矩阵级数

定义

定义 设矩阵序列 $\left\{A^{(k)}\right\}$,则无穷和 $A^{(0)}+A^{(1)}+\cdots+A^{(k)}+\cdots$ 称为矩阵级数,记为 $\sum_{k=0}^{\infty}A^{(k)}$,即有 $\sum_{k=0}^{\infty}A^{(k)}=A^{(0)}+A^{(1)}+\cdots+A^{(k)}+\cdots$

收敛的定义

定义 设 $S^{(N)} = \sum_{k=0}^{N} A^{(k)}$,称其为矩阵级数的部分和. 如果矩阵序列 $\{S^{(N)}\}$ 收敛,且有 $\lim_{N \to \infty} S^{(N)} = S$ 则称矩阵级数 $\sum_{k=0}^{\infty} A^{(k)}$ 收敛,且和是S,记为 $S = \sum_{k=0}^{\infty} A^{(k)}$,不收敛的矩阵级数称为是发散的.

绝对收敛

定义 如果 $\sum_{k=0}^{\infty} A^{(k)}$ 中的mn个数项级数都是绝对收敛的,则称 $\sum_{k=0}^{\infty} A^{(k)}$ 是绝对收敛的.

性质

性质1 若 $\sum_{k=0}^{\infty} A^{(k)}$ 是绝对收敛的,则它也一定收敛,并且任意调换其项的顺序所得的级数还是收敛的,且其和不变.

性质2 $\sum_{k=0}^{\infty} A^{(k)}$ 为绝对收敛的 ⇔ 正项级 数 $\sum_{k=0}^{\infty} \|A^{(k)}\|$ 收敛, 其中 $\|A\|$ 为任意一种矩阵范数。

性质3 如果 $\sum_{k=1}^{\infty} A^{(k)}$ 是收敛(或绝对收敛)的, 那么 $\sum_{k=0}^{\infty} PA^{(k)}Q$ 也是收敛(或绝对收敛)的, 并且有

$$\sum_{k=0}^{\infty} \boldsymbol{P} \boldsymbol{A}^{(k)} \boldsymbol{Q} = \boldsymbol{P} \left(\sum_{k=0}^{\infty} \boldsymbol{A}^{(k)} \right) \boldsymbol{Q}$$

 $^{\bullet\bullet}$ 性质4 设 $C^{n\times n}$ 中的两个矩阵级数

$$S_1: A^{(0)} + A^{(1)} + \dots + A^{(k)} + \dots$$

 $S_2: B^{(0)} + B^{(1)} + \dots + B^{(k)} + \dots$

都绝对收敛,其和分别为A与B. 则级数 S_1 与 级数 S_2 按项相乘所得的矩阵级数

$$S_3$$
: $A^{(0)}B^{(0)} + (A^{(0)}B^{(1)} + A^{(1)}B^{(0)}) +$
 $+ (A^{(0)}B^{(2)} + A^{(1)}B^{(1)} + A^{(2)}B^{(0)}) + \cdots$
 $+ (A^{(0)}B^{(k)} + A^{(1)}B^{(k-1)} + \cdots + A^{(k)}B^{(0)}) + \cdots$
 $= \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} A^{(j)}B^{(k-j)} \right)$
绝对收敛,且和为 AB .