Generic UnivIO Device Specification

First Published:	2021-11-24
Publish site:	github.com/nvitya/univio
Original Author:	Viktor Nagy
License Type	MIT (Open Source)
Actual Version:	1.0, 2021-11-24

Basics

A generic UnivIO device provides the following functions:

- 1 32 Digital Outputs (DIG_OUT)
- 0 16 Blinking Pattern LED Outputs (LEDBLP)
- 1 32 Digital Inputs (DIG_IN)
- 0 16 Analogue Inputs (ANA_IN)
- 0 8 Analogue Outputs (ANA_OUT)
- 0 8 PWM Outputs (PWM)
- A precise fixed speed 8-25 Mhz output (depending on the input crystal frequency)
- Virtual Com Port (UART)
- Simple SPI Master
- Simple I2C Master

Pin Numbering

This system uses absolute numbering to identify MCU pins. The MCU manufacturers have usually portnum+pinnum (like PC13), this can be converted to absolute pin numbers with tge following formula: abs pinnum = portnum * pins per port + pinnum

Where portnum = 0 for 'A', 2 for 'C' etc. The pins_per_port is a MCU manufacturer specific value, either 16 or 32.

Generic IO Device Addresses

Configuration Objects

The pin configuration is writable only in CONFIG mode (OBJ#0010 = 0) and must be saved when changed to RUN mode.

Addr. (hex)	Туре	R/W	Function
Device Information			
0100	u8	R	Configurable pin count
0101	u8	R	Pins per Port. Usually 16 or 32. This van be used to decode / encode absolute pin numbers to portnum+portpin, like PC12 = 2 * 16 + 12
0102	u32	R	MPRAM Size (starting at MEM#C000)

0110	u8	W	Reset Configuration 1 = Resets Pin Configuration, sets all pins to passive, all configuration settings to their internal defaults (usually zero)
Configura	ation		
0200 + n	u32	RW	PIN_n (n=0-pincount) configuration: bit07: PINTYPE, se table below bit815: n = target number (e.g. DIG_OUT_n) bit1631: PINFLAGS, dependent on PINTYPE
0300	u32	RW	DIG_OUT_[0-31] default value bit0: DIG_OUT_0 default value bit1: DIG_OUT_1 default value
			Writing this object sets the outputs as well
0320 + n	u16	RW	ANA_OUT_n (n=0-7) default value
0340 + n	u16	RW	PWM_n (n=0-7) default value
0360 + n	u32	RW	LEDBLP_n (n=0-31) default value
0700 + n	u32	RW	PWM_n (n=0-7) Configuration The 32-bit value = PWM Base Frequency in Hz. Default Value = 1000 (1 kHz) This can be written in RUN mode too.
Configura	ation In	fo	
0E00	u32	R	0 (reserved)
0E01	u32	R	Configured DIN units bit0: 1 = DIN0 available bit1: 1 = DIN1 available
0E02	u32	R	Configured DOUT units
0E03	u32	R	Configured ADC units
0E04	u32	R	Configured DAC units
0E05	u32	R	Configured PWM units
0E06	u32	R	Configured LEDBLP units
Non-Volatile Data			
0F00 + n	u32	RW	NVDATA_n (n=0-31) Data written to this entry will be stored in the non-volatile storage. Some flash wear leveling is usually applied here, but still do not write entries here too frequently. It's intended to store calibration data or similar. Before writing it must be unlocked with OBJ#0F80
0F80	u32	RW	NVDATA_LOCK Unlock code: 0x5ADEC0DE Lock code: any other value

PINTYPE Values

PINTYPE	Description			
0	Passive (default value), usually input with weak pull-up, which is the MCU default state for the unconfigured pins. The pin is not controllable, its state can not be read.			
1	Digital Input (aka. DIG_IN or DIN), weak pull-up by default The digital input pin states can be read at OBJ#1100. PINFLAGS: 0x0001: weak pull-down 0x0002: floating (no pull-up or pull-down)			
2	Digital Output (aka. DIG_OUT or DOUT), push-pull by default The digital input pin state can be set with OBJ#1000 and OBJ#1010 PINFLAGS: 0x0001: inverted 0x0002: open-drain			
3	Analogue Input (aka. ANA_IN or AIN) The 16-bit (left-shifted) value can be read at OBJ#1200 or MEM#8000 16-bit value, left aligned if the device resolution is less. For example the device fills bit415 with the 12-bit ADC value, bit03 = 0			
4	Analogue Output (aka. ANA_OUT or AOUT) The 16-bit value can be written at OBJ#1300 or MEM#8100			
5	PWM Output (aka. PWM_OUT or PWM) The 16-bit Duty Cycle value can be written at OBJ#1400 or MEM#8200 PINFLAGS: 0x0001: invert output			
6	LED Blink Pattern Output (aka. LEDBLP) The 32 bit blink pattern code controlled by OBJ#1500 PINFLAGS (same as digital output) 0x0001: inverted 0x0002: open-drain			
7	SPI Pin The SPI pin positions are predefined, you can see them in the MCU specific pin alternate functions table.			
8	I2C Pin The I2C pin positions are predefined, you can see them in the MCU specific pin alternate functions table.			
9	UART Pin (Used for USB to UART) The UART pin positions are predefined, you can see them in the MCU specific pin alternate functions table.			
10	CLKOUT pin for fixed speed high precision clock output This clock output usually runs with the UnivIO device input crystal frequency (8-25 MHz) The pin position is predefined, you can see it in the MCU specific pin alternate functions table.			

IO Control

Addr. (hex)	Туре	R/W	Function		
Objects	Objects				
1000	u32	W	DIG_OUT 0-15 control: bit015: set DIG_OUT_n bit1631: clear DIG_OUT_n		
1001	u32	W	DIG_OUT_1632 control		
1010	u32	RW	DIG_OUT_031 values		
1100	u32	R	DIG_IN 0-31 values		
1200 + n	u16	R	ANA_IN_n (n=0-15) value 16-bit value, 65536 = 100 % of measurement range. Usually the device has only 12 bit ADC, so the bits415 = 12-bit ADC value, bit03 = 0.		
1300 + n	u16	RW	ANA_OUT_n (n=0-7) value 16-bit value, 65535 is always the maximal value. The device converts intern for the reduced native resolution by right-shifting When waveform, then this is the waveform offset		
1320 + n	u32	RW	Waveform type bit0-7: 0 = no waveform 1 = sine wave 2 = sawtooth 3 = triangle 4 = rectangle		
1321 + n	u16	RW	Waveform amplitude		
1322 + n	u32	RW	Waveform frequency in HZ 50 - 20000		
1400 + n	u16	RW	PWM_n (n=0-7) Duty Cycle The 16-bit value sets the PWM Duty Cycle: 65535 = 100 % 0 = 0 % The output (when not inverted) starts with high level and stays high during the duty cycle, then low level until period end. The period frequency are set at OBJ#0700 (in Hz), the default is 1 kHz.		
1500 + n	u32	RW	LEDBLP_n (n=0-15) Blink Pattern The 32-bit output value controls the blinking pattern. Bit period: 1/16 s		

			Every bit in the output control controls the high or low level for this period of time. The timing might be not as precise as by the PWM outputs.	
SPI Mast	SPI Master			
1600	u32	RW	SPI Speed, bits / s in Hz	
1601	u16	RW	SPI Transaction Length The value must be less or equal as OBJ#0101 (SPI buffer length)	
1602	u8	RW	SPI Transaction Status and Control 0 = Idle, transaction finished 1 = Transaction Running / Start transaction	
1603	u16	R	SPI Transaction Remaining (optional) Remaining bytes of the running transaction	
1604	u16	RW	SPI Write Data MPRAM Offset (added to 0xC000) Default value = 0	
1605	u16	RW	SPI Read Data MPRAM Offset (added to 0xC000) Default value = 0 The SPI Read and Write can be overlapped (using the same offset), so that the read data overwrites the write data during the run.	
I2C Mast	er			
1620	u32	RW	I2C Speed, bits / s in Hz	
1621	u32	RW	I2C EADDR (Extra Address) bit023: extra address to send, if specified at OBJ#1622[bit1213]	
1622	u32	RW	I2C Transaction Start bit06: DADDR: device address bit8: DATADIR: 0=read, 1=write bit1213: EADDR_LEN: = 0-3 bit1631: RWLEN: read/write data length (without EADDR) Writing this object starts the I2C transaction. If EADDR_LEN > 0 then it starts with a write transaction, sending the EADDR bytes after the initial I2C byte (device address + R/W). When DATADIR=0, then issues a restart and puts the I2C read data into the MPRAM, beginning at the OBJ#1624 selected offset. When DATADIR=0, then after sending the EADDR bytes, it sends the RWLEN data bytes from the MPRAM beginning at offset selectet by OBJ#1624.	
1623	u16	R	I2C Transaction Status / Result 0 = idle, finished without error 0xFFFF = I2C Transactions is still running other: error code	
1624	u16	RW	I2C Data MPRAM Offset (added to 0xC000) Default value = 0	

Memory Range

Addr. (hex)	Туре	R/W	Function	
Multi-IO A	Multi-IO Access			
8000		R	ANA_IN_[0n]: 16 Bit Analogue input values 80008001: ANA_IN_0 = OBJ#1200 80028003: ANA_IN_1 = OBJ#1201 	
8100		RW	ANA_OUT_[0n]: 16-bit Analogue Output Values 81008101: ANA_IN_0 = OBJ#1300 81028103: ANA_IN_1 = OBJ#1301 	
8200		RW	PWM_OUT_[0n]: 16-bit PWM Duty Cycles 82008201: PWM_OUT_0 = OBJ#1400 82028203: PWM_OUT_1 = OBJ#1401 	
MPRAM	MPRAM			
C000		RW	MPRAM, max. 16 kByte The actual size is signalized at OBJ#0102. This MPRAM can be used as Tx / Rx buffer for SPI and I2C. The used regions can be set up at the SPI and I2C units with OBJ#1604, OBJ#1605 and OBJ#1624, so the SPI and I2C units can be run parallel.	