

Three-Month Training Plan for Data and Solution Architecture

Standex Digital Standers Digital

Agenda

- Introduction
- Month 1: Foundations and Basics
- Week 1: Introduction to Data and Solution Architecture
- Week 2: Data Modeling and Design Principles
- Week 3: Database Design and Application Layers
- Week 4: Data Integration and Middleware
- Month 2: Intermediate Concepts
- Week 5: Data Storage and Cloud Solutions
- Week 6: Data Security and Compliance
- Week 7: Data Governance and Quality
- Week 8: Enterprise Architecture Frameworks
- Month 3: Advanced Topics and Best Practices

Introduction

- Three-Month Training Plan
 - Focus on Data Architecture and Solution Architecture
 - Commitment of three hours per week

Month 1: Foundations and Basics

Month 1: Foundations and Basics

Data Architecture: Introduction

- Overview of data architecture
- Key components of data architecture
 - Data models
 - Data storage
 - Data integration
- Role of a data architect

Solution Architecture: Introduction

- Overview of solution architecture
- Key components
 - Application architecture
 - Technology stack
 - Integration
- Role of a solution architect

Data Architecture: Data Modeling

- Understanding data models
 - Conceptual, logical, and physical models
- Entity-Relationship Diagram (ERD)
- Practical example
 - Creating a simple ERD

Solution Architecture: Design Principles

- Understanding architectural design principles
 - Scalability
 - Availability
 - Reliability
- Introduction to architectural patterns
 - MVC
 - Microservices
 - Event-driven
- Practical example: Designing a simple solution architecture

Data Architecture: Database Design

- Principles of Database Design
 - Normalization
 - Indexing
- Choosing the Right Database
 - Relational vs. NoSQL
- Practical Example
 - Designing a Normalized Database
 Schema

Solution Architecture: Application Layers

Understanding application layers

Presentation, business, data

Designing multi-layered applications

Practical example

Creating a layered architecture diagram

Data Architecture: Data Integration

- Techniques for data integration
 - ETL
 - ELT
 - Data replication
- Tools for data integration
 - Informatica
 - Talend
 - SSIS
- Practical example: Designing a simple ETL process

Solution Architecture: Middleware

- Role of Middleware in Solution Architecture
 - Facilitates communication and data management between applications
- Types of Middleware
 - Message Brokers
 - API Gateways
- Practical Example
 - Integrating Middleware in a Solution Architecture

Month 2: Intermediate Concepts

Month 2: Intermediate Concepts

Data Architecture: Data Storage Solutions

- Comparing on-premises vs. cloud storage
- Understanding data lakes, data warehouses, and data marts
- Practical example: Designing a data storage solution

Solution Architecture: Cloud Solutions

- · Introduction to cloud computing
 - laaS, PaaS, SaaS
- Major cloud providers
 - AWS, Azure, Google Cloud
- Practical example
 - Designing a cloud-based solution

Data Architecture: Data Security

- Principles of data security
 - Encryption
 - Access control
- Compliance regulations
 - GDPR
 - HIPAA
- Practical example
 - Implementing data security measures

Solution Architecture: Security Architecture

- Designing Secure Solutions
 - Firewalls
 - IDS/IPS
 - Secure Coding Practices
- Identity and Access Management (IAM)
- Practical Example: Creating a Security Architecture Plan

Data Architecture: Data Governance

- Importance of data governance
 - Ensures data accuracy and consistency
 - Improves decision making and strategic planning
- Data governance frameworks and tools
 - Frameworks: DAMA, COBIT, ITIL
 - Tools: Collibra, Informatica, Talend
- Practical example: Implementing a data governance framework
 - Assess current data governance maturity
 - Define roles and responsibilities
 - Establish policies and procedures

Solution Architecture: Quality Attributes

- Understanding quality attributes
 - · Performance, usability, maintainability
- Trade-offs and prioritization
- Practical example
 - Evaluating a solution against quality attributes

Data Architecture: TOGAF Framework

- Introduction to TOGAF (The Open Group Architecture Framework)
- Key components and phases of TOGAF
- Practical example: Applying TOGAF to a data architecture project

Solution Architecture: Zachman Framework

- Introduction to the Zachman Framework
- Understanding the six perspectives
 - Planner
 - Owner
 - Designer
 - Builder
 - Subcontractor
 - User
- Practical example: Applying the Zachman Framework to a solution architecture project

Month 3: Advanced Topics and Best Practices

Month 3: Advanced Topics and Best Practices

Data Architecture: Big Data Solutions

- Introduction to big data technologies
 - Hadoop
 - Spark
- Designing a big data architecture
- Practical example: Creating a big data pipeline

Solution Architecture: Analytics and BI

- Integrating analytics and BI in solution architecture
- Tools and platforms for analytics
 - Power BI
 - Tableau
 - Looker
- Practical example: Designing an analytics solution

Data Architecture: Data APIs

- Designing RESTful and GraphQL APIs for data access
- Best practices for API security and versioning
- Practical example: Building a RESTful API for a data service

Solution Architecture: Microservices Architecture

- Principles of microservices architecture
- Designing microservices and managing inter-service communication
- Practical example: Creating a microservices architecture for an application

- Introduction to DataOps
- Automation in Data Pipelines
 - CI/CD for Data
- Practical Example
 - Implementing a DataOps Pipeline

Solution Architecture: DevOps

- Principles of DevOps
- Tools for CI/CD
 - Jenkins
 - GitLab Cl
 - Azure DevOps
- Practical example: Setting up a CI/CD pipeline for a solution

Week 12: Capstone Project

- Data Architecture and Solution Architecture: Capstone Project
 - Defining a real-world problem to solve using data and solution architecture
 - Designing and implementing a comprehensive solution
 - Integrating data architecture and solution architecture principles
 - Presenting the final project with detailed documentation

Data Architecture: Real-World Applications

- Review of successful data architecture projects
- Lessons learned and best practices
- Developing a customized data architecture solution based on a realworld scenario

Solution Architecture: Real-World Applications

- Review of successful solution architecture projects
 - Learn from past experiences
 - Implement best practices
- Lessons learned and best practices
 - Improve future projects
 - Maximize efficiency and effectiveness
- Developing a customized solution architecture based on a realworld scenario
 - Adapt to specific needs and requirements
 - Ensure practicality and feasibility

Data Architecture: Certification Exam Preparation

- Review of key concepts and skills
- Practice questions and mock exams
- Tips and strategies for passing the certification exam

Data Architecture: Project Presentation

- Presenting your developed data architecture projects
- Receiving feedback and suggestions
- Iterating and improving based on feedback

Solution Architecture: Project Presentation

- Presenting your developed solution architecture projects
- Receiving feedback and suggestions
- Iterating and improving based on feedback

Data Architecture: Exploring Advanced Features

Delving into advanced features and capabilities

Introduction to emerging trends

Al in data architecture

Real-time data processing

Planning for future learning and development

Solution Architecture: Exploring Advanced Features

Delving into advanced features and capabilities

Introduction to emerging trends

Serverless architecture

Edge computing

Planning for future learning and development

Conclusion

- Knowledge and skills for data architecture
 - Integrating with solution architecture
- Creating robust and scalable data-driven solutions

