УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа Часть 2

Часть 2 Вариант 2

> Студент XXX XXX XXX P31XX

Преподаватель Поляков Владимир Иванович

Задание

Построить комбинационную схему реализующую функцию C = |A-B| (C = 3 бита, A = 3 бита, B = 2 бита).

Таблица истинности

№	a_1	a_2	a_3	b_1	b_2	c_1	c_2	c_3
0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	1
2	0	0	0	1	0	0	1	0
3	0	0	0	1	1	0	1	1
4	0	0	1	0	0	0	0	1
5	0	0	1	0	1	0	0	0
6	0	0	1	1	0	0	0	1
7	0	0	1	1	1	0	1	0
8	0	1	0	0	0	0	1	0
9	0	1	0	0	1	0	0	1
10	0	1	0	1	0	0	0	0
11	0	1	0	1	1	0	0	1
12	0	1	1	0	0	0	1	1
13	0	1	1	0	1	0	1	0
14	0	1	1	1	0	0	0	1
15	0	1	1	1	1	0	0	0
16	1	0	0	0	0	1	0	0
17	1	0	0	0	1	0	1	1
18	1	0	0	1	0	0	1	0
19	1	0	0	1	1	0	0	1
20	1	0	1	0	0	1	0	1
21	1	0	1	0	1	1	0	0
22	1	0	1	1	0	0	1	1
23	1	0	1	1	1	0	1	0
24	1	1	0	0	0	1	1	0
25	1	1	0	0	1	1	0	1
26	1	1	0	1	0	1	0	0
27	1	1	0	1	1	0	1	1
28	1	1	1	0	0	1	1	1
29	1	1	1	0	1	1	1	0
30	1	1	1	1	0	1	0	1
31	1	1	1	1	1	1	0	0

Минимизация булевых функций на картах Карно

$$c_1 = a_1 \, \left(a_2 \vee \overline{b_1} \right) \, \left(a_2 \vee a_3 \vee \overline{b_2} \right) \, \left(a_3 \vee \overline{b_1} \vee \overline{b_2} \right) \quad (S_Q = 12)$$

$$c_{2} = (a_{1} \vee a_{2} \vee b_{1}) \left(a_{1} \vee \overline{a_{2}} \vee \overline{b_{1}}\right) \left(a_{2} \vee b_{1} \vee b_{2}\right) \left(a_{2} \vee \overline{a_{3}} \vee b_{1}\right) \left(\overline{a_{2}} \vee \overline{a_{3}} \vee \overline{b_{1}}\right) \left(\overline{a_{2}} \vee \overline{b_{1}} \vee b_{2}\right) \left(a_{1} \vee a_{2} \vee \overline{a_{3}} \vee b_{2}\right) \left(\overline{a_{2}} \vee \overline{a_{3}} \vee \overline{b_{1}} \vee \overline{b_{2}}\right) \left(\overline{a_{2}} \vee \overline{a_{3}} \vee \overline{b_{2}}\right) \left(\overline{a_{2}} \vee \overline{a_{2}} \vee \overline{a_{3}}\right) \left(\overline{a_{2}} \vee \overline{a_{2}}\right) \left(\overline{a_{2}} \vee \overline{a_{2}}\right)$$

$$c_3 = a_3 \, \overline{b_2} \vee \overline{a_3} \, b_2 \quad (S_Q = 6)$$

Преобразование системы булевых функций

$$\begin{cases}
c_1 = a_1 \left(a_2 \vee \overline{b_1}\right) \left(a_2 \vee a_3 \vee \overline{b_2}\right) \left(a_3 \vee \overline{b_1} \vee \overline{b_2}\right) & (S_Q^{c_1} = 12) \\
c_2 = a_1 \vee a_2 \vee b_1 a_1 \vee \overline{a_2} \vee \overline{b_1} a_2 \vee b_1 \vee b_2 a_2 \vee \overline{a_3} \vee b_1 \overline{a_2} \vee \overline{a_3} \vee \overline{b_1} \overline{a_2} \vee \overline{b_1} \vee b_2 \wedge \\
\wedge a_1 \vee a_2 \vee \overline{a_3} \vee b_2 \overline{a_2} \vee a_3 \vee b_1 \vee \overline{b_2} \overline{a_1} \vee a_2 \vee a_3 \vee \overline{b_1} \vee \overline{b_2}
\end{cases} & (S_Q^{c_2} = 40) \\
c_3 = a_3 \overline{b_2} \vee \overline{a_3} b_2 & (S_Q = 58)
\end{cases}$$

Проведем совместную декомпозицию системы.

$$\begin{cases} \varphi_0 = a_2 \vee a_3 \vee \overline{b_2} & (S_Q^{\varphi_0} = 3) \\ c_1 = \varphi_0 a_1 \left(a_2 \vee \overline{b_1} \right) \left(a_3 \vee \overline{b_1} \vee \overline{b_2} \right) & (S_Q^{\varphi_0} = 9) \\ c_2 = \varphi_0 \vee \overline{a_1} \vee \overline{b_1} a_1 \vee a_2 \vee b_1 a_1 \vee \overline{a_2} \vee \overline{b_1} a_2 \vee b_1 \vee b_2 a_2 \vee \overline{a_3} \vee b_1 \overline{a_2} \vee \overline{a_3} \vee \overline{b_1} \wedge \\ \wedge \overline{a_2} \vee \overline{b_1} \vee b_2 a_1 \vee a_2 \vee \overline{a_3} \vee b_2 \overline{a_2} \vee a_3 \vee b_1 \vee \overline{b_2} & (S_Q^{e_2} = 38) \\ c_3 = a_3 \overline{b_2} \vee \overline{a_3} b_2 & (S_Q^{e_3} = 6) \end{cases}$$

Проведем раздельную факторизацию системы.

$$\begin{cases} \varphi_0 = a_2 \vee a_3 \vee \overline{b_2} & (S_Q^{\varphi_0} = 3) \\ c_1 = \varphi_0 a_1 \left(\overline{b_1} \vee a_2 \left(a_3 \vee \overline{b_2} \right) \right) & (S_Q^{c_1} = 9) \\ c_2 = a_2 \vee b_1 \vee a_1 b_2 \overline{a_3} \varphi_0 \vee \overline{a_1} \vee \overline{b_1} \overline{a_2} \vee \overline{b_1} \vee a_1 \overline{a_3} b_2 a_1 \vee a_2 \vee \overline{a_3} \vee b_2 \wedge \\ \wedge \overline{a_2} \vee a_3 \vee b_1 \vee \overline{b_2} & (S_Q^{c_2} = 28) \\ c_3 = a_3 \overline{b_2} \vee \overline{a_3} b_2 & (S_Q^{c_3} = 6) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\begin{cases} \varphi_1 = \overline{a_3} \, b_2 & (S_Q^{\varphi_1} = 2) \\ \varphi_0 = \overline{\varphi_1} \vee a_2 & (S_Q^{\varphi_0} = 2) \\ c_1 = \varphi_0 \, a_1 \, \left(\overline{b_1} \vee \overline{\varphi_1} \, a_2 \right) & (S_Q^{c_1} = 7) \\ c_2 = \left(\varphi_0 \vee \overline{a_1} \vee \overline{b_1} \right) \, \left(a_2 \vee b_1 \vee \varphi_1 \, a_1 \right) \, \left(\overline{\varphi_1} \vee \overline{a_2} \vee b_1 \right) \, \left(\overline{a_2} \vee \overline{b_1} \vee \varphi_1 \, a_1 \right) \, \left(a_1 \vee a_2 \vee \overline{a_3} \vee b_2 \right) & (S_Q^{c_2} = 25) \\ c_3 = \varphi_1 \vee a_3 \, \overline{b_2} & (S_Q = 41) \end{cases}$$

 $\varphi_1 = \overline{a_3} \, b_2, \quad \overline{\varphi_1} = a_3 \vee \overline{b_2}$

Проведем раздельную факторизацию системы.

$$\begin{cases} \varphi_1 = \overline{a_3} \, b_2 & (S_Q^{\varphi_1} = 2) \\ \varphi_0 = \overline{\varphi_1} \vee a_2 & (S_Q^{\varphi_0} = 2) \\ c_1 = \varphi_0 \, a_1 \, \left(\overline{b_1} \vee \overline{\varphi_1} \, a_2 \right) & (S_Q^{c_1} = 7) \\ c_2 = \left(\varphi_1 \, a_1 \vee \left(a_2 \vee b_1 \right) \, \left(\overline{a_2} \vee \overline{b_1} \right) \right) \, \left(\varphi_0 \vee \overline{a_1} \vee \overline{b_1} \right) \, \left(\overline{\varphi_1} \vee \overline{a_2} \vee b_1 \right) \, \left(a_1 \vee a_2 \vee \overline{a_3} \vee b_2 \right) & (S_Q^{c_2} = 24) \\ c_3 = \varphi_1 \vee a_3 \, \overline{b_2} & (S_Q^{c_3} = 4) \end{cases}$$

Синтез комбинационной схемы в булемов базисе

Будем анализировать схему на следующем наборе аргументов:

$$a_1 = 0, a_2 = 1, a_3 = 0, b_1 = 0, b_2 = 1$$

Выходы схемы из таблицы истинности:

Цена схемы: $S_Q=40$. Задержка схемы: $T=5\tau$.