A Magnetizing Technology:

Nanowire Biosensors

Kamila Kunes and Ben Yang
Electrical Engineering
Group 2

Nanowire Biosensors So Far...

Label micron-sized bead

Target antigen (~10 nm)
Probe

Label Free

- **Noise** from solution
- **Debye** length / charge screening
- Fabrication random

Labeled:

- Pre-Amplifying signal
- Indirect measurement

Aptamers require a special touch to develop

Aptamer Approach

But Wait... Why Should We Care?

An Alternative? → Magnetic Nanowire Biosensors

Fundamentally:

- 1. Target exists in media
- 2. Target changes resistance
- 3. Measure resistance change

How does target change resistance?

Nanowire FET → Electrically

Permalloy nanowire → Magnetically

Why Magnetic Systems?

At its core: **INTERFERENCE**

- low background noise
- competitive sensitivity
- large dynamic range
- low cost
- capability of multiplexed detection

Magnetic Nanowire Biosensors – an overview

Vary **\sigma** with magnetic field effects:

- Giant Magnetoresistance (electron spin)
- Domain Wall Shift (notched nanowire)
- Magnetophoresis (zigzag nanowire)

Domain Wall Shift

MBS – Nanobeads as Labels

Giant magnetoresistive-based biosensing probe station system for multiplex protein assays Yi Wang 1 , Wei Wang 1 , Lina Yu, Liang Tu, Yinglong Feng, Todd Klein, Jian-Ping Wang

r = 500nm $L = 5\mu m$ W = 500nm t = 20nm

Labels are about 200nm wide

Magnetic Particle Labeling

Permalloy (Ni80Fe20) nanowire

Search currents measure resistance changes in nanowires

0.3 T magnetic field +y
ensure that all the biosensor
configurations are fully saturated

Allows for single label detection

Shape and Proximity Effect of Magnetic Nanoelements Used as Biomolecular Labels for Magnetic Notched Nanowire Biosensors Iain Will, An Ding, and Yongbing Xu

Zigzag Magnetic Label for Detection of Cancer Cells

Sensor size	Magnetic label particle(s)
150–800 nm nanowire	Fe ₃ O ₄
Label size (diameter)	Normalized signal magnitude ^a
10 nm	1.74×10^{13}

Single cell detection using a magnetic zigzag nanowire biosensor Hao-Ting Huang Tzong-Rong Ger Ya-Hui Lina and Zung-Hang Wei

Magnetic Nanowire Labels

Future - Magnetic Systems for Streamlined Surface

Thank You!

Article Links

- https://www.intechopen.com/chapters/57318 2017
- https://pubs.rsc.org/en/content/articlelanding/2013/lc/c3lc50457c
 2013
- https://iopscience.iop.org/article/10.1088/1361-6528/aba1ba 2020
- https://conservancy.umn.edu/handle/11299/226637 2021
- https://experts.umn.edu/en/publications/selective-detection-of-cancer-cells-using-magnetic-nanowires
 2021
- https://ieeexplore.ieee.org/document/6655995
 2014