Devoir de révisions n° 1

Concours commun 2009 des écoles des mines d'Albi, Alès, Douai, Nantes.

Épreuve spécifique de mathématiques (filière MPSI).

Problème 1.

On rappelle que le nombre $e = \exp(1) \approx 2,72, \frac{1}{\sqrt{e}} \approx 0,61, \sqrt{2} \approx 1,41, \ln(3) \approx 1,10.$

I – Étude d'une fonction.

Soit f définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = 3x \exp(-x^2) - 1 = 3xe^{-x^2} - 1$.

- 1) Étudier les variations de f sur \mathbb{R} , ainsi que les limites aux bornes du domaine de définition. Donner le tableau de variations de f. Préciser les branches infinies de la courbe représentative \mathscr{C}_f de f.
- 2) Calculer f''(x). Qu'en déduit-on pour le point de \mathscr{C}_f d'abscisse 0?
- 3) Donner l'équation de la tangente en 0. Étudier la position de la courbe \mathscr{C}_f par rapport à la tangente au point d'abscisse 0. Quel résultat retrouve-t-on?
- 4) Donner l'allure de la courbe \mathscr{C}_f de f.
- 5) a) Pourquoi f admet-elle des développements limités en 0 à n'importe quel ordre?
 - b) Donner le développement limité de f au voisinage de 0 à l'ordre 5.

II – Étude d'une équation différentielle.

Soit n un élément de \mathbb{N}^* . Soit E_n l'équation différentielle $xy' - (n-2x^2)y = n-2x^2$. Soit H_n l'équation homogène (dite aussi sans second membre) associée à E_n .

- **6)** Résoudre H_n sur $]0, +\infty$ et sur $]-\infty, 0[$.
- 7) En déduire les solutions de E_n sur $]0, +\infty[$ et sur $]-\infty, 0[$.
- 8) Donner toutes les fonctions f définies, de classe \mathscr{C}^1 sur \mathbb{R} et solutions de E_n sur \mathbb{R} . On distinguera les cas n=1 et n>2.

III – Étude de deux suites.

On suppose désormais dans toute la suite du problème que l'entier naturel n est supérieur ou égal à 2. Soit $f_n(x) = 3x^n e^{-x^2} - 1 = 3x^n \exp(-x^2) - 1$.

- 9) Quel est le signe de $f_n(0)$, de $f_n(1)$?
- **10)** Étudier les variations de f_n sur l'intervalle $[0, +\infty[$. Donner la limite de $f_n(x)$ quand x tend vers $+\infty$. En déduire que f_n s'annule sur $[0, +\infty[$ en deux réel notés u_n et v_n , qui vérifient $u_n < 1 < v_n$.
- 11) Quelle est la limite de la suite $(v_n)_{n\geqslant 2}$?
- **12)** a) Calculer $\exp(-u_n^2) = e^{-u_n^2}$ en fonction de u_n^n .
 - **b)** En déduire le signe de $f_{n+1}(u_n)$.
 - c) Déduire de ce qui précède la monotonie de la suite $(u_n)_{n\geq 2}$.
 - d) Montrer que la suite $(u_n)_{n\geqslant 2}$ est convergente. Soit ℓ sa limite.
- **13)** Soit g_n définie sur $]0, +\infty[$ par : $\forall x > 0, \ g_n(x) = \ln 3 + n \ln x x^2.$
 - a) Soit t > 0. Montrer que $g_n(t) = 0$ si et seulement si $f_n(t) = 0$.
 - b) On suppose que : $\ell \neq 1$. Trouver une contradiction en utilisant ce qui précède. Conclusion?
 - c) Soit la suite $(w_n)_{n\geq 2}$ définie par : $\forall n\geq 2,\ w_n=u_n-1$. Trouver en utilisant un développement limité de $g_n(1+w_n)=g_n(u_n)$ un équivalent simple de w_n .

IV – Étude d'une courbe paramétrée.

Soit $R = (O, \overrightarrow{i}, \overrightarrow{j})$ un repère orthonormé. Soit M la courbe paramétrée définie sur $]0, +\infty[$ tel que pour tout t strictement positif, M(t) ait pour coordonnées dans le repère R, (x(t), y(t)) avec

$$\begin{cases} x(t) = g_2(t) = \ln 3 + 2 \ln t - t^2 \\ y(t) = t - \frac{1}{3} t^3 \end{cases}$$

- 14) a) Étudier les variations de x et y ainsi que leurs limites aux bornes du domaine de définition.
 - b) Étudier les branches infinies de la courbe M.
 - c) Étudier la nature du point M(1). Donner un vecteur directeur de la tangente en M(1) à la courbe.
- 15) Tracer l'allure de la courbe M.

Problème 2.

On notera $\mathbb{C}[X]$ l'ensemble des polynômes à coefficients complexes et $\mathbb{C}_n[X]$ l'ensemble des polynômes de $\mathbb{C}[X]$ de degré inférieur ou égal à n, où n est un entier naturel non nul. On note $\mathbb{R}_2[X]$ l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à 2. On confondra polynôme et fonction polynôme. On notera $\deg(P(X))$ le degré d'un polynôme P.

I – Étude d'un polynôme.

16) Soit U(X) le polynôme de $\mathbb{C}_2[X]$ suivant : $U(X) = X^2 + (1-2i)X - 2i$.

- a) Donner les racines carrées de -3 + 4i.
- b) Trouver les racines dans \mathbb{C} du polynôme U(X).
- 17) Soit le complexe z, z = x + iy avec x et y réels.
 - a) Calculer la partie réelle et la partie imaginaire de U(z) en fonction de x et de y.
 - **b)** Soit le plan rapporté un repère orthonormé $R = (O, \overrightarrow{\imath}, \overrightarrow{\jmath})$. (On prendra $\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1$ cm.)
 - i) Soit Γ_1 l'ensemble des points M de coordonnées (x,y) tels que U(x+iy) est imaginaire pur. Donner la nature de Γ_1 , son centre et son excentricité. Tracer Γ_1 .
 - ii) Soit Γ_2 l'ensemble des points M des points M de coordonnées (x,y) tels que U(x+iy) est réel. Donner sa nature et son centre. Tracer Γ_2 sur le même dessin que Γ_1 .

II - Définition d'une application.

Soit n un entier naturel non nul fixé pour toute la suite du problème. Soit T(X) un polynôme fixé de $\mathbb{C}[X]$ de degré n. Soit f l'application définie sur $\mathbb{C}[X]$ qui à tout P(X) de $\mathbb{C}[X]$ associe Q(X)+XR(X) où Q(X) et R(X) sont respectivement le quotient et le reste de la division euclidienne de $P(X^2)$ par T(X). (On a fonc $P(X^2) = Q(X)T(X)+R(X)$ avec $\deg(R(X)) < \deg(T(X))$). On notera f_n la restriction de f à $\mathbb{C}_n[X]$.

- 18) Montrer que f est une application linéaire.
- **19)** Montrer que f_n est un endomorphisme de l'espace vectoriel $(\mathbb{C}_n[X], +, \cdot)$.
- **20)** Dans cette question uniquement n=2 et $T(X)=X^2$.
 - a) Donner la matrice A de f_2 sur la base canonique $(1, X, X^2)$.
 - b) Calculer A^2 . En déduire que f_2 est bijective et donner son application réciproque. En déduire la nature de f_2 .
- **21)** Dans cette question uniquement n=2 et T(X)=(X-1-i)(X+i). Donner l'image du polynôme $U(X)=X^2+(1-2i)X-2i$ par l'application f.

III – Étude d'un cas particulier.

Soit a un complexe fixé. Dans cette partie uniquement, n=3 et $T(X)=X^3+X^2+a$.

22) Montrer que f_3 a pour matrice sur la base canonique $(1, X, X^2, X^3)$ de $\mathbb{C}_3[X]$:

$$B = \begin{pmatrix} 0 & 0 & -1 & -a-1 \\ 1 & 0 & a+1 & 1+a+a^2 \\ 0 & 0 & -a & -a-1 \\ 0 & 1 & 1 & 2a+2 \end{pmatrix}.$$

- **23)** Calculer le déterminant de f_3 .
- 24) Donner les valeurs de a pour lesquelles f_3 n'est pas bijective.
- **25)** Dans cette question a = -1.
 - a) Donner un base de Ker f_3 , le noyau de f_3 .

- **b)** Donner une base de Im f_3 , l'image de f_3 .
- c) Le noyau et l'image de f_3 sont-ils supplémentaires?

IV – Étude du noyau.

- **26)** Soit P(X) un polynôme non nul de degré p tel que 2p < n. Montrer que f(P(X)) est non nul.
- 27) Soit P(X) un polynôme. Montrer qu'il appartient au noyau de f si et seulement s'il existe un polynôme R(X) de degré strictement inférieur à n tel que : $P(X^2) = R(X)(1 XT(X))$.
- **28)** En déduire que si P(X) est un élément du noyau de f alors il appartient à $\mathbb{C}_n[X]$.
- **29)** Déduire de la question **27)** que pour tout élément P du noyau de f et que pour tout k de \mathbb{N} tel que $\deg(P(X)) + k \leq n$ alors $X^k P(X)$ appartient au noyau de f.
- **30)** On suppose dans cette question que le noyau de f n'est pas réduit au polynôme nul. Soit I l'ensemble des entiers naturels k tel qu'il existe un polynôme du noyau de f qui a pour degré k.
 - a) Montrer que I possède un plus petit élément d.
 - b) Soit $P_0(X)$ un polynôme du noyau ayant pour degré d. Soit $P_1(X)$ un autre polynôme du noyau ayant pour degré d. Monter qu'il existe c de \mathbb{C} tel que $P_1(X) = cP_0(X)$.
 - c) Montrer qu'un polynôme P(X) appartient au noyau de f si et seulement s'il existe un polynôme S(X) de degré inférieur ou égal à n-d tel que $P(X) = S(X)P_0(X)$.
- **31)** On suppose dans cette question que $T(X) = X^3 + X^2 1$. Donner le noyau de f.

V – Étude d'un produit scalaire.

Dans cette partie on prendra $T(X)=X^2$ et on considérera $g=f_2$ la restriction de f à $\mathbb{R}_2[X]$.

- **32)** Montrer que g est bien un endomorphisme de l'espace vectoriel réel $(\mathbb{R}_2[X], +, \cdot)$. Donner sa matrice A sur la base canonique de $\mathbb{R}_2[X]$.
- 33) Soit $\langle \cdot, \cdot \rangle$ définie sur $\mathbb{R}_2[X]^2$ à valeurs dans \mathbb{R} par : $\forall (U(X), V(X)) \in \mathbb{R}_2[X]^2, \ \langle U(X), V(X) \rangle = U(1) \times V(1) + U'(1) \times V'(1) + U''(1) \times V''(1).$ (Où U'(X) et V'(X) sont les fonctions polynômes dérivées de U(X) et V(X) et U''(X) et V''(X) sont les fonctions polynômes dérivées secondes de U et V). Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $(\mathbb{R}_2[X], +, \cdot)$.
- **34)** Montrer que la matrice A de g sur la base canonique est une matrice orthogonale. (C'est-à-dire que $A \times {}^t A = I_3$, où ${}^t A$ est la matrice transposée de A et I_3 la matrice identité.)
- **35)** L'application g est-elle une isométrie vectorielle pour le produit scalaire $\langle \cdot, \cdot \rangle$? On pourra calculer $\langle 1, 1 \rangle$ et $\langle g(1), g(1) \rangle$.