Redes de Computadores Camada de Rede

Professor: Fábio Renato de Almeida

https://github.com/fabiorenatodealmeida

e-mail: fabiorenatodealmeida@hotmail.com

Bibliografia

https://media.pearsoncmg.com/ph/esm/ecs_kurose_compnetwork_8/cw/https://www.youtube.com/@JimKurose

Pilha de Protocolos

Camada de Rede - Repasse e Roteamento

Aplicação

Transporte

Serviço de comunicação entre processos: Segmentos UDP / TCP

Rede

Serviço de comunicação entre hosts: Datagramas IP

Enlace

Física

Repasse (Forwarding)

O roteador pode, também, repassar um pacote para dois ou mais enlaces de saída ou "barrar" um remetente ou pacote com destino proibido.

Algoritmos e protocolos de roteamento alimentam a Tabela de Repasse nos roteadores

Na abordagem tradicional os roteadores trocam dados entre si, mas pode-se adotar um controlador remoto que "dita" as regras de repasse para um grupo de roteadores.

Roteamento (Routing)

Funções da Camada de Rede

Redes IP

- Repasse pelo <u>endereço IP de destino</u> + <u>outros parâmetros</u> (campos no quadro/datagrama/segmento, bloqueio, balanceamento de carga, etc.)
- Alimentação da Tabela de Repasse (Roteamento)
 "A Tabela de Repasse nos roteadores é atualizada em média a cada 1..5 minutos"

Redes de circuitos virtuais: ATM, Frame Relay, MPLS

- Repasse pelo <u>identificador de conexão no pacote</u>
- Alimentação da Tabela de Repasse (Roteamento)
- Estabelecimento de conexão

Camada de Rede Modelos de Serviço em Redes IP e ATM

Arquitetura de rede	Internet	ATM	ATM
Modelo de serviço	Melhor esforço	CBR "Constant Bit Rate"	ABR "Available Bit Rate"
Garantia de largura de banda	_	Sim	Mínima
Garantia contra perda	_	Sim	-
Garantia de ordem de entrega	_	Sim	Sim
Temporização (jitter)	_	Sim	_
Indicação de congestionamento	Sim	Não haverá congestionamento	Sim

Jitter → Intervalo máximo entre a recepção de dois pacotes consecutivos

Repasses em redes de circuitos virtuais

Possibilidade de reserva de recursos pelos roteadores...

Mas também há uma carga extra no gerenciamento de circuitos virtuais imposta ao núcleo da rede.

Circuito Virtual (CV)

Cliente – R_1 – R_2 – R_3 – R_4 – Servidor

Tabela de Repasse no roteador R₁

Interface de entrada	Nº do CV de entrada	Interface de saída	Nº do CV de saída
1			
2			
2			
2			
6			
7	18	3	15
7			

Tabela de Repasse no roteador R₂

Interface de entrada	Nº do CV de entrada	Interface de saída	Nº do CV de saída
1			
2			
3			
4			
5	15	4	8

Tabela de Repasse no roteador R₁

Intervalo IP	Prefixo IP	Interface de saída
200 . 23 . 16 - 23 . 0 - 255	11001000 . 00010111 . 00010	1
200 . 23 . 24 . 0 - 255	11001000 . 00010111 . 00011000	2
200 . 23 . 24 - 31 . 0 - 255	11001000 . 00010111 . 00011	3
Qualquer outro		6

Endereço IP de destino: 200.23.22.161 = 11001000.00010111.00010 110.10100001 \(\text{Interface de saída} = 1 \)

Endereço IP de destino: 200.23.24.170 = 11001000.00010111.00011000.10101010

• Interface de saída = 2 (Regra de concordância do prefixo mais longo)

Componentes da Camada de Rede

Aplicação

Transporte

Rede

Enlace

Física

IPv4 / IPv6

- Endereçamento
- Datagrama

Protocolos de roteamento: OSPF, BGP → Tabela de Repasse

Sinalização: ICMP

Versão (4 bits): IPv4.

Comprimento do cabeçalho (4 bits): Tamanho do cabeçalho em palavras de 32 bits.

Tipo de serviço (8 bits): Datagramas com prioridade, notificação de congestionamento, etc. Política configurável no roteador (Idealmente deve-se manter a neutralidade da rede)

Comprimento do datagrama (16 bits): Tamanho total do datagrama, incluindo cabeçalho e dados (0..65535 Bytes - Raramente ultrapassa 1500 Bytes).

Identificador (16 bits), Flags (3 bits) e Deslocamento de fragmentação (13 bits): Relacionados a fragmentação de datagramas IPv4.

IPv6 não permite fragmentação em roteadores (de fato, permite, mas raramente é utilizado)

Tempo de vida (8 bits): Impede que datagramas circulem na rede para sempre.

TTL = Time-To-Live

Protocolo da camada superior (8 bits): TCP (6), UDP (17), ICMP Camada-de-Rede (1). Uma nomenclatura mais adequada seria: protocolo na carga útil (payload)

Soma de verificação do cabeçalho (16 bits): Utilizado na detecção de erros de transmissão. Notar que TCP e UDP tem uma soma de verificação sobre todo o segmento

Endereços IP de origem e destino (32 bits): Identificação do remetente e destinatário.

Opções: Parâmetros adicionais.

Datagramas IPv6 possuem cabeçalhos de tamanho fixo por razões de desempenho

Dados: Carga útil (payload) sendo transportada. Segmento TCP / UDP, mensagem ICMP.

Qual o tamanho mínimo e máximo do cabeçalho em um datagrama IPv4?

Fragmentação do datagrama IPv4

Fragmento	Identificador	Flags	Deslocamento de fragmentação "Palavras de 64 bits"	Bytes
1	90	1	0	1480
2	90	1	185	1480
3	90	0	370	1020

Se um fragmento se perder, o datagrama original deverá ser retransmitido.

Sujeito a ataques DoS (O atacante envia apenas um suposto último fragmento de um datagrama maior).

Endereçamento IPv4

Formato: a.b.c.d (32 bits) → Mais de 4 bilhões de endereços

Exemplo: 193.32.216.9 = 11000001.00100000.11011000.00001001

Notação CIDR: Classless InterDomain Routing - Roteamento Interdomínio sem Classes

a.b.c.d/x

0000000.0000000.0000000.00000000

x bits (Prefixo de rede)

32 – *x* bits (Interface de rede)

Conexão entre redes IP

1. A organização recebe uma faixa de endereços com um prefixo comum: 223.1.0.0/21

11011111.00000001.00000xxx.xxxxxxx

Faixa: 223.1.0.0 - 223.1.7.255

2. Prefixos de rede são considerados por roteadores que estão fora da organização, ou seja, o repasse é feito levando-se em conta apenas esse prefixo.

3. O restante dos bits é considerado durante o repasse de pacotes por roteadores dentro da organização.

Endereços IP privados, reservados e especiais...

Rede atual	0.0.0.0	
LAN Classe A	10.0.0.0	10.255.255.255
LAN Classe B	172.16.0.0	172.31.255.255
LAN Classe C	192.168.0.0	192.168.255.255
Multicast	224.0.0.0	239.255.255.255
Broadcast	255.255.255.255	
Reservado	240.0.0.0	255.255.255.254
Loopback (127.0.0.1)	127.0.0.0	127.255.255.255
APIPA Windows / IPv4LL	169.254.1.0	169.254.254.255

APIPA ou IPv4 Link-Local Addresses - Automatic Private IP Addressing: Quando um servidor DHCP não é encontrado, o host seleciona um endereço IP do intervalo que não esteja sendo utilizado por um host conectado a rede local. Não permite o acesso à Internet.

DHCP - Dynamic Host Configuration Protocol

Configuração de endereços IP: Manual (IP estático) ou automática (IP dinâmico).

Protocolo DHCP em ação...

NAT - Network Address Translation

Normalmente NAT é configurado em roteadores de borda (gateways).

$$(IP_{público}, porta_{pública}) \rightarrow (IP_{privado}, porta_{privada})$$

NAT - Network Address Translation

Considerações negativas sobre o NAT:

- Portas devem ser usadas para endereçar processos, não hospedeiros.
- Roteadores devem processar pacotes apenas até a camada 3.
- Viola o princípio de comunicação fim a fim, ou seja, sem a interferência de nós que modifiquem endereços IP e números de porta.
- Interfere em aplicações P2P (BitTorrent, Skype)...

Um par A, por trás de uma NAT, não pode iniciar uma conexão TCP com um par B, por trás de outra NAT. Contudo a comunicação é possível por intermédio de um servidor que não se encontra por trás de uma NAT. Os pares A e B comunicam ao servidor seus endereços públicos estabelecidos via NAT UPnP. Dessa forma os pares A e B podem comunicar-se diretamente por uma conexão TCP.

NAT UPnP (Universal Plug and Play): Protocolo que permite ao host descobrir e configurar uma NAT próxima.

Além disso, IPv6 resolve o problema da escassez de endereços IP.

ICMP - Internet Control Message Protocol

Utilizado por hospedeiros (traceroute, ping) e roteadores para gerar mensagens de controle: notificação de erros, solicitação e resposta de eco para ping, expiração TTL, etc.

Mensagens ICMP são carregadas dentro de datagramas IP.

Tipo	Código	Descrição
0	0	Resposta de eco para ping
3	0	Rede de destino inalcançável
3	1	Hospedeiro de destino inalcançável
3	2	Protocolo de destino inalcançável
3	3	Porta de destino inalcançável
8	0	Solicitação de eco
11	0	TTL expirado

Estrutura do ICMP:

- Tipo (8 bits) Tipo de mensagem.
- Código (8 bits) Informação de contexto adicional.
- Checksum (16 bits) Soma de verificação.
- Cabeçalho (32 bits) Conteúdo depende do tipo/código da mensagem ICMP.
- Dados Varia de acordo com o tipo/código da mensagem. Tipicamente um cabeçalho do datagrama IP que resultou na criação da mensagem ICMP e os primeiros 8 bytes de dados desse datagrama.

Motivação

Escassez de endereços IPv4.

De fato, o último conjunto de endereços IP de 32 bits foi disponibilizado para distribuição regional em 2011.

Características principais

- Endereçamento de 128 bits → "Cada grão de areia do planeta pode ter um endereço IP".
- Cada hospedeiro tem um endereço público e, portanto, não requer NAT.
- Introduz endereçamento do tipo anycast, que permite que um datagrama seja entregue a qualquer membro de um grupo. Exemplo: requisição HTTP ao servidor Web mais próximo.
- Cabeçalho de comprimento fixo (40 bytes) → processamento mais veloz do datagrama IP.
- Se uma fragmentação for necessária, o hospedeiro enviando o pacote recebe uma mensagem ICMPv6 informando que o pacote é muito grande e, portanto, deve providenciar datagramas menores (sobrecarga nas extremidades da rede).

Versão (4 bits): IPv6.

Classe de tráfego (8 bits): Datagramas com prioridade, de tempo real, etc.

Política configurável no roteador

Rótulo de fluxo (20 bits): Permite marcar pacotes que precisam de tratamento especial, como um serviço de qualidade não padrão (usuário da rede com alta prioridade).

Comprimento da carga útil (16 bits): Tamanho do campo de dados no datagrama.

Próximo cabeçalho (8 bits): Identifica o protocolo encapsulado (dados) - TCP, UDP, ICMP, ... ou até mesmo o campo "Opções" padrão do cabeçalho IPv4.

Limite de saltos (8 bits): TTL = Time-To-Live.

Endereços IP de origem e destino (128 bits): Identificação do remetente e destinatário.

Dados: Carga útil (payload) sendo transportada. Segmento TCP / UDP, mensagem ICMP.

$IPv4 \times IPv6$

Transição do IPv4 para o IPv6

O problema...

Transição do IPv4 para o IPv6

A solução: Túnel IP

Visão lógica IPv6 IPv6 IPv6

Visão física

Túnel

E quanto a configuração/gerenciamento do núcleo da rede?

Abordagem tradicional: Os roteadores trocam dados entre si de modo a computar a Tabela de Repasse.

OSPF (Open Shortest Path First) Age dentro de um ISP

BGP (Border Gateway Protocol) Interconecta ISPs

Repasse baseado apenas no endereço IP de destino.

Abordagem moderna SDN - Software Defined Networking:

A Tabela de Fluxo é gerenciada e repassada aos roteadores por um controlador remoto. Além do repasse tradicional, possibilita a distribuição de carga, firewall, ...

Questões de revisão

- 1. Vamos rever um pouco da terminologia usada em redes de computadores. Lembre-se de que o nome de um pacote na camada de transporte é segmento e que o nome de um pacote na camada de enlace é quadro. Qual é o nome de um pacote de camada de rede? Lembre-se de que roteadores e comutadores da camada de enlace são denominados comutadores de pacotes. Qual é a diferença fundamental entre um roteador e um comutador da camada de enlace?
- 2. Discuta por que cada porta de entrada em um roteador de alta velocidade armazena uma cópia de sombra da tabela de repasses.
- 3. Roteadores têm endereços IP? Em caso positivo, quantos?
- 4. Qual é o equivalente binário de 32 bits para o endereço IP 223.1.3.27?
- 5. Suponha que haja três roteadores entre os hospedeiros de origem e de destino. Ignorando a fragmentação, um datagrama IP enviado do hospedeiro de origem até o hospedeiro de destino transitará por quantas interfaces? Quantas tabelas de repasses serão indexadas para deslocar o datagrama desde a origem até o destino?
- 6. Suponha que uma aplicação gere blocos de 40 bytes de dados a cada 20 ms e que cada bloco seja encapsulado em um segmento TCP e, em seguida, em um datagrama IP. Que porcentagem de cada datagrama será sobrecarga e que porcentagem será dados de aplicação?

Questões de revisão

- 7. Suponha que o hospedeiro A envie ao hospedeiro B um segmento TCP encapsulado em um datagrama IP. Quando o hospedeiro B recebe o datagrama, como sua camada de rede sabe que deve passar o segmento (isto é, a carga útil do datagrama) para TCP e não para UDP ou qualquer outra coisa?
- 8. Suponha que você compre um roteador sem fio e o conecte a seu modem a cabo. Suponha também que seu ISP designe dinamicamente um endereço IP a seu dispositivo conectado (isto é, seu roteador sem fio). Suponha ainda que você tenha cinco PCs em casa e que usa 802.11 para conectá-los sem fio ao roteador. Como são designados endereços IP aos cinco PCs? O roteador sem fio usa NAT? Por quê?

