(1) 二狀能遷移図版が状態匿務裏は以下の通り

削		<u>አ</u> ታ	後	
淅熊	C	ŧΝ	冰艇	٩,
20	0	L	So	Ö
SD	0	H	12	1
12	1	L L	12	l
12	1	H	52	2
52	2	L	S 2	2
52	2	H	SD	O

(2) 状能逻移国队状能逻辑表明以防通》

前		ス _カ	後	
淅	<u>6</u>	ŧΝ	撇	ر ر
So	0	L	25	2
02	0	Н	12	1
12	1	L	02	0
12	1	Н	22	2
S2 S2	2	L	51	1
S2	2	Н	20	0

以下成で表記はMIL記法に作がうものでする.

(3) カウツ値 C = C1(0 (C7のなMSD) Yに表現る. 二時(1)の状態の科図を記述し動と

Cı	Сь	ΕN	C1	(8)
0	0	0	0	0
0	0		6	
\mathcal{O}	1	0	0	
0	1	Ţ	1	O
	0	0		0
	Ö			Ó

カルノー図を用いて Сパらさ加法標準的の論理式とて表現ると

[</]

<u>\$</u>	00	01		lo
0			\otimes	
			$ee{ee}/$	•

これが回路回を完成とせるとりかージのおける。

[Co']					
	THE SECTION OF THE SE	00	0		W
	0		\ominus	\propto	
	1	\bigcirc		X	
				15° . I .	/ 7 \

(Xはドントケア)

(おお、巨、ものはそれえかカフリップフロップを表すっとに注意する.

(4) いまて同様の表現方法を用いて状態を移来を記述し直すと

Cı	ر٥)	ŧμ	G'	ζ ₀ ′
0	0	0		0
0	Ó	1	0	
0	1	0	0	0
0	1	l	1	0
(0	0	O	
	Ó		0	0

カルー国を用いているさか法標準的の論歌とて表現すると

[c']

12 SE	OD	0	11	10
0	Θ		X	
	·		A	

これが回路図を完成を出るとングパージのお水ける。

[(0)]

	章	00	01		10
Ī	0			\bowtie	
	1	Θ		X	

(メはドントケア)

(tは、も、も、はなれなり・フリックフロップを素すことに注意する)

は ます、(3)の3年7折かかかさP3とし、そのイターフェースさ以下で定刻る

== さ、りかりの立ちがりの降、(CICo)が(10)から(00)へを乗る降にだけてを幼弘 2重加信号を新たな出か信号 0 とにて戻める。この出かをからた後のからゆき P3′ との32、P3 は以下の面りでねる。

コの19を連結的ことで、3進3杯のカウタを図6のおた実現のることができる。(〇さ、次の3進7杯かかの日料料に連結的)