An arbitrary rotation without matrices

Keith Pedersen

February 1, 2018

NOTE: This paper uses the nomenclature that w is a vector and \hat{w} is a unit vector.

A right-handed (RH) rotation, by some angle ψ about some axis $\hat{\boldsymbol{x}}$, can be defined without matrices. The victim vector \boldsymbol{w} is projected into three pieces: $(\boldsymbol{w}_{\parallel})$ the piece parallel to the axis, (\boldsymbol{w}_{\perp}) the piece perpendicular to the axis, and $(\boldsymbol{w}'_{\perp})$, the perpendicular \boldsymbol{w}_{\perp} rotated by 90°. The parallel piece is unaltered by the rotation, and the two \boldsymbol{w}_{\perp} form a basis for the rotation;

$$\mathbf{w}' = R(\mathbf{w}) = \underbrace{(\mathbf{w} \cdot \hat{\mathbf{x}})\hat{\mathbf{x}}}_{\mathbf{w}_{\parallel}} + \cos\psi\underbrace{(\mathbf{w} - \mathbf{w}_{\parallel})}_{\mathbf{w}_{\perp}} + \sin\psi\underbrace{(\hat{\mathbf{x}} \times \mathbf{w})}_{\mathbf{w}'_{\perp}}.$$
 (1)

We can validate this scheme by showing it preserves the defining properties of rotations. First, the angle to the axis is unaltered;

$$\mathbf{w}' \cdot \hat{\mathbf{x}} = (\mathbf{w} \cdot \hat{\mathbf{x}}) \hat{\mathbf{x}} + \hat{\mathbf{x}} + \cos \psi (\mathbf{w} \cdot \hat{\mathbf{x}} - (\mathbf{w} \cdot \hat{\mathbf{x}}) \hat{\mathbf{x}} + \hat{\mathbf{x}}) + \sin \psi (\hat{\mathbf{x}} \times \mathbf{w}) \cdot \hat{\mathbf{x}})^{0}$$

$$= \mathbf{w} \cdot \hat{\mathbf{x}}$$
(2)

(which uses $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$). Second, the vector's length is unaltered;

$$|\mathbf{w}'|^2 = (\mathbf{w} \cdot \hat{\mathbf{x}})^2 \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}^{-1} \cos^2 \psi (|\mathbf{w}|^2 - 2(\mathbf{w} \cdot \hat{\mathbf{x}})^2 + (\mathbf{w} \cdot \hat{\mathbf{x}})^2) + \sin^2 \psi |\mathbf{w}|^2 (|\mathbf{w}|^2 - (\mathbf{w} \cdot \hat{\mathbf{x}})^2)$$

$$= (\mathbf{w} \cdot \hat{\mathbf{x}}) + (\sin^2 \psi + \cos^2 \psi)(|\mathbf{w}|^2 - (\mathbf{w} \cdot \hat{\mathbf{x}})^2)$$

$$= |\mathbf{w}|^2$$
(3)

Here, we have used the identity $|\boldsymbol{u}\times\boldsymbol{v}|^2=|\boldsymbol{u}|^2|\boldsymbol{v}|^2-(\boldsymbol{u}\cdot\boldsymbol{v})^2$ (from $\epsilon_{ijk}\epsilon_{ilm}=\delta_{jl}\delta_{km}-\delta_{jm}\delta_{kl}$), and implicitly used the orthogonality of the each component vector

$$\boldsymbol{w}_{\parallel} \cdot \boldsymbol{w}_{\perp} = (\boldsymbol{w} \cdot \hat{\boldsymbol{x}})^2 - (\boldsymbol{w} \cdot \hat{\boldsymbol{x}})^2 = 0, \tag{4}$$

$$\mathbf{w}_{\perp} \cdot \mathbf{w}'_{\perp} = \mathbf{w} \cdot (\hat{\mathbf{x}} \times \mathbf{w}) - (\mathbf{w} \cdot \hat{\mathbf{x}}) \, \hat{\mathbf{x}} \cdot (\hat{\mathbf{x}} \times \mathbf{w}) = 0.$$
 (5)

Instead of an axis \hat{x} and angle ψ as our input degrees of freedom, we may want the rotation that takes vector $u \to v$. We can reuse Eq. 1, and define:

$$\cos \psi = \hat{\boldsymbol{u}} \cdot \hat{\boldsymbol{v}} \tag{6}$$

$$\sin \psi = |\boldsymbol{u} \times \boldsymbol{v}| \tag{7}$$

$$\hat{\boldsymbol{x}}_1 = \frac{\hat{\boldsymbol{u}} \times \hat{\boldsymbol{v}}}{|\hat{\boldsymbol{u}} \times \hat{\boldsymbol{v}}|} = \frac{\hat{\boldsymbol{u}} \times \hat{\boldsymbol{v}}}{\sin \psi}$$
(8)

However, \hat{x}_1 is only one *possible* rotation axis which takes $u \to v$. Consider a rotation of $\psi = \pi$ about the axis bisecting the two normalized vectors

$$\hat{\boldsymbol{x}}_2 = \frac{\hat{\boldsymbol{u}} + \hat{\boldsymbol{v}}}{|\hat{\boldsymbol{u}} + \hat{\boldsymbol{v}}|} = \frac{\hat{\boldsymbol{u}} + \hat{\boldsymbol{v}}}{\sqrt{2(1 + \hat{\boldsymbol{u}} \cdot \hat{\boldsymbol{v}})}}.$$
 (9)

This rotation also clearly takes $u \to v$. In fact, any axis which satisfies

$$\hat{\boldsymbol{u}} \cdot \hat{\boldsymbol{x}} = \hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{x}} \tag{10}$$

defines a valid rotation (since u and v will have the same latitude relative to \hat{x} , and thus trace out the same circle during the rotation). Thus, "the rotation which takes $u \to v$ " is ambiguous.

This ambiguity stems from a hidden degree of freedom. We are free to choose (x, y, z) vectors

$$\boldsymbol{u} = (0, 0, 1) \tag{11}$$

$$\mathbf{v} = (\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta) \tag{12}$$

We can get from \boldsymbol{u} to \boldsymbol{v} in two steps: (i) A RH rotation about $\hat{\boldsymbol{z}}$ by angle ϕ . (ii) A RH rotation about $\hat{\boldsymbol{y}}'$ (the new y-axis, after the first rotation) by angle θ . This procedure uses only two of the three Euler angles required to cover SO(3), the group of 3-dimensional rotations. To complete the coverage, we need a final RH rotation about $\hat{\boldsymbol{z}}''$ (the final z-axis, which in our case is the newly minted \boldsymbol{v}).

By construction, this post-rotation about v by angle ω cannot alter v, so it does not spoil the original purpose of this rotation (take $u \to v$). Instead, ω determines what happens to every other vector, and does so by selecting one axis \hat{x} from the set which map $u \to v$. If we can find this \hat{x} , we can describe the complete operation as a single rotation (instead of two sequential rotations). We have already found two valid \hat{x} (Eqs. 8 and 9), and they are fortuitously orthogonal, so we can use them to construct a basis that parameterizes all possible axes of rotation

$$\hat{\boldsymbol{x}} = a\,\hat{\boldsymbol{x}}_1 + b\,\hat{\boldsymbol{x}}_2 \tag{13}$$

Our task is now clear; given \boldsymbol{u} , \boldsymbol{v} and ω , determine a and b to find $\hat{\boldsymbol{x}}$.

 R_1 is the rotation about \hat{x}_1 by $\theta = \arccos(\hat{u} \cdot \hat{v})$ and R_2 is the rotation about \hat{x}_2 by ω . Applying them consecutively produces a composite rotation which cannot alter the axis of rotation;

$$\hat{\boldsymbol{x}} = R_2(R_1(\hat{\boldsymbol{x}})). \tag{14}$$

Since this defining property applies to both of \hat{x} 's component individually (and linearly), we can solve for a and b by using unitarity as one equation (i.e. $a^2 + b^2 = 1$), then obtain the other equation by calculating

$$a = R_2(R_1(a\,\hat{x}_1 + b\,\hat{x}_2)) \cdot \hat{x}_1$$

= $a\,R_2(R_1(\hat{x}_1)) \cdot \hat{x}_1 + b\,R_2(R_1(\hat{x}_2)) \cdot \hat{x}_1$. (15)

Beginning with \hat{x}_1 , we are lucky that R_1 does not alter it's own axis, while R_2 creates only one term parallel to \hat{x}_1 ;

$$R_1(\hat{\boldsymbol{x}}_1) = \hat{\boldsymbol{x}}_1 \; ; \tag{16}$$

$$R_1(\hat{x}_1) = \hat{x}_1; \qquad (10)$$

$$R_2(R_1(\hat{x}_1)) \cdot \hat{x}_1 = ((\hat{x}_1 - \hat{v})\hat{v} + \cos\omega(\hat{x}_1 - 0) + \sin\omega(\hat{v} \times \hat{x}_1)) \cdot \hat{x}_1 = \cos\omega \qquad (17)$$

The effect on \hat{x}_2 is slightly more complicated;

$$R_{1}(\hat{\boldsymbol{x}}_{2}) = (\hat{\boldsymbol{x}}_{2} - \hat{\boldsymbol{x}}_{1}) \hat{\boldsymbol{x}}_{1}^{0} + \cos \theta (\hat{\boldsymbol{x}}_{2} - 0) + \sin \theta (\hat{\boldsymbol{x}}_{1} \times \hat{\boldsymbol{x}}_{2})$$

$$= \frac{1}{\sqrt{2(1 + \cos(\theta))}} \left(\cos \theta (\hat{\boldsymbol{u}} + \hat{\boldsymbol{v}}) + \sin \theta \frac{(\hat{\boldsymbol{u}} \times \hat{\boldsymbol{v}})}{\sin \theta} \times (\hat{\boldsymbol{u}} + \hat{\boldsymbol{v}}) \right)$$

$$= \frac{1}{\sqrt{2(1 + \cos(\theta))}} \left(\cos \theta (\hat{\boldsymbol{u}} + \hat{\boldsymbol{v}}) + \hat{\boldsymbol{v}} - \hat{\boldsymbol{u}} \cos \theta + \hat{\boldsymbol{v}} \cos \theta - \hat{\boldsymbol{u}} \right)$$

$$= \frac{1}{\sqrt{2(1 + \cos(\theta))}} \left((2 \cos \theta + 1) \hat{\boldsymbol{v}} - \hat{\boldsymbol{u}} \right)$$

$$(18)$$

(using $(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c} = \boldsymbol{b} (\boldsymbol{a} \cdot \boldsymbol{c}) - \boldsymbol{a} (\boldsymbol{b} \cdot \boldsymbol{c})$). Before we put all of Eq. 18 through R_2 , we should recall that the final equation only uses terms parallel to $\hat{\boldsymbol{x}}_1$. R_2 only returns terms which are (i) parallel to the incoming vector (which in this case is in the uv-plane, and thus orthogonal to $\hat{\boldsymbol{x}}_1$), (ii) parallel to $\hat{\boldsymbol{v}}$ (also in the uv plane) and (iii) perpendicular to $\hat{\boldsymbol{v}}$ (via $\hat{\boldsymbol{v}} \times \boldsymbol{w}$). Hence, only the 3rd piece is meaningful, and since $\hat{\boldsymbol{v}} \times \hat{\boldsymbol{v}} = 0$, we only need to give it Eq. 18's $\hat{\boldsymbol{u}}$ term;

$$R_{2}(R_{1}(\hat{\boldsymbol{x}}_{2})) \cdot \hat{\boldsymbol{x}}_{1} = \frac{1}{\sqrt{2(1+\cos(\theta))}} R_{2}(-\hat{\boldsymbol{u}}) \cdot \hat{\boldsymbol{x}}_{1} = \frac{1}{\sqrt{2(1+\cos(\theta))}} (\hat{\boldsymbol{v}} \times (-\hat{\boldsymbol{u}})) \cdot \hat{\boldsymbol{x}}_{1}$$

$$= \sin \omega \frac{\sin \theta}{\sqrt{2(1+\cos(\theta))}}$$

$$(19)$$

(using $\hat{\boldsymbol{u}} \times \hat{\boldsymbol{v}} = \sin \theta \, \hat{\boldsymbol{x}}_1$). Combining Eq. 15, 16 and 19 we get

$$a = a\cos\omega + b\sin\omega \frac{\sin\theta}{\sqrt{2(1+\cos(\theta))}}$$
 (20)

Having done the hard work, we can plug our system of equations into Mathematica to obtain

$$a = 2\cos(\omega/2)\frac{\sin(\theta/2)}{c(\theta)} \tag{21}$$

$$b = 2\sin(\omega/2)\frac{1}{c(\theta)}\tag{22}$$

$$c(\theta) = \sqrt{3 - \cos(\omega) - \cos(\theta)(1 + \cos(\omega))}$$
 (23)

I then used Mathematica to validate this solution by checking that \hat{x} matches the eigenvector of the composite rotation $R_2(R_1(w))$. However, $c(\theta)$ is numerically unstable if used naïvely, due to the cosine cancellations. These terms should be rewritten in a form which *doubles* the precision of the floating point result

$$1 - \cos(t) \mapsto 2\sin^2(t/2)$$
. (24)

This gives us

$$c(\theta) \mapsto \sqrt{2\sin^2(\theta/2) + 2\sin^2(\omega/2) + (1 - \cos(\theta)\cos(\omega))}. \tag{25}$$

The final cancellation can be corrected using

$$\cos(\theta)\cos(\omega) = \frac{1}{2}(\cos(\theta + \omega) + \cos(\theta - \omega)); \tag{26}$$

$$(1 - \cos(\theta)\cos(\omega)) \mapsto \frac{1}{2}(1 - \cos(\theta + \omega)) + \frac{1}{2}(1 - \cos(\theta - \omega)). \tag{27}$$

Again using Eq. 24, we obtain the final expression

$$c(\theta) \mapsto \sqrt{2\sin^2(\theta/2) + 2\sin^2(\omega/2) + \sin^2(\theta + \omega) + \sin^2(\theta - \omega)}. \tag{28}$$

Given \boldsymbol{u} , \boldsymbol{v} and ω , we now have the tools to find the axis $\hat{\boldsymbol{x}}$ about which the composite rotations occur.¹ But what is the angle ψ of rotation? We can determine ψ empirically by projecting $\hat{\boldsymbol{u}}$ and $\hat{\boldsymbol{v}}$ into the plane of rotation (e.g. $\hat{\boldsymbol{u}}_{\perp} = \hat{\boldsymbol{u}} - (\hat{\boldsymbol{u}} \cdot \hat{\boldsymbol{x}})\hat{\boldsymbol{x}}$). The rotation angle is then defined via

$$\psi = \operatorname{atan2}(\sin \psi, \cos \psi) = \operatorname{atan2}\left(\operatorname{sign}(a)|\hat{\boldsymbol{u}}_{\perp} \times \hat{\boldsymbol{v}}_{\perp}|, \hat{\boldsymbol{u}}_{\perp} \cdot \hat{\boldsymbol{v}}_{\perp}\right). \tag{29}$$

¹There is one class of system where \hat{x} remains ambiguous; when u and v are antiparallel, \hat{x}_1 and \hat{x}_2 are both null. If x is supplied externally, ω rotates it around the shared uv axis, but x cannot be determined from ω alone.

It is best to use at an 2 because it is more precise for angles near 0, $\pi/2$ and π . Note that we have to inject the sign of a into $\sin(\psi)$, because when a < 0, the RH rotation becomes larger than π , so we must instead uses a negative RH rotation.

I have tested an implementation of this algorithm and it works quite well (it is both length and angle preserving). I have additionally validated that rotating once about \hat{x} gives the same result as the two-step composite rotation.