Calculus: Single Variable, Multivariable, Differential Equations, and Vector Calculus Summary

Shereen Elaidi

8 June 2020

Abstract

The purpose of this document is to review Calculus. The content here should be equivalent to Math 140, Math 141, Math 222, and Math 248/358 at McGill.

Contents

1		gle Variable Calculus	1
	1.1	Limits and Derivatives	1
	1.2	Differentiation Rules	2
	1.3	Applications of Differentiation	3
	1.4	Integrals	4
	1.5	Applications of Integration	5
	1.6	Integration Techniques	6
	1.7	Further Applications of Integration	7
	1.8	Parameter Equations and Polar Coordinates	
	1.9	Infinite Sequences and Series	9
	1.10	Strategy for Testing Series	11
	1.11	Power Series	11
2	\mathbf{Mul}	ti Variable Calculus	13
	2.1	Vectors and Geometry of Space	13
	2.2	Partial Derivatives	15

1 Single Variable Calculus

1.1 Limits and Derivatives

- Precise Definition of a Limit: Let f be a function defined on an open interval]a,c[that contains the number a. Then, we say that the limit of f(x) as x approaches a is L, and we write $\lim_{x\to a} f(x) = L$ if for every $\varepsilon > 0$, \exists a $\delta > 0$ such that $0 < |x a| < \delta \Rightarrow |f(x) L| < \varepsilon$.
 - Heuristically, this means that if any small interval $]L \varepsilon, L + \varepsilon[$ is given around L, then we can find an interval $]a \delta, a + \delta[$ around a such that f maps the points in $]a \delta, a + \delta[$ (except possibly a) into the interval $]L \varepsilon, L + \varepsilon[$.
- Continuous: A function f is said to be continuous at a number $a \in \mathbb{R}$ if $\lim_{x\to a} f(x) = f(a)$.
- Intermediate Value Theorem: Let f be continuous on the interval [a, b] and let N be any number between f(a) and f(b) where $f(a) \neq f(b)$. Then, there exists a number $c \in]a, b[$ for which f(c) = N.

• Tangent Line: The tangent line to the curve y = f(x) at the point P = (a, f(a)) is the line through P with the slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \iff m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{1}$$

• Velocity / Instantaneous Velocity: the instantaneous velocity v(a) at the time t=a is the limit of the average velocities:

$$v(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 (2)

• **Derivative**: The **derivative** of a function f at a number $a \in \mathbb{R}$, denoted by f'(a), is

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \tag{3}$$

1.2Differentiation Rules

- Derivative of a constant function: $\frac{d}{dx}[c] = 0$.
- Power Rule: if $n \in \mathbb{R}$, $\frac{d}{dx}[x^n] = nx^{n-1}$. One can prove this using geometric series.
- Constant Multiple Rule: if $c \in \mathbb{R}$ and f differentiable, then $\frac{d}{dx}[cf(x)] = cf'(x)$.
- Constant Sum Rule: if f, g are differentiable, then \$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]\$.
 The rate of change of any exponential function is proportional to the function itself: for \$f(x) := b^x\$:

$$f'(x) = f'(0)b^x \tag{4}$$

• Derivative of the Natural Exponential Function:

$$\frac{d}{dx}\left[e^x\right] = e^x\tag{5}$$

• **Product Rule**: if f, g are differentiable, then:

$$\frac{d}{dx}\left[f(x)g(x)\right] = f(x)\frac{d}{dx}\left[g(x)\right] + g(x)\frac{d}{dx}\left[f(x)\right] \tag{6}$$

• Quotient Rule: If f, g are differentiable, then:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} \left[f(x) \right] - f(x) \frac{d}{dx} \left[g(x) \right]}{\left[g(x) \right]^2} \tag{7}$$

• Derivatives of Trigonometric Functions:

- $\begin{array}{l} -\frac{d}{dx}\left[\sin(x)\right] = \cos(x), \ \frac{d}{dx}\left[\csc(x)\right] = -\csc(x)\cot(x) \\ -\frac{d}{dx}\left[\cos(x)\right] = -\sin(x), \ \frac{d}{dx}\left[\sec(x)\right] = \sec(x)\tan(x) \\ -\frac{d}{dx}\left[\tan(x)\right] = \sec^2(x), \ \frac{d}{dx}\left[\cot(x)\right] = -\csc^2(x). \end{array}$

• Chain Rule: If g is differentiable at x and if f is differentiable at g(x), then the composite function $F:=f\circ g$ defined by F(x):=f(g(x)) is differentiable at x and F' is given by the product:

$$F'(x) = f'(g(x)) \cdot g'(x) \tag{8}$$

or, in Leibnitz notation,

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \tag{9}$$

- Method of Implicit Differentiation: Differentiating both sides of the equation with respect to x, and then solving the resulting equation for y'.
 - Application: finding the derivatives of inverse trigonometric functions:
 - * $\frac{d}{dx} [\arcsin(x)] = \frac{1}{\sqrt{1-x^2}}, \frac{d}{dx} [\arccos(x)] = \frac{-1}{x\sqrt{x^2-1}}$ * $\frac{d}{dx} [\arccos(x)] = \frac{-1}{\sqrt{1-x^2}}, \frac{d}{dx} [\arccos(x)] = \frac{1}{x\sqrt{x^2-1}}$ * $\frac{d}{dx} [\arctan(x)] = \frac{1}{1+x^2}, \frac{d}{dx} [\operatorname{arccot}(x)] = \frac{-1}{x^2+1}$
 - Application: derivatives of logarithmic functions, $y = \log_b(x)$ and $y = \ln(x)$.
 - * $\frac{d}{dx} [\log_b(x)] = \frac{1}{r \ln(b)}$
 - * $\frac{d}{dx} [\ln(x)] = \frac{1}{x}$
 - Method of Logarithmic Differentiation: the calculation of complex functions involving products, quotients, or powers can be simplified by taking logarithms.
- Hyperbolic Trigonometric Functions: hyperbolic functions \sim hyperbola like trigonometric functions \sim circle. They are defined as:
 - $-\sinh(x) := \frac{e^x e^{-x}}{2}, \operatorname{csch}(x) := \frac{1}{\sinh(x)}$

 - $-\cosh(x) := \frac{e^x + e^{-x}}{2}, \ \operatorname{sech}(x) := \frac{1}{\cosh(x)}$ $-\tanh(x) := \frac{\sinh(x)}{\cosh(x)}, \ \coth(x) := \frac{\cosh(x)}{\sinh(x)}$ $-\operatorname{Applications: whenever an entity such as light, velocity, electricity, or radioactivity is gradually$ absorbed or extinguished.
 - Hyperbolic identities:
 - $* \sinh(-x) = -\sinh(x), \cosh(-x) = \cosh(x)$
 - $* \cosh^{2}(x) \sinh^{2}(x) = 1, 1 \tanh^{2}(x) = \operatorname{sech}^{2}(x)$
 - $* \sinh(x + y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$
 - $* \cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$
 - Derivatives of Hyperbolic Functions:

 - $\begin{array}{l} * \quad \frac{d}{dx} \left[\sinh(x) \right] = \cosh(x), \ \frac{d}{dx} \left[\operatorname{csch}(x) \right] = \operatorname{csch}(x) \coth(x), \\ * \quad \frac{d}{dx} \left[\cosh(x) \right] = \sinh(x), \ \frac{d}{dx} \left[\operatorname{sech}(x) \right] = \operatorname{sech}(x) \tanh(x), \\ * \quad \frac{d}{dx} \left[\tanh(x) \right] = \operatorname{sech}^2(x), \ \frac{d}{dx} \left[\coth(x) \right] = \operatorname{csch}^2(x). \end{array}$
 - Inverse Hyperbolic Functions:
 - * $\operatorname{arcsinh}(x) := \ln(x + \sqrt{x^2 + 1})$ for $x \in \mathbb{R}$.
 - * $\operatorname{arccosh}(x) := \ln(x + \sqrt{x^2 1})$ for $x \ge 1$.
 - * $\operatorname{arctanh}(x) := \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ for $x \in [-1, 1]$
 - Derivatives of Inverse Hyperbolic Functions:
 - * $\frac{d}{dx}\left[\operatorname{arcsinh}(x)\right] = \frac{1}{\sqrt{1+x^2}}, \frac{d}{dx}\left[\operatorname{arccsch}(x)\right] = \frac{-1}{|x|\sqrt{x^2+1}}$ * $\frac{d}{dx}\left[\operatorname{arccosh}(x)\right] = \frac{1}{\sqrt{x^2-1}}, \frac{d}{dx}\left[\operatorname{arcsech}(x)\right] = \frac{-1}{x\sqrt{1-x^2}}$ * $\frac{d}{dx}\left[\operatorname{arctanh}(x)\right] = \frac{1}{1-x^2}, \frac{d}{dx}\left[\operatorname{arccoth}(x)\right] = \frac{1}{1-x^2}$

Applications of Differentiation 1.3

- Extreme Value Theorem: Let f be continuous on the closed and bounded interval [a,b]. Then, f attains an absolute maximum value f(x) and an absolute minimum value f(d) at some numbers $c, d \in [a, b].$
- Fermat's Theorem: If f has a local maximum or minimum at c, and if f'9x) exists, then f'(x) = 0.
- Closed Interval Method: To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b],
 - 1. Find the values of f at the critical points of f in the open interval a, b.

- 2. Compute f(a) and f(b).
- 3. The max between (1) and (2) is the absolute max; the min between (1) and (2) is the absolute min.
- Rolle's Theorem: Let $f : [a, b] \to \mathbb{R}$ satisfy:
 - 1. f is continuous on [a, b]
 - 2. f is differentiable on a, b
 - 3. f(a) = f(b).

Then, there exists a number $c \in]a, b[$ such that f'(c) = 0.

- Mean Value Theorem: Let $f : [a, b] \to \mathbb{R}$ satisfy:
 - 1. f is continuous on [a, b]
 - 2. f is differentiable on a, b

Then, there exists a number $c \in]a, b[$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a} \iff f(b) - f(a) = f'(c)[b - a]$$
 (10)

- Theorem (Consequence of MVT): If $f'(x) = 0 \ \forall x \in]a,b[$, then f is constant on]a,b[.
 - Corollary: If $f'(x) = g'(x) \ \forall x \in]a, b[$, then f g is constant on]a, b[, i.e., $\exists c \in \mathbb{R}$ such that $\overline{f(x) = g(x)} + c$.
- L'Hopital's Rule: Suppose f and g are differentiable and that $g(x) \neq 0$ on an open interval containing a. Suppose that

$$\lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = 0$$

$$\tag{11}$$

or

$$\lim_{x \to a} f(x) = \pm \infty \text{ and } \lim_{x \to a} f(x) = \pm \infty$$
 (12)

then

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \left(\frac{f'(x)}{g'(x)} \right) \tag{13}$$

• <u>Antiderivative</u>: A function F is called an <u>anti-derivative</u> of f on an interval I if F'(x) = f(x) $\forall x \in I$.

1.4 Integrals

• Area: The area A of a region S that lies under the graph of a continuous function f is the limit of the sum of the approximating rectangles

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + \dots + f(x_n)\Delta x]$$
(14)

• **Definite Integral**: Let $f:[a,b] \to \mathbb{R}$. Divide [a,b] into n subintervals of equal width $\Delta x = \frac{b-a}{n}$. Let $a = x_0 < x_1 < ... < x_n = b$ be the endpoints and let $x_1^*, ..., x_n^*$ be any sample points in these subintervals such that $x_i^* \in [x_{i-1}, x_i]$. Then, the definite integral of f from a to b is:

$$\int_{a}^{b} f(x)dx := \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x \tag{15}$$

provided that the limit exists and is the same for all possible choices of sample points. If it does exist, then we say that f is **integrable** on [a, b].

• Formulae for the sums of positive integers:

$$-\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$-\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$-\sum_{i=1}^{n} i^{3} = \left\lceil \frac{n(n+1)}{2} \right\rceil^{2}$$

• <u>Fundamental Theorem of Calculus</u> connects differential calculus and integral calculus. Deals with equations of the form

$$g(x) = \int_{a}^{x} f(t)dt \tag{16}$$

- <u>Fundamental Theorem of Calculus Part 1</u>: let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b]. Then, the function g defined by

$$g(x) := \int_{a}^{x} f(t)dt \tag{17}$$

is continuous on [a, b] and differentiable on [a, b]. Moreover, g'(x) = f(x).

- Fundamental Theorem of Calculus Part 2: If f is continuous on [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \tag{18}$$

where F is any anti-derivative of f.

- Alternative expression for the FoC Part 1:

$$\frac{d}{dx} \left[\int_{a}^{x} f(t)dt \right] = f(x) \tag{19}$$

• Table of Integration Formulae:

$$-\int x^n dx = \frac{x^{n+1}}{n+1} \text{ for } n \neq -1.$$

$$-\int e^x dx = e^x$$

$$-\int \sin(x) dx = -\cos(x)$$

$$-\int \sec^2(x) dx = \tan(x)$$

$$-\int \sec(x) \tan(x) dx = \sec(x)$$

$$-\int \sec(x) dx = \ln|\sec(x)| + \tan(x)|$$

$$-\int \cot(x) dx = \ln|\sec(x)| - \cot(x) dx = \ln|\sin(x)|$$

$$-\int \sinh(x) dx = \cosh(x)$$

$$-\int \sinh(x) dx = \cosh(x)$$

$$-\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right)$$

$$-\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln|x|$$

1.5 Applications of Integration

• The average value of f on the interval [a, b] is:

$$f_{avg} := \frac{1}{b-a} \int_a^b f(x)dx \tag{20}$$

• Mean Value Theorem for Integrals: If f is continuous on [a, b] then there exists a $c \in [a, b]$ such that

$$f(x) = f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x)dx \iff \int_{a}^{b} f(x)dx = f(c)(b-a)$$
 (21)

Integration Techniques 1.6

Integration by Parts:

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx \tag{22}$$

• Trigonometric Integrals:

- 1. Strategy for evaluating $\int \sin^m(x) \cos^n(x) dx$:
 - (a) If n is odd: save one cosine, use $\cos^2(x) = 1 \sin^2(x)$ to express the remaining factors in terms of sine:

$$\int \sin^{m}(x)\cos^{2k+1}(x)dx = \int \sin^{m}(x)(1-\sin^{2}(x))^{k}\cos(x)dx$$
 (23)

and make the substitution $u = \sin(x)$.

(b) If m is odd: save one sine, use $\sin^2(x) = 1 - \cos^2(x)$ to express the remaining factors in terms of cosine:

$$\int \sin^{2k+1}(x)\cos^{n}(x)dx = \int (1-\cos^{2}(x))^{k}\cos^{n}(x)\sin(x)dx$$
 (24)

and make the substitution $u = \cos(x)$.

(c) If sine and cosine are even, then use the half-angle identities:

$$\sin^2(x) = \frac{1}{2}(1 - \cos(2x)) \text{ and } \cos^2(x) = \frac{1}{2}(1 + \cos(2x))$$
 (25)

A helpful identity is $\sin(x)\cos(x) = \frac{1}{2}\sin(2x)$.

- 2. Strategy for evaluating $\int \tan^m(x) \sec^n(x) dx$:
 - (a) If n is even: save one secant squared, use the identity $\sec^2(x) = 1 + \tan^2(x)$ to express the remaining factors in terms of tan(x):

$$\int \tan^{m}(x) \sec^{2k}(x) dx = \int \tan^{m}(x) (1 + \tan^{2}(x))^{k-1} \sec^{2}(x) dx$$
 (26)

and make the substitution $u = \tan(x)$.

(b) If m is odd: save one $\sec(x)\tan(x)$, use $\tan^2(x) = \sec^2(x) - 1$ to express the remaining factors in terms of sec(x):

$$\int \tan^{2k+1}(x) \sec^{n}(x) dx = \int (\sec^{2}(x) - 1)^{k} \sec^{n-1}(x) \sec(x) \tan(x) dx$$
 (27)

substitute $u = \sec(x)$.

- 3. Important product identities to remember:
 - (a) $\sin(A)\cos(B) = \frac{1}{2}[\sin(A-B) + \sin(A+B)]$
 - (b) $\sin(A)\sin(B) = \frac{1}{2}[\cos(A-B) + \cos(A+B)]$
 - (c) $\cos(A)\cos(B) = \frac{1}{2}[\cos(A-B) + \cos(A+B)]$

• Trigonometric Substitution

- $-\sqrt{a^2-x^2} \to x = a\sin(\theta), \ \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to 1 \sin^2(\theta) = \cos^2(\theta).$
- $-\sqrt{a^2 + x^2} \to x = a \tan(\theta), \ \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to 1 + \tan^2(\theta) = \sec^2(\theta).$ $-\sqrt{x^2 a^2} \to x = a \sec(\theta), \ \theta \in \left[0, \frac{\pi}{2} \right] \cup \left[\pi, \frac{3\pi}{2} \right] \to \sec^2(\theta) 1 = \tan^2(\theta).$

• Partial Fractions:

1. Case I: Denominator Q(x) is a product of distinct linear factors:

$$\frac{R(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \dots + \frac{A_k}{a_k x + b_k}$$
 (28)

2. Case II: Denominator Q(x) is a product of linear factors, some of which are repeated r times:

$$\frac{R(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \dots + \frac{A_k}{(a_1 x + b_1)^r}$$
(29)

3. Case III: Q(x) contains irreducible quadratic factors, none of which is repeated. Then, expression will have a term of the form

$$\frac{Ax+B}{ax^2+bx+c} \tag{30}$$

which can be integrated by completing the square and using the formula:

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C \tag{31}$$

4. Case IV: Q(x) contains a repeated irreducible factor. Then, the expression will have a term of the form:

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \dots + \frac{A_rx + B_r}{(ax^2 + bx + c)^r}$$
(32)

- General Strategy for Integrating:
 - 1. Simplify the integrand if possible using algebraic manipulation and trigonometric identities.
 - 2. Look for obvious substitutions.
 - 3. Classify integrand according to its form
 - (a) Trigonometric functions
 - (b) Rational functions (\rightarrow partial fractions)
 - (c) Integration by parts
 - (d) Radicals
 - i. $\sqrt{\pm x^2 \pm a^2} \rightarrow \text{trigonmetric substitution}$
 - ii. $(ax+b)^{1/n} \to \text{rationalising substitution } u = (ax+b)^{1/n}$
- Improper Integral: if in the definite integral, $\int_a^n f(x)dx$, either [a,b] is an unbounded interval or $\overline{f(x)}$ has an infinite discontinuity in [a,b]

1.7 Further Applications of Integration

• Arc-length formula: If f' is continuous on [a, b], then the length of the curve y = f(x), $a \le x \le b$

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2}$$
 (33)

• Arc-Length Function: If a smooth curve C has the equation y = f(x), $a \le x \le b$, let s(x) be the distance along C from the initial point $P_0(a, f(a))$ to the point Q(x, f(x)). Then, s is a function given by:

$$s(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} dt \tag{34}$$

1.8 Parameter Equations and Polar Coordinates

Motivation: some curves are best handeled when both x and y are given as a function of a third variable t: x = f(t), y = g(t).

• Suppose f, g are differentiable functions and suppose we want to find the tangent line at a point on the parametric curve x = f(t), y = g(t), where y is also a differentiable function of x. If $\frac{dx}{dt} \neq 0$, then the slope of the parametric curve is given by:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \tag{35}$$

– We can consider $\frac{d^2y}{d^2x}$:

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} \tag{36}$$

- <u>Areas</u>: if a curve is traced out by the parametric equations x = f(t) and y = g(t) for $t \in [\alpha, \beta]$, then using the substitution rule for integrals one has the following formula:

$$\mathcal{A} = \int_{a}^{b} y dx = \int_{\alpha}^{\beta} g(t) f'(t) dt \tag{37}$$

- Arc Length if a curve C is described by parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on [a, b] and C is traversed exactly once as t travels from α to β , then the length of C is:

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \tag{38}$$

- <u>Surface Area</u>: similar to the conditions in the previous theorem, the surface area of a curve obtained by rotating it about the x-axis is given by:

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \tag{39}$$

• Equations to convert between cartesian and polar coordinates:

$$x = r\cos(\theta) \ y = r\sin(\theta) \tag{40}$$

$$r^2 = x^2 + y^2 \tan(\theta) = \frac{y}{x}$$
 (41)

• If $r = f(\theta)$ is a polar curve, then we can find the tangent line to a polar curve by regarding θ as a parameter:

$$x = f(\theta)\cos(\theta)$$
$$y = f(\theta)\sin(\theta)$$

and the tangent is given by:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin(\theta) + r\cos(\theta)}{\frac{dr}{d\theta}\cos(\theta) - r\sin(\theta)}$$
(42)

- Areas and lengths in polar coordinates
 - The area of a sector of a circle: $A = \frac{1}{2}r^2\theta$. The area of a polar region \mathcal{R} :

$$A(\mathcal{R}) = \int_{a}^{b} \frac{1}{2} [f(\theta)]^{2} d\theta \tag{43}$$

- The arc-length of a polar curve with the equation $r = f(\theta)$, $a \le \theta \le b$ is:

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta \tag{44}$$

1.9 Infinite Sequences and Series

• A **Sequence** is a list of numbers written in a definite order

$$a_1, a_2, a_3, \dots$$
 (45)

• A sequence has a **limit** L and we write

$$\lim_{n \to \infty} a_n = L$$

if we can make the terms a_n as close to L as we'd like by taking n sufficiently large. if $\lim_{n\to\infty} a_n$ exists, then we say that $\{a_n\}$ is **convergent**. Else, it is **divergent**.

- A sequence $\{a_n\}$ has a limit L if $\forall \varepsilon > 0$, \exists an $N \in \mathbb{N}$ such that $\forall n \geq N$, one has that $|a_n L| < \varepsilon$.
- Squeeze Theorem: if $a_n \leq b_n \leq c_n \ \forall n \geq n_0$, and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$.
 - If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.
 - If $\lim_{n\to\infty} a_n = L$ and if f is a continuous function at L, then

$$\lim_{n \to \infty} f(a_n) = f(L)$$

• The sequence $\{r^n\}$ is convergent if $r \in]-1,1]$ and divergent for all other values of r. If $r \in]-1,1]$:

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } r \in]-1, 1[\\ 1 & \text{if } r = 1 \end{cases}$$

- Monotonic Sequence Theorem: every bounded, monotonic sequence converges.
- **Series**: Given a series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \dots$$

let s_n denote the *n*th partial sum:

$$s_n := \sum_{i=1}^n a_i = a_1 + \dots + a_n$$

if the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s \in \mathbb{R}$, then the series $\sum_{n=1}^{\infty} a_n$ is convergent.

• **Geometric Series**: is an important example of an infinite series.

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1} \ (a \neq 0)$$
 (46)

- If r=1, then $s_n=na\to\infty$. If $r\neq 1$, then $s_n=\frac{a(1-r^n)}{1-r}$. If $r\in]-1,1[$, then $r^n\to 0$ as $n\to\infty$, and so

$$\lim_{n \to \infty} s_n = \frac{a}{1 - r} \tag{47}$$

otherwise the geometric series diverges.

- Harmonic Series is defined as ∑_{n=1}[∞] 1/n. It's divergent.
 If the series ∑_{n=1}[∞] a_n is convergent, then lim_{n→∞} a_n = 0.
- - Test for Divergence: if $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty[$ and let $a_n = f(n)$. Then, the series $\sum_{n=1}^{\infty} a_n$ is convergent \iff the improper integral $\int_1^{\infty} f(x)dx$ is convergent.
 - **p-series**: the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges $\iff p > 1$.
- Remainder Estimate for the Integral Test: Suppose that $f(k) = a_k$, where f is a continuous, decreasing, positive function for $x \geq n$ and suppose that $\sum a_n$ is convergent. If $R_n := S - S_n$, then

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_n^{\infty} f(x)dx \tag{48}$$

- Comparison Test: Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.
 - 1. If $\sum b_n$ is convergent and $a_n \leq b_n \ \forall n$, then $\sum a_n$ converges.
 - 2. If $\sum b_n$ is divergent and $b_n \leq a_n \ \forall n$, then $\sum a_n$ diverges.
- Limit Comparison Test: Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

where $c \in]0, \infty[$, then both series have the same behaviour; i.e., either both series converge or both diverge.

- Alternating Series Test: If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ for $b_n > 0$ satisfies:
 - 1. $b_{n+1} \leq b_n \ \forall n \in \mathbb{N}$
 - $2. \lim_{n\to\infty} b_n = 0$

then, the series converges.

- Absolutely Convergent: A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.
- Conditionally Convergent: A series $\sum a_n$ is called conditionally convergent if its convergent but not absolutely convergent.
- If $\sum a_n$ is absolutely convergent then it is convergent.
- Ratio Test Let $\{a_n\}$ be a sequence.
 - 1. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then $\sum_{n=1}^{\infty} a_n$ absolutely converges (and thus converges). 2. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| L = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

 - 3. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L = 1$ then the Ratio test is inconclusive.

- Root Test Let $\{a_n\}$ be a sequence.
 - 1. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series absolutely converges (and therefore converges).
 - 2. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or if $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$ then the series diverges.
 - 3. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L = 1$, then the root test will be inconclusive.

1.10Strategy for Testing Series

- 1. If the series is of the form $\sum \frac{1}{n^p}$, then apply the p-series rule. 2. If the series is of the form $\sum ar^{n-1}$ or $\sum ar^n$, then apply the geometric series rule.
- 3. If the series is similar to a p-series or a geometric series, then use a comparison test.
- 4. If $\lim_{n\to\infty} a_n \neq 0$, use the divergence test to conclude that the series diverges.
- 5. If the series is of the form $\sum (-1)^{n-1}b_n$ or $\sum (-1)^n b_n$, then use the alternating series test.
- 6. If the series has factorials in it, consider applying a ratio test.
- 7. If the series is of the form $(b_n)^n$, then consider the root test.
- 8. If $a_n = f(n)$ where $\int_1^\infty f(x)dx$ is easily evaluated, then consider the integral test.

1.11 Power Series

• **Power Series**: a power series is of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots$$
 (49)

A series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2$$
(50)

is called a **power series in** (x - a)

- Theorem: for a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, there are only three possibilities:
 - 1. The series converges only when x = a.
 - 2. The series converges for all x.
 - 3. \exists an R > 0 such that the series converges if |x a| < R and diverges if |x a| > R.
- Theorem (Term-by-term Differentiation and Integration): If the power series $\sum c_n(x-a)^n$ has a radius of convergence R > 0, then the function defined by:

$$f(x) := c_0 + c_1(x - a) + c_2(x - a)^2 + \dots = \sum_{n=0}^{\infty} c_n(x - a)^n$$
 (51)

is differentiable (and thus continuous) on the interval a - R, a + R and:

- 1. $f'(x) = c_0 + 2c_s(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$. 2. $\int f(x)dx = c + c_0(x-a) + c_a \frac{(c-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \dots$

$$\int f(x)dx = c + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$
 (52)

The radius of convergence of both (1) and (2) remain R.

• Theorem (Taylor Series Representation): If f has a power series representation (expansion) at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$
 (53)

for |x-a| < R, then the coefficients are given by the formula:

$$c_n = \frac{f^{(n)}(a)}{n!} \tag{54}$$

Then, the **Taylor Series** for f about a is given by:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
 (55)

For the special case of a = 0, then the above becomes:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots$$
 (56)

• Theorem (Remainder): Define the remainder of the Taylor series by $R_n := f(x) - T_n(x)$. If $f(x) = T_n(x) + R_n(x)$, where T_n is the nth degree Taylor polynomial of f at a and

$$\lim_{n \to \infty} R_n(x) = 0 \tag{57}$$

for |x-a| < R, then f is equal to the sum of its Taylor series on the interval |x-a| < R.

- The following theorem is often used when trying to show that $\lim_{n\to\infty} R_n = 0$ for a specific function f:
 - <u>Taylor's Inequality</u>: If $|f^{(n+1)}(x)| \leq M \ \forall \ |x-a| \leq d$, then the remainder $R_n(x)$ of the Taylor series satisfies the following inequality:

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 (58)

for $|x - a| \le d$.

• Important MacLaurin Series and their Radii of Convergence:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots (R=1)$$
 (59)

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \quad (R = \infty)$$
(60)

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots (R = \infty)$$
 (61)

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots (R = \infty)$$
(62)

$$\arctan(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)} = 1 - \frac{x^3}{3} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots (R=1)$$
 (63)

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots (R=1)$$
 (64)

$$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^3 + \frac{k(k-1)(k-2)}{3!} x^3 + \dots (R=1)$$
 (65)

2 Multi Variable Calculus

2.1 Vectors and Geometry of Space

- If θ is the angle between vectors \mathbf{a} and \mathbf{b} , then $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \cos(\theta)$
 - Two vectors are orthogonal \iff $\mathbf{a} \cdot \mathbf{b} = 0$.
 - Scalar Projection of b onto a:

$$comp_{\mathbf{a}}(\mathbf{b}) : \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||}$$
 (66)

Vector projection of b onto a:

$$\operatorname{proj}_{\mathbf{a}}(\mathbf{b}) := \left(\frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||}\right) \frac{\mathbf{a}}{||\mathbf{a}||} \tag{67}$$

• <u>Cross Product</u>: if $\mathbf{a} := \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} := \langle b_1, b_2, b_3 \rangle$, then their **cross product** is:

$$\mathbf{a} \times \mathbf{b} := \det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$
 (68)

- If θ is the angle between **a** and **b**, then

$$||\mathbf{a} \times \mathbf{b}|| := ||\mathbf{a}|| ||\mathbf{b}|| \sin(\theta) \tag{69}$$

- Two non-zero vectors **a** and **b** are parallel \iff **a** \times **b** = 0.
- The volume of the parallelepiped spanned by the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} is $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$
- A parametric equation for a line going through the point (x_0, y_0, z_0) parallel to the direction vector $\langle a, b, c \rangle$ are:

$$x = x_0 + at$$
$$y = y_0 + bt$$
$$z = z_0 + ct$$

• The scalar equation of the plane through the point $P_0(x_0, y_0, z_0)$ with the normal vector $\mathbf{n} := \langle a, b, c \rangle$ is:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 (70)$$

• The distance D from a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is:

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + z^2}}$$
(71)

- <u>Vector-Valued Function</u>: a function whose domain is the set of real numbers and whose range is a set of vectors.
 - The <u>limit</u> of a vector-valued function \mathbf{r} is defined by taking the limits of the component functions as follows:

$$\lim_{t \to a} \mathbf{r}(t) := \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle$$
 (72)

- Space-curve: the set C of all points (x, y, z) in space where x = f(t), y = g(t), and z = h(t), where $t \in I$, is called a space-curve.

• The <u>derivative</u> \mathbf{r}' of a vector-valued function \mathbf{r} is defined as:

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$
(73)

- The **unit tangent** vector $\mathbf{T}(t)$ is defined as:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||} \tag{74}$$

- The **definite integral** of a vector-valued function is exactly what one would expect:

$$\int_{a}^{b} \mathbf{r}(t)dt = \left(\int_{a}^{b} f(t)dt\right)\hat{\mathbf{i}} + \left(\int_{a}^{b} g(t)dt\right)\hat{\mathbf{j}} + \left(\int_{a}^{b} h(t)dt\right)\hat{\mathbf{k}}$$
(75)

• The length L of a space-curve between the points a and b is parameterisation-independent and is given by:

$$L = \int_{a}^{b} ||\mathbf{r}'(t)|| dt \tag{76}$$

- The **arc-length function** of a curve, s, is defined as:

$$s(t) := \int_{a}^{t} ||\mathbf{r}'(u)|| du \tag{77}$$

We can use the above equation to parameterise a curve with respect to arc-length by differentiating both sides of the equation above with respect to t and applying the fundamental theorem of calculus:

$$\frac{ds}{dt} = ||\mathbf{r}'(t)|| \tag{78}$$

Advantages of an arc-length parametrisation include: it arises naturally from the shape of the curve and it's coordinate-system independent.

- <u>Smooth</u>: a parameterisation $\mathbf{r}(t)$ is called <u>smooth</u> on an interval I if \mathbf{r}' is continuous and $\mathbf{r}'(t) \neq 0$ on I.
- Curvature: the curvature of a curve is given by:

$$\kappa := \left| \left| \frac{d\mathbf{T}}{ds} \right| \right| \tag{79}$$

where **T** is the unit tangent vector. We have three other formulae for curvature:

1.

$$\kappa(t) = \frac{||\mathbf{T}'(t)||}{||\mathbf{r}'(t)||} \tag{80}$$

2.

$$\kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$$
(81)

3. For plane curves, write $\mathbf{r}(x) = x\hat{\mathbf{i}} + f(x)\hat{\mathbf{j}}$

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x)^2]^{3/2}}$$
(82)

• When $\kappa(t) \neq 0$, one can define the **principle unit normal** $\mathbf{N}(t)$:

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||} \tag{83}$$

- Normal plane: the plane determined by the normal and binormal vectors. Consists of all lines orthogonal to the unit tangent vector T.
- Osculating circle: the plane determined by the vectors **T** and **N**.
 - * Closest plane to containing the part of the curve near P.
 - * Osculating circle: the circle that lies on the osculating plane of C at P, has the same tangent as C at P, and lies on the concave side of C (towards where \mathbf{N} is pointing). This best describes the behaviour of C near P.
- The **velocity vector** $\mathbf{v}(t)$ at time t:

$$\mathbf{v}(t) := \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} = \mathbf{r}'(t) \tag{84}$$

- **Speed**: the magnitude of the velocity vector $||\mathbf{v}(t)||$.

$$||\mathbf{v}(t)|| = ||\mathbf{r}'(t)|| = \frac{ds}{dt}$$
(85)

- **Acceleration**: the derivative of the velocity

$$\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t) \tag{86}$$

• Often times it can be useful to resolve the acceleration of a particle into its tangential and normal components:

$$\mathbf{a} = \underbrace{v'}_{:=\mathbf{a}_T} \mathbf{T} + \underbrace{\kappa v^2}_{:=\mathbf{a}_N} \mathbf{N} \tag{87}$$

where $v := ||\mathbf{r}'(t)||$. One can re-write Equation (87) so that it only depends on \mathbf{r} , \mathbf{r}' , and \mathbf{r}'' :

$$\mathbf{a}_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{||\mathbf{r}'(t)||} \tag{88}$$

$$\mathbf{a}_N = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||} \tag{89}$$

2.2 Partial Derivatives

- Graph: let f be a function in two variables with domain Ω . Then, the graph of f is the set of all points $(x, y, z) \in \mathbb{R}^3$ such that z = f(x, y) for $(z, y) \in \Omega$.
- Level Curves: The level curves of a function f in two variables are the curves with equations f(x,y) = k, where $k \in \mathbb{R}$ is a constant.
- <u>Limit</u>: Let f be a function of two variables whose domain Ω includes points arbitrarily close to (a,b). Then, we say that the **limit of** f(x,y) **as** $(x,y) \to (a,b)$ is L and we write:

$$\lim_{(x,y)\to(a,b)} f(x,y) = L \tag{90}$$

if $\forall \ \varepsilon > 0, \ \exists \delta > 0$ such that if $(x,y) \in \Omega, \ 0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta, \ \text{then} \ |f(x,y) - L| < \varepsilon.$

• Partial Derivative: the partial derivative of f with respect to x at (a,b) is:

$$f_x(a,b) := \lim_{h \to 0} \frac{f(a+h) - f(a,b)}{h} \tag{91}$$

• <u>Claircut's Theorem</u>: suppose f is defined on a disk D that contains the point (a, b). If the functions f_{xx} and f_{yy} are both continuous on D, then,

$$f_{xy}(a,b) = f_{yx}(a,b) \tag{92}$$

• Tangent Plane: Suppose f has continuous partial derivatives. An equation for the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is given by:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
(93)

- <u>Linearisation</u>: an equation for the tangent plane to the graph f at the point (a, b, f(a, b)) is given by:

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
(94)

the graph of this tangent plane is called the <u>linearisation</u> of f at (a, b):

$$L(x,y) := f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
(95)

• <u>Differentiable</u>: If z = f(x, y), then f is <u>differentiable</u> at (a, b) if Δz can be expressed in the form:

$$\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y \tag{96}$$

where $\varepsilon_1, \varepsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.

- If the partial derivatives f_x and f_y exist near (a,b), and are continuous at (a,b), then f is differentiable at (a,b).
- <u>Total Differential</u>: for a differentiable function of two variables z = f(x, y), then the <u>total</u> differential is defined as:

$$dz := f_x(x, y)dx + f_y(x, y)dy$$
$$= \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

and so in the language of differentials, we write:

$$f(x,y) \approx f(a,b) + dz$$

• Chain Rule (1. Case): Suppose that z = f(x, y) is a differentiable function of x and y, and suppose that both x and y are differentiable functions of t (i.e, x = x(t), y = y(t)) so that z = (f(x(t), y(t))). Then, z is a differentiable function of t and:

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} \tag{97}$$

• Chain Rule (General Version): Suppose that u is a differentiable function of n variables $(x_1, ..., x_n)$ and each x_j is a differentiable function of m variables $t_1, ..., t_m$. Then, u is a function of $t_1, ..., t_m$ and one has:

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_i} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_i} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_i} \frac{\partial x_n}{\partial t_i}$$
(98)

• Implicit Function Theorem: Let y = f(x). If F is defined on a disc containing (a, b), where $\overline{F(a,b)} = 0$ $\overline{F_y(a,b)} \neq 0$, and $\overline{F_y}$ and $\overline{F_x}$ are continuous on the disc, then the equation F(x,y) = 0defines y as a function of x near the point (a, b) whose derivative is given by:

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y} \tag{99}$$

Now, for z = f(x, y), if z is implicitly given as a function by an equation of the form F(x, y, z) = 0, then the derivative of the implicitly defined function is:

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \tag{100}$$

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$
(100)

• <u>Directional Derivative</u>: the <u>directional derivative</u> of f at (x_0, y_0) in the direction of the unit vector $\mathbf{u} = \langle a, b \rangle$ is:

$$D_u f(x_0, y_0) := \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$
(102)