Домашнее задание по теме «Построение гипотез. А/В тестирование.

Автотестирование гипотез»

Формулировка задания:

Подготовка к проведению А/В тестирования гипотезы

Для выполнения задания выполнить следующие шаги:

- 1. Найти данные для анализа (таблица csv, xlsx в открытом доступе)
- 2. Изучить данные (тема, типы столбцов, есть ли зависимость между столбцами)
- 3. Составить список гипотез по данным. Предположения:
- Зависимость столбцов по датам, времени и другим критериям;
- Численный показатель или критерий оценки;
- Насколько есть разница в данных по выбранному числовому критериям оценки
- 4. Выбрать одну из гипотез и подтвердить её или опровергнуть.
- 5. (Дополнительно) В качестве критериев выбрать статистические критерии. Например, критерий Стьюдента и др.

Ожидаемый результат:

- 1. Файл с исходными данными;
- 2. Создан список гипотез по данным (примеры гипотез ниже);
- 3. Проверка гипотезы
- 4. Результат по гипотезе подтверждение, опровержение и вывод

- 5. Расчеты в MS Excel, Colab/Jupiter notebook или python файл с проверкой выбранной гипотезы
- 6. (Дополнительно) Указан критерий проверки выбранной гипотезы;

Примеры гипотез в области промышленности для проведения А/В тестирования

- 1. Добавление функции автоматической проверки качества на стадии производства увеличит производительность на 10%.
- 2. Оптимизация процесса производства с использованием роботизированных систем снизит затраты на 10%.
- 3. Обновление системы управления производством увеличит качество продукции на 20%.
- 4. Использование интеллектуальной системы принятия решений повысит производительность на 15%.
- 5. Увеличение доли устройств для автоматизации процессов производства повысит производительность на 20%.
- 6. Увеличение инвестиций в инструменты контроля качества продукции увеличит производительность на 25%.
- 7. Отказ от традиционных способов производства и переход на современные технологии увеличит качество продукции на 30%.
- 8. Использование машинного обучения и искусственного интеллекта для анализа данных повысит производительность на 15%.
- 9. Создание интегрированной системы управления снизит затраты на производство на 10%.
- 10. Использование программно-аппаратных средств для автоматической обработки данных увеличит производительность на 20%.

Перечень инструментов, необходимых для реализации деятельности:

- 1) MS Excel
- 2) Colab/Jupiter notebook
- 3) PyCharm

▼ Релизация

Выбранный dataset для анализа

```
# подключение библиотек
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import scipy
from scipy import stats

# загрузка данных
df = pd.read_csv('/content/sample_data/california_housing_test.csv')
df.head()
```

10	ongitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_va
0	-122.05	37.37	27.0	3885.0	661.0	1537.0	606.0	6.6085	34470
1	-118.30	34.26	43.0	1510.0	310.0	809.0	277.0	3.5990	17650
2	-117.81	33.78	27.0	3589.0	507.0	1484.0	495.0	5.7934	27050
3	-118.36	33.82	28.0	67.0	15.0	49.0	11.0	6.1359	33000

посмотрим информацию по выборке df.describe(include = 'all')

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	mediar
count	3000.000000	3000.00000	3000.000000	3000.000000	3000.000000	3000.000000	3000.00000	3000.000000	
mean	-119.589200	35.63539	28.845333	2599.578667	529.950667	1402.798667	489.91200	3.807272	
std	1.994936	2.12967	12.555396	2155.593332	415.654368	1030.543012	365.42271	1.854512	

проверим на пропуски df.isnull().sum()

> longitude latitude housing_median_age total_rooms total_bedrooms population households median income median_house_value

dtype: int64

▼ Датасет содержит информацию:

Заголовок	Название
	-
longitude	долгота
latitude	широта
housing median age	средний возраст жилья
total rooms	всего комнат
total bedrooms	всего спален
population	население
households	домохозяйства
median income	средний доход
median house value	средняя стоимость дома

Исходя из данных датасета мы можем рассмотреть следующие вопросы:

- 1. Существует ли положительная корреляция между средней стоимостью дома и среднем доходом
- 2. Наблюдается ли зависимость между численностью населения и среднем возрастом жилья

```
# потстроим матрицу корреляций
matrix_corr = df.corr();

# вывод корреляционной матрицы
sns.heatmap(matrix corr, annot=True, cmap='coolwarm');
```



```
# рассмотрим диаграмму средней стоимости дома
fig = plt.subplots()
sns.countplot( x='median_house_value', data=df)
plt.show()
```


из графика видим что анамально много записей относится к одной стоимости, выведем данные ко количеству с группировкой по нужному на

longitude latitude housing median age total rooms total bedrooms population households median income median_house value 22500.0 37500.0 39200.0 39800.0 40000.0 494700.0 495500.0 495800.0 500000.0 500001.0

1784 rows × 8 columns

видим что к стоимости 500001 относится очень много записей, предполагаю что к этой записи относятся все дома что дороже 500000. Для df = df.loc[df['median_house_value'] != 500001] df

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house
0	-122.05	37.37	27.0	3885.0	661.0	1537.0	606.0	6.6085	34
1	-118.30	34.26	43.0	1510.0	310.0	809.0	277.0	3.5990	1
2	-117.81	33.78	27.0	3589.0	507.0	1484.0	495.0	5.7934	2.
3	-118.36	33.82	28.0	67.0	15.0	49.0	11.0	6.1359	3;
4	-119.67	36.33	19.0	1241.0	244.0	850.0	237.0	2.9375	1
					•••				
2994	-117.93	33.86	35.0	931.0	181.0	516.0	174.0	5.5867	11
2995	-119.86	34.42	23.0	1450.0	642.0	1258.0	607.0	1.1790	2:

```
# повторно потстроим матрицу корреляций
matrix_corr = df.corr();

# вывод корреляционной матрицы
sns.heatmap(matrix_corr, annot=True, cmap='coolwarm');

# рассмотрим диаграмму средней стоимости дома
fig = plt.subplots()
sns.countplot( x='median_house_value', data=df)
plt.show()
```


- 1.00 - 0.75 - 0.50 - 0.25 - 0.00 - -0.25 - -0.50


```
# рассмотрим диаграмму среднего дохода
fig = plt.subplots()
sns.countplot( x='median_income', data=df)
plt.show()
```


рассмотрим диаграммы населения и среднего возраста жилья
fig = plt.subplots()
sns.countplot(x='housing_median_age', data=df)

```
plt.show()

fig = plt.subplots()
sns.countplot( x='population', data=df)
plt.show()
```


как видим из графиков и выборки ниже, с возрастом жилья аналогичная ситуация с возрастом 52 - к нему отнесли все что старше или рак df.groupby('housing_median_age').count()

longitude latitude total_rooms total_bedrooms population households median_income median_house_value

sing_median_age								
1.0	2	2	2	2	2	2	2	2
2.0	6	6	6	6	6	6	6	6
3.0	12	12	12	12	12	12	12	12
4.0	28	28	28	28	28	28	28	28
5.0	37	37	37	37	37	37	37	37
6.0	25	25	25	25	25	25	25	25
7.0	19	19	19	19	19	19	19	19
8.0	24	24	24	24	24	24	24	24
9.0	26	26	26	26	26	26	26	26
10.0	29	29	29	29	29	29	29	29
11.0	39	39	39	39	39	39	39	39
12.0	41	41	41	41	41	41	41	41
13.0	39	39	39	39	39	39	39	36
14.0	57	57	57	57	57	57	57	57
15.0	74	74	74	74	74	74	74	74
16.0	105	105	105	105	105	105	105	105
17.0	99	99	99	99	99	99	99	96
18.0	74	74	74	74	74	74	74	74
19.0	75	75	75	75	75	75	75	75
20.0	60	60	60	60	60	60	60	60
21.0	60	60	60	60	60	60	60	60

22.0	57	57	57	57	57	57	57	57
23.0	52	52	52	52	52	52	52	52
24.0	73	73	73	73	73	73	73	73
25.0	80	80	80	80	80	80	80	80
26.0	85	85	85	85	85	85	85	85
27.0	70	70	70	70	70	70	70	70
28.0	57	57	57	57	57	57	57	57
29.0	72	72	72	72	72	72	72	72
30.0	71	71	71	71	71	71	71	71
31.0	55	55	55	55	55	55	55	55
32.0	89	89	89	89	89	89	89	89
33.0	81	81	81	81	81	81	81	81
34.0	98	98	98	98	98	98	98	38
35.0	112	112	112	112	112	112	112	112
36.0	109	109	109	109	109	109	109	109
37.0	81	81	81	81	81	81	81	81
38.0	62	62	62	62	62	62	62	62
39.0	52	52	52	52	52	52	52	52
40.0	40	40	40	40	40	40	40	40
41.0	52	52	52	52	52	52	52	52
42 N	ΛQ	ΛQ	ΛQ	ΛQ	1/2	ΛQ	ΛQ	Λs

df = df.loc[df['housing_median_age'] != 52]
df

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_hous€
0	-122.05	37.37	27.0	3885.0	661.0	1537.0	606.0	6.6085	34
1	-118.30	34.26	43.0	1510.0	310.0	809.0	277.0	3.5990	1
2	-117.81	33.78	27.0	3589.0	507.0	1484.0	495.0	5.7934	2
3	-118.36	33.82	28.0	67.0	15.0	49.0	11.0	6.1359	3:
4	-119.67	36.33	19.0	1241.0	244.0	850.0	237.0	2.9375	1
2994	-117.93	33.86	35.0	931.0	181.0	516.0	174.0	5.5867	11
2995	-119.86	34.42	23.0	1450.0	642.0	1258.0	607.0	1.1790	2:
2996	-118.14	34.06	27.0	5257.0	1082.0	3496.0	1036.0	3.3906	2:
2997	-119.70	36.30	10.0	956.0	201.0	693.0	220.0	2.2895	(
2998	-117.12	34.10	40.0	96.0	14.0	46.0	14.0	3.2708	11

2715 rows × 9 columns

```
# повторно потстроим матрицу корреляций matrix_corr = df.corr();
```

[#] вывод корреляционной матрицы sns.heatmap(matrix_corr, annot=True, cmap='coolwarm');

```
1.00
                           -0.92-0.00510.044 0.07 0.11 0.049-0.029-0.037
          longitude -
                                                                                - 0.75
                                -0.076-0.032-0.068 -0.12 -0.068-0.059 -0.16
            latitude -
                     -0.92
                                                                                - 0.50
housing median age -0.00510.076
                                       -0.38 -0.34 -0.29 -0.32 -0.21 0.012
        total rooms - 0.044 - 0.032 - 0.38
                                             0.94 0.85 0.92 0.24 0.17
                                                                                - 0.25
     total bedrooms - 0.07 -0.068 -0.34 0.94
                                                   0.87 0.97 0.045 0.096
                                                                                - 0.00
         population - 0.11 -0.12 -0.29 0.85 0.87
                                                    1
                                                         0.91 0.064 0.035
                                                                                - -0.25
                                                              0.075 0.12
         households - 0.049 - 0.068 - 0.32 0.92 0.97 0.91
                                                                                 - -0.50
    median income --0.029-0.059 -0.21 0.24 0.045 0.064 0.075
                                                                    0.65
                                                                                 - -0.75
median house value --0.037 -0.16 0.012 0.17 0.096 0.035 0.12 0.65
```

```
# рассмотрим диаграмму средней стоимости дома
fig = plt.subplots()
sns.countplot( x='median_house_value', data=df)
plt.show()

# рассмотрим диаграмму среднего дохода
fig = plt.subplots()
sns.countplot( x='median_income', data=df)
plt.show()

# рассмотрим диаграммы населения и среднего возраста жилья
fig = plt.subplots()
sns.countplot( x='housing_median_age', data=df)
plt.show()
fig = plt.subplots()
```

```
sns.countplot( x='population', data=df)
plt.show()
```


median_income

▼ Гипотеза №1

Средний уровень дохода влияет на среднюю стоимость жилья

```
# рассмотрим показатели среднего уровня доходов относительно среднеей стоимости жилья # и численности населения относительно среднего возраста жилья fig, axes = plt.subplots(figsize=(20, 5), ncols=2) sns.boxplot(ax=axes[0], x='median_house_value', y='median_income', data=df) sns.boxplot(ax=axes[1], x='housing_median_age', y='population', data=df) for i, ax in enumerate(fig.axes): axes[i].tick_params(axis='x', rotation=15) plt.tight_layout() plt.show()
```


вычисляем коэффициент корреляции Пирсона между среднем уровнем доходов и средней стоимостью жилья corr0 = df['median_income'].corr(df['median_house_value']);

выводим результаты print(f'Корреляция между среднем уровнем доходов и средней стоимостью жилья: {corr0:.3f}')

Корреляция между среднем уровнем доходов и средней стоимостью жилья: 0.646

строим график зависимости между среднем уровнем доходов и средней стоимостью жилья sns.regplot(x='median_income', y='median_house_value', data=df)

<Axes: xlabel='median_income', ylabel='median_house_value'>

- # коэффициент корреляции Пирсона составляет 0.646, что позволяет сделать вывод о наличии связи между переменными
- # (среднем уровнем доходов и средней стоимостью жилья)
- # гипотеза подтверждена

▼ Гипотеза №2

Численность населения влияет на средний возраст жилья

строим график зависимости между численностью населения и среднем возрастом жилья sns.regplot(x='population', y='housing_median_age', data=df)

вычисляем коэффициент численностью населения и среднем возрастом жилья corr0 = df['population'].corr(df['housing_median_age']);

выводим результаты print(f'Корреляция между численностью населения и среднем возрастом жилья: {corr0:.3f}')

Корреляция между численностью населения и возрастом домов: -0.288

коэффициент корреляции Пирсона составляет -0.288, что позволяет сделать вывод об отсутствие линейной связи между переменными # (численность населения и средний возраст жилья) # гипотеза не подтверждена

Выводы

таким образом, в ходе анализа одна из двух гипотез потвердиласть.

гипотеза №1:

Средний уровень дохода влияет на среднюю стоимость жилья - ПОДТВЕРДИЛАСЬ.

для проверки данной гипотезы был использован метод Пирсона (его показатель составил 0.646) и графики корреляции, которые указывают на наличие линейной между рассматриваемыми переменными

гипотеза №2:

Численность населения влияет на средний возраст жилья - НЕ ПОДТВЕРДИЛАСЬ.

для проверки данной гипотезы был использован метод Пирсона (его показатель составил -0.288) и графики корреляции, которые указывают на отсутствие линейной связи между рассматриваемыми переменными

Проверка статистических гипотез

для того чтобы убедиться что корреляция существует в более широкой выборке, сформулируем две гипотезы (нулевую и альтернативную)

H0 - это гипотеза, что корреляция в выборке нулевая (т.е. что измеренная корреляция целиком вызвана случайной ошибкой при отборе)

Н1 - это гипотеза, что корреляция в выборке не нулевая (не определяем направление корреляции, а только что она существует)

```
def t_statistic(xs, ys):
    '''Вычисление t-статистики'''
    r = xs.corr(ys)
    df = xs.count() - 2 # степень свободы для проверки корреляции
    return r * np.sqrt(df / 1 - r ** 2)

xs = df['median_income']
ys = df['median_house_value']
```

```
t_value = t_statistic(xs, ys)

dfn = xs.count() - 2
p = 2 * stats.t.sf(t_value, dfn) # функция выживания
#Значение функции выживания соответствует р-значению для односторонней проверки

f't-значение {t_value} p-значение {p}'

't-значение 33.65921563574348 p-значение 7.38770670042481e-208'
```

▼ Вывод по проверке статистических гипотез

Р-значение настолько мало, что в сущности равно 0, означая, что шанс, что улевая гипотеза является истинной, фактически не существует. Мы вынуждены ринять альтернативную гипотезу о существовании корреляции.

```
# дополнительно проверим интервал уверенности 95
def z to r(z):
    '''Преобразование z-оценки обратно в r-значение'''
    return (np.exp(z*2) - 1) / (np.exp(z*2) + 1)
def r confidence interval(crit, xs, ys):
    '''Расчет интервала уверенности
       для критического значения и данных'''
    r = xs.corr(ys)
    n = xs.count()
    zr = 0.5 * np.log((1 + r) / (1 - r))
    sez = 1 / np.sqrt(n - 3)
    return (z_to_r(zr - (crit * sez))), (z_to_r(zr + (crit * sez)))
X = df['median income']
y = df['median_house_value']
interval = r_confidence_interval(1.96, X, y)
f'Интервал уверенности (95%): {interval}'
```

В результате получаем 95%-й интервал уверенности для р, расположенный между 0.623 и 0.667 # можем быть уверены в том, что в более широкой выборке существует достаточно сильная положительная корреляция

'Интервал уверенности (95%): (0.623815024068373, 0.6676547741909546)'

Платные продукты Colab - Отменить подписку