SET THEORY

白永乐 SID: 202011150087 202011150087@mail.bnu.edu.cn

2023年9月19日

1 Question

 \mathbb{R}^{OBEM} I. Using only $\hat{\in}$ and $\hat{=}$ to express the following formulas

- 1. z = ((x, y), (u, v))
- 2. $\forall x [\neg(x = \emptyset) \rightarrow (\exists y \in x)(x \cap y = \emptyset)]$
- 3. $\forall u [\forall x \exists y (x, y) \hat{\in} u \rightarrow \exists f \forall x (x, f(x)) \hat{\in} u]$

- 2. $\forall x (\neg(\forall u \neg (u \in x)) \rightarrow \neg(\forall y \neg (y \in x \land \forall u (u \in x \rightarrow \neq (u \in y)))))$
- 3. $\forall u(\forall x \exists y(x,y) \in u \rightarrow \exists f((\forall x \exists y((x,y) \in f \land \forall z((x,z) \in f \rightarrow z = y))) \forall x \forall y((x,y) \in f \rightarrow (x,y) \in u)))$

 \mathbb{R}^{OBEM} II. Suppose that R, S are two binary relations (as sets). Show that R_{-1} and $S \circ R$ exist, where

$$S \circ R = \{(x, z) \mid \exists y ((x, y) \in R \land (y, z) \in S)\}$$

SOLUTION. since A = dom(R), B = ran(R) exists, we can get $(x, y) \in R_{-1} \iff (y, x) \in R \Rightarrow y \in \text{ran}(R) \land x \in \text{dom}(R) \iff (x, y) \in \text{ran}(R) \times \text{dom}(R)$, so we get $R_{-1} \subset \text{ran}(R) \times \text{dom}(R)$.

For the same reason we can easily get $S \circ R \subset \text{dom}(R) \times \text{ran}(S)$.

So from axiom 2 we finially get R_{-1} , $R \circ S$ are sets.

 $\mathbb{P}_{P}^{OB}EM$ III. There is no set X such that $\mathscr{P}(X) \subseteq X$.

1 QUESTION 2

SOUTON. If there is such X, we consider the set $Y := \{x \in X : x \notin x\} \subset X$. If $Y \in Y$, then we get $Y \notin Y$. If $Y \notin Y$, since $Y \in \mathscr{P}(X) \subset X$ we get $Y \in Y$. So it's a contradiction. So there is no such X.

 \mathbb{P}_{P}^{OBEM} IV. If X is inductive, then the set

$$\{x \in X \mid x \subseteq X\}$$

is inductive. Hence N is transitive, and for each $n, n = \{m \in N \mid m < n\}$.

SOUTION. Let $x \in X \land x \subset X$. Since X is inductive, we get $x \cup \{x\} \in X$. Since $x \in X$ we get $\{x\} \subset X$. So $x \cup \{x\} \subset X$. So $\{x \in X : x \subset X\}$ is inductive. Obviously $\emptyset \in \{x \in X : x \subset X\}$, so by MI we can get $\mathbb{N} \subset \{x \in \mathbb{N} : x \subset \mathbb{N}\}$, so $\mathbb{N} = \{x \in \mathbb{N} : x \subset \mathbb{N}\}$. i.e., \mathbb{N} is transitive.

Since $\forall m, n \in \mathbb{N} (m < n \leftrightarrow m \in n)$, so $\{m \in \mathbb{N} : m < n\} \subset n$. Since \mathbb{N} is transitive, so $m \in n \to m \in \mathbb{N}$, so $n \subset \{m \in \mathbb{N} : m < n\}$. So finally we get $n = \{m \in \mathbb{N} : m < n\}$.

 \mathbb{R}^{OBEM} V. If X is inductive, then the set

$$\{x \in X \mid x \text{ is transitive }\}$$

is inductive. Hence every $n \in N$ is transitive.

SOLUTION. Use $\tau(x)$ to reperesent x is transitive. Let $x \in X \land \tau(x)$, consider $x \cup \{x\}$. Let $y \in x \cup \{x\}$, if y = x, then $y \subset x \cup \{x\}$; else, $y \in x$, since x is transitive, so $y \subset x \subset x \cup \{x\}$. Then we get $\tau(x \cup \{x\})$. So $\{x \in X : \tau(x)\}$ is inductive.

For \mathbb{N} we have $\{n \in \mathbb{N} : \tau(n)\}$ is inductive, and 0 is transitive, so $\forall n \in \mathbb{N}, \tau(n)$.

 \mathbb{R}^{OBEM} VI. If X is inductive, then the set

 $\{x \in X \mid x \text{ is transitive and } x \notin x\}$

is inductive. Hence $n \notin n$ and $n \neq n+1$ for each $n \in N$

SPERON. Use $\tau(x)$ to repersent x is transitive. Let $x \in X \land \tau(x) \land x \notin x$, consider $x \cup \{x\}$. Let $y \in x \cup \{x\}$, if y = x, then $y \subset x \cup \{x\}$; else, $y \in x$, since x is transitive, so $y \subset x \subset x \cup \{x\}$. Then we get $\tau(x \cup \{x\})$. If $x \cup \{x\} \in x \cup \{x\}$, then $x \cup \{x\} \in x \lor x \cup \{x\} = x$. Since $x \notin x$ so $x \cup \{x\} \neq x$, so $x \cup \{x\} \in x$. Since x is transitive, so $x \cup \{x\} \subset x$. But $x \notin x$, so it's impossible. So $\{x \in X : \tau(x) \land x \notin x\}$ is inductive.

For \mathbb{N} , we get $\{n \in \mathbb{N} : \tau(n) \land x \notin x\}$ is inductive, so $\mathbb{N} = \{n \in \mathbb{N} : \tau(n) \land x \notin x\}$, so $n \in \mathbb{N} \to n \notin n$. And since $n + 1 = n \cup \{n\}$, we get $n + 1 \neq n$.

1 QUESTION 3

 \mathbb{R}^{OBEM} VII. If X is inductive, then the set $\{x \in X \mid x \text{ is transitive and every nonempty}\}$

```
z \subseteq x has an \in-minimal element \}
```

is inductive. (t is \in -minimal in z if there is no $s \in z$ such that $s \in t$.)

SOLUTION. Use $\tau(x)$ to reperesent x is transitive, use $\phi(x)$ to reperesent every nonempty $z \subset x$ has an \in -minimal element. Let $x \in X \land \tau(x) \land \phi(x)$, consider $x \cup \{x\}$. If $x \in x$ then $x \cup \{x\} = x$ and thus $x \cup \{x\} \in \{y \in X : \tau(y) \land \phi(y)\}$. Now we assume $x \notin x$.

Let $y \in x \cup \{x\}$, if y = x, then $y \subset x \cup \{x\}$; else, $y \in x$, since x is transitive, so $y \subset x \subset x \cup \{x\}$. Then we get $\tau(x \cup \{x\})$. Consider $z \subset x \cup \{x\} \land z \neq \emptyset$. If $z = \{x\}$, since $x \notin x$ so x is the \in -minimal element of z. Else, consider $t = z \setminus \{x\} \subset x$, and $u \in t$ is \in -minimal element of t. Since $u \in x \land \tau(x)$ we get $u \subset x$. And $x \notin x \to x \notin u$. So u is \in -minimal element of $t \cup \{x\}$, too. So $u \in x \cap t$ is inductive.

 \mathbb{R}^{OBEM} VIII. Every nonempty $X \subseteq \mathbb{N}$ has an \in -minimal element.

SOUTON. Consider $X \subset \mathbb{N} \wedge X \neq \emptyset$. Assume $n \in X$. Consider $Y := n \cap X \subset n$. If $Y = \emptyset$, then n is the \in -minimal element of X. Else, from Problem VII we know Y has \in -minimal element u. Now we just need to prove u is \in -minimal element of X. If not, $\exists m \in X, m \in u$, then since $u \in n$ we get $m \in u \subset n$, so $m \in n$ and thus $m \in Y$, contradiction with u is \in -minimal element of Y.

 \mathbb{R}^{OBEM} IX. If X is inductive then so is

$$\{x \in X \mid x = \varnothing \vee x = y \cup \{y\} \text{ for some } y\}.$$

Hence each $n \neq \emptyset$ is m + 1 for some m.

SOLUTION. Consider $x \in X \land (x = \emptyset \lor (\exists z x = z \cup \{z\}))$, then for $y = x \cup \{x\}$ we have $y \in X \land y = x \cup \{x\}$, thus $y \in \{x \in X : x = \emptyset \lor (\exists y \in X) x = y \cup \{y\}\}$. So the set is inductive, too.

For \mathbb{N} we get $\forall n \in \mathbb{N}, n = \emptyset \vee \exists m \in \mathbb{N}, n = m \cup \{m\}$. If $n = \emptyset$ then n = 0. If $n = m \cup \{m\}$ then $m \in n$. Since \mathbb{N} is transitive, we get $m \in n \subset \mathbb{N}$. So $m \in \mathbb{N}$. So $n = m \cup \{m\} = m + 1$.

 $\mathbb{P}_{\!\!R}^{OBEM}$ X. Let A be a subset of N such that $0 \in A$, and if $n \in A$ then $n+1 \in A$. Then A=N.

SPETION. Obviously A is inductive, and N is the least inductive set, so $\mathbb{N} \subset A$. Noting $A \subset \mathbb{N}$, so $A = \mathbb{N}$.