Тема II: Прямые и плоскости

§ 1. Прямая на плоскости

Б.М.Верников М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Уравнения геометрических объектов

Под *геометрическим объектом* на плоскости (в пространстве) будем понимать произвольное множество точек плоскости (пространства), возможно, пустое.

Определение

Пусть π — плоскость, в которой зафиксирована система координат, а ℓ — некоторый геометрический объект в этой плоскости. Уравнение F(x,y)=0, где F(x,y) — функция двух переменных, называется уравнением ℓ , если точка плоскости π принадлежит ℓ тогда и только тогда, когда ее координаты удовлетворяют этому уравнению.

Говорят, что объект ℓ задается уравнением F(x,y)=0 или что ℓ является геометрическим образом этого уравнения.

Пример

В прямоугольной декартовой системе координат окружность радиуса r с центром в точке (a,b) задается уравнением

$$(x-a)^2 + (y-b)^2 - r^2 = 0.$$

Уравнения геометрических объектов: грубая классификация

Идея — изучать геометрических объекты с помощью их уравнений. Понятно, что для разных типов уравнений используются разные методы.

Геометрические образы алгебраических уравнений 1-й и 2-й степени

$$Ax + By + C = 0,$$

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0$$

изучает аналитическая геометрия (часть нашего курса).

Геометрические образы алгебраических уравнений более высоких степеней изучает *алгебраическая геометрия*.

Геометрические образы уравнений F(x,y)=0, где F(x,y) — произвольная «достаточно хорошая» функция изучает дифференциальная геометрия.

Основная теорема об уравнении прямой на плоскости

Теорема об уравнении прямой на плоскости

Пусть на плоскости задана произвольная система координат. Тогда всякая прямая на плоскости может быть задана некоторым уравнением вида

$$Ax + By + C = 0,$$

в котором по крайней мере один из коэффициентов A и B отличен от 0. Обратно, любое уравнение

$$Ax + By + C = 0,$$

в котором по крайней мере один из коэффициентов A и B отличен от 0, задает некоторую прямую.

Доказательство прямого утверждения теоремы

Определение

Любой ненулевой вектор, коллинеарный данной прямой, называется ее направляющим вектором.

Предположим, что на плоскости задана система координат с началом в точке O. Пусть ℓ — прямая на плоскости, точка $M_0(x_0,y_0)$ принадлежит прямой ℓ , а вектор $\vec{a}=(r,s)$ является ее направляющим вектором. Ясно, что эти данные однозначно определяют прямую.

Пусть M(x,y) – произвольная точка плоскости. Обозначим радиус-вектор точки M_0 через \vec{r}_0 , а радиус-вектор точки M – через \vec{r} (см. рисунок).

К выводу уравнения прямой

Доказательство прямого утверждения теоремы (2)

К выводу уравнения прямой

Ясно, что точка M лежит на прямой ℓ тогда и только тогда, когда вектора \vec{a} и $\overrightarrow{M_0M}$ коллинеарны. Поскольку $\vec{a} \neq \vec{0}$, в силу критерия коллинеарности векторов условие $\vec{a} \parallel \overrightarrow{M_0M}$ равносильно тому, что $\overrightarrow{M_0M} = t\vec{a}$ для некоторого t. Поскольку $\vec{r} = \vec{r_0} + \overrightarrow{M_0M}$, получаем, что $M \in \ell$ тогда и только тогда, когда $\vec{r} = \vec{r_0} + t\vec{a}$ для некоторого t. Это – векторное уравнение прямой. По определению радиус-вектора точки координаты векторов \vec{r} и $\vec{r_0}$ совпадают с координатами точек M и M_0 соответственно. Расписав равенство $\vec{r} = \vec{r_0} + t\vec{a}$ в координатах, получаем уравнения

$$\begin{cases} x = x_0 + rt, \\ y = y_0 + st, \end{cases}$$

называемые параметрическими уравнениями прямой на плоскости.

Доказательство прямого утверждения теоремы (3)

Выразив параметр t из первого и второго уравнений системы $\left\{ egin{array}{ll} x=x_0+rt, \\ y=y_0+st \end{array}
ight.$ и приравняв полученные выражения, получим равенство

$$\frac{x-x_0}{r} = \frac{y-y_0}{s} \,,$$

которое называется каноническим уравнением прямой на плоскости.

Тут есть некоторая тонкость: одно из чисел r или s может оказаться равным 0, а ведь на 0 делить нельзя! Мы будем допускать записи вида $\frac{x-x_0}{0}$, подразумевая, что раз 0 стоит в знаменателе, числитель равен 0.

Отметим, что то же самое равенство можно записать в виде

$$\begin{vmatrix} x - x_0 & y - y_0 \\ r & s \end{vmatrix} = 0.$$

В самом деле, и то и другое эквивалентно $s(x-x_0)-r(y-y_0)=0$. Преобразуя последнее равенство, получаем $sx-ry-sx_0+ry_0=0$. Положим A:=s, B:=-r и $C:=-sx_0+ry_0$. Тогда уравнение примет вид

$$Ax + By + C = 0.$$

По крайней мере один из коэффициентов A и B отличен от 0, ибо r и s, будучи координатами ненулевого вектора, не равны 0 одновременно.

Доказательство обратного утверждения теоремы

Рассмотрим уравнение Ax+By+C=0, где $A\neq 0$ или $B\neq 0$. Пусть (x_0,y_0) — произвольное решение этого уравнения. (Заметим, что какое-то решение обязательно найдется. Например, если $A\neq 0$, то можно взять $x_0=-\frac{C}{A},\ y_0=0$, а если $B\neq 0$, годятся $x_0=0,\ y_0=-\frac{C}{B}$.) Обозначим через ℓ прямую, проходящую через точку $M_0(x_0,y_0)$ коллинеарно вектору (-B,A). Докажем, что эта прямая задается уравнением Ax+By+C=0. Напишем каноническое уравнение прямой ℓ :

$$\frac{x - x_0}{-B} = \frac{y - y_0}{A} \,. \tag{*}$$

Преобразовав его, получим уравнение $A(x-x_0)=-B(y-y_0)$ или $Ax+By-Ax_0-By_0=0.$ Поскольку (x_0,y_0) — решение уравнения Ax+By+C=0, имеем $-Ax_0-By_0=C.$ Следовательно, уравнение (*) равносильно уравнению Ax+By+C=0.

По ходу доказательства установлен следующий полезный факт.

Замечание о направляющем векторе прямой на плоскости

Если прямая задана уравнением Ax + By + C = 0, то вектор с координатами (-B,A) является ее направляющим вектором.

Главный вектор прямой

Определение

Пусть прямая ℓ задана уравнением Ax+By+C=0. Тогда вектор $\vec{n}=(A,B)$ называется *главным вектором* прямой ℓ .

Замечание о главном векторе прямой

Главный вектор прямой не коллинеарен этой прямой.

Доказательство. Пусть прямая ℓ задана уравнением Ax+By+C=0, $\vec{n}=(A,B)$ и $M_0(x_0,y_0)\in \ell$, т. е. $Ax_0+By_0+C=0$. Отложим вектор \vec{n} от точки M_0 . Концом соответствующего направленного отрезка будет точка $M_1(x_0+A,y_0+B)$. Подставив координаты этой точки в левую часть уравнения прямой, получим

$$A(x_0 + A) + B(y_0 + B) + C = Ax_0 + By_0 + C + A^2 + B^2 = A^2 + B^2 \neq 0.$$

Таким образом, $M_1 \notin \ell$. Поскольку $M_0 \in \ell$, а $\overrightarrow{M_0 M_1} = \vec{n}$, это означает, что вектор \vec{n} и прямая ℓ не коллинеарны.

Еще одно замечание

В случае прямоугольной декартовой системы координат замечание о главном векторе можно уточнить. В самом деле, в этом случае скалярное произведение векторов (A,B) и (-B,A) равно -AB+BA=0, т.е. эти вектора ортогональны. Учитывая еще замечание о направляющем векторе прямой на плоскости, получаем, что справедливо

Замечание о нормальном векторе прямой

Если система координат является прямоугольной декартовой, то главный вектор прямой перпендикулярен ей. В этом случае главный вектор прямой называют ее нормальным вектором.

Итак, если прямая ℓ задана уравнением Ax+By+C=0 в прямоугольной декартовой системе координат, то $\vec{n}=(A,B)\perp\ell.$ Обратно, если известны координаты (A,B) какого-то ненулевого вектора \vec{n} , перпендикулярного прямой ℓ , и координаты (x_0,y_0) какой-то точки M_0 этой прямой в прямоугольной декартовой системе координат, то можно сразу записать уравнение прямой ℓ так: $A(x-x_0)+B(y-y_0)=0.$ Действительно, если M(x,y) — произвольная точка плоскости, то последнее равенство выполнено тогда и только тогда, когда вектора $\overrightarrow{M_0M}$ и \overrightarrow{n} ортогональны, т.е. тогда и только тогда, когда $M\in\ell.$

Уравнение прямой с угловым коэффициентом

Предположим, что прямая задана уравнением Ax+By+C=0 и $B\neq 0$. Тогда ее уравнение можно переписать в виде $y=-\frac{A}{B}\cdot x-\frac{C}{B}$. Положим $k=-\frac{A}{B}$, $b=-\frac{C}{B}$. Тогда последнее уравнение примет вид

$$y = kx + b. (**)$$

Число k называется угловым коэффициентом прямой, а уравнение (**) – уравнением прямой с угловым коэффициентом. Это – «школьное» уравнение прямой. Из школьного курса известно, что если прямая ℓ задана (в прямоугольной декартовой системе координат) уравнением (**), то $k=\operatorname{tg}\varphi$, где φ – угол между положительным направлением оси Ox и ℓ (именно этим объясняется термин «угловой коэффициент»).

Уравнение (**) выведено в предположении, что в уравнении Ax+By+C=0 коэффициент B отличен от нуля. Выясним, когда выполняется это условие. Предположим, напротив, что B=0. Тогда прямая задается уравнением вида Ax+C=0. При этом $A\neq 0$, поскольку коэффициенты A и B одновременно в 0 обращаться не могут. Следовательно, наша прямая задается уравнением $x=-\frac{C}{A}$. Ясно, что прямые с уравнением такого вида и только они параллельны оси ординат. Таким образом,

• прямая имеет уравнение с угловым коэффициентом тогда и только тогда, когда она не параллельна оси ординат.

Уравнение прямой по двум точкам

Предположим, что мы знаем координаты двух различных точек, принадлежащих прямой: $M_0(x_0,y_0)$ и $M_1(x_1,y_1)$. Тогда вектор $\overrightarrow{M_0M_1}=(x_1-x_0,y_1-y_0)$ коллинеарен прямой и отличен от нулевого вектора, т. е. является направляющим вектором прямой, см. рисунок.

К выводу уравнения по двум точкам

Подставляя координаты вектора $\overrightarrow{M_0M_1}$ в каноническое уравнение прямой, получаем *уравнение прямой на плоскости по двум точкам*:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} \,.$$

Взаимное расположение двух прямых

Как по уравнениям двух прямых определить их взаимное расположение, т.е. выяснить, являются ли они пересекающимися, параллельными или совпадающими. Ответ дает

Теорема о взаимном расположении прямых на плоскости

Пусть прямая ℓ_1 задана уравнением $A_1x+B_1y+C_1=0$, а прямая ℓ_2 — уравнением $A_2x+B_2y+C_2=0$. Прямые ℓ_1 и ℓ_2 :

- 1) пересекаются тогда и только тогда, когда $rac{A_1}{A_2}
 eq rac{B_1}{B_2};$
- 2) параллельны тогда и только тогда, когда $rac{A_1}{A_2} = rac{B_1}{B_2}
 eq rac{C_1}{C_2};$
- 3) совпадают тогда и только тогда, когда $rac{A_1}{A_2} = rac{B_1}{B_2} = rac{C_1}{C_2}$.

Доказательство. Рассмотрим систему линейных уравнений

$$\begin{cases} A_1 x + B_1 y = -C_1, \\ A_2 x + B_2 y = -C_2. \end{cases}$$
 (1)

Ясно, что прямые ℓ_1 и ℓ_2 пересекаются тогда и только тогда, когда эта система имеет единственное решение; параллельны тогда и только тогда, когда она не имеет решений; совпадают тогда и только тогда, когда она имеет бесконечно много решений.

Взаимное расположение двух прямых (2)

Рассмотрим три случая.

Случай 1: $\frac{A_1}{A_2}
eq \frac{B_1}{B_2}$. Это неравенство равносильно тому, что

$$\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \neq 0.$$

Известно, что в этом случае система (1) имеет единственное решение (теорема Крамера), т.е. прямые пересекаются.

Случай 2: $\frac{A_1}{A_2}=\frac{B_1}{B_2}
eq \frac{C_1}{C_2}$. Убедимся, что в этом случае прямые параллельны. Положим $\frac{A_1}{A_2}=\frac{B_1}{B_2}=t$. Тогда $A_1=tA_2$ и $B_1=tB_2$. Предположим, что система (1) имеет решение (x_0,y_0) , т. е.

$$\begin{cases} tA_2x_0 + tB_2y_0 + C_1 = 0, \\ A_2x_0 + B_2y_0 + C_2 = 0. \end{cases}$$

Умножим второе равенство на -t и сложим его с первым. Получим $C_1-C_2t=0$, т. е. $\frac{C_1}{C_2}=t$, что противоречит неравенству $\frac{B_1}{B_2}\neq\frac{C_1}{C_2}$. Мы доказали, что прямые параллельны.

Взаимное расположение двух прямых (3)

Случай 3: $\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}$. Положим $\frac{A_1}{A_2}=t$. Тогда $A_1=tA_2$, $B_1=tB_2$, $C_1=tC_2$, и первое уравнение системы (1) можно записать в виде $t(A_2x+B_2y+C_2)=0$, причем $t\neq 0$ (так как в противном случае $A_1=B_1=0$). Таким образом, первое уравнение системы (1) равносильно второму. Следовательно, они определяют одну и ту же прямую.

Таким образом, для каждого из трех случаев взаимного расположения прямых мы получили достаточное условие. Убедимся на примере случая пересечения прямых, что эти же условия являются и необходимыми. Пусть прямые пересекаются. Тогда условия случаев 2) и 3) из формулировки теоремы не выполняются, поскольку в противном случае прямые были бы либо параллельными, либо совпадающими. Следовательно, выполнено условие случая 1), т. е. $\frac{A_1}{B_1} \neq \frac{A_2}{B_2}$. Аналогично проверяется необходимость в случаях параллельности и совпадения прямых. Теорема доказана.

Полуплоскости, определяемые прямой

Как по уравнению прямой и координатам двух точек, не лежащих на ней, определить, лежат ли точки по одну сторону или по разные стороны от прямой? Пусть ℓ – прямая с уравнением Ax+By+C=0. Вся плоскость делится этой прямой на три непересекающиеся части: саму прямую ℓ и две *полуплоскости*, в каждую из которых входят те и только те точки, которые расположены по какую-либо одну сторону от ℓ (см. рисунок).

Возьмем на ℓ произвольную точку M_0 и отложим от нее главный вектор \vec{n} прямой ℓ . Пусть M_1 – конец получившегося направленного отрезка. По замечанию о главном векторе $M_1 \notin \ell$. Обозначим ту полуплоскость, в которой лежит точка M_1 , через λ , а другую – через μ .

Полуплоскости, определяемые прямой (2)

Теорема о полуплоскостях

Пусть M(x',y') — точка плоскости. Если $M\in \lambda$, то Ax'+By'+C>0, а если $M\in \mu$, то Ax'+By'+C<0.

Доказательство. Пусть $M \in \lambda$. Через точку M проведем прямую, коллинеарную вектору \vec{n} . Поскольку в силу замечания о главном векторе прямой $\vec{n} \not \mid \ell$, эта прямая пересечет ℓ . Обозначим точку пересечения через N, а ее координаты — через (x'',y''). Ясно, что Ax'' + By'' + C = 0. Вектора \overrightarrow{NM} и \vec{n} сонаправлены, т.е. $\overrightarrow{NM} = t\vec{n}$ для некоторого t>0. Записав это векторное равенство в координатах, получим, что x'-x''=tA и y'-y''=tB, откуда x'=x''+tA и y'=y''+tB. Следовательно,

$$Ax' + By' + C = A(x'' + tA) + B(y'' + tB) + C =$$

$$= Ax'' + By'' + C + t(A^2 + B^2) = t(A^2 + B^2) > 0.$$

Первое утверждение теоремы доказано.

Полуплоскости, определяемые прямой (3)

Второе утверждение теоремы доказывается вполне аналогично. Надо только учесть, что если $M\in \mu$, то вектора \overrightarrow{NM} и \vec{n} противонаправлены и потому $\overrightarrow{NM}=t\vec{n}$ для некоторого t<0.

Из теоремы о полуплоскостях вытекает

Следствие о расположении двух точек относительно прямой

Точки $P(x_1,y_1)$ и $Q(x_2,y_2)$ расположены по одну сторону от прямой Ax+By+C=0 тогда и только тогда, когда числа Ax_1+By_1+C и Ax_2+By_2+C имеют одинаковый знак, и по разные стороны от этой прямой тогда и только тогда, когда эти числа имеют разные знаки.

Полезно запомнить, что главный вектор прямой, если его отложить от точки этой прямой, направлен в положительную полуплоскость.

Расстояние от точки до прямой

Выведем формулу для расстояния от точки до прямой на плоскости. Будем предполагать, что система координат прямоугольная декартова.

Пусть даны прямая ℓ с уравнением Ax+By+C=0 и точка плоскости M(x',y'). Возьмем любую точку $M_0(x_0,y_0)$ на ℓ :

Поскольку система координат прямоугольная декартова, вектор $\vec{n}=(A,B)$ перпендикулярен к ℓ . Поэтому расстояние d от M до ℓ равно модулю проекции вектора $\overrightarrow{M}_0\overrightarrow{M}$ на ось вектора \vec{n} . Отсюда

$$d = |\operatorname{np}_{\vec{n}} \overrightarrow{M_0 M}| = \left| \frac{\vec{n} \overrightarrow{M_0 M}}{|\vec{n}|} \right| = \frac{|A(x'-x_0) + B(y'-y_0)|}{\sqrt{A^2 + B^2}}.$$

Расстояние от точки до прямой (2)

Учитывая, что $M_0 \in \ell$, получаем, что $Ax_0 + By_0 + C = 0$. Следовательно,

$$A(x'-x_0) + B(y'-y_0) = Ax' + By' - (Ax_0 + By_0) = Ax' + By' + C.$$

Таким образом, формула для вычисления расстояния от точки M(x',y') до прямой ℓ , заданной в прямоугольной декартовой системе координат уравнением Ax+By+C=0, имеет следующий вид:

$$d = \frac{|Ax' + By' + C|}{\sqrt{A^2 + B^2}}.$$

Пример: задача о биссектрисе

Как пример применения результатов параграфа, разберем такую задачу.

Задача о биссектрисе (система координат прямоугольная декартова)

Пересекающиеся прямые ℓ_1 и ℓ_2 заданы уравнениями $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$ соответственно. Написать уравнение биссектрисы того угла между ℓ_1 и ℓ_2 , в котором лежит данная точка $M_0(x_0,y_0)$.

Точки, лежащие на биссектрисе, равноудалены от сторон угла. Условие равноудаленности точки от прямые ℓ_1 и ℓ_2 записывается равенством

$$\frac{|A_1x + B_1y + C_1|}{\sqrt{A_1^2 + B_1^2}} = \frac{|A_2x + B_2y + C_2|}{\sqrt{A_2^2 + B_2^2}}.$$
 (*)

Но этому условию удовлетворяют в точности точки биссектрис *обеих* пар вертикальных углов, образованных ℓ_1 и ℓ_2 . Как выбрать из них нужную? Точки нужной биссектрисы лежат по одну сторону от каждой из прямых ℓ_1 и ℓ_2 с данной точкой $M_0(x_0,y_0)$. Поэтому модули в (\star) нужно раскрыть в зависимости от знаков чисел $A_1x_0+B_1y_0+C_1$ и $A_2x_0+B_2y_0+C_2$. Например, если эти знаки разные, уравнение нужной биссектрисы есть

$$\frac{A_1x + B_1y + C_1}{\sqrt{A_1^2 + B_1^2}} = -\frac{A_2x + B_2y + C_2}{\sqrt{A_2^2 + B_2^2}}$$