Lecture 10

- Three-Phase Circuits/Transformers

Outline--Three-Phase Circuits

- Balanced Three-Phase System
 - Balanced sources
 - Balanced loads
- Circuit analysis
 - Phase voltage/current
 - Line voltage/current

Three-Phase System (in USA)

[Source: Berkeley] Figure 10-1: Typical electrical power grid.

A 4800-V rms single-phase connected to residential user through a 20 : 1 step-down transformer

[Source: Berkeley]

Single Phase vs. Polyphase

- Households have single-phase power supply
 - This typically in a three wire form, where two 120V sources with the same phase are connected in series.
 - This allows for appliances to use either 120 or 240V
- Circuits that operate at the same frequency but with multiple sources at different phases are called <u>polyphase</u>.

Three-phase four-wire system in China

Lecture 10 6

Three-Phase Sources

 Three phase voltages are typically produced by a three-phase AC generator.

The output voltages look like below.

Lecture 10

Balanced Three-Phase Sources

- Balanced phase voltage are equal in magnitude and are out of phase with each other by 120deg
- It's easy to know $V_{an} + V_{bn} + V_{cn} = 0$
- Two sequences for the phases:

$$V_{an} = V_{p} \angle 0^{\circ} \qquad V_{an} = V_{p} \angle 0^{\circ}$$

$$V_{bn} = V_{p} \angle -120^{\circ} \qquad V_{cn} = V_{p} \angle -120^{\circ}$$

$$V_{cn} = V_{p} \angle -240^{\circ} = V_{p} \angle +120^{\circ} \qquad V_{bn} = V_{p} \angle -240^{\circ} = V_{p} \angle +120^{\circ}$$

Lecture 10

$$V_{an} = V_p \angle 0^{\circ}$$

$$V_{cn} = V_p \angle -120^{\circ}$$

$$V_{bn} = V_p \angle -240^{\circ} = V_p \angle +120$$

$$\left|V_{an}\right| = \left|V_{bn}\right| = \left|V_{cn}\right|$$

Connecting the Sources

- Three phase voltage sources can be connected by either three or four wire configurations.
 - Three-wire configuration accomplished by Delta connected source.
 - Four-wire system accomplished using a Y(Wye) connected source.

Balanced Loads

- A <u>balanced</u> load is one that has the same impedance presented to all three voltage sources.
- -- Phase impedance are equal in magnitude and in phase
- They may also be connected in either Delta or wye
 - For a balanced wye connected load: $Z_1 = Z_2 = Z_3 = Z_y$
 - For a balanced delta connected load: $Z_a = Z_b = Z_c = Z_\Delta$

 The load impedance per phase for the two load configurations can be interchanged.

Source-Load configurations

Source	Load
Y	Y
Y	Δ
Δ	Y
Δ	Δ

Lecture 10

Source-Load Configurations

Source-Load Configurations

Load Phase Currents

 \mathbf{I}_a , \mathbf{I}_b , \mathbf{I}_c (same as line currents \mathbf{I}_{L_1} , \mathbf{I}_{L_2} , and \mathbf{I}_{L_3})

Load Phase Voltages V_{aN} , V_{bN} , V_{cN}

Delta-Delta

Load Phase Currents

 \mathbf{I}_{ab} , \mathbf{I}_{bc} , \mathbf{I}_{ca}

Load Phase Voltages V_{ab} , V_{bc} , V_{ca} (same as source voltage

(same as source voltages if \mathbf{Z}_{TL} is negligible)

Balanced Y-Y connection

- Any three-phase system can be reduced to an equivalent Y-Y system.
- The load impedances Z_Y will be assumed to be balanced.
 - This can be the source Z_s , line Z_l and load Z_L together.

$$\mathbf{Z}_Y = \mathbf{Z}_s + \mathbf{Z}_\ell + \mathbf{Z}_L$$

■ How about Z_n ?

Line-to-Line Voltage

Use the positive sequence:

$$V_{an} = V_p \angle 0^{\circ}$$

$$V_{bn} = V_p \angle -120^{\circ} \quad V_{cn} = V_p \angle +120^{\circ}$$

The line to line (or line in short) voltages:

Line Currents

Lecture 10

Example

Calculate the line currents.

Lecture 10 17

Wye-∆

$$\mathbf{V}_{an} = V_{p} / 0^{\circ}$$

$$\mathbf{V}_{bn} = V_{p} / -120^{\circ}, \quad \mathbf{V}_{cn} = V_{p} / +120^{\circ}$$

$$\mathbf{V}_{ab} = \sqrt{3} V_{p} / 30^{\circ} = \mathbf{V}_{AB}, \quad \mathbf{V}_{bc} = \sqrt{3} V_{p} / -90^{\circ} = \mathbf{V}_{BC}$$

$$\mathbf{V}_{ca} = \sqrt{3} V_{p} / -150^{\circ} = \mathbf{V}_{CA}$$

$$\mathbf{I}_{AB} = \frac{\mathbf{V}_{AB}}{\mathbf{Z}_{\Delta}}, \quad \mathbf{I}_{BC} = \frac{\mathbf{V}_{BC}}{\mathbf{Z}_{\Delta}}, \quad \mathbf{I}_{CA} = \frac{\mathbf{V}_{CA}}{\mathbf{Z}_{\Delta}}$$

Wye-∆

$$\mathbf{I}_a = \mathbf{I}_{AB} - \mathbf{I}_{CA}, \qquad \mathbf{I}_b = \mathbf{I}_{BC} - \mathbf{I}_{AB}, \qquad \mathbf{I}_c = \mathbf{I}_{CA} - \mathbf{I}_{BC}$$

Since
$$I_{CA} = I_{AB} / -240^{\circ}$$
,

$$\mathbf{I}_{a} = \mathbf{I}_{AB} - \mathbf{I}_{CA} = \mathbf{I}_{AB}(1 - 1/240^{\circ})$$

= $\mathbf{I}_{AB}(1 + 0.5 - j0.866) = \mathbf{I}_{AB}\sqrt{3}/-30^{\circ}$

Δ**-**Wye

信息科学 Connection

Y-Y
$$\mathbf{V}_{an} = V_p / 0^{\circ}$$

$$\mathbf{V}_{bn} = V_p / -120^{\circ}$$

$$\mathbf{V}_{cn} = V_p / 120^{\circ}$$

$$\mathbf{V}_{cn} = V_p / 120^{\circ}$$

$$\mathbf{V}_{ca} = \mathbf{V}_{ab} / + 120^{\circ}$$
$$\mathbf{I}_{a} = \mathbf{V}_{an} / \mathbf{Z}_{V}$$

 $\mathbf{V}_{bc} = \mathbf{V}_{ab} / -120^{\circ}$

 $V_{ab} = \sqrt{3}V_{p}/30^{\circ}$

$$\mathbf{I}_a = \mathbf{V}_{an}/\mathbf{Z}_Y$$

$$\mathbf{I}_b = \mathbf{I}_a / -120^{\circ}$$
$$\mathbf{I}_c = \mathbf{I}_a / +120^{\circ}$$

$$\mathbf{V}_{ab} = \mathbf{\overline{V}}_{AB} = \sqrt{3}V_p/30^\circ$$

 $\mathbf{V}_{bc} = \mathbf{V}_{BC} = \mathbf{V}_{ab}/-120^{\circ}$

$$\mathbf{V}_{an} = V_p / 0^{\circ}$$

$$\mathbf{V}_{bn} = V_p / -120^{\circ}$$

$$\mathbf{V}_{bn} = V_n / +120^{\circ}$$

$$\mathbf{V}_{cn} = V_p / +120^{\circ}$$

$$\mathbf{I}_{AB} = \mathbf{V}_{AB} / \mathbf{Z}_{\Delta}$$

$$\mathbf{I}_{a} = \mathbf{I}_{AB} \sqrt{3} / -30^{\circ}$$

$$A_{AB} - \mathbf{V}_{AB}/\mathbf{Z}_{\Delta} - \mathbf{V}_{AB}/\mathbf{Z}_{\Delta}$$

$$\mathbf{I}_{BC} = \mathbf{V}_{BC}/\mathbf{Z}_{\Delta}$$

$$\mathbf{I}_{CA} = \mathbf{V}_{CA}/\mathbf{Z}_{\Delta}$$

 $\mathbf{I}_a = \mathbf{I}_{AB}\sqrt{3}/-30^\circ$ $I_b = I_a / -120^{\circ}$

$$\mathbf{I}_c = \mathbf{I}_a / +120^{\circ}$$

$$\Delta$$
- Δ

 $Y-\Delta$

$$\mathbf{V}_{ab} = V_p / 0^{\circ}$$

$$\mathbf{V}_{ab} = V_p / -120^{\circ}$$

$$V_{bc} = V_p / -120^{\circ}$$

$$\mathbf{V}_{ca} = V_p / +120^{\circ}$$

$$\mathbf{I}_{AB} = \mathbf{V}_{ab}/\mathbf{Z}_{\Delta}$$

$$\mathbf{I}_{BC} = \mathbf{V}_{bc}/\mathbf{Z}_{\Delta}$$

$$\mathbf{I}_{CA} = \mathbf{V}_{ca}/\mathbf{Z}_{\Delta}$$

$$\mathbf{V}_{ab} = V_p/0^\circ$$

$$\mathbf{V}_{bc} = V_p / -120^{\circ}$$

$$\mathbf{V}_{ca} = V_p / + 120^{\circ}$$

Same as phase voltages

$$\mathbf{I}_a = \mathbf{I}_{AB} \sqrt{3} / -30^{\circ}$$

$$\mathbf{I}_b = \mathbf{I}_a / -120^{\circ}$$

$$\mathbf{I}_c = \mathbf{I}_a / + 120^{\circ}$$

Same as phase voltages

$$\mathbf{I}_a = \frac{V_p / -30^\circ}{\sqrt{3} \mathbf{Z}_Y}$$

$$\mathbf{I}_b = \mathbf{I}_a / -120^{\circ}$$
$$\mathbf{I}_c = \mathbf{I}_a / +120^{\circ}$$

Outline-Transformers

- Mutual inductance (review)
- Transformers

Lecture 10 27

Review: Self Inductance

 Self inductance: reaction of the inductor to the change in current through itself.

$$v = N \frac{d\phi}{dt} = L \frac{di}{dt}, L = N \frac{d\phi}{di}$$

Mutual Inductance

 Mutual inductance: reaction of the inductor to change in current through another inductor.

$$\phi_1 = \phi_{11} + \phi_{21}$$

$$\phi_{11} = \mathcal{P}_{11} N_1 i_1, \ \phi_{21} = \mathcal{P}_{21} N_1 i_1,$$

$$\phi_1 = \mathcal{P}_1 N_1 i_1$$

$$v_{1} = \frac{d(N_{1}\phi_{1})}{dt} = N_{1}\frac{d}{dt}(\phi_{11} + \phi_{21})$$
$$= N_{1}^{2}(\mathcal{P}_{11} + \mathcal{P}_{21})\frac{di_{1}}{dt} = N_{1}^{2}\mathcal{P}_{1}\frac{di_{1}}{dt}$$

$$\phi = \mathcal{P}Ni$$

$$v_2 = \frac{d(N_2\phi_{21})}{dt} = N_2 \frac{d}{dt} (\mathcal{P}_{21}N_1i_1)$$
$$= N_2N_1\mathcal{P}_{21} \frac{di_1}{dt}$$
$$= M_{21} \frac{di_1}{dt}$$

Lecture 10

Dot Convention: Defines Directions of Windings

[Source: Berkeley]

Mutual Inductance: General Case

- Two circuits lined by a magnetic field
 - L_1, L_2 : self-inductances
 - *M*: mutual inductance
 - Dots: indicating polarity of mutually induced voltages.

Exercise

- Relate v_1 , v_2 with i_1 and i_2 .
 - In time domain
 - In phasor domain

Energy in a Coupled Circuit

The energy stored in an inductor is

 For coupled inductors, the total energy stored is

$$w = \frac{1}{2} L_1 i_1^2 + \frac{1}{2} L_2 i_2^2 \pm M i_1 i_2$$

The positive sign is selected when the currents both enter or leave the dotted terminals.

[Text, Ch. 6.5] Lecture 10

Coupling Coefficient k

The system cannot have negative energy

$$\frac{1}{2}L_{1}i_{1}^{2} + \frac{1}{2}L_{2}i_{2}^{2} - Mi_{1}i_{2} \ge 0 \qquad \Longrightarrow \qquad M \le \sqrt{L_{1}L_{2}}$$

 Define a parameter describes how closely M approaches upper limit.

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

- Coupling coefficient, $0 \le k \le 1$.
- determined by the physical configuration of the coils.

Linear Transformers

 A transformer is a magnetic device that takes advantage of mutual inductance.

Called linear if the coils are wound on a magnetically linear material,

i.e. permeability μ is constant.

Transformer Impedance

- An important parameter to know for a transformer is how the input impedance Z_{in} is seen from the source.
 - Z_{in} is important because it governs the behavior of the primary circuit.

$$\mathbf{Z}_{\text{in}} = \frac{\mathbf{V}}{\mathbf{I}_{1}} = R_{1} + j\omega L_{1} + \frac{\omega^{2}M^{2}}{R_{2} + j\omega L_{2} + \mathbf{Z}_{L}}$$

Reflected impedance from secondary to primary

Ideal Transformers

- The ideal transformer has:
 - Coils with very large reactance $(L_1, L_2, M \rightarrow \infty)$
 - Coupling coefficient k=1.
 - Primary and secondary coils are lossless, $R_1 = R_2 = 0$.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$\frac{\mathbf{V_2}}{\mathbf{V_1}} = \frac{N_2}{N_1} = n$$

Ideal Transformers II

The current is related as:

Reflected impedance

$$\mathbf{Z}_{\mathrm{in}} = \frac{\mathbf{V}_1}{\mathbf{I}_1} =$$

Ideal Autotransformer

- Autotransformer uses one winding for primary & secondary
 - It does not offer isolation!

40