STAT 4100 Lecture Note

Week Two (Sep 12, 14 & 16, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

Multivariate Transformation

Multivariate distribution

- Random vector $\mathbf{X} = (X_1, \dots, X_n)$ with realization $\mathbf{x} = (x_1, \dots, x_n)$ $-\operatorname{cdf} F_{\mathbf{X}}(\boldsymbol{x}) = \Pr(X_1 \le x_1, \dots, X_n \le x_n)$
- Discrete
 - Joint pmf

$$p_{\mathbf{X}}(\mathbf{x}) = \Pr(X_1 = x_1, \dots, X_n = x_n)$$

- $-\operatorname{supp}(\mathbf{X}) = \operatorname{supp}(p_{\mathbf{X}}) = \{ \boldsymbol{x} \in \mathbb{R}^n : p_{\mathbf{X}}(\boldsymbol{x}) > 0 \}$
- Marginal pmf of (X_1, \ldots, X_k)

$$p_{X_1,...,X_k}(x_1,...,x_k) = \sum_{(x_{k+1},...,x_n)\in\mathbb{R}^{n-k}} p_{\mathbf{X}}(\boldsymbol{x})$$

- Continuous
 - Joint pdf

$$f_{\mathbf{X}}(\mathbf{x}) = (\partial^n/\partial x_1 \cdots \partial x_n) F_{\mathbf{X}}(\mathbf{x})$$

- * $\Pr(\mathbf{X} \in B) = \int_B f_{\mathbf{X}}(\boldsymbol{x}) d\boldsymbol{x}$ for each Borel set $B \subset \mathbb{R}^n$ $\operatorname{supp}(\mathbf{X}) = \operatorname{supp}(f_{\mathbf{X}}) = \{\boldsymbol{x} \in \mathbb{R}^n : f_{\mathbf{X}}(\boldsymbol{x}) > 0\}$
- Marginal pdf of (X_1, \ldots, X_k)
 - * $f_{X_1,\ldots,X_k}(x_1,\ldots,x_k) = \int_{\mathbb{R}^{n-k}} f_{\mathbf{X}}(\boldsymbol{x}) dx_{k+1} \cdots dx_n$

Find the joint pdf of random vector $\mathbf{Y} = \mathbf{g}(\mathbf{X})$ by multivariate transformation (CB Sec. 4.3 & 4.6)

- Conditions
 - **X** and **Y** both of n dimensions
 - $g(\cdot) = (g_1(\cdot), \dots, g_n(\cdot)) : \operatorname{supp}(\mathbf{X}) \to \operatorname{supp}(\mathbf{Y})$ is one-to-one, i.e.,

 - * $\mathbf{y} = (y_1, \dots, y_n) = (g_1(\mathbf{x}), \dots, g_n(\mathbf{x})) = \mathbf{g}(\mathbf{x})$ * $\mathbf{x} = (x_1, \dots, x_n) = \mathbf{g}^{-1}(\mathbf{y}) = (g_1^{-1}(\mathbf{y}), \dots, g_n^{-1}(\mathbf{y}))$
- Jacobian matrices
 - Jacobian matrix of transformation g^{-1}

$$\mathbf{J}_{\boldsymbol{g}^{-1}} = \mathbf{J}_{\boldsymbol{g}^{-1}}(\boldsymbol{y}) = \begin{bmatrix} \frac{\partial g_{i}^{-1}(\boldsymbol{y})}{\partial y_{j}} \end{bmatrix}_{n \times n} = \begin{bmatrix} \frac{\partial g_{1}^{-1}(\boldsymbol{y})}{\partial y_{1}} & \dots & \frac{\partial g_{1}^{-1}(\boldsymbol{y})}{\partial y_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}^{-1}(\boldsymbol{y})}{\partial y_{1}} & \dots & \frac{\partial g_{n}^{-1}(\boldsymbol{y})}{\partial y_{n}} \end{bmatrix}$$

Jacobian matrix of transformation g

$$\mathbf{J}_{\boldsymbol{g}} = \mathbf{J}_{\boldsymbol{g}}(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial g_i(\boldsymbol{x})}{\partial x_j} \end{bmatrix}_{n \times n} = \begin{bmatrix} \frac{\partial g_1(\boldsymbol{x})}{\partial x_1} & \dots & \frac{\partial g_1(\boldsymbol{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n(\boldsymbol{x})}{\partial x_1} & \dots & \frac{\partial g_n(\boldsymbol{x})}{\partial x_n} \end{bmatrix}$$

$$\begin{aligned} &-\mathbf{J}_{\boldsymbol{g}^{-1}}(\boldsymbol{y}) = \{\mathbf{J}_{\boldsymbol{g}}(\boldsymbol{g}^{-1}(\boldsymbol{y}))\}^{-1} \\ &* \text{ Alternative way to reach } \mathbf{J}_{\boldsymbol{g}^{-1}}(\boldsymbol{y}) \end{aligned}$$

• Then

$$f_{\mathbf{Y}}(\boldsymbol{y}) = f_{\mathbf{X}}\{g^{-1}(\boldsymbol{y})\}|\det\{\mathbf{J}_{\boldsymbol{g}^{-1}}(\boldsymbol{y})\}|\mathbf{1}_{\operatorname{supp}(\mathbf{Y})}(\boldsymbol{y}).$$

- Never miss $\mathbf{1}_{\text{supp}(\mathbf{Y})}(\boldsymbol{y})$
- If g is NOT one-to-one, one may figure out the cdf of Y and then differentiate it.

Example Lec3.1

 X_1 and X_2 are iid from $\mathcal{N}(0,1)$. Find the joint pdf of $Y_1=(X_1+X_2)/\sqrt{2}$ and $Y_2=(X_1-X_2)/\sqrt{2}$ and show their independence.

Note: the sample mean and standard deviation are respectively $\bar{X}=(X_1+X_2)/2=Y_1/\sqrt{2}$ and S= $\sqrt{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2} = |Y_2|.$

Find the marginal pdf

- 1. Figure out the joint pdf first
- 2. Taking the Integral

Example Lec3.2

 X_1 and X_2 are iid from $\mathcal{N}(0,1)$. Find the pdf of $U=\sqrt{X_1^2+X_2^2}$.

Basics on square matrices

Eigen-decomposition

- A is a real $n \times n$ matrix
- Eigenvalues of **A**, say $\lambda_1 \geq \cdots \geq \lambda_n$: n roots of characteristic equation $\det(\lambda \mathbf{I}_n \mathbf{A}) = 0$
- The *i*th (Right) eigenvector v_i : $\mathbf{A}v_i = \lambda_i v_i$
- Eigen-decomposition: $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$
 - $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ both $n \times n$ matrices - Specifically $\mathbf{V}^{-1} = \mathbf{V}^{\top}$ for symmetric \mathbf{A}
- Numerical implementation in R: eigen()
- Connection to determinant and trace
 - Determinant

 - * $\det \mathbf{A} = \prod_{i=1}^{n} \lambda_i$ * $\det(\mathbf{A}^{\top}) = \det \mathbf{A}$
 - $* \det(\mathbf{A}^{-1}) = (\det \mathbf{A})^{-1}$
 - * $\det(c\mathbf{A}) = c^n \det \mathbf{A}$ for $n \times n$ matrix \mathbf{A} and scalar c
 - * $\det(\mathbf{AB}) = (\det \mathbf{A})(\det \mathbf{B})$ for squared \mathbf{A} and \mathbf{B}
 - Trace

```
* \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i
* tr(c\mathbf{A}) = ctr(\mathbf{A}) for scalar c
* tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B}) for squared A and B
* tr(\mathbf{AB}) = tr(\mathbf{BA})
```

Square root of matrices

- $\mathbf{A}^{1/2} = \mathbf{V} \Lambda^{1/2} \mathbf{V}^{\top}$ if for semi-positive definite \mathbf{A}
 - Semi-positive/non-negative definite: symmetric **A** with eigenvalues all non-negative
 - $-\Lambda^{1/2} = diag(\lambda_1^{1/2}, \dots, \lambda_n^{1/2})$
 - $-\mathbf{A}^{1/2}\mathbf{A}^{1/2}=\mathbf{A}$
- $\mathbf{A}^{-1/2} = \mathbf{V} \Lambda^{-1/2} \mathbf{V}^{\top}$ for positive definite \mathbf{A}
 - Positive definite: symmetric \mathbf{A} with eigenvalues all positive $\Lambda^{-1/2} = \operatorname{diag}(\lambda_1^{-1/2}, \dots, \lambda_n^{-1/2})$ $\mathbf{A}^{-1/2}\mathbf{A}^{-1/2} = \mathbf{A}^{-1}$ and $\mathbf{A}^{1/2}\mathbf{A}^{-1/2} = \mathbf{I}$

Multivariate normal (MVN) distribution

 $MVN(\mathbf{0}, \mathbf{I}_n)$

- Random p-vector $\mathbf{Z} = (Z_1, \dots, Z_p)^{\top} \sim \text{MVN}(\mathbf{0}, \mathbf{I}_p) \Leftrightarrow \text{iid } Z_1 \dots, Z_p \sim \mathcal{N}(0, 1).$
- pdf of $MVN(0, \mathbf{I}_n)$:

$$\begin{split} f_{\mathbf{Z}}(\boldsymbol{z}) &= \prod_{i=1}^{p} (2\pi)^{-1/2} \exp(-z_i^2/2) \\ &= (2\pi)^{-p/2} \exp(-\boldsymbol{z}^{\top} \boldsymbol{z}/2), \quad \boldsymbol{z} \in \mathbb{R}^p \end{split}$$

 $MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

• pdf of $MVN(\mu, \Sigma)$, $\Sigma > 0$:

$$f_{\mathbf{X}}(\boldsymbol{x}) = (2\pi)^{-p/2} (\det \boldsymbol{\Sigma})^{-1/2} \exp\{-(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})/2\}, \quad \boldsymbol{x} \in \mathbb{R}^p$$

- $\mathbf{X} \sim \text{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow \mathbf{A}\mathbf{X} + \boldsymbol{a} \sim \text{MVN}(\mathbf{A}\boldsymbol{\mu} + \boldsymbol{a}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top})$ for arbitrary $\mathbf{A} \in \mathbb{R}^{q \times p}$ and $\boldsymbol{a} \in \mathbb{R}^q$
- $\mathbf{X} \sim \text{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow \mathbf{X} = \boldsymbol{\Sigma}^{1/2} \mathbf{Z} + \boldsymbol{\mu} \text{ with } \mathbf{Z} = \boldsymbol{\Sigma}^{-1/2} (\mathbf{X} \boldsymbol{\mu}) \sim \text{MVN}(0, \mathbf{I}_n)$

Marginals of MVN

- Suppose p-vector $\mathbf{X} = (X_1, \dots, X_p)^{\top}$ and q-vector $\mathbf{Y} = (Y_1, \dots, Y_q)^{\top}$ are jointly normally distributed. Then, **X** and **Y** are independent $\Leftrightarrow \text{cov}(\mathbf{X}, \mathbf{Y}) = \mathbf{0}_{p \times q}$.
- If X is of MVN, then its all margins are still of MVN. The inverse proposition does NOT hold.
 - Cautionary example: Let Y = XZ, where $X \sim \mathcal{N}(0,1)$; Z is independent of X with $\Pr(Z=1) =$ Pr(Z=-1)=.5. X and Y both turn out to be of standard normal, but they are not jointly normal.

Normal sampling theory (CB Sec. 5.3)

Stochastic representations for χ^2 -, t-, and F-r.v. (HMC Chp. 3)

- If iid $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, then $-\sum_{i=1}^n X_i^2 \sim \chi^2(n) \text{ if iid } X_1, \ldots, X_n \sim \mathcal{N}(0, 1);$ $-X/\sqrt{Y/n} \sim t(n) \text{ if } X \sim \mathcal{N}(0, 1) \text{ and } Y \sim \chi^2(n) \text{ are independent};$

– $(X/m)/(Y/n) \sim F(m,n)$ if $X \sim \chi^2(m)$ and $Y \sim \chi^2(n)$ are independent.

Important identities for normal samples

- $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ and $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ are independent
- $n^{1/2}(\bar{X}-\mu)/\sigma \sim \mathcal{N}(0,1)$
- $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$
- $n^{1/2}(\bar{X}-\mu)/S \sim t(n-1)$