### Introduction

This is the first contact with the featuring engineering process and its impact in a ML pipeline. Feature engineering is one of the most important step of the process of developing prediction models.

The experimental dataset used is the HR Analytics Dataset. It includes explanatory variables of around 15k employees of a large company. The goal of the case study is to model the probability of attrition (employees leaving, either on their own or because they got fired) of each employee, as well as to understand which variables are the most important ones and need to be addressed right away. The results obtained will be helpful for the management in order to understand what changes they should make to their workplace to get most of their employees to stay.

```
In [78]:
```

```
from dataset import Dataset as dataset
from sklearn.linear_model import LogisticRegression
from typing import List
from skrebate import ReliefF
from pandas import read_csv
from sklearn import linear_model
from sklearn import metrics
from sklearn.model_selection import cross_val_score, cross_val_predict, cross_validate
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import classification_report
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
```

#### In [ ]:

```
pip install nbconvert
```

## **Data Loading**

```
In [80]:
data = pd.read_csv("turnover.csv")

In [81]:
data.head()
```

### Out[81]:

|   | satisfaction_level | last_evaluation | number_project | average_montly_hours | time_spend_company | Work_accident | left | promotion_last |
|---|--------------------|-----------------|----------------|----------------------|--------------------|---------------|------|----------------|
| 0 | 0.38               | 0.53            | 2              | 157                  | 3                  | 0             | 1    |                |
| 1 | 0.80               | 0.86            | 5              | 262                  | 6                  | 0             | 1    |                |
| 2 | 0.11               | 0.88            | 7              | 272                  | 4                  | 0             | 1    |                |
| 3 | 0.72               | 0.87            | 5              | 223                  | 5                  | 0             | 1    |                |
| 4 | 0.37               | 0.52            | 2              | 159                  | 3                  | 0             | 1    |                |
| 4 |                    |                 |                |                      |                    |               |      | Þ              |

# **Removing Null Values**

Creating one more dataframe that conatins our original dataset

```
In [82]:
```

```
dataa = pd.DataFrame(data)
```

```
In [83]:
```

```
data1 = data.dropna(axis = 0)
```

#### In [84]:

```
print("Length of old dataframe:", len(data), "\nLength of new dataframe:",
    len(data1), "\nNumber of rows with NA values: ",
    (len(data)-len(data1)))
```

```
Length of old dataframe: 14999
Length of new dataframe: 14999
Number of rows with NA values: 0
```

No null values present

Renaming few columns for better understanding of our dataset

#### In [85]:

#### Out[85]:

|   | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | left | Promotion | Depart |
|---|--------------|-----------------|----------------|-----------------------|--------------------|---------------|------|-----------|--------|
| 0 | 0.38         | 0.53            | 2              | 157                   | 3                  | 0             | 1    | 0         |        |
| 1 | 0.80         | 0.86            | 5              | 262                   | 6                  | 0             | 1    | 0         |        |
| 2 | 0.11         | 0.88            | 7              | 272                   | 4                  | 0             | 1    | 0         |        |
| 3 | 0.72         | 0.87            | 5              | 223                   | 5                  | 0             | 1    | 0         |        |
| 4 | 0.37         | 0.52            | 2              | 159                   | 3                  | 0             | 1    | 0         |        |
| 4 |              |                 |                |                       |                    |               |      |           | Þ      |

Checking the data types of all features

#### In [86]:

```
data.dtypes
```

#### Out[86]:

```
float64
Satisfaction
last evaluation
                      float64
                       int64
number_project
average monthly hours
                       int64
time spend company
                       int64
                        int64
Work_accident
left
                        int64
Promotion
                        int64
Department
                       object
salary
                       object
dtype: object
```

# **Checking Skewness of every column**

Will remove skewness if present because there are some methods that assume that the residuals are normal

```
In [87]:
```

```
data.skew(axis = 0)
```

#### Out[87]:

```
Satisfaction -0.476360
last_evaluation -0.026622
number_project 0.337706
average_monthly_hours 0.052842
time_spend_company 1.853319
Work_accident 2.021149
left 1.230043
Promotion 6.636968
dtype: float64
```

Skewness of first four columns seems fine, have to change skewness of column time\_spend\_company, other columns are categorical in nature so there will be some skewness always

### In [90]:

```
skew_log = np.log(data.time_spend_company)
skew_log.describe()
```

### Out[90]:

| count | 14999.000000 |
|-------|--------------|
| mean  | 1.181700     |
| std   | 0.362584     |
| min   | 0.693147     |
| 25%   | 1.098612     |
| 50%   | 1.098612     |
| 75%   | 1.386294     |
| max   | 2.302585     |
|       |              |

Name: time\_spend\_company, dtype: float64

### In [91]:

```
sns.distplot(skew_log)
```

### Out[91]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x2130cdb65c8>



### In [92]:

```
skew_log.skew()
```

#### Out[92]:

0.5885330284719315

Skewness of column time\_spend\_company is reduced to 0.5885330284719315

We are going to map the salary column to substitute each categorical value in this column into numbers because later we have to scale these values and also Logistic Regression supports only numerical values

```
In [93]:
```

```
data["salary"] = data.salary.map({'low':1, 'medium':2,'high':3})
```

#### Scaling

Scaling all numerical columns to normalise the data within 0 to 1 range to ensure that the algorithm treats them with equal importance and it also speeds up the calculations in an algorithm.

#### In [94]:

#### Out[94]:

|       | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | left | Promotion | D€ |
|-------|--------------|-----------------|----------------|-----------------------|--------------------|---------------|------|-----------|----|
| 0     | 0.318681     | 0.265625        | 0.0            | 0.285047              | 0.125              | 0.0           | 1.0  | 0.0       |    |
| 1     | 0.780220     | 0.781250        | 0.6            | 0.775701              | 0.500              | 0.0           | 1.0  | 0.0       |    |
| 2     | 0.021978     | 0.812500        | 1.0            | 0.822430              | 0.250              | 0.0           | 1.0  | 0.0       |    |
| 3     | 0.692308     | 0.796875        | 0.6            | 0.593458              | 0.375              | 0.0           | 1.0  | 0.0       |    |
| 4     | 0.307692     | 0.250000        | 0.0            | 0.294393              | 0.125              | 0.0           | 1.0  | 0.0       |    |
|       |              |                 |                |                       |                    |               |      |           |    |
| 14994 | 0.340659     | 0.328125        | 0.0            | 0.257009              | 0.125              | 0.0           | 1.0  | 0.0       |    |
| 14995 | 0.307692     | 0.187500        | 0.0            | 0.299065              | 0.125              | 0.0           | 1.0  | 0.0       |    |
| 14996 | 0.307692     | 0.265625        | 0.0            | 0.219626              | 0.125              | 0.0           | 1.0  | 0.0       |    |
| 14997 | 0.021978     | 0.937500        | 0.8            | 0.859813              | 0.250              | 0.0           | 1.0  | 0.0       |    |
| 14998 | 0.307692     | 0.250000        | 0.0            | 0.289720              | 0.125              | 0.0           | 1.0  | 0.0       |    |

### 14999 rows × 10 columns

In [95]:

data.dtypes

#### Out[95]:

Satisfaction float64
last\_evaluation float64
number\_project float64
average\_monthly\_hours float64
time\_spend\_company float64
Work\_accident float64
left float64
Promotion float64
Department object
salary float64
dtype: object

Changing column Department to category as i have to do one hot encoding of categorical features

```
In [96]:
```

```
data['Department'] = data.Department.astype('category')
```

# **One Hot Encoding**

Doing One hot encoding because most machine learning algorithms require numerical input and output variables

#### In [97]:

#### Out[97]:

|   | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | Promotion | salary | Dep |
|---|--------------|-----------------|----------------|-----------------------|--------------------|---------------|-----------|--------|-----|
| 0 | 0.318681     | 0.265625        | 0.0            | 0.285047              | 0.125              | 0.0           | 0.0       | 0.0    |     |
| 1 | 0.780220     | 0.781250        | 0.6            | 0.775701              | 0.500              | 0.0           | 0.0       | 0.5    |     |
| 2 | 0.021978     | 0.812500        | 1.0            | 0.822430              | 0.250              | 0.0           | 0.0       | 0.5    |     |
| 3 | 0.692308     | 0.796875        | 0.6            | 0.593458              | 0.375              | 0.0           | 0.0       | 0.0    |     |
| 4 | 0.307692     | 0.250000        | 0.0            | 0.294393              | 0.125              | 0.0           | 0.0       | 0.0    |     |
| 4 |              |                 |                |                       |                    |               |           |        | Þ   |

Splitting dataset into test and train

#### In [98]:

```
from sklearn.model_selection import train_test_split

target_name = 'left'
X = dummy_data.drop('left', axis=1)
y=dummy_data[target_name]

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.15, random_state=1, stratify=y)

X_train.head()
```

### Out[98]:

|   |      | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | Promotion | salary |
|---|------|--------------|-----------------|----------------|-----------------------|--------------------|---------------|-----------|--------|
| 1 | 3475 | 0.538462     | 0.859375        | 0.2            | 0.271028              | 1.000              | 0.0           | 0.0       | 1.0    |
|   | 9105 | 0.813187     | 0.656250        | 0.6            | 0.719626              | 0.000              | 1.0           | 0.0       | 0.0    |
| 1 | 1226 | 0.527473     | 1.000000        | 0.4            | 0.612150              | 1.000              | 0.0           | 0.0       | 0.0    |
|   | 4042 | 0.681319     | 0.828125        | 0.2            | 0.691589              | 0.250              | 0.0           | 0.0       | 0.5    |
|   | 4781 | 0.692308     | 0.531250        | 0.2            | 0.247664              | 0.125              | 0.0           | 0.0       | 0.5    |
| 4 |      |              |                 |                |                       |                    |               |           | Þ      |

### Checking Baseline

#### In [99]:

```
model = LogisticRegression(random_state = 99)
model.fit(X_train,y_train)
predictions = model.predict(X_test)
print(classification_report(y_test,predictions))
```

|                           | precision    | recall       | f1-score     | support      |
|---------------------------|--------------|--------------|--------------|--------------|
| 0.0<br>1.0                | 0.82<br>0.62 | 0.94<br>0.34 | 0.87<br>0.44 | 1714<br>536  |
| accuracy                  | 0.72         | 0.64         | 0.79         | 2250<br>2250 |
| macro avg<br>weighted avg | 0.72         | 0.79         | 0.88         | 2250         |

# **Feature Engineering**

#### **Outliers Detection**

### In [100]:

```
import seaborn as sns
sns.boxplot(x=data['Satisfaction'], color = 'r')
```

### Out[100]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x2130cdad8c8>



### No outlier is present in column Satisfaction

### In [101]:

```
sns.boxplot(x=data['last_evaluation'],color='r')
#No outlier is present in column last_evaluation
```

#### Out[101]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x2130cb41c88>



#### In [102]:

ene hovnlot (v=data[!number project!] color = !r!)

```
#No outlier is present in column number_project
```

#### Out[102]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x2130c9d9188>



### In [103]:

```
sns.boxplot(x=data['average_monthly_hours'],color = 'r')
#No outlier is present in column average_monthly_hours
```

#### Out[103]:

<matplotlib.axes. subplots.AxesSubplot at 0x2130ca8e888>



### In [104]:

```
sns.boxplot(x=data['time_spend_company'], color = 'r')
#There are some outliers in time_spend_company
```

### Out[104]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x2130a8ae288>



So how many people spent more than around 6 years in company

```
In [105]:
```

```
out = data[data['time spend company'] > 0.6]
out.count()
Out[105]:
                        564
Satisfaction
last_evaluation
                        564
number_project
                        564
average_monthly_hours 564
time spend company
                       564
Work_accident
                        564
left
                        564
Promotion
                        564
                        564
Department
                        564
salary
dtype: int64
```

564 people spent more than 6 years in company

Are they leaving after spending so many years in company?

```
In [106]:
```

```
left_group = out.groupby('left')
left_group.count()
```

Out[106]:

Satisfaction last\_evaluation number\_project average\_monthly\_hours time\_spend\_company Work\_accident Promotion Department left

| 0.0 | 564 | 564 | 564 | 564 | 564 | 564 | 564 | 56 |
|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 4   |     |     |     |     |     |     |     | ▶  |

Nobody left after spending so many years in one company, probably removing these people from our dataset will create a balance

### In [107]:

```
outliers=[]
def remove_outlier(data_in, time_spend_company):
    Q1 = data_in[time_spend_company].quantile(0.25)
    Q3 = data_in[time_spend_company].quantile(0.75)
    IQR = Q3-Q1
    lower_bound = Q1-1.5*IQR
    upper_bound = Q3+1.5*IQR
    data_out = data_in.loc[(data_in[time_spend_company] > lower_bound) &
    (data_in[time_spend_company] < upper_bound)]
    print("{} outliers removed".format(len(data_in) - len(data_out)))
    return data_out</pre>
```

```
In [108]:
```

```
data = remove_outlier(data,'time_spend_company')
```

1282 outliers removed

Converting Department column from string values to numerical values to check accuracy and also because Logistic Regression supports numerical values

```
In [109]:
```

After removing outliers, again have to split new dataset in train and test, #splitting the original data that is not one hot encoded

```
In [111]:
```

```
target_name = 'left'
X = data.drop('left', axis=1)

y=data[target_name]

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.15, random_state=1, stratify=y)

X_train.head()
```

#### Out[111]:

|      | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | Promotion | Departm |
|------|--------------|-----------------|----------------|-----------------------|--------------------|---------------|-----------|---------|
| 746  | 0.296703     | 0.218750        | 0.0            | 0.168224              | 0.125              | 0.0           | 0.0       |         |
| 8691 | 0.439560     | 0.328125        | 0.2            | 0.285047              | 0.125              | 0.0           | 0.0       |         |
| 9865 | 0.956044     | 0.234375        | 0.6            | 0.509346              | 0.000              | 1.0           | 0.0       |         |
| 2253 | 0.142857     | 0.250000        | 0.8            | 0.369159              | 0.250              | 0.0           | 0.0       |         |
| 6944 | 0.857143     | 0.187500        | 0.4            | 0.172897              | 0.000              | 0.0           | 0.0       |         |
| 4    |              |                 |                |                       |                    |               |           | Þ       |

Cross Validating to prevent overfitting

```
In [112]:
```

```
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split, KFold, RandomizedSearchCV, GridSearchCV
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
```

#### In [113]:

```
kfold = KFold(n_splits=5, random_state=99)
model = LogisticRegression(C=5)
results = cross_val_score(model ,X_train, y_train, cv=kfold)
results
```

#### Out[113]:

```
array([0.82418525, 0.83576329, 0.83662093, 0.81389365, 0.84212784])
```

### Checking model accuracy and F1 score

#### In [114]:

```
model = LogisticRegression(random_state = 99)
model.fit(X_train, y_train)
predictions = model.predict(X test)
```

```
PTCGTCTCIID
print(classification_report(y_test,predictions))
            precision recall f1-score support
                      0.91
                                0.89
       0.0
                0.87
                                           1554
       1.0
                0.68
                         0.57
                                 0.62
                                           504
                                 0.83
                                          2058
   accuracy
                0.77
  macro avg
                      0.74
                                 0.75
                                         2058
                                 0.82
                0.82
                        0.83
                                          2058
weighted avg
```

Will do some Binning For instance, the 'time\_spend\_company' can be represented by different numbers (1, 2, 3, ...). We will then create another "bucketized" feature for some numerical columns because some features are much more fine grained than we need Represented 'time\_spend\_company' in numbers because Logistic Regression only supports numerical values

```
In [115]:
```

```
#Checking values present in time_spend_company
data['time_spend_company'].unique()

Out[115]:
array([0.125, 0.25 , 0.375, 0. ])
```

#### In [116]:

```
#Binning
criteria = [data['number_project'].between(0,0.2), data['number_project'].between(0.2,0.4), data['n
umber_project'].between(0.4,1)]
values = ["1","2","3"]
data['number_project_cat'] = np.select(criteria, values, 0)

#data['number_project_cat'] =
data['number_project'].map({0:"Low",0.2:"Low",0.4:"Medium",0.6:"Medium",0.8:"High",1:"Very_High"}).
pe('category')
data['time_spend_company_cat'] = data['time_spend_company'].map({0::"1",0.125:"2",0.25:"3",0.375:"4"}).astype('category')
```

#### In [117]:

```
data.head()
```

#### Out[117]:

|   | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | left | Promotion | Depart |
|---|--------------|-----------------|----------------|-----------------------|--------------------|---------------|------|-----------|--------|
| 0 | 0.318681     | 0.265625        | 0.0            | 0.285047              | 0.125              | 0.0           | 1.0  | 0.0       |        |
| 2 | 0.021978     | 0.812500        | 1.0            | 0.822430              | 0.250              | 0.0           | 1.0  | 0.0       |        |
| 3 | 0.692308     | 0.796875        | 0.6            | 0.593458              | 0.375              | 0.0           | 1.0  | 0.0       |        |
| 4 | 0.307692     | 0.250000        | 0.0            | 0.294393              | 0.125              | 0.0           | 1.0  | 0.0       |        |
| 5 | 0.351648     | 0.218750        | 0.0            | 0.266355              | 0.125              | 0.0           | 1.0  | 0.0       |        |
| 4 |              |                 |                |                       |                    |               |      |           | Þ      |

### In [118]:

```
data.dtypes
```

#### Out[118]:

| Satisfaction          | float64  |
|-----------------------|----------|
| last_evaluation       | float64  |
| number_project        | float64  |
| average_monthly_hours | float64  |
| time_spend_company    | float64  |
| Work_accident         | float64  |
| 7 (1                  | C1 . C 4 |
|                       |          |

Converting column created after binning 'number\_project\_cat' into category because we have to do one hot encoding of a categorical column 'number\_project\_cat'

#### In [119]:

```
#Converting column created after binning 'number_project_cat' into category
data['number_project_cat']=data.number_project_cat.astype('category')
```

#### In [120]:

```
data.head()
```

#### Out[120]:

|   | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | left | Promotion | Depart |
|---|--------------|-----------------|----------------|-----------------------|--------------------|---------------|------|-----------|--------|
| 0 | 0.318681     | 0.265625        | 0.0            | 0.285047              | 0.125              | 0.0           | 1.0  | 0.0       |        |
| 2 | 0.021978     | 0.812500        | 1.0            | 0.822430              | 0.250              | 0.0           | 1.0  | 0.0       |        |
| 3 | 0.692308     | 0.796875        | 0.6            | 0.593458              | 0.375              | 0.0           | 1.0  | 0.0       |        |
| 4 | 0.307692     | 0.250000        | 0.0            | 0.294393              | 0.125              | 0.0           | 1.0  | 0.0       |        |
| 5 | 0.351648     | 0.218750        | 0.0            | 0.266355              | 0.125              | 0.0           | 1.0  | 0.0       |        |
| 4 | •            |                 |                |                       |                    |               |      |           | Þ      |

#### One Hot Encoding

Doing One hot encoding because most machine learning algorithms require numerical input and output variables to do a better job in prediction

#### In [121]:

#### Out[121]:

|   | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | Promotion | salary | Dep |
|---|--------------|-----------------|----------------|-----------------------|--------------------|---------------|-----------|--------|-----|
| 0 | 0.318681     | 0.265625        | 0.0            | 0.285047              | 0.125              | 0.0           | 0.0       | 0.0    |     |
| 1 | 0.021978     | 0.812500        | 1.0            | 0.822430              | 0.250              | 0.0           | 0.0       | 0.5    |     |
| 2 | 0.692308     | 0.796875        | 0.6            | 0.593458              | 0.375              | 0.0           | 0.0       | 0.0    |     |
| 3 | 0.307692     | 0.250000        | 0.0            | 0.294393              | 0.125              | 0.0           | 0.0       | 0.0    |     |
| 4 | 0.351648     | 0.218750        | 0.0            | 0.266355              | 0.125              | 0.0           | 0.0       | 0.0    |     |

#### 5 rows × 26 columns

In [122]:

```
target_name = 'left'
X2 = dummy1_data.drop('left', axis=1)

y2=dummy1_data[target_name]

X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.15, random_state=42, straify=y)

X2_train.head()
```

Out[122]:

|       | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | Promotion | salary |
|-------|--------------|-----------------|----------------|-----------------------|--------------------|---------------|-----------|--------|
| 1611  | 0.000000     | 0.640625        | 0.8            | 0.869159              | 0.375              | 0.0           | 0.0       | 0.5    |
| 8823  | 0.307692     | 0.718750        | 0.2            | 0.481308              | 0.375              | 0.0           | 0.0       | 0.5    |
| 2383  | 0.670330     | 0.421875        | 0.2            | 0.275701              | 0.250              | 1.0           | 0.0       | 0.0    |
| 11306 | 0.714286     | 1.000000        | 0.4            | 0.714953              | 0.375              | 0.0           | 0.0       | 0.0    |
| 10612 | 0.395604     | 0.296875        | 0.4            | 0.514019              | 0.000              | 0.0           | 0.0       | 0.0    |

5 rows × 25 columns

### Cross Validating to prevent over-fitting

```
In [123]:
```

```
kfold = KFold(n_splits=5, random_state=99)
model = LogisticRegression(C=5)
results = cross_val_score(model ,X2_train, y2_train, cv=kfold)
results
```

#### Out[123]:

array([0.90651801, 0.90909091, 0.8983705 , 0.8957976 , 0.90733591])

### In [124]:

```
model = LogisticRegression(random_state = 99)
model.fit(X2_train, y2_train)
predictions = model.predict(X2_test)
print(classification_report(y2_test, predictions))
```

|              | precision | recall | fl-score | support |
|--------------|-----------|--------|----------|---------|
| 0.0          | 0.94      | 0.92   | 0.93     | 1554    |
| 1.0          | 0.78      | 0.83   | 0.81     | 504     |
| accuracy     |           |        | 0.90     | 2058    |
| macro avg    | 0.86      | 0.88   | 0.87     | 2058    |
| weighted avg | 0.90      | 0.90   | 0.90     | 2058    |

Seems a improvement in results, lets see some feature importance

# **Filtering**

Important features of the LogisticRegression

```
In [125]:
```

```
lm = linear_model.LogisticRegression(max_iter=10000, penalty = 'none')
lm.fit(X2_train, y2_train)
```

#### Out[125]:

Ploting the feature importance of the LogisticRegression models, this code is taken from <a href="https://stackoverflow.com/a/47191103">https://stackoverflow.com/a/47191103</a>)

#### In [126]:

```
def get_feature_importance(clf):
    feature_importance = abs(clf.coef_[0])
    feature_importance = 100.0 * (feature_importance / feature_importance.max())
    sorted_idx = np.argsort(feature_importance)
    pos = np.arange(sorted_idx.shape[0]) + .5

featfig = plt.figure(figsize=(10,10))
    featax = featfig.add_subplot(1, 1, 1)
    featax.barh(pos, feature_importance[sorted_idx], align='center')
    featax.set_yticks(pos)
    featax.set_yticks([])
    featax.set_yticklabels(np.array(X2.columns)[sorted_idx], fontsize=15)
    featax.set_xlabel('Relative Feature Importance', fontsize=15)
```

#### In [128]:

```
get_feature_importance(lm)
```



Relative Feature Importance

### In [129]:

```
data.head()
```

Out[129]:

|   | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | left | Promotion | Depart |
|---|--------------|-----------------|----------------|-----------------------|--------------------|---------------|------|-----------|--------|
| 0 | 0.318681     | 0.265625        | 0.0            | 0.285047              | 0.125              | 0.0           | 1.0  | 0.0       |        |
| 2 | 0.021978     | 0.812500        | 1.0            | 0.822430              | 0.250              | 0.0           | 1.0  | 0.0       |        |
| 3 | 0.692308     | 0.796875        | 0.6            | 0.593458              | 0.375              | 0.0           | 1.0  | 0.0       |        |
| 4 | 0.307692     | 0.250000        | 0.0            | 0.294393              | 0.125              | 0.0           | 1.0  | 0.0       |        |
| 5 | 0.351648     | 0.218750        | 0.0            | 0.266355              | 0.125              | 0.0           | 1.0  | 0.0       |        |
| 4 |              |                 |                |                       |                    |               |      |           | Þ      |

Droping features that are not very important, Keeping top 12 features

#### In [130]:

### Out[130]:

|   | Satisfaction | last_evaluation | number_project | average_monthly_hours | Work_accident | Promotion | salary | number_project_cat_1 nur |
|---|--------------|-----------------|----------------|-----------------------|---------------|-----------|--------|--------------------------|
| 0 | 0.318681     | 0.265625        | 0.0            | 0.285047              | 0.0           | 0.0       | 0.0    | 1.0                      |
| 1 | 0.021978     | 0.812500        | 1.0            | 0.822430              | 0.0           | 0.0       | 0.5    | 0.0                      |
| 2 | 0.692308     | 0.796875        | 0.6            | 0.593458              | 0.0           | 0.0       | 0.0    | 0.0                      |
| 3 | 0.307692     | 0.250000        | 0.0            | 0.294393              | 0.0           | 0.0       | 0.0    | 1.0                      |
| 4 | 0.351648     | 0.218750        | 0.0            | 0.266355              | 0.0           | 0.0       | 0.0    | 1.0                      |
| 4 |              |                 |                |                       |               |           |        | <u> </u>                 |

Now splitting test and train for dataset after dropping features

#### In [131]:

```
#Splitting train and test sets
target_name = 'left'
X3 = drop_department.drop('left', axis=1)
#now X2 has binned dataframe with no left and no Department col

y3=drop_department[target_name]

X3_train, X3_test, y3_train, y3_test = train_test_split(X3,y3,test_size=0.15, random_state=42, straify=y)

X3_train.head()
```

### Out[131]:

|       | Satisfaction | last_evaluation | number_project | average_monthly_hours | Work_accident | Promotion | salary | number_project_cat_1 |
|-------|--------------|-----------------|----------------|-----------------------|---------------|-----------|--------|----------------------|
| 1611  | 0.000000     | 0.640625        | 0.8            | 0.869159              | 0.0           | 0.0       | 0.5    | 0.0                  |
| 8823  | 0.307692     | 0.718750        | 0.2            | 0.481308              | 0.0           | 0.0       | 0.5    | 0.0                  |
| 2383  | 0.670330     | 0.421875        | 0.2            | 0.275701              | 1.0           | 0.0       | 0.0    | 0.0                  |
| 11306 | 0.714286     | 1.000000        | 0.4            | 0.714953              | 0.0           | 0.0       | 0.0    | 0.0                  |
| 10612 | 0.395604     | 0.296875        | 0.4            | 0.514019              | 0.0           | 0.0       | 0.0    | 0.0                  |
| 4     |              |                 |                |                       |               |           |        | Þ                    |

Cross Validating to check over fitting and estimate the skill of the model on new dataset, generally have a lower bias than other methods

### In [132]:

```
#cross validating
kfold = KFold(n_splits=5, random_state=99)
model = LogisticRegression(C=5)
```

```
results = cross_val_score(model ,X3_train, y3_train, cv=kfold)
results

Out[132]:
array([0.90265866, 0.91123499, 0.89451115, 0.89922813, 0.90604891])

In [133]:

model = LogisticRegression(random_state = 99)
model.fit(X3_train,y3_train)
predictions = model.predict(X3_test)
print(classification_report(y3_test,predictions))
```

|                                       | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0.0                                   | 0.95<br>0.78 | 0.92<br>0.84 | 0.93<br>0.81         | 1554<br>504          |
| accuracy<br>macro avg<br>weighted avg | 0.86<br>0.91 | 0.88         | 0.90<br>0.87<br>0.90 | 2058<br>2058<br>2058 |

Droping features that are not much revelant does'nt improve our model much, its the same, lets try some other filtering methods

# **Chi squared Test**

Does it make sense to remove some features? lets see

Using Chi -square because of its robustness with respect to distribution of data

```
In [134]:
```

```
from math import log2
from sklearn.feature_selection import mutual_info_classif
from sklearn.feature_selection import SelectKBest, chi2
from scipy import stats
```

## In [135]:

```
#Splitting test and train test

target_name = 'left'
X_new = data.drop('left', axis=1)

y_new=data[target_name]

X_new_train, X_new_test, y_new_train, y_new_test = train_test_split(X_new,y_new,test_size=0.15, ran dom_state=1, stratify=y)

X_new_train.head()
```

### Out[135]:

|      | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | Promotion | Departm |
|------|--------------|-----------------|----------------|-----------------------|--------------------|---------------|-----------|---------|
| 746  | 0.296703     | 0.218750        | 0.0            | 0.168224              | 0.125              | 0.0           | 0.0       |         |
| 8691 | 0.439560     | 0.328125        | 0.2            | 0.285047              | 0.125              | 0.0           | 0.0       |         |
| 9865 | 0.956044     | 0.234375        | 0.6            | 0.509346              | 0.000              | 1.0           | 0.0       |         |
| 2253 | 0.142857     | 0.250000        | 0.8            | 0.369159              | 0.250              | 0.0           | 0.0       |         |
| 6944 | 0.857143     | 0.187500        | 0.4            | 0.172897              | 0.000              | 0.0           | 0.0       |         |
| 4    |              |                 |                |                       |                    |               |           | Þ       |

```
In [136]:
```

```
chi2 Kbest = SelectKBest(chi2).fit(X new.v new)
```

#### In [137]:

```
plt.figure(figsize=(10,10))
plt.barh(chi2_features, chi2_Kbest.scores_[indices[range(len(X_new.columns))]])
plt.gca().invert_yaxis()
plt.yticks(fontsize=12)
plt.show()
```



### In [138]:

```
data.columns
```

### Out[138]:

Top seven features are important according to chi squared test, so we will keep top seven features and will remove the rest

#### In [139]:

```
chi2_features[:7]

Out[139]:
['time_spend_company_cat',
    'Satisfaction',
```

```
'Work_accident',
'time_spend_company',
'salary',
'number_project_cat',
'Promotion']
```

Now will drop all the features which according to chi squared test are not important

#### In [140]:

Out[140]:

|       | Satisfaction | time_spend_company | Work_accident | left | Promotion | salary | number_project_cat | time_spend_company_cat |
|-------|--------------|--------------------|---------------|------|-----------|--------|--------------------|------------------------|
| 0     | 0.318681     | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    | 1                  | 2                      |
| 2     | 0.021978     | 0.250              | 0.0           | 1.0  | 0.0       | 0.5    | 3                  | 3                      |
| 3     | 0.692308     | 0.375              | 0.0           | 1.0  | 0.0       | 0.0    | 3                  | 4                      |
| 4     | 0.307692     | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    | 1                  | 2                      |
| 5     | 0.351648     | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    | 1                  | 2                      |
|       |              |                    |               |      |           |        |                    |                        |
| 14994 | 0.340659     | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    | 1                  | 2                      |
| 14995 | 0.307692     | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    | 1                  | 2                      |
| 14996 | 0.307692     | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    | 1                  | 2                      |
| 14997 | 0.021978     | 0.250              | 0.0           | 1.0  | 0.0       | 0.0    | 3                  | 3                      |
| 14998 | 0.307692     | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    | 1                  | 2                      |

13717 rows × 8 columns

### Splitting train and test sets

#### In [141]:

```
target_name = 'left'
X4 = drop_chi.drop('left', axis=1)
y4=drop_chi[target_name]

X4_train, X4_test, y4_train, y4_test = train_test_split(X4,y4,test_size=0.15, random_state=42, stratify=y)

X4_train.head()
```

Out[141]:

|       | Satisfaction | time_spend_company | Work_accident | Promotion | salary | number_project_cat | time_spend_company_cat |
|-------|--------------|--------------------|---------------|-----------|--------|--------------------|------------------------|
| 1701  | 0.000000     | 0.375              | 0.0           | 0.0       | 0.5    | 3                  | 4                      |
| 9239  | 0.307692     | 0.375              | 0.0           | 0.0       | 0.5    | 2                  | 4                      |
| 2514  | 0.670330     | 0.250              | 1.0           | 0.0       | 0.0    | 2                  | 3                      |
| 12138 | 0.714286     | 0.375              | 0.0           | 0.0       | 0.0    | 2                  | 4                      |
| 11117 | 0.395604     | 0.000              | 0.0           | 0.0       | 0.0    | 2                  | 1                      |

### Cross Validation to prevent over fitting again

### In [142]:

```
kfold = KFold(n_splits=5, random_state=99)
model = LogisticRegression(C=5)
results = cross val score(model .X4 train. v4 train. cv=kfold)
```

```
results
Out[142]:
array([0.86363636, 0.88078902, 0.86620926, 0.86406518, 0.86443586])
In [145]:
model = LogisticRegression(random state = 99)
model.fit(X4_train,y4_train)
predictions = model.predict(X4 test)
print(classification report(y4 test,predictions))
               precision recall f1-score support
                  0.90 0.89 0.90
         0.0
                                                   1554
                              0.71
                                                     504
          1.0
                   0.68
                                         0.69

    0.85
    2058

    0.79
    0.80
    0.80
    2058

    0.85
    0.85
    0.85
    2058

    accuracy
   macro avq
weighted avg
```

Looks like removing features is not helping to improve our model, so we will drop this idea, will try with Wrapper method once

## **Wrapper Method**

In [148]:

```
%matplotlib inline
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso
import statsmodels.api as sm
from statsmodels.formula.api import ols
import statsmodels.formula.api as smf
import numpy as np

import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import
```

#### In [149]:

```
target_name = 'left'
X_wrap = data.drop('left', axis=1)
y_wrap=data[target_name]

X_wrap_train, X_wrap_test, y_wrap_train, y_wrap_test = train_test_split(X_wrap,y_wrap,test_size=0.1
5, random_state=42, stratify=y)

X_wrap_train.head()
```

#### Out[149]:

|      | Satisfaction | last_evaluation | number_project | average_monthly_hours | time_spend_company | Work_accident | Promotion | Departr |
|------|--------------|-----------------|----------------|-----------------------|--------------------|---------------|-----------|---------|
| 1701 | 0.000000     | 0.640625        | 0.8            | 0.869159              | 0.375              | 0.0           | 0.0       |         |
| 9239 | 0.307692     | 0.718750        | 0.2            | 0.481308              | 0.375              | 0.0           | 0.0       |         |
| 2514 | 0.670330     | 0.421875        | 0.2            | 0.275701              | 0.250              | 1.0           | 0.0       |         |

| 12138 | Satisfaction | last_evaluation | $number\_project$ | average_monthly_hours | time_spend_company | Work_accident | Promotion | Departr |
|-------|--------------|-----------------|-------------------|-----------------------|--------------------|---------------|-----------|---------|
| 11117 | 0.395604     | 0.296875        | 0.4               | 0.514019              | 0.000              | 0.0           | 0.0       |         |
| 4     |              |                 |                   |                       |                    |               |           | Þ       |

Will detect the interaction between variables, maybe we will find the optimal feature subset.

In Wrapper method we will use Backward Elimination, if pvalue is above 0.05 then we will remove the feature

Using OLS model which stands for "Ordinary Least Squares".

#### In [150]:

```
#Mandatory for sm.OLS model, adding constant column of one's
import statsmodels.api as sm
X_1 = sm.add_constant(X_wrap)
model = sm.OLS(y_wrap, X_1.astype(float)).fit()
model.pvalues
```

#### Out[150]:

```
0.000000e+00
const
                           0.000000e+00
3.617761e-01
Satisfaction
last evaluation
                           5.972886e-88
number_project
average_monthly_hours 2.476909e-10 time_spend_company 4.183335e-228 Work_accident 7.262662e-51
                           7.262662e-51
7.478545e-05
Promotion
                           4.267991e-01
Department
salary
                            1.706206e-39
number project cat 9.583172e-213
dtype: float64
```

With the help of loop we will remove all the features whose p-value is above 0.05 and build the model once again.

Took help from <a href="https://towardsdatascience.com/feature-selection-with-pandas-e3690ad8504b">https://towardsdatascience.com/feature-selection-with-pandas-e3690ad8504b</a>

#### In [151]:

```
#Backward Elimination
cols = list(X wrap.columns)
pmax = 1
while (len(cols)>0):
   p= []
   X 1 = X_wrap[cols]
   X = 1 = sm.add constant(X 1)
   model = sm.OLS(y wrap, X 1.astype(float)).fit()
   p = pd.Series(model.pvalues.values[1:],index = cols)
   pmax = max(p)
    feature with p max = p.idxmax()
    if (pmax>0.05):
       cols.remove(feature with p max)
    else:
       break
selected features BE = cols
print(selected_features_BE)
```

['Satisfaction', 'number\_project', 'average\_monthly\_hours', 'time\_spend\_company', 'Work\_accident', 'Promotion', 'salary', 'number project cat', 'time spend company cat']

These are the final set of variables

#### In [152]:

```
# showing features
selected_features_BE[:9]
```

### Out[152]:

```
['Satisfaction',
```

```
'number_project',
'average_monthly_hours',
'time_spend_company',
'Work_accident',
'Promotion',
'salary',
'number_project_cat',
'time_spend_company_cat']
```

We will drop those features whose p-value is above 0.05 and will store them in wrap\_drop variable

```
In [153]:
```

```
wrap_drop =data.drop(axis =0,columns = [ 'last_evaluation',
    'Department' ])
wrap_drop
```

Out[153]:

|       | Satisfaction | number_project | average_monthly_hours | time_spend_company | Work_accident | left | Promotion | salary | number_pr |
|-------|--------------|----------------|-----------------------|--------------------|---------------|------|-----------|--------|-----------|
| 0     | 0.318681     | 0.0            | 0.285047              | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    |           |
| 2     | 0.021978     | 1.0            | 0.822430              | 0.250              | 0.0           | 1.0  | 0.0       | 0.5    |           |
| 3     | 0.692308     | 0.6            | 0.593458              | 0.375              | 0.0           | 1.0  | 0.0       | 0.0    |           |
| 4     | 0.307692     | 0.0            | 0.294393              | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    |           |
| 5     | 0.351648     | 0.0            | 0.266355              | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    |           |
|       |              |                |                       |                    |               |      |           |        |           |
| 14994 | 0.340659     | 0.0            | 0.257009              | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    |           |
| 14995 | 0.307692     | 0.0            | 0.299065              | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    |           |
| 14996 | 0.307692     | 0.0            | 0.219626              | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    |           |
| 14997 | 0.021978     | 0.8            | 0.859813              | 0.250              | 0.0           | 1.0  | 0.0       | 0.0    |           |
| 14998 | 0.307692     | 0.0            | 0.289720              | 0.125              | 0.0           | 1.0  | 0.0       | 0.0    |           |

#### 13717 rows × 10 columns

### Splitting test and train sets

### In [154]:

```
target_name = 'left'
X5 = wrap_drop.drop('left', axis=1)
y5= wrap_drop[target_name]

X5_train, X5_test, y5_train, y5_test = train_test_split(X5,y5,test_size=0.15, random_state=42, straify=y)

X5_train.head()
```

### Out[154]:

|       | Satisfaction | number_project | average_monthly_hours | time_spend_company | Work_accident | Promotion | salary | number_project_ |
|-------|--------------|----------------|-----------------------|--------------------|---------------|-----------|--------|-----------------|
| 1701  | 0.000000     | 0.8            | 0.869159              | 0.375              | 0.0           | 0.0       | 0.5    |                 |
| 9239  | 0.307692     | 0.2            | 0.481308              | 0.375              | 0.0           | 0.0       | 0.5    |                 |
| 2514  | 0.670330     | 0.2            | 0.275701              | 0.250              | 1.0           | 0.0       | 0.0    |                 |
| 12138 | 0.714286     | 0.4            | 0.714953              | 0.375              | 0.0           | 0.0       | 0.0    |                 |
| 11117 | 0.395604     | 0.4            | 0.514019              | 0.000              | 0.0           | 0.0       | 0.0    |                 |
| 4     |              |                |                       |                    |               |           |        | Þ               |

### Cross Validation to prevent over-fitting

```
In [155]:
```

```
kfold = KFold(n enlite=5 random etata=99)
```

```
KIUIU - KIUIU(II SPIICS-J, IAHUUM SCACE-JJ)
model = LogisticRegression(C=5)
results = cross_val_score(model ,X5_train, y5_train, cv=kfold)
Out[155]:
array([0.87135506, 0.88379074, 0.87178388, 0.86578045, 0.87773488])
In [157]:
model =linear model.LogisticRegression(random state = 99)
model.fit(X5 train,y5 train)
predictions = model.predict(X5 test)
print(classification report(y5 test,predictions))
                 precision recall f1-score support
                                             0.90
           0.0 0.90 0.90
1.0 0.70 0.70
                                                          1554
                                                  0.70
                                                                504

        accuracy
        0.85
        2058

        macro avg
        0.80
        0.80
        0.80
        2058

        weighted avg
        0.85
        0.85
        0.85
        2058
```

Accuracy of our model is the same as before, looks like filtering methods are not helping much, lets try something else

# **Polynomial Features**

Let's construct new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to two. I am using polynomial features beacuse it provides the best approximation of the relationship between the dependent and indepenent variable.

To overcome under-fitting, sometimes we need to increase the complixity of the model.

A simple model may suffer from high bias (underfitting), while a complex model may suffer from high variance (overfitting) leading to a bias-variance trade-off.

```
In [158]:
```

```
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(2)
poly_features = poly.fit_transform(data.drop('left', axis=1))
```

Checking the shape of our new features

```
In [159]:
```

```
poly_features.shape

Out[159]:
(13717, 78)
```

Splitting dataset into test and train, as poly\_features does not contain target variable therefore i took it from previous dataset

```
In [160]:
```

```
target_name = 'left'
X6 = poly_features

y6=data[target_name]

X6_train, X6_test, y6_train, y6_test = train_test_split(X6,y6,test_size=0.15, random_state=42, stratify=y)
```

```
X6_train
Out[160]:
[ 1.
          , 16. ],
, 0.67032967, 0.421875 , ..., 4.
      8.
     [ 1.
            , 9. ],
     6.
          , 0.75824176, 0.0625 , ..., 4.
, 16. ],
     [ 1.
           , 1. , 0.3125
, 4. ],
      8.
     [ 1.
                               , ..., 9.
      6.
            , 0.36263736, 0.28125 , ..., 4.
     [ 1.
            , 9. ]])
      6.
```

### Cross Validation to prevent over-fitting

#### In [161]:

```
kfold = KFold(n_splits=5, random_state=99)
results = cross_val_score(model ,X6_train, y6_train, cv=kfold)
results
```

#### Out[161]:

```
array([0.94468268, 0.94468268, 0.95283019, 0.92924528, 0.95323895])
```

#### In [77]:

```
model=LogisticRegression(C=7,penalty='12')
model.fit(X6_train, y6_train)
predictions = model.predict(X6_test)
print(classification_report(y6_test,predictions))
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0.0          | 0.97      | 0.96   | 0.97     | 1554    |
| 1.0          | 0.88      | 0.91   | 0.89     | 504     |
|              |           |        |          |         |
| accuracy     |           |        | 0.95     | 2058    |
| macro avg    | 0.93      | 0.94   | 0.93     | 2058    |
| weighted avg | 0.95      | 0.95   | 0.95     | 2058    |
|              |           |        |          |         |

Creating combination of features really improved our model, because there is every possible combination of features now as the degree is 2 ,polynomial features are (1,a,b,a^2,ab,b^2).

Performance is quite better, we have an accuracy of 95%, got better in predicting '0' (a employee is NOT going to leave the company) than '1' (a employee is going to leave the company)