Journal of Econometrics 19 (1982) 7-22. North-Holland Publishing Company

A BAYESIAN APPROACH TO RETROSPECTIVE IDENTIFICATION OF CHANGE-POINTS*

N. B. BOOTH

Polytechnic of North London, London, UK

A.F.M. SMITH

University of Nottingham, Nottingham NG7 2RD, UK

1. Introduction

We begin our discussion of a general Bayesian approach to making inferences about change-points by considering a simple special case.

Suppose that $y_1, ..., y_n$ are realizations of a random process such that, in the absence of any change in underlying structure, the joint density of $y_1, ..., y_n$ would have the form

$$p(y_1,...,y_n | \psi_1) = \prod_{i=1}^n p(y_i | \psi_1),$$
 (1)

where ψ_1 is a vector of parameters. In such a case, we say that the process exhibits a change-point at time r $(1 \le r < n)$ if there exists ψ_2 $(\psi_2 \ne \psi_1)$ such that

$$p(y_1,...,y_n | r, \psi_1, \psi_2) = p(y_1,...,y_r | \psi_1) p(y_{r+1},...,y_n | \psi_2)$$

$$= \prod_{i=1}^r p(y_i | \psi_1) \prod_{i=r+1}^r p(y_i | \psi_2). \tag{2}$$

[The notation $p(\cdot|\cdot)$ is simply a generic symbol for a conditional density; its actual interpretation will always be clear from the context.]

We shall denote by M_r , the model which assumes there to be a change point at r. In the case of known ψ_1, ψ_2 , we therefore have

$$p(y_1, ..., y_n | M_r) = p(y_1, ..., y_n | r, \psi_1, \psi_2),$$
 (3)

*The material in section 4 is based on Chapter 2 of the first author's Ph.D. thesis written at University College, London, under the supervision of the second author.

0165-7410/82/0000-0000/\$02.75 © 1982 North-Holland

given by (2), whereas, if ψ_1 , ψ_2 are unknown, we have

$$p(y_1,...,y_n|M_r) = \iint p(y_1,...,y_n|r,\psi_1,\psi_2) p(\psi_1,\psi_2) d\psi_1 d\psi_2, \qquad (4)$$

where $p(\psi_1, \psi_2)$ specifies a prior density for ψ_1 , ψ_2 (here assumed independent of M_r). It is convenient to denote by M_0 the model which assumes that no change in underlying distribution has occurred. In the case of unknown ψ_1 , we therefore have

$$p(y_1,...,y_n|M_0) = \int p(y_1,...,y_n|\psi_1) p(\psi_1) d\psi_1, \qquad (5)$$

whereas, in the case of known ψ_1 , the left-hand side of (5) is given directly by eq. (1).

Given $y_1, ..., y_n$ inferences about the change-point are equivalent to inferences about the alternative models $M_0, M_1, ..., M_{n-1}$. The basis for such inferences is provided straightforwardly by Bayes' theorem, which takes the form

$$p(M_r | y_1, ..., y_n) \propto p(y_1, ..., y_n | M_r) p(M_r),$$
 (6)

where $p(M_r)$ denotes the prior probability of a change-point occurring at r.

Thus, for example, comparison of the posterior probabilities of two alternative hypotheses M_r , M_s , say, is given by the ratio of the two terms (for r and s, respectively) provided by (6). A convenient way of re-expressing this is in the form

$$\frac{p(M_r \mid y_1, \dots, y_n)}{p(M_s \mid y_1, \dots, y_n)} / \frac{p(M_r)}{p(M_s)} = \frac{p(y_1, \dots, y_n \mid M_r)}{p(y_1, \dots, y_n \mid M_s)},$$
(7)

displaying the ratio of posterior to prior odds on M_r against M_s as a (usually, integrated) likelihood ratio. The right-hand side of (7) is called the Bayes factor for M_r against M_s and will be denoted by B_{rs} . A value of $B_{rs} > 1$ thus indicates evidence from the data pointing towards r as a more likely change-point than s. In particular, if s=0, B_{r0} provides an indicator of whether a change-point at r is better supported than an assumption of no change. Since $B_{0r} = B_{r0}^{-1}$ and $B_{rs} = B_{r0}B_{0s}$, it will suffice, in what follows, to work in terms of B_{r0} .

If we are interested in an overall assessment of change versus no change, we note that the appropriate ratio of posterior to prior odds is given by

$$\left(\frac{1 - P(M_0 \mid y_1, \dots, y_n)}{P(M_0 \mid y_1, \dots, y_n)}\right) / \left(\frac{1 - P(M_0)}{P(M_0)}\right) = \sum_r B_{r0} \left(\frac{P(M_r)}{1 - P(M_0)}\right). \tag{8}$$

The right-hand side Bayes factors for probabilities of thos particular, if the P(which they are nontaken over all the po-

We began our dis (1)-(5). This will be means in uni- and blems of changes in and 4), (1)-(5) no $p(y_1,...,y_n|M_r)$ occu inferences about r. within the Bayesiar unknown parameter

Detailed Bayesian been given in Broa (1977) and Menzefri briefly in section 2 regression and tim previously on these Smith (1980), but w ideas in two new ir to the problem of assumes change, ur parameters within different dimension assigning values to specification of fori overcoming the pr provide a unified treatment of the tin technique used is likelihood for ARM

Throughout, we change. For Bayesi Harrison and Steve (1982).

2. Changes of mean

2.1. The univariate

Bayesian inferensequence is dealt w $(\psi_2) d\psi_1 d\psi_2$, (4) there assumed independodel which assumes that

In the case of unknown

of (5) is given directly by

nt are equivalent to in- M_{n-1} . The basis for such theorem, which takes the

(6)

re-point occurring at r. or probabilities of two atio of the two terms (for way of re-expressing this

(7)

on M_r against M_s as a l side of (7) is called the by B_{rs} . A value of $B_{rs} > 1$ ards r as a more likely rovides an indicator of an an assumption of no fice, in what follows, to

hange versus no change, or odds is given by

$$I_{r0}\left(\frac{P(M_r)}{1 - P(M_0)}\right). \tag{8}$$

The right-hand side of (8) has the form of a weighted average of individual Bayes factors for changes at specific times, weighted by the a priori probabilities of those changes, conditional on a change having occurred. In particular, if the $P(M_r)/(1-P(M_0))$ terms are equal over the range of r for which they are non-zero, then (8) is just an average of the Bayes factors B_{r0} , taken over all the possible change-points.

We began our discussion by considering a simple structure, summarized in (1)-(5). This will be illustrated in section 2, where we consider changes of means in uni- and multivariate normal sequences. For more general problems of changes in structure of regression or time series models (sections 3 and 4), (1)-(5) no longer apply, but, provided we can specify the form $p(y_1, ..., y_n | M_r)$ occurring in (6), the forms (6)-(8) still provide the basis for inferences about r. In addition to inferences about r, it is straightforward within the Bayesian approach to provide inference statements about other unknown parameters occurring in the specification of model structures.

Detailed Bayesian analysis of parameter shifts in univariate series have been given in Broemeling (1972, 1974), Smith (1975), Lee and Heghinian (1977) and Menzefricke (1981). Some aspects of this work will be summarized briefly in section 2, but in this paper we shall concentrate mainly on the regression and time series cases (sections 3 and 4). We have reported previously on these problems in Smith (1977), Smith and Cook (1980) and Smith (1980), but we shall be concerned here with developing our previous ideas in two new important directions. First, we provide a possible solution to the problem of comparing the no-change model with a model which assumes change, under the assumption of vague prior information for the parameters within each model. Since the models being compared have different dimensions, we are forced to confront directly the problem of assigning values to the (usually ignored) arbitrary constants arising in the specification of forms of improper prior density. Our basic suggestion for overcoming the problem will be introduced in section 2. Secondly, we provide a unified account of a procedure which greatly facilitates the treatment of the time series case by relating it to a regression problem. The technique used is closely related to the problem of finding the exact likelihood for ARMA processes.

Throughout, we shall be concerned with retrospective inference about change. For Bayesian approaches to on-line monitoring, see, for example, Harrison and Stevens (1976), Smith and Makov (1980) and Smith and West (1982).

2. Changes of mean in normal sequences

2.1. The univariate case

Bayesian inference about a change of mean in a univariate normal sequence is dealt with in detail by Smith (1975, sec. 4), and the change of

variance case is treated by Menzefricke (1981). In this section, we shall just consider the problem of comparing models of change of mean versus no change when there is vague prior knowledge about the model parameters. We begin with the simple case of a conditionally independent univariate normal sequence and then generalize to the multivariate case. This will enable us to highlight the problems which arise in calculating B_{r0} , and hence (8), when standard improper prior forms of representation of vague knowledge are assumed.

Corresponding to (2), with $\psi_j = (\mu_j, \sigma)$, we shall assume that, for M_r with $r \neq 0$,

$$p(y_1,...,y_n|r,\psi_1,\psi_2)$$

$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \left[\sum_{i=1}^r (y_i - \mu_1)^2 + \sum_{i=r+1}^n (y_i - \mu_2)^2 \right] \right\}.$$

Further, we shall assume a prior density $p(\psi_1, \psi_2)$ of the form

 $p(y_1,...,y_n|M_r)$

$$p(\mu_1, \mu_2, \sigma) = p(\mu_1 \mid \sigma) p(\mu_2 \mid \sigma) p(\sigma)$$

$$= \{c_1(2\pi\sigma^2)^{-\frac{1}{2}}\}\{c_2(2\pi\sigma^2)^{-\frac{1}{2}}\}c\sigma^{-1}, \tag{9}$$

where c_1, c_2, c are unspecified constants [see, for example, Jeffreys (1961)]. It then follows from (4), after some straightforward algebra, that

where $\bar{y}_r, \bar{y}_{(n-r)}$ denote the mean of y_1, \ldots, y_r and y_{r+1}, \ldots, y_n , respectively. In the case of M_0 , we take $p(\psi_1) = p(\mu_1 \mid \sigma) p(\sigma)$ and obtain

$$p(y_1,...,y_n | M_0) \propto c_1 c n^{-\frac{1}{2}} \left[\sum_{i=1}^n (y_i - \bar{y}_n) \right]^{-n/2}$$
 (11)

We now note that if we take the ratio of (10) and (11) in order to obtain B_{r0} from (7), we obtain, after some algebra,

$$B_{r0} = c_2 \left(\frac{n}{r(n-r)}\right)^{\frac{1}{2}} \left(1 + \frac{t_r^2}{n-2}\right)^{n/2},\tag{12}$$

where t_r^2 is the usual t sampling distribution d connection between b comparing means. In p minimum (i.e., showir (corresponding to $\bar{y}_r = \bar{y}$

However, the unpler depends on the unspearise if we calculate B defined by (10), the far and M_0 , assuming vag different dimensionality under M_0) and arbitra implicitly, from improp (1971) and Atkinson (1971)

In order to motivate a 'thought experiment Spiegelhalter (1981) and

We imagine that we to compare M_0 and M in favour of M_1 . This such a case, we should we have only one obsemuch from 1. If we ent represent our unwilling very minimal evidence, choice of c_2 .

In fact, we have as should not depend on sample' in order for B_r corresponding to t_r^2 appropriate choice for n=r+1=3, which ju unknown parameters $B_{20}=1$, into (12) we obtain

2.2. The multivariate co

Suppose that under.

$$y_i \sim N_p(\mu_1, \mu_2, \dots, \mu_n)$$

n this section, we shall just change of mean versus no out the model parameters. ally independent univariate aultivariate case. This will 1 calculating B_{r0} , and hence resentation of vague know-

I assume that, for M, with

$$\sum_{i=r+1}^{n} (y_i - \mu_2)^2 \bigg] \bigg\}.$$

of the form

ample, Jeffreys (1961)]. rd algebra, that

$$(y_l - \bar{y}_{(n-r)})^2$$
 $-n/2$ (10)

 r_{+1}, \dots, y_n , respectively. In

ed (11) in order to obtain

(12)

where t_r^2 is the usual t-statistic for testing the hypothesis $\mu_1 = \mu_2$, given the sampling distribution defined by (9). The form of (12) thus shows a functional connection between B_{r0} , and hence (8), and classical test statistics for comparing means. In particular, B_{r0} is monotonic increasing with t_r^2 , and a minimum (i.e., showing least evidence of a change at r) when $t_r^2 = 0$ (corresponding to $\bar{y}_r = \bar{y}_{(n-r)}$).

However, the unpleasant - and unavoidable - feature of (12) is that it depends on the unspecified constant c_2 . Note that this problem does not arise if we calculate B_{rs} , say, since, when we form the ratio of two terms defined by (10), the factor c_1c_2c cancels. Essentially, when we compare M_r and M_0 , assuming vague prior information, we are dealing with models of different dimensionality (two unknown parameters under M_0 versus three under M_r) and arbitrariness necessarily enters into a Bayes factor derived, implicitly, from improper limits of proper priors [see, for example, Lempers (1971) and Atkinson (1978)].

In order to motivate a choice for the value of c_2 in (12), we use the idea of a 'thought experiment', introduced and developed in detail in Smith and Spiegelhalter (1981) and Spiegelhalter and Smith (1982).

We imagine that we have observed a sample of minimal size to enable us to compare M_0 and M_r , and that this sample has provided maximal evidence in favour of M_r . This corresponds to assuming that n=r+1 and $t_r^2=0$. In such a case, we should wish to have $B_{r0} < 1$ (evidence favours M_0), but (since we have only one observation following r) we should not wish B_{r0} to differ much from 1. If we enter the imagined values of n and t_r^2 , and take $B_{r0} \sim 1$ to represent our unwillingness to regard such a sample as providing other than very minimal evidence, we can deduce immediately from (12) the unspecified choice of c_2 .

In fact, we have assumed in (9) that the prior specification for $p(\mu_1 | \sigma)$ should not depend on M_r. We also require the smallest possible 'imaginary sample' in order for $B_{r0} \approx 1$ to be a reasonable reflection of minimal evidence corresponding to $t_r^2 = 0$. Combining these two elements, we see that an appropriate choice for a minimal 'calibrating' sample would be to take r=2, n=r+1=3, which just provides sufficient information about the three unknown parameters μ_1, μ_2, σ . Entering these values, together with $t_r^2 = 0$, $B_{20}=1$, into (12) we obtain $c_2=(2/3)^{\frac{1}{2}}$ and hence an explicit form for (12).

2.2. The multivariate case

Suppose that under M, we assume

$$y_{i} \sim N_{p}(\mu_{1}, \Sigma), \qquad i = 1, ..., r$$

$$y_{i} \sim N_{p}(\mu_{2}, \Sigma), \qquad i = r + 1, ..., n$$

$$(13)$$

10

variance case is treated by Menzefricke (1981). In this section, we shall just consider the problem of comparing models of change of mean versus no change when there is vague prior knowledge about the model parameters. We begin with the simple case of a conditionally independent univariate normal sequence and then generalize to the multivariate case. This will enable us to highlight the problems which arise in calculating B_{r0} , and hence (8), when standard improper prior forms of representation of vague knowledge are assumed.

Corresponding to (2), with $\psi_j = (\mu_p \sigma)$, we shall assume that, for M_r with $r \neq 0$,

$$p(y_1,...,y_n|r,\psi_1,\psi_2)$$

$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \left[\sum_{i=1}^r (y_i - \mu_1)^2 + \sum_{i=r+1}^n (y_i - \mu_2)^2 \right] \right\}.$$

Further, we shall assume a prior density $p(\psi_1, \psi_2)$ of the form

$$p(\mu_1, \mu_2, \sigma) = p(\mu_1 \mid \sigma) p(\mu_2 \mid \sigma) p(\sigma)$$

$$= \{c_1 (2\pi\sigma^2)^{-\frac{1}{2}}\} \{c_2 (2\pi\sigma^2)^{-\frac{1}{2}}\} c\sigma^{-1}, \tag{9}$$

where c_1, c_2, c are unspecified constants [see, for example, Jeffreys (1961)]. It then follows from (4), after some straightforward algebra, that

$$p(y_1, ..., y_n | M_r)$$

$$\propto c_1 c_2 c [r(n-r)]^{-\frac{1}{2}} \left[\sum_{i=1}^r (y_i - \bar{y}_r)^2 + \sum_{i=r+1}^n (y_i - \bar{y}_{(n-r)})^2 \right]^{-n/2}, \quad (10)$$

where $\bar{y}_r, \bar{y}_{(n-r)}$ denote the mean of y_1, \dots, y_r and y_{r+1}, \dots, y_n , respectively. In the case of M_0 , we take $p(\psi_1) = p(\mu_1 \mid \sigma) p(\sigma)$ and obtain

$$p(y_1,...,y_n | M_0) \propto c_1 c n^{-\frac{1}{2}} \left[\sum_{i=1}^n (y_i - \bar{y}_n) \right]^{-n/2}$$
 (11)

We now note that if we take the ratio of (10) and (11) in order to obtain B_{r0} from (7), we obtain, after some algebra,

$$B_{r0} = c_2 \left(\frac{n}{r(n-r)}\right)^{\frac{1}{2}} \left(1 + \frac{t_r^2}{n-2}\right)^{n/2},\tag{12}$$

where t_r^2 is the usu sampling distributio connection betweer comparing means. I minimum (i.e., shc (corresponding to \bar{y} ,

However, the un depends on the un arise if we calculate defined by (10), the and M_0 , assuming different dimensions under M_0) and arb implicitly, from imp (1971) and Atkinson

In order to motiv a 'thought experim Spiegelhalter (1981)

We imagine that to compare M_0 and in favour of M_r . The such a case, we show we have only one of much from 1. If we represent our unwill very minimal evider choice of c_2 .

In fact, we have should not depend sample' in order for corresponding to t appropriate choice: n=r+1=3, which unknown paramete $B_{20}=1$, into (12) we

2.2. The multivariat

Suppose that und

$$y_i \sim N_p($$

$$y_i \sim N_p$$

n this section, we shall just change of mean versus no pout the model parameters. ally independent univariate nultivariate case. This will a calculating B_{r0} , and hence resentation of vague know-

I assume that, for M, with

$$\sum_{i=t+1}^{n} (y_i - \mu_2)^2 \bigg] \bigg\}.$$

of the form

ample, Jeffreys (1961)]. rd algebra, that

$$(y_i - \bar{y}_{(n-r)})^2 \bigg]^{-n/2},$$
 (10)

 y_{r+1}, \dots, y_n , respectively. In ain

1d (11) in order to obtain

(12)

11

where t_r^2 is the usual t-statistic for testing the hypothesis $\mu_1 = \mu_2$, given the sampling distribution defined by (9). The form of (12) thus shows a functional connection between B_{r0} , and hence (8), and classical test statistics for comparing means. In particular, B_{r0} is monotonic increasing with t_r^2 , and a minimum (i.e., showing least evidence of a change at r) when $t_r^2 = 0$ (corresponding to $\bar{y}_r = \bar{y}_{(n-r)}$).

However, the unpleasant – and unavoidable – feature of (12) is that it depends on the unspecified constant c_2 . Note that this problem does not arise if we calculate B_{rs} , say, since, when we form the ratio of two terms defined by (10), the factor c_1c_2c cancels. Essentially, when we compare M_r , and M_0 , assuming vague prior information, we are dealing with models of different dimensionality (two unknown parameters under M_0 versus three under M_r) and arbitrariness necessarily enters into a Bayes factor derived, implicitly, from improper limits of proper priors [see, for example, Lempers (1971) and Atkinson (1978)].

In order to motivate a choice for the value of c_2 in (12), we use the idea of a 'thought experiment', introduced and developed in detail in Smith and Spiegelhalter (1981) and Spiegelhalter and Smith (1982).

We imagine that we have observed a sample of minimal size to enable us to compare M_0 and M_r , and that this sample has provided maximal evidence in favour of M_r . This corresponds to assuming that n=r+1 and $t_r^2=0$. In such a case, we should wish to have $B_{r0} < 1$ (evidence favours M_0), but (since we have only one observation following r) we should not wish B_{r0} to differ much from 1. If we enter the imagined values of n and t_r^2 , and take $B_{r0} \sim 1$ to represent our unwillingness to regard such a sample as providing other than very minimal evidence, we can deduce immediately from (12) the unspecified choice of c_2 .

In fact, we have assumed in (9) that the prior specification for $p(\mu_1 \mid \sigma)$ should not depend on M_r . We also require the smallest possible 'imaginary sample' in order for $B_{r0} \approx 1$ to be a reasonable reflection of minimal evidence corresponding to $t_r^2 = 0$. Combining these two elements, we see that an appropriate choice for a minimal 'calibrating' sample would be to take r = 2, n = r + 1 = 3, which just provides sufficient information about the three unknown parameters μ_1, μ_2, σ . Entering these values, together with $t_r^2 = 0$, $B_{20} = 1$, into (12) we obtain $c_2 = (2/3)^{\frac{1}{2}}$ and hence an explicit form for (12).

2.2. The multivariate case

Suppose that under M, we assume

$$y_i \sim N_p(\mu_1, \Sigma), \qquad i = 1, ..., r$$

$$y_i \sim N_p(\mu_2, \Sigma), \qquad i = r + 1, ..., n$$

$$(13)$$

N.B. Booth at

where the observation y_i is now a p-vector, and that under M_0 we assume

$$y_i \sim N_p(\mu_1, \Sigma), \qquad i = 1, \dots, n. \tag{14}$$

In both cases, the sequences of observations are assumed conditionally independent. For the unknown parameters μ_1, μ_2, Σ , invariance arguments [Jeffreys (1961)] lead to improper prior specifications of the form

$$p(\mu_1, \mu_2, \Sigma) = p(\mu_1 \mid \Sigma) p(\mu_2 \mid \Sigma) p(\Sigma), \tag{15}$$

where

12

$$p(\mu_{j} \mid \Sigma) = c_{j}(2\pi)^{-p/2} \mid \Sigma \mid^{-\frac{1}{2}}$$

$$p(\Sigma) = c \mid \Sigma \mid^{-(p+1)/2}$$
(16)

Using standard integration formulae [see, for example, Smith and Spiegel-halter (1981, sec. 17.2.2)], we can easily find the forms of

$$p(y_1,...,y_n | M_r) = \iint p(y_1,...,y_n | \mu_1, \mu_2, \Sigma)$$

$$\times p(\mu_1 \mid \Sigma) p(\mu_2 \mid \Sigma) p(\Sigma) d\mu_1 d\mu_2 d\Sigma, \tag{17}$$

and

$$p(y_1,...,y_n \mid M_0) = \iint p(y_1,...,y_n \mid \mu_1, \Sigma) p(\mu_1 \mid \Sigma) p(\Sigma) d\mu_1 d\Sigma.$$
 (18)

Taking the ratio of (17) and (18), we find that

$$B_{r0} = c_2 \left(\frac{n}{r(n-r)} \right)^{p/2} \left(\frac{|S_n|}{|S_r + S_{(n-r)|}|} \right)^{n/2}, \tag{19}$$

where

$$S_{r} = \sum_{i=1}^{r} (y_{i} - \bar{y}_{r})(y_{i} - \bar{y}_{r})^{T}$$

$$S_{(n-r)} = \sum_{i=r+1}^{n} (y_{i} - \bar{y}_{(n-r)})(y_{i} - \bar{y}_{(n-r)})^{T}$$

$$(20)$$

Arguing as in the previous section, we see that a minimal calibrating sample is provided by r=p, n=2p+1. If this gave $\bar{y_r}=\bar{y_{(n-r)}}$ so that $S_r+S_{(n-r)}=S_n$, we should want, approximately, $B_{r0}=1$. Substitution into (19) leads to the choice

$$c_2 = \left(\frac{p(p+1)}{2p+1}\right)^{p/2} \tag{21}$$

Using this value, (1 spective inferences : normal observations riance structure can Smith and Spiegelha

3. Changes of coeffic

3.1. Introduction

We shall consider

$$Y_t = \mathbf{x}_t^T \boldsymbol{\beta}^{(t)}$$

where, at time t, Y_t column vector of ob constant term), $\beta^{(t)}$ i and ε_t is a disturban differing t, with zero

The sequence defi

 $(1 \le r < n)$ if

with unknown β , δ change, $\delta = 0$, will be
If we write Y = (adopting the notatio

$$X_r^T = (x_1,$$

we see that, under N

$$Y \sim N_{\star}(A)$$

where

$$A_r = \begin{pmatrix} X \\ X_{r} \end{pmatrix}$$

med conditionally invariance arguments of the form

(15)

(16)

xample, Smith and Spiegel-ms of

 $\mathrm{d}\mu_1\mathrm{d}\mu_2\mathrm{d}\Sigma,\tag{17}$

 $_{1}|\Sigma)p(\Sigma)\,\mathrm{d}\mu_{1}\,\mathrm{d}\Sigma.$ (18)

(19)

(20)

at a minimal calibrating gave $\bar{y_r} = \bar{y_{(n-r)}}$ so that = 1. Substitution into (19)

(21)

Using this value, (19), in conjunction with (8), provides a basis for retrospective inferences about changes of mean in a sequence of multivariate normal observations. In a similar way, Bayes factors for changes in covariance structure can be developed using modifications of the analysis given in Smith and Spiegelhalter (1981, sec. 17.3).

3. Changes of coefficients in regression models

3.1. Introduction

We shall consider the regression model

$$Y_t = x_t^T \boldsymbol{\beta}^{(t)} + \varepsilon_t, \qquad t = 1, ..., n, \tag{22}$$

where, at time t, Y_i is the observation on the dependent variable, x_i is the column vector of observations on p regressor variables (including, possibly, a constant term), $\beta^{(t)}$ is the column vector of unknown regression coefficients, and ε_i is a disturbance term, assumed independently normally distributed for differing t, with zero mean and constant variance σ^2 .

The sequence defined by (22) will be said to have a change-point at r $(1 \le r < n)$ if

$$\beta^{(1)} = \cdots = \beta^{(r)} = \beta, \qquad \beta^{(r+1)} = \cdots = \beta^{(n)} = \beta + \delta,$$

with unknown β , $\delta \neq 0$. We denote this model by M_r . The model of no change, $\delta = 0$, will be denoted by M_0 .

If we write $Y = (Y_1, ..., Y_n)^T$ and denote a realization of Y by y, then adopting the notation

$$X_r^T = (x_1, \ldots, x_r), \qquad X_{(n-r)}^T = (x_{r+1}, \ldots, x_n),$$

we see that, under M_r ,

$$Y \sim N_n(A_r\theta, \sigma^2 I_n), \tag{23}$$

where

$$A_r = \begin{pmatrix} X_r & 0 \\ X_{(n-r)} & X_{(n-r)} \end{pmatrix}, \qquad \theta = \begin{pmatrix} \beta \\ \delta \end{pmatrix}, \tag{24}$$

N.B. Booth an

whereas, under M_0 ,

$$Y \sim N_n(A_0\beta, \sigma^2 I_n), \tag{25}$$

where $A_0 = X_n$.

In (23)-(25), we have defined $p(y \mid M_n, \theta, \sigma)$ and $p(y \mid M_0, \beta, \sigma)$. To utilize (6)-(8) we require

$$p(y \mid M_r) = \iint p(y \mid M_r, \theta, \sigma) p(\theta, \sigma) d\theta d\sigma, \tag{26}$$

and

$$p(y \mid M_0) = \iint p(y \mid M_0, \beta, \sigma) p(\beta, \sigma) \, \mathrm{d}\beta \, \mathrm{d}\sigma; \tag{27}$$

we thus need to specify $p(\theta, \sigma)$ and $p(\beta, \sigma)$. This specification, and its relation to the problem of comparing alternative linear models, has been discussed extensively in the literature. Recent developments, together with extensive references, are presented in Smith and Spiegelhalter (1980) and Spiegelhalter and Smith (1982). In the next two sections, we shall consider two particular forms of prior specification.

3.2. A proper prior specification for δ

We consider first, following Smith (1980), the consequences of the specification

$$p(\theta, \sigma) = p(\theta \mid \sigma) p(\sigma),$$
 (28)

where $p(\sigma) = c\sigma^{-1}$, and $p(\theta \mid \sigma)$ corresponds, for $1 \le r < n$, to a normal distribution with mean θ_0 and covariance matrix $\sigma^2 V_0$, where

$$V_0 = \begin{bmatrix} V_{0\beta} & 0 \\ 0 & V_{0\delta} \end{bmatrix}, \qquad \theta_0 = \begin{bmatrix} \beta_0 \\ \delta_0 \end{bmatrix}.$$

In the case of M_0 , we simply take $V_0 = V_{0\beta}$, $\theta_0 = \beta_0$. With this specification, it is easily verified [Smith (1980, sec. 3)] that if V_0^{-1} may be considered small in relation to $A_r^T A_r$, then

$$B_{r0} = \left(\frac{|X_n^T X_n|}{|V_{0\delta}| |X_r^T X_r| |X_{(n-r)}^T X_{(n-r)}|}\right)^{\frac{1}{2}} \left(1 + \frac{p}{(n-2p)} F_r\right)^{n/2}, \tag{29}$$

where F_r denotes the usual F-statistic for testing M_0 versus M_r .

General discussion conjugate prior dist change-point proble and Cook (1980) and

3.3. Vague prior infor Returning to (28),

$$p(\theta, \sigma) = p$$

=(

whereas, under M_0 ,

$$p(\beta, \sigma) = c$$

From (23)-(25), (30) (1982) for a related (

$$B_{r0} = c_{\delta} \bigg($$

Motivating a choice less straightforward argument is provide the suggestion

$$c_{\Lambda} = (2p +$$

4. Changes of mean

4.1. General ideas

We assume that infinite process which (u, v) form

$$(1-\phi_1 B)$$

as in Box and Jer

(25)

 $y \mid M_0, \beta, \sigma$). To utilize (6)-

(26)

(27)

cification, and its relation odels, has been discussed together with extensive (1980) and Spiegelhalter consider two particular

e consequences of the

(28)

'<n, to a normal distrihere</pre>

With this specification, it ay be considered small in

$$\frac{2}{2p}F_r\Big)^{a/2},\qquad (29)$$

versus M.

General discussion of the comparison of linear models with informative conjugate prior distributions is given in Lempers (1971). Applications to change-point problems are given in Holbert and Broemeling (1977), Smith and Cook (1980) and Chin Choy and Broemeling (1980a, b).

3.3. Vague prior information for all parameters

Returning to (28), we now assume that, under M_r ,

$$p(\theta, \sigma) = p(\beta | \sigma)p(\delta | \sigma)p(\sigma)$$

$$= c_{\sigma}(2\pi\sigma^{2})^{-p/2}c_{\sigma}(2\pi\sigma^{2})^{-p/2}c\sigma^{-1},$$
(30)

whereas, under M_0 ,

$$p(\beta, \sigma) = c_{\beta}(2\pi\sigma^2)^{-p/2}c\sigma^{-1}.$$
 (31)

From (23)-(25), (30) and (31), it easily follows [see Spiegelhalter and Smith (1982) for a related calculation] that

$$B_{r0} = c_{\delta} \left(\frac{|X_n^T X_n|}{|X_r^T X_n| |X_{(n-r)}^T X_{(n-r)}|} \right)^{\frac{1}{2}} \left(1 + \frac{p}{(n-2p)} F_r \right)^{n/2}.$$
 (32)

Motivating a choice of c_{δ} by means of a calibrating 'thought experiment' is less straightforward than in the cases considered in section 2. A detailed argument is provided in Spiegelhalter and Smith (1982, sec. 4) and leads to the suggestion

$$c_{\delta} = (2p+1)^{p/2}. (33)$$

4. Changes of mean in linear time series models

4.1. General ideas

We assume that observations $z = (z_1, ..., z_n)^T$ are available from a doubly infinite process which may be modelled, for t = ..., -1, 0, 1, ..., by the ARMA (u, v) form

$$(1-\phi_1B-\cdots-\phi_nB^n)(z_t-\mu_t)=(1-\alpha_1B-\cdots-\alpha_nB^n)\varepsilon_t, \qquad (34)$$

as in Box and Jenkins (1970). We then denote by M, the model which

N.B. Booth and A.F.

assumes that

16

$$\mu_{t} = \beta, \qquad t = 1, \dots, r$$

$$\mu_{t} = \beta + \delta, \qquad t = r + 1, \dots, n$$

$$(35)$$

and by M_0 the model which assumes that

$$\mu_t = \beta, \qquad t = 1, \dots, n. \tag{36}$$

Using ideas from Box and Tiao (1965) and Glass et al. (1975), we seek a linear transformation from $z = (z_1, ..., z_n)^T$ to $y = (y_1, ..., y_n)^T$, such that, under M_r , the random vector Y, corresponding to y, can be described by

$$Y \sim N_n(A,\theta,\sigma^2 I_n), \tag{37}$$

where $A_r = A_s(\phi, \alpha)$ is an $n \times 2$ matrix, whose entries are functions of r and $(\phi^T, \alpha^T) = (\phi_1, ..., \phi_u, \alpha_1, ..., \alpha_v)$, and $\theta = (\beta, \delta)^T$. Under M_0 , we require

$$Y \sim N_n(A_0\beta, \sigma^2 I_n), \tag{38}$$

where $A_0 = A_0(\phi, \alpha)$ is $n \times 1$ and given by the first column of A_r (corresponding to $\delta = 0$).

Before turning to a detailed discussion of the form of such a transformation, we note the following important relationship with the work of section 3. If $p(\theta, \sigma)$, $p(\beta, \sigma)$ are defined either as in (18), or by (30), (31), with p=1, we can calculate

$$p(z \mid M_n, \phi, \alpha) = \iint p(z \mid M_n, \theta, \sigma, \phi, \alpha) p(\theta, \sigma) d\theta d\sigma, \tag{39}$$

and

$$p(z \mid M_0, \phi, \alpha) = \iint p(z \mid M_0, \beta, \sigma, \phi, \alpha) p(\beta, \sigma) d\beta d\sigma, \tag{40}$$

where the first terms in the integrals are defined by (37) and (38) multiplied by the Jacobian of the transformation, $J(\phi, \alpha)$, say. If we then integrate (39) and (40) with respect to a prior specification $p(\phi, \alpha)$ for the ARMA parameters, thus obtaining $p(z \mid M_r)$, $p(z \mid M_0)$, the ratio of these latter terms gives B_{r0} . The resulting form is

$$B_{r0} = K_{\delta} \frac{\iint J(\phi, \alpha) |A_{r}^{T}(\phi, \alpha)A_{r}(\phi, \alpha)|^{-\frac{1}{2}} [S_{r}(\phi, \alpha)]^{-n/2} p(\phi, \alpha) d\phi d\alpha}{\iint J(\phi, \alpha) |A_{0}^{T}(\phi, \alpha)A_{0}(\phi, \alpha)|^{-\frac{1}{2}} [S_{0}(\phi, \alpha)]^{-n/2} p(\phi, \alpha) d\phi d\alpha},$$
(41)

where $K_{\delta} = V_{0\delta}^{-\frac{1}{2}}$ [if $p(\theta, \sigma)$ defined by (30)], and S_{ϵ} , squares resulting from lea (37) and (38).

In most applications, u the integrals arising in (4 covering the admissible re of ϕ , α .

The general approach follows.

If $s = \max(u, v)$, the first independent y_i 's by definit

$$y_1 = \lambda_1 z_1$$

$$y_2 = \lambda_2 (z_2 + \pi_2;$$

$$\vdots$$

$$y_s = \lambda_s (z_s + \pi_{s2} z_s)$$

where the λ_i 's are chosen are chosen successively is $s < i \le n$, we define

$$y_i = \lambda_i (z_i - \phi_1 z_i)$$

where the successive choic and independence, respect:

For AR(u) models, all ARMA(u, v) models with a defined recursively, at lea terms. In the following so cases with $u+v \le 2$. If u+ first u+v y_i 's. An alternation TT^{-1} of the transformation relation $TT^T = \sigma^{-2}\Gamma$, whe z_{u+v} . It will be seen that problem of finding the example, Newbold (1974) these authors invert the observations, the method y

(35)

(36)

ss et al. (1975), we seek a \dots, y_n ^T, such that, under we described by

(37)

s are functions of r and m M_0 , we require

(38)

olumn of A, (correspond-

form of such a transonship with the work of 18), or by (30), (31), with

$$\partial d\sigma$$
, (39)

$$1\beta d\sigma$$
, (40)

(37) and (38) multiplied If we then integrate (39) $p(\phi, \alpha)$ for the ARMA itio of these latter terms

$$\frac{\alpha)]^{-n/2}p(\phi,\alpha)d\phi d\alpha,}{(\alpha)]^{-n/2}p(\phi,\alpha)d\phi d\alpha},$$
(41)

where $K_{\delta} = V_{0\delta}^{-\frac{1}{2}}$ [if $p(\theta, \sigma)$ is defined by (28)], or $K_{\delta} = c_{\delta} = \sqrt{3}$ [if $p(\theta, \sigma)$ is defined by (30)], and $S_{\epsilon}(\phi, \alpha)$, $S_{0}(\phi, \alpha)$ denote the usual residual sum of squares resulting from least squares fitting of the linear models defined by (37) and (38).

In most applications, u and v are small and an adequate approximation to the integrals arising in (41) is obtained by summation over a suitable grid covering the admissible region (with respect to stationarity and invertibility) of ϕ , α .

The general approach to deriving an appropriate transformation is as follows.

If $s = \max(u, v)$, the first $s z_i$'s must be transformed directly to a set of s independent y_i 's by defining

$$y_{1} = \lambda_{1} z_{1}$$

$$y_{2} = \lambda_{2} (z_{2} + \pi_{22} z_{1})$$

$$\vdots$$

$$y_{s} = \lambda_{s} (z_{s} + \pi_{s2} z_{s-1} + \dots + \pi_{ss} z_{s})$$

$$(42)$$

where the λ_i 's are chosen to reduce the variance of the y_i 's to σ^2 , and the π_{ij} 's are chosen successively in such a way that the y_i 's are independent. For $s < i \le n$, we define

$$y_{i} = \lambda_{i}(z_{i} - \phi_{1}z_{i-1} - \dots - \phi_{u}z_{i-u} - \tau_{i1}y_{i-1} - \dots - \tau_{iv}y_{i-v}), \tag{43}$$

where the successive choices of the λ_i 's and the τ_{ij} 's ensures homoscedasticity and independence, respectively.

For AR(u) models, all the τ_{ij} terms are 0 and $\lambda_i = 1$ for $s < i \le n$. For ARMA(u, v) models with u > 0, v > 0, both the τ_{ij} and λ_i terms are eventually defined recursively, at least from i = p + q + 1. MA(v) models lose the $\phi_j z_{i-j}$ terms. In the following sections, we provide a detailed development of all cases with $u + v \le 2$. If u + v is large, it may be difficult to identify directly the first u + v y_i's. An alternative approach is to find the lower triangular matrix T^{-1} of the transformation from (z_1, \ldots, z_{u+v}) to (y_1, \ldots, y_{u+v}) by using the relation $TT^T = \sigma^{-2}\Gamma$, where Γ is the variance-covariance matrix of z_1, \ldots, z_{u+v} . It will be seen that the techniques used here are closely related to the problem of finding the exact likelihood for ARMA processes [see, for example, Newbold (1974) and Galbraith and Galbraith (1974), but whereas these authors invert the variance-covariance matrix of a sequence of observations, the method proposed here effectively diagonalises it].

4.2. The AR(I) case

The required transformation is defined by

$$y_{1} = (1 - \phi_{1}^{2})^{\frac{1}{2}} z_{1}$$

$$y_{i} = z_{i} - \phi_{1} z_{i-1}, \qquad i = 2, ..., n$$

$$(44)$$

with Jacobian $(1-\phi_1^2)^{\frac{1}{2}}$. The A, matrix has the form

$$A_r^T = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{bmatrix}, \tag{45}$$

where

$$a_{1} = (1 - \phi_{1}^{2})^{\frac{1}{2}}, \quad a_{2} = a_{3} = \dots = a_{n} = (1 - \phi_{1})$$

$$b_{1} = b_{2} = \dots = b_{r} = 0, \quad b_{r+1} = 1, \quad b_{r+2} = \dots = b_{n} = (1 - \phi_{1})$$

$$(46)$$

4.3. The AR(2) case

The required transformation is defined by

$$y_{1} = (\gamma_{0}/\sigma^{2})^{-\frac{1}{2}}z_{1}$$

$$y_{2} = [(\gamma_{0}/\sigma^{2})(1-\rho_{1}^{2})]^{-\frac{1}{2}}(z_{2}-\rho_{1}z_{1})$$

$$y_{i} = z_{i}-\phi_{1}z_{i-1}-\phi_{2}z_{i-2}, \quad i=3,...,n$$

$$(47)$$

where

$$(\gamma_0/\sigma^2) = (1-\phi_2)[(1+\phi_2)\{(1-\phi_2)^2-\phi_1^2\}]^{-1}, \qquad \rho_1 = \phi_1(1-\phi_2)^{-1},$$

with Jacobian $(\gamma_0/\sigma^2)^{-1}(1-\rho_1^2)^{-\frac{1}{2}}$. The A_r matrix, (45), is defined by

$$a_{1} = (\gamma_{0}/\sigma^{2})^{-\frac{1}{2}}, \qquad a_{2} = [(\gamma_{0}/\sigma^{2})(1-\rho_{1}^{2})]^{-\frac{1}{2}}(1-\rho_{1})$$

$$a_{3} = \cdots = a_{n} = 1 - \phi_{1} - \phi_{2}$$

$$b_{1} = \ldots = b_{r} = 0, \qquad b_{r+1} = 1, \qquad b_{r+2} = 1 - \phi_{1}$$

$$b_{r+3} = \cdots = b_{n} = 1 - \phi_{1} - \phi_{2}$$

$$(48)$$

N.B. Booth and A

4.4. The MA(I) case

The required transfor

$$y_1 = \lambda_1 z_1$$

$$y_i = \lambda_i (z_i + \tau_{i'})$$

where

$$\lambda_1 = (\gamma_0/\sigma^2)^-$$

$$\lambda_i = (1 + \alpha_1^2 -$$

The Jacobian of the tra:

$$J(\phi, \alpha) = \lambda_1 \lambda$$

and the elements of the

$$a_1 = \lambda_1, \quad a_i =$$

$$b_1 = \cdots = b_r =$$

We can solve (52) to ob

$$a_i = (1 - \alpha_1)^-$$

$$b_{r+i} = (1-\alpha_1)$$

and some simplification $i \to \infty$, $\lambda_i \to 1$, $a_i \to (1 - i)$ $J(\phi, \alpha) \to (1 - \alpha_1^2)^{\frac{1}{2}}$.

4.5. The MA(2) case

The required transfor.

$$y_1 = \lambda_1 z_1$$

$$y_2 = \lambda_2(z_2 + \tau$$

$$y_i = \lambda_i (z_i + \tau_i)$$

N.B. Booth and A.F.M. Smith, Retrospective identification of change-points

19

(45)

$$\begin{vmatrix}
\cdot & \cdot & \cdot \\
\cdot$$

$$\rho_1 = \phi_1(1-\phi_2)^{-1}$$

5), is defined by

$$\begin{pmatrix}
(1-\rho_1) \\
\cdot \phi_1
\end{pmatrix} .$$
(48)

4.4. The MA(1) case

The required transformation is defined by

$$y_{i} = \lambda_{1} z_{1} y_{i} = \lambda_{i} (z_{i} - \tau_{i} y_{i-1}), \qquad i = 2, ..., n$$
(49)

where

$$\lambda_{1} = (\gamma_{0}/\sigma^{2})^{-\frac{1}{2}} = (1 + \alpha_{1}^{2})^{-\frac{1}{2}}, \quad \tau_{i} = -\alpha_{1}\lambda_{i-1},$$

$$\lambda_{i} = (1 + \alpha_{1}^{2} - \tau_{i}^{2})^{-\frac{1}{2}} = (1 - \alpha_{1}^{2})^{\frac{1}{2}}(1 - \alpha_{1}^{2(i+1)})^{-\frac{1}{2}},$$

$$i = 2, ..., n$$

$$\{i = 2, ..., n\}.$$

$$(50)$$

The Jacobian of the transformation is given by

$$J(\phi, \alpha) = \lambda_1 \lambda_2 \dots \lambda_n = (1 - \alpha_1^2)^{\frac{1}{2}} (1 - \alpha_1^{2(n+1)})^{-\frac{1}{2}}, \tag{51}$$

and the elements of the A, matrix, (45), are defined by

$$a_{1} = \lambda_{1}, \quad a_{i} = \lambda_{i}(1 - \tau_{i}a_{i-1}), \qquad i = 2, ..., n$$

$$b_{1} = \cdots = b_{r} = 0, \quad b_{i} = \lambda_{i}(1 - \tau_{i}b_{i-1}), \qquad i = r+1, ..., n$$
(52)

We can solve (52) to obtain explicit forms,

$$a_{i} = (1 - \alpha_{1})^{-1} (1 - \alpha_{1}^{i})^{\frac{1}{2}} (1 - \alpha_{1}^{i+1})^{\frac{1}{2}} (1 + \alpha_{1}^{i})^{-\frac{1}{2}} (1 + \alpha^{i+1})^{-\frac{1}{2}},$$

$$i = 1, \dots, n,$$

$$b_{r+i} = (1-\alpha_1)^{-1}(1-\alpha_1^i)(1-\alpha_1^{2r+i+1})(1-\alpha_1^{2(r+i)})^{-\frac{1}{2}}(1-\alpha_1^{2(r+i+1)})^{-\frac{1}{2}},$$

$$i = 1, \dots, n-r$$

and some simplifications are possible for large i and n. For example, as $i \to \infty$, $\lambda_i \to 1$, $a_i \to (1-\alpha_1)^{-1}$, $b_{r+i} \to (1-\alpha_1)^{-1}$, $\tau_i \to -\alpha_1$, and, as $n \to \infty$, $J(\phi, \alpha) \to (1-\alpha_1^2)^{\frac{1}{2}}$.

4.5. The MA(2) case

The required transformation is defined by

$$y_{1} = \lambda_{1} z_{1}$$

$$y_{2} = \lambda_{2} (z_{2} + \tau_{2} y_{1})$$

$$y_{i} = \lambda_{i} (z_{i} + \tau_{i} y_{i-1} + \pi_{i} y_{i-2}), \quad i = 3, ..., n$$
(53)

where

$$\lambda_{1} = (\gamma_{0}/\sigma^{2})^{-\frac{1}{2}}, \quad \tau_{2} = -\gamma_{1}\lambda_{1}/\sigma^{2}, \quad \lambda_{2} = [(\gamma_{0}/\sigma^{2})(1 - \tau_{2}^{2})]^{-\frac{1}{2}} \\
\gamma_{0} = (1 + \alpha_{1}^{2} + \alpha_{2}^{2})\sigma^{2}, \quad \gamma_{1} = (-\alpha_{1} + \alpha_{1}\alpha_{2})\sigma^{2}, \quad \gamma_{2} = -\alpha_{2}\sigma^{2}$$
(54)

and

$$\lambda_{i} = (1 + \alpha_{1}^{2} + \alpha_{2}^{2} - \tau_{i}^{2} - \pi_{i}^{2})^{-\frac{1}{4}}$$

$$\pi_{i} = -\lambda_{i-2}\gamma_{2}/\sigma^{2}$$

$$\tau_{i} = -\lambda_{i-1}(\gamma_{1} + \tau_{i-1}\lambda_{i-2}\gamma_{2})/\sigma^{2}$$
(55)

The Jacobian of the transformation is given by $\lambda_1 \lambda_2 \dots \lambda_n$ and the elements of A, are defined by

$$a_{1} = \lambda_{1}, \qquad a_{2} = \lambda_{2}(1 + \tau_{2}a_{1})$$

$$a_{i} = \lambda_{i}(1 + \tau_{i}a_{i-1} + \pi_{i}a_{i-2}), \qquad i = 3, ..., n$$

$$b_{1} = \cdots = b_{r} = 0$$

$$b_{r+i} = \lambda_{r+i}(1 + \tau_{r+i}b_{r+i-1} + \pi_{r+i}b_{r+i-2}), \qquad i = 1, ..., n-r$$

$$(56)$$

For large values of i, $\lambda_i \rightarrow 1$, $\tau_i \rightarrow \alpha_1$, $\pi_i \rightarrow \alpha_2$, $a_i \rightarrow (1 - \alpha_1 - \alpha_2)^{-1}$, $b_i \rightarrow (1 - \alpha_1 - \alpha_2)^{-1}$.

4.6. The ARMA(1,1) case

The required transformation is defined by

$$y_{1} = \lambda_{1} z_{1}$$

$$y_{i} = \lambda_{i} (z_{i} - \phi_{1} z_{i-1} - \tau_{i} y_{i-1}), \qquad i = 2, ..., n$$
(57)

where

$$\lambda_{1} = (\gamma_{0}/\sigma^{2})^{-\frac{1}{2}} = (\alpha_{1}^{2} - 2\phi_{1}\alpha_{1} + 1)^{-\frac{1}{2}}(1 - \phi_{1}^{2})^{\frac{1}{2}}$$

$$\tau_{i} = -\alpha_{1}\lambda_{i-1}, \quad \lambda_{i} = (1 + \alpha_{1}^{2} - \tau_{i}^{2})^{-\frac{1}{2}}, \quad i = 2, ..., n$$
(58)

Explicitly, we have

$$\lambda_{i} = (C - D\alpha_{1}^{2(i-1)})^{\frac{1}{2}}(C - D\alpha_{1}^{2i})^{-\frac{1}{2}}, \tag{59}$$

N.B. Booth and A.F

where

$$C = (1 - \phi_1 \alpha_1)^2$$

and the Jacobian is given

$$J(\phi, \alpha) = \lambda_1 \lambda_2$$
.

The elements of the A,

$$a_1 = \lambda_1, \quad a_i = .$$

$$b_1 = \cdots = b_r = 0$$

$$b_i = \lambda_i (1 - \phi_1 -$$

leading to the explicit for

$$a_i = \frac{(1-\phi_1)(1-\phi_1)}{(1-\phi_1)(1-\phi_1)}$$

$$b_{r+i} = \frac{(1-\phi_1)}{(1-\phi_1)^2}$$

As $i \to \infty$, $\tau_i \to -\alpha_1$, $a_i = n \to \infty$,

$$J(\phi, \alpha) \rightarrow (1 - \phi)$$

References

Atkinson, A.C., 1978, Posterior

Box, G.E.P. and G.M. Jenkins, San Francisco, CA).

Box, G.E.P. and G.C. Tiao, Biometrika 52, 181-192.

Broemetrika 52, 181–192. Broemeling, L.D., 1972, Bayesi: variables, Metron XXX, 1–1.

Broemeling, L.D., 1974, Bayesi Communications in Statistic Chin Choy, J.H. and L.D. Bro model, Technometrics 22, 71 (55)

 $1\lambda_2...\lambda_n$ and the elements

$$i = 1, ..., n - r$$

$$a_i \rightarrow (1 - \alpha_1 - \alpha_2)^{-1}, b_i \rightarrow$$

$$\left.\begin{array}{c} \\ \\ \end{array}\right\}. \tag{58}$$

N.B. Booth and A.F.M. Smith, Retrospective identification of change-points

where

$$C = (1 - \phi_1 \alpha_1)^2, \quad D = (\alpha_1 - \phi_1)^2,$$
 (60)

21

and the Jacobian is given by

$$J(\phi, \alpha) = \lambda_1 \lambda_2 \dots \lambda_n = (1 - \phi_1^2)(1 - \alpha_1^2)(C - D\alpha_1^{2n})^{-\frac{1}{2}}.$$
 (61)

The elements of the A, matrix are given by

$$a_{1} = \lambda_{1}, \quad a_{i} = \lambda_{i}(1 - \phi_{1} - \tau_{i}a_{i-1}), \qquad i = 2, ..., n$$

$$b_{1} = \cdots = b_{r} = 0, \quad b_{r+1} = \lambda_{r+1}$$

$$b_{i} = \lambda_{i}(1 - \phi_{1} - \tau_{i}b_{i-1}), \qquad i = r+2, ..., n$$

$$(62)$$

leading to the explicit forms

$$a_{i} = \frac{(1 - \phi_{1})(1 - \alpha_{1}^{i-1})(C - D\alpha_{1}^{i}) + \alpha_{1}^{i-1}(1 - \alpha_{1})(1 - \alpha_{1}^{2})(1 - \phi_{1}^{2})}{(1 - \alpha_{1})(C - D\alpha_{1}^{2(i-1)})^{\frac{1}{2}}(C - D\alpha_{1}^{2})^{\frac{1}{2}}},$$

$$i = 1, ..., n$$

$$b_{r+i} = \frac{(1 - \phi_{1})(1 - \alpha_{1}^{i-1})(C - D\alpha_{1}^{2r+i}) + \alpha_{1}^{i-1}(1 - \alpha_{1})(C - D\alpha_{1}^{2r})}{(1 - \alpha_{1})(C - D\alpha_{1}^{2(r+i-1)})^{\frac{1}{2}}(C - D\alpha_{1}^{2(r+i)})^{\frac{1}{2}}},$$

$$i = 1, ..., n - r$$

$$(63)$$

As $i \to \infty$, $\tau_i \to -\alpha_1$, $a_i \to (1-\phi_1)(1-\alpha_1)^{-1}$, $b_{r+1} \to (1-\phi_1)(1-\alpha_1)^{-1}$ and, as $n \to \infty$,

$$J(\phi, \alpha) \rightarrow (1 - \phi_1^2)^{\frac{1}{2}} (1 - \alpha_1^2)^{\frac{1}{2}} (1 - \phi_1 \alpha_1)^{-1}$$
.

References

Atkinson, A.C., 1978, Posterior probabilities for choosing a regression model, Biometrika 65, 39-

Box, G.E.P. and G.M. Jenkins, 1970, Time series analysis: Forecasting and control (Holden-Day,

San Francisco, CA).

Box, G.E.P. and G.C. Tiao, 1965, A change in the level of a non-stationary time-series, Biometrika 52, 181-192.

Broemeling, L.D., 1972, Bayesian procedures for detecting a change in a sequence of random variables, Metron XXX, 1-14.

Brocmeling, L.D., 1974, Bayesian inferences about a changing sequence of random variables, Communications in Statistics 3, 243-255.

Chin Choy, J.H. and L.D. Broemeling, 1980a, Some Bayesian inferences for a changing linear model, Technometrics 22, 71-78.

Chin Choy, J.H. and L.D. Broemeling, 1980b, Detecting the change in a linear model, Technical report no. 14 (Department of Statistics, Oklahoma State University, Stillwater, OK).

Ferreira, P.E., 1975, A Bayesian analysis of a switching regression model: A known number of regimes, Journal of the American Statistical Association 70, 370-374.

Galbraith, R.F. and J.I. Galbraith, 1974, On the inverses of some patterned matrices arising in the theory of linear time-series, Journal of Appl. Prob. 11, 63-71.

Glass, G.V., J.M. Gottman and V.L. Willson, 1975, Design and analysis, of time-series experiments (Colorado Associated University Press, Boulder, CO).

Harrison, P.J. and C.F. Stevens, 1976, Bayesian forecasting (with discussion), Journal of the Royal Statistical Society B38, 205-247.

Holbert, D. and L.D. Broemeling, 1977, Bayesian inference related to shifting sequences and two-phase regression, Communications in Statistics 6.

Jeffreys, H., 1936/1961, Theory of probability (Oxford University Press, Oxford). Lee, A.F.S. and S.M. Heghinian, 1977, A shift of the mean level in a sequence of independent normal random variables – A Bayesian approach, Technometrics 19, 503-506.

Lempers, F.B., 1971, Posterior probabilities of alternative linear models (Rotterdam University Press, Rotterdam).

Menzefricke, U., 1981, A Bayesian analysis of a change in the precision of a sequence of independent normal random variables at an unknown time point, Applied Statistics 30, 141-

Newbold, P., 1974, The exact likelihood function for a mixed autoregressive-moving-average process, Biometrika 61, 423-426.

Smith, A.F.M., 1975, A Bayesian approach to inference about a change-point in a sequence of random variables, Biometrika 62, 407-416.

Smith, A.F.M., 1977, A Bayesian analysis of some time-varying models, in: J.R. Barra et al., Recent developments in statistics (North-Holland, Amsterdam) 257-267.

Smith, A.F.M., 1980, Change-point problems: Approaches and applications, in: J.M. Bernardo et al., eds., Bayesian statistics (Valencia, University Press, Valencia) 83-98.

Smith, A.F.M. and D.G. Cook, 1980, Switching straight lines: A Bayesian analysis of some renal transplant data, Applied Statistics 29, 180-184.

Smith, A.F.M. and U.E. Makov, 1980, Bayesian detection and estimation of jumps in linear systems, in: O.L.R. Jacobs et al., eds., The analysis and optimization of stochastic systems (Academic Press, London) 333-346.

Smith, A.F.M. and D.J. Spiegelhalter, 1980, Bayes factors and choice criteria for linear models. Journal of the Royal Statistical Society B42, 213-220.

Smith, A.F.M. and D.J. Spiegelhalter, 1981, Bayesian approaches to multivariate structure, in: V. Barnett, ed., Interpreting multivariate data (Wiley, Chichester) 335-348.

Smith, A.F.M. and M. West, 1982, Monitoring renal transplants: An application of the multiprocess Kalman filter, Submitted for publication.

Spiegelhalter, D.J. and A.F.M. Smith, 1982, Bayes factors for linear and log-linear models with

vague prior information, Journal of the Royal Statistical Society B44, forthcoming.

BAYESIAN PARAME

1. Introduction

The gamma distri

 $f(\mathbf{x};\theta) = -$

where k is a known widely used as a mo practical examples is Under certain cor

occurs at least once is (1). In other wor $x_{\lambda+1},...,x_n$ of indepe

 $x_i \sim f(x; t)$

 $\sim f(x;t)$

where f corresponds λ is the parameter th take values between therefore $\theta_1 = \theta_2$.

Under the previo first is the detection change point and t change has occurred

Several authors problems for the n Bacon and Watts (Holbert and Broem

0165-7410/82/0000-

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.