◆無理数の計算

1. 平方根を簡単にしなさい。

(1)
$$\sqrt{20} = \sqrt{2^2 \times 5} = 2\sqrt{5}$$

(2)
$$\sqrt{32} = \sqrt{2^2 \times 2^2 \times 2} = 4\sqrt{2}$$

(3)
$$\sqrt{288} = \sqrt{2^5 \times 3^2} = 12\sqrt{2}$$

(4)
$$\sqrt{336} = \sqrt{2^2 \times 2^2 \times 3 \times 7} = 4\sqrt{21}$$

2. 分母を有理化しなさい。

$$(1) \ \frac{1}{\sqrt{2}} = \frac{1 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{2}}{2}$$

(2)
$$\frac{8}{3\sqrt{2}} = \frac{8 \times \sqrt{2}}{3\sqrt{2} \times \sqrt{2}} = \frac{8\sqrt{2}}{3 \times 2} = \frac{4\sqrt{2}}{3}$$

(3)
$$\frac{4}{\sqrt{12}} = \frac{4}{2\sqrt{3}} = \frac{4 \times \sqrt{3}}{2\sqrt{3} \times \sqrt{3}} = \frac{2\sqrt{3}}{3}$$

(4)
$$\frac{\sqrt{3}}{\sqrt{18}} = \frac{\sqrt{3}}{3\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{3\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{6}$$

3. 次の計算をしなさい。ルートの中身・分数はできるだけ簡単にすること。

$$(1) \sqrt{5} \times \sqrt{3} = \sqrt{5 \times 3} = \sqrt{15}$$

(2)
$$2\sqrt{3} \times 3\sqrt{3} = (2 \times 3)\sqrt{3 \times 3} = 6 \times 3 = 18$$

(3)
$$\sqrt{32} \times \left(-\sqrt{8}\right) = \sqrt{2^2 \times 2^2 \times 2} \times \left(-\sqrt{2^2 \times 2}\right) = 4\sqrt{2} \times \left(-2\sqrt{2}\right)$$

= $-8\sqrt{2 \times 2} = -8 \times 2 = 16$

(4)
$$\sqrt{48} \div \sqrt{6} = \frac{\sqrt{48}}{\sqrt{6}} = \sqrt{\frac{48}{6}} = \sqrt{8} = \sqrt{2 \times 2 \times 2} = 2\sqrt{2}$$

(5)
$$6\sqrt{6} \div 2\sqrt{2} = \frac{6\sqrt{6}}{2\sqrt{2}} = \frac{3\sqrt{6}}{\sqrt{2}} = 3 \times \sqrt{\frac{6}{2}} = 3\sqrt{3}$$

(6)
$$8\sqrt{2} - 4\sqrt{2} + 5\sqrt{2} = (8 - 4 + 5)\sqrt{2} = 9\sqrt{2}$$

$$(7)\sqrt{2} + 3\sqrt{3} - 2\sqrt{2} + 5\sqrt{3} = \sqrt{2} - 2\sqrt{2} + 3\sqrt{3} + 5\sqrt{3} = -\sqrt{2} + 8\sqrt{3}$$

$$(8)\sqrt{72} - \sqrt{54} - \sqrt{32} + \sqrt{6}$$

$$= \sqrt{6^2 \times 2} - \sqrt{3^2 \times 6} - \sqrt{4^2 \times 2} + \sqrt{6} = 6\sqrt{2} - 3\sqrt{6} - 4\sqrt{2} + \sqrt{6} = 2\sqrt{2} - 2\sqrt{6}$$

$$\text{(9)} \frac{3}{\sqrt{2}} \ + \sqrt{18} \ - \ \frac{5}{\sqrt{50}} = \frac{3}{\sqrt{2}} \ \times \ \frac{\sqrt{2}}{\sqrt{2}} \ + \sqrt{3^2 \times 2} \ - \ \frac{5}{\sqrt{5^2 \times 2}}$$

$$=\frac{3\sqrt{2}}{2}+3\sqrt{2}-\frac{5}{5\sqrt{2}}=\frac{9\sqrt{2}}{2}-\frac{1}{\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}=\frac{9\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=\frac{8\sqrt{2}}{2}=4\sqrt{2}$$

東京情報クリエイター工学院

(10)
$$2\sqrt{15} \div \sqrt{3} - \frac{20}{\sqrt{5}} = 2\sqrt{15} \times \frac{1}{\sqrt{3}} - \frac{20 \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{2\sqrt{15}}{\sqrt{3}} - \frac{20\sqrt{5}}{5} = 2 \times \sqrt{\frac{15}{3}} - 4\sqrt{5}$$
$$= 2\sqrt{5} - 4\sqrt{5} = -2\sqrt{5}$$

◆式の展開と因数分解

- 1. 次の式を展開しなさい。
- $(1)(4x + 5y) \times 3x = 12x^2 + 15xy$

(2)
$$(x + 5)^2 = x^2 + 2 \times x \times 5 + 5^2 = x^2 + 10x + 25$$

(3)
$$(3x - y)^2 = 9x^2 - 6xy + y^2$$

$$(4)(2x+3y)(2x-3y)=4x^2-9y^2$$

$$(5)(x+2)(x-3) = x^2 + (2-3)x + 2 \times (-3) = x^2 - x - 6$$

$$(6)(5x+2y)(7x-9y) = 35x^2 - 31xy - 18y^2$$

$$(7)(3x-2y)(5x-8y) = 15x^2 - 34xy + 16y^2$$

(8)
$$(x+4)(x+9) - (x-8)^2 = x^2 + 13x + 36 - (x^2 - 16x + 64) = 29x - 28$$

(9)
$$(2\sqrt{3} + \sqrt{5})^2 = (2\sqrt{3})^2 + 2 \times 2\sqrt{3} \times \sqrt{5} + (\sqrt{5})^2 = 4 \times 3 + 4\sqrt{15} + 5 = 17 + 4\sqrt{15}$$

$$(10) \left(\sqrt{2} + 2\sqrt{3}\right) \left(\sqrt{2} + 5\sqrt{3}\right) = 2 + \left(2\sqrt{3} + 5\sqrt{3}\right) \times \sqrt{2} + 2\sqrt{3} \times 5\sqrt{3}$$

$$= 2 + 7\sqrt{6} + 30 = 32 + 7\sqrt{6}$$

2. 次の式を因数分解しなさい。

$$(1)6ab + 9bc + 15bc^2 = 2 \times 3 \times a \times b + 3 \times 3 \times b \times c + 3 \times 5 \times b \times c \times c$$
$$= 3 \times b(2 \times a + 3 \times c + 5 \times c \times c) = 3b(2a + 3c + 5c^2)$$

(2)
$$x^2 - 16x + 64 = (x - 8)^2$$

(3)
$$x^2 + 6xy + 9y^2 = (x + 3y)^2$$

(4)
$$16x^2 - 25y^2 = (4x)^2 - (5y)^2 = (4x + 5y)(4x - 5y)$$

(5)
$$x^2 - 10x + 16 = (x - 8)(x - 2)$$

(6)
$$x^2 - 11xy + 18y^2 = (x - 9y)(x - 2y)$$

(7)
$$6x^2 + 7x + 2 = (3x + 2)(2x + 1)$$

(8)
$$5x^2 + 7x - 6 = (5x - 3)(x + 2)$$

(9)
$$(2x + y)^2 - (2x - y)^2 - 8x^3y^3$$

= $4x^2 + 4xy + y^2 - (4x^2 - 4xy + y^2) - 8x^3y^3 = 8xy - 8x^3y^3 = 8xy(1 - x^2y^2)$
= $8xy(1 + xy)(1 - xy)$

$$(10) x^2 - y^2 - 2y - 1 = x^2 - (y^2 + 2y + 1) = x^2 - (y + 1)^2$$
$$= \{x + (y + 1)\}\{x - (y + 1)\} = (x + y + 1)(x - y - 1)$$

◆二次方程式

1. 次の二次方程式を解きなさい。

$$(1)x^2 - 4 = 0$$
$$x^2 = 4$$

$$x = \pm 2$$

(3)
$$x^2 - 5x = 0$$

 $x(x - 5) = 0$
 $x = 0, 5$

$$(5) x^{2} - 4x + 4 = 0$$
$$(x - 2)^{2} = 0$$
$$x = 2$$

$$(7) x^2 - 16 = 0$$
$$(x+4)(x-4) = 0$$

$$x=\pm 4$$

$$(9) x^2 - 10x + 24 = 0$$
$$(x - 4)(x - 6) = 0$$
$$x = 4.6$$

$$(11) x^2 + 17 + 72 = 0$$
$$(x+8)(x+9) = 0$$

$$x=-8,-9$$

$$(13) x^2 - 5x + 5 = 0$$

$$x = \frac{-(-5)\pm\sqrt{(-5)^2-4\times1\times5}}{2\times1}$$

$$x=\frac{5\pm\sqrt{5}}{2}$$

$$(2) x^2 - 7 = 0 x^2 = 7$$

$$x = \pm \sqrt{7}$$

$$(4) 3x^{2} + 6x = 0$$
$$3x(x+6) = 0$$
$$x = 0, -6$$

$$(6) x^2 - 10x + 24 = 0$$
$$(x - 4)(x - 6) = 0$$
$$x = 4, 6$$

(8)
$$9x^2 - 64 = 0$$

 $(3x + 8)(3x - 8) = 0$
 $x = \pm \frac{8}{3}$

$$(10)4x^{2} - 16x - 48 = 0$$

$$4(x^{2} - 4x - 12) = 0$$

$$4(x+6)(x-2) = 0 x = -6, 2$$

$$(12) 2x^{2} + 7x + 3 = 0$$

$$(2x+1)(x+3) = 0$$

$$x = -3, -\frac{1}{2}$$

$$(14) x^2 + x - 3 = 0$$

$$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-3)}}{2 \times 1}$$

$$x=\frac{-1\pm\sqrt{13}}{2}$$

東京情報クリエイター工学院

$$(15) x^{2} - 2x - 1 = 0$$

$$x^{2} - 2 \times 1 \times x - 1 = 0$$

$$x = \frac{-1 \pm \sqrt{1^{2} - 1 \times (-1)}}{1}$$

$$x = -1 \pm \sqrt{2}$$

$$(17) (x - 1)(x + 2) - 10 = 0$$

$$x^{2} + x - 2 - 10 = 0$$

$$x^{2} + x - 12 = 0$$

$$(x + 4)(x - 3) = 0$$

$$x = -4.3$$

$$(19) (x+3)(x-5) = 8$$

$$x^{2} - 2x - 15 - 8 = 0$$

$$x^{2} - 2 \times 1 \times x - 23 = 0$$

$$x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 1 \times (-23)}}{1}$$

$$x = 1 \pm \sqrt{24} = 1 \pm 2\sqrt{6}$$

$$(16) x^{2} - 6x + 1 = 0$$

$$x^{2} - 2 \times 3 \times x + 1 = 0$$

$$x = \frac{-3 \pm \sqrt{3^{2} - 1 \times 1}}{1}$$

$$x = -3 \pm \sqrt{8} = -3 \pm 2\sqrt{2}$$

$$(18) x(3x+2) = (x+2)^{2}$$

$$3x^{2} + 2x - (x^{2} + 4x + 4) = 0$$

$$2x^{2} - 2x - 4 = 0$$

$$x^{2} - x - 2 = 0$$

$$(x+1)(x-2) = 0$$

$$x = -1, 2$$

(20)
$$\frac{1}{2} x^{2} + 4x + 7 = 0$$
$$x^{2} + 8x + 14 = 0$$
$$x^{2} + 2 \times 4 \times x + 14 = 0$$
$$x = \frac{-4 \pm \sqrt{4^{2} - 1 \times 14}}{1}$$

$$x = -4 + \sqrt{2}$$

2. 大小 2 つの数があります。 その差は 8 で積が 48 です。このような 2 数を全て求めなさい。

大きいほうの数を x とする。差が 8 なので、小さい方の数は (x-8) である。

2 数の積が 48 なので、x(x-8) = 48

この方程式を解くと

$$x^{2} - 8x - 48 = 0$$
$$(x+4)(x-12) = 0$$
$$x = -4, 12$$

したがって、x = -4 のとき小さいほうの数は、-4 - 8 = -12 x = 12 のとき小さいほうの数は、12 - 8 = 4

解答 12 と 4、-4 と -12

3. 連続する3つの自然数があります。小さいほうの2数の積の3倍は、大きいほうの2数の積の2 倍より50大きい。この3つの自然数を求めなさい。

一番小さい数を x とすると、連続する3つの自然数は、x,(x+1),(x+2) となる。

小さい方2数の積の3倍は、3x(x+1)

大きい方2数の積の2倍は、2(x+1)(x+2)

3x(x+1) が 2(x+1)(x+2) より 50 大きいので

$$3x(x+1) = 2(x+1)(x+2) + 50$$

この方程式を解くと

$$3x^{2} + 3x = 2x^{2} + 6x + 4 + 50$$

$$x^{2} - 3x - 54 = 0$$

$$(x - 9)(x + 6) = 0$$

$$x = 9, -6$$

ところが x は自然数なので、x > 0 より x = 9 解答 連続する3つの自然数は 9,10,11

4. 周の長さが 38cm 、 面積 $84cm^2$ の長方形の縦と横の長さを求めなさい。ただし、横のほうが長いとします。

周の長さが 38cm なので、縦と横の長さの合計が 19cm である。

縦の長さを x cm とすると横の長さは (19-x)cm

面積が $84cm^2$ なので x(19-x)=84

これを解くと

$$19x - x^{2} = 84$$

$$x^{2} - 19x + 84 = 0$$

$$(x - 7)(x - 12) = 0$$

$$x = 7, 12$$

横のほうが長いので、x=7

解答 縱 7cm 、横 12cm

◆三角関数

1. 次の直角三角形の三角比($sin\theta$, $cos\theta$, $tan\theta$) を求めなさい。

2. $\theta = 30^{\circ}, 45^{\circ}, 60^{\circ}$ の $sin\theta, cos\theta, tan\theta$ を求めなさい。

$$sin30^{\circ} = \frac{1}{2}$$

$$cos30^{\circ} = \frac{\sqrt{3}}{2}$$

$$tan30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$sin45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$cos45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$tan45^{\circ} = \frac{1}{1} = 1$$

$$sin60^{\circ} = \frac{\sqrt{3}}{2}$$

$$cos30^{\circ} = \frac{1}{2}$$

$$tan30^{\circ} = \frac{\sqrt{3}}{1} = \sqrt{3}$$

3. 次の直角三角形 ABC について、次の問いに答えなさい。

(1) sin∠A, cos∠A, tan∠A を求めなさい。

$$sin \angle A = \frac{5}{13} cos \angle A = \frac{12}{13} tan \angle A = \frac{5}{12}$$

(2) $sin \angle B, cos \angle B, tan \angle B$ を求めなさい。

$$sin \angle B = \frac{12}{13} cos \angle B = \frac{5}{13} tan \angle B = \frac{12}{5}$$

4. 次の直角三角形において、x の長さを求めなさい。ただし、 $\sqrt{2}=1.4$ とします。

$$cos45^{\circ} = \frac{x}{20}$$

$$x = 20 \times cos45^{\circ} = 20 \times \frac{\sqrt{2}}{2} = 10\sqrt{2} = 14$$

5. 次の直角三角形において、y の長さを求めなさい。ただし、 $\sqrt{3}=1.7$ とします。

$$sin30^{\circ} = \frac{y}{10}$$

$$y = 10 \times sin30^{\circ} = 10 \times \frac{1}{2} = 5$$

6. 次の直角三角形において、x の長さを求めなさい。ただし、 $\sqrt{3}=1.7$ とします。

$$tan60^{\circ} = \frac{x}{30}$$

$$x = 30 \times tan60^{\circ} = 30 \times \sqrt{3} = 51$$

7. 次の直角三角形において、x の長さを求めなさい。

ただし、 $sin18^{\circ} = 0.31 \ cos18^{\circ} = 0.95 \ tan18^{\circ} = 0.32 \ とします。$

$$sin 18^{\circ} = \frac{20}{x}$$

$$x = \frac{20}{sin 18^{\circ}} = \frac{20}{0.31} = 64.52$$

8. 次の直角三角形において、x の長さを求めなさい。

ただし、 $sin28^{\circ} = 0.47 \ cos28^{\circ} = 0.88 \ tan28^{\circ} = 0.53 \ とします。$

$$\tan 28^{\circ} = \frac{5}{x} \\
x = \frac{5}{\tan 28^{\circ}} = \frac{5}{0.53} = 9.33$$

9. 次の直角三角形において、角 $oldsymbol{ heta}$ の大きさを求めなさい。角度は表を参照して、一番近いものを選びなさい。

«三角比の表»			
θ(°)	sin θ	cos θ	tan θ
30	0.5000	0.8660	0.5774
31	0.5150	0.8572	0.6009
32	0.5299	0.8480	0.6249
33	0.5446	0.8387	0.6494
34	0.5592	0.8290	0.6745
35	0.5736	0.8192	0.7002
36	0.5878	0.8090	0.7265
37	0.6018	0.7986	0.7536
38	0.6157	0.7880	0.7813
39	0.6293	0.7771	0.8098
40	0.6428	0.7660	0.8391
41	0.6561	0.7547	0.8693
42	0.6691	0.7431	0.9004
43	0.6820	0.7314	0.9325

$$tan\theta = 0.65$$
$$\theta = 33^{\circ}$$

$$sin\theta = \frac{16}{25} = 0.64$$

$$\theta = 40^{\circ}$$

$$cos\theta = \frac{20}{25} \qquad cos\theta = \frac{20}{25} = 0.8$$

$$\theta = 37^{\circ}$$

- 10. 9の表を参照して、次の三角関数の値を求めなさい。
- $(1) sin 126^{\circ}$

$$sin126^{\circ} = sin(90^{\circ} + 36^{\circ}) = cos36^{\circ} = 0.8090$$

(2) cos132°

$$cos132^{\circ} = cos(90^{\circ} + 42^{\circ}) = -sin42^{\circ} = -0.6691$$

(3) sin147°

$$sin147^{\circ} = sin(180^{\circ} - 33^{\circ}) = sin33^{\circ} = 0.5446$$

 $(4) cos 144^{\circ}$

$$cos144^{\circ} = cos(180^{\circ} - 36^{\circ}) = -cos36^{\circ} = -0.8090$$

11. 次の角について、度はラジアンに、ラジアンは度に変換しなさい。

(1) **75°**

$$75^{\circ} = 75 \times \frac{\pi}{180} = \frac{5\pi}{12}$$

$$15^{\circ} = 15 \times \frac{\pi}{180} = \frac{\pi}{12}$$

「 冬休み課題 解答 」

東京情報クリエイター工学院

$$(3) \ \frac{3\pi}{2} \ rad \\ \frac{3\pi}{2} \times \frac{180}{\pi} = 270^{\circ}$$

(4)
$$\frac{5\pi}{6} rad$$
$$\frac{5\pi}{6} \times \frac{180}{\pi} = 150^{\circ}$$