                  203.0 4.516664e+09
                                       2.224958e+07
      Residual
                                                            NaN
                                                                          NaN
                   df
                                                          F
                                                               PR(>F)
                             sum_sq
                                          mean_sq
                                                   1.486718 0.224141
                  1.0 9.465912e+07 9.465912e+07
      peakrpm
      Residual
                203.0
                      1.292498e+10 6.366985e+07
                                                        NaN
                                                                  NaN
                   df
                             sum sq
                                          mean_sq
                                                            F
                                                                     PR(>F)
                  1.0 6.122549e+09 6.122549e+09 180.203163 7.978684e-30
      citympg
      Residual
                203.0 6.897090e+09 3.397581e+07
                                                          NaN
                                                                        NaN
                                                              F
                                                                       PR(>F)
                     df
                               sum_sq
                                            mean_sq
                    1.0 6.335936e+09
                                       6.335936e+09
                                                     192.437464
                                                                 3.230681e-31
      highwaympg
      Residual
                  203.0 6.683704e+09
                                      3.292465e+07
                                                            NaN
                                                                          NaN
[427]: #Drop insignificant variables
       \#Symbolinq, carheight, fueltype, doornumber, stroke, compressionratio based on
        ⇔1-way Anova Testing
      car.drop(['symboling','carheight', 'fueltype','doornumber','stroke',
        [428]: #Check for remaining data
      car.head()
[428]:
         CompanyName aspiration
                                     carbody drivewheel enginelocation wheelbase \
      0 alfa-romero
                                                                  front
                                                                              88.6
                            std
                                 convertible
                                                     rwd
      1 alfa-romero
                                                     rwd
                                                                 front
                                                                              88.6
                            std
                                 convertible
                                                                 front
                                                                             94.5
        alfa-romero
                            std
                                   hatchback
                                                     rwd
                                        sedan
                                                                 front
                                                                             99.8
      3
                 audi
                            std
                                                     fwd
      4
                 audi
                            std
                                        sedan
                                                     4wd
                                                                 front
                                                                             99.4
         carlength carwidth curbweight enginetype cylindernumber enginesize \
      0
              168.8
                        64.1
                                    2548
                                                dohc
                                                               four
                                                                            130
              168.8
                        64.1
                                                dohc
                                                               four
                                                                            130
      1
                                    2548
      2
             171.2
                        65.5
                                    2823
                                                ohcv
                                                                six
                                                                            152
      3
              176.6
                        66.2
                                    2337
                                                               four
                                                                            109
                                                 ohc
              176.6
                        66.4
      4
                                    2824
                                                 ohc
                                                               five
                                                                            136
        fuelsystem boreratio horsepower
                                           peakrpm citympg
                                                             highwaympg
                                                                           price
      0
              mpfi
                         3.47
                                       111
                                              5000
                                                         21
                                                                      27
                                                                         13495.0
                         3.47
                                              5000
                                                         21
      1
              mpfi
                                       111
                                                                      27
                                                                         16500.0
      2
                         2.68
                                              5000
                                                         19
                                                                      26
                                                                         16500.0
              mpfi
                                       154
      3
                         3.19
                                                         24
              mpfi
                                       102
                                              5500
                                                                      30
                                                                         13950.0
      4
                         3.19
                                       115
                                              5500
                                                                      22
                                                                        17450.0
              mpfi
                                                         18
```

df

PR(>F)

```
[429]: #Check for outliers
       car.describe()
       sns.boxplot(x=car['wheelbase'])
       plt.show()
       sns.boxplot(x=car['carlength'])
       plt.show()
       sns.boxplot(x=car['carwidth'])
       plt.show()
       sns.boxplot(x=car['curbweight'])
       plt.show()
       sns.boxplot(x=car['enginesize'])
       plt.show()
       sns.boxplot(x=car['boreratio'])
       plt.show()
       sns.boxplot(x=car['peakrpm'])
       plt.show()
       sns.boxplot(x=car['citympg'])
       plt.show()
       sns.boxplot(x=car['highwaympg'])
       plt.show()
       #Check for outliers
       car.describe()
       sns.boxplot(x=car['boreratio'])
       plt.show()
       sns.boxplot(x=car['horsepower'])
       plt.show()
       sns.boxplot(x=car['peakrpm'])
       plt.show()
       sns.boxplot(x=car['citympg'])
       plt.show()
       sns.boxplot(x=car['highwaympg'])
       plt.show()
       sns.boxplot(x=car['price'])
       plt.show()
```


5000 10000 15000 20000 25000 30000 35000 40000 45000 price

```
[430]: #Handling Outliers
     # capping method required
     Q1 = car.quantile(0.25)
     Q3 = car.quantile(0.75)
     IQR = Q3 - Q1
     pos_outlier = Q3 + 1.5 * IQR
     neg_outlier = Q1 - 1.5 * IQR
[432]: print(Q1)
     print(Q3)
     print(IQR)
     print(pos_outlier)
     print(neg_outlier)
```

```
wheelbase
              94.50
carlength
             166.30
carwidth
              64.10
curbweight
            2145.00
enginesize
              97.00
boreratio
              3.15
horsepower
              70.00
            4800.00
peakrpm
              19.00
citympg
              25.00
highwaympg
price
            7788.00
Name: 0.25, dtype: float64
***********************
wheelbase
              102.40
carlength
              183.10
carwidth
              66.90
curbweight
             2935.00
enginesize
              141.00
               3.58
boreratio
horsepower
              116.00
peakrpm
             5500.00
citympg
              30.00
              34.00
highwaympg
            16503.00
price
Name: 0.75, dtype: float64
********************
wheelbase
              7.90
carlength
              16.80
carwidth
              2.80
curbweight
             790.00
              44.00
enginesize
boreratio
              0.43
              46.00
horsepower
             700.00
peakrpm
              11.00
citympg
              9.00
highwaympg
price
            8715.00
dtype: float64
*************************
wheelbase
              114.250
              208.300
carlength
carwidth
              71.100
curbweight
             4120.000
enginesize
              207.000
boreratio
               4.225
```

```
horsepower
                      185,000
                    6550.000
      peakrpm
      citympg
                       46.500
      highwaympg
                       47.500
                    29575.500
      price
      dtype: float64
      wheelbase
                      82.650
      carlength
                    141.100
      carwidth
                     59.900
                    960.000
      curbweight
      enginesize
                      31.000
      boreratio
                       2.505
      horsepower
                       1.000
      peakrpm
                    3750.000
                      2,500
      citympg
      highwaympg
                      11.500
                   -5284.500
      price
      dtype: float64
      ************************
[433]: income q1 = car['wheelbase'].quantile(0.25)
      income_q3 = car['wheelbase'].quantile(0.75)
      income_iqr = income_q3 - income_q1
      income_upper = income_q3 + 1.5 * income_iqr
      income_lower = income_q1 - 1.5 * income_iqr
[434]: car['wheelbase'] = np.where(car['wheelbase'] > income_upper, income_upper,
                                           np.where(car['wheelbase'] < income_lower,_
        ⇒income lower,
                                                  car['wheelbase']) )
[435]: income_q1 = car['carlength'].quantile(0.25)
      income q3 = car['carlength'].quantile(0.75)
      income_iqr = income_q3 - income_q1
      income_upper = income_q3 + 1.5 * income_iqr
      income_lower = income_q1 - 1.5 * income_iqr
[436]: car['carlength'] = np.where(car['carlength'] > income_upper, income_upper,
                                           np.where(car['carlength'] < income_lower,__
        →income_lower,
                                                  car['carlength']) )
[437]: income_q1 = car['carwidth'].quantile(0.25)
      income_q3 = car['carwidth'].quantile(0.75)
      income igr = income g3 - income g1
      income_upper = income_q3 + 1.5 * income_iqr
```

```
income_lower = income_q1 - 1.5 * income_iqr
       car['carwidth'] = np.where(car['carwidth'] > income_upper, income_upper,
                                            np.where(car['carwidth'] < income_lower,__

income_lower,
                                                    car['carwidth']) )
[438]: income_q1 = car['enginesize'].quantile(0.25)
       income_q3 = car['enginesize'].quantile(0.75)
       income_iqr = income_q3 - income_q1
       income_upper = income_q3 + 1.5 * income_iqr
       income_lower = income_q1 - 1.5 * income_iqr
       car['enginesize'] = np.where(car['enginesize'] > income_upper, income_upper,
                                            np.where(car['enginesize'] < income lower,</pre>
        →income_lower,
                                                    car['enginesize']) )
[439]: | income_q1 = car['curbweight'].quantile(0.25)
       income_q3 = car['curbweight'].quantile(0.75)
       income_iqr = income_q3 - income_q1
       income_upper = income_q3 + 1.5 * income_iqr
       income_lower = income_q1 - 1.5 * income_iqr
       car['curbweight'] = np.where(car['curbweight'] > income_upper, income_upper,
                                            np.where(car['curbweight'] < income_lower,_

income_lower,
                                                    car['curbweight']) )
[440]: income_q1 = car['horsepower'].quantile(0.25)
       income_q3 = car['horsepower'].quantile(0.75)
       income_iqr = income_q3 - income_q1
       income_upper = income_q3 + 1.5 * income_iqr
       income_lower = income_q1 - 1.5 * income_iqr
       car['horsepower'] = np.where(car['horsepower'] > income_upper, income_upper,
                                            np.where(car['horsepower'] < income_lower,__</pre>
        →income_lower,
                                                    car['horsepower']) )
[441]: | income_q1 = car['boreratio'].quantile(0.25)
       income_q3 = car['boreratio'].quantile(0.75)
       income_iqr = income_q3 - income_q1
       income_upper = income_q3 + 1.5 * income_iqr
       income_lower = income_q1 - 1.5 * income_iqr
       car['boreratio'] = np.where(car['boreratio'] > income_upper, income_upper,
```

```
np.where(car['boreratio'] < income_lower,_
        →income_lower,
                                                    car['boreratio']) )
[442]: income_q1 = car['peakrpm'].quantile(0.25)
       income_q3 = car['peakrpm'].quantile(0.75)
       income_iqr = income_q3 - income_q1
       income_upper = income_q3 + 1.5 * income_iqr
       income_lower = income_q1 - 1.5 * income_iqr
       car['peakrpm'] = np.where(car['peakrpm'] > income_upper, income_upper,
                                            np.where(car['peakrpm'] < income_lower,__</pre>
        ⇒income lower,
                                                    car['peakrpm']) )
[443]: income q1 = car['citympg'].quantile(0.25)
       income_q3 = car['citympg'].quantile(0.75)
       income_iqr = income_q3 - income_q1
       income_upper = income_q3 + 1.5 * income_iqr
       income_lower = income_q1 - 1.5 * income_iqr
       car['citympg'] = np.where(car['citympg'] > income_upper, income_upper,
                                            np.where(car['citympg'] < income_lower,__
        →income_lower,
                                                    car['citympg']) )
[444]: income_q1 = car['highwaympg'].quantile(0.25)
       income_q3 = car['highwaympg'].quantile(0.75)
       income_iqr = income_q3 - income_q1
       income_upper = income_q3 + 1.5 * income_iqr
       income_lower = income_q1 - 1.5 * income_iqr
       car['highwaympg'] = np.where(car['highwaympg'] > income_upper, income_upper,
                                            np.where(car['highwaympg'] < income_lower,_
        ⇒income lower,
                                                    car['highwaympg']) )
[445]: income_q1 = car['price'].quantile(0.25)
       income_q3 = car['price'].quantile(0.75)
       income igr = income g3 - income g1
       income_upper = income_q3 + 1.5 * income_iqr
       income_lower = income_q1 - 1.5 * income_iqr
       car['price'] = np.where(car['price'] > income_upper, income_upper,
                                            np.where(car['price'] < income_lower,__</pre>
        →income_lower,
```

```
car['price']) )
```

```
[446]: #User Box plot to check if any outliers are there
       #Check for outliers
       car.describe()
       sns.boxplot(x=car['wheelbase'])
       plt.show()
       sns.boxplot(x=car['carlength'])
       plt.show()
       sns.boxplot(x=car['carwidth'])
       plt.show()
       sns.boxplot(x=car['curbweight'])
       plt.show()
       sns.boxplot(x=car['enginesize'])
       plt.show()
       sns.boxplot(x=car['boreratio'])
       plt.show()
       sns.boxplot(x=car['peakrpm'])
       plt.show()
       sns.boxplot(x=car['citympg'])
       plt.show()
       sns.boxplot(x=car['highwaympg'])
       plt.show()
       #Check for outliers
       car.describe()
       sns.boxplot(x=car['boreratio'])
       plt.show()
       sns.boxplot(x=car['horsepower'])
       plt.show()
       sns.boxplot(x=car['peakrpm'])
       plt.show()
       sns.boxplot(x=car['citympg'])
       plt.show()
       sns.boxplot(x=car['highwaympg'])
       plt.show()
```

```
sns.boxplot(x=car['price'])
plt.show()
```



```
#Encoding concept on object data
car.info()

# CarName, aspiration, carbody, drivewheel, enginelocation, enginetype,
cylindernumber are the object data

car = pd.get_dummies(car, columns=['CompanyName'])

car = pd.get_dummies(car, columns=['drivewheel'])

car['aspiration'].value_counts()

car['aspiration']=car['aspiration'].astype('category')

car['aspiration']=car['aspiration'].cat.codes

car['enginelocation'].value_counts()# 2 categories-use label encoding

car['enginelocation']=car['enginelocation'].astype('category')

car['enginelocation']=car['enginelocation'].cat.codes

car['carbody'].value_counts()# 5 categories-use one hot encoding
```

```
car = pd.get_dummies(car, columns=['carbody'])
       car = pd.get_dummies(car, columns=['enginetype'])
       car = pd.get_dummies(car, columns=['cylindernumber'])
       car['fuelsystem'].value_counts()
       car = pd.get_dummies(car, columns=['fuelsystem'])
      <class 'pandas.core.frame.DataFrame'>
      Int64Index: 205 entries, 0 to 204
      Data columns (total 19 columns):
       #
           Column
                           Non-Null Count
                                           Dtype
                           -----
           CompanyName
                           205 non-null
                                           object
       0
                           205 non-null
           aspiration
       1
                                           object
       2
           carbody
                           205 non-null
                                           object
       3
           drivewheel
                           205 non-null
                                           object
       4
           enginelocation 205 non-null
                                           object
       5
                           205 non-null
           wheelbase
                                           float64
       6
           carlength
                           205 non-null
                                           float64
       7
           carwidth
                           205 non-null
                                           float64
       8
           curbweight
                           205 non-null
                                           float64
       9
           enginetype
                           205 non-null
                                           object
       10
          cylindernumber 205 non-null
                                           object
       11
           enginesize
                           205 non-null
                                           float64
       12
           fuelsystem
                           205 non-null
                                           object
          boreratio
                           205 non-null
                                           float64
       14 horsepower
                           205 non-null
                                           float64
       15
           peakrpm
                           205 non-null
                                           float64
       16
           citympg
                           205 non-null
                                           float64
       17 highwaympg
                           205 non-null
                                           float64
       18 price
                           205 non-null
                                           float64
      dtypes: float64(11), object(8)
      memory usage: 32.0+ KB
[448]: car.head()
       #Drop carbody_wagon as we can drop one when used one hot encoding
       car.drop(['carbody_wagon'],axis=1,inplace=True)
[449]: car.head()
[449]:
         aspiration enginelocation wheelbase carlength carwidth curbweight \
                                                                          2548.0
       0
                   0
                                   0
                                           88.6
                                                     168.8
                                                                64.1
       1
                   0
                                   0
                                           88.6
                                                     168.8
                                                                64.1
                                                                          2548.0
       2
                   0
                                   0
                                           94.5
                                                     171.2
                                                                65.5
                                                                          2823.0
```

```
3
                    0
                                     0
                                              99.8
                                                         176.6
                                                                     66.2
                                                                               2337.0
       4
                    0
                                     0
                                              99.4
                                                         176.6
                                                                     66.4
                                                                                2824.0
          enginesize boreratio horsepower
                                               peakrpm
                                                          ... cylindernumber_twelve
       0
                130.0
                             3.47
                                        111.0
                                                 5000.0
       1
                130.0
                             3.47
                                        111.0
                                                 5000.0
                                                                                   0
       2
                152.0
                             2.68
                                        154.0
                                                                                   0
                                                 5000.0
       3
                109.0
                             3.19
                                        102.0
                                                 5500.0 ...
                                                                                   0
       4
                136.0
                             3.19
                                                 5500.0 ...
                                                                                   0
                                        115.0
          cylindernumber_two
                                fuelsystem_1bbl fuelsystem_2bbl fuelsystem_4bbl
       0
                             0
                                               0
                                                                 0
                                                                                    0
       1
       2
                             0
                                               0
                                                                 0
                                                                                    0
       3
                             0
                                               0
                                                                 0
                                                                                    0
       4
                             0
                                               0
                                                                 0
                                                                                    0
          fuelsystem_idi
                           fuelsystem_mfi
                                             fuelsystem_mpfi
                                                               fuelsystem_spdi
       0
                        0
                                          0
                                                            1
                                                                              0
       1
       2
                        0
                                          0
                                                            1
                                                                              0
                                          0
                                                            1
                                                                              0
       3
                        0
       4
                        0
                                          0
                                                            1
                                                                              0
          fuelsystem_spfi
       0
       1
                         0
       2
                         0
       3
                         0
                         0
       [5 rows x 70 columns]
  []:
[450]: #creating duplicate data
       car_copy=car.copy()
       car_copy.head()
[450]:
          aspiration
                       enginelocation wheelbase carlength carwidth curbweight \
                                                                                2548.0
                    0
                                     0
                                              88.6
                                                         168.8
                                                                     64.1
       0
                    0
                                     0
                                              88.6
                                                         168.8
                                                                     64.1
                                                                                2548.0
       1
                                                                     65.5
       2
                    0
                                     0
                                              94.5
                                                         171.2
                                                                               2823.0
       3
                    0
                                     0
                                              99.8
                                                         176.6
                                                                     66.2
                                                                               2337.0
       4
                    0
                                     0
                                              99.4
                                                         176.6
                                                                     66.4
                                                                               2824.0
```

```
0
                130.0
                            3.47
                                        111.0
                                                 5000.0
               130.0
                            3.47
                                        111.0
                                                 5000.0
                                                                                  0
       1
       2
               152.0
                            2.68
                                        154.0
                                                                                  0
                                                 5000.0
       3
               109.0
                            3.19
                                        102.0
                                                 5500.0 ...
                                                                                  0
                136.0
                            3.19
                                        115.0
                                                 5500.0 ...
                                                                                  0
                               fuelsystem_1bbl fuelsystem_2bbl fuelsystem_4bbl
          cylindernumber_two
       0
       1
                            0
                                               0
                                                                 0
                                                                                   0
       2
                            0
                                               0
                                                                 0
                                                                                   0
       3
                             0
                                               0
                                                                 0
                                                                                   0
       4
                           fuelsystem_mfi
                                           fuelsystem_mpfi
                                                              fuelsystem_spdi
          fuelsystem_idi
       0
                        0
                                         0
                                                            1
                                                                              0
       1
       2
                        0
                                         0
                                                            1
                                                                              0
                                                                              0
       3
                        0
                                         0
                                         0
                                                                              0
                                                            1
          fuelsystem_spfi
       0
                         0
       1
       2
                         0
       3
                         0
       [5 rows x 70 columns]
[451]: #Splitting the data into dependant and independant variables
       x=car_copy.loc[:, car_copy.columns != 'price']
       y=car_copy['price']
[452]: x.head()
[452]:
                       enginelocation wheelbase carlength
                                                               carwidth curbweight \
          aspiration
                                                        168.8
                                                                    64.1
                                                                               2548.0
                    0
                                     0
                                              88.6
                    0
                                                                    64.1
       1
                                     0
                                              88.6
                                                        168.8
                                                                               2548.0
       2
                                                                    65.5
                    0
                                     0
                                              94.5
                                                        171.2
                                                                               2823.0
       3
                    0
                                     0
                                              99.8
                                                        176.6
                                                                    66.2
                                                                               2337.0
       4
                    0
                                     0
                                              99.4
                                                        176.6
                                                                    66.4
                                                                               2824.0
          enginesize boreratio horsepower peakrpm ... cylindernumber_twelve
       0
                130.0
                            3.47
                                        111.0
                                                 5000.0
                                                                                  0
       1
               130.0
                            3.47
                                        111.0
                                                 5000.0
                                                                                  0
               152.0
                            2.68
                                        154.0
                                                 5000.0 ...
                                                                                  0
```

peakrpm

cylindernumber_twelve

enginesize boreratio horsepower

```
0
       3
                109.0
                             3.19
                                         102.0
                                                  5500.0 ...
       4
                136.0
                             3.19
                                         115.0
                                                  5500.0 ...
                                                                                    0
                                fuelsystem_1bbl
                                                  fuelsystem_2bbl
                                                                     fuelsystem_4bbl
          cylindernumber_two
       0
                             0
                                                0
                                                                   0
                                                                                     0
       1
       2
                             0
                                                0
                                                                   0
                                                                                     0
       3
                             0
                                                0
                                                                   0
                                                                                     0
       4
                             0
                                                0
                                                                   0
                                                                                     0
                            fuelsystem_mfi fuelsystem_mpfi fuelsystem_spdi
          fuelsystem_idi
       0
                         0
                                                             1
                         0
                                           0
                                                                                0
       1
                                                             1
       2
                         0
                                          0
                                                                                0
                                                             1
       3
                         0
                                           0
                                                             1
                                                                                0
       4
                         0
                                           0
                                                                                0
                                                             1
          fuelsystem_spfi
       0
                          0
       1
       2
                          0
       3
                          0
       4
                          0
       [5 rows x 69 columns]
[453]: y.head()
[453]: 0
             13495.0
             16500.0
       1
             16500.0
       2
       3
             13950.0
       4
             17450.0
       Name: price, dtype: float64
[454]: #Feature Scaling
       from sklearn.preprocessing import StandardScaler
       sc = StandardScaler()
       sc_x = sc.fit_transform(x)
       pd.DataFrame(sc_x)
[454]:
                                                    3
                                                                          5
           -0.469295 -0.121867 -1.723005 -0.426521 -0.858695 -0.014566 0.160196
       0
           -0.469295 \ -0.121867 \ -1.723005 \ -0.426521 \ -0.858695 \ -0.014566 \ \ 0.160196
       1
       2
           -0.469295 -0.121867 -0.717590 -0.231513 -0.184978 0.514882 0.809329
       3
           -0.469295 \ -0.121867 \ \ 0.185580 \ \ 0.207256 \ \ \ 0.151880 \ \ -0.420797 \ \ -0.459430
```

```
4
          -0.469295 -0.121867 0.117416 0.207256 0.248125 0.516807 0.337232
      . .
                •••
                                                       •••
      200 -0.469295 -0.121867 1.770387 1.198549 1.451189
                                                            0.763241 0.484762
      201 2.130854 -0.121867 1.770387 1.198549
                                                  1.403066
                                                            0.949992 0.484762
      202 -0.469295 -0.121867 1.770387 1.198549 1.451189
                                                            0.878757 1.428955
      203 2.130854 -0.121867 1.770387 1.198549 1.451189
                                                            1.273437
                                                                      0.602787
      204 2.130854 -0.121867 1.770387 1.198549 1.451189 0.975021 0.484762
                 7
                           8
                                     9
                                                 59
                                                           60
                                                                    61
           0.519071 \quad 0.229801 \quad -0.262757 \quad ... \quad -0.070014 \quad -0.141069 \quad -0.23812 \quad -0.689072
      0
           0.519071 0.229801 -0.262757 ... -0.070014 -0.141069 -0.23812 -0.689072
      1
      2
          -2.404880 1.441341 -0.262757 ... -0.070014 -0.141069 -0.23812 -0.689072
      3
          -0.517266 -0.023777 0.791357 ... -0.070014 -0.141069 -0.23812 -0.689072
      4
          -0.517266 0.342502 0.791357 ... -0.070014 -0.141069 -0.23812 -0.689072
      . .
      200 1.666445 0.314327 0.580534 ... -0.070014 -0.141069 -0.23812 -0.689072
      201 1.666445 1.610393 0.369711 ... -0.070014 -0.141069 -0.23812 -0.689072
      202 0.926204 0.877834 0.791357 ... -0.070014 -0.141069 -0.23812 -0.689072
      204 1.666445 0.314327 0.580534 ... -0.070014 -0.141069 -0.23812 -0.689072
                                                                  68
                 63
                           64
                                     65
                                              66
                                                        67
          -0.121867 -0.328798 -0.070014 1.086670 -0.214286 -0.070014
      0
          -0.121867 -0.328798 -0.070014 1.086670 -0.214286 -0.070014
      1
      2
          -0.121867 -0.328798 -0.070014 1.086670 -0.214286 -0.070014
      3
          -0.121867 -0.328798 -0.070014 1.086670 -0.214286 -0.070014
          -0.121867 -0.328798 -0.070014 1.086670 -0.214286 -0.070014
      . .
                        •••
                                               •••
                               •••
      200 -0.121867 -0.328798 -0.070014 1.086670 -0.214286 -0.070014
      201 -0.121867 -0.328798 -0.070014 1.086670 -0.214286 -0.070014
      202 -0.121867 -0.328798 -0.070014 1.086670 -0.214286 -0.070014
      203 -0.121867 3.041381 -0.070014 -0.920243 -0.214286 -0.070014
      204 -0.121867 -0.328798 -0.070014 1.086670 -0.214286 -0.070014
      [205 rows x 69 columns]
[455]: # Finding correlation
      plt.figure(figsize=(100,100))
      corr = car_copy.corr()
      sns.heatmap(corr, annot=True, cmap='coolwarm')
      plt.show()
```



```
[456]: #varience Inflation Factor

variable = sc_x
variable.shape

from statsmodels.stats.outliers_influence import variance_inflation_factor
variable = sc_x

vif = pd.DataFrame()
```

	Variance	Inflation Factor	Features
0		6.010858	aspiration
1		inf	enginelocation
2		15.179397	wheelbase
3		23.359546	carlength
4		14.328416	carwidth
5		50.367924	curbweight
6		56.547055	enginesize
7		14.251309	boreratio
8		36.682381	horsepower
9		6.015534	peakrpm
10		42.952847	citympg
11		39.579347	highwaympg
12		inf	${\tt CompanyName_Nissan}$
13		inf	CompanyName_alfa-romero
14		inf	${\tt CompanyName_audi}$
15		inf	${\tt CompanyName_bmw}$
16		inf	${\tt CompanyName_buick}$
17		inf	${\tt CompanyName_chevrolet}$
18		inf	${\tt CompanyName_dodge}$
19		inf	${\tt CompanyName_honda}$
20		inf	${\tt CompanyName_isuzu}$
21		inf	CompanyName_jaguar
22		inf	${\tt CompanyName_maxda}$
23		inf	${\tt CompanyName_mazda}$
24		inf	CompanyName_mercury
25		inf	${\tt CompanyName_mitsubishi}$
26		inf	${\tt CompanyName_nissan}$
27		inf	${\tt CompanyName_peugeot}$
28		inf	CompanyName_plymouth
29		inf	CompanyName_porcshce
30		inf	CompanyName_porsche
31		inf	CompanyName_renault
32		inf	CompanyName_saab
33		inf	CompanyName_subaru
34		inf	${\tt CompanyName_toyota}$
35		inf	${\tt CompanyName_toyouta}$
36		inf	CompanyName_vokswagen

```
38
                                  inf
                                              CompanyName_volvo
                                                 CompanyName_vw
      39
                                  inf
      40
                                  inf
                                                 drivewheel_4wd
                                                 drivewheel fwd
      41
                                  inf
      42
                                  inf
                                                 drivewheel rwd
      43
                             3.153464
                                            carbody convertible
                             2.447291
                                                carbody_hardtop
      44
      45
                             5.720502
                                              carbody_hatchback
                             4.331157
                                                  carbody_sedan
      46
      47
                                                enginetype_dohc
                                  inf
      48
                                               enginetype_dohcv
                                  inf
      49
                                  inf
                                                   enginetype_1
      50
                                                 enginetype_ohc
                                  inf
      51
                                  inf
                                                enginetype_ohcf
      52
                                  inf
                                                enginetype_ohcv
      53
                                  inf
                                               enginetype_rotor
      54
                                  inf
                                          cylindernumber_eight
      55
                                  inf
                                            cylindernumber_five
      56
                                  inf
                                            cylindernumber four
                                             cylindernumber six
      57
                                  inf
      58
                                          cylindernumber three
                                  inf
                                          cylindernumber_twelve
      59
                                  inf
      60
                                  inf
                                             cylindernumber_two
      61
                                  inf
                                                fuelsystem_1bbl
      62
                                                fuelsystem_2bbl
                                  inf
      63
                                                fuelsystem_4bbl
                                  inf
      64
                                                 fuelsystem_idi
                                  inf
      65
                                                 fuelsystem_mfi
                                  inf
      66
                                  inf
                                                fuelsystem_mpfi
      67
                                                fuelsystem_spdi
                                  inf
      68
                                  inf
                                                fuelsystem_spfi
[458]: #drop the columns which has huge multi collinearity
       x.drop(['aspiration','wheelbase','carwidth','highwaympg',

¬'drivewheel_rwd', 'enginetype_rotor', 'fuelsystem_spfi'],axis=1,inplace=True)

  []:
[459]:
      #Variance Inflation factor
       from sklearn.preprocessing import StandardScaler
       sc = StandardScaler()
       sc_x = sc.fit_transform(x)
       variable = sc_x
```

inf

CompanyName_volkswagen

37

```
[461]: with pd.option_context('display.max_rows', None,):
    print(vif)
```

	Variance	Inflation	Factor	Features
0			inf	enginelocation
1		15	.666647	carlength
2		48	.885647	curbweight
3		45	.781063	enginesize
4		14	.077264	boreratio
5		19	. 959485	horsepower
6		4	.922656	peakrpm
7		12	.409658	citympg
8			inf	${\tt CompanyName_Nissan}$
9			inf	CompanyName_alfa-romero
10			inf	CompanyName_audi
11			inf	CompanyName_bmw
12			inf	${\tt CompanyName_buick}$
13			inf	CompanyName_chevrolet
14			inf	${\tt CompanyName_dodge}$
15			inf	CompanyName_honda
16			inf	CompanyName_isuzu
17			inf	CompanyName_jaguar
18			inf	${\tt CompanyName_maxda}$
19			inf	CompanyName_mazda
20			inf	CompanyName_mercury
21			inf	CompanyName_mitsubishi
22			inf	${\tt CompanyName_nissan}$
23			inf	CompanyName_peugeot
24			inf	CompanyName_plymouth
25			inf	CompanyName_porcshce
26			inf	CompanyName_porsche
27			inf	CompanyName_renault
28			inf	CompanyName_saab
29			inf	CompanyName_subaru
30			inf	CompanyName_toyota
31			inf	CompanyName_toyouta
32			inf	${\tt CompanyName_vokswagen}$
33			inf	${\tt CompanyName_volkswagen}$
34			inf	CompanyName_volvo
35			inf	CompanyName_vw
36		2	.864001	drivewheel_4wd

```
37
                      6.742582
                                           drivewheel_fwd
38
                      2.889113
                                     carbody_convertible
39
                      2.387878
                                          carbody_hardtop
40
                      5.280902
                                       carbody_hatchback
                      4.117458
                                            carbody sedan
41
42
                                          enginetype_dohc
                            inf
43
                            inf
                                        enginetype_dohcv
44
                            inf
                                             enginetype_1
45
                            inf
                                           enginetype_ohc
                                          enginetype_ohcf
46
                            inf
47
                                          enginetype_ohcv
                            inf
48
                                    cylindernumber_eight
                            inf
49
                                     cylindernumber_five
                            inf
50
                                     cylindernumber_four
                            inf
51
                            inf
                                      cylindernumber_six
52
                                    cylindernumber_three
                            inf
53
                            inf
                                   cylindernumber_twelve
54
                                      cylindernumber_two
                            inf
55
                     23.280211
                                          fuelsystem_1bbl
56
                     69.772633
                                          fuelsystem 2bbl
                                          fuelsystem 4bbl
57
                      8.539725
58
                     32.123953
                                           fuelsystem idi
59
                      2.766519
                                           fuelsystem_mfi
60
                     82.740784
                                          fuelsystem_mpfi
61
                     15.479965
                                         fuelsystem_spdi
```

```
[469]: x.drop(['enginetype_ohc','CompanyName_subaru'],axis=1,inplace=True)
```

Features	Variance Inflation Factor	
boreratio	4.005195	0
peakrpm	2.770900	1
citympg	4.024624	2
CompanyName Nissan	1.067480	3

```
7
                            2.512522
                                              CompanyName_buick
                                         CompanyName chevrolet
      8
                             1.777554
      9
                             1.692279
                                             CompanyName_dodge
      10
                            2.394757
                                              CompanyName honda
      11
                             1.200455
                                             CompanyName_isuzu
      12
                             1.436031
                                             CompanyName_jaguar
      13
                             1.120749
                                             CompanyName_maxda
      14
                                              CompanyName_mazda
                             1.802784
      15
                                           CompanyName_mercury
                             1.109786
                                        CompanyName_mitsubishi
      16
                             1.664874
      17
                                             CompanyName_nissan
                            2.012533
      18
                             1.389470
                                          CompanyName_plymouth
      19
                             1.328371
                                          CompanyName_porcshce
      20
                             1.998111
                                           CompanyName_porsche
      21
                             1.138341
                                           CompanyName_renault
      22
                             1.330938
                                               CompanyName_saab
      23
                            1.213816
                                           CompanyName toyouta
                                         CompanyName_vokswagen
      24
                             1.096893
      25
                                        CompanyName volkswagen
                             1.620950
      26
                            2.023741
                                             CompanyName_volvo
      27
                             1.297563
                                                 CompanyName_vw
      28
                             1.478034
                                                 drivewheel_4wd
      29
                            2.073031
                                           carbody_convertible
      30
                            1.745205
                                                carbody_hardtop
      31
                            3.457466
                                              carbody_hatchback
      32
                             3.149755
                                                  carbody_sedan
      33
                            2.238714
                                                enginetype_dohc
      34
                            2.324809
                                               enginetype_dohcv
      35
                             1.885751
                                                   enginetype_1
      36
                            2.230338
                                                enginetype_ohcf
      37
                            2.841044
                                                enginetype_ohcv
                                          cylindernumber eight
      38
                            3.617330
      39
                            1.736958
                                          cylindernumber_three
      40
                                                fuelsystem 2bbl
                            2.465294
      41
                             1.557707
                                                fuelsystem_4bbl
      42
                            1.207708
                                                 fuelsystem_mfi
[528]: #Split the data into train and test
       from sklearn.model_selection import train_test_split
       x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25,__
        →random_state=101)
```

CompanyName_alfa-romero

CompanyName_audi

CompanyName_bmw

4

5

6

1.735435

1.785345

1.658280

```
(153, 43) (52, 43) (153,) (52,)
[529]: #OLS Method for Linear regression - training data
      from statsmodels.regression.linear_model import OLS
      import statsmodels.regression.linear_model as smf
      reg_model = smf.OLS(endog = y_train, exog=x_train).fit()
      reg_model.summary()
[529]: <class 'statsmodels.iolib.summary.Summary'>
                                  OLS Regression Results
     Dep. Variable:
                                 price R-squared (uncentered):
      0.982
     Model:
                                   OLS Adj. R-squared (uncentered):
      0.975
     Method:
                         Least Squares F-statistic:
      148.8
     Date:
                        Sun, 03 Sep 2023 Prob (F-statistic):
     8.59e-81
     Time:
                               15:43:27 Log-Likelihood:
      -1380.4
     No. Observations:
                                   153
                                        AIC:
     2843.
     Df Residuals:
                                        BIC:
                                   112
     2967.
     Df Model:
                                    41
      Covariance Type:
                             nonrobust
                               coef
                                      std err t P>|t| [0.025]
      0.975]
      ______
      boreratio
                           4449.9383
                                      728.766
                                                6.106
                                                          0.000
                                                                   3005.982
      5893.895
                            -0.3895
                                        0.494
                                                -0.788 0.432
                                                                     -1.369
     peakrpm
      0.590
      citympg
                          -131.1517
                                       45.597
                                                 -2.876
                                                          0.005 -221.496
      -40.807
      CompanyName_Nissan
                          -1.232e-10 5.36e-11
                                                -2.298
                                                           0.023
                                                                   -2.3e-10
```

print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)

-1.7e-11 CompanyName_alfa-romero	-3090.3824	2494.219	-1.239	0.218	-8032.357
1851.592					
CompanyName_audi 1.06e+04	8022.1881	1304.180	6.151	0.000	5438.123
CompanyName_bmw 1.43e+04	1.181e+04	1259.786	9.373	0.000	9311.727
CompanyName_buick	1.61e+04	1399.595	11.503	0.000	1.33e+04
CompanyName_chevrolet	1353.4051	1845.230	0.733	0.465	-2302.681
5009.491 CompanyName_dodge	568.6151	1197.723	0.475	0.636	-1804.520
2941.751 CompanyName_honda	653.7415	1387.903	0.471	0.639	-2096.210
3403.693 CompanyName_isuzu	1645.9267	1324.729	1.242	0.217	-978.854
4270.708 CompanyName_jaguar	1.36e+04	1981.317	6.862	0.000	9670.827
1.75e+04 CompanyName_maxda	-42.7009	2446.889	-0.017	0.986	-4890.899
4805.497 CompanyName_mazda	1614.1385	1011.511	1.596	0.113	-390.041
3618.318 CompanyName_mercury	3821.3398	2478.476	1.542	0.126	-1089.443
8732.122 CompanyName_mitsubishi	671.7316	962.816	0.698	0.487	-1235.966
2579.429					
CompanyName_nissan 3041.435	1022.2055	1019.107	1.003	0.318	-997.024
CompanyName_plymouth 3803.156	1136.8628	1345.680	0.845	0.400	-1529.430
CompanyName_porcshce 2.32e+04	1.764e+04	2800.673	6.299	0.000	1.21e+04
CompanyName_porsche 1.7e+04	1.364e+04	1699.045	8.030	0.000	1.03e+04
CompanyName_renault 2629.021	-948.9707	1805.816	-0.526	0.600	-4526.963
CompanyName_saab 5892.522	3129.3929	1394.553	2.244	0.027	366.264
CompanyName_toyouta 7926.649	2618.2329	2679.162	0.977	0.331	-2690.183
CompanyName_vokswagen	767.1058	2503.086	0.306	0.760	-4192.438
5726.650 CompanyName_volkswagen	2153.6524	1161.543	1.854	0.066	-147.797
4455.102 CompanyName_volvo 7830.773	5592.7681	1129.523	4.951	0.000	3354.763

CompanyName_vw 3441.245	-393.2985	1935.297	-0.203	0.839	-4227.842
drivewheel_4wd 2793.997	177.1520	1320.724	0.134	0.894	-2439.693
carbody_convertible 7313.848	4250.5300	1546.059	2.749	0.007	1187.212
carbody_hardtop 3630.971	1078.1247	1288.424	0.837	0.404	-1474.722
carbody_hatchback	300.3036	731.922	0.410	0.682	-1149.906
carbody_sedan 1669.727	335.8202	673.224	0.499	0.619	-998.087
enginetype_dohc 5722.868	3097.7801	1324.884	2.338	0.021	472.692
enginetype_dohcv 1.39e+04	6557.0274	3687.727	1.778	0.078	-749.731
enginetype_1 6459.532	4357.0149	1061.142	4.106	0.000	2254.497
enginetype_ohcf 705.200	-1260.3628	992.021	-1.271	0.207	-3225.925
enginetype_ohcv 6327.376	3752.3456	1299.620	2.887	0.005	1177.315
cylindernumber_eight 407.839	-3989.3381	2219.259	-1.798	0.075	-8386.515
<pre>cylindernumber_three 1.13e-12</pre>	3.377e-13	3.99e-13	0.845	0.400	-4.54e-13
fuelsystem_2bbl -312.843	-1632.6847	666.125	-2.451	0.016	-2952.527
fuelsystem_4bbl 4623.238	578.8754	2041.193	0.284	0.777	-3465.487
fuelsystem_mfi 5748.900	514.7135	2641.698	0.195	0.846	-4719.473
Omnibus:	17.7:	======================================	======= -Watson:	======	2.076
<pre>Prob(Omnibus):</pre>	0.00	47.098 5.93e-11			
Skew:					
Kurtosis:	5.60		No. ======	=====	1.01e+16

Notes:

- [1] R^{2} is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The smallest eigenvalue is 3.96e-23. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
[530]: #OLS Method for Linear regression - test data
     from statsmodels.regression.linear_model import OLS
     import statsmodels.regression.linear_model as smf
     reg_model = smf.OLS(endog = y_test, exog=x_test).fit()
     reg_model.summary()
[530]: <class 'statsmodels.iolib.summary.Summary'>
                               OLS Regression Results
     ______
     ======
     Dep. Variable:
                               price R-squared (uncentered):
     0.987
     Model:
                                OLS Adj. R-squared (uncentered):
     0.970
     Method:
                       Least Squares F-statistic:
     58.46
     Date:
                     Sun, 03 Sep 2023 Prob (F-statistic):
     1.19e-15
     Time:
                            15:43:33 Log-Likelihood:
     -454.42
     No. Observations:
                                 52
                                    AIC:
     966.8
     Df Residuals:
                                 23
                                     BIC:
     1023.
     Df Model:
                                 29
     Covariance Type:
                           nonrobust
     ========
                             coef std err t P>|t|
                                                               [0.025
     0.975]
     ______
     _____
     boreratio
                        2392.7423 2026.522 1.181 0.250 -1799.437
     6584.922
                            1.5065
                                     1.437 1.048 0.305
     peakrpm
                                                                -1.467
     4.480
                                    94.726
                                             -2.196
                                                       0.038
                                                             -404.011
     citympg
                        -208.0555
     -12.100
     CompanyName_Nissan -2291.5675
                                   2844.692 -0.806
                                                   0.429
                                                             -8176.261
     3593.126
     CompanyName_alfa-romero 1039.5509 4218.625
                                             0.246
                                                       0.808
                                                             -7687.341
     9766.442
     CompanyName_audi
                        -2.112e-11 1.67e-11 -1.265
                                                       0.218
                                                             -5.56e-11
```

1	l.34e-11					
(CompanyName_bmw	1.237e+04	2425.642	5.100	0.000	7353.509
	1.74e+04	6951.1313	2198.671	3.162	0.004	2402.834
	CompanyName_buick L.15e+04	0951.1515	2190.071	3.102	0.004	2402.034
	CompanyName_chevrolet 5515.436	807.7435	2275.724	0.355	0.726	-3899.949
	CompanyName_dodge 1492.568	-833.7136	2574.753	-0.324	0.749	-6159.995
	CompanyName_honda 3392.770	-1846.3214	2532.604	-0.729	0.473	-7085.412
	CompanyName_isuzu 3.21e-11	-3.264e-12	1.71e-11	-0.191	0.850	-3.86e-11
	CompanyName_jaguar 1.84e+04	1.217e+04	3020.389	4.029	0.001	5920.021
	CompanyName_maxda 1401.939	-1328.0109	2769.888	-0.479	0.636	-7057.961
	CompanyName_mazda 7728.512	4083.6404	1761.950	2.318	0.030	438.768
	CompanyName_mercury 1.57e-11	3.347e-12	5.96e-12	0.562	0.580	-8.98e-12
	CompanyName_mitsubishi 8534.222	-1241.3879	2308.555	-0.538	0.596	-6016.997
	CompanyName_nissan 3840.132	-357.2964	2029.059	-0.176	0.862	-4554.725
	CompanyName_plymouth 3584.071	-1229.6116	2326.960	-0.528	0.602	-6043.294
	CompanyName_porcshce -1.43e-14	-1.255e-12	6e-13	-2.092	0.048	-2.5e-12
	CompanyName_porsche 1.9e-12	-1.189e-13	9.78e-13	-0.122	0.904	-2.14e-12
	CompanyName_renault 2.94e-12	1.672e-12	6.14e-13	2.722	0.012	4.01e-13
	CompanyName_saab 7556.303	2043.9898	2664.681	0.767	0.451	-3468.323
	CompanyName_toyouta 1.97e-12	3.041e-12	9.32e-13	3.264	0.003	1.11e-12
	CompanyName_vokswagen 1.8e-12	-6.823e-13	1.2e-12	-0.569	0.575	-3.16e-12
	CompanyName_volkswagen 3486.912	-1425.6085	2374.738	-0.600	0.554	-6338.129
	CompanyName_volvo 1.07e+04	5771.6455	2385.803	2.419	0.024	836.236
(CompanyName_vw 1.06e-13	-2.473e-13	1.71e-13	-1.449	0.161	-6.01e-13
Ċ	drivewheel_4wd 7170.266	1308.0235	2833.839	0.462	0.649	-4554.219

carbody_convertible	0	0	nan	nan	0
carbody_hardtop 3854.091	-2450.3689	3047.609	-0.804	0.430	-8754.829
carbody_hatchback	303.7653	1751.277	0.173	0.864	-3319.027
carbody_sedan 4280.475	1190.9577	1493.489	0.797	0.433	-1898.560
enginetype_dohc 8833.910	3495.8985	2580.423	1.355	0.189	-1842.113
<pre>enginetype_dohcv 0</pre>	0	0	nan	nan	0
enginetype_l 7102.967	581.9017	3152.317	0.185	0.855	-5939.163
enginetype_ohcf 4179.385	-1696.4676	2840.418	-0.597	0.556	-7572.320
<pre>enginetype_ohcv 1.21e+04</pre>	5164.9246	3328.702	1.552	0.134	-1721.020
cylindernumber_eight 1.15e+04	6951.1313	2198.671	3.162	0.004	2402.834
cylindernumber_three 5515.436	807.7435	2275.724	0.355	0.726	-3899.949
fuelsystem_2bbl 12.820	-2321.3628	1128.356	-2.057	0.051	-4655.546
fuelsystem_4bbl 263.605	-6912.0113	3468.731	-1.993	0.058	-1.41e+04
<pre>fuelsystem_mfi 0</pre>	0	0	nan	nan	0
Omnibus: Prob(Omnibus): Skew: Kurtosis:	7.7 0.0 0.5 4.7	Jarque Prob(J Cond.	No.		1.661 9.139 0.0104 1.01e+16

Notes:

- [1] R^{2} is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The smallest eigenvalue is 1.36e-23. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

[531]: #Normal Linear Regression

from sklearn.linear_model import LinearRegression

```
lm=LinearRegression()
lm.fit(x_train,y_train)

# Predict price by using lm model with test dataset

y_pred_price = lm.predict(x_test)
y_pred_price_train = lm.predict(x_train)

# Validate the actual price of the test data and predicted price

from sklearn.metrics import r2_score
r2_score(y_test, y_pred_price)
```

[531]: 0.8640547153572377

[532]: r2_score(y_train, y_pred_price_train)

[532]: 0.9265368189308657

[533]: #Check linearity

plt.scatter(y_test, y_pred_price)

[533]: <matplotlib.collections.PathCollection at 0x24fd30cbfa0>


```
[508]: reg_model = smf.OLS(endog = y_train, exog=x_train).fit()
[534]: # Normality of Residual
       sns.distplot((y_test - y_pred_price), bins=50)
       plt.show()
              0.0007
              0.0006
              0.0005
              0.0004
              0.0003
              0.0002
              0.0001
              0.0000
                      -7500
                              -5000
                                                                        7500
                                                                                10000
                                       -2500
                                                        2500
                                                                5000
                                                   price
[535]: from sklearn.ensemble import RandomForestRegressor
       rf = RandomForestRegressor()
       rf.fit(x_train, y_train)
[535]: RandomForestRegressor()
[536]: y_pred_train = rf.predict(x_train)
       y_pred_test = rf.predict(x_test)
[537]: from sklearn.metrics import r2_score
       print(r2_score(y_train, y_pred_train))
```

print()

```
print(r2_score(y_test, y_pred_test))
```

0.9709609621988796

0.9225804061340487

```
[538]: plt.scatter(y_test,y_pred_test)
    plt.show()
```



```
[539]: from sklearn.tree import DecisionTreeRegressor
dtree = DecisionTreeRegressor()
dtree.fit(x_train, y_train)
```

[539]: DecisionTreeRegressor()

```
[540]: y_pred_train = dtree.predict(x_train)
y_pred_test = dtree.predict(x_test)
```

```
[541]: # Evaluate the model
from sklearn.metrics import r2_score
print(r2_score(y_train, y_pred_train))
print()
```

```
print(r2_score(y_test, y_pred_test))
      0.9909306794205561
      0.9185335479049056
[542]: #Boosting techniques
       from sklearn.ensemble import GradientBoostingRegressor
       from sklearn.metrics import mean_squared_error
       gdb = GradientBoostingRegressor()
       gd = gdb.fit(x_train, y_train)
       y_pred_train = gd.predict(x_train)
       y_pred_test = gd.predict(x_test)
       # Evaluate the model
       from sklearn.metrics import r2_score
       print(r2_score(y_train, y_pred_train))
       print()
       print(r2_score(y_test, y_pred_test))
      0.973393656904805
      0.9318834249340793
[543]: from sklearn.ensemble import VotingRegressor
       from sklearn.model_selection import cross_val_score
       estimators=[('lm',lm),('rf',rf),('dtree',dtree),('gdb',gdb)]
       vr=VotingRegressor(estimators)
       scores=cross_val_score(vr,x,y,scoring='r2',cv=10)
       print(np.round(np.mean(scores),2))
       print(np.round(np.max(scores),2))
```

0.41

[]:

[]: