LINGÜÍSTICA COMPUTACIONAL

Parte 01: Introdução ao Estudo Computacional da Linguagem

Marcelo Finger

Departamento de Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo

2º Semestre 2019

Tópicos

- O Mais Importante
- PREÂMBULO
- LINGUAGEM E SUA MODELAGEM
- SINTAXE: A ANÁLISE DA ESTRUTURA
- LINGUAGENS FORMAIS E GRAMÁTICAS FORMAIS
- SEMÂNTICA
- Pragmática

TÓPICOS

- O Mais Importante
- PREÂMBULO
- 3 Linguagem e sua Modelagem
- SINTAXE: A ANÁLISE DA ESTRUTURA
- 6 Linguagens Formais e Gramáticas Formais
- 6 SEMÂNTICA
- PRAGMÁTICA

MARCELO FINGER IME-USP

Por Que Ética?

Vem **SEMPRE** em primeiro lugar! Estamos lidando com técnicas com **potencial de grande impacto** Se descuidarmos:

MARCELO FINGER INTRODUÇÃO 000000

Por Que Ética?

Vem **SEMPRE** em primeiro lugar!

Estamos lidando com técnicas com potencial de grande impacto

Se descuidarmos: Ditadutas Digitais

Marcelo Finger Introdução

QUAL ÉTICA?

A dos grandes pensadores? Platão, Kant ou Seu Filósofo Predileto?

QUAL ÉTICA?

000000

A dos grandes pensadores? PNAVAH / MKAMIL HW/ EIGW/ FILIGSOFD/ FILIGSUNGTOT

Marcelo Finger Introdução

QUAL ÉTICA?

000000

A dos grandes pensadores?

PNAVAD / MANT DW/ BEW/ FILOSOFD FI VEGINEYOT

A dos praticantes de NLP:

- Programadores
- Projetistas
- Idealizadores

000000

QUAL ÉTICA?

A dos grandes pensadores?

PNavab / Maint/bu/ Elew/Fillosofb/ Flyed/Vetto?

A dos praticantes de NLP:

- Programadores
- Projetistas
- Idealizadores

O que pode destruir NLP/IA/CC não é a nossa falta de competência, mas nossa falta de visão ética

Quando Ética

000000

No início

Marcelo Finger

000000

No início Pra ficar bonito na foto?

Marcelo Finger Introdução

Quando Ética

000000

No início Pra ficar bonito na foto?

Em cada decisão do caminho

Marcelo Finger Introdução 00000

Nosso Caminho (Nesse Curso)

- Parte 01: Estudo Computacional da Linguagem
- Parte 02: Alguns Problemas Interessantes
- Parte 03: Processamento de Linguagem com Redes Neurais
- Parte 04: Embedding e word2vec
- Parte 05: Recorrência. Encoder-Decoder
- Mands-on 01: Scrapy
- Mands-on 02: Análise de sentimento com encoders

Tópicos

- PREÂMBULO

ESTUDO DA LINGUAGEM

- Ao menos, desde a antiguidade clássica
- Diversos enfoques
- Muitos deles eram dependentes de linguagens
- Visão unificadora a partir do século 19

ESTUDO DA LINGUAGEM

- Ao menos, desde a antiguidade clássica
- Diversos enfoques
- Muitos deles eram dependentes de linguagens
- Visão unificadora a partir do século 19
- Processamento automático a partir do século 20

Sons

000000 00000

MARCELO FINGER IME-USP

Sons

Preâmbulo 00000

Ritmos (Prosódia)

Marcelo Finger Introdução

- Sons
- Ritmos (Prosódia)
- Fonemas

ELEMENTOS DA LINGUAGEM

- Sons
- Ritmos (Prosódia)
- Fonemas
- Palavras

- Sons
- Ritmos (Prosódia)
- Fonemas
- Palayras
- Sintagmas (Frases)

- Sons
- Ritmos (Prosódia)
- Fonemas
- Palayras
- Sintagmas (Frases)
- Significados

- Sons
- Ritmos (Prosódia)
- Fonemas
- Palayras
- Sintagmas (Frases)
- Significados
- Usos

Sons – Acústica

Preâmbulo 00000

MARCELO FINGER Introdução

IME-USP

- Sons Acústica
- Ritmos (Prosódia) Fonologia

- Sons Acústica
- Ritmos (Prosódia) Fonologia
- Fonemas Fonética

- Sons Acústica
- Ritmos (Prosódia) Fonologia
- Fonemas Fonética
- Palavras Morfologia e Filologia

- Sons Acústica
- Ritmos (Prosódia) Fonologia
- Fonemas Fonética
- Palavras Morfologia e Filologia
- Sintagmas (Frases) Sintaxe

- Sons Acústica
- Ritmos (Prosódia) Fonologia
- Fonemas Fonética
- Palavras Morfologia e Filologia
- Sintagmas (Frases) Sintaxe
- Significados Semântica

- Sons Acústica
- Ritmos (Prosódia) Fonologia
- Fonemas Fonética
- Palavras Morfologia e Filologia
- Sintagmas (Frases) Sintaxe
- Significados Semântica
- Usos Pragmática

Várias Visões

Por exemplo, na sintaxe:

Visão da estrutura sintagmática (constituintes)

Várias Visões

Por exemplo, na sintaxe:

- Visão da estrutura sintagmática (constituintes)
- Visão das dependências entre palavras [Séc XII]

Várias Visões

Por exemplo, na sintaxe:

- Visão da estrutura sintagmática (constituintes)
- Visão das dependências entre palavras [Séc XII]

Tópicos

- LINGUAGEM E SUA MODELAGEM

LINGUAGEM

- Linguagem é um fenômeno humano.
- Desta forma, difere em natureza dos fenômenos naturais.
- Fenômenos naturais são estudados pela Física, Química e Biologia.
- Ciências Humanas, em geral, não possuem tratamento matemático.
- Ou melhor, não possuíam até bem recentemente.

Características da Lingüística

- É uma ciência eminentemente multidisciplinar:
 - Psicologia (cognição)
 - Ciência Física (emissão de som)
 - Biologia (anatomia humana influencia a fala)
 - Sociologia (Pragmática)
- Subdivide-se (grosseiramente) em:

Fonética (sílabas), Fonologia (prosódia), Morfologia (palavras), Sintaxe (sentenças), Semântica (significado) e Pragmática (uso).

Modelagem Matemática da Lingüística

- Certas sub-áreas da lingüística podem ser modeladas matematicamente.
- Morfologia e Sintaxe: Linguagens Formais e Autômatos
- Sintaxe: Lógica Categórica
- Semântica: Cálculo Lambda e Lógica Categórica
- Estes modelos matemáticas não são numéricos ou quantitativos.
- Modelos numéricos e quantitativos são mais fáceis de processar
- Cf: Muita matemática precisou ser "inventada" para o desenvolvimento da Física.
- Idem deve ocorrer para a Linguística.

Tópicos

- SINTAXE: A ANÁLISE DA ESTRUTURA

A ESTRUTURA DA FRASE

- A palavra é unidade básica na análise da frase.
- A cada palavra é atribuída uma categoria morfo-sintática. Também conhecida como classe gramatical.
- Exemplos:

Categoria	<u>Conhecida como</u>	Abreviação
Determinante	Artigo	Det
Nome	Substantivo	Ν
Verbo Transitivo		VT

A ESTRUTURA DA FRASE (CONT.)

- Representação usual: ⟨Categoria⟩ → ⟨Palavra⟩.
- Por exemplo, nas palavras da frase:

o vilão beijou a mocinha

Temos o seguinte léxico:

 $Det \longrightarrow o$

Det $\longrightarrow a$

N —→vilão

N *→ mocinha*

 $VT \longrightarrow beijou$

SINTAGMAS

- Palavras se combinam para formar novos componentes.
- Estes componentes s\(\tilde{a}\) chamados de sintagmas. Exemplos:

Sintagma	Abreviação
Sintagma Nominal	SN
Sintagma Verbal	SV
Sintagma Adjetival	SA
Sintagma Prepositivo	SP
Sentença	S

- Nota: sintagma em inglês é phrase.
- Sintagmas são categorias sintáticas.

- Genericamente, podemos dizer que categorias (sintáticas ou morfo-sintáticas) se combinam para gerar novas categorias.
- Desta forma, um conjunto de categorias

$$C_1,\ldots,C_n$$

se combina para gerar uma categoria C.

- Representação: $C \longrightarrow C_1, \ldots, C_n$.
- Por exemplo:

$$S \longrightarrow SN SV$$

$$SN \longrightarrow Det N$$

$$SV \longrightarrow VT SN$$

SINTAGMAS (CONT.)

• Juntando todas as regras, temos uma gramática que gera (e reconhece) a frase:

o vilão beijou a mocinha
$$S \longrightarrow SN \ SV$$
 Det $\longrightarrow a$ $SN \longrightarrow Det \ N \longrightarrow vilão$ $SV \longrightarrow VT \ SN \qquad N \longrightarrow mocinha$ Det $\longrightarrow o$ $VT \longrightarrow beijou$

Árvore sintática:

Tópicos

- 6 Linguagens Formais e Gramáticas Formais

LINGUAGENS FORMAIS

- Seja V um conjunto não vazio de símbolos ou palavras.
- Uma linguagem \mathcal{L} sobre V é um conjunto de cadeias formadas com os elementos de V:

$$\mathcal{L} \subseteq V^*$$

onde, V^* é o conjunto de seqüências de 0 ou mais símbolos de V

- Se r e s são seqüências em V^* , rs representa a seqüência resultante da sua concatenação.
- ε é a seqüência vazia. Para todo s: $s\varepsilon = s = \varepsilon s$.

Exemplos de Linguagens Formais

- Exemplo. Com $V = \{a, b\}$ temos várias possíveis linguagens:
 - $L_1 = \{a, b, \varepsilon\}$
 - $L_2 = \{a^n, b^n | n = 0, 1, \ldots\}$
 - $L_3 = \{(ab)^n | n = 0, 1, ...\}$
- Se A e B são conjuntos, $AB = A \times B$.
- $A^2 = AA$. $A^3 = AAA$. etc.
- Por convenção: $A^0 = \{\varepsilon\}$.
- \circ $\varnothing A = A\varnothing = \varnothing$
- Uma linguagem $\mathcal{L}_G \subseteq V^*$ poder ser definida por uma gramática G.

Gramáticas Formais

Uma gramática G é uma quádrupla:

$$G = \langle V, T, P, S \rangle$$

onde:

- V é um conjunto não vazio, chamado vocabulário
- $T \subseteq V$ é um conjunto não vazio de *símbolos terminais*.
- N = V T é o conjunto de símbolos não-terminais.
- $S \in N$ é o símbolo inicial
- P é um conjunto finito de regras (produções) da forma

$$\alpha \longrightarrow \beta$$

onde $\alpha \in V^*NV^*$ e $\beta \in V^*$.

 Por exemplo, a gramática vista anteriormente é formado dos seguintes elementos:

$$T = \{o, vilão, beijou, a, mocinha\}$$

$$N = \{S, SN, SV, Det, N, VT\}$$

$$V = T \cup N$$

$$S \longrightarrow SN SV$$

$$SN \longrightarrow Det N$$

$$SV \longrightarrow VT SN$$

$$Det \longrightarrow o$$

$$Det \longrightarrow a$$

$$N \longrightarrow vilão$$

$$N \longrightarrow mocinha$$

$$VT \longrightarrow beijou$$

Gramáticas são classificadas tipo restrições que se aplica sobre as regras de produção admitidas na gramática:

$$\alpha \longrightarrow \beta$$

• Notação: L(G) é a linguagem reconhecida/gerada pela gramática G.

GRAMÁTICAS REGULARES

Gramáticas regulares admitem apenas produções onde:

- α é um não terminal ($\alpha \in N$)
- $\beta \in T^*NT^* \cup T^*$, ou seja, β pode conter no máximo um não terminal, rodeado por 0 ou mais não-terminais.

Gramáticas regulares são muito úteis para o reconhecimento padrões em textos, utilizados em linguagens de processamento de texto como Perl.

Gramáticas regulares são reconhecíveis por *autômatos finitos*, que possuem implementação eficiente.

Expressões Regulares

Seja T um vocabulário (terminais). Definimos expressões regulares sobre T, ER(T):

- $\bullet \ \epsilon \in ER(T);$
- $v \in T \Rightarrow v \in ER(T)$;
- $x \in ER(T) \Rightarrow (x)^* \in ER(T)$;
- $x, y \in ER(T) \Rightarrow xy \in ER(T), \quad x|y \in ER(T).$

Define-se ainda

- $x^+ = x(x)^*$
- $[v_1 \ldots v_n] = (v_1 | \ldots | v_n) \ (v_i \in T);$
- $[v_1 \dots v_n] = (v_{i_1} | \dots | v_{i_m}) \ (v_{i_i} \in T \{v_1, \dots, v_n\}).$

Expressões Regulares (exemplos)

- $T = \{a, b, c\}.$
- $L(E) = \text{Linguagem reconhecida pela e.r. } E \in ER(T)$.
- L(a|b|c) = T.
- $L((ab)^*) = \{\epsilon, ab, abab, ababab, \ldots\}.$
- $L((a|b)^*) = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$
- $L((a|b)^*c) = xc, x \in L((a|b)^*) =$ $\{c, ac, bc, aac, abc, bac, bbc, \ldots\}$
- Note que $L((ab)^*) = L((ab(ab)^*)^*)$, ou seja, mais de uma e.r. representa a mesma linguagem.

Expressões Regulares e Gramáticas REGULARES

THEOREM

Existe uma e.r. E se e somente se existe uma gramática regular G_r tal que $L(E) = L(G_r)$.

Exemplos:

$$(a|b)^*c \Leftrightarrow \begin{cases} S \to C \\ S \to aS \\ S \to bS \\ C \to c \end{cases}$$
$$b(ab)^*(ac)^* \Leftrightarrow \begin{cases} S \to bX \\ X \to Y \\ X \to abX \\ Y \to \epsilon \\ Y \to acY \end{cases}$$

AUTÔMATOS FINITOS

- Um autômato finito é uma quíntupla $A = (Q, T, M, q_0, F)$ onde:
 - $Q \neq \emptyset$ é um conjunto de estados;
 - T é um vocabulário (terminais);
 - M: Q × T → Q é a função de transição de estados;
 - $q_0 \in Q$ é o estado inicial
 - F ⊆ Q são os estados de aceitação
- Uma cadeia $s \in T^*$ é aceita por A se, a partir do estado inicial, seguindo a função de transição, termina-se num estado de aceitação.
- L(A) é a linguagem reconhecida/gerada por A.

AUTÔMATOS FINITOS (EXEMPLO)

Note que $L(A) = L(b(ab)^*(ac)^*)$.

AUTÔMATOS FINITOS E GRAMÁTICAS REGULARES

- Existe um autômato A sse existe uma gramática regular G tal que L(A) = L(G). Logo, há equivalência entre a.f.'s, e.r.'s e gramáticas
 - regulares.
 - Vide exemplo anterior.
- O autômato é determinístico se não possui arcos rotulados por ϵ (ou se M é uma função, e não uma relação).
- Para todo a.f. não-determinístico A existe um a.f. determinístico A' com L(A) = L(A').
- Um a.f. pode ser minimizado, gerando-se um a.f. equivalente com menos estados
- O a.f. mínimo é único (a menos de isomorfismos).

AUTÔMATOS ACÍCLICOS

- Autômatos acíclicos reconhecem linguagens finitas.
- Um léxico é uma linguagem finita. Pode ser minimizado em um autômato finito.
- Forma muiiiiito eficiente de se guardar/indexar grandes quantidades de dados.
- Léxicos inteiros podem ser armazenados em memória.

Gramáticas Livres de Contexto

Gramáticas livres de contexto (GLC) admitem apenas produções $\alpha \longrightarrow \beta$ onde:

- α é um não-terminal ($\alpha \in N$)
- $\beta \in V^*$, ou seja, β pode conter uma seqüência de elementos do vocabulário.

As GLCs são de grande utilidade prática.

Basicamente, TODAS as linguagens de programação são definidas por GLCs. Os tipos das variáveis são a única condição de contexto utilizadas em linguagens de programação, em geral.

GLCs são reconhecidas por autômatos de pilhas, também de eficiente implementação no computador.

A seguir, apresentamos um trecho de uma gramática GLC de uma linguagem pseudo-Pascal, com símbolo inicial COMANDO:

 $COMANDO \longrightarrow VAR := EXPRESSÃO$

Comando →If Cond Comando Else Comando

 $Comando \longrightarrow Bloco$

Bloco → Begin SeqComandos End

SeqComandos →Comando SeqComandos → Comando; SeqComandos

Gramáticas Sensíveis ao Contexto

Gramáticas Sensíveis ao Contexto admitem apenas produções da forma:

$$A X B \longrightarrow A Y B$$
 ou $S \longrightarrow \varepsilon$

onde $A, B \in V^*, X \in N$ e $Y \in V^+$.

A sensibilidade ao contexto aumenta muito a complexidade de se reconhecer tais gramáticas.

HIERARQUIA DE CHOMSKY

Gramáticas Genéricas : tipo 0

Gramáticas Sensíveis a Contexto : tipo 1

Gramáticas Livres de Contexto : tipo 2

> Gramáticas Regulares : tipo 3

Referência: Introduction to Formal Languages, G. E. Révész, 1983.

Dover Publications (1991)

GERAÇÃO vs RECONHECIMENTO

Conceitos duais:

GERAÇÃO: Dada uma gramática G e uma sentença s, s é gerada

por esta gramática?

RECONHECIMENTO: Um programa que responde corretamente a pergunta acima é um reconhecedor para aquela gramática.

A saída de um reconhecedor é:

- NÃO, se G não gera s.
- SIM, se G gera s. Neste caso, podemos ter como saída uma árvore sintática associada a s.

Pode haver mais de uma árvore sintática associada a um s.

ÁRVORES DE RECONHECIMENTO

A sentença: o vilão beijou a mocinha ao ser reconhecida pela gramática:

$$S \longrightarrow SN \ SV$$
 $SN \longrightarrow Det \ N$ $SV \longrightarrow VT \ SN$ $Det \longrightarrow o$ $N \longrightarrow vil\~ao$ $N \longrightarrow mocinha$ $VT \longrightarrow beijou$

gera a seguinte árvore sintática:

Gramáticas Ambíguas

Uma mesma sentença gera mais de uma árvore sintática.

Exemplo: Eu vi o menino com o telescópio.

 $SP \longrightarrow P SN$

Nota: SP é o sintagma prepositivo (adjunto)

MARCELO FINGER Introdução

SENTIDO 2: ANEXAÇÃO DO SP AO SV

Sentido: eu usei o telescópio para ver o menino

Tópicos

- SEMÂNTICA

Fenômeno: a cada árvore sintática atribui-se um significado (potencialmente) distinto.

Problema:

- Como atribuir significado a uma árvore sintática?
- O que é "significado"?

SEMÂNTICAS FORMAIS

- Representação matemática formal do significado
- Composicionalidade: O significado de um elemento é uma composição dos significados de suas partes
- Gramáticas Categóricas baseadas em Lógicas Categóricas e Cálculo Lambda
- Ponte formal para a interface Sintaxe-Semântica

SEMÂNTICAS CONTEXTUAIS

- Expressões com significados semelhantes ocorrem m contextos semelhantes
- O contexto é a semântica, a semântica é um padrão
- Inserção (embedding) em espaços vetoriais *n*-dimensionais
- Pontos próximos representam conceitos semanticamente semelhantes
- Exploram propriedades dos espaços vetoriais no processamento

Tópicos

- PRAGMÁTICA

Pragmática

Relação entre a linguagem e seus falantes.

Pragmática trata do uso concreto da linguagem, enquanto a semântica e a sintaxe constituem a construção teórica

Trata de assuntos como deixis, revezamento na conversação, organização do texto, pressuposições e implicatura.

Interface ente linguagem e cultura

Exemplos de Pragmática em Ação

- Eu gostaria de saber se você teria condições de me dar uma carona.
- Que beleza está o trânsito hoje!
- Está um calor aqui dentro, não?
- Que bela loja você tem, seria uma pena se algo acontecesse a ela.