2023 January 29 Shift-1

EE24BTECH11020 - Ellanti Rohith

1) The domain of $f(x)$	$y = \frac{\log_{(x+1)}(x-2)}{e^{2\log_e x} - (2x+3)}, \ x \in \mathbb{R}, \ \text{is:}$		(Jan 2023)
a) $\mathbb{R} - \{1, -3\}$	b) $(2, \infty) - \{3\}$	c) $(1, \infty) - \{3\}$	d) $\mathbb{R} - \{-3\}$
2) Let $f: \mathbb{R} \to \mathbb{R}$ be a	function such that:		
	f(x)	$=\frac{x^2+2x+1}{x^2+1}$	
Then:			(Jan 2023)
\ C(\).	. (1)		

- a) f(x) is many-one in $(-\infty, -1)$
- b) f(x) is many-one in $(1, \infty)$
- c) f(x) is one-one in $[1,\infty)$ but not in $(-\infty,\infty)$
- d) f(x) is one-one in $(-\infty, \infty)$
- 3) For two non-zero complex numbers z_1 and z_2 , if:

$$Re(z_1z_2) = 0$$
 and $Re(z_1 + z_2) = 0$,

then which of the following are possible?

- a) $Im(z_1) > 0$ and $Im(z_2) > 0$
- b) $Im(z_1) < 0$ and $Im(z_2) > 0$
- c) $Im(z_1) > 0$ and $Im(z_2) < 0$
- d) $Im(z_1) < 0$ and $Im(z_2) < 0$

Choose the correct answer from the options given below:

(Jan 2023)

- a) B and D
- b) B and C
- c) A and B
- d) A and C
- 4) Let $\lambda \neq 0$ be a real number. Let α, β be the roots of the equation $14x^2 31x + 3\lambda = 0$ and α, γ be the roots of the equation $35x^2 - 53x + 4\lambda = 0$. Then $\frac{3\alpha}{\beta}$ and $\frac{4\alpha}{\gamma}$ are the roots of the equation: (Jan 2023)

a)
$$7x^2 + 245x - 250 = 0$$

c)
$$49x^2 - 245x + 250 = 0$$

b)
$$7x^2 - 245x + 250 = 0$$

d)
$$49x^2 + 245x + 250 = 0$$

5) Consider the system of equations:

$$\alpha x + 2y + z = 1$$
$$2\alpha x + 3y + z = 1$$
$$3x + \alpha y + 2z = \beta$$

For some $\alpha, \beta \in \mathbb{R}$, which of the following is NOT correct?

(Jan 2023)

- a) No solution if $\alpha = -1$ and $\beta \neq 2$
- b) No solution for $\alpha = -1$ for all $\beta \in \mathbb{R}$
- c) No solution for $\alpha = 3$ and $\beta \neq 2$
- d) Solution for all $\alpha \neq -1$ and $\beta = 2$
- 6) Let α and β be real numbers. Consider a 3×3 matrix A such that: $A^2 = 3A + \alpha I$. If $A^4 = 21A + \beta I$ Then: (Jan 2023)

a) $\alpha = 1$	b) $\alpha = 4$	c) $\beta = 8$	d) $\beta = -8$		
7) Let $x = 2$ be a root of the equation $x^2 + px + q = 0$ and					
	$f(x) = \begin{cases} \frac{1 - \cos(x^2)}{0} \end{cases}$	$\frac{(x-4px+q^2+8q+16)}{(x-2p)^4}$, $x \neq 2p$, $x = 2p$			
Then $\lim_{x\to 2p^+} [f(x)]$, where [.] denotes the greatest integer function, is (Jan 2023)					
a) 2	b) 1	c) 0	d) -1		
8) Let $f(x) = x + \frac{a}{\pi^2 - 4} \sin x + \frac{b}{\pi^2 - 4} \cos x$, $x \in \mathbb{R}$ be a function which satisfies					
$f(x) = x + \int_0^{\pi/2} \sin(x+y)f(y) dy$. Then $(a+b)$ is equal to: (Jan 2023)					
a) $-\pi(\pi + 2)$	b) $-2\pi(\pi \pm 2)$	c) $-2\pi(\pi-2)$			
, , ,	0) -2n(n+2)	$C_f = 2\pi(\pi - 2)$	$\mathbf{u}_{j}^{\prime} = \mathcal{H}(\mathcal{H} = \mathcal{L})$		
9) Let	$A = \left\{ (x, y) \in \mathbb{R}^2 : y \right.$	$\geq 0, 2x \leq y \leq \sqrt{4 - (x - 1)^2}$	$\overline{(1)^2}$		
	$B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : 0\}$	$0 \le y \le \min \left\{ 2x, \sqrt{4 - (x - y)^2} \right\}$	$-1)^{2}$		
Then the ratio of the area of A to the area of B is (Jan 20)					
a) $\frac{\pi-1}{\pi+1}$		c) $\frac{\pi}{\pi+1}$			
b) $\frac{\pi}{\pi-1}$		d) $\frac{\pi+1}{\pi-1}$			
10) Let Δ be the area of the region $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 21, y^2 \le 4x, x \ge 1\}$. Then $\frac{1}{2} \left(\Delta - 21 \sin^{-1} \frac{2}{\sqrt{7}}\right)$ is equal to (Jan 2023)					
a) $2\sqrt{3} - \frac{1}{3}$		c) $2\sqrt{3} - \frac{2}{3}$			
b) $\sqrt{3} - \frac{2}{3}$		d) $\sqrt{3} - \frac{4}{3}$			
11) A light ray emits from the origin at an angle of 30° with the positive x-axis. After geting reflected by the line $x + y = 1$, then intersects the x-axis at Q. Then the abscissa of Q is (Jan 2023)					
a) $\frac{2}{(\sqrt{3}-1)}$		c) $\frac{2}{(3-\sqrt{3})}$			
b) $\frac{2}{(3+\sqrt{3})}$		d) $\frac{2}{2(\sqrt{3}+1)}$			
12) Let <i>B</i> and <i>C</i> be the two points on the line $y + x = 0$ such that <i>B</i> and <i>C</i> are symmetric with respect to the origin. Suppose <i>A</i> is a point on $y - 2x = 2$ such that $\triangle ABC$ is an equilateral triangle. Then, the area of the $\triangle ABC$ is					

13) The tangents at points A(4,-11) and B(8,-5) on the circle: $x^2 + y^2 - 3x + 10y - 15 = 0$ intersect at C. Find the radius of the circle with center C and line joining A and B as its tangent, is equal to. (Jan 2023)

c) $\frac{8}{\sqrt{3}}$

b) $2\sqrt{3}$

a) $3\sqrt{3}$

a)	3	$\sqrt{3}$
a)	3	VΣ

b)
$$2\sqrt{3}$$

c)
$$\frac{8}{\sqrt{3}}$$

d)
$$\frac{10}{\sqrt{3}}$$

14) Let [x] denote the greatest integer $\leq x$. Consider the function $f(x) = \max\{x^2, 1 + [x]\}$. Then the value of the integral $\int_0^2 f(x) dx$ is: (Jan 2023)

a)
$$\frac{5+4\sqrt{2}}{3}$$

c)
$$\frac{1+5\sqrt{2}}{3}$$

b)
$$\frac{8+4\sqrt{2}}{3}$$

d)
$$\frac{4+5\sqrt{2}}{3}$$

15) If the vectors $\overrightarrow{\mathbf{a}} = \lambda \mathbf{i} + \mu \mathbf{j} + 4\mathbf{k}$, $\overrightarrow{\mathbf{b}} = -2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$, and $\overrightarrow{\mathbf{c}} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ are coplanar, and the projection of on $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}$ is $\sqrt{54}$ units, then the sum of all possible values of $\lambda + \mu$ is equal to (Jan 2023)

a) 6

b) 18

c) 0

d) 24