

Sensores y Actuadores

Presentación

QUÉ ES UN SENSOR

INTRODUCCIÓN

- Los sensores son el medio de interactuar con el mundo exterior.
- Traducen las señales de un determinado fenómeno físico en señales eléctricas (normalmente analógicas).
- Estas señales han de ser acondicionadas antes de ser procesadas.

CLASIFICACIÓN

- Sensores Binarios: convierten una magnitud física en una señal eléctrica con los estados "ON" y "OF".
- Sensores Analógicos: convierten una magnitud física en una señal analógica, principalmente una señal eléctrica de tensión o corriente.

- Final de Carrera.
- Sensor de Proximidad.
- Sensor de Nivel.
- Termostato.

EJEMPLOS SENSORES ANALÓGICOS

- Sensor de Longitud, distancia desplazamiento.
- Sensor para valores ópticos y acústicos.
- Sensor de Fuerza
- Sensor de temperatura y valores térmicos.

PROCESO GENERAL

Captación de señales Sensores

Acondicionamiento de señales Amplificación, Conversión,..

Procesado de señales: digital/analógico

- Sensibilidad
- Rango
- No-linealidad
- Repetibilidad
- Error de histéresis
- Estabilidad
- Resolución

Sensibilidad S: Mide la razón entre la variación de la señal física medida y la variación de la señal eléctrica de salida del sensor:

Si la señal física es x y la señal de salida r:

$$S = \frac{\frac{\Delta r}{r}}{\frac{\Delta x}{x}}$$

Rango: corresponde a los valores de salida del sensor correspondientes a todo el posible abanico de valores de entrada.

- Se expresa especificando los límites inferior y superior del intervalo en cuestión
- Ejemplo: El rango de un termómetro de resistencia de platino industrial es [-200,650]°C

No-Linealidad: La señal medida no depende linealmente de la magnitud física asociada, aunque esa era la respuesta esperada.

Repetibilidad: es la capacidad del sistema de dar el mismo valor de la magnitud medida cuando se realizan distintas medidas en la mismas condiciones

Error de Histéresis: se obtienen diferentes medidas para una misma entrada segun como se llega a dicho valor: incremento/decremento.

Estabilidad: mantener la salida para una entrada que se mantiene constante durante un periodo de tiempo.

Resolución: si la entrada varía continuamente en el tiempo, la resolución es la mínima variación de la entrada que produce un cambio significativo en la salida.

PARÁMETROS DINÁMICOS

Tiempo de respuesta:a una señal escalon.

Constante de tiempo.

Tiempos de subida y de bajada.

Tiempo de establecimiento.

PARÁMETROS DINÁMICOS

Ejemplo: termómetro de mercurio inmerso en un fluido

T_F: temperatura del fluido (magnitud de entrada)

T_T: temperatura del termómetro (magnitud de salida)

C: capacidad térmica del mercurio

R: resistencia térmica del vidrio a la transferencia de calor

El circuito equivalente es una red RC

Variación de la temperatura del termómetro es debida al flujo de calor a través del vidrio

$$\frac{d T_T(t)}{d t} = \frac{T_F(t) - T_T(t)}{RC}$$

Transformada de Laplace

$$s T_T(s) = \frac{T_F(s) - T_T(s)}{RC} \Rightarrow \frac{T_T(s)}{T_F(s)} = \frac{1}{1 + RCs}$$

TIPOS DE SENSORES

- Sensores de Luz
- Sensores de Fuerza
- Sensores de Sonido
- Sensores de Temperatura
- Sensores de Proximidad
- Sensores de Desplazamiento y Movimiento

Se entiende por Luz: radiación luminosa en los distintos espectros:

⇒visible: 400 nm -- 700 nm

⇒infrarrojo: > 700 nm

Los más comunes: fotocelulas.

Fotorresistencias: el valor de la resistencia varía con el nivel de luz.

Fotodiodos: conducen cuando incide luz sobre la unión (normalmente en inversa)

- → Gran sensibilidad
- → Genera señales lineales para un amplio rango de niveles de luz.
- Responde rápidamente a cambios de iluminación.
- → Usuales en receptores de control remoto TV, CD, ...
- → La señal generada necesita amplificación previa al procesado

Fotodiodos

Fototransistores: conducen cuando incide luz sobre la unión BE.

- → Mayor sensibilidad que las fotorresistencias.
- → Fácil de interactuar con un microprocesador.
- Normalmente se presentan en pares: diodo (emisor)+transistor (receptor)

Sensibles a esfuerzos mecánicos:

- → Miden efectos de carga (load cell)
- →Colisiones (si un robot entra en contacto corn un objeto, p. Ej. Robots móviles)
- → Deformaciones mecánicas

Son los más fiables, generan poco ruido y producen señales fáciles de interpretar.

Tipos de sensores de fuerza:

- Galgas extensiométricas
- Celdas de carga.
- Sensores piezoeléctricos.
- 4. Microinterruptores.

1. Galgas extensiométricas:

Son elementos resistivos formados por un hilo metálico (o de material semiconductor) depositado sobre un material soporte que se adhiere al objeto sobre el que se quiere medir la deformación.

El valor de dicha resistencia varía tras una deformación o esfuerzo de tipo mecánico (cambios pequeños).

Para medir variaciones en R se usa un puente de Wheatstone.

2. Celdas de carga: Es un tipo de galga que se utiliza para medir la deformación debida a la aplicación de una fuerza.

3. Sensores piezoeléctricos:

Un material piezoeléctrico es aquel que al ser sometido a deformaciones mecánicas sufre una redistribución interna de cargas generando así una diferencia de tensión.

Características:

Son versátiles y de bajo costo.

Una pelicula piezoeléctrica puede servir para:

- Detectar vibraciones.
- Detectar cambios en la fuerza aplicada.
- Detectar cambios de temperatura.
- Detectar radiaciones infrarrojas.

Se mide el voltaje entre los lados opuestos de una película de material (polivimiliden fluoride)

4. Sensores de colisión: Microinterruptores

Son microinterruptores colocados en posiciones susceptibles de colisionar con objetos (parachoques).

Su estado cambia si se produce una colisión.

Son sensibles a señales acústicas.

Pueden ser de ultrasonido u operar en el rango audible:

- → 1. Micrófonos
- ⇒2. Sonar

1. Micrófonos:

Sirven para traducir una señal de voz a una señal eléctrica.

En robótica por ejemplo se utilizan para:

- →Dirigir un robot hacia una fuente de sonido.
- →Alejarse de una fuente de sonido.
- →Registrar (escuchar) un conjunto de sonidos.
- →Localizar una fuente de sonido.

2.Sónar:

Se envía una señal sonora (ping) y se mide el tiempo que se tarda en recibir su eco (tipo reflexivo)

Ademas de la información de proximidad es capaz de precisar la distancia.

Un sistema típico consta de 2 transductores: emisor y receptor.

El emisor emite en la banda de ultrasonidos: 20-200kHZ. La respuesta es función de la amplitud de la señal reflejada.

Ejemplo

SPC SENSORES DE TEMPERATURA

Traducen la temperatura a una señal eléctrica: tensión.

- → Termómetros de resistencia.
- →Termopares.
- **→**Termistores.

SPCSENSORES DE TEMPERATURA INSTITUTO SUPERIOR POLITÉCNICO CÓRDOBA

1. Termómetros de Resistencia: RTD

(RTD = Resistance Temperature Detectors)

Algunos materiales resistivos tienen un coeficiente de temperatura α elevado:

$$R_T = R_0 (1 + \alpha T)$$

Esa propiedad se utiliza para medir la T. Se suele emplear hilo de platino muy puro (o Cogre, Níquel).

SPCSENSORES DE TEMPERATURA

Características:

Medidas de alta precisión.

Alta estabilidad.

Son frágiles, caros y tienen un tiempo de respuesta grande (0,5 a 10s) en comparación con los termopares.

Rango: de 0°C a 450°C (algunos hasta 800°C).

Valores bajos de resistencia de 10 Ω a 1k Ω .

Necesidad de sistemas para medir bajas R: puentes, óhmetros de precisión,...

SPCSENSORES DE TEMPERATURA INSTITUTO SUPERIOR POLITÉCNICO CÓRDOBA

RTD

Termômetro de resistencia de platino industrial.

SPCSENSORES DE TEMPERATURA INSTITUTO SUPERIOR POLITÉCNICO CÓRDOBA

2. Termopares:

Efecto Seebeck (1822): Al aplicar calor a la unión de dos materiales conductores distintos, se genera una tensión dependiente de la temperatura.

SPC SENSORES DE TEMPERATURA

Existen tablas de conversión tensióntemperatura (no lineal).

Algunos Materiales:

- Tipo T : Cobre-Constantan −70°C/+370°C (43 μv/°C)
- Tipo J: Hierro-Constantan −70°C/+900°C (53 μv/°C)
- Tipo K : Cromo-Alumel –200°C/+1300°C (41 μv/°C)
- Tipo S: Platino-Pt%10Rodio 0 °C/1400°C(6 μv/°C)
- Tipo B :Pt%30Rodio-Pt%6Rodio 0 °C/1800°C (3 μv/°C)

SPC SENSORES DE TEMPERATURA

Voltaje de salida de un termopar como una función de la temperatura para varios materiales de termopar.

PC SENSORES DE TEMPERATURA

- Son los sensores de temperatura más populares.
- No precisan de excitación externa.
- Son de bajo coste.
- Permite medir un amplio rango de T.
- No son tan estables como otros sistemas de medida de temperatura.

3. Termistores

Son dispositivos semiconductores que se comportan como R variables Su coeficiente de variación con la temperatura es alto y suele ser negativo (NTC), aunque tambien existen los PTC. Se pueden fabricar en tamaños pequeños.

SPCSENSORES DE TEMPERATURA INSTITUTO SUPERIOR POLITÉCNICO CÓRDOBA

Características:

Mayor resistencia que las RTD: de $2k\Omega$ a $10k\Omega$

Mayor Sensibilidad: 200 Ω/°C

Son de alta precisión sobre todo en rangos de -100°C a +300°C.

Alta estabilidad.

Respuesta rápida.

Son relativamente frágiles.

- 1. Sensores neumáticos.
- 2. Sensores magnéticos (efecto Hall).
- 3. Fotosensores.
- 4. Microinterruptores.

1. Sensores neumáticos

Usan aire bajo presión.

La proximidad o el desplazamiento de un objeto da lugar a un cambio en la presión del aire.

Rangos usuales: 3mm a 12mm.

2. Sensores magnéticos:

Tipos:

- De tipo inductivo.
- Basados en Efecto Hall: cuando un haz de electrones pasa por un campo magnético sufre una desviación de su trayectoria.
 - → Se genera una diferencia de potencial función de B.

Características:

Rangos típicos para un sensor lineal: 10 mV/mT entre -40 y 40 mT (gauss)

O bien, un salto de 145 mV para un campo de 3mT.

Ventajas:

- →Pueden operar a altas frecuencias: >100 kHz.
- → Menor coste que conmutadores electromecanicos.
- No presentan problemas de rebotes.
- → Pueden usarse en condiciones de entorno duras.

3. Fotosensores

Se presentan en pares: emisor + receptor

Detectan la presencia de un objeto debido a:

- → Interrupción de un haz de luz (visible o infrarojo)
- Detección del haz reflejado sobre un bjaeto en su radio de acción.

4. Microinterruptores

La presencia (colisión) de un objeto cierra un microinterruptor.

Un microinterruptor requiere por tanto de la aplicación de una fuerza externa para cerrarse.

SENSORES DE DESPLAZAMIENTO Y MOVIMIENTO

Existen diferentes opciones:

- Desplazamiento lineal
- Desplazamiento Angular

Desplazamiento lineal:

- Potenciometros, medidas resistivas
- → Transformadores diferenciales linealmente variables (LVDT)
- Condensadores variables

SPC SENSORES DE DESPLAZAMIENTO Y **MOVIMIENTO**

Desplazamiento lineal

- 1. Potenciometros
 - → Tambien para desplazamientos angulares
 - →Bajo coste
 - → Fácil de interactuar
 - →Poca precisión
 - →Muy sensibles a ruidos

SPC SENSORES DE DESPLAZAMIENTO Y **MOVIMIENTO**

Desplazamiento lineal

2. LVDT

- →Transformador diferencial linealmente variable
- →El desplazamiento se mide por el movimiento del núcleo
- → Excitación AC
- →Cambios en la fase de salida.

SENSORES DE DESPLAZAMIENTO Y **MOVIMIENTO**

Fundamentos:

Sección transversal:

- →Tres arrollamientos:
 - →Un primario
 - →2 secundarios en serie

sensor

SENSORES DE DESPLAZAMIENTO Y **MOVIMIENTO**

Es necesario medir cambios de fase en la salida

SPC SENSORES DE DESPLAZAMIENTO Y **MOVIMIENTO**

Parametros:

- →Recorridos: 2 mm
- →Error de no linealidad %0,25

Caracteristicas:

- →Ausencia de contactos en sensor
- →Gran precisión y fiabilidad
- →Se usan tambien como transductores de fuerza, peso y presión.

SENSORES DE DESPLAZAMIENTO Y MOVIMIENTO

Desplazamiento lineal

3. Capacitivos

Se produce una variación de la capacidad del condensador con el desplazamiento.

Desplazamiento angular:

- Transformador diferencial de rotación RVDT
- 2. Codificador (señal de pulsos de salida)

SPCSENSORES DE DESPLAZAMIENTO Y INSTITUTO SUPERIOR POLITÉCNICO CÓRDOBA MOVIMIENTO

Desplazamiento angular Codificador:

Tipos:

- Opticos
- → Magneticos

Desplazamientos angulares Codificador

- Disco rotador con una serie de pistas codificadas (code track)
- → Una fuente de luz y un fotodetector
- Genera una señal de salida binaria
- → Material del disco: vidrio (alta resolución >16bit), o plastico/metal (de 8 a 10 bits)

Desplazamiento angular Codificadores

Existen dos tipos:

Codificadores incrementales

→ Codificadores Absolutos

Desplazamiento angular Codificadores incrementales

- Miden el desplazamiento relativo (respecto a una referencia)
- Permiten detectar:
 - **→**Angulo
 - Sentido de giro
- Problemas de inestabilidad y sensibilidad al ruido
- Bajo costo.

Desplazamiento angular Codificadores absolutos

- Miden una posición angular en particular
- Se usan para bajas velocidades o movimientos poco frecuentes.
- Son más complicados que los incrementales.
- Generan una señal de salida en forma de código binariode n bits asociado a un ángulo de giro.

SPC SENSORES DE DESPLAZAMIENTO Y **MOVIMIENTO**

Desplazamiento angular Codificadores magnéticos

Está formado por:

- Disco rotador de material ferroso con una serie de dientes realizados con gran precisión.
- →Como detector un imán permanente junto con un sensor sensible a variaciones en el Magnetic campo magnético

Gear tooth (ferrous metal)

SENSORES DE DESPLAZAMIENTO Y INSTITUTO SUPERIOR MOVIMIENTO MOVIMIENTO

- →Al girar se producen cambios en el campo emitido por el iman permanete
- El sensor genera en consecuencia una señal de pulsos.
- → Material del sensor:
 - → Semiconductor(efeto Hall)
 - → Arrollamiento de un cable
- No precisa excitación externa