CT.2306: Signal & Systems II

Report

Processing motion signals from a PTZ camera

Philéas CURTIL, Thomas MAFILLE, Rémy MAILLARD

January 7^{th} , 2024

Made with LaTeX

Contents

1	Data visualization	2
2	Analog filtering	3
3	Sampling	5
4	Angular position and acceleration	6
5	Digital filtering	7

1 Data visualization

1) When we load data-proj.mat, we can see that there are two vectors in the file:

Name Size omega 1x20001 t 1x20001

2) Plot of the angular speed *omega* as a function of time.


```
To obtain this graph:

figure(1)
plot(t, omega)
grid on
hold on
xlabel('Time [sec]')
ylabel('Angular speed [rad/sec]'
```

Figure 1: Angular speed as a function of time

It is not possible to use the signal as it is now, mostly because there is too much information (too noisy) or the window is too large. This signal is continuous (analog). Electronic control devices requires digital signals.

)

2 Analog filtering

3) The sampling period T_{e_1} can be calculated with :

```
Te1=t(2)-t(1)
>>Te1 =
1.0000e-03
```

4) Plot of the amplitude spectrum of omega(t), with the use of the workshop 5:

Figure 2: DFT plot of omega(t)

```
To obtain this graph:
```

```
% Plot of the DFT of omega(t)
Te2 = 0.05;
Fe2=1/Te2;
Tf=t(end);
N=Tf/Te2;
f1=-Fe2*(N/2-1)/N:Fe2/N:0;
f2=Fe2/N:Fe2/N:(N/2)*Fe2/N;
f = [f2, f1];
S = zeros(N,1);
for m=1:N
  for k=1:N
    S(m)=S(m)+omega(k)*exp(-1i
       *2*pi*m*k/N);
  end
end
figure(2)
stem(f,abs(S)/N)
grid on
hold on
xlim([-2 2])
xlabel('f [Hz]')
ylabel('DFT(\omega (t))')
```

5) The frequencies contained inside the signal are ranging from -2 Hz to 2 Hz with a step of 0.05.

```
F_{max} = 2Hz
```

6) The cutoff frequency is $f_c = 2Hz$. On Matlab:

Figure 3: omega(t) filtered and unfiltered $(omega_f(t))$

To obtain this graph:

```
% filter design
t1=0:Te2:t(end)-Te2;
fc1=2;
H1=tf(1,[1/(2*pi*fc1) 1]);
Sf=lsim(H1,S,t1);

% plot of filtered signal
figure(1);
plot(t1,Sf,'r')
grid on
legend(' \omega(t) unfiltered','
   \omega_{f}(t) filtered','
   Fontsize',14)
```

On Simulink:

7) Plot of the amplitude spectrum of $omega_f(t)$, with the use of the workshop 5:

Figure 4: DFT plot of omega(t) and $omega_f(t)$

To obtain this graph:

```
figure(2)
stem(f,abs(Sf)/N, 'r')
grid on
xlim([-2 2])
legend(' DFT of \omega(t)','DFT
  of \omega_{f}(t)','Fontsize'
    ,14)
```

3 Sampling

8) To create a vector $omega_e(t)$ which contains the values of the vector $omega_f(t)$ with a period between the values of $T_{e2} = 0.05$ sec.

```
temp1 = 1:round(Te2/Te1):length(wf);
we=wf(temp1);
```

9) To get the size of $omega_e(f)$, we use :

```
size(we)
```

```
>> size(we)
ans =
```

Figure 5: Size of $omega_e$

- 10) A
- 11) A
- 12) A

4 Angular position and acceleration

- 13) A
- 14) A

5 Digital filtering

- 16) A
- 17) A