

پروژه پایانی ساختمان داده ها

استاد سميرا خدابنده لو

محمدرضا حيدرنيا – 9912354018

شرح پروژه هدف اصلی این پروژه پیدا کردن کوتاه ترین مسیر از یک مبدا به مقصد مشخص، با توجه به مسافت و ضریب ترافیک در نقشه بود.

ساختار برنامه

ابتدا نقشه را با استفاده از یک گراف مدل سازی کرده و سپس گره ها و وزن یال ها را در یک آرایه ذخیره کردم. دو آرایه در برنامه وجود دارد که یکی مسافت بین گره ها را ذخیره میکند و دیگری مقدار مسافت ضرب در ترافیک.

*در پیاده سازی این برنامه از کلاس استفاده شده است.

آرایه های تابع main:

```
float costpath[16][16] ={{0, 0.2, 0.6, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                   \{0, 0, 0, 0, 0, 0, 9, 0, 0.1, 0, 0, 0, 0, 0, 8.2, 0\},
                  \{0, 0, 0, 0, 0, 0.3, 0, 0.1, 0, 0.2, 0, 0, 0, 7, 0, 0\},
                  \{0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 1.1, 0, 2, 0, 0, 0\},
                  \{0, 0, 0, 0, 0, 0, 0, 0, 0, 1.1, 0, 3.6, 0, 0, 0, 0, 0\}
                  \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.6, 0, 1.8, 0, 0, 0\},
                  \{0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1.8, 0, 2.9, 0, 0.2\},
                  \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.9, 0, 3.6, 0\},
                  {0, 0, 0, 0, 0, 0, 0, 8.2, 0, 0, 0, 0, 0, 3.6, 0, 0 },
                  float pathdis[16][16] = {{0, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
                   \{0.2, 0, 1.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\},
                   \{0.2, 1.3, 0, 0, 1.9, 2.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\},
                   \{0.2, 0, 0, 0, 0, 0, 2.4, 0, 0, 0, 0, 0, 0, 0, 0, 0\},\
                   \{0, 0, 1.9, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\},
                   \{0, 0, 2.1, 0, 2, 1.9, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0\},
                   \{0, 0, 0, 2.4, 0, 1.9, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0\},
                   {0, 0, 0, 0, 0, 0, 3, 0, 0.1, 0, 0, 0, 0, 0, 4.1, 0},
                   \{0, 0, 0, 0, 0, 0.1, 0, 0.1, 0, 0.1, 0, 0, 0, 3.5, 0, 0\},
                   \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 1.1, 0, 2, 0, 0, 0\},
                   \{0, 0, 0, 0, 0, 0, 0, 0, 0, 1.1, 0, 1.8, 0, 0, 0, 0\},
                   \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.8, 0, 0.6, 0, 0, 0\},
                   \{0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0.6, 0, 0.8, 0, 0.2\},
                   \{0, 0, 0, 0, 0, 0, 0, 0, 3.5, 0, 0, 0, 0.8, 0, 1.2, 0\},
                   \{0, 0, 0, 0, 0, 0, 0, 4.1, 0, 0, 0, 0, 0, 1.2, 0, 0\},\
```

گراف:

در این گراف گره شماره 15 ، گره مقصد است و باید کوتاه ترین مسیر تا این گره توسط برنامه پیدا شود.در این برنامه بهترین مسیر از نظر هزینه و کوتاه ترین مسیر یافت میشود. برای پیدا کردن کوتاه ترین مسیر و بهترین مسیر از الگوریتم دایجسترا استفاده میکنیم. آرایه های موجود و سایز آرایه را به یک شی از کلاس میدهیم.

ساختار كلاس:

```
#ifndef bestpath HPP
#define bestpath HPP
using namespace std;
#include <stdio.h>
#include <iostream>
#include <limits.h>
class bestpath
private:
    float** costpath; // best way that include both items trafic and distance
    float** distance; // find distance of best way
    int* store;
                    // store nodes for find path(store previous node)
    int g_size = 0;
    float dijkstra(int check); //algorithm for find best path
    int minimumdis(float [], bool[]);
public:
    bestpath(float **graph,float **dis, int size); //constructor
    ~bestpath();//distructor
    void showpath(int check);
    int nodepath();
};
```

اگر کاربر بهترین مسیر را درخواست کند آرایه costpath به متد Dijkstra داده میشود. و اگر کوتاه ترین مسیر را بخواهد آرایه distance به این متد داده میشود.

در نهایت هزینه یا مسافت طی شده به همراه نمایش مسیر به کاربر نشان داده میشود.

خروجی برنامه:

با تشكر – محمدرضا حيدرنيا