Non-Hierarchical Clustering

K Means Method

Contents

- 1. Cluster Analysis
- 2. K-Means Clustering
 - i. Steps
 - ii. Distance Measures
 - iii. Choice of Initial Seeds
 - iv. Algorithm
 - v. Stepwise Iterations
 - vi. Cluster Solutions Statistics

Cluster Analysis

Cluster analysis is a class of statistical techniques that can be used to classify objects or cases into groups called **Clusters**.

- A cluster is a group of relatively homogeneous cases or observations.
- The observations are dissimilar to objects outside the cluster, particularly objects in other clusters.

• Cluster Analysis is one of the unsupervised learning method.

K-Means Clustering

- K-Means Clustering is one of the most popular non-hierarchical clustering methods
- K -Means method is suitable for large data sets and widely used for customer segmentation in BFSI or retail domains
- The number of clusters (k) must be known a priori (Though in reality this may not be the case)
- Alternatively, cluster solutions can be observed for different k and evaluated to get the best possible cluster solution

K-Means Clustering – Steps

Distance Measures

• Clustering algorithms require a mathematical measure to assess the similarity of a pair of observations or clusters

Object	X1	X2	ХР
1	a1	a2	ар
2	b1	b2	bp

Manhattan Distance

The sum of the absolute differences in values of P variables

• Chebyshev Distance

The maximum absolute difference in values of P variables

$$d(x, y) = Max(|ai-bi|)$$

Distance Measures – Euclidean Distance

• Squared Euclidean Distance: The sum of squared differences between values of each variable

$$d(x, y) = (a1-b1)^2+(a2-b2)^2+....+(ap-bp)^2$$

- The square root is defined as 'Euclidean Distance'
- 'Euclidean Distance' is the most widely used distance measure in cluster analysis

Choice of Initial Seeds

- There are different methods to decide initial seeds, some of them are:
 - K-random observations
 - First K observations
 - Last K observations
 - Partition the data into k partitions randomly and then use the partition mean/ median as initial seeds

Algorithm

Data Snapshot

Town Insurance

Variables

Town	x1	x2	x3
Α	1.06	9.2	151
В	0.89	10.3	202
С	1.43	15.4	113
D	1.02	11.2	168
E	1.49	8.8	192
F	1.32	13.5	111
G	1.22	12.2	175
Н	1.1	9.2	245

Columns	Description	Type	Measurement	Possible values
Town	Towns under study	character	-	-
x1	Loss Ratio	numeric	-	Positive values
x2	Premium Rates	numeric	-	Positive values
x3	Number of Policies	numeric	-	Positive values

Data:

Town	x1	x2	х3
A	1.06	9.2	151
В	0.89	10.3	202
C	1.43	15.4	113
D	1.02	11.2	168
${f E}$	1.49	8.8	192
\mathbb{F}	1.32	13.5	111
G	1.22	12.2	175
H	1.1	9.2	245

K=2

Step 1 : Initial Seeds

Town	x1	x2	х3
Α	1.06	9.2	151
В	0.89	10.3	202

Step 2: Find distance of Town C from A (Cluster1) and B(Cluster2)

Distance of C from A =
$$\sqrt{(1.43-1.06)^2+(15.4-9.2)^2+(113-151)^2}$$
 = 38.50
Distance of C from B = $\sqrt{(1.43-0.89)2+(15.4-10.3)2+(113-202)2}$ = 89.15

Minimum Distance = 38.50

Since distance between Town C and Town A is minimum, Town C will be combined with Town A

Updated cluster centroids (means) are:

Cluster	Members	X1	X2	ХЗ
1	A,C	1.245	12.3	132
2	В	0.89	10.3	202

Step 3: Find distance of Town D from Cluster1 and Cluster 2

Distance of D from Cluster 1	36.018
Distance of D from Cluster 2	34.012

Minimum Distance = 34.012

Here Town D will be combined with Town B (Cluster 2)

Updated cluster means are:

Cluster	Members	X1	X2	Х3
1	A,C	1.245	12.3	132
2	B,D	0.955	10.75	185

Step 4: Find distance of Town E from Cluster 1 and Cluster 2

Distance of E from Cluster 1	60.102
Distance of E from Cluster 2	7.2862

Minimum Distance = 7.2862

Here Town E will be combined with Cluster 2 (i.e. with Towns B & D)

Updated cluster means are:

Cluster	Members	X1	X2	Х3
1	A,C	1.245	12.3	132
2	B,D,E	1.133333	10.1	187.3333

Step 5: Find distance of Town F from Cluster 1 and Cluster 2

Distance of F from Cluster 1	21.034
Distance of F from Cluster 2	76.409

Minimum Distance = 21.034

Here Town F will be combined with Cluster 1 (i.e. with Towns A & C)
Updated cluster means are:

Cluster	Members	X1	X2	Х3
1	A,C,F	1.27	12.7	125
2	B,D,E	1.133333	10.1	187.3333

Step 6: Find distance of Town G from Cluster 1 and Cluster 2

Distance of G from Cluster 1	50.003
Distance of G from Cluster 2	12.511

Minimum Distance = 12.511

Here Town G will be combined with Cluster 2 (i.e. with Towns B,D & E)
Updated cluster means are:

Cluster	Members	X1	X2	Х3
1	A,C,F	1.27	12.7	125
2	B,D,E,G	1.155	10.625	184.25

Step 7: Find distance of Town H from Cluster 1 and Cluster 2

Distance of H from Cluster 1	120.05
Distance of H from Cluster 2	60.767

Minimum Distance = 60.767

Here Town H will be combined with Cluster 2 (i.e. with Towns B,D,E & G)
Updated cluster means are:

Cluster	Members	X1	X2	Х3
1	A,C,F	1.27	12.7	125
2	B,D,E,G,H	1.144	10.34	196.4

Since all the towns are assigned to two clusters, to verify our clusters membership we go for the next iteration

In iteration 2, initial seeds will be those two clusters which are obtained at the end of iteration 1

Step 1:

Initial seeds				
Cluster	Members	X1	X2	Х3
1	A,C,F	1.27	12.7	125
2	B,D,E,G,H	1.144	10.34	196.4

Step 2: Find the Distance of Town A from Cluster 1 (i.e from combined Towns A,C &F) and then Cluster 2(i.e from combined Towns B,D,E,G & H)

Distance of A from Cluster $1 = \sqrt{(1.06-1.27)2+(9.2-12.7)2+(151-125)2} = 26.23536$ Distance of A from Cluster $2 = \sqrt{(1.06-1.44)2+(9.2-10.34)2+(151-196.4)} = 45.41439$

Minimum Distance = 26.23536

Since distance between Town A and Cluster 1 is minimum, Town A will be retained in Cluster 1

Iteration 2 – Summary

Initial seeds				
Cluster	Members	X1	X2	Х3
1	A,C,F	1.27	12.7	125
2	B,D,E,G,H	1.144	10.34	196.4

No town is reassigned to different cluster

This is final cluster solution

Town	Distance from Cluster1	Distance from Cluster2	Cluster
Α	26.24	45.41	1
В	77.04	5.61	2
С	12.30	83.55	1
D	43.03	28.41	2
E	67.11	4.67	2
F	14.02	85.46	1
G	50.00	21.48	2
Н	120.05	48.61	2

Points For Good Cluster Solution

- Standardize variables if scale differs widely. Variables with high variance tend to influence cluster solution.
- Use data reduction technique like factor analysis before cluster analysis if number of variables is high
- Run the algorithm for different choices of K and initial seeds
- Use dummy variables for nominal scaled variables. K means algorithm is not suited for nominal scaled variables.
- You may use hierarchical clustering for sample of the data to get preliminary information on K and distance values

Statistics Associated with Cluster Solution

Cluster solution can be assessed using 'between clusters' variability and 'within clusters' variability.

Within Sum of Squares (WSS) is a measure to explain homogeneity within a cluster. WSS can be calculated for each cluster and then added to get Total WSS

Total WSS should be small

R-squared is computed as ratio of Between Clusters Variability to Total Variability.

R-squared should be large

Quick Recap

Cluster Analysis

- Statistical techniques that can be used to classify objects or cases into groups called Clusters
- Cluster is a group of relatively homogeneous cases or observations

K-Means Clustering – Steps Involved

- Define k
- Define Distance Measure
- Define Initial Seeds
- Assign cases to clusters based on distance measure
- Repeat the Procedure Until no reassignment is required