

NARAYANA EDUCATIONAL INSTITUTIONS

SR-AZ

1.

JEE MAIN MODEL

PHYSICS

The ratio of areas within the electron orbits for the first excited state to the ground state for hydrogen

TOPIC: ATOMIC PHYSICS

	atom is 1) 16:1	2) 18:1	3) 4:1	4) 2:1					
2.	,	*		,					
2.	The electric potential between a proton and an electron is given by $V = V_0 \ln \frac{r}{r_0}$, where r_0 is a constant.								
	Assuming Bohr's model to be applicable, write variation of r_n with 'n', n being the principal quantum								
	number		2) 2						
	1) $r_n \alpha n$		3) $r_n \alpha n^2$						
3.	The innermost orbit of the hydrogen atom has a diameter $1.06A^{\circ}$. The diameter of tenth orbit is								
4	1) 5.3 <i>A</i> °	2) $10.6A^{\circ}$	3) $53A^{\circ}$	4) 106 <i>A</i> °					
4.	If the binding energy of the electron in a hydrogen atom is 13.6eV, the energy required to remove the								
	electron from the first excited state of Li^{++} is 1) $122.4eV$ 2) $30.6eV$ 3) $-30.6eV$ 4) $3.4eV$								
_	1) 122.4 <i>eV</i>	2) 30.6 <i>eV</i>							
5.			sition in Li^{++} , He^+ and Li^{++}						
	1) 1:2:3	2) 1:4:9	3) 4:9:36	4) 3:2:1					
6.				s from the third to the second orbit of					
			the tourth to the secon	nd orbit of the hydrogen atom, the					
	wavelength of radiat		27	25					
	1) $\frac{16}{25}\lambda_0$	2) $\frac{20}{27}\lambda_0$	3) $\frac{27}{20}\lambda_0$	4) $\frac{25}{16}\lambda_0$					
7.	If scattering particles	are 56 for 9 <mark>0° angl</mark> e t	then this will be at 60°	angle					
	1) 224	2) 256	3) 98	4) 108					
8.	The radiation emitted when an electron jumps from $n=3$ to $n=2$ orbit in a hydrogen atom falls on a								
	metal to produce photoelectrons. The electrons from the metal surface with maximum kinetic energy								
	are made to move perpendicular to a magnetic field of $(1/320)$ T in a radius of 10^{-3} m. Then kinetic								
	energy of electrons in eV is								
0	1) 0.86	2) 0.086	3) 8.6	4) 0.0086					
9.	When an electron in hydrogen atom is excited, from its 4 th to 5 th stationary orbit, the change in angular momentum of electron is (Planck's constant: $h = 6.6 \times 10^{-34} J - s$)								
	1) $4.16 \times 10^{-34} J - s$								
10.	1) $4.16 \times 10^{-34} J - s$ 2) $3.32 \times 10^{-34} J - s$ 3) $1.05 \times 10^{-34} J - s$ 4) $2.08 \times 10^{-34} J - s$ The absorption transition between two energy states of hydrogen atom are 3. The emission transitions								
	between these states								
	1) 3	2) 4	3) 5	4) 6					
11.	The energy levels of a certain atom for 1^{st} , 2^{nd} and 3^{rd} levels are E , $4E/3$ and $2E$ respectively. A								
	photon of wavelength λ is emitted for a transition $3 \rightarrow 1$. What will be the wavelength of emissions for								
	transition $2 \rightarrow 1$								
	1) $\frac{\lambda}{3}$	2) $\frac{4\lambda}{3}$	3) $\frac{3\lambda}{4}$	4) 3λ					
12.	3								
	excited electron from second Bohr orbit to third Bohr orbit. Find the value of Z								
	1) 2	2) 5	3) 3	4) 4					
	, –	, -	- <i>) -</i>	,					
NARA	AYANA GROUP AIE	EE ACADEMY		Page. No. 1					
				2					

	yana AIEEE Academ	_	22 1 2	SR-AZ-DPP				
13.	Ratio of the wavelengths of first line of Lyman series and first line of Balmer series is							
	1) 1:3	2) 27:5	3) 5:27	4) 4:9				
14.		The third line of Balmer series of an ion equivalent to hydrogen atom has wavelength of 108.5 nm. The ground state energy of an electron of this ion will be						
				4) 122 4 -W				
15.	1) 3.4 eV	2) 13.6 eV		4) 122.4 eV				
13.	Hydrogen atom in its ground state is excited by radiation of wavelength $975A^{\circ}$. How many lines wil be there in the emission spectrum.							
	1) 2	2) 4	3) 6	4) 8				
16.				ular orbits of radii R and $4R$. The ratio of				
10.		them to complete on						
	1) 1/4	2) 4/1	3) 8/1	4) 1/8				
17.		nydrogen atom is in i	ts 2 nd excited state, orb	oiting the nucleus in a stationary of orbit of				
	radius 4.65A°. The	en its debroglie wave	e length is					
	1) 12.9 <i>A</i> °	2) 3.5 <i>A</i> °	3) 9.7 <i>A</i> °	$=$ 4) $6.6A^{o}$				
18.	Electron in a certa	ain energy level $n = n$, can emit 3 spectral l	ines. When they are in another energy leve				
	$n = n_2$, they can er	mit 6 spectral lines. T	The ratio of orbital spec	eds of electrons is				
	1) 4:3	2) 3:4	3) 2:1	4) 1:2				
19.	The ratio of speed	l of electron in the gr	ound state of hydroger	n atom to the speed of light in vacuum is				
			3) $\frac{1}{137}$					
	_		137	23 /				
20.				value of n is nearly $(r_i = 0.5299)$				
	1) 4	2) 5	3) 6	4) 3				
21.	Taking the Bohr radius as $a_0 = 53 pm$, the radius of Li^{++} ion in its ground state, on the basis of Bohr's							
	model will be abo	out						
	1) 53pm	2) 27pm	/ 1	4) 13pm				
22.	An electron in the ground state of hydrogen atom is revolving in anticlockwise direction in circular							
	orbit of radius R, the orbital magnetic dipole moment of electron will be							
	1) $\frac{eh}{4\pi m}$	$\frac{eh}{e}$	$3) \frac{eh^2}{4\pi m}$	4) $\frac{e^2h}{4\pi m}$				
22								
23.	be	jumps from a level	n=4 to $n=1$, the mome	entum of the recoiled hydrogen atom will				
	1) $6.5 \times 10^{-27} kgms^{-1}$	2) 12.75 \times 10 ⁻¹⁹ k_{GH}	ms^{-1} 3) $13.6 \times 10^{-27} kgm$	g^{-1} Λ) zero				
24.	,							
∠ 4 .	Transitions between three energy levels in a particular atom give rise to three spectral lines of wavelengths in increasing magnitudes λ_1 , λ_2 and λ_3 . Which one of the following equations correctly							
			λ_1, λ_2 and λ_3 . Which	one of the following equations correctly				
	relates λ_1 , λ_2 and		1 1 1	1 1 1				
	1) $\lambda_1 = \lambda_2 - \lambda_3$	$2) \ \lambda_1 = \lambda_3 - \lambda_2$	3) $\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$	4) $\frac{1}{2} = \frac{1}{2} - \frac{1}{2}$				

25. The ratio (in SI units) magnitude of dipole moment to that of angular momentum of an electron of mass m kg and charge e coulomb in Bohr's orbits of hydrogen atom is

1) $\frac{e}{2m}$

4) $\frac{m}{2e}$

The force acting on electron in hydrogen atom depends upon principal quantum number as $F\alpha \frac{1}{n^x}$, then 26.

In the coolidge tube experiment, if the applied voltage is increased to three times, the short wavelength 27. limit of continuous X-ray spectrum shifts by 20 pm. What is the initial voltage (in kV) applied to the tube is.....

An X-ray tube operates at 20 kV. A particular electron loses 5% of its kinetic energy to emit an X-ray 28. photon at the first collision. The wavelength corresponding to this photon in nm

An X-ray tube operates at 20 kV. Find the maximum speed of the electrons striking the anode, (given 29. the charge of electrons is 1.6×10^{-19} coulomb and mass of electron is $9 \times 10^{-31} kg$) is.......× $10^7 m/s$

Narayana AIEEE Academy

SR-AZ-DPP

30. The wavelength of the characteristic X-ray K_{α} line emitted by a hydrogen-like element is $0.32A^{\circ}$. Calculate the wavelength of K_{β} line emitted by the same element is A°

ATOMIC PHYSICS KEY

1-10	1	1	4	2	3	2	1	1	3	4
11-20	4	2	3	3	3	4	3	1	3	4
21-30	3	1	1	3	1	4	<mark>41</mark>	<u>1.24</u>	<u>8.4</u>	0.27

HINTS

1. For a hydrogen atom,

Radius
$$r\alpha n^2 \Rightarrow \frac{r_1^2}{r_2^2} = \frac{n_1^4}{n_2^4} \Rightarrow \frac{\pi r_1^2}{\pi r_2^2} = \frac{n_1^4}{n_2^4} \Rightarrow \frac{A_1}{A_2} = \frac{n_1^4}{n_2^4} = \frac{2^4}{1^4} = 16 \Rightarrow \frac{A_1}{A_2} = \frac{16}{1}$$

2. Potential energy $U = eV = eV_0$ in $\frac{r}{r_0}$

$$\therefore$$
 Force $F = -\left|\frac{dU}{dr}\right| = \frac{eV_0}{r}$

The force will provide the necessary centripetal force.

Hence,
$$\frac{mv^2}{r} = \frac{eV_0}{r} \Rightarrow v = \sqrt{\frac{eV_0}{m}}...(i)$$

And
$$mvr = \frac{nh}{2\pi}$$
.....(ii)

Dividing equation (i) by (ii), we have $mr = \left(\frac{nh}{2\pi}\right)\sqrt{\frac{m}{eV_0}}$ or $r\alpha n$

- 3. Using $r\alpha n^2 \Rightarrow \frac{r_2}{r_2} = \left(\frac{n_2}{n_1}\right)^2$ Or $\frac{d_2}{d_1} = \left(\frac{n_2}{n_1}\right)^2 \Rightarrow \frac{d_2}{1.06} = \left(\frac{10}{1}\right)^2 \Rightarrow d = 106A^\circ$
- 4. Using $E_n = -\frac{13.6 \times Z^2}{n^2} eV$

For first excited state n=2 and for Li^{++} , Z=3

$$\therefore E = -\frac{13.6}{2^2} \times 3^2 = -30.6eF$$

Hence, remove the electron from the first excited state of Li^{++} be 30.6eV

- 5. Using $\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} \frac{1}{n_2^2} \right) \Rightarrow \lambda \alpha \frac{1}{Z^2} \Rightarrow \lambda_{Li} : \lambda_{He^+} : \lambda_H = \frac{1}{9} : \frac{1}{4} : \frac{1}{1} = 4 : 9 : 36$
- 6. Wavelength of radiation in hydrogen atom is given by

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \Rightarrow \frac{1}{\lambda_0} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = R \left[\frac{1}{4} - \frac{1}{9} \right] = \frac{5}{36} R \dots (i)$$

And
$$\frac{1}{\lambda} = R \left[\frac{1}{2^2} - \frac{1}{4^2} \right] = R \left[\frac{1}{4} - \frac{1}{16} \right] = \frac{3R}{16} \dots (ii)$$

From (i) & (ii),
$$\frac{\lambda'}{\lambda} = \frac{5R}{36} \times \frac{16}{3R} = \frac{20}{27} \Rightarrow \lambda' = \frac{20}{27} \lambda_0$$

7. Using Scattering formula

$$N\alpha \frac{1}{\sin^4(\theta/2)} \Rightarrow \frac{N_2}{N_1} = \left[\frac{\sin\left(\frac{\theta_1}{2}\right)}{\sin\left(\frac{\theta_2}{2}\right)}\right]^4 \Rightarrow \frac{N_2}{N_1} = \left[\frac{\sin\left(\frac{90^\circ}{2}\right)}{\sin\left(\frac{60^\circ}{2}\right)}\right]^4 = \left[\frac{\sin 45^\circ}{\sin 30^\circ}\right]^4 = 4$$

$$\Rightarrow N_2 = 4N_1 = 4 \times 56 = 224$$
Radius $R = \frac{mv}{Bq} = \frac{\sqrt{2mKE}}{Bq}$

$$KE = \frac{(BqR)^2}{2m} = 0.86eV$$
Change in angular momentum

$$\Rightarrow N_2 = 4N_1 = 4 \times 56 = 224$$

8.

$$KE = \frac{\left(BqR\right)^2}{2m} = 0.86eV$$

9.

$$\Delta L = L_2 - L_1 = \frac{n_2 h}{2\pi} - \frac{n_1 h}{2\pi} = \frac{h}{2\pi} (n_2 - n_1) = \frac{6.6 \times 10^{-34}}{2 \times 3.14} (5 - 4) = 1.05 \times 10^{-34} J - s$$

Number of absorption lines = $(n-1) \Rightarrow 3 = (n-1) \Rightarrow n = 4$ 10.

Hence number of emitted lines = $\frac{n(n-1)}{2} = \frac{4(4-1)}{2} = 6$

For transition $3 \rightarrow 1$, $\Delta E = 2E - E = \frac{hc}{\lambda} \Rightarrow E = \frac{hc}{\lambda} \dots (i)$ 11.

For transition
$$2 \rightarrow 1$$
, $\frac{4E}{3} - E = \frac{hc}{\lambda} \Rightarrow E = \frac{3hc}{\lambda}$ (ii)

From (i) & (ii),
$$\lambda' = 3\lambda$$

12. Excitation energy of hydrogen like atom for $n_2 \rightarrow n_1$

$$\Delta E = 13.6Z^{2} \left(\frac{1}{2^{2}} - \frac{1}{3^{2}} \right) = 13.6 \times \frac{5}{36} Z^{2}$$

$$\Rightarrow Z^{2} = \frac{47.2 \times 36}{13.6 \times 5} = 24.98 \approx 25 \Rightarrow Z = 5$$

$$\Rightarrow Z^2 = \frac{47.2 \times 36}{13.6 \times 5} = 24.98 \approx 25 \Rightarrow Z = 5$$

For Lyman series $\frac{1}{\lambda_L} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3R}{4} \dots (i)$ 13.

For Balmer series $\frac{1}{\lambda_R} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = \frac{5R}{36}$(ii)

From eq (i) & (ii),
$$\frac{\lambda_{L_1}}{\lambda_{B_1}} = \frac{5}{27}$$

14. Using
$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \Rightarrow \frac{1}{108.5 \times 10^{-9}} = 1.1 \times 10^7 \times Z^2 \left(\frac{1}{2^2} - \frac{1}{5^2} \right)$$

$$\Rightarrow \frac{1}{108.5 \times 10^{-9}} = 1.1 \times 10^{7} \times Z^{2} \times \frac{21}{100} \Rightarrow Z^{2} = \frac{100}{108.5 \times 10^{-9} \times 1.1 \times 10^{-7} \times 21} = 4 \Rightarrow Z = 2$$

Now energy in ground state $E = -13.6Z^{2}eV = -13.6 \times 2^{2}eV = -54.4eV$

15. Using $\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \Rightarrow \frac{1}{975 \times 10^{-10}} = 1.097 \times 10^7 \left(\frac{1}{1^2} - \frac{1}{n^2} \right) \Rightarrow n = 4$

Now no. of spectral lines $N = \frac{n(n-1)}{2} = \frac{4(4-1)}{2} = 6$

16. Time period $T\alpha \frac{n^3}{Z^2}$

For a given atom (Z=constant) So $T\alpha n^3....(i)$ and radius $R\alpha n^2....(ii)$

:. From eq (i) & (ii),
$$T\alpha R^{3/2} \Rightarrow \frac{T_1}{T_2} = \left(\frac{R_1}{R_2}\right)^{3/2} = \left(\frac{R}{4R}\right)^{3/2} = \frac{1}{8}$$

17. $2\pi r = n\lambda$

$$2\pi \times 4.65 = 3\lambda \Rightarrow \lambda = \frac{6.28 \times 4.65}{3} = 9.7 A^{\circ}$$

18. no. of emitted spectral lines, $N = \frac{n(n-1)}{2}$

Case-1: N=3,

$$3 = \frac{n_1(n_1 - 1)}{2} \Longrightarrow n_1 = 3$$

Case-2, N=6,

$$6 = \frac{n_2 \left(n_2 - 1\right)}{2} \Longrightarrow n_2 = 4$$

$$\frac{V_1}{V_2} = \frac{n_2}{n_1} = \frac{4}{3}$$

- 19. $V_n = \frac{c}{137} \frac{z}{n}$
- 20. $r_n \alpha n^2, \frac{r_1}{r_2} = \left(\frac{n_1}{n_2}\right)^2$

$$\frac{0.529}{4.2} = \left(\frac{1}{n_2}\right)^2 \Rightarrow n_2 = \sqrt{7.939} \approx 3$$

21. where $a_0 = 53 pm, n = 1, z = 3$

$$r_n = a_0 \times \frac{n^2}{z} = 53 \times \frac{1^2}{3} \approx 18 \, pm$$

22. According to Bohr's theory, $mvr = n\frac{h}{2\pi} = \frac{h}{2\pi}$

$$\therefore v = \frac{h}{2\pi mr}$$

We know that rate of flow of charge is current

$$\therefore I = e \left(\frac{v}{2\pi r} \right) = \frac{eh}{4\pi^2 mr^2}$$

Magnetic moment $M = IA = \frac{eh}{4\pi^2 mr^2} \pi r^2 = \frac{eh}{4\pi m}$

- Momentum of the recoiled hydrogen atom $p = \frac{h}{\lambda} = hR\left(\frac{1}{n_1^2} \frac{1}{n_2^2}\right)$ 23.
- Conceptual 24.
- $m M = \frac{evr}{2}$ Magnetic moment of a revolving electron $M = \frac{evr}{2}$ 25.

Angular momentum
$$L = mvr$$

$$\frac{M}{L} = \frac{\frac{evr}{2}}{mvr} = \frac{e}{2m}$$

$$F = \frac{mv^2}{r}$$

26.

But $v\alpha \frac{1}{m}$ and $r\alpha n^2$

$$\Rightarrow F\alpha \frac{1}{n^4} \Rightarrow n = 4$$

cut-off wavelength for continuous X-ray is given as $\lambda_{min} = \frac{hc}{eV_{o}}$ 27.

$$\therefore \frac{hc}{eV_0} = \lambda, \frac{hc}{3eV_0} = \lambda - \Delta\lambda$$

$$V_0 = \frac{2hc}{3e\Delta\lambda} = 41kV$$

28. Kinetic energy acquired by the electron is $K = 20 \times 10^3 eV$

The energy of the photon is $0.05 \times 20 \times 10^3 eV = 10^3 eV$

Thus,
$$\frac{hc}{\lambda} = 10^3 eV$$

Thus,
$$\frac{nc}{\lambda} = 10^3 eV$$

$$\Rightarrow \lambda = \frac{\left(4.14 \times 10^{-15} eV - s\right) \times \left(3 \times 10^8 ms^{-1}\right)}{10^3 eV} = \frac{1242 eV - nm}{10^3 eV} = 1.24 nm$$

When an electron of charge 'e' is accelerated through a potential difference V, it acquires energy eV. 29. If 'm' be the mass of the electron and $V_{\rm max}$ the maximum speed of electron,

then
$$\frac{1}{2}mv_{\text{max}}^2 = eV$$
 or $v_{\text{max}} = \sqrt{\left(\frac{2eV}{m}\right)}$

substituting the given values, we get
$$v_{\text{max}} = \sqrt{\frac{2 \times (1.6 \times 10^{-19}) \times 20000}{9 \times 10^{-31}}} = 8.4 \times 10^7 \, \text{ms}^{-1}$$

For hydrogen like element $\frac{1}{\lambda} = Z^2 R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ 30.

For
$$K_{\alpha}$$
 line, $\frac{1}{\lambda_{\alpha}} = Z^2 R \left(\frac{1}{1^2} - \frac{1}{2^2} \right) \dots (i)$

For
$$\lambda_{\beta}$$
 line, $\frac{1}{\lambda_{\beta}} = Z^2 R \left(\frac{1}{1^2} - \frac{1}{3^2} \right) \dots (ii)$

Dividing,
$$\frac{\lambda_{\beta}}{\lambda_{\alpha}} = \frac{\frac{1}{1^2} - \frac{1}{2^2}}{\frac{1}{1^2} - \frac{1}{3^2}} = \frac{1 - \frac{1}{4}}{1 - \frac{1}{9}} = \frac{27}{32}$$

$$\therefore \lambda_{\beta} = \frac{27}{32} \lambda_{\alpha} = \frac{27}{32} \times 0.32 A^{\circ} = 0.27 A^{\circ}$$

