A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow

Li Chen (Georgia Tech -> CMU)

FOCS 2023

Joint work with

Jan van den Brand Georgia Tech

Rasmus Kyng ETH

Yang P. Liu Stanford -> IAS

Richard Peng U Waterloo -> CMU

Maximilian Probst Gutenberg Sachdeva **ETH**

Sushant U. Toronto

Aaron Sidford Stanford

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge capacities $u_e \ge 0$, integer in [0, U], where $U = m^{O(1)}$

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge capacities $u_e \ge 0$, integer in [0, U], where $U = m^{O(1)}$

Goal: Route maximum flow from $s \rightarrow t$, Subject to capacities u_e

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge capacities $u_e \ge 0$, integer in [0, U], where $U = m^{O(1)}$

Goal: Route maximum flow from $s \rightarrow t$, Subject to capacities u_e

Capacity constraint: $0 \le f_e \le u_e$

Directed graph G = (V, E). m edges, n vertices, source s, sink t edge capacities $u_e \ge 0$, integer in [0, U], where $U = m^{O(1)}$

Goal: Route maximum flow from $s \rightarrow t$, Subject to capacities u_e

[Brand-C-Kyng-Liu-Peng-Probst Gutenberg-Sachdeva-Sidford]

Can solve max-flow in $m^{1+o(1)}$ time **deterministically**

General Convex Flow Program

$$\min_{f} \sum_{e} cost_{e}(f_{e})$$

Flow Cost

For all edges *e*

$$0 \le f_e \le u_e$$

Direction and Capacity constraints

For all vertices x

$$B^T f = d$$

Net flow constraints

[Brand-C-Kyng-Liu-Peng-Probst Gutenberg-Sachdeva-Sidford]

Can solve general convex* flows in $m^{1+o(1)}$ time **deterministically** *(assuming costs are specified as efficient self-concordant functions)

Previous Works

L1 IPM

[C-Kyng-Liu-Peng-Probst Gutenberg-Sachdeva `22]

There is an Interior Point Method (IPM) for max-flow such that

- 1. $m^{1+o(1)}$ iterations, each subproblem a min-ratio cycle $\min_{B^{\mathsf{T}}\Delta=0} \frac{g^{\mathsf{T}}\Delta}{\|L\Delta\|_1}$
- 2. a $m^{o(1)}$ -approximate solution suffices at each iteration
- 3. At most $m^{1+o(1)}$ total changes to g_e , L_e over all edges e
- 4. $f f^*$ has a small ratio and $|L(f f^*)|$ changes slowly.

Min-ratio Cycle

$$\min_{B^{\mathsf{T}}\Delta=0} \frac{g^{\mathsf{T}}\Delta}{\|L\Delta\|_{1}}$$

$$||L\Delta||_1 = 1 + 2 + 1 + 2 = 6$$

 $g^{\mathsf{T}}\Delta = -4 + 1 + 3 + 1 = 1$

Min-ratio Cycle

$$\min_{B^{\mathsf{T}}\Delta=0} \frac{g^{\mathsf{T}}\Delta}{\|L\Delta\|_{1}}$$

Edges and lengths are undirected Gradient has a direction

$$||L\Delta||_1 = 1 + 2 + 1 + 2 = 6$$

 $g^{\mathsf{T}}\Delta = 4 - 1 - 3 - 1 = -1$

Optimal solution is a simple cycle with ratio < 0

Deterministic Dynamic Stable Min-ratio Cycle

[Brand-C-Kyng-Liu-Peng-Probst Gutenberg-Sachdeva-Sidford]

Assuming the min-ratio cycles change slowly,

A deterministic data-structure that supports in $m^{o(1)}$ amortized time

- 1. Update g_e , L_e for an edge e
- 2. Return a $m^{o(1)}$ -approximate min-ratio cycle
- 3. Route flow along such a cycle

Overall Algorithm

Initialize a dynamic stable min-ratio cycle data structure

For $t \leftarrow 1,..., m^{1+o(1)}$ iterations

Update gradients g_e and lengths L_e

Update the data structure

Identify a circulation Δ approximately minimizing $\frac{g^{\top}\Delta}{\|L\Delta\|_1}$,

$$f^{(t)} \leftarrow f^{(t-1)} + \alpha \Delta$$

Output final flow $f^{(final)}$

Approx min-ratio cycle via tree embeddings

Goal: Approximately solve $\min_{B^{\mathsf{T}}\Delta=0} \frac{g^{\mathsf{T}}\Delta}{\|L\Delta\|_1}$

Algorithm:

- 1. Build m "low stretch spanning trees" T_1, T_2, \ldots, T_m s.t. every edge in G has average stretch $\tilde{O}(1)$ [Räcke'08, Abraham-Neiman '19]
- 2. Return the best "tree cycle" among $T_1, T_2, ..., T_m$ (one off-tree edge + tree path)

 a.k.a. fundamental cycles

 Denoted $\operatorname{cycle}_{T_i}(e)$

Claim: Some $\operatorname{cycle}_{T_i}(e)$ is an $\tilde{\mathrm{O}}(1)$ -approx

Build m low stretch trees $T_1, T_2, ..., T_m$

$$\frac{1}{m} \sum_{i} L(\text{cycle}_{T_i}(e)) \le \tilde{O}(1) L_e$$

min-ratio cycle Δ^*

$$\frac{1}{m} \sum_{i} \sum_{e \in \Lambda^*} L(\operatorname{cycle}_{T_i}(e)) \le \tilde{O}(1) \cdot ||L\Delta^*||_1$$

One of the tree T_i (actually, half of them)

$$\sum_{e \in \Lambda^*} L\left(\operatorname{cycle}_{T_i}(e)\right) \leq \tilde{O}(1) \cdot \|L\Delta^*\|_1$$

One of the tree T_i (actually, half of them)

$$\sum_{e \in \Lambda^*} L\left(\operatorname{cycle}_{T_i}(e)\right) \leq \tilde{O}(1) \cdot ||L\Delta^*||_1$$

One of the tree T_i (actually, half of them)

$$\sum_{i=1}^{n} L\left(\operatorname{cycle}_{T_i}(e)\right) \leq \tilde{O}(1) \cdot \|L\Delta^*\|_1$$

One of the tree T_i (actually, half of them)

$$\sum_{i=1}^{n} L\left(\operatorname{cycle}_{T_i}(e)\right) \leq \tilde{O}(1) \cdot \|L\Delta^*\|_1$$

$$= g^{\mathsf{T}} \sum_{e \in \Delta^{\star}} \operatorname{cycle}_{T_i}(e) = g^{\mathsf{T}} \Delta^*$$

Claim follows by averaging.

One of the tree T_i (actually, half of them)

$$\sum_{i=1}^{n} L\left(\operatorname{cycle}_{T_i}(e)\right) \leq \tilde{O}(1) \cdot \|L\Delta^*\|_1$$

$$= g^{\mathsf{T}} \sum_{e \in \Delta^{\star}} \operatorname{cycle}_{T_i}(e) = g^{\mathsf{T}} \Delta^{*}$$

• • • • •

"Full Trees"

- K partial trees m
- Partial tree on m m/K edges m
 - Recurse on the rest m/K vertices 1
- Maintain up to m/K upd, then rebuild

Rooted Forest F \approx "partial tree"

Pick 1 to recursively build the DS

- Pick 1 to recursively build the DS
- If fail, switch to the next partial tree and rebuild

- Pick 1 to recursively build the DS
- If fail, switch to the next partial tree and rebuild
- What's the overall cost?

Handling Partial Tree Failures

- One of the K partial trees works
 # of switches ≤ K
- m iterations, $\Omega(Km)$ switches $\Omega(Km^2)$ run time
- Stability of IPM ensures $\tilde{O}(K)$ total switches
- $m^{1+o(1)}$ runtime by $K = m^{o(1)}$

Conclusion

- ullet Maxflow, Min-cost flow in deterministic $m^{1+o(1)}$ -time
- Replace sampling by total search
- Low cost due to IPM stability
- Deterministic dynamic spanner
- Deterministic dynamic low stretch tree

Open Questions

- Deterministic Dynamic Min-Ratio Cycle?
- $m^{1+o(1)}$ -time to $m \ polylog(m)$ -time?
- Can we improve k-commodity flow?
- General Graph Matching in n^2 Time?
- Dynamic maxflow? Incremental/decremental?

- Deterministic Dynamic Min-Ratio Cycle?
- $m^{1+o(1)}$ -time to $m \ polylog(m)$ -time?
- Can we improve k-commodity flow?
- General Graph Matching in n^2 Time?
- Dynamic maxflow? Incremental/decremental?

Thanks!!

Jan van den Brand Georgia Tech

Rasmus Kyng ETH

Yang P. Liu Stanford -> IAS

Richard Peng U Waterloo -> CMU

Maximilian Probst Gutenberg Sachdeva **ETH**

Sushant U. Toronto

Aaron Sidford Stanford