EXAMPLE Cross-section for screened Coulomb potential: V(r) = Q1Q2 e-r/r.

1. According to Eq. (31), the relevant Fourier amplitude is ...

$$\begin{bmatrix}
\widetilde{V}(q) = \frac{4\pi}{q} Q_1 Q_2 \int_0^{\infty} e^{-r/r_0} \sin q r \, dr = \frac{4\pi Q_1 Q_2}{q^2 + (1/r_0^2)} \int_0^{\infty} \frac{1}{k^2 = 2mE/\hbar^2}; \\
Solv \widetilde{V}(q) = \frac{\pi k^2}{2mE} Q_1 Q_2 / \left[\sin^2 \frac{\theta}{2} + (1/\rho^2) \right], \quad \underline{\rho} = 2kr_0.$$
(32a)

Zi E is the incident energy of m (in CM cds). The differential cross-section is ...

$$\rightarrow \frac{d\sigma}{d\Omega} = \left[\frac{m}{2\pi k^2} |\widetilde{V}(q)|\right]^2 = \left(\frac{Q_1 Q_2}{4E}\right)^2 / \left[\sin^2 \frac{\theta}{2} + \frac{1}{\rho^2}\right]^2 (32b)$$

This cross-section is finite for all scattering \$50 50 long as the Seveening length to is finite; it behaves as sketched at right. If To > 00, 50 that we have a pure Contomb scattering, then p >> 00, and (32b) gives...

$$\rightarrow \frac{d\sigma}{d\Omega} = \left(\frac{Q_1 Q_2}{4E}\right)^2 / \sin^4(\theta/2), \text{ for } r_0 \rightarrow \infty \text{ (Contomb)}, (32c)$$

 $\frac{d\sigma}{d\Omega} = \frac{2mr^2}{t^2} Q_1 Q_2^2$ $\frac{d\sigma}{d\Omega} = \frac{(d\sigma/d\Omega)_{max}}{(1+\rho^2)^2}$

This is recognized as the Rutherford cross-section, and is exactly the same as the result calculated by classical means (for scattering of Q1 by Q2 interacting via a Coulomb force Q1Q2/r2).

- 3. The total scattering cross-section is: $\sigma = \int_{4\pi} (d\sigma/ds2) d\Omega$, integrated over all 4π solid Δ . For spherical symmetry: $d\Omega = 2\pi \sin\theta d\theta = 8\pi \sin\frac{\theta}{2} d\sin\frac{\theta}{2}$, so for the screened Conlomb case in (32b) [for all scattering, $0 \le \theta \le \pi$]:

σ diverges if the screening length $r_0 → ω$. But, for an electron-in scatter- (32d) ing $|Q_1| = e$, $Q_2 = Ze$) screened at $r_0 \sim a = h^2/Zme^2$, get: $σ = 16πa^2/[1 + 8(\frac{E}{Ze^2/a})]$. At high E, have: $σ = 2πa^2[(Ze^2/a)/E]$. The E-falloff is observed in the lab.

* See e.g. Fetter & Walecka" Theoretical Mechanics" (McGraw-Hill, 1980), Eq. (5.28).