PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-349338

(43) Date of publication of application: 03.12.1992

(51)Int.CI.

H01K 1/14

H01K 1/32

(21)Application number: 03-014388

(71)Applicant: TOSHIBA LIGHTING & TECHNOL

CORP

(22)Date of filing:

05.02.1991

(72)Inventor: YUGE YOJI

(54) FILAMENT AND ELECTRIC BULB USING SAME

(57) Abstract:

PURPOSE: To provide a filament high in the radiation of variable light range while low that of the other range leading improvement in efficiency, and an electric bulb using the filament.

CONSTITUTION: A coil made of high melting point metal heated by current supplied is surrounded by a surrounding body having an ultrafine gap. With the gap of the surrounding body radiation of spacified wavelength is controlled. With such a surrounding body for surrounding the coil a fine uneven part with a good regularity is formed on the surface of a filament, whereby transmission of visible light is allowed through the fiffraction action of the fine gap while the radiation of the other wavelength range is restricted.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

This Page Blank (uspto)

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-349338

(43)公開日 平成4年(1992)12月3日

(51) Int.Ci.*

識別配号

庁内整理番号

技術表示箇所

HOIK 1/14

9172-5E

1/32

B 9172-5E

審査請求 未請求 請求項の数6(全 6 頁)

(21)出願番号

(22)出顯日

特願平3-14388

平成3年(1991)2月5日

(71)出願人 000003757

FI

東芝ライテツク株式会社

東京都港区三田一丁目 4 番28号

(72) 発明者 弓削 洋二

東京都港区三田一丁目4番28号 東芝ライ

テツク株式会社内

(74)代理人 弁理士 鈴江 武彦

フイラメントおよびこれを用いた電球 (54) 【発明の名称】

(57)【要約】

【目的】本発明は、可視光域の放射率が高く、その他の 領域の放射率が低くなって効率が向上するフィラメント およびこれを用いた電球を提供しようとするものであ る.

【構成】本発明は、通電により発熱する高融点金属から なるコイルを、極微細な隙間を有する包囲体で包囲し、 この包囲体の上記極微細な隙間により所定の波長の放射 卑を規制したことを特徴とするフィラメント、およびこ のようなフィラメントを用いた電球である。

【作用】本発明によると、コイルを極微細な隙間を有す る包囲体で囲んだのでフィラメントの表面に規則正しい 微細な凹凸が形成され、この微細なギャップの回折作用 で可視光の透過を許し、その他の波長域の放射を規制す る。

【特許請求の範囲】

【請求項1】 通電により発熱する高融点金属からなる コイルを、極微細な隙間を有する包囲体で包囲し、この 包囲体の上記極微細な隙間により所定の波長の放射率を 規制したことを特徴とするフィラメント。

1

【請求項2】 上記包囲体は極細のワイヤを上記コイル に巻き付けて形成し、上記極微細な隙間は上記極細のワ イヤを所定のピッチで巻くことにより形成したことを特 徴とする請求項1に記載したフィラメント。

【請求項3】 通電により発熱する高融点金属からなる コイルの表面に極微細の凹凸面を規則的に形成し、この 極微細な凹凸面により所定の波長の放射率を規制したこ とを特徴とするフィラメント。

【請求項4】 パルブ内にフィラメントを収容し、この フィラメントは通電により発熱する高融点金属からなる コイルを極微細な隙間を有する包囲体で包囲して形成し たことを特徴とする電球。

【請求項5】 バルブ内にフィラメントを収容し、この フィラメントは通電により発熱する高融点金属からなる コイル表面に極微細な凹凸面を規則的に形成したことを 20 特徴とする電球。

【請求項6】 上記パルブの内面または外面に、赤外線 を反射し可視光を透過するフィルタ膜を設けたことを特 徴とする請求項4または請求項5に記載された電球。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、白熱電球またはハロゲ ン電球等に用いられるフィラメント、およびこのフィラ メントを用いた低球に関する。

[0002]

【従来の技術】一般に白熱電球は、通電により発熱する 熱放射体、すなわちフィラメントをパルプ内に収容し、 このフィラメントに通覧することによりこのフィラメン トを発熱させ、この熱放射によって可視光を放射するよ うになっていることは知られている。このようなフィラ メントは通常、タングステンやモリブデン等のような高 融点金属からなるワイヤを単コイルまたは二重コイルに して成形されている。

【0003】この種のフィラメントは熱放射により可視 光を放射するものであるが、波長によって分光放射率の 40 【0012】また、本発明の他のフィラメントは、通恒 異なる選択放射性を有している。そして、通常による発 熱によって熱放射するという特性のため、可視光の放射 ばかりでなく、熱放出つまり赤外線およびそれ以上の波 長域の放射が避けられない。

【0004】しかしながら、フィラメントを発光源とし て用いる限りにおいては、赤外線の放出は必要でなく、 可視光のみを発してくれることが望ましい。つまり、熱 エネルギーとして無駄に捨てられる電力が少ない程ラン ブ効率は高くなる。

光を放射させるフィラメントは、図7に示す通り、可視 光域(波長が約380~650回)のエネルギーの放射 率 ϵ が ϵ = 1 であって、かつ熱として無駄に放熱される 赤外線域(波長は約650㎜以上)およびそれ以上の領 域のエネルギーの放射率 ϵ が $\epsilon = 0$ に近い放射体である ことが理想である。

【0006】例えば、E. Kauerの計算によると、 色温度2000Kの放射体では、波長700m以下のエ ネルギーの放射率 ϵ が ϵ = 1 であり、波長 7 0 0 me ϵ 超 10 えるエネルギーの放射率 ϵ が $\epsilon = 0$ の場合は、この放射 体の効率は約2001m/Wにも及ぶことが呈示されてい る.

【0007】本発明者等の計算によれば、可視光域(波 長が約380~650mm) のエネルギーの放射率 ϵ が ϵ = 1 であり、その他の波長域のエネルギーの放射率 ϵ が $\varepsilon=0$ とした仮想放射体の場合、その放射体の色温度を 2200Kとすればその効率は約350lm/Wにも達す ることが判っている。

[0008]

【発明が解決しようとする課題】しかし、これらは理論 上でのことであり、実際にこのような理想放射体を作り 出すことは不可能である。

【0009】ところで、本発明者等は回析格子を詳細に 研究したところ、表面に微細な凹凸を規則正しく形成す ることにより特定波長域の光を選択的に透過し、他の波 長域の光を遮断することができるとの結論に達した。こ れは波長単位の規則的な凹凸面が一種の回析格子として 働き、高度な波長選択性を示すものと考えられる。

【0010】したがって、本発明の目的とするところ 30 は、上記回析格子の原理を応用し、可視光域の放射率が 高く、その他の領域の放射率を低くして効率が向上する フィラメントおよびこれを用いた電球を提供しようとす るものである。

[0011]

【課題を解決するための手段】本発明のフィラメント は、通電により発熱する高融点金属からなるコイルを、 極微細な隙間を有する包囲体で包囲し、この包囲体の上 記極微細な隙間により所定の波長の放射率を規制したこ とを特徴とする。

により発熱する高融点金属からなるコイルの表面に規則 的に極微細な凹凸面を形成し、この極微細な凹凸面によ り所定の波長の放射率を規制したことを特徴とする。

【0013】本発明の電球は、パルプ内にフィラメント を収容し、このフィラメントは通電により発熱する高融 点金属からなるコイルを極微細な隙間を有する包囲体で 包囲して形成したことを特徴とする。

【0014】また、本発明の他の電球は、バルブ内にフ イラメントを収容し、このフィラメントは通電により発 【0005】したがって、このように熱放射により可視 50 熱する高融点金属からなるコイル表面に規則的に極微細 な凹凸面を形成したことを特徴とする。

[0015]

【作用】本発明のフィラメントは、コイルを極微細な隙 間を有する包囲体で囲む、またはコイルの表面に極微細 な凹凸面を規則的に形成したので、フィラメントの表面 に微細なギャップを規則的に形成することができ、この 微細なギャップは一種の回折格子の作用を奏し、所定の 波長域の光は外部に放射し、つまり可視光の透過は許す が、赤外線およびそれ以上の波長域の放射を規制する。 このため可視光域の放射率が高くなり、効率が向上す る。また、本発明の電球は、可視光域の放射率が高くな り、その他の領域の放射率が低くなるから、効率が良く なる。

[0016]

【実施例】以下本発明について、図1ないし図3に示す 第1の実施例にもとづき説明する。

【0017】図は投光器等の光源として使用されるハロ ゲン電球を示し、1は石英ガラスからなるバルブであ る。このバルブ1は一端が圧潰封止されているととも に、このパルプ1内に熱放射体としてのフィラメント2 が収容されている。このフィラメント2は両端が内部リ ード線3、3に連なっており、これら内部リード線3、 3は上記圧漬封止部4に導入されている。この圧潰封止 部4にはモリブデンなどからなる金属箔導体5、5は封 着されており、上記内部リード線3、3は金属箔導体 5、5に接続されている。これら金属箔導体5、5には 外部リード線6、6が接続されており、これら外部リー ド線6、6は圧潰封止部4の端部から導き出されてい る。なお、パルブ1内にはよう素、塩素、臭素などのハ ロゲンと不活性ガスが封入されている。

【0018】上記フィラメント2は、図3にも示す通 り、タングステンやモリブデンなどの高融点ワイヤを単 コイルに成形したもので、例えば線径70μm程度の夕 ングステンよりなるコイル素線7が使用されている。

【0019】このコイル素線7は包囲体8により包囲さ れている。本実施例の包囲体8は微細径の高融点ワイ ヤ、例えばタングステンにより構成されており、上記コ イル素線7の外面に線径1~6μm程度、例えば線径6 μmのタングステンワイヤを赤外線波長 (0.8~10 えば 0.5 μmの等間隔ピッチをなしてコイル状に巻い てある。

【0020】このような極細径のタングステンワイヤ8 をコイル素線7の外面に巻回することにより、このフィ ラメント2の表面にはタングステンワイヤ8による赤外 線波長単位の規則正しい微細な凹凸面が形成されること になる。

【0021】上記パルブ1の外表面または内表面には、 赤外線を反射し可視光を透過する波長選択透過性、つま り光干渉作用をなすフィルタ膜9が形成されている。こ 50

のフィルタ膜9は、例えばTi〇2 等の高屈折率の金属 酸化膜からなる層と、SIO: 等の低屈折率の金属酸化 膜からなる層を交互に重層して構成した多層干渉膜構造 により形成され、中心波長が1μm (=1000m) の 赤外線域の光は反射し、380~650 mmの可視光を透 過する機能をもつ。このような構成のハロゲン電球につ いて作用を説明する。

【0022】フィラメント2に通電すると、このフィラ メント2は抵抗発熱により発光する。この場合、フィラ メント2は、単コイル7の表面に極細径のタングステン ワイヤ8を巻回することにより、コイル素線7の表面を 赤外線波長単位の規則正しい微細な凹凸面にしてあるか ら、放射率の顕著な波長選択性を奏する。つまり、この フィラメント2から放射される光は、表面に形成された 凹凸面の状況に応じた光の回析現象を奏し、波長選択作 用を生じる。上記凹凸面は極細径のタングステンワイヤ 8を規則正しいピッチで巻回することにより形成されて おり、具体的にはコイル間を 0. 5 μm (= 5 0 0 nm) のピッチとなるように間隙を形成してあるから、このピ ッチの2倍に応じたカット波長、つまり1μm (=10 0 0 nm) を中心とした赤外線領域の光の放出がカットさ れる.

【0023】一般にタングステンからなるフィラメント の放射率は、全波長域で一様でなく放射選択性を有して おり、可視光域 (380~650mm) の放射率 E は O. 45程度で、10 μ mの領域では放射率 ϵ = 0.1~ 0. 15程度である (二重コイルの場合放射率は高くな る)。したがって遠赤外線域での放射率は比較的低いか ら、極細ワイヤの径を大きくしたり、コイルピッチを1 30 0μmを超えるように形成しても、波長選択性の効果が 少なくなる。

【0024】このような実施例のフィラメント2を電球 に組み込んで点灯させた場合、2500Kの温度で最大 効率は約491m/Wが得られた。また、2800Kの温 度の場合は最大効率約65lm/Wを得ることができた。

【0025】またタングステンワイヤ8のピッチを0. $75 \mu m$ として遮断波長城を $1...5 \mu m$ にした場合で も、2800Kの温度の場合は約29lm/Wの効率を得 ることができた。したがって、このような本発明のフィ μ m) に相当する間隔の1/2 ($0.4\sim5\mu$ m)、例 40 ラメント2は、赤外線およびそれ以上の波長域を規制し て可視光域の放射率を高くすることができ、効率が向上 「する。

> 【0026】また、上記可視光波長の選択透過性に優れ たフィラメント2は、タングステンコイル素線7の外面 に、極細のタングステンワイヤ8を等ピッチで巻き付 け、これをコイリング成形することにより得られるから 製造が容易であり、規則正しい凹凸面を容易に得ること ができる。

【0027】そして、このようなフィラメント2を収容 したパルプ2の外表面に、光干渉作用をなすフィルタ膜

-221-

5

9を形成した場合は、このフィルタ膜9は中心波長が1 μm (= 1 0 0 0 nm) の赤外線域の光を反射してフィラ メント2に戻し、380~65000の可視光を透過する ので、ランプから赤外線が外部に無駄に放射されること が少なくなり、しかもフィラメント2に戻された赤外線 はフィラメント2を加熱してその発熱を助けるからラン プ効率がきわめて向上する。

【0028】この場合、フィラメント2自身が1µmの 赤外線領域の放射を低減し、かつ上記パルプ2の外表面 に形成したフィルタ膜10も同じく1μmの赤外線領域 を反射するので、効率は極めて向上することになる。

【0029】また、上記フィラメント2は可視光域での 単位面積当りの放射エネルギーが増えるので、従来のラ ンプと同等の光量を得ようとするとフィラメント2を小 形、コンパクト化することもでき、ランプの小形化に有 効となる。

【0030】図3は分光特性を示すもので、特性Aは図 I および図2で示す本発明のハロゲン電球、特性Bは従 来のフィラメントを用いしかしながらバルブの外面に光 干渉フィルタ膜9を形成したハロゲン電球、特性Cは従 20 来のフィラメントを用いしかしながらバルブの外面に光 干渉フィルタ膜9を形成しないタイプのハロゲン電球の 場合である。特性Aから理解できるように、本発明の意 球は赤外線およびそれ以上の波長域を規制し、可視光域 の放射率を高くすることができる。なお、本発明は上記 実施例に制約されるものではない。

【0031】すなわち、上記実施例では包囲体として、 極細径のタングステンワイヤ8を等ピッチでコイル素線 7の外面に巻き付けて構成したが、図4の第2の実施例 で示す通り、コイル素線7の外面に、多数の微小孔10 30 図。 X: …を規則正しく形成したチューブ11を披せ、これをコ イリング成形してフィラメントを作るようにしてもよ い。この場合、上記多数の微小孔10…を形成したこと によりチューブ11の外面は凹凸面となり、この微小孔 10…の径を0、5 µm (=500nm) に形成すること により、これらのギャップに応じた波長をカットするこ。 とができる。

【0032】また、本発明は、上記実施例のようにコイ ル素線7の外面に包囲体を設ける代りに、図5の第3の 実施例に示す通り、既にコイル成形されたフィラメント 40 【図8】本発明の第5の実施例に係るハロゲン電球の正 となるコイル本体21を全体に亘り包囲体22で覆い、 この包囲体22をコイルまたはチューブで構成するよう にしてもよい。

【0033】この場合、コイルまたはチューブからなる 包囲体22は、放射を阻止しようとする波長域に相当す る大きさの隙間や孔23…などのようなギャップを形成 するものである。

6

【0034】さらに、本発明は、図6の第4の実施例の ように、コイル素線7の表面に直接凹凸面30を形成し てもよい。この場合、凹凸面30の粗さは放射を阻止し ようとする波長域に相当する大きさの凹凸とすればよ く、このようにしても凹凸面30が偏光および干渉作用 により特定波長の光を選択的に放射する機能を奏する。 そして、ランプは図8に示す第5の実施例のように、フ ィラメント2を縦形 (C-8形) にした場合であっても よい。また、本発明のフィラメントは、ハロゲン電球に 使用することに制約されるものではなく、一般の白熱な 球に適用してもよい。また、バルブ1の表面に赤外線反 射可視光透過のフィルタ膜9を形成したランプに制約さ れるものでもない。

[0035]

【発明の効果】以上説明したように本発明のフィラメン トによれば、フィラメントの表面に形成した規則正しい 徴稲なギャップが回折作用を奏し、所定の波長域の光を 選択して外部に放射するようになり、したがって可視光 の透過を許し、赤外線およびそれ以上の波長域の放射を 規制する。このため可視光域の放射率が高くなり、その 他の領域の放射率が低くなって効率が向上する。また、 本発明の電球は、可視光域の放射率が高くなり、その他 の領域の放射率が低くなるから、効率が良くなる。

【図面の簡単な説明】

【図1】(a)図は本発明の一実施例に係るハロゲン量 球の正面図、(b)図はそのフィラメントの正面図。

【図2】同実施例のフィラメントを拡大して示す断面

【図3】 同実施例のランプと従来のランプの分光特性を 示す特性図。

【図4】本発明の第2の実施例に係るフィラメントを拡 大して示す断面図。

【図5】本発明の第3の実施例に係るフィラメントの断 面図。

【図6】本発明の第4の実施例に係るフィラメントを拡 大して示す断面図。

【図7】理想的な分光放射率の特性図。

面図。

【符号の説明】

1…パルプ、2…フィラメント、7…コイル素線、8… 極細径のコイルワイヤ、9…干渉フィル夕膜、11、2 2…チューブ、30…凹凸面。

[図6]

[図4]

[图8]

