Signaux et systèmes Introduction à la conception de circuits numériques

Vianney Lapotre

Maître de conférences

<u>www.univ-ubs.fr</u> www-ensibs.univ-ubs.fr

Objectifs

- Rappels
 - Numérisation de l'information
 - Nombres binaires et Hexadécimaux
 - Algèbre de Boole
- Les composants numériques simples
 - Portes et circuits logiques
 - Multiplexeurs et démultiplexeurs
 - Bascules
 - Registres
- Les éléments d'un processeur simple
- Le projet
- Évaluation

Rappels *Numérisation de l'information*

Échantillonnage

- Cette étape consiste à hacher le signal analogique en petites tranches temporelles selon une période bien définie par une horloge.
- L'amplitude (A) du signal au moment du top de l'horloge est prise comme référence pour cette tranche. C'est cette valeur qui sera codée.

Quantification

- Supposons que le signal soit compris entre 3 et -4 volts.
 Les valeurs correspondantes sur 3 bits sont :
 - 011 3V
 - 010 2V
 - 001 1V
 - 000 OV
 - 111 -1V
 - 110 -2V
 - 101 -3V
 - 100 -4V

 les valeurs de l'Echantillonneur sont remplacées par un codage binaire après arrondi.

Rappels *Représentation des nombres binaires*

Nombres positifs (1)

- Coder un nombre avec seulement deux symboles, généralement les deux chiffres 0 et 1
 - On note (11001)₂ afin de ne pas confondre avec 11001 (onze mille un)

Binaire	Décimal
0	$0 = 0 \times 2^{\circ}$
1	$1 = 1 \times 2^{\circ}$
10	$2 = 1x2^{1} + 0x2^{0}$
11	$3 = 1x2^1 + 1x2^0$
100	$4 = 1x2^{2+} 0x2^{1} + 0x2^{0}$
101	$5 = 1x2^{2+} 0x2^{1} + 1x2^{0}$
110	$6 = 1 \times 2^{2+} 1 \times 2^{1} + 0 \times 2^{0}$
111	$7 = 1 \times 2^{2+} 1 \times 2^{1} + 1 \times 2^{0}$

Nombres positifs (2)

Passage de la notation décimale à la notation binaire

•
$$(23)_{10} = (010111)_2 = (10111)_2$$

(23) ₁₀	32 (2 ⁵)	16 (2 ⁴)	8 (2³)	4 (2²)	2 (2¹)	1 (2°)
= 0x32	0					
+ 1x16		1				
+ 0x8			0			
+ 1x4				1		
+ 1x2					1	
+ 1x1						1

Addition

- 1 bit + 1 bit
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 1 + 0 = 1
 - 1 + 1 = 10

$$5 = 1x4 + 0x2 + 1 => 101$$

 $7 = 1x4 + 1x2 + 1 => 111$
Somme bit à bit: 1100
Vérification du résultat:
 $1x8 + 1x4 + 0x2 + 0 = 12$
qui est bien égal à 5 + 7.

Nombres négatifs

- Les nombres positifs sont codés normalement tandis que les nombres négatifs sont codés selon leur complément à deux.
 - Du positif au négatif: inverser et ajouter 1.
 - Du négatif au positif: inverser et ajouter 1.

Poids en binaire	32	16	8	4	2	1	
Valeur en binaire	21	0	1	0	1	0	1
Inverser les bits		1	0	1	0	1	0
Ajouter 1	-21	1	0	1	0	1	1
Inverser les bits		0	1	0	1	0	0
Ajouter 1	21	0	1	0	1	0	1

Nombres à virgule fixe

$$x = -2^m S + \sum_{i=-n}^{m-1} b_i 2^i$$

Domaine de définition du codage :

$$D = [-2^m, 2^m - 2^{-n}]$$

Précision du codage Pas de quantification :

$$q = 2^{-n}$$

Nombres à virgule flottante

- L'exposant associé à la donnée est codée au sein de celle-ci
- Les données sont composées de deux parties
 - Exposant
 - Mantisse

Le codage dépend de la norme utilisée

Multiples (1)

- 1 tétrade ou Nibble: quatre bits
- 1 octet: 8 bits
- 1 ko (kilo-octets): 1 000 octets
- 1 Mo (Méga-octets): 1 million d'octets
- 1 Go (Giga-octets): 1 milliard d'octets.

Multiples (2)

Multiples normalisés [modifier | modifier le code]

kibi pour « kilo binaire »;

```
La normalisation des préfixes binaires de 1998 par la Commission électrotechnique internationale spécifie les préfixes suivants pour représenter les puissances de 2 :
```

```
mébi pour « méga binaire » ;
gibi pour « giga binaire » ;
tébi pour « téra binaire » ;
et ainsi de suite.
Concernant les multiples de l'octet, cela donne 5 :
1 kibioctet (Kio) = 2<sup>10</sup> octets = 1 024 octets
1 mébioctet (Mio) = 2<sup>20</sup> octets = 1 024 Kio = 1 048 576 octets
1 gibioctet (Gio) = 2<sup>30</sup> octets = 1 024 Mio = 1 073 741 824 octets
1 tébioctet (Tio) = 2<sup>40</sup> octets = 1 024 Gio = 1 099 511 627 776 octets
1 pébioctet (Pio) = 2<sup>50</sup> octets = 1 024 Tio = 1 125 899 906 842 624 octets
1 exbioctet (Eio) = 2<sup>60</sup> octets = 1 024 Pio = 1 152 921 504 606 846 976 octets
1 zébioctet (Zio) = 2<sup>70</sup> octets = 1 024 Eio = 1 180 591 620 717 411 303 424 octets
1 yobioctet (Yio) = 2<sup>80</sup> octets = 1 024 Zio = 1 208 925 819 614 629 174 706 176 octets
```

Les préfixes kilo, méga, giga, téra, etc. correspondent aux mêmes multiplicateurs que dans tous les autres domaines : des puissances de 10. Appliqué à l'informatique, cela donne :

```
1 kilooctet (ko) = 10<sup>3</sup> octets = 1 000 octets

1 mégaoctet (Mo) = 10<sup>6</sup> octets = 1 000 ko = 1 000 000 octets

1 gigaoctet (Go) = 10<sup>9</sup> octets = 1 000 Mo = 1 000 000 000 octets

1 téraoctet (To) = 10<sup>12</sup> octets = 1 000 Go = 1 000 000 000 000 octets

1 pétaoctet (Po) = 10<sup>15</sup> octets = 1 000 To = 1 000 000 000 000 000 octets

1 exaoctet (Eo) = 10<sup>18</sup> octets = 1 000 Po = 1 000 000 000 000 000 000 octets

1 zettaoctet (Zo) = 10<sup>21</sup> octets = 1 000 Eo = 1 000 000 000 000 000 000 000 octets

1 vottaoctet (Yo) = 10<sup>24</sup> octets = 1 000 Zo = 1 000 000 000 000 000 000 000 octets
```


Rappels *Représentation des nombres hexadécimaux*

Nombres Hexadécimaux positifs (1)

Coder un nombre avec 16 symboles

Hexa	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Décimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Conversion Hexadécimal / Décimal

Hexadécimal	Décimal
8	$8 = 8 \times 16^{\circ}$
С	12 = 12×16°
AC	$172 = 10 \times 16^{1} + 12 \times 16^{0}$
A5C	2652= 10x16 ²⁺ 5x16 ¹ +12x16 ⁰

Nombres Hexadécimaux positifs (2)

Conversion Hexadécimal / Binaire

Décimal		Bin	Have désimal		
Décimal	8 (23)	4 (2²)	2 (21)	1(2°)	Hexadécimal
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1	0	1	5
6	0	1	1	0	6
7	0	1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	A
11	1	0	1	1	В
12	1	1	0	0	С
13	1	1	0	1	D
14	1	1	1	0	E
15	1	1	1	1	F

Rappels *Algèbre de Boole*

Qu'es aquò?

- Goerge Boole (1815-1864) était un mathématicien autodidacte anglais
 - Il développa une algèbre permettant de manipuler les propositions logiques au moyen d'équations mathématiques où les énoncés VRAI et FAUX sont représentés par les valeurs 1 et 0, tandis que les opérateurs ET et OU deviennent des opérateurs algébriques de multiplication et d'addition

Notions théoriques (1)

- Un algèbre de Boole c'est :
 - Un ensemble noté E
 - Deux éléments particuliers de E : 0 et 1
 - Correspondant respectivement à FAUX et VRAI
 - Deux opérations binaire sur E : + et
 - Correspondant respectivement au OU et ET logiques
 - Une opération unaire sur E :
 - Correspondant à la négation logique

Notions théoriques (2)

- On acceptera les postulats suivant :
 - 0 0 = 0
 - 0 1 = 1 0 = 0
 - 1 1 = 1
 - 1 + 1 = 1
 - 1 + 0 = 0 + 1 = 1
 - 0 + 0 = 0
 - $\overline{0} = 1$
 - $\overline{1} = 0$

Notions théoriques (3)

- Des postulats précédant découlent les axiomes suivants
 - Soient a, b et c des éléments de E

Commutativité	a+b=b+a	a•b=b•a
Associativité	(a+b)+c=a+(b+c)	(a•b)•c=a•(b•c)
Distributivité	a•(b+c)=a•b+a•c	a+(b•c)=(a+b)•(a+c)
Élément neutre	a+0=a	a•1=a
Complémentation	a+a=1	a•a=0

Notions théoriques (4)

Quelques théorèmes de base mais indispensables

	Nom	Forme 1	Forme 2
1	Involution	$\overline{a} = a$	-
2	Idempotence	a+a=a	a•a=a
3	Élément absorbant	a+1=1	a•0=0
4	Absorption	a+a•b=a	a•(a+b)=a
5	De Morgan	a+b=a•b	a•b=a+b
6	-	a+(a•b)=a+b	a•(a+b)=a•b

Table de vérité (1)

- La table de vérité d'une fonction logique est un tableau énumérant les valeurs logiques d'une fonction pour les différentes combinaisons des valeurs de ses variables indépendantes
 - En circuits logiques, on parlera de correspondance entre la sortie et les entrées

Table de vérité (2)

Quelques exemples

S=A+B					
Α	В	S			
0	0	0			
0	1	1			
1	0	1			
1	1	1			

S=A•B				
Α	В	S		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

S=A+B					
Α	В	S			
0	0	1			
0	1	1			
1	0	1			
1	1	0			

S= A			
Α	S		
0	0		
1	1		

Table de vérité (3)

• À vous de jouer!

S=A•B+C+D						
Α	В	С	D	S		
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Table de vérité (3)

• À vous de jouer!

S=A•B+C+D					
Α	В	С	D	S	
0	0	0	0	1	
0	0	0	1	0	
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	0	
0	1	1	0	1	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

Les composants numériques simples Portes et circuits logiques

Portes logiques élémentaires (1)

Opérateur logique	Nom Français	Nom Anglais	Symbole (USA)	Table de vérité		
A•B	ET	AND	A — out	A B F 0 0 0 0 1 0 1 0 0 1 1 1		
A+B	OU	OR	Aout	A B F 0 0 0 0 1 1 1 0 1 1 1 1		

Portes logiques élémentaires (2)

Opérateur logique	Nom Français	Nom Anglais	Symbole (USA)	Table de vérité		
<mark>A•B</mark>	NON ET	NAND	A — out	A B F 0 0 1 0 1 1 1 0 1 1 1 0		
Ā+B	NON OU	NOR	A — out	A B F 0 0 1 0 1 0 1 0 0 1 1 0		

Portes logiques élémentaires (3)

Opérateur logique	Nom Français	Nom Anglais	Symbole (USA)	Table de vérité	
A⊕B = A•B+A•B	OU exclusif	XOR	A ——out	A B F 0 0 0 0 1 1 1 0 1 1 1 0	
Ā⊕B = Ā•B+A•B	NON OU exclusif	NXOR	A	A B F 0 0 1 0 1 0 1 0 0 1 1 1	

Portes logiques élémentaires (4)

Opérateur	Nom	Nom	Symbole	Table de vérité	
logique	Français	Anglais	(USA)		
Ā	NON	NOT	A—out	A 0 1	F 1 0

Portes logiques élémentaires (5)

Inversion des entrées

Portes logiques élémentaires (6)

Entrées multiples

Notion de synthèse de circuits logiques

- Soit $F=(A \cdot B) + (B \cdot C) + \overline{(C+A)}$
 - Le circuit logique correspondant est ?

Notion de synthèse de circuits logiques

- Soit $F=(A \cdot B)+(B \cdot C)+(C+A)$
 - Le circuit logique correspondant est :

De la table de vérité à la fonction logique (1)

Scénario

- Sas avec ouverture de porte automatique (simplifié)
 - C0 : capteur d'ouverture de la porte P0
 - ► C1 : capteur d'ouverture de la porte P1

	P1	P0	C1	C0
	0	0	0	0
✓ Fonction logique '	1	0	1	0
	0	1	0	1
en	1	0	1	1

De la table de vérité à la fonction logique (2)

- La forme normal disjonctive
 - Écrire l'équation sous la forme d'une somme de produits.
 - Pour cela, il faut repérer dans la table de vérité toutes les combinaisons pour lesquelles la(les) sortie(s) vaut(valent) 1.

C0	C1	P0	P1	
0	0	0	0	P0=C0•C1
0	1	0	1	
1	0	1	0	→ P1=(C0•C1)+(C0•C1)
1	1	0	1	

Les composants numériques simples (De)multiplexeur, bascule et registre

Multiplexeur (1)

- La sortie de ce circuit correspond à la sélection d'une entrée parmi N
 - La sélection est commandée par le signal S
 - Les signaux A,B et Z sont codés sur un nombre de bit identique

S ₀	Z
0	Α
1	В

Multiplexeur (2)

- Table de vérité pour 4 entrées
 - S codé sur 2 bits => 2² = 4

Ş	Z	
0	0	Α
0	1	В
1	0	С
1	1	D

Taille (en bits) du signal S pour 8, 12 et 32 entrées ?

Multiplexeur (3)

Les portes logiques au cœur de tout !

Source: https://fr.wikipedia.org/wiki/Multiplexeur#/media/File:4to1mux.png

Démultiplexeur

 Ce circuit permet de redistribuer sur plusieurs sorties les informations en provenance d'une entrée unique

S		Z0	Z1	Z2	Z3
0	0	I	0	0	0
0	1	0	- 1	0	0
1	0	0	0	- 1	0
1	1	0	0	0	I

Bascules (1)

- Une bascule est un circuit logique dont l'état de la sortie ne dépend pas toujours uniquement des entrées du circuit
- En effet, l'état de la sortie est maintenu même après la disparition du signal de contrôle
 - L'état précédent intervient donc dans le fonctionnement du circuit
 - On parle alors de logique séquentielle

Bascules (2)

- La bascule est l'élément de base de la logique séquentielle. Elle permet de construire :
 - Compteurs, registres, registres à décalage, mémoires...
- Il existe 2 familles de bascules
 - Asynchrone
 - La sortie peut changer d'état à tout moment dès qu'une entrée varie
 - Synchrone
 - La sortie ne peut changer d'état uniquement au rythme d'une horloge
 - Changement sur front ou sur niveau

Bascule Asynchrone RS (1)

2 entrées de contrôle

• **Set**: mise à 1

• Reset: mise à 0

2 sorties

• **Q** : sortie non-inversée

• **Q** : sortie inversée

Table de vérité

S	R	Q	Q	Remarque
0	0	Q	Q	mémoire
0	1	0	1	mise à 0
1	0	1	0	mise à 1
1	1	0	0	interdit

Bascule Asynchrone RS (2)

Chronogramme

S	R	Q	Q	Remarque
0	0	Q	Q	mémoire
0	1	0	1	mise à 0
1	0	1	0	mise à 1
1	1	0	0	interdit

Bascule synchrone D (1)

2 entrées de contrôle

• **D** : entrée de données

• C: Horloge

2 sorties

• Q_n : sortie non-inversée

• $\overline{\mathbf{Q}}_{\overline{n}}$: sortie inversée

Table de vérité

D	С	Q _n	$\overline{\mathbf{Q}}_{\overline{n}}$	Remarque	
0	1	0	1 Q recopie [
1	1	1	0	Q recopie D	
X	0	Q _{n-1}	$\overline{Q}_{\overline{n-1}}$	mémoire	
X	1	Q _{n-1}	$\overline{Q}_{\overline{n-1}}$	mémoire	

Bascule synchrone D (2)

Chronogramme

D	С	Q _n	$\overline{\mathbf{Q}}_{\overline{n}}$	Remarque	
0	↑	0	1	Q recopie D	
1	↑	1	0	Q recopie D	
X	0	Q _{n-1}	$\overline{Q}_{\overline{n-1}}$	mémoire	
X	1	Q _{n-1}	$\overline{Q}_{\overline{n-1}}$	mémoire	

Bascules (3)

- Il existent d'autres bascules
 - Asynchrone
 - ► RS, Verrou D, RSH-RST
 - Synchrone
 - ▶ D, JK, T, Bascule de Schmitt

Registres

Un registre N-bits peut être réalisé à l'aide de N bascules

Les éléments d'un processeur simple

Vision abstraite du processeur

- Registres = emplacements de stockage d'accès rapide
- UAL : unité de calcul (entiers et booléens)
- FPU : unité de calcul sur les « réels »
- Unité de contrôle : interprète les instructions
- Horloge : cadence le processeur (fréquence en MHz/GHz)

UAL

- Unité chargée
 - des opérations arithmétiques
 - ► ADD (+), SUB (-), MUL (*), DIV (:), INC (+1), DEC (-1)
 - des opérations logiques
 - AND, OR, XOR, NOT, CMP
 - LSL, LSR, ASR (décalages)

Vision abstraite d'un ordinateur

- Bus: nappe de fils conduisant l'information
 - Bus de données
 - Bus d'adresses
 - @ d'un élément requis par le processeur
 - @ où écrire un élément envoyé par le processeur
 - Bus de contrôle
 - Transporte les informations de contrôle entre le processeur et les autres éléments

Le projet

Logisim

http://www.cburch.com/logisim/

Le projet

- 12H de TD/TP
 - Réalisation d'un processeur simple

Évaluation

Évaluation

- 1 évaluation écrite en fin de module
 - Avant dernière ou dernière séance de TD/TP
 - ~ 1H
 - Question de cours
 - Algèbre de Boole et table de vérité
 - Composants numériques simples
 - Portes logiques et Bascules
 - Chronogrammes
- Évaluation du projet
 - Un rapport écrit → 1/4
 - Réalisation → 3/4

