Signature and Name of Invigilator

1.	(Signature)
	(Name)
2.	(Signature)

OMR Sheet No.:										
(To be filled by the Candidate)										
Roll No.										
(In figures as per admission card)										

(Name)

PAPER - III Roll No.

(In words)

Time : $2\frac{1}{2}$ hours

COMPUTER SCIENCE AND **APPLICATIONS**

[Maximum Marks: 150 Number of Questions in this Booklet: 75

Number of Pages in this Booklet: 16

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of
- This paper consists of seventy five multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item

Example: ① ② ④ ④ where (3) is the correct response.

- 5. Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to 9. disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

परीक्षार्थियों के लिए निर्देश

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- इस प्रश्न पत्र में पचहत्तर बहुविकल्पीय प्रश्न हैं।
- 3. परीक्षा प्रारम्भ होने पर, प्रश्न पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है:
 - प्रश्न पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर सील की पुस्तिका स्वीकार न करें।
 - कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न पुस्तिका पर अंकित कर दें।
- प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं। आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे

उदाहरण: (1) (2) ■ (4) जबिक (3) सही उत्तर है।

- प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते हैं, तो उसका मूल्यांकन नहीं होगा।
- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पहें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
- आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

1 P.T.O.

COMPUTER SCIENCE AND APPLICATIONS PAPER - III

Note: This paper contains seventy five (75) objective type questions of two (2) marks each. All questions are compulsory.

1.	of th	e form	$101x_1x_2x_3$	00. W	om the 8×3 p That is the sec starting from	ond highe	est priorit	y vector	addr	de a vector address ess in hexadecimal ?
	(1)	ВС		(2)	A4	(3)	BD		(4)	AC
2.	Wha	t will b	e the outp	ut at	PORT1 if the	following	program	ı is execu	ıted ?	10
	MVI	В, 82Н				- 4	6 6	100	1	
	MO	V A, B				- 50	100	1	(6)	
	MO	V C, A				1	11	4.9	ĮΨ	
	MVI	D, 37H	I				1 1	~ ~	0	
	OUT	PORT	1			/	1/			
	HLT	•				7	1./			
	(1)	37H		(2)	82H	(3)	В9Н		(4)	00H
					41	ío	(11	13		
3.				•	-	A 0 14	10.0	rrupt has		lowest priority?
	(1)	RST 6	.5	(2)	RST 7.5	(3)	TRAP		(4)	INTR
4.	100 i	nsec and		y cycl	e requires 250					operation requires ry's total operating
	(1)	0.64	1	(2)	0.96	(3)	2.00		(4)	0.32
5 4	A D	MA cor	ntroller tra	nsfer	s 32-bit word	s to mem	ory using	z cycle S	tealin	g. The words are
										racters per second.
(million instructions
	No.	-						ecause o		DMA transfer ?
	(1)	0.06%	1	(2)	0.12%	(3)	1.2%		(4)	2.5%
6.	A C	PU han	dles inter	rupt b	y executing i	nterrupt s	service su	ıbroutine	<u>:</u>	
	(1)	by che	ecking inte	errupt	register after	execution	n of each	instructi	on	
	(2)	by che	ecking inte	errupt	register at th	e end of t	he fetch o	cycle		
	(3)			•	ot is registered					
	(4)	by che	ecking int	errup	t register at re	egular tim	e interva	ıl		
D-87	15					2				Paper-III

7.	fathe parer parer parer parer parer male male	nt(Sally, Bob), nt(Jim, Bob), nt(Alice, Jane), nt(Thomas, Jane) (Bob), (Jim),	Î	olog clause	s:						
		le(Salley),							- 5	10.3	52
		le(Alice).		ad ta tha ***	المامانية	~ 'V' 1	aafama Ha			K /	~ B
		many atoms are r(X, Jane) reports			ariabio	ел	before the	e query	. 7	20	
	(1)	$1(\lambda, \text{ jaile})$ reports	(2)	2		(3)	3	424	(4)	4	
	(1)	1	(2)	_		(5)	4.4	-61	(=)	100	
8.	Forw	vard chaining sy	stems	are		whe	ere as ba	ickward	chai	ning sys	stems are
	(1)	Data driven, Da	ta driv	en	(2)	Goal	driven,	Data driv	en		
	(3)	Data driven, Go			(4)			Goal driv			
	` /						1/				
9.	Matc	h the following v	v.r.t. p	rogrammin	g lang	guage	s:	4			
		List - I			List -	- II	-				
	(a)	JAVA		(i) Dyna	mical	ly obj	ject orien	ted			
	(b)	Python		(ii) Static	ally N	Von-o	bject orie	ented			
	(c)	Prolog		(iii) Static	ally c	bject	oriented				
	(d)	ADA		(iv) Dyna	mical	ly no	n-object (oriented			
	Code	es:	,	400	- 71						
		(a) (b) (c)	(d)		7						
	(1)	(iii) (i) (ii)	(iv)	A 110							
	(2)	(i) (iii) (ii)	(iv)	100							
	(3)	(i) (iii) (iv)	(ii)								
	(4)	(ii) (iv) (i)	(iii)	17							
- 4	1	1	× 311								
10.		combination of a		ldress and a	-					•	
- ((1)	network numbe			(2)		et addres				
- 1	(3)	subnet mask nu	mber		(4)	MAC	2 address	3			
11	2	//		. (10 MJ			1		- 000	C	
11.		twork with bands			-			_		_	
		each frame carry 2 Mbps		60 Mbps	0,000	(3)	120 Mb		gnpu (4)	10 Mbr	
	(1)	2 Mops	(2)	oo wops		(3)	120 1010	ŲS	(4)	10 Minh	75
12.	Cons	ider a subnet wit	h 720 ı	outors If a	thro	ميرم[م	l hiorarch	vy is choo	seen v	with aigh	nt clinetore
14.	_	containing 9 regi						•		_	
	cacii	containing > regi	10113 01	10 1041013,	tricri	totai	Humber	or critici	3 III (I	ic routh	ig table is
	(1)	25	(2)	27		(3)	53		(4)	72	
						(-)			()		
D-87	15				3						Paper-III

	(2) refers to broadcast on the local network(3) refers to broadcast on a distant network										
	(3) (4)	refers to broadc		t netwoi	rK						
	(1)	refers to roopsus	ek testing								
14.		lectronic mail, w sages ?	hich of the fo	llowing	prot	ocols allows th	he trans	fer of multimed	dia		
	(1)	IMAP	(2) SMTP		(3)	POP 3	(4)	MIME	(
15.		evice is sending or 000 characters?	ut data at the r	ate of 20	000 bp	os. How long o	loes it ta	ke to send a file	of		
	(1)	50	(2) 200		(3)	400	(4)	800			
16 .		ctivity - Selection			i has	s a start time s _i	and a f	inish time f_i who	ere		
		f_i . Activities i and		ble if :	(3)	a > f or a > f	1	$s_i \ge f_j$ and $s_j \ge f_j$	£		
	(1)	$s_i \ge f_j$	$(2) s_j \ge f_i$		(3)	$s_i \ge r_j$ or $s_j \ge r_j$	i (4)	$s_i \ge l_j$ and $s_j \ge l$	i		
17.	Give	en two sequences	X and Y :		/	1/					
		$X = \langle a, b, c, b, d \rangle$, a, b	- 1		1./					
		$Y = \langle b, d, c, a, b \rangle$, a).			-					
	The	longest common s	subsequence of	X and	Y is:	PITTE					
	(1)		(2) $\langle c, a, b \rangle$			$\langle b, c, a, a \rangle$	(4)	$\langle b, c, b, a \rangle$			
18.	If the	ere are n integers	to sort, each in	teger ha	s d di	gits and each d	ligit is in	the set {1, 2,,	k},		
		x sort can sort the		38	(2)	0//1+ 11	(4)	0(1(+1))			
	(1)	O(d n k)	$(2) O(d n^k)$		(3)	O((d+n)k)	(4)	O(d(n+k))			
19.	The	solution of the re	currence relatio	on							
4	0 1	$\theta(1)$	37	if n ≤	80						
(T(n)	$\leq \left\{ T\left(\frac{n}{s}\right) + T\left(\frac{7r}{10}\right) \right\}$	$\left(\frac{1}{n} + 6\right) + O(n)$	if n >	80						
,	is:		,)								
	(1)	O(lg n)		(2)	O(n)					
	(3)	O(n lg n)		(4)		e of the above					
20.	5	d-Warshall algori directed graph i		ime.	to s	solve the all-pa	irs shor	test paths proble	em		
	(1)	Greedy algorith		(2)	Gree	edy algorithm,	$\theta(V^2 \lg n)$)			
	(3)	Dynamic progra	amming, $\theta(V^3)$	(4)		amic programi					

4

In a classful addressing, the IP addresses with $0\ (zero)$ as network number :

refers to the current network

D-8715

13.

21. Let n = 4 and $(a_1, a_2, a_3, a_4) = (do, if, int, while)$. Let $p(1:4) = \left(\frac{3}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8}\right)$ and

 $q(1:4) = \left(\frac{2}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)$ where p(i) and q(i) denotes the probability with which we search a_i and the identifier x being searched satisfy $a_i < x < a_{i+1}$ respectively. The optimal search tree is given by :

- **22.** The family of context sensitive languages is reversal.
 - (2) not closed, not closed
 - (1) closed, not closed(3) closed, closed
- (4) not closed, closed

23. Match the following:

List - I

- (a) $\{a^n b^n | n > 0\}$ is a deterministic context free language
- List II

 (i) but not recursive language
- (b) The complement of $\{a^n b^n a^n | n > 0\}$ is a context free language
- (ii) but not context free language

under union and

- (c) {aⁿ bⁿ aⁿ} is context sensitive language
- (iii) but can not be accepted by a deterministic pushdown automation
- (d) L is a recursive language
- (iv) but not regular

Codes:

- (a) (b) (c)
- $(1) \quad (i) \quad (ii) \quad (iii) \quad (iv)$
- (2) (i) (ii) (iv) (iii)
- (3) (iv) (iii) (ii) (i) (4) (iv) (iii) (i) (ii)
- **24.** The language of all non-null strings of a's can be defined by a context free grammar as follow:

5

$$S \rightarrow a S |S a| a$$

The word a³ can be generated by

different trees.

- (1) Two
- (2) Three
- (3) Four
- (4) Five

D-8715

Paper-III

under

25.		ch one of the following		tional	quality attribute	es is not h	nighly affected by	the
	(1) (3)	Performance Usability		(2) (4)	Reliability Portability			
26.		context free grammar g $S \rightarrow XYX$ $X \rightarrow aX \mid bX \mid \lambda$ $Y \rightarrow bbb$ rates the language whi (a+b)*bbb (a+b)*(bbb)(a+b)*	·	ed by : (2) (4)	abbb(a+b)*)
27.		e are exactly abet $\{a, b\}$ where x is a 64 (2)				three state	es <i>x</i> , <i>y</i> and <i>z</i> over 1) 5832	the
28.	$L_1 = \frac{1}{2}$ $L_2 = \frac{1}{2}$	n the following two la $\{a^n b a^n n > 0\}$ $\{a^n b a^n b^{n+1} n > 0\}$ ch of the following is context free lang L_1 is context free lang L_1 is not context free Both L_1 and L_2 are context L_1 and L_2 are not both L_1 and L_2 are not some some solution.	orrect ? uage and I language an ntext free la	nd L ₂ angua	is context free la ges			
29.	(1) (2) (3) (4)	ch of the following is u Making atleast one m Making atleast one m Declaring as Abstract Declaring as Abstract	nember fun ember fund class using class using	ction a ction a virtu stati	ns pure virtual f s virtual functio al keyword c keyword	n		
30.	Matc	ch the following with re List - I	eference to	object	oriented model List - II	ling :		
((a) (b)	Polymorphism Inheritance	appr (ii) Hidi	ropria ing im	oth operator and te to model an o	object	ates with operation	
	(c) (d) Code (1) (2) (3) (4)	Encapsulation Abstraction es: (a) (b) (c) (d) (iv) (iii) (i) (ii) (iii) (iv) (i) (ii) (iii) (i) (ii) (iv) (iv) (iii) (ii) (iv) (iv) (iii) (ii) (i)		ng sim	ilar operations to w classes from e			
D-87	15			6			Paper-	-III

www.examrace.com

31.	In CRC based design, a CRC Team co (a) one or two users representatives		of:		
	(b) several programmers				
	(c) project co-ordinators(d) one or two system analysts				
	Codes:				
	(1) (a) and (c)		(a), (b), (c) and (d	l)	10
	(3) (a), (c) and (d)	(4)	(a), (b) and (d)		63
32.	The end points of a given line are (0, 0)	and (6, 18). Compute ea	ach value o	of y as x steps from
	0 to 3, by using equation of straight lir		2	- 5	1
	(1) For $x = 0$, $y = 0$; $x = 1$, $y = 3$; $x = 2$.	-	_	-1	
	(2) For $x = 0$, $y = 1$; $x = 1$, $y = 3$; $x = 2$, (3) For $x = 0$, $y = 2$; $x = 1$, $y = 3$; $x = 2$,	-	_	44	9.9
	(4) For $x = 0$, $y = 0$; $x = 1$, $y = 3$; $x = 2$,	U	· ·	20	
			1	101	
33.	Which of the following graphic prime computer graphics?	itives a	are considered as	the basic	building blocks of
	(a) Points (b) Lines	(c)	Polylines	(d) Poly	gons
	Codes:	(-)		()	0
	(1) (a) only	(2)	(a) and (b)		
	(3) (a), (b) and (c)	(4)	(a), (b), (c) and (d	1)	
34.	Javascript and Java has similar name	becaus	se is/a	re true.	
	(a) Javascripts syntax is loosely base				
	(b) Javascript is stripped down versi				
	(c) Java and Javascript are originate Codes :	d from	Island of Java		
		d (c)	(3) (a) and (b)	(4)	(a) and (c)
					. ,
35.	Which of the following statements ar data?	e true	with reference to	the way o	of describing XML
- 4	(a) XML uses DTD to describe the d	ata			
1	(b) XML uses XSL to describe the da	nta			
((c) XML uses a description node to	describ	e the data		
	Codes: (1) (a) only (2) (b) only		(3) (a) and (b)	(4)	(a) and (a)
	(1) (a) only (2) (b) only		(3) (a) and (b)	(4)	(a) and (c)
36.	Which of the following is/are correct	with 1	reference to Abstra	ict class ar	nd interface?
	(a) A class can inherit only one Abs		•		
	(b) An Abstract class can provide co Codes :	mplete	and default code	but an inte	erface has no code.
	(1) (a) is true (2)	(b) is	true		
	(3) Both (a) and (b) are true (4)		ner (a) nor (b) is tr	ue	
D 0=					
D-87	15	7			Paper-III

37.	Mat		follov st - I	wing v	with re	espect	to various List		ory mana	agement al	lgorithn	ns:	
	(a)	Dem	and p	oaging	7	(i)	degree of	multi	programi	ming			
	(b)		nenta			(ii)	working set						
	(c)	Dyna	amic	partiti	ions	(iii)	supports t	ıser v	iew of m	emory			
	(d)	•		itions		(iv)	compactio			J			
	` '	les :	•			` ,	1					4.6	
		(a)	(b)	(c)	(d)							6	
	(1)	(iii)	(iv)	(ii)	(i)							-021	
	(2)	(ii)	(iii)	(i)	(iv)						1	(1)	
	(3)	(iv)	(iii)	(ii)	(i)							1	
	(4)	(ii)	(iii)	(iv)	(i)						70		
20		, ,	, ,	. ,						<44	1	2	
38.				•	_	gemen	t unit is:	3.4	W. 40.	- 67	1		
	(1)			ransla			(2)		nory allo		0		
	(3)	Cacr	ne ma	nager	nent		(4)	All	of the abo	ove	3.7		
20	<i>C</i>	. 1		•.	1 . 1			V_{-}	1 1	1	D D	1 D D	
39.												and P ₃ . Process tape drives and	
												olding five tape	
												tape drives. At	
time t_1 , system is in :							4 4	т г	411	3	8		
	(1)		state		(2)	unsa	fe state	(3)	deadlo	cked state	(4) st	arvation state	
	` /				(/	4	12		97		` /		
40.	In U	Jnix op	eratir	ng sys	tem, s	pecial	files are us	sed to					
	(1)	_				- 1	nput from v			s reads			
	(2)						p physical		-				
	(3)	store	list o	f file i	names	plus	pointers ass	sociate	ed with i	i-nodes			
	(4)					-	y a user ap				ity pro	gram	
41.	Mat	ch the	folloy	ving i	n Uni:	x file s	system :						
4	8		st - I	-)		List - II						
6	(a)		block	17	(i)	Info	rmation abo	out file	e system				
- 1	(b)		er bloo		(ii)		rmation abo		•				
- 3	(c)	-	e tabl		(iii)	Stora	age space						
	(d)	7.6	blocl		(iv)		e for makin	g OS	ready				
	Coc	les :		ı.	` /			O	J				
	- 1	(a)	(b)	(c)	(d)								
	(1)	(iv)	(i)	(ii)	(iii)								
	(2)	(i)	(iii)	(ii)	(iv)								
	(3)	(iii)	(i)	(ii)	(iv)								
	(4)	(iv)	(ii)	(i)	(iii)								
D-87	15						8					Paper-II	

- 42. In an operating system, indivisibility of operation means:
 - Operation is interruptable
 - (2) Race - condition may occur
 - Processor can not be pre-empted (3)
 - All of the above (4)
- A horn clause is
 - A clause in which no variables occur in the expression
 - A clause that has at least one negative literal
 - (3) A disjunction of a number of literals
 - A clause that has at most one positive literal
- In Propositional Logic, given P and P \rightarrow Q, we can infer 44.
 - $(1) \sim Q$
- (2) O
- $P \wedge O$
- 45. Reasoning strategies used in expert systems include
 - Forward chaining, backward chaining and problem reduction
 - Forward chaining, backward chaining and boundary mutation (2)
 - Forward chaining, backward chaining and back propagation (3)
 - Backward chaining, problem reduction and boundary mutation
- 46. Language model used in LISP is
 - (1)
- Functional programming (2) Logic programming Object oriented programming (4) All of the above
- In constraint satisfaction problem, constraints can be stated as 47.
 - Arithmatic equations and inequalities that bind the values of variables
 - Arithmatic equations and inequalities that doesn't bind any restriction over variables (2)
 - Arithmatic equations that impose restrictions over variables (3)
 - (4) Arithmatic equations that discard constraints over the given variables
- As compared to rental and leasing methods to acquire computer systems for a Management 48. Information System (MIS), purchase method has following advantage:
 - It has high level of flexibility
 - It doesn't require cash up-front
 - (3) It is a business investment
 - (4) Little risk of obsolescence
- Consider the conditional entropy and mutual information for the binary symmetric channel.

The input source has alphabet $X = \{0, 1\}$ and associated probabilities $\left\{\frac{1}{2}, \frac{1}{2}\right\}$. The channel

matrix is $\begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}$ where p is the transition probability. Then the conditional entropy

is given by:

- (2) $-p\log(p) (1-p)\log(1-p)$
- 1 + plog(p) + (1 p)log(1 p) (4) 0

- **50.** Which of the following is **not** a lossy compression technique?
 - (1) **JPEG**
- (2) **MPEG**
- (3) **FFT**
- (4) Arithmetic coding

- 51. Blind image deconvolution is
 - Combination of blur identification and image restoration
 - (2) Combination of segmentation and classification
 - Combination of blur and non-blur image
 - None of the above (4)
- A basic feasible solution of a linear programming problem is said to be 52. one of the basic variable is zero.

- degenerate (1)
- non-degenerate (3) infeasible (2)
- unbounde

- Consider the following conditions:
 - The solution must be feasible, i.e. it must satisfy all the supply and demand constraints.
 - The number of positive allocations must be equal to m+n-1, where m is the number (b) of rows and n is the number of columns.
 - All the positive allocations must be in independent positions.

The initial solution of a transportation problem is said to be non-degenerate basic feasible solution if it satisfies:

Codes:

(a) and (b) only (1)

(a) and (c) only

(b) and (c) only (3)

- (a), (b) and (c)
- Consider the following transportation problem:

			Stor	es	1	
		ΙΨ	II	III	IV	Supply
sə	A	14	6	8	13	50
tori	В	13	11	10	8	70
Factories	∢C \	14	4	10	13	30
	D	9	11	13	8	50
100	Demand	25	35	105	20	

The transportation cost in the initial basic feasible solution of the above transportation problem using Vogel's Approximation method is:

- (1) 1450
- (2)1465
- (3) 1480
- 1520
- The character set used in Windows 2000 operating system is 55.
 - 8 bit ASCII

- (2) Extended ASCII
- 16 bit UNICODE
- (4)12 bit UNICODE
- In Unix, the command to enable execution permission for file "mylife" by all is
 - Chmod ugo + X myfile
- Chmod a + X myfile (2)
- Chmod +X myfile
- All of the above (4)

10

57. What will be the output of the following Unix command?

\$rm chap0\[1 - 3\]

- Remove file chap0[1 3] (1)
- Remove file chap01, chap02, chap03 (2)
- Remove file chap\ $[1 3\]$ (3)
- (4) None of the above
- Which of the following statements regarding the features of the object-oriented approach to 58. databases are true?
 - (a) The ability to develop more realistic models of the real world.
 - The ability to represent the world in a non-geometric way. (b)
 - The ability to develop databases using natural language approaches. (c)
 - The need to split objects into their component parts. (d)
 - The ability to develop database models based on location rather than state and behaviour. (e)

Codes:

- (1) (a), (b) and (c) (2)
- (b), (c) and (d)
- (3) (a), (d) and (e)
- (c), (d) and (e)

59. Consider the following database table:

Create table test(

```
one integer,
two integer,
primary key(one),
unique(two),
check(one \ge 1 \text{ and } \le 10)
check(two > = 1 \text{ and } < = 5)
);
```

How many data records/tuples atmost can this table contain?

- (1) 5
- (2) 10
- (3)15
- (4)50
- Suppose ORACLE relation R(A, B) currently has tuples {(1, 2), (1, 3), (3, 4)} and relation S(B, C) currently has {(2, 5), (4, 6), (7, 8)}. Consider the following two SQL queries SQ1 and SQ2:

SQ1: Select *

From R Full Join S

On R.B=S.B;

SO2 : Select *

From R Inner Join S

On R.B=S.B;

The numbers of tuples in the result of the SQL query SQ1 and the SQL query SQ2 are given by:

- 2 and 6 respectively (1)
- (2) 6 and 2 respectively
- 2 and 4 respectively
- (4)4 and 2 respectively

D-8715

11

- **61.** Consider the following three SQL queries (Assume the data in the people table):
 - (a) Select Name from people where Age>21;
 - (b) Select Name from people where Height>180;
 - (c) Select Name from people where (Age>21) or (Height>180);

If the SQL queries (a) and (b) above, return 10 rows and 7 rows in the result set respectively, then what is one possible number of rows returned by the SQL query (c)?

- (1) 3
- (2) 7
- (3) 10
- (4) 21
- 62. The distributed system is a collection of $\underline{\hspace{0.1cm}(P)}$ and communication is achieved in distributed system by $\underline{\hspace{0.1cm}(Q)}$, where (P) and (Q) are :
 - (1) Loosely coupled hardware on tightly coupled software and disk sharing, respectively.
 - (2) Tightly coupled hardware on loosely coupled software and shared memory, respectively.
 - (3) Tightly coupled software on loosely coupled hardware and message passing, respectively.
 - (4) Loosely coupled software on tightly coupled hardware and file sharing, respectively.
- 63. Consider the following three tables R, S and T. In this question, all the join operations are natural joins (\bowtie). (π) is the projection operation of a relation :

	R		S			T	
A	В	В	C		A		С
1	2	6	2		7		1
3	2	2	4	:	1		2
5	6	8	1		9		3
7	8	8	3	;	5		4
9	8	2	5	;	3		5

Possible answer tables for this question are also given as below:

			-								
A	В	С	1	37							
1	2	4	10								
1	2	5	4								
3	2	4	<i>p</i> -								
3	2	5	A	В	С	A	В	С			
5	6	2	1	2	2	1	6	2			
7	8	1	3	2	5	3	2	5	A	В	С
7	8	3	5	6	4	5	2	4	3	2	5
9	8	1	7	8	1	7	8	1	7	8	1
9	8	3	9	8	3	9	8	3	9	8	3
	(a)			(b)			(c)			(d)	•
* 1 **				<i></i>		(0 -					

What is the resulting table of $\pi_{A,B}(R \bowtie T) \bowtie \pi_{B,C}(S \bowtie T)$?

- (1) (a)
- (2) (b)
- (3) (c)
- (4) (d)

D-8715

12

64. Consider the two class classification task that consists of the following points :

Class $C_1 : [-1, -1], [-1, 1], [1, -1]$

Class $C_2 : [1, 1]$

The decision boundary between the two classes C_1 and C_2 using single perceptron is given by :

 $(1) \quad x_1 - x_2 - 0.5 = 0$

- (2) $-x_1 + x_2 0.5 = 0$
- (3) $0.5(x_1 + x_2) 1.5 = 0$
- (4) $x_1 + x_2 0.5 = 0$
- **65.** Consider a standard additive model consisting of rules of the form of If x is A_i AND y is B_i THEN z is C_i .

Given crisp inputs $x = x_0$, $y = y_0$, the output of the model is :

- (1) $z = \sum_{i} \mu_{A_i}(x_0) \mu_{B_i}(y_0) \mu_{C_i}(z)$
- (2) $z = \sum_{i} \mu_{A_i}(x_0) \mu_{B_i}(y_0)$
- (3) $z = \operatorname{centroid} \left(\sum_{i} \mu_{A_{i}}(x_{0}) \mu_{B_{i}}(y_{0}) \mu_{C_{i}}(z) \right)$
- (4) $z = \operatorname{centroid}\left(\sum_{i} \mu_{A_{i}}(x_{0}) \mu_{B_{i}}(y_{0})\right)$
- **66.** A bell-shaped membership function is specified by three parameters (a, b, c) as follows :

(1)
$$\frac{1}{1 + \left(\frac{x-c}{a}\right)^b}$$
 (2) $\frac{1}{1 + \left(\frac{x-c}{a}\right)^{2b}}$ (3) $1 + \left(\frac{x-c}{a}\right)^b$ (4) $1 - \left(\frac{x-c}{a}\right)^{2b}$

- 67. Which of the following is/are the principle components of a memory-tube display?
 - (a) Flooding gun

- (b) Collector
- (c) Phosphorus grains
- (d) Ground

Codes:

- (1) (a) and (b)
- (2) (c) only
- (3) (d) only
- (4) All the above
- 68. Which of the following steps is/are not required for analog to digital conversion?
 - (a) Sensing
- (b) Conversion
- (c) Amplification

- (d) Conditioning
- (e) Quantization

Codes:

(1) (a) and (b)

(2) (c) and (d)

(3) (a), (b) and (e)

(4) None of the above

69. Which raster locations would be chosen by Bresenham's algorithm when scan converting a line from (1, 1) to (8, 5) ?

(3)

(1)	x	y
	1	1
	2 3 4 5 6 7	1 2 3 3 4 4 5 6
	3	3
	4	3
	5	4
	6	4
	7	5
	8	6

\boldsymbol{x}	y
1	1
2	2
3	2
4	3
5	4
6	5
7	6
8	7

x	y
1	1
2	2
3	2
4	2 3
5	3
6	4
7	4
8	5
-	-60

(4) <i>x y</i> 1 1	
1 1	
1 = 1 =	
2 2	
2 2 3 2 4 3 5 5 6 4 7 5 8 5	
4 3	
5 5	
6 4	
7 5	
8 5	

70. Consider a unit square centred at origin. The coordinates of the square are translated by a factor $\left(\frac{1}{2}, 1\right)$ and rotated by an angle of 90°. What shall be the coordinates of the new square ?

(1)
$$\left(\frac{-1}{2},0\right), \left(\frac{-1}{2},1\right), \left(\frac{-3}{2},1\right), \left(\frac{-3}{2},0\right)$$

(2)

(2)
$$\left(\frac{-1}{2}, 0\right), \left(\frac{1}{2}, 1\right), \left(\frac{3}{2}, 1\right), \left(\frac{3}{2}, 0\right)$$

(3)
$$\left(\frac{-1}{2}, 0\right), \left(\frac{1}{2}, 0\right), \left(\frac{-3}{2}, 1\right), \left(\frac{-3}{2}, 0\right)$$

(4)
$$\left(\frac{-1}{2}, 0\right), \left(\frac{1}{2}, 1\right), \left(\frac{-3}{2}, 1\right), \left(\frac{-3}{2}, 0\right)$$

71. Which of the following is/are the components of a CRT?

- (a) Electron Gun
- (b) Control Electrode
- (c) Focusing Electrode
- (d) Phosphor Coated Screen

Codes:

(1) (a) and (d)

- (2) (a), (b) and (d)
- (3) (a), (b), (c) and (d)
- (4) (a), (c) and (d)

- **72.** Which one of the following statements is **incorrect**?
 - (1) Pareto analysis is a statistical method used for analyzing causes, and is one of the primary tools for quality management.
 - (2) Reliability of a software specifies the probability of failure-free operation of that software for a given time duration.
 - (3) The reliability of a system can also be specified as the Mean Time To Failure (MTTF).
 - (4) In white-box testing, the test cases are decided from the specifications or the requirements.
- 73. Consider a language A defined over the alphabet $\Sigma = \{0, 1\}$ as $A = \{0^{\lfloor n/2 \rfloor} 1^n : n > 0\}$

The expression $\lfloor n/2 \rfloor$ means the floor of n/2, or what you get by rounding n/2 down to the nearest integer.

Which of the following is **not** an example of a string in A?

- (1) 011
- (2) 0111
- (3) 0011
- (4) 00111
- **74.** Which one of the following statements, related to the requirements phase in Software Engineering, is **incorrect**?
 - (1) "Requirement validation" is one of the activities in the requirements phase.
 - (2) "Prototyping" is one of the methods for requirement analysis.
 - (3) "Modelling-oriented approach" is one of the methods for specifying the functional specifications.
 - (4) "Function points" is one of the most commonly used size metric for requirements.
- 75. tag is an extension to HTML that can enclose any number of Javascript statements.
 - (1) <SCRIPT>
- (2) <BODY>
- (3) <HEAD>
- (4) <TITLE>

- o 0 o -

15

Space For Rough Work

D-8715 16 Paper-III