3.1 树与树的表示

什么是树

客观世界中许多事物存在层次关系

- ▶人类社会家谱
- ▶社会组织结构
- ▶图书信息管理

什么是树

分层次组织在管理上具有更高的效率!

数据管理的基本操作之一: 查找

如何实现有效率的查找?

查找 (Searching)

查找:根据某个给定关键字K,从集合R中找出关键字与K相同的记录

- 1. 静态查找(例:查字典): 集合中记录是固定的
 - □ 没有插入和删除操作,只有查找
- 2. 动态查找: 集合中记录是动态变化的
 - □ 除查找,还可能发生插入和删除

静态查找

将集合放在数组或者链表里面

方法1: 顺序查找

```
1 2 3 4 5 6
```

将元素存放在数组里.

从1开始存储

```
int SequentialSearch (StaticTable *Tbl, ElementType K)
{ /*在表Tbl[1]~Tbl[n]中查找关键字为K的数据元素*/int i; Tbl->Element[0] = K; /*建立哨兵*/for(i = Tbl->Length; Tbl->Element[i]!= K; i--); return i; /*查找成功返回所在单元下标; 不成功返回0*/
}
```

顺序查找算法的时间复杂度为O(n)。

K就是哨兵

```
typedef struct LNode *List;
struct LNode{
          ElementType Element[MAXSIZE];
          int Length;
};
```


方法2: 二分查找 (Binary Search)

❖ 假设n个数据元素的关键字满足有序(比如:小到大)

$$k_1 < k_2 < \dots < k_n$$

并且是连续存放(数组),那么可以进行二分查找。

[例] 假设有13个数据元素,按关键字由小到大顺序存放.

二分查找关健字为444的数据元素过程如下:

5	16	39	45	51	98	100	202	226	321	368	444	501
1	2	3	4	5	6	7	8	9	10	11	12	13
ô ı	eft					ô n	nid					ô ri

1.
$$left = 1$$
, $right = 13$; $mid = (1+13)/2 = 7$: $100 < 444$;

$$2 \cdot \text{left} = \text{mid+1=8}, \text{ right} = 13; \text{mid} = (8+13)/2 = 10: 321 < 444;$$

[例] 仍然以上面**13**个数据元素构成的有序线性表为例 二分查找关健字为 **43** 的数据元素如下:

1.
$$left = 1$$
, $right = 13$; $mid = (1+13)/2 = 7$: $100 > 43$;

2 left = 1, right = mid-1= 6; mid =
$$(1+6)/2 = 3$$
: $39 < 43$;

3. left = mid+1=4, right = 6; mid =
$$(4+6)/2 = 5$$
: $51 > 43$;

$$4 \cdot \text{left} = 4$$
, right = mid-1= 4; mid = $(4+4)/2 = 4$: $45 > 43$;

二分查找算法

```
int BinarySearch ( StaticTable * Tbl, ElementType K)
{ /*在表Tbl中查找关键字为K的数据元素*/
 int left, right, mid, NoFound=-1;
            /*初始左边界*/
 left = 1:
 right = Tbl->Length; /*初始右边界*/
 while ( left <= right )</pre>
   mid = (left+right)/2; /*计算中间元素坐标*/
   if(K < Tbl->Element[mid]) right = mid-1; /*调整右边界*/
   else if(K > Tbl->Element[mid]) left = mid+1; /*调整左边界*/
   else return mid; /*查找成功,返回数据元素的下标*/
 return NotFound; /*查找不成功,返回-1*/
□ 二分查找算法具有对数的时间复杂度O(logN)
```


❖ 11个元素的二分查找判定树

- ▶ 判定树上每个结点需要的查找次数刚好 为该结点所在的层数;
 - ▶ 查找成功时查找次数不会超过判 定树的深度
 - ▶ n个结点的判定树的深度 为[log₂n]+1.
 - \rightarrow ASL = (4*4+4*3+2*2+1)/11 = 3

二分查找的启示?

树的定义

树(Tree): n(n≥0)个结点构成的有限集合。

当n=0时,称为空树;

对于任一棵非空树(n>0),它具备以下性质:

- □ 树中有一个称为"根(Root)"的特殊结点,用r表示;
- □ 其余结点可分为m(m>0)个互不相交的有限集 T_1 , T_2 ,… , T_m ,其中每个集合本身又是一棵树,称为原来树的"子树(SubTree)"

(a) 树T

(b) 子树 T_{A1} (c) 子树 T_{A2} (d) 子树 T_{A3} (e)子树 T_{A4}

❖ 树与非树?

- > 子树是不相交的;
- ▶ 除了根结点外,每个结点有且仅有一个父结点;
- ➤ 一棵N个结点的树有N-1条边。

❖ 树的一些基本术语

- 1. 结点的度(Degree):结点的子树个数
- 2. 树的度: 树的所有结点中最大的度数
- 3. 叶结点 (Leaf): 度为0的结点
- 4. 父结点(Parent): 有子树的结点是其子树的根结点的父结点
- 5. 子结点(Child):若A结点是B结点的父结点,则称B结点是A结点的子结点;子结点也称孩子结点。
- 6. 兄弟结点(Sibling): 具有同一父结点的各结点彼此是兄弟结点。

❖ 树的一些基本术语

- 7. 路径和路径长度:从结点 n_1 到 n_k 的路径为一个结点序列 n_1 , n_2 ,..., n_k , n_i 是 n_{i+1} 的父结点。路径所包含边的个数为路径的长度。
- 9. 祖先结点(Ancestor): 沿树根到某一结点路 径上的所有结点都是这个结点的祖先结点。
- 10. 子孙结点(Descendant): 某一结点的子树中的所有结点是这个结点的子孙。
- 11. 结点的层次(Level):规定根结点在1层, 其它任一结点的层数是其父结点的层数加1。
- **12.** 树的深度(Depth):树中所有结点中的最大层次是这棵树的深度。

树的表示

❖ 儿子-兄弟表示法

