Week 6; Measure Zero and Integration Math 2240, Spring '24 Problem. 1.

- From the definition, show $\mathbb{R}^{n-1} \times \{0\}$ has measure zero.
- From the definition, show that if D is a cube in \mathbb{R}^n , then any face of D has measure zero.
- Show that if $A \subseteq \mathbb{R}^n$ is compact, and A has measure zero in \mathbb{R}^n , then given $\varepsilon > 0$ there exists a *finite* collection of cubes of total volume less than ε covering A.
- Let $f:[a,b] \to \mathbb{R}$ be continuous. From the definition, show that the graph of f has measure zero in \mathbb{R}^2 .

Problem. 2. Transform the iterated integral $\int_0^1 \int_y^{y^{1/3}} \sin(x^2) dx dy$ into an integral over a subset of the plane.

- 1. Sketch this subset.
- 2. Compute the integral

Problem. 3. Let Q be a rectangle in \mathbb{R}^n , and $f:Q\to\mathbb{R}$. Assume f is integrable.

- Show that if $f(x) \ge 0$ for all $x \in Q$, then $\int_Q f \ge 0$
- Show that if f(x) > 0 for all $x \in Q$, then $\int_Q f > 0$

Problem. 4. We say a non-empty subset $A \subset \mathbb{R}^n$ is *discrete* if, for any $x \in A$, there exists an $\varepsilon > 0$ such that $B(x, \varepsilon) \cap A = \{x\}$. Prove or give a counterexample:

- 1. A discrete set has volume zero
- 2. A discrete set has measure zero
- 3. The closure of a discrete set has volume zero
- 4. The closure of a discrete set has measure zero

Problem. 5. Let $f \in C((0,1))$ (i.e., a continuous function with domain (0,1)). Suppose f has the property that, for any $g \in C_c((0,1))$,

$$\int_{\mathbb{R}} fg = 0$$

where $C_c((0,1)) = \{g \in C((0,1)) : \operatorname{support}(g) \subset (0,1)\}$. (Alternatively $\operatorname{support}(g) \subseteq [\varepsilon, 1-\varepsilon]$ for some $\varepsilon > 0$). Does it follow that f(x) = 0 for all $x \in (0,1)$? What if f is "only" integrable rather than continuous?

(extras)

Problem. 7. Does there exist an open set $A \subseteq (0,1)$ such that ∂A isn't measure zero?

Problem. 6. Does there exist a dense, open subset of [0,1]?

Problem. 7. We'll restrict our attention to C([0,1]), the (uniformly) continuous functions from [0,1] to \mathbb{R} . Define

$$||f||_1 = \int_0^1 |f(x)| dx$$

- Show that $\|\cdot\|_1$ defines a norm on C([0,1]) (remember to check $\|f\|_1 = 0$ iff f = 0!)
- How does $||f||_1$ compare to $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$? (hard) Do they induce the same topology on C([0,1])?