

Universidade de Brasília

RELATÓRIO DE ATIVIDADE DO MÓDULO 3 MÉTODOS NUMÉRICOS PARA ENGENHARIA

Ajuste de Curvas

Aluno: Wilton Rodrigues

Matrícula: 13/0049212

9 de outubro de 2016

1 Introdução

O objetivo deste relatório é exercitar os conceitos aprendidos em aula, com relação ao tópico: Ajuste de Curvas. Que tem como objetivo prover métodos matemáticos capazes de prover soluções para situações em que conhece-se uma tabela de pontos (x_i, y_i) , onde cada y_i é obtido experimentalmente, e deseja-se obter a expressão analítica de uma dada curva y = f(x) que melhor se ajusta a esse conjunto de pontos. O problema a ser solucionado é o que trata de placas de orifício com bordas em canto, que são utilizadas na medição da vazão de fluídos através de tubulações.

Figura 1: Placa de orifício com bordas em canto

A figura acima mostra uma placa de orifício que tem os seguintes parâmetros representativos: a área A da seção reta do orifício, a área A_L da seção reta da tubulação e $A_2 = CA$ que é a seção reta no ponto de maior concentração após o orifício. O coeficiente C está em função da vazão $\frac{A}{A_1}$, e os valores, obtidos experimentalmente, estão na tabela abaixo:

$\frac{A}{A_1} = x_i$	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
$C = y_i$	0.62	0.63	0.64	0.66	0.68	0.71	0.76	0.81	0.89	1.00

Tabela 1: Valores experimentais

A solução do problema se dará fazendo $x=\frac{A}{A_1}$, aproximando a função C(x) pela função $a_0+a_1x+a_2x^2$ utilizando o método dos mínimos quadrados e solucionando o sistema resultante pelo método de eliminação de Gauss-Jordan. Além de apresentar um gráfico do polinômio obtido e dos pontos da tabela, e comparando os valores do polinômio com os valores da tabela.

2 Metodologia

Baseando-se no método dos mínimos quadrados, primeiramente iremos organizar nossos dados experimentais de acordo com a notação exigida pelo método. Que para uma função polinomial de grau 2 fica da seguinte maneira:

$$nA + \left(\sum_{i=1}^{n} x_i\right) B + \left(\sum_{i=1}^{n} x_i^2\right) C = \sum_{i=1}^{n} y_i$$

$$\left(\sum_{i=1}^{n} x_i\right) A + \left(\sum_{i=1}^{n} x_i^2\right) B + \left(\sum_{i=1}^{n} x_i^3\right) C = \sum_{i=1}^{n} x_i y_i$$

$$\left(\sum_{i=1}^{n} x_i^2\right) A + \left(\sum_{i=1}^{n} x_i^3\right) B + \left(\sum_{i=1}^{n} x_i^4\right) C = \sum_{i=1}^{n} x_i^2 y_i$$
(1)

Onde n é a quantidade de valores experimentais que se pretende avaliar.

Assim que todos os cálculos necessários da equação (1) são feitos podemos simplificar a equação colocando-a na forma matricial. Onde obtemos nossas matrizes de valores, coeficiente e resultados:

$$\begin{bmatrix} 10 & 5,5 & 3,85 \\ 5,5 & 3,85 & 3,025 \\ 3,85 & 3,025 & 2,533 \end{bmatrix} * \begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} 7,39 \\ 4,388 \\ 3,233 \end{bmatrix}$$
 (2)

Como pode ser conferido de forma mais detalhada na tabela a seguir:

i	x	y	x^2	x^3	x^4	xy	x^2y
1	0,100	0,630	0,010	0,001	0,000	0,063	0,006
2	0,200	0,630	0,04	0,008	0,002	$0,\!126$	0,025
3	0,300	0,630	0,09	0,027	0,008	$0,\!189$	0,057
4	0,400	0,650	0,16	0,064	0,026	0,260	0,104
5	0,500	0,670	$0,\!25$	0,125	0,063	0,335	0,168
6	0,600	0,710	0,36	0,216	0,130	$0,\!426$	0,256
7	0,700	0,760	0,49	0,343	0,240	0,532	0,372
8	0,800	0,820	0,64	0,512	0,410	0,656	0,525
9	0,900	0,890	0,81	0,729	0,656	0,801	0,721
10	1,000	1,000	1,00	1,000	1,000	1,000	1,000
	5,500	7,390	3,850	3,025	2,533	4,388	3,233

Tabela 2: Valores utilizados na equação (1)

A partir do sistema (2) podemos pegarmos a matriz de valores juntamente com a matriz de resultados e assim teremos a matriz aumentada MA:

$$\begin{bmatrix} 10 & 5,5 & 3,85 & \vdots & 7,39 \\ 5,5 & 3,85 & 3,025 & \vdots & 4,388 \\ 3,85 & 3,025 & 2,533 & \vdots & 3,233 \end{bmatrix}$$
 (3)

Com a MA finalizada, utilizaremos seus valores para encontrar os valores referentes à matriz dos coeficientes. Para isso usaremos o método da simplificação de Gauss-Jordan, que já foi usado no módulo anterior e é descrito nas próximas seções.

3 Diagrama esquemático de execução

Nesta seção, encontra-se o fluxo de execução do sistema proposto na equação (2) utilizando a linguagem C. Que é apresentada na próxima sessão.

Figura 2: Fluxo de execução da solução

A solução elaborada neste relatório funciona da seguinte maneira. É necessário inserir a quantiade de linhas do sistema de equações lineares, em formato de matriz aumentada, que se quer resolver. Após isso o programa solicitará a inserção dos elementos de cada uma das linhas da matriz. Após completar a matriz de entrada o sistema irá fazer a diagonalização de acordo com o método de eliminação de Gaus-Jordan. Onde caso os índices i e j sejam diferentes, ou seja não fazem parte da diagonal principal, será aplicado o algoritmo de eliminação. Após haver apenas os elementos da diagonal principal, o método de solução se torna direto e com isso é possível encontrar os valores da incógnitas que se busca. As limitações do programa são entradas de matrizes de no máximo 10x10 e apenas para equações lineares.

4 Código Fonte

```
1 #include < stdio.h>
2 #include <locale.h>
3 double M[10][10], X[10], multiplier;
  void read_elements(){
     printf("Insira a quantidade de linhas da matriz aumentada: \n");
     scanf("%d",&n);
     printf("Insira os elementos da matriz aumentada:\n");
9
     for (int i = 1; i \le n; i++){
       printf("Elementos da %da linha\n", i);
11
       for (int j = 1; j <= (n + 1); j++){
12
         scanf("%lf",&M[i][j]);
13
14
     }
15
16
  void diagonalize_matrix(){
17
     for (int j = 1; j \le n; j++){
18
       for (int i = 1; i \le n; i++){
19
         if (i != j) {
20
            multiplier \, = M[\,i\,]\,[\,j\,] \ / \ M[\,j\,]\,[\,j\,]\,;
            for(int k = 1; k \le (n + 1); k++){
              M[\,i\,]\,[\,k\,] \ = M[\,i\,]\,[\,k\,] \ - \ multiplier \ * M[\,j\,]\,[\,k\,]\,;
24
25
26
27
28
  }
  void show_results(){
29
     printf("Os coeficientes que satisfazem o sistema são: \n");
30
       X[1] = M[1][n+1] / M[1][1];
31
       printf("A = \%.10lf \n", X[1]);
32
       X[2] = M[2][n+1] / M[2][2];
33
       printf("B = \%.10lf \ n", X[2]);
34
       X[3] = M[3][n+1] / M[3][3];
35
       printf("C = \%.10 lf \n", X[3]);
36
37
  int main()
39
40
     setlocale (LC_ALL,"");
41
42
     read_elements();
     diagonalize_matrix();
43
     show_results();
44
     return(0);
45
46
```

5 Resultados e discussões

Nesta seção discutiremos os resultados obtidos após a execução.

```
[0][wilton@asus]~/Workspace/Métodos Numéricos/solutions/m3/solution $ ./a.out
Insira a quantidade de linhas da matriz aumentada:
3
Insira os elementos da matriz aumentada:
Elementos da 1a linha
10 5,5 3,85 7,37
Elementos da 2a linha
5,5 3,85 3,025 4,3680
Elementos da 3a linha
3,85 3,025 2,5333 3,2134
Os coeficientes que satisfazem o sistema são:
A = 0,6523333333
B = -0,2437878788
C = 0,5681818182
[0][wilton@asus]~/Workspace/Métodos Numéricos/solutions/m3/solution $
```

Figura 3: Resultado da execução do programa

Após a execução do programa obtemos os valores dos coeficientes que resulta no seguinte polinômio:

$$C(x) = 0,6523 - 0,2438x + 0,5682x^{2}$$
(4)

O resultado encontrado a partir da solução proposta é condizente. Pois ao fazermos a comparação dos valores iniciais com os obtidos através da equação (4) encontramos valores bem próximos uns dos outros, como pode ser visto na tabela abaixo:

	Valores iniciais do experimento									
$\frac{A}{A_1}$	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
C	0.62	0.63	0.64	0.66	0.68	0.71	0.76	0.81	0.89	1.00
Valores obtidos após o método										
$\frac{A}{A_1}$	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
C	0.63	0.63	0.63	0.65	0.67	0.71	0.76	0.82	0.89	0.98

Tabela 3: Valores experimentais e de regressão

E também graficamente, como é mostrado abaixo:

Sendo assim, o objetivo proposto no início do relatório foi satisfatoriamente alcançado.

6 Ferramentas

Todas as ferramentas utilizadas neste relatório são ferramentas open source (software livre). Permitindo assim que qualquer um possa reproduzir e contestar as afirmações presentes neste documento.

- 1. Arch Linux (https://www.archlinux.org)
 - Sistema operacional utilizado.
- 2. GCC (https://gcc.gnu.org)
 - Compilador de C utilizado para compilar a solução.
- 3. Python (https://www.python.org)
 - Linguagem de programação utilizada para conferir os valores da solução.
- 4. vim (http://www.vim.org)
 - Editor de texto.
- 5. LATEX (https://www.latex-project.org)
 - Sistema tipográfico de alta qualidade (utilizado para elaborar o relatório).
- 6. Gnuplot (http://www.gnuplot.info)
 - Utilitário de representação gráfica (utilizado para plotagem do gráfico).
- 7. UMLet (http://www.umlet.com)
 - Ferramenta de UML (utilizado para criar o fluxo de execução).
- 8. Shutter (http://shutter-project.org)
 - Programa de captura de tela (utilizado para capturar os resultados).