The reachability problem for Vector Addition Systems with one zero-test

Rémi Bonnet

LSV, CNRS, ENS Cachan

February 24, 2012

Vector Addition System:

Initial State:

2	1	1	0	1	0
					-

Addition Vectors:

-1	-1	0	1	0	0
1	1	1	-1	-1	0
0	0	-1	0	1	1

2	1	1	0	1	0

Vector Addition System:

Initial State:

Addition Vectors:

-1	-1	0	1	0	0
1	1	1	-1	-1	0
0	0	-1	0	1	1

Vector Addition System:

Initial State:

Addition Vectors:

-1	-1	0	1	0	0
1	1	1	-1	-1	0
0	0	-1	0	1	1

2	1	2	0	0	0

Vector Addition System:

Initial State:

Addition Vectors:

-1	-1	0	1	0	0
1	1	1	-1	-1	0
0	0	-1	0	1	1

Vector Addition System:

Initial State:

2 1 1 0 1 0

Addition Vectors:

-1	-1	0	1	0	0
1	1	1	-1	-1	0
0	0	-1	0	1	1

Vector Addition System:

Initial State:

	2	1	1	0	1	0
--	---	---	---	---	---	---

Addition Vectors:

-1	-1	0	1	0	0
1	1	1	-1	-1	0
0	0	-1	0	1	1

2	1	2	0	0	1

Vector Addition System:

Initial State:

Addition Vectors:

-1	-1	0	1	0	0
1	1	1	-1	-1	0
0	0	-1	0	1	1

2	1	1	0	1	2

Definitions

Definition: VAS₀

A Vector Addition System with one zero-test is a tuple $\langle A_z, \delta, a_z \rangle$ where:

- $A_z = A \cup \{a_z\}$ is the set of transition labels
- δ a function from A_{τ} to \mathbb{Z}^d .
- a_z is the special zero-test transition.
- For $a \in A_z$, $\stackrel{a}{\rightarrow}$ is defined by:

$$x \xrightarrow{a} y \iff y = x + \delta(a)$$
 $a \neq a_z$
 $x \xrightarrow{a_z} y \iff \begin{cases} y = x + \delta(a_z) \\ x(1) = 0 \end{cases}$

Reachability

Notation:

$$x \xrightarrow{L} y \iff \exists u \in L, x \xrightarrow{u} y$$

The reachability problem

Given a VAS₀, an initial vector $x \in \mathbb{N}^d$ and a final vector $y \in \mathbb{N}^d$, do we have $x \xrightarrow{A_z^*} y$?

A partial bibliography of the reachability problem

- [Mayr '81] An Algorithm for the General Petri Net Reachability Problem: An algorithm for decidability of reachability for VAS.
- [Kosaraju '82] Decidability of Reachability in Vector Addition Systems: A similar algorithm for decidability of reachability for VAS.
- [Reinhardt '08] Reachability in Petri Nets with Inhibitor Arcs: First proof of decidability of reachability for VAS₀.
- [Leroux '09] The General Vector Addition System Reachability Problem by Presburger Inductive Invariants: Another take of reachability for VAS, introducing new tools, but still dependant of earlier work.
- [Leroux '11] The Vector Addition System Reachability Problem: A new proof of reachability for VAS, independent from earlier proofs.
- [B. '11] Reachability for Vector Addition Systems with one zero-test. A new proof of reachability for VAS₀, based on the principles introduced by Leroux.

Reachability

The reachability problem

Given a VAS₀, an initial vector $x \in \mathbb{N}^d$ and a final vector $y \in \mathbb{N}^d$, do we have $x \xrightarrow{A_z^*} y$?

Example:

x:

2	1	1	0	1	0

 $\delta: a_2 \mapsto$ $a_3 \mapsto$

-1	-1	0	1	0	0
1	1	1	-1	-1	0
0	0	-1	0	1	1

у:

Reachability

The reachability problem

Given a VAS₀, an initial vector $x \in \mathbb{N}^d$ and a final vector $y \in \mathbb{N}^d$, do we have $x \xrightarrow{A_z^*} y$?

Example:

x:	2	1	1	0	1	0

$$\delta: \begin{array}{c} a_1 \mapsto \\ a_2 \mapsto \\ a_3 \mapsto \end{array}$$

ĺ	-1	-1	0	1	0	0
ĺ	1	1	1	-1	-1	0
ĺ	0	0	-1	0	1	1

у:

Not Reachable!

$$v[1] + v[2] + v[3] + 2v[4] + v[5] = 5$$
 is an invariant!

Witnesses of reachability and non-reachability

- If an instance of the reachability problem has a positive answer, there is a witness of reachability: the sequence of vectors going from the initial vector the final one.
- If an instance of the reachability problem has a negative answer, is there a "nice" witness of non-reachability?

Witnesses of reachability and non-reachability

- If an instance of the reachability problem has a positive answer, there is a witness of reachability: the sequence of vectors going from the initial vector the final one.
- If an instance of the reachability problem has a negative answer, is there a "nice" witness of non-reachability?

Theorem [Leroux '11]

If S is a VAS such that $v' \in \mathbb{N}^d$ is not reachable from $v \in \mathbb{N}^d$, there is a Presburger invariant (for S) X such that $v \in X$ and $v' \notin X$.

Witnesses of reachability and non-reachability

- If an instance of the reachability problem has a positive answer, there is a witness of reachability: the sequence of vectors going from the initial vector the final one.
- If an instance of the reachability problem has a negative answer, is there a "nice" witness of non-reachability?

Theorem [Leroux '11]

If S is a VAS such that $v' \in \mathbb{N}^d$ is not reachable from $v \in \mathbb{N}^d$, there is a Presburger invariant (for S) X such that $v \in X$ and $v' \notin X$.

Our claim

This is also true for VAS₀.

Showing the existence of an invariant

Theorem [Leroux' 11]

Let R be a relation such that R^* is $Petri^a$. If there exists x and y such that $(x, y) \notin R^*$, then there exists a semilinear set X that is an invariant for R with $x \in X$ and $y \notin X$.

^aTo be defined in next slides

Definition: Polytope sets

Definition: Polytope sets

Structure of the proof

Structure of the proof

Properties of polytope sets

Definition: Linerization

Let $P \subseteq \mathbb{Z}^d$ be a periodic set.

$$\mathit{lin}(P) = (P - P) \cap \overline{\mathbb{Q}_{\geq 0}P}$$

This is a finitely generated set.

There exists a notion of dimension for polytope periodic sets such that:

Theorem [Leroux '11]

Let $b_1, b_2 \in \mathbb{Z}^d$ and let P_1, P_2 be two polytope periodic sets such that the intersection $(b_1 + P_1) \cap (b_2 + P_2)$ is empty. The intersection $X = (b_1 + lin(P_1)) \cap (b_2 + lin(P_2))$ satisfies:

$$dim(X) < max(b_1 + dim(P_1), b_2 + dim(P_2))$$

Structure of the proof

Existence of a Presburger invariant

Theorem [Leroux '11]

Let R be a relation such that R* is Petri. If there exists x and y such that $(x, y) \notin R^*$, then there exists a semilinear set X that is an invariant for R with $x \in X$ and $y \notin X$.

Proof:

A couple (X, Y) of Presburger sets is a *separator* if $(X \times Y) \cap R^*$ is empty.

We are interested in minimizing the "gap" $D(X, Y) = \mathbb{Z}^d \setminus (X \cup Y)$. If $D(X, Y) = \emptyset$, then X is a Presburger invariant.

ullet $D = \mathbb{Z}^d \setminus (X \cup Y)$ (the original "gap")

- $D = \mathbb{Z}^d \setminus (X \cup Y)$ (the original "gap")
- $S = lin(post(X) \cap D)$ (a Presburger set)

- $D = \mathbb{Z}^d \setminus (X \cup Y)$ (the original "gap")
- $S = lin(post(X) \cap D)$ (a Presburger set)
- $Y' = Y \cup (D \setminus S)$ (hence $post(X) \cap Y' = \emptyset$)

- $D = \mathbb{Z}^d \setminus (X \cup Y)$ (the original "gap")
- $S = lin(post(X) \cap D)$ (a Presburger set)
- $Y' = Y \cup (D \setminus S)$ (hence $post(X) \cap Y' = \emptyset$)
- $T = lin(pre(Y') \cap D)$ (the other direction)

- $D = \mathbb{Z}^d \setminus (X \cup Y)$ (the original "gap")
- $S = lin(post(X) \cap D)$ (a Presburger set)
- $Y' = Y \cup (D \setminus S)$ (hence $post(X) \cap Y' = \emptyset$)
- $T = lin(pre(Y') \cap D)$ (the other direction)
- \bullet $X' = X \cup (D \setminus T) (pre(Y') \cap X' = \emptyset)$

- $D = \mathbb{Z}^d \setminus (X \cup Y)$ (the original "gap")
- $S = lin(post(X) \cap D)$ (a Presburger set)
- $Y' = Y \cup (D \setminus S)$ (hence $post(X) \cap Y' = \emptyset$)
- $T = lin(pre(Y') \cap D)$ (the other direction)
- \bullet $X' = X \cup (D \setminus T) (pre(Y') \cap X' = \emptyset)$
- $D' = \mathbb{Z}^d \setminus (X' \cup Y')$ is a separator.

- $D = \mathbb{Z}^d \setminus (X \cup Y)$ (the original "gap")
- $S = lin(post(X) \cap D)$ (a Presburger set)
- $Y' = Y \cup (D \setminus S)$ (hence $post(X) \cap Y' = \emptyset$)
- $T = lin(pre(Y') \cap D)$ (the other direction)
- \bullet $X' = X \cup (D \setminus T) (pre(Y') \cap X' = \emptyset)$
- $D' = \mathbb{Z}^d \setminus (X' \cup Y')$ is a separator.

Structure of the proof

$$\bullet \rightarrow_m = \{(x,y) \in \mathbb{N}^d \times \mathbb{N}^d \mid m+x \rightarrow m+y\}$$

Definition [Leroux' 11]

Let $\rho = \left\lceil m_0 \xrightarrow{a_1} m_1 \cdots \xrightarrow{a_n} m_n \right\rceil$ be a run without a_z . We have:

$$\rightarrow_{\rho} = \rightarrow_{m_0} \circ \rightarrow_{m_1} \circ \cdots \circ \rightarrow_{m_n}$$

Production relations have nice properties:

- They contain the identity. $m+x \rightarrow m+x$
- They are periodic. $\begin{cases} m+x \to m+x' \\ m+y \to m+y' \end{cases} \implies m+x+y \to m+x+y' \to m+x'+y'$
- They have monotonic behavior.

$$\left\{\begin{array}{ll} m \leq m' \\ (x,y) \in \to_{m'} \end{array}\right. \implies (x + (m' - m), y + (m' - m)) \in \to_m$$

(To be shown) They are polytopes.

$$m_1 + (0,0) \xrightarrow{a_1} m_2 + (0,0) \xrightarrow{a_2} m_3 + (0,0)$$

$$m_1 \rightarrow m_1 + (0,2) \xrightarrow{a_1} m_2 + (0,2) \rightarrow m_2 + (2,8) \xrightarrow{a_2} m_3 + (2,8) \rightarrow m_3 + (0,4)$$

$$m_1 \to m_1 + (0,12) \xrightarrow{a_1} m_2 + (0,12) \to m_2 + (15,72) \xrightarrow{a_2} m_3 + (15,72)$$

- $\bullet \to_m = \{(x, y) \in \mathbb{N}^d \times \mathbb{N}^d \mid m + x \xrightarrow{A^*} m + y\}$
- $\bullet \sim_m = \{(x,y) \in \mathbb{N}_0^d \times \mathbb{N}_0^d \mid m+x \xrightarrow{A_z^*} m+y\}$

We split a run $\mu = \left\lceil m_0 \stackrel{a_1}{\longrightarrow} ... \stackrel{a_n}{\longrightarrow} m_n \right\rceil$ of a VAS₀ in sequences without a₂:

$$\mu = [\rho_0] \xrightarrow{a_z} [\rho_1] \xrightarrow{a_z} \cdots \xrightarrow{a_z} [\rho_p]$$

Definition

Assuming μ is decomposed as above, we define the relation \rightarrow_{μ} by:

$$\rightarrow_{\mu} = \rightarrow_{\rho_0} \circ \leadsto_{tgt_{\rho_0}} \circ \rightarrow_{\rho_1} \cdots \circ \leadsto_{tgt_{\rho_{p-1}}} \circ \rightarrow_{\rho_p}$$

Soundness of production relations

A production relation represents the possible "additions" to a run.

Proposition

$$(m_0, m_p) + \rightarrow_{m_0} \circ \rightarrow_{m_1} \circ \cdots \rightarrow_{m_i} \circ \sim_{m_i} \circ \rightarrow_{m_{i+1}} \circ \cdots \rightarrow_{m_{p-1}} \circ \rightarrow_{m_p} \subseteq \xrightarrow{A_z^*}$$

Ideas behind the proof:

- Loops can be composed.
- $\leadsto_m \in \mathbb{N}_0^d \times \mathbb{N}_0^d$, hence a_z can be fired after such a loop.

Well-orders

Definition: Well-order

X is well-ordered (by <) iff:

- < is a partial order on X.
- It admits no infinite strictly decreasing sequence.
- It admits no infinite set of pairwise incomparable elements.

Word embedding and Higman's lemma

Definition: Word embedding

Let \leq be an ordering on X. The \leq^{emb} (word embedding) ordering is defined on X^* by $(a_i, b_i \in X)$:

$$a_1...a_n \preceq^{emb} b_1...b_m \iff \exists f : \{1, ..., n\} \mapsto \{1, ..., m\}, \text{ strictly increasing}, \ \forall i, \ a_i \preceq b_{f(i)}$$

Higman's lemma

If X is well-ordered by \leq , then X^* is well-ordered by \prec^{emb} .

- If $\rho = m_0 \xrightarrow{a_1} m_1 \dots \xrightarrow{a_p} m_p$ and $\rho' = m'_0 \xrightarrow{a'_1} m'_1 \dots \xrightarrow{a'_q} m'_q$ are runs without zero-tests, we have $\rho \triangleleft \rho'$ if:
 - $m_0 \leq m_0'$ and $m_p \leq m_q'$
- For $\mu = [\rho_0] \xrightarrow{a_z} [\rho_1] \dots \xrightarrow{a_z} [\rho_p]$ and $\mu' = [\rho'_0] \xrightarrow{a_z} [\rho'_1] \xrightarrow{a_z} \dots \xrightarrow{a_z} [\rho'_q]$ runs (with ρ_i, ρ_i' runs without zero-tests), we have $\mu \triangleleft \mu'$ if:
 - $\rho_0 \leq \rho_0'$ and $\rho_p \leq \rho_0'$
 - $\bullet \prod_{1 < i < p} \rho_i \leq^{\text{emb}} \prod_{1 < i < q} \rho'_i$

Proposition

$$(\mathit{src}_{\mu'}, \mathit{tgt}_{\mu'}) + \rightarrow_{\mu'} \subseteq (\mathit{src}_{\mu}, \mathit{tgt}_{\mu}) + \rightarrow_{\mu}$$

Proposition

$$(\mathit{src}_{\mu'}, \mathit{tgt}_{\mu'}) + \rightarrow_{\mu'} \subseteq (\mathit{src}_{\mu}, \mathit{tgt}_{\mu}) + \rightarrow_{\mu}$$

$$(m_0', m_0') + \rightarrow_{m_0'} \subseteq (m_0, m_0) + \rightarrow_{m_0}$$

Proposition

$$(\mathit{src}_{\mu'}, \mathit{tgt}_{\mu'}) + \rightarrow_{\mu'} \subseteq (\mathit{src}_{\mu}, \mathit{tgt}_{\mu}) + \rightarrow_{\mu}$$

Proposition

$$(\mathit{src}_{\mu'}, \mathit{tgt}_{\mu'}) + \rightarrow_{\mu'} \subseteq (\mathit{src}_{\mu}, \mathit{tgt}_{\mu}) + \rightarrow_{\mu}$$

Proposition

$$(\mathit{src}_{\mu'}, \mathit{tgt}_{\mu'}) + \rightarrow_{\mu'} \subseteq (\mathit{src}_{\mu}, \mathit{tgt}_{\mu}) + \rightarrow_{\mu}$$

An approximation of the production relation \rightsquigarrow_m

- $Q = \{x \in \mathbb{N}_0^d \mid \exists (r,s) \in V, \ m+r \xrightarrow{A_z^*} x \xrightarrow{A_z^*} m+s\}$
- $I = \{i \in \{1, ..., d\} \mid \{q(i) \mid q \in Q\} \text{ infinite}\}$

An approximation of the production relation \leadsto_m

- $Q = \{x \in \mathbb{N}_0^d \mid \exists (r,s) \in V, \ m+r \xrightarrow{A_z^*} x \xrightarrow{A_z^*} m+s\}$
- $I = \{i \in \{1, ..., d\} \mid \{q(i) \mid q \in Q\} \text{ infinite}\}$

We forget about the indices in *I* for the transition relation.

An approximation of the production relation \rightsquigarrow_m

An approximation of the production relation \rightsquigarrow_m

• $\rightsquigarrow_{(0,1,3,.)}$ is approximated by cycles on $(0,1,3,\omega)$.

An approximation of the production relation \leadsto_m

- $\leadsto_{(0,1,3,..)}$ is approximated by cycles on $(0,1,3,\omega)$.
- Using a transition $(0,1,3,\omega) \to (0,2,2,\omega)$ can add any $\delta(u)$ where $(0,1,3,\omega) \xrightarrow{u} (0,2,2,\omega)$.

•
$$Q = \{x \in \mathbb{N}_0^d \mid \exists (r,s) \in V, \ m+r \xrightarrow{A_z^*} x \xrightarrow{A_z^*} m+s\}$$

• $I = \{i \in \{1, ..., d\} \mid \{q(i) \mid q \in Q\} \text{ infinite}\}$

$$m+r \xrightarrow{u} x \xrightarrow{v} m+s$$

 $m+r' \xrightarrow{u'} x+\delta \xrightarrow{v'} m+s'$

•
$$Q = \{x \in \mathbb{N}_0^d \mid \exists (r,s) \in V, \ m+r \xrightarrow{A_z^*} x \xrightarrow{A_z^*} m+s\}$$

• $I = \{i \in \{1, ..., d\} \mid \{q(i) \mid q \in Q\} \text{ infinite}\}$

$$m+r \xrightarrow{u} x \xrightarrow{v} m+s$$

 $m+r' \xrightarrow{u'} x+\delta \xrightarrow{v'} m+s'$

$$m+r+r'$$

$$Q = \{x \in \mathbb{N}_0^d \mid \exists (r,s) \in V, \ m+r \xrightarrow{A_z^*} x \xrightarrow{A_z^*} m+s\}$$

• $I = \{i \in \{1, ..., d\} \mid \{q(i) \mid q \in Q\} \text{ infinite}\}$

$$m+r \xrightarrow{u} x \xrightarrow{v} m+s$$

$$m+r' \xrightarrow{u'} x+\delta \xrightarrow{v'} m+s'$$

$$m+r+r' \xrightarrow{u'} r+x+\delta$$

$$Q = \{x \in \mathbb{N}_0^d \mid \exists (r,s) \in V, \ m+r \xrightarrow{A_z^*} x \xrightarrow{A_z^*} m+s\}$$

•
$$I = \{i \in \{1, ..., d\} \mid \{q(i) \mid q \in Q\} \text{ infinite}\}$$

$$m+r \xrightarrow{u} x \xrightarrow{v} m+s$$

$$m+r' \xrightarrow{u'} x+\delta \xrightarrow{v'} m+s'$$

$$m+r+r' \xrightarrow{u'} r+x+\delta \xrightarrow{v} m+r+s+\delta$$

$$Q = \{x \in \mathbb{N}_0^d \mid \exists (r,s) \in V, \ m+r \xrightarrow{A_z^*} x \xrightarrow{A_z^*} m+s\}$$

• $I = \{i \in \{1, ..., d\} \mid \{q(i) \mid q \in Q\} \text{ infinite}\}$

$$m+r \xrightarrow{\qquad \qquad } x \xrightarrow{\qquad \qquad } m+s$$

$$m+r' \xrightarrow{\qquad \qquad } x+\delta \xrightarrow{\qquad \qquad } m+s'$$

$$m+r+r' \xrightarrow{\qquad \qquad } r+x+\delta \xrightarrow{\qquad \qquad } m+r+s+\delta \xrightarrow{\qquad \qquad } x+s+\delta$$

$$Q = \{x \in \mathbb{N}_0^d \mid \exists (r,s) \in V, \ m+r \xrightarrow{A_z^*} x \xrightarrow{A_z^*} m+s\}$$

•
$$I = \{i \in \{1, ..., d\} \mid \{q(i) \mid q \in Q\} \text{ infinite}\}$$

$$m+r \xrightarrow{u} x \xrightarrow{v} m+s$$

$$m+r' \xrightarrow{u'} x+\delta \xrightarrow{v} m+s'$$

$$m+r+r' \xrightarrow{u'} r+x+\delta \xrightarrow{v} m+r+s+\delta \xrightarrow{u} x+s+\delta \xrightarrow{v'} m+s+s'$$

We have shown we can find δ , with $\delta(i) > 0$ for $i \in I$ such that:

$$m+r \rightarrow m+\delta \rightarrow m+s$$

Assume (r', s') in the approximated relation. We have a run u such that:

$$m + r' + \omega' \xrightarrow{u} m + s' + \omega'$$

We have shown we can find δ , with $\delta(i) > 0$ for $i \in I$ such that:

$$m + r \rightarrow m + \delta \rightarrow m + s$$

Assume (r', s') in the approximated relation. We have a run u such that there exists $p \in \mathbb{N}$:

$$m + r' + p * \delta \xrightarrow{u} m + s' + p * \delta$$

We have shown we can find δ , with $\delta(i) > 0$ for $i \in I$ such that:

$$m + r \rightarrow m + \delta \rightarrow m + s$$

Assume (r', s') in the approximated relation. We have a run u such that there exists $p \in \mathbb{N}$:

$$m + r' + p * \delta \xrightarrow{u} m + s' + p * \delta$$

By iterating the sequence *u n* times:

$$m + n * r' + p * \delta \xrightarrow{u^n} m + n * s' + p * \delta$$

We have shown we can find δ , with $\delta(i) > 0$ for $i \in I$ such that:

$$m+r \rightarrow m+\delta \rightarrow m+s$$

Assume (r', s') in the approximated relation. We have a run u such that there exists $p \in \mathbb{N}$:

$$m + r' + p * \delta \xrightarrow{u} m + s' + p * \delta$$

By iterating the sequence *u n* times:

$$m+p*r+n*r' \rightarrow m+n*r'+p*\delta \xrightarrow{u^n} m+n*s'+p*\delta \rightarrow m+p*s+n*s'$$

We have shown we can find δ , with $\delta(i) > 0$ for $i \in I$ such that:

$$m+r \rightarrow m+\delta \rightarrow m+s$$

Assume (r', s') in the approximated relation. We have a run u such that there exists $p \in \mathbb{N}$:

$$m + r' + p * \delta \xrightarrow{u} m + s' + p * \delta$$

By iterating the sequence *u n* times:

$$m+p*r+n*r' \rightarrow m+n*r'+p*\delta \xrightarrow{u^n} m+n*s'+p*\delta \rightarrow m+p*s+n*s'$$

$$\exists p \in \mathbb{N}, \forall n \in N, (p * r + n * r', p * s + n * s') \in \rightarrow_m$$

Structure of the proof

Overview of decidable problems on VAS₀

	VAS	VAS ₀
Boundedness	decidable (EXPSPACE)	decidable
	[Karp and Miller '69, Rackoff '78]	[Finkel and Sangnier '10]
Coverability	decidable (EXPSPACE)	decidable
	[Karp and Miller '69, Rackoff '78]	[Abdulla and Mayr '09]
Reachability	decidable	decidable
	[Mayr '81, Kosaraju '82, Leroux '11]	[Reinhardt '08, B. '11]
Cover	effective	effective
	[Karp and Miller '69]	[B., Finkel, Leroux, Zeitoun '10]
LTL on actions	decidable (EXPSPACE)	decidable
	[Esperza '94, Habermehl '97]	[B. '11]
LTL on states, CTL	undecidable	undecidable
	[Esperza '94]	unuedidable

Conclusion

Reachability in VAS₀

- We proposed an alternative proof for the decidability of reachability for VAS₀.
- It shows the existence of witnesses of non-reachability as Presburger invariants.
- This proof is an extension of the work by Leroux on VAS.
- The main change from the proof of Leroux is the use of a more complex production relations on runs, and a new well-ordering on them.

Decidability of problems in VAS₀

- It seems all problems that are decidable in VAS are decidable for VAS₀.
- No results on complexity.