

TEST REPORT

of the accredited test laboratory

TÜV Nr.:M/FG-13/108

Applicant:

Automated Control Technology Partners, Inc.

2400 Sandlake Rd Suite 600

32839 Orlando - Florida

USA

Tested Product:

Streaming audio device (Bluetooth part)

FCC-ID:

2AAO8-AZSS1

IC-ID:

11338A-AZSS1

Manufacturer:

See above

Output power /

1,32 mW eirp

power supply:

24 VDC

field strength:

Frequency range:

2402 - 2480 MHz Channel separation:

1 MHz

Standard:

FCC: 47 CFR Part 15 (October 1, 2012 edition)

RSS-210 Issue 8, December 2010

TUV Austria Services GmbH Test laboratory for EMC

Supervisor of EMC-laboratory:

Wilhelm Seier

16.09.2013

Copy Nbr.:

checked by

Ing. Michael Emminger

A publication of this test report is only permitted literally. Copying or reproduction of partial sections needs a written permission of TUV Austria Services GmbH.

The results of this test report only refer to the provided equipment.

Deutschstraße 10 A-1230 Vienna Tel.: +43(0)1 610 91-0 pzw@tuv.at

Division: Medical Technology/ Communication Technology/ EMC

Department: Testing Body for Communication Technology/ EMC

TÜV®

Testing Laboratory, Inspection Body, Certification Body, Calibration Laboratory

Notified Body 0408 IC 2932K-1

Chairman of the Supervisory Board: KR Dipl.-Ing. Johann MARIHART

Management: Dipl.-Ing. Dr. Stefan HÁAS Mag. Christoph WENNINGER

Registered Office: Krugerstrasse 16 1015 Vienna/Austria

Branch Office: Dornbirn, Graz, Innsbruck, Klagenfurt, Linz, Salzburg, St. Pölt Wels, Wien 1, Wien 20 Wien 23, Brixen (I) und Filderstadt (D)

Company Register Court / - Number: Vienna / FN 288476 f

Banking Connections BA CA 52949 001 066 IBAN AT1312000529490010 BIC BKAUATWW RBI 001-04.093.282 IBAN AT1531000001040932 **BIC RZBAATWW**

UID ATU63240488 DVR 3002476

Form: FCC15,DOT/1, 1, 2002

Page 1 of 20

File: 13-108.doc/16.09.2013

Relative humidity: 49%

LIST OF MEASUREMENTS

The complete list of measurements called for in 47 CFR 15 and RSS-210 is given below.

SUBCLAUSE	PARAMETER TO BE MEASURED	PAGE
	Intentional Radiators	
	Test object data	3
15.247(a)(1) A8.1 (b) (d)	Number of channels and channel spacing	4
15.247(a)(1) A8.1 (a)	20 dB Bandwidth	5-7
15.247(b)(1) A8.4 (2)	Maximum Peak RF Power Output (eirp)	8
15.247(a)(1)(iii) A8.1 (d)	Average time of occupancy	9-14
15.247(d) A8.5	Out-of-band Emissions	15-19
15.209(a)	Emissions in restricted bands	20
15.247(i)	Maximum permissible exposure	20

Relative humidity: 49%

TEST OBJECT DATA

General EUT Description

This streaming audio device uses either Ethernet, Bluetooth or WIFI as network/datalink connection. The device contains audio amplifier, so that it can play audio files via loudspeakers that are not part of the device.

This test report refers only to the Bluetooth capability of this device.

- 2.1033 (c) Technical description
- 2.1033 (4) Type of emission: 866KF1D Channel bandwidth < 1MHz Channel spacing 1 MHz.
- 2.1033 (5) Frequency range: 2402 to 2480 MHz (channel center frequencies).
- 2.1033 (6) Power range and Controls: The maximum peak output power is 1,32 mW and there is no power regulation.
- 2.1033 (7) Maximum output power rating: 1,32 mW eirp.
- 2.1033 (8) DC Voltage and Current: 24 V via external power supply maximum current consumption: 2,04 A)
- RSS-135 This standard does not apply to:
 - 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Tests were performed on 29th till 31st July 2013.

Form: FCC15.DOT/1, 1, 2002 Page 3 of 20 File: 13-108.doc/16.09.2013

Ambient temperature: 27°C

Relative humidity: 49%

Number of channels and channel spacing

§ 15.247 (a) (1) A 8.1 (b) (d)

Radiated Measurement

Rated output power: 1,32 mW

There are 79 Channels used starting at 2402 till 2480 MHz each spaced by 1 MHz channel spacing.

LIMIT SUBCLAUSE 15.247(a) (1) – A8.1(a)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-520; NT-550

Form: FCC15.DOT/1. 1. 2002 Page 4 of 20 File: 13-108.doc/16.09.2013

Ambient temperature: 27°C

Relative humidity: 49%

20dB Bandwidth

§ 15.247 (a) (1) A8.1 (a)

Radiated Measurement

Rated output power: 1,32 mW 2402 MHz

Date:

30.JUL.2013 13:23:33

20dB Bandwidth:

798 kHz

LIMIT

SUBCLAUSE 15.247(a) (1) – A8.1(a)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-550

Form: FCC15.DOT/1. 1. 2002 Page 5 of 20 File: 13-108.doc/16.09.2013

Relative humidity: 49%

20dB Bandwidth

§ 15.247 (a) (1) A8.1 (a)

Radiated Measurement

Rated output power: 1,32 mW 2441 MHz

Date:

30.JUL.2013 12:40:02

20dB Bandwidth:

826 kHz

LIMIT

SUBCLAUSE 15.247(a) (1) – A8.1(a)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-520; NT-550

Ambient temperature: 27°C

Relative humidity: 49%

20dB Bandwidth

§ 15.247 (a) (1) A8.1 (a)

Radiated Measurement

Rated output power: 1,32 mW 2480 MHz

Date:

30.JUL.2013 12:30:19

20dB Bandwidth:

866 kHz

LIMIT

SUBCLAUSE 15.247(a) (1) – A8.1(a)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-520; NT-550

Form: FCC15.DOT/1. 1. 2002 Page 7 of 20 File: 13-108.doc/16.09.2013

Ambient temperature: 27°C

Relative humidity: 49%

Maximum Peak RF Power Output (EIRP)

§ 15.247(b)(1) A8.4(2)

Radiated Measurement

Rated output power: 1,32 mW

Test conditions		Transmitter power (mW) (eirp)				
		2402 MHz	2441 MHz	2480 MHz		
T _{nom} (25)°C V _{nom} (3,7) V		1,32	1,29	1,17		
Maximum deviation from rated output power under normal test conditions (dB)		0	-0,1	-0,5		
Measurement uncertainty			<u>+</u> 0,75 dB			

LIMIT

SUBCLAUSE 15.247(b)(1) – A8.4(2)

Under normal test conditons 1W conducted (4W eirp)
--

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-520; NT-550

Form: FCC15.DOT/1. 1. 2002 Page 8 of 20 File: 13-108.doc/16.09.2013

Relative humidity: 49%

Average Time of Occupancy

§ 15.247(a)(1)(iii) A8.1(d)

Radiated Measurement

Rated output power: 1,32 mW 2402 MHz

Date:

30.JUL.2013 13:26:53

The dwell time is constant 147,1 µs.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) – A8.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-520; NT-550

Form: FCC15.DOT/1. 1. 2002 Page 9 of 20 File: 13-108.doc/16.09.2013

Relative humidity: 49%

Average Time of Occupancy

§ 15.247(a)(1)(iii) A8.1(d)

Radiated Measurement

Rated output power: 1,32 mW 2441 MHz

The dwell time is constant 147,5 μ s.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) – A8.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-550

Form: FCC15.DOT/1. 1. 2002 Page 10 of 20 File: 13-108.doc/16.09.2013

Relative humidity: 49%

Average Time of Occupancy

§ 15.247(a)(1)(iii) A8.1(d)

Radiated Measurement

Rated output power: 1,32 mW 2480 MHz

Date:

30.JUL.2013 13:39:13

The dwell time is constant 147,9 µs.

LIMIT

SUBCLAUSE 15.247(a)(1)(iii) - A8.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-550

Form: FCC15.DOT/1, 1, 2002 Page 11 of 20 File: 13-108.doc/16.09.2013

Relative humidity: 49%

Average Time of Occupancy

§ 15.247(a)(1)(iii) A8.1(d)

Radiated Measurement

Rated output power: 1,32 mW 2402 MHz

Given 79 hopping channels the period of the channel number multiplied with 0,4 seconds results in 31,6. For the high number of transmissions, only a tenth of this time period was recorded (3,2 seconds). The number of transmissions in 3,2 seconds was 54. This number is multiplied by 10 to achieve the number of transmissions in 31,6 (32) seconds. Each transmission has a dwell time of 147,1µs, multiplied by 540 transmissions resulting in an average occupancy of 79,434 ms which is far below 0,4 seconds.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) – A8.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-550

Form: FCC15.DOT/1, 1, 2002 Page 12 of 20 File: 13-108.doc/16.09.2013

Relative humidity: 49%

Average Time of Occupancy

§ 15.247(a)(1)(iii) A8.1(d)

Radiated Measurement

Rated output power: 1,32 mW 2441 MHz

Given 79 hopping channels the period of the channel number multiplied with 0,4 seconds results in 31,6. For the high number of transmissions, only a tenth of this time period was recorded (3,2 seconds). The number of transmissions in 3,2 seconds was 48. This number is multiplied by 10 to achieve the number of transmissions in 31,6 (32) seconds. Each transmission has a dwell time of $147,5\mu$ s, multiplied by 480 transmissions resulting in an average occupancy of 70,8 ms which is far below 0,4 seconds.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) – A8.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-550

Relative humidity: 49%

Average Time of Occupancy

§ 15.247(a)(1)(iii) A8.1(d)

Radiated Measurement

Rated output power: 1,32 mW 2480 MHz

Given 79 hopping channels the period of the channel number multiplied with 0,4 seconds results in 31,6. For the high number of transmissions, only a tenth of this time period was recorded (3,2 seconds). The number of transmissions in 3,2 seconds was 42. This number is multiplied by 10 to achieve the number of transmissions in 31,6 (32) seconds. Each transmission has a dwell time of 147,9µs, multiplied by 420 transmissions resulting in an average occupancy of 62,118 ms which is far below 0,4 seconds.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) - A8.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-126; NT-150; NT-207; NT-500; NT-550

Form: FCC15,DOT/1, 1, 2002 Page 14 of 20 File: 13-108.doc/16.09.2013

Relative humidity: 49%

Out-of-band Emission

§ 15.247(d) A8.5

Measurement with Peak-Detector:

Frequency hopping active

Worst case emission: 67,7 dBµV/m @ 19,2 kHz

LIMIT

SUBCLAUSE 15.247(d) - A8.5

In any 100 kHz bandwidth outside the frequency band in which the radio device is operating.

At least 20dB below the power in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-122; NT-207

Relative humidity: 49%

Out-of-band Emission

§ 15.247(d) A8.5

Measurement with Peak-Detector:

Frequency hopping active

FCC Part 15 Class B Electric Field Strength QP+AV [..\EMI radiated\]
 PK+_MAXH [streaming_bluetooth_F2.Result:2]

PK+_MAXH [streaming_bluetooth_F3.Result:2]

Worst case emission: 41,8 dBµV/m @ 466,95 MHz

LIMIT SUBCLAUSE 15.247(d) – A8.5

In any 100 kHz bandwidth outside the frequency band in	At least 20dB below the power in the 100 kHz bandwidth
which the radio device is operating.	within the band that contains the highest level of the
	desired power.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-129; NT-131; NT-207

Relative humidity: 49%

Out-of-band Emission

§ 15.247(d) A8.5

Measurement with Peak-Detector (green line) and Average detector (magenta line):

Frequency hopping active

LIMIT

SUBCLAUSE 15.247(d) - A8.5

In any 100 kHz bandwidth outside the frequency band in which the radio device is operating.

AVG_MAXH [streaming_bluetooth_F5.Result:4]

At least 20dB below the power in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-139; NT-207; NT-337; NT-416

Although the measurements were made up to the tenth harmonic, the curve above is ending at 18 GHz. The tests above 18 GHz are not automatized and therefore we were not able to plot the spectrum analyzer display. Above 18 GHz no emissions above noise level were found.

Relative humidity: 49%

Out-of-band Emission

§ 15.247(d) A8.5

Measurement with Peak-Detector:

Frequency: 2402 MHz - Band Edge measurement

LIMIT

SUBCLAUSE 15.247(d) - A8.5

In any 100 kHz bandwidth outside the frequency band in which the radio device is operating.	At least 20dB below the power in the 100 kHz bandwidth within the band that contains the highest level of the desired power.
---	--

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-207

Form: FCC15,DOT/1. 1. 2002 Page 18 of 20 File: 13-108.doc/16.09.2013

Relative humidity: 49%

Out-of-band Emission

§ 15.247(d) A8.5

Measurement with Peak-Detector:

Frequency: 2480 MHz - Band Edge measurement

LIMIT

SUBCLAUSE 15.247(d) - A8.5

In any 100 kHz bandwidth outside the frequency band in which the radio device is operating.	At least 20dB below the power in the 100 kHz bandwidth within the band that contains the highest level of the desired power.	
		1

Test Equipment used: NT-100; NT-110; NT-111; NT-112; NT-125; NT-207

Ambient temperature: 27°C

Relative humidity: 49%

Emissions in restricted bands

§ 15.209(a)

As the limit 15.209 was checked during "Out-of-band Emission" measurements, no additional measurements were performed.

Maximum permissible Exposure

§ 15.247(i)

This kind of radio equipment is categorically excluded from routine environmental evaluation.

Form: FCC15.DOT/1. 1. 2002 Page 20 of 20 File: 13-108.doc/16.09.2013

Appendix 1 Test equipment used

	Anechoic Chamber with 3m measurement distance	NT-100	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200	Divisi Tech Comi
	Stripline according to ISO 11452-5	NT-108	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1	Tech
	MA4000 - Antenna mast 1 - 4 m height	NT-110/1	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207	Depa Test
	DS - Turntable 0 - 400 ° Azimuth	NT-111/1	Digital Radio Tester CTS55	NT-208	M/FG
	CO3000 Controller Mast+Turntable	NT-112/1	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209	Page Date:
	HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210	Chec
	HFH-Z2 - Loop Antenna 9 kHz - 30 MHz	NT-122	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211	
	HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	Digital Radio Tester Aeroflex 3920	NT-212/1	
	3121C - Dipole Antenna 28 - 1000 MHz	NT-124	Mixer M28HW 26,5 GHz - 40 GHz	NT-214	
	3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	RubiSource T&M Timing reference	NT-216	
	3116 - Horn Antenna 18 - 40 GHz	NT-126	Radiocommunicationanalyzer SWR 1180 MD	NT-217	
	SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	Mixer M19HWD 40 GHz – 60 GHz	NT-218	
	AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer M12HWD 60 GHz – 90 GHz	NT-219	
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	DSO9104 Digital scope	NT-220/1	
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	TPS 2014 Digital scope	NT-222	
	3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	Artificial Ear according to IEC 60318	NT-224	
	Loop Antenna H-Field	NT-132	1 kHz Sound calibrator	NT-225	
	Horn Antenna 500 MHz - 2900 MHz	NT-133	B10 - Harmonics and flicker analyzer	NT-232	
	Horn Antenna 500 MHz - 6000 MHz	NT-133/1	ARS 16/3 – Harmonics- flicker analyzer	NT-232/1	
	Log. per. Antenna 800 MHz - 2500 MHz	NT-134	SRM-3000 Spectrumanalyzer	NT-233	
	Log. per. Antenna 800 MHz - 2500 MHz	NT-135	SRM-3006 Spectrumanalyzer	NT-233/1a	
	BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	E-field probe SRM 75 MHz – 3 GHz	NT-234	
	Conical Dipol Antenna PCD8250	NT-138	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-d	
	HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	Hall-Teslameter ETM-1	NT-241	
	HZ-1 Antenna tripod	NT-150	EFA-3 H-field- / E-field probe	NT-243	
	BN 1500 Antenna tripod	NT-151	Field Meter EMR-200 100 kHz – 3 GHz	NT-244	
	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	E-field probe 100 kHz – 3 GHz	NT-245	
	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173	H-field probe 300 kHz – 30 MHz	NT-246	

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report number: M/FG-13/108

Page: 1 of 3

Date: 16.09.2013

Checked by: __

Appendix 1 (continued) Test equipment used

Immunity test system

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Page: 2 of 3

Date: 16.09.2013

Checked by: _____

Test report number: M/FG-13/108

E-field probe 3 MHz – 18 GHz	NT-247	VCS 500-M6 Surge-Generator	NT-326
H-field probe 27 MHz – 1 GHz	NT-248	Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c
ELT-400 1 Hz – 400 kHz	NT-249	BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330
MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331
FCC-203l EM Injection clamp	NT-251	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332
FCC-203I-DCN Ferrite decoupling network	NT-252	AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333
PR50 Current Probe	NT-253	APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334
PR630 Current Probe	NT-254	Preamplifier 1 GHz - 4 GHz	NT-335
Fluke 87 V True RMS Multimeter	NT-260	Preamplifier for GPS MKU 152 A	NT-336
Model 2000 Digital Multimeter	NT-261	Preamplifier 100 MHz – 23 GHz	NT-337
Fluke 87 V Digital Multimeter	NT-262/1	DC Block 10 MHz – 18 GHz Model 8048	NT-338
ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	2-97201 Electronic load	NT-341
ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	VDS 200 Mobil-impuls-generator	NT-350
PHE 4500/B Power amplifier	NT-304	LD 200 Mobil-impuls-generator	NT-351
PAS 5000 Power amplifier	NT- 304/1a	MPG 200 Mobil-Impuls-Generators	NT-352
EZ10 T-Artificial Network	NT-305	EFT 200 Mobil-impuls-generator	NT-353
SMG - Signal generator 0,1 - 1000 MHz	NT-310	AN 200 S1 Artificial Network	NT-354
SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1
RefRad Reference generator	NT-312	PHE 4500 - Mains impedance network	NT-401
SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	IP 6.2 Coupling filter for data lines (Surge)	NT-403
40 MHz Arbitrary Generator TGA1241	NT-315	TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409
Artificial mains network NSLK 8127-PLC	NT-316	ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410
Inrush Current Source for PAS 5000	NT-317a	IP 4 - Capacitive clamp (Burst)	NT-411
Control and measurement device Sycore	NT-318	Highpass-Filter 100 MHz – 3 GHz	NT-412
PEFT - Burst generator up to 4 kV	NT-320	Highpass-Filter 600 MHz – 4 GHz	NT-413
ESD 30 System up to 25 kV	NT-321	Highpass-Filter 1250 MHz – 4 GHz	NT-414
PSURGE 4.1 Surge generator	NT-324	Highpass-Filter 1800 MHz – 16 GHz	NT-415
TRANSIENT 1000	NT-325		

Appendix 1 (continued) Test equipment used

Highpass-Filter 3500 MHz – 18 GHz	NT-416	FCC-801-S25 Coupling decoupling network	NT-462
RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417	FCC-801-T4 Coupling decoupling network	NT-463
RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	FCC-801-C1 Coupling decoupling network	NT-464
RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419	F-16A - Current probe 1kHz - 70MHz	NT-465
RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	95242-1 Current probe 1 MHz 400 MHz	NT-468
RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471
RF-Attenuator 30 dB	NT-424	GA 1240 Power amplifier according to EN 61000-4-16	NT-480
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	Coupling networks according to EN 61000-4-16	NT-481 - NT-483
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	Van der Hoofden Test Head	NT-484
RF-Attenuator 6 dB	NT-428	PC P4 3 GHz Test computer	NT-500
RF-Attenuator 0 dB - 81 dB	NT-429	PC P4 1700 MHz Notebook	NT-505
WRU 27 - Band blocking 27 MHz	NT-430	Monitoring camera with Monitor	NT-511
WHJ450C9 AA - High pass 450 MHz	NT-431	ES-K1 Version 1.71 SP2 Test software	NT-520
WHJ250C9 AA - High pass 250 MHz	NT-432	EMC32 Version 9.01 Test software	NT-520/1
RF-Load 150 W	NT-433	SRM-TS Version 1.3 software for SRM-3000	NT-522
Impedance transducer 1:4; 1:9; 1:16	NT-435	SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1
RF-Attenuator DC – 18 GHz 6 dB	NT-436	Spitzenberger und Spies Test software V3.4	NT-525
RF-Attenuator DC – 18 GHz 6 dB	NT-437	Noise power test apparatus according to EN 55014	NT-530
RF-Attenuator DC – 18 GHz 10 dB	NT-438	Vertical coupling plane (ESD)	NT-531
RF-Attenuator DC – 18 GHz 20 dB	NT-439	Test cable #4 for EN 61000-4-6	NT-553
I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	Test cable #3 for conducted emission	NT-554
ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556
Power Divider 6 dB/1 W/50 Ohm	NT-443	Test cable #8 Sucoflex 104EA	NT-559
Directional coupler 0,1 MHz – 70 MHz	NT-444	Test cable #9 (for outdoor measurements)	NT-580
Directional coupler 0,1 MHz – 70 MHz	NT-445	Test cable #10 (for outdoor measurements)	NT-581
Tube imitations according to EN 55015	NT-450	Test cable #13 Sucoflex 104PE	NT-584
FCC-801-M3-16A Coupling decoupling network	NT-458	Test cable #21 for SRM-3000	NT-592
FCC-801-M2-50A Coupling decoupling network	NT-459	Shield chamber	NT-600
FCC-801-M5-25 Coupling decoupling network	NT-460	Climatic chamber	M-1200
FCC-801-AF10 Coupling decoupling network	NT-461		

Division Medical Technology/ Communication Technology/ EMC

Department: FG

Test report number: M/FG-13/108

Page: 3 of 3

Date: 16.09.2013

Checked by: