18-3-2024

Tarea 6

Sistemas embebidos

ANDRADE SALAZAR, IGNACIO CENTRO UNIVERSITARIO DE LOS VALLES

Colocación de polos

Sintonización de Controladores PID Método de Colocación de Polos

Planta	Acciones de control	Controlador	Polinomios	Modelo de Referencia	Ganancias
<u>b</u> <u>s</u>	Proporcional	k_p	$F(s) = k_p$ $G(s) = 1$ $B(s) = b$ $A(s) = s$	$s + a_{m1}$	$k_p = \frac{a_{m_1}}{b}$
$\frac{b}{s+a}$	Proporcional, Integral	$\frac{k_p s + k_i}{s}$	$F(s) = k_p s + k_i$ $G(s) = s$ $B(s) = b$ $A(s) = s + a$	$s^2 + a_{m1}s + a_{m2}$	$k_p = \frac{a_{m1} - a}{b}; k_i = \frac{a_{m2}}{b}$
$\frac{b}{s(s+a)}$	Proporcional, Derivativa	$k_d s + k_p$	$F(s) = k_d s + k_p$ $G(s) = 1$ $B(s) = b$ $A(s) = s^2 + as$	$s^2 + a_{m1}s + a_{m2}$	$k_d = \frac{a_{m1} - a}{b}; k_p = \frac{a_{m2}}{b}$
$\frac{b}{s^2 + a_1 s + a_2}$	Proporcional, Integral, Derivativa	$\frac{k_d s^2 + k_p s + k_i}{s}$	$F(s) = k_d s^2 + k_p s + k_i$ $G(s) = s$ $B(s) = b$ $A(s) = s^2 + a_1 s + a_2$	$s^3 + a_{m1}s^2 + a_{m2}s + a_{m3}$	$k_d = \frac{a_{m1} - a_1}{b}; k_p = \frac{a_{m2} - a_2}{b}; k_l = \frac{a_{m3}}{b}$

Estructura de	Acciones de
la planta	Control
<u>b</u>	proporcional
h	proporcional
5+a	integral
b	proporcional
S(5ta)	Derivativa
1	proporcional
s²tastaz	1 ntegral Derivativa
5 145+42	
605+61	proporcional
52+0,5+02	Integral Derivativa
	No Son suficiente
Controlador Gics) = F(S)
Covingo	G(S)
Planta Gz(S)=	BLS
T tottla	A (5)

F

г

Métado	de Colocación) (n	Λ	Scribe
(Disei	de Colocación polos to de Contro	(adores)		
G165	(s) G2(s)			
18 (s) A (s)	+(s) G(s)	Y (s)		
A(S)G(S) B(s) [[(s)] (s) (s)	R(s)		
Y(s)	B(s) F(s)			
(103)	A(s) (1(s) A(s) (1(s) + B			
V(a)	ACS) G	(\$)	s	
Y(s) =	B(s) F(s) A(s) (+(s) + B	(s) F (S)		

$$\frac{K_{p}b + K_{d}bs}{s^{2} + a^{3} + b \, K_{p} + K_{d}bs} = P_{1} : s_{1}$$

$$\frac{V(s)}{R(s)} = \frac{K_{p}b + K_{d}bs}{s^{2} + (a + K_{d}b)s + K_{r}b} = P_{3} : s_{1}$$

$$P_{1}D = K_{p} + K_{d}s + \frac{K_{1}}{S} = \frac{K_{p}s + K_{d}s + K_{1}}{S} = \frac{k_{p}s + K_{d}s + K_{1}}{S}$$

$$P_{1}D = K_{p} + K_{d}s + \frac{K_{1}}{S} = \frac{K_{p}s + K_{d}s + K_{1}}{S}$$

$$P_{1}D = K_{p} + K_{d}s + \frac{K_{1}}{S} = \frac{k_{p}s + K_{d}s + K_{1}}{S}$$

$$F_{1}D = K_{p} + K_{d}s + \frac{k_{1}}{S} = \frac{k_{p}s + K_{d}s + k_{1}}{S}$$

$$F_{1}D = K_{p} + K_{d}s + \frac{k_{1}}{S}$$

$$F_{2}D = K_{1}D = K_{p} + K_{1}D + K_{2}D = K_{2}D$$

$$F_{1}D = K_{p} + K_{p$$

mn=modelo de referencia KPb = ami Kp= ami 52+ (a+ K+6)s+ Kib= 52+ am, 5+ ams PORO 1/5+a a + Kpb = ani K; 6 = anz Kp= an, -a K:11 = anz para 5 Strpbs Stani Kpb = am. (Kp = ani 52+ (a+ Kdb)s + Kpb = 52+ as 1s+ anz 5 (s+a) atkdb=ami Kab = anz Kp=amz Kd = an, -a

