Definition. $u := \bigcap_{x \in \mathcal{U}} x$

Definition. $F_{\mathcal{U}} = \{x \subseteq \omega : u \subseteq x\}$

Lemma 1. $F_{\mathcal{U}}$ is a filter.

Proof. Properties to check are: (a): $\emptyset \notin F_{\mathcal{U}}$, (b): $\forall_{X \in F_{\mathcal{U}}} \forall_{Y \subseteq \omega} X \subseteq Y \to Y \in F_{\mathcal{U}}$, (c): $\forall_{X,Y \in F_{\mathcal{U}}} X \cap Y \in F_{\mathcal{U}}$. (a), $u \not\subseteq \emptyset$, hence $\emptyset \notin u$. (b), let $X \in F_{\mathcal{U}}$ and $Y \subset \omega$ s.t. $X \subseteq Y$, then $u \subseteq Y$, hence $Y \in F_{\mathcal{U}}$. (c), let $X, Y \in F_{\mathcal{U}}$, then $u \subseteq X$ and $u \subseteq Y$, hence $u \subseteq X \cap Y$, and then $X \cap Y \in F_{\mathcal{U}}$.

Lemma 2. $F_{\mathcal{U}}$ is not an ultrafilter

Proof. Assume for contradiction that $F_{\mathcal{U}}$ were an ultrafilter, then it must hold (d): $\forall_{X\subseteq\omega}X\in F_{\mathcal{U}}\vee\overline{X}\in F_{\mathcal{U}}$. Consider $X\subseteq\omega$ s.t. $u\neq X\cap u\neq\emptyset$, then since $u\neq X\cap u$, $u\not\subseteq X$ hence $X\not\in F_{\mathcal{U}}$. Since $X\cap u\neq\emptyset$, then $\overline{X}\cap u\neq u$ hence $u\not\subseteq \overline{X}$, and then $\overline{X}\not\in F_{\mathcal{U}}$.

Lemma 3. $F_{\mathcal{U}} \subsetneq \mathcal{U}$

Proof. Let $X \in F_{\mathcal{U}}$, hence $u \subseteq X$ and since $u \in \mathcal{U}$ and \mathcal{U} is closed under subset, then $X \in \mathcal{U}$. Since \mathcal{U} is an ultrafilter, i.e. e maximal filter and $F_{\mathcal{U}}$ is not an ultrafilter, then $F_{\mathcal{U}} \neq \mathcal{U}$

Definition. For $X \subseteq \mathcal{P}(\omega)$, $X^0 := X$, $X^{n+1} := \{x \subseteq \omega : \exists_{y,z \in X^n} y \cap z = x)\}$, $X^{cl_{\cap}} := X^{\omega}$

Definition. $\mathcal{G}_{\mathcal{U}} := \{G \subseteq \mathcal{U} : \{x \subseteq \omega : (\exists_{y \in G^{cl} \cap} y \subseteq x)\} = \mathcal{U}\}$

Hypothesis. $\forall_{G,H\in\mathcal{G}_{\mathcal{U}}}G\cap H\in\mathcal{G}_{\mathcal{U}}$

Proof. Let G, H be in $\mathcal{G}_{\mathcal{U}}$, I want to show that $\{x \subseteq \omega : (\exists_{y \in (G \cap H)^{cl} \cap} y \subseteq x)\} = \mathcal{U}$. I don't know. If that were the case, then $\mathcal{G}_{\mathcal{U}}$ would be a filter, perhaps ultrafilter!

Hypothesis. $(\mathcal{G}_{\mathcal{U}}, \subsetneq)$ has a minimal element.

Proof. Let C be a chain in $\mathcal{G}_{\mathcal{U}}$, then $\forall_{d \in C} \bigcap_{c \in C} c \subseteq d$, also $\bigcap_{c \in C} c \in \mathcal{G}_{\mathcal{U}}$ by Lemma (last Hypothesis). Note that clearly $\mathcal{U} \in \mathcal{G}_{\mathcal{U}}$ then $\mathcal{G}_{\mathcal{U}} \neq \emptyset$. Conclude by Zorn's Lemma, the claim.

Definition. $\Gamma := \{ \mathcal{G} \subseteq \mathcal{P}(\omega) : \exists_{\mathcal{U}} P(\mathcal{U}) \land \mathcal{G} = \mathcal{G}_{\mathcal{U}} \}, \text{ for } P \text{ the property denoting being an ultrafilter.}$

Definition. $\Gamma^! := \{ \mathcal{G} \subseteq \mathcal{P}(\omega) : \exists !_{\mathcal{U}} P(\mathcal{U}) \land \mathcal{G} = \mathcal{G}_{\mathcal{U}} \}$

Definition. $\dot{\Gamma} := \{x \subseteq \omega : \exists_{y \in \Gamma} \exists_{z \in y} z = x\}$

Hypothesis. $\Gamma = \Gamma^!$

Hypothesis. $\forall_{x,y\in\dot{\Gamma}}x\cap y\in\dot{\Gamma}$

Hypothesis. $\forall_{x \in \dot{\Gamma}} \overline{x} \in \dot{\Gamma}$