অধ্যায় ২

সেট ও ফাংশন (Set and Function)

সেট শব্দটি আমাদের সুপরিচিত যেমন: ডিনার সেট, স্বাভাবিক সংখ্যার সেট, মূলদ সংখ্যার সেট ইত্যাদি। আধুনিক হাতিয়ার হিসাবে সেটের ব্যবহার ব্যাপক। জার্মান গণিতবিদ জর্জ ক্যান্টর (১৮৪৫-১৯১৮) সেট সম্পর্কে প্রথম ধারণা ব্যাখ্যা করেন। তিনি অসীম সেটের ধারণা প্রদান করে গণিত শাস্ত্রে আলোড়ন সৃষ্টি করেন এবং তাঁর সেটের ধারণা সেট তত্ত্ব নামে পরিচিত। এই অধ্যায়ে সেটের ধারণা ব্যবহার করে গাণিতিক যুক্তি ও চিত্রের মাধ্যমে সমস্যা সমাধান এবং ফাংশন সম্পর্কে সম্যক ধারণা দেওয়া হবে।

এ অধ্যায় শেষে শিক্ষার্থীরা –

- ► সেট ও উপসেটের ধারণা ব্যাখ্যা করে প্রতীকের সাহায্যে প্রকাশ করতে পারবে।
- ► সেট প্রকাশের পদ্ধতি বর্ণনা করতে পারবে।
- ▶ অসীম সেট ব্যাখ্যা করতে পারবে এবং সসীম ও অসীম সেটের পার্থক্য নিরূপণ করতে পারবে।
- ► সেটের সংযোগ ও ছেদ ব্যাখ্যা এবং যাচাই করতে পারবে।
- ► শক্তি সেট ব্যাখ্যা করতে এবং দুই ও তিন সদস্যবিশিষ্ট সেটের শক্তি সেট গঠন করতে পারবে।
- ক্রমজোড় ও কার্তেসীয় গুণজ ব্যাখ্যা করতে পারবে।
- ► উদাহরণ ও ভেনচিত্রের সাহায্যে সেট প্রক্রিয়ার সহজ বিধিগুলো প্রমাণ করতে পারবে এবং বিধিগুলো প্রয়োগ করে বিভিন্ন সমস্যা সমাধান করতে পারবে।
- অম্বয় ও ফাংশন ব্যাখ্যা করতে ও গঠন করতে পারবে।
- ► ডোমেন ও রেঞ্জ কী ব্যাখ্যা করতে পারবে।
- ফাংশনের ডোমেন ও রেঞ্জ নির্ণয় করতে পারবে।
- ফাংশনের লেখচিত্র অঙ্কন করতে পারবে।

সেট (Set)

বাস্তব বা চিন্তা জগতের সু-সংজ্ঞায়িত বস্তুর সমাবেশ বা সংগ্রহকে সেট বলে। যেমন, নবম-দশম শ্রেণির বাংলা, ইংরেজি ও গণিত বিষয়ে তিনটি পাঠ্য বইয়ের সেট। প্রথম দশটি বিজোড় স্বাভাবিক সংখ্যার সেট, পূর্ণসংখ্যার সেট, বাস্তব সংখ্যার সেট ইত্যাদি। সেটকে সাধারণত ইংরেজি বর্ণমালার বড় হাতের অক্ষর $A,B,C,\ldots X,Y,Z$ দ্বারা প্রকাশ করা হয়।

যেমন, 2,4,6 সংখ্যা তিনটির সেট $A=\{2,4,6\}$

সেটের প্রত্যেক বস্তু বা সদস্যকে সেটের উপাদান (element) বলা হয়। যেমন, $B=\{a,b\}$ হলে, B সেটের উপাদান a এবং b; উপাদান প্রকাশের চিহ্ন \in ।

 $\therefore a \in B$ এবং পড়া হয় a, B এর সদস্য (a belongs to B)

 $b \in B$ এবং পড়া হয় b, B এর সদস্য (b belongs to B)

উপরের B সেটে c উপাদান নেই।

 $\therefore c \notin B$ এবং পড়া হয় c,B এর সদস্য নয় (c does not belong to B)।

সেট প্রকাশের পদ্ধতি

সেটকে দুই পদ্ধতিতে প্রকাশ করা হয়। যথা: তালিকা পদ্ধতি (Roster Method বা Tabular Method) ও সেট গঠন পদ্ধতি (Set Builder Method)।

তালিকা পদ্ধতি: এ পদ্ধতিতে সেটের সকল উপাদান সুনির্দিন্টভাবে উল্লেখ করে দ্বিতীয় বন্ধনী $\{\}$ এর মধ্যে আবদ্ধ করা হয় এবং একাধিক উপাদান থাকলে 'কমা' ব্যবহার করে উপাদানগুলোকে আলাদা করা হয়। যেমন, $A=\{a,b\}$, $B=\{2,4,6\}$, $C=\{$ নিলয়, তিশা, শুভা $\}$ ইত্যাদি।

সেট গঠন পদ্ধতি: এ পদ্ধতিতে সেটের সকল উপাদান সুনির্দিন্টভাবে উল্লেখ না করে উপাদান নির্ধারণের জন্য সাধারণ ধর্মের উল্লেখ থাকে। যেমন: $A = \{x: x \}$ সাভাবিক বিজোড় সংখ্যা $\{x: x\}$ নবম শ্রেণির প্রথম পাঁচজন শিক্ষার্থী $\{x: x\}$ ইত্যাদি। এখানে, ':' দ্বারা 'এরূপ যেন' বা সংক্ষেপে 'যেন' (such that) বোঝায়। যেহেতু এ পদ্ধতিতে সেটের উপাদান নির্ধারণের জন্য শর্ত বা নিয়ম (Rule) দেওয়া থাকে, এ জন্য এ পদ্ধতিকে Rule Method ও বলা হয়।

উদাহরণ ১. $A=\{7,14,21,28\}$ সেটটিকে সেট গঠন পদ্ধতিতে প্রকাশ কর।

সমাধান: A সেটের উপাদানসমূহ 7,14,21,28।

এখানে, প্রত্যেকটি উপাদান 7 দারা বিভাজ্য, অর্থাৎ 7 এর গুণিতক এবং 28 এর বড় নয়।

 $\therefore A = \{x: x, 7$ এর গুণিতক এবং $0 < x \le 28\}$

উদাহরণ ২. $B=\{x:x,28$ এর গুণনীয়ক $\}$ সেটটিকে তালিকা পদ্ধতিতে প্রকাশ কর।

সমাধান: এখানে, $28 = 1 \times 28 = 2 \times 14 = 4 \times 7$

∴ 28 এর পুণনীয়কসমূহ 1, 2, 4, 7, 14, 28

নির্ণেয় সেট $B = \{1, 2, 4, 7, 14, 28\}$

উদাহরণ ৩. $C=\{x:x$ ধনাত্মক পূর্ণসংখ্যা এবং $x^2<18\}$ সেটটিকে তালিকা পদ্ধতিতে প্রকাশ কর।

সমাধান: ধনাত্মক পূর্ণসংখ্যাসমূহ $1, 2, 3, 4, 5, \dots$

এখানে,

$$x=1$$
 হল, $x^2=1^2=1; \ x=2$ হল, $x^2=2^2=4$

$$x=3$$
 হল, $x^2=3^2=9$; $x=4$ হল, $x^2=4^2=16$

$$x=5$$
 হলে, $x^2=5^2=25$; যা 18 এর চেয়ে বড়।

 \therefore শর্তানুসারে গ্রহণযোগ্য ধনাত্মক পূর্ণসংখ্যাসমূহ 1,2,3 এবং 4

 \therefore নির্ণেয় সেট $C = \{1, 2, 3, 4\}$

কাজ:

- ক) $C = \{-9, -6, -3, 3, 6, 9\}$ সেটটিকে সেট গঠন পদ্ধতিতে প্রকাশ কর।
- খ) $B=\{y:y$ পূর্ণসংখ্যা এবং $y^3\leq 18\}$ সেটটিকে তালিকা পদ্ধতিতে প্রকাশ কর।

সসীম সেট (Finite Set)

যে সেটের উপাদান সংখ্যা গণনা করে নির্ধারণ করা যায়, তাকে সসীম সেট বলে। যেমন, $D=\{x,y,z\},\ E=\{3,6,9,\dots,60\},\ F=\{x:x$ মৌলিক সংখ্যা এবং $30< x<70\}$ ইত্যাদি সসীম সেট। এখানে, D সেটে 3টি, E সেটে 20টি এবং F সেটে 9টি উপাদান আছে।

অসীম সেট (Infinite Set)

যে সেটের উপাদান সংখ্যা গণনা করে শেষ করা যায় না, তাকে **অসীম সেট** বলে। যেমন, $A=\{x:x$ বিজোড় স্বাভাবিক সংখ্যা $\}$, স্বাভাবিক সংখ্যার সেট $N=\{1,2,3,4,\ldots\}$, পূর্ণসংখ্যার সেট $Z=\{\ldots,-3,-2,-1,0,1,2,3\ldots\}$, মূলদ সংখ্যার সেট $Q=\left\{\frac{a}{b}:a$ ও b পূর্ণসংখ্যা এবং $b\neq 0$, বাস্তব সংখ্যার সেট R ইত্যাদি অসীম সেট।

উদাহরণ 8. দেখাও যে, সকল স্বাভাবিক সংখ্যার সেট একটি অসীম সেট।

সমাধান: ধরা যাক, স্বাভাবিক সংখ্যার সেট N একটি সসীম সেট। তাহলে এই সেটের অবশ্যই একটি সর্বোচ্চ উপাদান K থাকবে; যেখানে $K \in N$ হবে। কিন্তু স্বাভাবিক সংখ্যার ধারণা অনুসারে, K যদি একটি স্বাভাবিক সংখ্যা হয়, তাহলে K+1 ও একটি স্বাভাবিক সংখ্যা হবে যা K এর চেয়েও বড়। তাহলে, K+1 অবশ্যই স্বাভাবিক সংখ্যার সেট N এর একটি উপাদান হবে, অর্থাৎ $K+1 \in N$ হবে।

কিন্তু শুরুতে আমরা N সেটের সর্বোচ্চ উপাদান হিসেবে K সংখ্যাটি ধরেছিলাম। পরবর্তীতে দেখা গেল, K+1 সংখ্যাটিও N সেটের একটি উপাদান। একইভাবে দেখানো যায় যে, K+2, K+3 ... সংখ্যাগুলোও N সেটের উপাদান হবে।

সুতরাং, স্বাভাবিক সংখ্যার সেট ${f N}$ সসীম হতে পারে না। তাই স্বাভাবিক সংখ্যার সেট একটি অসীম সেট।

কাজ: সসীম সেট ও অসীম সেট নির্ণয় কর:

- **季)** {3,5,7}
- \forall) $\{1, 2, 2^2, \dots 2^{10}\}$
- গ) $\{3, 3^2, 3^3, \ldots\}$
- ঘ) $\{x : x$ পূর্ণসংখ্যা এবং $x < 4\}$
- ঙ) $\{rac{p}{q}: p$ ও q পরস্পর সহমৌলিক এবং $q>1\}$
- চ) $\{y : y \in N \text{ এবং } y^2 < 100 < y^3\}$

ফাঁকা সেট (Empty Set)

যে সেটের কোনো উপাদান নেই তাকে ফাঁকা সেট বলে। ফাঁকা সেটকে \varnothing দ্বারা প্রকাশ করা হয়। যেমন: একটি বালিকা বিদ্যালয়ের তিনজন ছাত্রের সেট, $\{x \in N: 10 < x < 11\}$, $\{x \in N: x$ মৌলিক সংখ্যা এবং $23 < x < 29\}$ ইত্যাদি।

ভেনচিত্র (Venn-Diagram)

জন ভেন (১৮৩৪-১৯২৩) সেটের কার্যবিধি চিত্রের সাহায্যে প্রকাশ করেন। এতে বিবেচনাধীন সেটগুলোকে সমতলে অবস্থিত বিভিন্ন আকারের জ্যামিতিক চিত্র যেমন আয়ত, বৃত্ত এবং ত্রিভুজ ব্যবহার করা হয়। জন ভেনের নামানুসারে চিত্রগুলো ভেন চিত্র নামে পরিচিত।

উপসেট (Subset)

 $A=\{a,b\}$ একটি সেট। এই সেটের উপাদান থেকে $\{a,b\}$, $\{a\}$, $\{b\}$ সেটগুলো গঠন করা যায়। আবার, কোনো উপাদান না নিয়ে \varnothing সেট গঠন কর যায়। এখানে, গঠিত $\{a,b\}$, $\{a\}$, $\{b\}$, \varnothing প্রত্যেকটি A সেটের উপসেট। সুতরাং কোনো সেট থেকে যতগুলো সেট গঠন করা যায়, এদের প্রত্যেকটি সেটকে ঐ সেটের উপসেট বলা হয়। উপসেটের চিহ্ন \subseteq । যদি B সেট A এর উপসেট হয় তবে $B\subseteq A$ লেখা হয়। B, A এর উপসেট অথবা B is a subset of A। উপরের উপসেটগুলোর মধ্যে $\{a,b\}$ সেট A এর সমান। প্রত্যেকটি সেট নিজের উপসেট। আবার, যেকোনো সেট থেকে \varnothing সেট গঠন করা যায়। \varnothing যেকোনো সেটের উপসেট।

ধরি $P=\{1,2,3\}$ এবং $Q=\{2,3\}$, $R=\{1,3\}$ তাহলে P, Q এবং R প্রত্যেকে P এর উপসেট। অর্থাৎ $P\subseteq P$, $Q\subseteq P$ এবং $R\subseteq P$ ।

প্রকৃত উপসেট (Proper Subset)

কোনো সেট থেকে গঠিত উপসেটের মধ্যে যে উপসেটগুলোর উপাদান সংখ্যা প্রদত্ত সেটের উপাদান সংখ্যা অপেক্ষা কম এদেরকে প্রকৃত উপসেট বলে। যেমন, $A=\{3,4,5,6\}$ এবং $B=\{3,5\}$

দুইটি সেট। এখানে, B এর সব উপাদান A সেটে বিদ্যমান এবং B সেটের উপাদান সংখ্যা A সেটের উপাদান সংখ্যা থেকে কম।

 $\therefore B, A$ এর একটি প্রকৃত উপসেট এবং $B \subset A$ লিখে প্রকাশ করা হয়।

উপসেটের উদাহরণে Q ও R প্রত্যেকে P এর প্রকৃত উপসেট। উল্লেখ্য ফাঁকা সেট বা \varnothing যেকোনো সেটের প্রকৃত উপসেট।

উদাহরণ ৫. $P=\{x,y,z\}$ এর উপসেটগুলো লিখ এবং সেগুলো থেকে প্রকৃত উপসেট বাছাই কর।

সমাধান: দেওয়া আছে, $P = \{x, y, z\}$

P এর উপসেটসমূহ $\{x,y,z\},\{x,y\},\{x,z\},\{y,z\},\{x\},\{y\},\{z\},arnothing$ ।

P এর প্রকৃত উপসেটসমূহ $\{x,y\},\{x,z\},\{y,z\},\{x\},\{y\},\{z\},arnothing$ ।

দ্রুষ্টব্য: কোনো সেটের উপাদান সংখ্যা n হলে ওই সেটের উপসেটের সংখ্যা 2^n এবং প্রকৃত উপসেটের সংখ্যা 2^n-1 ।

সেটের সমতা (Equivalent Set)

দুইটি সেটের উপাদান একই হলে, সেট দুইটিকে সমান বলা হয়। যেমন: $A=\{3,5,7\}$ এবং $B=\{5,3,3,7\}$ দুইটি সমান সেট এবং A=B চিহ্ন দ্বারা লেখা হয়। লক্ষ করি A=B যদি এবং কেবল যদি $A\subset B$ এবং $B\subset A$ হয়।

আবার, $A=\{3,5,7\}$, $B=\{5,3,3,7\}$ এবং $C=\{7,7,3,5,5\}$ হলে A, B ও C সেট তিনটি সমতা বোঝায়। অর্থাৎ, A=B=C।

দ্রষ্টব্য: সেটের উপাদানগুলোর ক্রম বদলালে বা কোনো উপাদান পুনরাবৃত্তি করলে সেটের কোনো পরিবর্তন হয় না।

সেটের অন্তর (Difference of Sets)

মনে করি, $A=\{1,2,3,4,5\}$ এবং $B=\{3,5\}$ । সেট A থেকে সেট B এর উপাদানগুলো বাদ দিলে যে সেটটি হয় তা $\{1,2,4\}$ এবং লেখা হয় $A\setminus B$ বা A-B এবং পড়া হয় A বাদ B।

$$A - B = \{1, 2, 3, 4, 5\} - \{3, 5\} = \{1, 2, 4\}$$

উদাহরণ ৬. $P=\{x:x,\ 12$ এর গুণনীয়কসমূহ $\}$ এবং $Q=\{x:x,3$ এর গুণিতক এবং $x\leq 12\}$ হলে P-Q নির্ণয় কর।

সমাধান: দেওয়া আছে, $P = \{x : x, 12 \text{ এর গুণনীয়কসমূহ}\}$

এখানে, 12 এর গুণনীয়কসমূহ 1,2,3,4,6,12

 $P = \{1, 2, 3, 4, 6, 12\}$

আবার, $Q=\{x:x,3$ এর গুণিতক এবং $x\leq 12\}$

এখানে, 12 পর্যন্ত 3 এর গুণিতকসমূহ 3,6,9,12

$$\therefore Q = \{3, 6, 9, 12\}$$

$$P - Q = \{1, 2, 3, 4, 6, 12\} - \{3, 6, 9, 12\} = \{1, 2, 4\}$$

নির্ণেয় সেট: {1,2,4}

সার্বিক সেট (Universal Set)

আলোচনায় সংশ্লিষ্ট সকল সেট একটি নির্দিষ্ট সেটের উপসেট। যেমন: $A=\{x,y\}$ সেটটি $B=\{x,y,z\}$ এর একটি উপসেট। এখানে, B সেটকে A সেটের সাপেক্ষে সার্বিক সেট বলে।

সুতরাং আলোচনা সংশ্লিষ্ট সকল সেট যদি একটি নির্দিষ্ট সেটের উপসেট হয় তবে ঐ নির্দিষ্ট সেটকে তার উপসেটগুলোর সাপেক্ষে **সার্বিক সেট** বলে।

সার্বিক সেটকে সাধারণত U দ্বারা প্রকাশ করা হয়। তবে অন্য প্রতীকের সাহায্যেও সার্বিক সেট প্রকাশ করা যায়। যেমন: সকল জোড় স্বাভাবিক সংখ্যার সেট $C=\{2,4,6,\ldots\}$ এবং সকল স্বাভাবিক সংখ্যার সেট $N=\{1,2,3,4,5,6,\ldots\}$ হলে C সেটের সাপেক্ষে সার্বিক সেট হবে N।

পূরক সেট (Complement of a Set)

U সার্বিক সেট এবং A সেটটি U এর উপসেট। A সেটের বহির্ভূত সকল উপাদান নিয়ে গঠিত সেটকে A সেটের পূরক সেট বলে। A এর পূরক সেটকে A^c বা A' দারা প্রকাশ করা হয়। গাণিতিকভাবে $A^c = U \setminus A$ ।

মনে করি, P ও Q দুইটি সেট এবং P সেটের যেসব উপাদান Q সেটের উপাদান নয়, ঐ উপাদানগুলোর সেটকে P এর প্রেক্ষিতে Q এর পূরক সেট বলা হয় এবং লেখা হয় $Q^c=P\setminus Q$ ।

উদাহরণ ৭. $U=\{1,2,3,4,5,6,7\}$, $A=\{2,4,6,7\}$ এবং $B=\{1,3,5\}$ হলে A^c ও B^c নির্ণয় কর।

সমাধান:
$$A^c=U\setminus A=\{1,2,3,4,5,6,7\}\setminus\{2,4,6,7\}=\{1,3,5\}$$
 এবং $B^c=U\setminus B=\{1,2,3,4,5,6,7\}\setminus\{1,3,5\}=\{2,4,6,7\}$

নির্ণেয় সেট $A^c = \{1, 3, 5\}$ এবং $B^c = \{2, 4, 6, 7\}$

সংযোগ সেট (Union of Sets)

দুই বা ততোধিক সেটের সকল উপাদান নিয়ে গঠিত সেটকে সংযোগ সেট বলা হয়। মনে করি, A ও B দুইটি সেট। A ও B সেটের সংযোগকে $A\cup B$ দ্বারা প্রকাশ করা হয় এবং পড়া হয় A সংযোগ

B অথবা A Union B। সেট গঠন পদ্ধতিতে $A\cup B=\{x:x\in A$ অথবা $x\in B\}$ । উদাহরণ ৮. $C=\{3,4,5\}$ এবং $D=\{4,6,8\}$ হলে, $C\cup D$ নির্ণয় কর।

সমাধান: দেওয়া আছে, $C=\{3,4,5\}$ এবং $D=\{4,6,8\}$ $\therefore C \cup D=\{3,4,5\} \cup \{4,6,8\}=\{3,4,5,6,8\}$ নির্ণেয় সেট: $\{3,4,5,6,8\}$

ছেদ সেট (Intersection of Sets)

দুই বা ততোধিক সেটের সাধারণ উপাদান নিয়ে গঠিত সেটকে ছেদ সেট বলে। মনে করি, A ও B দুইটি সেট। A ও B এর ছেদ সেটকে $A\cap B$ দ্বারা প্রকাশ করা হয় এবং পড়া হয় A ছেদ B বা A intersection B। সেট গঠন পদ্ধতিতে $A\cap B=\{x:x\in A \text{ এবং }x\in B\}$ ।

উদাহরণ ৯. $P=\{x\in N: 2< x\leq 6\}$ এবং $Q=\{x\in N: x$ জোড় সংখ্যা এবং $x\leq 8\}$ হলে, $P\cap Q$ নির্ণয় কর।

সমাধান: দেওয়া আছে,

$$P=\{x\in N: 2< x\leq 6\}=\{3,4,5,6\}$$
 $Q=\{x\in N: x$ জোড় সংখ্যা এবং $x\leq 8\}=\{2,4,6,8\}$ $\therefore P\cap Q=\{3,4,5,6\}\cap\{2,4,6,8\}=\{4,6\}$ নির্ণেয় সেট $\{4,6\}$

নিম্ছেদ সেট (Disjoint Set)

দুইটি সেটের মধ্যে যদি কোনো সাধারণ উপাদান না থাকে তবে সেট দুইটিকে পরস্পর নিশ্ছেদ সেট বলে। মনে করি, A ও B দুইটি সেট। $A\cap B=\varnothing$ হলে A ও B পরস্পর নিশ্ছেদ সেট হবে।

কাজ: $U=\{1,3,5,9,7,11\}$, $E=\{1,5,9\}$ এবং $F=\{3,7,11\}$ হলে, $E^c\cup F^c$ এবং $E^c\cap F^c$ নির্ণয় কর।

শক্তি সেট (Power Sets)

 $A=\{m,n\}$ একটি সেট। A সেটের উপসেটসমূহ হলো $\{m,n\},\{m\},\{n\},\varnothing$; এখানে উপসেটসমূহের সেট $\{\{m,n\},\{m\},\{n\},\varnothing\}$ কে A সেটের শক্তি সেট বলা হয়। A সেটের শক্তি সেটকে P(A) দ্বারা প্রকাশ করা হয়। সুতরাং কোনো সেটের সকল উপসেট দ্বারা গঠিত সেটকে ঐ সেটের শক্তি সেট বলা হয়।

উদাহরণ ১০. $A=\varnothing$, $B=\{a\}$, $C=\{a,b\}$ সেট তিনটির শক্তি সেটগুলোর উপাদান সংখ্যা কত?

সমাধান: এখানে, $P(A) = \{\emptyset\}$

 \therefore A সেটের উপাদান সংখ্যা শূন্য এবং এর শক্তি সেটের উপাদান সংখ্যা $=1=2^0$ আবার, $P(B)=\{\{a\},\varnothing\}$

 $\therefore B$ সেটের উপাদান সংখ্যা 1 এবং এর শক্তি সেটের উপাদান সংখ্যা $=2=2^1$ এবং $P(C)=\{\{a\},\{b\},\{a,b\},\varnothing\}$

 \therefore C সেটের উপাদান সংখ্যা 2 এবং এর শক্তি সেটের উপাদান সংখ্যা $=4=2^2$ সুতরাং, কোনো সেটের উপাদান সংখ্যা n হলে, ঐ সেটের শক্তি সেটের উপাদান সংখ্যা হবে 2^n ।

কাজ: $G=\{1,2,3\}$ হলে, P(G) নির্ণয় কর। দেখাও যে, P(G) এর উপাদান সংখ্যা 2^3 ।

ক্রমজাড় (Ordered Pair)

অন্টম শ্রেণির আমেনা এবং সুমেনা বার্ষিক পরীক্ষায় মেধা তালিকায় যথাক্রমে প্রথম ও দ্বিতীয় হলো। মেধা অনুসারে তাদেরকে (আমেনা, সুমেনা) জোড়া আকারে লেখা যায়। এরূপ নির্দিষ্ট করে দেওয়া জোড়াকে একটি ক্রমজোড় বলে।

সুতরাং, একজোড়া উপাদানের মধ্যে কোনটি প্রথম অবস্থানে আর কোনটি দ্বিতীয় অবস্থানে থাকবে, তা নির্দিষ্ট করে জোড়া আকারে প্রকাশকে ক্রমজোড় বলা হয়।

যদি কোনো ক্রমজোড়ের প্রথম উপাদান বা পদ x এবং দ্বিতীয় উপাদান বা পদ y হয়, তবে ক্রমজোড়িটিকে (x,y) দিয়ে প্রকাশ করা হয়। ক্রমজোড় (x,y) ও (a,b) সমান বা (x,y)=(a,b) হবে যদি x=a এবং y=b হয়।

উদাহরণ ১১. (2x+y,3)=(6,x-y) হলে (x,y) নির্ণয় কর।

সমাধান: দেওয়া আছে, (2x+y,3)=(6,x-y)

ক্রমজোডের শর্তমতে.

 $2x + y = 6 \cdot \cdot \cdot \cdot \cdot (1)$

অধ্যায় ২. সেট ও ফাংশন ২৯

$$x - y = 3 \cdot \cdot \cdot \cdot \cdot (2)$$

সমীকরণ (1) ও (2) যোগ করে পাই, 3x = 9 বা x = 3

সমীকরণ (1) এ x এর মান বসিয়ে পাই, 6+y=6 বা y=0

$$\therefore (x,y) = (3,0)$$

কার্তেসীয় গুণজ (Cartesian Product)

করিম সাহেব তাঁর বাড়ির একটি ঘরের ভিতরের দেওয়ালে সাদা বা নীল রং এবং বাইরের দেওয়ালে লাল বা হলুদ বা সবুজ রঙের লেপন দেওয়ার সিদ্ধান্ত নিলেন। ভিতরের দেওয়ালে রঙের সেট $A=\{$ সাদা, নীল $\}$ এবং বাইরের দেওয়ালে রঙের সেট $B=\{$ লাল, হলুদ ও সবুজ $\}$ । করিম সাহেব তাঁর ঘরের রং লেপন (সাদা, লাল), (সাদা, হলুদ), (সাদা, সবুজ), (নীল, লাল), (নীল, হলুদ), (নীল, সবুজ) ক্রমজোড় আকারে দিতে পারেন।

উক্ত ক্রমজোড়ের সেটকে নিচের মতো করে লেখা হয়:

 $A \times B = \{ (সাদা, লাল), (সাদা, হলুদ), (সাদা, সবুজ), (নীল, লাল), (নীল, হলুদ), (নীল, সবুজ) \}$

উপরোক্ত ক্রমজোড়ের সেটটিকেই **কার্তেসীয় গুণজ সেট** বলা হয়।

সেট গঠন পদ্ধতিতে, $A \times B = \{(x,y) : x \in A ext{ এবং } y \in B\}$

 $A \times B$ কে পড়া হয় A ক্রেস B।

উদাহরণ ১২. $P=\{1,2,3\},\,Q=\{3,4\},\,R=P\cap Q$ হলে P imes R এবং R imes Q নির্ণয় কর।

সমাধান: দেওয়া আছে, $P = \{1, 2, 3\}$, $Q = \{3, 4\}$

এবং
$$R = P \cap Q = \{1, 2, 3\} \cap \{3, 4\} = \{3\}$$

$$P \times R = \{1, 2, 3\} \times \{3\} = \{(1, 3), (2, 3), (3, 3)\}$$

এবং
$$R \times Q = \{3\} \times \{3,4\} = \{(3,3),(3,4)\}$$

কাজ:

ক)
$$\left(\frac{x}{2}+\frac{y}{3},1\right)=\left(1,\frac{x}{3}+\frac{y}{2}\right)$$
 হলে, (x,y) নির্ণয় কর।

খ) $P=\{1,2,3\}$, $Q=\{3,4\}$ এবং $R=\{x,y\}$ হলে, $(P\cup Q)\times R$ এবং $(P\cap Q)\times Q$ নির্ণয় কর।

উদাহরণ ১৩. যে সকল স্বাভাবিক সংখ্যা দ্বারা 311 এবং 419 কে ভাগ করলে প্রতি ক্ষেত্রে 23 অবশিষ্ট থাকে এদের সেট নির্ণয় কর।

সমাধান: যে স্বাভাবিক সংখ্যা দ্বারা 311 এবং 419 কে ভাগ করলে প্রতিক্ষেত্রে 23 অবশিষ্ট থাকে, সে সংখ্যা হবে 23 অপেক্ষা বড় এবং 311-23=288 এবং 419-23=396 এর সাধারণ গুণনীয়ক।

মনে করি, 23 অপেক্ষা বড় 288 এর গুণনীয়কসমূহের সেট A।

এখানে, $288 = 1 \times 288 = 2 \times 144 = 3 \times 96 = 4 \times 72 = 6 \times 48 = 8 \times 36 = 9 \times 32 = 12 \times 24 = 16 \times 18$

 $A = \{24, 32, 36, 48, 72, 96, 144, 288\}$

মনে করি, 23 অপেক্ষা বড় 396 এর গুণনীয়কসমূহের সেট B।

এখানে, $396 = 1 \times 396 = 2 \times 198 = 3 \times 132 = 4 \times 99 = 6 \times 66 = 9 \times 44 = 11 \times 36 = 12 \times 33 = 18 \times 22$

 $B = \{33, 36, 44, 66, 99, 132, 198, 396\}$

 $A \cap B = \{24, 32, 36, 48, 72, 96, 144, 288\} \cap \{33, 36, 44, 66, 99, 132, 198, 396\}$

 $A \cap B = \{36\}$

নির্ণেয় সেট {36}

উদাহরণ ১৪. 100 জন শিক্ষার্থীর মধ্যে কোনো পরীক্ষায় ৪৪ জন বাংলায়, ৪0 জন গণিতে এবং 70 জন উভয় বিষয়ে পাশ করেছে। ভেনচিত্রের সাহায্যে তথ্যগুলো প্রকাশ কর এবং কতজন শিক্ষার্থী উভয় বিষয়ে ফেল করেছে, তা নির্ণয় কর।

সমাধান: ভেনচিত্রে আয়তাকার ক্ষেত্রটি 100 জন শিক্ষার্থীর সেট U এবং বাংলায় ও গণিতে পাস শিক্ষার্থীদের সেট যথাক্রমে B ও M দারা নির্দেশ করে। ফলে ভেনচিত্রটি চারটি নিশ্ছেদ সেটে বিভক্ত হয়েছে, যাদেরকে P,Q,R,F দারা চিহ্নিত করা হলো।

এখানে, উভয় বিষয়ে পাশ শিক্ষার্থীদের সেট $Q=B\cap M$, যার সদস্য সংখ্যা 70

 $P = rac{1}{2}$ বাংলায় পাশ শিক্ষার্থীদের সেট, যার সদস্য সংখ্যা = 88 - 70 = 18

R= শুধু গণিতে পাশ শিক্ষার্থীদের সেট, যার সদস্য সংখ্যা =80-70=10

 $P \cup Q \cup R = B \cup M$, যেকোনো একটি বিষয়ে এবং উভয় বিষয়ে পাশ শিক্ষার্থীদের সেট, যার সদস্য সংখ্যা = 18 + 10 + 70 = 98

F= উভয় বিষয়ে ফেল করা শিক্ষার্থীদের সেট, যার সদস্য সংখ্যা =100-98=2 \pm উভয় বিষয়ে ফেল করেছে 2 জন শিক্ষার্থী।

অনুশীলনী ২.১

- ১. নিচের সেটগুলোকে তালিকা পদ্ধতিতে প্রকাশ কর:
 - ক) $\{x \in N : x^2 > 9$ এবং $x^3 < 130\}$
 - খ) $\{x \in Z : x^2 > 5$ এবং $x^3 \le 36\}$
 - গ) $\{x \in N : x, 36$ এর গুণনীয়ক এবং 6 এর গুণিতক $\}$
 - ঘ) $\{x \in N : x^3 > 25$ এবং $x^4 < 264\}$
- ২. নিচের সেটগুলোকে সেট গঠন পদ্ধতিতে প্রকাশ কর:
 - ক) {3,5,7,9,11}
 - *****) {1, 2, 3, 4, 6, 9, 12, 18, 36}
 - গ) {4,8,12,16,20,24,28,32,36,40}
 - \forall) $\{\pm 4, \pm 5, \pm 6\}$
- ৩. $A=\{2,3,4\}$ এবং $B=\{1,2,a\}$ এবং $C=\{2,a,b\}$ হলে, নিচের সেটগুলো নির্ণয় কর:
 - Φ) $B \setminus C$

খ) $A \cup B$

গ) $A \cap C$

- $A \cap (B \cup C)$
- 8. $U=\{1,2,3,4,5,6,7\}$, $A=\{1,3,5\}$, $B=\{2,4,6\}$ এবং $C=\{3,4,5,6,7\}$ হলে, নিম্নলিখিত ক্ষেত্রে সত্যতা যাচাই কর:
 - $\overline{\Phi}) \quad (A \cup B)' = A' \cap B'$
 - খ) $(B \cap C)' = B' \cup C'$
 - গ) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
 - \forall) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- ৫. $Q=\{x,y\}$ এবং $R=\{m,n,l\}$ হলে, P(Q) এবং P(R) নির্ণয় কর।
- ৬. $A=\{a,b\}$, $B=\{a,b,c\}$ এবং $C=A\cup B$ হলে, দেখাও যে, P(C) এর উপাদান সংখ্যা 2^n , যেখানে n হচ্ছে C এর উপাদান সংখ্যা।
- ৭. ক) (x-1,y+2)=(y-2,2x+1) হলে, x এবং y এর মান নির্ণয় কর।
 - খ) $(ax-cy,a^2-c^2)=(0,ay-cx)$ হলে, (x,y) এর মান নির্ণয় কর।
 - গ) (6x-y,13)=(1,3x+2y) হলে, (x,y) নির্ণয় কর।

- ৮. ক) $P=\{a\},\ Q=\{b,c\}$ হলে, P imes Q এবং Q imes P নির্ণয় কর।
 - খ) $A=\{3,4,5\}$, $B=\{4,5,6\}$ এবং $C=\{x,y\}$ হলে, $(A\cap B)\times C$ নির্ণয় কর।
 - গ) $P=\{3,5,7\}$, $Q=\{5,7\}$ এবং $R=P\setminus Q$ হলে, $(P\cup Q) imes R$ নির্ণয় কর।
- ৯. A ও B যথাক্রমে 35 এবং 45 এর সকল গুণনীয়কের সেট হলে, $A\cup B$ ও $A\cap B$ নির্ণয় কর।
- ১০. যে সকল স্বাভাবিক সংখ্যা দ্বারা 346 এবং 556 কে ভাগ করলে প্রতিক্ষেত্রে 31 অবশিষ্ট থাকে, এদের সেট নির্ণয় কর।
- ১১. কোনো শ্রেণির 30 জন শিক্ষার্থীর মধ্যে 20 জন ফুটবল এবং 15 জন ক্রিকেট খেলা পছন্দ করে।
 দুইটি খেলাই পছন্দ করে এরূপ শিক্ষার্থীর সংখ্যা 10। কতজন শিক্ষার্থী দুইটি খেলাই পছন্দ করে
 না তা ভেন চিত্রের সাহায্যে নির্ণয় কর।
- ১২. 100 জন শিক্ষার্থীর মধ্যে কোনো পরীক্ষায় 65 শিক্ষার্থী বাংলায়, 48 শিক্ষার্থী বাংলা ও ইংরেজি উভয় বিষয়ে পাশ এবং 15 শিক্ষার্থী উভয় বিষয়ে ফেল করেছে।
 - ক) সংক্ষিপ্ত বিবরণসহ ওপরের তথ্যগুলো ভেনচিত্রে প্রকাশ কর।
 - খ) শুধু বাংলায় ও ইংরেজিতে পাশ করেছে তাদের সংখ্যা নির্ণয় কর।
 - গ) উভয় বিষয়ে পাশ এবং উভয় বিষয়ে ফেল সংখ্যাদ্বয়ের মৌলিক গুণনীয়কসমূহের সেট দুইটির সংযোগ সেট নির্ণয় কর।

অম্বয় (Relation)

আমরা জানি, বাংলাদেশের রাজধানী ঢাকা, ভারতের রাজধানী নয়াদিল্লি এবং থাইল্যান্ডের রাজধানী ব্যাংকক। এখানে দেশের সাথে রাজধানীর একটি অম্বয় বা সম্পর্ক আছে। এ সম্পর্ক হচ্ছে দেশ-রাজধানী অম্বয়। উক্ত সম্পর্ককে সেট আকারে নিমুন্ধপে দেখানো যায়:

অর্থাৎ দেশ-রাজধানীর অম্বয় = {(বাংলাদেশ, ঢাকা), (ভারত, নয়াদিল্লি), (থাইল্যান্ড, ব্যাংকক)}।

যদি A ও B দুইটি সেট হয় তবে সেটদ্বয়ের কার্তেসীয় গুণজ $A\times B$ সেটের অন্তর্গত ক্রমজোড়গুলোর অশূন্য উপসেট R কে A সেট হতে B সেটের একটি অম্বয় বা সম্পর্ক বলা হয়। এখানে, R সেট $A\times B$ সেটের একটি উপসেট অর্থাৎ, $R\subseteq A\times B$

উদাহরণ ১৫. মনে করি, $A = \{3, 5\}$ এবং $B = \{2, 4\}$

$$A \times B = \{3,5\} \times \{2,4\} = \{(3,2),(3,4),(5,2),(5,4)\}$$

$$\therefore R \subseteq \{(3,2), (3,4), (5,2), (5,4)\}$$

যখন A সেটের একটি উপাদান x ও B সেটের একটি উপাদান y এবং $(x,y)\in R$ হয় তবে লেখা হয় x R y এবং পড়া হয় x,y এর সাথে অম্বিত (x is related to y) অর্থাৎ উপাদান x, উপাদান y এর সাথে R সম্পর্কযুক্ত।

যদি x > y শূর্ত হয় তবে, $R = \{(3,2), (5,2), (5,4)\}$

এবং যদি x < y শর্ত হয় তবে, $R = \{(3,4)\}$

আবার, A সেট হতে A সেটের একটি অম্বয় অর্থাৎ $R\subseteq A\times A$ হলে, R কে A এর অম্বয় বলা হয়।

A এবং B দুইটি সেটের উপাদানগুলোর মধ্যে সম্পর্ক দেওয়া থাকলে $x\in A$ এর সঙ্গে সম্পর্কিত $y\in B$ নিয়ে যে সব ক্রমজোড় (x,y) পাওয়া যায়, এদের অশূন্য উপসেট হচ্ছে একটি অম্বয়।

উদাহরণ ১৬. যদি $P=\{2,3,4\}$, $Q=\{4,6\}$ এবং P ও Q এর উপাদানগুলোর মধ্যে y=2x সম্পর্ক বিবেচনায় থাকে তবে সংশ্লিষ্ট অন্বয় নির্ণয় কর।

সমাধান: দেওয়া আছে, $P = \{2, 3, 4\}$ এবং $Q = \{4, 6\}$

প্রশানুসারে, $R=\{(x,y):x\in P,y\in Q$ এবং $y=2x\}$

এখানে, $P \times Q = \{2,3,4\} \times \{4,6\} = \{(2,4),(2,6),(3,4),(3,6),(4,4),(4,6)\}$

 $R = \{(2,4), (3,6)\}$

নির্ণেয় অম্বয় $\{(2,4),(3,6)\}$

উদাহরণ ১৭. যদি $A=\{1,2,3\}$, $B=\{0,2,4\}$ এবং A ও B এর উপাদানগুলোর মধ্যে x=y-1 সম্পর্ক বিবেচনায় থাকে, তবে সংশ্লিষ্ট অম্বয় বর্ণনা কর।

সমাধান: দেওয়া আছে, $A = \{1, 2, 3\}$, $B = \{0, 2, 4\}$

প্রশানুসারে, অন্বয় $R=\{(x,y):x\in A,y\in B$ এবং $x=y-1\}$

এখানে, $A \times B = \{1, 2, 3\} \times \{0, 2, 4\}$

 $= \{(1,0), (1,2), (1,4), (2,0), (2,2), (2,4), (3,0), (3,2), (3,4)\}$

 $R = \{(1,2), (3,4)\}$

কাজ: যদি $C=\{2,5,6\}$, $D=\{4,5\}$ এবং C ও D এর উপাদানগুলোর মধ্যে $x\leq y$ সম্পর্ক বিবেচনায় থাকে তবে সংশ্লিষ্ট অন্বয় নির্ণয় কর।

ফাংশন (Function)

নিচের A ও B সেটের অম্বয় লক্ষ করি:

যখন
$$y = x + 2$$
, তখন $x = 1$ হলে, $y = 3$ $x = 2$ হলে, $y = 4$ $x = 3$ হলে, $y = 5$

অর্থাৎ x এর একটি মানের জন্য y এর মাত্র একটি মান পাওয়া যায় এবং x ও y-এর মধ্যে সম্পর্ক তৈরি হয় y=x+2 দ্বারা। সুতরাং দুইটি চলক x এবং y এমনভাবে সম্পর্কযুক্ত যেন x এর যেকোনো একটি মানের জন্য y এর একটি মাত্র মান পাওয়া যায়, তবে y কে x এর ফাংশন বলা হয়। x এর ফাংশনকে সাধারণত y, f(x), g(x), F(x) ইত্যাদি দ্বারা প্রকাশ করা হয়।

মনে করি, $y=x^2-2x+3$ একটি ফাংশন। এখানে, x এর যে কোনো একটি মানের জন্য y এর একটি মাত্র মান পাওয়া যাবে। এখানে, x এবং y উভয়ই চলক, তবে x এর মানের উপর y এর মান নির্ভরশীল। কাজেই x হচ্ছে স্বাধীন চলক এবং y হচ্ছে অধীন চলক।

উদাহরণ ১৮. $f(x) = x^2 - 4x + 3$ হলে, f(-1) নির্ণয় কর।

সমাধান: দেওয়া আছে, $f(x) = x^2 - 4x + 3$

$$f(-1) = (-1)^2 - 4(-1) + 3 = 1 + 4 + 3 = 8$$

উদাহরণ ১৯. যদি $g(x)=x^3+ax^2-3x-6$ হয়, তবে a এর কোন মানের জন্য g(-2)=0?

সমাধান: দেওয়া আছে, $g(x) = x^3 + ax^2 - 3x - 6$

$$g(-2) = (-2)^3 + a(-2)^2 - 3(-2) - 6$$
$$= -8 + 4a + 6 - 6 = 4a - 8$$

প্রশানুসারে g(-2)=0

$$\therefore 4a - 8 = 0$$
 বা, $4a = 8$ বা, $a = 2$

∴
$$a = 2$$
 হল, $q(-2) = 0$ হবে।

অধ্যায় ২. সেট ও ফাংশন

ডোমেন (Domain) ও রেঞ্জ (Range)

কোনো অন্বয়ের ক্রমজোড়গুলোর প্রথম উপাদানসমূহের সেটকে এর **ডোমেন** এবং দ্বিতীয় উপাদানসমূহের সেটকে এর **রেঞ্জ** বলা হয়।

মনে করি, A সেট থেকে B সেটে R একটি অন্বয় অর্থাৎ $R\subseteq A\times B$ । R এ অন্তর্ভুক্ত ক্রমজোড়গুলোর প্রথম উপাদানসমূহের সেট হবে R এর ডোমেন এবং দ্বিতীয় উপাদানসমূহের সেট হবে R এর রেঞ্জ । R এর ডোমেনকে ডোম R এবং রেঞ্জকে রেঞ্জ R লিখে প্রকাশ করা হয় ।

উদাহরণ ২০. অম্বয় $S=\{(2,1),(2,2),(3,2),(4,5)\}$ অম্বয়টির ডোমেন ও রেঞ্জ নির্ণয় কর।

সমাধান: দেওয়া আছে, $S = \{(2,1), (2,2), (3,2), (4,5)\}$

S অন্বয়ে ক্রমজোড়গুলোর প্রথম উপাদানসমূহ 2,2,3,4 এবং দ্বিতীয় উপাদানসমূহ 1,2,2,5।

:: ডোম $S = \{2, 3, 4\}$ এবং রেঞ্জ $S = \{1, 2, 5\}$

উদাহরণ ২১. $A=\{0,1,2,3\}$ এবং $R=\{(x,y):x\in A,y\in A$ এবং $y=x+1\}$ হলে, R কে তালিকা পদ্ধতিতে প্রকাশ কর এবং ডোম R ও রেঞ্জ R নির্ণয় কর।

সমাধান: দেওয়া আছে, $R = \{(x,y) : x \in A, y \in A \text{ এবং } y = x+1\}$

R এর বর্ণিত শর্ত থেকে পাই, y=x+1।

এখন, প্রত্যেক $x\in A$ এর জন্য y=x+1 এর মান নির্ণয় করি।

\boldsymbol{x}	0	1	2	3
y	1	2	3	4

যেহেতু $4 \notin A$, কাজেই $(3,4) \notin R \cup R = \{(0,1),(1,2),(2,3)\}$

: ডোম $R = \{0, 1, 2\}$ এবং রেঞ্জ $R = \{1, 2, 3\}$

কাজ:

- ক) $S = \{(-3,8), (-2,3), (-1,0), (0,-1), (1,0), (2,3)\}$ হলে S এর ডোমেন ও রেঞ্জ নির্ণয় কর।
- খ) $S=\{(x,y): x,y\in A$ এবং $y-x=1\}$, যেখানে $A=\{-3,-2,-1,0\}$ হলে, ডোম S ও রেঞ্জ S নির্ণয় কর।

ফাংশনের লেখচিত্র (Graph of a Function)

ফাংশনের চিত্ররূপকে লেখচিত্র বলা হয়। ফাংশনের ধারণা সুস্পষ্ট করার ক্ষেত্রে লেখচিত্রের গুরুত্ব অপরিসীম। ফরাসি দার্শনিক ও গণিতবিদ রেনে দেকার্ত (Rene Descartes: 1596-1650) সর্বপ্রথম বীজগণিত ও জ্যামিতির মধ্যে সম্পর্ক স্থাপনে অগ্রণী ভূমিকা পালন করেন। তিনি কোনো সমতলে পরস্পর লম্বভাবে ছেদী দুইটি রেখার সাহায্যে বিন্দুর অবস্থান সুনির্দিউভাবে নির্ণয়ের মাধ্যমে সমতলীয়

অবস্থান

জ্যামিতিতে আধুনিক ধারা প্রবর্তন করেন। তিনি পরস্পর লম্বভাবে ছেদী সরলরেখা দুইটিকে অক্ষরেখা হিসেবে আখ্যায়িত করেন এবং অক্ষদ্বয়ের ছেদ বিন্দুকে মূলবিন্দু বলেন। কোনো সমতলে পরস্পর লম্বভাবে ছেদী দুইটি সরলরেখা XOX' এবং YOY' আঁকা হলো। সমতলে অবস্থিত যেকোনো বিন্দুর অবস্থান এই রেখাদ্বয়ের মাধ্যমে সম্পূর্ণরূপে জানা সম্ভব। এই রেখাদ্বয়ের প্রত্যেকটিকে অক্ষ (axis) বলা হয়। অনুভূমিক রেখা XOX' কে x-অক্ষ, উল্লম্ব রেখা YOY' কে y-অক্ষ এবং অক্ষদ্বয়ের ছেদবিন্দু O কে মূলবিন্দু (Origin) বলা হয়।

দুইটি অক্ষের সমতলে অবস্থিত কোনো বিন্দু থেকে অক্ষদ্বয়ের লম্ব দূরত্বের যথাযথ চিহ্নযুক্ত সংখ্যাকে ঐ বিন্দুর স্থানাঙ্ক বলা হয়। মনে করি, অক্ষদ্বয়ের সমতলে অবস্থিত P যেকোনো বিন্দু। P থেকে XOX' এবং YOY' এর উপর যথাক্রমে PN ও PM লম্ব টানি। ফলে, PM = ON যা YOY' হতে P বিন্দুর লম্ব দূরত্ব এবং PN = OM যা XOX' হতে P বিন্দুর লম্ব দূরত্ব। যদি PM = x এবং PN = y হয়, তবে P বিন্দুর স্থানাঙ্ক (x,y)।

এখানে, x কে ভুজ (abscissa) বা x স্থানাস্ক এবং y কে কোটি (ordinate) বা y স্থানাস্ক বলা হয়। উল্লিখিত স্থানাস্ককে কার্তেসীয় স্থানাস্ক বলা হয়। কার্তেসীয় স্থানাস্কে সহজেই ফাংশনের জ্যামিতিক চিত্র দেখানো যায়। এজন্য সাধারণত x অক্ষ বরাবর স্বাধীন চলকের মান ও y অক্ষ বরাবর অধীন চলকের মান বসানো হয়।

y=f(x) ফাংশনের লেখচিত্র অঙ্কনের জন্য ডোমেন থেকে স্বাধীন চলকের কয়েকটি মানের জন্য অধীন চলকের অনুরূপ মানগুলো বের করে ক্রমজোড় তৈরি করি। অতঃপর ক্রমজোড়গুলো উক্ত তলে স্থাপন করি। প্রাপ্ত বিন্দুগুলো মুক্ত হস্তে রেখা টেনে যুক্ত করি, যা y=f(x) ফাংশনের লেখচিত্র।

উদাহরণ ২২. y=2x ফাংশনের লেখচিত্র অঙ্কন কর, যেখানে, $-3 \le x \le 3$

সমাধান: $-3 \le x \le 3$ ডোমেনের x এর কয়েকটি মানের জন্য y এর সংশ্লিষ্ট মান নির্ণয় করে তালিকা তৈরি করি।

\boldsymbol{x}	-3	-2	-1	0	1	2	3
y	-6	-4	-2	0	2	4	6

ছক কাগজে প্রতি ক্ষুদ্রবর্গের বাহুকে একক ধরে, তালিকার বিন্দুগুলো চিহ্নিত করি ও মুক্তহস্তে যোগ করি। তাহলেই পাওয়া গেল লেখচিত্র।

উদাহরণ ২৩.
$$f(y)=rac{y^3-3y^2+1}{y(1-y)}$$
 হলে দেখাও যে $f\left(rac{1}{y}
ight)=f(1-y)$

সমাধান:
$$f(y) = \frac{y^3 - 3y^2 + 1}{y(1-y)}$$

$$\therefore f\left(\frac{1}{y}\right) = \frac{\left(\frac{1}{y}\right)^3 - 3\left(\frac{1}{y}\right)^2 + 1}{\frac{1}{y}\left(1 - \frac{1}{y}\right)} = \frac{\frac{1 - 3y + y^3}{y^3}}{\frac{y - 1}{y^2}}$$
$$= \frac{1 - 3y + y^3}{y^3} \times \frac{y^2}{y - 1} = \frac{1 - 3y + y^3}{y(y - 1)}$$

আবার,
$$f(1-y) = \frac{(1-y)^3 - 3(1-y)^2 + 1}{(1-y)(1-(1-y))}$$

$$= \frac{1-3y+3y^2-y^3-3(1-2y+y^2)+1}{(1-y)(1-1+y)}$$

$$= \frac{1-3y+3y^2-y^3-3+6y-3y^2+1}{y(1-y)}$$

$$= \frac{-1+3y-y^3}{y(1-y)} = \frac{-(1-3y+y^3)}{-y(y-1)}$$

$$= \frac{1-3y+y^3}{y(y-1)}$$

$$f\left(rac{1}{y}
ight)=f(1-y)$$
 দেখানো হলো।

উদাহরণ ২৪. সার্বিক সেট $U=\{x:x\in N \text{ এবং } x\leq 6\},\ A=\{x:x \text{ মৌলিক সংখ্যা এবং } x\leq 5\},\ B=\{x:x \text{ জোড় সংখ্যা এবং } x\leq 6\}$ এবং $C=A\setminus B$

- ক) A^c নির্ণয় কর
- খ) দেখাও যে, $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$
- গ) দেখাও যে, $(A\cap C) imes B=(A imes B)\cap (C imes B)$

সমাধান:

ক) দেওয়া আছে,
$$U=\{x:x\in N \text{ এবং }x\leq 6\}=\{1,2,3,4,5,6\}$$

$$A=\{x:x\text{ মৌলিক সংখ্যা এবং }x\leq 5\}=\{2,3,5\}$$

$$\therefore A^c=U\setminus A=\{1,2,3,4,5,6\}-\{2,3,5\}=\{1,4,6\}$$

খ) দেওয়া আছে,

$$B=\{x:x$$
 জোড় সংখ্যা এবং $x\leq 6\}=\{2,4,6\}$ $\therefore A\cup B=\{2,3,5\}\cup\{2,4,6\}=\{2,3,4,5,6\}\cdots (1)$ $A\setminus B=\{2,3,5\}-\{2,4,6\}=\{3,5\}$ $B\setminus A=\{2,4,6\}-\{2,3,5\}=\{4,6\}$ $A\cap B=\{2,3,5\}\cap\{2,4,6\}=\{2\}$ $\therefore (A\setminus B)\cup (B\setminus A)\cup (A\cap B)=\{3,5\}\cup\{4,6\}\cup\{2\}=\{2,3,4,5,6\}\cdots (2)$ সুতরাং (1) ও (2) তুলনা করে পাই, $A\cup B=(A\setminus B)\cup (B\setminus A)\cup (A\cap B)$

গ) (2) হতে পাই,

$$C = A \setminus B = \{3, 5\}$$

$$A \cap C = \{2, 3, 5\} \cap \{3, 5\} = \{3, 5\}$$

$$\therefore (A \cap C) \times B = \{3, 5\} \times \{2, 4, 6\}$$

$$= \{(3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)\} \cdot \cdot \cdot \cdot \cdot (3)$$

$$A \times B = \{2, 3, 5\} \times \{2, 4, 6\}$$

$$= \{(2, 2), (2, 4), (2, 6), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)\}$$

$$C \times B = \{3, 5\} \times \{2, 4, 6\}$$

$$= \{(3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)\}$$

 $(A \times B) \cap (C \times B)$

$$= \{(2,2), (2,4), (2,6), (3,2), (3,4), (3,6), (5,2), (5,4), (5,6)\}$$

$$\cap \{(3,2), (3,4), (3,6), (5,2), (5,4), (5,6)\}$$

$$= \{(3,2), (3,4), (3,6), (5,2), (5,4), (5,6)\} \cdot \cdot \cdot \cdot \cdot (4)$$

সুতরাং (3) ও (4) তুলনা করে পাই,

$$(A \cap C) \times B = (A \times B) \cap (C \times B)$$

উদাহরণ ২৫. $A=\{4,5,6,7\},\ B=\{0,1,2,3\}$ এবং $R=\{(x,y):x\in A,y\in A$ এবং $y=x+1\}$

- ক) দেখাও যে, A ও B সেটদ্বয় পরস্পর নিশ্ছেদ সেট।
- খ) P(B) নির্ণয় করে দেখাও যে P(B) এর উপাদান সংখ্যা 2^n কে সমর্থন করে, যেখানে $n,\ B$ এর উপাদান সংখ্যা।
- গ) R অম্বয়টিকে তালিকা পদ্ধতিতে প্রকাশ করে তার ডোমেন নির্ণয় কর।

সমাধান:

ক) দেওয়া আছে,
$$A = \{4, 5, 6, 7\}$$
 এবং $B = \{0, 1, 2, 3\}$

$$A \cap B = \{4, 5, 6, 7\} \cap \{0, 1, 2, 3\} = \emptyset$$

যেহেতু
$$A \cap B = \emptyset$$

সুতরাং, A ও B সেটদ্বয় পরস্পর নিশ্ছেদ সেট।

খ) দেওয়া আছে,

$$B = \{0, 1, 2, 3\}$$

$$P(B) = \{\{0\}, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{0, 2\}, \{0.3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\}, \emptyset\}$$

এখানে B এর উপাদান সংখ্যা 4 এবং এর শক্তি সেটের উপাদান সংখ্যা $2^4=16$

- $\therefore B$ এর উপাদান সংখ্যা n হলে এর শক্তি সেটের উপাদান সংখ্যা হবে 2^n ।
- $\therefore P(B)$ এর উপাদান সংখ্যা 2^n সূত্রকে সমর্থন করে।
- গ) দেওয়া আছে, $R=\{(x,y):x\in A,y\in A$ এবং $y=x+1\}$ এবং $A=\{4,5,6,7\}$ R এর বর্ণিত শর্ত থেকে পাই, y=x+1

এখন, প্রত্যেক $x\in A$ এর জন্য y=x+1 এর মান নির্ণয় করে একটি তালিকা তৈরি করি।

\boldsymbol{x}	4	5	6	7
y	5	6	7	8

যেহেতু $8 \not\in A$, কাজেই $(7,8) \not\in R$ $\therefore R = \{(4,5), (5,6), (6,7)\}$ ডোম $R = \{4,5,6\}$

অনুশীলনী ২.২

· a								
۵.	8 এর গুণনীয়ক সেট বে ক) $\{8,16,24,\cdots\}$ গ) $\{2,4,8\}$	গনটি?	খ) { ঘ) {	1, 2, 4, 8 $1, 2$ }				
ર.	সেট C হতে সেট B এ ক) $R\subset C$		R হলে নিচের	কোনটি সঠিক?		$C \vee P \subset$	D	
೦.	$A = \{1, 2\}, B = \{2, 3\}$			1071 Name of St.	011 299		n	
	ক) 1	킥) 2	গ)	3	ঘ)	8		
8.	নিচের কোনটি $\{x \in N$ প্রকাশ করে?	: 13 < x < 1	17 এবং x মৌ	লিক সংখ্যা} সোঁ	টিকে ড	চালিকা পদ্ধতি	ত.	
	ক) ∅	킥) {0}	গ)	$\{\varnothing\}$	ঘ)	$\{13, 17)\}$		
¢.	$A \cup B = \{a, b, c\} \ \overline{\mathbf{v}}$							
	(i) $A = \{a, b\}, B$	$S = \{a, b, c\}$						
	(ii) $A = \{a, b, c\}, B = \{b, c\}$							
	(iii) $A = \{a, b\}, B$	$S = \{c\}$						
	উপর্যুক্ত তথ্যের আলোকে	নিচের কোনটি	সঠিক?					
	ক) <i>i</i>	খ) ii	50040	i \Im ii	ঘ)	i, ii s iii		
৬.	A ও B দুইটি সসীম সে	নটের জন্য						
	(i) $A \times B = \{(x, $	$y):x\in A$ এ	ৰং $y \in B$ }					
	(ii) $n(A) = a, n(B)$	B)=b হলে n	$(A \times B) = \epsilon$	ab				
	(iii) $A imes B$ এর প্রতি	তটি সদস্য এক	ট ক্রমজোড়।					

গ) ii ও iii

ঘ) i, ii ও iii

উপর্যুক্ত তথ্যের আলোকে নিচের কোনটি সঠিক?

খ) i ও iii

ক) i ও ii