High-resource Language-specific Training for Multilingual Neural Machine Translation

Jian Yang¹, Yuwei Yin², Shuming Ma², Dongdong Zhang², Zhoujun Li¹, Furu Wei²

¹State Key Lab of Software Development Environment,
Beihang University, Beijing, China

²Microsoft Research Asia

Bilingual vs. Mulilngual

HRL: High-Resource Language; LRL: Low-Resource Language

 \triangle BLEU socre between MNMT and BiNMT on En \rightarrow X and X \rightarrow En (averaged)

Negative Language Interference

Different directions conflict with each other to various extents.

lv et ro hi tr gu The less gradient similarity, 1.0 frthe darker the color, the more negative interference. 0.8 de HRL 0.6 **Negative** lν et · Interference 0.4 ro - 0.2 LRL

cosine similarities between gradients of two translation directions

Negative Language Interference

Different directions conflict with each other to various extents.

cosine similarities between gradients of two translation directions

Method Overview

Two-Stage Traning

Step 1: train a MNMT model on HRLs

Step 2: continue training the model on all pairs

Method Overview

Step 1: train a MNMT model on HRLs

- > no negative interference from LRLs
- > mitigate negative interference among HRLs
 - **SLP**: Selective Language-specific Pool

Method Overview

Step 2: continue training on all pairs (HRLs & LRLs)

- > HRLs still use SLP selection mechanism
- > LRLs utilize the trained MNMT model
 - ✓ share the same MNMT → Knowledge Transfer
 - ✓ less training batches on LRLs → avoid overfitting

Dataset

WMT-10: En-X (X in {Fr, Cs, De, Fi, Lv, Et, Ro, Hi, Tr, Gu})

HRLs: Fr, Cs, De, Fi, Lv, and Et; LRLs: Ro, Hi, Tr, and Gu

Code	Language	#Bitext	Training	Valid	Test
Fr	French	10M	WMT15	Newstest13	Newstest15
Cs	Czech	10M	WMT19	Newstest16	Newstest18
De	German	4.6M	WMT19	Newstest16	Newstest 18
Fi	Finnish	4.8M	WMT19	Newstest16	Newstest 18
Lv	Latvian	1.4M	WMT17	Newsdev17	Newstest17
Et	Estonian	0.7M	WMT18	Newsdev18	Newstest18
Ro	Romanian	0.5M	WMT16	Newsdev16	Newstest16
Hi	Hindi	0.26M	WMT14	Newsdev14	Newstest 14
Tr	Turkish	0.18M	WMT18	Newstest16	Newstest18
Gu	Gujarati	0.08M	WMT19	Newsdev19	Newstest 19

OPUS-100: 94 En-X pairs: 95 langs including En, except 5 langs w/o valid/test sets

High-resource: 45 pairs; Medium-resource: 21 pairs; Low-resource: 28 pairs.

Experimental Results: WMT-10

En \rightarrow X on WMT-10: 1 \rightarrow 1 (bilingual), 1 \rightarrow N (one-to-many), N \rightarrow N (many-to-many) models

				HRLs					LRLs				
En→X test sets		#Params	Fr	Cs	De	Fi	Lv	Et	Ro	Hi	Tr	Gu	Avg_{all}
$1\rightarrow 1$	BiNMT [Vaswani et al., 2017]	242M/10M	36.3	22.3	40.2	15.2	16.5	15.0	23.0	12.2	13.3	7.9	20.2
1→N	MNMT [Johnson et al., 2017]	242M	34.2	20.9	40.0	15.0	18.1	20.9	26.0	14.5	17.3	13.2	22.0
	mBART [Liu et al., 2020]	611M	33.7	20.8	38.9	14.5	18.2	20.5	26.0	15.3	16.8	12.9	21.8
	XLM-R [Conneau et al., 2020]	362M	34.7	21.5	40.1	15.2	18.6	20.8	26.4	15.6	17.4	14.9	22.5
	LS-MNMT [Fan et al., 2020]	409M	35.0	21.7	40.6	15.5	18.9	21.0	26.2	14.8	16.5	12.8	22.3
	HLT-MT (Our method)	381M	36.2	22.2	41.8	16.6	19.5	21.1	26.6	15.8	17.1	14.6	23.2
N→N	MNMT [Johnson et al., 2017]	242M	34.2	21.0	39.4	15.2	18.6	20.4	26.1	15.1	17.2	13.1	22.0
	mBART [Liu et al., 2020]	611M	32.4	19.0	37.0	13.2	17.0	19.5	25.1	15.7	16.7	14.2	21.0
	XLM-R [Conneau et al., 2020]	362M	34.2	21.4	39.7	15.3	18.9	20.6	26.5	15.6	17.5	14.5	22.4
	LS-MNMT [Fan et al., 2020]	409M	34.8	21.1	39.3	15.2	18.7	20.5	26.3	14.9	17.3	12.3	22.0
	HLT-MT (Our method)	381M	35.8	22.4	41.5	16.3	19.6	21.0	26.6	15.7	17.6	14.7	23.1

- significantly outperform BiNMT on LRLs, yet retain high performance on HRLs
- > clear improvement over previous multilingual baselines on HRLs and LRLs
- > the extra model parameters for our SLP pool and Universal layer are modest

Experimental Results: OPUS-100

 $X \rightarrow En$ and $En \rightarrow X$ on OPUS-100: $N \rightarrow N$ (many-to-many) models

Models $(N \rightarrow N)$	#Params	X→En				En→X					
		High ₄₅	Med_{21}	Low ₂₈	Avg ₉₄	WR	High ₄₅	Med_{21}	Low ₂₈	Avg ₉₄	WR
Previous Best System [Zhang et al., 2020]	254M	30.3	32.6	31.9	31.4	-	23.7	25.6	22.2	24.0	-
MNMT [Johnson et al., 2017]	242M	32.3	35.1	35.8	33.9	ref	26.3	31.4	31.2	28.9	ref
XLM-R [Conneau et al., 2020]	362M	33.1	35.7	36.1	34.6	_	26.9	31.9	31.7	29.4	_
LS-MNMT [Fan <i>et al.</i> , 2020]	456M	33.4	35.8	35.9	34.7	-	27.5	31.6	31.5	29.6	
HLT-MT (Our method)	381M	34.2	36.7	36.1	35.3	75.5	27.6	33.3	31.8	30.1	78.7

 \triangleright consistently outperform previous multilingual baselines on high/medium/low resource language pairs (both X \rightarrow En and En \rightarrow X directions)

Conclusion

- ✓ In this work, we propose a novel multilingual translation model with the high-resource language-specific training called HLT-MT.
- ✓ The proposed two-stage training strategy and selective language-specific pool (SLP) mitigate the negative inference among different directions.
- ✓ Experimental results evaluated on **WMT-10** and **OPUS-100** benchmarks demonstrate that HLT-MT **significantly outperforms all previous** baselines.

- ✓ Our **code** has been released
 - ➤ https://github.com/YuweiYin/HLT-MT

Thanks!