

De novo assembly of short reads using Velvet

Adapted from Nick Loman University of Birmingham

https://github.com/lexnederbragt/denovo-assembly-tutorial

Velvet

- One of the first short read assemblers
- Developed by Daniel Zerbino of EBI
- A de Bruijn graph assembler, like:
 - SOAPdenovo
 - ABYSS
 - ALLPATHS
 - Etc.

K-mers again

Counting k-mers

 Plotting k-mer frequencies is a quick and easy way of:

- Estimating genome size
- Seeing copy number variation in genome
- Estimating sequence read error
- Planning a short-read assembly

Idealised k-mer plot

A real K-mer plot

https://banana-slug.soe.ucsc.edu/bioinformatic_tools:jellyfish

1 385 880 1432 2067 2695 3316 3933 4561 5170 5780 6387 6995 7602 8211 8818

		TY2482	S282	S283	S540	S541
	Chromosome depth	300	20	24	27	21
Plasmids!	pTY1 (IncI) depth	310	496	563	550	472
	pTY1 copy number	1.0	24.8	23.5	20.4	22.5
	pTY2 (EAEC) depth	200	477	417	435	392
	pTY2 copy number	0.7	23.9	17.4	16.1	18.7
	pTY3 (mini plasmid) depth	2658	11418	9972	8420	8403
	pTY3 copy number	9	571	416	312	400
	Mean read depth and mean plasmid copy number for outbreak strains					

1 18 37 56 75 94 116 141 166 191 216 241 266 291 316 341 366 391 416 441 466

K-mers and K

no magical value of k

Depends on read length sequencing error rate of polymorphism coverage

K-mers and K

Some rules:

- k must be less than the read length
- k can't be an even number (can produce palindromes)

K-mers and K

- Bigger *k*
 - Solves more repeats
 - fewer overlaps
 - lower k-mer coverage
- Lower *k*
 - more overlaps
 - higher k-mer coverage

de Bruijn Graphs

Overlap Graph

Long read assemblers

- Repeats depends on read length
- Read coherency, placements kept
- Tangled by high coverage

de Bruijn Graph

Short read assemblers

- Repeats depends on word length
- Read coherency, placements lost
- Robust to high coverage

What do you get?

Metrics

- contigs
 - how many
 - total bases
 - N50

- scaffolds
 - how many
 - total bases
 - N50
 - how many gaps
 - total gap bases

 Size of contig such that 50% of total bases are in contigs of this length or more

•Size of contig such that 50% of total bases are in contigs of this length or more

•OR

•Shortest of the longest contigs that together make up 50% of the assembly

•Size of contig such that 50% of total bases are in contigs of this length or more

→longer N50 is better

•N50 count:

number of contigs of at least N50 size

N50 - NG50

•N50:

 Size of contig such that 50% of total bases are in contigs of this length or more

•NG50:

Replace 'total bases' with 'genome length'

Minimum contig length influences N50

Take away shorter contigs → N50 goes up

High N50 → better assembly

- BUT
- says nothing of quality

Insert size

- Experimental evidence
- Allow Velvet to guess
- Map reads and calculate

Mate-pair data

- Orientation different
- Read contamination

```
PE => insert <=
mate-pair <= insert =>
```