Analiza zmiany liczebności mieszkań oddanych do użytku i notowań kryptowaluty Bitcoin.

Inżynieria i Analiza Danych 2022/23

Piotr Szyszka, Weronika Nadworska

31-01-2023

Spis treści

S	towem wstępu	2
N.	lieszkania, których budowę rozpoczęto	2
	Scharakteryzowanie danych	3
	Funkcja autokorelacji	4
	Dekompozycja i wygładzanie metodą Holt'a Winters'a	5
	Trendy fazowe	7
	Dopasowanie trendu wielomianem	7
	Stacjonarność	8
	SARIMA	9
	Podsumowanie	13
В	itcoin	13
	Scharakteryzowanie danych	14
	Funkcja autokorelacji	16
	Wygładzanie Holt'a-Winters'a	16
	Predykcja	17
	Regresja wielomianowa	17
	Stacjonarność	21
	ARIMA	21
	Podsumowanie	24

Słowem wstępu

Dokument jest wynikiem pracy nad projektem zaliczeniowym na przedmiot Szeregi czasowe.

Głównym celem raportu jest opis i identyfikacja zjawisk wymienionych w tytule za pomocą metod poznanych na przedmiocie.

Przeprowadzona analiza pozwoli na lepsze zrozumienie charakteru opisywanych cech, co może być cenne z ekonomicznego punktu widzenia.

Mieszkania, których budowę rozpoczęto

Pierwszym zjawiskiem, które zostało przez nas zbadane to zmiana liczebności mieszkań, których budowę rozpoczęto w latach 2005-2021. Dane umożliwiają bieżącą oraz roczną ocenę aktywności produkcyjnej przemysłu. W zakresie budownictwa prezentowane dane charakteryzują etapy procesu budowlanego w zakresie: wydanych pozwoleń na budowę, mieszkań, których budowę rozpoczęto, budynków (mieszkalnych i niemieszkalnych) i mieszkań oddanych do użytkowania oraz sprzedaży sekcji F Budownictwo, w tym produkcji budowlano-montażowej zrealizowanej przez przedsiębiorstwa budowlane.

Źródło

	lubelskie
styczeń 2005	303
luty 2005	58
marzec 2005	164
kwiecień 2005	570
maj 2005	644
czerwiec 2005	576
lipiec 2005	484
sierpień 2005	588
wrzesień 2005	534
październik 2005	527
listopad 2005	197
grudzień 2005	165

Scharakteryzowanie danych

Statystyka	lubelskie
Min.	58
1st Qu.	433
Median	613
Mean	629
3rd Qu.	802
Max.	2,086
Sd	295

Z zestawienia widzimy, że najmniejsza liczba budów, których budowę rozpoczęto to 58 (luty 2005). Najwięcej (2086) rozpoczęto budować w marcu 2021.

Liczby mieszkan w latach 2005–2021, których budowe rozpoczeto

Wyraźnie dostrzegalna jest sezonowość (coroczna, o charakterze addytywnym) wraz z pewnymi wahaniami losowymi.

Histogram liczby nowych mieszkan

Rozkład cechuje się prawostronną asymetrią.

Wykres ramka-wasy

Funkcja autokorelacji

Szeregi czasowe charakteryzują się tym, że kolejne elementy w większości przypadków nie są niezależne. Miarą zależności pomiędzy elementami stacjonarnego szeregu czasowego są współczynniki korelacji, które nazywane są również funkcją autokorelacji (ang. ACF - Auto-Correlation Function). Wyrażona jest ona wzorem:

$$r_{\tau} = \frac{E(x_t - \mu)(x_{\tau+r} - \mu)}{E(x_{t+\tau} - \mu)^2} = \frac{\gamma_r}{\gamma_0}$$

A za estymator przyjmuje się

$$\hat{r}_{\tau} = \frac{N \sum_{t=1}^{N-\tau} (x_t - \hat{\mu})(x_{t+\tau} - \hat{\mu})}{(N-\tau) \sum_{t=1}^{N} (x_t - \hat{\mu})^2} = \frac{\hat{\gamma}_{\tau}}{\hat{\gamma}_0}$$

gdzie $\tau = 0, 1, ..., N-1$ jest przesunięciem (opóźnieniem).

W R funkcja autokorelacji zaimplementowana jest pod nazwą Acf() z pakietu forecast. Użycie jej skutkuje wywołaniem wykresu r_{τ} w zależności od τ zwanej korelogramem.

Wykresy przedstawiają funkcję autokorelacji odpowiednio dla $\tau=1,\,\tau=10,\,\tau=25$ oraz $\tau=50.$

Dekompozycja i wygładzanie metodą Holt'a Winters'a

Dekompozycja

Funkcja decompose() z bazowej biblioteki stats umożliwia dekompozycję szeregu na trzy główne składowe, tj. trend, sezonowość i wahania losowe.

Metoda Holt'a Winters'a

Model *Holt'a-Winters'a* jest jedną z technik prognozowania wykorzystujących tzw. wygładzenie wykładnicze. Wygładzenie polega na stworzeniu ważonej średniej ruchomej, której wagi określa się według schematu - im starsza informacja o badanym zjawisku, tym mniejszą wartość stanowi ona dla aktualnej prognozy.

Możemy wyróżnić trzy rodzaje modeli Holta-Wintersa:

- bez sezonowości,
- z sezonowością multiplikatywną,
- z sezonowością addytywną.

W naszym przypadku (sezonowość addytywna) Holt'a - Winters'a ma postać:

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$

gdzie: k jest częścią całkowitą liczby $\frac{h-1}{m},\,m$ - długość okresu, h - przesunięcie czasowe. Dodatkowo

$$\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

odpowiada za prognozę niesezonową.

$$b_t = \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1}$$

 \boldsymbol{b}_t jest czynnikiem odpowiedzialnym za trend, a

$$s_t = \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}$$

jest sezonowym składnikiem szeregu czasowego o okresie m

Dopasowanie

Model *Holt'a-Winters'a* można utworzyć za pomocą funkcji HoltWinters() dostępnej w bazowej bibliotece stats.

Holt-Winters filtering

Predykcja

Predykcja na kolejne 10 notowań prezentuje się następująco:

```
## Jan Feb Mar Apr May Jun Jul
## 18 788.9253 955.6580 1320.7237 1227.7977 1233.7013 1167.3004 1250.9588
## Aug Sep Oct
## 18 1182.6557 1154.8167 1170.8325
```

Trendy fazowe

Dopasowanie trendu wielomianem

W celu ułatwienia zadania przypomnijmy sobie jakiej postaci jest trend.

Korzystając z wygód, jakie oferuje oprogramowanie RStudio, do znalezienia odpowiedniego stopnia dopasowania wielomianem, napiszemy funkcję. Za kryterium przyjmiemy najniższą wartość indeksu AIC.

```
fit <- function(szereg, max.st){</pre>
  aic <- modele <- NULL
  t <- 1:length(szereg)
  for(i in 1:max.st){
   mod <- lm(szereg ~ poly(t, i))</pre>
   aic <- c(aic, AIC(mod))
  modele[[i]] <- mod
  opt <- which(aic == min(aic))</pre>
  par(mfrow = c(1, 2))
  plot(aic, type = "b")
  plot(x = szereg, type = "1", col = "steelblue")
  lines(modele[[opt]]$fitted.values, type = "1", col = "red")
  title(sprintf("Dopasowanie wielom. st. %i.", opt))
  par(mfrow = c(1,1))
  cat("Najlepsze AIC = ", aic[opt], sprintf("dla wielomianu %i", opt), "stopnia.")
  modele[[opt]]
}
```

Poszukiwania stopnia wielomianu zaweżmy do 15-tej potegi.

Dopasowanie wielom. st. 12.

Najlepsze AIC = 1789.045 dla wielomianu 12 stopnia.

Najlepszy pod względem dopasowania okazał się wielomian stopnia 12. Wartość AIC dla tego dopasowania wynosi 1789.

Stacjonarność

Szereg $\{x_t\}_{1 \leq t \leq N}$ nazywamy ściśe stacjonarnym, jeżeli dla dowolnych $m, t_1, t_2, ..., t_m, \tau$ łączny rozkład prawdopodobieństwa związany z m elementami $x_{t_1}, x_{t_2}, ..., x_{t_m}$ szeregu czasowego jest identyczny z rozkładem m elementów

Innymi słowy, szereg jest stacjonarny jeśli jego własności dynamiczne nie ulegają zmianie przy zmianie początku skali czasowej.

Zbadamy stacjonarność szeregu. Posłużą do tego testy Kwiatkowskiego-Phillips'a-Schmidt'a-Shin'a oraz Dicky'ego-Fullera.

```
##
##
   KPSS Test for Level Stationarity
##
## data: szereg
## KPSS Level = 1.3549, Truncation lag parameter = 4, p-value = 0.01
##
##
   KPSS Test for Level Stationarity
##
## data: diff(szereg)
## KPSS Level = 0.01162, Truncation lag parameter = 4, p-value = 0.1
##
##
   Augmented Dickey-Fuller Test
##
## data: diff(szereg)
## Dickey-Fuller = -9.5575, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

Badajac stacjonarność szeregu testem KPSS wyciagamy wniosek o niestacjonarności badanego szeregu. Jednak po jednokrotnym zróżnicowaniu szereg jest stacjonarny.

SARIMA

Model klasy SARIMA (ang. Seasonal AutoRegressive Integrated Moving Average) rozszerzeniem modelu ARIMA o czynnik sezonowy. Parametry modelu $ARIMA(\mathbf{p}, \mathbf{d}, \mathbf{q})$

- p parametr autoregresyjny; rząd opóźnienia,
- d parametr różnicowania (ilość potrzebnych zróżnicowań, aby szereg stał się stacjonarny)
- q parametr średniej ruchomej.

SARIMA(p, d, q, P, D, Q) jest wzbogacona o dodatkowe trzy parametry, które oznaczają dokładnie to co w modelu ARIMA, ale dotyczą składowej sezonowości szeregu. Stąd model można przedstawić w postaci

$$y_t = c + \sum_{n=1}^{p} \alpha_n y_{t-n} + \sum_{n=1}^{q} \theta_n \epsilon_{t-n} + \sum_{n=1}^{p} \phi_n y_{t-sn} + \sum_{n=1}^{p} \eta_n \epsilon_{t-sn} + \varepsilon_t$$

Wyznaczymy przedziały ufności na kolejne 12 notowań.

Dla $\alpha = 0,05$:

```
##
          Point Forecast
                             Lo 95
                                      Hi 95
## Jan 18
               1015.8635 585.3728 1446.354
## Feb 18
               1388.8179 937.2343 1840.401
## Mar 18
               1352.3496 900.1326 1804.567
## Apr 18
               1220.1571 766.3255 1673.989
## May 18
               1246.7302 782.5617 1710.899
## Jun 18
               1182.8912 716.3628 1649.420
## Jul 18
               1236.6989 769.5501 1703.848
## Aug 18
               1063.5015 591.3364 1535.666
## Sep 18
               1056.7501 581.1817 1532.318
## Oct 18
               1352.6070 876.9637 1828.250
               1044.7128 566.5337 1522.892
## Nov 18
## Dec 18
                964.9665 483.1989 1446.734
```

Dla $\alpha = 0, 1$:

```
##
          Point Forecast
                             Lo 90
                                       Hi 90
## Jan 18
               1015.8635
                          654.5843 1377.143
## Feb 18
               1388.8179 1009.8370 1767.799
## Mar 18
               1352.3496
                          972.8371 1731.862
## Apr 18
               1220.1571
                          839.2896 1601.025
## May 18
               1246.7302
                          857.1877 1636.273
## Jun 18
               1182.8912
                          791.3682 1574.414
## Jul 18
                          844.6552 1628.743
               1236.6989
## Aug 18
               1063.5015 667.2481 1459.755
```

Identyfikacja rezt

Zajmiemy się teraz analizą szeregu reszt powstałego modelu. Prezentują sie one następująco:

Zauważyć można prawostronną asymetrię rozkładu.

Przeprowadzimy teraz testy sprawdzające normalność, jednorodność wariancji oraz seryjną korelację błędów modelu SARIMA.

Normalność:

Normal Q-Q Plot


```
##
## Shapiro-Wilk normality test
##
## data: sar_res
## W = 0.95537, p-value = 5.264e-06

##
## Anderson-Darling normality test
##
## data: sar_res
## A = 1.1639, p-value = 0.004747

##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: sar_res
## D = 0.063298, p-value = 0.04554
```

Odrzucamy hipotezę o normalności rozkładu reszt ${\bf w}$ modelu.

Jednorodność wariancji:

```
##
## studentized Breusch-Pagan test
##
## data: as.numeric(sar_res) ~ t
## BP = 7.6218, df = 1, p-value = 0.005767

##
## Goldfeld-Quandt test
##
## data: sar_res ~ t
## GQ = 1.6578, df1 = 100, df2 = 100, p-value = 0.006069
## alternative hypothesis: variance increases from segment 1 to 2
```

```
##
## Harrison-McCabe test
##
## data: sar_res ~ t
## HMC = 0.38537, p-value = 0.007
```

Na podstawie testów Breucha-Pagana, Goldfelda-Quandta oraz Harrisona-McCabe'a odrzucamy hipotezę o jednorodności wariancji błędów.

Seryjna korelacja:

```
##
## Durbin-Watson test
##
## data: sar_res ~ t
## DW = 1.8456, p-value = 0.1192
## alternative hypothesis: true autocorrelation is greater than 0
##
## Breusch-Godfrey test for serial correlation of order up to 3
##
## data: sar_res ~ t
## LM test = 4.0086, df = 3, p-value = 0.2605
```

Na podstawie testów Durbina-Watsona oraz Breucha-Godfreya nie ma podstaw do odrzucenia hipotezy o braku seryjnej korelacji między błędami modelu.

Podsumowanie

W ostatnich okresach coraz bardziej dostrzegalna staje się tendencja wzrostowa liczby mieszkań, których budowę rozpoczęto, przez co szeregu nie można określić jako stacjonarny. Świadczyć może to o rozwoju tego sektora gospodarki.

Zjawisko cechuje się sezonowością, którego dopasowanie modelem SARIMA oceneniamy na przyzwoite, podobnie jak wygładzenie metodą Holt'a-Winters'a.

W przeciwieństwie do badanego procesu, jego składowe takie jak trend oraz trendy fazowe, precyzyjnie identyfikować można za pomocą modeli regresji wielomianowej.

Bitcoin

Bitcoin to otwartoźródłowa, zdecentralizowana platforma płatnicza, która jest zbudowana w oparciu o technologię blockchain (łańcucha bloków) i wykorzystuje własną kryptowalutę o tej samej nazwie (oznacza się ją symbolem BTC).

Kryptowaluta bitcoin została wprowadzona w 2009 roku przez osobę, bądź grupę osób o pseudonimie Satoshi Nakamoto.

Dane na temat notowań zostały pozyskane z yahoo finance i dotyczą okresu całego poprzedniego roku od dnia 24.01.2022 roku.

	Close
2022-01-24	36,654.33

	Close
2022-01-25	36,954.00
2022-01-26	36,852.12
2022-01-27	37,138.23
2022-01-28	37,784.33
2022-01-29	38,138.18
2022-01-30	37,917.60
2022-01-31	38,483.12
2022-02-01	38,743.27
2022-02-02	36,952.98
2022-02-03	37,154.60
2022-02-04	41,500.88
2022-02-05	41,441.16
2022-02-06	42,412.43
2022-02-07	43,840.29
2022-02-08	44,118.45
2022-02-09	44,338.80
2022-02-10	43,565.11

Ceny waluty bitcoin wyrażone są w dolarach amerykańskich.

Scharakteryzowanie danych

	Close
Min.	15,787.28
1st Qu.	19,325.39
Median	21,619.25
Mean	26,730.36
3rd Qu.	37,713.60
Max.	47,465.73
Sd.	9,682.08

Widzimy, że średnia cena bitcoin wynosi 26 730,36 \$. Minimalna wartość to 15 787,28 \$.

Notowania cen bitcoin w czasie 24.01.2022-24.01.2023

Zauważyć można spory spadek cen cyfrowej waluty od kwietna do końca czerwca, po czym nastąpiła stabilizacja.

Histogram cen bitcoin

Zauważalna jest dwumodalność rozkładu.

Funkcja autokorelacji

Użyjemy funkcji autokorelacji Acf () zaimplementowanej w programie RS
tudio w pakiecie forecast. Użycie jej skutkuje wywołaniem wykresu
 r_{τ} w zależności od τ .

Wykresy przedstawiają funkcję autokorelacji odpowiednio dla $\tau=10,\,\tau=25,\,\tau=50$ oraz $\tau=75.$

Wygładzanie Holt'a-Winters'a

Zwizualizujemy najpierw dekompozycję badanego szeregu na trzy główne składowe: trend, sezonowość i wahania losowe.

Zbudujemy model *Holt'a-Winters'a*, ponownie, korzystajac z funkcji HoltWinters() dostępnej w bazowej bibliotece stats.

Predykcja

Dokonamy predykcji na kolejne 10 notowań:

```
## Time Series:
## Start = c(12, 26)
## End = c(13, 4)
## Frequency = 31
##
              fit
    [1,] 22378.57
##
##
    [2,] 21724.27
##
    [3,] 20831.92
##
    [4,] 19743.97
    [5,] 19005.54
##
    [6,] 18433.04
##
    [7,] 18099.39
##
    [8,] 17791.29
##
    [9,] 17917.57
## [10,] 17949.62
```

Regresja wielomianowa

Dopasujmy cechę oraz trend występujący w szeregu korzystając z regresji wielomianowej.

Dopasowanie trendu

Przypomnijmy sobie najpierw jakiej postaci jest trend.

Dopasowując wielomian odpowiedniego stopnia ponownie posłużymy się zbudowaną przez nas wcześniej funkcją fit().

Zawęźmy poszukiwania do stopnia 20.

Najlepsze AIC = 4940.248 dla wielomianu 15 stopnia.

Najlepsze okazało się dopasowanie wielomianem stopnia piętnastego, dla którego kryterium AIC wynosi 4940.

Dopasowanie cechy

Poszukajmy wielomianu stopnia maksymalnie piętnastego.

Najlepsze AIC = 6452.396 dla wielomianu 15 stopnia.

Wielomian stopnia piętnastego okazał się najlepiej dopasowany do badanej cechy. Kryterium AIC wynosi dla niego 6452.

Analiza szeregu reszt modelu regresji wielomianowej

Wykresy modelu reszt prezentują się następująco:

Zbadamy teraz jednorodność wariancji rozkładu błędów szeregu reszt. Posłużą nam do tego testy Goldfelda-Quandta oraz Harrisona-McCabe'a.

```
##
## Goldfeld-Quandt test
##
## data: modbtc
## GQ = 0.15715, df1 = 167, df2 = 167, p-value = 1
## alternative hypothesis: variance increases from segment 1 to 2
##
## Harrison-McCabe test
##
## data: modbtc
## HMC = 0.83191, p-value = 1
```

Nie ma podstaw do odrzucenia H_0 o jednorodności wariancji błędów.

Seryjną korelację błędów zbadamy korzystając z testów Durbina-Watsona oraz Breucha-Godfreya.

```
##
## Durbin-Watson test
##
## data: modbtc
## DW = 0.37495, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: modbtc
## LM test = 241.26, df = 1, p-value < 2.2e-16</pre>
```

Na podstawie przeprowadzonych testów odrzucamy hipotezę o braku autokorelacji między błędami.

Zbadamy teraz normalność szeregu reszt.

```
##
## Shapiro-Wilk normality test
##
## data: as.numeric(reszty2)
## W = 0.9756, p-value = 7.633e-06
```

Odrzucamy hipotezę o normalności rozkładu błędów.

Stacjonarność

Zbadamy stacjonarność szeregu. Posłużą do tego testy Kwiatkowskiego-Phillips'a-Schmidt'a-Shin'a oraz Dicky'ego-Fullera.

```
##
##
   KPSS Test for Level Stationarity
##
## data: bitcoin
## KPSS Level = 5.1881, Truncation lag parameter = 5, p-value = 0.01
##
##
   KPSS Test for Level Stationarity
##
## data: diff(bitcoin)
## KPSS Level = 0.1438, Truncation lag parameter = 5, p-value = 0.1
##
##
   Augmented Dickey-Fuller Test
##
## data: diff(bitcoin)
## Dickey-Fuller = -7.0733, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
```

Szereg jest niestacjonarny, ale po jednokrotnym zróżnicowaniu wnioskujemy o jego stacjonarności.

ARIMA

Skorzystamy z modelu klasy ARIMA.

Optymalne wartości kryteriów informacyjnych AIC, AICc oraz BIC uzyskaliśmy dla modelu ARIMA(0,1,0).

Zbudujemy teraz przedziały ufności na kolejne 10 notowań dla $\alpha=0,05$ oraz $\alpha=0,1.$ Dla $\alpha=0,05$:

##		${\tt Point}$	Forecast	Lo 95	Hi 95
##	12.80645		22636.47	20737.95	24534.99
##	12.83871		22636.47	19951.56	25321.38
##	12.87097		22636.47	19348.14	25924.80
##	12.90323		22636.47	18839.43	26433.51
##	12.93548		22636.47	18391.25	26881.69
##	12.96774		22636.47	17986.06	27286.87
##	13.00000		22636.47	17613.46	27659.48
##	13.03226		22636.47	17266.64	28006.29
##	13.06452		22636.47	16940.91	28332.03
##	13.09677		22636.47	16632.82	28640.12

Dla $\alpha = 0, 1$:

##		${\tt Point}$	${\tt Forecast}$	Lo 90	Hi 90
##	12.80645		22636.47	21043.18	24229.76
##	12.83871		22636.47	20383.22	24889.72
##	12.87097		22636.47	19876.81	25396.12
##	12.90323		22636.47	19449.89	25823.05
##	12.93548		22636.47	19073.77	26199.17
##	12.96774		22636.47	18733.73	26539.21
##	13.00000		22636.47	18421.02	26851.91
##	13.03226		22636.47	18129.97	27142.97
##	13.06452		22636.47	17856.60	27416.33
##	13.09677		22636.47	17598.05	27674.89

Identyfikacja reszt

Zajmiemy się teraz analizą szeregu reszt w modelu. Prezentują sie one następująco:

Przeprowadzimy teraz testy sprawdzające normalność, jednorodność wariancji oraz seryjną korelację błędów modelu ARIMA. Normalność:


```
##
    Shapiro-Wilk normality test
##
##
## data: ari_res
## W = 0.8916, p-value = 1.939e-15
##
    Anderson-Darling normality test
##
##
## data: ari_res
## A = 11.381, p-value < 2.2e-16
##
##
   Lilliefors (Kolmogorov-Smirnov) normality test
##
```

```
## data: ari_res
## D = 0.13455, p-value < 2.2e-16</pre>
```

Odrzucamy hipotezę o normalności rozkładu reszt w modelu.

Jednorodność wariancji:

```
##
## Goldfeld-Quandt test
##
## data: as.numeric(ari_res) ~ t
## GQ = 0.20274, df1 = 181, df2 = 181, p-value = 1
## alternative hypothesis: variance increases from segment 1 to 2
##
## Harrison-McCabe test
##
## data: as.numeric(ari_res) ~ t
## HMC = 0.83181, p-value = 1
```

Na podstawie testów Goldfelda-Quandta oraz Harrisona-McCabe'a na poziomie istotności 0,05 odrzucamy hipotezę o jednorodności wariancji błędów.

Seryjna korelacja:

```
##
## Durbin-Watson test
##
## data: ari_res ~ t
## DW = 2.032, p-value = 0.6004
## alternative hypothesis: true autocorrelation is greater than 0
##
## Breusch-Godfrey test for serial correlation of order up to 3
##
## data: ari_res ~ t
## LM test = 1.9162, df = 3, p-value = 0.59
```

Na podstawie testów Durbina-Watsona oraz Breucha-Godfreya nie ma podstaw do odrzucenia hipotezy o braku seryjnej korelacji między błędami modelu.

Podsumowanie

Analizując wykres cen kryptowaluty zauważalny jest znaczący spadek w jej notowaniach, mający początek na początku drugiego kwartału ubiegłego roku, co spowodowane może być między innymi agresywną walką amerykańskiej *Rezerwy Federalnej* z inflacją.

W porównaniu z ubiegłym rokiem, na dzień dzisiejszy BITCOIN kosztuje dwa razy mniej.

Model klasy ARIMA(0, 1, 0) jest w stanie w dokładny sposób dopasować się do zgromadzonych danych, a wielomian stopnia 15. radzi sobie z tym dostatecznie dobrze. Wygładzanie Holt'a-Winters'a również jest satysfakcjonujące, a występujący trend można modelować wielomianem stopnia piętnastego.