MA2102: LINEAR ALGEBRA

Lecture 18: More Duals

30th September 2020

Let us discuss some examples of dual vectors.

Examples (1) $[V = \mathbb{R}^n]$ If $\mathbf{v} \in \mathbb{R}^n$, then define

$$L_{\mathbf{v}}: \mathbb{R}^n \to \mathbb{R}^n, \ \mathbf{w} \mapsto \mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^n v_i w_i.$$

It follows from the properties of dot product that L_v is a linear map.

(2)
$$[V = M_n(\mathbb{R})]$$
 Consider the trace map

$$\operatorname{tr}: M_n(\mathbb{R}) \to \mathbb{R}, \ A \mapsto \operatorname{trace}(A).$$

Since it is a linear map, $\operatorname{tr} \in (M_n(\mathbb{R}))^*$.

(3) $[V = C([0,2\pi],\mathbb{R})]$ Let us clarify that V is the set of continuous real valued function defined on $[0,2\pi]$. Show that V is a vector space.

Consider the maps

$$S_n: V \to \mathbb{R}, \qquad f(x) \mapsto \frac{1}{2\pi} \int_0^{2\pi} f(t) \sin(nt) dt$$

 $C_n: V \to \mathbb{R}, \qquad f(x) \mapsto \frac{1}{2\pi} \int_0^{2\pi} f(t) \cos(nt) dt.$

The key analytical point is that the integrals make sense. Once this is ensured,

$$S_n(f+g) = \frac{1}{2\pi} \int_0^{2\pi} (f(t) + g(t)) \sin(nt) dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(t) \sin(nt) dt + \frac{1}{2\pi} \int_0^{2\pi} g(t) \sin(nt) dt$$

$$= S_n(f) + S_n(g).$$

Show that $S_n(cf) = cS_n(f)$.

In a similar manner we may prove that C_n is a linear map.

Remark For a given $f \in V$, these numbers $\{C_n(f), S_n(f)\}_{n \in \mathbb{Z}}$ are called the *Fourier coefficients* of f. Although V is infinite dimensional, and so is V^* , these dual vectors $\{C_n, S_n\}_{n \in \mathbb{Z}}$ form a "basis" in some appropriate sense.

(4)
$$[V = P_1(\mathbb{R})]$$
 Consider the maps $f_1: P_1(\mathbb{R}) \to \mathbb{R}, \qquad p(x) \mapsto \int_0^1 p(t) dt$ $f_2: P_1(\mathbb{R}) \to \mathbb{R}, \qquad p(x) \mapsto \int_0^2 p(t) dt.$

These maps are linear, whence $f_1, f_2 \in V^*$. Note that

$$f_1(1) = 1$$
, $f_1(x) = \frac{1}{2}$, $f_2(1) = 2$, $f_2(x) = 2$.

Claim: The set $\{f_1, f_2\}$ forms a basis of $P_1(\mathbb{R})^*$.

It suffices to show that this set is linearly independent as $P_1(\mathbb{R})^*$ has dimension 2. Suppose that $a_1f_1+a_2f_2=0$, i.e., the left hand side is the zero linear functional. Thus,

$$0 = (a_1f_1 + a_2f_2)(1) = a_1f_1(1) + a_2f_2(1) = a_1 + 2a_2.$$

$$0 = (a_1f_1 + a_2f_2)(x) = a_1f_1(x) + a_2f_2(x) = \frac{a_1}{2} + 2a_2.$$

The only solution is $a_1 = a_2 = 0$.

Question *Is there a basis* $\{p_1,p_2\} \subset P_1(\mathbb{R})$ *such that* $\{f_1,f_2\}$ *is the dual basis?*

We are seeking $p_1 = a + bx$, $p_2 = c + dx$ such that $p_1^* = f_1$ and $p_2^* = f_2$.

In other words, we want

$$f_1(a+bx) = 1$$
, $f_2(a+bx) = 0$, $f_1(c+dx) = 0$, $f_2(c+dx) = 1$.

These equalities translate to

$$a+b/2=1$$
, $2a+2b=0$, $c+d/2=0$, $2c+2d=1$.

Show that the solution is given by a = 2, b = -2, c = -1/2, d = 1.

Thus, $\{f_1, f_2\}$ is the dual basis of $\{2-2x, -\frac{1}{2}+x\}$.

Analogous to dual spaces, we have the following notion.

Definition [Dual Map] Let $T: V \to W$ be a linear map. The map T^* , defined by

$$T^*: W^* \to V^*, L \mapsto L \circ T$$

is called the dual of *T*.

By definition, if $L: W \to \mathbb{R}$, then

$$T^*(L)(v) := (L \circ T)(v) = L(T(v)).$$

Moreover, $T^*(L)$ is a linear map, i.e., T^* is well defined. Now

$$T^*(L_1 + L_2) = (L_1 + L_2) \circ T = L_1 \circ T + L_2 \circ T$$
$$T^*(\lambda L) = (\lambda L) \circ T = \lambda (L \circ T) = \lambda T^*(L)$$

imply that T^* is a linear map.

Question How are the rank and nullity of T and T^* related? In fact, we may choose ordered bases β and γ of V and W respectively. Consider the dual bases β^* and γ^* .

Question What is the relationship between $[T]^{\gamma}_{\beta}$ and $[T^*]^{\beta^*}_{\gamma^*}$?

We may talk about iterated duals. In particular, let

$$V^{**} = (V^*)^* = \mathcal{L}(\mathcal{L}(V, \mathbb{R}), \mathbb{R})$$

be the double dual of V.

	V	V^*	V^{**}
Elements	vector	dual vector	dual of dual vector (?)
		or <i>covector</i>	
Notation	v	$T:V\to\mathbb{R}$	$L:V^* \to \mathbb{R}$
Example	v	v^*	$\operatorname{ev}_v: V^* \to \mathbb{R}$
			$ev_v(T) = T(v)$

Proposition The evaluation map

$$\Phi: V \to V^{**}, \ v \mapsto \operatorname{ev}_v$$

is a linear isomorphism if V is finite dimensional.