AUA CS108, Statistics, Fall 2020 Lecture 33

Michael Poghosyan

11 nov 2020

Contents

- Method of Moments (MoM, MME)
- ► Maximum Likelihood Method (MLE)

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate.

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate. Let me give the 2D case, and you will be able to extend to the m-D case.

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate. Let me give the 2D case, and you will be able to extend to the m-D case.

So assume $\theta = (\theta_1, \theta_2)$.

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate. Let me give the 2D case, and you will be able to extend to the m-D case.

So assume $\theta = (\theta_1, \theta_2)$. Then we need 2 Equations to find θ_1 and θ_2 .

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate. Let me give the 2D case, and you will be able to extend to the m-D case.

So assume $\theta=(\theta_1,\theta_2)$. Then we need 2 Equations to find θ_1 and θ_2 . The MoM says: first try to solve the following system:

1-st order Theoretical Moment = 1-st order Empirical Moment
2-nd order Theoretical Moment = 2-nd order Empirical Moment

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate. Let me give the 2D case, and you will be able to extend to the m-D case.

So assume $\theta=(\theta_1,\theta_2)$. Then we need 2 Equations to find θ_1 and θ_2 . The MoM says: first try to solve the following system:

1-st order Theoretical Moment = 1-st order Empirical Moment
2-nd order Theoretical Moment = 2-nd order Empirical Moment

The LHS of these equations, in general, will depend on θ_1 and θ_2 .

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate. Let me give the 2D case, and you will be able to extend to the m-D case.

So assume $\theta = (\theta_1, \theta_2)$. Then we need 2 Equations to find θ_1 and θ_2 . The MoM says: first try to solve the following system:

The LHS of these equations, in general, will depend on θ_1 and θ_2 . If we can find from here θ_1 and θ_2 , we take them as the MoM Estimators.

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate. Let me give the 2D case, and you will be able to extend to the m-D case.

So assume $\theta=(\theta_1,\theta_2)$. Then we need 2 Equations to find θ_1 and θ_2 . The MoM says: first try to solve the following system:

1-st order Theoretical Moment = 1-st order Empirical Moment 2-nd order Theoretical Moment = 2-nd order Empirical Moment

The LHS of these equations, in general, will depend on θ_1 and θ_2 . If we can find from here θ_1 and θ_2 , we take them as the MoM Estimators. Otherwise, if we cannot express from this system θ_1 or θ_2 , then we try to solve another pair of this kind of equations, using the possible smallest order Moments.

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate. Let me give the 2D case, and you will be able to extend to the m-D case.

So assume $\theta=(\theta_1,\theta_2)$. Then we need 2 Equations to find θ_1 and θ_2 . The MoM says: first try to solve the following system:

 $\{1\text{-st order Theoretical Moment}=1\text{-st order Empirical Moment}\}$ $\{2\text{-nd order Theoretical Moment}=2\text{-nd order Empirical Moment}\}$

The LHS of these equations, in general, will depend on θ_1 and θ_2 . If we can find from here θ_1 and θ_2 , we take them as the MoM Estimators. Otherwise, if we cannot express from this system θ_1 or θ_2 , then we try to solve another pair of this kind of equations, using the possible smallest order Moments. Say, if the 1st Moment equation is not giving a result, solve the system with 2nd and 3rd Moments.

Now assume that our Parameter θ is m-Dimensional, or, in other way, we have m Parameters to Estimate. Let me give the 2D case, and you will be able to extend to the m-D case.

So assume $\theta = (\theta_1, \theta_2)$. Then we need 2 Equations to find θ_1 and θ_2 . The MoM says: first try to solve the following system:

$$\begin{cases} \mbox{ 1-st order Theoretical Moment} = \mbox{ 1-st order Empirical Moment} \\ \mbox{ 2-nd order Theoretical Moment} = \mbox{ 2-nd order Empirical Moment} \end{cases}$$

The LHS of these equations, in general, will depend on θ_1 and θ_2 . If we can find from here θ_1 and θ_2 , we take them as the MoM Estimators. Otherwise, if we cannot express from this system θ_1 or θ_2 , then we try to solve another pair of this kind of equations, using the possible smallest order Moments. Say, if the 1st Moment equation is not giving a result, solve the system with 2nd and 3rd Moments. Or, if in the initial system 2nd order Moment equation is not saying anything, use 1st and 3rd Moments, etc.

Example

Example: Find the MoM Estimator for (μ, σ^2) in the $\mathcal{N}(\mu, \sigma^2)$ Model.

Solution: OTB

Note: If you do not want to obtain the *MoM Estimator*, but just the *MoM Estimate*, just plug the Observations into the Empirical Moments, and then solve the Moments Equality Equations.

Note: If you do not want to obtain the *MoM Estimator*, but just the *MoM Estimate*, just plug the Observations into the Empirical Moments, and then solve the Moments Equality Equations.

Note: Sometimes we are interested not in the Estimate of the Parameter itself, but in the Estimate for some function of that Parameter.

Note: If you do not want to obtain the *MoM Estimator*, but just the *MoM Estimate*, just plug the Observations into the Empirical Moments, and then solve the Moments Equality Equations.

Note: Sometimes we are interested not in the Estimate of the Parameter itself, but in the Estimate for some function of that Parameter. Say, we want to Estimate $h(\theta)$, where θ is our unknown Parameter.

Note: If you do not want to obtain the *MoM Estimator*, but just the *MoM Estimate*, just plug the Observations into the Empirical Moments, and then solve the Moments Equality Equations.

Note: Sometimes we are interested not in the Estimate of the Parameter itself, but in the Estimate for some function of that Parameter. Say, we want to Estimate $h(\theta)$, where θ is our unknown Parameter. Then one of the approaches is the Plug-in Principle: find an Estimator $\hat{\theta}$ for θ , say, using the MoM, and then plug that in h, to obtain $h(\hat{\theta})$ as an Estimator for $h(\theta)$.

Let's consider the case when we use the 1st order Moments.

Let's consider the case when we use the 1st order Moments.

Assume that for the Model \mathcal{F}_{θ} , the Expectation $\mathbb{E}_{\theta}(X)$ $(X \sim \mathcal{F}_{\theta})$, as a function of θ , has a Continuous Inverse function.

Let's consider the case when we use the 1st order Moments.

Assume that for the Model \mathcal{F}_{θ} , the Expectation $\mathbb{E}_{\theta}(X)$ $(X \sim \mathcal{F}_{\theta})$, as a function of θ , has a Continuous Inverse function. Say, if we denote $e(\theta) = \mathbb{E}_{\theta}(X)$, then we assume that the function $e^{-1}(\cdot)$ is continuous.

Let's consider the case when we use the 1st order Moments.

Assume that for the Model \mathcal{F}_{θ} , the Expectation $\mathbb{E}_{\theta}(X)$ $(X \sim \mathcal{F}_{\theta})$, as a function of θ , has a Continuous Inverse function. Say, if we denote $e(\theta) = \mathbb{E}_{\theta}(X)$, then we assume that the function $e^{-1}(\cdot)$ is continuous. Then the MoM Estimator for θ will be Consistent.

Let's consider the case when we use the 1st order Moments.

Assume that for the Model \mathcal{F}_{θ} , the Expectation $\mathbb{E}_{\theta}(X)$ $(X \sim \mathcal{F}_{\theta})$, as a function of θ , has a Continuous Inverse function. Say, if we denote $e(\theta) = \mathbb{E}_{\theta}(X)$, then we assume that the function $e^{-1}(\cdot)$ is continuous. Then the MoM Estimator for θ will be Consistent.

Indeed, to find the MoM Estimator for θ , we need to solve

$$e(\theta) = \overline{X}_n,$$

the solution of which we denote by $\hat{\theta}_n$.

Let's consider the case when we use the 1st order Moments.

Assume that for the Model \mathcal{F}_{θ} , the Expectation $\mathbb{E}_{\theta}(X)$ $(X \sim \mathcal{F}_{\theta})$, as a function of θ , has a Continuous Inverse function. Say, if we denote $e(\theta) = \mathbb{E}_{\theta}(X)$, then we assume that the function $e^{-1}(\cdot)$ is continuous. Then the MoM Estimator for θ will be Consistent.

Indeed, to find the MoM Estimator for θ , we need to solve

$$e(\theta) = \overline{X}_n,$$

the solution of which we denote by $\hat{\theta}_n$. This gives

$$\hat{\theta}_n = e^{-1}(\overline{X}_n).$$

Let's consider the case when we use the 1st order Moments.

Assume that for the Model \mathcal{F}_{θ} , the Expectation $\mathbb{E}_{\theta}(X)$ $(X \sim \mathcal{F}_{\theta})$, as a function of θ , has a Continuous Inverse function. Say, if we denote $e(\theta) = \mathbb{E}_{\theta}(X)$, then we assume that the function $e^{-1}(\cdot)$ is continuous. Then the MoM Estimator for θ will be Consistent.

Indeed, to find the MoM Estimator for θ , we need to solve

$$e(\theta) = \overline{X}_n,$$

the solution of which we denote by $\hat{\theta}_n$. This gives

$$\hat{\theta}_n = e^{-1}(\overline{X}_n).$$

Now, by the WLLN, $\overline{X}_n \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}(X_1) = e(\theta)$,

Let's consider the case when we use the 1st order Moments.

Assume that for the Model \mathcal{F}_{θ} , the Expectation $\mathbb{E}_{\theta}(X)$ $(X \sim \mathcal{F}_{\theta})$, as a function of θ , has a Continuous Inverse function. Say, if we denote $e(\theta) = \mathbb{E}_{\theta}(X)$, then we assume that the function $e^{-1}(\cdot)$ is continuous. Then the MoM Estimator for θ will be Consistent.

Indeed, to find the MoM Estimator for θ , we need to solve

$$e(\theta) = \overline{X}_n,$$

the solution of which we denote by $\hat{\theta}_n$. This gives

$$\hat{\theta}_n = e^{-1}(\overline{X}_n).$$

Now, by the WLLN, $\overline{X}_n \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}(X_1) = e(\theta)$, so

$$\hat{\theta}_n = e^{-1}(\overline{X}_n) \stackrel{\mathbb{P}}{\longrightarrow} e^{-1}(e(\theta)) = \theta.$$

The Maximum Likelihood Method

Idea of the Maximum Likelihood Method

Assume we have a Parametric Family of Distributions \mathcal{F}_{θ} with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$.

Idea of the Maximum Likelihood Method

Assume we have a Parametric Family of Distributions \mathcal{F}_{θ} with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. We take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

and want to use it to construct a good Estimator for θ .

Idea of the Maximum Likelihood Method

Assume we have a Parametric Family of Distributions \mathcal{F}_{θ} with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. We take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

and want to use it to construct a good Estimator for θ .

Idea of Maximum Likelihood Estimation: We choose that value of our parameter, under which **our Observation is the most Probable**.

Problem Statement Again

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$.

Problem Statement Again

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

Problem Statement Again

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

We, instead of our Observation, take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

to generalize, to have our method work also for unseen Data, to get a result for all possible Observations,

Problem Statement Again

Again, assume we have an Observation $x: x_1,...,x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

We, instead of our Observation, take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

to generalize, to have our method work also for unseen Data, to get a result for all possible Observations, i.e., to construct an **Estimator** for θ .

Problem Statement Again

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

We, instead of our Observation, take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

to generalize, to have our method work also for unseen Data, to get a result for all possible Observations, i.e., to construct an **Estimator** for θ .

And the Maximum Likelihood Method is saying: **choose that** value of θ , under which it is most likely to get $X_1, X_2, ..., X_n$.

Likelihood

Definition: The **Likelihood Function** for the above Model and Random Sample is the Joint PD(M)F of $X_1, ..., X_n$, **considered as a function of the parameter** θ , and **calculated at the Random Sample**, i.e., it is given by¹

$$\mathcal{L}(\theta) = \mathcal{L}_n(X_1, ..., X_n | \theta) = f(X_1 | \theta) \cdot f(X_2 | \theta) \cdot ... \cdot f(X_n | \theta), \qquad \theta \in \Theta.$$

¹Since X_k -s are independent

Likelihood

Definition: The **Likelihood Function** for the above Model and Random Sample is the Joint PD(M)F of $X_1, ..., X_n$, **considered as a function of the parameter** θ , and **calculated at the Random Sample**, i.e., it is given by¹

$$\mathcal{L}(\theta) = \mathcal{L}_n(X_1, ..., X_n | \theta) = f(X_1 | \theta) \cdot f(X_2 | \theta) \cdot ... \cdot f(X_n | \theta), \qquad \theta \in \Theta.$$

The Log-Likelihood Function is the function

$$\ell(\theta) = \ell(X_1, ..., X_n | \theta) = \ln \mathcal{L}(\theta) = \sum_{k=1}^n \ln f(X_k | \theta), \qquad \theta \in \Theta.$$

¹Since X_k -s are independent

Likelihood

Definition: The **Likelihood Function** for the above Model and Random Sample is the Joint PD(M)F of $X_1, ..., X_n$, **considered as a function of the parameter** θ , and **calculated at the Random Sample**, i.e., it is given by¹

$$\mathcal{L}(\theta) = \mathcal{L}_n(X_1, ..., X_n | \theta) = f(X_1 | \theta) \cdot f(X_2 | \theta) \cdot ... \cdot f(X_n | \theta), \qquad \theta \in \Theta.$$

The Log-Likelihood Function is the function

$$\ell(\theta) = \ell(X_1, ..., X_n | \theta) = \ln \mathcal{L}(\theta) = \sum_{k=1}^n \ln f(X_k | \theta), \qquad \theta \in \Theta.$$

Also we define the Negative Log-Likelihood Function to be

$$-\ell(\theta) = -\ln \mathcal{L}(\theta).$$

¹Since X_k -s are independent

Note: Likelihood is not a Probability - it can be larger than 1.

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Now, the Maximum Likelihood Method suggests to find a point that makes our Likelihood Maximal:

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Now, the Maximum Likelihood Method suggests to find a point that makes our Likelihood Maximal:

Definition: The **Maximum Likelihood Estimator (MLE)** of the parameter θ is the value of θ that maximizes the Likelihood function for the given random sample $X_1, ..., X_n$, the global maximum point (in case it exists) of $\mathcal{L}(X_1, ..., X_n | \theta)$:

$$\hat{\theta}^{MLE} = \hat{\theta}^{MLE}_n = \mathop{argmax}_{\theta \in \Theta} \mathcal{L}(\theta).$$

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Now, the Maximum Likelihood Method suggests to find a point that makes our Likelihood Maximal:

Definition: The **Maximum Likelihood Estimator (MLE)** of the parameter θ is the value of θ that maximizes the Likelihood function for the given random sample $X_1, ..., X_n$, the global maximum point (in case it exists) of $\mathcal{L}(X_1, ..., X_n | \theta)$:

$$\hat{\theta}^{MLE} = \hat{\theta}_{n}^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathcal{L}(\theta).$$

And in the case if we have an Observation $x: x_1, x_2,, x_n$ from the above Model (from one of the Distributions of that Model), the **Maximum Likelihood Estimate** (again **MLE**) of the parameter θ is the value of $\hat{\theta}^{MLE}$ on our Observation.

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

- ▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;
- Or first plug the Observation values into the Likelihood function, to get

$$\mathcal{L}(x_1,...,x_n|\theta),$$

and then find the maximum point for this function, over $\theta \in \Theta$.

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

- ▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;
- Or first plug the Observation values into the Likelihood function, to get

$$\mathcal{L}(x_1,...,x_n|\theta),$$

and then find the maximum point for this function, over $\theta \in \Theta$.

Note: Since the function $h(t) = \ln t$ is strictly increasing, we will have that

$$\operatorname*{argmax}_{\theta \in \Theta} \mathcal{L}(\theta) = \operatorname*{argmax}_{\theta \in \Theta} \ln \mathcal{L}(\theta) = \operatorname*{argmax}_{\theta \in \Theta} \ell(\theta),$$

i.e., the points of maximum of $\mathcal{L}(\theta)$ and $\ln \mathcal{L}(\theta)$ coincide.

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

- ▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;
- Or first plug the Observation values into the Likelihood function, to get

$$\mathcal{L}(x_1,...,x_n|\theta),$$

and then find the maximum point for this function, over $\theta \in \Theta$.

Note: Since the function $h(t) = \ln t$ is strictly increasing, we will have that

$$\underset{\theta \in \Theta}{\operatorname{argmax}} \, \mathcal{L}(\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \ln \mathcal{L}(\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \, \ell(\theta),$$

i.e., the points of maximum of $\mathcal{L}(\theta)$ and $\ln \mathcal{L}(\theta)$ coincide. And, in the rest, we will find the Max points of the **Log-Likelihd** function.

Calc 1 + Calc 3 Refresher

Here it is important for you to refresh you knowledge from Calc1 + Calc3 about how to find the maximum points of a function $\ell(\theta)$ for $\theta \in \Theta$, considering:

- ▶ 1D Case
- ▶ *n*-D Case
- Sufficient Conditions.