CISC 839:Topics in Data Analytics Final Project Fraud Detection

Group 9

Amr Sayed	20398048
Bilal Morsy	20398551
Hassan Ahmed	20399136
Omar Amer	20401064

Supervised by:

Dr. Yuan Tian

Outline

Introduction and Motivation

Dataset
Statistics and
EDA

Methodology

Experimental Results

Discussion and Conclusion

Introduction & Motivation

In this section we define what is the problem as well as the motivation why solving this problem is important.

Introduction

Bank fraud: A financial institution challenge. **Detecting fraud:** Key to success. Imbalanced data: Model development challenge. **Privacy-preserving**: Dataset features. **Reducing financial risks:** Fraud detection impact. **Enhancing customer trust:** Fraud prevention importance.

Motivation

Fraud detection: Safeguarding customers and institutions. **Transaction security**: Maintaining financial safety. Trust preservation: Ensuring reliable services. **Loss minimization**: Reducing financial impacts. Bias avoidance: Upholding ethical AI practices. **Fairness in ML**: Ensuring equitable model outcomes.

Dataset and Statistics

In this section we discover the dataset structure and perform EDA.

Datasets

We used the introduced Bank Account Fraud (BAF) dataset, which is the first publicly available privacy-preserving, large-scale and realistic suite of tabular datasets. BAF suite of datasets has been published at NeurIPS 2022.

The suite's datasets were created using advanced Generative Adversarial Network (GAN) models to ensure the privacy of applicants, which is a growing concern in today's society and legal landscape.

The BAF dataset advantages:

It mimics a real banking dataset

It consists of 6 datasets (Base and 5 variants for comparison)

Provides privacy-protected attributes

Serves as a large-scale test set which helps in model generalization

Datasets (Cont'd)

Our BAF base dataset contains:

1 million instances

32 realistic features used in the fraud detection use-case

A column of "month", providing temporal information about the dataset

Protected attributes,
(age group,
employment status
and % income).

Column Name	-					
income						
name_email_similarity						
prev_address_months_count						
current_address_months_count customer_age						
intended_balcon_amount						
payment_type						
zip_count_4w						
velocity_6h						
velocity_24h						
velocity_4w						
bank_branch_count_8w						
date_of_birth_distinct_emails_4	1w					
employment_status						
credit_risk_score						
email_is_free						
housing_status						
phone_home_valid						
phone_mobile_valid						
bank_months_count						
has_other_cards						
proposed_credit_limit						
foreign_request						
source						
session_length_in_minutes						
device_os						
keep_alive_session						
device_distinct_emails						
device_fraud_count						
month						

Datasets (Cont'd): Variants

1st variant

• Introduces higher group size disparity in protective fields.

2nd variant

• Introduces higher prevalence disparity.

3rd variant

• Provides better separability for one of the demographic groups.

4th variant

• Introduces higher prevalence disparity in the training dataset.

5th variant

• Provides better separability in the training dataset for one of the demographic groups.

Base Dataset Statistics: Imbalance

We have 98.90% of non-fraud (988971) and only 1.103% (11029) of fraud transactions!

Yes vs No transactions in train data set %
Yes

1.10%

98.90%

No

Base Dataset Statistics (Cont'd): Nulls

Features	Nulls %
prev_address_months_count	71.2920
intended_balcon_amount	74.2523
current_address_months_count	0.4254
credit_risk_score	0.0488
bank_months_count	25.3635
session_length_in_minutes	0.2015
device_distinct_emails_8w	0.0359

Base Dataset Statistics (Cont'd): Outliers

Features Having Outliers days_since_request intended_balcon_amount zip_count_4w velocity_6h velocity_24h bank_branch_count_8w date_of_birth_distinct_emails_4w proposed_credit_limit session_length_in_minutes

Base Dataset Statistics (Cont'd): Correlation

exceeded 20% correlation. Thus, there's a little multi-co-linearity.

Base Dataset Statistics (Cont'd): Correlation

No features correlated with the fraud bool.

Methodology

In this section we describe our modeling strategy as well as our evaluation metrics.

Methodology: Pipelines

Methodology (Cont'd): Evaluation Metrics

Performance
Metric: Recall
@ 5% FPR
(False
Positive Rate)

Fairness
Metric:
Predictive
Equality (FPR
Balance)

AUC - Area Under the Curve

Experimental Results

In this section we go through the performed pipelines and their results from Step 1 till Step 4.

Step 1

Hyperparameters Tuning for the Baseline Models.

Experiments Results: Step 1

Model	AUC	TPR	Predictive equality
Logistic Regression	0.877	49.69%	89.52%
Random Forest	0.805	33.39%	34.14%
Neural Network	0.884	51.88%	84.36%
XGBoost	0.867	46.63%	76.07%

Baseline Models

Model	AUC	TPR	Predictive equality
Logistic Regression	0.879	49.65%	88.42%
Random Forest	0.872	48.68%	96.23%
Neural Network	0.884	52.19%	99.25%
AdaBoost	0.893	52.40%	100.00%
XGBoost	0.886	54.66%	88.81%
CatBoost	0.895	55.14%	86.27%
LGBM	0.886	51.91%	79.99%

Results after Hyperparameters Tuning

Model	AUC	TPR	Predictive equality
Logistic Regression	0.002	-0.0004	-0.011
Random Forest	0.067	0.1529	0.6209
Neural Network	0	0.0031	0.1489
XGBoost	0.019	0.0803	0.1274

Deviation of results from baseline models

Step 2 – 4 Pipelines

Experimenting with Different Preprocessing Pipelines.

Step 2 - Pipeline 1

Step '

• Imputing the missing values by Mean, Mode

Step 2

- Detect outliers
- Clip outliers

Step 3

- Using MinMax Scaler
- Using Label encoding

Step 4

Model selection(using the same models of step 1)

Step 5

Tuning the best model(CatBoost)

Step 2 - Pipeline 1 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.867	46.11%	89.01%
Random Forest	0.801	30.33%	33.84%
Neural Network	0.872	47.88%	93.63%
XGBoost	0.888	52.99%	94.11%
AdaBoost	0.8893	53.47%	100.00%
CatBoost(after tuning again)	0.893	54.93%	85.81%
LGBM	0.882	50.38%	79.88%

	Model	AUC	TPR	Predictive equality
	Logistic Regression	-0.012	-0.035	0.0059
	Random Forest	-0.071	-0.184	-0.62391
	Neural Network	-0.012	-0.043	-0.0562
_	XGBoost	0.002	-0.017	0.053
	AdaBoost	-0.004	0.0107	0
	CatBoost	-0.002	-0.002	-0.0046
	LGBM	-0.004	-0.015	-0.0011

Pipeline results

Deviation from step 1 results

Step 2 - Pipeline 2

Step 1

- Imputing the missing values by Mean, Mode
- Deleted 'prev_address_months_count', 'bank_months_count'

Step 2

• Didn't handle the outliers.

Step 3

- Using Robust Scaler
- Using Label encoding

Step 4

• Model selection (using the same models of step 1)

Step 5

Tuning the best model (CatBoost)

Step 2 - Pipeline 2 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.859	44.89%	92.65%
Random Forest	0.875	48.19%	98.92%
Neural Network	0.8749	48.26%	92.91%
XGBoost	0.884	51.11%	80.26%
AdaBoost	0.885	52.61%	100.00%
CatBoost(after tuning again)	0.893	55.35%	87.51%
LGBM	0.882	50.42%	79.69%

Model	AUC	TPR	Predictive equality
Logistic Regression	-0.02	-0.0476	0.0423
Random Forest	0.003	-0.0049	0.0269
Neural Network	-0.0091	-0.0393	-0.0634
XGBoost	-0.002	-0.0355	-0.08551
AdaBoost	-0.008	0.0021	0
CatBoost	-0.002	0.0021	0.0124
LGBM	-0.004	-0.0149	-0.003

Pipeline results

Deviation from step 1 results

Step 2 - Pipeline 3

Step 1

- Imputing the missing values by Mean, Mode
- Deleted 'prev_address_months_count', 'bank_months_count'

Step 2

• Deleted the outliers.

Step 3

- Using Standard Scaler
- Using One Hot Encoding

Step 4

Model selection (using the same models of step 1)

Step 5

Tuning the best model (CatBoost)

Step 2 - Pipeline 3 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.877	48.55%	87.48%
Random Forest	0.872	47.00%	99.53%
Neural Network	0.878	49.81%	86.79%
XGBoost	0.883	52.08%	91.38%
AdaBoost	0.884	52.03%	100.00%
CatBoost(after tuning again)	0.885	51.94%	91.97%
LGBM	0.871	46.90%	82.56%

Logistic Regression	-0.002	-0.011	-0.0094
Random Forest	0	-0.0168	0.033
Neural Network	-0.006	-0.0238	-0.1246
XGBoost	-0.003	-0.0258	0.0257
AdaBoost	-0.009	-0.0037	0
CatBoost	-0.01	-0.032	0.057
LGBM	-0.015	-0.0501	0.0257

AUC

Model

Pipeline results

Deviation from step 1 results

TPR

Predictive equality

Step 2 - Pipeline 4

Step 1

- Imputing the missing values by Mean, Mode
- Deleted 'prev_address_months_count'

Step 2

• Didn't handle the outliers.

Step 3

- Using Robust Scaler
- Using One Hot Encoding
- .And deleted the last column created for each feature after one hot encoding manually

Step 4

Model selection (using the same models of step 1)

Step 5

Tuning the best model (CatBoost)

Step 2 - Pipeline 4 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.8646	45.97%	90.09%
Random Forest	0.8724	48.05%	99.77%
Neural Network	0.884	51.18%	93.76%
XGBoost	0.8863	52.22%	82.13%
AdaBoost	0.8874	52.81%	100.00%
CatBoost(after tuning again)	0.8933	54.86%	86.46%
LGBM	0.8789	49.79%	80.52%

Model	AUC	TPR	Predictive equality
Logistic Regression	-0.0144	-0.0368	0.0167
Random Forest	0.0004	-0.0063	0.0354
Neural Network	0	-0.0101	-0.0549
XGBoost	0.0003	-0.0244	-0.0668
AdaBoost	-0.0056	0.0041	0
CatBoost	-0.0017	-0.0028	0.0019
LGBM	-0.0071	-0.0212	0.0053

Pipeline results

Deviation from step 1 results

Step 3 – 7 Pipelines

Experimenting with Different SOTA techniques to Handle the Class Imbalance Issue.

Step 3 - Pipeline 1

Step 1

Used Step 2 – Pipeline 3 Preprocessing

Step 2

• Handled Class Imbalance using "imblearn" ensemble models

Imblearn Ensemble models
Benefits

- No need for manual class balancing
- Reduced Overfitting
- Provides both Bagging and Boosting Models

Step 3 - Pipeline 1 Results

Model	AUC	TPR	Predictive equality
Balanced Bagging Classifier	0.8777	49.42%	95.37%
Balanced Random Forest	0.8542	41.29%	100.00%
RUS Boosting Classifier	0.8774	48.98%	100.00%
Easy Ensemble Classifier	0.8861	52.08%	100.00%

Model	AUC	TPR	Predictive equality
Logistic Regression	0.877	48.55%	87.48%
Random Forest	0.872	47.00%	99.53%
Neural Network	0.878	49.81%	86.79%
XGBoost	0.883	52.08%	91.38%
AdaBoost	0.884	52.03%	100.00%
CatBoost(after tuning again)	0.885	51.94%	91.97%
LGBM	0.871	46.90%	82.56%

Pipeline Results

Step 2 Pipeline 3 Results

Model	Compared With	AUC	TPR	Predictive equality
Balanced Bagging Classifier	Logistic Regression	0.0007	0.87%	7.89%
Balanced Random Forest	Random Forest	-0.018	-5.71%	0.47%
RUS Boosting Classifier	AdaBoost	-0.007	-3.05%	0.00%
Easy Ensemble Classifier	AdaBoost	0.0021	0.05%	0.00%

Deviation from Step 2 Pipeline 3 Results

Step 3 - Pipeline 2

Step 1

Used Step 2 – Pipeline 4 Preprocessing

Step 2

• Handled Class Imbalance using Random Undersampling

Random Undersampling Benefits

- Balancing the dataset
- Reduce Overfitting
- Faster Training

Step 3 - Pipeline 2 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.8697	47.12%	95.99%
Random Forest	0.8701	48.33%	99.96%
Neural Network	0.8858	52.08%	85.67%
XGBoost	0.8819	50.49%	63.85%
AdaBoost	0.8827	51.77%	100.00%
CatBoost(after tuning again)	0.8921	54.10%	89.29%
LGBM	0.8889	52.74%	87.27%

XGBoost	-0.0044	-0.0173	
AdaBoost	-0.0047	-0.0104	
CatBoost	-0.0012	-0.0076	/
LGBM	0.01	0.0295	

Model

Logistic Regression

Random Forest

Neural Network

Pipeline Results

Deviation from Step 2 Pipeline Results

AUC

0.0051 0.0115

-0.0023 0.0028

0.0018 | 0.009

TPR

Predictive equality

0.059

0.0019

-0.0809

-0.1828 0 0.0283 0.0675

Step 3 - Pipeline 3

Step 1

Used Step 2 – Pipeline 4 Preprocessing

Step 2

Handled Class Imbalance using Random Oversampling

Random Oversampling Benefits

- Improve Minority Class Representation
- Prevent Overfitting on Majority Class
- Avoid Information Loss

Step 3 - Pipeline 3 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.8652	46.35%	92.96%
Random Forest	0.8724	48.12%	99.79%
Neural Network	0.8863	53.27%	88.72%
XGBoost	0.8845	53.27%	78.64%
AdaBoost	0.8874	53.02%	100.00%
CatBoost(after tuning again)	0.8937	54.76%	85.90%
LGBM	0.8916	54.03%	83.86%

Model	AUC	TPR	Predictive equality
Logistic Regression	0.0006	0.0038	0.0287
Random Forest	0	0.0007	0.0002
Neural Network	0.0023	0.0209	-0.0504
XGBoost	-0.0018	0.0105	-0.0349
AdaBoost	0	0.0021	0
CatBoost	0.0004	-0.001	-0.0056
LGBM	0.0127	0.0424	0.0334

Pipeline Results

Deviation from Step 2 Pipeline Results

Step 1

Used Step 2 – Pipeline 4 Preprocessing

Step 2

• Handled Class Imbalance using SMOTE-NC Oversampling

SMOTE-NC Benefits

- Handling Continuous and Categorical Features
- Enhancing Generalization
- Avoiding Data Loss

Step 3 - Pipeline 4 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.8384	40.58%	80.36%
Random Forest	0.8582	44.48%	100.00%
Neural Network	0.8443	42.81%	100.00%
XGBoost	0.8393	38.60%	61.05%
AdaBoost	0.8467	42.77%	100.00%
CatBoost(after tuning again)	0.8567	45.59%	55.84%
LGBM	0.8462	43.71%	65.23%

Pipeline Results

Model	AUC	TPR	Predictive equality
Logistic Regression	-0.0262	-0.0539	-0.0973
Random Forest	-0.0142	-0.0357	0.0023
Neural Network	-0.0397	-0.0837	0.0624
XGBoost	-0.047	-0.1362	-0.2108
AdaBoost	-0.0407	-0.1004	0
CatBoost	-0.0366	-0.0927	-0.3062
LGBM	-0.0327	-0.0608	-0.1529

Deviation from Step 2 Pipeline Results

Step 1

Used Step 2 – Pipeline 4 Preprocessing

Step 2

• Handled Class Imbalance using Random Undersampling followed by Random Oversampling

Undersampling then Oversampling Benefits

- Improved Generalization
- Reduced Overfitting
- Computationally Efficient

Step 3 - Pipeline 5 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.8509	43.29%	74.09%
Random Forest	0.8663	45.21%	90.91%
Neural Network	0.8742	49.76%	57.10%
XGBoost	0.8648	45.21%	54.34%
AdaBoost	0.8727	48.85%	100.00%
CatBoost(after tuning again)	0.8791	51.18%	60.85%
LGBM	0.8754	50.24%	54.95%

Pipelin	e Results
----------------	-----------

Model	AUC	TPR	Predi	ctive equalit	У
Logistic Regression	-0.0137	-0.0268		-0.16	
Random Forest	-0.0061	-0.0284		-0.0886	
Neural Network	-0.0098	-0.0142		-0.3666	
XGBoost	-0.0215	-0.0701		-0.2779	
AdaBoost	-0.0147	-0.0396		0	
CatBoost	-0.0142	-0.0368		-0.2561	
LGBM	-0.0035	0.0045		-0.2557	

Deviation from Step 2 Pipeline Results

Step 1

Used Step 2 – Pipeline 4 Preprocessing

Step 2

• Handled Class Imbalance using Near Miss Undersampling then SOMTE-NC Oversampling

Near Miss Undersampling then SMOTE-NC Oversampling Benefits

- Improved Generalization
- Reduced Overfitting
- Computationally Efficient
- Complementary Effects
- Handling Continuous and Categorical Features

Step 3 - Pipeline 6 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.8946	57.44%	68.26%
Random Forest	0.9138	62.30%	91.18%
Neural Network	0.9372	73.31%	57.96%
XGBoost	0.8648	45.21%	54.34%
AdaBoost	0.91	63.17%	100.00%
CatBoost(after tuning again)	0.9414	75.30%	60.79%
LGBM	0.9343	71.58%	62.57%

		_	<u> </u>
Pinal	lina	RACH	ılte
I IPC		Resu	IILO

Model	AUC	TPR	Predictive equality
Logistic Regression	0.03	0.1147	-0.2183
Random Forest	0.0414	0.1425	-0.0859
Neural Network	0.0532	0.2213	-0.358
XGBoost	-0.0215	-0.0701	-0.2779
AdaBoost	0.0226	0.1036	0
CatBoost	0.0481	0.2044	-0.2567
LGBM	0.0554	0.2179	-0.1795

Deviation from Step 2 Pipeline Results

Step 1

Used Step 2 – Pipeline 4 Preprocessing

Step 2

 Handled Class Imbalance using Near Miss Undersampling then SOMTE-NC Oversampling and Stratifying

Near Miss Undersampling then SMOTE-NC Oversampling and Stratifying Benefits

- Improved Generalization
- Reduced Overfitting
- Computationally Efficient
- Complementary Effects
- Handling Continuous and Categorical Features
- Maintain the distribution of classes across the train and test datasets

Step 3 - Pipeline 7 Results

Model	AUC	TPR	Predictive equality
Logistic Regression	0.8932	56.98%	81.77%
Random Forest	0.921	65.50%	94.18%
Neural Network	0.9451	75.70%	65.07%
XGBoost	0.9018	58.57%	67.81%
AdaBoost	0.9285	69.49%	100.00%
CatBoost(after tuning again)	0.9546	79.69%	55.26%
LGBM	0.9489	77.70%	56.87%

Model	AUC	TPR	Predictive equality
Logistic Regression	0.0286	0.1101	-0.0832
Random Forest	0.0486	0.1745	-0.0559
Neural Network	0.0611	0.2452	-0.2869
XGBoost	0.0155	0.0635	-0.1432
AdaBoost	0.0411	0.1668	0
CatBoost	0.0613	0.2483	-0.312
LGBM	0.07	0.2791	-0.2365

Deviation from Step 2 Pipeline Results

Step 4

Applying Our Best Approach to the Different Variants of the Dataset.

Experiments Results: Step 4

• Since the last experiment with NearMiss for undersampling followed by stratifying while creating the train and test sets then apply SMOTE-NC on the train data get the highest results. we use the same technique with the preprocessing done in experiment 7 in step 3 on all the variants of the dataset and here are the results.

Dataset	AUC	TPR	Predictive equality
Base AdaBoost	0.9346	72.08%	100.00%
Variant 1 AdaBoost	0.9324	69.63%	100.00%
Variant 2 AdaBoost	0.9378	71.21%	100.00%
Variant 3 AdaBoost	0.9329	70.67%	100.00%
Variant 4 AdaBoost	0.9383	72.21%	100.00%
Variant 5 AdaBoost	0.931	69.58%	100.00%

Dataset	AUC	TPR	Predictive equality
CatBoost Base	0.9535	80.37%	58.40%
CatBoost Variant 1	0.9538	77.88%	98.03%
CatBoost Variant 2	0.9549	79.37%	55.36%
CatBoost Variant 3	0.9534	78.47%	92.92%
CatBoost Variant 4	0.9561	80.05%	63.03%
CatBoost Variant 5	0.952	78.15%	87.26%

If we're concerned about the fairness and final output we could use AdaBoost

If we're concerned only about the fraud detection then we could use CatBoost

Discussion & Conclusion

Discussion

Limitations

- Slow training time prevented the usage of cross validation.
- Using Stratified splitting.
- Apply insufficient number of hyperparameter combinations in hyperparameter tuning process.
- Although we mentioned in the proposal that we will use SVM algorithm, but we don't use it since the kernel trick needs high resources.

Conclusion

- 1. Class Imbalance Matters: Addressing class imbalance is crucial for better model performance, fairness, and generalization in fraud detection.
- **2. Fairness Consideration:** We evaluated fairness using Predictive Equality. Ensemble models like BalancedRandomForestClassifier and AdaBoost achieved good fairness results.
- **3. Fraud Detection Performance:** CatBoost consistently performed well in detecting fraud, making it a strong candidate for fraud detection applications.
- **4. Ensemble Models Shine:** Models from the imblearn library automatically handle class imbalance and improve both performance and fairness.
- **5. Model Variants:** AdaBoost variants showed similar fairness results. CatBoost variants had varying fairness and fraud detection performance.
- **6. Data Preprocessing Matters:** Proper data preprocessing, including handling missing values and scaling, contributed to better model results.
- 7. Choose Wisely: The final model choice depends on your priorities—prioritize fairness.

Classes Hassan Ahmed **Data Cleaning Data Preprocessing** Amr Sayed Modeling **Bilal Morsy NN Modeling Omar Amer** Step 0 EDA **Bilal Morsy Comparing Variance Datasets Amr Sayed** Step 1 **LGBM & Random Forest** Amr Sayed XGBoost and AdaBoost Hassan Ahmed Logistic Regression and Neural Networks **Omar Amer** CatBoost **Bilal Morsy** Step 2 Pipeline 1 Amr Sayed Pipeline 2 **Bilal Morsy** Pipeline 3 **Omar Amer** Pipeline 4 Hassan Ahmed Step 3 **Under Sampling Amr Sayed** Over Sampling Amr Sayed Under Sampling then Over Sampling **Bilal Morsy** SMOTE - NC **Bilal Morsy** Imblearn ensemble **Omar Amer** Near miss and SMOTE - NC Hassan Ahmed Near miss and SMOTE - NC and Stratifying **Omar Amer** Step 4 (CatBoost and AdaBoost and comparison) Hassan Ahmed Readme Readme Amr Sayed & Hassan Ahmed

Work Load

Thank You