PSALTer results panel

 $0^+\mathcal{H}^{\parallel}$ 0^+f^{\parallel} 0^+f^{\perp} $0^-\mathcal{H}^{\parallel}$

 $\mathcal{S} = \iiint (\frac{1}{3} \left(-2 t_{3} \mathcal{A}^{\alpha_{i}} \mathcal{A}^{\theta}_{i} + 3 \mathcal{A}^{\alpha_{\beta_{i}}} \mathcal{A}^{\alpha_{\beta_{i}}} \mathcal{A}^{\alpha_{\beta_{i}}} \right) \mathcal{A}^{\alpha_{\beta_{i}}} \mathcal{A}^{\alpha_{\beta$

Wave operator

		- ,	٠,											
${}^{0,^{+}}\mathcal{H}^{\parallel}$ †	<i>t</i> . 3	$-i\sqrt{2} kt$.	0	0										
^{0,+} f †	$i\sqrt{2} kt$.		0	0										
0.+f [±] †	0	0	0	0										
^{0.} ∄"†	0	0	0	0			$^{1^{+}}f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{H}^{\parallel}{}_{lpha}$	$^{1}\mathcal{A}^{\perp}{}_{lpha}$	$^{1}f^{\parallel}_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
				$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$k^2 (2r. + r.)$	0	0	0	0	0	0			
				$^{1.}^{+}\mathcal{H}^{\perp}\dagger^{lphaeta}$	0	0	0	0	0	0	0			
				$f^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	0	0	0	0			
				$^{1}\mathcal{H}^{\parallel}\dagger^{lpha}$	0	0	0	$k^2 (r_1 + r_1) + \frac{2t_1}{3}$	$-\frac{\sqrt{2} t_{3}}{3}$	0	$-\frac{2}{3}ikt$.			
				$^{1.}\mathcal{A}^{\scriptscriptstyle \perp}$ † $^{^{lpha}}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	t. 3 3	0	$\frac{1}{3} i \sqrt{2} kt.$			
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	2 i k t . 3 3	$-\frac{1}{3} i \sqrt{2} kt.$	0	$\frac{2 k^2 t}{3}$	$2^+_{\cdot}\mathcal{F}^{\parallel}_{\alpha\beta}$	$2^+ f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2\overset{+}{.}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	0	0	0
											$\overset{2^+}{\cdot}f^{\parallel} \dagger^{\alpha\beta}$	0	0	0
											$2^{-}\mathcal{A}^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	k ² r.

Saturated propagator

	$^{0.^{+}}\sigma^{\parallel}$	0.+ _T	0.+ τ [⊥]	$0.\sigma^{\parallel}$										
^{0,+} σ †	$\frac{1}{(1+2k^2)^2t.}_{3}$	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	0	0										
^{0,+} τ †	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t}$	$\frac{2 k^2}{(1+2 k^2)^2 t}$	0	0										
0. ⁺ τ [⊥] †	0	0	0	0										
⁰ σ †	0	0	0	0	$^{1.^{+}}\sigma^{\parallel}{}_{lphaeta}$	$1.^+\sigma^{\perp}_{\alpha\beta}$	$1^+\tau^{\parallel}{}_{\alpha\beta}$	$^{1}\sigma^{\parallel}{}_{lpha}$	$\frac{1}{\cdot}\sigma^{\perp}{}_{\alpha}$	$1^{-} 1^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$^{1.^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{1}{k^2(2r.+r.)}$	0	0	0	0	0	0			
				$^{1^+}\sigma^{\scriptscriptstyle \perp}\dagger^{^{\alpha\beta}}$	0	0	0	0	0	0	0			
				1^+ τ^{\parallel} $\dagger^{\alpha\beta}$	0	0	0	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$\frac{1}{k^2 (r_1 + r_2)}$	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_2)}$	0	$\frac{2i}{k(1+2k^2)(r_1+r_5)}$			
				$\frac{1}{2}\sigma^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_2)}$	$\frac{3 k^{2} (r_{.}+r_{.})+2 t_{.}}{(k+2 k^{3})^{2} (r_{.}+r_{.}) t_{.}}$	0	$\frac{i\sqrt{2}(3k^2(r.+r.)+2t.)}{k(1+2k^2)^2(r.+r.)t.\atop15\frac{1}{3}}$			
				$1.\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\perp} + \alpha$	0	0	0	$-\frac{2i}{k(1+2k^2)(r_1+r_2)}$	$-\frac{i\sqrt{2}(3k^2(r_1+r_2)+2t_1)}{k(1+2k^2)^2(r_1+r_2)t_3}$	0	$\frac{6 k^2 (r.+r.)+4 t.}{(1+2 k^2)^2 (r.+r.)t.}$	^{2,+} σ αμ	3 ² . τ αβ	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^+}\sigma^{\parallel}\uparrow^{\alpha\beta}$	0	0	0
											$2.^{+}\tau^{\parallel} \uparrow^{\alpha\beta}$	0	0	0
											$^{2}\sigma^{\parallel}\uparrow^{\alpha\beta\chi}$	0	0	$\frac{1}{k^2 r_1}$

Source constraints

Spin-parity form	Covariant form	Multiplicities			
$0.\sigma^{\parallel} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1			
$0^+_{}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1			
$-2 \bar{i} k^{0^{+}} \sigma^{\parallel} + {}^{0^{+}} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1			
$\frac{2 i k \cdot 1 \cdot \sigma^{\perp}^{\alpha} + 1 \cdot \tau^{\perp}^{\alpha} == 0}{2 i k \cdot 1 \cdot \sigma^{\perp}}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
1. τ" == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$1^+_1 \tau^{\parallel^{\alpha\beta}} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} == \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$1^+_{\cdot}\sigma^{\perp}{}^{\alpha\beta} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3			
$2^+_{\cdot \tau} \eta^{\alpha\beta} == 0$	$4 \partial_{\sigma} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\sigma} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\ \chi} + 3 \partial_{\sigma} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\sigma} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\sigma} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5			
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi}$				
$2^+_{\cdot}\sigma^{\parallel^{\alpha\beta}}=0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$	5			
Total expected gauge generators:					

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$\left \frac{3}{r_{1}} - \frac{4}{r_{1} + r_{5}} + \frac{9}{2r_{1} + r_{5}} \right > 0$
Polarisations:	2

Unitarity conditions

 $(r_1 < 0 \&\& (r_2 < -r_1 || r_2 > -2 r_1)) || (r_1 > 0 \&\& -2 r_1 < r_2 < -r_1)$