Автор: Кулибаба Данил;

danil.kulibaba@ya.u

Краткое описание

Изначально нам дана матрица $A \in Mat(n,m), n \geq m$. В обратном случае, мы можем транспонировать матрицу и найти SVD для нее, потому что таким образом мы найдём SVD и для изначальной матрицы. Вот доказательство того, что это можно сделать

$$A^{T} = U'S'V'^{T}$$
 $A = (A^{T})^{T} = (U'S'V'^{T})^{T} = V'S'^{T}U'^{T} = USV^{T}$

Существует два варианта метода Якоби — односторонний и двусторонний. Двусторонний подходит только для симметричных квадратных матриц. Цель нашего проекта — алгоритмы получения сингулярного разложения **для матриц общего вида**, поэтому мы его рассматривать не будем, хотя он очень схож с односторонним.

Суть одностороннего метода Якоби состоит в том, чтобы с помощью последовательности поворотов сделать так, чтобы столбцы матрицы стали ортогональными. Некоторые столбцы матрицы могут стать нулевыми, но в этом нет ничего страшного

Поворотом мы называем матрицу поворота Якоби $R \in Mat(m,m)$. Индексом поворота будем называть пару (i,j). Поворот с индексом (i,j) приводит матрицу A к матрице $A' = AR^{(i,j)}$, у которой $a'_{ij} = a'_{ji} = 0$. Формулы, по которым высчитываются элементы матрицы R, будут приведены в псевдокоде. Основная мысль — матрица поворота позволяет занулять элементы исходной матрицы, и мы пользуемся этим свойством.

Очевидно, что зануляя случайные элементы матрицы, мы не приведём её к нужному виду. Нужна стратегия выбора индекса следующего поворота. Изначально было доказано, что алгоритм остается корректным, если использовать циклическую стратегию выбора поворота: поочередно применяются повороты с индексами $(1,2),(1,3),\dots,(1,m),(2,3),(2,4),\dots,(2,m),\dots,(m-1,m)$. Однако такой алгоритм требует очень много времени, поэтому мы будем использовать стратегию «с выбором цели» (Jacobi Target Selection). Она описана в псевдокоде. Такая стратегия среди всех известных обеспечивает наибыстрейшую сходимость алгоритма.

Допустим, мы привели матрицу A к матрице $B=AV_1\dots V_t$, где V_i – матрица i-ого поворота, у которой все столбцы ортогональны. Найдём матрицы U и S Найдем норму $\|b_i\|_2$ каждого ненулевого столбца b_i . Поменяем столбцы матрицы B так, чтобы их нормы шли в порядке невозрастания, т.е. так, чтобы $\|b_i\|_2 \leq \|b_j\|_2$ при i>j. Если мы меняем b_i и b_j местами, то также нужно поменять местами строки v_i, v_i матрицы V. Матрица S формируется следующим образом:

$$S_{ij} = 0$$
 при $i
eq j$,; $S_{ii} = \left\{ egin{align*} \|b_i\|_2, b_i - ext{ ненулевойстолбец} \ 0, ext{ иначе} \end{array}
ight.$

Нормируем столбцы матрицы B, допишем к ним n-m нулей, чтобы матрица B стала $n\times n$. Теперь заменим нулевые столбцы матрицы B столбцами, ортогональными ненулевым столбцам — первые m компонент этих столбцов должны равняться 0, а одна из оставшихся компонент -1, остальные также должны быть равными 0. Так мы получаем матрицу U.

Получаем сингулярное разложение U, S, V.

Матрицу будем считать ортогональной, когда $b_i^T b_j < \varepsilon \|A\|_F = \varepsilon \sqrt{\sum_{i=1}^n \sum_{j=1}^m a_{ij}^m}$, где ε – параметр сходимости, произвольное маленькое число, которое вводит пользователь.

```
Вход: матрица A \in Mat(n,m), n > m, \tau \geq 1, \varepsilon > 0;
```

Выход: матрицы $U \in Mat(n,n)$, $S \in Mat(n,m)$, $V \in Mat(m,m)$

$$\delta \leftarrow \varepsilon ||A||_F$$

$$B \leftarrow A$$

 $V \leftarrow I_m \Pi$ од I_n имеетсяввидуединичнаяматрица $m \times m$

for
$$i \leftarrow 1 \frac{m(m-1)}{2} do$$

 $P' \leftarrow$ пустой массив троек $\left(j,k,b_{i}^{T}b_{k}\right)$

$$forj \leftarrow 1m - 1do$$

$$fork \leftarrow j + 1mdo$$

$$insert(j, k, b_i^T b_k) \in P';$$

 $P \leftarrow \frac{1}{\tau}$ часть последних элементов P'; немогуа декватно перевести на русский,

$$top\frac{1}{\tau}fraction of elements of P'$$

Отсортировать элементы P по скалярным произведениям в убывающем порядке

if наибольшеескалярноепроивездениев $P < \delta then$

Вычислить U, S, V как указано в кратком описании;

 $Q \leftarrow$ пустаяочередьматрицповоротовЯкоби

$$foreach(j, k, d) \in Pdo$$

$$\gamma = \frac{a_k^T a_k - a_j^T a_j}{2a_i^T a_k};$$

$$t = \frac{sgn(\gamma)}{|\gamma| + \sqrt{\gamma^2 + 1}};$$

$$c = \frac{1}{\sqrt{1+t^2}}; s = tc;$$

J — матрицасединицаминадиагонали, укоторой $J_{jj}=J_{kk}=c, J_{jk}=-s, J_{kj}=s;$

whileQ - непустаdo

$$J = pop(Q)$$

$$B \leftarrow BJ$$
;

$$V \leftarrow VI$$
;