Математика для Data Science. Линейная алгебра. Условия задач

Содержание

Нейронные	• c e	ти	[2
Задача 1 Задача 2																				 			 •				. :
Подпростра	анс	тв	a	и.	ли	не	йн	ы	ек	ON	1 б1	ина	ац	ии	[•
Задача 1																				 							. :
Задача 2																											
Задача 3																											
Базис, разм	мер	НС	ст	ъ,	p	ан	Г																				4
Задача 1																				 							. 4
Задача 2																											
Задача 3																											
Задача 4																											
Метод Гаус	cca																										4
Задача 1																				 	 						. 4
Задача 2																											
Задача 3																											
Задача 4																											
Задача 5																											
Задача 6																											
Задача 7																				 	 				 		

 ${f 3}$ амечание. ${f T}$ аким цветом отмечены ссылки на сайт ${f Stepik},$ а вот этим цветом — ссылки на страницы внутри этого файла.

Нейронные сети

Задача 1

На предыдущем шаге мы немного слукавили: в нашем описании нейронной сети с одним скрытым слоем не хвататет одного важного элемента. Какого — узнаете на следующем шаге. А в этой задаче вам предлагается убедиться, что без дополнительных элементов добавление линейного слоя ничего не дает с точки зрения вычислительной способности нейросети.

Вернемся к нейронной сети с предыдущего шага. Пусть:

- \bullet m+1 число нейронов во входном слое с учетом нейрона сдвига
- \bullet k+1 число нейронов в скрытом слое с учетом нейрона сдвига
- n размер выхода

Докажите, что какими бы ни были значения весов в такой нейросети, для нее найдется эквивалентная однослойная линейная нейронная сеть ${\bf c}$

- \bullet m+1 нейроном во входном слое с учетом нейрона сдвига
- п выходными нейронами

Нейросети называются эквивалентными в случае, если для любого входного вектора их выход одинаков.

Переформулируем эту задачу.

- Пусть даны матрицы W и U соответствующих размеров. При помощи этих матриц каждому вектору \vec{x} ставится в соответствие вектор \vec{y} (зависящий от \vec{x}), как это было описано на предыдущем шаге.
- Докажите, что найдётся матрица A, такая что для любого \vec{x} соответствующий \vec{y} можно вычислить так: $\vec{y} = A^T \vec{x}'$. Эта матрица A и будет задавать однослойную нейронную сеть, которая эквивалентна нашей двухслойной сети.

Задача 2

Рассмотрим нейронную сеть, у которой на нулевом слое n_0 нейронов, на первом слое n_1 нейронов, ..., на k-ом слое n_k нейронов, если не учитывать нейроны сдвига.

Сколько будет параметров у такой модели?

Пример 1. Пусть у однослойной нейронной сети 2 нейрона в нулевом и 4 нейрона в первом слое (без учета нейронов сдвига). Тогда число параметров модели $-(2+1)\cdot 4=12$.

Пример 2. Пусть у двухслойной нейронной сети 3 нейрона в нулевом, 5 нейрона в первом и 7 нейронов во втором слое (без учета нейронов сдвига). Тогда число параметров модели равно $(3+1) \cdot 5 + (5+1) \cdot 7 = 20 + 42 = 62$.

Подпространства и линейные комбинации

Задача 1

Пусть V – подпространство в \mathbb{R}^n , порождённое векторами $\vec{a}_1,\dots,\vec{a}_k$. Докажите, что

- 1. Если $\vec{x} \in V$, $\vec{y} \in V$, то и $\vec{x} + \vec{y} \in V$. Другими словами если \vec{x} и \vec{y} являются линейными комбинациями порождающих векторов V, то и $\vec{x} + \vec{y}$ тоже является линейной комбинацией порождающих векторов V.
- 2. Если $\vec{x} \in V$ и $c \in \mathbb{R}$, то $c\vec{x} \in V$.

В частности, из второго свойства следует, что

- $0\vec{x} = \vec{0} \in V$, то есть V содержит ноль
- ullet если $ec{x} \in V$, то и $-ec{x} = (-1)ec{x} \in V$, то есть V содержит противоположные векторы для всех своих векторов

Задача 2

Набор векторов $\vec{a}_1, \dots, \vec{a}_k$ порождает пространство V. Докажите, что следующие утверждения эквивалентны:

- 1. этот набор линейно независим
- 2. при удалении любого вектора из набора оставшиеся векторы не порождают V

To есть нужно доказать, что $1 \Rightarrow 2$ и $2 \Rightarrow 1$.

Заметьте, что утверждение этой задачи можно переформулировать так. Следующие утверждения эквивалентны:

- 1. набор $\vec{a}_1, \ldots, \vec{a}_k$ линейно зависим
- 2. найдётся такой вектор \vec{a}_i , что при удалении его из набора оставшиеся векторы всё равно порождают V

Подсказка. Воспользуйтесь результатами предыдущего шага с теорией.

Задача 3

Обозначение. Утверждение "V порождено векторами $\vec{a}_1, \dots, \vec{a}_k$ "записывают так: $V = \operatorname{Span}\{\vec{a}_1, \dots, \vec{a}_k\}$. Тем самым, на прошлом шаге мы доказали, что $\operatorname{Span}\{\binom{1}{1}\} = \operatorname{Span}\{\binom{1}{1}, \binom{3}{3}\}$.

В каждом из следующих пунктов докажите, что два набора векторов порождают одно и то же подпространство. В пунктах 1, 2, 4, 6 считайте, что векторы лежат в \mathbb{R}^n .

- 1. Span $\{\vec{a}_1\}$ = Span $\{\vec{a}_1, 100\vec{a}_1\}$
- 2. Span $\{\vec{a}_1, \vec{a}_2\}$ = Span $\{\vec{a}_1, \vec{a}_1, \vec{a}_2\}$ (мы нигде не говорили, что векторы в наборе не должны повторяться)

3

- 3. Span $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\} = \operatorname{Span}\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 4\\7\\0 \end{pmatrix} \right\}$
- 4. $\operatorname{Span}\{\vec{a}_1,\vec{a}_2,\ldots,\vec{a}_k\} = \operatorname{Span}\{\vec{a}_1,\vec{a}_2,\ldots,\vec{a}_k,c_1\vec{a}_1+c_2\vec{a}_2+\cdots+c_k\vec{a}_k\}$, где c_1,\ldots,c_k любые числа.
- 5. Span $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\} = \operatorname{Span}\left\{ \begin{pmatrix} 1\\100\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$
- 6. Span $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_k\}$ = Span $\{\vec{a}_1 + c\vec{a}_2, \vec{a}_2, \dots, \vec{a}_k\}$, где c любое число

Базис, размерность, ранг

Задача 1

Вот две несложных задачи на понимание определения базиса.

- 1. Докажите, что любой базис пространства является порождающим набором этого пространства.
- 2. Докажите, что набор векторов $\vec{e}_1, \dots, \vec{e}_n$ является базисом пространства \mathbb{R}^n .

Задача 2

Оказывается, что базисы это в точности линейно независимые порождающие наборы. В этой задаче мы просим вас это доказать. Ниже строгая формулировка.

Дано пространство V и набор векторов $\vec{a}_1,\dots,\vec{a}_k$ из V. Докажите, что следующие утверждения эквивалентны:

- 1. этот набор является базисом V
- 2. этот набор линейно независим и порождает V

To есть нужно доказать, что $1 \Rightarrow 2$ и $2 \Rightarrow 1$.

Комбинируя эту задачу с задачей из прошлого урока, мы доказали эквивалентность трёх утверждений:

- 1. набор является базисом V
- 2. набор линейно независим и порождает V
- 3. набор порождает V и при удалении любого элемента из набора оставшиеся векторы не порождают V

Подсказка для 2 \Rightarrow **1.** Пусть набор не является базисом, то есть какой-то вектор можно представить в виде двух разных линейных комбинаций векторов $\vec{a}_1, \ldots, \vec{a}_k$. Используя эти две комбинации, постройте нетривиальную линейную комбинацию, равную $\vec{0}$.

Задача 3

Напоминание-обозначение. Пусть дана функция $f: X \to Y$ и элемент $x \in X$. Тогда элемент $f(x) \in Y$ называется значением функции f на элементе x. Множество всех значений, которые принимает функция f, называется областью значений функции f. Область значений также называют образом функции f.

Пусть дана матрица A размера m на n. Тем самым она задаёт линейное отображение $A: \mathbb{R}^n \to \mathbb{R}^m$. Докажите, что образ A совпадает с линейным подпространством \mathbb{R}^m , порождённым столбцами матрицы A.

Подсказка. Вспомните, как можно интерпретировать столбцы матрицы.

Задача 4

Докажите, что ранг матрицы A равен размерности образа A.

Используя предыдущую задачу, можно переформулировать это утверждение так:

Ранг матрицы A равен размерности пространства, порождённого столбцами A.

Метод Гаусса

Задача 1

Примените метод Гаусса к матрице
$$\begin{pmatrix} 0 & 6 & 8 & 17 \\ 3 & 13 & 18 & 8 \\ 2 & 8 & 10 & 4 \\ 1 & 3 & 2 & 0 \end{pmatrix}.$$

Если что-то в методе Гаусса осталось не ясным – обязательно обсудите это с преподавателем.

Комментарий. Для вычислений удобно переставлять столбцы так, чтобы коэффициенты элементарных преобразований получались симпатичными (целыми, а не дробными). Например, посмотрим на матрицу из задачи. На первом шаге нужно выбрать столбец, у которого на последнем месте стоит не ноль. Таких столбцов три – первый, второй и третий, мы можем выбрать любой. Чтобы получить "симпатичные" коэффициенты, в нашем случае лучше выбрать первый столбец (потому что 3 и 2 делятся на 1 нацело). Можете попробовать выбрать второй или третий столбец, и увидите, что возникают дроби. Конечно, во многих случаях дробей избежать не удастся, но в нашем случае их можно избежать (мы специально так подобрали коэффициенты матрицы).

Естественно, этот комментарий актуален, только если мы считаем руками на бумаге, а не на компьютере.

Задача 2

Докажите, что ранг матрицы, полученной методом Гаусса, равен количеству ненулевых столбцов.

Другими словами, нужно доказать, что набор из всех ненулевых столбцов полученной матрицы линейно независим.

Задача 3

Дан набор векторов. Как проверить, является ли он линейно независимым?

Комментарий. В этой и всех последующих задачах можно пользоваться умением вычислять ранг любой матрицы. Для этого не нужно каждый раз описывать метод Гаусса.

Задача 4

Подпространство порождено набором векторов $\vec{a}_1, \dots, \vec{a}_k$. Дан вектор \vec{x} . Как понять, лежит \vec{x} в этом подпространстве или нет?

Задача 5

Дан набор векторов $\vec{a}_1, \dots, \vec{a}_k$ в \mathbb{R}^n . Как понять, является этот набор базисом \mathbb{R}^n или нет?

Задача 6

Подпространство $V \subset \mathbb{R}^n$ порождено векторами $\vec{a}_1, \dots, \vec{a}_k$. Дан набор векторов $\vec{b}_1, \dots, \vec{b}_l$. Как понять, является этот набор базисом V или нет?

Задача 7

Подпространство $V \subset \mathbb{R}^n$ порождено векторами $\vec{a}_1, \dots, \vec{a}_k$. Как найти какой-нибудь базис этого подпространства? Как найти размерность этого подпространства?