第4章 学习的可行性

4.1 学习是不可能的吗?

简单二分类问题

定义 $\mathcal{X} = \{0,1\}^3, \mathcal{Y} = \{0, \times\}, \text{ 可以枚举所有候选 } f \text{ 作为 } \mathcal{H}.$

问题 从 \mathcal{H} 中选择 $g \in \mathcal{H}$ 使得对所有 $g(\mathbf{x}_n) = y_n$ (类似于 PLA), $g \approx f$?

没有免费的午餐

- 在 \mathcal{D} 内 $g \approx f$: 当然!
- 在 \mathcal{D} 外 $g \approx f$: 不! (但那才是我们真正想要的!)

从 \mathcal{D} 学习(推断 \mathcal{D} 外的东西)注定失败,如果有任何"未知"的f可能发生。

_ x	y	g	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8
0 0 0	0	0	0	0	0	0	0	0	0	0
$0\ 0\ 1$			•	•	•	•	•	•	•	•
010	0		•	•	•	•	•	•	•	•
0 1 1	0	0	0	0	0	0	0	0	0	0
100		•	•	•	•	•	•	•	•	•
$\overline{101}$?	0	0	0	0	•	•	•	•
$1 \ 1 \ 0$?	0	0	•	•	0	0	•	•
111		?	0	•	0	•	0	•	0	•

图 4.1.1: 简单分类问题示意图

定理 4.1.1 (无免费午餐定理(No Free Lunch))

在机器学习中,不存在单一算法能够在所有问题上都达到最优性能。即对于任何给定的学习算法,都存在至少一个问题,在该问题上该算法的性能不会优于随机猜测。

4.2 概率论提供了关键性的解决办法

推断未知事物:推断橙色概率

罐子 假设橙色概率 = μ , 绿色概率 = $1 - \mu$, 其中 μ 未知

样本 独立抽取 N 个弹珠, 橙色比例 = ν , 绿色比例 = $1 - \nu$, 现在 ν 已知

问题 样本 ν 能否说明样本外 μ 的情况?

可能与概率

样本 ν 是否能说明样本外 μ 的情况?

- 可能不能: 样本可能大部分是绿色而罐子大部分是橙色
- 可能能: 样本 ν 可能接近未知的 μ

 \Diamond

引理 4.2.1 (Hoeffding 引理)

设随机变量 X 满足 $\mathbb{E}[X]=0$,且几乎处处 $X\in[a,b]$,则对于任意实数 $\lambda\in\mathbb{R}$,有如下不等式成立:

$$\mathbb{E}\big[e^{\lambda X}\big] \le \exp\left(\frac{\lambda^2 (b-a)^2}{8}\right)$$

证明 考虑任意满足 $X \in [a,b]$ 且 $\mathbb{E}[X] = 0$ 的随机变量。令 c = b - a。

我们令函数 $\phi(\lambda) = \mathbb{E}[e^{\lambda X}]$,其为 X 的矩母函数。由于 $e^{\lambda x}$ 是关于 x 的凸函数,且 $X \in [a,b]$,我们可以使用凸函数的最大值原理:在固定期望的前提下, $\mathbb{E}[e^{\lambda X}]$ 在 X 取两点分布时最大。 因此,考虑如下构造的两个点的分布:

$$X = \begin{cases} a, & \mathbb{R} \times p = \frac{b}{b-a} \\ b, & \mathbb{R} \times 1 - p = \frac{-a}{b-a} \end{cases} \Rightarrow \mathbb{E}[X] = pa + (1-p)b = 0$$

于是有:

$$\mathbb{E}[e^{\lambda X}] \le pe^{\lambda a} + (1-p)e^{\lambda b} = \frac{b}{b-a}e^{\lambda a} + \frac{-a}{b-a}e^{\lambda b}$$

令 c=b-a, 将 $a=-\frac{c}{2},b=\frac{c}{2}$ (无损一般性, 平移不影响证明), 则:

$$\mathbb{E}[e^{\lambda X}] \le \frac{1}{2}e^{-\lambda c/2} + \frac{1}{2}e^{\lambda c/2} = \cosh\left(\frac{\lambda c}{2}\right)$$

由 $\cosh(x) \le \exp\left(\frac{x^2}{2}\right)$ 对任意实数 x 成立,因此:

$$\mathbb{E}[e^{\lambda X}] \le \cosh\left(\frac{\lambda c}{2}\right) \le \exp\left(\frac{\lambda^2 c^2}{8}\right)$$

即:

$$\mathbb{E}[e^{\lambda X}] \le \exp\left(\frac{\lambda^2 (b-a)^2}{8}\right)$$

定理 4.2.1 (霍夫丁不等式)

设罐中橙色概率为 μ ,样本容量为N,样本中橙色比例为 ν 。则对任意 $\varepsilon > 0$ 与N > 0,

$$\mathbb{P}[|\nu - \mu| > \varepsilon] \le 2\exp(-2\varepsilon^2 N).$$

该不等式适用于弹珠、硬币、民调等场景,且与 μ 无关,无需先验知识。当N 足够大时,样本比例 ν 以高概率接近真值 μ ,即

$$\nu \approx \mu$$
 (Probably Approximately Correct).

证明 设 X_1, X_2, \ldots, X_n 是独立随机变量,且对每个 i,有 $X_i \in [a_i, b_i]$ 。定义 $S_n = \sum_{i=1}^n X_i$,我们考虑尾部概率:

$$\mathbb{P}(S_n - \mathbb{E}[S_n] \ge t)$$

对任意 $\lambda > 0$,由 Chernoff 结合 Markov 不等式 $\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$ 可得:

$$\mathbb{P}(S_n - \mathbb{E}[S_n] \ge t) = \mathbb{P}(e^{\lambda(S_n - \mathbb{E}[S_n])} \ge e^{\lambda t}) \le \frac{\mathbb{E}[e^{\lambda(S_n - \mathbb{E}[S_n])}]}{e^{\lambda t}}$$

由于 X_i 独立:

$$\mathbb{E}[e^{\lambda(S_n - \mathbb{E}[S_n])}] = \prod_{i=1}^n \mathbb{E}[e^{\lambda(X_i - \mathbb{E}[X_i])}]$$

接下来对每个 i, 应用 Hoeffding 引理: 若 $X \in [a,b]$, 则对任意 $\lambda \in \mathbb{R}$, 有

$$\mathbb{E}[e^{\lambda(X - \mathbb{E}[X])}] \le \exp\left(\frac{\lambda^2(b - a)^2}{8}\right)$$

因此,

$$\mathbb{P}(S_n - \mathbb{E}[S_n] \ge t) \le \exp\left(-\lambda t + \frac{\lambda^2}{8} \sum_{i=1}^n (b_i - a_i)^2\right)$$

最小化右边对 λ ,令导数为零得最优值 $\lambda = \frac{4t}{\sum\limits_{i=1}^{n}(b_i-a_i)^2}$,代入得:

$$\mathbb{P}(S_n - \mathbb{E}[S_n] \ge t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

将 $t = n\epsilon$ 得到:

$$\mathbb{P}\left(\bar{X}_n - \mathbb{E}[\bar{X}_n] \ge \epsilon\right) \le \exp\left(-\frac{2n^2\epsilon^2}{\sum\limits_{i=1}^n (b_i - a_i)^2}\right)$$

设 X_1, X_2, \ldots, X_N 是独立同分布随机变量,且每个变量取值范围为[0,1]。定义样本均值为:

$$\nu = \frac{1}{N} \sum_{i=1}^{N} X_i, \quad \mu = \mathbb{E}[X_i]$$

根据 Hoeffding 不等式,对于任意 $\varepsilon > 0$,有:

$$\mathbb{P}\left(|\nu - \mu| \ge \varepsilon\right) \le \exp\left(-2\varepsilon^2 N\right)$$

4.3 与学习的关联

从弹珠到学习误差

设定 未知目标函数 $f: \mathcal{X} \to \mathcal{Y}$,固定假设 $h: \mathcal{X} \to \mathcal{Y}$,数据分布 P。

未知真误差

$$E_{\text{out}}(h) = \mathbb{P}_{\mathbf{x} \sim P}[h(\mathbf{x}) \neq f(\mathbf{x})].$$

已知样本误差 给定独立同分布训练集

$$\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N, \quad y_n = f(\mathbf{x}_n),$$

样本误差为

$$E_{\rm in}(h) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[h(\mathbf{x}_n) \neq y_n].$$

命题 4.3.1 (形式保证)

对任一固定的假设 h 与足够大的样本规模 N,样本内误差 $E_{\rm in}(h)$ 以高概率逼近样本外误差 $E_{\rm out}(h)$ (误差不超过 ε),即

$$\mathbb{P}[|E_{\rm in}(h) - E_{\rm out}(h)| > \varepsilon] \le 2 \exp(-2\varepsilon^2 N).$$

该不等式与"罐子"类比相同,对所有 N 与 ε 成立,且不依赖未知的 $E_{\mathrm{out}}(h)$,也无需知道 f 或分布 P。因此" $E_{\mathrm{in}}(h) = E_{\mathrm{out}}(h)$ "是 PAC 正确的。

若进一步满足 $E_{\rm in}(h) \approx E_{\rm out}(h)$ 且 $E_{\rm in}(h)$ 很小,则可推出 $E_{\rm out}(h)$ 亦很小,即 h 以高概率逼近 f 于分布 P。

单一假设的验证与学习结论

验证 对任意固定假设h, 当数据量足够大时,

$$E_{\rm in}(h) \approx E_{\rm out}(h)$$
.

能否宣称"学得不错" $(g \approx f)$?

是! 若算法 A 只考虑这一个 h 且 $E_{in}(h)$ 很小,则 g = h 满足 PAC 正确性。

否! 实际上 A 需在整个假设集 \mathcal{H} 中选 g (如 PLA),而大多数固定 h 的 $E_{in}(h)$ 并不小;若强制 取该 h 为 g,则 $E_{in}(g)$ 大概率很大,无法保证 PAC。

结论 真正的学习要求算法在 \mathcal{H} 中主动挑选 g,而非被迫接受某个固定 h。

- 若固定一个假设 h, 当样本数足够大时, 由 Hoeffding 不等式可得: $E_{\rm in}(h) \approx E_{\rm out}(h)$, 可认为 h 通过了"验证"。
- 但这并不意味着我们"学得好", 因为学习算法并非接受一个h, 而是从假设集 \mathcal{H} 中选择最优的g。
- 实际上,大多数 $h \in \mathcal{H}$ 的 $E_{\text{in}}(h)$ 都不会很小;如果算法仅凭训练误差小就选出 g,可能只是偶然"运气好"。
- 要想保证 $E_{\mathrm{out}}(g)$ 也小,必须考虑整个 $\mathcal H$ 的容量,如使用 VC 维等工具对其复杂度进行控制。

结论:验证单一假设容易,真正学习困难。学习不仅要训练误差小,还要能推广到未知数据——这要求我们控制假设空间的复杂性,从而提升模型的泛化能力。

4.4 与真实学习的关联

命题 4.4.1 (坏样本与坏数据)

设固定假设 h 与样本 D 的大小为 N。若存在 D 使得样本误差 $E_{in}(h)$ 与真实误差 $E_{out}(h)$ 差距超过阈值 ε ,则称 D 为 h 的 坏样本。

- i) 对单个 h, 坏样本概率 $\mathbb{P}_{\mathcal{D}}[|E_{in}(h) E_{out}(h)| > \varepsilon]$ 存在上界。
- ii) 若假设集 $\mathcal{H} = \{h_1, \dots, h_M\}$ 含 M 个假设,则存在某个 $h \in \mathcal{H}$ 出现坏样本的概率可通过联合界控制:

$$\mathbb{P}_{\mathcal{D}}\Big[\exists h \in \mathcal{H}, \ |E_{\mathrm{in}}(h) - E_{\mathrm{out}}(h)| > \varepsilon\Big] \leq \sum_{m=1}^{M} \mathbb{P}_{\mathcal{D}}\big[|E_{\mathrm{in}}(h_m) - E_{\mathrm{out}}(h_m)| > \varepsilon\big].$$

iii) 当 M 增大时,上述上界随之增大;只有当 M 相对样本量 N 足够小时,算法 A 仍能高概率保证对所有 h 都有 $E_{\rm in}(h) \approx E_{\rm out}(h)$ 。

定理 4.4.1 (有限假设集的霍夫丁上界)

设假设集 $\mathcal{H}=\{h_1,\ldots,h_M\}$ 有限,样本 $\mathcal{D}=\{(\mathbf{x}_n,y_n)\}_{n=1}^N$ 独立同分布且大小为 N。对任意 $\varepsilon>0$,有

$$\mathbb{P}_{\mathcal{D}} \Big[\exists \, h \in \mathcal{H}, \, \left| E_{\text{in}}(h) - E_{\text{out}}(h) \right| > \varepsilon \Big] \leq 2M \exp \left(-2\varepsilon^2 N \right).$$

该界对任意 M,N,ε 成立,且与未知的目标函数 f、分布 P 及所有 $E_{\mathrm{out}}(h)$ 无关。因此,若算法 A 选取

$$g = \arg\min_{h \in \mathcal{H}} E_{\text{in}}(h),$$

则 $E_{\text{in}}(g) \approx E_{\text{out}}(g)$ 以高概率成立, 即 PAC 成立。

\Diamond

笔记 [有限假设集与泛化能力]

- 对单个假设 h, Hoeffding 不等式可保证当样本足够大时, $E_{\rm in}(h) \approx E_{\rm out}(h)$, 即"坏样本"的概率 很小。
- 若学习算法从有限假设集 $\mathcal{H}=\{h_1,\ldots,h_M\}$ 中选出 $g=\arg\min_h E_{\mathrm{in}}(h)$,需考虑整个假设集上出现"坏样本"的联合概率。
- 使用联合界(Union Bound)可得: 出现某个 $h \in \mathcal{H}$ 使得 $|E_{\rm in}(h) E_{\rm out}(h)| > \varepsilon$ 的概率上界为:

$$\mathbb{P}_{\mathcal{D}}\Big[\exists h \in \mathcal{H}, \ \left|E_{\text{in}}(h) - E_{\text{out}}(h)\right| > \varepsilon\Big] \le 2M \exp\left(-2\varepsilon^2 N\right).$$

- 上界表明,只有当假设集大小 M 相对样本量 N 不太大时,才能高概率地保证所有假设的泛化误差都不大。

结论:对于有限假设集,Hoeffding不等式联合界为学习算法提供了PAC泛化保证。这说明控制假设空间规模是实现有效学习的关键步骤之一。

4.5 总结

🕏 笔记[学习的可行性]

- 学习是不可能的吗?: 在数据集 D 之外, 绝对不存在"免费午餐"。
- 概率论提供了关键性的解决办法: 在 D 之外, 我们能做到"可能近似正确"(PAC)。
- 与学习的关联: 若对某个固定的 h, 经验误差 $E_{in}(h)$ 足够小,则可验证其性能。
- 与真实学习的关联: 若假设空间 $|\mathcal{H}|$ 有限且最终选出的 g 满足 $E_{in}(g)$ 足够小,则学习可行。
- 笔记[总体结论]通过合理控制假设空间的规模,并利用概率不等式对训练误差与真实误差的差距进行界定,我们能够以高概率选出在整体数据分布上表现良好的假设,从而保证学习的可行性和泛化能力。
- **室记**[精华弹幕] 我们很难学习到正确的结果,但是当我们的样本量足够大时,通过公式我们就知道样本与实际情况非常接近,也就能学到正确的经验,也就是说机器学习时有用的。