P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks

- prompt tuning
- 2022.5.20

https://arxiv.org/pdf/2110.07602

Introduction

fine-tuning

- 전체 모델 파라미터 업데이트
- 메모리 사용량 많음, 각 task에 대한 전체 모델 파라미터 가지고 있어야 함

prompting

• 전체 파라미터 동결 후 자연어 query로 결과 이끌어냄

prompt tuning

- continuous prompt(=embedding)만 학습
- Lester et al. (2021)
- continuous 임베딩을 입력 임베딩에 더함 → continuous 임베딩만 업데이트 됨

- v1에서는 10B 이하의 모델/어려운 라벨링 task에 대해 fine-tuning보다 좋지 않은 성능
- 입력 레이어에만 continuous prompt

prompt tuning v2

- 모든 모델에 대해 최적화된 prompt tuning을 통해 fine-tuning을 능가하는 결과를 얻을 수 있음
- 모든 레이어에 continuous prompt

Preliminaries

NLU Task

- 1. simple classification task
- 2. hard sequence labeling task: named entity recognition, extractive question answering 등

prompt tuning

V: vocab

M: model

e: embedding layer

x: input text

→ input embedding sequence: [e(x), e("It"), e("is"), e("[MASK]")]

P-Tunign v2

Lack of Universalit

규모

- 10B 이상의 모델에서만 p-tuning이 fine-tuning 능가
- 100M에서 1B의 모델이 흔히 쓰임

tasks

• hard sequence tagging task에서 약함

Deep Prompt Tuning

- v1: input 임베딩 레이어에만 continuous prompt가 들어감
 - → sequence 길이에 의해 tuning될 수 있는 파라미터가 한정됨
 - → 모델 예측에 간접적인 영향만을 끼치게 됨
- v2: deep prompt tuning = 모든 레이어에 prefix token으로서 continuous prompt가 들어감
 - → 모델 예측에 비교적 직접적인 영향

Figure 2: From Lester et al. (2021) & P-tuning to P-tuning v2. Orange blocks (i.e., $h_0, ..., h_i$) refer to trainable prompt embeddings; blue blocks are embeddings stored or computed by frozen pre-trained language models.

Optimization and Implementation

Method	Task	Re- param.	Deep PT	Multi- task	
P-tuning (Liu et al., 2021)	KP NLU	LSTM	-	-	-
PROMPTTUNING (Lester et al., 2021)	NLU	-	-	✓	-
Prefix Tuning (Li and Liang, 2021)	NLG	MLP	✓	-	-
SOFT PROMPTS (Qin and Eisner, 2021)	KP	-	✓	-	-
P-tuning v2 (Ours)	NLU SeqTag	(depends)	✓	✓	✓

Table 1: Conceptual comparison between P-tuning v2 and existing Prompt Tuning approaches (KP: Knowledge Probe; SeqTag: Sequence Tagging; Re-param.: Reparameterization; No verb.: No verbalizer).

- MLP와 같은 reparameterization 인코더 사용함 → task와 dataset에 따라 효과가 없을 수도 있음을 알아냄
- prompt 길이가 핵심적인 역할을 함. 간단한 task는 짧은 prompt를(<20), 어려운 task는 긴 prompt를(~=100)
- 각 task에 대해 fine-tuning 전 공통된 continuous prompt로 multi-task learning
- language modelnig head가 아니라 랜덤 초기화된 classification head 사용.
 BERT처럼

Experiments

NLU Tasks

 SuperGLUE, Named Entity Recognition, extractive Question Answering, d semantic role labeling

pre-trained models

- BERT-large, RoBERTa-large, DeBERTa-xlarge, GLM-xlarge/xxlarge multitask learning
 - 모든 task 유형의 데이터셋을 합침 → 각 데이터셋에 대해 분리된 선형 분류기 사용

P-tuning v2: Across Scales

	#Size	BoolQ				CB			COPA		MultiRC (F1a)			
		FT	PT	PT-2	FT	PT	PT-2	FT	PT	PT-2	FT	PT	PT-2	
BERT _{large} RoBERTa _{large}	335M 355M	77.7 86.9	67.2 62.3	75.8 84.8	94.6 98.2	80.4 71.4	94.6 100	69.0 94.0	55.0 63.0	73.0 93.0	70.5 85.7	59.6 59.9	70.6 82.5	
$\frac{\text{GLM}_{ ext{xlarge}}}{\text{GLM}_{ ext{xxlarge}}}$	2B 10B	88.3 88.7	79.7 88.8	87.0 88.8	96.4 98.7	76.4 98.2	96.4 96.4	93.0 98.0	92.0 98.0	91.0 98.0	84.1 88.1	77.5 86.1	84.4 88.1	
	#Size	ReCoRD (F1)			RTE			WiC			WSC			
	#SIZC	FT	PT	PT-2	FT	PT	PT-2	FT	PT	PT-2	FT	PT	PT-2	
BERT _{large} RoBERTa _{large}	335M 355M	70.6 89.0	44.2 46.3	72.8 89.3	70.4 86.6	53.5 58.8	78.3 89.5	74.9 75.6	63.0 56.9	75.1 <u>73.4</u>	68.3 63.5	64.4 64.4	68.3 63.5	
$\overline{\text{GLM}_{\text{xlarge}}}$	2B	91.8	82.7	91.9	90.3	85.6	90.3	74.1	71.0	72.0	95.2	87.5	92.3	

Table 2: Results on SuperGLUE development set. P-tuning v2 surpasses P-tuning & Lester et al. (2021) on models smaller than 10B, matching the performance of fine-tuning across different model scales. (FT: fine-tuning; PT: Lester et al. (2021) & P-tuning; PT-2: P-tuning v2; **bold**: the best; <u>underline</u>: the second best).

• v2 작은 모델에서도 fine-tuning과 견줄만한 성능 보여줌

 \Rightarrow p-tuning v2는 어느 크기의 모델에서도 fine-tuning과 견줄만 함. fine-tuning 대비 0.1%의 파라미터를 사용하면서도

P-tuning v2: Across Tasks

	#Size		CoNLL03						OntoNotes 5.0						CoNLL04				
	" O'LLC	FT	P	ΓР	T-2	MPT-	2	FT	PT	PT-2	MPT	<u>-2</u>	FT	PT	PT	-2	MPT-2		
BERT _{large}	335M	92.8	81.	9 9	0.2	91.0		89.2	74.6	86.4	86.	3	85.6	73.6	84	.5	86.6		
RoBERTalarge	355M	92.6	86.	.1 9	2.8	92.8		89.8	80.8	89.8	89.	8	88.8	76.2	88	.4	90.6		
DeBERTa _{xlarge}	750M	93.1	90.	<u>.2</u> 9	3.1	93.1		<u>90.4</u>	85.1	<u>90.4</u>	90.	5	<u>89.1</u>	82.4	86	.5	90.1		
	SQuAD 1.1 dev (EM / F1)									O 2.0 dev (EM / F1)									
	#Size	F	T	P	T	PT	T-2	MF	PT-2	F	T	P	T	PT	7-2	M	PT-2		
BERT _{large}	335M	84.2	91.1	1.0	8.5	77.8	86.0	82.3	89.6	78.7	81.9	50.2	50.2	69.7	73.5	72.7	75.9		
RoBERTalarge	355M	88.9	94.6	1.2	12.0	88.5	94.4	88.0	94.1	86.5	89.4	50.2	50.2	82.1	85.5	83.4	86.7		
$DeBERTa_{xlarge}$	750M	<u>90.1</u>	<u>95.5</u>	2.4	19.0	90.4	95.7	89.6	95.4	<u>88.3</u>	<u>91.1</u>	50.2	50.2	88.4	91.1	88.1	90.8		
	#Size		CoNLL12					CoNLL05 WSJ					CoNLL05 Brown						
	"BILC	FT	P	Г Р	T-2	MPT-	2	FT	PT	PT-2	MP	Γ-2	FT	PT	PT	-2	MPT-2		
BERT _{large}	335M	84.9	9 64.	.5. 8	33.2	85.1		88.5	76.0	86.3	88.	.5	82.7	70.0	80	.7	83.1		
RoBERTa _{large}	355M	86.	67	.2 8	34.6	86.2		90.2	76.8	89.2	90.	0	85.6	70.7	7 84	.3	85.7		
DeBERTa _{xlarge}	750M	86.5	5 74	.1 8	35.7	87.1		91.2	82.3	90.6	91.	2	86.9	77.7	7 86	.3	87.0		

Table 3: Results on Named Entity Recognition (NER), Question Answering (Extractive QA), and Semantic Role Labeling (SRL). All metrics in NER and SRL are micro-f1 score. (FT: fine-tuning; PT: P-tuning & Lester et al. (2021); PT-2: P-tuning v2; MPT-2: Multi-task P-tuning v2; bold: the best; underline: the second best).

• v2 모든 task에 대하여 fine-tuning과 견줄만한 성능 보여줌

Ablation Study

	SST-2	RTE	BoolQ	СВ
CLS & linear head	96.3	88.4	84.8	96.4
Verbalizer & LM head	95.8	86.6	84.6	94.6

Table 4: Comparison between [CLS] label with linear head and verbalizer with LM head on RoBERTa-large.

prompt depth

- multi-layer continuous prompt의 효과를 확인하기 위해 k개의 레이어에 프롬프트를 적용함
- 감소하는 순서로 적용하는 것이 언제나 더 좋은 결과

Conclusion

contribution: 다양한 크기의 모델과 task에서 p-tuning이 fine-tuning과 견줄만한 결과를 보여줄 수 있음을 입증. parameter efficiency는 확연히 더 좋음