Понятие степени

Поринев Е.

Основная цель этой лекции — придать смысл выражению a^b (а в степени b). С самого начала сформулируем те свойства степени, к которым мы все привыкли:

- 1. $a^b \cdot a^c = a^{b+c}$.
- 2. $(a^b)^c = a^{bc}$.
- 3. $a^c \cdot b^c = (ab)^c$.
- 4. Пусть a > b > 0. Если c > 0, то $a^c > b^c$; если c < 0, то $a^c < b^c$.
- 5. Пусть b > c. Если a > 1, то $a^b > a^c$; если 1 > a > 0, то $a^b < a^c$.

Напомним определение степени с натуральным показателем.

Определение 1. Пусть $a \in \mathbb{R}, b \in \mathbb{N}$. Тогда по определению $a^b = \underbrace{a \cdot \ldots \cdot a}_{b \text{ раз}}$.

 Π ЕММА 1. Свойства 1–5 выполняются для степени с натуральным показателем.

□ Доказательство оставляется читателю в качестве упражнения.

Несложно расширить определение степени на случай $b \in \mathbb{Z}$ (правда при этом придётся ограничить себя случаем $a \neq 0$).

Определение 2. Пусть $a \in \mathbb{R} \setminus \{0\}$, $b \in \mathbb{Z}$. Тогда по определению

$$a^{b} = \begin{cases} a^{b}, & b \in \mathbb{N}; \\ 1, & b = 0; \\ 1/a^{-b}, & -b \in \mathbb{N}. \end{cases}$$

ЛЕММА 2. Свойства 1-5 выполняются для степени с целым показателем.

🗆 Свойства степени с целым показателем обычно выводят из свойств степени с натуральным показателем. Детальное доказательство оставляется читателю в качестве упражнения.

Перед тем, как определять степень с рациональным показателем, введём понятие корня.

Определение 3. Пусть $n \in \mathbb{N}$. Арифметическим корнем n-ой степени из неотрицательного числа aназывается такое неотрицательное число x, что $x^n = a$.

Обозначение: $x = \sqrt[n]{a}$.

ТЕОРЕМА 1. Для любого неотрицательного вещественного числа а и для любого натурального числа n существует корень $x = \sqrt[n]{a}$.

 \square Случай a=0 тривиален, поэтому будем считать, что a>0.

Рассмотрим множество $M = \{t \mid t^n \leq a, t \geq 0\} \subset \mathbb{R}$. Это множество очевидно не пусто (ведь $0 \in M$) и ограничено сверху (числом $\max(a, 1)$). Поэтому из аксиомы о точной верхней грани следует, что существует $x = \sup M$. Покажем, что $x^n = a$.

Предположим, что $x^n = a + \varepsilon$, где $\varepsilon > 0$. Рассмотрим маленькое число $\delta \in (0, x)$ и $y = x - \delta$. Оценим y^n .

$$|x^{n} - y^{n}| = |x - y| \cdot |x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}| < \delta \cdot (nx^{n-1})$$

Последнее неравенство обусловлено тем, что в силу y < x каждое из слагаемых меньше, чем x^{n-1} , а всего слагаемых в точности n. В частности, если выбрать $\delta < \frac{\varepsilon}{nx^{n-1}}$, то $|x^n - y^n| < \varepsilon$ и тем самым $y^n > a$. Значит, y — верхняя грань множества M и при этом y < x. Это противоречит выбору x.

Предположим, что $x^n = a - \varepsilon$, где $\varepsilon > 0$. Рассмотрим маленькое число $\delta \in (0, x)$ и $y = x + \delta$. Оценим y^n .

$$|x^n - y^n| = |x - y| \cdot |x^{n-1} + x^{n-2}y + \ldots + xy^{n-2} + y^{n-1}| < \delta \cdot (n(2x)^{n-1})$$

Последнее неравенство обусловлено тем, что y < 2x. Если выбрать $\delta < \frac{\varepsilon}{n(2x)^{n-1}}$, то $|x^n - y^n| < \varepsilon$ и тем самым $y^n < a$. Значит, $y \in M$, что противоречит выбору x. Теорема доказана. ■ **Определение 4.** Пусть $a\in\mathbb{R},\ a>0,\ b=\frac{m}{n}\in\mathbb{Q}.$ Тогда по определению $a^b=\sqrt[n]{a^m}.$ **Утверждение 1.** Определение 4 корректно, то есть не зависит от представления числа b в виде дроби. \square Пусть $b=rac{m_1}{n_1}=rac{m_2}{n_2}$. Обозначим $r_1=\sqrt[n_1]{a^{m_1}},\ r_2=\sqrt[n_2]{a^{m_2}}$. Нам нужно проверить, что $r_1=r_2$. Из определения корня следует, что $r_1^{n_1}=a^{m_1}$ и $r_2^{n_2}=a^{m_2}$. Из свойства 2 степени с целым показателем следует, что $r_1^{n_1 m_2} = (r_1^{n_1})^{m_2} = (a^{m_1})^{m_2} = a^{m_1 m_2} = (a^{m_2})^{m_1} = (r_2^{n_2})^{m_1} = r_2^{n_2 m_1}.$ Из равенства $\frac{m_1}{n_1}=\frac{m_2}{n_2}$ следует, что $n_1m_2=n_2m_1$. А значит, в силу свойства 4 числа r_1 и r_2 совпадают. **Утверждение 2.** В случае $b \in \mathbb{Z}$ определение 4 согласуется с определением 2. \square Действительно, если $b=\frac{m}{1}$, то $\sqrt[4]{a^m}=a^m$. Π ЕММА 3. Свойства 1–5 выполняются для степени с рациональным показателем. 🗆 Свойства степени с рациональным показателем обычно выводят из свойств степени с целым показателем. Детальное доказательство оставляется читателю в качестве упражнения. ЛЕММА 4. Пусть a > 0 — вещественное число и (x_n) — последовательность рациональных чисел, стремящаяся к нулю. Тогда $\lim a^{x_n} = 1$. \square Предположим, что $a\geqslant 1$. Зададимся произвольным числом $\varepsilon>0$. По аксиоме Архимеда существует натуральное число $k>\frac{a-1}{\varepsilon}$. Тогда $(1+\varepsilon)^k\geqslant 1+k\varepsilon>a$. Значит, $a^{1/k}<1+\varepsilon$. Кроме того $a^{1/k}<1+\varepsilon<\frac{1}{1-\varepsilon}$, поэтому $a^{-1/k} > 1 - \varepsilon$.

Поскольку $\lim_{n\to\infty} x_n=0$, найдётся такое N, что для всех n>N выполнено $|x_n|<\frac{1}{k}$. Тогда $a^{x_n}\in(a^{-1/k},a^{1/k})\subset(1-\varepsilon,1+\varepsilon)$.

Случай a < 1 сводится к уже разобранного с помощью равенства $a^{x_n} = (1/a)^{-x_n}$.

Ну и наконец перейдём к случаю $b \in \mathbb{R}$.

Утверждение 3. Пусть a и b — вещественные числа, причём a>0. Тогда найдётся последовательность рациональных чисел (x_n) , такая что $\lim_{n\to\infty} x_n=b$ и существует предел $\lim_{n\to\infty} a^{x_n}$.

 \square Рассмотрим произвольную последовательность рациональных чисел, **монотонно** стремящуюся к b, все члены которой лежат на интервале (b/2,b). Тогда её можно взять в качестве (x_n) . Действительно, в силу свойства 5 степени с рациональным показателем последовательность (a^{x_n}) тоже будет монотонной (возрастающей или убывающей в зависимости от того, больше единицы a или меньше) и все её члены заключены между $a^{b/2}$ и a^b . Значит, по теореме Вейерштрасса у неё есть предел. \blacksquare

Утверждение 4. Пусть a и b — вещественные числа, причём a>0. Для любой последовательности рациональных чисел (y_n) , такой что $\lim_{n\to\infty} y_n=b$, существует предел $\lim_{n\to\infty} a^{y_n}$, и этот предел не зависит от выбора последовательности (y_n) .

 \square Пусть (x_n) — последовательность из предыдущего утверждения. Мы уже знаем, что существует предел $s=\lim_{n\to\infty}a^{x_n}$. Докажем, что $\lim_{n\to\infty}a^{y_n}=s$. Действительно, $a^{y_n}=a^{x_n}+(a^{y_n}-a^{x_n})=a^{x_n}+a^{x_n}(a^{y_n-x_n}-1)$. Из леммы 4 следует, что $\lim_{n\to\infty}a^{y_n-x_n}=1$.

Действительно, $a^{y_n}=a^{x_n}+(a^{y_n}-a^{x_n})=a^{x_n}+a^{x_n}(a^{y_n-x_n}-1)$. Из леммы 4 следует, что $\lim_{n\to\infty}a^{y_n-x_n}=1$. Поэтому $\lim_{n\to\infty}(a^{y_n-x_n}-1)=0$ и $\lim_{n\to\infty}a^{x_n}(a^{y_n-x_n}-1)=0$. Значит, последовательность (a^{y_n}) имеет предел, и этот предел равен s.

Определение 5. Пусть a и b — вещественные числа, причём a>0. Рассмотрим произвольную последовательность рациональных чисел (y_n) , стремящуюся к b. По определению полагаем $a^b=\lim_{n\to\infty}a^{y_n}$. Утверждение 4 гарантирует нам, что этот предел существует и не зависит от выбора последовательности (y_n) .

\square Поскольку $b \in \mathbb{Q}$, можно взять $y_n = b$. Очевидно, что $\lim_{n \to \infty} a^{y_n} = a^b$.
ТЕОРЕМА 2. Свойства 1–5 выполняются для степени с вещественным показателем. Доказательство теоремы мы разобьём на цепочку утверждений. Утверждение 6. Выполнено равенство $a^b \cdot a^c = a^{b+c}$.
\square Рассмотрим произвольные последовательности рациональных чисел $x_n \to b$ и $y_n \to c$. Тогда последовательность $(x_n + y_n)$ стремится к $b + c$ и
$a^b \cdot a^c = \lim_{n \to \infty} a^{x_n} \cdot \lim_{n \to \infty} a^{y_n} = \lim_{n \to \infty} a^{x_n} \cdot a^{y_n} = \lim_{n \to \infty} a^{x_n + y_n} = a^{b+c}.$
Следствие 1. Выполнено равенство $a^{-b} = 1/a^b$. $\Box 1 = a^0 = a^{b+(-b)} = a^b \cdot a^{-b}$.
Утверждение 7. Выполнено равенство $a^c \cdot b^c = (ab)^c$.
\square Рассмотрим произвольную последовательность рациональных чисел $x_n \to c$. Тогда $a^c \cdot b^c = \lim_{n \to \infty} a^{x_n} \cdot \lim_{n \to \infty} b^{x_n} = \lim_{n \to \infty} a^{x_n} \cdot b^{x_n} = \lim_{n \to \infty} (ab)^{x_n} = (ab)^c$.
Следствие 2. Выполнено равенство $\frac{1}{a^b} = \left(\frac{1}{a}\right)^b$.
□ Доказательство оставляется читателю в качестве упражнения.
Утверждение 8. Пусть $b > c$. Если $a > 1$, то $a^b > a^c$; если $1 > a > 0$, то $a^b < a^c$.
Пусть $a>1$. Возьмём какое-нибудь рациональное число $q\in(0,b-c)$ и последовательность рациональных чисел $x_n\to b-c$, все члены которой больше q . Тогда все члены последовательности a^{x_n} не меньше, чем a^q . Поэтому $a^{b-c}=\lim_{n\to\infty}a^{x_n}\geqslant a^q>1$. Теперь применим утверждение 1: $a^b=a^c\cdot a^{b-c}>a^c$
Если же $a < 1$, то наоборот $a^{b-c} \leqslant a^q < 1$ и $a^b < a^c$.
Следствие 3. Пусть $a > 0$ — вещественное число и (x_n) — последовательность вещественных чисел стремящаяся к нулю. Тогда $\lim_{n \to \infty} a^{x_n} = 1$.
\square Для определённости будем считать, что $a\geqslant 1$. Для каждого натурального n выберем пару рациональных чисел y_n и z_n так, что $y_n\leqslant x_n\leqslant z_n$ и при этом $ y_n \leqslant 2 x_n $ и $ z_n \leqslant 2 x_n $. Тогда обе последовательности (y_n) и (z_n) стремятся к нулю. Поэтому из леммы 4 следует, что $\lim_{n\to\infty}a^{y_n}=1$ и $\lim_{n\to\infty}a^{z_n}=1$. Из утверждения 8 следует, что $a^{y_n}\leqslant a^{x_n}\leqslant a^{z_n}$. Применяя теорему о двух милиционерах получаем $\lim_{n\to\infty}a^{x_n}=1$. Если же $a<1$, всё аналогично за исключением того, что $a^{y_n}\geqslant a^{x_n}\geqslant a^{z_n}$. \blacksquare
Следствие 4. Пусть $b > 0$ — вещественное число и (a_n) — последовательность вещественных чисел
стремящаяся к единице. Тогда $\lim_{n\to\infty} a_n^b = 1$.
\square Выберем натуральное число $N\geqslant b $. Аксиома Архимеда гарантирует нам, что это можно сделать Очевидно, что $\lim_{n\to\infty}a_n^N=1$ и $\lim_{n\to\infty}a_n^{-N}=1$. Из утверждения 8 следует, что для каждого n выполнено
либо $a_n^{-N} \leqslant a_n^b \leqslant a_n^N$, либо $a_n^N \leqslant a_n^b \leqslant a_n^{-N}$ (в зависимости от того, больше единицы a_n или меньше) Применяя теорему о двух милиционерах, получаем $\lim_{n\to\infty} a_n^b = 1$.
Утверждение 9. Пусть $a > b > 0$. Если $c > 0$, то $a^c > b^c$; если $c < 0$, то $a^c < b^c$.
Пусть $c>0$. Возьмём какое-нибудь рациональное число $q\in(0,c)$ и последовательность рациональных чисел $x_n\to c$, все члены которой больше q . Тогда все члены последовательности $(a/b)^{x_n}$ не меньше, чем $(a/b)^q$. Поэтому $(a/b)^c=\lim_{n\to\infty}(a/b)^{x_n}\geqslant (a/b)^q>1$. Значит, $a^c>b^c$. Теперь применим
утверждение 3: $a^c = b^c \cdot (a/b)^b > b^c$. Если же $c < 0$, то $a^{-c} > b^{-c}$ и из следствия 1 получаем $a^c < b^c$.

Утверждение 5. В случае $b \in \mathbb{Q}$, определение 5 согласуется с определением 4.

Утверждение 10. Выполнено равенство $(a^b)^c = a^{bc}$.

 \square Рассмотрим произвольные последовательности рациональных чисел $x_n \to b$ и $y_n \to c.$ Распишем

$$(a^b)^c - a^{bc} = ((a^b)^c - (a^{x_n})^c) + ((a^{x_n})^c - (a^{x_n})^{y_n}) + ((a^{x_n})^{y_n} - a^{x_n y_n}) + (a^{x_n y_n} - a^{bc}).$$

Теперь будем рассматривать получившиеся слагаемые по одному.

$$(a^{b})^{c} - (a^{x_{n}})^{c} = (a^{b})^{c} \left(1 - (a^{x_{n}})^{c} \frac{1}{(a^{b})^{c}} \right)$$

$$= (a^{b})^{c} \left(1 - (a^{x_{n}})^{c} \left(\frac{1}{a^{b}} \right)^{c} \right)$$

$$= (a^{b})^{c} \left(1 - (a^{x_{n}})^{c} (a^{-b})^{c} \right)$$

$$= (a^{b})^{c} \left(1 - (a^{x_{n}} \cdot a^{-b})^{c} \right)$$

$$= (a^{b})^{c} \left(1 - (a^{x_{n}-b})^{c} \right).$$

Здесь мы последовательно воспользовались следствием 2, следствием 1, утверждением 7 и утверждением 6.

Из следствия 3 мы знаем, что $\lim_{n\to\infty}a^{x_n-b}=1$. Далее, из следствия 4 заключаем, что $\lim_{n\to\infty}(a^{x_n-b})^c=1$. Значит, $\lim_{n\to\infty}(a^b)^c-(a^{x_n})^c=0$.

С первым слагаемым разобрались. Теперь второе:

$$(a^{x_n})^c - (a^{x_n})^{y_n} = (a^{x_n})^{y_n} \left((a^{x_n})^c \frac{1}{(a^{x_n})^{y_n}} - 1 \right)$$
$$= (a^{x_n})^{y_n} \left((a^{x_n})^c (a^{x_n})^{-y_n} - 1 \right)$$
$$= (a^{x_n})^{y_n} \left((a^{x_n})^{c-y_n} - 1 \right)$$

Обозначим $\alpha = \frac{1}{2}a^b$, $\beta = 2a^b$. Последовательность (a^{x_n}) стремится к a^b , поэтому начиная с некоторого номера все её члены лежат в интервале (α,β) . Из следствия 3 мы знаем, что $\lim_{n\to\infty}\alpha^{c-y_n}=1$ и $\lim_{n\to\infty}\beta^{c-y_n}=1$. Из утверждения 9 следует, что для каждого достаточно большого n выполнено либо $\alpha^{c-y_n}\leqslant (a^{x_n})^{c-y_n}\leqslant \beta^{c-y_n}$, либо $\beta^{c-y_n}\leqslant (a^{x_n})^{c-y_n}\leqslant \alpha^{c-y_n}$ (в зависимости от того, больше нуля $c-y_n$ или меньше). Применяя теорему о двух милиционерах, получаем $\lim_{n\to\infty}(a^{x_n})^{c-y_n}=1$. Кроме того $\lim_{n\to\infty}(a^{x_n})^{y_n}=a^{bc}$, поэтому $\lim_{n\to\infty}(a^{x_n})^c-(a^{x_n})^{y_n}=0$.

 $n\to\infty$ Пошли дальше. Третье слагаемое просто равно нулю, а четвёртое стремится к нулю по определению степени. Значит, $\lim_{n\to\infty} \left((a^b)^c - a^{bc} \right) = 0$. Но под знаком предела стоит константа, не зависящая от n. Это возможно только в том случае, если $(a^b)^c - a^{bc} = 0$. Утверждение доказано. ■

Ура! На этом доказательство теоремы 2 завершено.

Задача 1. Докажите лемму 3.

Задача 2. Докажите следствие 2.

Задача 3°. Пусть $a, b \in \mathbb{R}, a > 0, a \neq 1, b > 0.$

- а) Докажите, что уравнение $a^x = b$ имеет решение. (Указание: здесь поможет аксиома о точной верхней грани)
- б) Докажите, что это решение единственно.

Задача 4*. Возможно ли такое, что $a, b \notin \mathbb{Q}$ и $a^b \in \mathbb{Q}$.