a. $f_s = 216.8 - 196.0 = 20.8$

inner fences: 196 - 1.5(20.8) = 164.6, 216.8 + 1.5(20.8) = 248

outer fences: 196 - 3(20.8) = 133.6, 216.8 + 3(20.8) = 279.2

Of the observations listed, 125.8 is an extreme low outlier and 250.2 is a mild high outlier.

b. A boxplot of this data appears below. There is a bit of positive skew to the data but, except for the two outliers identified in part (a), the variation in the data is relatively small.

1.78

- **a.** Since the constant \bar{x} is subtracted from each x value to obtain each y value, and addition or subtraction of a constant doesn't affect variability, $s_y^2 = s_x^2$ and $s_y = s_x$.
- **b.** Let c = 1/s, where s is the sample standard deviation of the x's (and also, by part (a), of the y's). Then $z_i = cy_i \Rightarrow s_z^2 = c^2s_y^2 = (1/s)^2s^2 = 1$ and $s_z = 1$. That is, the "standardized" quantities z_1 , ..., z_n have a sample variance and standard deviation of 1.

2.42

Seats:

P(J&P in 1&2) =
$$\frac{2 \times 1 \times 4 \times 3 \times 2 \times 1}{6 \times 5 \times 4 \times 3 \times 2 \times 1} = \frac{1}{15} = .0667$$

P(J&P next to each other) = P(J&P in 1&2) + ... + P(J&P in 5&6)

$$= 5 \times \frac{1}{15} = \frac{1}{3} = .333$$

P(at least one H next to his W) = 1 - P(no H next to his W)

We count the # of ways of no H next to his W as follows:

of orderings with a H-W pair in seats #1 and 3 and no H next to his $W = 6* \times 4 \times 1* \times 2^{\#} \times 1 \times 1 = 48$ *= pair, #=can't put the mate of seat #2 here or else a H-W pair would be in #5 and 6.

of orderings without a H-W pair in seats #1 and 3, and no H next to his $W = 6 \times 4 \times 2^{\#} \times 2 \times 2 \times 1 = 192$ = can't be mate of person in seat #1 or #2.

So, # of seating arrangements with no H next to W = 48 + 192 = 240

And P(no H next to his W) = =
$$\frac{240}{6 \times 5 \times 4 \times 3 \times 2 \times 1} = \frac{1}{3}$$
, so

P(at least one H next to his W) = $1 - \frac{1}{3} = \frac{2}{3}$

2.93

$$P(A \cup B) = P(A) + P(B) - P(A)P(B)$$

.626 = $P(A) + P(B) - .144$

So
$$P(A) + P(B) = .770$$
 and $P(A)P(B) = .144$.

Let x = P(A) and y = P(B), then using the first equation, y = .77 - x, and substituting this into the second equation, we get x (.77 - x) = .144 or

$$x^2$$
 - .77x + .144 = 0. Use the quadratic formula to solve: $\frac{.77 \pm \sqrt{.77^2 - (4)(.144)}}{2} = \frac{.77 \pm .13}{2} = .32$

So P(A) = .45 and P(B) = .32

or .45

2.100

a.
$$P(both +) = P(carrier \cap both +) + P(not a carrier \cap both +)$$

 $= P(both + | carrier) \times P(carrier)$
 $+ P(both + | not a carrier) \times P(not a carrier)$
 $= (.90)^2(.01) + (.05)^2(.99) = .01058$
 $P(both -) = (.10)^2(.01) + (.95)^2(.99) = .89358$
 $P(tests agree) = .01058 + .89358 = .90416$

b. P(carrier | both + ve) =
$$\frac{P(carrier \cap both.positive)}{P(both.positive)} = \frac{(.90)^2(.01)}{.01058} = .7656$$

2.101

Let $A = 1^{st}$ functions, $B = 2^{nd}$ functions, so P(B) = .9, $P(A \cup B) = .96$, $P(A \cap B) = .75$. Thus, $P(A \cup B) = P(A) + .96$. Thus, $P(A \cup B) = .96$, implying P(A) = .81.

This gives P(B | A) =
$$\frac{P(B \cap A)}{P(A)} = \frac{.75}{.81} = .926$$

3.11

a.

b.

c.
$$P(x \ge 6) = .40 + .15 = .55$$

$$P(x > 6) = .15$$