KDS 47 50 70 : 2019

정보통신설비 전원, 접지설비 및 유도대책

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복 · 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제• 개정 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
철도설계기준(시스템편)	얼반철도와 고속철도에 모두 적용할 수 있도록 서술 철도관련 상위법령, 기준 및 시방서 등의 개정된 내용을 반영 노반, 궤도, 건축 등 타 분야와의 인터페이스를 고려하였으며 향후 철도관련 기술발전 등의 변화 에 대응할 수 있도록 제정	제정 (2011.5)
철도설계기준(시스템편)	 지중케이블과 공동관로케이블 보호방법 명확하 통신케이블은 선로 양쪽 가장자리에위치한 공동 관로 또는 지중관로에 의해 보호되므로 케이블 포설위치 탐색을 위한 표시기 설치 불필요 지상구간은 스마트폰 확산등 철도정보통신 환경 변화로 설치 필요성이 감소 	개정 (2013.12)
철도설계기준(시스템편)	• 향후 국내외 철도건설기술 발전 등 기술적 환경 변화에 대응할 수 있도록 하였으며 안전기준 강 화 및 그 동안 변경된 철도관련 상위법령, 규정, 기준 등의 개정된 내용을 반영	개정 (2015.12)
KDS 47 50 70 : 2016	•건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)
KDS 47 50 70 : 2019	•철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정: 2016년 6월 30일 개 정: 2019년 04월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항1
	1.1 목적
	1.2 적용 범위1
	1.3 참고 기준1
	1.4 용어의 정의1
	1.5 기호의 정의1
2.	조사 및 계획1
3.	재료
4.	설계
	4.1 전원설비
	4.2 접지 및 보호설비
	4.3 유도대책 설계

KDS 47 50 70: 2019

1. 일반사항

1.1 목적

(1) 이 기준은 철도 정보통신설비 전원, 접지설비 및 유도대책에 대하여 조사, 계획, 설계, 시공, 유지관리에 필요한 기술적 사항을 제시하는 것을 목적으로 한다.

1.2 적용 범위

내용 없음

1.3 참고 기준

내용 없음

1.4 용어의 정의

내용 없음

1.5 기호의 정의

내용 없음

2. 조사 및 계획

내용 없음

3. 재료

내용 없음

4. 설계

4.1 전원설비

- (1) 무정전 전원설비
 - ① 정보통신설비용 전원은 상용전원 단전 시 무정전 전원설비 등 예비전원설비에 의하여 장비에 공급되는 전원은 중단 없이 공급되도록 구성하여야 한다.
 - ② 광전송설비, 교환설비, 열차무선설비 등 주요 정보통신설비용 무정전 전원설비는 상용전원 장애 시 충분한 예비율이 확보되어야 한다.
 - ③ 무정전 전원설비는 온도 및 소음이 환경관리기준에 적합하여야 한다.
 - ④ 무정전 전원설비의 배선은 다른 배선과 분리하여 시설함을 원칙으로 한다.
- (2) 직류공급용 정류기
 - ① 광전송설비, 교환기, 관제전화설비, 열차무선설비 등에 직류전원을 공급하기 위한 정류기(축전지 포함)는 해당설비의 용량에 적합하게 산출하여 설계에 반영하여야

하다.

- ② 전원선의 인출은 최단거리가 되도록 하고 인출에 지장이 없어야 한다.
- ③ 증설이 예상되는 정보통신장비의 정류기는 추가 확장이 가능하도록 설계한다.
- ④ 정류기는 정보통신장비의 특성에 적합하고 고효율 장치로 구성하여야 한다.
- ⑤ 정류기 1대에 여러 종류의 정보통신설비(교환기, 전송설비 등)를 수용하는 경우, 직류용 중간전원 분배반에 수용하고, 각 부하용량 및 부하까지의 거리에 따른 전 압강하 등을 고려하여야 한다.
- (3) 무정전 전원설비 및 정류기 설계 시 전원계통의 순간과도전압 또는 써지에 대한 보호설비를 반영 한다.

4.2 접지 및 보호설비

- (1) 정보통신설비의 보호기 및 접지에 관한 사항은 KS C IEC 61643 및 KS C IEC 60364에 따라 시설하여 한다.
- (2) 낙뢰 또는 강전류전선과의 접촉 등으로 이상전류 또는 이상전압이 유입될 우려가 있는 정보통신설비에는 과전류 또는 과전압을 방전시키거나 이를 제한 또는 차단 하는 보호기가 설치되어야 한다.
- (3) 제(2)항에 따른 보호기와 금속으로 된 주배선반, 지지물, 단자함 등이 사람 또는 정보 통신설비에 피해를 줄 우려가 있을 경우에는 접지되어야 한다.
- (4) 통신기기실, 전산실, 매표실, 역무실(방송실포함) 등 정보통신설비가 설치되는 기능실 에는 정보통신설비 접지선 연결을 위한 접지단자함을 설치 한다.

4.3 유도대책 설계

- (1) 교류전철화구간 주변의 통신선로설비는 전차선으로부터 받는 유도영향을 검토하여야 한다.
 - ① 고속철도의 유도대책 검토범위는 궤도중심에서 좌우 1 km 이내로 500 m 이상 병행하는 피유도기관 통신선이다. 단, 일반철도의 경우는 궤도중심에서 좌우 500 m 이내의 이격거리로 정한다.
 - ② 유도대책설계는 피유도기관이 제시하는 각종 피유도 데이터를 근거로 하며, 기유도 데이터는 관련법규 및 기/피유도기관 간 상호 협의사항을 고려하여 적용한다.
- (2) 전력유도전압의 구체적인 산출은 전력유도전압의 구체적 산출방법에 대한 기술기준 (전파연구소 고시)에 의한다.
- (3) 전철화구간에 사용되는 동(銅)케이블은 차폐케이블(15%)을 사용한다. 다만, 비전철 구 간으로 장래 전철화 계획이 없는 경우는 차폐율(50%)을 적용한다.

집필위원

성 명	소 속	성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

국토교통부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KDS 47 50 70 : 2019

정보통신설비 전원, 접지설비 및 유도대책

2019년 04월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 031-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr