Appendix A

AP BIOLOGY EQUATIONS AND FORMULAS

STATISTICAL ANALYSIS AND PROBABILITY		
Standard Error	Mean	
$SE_{\overline{x}} = \frac{S}{\sqrt{n}}$	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	
Standard Deviation	Chi-Square	
$S = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$	$\chi^2 = \sum \frac{(o-e)^2}{e}$	
CHI-SQUARE TABLE		

s = sample standard deviation (i.e., the sample based estimate of the standard deviation of the population)

 \overline{x} = mean

n = size of the sample

o = observed individuals with observed genotype

e = expected individuals with observed genotype

Degrees of freedom equals the number of distinct possible outcomes minus one.

LAWS OF PROBABILITY

Degrees of Freedom

4

11.34 | 13.28

9.49

3

7.82

5.99

9.32

If A and B are mutually exclusive, then P (A or B) = P(A) + P(B)If A and B are independent, then P (A and B) = $P(A) \times P(B)$

HARDY-WEINBERG EQUATIONS

 $p^2 + 2pq + q^2 = 1$

3.84

6.64

p = frequency of the dominant
allele in a population

6

14.07

18.48

15.51

20.09

11.07 | 12.59

15.09 | 16.81

p + q = 1

0.05

0.01

q = frequency of the recessive allele in a population

METRIC PREFIXES			
Factor	Prefix	Symbol	
10 ⁹	giga	G	
10 ⁶	mega	M	
10 ³	kilo	k	
10-2	centi	С	
10-3	milli	m	
10-6	micro	μ	
10 ⁻⁹	nano	n	
10 ⁻¹²	pico	р	

Mode = value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

RATE AND GROWTH		Water Potential (Ψ)
Rate	dY= amount of change	$\Psi = \Psi p + \Psi s$
dY/dt	t = time	Ψp = pressure potential
Population Growth	B = birth rate	Ψ s = solute potential
dN/dt=B-D	D = death rate	The water potential will be equal to the
Exponential Growth	N = population size	solute potential of a solution in an open
$\frac{dN}{dt} = r_{\text{max}}N$	K = carrying capacity	container, since the pressure potential
$\frac{dt}{dt} = t_{\text{max}} T$	r_{max} = maximum per capita growth rate	of the solution in an open container is
Logistic Growth	of population	zero.
$\frac{dN}{dt} = r_{\text{max}} N \left(\frac{K - N}{K} \right)$		The Solute Potential of the Solution
$dt = \max^{\infty} (K)$		Ψs = – iCRT
Temperature Coefficient $\mathbf{Q}_{_{10}}$	t_2 = higher temperature	i = ionization constant (For sucrose
$(k_{\perp})^{\frac{10}{4}}$	t_1 = lower temperature	this is 1.0 because sucrose does not ionize in water.)
$Q_{10} = \left(\frac{k_2}{k_1}\right)^{\frac{10}{\ell_2 - \ell_1}}$	k_2 = metabolic rate at t_2	C = molar concentration
	$k_1 = \text{metabolic rate at } t_1$	R = pressure constant (R = 0.0831 liter
Primary Productivity Calculation	Ω_{10} = the <i>factor</i> by which the reaction	bars/mole K)
$mg O_2/L \times 0.698 = mL O_2/L$	rate increases when the	T = temperature in Kelvin (273 + °C)
mL $O_2/L \times 0.536 = mg \text{ carbon fixed/L}$	temperature is raised by ten	tomporataro in norum (270) o,
degrees		
SURFACE AREA AND VOLUME		Dilution – used to create a dilute
Volume of a Sphere	r = radius	solution from a concentrated stock
$V = 4/3 \pi r^3$	= length	
Volume of a Cube (or Square Column)	h = height	$C_i V_i = C_f V_f$
V = 1 w h	w = width	i = initial (starting)
Volume of a Column	A = surface area	C = concentration of solute
$V = \pi r^2 h$	V = volume	f = final (desired)
Surface Area of a Sphere	$\Sigma = \text{Sum of all}$	V = volume of solution
$A = 4 \pi r^2$	a = surface area of one side of the cube	07
Surface Area of a Cube		$\Delta G = \Delta H - T \Delta S$
A = 6 a		ΔG = change in Gibbs free energy
Surface Area of a Rectangular Solid		ΔS = change in entropy
$A = \Sigma$ (surface area of each side)		ΔH = change in enthalpy
		T= absolute temperature (in Kelvin)
		pH = – log [H+]