8.2 Area of a surface of revolution

1. surface area formula 表面公式 $S = \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} \ dx$

Cylinder 圓柱

The surface area A of a cylinder with radius r and height h is $2\pi rh$.

Cone 圓錐

The surface area of a circular cone with base radius r and slant height ℓ is $\pi r \ell$.

Note: 扇面積= $\frac{1}{2}$ 半徑 2 ×夾角.

Band 帶

The surface area of a band (frustum 截頭 of a cone) with upper and lower radii r_1 and r_2 and slant height ℓ is $2\pi r\ell$, where $r = \frac{r_1 + r_2}{2}$.

Note: 把圓錐想成 $r_1 = 0 \& r_2 = r$ 的帶, 代入可得圓錐表面積公式.

Revolution 旋轉體

Rotating the curve of y = f(x) from a to b about x-axis. 怎麼算? 切成 n 段用帶子 (band) 來估計 (不是用圓柱).

把 [a,b] 分成 n 等分, $\Delta x = \frac{b-a}{n}$, $x_i = a + i\Delta$, $P_i(x_i, y_i = f(x_i))$. The area of i-th band is

$$S_i = 2\pi \frac{y_{i-1} + y_i}{2} \underbrace{|P_{i-1}P_i|}_{[斜邊長]}$$

$$\therefore |P_{i-1}P_i| = \sqrt{1 + [f'(x_i^*)]^2} \Delta x \text{ (by MVT, } \exists x_i^* \in [x_{i-1}, x_i]),$$
and when Δx small, $y_{i-1} \approx f(x_i^*) \approx y_i$, $\frac{y_{i-1} + y_i}{2} \approx f(x_i^*)$. (*)

Then the surface area S of the revolution is

$$S \approx \sum_{i=1}^{n} S_{i} = \sum_{i=1}^{n} 2\pi f(x_{i}^{**}) \sqrt{1 + [f'(x_{i}^{*})]^{2}} \Delta x$$
 不是黎曼和
$$\approx \sum_{i=1}^{n} 2\pi f(x_{i}^{**}) \sqrt{1 + [f'(x_{i}^{**})]^{2}} \Delta x.$$
 是黎曼和

Note: (*) 更嚴僅的來說, :: f is continuous, by Locating Root (勘根定理),

$$\exists \ x_i^{**} \in [x_{i-1}, x_i] \ni f(x_i^{**}) = \frac{f(x_{i-1}) + f(x_i)}{2} = \frac{y_{i-1} + y_i}{2}. \ x_i^{**} \ \text{π-$\sharp \& x_i^*}.$$

But :: f' is continuous, when $n \to \infty$,

$$\implies \Delta x \to 0$$

$$\implies x_i^* \to x_i^{**},$$

0.1 Surface area formula

Define: Let S denote the **surface area** of the surface obtained by rotating the curve y = f(x) from a to b, assuming f is positive and has a continuous derivative (smooth) on [a, b], about the **x-axis**, is

$$S = \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} dx$$
 不建議背

$$= \int_a^b 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \ dx = \int_a^b 2\pi y \ ds$$

Note: If x = g(y) from c to d about **y-axis**, it is

$$egin{array}{c} oldsymbol{S} &=& \int_c^d 2\pi g(y) \sqrt{1+[g'(oldsymbol{y})]^2} \; doldsymbol{y} \end{array}$$
 | 不建議背

$$= \int_{c}^{d} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} \, dy = \int_{c}^{d} 2\pi x \, ds$$

Recall:
$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \ dx = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \ dy$$
.

Attention: 不管繞 x-axis 或 y-axis, 跟弧長一樣, 可以對 x 積分, 也可以對 y 積分, 重點在半徑: 繞 x-axis, 半徑是 y; 繞 y-axis, 半徑是 x. 課本的公式 $\int 2\pi f(x)\sqrt{\cdots} dx$ 只針對繞 x-axis, 繞其他線就不對; 所以不建議背.

Example 0.1 Find the area of surface obtained by rotating the curve $y = \sqrt{4-x^2}$, $-1 \le x \le 1$ about the x-axis.

$$S = \int 2\pi y \ ds$$
(繞 x-axis, 半徑是 y.)

(對
$$x$$
 積分, 要寫成 $y = f(x)$, ds 變出 dx)

$$\frac{dy}{dx} = \frac{-x}{\sqrt{4-x^2}}, \ ds = \sqrt{1+(\frac{dy}{dx})^2} \ dx = \sqrt{1+\frac{x^2}{4-x^2}} = \frac{2}{\sqrt{4-x^2}} \ dx,$$

$$\therefore S = \int_{-1}^{1} 2\pi \sqrt{4 - x^2} \frac{2}{\sqrt{4 - x^2}} dx = 4\pi \int_{-1}^{1} dx = 4\pi (2) = 8\pi.$$

Example 0.2 Find the area of surface obtained by rotating the parabola $y = x^2$ from (1,1) to (2,4) about the y-axis.

[Sol 1] (對 y 積分: $y = x^2$ 不是 x = g(y) 型式, 要解反函數; ds 變出 dy.) $x = \sqrt{y}$, $1 \le y \le 4$, $\frac{dx}{dy} = \frac{1}{2\sqrt{y}}$, $ds = \sqrt{1 + (\frac{dx}{dy})^2}$ $dy = \sqrt{1 + \frac{1}{4y}}$ dy.

$$\therefore S = \int_{1}^{4} 2\pi \sqrt{y} \sqrt{1 + \frac{1}{4y}} \, dy = \pi \int_{1}^{4} \sqrt{4y + 1} \, dy$$

(變數變換 $Let \ u = 4y + 1, \ 5 \le u \le 17, \ du = 4 \ dy.$)

$$= \frac{\pi}{4} \int_{5}^{17} \sqrt{u} \ du = \frac{\pi}{4} \left[\frac{2}{3} u^{3/2} \right]_{5}^{17} = \frac{\pi}{6} (17\sqrt{17} - 5\sqrt{5}).$$

[Sol 2] (對 x 積分: ds 變出 dx.)

$$y = x^2, \ 1 \le x \le 2, \ \frac{dy}{dx} = 2x, \ ds = \sqrt{1 + (\frac{dy}{dx})^2} \ dx = \sqrt{1 + 4x^2} \ dx.$$

$$\therefore S = \int_{1}^{2} 2\pi x \sqrt{1 + 4x^2} \ dx$$

(變數變換 $Let u = 1 + 4x^2$, $5 \le u \le 17$, du = 8x dx.)

$$= \frac{\pi}{4} \int_{5}^{17} \sqrt{u} \ du = \frac{\pi}{4} \left[\frac{2}{3} u^{3/2} \right]_{5}^{17} = \frac{\pi}{6} (17\sqrt{17} - 5\sqrt{5}).$$

Example 0.3 Find the area of surface obtained by rotating the curve $y = e^x$, $0 \le x \le 1$ about the x-axis.

$$S = \int 2\pi y \, ds \, \dots \, (ext{iff} x - axis, * ext{iff} y, * ext{iff} x - axis, * ext{iff} y, * ext{iff} x - axis, * ext{iff} x - axis$$

Skill: 畫圖找半徑列式 $S = \int 2\pi y \ ds$ (直繞) 或 $S = \int 2\pi x \ ds$ (平繞), 再看要積誰把 ds 變出 dx (要把 y 變成 x 的函數) 或 dy (要把 x 變成 y 的函數).

♦ Additional: Gabriel's Horn

曲線 $y = \frac{1}{x}, x \ge 1$ 繞 x-軸的旋轉體稱爲加百列的號角/托里拆利小號 (Gabriel's Horn/Torricelli's trumpet), 由義大利物理&數學家托里拆利 (Evangelista Torricelli) 所發明 (也發明氣壓計)。

▲《啟示錄 (Revelation)》中寫到: 大天使加百列 (Archangel Gabriel) 吹響 號角宣告審判日 (Judgment Day) 的到來。

♡ 有限體積: (Exercise 7.8.63)

$$V = \int_{1}^{\infty} \frac{\pi}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\pi}{x^{2}} dx = \lim_{t \to \infty} \left[-\frac{\pi}{x} \right]_{1}^{t} = \pi - \lim_{t \to \infty} \frac{\pi}{t} = \pi.$$

♣ 漆匠的矛盾 (Painter's paradox): 裝得滿 Gabriel's horn 的油漆卻塗 不滿它的內壁表面。