(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-29020

(43)公開日 平成11年(1999)2月2日

(51) Int	.Cl.

識別記号

FΙ

B60T 8/24

8/58

B60T 8/24

8/58

Z

審査請求 未請求 請求項の数5 〇L (全23頁)

(21)	出	g	番	号
------	---	---	---	---

特顯平9-186977

(71)出願人 000003137

マツダ株式会社

(22)出願日

平成9年(1997)7月11日

広島県安芸郡府中町新地3番1号

(72)発明者 立畑 哲也

広島県安芸郡府中町新地3番1号 マツダ

株式会社内

(72)発明者 岡崎 晴樹

広島県安芸郡府中町新地3番1号 マツダ

株式会社内

(72)発明者 津山 俊明

広島県安芸郡府中町新地3番1号 マツダ

株式会社内

(74)代理人 弁理士 大塚 康徳 (外1名)

最終頁に続く

(54) 【発明の名称】 車両の姿勢制御装置

(57)【要約】

【課題】ヨーレート制御から横滑り角制御へ移行する際 の制御ショックを緩和でき、急激な姿勢変化を抑制す

【解決手段】車両が横滑り制御領域になく、ヨーレート 制御領域にあるならば、ヨーレート制御量ψamtを横滑 り角偏差量 β difに応じて補正する、続いて、補正され たヨーレート制御量 ψ amtを、横滑り角偏差量 β difの変 化速度 $\Delta \beta$ difに応じて更に補正する。 次に、横滑り角 偏差量βdifが増加傾向にあるか否かを判定し、横滑り 角偏差量βdifが増加傾向にあるならば、ヨーレート制 御量ψamtを20%だけ減少方向に補正して、目標ヨー

【特許請求の範囲】

【請求項1】 車両を制動制御して、走行中の車両の姿勢を制御する装置であって、

車両の状態量に基づいて、車両の目標横滑り角と推定横滑り角とを演算する横滑り角演算手段と、

車両の状態量に基づいて、車両の目標ヨーレートと実ヨ ーレートを演算するヨーレート演算手段と、

前記横滑り角偏差量が所定横滑り角閾値以上となると、 前記推定横滑り角を前記目標横滑り角に収束するように 制御する横滑り角制御手段と、

前記ヨーレート制御手段による制御中において、前記横滑り角偏差量が前記所定横滑り角閾値以下の所定の第2 閾値以上となると、前記実ヨーレートを前記目標ヨーレートへ収束させるための収束制御量を減少方向に補正する補正手段とを備えることを特徴とする車両の姿勢制御装置。

【請求項2】 車両を制動制御して、走行中の車両の姿勢を制御する装置であって、

車両の状態量に基づいて、車両の目標横滑り角と推定横滑り角とを演算する横滑り角演算手段と、

車両の状態量に基づいて、車両の目標ヨーレートと実ヨ ーレートを演算するヨーレート演算手段と、

前記目標ヨーレートと前記実ヨーレートとのヨーレート 偏差量が所定ヨーレート関値以上となり、且つ前記目標 横滑り角と前記推定横滑り角との横滑り角偏差量が所定 横滑り角関値以下の状態において、該実ヨーレートを目 標ヨーレートに収束するように制御するヨーレート制御 手段と、

前記横滑り角偏差量が所定横滑り角閾値以上となると、 前記推定横滑り角を前記目標横滑り角に収束するように 制御する横滑り角制御手段と、

前記ヨーレート制御手段による制御中において、前記横滑り角偏差量が増加するに従って、前記実ヨーレートを前記目標ヨーレートへ収束させるための収束制御量を減少方向に補正する補正手段とを備えることを特徴とする車両の姿勢制御装置。

【請求項3】 車両を制動制御して、走行中の車両の姿勢を制御する装置であって、

車両の状態量に基づいて、車両の目標横滑り角と推定横滑り角とを演算する横滑り角演算手段と

車両の状態量に基づいて、車両の目標ヨーレートと実ヨ ーレートを演算するヨーレート演算手段と、

前記目標ヨーレートと前記実ヨーレートとのヨーレート 偏差量が所定ヨーレート関値以上となり、且つ前記目標

横滑り角と前記推定横滑り角との横滑り角隔差量が所定 横滑り角閾値以下の状態において、該実ヨーレートを目 標ヨーレートに収束するように制御するヨーレート制御 手段と、

前記横滑り角偏差量が所定横滑り角閾値以上となると、 前記推定横滑り角を前記目標横滑り角に収束するように 制御する横滑り角制御手段と、

前記ヨーレート制御手段による制御中において、前記横滑り角偏差量が増加傾向にある場合、前記実ヨーレートを前記目標ヨーレートへ収束させるための収束制御量を減少方向に補正する補正手段とを備えることを特徴とする車両の姿勢制御装置。

【請求項4】 車両を制動制御して、走行中の車両の姿勢を制御する装置であって、

車両の状態量に基づいて、車両の目標横滑り角と推定横滑り角とを演算する横滑り角演算手段と、

車両の状態量に基づいて、車両の目標ヨーレートと実ヨ ーレートを演算するヨーレート演算手段と、

前記目標ヨーレートと前記実ヨーレートとのヨーレート 偏差量が所定ヨーレート関値以上となり、且つ前記目標 横滑り角と前記推定横滑り角との横滑り角偏差量が所定 横滑り角関値以下の状態において、該実ヨーレートを目 標ヨーレートに収束するように制御するヨーレート制御 手段と、

前記横滑り角偏差量が所定横滑り角閾値以上となると、 前記推定横滑り角を前記目標横滑り角に収束するように 制御する横滑り角制御手段と、

前記ヨーレート制御手段による制御中において、前記横滑り角偏差量が増加傾向にある状態で、前記ヨーレート制御手段にて前記実ヨーレートを目標ヨーレートに収束するように制御した結果、増加傾向にある横滑り偏差量が更に増加した場合、前記実ヨーレートを前記目標ヨーレートへ収束させるための収束制御量を減少方向に補正する補正手段とを備えることを特徴とする車両の姿勢制御装置。

【請求項5】 前記補正手段は、前記ヨーレート制御手段による目標ヨーレートへの収束制御量を減少方向に補正すると共に、前記所定横滑り角閾値を減少方向に補正することを特徴とする請求項1乃至請求項4のいずれか1項に記載の車両の姿勢制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両の姿勢制御装置に関し、例えば、コーナリング時や緊急の障害物回避時や路面状況急変時等において、走行中の車両の横滑りやスピンを抑制するための車両の姿勢制御装置に関する

[0002]

【 従来の技術 】 従来から、走行中の車両のヨーレートや ステアリング 舵角等の車両状態量を検出して、コーナリ ング時や緊急の障害物回避時や路面状況急変時等に車両 の横滑りやスピンを抑制する制御装置が数多く提案され ている。

【0003】特開平6-69230号公報には、目標ヨーレートに応じた姿勢制御時に、目標ヨーレートを横滑り角に応じて規制するものが提案されている。

[0004]

【発明が解決しようとする課題】例えば、ヨーレートに基づく姿勢制御中に、横滑り角が大きくなってドリフトアウト等が発生しそうになり横滑り角に基づく姿勢制御に切り換えられた場合、ドライバのステアリング操作に反して車両の姿勢を急激に戻そうとするため、本当に姿勢制御が必要な時には非常に有効であるが、それ以外の急激な姿勢の戻し制御が不要な時にはドライバの操作に悪影響を及ぼす虞がある。

【0005】本発明はかかる問題点に鑑みてなされたものであり、その目的とするところは、ヨーレート制御から横滑り角制御へ移行する際の制御ショックを緩和でき、急激な姿勢変化を抑制することのできる車両の姿勢制御装置を提供することである。

[0006]

【課題を解決するための手段】上述の問題点を解決し、 目的を達成するために、本発明に係わる車両の姿勢制御 装置は、以下の構成を備える。即ち、車両を制動制御し て、走行中の車両の姿勢を制御する装置であって、車両 の状態量に基づいて、車両の目標横滑り角と推定横滑り 角とを演算する横滑り角演算手段と、車両の状態量に基 づいて、車両の目標ヨーレートと実ヨーレートを演算す るヨーレート演算手段と、前記目標ヨーレートと前記実 ヨーレートとのヨーレート偏差量が所定ヨーレート閾値 以上となり、且つ前記目標横滑り角と前記推定横滑り角 との横滑り角偏差量が所定横滑り角閾値以下の状態にお いて、該実ヨーレートを目標ヨーレートに収束するよう に制御するヨーレート制御手段と、前記横滑り角偏差量 が所定横滑り角閾値以上となると、前記推定横滑り角を 前記目標横滑り角に収束するように制御する横滑り角制 御手段と、前記ヨーレート制御手段による制御中におい て、前記横滑り角偏差量が前記所定横滑り角閾値以下の 所定の第2 閾値以上となると、前記実ヨーレートを前記 目標ヨーレートへ収束させるための収束制御量を減少方 向に補正する補正手段とを備える。

【0007】また、上述の問題点を解決し、目的を達成するために、本発明に係わる車両の姿勢制御装置は、以下の構成を備える。即ち、車両を制動制御して、走行中の車両の姿勢を制御する装置であって、車両の状態量に基づいて、車両の目標横滑り角と推定横滑り角とを演算する横滑り角演算手段と、車両の状態量に基づいて、車両の目標ヨーレートと実ヨーレートを演算するヨーレート演算手段と、前記目標ヨーレートと前記実ヨーレートとのヨーレート偏差量が所定ヨーレート関値以上とな

り、且つ前記目標横滑り角と前記推定横滑り角との横滑り角偏差量が所定横滑り角関値以下の状態において、該実ヨーレートを目標ヨーレートに収束するように制御するヨーレート制御手段と、前記横滑り角の着差量が所定横滑り角関値以上となると、前記推定横滑り角を前記目標横滑り角に収束するように制御する横滑り角制御手段と、前記ヨーレート制御手段による制御中において、前記横滑り角偏差量が増加するに従って、前記実ヨーレートを前記目標ヨーレートへ収束させるための収束制御量を減少方向に補正する補正手段とを備える。

【0008】また、上述の問題点を解決し、目的を達成 するために、本発明に係わる車両の姿勢制御装置は、以 下の構成を備える。即ち、車両を制動制御して、走行中 の車両の姿勢を制御する装置であって、車両の状態量に 基づいて、車両の目標横滑り角と推定横滑り角とを演算 する横滑り角演算手段と、車両の状態量に基づいて、車 両の目標ヨーレートと実ヨーレートを演算するヨーレー ト演算手段と、前記目標ヨーレートと前記実ヨーレート とのヨーレート偏差量が所定ヨーレート閾値以上とな り、且つ前記目標横滑り角と前記推定横滑り角との横滑 り角偏差量が所定横滑り角閾値以下の状態において、該 実ヨーレートを目標ヨーレートに収束するように制御す るヨーレート制御手段と、前記横滑り角偏差量が所定横 滑り角閾値以上となると、前記推定横滑り角を前記目標 横滑り角に収束するように制御する横滑り角制御手段 と、前記ヨーレート制御手段による制御中において、前 記横滑り角偏差量が増加傾向にある場合、前記実ヨーレ ートを前記目標ヨーレートへ収束させるための収束制御 量を減少方向に補正する補正手段とを備える。

【0009】また、上述の問題点を解決し、目的を達成 するために、本発明に係わる車両の姿勢制御装置は、以 下の構成を備える。即ち、車両を制動制御して、走行中 の車両の姿勢を制御する装置であって、車両の状態量に 基づいて、車両の目標横滑り角と推定横滑り角とを演算 する横滑り角演算手段と、車両の状態量に基づいて、車 両の目標ヨーレートと実ヨーレートを演算するヨーレー ト演算手段と、前記目標ヨーレートと前記実ヨーレート とのヨーレート偏差量が所定ヨーレート閾値以上とな り、且つ前記目標横滑り角と前記推定横滑り角との横滑 り角偏差量が所定横滑り角閾値以下の状態において、該 実ヨーレートを目標ヨーレートに収束するように制御す るヨーレート制御手段と、前記横滑り角偏差量が所定横 滑り角閾値以上となると、前記推定横滑り角を前記目標 横滑り角に収束するように制御する横滑り角制御手段 と、前記ヨーレート制御手段による制御中において、前 記横滑り角偏差量が増加傾向にある状態で、前記ヨーレ ート制御手段にて前記実ヨーレートを目標ヨーレートに 収束するように制御した結果、増加傾向にある横滑り偏 差量が更に増加した場合、前記実ヨーレートを前記目標 ヨーレートへ収束させるための収束制御量を減少方向に

補正する補正手段とを備える。

[0010]

【発明の実施の形態】以下、本発明に係わる実施形態に つき添付図面を参照して詳細に説明する。

【0011】 [姿勢制御装置の制御ブロック構成] 先ず、本実施形態に係る車両の姿勢制御装置の制御ブロック構成について説明する。図1は本発明の実施形態に係る車両の姿勢制御装置の制御ブロックの全体構成を示す図である。

【0012】図1に示すように、本実施形態の姿勢制御 装置は、例えば、車両の走行状態がコーナリング時や緊 急の障害物回避時や路面状況急変時等において、走行中 の車両の横滑りやスピンを抑制するために前後・左右の 各車輪への制動力を制御するものである。各車輪には、 油圧ディスクブレーキ等のFR(右前輪)ブレーキ3 FL(左前輪)ブレーキ32、RR(右後輪)ブレ ーキ33、RL(左後輪)ブレーキ34が設けられてい る。これらFR、FL、RR、RLブレーキ31~34 は油圧制御ユニット30に夫々接続されている。油圧制 御ユニット30はFR、FL、RR、RLブレーキ31 ~34の各ホイールシリンダ(不図示)に接続され、各 ブレーキ31~34のホイールシリンダに油圧を導入す ることにより各車輪へ制動力を付加する。油圧制御ユニ ット30は、加圧ユニット36及びマスタシリンダ37 に接続されている。マスタシリンダ37はブレーキペダ ル38の踏力圧に応じて1次油圧を発生させる。この1 次油圧は、加圧ユニット36に導入され、加圧ユニット 36で2次油圧に加圧されて油圧制御ユニット30に導 入される。油圧制御ユニット30は、SCSECU10 に電気的に接続され、ECU10からの制動制御信号に 応じてFR、FL、RR、RLブレーキ31~34への 油圧を配分制御して各車輪への制動力を制御する。

[0013] SCS (STABILITY CONTROLLED SYSTEM)

・ECU (ELECTRONIC CONTROLLED UNIT) 10は、本実施形態の姿勢制御装置として前後・左右の各車輪への制動制御を司ると共に、従来周知のABS (アンチロックブレーキシステム)制御やTCS (トラクションコントロールシステム)制御をも司る演算処理装置である。SCS・ECU10には、FR車輪速センサ11、FL車輪速センサ12、RR車輪速センサ13、RL車輪速センサ14、車速センサ15、ステアリング舵角センサ16、ヨーレートセンサ17、横方向加速度センサ18、前後方向加速度センサ19、ブレーキ踏力圧センサ35、EGIECU20、TCSオフスイッチ40が接続されている。

【0014】ABS制御及びTCS制御の概要を説明すると、ABS制御とは、車両走行中に急ブレーキ操作がなされて、車輪が路面に対してロックしそうな場合に車輪への制動力を自動的に制御して車輪のロックを抑制しながら停止させるシステムであり、TCS制御とは、車

両走行中に車輪が路面に対してスリップする現象を各車 輪への駆動力或いは制動力を制御することにより抑制し ながら走行させるシステムである。

【0015】FR車輪速センサ11は右前輪の車輪速度 の検出信号v1をSCS・ECU10に出力する。FL重 輪速センサ12は左前輪の車輪速度の検出信号v2をSC S·ECU10に出力する。RR車輪速センサ13は右 後輪の車輪速度の検出信号v3をSCS・ECU10に出 力する。RL車輪速センサ14は左後輪の車輪速度の検 出信号v4をSCS・ECU10に出力する。車速センサ 15は車両の走行速度の検出信号VをSCS・ECU1 0に出力する。ステアリング舵角センサ16はステアリ ング回転角の検出信号 BHをSCS ECU10に出力 する。ヨーレートセンサ17は車体に実際に発生するヨ ーレートの検出信号ルをSCS・ECU10に出力す る。横方向加速度センサ18は車体に実際に発生する横 方向加速度の検出信号YをSCS・ECU10に出力す る。前後方向加速度センサ19は車体に実際に発生する 前後方向加速度の検出信号ZをSCS・ECU10に出 力する。ブレーキ踏力圧センサ35は加圧ユニット36 に設けられ、ブレーキペダル38の踏力圧の検出信号PB をSCS・ECU10に出力する。TCSオフスイッチ 40は、後述するが車輪のスピン制御(トラクション制 御)を強制的に停止するスイッチであり、このスイッチ 操作信号SをSCS・ECU10に出力する。EGI(E LECTRONIC GASOLINE INJECTION) ECU20は、エンジ ン21、AT (AUTOMATIC TRANSMISSION) 22、スロッ トルバルブ23に接続され、エンジン21の出力制御や AT22の変速制御、スロットルバルブ23の開閉制御 を司っている。

【0016】SCS・ECU10及びEGI・ECU2 0は、CPU、ROM、RAMを含み、入力された上記 各検出信号に基づいて予め記憶された姿勢制御プログラ ムやエンジン制御プログラムを実行する。

【0017】[姿勢制御の概略説明]本実施形態の姿勢制御は、各車輪を制動制御することで車体に旋回モーメントと滅速力を加えて前輪或いは後輪の横滑りを抑制するものである。例えば、車両が旋回走行中に後輪が横滑りしそうな時(スピン)には主に前外輪にブレーキを付加し外向きモーメントを加えて旋回内側への巻き込み挙動を抑制する。また、前輪が横滑りして旋回外側に横滑りしそうな時(ドリフトアウト)には各車輪に適量のブレーキを付加し内向きモーメントを加えると共に、エンジン出力を抑制し減速力を付加することにより旋回半径の増大を抑制する。

【0018】姿勢制御の詳細については後述するが、概説すると、 $SCS \cdot ECU10$ は、上述した車速センサ15、3-レートセンサ<math>17、横方向加速度センサ18の検出信号V、 ψ 、Yから車両に発生している実際の横滑り角(以下、実横滑り角という) β act 及び実際のヨー

レート(以下、実ヨーレートという) ψ actを演算すると共に、実横滑り角 β actからSCS制御に実際に利用される推定横滑り角 β contの演算において参照される参照値 β refを演算する。また、SCS・ECU10は、ステアリング舵角センサ等の検出信号から車両の目標とすべき姿勢として目標横滑り角 β TR及び目標ヨーレート ψ TRを演算し、推定横滑り角 β contと目標横滑り角 β TR の差或いは実ヨーレート ψ actと目標ヨーレート ψ TRの差が所定関値 β 0、 ψ 0を越えた時に姿勢制御を開始し、推定実横滑り角 β cont或いは実ヨーレート ψ actが目標横滑り角 β TR或いは目標ヨーレート ψ TRに収束するよう制御する。

【0019】[姿勢制御の詳細説明]次に、本実施形態の姿勢制御(以下、SCS制御という)について詳細に説明する。図2は、本実施形態の姿勢制御を実行するための全体的動作を示すフローチャートである。

【0020】図2に示すように、先ず、運転者によりイ グニッションスイッチがオンされてエンジンが始動され ると、ステップS2でSCS・ECU10、EGI・E CU20が初期設定され、前回の処理で記憶しているセ ンサ検出信号や演算値等をクリアする。ステップS4で はSCS・ECU10は上述のFR車輪速センサ11の 検出信号v1、FL車輪速センサ12の検出信号v2、RR 車輪速センサ13の検出信号v3、RL車輪速センサ14 の検出信号v4、車速センサ15の検出信号V、ステアリ ング舵角センサ16の検出信号 θH、ヨーレートセンサ 17の検出信号が、横方向加速度センサ18の検出信号 Y、前後方向加速度センサ19の検出信号Z、ブレーキ踏 力圧センサ35の検出信号PB、TCSオフスイッチ40 のスイッチ操作信号Sを入力する。ステップS6ではS CS·ECU10は上述の各検出信号に基づく車両状態 量を演算する。ステップS7では車両状態量に基づいて 車輪速補正処理を実行する。ステップS8ではSCS・ ECU10は、ステップS6で演算された車両状態量か らSCS制御に必要となるSCS制御目標値や制御出力 値を演算する。同様に、ステップS10ではABS制御 に必要なABS制御目標値や制御出力値等を演算し、ス テップS12ではTCS制御に必要なTCS制御目標値 や制御出力値等を演算する。

【0021】ステップS14ではステップS8~ステップS12で演算された各制御出力値の制御出力調停処理を実行する。この制御出力調停処理では、SCS制御出力値、ABS制御出力値、TCS制御出力値を夫々比較し、最も大きな値に対応した制御に移行させる。また、後述するが、SCS制御出力値とABS制御出力値との調停処理は、運転者のブレーキ踏力圧PBの大きさに応じて実行される。即ち、ステップS14においてABS制

御出力値が最も大きな値の場合にはABS制御出力値に基づいてABS制御が実行され(ステップS16)、SCS制御出力値が最も大きな値の場合にはSCS制御出力値に基づいてSCS制御が実行され(ステップS18)、TCS制御出力値が最も大きな値の場合にはTCS制御出力値に基づいてTCS制御が実行される(ステップS20)。その後、ステップS22ではSCS・ECU10は油圧制御ユニット30等が正常に動作されているか否かフェイルセーフ判定し、もし異常があると判定された場合にはその異常箇所に対応する制御を中止して、ステップS2にリターンして上述の処理を繰り返し実行する。

【0022】[SCS演算処理の説明]次に、図2のステップS8に示すSCS演算処理の詳細について説明する。尚、ステップS10、12のABS制御演算処理及びTCS制御演算処理については周知であるので説明を省略する。図3は、図2のSCS演算処理を実行するためのフローチャートである。

【0023】図3に示すように、処理が開始されると、ステップS30ではSCS・ECU10はFR車輪速v1、FL車輪速v2、RR車輪速v3、RL車輪速v4、車速 V、ステアリング舵角 θ 、実ヨーレート ψ act、実横方向加速度Yactを入力する。ステップS32ではSCS・ECU10は車両に発生する垂直荷重を演算する。この垂直荷重は車速V、横方向加速度Yから周知の数学的手法により推定演算される。ステップS33ではSCS・ECU10は車両に実際に発生する実横滑り角 β actを演算する。実横滑り角 β actに、実横滑り角 β actの変化速度 $\Delta\beta$ actを積分することにより演算される。また、 $\Delta\beta$ actは、下記の式1により算出される。

 $\Delta \beta act = -\psi act + Yact / V \cdots (1)$

次に、ステップS34では、SCS・ECU10はSC S制御に実際に利用される推定横滑り角Bcontの演算に おいて参照される参照値Brefを演算する。この参照値 βrefは、車両諸元と、車両状態量(車速V、ヨーレート ψact、実横方向加速度Yact、実横滑り角βactの変化 速度Δβact、ヨーレートψactの変化量(微分値)Δψ act)、ブレーキにより生じるヨーモーメントの推定値D 1、ブレーキにより生じる横方向の力の低下量の推定値D 2に基づいて2自由度モデルを流用して演算される。こ の参照値β refは、要するに、検出された車両状態量及 びブレーキ操作力に基づいて推定される横滑り角を演算 している。その後、ステップS35では、SCS·EC U10はSCS制御に実際に利用される推定横滑り角 B contを演算する。この推定横滑り角βcontは、下記の式 2、式3から導かれる微分方程式を解くことにより算出 される。即ち、

 $\Delta \beta \text{cont} = \Delta \beta \text{act} + e + Cf \cdot (\beta \text{ref} - \beta \text{cont}) \cdots (2)$ $\Delta e = Cf \cdot (\Delta \beta \text{ref} - \Delta \beta \text{act} - e) \cdots (3)$

但し、e:ヨーレートセンサと横方向加速度センサのオ

フセット修正値

Cf:カットオフ周波数

また、後で詳述するが、カットオフ周波数Cfは推定横滑り角 β contを参照値 β refの信頼性に応じてこの参照値 β refに収束するように補正して、推定横滑り角 β contに発生する積分誤差をリセットする際の補正速度の変更ファクタとなり、参照値 β refの信頼性が低い程小さくなるように補正される係数である。また、参照値 β refの信頼性が低くなるのは前輪のコーナリングパワーCpf或いは後輪のコーナリングパワーCprに変化が生じた時である。

【0024】ステップS36ではSCS・ECU10は各車輪の車輪スリップ率及び車輪スリップ角を演算する。車輪スリップ率及び車輪スリップ角は、各車輪の車輪速 $v1\sim v4$ 、車速v、推定横滑り角 β cont、前輪ステアリング舵角 θ Hから周知の数学的手法により推定演算される。ステップS38ではSCS・ECU10は各車輪

への負荷率を演算する。車輪負荷率は、ステップS36 で演算された車輪スリップ率及び車輪スリップ角とステ ップS32で演算された垂直荷重から周知の数学的手法 により推定演算される。ステップS40ではSCS·E CU10は走行中の路面の摩擦係数μを演算する。路面 の摩擦係数μは、実横方向加速度YactとステップS38 で演算された車輪負荷率から周知の数学的手法により推 定演算される。次に、ステップS42ではSCS・EC U10は実ヨーレート vact及び推定横滑り角 B contを 収束させるべく目標値となる目標ヨーレートゅTR、目標 横滑り角βTRを演算する。目標ヨーレートψTRは、車速 V、ステップS40で演算された路面の摩擦係数₄、前 輪ステアリング舵角θΗから周知の数学的手法により推 定演算される。また、目標横滑り角BTRは、下記の式 4、式5から導かれる式6の微分方程式を解くことによ り算出される。即ち、

 $\beta x = 1 / (1 + A \cdot V \uparrow 2) \cdot \{1 - (M \cdot Lf \cdot V \uparrow 2) / (2L \cdot Lr \cdot Cpr)\} \cdot Lr \cdot \theta H / L \cdots (4)$ $A = M \cdot (Cpr \cdot Lr - Cpf \cdot Lf) / 2L \uparrow 2 \cdot Cpr \cdot Cpf \cdots (5)$ $\Delta \beta TR = C \cdot (\beta x - \beta TR) \cdots (6)$

但し、V:車速

θH: 前輪ステアリング舵角

M:車体質量 I:慣性モーメント L:ホイルベース

Lf: 前輪から車体重心までの距離 Lr: 後輪から車体重心までの距離 Cpf: 前輪のコーナリングパワー Cpr: 後輪のコーナリングパワー C: 位相遅れに相当する値

尚、上記式中の「↑」は乗数を表わす。例えば「し↑ 2」はLの2乗を意味し、以下の説明でも同様である。 【0025】次に、図4に示すステップS44では、S CS・ECU10は、目標横滑り角&TRから推定横滑り 角βcontを減算した値の絶対値がSCS制御開始閾値β 0以上か否かを判定する($|\beta TR - \beta cont| \ge \beta 0$?)。 ステップS44で目標横滑り角BTRから推定横滑り角B contを減算した値の絶対値がSCS制御開始閾値 BO以 上の場合(ステップS44でYes)、ステップS46 に進んでSCS制御目標値を目標横滑り角βTRに設定す る。一方、ステップS44で目標横滑り角βTRから推定 横滑り角βcontを減算した値の絶対値がSCS制御開始 閾値B0を超えない場合(ステップS44でNo)、ス テップS52に進んでSCS・ECU10は、目標ヨー レート #TRから実ヨーレート #actを減算した値の絶対 値がSCS制御開始閾値ψ0以上か否かを判定する(¦ψ $TR-\psi$ act | $\geq \psi$ 0?)。ステップS52で目標ヨーレー トψTRから実ヨーレートψactを減算した値の絶対値が SCS制御開始閾値ψ0以上の場合(ステップS52で Yes)、ステップS54に進んでSCS制御目標値を 目標ヨーレートがTRに設定する。一方、ステップS52で目標ヨーレートがTRから実ヨーレートがactを減算した値の絶対値がSCS制御開始閾値が0を超えない場合(ステップS52でNo)、ステップS30にリターンして上述の処理を繰り返し実行する。

【0026】次に、ステップS50では、SCS·ECU10はSCS制御に実際に利用されるSCS制御量 β amtを演算する。また、ステップS56では、SCS·ECU10はSCS制御に実際に利用されるSCS制御量 ψ amtを演算する。

【0027】[SCS制御とABS制御との調停処理]次に、図5~図7を参照してSCS制御と、SCS制御とABS制御との調停処理について説明する。図5~図7は、SCS制御とABS制御との調停処理を実行するためのフローチャートである。

【0028】以下に示す調停処理は、SCS制御開始条件が成立してもABS制御中であればABS制御を優先させ、或いはABS制御出力値に基づいてSCS制御出力値を補正する。また、SCS制御開始条件とABS制御開始条件とが両方成立した場合には、運転者のブレーキ踏力圧PBの大きさに応じていずれかの制御が実行される

【0029】具体的な処理を説明する。

【0030】図5に示すように、ステップS58では、SCS・ECU10はSCS制御に用いる油圧制御ユニット30等に故障が発生しているか否か判定する。ステップS58で故障している場合(ステップS58でYes)、ステップS74に進んでSCS制御を中止して図2に示すステップS2にリターンして上述の処理を繰り返し実行する。一方、ステップS58で故障していない

場合(ステップS58でNo)、ステップS60に准 む。ステップS60ではSCS·ECU10はSCS制 御フラグF1が"1"にセットされているか否かを判定す る。SCS制御フラグF1は、"1"がセットされていると SCS制御実行中であることを表わす。ステップS60 でSCS制御フラグF1が"1"にセットされている場合 (ステップS60でYes)、ステップS76に進んで ABS制御フラグF2が"1"にセットされているか否かを 判定する。ABS制御フラグF2は、"1"がセットされて いるとABS制御実行中であることを表わす。一方、ス テップS60でSCS制御フラグF1が"1"にセットされ ていない場合(ステップS60でNo)、ステップS6 2に進んでABS制御実行中か否かを判定する。ステッ プS62でABS制御実行中の場合(ステップS62で Yes)、後述するステップS80に進む。一方、ステ ップS62でABS制御実行中でない場合(ステップS 62でNo)、ステップS64に進む。ステップS64 では、SCS·ECU10はTCS制御実行中か否かを 判定する。ステップS64でTCS制御実行中の場合 (ステップS64でYes)、ステップS78に進みT CS制御における制動制御を中止して(即ち、エンジン によるトルクダウン制御のみ実行可能とする) ステップ S66に進む。一方、ステップS64でTCS制御実行 中でない場合(ステップS62でNo)、ステップS6

【0031】ステップS66では、SCS·ECU10 はSCS制御の対象となる車輪を選択演算し、その選択 車輪に配分すべき目標スリップ率を演算し、その目標ス リップ率に応じたSCS制御量βamt又はψamtを演算す る。その後、ステップS68では必要なトルクダウン量 に応じたエンジン制御量を演算する。そして、ステップ S70でSCS制御を実行して、ステップS72でSC S制御フラグF1を"1"にセットした後、上述したステッ プS2にリターンして上述の処理を繰り返し実行する。 【0032】ステップS76でABS制御フラグF2が" 1"にセットされている場合(ステップS76でYe s)、図6に示すステップS80に進む。ステップS8 Oでは、SCS·ECU10はABS制御量をSCS制 御量 β amt又は ψ amtに基づいて補正する。その後、ステ ップS82では、SCS·ECU10はABS制御が終 了したか否かを判定する。ステップS82でABS制御 が終了していない (ステップS82でNo)、ステップ S84でSCS制御フラグF1を"1"にセットすると共 に、ステップS86でABS制御フラグF2を"1"にセッ トして上述のステップS30にリターンする。一方、ス テップS82でABS制御が終了したならば(ステップ S82でYes)、ステップS88でSCS制御フラグ F1を"0"にリセットすると共に、ステップS90でAB S制御フラグF2を"0"にリセットして上述のステップS 30にリターンする。

【0033】更に、ステップS76でABS制御フラグ F2が"1"にセットされていない場合(ステップS76で No)、図7に示すステップS92に進む、ステップS 92では、SCS·ECU10はブレーキ踏力圧PBが所 定閾値PO以上あるか否かを判定する (PB≥PO?)。ステ ップS92でブレーキ踏力圧PBが所定閾値PO以上あるな らば(ステップS92でYes)、ステップS94に進 んでSCS制御を中止して、ステップS96でABS制 御に切り換える。そして、ステップS98でABS制御 フラグF2を"1"にセットして上述のステップS30にリ ターンする。一方、ステップS92でブレーキ踏力圧PB が所定閾値POを超えないならば(ステップS92でN o)、ステップS100に進む。ステップS100で は、SCS·ECU10はSCS制御が終了したか否か を判定する。ステップS100でSCS制御が終了して いない(ステップS100でNo)、上述したステップ S68にリターンしてその後の処理を実行する。一方、 ステップS100でSCS制御が終了したならば(ステ ップS100でYes)、ステップS102でSCS制 御フラグF1を"0"にリセットすると共に、ステップS1 04でABS制御フラグF2を"0"にリセットして上述の ステップS30にリターンする。

【0034】[車輪速補正処理の説明]次に、図2のステップS7に示す車輪速補正処理の詳細について説明する。図8は、図2の車輪速補正処理を実行するためのフローチャートである。図9は、車輪速補正手順を示す模式図である。

【0035】例えば、パンク対応時用いる補助車輪(以下、テンパ車輪という)はノーマル車輪よりその径が約5~15%小さく、他のノーマルタイヤに比べて車輪速が高くなる。車輪速補正処理は、このようなテンパ車輪やノーマル車輪の径のばらつきによる弊害を取り除くために実行される。その弊害とは下記に示す通りである。即ち、

②ABS制御では、1輪だけ車輪速が高いと基準となる車速が持ち上がってテンパ車輪以外のノーマル車輪がロック傾向にあると誤判定してしまう。

【0036】**②**TCS制御では、駆動輪にテンパ車輪が 装着されていると、他方の駆動輪であるノーマル車輪が スピンしていると誤判定してしまう。

【0037】30ノーマル車輪ではその径に最大5%の誤差があり、この誤差に基づく車輪速のばらつきがSCS制御に影響する。

【0038】図9に示すように、処理が開始されると、ステップS110ではSCS・ECU10はFR車輪速v1、FL車輪速v2、RR車輪速v3、RL車輪速v4を入力する。ステップS112ではSCS・ECU10は車両が定常走行中か否かを判定する。この定常走行中とは、車輪速度の信頼性が低下するような極端な加減速時やコーナ走行時ではない状態を表している。ステップS11

2で定常走行中でない場合(ステップS112でNo)、ステップS110にリターンする。また、ステップS112で定常走行中である場合(ステップS112でYes)、ステップS114に進んでSCS・ECU10はFR車輪速v1、FL車輪速v2、RR車輪速v3、RL車輪速v4のいずれか1輪が所定閾値va以上なのか否かを判定する。ステップS114でいずれか1輪が所定閾値va以上である場合(ステップS114でYes)、ステップS116に進む。一方、ステップS114でいずれも所定閾値を超えない場合(ステップS114でNo)、ステップS122に進んでノーマル車輪に対する車輪速補正を実行する。

【0039】ステップS116では、SCS・ECU10は1輪のみが所定関値以上である状態が所定時間継続したか否かを判定する。ステップS116で1輪のみが所定関値以上である状態が所定時間継続している場合(ステップS116でYes)、ステップS118に進む。一方、ステップS116で1輪のみが所定関値以上である状態が所定時間継続しなかった場合(ステップS116でNo)、ステップS122に進んでノーマル車輪に対する車輪速補正を実行する。ステップS118では、SCS・ECU10は1輪のみが所定関値以上である状態が所定時間継続したのでその1輪はテンパ車輪であると判定する。そして、ステップS120でSCS・ECU10はテンパ車輪に対する車輪速補正を実行する。

【0040】ノーマル輪或いはテンパ車輪に対する車輪速補正は、図9に示す①~③の手順で実行される。即ち、

●FR車輪速を基準としてRR車輪速を補正し、次に、●FR車輪速を基準としてFL車輪速を補正し、最後に●FL車輪速を基準としてRL車輪速を補正する。但し、FR車輪がテンパ車輪である場合は基準となる車輪は他の車輪に設定する。

【0041】以下の説明において、図4のステップS44からS46へ進み、それ以降の処理を横滑り角制御、ステップS52からS54へ進み、それ以降の処理をヨーレート制御と称する。

【0042】 [横滑り角制御開始閾値β0の補正処理] 図4のステップS44で参照する横滑り角制御開始閾値β0の補正処理について説明する。図10は、横滑り角制御開始閾値β0の補正処理を実行するためのフローチャートである。図11は、横滑り角制御開始閾値β0をステアリング舵角θHに応じて補正するためのマップを示す図である。図12~図14は、横滑り角制御開始閾値β0をステアリング舵角θHの変化速度に応じて補正するためのマップを示す図である。

【0043】図4のステップS52、S54、S56に 示すヨーレート制御中において、車両の横滑り角βが徐 々に増加していくと、ステップS44に示す条件が成立 した時点で横滑り角制御に移行する。この横滑り角制御への移行時点で、ヨーレート制御の結果である車両が横滑り角の大きく発生した姿勢であると、次に実行される横滑り角制御では、車両の姿勢(推定横滑り角 β cont)が目標横滑り角 β TRに対して大きくかけ離れているため、車両の姿勢は横滑り角制御により急激に修正されることになる。つまり、ドライバのステアリング操作に反して車両の姿勢を急激に戻そうとするため、本当に姿勢制御が必要な時には非常に有効であるが、それ以外の急激な姿勢の戻し制御が不要な時にはドライバの操作に悪影響を及ぼす虞がある。

【0044】上記課題を踏まえて、この横滑り角制御開始関値80の補正処理は、ヨーレート制御から横滑り角制御へスムーズに切り換えるために、ドライバのステアリング操作に応じて早めに横滑り角制御に移行させるようにしている。

【0045】図10に示すように、処理が開始されると、ステップS132では、ドライバのステアリング操作の状態を判定する。このステアリング操作の判定は、ステアリング舵角が増加している状態で切増しと判定し、反対に切増しの状態からステアリング舵角が減少している状態又はステアリング舵角の変化速度の方向が逆転した状態で切戻しと判定する。

【0046】ステップS132でステアリングの切増し操作中の場合には、ステップS134に進む。このステアリングの切増し操作中の場合とは、例えば、旋回路への侵入直前か或いは旋回走行の前半のステアリング舵角が増加している状態と考えられる。ステップS134では、図11のマップに示すように、横滑り各制御開始閾値 β 0をステアリング舵角 θ Hに応じて補正する(β 0→ β 0・x5)。続いて、ステップS136では、図12のマップに示すように、ステップS134にて補正された横滑り角制御開始閾値 β 0を、ステアリング舵角 θ Hの変化速度 $\Delta\theta$ H(ステアリング舵角 θ Hの時間による微分値)に応じて更に補正する(β 0→ β 0・x5・x6)。その後、ステップS132にリターンする。

【0047】図11に示すマップにおいて、ステアリング舵角のHがエリアa1の範囲では、ステアリング舵角のHが極めて小さく略直進走行中或いは旋回路に侵入した初期段階と考えられる。このエリアa1において、急激にステアリングが操作される場合とは、例えば、前方障害物を避けるために急激なステアリング操作を行った場合やタイヤがパンクした場合が考えられ、早急に(或いはドライバが気付かない間に)車両の姿勢を立て直すこと望ましい。このため、エリアa1の範囲では、横滑り角制御開始関値β0を極めて減少方向に補正して、図4のステップS44からステップS46への、横滑り角制御に移行しやすくなるように補正している。

【0048】また、図11に示すマップにおいて、ステ

アリング舵角 θ Hがエリアa2の範囲では、通常の旋回 路走行中と考えられる。このエリアa2では、横滑り角 制御に頼らずに、なるべくヨーレート制御により旋回で きることが望ましい。このため、エリアa2の範囲で は、SCS制御開始閾値β0を増加方向に補正して、横 滑り角制御に移行しにくくなる方向に補正している。 【0049】また、図11に示すマップにおいて、ステ アリング舵角 θ Hがエリアa3の範囲では、旋回走行中 にステアリング舵角が非常に大きいので、例えば、雪上 走行中にステアリングを切っているにも関らず車両が真 直ぐ進んでしまう状態等が想定され、横滑り角が非常に 大きく発生している状態と考えられる。このエリアa3 では、横滑り角制御に早く移行して、車両の姿勢を立て 直すことが望ましい。このため、エリア a 3 の範囲で は、横滑り角制御開始閾値β0を減少方向に補正して、 横滑り角制御に移行しやすくなる方向に補正している。 【0050】また、図11の点線で示すマップのよう に、車速Vが増加するに従って、横滑り角制御開始閾値 β0をより減少方向に補正して、横滑り角制御に移行し やすくなる方向に補正してもよい。

【0051】また、図12に示すマップにおいて、ステアリング舵角の変化速度 $\Delta \theta$ Hが速くなる場合とは、ドライバの意思でステアリング操作を速くして旋回しようとしている状態と考えられる。この状態では、ドライバの意志通りに車両が進むように、横滑り角制御開始閾値 $\beta 0$ を増加方向に補正して、横滑り角制御に移行しにくくなる方向に補正し、ドライバのステアリング操作に反して車両の姿勢を急激に戻そうとしないようにしている。

【0052】説明を続けると、ステップS132にて、ステップS132でステアリングの切戻し操作中の場合には、ステップS138に進む。このステアリングの切戻し操作中の場合とは、例えば、旋回路から抜け出す直前か或いは旋回走行の後半のステアリング舵角が減少している状態と考えられる。ステップS138では、車両がドライバによるカウンタ操作中か否かを判定する。この判定は、ステアリング舵角 θ Hの方向とヨーレート ψ の方向とが反対となっているか否か、即ち、ステアリング操作方向と車体の旋回方向とが反対になっているか否かにより判定する。

【0053】ステップS138で、ステアリング舵角 θ Hの方向とヨーレート ψ の方向とが同方向の場合(ステップS138でNo)、カウンタ操作ではないと判定され、ステップS140では、車両は安定方向に向かって走行しているが、その後に急激に横滑りが発生した場合等に対応できるように、横滑り角制御開始関値 θ 0を10%だけ減少方向に補正する。また、ステップS138で、ステアリング舵角 θ Hの方向とヨーレート ψ の方向とが反対の場合(ステップS138でYes)、カウンタ操作であると判定され、

ステップS142に進む。ステップS142では、車両が不安定な状態で走行しており、早急に車両の姿勢を立て直す必要があるため、横滑り角制御開始関値 80を20%だけ減少方向に補正する。続いて、ステップS144では、カウンタ操作が収束したか否かを判定する。ステップS144でYes)、ステップS132にリターンし、カウンタ操作が収束していないならば(ステップS144でNo)、ステップS142にリターンして、更に横滑り角制御開始関値 80を20%だけ減少方向に補正する。

【0054】上記ステップS140、142で補正対象となる横滑り角制御開始関値 β 0は、ステップS134、ステップS136を経て補正された値 β 0(β 0·x5、 β 0·x5・x6)でも、図4のステップS44で設定された補正前の値 β 0であっても良い。

【0055】ここで、図12に示すマップの代わりに図13、図14に示すマップにより横滑り角制御開始関値 β 0を補正してもよい。これら図13、図14に示すマップでは、図12に示すマップとは反対に、横滑り角制御に移行しやすくなるように補正している。この図13、図14に示すマップにおいて、ステアリングが角の変化速度 $\Delta\theta$ Hが速くなる場合(急激にステアリングが操作される場合)とは、例えば、前方障害物を避けるために急激なステアリング操作を行った場合やタイヤがパンクした場合が考えられ、早急に車両の姿勢を立て直すこと望ましい。このため、ステアリング舵角の変化速度 $\Delta\theta$ Hが速くなる程、横滑り角制御開始閾値 β 0を減少方向に補正して、横滑り角制御に移行しやすくなるように補正している。

【0056】また、図11に示すマップにおいて、ステ アリング舵角θHがエリアa2の範囲では、通常の旋回 路走行中と考えられる。このエリア a 2では、横滑り角 制御に頼らずに、なるべくヨーレート制御により旋回で きることが望ましい。このため、エリアa2の範囲で は、横滑り角制御開始閾値80を増加方向に補正して、 横滑り角制御に移行しにくくなる方向に補正している。 【0057】また、図11に示すマップにおいて、ステ アリング舵角 θ Hがエリア a 3 の範囲では、旋回走行中 にステアリング舵角が非常に大きいので、例えば、雪上 走行中にステアリングを切っているにも関らず車両が真 直ぐ進んでしまう状態等が想定され、横滑り角が非常に 大きく発生している状態と考えられる。このエリアa3 では、横滑り角制御に早く移行して、車両の姿勢を立て 直すことが望ましい。このため、エリアa3の範囲で は、横滑り角制御開始閾値80を減少方向に補正して、 横滑り角制御に移行しやすくなる方向に補正している。 【0058】<変形例>変形例として、

○ヨーレートのセンサ値が非常に大きくなるスピン発生後は、推定演算される推定横滑り角の積分誤差がそのヨ

ーレートのセンサ値の影響で非常に大きくなり、姿勢制御に移行する必要が無い場合でもドライバの意思に反して姿勢制御に移行してしまう等、ドライバの操作に悪影響を及ぼす虞がある。このため、スピンが発生したか否かを判定して、スピンが発生すると(スピンは、ヨーレートが急激に増加することにより判定する)、横滑り角制御開始閾値 80を増加方向に補正して、横滑り角制御に移行しにくくなる方向に補正してもよい。また、ドリフトアウト発生後も同様である。ドリフトアウトの発生は、ステアリング舵角に対する車両の横滑り角が非常に大きいことにより判定する。

【0059】 ②路面の摩擦係数が急激に増減する場合にも、推定演算される推定横滑り角の積分誤差が大きくなり、また、ドライバの意思による姿勢立て直し操作に反して制御介入してしまうこともあるため、横滑り角制御開始閾値 80を増加方向に補正して、横滑り角制御に移行しにくくなる方向に補正してもよい。

【0060】 ③ステアリング舵角のHの変化が少ない略 直進走行の継続時間が大きくなる程、横方向の負荷が検 出できず、摩擦係数が極めて小さな値となり推定横滑り 角の値が不正確となるため、横滑り角制御開始閾値 80 を増加方向に補正して、横滑り角制御に移行しにくくな る方向に補正してもよい。

【0061】 $[3-\nu-h]$ 御量 ψ amtの補正処理]次に、図4のステップS56で参照する $3-\nu-h$ 制御量 ψ amtの補正処理について説明する。図15は、 $3-\nu-h$ 制御量 ψ amtの補正処理を実行するためのフローチャートである。図16は、 $3-\nu-h$ 制御量 ψ amtを横滑り角偏差量 β difに応じて補正するためのマップを示す図である。図17は、 $3-\nu-h$ 制御量 ψ amtを横滑り角偏差量 β difの変化速度 Δ β difに応じて補正するためのマップを示す図である。

【0062】このヨーレート制御量がamtの補正処理も、上記横滑り角制御開始関値β0の補正処理と同一の課題を踏まえている。つまり、このヨーレート制御量がamtの補正処理は、ヨーレート制御から横滑り角制御へスムーズに切り換えるために、車両の横滑り偏差量βdifに応じてヨーレート制御量がamtを減少方向に補正していき、目標ヨーレートがTRへ収束させる時の追従性を増減して、車両が大きく姿勢変化しないように、スムーズに横滑り角制御に移行させるようにしている。

【0063】図15に示すように、処理が開始されると、ステップS152では、車両が横滑り制御領域になく(ステップS152でYes)か否かを判定する。ステップS152でYes)か否かを判定する。ステップS152でYes)、ステップS154に進む。【0064】ステップS154では、図16のマップに示すように、ヨーレート制御量ψantを横滑り角屑差量βdif(βdif=|βTR-βcont|)に応じて補正する

(ψ amt $\rightarrow \psi$ amt \cdot x7)。続いて、ステップS154では、図17のマップに示すように、ステップS152にて補正されたヨーレート制御量 ψ amtを、横滑り角偏差量 β difの変化速度 $\Delta \beta$ dif(横滑り角偏差量 β difの時間による微分値)に応じて更に補正する(ψ amt $\rightarrow \psi$ amt \cdot x7 \cdot x8)。次に、ステップS158に進み、横滑り角偏差量 β difが増加傾向にあるか否かを判定する。この判定は、横滑り角偏差量 β difの変化速度 $\Delta \beta$ difの増減により判定する。ステップS158で横滑り角偏差量 β difが増加傾向にあるならば(ステップS158でYes)、ステップS160に進み、横滑り角偏差量 β difが増加傾向でないならば(ステップS158でNo)、ステップS162に進む、

【0065】ステップS160では、横滑り制御に移行する直前と考えられるので、ヨーレート制御量かamtを20%だけ減少方向に補正して、目標ヨーレートがTRへの収束速度を遅くする。ステップS162では、ヨーレート制御量かamtが所定値か1以下であるか否かを判定する。ステップS162でヨーレート制御量かamtが所定値が1以下(ψ amt \leq ψ 1)ならば(ステップS162でYes)、ステップS164に進み、横滑り角制御開始関値 β 0を減少方向に補正して、横滑り角制御に移行しやすくなる方向に補正する。ステップS162での所定値が1は、ヨーレート制御量かamtが更に小さな値になった場合には目標ヨーレートがTRへの追従速度が遅くなり、ヨーレート制御を実行しても車両の姿勢に影響しないような値に設定される。

【0066】図16に示すマップにおいて、横滑り角偏差量 β difが増加しているということは、横滑り角制御領域には入っていないが車両の姿勢が目標横滑り角 β TRに対して大きくずれている状態である。そこで、横滑り角制御に移行する時の前準備として、ヨーレートによる無理な姿勢制御を行なわないで、ゆっくり収束させていく

【0067】また、図17に示すマップにおいて、横滑り角偏差量 β difの変化速度 Δ β difが増加しているということは、図16と同様に、横滑り角制御領域には入っていないが車両の姿勢が目標横滑り角 β TRに対して大きくずれ始めている状態である。そこで、横滑り角制御に移行する時の前準備として、ヨーレートによる無理な姿勢制御を行なわないで、ゆっくりと目標ヨーレート ϕ TR に収束させていく。このため、図17では、横滑り角偏差量 β difの変化速度 Δ β difが増加するに従って、ステップS154で補正されたヨーレート制御量 ϕ amt($= \phi$ amt・x7)を更に減少方向に補正して、図4のステップS56に示す目標ヨーレート ϕ TRへ収束させる際の追従速度を小さくしている。

【0068】<変形例>図18は、ヨーレート制御量ψ amtの補正処理の変形例を示すフローチャートである。 【0069】この変形例では、横滑り角偏差量βdifが 増加傾向にある場合には、ヨーレート制御量 ψ amtの補正処理を実行し、横滑り角偏差量 β difが増加傾向に無い場合には、横滑り角偏差量 β difが拡大していないため、通常のヨーレート制御を実行するものである。

【0070】図18に示すように、処理が開始される と、ステップS172では、横滑り角偏差量 Bdifが所 定値 $\beta1$ ($<\beta0$)以上か否かを判定する。ステップS172で横滑り角偏差量βdifが所定値β1以上ならば(ス テップS172でYes)、ステップS174で通常の ヨーレート制御を実行する。ステップS176では、今 回の横滑り角偏差量βdifnが前回の横滑り角偏差量βdi fn-1以上か否かを判定する。ステップS176で今回の 横滑り角偏差量βdifnが前回の横滑り角偏差量βdifn-1 以上ならば (ステップS176でYes)、横滑り角偏 差量Bdifは拡大傾向にあるので、ステップS178に てヨーレート制御量ψamtの補正処理を実行する。この ヨーレート制御量 ψamtの補正処理は、図15のステッ プS154移行の処理と同様である。また、ステップS 186で今回の横滑り角偏差量 B difnが前回の横滑り角 偏差量βdifn-1より小さいならば (ステップS186で No)、ヨーレート制御により横滑り角偏差量 B difが 拡大していないため、通常のヨーレート制御を実行する

【0071】[目標横滑り角 BTRの上限値設定処理]次 に、図3のステップS42で演算する目標横滑り角BTR の上限値 & TRLimを設定する処理について説明する。図 19は、目標横滑り角BTRの上限値設定処理を実行する ためのフローチャートである。図20は、目標横滑り角 βTRの上限値 βTRLinを車速 V に応じて設定するための マップを示す図である。図21、図22は、目標横滑り 角βTRの上限値βTRLimをステアリング舵角θHに応じて 設定するためのマップを示す図である。図23は、目標 横滑り角 β TRの上限値 β TRLimをステアリング舵角 θ Hの 変化速度ΔθHに応じて設定するためのマップを示す図 である。図24は、目標横滑り角BTRの上限値BTRLim を車速V及びステアリング舵角θHに応じて設定するた めのマップを示す図である。図25は、目標横滑り角8 TRの上限値βTRLimを車速V及びステアリング舵角θHの 変化速度 Δ θ Hに応じて設定するためのマップを示す図 である。

【0072】横滑り角制御中において、例えば、車両にスピンやドリフトアウト等が発生すると、ドライバは慌てるため、車速が高い状態でステアリングを固定させたり、カウンタ操作を行ったりして、ステアリングを通常より大きく操作することが考えられる。このように、ステアリング舵角が大きくなると、本来の目標横滑り角 β TRが正常値から大幅にずれるので、ステアリング舵角により設定される目標横滑り角 β TRの信頼性も低下する。この状態で、通常通りの横滑り角制御を実行すると、推定横滑り角 β contを信頼性の低い目標横滑り角 β TRに収

東させてしまうことになり、本来の正常な姿勢からかけ 離れた姿勢に立て直そうとしてしまう。

【0073】上記課題を踏まえて、目標横滑り角 β TRの上限値設定処理は、車速Vやステアリング舵角 θ Hに応じて目標横滑り角 β TRの信頼性を判断し、目標横滑り角 β TRに上限値 β TRLinを設定し、その上限値 β TRLinを減少方向に補正することにより、目標横滑り角 β TRへの過剰な制御を抑制するようにしている。

【0074】図19に示すように、処理が開始されると、ステップS182では、目標横滑り角 β TRが、図20~図24に示すマップから決定される目標横滑り角 β TRの上限値 β TRLin以上であるか否かを判定する。ステップS182で、目標横滑り角 β TRが、その上限値 β TR Lin以上であるならば(ステップS182でYes)、ステップS184にて、目標横滑り角 β TRを、図20~図24に示すマップから決定される目標横滑り角 β TRの上限値 β TRLinに設定する。

【0075】図20に示すマップにおいて、エリアa4のように車速Vが低い状態では、例えば、雪路走行中にスピン等が発生すると、ドライバは慌てるため、ステアリングを通常より大きく操作することが考えられる。このように、ステアリング舵角が大きくなると、横滑り角偏差量 β difが誤った方向に拡大してしまう可能性がある。このため、目標横滑り角 β TRの上限値 β TRLimを減少方向に補正して、横滑り制御量 β amtを小さくし車両の挙動変化を小さく抑えている。また、車速Vが低い状態では、横滑り制御量 β amtを小さくしても時間的に余裕があるため、繰り返し制御介入することにより車両の姿勢を立て直しやすいのである。

【0076】反対に、エリアa5のように車速Vが高い状態では、低速時に比べてドライバのステアリング操作に対して横滑り角偏差量 β difが大きくなるため横滑り制御量 β amtも大きくなる。ところが、高速走行時に大きな横滑り制御量 β amtにて姿勢制御すると、制御が急激すぎて車両が路面とのグリップを失い、スピン等を起こす可能性がある。このため、目標横滑り角 β TRの上限値 β TRLimを減少方向に補正して、横滑り制御量 β amtを小さくし車両の挙動変化を小さく抑えている。

【0077】図21に示すマップにおいて、エリアa6のようにステアリング舵角 θ Hが大きくなっていく状態では、横滑り角偏差量 β difが大きくなり、車両はスピン等をしやすい状況にある。このため、目標横滑り角 β TRの上限値 β TRに加を増加方向に補正して、早急に姿勢を立て直すようにしている。つまり、エリアa6に示すステアリング舵角 θ Hが低い状態に比べて、エリアa7のようにステアリング舵角 θ Hが大きい状態では、例えば、ドライバの操作したステアリング舵角が大きく、横滑り角偏差量 β difが拡大してスピンやドリフトアウトが発生する虞がある。そこで、このような状態では、目

標横滑り角βTRに早急に収束させ、車両の姿勢を立て直 す必要があるので、目標横滑り角βTRの上限値βTRLim を増加方向に補正して横滑り角制御を実行させるように している。

【0078】図22に示すマップにおいて、エリアa8のようにステアリング舵角 θ Hが極端に大きくなる状態とは、例えば、ドライバがカウンタ操作している時であり、この状態では目標横滑り角 β TRに早急に収束させ、車両の姿勢を立て直す必要がある。このため、目標横滑り角 β TRの上限値 β TRLimを増加方向に補正して早く収束させるようにしている。

【0079】図23に示すマップにおいて、エリアa9のようにステアリング舵角 θ Hの変化速度 $\Delta\theta$ Hが極端に大きくなる状態とは、例えば、ドライバがカウンタ操作している時であり、この状態では目標横滑り角 β TRに早急に収束させ、ドライバの操作通りに車両の姿勢を立て直す必要があるので、目標横滑り角 β TRの上限値 β TRLi mを増加方向に補正している。

【0080】図24に示すマップにおいて、車速Vが高い状態でも、ステアリング舵角 θ Hが大きくなる程、横滑り角偏差量 β difが大きくなるため、目標横滑り角 β TRに早急に収束させ、ドライバの操作通りに車両の姿勢を立て直す必要があるので、目標横滑り角 β TRの上限値 β TRLimを増加方向に補正している。

【0081】図25に示すマップにおいて、エリアa10のように、車速Vが低速でもなく高速でもない中間領域で、且つステアリング舵角 θ Hの変化速度 $\Delta \theta$ Hが低い状態から中程度の領域では、目標横滑り角 β TRの上限値 β TRLimを増加方向に補正して横滑り角制御を実行させるようにしている。反対に、エリアa10以外のエリアa11の状態では、目標横滑り角 β TRの信頼性が低いので、目標横滑り角 β TRの上限値 β TRLimの補正処理を実行しないようにしている。

【0082】<変形例>変形例として、車両走行中の路面の摩擦係数が所定摩擦係数より小さい場合には、ステアリング操作を行ないやすく、目標横滑り角βTRが増加しやすい状態なので、目標横滑り角βTRの上限値βTRLimを減少方向に補正して、横滑り角制御による急激な車両の挙動変化を抑えるようにしてもよい。

【0083】[横滑り角制御量 β amtの補正処理]次に、図4のステップS50で参照する横滑り角制御量 β amtの補正処理について説明する。図26は、横滑り角制御量 β amtの補正処理を実行するためのフローチャートである。図27は、横滑り角制御量 β amtをステアリング舵角 θ H及びその変化速度 $\Delta\theta$ Hに応じて補正するためのマップを示す図である。

【0084】図4に示す横滑り角制御中において、横滑り角偏差量 β difの変化速度 $\Delta\beta$ difが変化している場合、目標横滑り角 β TRの増加に起因していることが考え

られる。この目標横滑り角βTRは、ドライバのステアリング操作により決定されるのであるが、横滑り角偏差量βdifが増加している状態で更にステアリングを切り込むことはスピンやドリフトアウトを助長する結果となる。

【0085】そこで、横滑り角制御量 β amtの補正処理では、目標横滑り角 β TRが増加している状態で、ドライバのステアリング操作が切り戻されているか、切り増されているか、或いはステアリング舵角 θ Hやその変化速度 $\Delta\theta$ Hによって横滑り角制御量 β amtを補正し、ドライバのステアリング操作に応じた横滑り角制御を行うようにしている。

【0086】図26に示すように、処理が開始されると、ステップS192では、横滑り角偏差量 β difの変化速度 $\Delta\beta$ difが所定値 β 2以上か否かを判定する。ステップS192で横滑り角偏差量 β difの変化速度 $\Delta\beta$ difが所定値 β 2以上ならば(ステップS192でYes)、ステップS199に進む。ステップS199では、横滑り角偏差量 β difがかなり大きくなり、早急に車両の姿勢を立て直す必要があるため、横滑り角制御量 β amtを20%増加方向に補正して、目標横滑り角 β TRへの収束速度を速める。

【0087】ステップS192で横滑り角偏差量 β difの変化速度 $\Delta\beta$ difが所定値 β 2以上でないならば(ステップS192でNo)、横滑り角偏差量 β difはそれ程大きくなく、早急に車両の姿勢を立て直す必要もないと考えられ、ステップS194に進む。

【0088】ステップS194では、ドライバのステアリング操作の状態を判定する。このステアリング操作の判定は、ステアリング舵角が変化しない状態で固定と判定し、ステアリング舵角が増加している状態又はステアリング舵角の変化速度が増加している状態で切増しと判定し、反対に切増しの状態からステアリング舵角が減少している状態又はステアリング舵角の変化速度の方向が逆転した状態で切戻しと判定する。

【0089】ステップS194でステアリングの固定又は切増し操作中の場合には、ステップS196に進む。このステアリングの固定又は切増し操作中の場合とは、例えば、スピン或いはドリフトアウトが発生しそうな時に横滑り角制御が介入するのであるが、そのスピン或いはドリフトアウトが発生しそうな時にステアリングを固定又は切増し操作するのは、スピン或いはドリフトアウトを助長する結果となりドライバが誤って操作している状態と考えられる。そこで、ステップS196では、目標横滑り角βTRの信頼性は低いと考えられ、図27のマップに示すように、横滑り角制御量βantをステアリング舵角θH及びその変化速度ΔθHに応じて補正する(βant→βant・x9)。

【0090】また、ステップS194でステアリングの 切戻し操作中の場合には、ステップS198に進む。こ のステアリングの切戻し操作中の場合とは、例えば、スピン或いはドリフトアウトが発生しそうな時に横滑り角制御が介入するのであるが、そのスピン或いはドリフトアウトが発生しそうな時にステアリングがカウンタ操作されていると考えられる。このカウンタ操作は、スピン或いはドリフトアウトを回避する操作であるのでドライバの操作は誤っていないと考えられる。そこで、ステップS198では、目標横滑り角βTRの信頼性は高いと考えられ、早急に車両の姿勢を立て直す必要があるため、横滑り角制御量βamtを10%増加方向に補正して、目標横滑り角βTRへの収束速度を速めている。

【0091】図27に示すマップにおいて、ステアリングの固定又は切増し操作中の場合には、スピン或いはドリフトアウトが発生しそうな時にステアリングを固定又は切増し操作するのは、スピン或いはドリフトアウトを助長する結果となりドライバが誤って操作している状態なので、ステアリング舵角 θ Hが増加するに従って、目標横滑り角 β TRの信頼性は低いと考えられ、横滑り角制御量 β amtを減少方向に補正している。同様に、ステアリング舵角 θ Hの変化速度 $\Delta \theta$ Hが増加するに従って、目標横滑り角 β TRの信頼性は低いと考えられ、更に車両の挙動変化が速くなるため、横滑り角制御量 β amtを更に減少方向に補正している。

【0092】[横滑り角偏差量又はヨーレート偏差量の変化要因に基づく補正処理]次に、横滑り角偏差量 β dif又はヨーレート偏差量 ψ difの変化要因に基づく補正処理について説明する。図28は、ヨーレート偏差量 ψ difに応じた横滑り角制御開始閾値 β 0、目標横滑り角 β TR、ヨーレート制御量 ψ amtの補正処理を実行するためのフローチャートである。図29は、横滑り角偏差量 β difに応じた、横滑り角制御開始閾値 β 0、目標横滑り角 β TR、横滑り角制御量 β amtの補正処理を実行するためのフローチャートである。

【0093】<ヨーレート偏差量 ψ difに応じた補正処理>先ず、ヨーレート偏差量 ψ difに応じた横滑り角制御開始閾値 $\beta0$ 、目標横滑り角 β TR、ヨーレート制御量 ψ amtの補正処理について説明する。

【0094】ヨーレート偏差量 ψ dif(ψ dif= ψ TR- ψ act |)に応じた補正処理では、ヨーレート偏差量 ψ d ifの変化速度 $\Delta\psi$ dif(今回のヨーレート偏差量 ψ difn と前回のヨーレート偏差量 ψ difn-1との差)が所定値 ψ 1以上変化した場合、その変化要因が目標ヨーレート ψ TRなのか、実ヨーレート ψ actなのかに応じて、ヨーレート制御量 ψ amt、横滑り角制御開始閾値 β 0、目標横滑り角 β TRを補正する。

【0095】図28に示すように、図4のステップS56からステップS202に進み、ステップS202では、ヨーレート偏差量ψdifの変化速度Δψdifが所定値ψ2以上変化したか否かを判定する。ステップS202でヨーレート偏差量ψdifの変化速度Δψdifが所定値ψ

2以上変化したならば(ステップS 2 0 2 \circ Y e s)、ステップS 2 0 4 に進む、ステップS 2 0 4 では、ヨーレート偏差量 ψ difの変化速度 Δ ψ difの変化要因が目標ヨーレート ψ TRなのか、実ヨーレート ψ actなのかを判定する。ステップS 2 0 4 \circ 7 \circ 9 \circ

【0096】ヨーレート順差量 ψ difの変化速度 $\Delta\psi$ difの変化要因が目標ヨーレート ψ TRということは、ドライバのステアリング操作によるものと考えられる。そこで、ステップS206では、ドライバの意志に従って、横滑り角制御開始関値 β 0を増加方向に補正して、横滑り角制御に移行しにくくして、ドライバのステアリング操作に任せるようにする。更に、ステップS208では、目標横滑り角 β TRの上限値 β TRLimを増加方向に補正して、横滑り角制御に移行した場合に、ドライバのステアリング操作に応じて目標横滑り角 β TRが増加できるように補正する。また、ステップS210では、ヨーレート制御量 ψ amtを減少方向に補正して、ヨーレート制御による目標ヨーレートへの急激な姿勢変化を抑制し、ドライバのステアリング操作に任せると共に、ドライバのステアリング操作と干渉しないようにしている。

【0097】一方、ステップS204でヨーレート偏差 量 ψ difの変化速度 $\Delta\psi$ difの変化要因が実ヨーレート ψ actならば、ステップS212~S214に進む。

【0098】ヨーレート偏差量がは「の変化速度 Δがは「の変化要因が実ヨーレートが actということは、路面形状変化や路面摩擦係数変化等の外乱に起因するものと考えられ、早急に車両の姿勢を立て直す必要がある。そこで、ステップS212では、横滑り角制御開始関値 β0を減少方向に補正して、横滑り角制御に移行しやすくし、横滑り角制御に移行した時にスリップやドリフトアウトに対して早めに対処できるようにする。更に、ステップS214では、早急な姿勢の立て直しを図るため、ヨーレート制御量が antを増加方向に補正して、目標ヨーレートがTRへの収束を早めている。

【0099】以上のように、ヨーレート制御中において、ヨーレート偏差量ψdifの変化要因に応じて横滑り角制御開始関値β0、目標横滑り角βTR、ヨーレート制御量ψamtを補正するので、ドライバの操作に起因する場合には、ドライバの意志に従うようにし、外乱に起因する場合には、早急に車両の姿勢を立て直ようにできる。

【0100】<横滑り角屑差量βdifに応じた補正処理 >次に、横滑り角偏差量βdifに応じた横滑り角制御開 始閾値β0、目標横滑り角βTR、横滑り角制御量βamtの 補正処理について説明する。

【0101】横滑り角偏差量 β dif(β dif= $\frac{1}{\beta}$ TR- β c ont $\frac{1}{\beta}$) に応じた補正処理では、横滑り角偏差量 β difの変化速度 Δ β dif(今回の横滑り角偏差量 β difnと前回

の横滑り角偏差量 β di fn-1との差)が所定値 β 2以上変化した場合、その変化要因が目標横滑り角 β TRなのか、推定横滑り角 β contなのかに応じて、横滑り角制御開始 関値 β 0、目標横滑り角 β TR、横滑り角制御量 β amtを補正する。

【0102】図29に示すように、図4のステップS50からステップS222に進み、ステップS222では、横滑り角偏差量 β difの変化速度 Δ β difが所定値 β 2以上変化したか否かを判定する。ステップS222で横滑り角偏差量 β difの変化速度 Δ β difが所定値 β 2以上変化したならば(ステップS222でYes)、ステップS224に進む。ステップS224では、横滑り角偏差量 β difの変化速度 Δ β difの変化要因が目標横滑り角 β TRなのか、推定横滑り角 β Contなのかを判定する。ステップS224で横滑り角 β ERならば、ステップS224で横滑り角偏差量 β difの変化速度 Δ β difの変化要因が目標横滑り角 β TRならば、ステップS226~S230に進む。

【0103】横滑り角偏差量 β difの変化速度 $\Delta\beta$ difの変化要因が目標横滑り角 β TRということは、ドライバのステアリング操作によるものと考えられる。そこで、ステップS226では、ドライバの意志に従って、横滑り角制御に移行しにくくして、ドライバのステアリング操作に任せるようにする。更に、ステップS228では、目標横滑り角 β TRの上限値 β TRLimを増加方向に補正して、ドライバのステアリング操作に応じて目標横滑り角 β TRが増加できるように補正する。また、ステップS230では、横滑り角制御量 β amtを減少方向に補正して、横滑り角制御による目標横滑り角 β TRへの急激な姿勢変化を抑制し、ドライバのステアリング操作に任せると共に、ドライバのステアリング操作と干渉しないようにしている。

【0104】一方、ステップS224で横滑り角偏差量 β difの変化速度 $\Delta\beta$ difの変化要因が推定横滑り角 ψ contならば、ステップS232~S234に進む。

【0105】横滑り角偏差量βdifの変化速度Δβdifの変化要因が推定横滑り角ψcontということは、路面形状変化や路面摩擦係数変化等の外乱に起因するものと考えられ、早急に車両の姿勢を立て直す必要がある。そこで、ステップS232では、横滑り角制御開始閾値β0を減少方向に補正して、横滑り角制御に移行しやすくし、横滑り角制御に移行した時にスリップやドリフトアウトに対して早めに対処できるようにする。更に、ステップS234では、早急な姿勢の立て直しを図るため、横滑り角制御量βamtを増加方向に補正して、目標横滑り角βTRへの収束を早めている。

【0106】以上のように、横滑り角制御中において、 横滑り角偏差量βdifの変化要因に応じて横滑り角制御 開始閾値β0、目標横滑り角βTR、横滑り角制御量βamt を補正するので、ドライバの操作に起因する場合には、 ドライバの意志に従うようにし、外乱に起因する場合に は、早急に車両の姿勢を立て直すことができる。

【 0 1 0 7 】尚、本発明は、その趣旨を逸脱しない範囲 で上記実施形態を修正又は変更したものに適用可能であ る。

[0108]

【発明の効果】以上のように、本発明によれば、ヨーレート制御手段による制御中において、横滑り角偏差量が所定横滑り角閾値以下の所定の第2 問値以上となると、実ヨーレートを目標ヨーレートへ収束させるための収束制御量を減少方向に補正する。

【0109】また、ヨーレート制御手段による制御中において、横滑り角偏差量が増加するに従って、実ヨーレートを目標ヨーレートへ収束させるための収束制御量を減少方向に補正する。

【0110】また、ヨーレート制御手段による制御中において、横滑り角偏差量が増加傾向にある場合、実ヨーレートを目標ヨーレートへ収束させるための収束制御量を減少方向に補正する。

【0111】また、ヨーレート制御手段による制御中において、横滑り角偏差量が増加傾向にある状態で、ヨーレート制御手段にて実ヨーレートを目標ヨーレートに収束するように制御した結果、増加傾向にある横滑り偏差量が更に増加した場合、実ヨーレートを目標ヨーレートへ収束させるための収束制御量を減少方向に補正する。

【0112】従って、ヨーレート制御から横滑り角制御へ移行する際の制御ショックを緩和でき、急激な姿勢変化を抑制することができる。

【0113】また、補正手段は、ヨーレート制御手段による目標ヨーレートへの収束制御量を減少方向に補正すると共に、所定横滑り角間値を減少方向に補正することにより、横滑り角制御に移行する時の前準備として、ヨーレートによる無理な姿勢制御を行なわないで、スムーズに横滑り制御に移行させることができる。

[0114]

【図面の簡単な説明】

【図1】本発明の実施形態に係る車両の姿勢制御装置の 制御ブロックの全体構成を示す図である。

【図2】本実施形態の姿勢制御を実行するための全体的動作を示すフローチャートである。

【図3】図2のSCS演算処理を実行するためのフローチャートである。

【図4】図2のSCS演算処理を実行するためのフローチャートである。

【図5】SCS制御とABS制御との調停処理を実行するためのフローチャートである。

【図6】SCS制御とABS制御との調停処理を実行するためのフローチャートである。

【図7】SCS制御とABS制御との調停処理を実行するためのフローチャートである。

【図8】図2の車輪速補正処理を実行するためのフロー チャートである、

【図9】車輪速補正手順を示す模式図である。

【図10】横滑り角制御開始閾値β0の補正処理を実行するためのフローチャートである。

【図11】横滑り角制御開始閾値 β 0をステアリング舵角 θ Hの変化速度に応じて補正するためのマップを示す図である。

【図12】横滑り角制御開始閾値 β 0をステアリング舵角 θ Hの変化速度に応じて補正するためのマップを示す図である。

【図13】横滑り角制御開始閾値 β 0をステアリング舵角 θ Hの変化速度に応じて補正するためのマップを示す図である。

【図14】横滑り角制御開始閾値 β 0をステアリング舵角 θ Hの変化速度に応じて補正するためのマップを示す図である。

【図15】ヨーレート制御量 ψ amtの補正処理を実行するためのフローチャートである。

【図16】ヨーレート制御量 ψ amtを横滑り角偏差量 β d ifに応じて補正するためのマップを示す図である。

【図17】ヨーレート制御量 ψ amtを横滑り角偏差量 β d ifの変化速度 $\Delta\beta$ difに応じて補正するためのマップを示す図である。

【図18】ヨーレート制御量 ψ amtの補正処理の変形例を示すフローチャートである。

【図19】目標横滑り角 β TRの上限値設定処理を実行するためのフローチャートである。

【図20】目標横滑り角 β TRの上限値 β TRLimを車速Vに応じて設定するためのマップを示す図である。

【図21】目標横滑り角 β TRの上限値 β TRLimをステアリング舵角 θ Hに応じて設定するためのマップを示す図である。

【図22】目標横滑り角 β TRの上限値 β TRLimをステアリング舵角 θ Hに応じて設定するためのマップを示す図である。

【図23】目標横滑り角 β TRの上限値 β TRLi π をステアリング舵角 θ Hの変化速度 Δ θ Hに応じて設定するためのマップを示す図である。

【図24】目標横滑り角 β TRの上限値 β TRLimを車速V及びステアリング舵角 θ Hに応じて設定するためのマッ

プを示す図である。

【図25】目標横滑り角 β TRの上限値 β TRLimを車速V及びステアリング舵角 θ Hの変化速度 Δ θ Hに応じて設定するためのマップを示す図である。

【図26】横滑り角制御量 β amtの補正処理を実行するためのフローチャートである。

【図27】横滑り角制御量 β amtをステアリング舵角 θ H及びその変化速度 $\Delta \theta$ Hに応じて補正するためのマップを示す図である。

【図28】ヨーレート偏差量 ψ difに応じた横滑り角制 御開始閾値 β 0、目標横滑り角 β TR、ヨーレート制御量 ψ amtの補正処理を実行するためのフローチャートである。

【図29】横滑り角偏差量 β difに応じた、横滑り角制御開始閾値 β 0、目標横滑り角 β TR、横滑り角制御量 β a tの補正処理を実行するためのフローチャートである。 【符号の説明】

10...SCS · ECU

11…FR車輪速センサ

12…Fし車輪速センサ

13…RR車輪速センサ

14…RL車輪速センサ

15…車速センサ

16…ステアリング舵角センサ

17…ヨーレートセンサ

18…横方向加速度センサ

19…前後方向加速度センサ

20···EGI·ECU

21…エンジン

22…オートマチックトランスミッション

23…スロットルバルブ

30…油圧制御ユニット

31…FRブレーキ

32…FLブレーキ

33…RRプレーキ

34…RLブレーキ

35…ブレーキ踏力圧センサ

36…加圧ユニット

37…マスタシリンダ

38…ブレーキペダル

40…TCSオフスイッチ

【図11】

【図12】

【図13】

....

【図15】 制御量のamtの数

【図18】

【図4】

٠.

【図7】

【図10】

【図26】

【図28】

フロントページの続き

(72)発明者 和泉 知示

広島県安芸郡府中町新地3番1号 マツダ 株式会社内

(72)発明者 吉岡 透

広島県安芸郡府中町新地3番1号 マツダ 株式会社内

(72) 発明者 足立 智彦

広島県安芸郡府中町新地3番1号 マツダ

株式会社内