# A Bayesian-motivated test for linear model in high-dimensional setting

Rui Wang

Thursday 15<sup>th</sup> November, 2018

#### 1 Introduction

Suppose we would like to compare models  $\mathcal{M}_0$  and  $\mathcal{M}_1$ .

$$\mathcal{M}_0: \mathbf{y} = \mathbf{X}_a \boldsymbol{\beta}_a + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}_n(0, \phi^{-1} \mathbf{I}_n),$$

$$\mathcal{M}_1: \mathbf{y} = \mathbf{X}_a \boldsymbol{\beta}_a + \mathbf{X}_b \boldsymbol{\beta}_b + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}_n(0, \phi^{-1} \mathbf{I}_n).$$

Here  $\beta_a$  is q dimensional and  $\beta_b$  is p dimensional. We assume that as n tends to infinity, q is fixed while  $p/n \to \infty$ . This assumption is reasonable. In practice,  $p_0$  is often 1 and  $\mathbf{X}_0$  is  $\mathbf{1}_n$ .

Although several tests have been proposed, the following proposition implies that there is no unbiased test.

**Proposition 1.** Suppose  $\mathbf{y} \sim \mathcal{N}_n(\mu, \phi^{-1}\mathbf{I}_n)$ . We test  $H_0: \mu = \mathbf{X}_a\boldsymbol{\beta}_a, \boldsymbol{\beta}_a \in \mathbb{R}^q$  versus  $H_1: \mu \in \mathbb{R}^n$ , where  $\mathbf{X}_a$  is an  $n \times q$  matrix with full column rank, q < n. Let  $\varphi(\mathbf{y})$  be a test function, that is, a Borel measurable function,  $0 \le \phi(\mathbf{y}) \le 1$ . If  $\int \varphi(\mathbf{y}) \mathcal{N}_n(\mathbf{X}_a\boldsymbol{\beta}_a, \phi^{-1}\mathbf{I}_n)(d\mathbf{y}) = \alpha$  for  $\boldsymbol{\beta}_a \in \mathbb{R}^q$ ,  $\phi > 0$  and  $\int \varphi(\mathbf{y}) \mathcal{N}_n(\mu, \phi^{-1}\mathbf{I}_n)(d\mathbf{y}) \ge \alpha$  for  $\mu \in \mathbb{R}^n$ ,  $\phi > 0$ , then  $\varphi(\mathbf{y}) = \alpha$ , a.s.

So we can not find a universally good test. Instead, we would like to find a test with good average behaviour. So Bayesian methods are natural choices in this case.

Bayes hypothesis testing use the Bayes factor.

$$B_{10} = \frac{\int f_1(y|\boldsymbol{\beta}_b, \boldsymbol{\beta}_a, \phi) \pi_1(\boldsymbol{\beta}_b, \boldsymbol{\beta}_a, \phi) d\boldsymbol{\beta}_b d\boldsymbol{\beta}_a d\phi}{\int f_0(y|\boldsymbol{\beta}_a, \phi) \pi_0(\boldsymbol{\beta}_a, \phi) d\boldsymbol{\beta}_a d\phi}.$$

There have been several extensions of g-priors to p > n case: Maruyama and George (2011), Shang and Clayton (2011).

Under  $\mathcal{M}_0$ , we impose the reference prior  $\pi_0(\boldsymbol{\beta}_a, \phi) = c/\phi$ . Note that under  $\mathcal{M}_1$ , the posterior corresponding to the referece prior is proper only if n > q+p? That is, the minimal training sample size is q+p+1. So we cannot impose the reference prior under  $\mathcal{M}_1$  provided q+p+1>n. We temporarily impose the conditional prior  $\boldsymbol{\beta}_b|\boldsymbol{\beta}_a, \phi \sim \mathcal{N}_p(0, \kappa^{-1}\phi^{-1}\mathbf{I}_p)$ . There are many literature

consider the choice of  $\kappa$ . Kass and Wasserman (1995) choose  $\kappa$  such that the amount of information about the parameter equal to the amount of information contained in one observation. Thus, under  $\mathcal{M}_1$ , we put prior

$$\pi_1(\boldsymbol{\beta}_b|\boldsymbol{\beta}_a,\phi) = \frac{(\kappa\phi)^{p/2}}{(2\pi)^{p/2}} \exp\left\{-\frac{\kappa\phi}{2}\|\boldsymbol{\beta}_b\|^2\right\}, \quad \pi_1(\boldsymbol{\beta}_a,\phi) = \frac{c}{\phi}.$$

It is straightforward to show that the Bayes factor associated with these priors is

$$B_{10}^{\kappa} = \frac{\kappa^{p/2}}{|\mathbf{X}_{b}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{X}_{b} + \kappa \mathbf{I}_{p}|^{1/2}} \cdot \left( \frac{\mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y}}{\mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y} - \mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{X}_{b} \left(\mathbf{X}_{b}^{\top}(\mathbf{I} - \mathbf{P}_{a})\mathbf{X}_{b} + \kappa \mathbf{I}_{p}\right)^{-1} \mathbf{X}_{b}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y}} \right)^{(n-q)/2}.$$

Thus,

$$2\log B_{10}^{\kappa} = p\log \kappa - \log |\mathbf{X}_{b}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{X}_{b} + \kappa \mathbf{I}_{p}|$$
$$-(n-q)\log \left(1 - \frac{\mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{X}_{b} \left(\mathbf{X}_{b}^{\top}(\mathbf{I} - \mathbf{P}_{a})\mathbf{X}_{b} + \kappa \mathbf{I}_{p}\right)^{-1}\mathbf{X}_{b}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y}}{\mathbf{y}^{\top}(\mathbf{I}_{n} - \mathbf{P}_{a})\mathbf{y}}\right).$$

Denote by  $\mathbf{I}_n - \mathbf{P}_a = \tilde{\mathbf{U}}_a \tilde{\mathbf{U}}_a^{\top}$  the rank decomposition of  $\mathbf{I}_n - \mathbf{P}_a$ , where  $\tilde{\mathbf{U}}_a$  is a  $n \times (n-q)$  column orthogonal matrix. Let  $\mathbf{X}_b^* = \tilde{\mathbf{U}}_a^{\top} \mathbf{X}_b$ ,  $\mathbf{y}^* = \tilde{\mathbf{U}}_a^{\top} \mathbf{X}_b$ . Let  $\gamma_i$  be the *i*th largest eigenvalue of  $\mathbf{X}_b^* \mathbf{X}_b^{*\top}$ ,  $i = 1, \ldots, n-q$ . Denote by  $\mathbf{X}_b^* = \mathbf{U}_b^* \mathbf{D}_b^* \mathbf{V}_b^{*\top}$  the singular value decomposition of  $\mathbf{X}_b^*$ , where  $\mathbf{U}_b^*$ ,  $\mathbf{V}_b^*$  are  $(n-q) \times (n-q)$  and  $p \times (n-q)$  column orthogonal matrices, respectively, and  $\mathbf{D}_b^* = \operatorname{diag}(\sqrt{\gamma_1}, \ldots, \sqrt{\gamma_{n-q}})$ . Then

$$2\log B_{10}^{\kappa} = p\log \kappa - \sum_{i=1}^{n-q} \log(\gamma_i + \kappa) - (p - (n - q))\log \kappa$$

$$- (n - q)\log \left(1 - \frac{\mathbf{y}^{*\top} \mathbf{X}_b^* \left(\mathbf{X}_b^{*\top} \mathbf{X}_b^* + \kappa \mathbf{I}_p\right)^{-1} \mathbf{X}_b^{*\top} \mathbf{y}^*}{\mathbf{y}^{*\top} \mathbf{y}^*}\right)$$

$$= -\sum_{i=1}^{n-q} \log(\gamma_i + \kappa) + (n - q)\log \left(\frac{\mathbf{y}^{*\top} \mathbf{y}^*}{\mathbf{y}^{*\top} \mathbf{U}_b^* \left[\frac{1}{\kappa} \left(\mathbf{I}_{n-q} - \mathbf{D}_b^* \left(\mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q}\right)^{-1} \mathbf{D}_b^*\right)\right] \mathbf{U}_b^{*\top} \mathbf{y}^*}\right)$$

$$= (n - q)\log \kappa - \sum_{i=1}^{n-q} \log(\gamma_i + \kappa) - (n - q)\log \left(1 - \frac{\mathbf{y}^{*\top} \mathbf{U}_b^* \mathbf{D}_b^* \left(\mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q}\right)^{-1} \mathbf{D}_b^* \mathbf{U}_b^{*\top} \mathbf{y}^*}{\mathbf{y}^{*\top} \mathbf{y}^*}\right)$$

The main part of  $2 \log B_{10}^{\kappa}$  is

$$T_n^{\kappa} = \frac{\mathbf{y}^{*\top} \mathbf{U}_b^* \mathbf{D}_b^* \left( \mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \mathbf{D}_b^* \mathbf{U}_b^{*\top} \mathbf{y}^*}{\mathbf{y}^{*\top} \mathbf{y}^*}.$$

A large value of  $T_n^{\kappa}$  supports the alternative hypothesis. Under the null hypothesis,

$$E T_n^{\kappa} = \frac{1}{n-q} \operatorname{tr} \left( \mathbf{D}_b^{*2} (\mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q})^{-1} \right).$$

Under the alternative hypothesis, consider  $\beta_1 = c\beta_1^{\dagger}$  where  $\beta_1^{\dagger} \neq 0$  is a fixed direction and c > 0. As  $c \to \infty$ ,  $T_n^{\kappa} \to$ . We say  $T_n^{\kappa}$  is consistent along the direction  $\beta_1^{\dagger}$  if. It turns out that,  $T_n^{\kappa}$  is consistent along certain directions of  $\beta_1$ , while it is inconsistent along other directions. Define  $B_{10}^0 = \lim_{\kappa \to 0} B_{10}^{\kappa}$ . Then

$$2\log B_{10}^{0} = -\sum_{i=1}^{n-q} \log(\gamma_i) + (n-q)\log\left(\frac{\mathbf{y}^{*\top}\mathbf{y}^{*}}{\mathbf{y}^{*\top}(\mathbf{X}_b^{*}\mathbf{X}_b^{*\top})^{-1}\mathbf{y}^{*}}\right).$$

### 2 Distribution under the null hypothesis

Under the null hypothesis, the distribution of  $2 \log B_{10}$  does not rely on unknown parameters. Further more, its distribution is valid as long as the distribution of  $\epsilon$  is spherically symmetric.

**Proposition 2.** Under the null hypothesis,

$$T_n := \frac{\mathbf{y} \top (\mathbf{I}_n - \mathbf{P}_a) \mathbf{X}_b \left( \mathbf{X}_b^\top (\mathbf{I}_n - \mathbf{P}_a) \mathbf{X}_b + \kappa \mathbf{I}_p \right)^{-1} \mathbf{X}_b^\top (\mathbf{I}_n - \mathbf{P}_a) \mathbf{y}}{\mathbf{y} \top (\mathbf{I}_n - \mathbf{P}_a) \mathbf{y}} \sim \frac{\sum_{i=1}^{n-q} \frac{\gamma_i}{\gamma_i + \kappa} Z_i^2}{\sum_{i=1}^{n-q} Z_i^2},$$

where  $\gamma_i$  is the ith eigenvalue of  $\mathbf{X}_b^{\top}(\mathbf{I}_n - \mathbf{P}_a)\mathbf{X}_b$ ,  $i = 1, \ldots, n - q$ , and  $Z_1, \ldots, Z_{n-q}$  are iid  $\mathcal{N}(0, 1)$  random variables.

Let 
$$\nu_i = \gamma_i / (\gamma_i + \kappa)$$
,  $\bar{\nu} = (n - q)^{-1} \sum_{i=1}^{n-q} \nu_i$ .

**Lemma 1.** Under the null hypothesis, a necessary and sufficient condition for

$$\frac{n-q}{\sqrt{2\sum_{i=1}^{n-q}(\nu_i-\bar{\nu})^2}}(T_n-\bar{\nu}) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$
(1)

is that

$$\frac{\max_{i \in \{1, \dots, n-q\}} (\nu_i - \bar{\nu})^2}{\sum_{i=1}^{n-q} (\nu_i - \bar{\nu})^2} \to 0.$$
 (2)

*Proof.* Note that

$$\frac{n-q}{\sqrt{2\sum_{i=1}^{n-q}(\nu_i-\bar{\nu})^2}}(T_n-\bar{\nu}) \sim \frac{n-q}{\sum_{i=1}^{n-q}Z_i^2} \frac{\sum_{i=1}^{n-q}(\nu_i-\bar{\nu})Z_i^2}{\sqrt{2\sum_{i=1}^{n-q}(\nu_i-\bar{\nu})^2}}.$$

By Slutsky's theorem, (1) holds if and only if

$$\frac{\sum_{i=1}^{n-q} (\nu_i - \bar{\nu}) Z_i^2}{\sqrt{2 \sum_{i=1}^{n-q} (\nu_i - \bar{\nu})^2}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

From Lemma 1 of Wang and Xu (2018), (2) is a necessary and sufficient condition for this to hold.  $\Box$ 

## 3 Distribution under the alternative hypothesis

# **Appendices**

## Appendix A haha1

**Proof of Proposition 1.** We assume  $0 < \alpha < 1$  since the case  $\alpha = 0$  or 1 is trivial. Note that the condition implies  $\int [\varphi(\mathbf{y}) - \alpha] \mathcal{N}_n(0, \phi^{-1}\mathbf{I}_n)(d\mathbf{y}) = 0$ . Hence it suffices to prove  $\varphi(\mathbf{y}) \geq \alpha$ , a.s. We prove this by contradiction. Suppose  $\lambda(\{\mathbf{y} : \varphi(\mathbf{y}) < \alpha\}) > 0$ . Then there exists a  $\eta > 0$ , such that  $\lambda(\{\mathbf{y} : \varphi(\mathbf{y}) < \alpha - \eta\}) > 0$ . We denote  $E = \{\mathbf{y} : \varphi(\mathbf{y}) < \alpha - \eta\}$ . From Lebesgue density theorem (Cohn, 2013, Corollary 6.2.6), there exists a point  $z \in E$ , such that, for each  $\epsilon > 0$  there is a  $\delta_{\epsilon} > 0$  such that

$$\left| \frac{\lambda(E^{\complement} \cap C_{\epsilon})}{\lambda(C_{\epsilon})} \right| < \epsilon,$$

where  $C_{\epsilon} = \prod_{i=1}^{n} [z_i - \delta_{\epsilon}, z_i + \delta_{\epsilon}]$ . We put

$$\epsilon = \left(\frac{\sqrt{\pi}}{\sqrt{2}\Phi^{-1}\left(1 - \frac{\eta}{6n}\right)}\right)^n \frac{\eta}{3}.$$

Then for any  $\phi > 0$ ,

$$\alpha \leq \int_{\mathbb{R}^{n}} \varphi(\mathbf{y}) \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y})$$

$$= \int_{E \cap C_{\epsilon}} \varphi(\mathbf{y}) \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y}) + \int_{E^{\complement} \cap C_{\epsilon}} \varphi(\mathbf{y}) \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y}) + \int_{C_{\epsilon}^{\complement}} \varphi(\mathbf{y}) \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y})$$

$$\leq \alpha - \eta + \int_{E^{\complement} \cap C_{\epsilon}} \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y}) + \int_{C_{\epsilon}^{\complement}} \mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n}) (d\mathbf{y})$$

$$\leq \alpha - \eta + \left(\frac{\phi}{2\pi}\right)^{n/2} \lambda(E^{\complement} \cap C_{\epsilon}) + 2n\left(1 - \Phi(\sqrt{\phi}\delta_{\epsilon})\right)$$

$$\leq \alpha - \eta + \left(\frac{\phi}{2\pi}\right)^{n/2} \epsilon(2\delta_{\epsilon})^{n} + 2n\left(1 - \Phi(\sqrt{\phi}\delta_{\epsilon})\right)$$

$$= \alpha - \eta + \left(\frac{\sqrt{\phi}\delta_{\epsilon}}{\Phi^{-1}\left(1 - \frac{\eta}{6n}\right)}\right)^{n} \frac{\eta}{3} + 2n\left(1 - \Phi(\sqrt{\phi}\delta_{\epsilon})\right).$$

Putting

$$\phi = \left(\frac{\Phi^{-1}\left(1 - \frac{\eta}{6n}\right)}{\delta_{\epsilon}}\right)^{2}$$

yields the contradiction  $\alpha \leq \alpha - (2/3)\eta$ . This completes the proof.

## Appendix B haha2

## References

- Cohn, D. L. (2013). *Measure Theory*. Birkhauser Advanced Texts Basler Lehrbucher. Birkhuser Basel, 2 edition.
- Kass, R. E. and Wasserman, L. (1995). A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion. *Journal of the American Statistical Association*, 90(431):928–934.
- Maruyama, Y. and George, E. I. (2011). Fully bayes factors with a generalized g -prior. *Ann. Statist.*, 39(5):2740–2765.
- Shang, Z. and Clayton, M. K. (2011). Consistency of bayesian linear model selection with a growing number of parameters. *Journal of Statistical Planning and Inference*, 141(11):3463–3474.
- Wang, R. and Xu, X. (2018). On two-sample mean tests under spiked covariances. *Journal of Multivariate Analysis*, 167:225 249.