Lecture Notes – The Julia Set Josh Lipschultz & Ricky LeVan

Preliminaries

As a quick recap of what we saw last week, recall the following facts. The *stable set* of a a complex polynomial $P : \mathbb{C} \to \mathbb{C}$, denoted S(P), is the complement of J(C).

Another useful definition was that of a *bounded orbit*. An orbit is bounded if there exists a K such that $|Q_c^{\circ n}(z)| < K$ for all n. Otherwise the orbit is *unbounded*.

The previous group also discussed how the points of S^1 were *supersensitive*. That is, any open ball around $z \in S^1$ has the property that $\bigcup_{n=0}^{\infty} Q_0^{\circ n}(z) = \mathbb{C} \setminus \{p\}$ for at most one point p.

We also defined the Julia Set J_c as the boundary of the filled Julia set K_c . (The filled Julia set is the set of bounded points of Q_c .) We could alternatively define J_c as the closure of the set of repelling points of Q_c (in fact, this definition isn't limited to the quadratic map; any polynomial will do, and is denoted J(P)).

For the quadratic map $Q_0(z)=z^2$ we saw chaotic behavior only on S^1 by angle doubling $(\theta \to 2\theta)$. We also saw that $|Q_0(z)| \to \infty$ for all |z| > 1 and $|Q_0(z)| \to 0$ for all |z| < 1.

Finally, we learned that for $Q_{-2}(z)=z^2-2$, we have $J_2=K_2=[-2,2]$, so any $z\in\mathbb{C}$ $[-2,2]\to\infty$ as we compose $Q_{-2}(z)$ infinitely many times.

16.3 – The Julia Set as a Cantor Set

Our goal for this section of the talk is to discuss and prove parts of the following theorem.

Theorem 1. If |c| is sufficiently large, Λ , the set of points whose entire forward orbits lie within the circle |z| = |c|, is a Cantor set on which Q_c is topologically conjugate to the shift map on two symbols. All points in $\mathbb{C} - \Lambda$ tend to ∞ under iteration of Q_c . Hence, $J_c = K_c$.

Points Which Escape

Theorem 2 (The Escape Criterion). Let $2 < |c| \le |z|$. Then $Q_c^{\circ n}(z) \to \infty$ as $n \to \infty$.

Corollary 1.

The Filled Julia Set

Let D be the closed disk (i.e. $\{z:|z|\leq |c|\}$). Then the filled Julia set of Q_c is given by

$$\bigcap_{n\geq 0}Q_c^{\circ-n}(D)$$

where $Q_c^{-n}(D)$ denotes the preimage of D under $Q_c^{\circ n}$

16.4 – Computing the Filled Julia Set

16.6 – Computing the Julia Set Another Way