Chapter 9: Functions of Several Variables

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 9.1. If S is a nonempty subset of a vector space X, prove (as asserted in Section 9.1) that the span of S is a vector space.

Denote the span of S by span(S).

Proof.

- (1) Since $S \neq \emptyset$, there is $\mathbf{z} \in S$. So $1\mathbf{z} = \mathbf{z} \in \text{span}(S) \neq \emptyset$. (In fact, $\text{span}(S) \supseteq S$.)
- (2) If $\mathbf{x}, \mathbf{y} \in \text{span}(S)$, then there exist elements $\mathbf{x}_1, \dots, \mathbf{x}_m, \mathbf{y}_1, \dots, \mathbf{y}_n \in S$ and scalars $a_1, \dots, a_m, b_1, \dots, b_n$ such that

$$\mathbf{x} = a_1 \mathbf{x}_1 + \dots + a_m \mathbf{x}_m,$$

$$\mathbf{y} = b_1 \mathbf{y}_1 + \dots + b_n \mathbf{y}_n.$$

Then

$$\mathbf{x} + \mathbf{y} = a_1 \mathbf{x}_1 + \dots + a_m \mathbf{x}_m + b_1 \mathbf{y}_1 + \dots + b_n \mathbf{y}_n$$

is a linear combination of the elements of S. For any scalar c,

$$c\mathbf{x} = (ca_1)\mathbf{x}_1 + \dots + (ca_m)\mathbf{x}_m$$

is again linear combination of the elements of S.

(3) By (1)(2), span(S) is a vector space.

Note. Any subspace of X that contains S must also contain span(S).

Exercise 9.2. Prove (as asserted in Section 9.6) that BA is linear if A and B are linear transformations. Prove also that A^{-1} is linear and invertible if A is invertible.

Proof. Use the notation in Definitions 9.6.

(1) Show that BA is linear if A and B are linear transformations. Let X, Y, Z be vector spaces, $A \in L(X, Y)$ and $B \in L(Y, Z)$.

(a) Given any $\mathbf{x}_1, \mathbf{x}_2 \in X$.

$$(BA)(\mathbf{x}_1 + \mathbf{x}_2) = B(A(\mathbf{x}_1 + \mathbf{x}_2))$$

= $B(A\mathbf{x}_1 + A\mathbf{x}_2)$ (A is a linear transformation)
= $B(A\mathbf{x}_1) + B(A\mathbf{x}_2)$ (B is a linear transformation)
= $(BA)\mathbf{x}_1 + (BA)\mathbf{x}_2$.

(b) For any $\mathbf{x} \in X$ and scalar c,

$$(BA)(c\mathbf{x}) = B(A(c\mathbf{x}))$$

= $B(cA\mathbf{x})$ (A is a linear transformation)
= $cB(A\mathbf{x})$ (B is a linear transformation)
= $c(BA)\mathbf{x}$.

By (a)(b), $BA \in L(X, Z)$.

- (2) Show that A^{-1} is linear if A is invertible.
 - (a) Given any $\mathbf{y}_1, \mathbf{y}_2 \in X$. Since A is surjective, there exist $\mathbf{x}_1, \mathbf{x}_2 \in X$ such that

$$\mathbf{y}_1 = A\mathbf{x}_1$$
$$\mathbf{y}_2 = A\mathbf{x}_2.$$

So

$$A^{-1}\mathbf{y}_1 = A^{-1}(A\mathbf{x}_1) = \mathbf{x}_1$$

 $A^{-1}\mathbf{y}_2 = A^{-1}(A\mathbf{x}_2) = \mathbf{x}_2$

(by Definitions 9.4). Hence

$$A^{-1}(\mathbf{y}_1 + \mathbf{y}_2) = A^{-1}(A\mathbf{x}_1 + A\mathbf{x}_2)$$

$$= A^{-1}(A(\mathbf{x}_1 + \mathbf{x}_2)) \quad (A \text{ is a linear transformation})$$

$$= \mathbf{x}_1 + \mathbf{x}_2 \qquad (Definitions 9.4)$$

$$= A^{-1}\mathbf{y}_1 + A^{-1}\mathbf{y}_2.$$

(b) For any $\mathbf{y} \in X$ and scalar c, there is a corresponding $\mathbf{x} \in X$ such that $\mathbf{y} = A\mathbf{x}$ since A is surjective. So $A^{-1}\mathbf{y} = \mathbf{x}$ by Definition 9.4. Hence

$$A^{-1}(c\mathbf{y}) = A^{-1}(cA\mathbf{x})$$

= $A^{-1}(A(c\mathbf{x}))$ (A is a linear transformation)
= $c\mathbf{x}$ (Definitions 9.4)
= $cA^{-1}\mathbf{y}$.

By (a)(b), $A^{-1} \in L(X)$.

- (3) Show that A^{-1} is invertible if A is invertible. It suffices to show that A^{-1} is injective and surjective.
 - (a) Show that A^{-1} is injective. Given any $\mathbf{y}_1, \mathbf{y}_2 \in X$. Since A is surjective, there exist $\mathbf{x}_1, \mathbf{x}_2 \in X$ such that

$$\mathbf{y}_1 = A\mathbf{x}_1$$
$$\mathbf{y}_2 = A\mathbf{x}_2.$$

Suppose $A^{-1}\mathbf{y}_1 = A^{-1}\mathbf{y}_2$. So $A^{-1}(A\mathbf{x}_1) = A^{-1}(A\mathbf{x}_2)$, or $\mathbf{x}_1 = \mathbf{x}_2$, or $\mathbf{y}_1 = A\mathbf{x}_1 = A\mathbf{x}_2 = \mathbf{y}_2$.

(b) Show that A^{-1} is surjective. For any $\mathbf{x} \in X$, there exists $A\mathbf{x} \in X$ such that $A^{-1}(A\mathbf{x}) = \mathbf{x}$ by Definitions 9.4.