Two Port Networks

By
P V S R Bharadwaja

Introduction

- ➤ A Pair of terminals through which a current may enter or leave a network is known as a port.
- ➤ A port is an access to the network and consists of a pair of terminals; the current entering one terminal leaves through the other terminal so that the net current entering the port equals zero.
- A two-port network is an electrical network with two separate ports for input and output.

Network With One Port

Two Port Networks

Reasons for Studying Two Port Networks

- They are useful in Communications, Electronics, Control Systems Etc
 - Ex: They are used in modelling transistors in transistors
- Knowing the parameters of a two port network enables us to treat it as a "Black Box" when embedded within a larger network

List of Two Port Parameters

- Impedance Parameters
- Admittance Parameters
- Hybrid Parameters
- Transmission Parameters

- * Interconnection of Parameters
- *Conditions of Reciprocity and Symmetry

1. Impedance Parameters

- They are commonly used in Synthesis of Filters
- They are useful in Design and Analysis of Impedance Matching Networks and Power Distribution networks
- In all the networks only two variables will be independent and remaining two will be dependent

$$\mathbf{V}_1 = \mathbf{z}_{11}\mathbf{I}_1 + \mathbf{z}_{12}\mathbf{I}_2$$
$$\mathbf{V}_2 = \mathbf{z}_{21}\mathbf{I}_1 + \mathbf{z}_{22}\mathbf{I}_2$$

Z Parameters in the form of Matrix

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

Z Parameters Relationship

$$\mathbf{z}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \bigg|_{\mathbf{I}_2 = 0}, \qquad \mathbf{z}_{12} = \frac{\mathbf{V}_1}{\mathbf{I}_2} \bigg|_{\mathbf{I}_1 = 0}$$

$$\mathbf{z}_{21} = \frac{\mathbf{V}_2}{\mathbf{I}_1} \bigg|_{\mathbf{I}_2 = 0}, \qquad \mathbf{z}_{22} = \frac{\mathbf{V}_2}{\mathbf{I}_2} \bigg|_{\mathbf{I}_1 = 0}$$

Name of Z Parameters

- \mathbf{z}_{11} = Open-circuit input impedance
- \mathbf{z}_{12} = Open-circuit transfer impedance from port 1 to port 2
- \mathbf{z}_{21} = Open-circuit transfer impedance from port 2 to port 1
- \mathbf{z}_{22} = Open-circuit output impedance

Driving Point Impedance

- A driving point impedance is the input impedance of a two terminal device.
- Z₁₁: Input Driving Point Impedance with Output open circuited
- Z₂₂ : Output Driving Point Impedance with Input Open Circuited

Transfer Impedances

Z₂₁ and Z₂₂ are called Transfer Impedances

Graphical Approach - I

- Step 1 : Connect V₁ to port
 1
- Step 2 : Apply KVL at input Loop
- Step 3 : Find Z_{11} and Z_{21}

Graphical Approach - II

- Step 1 : Connect V₂
 to Port 2
- Step 2 : Apply KVL to Output Loop
- Step 3 : Find Z_{12} and Z_{22} .

Whether Symmetrical?

When $\mathbf{z}_{11} = \mathbf{z}_{22}$, the two-port network is said to be *symmetrical*. This implies that the network has mirrorlike symmetry about some center line; that is, a line can be found that divides the network into two similar halves.

Whether Reciprocal?

 When the two-port network is linear and has no dependent sources, the transfer impedances are equal (Z12 = Z21) and the two port is said to be reciprocal.

Determine the Z- Parameters for the below circuit

Circuit 1 for Calculation of Parameters

Calculation of Z_{11} and Z_{21}

$$\mathbf{z}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} = \frac{(20 + 40)\mathbf{I}_1}{\mathbf{I}_1} = 60 \ \Omega$$

$$\mathbf{z}_{21} = \frac{\mathbf{V}_2}{\mathbf{I}_1} = \frac{40\mathbf{I}_1}{\mathbf{I}_1} = 40\ \Omega$$

Circuit 2 For Calculation of Parameters

Calculation of Z_{12} and Z_{22}

$$\mathbf{z}_{12} = \frac{\mathbf{V}_1}{\mathbf{I}_2} = \frac{40\mathbf{I}_2}{\mathbf{I}_2} = 40\,\Omega,$$

$$\mathbf{z}_{22} = \frac{\mathbf{V}_2}{\mathbf{I}_2} = \frac{(30 + 40)\mathbf{I}_2}{\mathbf{I}_2} = 70 \,\Omega$$

Impedance Matrix

$$[\mathbf{z}] = \begin{bmatrix} 60 \,\Omega & 40 \,\Omega \\ 40 \,\Omega & 70 \,\Omega \end{bmatrix}$$

Find the Z- Parameters for the Below Network

Answer: $\mathbf{z}_{11} = 7 \ \Omega, \ \mathbf{z}_{12} = \mathbf{z}_{21} = \mathbf{z}_{22} = 3 \ \Omega.$

• Find I_1 and I_2

$$I_1 = 2/0^{\circ} A$$
, $I_2 = 1/-90^{\circ} A$

• Find the Z-Parameters for the below circuit

