Nome			Turma 2QE	Data
	Escola SENAI	"Suíço-Brasileira" F	Paulo Ernesto Tolle	'
Curso Técnico em	Qualidade	Semestre 3º	Professor Edu	ardo Inocencio
Unidade Curricular		<u>'</u>	·	
	Monitorame	ento de Produto e P	rocesso (MPP)	

Exercícios Histograma

Exercício 01

Uma grande empresa pretende adquirir uniformes para todos os seus 400 funcionários. Como as pessoas possuem diferentes estaturas, precisam de uniformes de tamanhos diferentes. Ao invés de medir a altura de todos os funcionários, o que levaria muito tempo e daria muito trabalho, a empresa decidiu utilizar um método estatístico, neste caso, o histograma:

1,85	1,89	1,79	1,69	1,86	1,65	1,65	1,69	1,62	1,72
1,92	1,99	1,82	1,83	1,68	1,47	1,70	1,53	1,71	1,63
1,90	1,59	1,79	1,48	1,69	1,76	1,51	1,70	1,64	1,55
1,85	1,60	1,81	1,68	1,60	1,71	1,68	1,77	1,72	1,76
1,82	1,93	1,80	1,77	1,76	1,62	1,73	1,63	1,75	1,55
1,78	1,78	1,79	1,72	1,71					

Exercício 02

As notas da última prova de administração da produção são apresentadas a seguir, construa um histograma com estes dados e faça uma análise sobre o resultado do gráfico.

4,0	10,0	4,5	8,8	7,0	4,0	6,0	5,5	4,5	6,5
0,0	7,5	9,5	7,6	7,0	5,5	7,5	4,5	8,8	3,4
4.3	6,0	8,5	4,5	6,3	8,5	8,5	9,5	7,3	4,6
10,0	1,0	5,5	4,7	3,2	8,5	4,0	8,5	3,7	6,8
4,5	3,7	8,0	4,3	10,0	6,0	5,5	5,5	5,7	6,4
5,5	7,0	4,5	9,5	8,5	5,8	8,5	8,0	4,8	8,5

- a) Amplitude dos dados;
- **b)** Número de classe;
- c) Amplitude de classe;
- d) Valor máximo;
- e) Valor máximo;
- f) Quantidade de amostras;

Exercício 02

Abaixo apresenta os resultados de rugosidade, medidos em corpos de prova usinados com diferentes avanços. Determine para cada tabela:

- g) Amplitude dos dados;
- h) Número de classe;
- i) Amplitude de classe;
- j) Valor máximo;
- k) Valor máximo;
- I) Quantidade de amostras;
- m) Construa um Histograma;
- **n)** Levando em consideração o valor máximo admissível em projeto de Ra 2,5 μm, qual avanço por aresta ficou com valores dentro do especificado;
- o) Com relação a pergunta anterior. Quantos são.
- p) Isso representa quantos porcentos de peças boas.

fz/aresta - 0,10													
4,83	4,52	1,85	2,47	1,84	3,2	2,58	1,98						
2,93	4,82	3,47	2,1	2,35	2,58	2,95	1,8						
5,64	4,56	3,71	2,58	1,79	2,02	1,76	1,79						
1,97	2,14	1,85	2,69	2,56	2,5	3,36	1,86						
3,37	2,95	3,45	1,89	1,9	1,97	4,1	3,3						

	fz/aresta - 0,06												
	1,82	3,01	3,01 4,72		3,01 4,72		1,37	2,09	1,72	7,28			
	1,71	1,27	6,68	4,65	1,55	1,44	2,01	2,8					
	1,42	4,72	1,42	3,62	3,45	1,77	1,39	3,2					
	1,67	1,37	2,06	1,27	3,18	4,22	1,15	2,8					
Г	2,76	1,19	1,31	2,21	2,2	1,64	3,7	2,2					

	fz/aresta - 0,02												
1,61	1,8	3,21	4,26	2,45	3,88	2,09	2,42						
2,27	3,64	3,35	2,63	6,21	6,25	3,26	4,2						
3,2	3,67	3,23	2,28	2,24	2,74	3	3,2						
2,59	4,2	4,23	3,26	4,36	3,19	2,6	4,6						
2,45	2	3,89	2,76	6,63	4,85	2,9	2,9						

Exercício 03

Abaixo apresenta os desvios geométricos medidos em uma (M.M.C. – Máquina de medir por coordenadas) em um corpo de prova, onde a variável em estudo era o sentido de corte e avanço por aresta. Determine:

- a) Amplitude dos dados;
- **b)** Número de classe;
- c) Amplitude de classe;
- d) Valor máximo;
- e) Valor máximo;
- f) Quantidade de amostras;
- g) Construa um Histograma;
- h) Levando em consideração o valor admissível no erro geométrico de 20μm a 65μm, qual avanço e sentido de corte ficou com valores dentro do especificado;
- i) Com relação a pergunta anterior. Quantos são.
- j) Isso representa quantos porcentos de peças boas.

fz/aresta					Usinagem c	liscordante				
fz 0 02	-0,129	-0,131	-0,116	-0,076	-0,074	-0,065	-0,021	-0,024	-0,010	-0,012
	-0,005	-0,025	-0,013	0,088	0,070	0,091	0,111	0,086	0,086	0,087
12 0,02	-0,037	-0,048	-0,032	0,034	0,018	0,043	0,025	0,014	0,038	0,036
	0,035	0,043	0,015	0,038	0,043	0,025	0,017	0,018	0,032	0,030
	0,083	0,069	0,078	-0,107	-0,113	-0,089	-0,065	-0,072	-0,058	-0,055
f= 0.06	0,104	0,111	0,106	-0,062	-0,073	-0,061	-0,073	-0,086	-0,081	-0,081
fz 0,02	0,171	0,170	0,172	-0,145	-0,158	-0,158	-0,185	-0,176	-0,169	-0,168
	0,0172	0,0165	0,168	-0,15	-0,156	-0,157	-0,187	-0,175	-0,168	-0,169
	0,083	0,101	0,087	-0,239	-0,225	-0,246	-0,204	-0,193	-0,216	-0,215
f= 0.1	0,049	0,030	0,049	-0,108	-0,122	-0,111	-0,070	-0,081	-0,076	-0,077
12 0,1	-0,114	-0,134	-0,114	-0,153	-0,164	-0,164	-0,106	-0,101	-0,109	-0,109
	-0,115	-0,135	-0,116	-0,155	-0,163	-0,165	-0,107	-0,102	-0,108	-0,107

fz/aresta		-			Usinagem C	oncordante				
fz 0 02	0,082	0,096	0,083	-0,056	-0,039	-0,059	-0,027	-0,011	-0,031	-0,032
	-0,098	-0,119	-0,119	-0,021	-0,036	-0,032	-0,037	-0,036	-0,049	-0,050
12 0,02	0,112	0,130	0,112	0,080	0,088	0,079	0,067	0,062	0,062	0,063
	0,115	0,135	0,113	0,085	0,090	0,080	0,070	0,065	0,063	0,063
	-0,066	-0,045	-0,065	0,017	0,028	0,017	0,016	0,029	0,012	0,012
f- 0.06	-0,236	-0,212	-0,239	0,096	0,111	0,102	0,080	0,088	0,088	0,087
fz 0,02 fz 0,06	0,166	0,167	0,164	0,103	0,116	0,115	0,143	0,156	0,148	0,147
	0,165	0,167	0,165	0,103	0,116	0,115	0,142	0,155	0,149	0,147
	-0,112	-0,099	-0,097	0,118	0,129	0,113	0,159	0,162	0,157	0,160
f ₇ 0 1	-0,174	-0,190	-0,183	0,196	0,203	0,197	0,245	0,243	0,248	0,247
12 0,1	0,029	0,033	0,024	0,138	0,144	0,144	0,121	0,135	0,132	0,133
	0,030	0,032	0,024	0,137	0,144	0,145	0,121	0,136	0,132	0,133