1 For the Case $|\psi\rangle$ is Real

Assume that the state $|\psi\rangle$ is real. Now, we consider the following optimization problem:

minimize
$$x \in \mathbb{C}^{|\mathcal{S}_n|}$$
 $\|x\|_1$ subject to $\sum_{\phi_i \in \mathcal{S}_n} x_i |\phi_i\rangle = |\psi\rangle$

maximize
$$|y\rangle \in \mathbb{C}^{2^n}$$
 $\operatorname{Re}(\langle \psi | y \rangle)$ subject to $|\langle \phi_i | y \rangle| \leq 1$, $\forall \phi_i \in \mathcal{S}_n$

Let \mathcal{T}_n be the collection of the states in \mathcal{S}_n with real coefficients. This means \mathcal{T}_n is the collection of the states with $\mathbf{c} = 0$ and $|\mathcal{T}_n| = |\mathcal{S}_n|/(2^n)$. Now, we consider the following restricted optimization problem:

$$\begin{split} & \underset{x \in \mathbb{R}^{|\mathcal{T}_n|}}{\text{minimize}} & & \|x\|_1 \\ & \text{subject to} & & \sum_{\phi_j \in \mathcal{T}_n} x_j \, |\phi_j\rangle = |\psi\rangle \end{split}$$

$$\begin{array}{ll} \text{maximize} & \langle \psi | y \rangle \\ | y \rangle \in \mathbb{R}^{2^n} & \\ \text{subject to} & |\langle \phi_i | y \rangle| \leq 1, \quad \forall \phi_i \in \mathcal{T}_n \end{array}$$

Let x^* and y^* be the optimal solutions of the restricted primal and dual problems, respectively. These vectors always exist since \mathcal{T}_n forms a over complete basis. We now show that the x^*, y^* are optimal not only for the restricted problems but also for the original problems.

Lemma 1. Suppose $|y\rangle$ is real and satisfies $|\langle \phi_j | y \rangle| \leq 1$ for all $\phi_j \in \mathcal{T}_n$. Then, $|y\rangle$ satisfies $|\langle \phi_i | y \rangle| \leq 1$ for all $\phi_i \in \mathcal{S}_n$.

証明 We check the all states $|\phi_i\rangle \in \mathcal{S}_n$ respectively. It is trivial for the case k=0 since the corresponding columns both exist in \mathcal{S}_n and \mathcal{T}_n . We set $|\phi_i\rangle = \frac{1}{2^{k/2}} \sum_{x=0}^{2^k-1} (-1)^{x^\top Q x} i^{c^\top x} |Rx+t\rangle$ with k>0 and $\langle \phi_i|y\rangle = \alpha + i\beta(\alpha,\beta \in \mathbb{R})$. The following two states

$$|\phi_{+}\rangle \coloneqq \frac{1}{2^{k/2}} \sum_{x=0}^{2^{k}-1} (-1)^{x^{\top}Qx} |Rx+t\rangle, \quad |\phi_{-}\rangle \coloneqq \frac{1}{2^{k/2}} \sum_{x=0}^{2^{k}-1} (-1)^{x^{\top}Qx+c^{\top}x} |Rx+t\rangle$$

are in \mathcal{T}_n , and satisfy $\langle \phi_+|y\rangle = \alpha + \beta$, $\langle \phi_-|y\rangle = \alpha - \beta$. From the assumption, we have

$$|\langle \phi_i | y \rangle| = \sqrt{\alpha^2 + \beta^2} \leq |\alpha| + |\beta| = \max\{|\alpha + \beta|, |\alpha - \beta|\} \leq 1,$$

which completes the proof.

Theorem 1 The optimal solutions for the restricted problems x^* and y^* are also optimal for the original problems.

証明 Let OPT be the optimal value for the original primal problem. Since x^* can be a feasible solution for the original primal problem, it is clear that OPT $\leq \|x^*\|_1$. By the strong duality theorem, OPT is also the optimal value for the original dual problem. From the lemma 1, we can see that y^* is a feasible solution for the original dual problem and OPT $\geq \langle \psi | y^* \rangle$. Again, by applying the strong duality theorem to the restricted problems, we have $\|x^*\|_1 = \langle \psi | y^* \rangle$, which means that OPT $= \|x^*\|_1 = \langle \psi | y^* \rangle$. Therefore, x^* and y^* are also optimal for the original problems.