MA362 — 复分析

Assignment 12

Instructor: 姚卫红

Author: 刘逸灏 (515370910207)

— SJTU (Fall 2019)

习题 4.4/15

设 f 是域 D 上非常数的全纯函数. 证明: 存在在 D 中无极限的点列 $\{z_n\}$, 使得对每个 $z \in D \setminus \{z_n\}$, 有 $f'(z) \neq 0$.

只需证明所有满足 $z_n \in D$ 且 $f'(z_n) = 0$ 的点 z_n 都在无极限的点列 $\{z_n\}$ 中. 这样的 z_n 是 $f(z) - f(z_n)$ 的 m_n 阶零点, $m_n \ge 2$. 假设 z_0 为 $\{z_n\}$ 的一个极限点, 对于充分小的 $\rho > 0$, 必存在 $\delta > 0$, 使得对于任意 $a \in B(z_0, \delta)$, f(z) - a 在 $B(z_0, \rho)$ 中恰有 m_0 个零点. 同时, 也存在 $z_1 \in \{z_n\}$ 且 $z_1 \in B(z_0, \min\{\delta, \rho\})$, 并取 $a = z_1$. 由于解析函数 f(z) - a 零点的孤立性, 可取 $\rho_1 \in B(0, \rho)$ 且 f(z) - a 在 $B(z_1, \rho_1)$ 中没有零点, 此时必存在 $\delta_1 > 0$, 使得对于任意 $a_1 \in B(z_1, \delta_1)$, $f(z) - a_1$ 在 $B(z_1, \rho_1)$ 中恰有 m_1 个零点. 由 a_1 的任意性可知取 $a_1 = a$ 产生矛盾, 故得证.

习题 4.4/16

设 D 是由可求长简单闭曲线围成的单连通域, $f \in H(D) \cap C(\overline{D})$. 证明: 若 f 在 ∂D 上取实值,则 f 为常值函数. 举例说明对于一般的单连通域 D,结论不再成立.

 $Im\{f(z)\}$ 在 D 内是调和函数, 且在 ∂D 上为 0. 根据调和函数的最大和最小模原理得 $Im\{f(z)\}=0$. 又由全纯函数的性质可知, 虚部为 0 的全纯函数为常值函数.

对于一般单连通区域, 设 D 为上半平面, 令 f(z) = z, 在 ∂D 上有 $f(z) \in R$, 但 f 显然不是常值函数.

习题 4.5/4

设 $f \in H(B(0,R))$. 证明: $M(r) = \max_{|z|=r} |f(z)|$ 是 [0,R) 上的增函数.

只需证明在任取 $0 \le r_1 < r_2 < R$, 有 $M(r_1) \le M(r_2)$. 若 f(z) 为常值函数, 显然有 $M(r_1) = M(r_2) = k$; 若不是, 取区域 $D = B(0, r_2)$, 则 $|z| = r_1$ 在 D 的内部. 根据最大模原理可知

$$M(r_1) = \max_{|z|=r_1} |f(z)| < \max_{|z|=r_2} |f(z)| = M(r_2).$$

故 M(r) 是 [0,R) 上的增函数.

习题 4.5/5

利用最大模原理证明代数学基本定理

设

$$P(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_n, \quad a_0 \neq 0$$

为任意复系数多项式. 现要证明 P(z) 至少有一个零点.

假设 P(z) 没有零点,则 $f(z) = \frac{1}{P(z)}$ 是一个整函数。由于 $\lim_{z \to \infty} P(z) = \infty$,故能找到 R,使得 $|z| \ge R$ 时, $|f(z)| \le |f(0)|$ 。由 f(z) 的连续性可知, $\max_{|z| < R} |f(z)| \ge |f(0)|$,故在 $|z| \le R$ 中 f(z) 的最大值可以不在边界取到。根据最大模原理可知 f(z) 为常值函数,与假设矛盾,故得证 P(z) 一定有零点。

习题 4.5/7

设 f 是域 D 上非常数的全纯函数. 证明: 若 f 在 D 中没有零点, 则 f(z) 在 D 内不能取得最小值.

由于 f 是域 D 上非常数的全纯函数,且在 D 中没有零点,则 $g(z) = \frac{1}{f(z)}$ 也是域 D 上非常数的全纯函数。假设 f(z) 在 $z_0 \in D$ 中能取得最小值,则 g(z) 也可在 z_0 取得最大值,这与最大模原理矛盾,故假设不成立,得证。