EVM · Gestión del Valor Ganado

[EVM] EARNED-VALUE-MANAGEMENT · GESTIÓN DEL VALOR GANADO

Método utilizado para conocer el estado del proyecto. Integra alcance, cronograma y costos para medir el rendimiento y el avance del proyecto en forma objetiva.

Variables Principales: PV, EV y AC

[PV] PLANNED VALUE VALOR PLANEADO

Lo que dijimos que costaría aquello que dijimos que íbamos a hacer.

Costo presupuestado para el proyecto acumulado hasta el momento de la evaluación.

[EV] EARNED ¥ALUE VALOR GANADO

Lo que dijimos que costaría aquello que <u>hicimos</u>.

Valor de lo realizado al momento de la evaluación expresado en términos de lo presupuestado.

[AC] ACTUAL COST COSTO REAL

Lo que realmente costó aquello que hicimos.

Costos incurridos para la ejecución del proyecto hasta el momento de la evaluación.

- Al inicio del proyecto, PV = 0.
- Al finalizar el proyecto, PV equivale al presupuesto del proyecto.

Estado del Proyecto (SV, CV, SPI y CPI)

<u>Avance</u> (SV, SPI) según <u>cronograma</u>:

[SV] SCHEDULE VARIANCE

VARIACIÓN DE CRONOGRAMA

$$SV = EV - PV$$

[SPI] SCHEDULE PERFORMANCE INDEX ÍNDICE DE PERFORMANCE DE CRONOGRAMA

$$SPI = \frac{EV}{PV}, \quad 0 < SPI < 1$$

Si $SV > 0 \Leftrightarrow SPI > 1$, entonces:

- estamos adelantados respecto del cronograma.
- hicimos más de lo esperado.

Si $SV = 0 \Leftrightarrow SPI = 1$, entonces:

- estamos al día respecto del cronograma.
- hicimos exactamente lo esperado.

Si $SV < 0 \Leftrightarrow 0 < SPI < 1$, entonces:

- estamos atrasados respecto del cronograma.
- hicimos menos de lo esperado.

Rendimiento y Costo (CV, CPI) según presupuesto:

[CV] COST-VARIANCE

VARIACIÓN DE COSTOS

$$CV = EV - AC$$

[CPI] COST₽ERFORMANCE INDEX

ÍNDICE DE PERFORMANCE DE COSTOS

$$CPI = \frac{EV}{AC}, \quad 0 < CPI < 1$$

Si $CV > 0 \Leftrightarrow CPI > 1$, entonces:

- estamos por debajo del presupuesto.
- estamos gastando menos de lo esperado.

Si $CV = 0 \Leftrightarrow CPI = 1$, entonces:

- estamos dentro del presupuesto.
- estamos gastando justo lo esperado.

Si $CV < 0 \Leftrightarrow 0 < CPI < 1$, entonces:

- estamos por encima del presupuesto.
- estamos gastando más de lo esperado.

Proyecciones del Proyecto (BAC, EAC, VAC, ETC, TCPI)

[BAC] BUDGET AT COMPLETION

PRESUPUESTO HASTA LA CONCLUSIÓN

• Costo presupuestado inicialmente para todo el proyecto.

[EAC] ESTIMATE AT COMPLETION

ESTIMADO A LA CONCLUSIÓN

- Costo total pronosticado al final del proyecto.
- Reestimación del costo del proyecto durante su ejecución, la cual se espera que resulte más certera que la estimación inicial [BAC].

El valor del **EAC** depende de <u>la performance de costos</u> (**CPI**) observada hasta el momento:

1. <u>Desempeño Típico</u> → la **CPI** observada hasta el momento <u>se mantendrá igual en el futuro</u>, es decir, si en el futuro la CPI observada seguirá siendo la misma, entonces:

$$EAC = \frac{BAC}{CPI}$$

2. <u>Desempeño Atípico</u> → la **CPI** observada hasta el momento ha sido inusual y, a la vez, <u>en el</u> <u>futuro se corresponderá con lo planificado</u>, entonces:

$$EAC = AC + (BAC - EV)$$

3. <u>Cambio a Desempeño Diferente</u> → la **CPI** observada hasta el momento <u>no se mantendrá en</u> el futuro, es decir, habrá un **CPI nuevo** (pudiendo o no ser lo planificado), entonces:

$$EAC = AC + \frac{BAC - EV}{CPI_{NUEVO}}$$

Si el CPI nuevo debe permitir concluir el | Si el CPI nuevo estará afectado por la SPI proyecto dentro del **BAC**, entonces:

$$CPI_{NUEVO} = \frac{BAC - EV}{BAC - AC}$$

$$\overline{EAC = BAC}$$

observada, entonces:

$$\begin{aligned} \text{CPI}_{\text{NUEVO}} &= \text{CPI} \cdot \text{SPI} \\ \\ \text{EAC} &= \text{AC} + \frac{\text{BAC} - \text{EV}}{\text{CPI} \cdot \text{SPI}} \end{aligned}$$

4. Nueva Estimación Detallada → si se ha producido una importante variación y el plan inicial resulta inviable, entonces se necesita hacer una nueva estimación detallada para lo que resta del proyecto:

$$EAC = AC + Nueva Estimación$$

[ETC] ESTIMATE **₹**O**€**OMPLETE

ESTIMADO PARA COMPLETAR

• Costo necesario estimado para terminar el proyecto (el trabajo pendiente).

$$ETC = EAC - AC$$

[VAC] VARIANCE AT COMPLETION

VARIACIÓN A LA CONCLUSIÓN

- Variación final entre lo planificado originalmente (BAC) y la nueva estimación (EAC).
- Desvío en el costo total del proyecto.

$$VAC = BAC - EAC$$

[TCPI] TO COMPLETE PERFORMANCE INDEX

ÍNDICE DE PERFORMANCE DE COSTOS REQUERIDO PARA FINALIZAR (DENTRO DE BAC o EAC)

- Relación entre el costo para terminar el trabajo pendiente y el presupuesto restante.
- Representa la eficiencia de costos que es necesaria mantener para terminar el proyecto a tiempo.
- Representa también la dificultad para completar un proyecto:
 - \circ Si TCPI > 1, el proyecto será más difícil de completar.
 - \circ Si TCPI < 1, el proyecto será más fácil de completar.

Hay dos maneras de calcular el TCPI:

• Si se quiere alcanzar el presupuesto original del proyecto (el **BAC**), entonces:

$$TCPI = \frac{BAC - EV}{BAC - AC}$$

• Si el presupuesto original del proyecto (el **BAC**) cambió y ahora hay un presupuesto nuevo, el cual es distinto al **BAC**, entonces:

$$TCPI = \frac{BAC - EV}{EAC - AC}$$

Enfoque EVM Ágil

- Se toman marcos temporales reducidos: no deben ser muy largos ni muy cortos.
- La incertidumbre avanza conforme pasa el tiempo, por lo que no tiene sentido hacer un plan hasta el final del proyecto.
- El tamaño del *backlog* del proyecto se mide en valores relativos → el tamaño estimado para el proyecto será la suma de todos los ítems agrupados por *sprints*.
 - o Al proyecto se lo va entregando en *sprints*, cada uno con cierta cantidad de puntos.
 - Para hacer la conversión costos-puntos, se divide el presupuesto entre la cantidad de puntos totales → así se determina cuánto cuesta cada punto.
 - Conociendo cuánto cuesta 1 <u>release</u> y conociendo cuántos puntos va a entregar, puedo determinar cuánto cuesta 1 punto (según el presupuesto).
 - Sabiendo cuánto cuesta 1 punto, puedo determinar cuánto cuesta cualquier cantidad de puntos.
 - La relación entre punto y costo debe ser constante para todos los ítems del backlog incluidos en el <u>release</u>.

EVM Tradicional vs EVM Ágil

EVM TRADICIONAL		EVM ÁGIL
\$.	Unidad de Medida	Puntos y \$.
Presupuesto del proyecto.	ВАС	Presupuesto del release.
PV para cada período del proyecto.	Baseline (Línea de Base)	Cantidad de puntos (y su equivalente presupuestario) que deben completarse en cada sprint.
Costo presupuestario del trabajo que espera realizarse para un momento del proyecto.	PV	Cantidad de puntos (y su equivalente presupuestario) que deben completarse al finalizar un sprint.
Costo presupuestario del trabajo realizado para un momento del proyecto.	EV	Cantidad de puntos (y su equivalente presupuestario) que realmente se completaron al finalizar un sprint.
Costo real del trabajo realizado acumulado para un momento del proyecto.	AC	Costo real acumulado de los puntos completados al finalizar un sprint.
Tasa de avance lograda en comparación con el cronograma original. $\overline{\mathrm{SPI} = \frac{\mathrm{EV}}{\mathrm{PV}}}$	SPI	Tasa de avance lograda en comparación con el cronograma original. $\mathrm{SPI} = \frac{\mathrm{Cant.PuntosEntregados}}{\mathrm{Cant.PlaneadadePuntos}}$
Cuánto se obtiene por unidad de costo comparado con el estimado originalmente. $\overline{\mathrm{CPI} = \frac{\mathrm{EV}}{\mathrm{AC}}}$	СРІ	$Cu\'{a}nto se obtiene \\ por unidad de costo \\ comparado con \\ el estimado originalmente. \\ \hline CPI = \frac{Costo\ Planeado\ por\ Punto}{Costo\ Real\ por\ Punto}$