反三角函数知识表

	名称	反正弦函数	反余弦函数	反正切函数	反余切函数(了解)
	定义	函数,叫做反正弦函数,	函数,叫做反余弦函数,	反函数,叫做反正切函	$y=\cot x(x\in(0,\pi))$ 的 反函数,叫做反余切函数,记作 $y=\arccos x$
	理解	$\arcsin x$ 表示属于 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,且正弦值 等于 x 的角	arccosx 表示属于 [0, π],且余弦值等 于 x 的角	$\arctan x$ 表示属于 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,且正切值 等于 x 的角	(a) D A I R /+ /*
	图像	$ \begin{array}{c c} & y \\ \hline & 2 \\ \hline & 0 \\ \hline & x \\ \hline \end{array} $	-1 0 1 x	0 - x /2	y Λ π π π 2 2
性质	定义域	[-1, 1]	[-1, 1]	$(-\infty, +\infty)$	$(-\infty, +\infty)$
	值域	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[0, π]	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	(0, π)
	单调性	增函数	减函数	增函数	减函数
	奇偶性	$\arcsin(-x) = -\arcsin x$	$\arccos(-x) = \pi - \arccos x$	$\arctan(-x) = -\arctan x$	$\operatorname{arccot}(-x) = \pi - \operatorname{arccot} x$
	周期性	都不是周期函数			
	直等式 〔注意	$\sin(\arcsin x) = x$ $(x \in [-1, 1])$	$\cos(\arccos x) = x$ $(x \in [-1, 1])$	$\tan(\arctan x) = x$ $(x \in \mathbb{R})$	$\cot(\operatorname{arccot} x) = x$ $(x \in \mathbb{R})$
1	舌号内	$\arcsin(\sin x) = x$ $(x \in [-\frac{\pi}{2}, \frac{\pi}{2}])$	$\arccos(\cos x) = x$ $(x \in [0, \pi])$	$\arctan(\tan x) = x$ $(x \in (-\frac{\pi}{2}, \frac{\pi}{2}))$	$\operatorname{arccot}(\cot x) = x$ $(x \in (0, \pi))$
互余恒 等式		$\arcsin x + \arccos x = \frac{\pi}{2} \ (x \in [-1, 1])$		$\arctan x + \operatorname{arccot} x = \frac{\pi}{2} \ (x \in \mathbb{R})$	