PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-052721

(43)Date of publication of application: 02.03.1993

(51)Int.CI.

G01N 1/28

(21)Application number: 03-210803

(71)Applicant: HITACHI LTD

(22)Date of filing:

22.08.1991

(72)Inventor:

ONISHI TAKESHI ISHITANI TORU

(54) SAMPLE SEPARATING METHOD AND METHOD FOR ANALYZING SEPARATED SAMPLE OBTAINED BY THE SEPARATING METHOD

(57)Abstract:

PURPOSE: To shorten the time of analysis by performing focused-ionbeam (FIB) machining on the surface of a sample substrate at least at two kinds of angles, mechanically connecting the sample of analyzing part to a probe which is introduced from the outside, taking out only the analyzing part, and performing the analysis from the arbitrary direction. CONSTITUTION: An FIB 1 is orthgonally cast on the surface of a sample 2 and run in a rectangular pattern. A square hole 3 having the specified depth is formed in the surface of the sample 2. Then, the sample 2 is inclined, and a bottom hole 4 is formed. The sample 2 is set so that the sample is orthogonal to the FIB 1 again, and a cut groove 5 is formed. Then, the tip of a probe 31 is brought into contact with the separating part of the sample 2. Thereafter, gas 7 is supplied through a gas nozzle 6. The FIB 1 is locally case on the region including the tip part of the probe 31, and a volume film 8 is formed. Then, a separated material 9 is cut out of the sample 2 with the FIB 1. The separated sample 9 which in held with the probe 31 can be inserted into various kinds of analyzing devices differently with respect to the sample 2, and the separated sample 9 can be measured.

LEGAL STATUS

[Date of request for examination]

12.10.1994

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2774884

[Date of registration]

24.04.1998

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-52721

(43)公開日 平成5年(1993)3月2日

(51) Int.Cl.5

G 0 1 N 1/28

識別記号

· 庁内整理番号 F 8105−2J FΙ

技術表示箇所

審査請求 未請求 請求項の数11(全 8 頁)

(21)出願番号

(22)出願日

特願平3-210803

平成3年(1991)8月22日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 大西 毅

茨城県勝田市市毛882番地 株式会社日立

製作所那珂工場内

(72)発明者 石谷 亨

茨城県勝田市市毛882番地 株式会社日立

製作所那珂工場内

(74)代理人 弁理士 春日 譲

(54) 【発明の名称】 試料の分離方法及びこの分離方法で得た分離試料の分析方法

(57) 【要約】

【目的】 集積回路チップや半導体ウェハーの任意の箇所を分離するに当り、チップやウェハーを割ることなく当該箇所の部分を分離し、分離した試料を任意の位置に搬送し又は任意の姿勢にセットし、TEM、SEM、SIMS等のその他の各種の分析を可能にする。

【構成】 FIBによる三次元微細加工技術とマイクロマニピュレーション技術により微細な試料片を試料基板から切り出して分離する。試料基板の表面に対し少なくとも二種類の角度からFIBで加工し、分析対象部を含む試料の一部を分離する工程中に、外部から別個に導入したプローブに分離試料を機械的に接続する。分離した試料はプローブで支持され、搬送される。分離試料に対しTEM、SEM、SIMSその他の分析が行われる。

1

【特許請求の範囲】

【請求項1】 試料の表面に対し、少なくとも2つの異なる角度の方向から集束イオンビームを照射して前記試料を集束イオンビーム加工し、前記試料の一部を分離する方法であり、前記試料の一部を分離する前に、外部から導入されたプローブを、分離される前記一部に接続し、前記試料の一部を支持するようにしたことを特徴とする試料の分離方法。

【請求項2】 請求項1記載の試料の分離方法において、前記試料の一部と前記プローブの接続を、集束イオ 10 ンピーム加工により発生したスパッタ粒子による再付着膜により行うことを特徴とする試料の分離方法。

【請求項3】 請求項1記載の試料の分離方法において、前記試料の一部と前記プローブの接続を、ガス雰囲気中での集束イオンビーム照射により形成したビーム誘起堆積膜により行うことを特徴とする試料の分離方法。

【請求項4】 請求項1~3のいずれか1項に記載の試料の分離方法において、前記集束イオンピーム加工が、 反応ガス雰囲気中でのガス支援エッチングであることを 特徴とする試料の分離方法。

【請求項5】 請求項1記載の試料の分離方法において、前記試料は、半導体ウェハーであることを特徴とする試料の分離方法。

【請求項6】 請求項1記載の試料の分離方法において、前記プロープは、 50μ m以上の厚みを有するホルダー部と、このホルダー部の片面に先端から突出して設けられた 10μ m以下の厚みを有するプローブヘッドからなることを特徴とする試料の分離方法。

【請求項7】 請求項6記載の試料の分離方法において、前記プローブは、半導体製造プロセスを利用して製 30 造されることを特徴とする試料の分離方法。

【請求項8】 請求項1~3のいずれか1項に記載の試料の分析方法において、前記試料の一部と前記プローブとの接触を、分離される試料の一部の近傍の二次粒子像の輝度変化により判断することを特徴とする試料の分離方法。

【請求項9】 試料の表面に対し、少なくとも2つの異なる角度の方向から集束イオンピームを照射して前記試料を集束イオンピーム加工し、前記試料の一部を分離して分析する方法であり、前記試料の一部を分離する前 40 に、外部から導入されたプローブを、分離される前記一部に接続し、前記試料の一部を支持し、前記プローブによるこの支持状態で、観察手段を用いて、分離された試料の前記一部の断面を像観察することを特徴とする分析方法。

【請求項10】 試料の表面に対し、少なくとも2つの 異なる角度の方向から集束イオンピームを照射して前記 試料を集束イオンピーム加工し、前記試料の一部を分離 して分析する方法であり、前記試料の一部を分離する前 に、外部から導入されたプローブを、分離される前記一 部に接続し、前記試料の一部を支持し、更に、前記試料 の一部を分離する最中又は分離した後に部分的に薄膜化

し、この轉膜部を透過型電子顕微鏡で像観察することを 特徴とする分析方法。

【請求項11】 試料の表面に対し、少なくとも2つの 異なる角度の方向から集束イオンビームを照射して前記 試料を集束イオンビーム加工し、前記試料の一部を分離 して分析する方法であり、前記試料の一部を分離する前 に、外部から導入されたプロープを、分離される前記一 部に接続し、前記試料の一部を支持し、この支持状態 で、更に、二次イオン分析法で分離した前記試料の成分 情報を得ることを特徴とする分析方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は試料の分離方法及び分離 した試料の分析方法に係り、特に半導体ウェハーの如き 試料基板から微細な部分を分離する方法及びそれを利用 した分析方法に関するものである。

[0002]

(従来の技術) 従来技術としてマイクロスコピー・オブ・セミコンダクティング・マテリアルズ・コンファレンス、オックスフォード大学(1989年)、501~506頁(Microscopy of Semiconducting Materials Conference, Oxford, (1989)pp. 501-506)に開示される技術がある。この文献では、透過型電子顕微鏡(Transmission Blectron Microscope:略してTEM)分析が可能な薄膜試料を集東イオンピーム(Focused Ion Beam:略してFIB)を利用して切り出した例が述べられている。

【0003】上記文献の開示内容によれば、図7に示すように、半導体集積回路から長さ数mmで幅100~500 μmのチップ71をダイアモンド・ソーを用いて切出し、銅製のグリッド72(TEM観察用標準グリッド)に固定し、その後、FIBを利用してチップ71に薄膜試料73を加工・形成し、その薄膜試料73を電子ビーム74を用いてTEM観察している。図中、75は矩形開口部である。

【0004】またその他の従来技術として、プロシーディングス・オブ・インターナショナル・リライアビリティー・フィジィックス・シンポジウム(1989年)第43頁~第52頁(Proceedings of International Reliability Physics Symposium, (1989)pp. 43-52) がある。この文献では、集東イオンビームを利用してデバイスの断面加工を行い、更に走査イオン顕微鏡(Scanning Ion Microscope:略してSIM) 機能を用いて断面構造の像観察を行った例が述べられている。この例は、いわゆる断面SEM (ScanningElectron Microscope:略してSEM) による観察の例である。

[0005]

して分析する方法であり、前記試料の一部を分離する前 【発明が解決しようとする課題】従来のTEM観察で に、外部から導入されたプロープを、分離される前記— 50 は、一般的に、試料を研磨により薄膜化して観察を行 う。従って、試料の観察場所や観察方向を任意に且つ正確に設定できなかった。前述の第1の従来技術は、試料の特定箇所のTEM像が観察できる優れた手法である。しかし、分析箇所を含む長さ数mmで幅 $100\sim500~\mu$ mの領域を、集積回路チップや半導体ウェハーから機械的に分離する工程が必要とされ、分離前の試料基板がウェハーである場合、観察のためにウェハーを割ることになる。またダイアモンド・ソーなどの機械加工では、加工精度とダメージの観点から試料を $100~\mu$ m以下に薄く加工することは困難であり、機械加工で薄く削れなかった 10残りの部分をFIBで加工するため、その加工時間が長くかかるという欠点がある。

【0006】従来の断面SEM観察では、観察試料を劈開して、その劈開面を観察していた。そのため所望の箇所の断面を観察するのは困難であった。前述した第2の従来技術は、試料の特定箇所の断面を観察できる点で優れている。しかし、試料表面に対し完全に又はおよそ平行な断面を観察するのは困難であり、例えばコンタクト孔の水平断面などは観察できないという不具合を有していた。

【0007】本発明の目的は、集積回路チップや半導体ウェハー内の任意の点を分析する際に、チップやウェハーを割らずに当該分析部分のみを取出すことができ、また取出した試料を任意の方向から分析することができ、更に分析のための全所要時間を短くすることができる試料の分離方法、及びこの試料の分離方法を利用した分析方法を提供することにある。

[8000]

【課題を解決するための手段】本発明に係る試料の分離 方法及び分析方法は、上記目的を達成するため、次のよ 30 うに構成される。

- 1. 本発明に係る試料の分離方法は、試料の表面に対し、少なくとも2つの異なる角度の方向から集束イオンビームを照射し、試料を集束イオンビームで加工し、試料の一部を分離するもので、試料の一部を分離する前に、外部から導入されたプローブを、分離される試料の一部に接続し、当該分離試料をプローブで支持し、任意の位置に分離試料を搬送し、また分離試料の姿勢を任意の姿勢にするものである。
- 2. 前記分離方法において、好ましくは、試料の一部 40 とプロープの接続を、集東イオンビーム加工により発生 したスパッタ粒子による再付着膜により、又はガス雰囲 気中での集束イオンビーム照射により形成したビーム誘起堆積膜により行う。
- 3. 前記の各分離方法において、好ましくは、集束イオンビーム加工が、反応ガス雰囲気中でのガス支援エッチングである。
- 4. 前記の分離方法において、好ましくは、試料は半 導体ウェハーであり、またプローブは半導体製造プロセ スを利用して製造される。

- 5. 本発明に係る試料の分析方法は、試料の表面に対し、少なくとも2つの異なる角度の方向から集東イオンビームを照射して試料を集東イオンビーム加工し、試料の一部を分離して分析する方法であり、試料の一部を分離する前に、外部から導入されたプローブを、分離される一部に接続し、試料の一部を支持し、プローブによるこの支持状態で、観察手段を用いて、分離された試料の一部の断面を像観察するものである。
- 6. 本発明に係る更なる試料の分析方法は、試料の表 の 面に対し、少なくとも2つの異なる角度の方向から集束 イオンピームを照射して試料を集束イオンピーム加工 し、試料の一部を分離して分析する方法であり、試料の 一部を分離する前に、外部から導入されたプローブを、 分離される一部に接続し、試料の一部を支持し、更に、 試料の一部を分離する最中又は分離した後に部分的に薄 膜化し、この薄膜部を透過型電子顕微鏡で像観察するも のである。
- 7. 本発明に係る更なる試料の分析方法は、試料の表面に対し、少なくとも2つの異なる角度の方向から集束 イオンビームを照射して試料を集束イオンビーム加工し、試料の一部を分離して分析する方法であり、試料の一部を分離する前に、外部から導入されたプローブを、分離される一部に接続し、試料の一部を支持し、この支持状態で、更に、二次イオン分析法で分離した試料の成分情報を得るものである。

上記の如く、本発明に係る試料の分離方法及び分析方法 によれば、上記目的を達成するため、試料基板表面に対 し少なくとも二種類の角度からFIB加工し、分析部を 含む試料の一部を分離する分離工程中に別個に外部から 導入したプローブに分離試料を機械的に接続するように 構成した。従って、試料を分離した後はプローブの移動 により分離試料を自由に移動することができる。

[0009]

【作用】本発明では、試料基板表面に対し少なくとも二 種類の角度からFIB加工することで、試料基板と分析 部を含む微小試料とが機械的に分離するように構成され る。またこの試料の一部分離の際において、別個に外部 から導入したプローブに分離試料を機械的に接続してお くことで、分離試料が保持でき、プローブの移動により 試料を任意の位置に運搬することができる。プローブに 保持された分離試料は元の試料基板とは別個に、多種の 分析装置に搬入して測定することが可能であり、分析に 適した形状に再加工することも可能である。一方、分離 後の試料基板は、それ自体破壊されないので、他の分析 や追加のプロセスを施すことが可能である。また、FI B加工を利用して試料を分離するため、分離試料の大き さは、従来の機械加工による分離方法に比較して非常に 小さくすることができる。そのためTEM観察のための 薄膜化加工に要する時間を短くすることができる。

50 [0010]

【実施例】以下に、本発明の実施例を図1~図6を参照 して説明する。図3は、本実施例で用いられるFIB装 置の基本構成を示す。液体金属イオン源100から放出 したイオンは、コンデンサレンズ101と対物レンズ1 06によりFIB1となって試料2上に集束される。2 つのレンズ101,106の間には、可変アパーチャ1 02、アライナ・スティグマ103、プランカ104、 デフレクタ105が配置されている。可変アパーチャ1 02には絞り駆動部102aが、プランカ104にはプ ランキング・アンプ104aが、デフレクタ105には 10 によって行われる。 偏向制御部105aが、それぞれ付設されている。

【0011】試料2は、2軸(X, Y)方向に移動可能 なステージ108上において、このステージ108に装 着された試料回転装置120の回転軸に固定されてい る。ステージ108の移動は、ステージ制御部108a に基づきX及びYの各駆動部を介して行われる。この実 施例で、試料回転装置120の回転軸はステージ108 と平行に設定されている。

【0012】107はガス源で、ガス源107から発生 B1の試料照射部の近傍に導かれる。ガス源107はガ ス源制御部107aにより制御される。FIBの照射に より試料2の表面から発生した二次電子は、二次電子検 出器109により検出される。二次電子検出器109か らの二次電子信号をA/D変換し、FIBの偏向制御と 同期してコンピュータ110の画像メモリに取り込むこ とにより、CRT110a上に走査イオン顕微鏡 (Scan ning Ion Microscope: 略してSIM) による像が表示 される。

【0013】マニピュレータ112は、図4に示すよう 30 に、3枚のバイモルフ型圧電素子30を90°ずつ方向 を回転して接続し、X,Y,Zの3軸の駆動を可能とし たものである。マニピュレータの先端には、金属製のプ ロープ31を装着している。プロープ31の先端部は、 板状に加工されている。更に具体的に、プローブ31 は、50μm以上の厚みを有するホルダー部と、このホ ルダー部の片面に先端から突出して設けられた10 μm 以下の厚みを有するプローブヘッドから構成されること が望ましい。図3に示すように、マニピュレータ112 は、マニピュレータ制御部112aを備えている。

【0014】上記コンピュータ110は、システムパス 111を介して可変アパーチャ102の絞り駆動、デフ レクタ105によるビームの偏向動作、二次電子検出器 109からの信号検出、マニピュレータ112の駆動、 ステージ108の移動、ガスの供給等の各制御を行う。

【0015】次に、上記構成を有するFIB装置を用い て試料2を加工する。図1は、試料2から分析対象部を 含む試料の一部を分離する工程(a)~(g)を示した 斜視図である。この実施例で、試料2はシリコン基板で

6 う。以下に、分離の手順を工程(a)~(g)に従って 説明する。

【0016】(a) 試料2の表面に対しFIB1が直 角に照射するように試料2の姿勢を保ち、試料2上でF IB1を矩形に走査させ、試料表面に所要の深さの角穴 3を形成する。

- (b) 試料2の表面に対するFIB1の軸が約70° 傾斜するように、試料2を傾斜させ、底穴4を形成す る。試料2の傾斜角の姿勢変更は、試料回転装置120
- (c) 試料2の姿勢を変更し、試料2の表面がFIB 1に対し再び垂直になるように試料2を設置し、切欠き 溝5を形成する。
- (h) マニピュレータ112を駆動し、プロープ31 の先端を、試料2の分離する部分に接触させる。接触し たか否かについての判定方法については、後述される。
- ガスノズル6からW (CO) 。 ガス7を供給 し、FIB1を、プロープ31の先端部を含む領域に局 所的に照射し、堆積膜8を形成する。接触状態にある試 したガス (W (CO)。) は、ガスノズル8によりFI 20 料2の分離部分とプローブ31の先端は、堆積膜8で接 続される。試料2の分離部分とプローブ31の接続につ いては、ガス雰囲気中での集束イオンビーム照射により 形成したピーム誘起堆積膜により、又は集東イオンピー ム加工により発生したスパッタ粒子による再付着膜によ り行うことができる。
 - (f) FIB1で残りの部分を切欠き加工し、試料2 から分離試料9を切り出す。切り出された分離試料9 は、接続されたプローブ31で支持された状態になる。
 - マニピュレータ112を駆動し、分離試料9を 所要の箇所に移動させる。

上記実施例において、FIB1の加工エリアを指定する 際、予め加工エリアを含む領域をFIB1でラスタ走査 し、試料2の表面から発生した二次電子(代表的な二次 粒子)の信号量を輝度信号として画像化したSIM像を 利用した。二次電子の検出は、二次電子検出器109に よって行われる。SIM像を利用した試料表面の方向 (X, Y軸方向) における加工エリアの設定は比較的簡 単に行うことができる。しかし、プロープ31と試料2 との接触に関する判定は、乙軸方向の情報が必要である 40 ため、困難である。すなわち、FIB1のフォーカス状 態の違いによりZ軸方向に関するある程度の情報が得ら れるが、ミクロンレベルの判定は困難である。

【0017】従って本実施例では、工程(d)におい て、プローブ31を導電性のものとし、それを高抵抗を 介して電圧源(電圧をVsとする)に接続する。プロー ブ31の電位は、プローブ31が試料2と接触していな い時はほぼVsとなり、接触した時は試料2の電位(接 地電位) となる。これにより、接触がプローブ31のS IM像の輝度レベルを変化させるため、このレベル変化

あり、分離された試料の一部を、以下「分離試料」とい 50 に基づき正確な接触判定ができるようになった。

【0018】切り出した分離試料9は、その後、その断面を再びFIB加工(微細ピームによる仕上げ加工)し、断面構造をSEM(走査型電子顕微鏡)で観察した。また、同様の手法で分離試料8の裏面を仕上げ、その構造を観察することもできる。つまり、本実施例によると、試料表面に平行な断面の観察も可能になる。プローブ31に保持された分離試料9は、試料2とは別個に多種の分析装置に挿入して測定することが可能である。例えば、二次イオン質量分析計で元素分析を行うことができる。また分離試料9は分析に適した形状に再加工す 10 ることもできる。例えば分析部を頂角部に含むくさび形に分離試料9を加工し、CAT (Composition Analysis by Thickness-fringe) 法により、組成分析することもできる。

【0019】図2は、前記実施例と同様の手法で試料2の一部を分離し、その分離試料9をTEM観察する目的で薄膜化した実施例を示す斜視図である。工程(a)に示されるように分離試料9の一部9aの肉厚が予め薄くされる。更に工程(b)で、分離試料9は、薄肉部9aをFIB1で薄膜化される。分離試料9の一部9aが、TEMの試料になる。本実施例によれば、試料2の任意の場所からTEM試料を容易に取り出すことができる。従って、試料2である基板を割る必要がない。

【0020】図5に半導体ウェハー52に対し多点のT EM分析を行った実施例を示す。この実施例では、分析 点50a~50e, 51a, 51bをそれぞれ含む微小 試料を、半導体ウェハー52から分離し、図2と同様の 手法により、それぞれの分離試料を薄膜化した後、TE M分析を行った。この実施例で明らかなように、本発明 による分離方法では、1枚のウェハーの中から多数の分 30 離試料を得ることができる。この場合、取り出そうとす る非常に微小な領域を除いて他の部分には、分離に起因 する影響を与えない。従って、任意の箇所の試料部分を 分離することができる。また分析点51a,51bは近 接しており、ウェハーを割ってTEM試料を作成する従 来の手法では、2つの試料を得ることは困難であった。 しかし、本発明による分離方法を利用すれば、2つの試 料を得ることができ、TEM観察が可能となった。また 分析対象の複数の試料部分を分離した後、ウェハー自身 については他の分析や追加のプロセスを施すことが可能 40 である。

【0021】前記の各実施例ではプローブとして金属状部材を用いたが、半導体プロセスを流用して製作したSiO2,Al,W等のプローブを利用することもできる。半導体プロセスを利用すると、形状の揃ったプローブを一度に大量に製造できるという利点がある。プローブの形状は、厚みのあるホルダー部と薄く微細なプローブへッド部から構成すると、ハンドリングが容易で且つ分離試料との接続が容易となる。

【0022】図6(a)~(b)は、本発明による分離 50 置の例を示すウェハーの正面図である。

方法を、トランジスタ素子の移植方法に利用する実施例 を説明するための工程図である。移植しようとするトラ ンジスタ素子は、予め本発明による分離方法を利用して チップから分離しておく。以下に、移植の手順を述べ る。

【0023】(a) 移植先の基板部分に角穴61をFIB加工する。

- (b) 加工角穴61に、分離試料63(例えばトランジスタ等)をマニピュレータを駆動して運搬し、プローブヘッドをFIBにより切断して分離試料63を角穴61内に残す。
- (c) 分離試料63上の電極とチップ基板上の配線60を、移植配線62により電気的に接続する。移植配線62は分離試料63と同様にマニピュレータにより運搬し、接続はW(CO)。ガス努囲気でのFIB局所照射によるW堆積膜で行う。

【0024】以上のように、本発明による分離方法を利用すれば、別のチップ内に形成されたデバイスを容易に分離し、運搬し、他のチップ内の所要の箇所に融合させ 20 ることができる。

【0025】分離試料の体積が大きい場合、分離のためにFIB加工する部分の体積も大きくなる。上記実施例ではFIB加工として物理的なスパッタリング現象のみを利用しており、加工に長時間を費やすことになる。このような場合、FIB加工部近傍に反応ガスを導入し、FIBアシスト・エッチングを行うことで加工速度を向上させ、加工時間の短縮を図ることができる。

[0026]

【発明の効果】以上の説明で明らかなように、本発明によれば、半導体のチップやウェハー内の任意の点を分析する際に、FIBを用いて必要な箇所のみを切出し、且つ分離した部分を支持して任意の箇所に搬送できるように構成したため、チップやウェハ基板を割ることなく、必要とする微少領域をのみを分離できる。また分離後、分離試料はプローブで支持された状態にあるため、任意の箇所に搬送することができ、且つ分離試料の姿勢を任意の姿勢に変更することができるため、TEM観察等の分析が可能となる。更にFIBの加工領域が分析対象部のごく周囲のみであるため基板の総加工体積が少なく、分析のための全所要時間が短縮できる。

【図面の簡単な説明】

【図1】本発明による分離方法の分離手順を示す斜視図である。

【図2】TEM観察可能な試料の分離加工例を示す斜視 図である。

【図3】本発明による分離方法を実施するためのFIB 装置の構成図である。

【図4】マニピュレータの拡大斜視図である。

【図5】多点TEM分析を行うための分離試料切出し位 置の例を示すウェハーの正面図である。 9

【図 6】分離した試料を他の場所に移植する実施例を示す斜視図である。

【図7】従来の試料分離方法及び試料分析方法を説明するための斜視図である。

【符号の説明】

1 集束イオンビーム

2 試料基板

【図4】

30:パイモルフ型圧電素子 31:金属プローブ

- 6 ガス
- 7 ノズル
- 8 堆積膜
- 9 分離試料
- 30 パイモルフ型圧電素子

10

- 31 金属プローブ
- 52 半導体ウェハー

【図2】

【図5】

50a~50e:分析点

51a,51b:近接した分析点

52:半導体ウェハー

100:液体金属イオン源 105:対物レンズ 101:コンデンサレンズ 107:ガス源 102:可変アパーチャ 108:ステージ

103:アライナ・スティグマ 109:二次電子検出器 104:プランカ 111:システムバス 105:デフレクタ 120:試料回転装置

