Fishing and Climate Change in Coastal Bangladesh: The Economic and Health Impacts of Increasing Salinity

Overview

The code in this replication package constructs the analysis file from the data sources on the World Bank Development Data Hub and local data using R. A main script run all of the code to generate the data for the figures and tables in the World Bank Policy Research Working Paper entitled, "Fishing and Climate Change in Coastal Bangladesh: The Economic and Health Impacts of Increasing Salinity" (No. 11048). The replicator should expect the code to run for about <2 hours.

Data Availability and Provenance Statements

Statement about Rights

• I certify that the author(s) of the manuscript have legitimate access to and permission to use the data used in this manuscript.

License for Data

The data are licensed under a Creative Commons/CC-BY-NC license.

Summary of Availability

• The user must download data from the DHS see https://dhsprogram.com/data/available-datasets.cfm

Dataset list

local data directory has three categories: gis_data and tab_data. The gis_data include the locations of markets (Artisanal_Locations.shp), river monitorings (Bangladesh_River_Monitors.shp), species occurrence regions including: Coilia dussumieri.shp, Lates calcarifer.shp, Lates calcarifer.shp and Mystus gulio.shp from (Dasgupta et al. 2014a) and administrative boundaries (WB_countries_Admin0_10m.shp). The tab_data includes information for markets, salinity in ppt with location and date/time (IWM), fish catch price and date, death/diarrhea/stunt rates from DHS (2018 and 2022) and species information.

Data file	Source	Notes	Provided
local/geo_data/Artisanal_Locations.shp	Authors	Public	Yes
local/geo_data/Bangladesh_River_Monitors.shp	Authors	Public	Yes
local/geo_data/Coilia dussumieri.shp	Authors	Public	Yes
<pre>local/geo_data/Lates calcarifer.shp</pre>	Authors	Public	Yes
local/geo_data/Mystus gulio.shp	Authors	Public	Yes
<pre>local/geo_data/Boundary_Data_10mil/WB_countries_Admin0_10m.shp</pre>	WB	Public	API

Data file	Source	Notes	Provided
local/tab_data/Bangladesh_Market_Fish_Full_Reference.csv	Authors	Public	Yes
local/tab_data/Bangladesh_River_Salinity_Data.csv	IWM	Public	Yes
local/tab_data/Full Salinity Range.csv	Authors	Public	Yes
<pre>local/tab_data/Full_Catch_Record_With_Periods.csv</pre>	Authors	Public	Yes
local/tab_data/DHS_Salinity_Area_2000_2022.dta	Authors	Public	Yes
local/tab_data/DHS Analysis Changes.csv	Authors	Public	Yes
local/tab_data/Monthly Upazila Salinity.csv	Authors	Public	Yes
local/tab_data/Species IDs and Names.csv	Authors	Public	Yes
local/tab_data/Species_Price_Class.csv	Authors	Public	Yes

Data file	Source	Notes	Provided
local/tab_data/Species Map Image Scores.dta	Authors		
local/tab_data/GBIF_Econometric_Species.csv	Authors	Public	Yes

Sources include: IWM: The Institute of Water Modeling

Computational requirements

Software Requirements

• The replication package contains one or more programs to install all dependencies and set up the necessary directory structure.

```
basemaps\_0.0.8\ spatialEco\_2.0-2\ openxlsx\_4.2.5.2\ purrr\_1.0.2\ rSDM\_0.4.0\ readxl\_1.4.3\ ggpattern\_1.1.3\ exactextractr\_0.10.0\ doSNOW\_1.0.20\ snow\_0.4-4\ gdistance\_1.6.4\ Matrix\_1.6-1.1\ igraph\_1.5.1\ fasterize\_1.0.5\ lwgeom\_0.2-13\ rgeos\_0.6-4\ readstata13\_0.10.1\ rgdal\_1.6-7\ patchwork\_1.2.0\ raster\_3.6-26\ sp\_2.1-2\ ggpubr\_0.6.0\ colourvalues\_0.3.9\ XML\_3.99-0.14\ dplyr\_1.1.3\ stars\_0.6-4\ abind\_1.4-5\ gt\_0.10.0\ xfun\_0.40\ modelsummary\_1.4.5\ ordinal\_2023.12-4\ terra\_1.7-55\ archive\_1.1.8\ RColorBrewer\_1.1-3\ R.utils\_2.12.2\ R.oo\_1.25.0\ R.methodsS3\_1.8.2\ ggplot2\_3.5.1\ renv\_1.0.5\ tidyr\_1.3.0\ nngeo\_0.4.7\ foreign\_0.8-84\ doParallel\_1.0.17\ iterators\_1.0.14\ foreach\_1.5.2\ data.table\_1.14.8\ readr_2.1.4\ Hmisc\_5.1-2\ stringr\_1.5.1\ httr\_1.4.7\ sf\_1.0-19
```

Controlled Randomness

• No Pseudo random generator is used in the analysis described here.

Memory, Runtime, Storage Requirements

Summary Approximate time needed to reproduce the analyses on a standard 2024 server machine: - 2 hours

Approximate storage space needed: - < 2GB

Details Portions of the code were last run on a 32-core Intel server with 256 GB of RAM, 100 GB of network storage.

Description of programs/code

- Script biod_bgdcoast_wp___main.R is the main script
- Script biod_bgdcoast_wp_global_libraries.R loads the libraries for R
- Scripts starting with biod_bgdcoast_wp_load load the data for R
- Scripts starting with biod_bgdcoast_wp_fig construct the figures for R

List of tables and programs

The provided code reproduces: - All tables and figures in the paper

Figure/Table #	Program / dataset	Output file	Note
Figure 1	${\rm fig}01_{\rm monthly_{mean}}$.do	fig_01Monthly_Salinity .png	
Figure 2a	$fig02a_stations .R$	fig_02a_station_locationspng	
Figure 2	$fig02$ _River_Monitor_S .do	fig_03a_unprotected .png	
Figure 4	$fig04_markets .R$	fig_04_markets .png	
Figure 5	${\rm fig}05{\rm a}$ _Coilia_dussumi .R	fig_05a_Coilia_dussumieri .png	

Figure/Table #	Program / dataset	Output file	Note
Figure 6	fig06a_Mystus_gulio .R	fig_06a_Mystus_gulio .png	
Figure 7	$fig07a_Lates_calcarifer.R$	$fig_07a_Lates_calcarifer.png$	
Figure 9a	$fig09and10_Species_El.do$	Scomberomorus_guttatus_Sara .png	
Figure 9b	$fig09and10_Species_El.do$	Scomberomorus_guttatus_Gala .png	
Figure 10a	$fig09and10_Species_El.do$	Scomberomorus_commerson_Mong	
		.png	
Figure 10b	$fig09and10_Species_El.do$	Scomberomorus_commerson_Khul	
		.png	
Figure 11a	$fig11_Predict_Upa.do$	Low-Price Quantity Salinity .png	
	fig11_Predict_Upa .do	Min and Max Quantity by Pri .csv	
Figure 11b	$fig11_Predict_Upa.do$	Mid-Price Quantity Salinity .png	
	$fig11_Predict_Upa.do$	Min and Max Quantity by Pri .csv	
Figure 11c	$fig11_Predict_Upa.do$	High-Price Quantity Salinity .png	
	fig11_Predict_Upa .do	Min and Max Quantity by Pri .csv	
Figure 12	fig12_New_Price_Reg .do	High-Price Price Salinity .png	

References

Dasgupta, S., Blankespoor, B., & Wheeler, D. (2024a). Revisiting Global Biodiversity: A Spatial Analysis of Species Occurrence Data from the Global Biodiversity Information Facility (No. 10821). The World Bank.

Dasgupta, S., Blankespoor, B., & Wheeler, D. (2024b). Estimating Extinction Threats with Species Occurrence Data from the Global Biodiversity Information Facility (No. 10822). The World Bank.

Acknowledgements

The authors gratefully acknowledge financial support from the Global Environment Facility.