1239 - Convex Fence

I have a land consisting of **n** trees. Since the trees are favorites to cows, I have a big problem saving them. So, I have planned to make a fence around the trees. I want the fence to be convex (curves are allowed) and the minimum distance from any tree to the fence is at least **d** units. And definitely I want a single big fence that covers all trees.

You are given all the information of the trees, to be specific, the land is shown as a 2D plane and the trees are plotted as 2D points. You have to find the perimeter of the fence that I need to create as described above. And you have to minimize the perimeter.

Only one tree, so a circular fence is needed

Two trees, the fence is shown

Input

Input starts with an integer $T \leq 10$, denoting the number of test cases.

Each case starts with a line containing two integers n ($1 \le n \le 50000$), d ($1 \le d \le 1000$). Each of the next lines contains two integers x_i , y_i ($-10^8 \le x_i$, $y_i \le 10^8$) denoting a position of a tree. You can assume that all the positions are distinct.

Output

For each case, print the case number and the minimum possible perimeter of the fence. Errors less than 10⁻³ will be ignored.

Sample Input	Output for Sample Input
3	Case 1: 12.566370614
1 2	Case 2: 12.2831853
0 0	Case 3: 48.4869943478
2 1	
0 -1	
0 2	
3 5	
0 0	
5 0	
0 5	

Note

Dataset is huge, use faster i/o methods.