面试问题
1.公式推导
2.逻辑回归的基本概念 广义线性模型 假设服从伯努利分布
3.LR和SVM对比
4.LR和随机森林区别
5.常用的优化方法
1.逻辑斯蒂回归介绍
1.1 logistic回归 vs 线性回归
为什么使用sigmoid函数
1.2 博客加强理解
1.3 二项逻辑斯蒂回归模型和使用极大似然估计
2. 求解逻辑回归模型参数
2.1 梯度下降
2.2 随机梯度下降SGD
2.3 改进的随机梯度下降
3.LR的特点和应用
4.LR与SVM的关系
4.1 共同点
4.2 不同点

面试问题

- 1.公式推导
- 2.逻辑回归的基本概念 广义线性模型 假设服从伯努利分布

回顾之前我们介绍的一元和多元线性回归,其最终目标都是寻找一个权值向量 $m{w}$ 和常数偏置 $m{b}$, 使每个样本数据 $(m{x},m{y})$ 中的 $m{x}$ 代入二者所确立的模型

$$\hat{y} = \boldsymbol{w}^T \boldsymbol{x} + b \tag{1}$$

中所得到的模型预测值 \hat{y} 与真实值 y 能够尽可能地接近。这里因变量 y 与自变量 x 中的每一维都是线性关系,而在现实问题中,绝大多数问题并非简单的线性情况,那么如果 y 的 6 可以满足与自变量的线性关系,例如取对数以后

$$ln y = \boldsymbol{w}^T \boldsymbol{x} + b \tag{2}$$

我们把对数函数这类的函数称为 **联系函数**, 其作用是: **把真实标记** *y* **转换成为其对应特征的线性回归值**。从形式上看式 (2) 仍是线性回归,但本质已经转变成了**寻找从输入空间到输出空间的非线性映射关系**。

更加一般地形式化表示,我们寻找一个单调可微的联系函数 $f(\bullet)$ 令其满足

$$y = f^{-1}(\boldsymbol{w}^T \boldsymbol{x} + b) \tag{3}$$

即联系函数的 反函数的功能 在于把输入空间的线性回归值映射到输出空间上。式(3)我们就称之为"广义线性模型"。

其实逻辑回归为什么要用sigmoid函数而不用其他是因为逻辑回归是采用的伯努利分布,伯努利分布的概率可以表示成

$$p(y;\phi) = \phi^{y}(1-\phi)^{1-y}$$

$$= \exp(y\log\phi + (1-y)\log(1-\phi))$$

$$= \exp\left(\left(\log\left(\frac{\phi}{1-\phi}\right)\right)y + \log(1-\phi)\right).$$

其中

$$\eta = \log(\phi/(1-\phi)).$$

得到

$$\Phi = \frac{1}{1 + e^{\eta}}$$

这就解释了logistic回归时为了要用这个函数。

3.LR和SVM对比

首先,LR和SVM最大的区别在于损失函数的选择,LR的损失函数为Log损失(或者说是逻辑损失都可以)、而SVM的损失函数为hinge loss。

其次,两者都是线性模型。

最后, SVM只考虑支持向量(也就是和分类相关的少数点)

4.LR和随机森林区别

随机森林等树算法都是非线性的,而LR是线性的。LR更侧重全局优化,而树模型主要是局部的优化。

5.常用的优化方法

逻辑回归本身是可以用公式求解的,但是因为需要求逆的复杂度太高,所以才引入了梯度下降算法。

一阶方法:梯度下降、随机梯度下降、mini 随机梯度下降降法。随机梯度下降不但速度上比原始梯度下降要快,局部最优化问题时可以一定程度上抑制局部最优解的发生。

二阶方法: 牛顿法、拟牛顿法:

这里详细说一下牛顿法的基本原理和牛顿法的应用方式。

(牛顿法几何意义理解:

https://blog.csdn.net/HouDouZhou/article/details/85988847)

牛顿法其实就是通过切线与x轴的交点不断更新切线的位置,直到达到曲线与x轴的交点得到方程解。在实际应用中我们因为常常要求解凸优化问题,也就是要求解函数一阶导数为0的位置,而牛顿法恰好可以给这种问题提供解决方法。实际应用中牛顿法首先选择一个点作为起始点,并进行一次二阶泰勒展开得到导数为0的点进行一个更新,直到达到要求,这时牛顿法也就成了二阶求解问题,比一阶方法更快。我们常常看到的x通常为一个多维向量,这也就引出了Hessian矩阵的概念(就是x的二阶导数矩阵)。

缺点:牛顿法是定长迭代,没有步长因子,所以不能保证函数值稳定的下降,严重时甚至会失败。还有就是牛顿法要求函数一定是二阶可导的。而且计算Hessian矩阵的逆复杂度很大。

拟牛顿法: 不用二阶偏导而是构造出Hessian矩阵的近似正定对称矩阵的方法称为拟牛顿法。拟牛顿法的思路就是用一个特别的表达形式来模拟Hessian矩阵或者是他的逆使得表达式满足拟牛顿条件。主要有DFP法(逼近Hession的逆)、BFGS(直接逼近Hession矩阵)、 L-BFGS(可以减少BFGS所需的存储空间)。

1.逻辑斯蒂回归介绍

LR可以用来回归,也可以用来分类,主要是二分类。假设样本{x,y},y是0或者1,表示正类或者负类,x是m维样本特征向量,那么这个样本x属于正类,也就是y=1的概率可以通过下面的逻辑函数表示:

$$p(y = 1 | \mathbf{x}; \theta) = \sigma(\theta^{\mathsf{T}} \mathbf{x}) = \frac{1}{1 + \exp(-\theta^{\mathsf{T}} \mathbf{x})}$$

这里 θ 是模型参数,也就是回归系数, σ 是sigmoid函数。

实际上这个函数是由下面的对数几率(也就是x属于正类的可能性和负类的可能性的比值的对数)变换得到的:

$$\log it(x) = \ln(\frac{P(y=1|x)}{P(y=0|x)})$$

$$= \ln(\frac{P(y=1|x)}{1 - P(y=1|x)}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m$$

我们将特征向量x1, x2,...xm对应的权值叫做回归系数,他们相乘的加权和就是我们要的概率结果。

1.1 logistic回归 vs 线性回归

	线性回归	逻辑回归
目的	预测	分类
$y^{(i)}$	未知	{0,1}
函数	拟合函数	预测函数
参数计算方式	最小二乘	最大似然估计

下面具体解释一下:

- 1. 拟合函数和预测函数什么关系呢?其实就是将拟合函数做了一个逻辑函数的转换,转换后使得 $y^{(i)} \in (0,1)$;
- 2. 最小二乘和最大似然估计可以相互替代吗?回答当然是不行了。我们来看看两者依仗的原理:最大似然估计是计算使得数据出现的可能性最大的参数,依仗的自然是Probability。而最小二乘是计算误差损失。因此两者不可混淆(笑)。

它与线性回归的不同点在于:在线性回归的基础上,在特征到结果的映射中加入了一层 sigmoid函数,将线性回归输出的很大范围的数,压缩到(0,1)之间。其目标函数也因此从 差平方和函数变为对数损失函数。LR往往解决二分类问题,只是它和线性回归耦合太紧,所 以也冠以回归的名字,如果求多分类,可把sigmoid换成softmax。逻辑回归得到一个离散的结果,线性回归得到一个连续的结果。

Linear regression $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ $x_1 \qquad w_2 \qquad \sum_{w_2} f(\mathbf{x})$ $x_2 \qquad w_d \qquad x_d$

为什么使用sigmoid函数

① 可以对 $(-\infty, +\infty)$ 结果,映射到(0, 1)之间,作为概率。

② x < 0, $sigmoid(x) < \frac{1}{2}$; x > 0, $sigmoid(x) > \frac{1}{2}$, 可以将 $\frac{1}{2}$ 作为决策边界。

③ 数学特性好, 求导容易: $g'(z) = g(z) \cdot (1 - g(z))$

1.2 博客加强理解

1、为什么是逻辑回归?

都说线性回归用来做回归预测,逻辑回归用于做二分类,一个是解决回归问题,一个用于解决分类问题。但很多人问起逻辑回归和线性回归的区别,很多人会大喊一声(也可能是三声):逻辑回归就是对线性回归做了一个压缩,将y 的阈值从 $y\in (+\infty,-\infty)$ 压缩到(0,1)。那么问题来了,问什么仅仅做一个简单的压缩,就将回归问题变成了分类问题?里面蕴含着本质?

首先要从数据说起,**线性回归的样本的输出,都是连续值**, $y\in (+\infty,-\infty)$ 而,逻辑回归中 $y\in \{0,1\}$,只能取0 和1。对于拟合函数也有本质上的差别:

线性回归: $f(x) = \theta^T X = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

逻辑回归: $f(x) = p(y = 1 \mid x; \theta) = g(\theta^T X)$, 其中, $g(z) = \frac{1}{1+e^{-z}}$

可以看出,线性回归的拟合函数,的确是对f(x)的输出变量y的拟合,而逻辑回归的拟合函数是对为1类的样本的概率的拟合。

2、那么,为什么要以1类样本的概率进行拟合呢,为什么可以这样拟合呢?

首先,logstic 函数的本质说起。若要直接通过回归的方法去预测二分类问题, v 到底是0类还是1类,最好的函数是 单位阶跃函数。然而单位阶跃函数不连续(GLM 的必要条件),而 logsitic 函数恰好接近于单位阶跃函数,且单调可 微。于是希望通过该复合函数去拟合分类问题:

$$y = \frac{1}{1 + e^{-\theta^T X}}$$

于是有:

$$ln\frac{y}{1-y} = \theta^T X$$

发现如果我们假设 y=p(y为1类 $\mid x;\theta)$ 作为我们的拟合函数,等号左边的表达式的数学意义就是1类和0类的对数几率(\log odds)。这 个表达式的意思就是:用线性模型的预测结果去逼近1类和0类的几率比。于是, $heta^T X = 0$ 就相当于是1类和0类的决策边界:

当
$$heta^TX>0$$
,则有 $y>0.5$;若 $heta^TX\to+\infty$,则 $y\to1$,即y为1类;当 $heta^TX<0$,则有 $y<0.5$;若 $heta^TX\to-\infty$,则 $y\to0$,即 y 为0类。

这个时候就能看出区别来了,在线性回归中 $heta^T X$ 为预测值的拟合函数;而在逻辑回归中 $heta^T X = 0$ 为决策边界。

1.3 二项逻辑斯蒂回归模型和使用极大似然估计

定义 6.2 (逻辑斯谛回归模型) 二项逻辑斯谛回归模型是如下的条件概率 分布:

$$P(Y=1|x) = \frac{\exp(w \cdot x + b)}{1 + \exp(w \cdot x + b)}$$
 (6.3)

$$P(Y=1|x) = \frac{\exp(w \cdot x + b)}{1 + \exp(w \cdot x + b)}$$

$$P(Y=0|x) = \frac{1}{1 + \exp(w \cdot x + b)}$$
(6.3)

这里, $x \in \mathbb{R}^n$ 是输入, $Y \in \{0,1\}$ 是输出, $w \in \mathbb{R}^n$ 和 $b \in \mathbb{R}$ 是参数, w 称为权值向 量, b 称为偏置, w·x 为 w 和 x 的内积.

对于给定的输入实例 x, 按照式 (6.3) 和式 (6.4) 可以求得 P(Y=1|x) 和 P(Y=0|x). 逻辑斯谛回归比较两个条件概率值的大小,将实例x分到概率值较 大的那一类.

有时为了方便,将权值向量和输入向量加以扩充,仍记作w, x, 即 $w=(w^{(1)},$ $w^{(2)}, \dots, w^{(n)}, b)^{\mathsf{T}}$, $x = (x^{(1)}, x^{(2)}, \dots, x^{(n)}, 1)^{\mathsf{T}}$. 这时,逻辑斯谛回归模型如下:

$$P(Y=1|x) = \frac{\exp(w \cdot x)}{1 + \exp(w \cdot x)}$$

$$P(Y=0|x) = \frac{1}{1 + \exp(w \cdot x)}$$
(6.5)

$$P(Y=0 \mid x) = \frac{1}{1 + \exp(w \cdot x)}$$
 (6.6)

6.1.3 模型参数估计

逻辑斯谛回归模型学习时,对于给定的训练数据集 $T = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$,其中, $x_i \in \mathbb{R}^n$, $y_i \in \{0,1\}$,可以应用极大似然估计法估计模型参数,从而得到逻辑斯谛回归模型。

设:
$$P(Y=1|x) = \pi(x)$$
, $P(Y=0|x) = 1 - \pi(x)$

似然函数为

$$\prod_{i=1}^{N} [\pi(x_i)]^{y_i} [1 - \pi(x_i)]^{1-y_i}$$

对数似然函数为

$$L(w) = \sum_{i=1}^{N} [y_i \log \pi(x_i) + (1 - y_i) \log(1 - \pi(x_i))]$$

$$= \sum_{i=1}^{N} \left[y_i \log \frac{\pi(x_i)}{1 - \pi(x_i)} + \log(1 - \pi(x_i)) \right]$$

$$= \sum_{i=1}^{N} [y_i(w \cdot x_i) - \log(1 + \exp(w \cdot x_i))]$$

对L(w) 求极大值,得到w的估计值.

这样,问题就变成了以对数似然函数为目标函数的最优化问题.逻辑斯谛回 归学习中通常采用的方法是梯度下降法及拟牛顿法.

假设 w 的极大似然估计值是 ŵ , 那么学到的逻辑斯谛回归模型为

$$P(Y = 1 \mid x) = \frac{\exp(\hat{w} \cdot x)}{1 + \exp(\hat{w} \cdot x)}$$
$$P(Y = 0 \mid x) = \frac{1}{1 + \exp(\hat{w} \cdot x)}$$

2. 求解逻辑回归模型参数

LR最基本的学习算法实最大似然,假设我们有n个独立的训练样本 $\{(x1, y1), (x2, y2), \dots, (xn, yn)\}$, $y=\{0, 1\}$, 那每一个观察到的样本(xi, yi)出现的概率是:

$$P(y_i, x_i) = P(y_i = 1 | x_i)^{y_i} (1 - P(y_i = 1 | x_i))^{1-y_i}$$

上面为什么是这样呢? 当y=1的时候,后面那一项是不是没有了,那就只剩下x属于1类的概率,当y=0的时候,第一项是不是没有了,那就只剩下后面那个x属于0的概率(1减去x属于1的概率)。所以不管y是0还是1,上面得到的数,都是(x, y)出现的概率。那我们的整个样本集,也就是n个独立的样本出现的似然函数为(因为每个样本都是独立的,所以n个样本出现的概率就是他们各自出现的概率相乘):

$$L(\theta) = \prod P(y_i = 1 | x_i)^{y_i} (1 - P(y_i = 1 | x_i))^{1-y_i}$$

最大似然法就是求模型中使得似然函数最大的系数取值 $\theta*$,这个最大似然就是我们的代价函数 (cost function)。

下一步, 求解:

先尝试对上面的代价函数求导,看导数为0的时候可不可以解出来,也就是看有没有解析解。先变换下 $L(\theta)$,取自然对数,然后化简,得到:

$$L(0) = log(\PiP(y_{\bar{s}}=1 \mid x_{\bar{s}})^{y_{\bar{s}}}(1-P(y_{\bar{s}}=1 \mid x_{\bar{s}}))^{-y_{\bar{s}}}.$$

$$= \sum_{\bar{s}=1}^{n} y_{\bar{s}} log P(y_{\bar{s}}=1 \mid x_{\bar{s}}) + (1-y_{\bar{s}}) log p(1-P(y_{\bar{s}}=1 \mid x_{\bar{s}}))$$

$$= \sum_{\bar{s}=1}^{n} y_{\bar{s}} log \frac{P(y_{\bar{s}}=1 \mid x)}{1-P(y_{\bar{s}}=1 \mid x)} + \sum_{\bar{s}}^{n} log(1-P(y_{\bar{s}}=1 \mid x_{\bar{s}}))$$

$$= \sum_{\bar{s}=1}^{n} y_{\bar{s}} (0 + 6 \mid x + \dots + 6 \mid$$

无法解析求解,只能迭代求解。

2.1 梯度下降

迭代找到函数局部最优解,沿梯度负方向是损失下降最快的方向,所以

$$\theta^{t+1} = \theta^t - \alpha \frac{\partial L(\theta)}{\partial \theta} = \theta^t - \alpha \sum_{i=1}^n (y_i - \sigma(\theta^T x_i)) x_i$$

其中,参数α叫学习率,就是每一步走多远,这个参数蛮关键的。如果设置的太多,那么很容易就在最优值附加徘徊,因为你步伐太大了,可能会找不到全局最小值;但如果设置的太小,那收敛速度就太慢了。

注:因为本文中是求解的Logit回归的代价函数是似然函数,需要最大化似然函数。所以我们要用的是梯度上升算法。但因为其和梯度下降的原理是一样的,只是一个是找最大值,一个是找最小值。找最大值的方向就是梯度的方向,最小值的方向就是梯度的负方向。

另一个更普遍的写法:

逻辑回归损失函数:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

简单回顾一下几个变量的含义:

表1 cost函数解释

x(i)	每个样本数据点在某一个特征上的值,即特征向量x的某个值
y(i)	每个样本数据的所属类别标签
m	样本数据点的个数
hθ(x)	样本数据的概率密度函数,即某个数据属于1类(二分类问题)的概 率
J(θ)	代价函数,估计样本属于某类的风险程度,越小代表越有可能属于这 类

我们的目标是求出θ,使得这个代价函数](θ)的值最小,这里就需要用到梯度下降算法。

先来看看梯度下降算法中, 自变量的迭代过程。表示如下

$$\theta_j = \theta_j - \alpha \cdot \frac{\partial}{\partial} J(\theta), (j = 0, 1, \dots, n) \cdot \dots \cdot (1)$$

可以看到,这是一个 θ 值不断迭代的过程,其中 α 是学习速率,就是 θ 的移动"步幅",后面的偏导数数就是梯度,可以理解为 \cos 的数在 θ 当前位置,对于i位置特征的下降速度。

【梯度的求导】

先来写一下大致的推导过程:

稍微解释--下推导流程,便于理解。

(1)--->(2): 使用sigmoid函数的形式q(z)替换h $\theta(x)$ 、提出公因子,放在式子尾

(2)--->(3): 这一步具体推导如下 (使用了复合函数的求导公式)

$$\begin{split} \frac{\partial g(\theta^T x^{(i)})}{\partial \theta_j} &= \frac{dg(z)}{dz} \cdot \frac{\partial (\theta^T x^{(i)})}{\partial \theta_j} \cdot \dots \cdot g(z) = \frac{1}{1 + e^{-z}} : \Leftrightarrow z = \theta^T x^{(i)} \\ &= \frac{e^{-z}}{(1 + e^{-z})^2} \cdot \frac{\partial (\theta_0 + \theta_1 x_1 + \dots + \theta_j x_j + \dots + \theta_m x_m)}{\partial \theta_j} \\ &= \frac{e^{-z} - 1 + 1}{(1 + e^{-z})^2} \cdot x_j^{(i)} \\ &= \left[\frac{1}{1 + e^{-z}} - \left(\frac{1}{1 + e^{-z}} \right)^2 \right] \cdot x_j^{(i)} \\ &= \left(g(z) - g^2(z) \right) \cdot x_j^{(i)} \\ &= g(\theta^T x^{(i)}) \left(1 - g(\theta^T x^{(i)}) \right) \cdot x_j^{(i)} \end{split}$$

如果加上正则化

Cost function:
$$J(\theta) = -\left[\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log h_{\theta}(x^{(i)}) + (1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m}\sum_{j=1}^{n}\bigotimes_{j=1}^{n}\bigotimes_{j=1}^{n}\sum_{j=1}^{n}\bigotimes_{j=1}^{n}\sum_{j=1}^{n}\bigotimes_{j=1}$$

同样使用梯度下降

Gradient descent

Repeat
$$\{$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \underbrace{\left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} - \frac{\lambda}{m} \right]}_{j = \mathbf{X}, 1, 2, 3, \dots, n}$$

$$\}$$

2.2 随机梯度下降SGD

梯度下降算法在每次更新回归系数的时候都需要遍历整个数据集(计算整个数据集的回归误差),该方法对小数据集尚可,但数据集很大特征很多时,计算复杂度太高。改进的方法是一次只用一个样本点(的回归误差)来更新回归系数,这个方法叫随机梯度下降算法。

(上面公式中的误差是针对于所有训练样本而得到的,而随机梯度下降的思想是根据每个单独的训练样本来更新权值)。由于可以在新的样本到来的时候对分类器进行增量的更新,所以它属于在线学习算法。与在线学习相对应,一次处理整个数据集的叫"批处理"。

随机梯度下降算法的伪代码如下: 初始化回归系数为1

重复下面步骤直到收敛{

对数据集中每个样本

计算该样本的梯度

使用alpha xgradient来更新回归系数

, 返回回归系数值

2.3 改进的随机梯度下降

为了使算法快速稳定收敛到某个值,我们要避免在每次迭代时系数的剧烈改变,(数据集可能并非完全线性可分,对不正常的样本点,在调整系数减少样本的分类误差时,会出现这种情况)。对SGD做两个改进避免波动问题:

- 1)每次迭代时,调整更新步长alpha的值。随着迭代的进行,alpha越来越小,这会缓解系数的高频波动(也就是每次迭代系数改变得太大,跳的跨度太大)。为了避免alpha随着迭代不断减小到接近于0,约束其必须大于一个常数。
- 2)每次迭代,改变样本的优化顺序,也就是随机选择样本来更新回归系数,这样做可以减少周期性的波动,因为样本顺序的改变,使得每次迭代不再形成周期性。

(梯度下降等优化算法这里不讲,应该有专门一篇笔记)

3.LR的特点和应用

- □ LR < SVM/GBDT/RandomForest ?</p>
 - □ 并不是,模型本身并没有好坏之分
 - > LR能以概率的形式输出结果, 而非只是0,1判定
 - ▶ LR的可解释性强,可控度高(你要给老板讲的嘛…)
 - 训练快, feature engineering之后效果赞
 - > 因为结果是概率,可以做ranking model
 - 添加feature太简单…

□应用

- > CTR预估/推荐系统的learning to rank/各种分类场景
- ▶ 某搜索引擎厂的广告CTR预估基线版是LR
- 某电商搜索排序/广告CTR预估基线版是LR
- 某电商的购物搭配推荐用了大量LR
- 某现在一天广告赚1000w+的新闻app排序基线是LR

LR应用经验

□ 关于算法调优

□假设只看模型

- ▶ 选择合适的正则化(L1, L2, L1+L2)
- ▶ 正则化系数C
- ▶ 收敛的阈值e, 迭代轮数
- ▶ 调整loss function给定不同权重
- Bagging或其他方式的模型融合
- ▶ 最优化算法选择 ('newton-cg', 'lbfgs', 'liblinear', 'sag')
 - 小样本liblinear, 大样本sag, 多分奏'newton-cg'和'lbfgs'(当然你 也可以用liblinear和sag的one-vs-rest)

4.LR与SVM的关系

4.1 共同点

- 1. LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题)
- 2. 两个方法都可以增加不同的正则化项,如l1、l2等,所以在很多实验中,两种算法的结果是很接近的。

4.2 不同点

- 1. LR是参数模型, SVM是非参数模型
- 2. 从目标函数来看,逻辑回归采用的是softmax loss, SVM采用的是hinge loss (损失函数, 见https://blog.csdn.net/u010976453/article/details/78488279)

这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减小于分类关系较小的数据点的权重。

- 3. SVM的处理方法是只考虑支撑向量,也就是和分类最相关的少数点,去学习分类器;而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重。
- 4. LR模型相对简单,特别是大规模线性分类时比较方便,而SVM的理解和优化相对复杂,SVM转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,在进行复杂核函数计算时优势很明显,能够大大简化模型和计算。