

Systems & Software Security COMSM0050 2020/2021

Intel SGX

Rootkit high-level understanding

Motivation

- An attacker can compromise
 - -User space
 - Operating Systems
 - Even the hardware!
- What can we do?

Motivation

- An attacker can compromise
 - -User space
 - Operating Systems
 - Even the hardware!
- What can we do?

Execute code in its own secure enclave!

SGX Hardware supported enclave

WARNING: there is vulnerabilities in SGX

SGX Hardware supported enclave

- WARNING: there are vulnerabilities in SGX
- Idea: run an application within some isolation unit so it cannot be affected by the OS
 - don't trust the OS or the VMM/hypervisor
 - only need to trust the hardware

SGX Hardware supported enclave

- WARNING: there is vulnerability in SGX
- Idea: run an application within some isolation unit so it cannot be affected by the OS
 - don't trust the OS or the VMM/hypervisor
 - only need to trust the hardware
 - reduce attack surface

SGX preventing memory snooping attack

- Security boundary is CPU package
- Data unencrypted inside the CPU
- Data outside the CPU is encrypted
- External memory reads and bus snooping only see encrypted data

SGX Programming environment

User Process

SGX Programming environment

User Process

SGX Programming environment

- Enclave has its own code and data
 - Provide confidentiality
 - Provide integrity
- Controlled entry point
 - Can enter enclave code only at specific point
 - Enclave execution takes over

User Process

Memory protection

SGX Application Flow

- Define and partition application into trusted and untrusted part
- 2. App create enclave
- Trusted function is called
- Code in enclave process some secret
- 5. Trusted function returns
- App continue as normal

