EI5IS102 Traitement de l'Information

Lecture 1: Principal Component Analysis

Charles Brazier

Postdoctoral researcher Université de Bordeaux, CNRS, Bordeaux INP, LaBRI France

The data analysis process

Types of data

Qualitative (categories)

Nominal:

Ordered:

Quantitative (numerical values)

Interval (discrete or continuous):

Ratio:

Content of this course

How to represent data represented by high-dimensional data tables?

Question 1: which data?

- Quantitative data: numerical values
- Qualitative data: categories, textual data, questionnaires, etc.

Question 2: which analysis?

- Quantitative data: PCA (Principal Component Analysis)
- Qualitative data: MCA (Multiple Correspondence Analysis)

Question 3: how to visualize the data?

Dimension reduction: preprocessing data for clustering and classification

Content of this course

How to represent data represented by high-dimensional data tables?

Question 1: which data?

- Quantitative data: numerical values
- Qualitative data: categories, textual data, questionnaires, etc.

Question 2. wnich analysis?

- Quantitative data: **PCA** (Principal Component Analysis)
- Qualitative data: MCA (Multiple Correspondence Analysis)

Question 3: how to visualize the data?

- Dimension reduction: preprocessing data for clustering and classification

Multidimensional data: data with multiple attributes, each represented as a dimension

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Banoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

Multidimensional data: data with multiple attributes, each represented as a dimension

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Banoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

Multidimensional data: data with multiple attributes, each represented as a dimension

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Banoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

Multidimensional data: data with multiple attributes, each represented as a dimension

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Banoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Banoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

Objectives:

- How to visualize and interpret large datasets
- How to reduce high-dimensional data while preserving important information

Answered questions:

- What brands can be considered similar?
- Which attributes are discriminating or redundant?
- ...

variables

	Namo	b	itter	swe	eet	ac	id	sal	ted	alca	aline
/	St Yorre	1	3.4	2	1	2	9	6	4	4	.ŏ
	Banoit	١	3.8	2.	6	2.	7	4.	7	4	.5
	Vichy		2.9	2.	9	2.	.1	6.	0	5	.0
\	Quézac	/	3.9	2.	6	3.	.8	4.	7	4	.3

What will be computed during an analysis?

- Distance matrix between observations/instances

	St Yorre	Badoit	Vichy	Quézac
St Yorre	0.000000	1.852026	1.063015	2.109502
Badoit	1.852026	0.000000	1.788854	1.122497
Vichy	1.063015	1.788854	0.000000	2.481935
Quézac	2.109502	1.122497	2.481935	0.000000

Correlation matrix between attributes/variables

	bitter	sweet	acid	salted	alcaline
bitter	1.000000	-0.688487	0.812214	-0.790405	-0.966917
sweet	-0.688487	1.000000	-0.425165	0.988248	0.787839
acid	0.812214	-0.425165	1.000000	-0.518347	-0.860243
salted	-0.790405	0.988248	-0.518347	1.000000	0.863737
alcaline	-0.966917	0.787839	-0.860243	0.863737	1.000000

Why PCA?

- Data visualization: from many to 2D plots
- Noise reduction: identify and remove less important dimensions
- Help for classification and clustering

Notations

Objective: visualize the data cloud of **instances** described by different **variables**

- x_i^j : observation of **variable j** of **instance i**
- n: number of instances
- p: number of variables

Multidimensional quantitative data represented by a matrix of *n* lines and *p* columns

$$X = \begin{pmatrix} x_1^1 & \dots & x_1^p \\ \vdots & \ddots & \vdots \\ x_n^1 & \dots & x_n^p \end{pmatrix}$$

Name	bitter	sweet	acid	salted	alcaline
St Yorre	3.4	3.1	2.9	6.4	4.8
Banoit	3.8	2.6	2.7	4.7	4.5
Vichy	2.9	2.9	2.1	6.0	5.0
Quézac	3.9	2.6	3.8	4.7	4.3

1 n and p can be very large!

Data analysis with music data

name	artist	danceability	energy	key	loudness	speechiness	acousticness	instrumentalness	liveness va	lence	tempo	duration	sign
190306-1	Hideyuki	0.43100	0.02030	9	-27.7570	0.048400	0.993000	0.940000	0.09060 0.2	26600	175.4410	155533	3
1st of T	Bone Thu	0.72900	0.58100	5	-8.2350	0.180000	0.077700	0.000004	0.696000.5	50800	74.0380	314680	4
28	Zach Bry	0.49200	0.51900	7	-6.8860	0.028800	0.227000	0.000085	0.06930 0.4	43500	80.8680	233333	3
93 'Til	Souls Of	0.59000	0.67200	1	-11.7920	0.412000	0.125000	0.000001	$0.14700 \ 0.6$	68800	206.2470	286440	4
A Bar So	Shabooze	0.72200	0.70900	9	-4.9500	0.027300	0.063300	0.000000	0.08040 0.6	60400	81.0120	171292	4
A Cigare	Gavin Ad	0.61000	0.15000	7	-11.9460	0.028400	0.855000	0.000002	0.12800 0.2	21000	136.0890	179883	4
A New St	Ferragno	0.35000	0.01500	8	-28.4700	0.050900	0.994000	0.958000	0.115000.2	29300	124.7840	155040	4
A Safe S	Aramis M	0.42200	0.01560	10	-28.8430	0.044900	0.993000	0.919000	0.106000.2	24800	115.4160	148299	4
A quiet	Christia	0.45700	0.00836	7	-28.7330	0.039500	0.995000	0.955000	0.08570 0.2	28500	54.6210	122445	4
A tale t	Luiza Sc	0.38600	0.01280	1	-28.6600	0.039600	0.991000	0.931000	0.109000.1	18900	126.3740	130134	4
ATLiens	Outkast	0.91800	0.73400	11	-2.8320	0.269000	0.029600	0.000008	0.191000.6	60800	97.0440	230693	4
Adieux	Ludovico	0.22500	0.00407	3	-37.1070	0.046400	0.987000	0.936000	0.11200 0.3	32000	73.5950	175493	4
Afterlig	Arlo Thi	0.38300	0.01430	1	-30.2790	0.044400	0.993000	0.914000	0.097500.2	18300	71.0290	200250	3
Ain't No	Luke Com	0.48700	0.65800	5	-9.9730	0.029600	0.008770	0.007770	0.10000 0.2	28200	142.1800	210950	4
Almenno	Rhian Ca	0.43400	0.01200	2	-35.8260	0.032100	0.992000	0.896000	0.106000.2	29300	107.4370	167189	4
Almost A	Florenti	0.43000	0.06880	7	-27.3940	0.026800	0.990000	0.909000	0.10700 0.2	21400	83.5730	173133	4
Am I Oka	Megan Mo	0.59300	0.73400	9	-5.4160	0.051400	0.020000	0.000000	$0.13800 \ 0.3$	51800	125.9370	235003	4
Ante Up	M.O.P.	0.69900	0.79300	1	-4.8560	0.268000	0.005140	0.000003	0.700000.9	92900	94.1380	248693	4
Arabesco	Lorenzo	0.36800	0.00394	3	-34.8920	0.050600	0.991000	0.903000	0.11400 0.1	13900	103.9680	155944	4
Arbor	Samuel K	0.35200	0.00519	2	-34.3590	0.043600	0.995000	0.963000	0.09810 0.4	41400	89.4750	155500	4

Spotify API: 250 instances (n=250), 12 variables (p=12)

Data analysis with music data $\mathbf{x^1} \in \mathbb{R}^n$

name	artist	danceability	energy	key	loudness	speechiness a	acousticness in	strumentalness	s liveness valence tempo	duration	n sign.
190306-1	Hideyuki	0.43100	0.02030	9	-27.7570	0.048400	0.993000	0.940000	0.09060 0.26600 175.441	0 155533	3
1st of T	Bone Thu	0.72900	0.58100	5	-8.2350	0.180000	0.077700	0.000004	0.69600 0.50800 74.0380	314680	4
28	Zach Bry	0.49200	0.51900	7	-6.8860	0.028800	0.227000	0.000085	0.06930 0.43500 80.8680	233333	3
93 Til	Souls Of	0.59000	0.67200	1	-11.7920	0.412000	0.125000	0.000001	0.14700 0.68800 206.247	0 286440	4
A Bar So	. Shabooze	0.72200	0.70900	9	-4.9500	0.027300	0.063300	0.000000	0.08040 0.60400 81.0120	171292	4
P A Cigare	Gavin Ad	0.61000	0.15000	7	-11.9460	0.028400	0.855000	0.000002	$0.12800\ 0.21000\ 136.089$	0 179883	4
A New St.	Ferragno	0.35000	0.01500	8	-28.4700	0.050900	0.994000	0.958000	$0.11500\ 0.29300\ 124.784$	0 155040	4
A Safe S	Aramis M	0.42200	0.01560	10	-28.8430	0.044900	0.993000	0.919000	$0.10600\ 0.24800\ 115.416$	0 148299	4
A quiet	Christia	0.45700	0.00836	7	-28.7330	0.039500	0.995000	0.955000	0.08570 0.28500 54.6210	122445	4
A tale t	Luiza Sc	0.38600	0.01280	1	-28.6600	0.039600	0.991000	0.931000	$0.10900\ 0.18900\ 126.374$	0 130134	4
ATLiens	Outkast	0.91800	0.73400	11	-2.8320	0.269000	0.029600	0.000008	0.19100 0.60800 97.0440	230693	4
Adieux	Ludovico	0.22500	0.00407	3	-37.1070	0.046400	0.987000	0.936000	0.11200 0.32000 73.5950	175493	4
Afterlig	Arlo Thi	0.38300	0.01430	1	-30.2790	0.044400	0.993000	0.914000	0.09750 0.18300 71.0290	200250	3
Ain't No	Luke Com	0.48700	0.65800	5	-9.9730	0.029600	0.008770	0.007770	$0.10000\ 0.28200\ 142.180$	0 210950	4
Almenno	. Rhian Ca	0.43400	0.01200	2	-35.8260	0.032100	0.992000	0.896000	$0.10600\ 0.29300\ 107.437$	0 167189	4
Almost A.	. Florenti	0.43000	0.06880	7	-27.3940	0.026800	0.990000	0.909000	0.10700 0.21400 83.5730	173133	4
Am I Oka.	Megan Mo		0.73400	9	-5.4160	0.051400	0.020000	0.000000	$0.13800\ 0.51800\ 125.937$	0 235003	4
Ante Up		0.69900	0.79300		-4.8560	0.268000	0.005140	0.000003	0.70000 0.92900 94.1380	248693	4
Arabesco	Lorenzo	0.36800	0.00394	3	-34.8920	0.050600	0.991000	0.903000	0.11400 0.13900 103.968		
Arbor	Samuel K	0.35200	0.00519		-34.3590	0.043600	0.995000	0.963000	0.09810 0.41400 89.4750		4

Spotify API: 250 instances (n=250), 12 variables (p=12)

Instance: $x_i = (x_i^1, ..., x_i^p)$

Data cloud: $\{x_1, \dots, x_n\}$

		Namo	t	oitter	sweet	acid	salted	alcaline	
	/	St Yorre		3.4	3.1	2.9	6.4	4.8	
		Banoit	\ 	3.8	2.6	2.7	4.7	4.5	
	Vichy 2	2.9	2.9	2.1	6.0	5.0			
instances '		Quézac		3.9	2.6	3.8	4.7	4.3	

Objective: provide the best simplified representation of the data

Example 3D→2D: which projection seems better?

Instance: $x_i = (x_i^1, ..., x_i^p)$

Data cloud: $\{x_1, \ldots, x_n\}$

bitter sweet acid salted alcaline St Yorre 3.4 3.1 6.4 Banoit 2.7 4.7 Vichy 2.1 instances 3.8 4.3

Objective: provide the best simplified representation of the data

- Find a subspace E_k of \mathbb{R}^p of dimension k
- Define k **new** variables linear combination of the p initial variables
- Lose as little information as possible

New variables: principal components

Instance: $x_i = (x_i^1, ..., x_i^p)$

Data cloud: $\{x_1, \ldots, x_n\}$

St Yorre 3.4 3.1 2.9 6.4 Banoit 2.7 4.7 Vichy 2.1 5.0 instances Quézac 2.6 3.8 4.3

bitter

sweet

acid

salted

alcaline

Objective: provide the best **simplified** representation of the data

- Find a subspace $\mathbf{E}_{\mathbf{k}}$ of \mathbb{R}^p of dimension k
- Define Is new variables linear combination of the p initial variables

Lose as little information as possible

New variables: principal components

"Lose as little information as possible"

- Find the best E_r that fits as well as possible to the cloud in instances
- The sum of of the squared **distances** of the instances to E_k must be minimized
- Subspace E_k where the projected cloud of instances has maximum inertia

"Lose as little information as possible"

- Find the best E_r that fits as well as possible to the cloud in instances
- The sum of of the squared **distances** of the instances to E_k must be minimized
- Subspace E_k where the projected cloud of instances has maximum inertia

Euclidean distance in a space of different units?

Inertia?

Center, scale, and standardize the data

Centering: subtracting the mean value of the variable

$$x_i^j \leftarrow x_i^j - \mu_j \text{ where } \mu_j = \frac{1}{n} \sum_{i=1}^n x_i^j$$

Scaling: dividing by the standard deviation of the variable

$$x_i^j \leftarrow x_i^j/\sigma_j$$
 where $\sigma_j^2 = \frac{1}{n} \sum_{i=1}^n (x_i^j - \mu_j)^2$

Standardization: centering and scaling

$$x_i^j \leftarrow \frac{x_i^j - \mu^j}{\sigma^j}$$

Standardized data

We set:

$$\tilde{x}_i^j = \frac{x_i^j - \mu^j}{\sigma_j}$$

Standardized variable:

$$ilde{\mathbf{X}} = egin{pmatrix} ilde{x}_1^1 & \dots & ilde{x}_1^p \ dots & \ddots & dots \ ilde{x}_n^1 & \dots & ilde{x}_n^p \end{pmatrix}$$

Data

name	artist	danceability	energy	key	loudness	speechines	s acousticness	instrumentalness	liveness valer	ce tempo	duration	sign.
190306-1	Hideyuki	0.43100	0.02030	9	-27.7570	0.048400	0.993000	0.940000	0.09060 0.266	00 175.4410	155533	3
1st of T	Bone Thu	0.72900	0.58100	5	-8.2350	0.180000	0.077700	0.000004	0.696000.508	00 74.0380	314680	4
28	Zach Bry	0.49200	0.51900	7	-6.8860	0.028800	0.227000	0.000085	$0.06930\ 0.435$	00 80.8680	233333	3
93 'Til	Souls Of	0.59000	0.67200	1	-11.7920	0.412000	0.125000	0.000001	$0.14700\ 0.688$	00 206.2470	286440	4
A Bar So	Shabooze	0.72200	0.70900	9	-4.9500	0.027300	0.063300	0.000000	0.08040 0.604	00 81.0120	171292	4
A Cigare	Gavin Ad	0.61000	0.15000	7	-11.9460	0.028400	0.855000	0.000002	$0.12800\ 0.210$	00 136.0890	179883	4
A New St	Ferragno	0.35000	0.01500	8	-28.4700	0.050900	0.994000	0.958000	$0.11500 \ 0.293$	00 124.7840	155040	4
A Safe S	Aramis M	0.42200	0.01560	10	-28.8430	0.044900	0.993000	0.919000	$0.10600\ 0.248$	00 115.4160	148299	4
A quiet	Christia	0.45700	0.00836	7	-28.7330	0.039500	0.995000	0.955000	$0.08570\ 0.285$	00 54.6210	122445	4
A tale t	Luiza Sc	0.38600	0.01280	1	-28.6600	0.039600	0.991000	0.931000	$0.10900\ 0.189$	$00\ 126.3740$	130134	4
ATLiens	Outkast	0.91800	0.73400	11	-2.8320	0.269000	0.029600	0.000008	0.191000.608	00 97.0440	230693	4
Adieux	Ludovico	0.22500	0.00407	3	-37.1070	0.046400	0.987000	0.936000	$0.11200 \ 0.320$	00 73.5950	175493	4
Afterlig	Arlo Thi	0.38300	0.01430	1	-30.2790	0.044400	0.993000	0.914000	$0.09750\ 0.183$	00 71.0290	200250	3
Ain't No	Luke Com	0.48700	0.65800	5	-9.9730	0.029600	0.008770	0.007770	$0.10000 \ 0.282$	00 142.1800	210950	4
Almenno	Rhian Ca	0.43400	0.01200	2	-35.8260	0.032100	0.992000	0.896000	$0.10600\ 0.293$	00 107.4370	167189	4
Almost A	Florenti	0.43000	0.06880	7	-27.3940	0.026800	0.990000	0.909000	$0.10700\ 0.214$	00 83.5730	173133	4
Am I Oka	Megan Mo	0.59300	0.73400	9	-5.4160	0.051400	0.020000	0.000000	$0.13800\ 0.518$	00 125.9370	235003	4
Ante Up	M.O.P.	0.69900	0.79300	1	-4.8560	0.268000	0.005140	0.000003	0.700000.929	00 94.1380	248693	4
Arabesco	Lorenzo	0.36800	0.00394	3	-34.8920	0.050600	0.991000	0.903000	$0.11400\ 0.139$	00 103.9680	155944	4
Arbor	Samuel K	0.35200	0.00519	2	-34.3590	0.043600	0.995000	0.963000	0.09810 0.414	00 89.4750	155500	4

. . .

Standardized data

name a	artist	danceability	energy	key	loudness	speechiness	acousticness	instrumentalness	s liveness vale	nce tempo	duration	sign.
190306-1 I	Hideyuki	-0.8549	-1.1562	1.0508	-0.9291	-0.6585	1.1639	1.2381	-0.5729 -0.8	216 2.2229	-0.8551	-2.4567
lst of T I	Bone Thu	0.7435	0.4922	-0.0439	0.6791	0.4271	-0.9308	-0.8336	3.1925 0.18	860 -1.0725	1.9728	0.2620
28 2	Zach Bry	-0.5277	0.3099	0.5034	0.7903	-0.8202	-0.5891	-0.8334	-0.7053 -0.1	178 -0.8505	0.5273	-2.4567
93 'Til S	Souls Of	-0.0020	0.7597	-1.1388	0.3861	2.3411	-0.8226	-0.8336	-0.2221 0.93	3.2240	1.4710	0.2620
A Bar So S	Shabooze	0.7060	0.8685	1.0508	0.9498	-0.8326	-0.9638	-0.8336	-0.6363 0.58	358 -0.8458	-0.5750	0.2620
A Cigare (Gavin Ad	0.1052	-0.7748	0.5034	0.3734	-0.8235	0.8481	-0.8336	-0.3402 -1.0	548 0.9440	-0.4224	0.2620
A New St I	Ferragno	-1.2893	-1.1717	0.7771	-0.9878	-0.6379	1.1662	1.2778	-0.4211 -0.7	091 0.5766	-0.8638	0.2620
A Safe S	Aramis M	-0.9031	-1.1700	1.3246	-1.0185	-0.6874	1.1639	1.1918	-0.4771 -0.8	$965 \ 0.2721$	-0.9836	0.2620
A quiet (Christia	-0.7154	-1.1913	0.5034	-1.0095	-0.7319	1.1685	1.2712	-0.6033 -0.7	425 -1. <mark>7</mark> 035	-1.4430	0.2620
A tale t I	Luiza Sc	-1.0962	-1.1782	-1.1388	-1.0035	-0.7311	1.1593	1.2183	-0.4584 -1.1	422 0.6283	-1.3064	0.2620
ATLiens (Outkast	1.7573	0.9420	1.5983	1.1243	1.1613	-1.0409	-0.8336	$0.0515 \ 0.60$	024 -0.3248	0.4804	0.2620
Adieux I	Ludovico	-1.9598	-1.2039	-0.5913	-1.6994	-0.6750	1.1502	1.2293	-0.4398 -0.5	967 -1.0869	-0.5004	0.2620
Afterlig A	Arlo Thi	-1.1123	-1.1738	-1.1388	-1.1368	-0.6915	1.1639	1.1808	-0.5299 -1.1	672 -1. <mark>17</mark> 03	-0.0605	-2.4567
Ain't No I	Luke Com	-0.5545	0.7186	-0.0439	0.5359	-0.8136	-1.0886	-0.8165	-0.5144 -0.7	550 1.1419	0.1296	0.2620
Almenno I	Rhian Ca	-0.8388	-1.1806	-0.8651	-1.5938	-0.7930	1.1616	1.1412	-0.4771 -0.7	091 0.0128	-0.6479	0.2620
Almost A I	Florenti	-0.8602	-1.0136	0.5034	-0.8992	-0.8367	1.1571	1.1698	-0.4709 -1.0	381 -0.7626	-0.5423	0.2620
Am I Oka l	Megan Mo	0.0140	0.9420	1.0508	0.9114	-0.6338	-1.0629	-0.8336	-0.2780 0.22	277 0.6141	0.5570	0.2620
Ante Up I	M.O.P.	0.5826	1.1155	-1.1388	0.9575	1.1531	-1.0969	-0.8336	3.2174 1.93	891 -0.4193	0.8002	0.2620
Arabesco I	Lorenzo	-1.1928	-1.2043	-0.5913	-1.5169	-0.6404	1.1593	1.1566	-0.4273 -1.3	504 -0.0998	-0.8478	0.2620
Arbor S	Samuel K	-1.2786	-1.2006	-0.8651	-1.4730	-0.6981	1.1685	1.2888	-0.5262 -0.2	053 -0.5708	-0.8556	0.2620

Standardized data: $\forall j$, $\mu^{j} = 0$ and $\sigma^{j} = 1$

Standardized data

When should data be standardized?

- **Essential** when variables are not expressed in the same unit.

- Generally recommended: gives **equal importance** to each variable.

Huge influence on study results 1.

 \rightarrow To do almost all the time...

Standardized data with weights

It can be useful to weight instances

Each instance i is associated with a weight w_i such as:

$$\forall i, w_i \geq 0 \text{ and } \sum_{i=1}^n w_i = 1$$

Without weighting:

$$w_i = 1/n$$

Inertia

Total inertia: dispersion of the data cloud around the barycenter

$$I = \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}_i - \boldsymbol{\mu}\|^2 \text{ with } \boldsymbol{\mu} = (\mu^1, ..., \mu^p)$$

For standardized data,

$$\mu = \vec{0} \text{ and } \|x_i\|^2 = \sum_{j=1}^p (x_i^j)^2 \text{ so } I = p$$

Weighted inertia:

$$I = \sum_{i=1}^n \frac{\mathbf{w_i}}{\|\mathbf{x}_i - \boldsymbol{\mu}\|^2} \text{ with } \boldsymbol{\mu} = (\mu^1, ..., \mu^p) \text{ and } \mu^j = \frac{1}{n} \sum_{i=1}^n \frac{\mathbf{w_i}}{\|\mathbf{x}_i^j\|^2}$$

Equivalence distance/inertia

Inertia of the projection onto a subspace E where the data is projected

$$I_E = \frac{1}{n} \sum_{i=1}^{n} \|p_E(\boldsymbol{x}_i) - \boldsymbol{\mu}\|^2$$

where $p_E(\mathbf{x}_i)$ is the orthogonal projection of point \mathbf{x}_i onto the subspace E

Maximizing inertia

Question: How to determine the optimal subspace E that maximizes the inertia?

- Find new axes with maximum inertia
- Change of basis in \mathbb{R}^p where the first axis has maximum possible

Let $\mathbf{V} \in \mathbb{R}^{PK}$ be the projection matrix with $\mathbf{v_k}$ being the k-th axis.

Let $XV \in \mathbb{R}^{nK}$ be projection of the data X onto the subspace defined by V

$$\operatorname{Inertia}(\boldsymbol{X}\boldsymbol{V}) = \frac{1}{n} \sum_{i=1}^{n} \|(\boldsymbol{X}\boldsymbol{V})_i\|^2 = \frac{1}{n} \langle \boldsymbol{X}\boldsymbol{V}, \boldsymbol{X}\boldsymbol{V} \rangle = \operatorname{trace}(\boldsymbol{V}^T \frac{1}{n} \boldsymbol{X}^T \boldsymbol{X}\boldsymbol{V})$$
Covariance matrix

Maximizing inertia

Covariance matrix:

$$oldsymbol{\Sigma} = rac{1}{n} oldsymbol{X}^T oldsymbol{X} = egin{pmatrix} \sigma_1^2 & \operatorname{Cov}(oldsymbol{x}^1, oldsymbol{x}^2) & \ldots & \operatorname{Cov}(oldsymbol{x}^1, oldsymbol{x}^p) \ & \ddots & & dots \ & dots & \ddots & dots \ & \ddots & \ddots & dots \ & \operatorname{Cov}(oldsymbol{x}^1, oldsymbol{x}^p) & \ldots & \ldots & \sigma_p^2 \end{pmatrix}$$

where
$$\operatorname{Cov}(\boldsymbol{x}^j, \boldsymbol{x}^{j'}) = \frac{1}{n} \sum_{i=1}^n (x_i^j - \mu^j)(x_i^{j'} - \mu^{j'})$$
 and $\sigma_j^2 = \operatorname{Cov}(\boldsymbol{x}^j, \boldsymbol{x}^j)$

Correlation matrix:

$$C = \frac{1}{n}\tilde{\boldsymbol{X}}^T\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & \frac{\operatorname{Cov}(\boldsymbol{x}^1, \boldsymbol{x}^2)}{\sigma_1\sigma_2} & \dots & \frac{\operatorname{Cov}(\boldsymbol{x}^1, \boldsymbol{x}^p)}{\sigma_1\sigma_p} \\ \frac{\operatorname{Cov}(\boldsymbol{x}^1, \boldsymbol{x}^2)}{\sigma_1\sigma_2} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \frac{\operatorname{Cov}(\boldsymbol{x}^1, \boldsymbol{x}^p)}{\sigma_1\sigma_p} & \dots & \dots & 1 \end{pmatrix} \text{ Values in [-1;1]}$$

$$\to \text{ interpretable}$$

Maximizing inertia

Question: How to find *V*?

Since correlation matrix $m{c}$ is symmetric: $m{C} = m{Q} m{\Lambda} m{Q}^T$

- $Q \in \mathbb{R}^{p \times p}$ orthogonal matrix whose columns are the eigenvectors of C
- $\Lambda \in \mathbb{R}^{p \times p}$ diagonal matrix with the corresponding eigenvalues $\lambda_1, ..., \lambda_p$ of C

Let's write $oldsymbol{V} = oldsymbol{Q} oldsymbol{U}$

Thus,

$$\operatorname{trace}(\boldsymbol{V}^T\boldsymbol{C}\boldsymbol{V}) = \operatorname{trace}((\boldsymbol{Q}\boldsymbol{U})^T\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^T(\boldsymbol{Q}\boldsymbol{U})) = \operatorname{trace}(\boldsymbol{U}^T\boldsymbol{\Lambda}\boldsymbol{U})$$

The trace is maximal when $\, oldsymbol{U} = oldsymbol{I} \, \operatorname{so} \, oldsymbol{V} = oldsymbol{Q} \,$

PCA

Points of view:

- **Geometric**: directions of maximum inertia
- Statistical: independent axes that best explain the variance of the data

How it works:

- Standardize the data
- Compute the covariance matrix
- Extract eigenvalues and eigenvectors
- Project the data onto the principal components

Eigenvalues, eigenvectors

Eigenvalues:
$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_p) \in \mathbb{R}^{p \times p} \text{ with } \lambda_1 \geq \dots \geq \lambda_p$$

Eigenvectors:
$$m{V} = (m{v}_1, \dots, m{v}_p) \in \mathbb{R}^{p imes p} \quad o \quad m{V}_K = (m{v}_1, \dots, m{v}_K) \in \mathbb{R}^{p imes K}$$

Data projection:
$$oldsymbol{S} = oldsymbol{X} oldsymbol{V}_K \in \mathbb{R}^{n imes K}$$

Principal components:
$$\boldsymbol{s}^k = (s_1^k,...,s_n^k)^T$$

Standardized data

name	artist	danceability	energy	key	loudness	speechiness	acousticness	instrumentalness	liveness	valence	tempo	duration	sign.
190306-1	Hideyuki	-0.8549	-1.1562	1.0508	-0.9291	-0.6585	1.1639	1.2381	-0.5729	-0.8216	2.2229	-0.8551	-2.4567
1st of T	Bone Thu	0.7435	0.4922	-0.0439	0.6791	0.4271	-0.9308	-0.8336	3.1925	0.1860	-1.0725	1.9728	0.2620
28	Zach Bry	-0.5277	0.3099	0.5034	0.7903	-0.8202	-0.5891	-0.8334	-0.7053	-0.1178	-0.8505	0.5273	-2.4567
93 'Til	Souls Of	-0.0020	0.7597	-1.1388	0.3861	2.3411	-0.8226	-0.8336	-0.2221	0.9356	3.2240	1.4710	0.2620
A Bar So	Shabooze	0.7060	0.8685	1.0508	0.9498	-0.8326	-0.9638	-0.8336	-0.6363	0.5858	-0.8458	-0.5750	0.2620
A Cigare	Gavin Ad	0.1052	-0.7748	0.5034	0.3734	-0.8235	0.8481	-0.8336	-0.3402	-1.0548	0.9440	-0.4224	0.2620
A New St	Ferragno	-1.2893	-1.1717	0.7771	-0.9878	-0.6379	1.1662	1.2778	-0.4211	-0.7091	0.5766	-0.8638	0.2620
A Safe S	Aramis M	-0.9031	-1.1700	1.3246	-1.0185	-0.6874	1.1639	1.1918	-0.4771	-0.8965	0.2721	-0.9836	0.2620
A quiet	Christia	-0.7154	-1.1913	0.5034	-1.0095	-0.7319	1.1685	1.2712	-0.6033	-0.7425	-1.7035	-1.4430	0.2620
A tale t	Luiza Sc	-1.0962	-1.1782	-1.1388	-1.0035	-0.7311	1.1593	1.2183	-0.4584	-1.1422	0.6283	-1.3064	0.2620
ATLiens	Outkast	1.7573	0.9420	1.5983	1.1243	1.1613	-1.0409	-0.8336	0.0515	0.6024	-0.3248	0.4804	0.2620
Adieux	Ludovico	-1.9598	-1.2039	-0.5913	-1.6994	-0.6750	1.1502	1.2293	-0.4398	-0.5967	-1.0869	-0.5004	0.2620
Afterlig	Arlo Thi	-1.1123	-1.1738	-1.1388	-1.1368	-0.6915	1.1639	1.1808	-0.5299	-1.1672	-1.1703	-0.0605	-2.4567
Ain't No	Luke Com	-0.5545	0.7186	-0.0439	0.5359	-0.8136	-1.0886	-0.8165	-0.5144	-0.7550	1.1419	0.1296	0.2620
Almenno	Rhian Ca	-0.8388	-1.1806	-0.8651	-1.5938	-0.7930	1.1616	1.1412	-0.4771	-0.7091	0.0128	-0.6479	0.2620
Almost A	Florenti	-0.8602	-1.0136	0.5034	-0.8992	-0.8367	1.1571	1.1698	-0.4709	-1.0381	-0.7626	-0.5423	0.2620
Am I Oka	Megan Mo	0.0140	0.9420	1.0508	0.9114	-0.6338	-1.0629	-0.8336	-0.2780	0.2277	0.6141	0.5570	0.2620
Ante Up	M.O.P.	0.5826	1.1155	-1.1388	0.9575	1.1531	-1.0969	-0.8336	3.2174	1.9391	-0.4193	0.8002	0.2620
Arabesco	Lorenzo	-1.1928	-1.2043	-0.5913	-1.5169	-0.6404	1.1593	1.1566	-0.4273	-1.3504	-0.0998	-0.8478	0.2620
Arbor	Samuel K	-1.2786	-1.2006	-0.8651	-1.4730	-0.6981	1.1685	1.2888	-0.5262	-0.2053	-0.5708	-0.8556	0.2620
		1											

Eigenvalues

Variance explained

 λ_j : inertia of the data cloud projected onto the j-th axis variance explained by the j-th axis

 $I_{E_K}=\lambda_1+...+\lambda_K$: inertia of the data cloud projected onto the subspace ${\it E_K}$ variance explained by the K first axes

$$I=\lambda_1+...+\lambda_p$$
 : total inertia

Proportion of variance explained by the first K axes:

$$\frac{I_{E_K}}{I} = \frac{\lambda_1 + \dots + \lambda_K}{\lambda_1 + \dots + \lambda_p}$$

Eigenvalues

Number of axes to keep

Two different criteria:

- Keep axes that explain 95% of the variance

Heuristic: elbow criterion

Eigenvalues

Projected data

name	artist	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12
190306-1	Hideyuki	2.99084	2.45148	-1.27358	-1.42516	0.05321	0.94915	0.17419	-0.08759	0.63915	0.06993	0.22102	0.23690
1st of T	Bone Thu	-2.75400	-0.95215	-0.70456	0.22152	2.55414	-0.99003	-1.17355	-0.61950	-0.01484	-0.01678	-0.18094	0.07622
28	Zach Bry	-0.24675	0.37198	-2.11362	-1.32765	-1.26577	-1.21513	-0.44531	-0.13778	-0.71184	0.07937	-0.52654	-0.00507
93 'Til	Souls Of	-2.44318	1.39613	1.89437	-2.00597	0.34621	2.54613	-0.19956	0.23083	-0.36362	-0.15316	-0.21022	0.03277
A Bar So	Shabooze	-1.30580	0.28978	-0.53976	1.05513	-1.51418	-1.27779	0.50472	0.04544	0.16673	-0.17879	0.00271	-0.06192
A Cigare	Gavin Ad	0.81814	1.08537	0.37003	0.32680	-0.46867	-0.18956	-0.71258	-0.03709	0.98116	1.12227	-0.55942	-0.26979
A New St	Ferragno	2.83394	0.85882	0.13329	0.78288	0.25100	0.52095	0.05022	-0.09341	-0.19430	0.04524	-0.01947	0.24076
A Safe S	Aramis M	2.78061	0.84572	-0.31932	1.25253	0.06509	0.45903	-0.03546	0.02169	0.11883	0.04938	0.04377	0.11667
A quiet	Christia	2.94637	-1.02783	-0.60152	1.42600	-0.21980	-0.40071	0.46252	0.33304	-0.11616	0.06315	-0.00810	0.07368
A tale t	Luiza Sc	3.14906	-0.04518	1.28803	-0.35910	0.24030	0.04714	0.07546	0.25214	0.25231	0.10040	0.03635	0.17753
ATLiens	Outkast	-2.84464	0.21927	-1.07406	1.05686	-0.59230	0.44997	0.02659	0.50706	0.61716	0.00755	0.26676	0.13645
Adieux	Ludovico	3.26260	-1.02613	0.27551	0.38363	0.41953	-0.02722	0.02020	-0.22428	-1.19198	-0.31802	-0.37805	-0.23582
Afterlig	Arlo Thi	3.15221	-1.24534	-1.44618	-1.85160	0.04577	-0.33057	-0.38166	-0.11399	-0.44819	0.04750	-0.06218	-0.00986
Ain't No	Luke Com	-0.50113	1.36321	0.94152	-0.38713	-0.88727	-0.76744	-1.01276	0.14466	-0.13018	-0.46517	-0.21639	-0.04958
Almenno	Rhian Ca	2.92487	-0.57001	0.75924	-0.04927	0.26915	0.28154	0.06183	-0.38013	0.06884	-0.21439	-0.03002	-0.27578
Almost A	Florenti	2.65495	-0.35204	-0.30018	0.99831	-0.02450	-0.05561	-0.35416	-0.14030	-0.19286	0.11910	0.11249	0.09410
Am I Oka	Megan Mo	-1.49962	1.37264	-0.03664	0.40976	-0.87311	-0.57035	-0.51554	-0.36214	-0.25574	-0.27599	-0.03859	0.06816
Ante Up	M.O.P.	-3.46229	-0.82485	0.32312	-0.61151	2.65642	-0.86265	0.93254	-0.15906	-0.39451	-0.03599	-0.01444	0.15477
Arabesco	Lorenzo	3.23485	-0.41720	0.62879	0.15431	0.33503	0.16268	-0.35336	0.16756	-0.05915	-0.15651	-0.06964	-0.19476
Arbor	Samuel K	2.98830	-0.88722	0.59407	0.13281	0.24740	0.10261	0.58006	-0.32232	-0.52839	-0.19661	-0.16897	-0.09219

BORDEAUX Enseirb-Matmec

44

Projected data

name	artist	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12
190306-1	Hideyuki	2.99084	2.45148	-1.27358	-1.42516	0.05321	0.94915	0.17419	-0.08759	0.63915	0.06993	0.22102	0.23690
1st of T	Bone Thu	-2.75400	-0.95215	-0.70456	0.22152	2.55414	-0.99003	-1.17355	-0.61950	-0.01484	-0.01678	-0.18094	0.07622
28	Zach Bry	-0.24675	0.37198	-2.11362	-1.32765	-1.26577	-1.21513	-0.44531	-0.13778	-0.71184	0.07937	-0.52654	-0.00507
93 'Til	Souls Of	-2.44318	1.39613	1.89437	-2.00597	0.34621	2.54613	-0.19956	0.23083	-0.36362	-0.15316	-0.21022	0.03277
A Bar So	Shabooze	-1.30580	0.28978	-0.53976	1.05513	-1.51418	-1.27779	0.50472	0.04544	0.16673	-0.17879	0.00271	-0.06192
A Cigare	Gavin Ad	0.81814	1.08537	0.37003	0.32680	-0.46867	-0.18956	-0.71258	-0.03709	0.98116	1.12227	-0.55942	-0.26979
A New St	Ferragno	2.83394	0.85882	0.13329	0.78288	0.25100	0.52095	0.05022	-0.09341	-0.19430	0.04524	-0.01947	0.24076
A Safe S	Aramis M	2.78061	0.84572	-0.31932	1.25253	0.06509	0.45903	-0.03546	0.02169	0.11883	0.04938	0.04377	0.11667
A quiet	Christia	2.94637	-1.02783	-0.60152	1.42600	-0.21980	-0.40071	0.46252	0.33304	-0.11616	0.06315	-0.00810	0.07368
A tale t	Luiza Sc	3.14906	-0.04518	1.28803	-0.35910	0.24030	0.04714	0.07546	0.25214	0.25231	0.10040	0.03635	0.17753
ATLiens	Outkast	-2.84464	0.21927	-1.07406	1.05686	-0.59230	0.44997	0.02659	0.50706	0.61716	0.00755	0.26676	0.13645
Adieux	Ludovico	3.26260	-1.02613	0.27551	0.38363	0.41953	-0.02722	0.02020	-0.22428	-1.19198	-0.31802	-0.37805	-0.23582
Afterlig	Arlo Thi	3.15221	-1.24534	-1.44618	-1.85160	0.04577	-0.33057	-0.38166	-0.11399	-0.44819	0.04750	-0.06218	-0.00986
Ain't No	Luke Com	-0.50113	1.36321	0.94152	-0.38713	-0.88727	-0.76744	-1.01276	0.14466	-0.13018	-0.46517	-0.21639	-0.04958
Almenno	Rhian Ca	2.92487	-0.57001	0.75924	-0.04927	0.26915	0.28154	0.06183	-0.38013	0.06884	-0.21439	-0.03002	-0.27578
Almost A	Florenti	2.65495	-0.35204	-0.30018	0.99831	-0.02450	-0.05561	-0.35416	-0.14030	-0.19286	0.11910	0.11249	0.09410
Am I Oka	Megan Mo	-1.49962	1.37264	-0.03664	0.40976	-0.87311	-0.57035	-0.51554	-0.36214	-0.25574	-0.27599	-0.03859	0.06816
Ante Up	M.O.P.	-3.46229	-0.82485	0.32312	-0.61151	2.65642	-0.86265	0.93254	-0.15906	-0.39451	-0.03599	-0.01444	0.15477
Arabesco	Lorenzo	3.23485	-0.41720	0.62879	0.15431	0.33503	0.16268	-0.35336	0.16756	-0.05915	-0.15651	-0.06964	-0.19476
Arbor	Samuel K	2.98830	-0.88722	0.59407	0.13281	0.24740	0.10261	0.58006	-0.32232	-0.52839	-0.19661	-0.16897	-0.09219

INP Enseirb-Matmec

45

Projected data

PCA summary

Key messages:

- PCA is a tool for visualizing multidimensional data (applicable in high-dimensional spaces) and for reducing dimensionality
- The low-dimensional space that best represents the data is determined by the eigenvectors of the correlation matrix (standardized PCA) or the variance-covariance matrix (non-standardized PCA)
- Eigenvalues represent the amount of information (variance) explained by each axis

Correlation between components

Correlation circle

Plot of each variable projected by *V*: correlation circle

Variables with vectors close to the unit circle are well represented in the PC space.

Variables with collinear vectors are highly correlated.

Variables with vectors close to PC axes are correlated with new components.

Contributions

Contribution of instance i to the total inertia along the k-th component:

$$\operatorname{ctr}(i,k) = \frac{(s_i^k)^2}{\sum_{i'=1}^n (s_{i'}^k)^2}$$

Quality of representation of instance i on axis k:

$$Q(i,k) = \frac{(s_i^k)^2}{\sum_{j=1}^p (s_i^j)^2}$$

Contributions to PC1

Contributions to PC2

The data analysis process

Data: songs and audio descriptors from SpotifyAPI

Selection: data from 250 songs

Preprocessing: Standardize data

Transformation: Compute the correlation matrix

Model: Eigenvectors, eigenvalues, projection

Knowledge: Correlation between variables (acousticness/instrumentalness, tempo/key)

Next course

Types of data

Quantitative (numerical values)

Interval (discrete or continuous):

Ratio:

Questions?

Sources, images courtesy and acknowledgment:

N. Papadakis, P-L Gonzales

Charles Brazier charles.brazier@u-bordeaux.fr