First Name _____ Last Name ____ Date ___ - __ Period ___ Score ___

Learning Objectives.

- To categorize the end behaviors of the graph as approaching an infinity or a horizontal asymptote
- To distinguish the different pace toward infinity
- To represent an interval on the number line and vise versa.

Problem.

1. Shade the segment represented by the interval (-4,1] on the number line. Use \bullet to indicate a closed endpoint, and \circ to indicate an open endpoint.

2. Shade the segment represented by the interval $(-\infty, -6]$ on the number line. Use \bullet to indicate a closed endpoint, and \circ to indicate an open endpoint.

3. The interval represented by the shaded segment below is ______.

4. The following graph shows the state of an object cooling over time:

- (a) What is the temperature of the object as time approaches infinity?
- (b) What can you infer about the room temperature in which this cooling process was taking place?

Direction. Describe the end behaviors of the graphs below. If the graph doesn't have a definite end behavior, put "N/A".

As x approaches ∞ , y approaches _____. As x approaches $-\infty$, y approaches _____.

Does the graph have an absolute maximum? _____.

Does the graph have an absolute minimum? _____.

As x approaches ∞ , y approaches ______. As x approaches $-\infty$, y approaches ______. Does the graph have an absolute maximum? _____.

As x approaches ∞ , y approaches ______. As x approaches $-\infty$, y approaches ______. Does the graph have an absolute maximum? _____.

As x approaches ∞ , y approaches ______. As x approaches $-\infty$, y approaches ______. Does the graph have an absolute maximum? _____.