Introduction to working with Canadian Water Data in R

Using tidyhydat and weathercan

Sam Albers
Digital Platforms and Data Division
Office of the Chief Information Officer
Ministry of Citizens' Services
Province of BC

CWRA Webinar

2019-09-25

Outline

- Who am I?
- Learning Outcomes
- Review R and RStudio and rationale behind using them
- Introduce packages:
 - ∘ dplyr
 - tidyhydat
 - weathercan
- Provide an example of using them together
- tidyhydat and weathercan development
- Where and how to get help in R
- Questions

Sam Albers

- Data Scientist with BC government
- Environmental Scientist by training
- Been using R for 10 years
- Maintainer for tidyhydat, rsoi
- Contributor on many other packages including weathercan
- Maintainer of the Hydrology task view

- **y** @big_bad_sam
- O @boshek
- ✓ sam.albers@gov.bc.ca

What are we hoping to learn?

- Describe visual elements of RStudio
- Define and assign data to variable
- Manage your workspaces and projects
- Call a function
- Understand the six main dplyr verbs
- Overview of tidyhydat and weathercan functions
- Describe usage of tidyhydat and weathercan
- How to ask for help in R

Common Analysis Problems

Accessing Environment and Climate Change Canada Data

Stakeholder/Manager: "Hey, this is a really cool analysis but we need to add five stations. Can you run it again?"

Make it reproducible!

Questions worth asking...

- Are your methods reproducible?
- What is your analysis recipe?
- Can you share it?

Preheat the oven to Gas Mark 4, Electric 180°C, Fan 160°C.

Stir flow data in a bowl, add tidyhydat and the butter. When the mixture looks like breadcrumbs, mix in the data tidying. Lay
the mixture on a shallow baking tray and bake for 25–30 minutes until golden brown. Leave on the side to cool. Mix together the
correlation and plotted data and present analysis.

...Use R!

(or more generally any programmatic code based analysis approach...)

What is R?

- Free and open source
- Statistical programming language
- Publication quality graphics
- Much of the innovation occurs in contributed packages
- But definitely not intimidating...

Some example code

```
all_time_greats <- c(99, 66, 4, 9)
```

- <-: assignment operator
- all_time_greats: object
- c: function

What is RStudio?

- Provides a place to write and run code
- A means to organize projects
- Referred to as an IDE

Not guaranteed to help with this...

R and RStudio

The Problem

- Many tasks when analyzing environmental data are repetitive yet interactive
- Typically hydrologists/water professionals aren't computer scientists
- Helpful to abstract away unneeded complexity when possible
- A clean and easy to remember syntax reduces your cognitive load when doing analysis

Enter dplyr

a consistent set of verbs that help you solve the most common data manipulation challenges

- Independent of the data source
- Designed for data science

dplyr verbs

Functions with English meanings that map directly to the action being taken when that function is called

Installation: install.packages("dplyr")

- %>% a special symbol to chain operations. Read it as "then"
- select() picks variables based on their names.
- filter() picks cases based on their values.
- summarise() reduces multiple values down to a single summary.
- arrange() changes the ordering of the rows.
- mutate() adds new variables that are functions of existing variables

For a offline tutorial: http://swcarpentry.github.io/r-novice-gapminder/13-dplyr/index.html

dplyr code break

The objective of tidyhydat is to provide a standard method of accessing ECCC hydrometric data sources (historical and real time) using a consistent and easy to use interface that employs tidy data principles within the R project.

Installation: install.packages("tidyhydat")

hydat::Water Survey of Canada Network

1.1 GB

7842 stations in database

SQLite database

Self contained

The objective of weathercan is to provide a standard method of accessing ECCC climate data sources using a consistent and easy to use interface that employs tidy data principles within the R project.

Installation: install.packages("weathercan")

weathercan::Climate Data

7935 stations

Available online

Looking closer at tidyhydat and weathercan

tidyhydat

Download the database:

```
download_hydat()
```

Access some flow data

```
flows_data <- hy_daily_flows(station_number = c("08MF005","09CD001","05KJ001","02KF005"))
```

- <-: assignment operator
- flows_data: object
- hy_daily_flows: function
- station_number: argument

What else is available in tidyhydat?

All tables in HYDAT

- See help(package = "tidyhydat")
- Realtime data
- Instantaneous peaks
- Daily, monthly and yearly temporal summaries
- Discharge, level, sediment, particle size
- Data ranges
- Station metadata

What else is available in tidyhydat?

plot(flows_data)

Historical Water Survey of Canada Gauges

What else is available in tidyhydat?

```
search stn name("fraser")
#> # A tibble: 31 x 5
   STATION NUMBER STATION NAME
                                                 PROV_TERR_STATE_LOC LATITUDE LONGITUDE
   <chr> <chr>
                                                 <chr>
                                                                      <db1>
                                                                               <dbl>
#>
   1 08JB003 NAUTLEY RIVER NEAR FORT FRASER
                                                 BC
                                                                              -125.
                                                                      54.1
   2 08KA004
             FRASER RIVER AT HANSARD
                                                                      54.1
                                                                              -122.
#>
                                                 BC
             FRASER RIVER AT MCBRIDE
#>
   3 08KA005
                                                 BC
                                                                      53.3
                                                                              -120.
   4 08KA007
              FRASER RIVER AT RED PASS
                                                                      53.0
                                                                               -119.
                                                 BC.
   5 08KB001
              FRASER RIVER AT SHELLEY
                                                                      54.0
                                                 BC.
                                                                               -123.
   6 08KE018
             FRASER RIVER AT SOUTH FORT GEORGE BC
                                                                      53.9
                                                                               -123.
   7 08MC018
              FRASER RIVER NEAR MARGUERITE
                                                 BC
                                                                      52.5
                                                                               -122.
   8 08MD013
              FRASER RIVER AT BIG BAR CREEK
                                                 BC
                                                                      51.2
                                                                              -122.
   9 08MF005
             FRASER RIVER AT HOPE
                                                 BC
                                                                      49.4
                                                                               -121.
#> 10 08MF040
            FRASER RIVER ABOVE TEXAS CREEK
                                                                               -122.
                                                                      50.6
                                                 BC
#> # ... with 21 more rows
```

tidyhydat code break

weathercan

```
vic_gonzales <- weather_dl(station_ids = "114", interval = "day", start = "2019-01-01", end = "2019-01", end = "2019-01", end = "2019-01", end = "2019-01", end =
vic_gonzales
#> # A tibble: 31 x 37
            station_name station_id station_operator prov lat lon elev climate id WMO id
                                                               <chr>
                                                                                                   <chr> <dbl> <dbl> <dbl> <chr>
            <chr>
                                        <chr>
                                                                                                                                                                             <chr>
        1 VTCTORTA GO~ 114
                                                               Fnvironment and~ BC
                                                                                                                 48.4 -123.
                                                                                                                                               61 1018611
                                                                                                                                                                             71200
        2 VICTORIA GO~ 114
                                                               Environment and~ BC 48.4 -123. 61 1018611
                                                                                                                                                                             71200
        3 VICTORIA GO~ 114
                                                               Environment and~ BC 48.4 -123. 61 1018611
                                                                                                                                                                             71200
       4 VICTORIA GO~ 114
                                                               Environment and~ BC
                                                                                                           48.4 -123. 61 1018611
                                                                                                                                                                             71200
        5 VICTORIA GO~ 114
                                                               Environment and~ BC 48.4 -123. 61 1018611
                                                                                                                                                                             71200
        6 VICTORIA GO~ 114
                                                               Environment and~ BC
                                                                                                             48.4 -123. 61 1018611
                                                                                                                                                                             71200
       7 VICTORIA GO~ 114
#>
                                                    Environment and~ BC 48.4 -123. 61 1018611
                                                                                                                                                                             71200
       8 VICTORIA GO~ 114
                                                   Environment and~ BC
                                                                                                            48.4 -123. 61 1018611
                                                                                                                                                                             71200
        9 VICTORIA GO~ 114
                                                   Environment and~ BC 48.4 -123. 61 1018611
                                                                                                                                                                             71200
#> 10 VICTORIA GO~ 114
                                                               Environment and~ BC
                                                                                                                 48.4 -123.
                                                                                                                                               61 1018611
                                                                                                                                                                             71200
#> # ... with 21 more rows, and 28 more variables: TC id <chr>, date <date>, year <chr>,
              month <chr>, day <chr>, qual <chr>, cool_deg_days <dbl>, cool_deg_days_flag <chr>,
#> #
               dir max gust <dbl>, dir max gust flag <chr>, heat deg days <dbl>,
              heat_deg_days_flag <chr>, max_temp <dbl>, max_temp_flag <chr>, mean_temp <dbl>,
#> #
#> #
              mean temp flag <chr>, min temp <dbl>, min temp flag <chr>, snow grnd <dbl>,
               snow_grnd_flag <chr>, spd_max_gust <dbl>, spd_max_gust_flag <chr>,
#> #
               total_precip <dbl>, total_precip_flag <chr>, total_rain <dbl>, total_rain_flag <chr>,
#> #
               total snow <dbl>, total snow flag <chr>
#> #
```

What else is available in weathercan?

- See help(package = "weathercan")
- Normals
- Climate normals measurements
- Station metadata

weathercan code break

Path of Hurricane Dorian

Point where Dorian is over Canadian land

Nova Scotia with buffer

Hydrometric Stations

Hydro Data

```
hydro dorian$STATION NUMBER
#> [1] "01DG043" "01DH002" "01DH004" "01DH006" "01DJ005" "01DP004"
hydro_data <- realtime_dd(station_number = hydro_dorian$STATION_NUMBER) %>%
  filter(Parameter == "Level")
hydro_data
     Oueried on: 2019-09-25 04:51:40 (UTC)
#>
     Date range: 2019-08-25 to 2019-09-25
#> # A tibble: 52,796 x 8
    STATION NUMBER PROV TERR STATE ~ Date
                                                            Parameter Value Grade Symbol Code
    <chr>
                     <chr>
                                    <dttm>
                                                             <chr>
                                                                        <dbl> <chr> <chr> <chr>
                                         2019-08-25 04:00:00 Level
   1 01DG043
                     N.S
                                                                        1.42 <NA> <NA>
                                         2019-08-25 04:05:00 Level
#>
   2 01DG043
                NS
                                                                        1.42 <NA>
                                                                                    \langle NA \rangle
    3 01DG043
                    NS
                                         2019-08-25 04:10:00 Level
                                                                         1.42 <NA>
                                                                                     \langle NA \rangle
#>
    4 01DG043
                     NS
                                         2019-08-25 04:15:00 Level
                                                                         1.42 <NA>
                                                                                     \langle NA \rangle
#>
                                         2019-08-25 04:20:00 Level
    5 01DG043
                     NS
                                                                         1.42 <NA>
                                                                                     \langle NA \rangle
#>
                                         2019-08-25 04:25:00 Level
    6 01DG043
                     NS
                                                                         1.42 <NA>
                                                                                     \langle NA \rangle
   7 01DG043
                     NS
                                         2019-08-25 04:30:00 Level
                                                                         1.42 <NA>
                                                                                     \langle NA \rangle
    8 01DG043
                     NS
                                         2019-08-25 04:35:00 Level
                                                                         1.42 <NA>
                                                                                     \langle NA \rangle
    9 01DG043
                     NS
                                         2019-08-25 04:40:00 Level
                                                                         1.42 <NA>
                                                                                     \langle NA \rangle
#> 10 01DG043
                     NS
                                         2019-08-25 04:45:00 Level
                                                                         1.42 <NA> <NA>
#> # ... with 52,786 more rows
```

Hydro Data

Climate Stations

Climate Data

```
climate dorian$station id
#> [1] 8990 10078 30668 42243 44363 50620 53938
climate data <- weather_dl(station_ids = climate_dorian$station_id,</pre>
                         start = "2019-09-01", interval = "hour", guiet = TRUE)
climate_data
#> # A tibble: 3,312 x 35
     station_name station_id station_operator prov lat lon elev climate_id WMO_id
     <chr>
                       <int> <chr>
                                             <chr> <dbl> <dbl> <dbl> <chr>
                                                                               <chr>
   1 CARIBOU POI~
                       8990 Environment and~ NS 45.8 -62.7 2.4 8200774
                                                                              71415
   2 CARIBOU POI~
                        8990 Environment and~ NS 45.8 -62.7 2.4 8200774
                                                                              71415
   3 CARIBOU POI~
                       8990 Fnyironment and~ NS
                                                45.8 -62.7 2.4 8200774
                                                                              71415
   4 CARIBOU POI~
                       8990 Environment and~ NS 45.8 -62.7 2.4 8200774
                                                                              71415
#>
   5 CARIBOU POI~
                        8990 Environment and~ NS
                                                 45.8 -62.7 2.4 8200774
                                                                              71415
   6 CARIBOU POI~
                        8990 Environment and~ NS
                                                   45.8 -62.7 2.4 8200774
                                                                              71415
   7 CARIBOU POI~
                        8990 Fnyironment and~ NS
                                                 45.8 -62.7 2.4 8200774
                                                                              71415
   8 CARIBOU POI~
                       8990 Environment and~ NS
                                                45.8 -62.7 2.4 8200774
                                                                              71415
                       8990 Environment and~ NS 45.8 -62.7 2.4 8200774
   9 CARIBOU POI~
                                                                              71415
#> 10 CARIBOU POI~
                       8990 Environment and~ NS 45.8 -62.7 2.4 8200774
                                                                              71415
#> # ... with 3,302 more rows, and 26 more variables: TC id <chr>, date <date>, time <dttm>,
      year <chr>, month <chr>, day <chr>, hour <chr>, weather <chr>, hmdx <dbl>,
      hmdx flag <chr>, pressure <dbl>, pressure flag <chr>, rel hum <dbl>,
      rel hum flag <chr>, temp <dbl>, temp dew <dbl>, temp dew flag <chr>, temp flag <chr>,
```

Climate Data

What else is available in R - ggplot2

```
library(ggplot2)

canada_stations <- hy_stations(prov_terr_state_loc = "CA") %>%
    filter(DRAINAGE_AREA_GROSS < 10000)

ggplot(canada_stations, aes(x = DRAINAGE_AREA_GROSS, fill = HYD_STATUS)) +
    geom_density(alpha = 0.5) +
    labs(x = "Mean long term annual discharge (m^3)", y = "Gross drainage area (km^2)") +
    theme_minimal() +
    facet_wrap(~PROV_TERR_STATE_LOC, scales = "free_y")</pre>
```

What else is available in R - ggplot2

It can be hard!

Resources for R

R Studio Community

Reprex

Prepare Reproducible Example Code via the Clipboard

Contribute to tidyhydat and weather can

Openly developed on GitHub 🕥

https://github.com/ropensci/tidyhydat

https://github.com/ropensci/weathercan

Any contribution helps. You don't have to be an R programmer!

- Questions
- Ideas / Feature requests
- Bugs
- Bug-fixes
- Development

Ways to contribute

- Cite as you would with a paper
- Documentation write a vignette!
- Use the package find bugs

tidyhydat

• SQL code embedded to efficiently do analysis - leverage the database

weathercan

• Print and plot methods

Ways to cite

Albers S (2017). "tidyhydat: Extract and Tidy Canadian Hydrometric Data." *The Journal of Open Source Software*, **2**(20). doi: 10.21105/joss.00511, http://dx.doi.org/10.21105/joss.00511.

☑ LaZerte S, Albers S (2018). "weathercan: Download and format weather data from Environment and Climate Change Canada." *The Journal of Open Source Software*, **3**(22), 571. http://joss.theoj.org/papers/10.21105/joss.00571.

Some Helpful Links

Intro R & RStudio: https://r4ds.had.co.nz

Getting started with tidyhydat: https://docs.ropensci.org/tidyhydat

Getting started with weathercan: https://ropensci.github.io/weathercan

Hydrology CRAN task view: https://CRAN.R-project.org/view=Hydrology

rOpenSci: https://ropensci.org

But we all have to work in excel so read this: https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1375989

