代数幾何まとめノート

Fefr

2024年8月6日

目次

第1章	Scheme	5
1.1	Zariski Topology	5
1.2	Algebraic Sets	5
1.3	Sheaves	6
	1.3.1 3 -sheaf	13
1.4	Ringed Topological Space	15
1.5	Schemes	17
	1.5.1 Morphism of schemes	21
付録 A	Limit	25
Λ 1	Industive Limit	25

Scheme

第1章

1.1 Zariski Topology

 $\operatorname{Spec} A$ を幾何的な対象に昇華するために、位相を導入しよう. まず、環 A のイデアル I に対して

$$\begin{split} V(I) &= \{ \mathfrak{p} \in \operatorname{Spec} A \mid I \subset \mathfrak{p} \} \\ D(I) &= \operatorname{Spec} A \setminus V(I) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid I \not\subset \mathfrak{p} \} \end{split}$$

更に, $f \in A$ に対して

$$\begin{split} V(f) &= \{ \mathfrak{p} \in \operatorname{Spec} A \mid Af \subset \mathfrak{p} \} \\ D(f) &= \operatorname{Spec} A \setminus V(Af) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid Af \not\subset \mathfrak{p} \} \end{split}$$

と定義する. また, $Af \subset \mathfrak{p}$ より $af \in Af$ は $af \in \mathfrak{p}$ なので, a=1 とすれば $f \in \mathfrak{p}$ がわかり, イデアルの定義より,

$$\begin{split} V(f) &= \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \in \mathfrak{p} \} \\ D(f) &= \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \notin \mathfrak{p} \} \end{split}$$

がわかる.次に $\{D(f)\}_{f\in A}$ を開集合族とする位相が定まることを示そう.

Proposition 1.1.1. ああああ

1.2 Algebraic Sets

atodekakuyo

1.3 Sheaves

Definition 1.3.1. X を位相空間とする.X 上の (P - ベル群の) **前層** (presheaf) \mathcal{F} とは次のデータ

- -Uを任意のXの開集合に対して $\mathfrak{F}(U)$ はアーベル群.
- 制限写像 (restriction map) と言われる群準同型 $\rho_{U,V}: \mathfrak{F}(U) \to \mathfrak{F}(V)$ が任意の開集合 $V \subset U$ に対して存在する.

そして次の条件を満たす.

- (1) $\rho_{U,U} = \mathrm{id}_{\mathfrak{F}(U)}$
- (2) 任意の開集合 $W \subset V \subset U$ に対して $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$ となる.

 $s \in \mathfrak{F}(U)$ を U 上の \mathfrak{F} の切断 (section) という. また, $\rho_{U,V}(s) \in \mathfrak{F}(V)$ を $s|_V$ と書いて s の V への制限という.

また、単に \mathfrak{F} , \mathfrak{G} , \mathfrak{H} ,... などと書いたら(前)層を表すことや、 ρ と書いたら制限写像を意味する。また、どの(前)層の制限写像かを明示するため、例えば、 $\rho_{UV}^{\mathfrak{F}}$ などと書くことがある。

Definition 1.3.2. 前層 牙が層 (sheaf) とは次の条件を満たすことをいう.

- (4) (Uniqueness) U を X の開集合とし $\{U_i\}_i$ をその開被覆とする. $s \in \mathcal{F}(U)$ が任意 の i に対して $s|_{U_i}=0$ ならば s=0
- (5) (Glueing local sections) 上の状況で $s_i \in \mathcal{F}(U_i)$ が $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ を満たすならば $s_i|_{U_i} = s_i$ を満たす $s_i \in \mathcal{F}(U)$ が存在する.

Remark . \mathfrak{F} が層ならば $\mathfrak{F}(\emptyset) = 0$ となる.

Example 1.3.1. *X* を位相空間とする.

 \mathcal{C}_X^0 を X の開集合 U に対して $U \to \mathbf{C}$ なる連続写像全体の集合 $\mathcal{C}_X^0(U)$ を対応させるものとし、制限写像を普通の制限とする.

$$\mathcal{C}_X^0(U) = \{ f : U \to \mathbf{C} \mid f \text{ is continuous} \}$$

すると, \mathcal{C}_X^0 はX上の層となる.

Proof. $V \subset U$ なる開集合 U,V に対して U 上の連続写像 $f \in \mathcal{C}_X^0(U)$ を V に制限することによって得られる V 上の連続写像を $\rho_{U,V}(f)(=f|_V)$ と書く. すると、これは \mathbf{C} 上のベクトル空間 (\mathbf{C} 上の関数空間) の準同型 $\rho_{U,V}:\mathcal{C}_X^0(U) \to \mathcal{C}_X^0(V)$ となる. つまり

 $(\mathcal{C}_{x}^{0}, \rho)$ は前層となる.

また、(4) を満たすのは明らかで、(5) もすぐに成り立つことがわかる、 $\{U_i\}_i$ を U の開被覆とする、 $f_i \in \mathcal{C}^0_X(U_i)$ が $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ を満たすとする. するとそれらを張り合わせた関数を f とすればこれは $f \in \mathcal{C}^0_X(U)$ であり、 $f|_{U_i} = f_i$ となる. よって (\mathcal{C}^0_X, ρ) は層となる. これを連続写像が成す層という.

Example 1.3.2. *X* を位相空間とする.

Aを自明でないアーベル群とする. A_X を X の空でない開集合 U に対して $A_X(U) = A$ に、空集合 \varnothing に対して $A_X(\varnothing) = 0$ に対応させるものとし、制限写像を空でない開集合 $V \subset U$ に対して $\rho_{U,V} = \mathrm{id}_A$ とし, $\rho_{U,\varnothing} = 0$ とする.

すると, (A_X, ρ) は X 上の前層にはなるが, 一般に層とはならない.

Proof. 例えば,X が連結でないとすると、非交差な開集合 U,V があって $X=U\cup V$ とかける. すると $\{U,V\}$ は X の開被覆となる. $s_U\in\mathcal{A}_X(U)=A$ が $s_U|_{U\cap V}=s_U|_{\varnothing}=0=s_V|_{U\cap V}$ を満たすとする. このとき、任意の $s\in\mathcal{A}_X(X)=A$ で $s|_U=s|_V=s$ となり層とならない.

Example 1.3.3. (skyscraper sheaf)

X を位相空間、A をアーベル群とする。 $p\in X$ に対して $i_p:\{p\}\hookrightarrow X$ を包含写像とする。このとき $i_{p,*}A$ を

$$i_{p,*}\mathcal{A}(U) = \begin{cases} A & p \in U \\ 1 & p \notin U \end{cases}$$

と定義する。これは層になる。

Definition 1.3.3. 位相空間 X 上の前層 \mathfrak{F} と $x \in X$ に対して,x での \mathfrak{F} の**茎 (stalk)** \mathfrak{F}_x という群が定義できる.

$$\mathcal{F}_x = \varinjlim_{U \ni x} \mathcal{F}(U)$$

ただし,U は x の開近傍をすべてを回る.U 上の切断 $s \in \mathfrak{F}(U)$ に対して $x \in U$ の茎 \mathfrak{F}_x への自然な群準同型の像を s_x と書いて,x での s の**芽 (germ)** という.

Remark.ここで、 \mathcal{F}_x は x 近傍の情報を持っていると言える. 実際、

$$\mathfrak{F}_x = \bigsqcup_i U_i / \sim \cdots (*)$$

ここで,同値関係は

$$(t,U) \sim (s,V) \stackrel{\text{def}}{\equiv} \exists W \subset U, V, x \in W \text{ s.t. } t|_W = s|_W$$

である. ただし、(t,U) とは x の開近傍 U で $t \in \mathfrak{F}(U)$ という意味である. また (*) を見れば分かるように、 \mathfrak{F}_x の任意の元はある x 近傍 U 上の切断 $s \in \mathfrak{F}(U)$ の芽である.

Proposition 1.3.4. 層の定義の (4),(5) を次の列が完全系列であるとすることができる.

$$C^{\bullet}(\mathcal{U}, \mathcal{F}): 0 \longrightarrow \mathcal{F}(U) \xrightarrow{d_0} \prod_i \mathcal{F}(U_i) \xrightarrow{d_1} \prod_i \mathcal{F}(U_i \cap U_j)$$

ただし、 \mathfrak{U} は開集合U の開被覆で $\mathfrak{U} = \{U_i\}_i$.

 $d_0: s \mapsto (s|_{U_i})_i, d_1: (s_i)_i \mapsto (s_i|_{U_i \cap U_i} - s_j|_{U_i \cap U_i})_{i,j}$

Proof.

Lemma 1.3.5. \mathfrak{F} を X 上の層とする $.s,t\in\mathfrak{F}(X)$ が任意の $x\in X$ に対して $s_x=t_x$ ならば s=t

Proof. 差を考えれば t=0 のときを考えればいい. $s_x=0$ ($\forall x\in X$) とすると,x の開近傍 U_x があって $s|_{U_x}=0$ となる. $\{U_x\}_{x\in U_x}$ は X の開被覆なので,s=0 となる.

Definition 1.3.4. $X \perp 0$ 2 つの前層 \mathcal{F}, \mathcal{G} とする. **前層の射** $\alpha: \mathcal{F} \rightarrow \mathcal{G}$ とは,X の開集合 U に対して群準同型 $\alpha(U): \mathcal{F}(U) \rightarrow \mathcal{G}(U)$ があって, 任意の開集合の組 $V \subset U$ に対して $\alpha(V) \circ \rho_{UV}^{\mathcal{G}} = \rho_{UV}^{\mathcal{G}} \circ \alpha(U)$ を満たすことをいう.

X の任意の開集合 U に対して $\alpha(U)$ が単射ならば α は単射であるという.(全射はうまくいかんっぽい?)

 $\alpha: \mathcal{F} \to \mathcal{G}$ を X 上の前層の射とする. 任意の $x \in X$ に対して α から自然に誘導される群準同型 $\alpha_x: \mathcal{F}_x \to \mathcal{G}_x$ で $(\alpha(U)(s))_x = \alpha_x(s_x)$ が X の任意の開集合 $U, s \in \mathcal{F}(U), x \in U$ で成り立つものが取れる.

 α_x が任意の $x \in X$ で全射なら α が全射であるという.

Example 1.3.6. $X = \mathbb{C} \setminus \{0\}$ とし牙をX上の正則関数がなす層とし、gをX上の双正則関数のなす層とする。 今,任意の開集合U と任意の $f \in \mathcal{F}(U)$ に対して $\alpha(U)(f) = \exp(f)$ で定義される層の射 $\alpha: \mathcal{F} \to \mathcal{G}$ が全射であることはよく知られている。しかし $\alpha(X): \mathcal{F}(X) \to \mathcal{G}(X)$ は全射ではない.例えば恒等写像は $\exp(f)$ と書けない.

Proposition 1.3.7. $\alpha: \mathcal{F} \to \mathcal{G}$ を X 上の層の射とする.

 α が同型 $\Leftrightarrow \alpha_x$ が同型 $(\forall x \in X)$

Theorem 1.3.8. 位相空間 X 上の前層 \mathcal{F} に対して, 前層 \mathcal{F} の層化 (sheafification) \mathcal{F}^{\dagger} は存在する.

Proof. X の開集合U に対して

$$\mathfrak{F}^{\dagger}(U) = \left\{ \sigma: U \to \prod_{x \in U} \mathfrak{F}_x \,\middle|\, \forall x \in U, x \in \exists V \subset U : \text{open, } \exists s \in \mathfrak{F}(V) \text{ s.t. } \sigma(y) = s_y \ (\forall y \in V) \right\}$$

とする. ただし, σ は任意の $x \in U$ に対して $\sigma(x) \in \mathcal{F}_x$ とする. また, $V \subset U$ なる開集合に対し,

$$\begin{array}{cccc} \rho_{U,V}^{\mathcal{F}^{\dagger}}: & \mathcal{F}^{\dagger}(U) & \longrightarrow & \mathcal{F}^{\dagger}(V) \\ & & & & & \psi \\ & \sigma & \longmapsto & \sigma|_{V} \end{array}$$

が定義できる. 実際, 任意の $x \in V$ をとる. $V \subset U$ であり, $\sigma \in \mathcal{F}^{\dagger}(U)$ より

$$x \in \exists U_0 \subset U$$
:open, $\exists s \in \mathfrak{F}(U_0)$ s.t. $\sigma(y) = s_y \ (\forall y \in U_0)$

 $V_0 = U_0 \cap V$, $t = s|_{V_0}$ とすると任意の $y \in V_0$ に対して

$$\sigma(y) = \sigma|_V(y) = s_y$$

さらに帰納極限の定義から

$$\sigma|_V(y) = t_y$$

次に $\mathcal{F}^{\dagger}(U)$ がアーベル群, つまり $\sigma, \tau \in \mathcal{F}^{\dagger}(U)$ ならば $\sigma + \tau \in \mathcal{F}^{\dagger}(U)$ を示そう. $\sigma, \tau \in \mathcal{F}^{\dagger}(U)$ より任意の $x \in U$ に対して

$$x \in \exists U_0 \subset U : \text{open}, \exists s \in \mathcal{F}(U_0) \text{ s.t. } \sigma(y) = s_y \ (\forall y \in U_0)$$

 $x \in \exists V_0 \subset U : \text{open}, \exists t \in \mathcal{F}(V_0) \text{ s.t. } \tau(z) = t_z \ (\forall z \in V_0)$

を満たす. いま $W = U_0 \cap V_0, s' = s|_W, t' = t|_W$ とすると,

$$x\in W\subset U$$
 : open, $s',t'\in \mathfrak{F}(W)$ s.t. $(\sigma+\tau)(y)=\sigma(y)+\tau(y)$
$$=s_y+t_y$$

$$=(s+t)_y\ (\forall y\in W)$$

よって $\sigma+\tau\in\mathfrak{F}^{\dagger}(U)$ また明らかに可換. よって $\mathfrak{F}^{\dagger}(U)$ はアーベル群. また, 通常の制限で制限写像を定義しているため, \mathfrak{F}^{\dagger} は前層となる. 更に層となることを示そう.

U を X の開集合とし、 $\{U_i\}_i$ をその開被覆とする. $\sigma \in \mathcal{F}^\dagger(U)$ が任意の i に対して $\sigma|_{U_i}=0$ とする. つまり任意の $x \in U_i$ に対して $\sigma(x)=0$ とする. U_i は U を被覆するので結局 $\sigma=0$ となる.

次 $C, \sigma_i \in \mathcal{F}^{\dagger}(U_i)$ とし, $\sigma_i|_{U_i \cap U_i} = \sigma_j|_{U_i \cap U_i}$ と仮定すると,

ただし $,x \in U_i$. すると $,\sigma$ は $\sigma_i \in \mathcal{F}^{\dagger}(U_i)$ を張り合わせて作っているのでこれは $\sigma \in \mathcal{F}(U)$ となることが容易にわかる。よって、 \mathcal{F}^{\dagger} は層になる。

Proposition 1.3.9. 層化の射 $\theta: \mathfrak{F} \to \mathfrak{F}^\dagger$ に対して、その茎の射 $\theta_x: \mathfrak{F}_x \to \mathfrak{F}_x^\dagger$ は同型である。

Lemma 1.3.10. \mathfrak{F} を X 上の層とし、 \mathfrak{F}' を \mathfrak{F} の部分層とする。このとき開集合 U を $\mathfrak{F}(U)/\mathfrak{F}'(U)$ に対応させるものは前層になる。

Proof. この対応を S とおく。 $V \subset U$ なる開集合 U, V をとる。制限写像を

とすると、これは well-defined である。また、 $U \subset V \subset W$ なる開集合の組に対して

$$\rho_{U,W}^{\mathfrak{G}} = \rho_{V,W}^{\mathfrak{G}} \circ \rho_{U,V}^{\mathfrak{G}}$$

が成り立つことは制限写像の定義から明らかである。よって∫は前層。■

Definition 1.3.5. Lem:??で定義した前層の層化を \mathcal{F}/\mathcal{F}' と書いて、**商層 (quotient shaef)** という。

Definition 1.3.6. $\alpha: \mathfrak{F} \to \mathfrak{g}$ を前層の射とする。このとき開集合 U に対して $U \mapsto \operatorname{Ker}(\alpha(U))$ とするものは \mathfrak{F} の部分層になる。これを $\operatorname{Ker}\alpha$ と書いて、 α **の核 (kernel of** α) という。

更に、 $U \mapsto \operatorname{Im}(\alpha(U))$ は一般には前層となるので、これの層化を $\operatorname{Im} \alpha$ と書いて、 α **の 像** (image of α) という。

また, $U \mapsto \operatorname{Coker}(\alpha(U)) = \mathfrak{G}(U)/\operatorname{Im}(\alpha(U))$ は一般には前層となるので,これの層化を $\operatorname{Coker} \alpha$ と書いて, α **の余核 (cokernel of** α) という.

Lemma 1.3.11. $\mathfrak{F},\mathfrak{G}$ を X 上の層 \mathfrak{F}' を \mathfrak{F} の部分層 $\mathfrak{A}:\mathfrak{F}\to\mathfrak{G}$ を前層の射とする。このとき、

$$(\operatorname{Ker} \alpha)_x = \operatorname{Ker} \alpha_x$$

$$(\operatorname{Im} \alpha)_x = \operatorname{Im} \alpha_x$$

$$(\operatorname{Coker} \alpha)_x = \operatorname{Coker} \alpha_x$$

$$(\mathcal{F}/\mathcal{F}')_x = \mathcal{F}_x/\mathcal{F}'_x$$

が成り立つ。

Proof. $Q(U) = \mathcal{F}(U)/\mathcal{F}'(U)$ と 성 。

このとき、アーベル群の完全列

$$0 \longrightarrow \mathfrak{F}'(U) \longrightarrow \mathfrak{F}(U) \longrightarrow \mathfrak{Q}(U) \longrightarrow 0$$

が作れる。帰納極限は完全列を完全列に移すので、また Prop:1.3.7 より

$$0 \longrightarrow \varinjlim \mathcal{F}'(U) \longrightarrow \varinjlim \mathcal{F}(U) \longrightarrow \varinjlim \mathcal{Q}(U) \longrightarrow 0$$

を得る。よって

$$0 \longrightarrow \mathfrak{F}'_x \longrightarrow \mathfrak{F}_x \longrightarrow (\mathfrak{F}/\mathfrak{F}')_x \longrightarrow 0$$

したがって、

$$\mathfrak{F}_x/\mathfrak{F}_x'\simeq (\mathfrak{F}/\mathfrak{F}')_x$$

を得る。

次に

$$(\operatorname{Ker} \alpha)_x = \{ s_x \in \mathcal{F}_x \mid \alpha(U)(s) = 0, x \in U : \operatorname{open}, s \in \mathcal{F}(U) \}$$
$$= \{ s_x \in \mathcal{F}_x \mid \alpha_x(s_x) = 0, x \in U : \operatorname{open}, s \in \mathcal{F}(U) \}$$
$$= \operatorname{Ker} \alpha_x$$

を得る。同様に

$$(\operatorname{Im} \alpha)_x = \{t_x \in \mathfrak{G}_x \mid x \in \exists U : \operatorname{open}, \exists s \in \mathfrak{F}(U) \text{ s.t } t = \alpha(U)(s)\}$$

$$= \{(\alpha(U)(s))_x \in \mathfrak{G}_x \mid x \in U : \operatorname{open}, s \in \mathfrak{F}(U)\}$$

$$= \{\alpha_x(s_x) \in \mathfrak{G}_x \mid s_x \in \mathfrak{F}_x\}$$

$$= \operatorname{Im} \alpha_x$$

を得る. また, $(\mathfrak{F}/\mathfrak{F}')_x = \mathfrak{F}_x/\mathfrak{F}'_x$ より

$$(\operatorname{Coker} \alpha)_x = (\mathfrak{G}/\operatorname{Im} \alpha)_x = \mathfrak{G}_x/\operatorname{Im} \alpha_x = \operatorname{Coker} \alpha_x$$

Definition 1.3.7. 層の列

$$\mathcal{F} \xrightarrow{\alpha} \mathcal{G} \xrightarrow{\beta} \mathcal{H}$$

が完全とは、 $\operatorname{Im} \alpha = \operatorname{Ker} \beta$ が成り立つことをいう。

Proposition 1.3.12. 層の列に対して次が成り立つ。

$$\mathfrak{F} \longrightarrow \mathfrak{G} \longrightarrow \mathfrak{K}$$
 が完全 \iff 任意の $x \in X$ に対して $\mathfrak{F}_x \longrightarrow \mathfrak{G}_x \longrightarrow \mathfrak{K}_x$ が完全

Proof. 明らか。 ■

Definition 1.3.8. X,Y を位相空間, $f:X\to Y$ を連続写像とする。このとき、X 上の層 \mathcal{F},Y 上の層 \mathcal{F} に対して、新たな Y 上の層 $f_*\mathcal{F}$ が

$$V \mapsto \mathcal{F}(f^{-1}(V))$$

によって定義できる。これを \mathfrak{F} **の順像** (direct image of \mathfrak{F}) という。また、

$$U \mapsto \varinjlim_{V \supset f(U)} \mathfrak{G}(V)$$

で定義できる新たな X 上の前層 f G の層化 f*G を G **の逆像** (inverse image of G) という。

Proposition 1.3.13. 上の状況で

$$(f^*\mathfrak{G})_x = \mathfrak{G}_{f(x)} \qquad \forall x \in X$$

Proof.

$$(f^*\mathfrak{G})_x = \varinjlim_{x \in U} (f^*\mathfrak{G})(U) = \varinjlim_{x \in U} \varinjlim_{f(U) \subset V} \mathfrak{G}(V) = \mathfrak{G}_{f(x)}$$

最後の等号は明らか. ■

Remark . V を Y の開集合とする。このとき自然な単射 $i: V \to Y$ に対して

$$i^*\mathfrak{G} = \mathfrak{G}|_V$$

が成り立つ。

Proposition 1.3.14. $f: X \to Y$ を位相空間の間の連続写像とし、 \mathfrak{F} を X 上の層、 \mathfrak{G} を Y 上の層とする、このとき

$$\operatorname{Hom}_{\operatorname{Sh}(X)}(f^*\mathfrak{G},\mathfrak{F}) \simeq \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathfrak{G},f_*\mathfrak{F})$$

ただし, $\mathrm{Hom}_{\mathbb{C}}(X,Y)$ は圏 \mathbb{C} で $X \to Y$ なる射全体を表し, $\mathsf{Sh}(X)$ は X 上の層全体を表す.

Proof. 層化の普遍性より $\theta: f \cdot G \to f^*G = (f \cdot G)^{\dagger}$ を層化の射とすると,

$$\begin{array}{ccc} \operatorname{Hom}_{\operatorname{PreSh}(X)}(f^{\cdot}\mathfrak{G},\mathfrak{F}) & \stackrel{\simeq}{\longrightarrow} & \operatorname{Hom}_{\operatorname{Ph}(\mathbf{X})}(f^{*}\mathfrak{G},\mathfrak{F}) \\ & & & & & & & \\ \alpha & & \longmapsto & \tilde{\alpha} \circ \theta \end{array}$$

が成り立つ. つまり

$$\operatorname{Hom}_{\operatorname{PreSh}(X)}(f^{\cdot}\mathfrak{G},\mathfrak{F}) \simeq \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathfrak{G},f_*\mathfrak{F})$$

を示せばいい.次にX上の開集合Uに対して

$$f \cdot \mathfrak{G}(U) = \underset{V \supset f(U)}{\varinjlim} \mathfrak{G}(V)$$

なので、 $\varphi \in \operatorname{Hom}_{\operatorname{PreSh}(X)}(f^{\cdot}\mathfrak{G},\mathfrak{F})$ に対して

$$\varphi(U): \varinjlim_{V\supset f(U)} \mathfrak{G}(V) \to \mathfrak{F}(U)$$

を与えることは帰納極限の定義より $f(U) \subset V$ なる開集合 V に対して

$$\psi'(V): \mathfrak{G}(V) \to \mathfrak{F}(U)$$

 $\varepsilon f(U)$ ⊂ V' ⊂ V ならば,

$$\psi'(V) = \psi'(V') \circ \rho_{V,V'}^{\mathfrak{G}}$$

となるように与えることである. すなわち $\psi'(V)$ は

$$\psi(V): \mathfrak{G}(V) \to \mathfrak{F}(f^{-1}(V))$$

と $\rho_{f^{-1}(V),U}^{\mathfrak{F}}$ を合成したものである. (帰納系の選び方によらない.) したがって, $\varphi \in \operatorname{Hom}_{\operatorname{PreSh}(X)}(f^{\cdot}\mathfrak{G},\mathfrak{F})$ を与えることは, $\psi \in \operatorname{Hom}_{\operatorname{Ph}(Y)}(\mathfrak{G},f_{*}\mathfrak{F})$ を与えることと等しい.

1.3.1 \mathfrak{B} -sheaf

 \mathfrak{B} -sheaf はアフィンスキームの構成にも必要な概念で、ラフに言えばすべての開集合 U に対して $\mathfrak{F}(U)$ が定まっているものではなく、開基 \mathfrak{B} の元 U に対してだけ定まっている層を \mathfrak{B} -sheaf という.

Definition 1.3.9. 位相空間 X の開基 $\mathfrak B$ が有限交叉で閉じているとは、任意の $U,V\in\mathfrak B$ に対して $U\cap V\in\mathfrak B$ が成り立つことをいう.

Example 1.3.15. 環Aの素イデアルの集合 Spec A の基本開集合による開基 $\{D(f)\}_{f \in A}$ は有限交叉で閉じている.

Definition 1.3.10. X を位相空間. \mathfrak{B} をその開基とする. このとき \mathfrak{F} が \mathfrak{B} **-前層** (\mathfrak{B} -presheaf) であるとは、

- $U \in \mathbb{B}$ に対して $\mathfrak{F}(U)$ はアーベル群.
- -V \subset U \in B に対して群準同型 $\rho_{U,V}$: $\mathfrak{F}(U)$ \rightarrow $\mathfrak{F}(V)$ が定まる.

で,

- (1) $\rho_{U,U} = \mathrm{id}_{\mathfrak{F}(U)}$
- (2) 任意の開集合 $W \subset V \subset U$ に対して $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$ となる.

を満たすときをいう.

Definition 1.3.11. \mathfrak{B} が有限交叉で閉じているとする. このとき \mathfrak{B} -前層が層の条件を満たすとき \mathfrak{B} -層 (\mathfrak{B} -sheaf) という.

Proposition 1.3.16. \mathfrak{F} を \mathfrak{B} -前層とする.このとき,任意の開集合 V に対して

$$\mathcal{F}(V) = \varprojlim_{U \subset V} \mathcal{F}(U)
= \left\{ (s_U)_U \in \prod_{\substack{U \in \mathcal{B} \\ U \subset V}} \mathcal{F}(U) \mid \forall U' \subset U \in \mathcal{B}, s_U|_{U'} = s_{U'} \right\}$$

制限写像は射影極限から誘導される射である.

するとこれは前層になる.

Proposition 1.3.17. 更に、3 が有限交叉で閉じているなら、層になる.

Proof. 任意の開集合 V に対してその開被覆 $\{V_i\}_i$ を取る. ただし $V_i \in \mathfrak{B}$ とする.

Claim (4)(Uniqueness) が成立する.

 $s\in \mathfrak{F}(V)$ が任意のiに対して $s|_{V_i}=0$ とする.今定義からs=0とは $U\subset V$ なる任意の $U\in \mathfrak{B}$ に対して $s_U\in \mathfrak{F}(U)$ が0であることである.実際Vの開被覆からUの開被覆Vの開被覆からVの開被覆がらVの開被覆がらVの開放である.また任意のVに対してV0V1 よりV2 はV3 を得る.また任意のV4 に対してV5 を得る.今年はV5 を得る.でV5 となる.従って任意のV6 に対してV7 となる.今年はV5 を得る.なのでV8 を引きる.

Claim (5)(Glueing local sections) が成立する.

 $s_i \in \mathfrak{F}(V_i)$ が任意の i,j に対して $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ を満たすとする. 今 $U \in \mathfrak{B}$ 成分へ

の射影を

$$\varphi_U: \varprojlim_{U\subset V} \mathfrak{F}(U) \to \mathfrak{F}(U)$$

と書くことにすると、制限写像 $\rho_{V,V_i}=\varphi_{V_i}$ で、つまり $(s_U)_U\in \mathfrak{F}(V)$ で $(s_U)_U|_{V_i}=s_i$ なる $(s_U)_U$ があることを示せば良い、各 i に対して $V_i\subset U_i$ なる $U_i\in \mathfrak{B}$ で $s_{U_i}|_{V_i}=s_i$ なる $s_{U_i}\in \mathfrak{F}(U_i)$ があればいい、今 $U_i\subset V$ なので U の開被覆 $\{U_i\cap V_j\}_j$ が取れる.

1.4 Ringed Topological Space

Definition 1.4.1. 局所環付き空間とは位相空間 X と X 上の環の層 \mathcal{O}_X の組 (X,\mathcal{O}_X) で、任意の $x \in X$ に対して $\mathcal{O}_{X,x}$ が局所環となるものをいう。また、この \mathcal{O}_X を (X,\mathcal{O}_X) の構造層 (structure sheaf) という。また (X,\mathcal{O}_X) を単に \mathcal{O}_X と書くことがある。また、 $\mathcal{O}_{X,x}$ の唯一の極大イデアル \mathfrak{m}_x に対してその剰余体 $\mathcal{O}_{X,x}/\mathfrak{m}_x$ を X の点 x での 剰余体 (residue field of X at x) といって k(x) と書く。

Definition 1.4.2. 局所環付き空間の射とは

$$(f, f^{\#}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$$

とは連続写像 $f:X\to Y$ と環の層の射 $f^\#: \mathcal{O}_Y\to f_*\mathcal{O}_X$ の組 $(f,f^\#)$ で、任意の $x\in X$ に対して $f_x^\#: \mathcal{O}_{Y,f(x)}\to \mathcal{O}_{X,x}$ は局所射となるものをいう。(つまり $f_x^\#(\mathfrak{m}_{Y,f(x)})\subset \mathfrak{m}_{X,x}$ を満たす。)

Prop:1.3.13 より

$$f^{\#}: \mathcal{O}_Y \to f_* \mathcal{O}_X$$

を考えることは

$$f^{\#}: f^*\mathcal{O}_Y \to \mathcal{O}_X$$

を考えることに等しい. Def:1.4.2 の $f_x^\#$ は下の式で考えている.

Definition 1.4.3. 射 $(f, f^{\#}): (X, \mathcal{O}_{X}) \to (Y, \mathcal{O}_{Y})$ が開はめ込み (open immersion) (resp. 閉はめ込み (closed immersion)) とは連続写像 f が開はめ込み (resp. 閉はめ込み) aでかつ任意の $x \in X$ に対して $f_{x}^{\#}$ が同型 (resp. 全射) のときをいう。

 $[^]af:X o Y$ が (位相的) 開 (閉) はめ込みとは X と f(X) が同相で f(X) が開 (閉) 集合のときをいう。

Definition 1.4.4. (X, O_X) を局所環付き空間とする。 \mathcal{J} が O_X の**イデアル層 (sheaf of ideals of** O_X) とは任意の開集合U に対して $\mathcal{J}(U)$ が $O_X(U)$ のイデアルになっているときをいう。

Lemma 1.4.1. (X, \mathcal{O}_X) を局所環付き空間とする。 \mathfrak{J} を \mathcal{O}_X のイデアル層とする。そして、

$$V(\mathfrak{J}) = \{ x \in X \mid \mathfrak{J}_x \neq \mathfrak{O}_{X,x} \}$$

とおく。(ちなみに上の諸々から $\Im_x\subset \Im_{X,x}$ が分かる。) $j:V(\Im)\hookrightarrow X$ を包含写像とする。すると

- V(3) は X の閉集合
- $--(V(\mathcal{J}),j^*(\mathcal{O}_X/\mathcal{J}))$ は局所環付き空間
- j[#] は自然な全射

$$\mathcal{O}_X \longrightarrow \mathcal{O}_X/\mathcal{J} = j_*(j^*(\mathcal{O}_X/\mathcal{J}))$$

で $(j,j^{\#}):(V(\mathcal{J}),j^{-1}(\mathcal{O}_X/\mathcal{J}))\to (X,\mathcal{O}_X)$ は閉はめ込みである。

Proof. Claim1. $V(\mathfrak{J})$ は X の閉集合

 $x \in X \setminus V(\mathfrak{J}) = \{x \in X \mid \mathfrak{J}_x = \mathfrak{O}_{X,x}\}$ に対して $f_x = 1$ なる x の開近傍 U と $f \in \mathfrak{J}(U)$ を とる。つまり $f|_V = 1|_V = 1$ なる x の開近傍 $V \subset U$ がある。すると任意の $y \in V$ に対して $f_y = 1 \in \mathfrak{J}_y$ となって、この y に対して $\mathfrak{J}_y = \mathfrak{O}_{X,y}$ なので $V \subset X \setminus V(\mathfrak{J})$ となって $X \setminus V(\mathfrak{J})$ が開であることがわかる。

 $\underline{\mathbf{Claim2.}}(V(\mathfrak{J}), j^*(\mathfrak{O}_X/\mathfrak{J}))$ は局所環付き空間

任意の $x \in V(\mathfrak{J})$ に対して

$$(j^*(\mathcal{O}_X/\mathcal{J}))_x = (\mathcal{O}_X/\mathcal{J})_x = \mathcal{O}_{X,x}/\mathcal{J}_x$$

は局所環。残りは自明。■

Proposition 1.4.2. f:X o Y を局所環付き空間の閉はめ込みとする。Z を局所環付き空間 $V(\mathcal{J})$ とする。ただし、 $\mathcal{J}=\mathrm{Ker}\,f^\#\subset \mathfrak{O}_Y$. すると $X\simeq Z$ を自然な閉はめ込み $Z\hookrightarrow Y$ から得る。

Proof. まず次の完全列

$$0 \longrightarrow \mathcal{J} \longrightarrow \mathcal{O}_Y \longrightarrow f_*\mathcal{O}_X \longrightarrow 0$$

から Prop:??より任意の $y \in Y$ に対して

$$\mathcal{O}_{Y,y}/\mathcal{J}_y = (f_*\mathcal{O}_X)_y$$

を得る。よって

$$(f_* \mathcal{O}_X)_y = \begin{cases} 0 & y \in Y \setminus V(\mathcal{J}) \\ \mathcal{O}_{Y,y}/\mathcal{J}_y & y \in V(\mathcal{J}) \end{cases} \cdots (*)$$

を得る。f(X) は Y の閉集合なので $x \in Y \setminus f(X)$ の開近傍 U で

$$f(X) \cap U = \emptyset$$

となるものがとれる。よって

$$f_* \mathcal{O}_X(U) = \mathcal{O}_X(f^{-1}(U)) = \mathcal{O}_X(\varnothing) = 0$$

したがって、

$$(f_* \mathcal{O}_X)_x = 0$$

また、 $x \in f(X)$ の開近傍U に対してfでの引き戻し $f^{-1}(U)$ はy = f(x) の開近傍である。これをV とおく。逆に、f は閉はめ込みなので、X はf(X) と同相なのでX に自然にY の相対位相が入る。つまり、任意の $x \in X$ の開近傍U に対して $y = f(x) \in Y$ の開近傍V が存在して $f^{-1}(V)$ とかける。よって、

$$(f_* \mathcal{O}_X)_x = \varinjlim_{U \ni x} f_* \mathcal{O}_X(U) = \varinjlim_{U \ni x} \mathcal{O}_X(f^{-1}(U)) = \varinjlim_{V \ni y} \mathcal{O}_X(V) = \mathcal{O}_{X,y}$$

つまり、

$$(f_* \mathcal{O}_X)_y = \begin{cases} 0 & y \in Y \setminus f(X) \\ \mathcal{O}_{X,x} & y = f(x) \end{cases}$$

(*)と比較すれば

$$V(\mathcal{J}) = f(X)$$

が分かる。なので、 $j:Z\hookrightarrow Y$ を包含写像とすると、f から誘導される同相写像 $g:X\to Z$ に対して

$$f = j \circ g$$

で、

$$j_* \mathcal{O}_Z = \mathcal{O}_Y / \mathcal{J} \simeq f_* \mathcal{O}_X$$

がわかる。容易に

$$f_* \mathcal{O}_X = j_* q_* \mathcal{O}_X$$

が分かるので

$$\mathcal{O}_Z = (j^{-1} \circ j)_* \mathcal{O}_Z = (j^{-1})_* j_* \mathcal{O}_Z \simeq (j^{-1})_* j_* g_* \mathcal{O}_X = (j^{-1} \circ j)_* g_* \mathcal{O}_X = g_* \mathcal{O}_X$$

である。よって、g は局所環付き空間の同型射である。 $f=j\circ g$ が局所環付き空間の射であることを確認するのは読者に委ねる。 \blacksquare

1.5 Schemes

後できちんとした定義を述べるが、スキーム (scheme) とは局所環付き空間で局所的には アフィンスキーム (affine scheme) とみれる空間のことである. すなわち、先にアフィンス キームを定義せねばなるまい.

Proposition 1.5.1. A を環、 $X = \operatorname{Spec} A$ とする。このとき以下が成り立つ。

- (1) O'_X を環の \mathfrak{B} -層とする。 O'_X が誘導する X 上の層 O_X は $O_X(X) = A$ となる。
- (2) 任意の $\mathfrak{p}\in X$ に対して、 \mathbf{X} $\mathfrak{O}_{X,\mathfrak{p}}$ は $A_{\mathfrak{p}}$ への標準的な同型がある。特に、 (X,\mathfrak{O}_X) は局所環付き空間になる。

Proof. まず、開集合 U=X について Uniquness 条件を確認する. ほかの基本開集合も同様に示される. $U_i=$

Definition 1.5.1. 上で定義した局所環付き空間 $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ を**アフィンスキーム** (affine scheme) という.

Lemma 1.5.2. A を整域とし K をその商体とする. 素イデアル 0 に対応する X= Spec A の点を ξ とする. このとき

$$\mathcal{O}_{X,\xi} = K$$

が成り立つ. さらに,任意の空でない開集合 $U\subset X$ と $\xi\in U$ に対して標準的な準同型

$$\mathcal{O}_X(U) \to \mathcal{O}_{X,\mathcal{E}}$$

は単射となる.開集合の組 $V \subset U$ に対して制限

$$\mathcal{O}_X(U) \to \mathcal{O}_X(V)$$

は単射となる.

Proof. Prop:1.5.1(2) より

$$\mathcal{O}_{X,\xi} = A_{\xi} = K$$

を得る.

U = D(f) とすると、 $O_X(U) = A_f \subset K$. 一般に

$$U = \bigcup_{i} D(f_i)$$

と置く. $s\in \mathcal{O}_X(U)$ を飛ばすと $0\in K$ になるとする. 各開被覆 $D(f_i)\subset U$ への制限を考えると

$$s|_{D(f_i)} = 0$$

が任意のiで成り立つので、s=0である.よって $\mathcal{O}_X(U)\to\mathcal{O}_{X,\xi}\subset K$ は単射. 開集合の組 $\xi\in V\subset U$ に対して制限 $\mathcal{O}_X(U)\to\mathcal{O}_X(V)$ に対して帰納極限の定義より 図式

が可換となるので、制限は単射である. ■

Lemma 1.5.3. $X=\operatorname{Spec} A$ をアフィンスキームとし, $g\in A$ をとる.このとき開集合 D(g) は X から誘導される局所環付き空間で $\operatorname{Spec} A_g$ に同型なアフィンスキームになる.

Proof. $Y = \operatorname{Spec} A_q$ と置く. 局所化と素イデアルの対応より標準的な開はめ込み

$$i:Y\to X$$

がある $(\operatorname{Im} i = D(g))$

 $D(h)\subset D(g)$ とする. $A\stackrel{\varphi}{\to} A_g$ とする. また $\varphi(h)=\bar{h}$ と置く. このとき標準的な同型

$$\mathcal{O}_X(D(h)) = A_h \simeq (A_q)_{\bar{h}} = \mathcal{O}_Y(D(\bar{h})) = i_* \mathcal{O}_Y(D(h))$$

 $\{D(h)\}_h$ は D(g) の開基となるので、i は (Y, \mathcal{O}_Y) から $(D(g), \mathcal{O}_X|_{D(g)}) \subset (X, \mathcal{O}_X)$ への同型を誘導する.(Refer to Exercises 2.7)

Definition 1.5.2. スキーム (scheme) とは局所環付き空間 (X, O_X) で開被覆 $\{U_i\}_i$ に対して $(U_i, O_X|_{U_i})$ がアフィンスキームになるものが存在するときをいう。また $O_X(U)$ の元は (やや不適切であるが)U 上の正則関数 (regular functions on U) という。しかし、層の関数としての側面をよく表している。(Refer to Exercises 3.4 and Proposition 4.4)

明らかにアフィンスキームはスキームである. また,局所環付き空間 X が開被覆 $\{U_i\}_i$ に対して $(U_i, \mathcal{O}_X|_{U_i})$ がスキームだったら X はスキームである. 逆に次の命題が従う.

Proposition 1.5.4. X をスキームとする.このとき任意の開集合 $U\subset X$ に対して局所環付き空間 $(U, \mathcal{O}_X|_U)$ はまたスキームになる.

Proof. 定義より $X = \bigcup_i U_i$ で U_i は開集合で,アフィンスキームになるものがある. $U \cap U_i$ がスキームとなることを示せば十分である. \blacksquare

Definition 1.5.3. X をスキームとする. U を X の開集合とする. スキーム $(U, \mathcal{O}_X|_U)$ を X の開部分スキーム (open subscheme) 更に $(U, \mathcal{O}_X|_U)$ がアフィンスキームになるとき U をアフィン開集合 (affine open subset) という.

以下, Xの開集合Uはスキームの構造が与えられているとする.

Definition 1.5.4. X \mathcal{E} X \mathcal{E}

$$X_f := \{ x \in X \mid f_x \in \mathcal{O}_{X,x}^{\times} \}$$

ただし, A^{\times} は A の単元群である. (Liu の Definition 3.11. では*の記号を用いている.)

次の条件を考えよう.

X は有限アフィン開被覆 $\{U_i\}_i$ があって $U_i \cap U_j$ はまた有限アフィン開被覆を持つ.

便宜上この条件を条件Aと呼称する.

Proposition 1.5.5. X をスキームとし $f\in \mathcal{O}_X(X)$ とする.このとき X_f は X の開集合で,更に,X が条件 A を満たすなら,制限 $\mathcal{O}_X(X)\to \mathcal{O}_X(X_f)$ は同型

$$\mathcal{O}_X(X)_f \simeq \mathcal{O}_X(X_f)$$

を誘導する.

Proof. $x \in X_f$ とする. x の開近傍 U と $g \in \mathcal{O}_X(U)$ があって, $f_x g_x = 1$ を満たすものがある. $f_x g_x = (fg)_x$ よりある x の開近傍 $V \subset U$ があって $fg|_V = 1$ を満たす.したがって, $V \subset X_f$ となる.よって X_f は開集合である.

更に、V が動くにつれて f の逆元 $g \in \mathcal{O}_X(V)$ を張り合わせると $f|_{X_f}$ の $\mathcal{O}_X(X_f)$ での逆元を得る

詳しく言えば、 X_f の上のV を集めた開被覆 $\{V_i\}_i$ を取り、 $fg_i|_{V_i}=1$ なる $g_i\in \mathcal{O}_X(V_i)$ を考えれば任意のi,j に対して

$$fg_i|_{V_i\cap V_j}=1=fg_j|_{V_i\cap V_j}$$

より

(左辺)
$$-$$
 (右辺) $= fg_i|_{V_i \cap V_j} - fg_j|_{V_i \cap V_j}$
 $= f|_{V_i \cap V_j} (g_i|_{V_i \cap V_j} - g_j|_{V_i \cap V_j})$
 $= 0$

また, $f|_{V_i}$ は単元なので逆元 $(f|_{V_i})^{-1}$ がある. また,

$$f|_{V_i \cap V_i} = (f|_{V_i})|_{V_i \cap V_i}$$

なので,

$$f|_{V_{i}\cap V_{j}}((f|_{V_{i}})^{-1}|_{V_{i}\cap V_{j}}) = (f|_{V_{i}})|_{V_{i}\cap V_{j}}((f|_{V_{i}})^{-1}|_{V_{i}\cap V_{j}})$$

$$= ((f|_{V_{i}})(f|_{V_{i}})^{-1})|_{V_{i}\cap V_{j}}$$

$$= 1$$

よって $f|_{V_i \cap V_i}$ はまた単元で $g_i|_{V_i \cap V_i} = g_j|_{V_i \cap V_i}$ を得る.

 \mathfrak{O}_X は層なので、貼り合わせ条件より $g|_{V_i}=g_i$ なる $g\in \mathfrak{O}_X(X_f)$ がある.この g が $f|_{X_f}$ の逆元になっている.

よって制限 $\mathcal{O}_X(X) \to \mathcal{O}_X(X_f)$ から準同型

$$\alpha: \mathcal{O}_X(X)_f \to \mathcal{O}_X(X_f)$$

を誘導する. $(\mathcal{O}_X(X)$ は環なので $\mathcal{O}_X(X)_f$ は $\{f^n\}_{n\in\mathbb{N}}$ での局所化であることに注意しよう.) ここで条件 A を仮定すれば, X は有限アフィン開被覆 $\mathcal{U}=\{U_i\}_i$ を持つ. よって,

$$X_f = \bigcup_i U_i \cap X_f = \bigcup_i V_i = \bigcup_i D(f|_{U_i})$$

Lem:1.5.3 より $O_X(U_i)_f = O_X(V_i)$

今以下の完全系列を得る.

$$C^{\bullet}(\mathcal{U}, \mathcal{O}_X): 0 \longrightarrow \mathcal{O}_X(X) \xrightarrow{d_0} \bigoplus_i \mathcal{O}_X(U_i) \xrightarrow{d_1} \bigoplus_{i,j} \mathcal{O}_X(U_i \cap U_j)$$

ただし $d_0: s \mapsto (s|_{U_i})_i, d_1: (s_i)_i \mapsto (s_i|_{U_i \cap U_j} - s_j|_{U_i \cap U_j})_{i,j}$ とする. (有限個なら直積 \prod と直和 \bigoplus は同じ)

次にテンソルをとることは左完全関手なので $C^{\bullet}(\mathfrak{U}, \mathfrak{O}_X) \otimes_{\mathfrak{O}_X(X)} \mathfrak{O}_X(X)_f$ はまた、完全列である. よってこれは次の可換図式を与える.

1.5.1 Morphism of schemes

Definition 1.5.5. $f: X \to Y$ がスキームの射 (morphism of schemes) とは局所環付き空間としての射とする.

環の射 $\varphi: A \to B$ が誘導する射 $\operatorname{Spec} B \to \operatorname{Spec} A$ を φ^a と書くことにする.

つまり $\mathfrak{p} \in \operatorname{Spec} B$ に対して $\varphi^a(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$

Proposition 1.5.6. $\varphi:A\to B$ を環の射とする. このとき

$$(\varphi^a, (\varphi^a)^\#) : \operatorname{Spec} B \to \operatorname{Spec} A$$

は $(\varphi^a)^\#(\operatorname{Spec} A) = \varphi$ を満たすスキームの射である.

Proof. $X = \operatorname{Spec} B, Y = \operatorname{Spec} A$ と置く. 任意の $f \in A$ に対して

$$(\varphi^a)^{-1}(D(f)) = D(\varphi(f))$$

が成り立ち,実際

$$(\varphi^{a})^{-1}(D(f)) = \{ \mathfrak{p} \in X \mid \varphi^{a}(\mathfrak{p}) \in D(f) \}$$

$$= \{ \mathfrak{p} \in X \mid f \notin \varphi^{a}(\mathfrak{p}) \}$$

$$= \{ \mathfrak{p} \in X \mid f \notin \varphi^{-1}(\mathfrak{p}) \}$$

$$= \{ \mathfrak{p} \in X \mid \varphi(f) \notin \mathfrak{p} \}$$

$$= D(\varphi(f))$$

である. φ から誘導される環の射

$$(\varphi^a)^\#(D(f)): \mathfrak{O}_Y(D(f)) = A_f \to B_{\varphi(f)} = \mathfrak{O}_X(D(\varphi(f))) = (\varphi^a)_* \mathfrak{O}_X(D(f))$$

これは制限写像と可換 (compatible という意味で) になる. よって層の射

$$(\varphi^a)^\#: \mathcal{O}_Y \to \varphi^a_* \mathcal{O}_X$$

に拡張できる. 更に、任意の $\mathfrak{q} \in X$ に対して φ から誘導される環の射

$$(\varphi^a)^\#_{\mathfrak{q}}: A_{\varphi^a(\mathfrak{q})} \to B_{\mathfrak{q}}$$

は局所射で,実際

$$(\varphi^{a})_{\mathfrak{q}}^{\#}(\varphi^{a}(\mathfrak{q})A_{\varphi^{a}(\mathfrak{q})}) = \{\varphi(a)/\varphi(p) \mid a \in \varphi^{a}(\mathfrak{q}), p \notin \varphi^{a}(\mathfrak{q})\}$$

$$= \{\varphi(a)/\varphi(p) \mid \varphi(a) \in \mathfrak{q}, \varphi(p) \notin \mathfrak{q}\}$$

$$\subset \{b/q \mid b \in \mathfrak{q}, q \notin \mathfrak{q}\}$$

$$= \mathfrak{q}B_{\mathfrak{q}}$$

よって $(\varphi^a, (\varphi^a)^\#)$ は局所環付き空間の射になる. 構成により

$$(\varphi^a)^\#(Y): \mathfrak{O}_Y(Y) = A \to B = \mathfrak{O}_X(X) = (\varphi^a)_* \mathfrak{O}_X(Y)$$

で $(\varphi^a)^\#(Y) = \varphi$ を満たす.

Lemma 1.5.7. A を環とし,I をそのイデアルとする.このとき,スキームの射

$$i:\operatorname{Spec} A/I\to\operatorname{Spec} A$$

が自然な射影 $\varphi:A o A/I$ によって誘導される、i は ${
m Im}\,i=V(I)$ へのスキームの閉はめ込みである、更に,任意の ${
m Spec}\,A$ の基本開集合 D(f) に対して

$$(\operatorname{Ker} i^{\#})(D(f)) = I \otimes_{A} A_{f}$$

が成り立つ.

Proof. i が閉はめ込みであることはよい. 次に、任意の Spec A の基本開集合 D(f) に対して先ほどみたように、標準的な全射

$$\mathcal{O}_{\operatorname{Spec} A}(D(f)) = A_f \to (A/I)_{\varphi(f)} = i_* \mathcal{O}_{\operatorname{Spec} A}(D(f))$$

がある. これにより、 $i^\#$ の全射性と、 $(\operatorname{Ker} i^\#)(D(f)) = I_f = I \otimes_A A_f$ がわかる.

Definition 1.5.6. Z を X の閉集合とする. このとき Z が**閉部分スキーム** (closed subscheme) とは包含写像 $j:Z \to X$ が閉はめ込み

$$(j, j^{\#}): (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$$

となるときをいう.

Proposition 1.5.8. $X = \operatorname{Spec} A$ をアフィンスキームとする. $j: Z \to X$ をスキームの閉はめ込みとする. このとき, Z はアフィンスキームで, あるイデアル $J \subset A$ が唯一存在して j は同型 $Z \xrightarrow{\simeq} \operatorname{Spec} A/J$ を誘導する.

Definition 1.5.7. S をスキームとする. このとき X が S-スキーム (S-scheme) または S 上のスキーム (scheme over S) とはスキームの射 $\pi: X \to S$ が与えられていると きをいう. この π を構造射 (structural morphism, structure morphism) , S を基底スキーム (base scheme) という.

スキーム X.Y に対して

$$\operatorname{Hom}_{\mathbf{Sch}}(X,Y) := \{ f : X \to Y \mid f \text{ is morphism of schemes} \}$$

また、環 A, B に対して

$$\operatorname{Hom}_{\mathbf{Ring}}(A,B) := \{ f : A \to B \mid f \text{ is morphism of rings} \}$$

とおく. このとき標準的な写像

$$\rho: \operatorname{Hom}_{\mathbf{Sch}}(X,Y) \to \operatorname{Hom}_{\mathbf{Ring}}(\mathcal{O}_Y(Y), \mathcal{O}_X(X))$$

がある. 実際 $(f, f^{\#}) \in \operatorname{Hom}_{\mathbf{Sch}}(X, Y)$ とすると

$$f^{\#}(Y): \mathcal{O}_Y(Y) \to f_*\mathcal{O}_X(Y) = \mathcal{O}_X(f^{-1}(Y)) = \mathcal{O}_X(X)$$

がある.

Limit

第A章

A.1 Inductive Limit

とりあえず、帰納極限だけ述べる.射影極限は双対概念なのでまぁ頑張って.

Definition A.1.1.(帰納系の定義)

 (Λ, \leq) を順序集合、 \mathscr{C} を圏とする. 各 $\lambda \in \Lambda$ に対し、 $X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$ が与えられ、 $\lambda \leq \mu$ に対して射 $\varphi_{\mu,\lambda}: X_{\lambda} \to X_{\mu}$ があって次を満たすとき、 $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ を順系 (direct system) または帰納系 (inductive system) という. しばし $\varphi_{\mu,\lambda}$ を省略して $\{X_{\lambda}\}_{\lambda \in \Lambda}$ や $\{X_{\lambda}\}_{\lambda}$ で表す.

- 任意の $\lambda \in \Lambda$ に対して $\varphi_{\lambda,\lambda} = \mathrm{id}_{X_{\lambda}}$
- $\lambda \leq \mu \leq \nu$ なる任意の $\lambda, \mu, \nu \in \Lambda$ に対して $\varphi_{\nu,\lambda} = \varphi_{\nu,\mu} \circ \varphi_{\mu,\lambda}$

Example A.1.1. 位相空間 X の開集合族 $\{U\}_U$ に対して

$$U \leq V \stackrel{\mathrm{def}}{\equiv} V \subset U$$

と定義する. そして, \mathbf{AGrp} をアーベル群の成す圏, \mathfrak{F} を X 上の前層とする. すると, 各 開集合 U に対し, $\mathfrak{F}(U) \in \mathrm{Ob}(\mathbf{AGrp})$ で, 前層の定義からアーベル群と制限写像との組 $\{\mathfrak{F}(U), \rho_{U,V}\}$ は帰納系となる. 前層の定義は $\mathrm{Def:}1.3.1$ を参照.

Definition A.1.2.(帰納系の射の定義)

 Λ を順序集合. $\{X_{\lambda}, \varphi_{\lambda,\mu}\}, \{Y_{\lambda}, \psi_{\lambda,\mu}\}$ を Λ 上の圏 $\mathcal C$ における帰納系とする. このとき $\{X_{\lambda}\}$ から $\{Y_{\lambda}\}$ への射とは $f_{\lambda}: X_{\lambda} \to Y_{\lambda}$ なる射の族 $\{f_{\lambda}\}$ で, 任意の $\lambda \leq \mu$ に対して $\psi_{\lambda,\mu} \circ f_{\mu} = f_{\lambda} \circ \varphi_{\lambda,\mu}$ となるものを言う.

26 付録 A. LIMIT

Definition A.1.3. \mathscr{C} を圏とし, Λ を順序集合とする. $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ を \mathscr{C} の帰納系とする. このとき $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ の順極限 (direct limit) または帰納的極限 (inductive limit) または帰納極限とは、 \mathscr{C} の対象 $\lim_{\lambda \in \Lambda} X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$ と射の族 $\{\varphi_{\lambda}: X_{\lambda} \to \lim_{\lambda \in \Lambda} X_{\lambda}\}_{\lambda \in \Lambda}$ の組 $\{\lim_{\lambda \in \Lambda} X_{\lambda}, \varphi_{\lambda}\}$ で、次の条件を満たすものをいう.

- $-\lambda \leq \mu$ に対して $\varphi_{\mu} \circ \varphi_{\mu,\lambda} = \varphi_{\lambda}$
- $\lambda \leq \mu$ に対して $f_{\mu} \circ \varphi_{\mu,\lambda} = f_{\lambda}$ を満たす任意の射の族 $\{f_{\lambda}: X_{\lambda} \to Y\}_{\lambda \in \Lambda}$ に対して, $f: \lim_{\lambda \in \Lambda} X_{\lambda} \to Y$ が一意に存在して

$$f \circ \varphi_{\lambda} = f_{\lambda} \quad (\forall \lambda \in \Lambda)$$

を満たす.

Remark. 一般の圏では帰納極限や射影極限は存在するとは限らない. しかし, 存在するとすれば, 同型を除いて一意である.

Proposition A.1.2. 帰納極限は存在すれば、同型を除いて一意である.

Proof. 証明は後で書く. ■