

University of Stuttgart

Cluster of Excellence in Data-integrated Simulation Science

Julian Berberich¹, Daniel Fink², and Christian Holm²

¹Institute for Systems Theory and Automatic Control

²Institute for Computational Physics

Robustness of quantum algorithms against coherent control errors

Motivation

Consider an ideal quantum circuit $|\widehat{\psi}\rangle = \widehat{U}_1 \cdots \widehat{U}_N |\psi_0\rangle$ with $\widehat{U}_i = e^{-iH_i}$,

$$|\psi_0\rangle$$
 — \hat{U}_N — \hat{U}_1 — $|\hat{\psi}\rangle$

For **coherent control errors**, we replace $\widehat{U}_i = e^{-iH_i}$ by $U_i(\varepsilon_i) = e^{-i(1+\varepsilon_i)H_i}$ with unknown noise $\varepsilon_i \in \mathbb{R}$, leading to the **noisy circuit**

$$|\psi_0\rangle$$
— $U_N(\varepsilon_N)$ —...— $U_1(\varepsilon_1)$ — $|\psi(\varepsilon)\rangle$

- Origin: imprecise classical control, e.g., due to miscalibration or imperfect actuation
- Coherent control errors are a **crucial source of errors** on current quantum hardware [1, 2, 3]
- There exist different approaches to deal with such errors, but a general theoretical understanding is missing

Illustrative example

Comparison of two quantum circuits:

$$\widehat{U} = R_{\mathrm{z}} \left(rac{\pi}{4}
ight) R_{\mathrm{y}} \left(rac{\pi}{2}
ight) \quad ext{vs.} \quad \widehat{U}' = R_{\mathrm{z}} \left(-rac{3\pi}{4}
ight) R_{\mathrm{y}} \left(-rac{\pi}{2}
ight)$$

Both produce the same final state $|\widehat{\psi}\rangle$, but \widehat{U} is more robust against coherent control errors than \widehat{U}' .

- Ideal state trajectories $\widehat{U}|\psi_0\rangle$ (blue, dotted) and $\widehat{U}'|\psi_0\rangle$ (red, dashed)
- State trajectories with coherent control errors $U(\varepsilon) |\psi_0\rangle$ (blue) and $U'(\varepsilon') |\psi_0\rangle$ (red)
- $\varepsilon, \varepsilon' \in \mathbb{R}^2$ are sampled uniformly from [-0.2, 0.2] (500 samples)

Summary: The worst-case fidelity of U is significantly larger $\to U$ is more robust against coherent control errors

Theoretical results

For any $\varepsilon, \varepsilon' \in \mathbb{R}^N$ and any initial state $|\psi_0\rangle$, we have

• Lipschitz bound:

$$\||\psi(\varepsilon)\rangle - |\psi(\varepsilon')\rangle\|_2 \le \sum_{i=1}^N \|H_i\|_2 \|\varepsilon - \varepsilon'\|_\infty$$

Worst-case fidelity bound:

$$|\langle \psi(\varepsilon)|\hat{\psi}\rangle| \geq 1 - \Big(\sum_{i=1}^{N} \|H_i\|_2\Big)^2 \frac{\|\varepsilon\|_{\infty}^2}{2}$$

• A fidelity guarantee of $\mathcal{F} = |\langle \psi(\varepsilon) | \hat{\psi} \rangle|$ when

$$\|\varepsilon\|_{\infty} \leq \frac{\sqrt{2}}{\sum_{i=1}^{N} \|H_i\|_2} \sqrt{1-\mathcal{F}}$$

Applications:

- Computing worst-case fidelity bounds for Quantum Error Correction (QEC) threshold theorems
- A new **guideline** for robust quantum algorithm design and transpilation: encourage small values of $||H_i||_2$
- Variational quantum algorithms:
 parameter regularization improves robustness

Robustness analysis of elementary gate sets

- We transpile the 3-Qubit Quantum Fourier Transform circuit with different native gate sets
- The transpiled circuits have different numbers of gates

Summary: The number of gates alone is not sufficient to explain the magnitude of the error \rightarrow Lipschitz bounds can explain the gap

Validation on a quantum computer (IBM-Nairobi)

- We implement two circuits which ideally produce the same final state
- The circuits are not simplified by the standard IBM transpiler
- The z-rotations are affected by coherent control errors with bound $\bar{\varepsilon}$

Circuit U_A : $|0\rangle - \sqrt{X} - R_z(\frac{\pi}{4}) - \sqrt{X} - |\hat{\psi}\rangle$

Circuit U_B : $|0\rangle - \boxed{X} - \boxed{\sqrt{X}} - \boxed{R_z(\frac{5\pi}{4})} - \boxed{\sqrt{X}} - |\hat{\psi}|$

Lipschitz bound $L_A = \frac{\pi}{8}$

Lipschitz bound $L_B = \frac{5\pi}{8}$

References

[1] F. Arute, K. Arya, R. Babbush, and et al.

Quantum supremacy using a programmable superconducting processor.

Nature, 574:505-510, 2019.

[2] J. P. Barnes, C. J. Trout, and D. Lucarelli.

Quantum error-correction failure distributions: comparison of coherent and stochastic error models.

Physical Review A, 95:062338, 2017.

[3] C. J. Trout, M. Li, M. Gutiérrez, Y. Wu, S.-T. Wang, L. Duan, and K. R. Brown. Simulating the performance of a distance-3 surface code in a linear ion trap. *New Journal of Physics*, 20:043038, 2018.

