

Hieroglifai

Mokslininkų komanda tyrinėja hieroglifų sekų panašumus. Kiekvieną hieroglifą jie vaizduoja neneigiamu sveikuoju skaičiumi. Savo tyrime jie naudoja šias su seka susijusias sąvokas.

Seka S vadinama sekos A **posekiu** tada ir tik tada, jei S galima gauti pašalinus kuriuos nors (ar nepašalinus nei vieno) A narius.

Žemiau esančioje lentelėje pateikta sekos $A=\left[3,2,1,2\right]$ posekių pavyzdžių.

Posekis	Kaip jis gaunamas iš ${\cal A}$
[3, 2, 1, 2]	Nepašalinami jokie nariai.
[2, 1, 2]	[3 , 2, 1, 2]
[3, 2, 2]	[3, 2, 1 , 2]
[3, 2]	[3, 2 , 1 , 2] or [3, 2, 1 , 2]
[3]	[3, 2 , 1 , 2]
[]	[3 , 2 , 1 , 2]

Kita vertus, [3,3] ar [1,3] nėra A posekiai. Panagrinėkime dvi hieroglifų sekas A ir B. Seka S vadinama sekų A ir B **bendru posekiu**

tada ir tik tada, jei S yra ir A posekis, ir B posekis. Taip pat sakome, kad seka U yra sekų A ir B universalus bendras posekis

tada ir tik tada, jei galioja šios dvi sąlygos:

- U yra sekų A ir B bendras posekis.
- Kiekvienas sekų A ir B bendras posekis taip pat yra sekos U posekis.

Galima parodyti, kad bet kurios dvi sekos A ir B turi ne daugiau kaip vieną universalų bendrą posekį.

Mokslininkai rado dvi hieroglifų sekas A ir B. Seką A sudaro N hieroglifų, o seką B sudaro M hieroglifų. Padėkite mokslininkams surasti sekų A ir B universalų bendrą posekį, arba nustatyti, kad toks posekis neegzistuoja.

Realizacija

Parašykite šią procedūrą:

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)

- A: N ilgio masyvas, nusakantis pirmąją seką.
- B:M ilgio masyvas, nusakantis antrąją seką.
- Jei egzistuoja universalus bendras A ir B posekis, procedūra turi grąžinti masyvą su šiuo posekiu. Kitu atveju procedūra turi grąžinti [-1] (masyvą, kurio ilgis 1 ir kurio vienintelis narys yra -1).
- Ši procedūra kiekvienam testui iškviečiama lygiai vieną kartą.

Ribojimai

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- $0 \le A[i] \le 200\,000$ kiekvienam i, kuriam $0 \le i < N$
- $0 \leq B[j] \leq 200\,000$ kiekvienam j, kuriam $0 \leq j < M$

Dalinės užduotys

Dalinė užduotis	Taškai	Papildomi ribojimai
1	3	N=M; kiekvieną iš sekų A ir B sudaro N skirtingų sveikųjų skaičių nuo 0 iki $N-1$ (imtinai)
2	15	Bet kuriam sveikajam skaičiui k (sekos A narių, lygių skaičiui k , kiekio) ir (sekos B narių, lygių

skaičiui k, kiekio) suma neviršija $3.\mid 3\mid 10\mid A[i]\leq 1$ kiekvienam i, kuriam $0\leq i< N;$ $B[j]\leq 1$ kiekvienam j, kuriam $0\leq j< M\mid 4\mid 16\mid$ Sekų A ir B universalus bendras posekis egzistuoja. $\mid 5\mid 14\mid N\leq 3000;$ $M\leq 3000\mid 6\mid 42\mid$ Papildomų ribojimų nėra.

Pavyzdžiai

Pavyzdys nr. 1

Panagrinėkime tokį iškvietimą.

Sekų A ir B bendri posekiai yra šie: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] ir [0,1,0,2].

Kadangi [0,1,0,2] yra sekų A ir B bendras posekis, ir visi sekų A ir B posekiai taip pat yra sekos [0,1,0,2] posekiai, procedūra turi gražinti [0,1,0,2].

Pavyzdys nr. 2

Panagrinėkime tokį iškvietimą.

```
ucs([0, 0, 2], [1, 1])
```

Šiuo atveju vienintelis bendras A ir B posekis yra tuščia seka $[\]$. Taigi, procedūra turi grąžinti tuščią masyvą $[\]$.

Pavyzdys nr. 3

Panagrinėkime tokį iškvietimą:

```
ucs([0, 1, 0], [1, 0, 1])
```

Šiuo atveju bendri sekų A ir B posekiai yra $[\,],[0],[1],[0,1]$ and [1,0]. Galima paroyti, kad universalus bendras posekis neegzistuoja. Taigi, procedūra turi grąžinti [-1].

Pavyzdinė vertinimo programa

Pradinių duomenų formatas:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Rezultatų formatas:

```
T
R[0] R[1] ... R[T-1]
```

Čia, R yra procedūros ucs grąžinamas masyvas, o T yra jo ilgis.