

GEOMETRÍA

Capítulo 9

1st secondary

TRIÁNGULOS CONGRUENTES

Geométricamente se ha tomado como sinónimo de igualdad y de equivalencia; pero hoy estas nociones son distintas y se reserva la palabra congruente para la posibilidad de superposición de figuras en virtud del axioma de libre movilidad.

TRIÁNGULOS CONGRUENTES

Dos triángulos son congruentes si los lados y ángulos de uno de ellos son respectivamente congruentes a los lados y ángulos del otro.

Si: β α θ C

 $\triangle ABC \cong \triangle RPQ$

Casos de congruencia

TEOREMA

Si los triángulos son congruentes se cumple que, a lados de igual longitud se le oponen ángulos de igual medida y viceversa.

1. En el gráfico, calcule x + y.

TEOREMA Si los triángulos son congruentes se cumple que, a ángulos de igual medida se le oponen lados de igual longitud y viceversa.

Resolución:

- Piden: x + y
- △ABC ≅ △LMN

Luego:

$$MN = BC$$
 $NL = AC$
 $3x = 12$ $2y = 6$
 $x = 4$ $y = 3$

$$x + y = 7$$

2. En el gráfico, halle el valor de x.

TEOREMA Si los triángulos son congruentes se cumple que, a lados de igual longitud se le oponen ángulos de igual medida y viceversa.

Resolución:

- Piden: x
- \triangle ABC \cong \triangle EPQ

$$2x + x + 3x = 180^{\circ}$$

$$6x = 180^{\circ}$$

$$x = 30^{\circ}$$

3. En el gráfico, halle AE.

TEOREMA Si los triángulos son congruentes se cumple que, a ángulos de igual medida se le oponen lados de igual longitud y viceversa.

Resolución:

- Piden: AE
- \triangle ABC \cong \triangle DCE

Calculando AE

$$AE = AC + CE$$

$$AE = 5 + 7$$

$$AE = 12$$

4. En el gráfico, halle el valor de x.

Resolución:

• \triangle BAC \cong \triangle CED

△ BCD: isósceles.

$$50^{\circ} + 50^{\circ} + 2x = 180^{\circ}$$

 $2x = 80^{\circ}$

$$x = 40^{\circ}$$

5. Se tiene un triángulo ABC y se prolonga AC hasta E, tal que AC = CE, luego se ubica un punto exterior D, relativo a BC, CD = BC y DE = AB y m∢BCD = 100°. Halle m∢ACB.

Resolución:

- Piden: m∢ACB
- \triangle ABC \cong \triangle EDC

• En el vértice C:

$$100^{\circ} + x + x = 180^{\circ}$$

 $2x = 80^{\circ}$
 $x = 40^{\circ}$

6. En el gráfico se muestra dos tablas congruentes. Calcule el perímetro de la tabla 2.

Resolución:

• Dato: △ABC ≅ △GFH

Piden: 2p_(GFH)

$$2p_{(GFH)} = 4 + 5 + 7$$

$$2p_{(GFH)} = 16 cm$$

7. Se muestra dos casas de 3 m y 10 m de altura, un punto T equidista de los puntos más altos de cada casa y se observan bajo un ángulo recto.

Halle la distancia entre las dos casas.

Resolución:

- Piden: עט
- ⊿ACT ≅ ⊿TDB

$$CD = 10 + 3$$

$$CD = 13 \text{ m}$$