Міністерство освіти і науки України Національний авіаційний університет

Факультет кібербезпеки та програмної інженерії Кафедра інженерії програмного забезпечення Дисципліна: "Безпека програм і даних"

Лабораторна робота №4 "Дослідження властивостей циклічних груп"

Виконав: Разно О. С. студент групи ПІ-424Б Перевірила: Воропай І.

Варіант 10

Мета роботи – дослідження властивостей циклічних груп класів лишків, на яких базується сучасна криптографія. Обчислення утворюючого елемента циклічної групи. Застосування утворюючого елемента в системі відкритого розповсюдження ключів.

Завдання:

Завдання 1. Скласти таблицю (див. табл..1) піднесення в степінь елементів групи G(13,*) для $a \in [2..12]$.

Таблиця 1

канд.		Ступінь піднесення п									
в д	2	3	4	5	6	7	8	9	10	11	12
a		h=a ⁿ									
2											
3											

Виписати в таблицю групи (див. табл..2), що згенеровані елементами $a_i \in [2..12]$ та визначити порядки груп.

Таблиця 2

	згенерована	порядок
a	група Н _в	порядок групи ord H _g
2		
3		
•••		
11		
12		

Розрахувати теоретичну кількість утворюючих елементів групи G(13,*).

Завдання 2. Знайти утворюючі елементи g_i в мультиплікативній групі G(p,*) у відповідності з варіантом.

Номер варіанта № = № по списку (mod 10) + 1 = 19 (mod 10) + 1 = 9 + 1 = 10.

Таблиця 3

№ вар	1	2	3	4	5	6	7	8	9	10
p	47	43	53	41	17	37	19	23	29	31

Обрахувати порядок групи G(p,*) ord $(G(p,*)) = \varphi(p)$.

Знайти ймовірні порядки підгруп – дільники порядку групи.

Обрахувати кількість генераторів групи $K=\phi(\text{ ord}(G(p,*))).$

Знайти перший мінімальний утворюючий елемент д групи G(p,*).

Для цього скласти таблицю 4.

	ймовірні порядки підгруп (дільники порядку групи)						
Кандидати							
в g							
2							
3							

Обрахувати піднесення в ступінь для першого кандидата в генератори g=2 для ступенів ймовірних порядків підгруп групи G(p,*) Якщо порядок утворюючого елемента (мінімальний ступінь для якого $g^m \mod p \equiv 1$) менше порядку групи $\operatorname{ord}(G(p,*)) = \phi(p)$, то g не ε генератором групи. Переходимо до перевірки наступного кандидата в g.

Якщо порядок ord g = ord(G(p,*)), то перший генератор знайдено.

Обрахувати решту утворюючих елементів групи по формулі:

$$g_i = (g_1)^{Bi} \ mod \ p$$
 , де B_i – числа, взаємно прості з $\phi(p)$.

Таблиця 5

Перший	Числв взаємно	B1=	B2=	
генератор	прості з $\varphi(p)$.			
g0=	наступні	g1=	g2=	
	генератори			

Завдання 3. Система відкритого розповсюдження ключів.

Застосувати результати завдання 3 для формування ключа на основі алгоритму Діффі — Хеллмана.

Таблиця 6

Клієнт А	параметри СВК	Клієнт В		
	p=			
	g=			
формування 1 частини	відкритий канал зв'язку	формування 1 частини		
ключа		ключа		
випадкове число А=		випадкове число В=		
Скрита складова ключа	⇒ rA	Скрита складова ключа		
rA=g ^A mod p=		rB=g ^B mod p=		
загальний ключ	rB ←	загальний ключ		
$K = rB^A \mod p =$		$K = rA^B \mod p =$		

Параметр р заданий в таблиці №3 варіантів завдання. Параметр g обирається студентом самостійно з знайдених генераторів (за виключенням 1 генератора) в завданні №3.

Значення випадкових чисел, скриту складову ключа та загальний ключ записати у таблицю 6. Переконатися, що ключ К однаковий для обох сторін.

Зміст звіту з лабораторної роботи:

Завдання 1:

- Порядок групи, та ймовірні порядки підгруп.
- Кількість генераторів підгруп.
- Таблиця піднесення в ступінь елементів групи.
- Таблиця створених підгруп та їх порядки.
- Утворюючи елемент групи.
- Висновки по завданню 1.

Завдання 2:

• Таблиця пошуку 1 генератора групи. Таблиця – решта утворюючих елементів.

Завдання 3:

• Заповнена таблиця з значеннями параметрів системи р, g, випадковими числами A, B, скритою складовою ключа та загальним ключем.

Висновки.

Виконання:

1. Складання таблиці піднесення в степінь елементів групи G(13,*) для а ∈ [2..12]:

канд.		Ступінь піднесення п										
в д	1	2	3	4	5	6	7	8	9	10	11	12
a						h=	-a ⁿ					
2	2	4	8	3	6	12	11	9	5	10	7	1
3	3	9	1	3	9	1	3	9	1	3	9	1
4	4	3	12	9	10	1	4	3	12	9	10	1
5	5	12	8	1	5	12	8	1	5	12	8	1
6	6	10	8	9	2	12	7	3	5	4	11	1
7	7	10	5	9	11	12	6	3	8	4	2	1
8	8	12	5	1	8	12	5	1	8	12	5	1
9	9	3	1	9	3	1	9	3	1	9	3	1
10	10	9	12	3	4	1	10	9	12	3	4	1
11	11	4	5	3	7	12	2	9	8	10	6	1
12	12	1	12	1	12	1	12	1	12	1	12	1

Випишемо в таблицю групи, що згенеровані елементами $a_i \in [2..12]$ та визначимо порядок груп:

a	Згенерована група Н _g	Порядок групи ord H _g
2	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	12
3	1, 3, 9	3
4	1, 3, 4, 9, 10, 12	6
5	1, 5, 8, 12	4
6	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	12
7	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	12
8	1, 5, 8, 12	4
9	1, 3, 9	3
10	1, 3, 4, 9, 10, 12	6
11	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	12
12	1, 12	2

Розрахуємо теоретичну кількість утворюючих елементів групи G(13,*):

$$ord(G(13, *)) = 12.$$

Отже, 2, 3, 4, 6 ϵ дільниками числа 12.

Порядки підгруп:

• ord $(H_{12}) = 2$;

- ord (H_3) = ord (H_9) = 3;
- $ord(H_5) = ord(H_8) = 4$;
- $ord(H_4) = ord(H_{10}) = 6$.

Кількість генераторів K в мультиплікативній групі G(p, *), де p — просте число, визначається формулою $K = \phi(\phi(p)) = \phi(p-1)$:

$$p = 13$$
, $K = \phi(13 - 1) = \phi(12) = 4$.

Отже, ми маємо чотири генератори.

Для p = 13: $\phi(13) = 12$. Взаємно прості з 12: 1, 5, 7, 11.

Ми маємо чотири кандидати – 2, 3, 4 та 6. Нехай першим кандидатом буде g = 2. Перевіримо виконання нерівності $g^K \mod p \neq 1$ для усіх K :

- Для K = 2: $2^2 \mod 13 = 4 \neq 1$ виконується;
- Для K = 3: $2^3 \mod 13 = 8 \neq 1$ виконується;
- Для K = 4: $2^4 \mod 13 = 3 \neq 1$ виконується;
- Для K = 5: $2^5 \mod 13 = 6 \neq 1$ виконується;
- Для K = 6: $2^6 \mod 13 = 12 \neq 1$ виконується;
- Для K = 7: $2^7 \mod 13 = 11 \neq 1$ виконується;
- Для $K = 8: 2^8 \mod 13 = 9 \neq 1$ виконується;
- Для K = 9: $2^9 \mod 13 = 5 \neq 1$ виконується;
- Для K = 10: $2^{10} \mod 13 = 10 \neq 1$ виконується;
- Для K = 11: $2^{11} \mod 13 = 7 \neq 1$ виконується.

Отже, g=2 є генератором групи. Якщо знайдений один генератор g_1 , інші генератори обраховуються по формулі $g_i=(g_1)^{Bi}$ mod p, де B_i- числа, взаємно прості з $\phi(p)$:

Так як $g_1 = 2$, то:

- $g_2 = (g_1)^5 \mod 13 = 2^5 \mod 13 = 32 \mod 13 = 6;$
- $g_3 = (g_1)^7 \mod 13 = 2^7 \mod 13 = 128 \mod 13 = 11;$
- $g_4 = (g_1)^{11} \mod 13 = 2^{11} \mod 13 = 2048 \mod 13 = 7$.

В результаті, ми маємо чотири унікальні генератори: $g_1 = 2$, $g_2 = 6$, $g_3 = 11$, $g_4 = 7$.

2. Знаходження утворюючих елементів g_i в мультиплікативній групі G(p,*) у відповідності з варіантом (варіант №10, p = 31):

Обрахуємо порядок групи G(p,*) ord $(G(p,*)) = \phi(p) = \phi(31) = 30$.

Знайдемо ймовірні порядки підгруп – дільники порядку групи:

Для числа 30 дільниками ϵ : 2, 3, 5, 6, 10, 15, 30.

Порядки підгруп за формулою $g^n \mod m = 1$:

 $ord(H_2) = 5$, $ord(H_3) = 30$, $ord(H_5) = 3$, $ord(H_6) = 6$, $ord(H_{10}) = 15$, $ord(H_{15}) = 10$.

Обрахуємо кількість генераторів групи $K = \phi(\operatorname{ord}(G(p, *)))$:

$$K = \varphi(ord(G(31, *))) = \varphi(p-1) = \varphi(31-1) = \varphi(30) = 8.$$

Отже, ми маємо 8 генераторів.

Для знаходження першого мінімального утворюючого елемента g групи G(p, *), складемо наступну таблицю:

	Ймовірні порядки підгруп (дільники порядку групи)								
Кандидати в g	ord(H ₂)	ord(H ₃)	ord(H ₅)	ord(H ₆)	ord(H ₁₀)	ord(H ₁₅)	ord(H ₃₀)		
2	4	8	1	2	1	1	1		
3	9	27	26	16	25	30	1		

Обрахуємо піднесення в ступінь для першого кандидата в генератори g=2 для ступенів ймовірних порядків підгруп групи G(p, *). Порядок утворюючого елемента (мінімальний ступінь для якого $g^m \mod p \equiv 1$) менше порядку групи $\operatorname{ord}(G(p, *)) = \phi(p)$, тому g не ε генератором групи. Переходимо до перевірки наступного кандидата в g.

Порядок кандидата в генератори g = 3 має значення 30, що дорівнює порядку групи. Якщо порядок ord $g = \operatorname{ord}(G(p, *))$, то перший генератор знайдено. Отож, g = 3 є першим мінімальним утворюючим елементом групи G(p, *).

Обрахуємо решту утворюючих елементів групи по формулі:

$$g_i = (g_0)^{Bi} \ mod \ p$$
 , де B_i – числа, взаємно прості з $\phi(p)$.

Для p = 31: $\phi(31) = 30$. Взаємно прості з 30: 1, 7, 11, 13, 17, 19, 23, 29.

Сформуємо наступну таблицю:

Перший генератор	$g_0 = 3$	Hyana paganna magari a (a(a)		
Наступні г	сенератори	Числа взаємно прості з φ(р)		
$g_1 = (g_1)^7 \mod 31$	$B_1 = 7$			
$g_2 = (g_1)^{11} \mod 31$	$B_2 = 11$			
$g_3 = (g_1)^{13} \bmod 31$	$=3^{13} \mod 31 = 24$	$B_3 = 13$		
$g_4 = (g_1)^{17} \mod 31$	$= 3^{17} \bmod 31 = 22$	$B_4 = 17$		
$g_5 = (g_1)^{19} \mod 31$	$=3^{19} \mod 31 = 12$	$B_5 = 19$		
$g_6 = (g_1)^{23} \bmod 31$	$B_6 = 23$			
$g_7 = (g_1)^{29} \mod 31$	$B_7 = 29$			

В результаті, в мультиплікативній групі G(31, *), ми отримуємо наступні утворюючі елементи g_i : 3, 11, 12, 13, 17, 21, 22, 24.

3. Система відкритого розповсюдження ключів. Заповнення таблиці з значеннями параметрів системи р, g, випадковими числами A, B, скритою складовою ключа та загальним ключем:

Застосуємо результати завдання для формування ключа на основі алгоритму Діффі — Хеллмана:

Клієнт А	Параметри СВК p = 31 g = 21	Клієнт В
Формування 1 частини ключа	Відкритий канал зв'язку	Формування 1 частини ключа
Випадкове число А = 37		Випадкове число В = 84
Скрита складова ключа $rA = g^A \mod p =$ $= 21^{37} \mod 31 = 11$	⇒ rA	Скрита складова ключа $rB = g^B \mod p =$ $= 21^{84} \mod 31 = 16$
Загальний ключ $K= rB^A \mod p = 16^{37} \mod 31 = 8$	rB ←	Загальний ключ $K = rA^B \mod p =$ = $11^{84} \mod 31 = 8$

Як видно з таблиці, загальний ключ K однаковий для обох сторін та дорівнює 8.

Висновок:

В ході виконання лабораторної роботи, я дослідив властивості циклічних груп сучасна лишків, на яких базується криптографія, обчислення утворюючого елемента циклічної групи та застосування утворюючого елемента в системі відкритого розповсюдження ключів. Мною було сформовано таблицю піднесення в степінь елементів групи G(13,*) для $a \in [2..12]$, таблицю створених підгруп та їх порядки, визначено порядок групи та ймовірні порядки підгруп, кількість генераторів підгруп та утворюючі елементи груп (генератори). Також, я знайшов утворюючі елементи g_i в мультиплікативній групі G(p, *) у відповідності до мого варіанту (варіант №10, р = 31) та застосував отримані результати для формування ключа на основі алгоритму Діффі – Хеллмана: в результаті чого заповнив таблицю з значеннями параметрів системи р, g, випадковими числами А, В, скритою складовою ключа та загальним ключем.

Відповіді на контрольні запитання:

1. Що таке прості та взаємно прості числа?

Прості числа і взаємно прості числа — це концепції в теорії чисел, які відображають взаємну дільність чисел і використовуються для вивчення структури та властивостей чисел.

- Просте число: Просте число це натуральне число більше одиниці, яке має лише два дільники: одиницю і саме себе. Іншими словами, прості числа діляться лише на одиницю і саме себе без залишку. Приклади простих чисел включають 2, 3, 5, 7, 11, 13 і так далі. Прості числа важливі в криптографії, арифметиці і багатьох інших галузях математики.
- Взаємно прості числа: Два натуральних числа називаються взаємно простими, якщо їх найбільший спільний дільник (НСД) дорівнює одиниці. Іншими словами, взаємно прості числа не мають жодних спільних дільників, крім одиниці. Наприклад, числа 15 і 28 є взаємно простими, оскільки їх НСД дорівнює 1. Однак числа 12 і 18 не є взаємно простими, оскільки їх НСД дорівнює 6.

Взаємна простота чисел важлива для деяких математичних задач, таких як раціональні дроби, теорія числових послідовностей, інформаційна теорія і багато інших областей.

2. Як перевірити простоту числа?

Перевірити простоту числа можна за допомогою малої теореми Ферма:

$$a^{p-1} \mod p \equiv 1 \ a \in [2, p-2]$$

Якщо число p — просте, то будь яке число в інтервалі [2, p-2] піднесене у ступінь p-1 порівняно по модулю p з одиницею.

Також, існують інші методи для перевірки простоти числа:

- Метод перебору: Простий метод полягає в перевірці, чи має число дільники, крім 1 і самого себе. Для цього вам потрібно поділити число на всі можливі цілі числа від 2 до кореня з числа (закругленого до більшого цілого числа). Якщо немає жодного цілого числа, на яке число б поділилося, то воно є простим.
- Тест Міллера-Рабіна: Тест Міллера-Рабіна це інший ймовірнісний метод перевірки простоти, який зазвичай є більш надійним, ніж тест Ферма. Він також базується на ідеях малої теореми Ферма і випробовує числа на основі певних імовірнісних правил.
- Деякі алгоритми на основі решітки: Для великих простих чисел існують спеціалізовані алгоритми, такі як "решітка Аткіна" і "решітка Ератосфена", які дозволяють ефективно перевіряти простоту чисел.

3. Як перевірити взаємну простоту двох чисел?

Числа ϵ вза ϵ мно простими, якщо вони не мають спільних дільників, окрім 1.

Для перевірки взаємної простоти 2-х чисел використовують алгоритм Евкліда:

- Більше число ділимо на менше.
- Якщо ділиться без залишку, то менше число і є НСД (слід вийти з циклу).
- Якщо ϵ залишок, то більше число замінюємо на залишок від ділення.
- Переходимо до пункту 1.

Алгоритм Евкліда:

Знаходження найбільшого дільника двох цілих чисел a i b a > b.

- Ділимо а на b і отримуємо залишок r.
- Якщо r=0, то b найбільший спільний дільник. Кінець алгоритму.
- Інакше перепризначаємо а \leftarrow b, b \leftarrow r.
- Переходимо до кроку 1.

4. На що вказує функція Ейлера?

Функція Ейлера (позначається як $\varphi(n)$), вказує на кількість цілих чисел від 1 до n (включно), які є взаємно простими з числом n. Іншими словами, функція Ейлера $\varphi(n)$ показує, скільки цілих чисел в діапазоні від 1 до n не мають жодних спільних дільників (крім n) з числом n.

5. Які властивості функції Ейлера використовуються для її обрахування?

Функція Ейлера (фі-функція) ϕ (n) має кілька властивостей і формул, які можна використовувати для її обрахування:

- Для простих чисел: Фі-функція $\phi(p)$ для простого числа p обчислюється просто як p 1, оскільки всі числа від 1 до p 1 ϵ взаємно простими з p.
- Для ступенів простого числа: Якщо n ε ступенем простого числа p (тобто n = p^k для деякого k), то $\phi(n) = p^k p^{(k-1)} = (p-1) * p^{(k-1)}$. Ця формула використовується тоді, коли n ε ступенем простого числа.
- Для добутку взаємно простих чисел: Якщо n і m є взаємно простими (тобто HCД(n, m) = 1), то $\phi(n * m) = \phi(n) * \phi(m)$. Ця властивість допомагає розрахувати фі-функцію для чисел, які є добутком двох взаємно простих чисел.
- Для загальних випадків: Для будь-якого складного числа n, яке не є ступенем простого числа, функцію $\varphi(n)$ можна обчислити за допомогою факторизації n на прості множники. Коли n розкладається на прості множники у вигляді n = $p_1^{a1} * p_2^{a2} * ... * p_k^{ak}$, то $\varphi(p_1^{a1} * p_2^{a2} * ... * p_k^{ak}) = \varphi(p_1^{a1}) * \varphi(p_2^{a2}) ... * \varphi(p_k^{ak}) = (p_1 1) * p_1^{a1-1} * (p_2 1) * p_2^{a2-1} * ... * (p_k 1) * p_k^{ak-1}$.

Де p_i – прості множники числа n, a_i – їхні ступені в розкладі, і $\phi(p_i) = p_i$ - 1 для кожного простого числа p_i .

Ці властивості і формули дозволяють обчислити функцію Ейлера для різних типів чисел, що полегшує роботу з нею у теорії чисел і криптографії.

6. Як знайти зворотний елемент в адитивній і мультикативній групах?

Знаходження зворотного елемента в адитивній і мультикативній групах відбувається за різними правилами через особливості операцій у кожній з цих груп:

- 1) Знаходження зворотного елемента в адитивній групі:
- У адитивній групі над заданою операцією додавання (+), зворотний елемент до певного числа а це число, яке додається до а, щоб отримати нейтральний елемент, який в цьому випадку є нулем (0).
- Зворотний елемент до числа а в адитивній групі це -а, тобто чисел -а, яке, додаючи до а, отримуємо 0. Математично це виглядає так: a + (-a) = 0.
- 2) Знаходження зворотного елемента в мультикативній групі:
- У мультикативній групі над заданою операцією множення (*), зворотний елемент до певного числа а це число, яке множиться на а, щоб отримати нейтральний елемент, який в цьому випадку є одиницею (1).
- Зворотний елемент до числа а в мультикативній групі зазвичай позначається як a^{-1} , і він задовольняє такому рівнянню: а * $a^{-1} = 1$. Для знаходження зворотного елемента a^{-1} можна використовувати різні методи, такі як розширений алгоритм Евкліда (для поля простих чисел), або використовувати властивість, що $a^{-1} = a^{\varphi(n)-1}$, де $\varphi(n)$ функція Ейлера для числа n (якщо n просте).
- Функція Ейлера може бути використана для обчислення зворотного по множенню елемента по модулю. Обчислення базується на теоремі Ейлера: а^{φ(m)} mod m ≡ 1, якщо а і m взаємно прості. Якщо m просте число, то φ(m) = m 1. Відповідно а^{m-1} mod m ≡ 1 окремий випадок теореми Ейлера мала теорема Ферма.

Вивід формули для обчислення зворотного елемента:

$$1 = a * a^{-1} = a * a^{-1} * a^{\phi(m)} \bmod m = a * a^{\phi(1)-1} \bmod m$$

$$a^{-1} * 1 = a^{-1} * a * a^{\phi(m)-1} \bmod m$$

$$a^{-1} = a^{\phi(m)-1} \bmod m$$

7. Що таке циклічна група?

Групу називають циклічною групою, якщо існує такій елемент g групи, що множина його ступенів g^n породжує всі елементи групи.

8. Що таке порядок групи та підгрупи?

Кількість елементів в групі називається порядком групи ord(G), кількість елементів в підгрупі називається порядком підгрупи ord(H).

9. Яке співвідношення між порядком групи та порядками підгруп. Сформулюйте теорему Лагранжа.

Співвідношення між порядком елемента групи і порядком групи визначається теоремою Лагранжа: порядок підгрупи є дільником порядку групи.

10. Сформулюйте малу теорему Ферма.

Якщо число p — просте, то будь яке число в інтервалі [2, p-2] піднесене у ступінь p-1 порівняно по модулю p з одиницею:

$$a^{p-1} \mod p \equiv 1 \ a \in [2, p-2]$$

Узагальненням малої теореми Ферма ϵ теорема Ейлера, яка стверджу ϵ , що для будь-якого цілого числа а і простого числа р, для яких HCД(a, p) = 1, виконується:

$$a^{\phi(p)} \equiv 1 \; (\text{mod } p)$$

де $\phi(p)$ – функція Ейлера, яка визначається як кількість цілих чисел від 1 до p-1, які є взаємно простими з p.

11. Що означають математичні символи ≡ та =?

Математичні символи "≡" і "=" використовуються для позначення різних рівностей і відношень між числами чи виразами, але вони мають різну семантику:

- 1) "=" (рівно):
- Символ "=" позначає справжню рівність між двома об'єктами. Коли ми пишемо "a = b", це означає, що a і b мають однакові значення. Наприклад, "2 + 3 = 5" означає, що сума чисел 2 і 3 рівна 5.
- 2) "≡" (конгруентно):
- Символ "≡" використовується в теорії чисел для позначення конгруентності за модулем. Коли ми пишемо "a ≡ b (mod n)", це означає, що числа а і b дають однаковий залишок при діленні націло на число п. Іншими словами, а і b конгруентні за модулем n, якщо (a b) ділиться націло на n. Наприклад, "9 ≡ 3 (mod 6)" означає, що якщо ви поділите 9 націло на 6, ви отримаєте той самий залишок, який отримаєте, поділивши 3 на 6 націло, і цей залишок дорівнює 3.