Sitewise error and constraint in mammalian comparative genomics

Gregory Jordan

European Bioinformatics Institute

University of Cambridge

A thesis submitted for the degree of Doctor of Philosophy

September 29, 2011

Contents

Co	onten	its		i				
1	Patterns of sitewise selection in mammalian protein-coding ger							
	1.1	Introduction						
		1.1.1	The Mammalian Genome Project	1				
		1.1.2	The Sitewise Likelihood Ratio test	2				
		1.1.3	Data quality concerns: alignment and sequencing error	3				
		1.1.4	Low-coverage genomes in the Ensembl database	8				
	1.2	Source	data and methods	9				
		1.2.1	The Ensembl Compara gene tree pipeline	9				
		1.2.2	Identifying orthologous subtrees within large mammalian					
			gene families	12				
		1.2.3	Analysis of genome-wide sets of orthologous mammalian trees $$	17				
Bi	bliog	raphy		22				

Chapter 1

Patterns of sitewise selection in mammalian protein-coding genes

1.1 Introduction

1.1.1 The Mammalian Genome Project

A major goal of mammalian comparative genomics has been to quantify, identify and understand the fraction of the human genome that is under evolutionary constraint. The first non-human mammalian genomes showed at least 5% of the human genome to be under purifying selection [Lindblad-Toh et al., 2005; Mouse Genome Sequencing Consortium & Mouse Genome Analysis Group, 2002; Rat Genome Sequencing Project Consortium, 2004, but the small number of genomes available limited the extent to which regions of evolutionary constraint could be identified. The Mammalian Genome Project, a coordinated set of genome sequencing projects initiated in 2005 and organised by the Broad Institute of MIT and Harvard, was designed with the primary purpose of increasing the accuracy and confidence with which regions of the human genome that have evolved under evolutionary constraint in mammals could be identified [TODO, 2011]. In line with this goal, 20 mammalian species were chosen for sequencing in order to maximise the amount of evolutionary divergence available for comparative analysis when combined with the 9 already available sequenced genomes [Margulies et al., 2005. To save on sequencing costs most of the 20 additional species were only sequenced to a target twofold coverage, meaning each genomic base pair would be

covered on average by two sequence reads and roughly 85% of genomic sequence would be covered by at least one read.

As the Mammalian Genome Project proceeded from its sequencing to analysis phase in late 2008, it became clear that the additional branch length afforded by the 29-species phylogeny would enable a number of improved evolutionary analyses beyond the identification of constrained noncoding regions. Among others, these included the evolutionary characterisation of gene promoters, identification of exapted noncoding elements, detection of evolutionary acceleration and deceleration in noncoding regions, and detection of purifying and positive selection in protein-coding genes. Given its prior involvement in analysing the ENCODE comparative sequencing data [TODO, 2011] and Massingham's work on a method and software program for sitewise evolutionary analysis [TODO, 2011], the Goldman group became involved in the protein-coding evolutionary analysis for the Mammalian Genome Project. This chapter describes my work on the project, which began in late 2008; the major results from the analysis are to be published in [TODO, 2011], and all of the work described below was performed by me in consultation with members of the Goldman group (Nick Goldman and Tim Massingham), EnsEMBL team (Albert Vilella, Javier Herrero, Ewan Birney) and organisers and members of the Mammalian Genome Project (Manolis Kellis, Kerstin Lindblad-Toh, Mike Lin, Katie Pollard).

1.1.2 The Sitewise Likelihood Ratio test

As described in Chapter ??, differential survival of non-synonymous and synonymous mutations based on the degeneracy of the genetic code can be used as a source of information on the continued importance of mutations at a given protein-coding site over evolutionary time: a lower rate of non-synonymous substitution compared to synonymous substitution is indicative of purifying selection, or natural selection in favor of maintaining protein structure and function; equal rates of non-synonymous and synonymous substitutions is indicative of neutral selection, or no differential survival of protein-altering mutations; a greater rate of non-synonymous than synonymous substitution is indicative of positive selection, or natural selection in favor of protein-altering mutations.

Early evolutionary analyses of protein sequences showed large variation in the rates of amino acid change both within and between proteins [TODO, 2011]. This

variety results from the myriad structures and functions embodied by different proteins and protein domains [TODO, 2011]. Continued work suggested that the overall evolutionary rate TODO [2011]; ? and the pattern of localised selective pressures TODO [2011] of a gene can reveal important insight into its role in the organism. Thus, the study of rates of non-synonymous and synonymous substitution in proteins became established as an effective method for using evolutionary information to investigate the functional characteristics of genes.

Maximum likelihood methods, introduced in Chapter ??, are commonly applied to biological sequence analysis due to their desirable statistical features...

The Sitewise Likelihood Ratio (SLR) test is based on the mechanistic Goldman-Yang codon model of evolution, with an additional parameter for each site in the alignment representing the sitewise ω value. The inclusion of an additional parameter per alignment site makes the model extremely complex and difficult to optimise, but the dimensionality of the likelihood optimisation is reduced by making the assumption that the ω at each site does not contribute significantly to the overall likelihood, thus allowing for separate optimisation of the global parameters (including XYZ) across the whole alignment and the ω parameter at each site. In this way, SLR performs an approximate likelihood ratio test (LRT) for non-neutral evolution at each site...

1.1.3 Data quality concerns: alignment and sequencing error

The possibility that errors in the source alignments might cause false positives in the detection of sitewise positive selection was a major concern for this analysis. Although the SLR test and other sitewise maximum likelihoo methods have been shown to be conservative for detecting positive selection even when the amount of data is low or the null model is violated [TODO, 2011; ?; ?], most evolutionary analyses are based on the assumption that all sites within an alignment column are truly homologous. This assumption can be violated in a number of ways, some of which are described below.

Alignment error results from the difficulty of reconstructing the evolutionary history of sequences evolving with indels and can cause nonhomologous codons to be placed in the same alignment column. In Chapters ?? and ?? I explored the tendency of multiple aligners to produce such errors, showing that PRANK_C alignments would be expected to introduce few falsely identified positively-selected sites resulting from alignment errors at mammalian-like divergence levels.

Errors resulting from incorrect genomic sequence was an additional concern. Twenty of the genomes under study were sequenced at low coverage and were not assembled into chromosomes or finished to completion, making the likelihood of miscalled bases, spurious insertions or deletions, or shuffled regions due to misassembly relatively high [TODO, 2011]. The potential effect of each of the aforementioned types of sequence errors on the detection of positive or purifying selection depends on the nature of the inference method, the type of sequencing error, and the branch length of the terminal lineage leading to the species containing the error.

As most codon-based inference methods assume independence between amino acid sites, I first consider the effect—in isolation—of a single spuriously-assigned homologous codon on the maximum likelihoo estimation of ω . Two cases can be considered: a single sequence error causing one spurious substitution within a codon, and one or multiple sequence or assembly errors causing multiple spurious substitutions within a codon. In the case of a single spurious substitution, if we assume no large difference between the natural mutational process and the process that caused the erroneous mutation, then the effect would be to shift the estimated ω in the branch containing the error towards 1. The sequence error would be incorporated into the maximum likelihoo optimisation as an additional neutral substitution, inflating the estimated substitution rate but not affecting the relative non-synonymous and synonymous rates. This effect may be biased towards higher or lower ω values if a significant difference exists between the neutral biological mutational process and the pseudo-mutational process causing the erroneous substitution. On the other hand, a codon with multiple erroneous bases may cause greater elevation of the inferred substitution rate and ω , due to the necessity of maximum likelihoo methods to infer a multi-step path of single substitutions between the two codons on either side of a given evolutionary branch. The path estimated between two completely nonhomologous codons depends on the estimated codon frequencies, the genetic code, and the pseudo-mutational process; while a detailed investigation of the expected effect on inferred ω values is beyond the scope of my analysis, it is not unreasonable to expect a greater

number of false positive PSSs resulting from codons with multiple erroneous bases than from codons with single errors.

TODO: quick randomisation experiment looking at elevated ω from multisubstitution codons?

Given the potentially greater impact of codons with multiple errors, the propensity of each of the common sequencing error types identified above (miscalled bases, spurious indels, and shuffled/repeated/collapsed regions due to misassembly) to cause single or multiple errors within codons could strongly affect its effect on the detection of positive selection. On its own, a miscalled base would obviously result in a single spurious substitution. However, low-quality bases tend not to be uniformly distributed among or within sequence reads, which makes for a larger probability of multiple errors within a codon resulting from miscalled bases. Spurious indels within coding regions may be even more likely than miscalled bases to cause multiple errors within a codon due to the potential alignment and frameshift effects (but see the discussion of Ensembl's frameshift filters for low-coverage genomes in Section ??). Assembly errors, which result in larger-scale structural errors including missing, repeated, shuffled or inverted sequence regions, are most prone to produce codons with multiple erroneous errors due to the large amount of contiguous sequence data being misplaced.

I also note the impact of the inference method and terminal branch length on false positives resulting from sequence errors, which can be understood in terms of the information most directly affecting the inference of a positively selected site or a positively selected gene for a given detection method. Both the branch-site test and the sitewise tests (including SLR and PAML M8) are sensitive to substitutions at a subset of alignment sites, but the branch-site test is specifically sensitive to substitutions along the foreground branches of interest while the sitewise tests detect positive selection only throughout the entire tree. In the latter case, the effect of spurious synonymous and non-synonymous substitutions from sequence data depends on the ratio of the species' terminal branch length to the branch length of the entire tree: a longer terminal branch gives greater weight to the erroneous sequence data, making false positives more likely to result. In the former case of the branch-site test, the potential effect depends on the location and length of the foreground branches. If the terminal branch leading to the spurious sequence is within the foreground and the total foreground

branch length is small, then false positives could easily result; if, however, the terminal branch is outside of the foreground then it should have little to no effect on the FPR of the branch-site test. Interestingly, this suggests that branch-site tests where the foreground only consists of internal branches may be less prone to false positives from sequencing error than tests that include terminal lineages in the foreground model.

To summarise, the expected effect of alignment errors on the sitewise detection of positive selection should be minimal when using a good aligner and analysing data within vertebrate divergence levels, but the number of false positives resulting from sequence errors depends on a number of factors including the frequency, spatial clustering, and phylogenetic branch length associated with sequencing-based errors when applied to detecting sitewise positive selection. In some cases even a large amount of sequencing error should not produce a strongly elevated FPR (e.g., when the total branch length is large, when analysing all mammals or vertebrates) but in other cases it could potentially bias results (e.g., when the branch length is small and/or many low-quality genomes are included, as in the major mammalian sub-clades).

Simulation studies similar to those I performed in Chapters ?? and ?? could improve our understanding of the relative potential of different types of sequencing errors to introduce false positives in downstream analyses, but the absolute frequency and pattern of such errors would still difficult to predict without a reliable model for their generation. This is especially true for larger-scale errors from misassembly or misannotation, which are less easily modeled than base calling errors and could have potentially larger negative effects. For estimates of false positives resulting from these types of sequence errors, an empirical approach seems more appropriate.

Two empirical studies in mammals have provided convincing evidence that sequence, alignment and annotation errors can drastically increase the number of false positive PSGs in the branch-site test for positive selection.

Schneider et al. [?] performed a genome-wide scan for positive selection in the terminal branches of 7 mammalian genomes using the branch-site test and analysed the fraction of PSGs within subsets of high- or low-quality genes according to three sequence and alignment quality metrics. They found that the fraction of PSGs was significantly higher for genes exhibiting lower quality sequence, annotation and alignment metric, with genes in the highest-quality and lowest-quality categories showing a 7.2-fold difference in the inferred fraction of PSGs [?]. This observation provided evidence of a correlation between the chosen quality metrics and the tendency of an alignment to exhibit positive selection. It did not necessarily imply causation, however, as the same result might have been observed—even in the absence of sequence error—if some biological properties of the true PSGs caused them to yield lower quality metrics than non-PSGs. Looking at the three metrics used in their study (sequencing coverage, gene annotation status, and alignment quality according to the heads-or-tails method), it is plausible that properties associated with elevated ω ratios and positive selection, such as recent gene duplication [TODO, 2011], high GC content [TODO, 2011] or functional shifts [TODO, 2011] might have had an error-independent effect resulting in a higher proportion of PSGs in low-scoring categories.

Mallick et al. [?] took a different approach to the same problem by performing a careful resequencing and reassembly of the chimpanzee genome (the initial assembly of which had lower coverage and lower quality than the human genome) and re-analysing the evidence for positive selection along the chimpanzee linegae in 59 genes which had previously been identified as chimpanzee PSGs. The authors, who were motivated by a concern that previous reports of a larger proportion of PSGs in chimpanzee than in human [TODO, 2011] were the result of its lower-quality genome rather than a biologically significant difference in levels of adaptation, found that the vast majority of PSGs identified in two previous studies showed no evidence for positive selection when using their reassembled and higher-coverage version of the chimpanzee genome [?]. This suggested that the original 4x coverage chimpanzee assembly contained a number of sequencing errors leading to false inferences of positive selection. A detailed analysis of 302 codons with multiple spurious non-synonymous substitutions in the original assembly showed roughly comparable effects of sequence error (explaining 23% of codons), assembly error (14% of codons) and local alignment error (30% of codons).

Taken together, the results of Schneider et al. [?] and Mallick et al. [?] provide strong evidence in support of the hypothesis that errors in sequencing, assembly, annotation and alignment can result in strongly elevated inferred ω values when using sensitive tests for detecting positive selection. The detailed

identification and quantification of error sources performed by Mallick et al. [?] is especially useful for designing filters to apply to an analysis based largely on low-coverage genomes; their observation that clusters of chimpanzee-specific mutations were responsible for many false positives motivated the window-based filter I applied here and in Chapters ?? and ??.

TODO: Figure summarising the types of error and potential effects on the inference?

1.1.4 Low-coverage genomes in the Ensembl database

The prevalence of missing sequence data and fragmented contigs in low-coverage genomes presents a unique set of problems for the generation of transcript annotations. In recognition of these differences, the procedure used by the Ensembl database to annotate genomes assembled from low-coverage data is distinct from the usual gene-building pipeline [TODO, 2011; ?]. Briefly, a whole-genome alignment is produced between the human genome and each low-coverage target, and gene models are projected from human to the target genome. Small frame-disrupting insertions or deletions within orthologous exons are corrected, and missing exons are padded with Ns in order to obtain the correct transcript length.

The inclusion of these error-correcting features allows intact, if not complete, coding transcripts to be generated for low-coverage genomes. The Compara gene family pipeline uses the set of transcripts from each species as its input [TODO, 2011; ?], so the quality of the gene models from each species has a direct impact on the overall quality and accuracy of gene trees. Although the reliance on genome-wide alignments to, and gene annotations from, a reference genome could be criticised for potentially causing a bias towards the genomic properties of the reference, this approach is a reasonable workaround in the absence of higher-coverage sequence data or a painstakingly curated assembly. Furthermore, the gene model error-correcting features of the Ensembl pipeline are especially beneficial, making more complicated methods for correcting errors from low-coverage genomes such as those described by [TODO, 2011; ?] seem largely unnecessary.

1.2 Source data and methods

1.2.1 The Ensembl Compara gene tree pipeline

All genomic data and gene trees used for this analysis were sourced from version 63 of the Ensembl Compara database [TODO, 2011; ?]. Although a complete description of the design, implementation, and validation of the pipeline behind the Ensembl database is beyond the scope of this thesis, I will briefly outline the major aspects of the approach, focusing on a few details which are relevant to the current sitewise analysis and the ensuing discussion.

The Compara pipeline begins with a set of protein-coding transcripts collected from each individual species' annotation database. This step is not exactly straightforward, as the prevalence of alternative splicing in Eutherian mammals makes it common for a single gene to harbor many different transcript structures. In terms of biology and evolution, alternative splicing is a very interesting phenomenon. Tightly linked to the evolutionary innovation of regulatory control and tissue-specific gene expression, the existence of multiple transcripts per gene is one of the likely substrates of biological and developmental complexity within vertebrates and mammals as compared to single-celled eukaryotes, which show less developmental complexity but largely similar numbers of genes [TODO, 2011]. Further evidence of the unique evolutionary characteristics of alternatively-spliced exons comes from molecular evolutionary studies which have shown such exons to show, on average, higher levels of evolutionary constraint, possibly owing to the importance of exonic splice enhancers in modulating the inclusion or exclusion of their associated exons [TODO, 2011].

However, in terms of organizing biological data, pervasive alternative splicing—with XYZ% of human genes containing at least two (and up to several dozen) transcripts per gene [TODO, 2011], showing tissue-specific and species-specific expression patterns, different levels of overall transcription, and sometimes comprising mutually exclusive exons—is somewhat burdensome. The first problem is the fact that primary data on alternative transcript structures (e.g., resulting from expressed sequence tags, RNA-seq, or proteomics experiments) are largely absent from most organisms with sequenced genomes. Even ignoring this lack of data, the task of incorporating multiple transcripts per gene into an evolutionary analysis is non-trivial, and leaves many unresolved questions open to debate:

should all transcripts be treated as independent evolutionary entities, or should some form of meta-transcript be produced, comprising all possible transcripts for a given gene? Should expression levels and tissue-specificity be taken into account (as both factors have been correlated with evolutionary rate, e.g. [TODO, 2011,?])? And what is the expected evolutionary impact of the loss, gain, or modulation of the prevalence or tissue-specificity of a given exon or transcript in one lineage? Even a fairly shallow consideration of the topic quickly reveals layers of complexity that would quickly hinder many large-scale evolutionary analyses such as the current one, whose main goals are to understand the levels of evolutionary constraint of some subset of genes (or protein-coding sites) within some subset of species.

As a result of these difficulties, the current design of the Compara pipeline only incorporates one 'canonical' transcript per gene into the evolutionary analysis and the resulting inferred gene trees. This reflects a conscious decision to sacrifice some biological fidelity for reduced design complexity and computational load (as the inclusion of multiple transcripts would inevitably require some amount of additional processing and/or calculation). Unfortunately, this only somewhat alleviates the problem, shifting the burden from "how to deal with multiple transcripts in a comparative setting" to "how to choose the best representative transcript for each gene." In the case of a gene with many transcripts of varying sizes containing many non-overlapping exons, the negative consequences of choosing a non-optimal transcript are clear: too short of a transcript could exclude important sequence information from the dataset, while transcripts with spurious exons (resulting from misannotation or erroneous experimental evidence for a transcript) could introduce potentially large amounts of non-orthologous, nonfunctional, or nonconserved sequence into the evolutionary analysis.

Fortunately, the consensus coding sequence (CCDS) project was initiated in 2005 to "identify a core set of human and mouse protein coding regions that are consistently annotated and of high quality" [TODO, 2011; ?]. Although the transcripts that satisfy these two criteria will not necessarily be the same as those which meet the desired definition of "the best representative transcript for use in an evolutionary study," the confidence that one can have in the quality and consistency of CCDS transcripts helps to reduce the prevalence of potentially damaging errors in the Compara pipeline. Thus, in the current release (version

63), the "representative" transcript used for the Compara pipeline is chosen on the basis of (a) existence within the CCDS set of transcripts and (b) the total length of the transcript's coding sequence. The combination of these two factors can be expected to identify a reasonably representative transcript, at least for the human and mouse genomes. The situation will be similar for genomes whose Ensembl annotation is derived largely from synteny and orthology to human and mouse annotated genes, but two classes of genomes—those resulting from low-coverage sequencing and those from more distant species whose annotations are derived from largely independent data sources—will still suffer from some amount error in the form of poor transcript choice.

Once the set of canonical transcripts is chosen, the Compara pipeline performs an all-against-all protein BLAST search (using the Washington University variant of BLAST) and clusters genes into groups of evolutionarily-related sequences using hcluster_sg, an implementation of a hierarchical clustering algorithm for sparse graphs. Sequences are aligned using MCoffee, a meta-aligner algorithm which combines the results from different aligners into one alignment using a maximum-consistency criterion. The aligners used for the M-Coffee alignment include XXX, YYY, and ZZZ. Finally, the aligned sequences are input to TreeBeST, which infers a gene tree (including gene duplication and loss events) given a set of aligned sequences and a known species tree [TODO, 2011]. The type of the homology relationship between each pair of genes (e.g., one-to-one ortholog, one-to-many ortholog, within-species paralog) is determined using a simple set of rules based on the structure of the inferred gene tree and the annotation of ancestral nodes where a duplication event has likely occurred.

The Compara pipeline has been a part of the Ensembl ecosystem at least since its first mention in [TODO, 2011]. Remarkably, aside from slight tweaks to the protein clustering method and some changes in the exact aligners used, the pipeline has changed little from its original published form [TODO, 2011]. In part, this lack of change reflects the ease with which sets of vertebrate orthologs can be identified using the existing methodology, lying in stark contrast to the equivalent task in sets of insect or fungal genomes where divergence levels between extant sequences are much larger [TODO, 2011] and the shape of the underlying species tree may be uncertain and/or unknown [TODO, 2011], making the development of specialized methods or extensive manual annotation necessary [TODO, 2011].

This is equivalent to saying that Ensembl's pipeline, while not perfect in its orthology predictions or tree inferences (as indicated in a series of back-and-forth papers between Ensembl scientists and XYZ, [TODO, 2011]), has proved sufficiently accurate enough that an extensive reworking of the system has not yet been deemed necessary. Additional validation of this approach comes in the form of Treefam [TODO, 2011], a database of animal gene trees which applies a similar set of tools to infer gene trees from a more diverse set of genomes, with largely similar results.

[Something about Ensembl being directed at inferreing gene tree topologies, and not being vetted for use in estimates of selective constraint]

[Introduce the structure of the next few subsections: ways of massaging / filtering the Ensembl data to fit with the needs of the current project]

1.2.2 Identifying orthologous subtrees within large mammalian gene families

The first task in preparing the Ensembl data for sitewise analysis was to identify and extract a biologically meaningful set of orthologous mammalian subtrees from the set of gene trees within the Compara database. This was necessary because many Compara gene trees contain multiple sets of Eutherian orthologs linked by ancient gene duplication events, while I wished to study the evolution of each individual set of Eutherian orthologous genes. In other words, Compara gene trees are over-clustered with respect to the core set of Eutherian orthologs.

Evidence for this over-clustering comes from Table ??, which shows the number of root Compara gene trees which contain zero, one, or multiple genes in human, zebrafish and drosphila, as well as Figure ??, which shows the distribution of gene counts in the set of root Compara gene trees. The percentage of Compara trees with 2 or more human genes is strikingly high, at XYZ%. If each Compara tree contained one single set of Eutherian orthologs, then the proportion of trees with multiple human gene copies could only be explained by an unrealistically high rate of gene duplication. A more parsimonious explanation would be that many Ensembl trees represent not one group of Eutherian orthologs, but two or more sets of Eutherian orthologous gene trees joined by one or more ancient duplications. This explanation is further supported by Figure ??, which shows concentrations of gene counts centered roughly around whole-integer multiples of

the number of vertebrate species present in the Ensembl database (shown as gray dotted lines).

The prevalence of over-clustered Eutherian orthologs in the Compara database is easily explained by a combination of the hcluster_sg algorithm used for the hierarchical clustering step, which uses only protein distances as its source of clustering information, and the wide range of protein evolutionary rates in the vertebrate genome. As I mentioned in the previous subsection, the Compara pipeline uses all-by-all protein BLAST E-value scores and the hcluster_sq algorithm to produce sets of sequences containing minimal average within-group E-values. No additional biological information, such as the source species of each sequence or the overall taxonomic coverage of each cluster, is used in identifying clusters, and no attempt is made to fit clusters to an expected model of orthologous gene evolution. On the one hand, the lack of additional information and assumptions allows the algorithm to remain simple and the clustering behavior to remain consistent across different groups of genomes; on the other hand, a number of technical (in the sense of non-biologically meaningful) parameters and thresholds must be tuned in order to result in the desired cluster sizes and contents. Importantly, even after these parameters are tuned to perform well on the dataset as a whole, the reliance on protein distances alone means that fast-evolving proteins will be more likely to be under-clustered and slow-evolving proteins will be more likely to be over-clustered. Given that the protein evolutionary rate varies widely within a genome (in a study of vertebrate genes, XYZ et al. found K_a values ranging from ZZZ to YYY, TO-DO), the excess of over-clustered orthologs in the Compara database is understandable and even somewhat expected.

I should note that my use of the phrase "over-clustered" refers only to over-clustering with respect to the current goal of analyzing independent sets of orthologous genes within Eutherian mammals. Certainly these large "over-clustered" trees, which represent a more distant evolutionary history than a single Eutherian orthologous group, are just as accurate with respect to the true evolutionary history of the genes as more narrow groupings would be. Furthermore, the inclusion of a deeper evolutionary context may sometimes be more useful to users of the Compara database, for whom an understanding of the overall evolutionary history of a gene may be the topic of primary interest.

Take for example the gene NBEAL2 and its human paralogs, whose gene

Figure 1.1: The evolutionary history of the human neurobeachin-like2 gene, NBEAL2 and its paralogs. Left, two phylogenetic trees from Ensembl Compara (release 60) are shown, summarizing the evolution of NBEAL2 and its three paralogs (top) and LYST, a presumed distant paralog of NBEAL2, and its three paralogs (bottom) in 15 vertebrate species. The phylogeny shows that NBEAL2 is taxonomically conserved and distinct from its paralogs. Red dots highlight the root nodes of Ensembl gene trees, blue dots highlight the root nodes of Eutherian orthologous subtrees, and a dashed line with a green dot represents the putative paralogous relationship between the two Ensembl gene trees. Right, the exon and domain structure of each human gene is shown: exons are displayed alternating shades of gray, and Pfam domain annotations are colored according to their Pfam identifier.

trees, exon structures and domain classifications were extracted from Ensembl v62 and summarized in Figure 1.1. A recent medical sequencing project identified NBEAL2, a gene of previously unknown function, as the putative causative gene for gray platelet syndrome, a predominantly recessive platelet disorder resulting in moderate to severe bleeding [?]. It was important for the authors of this study to ensure that the NBEAL2 gene is well-conserved across mammals and distinct from its paralogs. The Compara pipeline clustered NBEAL2 with three of its closest paralogs into one tree (and similarly clustered four more distant NBEAL2 paralogs into a separate tree), yielding two views which together showed both the full taxonomic coverage of the NBEAL2 sub-tree and the large amount of separation between paralogs. Had each Eutherian ortholog been displayed independently in Ensembl (using the blue root nodes in Figure 1.1), it would have been more difficult to make such claims regarding the evolutionary history of NBEAL2 without further analysis. Conversely, had the Compara pipeline been

even more inclusive in its clustering step and identified a hypothetical deeper root connecting these two sets of trees (represented by the green node in Figure 1.1), the connection between these eight genes would have been more immediately apparent.

For the purposes of the current mammalian sitewise analysis, however, it was important to isolate individual mammalian gene trees for further processing and sitewise analysis. To this end, I designed a simple scheme for splitting gene trees into non-overlapping subtrees based on flexible taxonomic coverage criteria. I hypothesized that a relatively simple set of rules based on taxonomic coverage would be sufficient to identify most largely orthologous mammalian subtrees, basing my hypothesis on two well-established observations in mammalian genomes. First, the existence of two rounds of whole-genome duplication preceding the evolution of vertebrates [TODO, 2011] suggested that many of the ancient duplication events contained within Ensembl gene trees occurred before the divergence of mammals, making it possible to cleanly separate out taxonomically complete mammalian sub-trees in the majority of cases. This would not be possible if duplication events were common and spread evenly throughout the mammalian tree; if that were the case, many duplication events would have occurred after the divergence of some or all of the major mammalian groups, resulting in a larger proportion of mammalian genes with "internal" duplications and, thus, fewer singly orthologous trees with high taxonomic coverage. Second, the overall low rate of gene duplication and loss in mammals [TODO, 2011; ?] (excluding, of course, the aforementioned whole-genome duplication events) predicts that few mammalian gene trees will be subject to one or more gene duplication or loss events. In other words, most mammalian gene trees should contain sequences from a majority of mammalian species, so the effectiveness of using taxonomic coverage to identify mammalian sub-trees should be largely unaffected by individual (i.e., post-2R) gene duplication or loss events. The potential utility of taxonomic coverage was further bolstered by the star-like shape of the mammalian tree: star-like trees contain more branch length within terminal lineages than ladder-like trees with an equivalent total branch length, making it less likely that a gene duplication or loss event (if such events occurred randomly throughout the mammalian tree) would result in a significant disruption to the taxonomic coverage of the gene tree.

The taxonomic-based tree splitting scheme works as follows. For every internal node N of each Compara gene tree, the taxonomic coverage (TC) was calculated for several vertebrate clades. The TC for node N and clade C is given by TC(N,C) = species(N)/species(C), where species(N) is the number of unique species represented by the sequences beneath node N and species(C) is the number of species within the vertebrate clade C. The tree is traversed from root to tip, and if a given set of TC constraints (referred to as the subtree constraints) are satisfied by both sub-trees below node i, then the tree is split into two sub-trees at node i (with the new trees having root nodes placed at the two child nodes, i_a and i_b). The traversal continues recursively until every node is tested. If only the original root node satisfies the subtree constraints, then the entire Compara tree is included in the resulting tree set; if the entire Compara tree fails to satisfy the subtree constraints, it is excluded altogether.

I chose a variety of subtree constraints based on the structure of the vertebrate phylogeny, all of which were run against the 18,613 gene trees within the Compara database to generate several genome-wide sets of subtrees. Table 1.1 shows the details of the various subtree constraints I used; the clade names (e.g., TC(Primates)) are used to refer to sets of species contained within the Ensembl database, as defined by the NCBI taxonomy. The subset of NCBI taxonomy defined by species contained within Ensembl is shown in Figure 1.2.

For the subtree constrains within the Ingroups and Outgroups categories, a TC value of greater than 0.6 was required for a single taxonomic clade. If the required TC value for a clade were set to 1, then all subtrees containing deletions in any species within the clade of interest would be rejected. On the other hand, requiring a TC value of less than 0.5 would allow for a truly singly-orthologous tree to be split into two sub-trees, with one tree having a TC below 0.5, and the other tree (containing the other half of the species) also having a TC below 0.5. Thus, 0.6 seemed to be a reasonable TC requirement for isolating sub-trees with reasonable taxonomic coverage while allowing for some amount of gene deletion.

Special subtree constraints were used for two of the constraint methods, MammalClades and CladesPlusOutgroup. Inspired by the alignment filtering method from Pollard et al. [2011], which required sequence data from all three major mammalian clades (Primates, Glires, and Laurasiatheria) to be present for a column to pass through the filter, the TC_{all} constraint requires that the TC for all

of the included clades is above a given threshold. To complement the TC_{all} constraint, the TC_{any} constraint requires that the TC for any of the included clades is above a given threshold. These more complicated methods were included in the analysis in case the simpler TC constraints within the Ingroups and Outgroups categories did not perform satisfactorily.

The methods within the Orthologs category of subtree constraints were implemented separately from the rest. Instead of splitting Compara trees based on taxonomic criteria, the subtrees in the Orthologs category were defined from the sets of genes annotated by Ensembl as orthologs to each gene from a given source species. Thus, for each gene from the source species, the Compara sub-tree containing all of the Ensembl-annoated orthologs was extracted and stored; this was guaranteed to yield exactly one sub-tree for every gene in the source species. I chose to include human, mouse, zebrafish, and drosophila were chosen as source species for testing. This approach differs from the tree-splitting strategy in two ways: first, it makes use of the orthology annotations resulting from Ensembl's orthology pipeline, and second, it does not guarantee that each sub-tree contains a completely unique set of genes. For example, a gene which was recently duplicated in humans would yield two sub-trees, one for each human paralog, with identical sets of non-human genes in each tree. Although the orthology-based might be useful when an evolutionary study is focused on a specific target or reference species, as is often done with human and mouse due to their finished genome sequence and high-quality annotation, I considered it to be less applicable to the current study due to the potential for introducing reference genome-specific biases, such as over-representation of genes with gene family expansions in the reference species or non-representation of genes which have been deleted in the reference species. Still, I expected that the sets of sub-trees resulting from the Ensembl ortholog annotations would serve as a useful reference with which to compare the other TC-based methods.

1.2.3 Analysis of genome-wide sets of orthologous mammalian trees

The scheme described in the previous subsection was applied to the XYZ root gene trees from the Ensembl database. Here I will describe the resulting sets of trees and sub-trees, discuss what they reveal about the evolutionary history of

Figure 1.2: The NCBI taxonomy of species within the Ensembl Compara database. Note that branch lengths are not drawn to scale. Low-coverage genomes are labeled in red, high-coverage genomes are in black. Selected internal nodes, used are labeled in blue.

vertebrates and the feasibility of using taxonomic coverage to isolate orthologous trees for sitewise analysis, and finally, explain my reasoning for deciding to use the subtrees based on the Eutherian taxonomic coverage for the subsequent sitewise analysis.

First I will describe the set of root Compara gene trees, focusing on their size and taxonomic coverage. I note that nearly half of all Compara gene trees contain few sequences: 9,378 trees, over half of the 18,607 root trees, constitute fewer than 20 sequences. Given the protein-based clustering performed by the Compara pipeline, one might expect many of these small trees to represent portions of larger fast-evolving gene trees whose high sequence divergences made the BLAST

Method						
Name	Category	Constraints				
Primates	Ingroups	TC(Primates) > 0.6				
Glires		TC(Glires) > 0.6				
Laurasiatheria		TC(Laurasiatheria) > 0.6				
Sauria		TC(Sauria) > 0.6				
Fish		TC(Clupe ocephala) > 0.6				
Eutheria	Outgroups	TC(Eutheria) > 0.6				
Amniotes	-	TC(Amniota) > 0.6				
Vertebrates		TC(Vertebrata) > 0.6				
Fungi/Metazoa		TC(Fungi/Metazoa) > 0.6				
MammalClades		$TC_{all}(Laur., Glires, Primates) > 0.1$				
CladesPlusOutgroup		$TC_{all}(Laur., Glires, Primates) > 0.1 \text{ AND}$				
0 1		$TC_{any}(Sauria, Clupeo., Ciona, Marsup.) > 0)$				
Human Orthologs	Orthologs					
Mouse Orthologs	O					
Zebrafish Orthologs						
Drosophila Orthologs						
Ensembl Roots	Root Nodes					

Table 1.1: Subtree constraints for identifying Eutherian orthologous subtrees. Ensembl gene trees were split into subtrees based on taxonomic coverage (TC) requirements at internal nodes, shown below. Laur. - Laurasiatheria; Clupeo. - Clupeocephala; Marsup. - Marsupiala

search step inaccurate or caused clustering via the hcluster_sq algorithm to be ineffective. Alternatively, these small clusters might have resulted from exceptional lineage-specific gene duplications or mis-annotated pseudogenes, causing a tight cluster of very closely-related proteins that was identified by hcluster_sg as an independent cluster. Some evidence for the latter hypothesis comes from the species counts and mean path lengths of the smaller versus larger trees, shown in Table 1.2. The subset of small root trees has a median species count of 2 compared to 47 for the large subset, indicating that most of the smaller trees encompass sequences from a very small taxonomic range, and the median MPL for the small trees is 0.04 compared to 1.04 for the large subset, showing a much smaller average amount of sequence divergence. Together, these summary statistics indicate that the smallest trees in the Compara database consist of highly species-specific, closely-related proteins that are likely artifactual gene annotations. In any case, Table 1.2 shows that only a small fraction of human genes—which we expect to be very well-annotated and to contain few false positive genes due to the high level of manual curation and the large amount of continued scrutiny—are contained

within the smaller trees (809 in total), indicating that whatever methodological artifact or evolutionary process is causing the Compara pipeline to yield such a high number of small gene trees, it has not had a significant impact on the composition of the most confident set of protein-coding genes within gene trees.

A closer examination of the distribution of tree sizes in the set of root Compara trees clearly portrays the over-clustering problem. Figure 1.3 shows the distribution of sequence counts for all trees with more than 15 sequences, with vertical dashed lines overlaid at each multiple of 48, the number of vertebrate species in Ensembl release 63. The highest peak of the histogram is at, or slightly above, 48 sequences, with the tree counts quickly diminishing at larger sizes. Weaker, but still discernable, peaks appear at larger tree sizes, however, with the location of these echo-like peaks corresponding closely to the second, third and fourth multiple of 48 sequences. Beyond the level of 200 sequences, the peaks become indistinguishable, but there is still a long tail of rather large trees extending out to a maximum size of 400 sequences. This distribution is consistent with the situation I described above, whereby the Compara pipeline clusters together multiple largely-orthologous gene trees. The peaks become smaller and more diffuse at larger sequence counts because larger trees have more chance of

Tree Set	Med. Size	% w/ Human Count			Human	Med.	Med.
	(Min / Max)	0	1	2+	Total	MPL	Species
Ensembl Roots (<= 15)	15 (2 / 400) 3 (2 / 15)	0.50 0.92	0.30 0.08	0.20 0.00	19995 809	0.55 0.04	8
(> 15)	54 (16 / 400)	0.92 0.07		0.40	19186	1.04	$\frac{2}{47}$

Table 1.2: Summary of the set of Ensembl Compara root trees. The columns under '% Human Count' represent the percentage of trees which contain the indicated number of human genes. 'Med. Species' is the median species count across all trees. Med. - median, MPL - mean path length

Figure 1.3: Gene tree sizes for the root Compara trees. Trees with fewer than 15 sequences (n=9,378) are not shown for the purpose of clarity; the remaining 9,229 trees are shown in bins of width 5. Dashed green lines are drawn at integral multiples (from 1 to 5) of the number of vertebrate species within Ensembl (n=48).

Bibliography

TODO (2011). Citation will be inserted at a later point in time. 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 15, 16

Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., Karlsson, E.K., Jaffe, D.B., Kamal, M., Clamp, M., Chang, J.L., Kulbokas, E.J., Zody, M.C., Mauceli, E., Xie, X., Breen, M., Wayne, R.K., Ostrander, E.A., Ponting, C.P., Galibert, F., Smith, D.R., DeJong, P.J., Kirkness, E., Alvarez, P., Biagi, T., Brockman, W., Butler, J., Chin, C.W., Cook, A., Cuff, J., Daly, M.J., DeCaprio, D., Gnerre, S., Grabherr, M., Kellis, M., Kleber, M., Bardeleben, C., Goodstadt, L., Heger, A., Hitte, C., Kim, L., Koepfli, K.P., Parker, H.G., Pollinger, J.P., Searle, S.M.J., Sutter, N.B., Thomas, R., Webber, C., Baldwin, J., Broad Sequencing Platform Members & Lander, E.S. (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. *Nature*, 438, 803–819. 1

MARGULIES, E., VINSON, J., NISC COMPARATIVE SEQUENCING PROGRAM, MILLER, W., JAFFE, D., LINDBLAD-TOH, K., CHANG, J., GREEN, E., LANDER, E., MULLIKIN, J. & CLAMP, M. (2005). An initial strategy for the systematic identification of functional elements in the human genome by low-redundancy comparative sequencing. *Proc Natl Acad Sci U S A*, **102**, 4795–800.

MOUSE GENOME SEQUENCING CONSORTIUM & MOUSE GENOME ANALYSIS GROUP (2002). Initial sequencing and comparative analysis of the mouse genome. *Nature*, **420**, 520–62. 1

BIBLIOGRAPHY

RAT GENOME SEQUENCING PROJECT CONSORTIUM (2004). Genome sequence of the brown norway rat yields insights into mammalian evolution. *Nature*, **428**, 493–521. 1