Chapter 9(3rd ed)/7(4th ed). Classification: Advanced Methods

- ☐ Feature Selection
- Bayesian Belief Networks
- Support Vector Machines
- □ Rule-Based and Pattern-Based Classification
- Weakly Supervised Learning
- Classification with Rich Data Type
- Other Related Techniques
- Summary

Feature Selection & Feature Engineering

Feature Selection

- \Box Given a set of p initial features, how to select a few most effective ones?
- Why?
 - □ Irrelevant features (student ID for predicting GPA)
 - Redundant features (monthly income vs. yearly income)

□ Feature Engineering

- Given the initial features, how to construct more effective ones?
 - # of daily positive cases, # of daily tests, # of daily hospitalization → weekly positive rate
- (traditionally) domain knowledge is the key
- Deep learning provides an automatic way

Feature Selection Methods

□ Filter methods

- Select features based on some goodness measure
- Independent of the specific classification model

Wrapper methods

- Combine the feature selection and classifier model construction steps together,
- Iteratively
 - ☐ Use the currently selected feature subset to construct a classification model
 - ☐ Use the current classification model to update the selected feature subset.

Embedded methods

- Simultaneously constructs the classification model and selects the relevant features
- Embed the feature selection step during the classification model construction step

Filter Methods

General Procedure

- Selects features based on some goodness measure
- Independent of the specific classification model

☐ Fisher Scores

- □ Intuitions: the feature x (e.g., income) is strongly correlated with the class label y (buy computer) if
 - □ the average income of all customers who buy a computer is significantly different from the average income of all customers who do not buy a computer,
 - all customers who buy a computer share similar income, and
 - all customers who do not buy a computer share similar income.

Details

$$s = \frac{\sum_{j=1}^{c} n_j (\mu_j - \mu)^2}{\sum_{j=1}^{c} n_j \sigma_j^2}$$

Other goodness measures

 $\ \ \ \ \ \chi^2$ test (for categorical feature); information gain, mutual information.

Wrapper Methods

General Procedure

- Combines the feature selection and classifier model construction steps together,
- Iteratively
 - ☐ Use the currently selected feature subset to construct a classification model
 - ☐ Use the current classification model to update the selected feature subset.
- Key: how to search for the best feature subset
 - \square Exhaustive search: 2^p-1 (try all the possible subsets of the p given features)
 - Stepwise forward selection:
 - Start with an empty feature subset.
 - ☐ At each iteration, select an additional feature to improve performance most
 - □ Stepwise backward elimination: start with the full set, eliminate one feature at a time
 - Hybrid method

Chapter 9(3rd ed)/7(4th ed). Classification: Advanced Methods

- ☐ Feature Selection
- Bayesian Belief Networks
- Support Vector Machines

- □ Rule-Based and Pattern-Based Classification
- Weakly Supervised Learning
- Classification with Rich Data Type
- Other Related Techniques
- Summary

Classification: A Mathematical Mapping

- The binary classification problem:
 - E.g., Movie review classification
 - $x_i = (x_1, x_2, x_3, ...), y_i = +1 \text{ or } -1 \text{ (positive, negative)}$
 - \square x_1 : # of word "awesome"
 - \square x_2 : # of word "disappointing"
- □ Mathematically, $x \in X = \Re^n$, $y \in Y = \{+1, -1\}$
 - $lue{}$ We want to derive a function $f: X \rightarrow Y$
 - which maps input examples to their correct labels

SVM—General Philosophy

- Learning a max-margin classifier
 - From the infinite set of lines (hyperplanes) separating two classes
 - Find the one which separates two classes with the largest margin
 - i.e. a maximum marginal hyperplane (MMH)

SVM—When Data Is Linearly Separable

- ☐ The simplest case: When data is **linearly separable**
 - Data sets whose classes can be separated exactly by linear decision surfaces are said to be linearly separable

A separating hyperplane can be written as

$$\mathbf{w}^T \mathbf{x} + b = 0$$

where $w = (w_1, w_2, ..., w_n)^T$ is a weight vector and b a scalar (bias)

- □ For 2-D, it can be written as: $w_1 x_1 + w_2 x_2 + b = 0$
- ☐ The hyperplane defining the sides of the margin:

H₁:
$$w_0 + w_1 x_1 + w_2 x_2 \ge 1$$
 for $y_i = +1$, and
H₂: $w_0 + w_1 x_1 + w_2 x_2 \le -1$ for $y_i = -1$

Any training tuples that fall on hyperplanes H_1 or H_2 (i.e., the sides defining the margin) are **support vectors**

 \Box The distance from any data point x to the separating hyperplane is

$$\operatorname{distance}(ax + by + c = 0, (x_0, y_0)) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} \qquad r = \frac{|f(x)|}{\|\mathbf{w}\|} = \frac{y_i(\mathbf{w}^T x_i + b)}{\|\mathbf{w}\|}$$

Our objective is to maximize the distance of the closest data point to the hyperplane

$$\arg \max_{w,b} \left\{ \frac{1}{\|\boldsymbol{w}\|} \min[y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b)] \right\}$$

☐ This is hard to solve, we shall convert it to an easier problem

arg min
$$\| \mathbf{w} \|^2$$

s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$, $i = 1, 2, ..., n$

☐ This is the basic form of SVM, and it can be solved by using quadratic programming

- $lue{}$ "Once I've got a trained support vector machine, how do I use it to classify test (i.e., new) tuples?"
- Based on the Lagrangian formulation mentioned before, the MMH can be rewritten as the decision boundary

$$d(X) = \sum_{i=1}^{l} y_i \alpha_i X' X_i + b,$$

where y_i is the class label of support vector X_i ; X is a test tuple and denotes the transpose of a vector; α_i and b are numeric parameters that were determined automatically by the optimization or SVM algorithm noted before; and l is the number of support vectors, which is often much smaller than the total number of training tuples

□ The data points closest to the separating hyperplane are called support vectors

SVM for Linearly Inseparable Data

- We allow data points to be on the "wrong side" of the margin boundary
- □ Penalize points on the wrong side according to its distance to the margin boundary
- \Box ξ : slack variable
- □ C (> 0): Controls the trade-off between the penalty and the margin
- ☐ Smaller C: allow more mistake
- ☐ Larger C: allow less mistake
- ☐ This is the widely used *soft-margin SVM*

Effect of slack variable

https://www.quora.com/What-is-the-purpose-for-using-slack-variable-in-SVM

SVM for Linearly Inseparable Data

- Alternatively, for linearly inseparable data, we can map them to a higher dimensional space
- We search for a linear separating hyperplane in the new space
 - Example: The XOR problem

Kernel Functions for Nonlinear Classification

Instead of computing the dot product on the transformed data, it is mathematically equivalent to applying a kernel function $K(x_i, x_j)$ to the original data, i.e.,

Typical Kernel Functions

Polynomial kernel of degree $h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel: $K(X_i, X_j) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

SVMs can efficiently perform a non-linear classification using kernel functions, implicitly mapping their inputs into high-dimensional feature spaces

https://www.youtube.com/watch?time_continue=42&v=3liCbRZPrZA http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/

Multi-class Classification with SVM

Is SVM Scalable on Massive Data?

- □ SVM is effective on high dimensional data
 - The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
 - The support vectors are the essential or critical training examples—they lie closest to the decision boundary (MMH)
 - Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high
- SVM is not scalable to the # of data objects in terms of training time and memory usage
 - Scaling SVM by a hierarchical micro-clustering approach
 - □ H. Yu, J. Yang, and J. Han, "<u>Classifying Large Data Sets Using SVM with Hierarchical Clusters</u>", KDD'03

SVM: Applications

- <u>Features</u>: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Used for: classification and numeric prediction
 - □ SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)
- Applications:
 - handwritten digit recognition, object recognition, speaker identification,
 benchmarking time-series prediction tests

SVM Recap

- Pros
 - □ Elegant mathematical formulation, guaranteed global optimal with optimization
 - Trains well on small data sets
 - Flexibility through kernel functions
 - Conformity with semi-supervised training
- Cons
 - Not naturally scalable to large data sets

SVM Related Links

- SVM Website: http://www.kernel-machines.org/
- Representative implementations
 - **LIBSVM**: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - SVM-light: simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - SVM-torch: another recent implementation also written in C

SVM Related Links

- □ SVM Website: http://www.kernel-machines.org/
- Representative implementations
 - **LIBSVM**: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - **SVM-light**: simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - SVM-torch: another recent implementation also written in C