Diskretne Coonsove ploskve

Matej Rojec, Vito Rozman

15.01.2023

Povzetek

- Uvod
- Coonosove ploskve
- Stalnost Coonosove ploskve
- Trikotne stalne ploskve

Problem

Opis problema

Podane imamo štiri robne krivulje:

$$\mathbf{x}(u,0), \mathbf{x}(u,1), \mathbf{x}(0,v), \mathbf{x}(1,u).$$

Naloga

Najti ploskev

$$\mathbf{x}(u,v), (u,v) \in [0,1]^2,$$

ki jih interpolira.

Prevedba v jezik RPGO – Problem

Problem

Podane imamo štiri kontrolne poligone:

 $\mathbf{b}_{i,j}$ pripada domenskem parametru $\left(\frac{i}{m},\frac{j}{n}\right)$

Prevedba v jezik RPGO – Problem

Ti določajo štiri Bézierjev krivulje

$$\mathbf{p}(u,0) = \sum_{i=0}^{m} \mathbf{b}_{i,0} B_{i}^{m}(u), \qquad \mathbf{p}(u,1) = \sum_{i=0}^{m} \mathbf{b}_{i,n} B_{i}^{m}(u),$$
$$\mathbf{p}(0,v) = \sum_{j=0}^{n} \mathbf{b}_{0,j} B_{j}^{n}(v), \qquad \mathbf{p}(1,v) = \sum_{j=0}^{n} \mathbf{b}_{m,j} B_{j}^{n}(v),$$

nad domeno $(u, v) \in [0, 1]^2$.

Coonosove ploskve – ideja

Določitev točk

Coonosove ploskve – eksplicitno

Določitev točk

$$\mathbf{b}_{i,j} = \left(1 - \frac{i}{m}\right) \mathbf{b}_{0,j} + \frac{i}{m} \mathbf{b}_{m,j}$$

$$+ \left(1 - \frac{j}{n}\right) \mathbf{b}_{i,0} + \frac{j}{n} \mathbf{b}_{i,n}$$

$$- \left[1 - \frac{i}{m} \quad \frac{i}{m}\right] \begin{bmatrix} \mathbf{b}_{0,0} & \mathbf{b}_{0,1} \\ \mathbf{b}_{1,0} & \mathbf{b}_{1,1} \end{bmatrix} \begin{bmatrix} 1 - \frac{j}{n} \\ \frac{j}{n} \end{bmatrix}$$

Definicija – Coonsova ploskev

Ploskev, ki jo dobimo s tako dobljenimi kontrolnimi točkami $\mathbf{b}_{i,j}$ imenujemo Coonsova ploskev.

Coonosove ploskve – primer

Primer okvirja in kontrolnih točk Cossonove krivulje

Coonosove ploskve – primer

Primer Cossonove krivulje

Ideja

Stalnost

- Izberemo dve točki (u_0, v_0) in (u_1, v_1) ki razpenjata pravokotnik R v domeni $D = [0, 1]^2$.
- Štiri mejne pod-Coonosove ploskve se preslikajo na prvotno Coonosovo ploskev

To načelo lahko uporabimo na diskretni 3 × 3 Coonsovi ploskivi:

$$\begin{array}{llll} \mathbf{b}_{i-1,j-1} & \mathbf{b}_{i-1,j} & \mathbf{b}_{i-1,j+1} \\ \mathbf{b}_{i,j-1} & \mathbf{b}_{i,j} & \mathbf{b}_{i,j+1} \\ \mathbf{b}_{i+1,j-1} & \mathbf{b}_{i+1,j} & \mathbf{b}_{i+1,j+1} \end{array}$$

Računanje točk s pomočjo Coonosove ploskve

Če poznamo robne točke lahko notranjo točko $\mathbf{b}_{i,j}$ določimo na sledeč način:

Točke

$$\mathbf{b}_{i,j} = -\frac{1}{4} (\mathbf{b}_{i-1,j-1} + \mathbf{b}_{i+1,j-1} + \mathbf{b}_{i-1,j+1} + \mathbf{b}_{i+1,j+1}) + \frac{1}{2} (\mathbf{b}_{i-1,j} + \mathbf{b}_{i,j-1} + \mathbf{b}_{i,j+1} + \mathbf{b}_{i+1,j}).$$

Sistem $(m + 1) \times (n + 1)$ linearnih enačb

Stalne ploskve

Coonosova maska

$$\mathbf{b}_{i,j} = \frac{1}{4} \times \begin{matrix} -1 & 2 & -1 \\ 2 & \ddots & 2 \\ -1 & 2 & -1 \end{matrix}$$

Splošna tenzorska maska

$$\mathbf{b}_{i,j} = \begin{array}{ccc} \alpha & \beta & \alpha \\ \beta & \bullet & \beta \\ \alpha & \beta & \alpha \end{array}$$

Afinost: $4\alpha + 4\beta = 1$

Coonosova maska

$$(\alpha, \beta) = (-0.25, 0.5)$$

Stalne ploskve – primer

Stalni krivulji pridobljeni s parametroma α = -0.26 (leva) in α = -0.23 (desna slika)

Stalne ploskve – primer

Stalna krivulja pridobljena s parametrom α = 0

Trikotna maska

Maska

$$\mathbf{b_i} = \begin{pmatrix} \alpha & & & & & \\ \beta & & \beta & & & \\ \alpha & \beta & & \beta & & \alpha \end{pmatrix}$$

Rešimo sistem $\binom{m+1}{2}$ linearnih enačb, kjer je m število kontrolnih točk na eni stranici trikotnika

Afinost: $3\alpha + 6\beta = 1$

Stalne trikotne krpe – primer 1

Stalni krivulji pridobljeni s parametroma α = 0 (leva) in α = -1/6 (desna slika)

Stalne trikotne krpe – primer 2

Stalna krivulja pridobljena s parametrom $\alpha = -1/9$

