1 EXTRA 1

1 extra

Proposition 1. Suppose that K and L are fields and that $\varphi: K \to L$ is a homomorphism. With t and y denoting indeterminates, extend the homomorphism φ to the mapping $\psi: K[t] \to L[y]$ by defining

$$\psi(a_0 + a_1t + \dots + a_nt^n) = \varphi(a_0) + \varphi(a_1)y + \dots + \varphi(a_n)y^n.$$

Then $\psi: K[t] \to L[y]$ is an injective homomorphism. Also, when $\varphi: K \to L$ is surjective, then $\psi: K[t] \to L[y]$ is surjective and maps irreducible polynomials in K[t] to irreducible polynomials in L[y].

Proposition 2. Suppose L: K is a field extension with $K \subseteq L$, and $\alpha \in L$. Then E_{α} is a ring homomorphism.

Proposition 3. Let L: K be a field extension with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K. Then

$$I = ker(E_{\alpha}) = f \in K[t] : f(\alpha) = 0$$

is a nonzero ideal of K[t], and there is a unique monic polynomial $\mu_{\alpha}^K \in K[t]$ that generates I.

Theorem 1.1. Suppose that L: K is a field extension, and that $\alpha \in L$ is algebraic over K. Let g be the minimal polynomial μ_{α}^{K} of α over K. Then g is irreducible over K, and K[t]/(g) is a field.

Theorem 1.2. Let K be a field, and suppose that $f \in K[t]$ is irreducible. Then there exists a field extension L:K, with associated embedding $\varphi:K[t]\to L[y]$, having the property that L contains a root of $\varphi(f)$.

Proposition 4. Let L: K be a field extension with $K \subseteq L$. Let $A \subseteq L$ and

$$C = \{C \subseteq A : C \text{ is a finite set}\}.$$

Then $K(A) = \bigcup_{C \in \mathcal{C}} K(C)$. Further, when $[K(C) : K] < \infty$ for all $C \in \mathcal{C}$, then K(A) : K is an algebraic extension.

Proposition 5. Let L: K be a field extension with $K \subseteq L$, and suppose that $\alpha \in L$. Then

$$K[\alpha] = \{c_0 + c_1\alpha + \dots + c_d\alpha^d : d \in \mathbb{Z}_{\leq 0}, c_0, \dots, c_d \in K\}$$

and

$$K(\alpha) = \{ f/g : f, g \in K[\alpha], g \neq 0 \}.$$

Proposition 6. Let L: K be a field extension with $K \subseteq L$, and suppose that $\alpha \in L$. Then α is algebraic over K if and only if $[K(\alpha):K] < \infty$.

1.1 Review of finite fields and tests for irreducibility

Definition 1 (Characteristic). Let K be a field with additive identity 0_K and multiplicative identity 1_K . When $n \in \mathbb{N}$, we write $n \cdot 1_K$ to denote $1_K + \ldots + 1_K$ (as an n-fold sum). We define the <u>characteristic</u> of K, denoted by char K, to be the smallest positive integer m with the property that $m \cdot 1_K = 0_K$; if no such integer m exists, we define the characteristic of K to be 0.

Proposition 7. Let K be a field with char K > 0. Then char K is equal to a prime number p, and then for all $x \in K$ one has $p \cdot x = 0$.

Theorem 1.3 (Localisation principle). Let R be an integral domain, and let I be a prime ideal of R. Define $\varphi: R[X] \to (R/I)[X]$ by putting

$$\varphi(a_0 + a_1 X + \dots + a_n X^n) = \overline{a}_0 + \overline{a}_1 X + \dots + \overline{a}_n X^n,$$

where $\overline{a}_j = a_j + I$. Then φ is a surjective homomorphism. Moreover, if $f \in R[X]$ is primitive with leading coefficient not in I, then f is irreducible in R[X] whenever $\varphi(f)$ is irreducible in (R/I)[X].

Note: Proposition 3.1 tells us that when $f \in K[t]$ and $\sigma \in Gal(L:K)$, the mapping σ permutes the roots of f that lie in L.

Theorem 1.4. Suppose that L: K is an algebraic extension, and $\sigma: L \to L$ is a K-homomorphism. Then σ is an automorphism of L.

Theorem 1.5. If L: K is a finite extension, then $|Gal(L:K)| \leq [L:K]$.

Corollary 1. Suppose that L: F and L: F' are finite extensions with $F \subseteq L$ tand $F' \subseteq L$, and further that $\psi: F \to F'$ is an isomorphism. Then there are at most [L: F] ways to extend ψ to a homomorphism from L into L.

Corollary 2. Let L: K be a finite extension with $K \subseteq L$. Suppose that $\alpha_1, \ldots, \alpha_n \in L$ and put $L = K(\alpha_1, \ldots, \alpha_n)$. Let $K_0 = K$, and for $1 \le i \le n$, let $K_i = K_{i-1}(\alpha_i)$. Then every automorphism $\tau \in \operatorname{Gal}(L: K)$ corresponds to a sequence of homomorphisms $\sigma_1, \ldots, \sigma_n$, having the property that $\sigma_0: K \to L$ is the inclusion map, one has $\sigma_n = \tau$, and for $1 \le i \le n$, the map $\sigma_i: K_i \to L$ is a homomorphism extending $\sigma_{i-1}: K_{i-1} \to L$.

2 Algebraic closures

2.1 The definition of an algebraic closure, and Zorn's Lemma

2.2 The existence of an algebraic closure

Corollary 3. When K is a field, the field \overline{K} is a maximal algebraic extension of K.

2.3 Properties of algebraic closures

Corollary 4. Suppose that \overline{K} is an algebraic closure of K, and assume that $K \subseteq \overline{K}$. Take $\alpha \in \overline{K}$ and suppose that $\sigma : K \to \overline{K}$ is a homomorphism. Then the number of distinct roots of μ_{α}^K in \overline{K} is equal to the number of distinct roots of $\sigma(\mu_{\alpha}^K)$ in \overline{K} .

Proposition 8. Suppose that L and M are fields having the property that L is algebraically closed, and $\psi: L \to M$ is a homomorphism. Then $\psi(L)$ is algebraically closed.

Proposition 9. If L: K is an algebraic extension, then \overline{L} is an algebraic closure of K, and hence $\overline{L} \cong \overline{K}$. If in addition $K \subseteq L \subseteq \overline{L}$, then we can take $\overline{K} = \overline{L}$.

3 Splitting field extensions

Definition 2 (Splitting field, splitting field extension). Suppose that L:K is a field extension relative to the embedding $\varphi:K\to L$, and $f\in K[t]\setminus K$.

- (i) We say that f splits over L if $\varphi(f) = \lambda(t \alpha_1) \cdots (t \alpha_n)$, for some $\lambda \in \varphi(K)$ and $\alpha_1, \ldots, \alpha_n \in L$.
- (ii) Suppose that f splits over L, and let M be a field with $\varphi(K) \subseteq M \subseteq L$. We say that M : K is a splitting field extension for f if M is the smallest subfield of L containing $\varphi(K)$ over which f splits.
- (iii) More generally, suppose that $S \subseteq K[t] \setminus K$ has the property that every $f \in S$ splits over L. Let M be a field with $\varphi(K) \subseteq M \subseteq L$. We say that M:K is a splitting field extension for S if M is the smallest subfield of L containing $\varphi(K)$ over which every polynomial $f \in S$ splits.

Proposition 10. Suppose that L: K is a splitting field extension for the polynomial $f \in K[t] \setminus K$ with associated embedding $\varphi: K \to L$. Let $\alpha_1, \ldots, \alpha_n \in L$ be the roots of $\varphi(f)$. Then $L = \varphi(K)(\alpha_1, \ldots, \alpha_n)$.

Proposition 11. Suppose that L: K is a splitting field extension for the polynomial $f \in K[t] \setminus K$. Then $[L:K] \leq (\deg f)!$

Proposition 12. Given $S \subseteq K[t] \setminus K$, there exists a splitting field extension L : K for S, and L : K is an algebraic extension. More explicitly, suppose that \overline{K} is an algebraic closure of K, and that $\overline{K} : K$ is an extension relative to the embedding $\varphi : \overline{K} \to K$. Let

$$A = \left\{\alpha \in \overline{K} : \alpha \text{ is a root of } \varphi(f), \text{ for some } f \in S\right\}.$$

5 SEPARABILITY 3

Put $K' = \varphi(K)$. Then K'(A) : K is a splitting field extension for S.

Theorem 3.1. Let $f \in K[t] \setminus K$, and suppose that L : K and M : K are splitting field extensions for f. Then $L \cong M$, and thus [L : K] = [M : K].

Theorem 3.2. Suppose that $S \subseteq K[t] \setminus K$, and suppose that L : K and M : K are splitting field extensions for S. Then $L \cong M$ and [L : K] = [M : K].

4 Normal extensions and composita

4.1 Normal extensions and splitting field extensions

Proposition 13. Suppose that L:M:K is a tower of field extensions and L:K is a normal extension. Then L:M is also a normal extension.

4.2 Normal closures

Theorem 4.1. Suppose that M:L:K is a tower of field extensions having the property that M:K is normal. Assume that $K\subseteq L\subseteq M$. Then the following are equivalent:

- (i) the field extension L: K is normal;
- (ii) any K-homomorphism of L into M is an automorphism of L;
- (iii) whenever $\sigma: M \to M$ is a K-automorphism, then $\sigma(L) \subseteq L$.

4.3 Composita of field extensions

Proposition 14. Suppose that E: K and F: K are finite extensions having the property that K, E and F are contained in a field L. Then EF: K is a finite extension.

Theorem 4.2. Let E: K and F: K be finite extensions having the property that K, E and F are contained in a field L.

- (a) When E: K is normal, then EF: F is normal.
- (b) When E: K and F: K are both normal, then EF: K and $E \cap F: K$ are normal.

4.4 Normal closures (non-examinable)

5 Separability

Theorem 5.1. Suppose that L:M:K is a tower of algebraic extensions. Then L:K is separable if and only if L:M and M:K are both separable.

Theorem 5.2. Suppose tht E: K and F: K are finite extensions with $E \subseteq L$ and $F \subseteq L$, where L is a field.

- (a) When E: K is separable, then so too is EF: F;
- (b) When E: K and F: K are both separable, then so too are EF: K and $E \cap F: K$.

6 Inseparable polynomials, differentiation, and the Frobenius map

6.1 Inseparable polynomials and differentiation

6.2 The Frobenius map

7 The Primitive Element Theorem

8 Fixed fields and Galois extensions

Theorem 8.1. Suppose that L: K is an algebraic extension. Then L: K is Galois if and only if $K = \operatorname{Fix}_L(\operatorname{Gal}(L:K))$.

Theorem 8.2. Suppose that L is a field and G is a finite subgroup of Aut(L), and put $K = Fix_L(G)$. Then L : K is a finite Galois extension with [L : K] = |Gal(L : K)|, and furthermore G = Gal(L : K).

Theorem 8.3. Suppose that L: K is a finite extension. Then, if L: K is a Galois extension, one has |Gal(L:K)| = [L:K] and $K = Fix_L(Gal(L:K))$. If L: K is not Galois, meanwhile, one has |Gal(L:K)| < [L:K] and K is a proper subfield of $Fix_L(Gal(L:K))$.

Proposition 15. Suppose that L: K is a Galois extension, and further that L: M: K is a tower of field extensions. Then L: M is a Galois extension.

9 The main theorems of Galois theory

9.1 The Fundamental Theorem

Definition 25. Suppose that L: K is a field extension. When G is a subgroup of $\operatorname{Aut}(L)$, we write $\phi(G)$ for $\operatorname{Fix}_L(G)$, and when $L: M: K_0$ is a tower of field extensions with $K_0 = \phi(\operatorname{Gal}(L:K))$, we write $\gamma(M)$ for $\operatorname{Gal}(L:M)$.

Theorem 9.1 (The Fundamental Theorem of Galois Theory). Suppose that L: K is a finite extension, let G = Gal(L:K), and put $K_0 = \phi(G)$. Then one has the following:

- (a) the map ϕ is a bijection from the set of subgroups of G onto the set of fields M intermediate between L and K_0 , and γ is the inverse map;
- (b) if $H \leq G$, then $H \leq G$ if and only if $\phi(H) : K_0$ is a normal extension;
- (c) if $H \subseteq G$, one has $Gal(\phi(H) : K_0) \cong G/H$. In particular, if $\sigma \in G$, one has $\sigma|_{\phi(H)} \in Gal(\phi(H) : K_0)$, and the map $\sigma \mapsto \sigma|_{\phi(H)}$ is a homomorphism of G onto $Gal(\phi(H) : K_0)$ with kernel H.

Definition 26 (Galois group of polynomial). When $f \in K[t]$ and L : K is a splitting field extension for f, we define the Galois group of the polynomial f over K to be $\operatorname{Gal}_K(f) = \operatorname{Gal}(L : K)$.

9.2 Non-examinable: consequences for composita and intersections

10 Finite fields

11 Solvability and solubility

Definition 27 (Soluble group). A finite group G is soluble if there is a series of groups

$$\{id\} = G_0 \leqslant G_1 \leqslant \cdots \leqslant G_n = G,$$

with the property that $G_i \subseteq G_{i+1}$ and G_{i+1}/G_i is abelian $(0 \le i < n)$.

Theorem 11.1. Let K be a field of characteristic 0. Then $f \in K[t]$ is solvable by radicals if and only if $Gal_K(f)$ is solvable.

Lemma 11.2. Suppose char K = 0 and L : K is a radical extension. Then there exists an extension N : L such that N : K is normal and radical.

Definition 28 (Cyclic extension). The extension L: K is <u>cyclic</u> if L: K is a Galois extension and Gal(L:K) is a cyclic group.

Lemma 11.3. Suppose that char K = 0 and let p be a prime number. Also, let L : K be a splitting field extension for $t^p - 1$. Then Gal(L : K) is cyclic, and hence L : K is a cyclic extension.

Lemma 11.4. Let char K = 0 and suppose that n is an integer such that $t^n - 1$ splits over K. Let L : K be a splitting field extension for $t^n - a$, for some $a \in K$. Then Gal(L : K) is abelian.

Theorem 11.5. Let char K = 0 and suppose that L : K is Galois. Suppose that there is an extension M : L with the property that M : K is radical. Then Gal(L : K) is soluble.

Corollary 5. Suppose that char K = 0. Then $Gal_K(f)$ is soluble whenever $f \in K[t]$ is soluble by radicals.

Corollary 6. There exist quintic polynomials in $\mathbb{Q}[t]$ with insoluble Galois groups, such as $f(t) = t^5 - 4t + 2$, and which are not solvable by radicals.

Lemma 11.6. Let char K = 0, and suppose that L : K is a cyclic extension of degree n. Suppose also that K contains a primitive n-th root of 1. Then there exists $\theta \in K$ having the property that $t^n - \theta$ is irreducible over K, and L : K is a splitting field for $t^n - \theta$. Further, if β is a root of $t^n - \theta$ over L, then $L = K(\beta)$.

Theorem 11.7. Let char K = 0, and suppose that $f \in K[t] \setminus K$. Then f is solvable by radicals whenever $Gal_K(f)$ is soluble.