Algebraische Grundlagen der Informatik

SoSe 2024

KAPITEL I: Komplexe Zahlen

1. Grundlagen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Erinnerung: bisherige Zahlbereiche

- $ightharpoonup \mathbb{N} = \{0,1,2,3,\ldots\}$ "Menge der natürlichen Zahlen"
- $ightharpoonup \mathbb{Z} = \{0,1,-1,2,-2,3,-3,\ldots\}$ "Menge der ganzen Zahlen"
- $ightharpoonup \mathbb{Q} = \left\{ rac{m}{n} : m, n \in \mathbb{Z}, n
 eq 0
 ight\}$ "Menge der rationalen Zahlen"
- $ightharpoonup \mathbb{R} = \mathsf{Menge}$ aller Dezimalzahlen "Menge der reellen Zahlen"

Bemerkung

- ▶ Die Gleichung x + 2 = 1 ist nicht in \mathbb{N} lösbar, aber in \mathbb{Z} .
- ▶ Die Gleichung 2x = 1 ist nicht in \mathbb{Z} lösbar, aber in \mathbb{Q} .
- ▶ Die Gleichung $x^2 = 2$ ist nicht in \mathbb{Q} lösbar, aber in \mathbb{R} .
- ▶ Die Gleichung $x^2 = -1$ ist nicht in $\mathbb R$ lösbar.

Komplexe Zahlen

Definition

Unter der Menge der komplexen Zahlen $\mathbb C$ versteht man die Menge

$$\mathbb{C} := \mathbb{R} \times \mathbb{R}$$
.

Die Addition "+", Subtraktion "–" und Multiplikation "·" zweier komplexer Zahlen (x,y) und (u,v) sind definiert durch

- (x,y)+(u,v):=(x+u,y+v),
- (x,y)-(u,v):=(x-u,y-v),
- $(x,y)\cdot (u,v):=(xu-yv,xv+yu).$

Beobachtungen

- ▶ Addition, Multiplikation sind kommutativ. (→ nachrechnen)
- ► Es gelten Assoziativ- und Distributivgesetz. (→ nachrechnen)
- ▶ (0,0) ist das "Neutralelement" der Addition, denn

$$(x,y)+(0,0)=(x+0,y+0)=(x,y).$$

ightharpoonup (1,0) ist das "Neutralelement" der Multiplikation, denn

$$(x,y)\cdot(1,0)=(x\cdot 1-y\cdot 0,x\cdot 0+y\cdot 1)=(x,y).$$

Division in C

Beobachtung

Falls $(x, y) \neq (0, 0)$, dann ist

$$(x,y) \cdot \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

$$= \left(x\frac{x}{x^2 + y^2} - y\frac{-y}{x^2 + y^2}, x\frac{-y}{x^2 + y^2} + y\frac{x}{x^2 + y^2}\right)$$

$$= (1,0).$$

Damit definiere nun die Division:

Definition

Falls $(u, v), (x, y) \in \mathbb{C}$ und $(x, y) \neq (0, 0)$, so definiert man

$$\frac{(u,v)}{(x,y)} := (u,v) \cdot \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right).$$

4

Einbettung von $\mathbb R$ in $\mathbb C$

Beobachtung

Für alle $x_1, x_2 \in \mathbb{R}$ gilt:

- $(x_1,0)+(x_2,0)=(x_1+x_2,0)$
- $(x_1,0)\cdot(x_2,0)=(x_1x_2,0)$

Komplexe Zahlen der Form (x,0) werden also wie reelle Zahlen addiert und multipliziert.

Fazit

Jede reelle Zahl x kann also als komplexe Zahl (x,0) aufgefasst werden. In diesem Sinn ist

$$\mathbb{R}\subseteq\mathbb{C}$$
.

Andere Notation für komplexe Zahlen

Wir verwenden meistens folgende Notation:

- ► *x* statt (*x*, 0)
- ▶ i statt (0,1)

Wegen

$$(x,y) = (x,0) + (0,y) = (x,0) + (0,1) \cdot (y,0) = x + iy$$

schreiben wir

 \triangleright x + iy statt (x, y).

Beispiele

$$ightharpoonup$$
 $i^2 = (0,1) \cdot (0,1) = (-1,0) = -1$

$$(1+2i)(2+3i) \stackrel{\text{Distr.}}{=} 1 \cdot (2+3i) + 2i \cdot (2+3i)$$

$$= 2+3i+4i+6i^2$$

$$= -4+7i$$

▶ Darstellung von $\frac{1+2i}{2-3i}$ in der Form x + iy, $x, y \in \mathbb{R}$:

$$\frac{1+2\,\mathrm{i}}{2-3\,\mathrm{i}} = \frac{1+2\,\mathrm{i}}{2-3\,\mathrm{i}} \cdot \frac{2+3\,\mathrm{i}}{2+3\,\mathrm{i}} = \frac{-4+7\,\mathrm{i}}{13} = -\frac{4}{13} + \frac{7}{13}\,\mathrm{i} \,.$$

wichtige Begriffe

Definition

Sei $z := x + i y \in \mathbb{C}$, wobei $x, y \in \mathbb{R}$.

- ightharpoonup Re(z) := x ist der Realteil von z.
- ▶ Im(z) := y ist der Imaginärteil von z.
- $ightharpoonup \overline{z} := x i y$ ist die zu z konjugiert komplexe Zahl.
- $|z| := \sqrt{x^2 + y^2}$ ist der Betrag von z.

Abstand von z zu w

Bemerkung

Für z = x + i y, w = u + i v mit $x, y, u, v \in \mathbb{R}$ wird |z - w| interpretiert als der Abstand von z zu w, denn

$$|z-w| = \sqrt{(\text{Re}(z-w))^2 + (\text{Im}(z-w))^2} = \sqrt{(x-u)^2 + (y-v)^2}.$$

Skizze:

Rechenregeln

Für $z, w \in \mathbb{C}$ gelten:

- 1. $\overline{\overline{z}} = z$
- 2. $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 3. Ist z = x + iy mit $x, y \in \mathbb{R}$, so ist $|z|^2 = z \cdot \overline{z} = x^2 + y^2$.
- 4. Falls $z \neq 0$, dann ist $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.
- 5. $Re(z) = \frac{1}{2}(z + \overline{z}), \quad Im(z) = \frac{1}{2i}(z \overline{z})$
- 6. $|z| = |\overline{z}|$
- 7. $|\text{Re}(z)| \le |z|$, $|\text{Im}(z)| \le |z|$
- 8. $|z \cdot w| = |z| \cdot |w|$, $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$ falls $w \neq 0$

Beweisidee:

1.–8. kann man direkt nachprüfen.

Dreiecksungleichung

Satz

Für alle $z,w\in\mathbb{C}$ gilt

$$|z+w|\leq |z|+|w|.$$

Algebraische Grundlagen der Informatik SoSe 2024

KAPITEL I: Komplexe Zahlen

2. Polardarstellung

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Erinnerung (WiSe 2022/2023): Sinus und Kosinus

$$\varphi = \frac{\text{Länge des Kreisbogens}}{r}$$

$$\sin(\varphi) = \frac{y}{r}$$

$$\cos(\varphi) = \frac{x}{r}$$
Kreiszahl $\pi = 3, 141...$

Kreisumfang $2\pi r$

▶ $\sin : \mathbb{R} \to [-1,1]$ und $\cos : \mathbb{R} \to [-1,1]$ $\sin 2\pi$ -periodisch, das heißt, für alle $\varphi \in \mathbb{R}$ gilt: $\sin(\varphi + 2\pi) = \sin(\varphi)$ und $\cos(\varphi + 2\pi) = \cos(\varphi)$.

	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin	0	1	0	-1	0
cos	1	0	-1	0	1

- $ightharpoonup \cos(-\varphi) = \cos(\varphi)$, $\sin(-\varphi) = -\sin(\varphi)$ für alle $\varphi \in \mathbb{R}$
- ► Trigonometrischer Pythagoras: $\sin^2(\varphi) + \cos^2(\varphi) = 1$ für alle $\varphi \in \mathbb{R}$.

Additionstheoreme

Für alle $\varphi, \psi \in \mathbb{R}$ gelten:

Trigonometrische Darstellung komplexer Zahlen

Eine komplexe Zahl $0 \neq z = x + \mathrm{i}\, y, x, y \in \mathbb{R}$ lässt sich nun schreiben als

$$z = x + i y$$

$$= |z| \frac{x}{|z|} + i |z| \frac{y}{|z|}$$

$$= |z| \left(\frac{x}{|z|} + i \frac{y}{|z|} \right)$$

$$= |z| \left(\cos(\varphi) + i \sin(\varphi) \right),$$

wobei $\varphi \in \mathbb{R}$ bis auf Vielfache von 2π festgelegt ist. Oft fordert man $\varphi \in [0, 2\pi)$, um Eindeutigkeit zu erhalten.

Polardarstellung komplexer Zahlen

Definition

Für $\varphi \in \mathbb{R}$ definiere

$$e^{i\varphi} := \cos(\varphi) + i\sin(\varphi).$$

Bemerkung

Jedes $z \in \mathbb{C}$ besitzt eine Darstellung (die so genannte "Polardarstellung") der Form

$$z=re^{\mathrm{i}\,arphi}$$
 mit $r\in[0,\infty)$ und $arphi\in\mathbb{R}.$

Dabei ist r = |z|.

Falls $z \neq 0$, dann wird φ als ein Argument von z bezeichnet und ist bis auf Addition von $2k\pi$, $k \in \mathbb{Z}$, eindeutig bestimmt.

Beispiele zur Polardarstellung

$$i = 1 \cdot e^{i\pi/2} \quad \left(= \underbrace{\cos(\pi/2)}_{=0} + i \underbrace{\sin(\pi/2)}_{=1} \right)$$

$$-1 = 1 \cdot e^{i\pi} \quad \left(= \underbrace{\cos(\pi)}_{=-1} + i \underbrace{\sin(\pi)}_{=0} \right)$$

Umrechnung: Polardarstellung \rightarrow kartesische Form

Umrechnung von Polardarstellung in kartesische Form

Sei
$$z = re^{i\varphi} \in \mathbb{C}$$
, wobei $r \in [0, \infty), \varphi \in \mathbb{R}$.

- 1.) $x = r \cos(\varphi)$
- 2.) $y = r \sin(\varphi)$

Kartesische Form von z: z = x + y i.

Umrechnung: kartesische Form \rightarrow Polardarstellung

Umrechnung von kartesischer Form in Polardarstellung

Sei
$$z = x + y$$
 i $\in \mathbb{C} \setminus \{0\}$, wobei $x, y \in \mathbb{R}$.
1.) $r = |z| = \sqrt{x^2 + y^2}$
2.) $\varphi = \begin{cases} \arccos \frac{x}{|z|}, & \text{falls } y \geq 0 \\ 2\pi - \arccos \frac{x}{|z|}, & \text{falls } y < 0 \end{cases}$
Polardarstellung von z : $z = re^{i\varphi}$

Multiplikation komplexer Zahlen

Satz

Seien $z, w \in \mathbb{C}$ mit Polardarstellungen

$$z = r e^{i \varphi}, w = s e^{i \psi},$$
 wobei $r, s \in [0, \infty), \varphi, \psi \in \mathbb{R}$.

Dann ist

$$z w = r s e^{i(\varphi + \psi)}$$
.

Bemerkung

Bei der Multiplikation komplexer Zahlen werden die Beträge multipliziert und die Argumente/Winkel addiert.

Beweis des Satzes.

$$z w = r (\cos(\varphi) + i \sin(\varphi)) s (\cos(\psi) + i \sin(\psi))$$

$$= rs(\underbrace{\cos(\varphi) \cos(\psi) - \sin(\varphi) \sin(\psi)}_{\text{Add.thm.} \cos(\varphi + \psi)} + i(\underbrace{\sin(\varphi) \cos(\psi) + \cos(\varphi) \sin(\psi)}_{\text{Add.thm.} \sin(\varphi + \psi)}))$$

$$= r s (\cos(\varphi + \psi) + i \sin(\varphi + \psi)) = r s e^{i(\varphi + \psi)}$$

Algebraische Grundlagen der Informatik SoSe 2024

KAPITEL I: Komplexe Zahlen

3. Komplexe Wurzeln

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Lösungen der Gleichung $z^n = w$

Problem

Für $w \in \mathbb{C} \setminus \{0\}$ und $n \in \mathbb{N}$, $n \ge 1$, finde alle $z \in \mathbb{C}$ mit

$$z^n = w$$
.

Lösungen der Gleichung $z^n = w$

Seien $n \in \mathbb{N}, n \ge 1$, r > 0, $\varphi \in \mathbb{R}$ und $w = r \cdot e^{i\varphi}$. Dann gibt es n verschiedene komplexe Lösungen von

$$z^n = w$$
,

nämlich

$$z_k = \sqrt[n]{r}e^{i\left(\frac{\varphi}{n} + \frac{2k\pi}{n}\right)}, \quad k = 0, \dots, n-1.$$

Einheitswurzeln

Speziell für $w=1=1\cdot e^{\mathrm{i}\cdot 0}$ erhält man die \emph{n} -ten Einheitswurzeln

$$z_k=e^{i\frac{2k\pi}{n}}, \quad k=0,\ldots,n-1.$$

Beispiel: (n = 6)

$$z_0=1, \quad z_1=e^{i\frac{\pi}{3}}, \quad z_2=e^{i\frac{2\pi}{3}}, \quad z_3=-1, \quad z_4=e^{i\frac{4\pi}{3}}, \quad z_5=e^{i\frac{5\pi}{3}}$$