Alumna: María Uriburu Gray Mentor: Joan Gasull Jolis

Más que raras

Análisis de las Enfermedades Raras en Europa y su impacto regional en España

Agenda

iQué son las enfermedades raras?

Enfermedad Rara

Aquella que, con peligro de muerte o invalidez crónica, tiene una prevalencia menor de 5 casos por cada 10.000 habitantes.

Fenotipos

Características observables de una enfermedad en un individuo, como signos, **síntomas** y respuestas al tratamiento.

La **incidencia** mide el número de **nuevos casos** de una enfermedad en una población y tiempo determinado, mientras que la **prevalencia** mide el total de personas que **tienen** una enfermedad.

Estudio de la complejidad de las ER. ¿Existe relación entre el número de genes implicados y el número de fenotipos que presentan?

Estudio regional de la carga de ER en España.

¿Existe alguna relación entre la concentración de diagnósticos de ER y la cantidad de población?

¿Existe una mayor predisposición a padecer estas enfermedades según el género? En caso afirmativo, ¿cuál es más afectado: hombres o mujeres?

Objetivos del estudio

Identificar patrones que contribuyan a la investigación y gestión sanitaria de las Enfermedades Raras

Colección de Datos

API PubMed

Acceso al registro de publicaciones científicas que contienen "rare disease" en el título y año de publicación.

Informes ReeR

Informes del Registro Estatal de Enfermedades Raras con información de los casos notificados por cada comunidad autónoma.

API Orphadata

Acceso al registro completo de Enfermedades Raras. Contiene información de la epidemiología, historia clínica, prevalencia, genes y fenotipos.

Datos INE

Población total por Comunidades Autónomas en 2018.

API PubMed

Base de datos gratuita de la Biblioteca Nacional de Medicina de EE.UU.

- Librerías Requests y ElementTree para acceder y extraer datos de la API (formato XML).
- Dataset limpio: 2617 filas y 5 columnas.
- Interés en el N.º de publicaciones por año.

API Orphadata

Orphanet es una base de datos online de acceso libre dedicada a las enfermedades raras y los medicamentos huérfanos.
Orphadata es una plataforma que proporciona datos a la comunidad científica.

- Requests para acceder a la API (formato JSON).
- Reestructuración de tablas.
- Limpieza de datos.
- Tablas utilizadas: ENFERMEDADES, GENES y FENOTIPOS.

API Orphadata

Orphanet es una base de datos online de acceso libre dedicada a las enfermedades raras y los medicamentos huérfanos.
Orphadata es una plataforma que proporciona datos a la comunidad científica.

- Requests para acceder a la API (formato JSON).
- Reestructuración de tablas.
- Limpieza de datos.
- Tablas utilizadas: ENFERMEDADES, GENES y FENOTIPOS.

ReeR

El Registro Estatal de Enfermedades
Raras es un sistema de información
del Ministerio de Sanidad, a través
del Instituto de Salud Carlos III,
registra todos los casos de
enfermedades raras en España.
Red de registros autonómicos (RAER)
transmiten los datos al ReeR central

INE

Instituto Nacional de Estadística, es el organismo encargado de producir las **estadísticas oficiales** de España.

- PDFPlumber es una librería de Python para extraer datos y tablas de archivos PDF.
- Información limitada. Faltan años, Comunidades
 Autónomas y faltan enfermedades.
- Tablas utilizadas:
 - Casos notificados 2010 2018 por CC.AA.
 - Población total 2018 por CC.AA. (INE)
 - Casos según género 2020 2022.
 - Enfermedades según género 2022.

Resultados - PubMed -

Extracción del número de publicaciones científicas con "rare disease" en el título

- ☐ La primera publicación de enfermedades raras fue en el **año 1906**.
- ☐ Aumento significativo del número de investigaciones publicadas en la década del 2010.

Resultados - Orphadata -

9673 registros de Enfermedades Raras distribuidas en 35 clases según Orphadata

- ☐ La mayoría de las enfermedades tienen un origen genético.
- □ Las enfermedades **pueden catalogarse en más de una clase**, la mayoría pertenecen a 2 o 3 clases.

Resultados - Orphadata -

Análisis de la dependencia del número de genes y fenotipos asociados a una ER

- ☐ Correlación de Spearman = 0.0392 → No se observa.
- ☐ Genes por enfermedad:

Discapacidad intelectual no sindrómica (ORPHAcode: 528084) está asociada a **108 genes** distintos.

☐ Enfermedades por gen:

Genes LMNA y TP53 implicados en 21 enfermedades cada uno.

Resultados Arnhadata

Análisis de la

Complejidad genética

175

¿Sabías que...?

los a una ER

erva.

HAcode:

¡Es posible consultar información genética directamente desde Python!

Existe una librería llamada BioPython que permite acceder a bases de datos biomédicas como el NCBI (National Center for Biotechnology Information) y obtener información de genes, proteínas y secuencias genómicas directamente desde tu código.

- 1 from Bio import Entrez
- 2 Entrez.email = "A.N.Other@example.com"

∆ Gene Symbol	△ Full Name	△ Chromosome	△ Summary	△ NCBI Link
LMNA	lamin A/C	1	The protein encoded by this gene is part of the nuclear lan	r https://www.ncbi.nlm.nih.gov/gene/
TP53	tumor protein p53	17	This gene encodes a tumor suppressor protein containing	t https://www.ncbi.nlm.nih.gov/gene/

80

Cantidad de genes por enfermedad

Resultados

- ReeR -

Incidencia de las ER en España (2010 – 2018)

- ☐ Aumento de casos notificados en Galicia, Aragón y Madrid.
- ☐ Las comunidades con mayor tasa de notificación de ER por habitante son Aragón y Galicia, pero las más pobladas son Cataluña y Madrid.
- ☐ No hay relación directa entre cantidad de diagnósticos y población.

Resultados

- ReeR -

Incidencia de las ER según género (2020 – 2022)

- ☐ En 2022 los diagnósticos en mujeres se incrementaron (50%).
- ☐ Tres de las cinco ER más notificadas presentan una incidencia similar.

Conclusiones

☐ Se confirma el **crecimiento** sostenido de la **investigación** en el ámbito de las **Enfermedades Raras**.

- ☐ En España, las comunidades autónomas con mayor población no concentran necesariamente más diagnósticos.
 - ☐ Posibles **diferencias** en la **organización sanitaria** a nivel autonómico. Desigualdad estructural.
- □ El **análisis por género** reveló un **aumento** significativo de diagnósticos en **mujeres**, hasta el 50 % en 2022.
 - ☐ Posibles mejoras en el acceso al diagnóstico o una reducción de sesgos clínicos.

Limitaciones del estudio realizado

- Fuentes de datos incompletas:
 - API de Orphadata aún en fase de implementación.
 - Falta de homogeneidad en los criterios de notificación al Registro Estatal de enfermedades Raras entre las diferentes comunidades.
- Acceso limitado a los datos.

Trabajo futuro...

- ☐ Clasificación de enfermedades por sistema afectado (Aprendizaje Supervisado).
 - Predecir a qué sistema del cuerpo afecta una ER a partir del estudio de características (prevalencia, edad de inicio, fenotipos, etc.).
- ☐ Analizar las **interacciones** entre un fármaco huérfano y la proteína de un gen.
 - Por ejemplo: interacción CBD y proteínas de los genes causantes de las EED (SYNGAP1, SLC6A1, etc.).
 - ☐ Estudiar rutas metabólicas e interferencias con proteínas similares.
 - ☐ Estudiar fármacos químicamente similares.

