1

1

ISTATISTIK ve OLASILIK FORMÜLLERİ

Bölüm 2.İstatistiksel Datanın işlenmesi;

- **1.** $K=\sqrt{N}$ veya K=1+3.3*log(N) N: Datanın eleman sayısı K: sınıf sayısı
- **2.** Ortalama değer, $x_{ORT} = \left[\sum_{i=1}^{n} x_i\right] / n$
- **3.** Frekans dağılımından ortalamanın eldesi, $x_{ort} = [\Sigma(x_i f_i)]/n = [\Sigma(x_i f_i)]/[\Sigma f_i]$
- **4.** Ağırlıklı ortalama, $x_{w,ort} = [\Sigma(x_i^* w_i)]/[\Sigma w_i]$
- **5.** Geometrik ortalama, $G=(x_1^*x_2^*x_3^*.....^*x_N)^{(1/N)}$, $\log G=(\log x_1 + \log x_2 + \log x_3 + + \log x_N)/N$
- **6.** Ağırlıklı geometrik ortalama, $G=[(x_1^{f_1})^*(x_2^{f_2})^*....^*(x_N^{f_N})]^*(1/N)$ $log G=[f_1^*log(x_1)+f_2^*log(x_2)+f_3^*log(x_3)+....+f_N^*log(x_N)]/N$ $(N=\Sigma f_1)$
- **7.** Harmonik (ters)ortalama, $H=1/\{(1/N)^*[\Sigma(1/x_i)]\}=N/[\Sigma(1/x_i)]=1/H=(1/N)^*[\Sigma(1/x_i)], N:x_1, x_N$ pozitif sayılar
- **8.** Ağırlıklı harmonik ortalama, $(1/H)=(1/N)^*[(f_1/x_1)+(f_2/x_2)+....+(f_N/x_N)]=(1/N)^*[\Sigma(f/x)_i]K$, $N=f_1+f_2+....+f_N=\Sigma f_i$
- **9.** Kare-karekök ortalaması (KKO), KKO= $[\Sigma(x_i)^2/N]^{1/2}$,
- **10.** Ağırlıklı Kare-karekök ortalaması KKO= $\{[\Sigma(x_i^*f_i)^2]/[\Sigma(f_i)]\}^{1/2}$
- 11. Medyan (orta) değerin frekans dağılımından eldesi, X_{med}=L+(j/f)*c
 L: medyan değerin içinde bulunduğu aralığın alt sınır değeri, f: bu aralığın frekansı, c: sınıf aralığı,
 j: data sayısının yarı değeri ile medyan'ın içinde bulunduğu aralığın frekans değeri arasındaki fark
- **12.** Varyans, s^2 , $s^2 = \left[\sum_{i=1}^n (x_i x_{ort})^2\right] / n$, $\sum (x x_{ORT})^2$: Kareler Toplamı (Sum of Squares, SS)
- 13. Frekans değerlerinden standart sapma'nin hesaplanması;

Varyans: $s^2 = [(\Sigma f_1^* x_i^2)/(\Sigma f_1) - x_{ort}^2]$ Standart sapma: $s = \sqrt{s^2}$

- **14.** Tchebychev eşitsizliği, Pr(μ-k*σ<x<μ+k*σ)≥[1-(1/k²)]
- **15.** Değişim katsayısı (variation coefficient), C_V=s/x_{ORT},
- **16.** Çarpıklık (skewness) katsayısı, $C_S = \left\{ \left[\sum_{i=1}^n (xi xort)^3 \right] / n \right\} / s^3$
- 17. Pearson çarpıklık katsayisi, $(SK)_P=3*(x_{ORT}-x_{MEDYAN})/(standart sapma)$
- **18.** Üst Eşik $UE=H_3+1.5^*\Delta H$; Alt Eşik $AE=H_1-1.5^*\Delta H$; H_1 ile H_3 : gözlem değerleri
- 19. Bowley çarpıklık katsayısı, Bowley Çarpıklığı=[H₃+H₁-2*MEDYAN]/ABS[H₃-H₁]

Bölüm 3. Olasılık Kuramı (Probability Theory)

20. Permütasyon; P(n,r)=n!/(n-r)!

Tekrarlı Permütasyon; $P[n, (n_1, n_2, ..., n_k)] = n!/(n_1! * n_2! * ... * n_k!)$

- **21.** Kombinasyon; C(n,r)=n!/[r!*(n-r)!]
- 22. Pr(x)=s/n=Gerçekleşenler/Mümkün olanlar
- **23.** $f_i = s/n$
- **24.** $Pr(x=x_1) = \lim_{n\to\infty} (s/n)$
- 25. Ayrık (independent, adjoint, disjoint, mutually exlucive event);

$$Pr[A \cup B] = Pr[A] + Pr[B]$$
 $Pr[A \text{ veya B}] = Pr[A] + Pr[B]$

Toplama kuralı; Pr[A veya B veya C veya]=Pr[A]+Pr[B]+Pr[C]+Pr

26. Basit rastgele olayların lineer biçimde birleşmesi, X_{ORT.(a*X+b*Y)}=a*X_{ORT}+b*Y_{ORT}

27.
$$[\sigma_{(a^*X+b^*Y)}]^2 = a^{2*}[\sigma_X]^2 + b^{2*}[\sigma_Y]^2$$

Bölüm 4. Kesikli Olasılık Dağılım Fonksiyonları; Binominal (Bernouilli), Mültinominal, Hipergeometrik, Poisson, Geometrik ve Pascal Dağılımları;

28. Herhangi bir f(x) fonksiyonunun olasılık fonksiyonu olması için

(1)
$$0 \le f(x_i) \le 1$$
 (2) $\Sigma f(x_i) = 1$ (i=1, 2, 3,..., ∞)

Bernouilli formülü; $Pr(k)=C(n,k)*p^{k*}(1-p)^{n-k}= \{n!/[k!*(n-k)!]\}*p^{k*}(1-p)^{n-k}$

- **29.** Binominal açılım: $(a+b)^n = C(n,0)^*a^n + C(n,1)^*a^{n-1}*b + C(n,2)^*a^{n-2}*b^2 + \dots + C(n,n-1)^*a^*b^{n-1} + C(n,n)^*p^n$
- **30.** Bir olasılık dağılımının parametreleri; $\mu = \sum_{i=1}^{k} x_i$. $Pr(x_i) = \sigma^2 = \sum_{i=1}^{k} \Sigma (x_i \mu)^2$. $Pr(x_i)$
- 31. Tekdüze, yeknesak, dikdötgen (uniform, rectangular) dağılım,

$$x_{ORT}=(x_A+x_B)/2$$
 $\sigma=(x_A-x_B)/\sqrt{12}$ $Pr(x_1< x< x_2)=(x_2-x_1)/(x_A-x_B)$

- **36.** Bernouilli dağılımının parametreleri $\mu=E(x)=\sum_{x=0}^n \sum x_i^* p_i$ $\mu=E(x)=n^* p$ $\sigma^2=Var(x)=\sum_{i=0}^n \sum (x_i-\mu)^{2*} Pr(x_i)=n^* p^* q$, Standart sapma; $s=\sqrt{\sigma^2}$
- **32.** Binominal dağılımın çarpıklık moment katsayısı ; $\alpha_3 = (q-p)/\sqrt{n^*p^*q} = (q-p)/\sigma$
- **33.** Kurtosis (sivrilik) moment katsayısı; $\alpha_4 = 3 + (1 6^*p^*q)/(n^*p^*q) = 3 + (1 6^*p^*q)/\sigma^2$
- 34. Binominal dağılımın hesaplanması için rekürsif formül:
- **35.** $Pr(x+1)=Pr(x)^*[(n-x)/(x+1)]^*[p/(1-p)]$ x=0,1,2,...,n
- **36.** Multinominal dağılım:[Pr(1)+Pr(2)+.....+Pr(k)]=1.0 Pr=[n!/(x_1 !* x_2 !* x_3 !*....* x_k !)]*[Pr(1)*1*Pr(2)*2*.....*Pr(k)*k]
- 41. Hipergeometrik dağılım:n denemede x tane başarı olasılığı Pr(x)=C(a,x)*C(b,n-x)/C(a+b,n), x=0, 1, 2, , n
- **42.** Hipergeometrik dağılım parametreleri: $\mu=a^*n/(a+b)$ $\sigma^2=n^*a^*b^*(a+b-n)/[(a+b)^2*(a+b-1)]$
- **43.** Hipergeometrik dağılımın genelleştirilmesi; $Pr(x_1, x_2, x_3, ...) = [C(a_1, x_1)^* C(a_2, x_2) C(a_3, x_3)^*...]/C(N,n)$
- **44.** Poison dağılımı; n denemede x başarı görülmesi olasılığı, $Pr(X=x)=\lambda^{X*}e^{-\lambda}/x!$ x=0,1,2,....
- **45.** Poisson dağılımının parametreleri: $\mu=\lambda$, $\sigma^2=\lambda$, $s=\sigma=\sqrt{\lambda}$, Çarpıklık(skewness) moment katsayısı $\alpha_3=1/\sqrt{\lambda}$, Sivrilik(kurtosis) moment katsayısı $\alpha_4=3+(1/\lambda)$
- **46.** Bağımsız Poisson değişkenlerinin toplamının dağılımı; X_1 parametresi λ_1 olan bir Poisson dağılımı ve X_2 de parametresi λ_2 olan bir başka Poisson dağılımı ise ve bunlar birbirinden bağımsız ise, $X=(X_1+X_2)$, parametresi $\lambda=(\lambda_1+\lambda_2)$ olan bir Poisson dağılımı gösterir.
- **47.** Geometrik dağılım; $Pr(x)=q^{x-1}.p$ $x=1, 2, 3,, \infty$ $\mu=1/p$, varyansı: $\sigma^2=(1-p)/p^2$, $\sigma=\sqrt{\sigma^2}=[\sqrt{(1-p)}]/p$
- **48.** Pascal dağılımı; Pr(k başarı/n deneme)=[C(n-1, k-1)*p^{k-1}*q^{n-k}]*p=C(n-1,k-1)*p^{k*}q^{n-k} ,x=0,1,2,.. μ =k/p σ =sqrt[k*(1-p)/(p²)]

Bölüm 5. Sürekli Olasılık Dağılım Fonksiyonları, Üstel, Normal(Gaussian) ve Lognormal Dağılımlar;

49. Üstel (eksponansiyel) dağılım; $f(x)=\lambda.\exp(-\lambda^*x)$ $(x>0,\lambda>0)$

üstel olasılık dağılım fonksiyonu, $Pr(0 \le x \le x_1) = 1 - exp(-\lambda^* x_1)$

 x_1 ile x_2 değerleri arasındaki olasılık, $Pr(x_1 \le x \le x_2) = \exp(-\lambda^* x_1) - \exp(-\lambda^* x_2)$

$$x_2 \rightarrow \infty$$
 için $Pr(x_1 \le x \le \infty) = exp(-\lambda^* x_1)$

aritmetik ortalaması ve standart sapması birbirine eşit, $\mu=\sigma=1/\lambda$, varyans değeri ise $\sigma^2=1/\lambda^2$

Üstel dağılımın medyan değeri, m=ln 2/λ=0.6931/λ

50. Normal (GAUSSIAN) Dağılım;

$$f(x)=Y=[1/(\sigma^*\sqrt{2^*\pi})]^* \exp\{-(1/2)^*[(x-\mu)/\sigma]^2\} = (0.3989/\sigma)^* \exp\{-(1/2)^*[(x-\mu)/\sigma]^2\}$$
 Standart değişken ; $z=(x-\mu)/\sigma$ $Y(z)^*\sigma=[\exp(-z^2/2)]/[\sqrt{2^*\pi}]=0.3989^*\exp(-z^2/2)$

- **51.** iki toplumun lineer kombinasyonu ile oluşan $Z=(a^*X\pm b^*Y)$ toplumunun ortalaması ve standart sapması; $\mu_{7}=a^*\mu_{X}\pm b^*\mu_{Y}$ ve $\sigma_{7}=\operatorname{sqrt}[a^{2*}(\sigma_{X})^2+b^{2*}(\sigma_{X})^2]$
- **52.** Hata toplumunun elemanları $\varepsilon_{i}=x_{i}-x_{ORT}$, ise

Ortalamaları: $\varepsilon_{ORT} = [\Sigma(x_i - x_{ORT})]/n = [\Sigma x_i/n] - [\Sigma x_{ORT}/n] = x_{ORT} - x_{ORT} = 0$

Standart sapma: σ_{ϵ} =sqrt{[$\Sigma(\epsilon_i-\epsilon_{ORT})^2/n$]}=sqrt{[$\Sigma(x_i-x_{ORT}-0)^2/n$]}=sqrt[$\Sigma(x_i-x_{ORT}-0)^2/n$]

53. GEARY'S test: $U = [\sqrt{\pi/2}]^* \{ [\Sigma \mid x_i - x_{ORT} \mid]/n \} / \{ \sqrt{[\Sigma (x_i - x_{ORT})^2]/n} \}$

Dağılım normal ise U=~1.0 değilse U değeri 1 den farklı, $z_U=(U-1.0)/(0.2661/\sqrt{n})$

- **54.** Binominal dağılıma normal dağılım yaklaşımı: $z=(x-n^*p)/(n^*p^*q)^{1/2}$
- **55.** Lognormal dağılım: X rastgele değişkenine Y=ln X logaritmik dönüşümü uygulandığında, dönüştürülmüş Y değişkeninin dağılımı normal ise, X'in dağılımı

x'in olasılık yoğunluk fonksiyonu

$$f(x) = [1/(x^*\sigma_Y^*\sqrt{2^*\pi}]^* \exp\{-(1/2)^*[(\ln x - \mu_Y)/\sigma_Y]^2\}$$
 x>0

 μ_Y ve σ_Y : Y dönüştürülmüş değişkenin ortalaması ve standart sapması,

x değişkeninin μ_x ortalama ve σ_x standart sapması ile ilişkisi; (x sadece pozitif değerler)

Ortalama değer: $\mu_Y = ln^{\frac{1}{2}} \mu_X / [(\sigma_X^2/\mu_X^2) + 1]^{\frac{1}{2}}$

Varyans $(\sigma_Y)^2 = ln(\sigma_X^2/\mu_X^2 + 1)$

Standart sapma $\sigma_Y = \sqrt{(Varyans)}$

Bu dağılım pozitif çarpık bir dağılım olup, çarpıklık katsayısı σ_Y 'nin artması ile artar.

$$C_s = \left\{ \left[\exp(\sigma_y^2) - 1 \right]^{3/2} + 3^* \left[\exp(\sigma_y^2) - 1 \right]^{1/2} \right\}$$

6.Bölüm Temel Örnekleme Teorisi (Basic Sampling Theory);

56. Tabakalı (Katmanlı) örnekleme: $(n_1/N_1)=(n_2/N_2)=\dots=(n_K/N_K)=(\Sigma n)_K$

Σn_K: katmanlardan alınacak rastgele örnek sayılarının toplam değeri

57. Örnek ortalamaları dağılımı; $\mu_{XOBT} = \mu_T$ $(\sigma_{XOBT})^2 = (\sigma_T)^2 / N$

Ortalamanın standart hatası: $\sigma_{XORT} = (\sigma_T/\sqrt{N})$

 $\mu_{XORT} = \mu_T$ $\sigma_{XORT} = (\sigma_T/\sqrt{N})^* \sqrt{[(N_T-N)/(N_T-1)]}$ (sonly topium düzeltme çarpanı)

- **58.** Toplam eleman sayısı N_T olan bir toplumdan, geri verilerek örnekleme yapıldığında, herbiri N elemanlı, $(N_T)^N$ sayıda tekrarlamayan örnek üretilebilir.
- **59.** Toplum Varyansı= $[N/(N-1)]^*$ Örnek Ortalamalarının Varyansı ; $(\sigma_T)^2 = [N/(N-1)]^*(\sigma_{XORT})^2$
- **60.** Toplam üye sayısı N_T olan bir toplumdan, **geri verilmeksizin** örnekleme yapıldığında, herbiri N üyeli, $C(N_T,N)=N_T!/[(N_T-N)!*N!]$ sayıda tekrarlamayan örnek üretilebilir
- **61.** Toplum Varyansı= $[(N_T-1)/(N_T-N)]^*[N/(N-1)]^*$ Örnek Ortalamalarının Varyansı,

$$(\sigma_T)^2 = [(N_T-1)/(N_T-N)]^*[N/(N-1)]^*(\sigma_{XORT})^2$$

- **62.** $\lim_{n\to nT} (x_{ORT}) = \mu$, $\lim_{n\to nT} (\sigma_{ORT}) = 0$
- **63.** Ana toplumdan alınan örneklerin $(\sigma_{XORT})^2$ varyanslarının μ aritmetik ortalaması, örneklerin eleman sayısı yeterli büyüklükte olmak koşuluyla, ana toplumun $(\sigma_T)^2$ varyansına eşittir. $\mu_{\tilde{O}RN.VARY.} = (\sigma_T)^2$
- **64.** . Binominal toplumdan örnekleme dağılımı; $\mu_T = p$ $\sigma_T = \sqrt{[p^*q/N]} = \sqrt{[p^*(1-p)/N]}$
- **65.** İki toplumun farkların ve toplamların örnekleme dağılımı; $\mu_Z = \mu_{X-Y} = \mu_{X} \mu_{Y}$ $\mu_Z = \mu_{X+Y} = \mu_{X} + \mu_{Y}$ $\sigma_Z = \sigma_{X-Y} = \sqrt{[(\sigma_X)^2 + (\sigma_Y)^2]}$ $\sigma_Z = \sigma_{X+Y} = \sqrt{[(\sigma_X)^2 + (\sigma_Y)^2]}$
- **66.** Geri verilerek örnekleme yapılmış ise, sonlu toplumlar için, $\mu_{X_1-X_2}=\mu_{X_1}-\mu_{X_2}=\mu_1-\mu_2$

$$\sigma_{X_1-X_2} = \sqrt{[(\sigma_{X_1})^2 + (\sigma_{X_2})^2]} = \sqrt{[(\sigma_1)^2/N_1 + (\sigma_2)^2/N_2]}$$

67. Binominal dağılmış toplumların farkları; $\mu_{P1-P2} = \mu_{P1} - \mu_{P2} = p_1 - p_2$

$$\sigma_{P1-P2} = \sqrt{(\sigma_{P1})^2 + (\sigma_{P2})^2} = \sqrt{[p_1 * q_1/N1 + p_2 * q_2/N_2]}$$

7.Bölüm İstatistiksel Tahmin (Öngörme, Kestirim) Teorisi;

68. Ortalamalar için güvenlik araliği tahminleri;

$$\Delta \mu = X_{ORT} \pm z_C^* (\sigma_T / \sqrt{N}), \quad \Delta \mu = X_{ORT} \pm z_C^* (\sigma_T / \sqrt{N})^* \sqrt{[(N_T - N)/(N_T - 1)]}$$

- $d=|X-\mu|$ aralığını sağlamak üzere, en az kaç elemanlı bir örnek almamız gerektiği $N_{\text{MiN}}=[z_{\text{C}}^*\sigma_{\text{T}}/(|X-\mu|)]^2=(z_{\text{C}}^*\sigma_{\text{T}}/d)^2$ formülü ile hesaplanır.
- **69.** Binominal toplum için güvenlik aralığı: Eğer S istatistiği, başarı oranı (başarı olasılığı) p olan bir binominal toplumdan N tane çekişte elde edilen başarı oranı ise, p için güvenlik limitleri p±z_C*σ_P olarak belirlidir. P:N büyüklüğündeki örnek içinde başarıların oranı
 - a) Örnekleme, sonlu toplumdan geri vermek suretiyle veya sonsuz bir toplumdan örnekleme yapılmakta ise $\Delta p = p \pm z_C^* [\sqrt{p^*q/N}] = p \pm z_C^* \sqrt{[p^*(1-p)/N]}$
 - **b)** Örnekleme, N_T büyüklüğündeki **sonlu bir toplumdan** yapılmakta ise;

$$\Delta p = p \pm z_C^* \sqrt{[p^*q/N]^* \sqrt{[(N_T-N)/(N_T-1)]}} = p \pm z_C^* \sqrt{[p^*(1-p)/N]^* [\sqrt{(N_T-N)/(N_T-1)}]}$$

70. Minimum örnek sayısının belirlenmesi (binominal toplum); $N_{MiN}=(z_C)^{2*}p^*(1-p)/(d)^2$

Maksimum p için (p=0.50) p*(1-p)=0.50*0.50=0.25=1/4 olursa $N_{MiN}=[z_C/(2*d)]^2$ halini alır.

71. Farklar ve toplamlar için güvenlik aralığı; İki ayrı toplumdan alınmış örneklerin ortalama değerleri;

$$\begin{split} &\Delta\mu_{(\text{S1-S2})} = X_{1\text{ORT}} - X_{2\text{ORT}} \pm z_\text{C} * \sigma_{(\text{S1-S2})} = X_{1\text{ORT}} - X_{2\text{ORT}} \pm z_\text{C} * \sqrt{[(\sigma_{\text{S1}})^2 + (\sigma_{\text{S2}})^2]} \\ &\Delta\mu_{(\text{S1+S2})} = X_{1\text{ORT}} + X_{2\text{ORT}} \pm z_\text{C} * \sigma_{(\text{S1+S2})} = X_{1\text{ORT}} + X_{2\text{ORT}} \pm z_\text{C} * \sqrt{[(\sigma_{\text{S1}})^2 + (\sigma_{\text{S2}})^2]} \end{split}$$

72. a) "İki Normal Dağılı Toplum"; İki toplumdan alınan örneklerin eleman sayıları birbirinden farklı ve N₁ ve N₂ ise, ortalamalarının farkı için güvenlik aralığı, toplumlar sonsuz olduğu durumda veya geri verilerek örnekleme yapıldığında,

$$\Delta\mu_{(S1-S2)} = X_{1ORT} - X_{2ORT} \pm z_C^* \sigma_{(S1-S2)} = X_{1ORT} - X_{2ORT} \pm z_C^* \sqrt{[(\sigma_{S1})^2/N_1 + (\sigma_{S2})^2/N_2]}$$

b) "Binominal dağılmış toplum olasılığının farkı" için güvenlik aralığı, toplumlar sonsuz olduğunda,

$$\Delta P = P_1 - P_2 \pm z_C^* \sigma_{P_1 - P_2} = P_1 - P_2 \pm z_C^* \sqrt{\{[p_1^*(1-p_1)]/N_1 + [p_2^*(1-p_2)]/N_2\}}$$

P₁ ve P₂, örneklerin olasılıkları, N₁ ve N₂, toplumdan alınan örneklerin büyüklükleri, p₁ ve p₂'de iki toplumun olasılıkları

- **73.** Standart sapma için güvenlik aralığı (büyük örnekler) ; $s=\sigma_T\pm z_C^*\sigma_T/\sqrt{[2^*N]}=\sigma_T^*[1\pm z_C/\sqrt{(2^*N)}]$
- **74.** Muhtemel hata (probable error); $\mu \pm 0.6745 * \sigma_S = \mu \pm 0.6745 * \sigma_{XORT} / \sqrt{N}$

Bölüm 8. Statistiksel Karar Verme Teorisi;

75. Sıfır hipotezi (null hypotheses), H₀: Gözlenen farklılıkların, basit bir şekilde, sadece aynı toplumdan yapılan örneklemedeki dalgalanmalardan ileri geldiği, şans eseri olduğu ve istatistiksel bir anlam taşımadığı hipotezlerdir.

Alternatif (almaşık, karşı) hipotez, H_A veya H₁ : Sıfır hipotez reddedildiğinde (kabul edilmediğinde) kabul edilecek hipotezdir ve daima sıfır hipotez ile birlikte formüle edilmelidir.

1. Normal dağılımda ortalamalar:

$$z=(X_{ORT}-\mu)/(\sigma_{XORT})=(X_{ORT}-\mu)/(\sigma_{T}/\sqrt{N})$$

2. Binominal dağılımda olasılık: $z=(P-p)/[\sqrt{p^*(1-p)/N}]$

X örneğin gerçek başarı sayısı olmak üzere, P=X/N olduğunda,

$$z=(X-N^*p)/[\sqrt{N^*p^*(1-p)}]$$
 , ($\mu=N^*p \text{ ve } \sigma=\sqrt{N^*p^*(1-p)}$)

- **76. Normal dağılmış bir toplum** için; α ve β tip hataların verilen değerlerde olması için rastgele alınması gereken en az örnek sayısı,
 - a) hipotez tek taraflı ise, $n_{MIN} = [\sigma^*(z_{\alpha} + z_{\beta})/(\mu_A \mu_0)]^2$
 - b) cift taraflı ise, $n_{MIN} = [\sigma^*(z_{\alpha/2} + z_{\beta})/(\mu_A \mu_0)]^2$
- **77. Binominal dağılmış bir toplum** için; $N_{MiN} = \{z_{\alpha}^{\star}[p_{H}^{\star}(1-p_{H})]^{1/2} + z_{\beta}^{\star}[p_{T}^{\star}(1-p_{T})]^{1/2}\}/(p_{T}-p_{H})^{2}$
- **78.** Örnek farkları ile ilgili anlamlılık testleri ;

Normal dağılmış toplumlarda, ortalama farklarının örnekleme dağılımı;

$$\mu_{1\text{-}2} = 0 \qquad \qquad \sigma_{1\text{-}2} = \{ \sqrt{[(\sigma_{T,1})^2/N_1 + (\sigma_{T,2})^2/N_2]} \}$$

Standart değer
$$z=[(X_{1ORT}-X_{2ORT})-\mu_{1-2}]/\sigma_{1-2}$$

Binominal dağılım farkları; $\sigma_{1-2} = {\sqrt{p^*q^*[(1/N_1) + (1/N_2)]}}$ $\mu_{1-2}=0$

$$p=(N_1*P_1+N_2*P_2)/(N_1+N_2)$$
 (ağırlıklı ortalama değer), q=1-p

Standart değişken $z=(p_1-p_2)/(\sigma_{P_1-P_2})$

Bölüm 9. Küçük Örnekler Teorisi "Student's" T Ve "Chi (Ki) -Kare" Dağılımları

79. "Student's" t dağılımı;
$$t_i = \{[(X_{ORT})_i - \mu_T]/s_i\}^* \sqrt{N} = [(X_{ORT})_i - \mu_T]/[s_i/(\sqrt{N})]$$

$$Y = Y_0 / \{ [1 + t^2/(N-1)]^{N-2} \} = Y_0 / \{ [1 + (t^2/\nu)]^{(\nu+1)/2} \}$$

- **80.** Küçük örnekler için güvenlik aralığı: t için % 95 güvenlik aralığı; $-t_{0.975,\nu} < \{[(X_{ORT}-\mu_T)/s]^*\sqrt{(N)}\} < t_{0.975,\nu}$
- % 95 güvenle μ toplum ortalaması; $[X_{ORT}-t_{0.975,v}*s/\sqrt(N)] < \mu_T < [X_{ORT}+t_{0.975,v}*s/\sqrt(N)]$

Toplumun standart sapma aralığı : $[s-t^*s/\sqrt{(2^*N)}] \le \sigma_T \le [s+t^*s/\sqrt{(2^*N)}]$ yada $s^{*}[1-t/\sqrt{(2^{*}N)}] \leq \sigma_{T} \leq s[1+t/\sqrt{(2^{*}N)}]$

Toplum ortalaması için güvenlik sınırları : $\mu \pm \Delta \mu = X_{ORT} \pm t_{C,v} * s/\sqrt{(N)}$

81. Hipotezlerin test edilmesi ve anlamlılık; μ ortalama değerine sahip bir normal topluma ilişkin H₀ hipotezini test etmek için, t sayısı veya t istatistiğinden yararlanılır. Ortalamanın standart hatası:

SE Mean=
$$s/\sqrt{N}$$
 $t=[(X_{ORT}-\mu_T)/s]^*\sqrt{(N)}$

82. İki toplum ortalamaların farkı için t dağılımı;

$$t = [(X_{1ORT} - X_{2ORT}) - (\mu_{T1} - \mu_{T2}) / \{s_K^* \sqrt{[(1/N_1) + (1/N_2)]}\}$$

 $standart\ sapma\ için\ ortak\ tahmin\ edici,\ s_{K}=\sqrt{\{[N_{1}{}^{*}(s_{1})^{2}+N_{2}{}^{*}(s_{2})^{2}]/[N_{1}+N_{2}-2]\}},\ serb.\ derecesi, v=N_{1}+N_{2}-2\}$ Standart sapmaları eşit olmayan ($\sigma_{T_1} = \sigma_{T_2}$) iki normal dağılmış toplum için

$$t' = [(X_{1 \text{ORT}} - X_{2 \text{ORT}}) - (\mu_{T1} - \mu_{T2}] / \{ \sqrt{[({s_1}^2/N_1) + ({s_2}^2/N_2)]} \} \\ v = (\alpha_1 + \alpha_2)^2 / \{ [\alpha_1^2/(N_1 - 1) + [\alpha_2^2/(N_2 - 1)] \} \\ \alpha_i = (s_i)^2/N_i +$$

83. İkili data (data çifti, bağımlı örnekler) için ortalamaların farkı, d_i=X₁-X₂=(X) _{ÖNCE}-(X)_{SONRA}

$$d_{ORT} = \sum d_i / N \qquad \qquad s = \sqrt{\left[\sum (d_i - d_{ORT})^2 / (N-1)\right]} = \sqrt{\left[\sum d_i^2 - N^* d_{ORT}^2\right] / [(N-1)]} \qquad \qquad t = d_{ORT} / [s / \sqrt{(N)}] + (N-1) / [s / \sqrt{(N-1)}] + (N-1)$$

84. CHİ-KARE dağılımı; $\chi^2 = [(X_1 - X_{ORT})^2 + (X_2 - X_{ORT})^2 + + (X_N - X_{ORT})^2]/\sigma^2 = [\Sigma(X_1 - X_{ORT})^2]/\sigma^2$

Pay
$$[\Sigma(X_i-X_{ORT})^2]=N^*s^2$$
 ise toplam büyüklük, $\chi^2 = N^*s^2/\sigma^2$
 $Y=Y_0^*(\chi^2)^{1/2^*(v-2)*}\exp(-\chi^2/2)=Y_0^*(\chi)^{v-2*}\exp(-\chi^2/2)$

Aritmetik ortalama:
$$E(\chi^2)=v$$
, Varyans $(\sigma_{x2})^2=2^*v$

Standart sapma $\sigma_{x2} = \sqrt{(2^*v)}$

Örnek standart sapmasından toplum standart sapması değer aralığının hesaplanması;

% 95 güvenle
$$\chi^2$$
'nin kritik değer aralığı, $(\chi_{0.025,v})^2 < N^*s^2/\sigma^2 < (\chi_{0.975,v})^2$ ve σ değer aralığı, $s^*[\sqrt{(N)/\chi_{0.975,v}}] < \sigma < s^*[\sqrt{(N)/\chi_{0.025,v}}]$

 $\chi^2 = [(G_1 - T_1)^2 / T_1] + [(G_2 - T_2)^2 / T_2] + \dots + [(G_N - T_N)^2 / T_N] = \sum_{i=1}^{k} [(G_i - T_i)^2 / T_i]$ 85. CHİ-KARE testleri;

G_i : gözlenen değerler ve T_i : olasılık kurallarına göre hesaplanmış umulan değerler

 $\Sigma G_i = \Sigma T_i = N$, toplam frekans sayısı olduğundan $\chi^2 = [\Sigma (G_i^2/T_i)] - N$ ve serbestlik derecesi, v = k-1

86. (r*k) olasılık tabloları; Gözlenen ve umulan frekanslar arasındaki uyumu yargılamak için istatistik,

 $\chi^2 = \sum_{i=1}^k [(G_i - T_i)^2 / T_i]$ bu toplam (r*k) sayıda terim içerir ve serbestlik derecesi, $v=(r-1)^*(k-1)$ dir.

(r*k) olasılık tabloları: [Teorik (umulan) frekans]_{i,j}=[Sıra toplamı]_i*[Kolon toplamı]_j/[Total toplam]

87. F dağılım fonksiyonu: İki örneklerin dağılım farkları: $(X_{1ort} - X_{2ort})$, varyanslarının farkları $(S_1^2 - S_2^2)$, ve toplum N_1 ve N_2 , normal dağılımlı toplumdan alınan örneklerin büyüklükleri, ${\sigma_1}^2$ and ${\sigma_2}^2$ varyansları ise, $v_1 = N_1$ - 1 ve $v_2 = N_2$ - 1, C; 1 eğrisi altında kalan v_1 ve v_2 ye bağlı sabit sayı; Y dağılımı:

$$\hat{S}_{1}^{2} = \frac{N_{1}S_{1}^{2}}{N_{1} - 1} \qquad \hat{S}_{2}^{2} = \frac{N_{2}S_{2}^{2}}{N_{2} - 1} \qquad F = \frac{\hat{S}_{1}^{2}/\sigma_{1}^{2}}{\hat{S}_{2}^{2}/\sigma_{2}^{2}} = \frac{N_{1}S_{1}^{2}/(N_{1} - 1)\sigma_{1}^{2}}{N_{2}S_{2}^{2}/(N_{2} - 1)\sigma_{2}^{2}} \qquad Y = \frac{CF^{(\nu_{1}/2) - 1}}{(\nu_{1}F + \nu_{2})^{(\nu_{1} + \nu_{2})/2}}$$