

Ecrit réparti n°1: vendredi 20 octobre 2017

Durée: 1 h 30 - Sans document ni téléphone, avec calculatrice autorisée

Longueur du sujet : 4 pages

Exercice 1:

On s'intéresse à une installation électrique triphasée 230 V/400 V 50 Hz comportant :

- 4 lampes 230 V / 100 W chacune et 1 lampe 230 V / 200 W,
- un moteur triphasé de puissance mécanique nominale $P_{m\acute{e}ca}=3~kW$, facteur de puissance $\cos \varphi=0.8$ et rendement $\eta=75~\%$,
- 1 charge composée de 3 impédances \underline{Z} montées en triangle, avec $\underline{Z} = 60 + j.80 \Omega$.
- a. Représenter le principe de raccordement de tous les récepteurs pour obtenir une installation triphasée équilibrée (réponse sur le sujet).
- b. Calculer la puissance active, la puissance réactive, la puissance apparente et le facteur de puissance de l'installation. Quelle remarque peut-on faire sur ce facteur de puissance ?
- c. Calculer les intensités des courants de phase.
- d. On veut relever le facteur de puissance à une valeur de 0,9 avec une batterie de condensateurs couplés en triangle. Calculer la valeur des capacités à utiliser. Calculer la nouvelle valeur des intensités des courants de phase.

Document-réponse pour la question a.

Exercice 2:

Une ligne de transport monophasée alimente une charge purement résistive R. La ligne est caractérisée par son impédance inductive jX_L et est alimentée par une source de tension $U_0 = U_0$.

- a. Soit \underline{U} , la tension aux bornes de la charge. Exprimer \underline{U} et $|\underline{U}|$ en fonction de U_0 , R et X_L .
- b. Soit \underline{I} , le courant débité par la ligne. Exprimer \underline{I} et $|\underline{I}|$ en fonction de U_0 , R et X_L .
- c. Soit P, la puissance active consommée par la charge. Exprimer P en fonction de U_0 , R et X_L .
- d. On donne les valeurs numériques suivantes : $U_0=10\ kV$ et $X_L=10\ \Omega$. Compléter le tableau cidessous.

$R(\Omega)$	100	30	10	3
$ \underline{U} $ (V)	9950	9487	7071	2873
<u>I</u> (A)	99,5	316	707	358
P (MW)	1	3	5	2,7

- e. Calculer la dérivée de *P* par rapport à la résistance R, puis montrer que P atteint une valeur maximale pour une certaine résistance que l'on déterminera. Calculer la tension <u>U</u> et la puissance *P* pour cette valeur particulière de la résistance.
- f. Reporter les points calculés sur le graphe ci-dessous et tracer la courbe tension-puissance de la ligne.

Courbe tension-puissance de la ligne sur charge résistive

ER1 Vendredi 20 octobre 2017. Corrisé

Q moteur =
$$\sqrt{1-FP^2}$$
. Smoteur = $\frac{\sqrt{1-FP^2}}{FP}$. Pmoteur, avec $FP=0.8$
Q moteur = $\frac{0.6}{0.8} \times 4000 = +3000$ VAR (+ can moteur = charge inductive)

Quhange =
$$3 \times \left(\frac{U}{7}\right)^2$$
, avec $\times = 80 \text{ r}$
 \Rightarrow Q change = 3840 VAR

* S =
$$\sqrt{P^2 + Q^2}$$
 = 10 136 VA

*
$$FP = \frac{P}{S} = 0,74$$
 $FP < 0,8$!

FP inférieur à la valeur l'unte bolésée par Est

c)
$$S = 3. V. I$$
, on V at la tension simple $V = 230V$

$$\overline{I} = \frac{S}{2V} = 14,7 A$$

Installation compensée:

$$S' = \frac{P}{FP'}$$

Pour obteuir cette valeur de B', il faut placer des condeusa. Veurs d'élusie réactive Qc: Q'= 0+Qc

d'où
$$C = \frac{-Q_C}{3 U^2 \omega} = 2, 1.10^{-5} F$$
 (21 μF)

$$\frac{\cancel{E} \times .2:}{2} \qquad a) \quad U = U_0 \frac{R}{R+j \times L}$$

$$|U| = U_0 \frac{R}{\sqrt{R^2 + \chi_L^2}}$$

b)
$$\underline{I} = \frac{U_0}{R+j \times L}$$

c)
$$P = R.III^2 = \frac{R U_0^2}{R^2 + X_L^2}$$

e)
$$\frac{dP}{dR}(R) = V_0^2 \left[\frac{1}{R^2 + X_L^2} - \frac{2R^2}{(R^2 + X_L^2)^2} \right]$$

= $V_0^2 \frac{R^2 + X_L^2 - 2R^2}{(R^2 + X_L^2)^2} = V_0^2 \frac{X_L^2 - R^2}{(R^2 + X_L^2)^2}$

$$\frac{2}{R+j\times c} = \frac{R.j\times c}{R+j\times c}$$

i)
$$U = U_0 \frac{2eq}{2eq + jXL} = U_0 \frac{RjX_c}{R+jX_c}$$

$$\frac{2eq + jX_L}{R+jX_c} = \frac{RjX_c}{R+jX_c}$$

$$U = U_0 \frac{jR \times c}{jR \times c + j \times L(R+j \times c)} = U_0 \frac{R \times c}{R(\times_c + \times_L) + j \times c \cdot \times_L}$$

$$|U| = V_0 \frac{R \times_C}{\sqrt{R^2(\chi_C + \chi_C)^2 + \chi_C^2 \cdot \chi_L^2}}$$

k)
$$R = 10 \text{ S}$$
 $X_{C} = -10 \text{ R}$
 $V_{O} = 10^{4} \text{ V}$
 $V_{O} = 10^{4} \text{ V}$
 $V_{C} = +10 \text{ R}$
 $V_{C} = -10 \text{ R}$

la puissance transmise par la ligne et la tension d'alimentation de la draye.

Question de cours :

- (4
- a) han hachem est un convertissem continu / continu, qui permet d'ajuster la valem moyenne d'une tension on d'un comant continus.
- b) Cellule de commutation: ensemble de deux uinterrepteurs fonctionnant de manière complémentaire (quand l'un et fermé, l'autre est ouvert)
- c) Sur [0,2T(: 121 fermé donc 42 ouvert Vk1=0 => Vk2 = U Sur [2T, T[: 121 ouvert donc 122 fermé et Vk2=0

$$\langle \nabla k_2 \rangle = \frac{1}{T} \int_0^T \nabla k_2(t) dt$$

 $\langle \nabla k_2 \rangle = \frac{1}{T} \left[U \lambda T + 0 \right] = \lambda U$

- d) Let C sont des éléments de filtraje qui permettent le lisser le comant et la tension de sortie. L'apper l'unte les variations des comant in et C l'innée les variations de la tension vs.
- e) $\forall t : \nabla_{\kappa_{2}(t)} = \nabla_{s}(t) \nabla_{s}(t) d_{s}(t) \nabla_{s}(t) \nabla_{s$
- f) $\forall t$ is(t) = iu(t) iu(t) avec $iu(t) = c \frac{dv_s(t)}{dt}$ =) $\langle is \rangle = \langle i_L \rangle - \langle i_C \rangle$ $\langle i_C \rangle = \frac{1}{T} \int_0^T u_C(t) dt = \frac{C}{T} \int_0^T \frac{dv_s}{dt} dt = \frac{C}{T} \left[v_s(\tau) - v_s(0) \right]$ $\langle ic \rangle = 0$ en régime périodique =) $\langle is \rangle = \langle i_L \rangle$