AMI and HDB1 Line Codes - VHDL Implementation.

Ribamar Santarosa, ribamar@gmail.com

Outubro/Novembro 2006.

Abstract

Line codings are methods for coding digital data for making them less susceptible to signal losses during transmission. This project implements the AMI — Alternate Mark Inverse — and HDB1 — High Density Bipolar of order 1 codings. This file documents their implementation.

1 Specification.

AMI. This coding takes a binary sequency into a ternary sequency having the signals 0, +1, -1 by the following way:

- Inputs of 1 are coded as +1 or -1 alternately.
- Inputs of 0 are coded always as 0.
- Entradas iguais a zero são codificadas como zero;

Example:

HDB1. This coding takes a binary sequency into a ternary sequency having the signals 0, +1, -1 by the following way:

- Inputs of 1 are coded as either +1 or -1.
- Paired inputs of 0 are coded as either +1+1 or -1-1.
- Entradas iguais a zero, isoladas, isto é, seguidas de um e que não foram codificadas em conjunto com outro zero (formando +1+1 ou -1-1), são codificadas como zero;
- Isolated inputs of 0, ie, inputs of 0 not followed by 1 which weren't paired to another 0 (thus forming +1+1 or -1-1) are coded as 0.
- Outputs have always alternate signals. If the last output was -1 and the input is 00, the next output is coded as +1+1, if the last output was -1-1 and the input is 1, the next output is +1.

Example:

2 AMI Encoder.

Figure 1: State Map.

Truth Table:

q	e	S_0	S_1	q^+
0	0	0	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	0

Karnaugh Map isn't necessary:

$$S_0 = e \cdot q'$$

$$S_1 = e \cdot q$$

$$q^+ = e \oplus q$$

3 AMI Decoder.

Figure 2: State Map.

Truth Table:

e_0	e_1	S
0	0	0
0	1	1
1	0	1
1	1	X

Karnaugh Map isn't necessary:

$$S = e_0 + e_1$$

4 HDB1 Encoder.

Figure 3: State Map.

Truth Table:

E	q_0	q_1	q_2	q_0^+	q_1^+	q_2^+	S_0	S_1
0	0	0	0	0	0	1	1	0
1	0	0	0	1	1	0	1	0
0	0	0	1	0	1	0	0	1
1	0	0	1	1	1	0	0	0
0	0	1	0	0	1	1	0	1
1	0	1	0	0	0	0	0	1
0	0	1	1	1	0	0	1	0
1	0	1	1	0	0	0	0	0
0	1	0	0	0	0	1	1	0
1	1	0	0	1	1	0	1	0
X	1	0	1	X	X	X	X	X
0	1	1	0	1	1	1	0	1
1	1	1	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	0	1

$$q_{0}^{+} \colon \begin{bmatrix} Eq_{0} \\ & & & \\ & & 00 \\ q_{1}q_{2} & 01 \\ q_{1}q_{2} & 01 \\ & & 1 \\ & & 10 \\ \end{bmatrix} \begin{bmatrix} X & X & X \\ X & 1 \\ & & 1 \\ & & 10 \\ \end{bmatrix}$$

$$q_{0}^{+} = E.q'_{1} + E'.q'_{0}.q_{1}.q_{2} + E'.q_{0}.q_{1}.q'_{2}$$

$$Eq_{0} \\ & & 00 \\ & & 1 \\ & & 1 \\ q_{1}q_{2} & 01 \\ & & & 1 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 1 \\ & & 1 \\ & & 1 \\ & & & 1 \end{bmatrix}$$

$$q_{1}^{+} = E.q'_{1} + q'_{1}.q_{2} + E'.q_{1}.q'_{2}$$

$$Eq_{0} \\ & & 00 \\ & & 00 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 1 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 00 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 1 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 01 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 1 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 1 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 1 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 1 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 1 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ & & 1 \\ \end{bmatrix} \begin{bmatrix} Eq_{0} \\ & & 00 \\ \end{bmatrix} \begin{bmatrix} Eq_$$

5 HDB1 Decoder.

Truth

Figure 4: State Map.

	e_1	e_0	q_1	q_0	q_0^+	q_1^+	S
	0	0	0	0	0	0	0
	0	0	0	1	0	0	1
	0	0	1	0	0	0	1
	0	0	1	1	X	X	X
	0	1	0	0	0	1	0
	0	1	0	1	0	0	0
	0	1	1	0	0	1	1
Table:	0	1	1	1	X	X	X
	1	0	0	0	0	1	0
	1	0	0	1	1	0	1
	1	0	1	0	0	0	0
	1	0	1	1	X	X	X
	1	1	0	0	X	X	X
	1	1	0	1	X	X	X
	1	1	1	0	X	X	X
	1	1	1	1	X	X	X
'							1

$$q_0^+ = q_0'.e_0$$

$$q_1^+ = q_1'.e_1$$

$$S: \begin{bmatrix} q_1q_0 & & & & & \\ & & & 00 & & 01 & & 11 & & 10 \\ & & 00 & & & 1 & & X & & 1 \\ e_1e_2 & & 01 & & & & & X & & 1 \\ & & & 11 & & X & & X & & X & & X \\ & & & 10 & & & 1 & & X & & X \end{bmatrix}$$

$$S = q_0.e'_0 + q_1.e'_1$$