Faculté Polydisciplinaire de Khouribga Année Universitaire 2019/2020 SMIA (S1)

Corrigé de l'examen d'algèbre 1

Ex. 1 — Soient a, b, c des ensembles. On pose :

$$(a,b,c)^* = \{\{a\},\{a,b\},\{a,b,c\}\}.$$

Trouver 1 des ensembles a, b, c, x, y, z, tels que $(a, b, c)^* = (x, y, z)^*$ avec $b \neq y$ et $c \neq z$.

Answer (Ex. 1) — On a

$$(0,0,1)^* = \{\{0\},\{0,0\},\{0,0,1\}\} = \{\{0\},\{0,1\}\}\$$

et

$$(0,1,0)^* = \big\{\{0\},\{0,1\},\{0,1,0\}\big\} = \big\{\{0\},\{0,1\}\big\}.$$

Ex. 2 — Soit $f: X \to Y$ une application avec $X \neq \emptyset$. Montrer qu'il existe une application $h: Y \to X$ telle que $f \circ h \circ f = f$.

En déduire les résultats du cours : toute application injective (resp. surjective) possède une application inverse à gauche (resp. une application inverse à droite).

Answer (Ex. 2) — La démonstration de la première partie est similaire à celle du résultat du cours : toute application surjective possède une application inverse à droite. On pose $F_y = \{x \mid f(x) = y\}$ pour tout $y \in Y$. Puisque $X \neq \emptyset$, il suffit de définir h sur l'ensemble f(X) (penser aux prolongements). Soit $y \in f(X)$. On a $F_y \neq \emptyset$. On choisit $x_y \in X$ tel que $y = f(x_y)$ (axiome de choix). On pose

$$h(y) = x_y.$$

Pour tout $x \in X$,

$$f(h(f(x))) = f(x_{f(x)}) = f(x).$$

Si f est injective alors $h \circ f = \operatorname{Id}_X$. Si f est surjective alors f(X) = Y, d'où $f \circ h = \operatorname{Id}_Y$.

^{1.} La tentative de généraliser la définition de Kuratowski du couple au triplet est infructueuse.

Ex. 3 — Trouver toutes les relations d'équivalence sur l'ensemble $E = \{0, 1, 2\}$.

Answer (Ex. 3) — Cela revient au même de trouver les partitions de l'ensemble E.

$$E; \quad \Big\{\{0\},\{1\},\{2\}\Big\}; \quad \Big\{\{0\},\{1,2\}\Big\}; \quad \Big\{\{1\};\{0,2\}\Big\}; \quad \Big\{\{2\},\{0,1\}\Big\}.$$

On pose $\Delta = \{(0,0),(1,1),(2,2)\}$. Les relations d'équivalences correspondantes sont :

$$E \times E$$
, Δ , $\Delta \cup \{(1,2),(2,1)\}$, $\Delta \cup \{(0,2),(2,0)\}$, $\Delta \cup \{(0,1),(1,0)\}$.

Ex. 4 — Soit E un ensemble ordonné. Montrer que

- 1) Pour tous $x, y \in E$, les relations $x \leq y$ et (x < y ou x = y) sont équivalentes.
- 2) Soient $x, y, z \in E$. On a

$$(x \le y \text{ et } y < z) \Longrightarrow x < z$$

 $(x < y \text{ et } y \le z) \Longrightarrow x < z.$

Answer (Ex. 4) — 1) On a

$$(x < y \text{ ou } x = y) \Leftrightarrow (x \le y \text{ ou } x = y) \text{ et } (x \ne y \text{ ou } x = y)$$

 $\Leftrightarrow (x \le y \text{ ou } x = y) \text{ (car la relation, } R \text{ ou (non } R), \text{ est toujours vraie)}$
 $\Leftrightarrow x < y.$

2) On suppose que les relations $x \le y, y < z$ sont vraies. On a $x \le y$ et $y \le z$. Donc $x \le z$. On suppose que x = z, donc z = x = y, ce qui contredit y < z. D'où x < z. De même on montre l'autre implication.