8.1 EM algorithm for binary matrix completion

(a)

number of student who recommended the movie number of student who saw the movie

I cannot compare these rankings with my individual preferences,

because I did not watch most of them

0.9657534246575342 Inception

0.94444444444444 Shutter_Island

0.9416342412451362 The_Dark_Knight_Rises

0.93939393939394 The Martian

0.9385665529010239 Interstellar

0.9195402298850575 The_Theory_of_Everything

0.9178082191780822

Harry Potter and the Deathly Hallows: Part 2

0.9016393442622951 The_Social_Network

0.9006622516556292

Harry_Potter_and_the_Deathly_Hallows:_Part_1

0.8944099378881988 Gone_Girl

0.8943661971830986 The_Lion_King

0.8916666666666666 Wolf_of_Wall_Street

0.8785714285714286 Avengers:_Infinity_War

0.8681318681318682 Avengers:_Endgame

0.8649789029535865 Now_You_See_Me

0.8639455782312925 Django_Unchained

0.8604651162790697 The_Farewell

0.8436482084690554 The_Avengers

0.83636363636363 Parasite

0.8297872340425532 Black_Swan

0.8271604938271605 Spiderman:_Far_From_Home

0.8253968253968254 21_Jump_Street

0.825 Les_Miserables

0.824 Joker

0.8198198198198 The_Perks_of_Being_a_Wallflower

0.8148148148148 The_Hunger_Games

0.803347280334728 Toy_Story_3

0.8031496062992126 Thor

0.8 The_Hateful_Eight

0.7974683544303798 Hidden_Figures

0.7973856209150327 Ready_Player_One

0.7931034482758621 The_Girls_with_the_Dragon_Tattoo

0.7913669064748201 Captain_America:_The_First_Avenger

0.788888888888889 Her

0.7868852459016393 Dunkirk

0.7864077669902912	The_Great_Gatsby
0.7848101265822784	Darkest_Hour
0.7741935483870968	Three_Billboards_Outside_Ebbing
0.768595041322314	Once_Upon_a_Time_in_Hollywood
0.7636363636363637	Manchester_by_the_Sea
0.7560975609756098	Midnight_in_Paris
0.7547169811320755	La_La_Land
0.74242424242424	Avengers:_Age_of_Ultron
0.7391304347826086	Ex_Machina
0.7363636363636363	The_Revenant
0.7360406091370558	X-Men:_First_Class
0.7241379310344828	Frozen
0.7209302325581395	Jurassic_World
0.72 Pitch_Perfect	
0.7068965517241379	The_Help
0.7 Us	
0.6901408450704225	Drive
0.6783216783216783	Mad_Max:_Fury_Road
0.6588235294117647	Fast_Five
0.6566265060240963	Pokemon_Detective_Pikachu
0.65625 Good_Boys	
0.65151515151515	Room

0.6282051282051282 American_Hustle

0.6242774566473989 Man_of_Steel

0.6190476190476191 Bridemaids

0.6 Chappaquidick

0.5967741935483871 Rocketman

0.5935828877005348 Star_Wars:_The_Force_Awakens

0.5895522388059702 World_War_Z

0.5862068965517241 Phantom_Thread

0.584070796460177 Prometheus

0.5584415584415584 The_Shape_of_Water

0.5405405405406 Fast_&_Furious:_Hobbs_&_Shaw

0.51515151515151 Magic_Mike

0.47368421052631576 The_Last_Airbender

0.45652173913043476 Hustlers

0.37714285714285717 Fifty_Shades_of_Grey

 (b)

$$left \ side = P\left(\left\{R_j = r_j^{(t)}\right\}_{j \in \Omega_t}\right) = \sum_i P\left(\left\{R_j = r_j^{(t)}\right\}_{j \in \Omega_t}, Z = i\right)$$

·····marginalization

$$= \sum_{i}^{k} P(Z=i) P(\{R_{j} = r_{j}^{(t)}\}_{j \in \Omega_{t}} | Z=i)$$

·····product rule

$$=\sum_{i}^{k}P(Z=i)\prod_{j\in\Omega_{t}}P(R_{j}=r_{j}^{(t)}|Z=i)=right\ side$$

·····d-separation #2

(c)

$$left \ side = P\left(Z = i \middle| \left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} \right)$$

$$= \frac{P\left(\left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} | z = i \right) P(z = i)}{P\left(\left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} \right)}$$

·····bayes rule

Where

$$P\left(\left\{R_j = r_j^{(t)}\right\}_{j \in \Omega_t} | z = i\right) = \prod_{j \in \Omega_t} P(R_j = r_j^{(t)} | Z = i)$$

······d-separation #2

And from(b), we already know that

$$P\left(\left\{R_j = r_j^{(t)}\right\}_{j \in \Omega_t}\right) = \sum_{i}^k P(Z = i) \prod_{j \in \Omega_t} P(R_j = r_j^{(t)} | Z = i)$$

So we can get

$$\begin{split} left \ side &= P\left(Z = i \left| \left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} \right) \right. \\ &= \frac{P\left(\left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} | z = i \right) P(z = i)}{P\left(\left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} \right)} \\ &= \frac{P(z = i) \prod_{j \in \Omega_t} P\left(R_j = r_j^{(t)} \middle| Z = i \right)}{\sum_{i'=1}^k P(Z = i') \prod_{j \in \Omega_t} P\left(R_j = r_j^{(t)} \middle| Z = i' \right)} = right \ side \end{split}$$

According to the general EM algorithm update formula, we have For the root node

$$P(X = x) \leftarrow \frac{\sum_{t} P(X = x | V)}{T}$$

For the son node

$$P(X = x | pa = \pi) \leftarrow \frac{\sum_{t} P(X = x, pa = \pi | V)}{\sum_{t} P(pa = \pi | V)}$$

In this case

$$V = \left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t}$$

$$\rho_{it} = P\left(Z = i \middle| \left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} \right)$$

so we can get

$$P(Z = i) \leftarrow \frac{1}{T} \sum_{t=1}^{I} P\left(Z = i \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right) = \frac{1}{T} \sum_{t=1}^{I} \rho_{it}$$

$$P(R_{j} = 1 | Z = i) \leftarrow \frac{\sum_{t} P\left(R_{j} = 1, Z = i \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)}{\sum_{t} P\left(Z = i \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)}$$

$$= \frac{\sum_{t} P\left(R_{j} = 1, Z = i \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)}{\sum_{t=1}^{T} \rho_{it}}$$

Where

$$P\left(R_{j}=1, Z=i \middle| \left\{R_{j}=r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)$$

$$= P\left(Z=i \middle| \left\{R_{j}=r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right) P\left(R_{j}=1 \middle| Z=i, \left\{R_{j}=r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)$$

·····product rule

$$= \rho_{it} P\left(R_j = 1 \middle| Z = i, \left\{R_j = r_j^{(t)}\right\}_{j \in \Omega_t}\right)$$

So we can get

$$\sum_{t} P\left(R_{j} = 1, Z = i \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)$$

$$= \sum_{t} \rho_{it} P\left(R_{j} = 1 \middle| Z = i, \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)$$

$$= \sum_{\{t \mid j \in \Omega_{t}\}} \rho_{it} P\left(R_{j} = 1 \middle| Z = i, \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)$$

$$+ \sum_{\{t \mid j \notin \Omega_{t}\}} \rho_{it} P\left(R_{j} = 1 \middle| Z = i, \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)$$

$$\sum_{t} P\left(R_{j} = 1, Z = i \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)$$

$$= \sum_{\{t \mid j \in \Omega_{t}\}} \rho_{it} I(r_{j}^{(t)}, 1) + \sum_{\{t \mid j \notin \Omega_{t}\}} \rho_{it} P(R_{j} = 1 \middle| Z = i\right)$$

······d-separation #2

In all, we can get

$$P(R_{j} = 1 | Z = i) \leftarrow \frac{\sum_{t} P(R_{j} = 1, Z = i | \{R_{j} = r_{j}^{(t)}\}_{j \in \Omega_{t}})}{\sum_{t=1}^{T} \rho_{it}}$$

$$= \frac{\sum_{\{t | j \in \Omega_{t}\}} \rho_{it} I(r_{j}^{(t)}, 1) + \sum_{\{t | j \notin \Omega_{t}\}} \rho_{it} P(R_{j} = 1 | Z = i)}{\sum_{t=1}^{T} \rho_{it}}$$

Note that since in this update rule $P(R_j = 1|Z = i)$ only involve

$$P(R_j = 1 | Z = i)$$
 in the right side, no other term(e.g.

 $P(R_{j'}=1|Z=i')$) we do not need to create another array

From(b), we already know that

$$P\left(\left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right) = \sum_{i}^{k} P(Z = i) \prod_{j \in \Omega_{t}} P(R_{j} = r_{j}^{(t)} | Z = i)$$

So we can get

$$L = \frac{1}{T} \sum_{t=1}^{T} \log P\left(\left\{R_j = r_j^{(t)}\right\}_{j \in \Omega_t}\right)$$
$$= \frac{1}{T} \sum_{t=1}^{T} \log \left[\sum_{i}^{k} P(Z = i) \prod_{j \in \Omega_t} P(R_j = r_j^{(t)} | Z = i)\right]$$

In conclusion, we have

E-Step

$$\rho_{it} = P\left(Z = i \middle| \left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} \right) = \frac{P(Z = i) \prod_{j \in \Omega_t} P\left(R_j = r_j^{(t)} \middle| Z = i\right)}{\sum_{i'=1}^k P(Z = i') \prod_{j \in \Omega_t} P\left(R_j = r_j^{(t)} \middle| Z = i'\right)}$$

M-Step

$$P(Z = i) \leftarrow \frac{1}{T} \sum_{t=1}^{T} \rho_{it}$$

$$P(R_{j} = 1 | Z = i) \leftarrow \frac{\sum_{\{t | j \in \Omega_{t}\}} \rho_{it} I(r_{j}^{(t)}, 1) + \sum_{\{t | j \notin \Omega_{t}\}} \rho_{it} P(R_{j} = 1 | Z = i)}{\sum_{t=1}^{T} \rho_{it}}$$

$$= \frac{\sum_{\{t | j \in \Omega_{t}\}} \rho_{it} I(r_{j}^{(t)}, 1) + \sum_{\{t | j \notin \Omega_{t}\}} \rho_{it} P(R_{j} = 1 | Z = i)}{T * P(Z = i)}$$

Program result:

Iteration	Log-likelihood L
0	-27.03581500351123
1	-17.5604038243144
2	-16.00236263062783
4	-15.060597317892249
8	-14.501649272824999
16	-14.263788571437594
32	-14.180178075094377
64	-14.170077781591058
128	-14.163960358152186
256	-14.163692439007864

Of course, it increases at each iteration since auxiliary function guarantee that the log likelihood will be equal to or more than the previous one at each iteration.

```
CSE250A08
C:\Users\HP\AppData\Local\Programs\Python\Python37\python.exe
     -27.03581500351123
     -17.5604038243144
     -16.00236263062783
     -15.060597317892249
     -14.501649272824999
     -14.263788571437594
16
     -14.180178075094377
32
     -14.170077781591058
         -14.163960358152186
         -14.163692439007864
256
Process finished with exit code 0
```

$$P\left(R_{l} = 1 \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right) = \sum_{i=1}^{k} P\left(R_{l} = 1, Z = i \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right)$$

·····marginalization

$$= \sum_{i=1}^{k} P\left(Z = i \middle| \left\{ R_{j} = r_{j}^{(t)} \right\}_{j \in \Omega_{t}} \right) P\left(R_{l} = 1 \middle| Z = i, \left\{ R_{j} = r_{j}^{(t)} \right\}_{j \in \Omega_{t}} \right)$$

product rule

For $l \notin \Omega_t$, we can get

$$P\left(R_{l} = 1 \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right) = \sum_{i=1}^{k} P\left(Z = i \middle| \left\{R_{j} = r_{j}^{(t)}\right\}_{j \in \Omega_{t}}\right) P(R_{l} = 1 | Z = i)$$

From (c) and (e), we already get

$$\rho_{it} = P\left(Z = i \middle| \left\{ R_j = r_j^{(t)} \right\}_{j \in \Omega_t} \right)$$

$$P(R_l = 1 | Z = i)$$

Program result for unseen movies:

0.9822638475036042 Inception

0.9787347806930398 Shutter_Island

0.9760742422425076 The_Dark_Knight_Rises

0.9611054183583134 The_Martian

0.9603155501551057 Interstellar

0.9532430101040604 The_Theory_of_Everything

0.9472529971957862 Avengers:_Infinity_War

0.9384744247194854 Avengers:_Endgame

0.925516136493239 The_Social_Network

0.9241943603926942 The_Avengers

0.9042553518893099 Django_Unchained

0.8997468080954295	Now_You_See_Me
0.8913923867886028	Her
0.8883720635743731	21_Jump_Street
0.8840344102564319	Spiderman:_Far_From_Home
0.8805978987824168	Parasite
0.8750845098896503	Joker
0.8735765031739757	Toy_Story_3
0.8695427910650063	Ready_Player_One
0.8662703868828496	Les_Miserables
0.864680416620664	The_Farewell
0.8588349214983563	The_Hunger_Games
0.8527059384441631	Hidden_Figures
0.8526563490945032	Three_Billboards_Outside_Ebbing
0.8496688205775254	Manchester_by_the_Sea
0.8492519455814379	Black_Swan
0.8482974449335975	Iron_Man_2
0.848053053533284	Dunkirk
0.8469881568346	The_Perks_of_Being_a_Wallflower
0.8464343774019171	Darkest_Hour
0.8458414543422115	Captain_America:_The_First_Avenger
0.8418399522618606	Thor
0.8347995847816359	The_Revenant

0.8327094553965656	12_Years_a_Slave
0.8298949988123878	The_Hateful_Eight
0.8212573513855634	Ex_Machina
0.815256402726195	Jurassic_World
0.8124139810436862	Avengers:_Age_of_Ultron
0.8100846696924235	X-Men:_First_Class
0.8095517107595849	Once_Upon_a_Time_in_Hollywood
0.8063918625602785	La_La_Land
0.7918602656252836	Frozen
0.7887667950190065	Pitch_Perfect
0.7730172541835454	The_Girls_with_the_Dragon_Tattoo
0.7555483092725866	Good_Boys
0.7538517142356382	The_Help
0.7511939253594344	Mad_Max:_Fury_Road
0.7506828285452684	Us
0.7477295284441052	Fast_Five
0.7477295284441052 0.7399508210219788	Fast_Five Drive
0.7399508210219788	Drive
0.7399508210219788 0.7126617472853463	Drive Pokemon_Detective_Pikachu
0.7399508210219788 0.7126617472853463 0.7074691172594335	Drive Pokemon_Detective_Pikachu Midnight_in_Paris