Discrete Structures

Recurrence Relations

Problem: #ways of tiling a $2 \times n$ table with dominoes Solution:

Let a_n be #ways of tiling a $2 \times n$ table with dominoes First column can be tiled in either of two following ways

- 1. Case 1
- 2. Case 2
- Cases 1 and 2 are disjoint.
- #ways of doing case $1 = a_{n-1}$
- #ways of doing case $2 = a_{n-2}$

Then,
$$a_n = a_{n-1} + a_{n-2}$$

We also know $a_1 = 1$, $a_2 = 2$

Problem: #ways of tiling a $3 \times n$ table with dominoes Solution:

Let a_n be #ways of tiling a $3 \times n$ table with dominoes First column can be tiled in one of three following ways

1. Case 1

2. Case 2

3. Case 3

- Cases 1, 2, and 3 are disjoint
- #ways of doing case $1 = a_{n-2}$
- Cases 2 and 3: Tiling a $3 \times (n-1)$ table whose one of corners has already tiled

Let b_n be #ways of tiling a $3 \times n$ table whose one of corners has already tiled

• #ways of doing case 2= #ways of doing case 3= b_{n-1} Therefore, $a_n=a_{n-2}+2b_{n-1}$

But how to obtain b_n : Of course recursively First column can be tiled in either of two following ways

- Case 1
- Case 2

Then, $b_n = a_{n-1} + b_{n-2}$. So we have

$$\begin{cases} a_n = a_{n-2} + 2b_{n-1} & b_n = (a_{n+1} - a_{n-1})/2 \\ b_n = a_{n-1} + b_{n-2} & a_n = b_{n+1} - b_{n-1} \end{cases}$$

$$a_n = (a_{n+2} - a_n)/2 - (a_n - a_{n-2})/2$$
 $\implies a_{n+2} = 4a_n - a_{n-2}$

We also know $a_0 = 1$, $a_1 = 0$, $a_2 = 3$, $a_3 = 0$

Linear Homogenous Recurrence

A linear homogenous recurrence of degree k

$$a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$$

where $c_1, ..., c_k$ are real numbers and $c_k \neq 0$

It is called linear because the right-hand side is a sum of the previous terms of the sequence each multiplied by a real number.

It is called homogenous because no terms occur that are not multiple of $a_i s$

Given the first k terms of the sequence (i.e. $a_0, ..., a_{k-1}$), the sequence is uniquely determined.

We explain the solution for k=2 and at the end we generalize it for any k

Observation: if we have two sequences $\{a_n\}$, $\{b_n\}$ s.t.

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

$$b_n = c_1 b_{n-1} + c_2 b_{n-2}$$

and their two first terms are equal (i.e. $a_0=b_0$, $a_1=b_1$)

Then, $a_n = b_n$ for all n

Problem: Compute a_n where $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ and a_0 , a_1 are given.

Solution:

Let r_1, r_2 be the roots of $x^2 = c_1 x + c_2$ (characteristic equation). If we define $b_n = \alpha r_1^n$ and $d_n = \beta r_2^n$ for arbitrary and fix numbers α, β , it is easy (just replace) to show that regardless of what b_0, b_1, d_0, d_1 are, we have

$$b_n = c_1 b_{n-1} + c_2 b_{n-2}$$

$$d_n = c_1 d_{n-1} + c_2 d_{n-2}$$

Also if we define $h_n=b_n+d_n$, again we have $h_n=c_1h_{n-1}+c_2h_{n-2}$

Sequences $\{a_n\}$ and $\{h_n=\alpha r_1{}^n+\beta r_2{}^n\}$ have the same recurrence formula. If $a_0=h_0$, $a_1=h_1$, then $\forall n: a_n=h_n$ So, find α,β s.t. $a_0=h_0=\alpha+\beta, a_1=h_1=\alpha r_1+\beta r_2$

Problem: $f_n = f_{n-1} + f_{n-2}$ and $f_0 = 0, f_1 = 1$.

Solution:

•
$$x^2 = x + 1 \rightarrow r_1 = \frac{1 + \sqrt{5}}{2}$$
, $r_2 = \frac{1 - \sqrt{5}}{2}$

•
$$f_n = \alpha(\frac{1+\sqrt{5}}{2})^n + \beta(\frac{1-\sqrt{5}}{2})^n$$

$$\alpha + \beta = 0$$

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right) + \beta \left(\frac{1-\sqrt{5}}{2}\right) = 1$$

$$\begin{cases} \alpha = 1/\sqrt{5} \\ \beta = -1/\sqrt{5} \end{cases}$$

Problem: $a_n = 4a_{n-1} - 4a_{n-2}$ and $a_0 = 0$, $a_1 = 1$.

Solution:

- $x^2 = 4x 4 \rightarrow r_1 = 2, r_2 = 2$
- $a_n = \alpha 2^n + \beta 2^n$

$$\begin{cases} \alpha + \beta = 0 \\ 2\alpha + 2\beta = 1 \end{cases}$$

$$\int \alpha = ?$$

$$\beta = ?$$

In above equations, left sides are not independent (one is a multiplication of the other)

What we have to do when $r_1 = r_2$

Problem: Compute a_n where $a_n=c_1a_{n-1}+c_2a_{n-2}$ and a_0,a_1 are given where both roots of $x^2=c_1x+c_2$ are equal

Solution:

Let r be the unique root of $x^2 = c_1 x + c_2$. Define $b_n = \alpha r^n$ and $d_n = \beta n r^n$. it is easy to show that

$$b_n = c_1 b_{n-1} + c_2 b_{n-2}$$

$$d_n = c_1 d_{n-1} + c_2 d_{n-2}$$

Let's check the second one

We have to show $\beta nr^n = c_1\beta(n-1)r^{n-1} + c_2\beta(n-2)r^{n-2}$ We know r is the root of $x^n = c_1x^{n-1} + c_2x^{n-2}$ and its derivative $nx^{n-1} = c_1(n-1)x^{n-2} + c_2(n-2)x^{n-3} \rightarrow nx^n = c_1(n-1)x^{n-1} + c_2(n-2)x^{n-2}$. So we have $\beta nr^n = c_1\beta(n-1)r^{n-1} + c_2\beta(n-2)r^{n-2}$

Problem: Compute a_n where $a_n=c_1a_{n-1}+c_2a_{n-2}$ and a_0 , a_1 are given where both roots of $x^2=c_1\mathbf{x}+c_2$ are equal

Solution:

Let r be the unique root of $x^2 = c_1 x + c_2$. Define $b_n = \alpha r^n$ and $d_n = \beta n r^n$. it is easy to show that

$$b_n = c_1 b_{n-1} + c_2 b_{n-2}$$

$$d_n = c_1 d_{n-1} + c_2 d_{n-2}$$

Also if we define $h_n=b_n+d_n$, again we have $h_n=c_1h_{n-1}+c_2h_{n-2}$

Sequences $\{a_n\}$ and $\{h_n = \alpha r^n + \beta n r^n\}$ have the same recurrence formula. If $a_0 = h_0$, $a_1 = h_1$, then $\forall n : a_n = h_n$ So, find α, β s.t. $a_0 = h_0 = \alpha$, $a_1 = h_1 = \alpha r + \beta r$

Problem: $a_n = 4a_{n-1} - 4a_{n-2}$ and $a_0 = 0$, $a_1 = 1$. Solution:

- $x^2 = 4x 4 \rightarrow r_1 = r_2 = 2$
- $a_n = \alpha 2^n + \beta n 2^n$

$$\begin{array}{c|c} \alpha = 0 \\ 2\alpha + 2\beta = 1 \end{array}$$

$$\alpha = 0$$

$$\beta = 1/2$$

Problem: $a_n = 4a_{n-1} - 4a_{n-2}$ and $a_0 = 0$, $a_1 = 1$. Solution:

- $x^2 = 4x 4 \rightarrow r_1 = r_2 = 2$
- $a_n = \alpha 2^n + \beta n 2^n$

$$\begin{array}{c|c} \alpha = 0 \\ 2\alpha + 2\beta = 1 \end{array}$$

$$\beta = 0$$

$$\beta = 1/2$$

A linear homogenous recurrence of degree k

$$a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$$

where $c_1, ..., c_k$ are real numbers and $c_k \neq 0$

Solution:

Let r_1, \ldots, r_t be the roots of $x^k = c_1 x^{k-1} + \cdots + c_{k-1} x + c_k$ with multiplicities m_1, \ldots, m_t

$$\begin{split} & a_n \\ &= \big(\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_1-1}n^{m_1-1}\big)r_1^{n} + \dots \\ &+ \big(\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_t-1}n^{m_t-1}\big)r_t^{n} \end{split}$$

All k constants $\alpha_{i,j}$ can be computed by k first terms of the sequence.

L. Non-H.R.

A linear non-homogenous recurrence of degree k

$$a_n = c_1 a_{n-1} + \dots + c_k a_{n-k} + f(n)$$

where $c_1, ..., c_k$ are real numbers and $c_k \neq 0$ Solution:

Assume we find a sequence b_n satisfying the above formula regardless of what its k first terms are, then

$$\begin{split} &d_{n}\\ &=b_{n}+\left(\alpha_{1,0}+\alpha_{1,1}n+\cdots+\alpha_{1,m_{1}-1}n^{m_{1}-1}\right)r_{1}^{n}+\cdots\\ &+\left(\alpha_{t,0}+\alpha_{t,1}n+\cdots+\alpha_{t,m_{t}-1}n^{m_{t}-1}\right)r_{t}^{n} \end{split}$$

Satisfies the above formula where $r_1, ..., r_t$ are the roots of $x^k = c_1 x^{k-1} + \cdots + c_{k-1} x + c_k$ with multiplicities m_1, \ldots, m_t

L. Non-H.R.

A linear non-homogenous recurrence of degree k

$$a_n = c_1 a_{n-1} + \dots + c_k a_{n-k} + f(n)$$

where c_1, \dots, c_k are real numbers and $c_k \neq 0$

Solution:

Computing all k constants $\alpha_{i,j}$ by the k first terms of the sequence is straightforward. The main problem is to find b_n which is called a particular solution. There are only some hints how to find b_n for special functions f(n).

L. Non-H.R.

A linear non-homogenous recurrence of degree k

$$a_n = c_1 a_{n-1} + \dots + c_k a_{n-k} + f(n)$$

where $c_1, ..., c_k$ are real numbers and $c_k \neq 0$ Solution:

If $f(n) = (b_t n^t + \dots + b_1 n + b_0) s^n$, then a particular solution is of form $b_n = (\alpha_t n^t + \dots + \alpha_1 n + \alpha_0) s^n$ If s is a root of the characteristic equation and its multiplicity is m, a particular solution is of form $b_n = n^m (\alpha_t n^t + \dots + \alpha_1 n + \alpha_0) s^n$

Problem:
$$a_n = 6a_{n-1} - 9a_{n-2} + n3^n$$
, $a_0 = 0$, $a_1 = 1$
Characteristic equation: $x^2 = 6x - 9 \rightarrow r_1 = r_2 = 3$
Particular solution: $b_n = n^2(\alpha n + \beta)3^n$
 $n^2(\alpha n + \beta)3^n$
 $= 6((n-1)^2(\alpha(n-1) + \beta)3^{n-1})$
 $- 9((n-2)^2(\alpha(n-2) + \beta)3^{n-2}) + n3^n \rightarrow \alpha n^3 + \beta n^2$
 $= (2\alpha n^3 - 6\alpha n^2 + 6\alpha n - 2\alpha + 2\beta n^2 - 4\beta n + 2\beta)$
 $- (\alpha n^3 - 6\alpha n^2 + 12\alpha n - 8\alpha + \beta n^2 - 4\beta n + 4\beta) + n \rightarrow$
 $(-6\alpha + 1)n + 6\alpha - 2\beta = 0 \rightarrow -6\alpha + 1 = 0,6\alpha - 2\beta = 0 \rightarrow$
 $\alpha = \frac{1}{6}, \beta = \frac{1}{2} \rightarrow b_n = n^2 \left(\frac{1}{6}n + \frac{1}{2}3^n + \frac{1}{$

19