Review: Method of Undetermined Coefficients

$$ay'' + by' + cy = h(t) \neq 0$$
 \Rightarrow $y = y_p(t) + c_1y_1(t) + c_2y_2(t)$
How to find y_p :

1. Differentiate h(t) to get functional forms

$$\{f_1(t), f_2(t), f_3(t), \dots\}$$

2. If there are a finite number of functions, guess

$$y_p = Af_1(t) + Bf_2(t) + Cf_3(t) + \dots$$

- 3. Plug y_p into ODE
- 4. Solve for undetermined coefficients $(A, B, C \dots)$

Solving for undetermined coefficients $(A, B, C \dots)$

$$ay'' + by' + cy = h(t) \neq 0$$
 \Rightarrow $y = y_p + c_1y_1(t) + c_2y_2(t)$ $y_p = Af_1(t) + Bf_2(t) + Cf_3(t) + \dots$

We obtain a linear system of equations, n equations n unknowns

$$\mathbf{M} \begin{bmatrix} A \\ B \\ C \\ \vdots \end{bmatrix} = \mathbf{v}.$$

If any of the functions f_i are linearly dependent with $y_1(t)$ or $y_2(t)$, we have an underdetermined system of equations...we won't find a unique solution.

This situation is called mathematical resonance.

Dealing with mathematical resonance

$$ay'' + by' + cy = h(t) \neq 0$$
 \Rightarrow $y = y_p + c_1y_1(t) + c_2y_2(t)$

Suppose the family of functional for h(t) is

$$\{f_1(t), f_2(t), f_3(t)\}$$

where $f_3(t)$ and $y_1(t)$ are linearly dependent.

Recall: when we had repeated roots for the homogeneous case, we obtained a new linearly dependent function by multiplying by t.

Then we should guess

$$y_p = Af_1(t) + Bf_2(t) + Ctf_3(t)$$

If $tf_3(t)$ is linearly dependent with $y_2(t)$, then use $t^2f_3(t)$ instead.

A simple example of mathematical resonance

$$y'' + y = h(t) = \sin \omega t$$
$$y_h = c_1 \cos(t) + c_2 \sin(t)$$

Family of functional forms for h(t)

$$\{\cos(\omega t),\sin(\omega t)\}$$

Naive guess:

$$y_p = A\cos(\omega t) + B\sin(\omega t)$$

Notice that if
$$\omega=1$$
, then $y_p=y_h$

(not good!)

$$\frac{\omega \neq 1}{y_p = A\cos(\omega t) + B\sin(\omega t)}$$

$$\frac{\omega = 1}{y_p = At\cos(\omega t) + Bt\sin(\omega t)}$$

Practice

(1)
$$y' + 6y = \cos t + t^2$$

 $y_h = c_1 e^{-6t}$
family = $\{\cos t, \sin t, t^2, t, 1\}$
 $y_p = A\cos t + B\sin t$

 $+ Ct^{2} + Dt + F$ (2) $v'' = t^2$

 $V_h = c_1 + c_2 t$ family = $\{t^2, \underline{t}, \underline{1}\}$ $v_p = At^2 + Bt^4 + Ct^4$ (3) $y'' + 3y' + 2y = 5e^{-t}$ $y_h = c_1 e^{-t} + c_2 e^{-2t}$ family = $\{e^{-t}\}$

 $y_p = Ate^{-t}$

(4)
$$y'' + 2y' + y = 12e^{-t}$$

 $y_h = c_1e^{-t} + c_2te^{-t}$
family = $\{\underline{e}^{-t}\}$
 $y_p = At^2e^{-t}$

 $y_h = c_1 e^{-6t} + c_2$ family = $\{\cos t, \sin t, t^2, t, 1\}$ $y_p = A \cos t + B \sin t$

 $+ Ct^{2} + Dt + Ft^{3}$

(5) $y'' + 6y' = \cos t + t^2$

$$r_{1,2} = \frac{-5 \pm \sqrt{25 - 16}}{2} = \frac{-5 \pm 3}{2} = -1, -4$$

$$y_h = c_1 e^{-t} + \underbrace{c_2 e^{-4t}}_{\propto h(t)}$$

Try:
$$y_p = Ate^{-4t}$$

 $y'_p = A(e^{-4t} - 4te^{-4t})$
 $y''_p = -Ae^{-4t} - 4A(e^{-4t} - 4te^{-4t})$
 $= -8Ae^{-4t} + 16Ate^{-4t}$

plug into DE:

$$-8Ae^{-4t} + 16Ate^{-4t} + 5Ae^{-4t} - 20Ate^{-4t} + 4Ate^{-4t} = e^{-4t}$$
$$(-8+5)Ae^{-4t} + (20-20)te^{-4t} = e^{-4t}$$
$$-3Ae^{-4t} = e^{-4t}$$

$$A=-\frac{1}{3}$$

$$y = c_1 e^{-4t} + c_2 e^{-t} - \frac{1}{3} t e^{-4t}$$

$$r_{1,2} = \frac{-4 \pm \sqrt{16 - 16}}{2} = -2$$

$$y_h = \underbrace{c_1 e^{-2t}}_{\propto h(t)} + c_2 t e^{-2t}$$

$$Try: \quad y_p = A t^2 e^{-2t}$$

$$y'_p = A \left(2t e^{-2t} - 2t^2 e^{-2t}\right)$$

$$y''_p = 2A \left(e^{-2t} - 2t e^{-2t}\right) - 2A \left(2t e^{-2t} - 2t^2 e^{-2t}\right)$$

 $=4At^{2}e^{-2t}-8Ate^{-2t}+2Ae^{-2t}$

plug into DE:

$$4At^{2}e^{-2t} - 8Ate^{-2t} + 2Ae^{-2t} + 8Ate^{-2t} - 8At^{2}e^{-2t} + 4At^{2}e^{-2t} = e^{-2t}$$
$$(-8+8)At^{2}e^{-2t} + (-8+8)te^{-2t} + 2Ae^{-2t} = e^{-2t}$$
$$2Ae^{-2t} = e^{-2t}$$

$$2A = 1$$
 $\Rightarrow A = \frac{1}{2}$

$$y = c_1 e^{-2t} + c_2 t e^{-2t} + \frac{1}{2} t^2 e^{2t}$$

Method of Undetermined Coefficients:

$$ay'' + by' + cy = h(t)$$
$$y(t) = y_p(t) + y_h(t)$$

Form of function $h(t)$	Geuss for $y_p(t)$
$\sum_{j=0}^{N} B_j t^j$	$\sum_{j=0}^{N} A_j t^j$
$e^{\lambda t}$	$Ae^{\lambda t}$
$\sin \omega t$ or $\cos \omega t$	$A\sin\omega t+B\cos\omega t$
$e^{\lambda t}\sin\omega t$ or $e^{\lambda t}\cos\omega t$	$e^{\lambda t}A\sin\omega t+e^{\lambda t}B\cos\omega t$
Additive combinations of above	Additive combinations of above
Multiplicative combinations of above	Multiplicative combinations of above
Part of the homogeneous solution Note 1	$Ath(t)$ or $At^2h(t)$ or
Anything else	You are out of luck

¹Note: This corresponds to resonance.

²Note: b_j , c_j , b, c, A, and B are all constants in the above table