Data Analyst: Cross selling recommendation

1. Team member's details

Group Name: DreamersName: Surabhi mahawar

Email: surabhimahawar@gmail.com

Country: India

College/Company: APJ Kalam Technical University

Specialization (Data Science, NLP, Data Analyst): Data analyst

Name: Deborah Adeyemi

Email: adeyemianuoluwapod@gmail.com ,

Country: United Kingdom,

College/Company: University of the West of England(UWE) Specialization (Data Science, NLP, Data Analyst): Data analyst

Name: Kseniia Nosenko

Email: kseniianosenko@gmail.com

Country: Germany

College/Company: Higher School of Economics

Specialization (Data Science, NLP, Data Analyst): Data analyst

Name: Pranav Walia

Email: waliap@miamioh.edu

Country: America

College/Company: Miami University

Specialization (Data Science, NLP, Data Analyst): Data analyst

Problem description

XYZ Credit union in Latin America is performing very well in selling Banking products (Credit card, deposit amount, retirement account, safe deposit box), but their existing customer is not buying more than 1 product which means bank is not performing good in cross selling (Banks is not able to sell their other offering to existing customers). XYZ credit union decided to approach ABC analytics to solve their problem.

GitHub Repo Link

https://github.com/pranav611/Final-Project

EDA

The Explanatory Data Analysis has been performed in the ipynb file.

Final Recommendation

The recommendation proposed will be developed for the "Affluent Low Income Risk" market. We will focus on improved cross-selling techniques at the time of sale of any product by the bank. This specific market will be highly price sensitive to the offers, therefore, the lower the price, the more cross selling will be done.

2. <u>Data understanding</u>

There are 2 files: Test and Train. Test file hasn't any info about products and we can't use this file for analysis.

Let's check the number of rows in train datasets, what type of variables are there and whether values are null (info in %).

	ss 'pandas.core.frame.D		fecha_dato	0.0
	eIndex: 13647309 entrie		ncodpers	0.0
	columns (total 48 colu	-	ind_empleado	0.2
#	Column	Dtype	pais residencia	0.2
۵.	fecha_dato	object	sexo	0.2
0 1	ncodpers	int64	age	0.0
2	ind_empleado	object	fecha_alta	0.2
3	pais_residencia	object		0.2
4	sexo	object	ind_nuevo	
5	age	object	antiguedad	0.0
6	fecha_alta	object	indrel	0.2
7	ind_nuevo	float64	ult_fec_cli_1t	99.8
8	antiguedad	object	indrel_1mes	1.0
9	indrel	float64	tiprel_1mes	1.0
10	ult_fec_cli_1t	object	indresi	0.2
11	indrel_1mes	object	indext	0.2
12	tiprel_1mes	object	conyuemp	99.9
13	indresi	object	canal_entrada	1.3
	indext	object	indfall	0.2
	conyuemp	object	tipodom	0.2
	canal_entrada	object	cod_prov	0.6
	indfall	object	_	0.6
	tipodom	float64	nomprov ind_actividad_cliente	0.0
19		float64		
	nomprov	object	renta	20.4
21	ind_actividad_cliente renta	float64 float64	segmento	1.3
	segmento	object	ind_ahor_fin_ult1	0.0
	ind_ahor_fin_ult1	int64	ind_aval_fin_ult1	0.0
	ind_aval_fin_ult1	int64	ind_cco_fin_ult1	0.0
	ind_cco_fin_ult1	int64	ind_cder_fin_ult1	0.0
	ind_cder_fin_ult1	int64	ind_cno_fin_ult1	0.0
	ind_cno_fin_ult1	int64	ind_ctju_fin_ult1	0.0
29	ind_ctju_fin_ult1	int64	ind_ctma_fin_ult1	0.0
30	ind_ctma_fin_ult1	int64	ind_ctop_fin_ult1	0.0
31	ind_ctop_fin_ult1	int64	ind_ctpp_fin_ult1	0.0
32	ind_ctpp_fin_ult1	int64	ind_deco_fin_ult1	0.0
33	ind_deco_fin_ult1	int64	ind deme fin ult1	0.0
34	ind_deme_fin_ult1	int64	ind_dela_fin_ult1	0.0
35	ind_dela_fin_ult1	int64	ind_ecue_fin_ult1	0.0
36	ind_ecue_fin_ult1	int64		
37	ind_fond_fin_ult1	int64	ind_fond_fin_ult1	0.0
38	ind_hip_fin_ult1	int64	ind_hip_fin_ult1	0.0
39	ind_plan_fin_ult1	int64	ind_plan_fin_ult1	0.0
40	ind_pres_fin_ult1	int64	ind_pres_fin_ult1	0.0
41	ind_reca_fin_ult1	int64	ind_reca_fin_ult1	0.0
42	ing tich tin miti			
42 43	ind_tjcr_fin_ult1 ind_valo_fin_ult1	int64 int64	ind_tjcr_fin_ult1 ind_valo_fin_ult1	0.0 0.0

dtypes: float64(8), int64(23), object(17) memory usage: 4.9+ GB

46 ind_nom_pens_ult1 float64 47 ind_recibo_ult1 int64

int64

float64

44 ind_viv_fin_ult1

45 ind_nomina_ult1

ind_recibo_ult1 dtype: float64

ind_valo_fin_ult1

ind_viv_fin_ult1

ind_nomina_ult1

ind_nom_pens_ult1

0.000000

0.000000

0.117701

0.117701

0.000000

Train dataset contains info about customers and their products.

Train dataset contains 48 features and 13 647 309 rows. There are no duplicates.

Some of features was defined as object, but it is Numerical Variables: age, antiguedad.

Some features in opposite were defined as float64, but it is categorical features: ind_nuevo, indrel, tipodom, cod_prov, ind_actividad_cliente

In general:

Continuous Variables: 'age', 'antiguedad', 'renta'

Categorical Variables: others

There are some features with the same number of missing values, I expect those relate to the same rows. We delete rows with a lot of missing values (0.2% of data).

Null values after deleting rows with a lot of missing values:

fecha_dato	0.000000
ncodpers	0.000000
ind_empleado	0.000000
pais_residencia	0.000000
sexo	0.000514
age	0.000000
fecha_alta	0.000000
ind_nuevo	0.000000
antiguedad	0.000000
indrel	0.000000
ult_fec_cli_1t	99.817961
indrel_1mes	0.896115
tiprel_1mes	0.896115
indresi	0.000000
indext	0.000000
conyuemp	99.986725
canal_entrada	1.162973
indfall	0.000000
tipodom	0.000007
cod_prov	0.483547
nomprov	0.483547
ind_actividad_cliente	0.000000
renta	20.313710
segmento	1.186777
ind_ahor_fin_ult1	0.000000
ind_aval_fin_ult1	0.000000
ind_cco_fin_ult1	0.000000
ind_cder_fin_ult1	0.000000
ind_cno_fin_ult1	0.000000
ind_ctju_fin_ult1	0.000000
ind_ctma_fin_ult1	0.000000
ind_ctop_fin_ult1	0.000000
ind_ctpp_fin_ult1	0.000000
ind_deco_fin_ult1	0.000000
ind_deme_fin_ult1	0.000000
ind_dela_fin_ult1	0.000000
ind_ecue_fin_ult1	0.000000
ind_fond_fin_ult1	0.000000
ind_hip_fin_ult1	0.000000
ind_plan_fin_ult1	0.000000
ind_pres_fin_ult1	0.000000
ind_reca_fin_ult1	0.000000
ind_tjcr_fin_ult1	0.000000
ind_valo_fin_ult1	0.000000
ind_viv_fin_ult1	0.000000
ind_nomina_ult1	0.001593
ind_nom_pens_ult1	0.001593
ind_recibo_ult1	0.000000
dtype: float64	

Describe data:

• numeric

	age	antiguedad	renta
count	13619575	13619575	10852934
mean	40	77	134254
std	17	1672	230620
min	2	-999999	1203
25%	24	23	68711
50%	39	50	101850
75%	50	135	155956
max	164	256	28894396

Outliers in numeric data:

The feature 'age' has some rows with customers who are older than 100 years and a few customers who are very young. We think there is a lot of incorrect data. We can see that customers who are older 20 and younger 90 are most. One of the ways to overcome outliers is to unite the youngest and most adult customers into groups.

Graphs after corrections:

The feature 'antiguedad' (Customer seniority (in months)) contains 38 rows with value -99999. It makes the data very skewed. We should delete rows with this value, because it is an unknown value:

The box plot feature's 'antiguedad' after deleting:

The feature $\tt Renta$ is also very shifted, because there is 18,9% data much more than 75% quartile.

Almost 19% of data are the outliers. And 20% of data is null. Delete these rows will be incorrect. It is necessary to carry out work on the replacement of zero values and emissions. For NA values it can be for example mean/median/mode/segmented approach etc. For outliers it can be grouping.

There is no correlation between numerical features:

categorical

- 1. ind_empleado Employee index. No NA values, 99 % rows have the value N not employee.
- 2. pais_residencia Customer's Country residence. No NA values. 118 unique values. 99 % rows have the value ES.
- 3. sexo Customer's sex. A small number NA values (0.0005% or 70 rows). It is necessary to carry out work on the replacement of NA values (the most popular values for example).
- 4. fecha_alta The date in which the customer became the first holder of a contract in the bank. No NA values.
- 5. ind_nuevo New customer Index. 1 if the customer registered in the last 6 months. Data type
 float, should be changed to categorical. No NA values.
- 6. <u>indrel</u> 1 (First/Primary), 99 (Primary customer during the month but not at the end of the month). No NA values. If you build an ML model, it could be better to change 99 on 0 because it is scaled for ML models.
- 7. ult_fec_cli_1t Last date as primary customer (if he isn't at the end of the month) and conyuemp Spouse index. (1 if the customer is spouse of an employee). have 99% null values. According to the instructions conyuemp feature should contain number 1 if the customer is spouse of an employee. In dataset the feature conyuemp contain (N, S, nan) values. I suppose that N=No, S = Si (Yes). The number of clients with value 'S' = 17. We can delete these features because they contain too small info for analysis.
- 8. indrel_1mes Customer type at the beginning of the month and tiprel_1mes Customer relation type at the beginning of the month. There are 0.89% NA values. It is necessary to carry out work on the replacement of NA values.
- 9. indresi Residence index. No NA values. 99% of customers have the same residence country as the bank country.
- 10. indext Foreigner index. No NA values. (S (Yes) or N (No) if the customer's birth country is different than the bank country) 0.95 % of rows have value N.
- 11. canal_entrada channel used by the customer to join. 162 unique values. The most popular is KHE. 1.16% are NA values. We can replace the missing values with the most popular values in general or by region or something else.
- 12. indfall Deceased index 0.99 of rows have value N (not). No NA values.
- 13. tipodom Address type. 1, primary address. No NA values.
- 14. cod_prov (Province code) and nomprov (Province name) explain the same thing. I suppose delete feature cod_prov and change on categorical values feature nomprov. They have the same number of NA values 0.48%.
- 15. ind_actividad_cliente Activity index (1, active customer; 0, inactive customer). No NA values. There are 54% inactive customers.
- 16. segmento segmentation: 01 VIP, 02 Individuals 03 college graduated. 1.18% NA values. PARTICULARES customers are 58%, UNIVERSITARIO customers are 36%, TOP customers are 4%
- 17. Other features describe the product and customer's product availability.

Approaches to overcome problems like NA value, outlier etc: NA values:

- replacing with a mean value where there are not many missing values, this will not affect the result due to the small volume.
- replacing the average value based on the data of another feature (Segmento-Renta).
- Alternatively, you can set a constant value for NA-marked values. For example, you can put in a special string or numerical value

Outliers:

- Grouping data (all clients with an age of less than 20 years, set the age of 19 years to those from 90 - 91 years)
- Moving from numeric data to categorical data (renta)