

P - SAT 김종혁 이성희 YBIGTA 김나현 허승민

목차

일 발압하게 대출받자!

1 平林 리뷰

데이터 셋

모델을 돌리기 위한 DATA SET을 만드는 작업까지 진행

최종 데이터 set

FEATURE: 423

OBS: 30만개

NA 를 regression 으로 채워 넣음

범주형 → One hot encoding

IMPORTANCE PLOT 를 기준으로 하는 FEATURE SELECTION

Tree base 모델에서 feature importance 는 변수의 설명력에 대한 지표
Feature selection으로 적합하지 않다고 하지만,

모델링에서 설명력이 매우 미미한 변수들이 존재한다면

그 변수들은 제거 해도 된다고 판단했다.

2 깔삼하게 대출받자!

진행 방향 소개

데이터 전처리 방향 재설정

One-hot encoding 에서 Factorization으로 방향을 재설정

One-hot encoding Yellow Red Green Color 0 0 Yellow 0 0 Yellow Red Green 0 0 범주개수 k라면, k-1개의 더미변수 생성 방법 장점 범주에 관한 영향력 확인 단점 차원이 높아짐

데이터 전처리 방향 재설정

NA를 하나의 범주로 간주하고 별도의 처리과정을 거치지 않는 방향으로 재설정

Regression을 이용한 NA Imputation

	count_NA	ratio_NA
EXT_SOURCE_1	157655	56.264
EXT_SOURCE_2	599	0.214
EXT_SOURCE_3	55268	19.724

NA imputation이 변수 자체의 의미를 희석시키는 영향에 대한 우려

XG Boost
Light Gradient Boost
CAT Boost

모두 NA를 처리하는 방법이 내장되어 있다.

Unbalanced data를 위한

평가 지표

Accuracy 는 적절하지 않은 평가지표이다.

		Predicted		
		Positive	Negative	
Observed	Positive	TP	FN	Р
	Negative	FP	TN	N

	0	1	Accuracy	F1
True	950	50		
Predict	1000	0	0.95	0

- 가장 대표적으로 사용되는 지표
- 실제 집단과 일치하게 분류한 비율
- 모델이 얼마나 정확하게 분류하는지를 의미

$$\frac{\text{MIT로 분류된 DATA}}{\text{ZM DATA}} = \frac{\text{TP+TN}}{(\text{TP+FP+FN+TN}) = \text{P+N}}$$

Accuracy는 데이터가 한쪽으로 치우쳐 있으면 정확한 예측이 어렵다

Unbalanced data를 위한

평가 지표

F1-Score

• Precision과 Recall 의 조화 평균

Precision(정밀성)

- Positive로 예측한 내용 중에서 실제 Positive의 비율을 의미
- $\frac{TP}{TP+FP}$

Recall(재현율)

- 모델이 얼마나 정확하게 Positive 값을 찾는가를 의미하며 Sensitivity(민감도)라고도 한다.
- $-\frac{TP}{TP+FN}$

예측하고자 하는 타겟 값을 기준으로 평가하기 때문에 Unbalanced data에 적합

3 깔삼하게 대출받자!

높은 예측력을 위한 개법

예측력을 높이기 위한 방법 (1)

cut point

Cut point를 0.2로 지정하였을 때 낮은 예측력을 보였기에 디폴트인 0.5로 설정

샘 플 링

언더 샘플링 앙상블

샘 플 링

언더 샘플링 앙상블

샘 플 링

언더 샘플링

현실적으로, 컴퓨팅 파워를 고려하여 언더 샘플링을 채택

예측력을 높이기 위한 방법 (3)

파생 변수

external source를 활용한 변수 생성

external source의 곱

'EXT_SOURCE1'*'EXT_SOURCE2'* 'EXT_SOURCE3'

EXT_SOURCES_WEIGHTED external source와 가중치의 곱

'EXT_SOURCE2'*1+'EXT_SOURCE1'*2 +'EXT_SOURCE3'*3

EXT_SOURCES_MIN external source의 최소값

EXT_SOURCE1, EXT_SOURCE2, EXT_SOURCE3 중 최소값

EXT_SOURCES_MAX external source의 최대값

EXT_SOURCE1, EXT_SOURCE2, EXT_SOURCE3 중 최대값

예측력을 높이기 위한 방법 (3)

파생 변수

APPLICATION_TEST

어플리케이션 데이터를 위주로 FEATURE 새로 생성 CAR_TO_BIRTH_RATIO

차를 소유했던 기간 비율

OWN_CAR_AGE / DAYS_BIRTH

CAR_TO_EMPLOY_RATIO

직장을 가진 시기에서 차를 소유했던 기간 비율

OWN_CAR_AGE / DAYS_EMPLOYED

PHONE_TO_BIRTH_RATIO

폰을 소유했던 기간 비율

DAYS_LAST_PHONE_CHANGE / DAYS_BIRTH

CAR_TO_EMPLOY_RATIO

직장을 가진 시기에서 폰을 소유했던 기간 비율

DAYS_LAST_PHONE_CHANGE / DAYS_EMPLOYED

예측력을 높이기 위한 방법 (4)

파라미터 튜닝

- 최소한의 함숫값만으로 최적화 문제를 풀도록 하는 데이터를 선택하는 알고리즘
- 그리드 서치보다는 **시간이 단축**되고 랜덤 서치보다는 **정확성이 높아**진다

하이퍼 파라미터 공간에서 임의로 지정한 하위 집합을 단순하게 모든 조합을 다 탐색

기법 최종 정리

cut point

샘플링

파생변수

파라미터 튜닝

Target =1 와 Target =0 의 비율을 1:1로 하는

언더 샘플링

APPLICATION_TEST

EXT_SOURCE

OWN_CAR_AGE

DAYS_LAST_PHON E_CHANGE Bayesian optimization

4 깔암하게 대출받자!

모델링

모 델 링

모델링 기법 선정 (1)

XG Boost

CART(classification and regression tree)

decision tree에 비해 분류의 정확성 뿐만 아니라 같은 분류 결과를 가진 모델끼리도 스코어를 통해 모델의 우위를 비교할 수 있다.

- Regularization 으로 과적합 방지
- Cross Validation 이 내장
- 병렬처리로 빠른 속도
- 평가지표의 customized metric로유연한 해석이 가능

모델링 기법 선정 (2)

LGBM

- 피쳐들의 히스토그램을 만들어 근사치의 분할이 진행
- 대용량의 데이터를 빠르게 학습가능 (10000 이상)
- Over-fitting에 예민하기 때문에 적은 데이터에는 부적함
- Gradient-based One-Side Sampling (GOSS)

Untrained 개체가 정보 획득에 더 기여하기 때문에 max loss delta 로 트리를 확장하며 loss를 줄인다

Exclusive Feature Bundling (EFB)

feature1	feature2	feature_bundle
0	2	6
0	1	5
0	2	6
1	0	1
2	0	2
3	0	3
4	0	4

변수 개수를 줄이기 위한 거의 손실 없는 방법 변수들은 0이 아닌 값을 동시에 갖는 일이 거의 없는 배타적인 변수들을 묶는다

모델링 기법 선정 (3)

CAT Boost

- 범주형 데이터가 많은 데이터 셋에서 높은 예측력
- 모델 튜닝 없이 default값으로만 좋은 성능을 보여준다.

Ordered TBS
(Target-Based Statistics)

범주형 데이터를 연속형 데이터로 변환

Calculating ctr for the i-th bucket $(i \in [0; k-1])$:

$$ctr_i = \frac{countInClass + prior}{totalCount + 1} \text{ , where}$$

범주형 데이터를 분포만을 가지고 변환할 경우 Train 데이터와 test 데이터가 다른 분포를 가지면 예측력이 떨어지기 때문에 이를 보완! level wise tree

대칭형 트리로 Overfitting 을 방지

STACKING

손실 함수 vs 평가 지표

손실 함수

- 어떠한 모델 내부의 파라미터 (가중치) 최적인지 찾기 위한 함수
- XG Boost, LGBM, CAT Boost 모두 디폴트 손실 함수인 Log loss 활용

평가 지표

- Cross Validation 에서 hyper parameter 학습 시 사용
- 모델 자체의 성능 평가 지표로도 사용

5 깔암하게 대출받자!

모델링결과

XG Boost

Parameter tuning

가장 높은 F1값을 가지는 max_depth, minchild Colsample, subsample 조합

XG Boost Parameter tuning

N round 및 parameter 결과값

Max_depth	트리의 최대 깊이	6	N round 1000
Min_child_weight L	드드 분할 시 필요한 최소 instance weight	20	
			F1 score
Subsample	트리에서 obs 샘플링 비율	0.5	CV에 대한 F1 스코어
Colsample_bytree	트리에서 feature 샘플링 비율	0.5	0.714

XG Boost

Feature Importance

External_sources_mean

external source의 평균

External_sources_nammedian

external source의 중앙값

External_sources_sum

external source의 합

LGBM

Parameter tuning

Max_depth	트리의 최대 깊이	22
Num_leaves	노드 분할 시 필요한 instance	38
Min_child_sample 4	-드 분할 시 필요한 최소 instance	9
Min_child_weight 4	드 분할 시 최소 instance weight	5
Subsample	트리에서 obs 샘플링 비율	0.39

F1 score CV에 대한 F1 스코어 **0.721**

LGBM

Feature Importance

annuity_length

연금을 받는 기간

external_sources_nammedian

external source의 중앙값

external_sources_sum

external source의 합

days_birth

나이

CAT Boost Parameter tuning

가장 높은 F1값을 가지는 max_depth, leaf_reg Border_count, rsm 조합

CAT Boost

CAT Boost

STACKING

최종 모델

		단일모델		스태킹
Model	XG Boost	LGBM	CAT boost	XG Boost
Parameters used	max_depth:6 min_child_weight:20 Subsample:0.5 Colsamplebytree:0.5 Nround=1000	max_depth: 22 num_leaves: 38 min_child_sample: 9 feature_fraction: 5 bagging_fraction: 0.39	depth: 8 I2-leaf-reg:1 rsm: 0.5 Border_count:5	Vecstack package max_depth:5 min_child_weight:18 Subsample:0.7 Colsamplebytree:0.5 Nround=462
F1 score (cross validation)	0.714	0.721	0.705	0.727

최종적으로 F1 스코어가 가장 높게 나온, '스태킹 모델'을 선정

최종 모델

의의 및 한계점

의 의

- 1. unbalanced 데이터 예측을 샘플링을 통해서 해결
- 2. 다양한 파라미터 튜닝 시행(그리드서치, 베이지안)
- 3. 스태킹을 통해 모델들간의 앙상블 시도

한 계

예측 위주의 전처리로 인해 해석의 한계가 존재 컴퓨팅 성능의 한계로 인해 보다 로지컬한 샘플링을 하지 못함

Q&A