北京师范大学 2021~2022 学年第二学期期末考试试卷 (A卷)

课程名称: _线性代数	数及其应用		任课教师	姓名:	黄华
卷面总分: <u>100</u> 分	考试时长: _100 _分钟	考试类别:	闭卷 ■	开类「	7 44

院(系): 人工智能学院 专业: ______ 年级: ____

姓 名: _____ 学 号: ____

题号 得分	第一题	第二题	第三题	第四题	总分

阅卷教师	(签字):	

注意: 请在答题纸上答题,在试题页答题无效。

- 一、填空题(共5小题,各4分,共20分)
- 1) 已知A是 3 阶矩阵, \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 是 3 维线性无关的列向量,且 $A\mathbf{a}_1 = \mathbf{a}_1 + 2\mathbf{a}_3$, $A\mathbf{a}_2 = \mathbf{a}_2 + 2\mathbf{a}_3$, $A\mathbf{a}_3 = 2\mathbf{a}_1 + 2\mathbf{a}_2 \mathbf{a}_3$,则行列式 $|A| = ______$
- 2) 设矩阵 $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,矩阵B满足 $ABA^* = 2BA^* + E$,其中 A^* 为A的伴随矩阵,E是单位矩阵,则B
- 3) $\mathfrak{P}|A| = \begin{vmatrix} 1 & 1 & 2 & -1 \\ -2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ -4 & 2 & 0 & 6 \end{vmatrix}$, $\mathfrak{P}|A_{12} 2A_{22} + 3A_{32} 4A_{42} = \underline{\hspace{1cm}}$
- 4) 若 3 阶矩阵相似于B,矩阵A的特征值为 1, 2, 3, 那么行列式 $|2B E| = _____$
- 5) $\Box \text{AA} = \begin{bmatrix} 2 & 4 & -6 \\ 1 & 2 & -3 \\ 4 & 8 & -12 \end{bmatrix}, \quad \text{MA}^n = \underline{\qquad}.$
- 二、选择题(共5小题,各4分,共20分)
- 6) 已知 3 阶矩阵 A 可逆,将 A 的第 2 列与第 3 列变换得 B,再把 B 的第 1 列的-2 倍加至第 3 列得 C,则满足 $PA^{-1}=C^{-1}$ 的矩阵 P为().

(A)
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

7) 已知 $\eta_1, \eta_2, \eta_3, \eta_4$ 是Ax = 0的基础解系,则此方程组的基础解系还可选用() (A) $\eta_1 + \eta_2, \eta_2 + \eta_3, \eta_3 + \eta_4, \eta_4 + \eta_1$

- (B) $η_1$, $η_2$, $η_3$, $η_4$ 的等价向量组 $α_1$, $α_2$, $α_3$, $α_4$
- (C) $η_1$, $η_2$, $η_3$, $η_4$ 的等秩向量组 $α_1$, $α_2$, $α_3$, $α_4$
- (D) $\eta_1 + \eta_2, \eta_2 + \eta_3, \eta_3 \eta_4, \eta_4 \eta_1$
- 8) 设A是 $m \times n$ 矩阵,B是 $n \times m$ 矩阵,E为 m 阶单位矩阵.若AB = E则() (A) r(A) = m, r(B) = m (B) r(A) = m, r(B) = n
- (C) r(A) = n, r(B) = m
- (D) r(A) = n, r(B) = n
- 设矩阵 $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$,已知矩阵A相似于B,则秩(A 2E)与秩(A E)之和等 (A) 2 (B) 3
- (C) 4
- (D) 5
- 10) 关于最小二乘解的说法,正确的是()
 - (A) 若 $\hat{\mathbf{x}}$ 为方程 $A\mathbf{x} = \mathbf{b}$ 的最小二乘解,则 $\hat{\mathbf{x}} = (A^TA)^{-1}A^T\mathbf{b}$
 - (B) 方程Ax = b的最小二乘解是A的列空间中最接近b的点
 - (C) 方程 $A\mathbf{x} = \mathbf{b}$ 的最小二乘解 $\hat{\mathbf{x}}$,对 \mathbb{R}^n 中所有向量 \mathbf{x} 满足 $\|\mathbf{b} A\hat{\mathbf{x}}\| \le \|\mathbf{b} A\mathbf{x}\|$
 - (D) 如果 \mathbf{b} 属于A的列空间,那么方程 $A\mathbf{x} = \mathbf{b}$ 的每个解都是最小二乘解

三、计算题(共4小题,各10分,共40分)

- 11) 当a取何值时,线性方程组 $\begin{cases} -x_1 4x_2 + x_3 = 1 \\ ax_2 3x_3 = 3 \end{cases}$ 无解、有唯一解、有无穷 $x_1 + 3x_2 + (a+1)x_3 = 0$ 多解?并在有解时求其所有解.
- 12) 已知2CA 2AB = C B, 其中 $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 求 C^3 .
- 13) 已知 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,0,-1)^T$, $\alpha_3 = (1,0,1)^T$ 是 \mathbb{R}^3 的一组基,证明 $\beta_1 =$ $(1,2,1)^T$, $\beta_2 = (2,3,4)^T$, $\beta_3 = (3,4,3)^T$ 也是 \mathbb{R}^3 的一组基,并求由基 $\alpha_1, \alpha_2, \alpha_3$ 到 基 $β_1$, $β_2$, $β_3$ 的过渡矩阵.
- 14) 已知二次型 $f(x_1,x_2,x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^3 + 2(1+a)x_1x_2$ 的秩为 2。
 - (1) 求a的值;
 - (2) 求正交变换x = Qy, 把 $f(x_1, x_2, x_3)$ 化为标准型;
 - (3) 求方程 $f(x_1, x_2, x_3) = 0$ 的解。

四、证明题(共2小题,各10分,共20分)

- 15) 设A为 $m \times n$ 的矩阵,证明向量x属于 \mathbb{R}^n 且满足Ax = 0的充要条件是 Nul A = Nul A^TA
- 16) 假若 $n \times n$ 矩阵A具有n个实特征值(含重数),试证 $A = URU^T$,其中U为正交阵, R为 $n \times n$ 上三角矩阵