Aproximación lineal de la función

Determinar el valor numérico de la siguiente expresión:

$$\sqrt{(3.02)^2 + (1.97)^2 + (5.99)^2}$$

1º paso: Determinar las variables y sus variaciones

$$x = 3$$
 ; $dx = 0.02$

$$y = 2$$
 ; $dy = -0.03$

$$z = 6$$
 ; $dz = -0.0$

2º Paso: Escribir la función y el punto

$$f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$$
 Función $P(3,2,6)$ Punto

3º Paso: Escribir la diferencial en el punto (3, 2,6)

$$df(2,3,6) = \frac{\partial f(2,3,6)}{\partial x}dx + \frac{\partial f(2,3,6)}{\partial y}dy + \frac{\partial f(2,3,6)}{\partial y}dz$$

4º Paso: Determinar las derivadas parciales en el punto (3, 2,6)

$$\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$
 $\frac{\partial f}{\partial x}(2, 3, 6) = \frac{2}{\sqrt{2^2 + 3^2 + 6^2}} = \frac{2}{7}$

$$\frac{\partial f}{\partial x} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$$
 $\frac{\partial f}{\partial x}(2, 3, 6) = \frac{3}{\sqrt{2^2 + 3^2 + 6^2}} = \frac{3}{7}$

$$\frac{\partial f}{\partial x} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$
 $\frac{\partial f}{\partial x}(2, 3, 6) = \frac{6}{\sqrt{2^2 + 3^2 + 6^2}} = \frac{6}{7}$

5º Paso: Determinar la función en el punto (3, 2,6)

$$f(3,2,6) = \sqrt{3^2 + 2^2 + 6^2}$$
$$f(3,2,6) = 7$$

6º Paso: Determinar la diferencial en el punto (3, 2,6)

$$df(2,3,6) = \frac{2}{7}(0,02) + \frac{3}{7}(-0,03) + \frac{6}{7}(-0,01)$$

$$df(2,3,6) = -0.01571428571$$

7º Paso: Determinar el valor numérico

$$\sqrt{(3,02)^2 + (1,97)^2 + (5,99)^2} = df(2,3,6) + f(2,3,6)$$

$$\sqrt{(3,02)^2 + (1,97)^2 + (5,99)^2} = -0.01571428571 + 7$$

$$\sqrt{(3,02)^2 + (1,97)^2 + (5,99)^2} = 6.984285714$$

$$6.991523439 = 6.984285714$$

Aplicación de la diferencial

Ejemplo 1

Una caja rectangular cerrada mide 80cm, 60cm y 50cm en sus tres dimensiones, con un error posible de medición de 0.2cm en cada una. Use diferenciales estimar el error máximo al calcular el área superficial de la caja.

1. Datos y esquema

$$dx = 0.2cm$$
 $x = 80cm$

$$dy = 0.2cm$$
 $y = 60cm$

$$dz = 0.2cm$$
 $z = 50cm$

$$z = 50cm$$

2. Identificar la Función

$$A = 2xy + 2xz + 2yz$$

3. Calcular diferencial de Área

$$dA = \frac{\partial A}{\partial x} dx + \frac{\partial A}{\partial y} dy + \frac{\partial A}{\partial z} dz$$

$$\frac{\partial A}{\partial x} = \mathbf{2}y + \mathbf{2}z \qquad \qquad \frac{\partial A}{\partial y} = \mathbf{2}x + \mathbf{2}z \qquad \qquad \frac{\partial A}{\partial z} = \mathbf{2}x + \mathbf{2}y$$

$$\frac{\partial A}{\partial x} = 2(60) + 2(50) \qquad \frac{\partial A}{\partial y} = 2(80) + 2(50) \qquad \frac{\partial A}{\partial z} = 2(80) + 2(60)$$

$$\frac{\partial A}{\partial x} = 22$$
ocm $\frac{\partial A}{\partial y} = 26$ **o**cm $\frac{\partial A}{\partial z} = 28$ **o**cm

dA = (220cm)(0.2cm) + (260cm)(0.2cm) + (280cm)(0.2cm)

 $dA = 152cm^{2}$

Conclusión: El error máximo en el área calculada es de 152cm²

Ejemplo 2

Use diferenciales para estimar la cantidad de metal en una lata cilíndrica cerrada que mide 10cm de altura y 4cm de diámetro. El metal para la parte superior y el fondo es de 0.1cm de grueso y el metal de los lados tiene 0.05cm de espesor.

1. Datos y esquema

2. Identificar la Función

$$A = 2\pi r h + 2\pi r^2$$

3. Calcular diferencial de Área

$$\frac{\partial A}{\partial r} = 2\pi h + 4\pi r$$

$$\frac{\partial A}{\partial h} = 2\pi r$$

$$\frac{\partial A}{\partial r} = 2\pi (10cm) + 4\pi (2cm)$$

$$\frac{\partial A}{\partial h} = 2\pi (2cm)$$

$$\frac{\partial A}{\partial h} = 2\pi (2cm)$$

$$\frac{\partial A}{\partial h} = 4\pi cm$$

$$dA = \frac{\partial A}{\partial r} dr + \frac{\partial A}{\partial h} dh$$

$$dA = (28\pi cm)(0.05cm) + (4\pi cm)(0.1cm)$$

$$dA = 5.65cm^2$$

4. Calculo de la cantidad de material (metal)

$$Aap = dA + A$$

$$A = 2\pi rh + 2\pi r^{2}$$

$$A = 48\pi = 150.7964473$$

$$Aap = 5.65 + 150.7964473 = 156.4464473$$

5. Conclusión:

La cantidad de metal en una lata cilíndrica es de156.4464473 cm²

Ejemplo 3

El volumen de un tanque tiene la forma de un cilindro circular recto si el radio varia en 4% de r la altura en 6% de h ¿cuál será la variación porcentual del volumen del tanque?

1. Datos y esquema

2. Identificar la Función

$$V = \pi r^2 h$$

3. Calcular diferencial de volumen

$$dv = \frac{\partial v}{\partial r}dr + \frac{\partial v}{\partial h}dh$$
$$dv = 2\pi rh(0.04r) + \pi r^2(0.06h)$$
$$dv = 0.14\pi r^2 h$$

4. Calcular error porcentual al calcular el volumen

% dv =
$$\frac{[dv]}{[V]} * 100$$

% dv =
$$\frac{0.14\pi r^2 h}{\pi r^2 h} *100$$

$$\% \text{ dv} = \frac{0.14\pi r^2 h}{\pi r^2 h} * 100$$

Conclusión Error al medir el volumen es de 14%