Sesión 5: Pagerank

Miguel Alcón Doganoc Javier Lopez Calderon

16 de noviembre de 2017

1 Dificultades en la implementación

Hemos tenido varios problemas a la hora de implementar el algoritmo de pagerank.

- 1. Decidir y entender las estructuras necesarias para computarlo.
- 2. Al principio no tuvimos en cuenta que las rutas pueden incluir un aeropuerto de origen o destino que no tenemos en airportList y a la hora de acceder a algún aeropuerto a partir del origen o destino de una ruta dejaba de funcionar.
- 3. Cuando tuvimos el pagerank implementado nos dimos cuenta de que la suma de éste no daba 1, sino 0.6, porqué no controlábamos la contribución de los valores nulos (outweight == 0).

2 Selección de parámetros

2.1. Damping Factor (L)

Hemos probado con L = $\{0.8, 0.85, 0.9\}$ y hemos obtenido que aunque varía el orden de los aeropuertos (según su pagerank), no lo hace por mucho. Por ejemplo, el primer aeropuerto en L = 0.9 pasa a ser el segundo con L = 0.85 y el tercero con L = 0.8. A parte de esto, el número de iteraciones y el tiempo de ejecución aumenta con L. Para L = $\{0.8, 0.85, 0.9\}$ tenemos #iteraciones = $\{133,177,272\}$ y tiempo = $\{4.658,6.372,9.602\}$ (en segundos).

Hemos observado que un incremento de L tiende, en general, a aumentar la precisión del resultado con un importante coste de iteraciones y tiempo. Por este motivo elegimos L=0.85 al ser un término medio.

2.2. Stopping Condition (n_decimals)

Nuestra función stoppingCondition compara los n decimales del pagerank de la iteración actual con el de la anterior y retorna True cuando son iguales (hasta que converge). Hemos probado para $n = \{2,4,8,16\}$ y nos da #iteraciones = $\{0,23,77,177\}$ y tiempo = $\{0.008,0.865,2.571,6.133\}$. A parte de esto, al comparar los resultados hemos observado que entre $n = \{2 \ y \ 4\}$ tenemos 3322 diferencias (el orden de los aeropuertos difiere en 3322 posiciones), entre $n = \{4 \ y \ 8\}$ tenemos 664 diferencias y entre $n = \{8,16\}$ tenemos 4.

Seleccionamos n=8 porqué entre $n=\{8\ y\ 16\}$ tenemos solo 4 diferencias y tardamos 3.562s y 100 iteraciones menos.