Semantics with Applications Structural Operational Semantics

Pablo López

University of Málaga

October 29, 2024

Outline

Introduction

Structural Operational Semantics

Properties of the Structural Operational Semantics

Outline

Introduction

Structural Operational Semantics

Properties of the Structural Operational Semantics

Two Styles of Operational Semantics

Recall that there are two styles of operational semantics:

- ▶ Natural Semantics (big-step semantics) describe how the overall results are obtained from initial to final state
- ➤ Structural Operational Semantics (*small-step* semantics) describe how the individual steps change the states (initial, intermediate, and final)

Transition System

Recall that we model both operational semantics by **transition** systems.

A transition system is a tuple $(\Gamma, T, \triangleright)$ where:

- $ightharpoonup \Gamma$ is a set of **configurations**
- ▶ T a set of terminal configurations $T \subseteq \Gamma$
- ▶ \triangleright is a transition relation $\triangleright \subseteq \Gamma \times \Gamma$

Configurations for WHILE

Recall that we define two types of **configurations**:

- \triangleright $\langle S, s \rangle$ statement S is to be executed from the state s, and
- s terminal or final state

A configuration of the latter form is a **terminal configuration**.

The **natural** and **structural operational** semantics:

- \blacktriangleright use the same sets of configurations, Γ and T
- ▶ differ in the definition of the transition relation ▷.

Since while is deterministic, we shall replace \triangleright by \rightarrow (natural semantics) or \Rightarrow (structural operational semantics)

Transition System for Natural Semantics

Recall that the Natural Semantics of WHILE is defined by a transition system (Γ, T, \rightarrow) where:

$$\begin{array}{lll} \Gamma & = & \{\langle S,s\rangle \mid S \in \mathbf{Stm}, \ s \in \mathbf{State}\} \cup \mathbf{State} \\ T & = & \mathbf{State} \\ \rightarrow & \subseteq & \{\langle S,s\rangle \mid S \in \mathbf{Stm}, \ s \in \mathbf{State}\} \times \mathbf{State} \end{array}$$

Outline

Introduction

Structural Operational Semantics

Properties of the Structural Operational Semantics

Transition System for Structural Operational Semantics

The Structural Operational Semantics of WHILE is defined by a transition system (Γ, T, \Rightarrow) where:

$$\begin{array}{rcl} \Gamma & = & \{\langle S,s\rangle \mid S \in \mathbf{Stm}, \ s \in \mathbf{State}\} \cup \mathbf{State} \\ T & = & \mathbf{State} \\ \Rightarrow & \subseteq & \{\langle S,s\rangle \mid S \in \mathbf{Stm}, \ s \in \mathbf{State}\} \times \Gamma \end{array}$$

Fundamentals of Structural Operational Semantics

- We are concerned with the initial, intermediate, and final configurations
- ▶ The transition relation $\langle S, s \rangle \Rightarrow \gamma$ expresses the **first step** of the execution of S from state s for each statement of WHILE
- A transition of the form

$$\langle S, s \rangle \Rightarrow \langle S', s' \rangle$$

means that the execution of S from s is **not completed**; the intermediate configuration $\langle S',s'\rangle$ represents the remaining computation

A transition of the form

$$\langle S, s \rangle \Rightarrow s'$$

means that the execution of S from s has **terminated**, yielding the final state s'.

A configuration $\langle S, s \rangle$ is **stuck** if there is no γ such that $\langle S, s \rangle \Rightarrow \gamma$

Structural Operational Semantics for WHILE

The transition relation \Rightarrow is defined by a set of axioms and rules.

$$[ass_{sos}] \qquad \langle x := a, s \rangle \Rightarrow s[x \mapsto \mathcal{A}[\![a]\!]s]$$

$$[skip_{scs}] \qquad \langle skip, s \rangle \Rightarrow s$$

$$[comp_{scs}^1] \qquad \frac{\langle S_1, s \rangle \Rightarrow \langle S_1', s' \rangle}{\langle S_1; S_2, s \rangle \Rightarrow \langle S_1'; S_2, s' \rangle}$$

$$[comp_{scs}^2] \qquad \frac{\langle S_1, s \rangle \Rightarrow s'}{\langle S_1; S_2, s \rangle \Rightarrow \langle S_2, s' \rangle}$$

$$[if_{sos}^{tt}] \qquad \langle if \ b \ then \ S_1 \ else \ S_2, s \rangle \Rightarrow \langle S_1, s \rangle \ if \ \mathcal{B}[\![b]\!]s = tt$$

$$[if_{sos}^{ff}] \qquad \langle if \ b \ then \ S_1 \ else \ S_2, s \rangle \Rightarrow \langle S_2, s \rangle \ if \ \mathcal{B}[\![b]\!]s = ff$$

$$[while_{sos}] \qquad \langle while \ b \ do \ S, s \rangle \Rightarrow \langle if \ b \ then \ (S; \ while \ b \ do \ S) \ else \ skip, s \rangle$$

Table 2.2: Structural operational semantics for While

The Assignment Statement :=

[ass_{sos}]
$$\langle x := a, s \rangle \Rightarrow s[x \mapsto \mathcal{A}[a]s]$$

- ightharpoonup executed by updating the value of x in s with the value of the arithmetic expression a in the state s
- same as in natural semantics because it is fully executed in one step

The skip Statement

$$[\mathrm{skip}_{\mathrm{sos}}] \quad \langle \mathtt{skip}, s \rangle \Rightarrow s$$

- ightharpoonup does not modify the state s
- same as in natural semantics because it is fully executed in one step

The ; Statement

Sequential composition; imposes sequential order: first complete S_1 , then proceed with S_2

[comp¹_{sos}]
$$\frac{\langle S_1, s \rangle \Rightarrow \langle S'_1, s' \rangle}{\langle S_1; S_2, s \rangle \Rightarrow \langle S'_1; S_2, s' \rangle}$$

 $lackbox{f S}_1$ has not been completed; proceed with S_1' before starting on S_2

$$[\text{comp}_{\text{sos}}^2]$$
 $\frac{\langle S_1, s \rangle \Rightarrow s'}{\langle S_1; S_2, s \rangle \Rightarrow \langle S_2, s' \rangle}$

 $ightharpoonup S_1$ has been completed, proceed with S_2

The if then else Statement

We need two axioms, discriminated by a condition on the guard b:

$$[\mathrm{if}_{\mathrm{sos}}^{\mathrm{tt}}]$$
 (if b then S_1 else $S_2,s
angle \Rightarrow \langle S_1,s
angle$ if $\mathcal{B}[\![b]\!]s=\mathrm{tt}$

$$[\mathrm{if}_{\mathrm{sos}}^{\mathrm{ff}}]$$
 (if b then S_1 else $S_2,s
angle \Rightarrow \langle S_2,s
angle$ if $\mathcal{B}[\![b]\!]s=\mathrm{ff}$

► the **first step** is evaluating a conditional and select the appropriate branch

The while Statement

We need one axiom:

```
 \begin{aligned} \text{[while}_{\text{sos}} \text{]} & \quad \langle \text{while } b \text{ do } S, s \rangle \Rightarrow \\ & \quad \langle \text{if } b \text{ then } (S; \text{ while } b \text{ do } S) \text{ else skip}, s \rangle \end{aligned}
```

▶ the first step in executing a loop is to unfold it one level

Derivation Sequences

A derivation sequence of a statement S starting in state s is either:

1. a finite sequence

$$\gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_k$$

where $\gamma_0 = \langle S, s \rangle$, $\gamma_i \Rightarrow \gamma_{i+1}$ for $0 \le i < k$, $k \ge 0$ and γ_k is either a **terminal** or **stuck** configuration.

2. an infinite sequence

$$\gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots$$

where $\gamma_0 = \langle S, s \rangle$, $\gamma_i \Rightarrow \gamma_{i+1}$ for $0 \leq i$.

Execution of a Finite Number of Steps

We shall write

- $ightharpoonup \gamma \Rightarrow^i \gamma_i$ to indicate that there are i steps in the execution from γ_0 to γ_i , and
- $ightharpoonup \gamma \Rightarrow^{\star} \gamma_i$ to indicate that there is a **finite** number of steps in the execution from γ_0 to γ_i

Note that $\gamma \Rightarrow^i \gamma_i$ and $\gamma \Rightarrow^\star \gamma_i$ are **not** necessarily derivation sequences: they will be if and only if γ_i is either a terminal or stuck configuration.

Judgements in Structural Operational Semantics

Note that the Natural Semantics execution judgement

$$\langle S, s \rangle \to s'$$

is expressed in Structural Operational Semantics as

$$\langle S, s \rangle \Rightarrow^{\star} s'$$

► To determine the **validity** of such judgements, construct a derivation sequence applying the axioms and rules

Derivation Sequence Example

For the statement:

$$(z := x; x := y); y := z$$

and the state s x = 5, s y = 7, s _ = 0 we have the derivation sequence:

$$\begin{split} &\langle (\mathbf{z} := \mathbf{x}; \ \mathbf{\bar{x}} := \mathbf{y}); \ \mathbf{y} := \mathbf{z}, \ s_0 \rangle \\ &\Rightarrow \langle \mathbf{x} := \mathbf{y}; \ \mathbf{y} := \mathbf{z}, \ s_0 [\mathbf{z} \mapsto \mathbf{5}] \rangle \\ &\Rightarrow \langle \mathbf{y} := \mathbf{z}, \ (s_0 [\mathbf{z} \mapsto \mathbf{5}]) [\mathbf{x} \mapsto \mathbf{7}] \rangle \\ &\Rightarrow ((s_0 [\mathbf{z} \mapsto \mathbf{5}]) [\mathbf{x} \mapsto \mathbf{7}]) [\mathbf{y} \mapsto \mathbf{5}] \end{split}$$

Derivation Tree Example

For each of the steps of the previous derivation sequence we have derivation trees like this one:

Exercises

Exercise. Assume that s = 3. Execute the statement:

```
y := 1; while !(x = 1) do (y:= y*x; x:= x-1)
```

until you reach a configuration with state $s[y \mapsto 3][x \mapsto 2]$.

Exercise 2.16 Construct a derivation sequence for the statement:

```
z := 0; while y <= x do (z := z+1; x := x-y)
```

when executed in a state s x = 17, s y = 5, s _ = 0. Determine a state s such that the derivation sequence is infinite.

Termination, Successful Termination, and Looping

- ▶ The execution of a statement S on a state s
 - **terminates** if and only if there is a finite derivation sequence starting with $\langle S, \ s \rangle$
 - **terminates successfully** if $\langle S, s \rangle \Rightarrow^{\star} s'$ for some state s'
 - **loops** if and only if there is an infinite derivation sequence starting with $\langle S,\ s \rangle$
- ► Since in WHILE there are no stuck configurations, an execution terminates successfully if and only if it terminates
- ▶ The execution of a statement S
 - always terminates if it terminates for all choices of s
 - always loops if it loops for all choices of s

Exercises

Exercise 2.17 Extend the WHILE language with the statement

repeat S until b

and define the relation \Rightarrow for it. You are not allowed to rely on the while construct.

Exercise 2.18 Extend the WHILE language with the statement

for x:= a1 to a2 do S

and define the relation \Rightarrow for it. You are not allowed to rely on the while construct. *Hint*: Assume that you have an inverse to $\mathcal N$ to compute the numeral from a given number.

Outline

Introduction

Structural Operational Semantics

Properties of the Structural Operational Semantics

Yet Another Induction Principle

For Structural Operational Semantics it is often useful to conduct proofs by induction on the length of the **finite** derivation sequences.

Induction on the Length of Derivation Sequences

- Prove that the property holds for all derivation sequences of length 0.
- 2: Prove that the property holds for all other derivation sequences: Assume that the property holds for all derivation sequences of length at most k (this is called the *induction hypothesis*) and show that it holds for derivation sequences of length k+1.

The **induction step** will often inspect:

- ▶ the structure of the syntactic element, or
- the derivation tree validating the first step of the derivation sequence

Splitting a Composition

Lemma 2.19 If $\langle S_1; S_2, s \rangle \Rightarrow^k s''$, then there exists a state s' and $k_1, k_2 \in \mathbb{N}$ such that $k = k_1 + k_2$, $\langle S_1, s \rangle \Rightarrow^{k_1} s'$, and $\langle S_2, s' \rangle \Rightarrow^{k_2} s''$.

Proof: By induction on the length of the derivation

$$\langle S_1; S_2, s \rangle \Rightarrow^k s''$$

Exercises

Exercise 2.20 Suppose that $\langle S_1; S_2, s \rangle \Rightarrow^{\star} \langle S_2, s' \rangle$. Show that it is *not* necessarily the case that $\langle S_1, s \rangle \Rightarrow^{\star} s'$.

Exercise 2.21 (Non-interference of statements) Prove that

if
$$\langle S_1, s \rangle \Rightarrow^k s'$$
 then $\langle S_1; S_2, s \rangle \Rightarrow^k \langle S_2, s' \rangle$

That is, the execution of S_1 is not influenced by the statement following it.

Deterministic Structural Operational Semantics

A Structural Operational Semantics is **deterministic** if for all choices of S, s, γ and γ' we have that

$$\langle S, s \rangle \Rightarrow \gamma$$
 and $\langle S, s \rangle \Rightarrow \gamma'$ imply $\gamma = \gamma'$

Exercise 2.22 Show that the Structural Operational Semantics of WHILE is deterministic. Deduce that there is exactly one derivation sequence starting in a configuration $\langle S, s \rangle$. Argue that S cannot both terminate and loop from S and hence cannot both be always terminating and always looping.

Semantic Equivalence

Two statements S_1 and S_2 are semantically equivalent if for all states:

- ▶ $\langle S_1, s \rangle \Rightarrow^{\star} \gamma$ if and only if $\langle S_2, s \rangle \Rightarrow^{\star} \gamma$ where γ is either a terminal or stuck configuration
- ▶ there is an infinite derivation sequence starting in $\langle S_1, s \rangle$ if and only if there is one starting in $\langle S_2, s \rangle$

Note that the length of the two finite derivation sequences may be different.

Exercises

Exercise 2.23 Show that the following statements of WHILE are semantically equivalent:

- S; skip and S
- while b do S and if b then (S; while b do S)else skip
- ▶ S1; (S2; S3) and (S1; S2); S3

You may use the fact that WHILE is deterministic.

Exercise 2.24 Prove that repeat S until b is semantically equivalent to S; while !b do S

The Semantic Function $\mathcal{S}_{\rm sos}$

The *meaning* of statements is given by the *partial* function:

$$\mathcal{S}_{sos}: \mathbf{Stm} \to (\mathbf{State} \hookrightarrow \mathbf{State})$$

defined as:

$$S_{\text{sos}}[S]s = \begin{cases} s' & \text{if } \langle S, s \rangle \Rightarrow^* s' \\ \mathbf{undef} & \text{otherwise} \end{cases}$$

Exercise 2.25 Determine whether or not semantic equivalence of S_1 and S_2 amounts to $\mathcal{S}_{sos}[\![S_1]\!] = \mathcal{S}_{sos}[\![S_2]\!]$.