Combining Joint Models with Different Association Structures Using Bayesian Model Averaging

Dimitris Rizopoulos

Department of Biostatistics, Erasmus University Medical Center, the Netherlands

d.rizopoulos@erasmusmc.nl

7th Meeting of the Easter Mediterranean Region of IBS April 25th, 2013, Tel Aviv, Israel

1.1 Introduction

- Over the last 10-15 years increasing interest in joint modeling of longitudinal and time-to-event data (Tsiatis & Davidian, Stat. Sinica, 2004; Yu et al., Stat. Sinica, 2004)
- The majority of the biostatistics literature in this area has focused on:
 - > several extensions of the standard joint model, new estimation approaches, ...
- Recently joint models have been utilized to provide individualized predictions

1.1 Introduction (cont'd)

Goals of this talk:

- Dynamic individualized predictions of survival probabilities;
- ▷ Study the importance of the association structure;

1.2 Illustrative Case Study

- Aortic Valve study: Patients who received a human tissue valve in the aortic position
 - ▷ data collected by Erasmus MC (from 1987 to 2008);
 77 received sub-coronary implantation; 209 received root replacement
- Outcomes of interest:
 - \triangleright death and re-operation \rightarrow composite event
- Research Question:
 - Can we utilize available aortic gradient measurements to predict survival/re-operation

2.1 Joint Modeling Framework

- To answer our questions of interest we need to postulate a model that relates
 - > the aortic gradient with
 - > the time to death or re-operation
- <u>Problem:</u> Aortic gradient measurement process is an **endogenous** time-dependent covariate (Kalbfleisch and Prentice, 2002, Section 6.3)

Joint Models for Longitudinal and Time-to-Event Data

• Some notation

 $\triangleright T_i^*$: True time-to-death for patient i

 $\triangleright T_i$: Observed time-to-death for patient i

 $\triangleright \delta_i$: Event indicator, i.e., equals 1 for true events

 $\triangleright y_i$: Longitudinal aortic gradient measurements

- We define a standard joint model
 - Survival Part: Relative risk model

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^{\top} w_i + \alpha m_i(t)\},$$

where

* $m_i(t)$ = the true & unobserved value of aortic gradient at time t

* $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$

* lpha quantifies the effect of aortic gradient on the risk for death/re-operation

* w_i baseline covariates

▷ Longitudinal Part: Reconstruct $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$ using $y_i(t)$ and a mixed effects model (we focus on continuous markers)

$$y_i(t) = m_i(t) + \varepsilon_i(t)$$

= $x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$

where

* $x_i(t)$ and β : Fixed-effects part

* $z_i(t)$ and b_i : Random-effects part, $b_i \sim \mathcal{N}(0, D)$

- ullet The two processes are associated \Rightarrow define a model for their joint distribution
- Joint Models for such joint distributions are of the following form (Tsiatis & Davidian, Stat. Sinica, 2004)

$$p(y_i, T_i, \delta_i) = \int p(y_i \mid b_i) \{h(T_i \mid b_i)^{\delta_i} S(T_i \mid b_i)\} p(b_i) db_i$$

where

 $\triangleright b_i$ a vector of random effects that explains the interdependencies

 $\triangleright p(\cdot)$ density function; $S(\cdot)$ survival function

3.1 Prediction Survival – Definitions

- ullet We are interested in predicting survival probabilities for a new patient i that has provided a set of a provided a set of a provided a set of a provided that t
- Example: We consider Patients 20 and 81 from the Aortic Valve dataset
 - Dynamic Prediction survival probabilities are dynamically updated as additional longitudinal information is recorded

3.1 Prediction Survival – Definitions (cont'd)

3.1 Prediction Survival – Definitions (cont'd)

ullet More formally, we have available measurements up to time point t

$$\mathcal{Y}_j(t) = \{ y_j(s), 0 \le s < t \}$$

and we are interested in

$$\pi_j(u \mid t) = \Pr\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\},\$$

where

 \triangleright where u > t, and

 $riangleright \mathcal{D}_n$ denotes the sample on which the joint model was fitted

3.2 Prediction Survival – Estimation

- Joint model is estimated using maximum likelihood
- Based on the fitted model we can estimate the conditional survival probabilities
- Details skipped...
 - ⊳ for more info, check (Rizopoulos, 2011, Biometrics; Proust-Lima and Taylor, 2009, Biostatistics)

3.3 Prediction Survival – Illustration

• Example: We fit a joint model to the Aortic Valve data

Longitudinal submodel

- \triangleright fixed effects: natural cubic splines of time (d.f.= 3), operation type, and their interaction
- \triangleright random effects: Intercept, & natural cubic splines of time (d.f.= 3)

Survival submodel

- \triangleright type of operation, age, sex + underlying aortic gradient level

- ullet Based on the fitted joint model we estimate $\pi_j(u \mid t)$ for Patients 20 and 81
- We used the fully Bayesian approach with 500 Monte Carlo samples, and we took as estimate

$$\hat{\pi}_j(u \mid t) = \frac{1}{L} \sum_{\ell=1}^{L} \pi_j^{(\ell)}(u \mid t)$$

and calculated the corresponding 95% pointwise CIs

4.1 Association Structures

The standard joint model

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^{\top} w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \end{cases}$$

where
$$\mathcal{M}_{i}(t) = \{m_{i}(s), 0 \leq s < t\}$$

4.1 Association structures (cont'd)

4.1 Association Structures (cont'd)

The standard joint model

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$

Is this the only option? Is this the most optimal for prediction?

4.2 Lagged Effects

• The hazard for an event at t is associated with the level of the marker at a previous time point:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^{\top} w_i + \alpha m_i(t_+^c)\},$$

where

$$t_+^c = \max(t - c, 0)$$

4.2 Lagged Effects (cont'd)

4.3 Time-dependent Slopes

• The hazard for an event at t is associated with both the current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha_1 m_i(t) + \alpha_2 m_i'(t)\},$$

where

$$m_i'(t) = \frac{d}{dt} \{ x_i^{\top}(t)\beta + z_i^{\top}(t)b_i \}$$

4.3 Time-dependent Slopes (cont'd)

4.4 Cumulative Effects

ullet The hazard for an event at t is associated with area under the trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{\gamma^\top w_i + \alpha \int_0^t m_i(s) ds\right\}$$

ullet Area under the longitudinal trajectory taken as a summary of $\mathcal{M}_i(t)$

4.4 Cumulative Effects (cont'd)

4.5 Weighted Cumulative Effects

ullet The hazard for an event at t is associated with the area under the weighted trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{\gamma^{\top} w_i + \alpha \int_0^t \overline{w}(t-s) m_i(s) ds\right\},$$

where $\varpi(\cdot)$ appropriately chosen weight function, e.g.,

- ▷ Student's-t density

D . . .

4.6 Shared Random Effects

• The hazard for an event at t is associated with the random effects of the longitudinal submodel:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp(\gamma^{\top} w_i + \alpha^{\top} b_i)$$

Features

- ▷ time-independent (no need to approximate the survival function)

4.7 Parameterizations & Predictions

4.7 Parameterizations & Predictions (cont'd)

- Five joint models for the Aortic Valve dataset
 - b the same longitudinal submodel, and
 - > relative risk submodels

$$h_i(t) = h_0(t) \exp\{\gamma_1 \text{TypeOP}_i + \gamma_2 \text{Sex}_i + \gamma_3 \text{Age}_i + \alpha_1 m_i(t)\},$$

$$h_i(t) = h_0(t) \exp\{\gamma_1 \texttt{TypeOP}_i + \gamma_2 \texttt{Sex}_i + \gamma_3 \texttt{Age}_i + \alpha_1 m_i(t) + \alpha_2 m_i'(t)\},$$

$$h_i(t) = h_0(t) \exp \left\{ \gamma_1 \texttt{TypeOP}_i + \gamma_2 \texttt{Sex}_i + \gamma_3 \texttt{Age}_i + \alpha_1 \int_0^t m_i(s) ds
ight\}$$

4.7 Parameterizations & Predictions (cont'd)

$$h_i(t) \, = \, h_0(t) \exp\Bigl\{\gamma_1 \mathrm{TypeOP}_i + \gamma_2 \mathrm{Sex}_i + \gamma_3 \mathrm{Age}_i + \alpha_1 \int_0^t \phi(t-s) m_i(s) ds\Bigr\},$$

where $\phi(\cdot)$ standard normal pdf

$$h_i(t) = h_0(t) \exp(\gamma_1 \mathsf{TypeOP}_i + \gamma_2 \mathsf{Sex}_i + \gamma_3 \mathsf{Age}_i + \alpha_1 b_{i0} + \alpha_2 b_{i1} + \alpha_3 b_{i2} + \alpha_4 b_{i4})$$

4.7 Parameterizations & Predictions (cont'd)

Survival Outcome

4.7 Parameterizations & Predictions (cont'd)

- The chosen parameterization can influence the derived predictions
 - ▷ especially for the survival outcome

How to choose between the competing association structures?

4.7 Parameterizations & Predictions (cont'd)

- The easy answer is to employ information criteria, e.g., AIC, BIC, . . .
- However, the problem is the longitudinal information dominates the joint likelihood
 will not be sensitive enough wrt predicting survival probabilities
- In addition, thinking a bit more deeply, is the same single model the most appropriate

 - □ For the same patient during the whole follow-up?

The most probable answer is No

4.8 Combining Joint Models

• To address this issue we will use Bayesian Model Averaging (BMA) ideas

- \bullet In particular, we assume M_1, \ldots, M_K

 - □ different baseline covariates in the survival submodel
 - ▷ different formulation of the mixed model

▷ . . .

• Typically, this list of models will not be exhaustive

ullet The aim is the same as before, using the available information for a future patient j up to time t, i.e.,

$$\triangleright T_j^* > t$$

$$\triangleright \mathcal{Y}_j(t) = \{ y_j(s), 0 \le s \le t \}$$

We want to estimate

$$\pi_j(u \mid t) = \Pr\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\},\$$

by averaging over the posited joint models

More formally we have

$$\Pr\{T_j^* \geq u \mid \mathcal{D}_j(t), \mathcal{D}_n\} = \sum_{k=1}^K \Pr(T_j^* > u \mid M_k, \mathcal{D}_j(t), \mathcal{D}_n) \, p(M_k \mid \mathcal{D}_j(t), \mathcal{D}_n)$$

where

$$\triangleright \mathcal{D}_j(t) = \{T_j^* > t, y_j(s), 0 \le s \le t\}$$
$$\triangleright \mathcal{D}_n = \{T_i, \delta_i, y_i, i = 1, \dots, n\}$$

• The first part, $\Pr(T_j^* > u \mid M_k, \mathcal{D}_j(t), \mathcal{D}_n)$, the same as before \triangleright i.e., model-specific conditional survival probabilities

 Working out the marginal distribution of each competing model we found some very attractive features of BMA,

$$p(M_k \mid \mathcal{D}_j(t), \mathcal{D}_n) = \frac{p(\mathcal{D}_j(t) \mid M_k) p(\mathcal{D}_n \mid M_k) p(M_k)}{\sum\limits_{\ell=1}^K p(\mathcal{D}_j(t) \mid M_\ell) p(\mathcal{D}_n \mid M_\ell) p(M_\ell)}$$

- $\triangleright p(\mathcal{D}_n \mid M_k)$ marginal likelihood based on the available data
- $\triangleright p(\mathcal{D}_i(t) \mid M_k)$ marginal likelihood based on the new data of patient j

Model weights are both patient- and time-dependent

• For different subjects, and even for the same subject but at different times points, different models may have higher posterior probabilities

Predictions better tailored to each subject than in standard prognostic models

- In addition, the longitudinal model likelihood, which is
 - $hd hidden in p(\mathcal{D}_n \mid M_k)$, and
 - ▷ is not affected by the chosen association structure

will cancel out because it is both in the numerator and denominator

- Example: Based on the five fitted joint models
 - b we compute BMA predictions for Patient 81, and
 - > compare with the predictions from each individual model

5. Software – I

 Software: R package JM freely available via http://cran.r-project.org/package=JM

▷ it can fit a variety of joint models + many other features

▷ relevant to this talk: Functions survfitJM() and predict()

More info available at:

Rizopoulos, D. (2012). *Joint Models for Longitudinal and Time-to-Event Data, with Applications in R.* Boca Raton: Chapman & Hall/CRC.

Web site: http://jmr.r-forge.r-project.org/

5. Software – II

- Software: R package **JMbayes** freely available via http://cran.r-project.org/package=JMbayes
 - ▷ it can fit a variety of joint models + many other features
 - ▷ relevant to this talk: Functions survfitJM(), predict() and bma.combine()

Thank you for your attention!