- 1. Answer the following short questions:
 - (a) Classify each of the following sets as open, closed, neither, or both.

(i)
$$\{x: |x-5| \le \frac{1}{2}\}$$

(ii)
$$\{x: x^2 > 0\}$$

- (b) Find the interior of $[0,3] \cup (3,5)$.
- (c) Find the boundary points of $[0,3] \cup (3,5)$.
- (d) Find the closure of $\{x: x^2 > 0\}$.
- (e) Find all cluster points of $A = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ or } x = 2\}.$
- (f) Find all cluster points of $S = \{(x, y) \in \mathbb{R}^2 : y < x^2 + 1\}$.
- (a)
- (i) closed.
- (ii) open.
- (b) $\{x : 0 < x < 5\}$
- (c) $\{x: x=0, x=5\}$
- (d) $\{x: x \in \mathbb{R}\}$
- (e) $\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1; y \in \mathbb{R}\}$
- (f) $\{(x,y) \in \mathbb{R}^2 : y \le x^2 + 1\}$

2. Let 0 < b < 1 and $x_n = b^n$, $n \ge 1$. Show that the sequence (x_n) converges to 0. (Hint: we may write for some a > 0, $b = \frac{1}{1+a}$ and use the Bernoulli's inequality if a > -1, $a \in \mathbb{R}$ $(1+a)^n \ge 1 + na$, $n \ge 1$.)

Note that
$$x_n=b^n=\left(\frac{1}{1+a}\right)^n=\frac{1}{(1+a)^n}\to 0$$
 and $a=\frac{1-b}{b}$
Since $(1+a)^n\geq 1+na \implies \frac{1}{(1+a)^n}\leq \frac{1}{1+na}$

Let
$$\epsilon > 0$$
, $\exists k(\epsilon) \in \mathbb{N}$ s.t. $n > k(\epsilon)$, $|x_n - x| < \epsilon$

$$\implies n \ge k(\epsilon)$$
, $\left| \frac{1}{(1+a)^n} - 0 \right| = \frac{1}{(1+a)^n} \le \frac{1}{1+na} \le \frac{1}{1+k(\epsilon)a} \le \epsilon$

$$\implies \frac{1}{1+k(\epsilon)a} \le \epsilon \implies 1+k(\epsilon)a > \frac{1}{\epsilon} \implies k(\epsilon) > \frac{1}{a} \left(\frac{1}{\epsilon} - 1 \right) = \frac{b}{1-b} \left(\frac{1}{\epsilon} - 1 \right)$$

Let
$$k(\epsilon)$$
 be any number that $k(\epsilon) > \frac{1}{a} \left(\frac{1}{\epsilon} - 1 \right) = \frac{b}{1 - b} \left(\frac{1}{\epsilon} - 1 \right)$.
$$\forall \ n > k(\epsilon), \ |b^n - 0| = \left| \frac{1}{(1 + a)^n - 0} \right| = \frac{1}{(1 + a)^n} \le \frac{1}{1 + na} < \frac{1}{1 + k(\epsilon)a} < \epsilon$$

3. Let $X=(x_n)$ be a sequence in \mathbb{R}^p which is convergent to x, and let $c\in\mathbb{R}$. Show that $\lim(cx_n)=cx$.

$$\lim x_n = x \implies \exists k(\epsilon) \text{ s.t. } n > k(\epsilon), |x_n - x| < \epsilon$$

$$\lim |cx_n - cx| = \lim c|x_n - x| \le (c\epsilon) = \epsilon'$$
 where $\epsilon = \frac{\epsilon'}{c}$

Let
$$\epsilon > 0$$
, $\forall n > k(\frac{\epsilon}{c})$, $|cx_n - cx| = c|x_n - x| \le c(\frac{\epsilon}{c}) = \epsilon$

R05546030 彭新翔

4. If $X=(x_n)$ and $Y=(y_n)$ are sequences of real numbers which both converge to c and if $Z=(z_n)$ is a sequence such that $x_n \leq z_n \leq y_n$ for $n \in \mathbb{N}$, then Z also converges to c.

Let $\epsilon > 0$ and

(1)
$$\exists kx(\epsilon) \text{ s.t. } \forall n > kx(\epsilon), |x_n - L| < \epsilon \implies L - \epsilon < x_n < L + \epsilon$$

②
$$\exists ky(\epsilon) \text{ s.t. } \forall n > ky(\epsilon), |y_n - L| < \epsilon \implies L - \epsilon < y_n < L + \epsilon$$

Let
$$kz(\epsilon) = \max\{kx(\epsilon), ky(\epsilon)\}$$
. $\forall n > kz(\epsilon), L - \epsilon < x_n \le z_n \le y_n < L + \epsilon \implies |z_n - n| < \epsilon$