

. (514)	2. (321)	3. (2)	4. (4)	5. (3)	6. (4)	7. (40)	8. (9)	
(150) thong			12. (2) thongo	///13. (3) hongo	// 14. (3) 0000	//. 15. (3) ongo	/// 16. (1) ongo	
7. (4)	18. (50)	19. (495)	20. (3)	21. (2)	22. (27560)	23. (7)	24. (3)	
5. (4)	, í		` '	` ′	30. (825)	` '		
mathong	26. (2)	27. (2) mathongo	28. (2)	29. (3) mothongo	///. i mathongo			
. (514)								
We know th	at total number of th	ree-digit number will	be 900, athongo					
Now let $n(x)$	4) be number of thre	e-digit number which	are divisible by 2, i.e	ε,				
-	$02, \dots, 998$ }							
n(A) = 4		mathongo						
1 1		umber which are divis	ible by 3, i.e, $B = \{1$.02, 105, , 999}				
n(B) = 300		13 is/ mathongo						
	996} i.e, 150	. O ISS						
-	-	17 are $\{112, 126, \dots, 9\}$	994} i.e., 64 number	s.				
		17 is {105, 126, 98'						
Numbers di	visible by $2, 3 \& 7$ is	$\{126, 168, \dots, 966\}$ i	.e, 21 numbers.					
Required nu								
=450 + 15	0 - 64 - 43 + 21 =	514						
Hence, 514	three-digit number a	re there which are divi	isible by 2 or 3 but 1	not divisible by 7.				
. (321)								
we nave,								
	$11, \ldots, 359$							
	1, 15, 399							
	fference is $d_2 = 4$							
	fference is $d_3 = 5$							
	LCM of common di	ifference we get,						
		mathongo						
	n terms are 47, 107, 1							
	sum will be $47+107$							
(2) athong								
Given the ra	atio of the sum of the	e first five terms to the	sum of the first nine	terms is 5 : 17,				
So, $\frac{S_5}{S} = \frac{5}{12}$	$\Rightarrow \frac{\frac{5}{2}(2a+4d)}{a} = \frac{5}{15}$							
	2							
`	4d) = 9(2a + 8d) 8d = 18a + 72d							
$\Rightarrow d = 4a$	o ///. mathongo							
	a+14d=57a							
Also given	$110 < \mathrm{a}_{15} < 120$							
$\Rightarrow 110 < 5$	$7\mathrm{a} < 120$							
$\Rightarrow a=2$.								
So, $S_{10} = \frac{1}{2}$	$\frac{0}{2}(2 imes2+9 imes8)=3$	380 mathongo						
(4)								
		ant term from end & b						
		$_{16} = 114_{\text{mathongo}}$						
$\Rightarrow 3(a_1 + a_2)$	$a_{16})=114\Rightarrow a_1+a_1$							
Then,								
$a_1 + a_6 + a_1$	a_1+a_{16} mathons							
$= 2(a_1 + a_2)$) _ 76							

Answer	Keys and Solutions				JEE Main Crash Course
	athongo ///. mathongo				
/// Al	$=a_k+b_k$ and $a_1=b_1=4$				
b_2	$=4r_1$ and $a_3=4r_1^2$ $=4r_2$ and $b_3=4r_2^2$				
c_2	$=a_2+b_2=5$				
\Rightarrow	$r_1+r_2\equiv rac{1}{4}$				
_	$=a_3+b_3=rac{13}{4} \ r_1^2+r_2^2=rac{13}{16}$				
//. ↑	$ (r_1 + r_2)^2 - 2r_1r_2 = \frac{13}{16} $ $ \frac{25}{16} - 2r_1r_2 = \frac{13}{16} $ $ 2r_1r_2 = \frac{12}{16} $				
/. ⇒	$r_1r_2=rac{3}{8}$ $8r_1\Big(rac{5}{4}-r_1\Big)3$ mathongo $10r_1-8r_1^2=3$				
⇒ m ⇒	$8r_1^2 - 10r_1 + 3 = 0 \ r_1 = rac{10\pm\sqrt{100-96}}{16}$				
/ ⇒ No					
″. ≅($egin{aligned} &\sum_{\mathrm{k}=1}^{\infty} \mathrm{c_k} - (12a_6 + 8b_4) \ &c_1 + c_2 + c_3 + \ldots) + igg[12 imes igg\{4 imes igg] \end{aligned}$	(- / / (-)	수 것님		
// F 1	$a_1 + a_2 + a_3 + \dots) + (b_1 + b_2 + \frac{4}{1-r_1} + \frac{4}{1-r_2} - 15$ nothongo 24 - 15 = 9	L \ /	(/)		
	(50) wen that $\frac{1}{x}$, $\frac{1}{y}$, $\frac{1}{z}$ are in AP and a given, $\frac{2}{y} = \frac{1}{x} + \frac{1}{y} + \dots$ (i)	$z,\sqrt{2}y,z$ are in GP.			
Al Al	so, $2y^2 = xz$ (ii) so given that $xy + yz + zx = \frac{3}{2}$	$\frac{3}{2}$ mathongo			
/ Fr	$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{3}{\sqrt{2}} \dots (iii)$ om (i) and (iii) we get $\frac{3}{y} = \frac{3}{\sqrt{2}}$				
No No	$= \sqrt{2} \dots \text{(iv)}$ sw from (ii) $xz = 4 \dots \text{(v)}$ sw using (ii), (iv) and (v)				
// Не	$x+z=4\sqrt{2}$ nce $3\Big(x+y+z\Big)^2=3\Big(\sqrt{2}+150$	$4\sqrt{2}\Big)_{\text{mathongo}}^2$			
Th	erefore, this is the required answathongo mathongo				

iswer keys and Solutions									J	EE Maili Crasii	Cour
0. (151) ongo /// mathongo /// Given,											
Two A.P's as											
3,7,11,15, // mathongo ///											
First term (a_1) = 3											
Common difference $(d_1)=4$											
And, $(a_1) = 4$											
Alla,											
$1, 6, 11, 16, \ldots,$											
First term $(a_2) = 1$											
Common difference $(d_2)=5$	C .1		0.1	ъ.	1 100//		T CD ((+ 5)	20			
Now, common difference of the series	of the common	terms	of the given A	1.P'S 1	s $a = LCM(a_1)$	$(,d_2)$:	= LCM(4, 5)=	= 20			
Now, series of common term is											
11, 31, 51, 71,											
So, 8 th common term appearing in the											
$a_8 = 11 + (8 - 1)d$											
$\Rightarrow a_8 = 11 + 7 \times 20 = 151$											
. (2223)											
Given, ongo /// mathongo ///											
$3, 6, 9, \cdots$ upto 78 terms											
$\Rightarrow t_{78} = 3 + 77 \times 3 = 234$											
5, 9, 13, · · · upto 59 terms ///											
$\Rightarrow t_{59} = 5 + 58 \times 4 = 237$											
Common difference of common terms	$= LCM\{3,4\}$	= 12									
First common term is 9 and last common	on term is 225										
So series will be $9,21,33,\cdots,225 \ \Rightarrow$											
$S = \frac{n}{2}[a+l] = \frac{19}{2}[9+225] = 2223$											
$\frac{2+4+6+\ldots+2y}{3+6+9+\ldots+3y} = \frac{4}{\log_{10} x}$											
$\frac{2(1+2+3+y)}{3(1+2+3+y)} = \frac{4}{\log_{10} x} $											
$\log_{10}x=6$											
$x=10^6$											
Now mathongo /// mathongo ///											
$y = \log_{10} x + \log_{10} x^{1/_3} + \log_{10} x^{1/_9} -$	∞										
/ 1 1											
$=\left \frac{1}{1-\frac{1}{1}}\right \log_{10}x=9$											
L ⁺ 3 J											
So, $(x, y) = (10^6, 9)$ mathongo ///											
(3)											
Let the A.P. be $a, A_1, A_2 \dots A_n, 100$											
Here, common difference, $d = \frac{100-a}{n+1}$											
Given $\frac{A_1}{A_n} = \frac{1}{7} \Rightarrow \frac{a+d}{100-d} = \frac{1}{7} \dots (i)$											
Also $a + n = 33$ From options, when $n = 23$, $a = 10$ ar	and $d = \frac{90}{24} = \frac{15}{4}$	5									
from (i) $\frac{10 + \frac{15}{4}}{100 - \frac{15}{4}} = \frac{55}{385} = \frac{1}{7}$											

