PROJEKAT HRM024

Mikroprocesorski sistemi u telekomunikacijama - ZAVRŠNI

Amar Mehmedović Damir Muminović Mahir Terzić

MSUT

23.01.2024.

- 1 UVOD
- 2 KOMPONENTE
- 3 IMPLEMENTACIJA
- **4** TESTIRANJE
- **5** LITERATURA

OPIS PROJEKTA

- Glavni cilj projekta je implementacija uređaja, uz pomoć STM32F407 mikrokontrolera i senzora MAX30102 za mjerenje srčane frekvencije.
- Uređaj treba da vrši ispis prosječne vrijednosti izmjerene srčane frekvencije na drugom udaljenom uređaju (u ovom slučaju drugi STM32F407).
- Prijenos podataka na udaljeni uređaj vrši se putem nRF24L01 Transceiver-a.

Korištene komponente:

- STM32F407 MCU
- MAX30102 senzor
- nRF24L01 Transceiver
- Display 1602 I2C

U nastavku će biti dat kratak opis komponenti koje su korištene.

- 2 KOMPONENTE
- **3** IMPLEMENTACIJA
- 4 TESTIRANJE
- **5** LITERATURA

MAX30102

- MAX30102 senzor posjeduje crvenu LED diodu, infracrvenu LED (IR), i omogućava mjerenje otkucaja srčane frekvencije i zasićenosti kisikom u krvi.
- Uređaj treba da vrši prikazivanja prosječne vrijednosti izmjerene srčane frekvencije na udaljenom uređaju (drugi STM32F407).
- Komunikacija se ostvaruje putem I2C interfejsa.
- -40°C to +85°C Operating Temperature Range
- MAX30102 senzor sadrži konfiguracijske i statusne registre.
- Izlazni podaci mogu se pohraniti u FIFO buffer

MAX30102

Register Maps and Descriptions

REGISTER	B7	В6	В5	B4	В3	B2	B1	В0	REG ADDR	POR STATE	R/W
STATUS											
Interrupt Status 1	A_FULL	PPG_ RDY	ALC_ OVF					PWR_ RDY	0x00	0X00	R
Interrupt Status 2							DIE_TEMP _RDY		0x01	0x00	R
Interrupt Enable 1	A_FULL_ EN	PPG_ RDY_EN	ALC_ OVF_EN						0x02	0X00	R/W
Interrupt Enable 2							DIE_TEMP _RDY_EN		0x03	0x00	R/W
					FIFO						
FIFO Write Pointer				FIFO_WR_PTR[4:0]							R/W
Overflow Counter				OVF_COUNTER[4:0]						0x00	R/W
FIFO Read Pointer				FIFO_RD_PTR[4:0]						0x00	R/W
FIFO Data Register		FIFO_DATA[7:0]								0x00	R/W
CONFIGURATIO	ON										
FIFO Configuration	SMP_AVE[2:0]			FIFO_ ROLL OVER_EN		FIFO_A_F	0x08	0x00	R/W		
Mode Configuration	SHDN	RESET			MODE[2:0]		0x09	0x00	R/W		
SpO ₂ Configuration	0 (Reserved)	SPO2_A [1	DC_RGE :0]	SPO2_SR[2:0]			LED_PW[1:0]		0x0A	0x00	R/W
RESERVED									0x0B	0x00	R/W
LED Pulse	LED1_PA[7:0]								0x0C	0x00	R/W
Amplitude	LED2_PA[7:0]								0x0D	0x00	R/W
RESERVED									0x0E	0x00	R/W
RESERVED									0x0F	0x00	R/M
Multi-LED Mode Control			SLOT2[2:0					0x11	0x00	R/W	
Registers			SLOT4[2:0	0]		SLOT3[2:0]			0x12	0x00	R/W

Register Maps and Descriptions (continued)

REGISTER	B7	В6	В5	B4	В3	B2	B1	В0	REG ADDR	POR STATE	R/W
RESERVED									0x13- 0x17	0xFF	R/W
RESERVED									0x18- 0x1E	0x00	R
DIE TEMPERAT	URE										
Die Temp Integer	TINT[7:0]								0x1F	0x00	R
Die Temp Fraction					TFRAC[3:0]				0x20	0x00	R
Die Temperature Config								TEMP _EN	0x21	0x00	R/W
RESERVED								0x22- 0x2F	0x00	R/W	
PART ID											
Revision ID	REV_ID[7:0]							0xFE	0xXX*	R	
Part ID	PART_ID[7]							0xFF	0x15	R	

MSUT

nRF24L01 - RF Transceiver

- 2.4 GHz radio primo-predajnik.
- Bitske brzine od 1 Mbps (1 MHz kanal) i 2 Mbps (2MHz).
- Koristi za komunikaciju na kratkim udaljenostima.
- Koristi GFSK (Gaussian Frequency Shift Keying) modulaciju za bolju otpornost na šum i interferenciju.
- Koristi SPI komunikacijski protokol.

- I2C 1602 displej koristi HD44780U (LCD-II) kontroler.
- I2C (Inter-Integrated Circuit) interfejs za komunikaciju s mikrokontrolerom.
- 2x16 (32 znaka) linija za prikaz teksta, što pruža dovoljan prostor za prikazivanje informacija u slučaju ovog projekta.
- Low power operation support: 2.7 to 5.5V
- HD44780U ima dva 8bitna registra, instrukcijski registar (IR) i data registar (DR).

Display I2C 1602

- 2 KOMPONENTE
- **3** IMPLEMENTACIJA
- **4** TESTIRANJE
- **5** LITERATURA

 Inicijalizacija MAX30102 senzora vrši se na sledeći način: (dio koda funckije MAX_Init())

```
I2C Start():
2 I2C Send Addr(MAX30102 W ADDRESS);
3 I2C Send8bit(MODE REG);
4 I2C Send8bit(HRM MODE);
5 I2C Stop();
6 delay ms(4);
8 I2C Start();
9 I2C Send<sub>A</sub>ddr(MAX30102 W ADDRESS);
10 | I2C_Send8bit(LED1_PULSE_AMPLITUDE_REG);
11 I2C Send8bit(LED1 ON);
12 I2C_Stop();
```

- U gore navedenom kodu putem adrese za pisanje (MAX30102_W_ADDRESS) pristupa se konfiguracijskom registru za mod rada u kojem će senzor raditi.
- HRM_MODE (0x09) podešava Heart Rate Mode.
- Vrši se podešavanje i konfiguracija LED1 diode.
- Nakon toga u nastavku konfigurisani su FIFO read, write pointeri.


```
I2C Start();
2 I2C Send<sub>A</sub>ddr(MAX30102 W ADDRESS);
3 I2C Send8bit(FIFO WRITE POINTER);
4 I2C Send8bit(0x00);
5 I2C_Stop();
6 delay_ms(4);
 7 I2C Start();
8 I2C Send ddr(MAX30102 W ADDRESS):
9 I2C_Send8bit(FIFO_READ_POINTER);
10 I2C Send8bit(0x00);
11 I2C_Stop();
12 delay_ms(4);
13 I2C Start();
14 I2C Send<sub>A</sub>ddr(MAX30102 W ADDRESS);
15 I2C Send8bit(OVERFLOW COUNTER);
16 I2C Send8bit(0x00);
17 I2C Stop();
18 delay ms(4);
```

- Potrebno je ukloniti DC komponentu iz dobijenih vrijednosti kako bi se smanjio uticaj niskofrekentnih smetnji a samim time bi bila povećana preciznost i tačnost mjerenja.
- Pored uklanjanja DC komponente potrebno je koristiti i različite filtere kako bi naše vrijednosti učinili pogodnim za očitavanje.

Filteri koji su implementirani u max.c :

- Moving Average Filter MAF
- Bandpass Filter

- Nakon obrade očitanih vrijednosi računa se bpm pozivom funkcije calculateBPM.
- calculateBPM prima tri argumenta (filtered_data,size i sampling_rate).
- Uzimaju se 4 izračunate vrijednosti bpm a zatim se računa njihova prosječna vrijednost koja se konvertuje u string a onda se putem NRF-a šalje na drugi STM32F407.
- Konverzija dobijenih vrijednosti u string prikazana je u nastavku

 Na drugoj strani NRF radi u Slave modu i čeka prijem podataka.

IMPLEMENTACIJA

 U trenutku prijema podataka vrši se ispis na displeju uz pomoć funkcije LCD_Send_String.

```
20 while (node_type == NRF24L01_NODE_TYPE_RX)
21 {
22 setTxAddrNRF24L01(c_nrf_master_addr);
23 res = dataReadyNRF24L01();
24 if (res == NRF DATA READY)
25 {
26 rxDataNRF24L01(nrf data);
27 LCD Clear();
28 LCD Send String((char *)nrf<sub>d</sub>ata);
29 message, eceived = 1;
30 } }
```

- Funkcija LCD_Send_String ispisuje karaktere sve dok je cnt manje od 16, a nakon toga pozivom funkcije LCD_Cursor(1,0) prelazi u novi red. (I2C Displej može maksimalno prikazati 16 simbola u jedom redu, a ima 2 reda).
- Pozivom funkcije LCD_Write_Data(LCD_ADDR, *str++) svaki karakter se šalje na LCD ekran. Nakon slanja karaktera, pokazivač na string se povećava za jedan kako bi se prešlo na sljedeći karakter.


```
31 void LCD_Send_String(char *str)
32 {
33 | uint8_t cnt = 0;
34 while (*str)
35 {
36 | if (cnt >= 16)
37
38 LCD Cursor(1, 0);
39 | cnt = 0;
40 }
41 LCD Write Data(LCD ADDR, *str++);
42 cnt++;
43 }
```

- **1** UVOD
- 2 KOMPONENTE
- 3 IMPLEMENTACIJA
- **4** TESTIRANJE
- **5** LITERATURA

TESTIRANJE

- Nakon implementacije uređaja izvršeno je testiranje očitavanja srčanog ritma pri različitim opterećenjima.
- Jasno se vide razlike pri različitim intenzitetima aktivnosti osobe koja mjeri puls.
- U normalnim aktivnostima dobivene vrijednosti bpm-a su u rasponu od 60-80.
- Pri inteziviranom opterećenju porast bpm-a je jasno vidljiv, što ukazuje na povećanu fizičku aktivnost ili opterećenje.
- HRM024 ne garantuje tačnost mjerenja ali može detektovati velike promjene što ukazuje na povećanu aktivnost srca.

TESTIRANJE

• Rezultati mjerenja pri različitim fizičkim opterećenjima:

```
AVG BPH: 73
BPH: 71
AVG BPH: 76
BPH: 76
AVG BPH: 74
BPH: 68
BPH: 79
AVG BPH: 73
BPH: 79
AVG BPH: 73
BPH: 79
AVG BPH: 71
BPH: 68
AVG BPH: 71
BPH: 69
AVG BPH: 71
BPH: 69
BPH: 79
BPH: 79
BPH: 79
BPH: 75
BPH: 75
BPH: 75
BPH: 75
```

U stanju mirovanja

```
AVG BPH:137
BPH:187
AVG BPH:133
BPH:34
AVG BPH:156
BPH:199
AVG BPH:156
BPH:199
AVG BPH:124
BPH:88
AVG BPH:127
AVG BPH:17
BPH:187
AVG BPH:111
BPH:181
AVG BPH:111
```

Pri fizičkom opterećenju

TESTIRANJE

Plot u MATLAB-u prilikom mjerenja.

- UVOD
- 2 KOMPONENTE
- 3 IMPLEMENTACIJA
- **4** TESTIRANJE
- **5** LITERATURA

LITERATURA

- [1] MAX30102 Datasheet.
- [2] STM32F407xx Datasheet.
- [3] RM0090 Reference manual.
- [4] HD44780U (LCD-II).