COSI 127b Introduction to Database Systems

Lecture 12: Normalization (2)

Midterm

Will Do Quick Review during Monday's Class

Summary: Covers all topics up through PS 4

No late submissions (solutions posted Mon after class)

Review: Good DB Design

Three Approaches:

- 1. Ad hoc:
 - use Entity-Relationship Model to model data requirements
 - translate ER design into relational schema

Issue: How to tell if design is "good"?

- 2. Theoretical:
 - construct universal relations (e.g., Borrower-All)
 - decompose above using known functional dependencies

Issue: Time-Consuming and Complex

- 3. Practical:
 - use ER Model to produce 1st cut DB design
 - use FDs to refine and verify

Review: Functional Dependencies

Previously:

- What " $\mathbf{A}_1, \dots, \mathbf{A}_n \rightarrow \mathbf{B}$ " means
- When sets of FDs are equivalent ($F \equiv G$)
 - if $F^+ = G^+$ (FD set closures)
 - algorithms: Attribute Closures or Armstrong's Axioms

Today:

- Minimal FD Sets $(F_c = "Canonical Cover" of F)$
- Canonical Cover Algorithm

Coming Up:

• DB Design using FDs and FD Algorithms

Review: Functional Dependencies

In General:

$$A_1$$
, ..., $A_n \rightarrow B$

Informally:

If 2 tuples agree on their values for A_1 , ..., A_n , then they will also agree on their values for B

Formally:

```
\forall t, u (t[A_1] = u[A_1] \land ... \land t[A_n] = u[A_n]) \Rightarrow t[B] = u[B])
```

Idea: Some FDs are implied by others

Borrower-All							
lno	cname	cstreet	ccity	bname	amt	bcity	assets
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M

lno → bname

+

Borrower-All							
lno	cname	cstreet	ccity	bname	amt	bcity	assets
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M

 $\quad \text{bname} \ \rightarrow \ \text{bcity}$

implies

lno → bcity

Borrower-All								
lno	cname	cstreet	ccity	bname	amt	bcity	assets	
L-17 L-23 L-15 L-17 L-93 L-11 L-16	Jones Smith Hayes Jackson Curry Smith Adams	Main North Main Senator Walnut North Spring	Harrison Rye Harrison Brooklyn Stanford Rye Pittsfield	Downtown Redwood Perry Downtown Mianus R.H. Perry	1000 2000 1500 1000 500 900 1300	Brooklyn Palo Alto Horseneck Brooklyn Horseneck Horseneck Horseneck	9M 2.1M 1.7M 9M 0.4M 8M 1.7M	

Idea: Some FDs are implied by others

```
{lno → bname, bname → bcity}
  {lno → bname, bname → bcity, lno → bcity}
                       \equiv
{lno → bname bcity, bname → bcity, lno → bcity}
                       {lno → bname bcity, bname → bcity, lno → lno}
```

Given FD sets over R, F and G, how to decide if $F \equiv G$?

• Idea: Compare sets of FDs that F, G imply (closures)

$$F \equiv G \text{ if and only if } F^+ = G^+$$

Two ways to determine F⁺

- Attribute Closures
- Armstrong's Axioms

Algorithm 1: Using Attribute Closures

```
ALGORITHM FD-Closure (F: {FDs})
-- using Att-Closure

BEGIN
Result ← {}
Atts ← <all attributes appearing in FDs in F>
FOREACH Z ⊆ Atts DO
Result ← Result ∪ {Z → Att-Closure (Z,F)}

RETURN Result
END
```

```
ALGORITHM Att-Closure (Z: {Attributes}, F: {FDs})

BEGIN

Result ← Z

REPEAT UNTIL STABLE

FOR EACH functional dependency in F, X → Y DO

IF X ⊆ Result THEN Result ← Result ∪ Y

RETURN Result

END
```

Algorithm 2: Using Armstrong's Axioms

```
ALGORITHM FD-Closure (F: {FDs})
-- using Armstrong's Axioms

BEGIN
Result 
F
REPEAT UNTIL STABLE
IF for any of Armstrong's Axioms (if A then B),
A matches part of Result THEN
Result 
Result 
Result 
Result 
B
RETURN Result

END
```

Algorithm 2: Using Armstrong's Axioms

- 1. Reflexivity
 - if $Y \subseteq X$

then X -> Y

- 2. Augmentation
 - if $X \rightarrow Y$

then WX -> WY

- 3. Transitivity
 - if $X \rightarrow Y$ and $Y \rightarrow Z$

then $X \rightarrow Z$

- 4. Union
 - if $X \rightarrow Y$ and $X \rightarrow Z$

then $X \rightarrow YZ$

- 5. Decomposition
 - if $X \rightarrow YZ$

then $X \rightarrow Y$ and $X \rightarrow Z$

- 6. Pseudotransitivity
 - if $X \rightarrow Y$ and $WY \rightarrow Z$

then $\mathbf{WX} \rightarrow \mathbf{Z}$

Today

One more algorithm over FD sets:

- Canonical Cover (F_C): a "minimal" version of FD set, F
- F_C the "minimal" version of F?
 - 1. equivalent to $F(F_C^+ = F^+)$
 - 2. "smaller" than other FD sets equivalent to F:
 - a) fewer FDs:

$$\{A \rightarrow B, B \rightarrow C\} < \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$$

b) fewer attributes in FDs:

$$\{A \rightarrow B, B \rightarrow C\} < \{A \rightarrow BC, B \rightarrow C\}$$

Canonical Cover (F_C)

Idea: Some FDs are implied by others

```
{lno → bname, bname → bcity}
 {lno → bname, bname → bcity, lno → bcity}
                      {lno → bname bcity, bname → bcity}
                      {lno → bname bcity, bname → bcity, lno → lno}
```

Which is the Canonical Cover?

Canonical Cover (F_C)

One Use for Canonical Cover:

Given:

$$F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AD \rightarrow H, D \rightarrow B\}$$

then:

$$F_c = \{ A \rightarrow BH, B \rightarrow CE, D \rightarrow B \}$$

Observe:

- F requires 5 global integrity constraints to enforce
- F_c requires 3 global integrity constraints to enforce

Another Use: Normalization Algorithms (Later)

Example 1:

```
input: F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}

output: F_c = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}

• F_c \equiv F

• no G that is equivalent to F is "smaller" than F_c
```

Example 2:

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
     (Armstrong's Axioms)
END
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
REPEAT UNTIL STABLE
1. Where possible, apply UNION rule to FD's in F
(Armstrong's Axioms)
```

```
e.g.: A \rightarrow B, A \rightarrow C becomes A \rightarrow BC

B \rightarrow CD, B \rightarrow DA becomes B \rightarrow ACD
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
     (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
END
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
REPEAT UNTIL STABLE

1. Where possible, apply UNION rule to FD's in F
(Armstrong's Axioms)

2. Remove extraneous attributes from each FD in F
```

```
e.g.: A \rightarrow BC becomes A \rightarrow C if B is extraneous in RHS

or A \rightarrow B if C is extraneous in RHS

AB \rightarrow C becomes A \rightarrow C if B is extraneous in LHS

or B \rightarrow C if A is extraneous in RHS
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
     (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
    a) RHS: Is B extraneous in A → BC?
    b) LHS: Is B extraneous in AB → C?
END
```

Removing Extraneous Attributes

Extraneous Attributes in Right-Hand Side (RHS):

```
"Is \mathbf{B} extraneous in \mathbb{A} \to \mathbf{B}\mathbb{C}?" means ...

can we replace "\mathbb{A} \to \mathbf{B}\mathbb{C}" with "\mathbb{A} \to \mathbb{C}" in \mathbb{F} without changing \mathbb{F}^+?
```

Extraneous Attributes in Left-Hand Side (LHS):

```
"Is B extraneous in AB \rightarrow C?" means ...

can we replace "AB \rightarrow C" with "A \rightarrow C" in F without changing F^+?
```

Is B extraneous in $A \rightarrow BC$?

A Simple (but Expensive) Test:

- 1. Replace "A \rightarrow BC" with "A \rightarrow C" in F to construct F₂
 - $F_2 = F \{ \mathbf{A} \rightarrow \mathbf{BC} \} \cup \{ \mathbf{A} \rightarrow \mathbf{C} \}$
- 2. *Test:* Is $F^+ = F_2^+$?
 - Method: FD-Closure (F) = FD-Closure (F₂)?
 - Cost: \$\$\$\$

Is there a less expensive way to compare \mathbb{F}^+ *and* \mathbb{F}_2^+ *here?*

Is
$$F^+ = F_2^+$$
?

Is
$$F^+ = F_2^+$$
?

Given $F = \{A \rightarrow BC, C \rightarrow D, D \rightarrow E\}$

Is
$$F^+ = F_2^+$$
?

a) Is
$$(\mathbf{A} \rightarrow \mathbf{BC}) \in \mathbb{F}_2^+$$
?

Is
$$F^+ = F_2^+$$
?

a) Is
$$(\mathbf{A} \rightarrow \mathbf{BC}) \in \mathbb{F}_2^+$$
?

Is
$$F^+ = F_2^+$$
?

- a) Is $(\mathbf{A} \rightarrow \mathbf{BC}) \in \mathbb{F}_2^+$?
- b) Is $(\mathbf{A} \rightarrow \mathbf{C}) \in \mathbf{F}^+$?

Is
$$F^+ = F_2^+$$
?

- a) Is $(\mathbf{A} \rightarrow \mathbf{BC}) \in \mathbb{F}_2^+$?
- b) Is $(\mathbf{A} \rightarrow \mathbf{C}) \in \mathbb{F}^+$?

Is
$$F^+ = F_2^+$$
?

Key Point: $(\mathbf{A} \rightarrow \mathbf{BC})$ same as $(\mathbf{A} \rightarrow \mathbf{B}) + (\mathbf{A} \rightarrow \mathbf{C})$!

Is
$$F^+ = F_2^+$$
?

a) Is
$$(A \to BC) \in F_2^+$$
?
b) Is $(A \to C) \in F^+$?

Always true!!

Key Point: $(\mathbf{A} \rightarrow \mathbf{BC})$ same as $(\mathbf{A} \rightarrow \mathbf{B}) + (\mathbf{A} \rightarrow \mathbf{C})$!

Is
$$F^+ = F_2^+$$
?

a) Is
$$(A \to BC) \in F_2^+$$
?
b) Is $(A \to C) \in F^+$?

Always true!!

Is
$$F^+ = F_2^+$$
?

Is
$$(\mathbf{A} \rightarrow \mathbf{BC}) \in \mathbb{F}_2^+$$
?

Is
$$F^+ = F_2^+$$
?

Is
$$(\mathbf{A} \rightarrow \mathbf{BC}) \in \mathbb{F}_2^+$$
?

Is
$$F^+ = F_2^+$$
?

Is
$$(\mathbf{A} \rightarrow \mathbf{BC}) \in \mathbb{F}_2^+$$
?

Is
$$F^+ = F_2^+$$
?

Is
$$(\mathbf{A} \rightarrow \mathbf{BC}) \in \mathbb{F}_2^+$$
?

Is
$$F^+ = F_2^+$$
?

Is
$$(\mathbf{A} \rightarrow \mathbf{B}) \in \mathbb{F}_2^+$$
?

Is
$$F^+ = F_2^+$$
?

Is
$$(\mathbf{A} \rightarrow \mathbf{B}) \in (\mathbf{F} - \{\mathbf{A} \rightarrow \mathbf{BC}\} \cup \{\mathbf{A} \rightarrow \mathbf{C}\})^+$$
?

Is B extraneous in $A \rightarrow BC$?

A Simple (but Expensive) Test:

- 1. Replace " $\mathbf{A} \rightarrow \mathbf{BC}$ " with " $\mathbf{A} \rightarrow \mathbf{C}$ " in \mathbb{F} to construct \mathbb{F}_2
 - $F_2 = F \{ \mathbf{A} \rightarrow \mathbf{BC} \} \cup \{ \mathbf{A} \rightarrow \mathbf{C} \}$
- 2. *Test:* Is $F^+ = F_2^+$?
 - Method: FD-Closure (F) = FD-Closure (F₂)?
 - Cost: \$\$\$\$

Is there a less expensive way to compare \mathbb{F}^+ *and* \mathbb{F}_2^+ *here?*

Is B extraneous in A \rightarrow BC?

A Simple (but Expensive) Test:

- 1. Replace "A \rightarrow BC" with "A \rightarrow C" in F to construct \mathbb{F}_2
 - $F_2 = F \{ \mathbf{A} \rightarrow \mathbf{BC} \} \cup \{ \mathbf{A} \rightarrow \mathbf{C} \}$
- 2. *Test:* Is $F^+ = F_2^+$?
 - Method: FD-Closure (F) = FD-Closure (F₂)?
 - Cost: \$\$\$\$

Is there a less expensive way to compare \mathbb{F}^+ *and* \mathbb{F}_2^+ *here?*

Is
$$(\mathbf{A} \rightarrow \mathbf{B}) \in \mathbb{F}_2^+$$
?

$$i.e.$$
, $Is (\mathbf{A} \rightarrow \mathbf{B}) \in (F - \{\mathbf{A} \rightarrow \mathbf{BC}\} \cup \{\mathbf{A} \rightarrow \mathbf{C}\})^+$?

$$F_2 = F - \{A \rightarrow BC\} \cup \{A \rightarrow C\}$$

Comparing Extraneous Attributes Tests:

- 1. Test: Is $F^+ = F_2^+$?
 - Method: FD-Closure (F) = FD-Closure (F₂)?
 - Cost: \$\$\$\$
- 2. Test: Is $(\mathbf{A} \rightarrow \mathbf{B}) \in \mathbb{F}_2^+$?
 - *Method:*

$$F_2 = F - \{A \rightarrow BC\} \cup \{A \rightarrow C\}$$

Comparing Extraneous Attributes Tests:

- 1. Test: Is $F^+ = F_2^+$?
 - Method: FD-Closure (F) = FD-Closure (F₂)?
 - Cost: \$\$\$\$
- 2. Test: Is $(\mathbf{A} \rightarrow \mathbf{B}) \in \mathbb{F}_2^+$?
 - $Method: (A \rightarrow B) \in FD-Closure (F_2)?$
 - Cost: \$\$

Is there a cheaper way to do this?

A: Yes

Method: B ∈ Att-Closure ({A}, F₂)?
Cost: \$

Canonical Cover Algorithm

Basic Algorithm (will refine later)

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
     (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
    a) RHS: Is B extraneous in A → BC?
    b) LHS: Is B extraneous in AB → C?
END
```

Canonical Cover Algorithm

Basic Algorithm (will refine later)

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
       (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
     a) RHS: Is B extraneous in A → BC?
             Is (\mathbf{A} \to \mathbf{B}) \in (\mathbf{F} - \{\mathbf{A} \to \mathbf{BC}\} \cup \{\mathbf{A} \to \mathbf{C}\})^+?
     b) LHS: Is B extraneous in AB → C?
END
```

Is B extraneous in A \rightarrow BC?

$$F = \{A \rightarrow BC, B \rightarrow C\}$$

Is \mathbf{B} extraneous in $\mathbf{A} \rightarrow \mathbf{BC}$?

i.e., Is
$$(\mathbf{A} \to \mathbf{B}) \in (\mathbf{F} - \{\mathbf{A} \to \mathbf{BC}\} \cup \{\mathbf{A} \to \mathbf{C}\})^+$$
?
i.e., Is $(\mathbf{A} \to \mathbf{B}) \in \{\mathbf{A} \to \mathbf{C}, \mathbf{B} \to \mathbf{C}\}^+$?

A:
$$No: (\mathbf{A} \rightarrow \mathbf{B}) \notin {\mathbf{A} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{C}}^+$$

When asked or for partial credit, prove your answers as above

Is B extraneous in $A \rightarrow BC$?

$$F = \{A \rightarrow BC, B \rightarrow C\}$$

Is C extraneous in $A \rightarrow BC$?

i.e., Is
$$(\mathbf{A} \to \mathbf{C}) \in (\mathbb{F} - \{\mathbf{A} \to \mathbf{BC}\} \cup \{\mathbf{A} \to \mathbf{B}\})^+$$
?
i.e., Is $(\mathbf{A} \to \mathbf{C}) \in \{\mathbf{A} \to \mathbf{B}, \mathbf{B} \to \mathbf{C}\}^+$?

A:
$$Yes: (\mathbf{A} \rightarrow \mathbf{C}) \in {\{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C}\}^+}$$

When asked or for partial credit, prove your answers as above

Is B extraneous in $AB \rightarrow C$?

A Simple (but Expensive) Test:

- 1. Replace "AB \rightarrow C" with "A \rightarrow C" in F to construct F_2 :
 - $F_2 = \overline{F} \{AB \rightarrow C\} \cup \overline{\{A \rightarrow C\}}$
- 2. Test: Is $F_2^+ = F^+$? If yes, then B is extraneous

Is there a less expensive way to compare F^+ *and* F_2^+ *here?*

Is
$$F^+ = F_2^+$$
?

a) Is
$$(\mathbf{AB} \rightarrow \mathbf{C}) \in \mathbb{F}_2^+$$
?

Is
$$F^+ = F_2^+$$
?

a) Is
$$(\mathbf{AB} \rightarrow \mathbf{C}) \in \mathbb{F}_2^+$$
?

Is
$$F^+ = F_2^+$$
?

- a) Is $(AB \rightarrow C) \in F_2^+$?
- b) Is $(\mathbf{A} \rightarrow \mathbf{C}) \in \mathbf{F}^+$?

Is
$$F^+ = F_2^+$$
?

- a) Is $(\mathbf{AB} \rightarrow \mathbf{C}) \in \mathbb{F}_2^+$?
- b) Is $(\mathbf{A} \rightarrow \mathbf{C}) \in \mathbf{F}^+$?

Is
$$F^+ = F_2^+$$
?

Key point: $(A \rightarrow C)$ implies $(AB \rightarrow C)$!

Is
$$F^+ = F_2^+$$
?

"A
$$\rightarrow$$
 C" implies "AB \rightarrow C"

Proof (by Armstrong's Axioms):

- (1) $\mathbf{A} \to \mathbf{C}$ Given
- (2) $AB \rightarrow BC$ Augmentation (1)

Review: Armstrong's Axioms

- 1. Reflexivity
 - if $Y \subseteq X$

then $X \rightarrow Y$

- 2. Augmentation
 - if $X \rightarrow Y$

then WX → WY

- 3. Transitivity
 - if $X \rightarrow Y$ and $Y \rightarrow Z$

then $X \rightarrow Z$

- 4. Union
 - if $X \rightarrow Y$ and $X \rightarrow Z$

then X -> YZ

- 5. Decomposition
 - if $X \rightarrow YZ$

then $X \rightarrow Y$ and $X \rightarrow Z$

- 6. Pseudotransitivity
 - if $X \rightarrow Y$ and $WY \rightarrow Z$

then $\mathbf{WX} \rightarrow \mathbf{Z}$

Is
$$F^+ = F_2^+$$
?

"A
$$\rightarrow$$
 C" implies "AB \rightarrow C"

Proof (by Armstrong's Axioms):

- $(1) \mathbf{A} \rightarrow \mathbf{C}$ Given
- (2) $AB \rightarrow BC$ Augmentation (1)
- (3) $AB \rightarrow C$ Decomposition (2)

Is
$$F^+ = F_2^+$$
?

Is
$$F^+ = F_2^+$$
?

a) Is
$$(\mathbf{AB} \rightarrow \mathbf{C}) \in \mathbb{F}_2^+$$
?
b) Is $(\mathbf{A} \rightarrow \mathbf{C}) \in \mathbb{F}^+$?

Always True!!

Is
$$F^+ = F_2^+$$
?

Is
$$(\mathbf{A} \rightarrow \mathbf{C}) \in \mathbb{F}^+$$
?

Is
$$F^+ = F_2^+$$
?

Always true? Always false?

Is
$$F^+ = F_2^+$$
?

Is $(\mathbf{A} \to \mathbf{C}) \in \mathbb{F}^+$?

Always true? Always false?

Is
$$F^+ = F_2^+$$
?

Sometimes true, sometimes false

"Is B extraneous in $AB \rightarrow C$?"

A Simple (but Expensive) Test:

- 1. Replace "A \rightarrow BC" with "A \rightarrow C" in F to construct \mathbb{F}_2
 - $F_2 = F \{ \mathbf{A} \rightarrow \mathbf{BC} \} \cup \{ \mathbf{A} \rightarrow \mathbf{C} \}$
- 2. Test: Is $\mathbb{F}_2^+ = \mathbb{F}^+$? If yes, then B is extraneous

Is there a less expensive way to compare \mathbb{F}^+ *and* \mathbb{F}_2^{-+} *here?*

A: Yes. Test: Is $(\mathbf{A} \rightarrow \mathbf{C}) \in \mathbb{F}^+$?

Canonical Cover Algorithm

Basic Algorithm (will refine later)

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
       (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
     a) RHS: Is B extraneous in A → BC?
             Is (\mathbf{A} \to \mathbf{B}) \in (\mathbf{F} - \{\mathbf{A} \to \mathbf{BC}\} \cup \{\mathbf{A} \to \mathbf{C}\})^+?
     b) LHS: Is B extraneous in AB → C?
END
```

Canonical Cover Algorithm

Basic Algorithm (will refine later)

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
   1. Where possible, apply UNION rule to FD's in F
        (Armstrong's Axioms)
   2. Remove extraneous attributes from each FD in F
     a) RHS: Is B extraneous in A → BC?
               Is (\mathbf{A} \to \mathbf{B}) \in (\mathbf{F} - \{\mathbf{A} \to \mathbf{BC}\} \cup \{\mathbf{A} \to \mathbf{C}\})^+?
     b) LHS: Is B extraneous in AB → C?
               Is (\mathbf{A} \rightarrow \mathbf{C}) \in \mathbb{F}^+ ?
END
```

Canonical Cover Algorithm

The Algorithm

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
     a) RHS: Is B extraneous in A → BC?
             Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+?
    b) LHS: Is B extraneous in AB → C?
            Is (A \rightarrow C) \in F^+?
END
```

Extraneous Attributes in LHS

"Is B extraneous in $AB \rightarrow C$?"

$$\mathbf{F} = \{\mathbf{AB} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{A}\}$$

Is B extraneous in AB \rightarrow C?

i.e., Is
$$(\mathbf{A} \rightarrow \mathbf{C}) \in \mathbb{F}^+$$
?

A:
$$No: (\mathbf{A} \rightarrow \mathbf{C}) \notin \mathbb{F}^+$$

When asked or for partial credit, prove your answers as above

Extraneous Attributes in LHS

"Is B extraneous in $AB \rightarrow C$?"

$$\mathbf{F} = \{\mathbf{AB} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{A}\}$$

Is **A** extraneous in **AB** \rightarrow **C**?

i.e., Is
$$(\mathbf{B} \to \mathbf{C}) \in \mathbb{F}^+$$
?

A:
$$Yes: (\mathbf{B} \rightarrow \mathbf{C}) \in \mathbb{F}^+$$

When asked or for partial credit, prove your answers as above

Canonical Cover Cheat Sheet

Canonical Cover Algorithm

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
    a) RHS: Is B extraneous in A → BC?
            Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+?
    b) LHS: Is B extraneous in AB → C?
            Is (A \rightarrow C) \in F^+?
END
```

Canonical Cover Cheat Sheet

Determining if: $A \rightarrow B \in X^+$

- 1. Calculate A⁺ = Att-Closure ({A}, X) (i.e., A⁺ wrt X)
- 2. Determine if $B \in A^+$

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BCE}, \mathbf{B} \rightarrow \mathbf{CE}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BCE}, \mathbf{B} \rightarrow \mathbf{CE}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BCE}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

1. Bextraneous in $A \rightarrow BCE$?

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BCE}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE}⁺ Proof: A⁺ = {A,C,E} and B \notin A⁺
- 2. C extraneous in $A \rightarrow BCE$?

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BCE}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
    B extraneous in A → BCE?
        Proof: A<sup>+</sup> = {A,C,E} and B ∉ A<sup>+</sup>
    C extraneous in A → BCE?
        Proof: A<sup>+</sup> = {A,B,E,C} and C ∈ A<sup>+</sup>

No: (A → B) ∉ {A → CE, B → CE}<sup>+</sup>
Yes: (A → C) ∈ {A → BE, B → CE}<sup>+</sup>
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BCE}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
    B extraneous in A → BCE?
        Proof: A<sup>+</sup> = {A,C,E} and B ∉ A<sup>+</sup>
    C extraneous in A → BCE?
        Proof: A<sup>+</sup> = {A,B,E,C} and C ∈ A<sup>+</sup>

No: (A → B) ∉ {A → CE, B → CE}<sup>+</sup>
Yes: (A → C) ∈ {A → BE, B → CE}<sup>+</sup>
```

Determine the canonical cover of F, F_c:

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BE}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

B extraneous in A → BCE?
 Proof: A⁺ = {A,C,E} and B ∉ A⁺
 C extraneous in A → BCE?
 Proof: A⁺ = {A,B,E,C} and C ∈ A⁺
 E extraneous in A → BE?

No: (A → B) ∉ {A → CE, B → CE}⁺
Yes: (A → C) ∈ {A → BE, B → CE}⁺
3. E extraneous in A → BE?

COSI 127b, Spr 2014, Lecture 12

Determine the canonical cover of F, F_c :

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BE}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
    B extraneous in A → BCE?
    Proof: A<sup>+</sup> = {A,C,E} and B ∉ A<sup>+</sup>
    C extraneous in A → BCE?
    Proof: A<sup>+</sup> = {A,B,E,C} and C ∈ A<sup>+</sup>
    E extraneous in A → BE?
    Proof: A<sup>+</sup> = {A,B,C,E} and E ∈ A<sup>+</sup>

Yes: (A → B) ∉ {A → CE, B → CE}<sup>+</sup>
Yes: (A → C) ∈ {A → BE, B → CE}<sup>+</sup>
Yes: (A → E) ∈ {A → B, B → CE}<sup>+</sup>
Yes: (A → E) ∈ {A → B, B → CE}<sup>+</sup>
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
    B extraneous in A → BCE?
        Proof: A<sup>+</sup> = {A,C,E} and B ∉ A<sup>+</sup>
    C extraneous in A → BCE?
        Proof: A<sup>+</sup> = {A,B,E,C} and C ∈ A<sup>+</sup>
    E extraneous in A → BE?
        Proof: A<sup>+</sup> = {A,B,C,E} and E ∈ A<sup>+</sup>

Yes: (A → B) ∉ {A → CE, B → CE}<sup>+</sup>
Yes: (A → C) ∈ {A → BE, B → CE}<sup>+</sup>
Yes: (A → E) ∈ {A → B, B → CE}<sup>+</sup>
```

Determine the canonical cover of F, F_c :

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
    B extraneous in A → BCE?
        Proof: A<sup>+</sup> = {A,C,E} and B ∉ A<sup>+</sup>
    C extraneous in A → BCE?
        Proof: A<sup>+</sup> = {A,B,E,C} and C ∈ A<sup>+</sup>
    E extraneous in A → BE?
        Proof: A<sup>+</sup> = {A,B,C,E} and E ∈ A<sup>+</sup>
    C extraneous in B → CE?
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
B extraneous in A \rightarrow BCE?
                                                               No: (A \rightarrow B) \notin \{A \rightarrow CE, B \rightarrow CE\}^+
1.
        Proof: A^+ = \{A,C,E\} and B \notin A^+
                                                               \overline{Yes:} (A \rightarrow C) \in {A \rightarrow BE, B \rightarrow CE}
2.
        C extraneous in A \rightarrow BCE?
        Proof: A^+ = \{A,B,E,C\} and C \in A^+
        E extraneous in A \rightarrow BE?
3.
                                                               Yes: (A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE\}^+
        Proof: A^+ = \{A,B,C,E\} and E \in A^+
        C extraneous in B \rightarrow CE?
                                                               No: (B \rightarrow C) \notin \{A \rightarrow B, B \rightarrow E\}^+
4.
        Proof: B^+ = \{B, E\} and C \notin B^+
5.
        E extraneous in B \rightarrow CE?
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
B extraneous in A \rightarrow BCE?
                                                               No: (A \rightarrow B) \notin \{A \rightarrow CE, B \rightarrow CE\}^+
1.
        Proof: A^+ = \{A,C,E\} and B \notin A^+
2.
       C extraneous in A \rightarrow BCE?
                                                               Yes: (A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE\}^+
        Proof: A^+ = \{A,B,E,C\} and C \in A^+
       E extraneous in A \rightarrow BE?
3.
                                                               Yes: (A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE\}^+
        Proof: A^+ = \{A, B, C, E\} and E \in A^+
                                                               No: (B \rightarrow C) \notin \{A \rightarrow B, B \rightarrow E\}^+
4.
       C extraneous in B \rightarrow CE?
       Proof: B^+ = \{B, E\} and C \notin B^+
                                                               No: (B \rightarrow E) \notin \{A \rightarrow B, B \rightarrow C\}^+
5.
       E extraneous in B \rightarrow CE?
        Proof: B^+ = \{B,C\} and E \notin B^+
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c :

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

```
B extraneous in A \rightarrow BCE?
                                                               No: (A \rightarrow B) \notin \{A \rightarrow CE, B \rightarrow CE\}^+
1.
        Proof: A^+ = \{A,C,E\} and B \notin A^+
2.
       C extraneous in A \rightarrow BCE?
                                                               Yes: (A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE\}^+
        Proof: A^+ = \{A,B,E,C\} and C \in A^+
       E extraneous in A \rightarrow BE?
3.
                                                               Yes: (A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE\}^+
        Proof: A^+ = \{A, B, C, E\} and E \in A^+
       C extraneous in B \rightarrow CE?
4.
                                                               No: (B \rightarrow C) \notin \{A \rightarrow B, B \rightarrow E\}^+
       Proof: B^+ = \{B, E\} and C \notin B^+
                                                               No: (B \rightarrow E) \notin \{A \rightarrow B, B \rightarrow C\}^+
5.
       E extraneous in B \rightarrow CE?
        Proof: B^+ = \{B,C\} and E \notin B^+
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}\}$$

A:
$$\mathbf{F_c} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}\}$$

Determine the canonical cover of F, F_c:

```
F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BC}, \ \mathbf{B} \rightarrow \mathbf{CE}, \ \mathbf{A} \rightarrow \mathbf{E}, \ \mathbf{AC} \rightarrow \mathbf{H}, \ \mathbf{D} \rightarrow \mathbf{B} \}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

```
F = \{A \rightarrow BCE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

```
F = \{A \rightarrow BCE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c :

$$\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BCE}, \ \mathbf{B} \rightarrow \mathbf{CE}, \ \mathbf{AC} \rightarrow \mathbf{H}, \ \mathbf{D} \rightarrow \mathbf{B} \}$$

1. Bextraneous in $A \rightarrow BCE$?

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BCE}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. Cextraneous in $A \rightarrow BCE$?

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BCE}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. Cextraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BE}, \ \mathbf{B} \rightarrow \mathbf{CE}, \ \mathbf{AC} \rightarrow \mathbf{H}, \ \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. Cextraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BE}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B}\}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. Cextraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$
- 3. \mathbf{E} extraneous in $\mathbf{A} \rightarrow \mathbf{BE}$?

Determine the canonical cover of F, F_c :

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BE}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. C extraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$
- 3. E extraneous in $A \rightarrow BE$? Yes: $(A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E,H\}$ and $E \in A^+$

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. Cextraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$
- 3. E extraneous in $A \rightarrow BE$? Yes: $(A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E,H\}$ and $E \in A^+$

Determine the canonical cover of F, F_c:

```
F = \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}
```

- 1. Bextraneous in $A \rightarrow BCE$? No: $(A \rightarrow B) \notin \{A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,C,E,H\}$ and $B \notin A^+$
- 2. Cextraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$
- 3. E extraneous in $A \rightarrow BE$? Yes: $(A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E,H\}$ and $E \in A^+$
- 4. C extraneous in $B \rightarrow CE$?

Determine the canonical cover of F, F_c :

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. Cextraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$
- 3. E extraneous in $A \rightarrow BE$? Yes: $(A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E,H\}$ and $E \in A^+$
- 4. Cextraneous in $B \rightarrow CE$? No: $(B \rightarrow C) \notin \{A \rightarrow B, B \rightarrow E, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $B^+ = \{B,E\}$ and $C \notin B^+$
- 5. \mathbf{E} extraneous in $\mathbf{B} \rightarrow \mathbf{CE}$?

Determine the canonical cover of F, F_c :

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. Cextraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$
- 3. E extraneous in $A \rightarrow BE$? Yes: $(A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E,H\}$ and $E \in A^+$
- 4. Cextraneous in $B \rightarrow CE$? No: $(B \rightarrow C) \notin \{A \rightarrow B, B \rightarrow E, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $B^+ = \{B,E\}$ and $C \notin B^+$
- 5. E extraneous in B \rightarrow CE? No: (B \rightarrow E) \notin {A \rightarrow B, B \rightarrow C, AC \rightarrow H, D \rightarrow B}⁺ Proof: B⁺ = {B,C} and E \notin B⁺
- 6. A extraneous in $AC \rightarrow H$?

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. Cextraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$
- 3. E extraneous in $A \rightarrow BE$? Yes: $(A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E,H\}$ and $E \in A^+$
- 4. Cextraneous in B \rightarrow CE? No: (B \rightarrow C) \notin {A \rightarrow B, B \rightarrow E, AC \rightarrow H, D \rightarrow B}⁺
 Proof: B⁺ = {B,E} and C \notin B⁺
- 5. E extraneous in B \rightarrow CE? No: (B \rightarrow E) \notin {A \rightarrow B, B \rightarrow C, AC \rightarrow H, D \rightarrow B}⁺ Proof: B⁺ = {B,C} and E \notin B⁺
- 6. A extraneous in AC \rightarrow H? No: (C \rightarrow H) \notin F⁺ Proof: C⁺ = {C} and H \notin C⁺
- 7. Cextraneous in $AC \rightarrow H$?

Determine the canonical cover of F, F_c :

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{B}, \ \mathbf{B} \rightarrow \mathbf{CE}, \ \mathbf{AC} \rightarrow \mathbf{H}, \ \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in A \rightarrow BCE? No: (A \rightarrow B) \notin {A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B}⁺ Proof: A⁺ = {A,C,E,H} and B \notin A⁺
- 2. Cextraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$
- 3. E extraneous in $A \rightarrow BE$? Yes: $(A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E,H\}$ and $E \in A^+$
- 4. Cextraneous in $B \rightarrow CE$? No: $(B \rightarrow C) \notin \{A \rightarrow B, B \rightarrow E, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $B^+ = \{B,E\}$ and $C \notin B^+$
- 5. E extraneous in B \rightarrow CE? No: (B \rightarrow E) \notin {A \rightarrow B, B \rightarrow C, AC \rightarrow H, D \rightarrow B}⁺ Proof: B⁺ = {B,C} and E \notin B⁺
- 6. A extraneous in AC \rightarrow H? No: (C \rightarrow H) \notin F⁺ Proof: C⁺ = {C} and H \notin C⁺
- 7. Cextraneous in AC \rightarrow H? Yes: (A \rightarrow H) \in F⁺ Proof: A⁺ = {A,B,C,E,H} and H \in A⁺

Determine the canonical cover of F, F_c :

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 1. Bextraneous in $A \rightarrow BCE$? No: $(A \rightarrow B) \notin \{A \rightarrow CE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,C,E,H\}$ and $B \notin A^+$
- 2. C extraneous in $A \rightarrow BCE$? Yes: $(A \rightarrow C) \in \{A \rightarrow BE, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,E,C,H\}$ and $C \in A^+$
- 3. E extraneous in $A \rightarrow BE$? Yes: $(A \rightarrow E) \in \{A \rightarrow B, B \rightarrow CE, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E,H\}$ and $E \in A^+$
- 4. Cextraneous in B \rightarrow CE? No: (B \rightarrow C) \notin {A \rightarrow B, B \rightarrow E, AC \rightarrow H, D \rightarrow B}⁺
 Proof: B⁺ = {B,E} and C \notin B⁺
- 5. E extraneous in $B \rightarrow CE$? No: $(B \rightarrow E) \notin \{A \rightarrow B, B \rightarrow C, AC \rightarrow H, D \rightarrow B\}^+$ Proof: $B^+ = \{B,C\}$ and $E \notin B^+$
- 6. A extraneous in AC \rightarrow H? No: (C \rightarrow H) \notin F⁺ Proof: C⁺ = {C} and H \notin C⁺
- 7. Cextraneous in AC \rightarrow H? Yes: (A \rightarrow H) \in F⁺ Proof: A⁺ = {A,B,C,E,H} and H \in A⁺

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c :

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B} \}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

$$\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B} \}$$

8. Bextraneous in $A \rightarrow BH$?

Determine the canonical cover of F, F_c :

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 8. Bextraneous in $A \rightarrow BH$? No: $(A \rightarrow B) \notin \{A \rightarrow H, B \rightarrow CE, D \rightarrow B\}^+$ Proof: $A^+ = \{A,H\}$ and $B \notin A^+$
- 9. Hextraneous in $A \rightarrow BH$?

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 8. Bextraneous in $A \rightarrow BH$? No: $(A \rightarrow B) \notin \{A \rightarrow H, B \rightarrow CE, D \rightarrow B\}^+$ Proof: $A^+ = \{A, H\}$ and $B \notin A^+$
- 9. Hextraneous in $A \rightarrow BH$? No: $(A \rightarrow H) \notin \{A \rightarrow B, B \rightarrow CE, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E\}$ and $H \notin A^+$
- 10. C extraneous in $B \rightarrow CE$?

Determine the canonical cover of F, F_c :

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B} \}
```

- 8. Bextraneous in A \rightarrow BH? No: (A \rightarrow B) \notin {A \rightarrow H, B \rightarrow CE, D \rightarrow B}⁺ Proof: A⁺ = {A,H} and B \notin A⁺
- 9. Hextraneous in $A \rightarrow BH$? No: $(A \rightarrow H) \notin \{A \rightarrow B, B \rightarrow CE, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E\}$ and $H \notin A^+$
- 10. C extraneous in $B \rightarrow CE$? No: $(B \rightarrow C) \notin \{A \rightarrow BH, B \rightarrow E, D \rightarrow B\}^+$ Proof: $B^+ = \{B,E\}$ and $C \notin B^+$
- 11. \mathbf{E} extraneous in $\mathbf{B} \rightarrow \mathbf{CE}$?

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B}\}
```

- 8. Bextraneous in A \rightarrow BH? No: (A \rightarrow B) \notin {A \rightarrow H, B \rightarrow CE, D \rightarrow B}⁺ Proof: A⁺ = {A,H} and B \notin A⁺
- 9. Hextraneous in $A \rightarrow BH$? No: $(A \rightarrow H) \notin \{A \rightarrow B, B \rightarrow CE, D \rightarrow B\}^+$ Proof: $A^+ = \{A,B,C,E\}$ and $H \notin A^+$
- 10. Cextraneous in $B \rightarrow CE$? No: $(B \rightarrow C) \notin \{A \rightarrow BH, B \rightarrow E, D \rightarrow B\}^+$ Proof: $B^+ = \{B,E\}$ and $C \notin B^+$
- 11. E extraneous in B \rightarrow CE? No: (B \rightarrow E) \notin {A \rightarrow BH, B \rightarrow C, D \rightarrow B}⁺ Proof: B⁺ = {B,C} and E \notin B⁺

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B} \}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine the canonical cover of F, F_c:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BH}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{D} \rightarrow \mathbf{B}\}
```

```
8. B extraneous in A → BH? No: (A → B) ∉ {A → H, B → CE, D → B}<sup>+</sup> Proof: A<sup>+</sup> = {A,H} and B ∉ A<sup>+</sup>
9. H extraneous in A → BH? No: (A → H) ∉ {A → B, B → CE, D → B}<sup>+</sup> Proof: A<sup>+</sup> = {A,B,C,E} and H ∉ A<sup>+</sup>
10. C extraneous in B → CE? No: (B → C) ∉ {A → BH, B → E, D → B}<sup>+</sup> Proof: B<sup>+</sup> = {B,E} and C ∉ B<sup>+</sup>
11. E extraneous in B → CE? No: (B → E) ∉ {A → BH, B → C, D → B}<sup>+</sup> Proof: B<sup>+</sup> = {B,C} and E ∉ B<sup>+</sup>
```

Determine the canonical cover of F, F_c:

$$\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CE}, \mathbf{A} \rightarrow \mathbf{E}, \mathbf{AC} \rightarrow \mathbf{H}, \mathbf{D} \rightarrow \mathbf{B} \}$$

A:
$$F_c = \{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$$

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

Determine 2 different canonical covers of F:

```
\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB} \}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine 2 different canonical covers of F:

```
F = \{A \rightarrow BC, B \rightarrow CA, C \rightarrow AB\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine 2 different canonical covers of F:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine 2 different canonical covers of F:

$$F = \{A \rightarrow BC, B \rightarrow CA, C \rightarrow AB\}$$

1. Bextraneous in $A \rightarrow BC$?

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

```
1. Bextraneous in A \rightarrow BC? Yes: (A \rightarrow B) \in \{A \rightarrow C, B \rightarrow CA, C \rightarrow AB\}^+
Proof: A^+ = \{A,C,B\} and B \in A^+
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

```
1. Bextraneous in A \rightarrow BC? Yes: (A \rightarrow B) \in \{A \rightarrow C, B \rightarrow CA, C \rightarrow AB\}^+
Proof: A^+ = \{A,C,B\} and B \in A^+
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

- 1. Bextraneous in $A \rightarrow BC$? Yes: $(A \rightarrow B) \in \{A \rightarrow C, B \rightarrow CA, C \rightarrow AB\}^+$ Proof: $A^+ = \{A,C,B\}$ and $B \in A^+$
- 2. C extraneous in $B \rightarrow CA$?

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

- 1. Bextraneous in $A \rightarrow BC$? Yes: $(A \rightarrow B) \in \{A \rightarrow C, B \rightarrow CA, C \rightarrow AB\}^+$ Proof: $A^+ = \{A,C,B\}$ and $B \in A^+$
- 2. C extraneous in $B \rightarrow CA$? Yes: $(B \rightarrow C) \in \{A \rightarrow C, B \rightarrow A, C \rightarrow AB\}^+$ Proof: $B^+ = \{B,A,C\}$ and $C \in B^+$

$$F = \{A \rightarrow C, B \rightarrow A, C \rightarrow AB\}$$

- 1. Bextraneous in $A \rightarrow BC$? Yes: $(A \rightarrow B) \in \{A \rightarrow C, B \rightarrow CA, C \rightarrow AB\}^+$ Proof: $A^+ = \{A,C,B\}$ and $B \in A^+$
- 2. C extraneous in $B \rightarrow CA$? Yes: $(B \rightarrow C) \in \{A \rightarrow C, B \rightarrow A, C \rightarrow AB\}^+$ Proof: $B^+ = \{B,A,C\}$ and $C \in B^+$

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{A}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

- 1. Bextraneous in $A \rightarrow BC$? Yes: $(A \rightarrow B) \in \{A \rightarrow C, B \rightarrow CA, C \rightarrow AB\}^+$ Proof: $A^+ = \{A,C,B\}$ and $B \in A^+$
- 2. C extraneous in $B \rightarrow CA$? Yes: $(B \rightarrow C) \in \{A \rightarrow C, B \rightarrow A, C \rightarrow AB\}^+$ Proof: $B^+ = \{B,A,C\}$ and $C \in B^+$
- 3. A extraneous in $C \rightarrow AB$?

$$F = \{A \rightarrow C, B \rightarrow A, C \rightarrow AB\}$$

- B extraneous in A → BC? Yes: (A → B) ∈ {A → C, B → CA, C → AB}⁺
 Proof: A⁺ = {A,C,B} and B ∈ A⁺
 C extraneous in B → CA? Yes: (B → C) ∈ {A → C, B → A, C → AB}⁺
 Proof: B⁺ = {B,A,C} and C ∈ B⁺
- 3. A extraneous in $C \rightarrow AB$? Yes: $(C \rightarrow A) \in \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}^+$ Proof: $C^+ = \{C,B,A\}$ and $A \in C^+$

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{A}, \mathbf{C} \rightarrow \mathbf{B}\}$$

- B extraneous in A → BC? Yes: (A → B) ∈ {A → C, B → CA, C → AB}⁺
 Proof: A⁺ = {A,C,B} and B ∈ A⁺

 C extraneous in B → CA? Yes: (B → C) ∈ {A → C, B → A, C → AB}⁺
 Proof: B⁺ = {B,A,C} and C ∈ B⁺
- 3. A extraneous in $C \rightarrow AB$? Yes: $(C \rightarrow A) \in \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}^+$ Proof: $C^+ = \{C,B,A\}$ and $A \in C^+$

Determine 2 different canonical covers of F:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{A}, \mathbf{C} \rightarrow \mathbf{B}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
     Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine 2 different canonical covers of F:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{C}, \mathbf{B} \rightarrow \mathbf{A}, \mathbf{C} \rightarrow \mathbf{B}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

A:
$$F_c = \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}$$

Determine 2 different canonical covers of F:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  2. Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine 2 different canonical covers of F:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}
```

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine 2 different canonical covers of F:

```
\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}
```

 $A: F_c = Canonical - Cover (F)$

```
ALGORITHM Canonical-Cover (F: {FDs})
BEGIN
 REPEAT UNTIL STABLE
  1. Where possible, apply UNION rule to FD's in F
      (Armstrong's Axioms)
  Remove extraneous attributes from each FD in F
     a) RHS: B extraneous in A → BC?
          Is (A \rightarrow B) \in (F - \{A \rightarrow BC\} \cup \{A \rightarrow C\})^+)
    b) LHS: B extraneous in AB → C?
          Is (A \rightarrow C) \in F^+
END
```

Determine 2 different canonical covers of F:

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

1. C extraneous in $A \rightarrow BC$?

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

```
1. C extraneous in A \rightarrow BC? Yes: (A \rightarrow C) \in \{A \rightarrow B, B \rightarrow CA, C \rightarrow AB\}^+
Proof: A^+ = \{A,B,C\} and C \in A^+
```

$$F = \{A \rightarrow B, B \rightarrow CA, C \rightarrow AB\}$$

```
1. C extraneous in A \rightarrow BC? Yes: (A \rightarrow C) \in \{A \rightarrow B, B \rightarrow CA, C \rightarrow AB\}^+
Proof: A^+ = \{A,B,C\} and C \in A^+
```

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

- 1. Cextraneous in $A \rightarrow BC$? Yes: $(A \rightarrow C) \in \{A \rightarrow B, B \rightarrow CA, C \rightarrow AB\}^+$ Proof: $A^+ = \{A,B,C\}$ and $C \in A^+$
- 2. A extraneous in $B \rightarrow CA$?

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

- 1. C extraneous in $A \rightarrow BC$? Yes: $(A \rightarrow C) \in \{A \rightarrow B, B \rightarrow CA, C \rightarrow AB\}^+$ Proof: $A^+ = \{A,B,C\}$ and $C \in A^+$
- 2. A extraneous in B \rightarrow CA? Yes: (B \rightarrow A) \in {A \rightarrow B, B \rightarrow C, C \rightarrow AB}⁺ Proof: B⁺ = {B,C,A} and A \in B⁺

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

- 1. C extraneous in $A \rightarrow BC$? Yes: $(A \rightarrow C) \in \{A \rightarrow B, B \rightarrow CA, C \rightarrow AB\}^+$ Proof: $A^+ = \{A,B,C\}$ and $C \in A^+$
- 2. A extraneous in B \rightarrow CA? Yes: (B \rightarrow A) \in {A \rightarrow B, B \rightarrow C, C \rightarrow AB}⁺ Proof: B⁺ = {B,C,A} and A \in B⁺

$$\mathbf{F} = \{ \mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C}, \mathbf{C} \rightarrow \mathbf{AB} \}$$

- 1. C extraneous in $A \rightarrow BC$? Yes: $(A \rightarrow C) \in \{A \rightarrow B, B \rightarrow CA, C \rightarrow AB\}^+$ Proof: $A^+ = \{A,B,C\}$ and $C \in A^+$
- 2. A extraneous in B \rightarrow CA? Yes: (B \rightarrow A) \in {A \rightarrow B, B \rightarrow C, C \rightarrow AB}⁺ Proof: B⁺ = {B,C,A} and A \in B⁺
- 3. Bextraneous in $C \rightarrow AB$?

Determine 2 different canonical covers of F:

$$F = \{A \rightarrow B, B \rightarrow C, C \rightarrow AB\}$$

C extraneous in A → BC? Yes: (A → C) ∈ {A → B, B → CA, C → AB}⁺
 Proof: A⁺ = {A,B,C} and C ∈ A⁺
 A extraneous in B → CA? Yes: (B → A) ∈ {A → B, B → C, C → AB}⁺
 Proof: B⁺ = {B,C,A} and A ∈ B⁺
 B extraneous in C → AB? Yes: (C → B) ∈ {A → B, B → C, C → A}⁺
 Proof: C⁺ = {C,A,B} and B ∈ C⁺

Determine 2 different canonical covers of F:

Proof: $C^+ = \{C,A,B\}$ and $B \in C^+$

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C}, \mathbf{C} \rightarrow \mathbf{A}\}$$

C extraneous in A → BC? Yes: (A → C) ∈ {A → B, B → CA, C → AB}⁺
 Proof: A⁺ = {A,B,C} and C ∈ A⁺

 A extraneous in B → CA? Yes: (B → A) ∈ {A → B, B → C, C → AB}⁺
 Proof: B⁺ = {B,C,A} and A ∈ B⁺

 B extraneous in C → AB? Yes: (C → B) ∈ {A → B, B → C, C → A}⁺

COSI 127b, Spr 2014, Lecture 12

$$\mathbf{F} = \{\mathbf{A} \rightarrow \mathbf{BC}, \mathbf{B} \rightarrow \mathbf{CA}, \mathbf{C} \rightarrow \mathbf{AB}\}$$

A2:
$$\mathbf{F_c} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C}, \mathbf{C} \rightarrow \mathbf{A}\}$$

$$F = \{A \rightarrow BC, B \rightarrow CA, C \rightarrow AB\}$$

A1:
$$F_c = \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}$$

A2:
$$\mathbf{F_c} = \{\mathbf{A} \rightarrow \mathbf{B}, \mathbf{B} \rightarrow \mathbf{C}, \mathbf{C} \rightarrow \mathbf{A}\}$$