Classwork 3.4: Solving Systems of Equations Using Elimination

When equations are written in ______ form (Ax + By = C), _____ is the most efficient method to use to solve.

*Goal to Eliminate EITHER variable: _____ coefficients/variable (4x & 4x)

_____ signs (+/-)

Solve the following systems of equations using the Elimination Method:

1) -4x - 2y = -124x + 8y = -24 2) 4x + 8y = 20-4x + 2y = -30

Solution: _____

Solution:

3)
$$x - y = 11$$

 $2x + y = 19$

4)
$$-6x + 5y = 1$$

 $6x + 4y = -10$

Solution: _____

Solution:

LEVEL 2 - EXAMPLE:

5)
$$-4x + 9y = 9 \rightarrow$$

___ (x - 3y = -6) \rightarrow

6) ___ (-7x + y = -19)
$$\rightarrow$$

-2x + 3y = -19 \rightarrow

Solution:	
7)($-3x + 7y = -16) \rightarrow$
	-9x + 5y = 16

Solution: ______ 8) 16x - 10y = 10-8x - 6y = 6

Solution: ______ Solution: _____

*Challenge: What would you have to manipulate in order to "eliminate" a variable in the following system?

$$3x - 2y = 2$$

5x - 5y = 1

Solution: _____

Homework 3.4: Solving Systems of Equations Using Elimination

Regents Exam Questions

A.REI.C.6: Solving Linear Systems 2a www.jmap.org

- 9 What point is the intersection of the graphs of the lines 2x y = 3 and x + y = 3?
 - 1) (2,1)
 - 2) (1,2)
 - 3) (3,0)
 - 4) (3,3)
- 10 Which ordered pair satisfies the system of equations below?

$$3x-y=8$$

$$x + y = 2$$

- 1) (3,-1)
- (2.5, -0.5)
- 3) (2.5, 0.5)
- 4) (5,-3)
- 11 The equations 5x + 2y = 48 and 3x + 2y = 32 represent the money collected from school concert ticket sales during two class periods. If x represents the cost for each adult ticket and y represents the cost for each student ticket, what is the cost for each adult ticket?
 - 1) \$20
 - 2) \$10
 - 3) \$8
 - 4) \$4
- 12 Solve the following system of equations algebraically for y:

$$2x + 2y = 9$$

$$2x - y = 3$$