

Dimensions of Portfolio Performance

Interpretation of Portfolio Returns

Conclusions
About Past
Performance

Predictions
About Future
Performance

Risk vs. Reward

Need For Performance Measure

Performance & Risk Measures

Reward --> portfolio mean return

Risk—> portfolio volatility

Interpretation

Arithmetic Mean Return

Assume a sample of T portfolio return observations:

$$R_1, R_2, \ldots, R_T$$

• Reward Measurement: Arithmetic mean return is given:

$$\hat{\mu} = \frac{R_1 + R_2 + \ldots + R_T}{T}$$

It shows how large the portfolio return is on average

Risk: Portfolio Volatility

De-meaned return

$$R_i - \hat{\mu}$$

Variance of the portfolio

$$\widehat{\sigma}^2 = \frac{(R_1 - \widehat{\mu})^2 + (R_2 - \widehat{\mu})^2 + \dots + (R_T - \widehat{\mu})^2}{T - 1}$$

Portfolio Volatility:

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2}$$

No Linear Compensation In Return

• Mismatch between average return and effective return

```
final value=
initial value * (1 +0.5)*(1-0.5)= 0.75 * initial value
```


Average Return = (0.5 - 0.5)/2 = 0

Geometric Mean Return

• Formula for *Geometric Mean* for a sample of **T** portfolio return observations R_1 , R_2 , ..., R_T :

Geometric mean =
$$[(1 + R_1) * (1 + R_2) * ...(1 + R_T)]^{\frac{1}{T}} - 1$$

• Example: +50% & -50% return

Geometric mean
$$= [(1+0.50)*(1-0.50)]^{\frac{1}{2}} - 1$$

 $= 0.75^{\frac{1}{2}} - 1$
 $= -13.4\%$

Application to the S&P 500

S & P 500

Let's practice!

The (Annualized) Sharpe Ratio

Benchmarking Performance

Risky Portfolio

E.g: portfolio invested in stocks, bonds, real estate, and commodities

Reward: measured by mean portfolio return

Risk: measured by volatility of the portfolio returns

Risk Free Asset

E.g: US Treasury Bill

Reward: measured by risk free rate

Risk: No risk, volatility = 0 return = risk free rate

Risk-Return Trade-Off

Capital Allocation Line

The Sharpe Ratio

Performance Statistics In Action

```
> library(PerformanceAnalytics)
```

```
> sample_returns <- c( -0.02, 0.00, 0.00, 0.06, 0.02, 0.03, -0.01, 0.04)
```

> (mean(sample_returns) - 0.004)/StdDev(sample_returns)

returns	-0.02, 0, 0, 0.06, 0.02, 0.03, -0.01, 0.04		
arithmetric mean	0.015		
geometric mean	0.01468148		
volatility	0.02725541		
sharpe ratio	0.4035897		

Annualize Monthly Performance

Annualized Return

Arithmetric mean: monthly mean * 12

Geometric mean, when R_i are monthly returns:

$$[(1+R_1)*(1+R_2)*...*(1+R_T)]^{\frac{12}{T}}-1$$

Volatility: monthly volatility * sqrt(12)

Performance Statistics In Action

```
> library(PerformanceAnalytics)
> sample_returns <- c( -0.02, 0.00, 0.00, 0.06, 0.02, 0.03, -0.01, 0.04)
> Return.annualized(sample_returns, scale = 12) /
Std.Dev.annualized(sample_returns, scale = 12)
```

	monthly	FACTOR	annualized	
arithmetric mean	0.015	12	0.18	
geometric mean	0.01468148	$[0.98**1.04]^{\frac{12}{8}} - 1$	0.1911235	
volatility	0.02725541	sqrt(12)	0.0944155	
sharpe ratio 0.4035897		sqrt(12)	1.398076	

Let's practice!

Time-Variation In Portfolio Performance

Bulls & Bears

• Business cycle, news, and swings in the market psychology affect the market

Clusters of High & Low Volatility

Rolling Estimation Samples

- Rolling samples of K observations:
 - Discard the most distant and include the most recent

R _{t-k+1}	R _{t-k+2}	R _{t-k+3}	• • •	R _t	R _{t+1}	R _{t+2}	R _{t+3}
--------------------	--------------------	--------------------	-------	----------------	------------------	------------------	------------------

Rolling Performance Calculation

Feb 50 Jan 55 Jan 60 Jan 65 Jan 70 Jan 75 Jan 80 Jan 85 Jan 90 Jan 95 Jan 00 Jan 05 Jan 10 Jan 15

Rolling 3 year annualized volatility S&P 500

Feb 50 Jan 55 Jan 60 Jan 65 Jan 70 Jan 75 Jan 80 Jan 85 Jan 90 Jan 95 Jan 00 Jan 05 Jan 10 Jan 15

Choosing Window Length

- Need to balance noise (long samples) with recency (shorter samples)
- Longer sub-periods smooth highs and lows
- Shorter sub-periods provide more information on recent observations

Let's practice!

Non-Normality of the Return Distribution

Volatility Describes "Normal" Risk

Non-Normality of Return

Portfolio Return Semi-Deviation

- Standard Deviation of Portfolio Returns:
 - Take the full sample of returns

$$SD = \sqrt{\frac{(R_1 - \mu)^2 + (R_2 - \mu)^2 + \dots + (R_T - \mu)^2}{T - 1}}$$

- Semi-Deviation of Portfolio Returns:
 - Take the *subset* of returns below the mean

SemiDev =
$$\sqrt{\frac{(Z_1 - \mu)^2 + (Z_2 - \mu)^2 + \dots + (Z_n - \mu)^2}{n}}$$

Value-at-Risk & Expected Shortfall

NASDAQ Daily Returns

Shape of the Distribution

- Is it symmetric?
 - Check the skewness
- Are the tails fatter than those of the normal distribution?
 - Check the excess kurtosis

Skewness

- Zero Skewness
 - Distribution is symmetric
- Negative Skewness
 - Large negative returns occur more often than large positive returns
- Positive Skewness
 - Large positive returns occur more often than large negative returns

Kurtosis

 The distribution is fat-tailed when the excess kurtosis > 0

Let's practice!