Classic methods

November 18, 2016

Agenda

- 1 Metrics
- 2 Support vector machines
- 3 Decision trees, random forest
- 4 Clusterisation. K-means
- 5 Dimension reduction. PCA

Useful resources

- 1 Coursera. Machine learning (Andrew Ng)
- 2 Coursera. Введение в машинное обучение (Higher School of Economics)

Metrics

- 1 Accuracy
- 2 Precision, recall
- 3 Confusion matrix
- 4 F-measure
- 5 PR-curve
- 6 Area under PR-curve
- 7 Area under ROC

Accuracy

$$\frac{1}{m}\sum_{i=1}^m[a(x_i)=y_i]$$

- Intuitive
- Have problems with unbalanced sets

Confusion matrix

	y = 1	y = 0
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = 0	False Negative (FN)	True Negative (TN)

$$accuracy = \frac{TP+TN}{TP+FP+FN+TN}$$

Confusion matrix

	Spam (Predicted)	Non-Spam (Predicted)	Accuracy
Spam (Actual)	27	6	81.81
Non-Spam (Actual)	10	57	85.07
Overall Accuracy			83.44

Precision, recall. F-measure

How many selected items are relevant?

How many relevant items are selected?

$$precision = rac{TP}{TP+FP} \ recall = rac{TP}{TP+FN}$$
 $F_1 = rac{2 \cdot precision \cdot recall}{precision + recall}$

PR - curve

ROC

Metrics

- 1 Accuracy simple, but may be not objective
- 2 Precision, recall more complex, objective
- 3 Confusion matrix allows to see confusion between categories
- 4 F-measure one metric for precision and recall
- 5 PR-curve allows to choose the threshold
- 6 Area under PR-curve
- Area under ROC

$$f(x) = w^T \cdot x + b$$

hinge loss =
$$max(0, 1 - y_i \cdot f(x_i))$$

Kernel types:

- Polynomial
- Radial basis function
- Gaussian radial basis function
- Sigmoid

- Find optimal solution
- Have problems with big datasets

Decision trees

Decision trees. ID3 algorithm

```
ID3 (Examples, Target Attribute, Attributes)
Create a root node for the tree
If all examples are positive, Return the single-node tree Root, with label = +.
If all examples are negative, Return the single-node tree Root, with label = -.
If number of predicting attributes is empty, then Return the single node tree Root,
with label = most common value of the target attribute in the examples.
Otherwise Begin
   A ← The Attribute that best classifies examples.
    Decision Tree attribute for Root = A.
   For each possible value, v_i, of A,
        Add a new tree branch below Root, corresponding to the test A = v_i.
        Let Examples (v_i) be the subset of examples that have the value v_i for A
        If Examples(v:) is empty
            Then below this new branch add a leaf node with label = most common target value in the examples
        Else below this new branch add the subtree ID3 (Examples(v_i), Target Attribute, Attributes – {A})
End
Return Root
```

Decision trees. Entropy

Entropy =
$$-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$$

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

= 0.94

Play Golf	
Yes	No
9	5
	ī

Entropy(PlayGolf) = Entropy (5,9) = Entropy (0.36, 0.64) = - (0.36 log₂ 0.36) - (0.64 log₂ 0.64)

Decision trees. Information gain

		Play Golf	
		Yes	No
Outlook	Sunny	3	2
	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

		Play Golf	
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1
Gain = 0.029			

Gain(T, X) = Entropy(T) - Entropy(T, X)

Decision trees

- Interpreted
- Possible to apply to data with missing values

Random forest

Random forest

- Good with big dimension data
- Easy to parallel and scale

Cluster analysis. Types

- Hierarchical (Complete-linkage clustering)
- Centroid-based (K-means)
- Distributed-based (expectation—maximization (EM) algorithm)
- Density-based clustering (DB-SCAN)

Clusterisation. K-means

Clusterisation. K-means

Clusterisation. K-means

- Simple
- Fast
- Need to know number of clusters (unknown optimal number)
- Don't achieve global minimum

Dimension reduction. PCA

Dimension reduction. PCA

Dimension reduction. PCA

- Works with big datasets
- Works poorly with nonlinear space