

2IMN20 - Real-Time Systems

Schedulability analysis of EDF

Geoffrey Nelissen

Reference book

Chapter 4

Disclaimer:
Many slides were provided by Dr. Mitra Nasri and Prof. Giorgio Buttazzo

Assumptions

- For this lecture, we assume
 - **A1.** All jobs of τ_i execute for no more than C_i
 - A2. Tasks are periodic or sporadic with no release jitter
 - A3. Tasks are <u>fully preemptive</u>
 - A4. Context switch, preemption, and scheduling overheads are zero
 - **A5.** Tasks are <u>independent</u>:
 - no precedence relations
 - no resource constraints
 - no blocking on I/O operations
 - **A6.** No self-suspensions
 - A7. Single core

EDF

Schedulability test

Liu and Layland 1973

A task set τ is schedulable by EDF if and only if:

EDF

Schedulability test

Liu and Layland 1973

A task set τ is schedulable by EDF if and only if:

$$\sum_{i=1}^{n} \frac{C_i}{T_i} \le 1$$

Assumption: $\forall i, D_i = T_i$

$$\forall i, D_i = T_i$$

What if $D_i \neq T_i$?

EDF schedulability analysis for $D_i < T_i$

Processor Demand Criterion [Baruah '90]

In any interval of length L, the computational demand g(t, t + L) of the task set must be **no greater** than L.

$$\forall t, \forall L > 0,$$

$$\forall t, \forall L > 0, \qquad g(t, t + L) \leq L$$

Understanding the processor demand (g function)

• The demand in $[t_1, t_2]$ is the computation time of those tasks <u>arrived</u> at or after t_1 with <u>deadline</u> less than or equal to t_2 :

$$g(t_1, t_2) = \sum_{a_{k,j} \ge t_1}^{d_{k,j} \le t_2} C_k$$

Demand of a periodic/sporadic task set

Computational demand of τ_i

$$g_{i}(t, t + L) \leq g_{i}(0, L) = \left\lfloor \frac{L + (T_{i} - D_{i})}{T_{i}} \right\rfloor \cdot C_{i}$$
$$= \left\lfloor \frac{L - D_{i}}{T_{i}} + 1 \right\rfloor \cdot C_{i}$$

Total computational demand

$$g(0, \mathbf{L}) = \sum_{i=1}^{n} g_i(0, L)$$

Applicable to sporadic tasks or periodic tasks without release jitter, i.e., $\forall i, \phi_i = 0$

Examples

$$g_i(0, \mathbf{L}) = \left| \frac{\mathbf{L} + (T_i - D_i)}{T_i} \right| \cdot C_i$$

• What is $g_2(0, 4)$?

$$g_2(0,4) = \left| \frac{4+2}{6} \right| \cdot 2 = 2$$

• What is $g_2(0, 8)$?

$$g_2(0,8) = \left| \frac{8+2}{6} \right| \cdot 2 = 2$$

• What is $g_2(0, 16)$?

$$g_2(0, 16) = \left| \frac{16+2}{6} \right| \cdot 2 = 6$$

Simplifying the test

Processor Demand Test

$$\forall L \in \mathcal{D}, \qquad g(0,L) \leq L$$

Where \mathcal{D} is the set of deadline points for which g(0, L) must be calculated:

Summary

Three analysis techniques:

- Processor utilization bound $U \leq U_{lb}$
- Response time analysis $\forall i$, $R_i \leq D_i$
- Processor demand criterion $\forall L > 0$, $g(0, L) \leq L$

RM v.s. EDF

EDF vs FP

- EDF is optimal for independent tasks on single core, FP is not
- FP is supported in almost all OS, EDF is supported in a handful of them
- FP is easier to implement (lower runtime complexity)
- Runtime behavior may be simpler to explain with FP for non-experts

Context switches

In average, RM has more context switches

Schedulability analysis

	$\mathbf{D_i} = \mathbf{T_i}$	$\mathbf{D}_{i} \leq \mathbf{T}_{i}$
RM	Suff.: polynomial $O(n)$ LL: $\sum U_i \le n(2^{1/n}-1)$ HB: $\prod (U_i+1) \le 2$ Exact pseudo-polynomial RTA	$\begin{array}{ccc} & \textit{pseudo-polynomial} \\ & \text{Response Time Analysis} \\ & \forall i & R_i \leq D_i \\ \\ & R_i = & C_i + \sum_{k=1}^{i-1} \left \lceil \frac{R_i}{T_k} \right \rceil C_k \end{array}$
EDF	polynomial: $O(n)$ $\sum_i U_i \leq 1$	$egin{aligned} & extit{pseudo-polynomial} \ & ext{Processor Demand Analysis} \ & ext{$orall L} > 0, g(0,L) \leq \ L \end{aligned}$

Not seen in the course but RM response-time analysis is faster than EDF

RM under permanent overload: starvation for low priority tasks

- High priority tasks execute at the proper rate
- Low priority tasks are completely blocked

EDF under permanent overload

- All tasks execute at a slower rate
- No task is blocked

