EEEN20060 Communication Systems

Medium Access Control

Brian Mulkeen

UCD School of Electrical,
Electronic and Communications

Scoil na hInnealtóireachta Leictrí, Leictreonaí agus Cumarsáide UCD

Medium Access Control (MAC)

- Applies to shared channel only
 - cable with many devices connected
 - or radio channel, shared bandwidth
- Organises sharing of the channel
 - controls how & when each device transmits

- viewed as separate sub-layer
 - closer to physical layer
 - sometimes needs support from physical layer

Options for Sharing...

- Sharing by dividing the channel
 - divide the channel capacity into N small parts
 - often fixed and equal sections, but not always
 - allocate one part to each device or user
 - N devices can transmit simultaneously
- Good for:
 - devices or users with steady flow of data
 - make use of allocated capacity all the time
 - predictability each user has separate capacity
 - throughput independent of other users

Bad for:

UCD BUBLIN

- varying or bursty traffic
 - if device has no data to send, its share remains idle
 - even if others have backlog of data...

Assignment on Demand

- Divide channel into N sections
 - either in frequency or in time (or both...)
 - shared by group of K users, K > N, often >> N
- No permanent assignment to any user
 - frequency or time slot assigned when needed
 - released when no longer needed
 - need mechanism to request an assignment...
- Good for connection-based system
 - users request connection when needed
 - communicate for relatively long time, then clear
 - user may be idle most of the time
 - but no resources wasted...

UCD DUBLIN

- design for low probability of blocking
 - resource not available when requested...

12

Telephone System Examples

- Fixed telephone system
 - cables connect exchanges in Dublin & Cork
 - capacity divided, FDM (originally) or TDM
 - allow N simultaneous conversations
 - N << population of Dublin...
- Mobile telephone system
 - fixed radio bandwidth available in each area
 - divided, each section can carry 1 speech signal
 - allocated to phone for duration of call only
- Example: GSM (second generation system)
 - FDMA allocates bandwidth in 200 kHz sections
 - TDMA each freq. allocation shared by 8 phones
 - 8 time slots in TDMA frame of 4.615 ms...

13

How to Arrange Sharing?

- Scheduled access
 - devices given permission to transmit
 - arranged so only one transmits at a time
 - no collisions
 - but time used in scheduling, giving permission
 - delays waiting for permission
- Random access
 - also called *contention* fight to get on channel
 - in purest form, device can transmit when ready
 - other forms impose some restrictions
 - collisions likely re-transmit damaged frames
 - less delay waiting to transmit
 - but may have to re-transmit many times

15

Sharing Without Division

Tim

- Full channel capacity available to all
 - usually no fixed divisions
 - but only one device should transmit at a time
- Overlapping transmissions will not succeed
 - collision usually both frames damaged
 - can design physical layer so one gets through...

H H H

- Good for varying, unpredictable traffic
 - but get varying, unpredictable delays...
 - · as devices have to wait to transmit
 - or try more than once before succeed...

14

Scheduled Access

- Fixed TDMA simple, but no flexibility
 - equal shares for all
- Demand-assigned TDMA better
 - but use capacity for requests and grants...
 - easiest with a master device to control
 - example use mini-slots in first time-slot
 - one per device, so each device can request
 - then master can broadcast the assignments...
 - example random access in one time slot

• then master announces winners...

- more flexible if allow multiple time slots
 - or variable length allocations (more complex)

16

• when all have tx'ed, know to start next bit-map... 17

Aloha continued

- Same principle with satellite, longer delays
- On cable, all devices receive all tx anyway
 - no need for repeater or second frequency
- Simple and quick
 - no delays waiting to transmit
 - no capacity used to request/grant permission
 - no master device needed (on cable)
- But time wasted on collisions
 - need low traffic for low prob. collision
 - so channel idle most of time, efficiency low
 - if traffic increases, get more collisions
 - so more re-tx attempts, even more traffic on channel
 - eventually, throughput falls as demand rises
 - and delays increase rapidly...

UCD DUBLIN

- Extension of slotted Aloha
 - group N slots into time frame
 - each slot reserved for user who used it in previous frame
 - if slot left idle in one frame, then available for contention in next frame
- Effectively demand assigned scheduled access
 - using contention to assign time slots
- Benefit if users send long messages

 will use many time slots in concept time.
 - will use many time slots in consecutive frames
 - no collisions except on first block of message
 - price paid is idle slot at end of message

- Detect collisions as they occur
 - invalid or unexpected voltage on cable
 - stop frame tx, transmit 48-bit jam signal
 - ensures all users detect collision
 - slot time: time to detect, jam, clear channel ~50 μs
- Re-transmission attempts random delay
 - after n^{th} collision, delay r slot times
 - r random integer, uniformly distributed, 0 to $2^{n}-1$
 - called binary exponential back-off
 - *n* stops increasing at 10, fail after 16 collisions
 - n reset to 0 after success

29

Ethernet Developments

- 100 Mbit/s change physical layer
 - 4B/5B encoding, more efficient than Manchester
 - group of 4 bits encoded as group of 5 bits
 - choose 5-bit patterns to give transitions
 - signal changes max. 125 MHz
- Separate channel in each direction on cable
 - full duplex no more collisions
 - use separate pair of wires for each direction
- 1 Gbit/s change physical layer again
 - use 4 pairs of wire, 125 Msignals/s on each
 - 5-level signals, each carries 2 bits
 - complex mapping provides for transitions...
 - same wires used to send in both directions
 - complex signal processing to separate signals

- more atten

- more attenuation at higher frequency
- at 8.5 MHz, 25% of tx power arrives at $\ensuremath{\text{rx}}$
- at 85 MHz, 1% of tx power arrives at rx