Import Libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

df=pd.read_csv(r"c:\Users\user\Downloads\FP2_RainFall\rainfall.csv")[3084:3197]
df

Out[2]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3084	3084	COASTAL ANDHRA PRADESH	1903	0.8	13.3	0.2	6.2	73.4	154.0	248.6	258.0	216.5
3085	3085	COASTAL ANDHRA PRADESH	1904	1.3	0.0	5.4	3.0	136.3	107.8	120.2	117.7	116.8
3086	3086	COASTAL ANDHRA PRADESH	1905	1.1	16.7	68.0	37.0	68.8	84.4	64.6	210.8	170.2
3087	3087	COASTAL ANDHRA PRADESH	1906	3.9	23.5	9.9	2.3	11.0	252.6	155.8	241.1	126.9
3088	3088	COASTAL ANDHRA PRADESH	1907	0.6	3.0	38.9	80.9	18.9	224.5	119.7	118.2	94.7
3192	3192	COASTAL ANDHRA PRADESH	2011	0.0	17.9	0.9	62.3	67.9	86.8	196.0	215.8	129.7
3193	3193	COASTAL ANDHRA PRADESH	2012	37.6	0.0	2.7	24.0	39.3	95.4	221.9	221.2	246.5
3194	3194	COASTAL ANDHRA PRADESH	2013	2.0	29.6	0.2	48.0	28.2	127.5	162.4	123.1	132.0
3195	3195	COASTAL ANDHRA PRADESH	2014	0.4	1.2	9.1	6.0	112.9	45.7	151.8	177.8	144.5
3196	3196	COASTAL ANDHRA PRADESH	2015	2.0	0.6	5.5	32.3	34.1	283.8	116.0	192.0	201.8

113 rows × 20 columns

Data Cleaning and Preprocessing

In [3]:

df.dropna()

Out[3]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3084	3084	COASTAL ANDHRA PRADESH	1903	0.8	13.3	0.2	6.2	73.4	154.0	248.6	258.0	216.5
3085	3085	COASTAL ANDHRA PRADESH	1904	1.3	0.0	5.4	3.0	136.3	107.8	120.2	117.7	116.8
3086	3086	COASTAL ANDHRA PRADESH	1905	1.1	16.7	68.0	37.0	68.8	84.4	64.6	210.8	170.2
3087	3087	COASTAL ANDHRA PRADESH	1906	3.9	23.5	9.9	2.3	11.0	252.6	155.8	241.1	126.9
3088	3088	COASTAL ANDHRA PRADESH	1907	0.6	3.0	38.9	80.9	18.9	224.5	119.7	118.2	94.7
3192	3192	COASTAL ANDHRA PRADESH	2011	0.0	17.9	0.9	62.3	67.9	86.8	196.0	215.8	129.7
3193	3193	COASTAL ANDHRA PRADESH	2012	37.6	0.0	2.7	24.0	39.3	95.4	221.9	221.2	246.5
3194	3194	COASTAL ANDHRA PRADESH	2013	2.0	29.6	0.2	48.0	28.2	127.5	162.4	123.1	132.0
3195	3195	COASTAL ANDHRA PRADESH	2014	0.4	1.2	9.1	6.0	112.9	45.7	151.8	177.8	144.5
3196	3196	COASTAL ANDHRA PRADESH	2015	2.0	0.6	5.5	32.3	34.1	283.8	116.0	192.0	201.8

113 rows × 20 columns

In [4]:

df.columns

```
Out[4]:
```

In [5]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 113 entries, 3084 to 3196
Data columns (total 20 columns):

Ducu	COTAMILIS (COC	ar 20 coramiis).	
#	Column	Non-Null Count	Dtype
0	index	113 non-null	int64
1	SUBDIVISION	113 non-null	object
2	YEAR	113 non-null	int64
3	JAN	113 non-null	float64
4	FEB	113 non-null	float64
5	MAR	113 non-null	float64
6	APR	113 non-null	float64
7	MAY	113 non-null	float64
8	JUN	113 non-null	float64
9	JUL	113 non-null	float64
10	AUG	113 non-null	float64
11	SEP	113 non-null	float64
12	OCT	113 non-null	float64
13	NOV	113 non-null	float64
14	DEC	113 non-null	float64
15	ANNUAL	113 non-null	float64
16	Jan-Feb	113 non-null	float64
17	Mar-May	113 non-null	float64
18	Jun-Sep	113 non-null	float64
19	Oct-Dec	113 non-null	float64
dtype	es: float64(1	7), int64(2), ol	oject(1)

memory usage: 17.8+ KB

Line Chart

In [6]:

df.plot.line()

Out[6]:

<AxesSubplot:>

Bar chart

In [7]:

df.plot.bar()

Out[7]:

<AxesSubplot:>

Box chart

```
In [8]:
```

```
df.plot.box()
```

Out[8]:

<AxesSubplot:>

Area Chart

In [9]:

```
df.plot.area()
```

Out[9]:

<AxesSubplot:>

Histogram

In [10]:

df.plot.hist()

Out[10]:

<AxesSubplot:ylabel='Frequency'>

pie chart

```
In [11]:
```

```
df.plot.pie(y='ANNUAL')
```

Out[11]:

<AxesSubplot:ylabel='ANNUAL'>

Scatter chart

In [15]:

sns.displot(df['ANNUAL'])

Out[15]:

<seaborn.axisgrid.FacetGrid at 0x185d835e970>

In [16]:

sns.heatmap(df.corr())

Out[16]:

<AxesSubplot:>

In []: