Student: Phong Vo Date: 03/02/18 Instructor: Chuck Ormsby

Course: Multi-Variable and Vector Calculus -- Assignment: Section 13.5 Homework

Calculus III Spring 2018

1. If w is a function of x, y, and z, which are all functions of t, explain how to find $\frac{dw}{dt}$.

Choose the correct answer below.

$$\bigcirc$$
 A. $\frac{dw}{dt} = \frac{dw}{dx} + \frac{dw}{dy} + \frac{dw}{dz}$

$$\bigcirc \textbf{C.} \quad \frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} \frac{\partial w}{\partial y} \frac{dy}{dt} \frac{\partial w}{\partial z} \frac{dz}{dt}$$

2. Use the chain rule to find $\frac{dz}{dt}$, where $z = x \sin y$, $x = t^2$, and $y = 5t^5$. When feasible, express your answer in terms of the independent variable.

$$\frac{dz}{dt} = 2t \sin(5t^5) + 25t^6 \cos(5t^5)$$

3. Use the chain rule to find $\frac{dw}{dt}$, where $w = \cos 8x \sin 3y$, $x = \frac{t}{2}$, and $y = t^4$. When feasible, express your answer in terms of the independent variable.

$$\frac{dw}{dt} = -4 \sin(4t) \sin(3t^4) + 12t^3 \cos(3t^4) \cos(4t)$$

(Type an expression using t as the variable.)

4. Use the chain rule to find $\frac{dV}{dt}$, where $V = \frac{x+z}{z-y}$, x = 4t, y = 3t, and z = 5t. When feasible, express your answer in terms of the independent variable.

$$\frac{dV}{dt} = 0$$

5. The volume of a right circular cylinder of radius r and height h is $V = \pi r^2 h$.

(a) Assume that r and h are functions of t. Find V'(t).

(b) Suppose that $r = e^{3t}$ and $h = e^{-3t}$. Use part (a) to find V'(t).

(c) Does the volume of the cylinder of part (b) increase or decrease as t increases?

(a) Find V'(t). Choose the correct answer below.

A. $V'(t) = \pi(r(t))^2 h'(t)$

B. $V'(t) = 2\pi r(t)h(t)r'(t)$

C. $V'(t) = 2\pi r(t)h(t)r'(t) + \pi(r(t))^2h'(t)$ **D.** $V'(t) = 2\pi r(t)h(t)h'(t) + \pi(r(t))^2r'(t)$

 $3\pi e^{3t}$ (b) V'(t) =

(c) Does the volume of the cylinder of part (b) increase or decrease as t increases? Choose the correct answer below.

A. The volume of the cylinder increases as t increases.

B. The volume of the cylinder remains the same.

C. The volume of the cylinder decreases as t increases.

6. Find the following derivatives. Express your answer in terms of the independent variables.

 z_s and z_t , where $z = e^{2x + 2y}$, x = st, and y = s + t

$$z_s = 2e^{2(st+s+t)}(t+1)$$

$$z_t = 2e^{2(st+s+t)}(s+1)$$

7. Use a tree diagram to write the Chain Rule formula for dm/du. m is a function of t, where t is a function of p and q, each of which is a function of u.

Choose the correct tree diagram below.

What is the Chain Rule formula for $\frac{dm}{du}$?

$$\bigcirc \textbf{ A. } \frac{dm}{du} = \frac{\partial m}{\partial p} \frac{dp}{du} + \frac{\partial m}{\partial t} \frac{dt}{du} + \frac{\partial m}{\partial q} \frac{dq}{du}$$

$$\bigcirc \ \, \textbf{B.} \ \, \frac{dm}{du} = \frac{\partial m}{\partial p} \frac{dp}{dt} \frac{dt}{du} + \frac{\partial m}{\partial q} \frac{dq}{dt} \frac{dt}{du}$$

$$\bigcirc \ \, \textbf{C.} \ \, \frac{dm}{du} = \frac{\partial m}{\partial p} \frac{\partial p}{\partial u} + \frac{\partial m}{\partial q} \frac{\partial q}{\partial u}$$

$$\mathbf{D}. \quad \frac{dm}{du} = \frac{dm}{dt} \frac{\partial t}{\partial p} \frac{dp}{du} + \frac{dm}{dt} \frac{\partial t}{\partial q} \frac{dq}{du}$$

Choose the correct tree diagram below.

A.

⊗B

C.

O D.

Choose the correct Chain Rule below.

D.
$$\frac{\partial y}{\partial t} = \frac{\partial y}{\partial u} \frac{du}{dt} + \frac{\partial y}{\partial v} \frac{\partial v}{\partial t} + \frac{\partial y}{\partial w} \frac{\partial w}{\partial t}$$

9. Given the equation $y \ln (x^3 + y^3 + 7) = 5$, evaluate $\frac{dy}{dx}$. Assume that the equation implicitly defines y as a differentiable function of x.

Choose the correct answer below.

A.
$$\frac{dy}{dx} = \frac{5y \ln (x^3 + y^3 + 7)}{5(x^3 + y^3 + 7) + 3y^4}$$

C.
$$\frac{dy}{dx} = -\frac{3yx^2}{(x^3 + y^3 + 7) \ln(x^3 + y^3 + 7) + 3y^3}$$

O.
$$\frac{dy}{dx} = \frac{-3x^2y^2 - 3y^4}{5 \ln (x^3 + y^3 + 7)}$$