平成29年春 ハードウェア 温度モニタ

問2 温度モニタ (ハードウェア)

(H29 春·FE 午後間 2)

【解答】

[設問1] a-イ, b-エ, c-イ

[設問2] d-イ, e-エ

【解説】

温度モニタに関する問題である。「温度検出器の出力値を A/D 変換器を介して取り込み、対応した値を 7 セグメント LED (以下、LED という) に表示するシステム」である。過去の類題問題は LED 表示が 2 桁であったが、本問は温度の検出範囲を 8 段階のレベルに対応させて、"1"~ "8"の数字 1 桁で表示するため、内容が単純化されている。情報の表現の基礎力があれば解けるが、設問 2 では、表 2「LED と A/D 変換器の動作概要」及び表 3「擬似命令の形式と動作」を仕様から読み取り、図 3「割込みプログラムの処理の流れ」と対応できるかどうかが問われている。

最初に、図1「温度モニタのシステム構成図の一部」で示されている LED の表示内容と出力ポートのビット位置、その値(0、1)を正しく把握し、形状データ(LED のどこを表示させるかを表した 0、1 の 8 ビットデータ)を理解する必要がある。図 1 で示されている表示例 "2" における LED の表示内容、及び形状データは図 A のようになる。なお、出力ポートからのビット $0\sim7$ を LED の表示(セグメント)位置に対応させている。 設問 1 で得点できるようにしたい。

	8 ビットデータ							
ビット	7	6	5	4	3	2	1	0
形状データ	1	1	0 -	1	1	0	1	0
16 進数		I)				4	

図 A 表示例 "2" における LED の表示内容及び形状データ

[設問1]

・空欄 a:図 A で確認したことを基に考えると、LED の表示が図 2 の "6" となる場合の形状データは図 B のようになる。16 進数で「BE」となり、正解は(イ)である。

	<u></u>	8ビットデータ						
ビット	7	6	5	4	3	2	1	0
形状データ	1	0	1	1	1	1	1	0
. 16 進数	В]	<u>.</u>		

図 B LED の表示が "6" となる場合の形状データ

・空欄 b, c:表 1 には温度基準値、A/D 変換出力(2 進表記)、レベルの関係が示されている。温度の検出範囲は $0{\sim}70^\circ\mathbb{C}$ であるが、A/D 変換器によって、 $10^\circ\mathbb{C}$ ご との温度基準値の中の最も近い値に近似される。設間文の例から、「 $14^\circ\mathbb{C}$ は $10^\circ\mathbb{C}$ に、 $15^\circ\mathbb{C}$ は $20^\circ\mathbb{C}$ に、 $16^\circ\mathbb{C}$ は $20^\circ\mathbb{C}$ に近似される」ので、検出された温度の 1 桁目を四捨五入した値に近似されると理解できる。表 1 の 3 行目から 7 行目の内容が省略されているが、温度基準値は $10^\circ\mathbb{C}$ ごと、レベルは $1{\sim}8$ で、A/D 変換器出力(2 進表記)はレベルの値を-1 した 2 進表記と理解できる。したがって、表 1 で省略されている箇所を既知にした内容は、表 1 のようになる。

表A 表1の内容

温度基準値 (℃)	A/D 変換器出力(2 進表記)	レベル(LED の表示)
. 0	000	1
10	001	2
20	010	3
30	011	4
40	100	5
50	101	6
60	110	7
70	111	8

表 A から、LED の表示が "6" となる場合の A/D 変換器出力 (2 進表記) は 「101」となるので、空欄 b の正解は (エ) である。

また、検出温度の範囲は、温度基準値が 50 Cとなる場合なので、空欄 c は「45 C以上 55 C未満」の(イ)が正解となる。四捨五入による値の近似と、それが理解できていればよい。

- ア:「40°C以上 50°C未満」……温度基準値 40°C,又は 50°Cに近似される二つ の範囲にまたがっている。
- ウ:「50^{\circ}C以上 60^{\circ}C未満」……温度基準値 50^{\circ}C、又は 60^{\circ}Cに近似される二つ の範囲にまたがっている。
- エ:「55℃以上 65℃未満」……温度基準値 60℃に近似される。
- オ:「60℃以上 70℃未満」……温度基準値 60℃, 又は 70℃に近似される二つ の範囲にまたがっている。

[設問2]

割込みプログラムの処理の流れに関する内容であるが、表 2 の LED \ge A/D 変換器の動作概要、表 3 の擬似命令の形式と動作の内容を把握し、図 3 「割込みプログラムの処理の流れ」で既知となっている内容及び注釈に着目しながら、対応させればよい。

解説用として、表 2 に対応区分① \sim ⑤を設けて表 B に示す。また、図 3、表 B、表 3 を対応させたものを図 C に示す。

表 B 表 2 の動作概要と対応区分

機器	I/O ポート番号	動作概要	対応区分
LED	1	番号 1の I/O ポートに形状データを書き込むと、出力ポートの各ビットに値が設定され、LED の各セグメントの点灯と消灯が行われる。	① .
	· ·	番号 2 の I/O ポートに値 1 を書き込むと, A/D 変換が開始される。	2
A/D 変換器 —	2	番号 2 の I/O ポートから読み込んだ値が 0 ならば、変換中を示す。	3
		番号2のI/Oポートから読み込んだ値が0以外ならば、A/D変換が完了して出力値が確定していることを示す。	4
	3	A/D 変換完了後に番号 3 の I/O ポートから 読み込むと、A/D 変換器の出力値(0~7) が得られる。	⑤ ·

- ・空欄 d: 直前の処理(INPUT 2)は GR に値を設定する処理である。空欄 d は,この「INPUT 2」の処理を繰り返すかどうかの判断内容と分かる。③及び④の内容から,GR=0 なら変換中, $GR\neq0$ なら出力値が確定したことになる。つまり,"Yes"が変換中,"No"が出力値が確定したと理解できる。したがって,正解は,「GR=0」の(イ)である。なお,他の選択肢は論理的に誤りである。
- ・空欄 e:直前の処理($GR\leftarrow\alpha$)で、GR に形状データ α が設定されている。あとは、 その内容を LED 表示すればよい。このためには、OUTPUT 命令を用いて、LED に接続されている I/O ポート 1 に GR の内容を出力すればよい。したがって、 正解は「OUTPUT 1 の (\mathbf{x}) である。

図 C 図 3 の流れと表 B (表 2) 及び表 3 の記述内容との対応説明