NE 155/255 Numerical Simulations in Radiation Transport Introduction to Monte Carlo

Kelly L. Rowland

November 8, 2019

/19

Kelly L. Rowland

NE 155/255

November 8, 2019

1 / 19

Why Random Sampling?

Various physical phenomena can be represented by probabilistic distributions

- The known probability distribution represents the collective behavior
- We need to know the behavior at each single event
- We need to recreate the collective behavior after many events

2/19

Kelly L. Rowland NE 155/255 November 8, 2019 2 / 19

Random Sampling Purpose

Use a random process to select a single value with the following requirements

- Each sample should be independent from other samples
- The PDF formed from a large number of samples should converge to the initial PDF
- Recover the full resolution of the initial PDF

3/19

Kelly L. Rowland

NE 155/255

November 8, 2019

3 / 19

Sampling Techniques

Random sampling uses <u>uniformly distributed random variables</u> to choose a value for a variable according to its probability density function

- Basic sampling techniques
 - Direct discrete sampling
 - Continuous discrete sampling
 - Rejection sampling
- Advanced sampling techniques
 - Histogram
 - Piecewise linear
 - Alias sampling
 - Advanced continuous PDFs

Kelly L. Rowland NE 155/255 November 8, 2019 4 / 19

Uniformly-Distributed Random Variable

- Standard notation
 - Single random variable: ξ
 - Pair of random variables: (ξ, η)
- PDF for random variables:

$$p(\xi) = egin{cases} 1 & 0 \leq \xi < 1 \ 0 & ext{otherwise} \end{cases}$$

Kelly L. Rowland

NE 155/255

November 8, 2019

5 / 19

Direct Discrete Sampling

Sampling Procedure

- Generate ξ
- Determine k such that $P_{k-1} \le \xi \le P_k$
- Return $x = x_k$

6/19

Kelly L. Rowland

NE 155/255

November 8, 2019

Direct Discrete Sampling

- Requires a table search on P_k
 - Linear search requires O(N) time
 - Binary search requires O(log₂ N) time
- Special case: Uniform discrete PDF
 - $p_k = 1/N$
 - $P_k = k/N$
 - $k = \lfloor 1 + N\xi \rfloor$ (floor function)

Direct Continuous Sampling

- Can only be used if CDF can be inverted
- Direct solution of $P(x) = \xi$
- Sampling Procedure:

Generate ξ , Determine $x = P^{-1}(\xi)$

Kelly L. Rowland

NE 155/255

November 8, 2019

9 / 19

Direct Continuous Sampling

- Advantages:
 - Straightforward math & coding
- Disadvantages:
 - Can involve computationally slow functions
 - Not always possible to invert P(x)

Normalization

- Random sampling depends on shape and not on magnitude
- Normalization for formal definition of PDF/CDF required

$$g(t)dt = e^{-\lambda t}dt$$
, $t > 0$

$$G(t) = \int_{-\infty}^{t} g(t')dt' = \int_{0}^{t} g(t')dt' = \left[-\frac{e^{-\lambda t'}}{\lambda}\right]_{0}^{t} = \frac{1}{\lambda}(1 - e^{-\lambda t})$$
 $G(\infty) = \frac{1}{\lambda}$

$$p(t) = \lambda g(t) = \lambda e^{-\lambda t} dt, \quad t > 0$$

$$P(t) = \int_{-\infty}^{t} p(t') dt' = \int_{0}^{t} \lambda f(t') dt' = \left[e^{-\lambda t'} \right]_{0}^{t} = 1 - e^{-\lambda t}$$

$$P(\infty) = 1$$

11/19

Kelly L. Rowland

NE 155/255

November 8, 2019

11 / 19

Shifted Uniform

$$g(x)dx = Cdx \quad a \le x < b$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = C \int_{a}^{x} dx' = C[x']_{a}^{x} = C(x - a)$$

$$G(\infty) = G(b) = C(b - a)$$

$$p(x) = \frac{g(x)}{G(\infty)} = \frac{C}{C(b-a)} = \frac{1}{b-a} \quad a \le x < b$$

$$P(x) = \int_{-\infty}^{x} p(x')dx' = \frac{1}{b-a} \int_{a}^{x} dx' = \frac{x-a}{b-a}$$

$$x = P^{-1}(\xi) = \xi(b-a) + a$$

12/19

Kelly L. Rowland NE 155/255 November 8, 2019 12 / 1

Simple Line, Slope = m

$$g(x)dx = mx \ dx \qquad 0 \le x < 1$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = \int_{0}^{x} mx'dx' = \frac{m}{2} [x'^{2}]_{0}^{x} = \frac{m}{2} x^{2}$$

$$G(\infty) = G(1) = \frac{m}{2}$$

$$p(x) = \frac{mx}{\frac{m}{2}} = 2x \qquad 0 \le x < 1$$

$$P(x) = \int_{-\infty}^{x} p(x')dx' = \int_{0}^{x} 2x'dx' = \left[x'^{2}\right]_{0}^{x} = x^{2}$$

$$x = P^{-1}(\xi) = \sqrt{\xi}$$
 Independent of m

13/19

Kelly L. Rowland

NE 155/255

November 8, 2019

13 / 19

Shifted Line

$$g(x)dx = m(x - a) dx \qquad a \le x < b$$

$$G(x) = \int_{-\infty}^{x} g(x')dx' = \int_{a}^{x} m(x' - a)dx' = \frac{m}{2} [(x' - a)^{2}]_{0}^{x} = \frac{m}{2} (x - a)^{2}$$

$$G(\infty) = G(1) = \frac{m}{2} (b - a)^{2}$$

$$p(x) = \frac{m(x-a)}{\frac{m}{2}(b-a)^2} = 2\frac{x-a}{(b-a)^2} \qquad a \le x < b$$

$$P(x) = \int_{-\infty}^{x} p(x')dx' = \frac{1}{(b-a)^2} \int_{a}^{x} 2(x'-a)dx' = \frac{(x-a)^2}{(b-a)^2}$$

$$x = P^{-1}(\xi) = \sqrt{\xi}(b-a) + a$$
 Independent of m

14/19

Kelly L. Rowland NE 155/255 November 8, 2019 14 / 1

Rejection Sampling

- Many CDFs cannot be inverted
 - e.g. Klein-Nishina cross-section
- Use an approach that is more graphical
 - Select a point in a 2-D domain
 - Determine whether that point is above or below the PDF
 - Keep those that are below
 - Start over if above

15/19

Kelly L. Rowland

NE 155/255

November 8, 2019

15 / 19

Rejection Sampling

- Select a bounding function, g(x), such that
 - $g(x) \ge p(x)$ for all x
 - g(x) is easy to sample
- Simplest choice is g(x) = C
- May not be best choice
- Generate pair of random variables, (ξ, η)
 - $x' = G^{-1}(\xi)$
 - If $\eta < p(x')/g(x')$, accept x'
 - Else, reject x'

Rejection Sampling

- Advantages
 - Computationally simple
 - Always works
- Disadvantages
 - Will be inefficient if shapes of g(x) and p(x) are not similar

Efficiency =
$$\frac{\int p(x)dx}{\int g(x)dx}$$

18/19

Kelly L. Rowland NE 155/255 November 8, 2019 18 / 19

Random Sampling Summary

- Physics can be represented probabilistically
- We can create PDFs and from those generate CDFs
- These can be either continuous or discrete
- We learned some basic ways to use random numbers to *sample* from these distributions to simulate physics

19/19

Kelly L. Rowland

NE 155/255

November 8, 2019