

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Inżynieria oprogramowania

System obsługi restauracji

Autor: Aleksandra Kasznia, Paweł Gałka, Marcin Grzyb

Kierunek studiów: Informatyka

Opiekun pracy: dr inż. Marek Zachara

Spis treści

1.	Wymagania			
2.	Opis	poszczególnych wariantów działania systemu ze względu na rolę użytkownika	6	
	2.1.	Kelner	6	
	2.2.	Kucharz / Barman	6	
	2.3.	Manager	6	
	2.4.	Zaopatrzeniowiec	6	
	2.5.	Klient	7	
3.	Diag	ram kontekstowy ogólnych procesów systemu	8	
4.	Use (Cases	9	
	4.1.	Obsługa zamówienia przez barmana	9	
	4.2.	Obsługa zamówienia przez kelnera	10	
	4.3.	Obsługa braku produktów przez zaopatrzeniowca	11	
	4.4.	Obsługa zamówienia przez kucharza	12	
5.	Arch	itektura Systemu	13	
	5.1.	Moduły Systemu	13	
	5.2.	Struktura bazy danych	14	
6.	Opis	Interfejsów	15	
7.	Stos '	Technologiczny	16	
	7.1.	Technologie do serwera wystawiajacego API	16	
	7.2.	Technologie do aplikacji mobilnej	17	
	7.3.	Technologie do platformy webowej	17	
	7.4.	Współdzielone technologie	17	
8.	Proje	ekt Testów	18	
	8.1.	Testy jednostkowe	18	
	8.2.	Testy integracyjne	18	
	8.3.	Testy wydajnościowe	18	
	8.4.	Testy funkcjonalne.	18	

SPIS TREŚCI 3

	8.5.	Testy frontendowe	19		
9.	Anali	za ryzyka	20		
	9.1.	Lista ryzyk i odpowiednie akcje	20		
	9.2.	Macierz ryzyka	22		
10.	10. Narzedzia używane w projekcje2				

1. Wymagania

Funkcjonalności:

- Pracownik loguje się do aplikacji, w zależności od funkcji, którą pełni dostaje różne możliwe czynności do wykonania.
- Kelner po wprowadzeniu id stolika przypisuje go do siebie, wprowadza zamówienia do aplikacji z określonej bazy, które zostają przekazane do kucharza. Kelner otrzymuje powiadomienie o gotowości zamówień. Po zakończonej obsłudze klient ocenia obsługę w aplikacji kelnera.
- Kucharz otrzymuje w aplikacji zamówienia do przygotowania i zaznacza ich gotowość, po wykonaniu dania w bazie danych aktualizuje się stan dostępnych składników.
- Barman otrzymuje w aplikacji zamówienia i zaznacza ich gotowość, po wykonaniu napoju w bazie danych aktualizuje się stan dostępnych składników.
- Magazynier wprowadza dostawy do bazy danych i dostaje ostrzeżenia o kończących się produktach.
- Manager otrzymuje raporty na temat jakości obsługi i popularności dań
- Klient rezerwuje wizytę poprzez intenetową platformę
- Klient po zakończeniu wizyty wystawia opinie na temat jakości obsługi

Rys. 1.1. Poglądowy diagram zależności w systemie

2. Opis poszczególnych wariantów działania systemu ze względu na rolę użytkownika.

2.1. Kelner

Aplikacja dostępna dla kelnera ma na celu usprawnienie obsługi klientów restauracji. Kelner przyjmując zamówienie wybiera pozycje dostępne z menu, jednocześnie w ten sposób jest możliwie natychmiast informowany o awaryjnej niedostępności którejś z pozycji. Zamówienie jest przypisane do stolika który aktualnie obsługuje, w systemie również zostaje zaznaczone, które stoliki obsługuje dana osoba. Po wprowadzeniu zamówienia, kelner zostanie poinformowany kiedy ma je odebrać z kuchni lub baru. W momencie finalizacji, system umożliwia szybkie podsumowanie klienta. Kelner może pokazać klientowi podsumowanie, na tym samym ekranie jest dostępna również krótka ankieta dla klienta.

2.2. Kucharz / Barman

Dla kucharza jak i barmana dostępne są analogiczne funkcjonalności. Zostają oni poinformowani o nowym zamówieniu, które następnie muszą zaakceptować. Po wykonaniu go zaznaczają w aplikacji iż zamówienie jest gotowe.

2.3. Manager

Jest to właściwie interfejs stworzony do obsługi bazy danych. Menager ma możliwość wykonywania czynności CRUD dla wszystkich tabel w bazie. Dodatkowo ma możliwość wyświetlenia raportu z poprzedniego miesiąca podsumowywującego pracę restauracji.

2.4. Zaopatrzeniowiec

Zaopatrzeniowiec Zostaje poinformowany o konieczności uzupełnienia zaopatrzenia gdy poziom potrzebnego składniku spada poniżej poziomu ostrzegawczego. Ma możliwość uaktualniania stanu produktów w bazie jak i wglądu w niego.

2.5. Klient **7**

2.5. Klient

Dla klienta przez stronę internetową będzie udostępniony system rezerwacyjny, umożliwiający mu rezerwację stolika na konkretną godzinę i dzień.

3. Diagram kontekstowy ogólnych procesów systemu

Rys. 3.1. Diagram kontekstowy

4. Use Cases

4.1. Obsługa zamówienia przez barmana

Nazwa	Obsługa zamówienia przez barmana				
Główny aktor	Barman				
Aktorzy drugoplanowi	Kelner				
Wyzwalacz	Wprowadzenie przez kelnera zamówienia na napoje do systemu				
Warunki początkowe	Barman jest zalogowany do systemu i rozpoznany jako użytkownik				
warunki początkowe	o funkcji barmana.				
Warunki końcowe	Zamówienie jest zrealizowane i usunięte z ekranu barmana.				
	Barman zatwierdza otrzymane zamówienie.				
	2. System odejmuje z bazy dostępnych produktów te, które są				
	potrzebne do wykonania zamówienia.				
Przepływ normalny	3. Po przygotowaniu barman zaznacza w systemie, iż				
11zepiyw normaniy	zamówienie jest gotowe do odbioru.				
	4. System przesyła informację o zakończeniu zamówienia				
	do aplikacji kelnera.				
	5. System usuwa zamówienie z ekranu barmana.				
	1a. Barman anuluje zamówienie.				
Przepływ alternatywny	1b. System informuje kelnera o akcji barmana.				
	1c. Powrót do kroku 5.				
	3a. Barman traci możliwość wykonania zamówienia.				
	3b. Barman anuluje zamówienie.				
Wyjątki	3c. System pyta barmana których napojów nie jest w stanie wykonać.				
	3d. Barman zaznacza odpowiednie pozycje.				
	3e. System wybrane przez barmana napoje wyklucza tymczasowo z menu.				

4.2. Obsługa zamówienia przez kelnera

Nazwa	Obsługa zamówienia przez kelnera					
Główny aktor	Kelner					
Aktorzy drugoplanowi	Kucharz, Barman					
Wyzwalacz	Klient restauracji chce złożyć zamówienie u kelnera.					
Warunki początkowe	Kelner, kucharz i barman są zalogowani do systemu i rozpoznani.					
Warunki końcowe	Zamówienie jest zrealizowane i usunięte z systemu.					
	1. Kelner wybiera id stolika który obsługuje.					
	2. System pyta kelnera co chce wykonać.					
	3. Kelnera wybiera z menu opcję wprowadzenia zamówienia.					
	4. System wyświetla dostępne napoje i potrawy.					
	5. Kelner wybiera napoje i potrawy zamawiane przez klienta.					
	6. Kelner zatwierdza zamówienie.					
	7. System przesyła zamówienie do aplikacji kucharza i barmana					
Durankur, namaalar	8. Kelner jest informowany przez system gdy zamówienia przygotowane					
Przepływ normalny	przez kucharza oraz przez barmana są gotowe do odbioru.					
	9. Kelner zaznacza iż zamówienie zostało dostarczone do stolika.					
	10. Kelner wybiera opcję podsumowania danego stolika.					
	11. System wyświetla kelnerowi kwotę do zapłaty przez klienta.					
	12. Kelnera potwierdza finalizację płatności.					
	13. System wyświetla zapytanie o stopień zadowolenia klienta.					
	14. Klient wybiera odpowiedni obrazek.					
	15. System zapisuje wyniki ankiety w bazie danych.					
	10a. Kelner potrzebuje wprowadzić					
Przepływ alternatywny	dalsze zamówienie					
	10b. Powrót do punktu 3.					
	8a. Zamówienie zostaje anulowane					
Wyjątki	przez barmana lub kucharza.					
	8b. Powrót do punktu 10.					

4.3. Obsługa braku produktów przez zaopatrzeniowca

Nazwa	Obsługa braku produktów przez zaopatrzeniowca				
Główny aktor	Zaopatrzeniowiec				
Aktorzy drugoplanowi					
Wyzwalacz	Ilość sztuk produktu spada poniżej ustalonego poziomu granicznego.				
Warunki poczatkowa	Zaopatrzeniowiec jest zalogowany do systemu i rozpoznany				
Warunki początkowe	jako użytkownik o funkcji zaopatrzeniowca.				
Warunki końcowe	Ilość sztuk produktu jest powyżej ustalonego poziomu granicznego.				
	1. Zaopatrzeniowiec zostaje poinformowany przez system				
	o niskim poziomie sztuk danych produktów.				
Przepływ normalny	2. Po uzupełnieniu braków zaplecza zaopatrzeniowiec wybiera				
Fizepiyw normaniy	produkt z listy i wprowadza ile sztuk dokupił.				
	3. System aktualizuje bazę danych.				
	4. System usuwa informację o niskim poziomie produktów.				
	4a. Po aktualizacji ilość sztuk				
Przepływ alternatywny	produktu wciąż jest poniżej ustalonego poziomu granicznego.				
	4b. Powrót do punktu 1.				
Wyjątki Brak					

4.4. Obsługa zamówienia przez kucharza

Nazwa	Obsługa zamówienia przez kucharza			
Główny aktor	Kucharz			
Aktorzy drugoplanowi	Kelner			
Wazwolooz	Wprowadzenie przez kelnera zamówienia na			
Wyzwalacz	jedzenie do systemu			
Wominis noozatkowa	Kucharz jest zalogowany do systemu			
Warunki początkowe	i rozpoznany jako użytkownik o funkcji kucharza			
Warunki końcowe	Zamówienie jest zrealizowane i usunięte z			
warunki koncowe	ekranu kucharza			
	Kucharz zatwierdza otrzymane zamówienie.			
	2. System odejmuje z bazy dostępnych produktów te,			
	które są potrzebne do wykonania zamówienia.			
	3. Po przygotowaniu kucharz zaznacza w systemie			
Przepływ normalny	iż zamówienie jest gotowe do odbioru.			
	4. System przesyła informację o zakończeniu			
	zamówienia do aplikacji kelnera.			
	5. System usuwa zamówienie z			
	ekranu kucharza.			
	1a. Kucharz anuluje zamówienie.			
Przepływ alternatywny	1b. System informuje kelnera o akcji kucharza.			
	1c. Powrót do kroku 5.			
	3a. Kucharz traci możliwość wykonania zamówienia.			
	3b. Kucharz anuluje			
	3c. System pyta kucharza których potraw nie			
Wyjątki	jest w stanie			
	3d. Kucharz zaznacza odpowiednie			
	3e. System wybrane przez kucharza			
	dania wyklucza tymczasowo z menu.			

5. Architektura Systemu

5.1. Moduły Systemu

Rys. 5.1. Moduły systemu

5.2. Struktura bazy danych

Rys. 5.2. Baza danych

6. Opis Interfejsów

Opis interfejsów:

- REST API API wystawiane przez serwer dla aplikacji kelnera, stron managera, barmana kucharza, podzielone według następujcych "podinterfejsów"
 - / dostęp dla wszystkich
 - /waiter- kelner, manager
 - /bartender barman, manager
 - /management manager
 - /supplier zaopatrzeniowiec, manager
- Połaczenie z baza danych FireBase/SQL poprzez JDBC

7. Stos Technologiczny

7.1. Technologie do serwera wystawiajacego API

:

- Java 11 użycie obiektowego programowania ułatwi zarzadzanie systemem
- SpringBoot 2.11 technologia pozwala na zbudowanie aplikacji webowej udostepniajacej interfejs
 API oraz połaczenie z baza danych
- Spring JDBC interfejs polaczenia bazy danych z aplikacja serwera
- MongoDB/ PostgreSQL użycie bazy danych ułatwi przechowywanie danych i ewentualny restore
 ich w razie nieoczekiwanych awarii systemu
- Hibernate obsługa operacji CRUD w systemie do bazy danych
- Junit5 wykorzystany w celu przeprowadzenia testów aplikacji i logicznego podziału scenariuszy testowych na grupy itp.
- AssertJ biblioteka ułatwi wykonanie odpowiednich asercji na scenariusze w celu zwiększenia czytelności i maintanencu kodu źródłowego
- Tomcat umożliwi uruchomienie aplikacji na zdalnym serwerze (wraz z SpringBoot)
- JavaMailSender (automatyzacja wysyłania zapotrzebowania do zaopatrzeniowca) użyty w celu automatyzacji wysyłania wiadomości do odpowiednich osób w restauracji
- Jmeter wykorzystany do przeprowadzenia symiulacji dużego obciazenia serwera
- Maven wykorzystany w celu importu bibliotek i zależności potrzebnych do implementacji funkcjonalności

7.2. Technologie do aplikacji mobilnej

- Android SDK SDK do napisania aplikacji na platformę Android
- Material Design biblioteka użyta do wyświetlania grafik zwiazanych z gastronomia
- Gradle do pobierania bibliotek i zależności używanych w projekcie

7.3. Technologie do platformy webowej

- JavaScript służacy do napisania kodu strony webowej
- React (oraz dostępne do niego biblioteki m.in. redux, react test library i inne rozszerzenie dostępne przez komendy npm) do stworzenia funkcjonalnego frontendu aplikacji webowej
- HTML do stworzenia szkieletu strony w której osadzony będzie kod witryny
- NodePackageModules do pobierania bibliotek i zależności używanych w projekcie
- Enzyme biblioteka służaca do przetestowania działania witryny webowej

7.4. Współdzielone technologie

- FireBase służacy do zarzadzania użytkownikami i do uwierzytelniania
- SonarQube do przeprowadzenia statycznej analizy kodu

8. Projekt Testów

8.1. Testy jednostkowe

Testy jednostkowe będą służyły walidacji działania niskopoziomowych metod operujących na obiektach. Przykładowo czy zamówienie dania powoduje usunięcie odpowiedniej ilości produktów z listy w danym zakresie. W szczególności będą używane przy tworzeniu aplikacji webowej, gdzie będziemy testować działanie komponentów, z których będzie zbudowana aplikacja.

8.2. Testy integracyjne

Testy integracyjne będą sprawdzały integracje aplikacji z baza danych, czy nawiązana jest sesja, czy operacje CRUD są poprawnie wykonywane

8.3. Testy wydajnościowe

Z użyciem Jmeter będziemy testować zachowanie systemu pod dużym ale znormalizowanym obciążeniem sprawadzając czasy odpowiedzi serwera na zapytania http

8.4. Testy funkcjonalne

Testy te beda wykonywane w operacjach które dotycza biznesowych aspektów funkcjonowania systemu:

- Pomyślna rezerwacja stolika itp.
- Generowanie requestu zapotrzebowania produktu
- Pomyślne przeprocesowanie oceny obsługi klienta
- Generowanie raportu miesięcznego na temat obsługi do managera
- Pomyślny przebieg zamówienia
- Generowanie statystyk dań do managera

8.5. Testy frontendowe 19

8.5. Testy frontendowe

Testy frontendu będą wykonane z użyciem biblioteki Enzyme. Testowane będzie:

• renderowanie się komponentu w trybie shallow (bez sprawdzania interakcji z innymi komponentami DOM)

- testy przekazywanych propsów czy w zależności od podanych parametrów komponent przyjmuje odpowiednie wartości
- interakcje komponentu w z innymi (np. czy pole tekstowe odpowiednio filtruje liste

9. Analiza ryzyka

9.1. Lista ryzyk i odpowiednie akcje

Ryzyko	Prawdopod.	Wpływ	Działanie
System nie odpowiada	15%	Critical	Zgłoszenie problemu procesowane
System me oupowiada	1370	Citicai	przez odpowiednie osoby
Brak połaczenia	5%	High	Umieszczona zostaje informacja o
•			tymczasowym zawieszeniu działania
internetowego do			rezerwacji, uruchomienie rezerwacji
aplikacji rezerwacji			telefonicznej
			Przeprowadzane jest replanowanie
Zmiana scope'u projektu	20%	High	projektu tak aby nie zaburzyć jego
			funkcjonowania
Duele e de essie dei e d	25%	Medium	Manager kontaktuje się z
Brak odpowiedzi od			zaopatrzeniowcem
zaopatrzeniowca			w celu wyjaśnienia problemu
Problemy z	25%	Critical	Sprawdzenie poprawności danych w
uwierzytelnieniem			module autentykacyjnym,
uzytkowników w			issue-track trace'u procesu
aplikacji			auntentykacji, restore użytkownika
Ducklamas = saturas and an	60%		Reorganizacja teamu, zmiana scope'u
Problemy z utrzymaniem		Minor	pracy
terminu projektu			osób w celu wyrównania zaległości
Problemy z implementacja	45%		Wydzielenie osobnego modułu z
funkcjonalności z przyczyn		High	innym stosem technologicznym
technicznych			umożliwiającym implementacje

Ryzyko	Prawdopod.	Wpływ	Działanie
Jeden z modułów			Moduł jest czasowo wygaszany
aplikacji przestaje	35%	Critical	do momentu naprawy,
pracować zgodnie			informowanie managera,
z wymaganiami			analogowa obsługa zadań modułu
System nie odpowiada	15%	Critical	Zgłoszenie problemu procesowane
System me oupowiada		Citicai	przez odpowiednie osoby
Problemy z		High	Wykonywana jest kopia
połączeniem do	45%		zapasowa bazy danych, odłączany
bazy danych	1370	Iligii	jest moduł bazodanowy w celu
bazy danych			przeprowadzenia inwestygacji
System napotyka			Aplikacja jest rebootowana,
krytyczny błąd w	20%		restorowana jest baza danych,
środowisku			zbierane sa logi aplikacji, moduł
produkcyjnym		Critical	
nieznaleziony			serwera jest odłączany od aplikacji
w środowisku			klienckich, podłączany jest zespół devowy
devowym			devowy
Klient nie			Forma funkcjonalności jest
akceptuje gotowej	80%	Minor	ponownie konsultowana z
funkcjonalności			klientem, reimplementacja
Nowa funkcjonalność			Zespół architektów systemu
zmienia	65%	High	replanuje architekturę, identyfikacja
architekturę systemu			nowych modułów/interfejsów
			Przygotowywana jest dokumentacja
Kluczowy członek	45%	High	"as-is" i "to-be",
zespołu odchodzi z			job shadowing w celu wdrożenia
projektu			osoby do nowych
			zadan
Zmniejszenie budżetu	30%	Critical	Przeprowadzane są analizy kosztów
· ·			projektu, prezentowane są statystyki
projektu			dla rady projektu

9.2. Macierz ryzyka 22

9.2. Macierz ryzyka

Elementy macierzy:

- Acceptable mały impakt na projekt
- Tolerable wpływ na projekt bez krytycznych konsekwencji
- Undesirable poważny wpływ na projekt, wymaga rozwiązania
- Intolerable krytyczny wpływ na projekt, wymaga rozwiązania w pierwszej kolejności

		Wpływ			
b.		Mały	Średni	Duży	Krytyczny
Prawdopodob.	Małe 0% -25%				
	Możliwe 26% - 50%				
raw	Prawdopodobne 51% - 75%				
	Bardzo prawdopodobne 76% - 100%				

10. Narzędzia używane w projekcie

- GitHub przechowywanie repozytorium i kodu źródłowego
- Slack komunikator nakierowany na tworzenie oprogramowania, do synchronizacji pracy w teamie
- ClickUp narzędzie do issue-trackingu
- Scrum do planowania zadań na najbliższy okres
- Kanban Tool do monitorowania postępu pracy
- IntelliJ IDEA do tworzenia kodu serwera
- WebStrom oraz Visual Studio Code do tworzenia kodu aplikacji webowej
- Rozszerzenie do React i przeglądarki internetowej 'react dev tools' do ułatwienia tworzenia aplikacji webowej i śledzenia przepływu i przetwarzania przez nią danych
- Android Studio do tworzenia aplikacji mobilnej
- Git do utrzymania projektu na repozytorium zdalnym
- Google Chrome do testów manualnych aplikacji webowej
- urzadzenie z systemem Android do testów manualnych aplikacji mobilnej
- PgAdmin GUI do bazy PostgreSQL do sprawdzania poprawności danych przechowywanych w bazie