

Sharif University of Technology Department of Computer Science and Engineering

Lec. 1: Introduction to Embedded Systems Design

M. Ansari
Fall 2021
According to Peter Marwedel's Lectures

Embedded Systems

- Information processing systems embedded into a larger product.
- Main reason for buying is not information processing.
- Application Areas
 - Automotive electronics
 - Aircraft electronics
 - Trains
 - Telecommunication
 - Robotics
 - Military applications
 - Authentication
 - ✓ Fabrication equipment

Consumer Applications

- MP3 player
- DVD player
- Toys
- Television
- Mobile phone
- Sewing machine

Importance of ES

79% of all high-end processors are used in embedded systems.

They are part of almost everything that runs on electricity.

- Crucial application in key industries
 - Automotive industry: 7% of EU's GNP

Characteristics of ES

- Dependability
 - Reliability, Maintainability, Availability, Safety, Security
- Energy efficiency
- Performance
- Real-time constraints
 - For real-time systems, right answers arriving too late are wrong.

Characteristics of ES (Cont.)

- Weight efficient, Cost efficient, Code-size efficient.
- Dedicated towards a certain application.
 - Minimize resources, Maximize robustness
- Dedicated user interface
 - o no mouse, keyboard and screen

Dependability of ES: (1) Reliability

1) Reliability: The reliability, R(t), of a system is a function of time, defined as the conditional probability that the system will perform correctly throughout the interval $[t_0, t_1]$, given that the system was performing correctly at the time t_0 .

- In applications in which repair is impassible, T can be extremely long (≈ 10 years).
- In other applications, i.e., aircraft flight control, T can be several hours. Here, R(t) ≥0.9999999.

Dependability of ES: (2) Availability

2) Availability: The availability, *A(t)*, is a function of time, defined as the probability that system is operating correctly and is available to perform its function at the instant of time *t*.

The availability depends not only on how frequent the system becomes inoperable, but also on how quickly it can be repaired.

Dependability of ES: (3) Maintainability

3) Maintainability: Maintainability, *M(t)*, is the probability that a failed system will be restored to an operational state within a specified period of time, *t*.

- The restoration process includes:
 - Locating the problem
 - Physically repairing the system
 - Bringing the system back to its operational condition

Dependability of ES: (4) Safety

- 4) Safety: Safety, *S(t)*, is the probability that a system will either perform its functions correctly, or will discontinue its function in a manner that does not disrupt the operation of other systems or compromise the safety of any people associated with the system.
 - Safety is a measure of the fail-safe techniques of a system

Dependability of ES: (5) Security

5) Security is:

- the prevention of
 - unauthorized access of information and/or
 - unauthorized handling of information and/or
- supporting the authorized access of information.

Embedded and Real-Time Synonymous?

- Most embedded systems are real-time
- Most real-time systems are embedded

A Common Misconception

Misconception:

- The study of embedded systems is simply a combination of some of the well-known areas such as:
 - Dependability
 - Real-time systems
 - Low power design
 - o etc.

Challenges for Embedded Systems

- Although the study of embedded systems is an interdisciplinary area of study, it has its own challenges:
 - Interplay of different design objectives
 - Challenges in system specification, design, and verification
 - Special features of embedded systems
 - Weight efficient, Cost efficient, Code-size efficient, Diskless systems

Interplay of Design Objectives

- Design objectives:
 - Fault tolerance (Dependability)
 - Energy efficiency
 - Real-time
 - Cost efficient
- The design objectives are at odds:
 - Example: Fault tolerance requires some types of redundancy and redundancy leads to energy consumption.

Reactive Systems

Typically ES are reactive systems.

"A reactive system is in continual interaction with its environment and executes at a pace determined by that environment."

Reactive Systems (Cont.)

- Reactive Systems = Event-based Systems
- The traditional paradigms of programming (i.e. model of computable functions) are inappropriate.
 - Model of computable functions
 - Von Neumann paradigm
 - Sequential computing
- Suitable model for reactive systems:
 - Automata-based programming paradigm

Automata-Based Programming

- Automata-Based Programming is a programming paradigm whose defining characteristic is the use of finite state machines to describe program behavior.
- The transition graphs of a state machines are used in all stages of software development
 - Specification
 - Implementation
 - debugging
 - documentation

Summary

- Importance of ES
- Characteristics of ES
- Reactive Systems
- Automata-Based Programming