Probabilités 3A TD 3

Exercice 1 : Considérons un dé à six faces. Nous lançons le dé et X est la variable aléatoire représentant la valeur que nous donne celui-ci. Nous supposons que

$$\mathbb{P}(X=1) = \mathbb{P}(X=2) = \mathbb{P}(X=3) = \mathbb{P}(X=4) = \frac{1}{6}$$
 et $\mathbb{P}(X=5) = \frac{1}{12}$.

- 1) Combien doit valoir $\mathbb{P}(X=6)$?
- 2) Calculer les probabilités $\mathbb{P}(X \in \{2,3\})$, $\mathbb{P}(X \text{ est pair })$, $\mathbb{P}(X \text{ est impair })$, $\mathbb{P}(X = 6|X \text{ est pair })$ et $\mathbb{P}(X \in \{2,3\}|X \text{ est impair })$.
 - 3) Les événements $\{X \in \{2,3\}\}\$ et $\{X \text{ est pair }\}\$ sont-ils indépendants ?

Exercice 2 : Un fumeur dispose de n $(n \in \mathbb{N}^*)$ allumettes. Il essaye d'allumer sa cigarette à l'aide d'une allumette. S'il y arrive, il peut donc fumer sa cigarette. Sinon, il recommence jusqu'à ce qu'il réussisse à allumer sa cigarette, ou qu'il ait utilisé toutes ses allumettes. Avec chacune des allumettes, il a une probabilité p $(p \in]0,1[)$ de réussir à allumer la cigarette. De plus, les allumettes sont indépendantes.

- 1) Quelle est la probabilité qu'il réussisse à allumer sa cigarette?
- 2) Définissons X la variable aléatoire égale au nombre d'allumette(s) utilisée(s). Donnez la loi de X. Calculez $\mathbb{E}(X)$.
- 3) Supposons qu'il fume sa cigarette. Pour tout $k \in \mathbb{N}^*$, quelle est la probabilité qu'il ait utilisé k allumette(s) pour allumer sa cigarette?

Exercice 3 : Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$. On définit Y par Y = X/2 si X est pair, et Y = 0 sinon. Déterminez la loi de Y et son espérance.

Exercice 4 : À une période donnée, la variable aléatoire X représentant le nombre de client(s) d'un grand magasin suit une loi de Poisson de paramètre $\lambda > 0$. Chaque client a la probabilité $p \in]0,1[$ de se faire voler son portefeuille. On suppose que, pour un nombre de client(s) fixé, les vols de portefeuilles sont indépendants. On note Y la variable aléatoire représentant le nombre de portefeuille(s) volé(s) pendant cette période. Quelle est a loi de Y? On pourra pour cela utiliser les probabilités conditionnelles $\mathbb{P}(Y = k \mid X = n)$ pour tout couple d'entiers (k, n).

Exercice 5 : On considère un couple de variables aléatoires (X, Y) dont la loi est donnée par $X(\Omega) = Y(\Omega) = \mathbb{N}$ et pour tout $(k, j) \in \mathbb{N}^2$,

$$\mathbb{P}(X = k, Y = j) = \frac{2^k e^{-3}}{k! j!}.$$

- 1) Déterminer les lois marginales de (X,Y) (la loi de X et la loi de Y).
- 2) Les variables aléatoires X et Y sont-elles indépendantes ?

Exercice 6 : On considère un couple de variables aléatoires (X, Y) dont la loi est donnée par $X(\Omega) = Y(\Omega) = \mathbb{N}$ et pour tout $(k, j) \in \mathbb{N}^2$,

$$\mathbb{P}(X = k, Y = j) = \begin{cases} \frac{\alpha}{k!(j-k)!} & \text{si } j \ge k, \\ 0 & \text{sinon.} \end{cases}$$

où $\alpha > 0$ est une constante positive.

- 1) Combien doit valoir α pour que la loi de (X,Y) définisse bien une loi de probabilité ?
- 2) Déterminer les lois marginales de (X,Y) (la loi de X et la loi de Y).
- 3) Les variables aléatoires X et Y sont-elles indépendantes ?
- 4) Pour tout $(k, j) \in \mathbb{N}^2$, calculer les probabilités conditionnelles $\mathbb{P}(X = k \mid Y = j)$.

Exercice 7: On considère deux variables aléatoires X et Y indépendantes suivant la même loi géométrique de paramètre $p \in]0,1[$. On pose S=X+Y et $U=\min(X,Y)$.

- 1) Déterminer la loi de S.
- 2) Pour tout $n \in \mathbb{N}^*$, calculer $\mathbb{P}(U > n)$.
- 3) En déduire la loi de U.

Exercice 8 : Calculer la fonction génératrice d'une variable aléatoire suivant une loi géométrique de paramètre $p \in]0,1[$. En déduire l'espérance et la variance.

Exercice 9 : En utilisant les fonctions génératrices, prouver qu'une variable aléatoire X suivant un loi binomiale de paramètres $(n, p) \in \mathbb{N}^* \times]0, 1[$ a la même loi que la somme de n variables aléatoires X_1, \dots, X_n indépendantes et de loi de Bernoulli de paramètre $p \in]0, 1[$.