SECONDARY MEMORY (SECONDARY STORAGE DEVICES)

- The secondary memory stores data and instructions **permanently**.
- It is a **non-volatile** memory.
- It provides *back-up storage* for data and instructions.
- **E.g.**Magnetic tape drives, magnetic disk drives, optical disk drives and magneto-optical disk drives

Access Types Of Storage Devices

The information stored in storage devices can be accessed in two ways—

1. Sequential access

- Sequential access means that computer must access data in sequence, starting from the beginning, in order to locate a particular piece of data.
- E.g. Magnetic tape

2. Direct access

- Direct access devices are the ones in which any piece of data can be retrieved in a non-sequential manner by locating it using the data's address.
- It accesses the data directly, from a desired location.
- E.g. Magnetic disks and optical disks

Secondary Storage Devices

- Magnetic Tape
- Magnetic Disk
 - Floppy disk
 - Hard disk
 - Zip disk
- Optical Disk
 - read-only optical disks
 - CD-ROM, DVD-ROM
 - recordable optical disks.
 - CD-R
 - CD-RW
 - DVD-R
- Magneto-optical disk

Magnetic Tape

- Sequential storage devices
- Tape needs to rewind or move forward to the location of the data
- A storage medium on a large open reel or in a smaller cartridge or cassette.
- They are Durable, Written, erased, and rewritten
- Not suitable for data files which are updated frequently
 - Generally used to store backup data which are not used often

Magnetic Tape(contd..)

A 10.5-inch reel of 9-track tape

A portion of magnetic tape

Magnetic tape is divided horizontally into tracks (7 or 9) and vertically into frames

Magnetic Tape(contd..)

- Data is recorded in the form of blocks.
- Each block is read continually
- There is an Inter Record Gap(IRG) between two blocks
 - This provides time for the tape to be stopped and started between records

Magnetic Tape(contd..)

The features of magnetic tape are—

- Inexpensive storage device
- Can store a large amount of data
- Easy to carry or transport
- Not suitable for random access data
- Slow access device
- Needs dust prevention, as dust can harm the tape
- Suitable for back-up storage or archiving.

Magnetic Disk

- Magnetic disk is a direct access secondary storage device.
- It is a thin plastic or metallic circular plate coated with magnetic oxide and encased in a protective cover.
- Data is stored on magnetic disks as *magnetized spot*s.
 - The *presence* of a magnetic spot represents the bit 1 and its absence represents the bit 0.

Magnetic Disk

Magnetic Disk (Contd..)

- The surface of disk is divided into *concentric* circles known as **tracks**.
- The outermost track is numbered 0 and the innermost track is the last track.
- Tracks are further divided into *sectors*
- A set of same tracks on all disks forms a *cylinder*.
- The read/write head is positioned to the desired track where the data is to be read from or written to.

Magnetic Disk(Contd..)

- The time taken to *move the read/write head to the desired track* is called the **seek time**.
- Once the read/write head is at the right track, then the head waits for right sector to come under it.
 - The time taken for desired sector of the track to come under read/write head is called the latency time.
- Once the read/write head is positioned at the right track and sector, the data has to be written to disk or read from disk.
 - The rate at which *data* is written to disk or read from disk is called **data transfer rate**.
- Access time of disk = Seek time + Latency time + Data transfer time

Magnetic Disk(Contd..)

- The features of magnetic disk are—
 - Cheap storage device
 - Can store a large amount of data
 - Easy to carry or transport
 - Suitable for frequently read/write data
 - Fast access device
 - More reliable storage device
 - To be prevented from dust, as the read/write head flies over the disk.
 - Any dust particle in between can corrupt the disk.
- Magnetic disk E,g. Floppy disk, hard disk ,zip disk

Floppy Disk

- Floppy disk (FD) is a flat, round, single disk made of *Mylar* plastic and enclosed in *square plastic jacket*.
- Floppy Disk Drive (FDD) is the disk drive for floppy disk.
- The floppy disk is inserted into the floppy disk drive to read or write data to it.
- Floppy disk has a *write-protect slide tab* that prevents a user from writing to it.
- A floppy disk may be single-sided or double-sided disk, i.e., data can be read and written on one and both sides of floppy disk, respectively.

Floppy Disk (Contd..)

Floppy Disk(Contd..)

- They are *portable*.
 - They can be removed from the disk drive, carried or stored separately.
- They are small and inexpensive.
- Floppy disks are *slower* to access than hard disk.
- They have less storage capacity.
- They come in two basic sizes—5-1/4 inch and 3-1/2 inch.
 - The 3-½ inch disk has capacity of 400 KB to 1.44 MB.

Hard Disk

- A hard disk (HD) consists of one or more platters divided into *concentric tracks and sectors*.
- It is mounted on a *central spindle*, like a stack.
- It can be read by a read/write head.
- The data is stored on the platters covered with *magnetic coating*
- Hard disk is a **fixed disk**.
- The disk is *not removable from the drive*.
- The hard disk and Hard Disk Drive (HDD) is a single unit.

Hard Disk

Zip Disk

- They are high-capacity removable disk and drive.
- They have the *speed and capacity* of hard disk and *portability* of floppy disk.

• Zip disk are of the same size as floppy disk, i.e., 3–½ inch but have a much *higher capacity*

than the floppy disk.

Optical Disk

- Optical disk is a flat and circular disk which is coated with reflective plastic material that can be altered by laser light.
- Optical disk *does not use magnetism*.
- The bits 1 and 0 are stored as spots that are relatively **bright** and light, respectively.
- The *tracks* on optical disk are further divided into *sectors* which are of **same length.**
- Thus, the *sectors near the centre* of *disk wrap around* the disk longer than the sectors on the edges of disk.

Spiral Sectors of same width

Optical disk

Magnetic disk

Optical disk

- Optical disk
 - read-only optical disks
 - CD-ROM, DVD-ROM
 - recordable optical disks.
 - CD-R
 - CD-RW
 - DVD-R

CD-ROM

- CD-ROM is written on by the manufacturer of the CD-ROM using the laser light.
- CD-ROM is an optical disk that can **only be read** and cannot be written..
- A CD-ROM drive reads data from the compact disk.
- Data is stored as **pits** (depressions) and **lands** (flat area) on CD-ROM disk.
- When the laser light is focused on the disk, the *pits scatter the light* (interpreted as 0) and the *lands reflect the light* to a sensor (interpreted as 1).

CD-ROM (Contd..)

- Since there is no head touching the disk, but a laser light, CD-ROM *does not get worn* out easily.
- The storage density of CD-ROM is very high and cost is low as compared to floppy disk and hard disk.
- Access time of CD-ROM is less.
 - CD-ROM drives can read data at 150Kbps.
- They come in multiples of this speed like—2x, 4x, 52x, 75x, etc.
- It is a commonly used medium for distributing software and large data.

CD-ROM

DVD-ROM

- **Digital Video Disk**-Read Only Memory (DVD-ROM) is an optical storage device used to *store digital video or computer data*
- It improves on CD technology.
- It is a high-density medium with increased track and bit density.
- DVD-ROM uses both sides of the disk and special data compression technologies.
- Each side of DVD-ROM can store 4.7 GB of data, so a single DVD can store 9.4 GB of data.
- New DVD-ROMs use layers of data track, to double its capacity.
 - Such dual layer disks can store 17 GB of data.

Recordable Optical Disk

- Compact Disk-Recordable (CD-R) is a Write Once-Read Many (WORM) disk.
 - A CD-R disk allows the user to write data permanently on to the disk.
- Compact Disk-ReWritable (CD-RW) allows data to be written, erased and re-written.
 - The capacity of CD-RW is same as a CD.
- Digital Video Disk-Recordable(**DVD-R**) allows *recording* of data on a DVD.
 - A DVD writer device is required to write the data to DVD.
 - The data once written on a DVD cannot be erased or changed.

MAGNETO-OPTICAL DISK

- Magneto-optical disks use *laser beam* to read data and magnetic field to write data to disk.
- These are optical disks where data can be written, erased and re-written.
- They are expensive and outdated.
- They were used during the mid 1990s.
- They have now been replaced by CD-RW and DVD-R.

Secondary Storage Devices

- Magnetic tape
- Magnetic disk
 - Floppy disk
 - Hard disk
 - Zip disk
- Optical disk
 - read-only optical disks
 - CD-ROM, DVD-ROM
 - recordable optical disks.
 - CD-R
 - CD-RW
 - DVD-R
- Magneto-optical disk

Buffer Managers

Buffer manager intelligently shuffles data from main memory to disk:
It is transparent to higher levels of DBMS operation

Buffer Management in a DBMS

- Data must be in RAM for DBMS to operate on it!
- Table of <frame#, pageid> pairs is maintained

When a page is requested...

- A page is the unit of memory we request
- If Page in the pool
 - Great no need to go to disk!
- If not? Choose a frame to replace.
 - If there is a free frame, use it!
 - Terminology: We pin a page (means it's in use)
 - If not? We need to choose a page to remove!
 - How DBMS makes choice is a replacement policy

Once we choose a page to remove

- A page is <u>dirty</u>, if its contents have been changed after writing
 - Buffer Manager keeps a dirty bit

- Say we choose to evict P
 - If P is <u>dirty</u>, we write it to disk
 - If P is not dirty, then what?

How do we pick a frame?

Needs to decide on page replacement policy

•Examples: LRU, Clock algorithm, MRU

Some work well in OS, but not always in DB... more later

Least Recently Used (LRU)

- Order pages by the time of last accessed
- Always replace the least recently accessed

P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why?)

The Clock Approximation

- Instead we maintain a "last used clock"
 - Think of pages ordered 1...N around a clock
 - "The hand" sweeps around
 - Pages keep a "ref bit"
- Whenever a page is referenced, set the bit
- If current is has ref bit == false choose it
- If current is referenced, then unset ref bit and move on "Approximates LRLI" since

"Approximates LRU" since referenced pages less likely

MRU

Most Recently Used.

Why would you ever want to use this?

Hint: Consider scanning a relation that has 1 Mn pages, but we only have 1000 buffer pages...

This nasty situation is called <u>Sequential Flooding</u>. Each page request causes an I/O.

Simplified Buffer Manager Flowchart

Doesn't the OS manage Pages too?

- *Portability*: Different OS, Different support
 - Journaling, nothing, something crazy
- Limitations in OS: files cannot span disks.
- DBMS requires ability to <u>force pages</u> to disk
 - Recovery (much later)
- DBMS is better able to predict <u>page reference patterns</u>
 - Prefetching is harder

Buffer Management Summary

- Data must be in RAM for DBMS to operate on it!
- Table of <frame#, pageid> pairs is maintained

Records

- Fixed and variable length records
- Records contain fields which have values of a particular type
 - E.g., amount, date, time, age
- Fields themselves may be fixed length or variable length
- Variable length fields can be mixed into one record:
 - Separator characters or length fields are needed so that the record can be "parsed."

Blocking

Blocking:

- Refers to storing a number of records in one block on the disk.
- Blocking factor (bfr) refers to the number of records per block.
- There may be empty space in a block if an integral number of records do not fit in one block.

Spanned Records:

 Refers to records that exceed the size of one or more blocks and hence span a number of blocks.

Files of Records

- A file is a sequence of records, where each record is a collection of data values (or data items).
- A file descriptor (or file header) includes information that describes the file, such as the field names and their data types, and the addresses of the file blocks on disk.
- Records are stored on disk blocks.
- The blocking factor bfr for a file is the (average) number of file records stored in a disk block.
- A file can have fixed-length records or variablelength records.

Files of Records (contd.)

- File records can be unspanned or spanned
 - Unspanned: no record can span two blocks
 - Spanned: a record can be stored in more than one block
- The physical disk blocks that are allocated to hold the records of a file can be contiguous, linked, or indexed.
- In a file of fixed-length records, all records have the same format. Usually, unspanned blocking is used with such files.
- Files of variable-length records require additional information to be stored in each record, such as separator characters and field types.
 - Usually spanned blocking is used with such files

Operation on Files

- Typical file operations include:
 - OPEN: Readies the file for access, and associates a pointer that will refer to a *current* file record at each point in time.
 - FIND: Searches for the first file record that satisfies a certain condition, and makes it the current file record.
 - FINDNEXT: Searches for the next file record (from the current record) that satisfies a certain condition, and makes it the current file record.
 - READ: Reads the current file record into a program variable.
 - INSERT: Inserts a new record into the file & makes it the current file record.
 - DELETE: Removes the current file record from the file, usually by marking the record to indicate that it is no longer valid.
 - MODIFY: Changes the values of some fields of the current file record.
 - CLOSE: Terminates access to the file.
 - REORGANIZE: Reorganizes the file records.
 - For example, the records marked deleted are physically removed from the file or a new organization of the file records is created.
 - READ_ORDERED: Read the file blocks in order of a specific field of the file.