AVALIAÇÃO DE CLASSIFICADORES

Daricélio Moreira Soares

- → Procedimento Básico
 - dividir a base de dados em:
 - base de treinamento;
 - base de teste.
 - acurácia (ou taxa de acerto) do classificador:

```
nº de acertos (classificações corretas)
|base de teste|
```

taxa de erro do classificador:

```
nº de erros (classificações erradas)
|base de teste|
```

\rightarrow Hold out

- divisão aleatória da base em:
 - base de treinamento (2/3)
 - base de teste (1/3)

→ Random Subsampling

- Hold out executado k vezes;
- acurácia do classificador é obtida a partir da média das acurácias obtidas nas k execuções.

→ <u>k-Fold Cross Validation</u>

- base particionada (aleatoriamente) em
 k partes (do mesmo tamanho aproximadamente);
- treinamento e teste são executados k vezes;
- em cada execução:
 - . 1 partição de teste
 - . k-1 partições de treinamento
- todas as partições são utilizadas, em algum momento, para teste.

acurácia =

nº total de acertos

|base de dados|

$$\frac{\text{Precision} = }{\text{TP} + \text{FP}}$$

Fração dos elementos classificados como positivos que são realmente positivos.

Ou: número de acertos entre os elementos classificados como positivos.

Ex: De todos classificados como SPAM, quantos eram realmente SPAM.

$$\begin{array}{ccc} Recall & = & TP \\ \hline ou Sensitivity & TP + FN \end{array}$$

Fração dos elementos positivos que foram classificados como positivos.

Ou: número de acertos entre os elementos positivos.

Ex: De todos os SPAMs, quantos foram classificados como SPAM

$$F_1$$
 Measure = $\frac{2.Pr.Rc}{Pr + Rc}$

Pr: Precision

Rc: Recall

 F_1 é a média harmônica entre Pr e Rc. Tende a ser mais próximo ao menor elemento. Logo, um F_1 alto garante a "qualidade" em termos de Precision e Recall.

Referência:

Seções 6.12 e 6.13
 do livro Data Mining: Concepts and Techniques
 J.Han e M.Kamber, Morgan Kaufmann, segunda edição, 2006.