Homework 4

Due: Nov. 3 2025

- 1. Go over the textbook from page 126 to 128 on Lagrange polynomials.
- 2. Exercise 1 on page 128.
- **3.** A quadrature rule is often used for the calculation of integrals on computers. It involves the quadrature points ξ_l and their weights w_l . It approximates an integral as follows,

$$\int_{-1}^{1} g(\xi) d\xi \approx \sum_{l=1}^{n_{\text{int}}} w_{l} g(\xi_{l}),$$

where n_{int} is the number of quadrature points. State the trapezoidal rule and the Simpson's rule?

- **4.** For the Gaussian quadrature rule with $n_{\rm int}=2$, we have $\xi_1=-1/\sqrt{3}$, $w_1=1$ and $\xi_2=1/\sqrt{3}$, $w_2=1$. Verify that the two-point Gaussian rule can exactly integrate the monomials 1, ξ^2 , ξ^3 but not ξ^4 . Compared with the trapezoidal rule, what can you say about the two-point Gaussian quadrature rule?
- **5.** Derive the Gauss quadrature rule for $n_{\rm int}=3$. You may assume that $\xi_1=-\xi_3$, $\xi_2=0$, and $w_1=w_3$.