# LÓGICA EI Mestrado Integrado em Engenharia Informática Universidade do Minho

Departamento de Matemática

Observação 165: As fórmulas do Cálculo de Predicados são construídas a partir das fórmulas atómicas (símbolos de relação "aplicados" a termos) e, por esta razão, as fórmulas atómicas desempenham papel semelhante ao das variáveis proposicionais no Cálculo Proposicional. Contudo, ao passo que no Cálculo Proposicional podemos atribuir "diretamente" um valor lógico a uma variável proposicional, a atribuição de valores lógicos às fórmulas atómicas é mais complexa.

Para atribuirmos valores lógicos a fórmulas atómicas, em particular, será necessário fixar previamente a interpretação dos termos. Tal requer que indiquemos qual o universo de objetos (domínio de discurso) pretendido para a denotação dos termos (por exemplo, números naturais, conjuntos, etc.), bem como a interpretação pretendida quer para os símbolos de função do tipo de linguagem em questão (por exemplo, para indicar que tomando  $\mathbb{N}_0$  por universo, o símbolo de função binário + denotará a operação de adição) quer para as variáveis de primeira ordem. Para a interpretação das fórmulas atómicas, será ainda necessário fixar a interpretação dos símbolos de relação como relações entre objetos do domínio de discurso.

A indicação de qual o domínio de discurso pretendido e de quais as interpretações que deverão ser dadas aos diversos símbolos será efetuada através daquilo que designaremos por estrutura para um tipo de linguagem. A interpretação de variáveis de primeira ordem será feita no contexto de um domínio de discurso, através daquilo a que chamaremos atribuições numa estrutura.

Um par (estrutura, atribuição) permitirá fixar o valor lógico de qualquer fórmula e, portanto, pode ser pensado como uma valoração, uma vez que estes pares desempenharão papel idêntico ao das valorações do Cálculo Proposicional.

**Definição 166**: Seja L um tipo de linguagem. Uma *estrutura de tipo* L, abreviadamente designada por L-*estrutura*, é um par  $(D, \overline{\phantom{D}})$  t.q.:

- a) D é um conjunto não vazio, chamado o domínio da estrutura;
- **b)** é uma função, chamada a *função interpretação da estrutura*, t.q.:
  - a cada constante c de L faz corresponder um elemento de D, notado por c;
  - a cada símbolo de função f de L, de aridade n ≥ 1, faz corresponder uma função de tipo D<sup>n</sup> → D, notada por f̄;
  - a cada símbolo de relação R de L, de aridade n, faz corresponder uma relação n-ária em D (i.e. um subconjunto de D<sup>n</sup>), notada por R.

Para cada símbolo de função ou relação s de L,  $\overline{s}$  é chamada a *interpretação* de s na estrutura.

**Notação 167**: Habitualmente, usaremos a letra E (possivelmente indexada) para denotar estruturas. Dada uma estrutura E, a notação dom(E) denotará o domínio de E.

## Exemplo 168:

- **a)** Seja  $E_{Arit} = (\mathbb{N}_0, \overline{\phantom{A}})$ , onde:
  - $\overline{0}$  é o número *zero*;
  - $\overline{s}$  é a função *sucessor* em  $\mathbb{N}_0$ , *i.e.*,  $\overline{s}:\mathbb{N}_0\longrightarrow\mathbb{N}_0$  ;  $n\mapsto n+1$
  - $\overline{+}$  é a função *adição* em  $\mathbb{N}_0$ , *i.e.*,  $\overline{+}: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$   $(m,n) \mapsto m+n$
  - $\overline{\times}$  é a função *multiplicação* em  $\mathbb{N}_0$ , *i.e.*,  $\overline{\times} : \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ :

$$\begin{array}{ccc} \mathbb{N}_0 \times \mathbb{N}_0 & \longrightarrow & \mathbb{N}_0 \\ (m,n) & \mapsto & m \times n \end{array}$$

- $\equiv$  é a relação de *igualdade* em  $\mathbb{N}_0$ , *i.e.*,
  - $\equiv = \{(m,n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m = n\};$
- $\overline{<}$  é a relação *menor do que* em  $\mathbb{N}_0$ , *i.e.*,  $\overline{<} = \{(m, n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m < n\}.$

Então,  $E_{Arit}$  é uma  $L_{Arit}$ -estrutura. Designaremos, por vezes, esta estrutura por *estrutura standard* para o tipo de linguagem  $L_{Arit}$ .

- **b)** O par  $E_0 = (\{a, b\}, \overline{\ })$ , onde:
  - $\overline{0} = a$ ;
  - $\overline{s}$  é a função  $\{a,b\}$   $\longrightarrow$   $\{a,b\}$  ; X  $\mapsto$  X
  - ullet  $\overline{+}$   $\acute{e}$  a função  $\{a,b\} imes \{a,b\} \longrightarrow \{a,b\}$  ;  $(x,y) \mapsto b$
  - $\bullet \ \overline{\times} \ \text{\'e a funç\~ao} \ \ \{a,b\} \times \{a,b\} \ \longrightarrow \ \left\{ \begin{array}{ll} a,b \\ x,y \end{array} \right. \ \, ; \\ \left(x,y\right) \ \mapsto \ \left\{ \begin{array}{ll} a & \text{se } x=y \\ b & \text{se } x\neq y \end{array} \right.$
  - $\bullet \equiv = \{(a,a),(b,b)\};$
  - $\bullet \ \overline{<} = \{(a,b)\},\$

é também uma  $L_{Arit}$ -estrutura.

Existem  $2 \times 4 \times 16 \times 16 \times 16 \times 16$   $L_{Arit}$ -estruturas cujo domínio é  $\{a,b\}$ . (Porquê?)

Definição 169: Seja E uma L-estrutura. Uma função

 $a: \mathcal{V} \longrightarrow dom(E)$  (do conjunto  $\mathcal{V}$  das variáveis de primeira ordem para o domínio de E) diz-se uma atribuiç $\tilde{a}$ o em E.

**Exemplo 170**: As funções  $a_0: \mathcal{V} \longrightarrow \mathbb{N}_0$  e  $a^{ind}: \mathcal{V} \longrightarrow \mathbb{N}_0$   $x \mapsto 0$   $x_i \mapsto i$  são atribuições em  $E_{Arit}$ .

**Definição 171**: O valor de um L-termo t numa L-estrutura  $E = (D, \overline{\ })$  para uma atribuição a em E é notado por  $t[a]_E$  ou, simplesmente, por t[a] (quando é claro qual a estrutura que deve ser considerada), e é o elemento de D definido, por recursão estrutural em L-termos, do seguinte modo:

- a) x[a] = a(x), para todo  $x \in \mathcal{V}$ ;
- **b)**  $c[a] = \overline{c}$ , para todo  $c \in C$ ;
- **c)**  $f(t_1,...,t_n)[a] = \overline{f}(t_1[a],...,t_n[a])$  para todo  $f \in \mathcal{F}$  de aridade  $n \ge 1$  e para todo  $t_1,...,t_n \in \mathcal{T}_L$ .

**Exemplo 172**: Seja t o  $L_{Arit}$ -termo  $s(0) \times (x_0 + x_2)$ .

**1** O valor de t para a atribuição  $a^{ind}$ , na  $L_{Arit}$ -estrutura  $E_{Arit}$ , é

$$(s(0) \times (x_0 + x_2))[a^{ind}]$$
=  $s(0)[a^{ind}] \times (x_0 + x_2)[a^{ind}]$   
=  $(0[a^{ind}] + 1) \times (x_0[a^{ind}] + x_2[a^{ind}])$   
=  $(0 + 1) \times (0 + 2)$   
=  $2$ 

2 Já para a atribuição  $a_0$  (do exemplo anterior), o valor de  $t \in 0$  (porquê?).

3 Considere-se agora a  $L_{Arit}$ -estrutura  $E_0$  do Exemplo 168 e considere-se a seguinte atribuição nesta estrutura:

$$a': \mathcal{V} \longrightarrow \{a, b\}$$
  
 $x \mapsto b$ 

O valor de t em  $E_0$  para a' é:

$$\begin{array}{rcl}
& (s(0) \times (x_0 + x_2))[a'] \\
&= \overline{\times}(s(0)[a'], (x_0 + x_2)[a']) \\
&= \overline{\times}(\overline{s}(0[a']), \overline{+}(x_0[a'], x_2[a'])) \\
&= \overline{\times}(\overline{s}(a), \overline{+}(b, b)) \\
&= \overline{\times}(a, b) \\
&= b
\end{array}$$

**Proposição 173**: Seja t um L-termo e sejam  $a_1$  e  $a_2$  duas atribuições numa L-estrutura  $E = (D, \overline{\phantom{a}})$ . Se  $a_1(x) = a_2(x)$ , para todo  $x \in VAR(t)$ , então  $t[a_1] = t[a_2]$ .

**Dem.**: Por indução estrutural em *t*. A prova está organizada por casos, consoante *a forma* de *t*.

a) Caso t seja uma variável. Então,  $t \in VAR(t)$ . Logo, por hipótese,  $a_1(t) = a_2(t)$  (\*). Assim,

$$t[a_1] \stackrel{\text{(1)}}{=} a_1(t) \stackrel{\text{(*)}}{=} a_2(t) \stackrel{\text{(1)}}{=} t[a_2].$$

Justificações

(1) Definição de valor de um termo para uma atribuição.

b) Caso t seja uma constante. Então,

$$t[a_1] \stackrel{\text{(1)}}{=} \bar{t} \stackrel{\text{(1)}}{=} t[a_2].$$

### Justificações

(1) Definição de valor de um termo para uma atribuição.

**c)** Caso  $t = f(t_1, ..., t_n)$ , com  $f \in \mathcal{F}$  de aridade  $n \ge 1$  e  $t_1, ..., t_n \in \mathcal{T}_L$ . Então,

$$t[a_1] = f(t_1, ..., t_n)[a_1]$$

$$\stackrel{(1)}{=} \overline{f}(t_1[a_1], ..., t_n[a_1])$$

$$\stackrel{(2)}{=} \overline{f}(t_1[a_2], ..., t_n[a_2])$$

$$\stackrel{(1)}{=} f(t_1, ..., t_n)[a_2]$$

$$= t[a_2].$$

### Justificações

- (1) Definição de valor de um termo para uma atribuição.
- (2) Para  $1 \le i \le n$ , como  $VAR(t_i) \subseteq VAR(t)$ , da hipótese segue-se que:  $a_1(x) = a_2(x)$ , para todo  $x \in VAR(t_i)$ . Logo, por H.I., para todo  $1 \le i \le n$ ,  $t_i[a_1] = t_i[a_2]$ .

**Notação 174**: Sejam *a* uma atribuição numa *L*-estrutura *E*,  $d \in dom(E)$  e *x* uma variável. Escrevemos  $a\begin{pmatrix} x \\ d \end{pmatrix}$  para a atribuição  $a': \mathcal{V} \longrightarrow dom(E)$  em *E* definida por:

para todo 
$$y \in \mathcal{V}, \quad a'(y) = \left\{ egin{array}{ll} d & \mbox{se } y = x \\ a(y) & \mbox{se } y \neq x \end{array} 
ight. .$$

**Exemplo 175**:  $a^{ind} \begin{pmatrix} x_0 \\ 1 \end{pmatrix}$  denota a atribuição em  $L_{Arit}$  definida por

$$\text{para todo} \ \ i \in \mathbb{N}_0, \quad \boldsymbol{a}^{ind}\Big(\begin{array}{c} x_0 \\ 1 \end{array}\Big)(x_i) = \left\{\begin{array}{c} 1 \ \ \text{se} \ \ i = 0 \\ i \ \ \text{se} \ \ i \neq 0 \end{array}\right..$$

### Exemplo 176: Verifique que

 $(x_0+0)[a^{ind}\left(egin{array}{c} x_0 \\ 1 \end{array} \right)]=1=(x_0+0)[s(0)/x_0][a^{ind}].$  De facto, esta igualdade é um caso particular da proposição seguinte, que fornece uma alternativa para o cálculo do valor de um termo que resulta de uma substituição.

**Proposição 177**: Sejam  $t_0$  e  $t_1$  *L*-termos e seja *a* uma atribuição numa *L*-estrutura. Então,  $t_0[t_1/x][a] = t_0[a\begin{pmatrix} x \\ t_1[a] \end{pmatrix}]$ .

**Dem.**: Por indução estrutural em  $t_0$ . (Exercício.)

**Definição 178**: O valor lógico de uma L-fórmula  $\varphi$  numa L-estrutura  $E = (D, \overline{\ })$  para uma atribuição a em E, é notado por  $\varphi[a]_E$  ou, simplesmente, por  $\varphi[a]$  (quando é claro qual a estrutura que deve ser considerada) e é o elemento do conjunto dos valores lógicos  $\{0,1\}$  definido, por recursão em  $\varphi$ , do seguinte modo:

- **a)**  $\perp$  [*a*] = 0;
- **b)**  $R(t_1,...,t_n)[a]=1$  sse  $(t_1[a],...,t_n[a])\in \overline{R}$ , para todo o símbolo de relação R de aridade n e para todo  $t_1,...,t_n\in \mathcal{T}_L$ ;
- **c)**  $(\neg \varphi_1)[a] = 1 \varphi_1[a]$ , para todo  $\varphi_1 \in \mathcal{F}_L$ ;
- **d)**  $(\varphi_1 \wedge \varphi_2)[a] = min(\varphi_1[a], \varphi_2[a]),$  para todo  $\varphi_1, \varphi_2 \in \mathcal{F}_L$ ;
- **e)**  $(\varphi_1 \vee \varphi_2)[a] = max(\varphi_1[a], \varphi_2[a]),$  para todo  $\varphi_1, \varphi_2 \in \mathcal{F}_L$ ;

**f)** 
$$(\varphi_1 \to \varphi_2)[a] = 0$$
 sse  $\varphi_1[a] = 1$  e  $\varphi_2[a] = 0$ , para todo  $\varphi_1, \varphi_2 \in \mathcal{F}_L$ ;

**g)** 
$$(\varphi_1 \leftrightarrow \varphi_2)[a] = 1$$
 sse  $\varphi_1[a] = \varphi_2[a]$ , para todo  $\varphi_1, \varphi_2 \in \mathcal{F}_L$ ;

**h)** 
$$(\exists x \varphi_1)[a] = m \acute{a} x imo\{\varphi_1[a \begin{pmatrix} x \\ d \end{pmatrix}] : d \in D\}, \text{ para todo } x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L;$$

i) 
$$(\forall x \varphi_1)[a] = minimo\{\varphi_1[a\begin{pmatrix} x \\ d \end{pmatrix}] : d \in D\}$$
, para todo  $x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L$ .

**Proposição 179**: Para quaisquer *L*-estrutura *E*, atribuição *a* em *E*, *L*-fórmula  $\varphi$  e variável x,

- **a)**  $(\exists x \varphi)[a] = 1$  sse existe  $d \in dom(E)$  t.q.  $\varphi[a \begin{pmatrix} x \\ d \end{pmatrix}] = 1$ ;
- **b)**  $(\exists x \varphi)[a] = 0$  sse para todo  $d \in dom(E), \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 0;$
- **c)**  $(\forall x \varphi)[a] = 1$  sse para todo  $d \in dom(E), \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 1;$
- **d)**  $(\forall x \varphi)[a] = 0$  sse existe  $d \in dom(E)$ ,  $\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 0$ .

**Dem.**: Imediata, tendo em atenção as propriedades de *máximo* e de *mínimo*.

**Exemplo 180**: Consideremos a estrutura  $L_{Arit}$  e as atribuições em  $E_{Arit}$   $a^{ind}$  e  $a_0$  definidas no Exemplo 170.

- 1 Para a  $L_{Arit}$ -fórmula  $\varphi_0 = s(0) < x_2$ , tem-se:
  - i)  $\varphi_0[a^{ind}] = 1$ , dado que  $s(0)[a^{ind}] = 1$ ,  $x_2[a^{ind}] = 2$  e  $(1,2) \in \mathbb{Z}$  (pois 1 é menor que 2);
  - ii)  $\varphi_0[a_0] = 0$ , dado que  $s(0)[a_0] = 1$ ,  $x_2[a_0] = 0$  e  $(1,0) \notin \mathbb{Z}$  (pois 1 não é menor que 0);

- Para a  $L_{Arit}$ -fórmula  $\varphi_1 = \exists x_2(s(0) < x_2)$  tem-se:
  - i)  $\varphi_1[a^{ind}] = 1$ , pois existe  $n \in \mathbb{N}_0$  t.q.  $s(0) < x_2[a^{ind} {x_2 \choose n}] = 1$  (como  $s(0)[a^{ind} {x_2 \choose n}] = 1$ , basta tomar n > 1);
  - ii)  $\varphi_1[a_0] = 1$ , pois existe  $n \in \mathbb{N}_0$  t.q.  $s(0) < x_2[a_0 {x_2 \choose n}] = 1$  (também neste caso se tem  $s(0)[a_0 {x_2 \choose n}] = 1$ , pelo que, basta tomar n > 1);

Para a  $L_{Arit}$ -fórmula  $\varphi_2 = \exists x_2 \neg (s(0) < x_2)$  tem-se também o valor lógico 1, quer para  $a^{ind}$  quer para  $a_0$  (porquê?);

4 Já para a  $L_{Arit}$ -fórmula  $\varphi_3 = \forall x_2(s(0) < x_2)$  tem-se valor lógico 0 para ambas as atribuições (de facto, a afirmação "para todo  $n \in \mathbb{N}_0$ , 1 < n" é falsa).

**Exemplo 181**: Consideremos agora a  $L_{Arit}$ -estrutura  $E_0$  do Exemplo 168 e as atribuições a' e a'' em  $E_0$  t.q., para todo  $i \in \mathbb{N}_0$ ,  $a'(x_i) = b$  e  $a''(x_i) = a$  sse i é par.

- 1 Para a  $L_{Arit}$ -fórmula  $\varphi_0 = s(0) < x_2$  (considerada no exemplo anterior), tem-se:
  - i)  $\varphi_0[a'] = 1$ , dado que  $s(0)[a'] = a, x_2[a'] = b$  e  $(a, b) \in \overline{<}$ ;
  - ii)  $\varphi_0[a''] = 0$ , dado que  $s(0)[a''] = a, x_2[a'] = a$  e  $(a, a) \notin \overline{<}$ ;

2 Para a  $L_{Arit}$ -fórmula  $\varphi_1 = \exists x_2(s(0) < x_2)$  o valor lógico é 1 para ambas as atribuições (porquê?).

Verifique que as fórmulas  $\varphi_2$  e  $\varphi_3$  do exemplo anterior recebem valores lógicos 1 e 0, respetivamente, para ambas as atribuições.

**Definição 182**: Sejam E uma L-estrutura e a uma atribuição em a. Em E, dizemos que a satisfaz uma L-fórmula  $\varphi$ , escrevendo  $E \models \varphi[a]$ , quando  $\varphi[a]_F = 1$ . Escrevemos  $E \not\models \varphi[a]$  quando a não satisfaz  $\varphi$ .

**Proposição 183**: Sejam *E* uma *L*-estrutura e *a* uma atribuição em *E*. Então:

- **a)**  $E \models \exists x \varphi[a]$  sse existe  $d \in dom(E)$  t.q.  $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$ ;
- **b)**  $E \models \forall x \varphi[a] \text{ sse } E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}], \text{ para todo } d \in dom(E);$
- c)  $E \not\models \exists x \varphi[a]$  sse  $E \not\models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$ , para todo  $d \in dom(E)$ ;
- **d)**  $E \not\models \forall x \varphi[a]$  sse existe  $d \in dom(E)$  t.q.  $E \not\models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$ .

**Dem.**: Consequência imediata da definição de satisfação e da Proposição 179. Por exemplo:

$$\begin{array}{ll} E \not\models \exists x \varphi[a] \\ \text{sse} & \exists x \varphi[a]_E = 0 \\ \text{sse} & \varphi[a \left( \begin{array}{c} x \\ d \end{array} \right)]_E = 0, \, \text{para todo} \, d \in \textit{dom}(E) \end{array} \quad \text{(Proposição 179 b) )} \\ \text{sse} & E \not\models \varphi[a \left( \begin{array}{c} x \\ d \end{array} \right)], \, \text{para todo} \, d \in \textit{dom}(E) \quad \text{(por definição de } \not\models).} \end{array}$$

**Proposição 184**: Seja  $\varphi$  uma L-fórmula e sejam  $a_1$  e  $a_2$  atribuições numa L-estrutura E. Se  $a_1(x) = a_2(x)$ , para todo  $x \in LIV(\varphi)$ , então  $E \models \varphi[a_1]$  sse  $E \models \varphi[a_2]$ .

**Dem.**: Por indução estrutural em  $\varphi$ . (Exercício.)

**Proposição 185**: Sejam  $\varphi$  uma L-fórmula,  $E = (D, \overline{\ })$  uma L-estrutura, a uma atribuição em E e x uma variável substituível sem captura de variáveis por um L-termo t em  $\varphi$ . Então,

$$E \models \varphi[t/x][a]$$
 sse  $E \models \varphi[a\begin{pmatrix} x \\ t[a] \end{pmatrix}].$ 

**Dem.**: A demonstração segue por indução estrutural em  $\varphi$ . Consideremos alguns dos casos.

1) Caso  $\varphi \neq \perp$ . Então,  $\varphi[t/x] = \perp$  e ambos os lados da equivalência são falsos.

**2)** Caso  $\varphi = R(t_1, ..., t_n)$ , com  $R \in \mathcal{R}$ , de aridade  $n \ge 1$ , e  $t_1, ..., t_n \in \mathcal{T}_L$ . Então:

$$E \models R(t_1, ..., t_n)[a\binom{x}{t[a]}]$$
sse 
$$(t_1[a\binom{x}{t[a]})], ..., t_n[a\binom{x}{t[a]})] \in \overline{R}$$
(2) sse 
$$(t_1[t/x][a], ..., t_n[t/x][a]) \in \overline{R}$$
(1) sse 
$$E \models R(t_1[t/x], ..., t_n[t/x])[a]$$
(3) sse 
$$E \models R(t_1, ..., t_n)[t/x][a].$$

#### Justificações

- (1) Definição de satisfação.
- (2) Pela Proposição 177,  $t_i[a\begin{pmatrix} x \\ t[a] \end{pmatrix}] = [t/x]t_i[a]$ ., para todo  $1 \le i \le n$
- (3) Definição de substituição.

- **3)** Caso  $\varphi = \forall y \varphi_1$ .
  - **3.a)** Subcaso y = x. Entao,  $E \models \varphi[t/x][a]$  sse  $E \models \varphi[a]$  sse  $E \models \varphi[a]$  sse  $E \models \varphi[a]$ .

### Justificações

- (1) Definição de substituição.
- (2) Pela proposição anterior, uma vez que, como  $x \notin LIV(\varphi)$ , as duas atribuições coincidem no valor das variáveis com ocorrências livres em  $\varphi$ .
- **3.b)** Subcaso  $y \neq x$ . Então,  $y \notin VAR(t)$  (de outra forma x não seria substituível sem captura de variáveis por  $t \in \varphi$ ). Assim,

$$E \models (\forall y \varphi_1)[t/x][a]$$
sse  $E \models \forall y (\varphi_1[t/x])[a]$ 
sse  $E \models \varphi_1[t/x][a\begin{pmatrix} y \\ d \end{pmatrix}]$ , para todo  $d \in dom(E)$ 
sse  $E \models \varphi_1[a\begin{pmatrix} y \\ d \end{pmatrix}\begin{pmatrix} x \\ d \end{pmatrix}]$ , para todo  $d \in dom(E)$ 
sse  $E \models \varphi_1[a\begin{pmatrix} x \\ t[a] \end{pmatrix}\begin{pmatrix} y \\ d \end{pmatrix}]$ , para todo  $d \in dom(E)$ 
sse  $E \models \varphi_1[a\begin{pmatrix} x \\ t[a] \end{pmatrix}\begin{pmatrix} y \\ d \end{pmatrix}]$ , para todo  $d \in dom(E)$ 
sse  $E \models \forall y \varphi_1[a\begin{pmatrix} x \\ t[a] \end{pmatrix}]$ 

#### Justificações

- (1) Definição de substituição.
- (2) Proposição 183.
- (3) Hipótese de indução.

(4) Como 
$$y \neq x$$
,  $a \begin{pmatrix} x \\ t[a] \end{pmatrix} \begin{pmatrix} y \\ d \end{pmatrix} = a \begin{pmatrix} y \\ d \end{pmatrix} \begin{pmatrix} x \\ t[a] \end{pmatrix}$  e, da Proposição 173, por  $y \notin VAR(t)$ ,  $t[a] = t[a \begin{pmatrix} y \\ d \end{pmatrix}]$ .

4) Restantes casos: exercício.



**Definição 186**: Uma *L*-fórmula  $\varphi$  é *válida* numa *L*-estrutura *E* (notação:  $E \models \varphi$ ) quando, para toda a atribuição a em E,  $E \models \varphi[a]$ . Utilizamos a notação  $E \not\models \varphi$  quando  $\varphi$  não é válida em E, *i.e.*, quando existe uma atribuição a em E tal que  $E \not\models \varphi[a]$ .

## **Exemplo 187**: Consideremos a estrutura $E_{Arit}$ .

- 1 A fórmula  $x_0 = x_0$  é válida em  $E_{Arit}$ ; de facto, para qualquer atribuição a em  $E_{Arit}$ , tem-se  $E_{Arit} \models x_0 = x_0[a]$ , uma vez que  $x_0[a] = a(x_0)$  e  $(a(x_0), a(x_0)) \in \equiv (a(x_0)$  e  $a(x_0)$  são naturais iguais).
- 2 A fórmula  $x_0 = x_1$  não é válida em  $E_{Arit}$ ; por exemplo, para a atribuição  $a^{ind}$  tem-se  $x_0[a^{ind}] = 0$ ,  $x_1[a^{ind}] = 1$  e  $(0,1) \notin \mathbb{R}$ , pelo que  $E_{Arit} \not\models x_0 = x_1[a^{ind}]$ .

#### Cálculo de Predicados de Primeira Ordem da Lógica Clássica

Semântica

- 3 A fórmula  $\neg(x_0 = x_1)$  não é válida em  $E_{Arit}$ ; por exemplo, para a atribuição  $a_0$  que atribui 0 a todas as variáveis tem-se  $x_0[a_0] = 0$ ,  $x_1[a_0] = 0$  e  $(0,0) \in \Xi$ , pelo que  $E_{Arit} \models x_0 = x_1[a_0]$  e, consequentemente,  $E_{Arit} \not\models \neg(x_0 = x_1)[a_0]$ .
- 4 A fórmula  $x_0 = x_1 \lor \neg(x_0 = x_1)$  é válida em  $E_{Arit}$  (para qualquer atribuição a em  $E_{Arit}$ , a afirmação " $(a(x_0), a(x_1)) \in \equiv$  ou  $(a(x_0), a(x_1)) \notin \equiv$ " é verdadeira).

2019/2020

5 A fórmula  $\exists x_0 \neg (x_0 = x_1)$  é válida em  $E_{Arit}$  (para toda a atribuição a em  $E_{Arit}$  a afirmação "existe  $n \in \mathbb{N}_0$ ,  $n \neq a(x_1)$ " é verdadeira (tome-se, por exemplo,  $n = a(x_1) + 1$ )) e a fórmula  $\forall x_1 \exists x_0 \neg (x_0 = x_1)$  é também válida em  $E_{Arit}$  (porquê?).

**Proposição 188**: Seja E uma L-estrutura. Se  $\varphi$  é uma L-sentença, então  $E \models \varphi$  sse para alguma atribuição a em E,  $E \models \varphi[a]$ .

**Dem.**: Se  $E \models \varphi$ , é imediato que  $E \models \varphi[a]$  para alguma atribuição a, pois  $E \models \varphi$  significa que  $E \models \varphi[a]$  para toda a atribuição a. Admitamos agora que  $E \models \varphi[a]$  para alguma atribuição a. Tomemos uma atribuição a' arbitrária em E. (Queremos provar que  $E \models \varphi[a']$ .) Como  $\varphi$  é uma L-sentença e portanto  $LIV(\varphi) = \emptyset$ , tem-se trivialmente que a(x) = a'(x) para todo  $x \in LIV(\varphi)$ . Assim, atendendo à Proposição 184 e a que  $E \models \varphi[a]$ , conclui-se  $E \models \varphi[a']$ .

**Definição 189**: Uma L-fórmula  $\varphi$  é (universalmente) válida (notação:  $\models \varphi$ ) quando é válida em toda a L-estrutura. Utilizamos a notação  $\not\models \varphi$  quando  $\varphi$  não é (universalmente) válida, i.e., quando existe uma L-estrutura E tal que  $E \not\models \varphi$ .

**Observação 190**: Uma L-fórmula  $\varphi$  não é universalmente válida quando existe alguma L-estrutura que não valida  $\varphi$ , ou seja, quando existe alguma L-estrutra E e alguma atribuição E em E t.q.  $E \not\models \varphi[a]$ .

## Exemplo 191:

**1** A  $L_{Arit}$ -fórmula  $x_0 = x_1$  não é universalmente válida. Como vimos no exemplo anterior, esta fórmula não é válida na estrutura  $E_{Arit}$ .

2 No exemplo anterior, vimos que a fórmula  $x_0 = x_0$  é válida na estrutura  $E_{Arit}$ . No entanto, esta fórmula não é válida em todas as  $L_{Arit}$ -estruturas. Por exemplo, se considerarmos uma  $L_{Arit}$ -estrutura  $E_1 = (\{a,b\}, ^-)$  em que  $\equiv$  seja a relação  $\{(a,a)\}, E_1$  não valida  $x_0 = x_0$ , pois considerando uma atribuição a' em  $E_1$  t.q.  $a'(x_0) = b$  teremos  $E_1 \not\models x_0 = x_0[a']$ , uma vez que o par  $(x_0[a'], x_0[a'])$ , que é igual ao par (b,b), não pertence à relação  $\equiv$ .

3 A  $L_{Arit}$ -fórmula  $\forall x_0(x_0 = x_1 \lor \neg(x_0 = x_1))$  é universalmente válida. De facto, dadas uma qualquer  $L_{Arit}$ -estrutura  $E = (D, \overline{\phantom{x}})$  e uma qualquer atribuição a em E, tem-se:

$$E \models \forall x_0(x_0 = x_1 \lor \neg(x_0 = x_1))[a]$$
sse 
$$E \models (x_0 = x_1 \lor \neg(x_0 = x_1))[a\binom{x_0}{d}], \text{ para todo } d \in D$$
sse 
$$E \models x_0 = x_1[a\binom{x_0}{d}] \text{ ou } E \models \neg(x_0 = x_1)[a\binom{x_0}{d}], \text{ para todo } d \in D$$
sse 
$$(d, a(x_1)) \in \exists \text{ ou } E \not\models x_0 = x_1[a\binom{x_0}{d}], \text{ para todo } d \in D$$
sse 
$$(d, a(x_1)) \in \exists \text{ ou } (d, a(x_1)) \not\in \exists, \text{ para todo } d \in D$$

e a última afirmação é verdadeira.

**Definição 192**: Uma *L*-fórmula  $\varphi$  é *logicamente equivalente* a uma *L*-fórmula  $\psi$  (notação:  $\varphi \Leftrightarrow \psi$ ) quando  $\models \varphi \leftrightarrow \psi$ , *i.e.*, quando para para toda a *L*-estrutura *E* e para toda a atribuição *a* em *E*,  $E \models \varphi[a]$  sse  $E \models \psi[a]$ .

**Observação 193**: As propriedades enunciadas para e equivalência lógica no capítulo anterior, mantêm-se válidas no contexto do Cálculo de Predicados. Por exemplo,  $\Leftrightarrow$  é uma relação de equivalência em  $\mathcal{F}_L$ .

**Proposição 194**: Sejam  $x, y \in \mathcal{V}$  e  $\varphi, \psi \in \mathcal{F}_L$ . As seguintes afirmações são verdadeiras.

a) 
$$\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$$

**b)** 
$$\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$$

c) 
$$\forall x \varphi \Leftrightarrow \neg \exists x \neg \varphi$$

**d)** 
$$\exists x \varphi \Leftrightarrow \neg \forall x \neg \varphi$$

**e)** 
$$\forall x (\varphi \wedge \psi) \Leftrightarrow \forall x \varphi \wedge \forall x \psi$$

$$\mathbf{f)} \ \exists x (\varphi \lor \psi) \Leftrightarrow \exists x \varphi \lor \exists x \psi$$

g) 
$$\models (\forall x \varphi \lor \forall x \psi) \to \forall x (\varphi \lor \psi),$$
  
mas não necessariamente  $\models \forall x (\varphi \lor \psi) \to (\forall x \varphi \lor \forall x \psi)$ 

h) 
$$\models \exists x (\varphi \land \psi) \rightarrow (\exists x \varphi \land \exists x \psi),$$
  
mas não necessariamente  $\models (\exists x \varphi \land \exists x \psi) \rightarrow \exists x (\varphi \land \psi)$ 

i) 
$$\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$$

i) 
$$\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$$
 j)  $\exists x \exists y \varphi \Leftrightarrow \exists y \exists x \varphi$ 

- **k**)  $\models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$ , mas não necessariamente  $\models \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$
- I)  $Qx\varphi \Leftrightarrow \varphi$  se  $x \notin LIV(\varphi)$ , para todo  $Q \in \{\exists, \forall\}$
- **m)**  $Qx\varphi \Leftrightarrow Qy\varphi[y/x]$  se  $y \notin LIV(\varphi)$  e x é substituível por y em  $\varphi$ , para todo  $Q \in \{\exists, \forall\}$

#### Dem.:

c) Sejam L uma linguagem, E uma L-estrutura e a uma atribuição em E. (Queremos demonstrar que:  $E \models \forall x \varphi[a]$  sse  $E \models \neg \exists x \neg \varphi[a]$ .)

$$E \models \forall x \varphi[a]$$
sse  $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$ , para todo  $d \in dom(E)$ 
sse  $E \not\models \neg \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$ , para todo  $d \in dom(E)$ 
sse  $E \not\models \exists x \neg \varphi[a]$ 
sse  $E \not\models \exists x \neg \varphi[a]$ 

### Justificações

- (1) Por (b) da Proposição 183.
- (2) Para todo  $\psi \in \mathcal{F}_L$ ,  $E \models \psi[a]$  sse  $E \not\models \neg \psi[a]$  (Exercício).
- (3) Por (c) da Proposição 183.
- **(4)** Para todo  $\psi \in \mathcal{F}_L$ ,  $E \not\models \psi[a]$  sse  $E \models \neg \psi[a]$  (Exercício).

**k)** Mostremos que  $\models \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$  não é necessariamente válida. Seja L uma linguagem contendo um símbolo R de relação, binário. Seja E uma L-estrutura de domínio  $\{a,b\}$ , onde a interpretação de R é o conjunto  $\{(a,b),(b,a)\}$ . Então,  $E \models \forall x_0 \exists x_1 R(x_0,x_1)$ , mas  $E \not\models \exists x_1 \forall x_0 R(x_0,x_1)$  (Porquê?). Logo,  $E \not\models \forall x_0 \exists x_1 R(x_0,x_1) \rightarrow \exists x_1 \forall x_0 R(x_0,x_1)$ .

Demonstração das restantes afirmações: exercício.

**Definição 195**: Chamaremos *instanciação* (de variáveis proposicionais com L-fórmulas) a uma função do tipo  $\mathcal{V}^{CP} \longrightarrow \mathcal{F}_L$ . Cada instanciação i determina uma função do tipo  $\mathcal{F}^{CP} \longrightarrow \mathcal{F}_L$  que satisfaz as seguintes condições<sup>(1)</sup>:

- a)  $i(\perp) = \perp$ ;
- **b)**  $i(\neg \varphi) = \neg i(\varphi)$ , para todo  $\varphi \in \mathcal{F}^{CP}$ ;
- c)  $i(\varphi \Box \psi) = i(\varphi) \Box i(\psi)$ , para todo  $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$  e para todo  $\varphi, \psi \in \mathcal{F}^{CP}$ .

コト 4回 ト 4 重 ト 4 重 ・ 夕久で

<sup>(1) -</sup> A função determinada por uma instanciação i pode ser vista como uma operação de substituição simultânea, onde cada variável proposicional p é substituída por i(p).

**Definição 196**: Uma *L*-fórmula  $\psi$  é uma *instância* de uma fórmula  $\varphi$  do Cálculo Proposicional quando existe alguma instanciação *i* tal que  $i(\varphi) = \psi$ .

**Exemplo 197**: A  $L_{Arit}$ -fórmula  $(x_0 = x_1) \rightarrow (\exists x_0(x_0 = 0) \rightarrow (x_0 = x_1))$  é uma instância da fórmula  $p_0 \rightarrow (p_1 \rightarrow p_0)$  do Cálculo Proposicional. De facto, considerando-se uma instanciação i tal que  $i(p_0)$  é a fórmula  $(x_0 = x_1)$  e  $i(p_1)$  é a fórmula  $\exists x_0(x_0 = 0)$ , tem-se:

$$i(p_0 \to (p_1 \to p_0))$$
  
=  $i(p_0) \to i(p_1 \to p_0)$   
=  $(x_0 = x_1) \to (i(p_1) \to i(p_0))$   
=  $(x_0 = x_1) \to (\exists x_0(x_0 = 0) \to (x_0 = x_1)).$ 

Mas, esta fórmula  $L_{Arit}$ -fórmula é também instância, por exemplo, de  $p_0 \rightarrow p_1$  e de  $p_0$ . Porquê?

**Teorema 198** (Teorema da Instanciação): Se  $\varphi$  é uma tautologia do Cálculo Proposicional, então toda a instância de  $\varphi$  é universalmente válida.

**Dem.**: Suponhamos que  $\varphi$  uma tautologia do Cálculo Proposicional e que  $\psi$  é uma L-fórmula que é instância de  $\varphi$ . Seja E uma L-estrutura e a uma atribuição em E. (Queremos demonstrar que  $E \models \psi[a]$ .) Uma vez que  $\psi$  é instância de  $\varphi$ , existe uma instanciação i tal que  $i(\varphi) = \psi$ . Seja v a valoração do Cálculo Proposicional que satisfaz as seguintes condições:

para todo 
$$p \in \mathcal{V}^{CP}$$
,  $v(p) = \left\{ egin{array}{ll} 1 & ext{se } E \models i(p)[a] \\ 0 & ext{se } E \not\models i(p)[a] \end{array} \right.$ 

Demonstra-se (por indução estrutural em  $\varphi$ ) que:  $v(\varphi) = 1$  sse  $E \models \psi[a]$ . Donde, como  $v(\varphi) = 1$  (pois  $\varphi$  é uma tautologia), se segue que  $E \models \psi[a]$ .

**Exemplo 199**: Como vimos no exemplo anterior, a  $L_{Arit}$ -fórmula  $(x_0 = x_1) \rightarrow (\exists x_0(x_0 = 0) \rightarrow (x_0 = x_1))$  é instância da tautologia  $p_0 \rightarrow (p_1 \rightarrow p_0)$ . Logo, pelo Teorema da Instanciação, podemos concluir que esta  $L_{Arit}$ -fórmula é universalmente válida.

**Observação 200**: Como seria de esperar, nem todas as fórmulas universalmente válidas são instâncias de tautologias. Por exemplo, vimos no Exemplo 191 que a fórmula  $\forall x_0(x_0 = x_1 \lor \neg(x_0 = x_1))$  é universalmente válida e esta fórmula não é instância de qualquer tautologia (esta fórmula é apenas instância de variáveis proposicionais, que não são tautologias).

**Definição 201**: Sejam E uma L-estrutura, a uma atribuição em E e  $\Gamma$  um conjunto de L-fórmulas. Dizemos que o par (E,a) realiza  $\Gamma$  ou que (E,a) satisfaz  $\Gamma$  quando para todo  $\varphi \in \Gamma$ ,  $E \models \varphi[a]$ . Diremos que (E,a) é uma realização de  $\Gamma$  quando (E,a) realiza  $\Gamma$ .

# **Exemplo 202**: O par $(E_{Arit}, a^{ind})$ realiza o conjunto de $L_{Arit}$ -fórmulas

$$\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_0) = x_1)\},\$$

mas não realiza o conjunto de  $L_{Arit}$ -fórmulas

$$\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_2) = x_1)\}.$$

**Definição 203**: Um conjunto  $\Gamma$  de *L*-fórmulas diz-se *realizável* ou *satisfazível* ou *semanticamente consistente* quando existe alguma realização de  $\Gamma$ . Caso contrário,  $\Gamma$  diz-se *irrealizável* ou *insatisfazível* ou *semanticamente inconsistente*.

## Exemplo 204:

a) O conjunto de  $L_{Arit}$ -fórmulas

$$\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_0) = x_1)\}$$
 é realizável (por exemplo,  $(E_{Arit}, a^{ind})$  realiza-o) e o conjunto de  $L_{Arit}$ -fórmulas  $\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_2) = x_1)\}$  também é realizável (Exercício.)

- **b)** O conjunto de  $L_{Arit}$ -fórmulas  $\{\forall x_0(x_0 = x_0), \neg (0 = 0)\}$ , é irrealizável. Se existisse uma realização (E, a) deste conjunto teríamos:
  - **1** (d, d) ∈  $\equiv$ , para todo d ∈ D (dado que  $E \models \forall x_0(x_0 = x_0)[a]$ );
  - 2  $(\overline{0}, \overline{0}) \notin \equiv$  (dado que  $E \models \neg (0 = 0)[a]$ ). onde  $\overline{\phantom{a}}$  denota a função interpretação de E. Ora,  $\overline{0} \in D$ , pelo que de 1. seguiria  $(\overline{0}, \overline{0}) \in \equiv$ , contradizendo 2.

**Definição 205**: Sejam E uma L-estrutura e  $\Gamma$  um conjunto de L-fórmulas. Dizemos que E é um modelo de  $\Gamma$ , escrevendo  $E \models \Gamma$ , quando para toda a atribuição a em E, (E,a) realiza  $\Gamma$ . Caso contrário, diremos que E não é modelo de  $\Gamma$ , escrevendo  $E \not\models \Gamma$ .

**Exemplo 206**:  $E_{Arit}$  é um modelo do conjunto formado pelas seguintes L-sentenças:

$$orall x_0 \neg (0 = s(x_0));$$
 $orall x_0 orall x_1 ((s(x_0) = s(x_1)) 
ightarrow (x_0 = x_1));$ 
 $orall x_0 \neg (s(x_0) < 0);$ 
 $orall x_0 orall x_1 ((x_0 = s(x_1)) 
ightarrow ((x_0 < x_1) \lor (x_0 = x_1)));$ 
 $orall x_0 (x_0 + 0 = x_0);$ 
 $orall x_0 
orall x_1 (s(x_0) + x_1 = s(x_0 + x_1));$ 
 $orall x_0 
orall x_1 (s(x_0) 
orall x_1 = (x_0 
orall x_1) + x_1).$ 

A axiomática de Peano para a Aritmética é constituída pelas fórmulas acima descritas, juntamente com um princípio de indução para  $\mathbb{N}_0$ .

**Proposição 207**: Sejam Γ um conjunto de *L*-sentenças, *E* uma *L*-estrutura . Então, *E* é um modelo de Γ sse para alguma atribuição *a* em E, (E,a) realiza Γ.

**Dem.**: Exercício.

**Definição 208**: Uma L-fórmula  $\varphi$  diz-se uma consequência semântica de um conjunto de L-fórmulas  $\Gamma$  (notação:  $\Gamma \models \varphi$ ) quando para toda a L-estrutura E e para toda a atribuição a em E, se (E,a) realiza  $\Gamma$ , então  $E \models \varphi[a]$ .

2019/2020

**Observação 209**: Na denotação de consequências semânticas, usaremos simplificações de notação semalhantes às utilizadas no contexto do Cálculo Proposicional. Por exemplo, dadas L-fórmulas  $\varphi$  e  $\psi$ ,  $\varphi \models \psi$  abrevia  $\{\varphi\} \models \psi$ .

## **Exemplo 210**: No contexto da linguagem $L_{Arit}$ ,

$$\forall x_0 \neg (x_0 = s(x_0)) \models \neg (0 = s(0)).$$

De facto, dada uma L-estrutura  $E = (D, \overline{\phantom{a}})$  e dada uma atribuição em E tais que  $E \models \{\forall x_0 \neg (x_0 = \underline{s}(x_0))\}[a]$ , temos que, para todo o  $d \in D$ ,  $(\underline{d}, \overline{s}(\underline{d})) \not\in \Xi$ . Assim, como  $\overline{0} \in D$ , em particular, temos que  $(\overline{0}, \overline{s}(\overline{0})) \not\in \Xi$  e, consequentemente,  $E \models \neg (0 = \underline{s}(0))[a]$ .

**Notação 211**: Adiante, usaremos a notação  $LIV(\Gamma)$ , com Γ um conjunto de L-formulas, para representar o conjunto  $\bigcup_{\varphi \in \Gamma} LIV(\varphi)$ .

**Proposição 212**: Sejam  $\varphi$  e  $\psi$  *L*-fórmulas, seja  $\Gamma$  um conjunto de *L*-fórmulas, sejam x e y variáveis e seja t um L-termo.

- **a)** Se  $\Gamma \models \forall x \varphi$  e x é substituível por t em  $\varphi$ , então  $\Gamma \models \varphi[t/x]$ .
- **b)** Se  $\Gamma \models \varphi$  e  $x \notin LIV(\Gamma)$ , então  $\Gamma \models \forall x \varphi$ .
- c) Se  $\Gamma \models \varphi[t/x]$  e x é substituível por t em  $\varphi$ , então  $\Gamma \models \exists x \varphi$ .
- **d)** Se  $\Gamma \models \exists x \varphi$ ,  $\Gamma, \varphi \models \psi$ , e  $x \notin LIV(\Gamma \cup \{\psi\})$ , então  $\Gamma \models \psi$ .

### Dem.:

a) Suponhamos que (E, a) satisfaz  $\Gamma$ . (Queremos demonstrar que:  $E \models \varphi[t/x][a]$ .) Então, pela hipótese,  $E \models \forall x \varphi[a]$ . Assim, por definição de satisfação,

$$E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$$
, para todo  $d \in dom(E)$ ,

e daqui, em particular,  $E \models \varphi[a\left(\begin{array}{c}x\\t[a]\end{array}\right)]$ , pois  $t[a] \in dom(E)$ . Logo, como por hipótese x é substituível por t em  $\varphi$ , aplicando a Proposição 185 tem-se que  $E \models \varphi[t/x][a]$ .

c-d) Exercício.