Calculus 1 - Notes

Dom Hutchinson

February 26, 2018

Contents

1	\mathbf{Bef}	ore Calculus
	1.1	Fundamental Theorem of Calculus
	1.2	Intervals
2	Lim	
	2.1	Limits
	2.2	Exponential Function
3	The	e Derivative
	3.1	Techniques for finding derivative
	3.2	Implicit Differentiation
		Applications of The Derivative
	3.4	Sketching Curves
4	Ineg	gration
	•	The Primitive

1 Before Calculus

1.1 Fundamental Theorem of Calculus

Definition 1.01 - Fundamental Theorem of Calculus
The Fundamental Theorem of Calculus states

The Fundamental Theorem of Calculus states

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Definition 1.02 - Common Sets of Numbers

Natural Numbers, set of positive integers - $\mathbb{N} := \{1, 2, 3, ...\}$.

Whole Numbers, set of all integers - $\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}$.

Rational Numbers, set of fractions - $\mathbb{Q} := \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\}$.

Real Numbers, set of all rational & irrational numbers - R.

1.2 Intervals

Definition 1.03 - *Intervals*

Sets of real numbers that fulfil in given ranges.

Notation

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a, b] := \{ x \in \mathbb{R} : a < x \le b \}$$

$$[a, b) := \{ x \in \mathbb{R} : a \le x < b \}$$

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}$$

Example

In what interval does x lie such that:

$$|3x+4| < |2x-1|$$

Solution

Case 1:
$$x \ge \frac{1}{2}$$

=> 1 - 2x < 3x + 4 < 2x - 1
=> 1 - 2x < 3x + 4
=> $x > \frac{-3}{5}$

And,
$$=> 3x + 4 < 2x - 1$$

 $=> x < -5$

There are no real solutions in this range.

Case 2:
$$x < \frac{1}{2}$$

=> $2x - 1 < 3x + 4 < 1 - 2x$
=> $2x - 1 < 3x + 4$
=> $-5 < x$

And,
$$\Rightarrow 3x + 4 < 1 - 2x$$

 $\Rightarrow 5x < -3$
 $\Rightarrow x < \frac{-3}{5}$

$$= > -5 < x < \frac{-3}{5}, \ x \in \left(-5, \frac{-3}{5}\right)$$

Definition 1.04 - Functions

Functions map values between fields of numbers. The signature of a function is defined by

$$f:A\to B$$

Where f is the name of the function, A is the domain and B is the co-domain.

The *Domain* of a function is the set of numbers it can take as an input.

The Co-Domain is the set of numbers that the domain is mapped to.

N.B. - A function is valid iff it maps each value in the domain to a single value in the co-domain.

Definition 1.05 - Maximal Domain

The Maximal Domain of a function is the largest set of values which can serve as the domain of a function.

Remark 1.06 - Types of Function

Let $f: A \to B$

Polynomials

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

Rational

$$f(x) = \frac{p(x)}{q(x)}, \quad q(x) \neq 0 \ \forall \ x \in A$$

Trigonometric

$$sin(x)$$
, $cos(x)$, $tan(x)$ etc.

2 Limits

2.1 Limits

Definition 2.01 - Limits

A limit is the value a function tends to, for a given \mathbf{x} .

i.e. The value f(x) has at it gets very close to x.

Formally We say L is the limit of f(x) as x tends to x_0 if

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ st if } x \in A \text{ and } |x - x_0| < \delta => |f(x) - L| < \varepsilon$$

Notation

$$\lim_{x \to x_0} f(x) = L$$

Definition 2.02 - Directional Limits

Sometimes the value of a limit depends on which direction you approach it from.

 $\lim_{x\to x_0+}$ is used when approaching from values greater than x_0 .

 $\lim_{x\to x_0^-}$ is used when approaching from values less than x_0 .

Theorem 2.03 - Operations with limits

Let $\lim_{x\to x_0} f(x) = L_f$ and $\lim_{x\to x_0} g(x) = L_g$ Then

$$\lim_{x \to x_0} [f(x) + g(x)] = L_f + L_g$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = L_f \cdot L_g$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L_f}{L_g} \quad L_g \neq 0$$

2.2 Exponential Function

Definition 2.04 - Exponential Function

$$e := \lim_{x \to \infty} \left(1 + \frac{1}{n} \right)^n \simeq 2.7182818...$$

Theorem 2.05 - Binomial Expansion

A techique for expanding binomial expressions

$$\left(1 + \frac{x}{n}\right)^n = \sum_{i=0}^n \binom{i}{n} \cdot 1^{(n-i)} \cdot \left(\frac{x}{n}\right)^i$$
$$= 1 + x + \frac{n-1}{2n} \cdot x^2 + \dots + \frac{x^n}{n^n}$$

3 The Derivative

Definition 3.01 - Differentiable Equations

Let $f: A \to B$ and $x_0 \in A$.

f is differentiable at x_0 if $\exists L \in B$ such that

$$L = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

If this limit exists $\forall x \in A$ then we can define the derivative of f(x)

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Definition 3.02 - Notation for Differentiation

There are two ways to denote the derivative of an equation

$$f'(x) \iff \frac{df}{dx}, f''(x) \iff \frac{d^2f}{dx^2}, ..., f^{(n)}(x) \iff \frac{d^nf}{dx^n}$$

N.B. - Using $\frac{df}{dx}$ is more informative, especially for equations with multiple variables.

3.1 Techniques for finding derivative

Theorem 3.03 - Sum Rule

Let f, g be differentiable with respect to x.

$$(f+q)' = f' + q'$$

Theorem 3.04 - Product Rule

Let f, g be differentiable with respect to x.

$$(fg)' = f'g + fg'$$

Theorem 3.05 - Quotient Rule

Let f, g be differentiable with respect to x.

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Definition 3.06 - Composite Functions

Let $f: B \to C$ and $g: A \to B$ Then

$$(f \circ g)(x) = f(g(x))$$

Theorem 3.07 - Chain Rule

Let f, g be differentiable with respect to x.

$$\frac{d}{dx}f(g(x)) = f'(g(x)).g'(x)$$

3.2 Implicit Differentiation

Definition 3.08 - Implicit Differentiation

Sometimes it is hard to isolate variables in multi-variable equations, in these cases differentiate both sides with respect to the same variable.

Remembering

$$\frac{d}{dx}(x) = 1$$
 and $\frac{d}{dx}(y) = \frac{dy}{dx} = y'$

Example

Find y if $x^3 + y^3 = 6xy$

$$\frac{d}{dx}(x^3 + y^3) = \frac{d}{dx}(6xy)$$
=>3x² + 3y².y' = 6y + 6x.y'
=>y'(3y² - 6x) = 6y - 3x²
=>y' = $\frac{2y - x^2}{y^2 - 2x}$

3.3 Applications of The Derivative

Thoerem 3.09 - Netwon's Method

Let f be differentiable. Using Newton's Method we can approximate a solution to f(x) = 0.

- i) Take an inital guess, x_0 ;
- ii) Find the value of x where the tangent to x_0 on f(x) intercepts the x-axis;
- iii) Use this value as the next guess;
- iv) Repeat until the value of x reduces little.

The equation for the tangent is

$$y = f(x_0) + (x - x_0)f'(x_0)$$

so a simplified equation for the process can be deduced

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Theorem 3.10 - Angle between Intersecting Curves

Let $y = f_1(x)$ and $y = f_2(x)$ be two curves which intersect at (x_0, y_0) .

Then
$$y_0 = f_1(x_0) = f_2(x_0)$$

Let m_1, m_2 be the gradient of the tangents to $f_1 \& f_2$ at x_0 .

Then $\theta_i := tan^{-1}(m_i)$ for i = 1, 2.

Let
$$\phi = |\theta_1 - \theta_2|$$
, then

$$\phi = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Theorem 3.11 - L'Hospital's Rule

For two equations, f, g with limit of $-\infty, 0$ or ∞ as x tends to a, it is hard to solve

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

Provided the limit exists, L'Hospital's Rule states that

$$\lim_{x \to a} \frac{f(x)}{g(x)} \iff \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

3.4 Sketching Curves

Remark 3.11 - Sketching Curves

Evaluating the derivative of a curve can make it easier to sketch:

- i) When f'(x) > 0 the curve is heading upwards;
- ii) When f'(x) < 0 the curve is heading downwards;
- iii) When f'(x) = 0 the curve is flat;
- iv) When $f'(x) = \infty, -\infty$ there are assymptotes.

Definition 3.12 - Even Functions

If f(x) = f(-x) then the function is symmetrical and said to be *even*. Examples - x^2 , cos(x), |x|

Definition 3.13 - Odd Functions

If f(x) = -f(-x) then the function is said to be *odd*. Examples - x, sin(x), x.cos(x)

Remark 3.14

Some functions are neither *odd* nor *even*.

Example - $x + x^2$

4 Inegration

4.1 The Primitive

Definition 4.01 - The Primitive

A function, $F:A\to\mathbb{R}$, is a primative for the function $f:A\to\mathbb{R}$ if F is differentiable and

$$\frac{d}{dx}F = f$$

 $\underline{\text{N.B.}}$ - Primitives are also called *Indefinite Integral* or *Anti-Derivative*.

Remark 4.02 - Area Under a Curve

Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Then the area between the curve and the x-axis is found by integration.

$$A := \int_{a}^{b} f(x)dx$$

Definition 4.03 - Convergent Improper Integrals

Let b > a and define a function, $f: [a, \infty) \to \mathbb{R}$, which is continuous in [a, b] Then

$$\int_0^\infty f(x)dx := \lim_{b \to \infty} \int_a^b f(x)dx$$

If this limit exists then the improper integral is convergent, otherwise it is divergent.

Definition 4.04 - Definite Integral

Let F be the primative for the function f. Then

$$\int_{b}^{a} f(x)dx = F(a) - F(b)$$

Notation -
$$F(x)\Big|_a^b = F(b) - F(a)$$

Remark 4.05 - Summing Definiate Inegrals

For all a < c < b

$$\int_{a}^{b} f(x)dx = \int_{c}^{a} f(x)dx + \int_{b}^{c} f(x)dx$$
$$\int_{b}^{a} f(x)dx := -\int_{a}^{b} f(x)dx$$

Theorem 4.06 - Taylor Series

Functions can be expanded into polynomial form with degree n, T_n , and remainder R_n such that $f(x) = T_n(x) + R_n(x)$.

$$T_n(x) = f(a) + (x - a)f'(a) + \dots + \frac{1}{n} \cdot (x - a)^n \cdot f^n(a)$$
$$R_n(x) = \frac{1}{n} \int_a^x (x - t)^n \cdot f^{(n+1)}(t) dt$$