Homework 4. CS 511.

Eric Chao

October 2, 2020

Problem 1

1. $\Phi = (\phi \lor \psi_1) \land (\phi \lor \psi_2) \land (\phi \lor \psi_3)$ $\Psi = \exists y(y \leftrightarrow \phi) \land (y \lor \psi_1) \land (y \lor \psi_2) \land (y \lor \psi_3)$

 Ψ only holds true if there exists some formula y, which holds true if and only if ϕ holds true. In such a case, this means y is logically equivalent to ϕ , and thus substituting y for ϕ in the rest of the formula will result in a logically equivalent formula to Φ .

2. $\Phi = \theta(\phi_1, \psi_1) \wedge \theta(\phi_2, \psi_2) \wedge \theta(\phi_3, \psi_3)$ $\Psi = \forall x \forall y (\vee_{1,2,3} (x \leftrightarrow \phi_i) \wedge (y \leftrightarrow \psi_i)) \to \theta(x, y)$

If Φ holds true, then we know for any substitutions on ϕ_i or $\psi_i, 1 \leq i \leq 3$, which is exactly what is happening in Ψ . Ψ says that if for all x and y, x is logically equivalent to ϕ_i y is logically equivalent to $\psi_i 1 \leq i \leq 3then\theta(x,y)$ must hold true. Which can only be the case since Φ is the conjunction of $\theta(\phi_i,\psi_i)1 \leq i \leq 3$. Going the other way if Ψ holds true, then Φ must also hold true since Ψ is defining the substitution for ϕ_i and ψ_i , so if for all x and y, x is logically equivalent to ϕ_i y is logically equivalent to $\psi_i 1 \leq i \leq 3then\theta(x,y)$ must hold true, then ϕ must also hold true. Therefore, $\Phi \leftrightarrow \Psi$.

Problem 2 2.3.3

a $\forall x, x \in \mathbb{F}, \mathbb{F}, \mathbb{F}x < 4$

b $\forall x \forall y, x, y \in \mathbb{F}, \mathbb{F}, \mathbb{F}, x < y$

c $\{\exists y,y \in \mathbb{N} y > 1, \exists y,y \in \mathbb{N} y > 2, \ldots\}$

Problem 3 Murder Mystery

Problems 5 code uploaded to this repository: https://github.com/ehchao88/CS511_HW4

Problem 4 Schubert's Steamroller

```
\forall x (Killed(x,A) \rightarrow LivesIn(x,D))
\exists x (Killed(x,A))
LivesIn(A,D)
LivesIn(B,D)
LivesIn(C,D)
\forall x \forall y (Killed(x,y) \rightarrow Hates(x,y) \land RicherThan(y,x))
\forall x (Hates(A,x) \rightarrow \neg Hates(c,x))
Hates(A,C)
\forall x (RicherThan(A,x) \rightarrow Hates(B,x))
\forall x (Hates(A,x) \rightarrow Hates(B,x))
```

Problem 6 code uploaded to this repository: https://github.com/ehchao88/CS511_HW4