unestãos! Faça o que se pede: - Evuncie a Teorema da forma local das Imersões: Alja f. Il CIR^M -> IR^{M+N}, ell abelo de clare c^K, eK>1.

Supordra que exista xo ell tal que f(xo): IR^M -> I^{M+N} é infétura.

Entar existe um diformorfismo de clare c^K, $h:Z \rightarrow V_X W$ $Z \text{ & uma Vizinhomea de f(xo) & V_X W \text{ & uma Vizinhomea de } \\ x_0 \in V \text{ & } 0 \in W \subset IQ^N \text{ & fal que:}$ $hof(x) = (x_10) \forall x \in V$ _ Demonstre o teorema da forma local das imersões: Iomamos um ponto $no \in \mathbb{N}$, cuja a $f'(no):\mathbb{R}^{M} \to \mathbb{R}^{M+N}$, desemos denotar com $E = f'(no).\mathbb{R}^{M} \subset \mathbb{R}^{M+N}$.

Iambím tomamos F com um espaço estocial de dimensão n, logo: Clim F = nDesta toma, $Temos:\mathbb{R}^{M+N} = E \oplus F$ (completando a base). Definimos $\phi: \mathcal{M} \times F \to \mathbb{R}^{M+N}$, ande $\phi(n) = f(n) + y$. $\phi \in C^{K}$ ($\mathcal{M} \times F$) e $f \in C^{K}(\mathcal{M})$. Temos que: $\phi(n) = f(n) = f(n) = f'(n) = f'(n).u,v$ Como $f'(Y_0)$ á in jitivo, então possui inversa e $\phi'(Y_0,0)$ é um isomor-fismo entre IR''_{x} F e R''_{x} F e Q''_{x} F. Pelo teorema da função inversa ϕ é um difiomor fismo de classe C''_{x} , definimos agora A_{x} : $Z - \Delta_{x} V_{x} W$ por ; $A = \phi^{-1}$. Mas $\phi(X_{x}y) = f(x) + y$, então $f(X) = \phi(X_{x}0)$. Com illo tomamos a composta: hof(x) = h(f(x)) = h(f(x)) = hof(x,0) = Cx,0, isto porque hof(x) = Id. Então: hof(x) = (v,0)

- Provi que toda imersão é uma aplicação localmente injetura. Tomamos JECK (K>s) e f'(a) é injetura para algum a Ell, então f'(x): RM > RM+N é injetura para todo x rum aberto V contendo o EIRM. Dista forma, se $\phi(f(x)) = x$ para fodo $x \in V$, resulta pela regia da cadeia que $\phi'(f(x)) \circ f'(x) = Id : R^m \rightarrow R^m$, logo $f'(x) \in A:U$. i) t aplicação derivada f': ll -> L (12^M, 12^{M+N}) é contenua,
ii) l' conjunto das transformações lineares injetivas é abento
em L (12^M, 12^{M+N}). Tomando o conjunto des transformações liveares injitaras de, e somente se, sua matriz contem um subdeterminante menor (mxn) vão vulo. O mesmo menor, sendo uma feinção continua, também sura varo vulo vuma pequena bola de centro T, los todas os transformações pertencentes a essa bola serão in jetias.

Portanto como uma imensão, é dada por RM - o IRMHN, tomamos esta bola em RM e IRMHN timos com isso que todas as traus formações pertencem a bola em 12º sendo injetiva, timos tam bém que uma imersão se da de um abeito (Il CRM-+ 12º 14+12), então temos que toda imersão é uma aplicação localmente injetiva. Elon tembém, mes en vao poso usar certo. " Fiz esta ques los dues vezes em ração disso."