Diogo Aleixo

Fire detection using CNN

Sumário

- Introdução
 - Qual é o problema que o projeto aborda;
 - Qual é a motivação para fazer o projeto;
- Estado da arte
 - Que sistemas existem semelhantes ao que foi desenvolvido?
 - Quais as diferenças em relação ao sistema desenvolvido?
- Sistema desenvolvido
 - Qual é a arquitectura do sistema desenvolvido?
 - Que tecnologias foram usadas?
 - Como funciona o sistema?
- Módulo de reconhecimento de incendios
 - Como funciona?
 - Como foi/está a ser implemento?
 - · Como foi validado?

Introdução – Problema e Motivação

- Fogos!!!
- Validar a resolução do problema com tecnologia low cost;
- Aprendizagem:
 - Visão computacional;
 - Machine learning:
 - SVM's, ANN's, k-neighbors, CNN's entre outros.

Estado da arte – Sistemas semelhantes

Sistema académicos

Firewatch;

ZeroFires;

Estado da arte - Diferenças

- Hardware low cost;
- Energicamente sustentável;
- Técnologia disruptiva e capaz de evoluir a precisão com o tempo

Modulo deteção de fogo – Arquitetura

Sistema desenvolvido - Tecnologias

Caffe

Módulo de reconhecimento de incendios - Funcionamento

O que é machine learning?

Módulo de reconhecimento de incêndios - CNN

Caffe theano

Demonstração

Download de imagens e comparação de histogramas; Geração de images (data augmentation); Normalização de imagens Fase de treino Fase de validação Fase de teste Validação com imagens Validação com um video aleatório do youtube

Conclusão

Aprendizagem;

• O maior trabalho está na preparação do dataset;

• Machine learning é o futuro!!!

