高等代数 期中考试题

本试卷共计十道试题,每题满分 10 分;用 E 表示单位矩阵,矩阵 A 的转置矩阵表示为 A^T .

1.
$$\mathbb{E} \cup D_{1} = \begin{vmatrix} x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{n} & x_{2}^{n} & \cdots & x_{n}^{n} \end{vmatrix}, D_{i} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{i-2} & x_{2}^{i-2} & \cdots & x_{n}^{i-2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{i} & x_{2}^{i} & \cdots & x_{n}^{n} \end{vmatrix}, i = 2, 3, \dots, n, \text{ if } \not\cong \sum_{i=1}^{n} D_{i}.$$

 $当 \alpha$ ≠ -1 时,证明 A 是可逆矩阵,并且求出它的逆矩阵 A^{-1}

- 3. 设 $\mathbf{e}_{i} = (0, \cdots, 0, 1, 0, \cdots)^{T}, i = 1, 2, \cdots, n$, $i_{1}, i_{2}, \cdots, i_{n}$ 是 $1, 2, \cdots, n$ 一 个 全 排 列 矩 阵 $P = ((-1)^{\mathbf{i}_{1}} e_{i_{1}}, (-1)^{\mathbf{i}_{2}} e_{i_{1}}, \cdots * (-1)^{\mathbf{i}_{n}} e_{i_{n}})$, 计算 P 的行列式.
- 4. 求参数 p,t 使得方程 XA = B 有唯一解,无穷多解,无解,在有解时求出所有的解,其中

5. 设 A 是一个 $m \times n$ 矩阵,从 A 的行中任意取 s 行组成一个矩阵 B,从 B 中任意取 t 列组成举证 C,证明 (1) $r(B) \ge r(A) + s - m$; (2) $r(C) \ge r(A) + s + t - m - n$

6. $A=(a_{ij})_{n\times n}$ 是一个任意矩阵,证明 $|\lambda E-A|=\lambda^n+a_1\lambda^{n-1}+\cdots+a_{n-1}\lambda+a_n$ 其中

- 7. 设 A 是一个秩等于 1 的 $m \times n$ 矩阵, $b \neq 0$ 是一个 $m \times 1$ 的列向量, η 是 AX = b 的解, 而矩阵 $B = (\alpha_2, \alpha_3, \cdots, \alpha_n)$ 的秩等于 n-1,满足 AB = 0,证明矩阵 $C = (\eta, \eta + \alpha_2, \cdots, \eta + \alpha_n)$ 是可逆矩阵.
- 8. 设 A,B 是 n 阶 对 称 矩 阵 , 证 明 A=B 的 充 要 条 件 是 对 任 意 $X=(x_1,x_2,\cdots,x_n)$ 满 足 $XAX^T=XB$ X^T . 对任何矩阵 C 都存在对 称矩阵 D 使得 $XCX^T=XDX^T$ 对 所有 X 成 立 .
- 9. 计算 A'', 其中 $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$
- 10. 证明包含 $\sqrt{2}$ 的最小数域是 $P = \{a_0 + a_1 \sqrt[3]{2} + a_2 \sqrt[3]{4} \mid a_0, a_1, a_2$ 都是有理数 } (即任何其余包含了 $\sqrt[3]{2}$ 数域 Q 都有 $Q \supseteq P$. 试刻画包含了圆周率 π 的最小数域.

高学代数(I) 期中练习 200.08c. Siu. edu. cn

- 1. 给出矩阵秩的定义,说明张的意义,亦即你认为为何要引入秩的概念;给出秩的至少三种等价刻划.
- 2. 证明 Fro he uius 不学式,即 = 对A;B,C & IP MXD, 有 r(ABC) = r(AB)+r(BC)-r
- 3. 证明: み発阵 A E IP Sxt r(A)=| <> ヨロGIPSixl 3GIPTXI 使得 A=2BT
- 4 川波A、B分别是nxm阵和mx四凡,试证.

- (2) 设A是n的可逆阵, 以及是两个n元列何量,试证:[A+以βT]=|A|(1+βTAT以)
- (3) 计算行列式

$$\begin{vmatrix} a_{1} & 2 & 3 & --- & n-1 & n \\ 1 & a_{2} & 3 & --- & n-1 & n \\ 1 & 2 & a_{3} & --- & n-1 & n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 2 & 3 & --- & n-1 & a_{n} \end{vmatrix}$$