The matrix 2-norm

⊲ Example:

The 2-norm is the natural norm for USQ problems (minimizing $\|\mathbf{r}\|_2) \Longrightarrow$ can no longer avoid the matrix 2-norm : https://powcoder.com

for a square matrix A (See Matrix to PAS FOR FOR)

$$\|\mathbf{A}\|_2 = \sqrt{\lambda_{\mathsf{max}}(\mathbf{A}^T\mathbf{A})}$$

 $\lambda_{\text{max}}(\mathbf{A}^T\mathbf{A})$ is the largest eigenvalue of $\mathbf{A}^T\mathbf{A}$ (all eigenvalues are positive since $\mathbf{A}^T\mathbf{A}$ is positive definite).

Singular value decomposition SVD

It is easier to characterize the condition number in the 2-norm in terms of the singular values of **A**. To do that we need the

Definition

A $m \times n$ real matrix igniment singular value metallicities in the sitting is a sitting in the sitting in the sitting is a sitting in the sitting is a sitting in the sitting in the sitting is a sitting in the sitting in the sitting in the sitting is a sitting in the sitting

https://powwoder.com

Add WeChat powcoder

where

- **1 U** is $m \times m$ orthogonal matrix
- Σ is a diagonal $m \times n$ real matrix
- **3 V** is $n \times n$ orthogonal matrix

The non-negative diagonal entries $\{\sigma_k \geq 0\}$ in Σ are called the singular values of \mathbf{A} .

In our case, where m > n, there are n positive singular values $\sigma_1 \ge \sigma_2 \ldots \ge \sigma_n > 0$, if **A** is of full rank.

The matrix 2-norm

Then from the definition above, Project Exam Help

https://poweoder.com

Proof: Add WeChat powcoder

—Data fitting

The pseudoinverse

The pseudoinverse $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ can be expressed in terms of the SVD of \mathbf{A} :

where Σ^{\dagger} is the $n \times m$ -diagonal emittant, protection $\{1/\sigma_k\}$. Proof:

The condition number of a rectangular matrix

By the same argument, we get

Assignment Project Exam Help
$$\|\mathbf{A}^{\dagger}\|_{2} = 1/\sigma_{n}(\mathbf{A})$$
https://powcoder.com

By the same argument as before, the condition number of a rectangular matrix is given by Add WeChat powcoder

$$\kappa_2(\mathbf{A}) = ||\mathbf{A}||_2 ||\mathbf{A}^{\dagger}||_2 = \sigma_1(\mathbf{A})/\sigma_n(\mathbf{A})$$

Proof:

Data fitting

Sensitivity of the normal equations

The normal equations
Assignment Project Exam Help

are a linear system, something sensitivity cio diversity in the condition number of $\mathbf{A}^T \mathbf{A}$. But

Add We Chat pow coder

Proof:

Sensitivity of the LSQ problem

Assignment Project Exam Help

It turns out: condition number of LSQ problem is

- $= \approx \kappa_2(\mathbf{A})$ if the fiththe days coder (some scatter)
- $lpha pprox \kappa_2(\mathbf{A})^2$ if the fit to the data is poor (a lot of scatter) \mathbf{Add} WeChat powcoder
- ⇒ using normal equations worsens conditioning of problem (if the fit is good)

Better ways to solve the LSQ problem

Assignment Project Exam Help

- If A is of full rank, use another matrix factorization the QR factorization https://powcoder.com
- For rank-deficient matrices, use the QR factorization with column pivoting (MATLAB) dk WRAnkatvpanycoder or the singular value decomposition SVD

We'll assume **A** is of full rank.

QR factorization

The idea of ('economy-size') QR factorization is:

■ form a factorignment Project Exam Help

https://powcoder.com

where **Q** is orthogonal $m \times n$ matrix, **R** is upper triangular $n \times n$ matrix i.e. $\mathbf{Q}^T \mathbf{Q} \triangleq \mathbf{q}_n^T \mathbf{Q}$ WeChat powcoder

lacktriangle to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$,

$$\mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b} \Rightarrow \mathbf{Q}^T\mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{Q}^T\mathbf{b} \Rightarrow \mathbf{R}\mathbf{x} = \mathbf{Q}^T\mathbf{b}$$

so solve a triangular system for \mathbf{x} in $O(n^2)$ ops!

Gram-Schmidt process

You've seen a QR factorization before (in disguise) in **Gram-Schmidt orthogonalization**:

given a Assignmenty Project dent and the $p_{a_1}, a_2 \cdots a_n$ forming an n-D subspace of \mathbb{R}^m , Gram-Schmidt orthogonalization produces a **lettes:** dephase orthonormal basis of the same subspace.

Add WeChat powcoder

$$A = QR$$

i.e. use triangular transformations to produce an orthogonal matrix. We don't do it this way because it's numerically unstable; instead we use orthogonal transformations to turn $\bf A$ into $\bf R$.

Orthogonal transformations

Orthogonal transformations are pod because am Help

- they involve perfectly-conditioned matrices
- they don't changathes of power derito problem
- they don't change the solution of the LSQ problem Add WeChat powcoder

Proofs:

—Data fitting

Complexity of QR

The QR factorization takes $n^2(m-n/3)$ ops i.e. for $m\gg n,\approx$ twice as expensive as Cholesky factorization of normal equations but allows us to handle a larger class of matrices.

Example

Add WeChat powcoder

For square systems, can use QR (normwise backward stable) \rightarrow takes $2n^3/3$ ops

twice as expensive as GEPP but no issues re growth factor etc.

QR in MATLAB

I have described what MATLAB calls 'economy-size QR' factorization.

$$A = QR$$

Assignment Project Exam Help where \mathbf{Q} is orthogonal $m \times n$ matrix, \mathbf{R} is upper triangular $n \times n$ matrix. This is all we need for the LSQ problem composition. MATLAB by default produces the 'full QR' factorization

where $\bar{\mathbf{Q}}$ is orthogonal $m \times m$ matrix, $\bar{\mathbf{R}}$ is upper triangular $m \times n$ matrix

$$ar{\mathbf{Q}} = [\mathbf{Q} \mid \mathsf{extra} \; \mathsf{orthog.} \; \mathsf{cols}]; \; \; ar{\mathbf{R}} = \left[egin{array}{c} \mathbf{R} \\ \mathbf{0} \end{array}
ight]$$

so that $\bar{\mathbf{Q}}^T \bar{\mathbf{Q}} = \mathrm{I}_m$. The extra columns are never used in the LSQ problem.

Using QR

Since $\mathbf{A}^T \mathbf{A} = \mathbf{R}^T \mathbf{Q}^T \mathbf{Q} \mathbf{R} = \mathbf{R}^T \mathbf{R}$, \mathbf{R} is the Cholesky factor of $\mathbf{A}^T \mathbf{A}$. Hence to solve Light-Project Exam Help

- [q,r]=qr(A,0); x=r\(q'*b); powcoder.com easiest to understand
- 2 r=triu(qr(A)); A (We(Ahate)powcoder better since never need to form Q
- 3 x=A\b;
 \ acting on overdetermined system does the same as 2 (unless A^TA
 is rank-deficient)

The rank-deficient case

Suppose the matrix \mathbf{A} has rank k < n i.e. is rank-deficient or not of full rank. This means the columns of \mathbf{A} are not linearly independent. In this case, there is no unique solution, and we usually use the solution with minimum 2-norm. This solution can be found by either of:

Assignment Project Exam Help

QR factorization with column pivoting aka Rank revealing QR

QR factorization with column pivoting aka Rank revealing QF (RR-QR), based https://powcoder.com

obtained in MATEMED Weschafup and Goder

2 the SVD

In the latter case, let

$$A = U\Sigma V^{T} = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}$$

then

$$\mathbf{x}_{LS} = \mathbf{A}^{\dagger} \mathbf{b} = \mathbf{V}_{1} \mathbf{\Sigma}_{1}^{-1} \mathbf{U}_{1}^{T} \mathbf{b}$$

Data fitting

Assignment Project Exam Help

End of Week 8

https://powcoder.com

Add WeChat powcoder