Data Scientist Technical Assessment and Presentation

What makes a \$50k+ a year income earner?

About me - David Rickheim

Agenda

- 1. Problem Statement
- 2. Exploratory Data Analysis
- 3. Data Preparation
- 4. Data Modeling
- 5. Model Assessment
- 6. Results

1: The problem

Problem statement

Can we predict who makes over \$50k annually?

How may we differentiate this group (what predicts a >\$50k earner)?

Importance

Determines qualifications for many things, such as:

- SNAP
- School lunches
- Medicaid

Census Data

- Annual Social and Economic (ASEC) Supplement
 - 0 1993 / 1994
- Hourly wage, hours worked, demographic info, occupation, education

2. Exploratory Data Analysis

2. The data - key statistics

	Training Data	Testing Data	
Inputs / features / columns	41	41	
Target variable	Income bracket (\$50k+)	Income bracket (\$50k+)	
Rows / Records	199,522	99,761	
# of \$50k+	12,382	6,186	
% of \$50k+	6.2%	6.2%	

Ages of records

Children very rarely make \$50k

- Vast majority don't have a job code or industry code
- Not to be included in analysis

Not in universe - a common code for "nulls"

Question mark ("?") a common null value for country fields

Skewness of wages

 Other income sources (capital gains, dividends) follow a similar pattern

We have two years of data

- Similarity between the data represented by years '94' and '95' are analyzed using statistical tests
 - Chi-squared & t-tests
- No significant differences
- Extra attention given to protected classes
 - Race, sex, hispanic origin, citizenship, veterans benefits

3. Data Preparation

Data Preparation Challenges

Nulls & Skewness

Drop where >50% null
Impute other nulls
Scale / transform
skewed variables

Year column

Not well explained in data dictionary

We elect to choose one year ('94') as the data seems to be very similar

Sample selection

Who do we want to predict?

We remove children <18

Dropping inputs with >50% null

Feature engineering: annual salary

- Noticeably missing from the dataset is annual salary.
- Assuming 40 hour work weeks, we will use "wage per hour" and "number of weeks worked in year" to estimate annual salary.

4. Data Modeling

Model Selection

- Three models:
 - logistic regression interpretable, relatively simple
 - o random forest interpretable, robust
 - XGBoost superior performance, handles missing data better
- Main scoring metric will be AUC (area under curve)
 - Robust when dealing with an imbalanced dataset
- Secondary scoring metric will be recall of >\$50k
 - We would like to avoid missing too many high earners

5. Model Assessment

Logistic Regression

	precision	recall	f1-score	support
0ver50k	0.19	0.11	0.14	2859
Under50k	0.93	0.96	0.94	33088
accuracy			0.89	35947
macro avg	0.56	0.53	0.54	35947
weighted avg	0.87	0.89	0.88	35947
AUC ROC Score: 0.572879900791758				

- AUC ROC: 0.57
- Model performs poorly
- 11% of >\$50k captured

Random Forest

	precision	recall	f1-score	support	
Over50k	0.40	0.15	0.22	2859	
Under50k	0.93	0.98	0.95	33088	
accuracy			0.91	35947	
macro avg	0.66	0.57	0.59	35947	
weighted avg	0.89	0.91	0.90	35947	
AUC ROC Score: 0.6956459140533509					

- AUC ROC: 0.77
- Model performance is fair
- 15% of >\$50k captured

XGBoost

	precision	recall	f1-score	support
0	0.64	0.52	0.57	2859
1	0.96	0.97	0.97	33088
accuracy			0.94	35947
macro avg	0.80	0.75	0.77	35947
weighted avg	0.93	0.94	0.94	35947
AUC ROC Score	: 0.92723895	40427831		

- AUC ROC: 0.93
- Model performance fairly well
- 52% of >\$50k captured

Optimizing XGBoost

6. Results

Most important variables

How age impacts income

- Higher plot line means more likely to make less than \$50k
- Likelihood of >\$50k
 increases as one
 approaches ~45 years old,
 then stagnates

Dividend earners are likely to make >\$50k

Likelihood of >\$50k
 increases as one
 approaches \$30k worth of stock dividends annually

Employees at larger employers less likely >\$50k

 Likelihood of >\$50k
 decreases as the size of one's employer reaches 450 employees

Weeks Worked a Year and Bachelor's Holders

Recommendations

- Enable / encourage employees to work 40 hours / week
 - Encourage full-year employment and maximized work week
 - Seasonal employers should creatively find employment for temps
- Promote higher education
 - At least at the bachelor's level, employees have a higher probability of earning >\$50k
- Personalized Development Plans (PDPs)
 - PDPs should be based on employee's current skills and their personal as well as business gaps
- Leverage predictive analytics for major employment decisions
 - o Promotions, salary changes, development / coaching opportunities
 - And hiring

Considerations for improvements

- Family structure opens many possibilities
- Feature engineering
 - Grouping highschool and middle school dropouts
 - Scaling variables differently
- More models
 - KNN nearest neighbor analysis
 - Deep Learning

Q&A