

EXPRESS MAIL NO: EV889156666US

1

SEQUENCE LISTING

<110> Gaiger, Alexander
McNeill, Patricia D.
Smithgall, Molly D.
Moulton, Gus
Vedwick, Thomas S.
Sleath, Paul R.
Mossman, Sally P.
Evans, Lawrence S.
Spies, A. Gregory
Boydston, Jeremy

<120> COMPOSITIONS AND METHODS FOR WT1
SPECIFIC IMMUNOTHERAPY

<130> 210121.465C6

<140> US 10/002, 603
<141> 2001-10-30

<150> US 09/938, 864
<151> 2001-08-24

<160> 413

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 17
<212> PRT
<213> Homo sapien

<400> 1
Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly
1 5 10 15
Gly

<210> 2
<211> 23
<212> PRT
<213> Homo sapien

<400> 2
Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro
1 5 10 15
Tyr Leu Pro Ser Cys Leu Glu
20

<210> 3
<211> 23
<212> PRT

<213> Mus musculus .
<400> 3
Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro
1 5 10 15
Tyr Leu Pro Ser Cys Leu Glu
20

<210> 4
<211> 19
<212> PRT
<213> Homo sapien

<400> 4
Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser Ser Val Lys
1 5 10 15
Trp Thr Glu

<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for use in amplifying human WT1

<400> 5
gagagtccaga cttgaaagca gt

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for use in amplifying human WT1

<400> 6
ctgagcctca gcaaattgggc

<210> 7
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for use in amplifying human WT1

<400> 7
gagcatgcat gggctccgac gtgcggg

<210> 8
<211> 25

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for use in amplifying human WT1		
<400> 8		
gggttaccca ctgaacggtc cccga		25
<210> 9		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for use in amplifying mouse WT1		
<400> 9		
tccgagccgc acctcatg		18
<210> 10		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for use in amplifying mouse WT1		
<400> 10		
gcctggatg ctggactg		18
<210> 11		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for use in amplifying mouse WT1		
<400> 11		
gagcatgcga tgggttccga cgtgcgg		27
<210> 12		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for use in amplifying mouse WT1		
<400> 12		
gggttacctc aaagcgccac gtggagttt		29
<210> 13		

<211> 17
<212> PRT
<213> Mus musculus

<400> 13
Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Ser Ser Leu Gly Gly
1 5 10 15
Gly

<210> 14
<211> 19
<212> PRT
<213> Mus musculus

<400> 14
Gly Ala Thr Leu Lys Gly Met Ala Ala Gly Ser Ser Ser Ser Val Lys
1 5 10 15
Trp Thr Glu

<210> 15
<211> 15
<212> PRT
<213> Homo sapien

<400> 15
Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
1 5 10 15

<210> 16
<211> 15
<212> PRT
<213> Mus musculus

<400> 16
Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
1 5 10 15

<210> 17
<211> 14
<212> PRT
<213> Mus musculus

<400> 17
Val Arg Arg Val Ser Gly Val Ala Pro Thr Leu Val Arg Ser
1 5 10

<210> 18
<211> 14
<212> PRT
<213> Homo sapien

<400> 18

Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser
 1 5 10

<210> 19
 <211> 15
 <212> PRT
 <213> Homo sapien

<400> 19

Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His
 1 5 10 15

<210> 20
 <211> 15
 <212> PRT
 <213> Mus musculus

<400> 20

Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His
 1 5 10 15

<210> 21
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> sense primer for amplification of
 WT1 in mouse cell lines

<400> 21
 cccaggctgc aataagagat a 21

<210> 22
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> antisense primer for amplification
 of WT1 in mouse cell lines

<400> 22
 atgttgtat ggcggaccaa t 21

<210> 23
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> sense Beta Actin primer used
 in the control reactions

<400> 23	
gtggggcgcc ccaggcacca	20
<210> 24	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense Beta Actin primer used	
in the control reactions	
<400> 24	
gtccttaatg ctacgcacga tttc	24
<210> 25	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for use in amplifying human WT1	
<400> 25	
ggcatctgag accagtgaga a	21
<210> 26	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for use in nested RT-PCR	
<400> 26	
gctgtccac ttacagatgc a	21
<210> 27	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer for use in nested RT-PCR	
<400> 27	
tcaaagcgcc agctggagtt t	21
<210> 28	
<211> 9	
<212> PRT	
<213> Homo sapien	
<400> 28	

Ala Ala Gly Ser Ser Ser Ser Val Lys
1 5

<210> 29
<211> 9
<212> PRT
<213> Homo sapien

<400> 29

Ala Ala Gln Phe Pro Asn His Ser Phe
1 5

<210> 30
<211> 9
<212> PRT
<213> Homo sapien

<400> 30

Ala Glu Pro His Glu Glu Gln Cys Leu
1 5

<210> 31
<211> 9
<212> PRT
<213> Homo sapien

<400> 31

Ala Gly Ala Cys Arg Tyr Gly Pro Phe
1 5

<210> 32
<211> 9
<212> PRT
<213> Homo sapien

<400> 32

Ala Gly Ser Ser Ser Ser Val Lys Trp
1 5

<210> 33
<211> 9
<212> PRT
<213> Homo sapien

<400> 33

Ala Ile Arg Asn Gln Gly Tyr Ser Thr
1 5

<210> 34
<211> 9
<212> PRT
<213> Homo sapien

<400> 34

Ala Leu Leu Pro Ala Val Pro Ser Leu
1 5

<210> 35
<211> 9
<212> PRT
<213> Homo sapien

<400> 35
Ala Leu Leu Pro Ala Val Ser Ser Leu
1 5

<210> 36
<211> 9
<212> PRT
<213> Homo sapien

<400> 36
Ala Gln Phe Pro Asn His Ser Phe Lys
1 5

<210> 37
<211> 9
<212> PRT
<213> Homo sapien

<400> 37
Ala Gln Trp Ala Pro Val Leu Asp Phe
1 5

<210> 38
<211> 9
<212> PRT
<213> Homo sapien

<400> 38
Ala Arg Met Phe Pro Asn Ala Pro Tyr
1 5

<210> 39
<211> 9
<212> PRT
<213> Homo sapien

<400> 39
Ala Arg Ser Asp Glu Leu Val Arg His
1 5

<210> 40
<211> 9
<212> PRT
<213> Homo sapien

<400> 40

Ala Ser Ser Gly Gln Ala Arg Met Phe
1 5

<210> 41
<211> 9
<212> PRT
<213> Homo sapien

<400> 41
Ala Tyr Gly Ser Leu Gly Gly Pro Ala
1 5

<210> 42
<211> 9
<212> PRT
<213> Homo sapien

<400> 42
Ala Tyr Pro Gly Cys Asn Lys Arg Tyr
1 5

<210> 43
<211> 9
<212> PRT
<213> Homo sapien

<400> 43
Cys Ala Leu Pro Val Ser Gly Ala Ala
1 5

<210> 44
<211> 9
<212> PRT
<213> Homo sapien

<400> 44
Cys Ala Tyr Pro Gly Cys Asn Lys Arg
1 5

<210> 45
<211> 9
<212> PRT
<213> Homo sapien

<400> 45
Cys His Thr Pro Thr Asp Ser Cys Thr
1 5

<210> 46
<211> 9
<212> PRT
<213> Homo sapien

<400> 46

Cys Lys Thr Cys Gln Arg Lys Phe Ser
1 5

<210> 47
<211> 9
<212> PRT
<213> Homo sapien

<400> 47
Cys Leu Glu Ser Gln Pro Ala Ile Arg
1 5

<210> 48
<211> 9
<212> PRT
<213> Homo sapien

<400> 48
Cys Leu Ser Ala Phe Thr Val His Phe
1 5

<210> 49
<211> 9
<212> PRT
<213> Homo sapien

<400> 49
Cys Met Thr Trp Asn Gln Met Asn Leu
1 5

<210> 50
<211> 9
<212> PRT
<213> Homo sapien

<400> 50
Cys Arg Trp Pro Ser Cys Gln Lys Lys
1 5

<210> 51
<211> 9
<212> PRT
<213> Homo sapien

<400> 51
Cys Arg Tyr Gly Pro Phe Gly Pro Pro
1 5

<210> 52
<211> 9
<212> PRT
<213> Homo sapien

<400> 52

Cys Thr Gly Ser Gln Ala Leu Leu Leu
1 5

<210> 53
<211> 9
<212> PRT
<213> Homo sapien

<400> 53
Asp Glu Leu Val Arg His His Asn Met
1 5

<210> 54
<211> 9
<212> PRT
<213> Homo sapien

<400> 54
Asp Phe Ala Pro Pro Gly Ala Ser Ala
1 5

<210> 55
<211> 9
<212> PRT
<213> Homo sapien

<400> 55
Asp Phe Lys Asp Cys Glu Arg Arg Phe
1 5

<210> 56
<211> 9
<212> PRT
<213> Homo sapien

<400> 56
Asp Gly Thr Pro Ser Tyr Gly His Thr
1 5

<210> 57
<211> 9
<212> PRT
<213> Homo sapien

<400> 57
Asp His Leu Lys Thr His Thr Arg Thr
1 5

<210> 58
<211> 9
<212> PRT
<213> Homo sapien

<400> 58

Asp Leu Asn Ala Leu Leu Pro Ala Val
1 5

<210> 59
<211> 9
<212> PRT
<213> Homo sapien

<400> 59
Asp Pro Met Gly Gln Gln Gly Ser Leu
1 5

<210> 60
<211> 9
<212> PRT
<213> Homo sapien

<400> 60
Asp Gln Leu Lys Arg His Gln Arg Arg
1 5

<210> 61
<211> 9
<212> PRT
<213> Homo sapien

<400> 61
Asp Ser Cys Thr Gly Ser Gln Ala Leu
1 5

<210> 62
<211> 9
<212> PRT
<213> Homo sapien

<400> 62
Asp Val Arg Asp Leu Asn Ala Leu Leu
1 5

<210> 63
<211> 9
<212> PRT
<213> Homo sapien

<400> 63
Asp Val Arg Arg Val Pro Gly Val Ala
1 5

<210> 64
<211> 9
<212> PRT
<213> Homo sapien

<400> 64

Glu Asp Pro Met Gly Gln Gln Gly Ser
1 5

<210> 65
<211> 9
<212> PRT
<213> Homo sapien

<400> 65
Glu Glu Gln Cys Leu Ser Ala Phe Thr
1 5

<210> 66
<211> 9
<212> PRT
<213> Homo sapien

<400> 66
Glu Lys Pro Tyr Gln Cys Asp Phe Lys
1 5

<210> 67
<211> 9
<212> PRT
<213> Homo sapien

<400> 67
Glu Lys Arg Pro Phe Met Cys Ala Tyr
1 5

<210> 68
<211> 9
<212> PRT
<213> Homo sapien

<400> 68
Glu Pro His Glu Glu Gln Cys Leu Ser
1 5

<210> 69
<211> 9
<212> PRT
<213> Homo sapien

<400> 69
Glu Gln Cys Leu Ser Ala Phe Thr Val
1 5

<210> 70
<211> 9
<212> PRT
<213> Homo sapien

<400> 70

Glu Ser Asp Asn His Thr Ala Pro Ile
1 5

<210> 71
<211> 9
<212> PRT
<213> Homo sapien

<400> 71

Glu Ser Asp Asn His Thr Thr Pro Ile
1 5

<210> 72
<211> 9
<212> PRT
<213> Homo sapien

<400> 72

Glu Ser Gln Pro Ala Ile Arg Asn Gln
1 5

<210> 73
<211> 9
<212> PRT
<213> Homo sapien

<400> 73

Glu Thr Ser Glu Lys Arg Pro Phe Met
1 5

<210> 74
<211> 9
<212> PRT
<213> Homo sapien

<400> 74

Phe Ala Pro Pro Gly Ala Ser Ala Tyr
1 5

<210> 75
<211> 9
<212> PRT
<213> Homo sapien

<400> 75

Phe Ala Arg Ser Asp Glu Leu Val Arg
1 5

<210> 76
<211> 9
<212> PRT
<213> Homo sapien

<400> 76

Phe Gly Pro Pro Pro Pro Ser Gln Ala
1 5

<210> 77
<211> 9
<212> PRT
<213> Homo sapien

<400> 77
Phe Lys Asp Cys Glu Arg Arg Phe Ser
1 5

<210> 78
<211> 9
<212> PRT
<213> Homo sapien

<400> 78
Phe Lys Leu Ser His Leu Gln Met His
1 5

<210> 79
<211> 9
<212> PRT
<213> Homo sapien

<400> 79
Phe Pro Asn Ala Pro Tyr Leu Pro Ser
1 5

<210> 80
<211> 9
<212> PRT
<213> Homo sapien

<400> 80
Phe Gln Cys Lys Thr Cys Gln Arg Lys
1 5

<210> 81
<211> 9
<212> PRT
<213> Homo sapien

<400> 81
Phe Arg Gly Ile Gln Asp Val Arg Arg
1 5

<210> 82
<211> 9
<212> PRT
<213> Homo sapien

<400> 82

Phe Ser Gly Gln Phe Thr Gly Thr Ala
1 5

<210> 83
<211> 9
<212> PRT
<213> Homo sapien

<400> 83

Phe Ser Arg Ser Asp Gln Leu Lys Arg
1 5

<210> 84
<211> 9
<212> PRT
<213> Homo sapien

<400> 84

Phe Thr Gly Thr Ala Gly Ala Cys Arg
1 5

<210> 85
<211> 9
<212> PRT
<213> Homo sapien

<400> 85

Phe Thr Val His Phe Ser Gly Gln Phe
1 5

<210> 86
<211> 9
<212> PRT
<213> Homo sapien

<400> 86

Gly Ala Ala Gln Trp Ala Pro Val Leu
1 5

<210> 87
<211> 9
<212> PRT
<213> Homo sapien

<400> 87

Gly Ala Glu Pro His Glu Glu Gln Cys
1 5

<210> 88
<211> 9
<212> PRT
<213> Homo sapien

<400> 88

Gly Ala Thr Leu Lys Gly Val Ala Ala
1 5

<210> 89
<211> 9
<212> PRT
<213> Homo sapien

<400> 89

Gly Cys Ala Leu Pro Val Ser Gly Ala
1 5

<210> 90
<211> 9
<212> PRT
<213> Homo sapien

<400> 90

Gly Cys Asn Lys Arg Tyr Phe Lys Leu
1 5

<210> 91
<211> 9
<212> PRT
<213> Homo sapien

<400> 91

Gly Glu Lys Pro Tyr Gln Cys Asp Phe
1 5

<210> 92
<211> 9
<212> PRT
<213> Homo sapien

<400> 92

Gly Gly Gly Gly Cys Ala Leu Pro Val
1 5

<210> 93
<211> 9
<212> PRT
<213> Homo sapien

<400> 93

Gly Gly Pro Ala Pro Pro Pro Ala Pro
1 5

<210> 94
<211> 9
<212> PRT
<213> Homo sapien

<400> 94

Gly His Thr Pro Ser His His Ala Ala
1 5

<210> 95
<211> 9
<212> PRT
<213> Homo sapien

<400> 95
Gly Lys Thr Ser Glu Lys Pro Phe Ser
1 5

<210> 96
<211> 9
<212> PRT
<213> Homo sapien

<400> 96
Gly Pro Phe Gly Pro Pro Pro Pro Ser
1 5

<210> 97
<211> 9
<212> PRT
<213> Homo sapien

<400> 97
Gly Pro Pro Pro Pro Ser Gln Ala Ser
1 5

<210> 98
<211> 9
<212> PRT
<213> Homo sapien

<400> 98
Gly Gln Ala Arg Met Phe Pro Asn Ala
1 5

<210> 99
<211> 9
<212> PRT
<213> Homo sapien

<400> 99
Gly Gln Phe Thr Gly Thr Ala Gly Ala
1 5

<210> 100
<211> 9
<212> PRT
<213> Homo sapien

<400> 100

Gly Gln Ser Asn His Ser Thr Gly Tyr
1 5

<210> 101
<211> 9
<212> PRT
<213> Homo sapien

Gly Ser Asp Val Arg Asp Leu Asn Ala
1 5

<210> 102
<211> 9
<212> PRT
<213> Homo sapien

Gly Ser Gln Ala Leu Leu Leu Arg Thr
1 5

<210> 103
<211> 9
<212> PRT
<213> Homo sapien

Gly Val Phe Arg Gly Ile Gln Asp Val
1 5

<210> 104
<211> 9
<212> PRT
<213> Homo sapien

Gly Val Lys Pro Phe Gln Cys Lys Thr
1 5

<210> 105
<211> 9
<212> PRT
<213> Homo sapien

Gly Tyr Glu Ser Asp Asn His Thr Ala
1 5

<210> 106
<211> 9
<212> PRT
<213> Homo sapien

<400> 106

Gly Tyr Glu Ser Asp Asn His Thr Thr
1 5

<210> 107
<211> 9
<212> PRT
<213> Homo sapien

<400> 107
His Glu Glu Gln Cys Leu Ser Ala Phe
1 5

<210> 108
<211> 9
<212> PRT
<213> Homo sapien

<400> 108
His His Asn Met His Gln Arg Asn Met
1 5

<210> 109
<211> 9
<212> PRT
<213> Homo sapien

<400> 109
His Gln Arg Arg His Thr Gly Val Lys
1 5

<210> 110
<211> 9
<212> PRT
<213> Homo sapien

<400> 110
His Ser Phe Lys His Glu Asp Pro Met
1 5

<210> 111
<211> 9
<212> PRT
<213> Homo sapien

<400> 111
His Ser Arg Lys His Thr Gly Glu Lys
1 5

<210> 112
<211> 9
<212> PRT
<213> Homo sapien

<400> 112

His Thr Gly Glu Lys Pro Tyr Gln Cys
1 5

<210> 113
<211> 9
<212> PRT
<213> Homo sapien

<400> 113
His Thr His Gly Val Phe Arg Gly Ile
1 5

<210> 114
<211> 9
<212> PRT
<213> Homo sapien

<400> 114
His Thr Arg Thr His Thr Gly Lys Thr
1 5

<210> 115
<211> 9
<212> PRT
<213> Homo sapien

<400> 115
His Thr Thr Pro Ile Leu Cys Gly Ala
1 5

<210> 116
<211> 9
<212> PRT
<213> Homo sapien

<400> 116
Ile Leu Cys Gly Ala Gln Tyr Arg Ile
1 5

<210> 117
<211> 9
<212> PRT
<213> Homo sapien

<400> 117
Ile Arg Asn Gln Gly Tyr Ser Thr Val
1 5

<210> 118
<211> 9
<212> PRT
<213> Homo sapien

<400> 118

Lys Asp Cys Glu Arg Arg Phe Ser Arg
1 5

<210> 119
<211> 9
<212> PRT
<213> Homo sapien

<400> 119
Lys Phe Ala Arg Ser Asp Glu Leu Val
1 5

<210> 120
<211> 9
<212> PRT
<213> Homo sapien

<400> 120
Lys Phe Ser Arg Ser Asp His Leu Lys
1 5

<210> 121
<211> 9
<212> PRT
<213> Homo sapien

<400> 121
Lys His Glu Asp Pro Met Gly Gln Gln
1 5

<210> 122
<211> 9
<212> PRT
<213> Homo sapien

<400> 122
Lys Lys Phe Ala Arg Ser Asp Glu Leu
1 5

<210> 123
<211> 9
<212> PRT
<213> Homo sapien

<400> 123
Lys Pro Phe Ser Cys Arg Trp Pro Ser
1 5

<210> 124
<211> 9
<212> PRT
<213> Homo sapien

<400> 124

Lys Pro Tyr Gln Cys Asp Phe Lys Asp
1 5

<210> 125
<211> 9
<212> PRT
<213> Homo sapien

<400> 125
Lys Gln Glu Pro Ser Trp Gly Gly Ala
1 5

<210> 126
<211> 9
<212> PRT
<213> Homo sapien

<400> 126
Lys Arg His Gln Arg Arg His Thr Gly
1 5

<210> 127
<211> 9
<212> PRT
<213> Homo sapien

<400> 127
Lys Arg Tyr Phe Lys Leu Ser His Leu
1 5

<210> 128
<211> 9
<212> PRT
<213> Homo sapien

<400> 128
Lys Thr Cys Gln Arg Lys Phe Ser Arg
1 5

<210> 129
<211> 9
<212> PRT
<213> Homo sapien

<400> 129
Lys Thr Ser Glu Lys Pro Phe Ser Cys
1 5

<210> 130
<211> 9
<212> PRT
<213> Homo sapien

<400> 130

Leu Asp Phe Ala Pro Pro Gly Ala Ser
1 5

<210> 131
<211> 9
<212> PRT
<213> Homo sapien

<400> 131
Leu Glu Cys Met Thr Trp Asn Gln Met
1 5

<210> 132
<211> 9
<212> PRT
<213> Homo sapien

<400> 132
Leu Glu Ser Gln Pro Ala Ile Arg Asn
1 5

<210> 133
<211> 9
<212> PRT
<213> Homo sapien

<400> 133
Leu Gly Ala Thr Leu Lys Gly Val Ala
1 5

<210> 134
<211> 9
<212> PRT
<213> Homo sapien

<400> 134
Leu Gly Gly Gly Gly Cys Ala Leu
1 5

<210> 135
<211> 9
<212> PRT
<213> Homo sapien

<400> 135
Leu Lys Gly Val Ala Ala Gly Ser Ser
1 5

<210> 136
<211> 9
<212> PRT
<213> Homo sapien

<400> 136

Leu Lys Arg His Gln Arg Arg His Thr
1 5

<210> 137
<211> 9
<212> PRT
<213> Homo sapien

<400> 137
Leu Lys Thr His Thr Arg Thr His Thr
1 5

<210> 138
<211> 9
<212> PRT
<213> Homo sapien

<400> 138
Leu Pro Val Ser Gly Ala Ala Gln Trp
1 5

<210> 139
<211> 9
<212> PRT
<213> Homo sapien

<400> 139
Leu Gln Met His Ser Arg Lys His Thr
1 5

<210> 140
<211> 9
<212> PRT
<213> Homo sapien

<400> 140
Leu Arg Thr Pro Tyr Ser Ser Asp Asn
1 5

<210> 141
<211> 9
<212> PRT
<213> Homo sapien

<400> 141
Leu Ser His Leu Gln Met His Ser Arg
1 5

<210> 142
<211> 9
<212> PRT
<213> Homo sapien

<400> 142

Met Cys Ala Tyr Pro Gly Cys Asn Lys
1 5

<210> 143
<211> 9
<212> PRT
<213> Homo sapien

<400> 143

Met His Gln Arg Asn Met Thr Lys Leu
1 5

<210> 144
<211> 9
<212> PRT
<213> Homo sapien

<400> 144

Asn Ala Pro Tyr Leu Pro Ser Cys Leu
1 5

<210> 145
<211> 9
<212> PRT
<213> Homo sapien

<400> 145

Asn Lys Arg Tyr Phe Lys Leu Ser His
1 5

<210> 146
<211> 9
<212> PRT
<213> Homo sapien

<400> 146

Asn Leu Gly Ala Thr Leu Lys Gly Val
1 5

<210> 147
<211> 9
<212> PRT
<213> Homo sapien

<400> 147

Asn Leu Tyr Gln Met Thr Ser Gln Leu
1 5

<210> 148
<211> 9
<212> PRT
<213> Homo sapien

<400> 148

Asn Met His Gln Arg Asn Met Thr Lys
1 5

<210> 149
<211> 9
<212> PRT
<213> Homo sapien

<400> 149
Asn Met Thr Lys Leu Gln Leu Ala Leu
1 5

<210> 150
<211> 9
<212> PRT
<213> Homo sapien

<400> 150
Asn Gln Gly Tyr Ser Thr Val Thr Phe
1 5

<210> 151
<211> 9
<212> PRT
<213> Homo sapien

<400> 151
Asn Gln Met Asn Leu Gly Ala Thr Leu
1 5

<210> 152
<211> 9
<212> PRT
<213> Homo sapien

<400> 152
Pro Ala Ile Arg Asn Gln Gly Tyr Ser
1 5

<210> 153
<211> 9
<212> PRT
<213> Homo sapien

<400> 153
Pro Gly Ala Ser Ala Tyr Gly Ser Leu
1 5

<210> 154
<211> 9
<212> PRT
<213> Homo sapien

<400> 154

Pro His Glu Glu Gln Cys Leu Ser Ala
1 5

<210> 155
<211> 9
<212> PRT
<213> Homo sapien

<400> 155

Pro Ile Leu Cys Gly Ala Gln Tyr Arg
1 5

<210> 156
<211> 9
<212> PRT
<213> Homo sapien

<400> 156

Pro Pro Pro Pro His Ser Phe Ile Lys
1 5

<210> 157
<211> 9
<212> PRT
<213> Homo sapien

<400> 157

Pro Pro Pro Pro Pro His Ser Phe Ile
1 5

<210> 158
<211> 9
<212> PRT
<213> Homo sapien

<400> 158

Pro Pro Pro Pro Pro Pro His Ser Phe
1 5

<210> 159
<211> 9
<212> PRT
<213> Homo sapien

<400> 159

Pro Ser Cys Gln Lys Lys Phe Ala Arg
1 5

<210> 160
<211> 9
<212> PRT
<213> Homo sapien

<400> 160

Gln Ala Leu Leu Leu Arg Thr Pro Tyr
1 5

<210> 161
<211> 9
<212> PRT
<213> Homo sapien

<400> 161
Gln Ala Ser Ser Gly Gln Ala Arg Met
1 5

<210> 162
<211> 9
<212> PRT
<213> Homo sapien

<400> 162
Gln Cys Asp Phe Lys Asp Cys Glu Arg
1 5

<210> 163
<211> 9
<212> PRT
<213> Homo sapien

<400> 163
Gln Cys Lys Thr Cys Gln Arg Lys Phe
1 5

<210> 164
<211> 9
<212> PRT
<213> Homo sapien

<400> 164
Gln Asp Val Arg Arg Val Pro Gly Val
1 5

<210> 165
<211> 9
<212> PRT
<213> Homo sapien

<400> 165
Gln Phe Thr Gly Thr Ala Gly Ala Cys
1 5

<210> 166
<211> 9
<212> PRT
<213> Homo sapien

<400> 166

Gln Gly Ser Leu Gly Glu Gln Gln Tyr
1 5

<210> 167
<211> 9
<212> PRT
<213> Homo sapien

<400> 167

Gln Leu Glu Cys Met Thr Trp Asn Gln
1 5

<210> 168
<211> 9
<212> PRT
<213> Homo sapien

<400> 168

Gln Met Asn Leu Gly Ala Thr Leu Lys
1 5

<210> 169
<211> 9
<212> PRT
<213> Homo sapien

<400> 169

Gln Met Thr Ser Gln Leu Glu Cys Met
1 5

<210> 170
<211> 9
<212> PRT
<213> Homo sapien

<400> 170

Gln Pro Ala Ile Arg Asn Gln Gly Tyr
1 5

<210> 171
<211> 9
<212> PRT
<213> Homo sapien

<400> 171

Gln Gln Tyr Ser Val Pro Pro Pro Val
1 5

<210> 172
<211> 9
<212> PRT
<213> Homo sapien

<400> 172

Gln Arg Lys Phe Ser Arg Ser Asp His
1 5

<210> 173
<211> 9
<212> PRT
<213> Homo sapien

<400> 173

Gln Arg Asn Met Thr Lys Leu Gln Leu
1 5

<210> 174
<211> 9
<212> PRT
<213> Homo sapien

<400> 174

Gln Trp Ala Pro Val Leu Asp Phe Ala
1 5

<210> 175
<211> 9
<212> PRT
<213> Homo sapien

<400> 175

Gln Tyr Arg Ile His Thr His Gly Val
1 5

<210> 176
<211> 9
<212> PRT
<213> Homo sapien

<400> 176

Gln Tyr Ser Val Pro Pro Pro Val Tyr
1 5

<210> 177
<211> 9
<212> PRT
<213> Homo sapien

<400> 177

Arg Asp Leu Asn Ala Leu Leu Pro Ala
1 5

<210> 178
<211> 9
<212> PRT
<213> Homo sapien

<400> 178

Arg Phe Ser Arg Ser Asp Gln Leu Lys
1 5

<210> 179
<211> 9
<212> PRT
<213> Homo sapien

<400> 179

Arg Gly Ile Gln Asp Val Arg Arg Val
1 5

<210> 180
<211> 9
<212> PRT
<213> Homo sapien

<400> 180

Arg His His Asn Met His Gln Arg Asn
1 5

<210> 181
<211> 9
<212> PRT
<213> Homo sapien

<400> 181

Arg His Gln Arg Arg His Thr Gly Val
1 5

<210> 182
<211> 9
<212> PRT
<213> Homo sapien

<400> 182

Arg Ile His Thr His Gly Val Phe Arg
1 5

<210> 183
<211> 9
<212> PRT
<213> Homo sapien

<400> 183

Arg Lys Phe Ser Arg Ser Asp His Leu
1 5

<210> 184
<211> 9
<212> PRT
<213> Homo sapien

<400> 184

Arg Lys His Thr Gly Glu Lys Pro Tyr
1 5

<210> 185
<211> 9
<212> PRT
<213> Homo sapien

<400> 185
Arg Met Phe Pro Asn Ala Pro Tyr Leu
1 5

<210> 186
<211> 9
<212> PRT
<213> Homo sapien

<400> 186
Arg Asn Met Thr Lys Leu Gln Leu Ala
1 5

<210> 187
<211> 9
<212> PRT
<213> Homo sapien

<400> 187
Arg Arg Phe Ser Arg Ser Asp Gln Leu
1 5

<210> 188
<211> 9
<212> PRT
<213> Homo sapien

<400> 188
Arg Arg His Thr Gly Val Lys Pro Phe
1 5

<210> 189
<211> 9
<212> PRT
<213> Homo sapien

<400> 189
Arg Arg Val Pro Gly Val Ala Pro Thr
1 5

<210> 190
<211> 9
<212> PRT
<213> Homo sapien

<400> 190

Arg Ser Ala Ser Glu Thr Ser Glu Lys
1 5

<210> 191
<211> 9
<212> PRT
<213> Homo sapien

<400> 191
Arg Ser Asp Glu Leu Val Arg His His
1 5

<210> 192
<211> 9
<212> PRT
<213> Homo sapien

<400> 192
Arg Ser Asp His Leu Lys Thr His Thr
1 5

<210> 193
<211> 9
<212> PRT
<213> Homo sapien

<400> 193
Arg Ser Asp Gln Leu Lys Arg His Gln
1 5

<210> 194
<211> 9
<212> PRT
<213> Homo sapien

<400> 194
Arg Thr Pro Tyr Ser Ser Asp Asn Leu
1 5

<210> 195
<211> 9
<212> PRT
<213> Homo sapien

<400> 195
Arg Val Pro Gly Val Ala Pro Thr Leu
1 5

<210> 196
<211> 9
<212> PRT
<213> Homo sapien

<400> 196

Arg Trp Pro Ser Cys Gln Lys Lys Phe
1 5

<210> 197
<211> 9
<212> PRT
<213> Homo sapien

<400> 197
Ser Ala Ser Glu Thr Ser Glu Lys Arg
1 5

<210> 198
<211> 9
<212> PRT
<213> Homo sapien

<400> 198
Ser Cys Leu Glu Ser Gln Pro Ala Ile
1 5

<210> 199
<211> 9
<212> PRT
<213> Homo sapien

<400> 199
Ser Cys Leu Glu Ser Gln Pro Thr Ile
1 5

<210> 200
<211> 9
<212> PRT
<213> Homo sapien

<400> 200
Ser Cys Gln Lys Lys Phe Ala Arg Ser
1 5

<210> 201
<211> 9
<212> PRT
<213> Homo sapien

<400> 201
Ser Cys Arg Trp Pro Ser Cys Gln Lys
1 5

<210> 202
<211> 9
<212> PRT
<213> Homo sapien

<400> 202

Ser Cys Thr Gly Ser Gln Ala Leu Leu
1 5

<210> 203
<211> 9
<212> PRT
<213> Homo sapien

<400> 203

Ser Asp Glu Leu Val Arg His His Asn
1 5

<210> 204
<211> 9
<212> PRT
<213> Homo sapien

<400> 204

Ser Asp Asn His Thr Thr Pro Ile Leu
1 5

<210> 205
<211> 9
<212> PRT
<213> Homo sapien

<400> 205

Ser Asp Asn Leu Tyr Gln Met Thr Ser
1 5

<210> 206
<211> 9
<212> PRT
<213> Homo sapien

<400> 206

Ser Asp Val Arg Asp Leu Asn Ala Leu
1 5

<210> 207
<211> 9
<212> PRT
<213> Homo sapien

<400> 207

Ser Glu Lys Pro Phe Ser Cys Arg Trp
1 5

<210> 208
<211> 9
<212> PRT
<213> Homo sapien

<400> 208

Ser Glu Lys Arg Pro Phe Met Cys Ala
1 5

<210> 209
<211> 9
<212> PRT
<213> Homo sapien

<400> 209

Ser Glu Thr Ser Glu Lys Arg Pro Phe
1 5

<210> 210
<211> 9
<212> PRT
<213> Homo sapien

<400> 210

Ser Phe Ile Lys Gln Glu Pro Ser Trp
1 5

<210> 211
<211> 9
<212> PRT
<213> Homo sapien

<400> 211

Ser Gly Ala Ala Gln Trp Ala Pro Val
1 5

<210> 212
<211> 9
<212> PRT
<213> Homo sapien

<400> 212

Ser Gly Gln Ala Arg Met Phe Pro Asn
1 5

<210> 213
<211> 9
<212> PRT
<213> Homo sapien

<400> 213

Ser His His Ala Ala Gln Phe Pro Asn
1 5

<210> 214
<211> 9
<212> PRT
<213> Homo sapien

<400> 214

Ser Leu Gly Glu Gln Gln Tyr Ser Val
1 5

<210> 215
<211> 9
<212> PRT
<213> Homo sapien

<400> 215
Ser Leu Gly Gly Gly Gly Cys Ala
1 5

<210> 216
<211> 9
<212> PRT
<213> Homo sapien

<400> 216
Ser Gln Ala Ser Ser Gly Gln Ala Arg
1 5

<210> 217
<211> 9
<212> PRT
<213> Homo sapien

<400> 217
Ser Ser Asp Asn Leu Tyr Gln Met Thr
1 5

<210> 218
<211> 9
<212> PRT
<213> Homo sapien

<400> 218
Ser Val Pro Pro Pro Val Tyr Gly Cys
1 5

<210> 219
<211> 9
<212> PRT
<213> Homo sapien

<400> 219
Thr Cys Gln Arg Lys Phe Ser Arg Ser
1 5

<210> 220
<211> 9
<212> PRT
<213> Homo sapien

<400> 220

Thr Asp Ser Cys Thr Gly Ser Gln Ala
1 5

<210> 221
<211> 9
<212> PRT
<213> Homo sapien

<400> 221
Thr Glu Gly Gln Ser Asn His Ser Thr
1 5

<210> 222
<211> 9
<212> PRT
<213> Homo sapien

<400> 222
Thr Gly Lys Thr Ser Glu Lys Pro Phe
1 5

<210> 223
<211> 9
<212> PRT
<213> Homo sapien

<400> 223
Thr Gly Ser Gln Ala Leu Leu Leu Arg
1 5

<210> 224
<211> 9
<212> PRT
<213> Homo sapien

<400> 224
Thr Gly Thr Ala Gly Ala Cys Arg Tyr
1 5

<210> 225
<211> 9
<212> PRT
<213> Homo sapien

<400> 225
Thr Gly Tyr Glu Ser Asp Asn His Thr
1 5

<210> 226
<211> 9
<212> PRT
<213> Homo sapien

<400> 226

Thr Leu Val Arg Ser Ala Ser Glu Thr
1 5

<210> 227
<211> 9
<212> PRT
<213> Homo sapien

<400> 227

Thr Pro Ile Leu Cys Gly Ala Gln Tyr
1 5

<210> 228
<211> 9
<212> PRT
<213> Homo sapien

<400> 228

Thr Pro Ser His His Ala Ala Gln Phe
1 5

<210> 229
<211> 9
<212> PRT
<213> Homo sapien

<400> 229

Thr Pro Ser Tyr Gly His Thr Pro Ser
1 5

<210> 230
<211> 9
<212> PRT
<213> Homo sapien

<400> 230

Thr Pro Thr Asp Ser Cys Thr Gly Ser
1 5

<210> 231
<211> 9
<212> PRT
<213> Homo sapien

<400> 231

Thr Pro Tyr Ser Ser Asp Asn Leu Tyr
1 5

<210> 232
<211> 9
<212> PRT
<213> Homo sapien

<400> 232

Thr Ser Glu Lys Pro Phe Ser Cys Arg
1 5

<210> 233
<211> 9
<212> PRT
<213> Homo sapien

<400> 233

Thr Ser Glu Lys Arg Pro Phe Met Cys
1 5

<210> 234
<211> 9
<212> PRT
<213> Homo sapien

<400> 234

Thr Ser Gln Leu Glu Cys Met Thr Trp
1 5

<210> 235
<211> 9
<212> PRT
<213> Homo sapien

<400> 235

Thr Val His Phe Ser Gly Gln Phe Thr
1 5

<210> 236
<211> 9
<212> PRT
<213> Homo sapien

<400> 236

Val Ala Ala Gly Ser Ser Ser Ser Val
1 5

<210> 237
<211> 9
<212> PRT
<213> Homo sapien

<400> 237

Val Ala Pro Thr Leu Val Arg Ser Ala
1 5

<210> 238
<211> 9
<212> PRT
<213> Homo sapien

<400> 238

Val Phe Arg Gly Ile Gln Asp Val Arg
1 5

<210> 239
<211> 9
<212> PRT
<213> Homo sapien

<400> 239
Val Lys Pro Phe Gln Cys Lys Thr Cys
1 5

<210> 240
<211> 9
<212> PRT
<213> Homo sapien

<400> 240
Val Lys Trp Thr Glu Gly Gln Ser Asn
1 5

<210> 241
<211> 9
<212> PRT
<213> Homo sapien

<400> 241
Val Leu Asp Phe Ala Pro Pro Gly Ala
1 5

<210> 242
<211> 9
<212> PRT
<213> Homo sapien

<400> 242
Val Pro Gly Val Ala Pro Thr Leu Val
1 5

<210> 243
<211> 9
<212> PRT
<213> Homo sapien

<400> 243
Val Arg His His Asn Met His Gln Arg
1 5

<210> 244
<211> 9
<212> PRT
<213> Homo sapien

<400> 244

Val Thr Phe Asp Gly Thr Pro Ser Tyr
1 5

<210> 245
<211> 9
<212> PRT
<213> Homo sapien

<400> 245
Trp Asn Gln Met Asn Leu Gly Ala Thr
1 5

<210> 246
<211> 9
<212> PRT
<213> Homo sapien

<400> 246
Trp Pro Ser Cys Gln Lys Lys Phe Ala
1 5

<210> 247
<211> 9
<212> PRT
<213> Homo sapien

<400> 247
Trp Thr Glu Gly Gln Ser Asn His Ser
1 5

<210> 248
<211> 9
<212> PRT
<213> Homo sapien

<400> 248
Tyr Phe Lys Leu Ser His Leu Gln Met
1 5

<210> 249
<211> 9
<212> PRT
<213> Homo sapien

<400> 249
Tyr Gly His Thr Pro Ser His His Ala
1 5

<210> 250
<211> 9
<212> PRT
<213> Homo sapien

<400> 250

Tyr Pro Gly Cys Asn Lys Arg Tyr Phe
1 5

<210> 251
<211> 9
<212> PRT
<213> Homo sapien

<400> 251

Tyr Gln Met Thr Ser Gln Leu Glu Cys
1 5

<210> 252
<211> 9
<212> PRT
<213> Homo sapien

<400> 252

Tyr Arg Ile His Thr His Gly Val Phe
1 5

<210> 253
<211> 9
<212> PRT
<213> Homo sapien

<400> 253

Tyr Ser Ser Asp Asn Leu Tyr Gln Met
1 5

<210> 254
<211> 9
<212> PRT
<213> Mus musculus

<400> 254

Ala Glu Pro His Glu Glu Gln Cys Leu
1 5

<210> 255
<211> 9
<212> PRT
<213> Mus musculus

<400> 255

Ala Leu Leu Pro Ala Val Ser Ser Leu
1 5

<210> 256
<211> 9
<212> PRT
<213> Mus musculus

<400> 256

Ala Tyr Gly Ser Leu Gly Gly Pro Ala
1 5

<210> 257
<211> 9
<212> PRT
<213> Mus musculus

<400> 257
Ala Tyr Pro Gly Cys Asn Lys Arg Tyr
1 5

<210> 258
<211> 9
<212> PRT
<213> Mus musculus

<400> 258
Cys Met Thr Trp Asn Gln Met Asn Leu
1 5

<210> 259
<211> 9
<212> PRT
<213> Mus musculus

<400> 259
Cys Thr Gly Ser Gln Ala Leu Leu Leu
1 5

<210> 260
<211> 9
<212> PRT
<213> Mus musculus

<400> 260
Asp Gly Ala Pro Ser Tyr Gly His Thr
1 5

<210> 261
<211> 9
<212> PRT
<213> Mus musculus

<400> 261
Asp Leu Asn Ala Leu Leu Pro Ala Val
1 5

<210> 262
<211> 9
<212> PRT
<213> Mus musculus

<400> 262

Asp Pro Met Gly Gln Gln Gly Ser Leu
1 5

<210> 263
<211> 9
<212> PRT
<213> Mus musculus

<400> 263

Asp Ser Cys Thr Gly Ser Gln Ala Leu
1 5

<210> 264
<211> 9
<212> PRT
<213> Mus musculus

<400> 264

Asp Val Arg Asp Leu Asn Ala Leu Leu
1 5

<210> 265
<211> 9
<212> PRT
<213> Mus musculus

<400> 265

Glu Gln Cys Leu Ser Ala Phe Thr Leu
1 5

<210> 266
<211> 9
<212> PRT
<213> Mus musculus

<400> 266

Glu Ser Asp Asn His Thr Ala Pro Ile
1 5

<210> 267
<211> 9
<212> PRT
<213> Mus musculus

<400> 267

Phe Pro Asn Ala Pro Tyr Leu Pro Ser
1 5

<210> 268
<211> 9
<212> PRT
<213> Mus musculus

<400> 268

Gly Cys Asn Lys Arg Tyr Phe Lys Leu
1 5

<210> 269
<211> 9
<212> PRT
<213> Mus musculus

<400> 269
Gly Gln Ala Arg Met Phe Pro Asn Ala
1 5

<210> 270
<211> 9
<212> PRT
<213> Mus musculus

<400> 270
Gly Val Phe Arg Gly Ile Gln Asp Val
1 5

<210> 271
<211> 9
<212> PRT
<213> Mus musculus

<400> 271
Gly Tyr Glu Ser Asp Asn His Thr Ala
1 5

<210> 272
<211> 9
<212> PRT
<213> Mus musculus

<400> 272
His Ser Phe Lys His Glu Asp Pro Met
1 5

<210> 273
<211> 9
<212> PRT
<213> Mus musculus

<400> 273
His Thr His Gly Val Phe Arg Gly Ile
1 5

<210> 274
<211> 9
<212> PRT
<213> Mus musculus

<400> 274

Ile Leu Cys Gly Ala Gln Tyr Arg Ile
1 5

<210> 275
<211> 9
<212> PRT
<213> Mus musculus

<400> 275
Lys Phe Ala Arg Ser Asp Glu Leu Val
1 5

<210> 276
<211> 9
<212> PRT
<213> Mus musculus

<400> 276
Lys Arg Tyr Phe Lys Leu Ser His Leu
1 5

<210> 277
<211> 9
<212> PRT
<213> Mus musculus

<400> 277
Lys Thr Ser Glu Lys Pro Phe Ser Cys
1 5

<210> 278
<211> 9
<212> PRT
<213> Mus musculus

<400> 278
Leu Glu Cys Met Thr Trp Asn Gln Met
1 5

<210> 279
<211> 9
<212> PRT
<213> Mus musculus

<400> 279
Leu Gly Gly Gly Gly Cys Gly Leu
1 5

<210> 280
<211> 9
<212> PRT
<213> Mus musculus

<400> 280

Leu Gln Met His Ser Arg Lys His Thr
1 5

<210> 281
<211> 9
<212> PRT
<213> Mus musculus

<400> 281
Met His Gln Arg Asn Met Thr Lys Leu
1 5

<210> 282
<211> 9
<212> PRT
<213> Mus musculus

<400> 282
Asn Ala Pro Tyr Leu Pro Ser Cys Leu
1 5

<210> 283
<211> 9
<212> PRT
<213> Mus musculus

<400> 283
Asn Leu Gly Ala Thr Leu Lys Gly Met
1 5

<210> 284
<211> 9
<212> PRT
<213> Mus musculus

<400> 284
Asn Leu Tyr Gln Met Thr Ser Gln Leu
1 5

<210> 285
<211> 9
<212> PRT
<213> Mus musculus

<400> 285
Asn Met Thr Lys Leu His Val Ala Leu
1 5

<210> 286
<211> 9
<212> PRT
<213> Mus musculus

<400> 286

Asn Gln Met Asn Leu Gly Ala Thr Leu
1 5

<210> 287
<211> 9
<212> PRT
<213> Mus musculus

<400> 287
Pro Gly Ala Ser Ala Tyr Gly Ser Leu
1 5

<210> 288
<211> 9
<212> PRT
<213> Mus musculus

<400> 288
Gln Ala Ser Ser Gly Gln Ala Arg Met
1 5

<210> 289
<211> 9
<212> PRT
<213> Mus musculus

<400> 289
Gln Met Thr Ser Gln Leu Glu Cys Met
1 5

<210> 290
<211> 9
<212> PRT
<213> Mus musculus

<400> 290
Gln Gln Tyr Ser Val Pro Pro Pro Val
1 5

<210> 291
<211> 9
<212> PRT
<213> Mus musculus

<400> 291
Gln Tyr Arg Ile His Thr His Gly Val
1 5

<210> 292
<211> 9
<212> PRT
<213> Mus musculus

<400> 292

Gln Tyr Ser Val Pro Pro Pro Val Tyr
1 5

<210> 293
<211> 9
<212> PRT
<213> Mus musculus

<400> 293
Arg Met Phe Pro Asn Ala Pro Tyr Leu
1 5

<210> 294
<211> 9
<212> PRT
<213> Mus musculus

<400> 294
Arg Thr Pro Tyr Ser Ser Asp Asn Leu
1 5

<210> 295
<211> 9
<212> PRT
<213> Mus musculus

<400> 295
Arg Val Ser Gly Val Ala Pro Thr Leu
1 5

<210> 296
<211> 9
<212> PRT
<213> Mus musculus

<400> 296
Ser Cys Leu Glu Ser Gln Pro Thr Ile
1 5

<210> 297
<211> 9
<212> PRT
<213> Mus musculus

<400> 297
Ser Cys Gln Lys Lys Phe Ala Arg Ser
1 5

<210> 298
<211> 9
<212> PRT
<213> Mus musculus

<400> 298

Ser Asp Val Arg Asp Leu Asn Ala Leu
1 5

<210> 299
<211> 9
<212> PRT
<213> Mus musculus

<400> 299
Ser Leu Gly Glu Gln Gln Tyr Ser Val
1 5

<210> 300
<211> 9
<212> PRT
<213> Mus musculus

<400> 300
Thr Cys Gln Arg Lys Phe Ser Arg Ser
1 5

<210> 301
<211> 9
<212> PRT
<213> Mus musculus

<400> 301
Thr Glu Gly Gln Ser Asn His Gly Ile
1 5

<210> 302
<211> 9
<212> PRT
<213> Mus musculus

<400> 302
Thr Leu His Phe Ser Gly Gln Phe Thr
1 5

<210> 303
<211> 9
<212> PRT
<213> Mus musculus

<400> 303
Thr Leu Val Arg Ser Ala Ser Glu Thr
1 5

<210> 304
<211> 9
<212> PRT
<213> Mus musculus

<400> 304

Val Leu Asp Phe Ala Pro Pro Gly Ala
1 5

<210> 305
<211> 9
<212> PRT
<213> Mus musculus

<400> 305
Trp Asn Gln Met Asn Leu Gly Ala Thr
1 5

<210> 306
<211> 9
<212> PRT
<213> Mus musculus

<400> 306
Tyr Phe Lys Leu Ser His Leu Gln Met
1 5

<210> 307
<211> 9
<212> PRT
<213> Mus musculus

<400> 307
Tyr Gln Met Thr Ser Gln Leu Glu Cys
1 5

<210> 308
<211> 9
<212> PRT
<213> Mus musculus

<400> 308
Tyr Ser Ser Asp Asn Leu Tyr Gln Met
1 5

<210> 309
<211> 6
<212> PRT
<213> Homo sapien

<400> 309
Gly Ala Ala Gln Trp Ala
1 5

<210> 310
<211> 12
<212> PRT
<213> Homo sapien

<400> 310

Ala Ser Ala Tyr Gly Ser Leu Gly Gly Pro Ala Pro
 1 5 10

<210> 311
 <211> 15
 <212> PRT
 <213> Homo sapien

<400> 311

Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly
 1 5 10 15

<210> 312
 <211> 5
 <212> PRT
 <213> Homo sapien

<400> 312

His Ala Ala Gln Phe
 1 5

<210> 313
 <211> 32
 <212> PRT
 <213> Homo sapien

<400> 313

Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu
 1 5 10 15

Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu
 20 25 30

<210> 314
 <211> 32
 <212> PRT
 <213> Homo sapien

<400> 314

Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg
 1 5 10 15

Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser
 20 25 30

<210> 315
 <211> 4
 <212> PRT
 <213> Homo sapien

<400> 315

Arg Tyr Phe Lys
 1

<210> 316
 <211> 14

<212> PRT
 <213> Homo sapien

<400> 316
 Glu Arg Arg Phe Ser Arg Ser Asp Gln Leu Lys Arg His Gln
 1 5 10

<210> 317
 <211> 22
 <212> PRT
 <213> Homo sapien

<400> 317
 Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr
 1 5 10 15

His Thr Gly Lys Thr Ser
 20

<210> 318
 <211> 21
 <212> PRT
 <213> Homo sapien

<400> 318
 Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn
 1 5 10 15

Met His Gln Arg Asn
 20

<210> 319
 <211> 449
 <212> PRT
 <213> Homo sapien

<400> 319
 Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro
 1 5 10 15

Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala
 20 25 30

Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr
 35 40 45

Gly Ser Leu Gly Gly Pro Ala Pro Pro Ala Pro Pro Pro Pro Pro
 50 55 60

Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly
 65 70 75 80

Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe
 85 90 95

Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe
 100 105 110

Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe
 115 120 125

Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile
 130 135 140

Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr

145	150	155	160
Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe			
165	170	175	
Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln			
180	185	190	
Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser			
195	200	205	
Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp			
210	215	220	
Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln			
225	230	235	240
Met Asn Leu Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser			
245	250	255	
Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Ser Thr Gly Tyr Glu			
260	265	270	
Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile			
275	280	285	
His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro			
290	295	300	
Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys			
305	310	315	320
Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys			
325	330	335	
Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro			
340	345	350	
Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp			
355	360	365	
Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln			
370	375	380	
Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr			
385	390	395	400
His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys			
405	410	415	
Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val			
420	425	430	
Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala			
435	440	445	
Leu			

<210> 320
<211> 449
<212> PRT
<213> Mus musculus

<400> 320			
Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Ser			
1	5	10	15
Ser Leu Gly Gly Gly Gly Cys Gly Leu Pro Val Ser Gly Ala Ala			
20	25	30	
Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr			
35	40	45	
Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro			
50	55	60	

Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly
 65 70 75 80
 Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Leu His Phe
 85 90 95
 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe
 100 105 110
 Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe
 115 120 125
 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Thr Ile
 130 135 140
 Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Ala Pro Ser Tyr
 145 150 155 160
 Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe
 165 170 175
 Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln
 180 185 190
 Tyr Ser Val Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser
 195 200 205
 Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp
 210 215 220
 Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln
 225 230 235 240
 Met Asn Leu Gly Ala Thr Leu Lys Gly Met Ala Ala Gly Ser Ser Ser
 245 250 255
 Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Gly Ile Gly Tyr Glu
 260 265 270
 Ser Asp Asn His Thr Ala Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile
 275 280 285
 His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Ser
 290 295 300
 Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys
 305 310 315 320
 Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys
 325 330 335
 Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro
 340 345 350
 Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp
 355 360 365
 Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln
 370 375 380
 Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr
 385 390 395 400
 His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys
 405 410 415
 Arg Trp His Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val
 420 425 430
 Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu His Val Ala
 435 440 445
 Leu

<210> 321
 <211> 9
 <212> PRT

<213> Homo sapien and Mus musculus

<400> 321
Pro Ser Gln Ala Ser Ser Gly Gln Ala
1 5

<210> 322
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 322
Ser Ser Gly Gln Ala Arg Met Phe Pro
1 5

<210> 323
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 323
Gln Ala Arg Met Phe Pro Asn Ala Pro
1 5

<210> 324
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 324
Met Phe Pro Asn Ala Pro Tyr Leu Pro
1 5

<210> 325
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 325
Pro Asn Ala Pro Tyr Leu Pro Ser Cys
1 5

<210> 326
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 326
Ala Pro Tyr Leu Pro Ser Cys Leu Glu
1 5

<210> 327
<211> 1029

<212> DNA

<213> Homo sapiens

<400> 327

atgcagcatc accaccatca ccacatgagc gataaaatta ttcacctgac tgacgacagt 60
 tttgacacgg atgtactcaa agcggacggg gcgatcctcg tcgatttctg ggcagagtgg 120
 tgcgtccgt gcaaaatgat cgccccgatt ctggatgaaa tcgctgacga atatcaggc 180
 aaactgaccg ttgcaaaact gaacatcgat caaaaccctg gcactgcgcc gaaatatggc 240
 atccgtgta tcccgactct gctgctgttc aaaaacggtg aagtggcggc aaccaaagtg 300
 ggtgcactgt ctaaaggtca gttgaaagag ttcctcgacg ctaacctggc cggttctgg 360
 tctggccata tgcagcatca ccaccatcac cacgtgtcta tcgaaggtcg tgctagctct 420
 ggtggcagcg gtctggttcc gcgtggtagc tctggttcgg gggacgacga cgacaaatct 480
 agtaggcaca gcacaggta cgagagcgat aaccacacaa cggccatctt ctgcggagcc 540
 caatacagaa tacacacgca cggtgttcc agaggcattc aggatgtgc acgtgtgcct 600
 ggagtagccc cgactcttgt acggtcggca tctgagacca gtgagaaacg ccccttcatg 660
 tgtgcttacc caggctgcaa taagagatat tttaagctgt cccacttaca gatgcacagc 720
 aggaagcaca ctggtgagaa accataccag tgtgacttca aggactgtga acgaagggtt 780
 tttcgtttag accagctcaa aagacaccaa aggagacata caggtgtgaa accattccag 840
 tgtaaaactt gtcagcgaaa gttctcccg tccgaccacc tgaagaccca caccaggact 900
 catacaggtg aaaagccctt cagctgtcgg tggccaagtt gtcagaaaaa gtttgcccg 960
 tcagatgaat tagtccgcca tcacaacatg catcagagaa acatgaccaa actccagctg 1020
 ggccttga 1029

<210> 328

<211> 1233

<212> DNA

<213> Homo sapiens

<400> 328

atgcagcatc accaccatca ccacatgagc gataaaatta ttcacctgac tgacgacagt 60
 tttgacacgg atgtactcaa agcggacggg gcgatcctcg tcgatttctg ggcagagtgg 120
 tgcgtccgt gcaaaatgat cgccccgatt ctggatgaaa tcgctgacga atatcaggc 180
 aaactgaccg ttgcaaaact gaacatcgat caaaaccctg gcactgcgcc gaaatatggc 240
 atccgtgta tcccgactct gctgctgttc aaaaacggtg aagtggcggc aaccaaagtg 300
 ggtgcactgt ctaaaggtca gttgaaagag ttcctcgacg ctaacctggc cggttctgg 360
 tctggccata tgcagcatca ccaccatcac cacgtgtcta tcgaaggtcg tgctagctct 420
 ggtggcagcg gtctggttcc gcgtggtagc tctggttcgg gggacgacga cgacaaatct 480
 agtaggggct ccgacgttcg tgacctgaac gcactgtgc cggcagttcc gtcctgggt 540
 ggtggtggtg gttgcgcact gccggtagc ggtgcagcac agtgggctcc gtttctggac 600
 ttcgcaccgc cgggtgcatt cgcatacgg tccctgggtg gtccggcacc gcccggca 660
 ccgcgcgcgc cgcgcgcgc gccgcgcac tccttcatca aacaggaacc gagctgggt 720
 ggtgcagaac cgcacagaaga acagtgcctg agcgcattca ccgttactt ctccggccag 780
 ttcaactggca cagccggagc ctgtcgctac gggcccttcg gtcttcctcc gcccagccag 840
 gcgtcatccg gccaggccag gatgtttctt aacgcgcctt acctgcccag ctgcctcgag 900
 agccagcccg ctattcgaa tcagggttac agcacggta cttcgacgg gacgcccagc 960
 tacggtcaca cgcctcgca ccatgcggcg cagttcccc accacttattt caagcatgag 1020
 gatcccatgg gccagcaggc ctcgctgggt gaggcagcgt actcggtgcc gccccggc 1080
 tatggctgcc acaccccccac cgacagctgc accggcagcc aggctttgtct gctgaggacg 1140
 ccctacagca gtgacaattt ataccaaattt acatcccagc ttgaatgcat gacccatgg 1200
 cagatgaact taggagccac cttaaaggcc tga 1233

<210> 329

<211> 1776

<212> DNA

<213> Homo sapiens

<400> 329

atgcagcatc	accaccatca	ccacatgagc	gataaaatta	ttcacctgac	tgacgacagt	60
tttgacacgg	atgtactcaa	agcggacggg	gcgatcctcg	tcgatttctg	ggcagagtgg	120
tgcggccgt	gcaaaatgat	cgcggccatt	ctggatgaaa	tcgctgacga	atatcaggc	180
aaactgaccg	ttgaaaact	gaacatcgat	caaaacccctg	gcactgcgcc	gaaatatggc	240
atccgtggta	tcccgactct	gctgctgttc	aaaaacggtg	aagtggccgc	aaccaaagtg	300
ggtgtcactgt	ctaaaggtca	gttggaaagag	ttcctcgacg	ctaacctggc	cgggtctgg	360
tctggccata	tgcagcatca	ccaccatcac	cacgtgtcta	tcgaaggctcg	tgctagctct	420
ggtgtcagcg	gtctggttcc	gcgtggtagc	tctggttcgg	gggacgacga	cgacaaatct	480
ataggatgg	gctccgacgt	tcgtgacctg	aacgcactgc	tgccggcagt	tccgtccctg	540
ggtgtgtgg	gtgggtgcgc	actgcccgtt	agcgtgcag	cacagtggc	tccgggtctg	600
gacttcgcac	cgcgggtgc	atccgcatac	ggttccctgg	gtggtccgc	accggccgc	660
gcaccgcgc	cgcggccgc	gcccgcgc	cactcctca	tcaaacagga	accgagctgg	720
ggtgtgtgcag	aaccgcacga	agaacagtgc	ctgagcgcac	tcaccgtca	cttctccggc	780
cagttcaactg	gcacagccgg	agcctgtcgc	tacggccct	tcggcttcc	tccgcccagc	840
caggcgtcat	ccggccaggc	caggatgtt	cctaacgcgc	cctacctgcc	cagctgcctc	900
gagagccagc	ccgctattcg	caatcaggt	tacagcacgg	tcaccttgc	cggacgcgc	960
actacggtc	acacgcgc	gcaccatgcg	gchgagttcc	ccaaccactc	attcaagcat	1020
gaggatccca	tggccagca	gggctcgctg	ggtgagcagc	agtactcggt	gccgcccccg	1080
gtctatggct	gccacacccc	caccgacagc	tgccggca	gccaggctt	gtgctgagg	1140
acgcctaca	gcagtgacaa	tttataccaa	atgacatccc	agcttgaatg	catgacctgg	1200
aatcagatga	acttaggagc	caccttaaag	ggccacagca	cagggtacga	gagcgataac	1260
cacacaacgc	ccatccctcg	cgagcccaa	tacagaatac	acacgcacgg	tgtcttcaga	1320
ggcattcagg	atgtgcgacg	tgtgcctgga	gtagcccgaa	cttctgtacg	gtcgccatct	1380
gagaccagtg	agaaacgcgc	tttcatgtgt	gcttacccag	gctgcaataa	gagatatttt	1440
aagctgtccc	acttacagat	gcacagcagg	aagcacactg	gtgagaaacc	ataccagtgt	1500
gacttcaagg	actgtgaacg	aaggttttt	cgttcagacc	agctcaaaag	acaccaaagg	1560
agacatacag	gtgtgaaacc	attccagtg	aaaacttgc	agcgaaagtt	ctccgggtcc	1620
gaccacctga	agacccacac	caggactcat	acaggtgaaa	agcccttgc	ctgtcggtgg	1680
ccaagttgtc	agaaaaaagtt	tgccgggtca	gatgaattag	tccggccatca	caacatgcac	1740
cagagaaaca	tgaccaaact	ccagctggcg	ctttga			1776

<210> 330

<211> 771

<212> DNA

<213> Homo sapiens

<400> 330

atgcagcatc	accaccatca	ccacggctcc	gacgttcgtg	acctgaacgc	actgctgcgc	60
gcagttccgt	ccctgggtgg	ttgtgggtgt	tgccgactgc	cggttagcgg	tgcaagcacag	120
tgggctccgg	ttctgactt	cgcaccgcgc	ggtgcaccc	catacgggtc	cctgggtgg	180
ccggcaccgc	cgcggcacc	gcccgcgc	ccggccgcgc	cgcgcactc	cttcatcaaa	240
caggaaccga	gctgggggtgg	tgcagaaccc	cacgaagaac	agtgcctgag	cgcattcacc	300
gttcacttct	ccggccagtt	cactggcaca	gccggagcct	gtcgctacgg	gcccttcgg	360
cctcctccgc	ccagccaggc	gtcatccgc	caggccagga	tgtttcccaa	cgcgcctac	420
ctgcccagct	gcctcgagag	ccagcccgct	attcgcaatc	agggttacag	cacggtcacc	480
ttcgacggga	cgcggcacta	cggtcacacg	ccctcgcacc	atgcggcgc	gttcccaac	540
cactcattca	agcatgagga	tcccatggc	cagcagggt	cgctgggtga	gcagcagtac	600
tcggtgccgc	ccccggctca	ttggctgacac	accccccaccc	acagctgcac	cggcagccag	660
gtttgctgc	tgaggacgcc	ctacagcagt	gacaatttat	accaaatacgac	atcccagctt	720
gaatgcatga	cctggaatca	gatgaactta	ggagccaccc	taaagggtcg	a	771

<210> 331
<211> 567
<212> DNA
<213> Homo sapiens

<400> 331
atgcagcatc accaccatca ccaccacagc acagggtacg agagcgataa ccacacaacg 60
ccatcctct gcggagccca atacagaata cacacgcacg gtgtcttcag aggattcag 120
gatgtgcgac gtgtgcctgg agtagccccg actttgtac ggtcggcatc tgagaccagt 180
gagaaacgcc ccttcatgtg tgcttaccca ggctgcaata agagatattt taagctgtcc 240
cacttacaga tgcacagcag gaagcacact ggtgagaaac cataccagtg tgacttcaag 300
gactgtgaac gaaggtttt tcgttcagac cagctaaaa gacaccaaag gagacataca 360
ggtgtgaaac cattccagtg taaaacttgt cagcgaaagt tctcccggtc cgaccacctg 420
aagaccacca ccaggactca tacaggtgaa aagcccttca gctgtcggtg gccaagttgt 480
cagaaaaagt ttgcccggtc agatgaatta gtccgccatc acaacatgca tcagagaaac 540
atgaccaaac tccagctggc gctttga 567

<210> 332
<211> 342
<212> PRT
<213> Homo sapiens

<400> 332
Met Gln His His His His His Met Ser Asp Lys Ile Ile His Leu
5 10 15
Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile
20 25 30
Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Cys Lys Met Ile Ala
35 40 45
Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val
50 55 60
Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly
65 70 75 80
Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala
85 90 95
Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu
100 105 110
Asp Ala Asn Leu Ala Gly Ser Gly Ser Gly His Met Gln His His His
115 120 125
His His His Val Ser Ile Glu Gly Arg Ala Ser Ser Gly Gly Ser Gly
130 135 140
Leu Val Pro Arg Gly Ser Ser Gly Ser Gly Asp Asp Asp Lys Ser
145 150 155 160
Ser Arg His Ser Thr Gly Tyr Glu Ser Asp Asn His Thr Thr Pro Ile
165 170 175
Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly Val Phe Arg Gly
180 185 190
Ile Gln Asp Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg
195 200 205
Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro Phe Met Cys Ala Tyr Pro
210 215 220

Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met His Ser
 225 230 235 240
 Arg Lys His Thr Gly Glu Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys
 245 250 255
 Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu Lys Arg His Gln Arg Arg
 260 265 270
 His Thr Gly Val Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe
 275 280 285
 Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu
 290 295 300
 Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg
 305 310 315 320
 Ser Asp Glu Leu Val Arg His His Asn Met His Gln Arg Asn Met Thr
 325 330 335
 Lys Leu Gln Leu Ala Leu
 340

<210> 333
 <211> 410
 <212> PRT
 <213> Homo sapiens

<400> 333
 Met Gln His His His His His Met Ser Asp Lys Ile Ile His Leu
 5 10 15
 Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile
 20 25 30
 Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Cys Lys Met Ile Ala
 35 40 45
 Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val
 50 55 60
 Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly
 65 70 75 80
 Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala
 85 90 95
 Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu
 100 105 110
 Asp Ala Asn Leu Ala Gly Ser Gly Ser Gly His Met Gln His His His
 115 120 125
 His His His Val Ser Ile Glu Gly Arg Ala Ser Ser Gly Gly Ser Gly
 130 135 140
 Leu Val Pro Arg Gly Ser Ser Gly Ser Gly Asp Asp Asp Asp Lys Ser
 145 150 155 160
 Ser Arg Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val
 165 170 175
 Pro Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala
 180 185 190
 Ala Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala
 195 200 205
 Tyr Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro
 210 215 220
 Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly

225	230	235	240
Gly Ala Glu Pro His	Glu Glu Gln Cys	Leu Ser Ala Phe Thr Val His	
245	250	255	
Phe Ser Gly Gln Phe Thr Gly Thr Ala	Gly Ala Cys Arg Tyr Gly Pro		
260	265	270	
Phe Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly	Gln Ala Arg Met		
275	280	285	
Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys	Leu Glu Ser Gln Pro Ala		
290	295	300	
Ile Arg Asn Gln Gly Tyr Ser Thr Val Thr	Phe Asp Gly Thr Pro Ser		
305	310	315	320
Tyr Gly His Thr Pro Ser His His Ala Ala	Gln Phe Pro Asn His Ser		
325	330	335	
Phe Lys His Glu Asp Pro Met Gly	Gln Gln Gly Ser Leu Gly Glu Gln		
340	345	350	
Gln Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys	His Thr Pro Thr Asp		
355	360	365	
Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg	Thr Pro Tyr Ser Ser		
370	375	380	
Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys	Met Thr Trp Asn		
385	390	395	400
Gln Met Asn Leu Gly Ala Thr Leu Lys Gly			
405	410		

<210> 334
<211> 591
<212> PRT
<213> Homo sapiens

<400> 334			
Met Gln His His His His His Met Ser Asp Lys Ile Ile His Leu			
5	10	15	
Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile			
20	25	30	
Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Cys Lys Met Ile Ala			
35	40	45	
Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val			
50	55	60	
Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly			
65	70	75	80
Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala			
85	90	95	
Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu			
100	105	110	
Asp Ala Asn Leu Ala Gly Ser Gly Ser Gly His Met Gln His His His			
115	120	125	
His His His Val Ser Ile Glu Gly Arg Ala Ser Ser Gly Gly Ser Gly			
130	135	140	
Leu Val Pro Arg Gly Ser Ser Gly Ser Gly Asp Asp Asp Lys Ser			
145	150	155	160
Ser Arg Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala			
165	170	175	
Val Pro Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly			

	180	185	190													
Ala	Ala	Gln	Trp	Ala	Pro	Val	Leu	Asp	Phe	Ala	Pro	Pro	Gly	Ala	Ser	
							200						205			
Ala	Tyr	Gly	Ser	Leu	Gly	Gly	Pro	Ala	Pro	Pro	Pro	Ala	Pro	Pro	Pro	
							215					220				
Pro	Pro	Pro	Pro	Pro	Pro	His	Ser	Phe	Ile	Lys	Gln	Glu	Pro	Ser	Trp	
										235			240			
Gly	Gly	Ala	Glu	Pro	His	Glu	Glu	Gln	Cys	Leu	Ser	Ala	Phe	Thr	Val	
									250				255			
His	Phe	Ser	Gly	Gln	Phe	Thr	Gly	Thr	Ala	Gly	Ala	Cys	Arg	Tyr	Gly	
								265				270				
Pro	Phe	Gly	Pro	Pro	Pro	Pro	Ser	Gln	Ala	Ser	Ser	Gly	Gln	Ala	Arg	
								280				285				
Met	Phe	Pro	Asn	Ala	Pro	Tyr	Leu	Pro	Ser	Cys	Leu	Glu	Ser	Gln	Pro	
								295				300				
Ala	Ile	Arg	Asn	Gln	Gly	Tyr	Ser	Thr	Val	Thr	Phe	Asp	Gly	Thr	Pro	
								310			315			320		
Ser	Tyr	Gly	His	Thr	Pro	Ser	His	His	Ala	Ala	Gln	Phe	Pro	Asn	His	
								325			330			335		
Ser	Phe	Lys	His	Glu	Asp	Pro	Met	Gly	Gln	Gln	Gly	Ser	Leu	Gly	Glu	
								340			345			350		
Gln	Gln	Tyr	Ser	Val	Pro	Pro	Pro	Val	Tyr	Gly	Cys	His	Thr	Pro	Thr	
								355			360			365		
Asp	Ser	Cys	Thr	Gly	Ser	Gln	Ala	Leu	Leu	Leu	Arg	Thr	Pro	Tyr	Ser	
								370			375			380		
Ser	Asp	Asn	Leu	Tyr	Gln	Met	Thr	Ser	Gln	Leu	Glu	Cys	Met	Thr	Trp	
								385			390			395		400
Asn	Gln	Met	Asn	Leu	Gly	Ala	Thr	Leu	Lys	Gly	His	Ser	Thr	Gly	Tyr	
								405			410			415		
Glu	Ser	Asp	Asn	His	Thr	Thr	Pro	Ile	Leu	Cys	Gly	Ala	Gln	Tyr	Arg	
								420			425			430		
Ile	His	Thr	His	Gly	Val	Phe	Arg	Gly	Ile	Gln	Asp	Val	Arg	Arg	Val	
								435			440			445		
Pro	Gly	Val	Ala	Pro	Thr	Leu	Val	Arg	Ser	Ala	Ser	Glu	Thr	Ser	Glu	
								450			455			460		
Lys	Arg	Pro	Phe	Met	Cys	Ala	Tyr	Pro	Gly	Cys	Asn	Lys	Arg	Tyr	Phe	
								465			470			475		480
Lys	Leu	Ser	His	Leu	Gln	Met	His	Ser	Arg	Lys	His	Thr	Gly	Glu	Lys	
								485			490			495		
Pro	Tyr	Gln	Cys	Asp	Phe	Lys	Asp	Cys	Glu	Arg	Arg	Phe	Phe	Arg	Ser	
								500			505			510		
Asp	Gln	Leu	Lys	Arg	His	Gln	Arg	Arg	His	Thr	Gly	Val	Lys	Pro	Phe	
								515			520			525		
Gln	Cys	Lys	Thr	Cys	Gln	Arg	Lys	Phe	Ser	Arg	Ser	Asp	His	Leu	Lys	
								530			535			540		
Thr	His	Thr	Arg	Thr	His	Thr	Gly	Glu	Lys	Pro	Phe	Ser	Cys	Arg	Trp	
								545			550			555		560
Pro	Ser	Cys	Gln	Lys	Lys	Phe	Ala	Arg	Ser	Asp	Glu	Leu	Val	Arg	His	
								565			570			575		
His	Asn	Met	His	Gln	Arg	Asn	Met	Thr	Lys	Leu	Gln	Leu	Ala	Leu		
								580			585			590		

<210> 335
<211> 256
<212> PRT
<213> Homo sapiens

<400> 335

Met	Gln	His	His	His	His	His	Gly	Ser	Asp	Val	Arg	Asp	Leu	Asn		
							5		10				15			
Ala	Leu	Leu	Pro	Ala	Val	Pro	Ser	Leu	Gly	Gly	Gly	Gly	Cys	Ala		
									20	25			30			
Leu	Pro	Val	Ser	Gly	Ala	Ala	Gln	Trp	Ala	Pro	Val	Leu	Asp	Phe	Ala	
									35	40			45			
Pro	Pro	Gly	Ala	Ser	Ala	Tyr	Gly	Ser	Leu	Gly	Gly	Pro	Ala	Pro	Pro	
									50	55			60			
Pro	Ala	Pro	His	Ser	Phe	Ile	Lys									
									65	70			75			80
Gln	Glu	Pro	Ser	Trp	Gly	Gly	Ala	Glu	Pro	His	Glu	Glu	Gln	Cys	Leu	
									85	90			95			
Ser	Ala	Phe	Thr	Val	His	Phe	Ser	Gly	Gln	Phe	Thr	Gly	Thr	Ala	Gly	
									100	105			110			
Ala	Cys	Arg	Tyr	Gly	Pro	Phe	Gly	Pro	Pro	Pro	Pro	Ser	Gln	Ala	Ser	
									115	120			125			
Ser	Gly	Gln	Ala	Arg	Met	Phe	Pro	Asn	Ala	Pro	Tyr	Leu	Pro	Ser	Cys	
									130	135			140			
Leu	Glu	Ser	Gln	Pro	Ala	Ile	Arg	Asn	Gln	Gly	Tyr	Ser	Thr	Val	Thr	
									145	150			155			160
Phe	Asp	Gly	Thr	Pro	Ser	Tyr	Gly	His	Thr	Pro	Ser	His	His	Ala	Ala	
									165	170			175			
Gln	Phe	Pro	Asn	His	Ser	Phe	Lys	His	Glu	Asp	Pro	Met	Gly	Gln	Gln	
									180	185			190			
Gly	Ser	Leu	Gly	Glu	Gln	Gln	Tyr	Ser	Val	Pro	Pro	Pro	Val	Tyr	Gly	
									195	200			205			
Cys	His	Thr	Pro	Thr	Asp	Ser	Cys	Thr	Gly	Ser	Gln	Ala	Leu	Leu	Leu	
									210	215			220			
Arg	Thr	Pro	Tyr	Ser	Ser	Asp	Asn	Leu	Tyr	Gln	Met	Thr	Ser	Gln	Leu	
									225	230			235			240
Glu	Cys	Met	Thr	Trp	Asn	Gln	Met	Asn	Leu	Gly	Ala	Thr	Leu	Lys	Gly	
									245	250			255			

<210> 336
<211> 188
<212> PRT
<213> Homo sapiens

<400> 336

Met	Gln	His	His	His	His	His	Ser	Thr	Gly	Tyr	Glu	Ser	Asp		
								5	10			15			
Asn	His	Thr	Thr	Pro	Ile	Leu	Cys	Gly	Ala	Gln	Tyr	Arg	Ile	His	Thr
									20	25			30		
His	Gly	Val	Phe	Arg	Gly	Ile	Gln	Asp	Val	Arg	Arg	Val	Pro	Gly	Val
									35	40			45		
Ala	Pro	Thr	Leu	Val	Arg	Ser	Ala	Ser	Glu	Thr	Ser	Glu	Lys	Arg	Pro
									50	55			60		

Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser
 65 70 75 80
 His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr Gln
 85 90 95
 Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu
 100 105 110
 Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys Lys
 115 120 125
 Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
 130 135 140
 Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys
 145 150 155 160
 Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met
 165 170 175
 His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu
 180 185

<210> 337
<211> 324
<212> DNA
<213> Homo sapiens

<400> 337
atgcagcatc accaccatca ccacggttcc gacgtgcggg acctgaacgc actgctgccg 60
gcagttccat ccctgggtgg cggtgaggc tgcgactgc cggttagcgg tgcagcacag 120
tgggctccag ttctgactt cgcaccgcct ggtgcattcg catacgggta cctgggtgg 180
ccagcacctc cgcccccaac gccccccaccc cctccaccgc ccccgactc ctatcaa 240
caggaaccta gctgggtgg tgcagaaccc cacaagaac agtgcctgag cgcatctga 300
gaattctgca gatatccatc acac 324

<210> 338
<211> 462
<212> DNA
<213> Homo sapiens

<400> 338
atgcagcatc accaccatca ccaccacgaa gaacagtgc tgagcgcatt caccgttcac 60
ttctccggcc agttcactgg cacagccgaa gcctgtcgct acggggccctt cggccctct 120
ccgcccagcc aggcgtcatc cggccaggcc aggtgtttc ctaacgcgcc ctacctgccc 180
agtcgcctcg agagccagcc cgctattcgc aatcagggtt acagcacggt caccctcgac 240
ggacgccccca gctacggta cacgcccctcg caccatgcgg cgcatggcc caaccactca 300
ttcaaggatcgat aggtatccat gggccagcag ggctcgctgg gtgagcagca gtactcggtg 360
ccgccccccgg tctatggctg ccacaccccc accgacagct gcaccggcag ccaggcttg 420
ctgctgagga cgcctacag cagtgacaat ttatactgat ga 462

<210> 339
<211> 405
<212> DNA
<213> Homo sapiens

<400> 339
atgcagcatc accaccatca ccaccaggct ttgctgctga ggacgcccta cagcagtgcac 60
aattttatacc aaatgacatc ccagcttggaa tgcgtacactt ggaatcagat gaaacttagga 120
gcacacctaa agggccacag cacagggtac gagagcgata accacacaac gcccacccctc 180

tgccggagccc aatacagaat acacacgcac ggtgtcttca gaggcattca ggtatgtgcga 240
 cgctgtgcctg gagtagcccc gactcttcta cggtcggcat ctgagaccag tgagaaacgc 300
 cccttcatgt gtgcttaccc aggctgcaat aagagatatt ttaagctgtc ccacttacag 360
 atgcacagca ggaagcacac tggtgagaaa ccataccagt gatga 405

<210> 340
 <211> 339
 <212> DNA
 <213> Homo sapiens

<400> 340
 atgcagcatc accaccatca ccaccacagc aggaagcaca ctggtgagaa accataccag 60
 ttttgacttca aggactgtga acgaagggtt tttcggttag accagctaa aagacaccaa 120
 aggagacata caggtgtgaa accattccag tgtaaaactt gtcagcgaaa gttctcccg 180
 tccgaccacc tgaagaccca caccaggact catacaggtg aaaagccctt cagctgtcgg 240
 tgcccaagtt gtcagaaaaa gtttgcccg tcagatgaat tagtccgcca tcacaacatg 300
 catcagagaa acatgacca actccagctg ggcgtttga 339

<210> 341
 <211> 1110
 <212> DNA
 <213> Homo sapiens

<400> 341
 atgcagcatc accaccatca ccaccactcc ttcatcaaacc aggaaccgag ctgggggtgg 60
 gcagaaccgc acgaagaaca gtgcctgagc gcattcaccg ttcaacttctc cggccagttc 120
 actggcacag ccggagcctg tcgctacggg cccttcggc ctcctccgcc cagccaggcg 180
 tcataccggcc aggccaggat gtttccataac ggcgcctacc tgcccagctg cctcgagac 240
 cagcccgcta ttgcataatca gggttacagc acggtcaccc tcgacgggac gcccagctac 300
 ggtcacacgc cctcgacca tgcggcgcag ttcccaacc actcattcaa gcatgaggat 360
 cccatgggcc agcagggctc gctgggttag cagcagttact cggtgccgccc cccggcttat 420
 ggctgccaca ccccccaccga cagctgcacc ggcagccagg ctttgcgtct gaggacgccc 480
 tacagcagtg acaattata ccaaattgaca tcccaagctt aatgcatgac ctggaatcag 540
 atgaacttag gagccaccc ttaaaggccac agcacagggt acgagagcga taaccacaca 600
 acgcccattcc tctgcggagc ccaatacaga atacacacgc acggtgtt cagaggatt 660
 caggatgtgc gacgtgtgcc tggagtagcc cgcacttttac tacggtcggc atctgagacc 720
 agtgagaaac gcccattcat gtgtgtttac ccaggctgca ataagagata ttttaagctg 780
 tcccaatttac agatgcacag caggaagcac actggtgata aaccatacca gtgtgacttc 840
 aaggactgtg aacgaaggtt ttttcgttca gaccagctca aaagacacca aaggagacat 900
 acaggtgtga aaccattcca gtgtaaaact tgcagcgaa agttctcccg gtccgaccac 960
 ctgaàgaccc acaccaggac tcatacaggt gaaaagccct tcagctgtcgtggccaagtt 1020
 tgcagaaaaa agtttgcccg gtcagatgaa tttagtccgcca atcacaacat gcatcagaga 1080
 aacatgacca aactccagct ggcgtttga 1110

<210> 342
 <211> 99
 <212> PRT
 <213> Homo sapiens

<400> 342
 Met Gln His His His His His Gly Ser Asp Val Arg Asp Leu Asn

	5	10	15													
Ala	Leu	Leu	Pro	Ala	Val	Pro	Ser	Leu	Gly	Gly	Gly	Gly	Cys	Ala		
	20					25								30		
Leu	Pro	Val	Ser	Gly	Ala	Ala	Gln	Trp	Ala	Pro	Val	Leu	Asp	Phe	Ala	
	35					40								45		
Pro	Pro	Gly	Ala	Ser	Ala	Tyr	Gly	Ser	Leu	Gly	Gly	Pro	Ala	Pro	Pro	
	50					55								60		
Pro	Ala	Pro	His	Ser	Phe	Ile	Lys									
	65					70						75				80
Gln	Glu	Pro	Ser	Trp	Gly	Gly	Ala	Glu	Pro	His	Glu	Glu	Gln	Cys	Leu	
	85						90							95		
Ser	Ala	Phe														

<210> 343
<211> 152
<212> PRT
<213> Homo sapiens

	5	10	15												
Met	Gln	His	His	His	His	His	His	Glu	Glu	Gln	Cys	Leu	Ser	Ala	
Phe	Thr	Val	His	Phe	Ser	Gly	Gln	Phe	Thr	Gly	Thr	Ala	Gly	Ala	Cys
	20					25								30	
Arg	Tyr	Gly	Pro	Phe	Gly	Pro	Pro	Pro	Ser	Gln	Ala	Ser	Ser	Gly	
	35					40								45	
Gln	Ala	Arg	Met	Phe	Pro	Asn	Ala	Pro	Tyr	Leu	Pro	Ser	Cys	Leu	Glu
	50					55								60	
Ser	Gln	Pro	Ala	Ile	Arg	Asn	Gln	Gly	Tyr	Ser	Thr	Val	Thr	Phe	Asp
	65				70			75						80	
Gly	Thr	Pro	Ser	Tyr	Gly	His	Thr	Pro	Ser	His	His	Ala	Ala	Gln	Phe
	85					90								95	
Pro	Asn	His	Ser	Phe	Lys	His	Glu	Asp	Pro	Met	Gly	Gln	Gly	Ser	
	100				105									110	
Leu	Gly	Glu	Gln	Gln	Tyr	Ser	Val	Pro	Pro	Pro	Val	Tyr	Gly	Cys	His
	115				120									125	
Thr	Pro	Thr	Asp	Ser	Cys	Thr	Gly	Ser	Gln	Ala	Leu	Leu	Leu	Arg	Thr
	130				135									140	
Pro	Tyr	Ser	Ser	Asp	Asn	Leu	Tyr								
						145									150

<210> 344
<211> 133
<212> PRT
<213> Homo sapiens

	5	10	15												
Met	Gln	His	His	His	His	His	Gln	Ala	Leu	Leu	Leu	Arg	Thr	Pro	
Tyr	Ser	Ser	Asp	Asn	Leu	Tyr	Gln	Met	Thr	Ser	Gln	Leu	Glu	Cys	Met
	20				25									30	
Thr	Trp	Asn	Gln	Met	Asn	Leu	Gly	Ala	Thr	Leu	Lys	Gly	His	Ser	Thr
	35				40									45	

Gly Tyr Glu Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln
 50 55 60
 Tyr Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
 65 70 75 80
 Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr
 85 90 95
 Ser Glu Lys Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg
 100 105 110
 Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly
 115 120 125
 Glu Lys Pro Tyr Gln
 130

<210> 345
<211> 112
<212> PRT
<213> Homo sapiens

<400> 345
 Met Gln His His His His His Ser Arg Lys His Thr Gly Glu
 5 10 15
 Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg
 20 25 30
 Ser Asp Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro
 35 40 45
 Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu
 50 55 60
 Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys Arg
 65 70 75 80
 Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg
 85 90 95
 His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu
 100 105 110

<210> 346
<211> 369
<212> PRT
<213> Homo sapiens

<400> 346
 Met Gln His His His His His Ser Phe Ile Lys Gln Glu Pro
 5 10 15
 Ser Trp Gly Gly Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe
 20 25 30
 Thr Val His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg
 35 40 45
 Tyr Gly Pro Phe Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln
 50 55 60
 Ala Arg Met Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser
 65 70 75 80
 Gln Pro Ala Ile Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly
 85 90 95

Thr Pro Ser Tyr Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro
 100 105 110
 Asn His Ser Phe Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu
 115 120 125
 Gly Glu Gln Gln Tyr Ser Val Pro Pro Val Tyr Gly Cys His Thr
 130 135 140
 Pro Thr Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro
 145 150 155 160
 Tyr Ser Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met
 165 170 175
 Thr Trp Asn Gln Met Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr
 180 185 190
 Gly Tyr Glu Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln
 195 200 205
 Tyr Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
 210 215 220
 Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr
 225 230 235 240
 Ser Glu Lys Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg
 245 250 255
 Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly
 260 265 270
 Glu Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe
 275 280 285
 Arg Ser Asp Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys
 290 295 300
 Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His
 305 310 315 320
 Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys
 325 330 335
 Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val
 340 345 350
 Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala
 355 360 365
 Leu

<210> 347
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Sense primer

<400> 347
 ggctccgacg tgcgggacct g

21

<210> 348
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>

```

<223> Anti-sense Primer

<400> 348
gaattctcaa agcgccagct ggagtttgt          30

<210> 349
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense Primer

<400> 349
ggctccgacg tgcgggacct g                  21

<210> 350
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Anti-sense Primer

<400> 350
gaattctcaa agcgccagct ggagtttgt          30

<210> 351
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense Primer

<400> 351
cacagcacag ggtacgagag c                  21

<210> 352
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Anti-sense Primer

<400> 352
gaattctcaa agcgccagct ggagtttgt          30

<210> 353
<211> 29
<212> DNA
<213> Artificial Sequence

```

<220>		
<223> PCR Primer		
<400> 353		
cacgaagaac agtgccctgag cgcatc 29		
<210> 354		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 354		
ccggcgaatt catcagtata aattgtcact gc 32		
<210> 355		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 355		
caggcttgc tgctgaggac gccc 24		
<210> 356		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 356		
cacggagaat tcatcaactgg tatggttct cacc 34		
<210> 357		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 357		
cacagcagga agcacactgg tgagaaac 28		
<210> 358		
<211> 30		
<212> DNA		
<213> Artificial Sequence		

<220>
<223> PCR Primer

<400> 358
ggatatctgc agaattctca aagcgccagc 30

<210> 359
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 359
cactccttca tcaaacagga ac 22

<210> 360
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 360
ggatatctgc agaattctca aagcgccagc 30

<210> 361
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 361
ggttccgacg tgcgggacct gaacgcactg ctg 33

<210> 362
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 362
ctgccggcag cagtgcgttc aggtccccca cgtcgaaacc 40

<210> 363
<211> 35
<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 363

ccggcagttc catccctggg tggcggtgga ggctg

35

<210> 364

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 364

cggcagtgcg cagcctccac cgccacccag ggatggaa

38

<210> 365

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 365

cgcactgccc gtttagcggtg cagcacagtg ggctc

35

<210> 366

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 366

cagaactgga gcccaactgtg ctgcaccgct aac

33

<210> 367

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 367

cagttctgga cttcgcaccg cctggtgcat ccgcatac

38

<210> 368

<211> 39

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 368		
cagggaacctg tatgcggatg caccaggcgg tgcgaagtc		39
<210> 369		
<211> 38		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 369		
gttccctgg gtggccccc acctccgccc gcaacgcc		38
<210> 370		
<211> 38		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 370		
ggcggtgggg gcgttgccggg cggaggtgct ggaccacc		38
<210> 371		
<211> 40		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 371		
ccccaccgcct ccaccgcccc cgcaactcctt catcaaacag		40
<210> 372		
<211> 39		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 372		
ctagttccct gtttgcataaa ggagtgcggg ggcgggtggaa		39
<210> 373		

<211> 38
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 373
 gaacctagct ggggtggtgc agaaccgcac gaagaaca 38

<210> 374
 <211> 39
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 374
 ctcaggcact gttcttcgtg cggttctgca ccacccag 39

<210> 375
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 375
 gtgcctgagc gcattctgag aattctgcag at 32

<210> 376
 <211> 34
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 376
 gtgtgatgga tatctgcaga attctcagaa tgcg 34

<210> 377
 <211> 1292
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> 253, 256, 517, 518, 520, 521, 522, 743, 753, 754,
 758
 <223> n = A, T, C or G

<400> 377

atgggctccg acgttcgtga cctgagcgcg ctgctgccgg cagttccgtc cctgggtgat 60
 ggtggtgtt gcgactgccc gtttagcgt gcacacagt gggctccggc tctggacttc 120
 gcaccgcccgg gtgcattccgc acacggtccc ctgggtggc cgccgcccccc gtcggcaccg 180
 ccggccggccg cggccggccgccc gccgcaactcc ttcatcaaacc agggaccgag ctgggtggc 240
 gcggaactgc ackaakaaca gtacctgagc gcgttcaccg ttcaactccctc cggtcagggtt 300
 cactggcaccg gcccggccct gtgcgtacgg gcccctccgc cccctccgc ccagccaggc 360
 gtcattccggc caggccagga tgtctcttag cgcggccctgc ctgcccagcc gcctcgagag 420
 ccagcccgct acccgcaatc ggggctacag cacggtcacc ttgcacgggg cggtccgcta 480
 cggtcacacg ccctcgccacc atgcggcgcga gttctcsmar yyactcgta ggctgagga 540
 tcccatgggc cagcagggtc cgctgggtga gcagcagtgc tcggcgccgc cccggccctg 600
 tgccgccccac acccccggc acagctgcgc cggcagccag gcttgctgc tgagggcgcc 660
 ctgttagcagc gacggtttat accaagtgcac gtcccaactt gagtgcatgg cctggagtc 720
 gatgagccctc gggccgcct tamcgggcca cakyacargg tacgagagcg atgatcacac 780
 aacgccccggc ctctggcgag cccaatacag aatacacacg cacggtcct tcagggcggt 840
 tcagggtgtg cggccgtgtgc ctggagtagc cccgactctt gtacggtcgg catctgaggc 900
 cagtgaggaa cggccccccta tgtgtctta cccaggctgc aataggaggt atctgaagct 960
 gccccgctta cagatgcacg gtaggaagca cgctgggtgag agaccatacc agtgtgactt 1020
 caaggactgt ggacggaggt ttttctgtctc agaccggctc aaaagacacc aggggaggca 1080
 tacagatgtg aagccattcc agcgtaaagac ctgtcagcga gggttctccc ggcccaacca 1140
 cctgaagacc cacgccccggc ctcatgcagg tgaaaagccc cccagctgtc ggtggtcaga 1200
 ttgtcagaga aagcctgccc ggtcaagtga gttggccgc catcgccaca tgcatacgag 1260
 gggcatgacc gaactccagc tggcgctttg aa 1292

<210> 378

<211> 1291

<212> DNA

<213> Homo sapiens

<400> 378

atgggctccg acgttcgtga cctaaacgca ctgctgccgg cagttccgtc cccgggtggt 60
 ggtggtgtt gcgactgccc gtttagcgtt gcaacacagt gggctccggc tctggacttc 120
 gtaccgcccgg gtgcgcctgt atgcggttcc ctgggtggc cgccaccgccc gccagccggc 180
 ccggccgtgc cggccggccgccc gtgcgtaccc ttacccaaac aggaaccgag ttgggtgg 240
 acagagccgc acgcaggaca gggccggagc gcactcgctg ctcaactccctc cggccagttc 300
 actggcacag cggagccctg tcgctacggg cccttcggc tcctccggc cagccaggcg 360
 tcatccggcc aggccaggat gtttcttaac ggccttacc tgcccagctg cctcgagagc 420
 cagcccgctt ttgcataatc gggttacagc acggtcacct tcgacgggac gcccagctac 480
 ggtcacacgc cctcgccacca tgcggcgccag ttcccaacc actcatccaa gcatgaggac 540
 cccatggggcc agcagggtc gcccgggtgag cagcagtact cggccggcc cccggctgc 600
 ggctgcccga ccccccaccgg cagctgcacc ggcagccagg ctttgcgtct gagggcgccc 660
 tacagcggtt ggcgttatac ccaaaccgaca tcccaactt gacacatggc ctggaatcag 720
 acgaacttag gagccaccc tt aaaggccac ggcacagggt acgagagcgat tgaccacaca 780
 acggccatcc tctgcggaaac ccagtacagg atacgcgcgc gcccgttcc cccgggtact 840
 caggatgtgc ggtgtgtgcc tgggtggcc ccgactcttgc tgccgtccgc atctgagacc 900
 agtgagaagc gcccctcat gtgtgcctac ccaggctgca ataagagaca cttaagccg 960
 tcccgcttgc gggtgccgg caggagccgc actgggtgaga aaccatacca gcgacttc 1020
 aaggaccgtt gacgagggtt tctccgttca gaccagctca aaaggccacca gagggggcat 1080
 acagggtgtt aaccccttca gtgtgaagct tgacggccga ggcccccccg accccggccac 1140
 ctgaagggtcc acaccaggac ccatacaggt ggagggccct tcagttgtcg gttggccaat 1200
 tgcatacgaga agtctgccccg gcccaggatgaa tcagcccccc gtcataacat gcatcagaga 1260
 aacatgacca aactccagct ggccgttttga a 1291

<210> 379
<211> 1281
<212> DNA
<213> Homo sapiens

<400> 379
atgggctccg acgttcgtga cctgagtgc ttgctaccga cggccccgtc cctgggtgg 60
ggcggtgact gcacactgcc ggttagcgtt acagcacagt gggctccgtt cccggcctcc 120
gcaccgcccgg gcgcatccgc atacgattcc ctgggtggcc cggcaccggc gccggcgccg 180
ccgcccggccg cggccggcc gccgactcc tgcgcgaac agggggccgag ctgggggtgt 240
gcagaaccgc gcgaggggca atgcgttgtt ggcgcggcc tccgcttctc cggccgggttc 300
accggcacag tcggagcctg tcgctatggg cccctcggtc ctccctccggc cagccaggcg 360
ccatccggcc agaccaggat gttgcccagc ggcgcctatc tgcgcgttg cctcaggagc 420
cgtccgctta tccgttagtca gggtcgcagc acggcacctt cagcggggcg cccagctatg 480
gcaccaccc tcgcaccacc ggcgcaggtt cactactccc aacatgggtt cctacatggg 540
ccagcaggc tcgctgggtt agcagcgtt ctcgtggcc ccccccgtct atggctgcca 600
caccggcacc gacagctgca cccggcagcca ggcttgcgtt ctgaggacgc cctacagcag 660
tgacaattta taccaaattt catcccgat tgaatgcattt accttggaaatc agatgaactt 720
agagccacc ttaaaggggcc acagcacagg gtacgagagc gataaccaca caacgcccatt 780
cctctgcggg gcccaataca gaatacacac gcacgggtgtc tttagggggca tttagggatgt 840
gcgcgtgtt cctggagtag ccccgactct tgcgcgttg cacctggagac cagtgagaac 900
gcggcttggt gtgtgttacc ggggctgcag taagggttat tttaggggtt cccacttacg 960
ggtcacacgc aggaagcgc ttgggtgagac ggcacggccag tggttgcacttca agggccgtgg 1020
acgaggggctt ctccgttcgg gaccagccca agggacacca aaggagacat acaggtacgc 1080
aaccacttca gtgttaaggct tgcgcgttca gggtttttttt gtccggaccac ctgaggggccc 1140
acgcaggc ccacacgggtt gggaaaggccc tcaacttgcgtt gtggccaaagc tgccagagag 1200
gttcggccca gtcagacgaa tttagtccgtt atcacaacat gtatcagcga aacatgacta 1260
aactccagctt ggcgttttta a 1281

<210> 380
<211> 3020
<212> DNA
<213> Homo sapiens

<400> 380
gttcaaggca ggcgcacac cggggggctc tccgcacacc gaccgcctgt ccgcgtcccc 60
acttcccgcc ctccctccca cctactcatt caccacccca cccacccaga gccgggacgg 120
cagcccaggc gcccggggcc cggcgcttcc tcgcccgtat cctggacttc ctcttgcgtc 180
agacccggc ttccacgtgt gtcccgagc cggcgcttca gcacacgttc cgctccgggc 240
ctgggtgcctt acagcagccca gagcagcagg gatccggga cccggggccg atctggccca 300
attaggcgc cggcgaggcc agcgttgcac gtctccagggtt ccggaggagc cgccgggggt 360
ccgggtctga gcctcagcaa atgggtctcg acgttgcggga cctgaacgcgt ctgttgcggc 420
ccgtcccttc cctgggtggc ggcgggggtt gtgccttgcgtt tgcgcgttgc gggcgccagt 480
ggcgccgggtt gctggactttt ggcggccggc ttacgggttgc ttggggccggcc 540
ccgcgcggcc accggctccg cggccacccc cggccggcc gccttactcc ttcatcaaac 600
agagccgag ctggggccggc gggagccgc acgaggagca gtgcgttgcgtt gccttactgt 660
tccacttttc cggccagttt actggcacag cggaggcctt tcgcgttgcgtt cccttgcgtc 720
ctccctccggcc cagccaggccg tcatccggcc aggccaggat gtttcttaac ggcgcctacc 780
tgcgcgttgc cctcgagagc cagccggctt ttgcgttgcgtt gggtttacagc acggtcacct 840
tgcacggggac gcccagctac ggttacacgc cctcgccatca tgcggccggcc gttcccaacc 900
actcattcaa gcatgaggat cccatggggcc agcagggttc gctgggttgc cagcgttactt 960
cggtccggcc cccggcttat ggcgttgcaca ccccccaccga cagctgcacc ggcagccagg 1020

ctttgctgct gaggacgccc tacagcagtg acaattata ccaaatgaca tcccagctt 1080
 aatgcgtac ctggaatcg atgaacttag gagccacett aaagggagtt gctgctgg 1140
 gctccagctc agtgaardtgg acagaaggc agagcaacca cagcacaggg tacgagagcg 1200
 ataaccacac aacgcccattc ctctgcggag cccaatacag aatacacacg cacggtgtct 1260
 tcagaggcat tcaggatgtc cgacgtgtc ctggagtagc cccgactctt gtacggtcgg 1320
 catctgagac cagtggaaaa cggcccttca tgtgtgctt cccaggctgc aataagagat 1380
 attttaagct gtcacttca cagatgcaca gcaggaagca cactggtaga aaaccatacc 1440
 agtgtgactt caaggactgt gaacgaagg 1500
 aaaggagaca tacaggtgtaa accattcc agtgtaaaac ttgtcagcga aagttctccc 1560
 ggtccgacca cctgaagacc cacaccagg 1620
 tcagctgtcg gtggccaagt tgtcagaaaa agtttgcgg gtcagatgaa tttagtccg 1680
 atcacaacat gcatcagaga aacatgacca aactccagct ggcgcttga ggggtctccc 1740
 tcggggaccc ttcagtgcc caggcagcac agtgtgtgaa ctgcttcaat gtctgactct 1800
 ccactcctcc tcactaaaaa ggaaacttca gttgatctt tcatccaac ttccaagaca 1860
 agataccggt gcttctggaa actaccagg 1920
 tacttttagt tgactcacag gccctggaga agcagcta 1980
 ccatttgcctt tttggctgg attttctact gtaagaagag ccatacgta tcatgtcccc 2040
 ctgacccttc ccttctttt ttatgctcg tttcgctgg gatggatta ttgtaccatt 2100
 ttctatcatg gaatatttat aggccaggc atgtgtatgt gtctgcta 2160
 tcatggtttc catttactaa cagcaacagc aagaataaaa tcagagagca aggcatcg 2220
 ggtgaatctt gtcta 2280
 agttctgcca ggcaactttt aaagctcatg catttca 2340
 ctaaccagta cctctgtata gaaatctaa agaattttac cattcagta attcaatgt 2400
 aacactggca cactgctt aagaaactat gaagatctga gattttttt 2460
 tgactctttt gagtggtaat cata 2520
 tgagggggaa ttcatttca tcactggac tgccttagt gtaaaaaac catgctgg 2580
 tatggcttca agttgtaaaa atgaaagtga cttaaaaaga aaatagg 2640
 tctccactga taagactgtt ttaagtaac ttaaggac 2700
 gaaaaaaaaatg agacttactg ggtgaggaaa tccattgtt aaagatggc gtgtgtgt 2760
 gtgtgtgtgt gtgtgtgtt tggtgttt tgtttttaa gggaggaa ttattattta 2820
 ccgttgctt aaattactgt gtaaatataat gtctgataat gatttgctt ttgacaacta 2880
 aaattaggac tgtataagta ctagatgcat cactgggtgt tgatcttaca agatattgt 2940
 gataacactt aaaattgtaa cctgcatttt tcactttgct ctcaattaaa gtctattcaa 3000
 aaggaaaaaaa aaaaaaaaaaa 3020

<210> 381
 <211> 1291
 <212> DNA
 <213> Homo sapiens

<400> 381
 atgggctccg acgttcgtga ctgaaacgca ctgctgccgg cagttccgtc cctgggtgg 60
 ggtgggtt ggcactgccc ggttagcggt gcagcacagt gggctccgt tctggacttc 120
 gcaccgcccgtt gtcatccgc atacggttcc ctgggtggc cggcaccgccc gccggcaccg 180
 ccggccggcgc cggccggcgc gcccactt ttcatcaa 240
 gcagaaccgc acgaagaaca gtgcctgagc gcattcaccg ttcacttctc cggccagtcc 300
 actggcacag ccggagcctg tcgctacggg cccttcggc ctcctccgccc cagccaggcg 360
 tcatccggcc agggcaggat gtttccatac ggcgcctacc tgcccagctg cctcgagagc 420
 cagcccgcta ttgcataatca gggttacagc acggtcac 480
 ggtcacacgc cctcgcacca tgcggcgc 540
 cccatggcc agcaggcgtc gttgggtgag cagcgtact cggtgccgccc cccggcttat 600
 ggctgcccaca ccccccacca cagctgcacc ggcagccagg ctggctgtct gaggacgccc 660
 tacagcagtg acaattata ccaa 720
 atgaacttag gagccacccaa aaggggccac agcacaagg 780

acgcccattc tctgcggagc ccaatacaga atacacacgc acggtgttctt cagaggcatt 840
 caggatgtgc gacgtgtgcc tggagtagcc ccgactcttac tacggtcggc atctgagacc 900
 agtgagaaac gccccttcat gtgtgcttac ccaggctgca ataagagata ttttaagctg 960
 tcccacttac agatgcacag caggaagcac actggtgaga aaccatacca gtgtgacttc 1020
 aaggactgtg aacgaagggtt ttttcgttca gaccagctca aaagacacca aaggagacat 1080
 acagggtgtga aaccattcca gtgtaaaact tgtcagcgaa agttctcccg gtccgaccac 1140
 ctgaagaccc acaccaggac tcatacaggt gaaaagccct tcagctgtcg gtggccaagt 1200
 tgcagaaaaa agtttgcgg gtcagatgaa ttatccgatc atcacaacat gcatcagaga 1260
 aacatgacca aactccagct ggccgtttga g 1291

<210> 382
 <211> 1491
 <212> DNA
 <213> Homo sapiens

<400> 382
 atggcgcccc ccggcgcccc gcggtcgtgc ctccgtgtgc tgctggcagg cttgcacat 60
 ggcgcctca gactcttga gatctaattt ggctccgacg ttctgtaccc gaacgcactg 120
 ctggccggcag ttccgtccct gggtgggtgt ggtgggtgc cactggcggt tagcggtgca 180
 gcacagtggg ctccgttctt ggacttcgca ccgcgggtg catccgcata cggtccctg 240
 ggtggtccgg caccggccgc gcacccggcc ccgcggccgc cgccgcactc cttcatcaaa 300
 caggaaccga gctgggtgg tgcagaacccg cacaagaac acgtgcctgag cgccattcacc 360
 gttcaattctt ccggccagg tcaatggcaca gccggagcct gtcgctacgg gcccggcggt 420
 cctcctccgc ccagccaggc gtcatccgca cagggcagga ttttcctaa cgcccccata 480
 ctgcccagct gcctcgagag ccagcccgctt attcgcaatc agggttacag cacggtcacc 540
 ttgcacggga cgcccaacta cggtcacaccc ccctcgaccatgcggcgca gttcccaac 600
 cactcattca agcatgagga tcccatggc cagcagggtc cgctgggtga gcagcgtac 660
 tcggtgccgc ccccggtcta tggctgccc acccccaccc acagctgcac cgccagccag 720
 gcttgcgtgc tgaggacgac ctacagcgt gacaatttat accaaatgac atcccaagtt 780
 gaatgcata cctggaatca gatgcataa ggagccaccc taaaggccca cagcacagg 840
 tacgagagcg ataaccacac aacgcggccatc ctctgcggag cccaaatacag aatacacacg 900
 cacgggtgtct tcagaggcat tcaggatgtc cgacgtgtgc ctggagtagc cccactt 960
 gtacggtcgg catctgagac cagtggaaaaa cgcccttca tttgtgttca cccaggctgc 1020
 aataagagat attttaagct gtcccaactt cagatgcaca gcaggaagca cactggtgag 1080
 aaaccatacc agtgtgactt caaggactgt gaacgaagggt ttttcgttc agaccagtc 1140
 aaaagacacc aaaggagaca tacaggtgt aaaccattcc agtgaaaaac ttgtcagcga 1200
 aagttctccc ggtccgacca cctgaagacc cacaccagga ctcatacagg tgaaaagccc 1260
 ttcaagtcgtc ggtggccaaat ttgtcagaaaaa aagtttgcgg ggtcagatga attagtcgc 1320
 catcacaaca tgcatacgag aaacatgacc aaactccacg tggcgcttct taacaacatg 1380
 ttgatccccca ttgtctgtgg cggtggccctg gcagggttgc ttctcatcgt cctcattgcc 1440
 tacctcatttgcagggaaagag gagtcacccgc ggctatcaga ccatctagtg a 1491

<210> 383
 <211> 1251
 <212> DNA
 <213> Homo sapiens

<400> 383
 atggcgcccc gcagcgcccc gcgacccttgc ctgctgtac tgcctgttgc tgctgctgg 60
 cctcatgcatttgcgtcaggc agccatgtttt atggtaaaaaa atggcaacgg gaccgcgtgc 120

ataatggcca acttctctgc tgccttctca gtgaactacg acaccaagag tggcccaag 180
 aacatgacct ttgactgccc atcagatgcc acagtggtc tcaaccgcag ctccgtgga 240
 aaagagaaca cttctgaccc cagtcgtcg attgttttgc gaagaggaca tacactcact 300
 ctcattca cgagaaatgc aacacgttac agcgttcagc tcatgagtt tgttataac 360
 ttgtcagaca cacacccat ccccaatgcg agctccaaag aaatcaagac tgtgaaatct 420
 ataactgaca tcagggcaga tatagataaa aaatacagat gtgttagtg caccaggc 480
 cacatgaaca acgtgaccgt aacgctccat gatgccacca tccaggcgtc ccttccaac 540
 agcagctca gcaggggaga gacacgtgt gaacaagaca ggccttcccc aaccacagcg 600
 cccccctgcgc caccacgccc ctgcgcctca cccgtgcacca agagccctc tgtggacaag 660
 tacaacgtga gcggcaccaa cgggacatgc ctgctggca gcatgggct gcagctgaac 720
 ctcacccatg agaggaagga caacacgacg gtgacaaggc ttctcaacat caaccccaac 780
 aagacccctgg ccagccggag ctgcggcgcc cacctggta ctctggagct gcacagcgag 840
 ggcaccaccc tcctgtctt ccagttcgaa atgaatgcaaa gttctagccg gttttcccta 900
 caaggaatcc agttgaatac aatttttcct gacgccagag accctgcctt taaagctgcc 960
 aacggctccc tgcgagcgct gcaggccaca gtcgcaatt cctacaagtgc caacgcggag 1020
 gagcacgtcc gtgtcacgaa ggcgttttca gtcaatatat tcaaagtgtg ggtccaggct 1080
 ttcaagggtgg aagggtggca gtttggctt gtggaggagt gtctgctgga cgagaacagc 1140
 acgctgatcc ccatcgctgt gggtgggtgcc ctggcgggc tggcctctat cgtcctcatc 1200
 gcctacctcg tcggcaggaa gaggagtacac gcaggctacc agactatcta g 1251

<210> 384
 <211> 228
 <212> DNA
 <213> Homo sapiens

<400> 384
 atgcagatct tcgtgaagac tctgacttgt aagaccatca ccctcgaggt ggagcccaag 60
 gacaccatcg agaatgtcaa gcacaaagatc caagataagg aaggcatccc tcctgatcag 120
 cagagggttgc tctttgcgg aaaacagctg gaagatggtc gtaccctgtc tgactacaac 180
 atccagaaag agtccaccc tcacctggta ctccgtctca gaggtggg 228

<210> 385
 <211> 1515
 <212> DNA
 <213> Homo sapiens

<400> 385
 atgcagatct tcgtgaagac cctgaccggc aagaccatca ccctggaagt ggagcccaag 60
 gacaccatcg aaaatgtgaa gcacaaagatc caggataaa aaggcatccc tcccgaccag 120
 cagagggttgc tctttgcagg caagcagctg gaagatggcc gcactcttc tgactacaac 180
 atccagaagg agtccaccc tcacctggta ctccgtctca gaggtggcat gggctccgac 240
 gttcgtgacc tgaacgcact gtcggccggc gtccgtccc tgggtgggg tgggtggtc 300
 gcactgcccgg ttagccgtgc agcacagttt gtcgggttc tggacttcgc accgcccgg 360
 gcacccgtcat acggttccct ggggtggcc tcacccggc cggcaccggc gcccggccg 420
 ccggccggccgc actccatcaaaacaggaa ccgagctggg gtggtgccaga accgcacgaa 480
 gaacagtgcgc tgagcgcatt caccgttccat ttctccggcc agttcaactgg cacagccgg 540
 gcctgtcgct acggggccctt cgggtccctt ccggcccaagcc aggcgtcatc cggccaggcc 600
 agatgtttc ctaacgcgc cttatgtccc agtcgtctcg agagccagcc cgctattcgc 660
 aatcagggtt acagcacggt caccatgcac gggacggccca gtcacggtca cacggccctcg 720
 caccatgcgg cgcaggcccc caaccactca ttcaagcatg aggatcccat gggccaggc 780
 ggctcgctgg gtgagcagca gtactcggtt ccggccccgg tctatggctg ccacaccccc 840
 accgacagct gcacccggcag ccaggctttg ctgctgagga cggccctacag cagtgacaat 900

ttataccaaa tgacatccca gcttgaatgc atgacacctgga atcagatgaa cttaggagcc 960
 actttaaagg gccacacgc agggtacgag agcgataacc acacaacgcc catttcgtgc 1020
 ggagcccaat acagaataca cacgcacggt gtcttcagag gcattcagga tttgcacgt 1080
 gtgcctggag tagccccgac tcttgcacgg tcggcatctg agaccagtga gaaacgcccc 1140
 ttcatgtgtg cttaccagg ctgcaataag agatattta agctgtccca cttacagatg 1200
 cacagcagga agcacactgg tgagaaacca taccagtgtg acttcaagga ctgtgaacga 1260
 aggttttttc gttcagacca gctcaaaaaga caccaaagga gacatacagg tttgaaacca 1320
 ttccagtgtta aaacttgtca gcgaaagtgc tcccggtcc accacactgaa gaccacacc 1380
 aggactcata caggtaaaaa gcccctcagc tttcggtggc caagttgtca gaaaaagtt 1440
 gcccgtcag atgaattagt ccgcacatcac aacatgcac agagaaacat gaccaactc 1500
 cagctggcgc tttga 1515

<210> 386
 <211> 648
 <212> DNA
 <213> Homo sapiens

<400> 386
 atgcactcct tcatcaaaca ggaaccgagc tgggtggtg cagaaccgca cgaagaacag 60
 tgcctgagcg cattcaccgt tcacttctcc ggccagttca ctggcacagc cggagcctgt 120
 cgctacgggc ctttcgtcc tcctccgccc agccaggcgt catccggcca ggccaggatg 180
 tttcctaacc cggccatctt gcccagctgc ctgcagagcc agcccgctat tcgcaatcag 240
 gtttacagca cggtcaccc ttgcgggacg cccagctacg gtcacacgccc ctgcaccat 300
 gccgcgcagt tccccaaacca ctcattcaag catgaggatc ccatgggcca gcagggctcg 360
 ctgggtgagc agcagttactc ggtgcgcccc ccggctatg gctgccacac cccaccgac 420
 agctgcaccc gcagccaggc tttgctgtc aggacccct acagcagtga caatttatac 480
 caaatgacat cccagcttga atgcacatgacc tggaaatcaga tgaacttagg agccaccta 540
 aaggggccaca gcacagggtt cggagcgtt aaccacacaa cggccatctt ctgcggagcc 600
 caatacagaa tacacacgc cgggtcttc agaggcattt agatgtgcg acgtgtgcct 660

<210> 387
 <211> 1089
 <212> DNA
 <213> Homo sapiens

<400> 387
 atgcactcct tcatcaaaca ggaaccgagc tgggtggtg cagaaccgca cgaagaacag 60
 tgcctgagcg cattcaccgt tcacttctcc ggccagttca ctggcacagc cggagcctgt 120
 cgctacgggc ctttcgtcc tcctccgccc agccaggcgt catccggcca ggccaggatg 180
 tttcctaacc cggccatctt gcccagctgc ctgcagagcc agcccgctat tcgcaatcag 240
 gtttacagca cggtcaccc ttgcgggacg cccagctacg gtcacacgccc ctgcaccat 300
 gccgcgcagt tccccaaacca ctcattcaag catgaggatc ccatgggcca gcagggctcg 360
 ctgggtgagc agcagttactc ggtgcgcccc ccggctatg gctgccacac cccaccgac 420
 agctgcaccc gcagccaggc tttgctgtc aggacccct acagcagtga caatttatac 480
 caaatgacat cccagcttga atgcacatgacc tggaaatcaga tgaacttagg agccaccta 540
 aaggggccaca gcacagggtt cggagcgtt aaccacacaa cggccatctt ctgcggagcc 600
 caatacagaa tacacacgc cgggtcttc agaggcattt agatgtgcg acgtgtgcct 660
 ggagtagccc cggacttgc acggcggca tctgagacca gtggaaacg ccccttcatg 720
 ttgtgttacc caggctgcaa taagagatat tttaagctgt cccacttaca gatgcacagc 780
 aggaaggcaca ctggtgagaa accataccag tttgtactca aggactgtga acgaaggttt 840
 tttcggttcac accagctcaa aagacaccaa aggagacata cagggtgtaa accattccag 900
 tttaaaactt gtcagcgaaa gttctccgg tccgaccacc tggaaatcaca caccaggact 960
 catacaggtt aaaaggccctt cagctgtcgg tggccaaatgtt gtcagaaaaa gtttgcgg 1020

tcagatgaat tagtccgcca tcacaacatg catcagagaa acatgaccaa actccagctg 1080
gcgctttga 1089

<210> 388

<211> 1035

<212> DNA

<213> Homo sapiens

<400> 388

atgacggccg cgtccgataa cttccagctg tcccagggtg ggcagggatt cgccattccg 60
atcgggcagg cgatggcgat cgcgggccag atcaagctc ccaccgttca tatcgggcct 120
accgccttcc tcggcttggg tttgtcgac aacaacggca acggcgacag agtccaacgc 180
gtggtcggga ggcgtccggc ggcaagtctc ggcatctcca cggcgacgt gatcaccgcg 240
gtcgacggcg ctccgatcaa ctggccacc gcgatggcg acgcgtttaa cggcatcat 300
cccggtgacg tcatctcggt gacctggcaa accaagtctg gcggcacgcg tacaggaaac 360
gtgacattgg ccgaggggacc cccggccgaa ttccacttca tcatcaaaca ggaaccgagc 420
tgggttgtg cagaaccgca cagaaccacag tgcctgagcg cattcaccgt tcacttctcc 480
ggccagttca ctggcacacgc cggagcctgt cgctacggc cttcgggtcc tcctccgccc 540
agccaggcgt catccggcca ggccaggatg tttctaaccg cgccttaccc gcccagctgc 600
ctcgagagcc agcccgctat tcgcaatcag gtttacagca cggtcaccct cgacggacg 660
cccaagctacg gtcacacgc ctcgcaccat gcggcgacgt tccccaaacca ctcattcaag 720
catgaggatc ccatgggcca gcagggtcg ctgggtgagc agcagtactc ggtgccgccc 780
ccggcttatg gctgccacac ccccacccgac agtcgcaccg gcagccaggg tttgtgtctg 840
agacgcctt acagcgtga caatttatac caaatgacat cccagcttga atgcatgacc 900
tgaatcaga tgaacttagg agccaccta aaggccaca gcacaggta cgagagcgat 960
aaccacacaa cggccatctt ctgcggagcc caatacagaa tacacacgcg cgggttctc 1020
agaggcattt agtga 1035

<210> 389

<211> 1263

<212> DNA

<213> Homo sapiens

<400> 389

atgacggccg cgtccgataa cttccagctg tcccagggtg ggcagggatt cgccattccg 60
atcgggcagg cgatggcgat cgcgggccag atcaagctc ccaccgttca tatcgggcct 120
accgccttcc tcggcttggg tttgtcgac aacaacggca acggcgacag agtccaacgc 180
gtggtcggga ggcgtccggc ggcaagtctc ggcatctcca cggcgacgt gatcaccgcg 240
gtcgacggcg ctccgatcaa ctggccacc gcgatggcg acgcgtttaa cggcatcat 300
cccggtgacg tcatctcggt gacctggcaa accaagtctg gcggcacgcg tacaggaaac 360
gtgacattgg ccgaggggacc cccggccgaa ttcccgctgg tgccgcgcgg cagcccgatg 420
ggctccgacg ttccggaccc gaacgcactg ctggccggcgg ttccgtccct ggggtgtgt 480
gtgggtgcg cactggcggt tagcggtgca gcacagtggg ctccggttct ggacttcgca 540
ccgcgggtg catccgcata cggccctcg ggtggccgg caccggccgc ggcaccgccc 600
ccgcggccgc cgcggccgc gcactccctt atcaaacagg aaccgagctg ggggtgtgca 660
gaaccgcacg aagaacagtg cctgagcgc ttcaccgttc atttctccgg ccagttcaact 720
ggcacagccg gagcctgtcg ctacggccccc ttccggcctc ctccgcccac ccaggcgatca 780
tccggccagg ccaggatgtt tcctaaccgcg ccctacctgc ccagctgcct cgagagccag 840
cccgctattt gcaatcagggtt acagcgcactg gtcacccctcg acgggacgc cagctacgg 900
cacacgcctt cgcaccatgc ggcgcgttcc cccaaacctt cattcaagca tgaggatccc 960
atgggcccgc agggctcgct ggggtgagcag cgtactcg tggccggccccc ggtctatggc 1020
tgccacaccc ccaccgacag ctgcaccggc agccaggctt tgctgtgtgag gacgccttac 1080
agcagtgaca atttatacca aatgacatcc cagttgaat gcatgacccg gaatcagatg 1140
aacttaggag ccacctaaa gggccacagc acagggtacg agagcgataa ccacacaacg 1200

cccatcctct gcggagccca atacagaata cacacgcacg gtgtttagtccataggcattcag 1260
tga 1263

<210> 390

<211> 1707

<212> DNA

<213> Homo sapiens

<400> 390

atgacggccg cgtccgataa cttccagctg tcccagggtg ggcagggatt cgccattccg 60
atcgggcagg cgatggcgat cgccggccag atcaagcttc ccaccgttca tatcgggcct 120
accgccttcc tcggcttggg tggtgtcgac aacaacggca acggcgacacg agtccaacgc 180
gtggtcggga gcgcgtccggc ggcaagtctc ggcatctcca cggcgacgt gatcaccgcg 240
gtcgacggcg ctccgatcaa ctccggccacc gcgatggcg acgcgcttaa cgggcatcat 300
cccggtgacg tcatctcggt gacctggcaa accaagtctgg gccgcacgcg tacagggAAC 360
gtgacattgg ccgagggacc cccggccgaa ttcccgtgg tgccgcgcgg cagcccgatg 420
ggctccgacg ttcgggacact gaacgcactg ctgcggcag ttccgtccct ggggtgggt 480
ggtggttgcg cactggcggt tagcggtgca gcacagtggg ctccggttct ggacttcgca 540
ccgcccgggtg catccgcata cgggtccctg ggtggtccgg caccgcgcgc ggcaccgcg 600
ccgcccgcgc cggccgcgc gcactccttc atcaaacagg aaccgagctg ggggtggtgc 660
gaaccgcacg aagaacagtgc cctgagcgca ttcaccgttc acttctccgg ccagttca 720
ggcacagccg gagcctgtcg ctacgggccc ttccggtccctc ctccggccagg ccaggcgtca 780
tccggccagg ccaggatgtt ttccaaacgcg ccctacctgc ccagctgcct cgagagccag 840
cccgctatttc gcaatcagggtt ttacagcactg gtcacccctcg acgggacgcgc cagctacgg 900
cacacgcctt cgcaccatgc ggccgcgttcc cccaaacctt cattcaagca tgaggatccc 960
atggggccacgc agggctcgct ggggtgagcgag cagtactcg tgccgcggcccc ggtctatggc 1020
tgccacaccc ccaccgcacag ctgcaccgcgc agccaggctt tgctgtcgag gacgcctac 1080
agcagtgaca atttatacca aatgacatcc cagcttgaat gcatgacctg gaatcagatg 1140
aacttaggag ccacccataaa gggccacagc acagggtacg agagcgataa ccacacaacg 1200
cccatcctct gcggagccca atacagaata cacacgcacg gtgtttagtccataggcattcag 1260
gatgtgcgac gtgtgcctgg agtagccccc actcttgtac ggtcgccatc tgagaccagt 1320
gagaaacgcgc ccttcatgtg tgcttaccca ggctgcaata agagatattt taagctgtcc 1380
cacttacaga tgcacacgcg gaagcacact ggtgagaaac cataccagtg tgacttcaag 1440
gactgtgaac gaaggtttt tcggtcagac cagctaaaa gacaccaaag gagacataca 1500
ggtgtgaaac cattccagtg taaaacttgt cagcgaaagt tctccggcgcgaccacctg 1560
aagacccaca ccaggactca tacaggtgaa aagccctca gctgtcggtg gccaagttgt 1620
cagaaaaagt ttgcccggcgc agatgaatta gtccgcgcattc acaacatgca tcagagaaac 1680
atgacccaaac tccagctggc gctttga 1707

<210> 391

<211> 344

<212> PRT

<213> Homo sapiens

<400> 391

Met	Thr	Ala	Ala	Ser	Asp	Asn	Phe	Gln	Leu	Ser	Gln	Gly	Gly	Gln	Gly
5									10					15	

Phe	Ala	Ile	Pro	Ile	Gly	Gln	Ala	Met	Ala	Ile	Ala	Gly	Gln	Ile	Lys
20								25					30		

Leu	Pro	Thr	Val	His	Ile	Gly	Pro	Thr	Ala	Phe	Leu	Gly	Leu	Gly	Val
35								40					45		

Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser
 50 55 60

Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala
 65 70 75 80

Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp Ala Leu
 85 90 95

Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp Gln Thr Lys
 100 105 110

Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly Pro Pro
 115 120 125

Ala Glu Phe His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala
 130 135 140

Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser
 145 150 155 160

Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly
 165 170 175

Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro
 180 185 190

Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg
 195 200 205

Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly
 210 215 220

His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys
 225 230 235 240

His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr
 245 250 255

Ser Val Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys
 260 265 270

Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn
 275 280 285

Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met
 290 295 300

Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp
 305 310 315 320

Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr
 325 330 335

His Gly Val Phe Arg Gly Ile Gln
340

<210> 392
<211> 568
<212> PRT
<213> Homo sapiens

<400> 392
Met Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly
5 10 15

Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Lys
20 25 30

Leu Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu Gly Val
35 40 45

Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser
50 55 60

Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala
65 70 75 80

Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp Ala Leu
85 90 95

Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp Gln Thr Lys
100 105 110

Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly Pro Pro
115 120 125

Ala Glu Phe Pro Leu Val Pro Arg Gly Ser Pro Met Gly Ser Asp Val
130 135 140

Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly
145 150 155 160

Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val
165 170 175

Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly Gly
180 185 190

Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro His
195 200 205

Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu
210 215 220

Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr
225 230 235 240

Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro Pro Pro
 245 250 255

Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr
 260 265 270

Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr
 275 280 285

Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr Pro Ser
 290 295 300

His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu Asp Pro
 305 310 315 320

Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro
 325 330 335

Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln
 340 345 350

Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met
 355 360 365

Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu Gly Ala
 370 375 380

Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His Thr Thr
 385 390 395 400

Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly Val Phe
 405 410 415

Arg Gly Ile Gln Asp Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu
 420 425 430

Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro Phe Met Cys Ala
 435 440 445

Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met
 450 455 460

His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr Gln Cys Asp Phe Lys
 465 470 475 480

Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu Lys Arg His Gln
 485 490 495

Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
 500 505 510

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr
 515 520 525

Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys Lys Phe
 530 535 540

Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met His Gln Arg Asn
 545 550 555 560

Met Thr Lys Leu Gln Leu Ala Leu
 565

<210> 393
 <211> 420
 <212> PRT
 <213> Homo sapiens

<400> 393
 Met Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly
 5 10 15

Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Lys
 20 25 30

Leu Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu Gly Val
 35 40 45

Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser
 50 55 60

Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala
 65 70 75 80

Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp Ala Leu
 85 90 95

Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp Gln Thr Lys
 100 105 110

Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly Pro Pro
 115 120 125

Ala Glu Phe Pro Leu Val Pro Arg Gly Ser Pro Met Gly Ser Asp Val
 130 135 140

Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly Gly
 145 150 155 160

Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val
 165 170 175

Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly Gly
 180 185 190

Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro His

195	200	205
Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu		
210	215	220
Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr		
225	230	235
Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro Pro Pro		
245	250	255
Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr		
260	265	270
Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr		
275	280	285
Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr Pro Ser		
290	295	300
His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu Asp Pro		
305	310	315
Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro		
325	330	335
Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln		
340	345	350
Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met		
355	360	365
Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu Gly Ala		
370	375	380
Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His Thr Thr		
385	390	395
Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly Val Phe		
405	410	415
Arg Gly Ile Gln		
420		

<210> 394
 <211> 362
 <212> PRT
 <213> Homo sapiens

<400> 394
 Met His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro
 5 10 15

His	Glu	Glu	Gln	Cys	Leu	Ser	Ala	Phe	Thr	Val	His	Phe	Ser	Gly	Gln
					20				25						30
Phe	Thr	Gly	Thr	Ala	Gly	Ala	Cys	Arg	Tyr	Gly	Pro	Phe	Gly	Pro	Pro
					35				40						45
Pro	Pro	Ser	Gln	Ala	Ser	Ser	Gly	Gln	Ala	Arg	Met	Phe	Pro	Asn	Ala
					50				55						60
Pro	Tyr	Leu	Pro	Ser	Cys	Leu	Glu	Ser	Gln	Pro	Ala	Ile	Arg	Asn	Gln
					65			70				75			80
Gly	Tyr	Ser	Thr	Val	Thr	Phe	Asp	Gly	Thr	Pro	Ser	Tyr	Gly	His	Thr
					85			90							95
Pro	Ser	His	His	Ala	Ala	Gln	Phe	Pro	Asn	His	Ser	Phe	Lys	His	Glu
					100			105							110
Asp	Pro	Met	Gly	Gln	Gln	Gly	Ser	Leu	Gly	Glu	Gln	Gln	Tyr	Ser	Val
					115			120							125
Pro	Pro	Pro	Val	Tyr	Gly	Cys	His	Thr	Pro	Thr	Asp	Ser	Cys	Thr	Gly
					130			135							140
Ser	Gln	Ala	Leu	Leu	Leu	Arg	Thr	Pro	Tyr	Ser	Ser	Asp	Asn	Leu	Tyr
					145			150				155			160
Gln	Met	Thr	Ser	Gln	Leu	Glu	Cys	Met	Thr	Trp	Asn	Gln	Met	Asn	Leu
					165			170							175
Gly	Ala	Thr	Leu	Lys	Gly	His	Ser	Thr	Gly	Tyr	Glu	Ser	Asp	Asn	His
					180			185							190
Thr	Thr	Pro	Ile	Leu	Cys	Gly	Ala	Gln	Tyr	Arg	Ile	His	Thr	His	Gly
					195			200							205
Val	Phe	Arg	Gly	Ile	Gln	Asp	Val	Arg	Arg	Val	Pro	Gly	Val	Ala	Pro
					210			215				220			
Thr	Leu	Val	Arg	Ser	Ala	Ser	Glu	Thr	Ser	Glu	Lys	Arg	Pro	Phe	Met
					225			230				235			240
Cys	Ala	Tyr	Pro	Gly	Cys	Asn	Lys	Arg	Tyr	Phe	Lys	Leu	Ser	His	Leu
					245			250							255
Gln	Met	His	Ser	Arg	Lys	His	Thr	Gly	Glu	Lys	Pro	Tyr	Gln	Cys	Asp
					260			265							270
Phe	Lys	Asp	Cys	Glu	Arg	Arg	Phe	Phe	Arg	Ser	Asp	Gln	Leu	Lys	Arg
					275			280							285
His	Gln	Arg	Arg	His	Thr	Gly	Val	Lys	Pro	Phe	Gln	Cys	Lys	Thr	Cys
					290			295				300			

Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr
 305 310 315 320

His Thr Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys
 325 330 335

Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met His Gln
 340 345 350

Arg Asn Met Thr Lys Leu Gln Leu Ala Leu
 355 360

<210> 395

<211> 214

<212> PRT

<213> Homo sapiens

<400> 395

Met His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro
 5 10 15

His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln
 20 25 30

Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro
 35 40 45

Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala
 50 55 60

Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln
 65 70 75 80

Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr
 85 90 95

Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu
 100 105 110

Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val
 115 120 125

Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly
 130 135 140

Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr
 145 150 155 160

Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu
 165 170 175

Gly Ala Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His
 180 185 190

Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly
 195 200 205

Val Phe Arg Gly Ile Gln
 210

<210> 396
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 396
gacgaaagca tatgcactcc ttcatcaaac 30

<210> 397
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 397
cgcgtgaatt catcaactgaa tgcctctgaa g 31

<210> 398
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 398
cgataaggcat atgacggccg cgtccgataaa c 31

<210> 399
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 399
cgcgtgaatt catcaactgaa tgcctctgaa g 31

<210> 400

<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 400		
cgataagcat atgacggccg cgtccgataaa c		31
<210> 401		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 401		
gtctgcagcg gccgctcaaa gcgccagc		28
<210> 402		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 402		
gacgaaagca tatgcactcc ttcatcaaac		30
<210> 403		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 403		
gtctgcagcg gccgctcaaa gcgccagc		28
<210> 404		
<211> 449		
<212> PRT		
<213> Homo sapiens		
<400> 404		
Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro		
1 5 10 15		
Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala		
20 25 30		

Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr
 35 40 45
 Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro
 50 55 60
 Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly
 65 70 75 80
 Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe
 85 90 95
 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe
 100 105 110
 Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe
 115 120 125
 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile
 130 135 140
 Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr
 145 150 155 160
 Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe
 165 170 175
 Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln
 180 185 190
 Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser
 195 200 205
 Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp
 210 215 220
 Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln
 225 230 235 240
 Met Asn Leu Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser
 245 250 255
 Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Ser Thr Gly Tyr Glu
 260 265 270
 Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile
 275 280 285
 His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro
 290 295 300
 Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys
 305 310 315 320
 Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys
 325 330 335
 Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro
 340 345 350
 Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp
 355 360 365
 Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln
 370 375 380
 Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr
 385 390 395 400
 His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys
 405 410 415
 Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val
 420 425 430
 Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala
 435 440 445
 Leu

<210> 405
<211> 428
<212> PRT
<213> Homo sapiens

<400> 405
Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro
1 5 10 15
Ser Pro Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Thr
20 25 30
Gln Trp Ala Pro Val Leu Asp Phe Val Pro Pro Gly Ala Pro Val Cys
35 40 45
Gly Ser Leu Gly Gly Pro Ala Pro Pro Ala Pro Pro Pro Leu Pro
50 55 60
Pro Pro Pro Ser His Ser Phe Thr Lys Gln Glu Pro Ser Trp Gly Gly
65 70 75 80
Thr Glu Pro His Ala Gly Gln Gly Arg Ser Ala Leu Val Ala His Ser
85 90 95
Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe
100 105 110
Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe
115 120 125
Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile
130 135 140
Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr
145 150 155 160
Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Ser
165 170 175
Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Pro Gly Glu Gln Gln
180 185 190
Tyr Ser Ala Pro Pro Pro Val Cys Gly Cys Arg Thr Pro Thr Gly Ser
195 200 205
Cys Thr Gly Ser Gln Ala Leu Leu Arg Ala Pro Tyr Ser Gly Gly
210 215 220
Asp Leu His Gln Thr Thr Ser Gln Leu Gly His Met Ala Trp Asn Gln
225 230 235 240
Thr Asn Leu Gly Ala Thr Leu Lys Gly His Gly Thr Gly Tyr Glu Ser
245 250 255
Asp Asp His Thr Thr Pro Ile Leu Cys Gly Thr Gln Tyr Arg Ile Arg
260 265 270
Ala Arg Gly Val Leu Arg Gly Thr Gln Asp Val Arg Cys Val Pro Gly
275 280 285
Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg
290 295 300
Pro Leu Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg His Phe Lys Pro
305 310 315 320
Ser Arg Leu Arg Val Arg Gly Arg Glu Arg Thr Gly Glu Lys Pro Tyr
325 330 335
Gln Arg Asp Phe Lys Asp Arg Gly Arg Gly Leu Leu Arg Pro Asp Gln
340 345 350
Leu Lys Arg His Gln Arg Gly His Thr Gly Val Lys Pro Leu Gln Cys
355 360 365

Glu	Ala	Arg	Arg	Arg	Pro	Pro	Arg	Pro	Gly	His	Leu	Lys	Val	His	Thr
370					375						380				
Arg	Thr	His	Thr	Gly	Gly	Glu	Pro	Phe	Ser	Cys	Arg	Trp	Pro	Ser	Cys
385					390					395					400
Gln	Glu	Lys	Ser	Ala	Arg	Pro	Asp	Glu	Ser	Ala	Arg	Arg	His	Asn	Met
					405				410						415
His	Gln	Arg	Asn	Met	Thr	Lys	Leu	Gln	Leu	Ala	Leu				
					420				425						

<210> 406
<211> 414
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> 85, 86, 172, 173, 242, 245, 246, 247
<223> Xaa = Any Amino Acid

<400> 406															
Met	Gly	Ser	Asp	Val	Arg	Asp	Leu	Ser	Ala	Leu	Leu	Pro	Ala	Val	Pro
1				5					10						15
Ser	Leu	Gly	Asp	Gly	Gly	Gly	Cys	Ala	Leu	Pro	Val	Ser	Gly	Ala	Ala
					20				25						30
Gln	Trp	Ala	Pro	Val	Leu	Asp	Phe	Ala	Pro	Pro	Gly	Ala	Ser	Ala	His
					35			40				45			
Gly	Pro	Leu	Gly	Gly	Pro	Ala	Pro	Pro	Ser	Ala	Pro	Pro	Pro	Pro	Pro
					50			55			60				
Pro	Pro	Pro	Pro	His	Ser	Phe	Ile	Lys	Gln	Gly	Pro	Ser	Trp	Gly	Gly
					65			70			75				80
Ala	Glu	Leu	His	Xaa	Xaa	Gln	Tyr	Leu	Ser	Ala	Phe	Thr	Val	His	Ser
					85				90						95
Ser	Gly	Gln	Val	His	Trp	His	Gly	Arg	Gly	Leu	Ser	Leu	Arg	Ala	Pro
					100			105							110
Arg	Pro	Pro	Ser	Ala	Gln	Pro	Gly	Val	Ile	Arg	Pro	Gly	Gln	Asp	Val
					115			120				125			
Ser	Arg	Ala	Leu	Pro	Ala	Gln	Pro	Pro	Arg	Glu	Pro	Ala	Arg	Tyr	Pro
					130			135			140				
Gln	Ser	Gly	Leu	Gln	His	Gly	His	Leu	Arg	Arg	Gly	Val	Arg	Leu	Arg
					145			150			155				160
Ser	His	Ala	Leu	Ala	Pro	Cys	Gly	Ala	Val	Leu	Xaa	Xaa	Thr	Arg	Ala
					165				170				175		
Gly	Ser	His	Gly	Pro	Ala	Gly	Ser	Ala	Gly	Ala	Ala	Val	Leu	Gly	Ala
					180			185				190			
Ala	Pro	Gly	Leu	Trp	Pro	Pro	His	Pro	Arg	Arg	Gln	Leu	Arg	Arg	Gln
					195			200			205				
Pro	Gly	Phe	Ala	Ala	Glu	Gly	Ala	Leu	Gln	Arg	Arg	Phe	Ile	Pro	Ser
					210			215			220				
Asp	Val	Pro	Ala	Val	His	Gly	Leu	Glu	Ser	Asp	Glu	Pro	Arg	Gly	Arg
					225			230			235				240
Leu	Xaa	Gly	Pro	Xaa	Xaa	Xaa	Val	Arg	Glu	Arg	Ser	His	Asn	Ala	Arg
					245			250			255				
Pro	Leu	Arg	Ser	Pro	Ile	Gln	Asn	Thr	His	Ala	Arg	Cys	Leu	Gln	Gly

	260	265	270
Arg Ser Gly Cys Ala Pro Cys Ala	Trp Ser Ser Pro Asp Ser Cys Thr		
275	280	285	
Val Gly Ile Gly Gln Gly Thr Pro Pro His Val Cys Leu Pro Arg Leu			
290	295	300	
Gln Glu Val Ser Glu Ala Ala Pro Leu Thr Asp Ala Arg Glu Ala Arg			
305	310	315	320
Trp Glu Thr Ile Pro Val Leu Gln Gly Leu Trp Thr Glu Val Phe Leu			
325	330	335	
Leu Arg Pro Ala Gln Lys Thr Pro Gly Glu Ala Tyr Arg Cys Glu Ala			
340	345	350	
Ile Pro Ala Asp Leu Ser Ala Arg Val Leu Pro Ala Gln Pro Pro Glu			
355	360	365	
Asp Pro Arg Gln Asp Ser Cys Arg Lys Ala Pro Gln Leu Ser Val Val			
370	375	380	
Arg Leu Ser Glu Lys Ala Cys Pro Val Lys Val Gly Pro Pro Ser Arg			
385	390	395	400
His Ala Ser Glu Gly His Asp Arg Thr Pro Ala Gly Ala Leu			
405	410		

<210> 407
<211> 417
<212> PRT
<213> Homo sapiens

<400> 407			
Met Gly Ser Asp Val Arg Asp Leu Ser Ala Leu Leu Pro Thr Ala Pro			
1	5	10	15
Ser Leu Gly Gly Gly Asp Cys Thr Leu Pro Val Ser Gly Thr Ala			
20	25	30	
Gln Trp Ala Pro Val Pro Ala Ser Ala Pro Pro Gly Ala Ser Ala Tyr			
35	40	45	
Asp Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro			
50	55	60	
Pro Pro Pro Pro His Ser Cys Gly Glu Gln Gly Pro Ser Trp Gly Gly			
65	70	75	80
Ala Glu Pro Arg Glu Gly Gln Cys Leu Ser Ala Pro Ala Val Arg Phe			
85	90	95	
Ser Gly Arg Phe Thr Gly Thr Val Gly Ala Cys Arg Tyr Gly Pro Leu			
100	105	110	
Gly Pro Pro Pro Ser Gln Ala Pro Ser Gly Gln Thr Arg Met Leu			
115	120	125	
Pro Ser Ala Pro Tyr Leu Ser Ser Cys Leu Arg Ser Arg Ser Ala Ile			
130	135	140	
Arg Ser Gln Gly Arg Ser Thr Ala Pro Ser Ala Gly Arg Pro Ala Met			
145	150	155	160
Ala Pro Thr Leu Ala Pro Pro Ala Gln Ser His Tyr Ser Gln His Gly			
165	170	175	
Val Leu His Gly Pro Ala Gly Leu Ala Gly Ala Ala Val Leu Gly Ala			
180	185	190	
Ala Pro Gly Leu Trp Leu Pro His Pro His Arg Gln Leu His Arg Gln			
195	200	205	
Pro Gly Phe Ala Ala Glu Asp Ala Leu Gln Gln Phe Ile Pro Asn			

210	215	220
Asp Ile Pro Ala Met His Asp Leu Glu Ser Asp	Glu Leu Arg Ser His	
225	230	235
Leu Lys Gly Pro Gln His Arg Val Arg Glu Arg Pro His Asn Ala His		240
245	250	255
Pro Leu Arg Ser Pro Ile Gln Asn Thr His Ala Arg Cys	Leu Gln Arg	
260	265	270
His Ser Gly Cys Ala Thr Cys Ala Trp Ser Ser Pro Asp	Ser Cys Thr	
275	280	285
Val Ala Pro Glu Thr Ser Glu Asn Ala Pro Trp Cys Val Leu Pro Gly		
290	295	300
Leu Gln Gly Val Phe Ala Val Pro Leu Thr Gly Ala Gln Gln Glu Ala		
305	310	315
His Trp Asp Ala Thr Pro Val Arg Leu Gln Gly Pro Trp Thr Arg Ala		320
325	330	335
Ser Pro Phe Gly Thr Ser Pro Arg Asp Thr Lys Gly Asp Ile Gln Val		
340	345	350
Arg Asn His Ser Ser Val Arg Leu Val Ser Glu Gly Ser Pro Gly Pro		
355	360	365
Thr Thr Gly Pro Thr Pro Gly Pro Thr Arg Val Gly Ser Pro Ser Ala		
370	375	380
Ala Gly Gly Gln Ala Ala Arg Glu Gly Ser Pro Ser Gln Thr Asn Ser		
385	390	395
Val Ile Thr Thr Cys Ile Ser Glu Thr Leu Asn Ser Ser Trp Arg Phe		400
405	410	415
Glu		

<210> 408
<211> 429
<212> PRT
<213> Homo sapiens

<400> 408		
Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro		
1	5	10
Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala		
20	25	30
Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr		
35	40	45
Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro		
50	55	60
Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly		
65	70	75
80		
Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe		
85	90	95
Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe		
100	105	110
Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe		
115	120	125
Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile		
130	135	140
Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr		

145	150	155	160
Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe			
165	170	175	
Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln			
180	185	190	
Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser			
195	200	205	
Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp			
210	215	220	
Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln			
225	230	235	240
Met Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser			
245	250	255	
Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His			
260	265	270	
Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro Gly			
275	280	285	
Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg			
290	295	300	
Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu			
305	310	315	320
Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr			
325	330	335	
Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln			
340	345	350	
Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys			
355	360	365	
Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His			
370	375	380	
Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser			
385	390	395	400
Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn			
405	410	415	
Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu			
420	425		

<210> 409
<211> 495
<212> PRT
<213> Homo sapiens

```

<400> 409
Met Ala Ala Pro Gly Ala Arg Arg Ser Leu Leu Leu Leu Leu Ala
      1           5           10          15
Gly Leu Ala His Gly Ala Ser Ala Leu Phe Glu Asp Leu Met Gly Ser .
      20          25          30
Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly
      35          40          45
Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala
      50          55          60
Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu
      65          70          75          80
Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro His

```

85	90	95
Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly	Gly Ala Glu Pro His Glu	
100	105	110
Glu Gln Cys Leu Ser Ala Phe Thr Val His	Phe Ser Gly Gln Phe Thr	
115	120	125
Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro	Phe Gly Pro Pro Pro Pro	
130	135	140
Ser Gln Ala Ser Ser Gly Gln Ala Arg Met	Phe Pro Asn Ala Pro Tyr	
145	150	155
Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala	Ile Arg Asn Gln Gly Tyr	
165	170	175
Ser Thr Val Thr Phe Asp Gly Thr Pro Ser	Tyr Gly His Thr Pro Ser	
180	185	190
His His Ala Ala Gln Phe Pro Asn His Ser	Phe Lys His Glu Asp Pro	
195	200	205
Met Gly Gln Gln Gly Ser Leu Gly Glu Gln	Gln Tyr Ser Val Pro Pro	
210	215	220
Pro Val Tyr Gly Cys His Thr Pro Thr Asp	Ser Cys Thr Gly Ser Gln	
225	230	235
Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser	Asp Asn Leu Tyr Gln Met	
245	250	255
Thr Ser Gln Leu Glu Cys Met Thr Trp Asn	Gln Met Asn Leu Gly Ala	
260	265	270
Thr Leu Lys Gly His Ser Thr Gly Tyr Glu	Ser Asp Asn His Thr Thr	
275	280	285
Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile	His Thr His Gly Val Phe	
290	295	300
Arg Gly Ile Gln Asp Val Arg Arg Val Pro	Gly Val Ala Pro Thr Leu	
305	310	315
Val Arg Ser Ala Ser Glu Thr Ser Glu Lys	Arg Pro Phe Met Cys Ala	
325	330	335
Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys	Leu Ser His Leu Gln Met	
340	345	350
His Ser Arg Lys His Thr Gly Glu Lys Pro	Tyr Gln Cys Asp Phe Lys	
355	360	365
Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp	Gln Leu Lys Arg His Gln	
370	375	380
Arg Arg His Thr Gly Val Lys Pro Phe Gln	Cys Lys Thr Cys Gln Arg	
385	390	395
Lys Phe Ser Arg Ser Asp His Leu Lys Thr	His Thr Arg Thr His Thr	
405	410	415
Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro	Ser Cys Gln Lys Lys Phe	
420	425	430
Ala Arg Ser Asp Glu Leu Val Arg His His	Asn Met His Gln Arg Asn	
435	440	445
Met Thr Lys Leu Gln Leu Ala Leu Leu Asn	Asn Met Leu Ile Pro Ile	
450	455	460
Ala Val Gly Gly Ala Leu Ala Gly Leu Val	Leu Ile Val Leu Ile Ala	
465	470	475
Tyr Leu Ile Gly Arg Lys Arg Ser His Ala	Gly Tyr Gln Thr Ile	
485	490	495

<211> 504
<212> PRT
<213> Homo sapiens

<400> 410
Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu
1 5 10 15
Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp
20 25 30
Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys
35 40 45
Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu
50 55 60
Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Ala Met Gly Ser Asp
65 70 75 80
Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly
85 90 95
Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro
100 105 110
Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly
115 120 125
Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro Pro His
130 135 140
Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu
145 150 155 160
Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr
165 170 175
Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro Pro Pro
180 185 190
Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr
195 200 205
Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr
210 215 220
Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr Pro Ser
225 230 235 240
His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu Asp Pro
245 250 255
Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro
260 265 270
Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln
275 280 285
Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met
290 295 300
Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu Gly Ala
305 310 315 320
Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His Thr Thr
325 330 335
Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly Val Phe
340 345 350
Arg Gly Ile Gln Asp Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu
355 360 365
Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro Phe Met Cys Ala
370 375 380
Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met

385	390	395	400
His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr Gln Cys Asp Phe Lys			
405	410	415	
Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu Lys Arg His Gln			
420	425	430	
Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg			
435	440	445	
Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr			
450	455	460	
Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys Lys Phe			
465	470	475	480
Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met His Gln Arg Asn			
485	490	495	
Met Thr Lys Leu Gln Leu Ala Leu			
500			

<210> 411

<211> 10

<212> PRT

<213> Homo sapiens

<400> 411

Val Leu Asp Phe Ala Pro Pro Gly Ala Ser			
1	5	10	

<210> 412

<211> 15

<212> PRT

<213> Homo sapiens

<400> 412

Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala			
1	5	10	15

<210> 413

<211> 15

<212> PRT

<213> Homo sapiens

<400> 413

Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu			
1	5	10	15