```
Importing dependencies
```

```
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style = 'white')

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.ensemble import AdaBoostClassifier
from xgboost import XGBClassifier

from sklearn.metrics import accuracy score
```

Loading of Dataset and Initial Inspection

```
df = pd.read_csv('./drive/MyDrive/datasets/churn_bank.csv')
```

df.head()

\	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	${\sf HasCrCard}$	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

Est 0 1 2 3 4	imatedSalary 101348.88 112542.58 113931.57 93826.63 79084.10	Exited 1 0 1 0					
df.describe()							
Topuro	RowNumber	CustomerId	CreditScore	Age			
Tenure count	10000.00000	1.000000e+04	10000.000000	10000.000000			
10000. mean	5000.50000	1.569094e+07	650.528800	38.921800			
5.0128 std	2886.89568	7.193619e+04	96.653299	10.487806			
2.8921 min 0.0000	1.00000	1.556570e+07	350.000000	18.000000			
25% 3.0000	2500.75000	1.562853e+07	584.000000	32.000000			
50% 5.0000	5000.50000	1.569074e+07	652.000000	37.000000			
75% 7.0000	7500.25000	1.575323e+07	718.000000	44.000000			
max 10.000	10000.00000	1.581569e+07	850.000000	92.000000			
count mean std min 25% 50% 75% max	Balanc 10000.00000 76485.88928 62397.40520 0.00000 0.00000 97198.54000 127644.24000 250898.09000	0 10000.0000 8 1.5302 2 0.5816 0 1.0000 0 1.0000 0 2.0000	1000 10000.00000 1000 0.70550 1000 0.45582 1000 0.00000 1000 0.00000 1000 1.00000 1000 1.00000	10000.000000 0.515100 4 0.499797 0 0.000000 0 0.000000 1.000000 0 1.000000	\		
count mean std min 25% 50% 75% max df.inf	EstimatedSal 10000.000 100090.239 57510.492 11.580 51002.110 100193.915 149388.247 199992.480	000 10000.000 881 0.203 818 0.402 000 0.000 000 0.000 000 0.000 500 0.000	3700 2769 0000 0000 0000				
min 25% 50% 75% max	11.580 51002.110 100193.915 149388.247 199992.480	000 0.000 000 0.000 000 0.000 500 0.000	0000 0000 0000 0000				

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
# Column Non-Null Count
```

#	Column	Non-Null Count	Dtype					
0	RowNumber	10000 non-null	int64					
1	CustomerId	10000 non-null	int64					
2	Surname	10000 non-null	object					
3	CreditScore	10000 non-null	int64					
4	Geography	10000 non-null	object					
5	Gender	10000 non-null	object					
6	Age	10000 non-null	int64					
7	Tenure	10000 non-null	int64					
8	Balance	10000 non-null	float64					
9	NumOfProducts	10000 non-null	int64					
10	HasCrCard	10000 non-null	int64					
11	IsActiveMember	10000 non-null	int64					
12	EstimatedSalary	10000 non-null	float64					
13	Exited	10000 non-null	int64					
<pre>dtypes: float64(2), int64(9), object(3)</pre>								
memory usage: 1.1+ MB								
	,							

df2 = df.iloc[:, 3:]

RowNumber, CustomerId, and Surname are all irrelevant, thus, they will not be included.

df2.head()

NI		e Geography	Gender	Age	Tenure	Balance	
0 1	nOfProducts 61	•	Female	42	2	0.00	
1	60	8 Spain	Female	41	1	83807.86	
2	50	2 France	Female	42	8	159660.80	
3	69	9 France	Female	39	1	0.00	
2 4	85	0 Spain	Female	43	2	125510.82	
1							
	HasCrCard	IsActiveMem	ıber Est		dSalary	Exited	
0	1		1		1348.88	1	
1	0		1	11	2542.58	0	
2	1		0	11	3931.57	1	
3	0		0	9	3826.63	0	
4	1		1	7	9084.10	0	
<pre>df2['Gender'].replace(to_replace = 'Female', value = 0, inplace = True) df2['Gender'].replace(to_replace = 'Male', value = 1, inplace = True)</pre>							
and defined interface to repeace - mate, value - 1, inplace - mate							

```
df2['Gender'].unique()
array([0, 1])
df dummies = pd.get dummies(df2)
df_dummies.head()
   CreditScore Gender Age
                              Tenure
                                         Balance NumOfProducts
HasCrCard
           619
                      0
                          42
                                    2
                                             0.00
                                                                1
1
1
           608
                      0
                          41
                                    1
                                        83807.86
                                                                1
0
                                       159660.80
2
                          42
                                                                3
           502
                      0
                                    8
1
                                                                2
3
           699
                      0
                          39
                                    1
                                            0.00
0
4
                                       125510.82
           850
                      0
                          43
                                                                1
1
   IsActiveMember
                    EstimatedSalary
                                      Exited
                                               Geography France
0
                           101348.88
                 1
                                           1
1
                                                               0
                 1
                          112542.58
                                           0
2
                 0
                          113931.57
                                           1
                                                               1
3
                                                               1
                 0
                           93826.63
                                           0
4
                 1
                           79084.10
                                           0
                                                               0
   Geography_Germany
                       Geography_Spain
0
                    0
                                      0
                    0
1
                                      1
2
                    0
                                      0
3
                                      0
                    0
4
                    0
                                      1
plt.figure(figsize = (15, 8))
df dummies.corr()['Exited'].sort values(ascending = False).plot(kind =
'bar')
plt.show()
```


Age, Geography_Germany, and Balance all seem to be positively correlated to churning. On the other hand: isActiveMember, Gender, and Geography_France all seem to be negatively correlated. Exploration of the patterns is important before delving right into modelling.

EXPLORATORY DATA ANALYSIS

Distribution of customers based on their personal information

```
color='white',
weight = 'bold')
plt.show()
```


The number of entries who are Male are greater in numbers compared to the Female entries, although not that significant.

```
ax = (df['Geography'].value_counts()*100.0 /len(df))\
.plot.pie(autopct='%.1f%%',figsize =(5,5), fontsize = 12)
ax.set_ylabel('Senior Citizens',fontsize = 12)
ax.set_title('% of Geography', fontsize = 12)
plt.show()
```


The number of people living in France largely dominates the dataset, having more entries than both Germany and Spain combined.

```
ax = sns.distplot(df['Age'], hist=True, kde=False,
             bins=int(180/5), color = 'darkblue',
             hist kws={'edgecolor':'black'},
             kde_kws={'linewidth': 4})
ax.set ylabel('# of Customers')
ax.set xlabel('Age')
ax.set title('# of Customers by their age')
plt.show()
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619:
```

FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Most of the customers are aged around 40 years old. Significant decrease in distribution follows thereafter, with 80 years old and above having the least amount.

```
colors = ['#4D3425','#E4512B']
ax = (df['Exited'].value counts()*100.0 /len(df)).plot(kind='bar',
stacked = True, rot = 0, color = colors)
ax.set ylabel('% Customers')
ax.set_xlabel('Churned')
ax.set ylabel('% Customers')
ax.set_title('Churn Rate')
totals = []
for i in ax.patches:
    totals.append(i.get width())
total = sum(totals)
for i in ax.patches:
    ax.text(i.get x()+.15, i.get height()-3.5, \setminus
            str(round((i.get height()/total), 1))+'%',
            fontsize=12,
            color='white',
           weight = 'bold')
```


As visualization suggests, the dataset largely consists of more customers who have not churned rather than those who have churned, thus, it is expected that the data is skewed as the distribution between the two are far from equal. This is key in understanding the amount of false negatives.

```
Personal Information vs Churn Rate
```

```
plt.title('Churn by Age')
sns.boxplot(x = df['Exited'], y = df['Age'])
<matplotlib.axes._subplots.AxesSubplot at 0x7fe4dce3da50>
```


There is alot of variance in age of customers who have not churned, even reaching the ages of approximately $90~{\rm years}$ old

```
plt.title('Churn by CreditScore')
sns.boxplot(x = df['Exited'], y = df['CreditScore'])
<matplotlib.axes._subplots.AxesSubplot at 0x7fe4dc638e90>
```


There isn't much to explain between a customer churning and their credit score, thus having little to no relevance.

```
plt.title('Churn by Balance')
sns.boxplot(x = df['Exited'], y = df['Balance'])
<matplotlib.axes._subplots.AxesSubplot at 0x7fe4dc5b8490>
```


Customers who have more in their balance tend to churn compared to those who have less in their balance.

```
plt.title('Churn by NumofProducts')
sns.boxplot(x = df['Exited'], y = df['NumOfProducts'])
<matplotlib.axes._subplots.AxesSubplot at 0x7fe4dc5350d0>
```


Customers who have 1-3 in number of products have the same probability of churning, but customers who have 4 products are more likely to churn.

```
colors = ['#4D3425','#E4512B']
contract churn =
df.groupby(['IsActiveMember', 'Exited']).size().unstack()
ax = (contract churn.T*100.0 /
contract churn.T.sum()).T.plot(kind='bar', width = 0.3, stacked =
True, rot = 0, figsize = (10,6), color = colors)
ax.legend(loc='best',prop={'size':14},title = 'Churn')
ax.set ylabel('% Customers',size = 14)
ax.set title('Churn by Activity', size = 14)
for p in ax.patches:
   width, height = p.get_width(), p.get_height()
    x, y = p.qet xy()
    ax.annotate(((-1)^{1})^{1}).format(height), (p.get x()+.25*width,
p.get y()+.4*height),
                color = 'white',
               weight = 'bold',
               size = 14)
```


Active members are less likely to churn than those who aren't active.

```
colors = ['#4D3425','#E4512B']
contract_churn = df.groupby(['Geography','Exited']).size().unstack()
ax = (contract churn.T*100.0 /
contract churn.T.sum()).T.plot(kind='bar', width = 0.3, stacked =
True, rot = 0, figsize = (10,6), color = colors)
ax.legend(loc='best',prop={'size':14},title = 'Churn')
ax.set ylabel('% Customers',size = 14)
ax.set title('Churn by Geography', size = 14)
for p in ax.patches:
    width, height = p.get width(), p.get height()
    x, y = p.get xy()
    ax.annotate(\{:.0f\}%'.format(height), (p.get x()+.25*width,
p.get y()+.4*height),
                color = 'white',
               weight = 'bold',
               size = 14)
```


While most of the customers are based in France, it relatively has the least amount of customers who have churned, while Germany who has roughly half the amount of customers from France, has the most amount of customers who have churned thus far.

Model Training and Evaluation

1. Logistic Regression

1A. MODEL TRAINING

```
y = df_dummies['Exited'].values
X = df_dummies.drop(columns = ['Exited'])

features = X.columns.values
scaler = MinMaxScaler(feature_range = (0, 1))
scaler.fit(X)
X = pd.DataFrame(scaler.transform(X))
X.columns = features

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 26)

model_logreg = LogisticRegression()
model_logreg.fit(X_train, y_train)
y_pred = model_logreg.predict(X_test)
```

```
print('Logistic Regression Score:', accuracy_score(y_test, y_pred))
Logistic Regression Score: 0.817
weights = pd.Series(model_logreg.coef_[0], index = X.columns.values)
print(weights.sort_values(ascending = False).plot(kind = 'bar'))
AxesSubplot(0.125,0.125;0.775x0.755)
```


Observations made with Logistic Regression:

- Age is positively correlated with churning, therefore the probability of churning increases with the age of the customers
- Amongst all the features, being an active member is the most negatively correlated with churning, therefore active members are the least likely to churn

2. Random Forest Classifier

2A. MODEL TRAINING

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.2, random_state = 26)

model_rfc = RandomForestClassifier(n_estimators = 1000, oob_score =
True, n_jobs = -1, random_state = 26, max_features = 'auto',
max_leaf_nodes = 30)
model_rfc.fit(X_train, y_train)

y_pred1 = model_rfc.predict(X_test)

2B. MODEL EVALUATION
print("Random Forest Classifier:", accuracy_score(y_test, y_pred1))
Random Forest Classifier: 0.8685
impt = model_rfc.feature_importances_
weights_rfc = pd.Series(impt, index = X.columns.values)
weights_rfc.sort_values().plot(kind = 'bar')
<matplotlib.axes._subplots.AxesSubplot at 0x7fe4dc7ec2d0>
```


In terms of Random Forest Classifier, the most important feature remains to be the Age, however, this time NumOfProducts exponentially arose in relevance, while HasCrCard remains to be irrelevant/unimportant.

3. Support Vector Classifier

```
3A. MODEL TRAINING
model svc = SVC(kernel = 'poly')
model_svc.fit(X_train, y_train)
y pred2 = model svc.predict(X test)
   3B. MODEL EVALUATION
print('Support Vector Classifier:', accuracy score(y pred2, y test))
Support Vector Classifier: 0.862
4. ADA Boost Classifier
   4A. MODEL TRAINING
model ada = AdaBoostClassifier()
model ada.fit(X train, y train)
y pred3 = model ada.predict(X test)
   4B. MODEL EVALUATION
print('ADA Boost Classifier:', accuracy score(y pred3, y test))
ADA Boost Classifier: 0.858
5. XGBoost Classifier
   5A. MODEL TRAINING
model xgb = XGBClassifier()
model_xgb.fit(X_train, y_train)
y pred4 = model_xgb.predict(X_test)
   5B. MODEL EVALUATION
print('XGBoost Classifier:', accuracy score(y pred4, y test))
XGBoost Classifier: 0.8705
```

XGBoost has the highest accuracy among all the techniques demonstrated above, albeit being retrospectively expensive. It achieves this accuracy relatively faster, because of its parallel computing capabilities.

Out of all the models, the XGBoost provided the highest accuracy, while, in contrast, Logistic Regression had the lowest score.