Week 14

August 8, 2021

Compression

- Speeds up algorithms.
- Saves space.
- Dimension reduction: not all features are needed.
- Example: different units for same attribute.

Now we can represent x1 as a 1D number (Z dimension).

Visualization

- It is difficult to visualize higher dimensional data.
- Dimensionality reduction can help us show information in a more readable fashion for human consumption.
- Collect a huge data set including numerous facts about a country from around the world.

						Mean	
		Per capita			Poverty	household	
	GDP	GDP	Human		Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	`56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

- Assume each country has 50 characteristics.
- How can we better comprehend this data?
- Plotting 50-dimensional data is quite difficult.
- Create a new feature representation (2 z values) that summarizes these features.
- Reduce 50D -> 2D (now possible to plot).

Principle Component Analysis (PCA): Problem Formulation

- Assume we have a 2D data collection that we want to reduce to 1D.
- How can we choose a single line that best fits our data?
- The distance between each point and the projected version should be as little as possible (blue lines below are short).
- PCA tries to find a lower dimensional surface so the sum of squares onto that surface is minimized.
- PCA tries to find the surface (a straight line in this case) which has the minimum projection error.

- PCA is not linear regression.
- For linear regression, fitting a straight line to minimize the straight line between a point and a squared line. VERTICAL distance between point.
- For PCA minimizing the magnitude of the shortest orthogonal distance.
- ullet With PCA there is no y instead we have a list of features and all features are treated equally.

PCA Algorithm

• Compute the covariance matrix.

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{T}$$

- This is an [nxn] matrix (Remember than x^i is a $[n \times 1]$ matrix).
- Next, compute eigenvectors of matrix Σ .

U,S,V = svd(sigma)

- U matrix is also an $[n \times n]$ matrix. Turns out the columns of U are the u vectors we want!
- Just take the first k-vectors from U.
- Next, calculate z.

$$z = (U_{reduce})^T \cdot x$$

Reconstruction from Compressed Representation

• Is it possible to decompress data from a low dimensionality format to a higher dimensionality format?

$$x_{approx} = U_{reduce} \cdot z$$

• We lose some information (everything is now precisely aligned on that line), but it is now projected into 2D space.

Choosing the number of Principle Components

• PCA attempts to minimize the averaged squared projection error.

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{approx}^{(i)}||^2$$

• Total data variation may be defined as the average over data indicating how distant the training instances are from the origin.

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2$$

• To determine k, we may use the following formula:

$$\frac{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)} - x_{approx}^{(i)}||^2}{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}||^2} \le 0.01$$

Applications of PCA

- Compression: Reduce the amount of memory/disk space required to hold data.
- Visualization: k=2 or k=3 for plotting.
- A poor application of PCA is to avoid over-fitting. PCA discards certain data without understanding what values it is discarding.
- Examine how a system works without PCA first, and then apply PCA only if you have reason to believe it will help.