Michael Lec CSE 303 Midtern exam {w | w \((0+1)^{\frac{1}{3}}\), w has an even number of os and ot least two 2s} Eq. 943 Eq. 933

- 4. a) $(0+1)^{*}$ 00 $(0+1)^{*}$ 11 $(0+1)^{*}$) + $(0+1)^{*}$ 11 $(0+1)^{*}$ 00 $(0+1)^{*}$)
 b) 1^{*} + 1^{*} 0 1^{*} c) 00 $(0+1)^{*}$ 00 + 11 $(0+1)^{*}$ 11 + 00 $(0+1)^{*}$ 11 + 11 $(0+1)^{*}$ 00
- 5. a) If Lis a regular language, there exists pumping Lemma constant N, S.t. IWIZN and W= xyz where y ≠ E, |xy1≤N, and for all K≥O, xyKz EL. Assume {On 1m | O≤n ≤2m} is regular. Then, substring xy must be Os where |xy1≤n, However, if we pump k infinitely big, n>2m. Thus, Lis not regular.
 - b) i) minimum is H as y (where it is to be pumped) is I

 ond if pumped to length 1, string length is 4

 ii) minimum is 2 as if the string starts with 0, y=0

 and 0 can be pumped. If string starts with 1, y=1

 and 2 cando be pumped.