

## Höhere Mathematik IV - Stochastik für Ingenieure Übungsblatt 11

## Aufgabe 11.1 (Konfidenzintervalle der Normalverteilung)

Es sei X eine Zufallsvariable, welche die  $N(\mu, \sigma^2)$ -Verteilung besitzt, und  $0 < \alpha < 1$ . Leiten Sie Konfidenzintervalle für  $\mu$  her unter der Annahme, dass

- a)  $\sigma^2$  bekannt ist;
- **b)**  $\sigma^2$  nicht bekannt ist.

## Aufgabe 11.2 (Maximum-Likelihood für die Normalverteilung)

Generieren Sie in R 1000 Zufallszahlen von der Normalverteilung  $N(\mu, \sigma^2)$  mit Parametern  $\mu = -4$  und  $\sigma^2 = 2$ . Schätzen Sie dann mit mit Hilfe dieser Daten und der Maximum-Likelihood Methode die Parameter

- a)  $\theta = \mu$  unter der Annahme, dass  $\sigma^2$  bekannt ist;
- **b**)  $\theta = (\mu, \sigma^2)$ .

Verwenden Sie Aufgabe 1, um Konfidenzintervalle für  $\mu$  zu berechnen.

(Unter folgendem Link ist ein nützlicher Guide für die MLE-Parameter-Schätzung von  $N(\mu, \sigma^2)$  zu finden: https://rpubs.com/Koba/MLE-Normal.)

## Aufgabe 11.3 (Maximum-Likelihood für die Exponentialverteilung)

Generieren Sie in R 1000 Zufallszahlen von der Exponentialverteilung mit Parameter  $\lambda = 1$ . Schätzen Sie dann  $\lambda$  mit Hilfe dieser Daten und der Maximum-Likelihood Methode.