上海大学研究生 量子场论讲义

主讲: 陆杰

整理: 杨光耀 吴梦之 严禹坤

Contents

1	引言	2
	1.1 引言	. 2
	1.1.1 因果律问题的分析	. 2
	1.1.2 构建理论的一般步骤	. 2
	1.2 分析力学回顾	. 3
	1.2.1 最小作用量原理与Euler-Lagrange方程	. 3
	1.2.2 哈密顿力学	. 4
	1.3 量子力学中的谐振子	. 5
	1.3.1 多体耦合谐振子	. 5
2	对称性	5
3	自由场的量子化	5
4	相互作用的量子场与费曼图	5

1 引言

1.1 引言

构建OFT的一些初衷

- 相对论性量子力学中的负能态问题
- 量子力学二级微扰论的虚粒子的诠释
- 因果律(causality)

1.1.1 因果律问题的分析

我们考虑传播子

$$K(\vec{x}_2, \vec{x}_1; t_2, t_1) := \langle \vec{x}_2 | \hat{U}(t_2, t_1) | \vec{x}_1 \rangle \tag{1}$$

其中 $\hat{U}(t_2,t_1)$ 是时间演化算符。这一项的物理意义是,假设在t1时刻有一个由 $|\vec{x}_1\rangle$ 来刻画的量子态,即位于 \vec{x}_1 处的坐标算符本征态。让这个态经过一段时间演化后,它会变成弥漫于空间的波,在t2时刻有一定几率处于 \vec{x}_2 , $K(\vec{x}_2,\vec{x}_1;t_2,t_1)$ 所刻画的正是这个概率。在狭义相对论中,我们知道物质的运动和信息的传播都不能超光速,即类空的两点之间不应该有关联,所以类空的两点之间的传播子应该为0。我们计算非相对论性量子力学中的自由粒子的传播子可以得到:(取Planck常数 $\hbar=1$)

$$K(\vec{x}_{2}, \vec{x}_{1}; t, 0) = \langle \vec{x}_{2} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{x}_{1} \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \langle \vec{x}_{2} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{p} \rangle \langle \vec{p} | \vec{x}_{1} \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} e^{-i\frac{\vec{p}^{2}}{2m}t} e^{i\vec{p}(\vec{x}_{2} - \vec{x}_{1})}$$

$$= \left(\frac{m}{2\pi i t}\right)^{3/2} e^{im|\vec{x}_{2} - \vec{x}_{1}|/2t}$$
(2)

当 $|\vec{x}_2 - \vec{x}_1|$ 很大而t很小时,这个传播子仍然不为0,说明在类空间隔下的两个点之间存在关联,这与狭义相对论是矛盾的。所以我们应当考虑相对论性量子力学,此时自由粒子的传播子是

$$K(\vec{x}_{2}, \vec{x}_{1}; t, 0) = \langle \vec{x}_{2} | e^{-it\sqrt{\vec{p}^{2} + m^{2}}} | \vec{x}_{1} \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} e^{-it\sqrt{\vec{p}^{2} + m^{2}}} e^{i\vec{p}(\vec{x}_{2} - \vec{x}_{1})}$$

$$= \frac{1}{2\pi^{2} |\vec{x}_{2} - \vec{x}_{1}|} \int p \sin(p|\vec{x}_{2} - \vec{x}_{1}|) e^{-it\sqrt{\vec{p}^{2} + m^{2}}} dp$$

$$\approx e^{-m\sqrt{\vec{x}^{2} - t^{2}}}$$
(3)

这个传播子在类空间隔下仍然不为0,说明相对论性量子力学在因果律方面存在一些问题,这将在QFT中得到回答。

1.1.2 构建理论的一般步骤

- 1 写下拉氏量,比如 $\mathcal{L}[\phi] = \partial^{\mu}\phi\partial_{\mu}\phi \frac{1}{2}m^2\phi^2 + \lambda\phi^4$
- 2 写下路径积分,比如 $Z = \int \mathcal{D}\phi e^{i\int \mathcal{L}[\phi]}$

- 3 对路径积分依照耦合系数进行微扰展开
- 4 微扰计算路径积分
- 5 发现存在发散问题
- 6 正规化来分离发散部分,比如引入截断 Λ ,于是 $\int_{\mathbb{R}} \frac{1}{x^2} dx \to \int_{|x|>\frac{1}{2}} dx$
- 7 令耦合系数为截断的微扰展开式
- 8 重整化,只考虑路径积分的有限项
- 9 与实验比较
- 10 拿Nobel奖,或者从头开始

1.2 分析力学回顾

1.2.1 最小作用量原理与Euler-Lagrange方程

分析力学中,我们用广义坐标q(t)与广义速度 $\dot{q}=\frac{d}{dt}$ 来刻画一个质点系统的运动状态。拉氏量 $L(q_i,\dot{q}_i;t)$ 是关于广义坐标和广义速度的泛函,用来刻画系统的运动规律。

Note: 函数 $f: \mathbb{R}^n \to \mathbb{R}^2$

泛函 $L: C(\Omega) \to \mathbb{R}$,其中 $C(\Omega)$ 是 Ω 上的全体函数力学体系的作用量定义为

$$S = \int_{t_1}^{t_2} L(q_i(t), \dot{q}_i(t); t) dt \tag{4}$$

最小作用量原理(哈密顿原理): 对于真实的一个运动轨迹,当坐标发生一个变分后,作用量不会变小。也就是说 $\delta S=0$ 。

注: 这里的变分是等时变分,即 $\delta t=0$,故拉氏量的变分中没有 $\frac{\delta L}{\delta t}\delta t$ 项。

$$0 = \delta S = \delta \int_{t_1}^{t_2} L(q_i, \dot{q}_i; t) dt$$

$$= \int_{t_1}^{t_2} dt \left(\frac{\delta L}{\delta q_i} \delta q_i + \frac{\delta L}{\delta \dot{q}_i} \delta \dot{q}_i \right)$$

$$= \int_{t_1}^{t_2} dt \frac{\delta L}{\delta q_i} \delta q_i + \int_{t_1}^{t_2} (\delta \dot{q}_i dt) \frac{\delta L}{\delta \dot{q}_i} \delta \dot{q}_i$$

$$= \int_{t_1}^{t_2} dt \frac{\delta L}{\delta q_i} \delta q_i + \frac{\delta L}{\delta \dot{q}_i} \delta q_i |_{t_1}^{t_2} - \int_{t_1}^{t_2} dt \frac{d}{dt} \left(\frac{\delta L}{\delta \dot{q}_i} \right) \delta q_i$$

$$= \int_{t_1}^{t_2} dt \left(\frac{\delta L}{\delta q_i} - \frac{d}{dt} \left(\frac{\delta L}{\delta \dot{q}_i} \right) \right) \delta q_i$$
(5)

于是我们得到了Euler-Lagrange方程如下

$$\frac{\delta L}{\delta q_i} - \frac{d}{dt} \left(\frac{\delta L}{\delta \dot{q}_i} \right) = 0 \tag{6}$$

Euler-Lagrange方程是系统的运动方程,比如对于一个谐振子,其拉氏量为 $L=\frac{1}{2}m\dot{x}^2-\frac{1}{2}kx^2$,根据Euler-Lagrange方程可以得到,这正是谐振子的运动方程 $m\ddot{x}+kx=0$ 。

考虑Newton第二定律 $\vec{F}=m\ddot{x}$,对于保守力 \vec{F} ,一般总可以写成势能的梯度 $\vec{F}=\nabla V$,于是Newton第二定律可以写成 $m\ddot{x}-\nabla V$ 。这与Euler-Lagrange方程具有相同的形式,即如果令 $L=\frac{1}{2}m\dot{x}^2-V$,则Euler-Lagrange方程给出的正是Newton第二定律,并且我们顺便得到了在保守力系统中,L=T-V。

1.2.2 哈密顿力学

定义广义动量

$$p_i = \frac{\partial L}{\partial \dot{q}_i} \tag{7}$$

对拉氏量作Legendre变换,定义哈密顿量,它是广义坐标和广义动量的函数

$$H(q_i, p_i; t) = p_i \dot{q}_i - L \tag{8}$$

由于L不显含 p_i ,我们计算得到 $\frac{\partial H}{\partial p_i}=\dot{q}_i$; 以及根据Euler-Lagrange方程(6), $\frac{\partial H}{\partial q_i}=-\frac{\partial L}{\partial q_i}=-\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i}=-\frac{d}{dt}q_i=-\dot{q}_i$ 。于是我们得到了哈密顿正则方程

$$\begin{cases}
\dot{p}_i = -\frac{\partial H}{\partial q_i} \\
\dot{q}_i = \frac{\partial H}{\partial p_i}
\end{cases}$$
(9)

对于保守力系统,我们已经证明了其拉氏量等于动能减势能,即L=T-V。由(7),不难得到H=T+V。应注意此式仅对保守力学系统成立,对于经典电磁场下带电质点,其哈密顿量为 $H=\frac{(\vec{p}+e\hat{A})^2}{2m}+e\phi(x)$,就不再是T+V的形式了。

对于一个谐振子,不难计算得到其哈密顿量 $H=\frac{p^2}{2m}+\frac{1}{2}kx^2$ 。利用哈密顿正则方程,不难得到谐振子的运动方程是

$$\begin{cases} \dot{p}_i = -kx \\ \dot{q}_i = \frac{p}{m} \end{cases} \tag{10}$$

定义泊松括号

$$\{A, B\} = \frac{\partial A}{\partial q_i} \frac{\partial B}{\partial p_i} - \frac{\partial B}{\partial q_i} \frac{\partial A}{\partial p_i} \tag{11}$$

这里默认对指标i求和,称为Einstein求和。当然,严格来讲Einstein求和是一上一下两个指标求和,称为缩并,本质上来讲是流形的切空间及其对偶空间的内积,这里的 q_i 和 p_i 并不构成流形的切空间和对偶空间,所以这里不强调上下标。当然,更精细的理论会从辛几何的角度来理解分析力学,此时拉格朗日力学是切丛上的力学,哈密顿力学是余切丛上的力学,Einstein求和也确实是切空间和余切空间的内积。于是可以得到广义坐标和广义动量的对易关系

$$\{q_{i}, p_{j}\} = \frac{\partial q_{i}}{\partial q_{k}} \frac{\partial p_{j}}{\partial q_{k}} - \frac{\partial p_{j}}{\partial q_{k}} \frac{\partial q_{i}}{\partial p_{k}}$$

$$= \delta_{ik} \delta_{jk}$$

$$= \delta_{ij}$$
(12)

力学量 $F = F(q_i, p_i; t)$ 的演化方程为

$$\frac{dF}{dt} = \frac{\partial F}{\partial q_i} \dot{q}_i + \frac{\partial F}{\partial p_i} \dot{p}_i + \frac{\partial F}{\partial t}
= \frac{\partial F}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial H}{\partial q_i} \frac{\partial F}{\partial p_i} + \frac{\partial F}{\partial t}
= \{F, H\} + \frac{\partial F}{\partial t}$$
(13)

特别地,对于哈密顿量,我们有

$$\frac{dH}{dt} = \frac{\partial H}{\partial t} \tag{14}$$

这意味着 $\frac{\partial H}{\partial t}=0$ \Rightarrow $\frac{dH}{dt}=0$, 也就是说如果哈密顿量不显含时,那么哈密顿量是一个守恒量。

1.3 量子力学中的谐振子

一维谐振子的哈密顿量 $\hat{H}=\frac{\hat{p}^2}{2m}+\frac{1}{2}m\omega^2\hat{x}^2=-\frac{\hbar^2}{2m}\nabla^2\frac{1}{2}m\omega^2x^2$ 。定义产生湮灭算符

$$\begin{cases}
\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} (\hat{x} + \frac{i}{m\omega} \hat{p}) \\
\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} (\hat{x} - \frac{i}{m\omega} \hat{p})
\end{cases}$$
(15)

产生与湮灭算符的基本性质是

$$\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$$

$$\hat{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$
(16)

于是可以求出第n能级的态矢量为

$$|n\rangle = \frac{(\hat{a}^{\dagger})^n}{\sqrt{n!}} |0\rangle \tag{17}$$

定义粒子数算符 $\hat{N} = \sum_{i} \hat{a}^{\dagger} \hat{a}$, 于是

$$\hat{N}|n\rangle = n|n\rangle \tag{18}$$

1.3.1 多体耦合谐振子

N个无耦合谐振子的哈密顿量和态空间(Fock态)为

$$\hat{H} = \hat{H}_k = \sum \frac{\hat{p}_k^2}{2m_k} + \frac{1}{2} m_k \omega_k^2 \hat{x}_k^2 = \sum (\hat{a}^{\dagger} \hat{a} + \frac{1}{2}) \hbar \omega_k$$

$$|n_1 n_2 ... n_k ... n_N\rangle = (\hat{a}_1^{\dagger})^{n_1} (\hat{a}_2^{\dagger})^{n_2} ... (\hat{a}_N^{\dagger})^{n_N}$$
(19)

耦合谐振子的哈密顿量

对于N个耦合谐振子的哈密顿量,考虑相邻两个谐振子具有相互作用,给出哈密顿量

$$\hat{H} = \sum_{j} \left[\frac{\hat{p}_{j}^{2}}{2m} + \frac{1}{2} k (\hat{x}_{j+1} - \hat{x}_{j})^{2} \right]$$
 (20)

- 2 对称性
- 3 自由场的量子化
- 4 相互作用的量子场与费曼图