Bayesian Dynamic Linear Models for Strategic Asset Allocation

Jared Fisher Carlos Carvalho, The University of Texas Davide Pettenuzzo, Brandeis University

March 29, 2016

Introduction

2 Single Risky Asset

- Multiple Risky Assets
- 4 Conclusion

Excess Returns on an Index: is there Signal in the Noise?

Investing

- A portfolio consists of assets of varying riskiness.
- Return on a portfolio is a weighted sum of the individual assets' returns, where the weights are the proportions invested.
- Simple portfolio's return:

$$R_{p,t+1} = w_t R_{1,t+1} + (1 - w_t) R_{f,t+1}$$

= $R_{f,t+1} + w_t (R_{1,t+1} - R_{f,t+1})$

- $(R_{1,t+1} R_{f,t+1}) \longrightarrow$ "excess return"
- How do we choose w_t ?

Investing in Multiple Assets

Return on multiple risky assets:

$$R_{p,t+1} = (1 - \sum_{i} w_{i,t}) R_{f,t+1} + \sum_{i} w_{i,t} R_{i,t+1}$$
$$= R_{f,t+1} + \sum_{i} w_{i,t} (R_{i,t+1} - R_{f,t+1})$$

- How do we choose $w_{i,t}$ for all i?
- Understand as much as we can about $(R_{i,t+1} R_{f,t+1})$ at time t.

Making Investments

- ullet For an investor with power utility and risk aversion γ
- \bullet Given forecasted $\hat{\mu}_t, \hat{\Sigma}_t$
- Portfolio weights vector is

$$w_t = \frac{1}{\gamma} \hat{\Sigma}_t^{-1} \left(\hat{\mu}_t + \frac{1}{2} diag(\hat{\Sigma}_t) \right)$$

Understanding Excess Returns

- What is the distribution of $Y_{i,t+1} = (R_{i,t+1} R_{f,t+1})$, given what we know at time t?
- $E(Y_{i,t+1}|D_t)$ ("risk premium")
 - $\blacktriangleright = \mu$? (constant, no predictability)
 - $= \mu_t = f(X_t) = X_t'\beta?$
 - $\blacktriangleright = \mu_t = X_t' \beta_t$? ("time-varying parameters")
- $Var(Y_{i,t+1}|D_t)$
 - $ightharpoonup = \sigma^2$? (constant volatility)
 - $ightharpoonup = \sigma_t^2$? ("stochastic volatility")

Does Predictability Exist?

• Literature assumes linear relationship:

$$Y_{i,t+1} = X'_t \beta + \epsilon_{t+1}, Var(\epsilon) = \sigma^2$$

- Tests are mostly in-sample, not out-of-sample (OOS).
- Welch and Goyal (2008) show that the good performance of popular variables in-sample don't hold OOS.
- More recently, authors show OOS predictability by deviating from the standard model.
 - ► Time-varying parameters (e.g. Dangl and Halling, 2012)
 - Stochastic volatility (e.g. Johannes, Korteweg and Polson, 2013)
 - ► Parameter uncertainty (Bayesian models)

Our Analysis

- Two research questions
 - Predictability: is there useful information in X?
 - ▶ Time-variation: are the parameter values (β and σ^2) constant with respect to time?
- Compare models with and without predictors and with and without variance discounting (of both regression coefficients and volatility)
- Benchmark: the constant model (i.e. $X_t = 1$)
 - ► Often called the expectation hypothesis model, it represents the efficient markets hypothesis/no predictability.

Data description

We will first look at portfolios of a risky asset (stock index or bond index) and a risk-free asset (3 month T-bill). We use the following data, spanning 1962-2014:

- Welch and Goyal's predictors of stock performance, updated to 2014,
- CRSP value weighted returns,
- Bonds data from Gargano, Pettenuzzo, and Timmermann (2015)
 - ▶ Bond index for 2-5 year maturities,
 - ► Cochrane and Piazzesi's (2005) linear combination of forward rates,
 - ► Fama and Bliss' (1987) forward spread,
 - ▶ Ludvigson and Ng's (2009) macro factor.

Our Univariate Model

$$Y_t = X'_{t-1}\beta_t + \epsilon_t, \quad \epsilon_t \sim N(0, v_t/\phi_t)$$

$$\beta_t = \beta_{t-1} + \omega_t, \quad \omega_t \sim N(0, w_t/\delta)$$

$$\phi_t = \gamma_t \phi_{t-1}/\delta_v$$

$$\beta_0 \sim N(m_0, C_0)$$

$$\gamma_t \sim Beta(\delta_v n_{t-1}/2, (1 - \delta_v) n_{t-1}/2)$$

(see West and Harrison, 1997)

$Y_t = X'_{t-1}\beta_t + \epsilon_t$

Model Advantages

- Bayesian model without MCMC saves computation time
- Bridges gap between Recursive model vs. Rolling-window model

Recursion

$$\begin{array}{l} \vdots \\ \beta_{t-1}|D_{t-1} \sim N(m_{t-1},C_{t-1}) \\ \beta_{t}|D_{t-1} \sim N(m_{t-1},R_{t}) \\ Y_{t}|D_{t-1} \sim N(f_{t}=X'_{t-1}m_{t-1},Q_{t}) \\ \beta_{t}|D_{t} \sim N(m_{t},C_{t}) \\ \vdots \\ S_{t}=h(\delta_{v},Q_{t},Y_{t}-f_{t},S_{t-1}) \end{array}$$

Modeling Details

- Prior created on 1962-1971 data
- Models evaluated on 1985-2014
- Evaluated on both economic and statistical criteria.
 - Economic Measure: Certainty Equivalent Returns, using power utility (CRRA)
 - ★ $U(wealth) = \frac{1}{1-\gamma}(wealth)^{1-\gamma}$ ★ $\gamma = 5$
 - ► Statistical Prediction Measure: Mean Squared Prediction Error Ratio
 - ► Statistical Fit Measure: Average Log Score
- Restrict:
 - ▶ Portfolio weights $w_t \in [-2, 3]$
 - ▶ Coefficient variance discount factor $\delta \in [0.98, 1.0]$
 - ▶ Volatility discount factor $\delta_v \in [0.9, 1.0]$

Results: No Discounting - Comparison to Literature

9	Stock Ind	ex			Е	Bond Inde	ex	
Predictor	CER	ALS	MSE	Mat.	Pred.	CER	ALS	MSE
(none)	5.678	1.689	1.000	2	(none)	6.519	3.512	1.000
Log D/P	3.385	1.681	1.018	2	CP	5.838	3.517	1.049
Log D/Y	3.333	1.682	1.018	2	FB	6.902	3.519	0.979
Log E/P	3.884	1.685	1.012	2	LN	8.535	3.531	1.010
Smooth E/P	3.228	1.680	1.019	3	(none)	6.265	3.146	1.000
Log D/Payout	0.767	1.681	1.020	3	CP	5.853	3.150	1.028
B/M	3.133	1.680	1.020	3	FB	7.614	3.154	0.975
T Bill Rate	5.424	1.687	1.003	3	LN	9.463	3.165	0.981
LngTerm Yld	5.507	1.688	1.002	4	(none)	6.083	2.891	1.000
LngTerm Ret.	4.630	1.686	1.007	4	CP	5.827	2.895	1.015
Term Spread	2.764	1.683	1.010	4	FB	8.192	2.901	0.974
Def.Yld.Sprd	1.854	1.678	1.023	4	LN	9.558	2.910	0.970
Def.Ret.Sprd	4.199	1.692	0.999	5	(none)	5.910	2.694	1.000
Stock Var.	6.426	1.701	0.977	5	CP	5.882	2.697	1.007
Net Eqty Exp.	4.288	1.682	1.013	5	FB	8.416	2.704	0.974
Inflation	2.980	1.683	1.012	5	LN	9.257	2.713	0.965

Is There Predictability if we Discount Variances?

	CER Maximum			ALS	ALS Maximum			MSE Minimum		
Predictor:	Value	δ	δ_v	Value	δ	δ_v	Ratio	δ	δ_v	
Mean	5.68	1.00	1.00	1.689	1.00	1.00	1.00	1.00	1.00	
Mean - Dscnt	6.50	1.00	0.90	1.736	1.00	0.90	1.00	1.00	0.99	
Log D/P	3.64	1.00	1.00	1.730	0.99	0.90	1.01	0.99	0.97	
Log D/Y	3.63	1.00	1.00	1.730	0.99	0.90	1.01	0.99	0.96	
Log E/P	5.43	1.00	0.90	1.732	1.00	0.90	1.01	1.00	1.00	
Smooth E/P	3.59	1.00	1.00	1.731	0.99	0.90	1.01	0.99	0.97	
Log D/Payout	0.77	1.00	1.00	1.721	1.00	0.90	1.02	1.00	1.00	
Bk/Mkt	3.40	1.00	0.90	1.729	1.00	0.90	1.02	0.99	0.95	
T Bill Rate	5.81	1.00	0.90	1.734	1.00	0.90	1.00	1.00	1.00	
LngTrm Yld.	6.05	1.00	0.90	1.736	1.00	0.90	1.00	1.00	1.00	
LngTrm Ret.	6.49	1.00	0.90	1.740	1.00	0.90	1.01	1.00	1.00	
Term Spread	2.80	1.00	0.93	1.727	1.00	0.90	1.01	1.00	0.98	
Def.Yld.Sprd	4.85	0.99	0.90	1.730	0.99	0.90	1.02	0.99	0.97	
Def.Ret.Sprd	6.74	1.00	0.90	1.735	1.00	0.90	1.00	1.00	1.00	
Stock Var.	8.88	1.00	0.90	1.747	1.00	0.90	0.98	1.00	1.00	
Net Eqty. Exp.	6.38	0.99	0.92	1.729	0.99	0.90	1.00	0.99	0.95	
Inflation	5.85	1.00	0.90	1.730	1.00	0.90	1.01	0.99	0.95	

Discount Factor Heatmap

Average Over Models

- Many models beat the benchmark, given the correct discount factors.
- But, we don't know a priori how much to discount or which predictors will perform well.
- Solution: average and share strength across models.
 - For each time t, weight each of the models' prediction based on its performance up through time t-1.
 - ► Create different averaged models by weighting on utility and score, as well as an equal-weighted model.

$$\begin{split} w_{i,\tau+1}^U &= \left(\frac{1}{\gamma} \frac{1}{\tau} \sum_{t=1}^{\tau} U_{i,t}\right)^{\frac{1}{1-\gamma}} \\ w_{i,\tau+1}^S &= \left(\sum_{t=1}^{\tau} ln(score_{i,t})\right) - \min_{j} \left(\sum_{t=1}^{\tau} ln(score_{j,t})\right) \end{split}$$

Modeling Details

- ullet A model is fit for every combination of predictor, δ , and δ_v .
- 10 values of δ and δ_v are considered, equally spaced in the range $\delta \in [0.98, 1.0], \ \delta_v \in [0.9, 1.0].$

Model Averaging Results: Stocks

Pred	TVP	SV	Models	Weights	CER	ALS	MSE
0	0	0	1	(none)	5.678	1.689	1.0000
0	0	1	10	Equal	5.904	1.718	1.0000
0	0	1	10	Utility	5.904	1.718	1.0000
0	0	1	10	Score	6.182	1.725	1.0000
0	1	0	10	Equal	5.458	1.689	1.0005
0	1	0	10	Utility	5.458	1.689	1.0005
0	1	0	10	Score	4.914	1.687	1.0034
0	1	1	100	Equal	5.717	1.717	1.0005
0	1	1	100	Utility	5.717	1.717	1.0005
0	1	1	100	Score	5.750	1.723	1.0009
1	0	0	16	Equal	5.787	1.693	0.9992
1	0	0	16	Utility	5.786	1.693	0.9992
1	0	0	16	Score	6.060	1.695	0.9967
1	0	1	160	Equal	5.906	1.721	0.9992
1	0	1	160	Utility	5.906	1.721	0.9992
1	0	1	160	Score	6.306	1.725	0.9968
1	1	0	160	Equal	4.984	1.697	0.9999
1	1	0	160	Utility	4.984	1.697	0.9999
1	1	0	160	Score	4.857	1.697	0.9991
1	1	1	1600	Equal	5.400	1.722	0.9999
1	1	1	1600	Utility	5.400	1.722	0.9999
1	1	1	1600	Score	5.670	1.724	0.9982

Model Averaging Results: Stocks

Model Averaging Results: Bonds, 2 Year Maturity

Pred	TVP	SV	Models	Weights	CER	ALS	MSE
0	0	0	1	(none)	6.519	3.512	1.0000
0	0	1	10	Equal	7.637	3.784	1.0000
0	0	1	10	Utility	7.637	3.784	1.0000
0	0	1	10	Score	7.716	3.835	1.0000
0	1	0	10	Equal	7.355	3.512	0.9907
0	1	0	10	Utility	7.355	3.512	0.9907
0	1	0	10	Score	7.210	3.512	0.9957
0	1	1	100	Equal	7.953	3.784	0.9907
0	1	1	100	Utility	7.953	3.784	0.9907
0	1	1	100	Score	8.088	3.834	0.9908
1	0	0	4	Equal	7.651	3.522	0.9652
1	0	0	4	Utility	7.653	3.522	0.9652
1	0	0	4	Score	8.013	3.528	0.9829
1	0	1	40	Equal	8.261	3.788	0.9652
1	0	1	40	Utility	8.262	3.788	0.9652
1	0	1	40	Score	8.308	3.837	0.9641
1	1	0	40	Equal	7.987	3.522	0.9650
1	1	0	40	Utility	7.988	3.522	0.9650
1	1	0	40	Score	8.199	3.528	0.9631
1	1	1	400	Equal	8.254	3.792	0.9650
1	1	1	400	Utility	8.255	3.792	0.9650
1	1	1	400	Score	8.247	3.840	0.9644

Model Averaging Results: Bonds, 2 Year Maturity

Model Averaging Results: Bonds, 3 Year Maturity

Pred	TVP	SV	Models	Weights	CER	ALS	MSE
0	0	0	1	(none)	6.265	3.146	1.0000
0	0	1	10	Equal	7.685	3.320	1.0000
0	0	1	10	Utility	7.685	3.320	1.0000
0	0	1	10	Score	7.908	3.343	1.0000
0	1	0	10	Equal	7.189	3.146	0.9922
0	1	0	10	Utility	7.189	3.146	0.9922
0	1	0	10	Score	7.019	3.146	0.9967
0	1	1	100	Equal	8.632	3.321	0.9922
0	1	1	100	Utility	8.632	3.321	0.9922
0	1	1	100	Score	8.693	3.343	0.9923
1	0	0	4	Equal	7.922	3.156	0.9686
1	0	0	4	Utility	7.925	3.156	0.9685
1	0	0	4	Score	8.677	3.161	0.9734
1	0	1	40	Equal	9.191	3.331	0.9686
1	0	1	40	Utility	9.193	3.331	0.9685
1	0	1	40	Score	9.365	3.354	0.9680
1	1	0	40	Equal	8.425	3.155	0.9699
1	1	0	40	Utility	8.427	3.155	0.9698
1	1	0	40	Score	8.913	3.159	0.9672
1	1	1	400	Equal	9.395	3.330	0.9699
1	1	1	400	Utility	9.396	3.330	0.9698
1	1	1	400	Score	9.437	3.352	0.9697

Model Averaging Results: Bonds, 3 Year Maturity

Model Averaging Results: Bonds, 4 Year Maturity

Pred	TVP	SV	Models	Weights	CER	ALS	MSE
0	0	0	1	(none)	6.083	2.891	1.0000
0	0	1	10	Equal	7.461	3.009	1.0000
0	0	1	10	Utility	7.462	3.009	1.0000
0	0	1	10	Score	7.845	3.021	1.0000
0	1	0	10	Equal	7.002	2.892	0.9929
0	1	0	10	Utility	7.002	2.892	0.9929
0	1	0	10	Score	6.822	2.892	0.9972
0	1	1	100	Equal	8.226	3.010	0.9929
0	1	1	100	Utility	8.226	3.010	0.9929
0	1	1	100	Score	8.596	3.021	0.9930
1	0	0	4	Equal	7.972	2.902	0.9696
1	0	0	4	Utility	7.975	2.902	0.9695
1	0	0	4	Score	8.876	2.908	0.9681
1	0	1	40	Equal	9.433	3.023	0.9696
1	0	1	40	Utility	9.437	3.023	0.9695
1	0	1	40	Score	9.709	3.035	0.9693
1	1	0	40	Equal	8.293	2.901	0.9721
1	1	0	40	Utility	8.295	2.901	0.9720
1	1	0	40	Score	8.766	2.904	0.9689
1	1	1	400	Equal	9.583	3.020	0.9721
1	1	1	400	Utility	9.585	3.020	0.9720
1	1	1	400	Score	9.756	3.032	0.9721

Model Averaging Results: Bonds, 4 Year Maturity

Model Averaging Results: Bonds, 5 Year Maturity

Pred	TVP	SV	Models	Weights	CER	ALS	MSE
0	0	0	1	(none)	5.910	2.694	1.0000
0	0	1	10	Equal	6.971	2.780	1.0000
0	0	1	10	Utility	6.971	2.780	1.0000
0	0	1	10	Score	7.330	2.786	1.0000
0	1	0	10	Equal	6.803	2.695	0.9934
0	1	0	10	Utility	6.803	2.695	0.9934
0	1	0	10	Score	6.597	2.694	0.9977
0	1	1	100	Equal	7.809	2.781	0.9934
0	1	1	100	Utility	7.809	2.781	0.9934
0	1	1	100	Score	8.025	2.786	0.9934
1	0	0	4	Equal	7.920	2.706	0.9697
1	0	0	4	Utility	7.921	2.706	0.9696
1	0	0	4	Score	8.620	2.710	0.9642
1	0	1	40	Equal	9.031	2.796	0.9697
1	0	1	40	Utility	9.034	2.796	0.9697
1	0	1	40	Score	9.470	2.803	0.9697
1	1	0	40	Equal	8.055	2.704	0.9734
1	1	0	40	Utility	8.057	2.704	0.9734
1	1	0	40	Score	8.380	2.706	0.9705
1	1	1	400	Equal	9.259	2.793	0.9734
1	1	1	400	Utility	9.262	2.793	0.9734
1	1	1	400	Score	9.513	2.799	0.9737

Model Averaging Results: Bonds, 5 Year Maturity

Our Multivariate Model

- Ideal portfolio probably contains more than one risky asset.
- Use this same model, but fit for multiple risky assets.
- Portfolio of the stock index and a bond index, for a given maturity.
- Each model can include one stock predictor and one bond predictor

Our Multivariate Model

$$Y'_{t} = X'_{t-1}B_{t} + v'_{t}$$

$$B_{t} = B_{t-1} + \Omega_{t}$$

$$v_{t} \sim N(0, V_{t}\Sigma_{t})$$

$$\Omega_{t} \sim N(0, \frac{1}{\delta}W_{t}, \Sigma_{t})$$

$$(B_{0}, \Sigma_{0}|D_{0}) \sim NW_{n_{0}}^{-1}(m_{0}, C_{0}, S_{0})$$

$$\Sigma_{t}|D_{t-1} \sim W_{\delta_{v}n_{t-1}}^{-1}(S_{t-1})$$

Multivariate Model Averaging Results, 2 year maturity

Pred	TVP	SV	Models	Weights	CER	ALS	MSE S.	MSE B.
0	0	0	1	(none)	7.970	5.189	1.0000	1.0000
0	0	1	10	Equal	8.276	5.529	1.0000	1.0000
0	0	1	10	Utility	8.275	5.529	1.0000	1.0000
0	0	1	10	Score	6.469	5.578	1.0000	1.0000
0	1	0	10	Equal	8.420	5.189	1.0005	0.9907
0	1	0	10	Utility	8.420	5.189	1.0005	0.9907
0	1	0	10	Score	8.328	5.189	1.0011	0.9939
0	1	1	100	Equal	8.862	5.527	1.0005	0.9907
0	1	1	100	Utility	8.861	5.527	1.0005	0.9907
0	1	1	100	Score	7.135	5.575	1.0005	0.9908
1	0	0	64	Equal	9.105	5.202	1.0014	0.9607
1	0	0	64	Utility	9.107	5.202	1.0014	0.9606
1	0	0	64	Score	9.682	5.205	1.0000	0.9538
1	0	1	640	Equal	7.916	5.523	1.0014	0.9607
1	0	1	640	Utility	7.919	5.523	1.0014	0.9606
1	0	1	640	Score	6.244	5.572	1.0008	0.9589
1	1	0	640	Equal	7.636	5.208	1.0017	0.9593
1	1	0	640	Utility	7.637	5.208	1.0017	0.9593
1	1	0	640	Score	8.007	5.209	1.0022	0.9530
1	1	1	6400	Equal	8.355	5.533	1.0017	0.9593
1	1	1	6400	Utility	8.357	5.533	1.0017	0.9593
1	1	1	6400	Score	7.296	5.577	1.0012	0.9582

Multivariate Model Averaging Results, 2 year maturity

StocksBonds_2

Multivariate Model Averaging Results, 3 year maturity

Pred	TVP	SV	Models	Weights	CER	ALS	MSE S.	MSE B.
0	0	0	1	(none)	7.749	4.822	1.0000	1.0000
0	0	1	10	Equal	9.137	5.066	1.0000	1.0000
0	0	1	10	Utility	9.137	5.066	1.0000	1.0000
0	0	1	10	Score	7.971	5.088	1.0000	1.0000
0	1	0	10	Equal	8.266	4.822	1.0005	0.9922
0	1	0	10	Utility	8.266	4.822	1.0005	0.9922
0	1	0	10	Score	8.047	4.822	1.0016	0.9955
0	1	1	100	Equal	9.799	5.064	1.0005	0.9922
0	1	1	100	Utility	9.798	5.064	1.0005	0.9922
0	1	1	100	Score	8.734	5.085	1.0005	0.9923
1	0	0	64	Equal	9.590	4.836	1.0012	0.9644
1	0	0	64	Utility	9.593	4.836	1.0012	0.9644
1	0	0	64	Score	10.078	4.839	0.9997	0.9593
1	0	1	640	Equal	9.300	5.071	1.0012	0.9644
1	0	1	640	Utility	9.304	5.071	1.0012	0.9644
1	0	1	640	Score	7.849	5.096	1.0005	0.9635
1	1	0	640	Equal	7.875	4.840	1.0016	0.9656
1	1	0	640	Utility	7.877	4.841	1.0016	0.9655
1	1	0	640	Score	8.213	4.841	1.0021	0.9608
1	1	1	6400	Equal	9.321	5.073	1.0016	0.9656
1	1	1	6400	Utility	9.324	5.073	1.0016	0.9655
1	1	1	6400	Score	8.475	5.093	1.0010	0.9648

Multivariate Model Averaging Results, 3 year maturity

Multivariate Model Averaging Results, 4 year maturity

Pred	TVP	SV	Models	Weights	CER	ALS	MSE S.	MSE B.
0	0	0	1	(none)	7.561	4.568	1.0000	1.0000
0	0	1	10	Equal	9.610	4.755	1.0000	1.0000
0	0	1	10	Utility	9.609	4.755	1.0000	1.0000
0	0	1	10	Score	8.916	4.764	1.0000	1.0000
0	1	0	10	Equal	8.060	4.568	1.0005	0.9929
0	1	0	10	Utility	8.060	4.568	1.0005	0.9929
0	1	0	10	Score	7.734	4.567	1.0020	0.9974
0	1	1	100	Equal	10.002	4.753	1.0005	0.9929
0	1	1	100	Utility	10.002	4.753	1.0005	0.9929
0	1	1	100	Score	9.441	4.762	1.0005	0.9930
1	0	0	64	Equal	9.704	4.583	1.0012	0.9660
1	0	0	64	Utility	9.707	4.583	1.0012	0.9660
1	0	0	64	Score	10.017	4.585	0.9998	0.9623
1	0	1	640	Equal	9.705	4.766	1.0012	0.9660
1	0	1	640	Utility	9.710	4.766	1.0012	0.9660
1	0	1	640	Score	8.677	4.779	1.0004	0.9655
1	1	0	640	Equal	7.661	4.587	1.0015	0.9690
1	1	0	640	Utility	7.663	4.587	1.0015	0.9689
1	1	0	640	Score	7.968	4.587	1.0020	0.9650
1	1	1	6400	Equal	9.722	4.764	1.0015	0.9690
1	1	1	6400	Utility	9.728	4.764	1.0015	0.9689
1	1	1	6400	Score	9.238	4.774	1.0009	0.9684

Multivariate Model Averaging Results, 4 year maturity

Multivariate Model Averaging Results, 5 year maturity

Pred	TVP	SV	Models	Weights	CER	ALS	MSE S.	MSE B.
0	0	0	1	(none)	7.366	4.371	1.0000	1.0000
0	0	1	10	Equal	9.294	4.525	1.0000	1.0000
0	0	1	10	Utility	9.295	4.525	1.0000	1.0000
0	0	1	10	Score	9.355	4.528	1.0000	1.0000
0	1	0	10	Equal	7.826	4.372	1.0005	0.9934
0	1	0	10	Utility	7.825	4.372	1.0005	0.9934
0	1	0	10	Score	7.449	4.370	1.0021	0.9985
0	1	1	100	Equal	9.831	4.524	1.0005	0.9934
0	1	1	100	Utility	9.831	4.524	1.0005	0.9934
0	1	1	100	Score	9.489	4.526	1.0005	0.9934
1	0	0	64	Equal	9.582	4.387	1.0012	0.9669
1	0	0	64	Utility	9.585	4.387	1.0012	0.9668
1	0	0	64	Score	9.793	4.389	1.0000	0.9643
1	0	1	640	Equal	9.782	4.540	1.0012	0.9669
1	0	1	640	Utility	9.786	4.540	1.0012	0.9668
1	0	1	640	Score	8.842	4.547	1.0004	0.9667
1	1	0	640	Equal	7.232	4.390	1.0016	0.9719
1	1	0	640	Utility	7.235	4.390	1.0016	0.9719
1	1	0	640	Score	7.462	4.390	1.0020	0.9689
1	1	1	6400	Equal	9.236	4.537	1.0016	0.9719
1	1	1	6400	Utility	9.242	4.537	1.0016	0.9719
1	1	1	6400	Score	9.027	4.542	1.0009	0.9716

Multivariate Model Averaging Results, 5 year maturity

Summary

- The best single risky asset models include predictors and stochastic volatility, perhaps with time-varying parameters for bonds.
- If optimizing statistical fit (ALS), the best models of multiple risky assets include stochastic volatility, usually with predictors.
- If optimizing economic significance (CER), the best models of multiple risky assets include
 - Predictors alone for shorter maturities.
 - ► Time-varying parameters and stochastic volatility with no predictors for larger maturities, equal or utility weighted (also the balanced choice).

Conclusions

- We demonstrate a Bayesian methodology that can quickly estimate a time-series model without requiring MCMC or another computation-intensive sampling algorithm.
- Time-varying parameters, stochastic volatility, and predictors generally show improvements over the benchmark model.
- Does predictability exist? Yes, the best averaged model in most cases include predictors.
- Is time variation important? Yes, especially stochastic volatility.

Questions, Comments?

Thank you!

Different Risk Aversion

What if $\gamma = 10$?

Score-weighted Model, no Discounting - Portfolio Weights

Intervention

Intervention: Expected risk premium should be non-negative if not positive.