1. What is RIP?

RIP is a dynamic routing protocol that uses hop count as the routing metric. It updates routing tables every 30 seconds.

2. What are the versions of RIP?

RIP has two versions: RIP v1 (classful) and RIP v2 (classless and supports subnetting).

3. What is an ACL? Why is it used?

ACLs are rules applied to interfaces to control traffic flow. They enhance network security by allowing or denying packets.

4. What is the difference between Standard and Extended ACLs?

Standard ACL filters only by source IP, while Extended ACLs filter by source/destination IP, protocol, and port.

5. What is NAT and why is it used?

NAT translates private IP addresses to public ones for internet access. It conserves public IPs and adds security.

6. What is Static NAT?

Static NAT maps a single private IP to a single public IP. It's used when the device needs constant access.

7. What is Dynamic NAT?

Dynamic NAT uses a pool of public IPs for translating private IPs. Mapping is temporary.

8. What is PAT?

PAT (or NAT Overload) allows multiple private IPs to share one public IP using unique port numbers.

9. What does ip nat inside and ip nat outside mean?

These commands define which router interfaces are inside the private network and which face the public network.

10. How do you verify NAT is working?

Use show ip nat translations and show ip nat statistics.

• EIGRP:

1. What is EIGRP?

EIGRP is a Cisco-proprietary, advanced distance-vector routing protocol that uses DUAL algorithm for loop-free routing.

2. What are K values in EIGRP?

K-values define the metric formula for EIGRP. K1 and K3 (bandwidth and delay) are enabled by default.

3. What is the EIGRP metric formula?

 $Metric = 256 \times (Bandwidth + Delay)$

4. What must match for EIGRP neighbors to form?

AS number, K-values, subnet, and hello/dead timers must match.

OSPF:

5. What is OSPF?

OSPF is a link-state routing protocol using the shortest-path-first (Dijkstra's) algorithm.

6. What is the OSPF cost?

OSPF cost is 100,000,000 divided by the interface bandwidth in bps.

7. What are OSPF neighbor states?

States include Down, Init, 2-Way, ExStart, Exchange, Loading, and Full.

8. What is an OSPF area?

Logical grouping of routers. All areas must connect to the backbone (Area 0).

WLAN:

9. What is MAC filtering in WLAN?

MAC filtering allows or blocks devices based on their MAC addresses for better security.

10. What is the role of DHCP in WLAN?

DHCP dynamically assigns IP addresses to wireless clients, making network management easier.

11. Difference between Static IP and DHCP?

Static IPs are manually set, while DHCP assigns IPs automatically to devices.

General:

1. What is a socket in Python?

A socket is an endpoint that allows two machines to communicate over a network using IP and port.

2. What is the difference between TCP and UDP?

TCP is reliable and connection-based; UDP is faster but doesn't guarantee delivery.

3. Which library is used for socket programming in Python?

The built-in socket module is used for network communications.

TCP:

4. What function does a TCP server use to accept connections?

The accept () function waits and accepts a client connection.

5. How does the client connect to the server in TCP?

The client uses connect((host, port)) to establish a TCP connection.

6. Why is TCP called connection-oriented?

Because it first establishes a connection using a handshake before data transfer.

UDP:

7. Why is UDP faster than TCP?

UDP does not use handshaking, acknowledgments, or error checking, so it's faster.

8. How is data sent in UDP?

Using sendto() and recvfrom() functions which work without a connection.

9. Is data delivery quaranteed in UDP?

No, UDP is unreliable and does not guarantee message delivery or order.

General Server Admin

1. What is the role of a server?

A server provides resources or services (like websites or files) to client devices over a network.

2. What is server administration?

It involves managing and maintaining server software, hardware, security, and performance.

3. How do you check if a service is running in Linux?

Use systemctl status <service>orps -aux | grep <service> to check status.

FTP Server

4. What is FTP used for?

FTP is used to transfer files between computers over a network.

5. What is the default FTP port?

Port 21 is the default port for FTP.

6. What is the difference between active and passive FTP?

In active mode, the client opens a port to receive data; in passive mode, the server opens a port.

Web Server

7. What is the purpose of a web server?

A web server hosts websites and delivers web pages to clients via HTTP.

8. What is the default port of HTTP?

Port 80 is for HTTP, and port 443 is for HTTPS.

9. What is the default web directory in Apache?

/var/www/html is the default directory where web files are stored.

10. How do you restart the Apache server?

Use sudo systemctl restart apache2.

RSA

1. What is RSA?

RSA is an asymmetric cryptographic algorithm using a public-private key pair for secure communication.

2. Why is RSA secure?

It relies on the computational difficulty of factoring large prime numbers.

Digital Signature

3. What is a digital signature?

It's a cryptographic technique to verify the authenticity and integrity of a message using private keys.

4. How is it verified?

The receiver uses the sender's public key to verify the signature against the hashed message.

DES + DH

5. What is DES?

Data Encryption Standard is a symmetric-key algorithm used for encrypting data in 64-bit blocks.

6. What is Diffie-Hellman used for?

It's a method of securely exchanging cryptographic keys over a public channel.

Snort IDS

7. What is Snort?

Snort is a real-time intrusion detection and prevention system that analyzes network traffic.

8. What is a Snort rule?

A snort rule defines how to match packets and what action to take when a match is found.

1. Client-Server Communication Using RSA Cryptosystem

Concept:

- RSA is an **asymmetric encryption** method using public and private keys.
- The client encrypts the message using the server's public key.
- Server decrypts it using its private key.

Steps:

- 1. Generate RSA keys (Crypto.PublicKey.RSA)
- 2. Server shares **public key** with client
- 3. Client encrypts a message
- 4. Server decrypts it

Sample Code:

Server.py

```
python
CopyEdit
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
import socket
key = RSA.generate(2048)
private_key = key
public_key = key.publickey().export_key()
server = socket.socket()
server.bind(('localhost', 9999))
server.listen(1)
conn, addr = server.accept()
conn.send(public_key)
encrypted = conn.recv(4096)
cipher = PKCS1_0AEP.new(private_key)
decrypted = cipher.decrypt(encrypted)
print("Decrypted:", decrypted.decode())
```

Client.py

```
python
CopyEdit
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
import socket

client = socket.socket()
client.connect(('localhost', 9999))

public_key = RSA.import_key(client.recv(4096))
cipher = PKCS1_OAEP.new(public_key)

msg = "Hello Secure World"
encrypted = cipher.encrypt(msg.encode())
client.send(encrypted)
```

2. Client-Server RSA Digital Signature Authentication

Concept:

- Client signs a message with **private key**
- Server verifies it using client's public key
- This authenticates the **sender**

Steps:

- 1. Generate key pair on client
- 2. Sign message hash using private key
- 3. Server verifies signature with public key

Sample Conceptual Code:

Client:

```
python
CopyEdit
from Crypto.Signature import pkcs1_15
from Crypto.Hash import SHA256
from Crypto.PublicKey import RSA
```

```
msg = b"Authenticate me"
key = RSA.generate(2048)
hash_msg = SHA256.new(msg)
signature = pkcs1_15.new(key).sign(hash_msg)
# Send: msg, signature, public_key
Server:
python
CopyEdit
from Crypto.Signature import pkcs1_15
from Crypto. Hash import SHA256
from Crypto.PublicKey import RSA
hash_msg = SHA256.new(msg)
try:
    pkcs1_15.new(public_key).verify(hash_msg, signature)
    print("Verified")
except:
    print("Invalid Signature")
```

3. Encrypt Message Using DES + Key Exchange Using Diffie-Hellman

🔒 Concept:

- DES is symmetric; **same key** is used for encryption/decryption.
- Key is exchanged securely using **Diffie-Hellman**.
- Ensures confidentiality over insecure channel.

Steps:

- 1. Perform DH Key Exchange to derive common secret
- 2. Use that as DES key
- 3. Encrypt message and send
- 4. Decrypt on server

Sample Conceptual Code:

Key Exchange:

```
python
CopyEdit
# Agreed prime & base
p, g = 23, 5
# Private keys
a, b = 6, 15
A = pow(g, a, p)
B = pow(g, b, p)
# Shared key
key\_client = pow(B, a, p)
key_server = pow(A, b, p)
DES:
python
CopyEdit
from Crypto.Cipher import DES
from Crypto.Util.Padding import pad, unpad
des = DES.new(b'12345678', DES.MODE_ECB)
cipher_text = des.encrypt(pad(b'Hello', 8))
plain = unpad(des.decrypt(cipher_text), 8)
```

4. Snort Intrusion Detection System

Oncept:

- Snort is an open-source **NIDS** used to detect suspicious network activity.
- Can capture packets and match them with **custom rules**.

Usage:

- 1. Install Snort: sudo apt install snort
- 2. Monitor traffic: snort A console -i eth0 -c /etc/snort/snort.conf
- 3. Create rule:

```
cpp
CopyEdit
alert tcp any any -> any 80 (msg:"HTTP Access Detected"; sid:1000001;)
```

- 4. Place it in /etc/snort/rules/local.rules and include in snort.conf.
- 5. Restart snort: sudo systemctl restart snort