Lista 5: aplicações diferenciáveis e regra da cadeia

25 de abril de 2025

1. Seja $F: \mathbb{R}^2 \to \mathbb{R}^3$ definida por

$$F(t,s) = (t\cos(2\pi s), t\sin(2\pi s), 1-t).$$

- (a) Mostre que a imagem de F é um cone com vértice $e_3=(0,0,1)$. Qual é a imagem do quadrado $\{(t,s)\in\mathbb{R}^2:0\leq t,s\leq 1\}$?
- (b) Calcule o posto da matriz jacobiana JF(t,s) para todo $(t,s) \in \mathbb{R}^2$.
- 2. Seja $U = \{(x, y, z, t) \in \mathbb{R}^4 : (x, y, z) \neq 0\}$ e $c \in \mathbb{R}$ uma constante. Denote $r = \|(x, y, z)\|$. Mostre que, para quaisquer $\varphi, \psi \in C^2(\mathbb{R})$, a função

$$f: U \to \mathbb{R}, \qquad f(x, y, z, t) = \frac{\varphi(r - ct) + \psi(r + ct)}{r}$$

satisfaz a equação da onda:

$$\frac{\partial^2 f}{\partial t^2} = c^2 \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right).$$

Tais soluções são ditas ondas esféricas.

3. Seja $U \subset \mathbb{R}^n$ um aberto e $F, G: U \to \mathbb{R}^m$ aplicações diferenciáveis em $p \in U$. Mostre que

$$\langle F, G \rangle : U \to \mathbb{R}, \qquad x \mapsto \langle F(x), G(x) \rangle$$

é diferenciável em p e

$$\nabla \langle F, G \rangle(p) = JF(p)^t \cdot G(p) + JG(p)^t \cdot F(p).$$

Na fórmula acima, A^t denota a transposta de uma matriz A e estamos identificando vetores com matrizes coluna.

- 4. Seja $U \subset \mathbb{R}^n$ e $f: U \to \mathbb{R}$ de classe C^2 . Calcule o jacobiano da aplicação gradiente $\nabla f: U \to \mathbb{R}^n$.
- 5. Sejam $F: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação diferenciável tal que F(0) = 0. Mostre que existem aplicações $G_1, \ldots, G_n : \mathbb{R}^n \to \mathbb{R}^m$ tais que

$$F(x) = x_1 G_1(x) + \dots + x_n G_n(x).$$

[Dica: dado $x \in \mathbb{R}^n$, considere $c_x(t) = F(tx)$.]

6. Demonstre a seguinte desigualdade do valor médio para aplicações: se F é diferenciável em todo ponto de um subconjunto convexo $K \subset U$ e $C \geq 0$ é uma constante tal que $\|DF(x)\| \leq C$ para todo $x \in K$, então

$$||F(x) - F(y)|| \le C||x - y||$$

para todos $x, y \in K$.

7. (Qualificação 2022) Forneça um contra-exemplo para a seguinte generalização ingênua do teorema do valor médio: "dada uma aplicação diferenciável $F: \mathbb{R}^n \to \mathbb{R}^m$ e pontos $x, y \in \mathbb{R}^n$, existe um ponto c no segmento que liga x a y tal que F(x) - F(y) = DF(c)(x - y)".

- 8. (Qualificação 2016) Seja $F: U \to \mathbb{R}^m$ de classe C^1 em um aberto U de \mathbb{R}^n . Mostre que, se DF(a) = 0, onde $a \in U$, então existe um $\varepsilon > 0$ tal que $||F(x) F(y)|| \le ||x y||$ para todos $x, y \in B(a, \varepsilon)$.
- 9. Determine se a seguinte questão da Qualificação 2006 está correta: "Seja $\Omega \subset \mathbb{R}^n$ um conjunto aberto limitado. Se $F: \Omega \to \mathbb{R}^n$ é uma aplicação de classe C^1 com determinante jacobiano não-nulo em todo ponto de Ω , mostre que existem c > 0 e $\delta > 0$ tais que $||F(x) F(y)|| \ge c||x y||$ se $||x y|| < \delta$ e $x, y \in \Omega$."
- 10. (Qualificação 2010) Sejam $0 < \theta_1 < \theta_2 < \infty, U \subset \mathbb{R}^n$ um aberto conexo e $F: U \to \mathbb{R}^m$ uma aplicação. Suponha que

$$||F(x) - F(y)||^{\theta_1} \le K||x - y||^{\theta_2}$$

para todos $x, y \in U$, onde K > 0 é uma constante. Mostre que F é constante em U.

- 11. Generalize a questão 16 da lista 2 para aplicações. Ou seja, se V_1, \ldots, V_k, V são espaços vetoriais de dimensão finita, mostre que toda aplicação multilinear $F: V_1 \times \cdots \times V_k \to V$ é diferenciável e calcule a sua diferencial.
- 12. Calcule a diferencial do produto de matrizes

$$M_{m \times n}(\mathbb{R}) \times M_{n \times n}(\mathbb{R}) \to M_{m \times n}(\mathbb{R}), \qquad (A, B) \mapsto AB.$$

- 13. (Qualificação 2011)
 - (a) Se $T: \mathbb{R}^n \to \mathbb{R}^n$ é um isomorfismo (de espaços vetoriais), mostre que

$$||Tv|| \ge \frac{||v||}{||T^{-1}||}.$$

(b) Se $F: U \subset \mathbb{R}^n \to \mathbb{R}^n$ é diferenciável em $x_0 \in U$ e $DF(x_0)$ é um isomorfismo, mostre que existem constantes positivas δ e c tais que

$$||v|| < \delta \implies ||F(x_0 + v) - F(x_0)|| \ge c||v||.$$

- 14. (Qualificação 2017, 2022) Seja $\mathrm{GL}_n(\mathbb{R}) \subset M_{n \times n}(\mathbb{R})$ o conjunto das matrizes $n \times n$ invertíveis.
 - (a) Mostre que $GL_n(\mathbb{R})$ é aberto em $M_{n\times n}(\mathbb{R})$.
 - (b) Mostre que a aplicação $F: \mathrm{GL}_n(\mathbb{R}) \to \mathrm{GL}_n(\mathbb{R})$ dada por $F(X) = X^{-1}$ é diferenciável e calcule DF(X).
 - (c) Se n=2 e $A=\begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$, exiba a matriz 2×2 dada por DF(A)A.
- 15. Seja $I \subset \mathbb{R}$ um intervalo aberto e $A: I \to GL_n(\mathbb{R})$ um caminho diferenciável (isto é, A(t) são matrizes invertíveis dependendo, de maneira diferenciável, de um parâmetro real t). Mostre que, em I, vale

$$\frac{dA^{-1}}{dt} = -A^{-1}\frac{dA}{dt}A^{-1}.$$

- 16. Lembremos que uma transformação linear $L: \mathbb{R}^n \to \mathbb{R}^n$ é dita uma isometria se L preserva o produto interno euclidiano: $\langle Lv, Lw \rangle = \langle v, w \rangle$ para todos $v, w \in \mathbb{R}^n$.
 - (a) Mostre que, se A é a matriz de L na base canônica, L é uma isometria se, e somente se, A é uma matriz ortogonal (isto é, as colunas de A formam uma base ortonormal de \mathbb{R}^n).

Uma transformação linear $L: \mathbb{R}^n \to \mathbb{R}^n$ é dita conforme se L é injetiva e L preserva ângulos:

$$\frac{\langle Lv,Lw\rangle}{\|Lv\|\|Lw\|} = \frac{\langle v,w\rangle}{\|v\|\|w\|}.$$

(b) Mostre que L é conforme se, e somente se, existe uma constante $\mu > 0$ tal que $\mu^{-1}L$ é uma isometria. Em particular, a matriz de uma transformação conforme é da forma μA , onde A é uma matriz ortogonal. [Dica: dados $u, u' \in S^{n-1}$, os vetores u + u' e u - u' são sempre ortogonais. Use isto para concluir que, se L é conforme, então $u \mapsto ||Lu||$ é constante sobre a esfera.]

Seja $U \subset \mathbb{R}^n$ um aberto. Uma aplicação diferenciável $F: U \to \mathbb{R}^n$ é dita conforme se DF(p) é uma transformação linear conforme para todo $p \in U$.

(c) Mostre que F é conforme se, e somente se, existe uma função $\mu:U\to(0,\infty)$ tal que, para todo $p\in U$:

$$\left\langle \frac{\partial F}{\partial x_i}(p), \frac{\partial F}{\partial x_i}(p) \right\rangle = 0 \quad \text{para todos } i \neq j \qquad \text{e} \qquad \left\| \frac{\partial F}{\partial x_i}(p) \right\| = \mu(p) \quad \text{para todo } i.$$

- (d) Mostre que, se F é conforme, então $\mu(p) = |\det JF(p)|^{1/n}$.
- (e) Seja n=2 e denote F(x,y)=(u(x,y),v(x,y)). Suponha que F preserva orientação em todo ponto, isto é, det JF(p)>0 para todo $p\in U$. Mostre que F é conforme se, e somente se, $u\in V$ satisfazem as equações de Cauchy–Riemann:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

[Dica: uma matriz ortogonal 2×2 com determinante positivo é uma matriz de rotação.] Conclua que aplicações conformes no plano, que preservam orientação, correspondem a funções holomorfas $f: U \subset \mathbb{C} \to \mathbb{C}$ tais que $f'(z) \neq 0$ para todo $z \in U$.

17. Seja $L: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação linear de matriz $A = (a_{ij})_{1 \leq i,j \leq n}, \ U \subset \mathbb{R}^n$ um aberto e $f \in C^2(U)$. Mostre que, se $g = f \circ L$, então

$$\frac{\partial^2 g}{\partial x_i \partial x_j} = \sum_{k,l=1}^n a_{ki} a_{lj} \frac{\partial^2 f}{\partial x_k \partial x_l} \circ L$$

para todos $i, j = 1, \ldots, n$.

18. Com a notação do exercício anterior, mostre que, se L é uma isometria, então

$$\Delta g = \Delta f \circ L,$$

isto é, o Laplaciano $\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}$ é invariante por isometrias.