Методы машинного обучения. Активное обучение (Active Learning)

Воронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса:

github.com/MSU-ML-COURSE/ML-COURSE-21-22 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 17 мая 2022

Содержание

- Стратегии активного обучения
 - Постановка задачи активного обучения
 - Отбор объектов из выборки
 - Синтез объектов (планирование экспериментов)
- ② Активное обучение с изучающими действиями
 - Компромисс «изучение-применение»
 - ullet Алгоритм arepsilon-active
 - Экспоненциальный градиент
- Обрания по помения в праудсорсинге править править
 - Задача краудсорсинга
 - Согласование оценок аннотаторов
 - Активное распределение заданий по аннотаторам

Постановка задачи активного обучения

Задача: обучение модели $a: X \to Y$ по выборке (x_i, y_i) , когда получение ответов $y_i = y(x_i)$ стоит дорого.

Burr Settles. Active Learning Literature Survey. 2010.

Постановка задачи активного обучения

Задача: обучение модели $a\colon X\to Y$ по выборке (x_i,y_i) , когда получение ответов $y_i=y(x_i)$ стоит дорого.

```
Вход: X^{\ell} = (x_i, y_i)_{i=1}^{\ell} — выборка размеченных объектов; U = (u_i)_{i=1}^{K} — выборка (пул) неразмеченных объектов; Выход: модель a и размеченная выборка (u_i, y_i^*)_{i=1}^{k}, k \leqslant K; обучить модель a по начальной выборке (x_i, y_i)_{i=1}^{\ell}; пока есть неразмеченные объекты и модель не обучилась u_i = \arg\max_{u \in U} \phi(u) — выбрать неразмеченный объект; узнать для него y_i^* = y(u_i); дообучить модель a(x) ещё на одном примере (u_i, y_i^*);
```

Цель: достичь как можно лучшего качества модели a, использовав как можно меньше дополнительных примеров k.

Почему активное обучение быстрее пассивного

Пример 1. Синтетические данные: $\ell = 30$, $\ell + k = 400$;

- (а) два гауссовских класса;
- (b) логистическая регрессия по 30 случайным объектам;
- (с) логистическая регрессия по 30 объектам, отобранным с помощью активного обучения.

Обучение по смещённой неслучайной выборке требует меньше данных для построения алгоритма сопоставимого качества.

Burr Settles. Active Learning Literature Survey. 2010.

Почему активное обучение быстрее пассивного

Пример 2. Одномерная задача с пороговым классификатором:

$$x_i \sim \text{uniform}[-1, +1], \qquad y_i = [x_i > 0], \qquad a(x, \theta) = [x > \theta].$$

Оценим число шагов для определения heta с точностью $rac{1}{k}$.

- Наивная стратегия: выбирать $u_i \sim \text{uniform}(U)$; число шагов O(k).
- Бинарный поиск: выбирать u_i , ближайший к середине зазора между классами $\frac{1}{2} \left(\max_{v_i=0} (x_j) + \min_{v_i=1} (x_j) \right)$;
 - число шагов $O(\log k)$.

Оценивание качества активного обучения

Кривая обучения (learning curve) — зависимость точности классификации на тесте от числа размеченных объектов k.

Burr Settles. Active Learning Literature Survey. 2010.

Стратегии активного обучения

- ullet Отбор объектов из выборки (pool-based sampling): какой следующий u_i выбрать из множества $U=\{u_i\}_{i=1}^K$
- Синтез объектов (query synthesis): на каждом шаге синтезировать оптимальный объект u_i
- Отбор объектов из потока (selective sampling): для каждого приходящего u_i решать, стоит ли узнавать y_i^*

Функционал качества модели $a(x,\theta)$ с параметром θ :

$$\sum_{i=1}^{\ell} \mathscr{L}(x_i, y_i; \theta) + \sum_{i=1}^{k} C_i \mathscr{L}(u_i, y_i^*; \theta) \rightarrow \min_{\theta},$$

где \mathscr{L} — функция потерь, C_i — стоимость информации $y(u_i)$ для методов, чувствительных к стоимости (cost-sensitive)

Примеры приложений активного обучения

- сбор асессорских данных для информационного поиска, анализа текстов, сигналов, речи, изображений, видео
- в том числе на платформах краудсорсинга
- планирование экспериментов в естественных науках (пример комбинаторная химия)
- оптимизация трудно вычислимых функций (пример — поиск в пространстве гиперпараметров)

Применения в бизнесе:

- управление ценами и ассортиментом в торговых сетях
- выбор товара для проведения маркетинговой акции
- проактивное взаимодействие с клиентами
- выборочный контроль качества
- выявление аномалий в данных, случаев мошенничества

Сэмплирование по неуверенности (uncertainty sampling)

Идея: выбирать u_i с наибольшей неопределённостью $a(u_i)$.

Задача многоклассовой классификации:

$$a(u) = \arg\max_{y \in Y} P(y|u)$$

 $p_m(u)$, m=1...|Y| — ранжированные по убыванию P(y|u), $y \in Y$.

• Принцип наименьшей достоверности (least confidence):

$$u_i = \arg\min_{u \in U} p_1(u)$$

• Принцип наименьшей разности (margin sampling):

$$u_i = \arg\min_{u \in U} (p_1(u) - p_2(u))$$

• Принцип максимума энтропии (maximum entropy):

$$u_i = \arg\min_{x \in U} \sum_m p_m(u) \ln p_m(u)$$

Сэмплирование по неуверенности (uncertainty sampling)

В случае двух классов эти три принципа эквивалентны.

В случае многих классов появляются различия.

Пример. Три класса, $p_1 + p_2 + p_3 = 1$.

Показаны линии уровни трёх критериев выбора объекта:

Burr Settles. Active Learning Literature Survey. 2010.

Сэмплирование по несогласию в комитете (query by committee)

Идея: выбирать u_i с наибольшей несогласованностью решений комитета моделей $a_t(u_i) = \arg\max_{y \in Y} P_t(y|u_i), \ t=1,\ldots,T.$

• Принцип максимума энтропии: выбираем u_i , на котором $a_t(u_i)$ максимально различны:

$$u_i = \arg\min_{u \in U} \sum_{y \in Y} \hat{p}(y|u) \ln \hat{p}(y|u),$$

где
$$\hat{p}(y|u) = \frac{1}{T} \sum_{t=1}^{T} \left[a_t(u) = y \right].$$

• Принцип максимума средней KL-дивергенции: выбираем u_i , на котором $P_t(y|u_i)$ максимально различны:

$$u_i = \arg\max_{u \in U} \sum_{t=1}^{T} \mathsf{KL} \big(P_t(y|u) \bigm\| \bar{P}(y|u) \big),$$

где
$$\bar{P}(y|u) = \frac{1}{T} \sum_{t=1}^{T} P_t(y|u)$$
 — консенсус комитета.

Сокращение пространства решений (version space reduction)

Идея: выбирать u_i , максимально сужая множество решений.

Пример. Пространства допустимых решений для линейных и пороговых классификаторов (двумерный случай):

Бустинг и бэггинг находят конечные подмножества решений. Поэтому сэмплирование по несогласию в комитете — это аппроксимация принципа сокращения пространства решений.

Ожидаемое изменение модели (expected model change)

Идея: выбрать u_i , который в методе стохастического градиента привёл бы к наибольшему изменению модели.

Параметрическая модель многоклассовой классификации:

$$a(u, \theta) = \arg \max_{y \in Y} P(y|u, \theta);$$

Для каждого $u \in U$ и $y \in Y$ оценим длину градиентного шага в пространстве параметров θ при дообучении модели на (u,y); пусть $\nabla_{\theta} \mathscr{L}(u,y;\theta)$ — вектор градиента функции потерь.

Принцип максимума ожидаемой длины градиента:

$$u_i = \arg \max_{u \in U} \sum_{y \in Y} P(y|u, \theta) \|\nabla_{\theta} \mathcal{L}(u, y; \theta)\|.$$

Ожидаемое сокращение ошибки (expected error reduction)

Идея: выбирать u_i , который после дообучения даст наиболее уверенную классификацию неразмеченной выборки $U \setminus u_i$.

Для каждого $u \in U$ и $y \in Y$ обучим модель классификации, добавив к размеченной обучающей выборке X^{ℓ} пример (u,y):

$$a_{uy}(x) = \arg \max_{z \in Y} P_{uy}(z|x).$$

• Принцип максимума уверенности на неразмеченных данных:

$$u_i = \arg\max_{u \in U} \sum_{y \in Y} P(y|u) \sum_{u_i \in U \setminus u} P_{uy} (a_{uy}(u_j)|u_j).$$

• Принцип минимума энтропии неразмеченных данных:

$$u_i = \arg\max_{u \in U} \sum_{y \in Y} P(y|u) \sum_{u_i \in U \setminus u} \sum_{z \in Y} P_{uy}(z|u_j) \log P_{uy}(z|u_j).$$

Безградиентная оптимизация. Метод Нелдера-Мида

Идея: выбирать объекты u_i не из конечного пула, а из всего X, максимизируя $\max_{u \in X} \phi(u)$ любым безградиентным методом.

Метод Нелдера-Мида: перемещение и деформирование симплекса из n+1 точек в пространстве X размерности n

J.A.Nelder, R.Mead. A simplex method for function minimization. 1965.

Метод Нелдера-Мида: «отражение-растяжение-сжатие»

повторять

сортировка
$$n+1$$
 точек: $\phi(x_w) < \phi(x_o) < \cdots < \phi(x_b)$; центроид x_c : по всем точкам кроме x_w ; отражение: $x_r := x_c + \alpha(x_c - x_w)$; если $\phi(x_b) < \phi(x_r)$ то растяжение: $x_{exp} := x_c + \gamma(x_r - x_c)$; $x_w := (\phi(x_r) < \phi(x_{exp}))$? $x_{exp} : x_r$; иначе если $\phi(x_o) < \phi(x_r) < \phi(x_b)$ то $x_w := x_r$; иначе $(x_o) := x_c + \beta(x_w - x_c)$; если $(x_w) := x_c + \beta(x_w - x_c)$; иначе $(x_w) := x_c + \beta(x_w - x_c)$; иначе $(x_w) := x_c + \beta(x_w - x_c)$; иначе $(x_w) := x_c + \beta(x_w - x_c)$;

Рекомендуемые параметры: lpha=1, $eta=rac{1}{2}$, $\gamma=2$, $\sigma=rac{1}{2}$

Сокращение дисперсии (variance reduction)

Идея: выбирать $u \in X$, который даст наименьшую оценку дисперсии $\sigma_a^2(u)$ после дообучения модели $a(x,\theta)$.

Задача регрессии, метод наименьших квадратов:

$$S^{2}(\theta) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_{i}, \theta) - y_{i})^{2} \rightarrow \min_{\theta}.$$

Из теории *оптимального планирования экспериментов* (OED, optimal experiment design):

$$u = \arg\max_{u \in U} \sigma_{\mathsf{a}}^2(u), \quad \sigma_{\mathsf{a}}^2(u) \approx S^2 \bigg(\frac{\partial \mathsf{a}(u)}{\partial \theta}\bigg)^{\mathsf{T}} \bigg(\frac{\partial S^2}{\partial \theta^2}\bigg)^{-1} \bigg(\frac{\partial \mathsf{a}(u)}{\partial \theta}\bigg).$$

В частности, для линейной регрессии

$$\sigma_a^2(u) \approx S^2 u^{\mathsf{T}} (F^{\mathsf{T}} F)^{-1} u,$$

где F — матрица объекты—признаки.

Взвешивание по плотности (density-weighted methods)

Идея: понижать вес нерепрезентативных объектов.

Пример. Объект А более пограничный, но менее репрезентативный, чем В.

Любой критерий выбора объектов, имеющий вид

$$u = \arg \max_{u \in U} \phi(u),$$

может быть уточнён локальной оценкой плотности:

$$u = \arg \max_{u \in U} \phi(u) \left(\sum_{u' \in U} \operatorname{sim}(u, u') \right)^{\beta},$$

sim(u, u') — оценка близости u и u' (чем ближе, тем больше).

Необходимость изучающих действий в активном обучении

Недостатки стратегий активного обучения:

- ullet остаются не обследованные области пространства X,
- в результате снижается качество обучения,
- увеличивается время обучения.

Идеи применения изучающих действий:

- ullet брать случайный объект с вероятностью arepsilon
- ullet адаптировать параметр arepsilon в зависимости от успешности изучающих действий
- использовать обучение с подкреплением

Diallel Bouneffouf. Exponentiated gradient exploration for active learning. 2016. Diallel Bouneffouf et al. Contextual bandit for active learning: active Thompson sampling. 2014.

Алгоритм ε -active

Алгоритм — обёртка над любой стратегией активного обучения

```
Вход: размеченная выборка X^\ell = (x_i, y_i)_{i=1}^\ell и пул U = (u_i)_{i=1}^K; Выход: модель a и размеченная выборка (u_i, y_i^*)_{i=1}^k; обучить модель a по начальной выборке (x_i, y_i)_{i=1}^\ell; пока есть неразмеченные объекты и модель не обучилась выбрать неразмеченный u_i случайно с вероятностью \varepsilon, либо u_i = \arg\max_{u \in U} \phi(u) с вероятностью 1 - \varepsilon; узнать y_i^* = y(u_i) для объекта u_i; дообучить модель a ещё на одном примере (u_i, y_i^*);
```

Проблема:

как подбирать вероятность ε исследовательских действий? как её адаптировать (уменьшать) со временем?

Экспоненциальный градиент (Exponential Gradient)

 $arepsilon_1,\ldots,arepsilon_H$ — сетка значений параметра arepsilon; p_1,\ldots,p_H — вероятности использовать значения $arepsilon_1,\ldots,arepsilon_H$; $eta,\ au,\ \kappa$ — параметры метода.

Идея алгоритма EG-active: аналогично алгоритму AdaBoost, экспоненциально увеличивать p_h в случае успеха ε_h :

• экспоненциальное обновление весов w_h по значению критерия $\phi(u_i)$ на выбранном объекте u_i :

$$w_h := w_h \exp\left(\frac{\tau}{p_h}(\phi(u_i) + \beta)\right);$$

• перенормировка вероятностей:

$$p_h := (1 - \kappa) \frac{w_h}{\sum_j w_j} + \kappa \frac{1}{H}.$$

Diallel Bouneffouf. Exponentiated gradient exploration for active learning. 2016.

Алгоритм EG-active

```
Вход: X^{\ell} = (x_i, y_i)_{i=1}^{\ell}, U = (u_i)_{i=1}^{K}, параметры \varepsilon_1, \ldots, \varepsilon_H, \beta, \tau, \kappa;
Выход: модель a и размеченная выборка (u_i, y_i^*)_{i=1}^k;
инициализация: p_h := \frac{1}{H}, \ w_h := 1;
обучить модель a по начальной выборке (x_i, y_i)_{i=1}^{\ell};
пока есть неразмеченные объекты и модель не обучилась
    выбрать h из дискретного распределения (p_1, \ldots, p_H);
    выбрать неразмеченный u_i случайно с вероятностью \varepsilon_h
    либо u_i = rg \max_{u \in U} \phi(u) с вероятностью 1 - \varepsilon_h;
    узнать y_i^* для объекта u_i;
    дообучить модель a ещё на одном примере (u_i, y_i^*);
    w_h := w_h \exp\left(\frac{\tau}{n}(\phi(u_i) + \beta)\right);
    p_h := (1 - \kappa) \frac{w_h}{\sum_i w_i} + \kappa \frac{1}{H};
```

Активное обучение, когда аннотаторов много

 y_{it} — ответы аннотаторов $t \in \mathcal{T}$ на объекте u_i

Задача: сформировать согласованный «правильный» ответ \hat{y}_i и оценить надёжность каждого аннотатора $q_t = P[y_{it} = \hat{y}_i]$

Р.А.Гилязев, Д.Ю.Турдаков. Активное обучение и краудсорсинг: обзор методов оптимизации разметки данных. 2018.

Согласование оценок аннотаторов

 $y_{it} \in Y$ — ответ аннотатора $t \in T$ на объекте u_i $T_i \subseteq T$ — множество аннотаторов, разметивших объект u_i

Взвешенное голосование аннотаторов:

$$\hat{y}_i = \arg\max_{y \in Y} \sum_{t \in T_i} w_t [y_{it} = y]$$

 w_t — вес аннотатора при голосовании

 $w_t=1$ при голосовании по большинству (majority voting, MV)

 $w_t = \log rac{q_t}{1-q_t}$ при предположении, что аннотаторы независимы

 ${\sf EM}$ -подобный алгоритм согласования аннотаций объекта u_i :

пока оценки не сойдутся

оценить правильный ответ \hat{y}_i ;

оценить надёжности q_t и веса w_t аннотаторов;

если $q_t < \delta$ то исключить аннотатора из оценки;

Варианты моделирования надёжности аннотаторов

- По результатам выполнения тестовых заданий.
- Моделирование матрицы ошибок $|Y| \times |Y|$:

$$\pi_{yz}^t = Pig[$$
аннотатор t ставит z вместо $yig], \quad y,z \in Y$

• Моделирование трудности объектов:

$$q_t(u_i) = \sigma\left(\frac{\alpha_t}{\beta_i}\right) = \frac{1}{1 + \exp\left(-\frac{\alpha_t}{\beta_i}\right)},$$

 α_t — частотная оценка надёжности аннотатора t; β_i — оценка трудности объекта u_i (по большому $|T_i|$).

• Моделирование тематической компетентности аннотаторов: $p(\mathsf{topic}|u_i)$ — тематическое векторное представление объекта u_i , например, если объект является текстом

 $P.A. \Gamma$ илязев, Д.Ю. Турдаков. Активное обучение и краудсорсинг: обзор методов оптимизации разметки данных. 2018.

Задача назначения заданий аннотаторам

Общая схема распределения заданий:

$$\left\{egin{aligned} u_i &= rg\max_{u \in U} \phi(u) & -$$
 выбор неразмеченного объекта в AL $t = rg\max_{t \in T} q_t(u_i) & -$ выбор наиболее уверенного аннотатора

Обучение вероятностной модели уверенности аннотатора $q_t(u_i, \theta_t) = \sigma(\theta_t^{\mathsf{T}} u_i)$ на размеченных им объектах U_t :

$$\sum_{u_i \in U_t} (y_{it} = \hat{y}_i) q_t(u_i, \theta_t) + (y_{it} \neq \hat{y}_i) (1 - q_t(u_i, \theta_t)) \rightarrow \max_{\theta_t}$$

Недостаток: одни аннотаторы будут выбираться слишком часто, другие не будут выбираться совсем

Сэмплирование аннотаторов: $t \sim q_t(u_i)p(t)$ с учётом априорной информации p(t) о средней надёжности q_t , опыте, текущей доступности, объёме проделанной работы.

Резюме

- Активное обучение используется для уменьшения обучающей выборки, когда размеченные данные дороги
- При малом объёме размеченных данных оно достигает того же качества, что пассивное при полной разметке
- Два основных типа активного обучения:
 выбор объектов из пула и синтез новых объектов
- Введение изучающих действий в активном обучении позволяет ещё быстрее обследовать пространство X
- В краудсорсинге активное обучение совмещается с оцениванием надёжности аннотаторов и трудности заданий при распределении заданий по аннотаторам

P.Kumar, A.Gupta. Active learning query strategies for classification, regression, and clustering: a survey. 2020

Pengzhen Ren et al. A survey of deep active learning. 2020 Burr Settles. Active learning literature survey. 2010

 $C.C.Aggarwal\ et\ al.$ Active learning: a survey // Data classification: algorithms and applications. 2014

Р.А.Гилязев, Д.Ю.Турдаков. Активное обучение и краудсорсинг: обзор методов оптимизации разметки данных. 2018