

CENG 464 DATA MINING

DATA ANALYSING PROJECT

Nurseli BAL 201611656

1. INTRODUCTION

In this report, I will be explaning the analysis of the given data. Firstly, I will read the data by using this comment below:

```
setwd("C:/Users/Nurseli/Desktop/dataa")
myData <- read.csv("data2.csv", header = TRUE)
View(myData)</pre>
```

The comment View(myData) is used for viewing the data that we have.

After I read the file, I will manipulate the data to make it useful and to get a better results in the analysis.

To use the some strong functions in R, I will need some packages. I download them using pacman package.

```
#necessary packages downloaded using pacman
install.packages("pacman")
require(pacman)
library(pacman)
pacman:: p_load(pacman,dply,GGally,ggplot2,ggthemes, ggvis, httr, lubridate, plotly, rio, rmarkdown, shiny, string, tidyr)
```

2.DATA PREPROCESSING

Since dealing with NA's is easier than NULL's, I will convert the NULL's into NA's using the comment:

myData [myData == "NULL"] <- NA

RELAFFIL	ADM_RATE	ADM_RATE_ALL	SATVR25	SATVR75	SATMT25	SATMT75	SATWR25
NULL	0.9027	0.902671312	365	485	360	495	370
NULL	0.9181	0.918067505	440	630	550	740	NULL
74	NULL	NULL	NULL	NULL	NULL	NULL	NULL
NULL	0.8123	0.812303547	550	660	530	670	NULL
NULL	0.9787	0.97866121	380	485	375	481	NULL
NULL	0.533	0.53295392	530	640	520	640	480
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
NULL	0.8254	0.825383994	490	565	475	545	NULL
NULL	0.8393	0.839309429	570	650	560	660	520
71	0.6186	0.618601016	520	630	510	630	NULL
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
68	NULL	NULL	NULL	NULL	NULL	NULL	NULL
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
74	0.5101	0.51006424	460	590	460	560	430
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL

SATVR25	SATVR75	SATMT25 [‡]	SATMT75 [‡]	SATWR25 [‡]	SATWR75 [‡]	SATVRMID [‡]	SATMTMID [‡]	SATWRMID [‡]
365	485	360	495	370	457	425	428	414
440	630	550	740	NA	NA	535	645	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA
550	660	530	670	NA	NA	605	600	NA
380	485	375	481	NA	NA	433	428	NA
530	640	520	640	480	600	585	580	540
NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA
490	565	475	545	NA	NA	528	510	NA
570	650	560	660	520	620	610	610	570
520	630	510	630	NA	NA	575	570	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA
460	590	460	560	430	510	525	510	470
NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA

Since in some attributes we have lots of NA values and we don't need to use some attributes. So I will delete those attributes to have better results using the below code.

myData <- myData %>% select(c(-1,-2,-3, -5, -6, -7,-8, -9, -10, -18, -20, -21,-22, -23, -36,-37,-38, -39, -40, -41, -42,-43,-44,-45,-46,-47,-48,-49,-50,-51,-52,-53,-54,-55,

> summary(myData)

```
INSTNM
                                                  SCH DEG
                                                                    HCM2
               NUMBRANCH
MAIN
                                  PREDDEG
                                                   HIGHDEG
                                                                     CONTROL
REGION
                CCBASIC
 Stevens-Henager College
                                                  1
                                                      :3034
                                                               Min.
                                                                       :0.00000
                 Min. : 1.000 Min. .000 -2 :2343
       :0.0000
                                            :0.000
                                                             :0.000
                                                                       Min.
                                                                              :1
                                                     Min.
       Min.
               :0.000
                                              5
                                                  2
                                                       :1277
                                                               1st Qu.:0.00000
 Bryan University
1st Qu.:1.0000
                  1st Qu.: 1.000
                                    1st Qu.:1.000
                                                     1st Qu.:1.000
                                                                       1st Qu.:1
.000
                       ` 18
                              : 349
       1st Qu.:3.000
 Columbia College
                                              5
                                                      :2529
                                                               Median :0.00000
                                                  3
                 Median : 1.000
.000 22 :
                                    Median :2.000
                                                     Median :2.000
Median :1.0000
                                                                       Median :2
       Median :5.000
                               : 331
 McCann School of Business & Technology:
                                              5
                                                  NULL:
                                                                       :0.01378
                                                               Mean
                         : 3.883
                                            :1.835
                                                             :2.234
       :0.7677
                 Mean
Mean
                                    Mean
                                                     Mean
                                                                       Mean
                        24
.129
       Mean
             :4.612
 Brittany Beauty Academy
Brd Qu.:1.0000 3rd Qu.: 2.000
                                                  NA's: 272
                                                               3rd Qu.:0.00000
                                              4
3rd Qu.:1.0000
                                    3rd Qu.:3.000
                                                     3rd Qu.:4.000
                                                                       3rd Qu.:3
                        10
                               : 265
       3rd Qu.:6.000
 Unitek College
                                                                       :1.00000
                                                               Max.
       :1.0000
                          :73.000
                                    Max.
                                            :4.000
                                                     Max.
                                                             :4.000
                                                                       Max.
Max.
                  Max.
.000
              :9.000
                         (Other):3079
       Max.
 (Other)
                                          :7082
       : 444
    CCUGPROF
                    CCSIZSET
                                   HBCU
                                                PBI
                                                            ANNHI
                                                                         TRIBAL
                                                 WOMENONLY
AANAPII
                                    MENONLY
            HSI
                        NANTI
        :2343
                         :2343
                                                          0
                                                               :6558
                 -2
                                 0
                                     :6486
                                              0
                                                  :6486
                                                                            :655
 -2
                                :6559
                                             :6605
    0
                 0:6145
                                                          :6633
3
        :6454
                            0
                                        0
 1
        : 543
                         : 649
                                       101
                                                    101
                                                                  29
                                                                            : 3
                 6
                                 1
                                             1
                                                          1
                                                                        1
                    442
                                   28
                                             : 63
          133
                 1:
                           1
                                         1
                                                     1
          460
                 1
                         : 500
                                         0
                                                      0
 11
                                 NULL:
                                            NULL:
                                                           NULL:
                                                                        NULL:
                 NU: 525
0
                           NULL: 0
                                        NULL: 0
                                                     NULL:
                                 NA's: 525 NA's: 525
 5
          438
                         : 438
                                                           NA's: 525
                                                                        NA's: 52
    NA's:
          525
                           NA's: 525
                                        NA's: 444
                                                     NA's: 444
          370
                 11
                          377
 (Other):2514
                 (Other):2361
        : 444
                 NA's
```

As we can see that there are some NA values on the dataset. We have to get rid of them.

Since I had some problems on the binary data. I will convert the NA's by seperating the data.

```
for(i in 2:12){
  myData[,i] = as.numeric(myData[,i])
}

for(i in 2:12){
  myData[,i] = ifelse(is.na(myData[,i]),ave(myData[,i], FUN = function(x) mean(x, na.rm = 'TRUE')),myData[,i])
}
```

In the other part of my data, I used this comment:

myData[is.na(myData)] = 0

> summary(myData)	INSTNM		SCH	DEG	н	CM2
MAIN	TIVOTIVI		3011_	DEG		CITZ
	:	7 1	Min.	:1.000	Min.	:0.00
Bryan University	:	5	1st Qu.	:1.000	1st Qu	.:0.00
corumbia correge	:	5 1	Median	:2.000	Median	:0.00
000 Median :1.0000 McCann School of Business & Tech	nology:	5 1	Mean	:1.926	Mean	:0.01
378 Mean :0.7677						
Brittany Beauty Academy 000 3rd Qu.:1.0000	:	4	3rd Qu.	:3.000	3rd Qu	.:0.00
Unitek College	:	4 1	Max.	:3.000	Max.	:1.00
000 Max. :1.0000 (Other)	:708	2				
NUMBRANCH PREDDEG	HIGHDE	G.	C	ONTROL		REGIO
N CCBASIC Min. : 1.000 Min. :0.000	Min. :0	000	Min	:1.00)O Min	. :0
.000 Min. : 1.00						
1st Qu.: 1.000	1st Qu.:1	.000	1st	Qu.:1.00)0 1st	Qu.:3
Median: 1.000 Median: 2.000 .000 Median: 10.97	Median :2	.000	Medi	an :2.00)0 Med	ian :5
Mean : 3.883 Mean :1.835	Mean :2	.234	Mear	:2.12	29 Mea	n :4
.612 Mean :10.97 3rd Qu.: 2.000 3rd Qu.:3.000	3rd Qu.:4	.000	3rd	Qu.:3.00)0 3rd	Qu.:6
.000 3rd Qu.:17.00 Max. :73.000 Max. :4.000	Max. :4					. :9
.000 Max. :34.00	MaxT	.000	Max.	.5.00	70 Max	
CCUGPROF CCSIZSET	HBCU		PBI	AN	NNHI	TRI
BAL AANAPII Min. : 1.000 Min. : 1.000	0 :701	.1 (0 :70	11 0	:7083	0
:7078 0 :6979 1st Qu.: 1.000 1st Qu.: 1.000	1 : 10		1 : 1		: 29	1
: 34 1 : 133						
Median : 5.000 Median : 5.000 : 0 NULL: 0	NULL:	0 1	NULL:	0 NUL	_L: 0	NULL
Mean : 5.631 Mean : 7.059						
3rd Qu.:10.000 3rd Qu.:12.000 Max. :17.000 Max. :19.000						
HSI NANTI MENONLY	WOMENONL	Υ.				
0:6145 0:7084 0:7049	0 :707	7				
1: 442 1 : 28 1 : 63 NU: 525 NULL: 0 NULL: 0		5 0				

But still, there is a problem. There are unknown NU's in my dataset. Using the code below, I deleted them.

myData[myData == "NU"] <- 0

<pre>> summary(myData)</pre>		TNSTN	IM	SCH	_DEG	H	CM2
MAIN		1113111		3611_	DEG		CITIZ
Stevens-Henager C		:	7	Min.	:1.000	Min.	:0.00
000 Min. :0.00	000		_		4 000		
Bryan University	:	5	1st Qu.	:1.000	1st Qu	.:0.00	
000 1st Qu.:1.00 Columbia College	:	5	Median	.2 000	Median	.0 00	
000 Median :1.00	000	•	J	Median	.2.000	Median	.0.00
McCann School of	nology:	5	Mean	:1.926	Mean	:0.01	
378 Mean :0.76							
Brittany Beauty A	cademy	:	4	3rd Qu.	:3.000	3rd Qu	.:0.00
000 3rd Qu.:1.00	000	:	4	Max	. 2 000	Max	.1 00
Unitek College 000 Max. :1.00	000	•	4	Max.	:3.000	Max.	:1.00
(Other)	700	- 7	'082				
NUMBRANCH	PREDDEG	HIGH	IDEG		ONTROL		REGIO
N CCBASIC							
Min. : 1.000	Min. :0.000	Min.	:0.000	O Min.	:1.00	0 Min	. :0
.000 Min. : 1. 1st Qu.: 1.000	00 1st Qu.:1.000	1st Qu.	:1.000) 1st	Qu.:1.00	0 1st	Qu.:3
.000 1st Qu.: 1.	00						-
	Median :2.000	Median	:2.000) Medi	an :2.00	0 Med	ian :5
.000 Median:10. Mean:3.883	97 Mean :1.835	Mean	:2.234	4 Mear	:2.12	9 Mea	n :4
.612 Mean :10.							_
3rd Qu.: 2.000	3rd Qu.:3.000	3rd Qu.	:4.000	3 rd	Qu.:3.00	0 3rd	Qu.:6
.000 3rd Qu.:17. Max. :73.000	Max. :4.000	Max.	.4 000) May	:3.00	ω Max	. :9
.000 Max. :34.		Max.	.4.000	J Max.	.5.00	U Max	
.000 Max. 1511							
	CCSIZSET	HBCU	J	PBI	AN	NHI	TRI
BAL AANAPII Min. : 1.000	Min. : 1.000	0 :7	'011	0 :70	011 0	:7083	0
:7078 0 :6979	MIII 1.000	0 .7	011	0 .70	,11 0	.7003	U
1st Qu.: 1.000	1st Qu.: 1.000	1 :	101	1 : 1	.01 1	: 29	1
: 34 1 : 133 Median : 5.000	Median : 5.000	NULL:	0	NULL:	0 NUL	L: 0	NULL
: 0 NULL: 0	Median . 3.000	NULL.	U	NULL.	U NUL	L. U	NULL
	Mean : 7.059						
3rd Qu.:10.000	3rd Qu.:12.000						
Max. :17.000	Max. :19.000						
HSI NANTI 0:6670 0 :70	MENONLY 0 : 7049	WOMENC 0 :7	NLY '077				
0:6670 0:70 1:442 1:	28 1 : 63	1 :	35				
NU: 0 NULL:	0 NULL: 0	NULL:	0				
· · · · · · · · · · · · · · · · · · ·		-	-				

Now, finally we are done with the data preprocessing. We are coming to the clustering algorithms. I used 2 clustering algorithms which are K means and Hierarchical clustering. These algorithms are really powerfull on data analysis.

3.CLUSTERING

3.1 HIERARCHICAL CLUSTERING

I used below comments to find it scaled <- myData[-c(1,1)]#omits the first colomn distance<- dist(scaled, method="euclidean") hfit <- hclust(distance, method="ward")

plot(hfit)

and the plotting graph is:

And then, I cut the tree using the below comments:

group = cutree(hfit, k=5)
group

rect.hclust(hfit,k=5,border="red")

The dendogram can be cut where the difference is most significant.

If we make a table with respect to HIGDEG attribute, we will have a result:

> table(HclusterCut, myData\$HIGHDEG)

```
HclusterCut 0 1 2 3 4
1 202 2 464 640 1858
2 15 1 3 121 98
3 0 0 685 4 28
4 167 2275 328 15 36
5 34 1 21 2 3
6 0 0 17 6 12
7 57 0 0 0 17
```

It is certain that it is not that good solution but the best solution.

3.2KMEANS CLUSTERING

I am going to cluster the data using the code below.

scaled <- myData[-c(1,1)]#omits the first colomn

kmeansdata <- kmeans(scaled, 7)

attributes(kmeansdata)

kmeansdata\$cluster

c1 <- cbind(kmeansdata\$cluster)</pre>

c1

library(cluster)

clusplot(scaled, kmeansdata\$cluster, main="2D representation of Cluster", shade=TRUE, label=0). This code gives us the below plot.

But in the kmeansdata <- kmeans(scaled, 7)

Comment I have chosen the k value as 7. But I did not know if it is the best choice for k value. Therefore we will use the below code to find the best k.

```
data.matrix(myData)
test1 <- scale(na.omit(data.matrix(myData)[-1]))
head(myData)
wssplot <- function(test1, nc=20, seed=123){
  wss <- (nrow(test1)-1)*sum(apply(test1,2,var))
  for(i in 2:nc){
    set.seed(seed)
    wss[i] <- sum(kmeans(test1, centers=i)$withinss)
  }
  plot(1:nc, wss, type="b", xlab="Number of Clusters",
    ylab="Within groups sum of squares")
}
wssplot(test1, nc=20).</pre>
```

After I ran the comment above, I had a graph below:

In the graph, where the path gets sharp, the best k is there. The best sharp is 8 we'd say. That is why we will choose k as 8 to get better result.

scaled <- myData[-c(1,1)]#omits the first colomn
kmeansdata <- kmeans(scaled, 8)
attributes(kmeansdata)</pre>

kmeansdata\$cluster
c1 <- cbind(kmeansdata\$cluster)
c1
library(cluster)</pre>

clusplot(scaled, kmeansdata\$cluster, main="2D representation of Cluster", shade=TRUE, label=0).

The graph result:

4. CLASSIFICATION

I used two classification algorithms which are Decision Tree Classification algorithm and K Nearest Neighbor (KNN) Classification algorithm. Firstly I installed the necessarry packages to use strong functions of R.

```
library(mlbench)
install.packages("caret",dependencies = TRUE)
install.packages("e1071", dependencies=TRUE)
library(caret)
set.seed(12345)
```

I have chosen the class attribute as MAIN which for flag for main campus.

```
myData$MAIN = as.factor(myData$MAIN)
head(myData)
```

```
inTrain = createDataPartition(y = myData$MAIN, p = .75, list = FALSE)
```

#at start prediction percentage is 75%. If necessary, It will be changed to find an optimal solution.

```
training = myData[inTrain,]
testing = myData[-inTrain,]
```

4.1 DECISION TREE CLASSIFICATION

After using the comment below:

```
library(rpart)
myF <- MAIN ~ HCM2 + NUMBRANCH + SCH_DEG + PREDDEG + HIGHDEG +
CCBASIC + CCUGPROF + CCSIZSET
myData_dtree <- rpart(myF, data = training, method="class")
summary( myData_dtree)

# check the prediction
pred<-predict(myData_dtree, training[, c(2,3,5,6,7,10,11,12)], type="class")
confusionMatrix(table (pred, training$MAIN)),</pre>
```

We get the result on training data. We have 93% of accuracy on the training data. It is a good ressult. But we will see if the accuracy is high on the test data.

```
Confusion Matrix and Statistics
```

```
pred 0 1
0 1055 175
1 184 3920

Accuracy: 0.9327
95% CI: (0.9256, 0.9393)
No Information Rate: 0.7677
P-Value [Acc > NIR]: <2e-16

Kappa: 0.8108

Mcnemar's Test P-Value: 0.6729

Sensitivity: 0.8515
Specificity: 0.9573
Pos Pred Value: 0.8577
Neg Pred Value: 0.8577
Neg Pred Value: 0.9552
Prevalence: 0.2323
Detection Rate: 0.1978
Detection Prevalence: 0.2306
Balanced Accuracy: 0.9044

'Positive' Class: 0
```

We have the tree is like:

After I apply the below code, I saw that accuracy is still high. That means our model did not overfit. So, we have a good model for now.

```
# predict on test data
```

testPred <- predict(myData_dtree, testing,type="class")</pre>

testPred

```
testPred
      0
    343
           70
     54 1311
   Accuracy: 0.9303
95% CI: (0.9174, 0.9417)
No Information Rate: 0.7767
   P-Value [Acc > NIR] : <2e-16
                  карра: 0.8018
Mcnemar's Test P-Value: 0.178
            Sensitivity: 0.8640
            Specificity
         Pos Pred Value :
                           0.8305
         Neg Pred Value :
                           0.9604
             Prevalence :
         Detection Rate: 0.1929
  Detection Prevalence: 0.2323
     Balanced Accuracy: 0.9066
       'Positive' Class: 0
```

4.2 KNN

This is the second classification algorithm that I used.

KNN is a distance based algorithm. If we have different variables with varied scale (one variable which ranges from 1 to 100 and another variable ranges from 1 to 1,00,000), it would be difficult for the model to calculate distance for each and every point. In order to avoid these kind of scenarios, normalization is used. In order to normalize the data we have to convert it to numeric. Below code is doing that.

```
for(i in 1:20){
  if(!is.numeric(myData[,i]))
  {
   myData[,i] <- as.numeric(myData[,i])
  }
 }
```

After that, normalization function is created:

```
normalize <- function(x) {
 return ((x - min(x)) / (max(x) - min(x)))
```

Then, I will apply the normalization function to our dataset using the below code:

```
myData n <- as.data.frame(lapply(myData[,c(2,3,5,6,7,10,11,12)], normalize))
```

I will divide the prc_n data frame into prc_train and prc_test data frames for training and testin data.

```
myData_train <- myData_n[1:5000,]
myData_test <- myData_n[5001:7112,]
myData_train_labels <- myData[1:5000, 4]
myData_test_labels <- myData[5001:7112, 4]</pre>
```

We again need certain packages to use the necessary functions:

```
install.packages("class") #for knn
install.packages("Rtools")
library(class)
library(caret)
```

Now, we can do prediction by using the code below:

```
prc_test_pred <- knn(train = myData_train, test = myData_test,cl =
myData_train_labels, k=20)</pre>
```

```
myData_test_labels
myData_test_labels
1 2
1 1129 0
2 0 983
```

table(myData test labels,myData test labels)

> table(myData_test_labels,myData_test_labels)

Above function shows that we made a good prediction and a good model.