Examen de Lógica 2006

- Pruebe que la sentencia ∀x₁∃x₂ (x₁ ≡ 2̄x₂ ∨ x₁ ≡ 2̄x₂ + 1) es un teorema de Arit.
- 2. V o F, justifique.
- (a) Sea $\tau = (\emptyset, \{f\}, \emptyset, a)$ con a(f) = 1, y sea $T = (\{\forall x_1 \forall x_2 (f(x_1) \equiv f(x_2) \rightarrow x_1 \equiv x_2)\}, \tau)$. Si A y B son modelos de T, entonces $A \cong B$.
 - (b) $T \vdash (\varphi \rightarrow \psi)$ si y solo si ya sea $T \not\vdash \varphi$ o $T \vdash \psi$.
- (c) Hay una teoria del tipo de los reticulados tal que todos sus modelos son isomorfos a $(\mathcal{P}(\{x,y\}), \cup, \cap)$.
- 3. Sea $F:(L,s,i,0,1) \rightarrow (L',s',i',0',1')$ un isomorfismo de reticulados acotados, y sea $a \in L$ un átomo. Pruebe que F(a) es un átomo.
- 4. Sea T la teoría del punto 2(a). Calcule cuantos modelos no isomorfos de T hay con universo $\{a,b,c\}$. Justifique.