ÁLGEBRA LINEAL - Clase 30/06

Para hacer en clase

Ejercicio 1. Calcular el determinante, la adjunta y la inversa de las siguientes matrices:

i)
$$\begin{pmatrix} 3 & -1 \\ 17 & 7 \end{pmatrix}$$
, ii) $\begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$.

Ejercicio 2. (Práctica 5, ej. 17) Sea $A \in \mathbb{R}^{3\times 3}$ la matriz $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. Se sabe que

$$\det\begin{pmatrix}1&b&c\\2&e&f\\5&h&i\end{pmatrix}=0,\quad\det\begin{pmatrix}a&2&c\\d&4&f\\g&10&i\end{pmatrix}=0,\quad\text{y}\quad\det\begin{pmatrix}a&b&-1\\d&e&-2\\g&h&-5\end{pmatrix}=0.$$

Calcular det(A).

Ejercicio 3. (Práctica 5, ej. 18)

- i) Sea $A \in K^{3\times 3}$ no inversible tal que $A_{11}.A_{33}-A_{13}.A_{31}\neq 0$. Calcular la dimensión de $S=\{x\in K^3/A.x=0\}$.
- ii) Sea $A \in K^{n \times n}$ no inversible tal que $\operatorname{adj}(A) \neq 0$. Calcular $\operatorname{rg}(A)$ y $\operatorname{rg}(\operatorname{adj}(A))$.

Ejercicio 4. (de parcial) Sea $A \in K^{n \times n}$ con $n \ge 2$. Probar que $\operatorname{adj}(\operatorname{adj}(A)) = \det(A^{n-2})A$.

Ejercicios de la guía relacionados: 13 a 18.