

Ot. William I I I I I I I I I I I I I I I I I I I	A: 1
Q1: Which kernels should we use in classifica regression?	ition/
It will rely on your data. Finance data: 'rbf', 'linear' ('poly' may need more time!)	
Image, cybersecurity malware data: 'rbf' (very good perform Omics data (high-dimensional data): 'linear'	mance)
You can also make your own kernel.	
Q2: Why those kernels work well for the	data?
O2: Why those kernels work well for the date	2
Q2: Why those kernels work well for the data The map created by the kernel is more simi	
the implicit decision function f(x) that assign label for a sample x	
·	

Q3: which issue have you met in using SVM in	
your project?	
Joseph Projecti	
Q2: which issue have you met in using SVM in your	
project?	
project:	
SVM does not scale well for large datasets.	
Say you have a training data 10,000x7 from option data you have	
Say you have a training data 10,000x7 from option data you have	
10,000 complex costs of which has 7 variables, strill a major	
10,000 samples, each of which has 7 variables: strike price, current price,implied volatility	
current price,implied volatility	
CVM 311 40000 v 40000 1 1 1 1 1 1	
SVM will have a 10000×10000 kernel matrix!	
SVM with 10000×10000 kernel matrix	
It will ask a buge storage: suppose each entry is a double type:	
it will need 8×108 bytes almost 1 GB in storage and 108/2 times	
kernel function evaluations!	
KOTTOT TATICATOT OVALIDATIONS	
It will make SVM running very slow! Not a good choice for online	
learning!	

	SVM with10000×10000 kernel matrix
	It will ask a buge storage: suppose each entry is a double type: it will need 8×10^8 bytes almost 1 GB in storage and $10^8/2$ times kernel function evaluations!
	It will make SVM running very slow! Not a good choice for online learning!
	The time and space complexities both are $O(n^2)$ but n is large (e.g., n=10000) \rightarrow SVM is not desirable for large datasets!
	Note: k-NN will not have this issue because the nearest-neighbor search is linear: O(n)
	Idea: do sampling from training data to build an approximated kernel matrix (smaller) to save complexity
1	Kernel trick actually implements an implicit map from input space to feature space.
2	But it cannot scale well for large datasets
3	So idea is to build an explicit map from input space to feature space to approximate the 'original implicit map'
4	'original implicit map' . A relatively new technique 'matured'
	around 2012
	The 'original implicit map' represented by the kernel matrix is called 'kernel map'
	Almost all the kernel scaling methods of SVM is based on building an explicit kernel map approximately to save
	complexity generated by large datasets.

An example: approximate 'rbf' kernel using Fourier transform	
'rbf' kernel $\exp(-\gamma x-x' ^2)$.	
RBFSampler (Random Kitchen Sinks) -> build an explicit kernel map	- <u>-</u>
SVM will do classification/regression "really" in the feature space!	
It works well for large datasets, because the kernel map built from a sampling approach instead of using all data	
RBFSampler(gamma=1.0, n_components=100, random_state=None)	
n_components: # Monte Carlo samples per original feature	
The general scaling optimization in SVM: SGDClassifier + kernel map approximation	
SGDClasssifer: a linear SVM classifier with SGD (stochastic gradient descent learning (SGD)	
It uses an iteration method (stochastic gradient descent learning) to find w and b of the optimal hyperplane.	
It is good for online learning	
An example to transform data to R ^{n_d} space for classification (upper-sampling)	
from sklearn import svm from sklearn.kernel_approximation import RBFSampler	
from sklearn.linear_model import SGDClassifier import time	-
## training data X = [[0, 0], [10,10], [10, 0], [0,10]]	
## training data label y = [0,0,1,1] ## test data	
## lest data test_data = [[2.5, 8.]]	
# set rbf_sample object: map each sample to R^n_d space n_d = 50	
rbf_feature = RBFSampler(n_components=n_d, gamma=1/2, random_state=1) print(rbf_feature) time.sleep(2)	
amosicep(z)	

## transform training and test data to feature space explicitly	
X_features = rbf_feature.fit_transform(X)	
test_features = rbf_feature.fit_transform(test_data)	
for i in range(0,len(X_features)):	
<pre>print("feature "+ "{:d}".format(i) +" in feature space") print(str(X_features[i]),"\n"+"**")</pre>	
time.sleep(2)	
print("The transformed test data in feature space ^^\n")	
print(str(test_features) + "\n")	
time.sleep(2)	
## use SGDClasssifer: a linear SVM classifier with ## SGD (stochastic gradient descent learning (SGD)	
## 1t is good for online learning	
clf=SGDClassifier()	
clf.fit(X_features, y) ## training	
## prediction for test data in the feature space	
predicted_label=clf.predict(test_features)	-
print("\n The predicted label is>" +str(predicted_label))	
time.sleep(2)	
Change n_d=100, 200, 1000 and check your	
output!	

Change n_d=100, 200, 500,1000 and check your output! Output will change! It is an approximate approach only instead of a robust accurate way! kernel_list=['linear', 'rbf'] Sample codes for SVM implied volatility prediction. 'poly can lead to very slow performance
See program: cisc5352.lecture.8.demoKNNSVMIVPrecition.py # print Input_train t = svm.SVR(kernel=kernel, cache_size=500) t.fit(Input_train, Response_train) ##predicted implied votatility
predictedSVMIV = t.predict(Input_test) Error_SVM = [None] * len(Input_test)
Error_SVM = abs(Response_test - predictedSVMIV) ## Model Evaluation print("\n\nThe SVM Model Peformance Summary as follows:")
print("The MSE is {:20.16f}'.format(get_MSE(Error_SVM)))
print("The mean error is {:20.16f}'.format(np.mean(Error_SVM)))
print("The maximum error is {:20.16f}'.format(max(Error_SVM)))
print("The minimum error is {:20.16f}'.format(min(Error_SVM))) **Update** cisc5352.lecture.8.demoKNNSVMIVPrecition.py such that it can do kernel map approximation (Quiz 6) You don't need to replace svr by SGDRegressor More about SGDRegressor:

Cross-valida	tion meth	nods: data	partition	methods
to evaluate	(validate)	classifier	S	

- 1. hold-out cross-validation:
 - Randomly partition a dataset with a hold-out percentage (e.g., 60% training 40% test. Usually it needs many trials)

Cross-validation methods: data partition methods to evaluate (validate) classifiers

- 1. hold-out cross-validation:
 - Randomly partition a dataset with a hold-out percentage (e.g., 60% training 40% test. Usually it needs many trials)
- 2. K-fold cross-validation
 - 1. Partition a dataset into k-folds
 - training data: k-1 folds and tst data the left → Proceeding until all folds are used as test data

Cross-validation methods: data partition methods to evaluate (validate) classifiers

- 1. hold-out cross-validation:
 - 1. Randomly partition a dataset with a hold-out percentage (e.g., 60% training 40% test. Usually it needs many trials)
- 2. K-fold cross-validation
 - 1. Partition a dataset into k-folds
 - training data: k-1 folds and tst data the left→ Proceeding until all folds are used as test data
- 3. Leave-one-out cross-validation (LOOCV)
 - One sample is used as test data and other data used as training→ Proceeding until all samples are used as test data

	_
from sklearn import datasets	
<pre>from sklearn.model_selection import cross_val_score from sklearn import svm</pre>	
iris = datasets.load_iris()	
data = iris.data abel = iris.target	
kernel=' rbf '; clf = svm.SVC(kernel=kernel, gamma=0.5, C=1)	
k=10 # total folders	
scores = cross_val_score(clf, data, label, cv=k) print("\n k={:d}".format(k) + " fold cross validation\n") print("\$VM classification under kernel ** " + str(kernel) + " ** is:\n\n" +	
str(scores)) Demo k-fold for SVM	
Independent test set method is widely used in business analytics	
Find an independent test dataset to evaluate the performance of a machine learning.	
As an alternative and an experience	
As we did in our project.	
	1
	-
Gradient Boosting (GB)	
① The 'new' state-of-the art in machine learning, invented in	
1999	
 A novel ensemble learning algorithm Ensemble learning: melding results from many weak learners into 	
 Ensemble learning: melding results from many weak learners into one high-quality ensemble predictor 	
Decicion tree is a timical encomble learning algorithm in which	
② Decision tree is a typical ensemble learning algorithm, in which each tree is a weak learner. An ensemble learning algorithm group and optimize results from many weak learners to get better	

prediction.

Gradient Boosting (GB) Cont'd

- Its main idea is to estimate a prediction function f(x) from training data with a group of base (weak) learners by searching the negative gradient directions of its loss function
 - ① Loss function: the objective function (e.g. $L(f(x),y)=log(f(x)-y)^2$) to be optimized: f(x) is the prediction function (unknown).
- @ Gradient-boosting restricts the function search space to a parametric family of functions $f(x, \theta)$ and the search direction is along the negative gradient descent direction of the loss function starting from the base learners specified by function $h(x, \theta)$.

Gradient Boosting (GB) Cont'd

prediction function estimation in GB, in which h(..) represents The decision function from weak learners

$$\hat{f}_k = \hat{f}_{k-1} + \tau_k h(x, \theta_k)$$

 $\hat{f}(x)$ is the estimation of the decision function f(x)

$$(\tau_k, \theta_k) = \arg\min_{\tau, \theta} \sum_{i=1}^m [-g_k(x_i) + \tau h(x_i, \theta)]^2$$

The gradient descent direction for x_i is

$$g_k(x_i) = \frac{\partial L}{\partial f}|_{f(x) = \sum_{j=0}^k \hat{f}_j(x_i)}$$

Base learners are decision trees

- Theoretically, the base learners can be chosen as different linear regression models, decision trees or even some customized models according to different learning needs.
- Mowever, decision trees are chosen as the base learners in most gradient boosting methods for its simplicity and advantage in modeling the interactions between predictor variables

Gradient Boosting (GB) parameters	
GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2)	
loss function to be optimized: loss : {'ls', 'lad', 'huber', 'quantile'}	
n_estimators: # trees	
max_depth : max depth of each tree	
min_samples_split: The minimum number of samples required to split an internal node:	
subsample: The fraction of samples to be used for fitting the individual base learners.	
Gradient Boosting (GB) regression steps	
dradient boosting (db) regression steps	
params = {'n_estimators': 1000, 'max_depth': 6, 'min_samples_split': 2, 'learning_rate': 0.01, 'loss': 'ls'}	
b) gb = ensemble.GradientBoostingRegressor(**params)	
gb.fit(train_data, train_data_label)	
) gb.predict(test_data)	
3	
78	
Update cisc5352.lecture.8.demoKNNSVMIVPrecition.py such that it can do implied volatility prediction by GB regression	
Such that it can do implied volatility prediction by do regression	

Random forest (RF) trees

- Random forests (*RForest*) build a group of unpruned decision trees with the bagging technique
 - Bagging constructs a large number of trees with bootstrap samples from a dataset
 - Obotstrap: view data as a population and do random sampling with replacement. This is a way to get extra samples when dataset itself is small
- It employs a 'feature bagging' technique, which randomly selects a subset of input variables instead of all variables to build trees in training, to lower the variances of the loss function for the sake of generalization.
 - That is, The final predictor ensemble is constructed in a randomly selected subspaces of training data.

Given training data $x_1, x_2 \dots x_m$, and their labels y_i in $\{-1,1\}$ random forests compute an ensemble prediction function by aggregating the prediction functions of $|B| \sim 10^3$ bags, which are constructed by conducting |B| times of bootstraps from the training data,

$$\hat{f}(x) = \frac{1}{|B|} \sum_{k=1}^{|B|} \hat{f}_k(x)$$

Each prediction function

 $\hat{f}_{k}(x), \; k \; = \; 1, 2, \cdots |B|$ is fitted with a randomly selected training sample set

1	2

sklearn.ensemble.RandomForestRegressor(n_estimators=10,		
max_depth=6, min_samples_split=2)		
n_estimators: # trees in each forest	-	
min_samples_split: The minimum number of samples required to split an internal node:		
max_depth : max depth of each tree: default None	-	
Default: nodes are expanded until all leaves are pure or until all leaves contain less than		
min_samples_split samples		
	٦	
Random forest (RF) regression steps		
, , ,		
from sklearn.ensemble import RandomForestRegressor		
① params = {'n_estimators': 20, 'min_samples_split': 2}		
② rf = ensemble.GradientBoostingRegressor(**params)		
③ rf.fit(train_data, train_data_response)		
4 rf.predict(test_data)		
	٦	
Update cisc5352.lecture.8.demoKNNSVMIVPrecition.py		
such that it can do implied volatility prediction by RF regression		

I am not going to lecture Random neural nets and deep learning

However, they will appear in your projects/homework.

Deep learning is a little bit challenging

PCA: dimension reduction and visualization tools in data analytics

PCA is a linear dimension reduction method

It projects input data onto a lower-dimensional space that **preserves as** much data variances as possible

	_
PCA is a linear dimension reduction method	
> It projects input data to onto a lower-dimensional space that preserves as much data variances as possible	
> The lower-dimensional space is just a new coordinate system	
	-
	7
PCA is a linear dimension reduction method	
It projects input data to onto a lower-dimensional space that preserves as much data variances as possible	
> The lower-dimensional space is just a new coordinate system	
① Its each "axis" is called a principal component (PC), which is the linear combination of the original variables.	
	-
	٦
PCA is a linear dimension reduction method It projects input data to onto a lower-dimensional space that preserves as	
much data variances as possible	
> The lower-dimensional space is just a new coordinate system ① Its each "axis" is called a principal component (PC), which is the linear	
combination of the original variables.	
 All principal components (axes) are orthogonal to each other (No redundant information!) 	-
	-

It is the "root" of the following more powerful data analytics methods

- ① Independent component analysis (ICA) (Hyvärinen, 1999)
- Probabilistic principal component analysis (PPCA) (Tipping and Bishop, 1999)
- 3 Nonnegative matrix factorization (NMF) (Lee and Seung, 2000)
- (Schölkopf, 1999) **Kernel principal component analysis (KPCA)**
- 5 Sparse principal component analysis (SPCA) (Zou et al, 2004)
- (NPCA) (Han, 2010)
- **⑦ Derivative component analysis (DCA)** (Han, 2014)

Applications of Principal Component Analysis in Data analytics

Business

- Trading
- Portfolio-ranking
- credit card ranking,
- security forecast
- CRM analysis
- Business intelligence

Bioinformatics and health informatics

Data mining and machine learning

Face recognition

Social media computing

..

Almost all fields in data analytics!

What we have: input data	
Our input data is modeled as a nxp matrix:	
 Each row is an observation (a sample, (e.g. a stock)) Each column is a variable (feature) 	
	1
What we have: input data	
□ Our input data is modeled as a nxp matrix:	
 Each row is an observation (a sample, (e.g. a stock)) Each column is a variable (feature) 	
□ What do we want to do by using PCA?	
We want to decrease number of variables (dimensions) in a new coordinate system to get reduced-data to keep original data variances as much as	
possible!	
Г	1
What we have: input data	
□ Our input data is modeled as a nxp matrix:	
 Each row is an observation (a sample) Each column is a variable (feature) 	
□ What do we want to do by using PCA?	
> We want to decrease number of variables (dimensions) in a new coordinate system to get reduced-data to keep original data variances as much as	
possible!	
> We want to use the reduced-data in the new coordinate system to represent	
the original data.	

	٦
What we have: input data	
Our input data is modeled as a nxp matrix:	
► Each row is an observation (a sample)	
➤ Each column is a variable (feature)	
□ What do we want to do by using PCA?	
We want to decrease number of variables (dimensions) in a new coordinate system to get reduced-data to keep original data variances as much as	
possible!	
> We want to use the reduced-data in the new coordinate system to represent	
the original data.	
> We want to find more hidden information from such a dimension-reduction	
(e.g. outliers)	-
	7
What we have: input data	
Our input data is modeled as a nxp matrix:	
> Each row is an observation (a sample)	
> Each column is a variable (feature)	
□ What do we want to do by using PCA?	
We want to decrease number of variables (dimensions) in a new coordinate system to get reduced-data to keep original data variances as much as	
possible!	-
> We want to use the reduced-data in the new coordinate system to represent	
the original data.	
We want to find more hidden information from such a dimension-reduction (e.g. outliers)	
> We want to further do other data analytics (e.g. clustering) for the reduced- data!	
uata:	
	7
Use one sentence to summarize PCA	
PCA gives you a reduced-data of the original	-
data in a new coordinate system by keeping most of data variance information.	
PCA will at least give you three output items for a	
given input data	
1. Loadings	
2. Variances	
3. Scores	

	1
1. Loadings : principal component (PC) matrix (new coordinate system)	
Each column is a principal component→ an axis of the new coordinate system	
The 1st PC is the 1st largest variance direction	
PCA 2nd Dimention	
• The 2 nd PC is the 2 nd largest variance direction	
The 3 rd PC is the 3 rd largest variance direction	
38	
Note: we can prove it rigorously from a mathematical viewpoint.	
2. Variances	
The variance value for each principal component The 1st PC has the largest variance value (e.g., 100.1)	
② The 2 nd PC has the 2 nd largest variance value	
3 ···	
3. Scores	
The coordinate values of the original data in the new coordinate	
system (new data)	
Given a data set with n observations and p	
variables (a nxp matrix), How many PCs will we get at	
most?	

Given a data set n observations and p variables (a nxp matrix), How many PCs will we get at most?

- ① p number of PCs \rightarrow our data has p dimensions!
- 2 In other words, this new coordinate system has at most p axes!
- 3 The PC matrix (loadings) is a pxp matrix

All "mathematical steps" behind PCA

- \odot Calculate the covariance matrix of input data \Rightarrow get data variance information
- 2 Do eigenvalue decomposition for the covariance matrix to get principal components (PCs)→seeking maximum variance directions
- 3 Decide which dimensions to keep in the new coordinate system

Import packages import numpy as np from sklearn.decomposition import PCA X = np.array([[-100, -1], [-200, -1], [-300, -2], [1, 100], [21, -1], [8.3,print("\n Input data")
print(X) ## set PCA object
pca = PCA(n_components=2)
conduct PCA pca.fit(X) print("\n explained variance in each PC \n")
print(str(pca.explained_variance_)+"\n") $\label{eq:print} print(\mbox{"explained variance ratios for all PCs\n"}) \\ print(\mbox{str}(\mbox{pca.explained_variance_ratio}) + \mbox{"}\n")$ print("PC components\n")
print(pca.components_)

Two major functions in R for PCA: they use different mathematical approaches to compute PCs princomp() prcomp() The former is more basic and the latter is more robust We can query details of prcomp from R prompt by typing >?prcomp	
Two major functions in R for PCA: they use different	
mathematical approaches to compute PCs princomp() prcomp() The former is more basic and the latter is more robust We can query details of prcomp from R prompt by typing >?prcomp	
proomp (stats) Principal Components Analysis Description Performs a principal components analysis on the given data matrix and returns the results as an object of class process. Usage process(x,) ## 33 method for class 'formula' process(cormula, data = MUL, subset, na.action,) ## Default [2 method: process(x, retx = THUE, center = THUE, scale. = FALSE, tol = NULL,) ## 33 method for class 'process' redict(colored, needsta,)	
Arguments	
prcomp(data, center, scale.) Basic input: > data: a nxp matrix (n observations and p variables) > center: if we need to center data to zero-mean data (TRUE/FALSE)	
 scale.: if we need to scale data to unit variance data (TRUE/FALSE) Basic output: sdev: (square root of variances!) the standard deviations of the principal components rotation: loadings (PC matrix) x: scores (new data in the new coordinate system) 	

A hands-on PCA analysis example

Now, you are a manger of a car sales company.

You collected the following information about cars in your company

- ① Model: SUV, minivan, sports, pickup, ...
- ② Prices: dealer/retail prices
- Gas mileage: cityMPG, highwayMPG,
- ${\small \textcircled{$\Phi$}} \quad \textbf{Power (engine size, horsepower, \#cylinder)}$
- Size (width, length...)
- 6 Weight

You want to know:

- $_{0}$ how to remove some redundant variables ightarrow dimension-reduction?
- what are the relationships (correlation) between these variables?
- 3 what kinds of cars are very special (outliers) with respect to others?
- What kinds of cars will be "naturally grouped together"?
- 5 Other following data analysis before you do a decision making
- 6 ...

Vehicles data: 387 observations and 18 variables

- > It consists of 387 vehicles from different models produced in 2004.
- > Each vehicle has 18 variables: the first 7 variables describe the types of cars and the last 11 variables describe Retail, dealer prices, Engine size, Cylinder#, weight...
- > "Sports" "SUV" "Wagon" "Minivan" "Pickup" "AWD" "RWD"

 > AWD→all wheel drive

 > RWD→ rear wheel drive
- > "Retail" "Dealer" "Engine" "Cylinders" "Horsepower" "CityMPG" "HighwayMPG"
- > Only last 11 variables are numerical types
 - > We have n=387 and p=11

The first three rows of data | Sports SUV Magon Minitum Picium AND RWD Retrill Dealer Engine Cyllinders Horsepower CityMPG HighwoyMPG Weight Meelbase Length Width Curra 3.5 RL 0 8 0 8 8 0 8 43755 39814 3.5 6 225 18 24 3888 115 197 72 Curra 3.5 RL Novigetion 0 8 0 0 0 8 0 46108 41108 3.5 6 225 18 24 3883 115 197 72 Curra 3.5 RL Novigetion 0 8 0 0 8 0 8 46108 41108 3.5 6 225 18 24 3883 115 197 72 Curra NOX 0 1 0 0 8 1 0 36945 33337 3.5 6 225 17 23 4451 106 189 77 We only have data: 387 vehicles and their 18 variables! We want to listen the "latent info" disclosed by using PCA The first three rows of data icura 3.5 RL Acura MDX We only have data: 387 vehicles and their 18 variables! We want to see the "latent info" told by data by using PCA We use R to conduct PCA analysis > All R scripts are application-oriented (data analysis) instead of programming oriente > MBA students can view this as an alternative but more powerful VB! Check the 11 variables: they may have some redundant information Retail (price \$) Dealer (prince \$) Cylinders (#cylinders) Horsepower CityMPG (city gas mileage) HighwayMPG (highway gas mileage) Size-weight Weight (pounds) Wheelbase (inches)

Length (inches) Width (inches)

Basic steps in PCA analysis	
Load data and visualize data	
Conduct PCA analysis	
	_
Basic steps in PCA analysis	
Load data and visualize data	
© Conduct PCA analysis	
Normalize data (zero mean, unit variance data)	
]
Basic steps in PCA analysis	
Load data and visualize dataConduct PCA analysis	
Normalize data (zero mean, unit variance data)	
Do PCA to the normalized data to get loadings, scores, and variances	

	Paris stone in DCA analysis	
	Basic steps in PCA analysis Doad data and visualize data	
	 Load data and visualize data Conduct PCA analysis 	
	Normalize data (zero mean, unit variance data)	
	 Do PCA to the normalized data to get loadings, scores, and variances 	
	3 Conduct dimension reduction to get reduced-data	
		_
_		_
	D DCA	
	Basic steps in PCA analysis	
	① Load data and visualize data	
	② Conduct PCA analysis	
	Normalize data (zero mean, unit variance data)	
	 Do PCA to the normalized data to get loadings, scores, and variances 	
	3 Conduct dimension reduction to get dimension-	
	reduced-data ① Do visualization with 2 PCs or 3 PCs (2D or 3D	
	visualization) for the reduced data→SEE dimension-	
	reduced data in the new coordinate system!	
•		_
Γ		7
:	<pre>> ## Step 1: load data and visualize data > rm(list=ls()) # clear memory</pre>	
:	<pre>> vehicles <-read.csv("vehicles.csv") > dim(vehicles) # dimension of data</pre>	

	_
. ## Chan 1. load data and visualize data	
<pre>> ## Step 1: load data and visualize data > rm(list=ls()) # clear memory</pre>	
> vehicles <-read.csv("vehicles.csv")	
> dim(vehicles) # dimension of data	
F47 207 40	
[1] 387 18	
> ## Step 1: load data and visualize data	
<pre>> rm(list=ls()) # clear memory</pre>	
> vehicles <-read.csv("vehicles.csv")	
> dim(vehicles) # dimension of data	
[1] 387 18	
[1] 38/ 18	
# Cumpatan data	
> # Summarize data	
<pre>> data<-vehicles[,8:18] # only last 11 variables are useful</pre>	
> summary(data) # data summary	
	_
Will Change And Board Adaption and Adaptive Adaptive	
> ## Step 1: load data and visualize data	
> rm(list=ls()) # clear memory	
> vehicles <-read.csv("vehicles.csv")	
> dim(vehicles) # dimension of data	
[1] 387 18	
> # Summarize data	
> data<-vehicles[,8:18] # only last 11 variables are useful	
> summary(data) # data summary	
Report Dollar Dollar Explan Cylinders Horsepower CityPE Hispan-Merc Reight Replace	
1st Qu.: 28997 1st Qu.: 19575 1st Qu.:2.300 1st Qu.: 4.000 1st Qu.:165.0 1st Qu.:18.00 1st Qu.:18.00 1st Qu.:2400 1st Qu.:	
Mean : 33231 Mean : 30441 Mean : 3,127 Mean : 5,757 Mean : 214.4 Mean : 20,31 Mean : 6,728 Mean : 10,72 Mean : 20,31 Mean : 20,31 Mean : 27,26 Mean : 10,72 Mean	
Max. :192465 Max. :173560 Max. :6.800 Max. :12.800 Max. :493.0 Max. :60.80 Max. :66.80 Max. :6480 Max. :130.0 Length Width	
The Qui 1950ch Strip Qui 1950ch Strip Qui 15-000 Strip Qui 15-000 Strip Qui 150ch Strip Qui 15	
15t (0:117 15t (0:100) Median 1185 Metian 771.00 Mean 1385 Memi 771.28 310 (0:133 30 d), 323 30 d)	
Mear : 1.05 Mear : 7.1.20 Max. : 221 Max. : 81.00	

3rd Qu.: 38552 3rd Qu.: 36124 3rd Qu.:3.800 3rd Qu.: 6.000 3rd Qu.:250.0 3rd Qu.:21.50 3rd Qu.:30.00 3rd Qu.:3922 3rd Qu.: 11 Max. : 132465 Max. : 173560 Max. : 6.000 Max. : 6.000 Max. : 12.000 Max. : 493.0 Max. : 60.00 Max. : 66.00 Max. : 6400 Max. : 13 Length Ni.n. : 64.00 Max. : 64.00 Ma	Retail	Dealer E	ngine Cyli	nders Hors	epower City	MPG High	wayMPG	Weight Wheel	base
Median 2895 Median 26155 Median 3,000 Median 6,000 Median 2210,0 Median 19,00 Median 127,00	Min. : 10280 Mir	i. : 9875 Min.	:1.400 Min.	: 3.000 Min.	: 73.0 Min.	:10.00 Min.	:12.00 Min.	:1850 Min.	: 89.0
Meam: 33231 Meam: 330441 Meam: 33.127 Meam: 5.757 Meam: 2214.4 Meam: 20.31 Meam: 27.26 Meam: 3532 Meam: 18 3rd Qu.: 35952 3rd	1st Qu.: 20997 1st	Qu.: 19575 1st Q	.:2.300 1st Qu	.: 4.000 1st Qu	.:165.0 1st Qu	.:18.00 1st Qu	.:24.00 1st	Qu.:3107 1st Qu.	:103.0
3rd Qu.: 39552 3rd Qu.: 36124 3rd Qu.:3.800 3rd Qu.: 6.000 3rd Qu.:250.0 3rd Qu.:251.50 3rd Qu.:39.00 3rd Qu.:39.22 3rd Qu.: 180.00 Max. 150.00 Max. 1	Median : 28495 Med	lian : 26155 Media	1:3.000 Median	: 6.000 Median	:210.0 Median	:19.00 Median	:27.00 Medi	an :3469 Median	:107.0
Max. 192465 Max. 1173560 Max. 16.000 Max. 12.000 Max. 1493.0 Max. 160.00 Max. 166.00 Max. 16400 Max. 13 Length Night Min. 143 Min. 164.00 Let Qu.1177 lst Qu.69.00 Median 185 Mean :71.00 Median 185 Mean :71.28 3rd Qu.939 3rd Qu.737.00	Mean : 33231 Mea	in : 38441 Mean	:3.127 Mean	: 5.757 Mean	:214.4 Mean	:20.31 Mean	:27.26 Mean	:3532 Mean	:107.2
Length Min. :143 Min. :54.80 154 Qu.:177 Ist Qu.:69.80 Medium :186 Medium :71.80 Medium :185 Meman :77.28 3rd Qu.:193 3rd Qu.:73.80	3rd Qu.: 39552 3rd	l Qu.: 36124 3rd Q	i.:3.800 3rd Qu	.: 6.000 3rd Qu	.:250.0 3rd Qu	.:21.50 3rd Qu	.:30.00 3rd	Qu.:3922 3rd Qu.	:112.0
Min. 143 Min. 164,00 154,0u;177 Ist Qu;169,00 Median :186 Median :71,00 Mem :185 Mem :71,23 3rd Qu;193 3rd Qu;73,00			:6.000 Max.	:12.000 Max.	:493.0 Max.	:60.00 Max.	:66.00 Max.	:6400 Max.	:130.0
1st Qu.:177		dth							
Median :186 Median :71.00 Mean :185 Mean :71.28 3rd Qu.:193 3rd Qu.:73.00		:64.00							
Mean :185 Mean :71.28 3rd Qu.:193 3rd Qu.:73.00									
3rd Qu.:193 3rd Qu.:73.00									
Max, :221 Max, :81.00	Max. :221 Max.	:81.00							

- > # Visualize data
 > library(lattice) # a graphics package
 > parallelplot(data)

> # Visualize data
> library(lattice) # a graphics package
> parallelplot(data) Vehicle data has very few choices for the variable Cylinders. But it has big differences in retail prices, weights, horsepower... and width!

]
<pre>> # Step 2: PCA analysis > # Normalize data to zero mean and unit variance data for PCA > (vehicles.pca = prcomp(data, center=TRUE, scale.=TRUE))</pre>	
Why do we need to normalize input data to a zero mean and unit variance data (standard form) before	-
PCA analysis?	
> # Step 2: PCA analysis	
<pre>> # Normalize data to zero mean and unit variance data for PCA > vehicles.pca = prcomp(data, center=TRUE, scale.=TRUE)</pre>	
Why do we need to normalize input data to a zero mean and unit variance data (standard form) before	
PCA analysis?	
Since the variables are heterogeneous (e.g. retail price, cylinder#, cityMPG), such a normalization process is required.	
Otherwise PCA will give us wrong results!	-
> # 1) Retrieve loadings, variances, and scores	
<pre>> # All principal components (PCs) > loadings<-vehicles.pca\$rotation > loadings[,1:2] # show the first two PCs</pre>	
toutings[,1.2] # show the trist tho res	

```
> # 1) Retrieve loadings, variances, and scores
    # All principal components (PCs)
      loadings<-vehicles.pca$rotation
loadings[,1:2] # show the first two PCs</pre>
                   PC1 PC2
-0.2637504 -0.468508698
-0.2623186 -0.470146585
 Retail
  Dealer
  Engine -0.3470805 0.015347186
Cylinders -0.3341888 -0.078032011
  Horsepower -0.3186023 -0.292213476
CityMPG 0.3104817 0.003365936
 HighwayMPG 0.3065886 0.010964460
Weight -0.3363294 0.167463572
  Wheelbase -0.2662100 0.418177107
Length -0.2567902 0.408411381
Width -0.2960546 0.312891350
                                                                        The retail variable 's co
     What does this mean?
```

What does this mean?

PC1 PC2 -0.2637504 -0.468508698 Retail Dealer -0.2623186 -0.470146585 -0.3470805 0.015347186 Engine Cylinders -0.3341888 -0.078032011
 Cylinders
 -0.3341888
 -0.078032011

 Horsepower
 -0.3186023
 -0.292213476

 CityMPG
 0.3104817
 0.003365936

 HighwayMPG
 0.3065886
 0.010964460

 Weight
 -0.3363294
 0.167463572

 Wheelbase
 -0.2662100
 0.418177107

 Length
 -0.2567902
 0.408411381
 -0.2960546 0.312891350

All the variables except CityMPG and HighwayMPG (the gas-mileages variables) have a negative contribution on to the first PC — the direction with the largest variance.

This means the gas-mileage variables have negative correlations with other

Gas-mileage variables probably should be treated differently than others in data analysis

What does this mean?

PC1 PC2 -0.2637504 -0.468508698 -0.2623186 -0.470146585 Retail Dealer Engine Cylinders Horsepower -0.3186023 -0.292213476 0.3104817 0.003365936 HighwayMPG Weight 0.3065886 0.010964460 -0.3363294 Wheelbase -0.2662100 0.418177107 Width

It tells us coordinate values on the first PC can separate two types of vehicles

- expensive, powerful engine, oil-inefficient, and big vehicles or cheap, less-powerful engine, oil-efficient, and small vehicles

We are going to see

The expensive, powerful engine, oil-inefficient, and big vehicles will have small values on the first ${\sf PC}.$

The cheap, less-powerful engine, oil-efficient, and small vehicles will have large values on the first PC

What does this mean for the 2nd PC?

The gas-mileage and engine

→ size variables have little

→ contribution to the 2nd PC. Length Width -0.2960546 0.312891350

Vehicle size variables have negative correlation with the vehicle price features

It means big vehicles but less expensive (e.g. mini-van, pickup) will contribute more to the $2^{\rm nd}$ PC than small but expensive ones (e.g. sport cars)

Big and less expensive cars (e.g. Pickup, minivans) will have large values on the 2^{nd} PC (2^{nd} axis of the new coordinate system)

# Mariana an and DC	
<pre>> # Variance on each PC > variances<-vehicles.pca\$sdev^2</pre>	
> variances	
	-
> # Variance on each PC	
<pre>> variances<-vehicles.pca\$sdev^2 > variances</pre>	
[1] 7.1046384308 1.8839247679 0.8497282852 0.3570154894 0.2754355932 0.1979437155 0.1405192006 0.0866388119 0.0663879807 0.0369773622 0.0007903547	
	1
> # Variance on each PC	
> variances<-vehicles.pca\$sdev^2	
> variances	
[1] 7.1046384308 1.8839247679 0.8497282852 0.3570154894 0.2754355932 0.1979437155 0.1405192006 0.0866388119 0.0663879007 0.0369773622 0.0007903547	
> plot(variances type="h" vlah="Variances" xlah="PC" col="hlue")	
<pre>> plot(variances, type="b", ylab="Variances", xlab="PC", col="blue") > grid(nx=11,ny=8)</pre>	

- # Scores in the new coordinate system
 scores<-vehicles.pca\$x
 head(scores) # First 6 rows</pre>

Scores in the new coordinate system scores<-vehicles.pca\$x head(scores) # First 6 rows</pre>

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 Runw 3.5 RL -1.5554166 0.44669421 -0.2870121 0.6096690 0.46555572 -0.3551444 -0.1718511 0.02344680 0.22023751 -0.2032201 -0.04220554 Runw 3.5 RL Novigotion -1.655372 0.3352027 -0.2554490 0.6078642 0.4645394 -0.356422 0.2276940 0.8647175 0.2274679 0.2276957 0.2024057 0.2024057 0.0024077 0.555100 0.274627 0.464707 0.555100 0.274627 0.464707 0.555100 0.274627 0.464707 0.464707 0.555100 0.274627 0.464707 0.4

Scores: the coordinate values of the original data in the new coordinate system (new data!)

	1
> # 2) Dimension reduction >	
 * #Calculate explained variance ratios * explainedVarianceRatios <- variances/sum(variances) * explainedVarianceRatios 	
Explained variance ratios are ratios between each PC's	
variance over the total variances	
The explained variance ratio on the i^{th} PC: $\frac{\lambda_i}{\sum_{j=1}^{p} \lambda_j}$	
Suppose there are total four PCs and corresponding variances are 6.0, 3.0, 0.9 0.1:	
The total variances: 6.0+3.0+0.9+0.1=10.	
The explained variance ratios on each PC: $60\%, 30\%, 9\%$ and 1%	
> # 2) Dimension reduction	
>	
<pre>> explainedVarianceRatios <- variances/sum(variances) > explainedVarianceRatios</pre>	
Explained variance ratios are ratios between each PC's	
variance over the total variances	
The explained variance ratio on the i^{th} PC: $rac{\lambda_i}{\sum_{i=1}^p \lambda_i}$	
Suppose there are total four PCs and corresponding variances are 6.0, 3.0, 0.9 0.1:	
The total variances: 6.0+3.0+0.9+0.1=10.	
The explained variance ratios on each PC: 60%, 30%, 9% and 1%	
If a PC has a low explained variance ratio, then it will be viewed as an less important one.	
Thus, we can just drop the PCs with small explained variance ratios	
	•
	1
A related measure always used together with the	
explained variance ratio : Cumulative explained variance	
ratios:	
Cumulative explained variance ratios are ratios between cumulative sum of PC variances over the total variances	
τ_{k}	
The cumulative explained variance ratio on first k PCs: $\frac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^r \lambda_i}$	
 Suppose there are total four PCs and corresponding variances are 6.0, 3.0, 	
Suppose there are total four PCs and corresponding variances are 6.0, 3.0, 0.9 0.1	
\succ The explained variance ratios: 60%, 30% , 9% and 1%	-
> The cumulative explained variance ratios on the first 3 PCs are 99% (60%	
+30%+9%)	

> # 2) Dimension reduction >	
> #Calculate explained variance ratios > explainedVarianceRatios <- variances/sum(variances) > explainedVarianceRatios	
> # 2) Dimension reduction > **Colculate explained variance ratios	
> explainedVarianceRatios <- variances/sum(variances) > explainedVarianceRatios	
[1] 6.458762e-01 1.712659e-01 7.724893e-02 3.245595e-02 2.589590e-02 1.799488e-02 1.277447e-02 7.876256e-03 6.055271e-03 3.361578e-03 7.185943e-05	
> # 2) Dimension reduction > **Colculate explained variance ratios	
> explainedVarianceRatios <- variances/sum(variances) > explainedVarianceRatios	
[1] 6.458762e-01 1.712659e-01 7.724803e-02 3.245595e-02 2.503950e-02 1.739488e-02 1.277447e-02 7.876256e-03 6.035271e-03 3.361578e-03 7.185043e-05	
> # Calculate the cumulative explained variance ratios > cumulativeExplainedVarianceRatios<-cumsum(variances)/sum(variances)	
> cumulativeExplainedVarianceRatios	

	1
> # 2) Dimension reduction	
>	
> explainedVarianceRatios [1] 6.458762e-01.1.712559e-01.7.724803e-02.3.245555e-02.2.589560e-02.1.794480e-02.7.876256e-03.6.855271e-03.3.861578e-03.7.185943e-05	
> # Calculate the cumulative explained variance ratios - cumulativeExplainedVarianceRatios<-cumsum(variances)/sum(variances) - cumulativeExplainedVarianceRatios	
[1] 0.6458762 0.8171421 0.8943901 0.9268461 0.9518857 0.9698806 0.9826550 0.9905313 0.9965666 0.9999281 1.0000000	
> # 2) Dimension reduction > **Colculate explained variance ratios > explained variances/sum(variances)	
> explainedVarianceRatios	
[1] 6.458762e-01 1.722659e-01 7.724803e-02 3.245595e-02 2.589560e-02 1.759488e-02 1.277447e-02 7.876256e-03 6.055271e-03 3.361578e-03 7.185943e-05	
> # Calculate the cumulative explained variance ratios - cumulativeExplainedVarianceRatios<-cumsum(variances)/sum(variances) - cumulativeExplainedVarianceRatios	
[1] 0.6458762 0.8171421 0.8943901 0.9268461 0.9518857 0.9698806 0.9826550 0.9905313 0.9965666 0.9999281 1.0000000	
> # Keep the first 5 PCs because they count >95% data variance! > kc-5	
> reduced_data<-scores[,1:k] > dim(reduced_data)	
> # 2) Dimension reduction	
> #Calculate explained variance ratios > explainedVarianceRatios <- variances/sum(variances)	
> explainedVarianceRatios [1] 6.458762e-01.1.72559e-01.7.724803e-02.3.45595e-02.2.593950e-02.1.794488-02.1.277447e-02.7.876256-03.6.835271e-03.3.85578e-03.7.155943e-05	
> # Calculate the cumulative explained variance ratios	
> cumulativeExplainedVarianceRatios<-cumsum(variances)/sum(variances) > cumulativeExplainedVarianceRatios	
[1] 0.6458762 0.8171421 0.8943901 0.9268461 0.9518857 0.9698806 0.9826550 0.9905313 0.9965666 0.9999281 1.00000000	
> # Keep the first 5 PCs because they count >95% data variance! > kc-5 > reduced_data<-scores[,1:k]	
> resulced_acro-escorest_1:kg distincfeduced_acro. [1] 387 5 Dimension reduced but keep the most data variances!	
Original data is a 387x11 matrix	
	-

PCA provides powerful visualization capabilities to let us see data in the new coordinate system in 2D and 3D.

It is still a dimension reduction by only keeping 2/3 PCs in the new coordinate system.

That is, see dimension-reduced data in the new coordinate system!

- > # 3) Visualization
- >
 # visualize data in the new coordinate system with two PCs)
 biplot(vehicles.pca, choices=c(1,2), cex=0.7, xlab="PC1", ylab="PC2", col = c("cyan", "red"))

A biplot visualizes

- the magnitude of each variable's contribution to the first two principal components
- 2. how each observation is represented in terms of those components.

We can find outliers or even clusters from such a biplot visualization!

						s Horsepowe						
Mercedes-Benz		128420		5.5	1				9 4473			7
Mercedes-Benz Mercedes-Benz			113388	5.5 5.5	1	8 49			21 4235 19 4429		179 179	7
mercedes-Benz	2000	120070	11/854	5.5	1	2 49	3 1:	,	19 4429) 101	179	
Retail	Dealer	er w.	Engine		nders	Horsepower	CityM		hwayMPG	Weight	Wheelt	
	Min. : 90 1st Ou.: 190		. :1.400 Ou :2.300		: 3.000	Min. : 73.0 1st Ou.:165.0		10.00 Min.		Min. :1850 1st Ou.:3107	Min. 1st Ou.	
	Median : 26		ign :3.000		: 6.000	Median :210.0			n :27.00	Median :3469	Median :	
	Mean : 30				: 5.757	Mean :214.4		20.31 Mean	:27.26	Mean :3532		107.
3rd Qu.: 39552	3rd Qu.: 36:	124 3rd	Qu.:3.800	3rd Qu	.: 6.000	3rd Qu.:250.0	3rd Qu.:	21.50 3rd Q	u.:30.00	3rd Qu.:3922	3rd Qu.:	112.
4ax. :192465	Max. :173!	560 Max	. :6.000	Max.	:12.000	Max. :493.0	Max. :	60.00 Max.	:66.00	Max. :6400	Max.	130.
Length	Width											
fin. :143 Min	. :64.00											
lst Qu.:177 1st	Qu.:69.00											
	ian :71.00											
	n :71.28											
3rd Qu.:193 3rd	Qu.:73.00											
Max. :221 Max	:81.00											

	1
# Do hierarchical clustering from reduced Data	
vehicles.pdist<-dist(reduced_data, method="euclidean") vehicles.hc <- hclust(vehicles.pdist, method="average") plot(vehicles.hc, cex=0.5, col="blue")	
# Do hierarchical clustering from reduced Data vehicles.pdist<-dist(reduced_data, method="euclidean")	
vehicles.hc <- hclust(vehicles.pdist, method="average") plot(vehicles.hc, cex=0.5, col="blue") Cluster Dendrogram	
0 -	
Porsche 911 GT2 is still an outlier	
# You can do your decision making based on the data analytic results (e.g., order more big, less expensive cars in store)	
	I
Why using reduced data to do HC will be better than using the original data?	

	1
Why using reduced data to do HC will be better than using the	
original data?	
 The reduced data removes redundant information by doing 	
dimension reduction	
Original data is even before normalization!	
	- -
Decides destados sos de serve enclude etto DCA	
Besides clustering, you can do more analysis after PCA	
Use the reduced-data to rank each observation's significance	
(e.g. stock-ranking) or conduct other hypothesis testing.	
② Use the reduced data as a training data to conduct	
classification/regression by integrating other classification/	
regression algorithms	
support vector machines (SVM) linear discriminant analysis (LDA)	
logistic regression	
4 random forest tree (RF)	
gradient boosting	
Use the reduced data to do other data analysis according to	
your needs	
]
Q1: Our first PC has 65% explained variance ratio. Is it possible that the first PC will have an almost 100% explained variance ratio and	
other PCs has almost tiny or even a zero explained variance ratio?	
office i es has annosi my of even a zero explained variance rano.	

	1
Q1: Our first PC has 65% explained variance ratio. Is it possible that	
the first PC will have an almost 100% explained variance ratio and	
other PCs has almost tiny or even a zero explained variance ratio?	
A: Yes. It relies on data. It often happens to some	
high-dimensional omics data.	
	_
]
Q2: Our current reduced data is based on 5 PCs with a cumulative	
explained variance ratio: 95%. Can I get a reduced-data based on	
only 2 or 3 PCs?	
	-
Q2: Our current reduced data is based on 5 PCs with cumulative	
explained variance ratio: 95%. Can I get a reduced-data based on	
only 2 or 3 PCs?	
A: Sure. The reduced-data with 2/3 PCs have 81% and	
89% cumulative explained variance ratios.	
The general rule is the reduced-data should have at least	
50% cumulative explained variance ratios.	
	-

Q3: PCA is so powerful. However, what are the weakness of PCA?

Q3: What are the weakness of PCA?

- 1. Principle components **are only uncorrelated** (orthogonal) instead of "independent"
 - Independent component analysis (ICA)
 - Widely used in Financial data analytics
- 2. PCA is **not "purely additive"**: PCs consist of both positive and negative entries.
 - Nonnegative matrix factorization (NMF)
 - Nonnegative principal component analysis (NPCA) (all PCs have nonnegative entries)
 - Widely used in health informatics, bioinformatics and image data analytics
 - Also used in business data analytics
 - Both need to solve corresponding nonlinear programming problems!

What are the weakness of PCA cont'd?

- 3. PCA is not rigorously built upon a probability model
 - Probabilistic principle component analysis (PPCA)
- 4. PCA is only a linear dimension-reduction method instead of a nonlinear one.
 - Kernel principal component analysis (KPCA): a nonlinear extension of PCA using kernel tricks

What are the weakness of PCA? Cont'd

- 5. PCA is only based on single-resolution data analysis and each variable is viewed as indivisible information unit. It can't capture "data derivatives".
 - Derivative component analysis (DCA): PCA-based data reconstruction in a multi-resolution data analysis
- 6. PCA lacks a sparse representation, which is essential for data locality. Each PC is "jammed with" nonzero entries
 - Sparse principal component analysis (SPCA): enhance sparse representation for PCA by solving semi-definite programming

A little bit formal description

• Given a zero mean data $X=\begin{pmatrix}x_1^t\\x_2^t\\\vdots\\x_n^t\end{pmatrix}$, $x_i\in R^p$, PCA is equivalent to solving the problem

$$\max J(U) = \frac{1}{2} ||U^t X||_F^2, s.t. U^t U = I$$

• $||U^tX||_F^2$ is the mathematical representation of the sum of all eigenvalues of the covariance matrix C:

$$trace(C) = \sum_{i=1}^{p} \lambda_i$$

• $U = [u_1, u_2, ... u_p]$ is the PC matrix: all maximum variance directions