1

AVR-GCC ASSIGNMENT

koushik kalyani koushikkalyani369@gmail.com IITH - Future Wireless Communication

CONTENTS

Ι	Question	1
II	Answer	1
III	Logic Diagram	1
IV	Truth Table	1
V	K-Map Implementation	1
VI	Components	2
VII	Implementation	

I. QUESTION

The output F of the digital circuit shown can be written in form(s) $___$

- (a) $\overline{A \cdot B}$
- (b) $\overline{A} + \overline{B}$
- (c) $\overline{A+B}$
- (d) $\overline{A} \cdot \overline{B}$

II. ANSWER

The above question can reduced as follows $\rightarrow Y = \bar{B} \cdot 1 + B \cdot 0 \rightarrow Y = \bar{B}$

$$\rightarrow F = \bar{A} \cdot 1 + A \cdot \bar{B} \rightarrow F = (\bar{A} + A) \cdot (\bar{A} + \bar{B})$$

 $\rightarrow F = \bar{A} + \bar{B}$ also $F = \overline{A \cdot B}$

Therefore, the Boolean function $F = \bar{A} + \bar{B}$

Fig. 1

IV. TRUTH TABLE

A	B	F
0	0	1
0	1	1
1	0	1
1	1	0

Truth table for Boolean Function F

V. K-MAP IMPLEMENTATION

Using the boolean logic output F can be expressed in terms of the inputs A,B with the help of the following K-map.

Fig. 2

VI. COMPONENTS

Component	Values	Quantity
Arduino	UNO	1
Jumper	M-M	4
Wires		
Breadboard		1

VII. IMPLEMENTATION

Arduino PIN	INPUT	OUTPUT
2	A	
3	В	
13		F

Connections

Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect inputs to Vcc for logic 1, ground for logic 0.
- 3. Execute the circuit using the below code.

https://github.com/koushikkalyani/FWC/blob/main/AVR-GCC/avr.c

4. Change the values of A,B in the hardware and verify the Truth Table.