OLD E VOOL

Applicant(s Laurent EMORINE et al. Application No.: 09/895,211 Filed: July 2, 2001 Title: "INTRON/EXON STRUCTURE OF THE HUMAN AND MOUSE BETA3-ADRENERGIC RECEPTOR GENES"

1 of 7 sheets

ccagtgcccagggagtgctatgctgagtccaggagcctggccacggcaggggtggacagatggtggcagaggaaccacggtgtcccttcctccagatttagctaaaggaaacgtggagca occattggccatcctcccactctccaattcggctccagaggccctccagactataggcagctgccctttaagcgtcgctactcctccccaagagcggtggcaccgagggagttgg ggtggggggggggtgagcgctctggctgggacagctagagaagatggcccaggctggggaagtcgctctcatgccttgctgtcccttccctgagccaggtgatttgggagacccctcc ttccttcttccctaccgccccacgcgacccggggg ATG GCT CCG TCG CCT CAC GAG AAC AGC TCT CTT GCC CCA TCC CCG GAC CTC CCC ACC TTC
F
CAC
CAC
GGG
GGC
R
A
GGC
CGC
A
A
A
A
A GCC A L L GCC A A GCC A A CTT S S CTG CTG CTG CTG CCTG AATC AC TGG

A V

G GTC (

I P

C GTC T

A A A

C GCC GCT

C GCC CT

C GTC T

C GTC T

C GTC T

C GTC T

A A A

DONOR

DONOR

DONOR

DONOR

DONOR

DONOR

C G GT

DONOR

DONOR GCC AA CTG H ATG ATG AA CTG CTG AA CTG AA CTG AA GGCC AA CTG AA GAG GCC AA CTG CTG L CTG CTG L CTC AA GAG GAG L CTC L L SGC RAPE COCC

FIG. 1/

Applicant(s Laurent EMORINE et al. Application No.: 09/895,211 Filed: July 2, 2001 Title: "INTRON/EXON STRUCTURE OF THE HUMAN AND MOUSE BETA3-ADRENERGIC RECEPTOR GENES" 2 of 7 sheets

408 3065 3185 3305 3305 3425 3665

2354 2474 2594 2714 2834 2945 getatgttgeecaggettgtettgaaettetggeeteaagtgateettetgeeteageetteeaageattaggattacaggeeggageeagggegeegggteggetetagttttggttt cccagggictattatctccacttitttcccag GCT TCT TGG GGA GTT TCT tag gcctgaaggacaagaagcaacaacactctgttgatcagaacctgiggaaaacctctgg yacccagggtccttttctggatccagtcactagggtagaagcaaaggaggcgagcggccgtcgttcctcacccaaggacccaaggtgtgccaccggaaagcgctgcggtgtccc aqqqtcqqqaaqcatqcqatqtqtccqqtqqqtcaactttttgagtgtggagtttattaagaaggtgggatggctttgcttggagaaagggaacgaggagtagcgaaccaaaatgg

cctctgttcagaatgagtcccatgggattccccggctgtgacactctaccctccagaacctgacgactgggccatgtgacccaaggagggatccttaccaagtgggttttcaccatcctc gettgeetgtgeagteagtgagtgettaggggeaaagagageteeeetggtteeatteettetgeeaaeeeetgatgagaaeettagtgtteteeaggetetgtggeeeagg gcagcagggtagaaaagaccaagatttgggggttttatctctggttcccttattactgctctcaagcagtggcctctctcacctttagccatggaatggctccgatctacctcacagcagtg cotoggececetticectecgittigitticattatecactiacitecettecettectactetgetggettitigaeagaggegtaaattaggeetaateeteatetti tcagaaggacttcgccagggtttttgggagctccaggggttcataagaaggtgaaccattagaacagatcccttcttttccttttgcaatcagatc<mark>aataat</mark>catcactgaatgcagttcat N G Acceptor atgttcatcaaagaaaaa

FIG. 1B

Applicant(s Laurent EMORINE et al. Application No.: 09/895,211 Filed: July 2, 2001

Title: "INTRON/EXON STRUCTURE OF THE HUMAN AND MOUSE BETA3-ADRENERGIC RECEPTOR GENES"

3 of 7 sheets

gcctcaggttctgccaggaaggagctgctgagctccaggaaaccggtgctgagggagtgtcaaggacagcccctctccaccctccaattcccaccagaggcctcttgtgactatt A STANDARD OF THE STANDARD OF ATTA ATTA TATTA TA Adding Ad DECAPE SECOND SE V V V PACCOS SC CAGCOS SC CACCOS TIGE SECTION OF SECTIO CHEST CONTROL OF THE

Applicant(s Laurent EMORINE et al. Application No.: 09/895,211 Filed: July 2, 2001 Title: "INTRON/EXON STRUCTURE OF THE HUMAN AND MOUSE BETA3-ADRENERGIC **RECEPTOR GENES"**

> 2837 2957 3077 3197 3317

2477 2597

2131 2237 400 taaaacgggccctttcttcttggatccaatccctgggtctgaagcaaaagggaggaggataattgcgcaccttaggaccaggtgaccccacaggcagttgctgctcttccggca Д ഷ 5 뜨 G Acceptor 1

ggattiggggggtggagtagagggatgcgggaatggtccctatatctttgaaaagtgaatatgcttttcagggttcctgaatcacttccctccttccagtgcttgatcccattcttct Acceptor 2 Acceptor 2"

acagctctaatctacctcacagttaggacttcaaggtttgggggggaaattccaggggttcataggaagaagtcaaactattggaatgggtccttttccacttaaaatcaaatt<u>aataaa</u> gaagttgtctaagacccaccttgaacttcactactacctcagcagctgggacggcagccacctgtgcttgacggccctgggaggagccctatggccttggaggcctgccagtccctgcc tattattgaatgtggtttgtcccctgctcgccttttctctgggtttgttttcttttcgtggcctgcttgcttgcttgcttccttgctccgagctgcgttttgacaggggcagtaaattaggagt

Applicant(s Laurent EMORINE et al.
Application No.: 09/895,211
Filed: July 2, 2001
Title: "INTRON/EXON STRUCTURE OF THE
HUMAN AND MOUSE BETA3-ADRENERGIC
RECEPTOR GENES"
5 of 7 sheets

AMINO-ACID SEQUENCE OF THE HUMAN B3-ADRENERGIC RECEPTOR GENE

10	20	30	40	50	60	70	80
MAPWPHENSS	LAPWPDLPTL	APNTANTSGL	PGVPWEAALA	GALLALAVLA	TVGGNLLVIV	AIAWTPRLQT	MTNVFVTSLA
90	100	110	120	130	140	150	160
AADLVMGLLV	VPPAATLALT	GHWPLGATGC	ELWTSVDVLC	VTASIETLCA	LAVDRYLAVT	NPLRYGALVT	KRCARTAVVL
170	180	190	200	210	220	230	240
VWVVSAAVSF	APIMSQWWRV	GADAEAQRCH	SNPRCCAFAS	NMPYVLLSSS	VSFYLPLLVM	LFVYARVFVV	ATRQLRLLRG
250	260		280			310	320
	PPAPSRSLAP	APVGTCAPPE			LCTLGLIMGT	FTLCWLPFFL	ANVLRALGGP
330	340		360		380		400
SLVPGPAFLA	LNWLGYANSA	FNPLIYCRSP	DFRSAFRRLL	CRCGRRLPPE	PCAAARPALF	PSGVPAARSS	PAQPRLCQRL

DGASWGVS

FIG. 3

AMINO-ACID SEQUENCE OF THE MOUSE B3-ADRENERGIC RECEPTOR GENE

10	20	30	40	50	60	70	80
MAPWPHRNGS	LALWSDAPTL	DPSAANTSGL	PGVPWAAALA	GALLALATVG	GNLLVIIAIA	RTPRLQTITN	VFVTSLAAAD
90	100	110	120	130	140	150	160
LVVGLLVMPP	GATLALTGHW	PLGETGCELW	TSVDVLCVTA	SIETLCALAV	DRYLAVTNPL	RYGTLVTKRR	ARAAVVLVWI
170	180	190	200	210	220	230	240
VSAAVSFAPI	MSQWWRVGAD	AEAQECHSNP	RCCSFASNMP	YALLSSSVSF	YLPLLVMLFV	YARVFVVAKR	QRHLLRRELG
250	260	_ · ·		290		0-0	320
RFSPEESPPS	PSRSPSPATG	GTPAAPDGVP	PCGRRPARLL	PLREHRALRT	LGLIMGIFSL	CWLPFFLANV	LRALAGPSLV
330	340	350	360	370	380	390	400
PSGVFIALNW	LGYANSAFNP	VIYCRSPDFR	DAFRRLLCSY	GGRGPEEPRA	VTFPASPVEA	ROSPPLNRFD	GYEGARPFPT

FIG. 4

Applicant(s Laurent EMORINE et al. Application No.: 09/895,211 Filed: July 2, 2001 Title: "INTRON/EXON STRUCTURE OF THE HUMAN AND MOUSE BETA3-ADRENERGIC RECEPTOR GENES"

... CCC AGG CTT TGC CAA CGG CTC GAC GG GCT TCT TGG GGA GTT TCT taggcctgaaggacaagaag... ... Pro Arg Leu Cys Gln Arg Leu Asp Gl y Ala Ser Trp Gly Val Ser-408 AATAAA- (3525) atctccactttttttcccaq gtaggtaaccgggggcagagg INTRON (1025 BP) B3-AR Hu

FIG. 5A

Applicant(s Laurent EMORINE et al. Application No.: 09/895,211 Filed: July 2, 2001 Title: "INTRON/EXON STRUCTURE OF THE HUMAN AND MOUSE BETA3-ADRENERGIC RECEPTOR GENES"

Z of Z sheets

FIG. 5B

(2605)

atgcctttgatttctactcag

INTRON-2° (343 bp)