Greedy-Algorithmen

Gegeben sei Instanz \mathcal{I} eines Problems.

Ein Greedy-Algorithmus löst $\mathcal I$ schrittweise und trifft in jedem Schritt eine

Entscheidung, die für den aktuellen Schritt optimal ist.

Greedy-Algorithmen

Gegeben sei Instanz \mathcal{I} eines Problems.

Ein Greedy-Algorithmus löst \mathcal{I} schrittweise und trifft in jedem Schritt eine

Entscheidung, die für den aktuellen Schritt optimal ist.

Wechselgeldproblem

Eingabe: $z \in \mathbb{N}$

Ziel: Setze z Cent mit möglichst wenigen Münzen zusammen.

Dafür stehen beliebig viele Münzen mit den Werten 1, 2, 5, 10, 20, 50, 100 und 200 Cent zur Verfügung.

Greedy-Algorithmen

Gegeben sei Instanz \mathcal{I} eines Problems.

Ein Greedy-Algorithmus löst $\mathcal I$ schrittweise und trifft in jedem Schritt eine

Entscheidung, die für den aktuellen Schritt optimal ist.

Wechselgeldproblem

Eingabe: $z \in \mathbb{N}$

Ziel: Setze z Cent mit möglichst wenigen Münzen zusammen.

Dafür stehen beliebig viele Münzen mit den Werten 1, 2, 5, 10, 20, 50, 100 und 200 Cent

zur Verfügung.

Beispiel: z = 149


```
GREEDYCHANGE(int z)

1  M = \{1, 2, 5, 10, 20, 50, 100, 200\};

2  S = ();

3  while (z > 0) {

4  x = \max\{i \in M \mid i \leq z\};

5  S.append(x);

6  z = z - x;

7  }

8  return S;
```

```
GREEDYCHANGE(int z)
    M = \{1, 2, 5, 10, 20, 50, 100, 200\};
   S=();
    while (z > 0) {
         x = \max\{i \in M \mid i \leq z\};
5
         S.append(x);
6
7
     z = z - x;
8
    return S:
```

Beispiel: z = 149


```
GREEDYCHANGE(int z)

1  M = \{1, 2, 5, 10, 20, 50, 100, 200\};

2  S = ();

3  while (z > 0) {

4  x = \max\{i \in M \mid i \leq z\};

5  S.append(x);

6  z = z - x;

7  }

8  return S;
```

Beispiel: z = 149

Beispiel: z = 39

Theorem 2.4

Für $M = \{1, 2, 5, 10, 20, 50, 100, 200\}$ findet GreedyChange für jeden Betrag eine Lösung mit der kleinstmöglichen Anzahl an Münzen.

Theorem 2.4

Für $M = \{1, 2, 5, 10, 20, 50, 100, 200\}$ findet GREEDYCHANGE für jeden Betrag eine Lösung mit der kleinstmöglichen Anzahl an Münzen.

Idee:

- Finde Struktur der Lösung, die der Greedy-Algorithmus berechnet.
- Zeige, dass die Struktur eine eindeutige Lösung erzeugt.
- Zeige, dass jede optimale Lösung diese Struktur hat.

Behauptung

Für $i \in M$ sei x_i die Anzahl an Münzen mit Wert i in einer Lösung S. Für i > 1 gelte

$$\sum_{j \in M, j < i} j x_j < i.$$

Mit $\sum_{i \in M} ix_i = z$ bestimmen diese Ungleichungen eindeutig die Lösung S.

Behauptung

Für $i \in M$ sei x_i die Anzahl an Münzen mit Wert i in einer Lösung S. Für i > 1 gelte

$$\sum_{j \in M, j < i} j x_j < i.$$

Mit $\sum_{i \in M} ix_i = z$ bestimmen diese Ungleichungen eindeutig die Lösung S.

Beweis: (Induktion über z)

Behauptung

Für $i \in M$ sei x_i die Anzahl an Münzen mit Wert i in einer Lösung S. Für i > 1 gelte

$$\sum_{j \in M, j < i} j x_j < i.$$

Mit $\sum_{i \in M} ix_i = z$ bestimmen diese Ungleichungen eindeutig die Lösung S.

Beweis: (Induktion über *z*)

z = 1: Lösung $x_1 = 1$ und $x_i = 0$ für i > 1 ist eindeutig.

Behauptung

Für $i \in M$ sei x_i die Anzahl an Münzen mit Wert i in einer Lösung S. Für i > 1 gelte

$$\sum_{j \in M, j < i} j x_j < i.$$

Mit $\sum_{i \in M} ix_i = z$ bestimmen diese Ungleichungen eindeutig die Lösung S.

Beweis: (Induktion über *z*)

$$z = 1$$
: Lösung $x_1 = 1$ und $x_i = 0$ für $i > 1$ ist eindeutig.

$$z > 1$$
: Sei $i \in M$ maximal, sodass $i \le z$.

Behauptung

Für $i \in M$ sei x_i die Anzahl an Münzen mit Wert i in einer Lösung S. Für i > 1 gelte

$$\sum_{j \in M, j < i} j x_j < i.$$

Mit $\sum_{i \in M} ix_i = z$ bestimmen diese Ungleichungen eindeutig die Lösung S.

Beweis: (Induktion über z)

- z = 1: Lösung $x_1 = 1$ und $x_i = 0$ für i > 1 ist eindeutig.
- z > 1: Sei $i \in M$ maximal, sodass $i \le z$.

Wegen $\sum_{j \in M, j < i} jx_j < i$ gilt $\mathbf{x}_i \ge \mathbf{1}$. Wert i kommt also mindestens einmal vor.

Behauptung

Für $i \in M$ sei x_i die Anzahl an Münzen mit Wert i in einer Lösung S. Für i > 1 gelte

$$\sum_{j \in M, j < i} j x_j < i.$$

Mit $\sum_{i \in M} ix_i = z$ bestimmen diese Ungleichungen eindeutig die Lösung S.

Beweis: (Induktion über z)

- z = 1: Lösung $x_1 = 1$ und $x_i = 0$ für i > 1 ist eindeutig.
- z > 1: Sei $i \in M$ maximal, sodass $i \le z$.

Wegen $\sum_{i \in M, i < i} j x_j < i$ gilt $x_i \ge 1$. Wert i kommt also mindestens einmal vor.

Sei $(x_i')_{i \in M}$ eine Lösung für Restbetrag $\mathbf{z}' = \mathbf{z} - \mathbf{i}$, welche die Ungleichungen erfüllt.

Behauptung

Für $i \in M$ sei x_i die Anzahl an Münzen mit Wert i in einer Lösung S. Für i > 1 gelte

$$\sum_{j \in M, j < i} j x_j < i.$$

Mit $\sum_{i \in M} ix_i = z$ bestimmen diese Ungleichungen eindeutig die Lösung S.

Beweis: (Induktion über z)

- z = 1: Lösung $x_1 = 1$ und $x_i = 0$ für i > 1 ist eindeutig.
- z > 1: Sei $i \in M$ maximal, sodass $i \le z$.

Wegen $\sum_{i \in M, i < i} j x_j < i$ gilt $x_i \ge 1$. Wert i kommt also mindestens einmal vor.

Sei $(x_i')_{i \in M}$ eine Lösung für Restbetrag $\mathbf{z}' = \mathbf{z} - \mathbf{i}$, welche die Ungleichungen erfüllt.

Laut Induktionsannahme ist die Lösung für z' eindeutig.

Behauptung

Für $i \in M$ sei x_i die Anzahl an Münzen mit Wert i in einer Lösung S. Für i > 1 gelte

$$\sum_{j \in M, j < i} j x_j < i.$$

Mit $\sum_{i \in M} ix_i = z$ bestimmen diese Ungleichungen eindeutig die Lösung S.

Beweis: (Induktion über z)

z = 1: Lösung $x_1 = 1$ und $x_i = 0$ für i > 1 ist eindeutig.

z > 1: Sei $i \in M$ maximal, sodass $i \le z$.

Wegen $\sum_{i \in M, i < i} jx_i < i$ gilt $x_i \ge 1$. Wert i kommt also mindestens einmal vor.

Sei $(x_i')_{i \in M}$ eine Lösung für Restbetrag $\mathbf{z}' = \mathbf{z} - \mathbf{i}$, welche die Ungleichungen erfüllt.

Laut Induktionsannahme ist die Lösung für z' eindeutig.

Dann ist $x_j = x_i'$ für $i \neq j$ und $x_i = x_i' + 1$ als Lösung für z eindeutig.

Behauptung

Sei $(y_i \in \mathbb{N}_0)_{i \in M}$ optimale Lösung, d. h. $\sum_{i \in M} iy_i = z$ und $\sum_{i \in M} y_i$ kleinstmöglich.

Für $i \in M$ mit i > 1 gilt $\sum_{j \in M, j < i} jy_j < i$.

Beweis:

$$i = 2$$
: Es gilt $y_1 \le 1$.

Sonst 2 \times 1-Cent \rightarrow 1 \times 2-Cent.

Behauptung

Sei $(y_i \in \mathbb{N}_0)_{i \in M}$ optimale Lösung, d. h. $\sum_{i \in M} iy_i = z$ und $\sum_{i \in M} y_i$ kleinstmöglich.

Für $i \in M$ mit i > 1 gilt $\sum_{j \in M, j < i} jy_j < i$.

Beweis:

$$i = 2$$
: Es gilt $y_1 \le 1$.

Sonst 2 \times 1-Cent \rightarrow 1 \times 2-Cent.

$$\Rightarrow 1 \cdot y_1 < 2$$

Behauptung

Sei $(y_i \in \mathbb{N}_0)_{i \in M}$ optimale Lösung, d. h. $\sum_{i \in M} iy_i = z$ und $\sum_{i \in M} y_i$ kleinstmöglich.

Für
$$i \in M$$
 mit $i > 1$ gilt $\sum_{j \in M, j < i} jy_j < i$.

Beweis:

$$i = 2$$
: Es gilt $y_1 \le 1$.

Sonst 2 \times 1-Cent \rightarrow 1 \times 2-Cent.

$$\Rightarrow 1 \cdot y_1 < 2$$

$$i = 5$$
: Es gilt $y_2 \le 2$.

Sonst 3 \times 2-Cent \rightarrow 1 \times 5-Cent + 1 \times 1-Cent.

Behauptung

Sei $(y_i \in \mathbb{N}_0)_{i \in M}$ optimale Lösung, d. h. $\sum_{i \in M} iy_i = z$ und $\sum_{i \in M} y_i$ kleinstmöglich.

Für
$$i \in M$$
 mit $i > 1$ gilt $\sum_{j \in M, j < i} jy_j < i$.

Beweis:

$$i = 2$$
: Es gilt $y_1 \le 1$.

Sonst 2 \times 1-Cent \rightarrow 1 \times 2-Cent.

$$\Rightarrow 1 \cdot y_1 < 2$$

$$i = 5$$
: Es gilt $y_2 \le 2$.

Sonst 3×2 -Cent $\rightarrow 1 \times 5$ -Cent $+ 1 \times 1$ -Cent.

Nicht gleichzeitig $y_1 = 1$ und $y_2 = 2$.

Sonst 1 \times 1-Cent + 2 \times 2-Cent \rightarrow 1 \times 5-Cent.

Behauptung

Sei $(y_i \in \mathbb{N}_0)_{i \in M}$ optimale Lösung, d. h. $\sum_{i \in M} iy_i = z$ und $\sum_{i \in M} y_i$ kleinstmöglich.

Für
$$i \in M$$
 mit $i > 1$ gilt $\sum_{j \in M, j < i} jy_j < i$.

Beweis:

$$i = 2$$
: Es gilt $y_1 \le 1$.

Sonst 2 \times 1-Cent \rightarrow 1 \times 2-Cent.

$$\Rightarrow 1 \cdot y_1 < 2$$

$$i = 5$$
: Es gilt $y_2 \le 2$.

Sonst 3×2 -Cent $\rightarrow 1 \times 5$ -Cent $+ 1 \times 1$ -Cent.

Nicht gleichzeitig $y_1 = 1$ und $y_2 = 2$.

 $\text{Sonst 1} \times \text{1-Cent} + 2 \times \text{2-Cent} \rightarrow 1 \times \text{5-Cent}. \qquad \Rightarrow 1 \cdot y_1 + 2 \cdot y_2 < 5$

i = 10: Es ailt $v_5 < 1$

Behauptung

Sei $(y_i \in \mathbb{N}_0)_{i \in M}$ optimale Lösung, d. h. $\sum_{i \in M} i y_i = z$ und $\sum_{i \in M} y_i$ kleinstmöglich. Für $i \in M$ mit i > 1 gilt $\sum_{i \in M, i < i} j y_i < i$.

Beweis:

$$i=2$$
: Es gilt $y_1 \le 1$.
Sonst 2×1 -Cent $\to 1 \times 2$ -Cent. $\Rightarrow 1 \cdot y_1 < 2$
 $i=5$: Es gilt $y_2 \le 2$.
Sonst 3×2 -Cent $\to 1 \times 5$ -Cent $+ 1 \times 1$ -Cent.
Nicht gleichzeitig $y_1 = 1$ und $y_2 = 2$.
Sonst 1×1 -Cent $+ 2 \times 2$ -Cent $\to 1 \times 5$ -Cent. $\Rightarrow 1 \cdot y_1 + 2 \cdot y_2 < 5$

Theorem 2.4

Für $M = \{1, 2, 5, 10, 20, 50, 100, 200\}$ findet GREEDYCHANGE für jeden Betrag eine Lösung mit der kleinstmöglichen Anzahl an Münzen.

Theorem 2.4

Für $M = \{1, 2, 5, 10, 20, 50, 100, 200\}$ findet GREEDYCHANGE für jeden Betrag eine Lösung mit der kleinstmöglichen Anzahl an Münzen.

Beweis:

• Die Greedy-Lösung $(x_i)_{i \in M}$ erfüllt die Ungleichungen

$$\sum_{j \in M, j < i} j x_j < i \quad \text{ und } \quad \sum_{i \in M} i x_i = z$$

Theorem 2.4

Für $M = \{1, 2, 5, 10, 20, 50, 100, 200\}$ findet GREEDYCHANGE für jeden Betrag eine Lösung mit der kleinstmöglichen Anzahl an Münzen.

Beweis:

• Die Greedy-Lösung $(x_i)_{i \in M}$ erfüllt die Ungleichungen

$$\sum_{j \in M, j < i} j x_j < i \quad \text{ und } \quad \sum_{i \in M} i x_i = z$$

• Diese Ungleichungen bestimmen eindeutig die Lösung $(x_i)_{i \in M}$

Theorem 2.4

Für $M = \{1, 2, 5, 10, 20, 50, 100, 200\}$ findet GREEDYCHANGE für jeden Betrag eine Lösung mit der kleinstmöglichen Anzahl an Münzen.

Beweis:

• Die Greedy-Lösung $(x_i)_{i \in M}$ erfüllt die Ungleichungen

$$\sum_{j \in M, j < i} jx_j < i \quad \text{und} \quad \sum_{i \in M} ix_i = z$$

- Diese Ungleichungen bestimmen eindeutig die Lösung $(x_i)_{i \in M}$
- Jede optimale Lösung $(y_i \in \mathbb{N}_{\geq 0})_{i \in M}$ erfüllt auch die obigen Ungleichungen.

Theorem 2.4

Für $M = \{1, 2, 5, 10, 20, 50, 100, 200\}$ findet GREEDYCHANGE für jeden Betrag eine Lösung mit der kleinstmöglichen Anzahl an Münzen.

Beweis:

• Die Greedy-Lösung $(x_i)_{i \in M}$ erfüllt die Ungleichungen

$$\sum_{j \in M, j < i} jx_j < i \quad \text{und} \quad \sum_{i \in M} ix_i = z$$

- Diese Ungleichungen bestimmen eindeutig die Lösung $(x_i)_{i \in M}$
- Jede optimale Lösung $(y_i \in \mathbb{N}_{\geq 0})_{i \in M}$ erfüllt auch die obigen Ungleichungen.

$$\Rightarrow$$
 $(y_i)_{i \in M}$ entspricht der Greedy-Lösung $(x_i)_{i \in M}$.

Greedy ist nicht für jedes Münzsystem optimal:

Sei $M = \{1, 3, 4\}$ und z = 6.

Greedy: 4+1+1 (3 Münzen)

Optimal: 3 + 3 (2 Münzen)

Interval Scheduling

Eingabe: Menge $S = \{1, ..., n\}$ von Aufgaben

Startzeitpunkte $s_1, \ldots, s_n \geq 0$

Fertigstellungszeitpunkte $f_1, \ldots, f_n \ge 0$ mit $f_i > s_i$

Interval Scheduling

Eingabe: Menge $S = \{1, ..., n\}$ von Aufgaben

Startzeitpunkte $s_1, \ldots, s_n \ge 0$

Fertigstellungszeitpunkte $f_1, \ldots, f_n \ge 0$ mit $f_i > s_i$

Ausgabe: größtmögliche Teilmenge $S' \subseteq S$ von disjunkten Aufgaben, d. h.

$$\forall i, j \in \mathcal{S}', i \neq j : [s_i, f_i) \cap [s_j, f_j) = \emptyset$$

Interval Scheduling

Eingabe: Menge $S = \{1, ..., n\}$ von Aufgaben

Startzeitpunkte $s_1, \ldots, s_n \geq 0$

Fertigstellungszeitpunkte $f_1, \ldots, f_n \ge 0$ mit $f_i > s_i$

Ausgabe: größtmögliche Teilmenge $S' \subseteq S$ von disjunkten Aufgaben, d. h.

$$\forall i,j \in \mathcal{S}', i \neq j : [s_i, f_i) \cap [s_j, f_j) = \emptyset$$


```
GREEDYSTART
     S^{\star}=\emptyset;
     while (S \neq \emptyset) {
3
       Wähle Aufgabe i \in S mit
          kleinstem Startzeitpunkt si.
       S^* = S^* \cup \{i\};
5
       Lösche alle Aufgaben aus S,
          die mit i kollidieren.
6
     return S*:
```

```
GREEDYSTART
     S^{\star} = \emptyset:
    while (S \neq \emptyset) {
3
       Wähle Aufgabe i \in S mit
          kleinstem Startzeitpunkt si.
      S^* = S^* \cup \{i\};
5
       Lösche alle Aufgaben aus S,
          die mit i kollidieren.
6
     return S*:
```

im Allgemeinen nicht optimal


```
GREEDYSTART
     S^{\star} = \emptyset:
     while (S \neq \emptyset) {
3
       Wähle Aufgabe i \in S mit
          kleinstem Startzeitpunkt si.
      S^* = S^* \cup \{i\};
       Lösche alle Aufgaben aus S.
          die mit i kollidieren.
6
     return S*:
```

```
GREEDY DAUER
     S^{\star} = \emptyset;
     while (S \neq \emptyset) {
       Wähle Aufgabe i \in S mit der
           kürzesten Dauer f_i - s_i.
   S^* = S^* \cup \{i\};
       Lösche alle Aufgaben aus S.
           die mit i kollidieren.
6
     return S*:
```

im Allgemeinen nicht optimal


```
GREEDYSTART
     S^{\star} = \emptyset:
     while (S \neq \emptyset) {
3
       Wähle Aufgabe i \in S mit
          kleinstem Startzeitpunkt si.
      S^* = S^* \cup \{i\};
       Lösche alle Aufgaben aus S.
          die mit i kollidieren.
6
     return S*:
```

```
GREEDY DAUER
     S^{\star} = \emptyset:
     while (S \neq \emptyset) {
       Wähle Aufgabe i \in S mit der
           kürzesten Dauer f_i - s_i.
   S^* = S^* \cup \{i\};
       Lösche alle Aufgaben aus S.
           die mit i kollidieren.
6
     return S*:
```

im Allgemeinen nicht optimal


```
GREEDYENDE

1 S^* = \emptyset;

2 while (S \neq \emptyset) {

3 Wähle Aufgabe i \in S mit dem frühesten Fertigstellungszeitpunkt f_i.

4 S^* = S^* \cup \{i\};

5 Lösche alle Aufgaben aus S, die mit i kollidieren.

6 }

7 return S^*;
```

```
GREEDYENDE

1 S^* = \emptyset;

2 while (S \neq \emptyset) {

3 Wähle Aufgabe i \in S mit dem frühesten Fertigstellungszeitpunkt f_i.

4 S^* = S^* \cup \{i\};

5 Lösche alle Aufgaben aus S, die mit i kollidieren.

6 }

7 return S^*;
```

Theorem 2.6

Der Algorithmus Greedyende wählt für jede Instanz eine größtmögliche Menge von paarweise nicht kollidierenden Aufgaben aus.

Lemma 2.5

Es sei S eine Menge von Aufgaben und es sei $i \in S$ eine Aufgabe mit dem frühesten Fertigstellungszeitpunkt f_i . Dann gibt es eine optimale Auswahl $S' \subseteq S$ von paarweise nicht kollidierenden Aufgaben mit $i \in S'$.

Lemma 2.5

Es sei S eine Menge von Aufgaben und es sei $i \in S$ eine Aufgabe mit dem frühesten Fertigstellungszeitpunkt f_i . Dann gibt es eine optimale Auswahl $S' \subseteq S$ von paarweise nicht kollidierenden Aufgaben mit $i \in S'$.

Beweis:

Sei $S^* \subseteq S$ optimale Auswahl.

Lemma 2.5

Es sei S eine Menge von Aufgaben und es sei $i \in S$ eine Aufgabe mit dem frühesten Fertigstellungszeitpunkt f_i . Dann gibt es eine optimale Auswahl $S' \subseteq S$ von paarweise nicht kollidierenden Aufgaben mit $i \in S'$.

Beweis:

Sei $S^* \subseteq S$ optimale Auswahl.

Lemma 2.5

Es sei S eine Menge von Aufgaben und es sei $i \in S$ eine Aufgabe mit dem frühesten Fertigstellungszeitpunkt f_i . Dann gibt es eine optimale Auswahl $S' \subseteq S$ von paarweise nicht kollidierenden Aufgaben mit $i \in S'$.

Beweis:

Sei $S^* \subseteq S$ optimale Auswahl.

Lemma 2.5

Es sei S eine Menge von Aufgaben und es sei $i \in S$ eine Aufgabe mit dem frühesten Fertigstellungszeitpunkt f_i . Dann gibt es eine optimale Auswahl $S' \subseteq S$ von paarweise nicht kollidierenden Aufgaben mit $i \in S'$.

Beweis:

Sei $S^* \subseteq S$ optimale Auswahl.

$$j = \min_{k \in \mathcal{S}^*} f_k$$

Lemma 2.5

Es sei S eine Menge von Aufgaben und es sei $i \in S$ eine Aufgabe mit dem frühesten Fertigstellungszeitpunkt f_i . Dann gibt es eine optimale Auswahl $S' \subseteq S$ von paarweise nicht kollidierenden Aufgaben mit $i \in S'$.

Beweis:

Sei $S^* \subseteq S$ optimale Auswahl.

$$j = \min_{k \in S^*} f_k$$

 $\Rightarrow S' := (S^* \setminus \{j\}) \cup \{i\}$ kollidiert nicht
und $|S'| = |S^*|$

Lemma 2.5

Es sei S eine Menge von Aufgaben und es sei $i \in S$ eine Aufgabe mit dem frühesten Fertigstellungszeitpunkt f_i . Dann gibt es eine optimale Auswahl $S' \subseteq S$ von paarweise nicht kollidierenden Aufgaben mit $i \in S'$.

Beweis:

Sei $S^* \subseteq S$ optimale Auswahl.

Annahme: $i \notin S^*$.

$$j = \min_{k \in \mathcal{S}^{\star}} f_k$$

$$\Rightarrow S' := (S^* \setminus \{j\}) \cup \{i\}$$
 kollidiert nicht

und
$$|\mathcal{S}'| = |\mathcal{S}^{\star}|$$

 \Rightarrow S' ist optimale Auswahl mit $i \in S'$.

Lemma 2.5

Es sei S eine Menge von Aufgaben und es sei $i \in S$ eine Aufgabe mit dem frühesten Fertigstellungszeitpunkt f_i . Dann gibt es eine optimale Auswahl $S' \subseteq S$ von paarweise nicht kollidierenden Aufgaben mit $i \in S'$.

Theorem 2.6

Der Algorithmus Greedyende wählt für jede Instanz eine größtmögliche Menge von paarweise nicht kollidierenden Aufgaben aus.

Lemma 2.5

Es sei S eine Menge von Aufgaben und es sei $i \in S$ eine Aufgabe mit dem frühesten Fertigstellungszeitpunkt f_i . Dann gibt es eine optimale Auswahl $S' \subseteq S$ von paarweise nicht kollidierenden Aufgaben mit $i \in S'$.

Theorem 2.6

Der Algorithmus Greedyende wählt für jede Instanz eine größtmögliche Menge von paarweise nicht kollidierenden Aufgaben aus.

Beweis:

Invariante in Zeile 2 von GREEDYENDE:

 S^* kann mit Auswahl von Aufgaben aus S zu optimaler Lösung erweitert werden.

```
GREEDYENDE(int[] s, int[] f)
    // Sei f[0] \le f[1] \le ... \le f[n-1].
1 S^* = \{0\};
2 k = 0:
3 for (int i = 1; i < n; i++) {
        if (s[i] >= f[k]) {
        S^* = S^* \cup \{i\};
            k = i:
    return S*:
```

```
GREEDYENDE(int[] s, int[] f)
    // Sei f[0] \le f[1] \le ... \le f[n-1].
1 S^* = \{0\};
2 k = 0:
3 for (int i = 1; i < n; i++) {
        if (s[i] >= f[k]) {
5 S^* = S^* \cup \{i\};
            k = i:
9
    return S*:
```

Theorem 2.7

Die Laufzeit des Algorithmus GREEDYENDE beträgt $O(n \log n)$. Sind die Aufgaben bereits aufsteigend nach ihrem Fertigstellungszeitpunkt sortiert, so beträgt die Laufzeit O(n).

Rucksackproblem (Knapsack Problem (KP))

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Gewichte $\textit{w}_1, \dots, \textit{w}_n \in \mathbb{N}$

Kapazität $t \in \mathbb{N}$

Rucksackproblem (Knapsack Problem (KP))

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Gewichte $w_1, \ldots, w_n \in \mathbb{N}$

Kapazität $t \in \mathbb{N}$

Ausgabe: $x_1, \ldots, x_n \in \{0, 1\}$, sodass

Gesamtnutzen $p_1x_1 + \ldots + p_nx_n$ maximal

unter der Bedingung $w_1x_1 + \ldots + w_nx_n \le t$

Rucksackproblem (Knapsack Problem (KP))

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Gewichte $w_1,\ldots,w_n\in\mathbb{N}$

Kapazität $t \in \mathbb{N}$

Ausgabe: $x_1, \ldots, x_n \in \{0, 1\}$, sodass

Gesamtnutzen $p_1 x_1 + \ldots + p_n x_n$ maximal

unter der Bedingung $w_1x_1 + \ldots + w_nx_n \le t$

Terminologie:

- $x = (x_1, \dots, x_n) \in \{0, 1\}^n$ nennen wir Lösung.
- Gilt $w_1x_1 + \ldots + w_nx_n \le t$, so heißt x gültige Lösung.

Fraktionales Rucksackproblem

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Gewichte $w_1, \ldots, w_n \in \mathbb{N}$

Kapazität $t \in \mathbb{N}$

Ausgabe: $x_1, \ldots, x_n \in [0, 1]$, sodass

Gesamtnutzen $p_1 x_1 + \ldots + p_n x_n$ maximal

unter der Bedingung $w_1x_1 + \ldots + w_nx_n \le t$

Terminologie:

- $x = (x_1, \dots, x_n) \in \{0, 1\}^n$ nennen wir Lösung.
- Gilt $w_1x_1 + \ldots + w_nx_n \le t$, so heißt x gültige Lösung.

```
GREEDYKP
```

2

4

Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte

$$\frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.$$

- for (int i = 1; i <= n; i++) { $x_i = 0$; } int i = 1;
- while $((t > 0) \&\& (i <= n)) \{$ if $(t >= w_i) \{ x_i = 1; t = t - w_i;$
- 5 **if** $(t >= w_i) \{ x_i = 1; t = t w_i; \}$ 6 **else** $\{ x_i = \frac{t}{w_i}; t = 0; \}$ 7 i++;
- 9 **return** (x_1,\ldots,x_n) ;

```
GREEDYKP
      Sortiere die Objekte gemäß ihrer
      Effizienz. Danach gelte
                \frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.
      for (int i = 1; i <= n; i++) { x_i = 0; }
2
3
      int i = 1:
4
      while ((t > 0) \&\& (i <= n)) {
5
           if (t >= w_i) \{ x_i = 1; t = t - w_i; \}
           else \{ x_i = \frac{t}{w_i}; t = 0; \}
6
           i++:
9
      return (x_1,\ldots,x_n);
```



```
GREEDYKP
      Sortiere die Objekte gemäß ihrer
      Effizienz. Danach gelte
                \frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.
      for (int i = 1; i <= n; i++) { x_i = 0; }
2
3
      int i = 1:
4
      while ((t > 0) \&\& (i <= n)) {
5
           if (t >= w_i) \{ x_i = 1; t = t - w_i; \}
           else \{ x_i = \frac{t}{w_i}; t = 0; \}
6
           i++:
8
9
      return (x_1,\ldots,x_n);
```



```
GREEDYKP
      Sortiere die Objekte gemäß ihrer
      Effizienz. Danach gelte
                \frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.
     for (int i = 1; i <= n; i++) { x_i = 0; }
2
3
      int i = 1:
4
     while ((t > 0) \&\& (i <= n)) {
5
           if (t >= w_i) \{ x_i = 1; t = t - w_i; \}
           else \{ x_i = \frac{t}{w_i}; t = 0; \}
6
           i++:
8
9
      return (x_1,\ldots,x_n);
```



```
GREEDYKP
      Sortiere die Objekte gemäß ihrer
      Effizienz. Danach gelte
                \frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.
     for (int i = 1; i <= n; i++) { x_i = 0; }
2
3
      int i = 1:
4
     while ((t > 0) \&\& (i <= n)) {
5
           if (t >= w_i) \{ x_i = 1; t = t - w_i; \}
           else \{ x_i = \frac{t}{w_i}; t = 0; \}
6
           i++:
8
9
      return (x_1,\ldots,x_n);
```



```
GREEDYKP
      Sortiere die Objekte gemäß ihrer
      Effizienz. Danach gelte
                \frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.
     for (int i = 1; i <= n; i++) { x_i = 0; }
2
3
      int i = 1:
     while ((t > 0) \&\& (i <= n)) {
5
           if (t >= w_i) \{ x_i = 1; t = t - w_i; \}
           else \{ x_i = \frac{t}{w_i}; t = 0; \}
6
           i++:
8
9
      return (x_1,\ldots,x_n);
```



```
GREEDYKP
      Sortiere die Objekte gemäß ihrer
      Effizienz. Danach gelte
                \frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.
     for (int i = 1; i <= n; i++) { x_i = 0; }
2
3
      int i = 1:
     while ((t > 0) \&\& (i <= n)) {
5
           if (t >= w_i) \{ x_i = 1; t = t - w_i; \}
           else \{ x_i = \frac{t}{w_i}; t = 0; \}
6
           i++:
8
9
      return (x_1,\ldots,x_n);
```



```
GREEDYKP
      Sortiere die Objekte gemäß ihrer
      Effizienz. Danach gelte
                \frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.
      for (int i = 1; i <= n; i++) { x_i = 0; }
2
3
      int i = 1:
      while ((t > 0) \&\& (i <= n)) {
5
           if (t >= w_i) \{ x_i = 1; t = t - w_i; \}
           else \{ x_i = \frac{t}{w_i}; t = 0; \}
6
           i++:
8
9
      return (x_1,\ldots,x_n);
```



```
GREEDYKP
      Sortiere die Objekte gemäß ihrer
      Effizienz. Danach gelte
                \frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.
      for (int i = 1; i <= n; i++) { x_i = 0; }
2
3
      int i = 1:
      while ((t > 0) \&\& (i <= n)) \{
5
           if (t >= w_i) \{ x_i = 1; t = t - w_i; \}
           else \{ x_i = \frac{t}{w_i}; t = 0; \}
6
           i++:
9
      return (x_1,\ldots,x_n);
```


Theorem 2.8

Der Algorithmus GREEDYKP berechnet für jede Instanz des Rucksackproblems mit teilbaren Objekten in Zeit $O(n \log n)$ eine optimale Lösung.

Theorem 2.8

Der Algorithmus GREEDYKP berechnet für jede Instanz des Rucksackproblems mit teilbaren Objekten in Zeit $O(n \log n)$ eine optimale Lösung.

Beweis: Laufzeit wird durch Sortieren dominiert.

Theorem 2.8

Der Algorithmus GREEDYKP berechnet für jede Instanz des Rucksackproblems mit teilbaren Objekten in Zeit $O(n \log n)$ eine optimale Lösung.

Beweis: Laufzeit wird durch Sortieren dominiert.

Theorem 2.8

Der Algorithmus GREEDYKP berechnet für jede Instanz des Rucksackproblems mit teilbaren Objekten in Zeit $O(n \log n)$ eine optimale Lösung.

Beweis: Laufzeit wird durch Sortieren dominiert.

- $x^* = (x_1^*, \dots, x_n^*) \in [0, 1]^n$ sei optimale Lösung.
- $x = (x_1, \dots, x_n) \in [0, 1]^n$ GREEDYKP-Lösung.

Theorem 2.8

Der Algorithmus GREEDYKP berechnet für jede Instanz des Rucksackproblems mit teilbaren Objekten in Zeit $O(n \log n)$ eine optimale Lösung.

Beweis: Laufzeit wird durch Sortieren dominiert.

- $x^* = (x_1^*, \dots, x_n^*) \in [0, 1]^n$ sei optimale Lösung.
- $x = (x_1, \dots, x_n) \in [0, 1]^n$ GREEDYKP-Lösung.
- Es gibt $i \in \{1, ..., n\}$ mit $x_1 = ... = x_{i-1} = 1$, $x_i < 1$ und $x_{i+1} = ... = x_n = 0$.

Theorem 2.8

Der Algorithmus GREEDYKP berechnet für jede Instanz des Rucksackproblems mit teilbaren Objekten in Zeit $O(n \log n)$ eine optimale Lösung.

Beweis: Laufzeit wird durch Sortieren dominiert.

- $x^* = (x_1^*, \dots, x_n^*) \in [0, 1]^n$ sei optimale Lösung.
- $x = (x_1, \dots, x_n) \in [0, 1]^n$ GREEDYKP-Lösung.
- Es gibt $i \in \{1, ..., n\}$ mit $x_1 = ... = x_{i-1} = 1$, $x_i < 1$ und $x_{i+1} = ... = x_n = 0$.
- Es gilt $\sum_{i=1}^{n} x_i w_i = t$ und $\sum_{i=1}^{n} x_i^* w_i = t$.

Idee: Transformiere x^* Schritt für Schritt in x, ohne den Nutzen zu verringern.

•
$$i = \min\{k \mid x_k^* < 1\}$$

Idee: Transformiere x^* Schritt für Schritt in x, ohne den Nutzen zu verringern.

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \quad \Rightarrow \quad x^{\star} = x$$

Idee: Transformiere x^* Schritt für Schritt in x, ohne den Nutzen zu verringern.

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \quad \Rightarrow \quad x^{\star} = x$$

• Sonst
$$j = \max\{k \mid x_k^* > 0\}$$
. Es gilt $j > i$.

i Pi Wi	1	2	3	4	5	6	
pi	8	3	9	6	2	1	
W_i	4	2	6	4	2	4	
t = 5							

Idee: Transformiere x^* Schritt für Schritt in x, ohne den Nutzen zu verringern.

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \quad \Rightarrow \quad x^{\star} = x$$

• Sonst
$$j = \max\{k \mid x_k^* > 0\}$$
. Es gilt $j > i$.

• Verschiebe Gewicht ε von j nach i. Sei $\varepsilon = \min\{w_i - x_i^{\star}w_i, x_j^{\star}w_j\}$. Setze $x_i^{\star} := x_i^{\star} + \frac{\varepsilon}{w_i}$ und $x_j^{\star} := x_j^{\star} - \frac{\varepsilon}{w_j}$.

i	1	2	3	4	5	6	
pi	8	3	9 6	6	2	1	
w_i	4	2	6	4	2	4	
t = 5							

Idee: Transformiere x^* Schritt für Schritt in x, ohne den Nutzen zu verringern.

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \quad \Rightarrow \quad x^{\star} = x$$

• Sonst
$$j = \max\{k \mid x_k^* > 0\}$$
. Es gilt $j > i$.

• Verschiebe Gewicht ε von j nach i. Sei $\varepsilon = \min\{w_i - x_i^* w_i, x_j^* w_j\}$.

Setze
$$x_i^\star := x_i^\star + \frac{\varepsilon}{w_i}$$
 und $x_j^\star := x_j^\star - \frac{\varepsilon}{w_j}$.

i	1	2	3	4	5	6	
pi	8	3	9	6	2	1	
W_i	4	2	6	4	2	4	

$$x = (1, 1/2, 0, 0, 0, 0)$$

$$x^* = (1, 0, \frac{1}{12}, \frac{1}{8}, 0, 0)$$

Idee: Transformiere x^* Schritt für Schritt in x, ohne den Nutzen zu verringern.

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \quad \Rightarrow \quad x^{\star} = x$$

• Sonst
$$j = \max\{k \mid x_k^* > 0\}$$
. Es gilt $j > i$.

• Verschiebe Gewicht ε von j nach i. Sei $\varepsilon = \min\{w_i - x_i^{\star}w_i, x_j^{\star}w_j\}$. Setze $x_i^{\star} := x_i^{\star} + \frac{\varepsilon}{w_i}$ und $x_j^{\star} := x_j^{\star} - \frac{\varepsilon}{w_i}$.

Idee: Transformiere x^* Schritt für Schritt in x, ohne den Nutzen zu verringern.

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \quad \Rightarrow \quad x^{\star} = x$$

- Sonst $j = \max\{k \mid x_k^* > 0\}$. Es gilt j > i.
- Verschiebe Gewicht ε von j nach i. Sei $\varepsilon = \min\{w_i - x_i^{\star}w_i, x_j^{\star}w_j\}$. Setze $x_i^{\star} := x_i^{\star} + \frac{\varepsilon}{w_i}$ und $x_j^{\star} := x_j^{\star} - \frac{\varepsilon}{w_i}$.

 $(1, \frac{1}{4}, \frac{1}{12}, 0, 0, 0)$

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \implies x^{\star} = x$$

- Sonst $j = \max\{k \mid x_k^* > 0\}$. Es gilt j > i.
- Verschiebe Gewicht ε von j nach i. Sei $\varepsilon = \min\{w_i - x_i^* w_i, x_j^* w_j\}$. Setze $x_i^* := x_i^* + \frac{\varepsilon}{w_i}$ und $x_i^* := x_i^* - \frac{\varepsilon}{w_i}$.

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \implies x^{\star} = x$$

- Sonst $j = \max\{k \mid x_k^* > 0\}$. Es gilt j > i.
- Verschiebe Gewicht ε von j nach i. Sei $\varepsilon = \min\{w_i - x_i^{\star}w_i, x_j^{\star}w_j\}$. Setze $x_i^{\star} := x_i^{\star} + \frac{\varepsilon}{w_i}$ und $x_j^{\star} := x_j^{\star} - \frac{\varepsilon}{w_i}$.

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \implies x^{\star} = x$$

- Sonst $j = \max\{k \mid x_k^* > 0\}$. Es gilt j > i.
- Verschiebe Gewicht ε von j nach i. Sei $\varepsilon = \min\{w_i - x_i^{\star}w_i, x_j^{\star}w_j\}$. Setze $x_i^{\star} := x_i^{\star} + \frac{\varepsilon}{w_i}$ und $x_j^{\star} := x_j^{\star} - \frac{\varepsilon}{w_j}$.
- Δ Gewicht $= \frac{\varepsilon}{w_i} \cdot w_i \frac{\varepsilon}{w_j} \cdot w_j = 0$

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \quad \Rightarrow \quad x^{\star} = x$$

• Sonst
$$j = \max\{k \mid x_k^* > 0\}$$
. Es gilt $j > i$.

- Verschiebe Gewicht ε von j nach i. Sei $\varepsilon = \min\{w_i - x_i^{\star}w_i, x_j^{\star}w_j\}$. Setze $x_i^{\star} := x_i^{\star} + \frac{\varepsilon}{w_i}$ und $x_j^{\star} := x_j^{\star} - \frac{\varepsilon}{w_i}$.
- Δ Gewicht $= \frac{\varepsilon}{w_i} \cdot w_i \frac{\varepsilon}{w_j} \cdot w_j = 0$ Δ Nutzen $= \frac{\varepsilon}{w_i} \cdot p_i - \frac{\varepsilon}{w_j} \cdot p_j \ge 0$ da $\frac{p_i}{w_i} > = \frac{p_j}{w_j}$

•
$$i = \min\{k \mid x_k^* < 1\}$$

•
$$x_{i+1}^{\star} = \ldots = x_n^{\star} = 0 \quad \Rightarrow \quad x^{\star} = x$$

• Sonst
$$j = \max\{k \mid x_k^* > 0\}$$
. Es gilt $j > i$.

• Verschiebe Gewicht
$$\varepsilon$$
 von j nach i .
Sei $\varepsilon = \min\{w_i - x_i^{\star}w_i, x_j^{\star}w_j\}$.
Setze $x_i^{\star} := x_i^{\star} + \frac{\varepsilon}{w_i}$ und $x_j^{\star} := x_j^{\star} - \frac{\varepsilon}{w_j}$.

•
$$\Delta$$
 Gewicht $=\frac{\varepsilon}{w_i} \cdot w_i - \frac{\varepsilon}{w_j} \cdot w_j = 0$
 Δ Nutzen $=\frac{\varepsilon}{w_i} \cdot p_i - \frac{\varepsilon}{w_j} \cdot p_j \ge 0$ da $\frac{p_i}{w_i} > = \frac{p_j}{w_i}$

• Hinterher gilt
$$x_i^* = 1$$
 oder $x_j^* = 0$.

$$\Rightarrow$$
 Endlich viele Verschiebungen bis $x^* = x$. \square

$$i \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ p_i & 8 & 3 & 9 & 6 & 2 & 1 \\ w_i & 4 & 2 & 6 & 4 & 2 & 4 \\ & & t = 5 & & \\ x = (1, \frac{1}{2}, 0, 0, 0, 0, 0) & & & \\ x^* = (1, \frac{0}{1}, \frac{1}{12}, \frac{1}{18}, 0, 0) & & & \\ & & & (1, \frac{1}{4}, \frac{1}{12}, 0, 0, 0, 0) & & \\ & & & & (1, \frac{1}{2}, 0, 0, 0, 0, 0) & & \\ & & & & & (1, \frac{1}{2}, 0, 0, 0, 0, 0) & & \\ & & & & & & (1, \frac{1}{2}, 0, 0, 0, 0, 0) & & \\ & & & & & & & \\ \end{matrix}$$

```
GREEDYKP
      Sortiere die Objekte gemäß ihrer
      Effizienz. Danach gelte
                \frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.
     for (int i = 1; i <= n; i++) { x_i = 0; }
      int i = 1:
     while ((t > 0) \&\& (i <= n)) {
5
           if (t >= w_i) { x_i = 1; t = t - w_i; }
6
           else \{ x_i = \frac{t}{w_i}; t = 0; \}
          i++;
9
     return (x_1,\ldots,x_n);
```

INTGREEDYKP

5

Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte

$$\frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.$$

- for (int i = 1; i <= n; i++) { $x_i = 0$; } int i = 1;
- while $((t > 0) \&\& (i <= n)) \{$ if $(t >= w_i) \{ x_i = 1; t = t - w_i; \}$
- 6 else $\{x_i = 0; t = 0; \}$
- 7 *i*++;
- 9 **return** (x_1,\ldots,x_n) ;

INTGREEDYKP Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte $\frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}$. for (int i = 1; i <= n; i++) { $x_i = 0$; } int i = 1: **while** $((t > 0) \&\& (i <= n)) \{$ 5 **if** $(t >= w_i)$ { $x_i = 1$; $t = t - w_i$; } 6 **else** $\{ x_i = 0; t = 0; \}$ *i*++; 8 9 return (x_1,\ldots,x_n) ;

INTGREEDYKP Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte $\frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}$. for (int i = 1; i <= n; i++) { $x_i = 0$; } int i = 1: **while** $((t > 0) \&\& (i <= n)) \{$ **if** $(t >= w_i)$ { $x_i = 1$; $t = t - w_i$; } 5 6 **else** $\{ x_i = 0; t = 0; \}$ i++;8 9 return (x_1,\ldots,x_n) ;

INTGREEDYKP Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte $\frac{\rho_1}{w_1} \geq \frac{\rho_2}{w_2} \geq \ldots \geq \frac{\rho_n}{w_n}.$ for (int i = 1; i <= n; i++) { $x_i = 0$; } int i = 1: **while** $((t > 0) \&\& (i <= n)) \{$ **if** $(t >= w_i)$ { $x_i = 1$; $t = t - w_i$; } 5 6 **else** $\{ x_i = 0; t = 0; \}$ i++;8 9 return (x_1,\ldots,x_n) ;

INTGREEDYKP

8

9

 Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte

$$\frac{\rho_1}{w_1} \ge \frac{\rho_2}{w_2} \ge \dots \ge \frac{\rho_n}{w_n}.$$
for (int $i = 1$; $i <= n$; $i++$) { $x_i = 0$; }

```
3 int i = 1;

4 while ((t > 0) \&\& (i <= n)) \{

5 if (t >= w_i) \{ x_i = 1; t = t - w_i; \}

6 else \{ x_i = 0; t = 0; \}
```

return (x_1,\ldots,x_n) ;

INTGREEDYKP

8

9

 Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte

$$\frac{p_1}{w_1} \ge \frac{p_2}{w_2} \ge \ldots \ge \frac{p_n}{w_n}.$$
for (int $i = 1$; $i <= n$; $i++$) { $x_i = 0$; }

```
3 int i = 1;

4 while ((t > 0) \&\& (i <= n)) \{

5 if (t >= w_i) \{ x_i = 1; t = t - w_i; \}

6 else \{ x_i = 0; t = 0; \}

7
```

return (x_1,\ldots,x_n) ;

INTGREEDYKP Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte $\frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}.$ for (int i = 1; i <= n; i++) { $x_i = 0$; } int i = 1: **while** $((t > 0) \&\& (i <= n)) \{$ 5 **if** $(t >= w_i)$ { $x_i = 1$; $t = t - w_i$; } 6 **else** $\{ x_i = 0; t = 0; \}$ i++;

return (x_1, \ldots, x_n) ;

8

9

INTGREEDYKP Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte $\frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}$. for (int i = 1; i <= n; i++) { $x_i = 0$; } int i = 1: **while** ((t > 0) && (i <= n)){ **if** $(t >= w_i)$ { $x_i = 1$; $t = t - w_i$; } 5 6 **else** $\{ x_i = 0; t = 0; \}$ i++;8 9 return (x_1,\ldots,x_n) ;

INTGREEDYKP Sortiere die Objekte gemäß ihrer Effizienz. Danach gelte $\frac{p_1}{w_1} \geq \frac{p_2}{w_2} \geq \ldots \geq \frac{p_n}{w_n}$. for (int i = 1; i <= n; i++) { $x_i = 0$; } int i = 1: **while** $((t > 0) \&\& (i <= n)) \{$ 5 **if** $(t >= w_i)$ { $x_i = 1$; $t = t - w_i$; } 6 **else** $\{ x_i = 0; t = 0; \}$ *i*++; 8 9 return (x_1,\ldots,x_n) ;

Beobachtung

Die Lösung, die INTGREEDYKP für das (ganzzahlige) Rucksackproblem berechnet, kann beliebig schlecht sein.

Beobachtung

Die Lösung, die INTGREEDYKP für das (ganzzahlige) Rucksackproblem berechnet, kann beliebig schlecht sein.

Beispiel: Sei t = M > 2 beliebig.

i	1	2
p_i	2	М
w_i	1	М

Beobachtung

Die Lösung, die INTGREEDYKP für das (ganzzahlige) Rucksackproblem berechnet, kann beliebig schlecht sein.

Beispiel: Sei t = M > 2 beliebig.

Optimale Lösung besteht nur aus Objekt 2 und hat Nutzen M.

Beobachtung

Die Lösung, die INTGREEDYKP für das (ganzzahlige) Rucksackproblem berechnet, kann beliebig schlecht sein.

Beispiel: Sei t = M > 2 beliebig.

Optimale Lösung besteht nur aus Objekt 2 und hat Nutzen M.

INTGREEDYKP packt nur Objekt 1 in den Rucksack und erreicht Nutzen 2.

APPROXKP

- // Annahme: $w_1, \ldots, w_n < t$
- Berechne mit INTGREEDYKP eine Lösung $x^* = (x_1^*, \dots, x_n^*)$.
- 2 $j = \arg \max_{i \in \{1,...,n\}} p_i$; // Index eines Objektes mit maximalem Nutzen
- 3 if $(\sum_{i=1}^{n} p_i x_i^* >= p_j)$ return x^* ; 4 else return $x' = (x'_1, \dots, x'_n)$ mit $x'_i = \begin{cases} 0 & \text{falls } i \neq j, \\ 1 & \text{falls } i = j. \end{cases}$

APPROXKP

- // Annahme: $w_1, \ldots, w_n < t$
- Berechne mit INTGREEDYKP eine Lösung $x^* = (x_1^*, \dots, x_n^*)$.
- 2 $j = \arg \max_{i \in \{1,...,n\}} p_i$; // Index eines Objektes mit maximalem Nutzen
- 3 if $(\sum_{i=1}^{n} p_i x_i^* >= p_j)$ return x^* ; 4 else return $x' = (x'_1, \dots, x'_n)$ mit $x'_i = \begin{cases} 0 & \text{falls } i \neq j, \\ 1 & \text{falls } i = j. \end{cases}$

Theorem 2.9

Der Algorithmus APPROXKP berechnet auf jeder Eingabe für das Rucksackproblem mit n Objekten in Zeit $O(n \log n)$ eine gültige ganzzahlige Lösung, deren Nutzen mindestens halb so groß ist wie der Nutzen einer optimalen ganzzahligen Lösung.

- $y \in [0,1]^n$ GREEDYKP-Lösung
- $x^{\star} \in \{0,1\}^n$ INTGREEDYKP-Lösung

- $y \in [0,1]^n$ GREEDYKP-Lösung
- $x^* \in \{0,1\}^n$ INTGREEDYKP-Lösung

$$x^* = \underbrace{(1, \dots, 1, 0, \dots, 0)}_{k-1}$$
$$y = \underbrace{(1, \dots, 1, f, \dots, 0)}_{k-1} \quad \text{für ein } f < 1$$

- $y \in [0,1]^n$ GREEDYKP-Lösung
- $x^* \in \{0,1\}^n$ INTGREEDYKP-Lösung

$$x^* = \underbrace{(1, \dots, 1, 0, \dots, 0)}_{k-1}$$
$$y = \underbrace{(1, \dots, 1, f, \dots, 0)}_{k-1} \quad \text{für ein } f < 1$$

• OPT
$$\leq \sum_{i=1}^{k-1} p_i + f p_k \leq \sum_{i=1}^{k} p_i$$

- $y \in [0,1]^n$ GREEDYKP-Lösung
- $x^* \in \{0,1\}^n$ INTGREEDYKP-Lösung

$$x^* = (\underbrace{1, \dots, 1}_{k-1}, 0, \dots, 0)$$
 $y = (\underbrace{1, \dots, 1}_{k-1}, f, \dots, 0)$ für ein $f < 1$

- OPT $\leq \sum_{i=1}^{k-1} p_i + f p_k \leq \sum_{i=1}^{k} p_i$
- Nutzen der APPROXKP-Lösung:

$$\max\left\{\sum_{i=1}^{k-1}p_i,p_j\right\}$$

- $y \in [0, 1]^n$ GREEDYKP-Lösung
- $x^* \in \{0,1\}^n$ INTGREEDYKP-Lösung

$$x^* = (\underbrace{1, \dots, 1}_{k-1}, 0, \dots, 0)$$

$$y = (\underbrace{1, \dots, 1}_{t-1}, f, \dots, 0) \quad \text{für ein } f < 1$$

- OPT $\leq \sum_{i=1}^{k-1} p_i + f p_k \leq \sum_{i=1}^{k} p_i$
- Nutzen der APPROXKP-Lösung:

$$\max \left\{ \sum_{i=1}^{k-1} p_i, p_j \right\} \ge \frac{1}{2} \left(\sum_{i=1}^{k-1} p_i + p_j \right)$$

- $y \in [0, 1]^n$ GREEDYKP-Lösung
- $x^* \in \{0,1\}^n$ INTGREEDYKP-Lösung

$$x^* = (\underbrace{1, \dots, 1}_{k-1}, 0, \dots, 0)$$
 $y = (\underbrace{1, \dots, 1}_{k-1}, f, \dots, 0)$ für ein $f < 1$

- OPT $\leq \sum_{i=1}^{k-1} p_i + f p_k \leq \sum_{i=1}^{k} p_i$
- Nutzen der APPROXKP-Lösung:

$$\max \left\{ \sum_{i=1}^{k-1} p_i, p_j \right\} \ge \frac{1}{2} \left(\sum_{i=1}^{k-1} p_i + p_j \right) \ge \frac{1}{2} \left(\sum_{i=1}^{k-1} p_i + p_k \right)$$

- $v \in [0, 1]^n$ GREEDYKP-Lösung
- $x^* \in \{0,1\}^n$ INTGREEDYKP-Lösung

$$x^{\star} = \underbrace{(1,\ldots,1,0,\ldots,0)}_{k-1}$$
 $y = \underbrace{(1,\ldots,1,f,\ldots,0)}_{f$ für ein $f < 1$

- OPT $\leq \sum_{i=1}^{k-1} p_i + f p_k \leq \sum_{i=1}^{k} p_i$
- Nutzen der ApproxKP-Lösung:

$$\max \left\{ \sum_{i=1}^{k-1} p_i, p_j \right\} \ge \frac{1}{2} \left(\sum_{i=1}^{k-1} p_i + p_j \right) \ge \frac{1}{2} \left(\sum_{i=1}^{k-1} p_i + p_k \right) = \frac{1}{2} \left(\sum_{i=1}^{k} p_i \right)$$

- $v \in [0, 1]^n$ GREEDYKP-Lösung
- $x^* \in \{0,1\}^n$ INTGREEDYKP-Lösung

$$x^* = (\underbrace{1, \dots, 1}_{k-1}, 0, \dots, 0)$$
 $y = (\underbrace{1, \dots, 1}_{k-1}, f, \dots, 0)$ für ein $f < 1$

- OPT $\leq \sum_{i=1}^{k-1} p_i + f p_k \leq \sum_{i=1}^{k} p_i$
- Nutzen der APPROXKP-Lösung:

$$\max\left\{\sum_{i=1}^{k-1}p_i,p_j\right\} \geq \frac{1}{2}\left(\sum_{i=1}^{k-1}p_i+p_j\right) \geq \frac{1}{2}\left(\sum_{i=1}^{k-1}p_i+p_k\right) = \frac{1}{2}\left(\sum_{i=1}^{k}p_i\right) \geq \frac{\mathrm{OPT}}{2} \quad \Box$$