

SDS 384 11: Theoretical Statistics

Lecture 16: Uniform Law of Large Numbers- Dudley's chaining Introduction

Purnamrita Sarkar

Department of Statistics and Data Science
The University of Texas at Austin

Rademacher complexity of function classes

Example

Suppose \mathcal{F} is a class parametric functions $\mathcal{F} := \{f(\theta, .) : \theta \in B_2\}$, where B_2 is the unit L_2 ball in \mathbb{R}^d . Assume that \mathcal{F} is closed under negation. f is L Lipschitz w.r.t. the Euclidean distance on Θ , i.e.

$$|f(\theta,.)-f(\theta',.)| \leq L\|\theta-\theta'\|_2.$$

$$\mathcal{R}_n(\mathcal{F}) = O\left(L\sqrt{\frac{d\log(Ln)}{n}}\right)$$

Rademacher complexity of function classes

Example

Suppose \mathcal{F} is a class parametric functions $\mathcal{F} := \{f(\theta, .) : \theta \in B_2\}$, where B_2 is the unit L_2 ball in \mathbb{R}^d . Assume that \mathcal{F} is closed under negation. f is L Lipschitz w.r.t. the Euclidean distance on Θ , i.e.

$$|f(\theta,.) - f(\theta',.)| \le L||\theta - \theta'||_2.$$

$$\mathcal{R}_n(\mathcal{F}) = O\left(L\sqrt{\frac{d\log(Ln)}{n}}\right)$$

- How do we do this?
- Using covering numbers. But we need to define a bunch of stuff first.

A Stochastic Process

- Consider a set $T \subseteq \mathbb{R}^d$.
- The family of random variables $\{X_{\theta}: \theta \in \mathcal{T}\}$ define a Stochastic process indexed by \mathcal{T} .

A Stochastic Process

- Consider a set $T \subseteq \mathbb{R}^d$.
- The family of random variables $\{X_{\theta}: \theta \in \mathcal{T}\}$ define a Stochastic process indexed by \mathcal{T} .
- We are often interested in the behavior of this process given its dependence on the structure of the set T.
- \bullet In the other direction, we want to know the structure of ${\cal T}$ given the behavior of this process.

Gaussian and Rademacher processes

Definition

A canonical Gaussian process is indexed by $\ensuremath{\mathcal{T}}$ is defined as:

$$G_{\theta} := \langle z, \theta \rangle = \sum_{k} z_{k} \theta_{k},$$

where $z_k \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$. The supremum $\mathcal{G}(\mathcal{T}) := E_{\mathbb{Z}}[\sup_{\theta \in \mathcal{T}} G_{\theta}]$ is the Gaussian complexity of \mathcal{T} .

Rademacher complexity

• Replacing the iid standard normal variables by iid Rademacher random variables gives a Rademacher process $\{R_{\theta}, \theta \in \mathcal{T}\}$, where

$$R_{\theta} := \langle \epsilon, \theta \rangle = \sum_k \epsilon_k \theta_k, \qquad \text{ where } \epsilon_k \overset{\text{iid}}{\sim} \textit{Uniform}\{-1, 1\}$$

Rademacher complexity

• Replacing the iid standard normal variables by iid Rademacher random variables gives a Rademacher process $\{R_{\theta}, \theta \in \mathcal{T}\}$, where

$$R_{\theta} := \langle \epsilon, \theta \rangle = \sum_{k} \epsilon_{k} \theta_{k}, \qquad \text{where } \epsilon_{k} \overset{\text{iid}}{\sim} \textit{Uniform}\{-1, 1\}$$

• $\mathcal{R}(\mathcal{T}) := E_{\epsilon}[\sup_{\theta \in \mathcal{T}} R_{\theta}]$ is called the Rademacher complexity of \mathcal{T} .

4

How does this relate to the former notions of Rademacher complexity?

Recall that

$$\mathcal{R}_{\mathcal{F}} := E[\sup_{f \in \mathcal{F}} |\sum_{i} \epsilon_{i} f(X_{i})|] = E[E[\sup_{f \in \mathcal{F}} |\sum_{i} \epsilon_{i} f(X_{i})||X_{1}, \dots, X_{n}]]$$

How does this relate to the former notions of Rademacher complexity?

• Recall that

$$\mathcal{R}_{\mathcal{F}} := E[\sup_{f \in \mathcal{F}} |\sum_{i} \epsilon_{i} f(X_{i})|] = E[E[\sup_{f \in \mathcal{F}} |\sum_{i} \epsilon_{i} f(X_{i})||X_{1}, \dots, X_{n}]]$$

• Now the inner expectation can be upper bounded by $E_{\epsilon} \sup_{\theta \in \mathcal{T} \bigcup -\mathcal{T}} \sum_{i} \epsilon_{i} \theta_{i}$, where $\mathcal{T} \subseteq \mathbb{R}^{n}$ can be written as

$$\mathcal{T} = \{(f(X_1), \dots, f(X_n)) | f \in \mathcal{F}\}\$$

Relationship

Theorem

For
$$\mathcal{T} \in \mathbb{R}^d$$
,

$$\mathcal{R}(\mathcal{T}) \leq \sqrt{\frac{\pi}{2}} \mathcal{G}(\mathcal{T}) \leq c \sqrt{\log d} \mathcal{R}(\mathcal{T})$$

- This is showing that there can be there are some sets where the Gaussian complexity can be substantially larger than the Rademacher complexity.
- We will in fact give an example.

Proof (of first inequality)

$$\mathcal{G}(\mathcal{T}) = E \sup_{\theta \in \mathcal{T}} \sum_{i} z_{i} \theta_{i}$$

$$= E_{\epsilon} E_{z} \sup_{\theta \in \mathcal{T}} \sum_{i} \epsilon_{i} |z_{i}| \theta_{i}$$

$$\geq E_{\epsilon} \sup_{\theta \in \mathcal{T}} \sum_{i} \epsilon_{i} E |z_{i}| \theta_{i}$$

$$= \sqrt{\frac{2}{\pi}} \mathcal{R}(\mathcal{T})$$

Proof (of first inequality)

$$\mathcal{G}(\mathcal{T}) = E \sup_{\theta \in \mathcal{T}} \sum_{i} z_{i} \theta_{i}$$

$$= E_{\epsilon} E_{z} \sup_{\theta \in \mathcal{T}} \sum_{i} \epsilon_{i} |z_{i}| \theta_{i}$$

$$\geq E_{\epsilon} \sup_{\theta \in \mathcal{T}} \sum_{i} \epsilon_{i} E |z_{i}| \theta_{i}$$

$$= \sqrt{\frac{2}{\pi}} \mathcal{R}(\mathcal{T})$$

Example

Example

Consider the L_1 ball in \mathbb{R}^d denoted by B_1^d .

$$\mathcal{R}(B_1^d) = 1, \mathcal{G}(B_1^d) \leq \sqrt{2\log d}$$

Example

Example

Consider the L_1 ball in \mathbb{R}^d denoted by B_1^d .

$$\mathcal{R}(B_1^d) = 1, \mathcal{G}(B_1^d) \leq \sqrt{2 \log d}$$

- $\mathcal{R}(B_1^d) = E[\sup_{\|\theta\|_1 \le 1} \sum_i \theta_i \epsilon_i] = E[\|\epsilon\|_{\infty}] = 1$
- Similarly, $\mathcal{G}(B_1^d) = E[\|z\|_{\infty}]$

Recall the finite class lemma?

Theorem

Consider z with independent standard normal components.

$$E\max_{a\in A} < z, a> \leq \max_{a\in A} \|a\| \sqrt{2\log|A|}$$

Recall the finite class lemma?

Theorem

Consider z with independent standard normal components.

$$E\max_{a\in A} < z, a> \leq \max_{a\in A} \|a\| \sqrt{2\log|A|}$$

- In our case, $A=\{e_i,i\in[d]\},\ e_i(j)=\pm 1 (j=i),\ |A|=2d$ and $\max_{a\in A}\|a\|=1.$
- This gives a weaker bound on the Gaussian complexity.

A sub-gaussian process

Definition

A stochastic process $\theta \to X_\theta$ with indexing set $\mathcal T$ is sub-Gaussian w.r.t a metric d_X if $\forall \theta, \theta' \in \mathcal T$ and $\lambda \in \mathbb R$,

$$E \exp(\lambda(X_{\theta} - X_{\theta}')) \le \exp\left(\frac{\lambda^2 d_X(\theta, \theta')^2}{2}\right)$$

This immediately implies the following tail bound.

$$P(|X_{\theta} - X_{\theta'}| \ge t) \le 2 \exp\left(-\frac{t^2}{2d_X(\theta, \theta')^2}\right)$$

Upper bound by 1 step discretization

Theorem

(1-step discretization bound). Let $\{X_{\theta}, \theta \in \mathcal{T}\}$ be a zero-mean sub-Gaussian process with respect to the metric d_X . Then for any $\delta > 0$, we have

$$\begin{split} E\left[\sup_{\theta,\theta'\in\mathcal{T}}(X_{\theta}-X_{\theta'})\right] &\leq 2E\left[\sup_{\substack{\theta,\theta'\in\mathcal{T}\\d_X(\theta,\theta')\leq\delta}}(X_{\theta}-X_{\theta'})\right] + 2D\sqrt{\log N(\delta;\mathcal{T},d_X)},\\ \text{where } D:&=\max_{\substack{\theta,\theta'\in\Theta}}d_X(\theta,\theta'). \end{split}$$

• The mean zero condition gives us:

$$E[\sup_{\theta \in \mathcal{T}} X_{\theta}] = E[\sup_{\theta \in \mathcal{T}} (X_{\theta} - X_{\theta_0})] \leq E[\sup_{\theta, \theta' \in \mathcal{T}} (X_{\theta} - X_{\theta'})]$$

Tradeoff

$$E\left[\sup_{\theta,\theta'\in\mathcal{T}}(X_{\theta}-X_{\theta'})\right] \leq 2E\left[\sup_{\substack{\theta,\theta'\in\mathcal{T}\\d_X(\theta,\theta')\leq\delta}}(X_{\theta}-X_{\theta'})\right] + 4\underbrace{\sqrt{D^2\log N(\delta;\mathcal{T},d_X)}}_{\text{Estimation error}}$$

- As $\delta \to 0$, the cover becomes more refined, and so the approximation error decays to zero.
- But the estimation error grows.
- In practice the δ can be chosen to achieve the optimal trade-off between two terms.

- Choose a δ cover T.
- For $\theta, \theta' \in \mathcal{T}$, let $\theta^1, \theta^2 \in \mathcal{T}$ such that $d_X(\theta, \theta^1) \leq \delta$ and $d_X(\theta', \theta^2) \leq \delta$.

$$\begin{split} X_{\theta} - X_{\theta'} &= (X_{\theta} - X_{\theta^1}) + (X_{\theta^1} - X_{\theta^2}) + (X_{\theta^2} - X_{\theta'}) \\ &\leq 2 \sup_{\substack{\theta, \theta' \in \mathcal{T} \\ d_{\mathcal{X}}(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) + \sup_{\substack{\theta^i, \theta^j \in \mathcal{T}}} (X_{\theta^i} - X_{\theta^j}) \end{split}$$

• But note that $X_{\theta^1} - X_{\theta^2} \sim Subgaussian(d_X(\theta^1, \theta^2))...$

Finite class lemma for subgaussian processes

Theorem

Consider X_{θ} sub-gaussian w.r.t d on \mathcal{T} and A is a set of pairs from \mathcal{T} .

$$E\max_{(\theta,\theta')\in A}(X_{\theta}-X_{\theta'})\leq D\sqrt{2\log|A|},$$

where
$$D := \max_{(\theta, \theta') \in A} d_X(\theta, \theta')$$
.

Finite class lemma

$$\begin{split} \exp\left(\lambda E \max_{(\theta,\theta')\in A} (X_{\theta} - X_{\theta'})\right) &\leq E \exp\left(\lambda \max_{(\theta,\theta')\in A} (X_{\theta} - X_{\theta'})\right) \\ &= \max_{(\theta,\theta')\in A} E \exp(\lambda (X_{\theta} - X_{\theta'})) \\ &\leq \sum_{(\theta,\theta')\in A} \exp\left(\frac{\lambda^2 d\chi(\theta,\theta')^2}{2}\right) \\ &\leq |A| \exp\left(\frac{\lambda^2 D^2}{2}\right) \end{split}$$

Now optimize over λ.

Finishing the proof

$$\begin{split} X_{\theta} - X_{\theta'} &\leq 2 \sup_{\substack{\theta, \theta' \in \mathcal{T} \\ d_{\mathcal{X}}(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) + \sup_{\substack{\theta^{i}, \theta^{j} \in \mathcal{T} \\ d_{\mathcal{X}}(\theta, \theta') \leq \delta}} (X_{\theta^{1}} - X_{\theta^{2}}) \\ E \left[\sup_{\substack{\theta, \theta' \in \mathcal{T} \\ d_{\mathcal{X}}(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) \right] + E \left[\sup_{\substack{\theta^{i}, \theta^{j} \in \mathcal{T} \\ d_{\mathcal{X}}(\theta, \theta') \leq \delta}} (X_{\theta^{1}} - X_{\theta^{2}}) \right] \\ &\leq 2E \left[\sup_{\substack{\theta, \theta' \in \mathcal{T} \\ d_{\mathcal{X}}(\theta, \theta') \leq \delta}} (X_{\theta} - X_{\theta'}) \right] + D\sqrt{2 \log N(\delta; \mathcal{T}, d_{\mathcal{X}})^{2}} \end{split}$$

Revisiting: smoothly parametrized class

Example

Suppose \mathcal{F} is a class parametric functions $\mathcal{F} := \{f(\theta, .) : \theta \in B_2\}$, where B_2 is the unit L_2 ball in \mathbb{R}^d . Assume that \mathcal{F} is closed under negation. f is L Lipschitz w.r.t. the Euclidean distance on Θ , i.e.

$$|f(\theta,.)-f(\theta',.)| \leq L\|\theta-\theta'\|_2.$$

$$\mathcal{R}_n(\mathcal{F}) = O\left(L\sqrt{\frac{d\log(Ln)}{n}}\right)$$

- Denote $f(\theta, X_1^n)$ as the vector $(f(\theta, X_1), \dots, f(\theta, X_n))$.
- $\bullet \ \ \mathsf{Recall \ that} \ \ n\mathcal{R}_n(\mathcal{F}) = E\left[\sup_{f \in \mathcal{F}} \langle \epsilon, f(\theta, X_1^n) \rangle\right] = E\left[\sup_{\theta \in \Theta} \langle \epsilon, f(\theta, X_1^n) \rangle\right]$
- The process $f(\theta, X_1^n) \to \langle \epsilon, f(\theta, X_1^n) \rangle =: Y_{\theta}$ is mean zero subgaussian.
- Note that $Y_{\theta} Y'_{\theta} \sim \textit{Subgaussian}(\textit{d}_{X}(\theta, \theta'))$
- We have:

$$d_X(\theta, \theta') = \|f(\theta, X_1^n) - f(\theta', X_1^n)\|^2 \le nL^2 \|\theta - \theta'\|_2^2$$

• So it is $L\sqrt{n}$ Lipschitz.

Also,

$$n\mathcal{R}_n(\mathcal{F}) = E[\sup_{\theta \in \Theta} (Y_{\theta} - Y_{\theta'})] \le E[\sup_{\theta, \theta' \in \Theta} (Y_{\theta} - Y_{\theta'})]$$

•

$$n\mathcal{R}_{n}(\mathcal{F}) \leq 2E \sup_{\substack{d_{X}(\theta, \theta') \leq \delta \\ \theta, \theta' \in \Theta}} (Y_{\theta} - Y_{\theta}') + 2D\sqrt{\log N(\delta; \mathcal{F}(\Theta, X_{1}^{n}), d_{X})}$$

- $A \le \delta E \left[\sup_{\|v\|_2 = 1} \langle \epsilon, v \rangle \right] \le \delta \sqrt{n}$
- $D = \sup_{\theta, \theta'} d_X(\theta, \theta') = 2L\sqrt{n}$

•
$$N(\delta; \mathcal{F}, d_X) \le N(\delta/L\sqrt{n}, \Theta, \|.\|_2) \le \left(1 + \frac{L\sqrt{n}}{\delta}\right)^d$$

Finally,

$$\mathcal{R}_n(\mathcal{F}) \leq \frac{4\delta}{\sqrt{n}} + 4L\sqrt{\frac{d\log(1+L\sqrt{n}/\delta)}{n}}$$

• Setting $\delta = 1$ gives:

$$\mathcal{R}_n(\mathcal{F}) \leq \frac{4L}{\sqrt{n}} + 4L\sqrt{\frac{d\log(1+L\sqrt{n})}{n}}$$

Examples: Nonparametric functions

Example

Suppose \mathcal{F} is a class of L Lipschitz functions which are supported on [0,1] and f(0)=0. Note that \mathcal{F} is closed under negation. f is L Lipschitz i.e. $|f(x)-f(x')| \leq L|x-x'| \ \forall x,x' \in [0,1]$.

$$\mathcal{R}_n(\mathcal{F}) = O\left(\frac{L}{n}\right)^{1/3}$$

Examples: Nonparametric functions

Example

Suppose \mathcal{F} is a class of L Lipschitz functions which are supported on [0,1] and f(0)=0. Note that \mathcal{F} is closed under negation. f is L Lipschitz i.e. $|f(x)-f(x')| \leq L|x-x'| \ \forall x,x' \in [0,1]$.

$$\mathcal{R}_n(\mathcal{F}) = O\left(\frac{L}{n}\right)^{1/3}$$

Examples:Nonparametric functions

- Consider the process $f(X_1^n) \to \langle \epsilon, f(X_1^n) \rangle = Y_f$
- $Y_f Y_{f'} \sim subGaussian(\|f(X_1^n) f'(X_1^n)\|_2)$
- So $d_Y(f, f') = \|f(X_1^n) f'(X_1^n)\|_2 \le \sqrt{n} \|f f'\|_{\infty}$
- The diameter is $D = \sup_{f,f' \in \mathcal{F}(X_1^n)} d_X(f,f') \le 2L\sqrt{n}$
- So, $N(\delta, \mathcal{F}(X_1^n), \|.\|_2) \le N(\delta/\sqrt{n}, \mathcal{F}(X_1^n), \|.\|_{\infty})$

$$\begin{split} n\mathcal{R}_n(\mathcal{F}) &\leq E[\sup_{f \in \mathcal{F}(X_1^n)} Y_f] \leq E[\sup_{f,f' \in \mathcal{F}(X_1^n)} Y_f] \\ &\leq 2E\left[\sup_{d_Y(f,f') \leq \delta} (Y_f - Y_{f'})\right] + 2D\sqrt{\log N(\delta,\mathcal{F},\|.\|_\infty)} \\ &\leq 2\delta\sqrt{n} + 4L\sqrt{n(L\sqrt{n})/\delta} \\ &\leq 2\delta\sqrt{n} + 4L^{3/2}\sqrt{n^{3/2}/\delta} \end{split}$$

• Set
$$\delta^{3/2} = CL^{3/2}n^{1/4}$$
, i.e. $\delta = C'Ln^{1/6}$ to get $\mathcal{R}_n = O(n^{-1/3})$