

MAŁOPOLSKI KONKURS MATEMATYCZNY

dla uczniów dotychczasowych gimnazjów
i klas dotychczasowych gimnazjów
prowadzonych w szkołach innego typu
województwa małopolskiego
Rok szkolny 2018/2019

ETAP SZKOLNY — 25 października 2018 roku

- 1. Przed Tobą zestaw 20 zadań konkursowych.
- 2. Na ich rozwiązanie masz 90 minut. Dziesięć minut przed upływem tego czasu zostaniesz o tym poinformowany przez członka Komisji Konkursowej.
- **3.** Za bezbłędne rozwiązanie wszystkich zadań możesz uzyskać **50** punktów. W każdym zadaniu zamkniętym spośród 5 proponowanych odpowiedzi tylko jedna jest poprawna.
- **4.** Za poprawne rozwiązanie każdego z zadań od **1** do **10** otrzymasz **2** punkty. Za poprawne rozwiązanie każdego z zadań od **11** do **20** otrzymasz **3** punkty.
- **5.** Odpowiedzi do zadań zaznacz symbolem × w tabeli odpowiedzi, która znajduje się na kolejnej stronie. <u>Tylko odpowiedzi zaznaczone w tabeli będą oceniane</u>. Jeśli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz symbolem × inną odpowiedź. Brak wyboru odpowiedzi bedzie traktowany jako błedna odpowiedź.
- **6.** Pisz długopisem lub piórem, nie używaj korektora. Możesz użyć dodatkowych czystych kartek jako brudnopisu. Brudnopis nie podlega ocenie.
- 7. Podczas pracy nie możesz korzystać z kalkulatora i żadnych innych dodatkowych pomocy, z wyjątkiem podstawowych przyborów geometrycznych.
- 8. Przekaż wyłączony telefon komórkowy Komisji (jeśli go posiadasz).
- **9.** Stwierdzenie niesamodzielności pracy lub przeszkadzanie innym spowoduje wykluczenie z udziału w Konkursie.

Powodzenia!

kod ucznia

TABELA ODPOWIEDZI

zadanie	A	В	C	D	E
1	A	В	С	D	Е
2	A	В	С	D	Е
3	A	В	С	D	Е
4	A	В	С	D	Е
5	A	В	С	D	Е
6	A	В	С	D	Е
7	A	В	С	D	Е
8	A	В	С	D	Е
9	A	В	С	D	Е
10	A	В	С	D	Е
11	A	В	С	D	Е
12	A	В	С	D	Е
13	A	В	С	D	Е
14	A	В	С	D	Е
15	A	В	С	D	Е
16	A	В	С	D	Е
17	A	В	С	D	Е
18	A	В	С	D	Е
19	A	В	С	D	Е
20	A	В	С	D	Е

Zadanie 1 (2 punkty)

Ile jest liczb całkowitych dodatnich, które są równe sześcianowi jednej ze swoich cyfr w zapisie dziesiętnym?

A. 1;

B. 2:

C. 3:

D. 4;

E. 5.

Zadanie 2 (2 punkty)

W pewnym kraju do ceny netto towaru dolicza się 25% podatku VAT. O ile procent zmniejszy się cena brutto, jeśli cena netto nie zmieni się, ale podatek VAT będzie wynosić 20%?

A. 5%;

B. 22,5%; **C.** 4%; **D.** 20%;

E. $6\frac{1}{4}\%$.

Zadanie 3 (2 punkty)

Dany jest trójkat prostokatny ABC, w którym przyprostokatne AB i BC mają odpowiednio długości 30 i 40. W trójkat wpisano prostokąt *DEFG*, przy czym punkty D, E leża na boku CA, F leży na boku AB, zaś G na boku BC (rysunek). Wiadomo, że DE = 25. Obwód prostokata DEFG jest równy

A. 75;

B. 80;

C. 72;

D. 74;

E. 60.

Zadanie 4 (2 punkty)

Iloczyn dwóch liczb całkowitych dodatnich wynosi 2000, przy czym żadna z tych liczb nie jest podzielna przez 10. Suma tych liczb jest równa

A. 258;

B. 1002;

C. 157;

D. 141;

E. 133.

Zadanie 5 (2 punkty)

Wartość wyrażenia $1+3^2\left(\left(1+3^2\right)^{10}+\left(1+3^2\right)^9+\left(1+3^2\right)^8+\ldots+\left(1+3^2\right)^1+\left(1+3^2\right)^0\right)$ wynosi

A. 99 999 999 999;

B. 10^{11} :

C. 11 111 111 111;

D. $100 + 9^{10} + 9^9 + ... + 9^1 + 9^0$;

E. 111 111 111 110.

Zadanie 6 (2 punkty)

W pewnej liczbie pięciocyfrowej każda kolejna cyfra w zapisie dziesiętnym począwszy od cyfry tysięcy a skończywszy na cyfrze jedności jest większa od poprzedniej (jako pierwszą cyfrę rozumiemy cyfrę najbardziej z lewej strony dziesiętnego zapisu liczby), a suma cyfr wynosi 18. Ile różnych liczb o takich własnościach można utworzyć?

A. 0;

B. 1;

C. 2;

D. 3:

E. 4.

Zadanie 7 (2 punkty)

Suma liczby boków i liczby przekątnych pewnego wielokąta foremnego wynosi 231. Ile przekatnych ma ten wielokat?

A. 220;

B. 210;

C. 198;

D. 440;

E. 209.

Zadanie 8 (2 punkty)

Środek O okręgu o promieniu 13 jest jednym z wierzchołków trójkąta ABO o obwodzie 50, którego pozostałe wierzchołki A i B leżą na tym okręgu. Pole trójkąta ABO jest równe

A. 60;

B. 65:

C. 50;

D. 78;

E. 84,5.

Zadanie 9 (2 punkty)

Spośród cyfr 1, 2, 3, 4 wybieramy trzy różne i układamy z nich liczbę trzycyfrową. Ile spośród uzyskanych w ten sposób liczb jest podzielnych przez 6?

A. 2;

B. 6;

C. 24;

D. 4;

E. 12.

Zadanie 10 (2 punkty)

W pewnym ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają długość 6. Sklejono podstawami dwa takie ostrosłupy uzyskując bryłę zwaną ośmiościanem foremnym (rysunek). Jaką objętość ma ten ośmiościan?

D. $72\sqrt{2}$:

E. $216\sqrt{2}$.

Zadanie 11 (3 punkty)

Liczba A jest największą liczba pięciocyfrową, w której każda cyfra począwszy od trzeciej jest sumą dwóch cyfr poprzednich (jako pierwszą uznajemy cyfrę najbardziej z lewej strony w dziesiętnym zapisie liczby, każda kolejna cyfra stoi na prawo od poprzedniej). Liczba B jest największą liczbą pięciocyfrową, w której każda cyfra począwszy od trzeciej jest iloczynem dwóch cyfr poprzednich. Suma liczb A i B jest równa

A. 71 787;

B. 52 696;

C. 61 672;

D. 62 798:

E. 130 448.

Zadanie 12 (3 punkty)

Dane są liczby
$$x = \frac{1}{3 + 2\sqrt{2}}$$
, $y = 3 - 2\sqrt{2}$, $z = \frac{1}{5}$.

Prawdą jest, że

A.
$$z \le y \le x$$

B.
$$x \le z \le y$$
:

C.
$$y \le z \le x$$
;

A.
$$z \le y \le x$$
; **B.** $x \le z \le y$; **C.** $y \le z \le x$; **D.** $z \le x \le y$; **E.** $x \le y \le z$.

E.
$$x \le y \le z$$
.

Zadanie 13 (3 punkty)

W trójkącie ostrokątnym ABC kat ABC ma miarę 60° , AB = 8 oraz CA = 7. Obwód tego trójkata jest równy

A.
$$15 + 4\sqrt{3} + \sqrt{33}$$
;

C.
$$19 - \sqrt{2}$$
:

E.
$$18 + 4\sqrt{3} - \sqrt{33}$$
.

Zadanie 14 (3 punkty)

Dwa przeciwległe wierzchołki kwadratu o boku 6 są środkami okręgów o promieniu 6. Łuki tych okręgów zawarte we wnętrzu kwadratu ograniczają zaciemnioną figure (rysunek). Pole tej figury jest równe

B.
$$12\pi - 36$$
;

C.
$$6(\pi - \sqrt{2});$$

D.
$$9\pi$$
 :

E.
$$18(\pi-2)$$
.

Zadanie 15 (3 punkty)

Dany jest trójkąt ABC, w którym AB = BC = 5. Okrąg, którego średnicą jest odcinek AB, przecina bok BC w punkcie D takim, że BD = 3. Pole trójkąta ABC jest równe

B.
$$\frac{5\sqrt{41}}{2}$$
; **C.** $\frac{5\sqrt{21}}{2}$; **D.** $2\sqrt{21}$;

C.
$$\frac{5\sqrt{21}}{2}$$

D.
$$2\sqrt{21}$$
;

Zadanie 16 (3 punkty)

Trójkąty o bokach $(1; 1; \sqrt{2}), (1; 2; \sqrt{5}), (1; 2; \sqrt{5})$ i $(\sqrt{2}; \sqrt{5}; \sqrt{5})$ są ścianami ostrosłupa trójkątnego (rysunek). Jaką objętość ma ten ostrosłup?

A.
$$\frac{2}{3}$$

B.
$$\frac{1}{3}$$
;

C.
$$\frac{\sqrt{10}}{6}$$
;

D.
$$\frac{\sqrt{15}}{3}$$

A.
$$\frac{2}{3}$$
; **B.** $\frac{1}{3}$; **C.** $\frac{\sqrt{10}}{6}$; **D.** $\frac{\sqrt{15}}{3}$; **E.** $\frac{2\sqrt{5}+\sqrt{2}}{6}$

Zadanie 17 (3 punkty)

Za trzy lata ciocia Jacka będzie miała 6 razy tyle lat, ile Jacek miał rok temu. Gdy Jacek będzie mieć dwa razy więcej lat niż obecnie, razem z ciocią będą mieć 90 lat. Ile lat ma teraz ciocia?

A. 57;

B. 59;

C. 60;

D. 65;

C. 264;

E. 76.

Zadanie 18 (3 punkty)

Rysunek przedstawia siatkę pewnej kości sześciennej. Z 27 takich kości zbudowano większy sześcian. Jaka jest największa możliwa suma liczby oczek widocznych na powierzchni dużego sześcianu?

A. 220; **D.** 216;

B. 288;

E. 276.

Zadanie 19 (3 punkty)

Przedłużenia średnicy AB oraz cięciwy CD pewnego okręgu przecinają się w punkcie M (rysunek), przy czym kąty CMA i MAC mają odpowiednio miary 23° oraz 50° . Jaką miarę ma kąt CDA?

B. 46°;

C. 40°;

D. 50°;

E. 43°.

Zadanie 20 (3 punkty)

Długości wszystkich boków trójkąta są liczbami naturalnymi. Obwód trójkąta wynosi 2018, a jeden z jego boków ma długość 5. Ile różnych trójkątów o takiej własności istnieje? Trójkaty uznajemy za różne, jeśli nie są figurami przystającymi.

A. mniej niż 5;

B. więcej niż 4, mniej niż 10;

C. więcej niż 9, mniej niż 100;

D. więcej niż 99, mniej niż 1000;

E. więcej niż 999.