Matlab Exercise 3

Question [a]:

The DH parameters:

i	\mathbf{a}_{i-1}	$lpha_{i-1}$	\mathbf{d}_i	$oldsymbol{ heta}_i$
1	0	0°	0	$ heta_1$
2	${ m L}_1$	0°	0	$ heta_2$
3	L_2	0°	0	θ_3
4	L_3	0°	0	0°

Question [b]:

Link Transformations:

$${}_{1}^{0}T = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} C_{2} & -S_{2} & 0 & L_{1} \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} C_{3} & -S_{3} & 0 & L_{2} \\ S_{3} & C_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{H}^{3}T = \begin{bmatrix} 1 & 0 & 0 & L_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Question [c]:

The forward pose kinamatics solutions:

$$\therefore_{H}^{0}T = {}_{3}^{0}T \cdot {}_{H}^{3}T = \begin{bmatrix} C_{123} & -S_{123} & 0 & L_{1}C_{1} + L_{2}C_{12} + L_{3}C_{123} \\ S_{123} & C_{123} & 0 & L_{1}S_{1} + L_{2}S_{12} + L_{3}S_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

<u>i)</u>

Matlab programis as follows:

```
%Constants
L1=4;
L2=3;
L3=2;
theta1=30;
theta2=0;
theta3=0;
%DH parameters
alpha(1)=0; a(1)=0; d(1)=0; theta(1)=theta1;
alpha(2)=0; a(2)=L1; d(2)=0; theta(2)=theta2;
alpha(3)=0; a(3)=L2; d(3)=0; theta(3)=theta3;
alpha(4)=0; a(4)=L3; d(4)=0; theta(4)=0;
%Transformation matrices
T0_1=trotx(alpha(1), 'deg') * transl(a(1), 0, 0) * trotz(theta(1), 'deg')
* transl(0,0,d(1));
T1_2=trotx(alpha(2), 'deg') * transl(a(2), 0, 0) * trotz(theta(2), 'deg')
* transl(0,0,d(2));
T2_3=trotx(alpha(3), 'deg') * transl(a(3), 0, 0) * trotz(theta(3), 'deg')
* transl(0,0,d(3));
T3_H=trotx(alpha(4), 'deg') * transl(a(4), 0, 0) * trotz(theta(4), 'deg')
* transl(0,0,d(4));
T0_3 = T0_1 * T1_2 * T2_3
T0_H = T0_3 * T3_H
```

```
0 1 0 0
0 0 1 0
0 0 0 1
```

<u>ii)</u>

Matlab program is as follows:

```
clear all
clc
%Constants
L1=4;
L2=3;
L3=2;
theta1=10;
theta2=20;
theta3=30;
%DH parameters
alpha(1)=0; a(1)=0; d(1)=0; theta(1)=theta1; alpha(2)=0; a(2)=L1; d(2)=0; theta(2)=theta2;
alpha(3)=0; a(3)=L2; d(3)=0; theta(3)=theta3;
alpha(4)=0; a(4)=L3; d(4)=0; theta(4)=0;
%Transformation matrices
T0_1=trotx(alpha(1), 'deg') * transl(a(1), 0, 0) * trotz(theta(1), 'deg')
* transl(0,0,d(1));
T1_2=trotx(alpha(2), 'deg') * transl(a(2), 0, 0) * trotz(theta(2), 'deg')
* transl(0,0,d(2));
T2_3=trotx(alpha(3), 'deg') * transl(a(3), 0, 0) * trotz(theta(3), 'deg')
* transl(0,0,d(3));
T3_H=trotx(alpha(4),'deg') * transl(a(4),0,0) * trotz(theta(4),'deg')
* transl(0,0,d(4));
T0_3 = T0_1 * T1_2 * T2_3
T0_H = T0_3 * T3_H
```

<u>ii)</u>

Matlab program is as follows:

```
clear all
clc
%Constants
L1=4;
L2=3;
L3=2;
theta1=90;
theta2=90;
theta3=90;
%DH parameters
alpha(1)=0; a(1)=0; d(1)=0; theta(1)=theta1;
alpha(2)=0; a(2)=L1; d(2)=0; theta(2)=theta2;
alpha(3)=0; a(3)=L2; d(3)=0; theta(3)=theta3;
alpha(4)=0; a(4)=L3; d(4)=0; theta(4)=0;
%Transformation matrices
T0_1=trotx(alpha(1), 'deg') * transl(a(1), 0, 0) * trotz(theta(1), 'deg')
* transl(0,0,d(1));
T1_2=trotx(alpha(2), 'deg') * transl(a(2), 0, 0) * trotz(theta(2), 'deg')
* transl(0,0,d(2));
T2_3=trotx(alpha(3), 'deg') * transl(a(3), 0, 0) * trotz(theta(3), 'deg')
* transl(0,0,d(3)); T3\_H=trotx(alpha(4),'deg') * transl(a(4),0,0) * trotz(theta(4),'deg')
* transl(0,0,d(4));
T0_3 = T0_1 * T1_2 * T2_3
```

$$T0_3 =$$

0	1.0000	0	-3.0000
-1.0000	0	0	4.0000
0	0	1.0000	0
0	0	0	1.0000

where:

$$T \, 0_3 \equiv {}_3^0 T$$

$$T0_H \equiv {}_H^0T$$

Question [d]:

Using Robotics Toolbox:

```
clear all
clc
%Constants
L1=4;
L2=3;
L3=2;
theta1=0;
theta2=0;
theta3=0;
%DH parameters
alpha(1)=0; a(1)=0; d(1)=0; theta(1)=theta1;
alpha(2)=0; a(2)=L1; d(2)=0; theta(2)=theta2;
alpha(3)=0; a(3)=L2; d(3)=0; theta(3)=theta3;
alpha(4)=0; a(4)=L3; d(4)=0; theta(4)=0;
%Link() function
L(1) = Link([alpha(1) a(1) theta(1) d(1)], 'standard');

L(2) = Link([alpha(2) a(2) theta(2) d(2)], 'standard');

L(1) = Link([alpha(3) a(3) theta(3) d(3)], 'standard');
%robot() function "same as SerialLink"
threelink = SerialLink(L, 'name', 'threelink')
```

threelink =

threelink (2 axis, RR, stdDH, slowRNE)

++		+				+			+			+	
ΙjΙ	th	eta			d	ı		a	I		alp		
++		+				+			+				
1		q1			3			0			0 [
2		q2	4			I		0 [0		
++		+				+			+			+	
grav =	0	base =	1	0	0	0	tool	=	1	0	0	0	
	0		0	1	0	0			0	1	0	0	
	9.81		0	0	1	0			0	0	1	0	
			0	0	0	1			0	0	0	1	