IA - Clase 1A Introducción Repaso de Matemáticas Conceptos de Aprendizaje de Máquina (ML - Machine Learning)

Función vectorial: $f(x,y) = x^{ op}Ay + x^{ op}Bx - Cy + D$

con:

- $ullet \ x \in \mathbb{R}^M$ (vector columna de dimensión M)
- $y \in \mathbb{R}^N$ (vector columna de dimensión N)
- $f: \mathbb{R}^M imes \mathbb{R}^N o \mathbb{R}$ (escalar).
- Análisis de cada término

$$x^{\top}Ay$$

 $x^{ op}$ es de tamaño 1 imes M.

y es de tamaño N imes 1.

Para que el producto sea válido, A debe "conectar" M con N.

Es decir: $A \in \mathbb{R}^{M \times N}$.

Entonces:

$$(1 \times M)(M \times N)(N \times 1) = (1 \times 1)$$
 (escalar).

UCA-Ingeniería Informática - Inteligencia Artificial

Análisis de cada término

```
x^{\top}Bx
  x^{\top} es 1 \times M.
  x \operatorname{es} M \times 1.
  Para que funcione, B \in \mathbb{R}^{M 	imes M} .
  Entonces:
                                      (1 \times M)(M \times M)(M \times 1) = (1 \times 1).
-Cy
  y es N \times 1.
  Para que dé un escalar, C debe ser 1 \times N.
  Entonces:
                                              (1 \times N)(N \times 1) = (1 \times 1).
```

D

Como es una constante sumada a escalares, necesariamente debe ser un escalar.

$$D \in \mathbb{R}$$
.

- Ejemplo numérico con M=2 N=3
 - · Vectores:

$$x=egin{bmatrix}1\2\end{bmatrix},\quad y=egin{bmatrix}3\4\5\end{bmatrix}$$

Matrices y escalar:

$$A=egin{bmatrix}1&2&3\4&5&6\end{bmatrix},\quad B=egin{bmatrix}2&-1\0&3\end{bmatrix},\quad C=egin{bmatrix}7&8&9\end{bmatrix},\quad D=10$$

Cálculos paso a paso

- 1. $x^{T}Ay = 150$
- **2.** $x^{\top}Bx = 12$
- 3. -Cy = -98
- **4.** D = 10

Resultado final

$$f(x,y) = 150 + 12 - 98 + 10 = 74$$

Ejemplo numérico con M=2 N=3

$$x = egin{bmatrix} 1 \ 2 \end{bmatrix}, \quad y = egin{bmatrix} 3 \ 4 \ 5 \end{bmatrix}, \quad A = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix}$$

Paso 1.1: Ay

$$Ay = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix} egin{bmatrix} 3 \ 4 \ 5 \end{bmatrix} = egin{bmatrix} 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 \ 4 \cdot 3 + 5 \cdot 4 + 6 \cdot 5 \end{bmatrix} = egin{bmatrix} 26 \ 62 \end{bmatrix}$$

Paso 1.2: $x^{ op}(Ay)$

$$x^ op(Ay) = egin{bmatrix} 1 & 2 \end{bmatrix} egin{bmatrix} 26 \ 62 \end{bmatrix} = 1 \cdot 26 + 2 \cdot 62 = 150$$

- Análisis de cada término
 - \mathbf{X}^{T}
 - La transpuesta de un vector/matriz consiste en cambiar filas ↔ columnas.
 - Si x es un vector columna (M×1), entonces:
 - $x^T = [x1 \ x2 \cdots xM] \in R1 \times M$
 - Ahora x^T es un vector fila.
 - Si multiplicáramos x·y directamente, no siempre tendría sentido porque ambos son vectores columna.
 - Pero al usar x^T y tenemos:
 - $(1\times M)(M\times 1)=(1\times 1)$,
 - es decir, un escalar: justamente el producto interno o producto punto de dos vectores.
 - x^Ty es el producto escalar entre x e y, mide qué tanto apuntan en la misma dirección. De hecho:
 - $x^Ty = ||x|| ||y|| \cos(\theta)$, donde θ es el ángulo entre x e y.

Cálculo exacto con x = (2, 1), y = (1, 3)

1. Producto escalar:

$$x^{\top} y = 2 \cdot 1 + 1 \cdot 3 = 5$$

2. Normas:

$$\|x\| = \sqrt{2^2 + 1^2} = \sqrt{5}, \quad \|y\| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

3. Coseno del ángulo:

$$\cos(\theta) = \frac{5}{\sqrt{5}\sqrt{10}} = \frac{5}{\sqrt{50}} = \frac{5}{7.071} \approx 0.707$$

4. Ángulo:

$$heta=rccos(0.707)pprox45^\circ$$

En 2D y 3D podemos visualizar los vectores y el ángulo.

En 4D o más, no podemos dibujar, pero el producto escalar y la fórmula del coseno nos siguen diciendo si los vectores son "cercanos" (ángulo pequeño), "ortogonales" (θ =90°) u "opuestos" (θ >90°).

 El vector es uno de los conceptos matemáticos más importantes en Inteligencia Artificial (IA) y en particular en Machine Learning (ML) y Deep Learning (DL).

Representación de datos

- En IA, todo se representa como vectores: una imagen en escala de grises 28×28 (como MNIST) se convierte en un vector de dimensión 784
- Una palabra (ej. "gato") se representa como un vector en un espacio semántico (Word Embeddings como Word2Vec, GloVe, o BERT).
- Una fila de una base de datos con variables (edad, peso, altura, ingresos) también se guarda como un vector de características (feature vector).
- El vector es la forma estándar de pasar la información al modelo.

Operaciones básicas en modelos

- Los algoritmos de IA dependen de operaciones con vectores:
 - Producto escalar (x^Ty): mide similitud entre dos vectores (coseno del ángulo → usado en búsqueda semántica, recomendación).
 - Norma (tamaño, longitud o magnitud ||x||): mide la magnitud de un vector → usado en regularización, distancias.
 - Distancia Euclidiana (||x-y||): mide cuán distintos son dos vectores → en KNN, clustering, embeddings.

Redes neuronales

- En redes neuronales profundas una capa densa hace :
 - z=Wx+b
 - x es el vector de entrada,
 - W es la matriz de pesos,
 - b es el vector de sesgo,
 - z es el nuevo vector de salida.
- Cada neurona es un producto escalar entre el vector de pesos y el vector de entrada.

Geometría de la IA

- En espacios de alta dimensión, cada vector representa un punto.
- Clasificar, agrupar o predecir significa separar y organizar vectores en ese espacio.
 - Ejemplo: un clasificador lineal busca un hiperplano (definido por un vector normal) que divida los vectores de dos clases.

Interpretación semántica

- En IA moderna (NLP *Procesamiento de Lenguaje Natural*, visión, audio):
 - Dos vectores cercanos → significan cosas similares (ej. "rey" y "reina").
 - Dos vectores ortogonales → no relacionados.
 - Dos vectores opuestos → significados contrarios.
- Esto se usa en embeddings para búsquedas, traducción automática, chatbots, etc.

- NLP = IA aplicada al lenguaje humano.
 - Representa palabras/oraciones como vectores en espacios de alta dimensión.
 - Se aplica en traducción, chatbots, resumen, análisis de sentimiento, búsqueda semántica.
 - Los Transformers revolucionaron NLP → base de los LLM como ChatGPT.
- Ver ejemplo en Python en:
 - IA_TP1A_ML_Aprendizaje _Máquina_R1.ipynb

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Embeddings
 - Representaciones vectoriales de palabras, frases o documentos en un espacio de dimensión finita (R^d) .
 - Intuición: convierten texto en números que capturan similitud semántica.
 - Ejemplo: "gato" → [0.2, -0.5, 0.8, 0.1]
 - "perro" → cercano a "gato" en el espacio.
 - Uso: entradas para modelos de NLP, búsqueda semántica, clasificación.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Embeddings
 - Por qué el vector "gato" → [0.2, -0.5, 0.8, 0.1] tiene 4 valores en vez de uno ?
 - Supongamos que representamos cada palabra con un único valor:
 - "gato" → 0.2
 - "perro" → 0.5
 - "avión" → 0.9
 - Problema: con 1 dimensión solo tenemos una recta, y no podemos capturar similitudes complejas.
 - Ejemplo: ¿dónde pongo "león"? ¿Más cerca de "perro" o de "avión"?
 - Con un solo número es imposible reflejar múltiples relaciones.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Embeddings
 - Con varias dimensiones (ejemplo 4D)
 - Al usar un vector en R^d cada coordenada puede capturar un aspecto diferente (aunque no interpretable directamente):
 - "gato" \rightarrow [0.2, -0.5, 0.8, 0.1]
 - "perro" \rightarrow [0.1, -0.6, 0.7, 0.0]
 - "avión" \rightarrow [-0.9,0.2,-0.1,0.5]
 - "gato" y "perro" quedan cerca en el espacio (vectores similares), pero "avión" queda lejos.
 - No es que la primera coordenada sea "animal" y la segunda "tamaño".
 - Más bien, el conjunto completo del vector es lo que captura el significado.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Embeddings
 - Dimensiones típicas
 - Word2Vec → 50 a 300 dimensiones.
 - GloVe → 100 a 300.
 - BERT / GPT → 768, 1024 o más.
 - Cuantas más dimensiones → más capacidad para representar relaciones semánticas finas, aunque también más costo de cómputo.
 - Imaginar que cada palabra es un punto en un espacio de alta dimensión.
 - Distancia pequeña → significados cercanos ("gato", "perro").
 - Distancia grande → significados lejanos ("gato", "avión").
 - Direcciones → relaciones semánticas ("rey hombre + mujer ≈ reina").

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Embeddings
 - Una palabra no se puede describir con un solo número porque el lenguaje tiene muchos matices.
 - Un embedding de varias dimensiones permite capturar múltiples aspectos de significado.
 - No miramos cada número por separado → lo importante es la posición relativa de los vectores en el espacio.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Embeddings
 - ¿Cada elemento del vector representa una caracteristica (cercana o lejana)?
 - Cada elemento del vector es una coordenada.
 - En un embedding, la palabra se representa como un punto en un espacio de muchas dimensiones.
 - Cada número es una coordenada en ese espacio (igual que un punto en 2D tiene (x,y) pero aquí hay cientos de coordenadas).
 - Ejemplo en 2D (fácil de visualizar): (en 4D o más ya es imposible visualizarlos)
 - "gato" \rightarrow (2, 1)
 - "perro" \rightarrow (2.2, 1.1)
 - "avión" \rightarrow (-3, 5)
 - "Gato" y "perro" quedan cerca en el plano, "avión" queda lejos.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Embeddings
 - ¿Cada coordenada = representa una característica?
 - No necesariamente.
 - No es que el primer número sea "animal", el segundo "pelaje" o el tercero "doméstico".
 - Los modelos no aprenden significados humanos directos, sino patrones estadísticos del lenguaje.
 - Lo que buscamos es la combinación de todas las coordenadas que ubica cada palabra en un lugar donde la distancia y la dirección reflejan similitud semántica.
 - Si solo tenemos 1 dimensión (una línea), solo podemos decir "más a la izquierda" o "más a la derecha".
 - Con 2 dimensiones (un plano), ya podemos distinguir norte-sur y esteoeste.
 - Con 300 dimensiones, cada objeto (palabra) se ubica de forma que refleja muchos matices de similitud al mismo tiempo.

Terminología (más adelante veremos cada uno de estos temas en detalle)

Transformers

- Arquitectura de red neuronal (2017, "Attention is All You Need") que revolucionó NLP.
- Usa mecanismo de atención para procesar texto en paralelo y capturar relaciones de largo alcance.
- Ejemplo: en "El gato duerme en la cama", el modelo entiende que "cama" se relaciona más con "duerme" que con "El".

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- BERT (Bidirectional Encoder Representations from Transformers)
 - Modelo de lenguaje basado en la parte encoder del Transformer (Google, 2018).
 - Bidireccional: mira a la izquierda y a la derecha del token al mismo tiempo.
 - Ejemplo:
 - Frase: "El ___ duerme en la cama"
 - BERT puede predecir que la palabra faltante es "gato".
 - Uso: clasificación, extracción de entidades, búsqueda semántica, Q&A.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Loss (Función de pérdida)
 - Medida de qué tan mal lo está haciendo el modelo.
 - Matemáticamente: diferencia entre predicción y valor real.
 - Ejemplo:
 - Predicción del modelo: "positivo" con 0.7 de confianza.
 - Etiqueta real: "positivo" (=1).
 - Loss (ej. cross-entropy) = número positivo → mientras más chico, mejor.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Backpropagation
 - Algoritmo para ajustar los pesos de la red.
 - Proceso:
 - Calcular la pérdida (loss).
 - Propagar hacia atrás el gradiente $(\frac{\partial \mathrm{loss}}{\partial w})$.
 - Ajustar cada peso en dirección de menor error.
 - Ejemplo intuitivo:
 - como aprender a tirar flechas → cada vez que se falla al blanco se corrige el lanzamiento en la dirección contraria al error.

Terminología (más adelante veremos cada uno de estos temas en detalle)

Gradiente

- Pieza importante del aprendizaje en redes neuronales (incluyendo embeddings, Transformers, BERT, etc.).
- Matemáticamente: el gradiente de una función f(w) respecto a sus parámetros w es un vector de derivadas parciales.

$$abla_{\mathbf{w}} f = \left[rac{\partial f}{\partial w_1}, rac{\partial f}{\partial w_2}, \ldots, rac{\partial f}{\partial w_n}
ight]$$

- En ML: mide cómo cambia la pérdida (loss) si ajusto un poquito cada peso.
- El gradiente apunta en la dirección de máxima subida de la función de pérdida.
- Para minimizar la pérdida, caminamos en la dirección opuesta al gradiente.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Gradiente
 - Ejemplo con embeddings. Supongamos un embedding simple en 2D para la palabra "gato": $ext{vec}("gato") = (0.2, 0.5)$
 - Si el modelo predice mal, la pérdida L depende de esos valores.
 - El gradiente puede resultar en algo como:

$$abla \mathcal{L} = \left(rac{\partial \mathcal{L}}{\partial w_1}, rac{\partial \mathcal{L}}{\partial w_2}
ight) = (-0.3, 0.1)$$

- Si aumento w₁, la pérdida sube (porque el gradiente es negativo, conviene restar y hacerlo crecer).
- Si aumento w₂, la pérdida baja (gradiente positivo, conviene restar y hacerlo más chico).

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Gradiente
 - Regla básica de descenso por gradiente: $w_{
 m nuevo} = w_{
 m viejo} \eta \cdot
 abla \mathcal{L}$
 - Ejemplo numérico:
 - w=(0.2,0.5)
 - Gradiente = (-0.3, 0.1)
 - Learning rate = η =0.1
 - $W_{\text{nuevo}} = (0.2, 0.5) 0.1 \cdot (-0.3, 0.1) = (0.23, 0.49)$
 - El embedding de "gato" se mueve en el espacio vectorial para reducir la pérdida.
 - El gradiente dice cómo modificar cada peso para que el modelo se equivoque menos.
 - Como un "mapa de pendientes" que guía al entrenamiento.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Optimizador
 - Regla que usan los gradientes para actualizar los pesos.
 - Ejemplo:
 - Regla básica (SGD): $w_{
 m nuevo} = \overline{w_{
 m viejo}} \eta \cdot rac{\partial \mathcal{L}}{\partial w}$
 - η es la tasa de aprenc
 - η es un número positivo que controla la velocidad de aprendizaje del modelo.
 - Es un hiperparámetro → valores que decidimos antes del entrenamiento y que controlan cómo aprende el modelo.
 - Se define por diseño. En trabajos de NLP con Adam, se suele usar $\eta=10^{-3}(0.001)$ como valor inicial recomendado.
 - Puede ajustarse experimentalmente según el comportamiento del entrenamiento.
 - O usar usan técnicas como grid search, random search o Bayesian optimization para elegirlo automáticamente.

- η Muy baja \rightarrow lento.
- \mathbf{n} Muy alta \rightarrow inestable.
- η Óptima → balance entre velocidad y estabilidad.

- Terminología (más adelante veremos cada uno de estos temas en detalle)
- Adam (Adaptive Moment Estimation)
 - Un optimizador avanzado muy usado en Deep Learning.
 - Adapta automáticamente la tasa de aprendizaje para cada peso usando promedios de gradientes (momentum).
 - Intuición: en lugar de dar pasos iguales, da pasos "inteligentes" → más grandes en direcciones seguras, más chicos donde hay oscilaciones.
 - Entrena redes neuronales más rápido y estable que SGD puro.

- Paso1 Entrada: Texto en lenguaje humano
 - "El gato duerme en la cama"
- Paso 2 Tokenización
 - El texto se convierte en tokens (piezas de palabras).
 - Con tokenizador de sub-palabras (BPE, WordPiece).
 - Cada token se asocia a un índice en un vocabulario.
 - ["El", "gato", "duer", "me", "en", "la", "cama"]
- Paso 3 Embeddings
 - Cada token se transforma en un vector en R^{d.} Ejemplo (d=4)
 - vec("gato")=[0.23,-0.11,0.87,0.45]
 - La oración es ahora 1 matriz: cada fila es un token, cada columna una dimensión.

- Esto va al corazón de cómo un modelo de NLP aprende representaciones de palabras (embeddings).
- Embeddings (vectores de palabras)
 - Cuando transformamos un token en un vector en R^d, cada palabra queda representada como: vec("gato")=[w₁,w₂,...,w_d]
 - Los números w_i son los pesos que definen la posición de la palabra en el espacio vectorial.
- Entonces: ¿Cómo se definen esos pesos?
 - 2 grandes enfoques:
 - Embeddings preentrenados (no se entrena desde cero)
 - Embeddings entrenados junto con el modelo;

- Embeddings preentrenados (no se entrena desde cero)
 - Se entrenan sobre grandes corpus de texto (Wikipedia, noticias, libros).
 - Ejemplos: Word2Vec, GloVe, FastText, BERT embeddings.
 - Cada palabra obtiene un vector que refleja similitud semántica.
 - "gato" y "perro" tendrán vectores cercanos.
 - "gato" y "avión" estarán lejos.
 - Estos pesos vienen "listos" y se usan en el modelo como tablas de búsqueda.
 - Los pesos ya están definidos por otro entrenamiento.(¿?)

- Embeddings entrenados junto con el modelo
 - En redes neuronales (ej. Transformer, LSTM), los embeddings son parámetros inicializados aleatoriamente.
 - Al entrenar la red, los pesos se ajustan mediante backpropagation.
 - Se aprende automáticamente qué valores de los vectores hacen que el modelo minimice la pérdida (loss).
 - Aquí el modelo define los pesos a medida que aprende la tarea.
- Cómo se almacenan?

$$E \in \mathbb{R}^{|V| imes d}$$

- Se usa una matriz de embeddings:
 - |V| = tamaño del vocabulario (cantidad de palabras/tokens).
 - *d* = dimensión de cada vector.
 - Cada fila E_i corresponde al embedding del token i.
- Cuando se encuentra un token en el texto, se reemplaza por su fila correspondiente en E.

• Ejemplo: (|V|=5, d=3)

- Los pesos no tienen un significado individual.
 - El conjunto completo de coordenadas es lo que captura relaciones semánticas y sintácticas.
 - Ejemplo: vec("rey") vec("hombre") + vec("mujer") ≈ vec("reina")
- Esto se debe a la forma en que el entrenamiento ajusta esos pesos en miles de dimensiones.
- Los "pesos" de cada palabra = sus coordenadas en el espacio vectorial. Se obtienen de una matriz de embeddings.
- Pueden venir preentrenados (Word2Vec, GloVe, BERT) o se aprenden durante el entrenamiento.
- Capturan significados relativos (similitud, analogía), no un "atributo humano" en cada coordenada.

- ¿ Quién define los pesos del entrenamiento ?
- Aquí tenemos el dilema del huevo y la gallina ...
 - ¿De dónde salen los pesos iniciales de los vectores si todavía no entrenamos?
 - ¿Y cómo sabe el modelo cómo ajustarlos?
- Inicialización de los pesos
 - Al crear una matriz de embeddings $\ E \in \mathbb{R}^{|V| imes d}$
 - Cada fila (embedding de una palabra) se inicializa con valores aleatorios pequeños (normalmente distribuciones gaussiana o uniforme).
 - Al principio los vectores no tienen ningún significado.
 - Ejemplo (para vocabulario de 5 palabras, dimensión 3):

$$E = egin{bmatrix} 0.02 & -0.01 & 0.03 \ -0.04 & 0.05 & -0.02 \ 0.01 & 0.07 & -0.06 \ \cdots \ \end{bmatrix}$$

- Proceso de entrenamiento
 - Aquí entra la "gallina": el algoritmo de aprendizaje.
 - Se define una función de pérdida (loss).
 - Ejemplo: en un clasificador de sentimiento, penaliza si el modelo predice negativo cuando el texto era positivo.
 - Con cada ejemplo de entrenamiento, el modelo calcula:

$$p\'{e}rdida = \mathcal{L}(predicci\'{o}n, etiqueta\ real)$$

- Se aplica backpropagation:
- La red calcula las derivadas de la pérdida respecto a cada peso (incluidos los embeddings).
- El optimizador (ej. SGD, Adam) actualiza los pesos un poco en la dirección que reduce la pérdida:

$$w_{ ext{nuevo}} = w_{ ext{viejo}} - \eta \cdot rac{\partial \mathcal{L}}{\partial w}$$

 los vectores empiezan a moverse en el espacio hasta organizarse según la tarea.

- Resultado del aprendizaje, Después de muchas iteraciones:
 - Palabras que aparecen en contextos similares terminan con vectores cercanos.
 - Palabras opuestas (positivo ↔ negativo) se separan.
 - Relaciones semánticas aparecen "solas" porque ayudan a minimizar la pérdida.
- Entonces, quién define los pesos ?
 - Al principio: nadie → son aleatorios.
 - Durante el entrenamiento: los ajusta el algoritmo de optimización guiado por los datos y la función de pérdida.
 - Al final: los pesos reflejan la estructura estadística del lenguaje en los datos que vio el modelo.
 - El "huevo" son los pesos aleatorios iniciales.
 - La "gallina" es el entrenamiento con datos que va corrigiendo y "dando forma" a esos pesos.

- Nadie escribe los pesos de las palabras a mano.
- Los embeddings empiezan al azar.
- El entrenamiento supervisado o auto-supervisado los acomoda para capturar significados y relaciones.

- Paso 4 Positional Encoding
 - Como los Transformers no saben de orden por sí mismos, se agrega un vector de posición a cada embedding.
 - Así, el modelo distingue "gato duerme" de "duerme gato".

Paso 5 - Mecanismo de Atención

Cada token genera 3 vectores:

$$\operatorname{Atenci\'on}(Q,K,V) = \operatorname{softmax}\!\left(rac{QK^{+}}{\sqrt{d_k}}
ight)V$$

- La atención mide cuánto "mira" un token a los otros
 - Si el token es "duerme", probablemente preste más atención a "gato". Si el token es "cama", prestará atención a "en la".
- Esto permite capturar dependencias largas en la oración.

- Paso 6 Capas de Transformer
 - Se aplican varias capas de atención + feed-forward (redes densas).
 - Cada capa produce una representación contextualizada de los tokens.
 - Ejemplo: el vector de "banco" será diferente si hablamos de sentarse o dinero.
- Paso 7 Salida
 - En GPT (generación de texto):
 - El modelo predice el siguiente token con probabilidad:
 - P(token_{t+1}|tokens anteriores)
 - En BERT (comprensión de texto): el modelo puede clasificar la oración, rellenar una palabra faltante, responder preguntas, etc.
- Paso 8 Resultado
 - El Transformer devuelve: texto generado (ej: ChatGPT).
 - Etiquetas de clasificación (ej: sentimiento).
 - Respuestas a preguntas (ej: BERT en Q&A).