Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №2

по дисциплине «Методы машинного обучения»

на тему«Обработка пропусков в данных»

Выполнил:

студент группы: ИУ5-23М

Аимань Мухэяти

1.Цель лабораторной работы: изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей

2.3адание

- 1. Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
- устранение пропусков в данных;
- кодирование категориальных признаков;
- нормализацию числовых признаков.

3. Ход выполнения работы

Подключим все необходимые библиотеки

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import sklearn.impute
   import sklearn.preprocessing
# Enable inline plots
%matplotlib inline
# Set plot style
sns.set(style="ticks")
# Set plots formats to save high resolution PNG
from IPython.display import set_matplotlib_formats
set_matplotlib_formats("retina")
```

Зададим ширину текстового представления данных, чтобы в дальнейшем текст в отчёте влезал на А4:

```
In [2]: pd. set_option("display.width", 70)
```

Для выполнения данной лабораторной работы возьмём набор данных по приложениям в waether AUS (Погода в Австралии)

```
In [15]: data = pd.read_csv("weatherAUS.csv")
```

Посмотрим на эти наборы данных:

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	 Humidity9am	Humic
0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	W	 71.0	
1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	NNW	 44.0	
2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	W	 38.0	
3	2008-	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	SE	 45.0	
4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	ENE	 82.0	
5 r	ows × 23	3 columns										
		30.000										•
I	n [17]:	data.	dtype	5							
	Out [Total Land				10.10.20						
١	Jutt	171:	Date			obje						
			Locat			obje float						
			MinTe MaxTe			float						
			Rainf	7.00-7.00		float						
			Evaporation			float						
			Sunshine			float						
						obje						
			WindGustDir WindGustSpeed		float							
			WindDir9am			obje						
			WindDir3pm		obje							
				peed9		float						
				peed3		float						
				lity9a		float						
				lity3p		float						
				ure9a		float						
				ure3p		float						
			Cloud		20	float						
			Cloud			float	64					
			Temp9			float	:64					
			Temp3			float	:64					
			RainT			obje						
				omorr	ow	obje						
			dtype	e: obj	ect							
т.	n [18]:	4-4-	shape								

3.1. Обработка пропусков в данных

Найдем все пропуски в данных:

In	[19]:	data.isnull().s	um ()			
Our	t[19]:	Date	0			
		Location	0			
		MinTemp	1485			
		MaxTemp	1261			
		Rainfall	3261			
		Evaporation	62790			
		Sunshine	69835			
		WindGustDir	10326			
		WindGustSpeed	10263			
		WindDir9am	10566			
		WindDir3pm	4228			
		WindSpeed9am	1767			
		WindSpeed3pm	3062			
		Humidity9am	2654			
		Humidity3pm	4507			
		Pressure9am	15065			
		Pressure3pm	15028			
		Cloud9am	55888			
		Cloud3pm	59358			
		Temp9am	1767			
		Тетр3рт	3609			
		RainToday	3261			
		RainTomorrow dtype: int64	3267			

Очевидно, что мы будем работать с колонкой MinTemp. Самый простой вариант — заполнить пропуски нулями:

Видно, что в данной ситуации это приводит к выбросам. Логичнее было бы приложениям без рейтинга присваивать средний рейтинг:

```
mean_imp = sklearn.impute.SimpleImputer(strategy="mean")
mean_mintemp = mean_imp.fit_transform(data[["MinTemp"]])
sns.distplot(mean_mintemp);
```


Попробуем также медианный рейтинг и самый частый рейтинг:

```
med_imp = sklearn.impute.SimpleImputer(strategy="median")
med_mintemp = med_imp.fit_transform(data[["MinTemp"]])
sns.distplot(med_mintemp);
```



```
: freq_imp = sklearn.impute.SimpleImputer(strategy="most_frequent")
freq_mintemp = freq_imp.fit_transform(data[["MinTemp"]])
sns.distplot(freq_mintemp);
```


Как видно, эти три значения очень близки к нормальному распределению, поэтому выбираем любое из них на линии, здесь выбираем среднее

```
data["MinTemp"] = mean_mintemp
```

3.2. Кодирование категориальных признаков

Рассмотрим колонку WindGustDir:

```
wgd= data["WindGustDir"].dropna().astype(str)
wgd.value_counts()
       9915
SE
       9418
N
       9313
SSE
       9216
E
       9181
S
       9168
WSW
       9069
SW
       8967
SSW
       8736
WNW
       8252
NW
       8122
ENE
       8104
ESE
       7372
NE
       7133
NNW
       6620
NNE
       6548
Name: WindGustDir, dtype: int64
```

Выполним кодирование категорий целочисленными значениями:

```
In [38]: le = sklearn.preprocessing.LabelEncoder()
    wgd_le = le.fit_transform(wgd)
    print(np.unique(wgd_le))
    le.inverse_transform(np.unique(wgd_le))

    [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

Out[38]: array(['E', 'ENE', 'ESE', 'N', 'NE', 'NNE', 'NNW', 'NW', 'S', 'SE', 'SSE', 'SSW', 'SW', 'W', 'WNW', 'WSW'], dtype=object)
```

Выполним кодирование категорий наборами бинарных значений:

0 0

0

0

0

3.3. Масштабирование данных

0

0

0

Для начала попробуем обычное MinMax-масштабирование:

Результат вполне ожидаемый и вполне приемлемый. Но попробуем и другие вари-анты, например, масштабирование на основе Z-оценки:

Также результат ожидаемый, но его применимость зависит от дальнейшего использования.

Список литературы

[1] Гапанюк Ю. Е. Лабораторная работа «Обработка признаков» [Электронный ресурс]

 $https://github.com/ugapanyuk/ml_course_2021/wiki/LAB_MMO_FEATURES$