Clase Practica 2 : Programación Funcional

Tomás Felipe Melli

July 9, 2025

$\acute{\mathbf{I}}\mathbf{ndice}$

1	Repaso	
	1.1 take'	
	1.2 sublistaQueMásSuma	
1.	1.3 Generación infinita	•
2	Folds sobre estructuras nuevas	;
	2.1 AEB	
	2.2 AB	
	2.3 Polinomio	
	2.4 RoseTree	ļ
3	Funciones como estructuras de datos	!

1 Repaso

Queremos definir maximol que tiene como precondición que la lista sea no vacía. Vamos a usar max del preludio.

```
1 -- pre: lista no vac a
2 maximoL :: (Ord a , Num a ) = > [a] -> a
3 maximoL xs = foldr max 0 xs
```

Con esta pre, podríamos aplicar el siguiente patrón

```
1 -- pre: lista no vac a
2 maximoL :: (Ord a ) = > [a] -> a
3 maximoL (x:xs) = foldr max x xs
```

Dentro de la familia de folds sobre listas existen algunas funciones adicionales, como foldr1

```
1 -- pre: lista no vac a
2 foldr1 :: (a -> a -> a) -> [a] -> a
```

Por tanto, reescribimos maximoL como:

```
1 maximoL = foldr1 max
```

El tipo de foldr1 es diferente al de foldr. El caso base de foldr1 devuelve un elemento de la lista (importante: el tipo debe ser del tipo de la lista).

Las variantes de foldr abstraen el esquema de recursión estructural.

Y si no está hecha con foldr la función?

1.1 take'

Miremos

Este esquema es estructural ya que se usa el argumento inductivo de la lista (la cola).

Con aplicación parcial, podemos retornar como caso base otra función, y esto permite usar foldr

Qué pasa si dejamos el tipo original de take?

```
1 take :: Int -> [a] -> [a]
2 take 0 = \xs -> []
3 take n = \xs -> if null xs then [] else x : take (n-1) tail xs
4 -- 0 sea, take n = foldNat (const [])(\rec -> \xs -> if null xs then [] else x : rec tail xs)
```

1.2 sublistaQueMásSuma

```
1 sublistaQueMasSuma :: [ Int ] -> [Int]
2 sublistaQueMasSuma =
3 recr (\x xs res ->
4     if ( sum . prefijoQueM a sSuma ) ( x : xs ) >= sum res
5     then prefijoQueM a sSuma ( x : xs )
6     else res
7     ) []
```

Como necesitamos acceder en cada paso a la subestructura (el resto de la lista) utilizamos recursión primitiva. O sea, estamos usando xs en algo que no es el llamado recursivo.

1.3 Generación infinita

pares

Queremos una lista infinita que contenga todos los pares de números naturales sin repetir:

```
pares :: [(Int, Int)]
pares = [(x,y) | x <- [0..], y <- [0..]]</pre>
```

En este escenario sólo se generan pares con x = 0. La idea para que funcione la generación infinita es poder decir en qué posición está cierto par (noción de orden). Como se ve en este caso :

```
pares :: [( Int , Int) ]
pares = [ p | k <- [0..], p <- paresQueSuman k]

paresQueSuman :: Int -> [( Int , Int) ]
paresQueSuman k = [(i, k-i) | i <- [0..k]]</pre>
```

En este escenario, aparece un poco la idea de orden, si tuviésemos memoria infinita, podríamos encontrar la posición del (2,1).

2 Folds sobre estructuras nuevas

2.1 AEB

Se define el siguiente tipo

```
1 data AEB a = Hoja a | Bin (AEB a) a (AEB a)
2
3 miAbol = Bin (Hoja 3) 5 (Bin (Hoja 7) 8 (Hoja 1))
```

Un árbol estrictamentente binario, no puede tener un hijo de un lado y no del otro.

Definir el esquema de recursión estructural (fold) y dar su tipo

Para lograrlo, primero miremos el tipo de foldr, el esquema de recursión estructural para listas.

```
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
```

Si pensamos en por qué tiene ese tipo y en particular en cuáles son los constructores de [a], sabemos que hay un argumento por cada constructor, y luego le entra una lista y devuelve un resultado.

Un esquema de recursión estructural espera **recibir un argumento por cada constructor**(para saber qué devolver en cada caso), y además **la estructura que va a recorrer.** El tipo de cada agumento va a depender de lo que reciba el constructor correspondiente. Si el constructor es recursivo, el argumento correspondiente del fold va a recibir el resultado de cada llamada recursiva.

Miremos entonces la estructura del tipo

```
data AEB a = Hoja a | Bin (AEB a) a (AEB a)
```

Estamos frente a un tipo inductivo con un constructor no recursivo y uno recursivo. Por tanto, el tipo de nuestro fold

```
foldAEB :: (a -> b) -> (b -> a -> b -> b) -> AEB a -> b
```

En naranja vemos el resultado de la recursión sobre cada AEB que forma parte del constructor Bin (AEB a) a (AEB a). Si por ejemplo hubiese habido un AEB a = Nil entonces entraría fNil :: b.

Y ahora con este esquema definir las siguientes funciones. Ojo con lo que le pasamos a cada función como caso base. Tiene que se una función!

```
1 alturaAEB :: AEB a -> Int
2 alturaAEB = foldAEB (const 1) (\recI _ recD -> 1 + max recI recD)
3
4 ramasAEB :: AEB a -> [[a]]
5 ramasAEB = foldAEB (\x -> [[x]]) (\recI r recD -> map (r:) (recI ++ recD))
6
7 cantNodosAEB :: AEB a -> Int
8 cantNodosAEB = foldAEB (const 1) (\recI _ recD -> 1 + recI + recD)
9
10 cantHojasAEB :: AEB a -> Int
11 cantHojasAEB :: AEB a -> Int
12 cantHojasAEB :: AEB a -> AEB a
13 espejoAEB :: AEB a -> AEB a
15 espejoAEB = foldAEB Hoja (\recI r recD -> Bin recD r recI)
```

2.2 AB

Dado el siguiente tipo de datos:

```
1 data AB a = Nil | Bin (AB a) a (AB a)
```

Qué tipo de recursión tiene cada una de las siguientes funciones ?

La recursión global puede acceder a los resultados de recursiones anteriores, no sólo a la última.

insertarABB

```
insertarABB :: Ord a => a -> AB a -> AB a
insertarABB x Nil = Bin Nil x Nil
insertarABB x (Bin i r d) =
if x < r
then Bin (insertarABB x i) r d
else Bin i r (insertarABB x d)</pre>
```

En este caso, la recursión es **primitiva** ya que accedemos a i y a d sin estar dentro del llamado. Escrito con su esquema correspondiente :

ı insertarABB x = recABB (Bin Nil x Nil) (\i r d recI recD -> <mark>if</mark> x < r <mark>then</mark> Bin recI r d <mark>else</mark> Bin i r recD)

truncar

En este caso, la recursión es estructural, ya que sólo usamos la subestructura como argumento de truncar, y no se le pasa a truncar la estructura entera. Escrito con su esquema correspondiente :

```
1 truncar = foldABB (const Nil) (\recI r recD -> \n -> if n == 0 then Nil else Bin recI r recD)
```

2.3 Polinomio

Se define el siguiente tipo que representa polinomios:

```
data Polinomio a = X

Cte a

Suma (Polinomio a) (Polinomio a)

Prod (Polinomio a) (Polinomio a)
```

Nos piden definir la función evaluar, el esquema de recursión estructural foldPoli y reescribir evaluar usando foldPoli

2.4 RoseTree

Se define el tipo de datos

```
data RoseTree a = Rose a [RoseTree a]
```

de árboles donde cada nodo tiene una cantidad indeterminada de hijos. Nos piden escribir el esquema de recursión estructural para el tipo y 4 funciones (hojas, ramas, tamaño, altura). Importante : rec en foldRose es una lista de resultados.

```
1 rose = Rose 2 [Rose 3 [], Rose 4 [Rose 5 []]]
3 foldRose :: (a -> [b] -> b) -> RoseTree a -> b
4 foldRose f (Rose r rs) = f r (map (foldRose f) rs)
5 -- Con map (map (foldRose f) rs). A cada RoseTree de rs le aplica la funci n foldrRose f. As obtiene [b
      ]. Luego combina eso con r usando f.
7 hojasRose :: RoseTree a -> [a]
8 hojasRose = foldRose (\r rec -> if null rec
                                   then [r]
10
                                   else concat rec)
11
12 ramasRose :: RoseTree a -> [[a]]
13 ramasRose = foldRose (\r rec -> if null rec
                                   then [[r]]
14
                                   else map (r:) (concat rec))
16
17 tama oRose :: RoseTree a -> Int
18 tama oRose = foldRose (\_ rec -> 1 + sum rec)
19
20 alturaRose :: RoseTree a -> Int
21 alturaRose = foldRose (\_ rec -> if null rec
22
                                    else 1 + maximum rec)
23
```

3 Funciones como estructuras de datos

Se cuenta con la siguiente representación de conjuntos

```
type Conj a = (a -> Bool)
```

caracterizados por su función de pertenencia. De este modo si c es un conjunto y e un elemento, la expresión c e devuelve True si $e \in c$ y False en caso contrario.

Nos piden definir la constante vacío y las funciones intersección, unión, diferencia.

Detalles : type es un alias (sinónimo de tipo) o sea, renombra algo que ya existe, **no crea nuevo tipo como** Data. newType Crea un nuevo tipo que envuelve exactamente un valor. Es un tipo distinto a nivel de tipos. Se usa para seguridad de tipos, instancias separadas, ...

```
type Conj a = (a -> Bool)

vacio :: Conj a
vacio = const False
-- Define el conjunto vac o con una funci n que dice si un elemento esta o no. vac o elem = False para todo elem

-- agregar :: Eq a => a -> (a -> Bool) -> (a -> Bool)
agregar e c = \x -> x == e || c x
```

```
10 union :: Conj a -> Conj a -> Conj a
12 union c1 c2 = \x -> c1 x || c2 x
13
14 interseccion :: Conj a -> Conj a -> Conj a
15 interseccion c1 c2 = \x -> c1 x && c2 x
16
17 diferencia :: Conj a -> Conj a -> Conj a
18 diferencia c1 c2 = \x -> c1 x && not (c2 x)
```