Cox PH Model	
Inference	
	1
Introduction	
 It is often of interest to consider hypothesis testing of the parameters in the Cox PH model. In Cox PH model 	
$h(t \mathbf{X}) = h_0(t) \exp(\beta_1 \text{age} + \beta_2 \text{Treatment})$ • For example,	
 H₀: β₁=0 v.s. H₁: β₁ ≠0 to test if age has a significant effect on survival. H₀: β₂=0 v.s. H₁: β₂ ≠0 to test if there is significant 	
$-H_0$: $β_2$ =0 v.s. H_1 : $β_2 ≠0$ to test if there is significant difference in survival between treatment and placebo groups.	
]
Partial likelihood	
 The partial likelihood has similar properties as a regular likelihood function. 	
 Likelihood based testing methods can be defined similarly to make inference about β. Wald test 	
– Wald test– Score test– Likelihood ratio test	
Lineilliood ratio test	

Properties of MPLE

- Let $\widehat{m{eta}}$ be the Maximum Partial Likelihood Estimator.
- Let $U(\beta) = \partial \log PL(\beta) / \partial \beta$ be the score vector of the partial likelihood.

$$\widehat{\boldsymbol{\beta}}$$
 satisfies $U(\widehat{\boldsymbol{\beta}}) = 0$

• Then

$$\widehat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, I_n^{-1}(\boldsymbol{\beta}))$$
 asymptotically $U(\boldsymbol{\beta}) \sim N(\mathbf{0}, I_n(\boldsymbol{\beta}))$ asymptotically

PMLE

Define the observed partial likelihood information matrix

$$\widehat{I}_n(\widehat{\boldsymbol{\beta}}) = -\frac{\partial^2 \log PL(\widehat{\boldsymbol{\beta}})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T},$$

with its kh th element being

$$\hat{I}_{kh} = \hat{I}_{hk} = \sum_{i=1}^{D} \left\{ \sum_{j \in R(t_i)} (Z_{jk} - \bar{Z}_{(i)k}) (Z_{jh} - \bar{Z}_{(i)h}) w_{ij} \right\}$$

Confidence intervals

- The variance of the PMLE $\widehat{\pmb{\beta}}$ can be estimated by $Var(\widehat{\pmb{\beta}}) \approx \widehat{\pmb{I}}_n^{-1}(\widehat{\pmb{\beta}})$
- In particular, the SE of $\hat{\beta}_k$ is the square root of the kth diagonal element of $\hat{I}_n^{-1}(\hat{\pmb{\beta}})$.
- Wald $100(1-\alpha)\%$ CI of β_k is $\hat{\beta}_k \pm Z_{\alpha/2}SE(\hat{\beta}_k)$
- The CI for $\exp(\beta_k)$, the hazard ratio associated with covariate Z_k , is given as

$$\left(e^{\widehat{\beta}_k - Z_{\alpha/2}SE(\widehat{\beta}_k)}, e^{\widehat{\beta}_k + Z_{\alpha/2}SE(\widehat{\beta}_k)}\right)$$

Hypothesis testing

• Consider a simple null hypothesis that

$$H0: \boldsymbol{\beta} = \boldsymbol{\beta}_0, H1: \boldsymbol{\beta} \neq \boldsymbol{\beta}_0.$$

- Let $\widehat{\pmb{\beta}}$ be the MPLE.
- Three likelihood based testing methods can be defined as - The Wald's test

$$Q_W = (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^T \widehat{\boldsymbol{I}}_n(\widehat{\boldsymbol{\beta}}) (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$

Score test

$$Q_S = \boldsymbol{U}^T(\boldsymbol{\beta}_0) \hat{\boldsymbol{I}}_n^{-1}(\boldsymbol{\beta}_0) U(\boldsymbol{\beta}_0)$$

Likelihood ratio test

$$Q_{LR} = 2\{\log PL(\widehat{\boldsymbol{\beta}}) - \log PL(\boldsymbol{\beta}_0)\}$$

• Under null hypothesis, these test statistics all follows χ^2_p distribution asymptotically. (p is the dimensionality of $\pmb{\beta}$).

An example: Wald test

• For a single parameter, consider

$$H_0:\beta_k=0, vs\ H_1:\,\beta_k\neq 0.$$

• Then Wald test statistics is given as,

$$Q_W = \left(\frac{\widehat{\beta}_k}{SE(\widehat{\beta}_k)}\right)^2 \sim \chi_1^2$$
, under H_0 .

Reject null hypothesis, if

$$Q_W = \left(\frac{\widehat{\beta}_k}{SE(\widehat{\beta}_k)}\right)^2 > \chi_{1,\alpha}^2.$$

An example: LR test

- LR test is commonly used to compare nested models.
- Multiple parameters:

$$H_0: \beta_{k+1} = \dots = \beta_p = 0$$

vs $H_1: \beta_j \neq 0$, for some $j = k+1, \dots, p$.

Consider full model

$$h(\,t\mid Z\,) = h_0(t) \exp\!\left(\beta_1 Z_1 + \dots + \beta_p Z_p\right)$$
 Reduced model

 $h(t \mid Z) = h_0(t) \exp(\beta_1 Z_1 + \dots + \beta_k Z_k)$ Partial likelihood ratio test statistic:

$$Q_{LR} = 2\{\log PL_{full} - \log PL_{Reduced}\}$$

- Under null hypothesis, $Q_{LR} \sim \chi_{p-k}^2$ distribution asymptotically. df= # of parameters in full model # of parameters in reduced model.
- Reject null hypothesis, if $Q_{LR} > \chi^2_{p-k,\alpha}$

An example: Score test

• Multiple parameters:

• Multiple parameters:
$$H_0: \beta_{k+1} = \dots = \beta_p = 0$$

$$vs \ H_1: \beta_j \neq 0, \text{for some } j = k+1, \dots, p.$$
• The reduced model

$$h(\,t\mid Z\,) = h_0(t) \exp(\beta_1 Z_1 + \cdots + \beta_k Z_k)$$

• Let $\widehat{\pmb{\beta}}_0 = (\widehat{\beta}_1, ..., \widehat{\beta}_k, 0, ..., 0)^T$ be the MPLE under H_0 . • The Full model

$$h(t \mid Z) = h_0(t) \exp(\beta_1 Z_1 + \dots + \beta_p Z_p)$$

 $h(t \mid Z) = h_0(t) \exp(\beta_1 Z_1 + \dots + \beta_p Z_p)$ • $U(\beta)$ be score vector under the full model.
• Then the Score test statistics is defined as,

- $Q_S = U^T(\widehat{\boldsymbol{\beta}}_0) J_n^{-1}(\boldsymbol{\beta}_0) U(\widehat{\boldsymbol{\beta}}_0)$ Under null hypothesis, $Q_S \sim \chi^2_{p-k}$ distribution asymptotically.
 Reject null hypothesis, if $Q_S > \chi^2_{p-k,\alpha}$

SAS Example

Wald test statistics

Analysis of Maximum Likelihood Estimates					
Parameter	Estimate	SE	Chi-Square	Pvalue	Hazard Ratio
Kps	-0.03300	0.00554	35.5051	<.0001	0.968
Duration	0.00323	0.00949	0.1159	0.7335	1.003
Age	-0.01353	0.00962	1.9772	0.1597	0.987
Cell:adeno	0.78356	0.3038	6.6512	0.0099	2.189
Cell:small	0.48230	0.26537	3.3032	0.0691	1.620
Cell:squamous	-0.40770	0.28363	2.0663	0.1506	0.665
Prior: yes	0.45914	0.28868	2.5296	0.1117	
Therapy:test	0.56662	0.24765	5.2349	0.0221	
Prior*Therpy	-0.87579	0.42976	4.1528	0.0416	

SAS Example

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	26.5239	4	<.0001		
Score	31.2621	4	<.0001		
37.13	24 2000	4	< 0001		

Summary

- Hypothesis testing based on partial likelihood function
 - Wald test
 - Score test
 - LR test
- Three tests are asymptotically equivalent. No theoretical basis for preferring one test than anther for large samples.

_				