

1/7/5

DIALOG(R)File 351:Derwent WPI
(c) 2004 Thomson Derwent. All rts. reserv.

001795851

WPI Acc No: 1977-16817Y/ 197710

Hydrolysable fluorovinyl ether-fluorinated olefin copolymers - used as cation exchanger membranes for alkali metal halide electrolysis.

Patent Assignee: ASAHI GLASS CO LTD (ASAG)

Number of Countries: 006 Number of Patents: 012

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DE 2638791	A	19770303			197710	B
JP 52028586	A	19770303			197715	
JP 52028587	A	19770303			197715	
JP 52038486	A	19770325			197718	
FR 2333824	A	19770805			197737	
JP 78004113	B	19780214			197810	
JP 78004114	B	19780214			197810	
GB 1518387	A	19780719			197829	
JP 78044427	B	19781129			197851	
DE 2638791	B	19790719			197930	
US 4508603	A	19850402			198516	
IT 1064997	B	19850225			198522	

Priority Applications (No Type Date): JP 75114337 A 19750923; JP 75104121 A 19750829; JP 75104122 A 19750829

Abstract (Basic): DE 2638791 A

New fluorinated cation exchanger membrane consists of a copolymer contg. 1-50 mol% fluorovinyl ether, (I), and a fluorinated olefine (II) or of a hydrolysed copolymer of (I) and (II).

(I) have formula $\text{CF}_2=\text{CF}-\text{O}-\text{CF}_2-(\text{CFXOCF}_2)^{\text{l}}-(\text{CFX}')^{\text{m}}(\text{CF}_2\text{OCFX}'')^{\text{n}}-\text{A}$ (I) (where l is 0-3, m is 0-6 n is 0-4. At least one of l or n = 0. X,X' and X'' are opt identical and are F or -CF₃. A is -CN, -COF, -COOH, -COOR, -COOM or -CONR₂R₃. R₁ is 1-10C alkyl, R₂ and R₃ are H or 1-10C alkyl. M is an alkaline metal or quaternary ammonium ion).

(II) have formula $\text{CF}_2=\text{CYY}'$ (where Y and Y' are H, Cl, F or -CF₃).

Cation exchanger membrane pref. has ion exchanger capacity 0.5-3 (0.9-2) esp. 1.12-1.18 m. equiv/g of dried copolymer.

Membrane is pref. used as alkali metal ion-permeable separator membrane in prepn. of halogen and alkali metal hydroxide, by alkali metal halide electrolysis in an electrolytic cell contg. separate anode and cathode compartments. Electrolytic process is not limited to a 2-compartment cell. Membranes can also be used as diaphragms for electrolytic reduction, fuel cells, electrodialysis or diffusion

dialysis.

Current yields exceed 90% even in prodn. of alkali metal hydroxides having concns. $\geq 30\%$. A cation exchanger membrane having ion exchanger capacity 0.95 m. equiv./g consisted of a C₂F₄/CF₂=CFOCF₂CF(CF₃)O(CF₂)₃-COOCH₃ copolymer foil. It was used as partition between anode and cathode compartments of an electrolytic cell for electrolysis of aq. NaCl solns. Current yield was 93.3%. An aq.soln. of 13.0 N NaOH was obtd.

(51)

Int. Cl. 2:

(19) BUNDESREPUBLIK DEUTSCHLAND

C 08 J 5/22

C 08 L 27/12

C 25 B 1/46

DT 26 38 791 A 1

(11)

Offenlegungsschrift 26 38 791

(21)

Aktenzeichen: P 26 38 791.7

(22)

Anmeldetag: 27. 8. 76

(43)

Offenlegungstag: 3. 3. 77

(30)

Unionspriorität:

(32) (33) (31)

29. 8. 75 Japan 104121-75

29. 8. 75 Japan 104122-75

23. 9. 75 Japan 114337-75

(54)

Bezeichnung:

Fluorierte Kationenaustauschermembran und Verwendung derselben
zur Elektrolyse von Alkalimetallhalogeniden

(71)

Anmelder:

Asahi Glass Co. Ltd., Tokio

(74)

Vertreter:

Wächtershäuser, G., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 8000 München

(72)

Erfinder:

Ukihashi, Hiroshi, Tokio; Asawa, Tatsuro, Yokohama, Kanagawa;
Yamabe, Masaaki, Machida, Tokio; Miyake, Haruhisa, Yokohama,
Kanagawa (Japan)

DT 26 38 791 A 1

A-155
1A-1800

2638791

ASAHI GLASS COMPANY, LTD., Tokyo /Japan

Fluorierte Kationenaustauschermembran und Verwendung derselben zur Elektrolyse von Alkalimetallhalogeniden

Zusammenfassung

Eine fluorierte Kationenaustauschermembran wird aus einem Copolymeren eines Fluorvinyläthers (I) der nachstehenden Formel und eines fluorierten Olefins (II) gebildet oder aus einem hydrolysierten Copolymeren derselben:

wobei 1 0 bis 3; m 0 bis 6; n 0 bis 4 bedeuten und wobei mindestens eine der Indexzahlen 1 oder n ungleich Null ist; wobei X, X' und X'' gleich oder verschieden sind und jeweils -F oder $-CF_3$ bedeuten, und wobei A -CN, -COF, -COOH, -COOR, -COOM oder $-CONR_2R_3$ bedeutet, und wobei R_1 eine C_{1-10} -Alkylgruppe und R_2 und R_3 jeweils ein Wasserstoffatom oder eine C_{1-10} -Alkylgruppe bedeuten, und wobei M ein Alkalimetallion oder ein quaternäres Ammoniumion bedeutet. Diese fluorierte Kationenaustauschermembran dient zur Herstellung von Halogen oder Alkalimetallhydroxid durch die Elektrolyse von Alkalimetallhalogenid.

709809/1192

ORIGINAL INSPECTED

2638791

Die vorliegende Erfindung betrifft neue fluorierte Kationenaustauschermembranen. Insbesondere betrifft die Erfindung eine fluorierte Kationenaustauschermembran mit einer Ionenaustauschergruppe, welche äußerst wirksam zur Diaphragmaelektrolyse einer wässrigen Lösung eines Elektrolyten, wie Alkalimetallchlorid, geeignet ist.

Es ist bekannt, Alkalimetallhydroxid und Chlor durch Elektrolyse von Alkalimetallchlorid zu bilden, wobei eine wässrige Lösung des Alkalimetallchlorids eingeleitet wird und wobei das anolytische Abteil von dem katholytischen Abteil abgetrennt ist, und wobei das Alkalimetallhydroxid im katholytischen Abteil und das Chlor im anolytischen Abteil gebildet werden. Dieses Verfahren ist als Diaphragmaelektrolyse mit zwei Abteilen bekannt. Bisher wurde gewöhnlich bei diesen Verfahren ein Diaphragma aus Asbest verwendet. Wenn man jedoch ein Asbestdiaphragma verwendet, so wird der Asbest durch den Elektrolyten korrodiert. Somit hat das Asbestdiaphragma nachteiligerweise eine kurze Lebensdauer, und es ist schwierig, die Lebensdauer zu verlängern. Ferner hat das bei diesen Verfahren eingesetzte Diaphragma feine Poren, durch welche der Elektrolyt hindurchdringen kann, so daß Alkalimetallchlorid in das erhaltene Alkalimetallhydroxid gelangt, so daß dessen Reinheit gering ist. Wenn die Konzentration des Alkalimetallhydroxid erhöht wird, so ist die Stromausbeute herabgesetzt.

Zur Verlängerung der Lebensdauer des Diaphragmas wurde vorgeschlagen, den Asbest mit einem Alkali-festen fluorierten Kunststoff mit hydrophilen Gruppen zu beschichten oder ein Diaphragma aus dem alkalihesten fluorierten Kunststoff mit hydrophilen Gruppen herzustellen (US-PS 3 853 720; US-PS 3 853 721). Aber auch das Diaphragma des letztgenannten Typs ist porös und läßt den Elektrolyten durch. Daher ist auch in diesem Fall die Reinheit des erhaltenen Alkalimetallhydroxids relativ gering. Wenn die Konzentration des Alkalimetallhydroxids erhöht wird, so kann eine Minderung des Stromstärkewirkungsgrades kaum verhindert werden.

709809 / 1192

2638791

Es wurde vorgeschlagen, eine Kationenaustauschermembran zu verwenden, welche den Elektrolyten im wesentlichen nicht durchläßt und die Alkalimetallionen selektiv durchläßt. Es wurde insbesondere vorgeschlagen, fluorierte Kationenaustauschermembranen mit hoher Alkalifestigkeit und Chlorfestigkeit zu verwenden (US-PS 3 773 634; US-PS 3 852 135). Wenn eine solche Kationenaustauschermembran als Diaphragma verwendet wird, so wird der Elektrolyt im wesentlichen nicht durchgelassen und nur Alkalimetallionen werden selektiv durchgelassen, so daß die Verunreinigung des gebildeten Alkalimetallhydroxids durch Alkalimetallchlorid verhindert werden kann. Man erhält somit ein Produkt mit befriedigender Reinheit. Die herkömmlichen Kationenaustauschermembranen dieser Art führen jedoch nicht zu einer befriedigenden Stromausbeute oder zu einem befriedigenden Stromwirkungsgrad. Selbst die besten bekannten Kationenaustauschermembranen, z.B. solche aus einem Copolymeren von C_2F_4 und $CF_2 = CFOCF_2CF(CF_3)OCF_2CF_2SO_2F$ führen nicht zu einem Stromstärkewirkungsgrad von mehr als 85%, wenn die Konzentration des Natriumhydroxids über 20% liegt. Wenn die Konzentration des Natriumhydroxids sehr gering ist, kann man höhere Stromwirkungsgrade erreichen. Der Stromwirkungsgrad sinkt auf weniger als 70%, wenn die Konzentration des Natriumhydroxids über 40% liegt.

Es ist somit Aufgabe der vorliegenden Erfindung, eine fluorierte Kationenaustauschermembran zu schaffen, welche als Diaphragma zur Herstellung von Alkalimetallhydroxid mit hoher Konzentration und in hoher Reinheit und bei hoher Stromausbeute oder bei hohem Stromwirkungsgrad durch Diaphragmaelektrolyse von Alkalimetallchlorid verwendet werden kann. Ferner ist es Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zur Elektrolyse eines Alkalimetallhalogenids zu schaffen, wobei man von der fluorierten Kationenaustauschermembran Gebrauch macht.

Diese Aufgabe wird erfindungsgemäß durch eine fluorierte Kationenaustauschermembran gelöst, welche aus einem Copolymeren

709809/1192

2638791

eines Fluorvinyläthers (I) der nachstehenden Formel und eines fluorierten Olefins (II) gebildet ist oder aus einem hydrolysierten Copolymeren derselben:

Dabei bedeutet 1 0 bis 3; m 0 bis 6; n 0 bis 4 und mindestens eine der Indexzahlen 1 oder n ist ungleich Null. X, X' und X'' können gleich oder verschieden sein und bedeuten jeweils -F oder -CF₃. A bedeutet -CN, -COF, -COOH, -COOR, -COOM und -CONR₂R₃, und R₁ bedeutet eine C₁₋₁₀-Alkylgruppe und vorzugsweise eine C₁₋₃-Alkylgruppe und R₂ und R₃ bedeuten Wasserstoffatome oder C₁₋₁₀-Alkylgruppen. M bedeutet ein Alkalimetallion oder ein quaternäres Ammoniumion. Diese Copolymeren haben Seitenketten mit Ionenaustauschergruppen, z.B. mit Carbonsäuregruppen.

Eine solche fluorierte Kationenaustauschermembran ist wirksam zur Diaphragmaelektrolyse von wässrigen Lösungen von Elektrolyten, wie Alkalimetallchlorid, unter Gewinnung von Alkalimetallhydroxid und Chlor, wobei ausgezeichnete Elektrolysencharakteristika erzielt werden.

Es ist bekannt, Membranen aus einem Copolymeren von C₂F₄ und CF₂ = CFOCF₂CF(CF₃)OCF₂CF₂·SO₂F herzustellen. Der dabei verwendete Perfluorvinyläther ist mit demjenigen des zur Herstellung der erfindungsgemäßen Membran verwendeten Copolymeren analog. Die damit erzielten Membrancharakteristika sind jedoch wie oben erwähnt nicht befriedigend. Wenn man demgegenüber die erfindungsgemäße Kationenaustauschermembran verwendet, so erzielt man einen bemerkenswert erhöhten Stromwirkungsgrad von mehr als 90% und dies sogar bei einer sehr hohen Alkalimetallhydroxidkonzentration von z.B. mehr als 30%. Dies ist ein unvorhersehbares Ergebnis.

Die zur Herstellung der fluorierten Kationenaustauschermembran verwendeten Fluorvinyläther (I) der vorliegenden Erfindung ha-

709809/1192

2638791

ben die folgende Formel:

wobei 1, m, n, X, X', X'' und A die oben angegebene Bedeutung haben. Vorzugsweise hat 1 den Wert Null bis 1; m den Wert 0 bis 3 und n den Wert 0 bis 1. Typische Fluorvinyläther (I) umfassen

Andererseits haben die fluorierten Olefine (II) der fluorierten Kationenaustauschermembran gemäß vorliegender Erfindung die Formel

wobei Y und Y' jeweils ein Wasserstoffatom, ein Chloratom, ein Fluoratom oder die Gruppe $-CF_3$ bedeuten. Typische fluorierte Olefine umfassen Tetrafluoräthylen, Trifluorchloräthylen, Hexafluorpropylen, Trifluoräthylen, Vinylidenfluorid od. dgl. Es ist bevorzugt, Perfluorverbindungen, insbesondere Tetrafluoräthylen, einzusetzen.

Erfindungsgemäß ist der Gehalt des Fluorvinyläthers (I) in dem Copolymeren wichtig, da er in Beziehung steht zur Ionenaustauscherkapazität des erhaltenen Kationenaustauschers. Vorzugsweise liegt er im Bereich von 1 bis 50 Molprozent und insbesondere 2 bis 40 Molprozent. Wenn der Gehalt an dem Fluorvinyläther (I)

709809/1192

2638791

zu gering ist, so ist die Ionenaustauschfunktion gering und der elektrische Widerstand ist hoch. Wenn der Gehalt an dem Fluorvinyläther (I) zu hoch ist, so ist der Wassergehalt zu hoch, so daß die Festigkeit der Membran herabgesetzt ist und der Stromwirkungsgrad gering ist. Demgemäß ist es nicht vorteilhaft, einen zu niedrigen oder zu hohen Gehalt außerhalb des genannten Bereichs vorzusehen. Wie bereits erwähnt, steht der Gehalt des Fluorvinyläthers (I) in dem Copolymeren in Beziehung zur Ionenaustauscherkapazität der erhaltenen Kationenaustauschmembran. Es ist bevorzugt, eine Ionenaustauschkapazität der erhaltenen Kationenaustauschmembran von 0,5 bis 3,0 und vorzugsweise 0,9 bis 2 und insbesondere 1,12 bis 1,8 Milliequivalenten pro g des getrockneten Ionenaustauscherharzes vorzusehen, indem man den Gehalt an dem Fluorvinyläther (I) auswählt. Diese Ionenaustauschkapazität ist sehr verschieden von derjenigen der bekannten Kationenaustauschmembran aus dem analogen Copolymeren von C_2F_4 und $CF_2 = CFOCF_2CF(CF_3)OCF_2CF_2SO_2F$ zur Erzielung der gewünschten Charakteristik, z.B. des Stromwirkungsgrades. Diese Tatsache zeigt, daß die erfindungsgemäße Ionenaustauschmembran eine andere Qualität hat.

Man kann bei der Herstellung der Copolymeren das Copolymer da-durch modifizieren, daß man die beiden Komponenten (I) und (II) zusammen mit einem weiteren Comonomeren (3. Komponente) copolymerisiert. Als Comonomere kommen Fluorvinyläther (III) der folgenden Formel in Frage:

wobei Z und Z' jeweils Fluoratome oder C_{1-10} -Perfluoralkylgruppen bedeuten und wobei 1' 0 bis 3; m' 0 bis 12; n' 0 bis 12 und B -F, -H, -Cl, -CHF₂ oder CF₃ bedeuten. Diese Fluorvinyläther haben keine Ionenaustauschgruppen und keine funktionellen Gruppen, welche in Ionenaustauschgruppen umwandelbar sind. Die durch Copolymerisation des Fluorvinyläthers (II) erhaltenen Co-

709809/1192

2638791

polymeren haben verbesserte elektrische Eigenschaften und eine ausgezeichnete Flexibilität. Sie verlieren ihre Weichheit auch nicht in wässrigen Lösungen von Alkalimetallhydroxid hoher Konzentration, welche bei der Elektrolyse von Alkalimetallchlorid od. dgl. gebildet werden. Ferner kommt es in geringerem Maße zur Bildung von Falten od. dgl. durch Knitterung. Es ist insbesondere bevorzugt, einen Fluorvinyläther (III) zu verwenden, bei dem Z F oder $-CF_3$ bedeutet, und wobei Z' -F bedeutet, und wobei l 0 bis 1; m 0 bis 1 und n 0 bis 8 bedeutet, und wobei B -F bedeutet.

Typische Fluorvinyläther (III) umfassen Perfluormethylvinyläther, Perfluorpropylvinyläther, 3,6-Dioxa-4-methyl-7-octen od. dgl. Der Gehalt des Fluorvinyläthers (III) in dem Copolymeren beträgt vorzugsweise 1 bis 50 Molprozent und insbesondere 2 bis 40 Molprozent.

Ferner können als dritte Komponente weitere Comonomere copolymerisiert werden, nämlich fluorierte Monomere (IV), welche eine Kohlenstoffatom-Heteroatom-Bindung in die Hauptkette des Copolymeren einführen. Als fluorierte Monomere (IV) dieser Art kommen Fluoroketone der folgenden Formel in Frage:

wobei D und D' jeweils Wasserstoffatome, Fluoratome oder Chloratome bedeuten oder Perfluoralkylgruppen, ω -Hydroperfluoralkylgruppen, ω -Chlorperfluoralkylgruppen oder ω -Alkoxyperfluoralkylgruppen. Ferner kommen als fluorierte Monomere (IV) Fluoronitrosoverbindungen der Formel

in Frage oder Fluorothiocarbonylverbindungen der Formel

709809/1192

2638791

Die Nitrosoverbindung od.dgl. wird mit dem Tetrafluoräthylen unter Bildung von Strukturen der Formel

in der Hauptkette copolymerisiert, wobei in die Hauptkette eine Bindung des Typs C-Heteroatom, wie C-N oder C-O, eingeführt werden kann.

Wenn man das fluorierte Monomere (IV) copolymerisiert, so werden ähnliche Eigenschaften erzielt mit einem Copolymeren, welches unter Zusatz des Fluorvinyläthers (III) erhalten wurde. Hinsichtlich des Gehaltes an den fluorierten Monomeren (IV) gilt das Gleiche wie hinsichtlich des Fluorovinyläthers (III).

Ferner kann man als Comonomere (dritte Komponente) Divinylmonomere einsetzen, wie $\text{CF}_2 = \text{CF}-\text{CF} = \text{CF}_2$;

Durch Zusatz dieser Divinylmonomeren kann man vernetzte Copolymeren erhalten.

Die erfindungsgemäßen Copolymeren können nach herkömmlichen Verfahren hergestellt werden, und zwar mit oder ohne Verwendung eines inerten organischen Lösungsmittels oder einer wässrigen Lösung unter Einwirkung einer Polymerisationsstifterquelle, z.B. einer Peroxidverbindung, einer Azoverbindung, unter Einwirkung ultravioletter Strahlen oder ionisierender Hochenergiestrahlen od.dgl. (US-PS 3 536 733; DT-OS 2 052 495; US-PS 3 642 742).

Man kann nach verschiedenen Polymerisationstechniken arbeiten, z.B. nach der Methode der Substanzblockpolymerisation, der Lö-

709809/1192

2638791

sungspolymerisation oder der Suspensionspolymerisation. Bei den fluorierten Copolymeren der vorliegenden Erfindung kann es sich um Ppropfcopolymere handeln oder um Blockcopolymere sowie um Random-Copolymere. Es ist bevorzugt, Copolymeren zu verwenden, welche durch direkte Copolymerisation der oben erwähnten Monomeren erhalten wurden, und zwar unter dem Gesichtspunkt der Bildung der Kationenaustauschermembran mit gleichförmiger Ionenaustauschkapazität, bei der die Ionenaustauschergruppen gleichmäßig verteilt sind. Das Molekulargewicht des erfindungsgemäßen Copolymeren liegt vorzugsweise im Bereich von etwa 3000 bis 300 000 und insbesondere von 10 000 bis 100 000.

Man kann zur Bildung der Membran aus dem fluorierten Copolymeren nach bekannten Verfahren arbeiten, z.B. nach dem Preßformverfahren, dem Walzformverfahren, dem Extrudierformverfahren, dem Lösungsfließspreizverfahren, dem Dispersionsformverfahren oder dem Pulverformverfahren. Die Membran kann nach jedem dieser Verfahren hergestellt werden. Es ist wesentlich eine nicht-poröse Membran herzustellen, da die Membran im wesentlichen undurchlässig für den Elektrolyten, z.B. das Alkalimetallchlorid sein sollte und lediglich selektiv durchlässig für spezifische Ionen sein sollte. Unter diesem Gesichtspunkt ist es bevorzugt, eine Wasserdurchtrittrate der Membran von weniger als 100 ml/h/m^2 vorzusehen und insbesondere von weniger als 10 ml/h/m^2 unter einem Wasserdruck von 1 m bei 60°C in 4N-NaCl vom pH 10. Die Dicke der Membran liegt vorzugsweise im Bereich von 20 bis 500 Mikron und insbesondere im Bereich von 50 bis 300 Mikron.

Vor oder nach der Bildung der Membran aus dem Copolymeren, vorzugsweise nach Bildung der Membran, kann man Carbonsäuregruppen einführen, indem man die funktionellen Gruppen durch Behandlung des Copolymeren, bei dem die funktionellen Gruppen nicht aus Carbonsäuregruppen bestehen, umwandelt. Wenn z.B. die Copolymeren mit den funktionellen Gruppen $-\text{CN}$, $-\text{COF}$, $-\text{COOR}_1$, $-\text{COOM}$, $-\text{CON}_2\text{N}_3$, (M und R_1 bis R_3 wie oben angegeben) hergestellt werden, so können diese Copolymeren mit einer alkoholischen Lösung von Säure

709809/1192

2638791

oder Alkali behandelt werden, um die obigen Gruppen zu hydrolysieren oder zu neutralisieren, wobei Carbonsäuregruppen gebildet werden.

Die fluorierten Copolymeren können mit einem Polyolefin, wie Polyäthylen, Polypropylen, einem fluorierten Polymeren, wie Polytetrafluoräthylen, einem Copolymeren von Äthylen und Tetrafluoräthylen od.dgl. vor der Formung vermischt werden. Es ist ferner möglich, die Membran zu verstärken, indem man das fluorierte Copolymer auf einen Trägerstoff aufbringt, z.B. auf ein Tuch, ein Netz, ein Faservlies oder auf einen porösen Film, welcher aus dem Polymeren besteht. Wenn ein solches Polymeres zugemischt wird oder wenn ein Trägerstoff verwendet wird, so wird die Menge des zusätzlichen Polymeren oder des Trägerstoffs bei der Berechnung oder Festlegung der Ionenaustauschkapazität nicht eingerechnet.

Man kann die erfindungsgemäße Kationenaustauschermembran bei bekannten Diaphragma-Elektrolyseverfahren zur Herstellung von Alkalihydroxid durch Elektrolyse von Alkalichlorid einsetzen. Die Elektrolysenspannung und die Stromdichte betragen vorzugsweise 2,3 bis 5,5 Volt bzw. 5 bis 100 A/dm². Als Anode kann man für diese Elektrolyse eine korrosionsfeste Elektrode verwenden, welche dimensionsstabil ist und aus Graphit oder aus einem mit einem Metall der Platingruppe oder einem Oxid eines Metalls der Platingruppe bestehenden Titansubstrat besteht. Man kann eine Elektrolysenzelle vom unipolaren System oder vom multipolaren System einsetzen. Im Falle einer Zelle von zwei Abteilen ist ein anolytisches Abteil und ein katholytisches Abteil vorgesehen, in dem die Anode und die Kathode mit der Kationenaustauschermembran getrennt sind. Eine wässrige Lösung des Alkalimetallchlorids wird in das anolytische Abteil geleitet und elektrolysiert, und man erhält aus dem katholytischen Abteil ein Alkalimetallhydroxid. Es ist auf diese Weise möglich, Natriumhydroxid mit einer hohen Konzentration von mehr als 40% bei ei-

ner hohen Stromausbeute von mehr als 90% durch Elektrolyse einer wässrigen Lösung von Natriumchlorid mit einer Konzentration von mehr als 2N bei 40 bis 100°C und vorzugsweise 50 bis 90°C und bei einer Stromdichte von 5 bis 50 A/dm² herzustellen.

Das erfindungsgemäße Verfahren ist nicht auf eine Zelle mit zwei Abteilen beschränkt. Man kann auch eine Zelle mit drei Abteilen einsetzen, wobei ein anolytisches Abteil, ein katholytisches Abteil und ein Mittelabteil vorgesehen sind. Diese werden gebildet, indem die Anode und die Kathode durch Verwendung einer Vielzahl der Kationenaustauschermembranen oder einer Kombination derselben mit einer anderen Kationenaustauschermembran oder einem anderen Diaphragma voneinander getrennt sind. Man kan auch Zellen mit mehr als drei Abteilen verwenden. Die erfindungsgemäßen fluorierten Kationenaustauschermembranen zeigen ausgezeichnete Eigenschaften bei der Elektrolyse von Alkali-metallchlorid, und sie können hervorragend auf verschiedensten Gebieten eingesetzt werden, z.B. als Diaphragmen für elektrolytische Reduktionen, für Brennstoffzellen, für die Elektrodialyse oder für die Diffusionsdialyse und insbesondere auch auf den Gebieten, auf denen korrosionsfeste Membranen erforderlich sind.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.

In diesen Beispielen wird die Ionenaustauschkapazität der Kationenaustauschermembran folgendermaßen gemessen: Eine Kationenaustauschermembran vom H-Typ wird in eine 1N-HCl bei 60°C während 5 Stunden eingetaucht, um diese vollständig in den H-Typ umzuwandeln. Danach wird die Membran mit Wasser gewaschen und auf diese Weise von HCl befreit. Sodann werden 0,5 g der Membran vom H-Typ in eine Lösung eingetaucht, welche durch Zugebung von 25 ml Wasser zu 25 ml einer 0,1N-NaOH hergestellt wurde.

2638791

Dabei wird die Membran vollständig in den Na^+ -Typ umgewandelt. Sodann wird die Membran entnommen und die Menge des NaOH in der Lösung wird durch Rücktitration mit 0,1N HCl gemessen.

Beispiel 1

Methyl(3-fluorcarbonyl)-tetrafluoropropionat mit einem Siedepunkt von 80 bis 82°C wird hergestellt, indem man Perfluor- γ -butyrolacton mit einer äquimolaren Menge Methanol umsetzt. Sodann wird das erhaltene Produkt in einen CsF enthaltenden Reaktor gegeben. 2,5 Moläquivalente Hexafluoropropylenoxid, bezogen auf das Tetrafluoropropionat, werden hinzugegeben, und die Temperatur wird auf 0 bis 10°C gehalten. Nach der Reaktion wird das Hexafluoropropylenoxidaddukt (2 Mol) der Formel

durch Destillation als Fraktion mit einem Siedepunkt von 70 bis $75^\circ\text{C}/10 \text{ mmHg}$ abgetrennt. Das Hexafluoropropylenoxidaddukt wird tropfenweise bei 80°C in einen Reaktor gegeben, welcher Na_2CO_3 in Dispersion enthält. Nach beendeter Kohlendioxidentwicklung wird die angestrebte Verbindung der Formel

durch Destillation abgetrennt, und zwar als Fraktion mit einem Siedepunkt von 63 bis $67^\circ\text{C}/7 \text{ mmHg}$. Die Struktur des Produkts wird durch die $^{19}\text{F-NMR}$ -Analyse bestätigt.

Die erhaltene Verbindung und Trichlortrifluoräthan und Azobisisobutyronitril (als Katalysator) werden in einen 200 ml Autoklaven aus Edelstahl gegeben. Der Autoklav wird mit Stickstoff gespült und auf 70°C erhitzt, und Tetrafluoräthylen wird eingeleitet. Die Reaktion wird während 18 Stunden durchgeführt. Dabei erhält man ein Copolymeres von C_2F_4 und

Das Copolymer wird bei 200°C zu einer Folie mit einer Dicke von 150 Mikron gepreßt und hydrolysiert, wobei man eine Kationenaustauschermembran mit einer Ionenaustauschkapazität von 0,95 Milliäquivalenten pro g des Polymeren erhält. Die Wasserdurchtrittsrate der Membran beträgt $3,3 \text{ ml/h/m}^2$ unter einem Druck von $1 \text{ mH}_2\text{O}$ (bei 60°C in 4N-NaCl bei pH 10).

Nun wird eine elektrolytische Zelle mit zwei Abteilen hergestellt, indem man die fluorierte Kationenaustauschermembran als Trennwand zwischen Anode und Kathode verwendet. Die Anode besteht aus einem Titansubstrat, welches mit Rhodium beschichtet ist, und die Kathode besteht aus Edelstahl. Der Spalt zwischen der Anode und der Kathode beträgt 2,2 cm, und die wirksame Fläche der Membran beträgt 25 cm^2 . Sodann wird die Elektrolyse von Natriumchlorid unter den folgenden Bedingungen durchgeführt. Das anolytische Abteil wird mit 4N-NaCl (wässrige Lösung) gefüllt, und das katholytische Abteil wird mit einer wässrigen 8N-NaOH gefüllt. Eine wässrige 4N-NaCl-Lösung wird kontinuierlich in das anolytische Abteil mit einer Durchflußrate von $150 \text{ cm}^3/\text{h}$ eingeleitet, und wässrige 0,1N-NaOH wird kontinuierlich in das katholytische Abteil eingeleitet. Die Zellenspannung beträgt 4,28 Volt, und die Stromdichte beträgt 20 A/dm^2 . Die Temperatur der Lösung beträgt 92°C und der pH-Wert der anolytischen Lösung beträgt 3. Die aus dem anolytischen Abteil austretende wässrige Lösung von Natriumchlorid und die aus dem katholytischen Abteil austretende wässrige Lösung von Natriumhydroxid wird jeweils gesammelt, und die Stromausbeute wird aus der Menge des gebildeten Natriumhydroxids errechnet. Es wird festgestellt, daß man eine wässrige Lösung von Natriumhydroxid mit einer Konzentration von 13,0N erhält. Die Stromausbeute beträgt 93,3%. Der Gehalt an Natriumchlorid in dem erhaltenen Natriumhydroxid beträgt weniger als 0,1%.

Die Elektrolyse des Natriumchlorids wird unter den gleichen Bedingungen wiederholt, wobei man jedoch eine Kationenaustauscher-

membran verwendet, welche aus einem Copolymeren von C_2F_4 und

hergestellt wurde. Dabei beträgt die Ionenaustauschkapazität 0,83 Milliäquivalente/g des Polymeren (hergestellt durch DuPont; Nafion 124). Wenn man eine wässrige Lösung von Natriumhydroxid mit der gleichen Konzentration herstellt, so beträgt die Stromausbeute nur 60%.

Beispiel 2

Eine Reaktion von Perfluormalonsäuredifluorid und Hexafluorpropylenoxid wird in Gegenwart von CsF in einem Reaktor durchgeführt. Man erhält das Hexafluoropropylenoxidaddukt (2 Mol) der Formel

und dieses wird durch Destillation von der Reaktionsmischung abgetrennt. Das erhaltene Diacylfluorid wird mit einer äquimolaren Menge von Methanol vermischt und in den Monoester umgewandelt. Die Reaktionsmischung wird tropfenweise bei 90°C in einen Reaktor gegeben, welcher Na_2CO_3 in Dispersion enthält. Nach beendeter Kohlendioxidentwicklung wird die angestrebte Verbindung der Formel

durch Destillation als Fraktion mit einem Siedepunkt von 70 bis 73°C/50 mmHg abgetrennt.

Man arbeitet nunmehr nach dem Verfahren des Beispiels 1, wobei man jedoch die erhaltene Verbindung der Formel

anstelle der Verbindung der Formel

einsetzt. Die Reaktion wird während 20 Stunden durchgeführt.
Man erhält ein Copolymeres von C_2F_4 und

Dieses Copolymeren wird bei $200^{\circ}C$ zu einer Folie mit einer Dicke von 150 Mikron gepreßt, und diese wird hydrolysiert. Dabei erhält man eine Kationenaustauschermembran mit einer Ionenaustauschkapazität von 1,15 Milliäquivalent pro g des Polymeren. Die Wasserdurchtrittsr率e der Membran beträgt 3,5 ml/h/m².

Nunmehr wird das Verfahren des Beispiels 1 wiederholt, wobei jedoch die erhaltene fluorierte Kationenaustauschermembran eingesetzt wird. Bei der Elektrolyse des Natriumchlorids beträgt die Stromausbeute 91,5% zur Erzielung einer wässrigen Lösung von Natriumhydroxid mit einer Konzentration von 14,4N.

Beispiel 3

In einen 200 ml Autoklaven aus Edelstahl gibt man 31,5 g

sowie 4,5 g $CF_2 = CFOC_3F_7$, 18 g Trichlortrifluoräthan und 76 mg Azobisisobutyronitril. Der Autoklav wird mit Stickstoff gespült und auf $70^{\circ}C$ erhitzt, und danach wird Tetrafluoräthylen bis zu 16,5 kg/cm² eingeleitet, und das Ganze wird während 20 Stunden umgesetzt. Man erhält 10,3 g eines Copolymeren. Das Copolymeren wird bei $180^{\circ}C$ zu einer Folie mit einer Dicke von 150 Mikron gepreßt und hydrolysiert. Dabei erhält man eine Kationenaustauscher-

membran mit einer Ionenaustauschkapazität von 0,80 Milliäquivalenzen pro g des Polymeren. Nunmehr arbeitet man nach dem Verfahren des Beispiels 1, wobei man jedoch die erhaltene fluorierte Kationenaustauschermembran einsetzt. Bei der Elektrolyse von Natriumchlorid beträgt die Stromausbeute 93% zur Erzeugung einer wässrigen Lösung von Natriumhydroxid mit einer Konzentration von 13N.

Die Membran wird um 180° abgebogen und bei 90°C während 24 Stunden in eine 13N-NaOH (wässrige Lösung) eingetaucht. Dabei bleibt jedoch die Flexibilität der Membran erhalten, und es werden keine Falten festgestellt, welche sich nicht wieder erholen.

Beispiel 4

Man arbeitet nach dem Verfahren des Beispiels 3, wobei man jedoch 6,4 g

anstelle von $\text{CF}_2 = \text{CFOCF}_3\text{F}_7$ einsetzt. Die Polymerisation wird während 20 Stunden durchgeführt, wobei man 10,5 g eines Copolymeren erhält. Einen Kationenaustauschermembran mit einer Ionenaustauscherkapazität von 0,93 Milliäquivalenten/g Polymeres wird aus diesem Copolymeren erhalten. Man arbeitet nun nach dem Verfahren des Beispiels 1, wobei man die erhaltene Membran zur Elektrolyse von Natriumchlorid verwendet. Die Stromausbeute beträgt 92% zur Erzeugung einer wässrigen Lösung von Natriumhydroxid mit einer Konzentration von 13N. Beim Hintauchen der gefalteten Membran in eine 13N-NaOH-Lösung (wässrig) gemäß Beispiel 3 werden keine Knicke und Falten festgestellt, die sich nicht wieder erholen.

Beispiel 5

In einen 200 ml Edelstahlautoklaven gibt man 31,5 g

sowie 20 g Trichlorfluoräthan und 80 mg Azobisisobutyronitril. Der Autoklav wird mit Stickstoff gespült und auf 70°C erhitzt. Sodann gibt man Perfluoraceton in den Autoklaven bis zu einem Druck von 3 kg/cm². Danach gibt man Tetrafluoräthylen mit einem Druck von 17,5 kg/cm² in den Autoklaven, und das Ganze wird während 20 Stunden umgesetzt, wobei man 9,7 g eines Copolymeren erhält.

Das Copolymer wird bei 180°C zu einer Folie mit einer Dicke von 150 Mikron gepreßt und hydrolysiert. Dabei erhält man eine Kationenaustauschermembran mit einer Ionenaustauschkapazität von 0,82 Milliäquivalenten pro g des Polymeren. Man arbeitet nun nach dem Verfahren des Beispiels 1, wobei man jedoch die erhaltene Kationenaustauschermembran einsetzt. Die Elektrolyse von Natriumchlorid wird durchgeführt, wobei die Stromausbeute 93% beträgt, wenn man eine 13N wässrige NaOH-Lösung herstellt. Die gefaltete und geknickte Membran wird in eine 13N wässrige NaOH-Lösung eingetaucht, wie bei Beispiel 3. Dabei geht die Flexibilität nicht verloren und die gebildeten Falten und Knicke erholen sich wieder.

Beispiel 6

Man arbeitet nach dem Verfahren des Beispiels 5, wobei man jedoch Trifluornitrosomethan bis zu 3,0 kg/cm² anstelle von Perfluoraceton einsetzt. Die Copolymerisation wird während 20 Stunden durchgeführt, wobei 8,9 g eines Copolymeren erhalten werden. Man erhält aus dem Copolymeren eine Kationenaustauschermembran mit einer Ionenaustauschkapazität von 0,98 Milliäquivalenten pro g des Polymeren. Nun arbeitet man nach dem Verfahren des Beispiels 1, wobei man jedoch die erhaltene Kationenaustauschermembran einsetzt. Bei der Elektrolyse von Natriumchlorid erhält man eine wässrige 13N NaOH-Lösung mit einer Stromausbeute von 91%. Die gefaltete und geknickte Membran wird in eine wässrige 13N NaOH-Lösung gemäß Beispiel 3 eingetaucht. Dabei geht die Flexibilität nicht verloren, und die Falten und Knicke erholen sich wieder.

P a t e n t a n s p r ü c h e

1. Fluorierte Kationenaustauschermembran, hergestellt aus einem Copolymeren eines Fluorvinyläthers (I) der folgenden allgemeinen Formel und eines fluorierten Olefins oder aus einem hydrolysierten Copolymeren derselben:

wobei 1 0 bis 3; m 0 bis 6; n 0 bis 4 bedeuten, und wobei mindestens eine der Indexzahlen 1 oder n ungleich 0 ist, und wobei X, X' und X'' gleich oder verschieden sein können und jeweils -F oder $-\text{CF}_3$ bedeuten, und wobei A eine Gruppe der Formel $-\text{CN}$, $-\text{COF}$, $-\text{COOH}$, $-\text{COOR}$, $-\text{COOM}$ oder $-\text{CONR}_2\text{R}_3$ bedeutet, und wobei R_1 eine C_{1-10} -Alkylgruppe, R_2 und R_3 jeweils ein Wasserstoffatom oder eine C_{1-10} -Alkylgruppe und M ein Alkalimetallion oder ein quaternäres Ammoniumion bedeuten.

2. Kationenaustauschermembran nach Anspruch 1, dadurch gekennzeichnet, daß das fluorierte Olefin (II) eine Verbindung der Formel

ist, wobei Y und Y' -H, -Cl, -F oder $-\text{CF}_3$ bedeuten.

3. Kationenaustauschermembran nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Gehalt an dem Fluorvinyläther (I) in dem Copolymeren im Bereich von 1 bis 50 Molprozent liegen.

4. Kationenaustauschermembran nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Ionenaustauschkapazität der Membran im Bereich von 0,5 bis 3,0 Milliäquivalenten pro g des getrockneten Copolymeren liegt.

5. Kationenaustauschermembran nach einem der Ansprüche 1

bis 4, dadurch gekennzeichnet, daß der Fluorvinyläther (I) eine Verbindung der folgenden beiden Formeln ist:

6. Kationenaustauschermembran nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Fluorolefin (II) Tetrafluoräthylen oder Trifluorchloräthylen ist.

7. Kationenaustauschermembran nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Membran aus einem Copolymeren des Fluorvinyläthers (I), des fluorierten Olefins (II) und eines Fluorvinyläthers (III) der nachstehenden allgemeinen Formel, welches keine Ionenaustauschgruppen und keine funktionellen Gruppen, welche in Ionenaustauschgruppen umgewandelt werden können, enthält, oder ein hydrolysiertes Copolymeres derselben:

wobei Z und Z' jeweils ein Fluoratom oder eine C₁₋₁₀-Perfluoralkylgruppe bedeuten und wobei l' 0 bis 3; m' 0 bis 12; n' 0 bis 12 und B -H, -F, -Cl, -CHF₂ oder -CF₃ bedeuten.

8. Kationenaustauschermembran nach Anspruch 7, dadurch gekennzeichnet, daß der Fluorvinyläther (III) Perfluormethyläther, Perfluorpropylvinyläther oder 3,6-Dioxan-4-methyl-7-octen ist.

9. Kationenaustauschermembran nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß der Gehalt an dem Fluorvinyläther (III) in dem Copolymeren im Bereich von 1 bis 30 Molprozent liegt.

10. Kationenaustauschermembran nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Membran aus einem Copolymeren des Fluorvinyläthers (I) und des fluorierten Olefins (II) und

eines fluorierten Monomeren (IV) zur Einführung von Kohlenstoffatom-Heteroatom-Bindungen in die Hauptkette des Copolymeren oder einem hydrolysierten Copolymeren derselben gebildet ist.

11. Kationenaustauschermembran nach Anspruch 10, dadurch gekennzeichnet, daß das fluorierte Monomere (IV) ein Fluoroketon der Formel

ist oder ein Fluornitril der Formel

oder eine Fluorthiocarbonylverbindung der Formel

wobei D und D' jeweils eine Perfluoralkylgruppe, eine ω -Hydroperfluoralkylgruppe, eine ω -Chlorperfluoralkylgruppe oder eine ω -Alkoxyperfluoralkylgruppe bedeuten.

12. Kationenaustauscher nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, daß der Gehalt an dem fluorierten Monomeren (III) im Bereich von 1 bis 40 Molprozent liegt.

13. Verfahren zur Herstellung eines Halogens und eines Alkalimetallhydroxids durch Elektrolyse eines Alkalimetallhalogenids in einer elektrolytischen Zelle mit einem getrennten Anodenabteil und Kathodenabteil, dadurch gekennzeichnet, daß man die für Alkalimetallionen durchlässige fluorierte Kationenaustauschermembran nach einem der Ansprüche 1 bis 12 als Trennmembran verwendet.

14. Elektrolysenzelle mit einem Gehäuse und getrennten Anoden- und Kathodenabteilen, dadurch gekennzeichnet, daß die Abteile durch die fluorierte Kationenaustauschermembran nach einem der Ansprüche 1 bis 12 getrennt sind.

709809/1192

ORIGINAL INSPECTED