

Statistical Natural Language Processing

Lecture 8: Part of Speech Tagging

Dr. MomtaziAmirkabir University of Technology

1 Part of Speech Tagging

2 Sequential Modeling

3 Evaluation

1 Part of Speech Tagging

2 Sequential Modeling

3 Evaluation

- 8 Parts of speech are traditionally used to summarize the linguistic knowledge
 - Noun, Verb, Preposition, Adverb, Article, Interjection, Pronoun, Conjunction
- The modified list is currently used
 - Noun, Verb, Auxiliary, Preposition, Adjective, Adverb, Number, Determiner, Interjection, Pronoun, Conjunction, Particle
- Known as:
 - Parts of speech
 - Lexical categories
 - Word classes
 - Morphological classes
 - Lexical tags

POS Examples

5

Noun book/books, sugar, Germany, Sony

Verb eat, wrote

Auxiliary can, should, have Adjective new, newer, newest

Adverb well, urgently
Numbers 872, two, first
Determiner the, some

Determiner the, some
Conjunction and, or
Pronoun he, my
Preposition to, in

Particle off, up Interjection Ow, Eh

Open vs. Closed Classes

Closed (limited number of words, do not grow usually)

```
□ Determiners: the, some, a, an, ...
```

```
□ Pronouns: she, he, I, ...
```

- □ Prepositions: to, in, on, under, over, by, ...
- Auxiliaries: can, should, have, had, ...
- Conjunctions: and, or
- Particles: off, up
- Interjections: Ow, Eh
- Open (unlimited number of words)
 - □ Nouns
 - Verbs
 - Adjectives
 - Adverbs

6

Applications

7

- Speech Synthesis
- Parsing
- Machine Translation
- Information Extraction

Speech Synthesis

How to pronounce "lead"?

■ Machine Translation

"I like ..." ⇒

Applications

Parsing

Momtazi | SNLP

10

POS Tagset

11

- There are so many parts of speech tagsets we can draw
- Choosing a standard tagset is essential
- Tag types
 - Coarse-grained
 - noun
 - verb
 - adjective
 - ...
 - Fine-grained
 - noun-proper-singular, noun-proper-plural, noun-common-mass, ...
 - verb-past, verb-present-3rd, verb-base, ...
 - adjective-simple, adjective-comparative, ...
 - ...

Penn TreeBank

A large annotated corpus of English tagset: 45 tags

Penn TreeBank Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	or "
POS	possessive ending	's	,,	right quote	, or ,,
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	. ! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

Ambiguity

13

- Definition
 - □ The process of assigning a part of speech to each word in a text
- Challenge
 - Words often have more than one POS

On my back

The back door

Pay the money back

Promised to back the bill

Ambiguity

14

- Definition
 - $\hfill\Box$ The process of assigning a part of speech to each word in a text
- Challenge
 - Words often have more than one POS

On my back_[NN]

The back_[JJ] door

Pay the money back_[RB]

Promised to back_[VB] the bill

Distribution of Ambiguities

		45-tag	g Treebank Brown
Unambiguous	(1 tag)	38,857	
Ambiguous (2–7 tags)		8844	
Details:	2 tags	6,731	
	3 tags	1621	
	4 tags	357	
	5 tags	90	
	6 tags	32	
	7 tags	6	(well, set, round,
			open, fit, down)
	8 tags	4	('s, half, back, a)
	9 tags	3	(that, more, in)

Distribution of Ambiguities

■ The frequency of ambiguous words are relatively high

- □ 11.5% of word types
- 40% of word tokens

- Using a set of labeled data to train a model
- Using the trained model to predict the POS tag of the unseen words

Plays well with others

Plays NNS/VBZ

well UH/JJ/NN/RB

with IN others NNS

 $Plays_{[VBZ]} well_{[RB]} with_{[IN]} others_{[NNS]}$

- Baseline model
 - Tagging unambiguous words with the correct label
 - □ Tagging ambiguous words with their most frequent label
 - □ Tagging unknown words as a noun

Already performs around 90%

Outline

20

1 Part of Speech Tagging

2 Sequential Modeling

3 Evaluation

- Similar to a normal classification task
 - Feature Selection
 - Algorithm

Features

Word the: the \rightarrow DT

Prefixes unbelievable: un- \rightarrow JJ

Suffixes slowly: -ly \rightarrow RB

Lowercased word $Importantly: importantly \rightarrow RB$

Capitalization Stefan: [CAP] → NNP

Word shapes 35-year: $d-x \rightarrow JJ$

Model

Maximum Entropy P(t|w)

Data	Performance
Overall	93.7
Unknown	82.6

More Features?

 $They_{[PRP]}\ left_{[VBD]}\ as_{[\mathbf{IN}]}\ soon_{[RB]}\ as_{[\mathbf{IN}]}\ he_{[PRP]}\ arrivied_{[VBD]}$

- Better Algorithm
 - Using Sequence Modeling

24

- Many of the NLP techniques should deal with data represented as sequence of items
 - Characters, Words, Phrases, Lines, ...

警察枪杀了那个逃 BIBIBBBBI

 $\textit{I}_{[PRP]} \; \textit{saw}_{[VBP]} \; \textit{the}_{[DT]} \; \textit{man}_{[NN]} \; \textit{on}_{[IN]} \; \textit{the}_{[DT]} \; \textit{roof}_{[NN]}.$

- Two types of information
 - Local
 - Contextual

- Making a decision based on the
 - Current Observation
 - Word (W₀)
 - Prefix
 - Suffix
 - Lowercased word
 - Capitalization
 - Word shape
 - Surrounding observations
 - W₊₁
 - W₋₁
 - Previous decisions
 - T₋₁
 - T₋₂

Learning Model

 $T_{n+1} \rightarrow ? \longrightarrow$

27

Training

- Greedy inference
 - Starting from the beginning of the sequence
 - $\hfill \square$ Assigning a label to each item using the classifier in that position
 - Using previous decisions as well as the observed data
- Beam inference
 - □ Keeping the top *k* labels in each position
 - Extending each sequence in each local way
 - \Box Finding the best k labels for the next position

Hidden Markov Model (HMM)

- Finding the best sequence of tags $(t_1...t_n)$ that corresponds to the sequence of observations $(w_1...w_n)$
- Probabilistic View
 - Considering all possible sequences of tags
 - □ Choosing the tag sequence from this universe of sequences, which is most probable given the observation sequence

$$\hat{t_1^n} = \operatorname{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

$$\hat{t_1^n} = \operatorname{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$P(t_1^n|w_1^n) = \frac{P(w_1^n|t_1^n) \cdot P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \operatorname{argmax}_{t_1^n} P(w_1^n | t_1^n) \cdot P(t_1^n)$$

Using Markov Assumption

$$\hat{t_1^n} = \operatorname{argmax}_{t_1^n} P(w_1^n | t_1^n) \cdot P(t_1^n)$$

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_1^n = \operatorname{argmax}_{t_1^n} \prod_{i=1}^n P(w_i|t_i) \cdot P(t_i|t_{i-1})$$

- The tag transition probabilities: $P(t_i|t_{i-1})$
 - Finding the likelihood of a tag to proceed by another tag
 - Similar to the normal bigram model

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

33

- The word likelihood probabilities: $P(w_i|t_i)$
 - □ Finding the likelihood of a word to appear given a tag

$$P(w_i|t_i) = \frac{C(t_i,w_i)}{C(t_i)}$$

- Zero probability problem
 - Solution: similar to language modelling, use the smoothing method for both probabilities

Two Probabilities

 $I_{[PRP]}$ $saw_{[VBP]}$ $the_{[DT]}$ $man_{[NN?]}$ $on_{[]}$ $the_{[]}$ $roof_{[]}$.

$$P([NN]|[DT]) = \frac{C([DT], [NN])}{C([DT])}$$

$$P(man|[NN]) = \frac{C([NN], man)}{C([NN])}$$

 $Secretariat_{[NNP]} is_{[VBZ]} expected_{[VBN]} to_{[TO]} race_{[VB]} tomorrow_{[NR]}.$

 $\textit{People}_{[\textit{NNS}]} \; \textit{inquire}_{[\textit{VB}]} \; \textit{the}_{[\textit{DT}]} \; \textit{reason}_{[\textit{NN}]} \; \textit{for}_{[\textit{IN}]} \; \textit{the}_{[\textit{DT}]} \; \textit{race}_{[\textit{NN}]}.$

 $Secretariat_{[NNP]} is_{[VBZ]} expected_{[VBN]} to_{[TO]} race_{[VB]} tomorrow_{[NR]}.$

$Secretariat_{[NNP]} is_{[VBZ]} expected_{[VBN]} to_{[TO]} race_{[VB]} tomorrow_{[NR]}.$

$$P(VB|TO) = 0.83$$

 $P(race|VB) = 0.00012$
 $P(NR|VB) = 0.0027$

$$P(VB|TO)P(NR|VB)P(race|VB) = 0.00000027$$

$Secretariat_{[NNP]} is_{[VBZ]} expected_{[VBN]} to_{[TO]} race_{[VB]} tomorrow_{[NR]}.$

$$P(NN|TO) = 0.00047$$

 $P(race|NN) = 0.00057$
 $P(NR|NN) = 0.0012$

P(NN|TO)P(NR|NN)P(race|NN) = 0.00000000032

Performance

40

- Model
 - □ Maximum Entropy P(t|w)

Data	Performance
Overall	93.7
Unknown	82.6

HMM

Data	Performance
Overall	96.2
Unknown	86.0

■ Upper bound (human agreement): ~98%

- A weighted finite-state automaton adds probabilities to the arcs
 - □ The probabilities leaving any arc must sum to one
- An HMM is an extension of a Markov chain in which the input symbols are not the same as the states
- We do not know which state we are in
 - The output symbols are words
 - The hidden states are POS tags

Transition probabilities

Word likelihood probabilities

The Viterbi Algorithm

- Viterbi inference
 - Memorizing the model using dynamic programming
 - Considering the small window of previous decisions

- Creating an array
 - Columns corresponding to inputs
 - Rows corresponding to possible states
- Sweeping through the array in one pass filling the columns left to right using the transition probabilities and observation probabilities
- Storing the max probability path to each cell (not all paths) using dynamic programming

The Viterbi Algorithm

46

Basic idea behind the algorithm: the recursive definition for finding the maximum probability

The Viterbi Algorithm

47

v₁(4)=.041 x 0=0 NN $(\overline{0})$ то то (TO) $v_2(2) = max(0,0,0,.0055) \times .0093 = .000051$ $r_{1}(2)=.019 \times 0 = 0$ v1(2) x P(VBIVB) (va) (vs) (VB 0 × .0038 = 0 PP PP want to race 02

Momtazi | SNLP

Hidden Markov Model (HMM)

- Proc and Cons
 - HMM taggers are very simple to train
 - Just need to compile counts from the training corpus
 - Perform relatively well
 - Main difficulty is modelling P(word|tag) specially for complex words

Outline

49

1 Part of Speech Tagging

2 Sequential Modeling

3 Evaluation

- Comparing the output of a tagger with a human-labelled gold standard
- Accuracy:

$$\label{eq:accuracy} \textit{Accuracy} = \frac{\# \text{currectly tagged words}}{\# \text{total word token}}$$

Accuracy:

$$Accuracy = \frac{tp}{N}$$

$$Accuracy = \frac{\sum_{c}^{C} tp_{c}}{N}$$

- The accuracy score doesn't show everything
- It is useful to know what is misclassified as what
- Solution: providing a confusion matrix
 - A matrix (# tags x #tags): the rows correspond to the correct tags and the columns correspond to the tagger output
 - \Box *Cell*(*i*, *j*) gives the count of the number of times tag *i* was classified as tag *j*
 - The leading diagonal elements correspond to correct classifications
 - Off diagonal elements correspond to misclassifications
- A good approach for error analysis

Further Reading

- Speech and Language Processing
 - □ Chapter 5: POS Tagging
 - □ Chapter 6: MaxEnt & HMM