

BSc. in Computer Science and Engineering

ASSIGNMENT

Course Code: CSE334

Course Title: Pervasive Computing

SUBMITTED TO

Mr. Mohammad Jahangir Alam
Senior Lecturer
Department of CSE
Daffodil International University

SUBMITTED BY

MD Saimim Islam Khan Hamim ID:212-15-4219

SUBMISSION DATE:29/05/2024

		Date: 23.02.23
To the	1	}

1. CPU - SENT, SMHZSV

Lecture Slide 1

1/ Pervapive computing also called ubiquitous computing

Characterratic of PC

- Physical intregration

- Instantaneous

Palm DS Windows CF

Lecture Slide 11

Handheld computers - personal another digital anistant (PDAs).

Palm Os

→ Address book

-> Memo Pad (Exect)

> Date book 21 3

- Mail application

, Epoe in a vernatile operating System

- MC 218 from Frieson

CISM (Global Soytem for Mobile Communication

Smart Identification

Smart card:

1- Magnelie Strip

1. CPU - 8 bit, 5MHz,5V Optional: crypto coprocesson.

costapid & A.

RAM->4kb

ROM > 16Kb - Operating System

- Communication
- Security (DES, RSA

FEPROM - 1612 The system

- Program tiles

- Reys many minima built and

-Application alites wire

1 Le < 12 (,7,8,9).

Personal library

1 - July was beauti

waste to be

Le tupe Stide 11

CS CamScanner

RSA

- 1) Prime number P, 9
- 2 n= p*9
- 3 P(n) = (P-1)*(9-1)
- Public key de De = ged (φ(m), e)==1, 1(e(4m))
- (3) Private key, d., ed -1 4 Generyption proceeded into atominal. Verding Machine
- @ Decryption

1 P=3; 9=7 C= memodinestro

m=21

- (m) φ(m) = 2xc=12 co (PFI) continution you say

- (D = d=17

			11-1
12	, 13	13/5	= 144414
24	25	25/	5=5×
A 3 L	4977	73/	5=
25048	2017	4915	2
10	4 (1	ſ	
72	73		
84	95	17	

Smart Identification

Two types of smart cand:

-contact

- contaction

The cord communicate withe the external devices through a direct physical connection, for example the card in inserted into a terminal, Vending Machine, Government Do, e commence

The chip communicates with external devices using radio trequency identification (RFI) or radio waves.

1 Student identification

Smart cand components

1. CPU

2. RAM

3. ROM

4. EEPORM

APDU (Application Protocol Data Unit)

two types:

- command Appun (sent from the off-eard application to the smart
- Roponse APDUs (sent from back from the smart card to reply to commands)

command APDUS dobour, appear to hit is

" about tapent . toget . "odp"

Response APPU. 1/ older only be my food

In Best button

Optional Data	sw1	12M2			
Body (wow)	Fraile	· h	Eg4Es	by	34 13
Myrew of 13	61,1	1 miles	17:00	High	
	in 1			· · · · · · · · · · · · · · · · · · ·	

Android and had a servery 100 110

```
android: orientation = "ventical"

android: weightsom = "?"

"Textview

android: id:
```

android: layout-width = "match-parment"

android: layout-height = "codp"

android: hyout-weight = ".70"

gravity = "right"

For Back button: android: buckground = "@drawable/backspuce

Public void Digit Function (View Myview) {

digit bt nobj = find view Byld (Myview get 1d());

primary diapobj

String initial value = digit bt nobj. get text() to string();

Qiz: 2 9 March

Mid Show

Time: 4.15 PM

Room: 201 carriages money of astrobated

chapter: 4,5

Intermation occas device b

project presentation 13 March 1 months it trobt toward

A Frat ded contrate

1. Title

2. Motivation

S 850

3. Objective

4. VI

5. Challinge

phinos ?

4				
	8->	10	07	
-	10	11	15	
		1		
	<u></u>		1	,

Mid Syllabus:

1. Introduction to pervasive computing

- 2. Information access devices ~
- 3. Smart Identification.
- 4. Embeded contrals
- 5. RSA
- @ 5. Security

RSA Algorithm (Rivert Shamin-Adleman)

RSA algorithm in an assymmetric recryptography algorithm.

two prime number P. 9

theony;

Deeryption m=ed mod n

6と メク

B:2

$$n = 3.3$$

$$P=7$$
 and $q=5$

P=7 and q=5 quant opens many

$$n = 35$$
 $\phi(n) = 24$
 $e = 5$
 $d = 29$

Decembrolizati - Diversitionstin · connectivity Existent .

- Pergeting specific med

We know,

Supplified three time was tool attractive

1. Device Crover S

ciphen text S= 175 mod 75 = 24

ratiste de la

Deeryption

m m = ed mod n

We know,

= 332? mod n

= ((735 mod #35) x (335 mod 35) x (335 mod 35) x = 15 mod 35 × (33 mod 35) x(33 mod 35) = 15 mod 35 = 100 3

Pervarine com Lecture !

Pervosive computers Principles:

- · Descentralization
- Divensiticantin

- Targeting specific needs Alternatives

- Distributed system
- Synchronizing Intermation
- Managing Application.

Simplified three time ventical structure:

- 1. Device
- 9. Server
- 3. Work station

Smart Identification

Contact and contactions cound:

The chip communicates with exexternal devices through a direct

TH

physical connection, through the and is insented into a terminal.

The chip communicates with external devices through a radio

The computer on the smant cand:

CPU:

- 8 bit

- 5 MHz, 5V

- optional:

enypto-coprocessor

ROM (ICK) - Operating spterom - communication

Security (RSA, DSA)

EEPORM

whole it

- Filenystem

- Program tiles

- Applications

file system :

War Harris

The computer on the smoot and

APDU» (Application Protocol Data Unit)

APDUR are Use to exchange data between host and smart cand.
150 7816-4 (5099) Defines two types of APDU.

1. Command APDU - off-cand application to smart cand.

2. Response APDU

Command Aldu

CLA	INS	PL	Pz	Le	Optional Pa-	ta le
Headers			Body			

Response Apdu

Optional Data	Dw.	>w2
body	Traile	en
5		

RSA		2x3x 24x1=24 2x12=24 3x9=24 4x1=24
Two large prime numbers:		deposite some of my
Pag The Table 1		£ = 6 = = 1
Pn = (P-1) x (9-1)		9 400 = 4×6-24
e= 12 e < 9(n) on	ged (e,9m))=1	5 = 5
1+k 9/m)		(+ k (9(m))

p e if the	7 - 7 - 7 - 7	24:1=25	24
e ciphen text (=	me mod n	48+1:40	48
	> cat	72+1:73	72
Plan text m = ed mod n		46	7 13.
	,04.	121	0 /01
gocotion,	6.2	875 145	144

14, 437

Given,

2057 mid 2054

00 - b

two prime number,

P= 5; 9=7

n= 35

P(n) = 4×6=24

F 3,5, 7, 11, 17 PSY

The long print sent and

		A
24	24+1=25	25/5=5 x 3 x + ++ 3
48	49+1=47	c Cipher text = me med o
72	72+1=73	Frae
26	27	Plan text me com sunt
120	121	true
144	445 145	22 rottes P
	1	

given monage : es

1.1.

Now, chipen text
$$C_3 = M^2 \mod n$$

$$= 3^5 \mod 35$$

$$= 33$$

The secondary

247

Now,

131 - ...