Lecture 34-35

• Introduction to Graphs

IT205: Data Structures (AY 2023/24 Sem II Sec B) — Dr. Arpit Rana

Graph: Definition

A graph G is a non-linear data structure made up of a set of nodes (vertices, i.e., V) and a set of edges (arcs, i.e., E) that connect them.

- Example, G = (V, E):
 - \circ V = {A, B, C, D}
 - \circ E = {(A,B), (A,C), (A,D), (B,D), (C,D)}

Complexity of Graph-based Algorithms

When we characterize the running time of a graph algorithm on a given graph G = (V, E), we usually measure the size of the input in terms of

- the number of vertices, | V |, and
- the number of edges, | E |

Hence, the input is denoted using two parameters and not just one.

3

5

1

2

4

Null Graph

Trivial Graph

i.e.,
$$E = \phi$$
 and $|V| = 1$

- Each edge is specified by a pair of nodes.
- If the pair of nodes that make up the edges are *ordered pairs*, the graph is said to be a *directed graph* (or digraph), otherwise undirected graph.

Directed Graph

- The graph in which from one node we can visit any other node in the graph is known as a connected graph.
 - The graph in which from each node there is an edge to each other node is known as fully connected (or complete) graph..
- The graph in which at least one node is not reachable from a node is known as a disconnected graph.

- A graph in which each edge is associated with a weight given by a weight function w: E→R
 is known as a weighted graph.
 - Weight typically shows cost of traversing, for example, weights are distances between cities

• A graph in which vertex can be divided into two sets such that vertex in each set does not contain any edge between them is known as *bipartite graph*.

Bipartite Graph

Tree vs. Graphs

Two structures are similar in the sense that they represent connectivity among the nodes

- Both belong to the category of non-linear data structures
- They are different in the sense that tree is *acyclic* whereas a graph usably have cycle(s).

Degree of a Node in a Graph

The **degree** of a node is the number of edges the node is used to define.

- In the example below:
 - Degree 2: B and C
 - Degree 3: A and D
- A and D have odd degree, and B and C have even degree
- Can also define in-degree and out-degree (defined for digraphs)
 - In-degree: Number of edges pointing to a node
 - Out-degree: Number of edges pointing from a node
- A node with degree 0 is called as isolated node.

Representation of Graphs

A graph G (V, E) can be represented in two standard ways

- Adjacency List (Linked) representation
 Used when the graph is sparse, i.e., | E | < < | V |²
- Adjacency Matrix representation.
 Used when the graph is dense, i.e., | E | ~ | V |²

Representation of Undirected Graphs

An undirected graph G (V, E) with |V| = 5, and |E| = 7. The sum of all adjacency lists is $2 \cdot |E|$.

A directed graph G (V, E) with |V| = 6, and |E| = 8. The sum of all adjacency lists is |E|.

Representation of Various Types of Graphs as Adjacency Matrix

Representation of Weighted Digraphs as Adjacency List

Adjacency List vs. Adjacency Matrix

- A potential disadvantage of adjacency list is that it provides no quicker way to find whether an edge (u, v) is present in a graph G. (it take Θ (|V| + |E|) time).
 - o Some improvements in search are still possible.
- Adjacency matrix solves this problem on the cost of Θ ($|V|^2$) space.
- In case of unweighted graphs, adjacency matrix require just one bit per entry (0 or 1) which makes it more space efficient for smaller graphs.

- Given a graph G = (V, E) and a source vertex s, BFS explores the edges of G to "discover" every vertex that is reachable from s.
 - It computes the distance from s to each reachable vertex v: the smallest number of edges needed to go from s to v.
 - Starting from s, the algorithm first discovers all neighbors of s which have distance 1, then discovers vertices with distance 2, and so on, until it has discovered every vertex reachable from s.

- It uses a FIFO queue containing some vertices at a distance k, possibly followed by some vertices at distance k+1.
- To keep track of progress, BFS colors each vertex white (initialized), gray (discovered, i.e., added to the queue), and black (explored, i.e., all vertex's edges have been explored).
- BFS constructs a breadth-first tree, initially containing only its root, which is the source vertex s.
 - Whenever the search discovers a white vertex v in the course of scanning the adjacency list of a gray vertex u, the vertex v and the edge (u, v) are added in the tree.
 - We say that u is the predecessor or parent of v in the breadth-first tree.

Analysis of Breadth-First Search

- A vertex is enqueued and dequeued at most once which takes O (1) time. So, the total time devoted to queue operations is O (|V|).
- The procedure scans the adjacency list of each vertex when the vertex is dequeued, so, at most once.
 - The sum of the lengths of all |V| adjacency lists is Θ (|E|), total time spent in scanning adjacency lists is O(|V| + |E|).
- Thus the total running time of BFS procedure is O(|V| + |E|).

Alternatively, a graph can be traversed using Depth-First Search (similar to in-order traversal of the tree). However, we will not discuss that procedure in this course.

Other Operations on a Graph

Insertion

- To insert a vertex and hence establishing connectivity with other vertices in the existing graph.
- To insert an edge between two vertices in the graph.

Deletion

- To delete a vertex from the graph.
- To delete an edge from the graph.

Merging

To merge two graphs G1 and G2 into a single graph.

Insertion Into an Undirected Graph

Insertion Into a Digraph

Insertion Into a Graph: Matrix Representation

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	1
2	1	0	0	1	1	0	0	101
3	1	0	0	1	0	1	0 1 1 1	0
4	0	1	1	0	0	0	1	1
5	0	1	0	0	0	0	1	0
6	0	0	1	0	0	0	1	0
7	0	0	0	1	1	1	0	0
8	1	0	0	1	0	0	0	0

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	0	0	0	1	1	0	0	0
3	0	0	0	1	0	1	0	0
4	0	0	0	0	0	0	0	1
5	0	0	0	0	0	0	1	0
6	0	0	0	0	0	0	1	0
7	0	0	0	1	0	0	0	0
8	1	0	0	0	0	0	0	0

Deletion from a Graph

End of the Course

• Keep Learning!!