

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN ĐIỆN TỬ - VIỄN THÔNG

BỘ MÔN ĐIỆN TỬ HÀNG KHÔNG VŨ TRỤ

Môn học:

LÝ THUYẾT MẬT MÃ

Giảng viên: TS. Hán Trọng Thanh Email: httbkhn@gmail.com

4/7/2016

Mục tiêu học phần

Cung cấp kiến thức cơ bản về mật mã đảm bảo an toàn và bảo mật thông tin:

- ✓ Các phương pháp mật mã khóa đối xứng; Phương pháp mật mã khóa công khai;
- ✓ Các hệ mật dòng và vấn đề tạo dãy giả ngẫu nhiên;
- ✓ Lược đồ chữ ký số Elgamal và chuẩn chữ ký số ECDSA;
- ✓ Độ phức tạp xử lý và độ phức tạp dữ liệu của một tấn công cụ thể vào hệ thống mật mã;
- √ Đặc trưng an toàn của phương thức mã hóa;
- ✓ Thám mã tuyến tính, thám mã vi sai và các vấn đề về xây dựng hệ
 mã bảo mật cho các ứng dụng.

Nội Dung

- 1. Chương 1. Tổng quan
- 2. Chương 2. Mật mã khóa đối xứng
- 3. Chương 3. Mật mã khóa công khai
- 4. Chương 4. Hàm băm và chữ ký số
- 5. Chương 5. Dãy giả ngẫu nhiên và hệ mật dòng
- 6. Chương 6. Kỹ thuật quản lý khóa

4/7/2016

Tài liệu tham khảo

- 1. A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, *Handbook of applied cryptography*, CRC Press 1998.
- 2. B. Schneier, Applied Cryptography. John Wiley Press 1996.
- 3. M. R. A. Huth, *Secure Communicating Systems*, Cambridge University Press 2001.
- 4. W. Stallings, *Network Security Essentials*, *Applications and Standards*, Prentice Hall. 2000.

Nhiệm vụ của Sinh viên

- 1. Chấp hành nội quy lớp học
- 2. Thực hiện đầy đủ bài tập
- 3. Nắm vững ngôn ngữ lập trình Matlab

-

Chương 2. Mật mã khóa đối xứng

- 2.1. Giới thiệu sơ lược mật mã khóa đối xứng cổ điển
- 2.2. Một số hệ mật mã khóa đối xứng cổ điển
- 2.3. Sơ lược hệ mật mã dòng và hệ mật mã khối
- 2.4. Cơ sở toán học cho hệ mật mã khóa đối xứng hiện đai.
- 2.5 Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

A symmetric-key modern block cipher encrypts an n-bit block of plaintext or decrypts an n-bit block of ciphertext. The encryption or decryption algorithm uses a k-bit key.

BACH KHOA S E T

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

A modern block cipher can be designed to act as a substitution cipher or a transposition cipher.

To be resistant to exhaustive-search attack, a modern block cipher needs to be designed as a substitution cipher.

2.5.1. Hệ mật mã khối hiện đại

Full-Size Key Substitution Block Ciphers

A full-size key substitution cipher does not transpose bits; it substitutes bits. We can model the substitution cipher as a permutation if we can decode the input and encode the output.

A substitution block cipher model as a permutation

C

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

Full-Size Key Transposition Block Ciphers

In a full-size key transposition cipher we need to have n! possible keys, so the key should have $Log_2n!$ bits.

A transposition block cipher modeled as a permutation

The set of permutation tables with 3! = 6 elements

2.5.1. Hệ mật mã khối hiện đại

Show the model and the set of permutation tables for a 3-bit block substitution cipher.

The model and the set of permutation table?

-> Using decoder before permutation and coder after permutation!

The key is also much longer, $\lceil \log_2 40,320 \rceil = 16$ bits.

2.5.1. Hệ mật mã khối hiện đại Full-Size Key Substitution Block Ciphers

A partial-key cipher is a group under the composition operation if it is a subgroup of the corresponding full-size key cipher.

A full-size key *n*-bit transposition cipher or a substitution block cipher can be modeled as a permutation, but their key sizes are different:

- \square Transposition: the key is $\lceil \log_2 n! \rceil$ bits long.
- \square Substitution: the key is $\lceil \log_2(2^n)! \rceil$ bits long.

2.5.1. Hệ mật mã khối hiện đại

Components of a Modern Block Cipher

Modern block ciphers normally are keyed substitution ciphers in which the key allows only partial mappings from the possible inputs to the possible outputs.

P-Boxes

A P-box (Permutation Box) parallels the traditional transposition cipher for characters. It transposes bits.

2.5.1. Hệ mật mã khối hiện đại

Shows all 6 possible mappings of a 3×3 P-Box?

17

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

Example of a permutation table for a straight P-box

58	50	42	34	26	18	10	02	60	52	44	36	28	20	12	04
62	54	46	38	30	22	14	06	64	56	48	40	32	24	16	08
57	49	41	33	25	17	09	01	59	51	43	35	27	19	11	03
61	53	45	37	29	21	13	05	63	55	47	39	31	23	15	07

2.5.1. Hệ mật mã khối hiện đại

Compression P-Boxes

A compression P-box is a P-box with n inputs and m outputs where m < n.

27 21 22 26 28 29 13 14 01 02 03 17 18 19 20 04 05 06 10 11 12 30 31 32

Example of a 32×24 permutation table

19

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

Expansion P-Boxes

An expansion P-box is a P-box with n inputs and m outputs where m > n.

01 09 10 11 12 01 02 03 03 04 05 06 07 08 09 12

Example of a 12×16 permutation table

2.5.1. Hệ mật mã khối hiện đại

Luu ý

A straight P-box is invertible, but compression and expansion P-boxes are not.

21

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

How to invert a permutation table represented as a one-dimensional table?

Original table 6

6 3 4 5 2 1 2. Add indices

 Swap contents and indices

 1
 2
 3
 4
 5
 6

 6
 3
 4
 5
 2
 1

6 5 2 3 4 1 1 2 3 4 5 6

6 5 2 3 4 1

5. Inverted table

2.5.1. Hệ mật mã khối hiện đại

Compression and expansion P-boxes are non-invertible

23

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

S-Box

An S-box (Substitution Box) can be thought of as a miniature substitution cipher.

Luu ý

An S-box is an $m \times n$ substitution unit, where m and n are not necessarily the same.

2.5.1. Hệ mật mã khối hiện đại

In an S-box with three inputs and two outputs, we have

$$y_1 = x_1 \oplus x_2 \oplus x_3 \qquad y_2 = x_1$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

This S-Box is linear because $a_{1,1} = a_{1,2} = a_{1,3} = a_{2,1} = 1$ and $a_{2,2} = a_{2,3} = 0$.

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

In an S-box with three inputs and two outputs, we have

$$y_1 = (x_1)^3 + x_2$$
 $y_2 = (x_1)^2 + x_1x_2 + x_3$

where multiplication and addition is in GF(2). The S-box is nonlinear because there is no linear relationship between the inputs and the outputs.

2.5.1. Hệ mật mã khối hiện đại

The following table defines the input/output relationship for an S-box of size 3×2 . The leftmost bit of the input defines the row; the two rightmost bits of the input define the column. The two output bits are values on the cross section of the selected row and column.

BACH KHOA

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

Luu ý

An S-box may or may not be invertible. In an invertible S-box, the number of input bits should be the same as the number of output bits.

2.5.1. Hệ mật mã khối hiện đại

Exclusive-Or

An important component in most block ciphers is the exclusive-or operation.

Invertibility of the exclusive-or operation

2.5.1. Hệ mật mã khối hiện đại

Addition and subtraction operations in the $GF(2^n)$ field are performed by a single operation called the exclusive-or (XOR).

The five properties of the exclusive-or operation in the GF(2n) field makes this operation a very interesting component for use in a block cipher: closure, associativity, commutativity, existence of identity, and existence of inverse.

31

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

Circular Shift

Another component found in some modern block ciphers is the circular shift operation.

2.5.1. Hệ mật mã khối hiện đại

Product Ciphers

Shannon introduced the concept of a product cipher. A product cipher is a complex cipher combining substitution, permutation, and other components discussed in previous sections.

35

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

Diffusion

The idea of diffusion is to hide the relationship between the ciphertext and the plaintext.

Luu ý

Diffusion hides the relationship between the ciphertext and the plaintext.

2.5.1. Hệ mật mã khối hiện đại

Confusion

The idea of confusion is to hide the relationship between the ciphertext and the key.

Luu ý

Confusion hides the relationship between the ciphertext and the key.

37

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

Rounds

Diffusion and confusion can be achieved using iterated product ciphers where each iteration is a combination of S-boxes, P-boxes, and other components.

2.5.1. Hệ mật mã khối hiện đại

Two Classes of Product Ciphers

Modern block ciphers are all product ciphers, but they are divided into two classes.

- 1. Feistel ciphers
- 2. Non-Feistel ciphers

2.5.1. Hệ mật mã khối hiện đại

Feistel Ciphers

Feistel designed a very intelligent and interesting cipher that has been used for decades. A Feistel cipher can have three types of components: self-invertible, invertible, and noninvertible.

41

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.1. Hệ mật mã khối hiện đại

The first thought in Feistel cipher design

Decryption

Diffusion hides the relationship between the ciphertext and the plaintext.

2.5.1. Hệ mật mã khối hiện đại

Non-Feistel Ciphers

A non-Feistel cipher uses only invertible components. A component in the encryption cipher has the corresponding component in the decryption cipher.

4

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.2. Thám mã hệ mật mã khối hiện đại

Differential Cryptanalysis

Eli Biham and Adi Shamir introduced the idea of differential cryptanalysis. This is a chosen-plaintext attack.

Assume that the cipher is made only of one exclusive-or operation. Without knowing the value of the key, Eve can easily find the relationship between plaintext differences and ciphertext differences if by plaintext difference P1 \oplus P2 and by ciphertext difference, C1 \oplus C2 => C1 \oplus C2 = P1 \oplus P2

2.5.2. Thám mã hệ mật mã khối hiện đại

Differential cryptanalysis is based on a nonuniform differential distribution table of the S-boxes in a block cipher.

Linear Cryptanalysis

Linear cryptanalysis was presented by Mitsuru Matsui in 1993. The analysis uses known plaintext attacks.

2.5.2. Thám mã hệ mật mã khối hiện đại

A simple cipher with a linear S-box

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.2. Thám mã hệ mật mã khối hiện đại

A simple cipher with a linear S-box

$$c_0 = p_0 \oplus k_0 \oplus p_1 \oplus k_1$$

$$c_1 = p_0 \oplus k_0 \oplus p_1 \oplus k_1 \oplus p_2 \oplus k_2$$

$$c_2 = p_1 \oplus k_1 \oplus p_2 \oplus k_2$$

$$k_1 = (p_1) \oplus (c_0 \oplus c_1 \oplus c_2)$$

$$k_2 = (p_2) \oplus (c_0 \oplus c_1)$$

$$k_0 = (p_0) \oplus (c_1 \oplus c_2)$$

This means that three known-plaintext attacks can find the values of k_0 , k_1 , and k_2 .

2.5.2. Thám mã hệ mật mã khối hiện đại

In some modern block ciphers, it may happen that some Sboxes are not totally nonlinear; they can be approximated, probabilistically, by some linear functions.

$$(k_0 \oplus k_1 \oplus \cdots \oplus k_x) = (p_0 \oplus p_1 \oplus \cdots \oplus p_y) \oplus (c_0 \oplus c_1 \oplus \cdots \oplus c_z)$$

where $1 \le x \le m$, $1 \le y \le n$, and $1 \le z \le n$.

51

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.3. Hệ mật mã dòng hiện đại

In a modern stream cipher, encryption and decryption are done r bits at a time. We have a plaintext bit stream $P = p_n...p_2 p_1$, a ciphertext bit stream $C = c_n...c_2 c_1$, and a key bit stream $K = k_n...k_2 k_1$, in which p_i , c_i , and k_i are r-bit words.

- Synchronous Stream Ciphers
- Nonsynchronous Stream Ciphers

2.5.3. Hệ mật mã dòng hiện đại

In a modern stream cipher, each r-bit word in the plaintext stream is enciphered using an r-bit word in the key stream to create the corresponding r-bit word in the ciphertext stream.

53

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.3. Hệ mật mã dòng hiện đại

In a synchronous stream cipher the key is independent of the plaintext or ciphertext.

2.5.3. Hệ mật mã dòng hiện đại

Vi du: Create a linear feedback shift register with 5 cells in which $b_5 = b_4 \oplus b_2 \oplus b_\theta$.

Feedback function

57

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.3. Hệ mật mã dòng hiện đại

Vi du: Create a linear feedback shift register with 4 cells in which $b_4 = b_1 \oplus b_0$. Show the value of output for 20 transitions (shifts) if the seed is $(0001)_2$.

Key stream generator

2.5.3. Hệ mật mã dòng hiện đại

States	b4	b ₃	b2	b_1	b_0	k,
Initial	1	0	0	0	1.	
1	0	-1	0	0	0	1
2	0	0	1	0	0	0
3	1	0	0	1	0	0
4:	1	1	0	0	1	0
5	0	1.	1	0	0	1
6	1	0	1	- 1	0	0
7	0	1.	0	1	1	0
8	1	0	1	0	1	-1
9	- 1	1	0	1	0	1
10	1	1	1	0	1	0

11	1	1	1	1	0	1
12	0	1	1	1	1	0
13	0	0	1	1	1	1
14	0	0	0	1	1	1
15	1	0	0	0	1	1
16	0	1	0	0	0	1
17	0	0	1	0	0	0
18	1	0	0	1	0	0
19	1	1	0	0	1	0
20	1	1	1	0	0	1

100010011010111 **100010011010111** 100010011010111 **100010011010111** ...

The key stream generated from a LFSR is a pseudorandom sequence in which the the sequence is repeated after N bits.

The maximum period of an LFSR is to $2^m - 1$.

59

2.5. Sơ lược hệ mật mã đối xứng hiện đại

2.5.3. Hệ mật mã dòng hiện đại

In a nonsynchronous stream cipher, the key depends on either the plaintext or ciphertext.