Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA4802 Ecuaciones en Derivadas Parciales 20 de Noviembre de 2024

Auxiliar 13

Profesores: Rayssa Cajú y Claudio Muñoz **Auxiliares** Benjamin Bórquez, Vicente Salinas y Jessica Trespalacios

P1. Sea $u \in H^1(\mathbb{R}^n)$ con soporte compacto una solución débil del problema

$$u + c(u) = f$$
 en \mathbb{R}^n ,

donde $f \in L^2$ y $c : \mathbb{R} \to \mathbb{R}$ suave con c(0) = 0 y $c' \ge 0$. Pruebe que $u \in H^2(\mathbb{R}^n)$

- **P2.** Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado, tal que en todo punto de se cumple la condición de esfera interior. Sea $L = -\sum_{i,j=1}^n \partial_{x_i,x_j}^2 + \sum_{i=1}^n b_i(x) \partial_{x_i}$ un operador uniformemente elíptico en con coeficientes acotados.
 - a) Sea $g:\overline{\Omega}\to\mathbb{R}$ continua y $u\in C^2(\Omega)\cap C^1(\overline{\Omega})$ una solución del problema

$$Lu = g(x, u) \text{ en } \Omega \quad \frac{\partial u}{\partial \nu} = 0 \text{ en } \partial \Omega$$

Muestre que si $x_0 \in \overline{\Omega}$ es un máximo de u entonces $g(x_0, u(x_0)) \ge 0$. Análogamente si x_0 es un mínimo de u, entonces $g(x_0, u(x_0)) \le 0$.

b) Concluya que u=1 es la única solución no negativa y no trivial del problema:

$$-\Delta u = u(1-u)$$
 en Ω $\frac{\partial u}{\partial \nu} = 0$ en $\partial \Omega$

P3. Dado un espacio vectorial X, la notación X^3 se refiere al espacio $X \times X \times X$, con la norma natural de X en cada una de sus tres coordenadas, a menos que indiquemos lo contrario. Definimos así los espacios vectoriales

$$V_0 := \{ u \in C_0^\infty(\Omega)^3 : div(u) = 0 \}$$
 (sin topología)

V :=clausura de V_0 con la norma de $H_0^1(\Omega)^3$

por lo que sobre V se puede utilizar la norma modificada (equivalente a la norma usual, gracias a la desigualdad de Poincaré)

$$||u||_V := [u, u]^{\frac{1}{2}}, \quad \text{con } [u, v] := \sum_{j=1}^3 \int_{\Omega} \nabla u_j \cdot \nabla v_j \sum_{i,j=1}^3 \int_{\Omega} \partial_{x_i} u_j \partial_{x_i} v_j, \quad u, v \in V$$

Asimismo, sea $(u,v):=\int u\cdot v$, el producto interno en $L^2(\Omega)^3$ usual. Por último, una propiedad topológica importante que satisfacen las funciones en V es la siguiente: Teorema de Rham. Sea $g \in D'(\Omega)^3$. Entonces

$$g = \nabla p$$
, con $p \in D'(\Omega) \iff (g, v) = 0$ para todo $v \in V_0$

Mejor aún, si $\nabla p \in H^{-1}(\Omega)^3$ entonces $p \in L^2(\Omega)$.

- a) Pruebe la primera implicación => del Teorema anterior. La conversa y la conclusión adicional del Teorema son de difícil demostración, y las asumiremos en lo que sigue.
- b) Sea $\tilde{V} := \{u \in H_0^1(\Omega)^3 : div(u) = 0 \text{ en } L^2(\Omega)\}$. Pruebe que $V \subset \tilde{V}$. Supongamos ahora que $g \in \tilde{V}^*$. Notemos que, gracias al Teorema de Hahn Banach, g se puede extender de manera lineal y continua a todo $H_0^1(\Omega)^3$, definiendo así un elemento de $H^{-1}(\Omega)^3$.
- c) Pruebe ahora que V es denso en \tilde{V} . Concluya que $V = \tilde{V}$ y que V es Hilbert separable. **Indicación:** Para probar que V es denso en \tilde{V} , pruebe que todo elemento del dual de \tilde{V} que se anula en V, también se anula en \tilde{V} .

Si $u, v, w \in V_0$, se define la forma trilineal

$$b(u, v, w) := \int_{\Omega} [(u \cdot \nabla)v] \cdot w = \sum_{i,j=1}^{3} \int_{\Omega} u_i \partial_{x_i} v_j w_j$$

d) Justifique por qué $V \hookrightarrow L^4(\Omega)^3$ y pruebe que si $u,v,w \in V$, entonces b(u,v,w) está bien definida y se tiene la estimación de continuidad

$$|b(u, v, w)| \le C||u||_V||v||_V||w||_V$$

e) Muestre que, para toda $u, v, w \in V$,

$$b(u, v, v) = 0$$
 $b(u, v, w) = -b(u, w, v)$