Quantum Money and Inflation Control

Final Project Proposal for PHYS C191A

Juncheng Ding, Tian Ariyaratrangsee, Xiaoyang Zheng University of California, Berkeley – Fall 2025

1. Problem Statement

The quantum no-cloning theorem $(\not\exists U:U|\psi\rangle|0\rangle=|\psi\rangle|\psi\rangle)$ prevents copying but not unlimited generation of new quantum money states in Hilbert space $\mathcal{H}=\mathbb{C}^{2^n}$. As quantum computational power Q(t) grows exponentially, generation rate $R\propto Q/D$ yields unbounded supply—quantum inflation. Zhandry (2017) demonstrated quantum lightning (QL) states satisfy cryptographic unforgeability but did not address supply control. Coladangelo & Sattath (2020) proposed blockchain-based tracking but required classical infrastructure.

Our Approach: We investigate whether intrinsic quantum resource constraints can bound supply through: (1) Resource Token (RT) mechanism coupling generation to physical costs (gate count G, circuit depth L, coherence time T_2 , ancilla entanglement χ); (2) Theoretical analysis proving bounded equilibrium $M(t) \to M_{\text{max}} = R_{\text{total}}/\langle \text{RT} \rangle$; (3) Qiskit simulation on classical hardware validating dynamics under realistic NISQ noise models, demonstrating > 99% inflation suppression without requiring quantum hardware access.

2. Technical Approach

2.1 Quantum Lightning Framework & Inflation Dynamics

Zhandry's Quantum Lightning: each unit $|\psi_y\rangle = \frac{1}{\sqrt{N_y}} \sum_{x:H(x)=y} |x\rangle$ is superposition over polynomial hash pre-images with $H:\{0,1\}^m \to \{0,1\}^n$ degree-2 over \mathbb{F}_2 . State purity: density matrix $\rho=|\psi_y\rangle\langle\psi_y|$ has $S(\rho)=-\mathrm{Tr}(\rho\log\rho)=0$, distinguishing from counterfeit mixed states with $S(\rho_{\mathrm{fake}})>0$. Verification protocol: measure in Hadamard basis, apply quantum Fourier transform $\mathcal{F}|x\rangle=2^{-n/2}\sum_k e^{2\pi ixk/2^n}|k\rangle$, check polynomial constraints via phase estimation (success probability $P_{\mathrm{verify}}\geq 1-\epsilon$ for $\epsilon=2^{-\Omega(n)}$).

Inflation Dynamics: Quantum capability growth $Q(t) = Q_0 e^{\lambda t}$ (e.g., logical qubit count scaling, $\lambda \in [0.1, 1.0] \text{ yr}^{-1}$). Generation success $P(y) \approx Q/2^D$ from Grover amplitude amplification. Lindblad master equation with decoherence:

$$\frac{d\rho}{dt} = -i[\hat{H}, \rho] + \sum_{k} \gamma_{k} \left(L_{k} \rho L_{k}^{\dagger} - \frac{1}{2} \{ L_{k}^{\dagger} L_{k}, \rho \} \right), \quad L_{k} \in \{ \sigma_{-}, \sigma_{z} \} \text{ (amplitude damping, dephasing)}$$

Unbounded regime $(R_{\text{total}} = \infty)$: $\frac{dM}{dt} = \frac{Q_0 e^{\lambda t}}{2^D} \Rightarrow M(t) \sim \frac{Q_0}{\lambda 2^D} e^{\lambda t}$. For $\lambda = 0.5 \text{ yr}^{-1}$, M doubles every $\ln 2/\lambda \approx 1.4 \text{ years}$.

2.2 Resource Token (RT) Mechanism

Principle: Couple generation to physical quantum resources. For bolt $|\psi_y\rangle$ with circuit depth L, G gates on m qubits:

 $RT_{cost} = \alpha G + \beta L + \gamma m, \quad M_{max} = \frac{R_{total}}{\langle RT_{cost} \rangle}.$

Three Implementations: (A) Gate-Count: RT = $\alpha G + \beta L$ with rotations $R_{\theta}(\phi) = e^{-i\theta\sigma_{\phi}/2}$ and CNOT gates; (B) Decoherence: RT = $\gamma \int_0^T \Gamma(t)dt$ where $\Gamma = 1/T_1 + 1/T_2$, modeled via Kraus operators $\{E_0, E_1\}$; (C) Ancilla Budget: finite entangled ancillas $|\Phi^+\rangle$ with Schmidt rank χ consumption.

Quantum Protocol: (1) Initialize $|\phi_0\rangle = |0\rangle^{\otimes m}$, allocate RT; (2) Apply $U_{\text{mint}} = \prod_{j=1}^L U_j$; (3) Measure and verify via SWAP test $|\langle \psi_{\text{target}}|\psi_{\text{measured}}|\psi_{\text{target}}|\psi_{\text{measured}}\rangle|^2 > 1 - \epsilon$; (4) Deduct RT via quantum process tomography; (5) Adjust difficulty D(t).

Security: RT preserves quantum lightning uniqueness under (2k+2)-NAMCR. Adversaries face: (1) No-cloning (Wootters-Zurek); (2) Multi-collision resistance $(\Omega(2^{n/2})$ queries); (3) Circuit obfuscation lower bounds $\Omega(n \log n)$.

2.3 NISQ Implementation Strategy

Parameters: Toy (n = 3, k = 2, m = 12) requires ~ 36 qubits (IBM Falcon topology). Degree-2 polynomial hash $H(x) = \sum_{i < j} a_{ij} x_i x_j + \sum_i b_i x_i \pmod{2}$.

Circuit Design: Generation: Grover oracle U_f with diffusion $D=2|+\rangle\langle+|^{\otimes m}-\mathbb{I}$. Total: $G\sim O(m^2\sqrt{2^m/N_y})$ gates. Verification: HHL algorithm for matrix inversion, requiring $\kappa(A)\cdot \operatorname{poly}(\log N)$ gates; SWAP test for fidelity \mathcal{F} . RT Tracking: Qiskit transpiler outputs (G,L); IBM noise: $T_1\sim 100~\mu\text{s}, T_2\sim 50~\mu\text{s}, \epsilon_1\sim 10^{-3}, \epsilon_2\sim 10^{-2}$.

Study: Simulate unbounded vs. RT-bounded scenarios. Track: supply M(t), RT depletion R(t), fidelity $\mathcal{F}(t)$, entanglement entropy S_{ent} via Pauli tomography.

2.4 Validation Framework

Model: Coupled equations $\frac{dM}{dt} = R(Q, D, R_{\text{avail}}), \frac{dR_{\text{avail}}}{dt} = -\langle \text{RT}_{\text{cost}} \rangle \cdot R, \frac{d\rho}{dt} = -i[\hat{H}, \rho] + \sum_k \gamma_k \mathcal{D}[L_k] \rho$ where $\mathcal{D}[L]\rho = L\rho L^{\dagger} - \frac{1}{2}\{L^{\dagger}L, \rho\}$ (Lindblad dissipator). Solve with quantum trajectory method; show equilibrium $M_{\infty} = R_{\text{total}}/\langle \text{RT} \rangle$.

Simulation: Scenarios $\lambda \in \{0.1, 0.5, 1.0\}$, $R_{\text{total}} \in \{10^3, 10^5\}$. IBM noise: thermal relaxation (E_0, E_1) , depolarizing channel, readout errors.

Metrics: Inflation reduction $I_{\text{RT}}/I_{\text{unbounded}} < 0.01$; circuit complexity $O(n^3)$; fidelity $\mathcal{F} = \text{Tr}(\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}})^2$; concurrence $C(\rho)$; quantum Fisher information \mathcal{F}_O .

2.5 Deliverables

(1) Analytical solutions with Lyapunov stability proofs; (2) Qiskit circuits with gate decomposition to $\{R_x, R_y, R_z, \text{CNOT}\}$, depth $D \leq 20$, three RT variants transpiled to IBM Falcon; (3) Comparative plots: supply curves, fidelity surfaces $\mathcal{F}(\epsilon, T_1, T_2)$, concurrence decay; (4) Complexity analysis: $O(n^3)$ scaling vs. lower bounds, quantum volume V_Q ; (5) Feasibility: qubit requirements (~ 36), coherence constraints $(T_2 \gtrsim 100 \mu s)$, error mitigation strategies.

3. Expected Outcomes

- Inflation dynamics: Demonstrate unbounded growth $M(t) \sim e^{\lambda t}$ in baseline model; extract growth rate λ from Liouvillian eigenspectrum
- RT stabilization: Show bounded equilibrium $M(t) \to M_{\text{max}} = R_{\text{total}}/\langle \text{RT} \rangle$ with convergence rate $\tau \sim 1/\gamma_{\text{diss}}$; verify no-cloning preservation
- NISQ circuits: Implement polynomial hash on $n \leq 6$ qubits (36-qubit system); transpile to IBM Falcon with SWAP overhead < 20%; quantum process tomography confirming $\|\mathcal{E}_{ideal} \mathcal{E}_{noisy}\|_{\diamond} < 0.15$
- RT comparison: Quantify three mechanisms: gate-count (resilient to noise), decoherence (time-limited), ancilla (qubit-intensive)
- Hardware analysis: Quantum volume $V_Q=2^n$; optimal: $D\in[10,20],\ \epsilon_1<10^{-3},\ \epsilon_2<10^{-2}$
- Complexity theory: Link no-cloning to Holevo bound $\chi \leq S(\rho)$; place RT in BQP^{NP}; explore channel capacity $C(\mathcal{N})$ under constraints

4. Timeline

Date	Milestone
Oct 30 - Nov 3	Literature review; setup (Qiskit 1.0+, Python 3.10+);
	GitHub repository
Nov 4 - Nov 10	[Ding] Derive $M(t)$ solutions, master equation solver;
	[Zheng] Prove no-cloning under RT, Lindblad equations
Nov 11 - Nov 17	[Tian] Design circuits: polynomial hash, Grover oracle;
	[Zheng] Implement HHL, SWAP test; gate decomposition
Nov 18 - Nov 24	[All] Implement three RT mechanisms; transpile to IBM
	Falcon; test with noise models
Nov 25 - Nov 30	[Ding] Simulations: varying λ , R_{total} ; [Tian] Complexity
	analysis, V_Q calculations; [Zheng] Process tomography,
	fidelity
Dec 1 - Dec 5	[Zheng] Draft report; [Tian] Design poster; [Ding]
	Finalize proofs
Dec 6 - Dec 8	Team review, rehearse presentation, prepare Q&A
Dec 9	Poster presentation & defense; submit report

5. Division of Labor

Xiaoyang Zheng: Theory (no-cloning, Lindblad equations, stability), quantum algorithm simulation (Grover, HHL, SWAP test), project structure, report writing.

Tian Ariyaratrangsee: Poster design, quantum algorithm calculations (gate complexity, circuit depth), circuit implementation (gate decomposition, IBM transpilation), optimization.

Juncheng Ding: Inflation simulation (master equation integration, supply curves), equilibrium calculations, RT mechanism analysis, stability studies.

6. Evaluation & Risk Mitigation

Success: (1) >99% inflation reduction; (2) Stable M_{max} ; (3) $O(n^3)$ scaling confirmed; (4) Simulations within Qiskit limits.

Risks: Circuit too large (use n = 2 toy); RT breaks security (formal proof); time constraints (baseline + one RT as minimum).

7. References

- Wiesner, S. "Conjugate Coding." ACM SIGACT News, 15(1), 78–88 (1983).
- Zhandry, M. "Quantum Lightning Never Strikes the Same State Twice." *EUROCRYPT 2019*, arXiv:1711.02276v3.
- Coladangelo, A. & Sattath, O. "A Quantum Money Solution to the Blockchain Scalability Problem." *Quantum*, 4, 297 (2020).
- Aaronson, S. & Christiano, P. "Quantum Money from Hidden Subspaces." STOC 2012.
- Lutomirski, A. et al. "Breaking and Making Quantum Money." ICS 2010, arXiv:0912.3825.