Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-3 CANCELED

4. (currently amended) A compound comprising the structure of formula I: wherein:

- Ring A is optionally substituted with one to five substituents selected from
 - a) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy; or
 - b) a halogen or trihaloalkyl;
- Ring B comprises at least one structure denoted by R_a and R_b which represent an orthoquinone moiety (-(C=O)-(C=O)-), ortho-catechol (-(C-OH)-(C-OH)-) or ortho-catechol prodrug moiety (-(C-O-Prodrug moiety)-(C-O-Prodrug moiety)-); and the remaining carbons of Ring B are optionally substituted with one to five substituents selected from
 - a) a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - b) a halogen or trihaloalkyl;
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy; or
 - d) an OH, or a C₁, C₂, C₃, C₄ or C₅ primary, secondary, or tertiary alcohol;
 - e) nitro; and
- Bridge X is an alkene (- CR_9 = CR_{10} -), wherein R_9 and R_{10} are alternatively H, alkyl, amino, amido, cyano, hydroxyl, or carboxyl;

provided that said compound is not combretastatin A1 or a salt, ester, or prodrug thereof.

Claims 5 - 9 CANCELED

10. (currently amended)

A compound comprising a quinone, quinone prodrug, or a pharmaceutically acceptable salt form thereof having one of the following general structures:

$$R_3$$
 R_4
 R_6
 R_7
 R_8
 R_8
 R_8

lla: or

HO
$$R_8$$
 R_7 R_5 R_4

IIb: wherein:

a. R₁, R₅, R₆, and R₇ are H;

- R₄₇ R₂, R₃, R₄, R₆₇ R₆₇ R₂ and R₈ are the same or different and are selected from hydrogen and:
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trihaloalkyl;
 - iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy; or
 - iv) a C1, C2, C3, C4 or C5 primary, secondary, or tertiary alcohol;

R₈ is selected from:

 a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;

- ii) a halogen or trihaloalkyl;
- iii) a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
- iv) a C1, C2, C3, C4 or C5 primary, secondary, or tertiary alcohol; or
- v) nitro:

and the remaining R4, R2, R3, R4, R5, R6, R7, or R8 are H; and

 X is an alkene (-CR₉=CR₁₀-), wherein R₉ and R₁₀ are alternatively H, alkyl, amino, amido, cyano, hydroxyl, or carboxyl

provided that said compound is not combretastatin A1 or a salt, ester, or prodrug thereof.

- 11. (canceled)
- 12. (previously presented) The compound of claim 10, wherein X is an ethylene group (-CH=CH-), and Rings A and B are in a cis (Z) isomeric configuration.
- 13. (original) The compound of claim 12, wherein R2, R3 and R4 are methoxy.
- 14. (canceled)
- 15. (currently amended) The compound of claim 44 $\underline{10}$, wherein R₈ is $\overline{\text{OH-or}}$ -O-CH₂-CH=CH₂.
- 16. (original) The compound of claim 4, wherein said catechol is a biooxidative agent which is oxidatively activated *in vivo* to form a quinone capable of participating in a redox cycling reaction to form one or more Reactive Oxygen Species ("ROS").

Claims 17-33 CANCELED

34. (currently amended) A composition of the following formula (V):

$$R_8$$
 R_7
 R_6
 R_4
 R_7
 R_6
 R_4
 R_7
 R_8
 R_8
 R_8
 R_9
 R_9

wherein

- a. Z is an ethylene (-CH=CH-) bridge in the cis (Z) isomeric configuration;
- b. R₁ and R₂ are OH or a prodrug form thereof;
- c. R₃ is
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trihaloalkvl;
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy;
 - iv) an OH, or a C1, C2, C3, C4 or C5 primary, secondary, or tertiary alcohol; or
 - v) oxo, lower alkanoyl, thio, sulfonyl, sulfonamide, nitro, nitrosyl, cyano, carboxy, carbamyl, aryl, or heterocycle;
- d. R₄, R₅, and R₉ are hydrogen.
- g. R₃, R₄, R₆, R₇, and R₈, and R₉ are the same or different and selected from <u>hydrogen</u> and
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight-chain lower alkoxy, cycloalkoxy, heterocycloalkoxy, aryloxy, or lower alkanoyloxy;
 - ii) a halogen or trihaloalkyl;
 - a C₁, C₂, C₃, C₄ or C₅ branched or straight chain lower alkyl, allyl, allyloxy, vinyl, or vinyloxy; or
 - iv) a C1, C2, C3, C4 or C5 primary, secondary, or tertiary alcohol;
 - v) nitro; and

the remaining R₃, R₄, R₆, R₆, R₇, R₈ and R₉ are hydrogen,

provided that said compound is not combretastatin A1 or prodrug thereof.

- 35. (currently amended) The composition of claim 34, wherein at least-three of R_6 , R_7 , and R_6 are not hydrogen.
- 36. (original) The composition of claim 35, wherein R₆, R₇ and R₈ are the same.
- 37. (original) The composition of claim 36, wherein R₆, R₇ and R₈ are methoxy.
- 38. (canceled)
- 39. (currently amended) The composition of claim 38 37, wherein R₃ is -CH₃, -CH₂CH₃, -CH₂CH₃, -CH₂-C
- (currently amended) The composition of claim 39 36, wherein R6, R7, and R8 are F.
- 41. (canceled)
- 42. (currently amended) The composition of claim 44 $\underline{40}$, wherein R₃ is $-CH_3$, $-CH_2CH_3$, $-CCH_2CH_3$, $-CCH_2CH_3$, $-CCH_2CH_3$, $-CCH_2CH_3$, $-CCH_3$,

A composition selected from the group consisting of

Claims 43-56 CANCELED

57. (currently amended)

- 6 [(Z) 2 (3,4,5 Trimethoxyphenyl) vinyl] 1,2 dihydroxybenzene,
- 3-Ethyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene,
- 3-Methyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene,
- 4-Bromo-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene,
- 4-Phenyl-6-[(Z)-2-(3.4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene,
- 3-Allyl-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-1,2-dihydroxybenzene,
- 4-Fluoro-6-[(Z)-2-(3.4.5-trimethoxyphenyl)vinyl]-1.2-dihydroxybenzene.
- 2,3,4-Trihydroxy-6-[(Z)-2(3,4,5-trimethoxyphenyl)vinyl]-benzene,
- 2,3-Dihydroxy-4-ethoxy-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-benzene,
- 2,3-Dihydroxy-4-allyloxy-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-benzene,
- 4-Nitro-6-[(Z)-2-(3,4,5-trimethoxyphenyl)vinyl]-2,3-dihydroxybenzene,

- 2',3'dihydroxy -3,5 dichloro4,4'-dimethoxy-(Z)-stilbene,
- 2',3' dihydroxy-4'-methoxy-3,4,5-trifluoro-(Z)-stilbene,
- 2,3-Dihydroxy-4-methoxy-[(Z)-2-(3,4,5-trimethoxyphenyl) Beta-lactam]-benzene,
- 2',3' diphosphate-3,4,5-trimethoxy-(Z)-stilbene, tetrasodium salt;
- 3',4' diphosphate-3,4,5-trimethoxy-(Z)-stilbene, tetrasodium salt; and combinations thereof.

58.(previously presented) The compound of claim 4, wherein X is an ethylene group (-CH=CH-), and Rings A and B are in a cis (Z) isomeric configuration