Amendments To The Claims

The listing of claims presented below will replace all prior versions, and listings, of claims in the application.

Listing of claims:

Claims 1-170 (Cancelled)

171. (currently amended) A system <u>using cascaded gain elements</u> for facilitating telecommunication capability for electromagnetic propagation medium_comprising:

a signal-medium capable of carrying high frequency signals wherein interrupting said medium is not practical for purposes of inserting cascaded signal gain blocks;

a systematic and distributed distributed signal conditioner for high frequencies comprising transponders, the transponders at least including repeaters and, coupler arrangements enabling connection to termination points of said medium without interrupting said medium permitted by said signal medium, and further comprising necessary carrier frequency converters and transponder output level controls at least two transponders using at least two frequency bands for at least two directions, wherein the signals and medium uses the systematic and distributed distributed signal conditioner is installed at each termination point without interrupting said medium, for to at least enabling extend signal high frequency range utilization of said medium, and extend signal communication distance utilization of with the signals aid medium,; and

provide access to said medium physical layer through transponder interfaces connected to a D/A and A/D physical layer (PHY)at said termination points.

172. (currently amended previously presented) The system according to claim 171, wherein said interfaces are connected with a cable modem communication platform-standard PHY-requiring transmission-line

- 173. (currently amended previously presented) The system according to claim 171, wherein said interfaces controls the signal dynamic balance to preserve signal-to-noise ratio and large-signal handling by using carrier frequencies higher than frequencies of interfering noise in said signal medium.
- 174. (<u>currently amended</u>previously presented) The system according to claim 171, wherein said interfaces are active, powered devices located at accessible physical points to facilitate the conditioning of the signal medium-to acquire transmission line-based system characteristics.
- 175. (<u>currently amended</u>previously presented) The system according to claim 171, wherein said interfaces are active, powered devices inserted at physical points on distance paths to facilitate the conditioning of the signal medium-to perform as a transmission line-based system.
- 176. (<u>currently amended previously presented</u>) The system according to claim 171, wherein said interfaces are active devices accessed that through analog interfaces comprised of a accept analog signals of a telecommunication standard PHYphysical layer.
- 177. (currently amended previously presented) The system according to claim 171, wherein said signal conditioner in one embodiment comprises a quenched regenerative signal processing gainquenching regenerative gain block operating at a suitable intermediate frequency through bi-directional filtering and bi-directional frequency conversion to allow signal medium coupling with port isolation ranging from zero and up.
- 178. (<u>currently amended previously presented</u>) The system according to claim 171, wherein said signal conditioner <u>in one embodiment comprises quenching</u>

regenerative gain blockquenched regenerative signal processing gain at an intermediate frequency connected to the signal medium through separated ports, through frequency conversion, and through individual input and output amplifiers and filters, and is coupled to the medium with port isolation ranging from zero to a predetermined maximum value.

- 179. (<u>currently amended previously presented</u>) The system according to claim 171, wherein said signal conditioner <u>in one embodiment comprises quenched signal processing gainquenching regenerative gain block</u> through bidirectional filtering and bi-directional superheterodyne mixing for same frequency band shifted frequency band amplification.
- 180. (<u>currently amendedpreviously presented</u>) The system according to claim 171, wherein said signal conditioner <u>in one embodiment</u> comprises emprises super_regenerative amplification at an intermediate frequency and is connected to the medium through separated ports through frequency mixers and through individual input and output amplifiers for same frequency shifted frequency band amplification.
- 181. (currently amended previously presented) The system according to claim 171, wherein said signal conditioner in one embodiment comprises frequency conversion amplification at an intermediate frequency through at least two frequency conversions and frequency filtering connected to the medium through separated ports.
- 182. (currently amended previously presented) The system according to claim 171, where facilitation of said distributed signal conditioner for high frequencies predictable connectivity and bandwidth further comprise at least one kind of coupler to be is applicable to all types at least one of power grids and power circuits including buried cables, and, air mounted overhead cables, and, outdoor power grids, home power grids and in-building power-

- 183. (currently amended previously presented) The system according to claim 171, wherein said distributed signal conditioner for high frequencies, by compensating high frequency increased high frequency signal attenuation with increased frequency in said medium_aimed to_, at least sustains information bandwidth.
- 184. (<u>currently amended previously presented</u>) The system according to claim 171, <u>wherein said distributed signal conditioner for high frequencies, by compensating arranged to facilitate the use of other increased attenuation with increased frequency in said medium at least facilitates increased carrier frequencies <u>used with said medium</u>.</u>
- 185. (previously presented currently amended) The system according to claim 171, wherein said systematic and distributed distributed signal conditioner for high frequencies through analog gain, and gain linearity, and bandwidth, and dynamic range arranged to accommodates a plurality of modulation types.
- 186. (previously presented currently amended) The system according to claim 171, wherein said systematic and distributed distributed signal conditioner for high frequencies through analog gain, and gain linearity, and bandwidth, and dynamic range is compatible with modulation types which include at least the modulation types used with QPSK, QAM, OFDM, CDMA and DSSS.
- 187. (previously presented currently amended) The system according to claim 171, wherein said systematic and distributed distributed signal conditioner for high frequencies through analog gain, and gain linearity, and bandwidth, and dynamic range is compatible with a physical layer of a plurality of telecommunication standards including ITU-T J112, ITU-T J122, IEEE 802.3, IEEE 802.11 x, IEEE 802.16x.

- 188. (previously-presented currently amended) The system according to claim 171, further comprising up and down frequency conversions between the system interfaces and the a telecommunication standard platform PHY.
- 189. (previously presented deleted) The system according to claim 171, that utilizes inherent system attenuation to improve the system performance through a distributed presence of active and passive compensation in said apparatus.
- 190. (currently amended previously presented) The system according to claim 171, wherein said apparatus can utilize inherent system distribution panel attenuation properties to aid stability and noise conditions with quenched regenerative signal processing same frequency gain repeaters as two port amplifiers.
- 191. (<u>currently amended previously presented</u>) The system according to claim 171 further comprising power <u>lines grids</u> as the <u>systemdsasid signal</u>-medium.
- 192. (currently amended previously presented) The according to claim 171, wherein said systematic and distributed distributed signal conditioner for high frequencies through analog gain, and gain linearity, and bandwidth, and dynamic range is compatible with non-proprietary standard proprietary telecommunication platforms including PHY of PLC Power Line Communication platforms.
- 193. (previously presented currently amended) The system according to claim 171, further comprising power grids wherein distribution panels, fuse panels, distribution boxes, junctions, junction boxes, substations along the signal traveling paths as hosts and power sources for signal repeaters and coupler arrangements to facilitate the distributed conditioning of the said medium-grid

- 194. (previously presented) The system according to claim 171, further comprising conductors of any of ground buried cables, air mounted cables and bare wires in differential mode using at least two conductors as pair.
- 195. (previously presented) The system according to claim 171, further comprising transmission lines using a wire where the wave is trapped along the metal surface of the conductor by using transmission with short wavelength between said transponders.
- 196. (previously presented currently amended) The system according to claim 171, further comprising a_-low voltage grid for at least one of power distribution for street lighting, and control grid-and-low voltage grid.
- 197. (previously presented deleted) The system according to claim 171 further comprising active, powered devices in junction points in the power grid to facilitate the conditioning of the grid towards performing like a transmission line based system.
- 198. (previously presented deleted) The system according to claim 171 further comprising inherent attenuation in junctions to form multi-ports with mutual isolation to aid stability and noise conditions with superregenerative as well as superheterodyne repeaters.
- 199. (previously presented currently amended) The system according to claim 171 further comprising a coupler to spaced, unshielded wires conductors, arranged as a magnetic loop antenna providing a galvanic insulated differential signal coupling to at least two conductors carrying high voltages.
- 200. (previously presented) The system according to claim 171 further

comprising a coupler to the termination of a shielded cable, arranged using the shield of the cable as a capacitive coupler, using a toroid ferrite clamp on the shield grounding wire and a ferrite toroid outside on the shielded cable at a short distance from the shield grounding wire, and where the two signal connection points are at opposite sides of said toroid ferrite clamp being equal to a coupling winding through the toroid.

- 201. (previously presented currently amended) The system according to claim 200 further comprising at least two of said coupler arrangements on two of said cables to provide differential signal coupling.
- 202. (previously presented currently amended) The system according to claim 171 further comprising signal coupler arrangement to said signal medium using the capacitance of an existing capacitive voltage measurement probe for associated with a shielded cable assembly for medium voltage system, for signal coupling, as coupling capacitor.
- 203. (previously presented currently amended) The system according to claim 202 further comprising two said probes coupler arrangement of with at least two of said shielded cables to provide differential signal coupling.
- 204. (previously presented currently amended) The system according to claim 203-202 further comprising a matching device connected to said probe to optimize signal coupling through the low capacitance of said probes.
- 205. (previously presented currently amended) The system according to claim 171 further comprising a fibre ring with hybrid fibre coax HFC arrangements connections to obtain accessing to interface analog signals of the system at shorter intervals and binding together the systemsaid signal medium.
- 206. (previously presented) The system according to claim 171 comprising

other power lines than low voltage power lines to complement fibre access.

- 207. (previously presented) The system according to claim 171 configured to accept D/A and A/D PHY headend equipment to be installed at any point in the system.
- 208. (previously presented currently amended) The system according to claim 171, wherein said signal medium is power grid further comprising a said transponder at customer premises installed at least one of at fuse panel, and near fuse panel apparatus includes transponders for customer premises equipment.
- 209. (previously presented) The system according to claim 171, wherein said apparatus is arranged in distribution panels using transponders to link signals between a coupler on an incoming supply cable with couplers on outgoing cables to reduce effects from inherent losses, reflections and mismatches and to utilize inherent attenuation in the distribution system to provide isolation between in port and out ports and between out ports.
- 210. (previously presented) The system according to claim 171, wherein said apparatus includes substations linked together on power lines.
- 211. (previously presented) The system according to claim 171, wherein transformer stations are equipped to facilitate routing of signals between a high voltage side and a medium voltage side through couplers and at least one of transponders, repeaters, cables, coaxial cables, fibre optic cables.
- 212. (previously presented) The system according to claim 171, wherein substations are equipped to facilitate routing of signals between a medium voltage side and a low voltage side through couplers and at least one of transponders, repeaters, cables, coaxial cables, fibre optic cables.

- 213. (<u>currently amended previously presented</u>) The system according to claim 171, wherein said apparatus <u>in one</u> embodiment <u>ean-facilitates</u> routing of signals through a transformer station utilizing stray capacitance coupling between transformer sections.
- 214. (currently amended previously presented) The system according to claim 171, wherein said signal medium further comprising said signal medium providing backbone for wireless LAN local area network coverage wherein said apparatus includes a wireless system node at any point in the system with an antenna and interfaced with a repeating transponder as a node of the system.
- 215. (<u>currently amendedpreviously presented</u>) The system according to claim 214, wherein said node of the system is an<u>wireless LAN carries</u> output node from said signal medium.
- 216. (<u>currently amended previously presented</u>) The system according to claim 214, wherein said node of the system is an<u>wireless LAN carries</u> input node<u>to said signal medium</u>.
- 217. (currently amended previously presented) The system according to claim 171, wherein said distributed signal conditioner for high frequencies, further comprise shifting of carrier frequency for compensating for frequency shifting in any power line junction point to adapt to varying power cable said signal medium unfavourable characteristics.
- 218. (currently amended previously presented) The system according to claim 171, wherein said distributed signal conditioner for high frequencies, further comprise that enables physical penetration of cables in long cable runs to insert repeating transponders with couplers to compensate for signal

lossescable attenuation.

- 219. (previously presented) The system according to claim 171, wherein said apparatus is arranged to improve immunity properties at various physical positions using active cancellation of common mode noise from any of near field sources and far field sources by using reference sampling antennas and reference sampling probes for the common mode energy which aids identifying, characterizing and canceling common mode interference.
- 220. (previously presented currently amended) The system according to claim 171, wherein said apparatus is arranged to accept any suitable number of any of A/D and D/A cost saving-headend equipment to be supplementarily installed in any locations in the said system.
- 221. (previously presented) The system according to claim 171199, wherein said apparatus is arranged to incorporate non-galvanic high frequency interfacing by using a pair of fibre optic connections to a pair of repeaters transponders advantageously optically powered and galvanically installed with magnetic loop antenna separately with mutual galvanic isolation oninstalled adjacent to at least two conductors to provide a differential, interface to voltage power lines conductorscarrying high voltage.
- 222. (previously presented deleted) The system according to claim 171, wherein said apparatus is arranged to incorporate voltage transitions through coaxial cables.
- 223. (previously presented) The system according to claim 171, wherein said apparatus incorporates repeater nodes that have built-in processing capability in the form of a processor.
- 224. (previously presented presently amended) The system according to claim

- 223, wherein said apparatus incorporates repeater nodes that interface with at least one of remotely interrogated sensors, and remotely activated actuators.
- 225. (previously-presented currently amended) The system according to claim 171, wherein said apparatus includes a number of master base stations units installed at different locations in the infrastructure.
- 226. (previously presented currently amended) The system according to claim 171 that is a two-way system utilizing further comprising separate repeater functions in separate frequency bands in order to achieve an infrastructure system for more than one signal transmission direction.
- 227. (new) The system according to claim 171, wherein at least one of none galvanic and galvanic coupling to two and three phase low voltage cables use differential mode through coupler with balun using a conductor pair of the low voltage cable comprising clamp on magnetic material on conductors toward rails for isolation towards at least one of low voltage rails, and other termination devices connected to rail.
- 228. (new) The system according to claim 171, further comprising transmission lines using single wire coupling.
- 229. (new) The system according to claim 171, 214, 215, 216 in which a plurality of combinations of said apparatus offer alternative transponder solutions for radio navigation, radio positioning, radio direction finding, radio ranging, RFID radio frequency identification.
- 230. (new) The system according to claim 171, that utilizes at least one added termination point at any accessible physical position in between at least two existing termination points.