Data Structures in Python Chapter 2

- Abstract Data Type(ADT)
- 2. Performance Analysis
- 3. Big-O Notation
- 4. Growth Rates

그러므로 나의 사랑하는 자들아 너희가 나 있을 때 뿐 아니라 더욱 지금 나 없을 때에도 항상 복종하여 두렵고 떨림으로 너희 구원을 이루라 (Continue to work out your salvation with fear and trembling.) 빌2:12

나는 인애를 원하고 제사를 원하지 아니하며 번제보다 하나님을 아는 것을 원하노라 (호6:6) 하나님은 모든 사람이 구원을 받으며 진리를 아는데에 이르기를 원하시느니라 (딤전2:4)

그런즉 너희가 먹든지 마시든지 무엇을 하든지 다 하나님의 영광을 위하여 하라 (고전10:31)

Agenda & Reading

- Performance Analysis
 - Introduction
 - Step Counts Counting Operations
- Big-O Notation Asymptotic Analysis
 - Properties of Big-O
 - Calculating Big-O
- Growth Rates
 - Comparison of Growth Rates
 - Big-O Performance of Python Lists
 - Big-O Performance of Python Dictionaries
- References:
 - Textbook: Problem Solving with Algorithms and Data Structures
 - Chapter 3. <u>Analysis</u>
 - Textbook: <u>www.github.idebtor/DSpy</u>
 - Chapter 2.1 ~ 3

3 Big-O Definition

- Let f(n) and g(n) be functions that map non-negative integers to real numbers. We say that f(n) is O(g(n)) if there is a real constant c, where c > 0 and an integer constant n, where $n_0 \ge 1$ such that $f(n) \le c * g(n)$ for every integer $n \ge n_0$.
 - f(n) describe the actual time of the program
 - g(n) is a much simpler function than f(n)
 - With assumptions and approximations, we can use g(n) to describe the complexity i.e., O(g(n))

Big-O Notation is a mathematical formula that best describes an algorithm's performance.

3 Big-O Notation

- We use Big-O notation (capital letter O) to specify the order of complexity of an algorithm.
 - e.g., $O(n^2)$, $O(n^3)$, O(n)
 - If a problem of size n requires time that is directly proportional to n, the problem is O(n) that is, order n.
 - If the time requirement is directly proportional to n^2 , the problem is $O(n^2)$, etc.

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants, c, and n_0 such that $f(n) \le c * g(n)$ for every integer $n \ge n_0$.

- Example: T(n) = 2n + 10 T(n) is O(n)
- Question:

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants, c, and n_0 such that $f(n) \le c * g(n)$ for every integer $n \ge n_0$.

- Example: T(n) = 2n + 10 T(n) is O(n)
- Question:
 - n_0
 - C
 - g(n)
 - $f(n) \leq c * g(n)$
 - f(n) is O(g(n))

• Find c and n_0 to justify that the function 7n + 5 is O(n).

```
We must find c and n_0 such that 7n + 5 \le c n for <math>n \ge n_0
```


• Find c and n_0 to justify that the function 7n + 5 is O(n).

```
We must find c and n_0 such that 7n + 5 \le c n \qquad for n \ge n_07n + 5 \le 7 n + n7n + 5 \le 8 n \qquad for n \ge n_0 = 5Therefore, 7n + 5 \le c n for c = 8 and n_0 = 5, g(n) = n and O(n)
```


• Find \boldsymbol{c} and $\boldsymbol{n_0}$ to justify that the function $7\boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$.

```
We must find c and n_0 such that 7n + 5 \le c n \qquad \qquad for \ n \ge n_0 7n + 5 \le 7 \ n + n 7n + 5 \le 8 \ n \qquad \qquad for \ n \ge n_0 = 5 Therefore, 7n + 5 \le c \ n for c = 8 and n_0 = 5, f(n) is O(n)
```



```
7n + 5 \le c n for n \ge n_0

7n + 5 \le 12 n for n \ge n_0 = 1

Therefore, 7n + 5 \le c n for c = 12 and n_0 = 1

g(n) = n, f(n) is O(n)
```

• Find \boldsymbol{c} and $\boldsymbol{n_0}$ to justify that the function $\boldsymbol{f}(\boldsymbol{n}) = 27\boldsymbol{n}^2 + 16\boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n}^2)$.

```
We must find c and n_0 such that For 16n \le n^2 27n^2 + 16n \le 27n^2 + n^2 27n^2 + 16n \le 28n^2 \qquad for \ n \ge n_0 = 16 Hence, c = 28 and n_0 = 16, Therefore, g(n) = n^2, f(n) is O(n^2).
```



```
27n^2+16n is \textbf{\textit{O}}(n^2), we must find \textbf{\textit{c}} and \textbf{\textit{n}}_0 such that 27n^2+16n\leq 43n^2 27n^2+16n\leq 43n^2 for n\geq n_0=1 Hence, c=43 and \textbf{\textit{n}}_0=1, Therefore, \textbf{\textit{g}}(n)=n^2, \textbf{\textit{f}}(n) is \textbf{\textit{O}}(n^2).
```

- Suppose an algorithm requires
 - T(n) = 7n-2 operations to solve a problem of size n

$$7n-2 \le 7 * n \text{ for all } n_0 \ge 1$$

i.e., $c = 7$, $n_0 = 1$

 $f(n) \le c * g(n)$ for every integer $n \ge n_0$

• $T(n) = n^2 - 3 * n + 10$ operations to solve a problem of size n

$$n^2 - 3 * n + 10 < 3 * n^2$$
 for all $n_0 \ge 2$
i.e., $c = 3$, $n_0 = 2$

• $T(n) = 3n^3 + 20n^2 + 5$ operations to solve a problem of size n

$$3n^3 + 20n^2 + 5 < 4 * n^3$$
 for all $n_0 \ge 21$ i.e., $c = 4$, $n_0 = 21$ $O(n^3)$

1)
$$3n + 2 =$$

2)
$$3n + 3 =$$

$$3) 100n + 6 =$$

4)
$$10n^2 + 4n + 2 =$$

5)
$$6 * 2^n + n^2 =$$

6)
$$3n + 3 =$$

7)
$$10n^2 + 4n + 2 =$$

(8)
$$3n + 2 \neq O(1)$$
 as $3n + 2$ is **not** $\leq c$ for any c and all $n, n \geq n_0$.

$$(3)$$
 9) $10n^2 + 4n + 2 \neq O(n)$

4 Properties of Big-O

- There are three properties of Big-O
 - Ignore low order terms in the function (smaller terms)
 - $O(f(n)) + O(g(n)) = O(\max of f(n) and g(n))$
 - Ignore any constants in the high-order term of the function
 - C * O(f(n)) = O(f(n))
 - Combine growth-rate functions
 - O(f(n)) * O(g(n)) = O(f(n) * g(n))
 - O(f(n)) + O(g(n)) = O(f(n) + g(n))

15

4 Properties of Big-O - Ignore low order terms

- Consider the function: $f(n) = n^2 + 100n + \log 10n + 1000$
 - For small values of n the last term, 1000, dominates.
 - When n is around 10, the terms 100n + 1000 dominate.
 - When n is around 100, the terms n^2 and 100n dominate.
 - When n gets much larger than 100, the n^2 dominates all others.
 - So, it would be safe to say that this function is $O(n^2)$ for values of n > 100
- Consider another function: $f(n) = n^3 + n^2 + n + 5000$
 - Big-O is $O(n^3)$
- And consider another function: $f(n) = n + n^2 + 5000$
 - Big-O is $O(n^2)$

4 Properties of Big-O - Ignore any Constant Multiplications

- Consider the function:
 - $f(n) = 254 * n^2 + n$
 - Big-O is $O(n^2)$
- Consider the function:
 - f(n) = n / 30
 - Big-O is O(n)
- And consider another function:
 - f(n) = 3n + 1000
 - Big-O is O(n)

4 Properties of Big-O - Combine growth-rate functions

- Consider the function:
 - f(n) = n * log n
 - Big-O is O(n log n)
- Consider another function:
 - $f(n) = n^2 * n$
 - Big-O is $O(n^3)$

4 Properties of Big-O - Exercise 2

- What is the Big-O performance of the following growth functions?
 - $T(n) = n + \log(n)$
 - $T(n) = n^4 + n * log(n) + 300 n^3$
 - T(n) = 300n + 60 * n * log(n) + 342

4 Properties of Big-O - Exercise 2

What is the Big-O performance of the following growth functions?

$$T(n) = n + \log(n) \qquad O(n)$$

•
$$T(n) = n^4 + n*log(n) + 300 n^3$$
 $O(n^4)$

•
$$T(n) = 300n + 60 * n * log(n) + 342$$
 O(n log n)

5 Calculating Big-O

- We will investigate rules for finding out the time complexity of a piece of code
 - Straight-line code
 - Loops
 - Nested Loops
 - Consecutive statements
 - If-then-else statements
 - Logarithmic complexity

5 Calculating Big-O - Rules

- Rule 1: Straight-line code
 - Big-O = Constant time O(1)
 - Does not vary with the size of the input
 - Example:
 - Assigning a value to a variable
 - Performing an arithmetic operation.
 - Indexing a list element

$$x = a + b$$

 $i = y[2]$

- Rule 2: Loops
 - The running time of the statements inside the loop (including tests) times the number of iterations
 - Example:
 - Constant time * n = c * n = O(n)

```
for i in range(n):
    print(i)
    executed n times
    constant time
```

5 Calculating Big-O - Rules (con't)

- Rule 3: Nested Loop
 - Analyze inside out. Total running time is the product of the sizes of all the loops.
 - Example:
 - constant * (inner loop: n)*(outer loop: n)
 - Total time = $c * n * n = c*n^2 = O(n^2)$
- Rule 4: Consecutive statements
 - Add the time complexities of each statement
 - Example:
 - Constant time + n times * constant time

```
• c_0 + c_1 n

• Big-O = O(f(n) + g(n))

= O( max( f(n) + g(n) ) )

= O(n)
```

executed n times

```
for i in range(n):
    for j in range(n):
        k = i + j
```

```
x = x + 1 ← constant time

for i in range(n):

m = m + 2;
```

5 Calculating Big-O - Rules (cont.)

- Rule 5: if-else statement
 - Worst-case running time: the test, plus either the if part or the else part (whichever is the larger).
 - Example:
 - $c_0 + \text{Max}(c_1, (n * (c_0 + c_0)))$
 - Total time = $c_0 * n(c_1 + c_2) = O(n)$
 - Assumption:
 - The condition can be evaluated in constant time. If it is not, we need to add the time to evaluate the expression.

```
if len(a) != len(b):
    return False

else:
    for index in range(len(a)):
        if a[index] != b[index]: Another if: constant c_2 + constant c_3
        return False
```

5 Calculating Big-O - Rules (cont.)

- Rule 6: Logarithmic
 - An algorithm is O(log n) if it takes a constant time to cut the problem size by a fraction (usually by ½)
 - Example:
 - Finding a word in a dictionary of n pages
 - Look at the center point in the dictionary
 - Is word to left or right of center?
 - Repeat process with left or right part of dictionary until the word is found
 - Example:
 - Size: n, n/2, n/4, n/8, n/16, . . . 2, 1
 - If n = 2^K, it would be approximately k steps.
 The loop will execute log k in the worst case (log₂n = k).
 Big-O = O(log n)
 - Note: we don't need to indicate the base.
 The logarithms to different bases differ only by a constant factor.

```
size = n
while size > 1:
    // O(1) stuff
size = size / 2
```

Exercise

- Example: Running time estimates empirical analysis
 - Personal computer executes 10⁹ compares/second
 - Super-computer executes 10¹³ compares/second

	Selection sort (N ²)			Merge sort (N log ₂ N)		
N	Million	10 million	Billion	Million	10 million	Billion
PC	16.7 min			instant	0.2 sec	
Super Com	0.1 sec			Instant	Instant	Instant

 $log_{10}2 \cong 0.3$ 86,400sec/day instant $\langle 0.1 \text{ sec} \rangle$ Use a reasonable or understandable time units. Do not say, for example, "3660 days" nor "1220 seconds", but 10.0 years or 20.3 min, respectively.

X Bottom line: Good algorithms are better than supercomputers.

Summary

- Big-O Notation is a mathematical formula that best describes an algorithm's performance.
- Big-O notation is often called the asymptotic notation (점근적 표기법) since it uses so-called the asymptotic analysis (점근적 분석) approach.
- Normally we assume worst-case analysis, unless told otherwise.
- In some cases, it may need to consider the best, worst and/or average performance of an algorithm