Geometric Series (Aside)

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \neq 1$

OR

$$1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$
 for $x \neq 1$

$$1 + x + x^2 + \dots + x^n = \frac{1}{1 - x}$$
 for $x < 1$

Binary search example

Substitution (Example # 1)

By putting 'log' both sides, and

Using: $\log a^b = b \cdot \log a$

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases} \qquad T(n) = n + 2T(n/2) \\ T(n) = n + 2(n/2 + 2T(n/4)) \\ T(n) = n + 2n/2 + 4T(n/4) \\ T(n) = n + 2n/2 + 4T(n/4) \\ T(n) = n + 2n/2 + 4(n/4 + 2T(n/8)) \\ T(n) = n + 2T(n/2) \\ T(n) = n + n + n + 8T(n/8) \\ T(n/2) = n/2 + 2T(n/2/2) \\ T(n/2) = n/2 + 2T(n/4) \\ T(n/2) = n/2 + 2T(n/4) \\ T(n/4) = n/4 + 2T(n/4/2) \\ T(n/4) = n/4 + 2T(n/4/2) \\ T(n/4) = n/4 + 2T(n/8) \\ T(n) = kn + 2^k . T(n/2^k) \\ T(n) = n.logn + n. T(1)$$

T(n) = O(nlogn)

Substitution (Example # 2)

$$T(n) = n + T(n/2)$$

$$T(n) = n + (n/2 + T(n/4))$$

$$T(n) = n + n/2 + T(n/4)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1$$

Substitution (Example # 3)

For $k = log n => n = 2^k$

Using: $a^{\log b} = b \cdot \log a$

Previously: log a^b = b.log a

 $T(n) = O(n^2)$

 $T(n) = n. (2^{logn+1} - 1) + 4^{logn} . T(1)$

5

Substitution (Example # 4)

$$T(n) = 1 + T(n/2)$$

$$T(n) = 1 + (1+T(n/4))$$

$$T(n) = 2 + T(n/4)$$

$$T(n) = 3 + T(n/8)$$

$$T(n) = 3 + T(n/2^3)$$
....
$$T(n) = k + T(n/2^k)$$
For $k = logn$, as: $n = 2^k$

$$T(n) = logn + T(1)$$

$$T(n) = 1 + log(n)$$
i.e. $T(n) = Theta$ (logn)

Substitution (Example # 5)

$$T(n) = 1 + T(n-1)$$

 $T(n) = 1 + (1+T(n-2))$
 $T(n) = 2 + T(n-2)$
 $T(n) = 3 + T(n-3)$
 $T(n) = 4 + T(n-4)$
.....
 $T(n) = k + T(n-k)$
For $k = (n-1)$
 $T(n) = n - 1 + T(1)$
 $T(n) = n$
i.e. $T(n) = Theta(n)$

For
$$n - k = 1$$

So, $k = n-1$

Substitution (Example # 6)

$$T(n) = n + T(n-1)$$

 $T(n) = n + (n-1+T(n-2))$
 $T(n) = 2n - 1 + T(n-2)$
 $T(n) = 2n - 1 + ((n-2) + T(n-3))$
 $T(n) = 3n - 3 + T(n-3)$
 $T(n) = 3n - 3 + n - 3 + T(n-4))$
 $T(n) = 4n - 6 + T(n-4)$
.....
 $T(n) = kn - c + T(n-k)$
 $T(n) = (n-1).n - n - c + T(1)$
 $T(n) = n^2 - n - c + T(1)$
i.e. $T(n) = Theta(n^2)$

For n - k = 1So, k = n-1

Substitution (Example #7)

$$T(n) = 2T(n-1)$$

 $T(n) = 2(2T(n-2))$
 $T(n) = 4T(n-2)$
 $T(n) = 4(2T(n-3))$
 $T(n) = 8T(n-3)$
 $T(n) = 8(2T(n-4))$
 $T(n) = 16T(n-4)$
 $T(n) = 2^4T(n-4)$
.....
 $T(n) = 2^k.T(n-k)$
 $T(n) = 2^n.T(n-1)$

For
$$n - k = 1$$

So, $k = n-1$

The master theorem

- Suppose that $a \ge 1, b > 1$, and d are constants (independent of n).
- Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$. Then

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

Three parameters:

a: number of subproblems

b: factor by which input size shrinks

We can also take n/b to mean either $\left\lfloor \frac{n}{b} \right\rfloor$ or $\left\lceil \frac{n}{b} \right\rceil$ and the theorem is still true.

d: need to do nd work to create all the subproblems and combine their solutions.

The master theorem (Limitations)

You can not use Master Theorem if:

- T(n) is not monotone, ex: T(n) = sin n
- f(n) is not a polynomial, ex: $T(n) = 2 T (n/2) + 2^n$
- b cannot be expresses as a contact, ex: b = 2n

Examples

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

$$T(n) = a \cdot T\left(\frac{n}{h}\right) + O(n^d).$$

- An example
 - T(n) = 4 T(n/2) + O(n)
 - $T(n) = O(n^2)$

- a = 4 b = 2
- $a > b^d$

 $a = b^d$

 $a = b^d$

 $a < b^d$

d = 1

- Binary Search
 - T(n) = T(n/2) + c
 - T(n) = O(log(n))

- a = 1
- b = 2
- d = 0

- MergeSort
 - T(n) = 2T(n/2) + O(n)
 - T(n) = O(nlog(n))

- a = 2
- b = 2
- d = 1

- That other one
 - T(n) = T(n/2) + O(n)
 - T(n) = O(n)

- a = 1
- b = 2
- d = 1

Master Theorem Example

• Let T(n) = 2.T(n/4) + sqrt(n) + 42.

What are the parameters?

$$a = 2$$
, $b = 4$, $d = \frac{1}{2}$

Therefore which condition?

Since $2 = 4^{1/2}$, case 2 applies.

Thus we conclude that:

 $T(n) \in \theta (n^d \log n) = \theta (sqrt(n), \log n)$

Master Theorem 4th Case

Fourth Condition:

Recall that we cannot use the Master Theorem if f(n) (the non-recursive cost) is not polynomial.

There is a limited 4-th condition of the Master Theorem that allows us to consider polylogarithmic functions.

Corollary

If
$$f(n) \in \Theta(n^{\log_b a} \log^k n)$$
 for some $k \ge 0$ then

$$T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$$

This final condition is fairly limited and we present it merely for completeness.

MASTER THEOREM

f(n) is not polynomial

$$d = ?$$

i.e.
$$f(n) = \Theta (n \log n)$$

So k = 1 therefore, fourth condition of master

theorem

$$T(n) = \Theta (n \log^2 n)$$

Corollary

If
$$f(n) \in \Theta(n^{\log_b a} \log^k n)$$
 for some $k \ge 0$ then

$$T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$$

Recursion Tree

Recursion Tree (Example # 2)

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

$$n$$

$$n = \frac{n}{4}$$

$$\frac{n}{8}$$

$$\frac{n}{16}$$

$$\frac{n}{8}$$

$$\frac{n}{16}$$

$$\frac{n}{32}$$

$$\frac{n}{16}$$

$$\frac{n}{32}$$

$$\frac{n}{16}$$

$$\frac{n}{32}$$

$$\frac{n}{16}$$

$$\frac{n}{32}$$

$$\frac{n}{16}$$

$$\frac{n}{32}$$

$$\frac{n}{16}$$

$$\frac{n}{32}$$

$$\frac{n}{64}$$

$$= n \frac{16 + 16 + 12 + 4 + 1}{64}$$

$$= n \frac{49}{64} = \frac{7}{8}^{2}n$$

$$\vdots$$

$$\sum_{i=1}^{\log n} \left(\frac{7}{8}\right)^i n = \Theta(n)$$

Recursion Tree (Example # 3i)

Recursion Tree (Example # 3ii)

(d)

Total: $O(n^2)$

Recursion Tree (Example # 4)

Total: $O(n \lg n)$

Recursion Tree (Example # 5)

$$T(n) = T(\alpha n) + T((1 - \alpha)n) + cn$$

Without loss of generality, let $\alpha \ge 1-\alpha$, so that $0 < 1-\alpha \le 1/2$ and $1/2 \le \alpha < 1$.

Substitution Method (Guess and Test)

- 1. Guess the form of the solution or Guess what the answer is
 - (iterative substitution: iteratively apply the recurrence equation to itself to find a possible pattern)
- Prove your guess is correct, using mathematical induction (Guess and Test method).

Solving Recurrences by Substitution: Guess-and-Test

Guess (#1)
$$T(n) = 2T(n/2) + n$$

$$T(n) = O(n)$$
Inductive Hypothesis
$$T(n) <= cn \quad \text{for some constant c>0}$$

$$T(n/2) <= cn/2$$

$$T(n) = 2T(n/2) + n$$

$$T(n) \leq 2 \cdot c(n/2) + n$$

$$T(n) \leq cn + n \quad \text{no choice of c could ever}$$

$$T(n) \leq (c+1) n \quad \text{make } (c+1) n \leq cn!$$

$$Our guess was wrong!!$$

Solving Recurrences by Substitution: G #2

$$T(n) = 2T(n/2) + n$$
Guess (#2)
$$T(n) = O(n^2)$$
IH
$$T(n) <= cn^2 \text{ for some constant c>0}$$
Inductive Step
$$T(n/2) <= c.\frac{n^2}{4}$$

$$T(n) = 2T(n/2) + n$$

$$T(n) \le 2 \cdot (\frac{cn^2}{4}) + n$$

$$T(n) \le \frac{cn^2}{2} + n$$

$$T(n) \le \frac{cn^2}{2} + n \le cn^2$$
Works for all n as long as c>=2!!

Solving Recurrences by Substitution: G #3

Guess (#3)
$$T(n) = 2T(n/2) + n$$

$$T(n) = O(n\log n)$$
IH
$$T(n) <= \text{cnlogn for some constant c} > 0$$

$$T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log(\frac{n}{2})$$

$$T(n) = 2T(n/2) + n$$

$$T(n) \le 2 \cdot c \frac{n}{2} \log(\frac{n}{2}) + n$$

$$T(n) \le cn (\log n - \log 2) + n$$

$$T(n) \le cn \log n - cn + n$$
Thus
$$T(n) \le cn \log n - cn + n <= \text{cnlogn}$$

$$\text{Works for all n as long as c} >= 1 !!$$

Guess and Test Method by Substitution: Ex #2, G # 1

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

Guess (# 1)
$$T(n) = O(n \log n)$$

(Inductive Hypothesis):
$$T(n) \le c n \log n$$
 for $c > 0$

Inductive step, Assume
$$T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log(\frac{n}{2})$$

$$T(n) = 2T\left(\frac{n}{2}\right) + bn\log n$$

$$T(n) \leq 2 \cdot c \cdot \frac{n}{2} \log(\frac{n}{2}) + bn\log n$$

$$T(n) \leq cn (log n - log 2) + bn\log n$$

$$T(n) \leq cn \log n - cn + bn\log n$$

Wrong: we cannot make this last line be less than cn log n

 $T(n) \le (c+b)n\log n - cn$

Guess and Test Method by Substitution: Ex #2, G # 2

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$
Guess (# 1)
$$T(n) = O(n \log^2 n)$$

induction proofs.

(Inductive Hypothesis):
$$T(n) \le c n \log^2 n$$
 for $c > 0$

Inductive step, Assume
$$T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log^2(\frac{n}{2})$$

if c > b.
$$T(n) = 2T\left(\frac{n}{2}\right) + bnlogn$$
So, $T(n)$ is $O(n \log^2 n)$.
$$In \text{ general, to use}$$
this method, you need to have a good guess and you need to be good at
$$T(n) \leq cn \log^2(\frac{n}{2}) + bnlogn$$

 $T(n) \leq cn \log^2 n + (b - 2c)n \log n + cn$

Backup Slides

Understanding the Master Theorem

- Let $a \ge 1, b > 1$, and d be constants.
- Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$. Then

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

Consider the three examples

1.
$$T(n) = T\left(\frac{n}{2}\right) + n$$

2.
$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

3.
$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n$$

First example

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

1.
$$T(n) = T\left(\frac{n}{2}\right) + n$$
, $\left(a < b^d\right)$

 The amount of work done at the top (the biggest problem) is higher than the amount of work done anywhere else.

• T(n) = O(work at top) = O(n)

Most work at the top of the tree!

Second example

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

2.
$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$
,

$$(a=b^d)$$

Size n

 The branching just balances out the amount of work.

n/2 n/2

- The same amount of work is done at every level.

- T(n) = (number of levels) * (work per level)
- = log(n) * O(n) = O(nlog(n))

1

1

1

1

Third example

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

3.
$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + n$$
, $\left(a > b^d\right)$

of the tree!

Most work at

- There are a HUGE number of leaves, and the total work is dominated by the time to do work at these leaves.
- T(n) = O(work at bottom) = O(4^{depth of tree})

• =
$$O(4^{\log n}) = O(n^{\log 4}) = O(n^2)$$

Solve the Recurrence (Example # 2)

Just for backup. Could confuse

$$T(n) = n + T(n/2)$$

$$T(n) = n + (n/2 + T(n/4))$$

$$T(n) = n + n/2 + T(n/4)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + n/2 + n/4 + T(n/8)$$

$$T(n) = n + 1/2 + 1$$

$$T(n) = n(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{n}) + \frac{1}{n} + T(1)$$

$$T(n) = n \cdot (1+1) + \frac{1}{n} + 1$$

$$T(n) = Theta(n)$$

33

Just for backup. Could confuse

Recursion Tree (Example # 3)

Recursion Tree (Example # 6)

$$T(n) = 2T(n/2) + n/\lg n$$

- # leaves = n, as reducing by 2 times n/2
- n/2 minimum decrement, so log₂n levels

$$\sum_{i=0}^{\lg n-1} \frac{n}{\lg n - i} = \overline{\Theta(n \lg \lg n)}$$

Now let's check all the cases

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

Case 1: $a = b^d$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

•
$$T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t$$

$$= c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} 1$$

$$= c \cdot n^d \cdot (\log_b(n) + 1)$$

$$= c \cdot n^d \cdot \left(\frac{\log(n)}{\log(b)} + 1\right)$$

$$= \Theta(n^d \log(n))$$

Case 2: $a < b^d$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

•
$$T(n) = c \cdot n^d \cdot \sum_{t=0}^{log_b(n)} \left(\frac{a}{b^d}\right)^t$$

= $c \cdot n^d \cdot [\text{some constant}]$ Less than 1!
= $\Theta(n^d)$

Case 3:
$$a > b^d$$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

•
$$T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t$$
 Larger than 1!

$$= c \cdot n^d \left(\frac{\left(\frac{a}{b^d}\right)^{\log_b(n) + 1} - 1}{\frac{a}{b^d} - 1} \right)$$

$$= \Theta\left(n^d \left(\frac{a}{b^d}\right)^{\log_b(n)}\right) = \Theta\left(n^d \left(\frac{a^{\log_b(n)}}{b^d^{\log_b(n)}}\right)\right)$$

$$= \Theta\left(n^d \left(\frac{n^{\log_b(a)}}{n^{\log_b(b^d)}}\right)\right) = \Theta\left(n^d \left(\frac{n^{\log_b(a)}}{n^d}\right)\right)$$

$$=\Theta(n^{\log_b(a)})$$

Recursion Tree method

Understanding Master Theorem Detailed solution, First Example

- $T_1(n) = T_1(\frac{n}{2}) + n$, $T_1(1) = 1$.
- Adding up over all layers:

$$\sum_{i=0}^{\log(n)} \frac{n}{2^i}$$

$$= n. \sum_{i=0}^{\log(n)} \frac{1}{2^i} = n. 2$$

• So $T_1(n) = O(n)$.

<u>Contribution</u> <u>at this layer:</u>

(Size 1

Recursion Tree method

Understanding Master Theorem Detailed solution, Third Example

Contribution

•
$$T_2(n) = 4T_2\left(\frac{n}{2}\right) + n$$
, $T_2(1) = 1$.

Adding up over all layers:

 $\sum_{i=0}^{\log(n)} 4^{i} \cdot \frac{n}{2^{i}} = n \sum_{i=0}^{\log(n)} 2^{i}$ $= n \left(\frac{2^{\log n + 1} - 1}{2 - 1} \right)$

• So $T_2(n) = O(n^2)$

$$4^k \times n/2^k$$
 $2^k n$

 $n^2 \times ($ Size 1) n^2

$$4^k = 4^{\log n} = n^{\log 4}$$

Recursion tree T(r	Size of	Amount of work at this		
	Level	# problems	each	level
	Level	problems	problem	
Size n	0	1	n	
n/b n/b n/b	1	а	n/b	
n/b^2 n/b^2 n/b^2 n/b^2 n/b^2 n/b^2 n/b^2	2	a ²	n/b ²	
•••				
n/b^k n/b^k n/b^k n/b^k n/b^k n/b^k	/b ^k k	a ^k	n/b ^k	
• • •	• • •			
(Size 1)	olog _b (n)	$a^{\log_b(n)}$	1	

Recursion tree T(n) =	$= a \cdot T\left(\frac{n}{b}\right)$	+ $c \cdot n^d$ # problems	Size of each problem	Amount of work at this level
Size n	0	1	n	$c \cdot n^d$
n/b n/b n/b	1	а	n/b	$ac \left(\frac{n}{b}\right)^d$
n/b^2 n/b^2 n/b^2 n/b^2 n/b^2 n/b^2	2	a ²	n/b ²	$a^2c\left(\frac{n}{b^2}\right)^d$
•••				
n/b^t n/b^t n/b^t n/b^t n/b^t	t	a ^t	n/b ^t	$a^t c \left(\frac{n}{b^t}\right)^d$
•••	•••			
(Size 1)	log _b (n)	$a^{\log_b(n)}$	base	$a^{\log_b(n)}c$ pretend that the case is $T(1) = c$ for enience).

