

AMONuSeg: A Histological Dataset for African Multi-Organ Nuclei Semantic Segmentation

Hasnae Zerouaoui¹, Gbenga Peter Oderinde², Rida Lefdali ¹, Karima Echihabi ¹, Stephen Peter Akpulu³, Nosereme Abel Agbon², Abraham Sunday Musa ², Yousef Yeganeh⁴,⁵, Azade Farshad 4,5, and Nassir Navab 4,5

¹ Mohammed VI Polytechnic University, Benguerir, Morocco - hasnae.Zerouaoui@um6p.ma, ²Ahmadu Bello University, Zaria, Nigeria, ³ Federal University of Lafia, Lafia, Nigeria, ⁴Technical University of Munich, Munich, Germany, ⁵ Munich Center for Machine Learning, Munich, Germany.

Introduction

Nuclei semantic segmentation is critical for advancing machine learning and deep learning in digital pathology. However, most current models are trained on high-quality data obtained using expensive equipment like whole slide scanners, which are not accessible to pathologists in developing countries. These professionals often work with low-resource data captured using low-precision microscopes, smartphones, or digital cameras, presenting unique challenges. This work introduces the first fully annotated African multi-organ dataset for histopathology nuclei segmentation (AMONUSEG), acquired with a low-precision microscope. We also evaluate state-of-the-art segmentation models, including spectral feature extraction encoder [1] and vision transformer-based (ViT) models [2], and stain normalization techniques [3] for color normalization of Hematoxylin and Eosin (H&E) stained histopathology slides.

Contribution

The main contributions of this study are:

- Introducing the first fully annotated, publicly available African Multi-Organ dataset for nuclei semantic segmentation (AMONuSeg).
- Analyzing the impact of stain color normalization techniques on the segmentation performance.
- Assessing the impact of State-of-the-art SOTA segmentation models on nuclei histopathology segmentation
- Proposing a modified merged FD-NET segmentation model.

Methodology

The AMONuSeg Dataset

AMONuSeg Dataset Description:

- 48 H&E histological images with a size of 1280x960 and 250x Magnification Factor.
- 4 body parts: Breast, Skin, Cervical and Inguinal.
- 19,036 annotated nuclei.
- Collected using digital microscopic camera (MA 500 AmScope Matlab ®, USA).

Figure 1: The difference between automatic annotations generated using the Fiji ImageJ and the manual annotations validated by expert 1 & 2.

Annotation Process:

Two trained annotators performed manual annotation following the steps bellow:

- 1. Unsupervised automatic nuclei segmentation masks are generated using Fiji ImageJ software to provide rough preliminary annotations for tissue slides.
- Manual annotation was performed using LabelStudio tool.
- Intra Observation to validate the annotations by the two trained annotators.
- 4. Validation of the annotations by three experts' anatomists and pathologists.
- 5. In case of disagreements, provide two masks for the annotated image.

FD-NET Empirical Design

FD-Net Two Branches:

- Spatial encoder branch that processes spatial features and convolutional consists blocks.
- Spectral branch that processes spectral features and consists of fast Fourier convolutional blocks [1].

The Input Images:

Figure 2: The Empirical design of the FD-Net Model

For the spatial encoder branch: The input image can be either the original image or a stain-normalized preprocessed image using Macenko, Reinhard, or StainGAN methods.

For the spectral encoder branch: The input image and the generated mean attention map using Dino v1 [2] are fed to the spectral branch.

Main Results

Table 1: The average Dice score of the evaluated segmentation models on the Original and pre-processed AMONuSeg dataset.

Model	Original Dataset	Preprocessing		
		Macenko	Reinhard	StainGan
U-Net [4]	0.823	0.794	0.825	0.826
SegNet [5]	0.809	0.755	0.799	0.809
Ynet [1]	0.830	0.794	0.825	0.826
DAINet [2]	0.824	0.793	0.822	0.828
TransNuseg [6]	0.815	0.791	0.814	0.813
FD-Net	0.828	0.796	0.822	0.830

The best performance achieved a higher average Dice score of 0.830 using both Y-Net with the original AMONuSeg and FD-Net with the StainGAN pre-processed dataset...

Conclusion

findings suggest that conclusion, our techniques, employing stain normalization spectral feature extraction encoder, and ViT-based models, the [4] O. Ronneberger et al. different levels of granularity and the small size of nuclei in H&E-stained histopathology images.

References

[1] A. Farshad, et al. Y-net: A spatiospectral dual-encoder network for medical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Interven pages 582-592. Springer, 2022.

despite [2] Y. Yeganehet al. Transformers pay attention to convolutions leveraging emerging properties of vits by dual attention-image network. In Proceedings of the IEEE/CVF International Confere Computer Vision, pages 2304–2315, 2023.

[3] J. Boschmanet al. The utility of color normalization for ai-based diagnosis of hematoxylin and eosin-stained pathology images. The Journal of Pathology, 256(1):15–24, 2022.

. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International

segmentation of nuclei was not be improved due to the Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234-241. Springer, 2015. [5] V. Badrinarayanan, Alex Kendall et al.A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12) 2495, 2017.

6]Z. He, Mathias Unberathet al.. Transnuseg: A lightweight multi-task transformer for nuclei segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 206–215. Springer, 2023.