§2. Необходимое условие сходимости ряда

Теорема 2.1. Пусть ряд
$$\sum_{n=1}^{\infty} a_n \quad cxoдится. \ Torдa$$

$$\lim_{n\to\infty} a_n = 0. \tag{2.1}$$

► Обозначим через *s* сумму данного ряда. Имеем:

$$s_n = a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n = s_{n-1} + a_n \implies a_n = s_n - s_{n-1} \implies \lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0.$$

Замечание 2.1. Если $\lim_{n\to\infty} a_n = 0$, то это вовсе *не означает*, что ряд $\sum_{n=1}^{\infty} a_n$ сходится. Так, в примере 1.2 ряд $\sum_{n=1}^{\infty} \ln\left(1+\frac{1}{n}\right)$ расходится, хотя $a_n = \ln\left(1+\frac{1}{n}\right) \to 0$, $n\to\infty$. Далее также будет показано, что ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится, но очевидно, что $\lim_{n\to\infty} a_n = 0$.

Таким образом, условие $\lim_{n\to\infty}a_n=0$ является необходимым условием сходимости ряда $\sum_{n=1}^{\infty}a_n$ (если $\lim_{n\to\infty}a_n\neq 0$, то ряд $\sum_{n=1}^{\infty}a_n$ расходится).

Пример 2.1. Доказать, что ряд $\sum_{n=1}^{\infty} \operatorname{arctg} n$ расходится.

▶ Действительно, $\lim_{n\to\infty} \arctan g n = \frac{\pi}{2} \neq 0$, значит, не выполняется необходимое условие сходимости, и данный ряд расходится. ◀