

Ampliación de Matemáticas Variable Compleja (4)

Residuos

Dada una función analítica, y dada una singularidad z_0 , definimos el **residuo** de f en z_0 como:

$$\mathrm{Res}(f,z_0)=a_{-1}$$

Donde a_{-1} es el primer término de la parte principal de la serie de Laurent de f en z_0

Forma práctica de calcular los residuos:

- Si z_0 es un polo de orden 1, entonces $\mathrm{Res}(f,z_0) = \lim_{z \to \infty} (z-z_0) f(z)$
- Si z_0 es un polo de orden m, entonces $\operatorname{Res}(f,z_0) = \frac{g^{m-1}(z_0)}{(m-1)!} \operatorname{con} g(z) = f(z) \cdot \left(z-z_0\right)^m$
- Si $f(z) = \frac{P(z)}{Q(z)}$, con $P(z_0) \neq 0$ y $Q(z_0) = 0$ de orden 1, entonces:

$$\operatorname{Res}(f,z_0)=rac{P(z_0)}{Q'(z_0)}$$

Teorema de los residuos: Sea f analítica en D salvo en un número finito de puntos. Sea γ curva cerrada simple orientada positivamente en D. Entonces:

$$\oint_{\gamma} f(z) dz = 2\pi i \sum \mathrm{Res}(f,z_i)$$

Donde z_i son las singularidades (número finito) de f que están dentro de la curva $\gamma.$

Residuo en el infinito: Si f es analítica en $|z|>R, \operatorname{Res}(f,\infty)=\operatorname{Res}\left(\frac{-1}{z^2}f\left(\frac{1}{z}\right),0\right)$

Teorema de los residuos (versión del infinito): Sea γ curva cerrada simple orientada positivamente tal que f es analítica fuera de γ salvo en un número finito de puntos. Entonces:

$$\oint_{\gamma} f(z) dz = -2\pi i \sum \mathrm{Res}(f,z_i)$$

Donde z_i son las singularidades de f que están fuera de la curva γ , incluyendo el infinito. Nota: es esencial que el número de singularidades sea finito.

Aplicaciones de los residuos

Lema 1:

$$\lim_{\substack{|z| o \infty \ Im(z) > 0}} |zf(z)| = 0 \Rightarrow \lim_{R o \infty} \int_{\gamma_R} f(z) = 0$$

Lema 2:

$$\lim_{\epsilon o 0} \int_{\gamma_\epsilon} f(z) = -\pi i \mathrm{Res}(f,z_0)$$

donde γ_R es la semicircunferencia positiva de radio R y centro el origen y γ_ϵ es la semicircunferencia positiva de centro z_0 y radio ϵ :

El **Valor Principal** de una integral real se puede calcular aplicando el teorema de los residuos. Ejemplo: supongamos una función real con dos singularidades en el eje X, z_2 y z_3 , y una singularidad en el semiplano superior complejo, z_1

$$ext{V.P.} \int_{-\infty}^{\infty} f(x) dx = 2\pi i ext{Res}(f, z_1) + \\ + \pi i ext{Res}(f, z_2)) + \pi i ext{Res}(f, z_3)$$

Algunos cambios útiles para resolver integrales:

- $\int_0^{2\pi} f(\sin(\theta), \cos(\theta) d\theta$. Cambiamos a $\sin(\theta) = \frac{z-1/z}{2i}$, $\cos(\theta) = \frac{z+1/z}{2i}$
- $\int_{-\infty}^{\infty} \sin(ax)/p(x)dx$. Cambiamos a $e^{iax} = \cos(ax) + i\sin(ax)$, y resolvemos dos integrales.
- $\int_{-\infty}^{\infty} \cos^2(ax)/p(x)dx$. Cambiamos a $\cos^2(z) = \left(\frac{e^{iz}+e^{-iz}}{2}\right)^2$