Lecture 24: Green's function

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Calendar

- Plan for remaining lectures
 - Two more lectures

Mon	Tue	Wed	Thu	Fri	Sat	Sun
			17	18	19	20
	22		24		26	27
28 (No lecture)	29		Dec.1		3	4
5 (No lecture)	6	7 (No lecture)	8	9	10	11
12 (L24)	13	14 (L25)	15	16 (Final)	17	18

Linearization revisited

- Semiconductor equations
 - Linearized form:

$$\nabla \cdot \delta \mathbf{J}_{\phi} = j\omega q (\delta p - \delta n)$$

$$\nabla \cdot \delta \mathbf{J}_{n} = j\omega q \delta n$$

$$\nabla \cdot \delta \mathbf{J}_{p} = -j\omega q \delta p$$

- δ **J**'s are fluctuations of the current density.

Perturbation

- Consider some perturbations to the semiconductor equations.
 - These perturbations are denoted as δs 's.

$$\nabla \cdot \delta \mathbf{J}_{\phi} = j\omega q (\delta p - \delta n) + s_{\phi}$$

$$\nabla \cdot \delta \mathbf{J}_{n} = j\omega q \delta n + s_{n}$$

$$\nabla \cdot \delta \mathbf{J}_{p} = -j\omega q \delta p + s_{p}$$

- For example, s_{ϕ} can be a (time-varying) dopant fluctuation.
- Another example is a velocity flucation, which becomes s_n or s_p .
- Since it is a linear system, we can solve it with a Dirac delta function. For example,

$$\nabla \cdot \delta \mathbf{J}_{\phi} = j\omega q (\delta p - \delta n) + \delta (\mathbf{r} - \mathbf{r}_{0})$$

$$\nabla \cdot \delta \mathbf{J}_{n} = j\omega q \delta n$$

$$\nabla \cdot \delta \mathbf{J}_{p} = -j\omega q \delta p$$

How to discretize it

- Recall the box method.
 - When the box contains \mathbf{r}_0 , it simply becomes

$$\int_{Box \ surface} \delta \mathbf{J}_{\phi} \cdot d\mathbf{a} = j\omega q \int_{Box} (\delta p - \delta n) d\mathbf{r} + \mathbf{1}$$

$$\int_{Box \ surface} \delta \mathbf{J}_{n} \cdot d\mathbf{a} = j\omega q \int_{Box} \delta n d\mathbf{r}$$

$$\int_{Box \ surface} \delta \mathbf{J}_{p} \cdot d\mathbf{a} = -j\omega q \int_{Box} \delta p d\mathbf{r}$$

$$\int_{Box \ surface} \delta \mathbf{J}_{p} \cdot d\mathbf{a} = -j\omega q \int_{Box} \delta p d\mathbf{r}$$

When the box doesn't, the unity is gone.