## CS4.301 Data & Applications

Ponnurangam Kumaraguru ("PK") #ProfGiri @ IIIT Hyderabad



https://www.instagram.com/pk.profgiri/



https://www.linkedin.com/in/ponguru/



Ponnurangam Kumaraguru "PK" 💠

@ponguru

## Specifying Joined Tables in the FROM Clause of SQL

### Joined table

Permits users to specify a table resulting from a join operation in the FROM clause of a query

### The FROM clause in Q1A

Contains a single joined table. JOIN may also be called INNER JOIN

Select fname, Iname, address from (employee join department on dno=dnumber) where dname='research';

| mysql> Select fname, lname, address from (employee join department on dno=dnumber) where dname='resear ch'; |       |                                                                                                                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| fname                                                                                                       | lname | <br>  address                                                                                                   |  |  |  |
| John<br>  Franklin<br>  Joyce<br>  Ramesh                                                                   |       | 731 Fondren, Houston TX  <br>  638 Voss, Houston TX  <br>  5631 Rice, Houston TX  <br>  975 Fire Oak, Humble TX |  |  |  |
| ++<br>4 rows in set (0.04 sec)                                                                              |       |                                                                                                                 |  |  |  |

## Different Types of JOINed Tables in SQL

### Specify different types of join

**NATURAL JOIN** 

Various types of OUTER JOIN (LEFT, RIGHT, FULL)

### NATURAL JOIN on two relations R and S

No join condition specified

Is equivalent to an implicit EQUIJOIN condition for each pair of attributes with same name from R and S

The associated tables have one or more pairs of identically named columns

The columns must be the same data type

No need for ON

### INNER and OUTER Joins

### INNER JOIN (versus OUTER JOIN)

Default type of join in a joined table

Tuple is included in the result only if a matching tuple exists in the other relation

#### **LEFT OUTER JOIN**

Every tuple in left table must appear in result

If no matching tuple

Padded with NULL values for attributes of right table

#### **RIGHT OUTER JOIN**

Every tuple in right table must appear in result

If no matching tuple

Padded with NULL values for attributes of left table

- SELECT \*
- 2 FROM company
- 3 INNER JOIN foods
- 4 ON company.company\_id = foods.company\_id;

#### Output:

| COMPANY_ID | COMPANY_NAME  | COMPANY_CITY | ITEM_ID | ITEM_NAME    | ITEM_UNIT | COMPANY_ID |
|------------|---------------|--------------|---------|--------------|-----------|------------|
| 16         | Akas Foods    | Delhi        | 1       | Chex Mix     | Pcs       | 16         |
| 15         | Jack Hill Ltd | London       | 6       | Cheez-It     | Pcs       | 15         |
| 15         | Jack Hill Ltd | London       | 2       | BN Biscuit   | Pcs       | 15         |
| 17         | Foodies.      | London       | 3       | Mighty Munch | Pcs       | 17         |
| 15         | Jack Hill Ltd | London       | 4       | Pot Rice     | Pcs       | 15         |
| 18         | Order All     | Boston       | 5       | Jaffa Cakes  | Pcs       | 18         |

- 1 SELECT \*
- 2 FROM company
- NATURAL JOIN foods;

#### Output:

| COMPANY_I | D COMPANY_NAME | COMPANY_CITY | ITEM_ID | ITEM_NAME    | ITEM_UNIT |
|-----------|----------------|--------------|---------|--------------|-----------|
| 16        | Akas Foods     | Delhi        | 1       | Chex Mix     | Pcs       |
| 15        | Jack Hill Ltd  | London       | 6       | Cheez-It     | Pcs       |
| 15        | Jack Hill Ltd  | London       | 2       | BN Biscuit   | Pcs       |
| 17        | Foodies.       | London       | 3       | Mighty Munch | Pcs       |
| 15        | Jack Hill Ltd  | London       | 4       | Pot Rice     | Pcs       |
| 18        | Order All      | Boston       | 5       | Jaffa Cakes  | Pcs       |

## Example: LEFT OUTER JOIN

select E.Lname AS Employee\_Name, S.Lname as Supervisor\_Name from EMPLOYEE as E left outer join EMPLOYEE as S on E.Super\_ssn=S.Ssn;

```
mysql> select E.Lname AS Employee_Name, S.Lname as Supervisor_Name from E
MPLOYEE as E left outer join EMPLOYEE as S on E.Super ssn=S.Ssn;
  Employee_Name | Supervisor_Name
  Smith
                  Wong
                  Borg
  Wong
  English
                  Wong
  Narayan
                  Wong
  Borg
                  NULL
  Wallace
                  Borg
  Jabbar
                  Wallace
  Zelaya
                  Wallace
8 rows in set (0.06 sec)
```

### Joins differences

ON A.key = B.key SELECT <fields> SELECT <fields> B FROM TableA A FROM TableA A LEFT JOIN TableB B RIGHT JOIN TableB B ON A.key = B.key ON A.key = B.key JOINS SELECT <fields> SELECT < fields> FROM TableA A FROM TableA A LEFT JOIN TableB B RIGHT JOIN TableB B ON A.key = B.key ON A.key = B.key WHERE B.key IS NULL WHERE A.key IS NULL

SELECT <fields> FROM Table A A

INNER JOIN TableB B



FULL OUTER JOIN TableB B ON A.key = B.key

OIN A.Key = B.Key

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Author: http://commons.wikimedia.org/wiki/User:Arbeck

## Multiway JOIN in the FROM clause

FULL OUTER JOIN – combines result if LEFT and RIGHT OUTER JOIN Can nest JOIN specifications for a multiway join:

SELECT Pnumber, Dnum, Lname, Address, Bdate FROM ((PROJECT JOIN DEPARTMENT ON Dnum=Dnumber) JOIN EMPLOYEE ON Mgr\_ssn=Ssn) WHERE Plocation='Stafford';

| <pre>Imysql&gt; SELECT Pnumber, Dnum, Lname, Address, Bdate FROM ((PROJECT JOIN DE<br/>PARTMENT ON Dnum=Dnumber) JOIN EMPLOYEE ON Mgr_ssn=Ssn) WHERE Plocatio<br/>n='Stafford';</pre> |          |             |                                                    |                  |       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------------------------------------------------|------------------|-------|--|
| Pnumber                                                                                                                                                                               | Dnum     | <br>  Lname | <br>  Address                                      | +<br>  Bdate<br> | +<br> |  |
| 10<br>  30                                                                                                                                                                            |          | -           | 291 Berry, Bellaire TX<br>  291 Berry, Bellaire TX | •                |       |  |
| 2 rows in                                                                                                                                                                             | set (0.0 | 92 sec)     |                                                    | <b>!</b>         | +     |  |

### **CHAPTER 14**

## **Basics of Functional Dependencies and Normalization for Relational Databases**

# 1. Informal Design Guidelines for Relational Databases (1)

What is relational database design?

The grouping of attributes to form "good" relation schemas

Two levels of relation schemas

The logical "user view" level

The storage "base relation" level

Design is concerned mainly with base relations

What are the criteria for "good" base relations?

# Informal Design Guidelines for Relational Databases (2)

We first discuss informal guidelines for good relational design

Then we discuss formal concepts of functional dependencies and normal forms

- 1NF (First Normal Form)
- 2NF (Second Normal Form)
- 3NF (Third Normal Form)
- BCNF (Boyce-Codd Normal Form)

Additional types of dependencies, further normal forms, relational design algorithms by synthesis are discussed in Chapter 15

## 1.1 Semantics of the Relational Attributes must be clear

GUIDELINE 1: Informally, each tuple in a relation should represent one entity or relationship instance. (Applies to individual relations and their attributes).

Attributes of different entities (EMPLOYEEs, DEPARTMENTS, PROJECTs) should not be mixed in the same relation

Only foreign keys should be used to refer to other entities

Entity and relationship attributes should be kept apart as much as possible.

Bottom Line: Design a schema that can be explained easily relation by relation. The semantics of attributes should be easy to interpret.

### (a)

### EMP\_DEPT



### (b)

### EMP\_PROJ



Any concerns here?

EMP\_DEPT: mixing attributes of employees & departments

EMP\_PROJ: mixes attributes of employees, projects & works\_on

Figure 14.4

Sample states for EMP\_DEPT and EMP\_PROJ resulting from applying NATURAL JOIN to the relations in Figure 14.2. These may be stored as base relations for performance reasons.

### Redundancy

| EMP DEPT             | -          |            |                          |         |                |           |
|----------------------|------------|------------|--------------------------|---------|----------------|-----------|
|                      |            |            |                          |         |                |           |
| Ename                | <u>Ssn</u> | Bdate      | Address                  | Dnumber | Dname          | Dmgr_ssn  |
| Smith, John B.       | 123456789  | 1965-01-09 | 731 Fondren, Houston, TX | 5       | Research       | 333445555 |
| Wong, Franklin T.    | 333445555  | 1955-12-08 | 638 Voss, Houston, TX    | 5       | Research       | 333445555 |
| Zelaya, Alicia J.    | 999887777  | 1968-07-19 | 3321 Castle, Spring, TX  | 4       | Administration | 987654321 |
| Wallace, Jennifer S. | 987654321  | 1941-06-20 | 291 Berry, Bellaire, TX  | 4       | Administration | 987654321 |
| Narayan, Ramesh K.   | 666884444  | 1962-09-15 | 975 FireOak, Humble, TX  | 5       | Research       | 333445555 |
| English, Joyce A.    | 453453453  | 1972-07-31 | 5631 Rice, Houston, TX   | 5       | Research       | 333445555 |
| Jabbar, Ahmad V.     | 987987987  | 1969-03-29 | 980 Dallas, Houston, TX  | 4       | Administration | 987654321 |
| Borg, James E.       | 888665555  | 1937-11-10 | 450 Stone, Houston, TX   | 1       | Headquarters   | 888665555 |

|           |         | Redundancy | Redundancy           |                 |           |
|-----------|---------|------------|----------------------|-----------------|-----------|
| EMP_PROJ  |         |            |                      |                 |           |
| Ssn       | Pnumber | Hours      | Ename                | Pname           | Plocation |
| 123456789 | 1       | 32.5       | Smith, John B.       | ProductX        | Bellaire  |
| 123456789 | 2       | 7.5        | Smith, John B.       | ProductY        | Sugarland |
| 666884444 | 3       | 40.0       | Narayan, Ramesh K.   | ProductZ        | Houston   |
| 453453453 | 1       | 20.0       | English, Joyce A.    | ProductX        | Bellaire  |
| 453453453 | 2       | 20.0       | English, Joyce A.    | ProductY        | Sugarland |
| 333445555 | 2       | 10.0       | Wong, Franklin T.    | ProductY        | Sugarland |
| 333445555 | 3       | 10.0       | Wong, Franklin T.    | ProductZ        | Houston   |
| 333445555 | 10      | 10.0       | Wong, Franklin T.    | Computerization | Stafford  |
| 333445555 | 20      | 10.0       | Wong, Franklin T.    | Reorganization  | Houston   |
| 999887777 | 30      | 30.0       | Zelaya, Alicia J.    | Newbenefits     | Stafford  |
| 999887777 | 10      | 10.0       | Zelaya, Alicia J.    | Computerization | Stafford  |
| 987987987 | 10      | 35.0       | Jabbar, Ahmad V.     | Computerization | Stafford  |
| 987987987 | 30      | 5.0        | Jabbar, Ahmad V.     | Newbenefits     | Stafford  |
| 987654321 | 30      | 20.0       | Wallace, Jennifer S. | Newbenefits     | Stafford  |
| 987654321 | 20      | 15.0       | Wallace, Jennifer S. | Reorganization  | Houston   |
| 888665555 | 20      | Null       | Borg, James E.       | Reorganization  | Houston   |

## 1.2 Redundant Information in Tuples and Update Anomalies

### Information is stored redundantly

Wastes storage

Causes problems with update anomalies

Insertion anomalies

**Deletion anomalies** 

Modification anomalies

### EXAMPLE OF AN INSERT ANOMALY

### Consider the relation:

EMP\_PROJ(Emp#, Proj#, Ename, Pname, No\_hours)

### Insert Anomaly:

Cannot insert a project unless an employee is assigned to it.

### Conversely

Cannot insert an employee unless an he/she is assigned to a project.

### EXAMPLE OF A DELETE ANOMALY

### Consider the relation:

EMP\_PROJ(Emp#, Proj#, Ename, Pname, No\_hours)

### **Delete Anomaly:**

When a project is deleted, it will result in deleting all the employees who work on that project.

Alternately, if an employee is the sole employee on a project, deleting that employee would result in deleting the corresponding project.

### EXAMPLE OF AN UPDATE ANOMALY

### Consider the relation:

EMP\_PROJ(Emp#, Proj#, Ename, Pname, No\_hours)

### **Update Anomaly:**

Changing the name of project number P1 from "Billing" to "Customer-Accounting" may cause this update to be made for all 100 employees working on project P1.

# Guideline for Redundant Information in Tuples and Update Anomalies

### **GUIDELINE 2:**

Design a schema that does not suffer from the insertion, deletion and update anomalies.

If there are any anomalies present, then note them so that applications can be made to take them into account.

## 1.3 Null Values in Tuples

### **GUIDELINE 3:**

Relations should be designed such that their tuples will have as few NULL values as possible

Attributes that are NULL frequently could be placed in separate relations (with the primary key)

### Reasons for nulls; different meanings for null:

Attribute not applicable or invalid [visa status to US students]

Attribute value unknown [DOB of an employee]

Value is known but absent; it has not been recorded yet [phone # of employee]

## This Lecture

## 1.4 Generation of Spurious Tuples — avoid at any cost

Bad designs for a relational database may result in erroneous results for certain JOIN operations

### **GUIDELINE 4:**

No spurious tuples should be generated by doing a natural-join of any relations.

### (a) EMP\_LOCS



#### EMP\_PROJ1



#### (b)

#### EMP\_LOCS

| Ename                | Plocation |
|----------------------|-----------|
| Smith, John B.       | Bellaire  |
| Smith, John B.       | Sugarland |
| Narayan, Ramesh K.   | Houston   |
| English, Joyce A.    | Bellaire  |
| English, Joyce A.    | Sugarland |
| Wong, Franklin T.    | Sugarland |
| Wong, Franklin T.    | Houston   |
| Wong, Franklin T.    | Stafford  |
| Zelaya, Alicia J.    | Stafford  |
| Jabbar, Ahmad V.     | Stafford  |
| Wallace, Jennifer S. | Stafford  |
| Wallace, Jennifer S. | Houston   |
| Borg, James E.       | Houston   |

#### EMP\_PROJ1

| Ssn       | Pnumber | Hours | Pname           | Plocation |
|-----------|---------|-------|-----------------|-----------|
| 123456789 | 1       | 32.5  | ProductX        | Bellaire  |
| 123456789 | 2       | 7.5   | ProductY        | Sugarland |
| 666884444 | 3       | 40.0  | ProductZ        | Houston   |
| 453453453 | 1       | 20.0  | ProductX        | Bellaire  |
| 453453453 | 2       | 20.0  | ProductY        | Sugarland |
| 333445555 | 2       | 10.0  | ProductY        | Sugarland |
| 333445555 | 3       | 10.0  | ProductZ        | Houston   |
| 333445555 | 10      | 10.0  | Computerization | Stafford  |
| 333445555 | 20      | 10.0  | Reorganization  | Houston   |
| 999887777 | 30      | 30.0  | Newbenefits     | Stafford  |
| 999887777 | 10      | 10.0  | Computerization | Stafford  |
| 987987987 | 10      | 35.0  | Computerization | Stafford  |
| 987987987 | 30      | 5.0   | Newbenefits     | Stafford  |
| 987654321 | 30      | 20.0  | Newbenefits     | Stafford  |
| 987654321 | 20      | 15.0  | Reorganization  | Houston   |
| 888665555 | 20      | NULL  | Reorganization  | Houston   |

|   | Ssn       | Pnumber | Hours | Pname           | Plocation | Ename              |
|---|-----------|---------|-------|-----------------|-----------|--------------------|
|   | 123456789 | 1       | 32.5  | ProductX        | Bellaire  | Smith, John B.     |
| * | 123456789 | 1       | 32.5  | ProductX        | Bellaire  | English, Joyce A.  |
|   | 123456789 | 2       | 7.5   | ProductY        | Sugarland | Smith, John B.     |
| * | 123456789 | 2       | 7.5   | ProductY        | Sugarland | English, Joyce A.  |
| * | 123456789 | 2       | 7.5   | ProductY        | Sugarland | Wong, Franklin T.  |
|   | 666884444 | 3       | 40.0  | ProductZ        | Houston   | Narayan, Ramesh K. |
| * | 666884444 | 3       | 40.0  | ProductZ        | Houston   | Wong, Franklin T.  |
| * | 453453453 | 1       | 20.0  | ProductX        | Bellaire  | Smith, John B.     |
|   | 453453453 | 1       | 20.0  | ProductX        | Bellaire  | English, Joyce A.  |
| * | 453453453 | 2       | 20.0  | ProductY        | Sugarland | Smith, John B.     |
|   | 453453453 | 2       | 20.0  | ProductY        | Sugarland | English, Joyce A.  |
| * | 453453453 | 2       | 20.0  | ProductY        | Sugarland | Wong, Franklin T.  |
| * | 333445555 | 2       | 10.0  | ProductY        | Sugarland | Smith, John B.     |
| * | 333445555 | 2       | 10.0  | ProductY        | Sugarland | English, Joyce A.  |
|   | 333445555 | 2       | 10.0  | ProductY        | Sugarland | Wong, Franklin T.  |
| * | 333445555 | 3       | 10.0  | ProductZ        | Houston   | Narayan, Ramesh K. |
|   | 333445555 | 3       | 10.0  | ProductZ        | Houston   | Wong, Franklin T.  |
|   | 333445555 | 10      | 10.0  | Computerization | Stafford  | Wong, Franklin T.  |
| * | 333445555 | 20      | 10.0  | Reorganization  | Houston   | Narayan, Ramesh K. |
|   | 333445555 | 20      | 10.0  | Reorganization  | Houston   | Wong, Franklin T.  |

Additional tuples that were not there in Emp\_proj is here, they are called spurious tuples

\* \* \*

## 2. Functional Dependencies

### Functional dependencies (FDs)

Are used to specify formal measures of the "goodness" of relational designs

And keys are used to define **normal forms** for relations

Are **constraints** that are derived from the *meaning* and *interrelationships* of the data attributes

A set of attributes X functionally determines a set of attributes Y if the value of X determines a unique value for Y

## 2.1 Defining Functional Dependencies

 $X \rightarrow Y$  holds if whenever two tuples have the same value for X, they *must have* the same value for Y

For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]

 $X \rightarrow Y$  in R specifies a *constraint* on all relation instances r(R)

Written as  $X \rightarrow Y$ ; can be displayed graphically on a relation schema as in Figures; denoted by the arrow  $\rightarrow$ 

FDs are derived from the real-world constraints on the attributes

## Examples of FD constraints (1)

Social security number determines employee name

 $SSN \rightarrow ENAME$ 

Project number determines project name and location

 $PNUMBER \rightarrow \{PNAME, PLOCATION\}$ 

Employee ssn and project number determines the hours per week that the employee works on the project

 $\{SSN, PNUMBER\} \rightarrow HOURS$ 

## Examples of FD constraints (1)

Social security number determines employee name

SSN → ENAME

Project number determines project name and location

 $PNUMBER \rightarrow \{PNAME, PLOCATION\}$ 

Employee ssn and project number determines the hours per week that the employee works on the project

 $\{SSN, PNUMBER\} \rightarrow HOURS$ 



## Examples of FD constraints (2)

An FD is a property of the attributes in the schema R

The constraint must hold on *every* relation instance r(R)

If K is a key of R, then K functionally determines all attributes in R (since we never have two distinct tuples with t1[K]=t2[K])

### Defining FDs from instances

Note that in order to define the FDs, we need to understand the meaning of the attributes involved and the relationship between them.

Given the instance (population) of a relation, all we can conclude is that an FD *may exist* between certain attributes.

What we can definitely conclude is – that certain FDs <u>do not exist</u> because there are tuples that show a violation of those dependencies.

## Ruling Out FDs

Note that given the state of the TEACH relation, we can say that the FD: Text  $\rightarrow$  Course may exist. However, the FDs Teacher  $\rightarrow$  Course, Teacher  $\rightarrow$  Text and Couse  $\rightarrow$  Text are ruled out.

### **TEACH**

| Teacher | Course          | Text     |
|---------|-----------------|----------|
| Smith   | Data Structures | Bartram  |
| Smith   | Data Management | Martin   |
| Hall    | Compilers       | Hoffman  |
| Brown   | Data Structures | Horowitz |

## What FDs may exist?

A relation R(A, B, C, D) with its extension. Which FDs  $\underline{may\ exist}$  in this relation?

| A  | В  | С  | D  |
|----|----|----|----|
| a1 | b1 | c1 | d1 |
| a1 | b2 | c2 | d2 |
| a2 | b2 | c2 | d3 |
| a3 | b3 | c4 | d3 |

## What FDs may exist?

A relation R(A, B, C, D) with its extension. Which FDs may exist in this relation?

| A  | В  | С  | D  |
|----|----|----|----|
| a1 | b1 | c1 | d1 |
| a1 | b2 | c2 | d2 |
| a2 | b2 | c2 | d3 |
| a3 | b3 | c4 | d3 |

$$B \rightarrow C; C \rightarrow B; \{A,B\} \rightarrow C; \{A,B\} \rightarrow D; \{C,D\} \rightarrow B$$

How about A 
$$\rightarrow$$
 B? B  $\rightarrow$  A? D  $\rightarrow$  C?

## Normal Forms Based on Primary Keys

Normalization of Relations

**Practical Use of Normal Forms** 

Definitions of Keys and Attributes Participating in Keys

First Normal Form

**Second Normal Form** 

Third Normal Form

## 3.1 Normalization of Relations (1)

### **Normalization:**

The process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations

### **Normal form:**

Condition using keys and FDs of a relation to certify whether a relation schema is in a particular normal form

## Normalization of Relations (2)

### 2NF, 3NF, BCNF

based on keys and FDs of a relation schema

### 4NF

based on keys, multi-valued dependencies: MVDs;

### 5NF

based on keys, join dependencies: JDs

Additional properties may be needed to ensure a good relational design (lossless join, dependency preservation; see Chapter 15)

### 3.2 Practical Use of Normal Forms

**Normalization** is carried out in practice so that the resulting designs are of high quality and meet the desirable properties

The practical utility of these normal forms becomes questionable when the constraints on which they are based are hard to understand or to detect

The database designers *need not* normalize to the highest possible normal form (usually up to 3NF and BCNF. 4NF rarely used in practice.)

#### **Denormalization:**

The process of storing the join of higher normal form relations as a base relation—which is in a lower normal form

# 3.3 Definitions of Keys and Attributes Participating in Keys (1)

A **superkey** of a relation schema  $R = \{A1, A2, ...., An\}$  is a set of attributes S subset-of R with the property that no two tuples t1 and t2 in any legal relation state r of R will have t1[S] = t2[S]

A **key** K is a **superkey** with the *additional property* that removal of any attribute from K will cause K not to be a superkey any more.

# Definitions of Keys and Attributes Participating in Keys (2)

If a relation schema has more than one key, each is called a **candidate** key. One of the candidate keys is *arbitrarily* designated to be the **primary key**, and the others are called **secondary keys**.

A Prime attribute must be a member of some candidate key

A **Nonprime attribute** is not a prime attribute—that is, it is not a member of any candidate key.

### 3.4 First Normal Form

#### **Disallows**

composite attributes

multivalued attributes

nested relations; attributes whose values for an individual tuple are non-atomic

Considered to be part of the definition of a relation

Most RDBMSs allow only those relations to be defined that are in First Normal Form

# Normalization into 1NF

#### (a)

#### DEPARTMENT



#### (b)

#### **DEPARTMENT**

| Dname          | <u>Dnumber</u> | Dmgr_ssn  | Diocations                     |
|----------------|----------------|-----------|--------------------------------|
| Research       | 5              | 333445555 | {Bellaire, Sugarland, Houston} |
| Administration | 4              | 987654321 | {Stafford}                     |
| Headquarters   | 1              | 888665555 | {Houston}                      |

Ways to make it make it 1NF?

#### Figure 14.9

Normalization into 1NF. (a)
A relation schema that is
not in 1NF. (b) Sample
state of relation
DEPARTMENT

### 1NF



#### **DEPARTMENT**

| Dname          | <u>Dnumber</u> | Dmgr_ssn  | Dlocation |
|----------------|----------------|-----------|-----------|
| Research       | 5              | 333445555 | Bellaire  |
| Research       | 5              | 333445555 | Sugarland |
| Research       | 5              | 333445555 | Houston   |
| Administration | 4              | 987654321 | Stafford  |
| Headquarters   | 1              | 888665555 | Houston   |

Redundancy

If the maximum number of values (n) for location is known, replace it with n attributes e.g. Only 3 locations for the company – Dlocation1, Dlocation2, Dlocation3 Introducing NULL if most departments have fewer than 3 locations Hard to query, e.g. List the departments that have 'Bellaire' as one of the locations 1st option is commonly used one

# Normalizing nested relations into 1NF



#### (b) EMP\_PROJ

| Ssn       | Ename                | Pnumber | Hours |
|-----------|----------------------|---------|-------|
| 123456789 | Smith, John B.       | 1       | 32.5  |
|           |                      | 2       | 7.5   |
| 666884444 | Narayan, Ramesh K.   | 3       | 40.0  |
| 453453453 | English, Joyce A.    | 1       | 20.0  |
|           |                      | 2       | 20.0  |
| 333445555 | Wong, Franklin T.    | 2       | 10.0  |
|           |                      | 3       | 10.0  |
|           |                      | 10      | 10.0  |
|           |                      | 20      | 10.0  |
| 999887777 | Zelaya, Alicia J.    | 30      | 30.0  |
|           |                      | 10      | 10.0  |
| 987987987 | Jabbar, Ahmad V.     | 10      | 35.0  |
|           |                      | 30      | 5.0   |
| 987654321 | Wallace, Jennifer S. | 30      | 20.0  |
|           |                      | 20      | 15.0  |
| 888665555 | Borg, James E.       | 20      | NULL  |

Remove the nested relation attributes into a new relation and propagate primary key

This idea can be applied recursively to a relation with multiple-level nesting to unnest

BLOB, CLOB – atomic, single-valued so 1NF

(c)
EMP\_PROJ1
Ssn Ename

EMP\_PROJ2
Ssn Pnumber Hours

Figure 14.10 Normalizing nested relations into 1NF. (a) Schema of the EMP PROJ relation with

Normalizing nested relations into 1NF. (a) Schema of the EMP\_PROJ relation with a nested relation attribute PROJS. (b) Sample extension of the EMP\_PROJ relation showing nested relations within each tuple. (c) Decomposition of EMP\_PROJ into relations EMP\_PROJ1 and EMP\_PROJ2 by propagating the primary key.

# 3.5 Second Normal Form (1)

#### Uses the concepts of **FDs**, **primary key**

#### **Definitions**

**Prime attribute:** An attribute that is member of the primary key K

**Full functional dependency:** a FD Y -> Z where removal of any attribute from Y means the FD does not hold any more

#### Examples:

{SSN, PNUMBER} -> HOURS is a full FD since neither SSN -> HOURS nor PNUMBER -> HOURS hold

{SSN, PNUMBER} -> ENAME is not a full FD (it is called a partial dependency ) since SSN -> ENAME also holds

# Second Normal Form (2)

A relation schema R is in **second normal form (2NF)** if every non-prime attribute A in R is fully functionally dependent on the primary key

R can be decomposed into 2NF relations via the process of 2NF normalization or "second normalization"

# Fully functional dependency

If X and Y are an attribute set of a relation, Y is fully functional dependent on X, if Y is functionally dependent on X but not on any proper subset of X.

e.g. In the relation ABC->D, attribute D is fully functionally dependent on ABC and not on any proper subset of ABC. That means that subsets of ABC like AB, BC, A, B, etc cannot determine D.

| supplier_id | item_id | price |
|-------------|---------|-------|
| 1           | 1       | 540   |
| 2           | 1       | 545   |
| 1           | 2       | 200   |
| 2           | 2       | 201   |
| 1           | 1       | 540   |
| 2           | 2       | 201   |
| 3           | 1       | 542   |
|             |         |       |

{ supplier\_id , item\_id } -> price

# Partial dependency

A functional dependency X->Y is a partial dependency if Y is functionally dependent on X and Y can be determined by any proper subset of X.

e.g. we have a relationship AC->B, A->D, and D->B.



# 2NF

. .

### EMP\_PROJ



Any violation?

### 2NF

. .

#### EMP\_PROJ



Any violation?

FD2, FD3 violates 2NF

{ssn} → {Ename}, {pnumber} → {pname, plocation} & {ssn, pnumber} are primary keys; not fully functionally dependent

# Normalizing into 2NF



Figure 14.11

Normalizing into 2NF and 3NF.

(a) Normalizing EMP\_PROJ into 2NF relations.

EP1, EP2, EP3 are fully functionally dependent

## Third normal form

### **Transitive Dependency**

 $X \rightarrow Y$  in R is transitive dependency, if there exists a set of attributes Z in R that is neither a candidate key not a subset of any key of R and both  $X \rightarrow Z$  &  $Z \rightarrow Y$  hold.



## Third normal form

### **Transitive Dependency**

 $X \rightarrow Y$  in R is transitive dependency, if there exists a set of attributes Z in R that is neither a candidate key not a subset of any key of R and both  $X \rightarrow Z$  &  $Z \rightarrow Y$  hold.



Ssn → dmgr\_ssn is transitive through dnumber

Both ssn → dnumber & dnumber → dmgr\_ssn hold & dnumber is neither a key nor a subset of a key

## Third normal form

R is in 3NF if it satisfies 2NF and no nonprime attribute or R is transitively dependent on the primary key



ED1 & ED2 represent independent facts about employees & departments