Outcomes: By the end of this lesson, we aim for you to be able to

- Understand what list coloring is
- Understand the basics of the proof for the choosibility of planar graphs
- To know some applications of list coloring

Definitions

Dictionary Merry Webstir

- 1. For each vertex v in the graph G, let L(v) denote a set of available colors at vertex v. A **list coloring** is a proper coloring f of G such that $f(v) \in L(v)$ for all v in G.
- 2. A graph *G* is <u>k-choosable</u> if every assignment of the *k*-element sets to the vertices allows a proper coloring.
- 3. The <u>list chromatic number</u>, denoted $\chi_l(G)$, is the minimum k s.t. G is k-choosable.

Example 1.

Example 2.

You try!

Remark:

What can we say about the relationship between traditional coloring $\chi(G)$ and list coloring $\chi_l(G)$?

Question:

How large can $\chi_l(G)$ – $\chi(G)$ be?

You Try!

Prove that $\chi_l(G) \le 1 + \Delta(G)$

Choosability of Planar Graphs

Background:

Theorem Planar graphs have chromatic number at most 4, Vizing [1976].

Conjecture Erdős-Rubin-Taylor [1979] The maximum list chromatic number for planar graphs is 5.

Lemma There are some planar graphs that are not 4-choosable, Voigt[1993] and Mirzakhani [1996].

Remark Some 3 colorable graphs are not 4-choosable, Gutner [1996], Voigt-Wirth [1997].

Theorem 8.4.32 For planar graphs, $\chi_l(G) \leq 5$, Thomassen [1994b].

Proof. The addition of edges obviously do not decrease $\chi_l(G)$, thus we shall consider plane graphs where the outer face is a cycle and every bounded face is a triangle.

We shall prove a stronger result: a coloring can be choosen even when two adjacent external vertices have distinct list of size 1 and the other external vertices have size 3, (internal vertices have list of size 5).

Now we shall use induction on the number of vertices.

Base step: n = 3

This is clear since this is a triangle, which means the third vertex always has an usable color.

Now consider n > 3. Let v_p and v_1 be the vertices with singleton lists. Let the external face have cycle C and v_1, v_2, \ldots, v_p be in V(C) in a negative direction around the cycle.

Case 1: *C* has a chord $v_i v_j$ s.t. $1 \le i \le j-2 \le p-2$. We apply the induction hypothesis to the graph consisting of the cycle $v_1, \ldots, v_j, \ldots, v_p$ and the interior. This process reduces v_i and v_j to have forced singleton colors then we apply induction to the cycle $v_i, v_{i+1}, \ldots, v_j$ and its interior to obtain the list coloring of *G*.

Case 2: *C* has no chord. Let v_1, u_2, v_3 be the neighbors of v_2 in order. Because the interior is triangulated, *G* contains a path *P* with vertices $v_1, u_1, \ldots, u_m, v_3$, the neighbors of v_2 . Since *C* is chordless u_1, \ldots, u_m are interior vertices, and the outer face of $G' = G \setminus v_2$ is bounded by a cycle C' where v_2 is replaced by *P*.

Let c be the color assigned to v_1 . Since $|L(v_2)| \ge 3$, we may choose distinct colors $x, y \in L(v_2) \setminus \{c\}$. Thus, we are disallowing x, y from u_1, \ldots, u_m such that we can color v_2 with x or y. Since $|L(u_i)| \ge 5$, we have $|L(u_i) \setminus \{x, y\} \ge 3$. Thus, inductively u_1, \ldots, u_m have list of size at least 3 with other vertices' lists being unchanged. We extend this to G by choosing a color for v_2 in the set $\{x, y\}$ that does not appear on v_3 , this is sufficient since v_2 is the only additional vertex in G.