MATH4460 SPRING 2023 PRACTICE MIDTERM 1

Most of these problems are from a past MATH4460 exam.

Problem 1. For each of the following statements, determine whether it is true or false. No explanations need to be given.

- (a) If f is holomorphic at a point z_0 , then f is differentiable at z_0 .
- (b) The imaginary part of $\sqrt{17} \left(\cos\left(\frac{65\pi}{38}\right) + i\sin\left(\frac{65\pi}{38}\right)\right)^{19}$ is negative.
- (c) The function $f(z) = \overline{z}^2$ is continuous on \mathbb{C} .
- (d) If Im(z) > 0, then Im(1/z) < 0.
- (e) If $\pi/4 < \text{Arg}(z) < \pi/2$, then $3\pi/4 < \text{Arg}(z^3) < 3\pi/2$.

Problem 2. Given the function U(x,y) = xy - 8x from \mathbb{R}^2 to \mathbb{R} , find a holomorphic function f(z) whose real part is equal to U, or prove no such function exists.

Problem 3. Let $A = \{z \in \mathbb{C} : |z - 2 + i| > 3\}.$

- (a) Graph A in the complex plane.
- (b) Is A open?
- (c) Determine the boundary of A.

Problem 4. Let z, w be complex numbers with |w| < 1 and |z| < 1.

- (a) Do you expect $(1 w\overline{w})(1 z\overline{z})$ to be positive or negative, or not enough information?
- (b) Use the result from part (a) to show that

$$\left| \frac{w - z}{1 - \overline{w}z} \right| < 1.$$

Problem 5. Find all solutions of the complex equation $2z^3 + i = 0$. Leave your answers in exponential form.

Problem 6. Find the image of the line $\{z \in \mathbb{C} : \text{Im } z = 1\}$ under the mapping f(z) = 2/z. Draw the image in the complex plane as well.

Problem 7. Let f(z) be an analytic function defined on an open set $D \subseteq \mathbb{C}$. Suppose that $e^{f(z)}$ is a real-valued function (i.e. no imaginary part). Prove that f(z) is a constant.

2

1. Remarks

Remark 1.

- (a) True
- (b) False. The number can be rewritten as $\sqrt{17}(e^{65\pi i/38})^{19} = \sqrt{17}e^{\pi i/2}$ which points up (it's $\sqrt{17}i$).
- (c) True. $z \mapsto \overline{z}$ is continuous since it's $(x, y) \mapsto (x, -y)$ when interpreted as a function from \mathbb{R}^2 to \mathbb{R}^2 , and squaring is continuous, and compositions of continuous functions are continuous.
- (d) True. Direct computation.
- (e) Would be true if Arg took values in $[0, 2\pi)$. Since Arg takes values in $(\pi, \pi]$ in thie class, it's false.

Remark 2. If V = Im f then CR equations imply $V_x = -x$ and $V_y = y - 8$. Your favorite multivariable method to find a potential function with gradient (-x, y - 8) gives $V(x) = -\frac{1}{2}x^2 + \frac{1}{2}y^2 - 8y + C$, and any choice of C works. Let's take C = 0 and write U + iV as a function of z. Here's how I do this last step. We know z = x + yi and $z^2 = (x^2 - y^2) + 2xyi$. Based on this, we can see that 8x is the real part of 8z and xy is the real part of $-\frac{1}{2}iz^2$. So then $-\frac{1}{2}iz^2 + 8z$ is our desired function.

Remark 3. We didn't rigorously define open sets in this class so there is really nothing to do in this problem. The picture of A in the complex plane is the complement of a closed disk of radius 3 centered at 2-i. The boundary is the circle of radius 3 centered at 2-i.

Remark 4. $w\overline{w} = |w|$ and similarly with z, and so $0 < 1 - w\overline{w} < 1$ and $0 < 1 - z\overline{z} < 1$ meaning the answer to part (a) is positive.

Part (b) is some algebraic manipulation.

Remark 5.
$$2z^3 = -i = e^{3\pi i/2} \implies z^3 = \frac{1}{2}e^{3\pi i/2} \implies z = \frac{1}{\sqrt[3]{2}}e^{\pi i/2 + (2\pi i/3)k}, \ k \in \mathbb{Z}.$$

Remark 6. Expand out 2/(x+i), look at real and imaginary parts, and trace out the curve (where x is the time parameter) in the plane.

Remark 7. Work it out with CR equations. Before diving in you might notice that f(z) must be real-valued up to integer multiples of $2\pi i$, but since f is continuous and the set of integer multiples of $2\pi i$ is discrete, the imaginary part of f must be a constant multiple of $2\pi i$. Then it's a lot easier to show that the real part of f must be constant as well.