

Física Geral I – 2° semestre de 2022

2^{as} e 4^{as} (10:00 às 12:00) – Sala 104 CCT

Cap. 10: Rotação

1

UENF Física Geral I Prof. André Guimarães

Translação ← → Rotação

Movimento independente de partículas

Movimento de partículas (ou corpo) em torno de um eixo

Referência

3

Posição angular

$$\theta = \frac{S}{r}$$
 (medidas em radianos)

Deslocamento angular

Se em
$$t_1 \rightarrow \theta_1$$
 e em $t_2 \rightarrow \theta_2$
$$\downarrow$$

$$\Delta\theta = \theta_2 - \theta_1$$

Velocidade angular

Velocidade angular média:

$$\overline{\varpi} = \frac{\Delta\theta}{\Delta t} = \frac{\theta_2 - \theta_1}{t_2 - t_1}$$

Unidade:

$$\left[\varpi\right] = \frac{\left[\theta\right]}{\left[t\right]} = \frac{rad}{s}$$

Velocidade angular instantânea:

$$\varpi = \lim_{\Delta t \to o} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

Aceleração angular

Aceleração angular média:

$$\overline{\alpha} = \frac{\Delta \varpi}{\Delta t} = \frac{\varpi_2 - \varpi_1}{t_2 - t_1}$$

Unidade:

$$\left[\alpha\right] = \frac{\left[\varpi\right]}{\left[t\right]} = \frac{rad}{s^2}$$

Aceleração angular instantânea:

$$\alpha = \lim_{\Delta t \to o} \frac{\Delta \varpi}{\Delta t} = \frac{d\varpi}{dt}$$

Aceleração constante: um caso especial

2ª Lei de Newton (rotação):

$$\sum \tau = I\alpha$$

Logo, se o somatório de torques for constante, a aceleração angular também será.

Notação vetorial

Caráter vetorial para velocidade e aceleração angulares

- Direção: $\vec{\varpi} /\!/ \vec{\alpha} /\!/ eixo$

- Sentido: Regra da mão direita

Notação vetorial (precaução)

Deslocamentos angulares <u>não</u> são tratados com vetores!!!

9

Variáveis lineares e angulares

- Posição:

$$s = \theta r$$

- Velocidade:

$$v = \omega r$$

- Aceleração:

$$a_t = \alpha r$$
 (tangencial)

$$a_r = \frac{v^2}{r} = \varpi^2 r$$
 (radial ou centrípeta)

Exercício 41 (4ª ed.):

Na figura abaixo, uma roda A de raio r_A =10 cm está acoplada por uma correia B a uma roda C de raio r_C =25 cm. A velocidade angular da roda A é aumentada a partir do repouso a uma taxa constante de 1,6 rad/s². Encontre o tempo necessário para a roda C atingir uma velocidade angular de 100 rev/min, supondo que a correia não desliza.

Extra: Neste tempo, quantas revoluções cada roda realiza?

11