Prof. Yann Thoma

Laboratoire VSN semestre de printemps 2020 - 2021

Exercices de vérification Quelques réflexions

VHDL

Dans le contexte d'un banc de test VHDL, nous nous intéressons à vérifier la validité de certaines assertions. Pour chacune de ces assertions, écrire le code VHDL permettant de la vérifier. Il peut s'agit d'une assertion concurrente ou d'un processus.

- 1. Lorsque A passe de '0' à '1', B doit ensuite rester stable pendant 100 ns.
- 2. A ne doit jamais avoir la même valeur que B.
- 3. Lorsque, sur un flanc d'horloge, A vaut '1', alors B doit valoir '1' pendant les deux cycles d'horloge suivant. Utilisez le signal clk comme horloge.
- 4. Lorsque le signal wr passe à '0' au temps t, le signal **data** doit avoir été stable entre le temps t ta et t tf. (ta > tf > 0)

Contraintes SystemVerilog

Soit la classe SystemVerilog suivante :

```
class Test;
    rand logic wr;
    rand logic rd;
    rand logic cs;
    rand logic[1:0] type;
    rand logic[7:0] address;
    rand logic[31:0] data;
    rand logic parity;

// Votre code
endclass : Test
```

Nous désirons générer aléatoirement des objets de cette classe selon les contraintes suivantes :

- 1. Si cs vaut 0, alors address doit aussi valoir 0
- 2. Si wr vaut 1, alors rd doit valoir 0
- 3. Si rd vaut 1, alors wr doit valoir 0
- 4. Si type vaut 0, alors address< 16
- 5. Si type vaut 1, alors $16 \le$ address < 128
- 6. Si type vaut 2, alors 128 ≤address
- 7. parity doit valoir 0 si la somme des bits à 1 de data est pair, et doit valoir 1 sinon

Ecrivez le code nécessaire à la génération aléatoire afin de respecter ces contraintes. Votre code doit permettre une simulation la plus efficace possible en termes de temps d'exécution. Partez du principe que votre code sera placé à l'endroit du commentaire //votre code.

Groupes de couverture SystemVerilog

Nous désirons mettre en place un groupe de couverture pour la classe suivante :

```
class Test;
    rand logic wr;
    rand logic rd;
    rand logic cs;
    rand logic[1:0] type;
    rand logic[7:0] address;
    rand logic[31:0] data;
    rand logic parity;
endclass : Test
```

Le groupe de couverture doit permettre de détecter les combinaisons suivantes :

- 1. L'ensemble des types doivent avoir été observés en lecture (rd à 1) et en écriture (wr à 1)
- 2. Toutes les adresses entre 0 et 3 et entre 252 et 255 doivent avoir été observées

Ecrivez le groupe de couverture correspondant.

Assertions SystemVerilog

Ecrivez les assertions suivantes en SystemVerilog, pour un système ayant une horloge clk et un reset rst:

- 1. Si une requête arrive (req=1), alors un acknowledge (ack=1) doit être observé au plus tard 4 cycles après
- 2. Si A a été à 1 pendant 3 cycles, et que B a été à 1 pendant les deux dernier cycles où A était à 1, alors C doit être à 0 au cycle suivant et passer de 0 à 1 au plus tard 4 cycles après