Example.

Find an open interval about X_0 on which the inequality $|f(x)-L| \le E$ holds. Then give the largest value for $\delta > 0$ such that for all X satisfying $0 \le |x-x_0| \le 8$ the equality $|f(x)-L| \le E$ holds:

Giv:
$$f(x) = 3x + 5$$

 $L = 23$
 $\chi_0 = 6$
 $E = 0.27$
Step1
 $|f(x) - L| = 2$
 $|3x + 5 - (L)| < 0.27$
 $-0.27 < 3x - 18 \ge 0.27$
 $+18$ $+18$ $+18$
 $17.73 \le 3x \le 18.27$
 $3x \le 91 \le x \le 6.09$

What doer this range mean?

The range simply provider:

a group of imbers around

b whereby the function's

consure stays very close

to 23.

as large as we stay between

5.91 & 6.09 (inclusive)

the function will provide

on answer close to L

by a factor. of 0.27

Step 2

Auswers the questri -> How for can we so away from b the function to still be close to L.

So the furtherest we can so from $\chi_0 = 6$ for our definitive to hold is 0.09 in extre direction.