EXPERIMENT NO. 1

Rate Study in a Plug Flow Reactor

Object:

- (1) To determine the order of reaction between sodium hydroxide and ethyl acetate using a plug flow reactor.
- (2) To find the rate constant at a particular temperature.

Theory:

Stoichiometric Equation: NaOH+CH₃COOC₂H₅ →CH₃COONa+C₂H₅OH

 $(A) \qquad (B) \qquad \qquad (C) \qquad \qquad (D)$

Mole balance: $\frac{v_R}{r_{A_0}} = \int_0^{x_A} \frac{dx_A}{-r_A}$

Rate Equation: $-r_A = k_2 C_{A_0}^2 (1 - X_A) (M - X_A)$ assuming 2nd order reaction

Where $M = \frac{c_{B_0}}{c_{A_0}}$, X_A = conversion of A, k_2 = rate constant

$$\frac{V_R}{F_{A_0}} = \frac{V_R}{v_0 C_{A_0}} = \frac{\tau}{C_{A_0}} = \frac{1}{k_2 C_{A_0}^2 (M-1)} ln \frac{M - X_A}{M(1 - X_A)} = \frac{1}{k_2} f(X_A)$$

Where $v_0 = v_A + v_B$ and $\tau = \frac{v_R}{v_0}$

Apparatus:

- (1) Stainless steel reactor in a constant temperature water bath
- (2) Stop watch

Dimension of the reactor:

Length of the coil: 609.6 cm

Inside diameter of the tube: 1.23cm

Volume of the reactor (volume of tube): 0.724 liter

Chemicals:

(i) Succinic Acid (N/50) (ii) NaOH (N/20) (iii) CH₃COOC₂H₅ (N/10) and (iv) Phenolphthalein indicator

Procedure:

- (i) Fill both the storage tanks of ethyl acetate, sodium hydroxide and calibrate the flow meters.
- (ii)Adjust the control valves to set the flow meters. Try to keep both the flow rates equal.
- (iii) After attaining steady-state, collect the sample in a flask from the outlet.
- (iv)Take 5 ml of this sample and titrate with the standard succinic acid solution with phenolphathalein as indicator.
- (v)Take 5 ml of the supplied NaOH solution by the standard succinic acid solution to get C'_{A_0} gmol/liter
- (vi)Calculate X_A from C_A for various $\tau = \frac{V_R}{v_0}$
- (vii)Plot $f(X_A)$ against τ and determine the rate constant from the slope.

N.B.
$$C_{A_0} = \frac{v_A}{v_A + v_B} C'_{A_0}$$
 and $C_{B_0} = \frac{v_B}{v_A + v_B} C'_{B_0}$

