Mocninové funkcie

Prirodzený a celočíselný exponent

Definícia - prirodzený exponent

Mocninová funkcia s prirodzeným exponentom sa nazýva funkcia v tvare $y=x^n$, kde $n \in N$. Jej definičný obor je R.

Budeme rozlišovať prípady:

- ▶ $n = 1 \Rightarrow \text{špeciálny prípad}$
- ▶ n párne
- ▶ n nepárne

ŠPECIÁLNY PRÍPAD

- \rightarrow n = 1
- $y = x^1 \Rightarrow y = x$
- ▶ lineárna funkcia

$$\checkmark D(f) = R$$

$$\checkmark H(f) = R$$

- ✓ rastúca
- ✓ prostá
- ✓ je nepárna
- ✓ nie je ohraničená
- ✓ nemá extrémy
- √ nie je periodická

n - párne

▶ n = 2 ⇒ kvadratická funkcia

$$\checkmark D(f) = R$$

$$\checkmark H(f) = \langle \mathbf{0}; \infty \rangle$$

- ✓ klesajúca na $(-\infty; 0)$
- ✓ rastúca na $(0; \infty)$
- ✓ nie je prostá
- √ je párna
- \checkmark je ohraničená zdola d=0
- √ nie je ohraničená zhora
- ✓ má minimum b = 0
- ✓ nemá maximum
- √ nie je periodická

n - nepárne

▶ $n = 3 \Rightarrow kubická funkcia$

$$\checkmark D(f) = R$$

$$\checkmark H(f) = R$$

- ✓ rastúca
- ✓ prostá
- √ je nepárna
- ✓ nie je ohraničená
- ✓ nemá extrémy
- √ nie je periodická

Definicia - celočiselný exponent

Mocninová funkcia s celočíselným exponentom sa nazýva funkcia v tvare $y = x^n$, kde $n \in \mathbb{Z}$. Jej definičný obor je R (ak $n \in \mathbb{Z}^+$), alebo R - $\{0\}$ (ak $n \in \mathbb{Z}_0^-$).

Budeme rozlišovať prípady:

- ▶ $n > 0 \Rightarrow vid' slajdy 3 5$
- \rightarrow n = 0
- n nepárne záporné
- ▶ n párne záporné

ŠPECIÁLNY PRÍPAD

$$\rightarrow$$
 n = 0

$$y = x^0 \Rightarrow y = 1$$

► konštantná funkcia

$$\checkmark D(f) = R - \{0\}$$

$$✓ H(f) = {1}$$

- ✓ konštantná
- ✓ nie je prostá
- √ je párna
- ✓ je ohraničená
- ✓ má neostré maximum aj minimum v každom bode definičného oboru
- √ nie je periodická

n - párne, záporné

$$\checkmark D(f) = R$$

$$\checkmark H(f) = (0; \infty)$$

- ✓ rastúca na $(-\infty; 0)$
- ✓ klesajúca na(0; ∞)
- ✓ nie je prostá
- √ je párna
- \checkmark je ohraničená zdola d=0
- ✓ nie je ohraničená zhora
- ✓ nemá extrémy
- √ nie je periodická
- ✓ súradnicové osi sú asymptoty:

$$a_1$$
: $x = 0$; a_2 : $y = 0$

n - nepárne, záporné

$$\checkmark D(f) = R - \{0\}$$

$$\checkmark H(f) = R - \{0\}$$

- ✓ klesajúca na $(-\infty; 0)$
- ✓ klesajúca na(0; ∞)
- ✓ je prostá
- √ je nepárna
- ✓ nie je ohraničená
- ✓ nemá extrémy
- √ nie je periodická
- ✓ súradnicové osi sú asymptoty:

$$a_1$$
: $x = 0$; a_2 : $y = 0$