

Lista de ejercicios de la lección 1.4.5

Instrucciones. Calcular la longitud de arco de la función dada en el intervalo señalado.

1.
$$y^2 = x^3 de(1, 1) a(4, 8)$$

13.
$$y = \left(\frac{x}{2}\right)^{\frac{2}{3}}, \ 0 \le x \le 2$$

2.
$$(y+1)^2 = (x-4)^3$$
 de A=(5, 0) a B=(8, 7) 14. $y = \frac{3}{4}x^{\frac{4}{3}} - \frac{3}{8}x^{\frac{2}{3}} + 5$, $1 \le x \le 8$

14.
$$y = \frac{3}{4}x^{\frac{4}{3}} - \frac{3}{8}x^{\frac{2}{3}} + 5, \ 1 \le x \le 8$$

3.
$$y = 3x^{\frac{2}{3}} - 5$$
 de A=(8, 2) a B=(27, 17)

15.
$$y = \frac{1}{3} (x^2 + 2)^{\frac{3}{2}}, \ 1 \le y \le 3$$

4.
$$y = 5 - \sqrt{x^3}$$
 de A=(1, 4) a B=(4, -3)
16. $y = \frac{x^4}{8} + \frac{1}{4x^2}$, $1 \le x \le 2$

16.
$$y = \frac{x^4}{8} + \frac{1}{4x^2}, \ 1 \le x \le 2$$

5.
$$y = \frac{x^3}{12} + \frac{1}{x} \operatorname{de} \left(1, \frac{13}{12}\right) \operatorname{a} \left(2, \frac{7}{6}\right)$$

17.
$$y = \ln(\sin x)$$
 para $\frac{\pi}{6} \le x \le \frac{\pi}{3}$

6.
$$x = \frac{y^4}{16} + \frac{1}{2y^2} \operatorname{de}\left(\frac{9}{8}, -2\right) \operatorname{a}\left(\frac{9}{16}, -1\right)$$

18.
$$y = \ln(1 - x^2)$$
 para $0 \le x \le \frac{1}{2}$

7.
$$x = \frac{y^4}{4} + \frac{1}{2y}$$
 desde $y = 1$ hasta $y = 2$

19.
$$y = \cosh x \, \det x = 0 \, \text{a} \, x = 1$$

8.
$$y = \frac{x^3}{3} + x^2 + x + \frac{1}{4x+4}$$
 de $x = 0$ a $x = 2$ 20. $y = e^x$ de $x = 0$ a $x = 1$

20.
$$y = e^x \text{ de } x = 0 \text{ a } x = 1$$

9.
$$y = \frac{x^2}{2} - \frac{\ln x}{4}$$
 de $x = 2$ a $x = 4$

21.
$$y = \ln\left(\frac{e^x + 1}{e^x - 1}\right)$$
 para $a \le x \le b, \ a > 0$

10.
$$y = \frac{x^5}{10} + \frac{1}{6x^3} de x = 1 a x = 2$$

11.
$$y = \ln(\sec x) \text{ de } x = 0 \text{ a } x = \frac{\pi}{4}$$

12.
$$x = \frac{y^{\frac{3}{2}}}{3} + \sqrt{y}, \ 1 \le y \le 9$$