NB/BD Stability with Möbius Weights: Hutch++ Operator Control, PCG Implementation, and Contradiction Auto-Report

Serabi Independent Researcher 24ping@naver.com

2025

Abstract

We add Hutch++-based operator tracking for ||E||, a diagonal+band preconditioned conjugate gradient (PCG) implementation, and an automatic contradiction reporter that cross-checks persistent residuals against operator growth. The pipeline reads CSV logs and regenerates plots.

1 Operator Control via Hutch++

With matvec oracles for E and E^{\top} , we estimate $\operatorname{tr}(E^{\top}E)$ using $\operatorname{Hutch}++$; the bound $||E|| \leq \sqrt{\operatorname{tr}(E^{\top}E)}$ monitors far-band leakage. The sketch size (s,r) trades variance and cost.

2 PCG with Diagonal+Band Preconditioner

We solve normal equations with PCG and $P = diag(A) + band_k(A)$; k = 3 works well in our tests. This reduces iteration counts roughly by a factor of log N at large scales.

3 Contradiction Auto-Report

We declare a "persistence event" if recent d_N exceed ε_0 while the fitted θ falls below θ_{\min} ; if simultaneously Hutch++ shows bounded ||E||, the event conflicts with bandwise decay and triggers a contradiction flag.

4 Reproducibility

Results are logged in data/results_v28.csv. Figures are regenerated by code/plot_update.py. Reports are produced by code/contradiction_report.py.

References

- [1] L. Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann Hypothesis, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14 (2003), 5–11.
- [2] J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc. 50 (2003), no. 3, 341–353.

Figure 1: NB/BD mean-square vs N; log-log axes. Error bars where available.

- [3] E. C. Titchmarsh (rev. D. R. Heath-Brown), *The Theory of the Riemann Zeta-Function*, 2nd ed., OUP, 1986.
- [4] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I, CUP, 2007.