CUE - Cooperation in Urban Environments: Theoretical Notation

April 21, 2023

1 Model general notation

- A Agent;
- P Place;
- σ trait value;
- D critical Hamming distance of trait;
- R critical radius;
- \bullet C openness to contamination, or degree of interaction influence;
- M memory size;

2 Simulation notation

- t Timestep;
- i Agent ID: unique integer number;
- j Place ID: unique integer number;
- T Total number of timesteps;
- x position coordinate;
- y position coordinate;

3 Agents

Agents are denoted by A. Any specific Agent is denoted by A^i , where i is the ID number of the Agent in a world of N_A Agents.

3.1 Parameters of Agents

Parameters are those static, constant attributes. They can be accessed by their names in the Agent subscript:

- $A_D^i D$ of A^i ;
- $A_R^i R$ of A^i ;
- $A_C^i C$ of A^i ;
- $A_M^i M$ of A^i ;

3.2 Variables of Agents

Variables are those mutable, changing attributes. They can be accessed by their names in the Agent subscript and by time step t in the Agent superscript:

- $A^i_{\sigma}(t) \sigma$ of A^i in time step t;
- $A_x^i(t) x$ position coordinate of A^i in time step t;
- $A_y^i(t) y$ position coordinate of A^i in time step t;

4 Places

Places are denoted by P. Any specific Agent is denoted by P^j , where j is the ID number of the Place in a world of N_P Places. Any specific Place j is also denoted by it's own unique position: $P_{x,y}$ in 2D or P_x in 1D.

4.1 Parameters of Places

Parameters are those static, constant attributes. They can be accessed by their names in the Agent subscript:

- $P_C^j C$ of P^j ;
- $P_x^j x$ position coordinate of P^j ;
- $P_y^j y$ position coordinate of P^j ;

4.2 Variables of Places

Variables are those mutable, changing attributes. They can be accessed by their names in the Place subscript and by time step t in the Place superscript:

• $P^j_{\sigma}(t) - \sigma$ of P^j in time step t;

5 Model equations

5.1 Interaction equations

When Agents interact with Places, both get some contamination from each other. Their next t+1 value of σ changes by the following equations. For Agents:

$$A^i_{\sigma}(t+1) = \frac{A^i_{\sigma}(t) + P^j_{\sigma}(t) \cdot A^i_C}{1 + A^i_C} \quad \forall i, t$$
 (1)

And for Places:

$$P_{\sigma}^{j}(t+1) = \frac{P_{\sigma}^{j}(t) + A_{\bar{\sigma}}^{i}(t) \cdot P_{C}^{j}}{1 + P_{C}^{j}} \quad \forall i, j, t$$
 (2)

Where $P_x^j=A_x^i(t)$ and $P_x^j=A_y^i(t)$. The value of $A_{\bar{\sigma}}^{i,t}$ is a function of the Agent's previous traits (A_{σ}) and memory size (A_M) :

$$A_{\bar{\sigma}}^{i}(t) = \Psi(A_{\sigma}^{i}, A_{M}^{i}) \quad \forall i, t \tag{3}$$

Currently, the function Ψ the average of σ values allocated in the Agent's memory:

$$A_{\bar{\sigma}}^{i}(t) = \frac{1}{A_{M}^{i}} \sum_{n=0}^{A_{M}^{i}} A_{\sigma}^{i}(t-n) \quad \forall i, t$$
 (4)

5.2 Random walk

5.2.1 Set of candidate Places

At any time step, each Agent has a set \mathbb{P} of candidate Places to move in so they can interact. This set is made of Places P within the Agent's window of sight of size A_R and below the Agent's interaction threshold A_D .

In the case of considering **euclidean** distances between positions:

$$P \in \mathbb{P} \mid |P_x - A_x| \le A_R \cap |P_y - A_y| \le A_R \cap |P_\sigma - A_{\bar{\sigma}}| \le A_D \tag{5}$$

In the case of considering non-euclidean distances between positions:

$$P \in \mathbb{P} \mid \Phi(A_{x,y}, P_{x,y}) \le A_R \cap |P_{\sigma} - A_{\bar{\sigma}}| \le A_D \tag{6}$$

Where $\Phi(A_{x,y}, P_{x,y})$ is a function that returns the **path distance** from position $A_{x,y}$ to $P_{x,y}$.

5.2.2 Likelihood weight

If the number of Places in the set \mathbb{P} of candidate is higher than 1, then Agents have to choose which Place to go in the next time step. This choice is basically random. However, the *likelihood weight* of a any candidate Place to be chosen is the sum of two components:

- 1. The trait of the Place: Agents have a tendency to go to Places like them;
- 2. The distance of the Place: Agents have a tendency to go to Places closer.

Hence:

$$P_L^j = f(P_{\sigma}, A_{\sigma}) + h(P_{x,y}, A_{x,y})$$
 (7)

Where P_L^j is the likelihood of the candidate Place P^j ; $f(P_{\sigma}, A_{\sigma})$ is the trait component, and; $h(P_{x,y}, A_{x,y})$ is the distance component. This value is turned into a sampling probability by normalization (divison by the sum of all places).

5.2.3 Uniform weighting function

The uniform weighting function is defined to set all available places the same likelihood to be chosen by a given Agent. Therefore:

$$P_L^j = \frac{1}{\mathbb{P}_N} \tag{8}$$

Where P_L^j is the likelihood of the candidate Place P^j and \mathbb{P}_N is the number of candidate Places in \mathbb{P} .

5.2.4 Linear weighting function

The linear weighting function is defined to set the likelihoods of candidate Places proportinal to the σ discrepancy or the $\Phi(A_{x,y}, P_{x,y})$ distance. In the case of trait component:

$$f(P_{\sigma}, A_{\sigma}) = 1 - \frac{|A_{\sigma} - P_{\sigma}^{j}|}{\sum_{j=0}^{\mathbb{P}_{N}} |A_{\sigma} - P_{\sigma}^{j}|}$$

$$\tag{9}$$

Where P_L^j is the likelihood of the candidate Place P^j and \mathbb{P}_N is the number of candidate Places in \mathbb{P} . In the case of distance component:

$$h(P_{x,y}, A_{x,y}) = 1 - \frac{\Phi(A_{x,y}, P_{x,y}^j)}{\sum_{j=0}^{\mathbb{P}_N} \Phi(A_{x,y}, P_{x,y}^j)}$$
(10)

Where P_L^j is the likelihood of the candidate Place P^j and \mathbb{P}_N is the number of candidate Places in \mathbb{P} .

5.2.5 Exponential weighting function

The exponential weighting function is defined to set the likelihoods of candidate Places to decay with the σ discrepancy or the $\Phi(A_{x,y}, P_{x,y})$ distance. In the case of trait component:

$$f(P_{\sigma}, A_{\sigma}) = e^{-\alpha * |A_{\sigma} - P_{\sigma}^{j}|} \tag{11}$$

In the case of distance component:

$$h(P_{x,y}, A_{x,y}) = e^{-\alpha * \Phi(A_{x,y}, P_{x,y}^j)}$$
(12)

By default, the α parameter is set to 1.

5.2.6 Gravity weighting function

The gravity weighting function is defined to set the likelihoods of candidate Places to decay with the σ discrepancy or the $\Phi(A_{x,y}, P_{x,y})$ distance. In the case of trait component:

$$f(P_{\sigma}, A_{\sigma}) = \frac{1}{|A_{\sigma} - P_{\sigma}^{j}|^{\gamma}}$$
(13)

In the case of distance component:

$$h(P_{x,y}, A_{x,y}) = \frac{1}{\Phi(A_{x,y}, P_{x,y}^j)^{\gamma}}$$
(14)

By default, the γ parameter is set to 1.

5.2.7 Exception cases

When the set \mathbb{P} of candidate Places is empty so $\mathbb{P}_N = 0$ then there is no interaction. This Agent will remain quiet until the surroundings Places yield an non-empty set \mathbb{P} .

When the set \mathbb{P} of candidate Places holds only one candidade place so $\mathbb{P}_N = 1$ then the likelihood of interaction is unity (100%).