Lista 7

Questão 3 Sejam $A \subset \mathbb{R}$ um conjunto aberto e $f: A \to \mathbb{R}$ uma função.

 (\Rightarrow)

Assumir que f é contínua. Dado $c \in \mathbb{R}$, mostremos que [f < c] é aberto. Seja $a \in [f < c]$, isto é, f(a) < c. Mostraremos que a é um ponto interior de [f < c]. Tomamos um $\epsilon > 0$ tal que $\epsilon < c - f(a)$, pela continuidade de f, existe $\delta > 0$ tal que

Finalmente

$$x \in A \cap (a - \delta, a + \delta) \Longrightarrow f(x) < c$$

 $A \cap (a - \delta, a + \delta) \subset [f < c],$

portanto a é um ponto interior de [f < c]. Analogamente provamos que [f > c] é aberto.

(\Leftarrow) Assumir que [f < c] e [f > c] são abertos para todo $c \in \mathbb{R}$. Dado $a \in A$ e $\epsilon > 0$. Os conjuntos $[f < f(a) + \epsilon]$ e $[f > f(a) - \epsilon]$ são abertos. Então existe um $\delta > 0$ tal que

$$(a - \delta, a + \delta) \subset [f < f(a) + \epsilon] \cap [f > f(a) - \epsilon] \cap A.$$

Consequentemente

dado
$$x \in (a - \delta, a + \delta) \Longrightarrow x \in A$$
, $f(x) < f(a) + \epsilon e f(x) > f(a) - \epsilon$
 $x \in A e |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \epsilon$.

Portanto f é continua em $a \in A$.