5SENG003W - Algorithms, Week 11

Dr. Klaus Draeger

The P vs NP problem: introduction

- One of the biggest open questions in CS
- P is the set of decision problems (i.e. problems with yes/no answers) that can be solved in polynomial time
 - ► That is, solved in $O(n^k)$ for any k
- NP is the set of decision problems for which a solution can be verified in polynomial time
- ▶ The question is if they are the same, i.e. P = NP.
 - Most people believe that the answer is "no".
 - Many incorrect proof attempts both for P = NP and for P ≠ NP
 - Would have important consequences in either case; For example, some encryption algorithms become easy to break if the answer is "yes"

NP-complete problems

- NP-complete problems are an important class
- The "hardest" problems in NP
- ► If a problem A is NP-complete, then any problem B in NP can be reduced to it in polynomial time:
 - From any instance of B, we can compute an instance of A in polynomial time
 - This instance has the same answer as the original
 - So we can solve B by using this translation together with a solver for A
- This means that if we can find a polynomial-time algorithm for **any** NP-complete problem, then P = NP

NP-complete problems: SAT

- A very important NP-complete problem is the satisfiability problem (SAT)
 - Input: a boolean formula Φ Example: $(a \lor \neg b) \land (b \lor \neg c \lor d) \land (\neg a \lor d \lor e) \land (\neg a \lor \neg d \lor \neg e) \land (b \lor c \lor e)$
 - Question: Are there true/false values for the variables in Φ that make it true?
- Many decision problems can be translated into SAT

Reducing problems to SAT

- Example: 4-colourability
- ► Given: a graph (*V*, *E*)
- Question: Can we colour all the vertices
 - using only 4 different colours
 - such that adjacent vertices don't have the same colour?
- One application: colouring countries on a map
 - Neighbouring countries should get different colours
 - Use one vertex per country, edges to represent neighbours

Reducing problems to SAT

We can solve 4-colourability like this:

- ▶ Represent the 4 available colours by the numbers 0,1,2,3
- For each vertex $v_j (j = 1, ..., n)$, introduce boolean variables a_j , b_j representing the binary representation of its colour
- ► For each edge $\{v_i, v_j\}$, introduce a formula saying that their colours differ (in at least one bit): $(a_i \land \neg a_i) \lor (\neg a_i \land a_i) \lor (b_i \land \neg b_i) \lor (\neg b_i \land b_i)$
- ▶ Give the conjunction of all these to a SAT solver generally in **conjunctive normal form**: $(a_i \lor a_j \lor b_i \lor b_j) \land (a_i \lor a_j \lor \neg b_i \lor \neg b_j) \land (\neg a_i \lor \neg a_i \lor \neg b_i \lor \neg b_i)$

Reducing problems to SAT

- Example: Sudoku
 - Need to fill a 9*9 grid with numbers 1...9
 - Some numbers already given
 - No duplicates within the same row/column/3*3 box
- Translation to SAT:
 - Introduce variables x_{i,j,k} meaning "the number in row i, column j is k"
 - Create a formula starting with the variables corresponding to the givens
 - Add conditions to represent the rules, e.g.
 - $x_{2,5,1} \lor ... \lor x_{2,5,9}$ (R2C5 has one of the values 1,...,9)
 - $\neg x_{2,5,1} \lor \neg x_{2,5,2}$ (R2C5 cannot have two values)
 - ▶ $\neg x_{1,1,3} \lor \neg x_{1,6,3}$ (cannot have two 3s in row 1)

SAT solving

- SAT is NP-complete, so inherently hard.
- Still, there are some very effective solvers
- This is an active field of research
- Let's look at a basic algorithm known as DPLL.
- Consider this example from the beginning: $(a \lor \neg b) \land (b \lor \neg c \lor d) \land (\neg a \lor d \lor e) \land (\neg a \lor \neg d \lor \neg e) \land (b \lor c \lor e)$
- For each variable, we can check what happens if it is true or false

SAT solving

We give names to the example formula and its clauses:

$$\begin{split} & \Phi = C_1 \wedge C_3 \wedge C_3 \wedge C_4 \wedge C_5, \text{ where } \\ & C_1 = a \vee \neg b \\ & C_2 = b \vee \neg c \vee d \\ & C_3 = \neg a \vee d \vee e \\ & C_4 = \neg a \vee \neg d \vee \neg e \\ & C_5 = b \vee c \vee e \end{split}$$

- With no obvious choice, we can
 - try one value for one of the variables
 - check for consequences
 - if this fails we know the variable must have the other value
 - if not, repeat

We give names to the example formula and its clauses:

$$\Phi=C_1\wedge C_3\wedge C_3\wedge C_4\wedge C_5$$
, where $C_1=a\vee \neg b$ $C_2=b\vee \neg c\vee d$ $C_3=\neg a\vee d\vee e$ $C_4=\neg a\vee \neg d\vee \neg e$ $C_5=b\vee c\vee e$

- ► Suppose *a* is false. Then
 - $ightharpoonup C_3$ and C_4 are true
 - $ightharpoonup C_1$ reduces to just $\neg b$
 - ▶ So we still need to satisfy $(\neg b) \land (b \lor \neg c \lor d) \land (b \lor c \lor e)$

- If a is false, we still need to satisfy
 - $C_1' = \neg b$
 - \triangleright $\dot{C2} = b \lor \neg c \lor d$
 - \triangleright C5 = $b \lor c \lor e$
- ➤ The first clause is a **unit clause**. It **forces** *b* to be false.
- We are left with
 - $C_2' = \neg c \lor d$
 - $ightharpoonup C_5^7 = c \lor e$

- After trying a = false we had to also set b = false.
- Then we still need to satisfy
 - $C_2' = \neg c \lor d$
 - $C_5^7 = c \lor e$
- Now d and d are pure literals

 i.e. they only occur in one form (negated or un-negated)
 in this case it is the latter for both
- So it is safe to choose d and e to be true
- And we have a solution:
 a = false, b = false, d = true, e = true (c arbitrary)

- The naive(brute force) algorithm for SAT would try to guess values for all variables
 - Up to 2^n tries for n variables
- DPLL cannot always avoid this
 - but improves it by only guessing when there is no inference
- If a contradiction is found we need to backtrack
 - We know that the last choice was wrong (assuming the ones before it were right)
 - So we invert it

- Suppose we have these clauses:
 - $ightharpoonup D_1 = a \lor \neg b \lor e$
 - $D_2 = a \lor d \lor \neg e$
 - $D_3 = \neg a \lor c \lor \neg e$
 - $D_4 = b \vee \neg c$
 - \triangleright $D_5 = b \lor \neg d$
 - $D_6 = c \vee d$
- ► There are no unit clauses or pure literals, so we make an initial guess a = false. This leaves
 - $D_1' = \neg b \lor e$
 - \triangleright $D_2' = d \lor \neg e$
 - \triangleright $D_4 = b \lor \neg c$
 - \triangleright $D_5 = b \lor \neg d$
 - \triangleright $D_6 = c \lor d$
- where there are no unit clauses or pure literals.

- After guessing a = false we are left with
 - $P_1' = \neg b \lor e$
 - $D_2^i = d \vee \neg e$
 - \triangleright $D_4 = b \lor \neg c$
 - \triangleright $D_5 = b \lor \neg d$
 - $\triangleright D_6 = c \lor d$
- The next guess is so we pick b = false leaving
 - $D_2' = d \vee \neg e$
 - $D_4' = \neg c$
 - $\triangleright D_5' = \neg d$
 - $\triangleright D_6 = c \lor d$

- After guessing a = false and then b = false we have
 - $D_2' = d \vee \neg e$
 - $D_4^7 = \neg c$
 - $D_5' = \neg d$
 - \triangleright $D_6 = c \lor d$
- Now c and d must be true to satisfy D'₄ and D'₅ but this makes D₆ unsatisfiable
- So we backtrack: we have learned that (still assuming a = false) b must be true.

DPLL algorithm

- ▶ Input: a boolean formula $f = C_1 \land \ldots \land C_n$
- If there are **no more clauses**, return true (we are done)
- ▶ If *f* contains an **empty clause**, return false (unsatisfiable)
- If f contains a **unit clause** v (or $\neg v$), set v to true (or false) by
 - removing all clauses containing v (or $\neg v$)
 - removing $\neg v$ (or v) from all clauses that contain it
- If f contains a pure literal, remove all clauses containing it
- Repeat until none of the above apply; then we need to make a choice:
 - Pick a variable v and truth value b
 - Recursively call DPLL on f with v set to b
 - If the result is true, return true
 - ▶ Otherwise, set v to $\neg b$ as above and continue