

Réseaux 1 Couche Liaison de données

Abdelkader OUALI

Université de Caen Normandie Laboratoire GREYC

abdelkader.ouali@unicaen.fr

Plan

- Couche liaison de données
 - Types d'erreurs
 - Détection d'erreur
 - Correction des erreurs
- Contrôle d'accès au support
 - Accès point à point
 - Accès multiple

Définition

- Ensemble des matériels et logiciels permettant d'assurer une transmission fiable des données sur la liaison physique
- L'unité d'information associée à la couche 2 du modèle OSI est trame ou L-PDU

Rôles de la couche liaison de données

- Découpage en trame
 - Délimiter les données issus de la couche réseaux
- Contrôle d'accès au media de transmission
 - Quelle machine a le droit d'utiliser le support pour envoyer les données
- Adressage
 - Identification physique des machines
- Contrôle d'erreurs
 - Assurer le transfert sans erreurs des données
- Contrôle de flux
 - Assurer un transfert fiable de données

Couche liaison de données Deux sous-couches

La couche liaison de données est découpée en deux sous couches :

LLC (Logical Link Control)

•MAC (Media Access Control)

Standard IEEE pour les LANs

Sous Couche LLC Contrôle d'erreurs

Sous-couche LLC

- La sous-couche **LLC** (Logical Link Control) est l'**interface** avec la couche **Réseau** en lui offrant une couche **logique** plutôt que physique
- Elle a pour rôle:
 - La protection contre les erreurs de transmission.
 - Assurer le transfert des trames et le contrôle de flux entre les stations du réseau.
- Indépendante de la méthode d'accès utilisée par la sous couche
 MAC

Erreurs de transmission

- Des erreurs sont dues aux canaux de transmission.
- Un ou plusieurs bits d'information peuvent être changés en même temps durant la transmission des données
- Les données peuvent être corrompues ou perdues
- Les erreurs sont causées par :
 - L'interférence (Bruit)
 - La distorsion

Comment prévenir les erreurs

(solutions physiques)

- Pour réduire les interférences
 - Blinder les fils
 - S'assurer que les câbles sont loin des sources d'interférence (Bruit)
- Pour réduire la distorsion
 - Ajuster l'équipement de transmission et améliorer la qualité de la connexion
 - Utiliser des amplificateurs et des répéteurs
 - Utiliser du câble de meilleur qualité
- Mais le risque d'erreurs existe toujours, mais il doit pas dépasser un certain seuil 10-8 à 10-10

Contrôle d'erreurs

- Il faut pouvoir les détecter et corriger les erreurs.
- De façon générale pour transmettre k bits d'information, on ajoute r bits dit bits de contrôle
- On parle de code(n, k) ou de mot de code.
- Les bits de contrôle sont calculés en fonction des bits de l'information
- Au total on transmis n = k + r bits
- À la réception les bits de contrôles seront recalculer afin de s'assure si l'information est bien reçus ou non

Technique de contrôle d'erreurs

- ➤ Il existe **plusieurs méthodes** de contrôle d'erreurs :
 - Détection (code détecteur)
 - **Détecter** le changement de **un** ou **plusieurs** bits d'information .
 - Pas de possibilité pour corriger ces erreurs
 - Détection et correction (code correcteur)
 - **Détecter** le changement de **un** ou **plusieurs** bits d'information .
 - Capacité de corriger ces erreurs

Détection d'erreurs

Les techniques les plus utilisées pour la détection d'erreurs sont :

VRC (Vertical Redundancy Check)

Parité vertical

• LRC (Longitudunal Redundancy Check):

Parité longitudinale

CRC (Cyclic Redundancy Check)

Vérification polynomiale

Parité: VRC(Vertical Redundancy Check)

- Mécanisme le plus ancien
- Calculer la parité est rajouter un bit à l'information envoyé
 - Parité paire : si le nombre de 1 dans l'information est paire alors le bit de parité est égale à 1, sinon 0
 - Parité impaire : si le nombre de 1 dans l'information est impaire alors le bit de parité est égale à 1, sinon 0

• Exemple :

Si on utilise une parité impaire pour l'information 1100100 alors, on rajoute 1.

L'information à envoyer serait donc 11001001

Détection des erreurs grâce au code VRC

- La détection d'erreur avec le **VRC** consiste a :
 - Recalculer le bit de parité à la réception et le comparer avec le bit de parité reçu

Exemple: l'information reçues 1100100 1

le bit de parité qui correspond à l'information : 1100100 est égal à 1 donc l'information reçues est correcte

- <u>Capacité de détection</u>: si un seul bit change alors la parité change → on détecte l'erreur mais on peut pas savoir quel est le bit qui a changé.
- Si le nombre de de bits qui change est pair → impossible de détecter l'erreur

 $1100100 \rightarrow 1110000$

Parité longitudinale: LRC

- Appliquer le principe de la parité (paire ou impaire) aux colonnes d'un bloc de données
- Exemple le message DATA:

Caractère	Code ASCII		
D	1000100		
Α	1000001		
T	1010100		
Α	1000001		
LRC	1101111		

Parité longitudinale: LRC

- C'est un code meilleur que le VRC
- Impossible de détecter l'erreur si deux bit sont changés en même temps sur la même colonnes
- Pour plus d'efficacité
 - Rajouter un contrôle sur les lignes

Caractère ASCII		Bit de parité	
D	1000100	1	
Α	1000001	1	
T	1010100	0	
Α	1000001	1	
LRC	1101111	1	

Vérification polynomiale

• Une information en binaire peut être écrit sous la forme polynomial suivant les puissance de 2

$$(1110)_2 = 1*2^3 + 1*2^2 + 1*2^1 + 0*2^0$$

Dans le cas général :

$$(u_k u_{k-1} \dots u_1 u_0)_2 = u_k X^k + u_{k-1} X^{k-1} + \dots + u_1 X^1 + u_0 X^0 \text{ avec } u_i \in [0,1]$$

Exemple:

La suite 1100101 est représentée par le polynôme

$$1100101 = 1.X^{6} + 1.X^{5} + 0.X^{4} + 0.X^{3} + 1.X^{2} + 0.X^{1} + 1.X^{0}$$
$$= X^{6} + X^{5} + X^{2} + 1$$

Calcul du CRC

- On choisit un polynôme appelé polynôme générateur
 - -G(X) de degré n

Exemple:

Polynôme générateur G(X)=X4+X2+X de degré 4

- Soit une information sur m bits représentée sous la forme d'un polynôme M(X) de dégrée m
- Pour calculer le CRC :
 - Multiplier le polynôme M(X) par Xⁿ (n est le degré du polynôme générateur)
 - Division de $(X^n * M(X)) / G(X)$,
 - Quotient Q(X) et le reste R(X)

$$X^n * M(X) = Q(X) * G(X) + R(X)$$

- Le CRC correspond au **reste** de la division R(X)
- Donc l'information a envoyé est égale à : M(X)R(X)

Exemple

Soit l'information 11100111 et le polynôme générateur X^4+X^2+X $G(X)=X^4+X^2+X$

$$M(X)=X^7 + X^6 + X^5 + X^2 + X^1 + 1$$

Multiplier M(X) par X⁴

$$X^{11} + X^{10} + X^9 + X^6 + X^5 + X^4$$

$$X^{4}.M(X) = 111001110000$$

10110

11001101

L'information à envoyer : 11100111 1110

<u>Remarque:</u>

Toutes les opération se font en binaire modulo2

$$1+0 = 1$$

$$0+0=0$$

Effectuer des ou exclusifs

Détection des erreurs

- À la réception de l'information
 - diviser le polynôme qui représente l'information sur le polynôme générateur
- Si le reste de la division est nul alors
 - l'information est **correcte**
- Si non
 - il y une erreur

Calcul du CRC par des additions successives

• Soit G(X) un polynôme générateur de degré n . On le transforme en un mot binaire

• Exemple :

Avec le polynôme générateur X⁴+X²+X, on obtient 10110.

 On ajoute n zéros au mot binaire à transmettre où n est le degré du polynôme générateur

• Exemple:

On souhaite transmettre le mot 11100111 en utilisant le polynôme générateur X⁴+X²+X, on obtient alors 11100111 **0000**.

- On va additionner itérativement à ce mot, le mot correspondant au polynôme générateur jusqu'à ce que le mot obtenu soit inférieur au polynôme générateur
- Ce mot obtenu correspond au CRC à ajouter au mot avant de l'émettre

Le code CRC = 1110 donc l'information a transmettre 1110011 1110

A la réception, refaire la même opération. Si le résultat est nul alors l'information est correcte.

11100111 1110 10110
0 <mark>1010</mark> 111 1110 10110
0000 <mark>11111</mark> 110 10110
00000 <mark>100111</mark> 0 10110
0000000 <mark>10110</mark> 10110
0000000000

Le reste de la division est nul donc l'information est correcte

Exercice:

- Soit le polynôme générateur $G(X)=X^4+X^2+X$
- Calculer le CRC pour les deux informations suivantes
 - **≻**1111011101
 - **>**1100010101

Normalisation des polynômes générateurs

 Le CCITT a recommandé un certain nombre de polynômes :

• CRC -12 =
$$x^{12} + x^{11} + x^3 + x^2 + x + 1$$

• CRC
$$-16 = x^{16} + x^{15} + x^2 + 1$$

• CRC - CCITT =
$$x^{16} + x^{12} + x^5 + 1$$

• CRC -
$$32 = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x + 1$$

Correction d'erreur par retransmission

• La méthode la plus **simple** pour **corriger** une erreur c'est de demander une **retransmission**

• Un récepteur qui détecte une erreur demande une retransmission jusqu'à ce qu'il n'y est plus d'erreur.

Codes correcteurs

- Le principe des **codes correcteurs** est le même que celui des codes détecteurs
- Lors de l'émission
 - Rajouter des bits de contrôle supplémentaires
- A la réception
 - Détecter les erreurs grâce au bits de contrôle et possibilité de corriger ces erreurs
- Le code de **Hamming** est parmi ces codes

Code de Hamming

• Un code de **Hamming** est un code C(n,k) avec

$$- n = 2^{r} - 1$$
, et
 $- r = n - k$

• Exemple:

$$- n=7 \rightarrow r=3 \rightarrow k=4$$

 $- n=15 \rightarrow r=4 \rightarrow k=11$

- Le codage de Hamming se base sur le calcul de la parité
- Au lieu de rajouter un seul bit, rajouter plusieurs bits de parité
- Chaque bit de contrôle est une fonction de plusieurs bits d'information

Principe du code de Hamming

- Soit un mot de code (7,4) \rightarrow rajouter 3 bits de contrôles notés $C_0C_1C_2$
- et l'information de départ est sur 4 bits $m=U_0U_1U_2U_3$
- Les bits de contrôle sont insérés dans les bits de l'information De la façon suivante :
 - il prennent les position 2^{i} { 1,2,4,8,...)
 - et les bits d'information prennent les autres position

CO	C1	U0	C 3	U1	U2	U3
2 °	2 ¹	3	24	5	6	7

Comment calculer les bits de contrôle

- Chaque bits de l'information possède une position dans le mot de code final
- Écrire cette position en puissance de 2

Exemple:

 U_0 est dans la position 3=1+2=20+21

 U_1 est dans la position 5=1+4=20+22

 U_2 est dans la position 6=2+4=21+22

 U_3 est dans la position 7=1+2 +4= 20+21+22

Un bit de l'information ayant la position J participe au calcul du bit de contrôle ayant la position 2ⁱ si 2ⁱ existe dans la décomposition en code binaire de la position J

Dans l'exemple précédant :

- La position de C_0 est 2^0 → donc les bits U_0 , $U_{1,}U_3$ participe dans le calcul de C_0 → $C_0=U_0+U_1+U_3$
- La position de C_1 est 2^1 → donc les bits U_0 , U_2 , U_3 participe dans le calcul de C_1 → C_1 = U_0 + U_2 + U_3
- La position de C_2 est 2^2 → donc les bits U_1 , U_2 , U_3 participe dans le calcul de C_2 → C_2 = U_1 + U_2 + U_3

Application

• pour l'information 1010 trouver le code de Hamming correspond (+ joue le rôle d'un ou-exclusif)

$$- C_0 = U_0 + U_1 + U_3 = 1 + 0 + 0 = 1$$

$$-C_1=U_0+U_2+U_3=1+1+0=0$$

$$-C_2=U_1+U_2+U_3=0+1+0=1$$

• Donc l'information à envoyer : <u>10</u>1<u>1</u>010

Détection de l'erreur

- À la réception du message
 - Recalculer les bits de contrôle de la même manière que lors de l'émission
- Si égalité alors
 - Passage au bit suivant
- Sinon
 - Incrémenter un compteur C par la position du bit de contrôle
- Après avoir recalculer tous les bits de contrôle
 - Si le compteur est égale a zéro alors
 - pas d'erreur
 - Sinon
 - numéro du bit erroné

Exemple

- Si on envoi le message <u>10</u>1<u>1</u>010 et on reçoit le message <u>10</u>1<u>1</u>0<u>0</u>0 normalement il y a une erreur
- Pour la détecter :

-
$$C'_0 = U_0 + U_1 + U_3 \rightarrow C'_0 = 1 + 0 + 0 = 1$$
, correcte, $C = 0$

-
$$C'_1 = U_0 + U_2 + U_3 \rightarrow C'_1 = 1 + 0 + 0 = 1$$
, erreur, $C = 2$

-
$$C'_2=U_1+U_2+U_3 \rightarrow C'_2=0+0+0=0$$
, erreur, $C=2+4$

Donc le bit erroné est le bit N° 6

Fin