

light linearly polarized in the direction orthogonal to the transmission axis;
a reflection-type polarizing film provided outside said first substrate for reflecting light
linearly polarized in the direction orthogonal to the transmission axis;
a light absorbing member provided outside the reflection-type polarizing film; and
a light diffusion layer provided on the outside surface of said absorption-type polarizing
film,

wherein said retardation film has relations of $n_x > n_z > n_y$, where n_x is the refractive
index in the direction of the phase delay axis, n_y is the refractive index in the Y-axis direction,
and n_z is the refractive index in the thickness direction, and

wherein said reflection-type polarizing film is disposed in such a manner that the
transmission axis thereof is in a direction orthogonal to or parallel with a direction of polarization
of a light compensated to be a substantially linearly polarized light during passage through said
absorption-type polarizing film, said retardation film, and said super twisted nematic liquid
crystal cell in a state with no voltage applied.

2. (Amended) A liquid crystal display device, comprising:

a super twisted nematic liquid crystal cell in which nematic liquid crystal having a twist
angle in the range from 180° to 270° is filled and sandwiched between a transparent first
substrate having a first electrode and a transparent second substrate having a second electrode;
a twisted retardation film provided outside said second substrate;
an absorption-type polarizing film provided outside the twisted retardation film for

absorbing light linearly polarized in the direction orthogonal to the transmission axis;
a reflection-type polarizing film provided outside said first substrate for reflecting light
linearly polarized in the direction orthogonal to the transmission axis; and
a light absorbing member provided outside the reflection-type polarizing film, and
wherein said reflection-type polarizing film is disposed in such a manner that the
transmission axis thereof is in a direction orthogonal to or parallel with a direction of polarization
of a light compensated to be a substantially linearly polarized light during passage through said
absorption-type polarizing film, said twisted retardation film, and said super twisted nematic
liquid crystal cell in a state with no voltage applied.

17. (Amended) A liquid crystal display device, comprising:

a super twisted nematic liquid crystal cell in which nematic liquid crystal having a twist
angle in the range from 180° to 270° is filled and sandwiched between a transparent first
substrate having a first electrode and a transparent second substrate having a second electrode;
a retardation film provided outside said second substrate;
an absorption-type polarizing film provided outside the retardation film for absorbing
light linearly polarized in the direction orthogonal to the transmission axis;
a reflection-type polarizing film provided outside said first substrate for reflecting light
linearly polarized in the direction orthogonal to the transmission axis; and
a color filter as a light absorbing member provided outside the reflection-type polarizing
film,

wherein said retardation film has relations of $n_x > n_z > n_y$, where n_x is the refractive index in the direction of the phase delay axis, n_y is the refractive index in the Y-axis direction, and n_z is the refractive index in the thickness direction, and

wherein said reflection-type polarizing film is disposed in such a manner that the transmission axis thereof is in a direction orthogonal to or parallel with a direction of polarization of a light compensated to be a substantially linearly polarized light during passage through said absorption-type polarizing film, said retardation film, and said super twisted nematic liquid crystal cell in a state with no voltage applied.

18. (Amended) A liquid crystal display device, comprising:

a super twisted nematic liquid crystal cell in which nematic liquid crystal having a twist angle in the range from 180° to 270° is filled and sandwiched between a transparent first substrate having a first electrode and a transparent second substrate having a second electrode;

a retardation film provided outside said second substrate;

an absorption-type polarizing film provided outside the retardation film for absorbing light linearly polarized in the direction orthogonal to the transmission axis;

a reflection-type polarizing film provided outside said first substrate for reflecting light linearly polarized in the direction orthogonal to the transmission axis; and

a solar cell as a light absorbing member provided outside the reflection-type polarizing film,

wherein said retardation film has relations of $n_x > n_z > n_y$, where n_x is the refractive

index in the direction of the phase delay axis, ny is the refractive index in the Y-axis direction, and nz is the refractive index in the thickness direction, and

wherein said reflection-type polarizing film is disposed in such a manner that the transmission axis thereof is in a direction orthogonal to or parallel with a direction of polarization of a light compensated to be a substantially linearly polarized light during passage through said absorption-type polarizing film, said retardation film, and said super twisted nematic liquid crystal cell in a state with no voltage applied.
