Initial Distribution

State	
A ₁ = true	0.99

Transition Probabilities:

	A _{t+1} = true	A _{t+1} = false
A _t = true	0.99	0.01
A _t = false	0.01	0.99

Emission Probabilities:

State	Е	P(E State)
A _t = true	1	0.2
A _t = true	0	0.8
A _t = false	1	0.9
A _t = false	0	0.1

- 1. Draw the HMM implied by the CPTs above.
- 2. What is the probability of observing the emission sequence (E1 = 0, E2 = 1, E3 = 0)?
- 3. Calculate P(A4 = true | E1 = 0, E2 = 1, E3 = 0).