VIII. Евклидовы пространства

Определения и формулы.

Скалярным произведением в линейном пространстве V называется числовая функция двух векторных аргументов a и b (обозначается (a,b)), обладающая следующими свойствами:

- (1) $(\lambda_1 a_1 + \lambda_2 a_2, b) = \lambda_1(a_1, b) + \lambda_2(x_2, b)$ (линейность по первому аргументу);
- (2) $(a, \lambda_1 b_1 + \lambda_2 b_2) = \lambda_1 (a, b_1) + \lambda_2 (a, b_2)$ (линейность по второму аргументу);
- (3) (a, b) = (b, a) для всех a и b (симметричность).
- (4) (a, a) > 0 для всех $a \neq \bar{0}$ (положительная определенность).

Линейное пространство, в котором задано скалярное произведение, называется евклидовым пространством.

Длиной (или модулем) вектора a в евклидовом пространстве считается неотрицательное число $|a| = \sqrt{(a,a)}$.

Расстоянием между точками x и y в евклидовом пространстве называется длина разности |x-y|. Расстояние равно нулю, только если x=y, в остальных случаях оно положительно.

Неравенство Коши-Буняковского: для любых двух векторов a и b выполняется неравенство $|a,b| \leq |a| \cdot |b|$, причем равенство возможно только в случае, когда a и b пропорциональны.

Углом между векторами называется величина $\varphi = \arccos \frac{(a,b)}{|a|\cdot|b|}$

Для треугольника в евклидовом пространстве с вершинами A, B, C верна теорема косинусов:

$$|BC|^2 = |AB|^2 + |AC|^2 - 2 \cdot |AB| \cdot |AC|$$
.

Для треугольника в евклидовом пространстве с вершинами A, B, C выполняется неравенство треугольника: $|BC| \le |AB| + |AC|$.

Набор векторов $\{a_1, a_2, ..., a_k\}$ называется ортогональным, если векторы этого набора попарно ортогональны. Если вдобавок длина каждого вектора равна единице, то набор называется ортонормированным. Для ортонормированного набора $(a_j, a_k) = \delta_{jk}$, где δ_{jk} – символ Кронекера.

Любой ортогональный набор линейно независим.

Алгоритм ортогонализации Грама-Шмидта позволяет по произвольному линейно независимому набору $\{a_1, a_2, ..., a_m\}$ построить ортогональный набор $\{f_1, f_2, ..., f_m\}$, удовлетворяющий двум условиям:

- (1) $L\{f_1,f_2,...,f_k\} = L\{a_1,a_2,...,a_j\}$ для всех j=1,2,...,m;
- (2) $f_k a_k \in L\{f_1, f_2, ..., f_{j-1}\}$ для всех j = 1, 2, ..., m.

Алгоритм Грама-Шмидта представляет собой рекурсивную процедуру. На первом шаге полагается $f_1 = a_1$. Предположим, что после k-го шага для поднабора $\{a_1, ..., a_k\}$ построен набор $\{f_1, ..., f_k\}$ с нужными свойствами для всех j=1,2,...,k. Тогда на (k+1)-ом шаге положим

$$f_{k+1} = a_{k+1} - \sum_{i=1}^k \lambda_j f_j$$
, где $\lambda_j = \frac{(a_{k+1}, f_j)}{(f_j, f_j)}$ для всех $j=1,2,...,k$.

Так определенный набор $\{f_1, ..., f_k, f_{k+1}\}$ удовлетворяет обоим условиям для поднабора $\{a_1, ..., a_k, a_{k+1}\}$. Процесс заканчивается, когда k+1=m.

Вектор называется ортогональным подмножеству M евклидова пространства V, если он ортогонален всем векторам этого подмножества.

Вектор ортогонален линейной оболочке $L = L\{a_1, a_2, ..., a_k\}$ тогда и только тогда, когда он ортогонален всем векторам набора $\{a_1, a_2, ..., a_k\}$.

Ортогональным дополнением к линейному подпространству $L \subseteq V$ называется совокупность всех векторов, ортогональных L (обозначается L^{\perp}).

Ортогональное дополнение к линейному подпространству является линейным подпространством.

Соотношение двойственности перехода к ортогональному дополнению: $(L^{\perp})^{\perp} = L$.

Для подпространств L и L^{\perp} верно $L \cap L^{\perp} = \{\overline{0}\}$, поэтому для любого подпространства L евклидова пространства V верно разложение в прямую сумму $V = L \oplus L^{\perp}$.

Любой вектор $x \in V$ единственным образом разлагается в сумму x = g + h, где $g \in L$, $h \in L^{\perp}$. В этой сумме вектор g называется ортогональной проекцией вектора x на подпространство L, а вектор h называется ортогональной составляющей при ортогональном проектировании на подпространство L.

При ортогональном проектировании на подпространство L^{\perp} векторы g и h меняются местами.

Пусть $\{a_1, a_2, ..., a_k\}$ и $\{b_1, b_2, ..., b_m\}$ — базисы в подпространствах L и L^{\perp} . Образуем две системы уравнений из равенств $(a_i, y) = 0$ для всех i = 1, 2, ..., k и $(b_j, x) = 0$ для всех j = 1, 2, ..., m. Тогда множеством решений первой системы будет подпространство L.

Перпендикулярным отрезком h между многообразиями $H_1=c_1+L_1$ и $H_2=c_2+L_2$ будем называть отрезок, перпендикулярный направляющим подпространствам L_1 и L_2 , концы которого M_1 и M_2 лежат соответственно на многообразиях H_1 и H_2 . Общим перпендикуляром будем называть прямую, проходящую через точки M_1 и M_2 , с направляющим вектором h.

Перпендикулярным отрезком между многообразиями $H_1=c_1+L_1$ и $H_2=c_2+L_2$ служит ортогональная составляющая h при ортогональном проектировании вектора $c_2-c_1=g+h$ на подпространство L_1+L_2 . Если проекция $g\in L_1+L_2$ разложена в сумму $g=a_1+a_2$, где $a_1\in L_1$, $a_2\in L_2$, то концы $M_1\in H_1$ и $M_2\in H_2$ перпендикулярного отрезка могут быть записаны в виде $M_1=c_1+a_1$, $M_2=c_2-a_2$.

Примеры решения задач.

Пример 1. Найдите базис и размерность подпространства L^{\perp} , ортогонального к подпространству L.

a)
$$L: \begin{cases} 3x_1 - x_2 + x_3 + x_4 = 0 \\ x_1 - 4x_2 - x_3 - 2x_4 = 0 \end{cases}$$
 6) $L = L\{a_1(1; 3; -2; 1), a_2(-2; 1; 3; 2)\}$.

Решение. а) Подпространство L является решением СЛАУ, а подпространство L^{\perp} является линейной оболочкой строк коэффициентов матрицы СЛАУ. Значит, базисом в L^{\perp} является набор

$$f = \{a_1(3;-1;1;1), a_2(1;-4;-1;-2)\}, \dim(L^{\perp}) = 2.$$

б) Ортогональным дополнением к линейной оболочке $L = L\{a_1, a_2\}$ будет подпространство, являющееся решением СЛАУ

$$L: \begin{cases} (a_1, x) = 0 \\ (a_2, x) = 0 \end{cases}$$
 или $L: \begin{cases} x_1 + 3x_2 - 2x_3 + x_4 = 0 \\ -2x_1 + x_2 + 3x_3 + 2x_4 = 0 \end{cases}$

Базисом подпространства L^{\perp} решений этой СЛАУ служит ФНР

$$f = \{b_1(11; 1; 7; 0), b_2(7; 0; 4; 1)\}, \dim(L^{\perp}) = 2.$$

Пример 2. Ортогонализуйте набор векторов

$$a = \{a_1(1; 1; -1), a_2(1; 4; -1), a_3(-3; 2; 5)\}.$$

Решение. На первом шаге согласно алгоритму Грама-Шмидта $f_1 = a_1$. На втором шаге положим

$$f_2 = a_2 - \lambda f_1$$
, где $\lambda = \frac{(a_2, f_1)}{(f_1, f_1)} = \frac{6}{3} = 2$.

Получим $f_2 = a_2 - 2f_1 = (-1; 2; 1).$

На третьем шаге положим

$$f_3 = a_3 - \lambda_1 f_1 - \lambda_2 f_2$$
, где $\lambda_1 = \frac{(a_3, f_1)}{(f_1, f_1)} = \frac{6}{3} = 2$, $\lambda_2 = \frac{(a_3, f_2)}{(f_2, f_2)} = \frac{12}{6} = 2$.

Получим $f_3 = a_3 - 2f_1 - 2f_2 = (1; 0; 1)$.

Пример 3. Найдите ортогональный базис и размерность подпространства L^{\perp} , ортогонального к подпространству $L = L\{a_1(1;1;0;-1;2),a_2(1;0;2;1;0)\}$.

Решение. Ортогональным дополнением к линейной оболочке $L = L\{a_1, a_2\}$ в общем

случае будет подпространство
$$L^{\perp}$$
, являющееся решением однородной СЛАУ $L^{\perp}: \begin{cases} (a_1,x)=0 \\ (a_2,x)=0 \end{cases}$ или $L^{\perp}: \begin{cases} x_1+x_2 & -x_4+2x_5=0 \\ x_1 & +2x_3+x_4 & =0 \end{cases}$.

Но в отличие от Примера 16 нам нужно построить ортогональный базис. Выбираем частное решение СЛАУ, например $b_1(2;0;-1;0;-1)$, и далее решаем систему

$$\begin{cases} (a_1,x)=0\\ (a_2,x)=0\\ (b_1,x)=0 \end{cases} \quad \text{или} \quad \begin{cases} x_1+x_2 & -x_4+2x_5=0\\ x_1 & +2x_3+x_4 & =0\\ 2x_1 & -x_3 & -x_5=0 \end{cases}.$$

В качестве второго вектора базиса выберем ее частное решение, например, $b_2(0;0;1;-2;-1)$. Тогда $b_2\in L^\perp$ и $(b_2,b_1)=0$. Поступая аналогичным образом, составим третью систему

$$\begin{cases} (a_1,x) = 0 \\ (a_2,x) = 0 \\ (b_1,x) = 0 \\ (b_2,x) = 0 \end{cases}$$
 или
$$\begin{cases} x_1 + x_2 - x_4 + 2x_5 = 0 \\ x_1 + 2x_3 + x_4 = 0 \\ 2x_1 - x_3 - x_5 = 0 \\ x_3 - 2x_4 - x_5 = 0 \end{cases}.$$

Решив ее, получим $b_3(1;-6;0;-1;2)$. Итак, ортогональный базис

$$b = \{b_1(2; 0; -1; 0; -1), b_2(0; 0; 1; -2; -1), b_3(1; -6; 0; -1; 2)\}, \dim(L^{\perp}) = 3.$$

Пример 4. Найдите ортогональный базис и размерность подпространства L^{\perp} , ортогонального к подпространству

$$L: \begin{cases} x_1 - x_2 + 2x_3 & -2x_5 = 0 \\ 2x_1 - 2x_2 + 2x_3 - 2x_4 - x_5 = 0 \\ 2x_1 & +6x_3 + 3x_4 - 3x_5 = 0 \end{cases}.$$

Решение. a) Подпространство L является решением СЛАУ, а подпространство L^{\perp} является линейной оболочкой строк a_k коэффициентов матрицы СЛАУ. Значит,

базисом в L^{\perp} является набор

$${a_1(1;-1;2;0;-2), a_2(2;-2;2;-1), a_2(2;0;6;3;-3)}.$$

Этот набор не ортогонален и его следует ортогонализовать. Положим

$$f_1=a_1(1;-1;2;0;-2)\,,\;\;f_2=a_2-\lambda f_1,\;\;$$
где $\lambda=rac{(a_2,f_1)}{(f_1,f_1)}=rac{10}{10}=1.$

Получим $f_2 = a_2 - f_1 = (1; -1; 0; -2; 1)$. На третьем шаге

$$f_3=a_3-\lambda_1f_1-\lambda_2f_2$$
, где $\lambda_1=\frac{(a_3,f_1)}{(f_1,f_1)}=\frac{20}{10}=2$, $\lambda_2=\frac{(a_3,f_2)}{(f_2,f_2)}=\frac{-7}{7}=-7$.

Третий вектор $f_3 = a_3 - 2f_1 + f_2 = (1; 1; 2; 1; 2).$

Итак, ортогональным базисом в L^{\perp} может служить набор

$$f = \{f_1(1; -1; 2; 0; -2), f_2(1; -1; 0; -2; 1), f_3(1; 1; 2; 1; 2)\}, \dim(L^{\perp}) = 3.$$

Пример 5. Найдите ортогональную проекцию д и ортогональную составляющую h вектора a(-3; 6; 1; 1) при проекции на подпространство $L\{f_1(1; 2; -1; 1), f_2(1; 1; -1, 2)\}.$

Решение. По определению $a=g+h=\lambda_1 f_1 + \lambda_2 f_2 + h$. Умножив скалярно обе части

на векторы
$$f_1$$
 и f_2 , и учитывая, что $(f_1,h)=(f_2,h)=0$, получим СЛАУ вида
$$\begin{cases} (a,f_1)=\lambda_1(f_1,f_1)+\lambda_2(f_2,f_1)\\ (a,f_2)=\lambda_1(f_1,f_2)+\lambda_2(f_2,f_2) \end{cases}$$
 или
$$\begin{cases} 7\lambda_1+6\lambda_2=9\\ 6\lambda_1+7\lambda_2=4 \end{cases}$$

откуда $\lambda_1 = 3$, $\lambda_2 = -2$. Следовательно, проекция $g = 3f_1 - 2f_2 = (1;4;-1;-1)$, ортогональная составляющая h = a - g = (-4;2;2;2).

Пример 6. В трехмерном евклидовом пространстве E^3 даны две прямые $H_1 = c_1(1;2;3) + L\{a_1(1;0;1)\}$ и $H_2 = c_2(4;-1;2) + L\{a_2(0;1;0)\}$.

- (1) Укажите направление общего перпендикуляра к двум прямым.
- (2) Найдите расстояние между прямыми.
- (3) Составьте уравнение общего перпендикуляра.

Решение. (1) Для ответа только на пункт (1) достаточно решить однородную СЛАУ

$$\begin{cases} (a_1, x) = 0 \\ (a_2, x) = 0 \end{cases}$$
 или
$$\begin{cases} x_1 + x_3 = 0 \\ x_2 = 0 \end{cases}.$$

ФНР этой СЛАУ состоит из одного вектора $h_1(1;0;-1)$. Этот вектор задает направление общего перпендикуляра.

(2) Для вычисления концов и длины перпендикулярного отрезка надо спроектировать вектор $c=c_2-c_1=(3;-3;-1)$ на подпространство $L=L_1+L_2=L\{a_1,a_2\}$. Согласно общему методу построения ортогональной проекции, следует составить и решить СЛАУ вида

$$\begin{cases} (a_1,a_1)t_1 + (a_2,a_1)t_2 = (c,a_1) \\ (a_1,a_2)t_1 + (a_2,a_2)t_2 = (c,a_2) \end{cases}$$
 или
$$\begin{cases} 2t_1 = 2 \\ t_2 = -3 \end{cases}.$$

Получим проекцию и ортогональную составляющую

$$g = t_1 a_1 + t_2 a_2 = a_1 - 3a_2 = (1; -3; 1), \quad h = c - g = (2; 0; -2).$$

Отрезок h равен удвоенному вектору h_1 , построенному в пункте (1). Расстояние между прямыми равно $r = |h| = \sqrt{2^2 + (-2)^2} = 2\sqrt{2}$.

(3) Запишем разложение $c=c_2-c_1=g+h=a_1-3a_2+h$. Из него следует, что $c_2+3a_2=c_1+a_1+h$. Тогда

$$M_1 = c_1 + a_1 = (2, 2, 4), M_2 = c_2 + 3a_2 = (4, 2, 2).$$

Уравнение общего перпендикуляра $H_3=M_1(2;2;4)+L\{h(2;0;-2)\}$. Полезно сделать проверку: $M_2(4;2;2)=M_1(2;2;4)+h(2;0;-2)$.

Пример 7. В четырехмерном пространстве E^4 заданы два многообразия: $H_1 = L\{a_1(1;0;1;0)\} + c_1(1;2;3;1)$, $H_2 = L\{a_2(0;1;0;1)\} + c_2(4;-1;2;0)$.

Найдите расстояние между ними и составьте уравнение общего перпендикуляра.

Решение. Надо спроектировать вектор $c=c_2-c_1=(3;-3;-1;-1)$ на подпространство $L=L_1+L_2=L\{a_1,a_2\}$. Для этого следует решить СЛАУ

$$\begin{cases} (a_1,a_1)t_1 + (a_2,a_1)t_2 = (c,a_1) \\ (a_1,a_2)t_1 + (a_2,a_2)t_2 = (c,a_2) \end{cases}$$
 или
$$\begin{cases} 2t_1 = 2 \\ -2t_2 = -4 \end{cases}.$$

Получим проекцию и ортогональную составляющую

$$g = t_1 a_1 - t_2 a_2 = a_1 - 2a_2 = (1;-2;1;-2), \quad h = c - g = (2;-1;-2;1).$$

Расстояние между прямыми $r = |h| = \sqrt{10}$.

Запишем разложение $\ c=c_2-c_1=g+h=a_1-2a_2+h$. Из него следует, что $c_2+2a_2=c_1+a_1+h$. Тогда

$$M_1 = c_1 + a_1 = (2;2;4;1), M_2 = c_2 + 3a_2 = (4;1;2;2).$$

Уравнение общего перпендикуляра $H_3 = M_1(2; 2; 4; 1) + L\{h(2; -1; -2; 1)\}$.

Пример 8. В пространстве E^4 заданы линейные многообразия

$$H_1 = c_1(0;2;1;1) + L\{a_1(1;2;2;0), a_2(1;0;0;1)\} \;, \quad H_2 = c_2(0;2;-1;0) + L\{b_1(1;11;1), b_2(0;1;1;0)\} \;.$$

Описать множество H_4 , являющееся объединением всех общих перпендикуляров к двум данным многообразиям.

Решение. Для поиска отрезка, перпендикулярного к двум многообразиям, надо спроектировать вектор $c = c_2 - c_1 = (0; 0; -2; -1)$ на подпространство $L = L\{a_1, a_2, b_1, b_2\}$. Для этого надо решить вспомогательную СЛАУ с неизвестными t_1, t_2, s_1, s_2 вида

$$\begin{cases} (a_1,a_1)t_1 + (a_2,a_1)t_2 + (b_1,a_1)s_1 + (b_2,a_1)s_2 = (c,a_1) \\ (a_1,a_2)t_1 + (a_2,a_2)t_2 + (b_1,a_2)s_1 + (b_2,a_2)s_2 = (c,a_2) \\ (a_1,b_1)t_1 + (a_2,b_1)t_2 + (b_1,b_1)s_1 + (b_2,b_1)s_2 = (c,b_1) \\ (a_1,b_2)t_1 + (a_2,b_2)t_2 + (b_1,b_2)s_1 + (b_2,b_2)s_2 = (c,b_2) \end{cases} \text{ или } \begin{cases} 9t_1 + t_2 + 5s_1 + 4s_2 = -4 \\ t_1 + 2t_2 + 2s_1 = -1 \\ 5t_1 + 2t_2 + 4s_1 + 2s_2 = -3 \\ 4t_1 + 2t_2 + 4s_1 + 2s_2 = -3 \end{cases}$$

Ее ранг равен трем, решение зависит от параметра t:

$$t_1 = 1$$
, $t_2 = -1 + t$, $s_1 = -t$, $s_2 = -3 + t$.

Концы M_{01} и M_{02} перпендикулярного к многообразиям отрезка можно найти стандартным образом, используя частное решение (1;-1;0;-3) при t=0:

$$g = t_1 a_1 + t_2 a_2 + s_1 b_1 + s_2 b_2 = a_1 - a_2 - 3b_2 = (0; -1; -1; -1), \quad h = c - g = (0; 1; -1; 0).$$

Из разложения $c = c_2 - c_1 = g + h = a_1 - a_2 - 3b_2 + h$ следует, что

$$M_{01} = c_1 + a_1 - a_2 = (0; 4; 3; 0), M_{02} = c_2 + 3b_2 = (0; 5; 2; 0).$$

Таким образом, параметрическое представление одного из общих перпендикуляров $H_3 = M_{01}(0;4;3;0) + L\{h(0;1;-1;0)\}$.

Расстояние между прямыми $r = |h| = \sqrt{2}$.

Тот факт, что ранг расположенной выше СЛАУ оказался равен трем, означает, что $\dim(L_1 + L_2) = 3$, то есть $\dim(L_1 \cap L_2) = 1$. Можно убедиться, что вектор $(1;0;0;1) = a_2 = b_1 - b_2 \in L_1 \cap L_2$. Согласно теории, многообразие $H_4 = M_{01} + L\{h,a_2\}$ является объединением всех общих перпендикуляров.

Второй способ. Будем искать концы перпендикулярных отрезков M_1 и M_2 в общем виде, не исключая параметра t. Имеем

$$g = t_1 a_1 + t_2 a_2 + s_1 b_1 + s_2 b_2 = (a_1 - a_2 - 3b_2) + t \cdot (a_2 - b_1 + b_2) = (0;-1;-1;-1).$$

Из единственности проекции g следует, что $a_2-b_1+b_2=0$, то есть $a_2=b_1-b_2\in L_1\cap L_2$. Точки M_1 и M_2 зависят от параметра t:

$$M_1 = M_{01}(0;4;3;0) - t \cdot (1;0;0;1), \quad M_2 = M_{02}(0;5;2;0) - t \cdot (1;0;0;1).$$

B итоге $H_4 = M_{01} + L\{h, a_2\}$.

Типовые задачи

- 1. Найдите базис и размерность подпространства $L^{\perp} \in E^{n}$, ортогонального к подпространству L.
 - a) n = 3, $L: \{2x_1 + 4x_2 3x_3 = 0$.
- 6) n = 3, $L: \begin{cases} 2x_1 + 4x_2 5x_3 = 0 \\ 3x_1 2x_2 + 4x_3 = 0 \end{cases}$ r) n = 3, $L = L\{a_1(1; -1; 1), a_2(3; -1; -1)\}$.

- в) n=3, $L=L\{a_1(2;-1;3)\}$. д) n=4, $L: \begin{cases} 4x_1+3x_2-2x_3-x_4=0\\ x_1-2x_2-4x_3+3x_4=0 \end{cases}$.
- e) n = 4, $L = L\{a_1(0; 1; 2; 0), a_2(1; -1; 1; 0)\}.$
- 2. В пространстве E^n дополните вектор a_1 до ортогонального базиса.
 - a) $a_1 = (3; 6; -2)$.
- 6) $a_1 = (-2; 1; -5).$
- B) $a_1 = (-2; 1; 3; 2)$. Γ) $a_1 = (1; -1; 2; 1)$.
- 3. Найдите ортогональный базис и размерность подпространства $L \in E^n$.
 - a) n = 3, $L: \{2x_1 2x_2 + 3x_3 = 0.$
 - 6) n = 3, $L: \{x_1 + 2x_2 3x_3 = 0.$
 - B) n = 4, $L = \begin{cases} x_1 x_2 + x_3 = 0 \\ 6x_1 + 5x_2 4x_3 + 4x_4 = 0 \end{cases}$
 - Γ) n = 4, $L: \{-x_1 + 2x_2 + x_3 + x_4 = 0.$

д)
$$n = 5$$
, $L: \begin{cases} 2x_1 + x_2 - x_3 + 2x_5 = 0 \\ x_1 + 2x_2 + x_3 - x_4 + x_5 = 0 \end{cases}$

e)
$$n = 5$$
, $L:\begin{cases} x_1 + 2x_2 - x_3 + x_4 + 2x_5 = 0\\ x_1 + x_2 - 2x_3 - x_4 + x_5 = 0\\ x_1 - 3x_3 - 3x_4 = 0 \end{cases}$.

- 4. Найдите ортогональный базис и размерность ортогонального дополнения L^{\perp} к подпространству $L \in E^n$.
 - a) n = 3, $L = L\{a_1(1; -2; -1)\}.$
 - 6) n = 4, $L = L\{a_1(2; -1; 1; 1), a_2(1; -2; -1; 2)\}$
 - B) n = 4, $L = L\{a_1(1; -2; -1; 2), a_2(-5; -2; 2; -1)\}$.
 - Γ) n = 5, $L = L\{a_1(2; 1; -6; -5; 0), a_2(3; 2; -5; -6; 0)\}.$
 - Π) n = 5, $L = L\{a_1(-1; 2; 1; 0; -2), a_2(1; 1; 2; 1; -1), a_3(2; -1; 1; 1; 1)\}$.
 - e) n = 5, $L = L\{a_1(1; 1; -2; 1; 0), a_2(2; 1; -1; 0; -1), a_3(0; 1; -3; 2; 1)\}$.
- 5. Постройте ортогональный базис в линейном подпространстве L пространства E^n , и определите его размерность.
 - a) $L = L\{a_1(1; -2; 3; 2), a_2(1; 6; -5; -5)\}$.
 - б) $L = L_1^{\perp}$, где $L_1 = L\{a_1(1; -2; 3; 2), a_2(-4; 1; 2; -1)\}$.
 - B) $L:\begin{cases} 2x_1 x_2 + x_3 + x_4 = 0\\ x_1 2x_2 x_3 + 2x_4 = 0 \end{cases}$.
 - $\Gamma) \quad L = L_1^\perp, \quad \text{где} \quad L_1: \begin{cases} 2x_1 x_2 + x_3 + x_4 = 0 \\ -3x_1 + 3x_2 3x_3 x_4 = 0 \end{cases}.$
- 6. Используя процесс ортогонализации базиса, постройте ортогональный базис $\{f_1, f_2, \ldots\}$ подпространства L, и укажите $\dim(L)$.
 - a) $L = L\{a_1(1; -2; -1), a_2(-1; 3; 5)\}.$
 - 6) $L = L\{a_1(1; 2; 3; 2), a_2(3; 2; 5; 7)\}.$
 - B) $L = L\{a_1(1; -1; 1; 2), a_2(4; 1; 0; 2), a_3(0; -3; 8; -2)\}.$
 - Γ) $L = L\{a_1(1; -2; 3; 1), a_2(4; -3; 6; 2), a_3(3; -1; 4; -2)\}$.
 - д) $L = L\{a_1(-1; 2; 1; 1), a_2(1; 3; 2; 0), a_3(-4; 3; 1; 3), a_1(1; 0; 3; 5)\}.$

 - e) $L = L\{a_1(1; 2; 0; -1; 0), a_2(4; 0; 4; -2; 0), a_3(-1; -3; 8; 5; 1)\}.$ K: $L = L_1^{\perp}$, $L_1: \begin{cases} 2x_1 2x_2 + 3x_3 + x_4 = 0 \\ 3x_1 2x_2 + 7x_3 + 5x_4 = 0 \end{cases}$
- 7. Используя процесс ортогонализации набора, постройте в подпространстве L**ортонормированный** базис $\{f_1, f_2, ...\}$.
 - a) $L = L\{g_1, g_2, ...\}$, $g_1 = (1, -2, 5)$, $g_2 = (3, -1, 5)$, $g_3 = (5, -5, 3)$;
 - 6) $L = L\{g_1, g_2, ...\}$, $g_1 = (1; -2; 3; 1)$, $g_2 = (4; -3; 6; 2)$, $g_3 = (3; -1; 4; -2)$.
 - B) $L = L\{g_1, g_2, ...\}$, $g_1 = (-1, 2, 1, 1)$, $g_2 = (1, 3, 2, 0)$, $g_3 = (-4, 3, 1, 3)$, $g_4 = (1, 0, 3, 5)$.
 - $\Gamma) L: \begin{cases} 2x_1 + x_2 + 2x_3 x_4 &= 0, \\ 3x_1 + x_2 x_3 2x_4 x_5 &= 0, \\ x_1 + x_2 &+ 5x_3 &+ x_5 &= 0. \end{cases}$
- 8. Постройте ортогональный базис в пересечении L двух линейных подпространств пространства E^n , и определите размерность пересечения.

a)
$$L = L_1 \cap L_2$$
, $L_1 = L\{a_1(1; 2; -1; 1; 2), a_2(0; 1; 1; -2; 1), a_3(1; 3; 0; 1; 1)\}$,
 $L_2 = L\{b_1(2; 2; 1; 0; 1), b_2(2; -1; 3; -4; -1), b_3(-1; 1; -1; 1; 0)\}$.

6)
$$L = L_1^{\perp} \cap L_2^{\perp}$$
, $L_1 : \begin{cases} x_1 & -x_3 + 2x_4 - x_5 = 0 \\ x_2 + x_3 + 3x_4 + x_5 = 0 \\ 2x_1 - x_2 - 3x_3 + x_4 + x_5 = 0 \end{cases}$, $L_2 : \begin{cases} x_1 - x_2 - 2x_3 + x_4 + x_5 = 0 \\ x_2 + x_3 - x_4 + 2x_5 = 0 \\ x_1 & -x_3 + x_4 + 3x_5 = 0 \end{cases}$

B)
$$L = L_1 \cap L_2$$
, $L_1 = L\{a_1(1; 1; 1; 2; 0), a_2(-1; 0; 3; 1; -3), a_3(2; 1; -2; 1; 2)\}$, $L_2 = L\{b_1(4; 3; 2; 5; 1), b_2(3; 2; 0; 3; 2), b_3(2; 1; -1; 1; 3)\}$.

$$\Gamma) \quad L = L_1^{\perp} \cap L_2^{\perp} \,, \quad L_1: \begin{cases} -x_1 + x_2 & -x_4 + 2x_5 = 0 \\ x_1 & +x_3 + x_4 + 3x_5 = 0 \\ x_1 + 2x_2 - x_3 - 3x_4 + x_5 = 0 \end{cases} \quad L_2: \begin{cases} x_1 + x_2 - x_3 - 2x_4 + x_5 = 0 \\ 2x_1 & +x_3 + x_4 - x_5 = 0 \\ 3x_1 + x_2 & -x_4 + x_5 = 0 \end{cases}.$$

- 9. Найдите ортогональную проекцию g и ортогональную составляющую h при проекции вектора α на линейное подпространство L.
 - a) $a = (4, -3, 1), L = L\{(2, 1, 1)\}.$
 - 6) $a = (-1; 5; 1), L: \{x 2y + 2z =$
 - B) $a = (4; 1; -1), L: \begin{cases} -x + y + 2z = 0 \\ 3x + 2y + z = 0 \end{cases}$.
 - Γ) $a = (2; 6; 4), L = L\{b_1(1; 1; 3), b_2(1; 0; -1)\}.$
 - Π) $a = (3;-4;-3;-1), L = L\{b(4;-2;-1;-2)\}.$
 - e) a = (5,4,3,6), $AL = L\{b(2,-1,0,2)\}$.
 - \mathbf{x}) $a = (-3.5.4.5), L: \{2x_1 x_2 x_3 + 3x_4 = 0.5.5\}$
 - 3) $a = (3, 4, 0, 0), L = L\{b_1(3, -5, 7, 6), b_2(2, -1, 3, 4)\}$
 - и) $a = (0; -2; 8; 1), L = L\{b_1(3; -2; 1; 1), b_2(2; 1; -2; -1)\}.$

κ)
$$a = (7; -5; 3; -1), L: \begin{cases} 3x_1 + x_2 + 2x_3 - 2x_4 = 0 \\ 3x_1 - 5x_2 - x_3 - 2x_4 = 0 \end{cases}$$

- л) $a=(1;1;-4;4;-1), \ L=L\{b_1(2;4;1;2;-3),b_2(3;2;2;1;-1)\}.$ м) $a=(3;0;3;1;6), \ L: \begin{cases} 2x_1+4x_2+3x_3+3x_4+x_5=0\\ 2x_1+2x_2-x_3+3x_4-3x_5=0 \end{cases}$
- 10. Найдите вектор нормали к плоскости в E^n , проходящей через точки M_1, M_2, M_3 .
 - a) $M_1 = (4;-1;3)$, $M_2 = (6;0;3)$, $M_3 = (3;1;-2)$.
 - 6) $M_1 = (1;1;2)$, $M_2 = (2;-1;1)$, $M_3 = (1;2;-4)$.
 - B) $M_1 = (1;1;-2)$, $M_2 = (3;1;2)$, $M_3 = (2;3;-3)$.
- 11. Найдите расстояние между двумя линейными многообразиями H_1 и H_2 , и задайте общий перпендикуляр к ним в параметрическом виде: $H_3 = c_3 + L\{h\}$.
 - a) $H_1 = c_1(-4;3;1) + L\{a_1(1;-1;-1)\}, H_2 = c_2(3;2;2) + L\{a_2(-1;3;1)\}.$
 - 6) $H_1 = c_1(3;3;-1) + L\{a_1(1;2;2)\}, H_2 = c_2(-5;4;-2) + L\{a_2(1;1;-2)\}.$
 - B) $H_1 = c_1(-5; 0; 2) + L\{a_1(0; 1; -1)\}, H_2: \begin{cases} 2x & -z = 3\\ x + y z = 1 \end{cases}$
 - $\Gamma H_1 = c_1(2; -6; 1; -1) + L\{a_1(2; -1; 0; 1)\}, \quad H_2 = c_2(1; 1; -1; -1) + L\{a_2(-2; 0; 1; 1)\}.$

 - e) $H_1 = c_1(1; 2; -1; -4) + L\{a_1(2; 1; -1; -2), a_2(1; 1; 0; -1)\},\$ $H_2 = c_2(-4; 2; -2; 3) + L\{b_1(3; 1; 1; -1)\}.$
 - ж) $H_1 = c_1(-1; -1; 5; -2) + L\{a_1(2; 1; -3; 1), a_2(3; 1; -1; -1)\},$ $H_2 = c_2(6; 3; 3; -2) + L\{b_1(4; 2; 0; -1)\}.$
 - 3) $H_1 = c_1(7; 1; -3; -2) + L\{a_1(3; 1; -2; 1)\}, H_2: \begin{cases} x_1 + 2x_2 + x_3 + 2x_4 = 12 \\ -x_1 + 2x_2 + x_2 + 3x_4 = 16 \end{cases}$

$$\text{ M}) \ \ H_1 = c_1(7;0;2;1) + L\{a_1(2;2;1;-3)\} \,, \ \ H_2: \begin{cases} x_1 - x_2 + 3x_3 + x_4 = 2 \\ x_1 - 2x_2 + x_3 + 3x_4 = 13 \end{cases} .$$

- 12. Найдите расстояние между двумя линейными многообразиями H_1 и H_2 , и задайте в параметрическом виде $H_3 = c_3 + L\{h\}$ какой-нибудь общий перпендикуляр к ним. Если их много, укажите многообразие $H_4 = c_4 + L_4$ концов всех общих перпендикуляров, принадлежащих H_1 , и многообразие $H_5 = c_5 + L_5$, являющееся объединением всех общих перпендикуляров.
 - a) $H_1 = c_1(1;2;3) + L\{a_1(1;0;1), a_2(0;1;0)\}, H_2 = \begin{cases} x y = 1 \\ x 2y + z = 0 \end{cases}$
 - 6) $H_1 = c_1(0; 0; 2) + L\{a_1(1; -1; 1)\}, H_2 = \{2x + y z = 1.$

 - r) $H_1 = L\{a_1(1; 2; 0; 1), a_2(1; 0; 2; 1)\} + c_1(2; 1; 0; 0),$ $H_2 = L\{b_1(1; 1; 0; 2), b_2(1; 0; 1; 2)\} + c_2(-1; 2; 3; -1).$

Дополнительные задачи

- 15. Докажите формулу $(L_1 + L_2^{\perp})^{\perp} = L_1^{\perp} \cap L_2$.
- 16. Пусть L_1 и L_2 линейные подпространства в E^n . Верно ли утверждение:
 - a) $L_1 + L_2 = E^n \Rightarrow L_1 = L_2^{\perp} \oplus (L_1 \cap L_2)$.
 - 6) $L_1 \subseteq L_2 \Rightarrow L_2 = L_1 \oplus (L_1^{\perp} \cap L_2)$.
 - $\mathbf{B}) \quad L_1 \cap L_2 = \{\overline{0}\} \Longrightarrow L_1^{\perp} = L_2 \oplus (L_1^{\perp} \cap L_2^{\perp}).$
 - $\Gamma) \quad L_1 + L_2 = E^n \Rightarrow L_1^{\perp} \cap L_2^{\perp} = \{\overline{0}\}.$
 - \square $L_1 \cap L_2^{\perp} = {\overline{0}} \Longrightarrow L_1^{\perp} \cap L_2 = {\overline{0}}.$
- 17. Пусть L_1 , L_2 и L_3 линейные подпространства в E^n . Верно ли утверждение:
 - a) $(L_1 + L_2)^{\perp} = (L_1 + L_3)^{\perp} \Rightarrow L_2^{\perp} = L_3^{\perp}$.
 - 6) $(L_1 + L_2)^{\perp} = (L_1 + L_3)^{\perp} \Rightarrow (L_1 \cap L_2)^{\perp} = (L_1 \cap L_3)^{\perp}$.
 - $\mathbf{B}) \ (L_1 + L_2)^{\perp} = (L_1 + L_3)^{\perp} \Rightarrow L_1^{\perp} \cap L_2^{\perp} = L_1^{\perp} \cap L_3^{\perp}.$
 - Γ) $(L_1 + L_2)^{\perp} \subset (L_1 + L_2)^{\perp} \Rightarrow L_2^{\perp} \subset L_2^{\perp}$.
- 18. Пусть $H_1 = c_1 + L_1$ и $H_2 = c_2 + L_2$ два линейных многообразия в E^n , причем $L_1^\perp \cap L_2^\perp = \{\overline{0}\}$. Докажите, что в этом случае $H_1 \cap H_2 \neq \emptyset$.
- 19. Пусть $H_1 = L_1 + c_1$ и $H_2 = L_2 + c_2$ два линейных многообразия в E^n . Известно, что многообразия H_1 и H_2 скрещиваются. Докажите, что в этом случае $L_1^\perp \cap L_2^\perp \neq \{\overline{0}\}$.
- 20. Пусть $H_1 = L_1 + c_1$ и $H_2 = L_2 + c_2$ два линейных многообразия в E^n . Докажите, что общий перпендикуляр у них существует тогда и только тогда, когда $\dim(L_1 + L_2) < n$.
- 21. Пусть $H_1 = L_1 + c_1$ и $H_2 = L_2 + c_2$ два линейных многообразия в E^n . Докажите, что если общий перпендикуляр у них существует и $L_1 \cap L_2 = \{\overline{0}\}$, то этот перпендикуляр определен однозначно.
- 22. Два различных трехмерных линейных многообразия в E^5 имеют общие точки, и существует ненулевой вектор, ортогональный их направляющим подпространствам. Чему может равняться размерность пересечения этих многообразий?
- 23. Докажите, что если $a \in L\{f_1, f_2, ..., f_k\} \subseteq E^n$ и $(a, f_j) = 0$ для всех j, то $a = \overline{0}$.

- 24. Докажите, что если набор $f = \{f_1, f_2, ..., f_k\}$ линейно независим, а набор $f' = \{f_1, f_2, ..., f_k, f_{k+1}\}$ линейно зависим, то при ортогонализации набора f' окажется, что вектор $g_{k+1} = \overline{0}$.
- 25. Докажите теорему о трех перпендикулярах в пространстве E^n : если $L_1 \subseteq L_2$, b ортогональная проекция вектора a на подпространство L_2 , c ортогональная проекция вектора b на подпространство L_1 , d ортогональная проекция вектора a на подпространство b, то b0.

Ответы на типовые задачи

- 1. a) $L^{\perp} = L\{f_1(2;4;-3)\}, \dim(L^{\perp}) = 1.$
 - б) Например, $L^{\perp} = L\{f_1(2;4;-5), f_2(3;-2;4)\}, \dim(L^{\perp}) = 2.$
 - в) Например, $L^{\perp} = L\{f_1(1;2;0), f_2(0;3;1)\}, \dim(L^{\perp}) = 2.$
 - Γ) $L^{\perp} = L\{f_1(1;2;1)\}, \dim(L^{\perp}) = 1.$
 - д) Например, $L^{\perp} = L\{f_1(4;3;-2;-1), f_2(1;-2;-4;3)\}, \dim(L^{\perp}) = 2.$
 - e) Например, $L^{\perp} = L\{f_1(3; 2; -1; 0), f_2(0; 0; 0; 1)\}, \dim(L^{\perp}) = 2.$
- 2. a) Например, $a_1 = (3; 6; -2), a_2 = (2; -1; 0), a_3 = (2; 4; 15).$
 - б) Например, $a_1 = (-2; 1; -5)$, $a_2 = (1; 2; 0)$, $a_3 = (2; -1; -1)$.
 - в) Например, $a_1=(-2;1;3;2),\ a_2=(1;2;0;0),\ a_3=(0;0;2;-3),\ a_4=(26;-13;15;10).$ Или $a_1=(-2;1;3;2),\ a_2=(1;0;0;1),\ a_3=(0;3;-1;0),\ a_4=(5;2;6;-5).$
 - г) Например, $a_1 = (1;-1;2;1)$, $a_2 = (1;1;1;-2)$, $a_3 = (2;1;-1;1)$, $a_4 = (-1;2;1;1)$.
- 3. a) Например, $L = L\{f_1(1;1;0), f_2(3;-3;-4)\}, \dim(L) = 2.$
 - б) Например, $L = L\{f_1(1;1;1), f_2(-5;4;1)\}, \dim(L) = 2.$
 - в) Например, $L = L\{f_1(1; 2; 1; -3), f_2(-1; 2; 3; 2)\}, \dim(L) = 2.$
 - г) Например, $L = L\{f_1(2; 1; 0; 0), f_2(0; 0; 1; -1), f_3(2; -4; 5; 5)\}, \dim(L) = 3.$
 - д) Например, $L = L\{f_1(0; 1; 1; 3; 0), f_2(1; -1; 1; 0; 0), f_3(-2; -1; 1; 0; 3)\}$, dim(L) = 3.
 - e) Например, $L = L\{f_1(0; 1; 0; 0; -1), f_2(3; 0; 2; -1; 0), f_3(9; -7; -8; 11; -7)\}$, dim(L) = 3.
- 4. a) Например, $L^{\perp} = L\{f_1(1;0;1), f_2(1;1;-1)\}, \dim(L^{\perp}) = 2.$
 - б) Например, $L^{\perp} = L\{f_1(0;1;0;1), f_2(-2;-1;2;1)\}$, dim $(L^{\perp}) = 2$.
 - в) Например, $L^{\perp} = L\{f_1(0;1;2;2), f_2(-9;8;-11;7)\}, \dim(L^{\perp}) = 2.$
 - г) Например, $L^{\perp} = L\{f_1(4; -3; 0; 1; 0), f_2(1; 2; -1; 2; 0), f_3(0; 0; 0; 0; 0; 1)\}, \dim(L^{\perp}) = 3.$
 - д) Например, $L^{\perp} = L\{f_1(1; 0; 1; -3; 0), f_2(1; 1; -1; 0; 0), f_3(1; -2; -1; 0; -3)\}, \dim(L^{\perp}) = 3.$
 - e) Например, $L^{\perp} = L\{f_1(-1;1;0;0;-1), f_2(0;-1;0;1;-1), f_3(1;2;3;3;1)\}$. Или $L = L\{f_1(0;1;1;1;0), f_2(3;-1;1;0;4), f_3(3;-10;1;9;-5)\}$, dim(L) = 3.
- 5. a) Например, $L = L\{f_1(1; -2; 3; 2), f_2(3; 2; 1; -1)\}, \dim(L) = 2.$
 - б) Например, $L = L\{f_1(0; 1; 0; 1), f_2(1; 1; 1; -1)\}, \dim(L) = 2.$
 - в) Например, $L = L\{f_1(0; 1; 0; 1), f_2(-2; -1; 2; 1)\}, \dim(L) = 2.2$
 - г) Например, $L = L\{f_1(2; -1; 1; 1), f_2(5; 8; -8; 6)\}, \dim(L) = 2.$
- 6. a) Например, $L = L\{f_1(1; -2; -1), f_2(1; -1; 3)\}, \dim(L) = 2.$
 - б) Например, $L = L\{f_1(1; 2; 3; 2), f_2(1; -2; -1; 3)\}, \dim(L) = 2.$
 - в) Например, $L = L\{f_1(1; -1; 1; 2), f_2(3; 2; -1; 0), f_3(1; 0; 3; -2)\}, \dim(L) = 3.$
 - г) Например, $L = L\{f_1(1; -2; 3; 1), f_2(2; 1; 0; 0), f_3(0; 0; 1; -3)\}, \dim(L) = 3.$
 - д) Например, $L = L\{f_1(-1;2;1;1), f_2(2;1;1;-1), f_4(1;-1;1;2)\}\ (f_3 = 0)$, dim(L) = 3.
 - e) Например, $L = L\{f_1(1; 2; 0; -1; 0), f_2(3; -2; 4; -1; 0), f_3(-2; 3; 4; 4; 1)\}, dim(L) = 3.$

```
ж) Например, L = L\{f_1(2; -2; 3; 1), f_2(-1; 2; 1; 3)\}, \dim(L) = 2.
```

7. a)
$$f_1 = \frac{1}{\sqrt{30}} \cdot (1; -2; 5), \ f_2 = \frac{1}{\sqrt{5}} \cdot (2; 1; 0), \ f_3 = \frac{1}{\sqrt{6}} \cdot (1; -2; -1).$$

6)
$$f_1 = \frac{1}{\sqrt{15}}(1; -2; 3; 1), f_2 = \frac{1}{\sqrt{5}}(2; 1; 0; 0), f_3 = \frac{1}{\sqrt{10}}(0; 0; 1; -3).$$

B)
$$f_1 = \frac{1}{\sqrt{7}}(-1;2;1;1), f_2 = \frac{1}{\sqrt{7}}(2;1;1;-1), f_4 = \frac{1}{\sqrt{7}}(1;-1;1;2)$$
 (Bertop $f_3 = 0$).

г) Например,
$$L = L\{f_1 = \frac{1}{\sqrt{3}}(0;1;0;1;-1), f_2 = \frac{1}{\sqrt{3}}(1;-1;0;1;0), f_3 = \frac{1}{\sqrt{111}}(2;5;-3;3;8)\},$$
 dim $(L) = 3$.

8. a) Например,
$$L = L\{f_1(1;3;0;1;1), f_2(0;1;1;-2;-1)\}$$
, dim $(L) = 2$.

б) Например,
$$L = L\{f_1(1; 0; -1; 2; 3), f_2(-11; 15; 26; 23; -3)\}$$
, dim $(L) = 2$.

в) Например,
$$L = L\{f_1(2; 1; -2; 1; 3), f_2(1; 1; 1; 2; -1)\}$$
, $\dim(L) = 2$.

д) Например,
$$L = L\{f_1(3; 1; 0; -1; 2), f_2(-3; -11; 15; 26; 23)\}$$
, $\dim(L) = 2$.

9. a)
$$g = (2; 1; 1), h = (2; -4; 0).$$

6)
$$q = (0; 3; 3), h = (-1; 2; -2).$$

B)
$$g = (0; 0; 0), h = a = (4; 1; -1).$$

$$\Gamma$$
) $g = (3; 2; 5), h = (-1; 4; -1).$

д)
$$g = (4;-2;-1;-2)$$
, $h = (-1;-2;-2;1)$. e) $g = (4;-2;0;4)$, $h = (1;6;3;2)$.

e)
$$g = (4; -2; 0; 4), h = (1; 6; 3; 2)$$

$$\mathfrak{R}(x)$$
 $g = (1; 3; 2; 1), h = (-4; 2; 2; -6).$

3)
$$g = (1; 3; -1; 2), h = (2; 1; 1; -2).$$

и)
$$g = (-1; -4; 5; 3), h = (1; 2; 3; -2).$$

$$\kappa$$
) $q = (1; -1; 2; 3), h = (6; -4; 1; -4).$

д) Неверно.

л)
$$g = (-1; 2; -1; 1; -2), h = (2; -1; -3; 3; 1).$$
 м) $g = (3; -2; -1; 1; 2), h = (0; 2; 4; 0; 4).$

10. a)
$$n = (1;-2;-1)$$
.

6)
$$n = (3; 2; -1)$$
. B) $n = (4; -3; -2)$.

B)
$$n = (4; -3; -2)$$
.

11. a)
$$H_3 = c_3(0; -1; -3) + L\{h(4; 0; 4)\}, \quad \rho = 4\sqrt{2}.$$

6)
$$H_3 = c_3(2; 1; -3) + L\{h(-6; 4; -1)\}, \quad \rho = \sqrt{53}.$$

B)
$$H_3 = c_3(-5; 1; 1) + L\{(6; 2; 2)\}, \quad \rho = 2\sqrt{11}.$$

$$\Gamma$$
) $H_3 = c_3(-2; -4; 1; -3)) + L\{h(1; 5; -1; 3)\}, \quad \rho = 6.$

д)
$$H_3 = c_3(0; -1; 5; -2) + L\{h(2; -2; 0; 1)\}, \rho = 3.$$

e)
$$H_3 = c_3(-2; 1; 1; -1) + L\{h(1; 2; -2; 3)\}, \quad \rho = 3\sqrt{2}.$$

ж)
$$H_3 = c_3(-2; -1; 3; 0) + L\{h(-2; 3; -1; -2)\}, \ \rho = 0.$$

3)
$$H_3 = c_3(1; -1; 1; -4) + L\{h(-2; 4; 2; 6)\}, \quad \rho = 2\sqrt{15}.$$

и)
$$H_3 = c_3(5; -2; 1; 4) + L\{h(-1; 1; -3; -1)\}, \rho = 2\sqrt{3}.$$

12. a)
$$H_3 = L\{h(-1;0;1)\}$$
, $\rho = 2\sqrt{2}$, $H_4 = M_1(-1;0;1) + L\{b(1;1;1)\}$, $H_5 = L\{h(-1;0;1),b(1;1;1)\}$.

$$\begin{split} \text{6)} \ \ H_3 &= c_3(0;0;2) + L\{h(2;1;-1)\} \,, \ \ \rho = \frac{1}{2} \cdot \sqrt{6} \,\,, \ \ H_4 = c_3(0;0;2) + L\{b(1;-1;1)\} \,, \\ H_5 &= c_3(0;0;2) + L\{h(2;1;-1),b(1;-1;1)\} \,. \end{split}$$

$$\begin{split} \mathbf{B}) \ \ H_3 &= c_3(1;2;3;4) + L\{h(-1;1;1;-1)\} \ , \ \ \rho = 4 \ , \ \ H_4 = c_3(1;2;3;4) + L\{b(1;1;1;1)\} \ , \\ H_5 &= c_3(1;2;3;4) + L\{h(-1;1;1;-1),b(1;1;1;1)\} \ . \end{split}$$

$$\Gamma) \ \ H_3 = c_3(4;3;2;2) + L\{h(3;-1;-1;-1)\} \ , \ \ \rho = 2\sqrt{3} \ , \ \ H_4 = c_3(4;3;2;2) + L\{b(0;1;-1;0)\} \ , \\ H_5 = c_3(4;3;2;2) + L\{h(3;-1;-1;-1),b(0;1;-1;0)\} \ .$$

Ответы на дополнительные задачи

- 15. Указание: используйте формулу $(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}$.
- 16. а) Неверно: L_2^{\perp} не обязано лежать в L_1 . б) Верно.
 - в) Неверно: L_2 не обязано лежать в L_1^{\perp} . г) Неверно.
- 17. а) Неверно. б) Неверно. в) Верно. г) Неверно.
- 18. Указание: вычислите $\dim(L_1 + L_2)$.

- 19. Указание: покажите, что $\dim(L_1 + L_2) < n$.
- 21. Указание: выпишите условие неоднозначности общего перпендикуляра.
- 22. Указание: используйте тот факт, что $\dim(L_1 + L_2) < n$.
- 23. Указание: выразите вектор через набор $\{f_1, f_2, ..., f_k\}$ и подсчитайте (a, a).
- 24. Указание: используйте утверждение о единственности проекции и ортогональной составляющей при ортогональной проекции на подпространство.
- 25. Указание: используйте теорему о существовании и единственности проекции и ортогональной составляющей при ортогональной проекции на подпространство.