પ્રશ્ન 1(અ) [3 ગુણ]

નીચેના પ**द**ોને વ્યાખ્યાયિત કરો: 1) Fuzzy Logic. 2) Expert System.

જવાબ:

чε	વ્યાખ્યા
Fuzzy Logic	અસ્પષ્ટ તર્કશાસ્ત્ર જે 0 અને 1 વચ્ચે સત્યતાની ડિગ્રી સાથે અંદાજિત તર્ક કરે છે
Expert System	કુશળ માનવીના નિર્ણયોની નકલ કરતી Al પ્રોગ્રામ જે knowledge base અને inference engine વાપરે છે

- મુખ્ય લક્ષણો: બંને અનિશ્ચિતતા અને અધૂરી માહિતી સંભાળે છે
- ઉપયોગો: મેડિકલ નિદાન, ઔદ્યોગિક નિયંત્રણ સિસ્ટમ

મેમરી ટ્રીક: "અસ્પષ્ટ કુશળતા અનિશ્ચિત નિર્ણયો લે છે"

પ્રશ્ન 1(બ) [4 ગુણ]

નીચેના પદોને વ્યાખ્યાયિત કરો: 1) Machine Learning. 2) Reinforcement Learning.

જવાબ:

чε	વ્યાખ્યા	મુખ્ય લાક્ષણિકતા
Machine Learning	અલ્ગોરિધમ જે અનુભવ દ્વારા આપોઆપ પ્રદર્શન સુધારે છે સ્પષ્ટ programming વિના	ડેટા પેટર્નમાંથી શીખવું
Reinforcement Learning	Agent પુરસ્કાર/દંડ વાપરીને પર્યાવરણ સાથે trial-and-error દ્વારા શ્રેષ્ઠ ક્રિયાઓ શીખે છે	feedback દ્વારા શીખવું

આકૃતિ:

મેમરી ટ્રીક: "ML ડેટામાંથી શીખે, RL પુરસ્કારોમાંથી શીખે"

પ્રશ્ન 1(ક) [7 ગુણ]

Artificial Intelligence ના પ્રકારો વિશે વિગતવાર સમજૂતી યોગ્ય રેખાકૃતિ સાથે આપો.

જવાબ:

AI પ્રકારોનું ટેબલ:

уѕіғ	นญ์า	क्षभता	ઉદાહરણો
Narrow Al	વિશિષ્ટ કાર્યો માટે રચાયેલ	મર્યાદિત ડોમેન કુશળતા	Siri, Chess programs
General Al	બધા ક્ષેત્રોમાં માનવ સ્તરની બુદ્ધિ	બહુ-ડોમેન તર્ક	હાલમાં સૈદ્ધાંતિક
Super Al	માનવ બુદ્ધિ કરતાં વધુ	માનવ ક્ષમતાથી આગળ	ભવિષ્યની કલ્પના

આકૃતિ:

• **વર્તમાન સ્થિતિ**: આપણે Narrow Al યુગમાં છીએ

ในราย หาวโ: Narrow → General → Super Al

• સમયમર્યાદા: General Al 20-30 વર્ષમાં અપેક્ષિત

મેમરી ટ્રીક: "સાંકડું હવે, સામાન્ય લક્ષ્ય, સુપર શીઘ્ર"

પ્રશ્ન 1(ક) OR [7 ગુણ]

Al system design કરતા સમયે ethics સાથે સંબંધિત વિવિધ પાસાની સમજૂતી આપો. ઉપરાંત, Al System ની મર્યાદાઓની પણ વિગતવાર સમજૂતી આપો.

જવાબ:

AI નીતિશાસ્ત્ર ટેબલ:

નૈતિક પાસું	વર્ણન	અમલીકરણ
Fairness	પક્ષપાત અને ભેદભાવ ટાળવું	विविध training data
Transparency	સમજાવી શકાય તેવા Al નિર્ણયો	સ્પષ્ટ algorithms
Privacy	યુઝર ડેટાનું રક્ષણ	sેટા encryption
Accountability	AI ક્રિયાઓ માટે જવાબદારી	માનવ દેખરેખ

Al મર્ચાદાઓ:

• **ડેટા પરાધીનતા**: મોટા, ગુણવત્તાયુક્ત datasets જોઈએ

• **સામાન્ય બુદ્ધિનો અભાવ**: માનવોની જેમ સંદર્ભ સમજી શકતું નથી

• નાજુકતા: અનપેક્ષિત પરિસ્થિતિઓમાં નિષ્ફળ જાય છે

• Black Box સમસ્યા: નિર્ણયો સમજાવવા મુશ્કેલ

મેમરી ટ્રીક: "ન્યાયી, પારદર્શક, ખાનગી, જવાબદાર AI ને ડેટા, સામાન્ય બુદ્ધિ, નાજુકતા, કાળા બોક્સની સમસ્યાઓ છે"

પ્રશ્ન 2(અ) [3 ગુણ]

Reinforcement learning ની લાક્ષણિકતાની યાદી આપો.

જવાબ:

લાક્ષણિકતા	นย์า
Trial-and-Error	Agent પ્રયોગ દ્વારા શીખે છે
Reward-Based	પુરસ્કાર/દંડ દ્વારા feedback
Sequential Decision Making	ક્રિયાઓ ભવિષ્યની અવસ્થાઓને અસર કરે છે
Exploration vs Exploitation	નવી ક્રિયાઓ અજમાવવા અને જાણીતી સારી ક્રિયાઓ વાપરવા વચ્ચેનું સંતુલન

મેમરી ટ્રીક: "પ્રયોગ પુરસ્કાર ક્રમિક શોધ"

પ્રશ્ન 2(બ) [4 ગુણ]

Positive reinforcement અને Negative reinforcement સમજાવો.

જવાબ:

તુલનાત્મક ટેબલ:

язіг	વ્યાખ્યા	અસર	ઉદાહરણ
Positive	વર્તન વધારવા માટે આનંદદાયક	ઇચ્છિત વર્તન	સારા પ્રદર્શન માટે ઇનામ આપવું
Reinforcement	stimulus ઉમેરવું	વધારે છે	
Negative	વર્તન વદ્યારવા માટે અપ્રિય stimulus દૂર	ઇચ્છિત વર્તન	કાર્ય પૂર્ણ થયા પછી alarm
Reinforcement	કરવું	વધારે છે	બંધ કરવું

મુખ્ય તફાવત: બંને વર્તન વધારે છે, પરંતુ positive પુરસ્કાર ઉમેરે છે જ્યારે negative સજા દૂર કરે છે.

મેમરી ટ્રીક: "હકારાત્મક આનંદ ઉમેરે, નકારાત્મક દુખ દૂર કરે"

પ્રશ્ન 2(ક) [7 ગુણ]

Supervised learning વિશે વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: શીખવાની પદ્ધતિ જે labeled training data માંથી શીખીને નવા ડેટા પર આગાહીઓ કરે છે.

પ્રક્રિયા ટેબલ:

પગલું	นณ์ฯ	ઉદાહરણ
Training	Input-output જોડીઓથી algorithm શીખે છે	Email → Spam/Not Spam
Validation	અદ્રશ્ય ડેટા પર model ચકાસવું	accuracy તપાસવી
Prediction	નવા inputs માટે outputs બનાવવું	નવા emails ને classify કરવું

પ્રકારો:

- **Classification**: કેટેગરીઓની આગાહી (spam detection)
- Regression: સતત મૂલ્યોની આગાહી (ઘરના ભાવ)

આકૃતિ:

મેમરી ટ્રીક: "દેખરેખ = શિક્ષક સાચા જવાબો આપે છે"

પ્રશ્ન 2(અ) OR [3 ગુણ]

Human learning માં સામેલ key components ની યાદી આપો.

જવાબ:

ยรร	รเน็
Observation	પર્યાવરણમાંથી માહિતી એકત્રિત કરવી
Memory	અનુભવો સંગ્રહિત અને પુનઃપ્રાપ્ત કરવા
Practice	કુશળતા સુધારવા માટે પુનરાવર્તન
Feedback	પ્રદર્શન વિશેની માહિતી

મેમરી ટ્રીક: "નિરીક્ષણ, યાદદાશ્ત, પ્રેક્ટિસ, પ્રતિસાદ"

પ્રશ્ન 2(બ) OR [4 ગુણ]

Well-posed learning problem વિશે વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: સ્પષ્ટ રીતે વ્યાખ્યાયિત કાર્ય, પ્રદર્શન માપદંડ અને અનુભવ સાથેની શીખવાની સમસ્યા.

ઘટકો ટેબલ:

ยรร	વર્ણન	ઉદાહરણ
Task (T)	સિસ્ટમે શું શીખવું જોઈએ	શતરંજ રમવું
Performance (P)	સફળતા કેવી રીતે માપવી	જીતવાની ટકાવારી
Experience (E)	Training data અથવા પ્રેક્ટિસ	અગાઉના રમતો

સૂત્ર: શીખવું = E દ્વારા T પર P સુધારવું

માપદંડો: સમસ્યા માપી શકાય તેવી, હાંસલ કરી શકાય તેવી અને ઉપલબ્ધ ડેટા હોવું જોઈએ.

મેમરી ટ્રીક: "કાર્ય પ્રદર્શન અનુભવ = શીખવા માટે TPE"

પ્રશ્ન 2(ક) OR [7 ગુણ]

Unsupervised learning વિશે વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: Labeled ઉદાહરણો અથવા target outputs વિના ડેટામાંથી પેટર્ન શીખવું.

પ્રકારો ટેબલ:

уѕіг	ઉદ્દેશ્ય	Algorithm	ઉદાહરણ
Clustering	સમાન ડેટાને જૂથમાં રાખવું	K-means	ગ્રાહક વિભાજન
Association	સંબંધો શોધવા	Apriori	બજાર બાસ્કેટ વિશ્લેષણ
Dimensionality Reduction	લક્ષણો ઘટાડવા	PCA	ડેટા વૃશ્ચીકરણ

આકૃતિ:

- **કોઈ શિક્ષક નથી**: Algorithm સ્વતંત્ર રીતે છુપાયેલા patterns શોધે છે
- શોધખોળ: ડેટામાં અજાણ્યા માળખાઓ શોધે છે

મેમરી ટ્રીક: "બિનદેખરેખ = કોઈ શિક્ષક નથી, જાતે patterns શોધો"

પ્રશ્ન 3(અ) [3 ગુણ]

SIGMOID function સમજાવો. ઉપરાંત, તેનો graph દોરો અને SIGMOID function નું ઉદાહરણ આપો.

જવાબ:

વ્યાખ્યા: Activation function જે કોઈપણ વાસ્તવિક સંખ્યાને 0 અને 1 વચ્ચેના મૂલ્યમાં map કરે છે.

ਮ੍ਰਸ: $\sigma(x) = 1/(1 + e^{-(-x)})$

Graph (ASCII):

ઉદાહરણ: x = 0 માટે, $\sigma(0) = 1/(1 + e^{0}) = 1/2 = 0.5$

ગુણધર્મો: S-આકારનો વળાંક, સરળ gradient, binary classification માં વપરાય છે

મેમરી ટ્રીક: "Sigmoid મૂલ્યોને 0 અને 1 વચ્ચે દબાવે છે"

પ્રશ્ન 3(બ) [4 ગુણ]

નીચેના પદને વ્યાખ્યાયિત કરો: 1) Activation function. 2) Artificial neural network.

જવાબ:

чε	વ્યાખ્યા	ઉદ્દેશ્ય
Activation Function	ગાણિતિક function જે weighted inputs આધારે neuron output નક્કી કરે છે	Neural networks માં non- linearity લાવે છે
Artificial Neural Network	Biological neural networks થી પ્રેરિત computing system જેમાં interconnected nodes હોય છે	Pattern recognition અને machine learning

મુખ્ય લક્ષણો:

- Non-linear processing જટિલ pattern learning સક્ષમ બનાવે છે
- Layered architecture માહિતીને hierarchical રીતે process કરે છે

મેમરી ટ્રીક: "Activation કૃત્રિમ રીતે મગજના neurons ની નકલ કરે છે"

પ્રશ્ન 3(ક) [7 ગુણ]

Recurrent network ના architecture ને આકૃતિ સાથે વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: Neural network જેમાં connections loops બનાવે છે, જે માહિતીને સ્થાયી રાખવાની મંજૂરી આપે છે.

Architecture આકૃતિ:

ઘટકો ટેબલ:

ઘટક	รเช่	સૂત્ર
Hidden State	અગાઉના inputs ની યાદદાશ્ત	h_t = f(W_h * h_t-1 + W_x * x_t)
Input Layer	વર્તમાન time step input	x_t
Output Layer	સમય t પર આગાહી	y_t = W_y * h_t

ઉપયોગો: વાણી ઓળખ, ભાષા અનુવાદ, time series આગાહી

ફાયદો: ભૂતકાળની માહિતીની યાદદાશ્ત સાથે sequential data handle કરે છે

મેમરી ટ્રીક: "પુનરાવર્તિત = પાછલી અવસ્થાઓ યાદ રાખે છે"

પ્રશ્ન 3(અ) OR [3 ગુણ]

TANH function સમજાવો. ઉપરાંત, તેનો graph દોરો અને TANH function નું ઉદાહરણ આપો.

જવાબ:

વ્યાખ્યા: Hyperbolic tangent activation function જે મૂલ્યોને -1 અને 1 વચ્ચે map કરે છે.

ਮ੍ਰਕ: $tanh(x) = (e^x - e^{(-x))/(e_x} + e^{(-x)})$

Graph (ASCII):

ઉદાહરણ: x = 0 માટે, tanh(0) = (1-1)/(1+1) = 0

ગુણધર્મો: શૂન્ય-કેન્દ્રિત, S-આકારનું, sigmoid કરતાં મજબૂત gradients

મેમરી ટ્રીક: "TANH = બે-તરફી sigmoid (-1 થી +1)"

પ્રશ્ન 3(બ) OR [4 ગુણ]

નીચેના પદને વ્યાખ્યાયિત કરો: 1) Biological neural network. 2) Loss calculation.

જવાબ:

પદ	વ્યાખ્યા	મુખ્ય પાસાઓ
Biological Neural Network	જીવંત જીવોમાં interconnected neurons નું નેટવર્ક જે માહિતી process કરે છે	Dendrites, cell body, axon, synapses
Loss calculation	આગાહી કરેલા અને વાસ્તવિક outputs વચ્ચેના તફાવતનું ગાણિતિક માપ	Backpropagation દ્વારા શીખવાને માર્ગદર્શન આપે છે

ช**ิโดร มเดษู่**: Neurons → Synapses → Neural Networks → ม_ีาง **Loss มรเ**า: Mean Squared Error, Cross-entropy, Absolute Error

મેમરી ટ્રીક: "જીવવિજ્ઞાન AI ને પ્રેરણા આપે છે, Loss શીખવાની પ્રગતિ માપે છે"

પ્રશ્ન 3(ક) OR [7 ગુણ]

Multi-layer feed-forward network ના architecture ને આકૃતિ સાથે વિગતવાર વર્ણવો.

જવાબ:

વ્યાખ્યા: બહુવિધ layers સાથેનું neural network જ્યાં માહિતી input થી output તરફ આગળ વહે છે.

Architecture આકૃતિ:

Layer કાર્યો ટેબલ:

Layer	รเช้	Processing
Input	ડેટા પ્રાપ્ત કરે છે	કોઈ processing નથી, ફક્ત વિતરણ
Hidden	Feature extraction	Weighted sum + activation function
Output	અંતિમ આગાહી	Classification અથવા regression output

માહિતી પ્રવાહ: Input → Hidden Layer(s) → Output (એકદિશીય) શીખવું: Backpropagation error આધારે weights adjust કરે છે

મેમરી ટ્રીક: "બહુ-સ્તર = જટિલ શીખવા માટે બહુવિધ hidden layers"

પ્રશ્ન 4(અ) [3 ગુણ]

NLP ના ફાયદાઓની યાદી વિગતવાર આપો.

જવાબ:

ફાયદો	นย์า
Automation	માનવી પ્રયાસ જોઈતા text processing કાર્યોને આપોઆપ કરે છે
Language Understanding	બહુવિધ ભાષાઓ અને બોલીઓ અસરકારક રીતે process કરે છે
24/7 Availability	માનવી હસ્તક્ષેપ વિના સતત કામ કરે છે
Scalability	મોટા પ્રમાણમાં text data કાર્યક્ષમ રીતે handle કરે છે

ઉપયોગો: Chatbots, અનુવાદ, sentiment analysis, document processing

મેમરી ટ્રીક: "NLP = ભાષા સમજણને 24/7 પાયે આપોઆપ કરે છે"

પ્રશ્ન 4(બ) [4 ગુણ]

Natural Language Generation વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: Al પ્રક્રિયા જે structured data ને કુદરતી માનવી ભાષાના text માં convert કરે છે.

પ્રક્રિયા ટેબલ:

પગલું	વર્ણન	รเข้
Content Planning	કઈ માહિતી સામેલ કરવી તે નક્કી કરવું	ડેટા પસંદગી
Sentence Planning	વાક્યો અને ફકરાઓની રચના કરવી	ટેક્સ્ટ વ્યવસ્થા
Surface Realization	વ્યાકરણ સાથે વાસ્તવિક ટેક્સ્ટ બનાવવું	અંતિમ આઉટપુટ

ઉપયોગો: રિપોર્ટ જનરેશન, chatbots, આપોઆપ પત્રકારત્વ, વ્યક્તિગત સામગ્રી

ઉદાહરણ: વેચાણ ડેટા → "ઇલેક્ટ્રોનિક્સમાં મજબૂત પ્રદર્શનને કારણે આ ક્વાર્ટરમાં વેચાણ 15% વધ્યું."

મેમરી ટ્રીક: "NLG = સંખ્યાઓને કથામાં ફેરવે છે"

પ્રશ્ન 4(ક) [7 ગુણ]

NLP માં રહેલી અસ્પષ્ટતા સમજાવો. ઉપરાંત, દરેક અસ્પષ્ટતાનું ઉદાહરણ આપો.

જવાબ:

અસ્પષ્ટતા પ્રકારો ટેબલ:

уѕіг	વર્ણન	ઉદાહરણ	ઉકેલ
Lexical	શબ્દના અનેક અર્થો હોય છે	"Bank" (નદી/નાણાક્રીય)	સંદર્ભ વિશ્લેષણ
Syntactic	વાક્ય રચના અસ્પષ્ટ હોય છે	"મેં telescope સાથે માણસને જોયો"	Parse trees
Semantic	અર્થ અસ્પષ્ટ હોય છે	"રંગહીન લીલા વિચારો"	Semantic rules
Pragmatic	સંદર્ભ-આધારિત અર્થ	"શું તમે મીઠું આપી શકો છો?" (વિનંતી/પ્રશ્ન)	પરિસ્થિતિનો સંદર્ભ

આકૃતિ:

ઉકેલ વ્યૂહરચના: સંદર્ભ વિશ્લેષણ, આંકડાકીય મોડેલ્સ, knowledge bases

મેમરી ટ્રીક: "શાબ્દિક વ્યાકરણિક અર્થપૂર્ણ વ્યાવહારિક = SVAV અસ્પષ્ટતાઓ"

પ્રશ્ન 4(અ) OR [3 ગુણ]

NLP ના ગેરફાયદાઓની યાદી વિગતવાર આપો.

જવાબ:

ગેરફાયદો	વર્ણન
Context Limitations	વ્યંગ, હાસ્ય, સાંસ્કૃતિક સંદર્ભો સાથે મુશ્કેલી
Language Complexity	વાક્યપ્રયોગો, સ્લેંગ, પ્રાદેશિક બોલીઓ સાથે મુશ્કેલી
Data Requirements	મોટા પ્રમાણમાં training data જરૂરી
Computational Cost	નોંધપાત્ર processing power અને memory જરૂરી

પડકારો: અસ્પષ્ટતા, બહુભાષીય સપોર્ટ, real-time processing

મેમરી ટ્રીક: "NLP પડકારો = સંદર્ભ, ભાષા, ડેટા, ગણતરી"

પ્રશ્ન 4(બ) OR [4 ગુણ]

Natural Language Understanding વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: માનવી ભાષાના અર્થ અને હેતુને સમજવા અને અર્થઘટન કરવાની Al ક્ષમતા.

ઘટકો ટેબલ:

ยรร	รเช่	ઉદાહરણ
Tokenization	ટેક્સ્ટને શબ્દો/વાક્યાંશોમાં વિભાજીત કરવું	"Hello world" \rightarrow ["Hello", "world"]
Parsing	વ્યાકરણિક માળખાનું વિશ્લેષણ	કર્તા, ક્રિયા, કર્મ ઓળખવું
Semantic Analysis	અર્થ કાઢવો	શબ્દો વચ્ચેના સંબંધો સમજવા
Intent Recognition	યુઝરનો હેતુ ઓળખવો	"ફ્લાઇટ બુક કરો" → ટ્રાવેલ બુકિંગ intent

মঙ্গিয়া মধাও: Text Input → Tokenization → Parsing → Semantic Analysis → Intent Understanding

ઉપયોગો: Virtual assistants, chatbots, voice commands

મેમરી ટ્રીક: "NLU = કુદરતી રીતે ભાષા સમજે છે"

પ્રશ્ન 4(ક) OR [7 ગુણ]

Stemming અને Lemmatization વિગતવાર સમજાવો. ઉપરાંત દરેકના બે ઉદાહરણ આપો.

જવાબ:

વ્યાખ્યાઓ:

પ્રક્રિયા	વર્ણન	પદ્ધતિ	આઉટપુટ
Stemming	Suffixes દૂર કરીને શબ્દોને મૂળ સ્વરૂપમાં ઘટાડવું	Rule-based કાપવું	Word stem
Lemmatization	શબ્દોને શબ્દકોશના આધાર સ્વરૂપમાં ઘટાડવું	Dictionary lookup	માન્ય શબ્દ

Stemming ઉદાહરણો:

- 1. "running", "runs", "ran" \rightarrow "run"
- 2. "fishing", "fished", "fisher" \rightarrow "fish"

Lemmatization ઉદાહરણો:

- 1. "better" \rightarrow "good" (comparative to base)
- 2. "children" → "child" (બહુવચનથી એકવચન)

તુલના ટેબલ:

પાસું	Stemming	Lemmatization
ઝડપ	વધુ ઝડપી	ધીમું
સચોટતા	ઓછી	વધુ
આઉટપુટ	કદાચ માન્ય શબ્દ ન હોય	હંમેશા માન્ય શબ્દ

મેમરી ટ્રીક: "Stemming = ઝડપ, Lemmatization = ભાષાની સચોટતા"

પ્રશ્ન 5(અ) [3 ગુણ]

વ્યાખ્યા આપો: 1) Word embeddings. 2) Machine Translation.

જવાબ:

чε	વ્યાખ્યા	ઉદ્દેશ્ય
Word Embeddings	શબ્દોના ઘન વેક્ટર પ્રતિનિધિત્વ જે semantic સંબંધો capture કરે છે	ટેક્સ્ટને ML માટે સંખ્યાત્મક સ્વરૂપમાં convert કરવું
Machine Translation	એક ભાષામાંથી બીજી ભાષામાં ટેક્સ્ટનું આપોઆપ રૂપાંતરણ	ભાષાઓ વચ્ચે સંવાદ સક્ષમ બનાવવું

મુખ્ય લક્ષણો:

- Word embeddings વેક્ટર સ્પેસમાં શબ્દ સંબંધો જાળવે છે
- Machine translation ભાષાઓ વચ્ચે અર્થ જાળવે છે

મેમરી ટ્રીક: "શબ્દો વેક્ટર્સ બને છે, ભાષાઓ અનુવાદ બને છે"

પ્રશ્ન 5(બ) [4 ગુણ]

Word2Vec વિશે વિગતવાર સમજાવો.

જવાબ:

વ્યાખ્યા: Neural network તકનીક જે મોટા text corpus માંથી શબ્દ સંબંધો શીખીને word embeddings બનાવે છે.

Architecture प्रहारो:

મોડેલ	વર્ણન	આગાહી
CBOW (Continuous Bag of Words)	સંદર્ભમાંથી target શબ્દની આગાહી કરે છે	સંદર્ભ → લક્ષ્ય
Skip-gram	Target શબ્દમાંથી સંદર્ભ શબ્દોની આગાહી કરે છે	લક્ષ્ય → સંદર્ભ

પ્રક્રિયા:

1. **Training**: Neural network શબ્દ સંબંધો શીખે છે

2. **Vector Creation**: દરેક શબ્દને અનન્ય વેક્ટર પ્રતિનિધિત્વ મળે છે

3. Similarity: સમાન શબ્દોના સમાન વેક્ટર્સ હોય છે

ઉદાહરણ: vector("king") - vector("man") + vector("woman") ≈ vector("queen")

મેમરી ટ્રીક: "Word2Vec = સંદર્ભ દ્વારા શબ્દોથી વેક્ટર્સ"

પ્રશ્ન 5(ક) [7 ગુણ]

ઉત્પાદનના ઉત્પાદકે ગ્રાહક પાસેથી feedback એકત્રિત કર્યો છે અને હવે તેના પર sentiment analysis કરવા ઈચ્છે છે. તેના માટે કયા પગલાઓ અનુસરવા જોઈએ? વિગતવાર સમજાવો.

જવાબ:

Sentiment Analysis Pipeline:

પગલું	વર્ણન	Tools/Methods
Data Collection	ગ્રાહક feedback એકત્રિત કરવું	સર્વે, સમીક્ષાઓ, સોશિયલ મીડિયા
Data Preprocessing	ટેક્સ્ટ સાફ અને તૈયાર કરવું	Noise દૂર કરવું, tokenization
Feature Extraction	ટેક્સ્ટને સંખ્યાત્મક સ્વરૂપમાં બદલવું	TF-IDF, Word embeddings
Model Training	Sentiment classifier તાલીમ આપવી	Naive Bayes, SVM, Neural networks
Prediction	Sentiment વર્ગીકરણ કરવું	હકારાત્મક/નકારાત્મક/તટસ્થ
Analysis	પરિણામોનું અર્થઘટન	Insights અને રિપોર્ટ્સ બનાવવા

અમલીકરણ પ્રવાહ:

Preprocessing પગલાં:

- **વિશેષ અક્ષરો** અને URLs દૂર કરવા
- Lowercase માં convert કરવા સુસંગતતા માટે
- Stop words हूर इस्या (the, and, or)
- **Negations handle seq!** (not good → negative sentiment)

Model મુલ્યાંકન: accuracy, precision, recall, F1-score જેવા metrics વાપરવા

વ્યાપારિક મૂલ્ય: ગ્રાહક સંતુષ્ટિ સમજવી, ઉત્પાદનો સુધારવા, સમસ્યાઓ ઓળખવી

મેમરી ટ્રીક: "એકત્રિત કરો, સાફ કરો, કાઢો, તાલીમ આપો, આગાહી કરો, વિશ્લેષણ કરો = ESTAVA"

પ્રશ્ન 5(અ) OR [3 ગુણ]

GloVe ના ફાયદાઓ NLP ના સંદર્ભમાં સમજાવો.

જવાબ:

ફાયદો	વર્ણન
Global Context	સ્થાનિક સંદર્ભ જ નહીં પરંતુ સમગ્ર corpus આંકડા ધ્યાનમાં રાખે છે
Linear Relationships	વેક્ટર અંકગણિત દ્વારા semantic સંબંધો capture કરે છે
Efficiency	મોટા datasets પર Word2Vec કરતાં ઝડપી training
Stability	બહુવિદ્ય training runs માં સુસંગત પરિણામો

મુખ્ય લાલો: Word analogy કાર્યોમાં સારું પ્રદર્શન, સ્થાનિક અને વૈશ્વિક બંને આંકડા capture કરે છે

મેમરી ટ્રીક: "GloVe = વૈશ્વિક વેક્ટર શ્રેષ્ઠતા"

પ્રશ્ન 5(બ) OR [4 ગુણ]

TFIDF અને BoW સાથેના પડકારો વિશે સમજાવો.

જવાબ:

પડકારો ટેબલ:

પદ્ધતિ	પડકારો	અસર
TF-IDF	1. શબ્દ ક્રમ અવગણે છે 2. Sparse vectors 3. Semantic similarity નથી	મર્યાદિત સંદર્ભ સમજ
BoW	1. Sequence માહિતી ગુમાવે છે 2. ઉચ્ચ dimensionality 3. શબ્દ સંબંધો નથી	નબળું semantic પ્રતિનિધિત્વ

સામાન્ય સમસ્યાઓ:

- Vocabulary size: ખૂબ મોટા, sparse matrices બનાવે છે
- Out-of-vocabulary: નવા શબ્દો handle કરી શકતું નથી
- Semantic gap: "સારું" અને "ઉત્તમ" ને અલગ ગણે છે

ઉકેલ: Word embeddings (Word2Vec, GloVe) વાપરો dense, semantic રજૂઆત માટે

મેમરી ટ્રીક: "TF-IDF અને BoW = Sparse, કોઈ ક્રમ નથી, કોઈ semantics નથી"

પ્રશ્ન 5(ક) OR [7 ગુણ]

E-mail સેવા પ્રદાતા SPAM detection તકનીક લાગુ કરવા ઈચ્છે છે. SPAM E-mail શોધવા માટે કયા પગલાઓ અનુસરવા જોઈએ? વિગતવાર સમજાવો.

જવાબ:

SPAM Detection Pipeline:

પગલું	વર્ણન	તકનીકો
Data Collection	Labeled spam/ham emails એકત્રિત કરવા	Email datasets, યુઝર રિપોર્ટ્સ
Feature Engineering	સંબંધિત features કાઢવા	Subject વિશ્લેષણ, sender patterns
Text Preprocessing	Email content સાફ કરવું	HTML દૂર કરવું, text normalize કરવું
Feature Extraction	સંખ્યાત્મક સ્વરૂપમાં convert કરવું	TF-IDF, N-grams, metadata
Model Training	Classifier તાલીમ આપવી	Naive Bayes, SVM, Random Forest
Validation	Model પ્રદર્શન ચકાસવું	Cross-validation, test set
Deployment	Email system સાથે એકીકરણ	Real-time classification

Feature પ્રકારો:

Feature Category	ઉદાહરણો	ઉદ્દેશ્ય
Content-based	Keywords, phrases, HTML tags	Email body વિશ્લેષણ
Header-based	Sender, subject, timestamps	Metadata તપાસવું
Behavioral	Sending patterns, frequency	શંકાશીલ વર્તન ઓળખવું

અમલીકરણ આકૃતિ:

Model મૂલ્યાંકન Metrics:

- **Precision**: False positives ટાળવા (કાયદેસર emails spam તરીકે mark ન થાય)
- Recall: વાસ્તવિક spam emails પકડવા
- **F1-Score**: Precision અને recall વચ્ચે સંતુલન

સતત શીખવું: નવા spam patterns અને યુઝર feedback સાથે model update કરવું

મેમરી ટ્રીક: "એકત્રિત કરો, ઇજનેર કરો, પ્રોસેસ કરો, કાઢો, તાલીમ આપો, માન્ય કરો, જમાવો = EIPKTMJ"