GRAPH ALGORITHMS

+ DATA STRUCTURES

GRAPH

Graph consists of a set of vertices and a set of edges.

$$G = (V, E)$$

types of GRAPHS

directed GRAPH

Edge (u,v) is incident from u. Edge (u,v) is incident to v. Vertex v is adjacent to vertex u.

undirected GRAPH

Edge (u,v) or (v,u) is incident on u and v. Vertex v is adjacent to vertex u. Vertex u is adjacent to vertex v.

weighted GRAPH

weighted GRAPH

path in a GRAPH

Path represents a sequence of edges between the two vertices.

path in a GRAPH

path in a GRAPH

in-degree, $\rho^+(v)$ # of edges incident to v

out-degree, $\rho^{-}(V)$ # of edges incident from V

```
degree of vertex v, \rho(v)
# of edges incident on v
= \rho^-(v) + \rho^+(v)
```

degree of vertex v, $\rho(v)$ # of edges incident on v.

(also applicable for undirected graphs)

$$\rho^{+}(4):3$$

$$\rho^+(7):2$$

 $\rho^{-}(7): 1$

 $\rho^{-}(5): 2$

 $\rho(5): 3$

 $\rho(4): 6$

GRAPHRepresentations

adjacency MATRIX

2D ARRAY

adjacency LIST

list of LISTS

	A	В	С	D	Ε
А	0	1	0	1	0
В	1	0	1	0	1
C	0	1	0	1	1
\Box	1	0	1	0	0
Ε	0	1	1	0	0

	А	В	С	D	Ε
А	∞	1	∞	1	∞
В	1	∞	1	∞	1
C	∞	1	∞	1	1
D	1	∞	1	∞	∞
Ε	∞	1	1	∞	∞

	А	В	C	D	Ε
А	0	1	0	1	0
В	0	0	0	0	1
C	0	1	0	0	1
\Box	0	0	1	0	0
Ε	0	0	0	0	0

	А	В	С	D	Ε
А	0	2	0	4	0
В	0	0	0	0	7
\Box	0	3	0	0	1
\Box	0	0	5	0	0
Ε	0	0	0	0	0

GRAPH ALGORITHMS

topological SORT

An ordering of vertices in a directed acyclic graph such that if there is a path from v_i to v_j , then v_j appears after vi in the ordering.

A, B, C, D, E A, C, D, B, E directed acyclic graph DAG

A directed graph with no directed cycles.

directed acyclic graph DAG

directed acyclic graph DAG

Algorithm:

- Find any vertex with no incoming edges (in-degree is 0).
- Print this vertex and remove it along with its edges from the graph.
- Repeat steps above.

graph TRAVERSALS

DEPTH FIRST search

BREADTH FIRST search

ifp.uni-stuttgart.de

DEPTH FIRST search

Generalization of preorder traversal.

DEPTH FIRST search

Starting at some vertex v, process v and recursively traverse all vertices adjacent to v.

```
void DFS( vertex v, graph G ){
  print v;
  visited[v] = TRUE;
  for each w adjacent to v:
     if(!visited[w])
       DFS(w);
```

```
void DFS( vertex v, graph G ){
  stack S;
  push(v,S);
  while stack S is not empty{
     v = pop(S);
     if (!visited[v]){ print v;
        visited[v] = TRUE;
        for each w adjacent to v:
          if(!visited[w])
             push(w, S);
```


Result:

Result: A

Result: AB

Result: ABE

Result: ABEG

Result: ABEG

Result: ABEG

Result: ABEGF

Result: ABEGFC

Result: ABEGFCH

Result: ABEGFCH

Result: ABEGFCH

Result: ABEGFCHD

Result: ABEGFCHD

Result: ABEGFCHD

Result: ABEGFCHD

Result: ABEGFCHD

DFS applications

Detecting cycle in a graph.

Topological sorting.

Path finding.

Spanning trees.

DFS detecting cycle in a graph

A graph has a cycle if and only if we can find a back edge during DFS.

Result/Visited:

Result/Visited: A

Result/Visited: AB

Result/Visited: A B E

Result/Visited: A B E G

BREADTH FIRST search

Generalization of level-order traversal of trees.

```
void BFS( vertex v, graph G ){
  queue Q;
  enqueue(v,Q);
  while queue Q is not empty{
     v = dequeue(Q);
     if (!visited[v]){
       print v;
       visited[v] = TRUE;
       for each w adjacent to v:
          if(!visited[w])
            enqueue(w, Q);
```


Result: A

Result: A

Result: A B

Result: A B D

Result: A B D G

Result: A B D G

F

F C

BFS applications

Finding nodes within one. connected components.
Testing for bipartiteness.
Finding shortest paths.

minimum SPANNING TREES

minimum SPANNING TREE

A tree formed from graph edges that connects all the vertices of the graph at lowest cost.

cost = ?

