Topología de variedades: Entrega 2

Arnau Mas

22 de noviembre de 2019

Sean N y M variedades y $f\colon N\to M$ una aplicación lisa. A partir de f definimos la aplicación

$$F: N \longrightarrow N \times M$$

 $x \longmapsto (x, f(x)).$

Comprovemos que F es lisa. En general, una aplicación $g: Z \to N \times M$ es lisa si y solo si lo son sus componentes, $\pi_N \circ g$ y $\pi_M \circ g$, donde $\pi_N: N \times M \to N$ y $\pi_M: N \times M \to M$ son las proyecciones canónicas. Es un resultado de topología general que g es contínua si y solo si lo son $\pi_N \circ g$ y $\pi_M \circ g$. Por lo tanto sólo tenemos que verificar que la lectura de g en cartas es lisa.

Sea (U, ϕ) una carta de Z alrededor de un punto $x \in Z$. Puesto que $g(x) \in N \times M$ podemos tomar $(V_1 \times V_2, \psi_1 \times \psi_2)$ como carta alrededor de g(x), donde (V_1, ψ_1) es una carta de N alrededor de $\pi_N(g(x))$ y (V_2, ψ_2) es una carta de M alrededor de $\pi_M(g(x))$. Todas estas aplicaciones hacen que el diagrama a continuación commute,

Si Z tiene dimensión r y N y M dimensión n y m respectivamente, entonces $\psi_1(V_1)$ es un abierto de \mathbb{R}^n y $\psi_2(V_2)$ es un abierto de \mathbb{R}^m . Por lo tanto π_1 y π_2 son las proyecciones de $\mathbb{R}^n \times \mathbb{R}^m$ sobre \mathbb{R}^n y \mathbb{R}^m respectivamente.

Del diagrama leemos que

$$\psi_2 \circ \pi_N \circ g \circ \phi^{-1} = \pi_1 \circ (\psi_1 \times \psi_2) \circ g \circ \phi^{-1},$$

es decir que la lectura en cartas de la primera componente de g, $\pi_N \circ g$ es precisamente la primera componente de la lectura en cartas de g, $\tilde{g} := (\psi_1 \times \psi_2) \circ g \circ \phi^{-1}$. De la misma forma tenemos

$$\psi_2 \circ \pi_M \circ g \circ \phi^{-1} = \pi_2 \circ (\psi_1 \times \psi_2) \circ g \circ \phi^{-1} = \pi_2 \circ \tilde{g}.$$

La aplicación \tilde{g} es una función real de un abierto de \mathbb{R}^r a un abierto de $\mathbb{R}^n \times \mathbb{R}^m$ por lo que es de clase C^{∞} si y solo si lo son sus dos componentes. Por definición, g es lisa si y solo si su lectura en cualquier carta es de clase C^{∞} . Por lo tanto, g será lisa si y solo si las lecturas en cartas de sus dos componentes son de clase C^{∞} , y por lo que hemos visto, si y solo si sus dos componentes $\pi_M \circ g$ y $\pi_N \circ g$ son lisas.

Con este resultado más general es immediato ver que F es lisa, puesto que su primera componente es la identidad y su segundo componente es f, que es lisa por hipótesis.

- * -

Podemos entonces hablar de la aplicación tangente a $F, T_xF: T_xN \to T_{F(x)}(N\times M)$. El espacio tangente de un producto se identifica canónicamente con el producto de espacios tangentes

$$T_{(x,y)}(N \times M) \longrightarrow T_x N \times T_y M$$

$$v \longmapsto (T_{(x,y)} \pi_N(v), T_{(x,y)} \pi_M(v)). \tag{1}$$

Para $v \in T_xN$ calculamos, usando la regla de la cadena

$$(T_{F(x)}\pi_N)(T_xF(v)) = (T_{F(x)}\pi_N \circ T_xF)(v) = T_x(\pi_N \circ F)(v) = T_x\mathrm{id}_N(v) = v$$

У

$$(T_{F(x)}\pi_M)(T_xF(v)) = (T_{F(x)}\pi_M \circ T_xF)(v) = T_x(\pi_M \circ F)(v) = T_xf(v).$$

Por lo que, mediante el isomorfismo en (1), tenemos

$$T_x F(v) = (v, T_x f(v)).$$

Definimos el gráfico de la función f como

$$\Gamma_f := \{(x, y) \in N \times M \mid y = f(x)\}$$

y de hecho se tiene $\Gamma_f = F(N)$.

A continuación comprovamos que Γ_f es una subvariedad de $N \times M$ difeomorfa a N. Sea (V, ψ) una carta de M alrededor de un punto de f(N), f(x). Entonces $f^{-1}(V)$ es un entorno abierto de x en N. Por lo tanto existe una carta de N alrededor de x, (U, ϕ) tal que $f(U) \subseteq V$ —si U es demasiado grande simplemente lo intersecamos con $f^{-1}(V)$ y obtenemos una carta que satisface la condición que queremos—. Entonces $U \times V$ es un abierto de $N \times M$ que contiene (x, f(x)). Definimos, si dim N = n y dim M = m,

$$\chi \colon U \times V \longrightarrow \xi(U \times V) \subseteq \mathbb{R}^n \times \mathbb{R}^m$$

 $(x, y) \longmapsto (\phi(x), \psi(y) - \psi(f(x)))$

Tenemos que ξ es una carta de $N \times M$. En efecto, está claro que es contínua, y además tiene una inversa,

$$\chi^{-1} \colon U \times V \longrightarrow \xi(U \times V) \subseteq \mathbb{R}^n \times \mathbb{R}^m$$
$$(a, b) \longmapsto (\phi^{-1}(a), \psi^{-1}(b + \psi(f(\phi^{-1}(a)))))$$

que también es contínua, por lo que ξ es un homeomorfismo sobre su imagen, $W:=\xi(U\times V)$ que es un abierto de \mathbb{R}^{n+m} y por lo tanto una carta.

En particular, ξ es una carta linealizante para Γ_f alrededor de (x, f(x)). Por un lado, si $(x, f(x)) \in (U \times V) \cap \Gamma_f$ entonces

$$\chi(x, f(x)) = (\phi(x), \psi(f(x)) - \psi(f(x))) = (\phi(x), 0) \in \phi(U) \times 0 = W \cap \mathbb{R}^n \times 0.$$

De manera inversa, si $(a,0) \in W \cap \mathbb{R}^n \times 0$ entonces existe $(x,y) \in U \times V$ tal que

$$(a,0)=\chi(x,y)=(\phi(x),\psi(y)-\psi(f(x)))$$

por lo que, como ψ es un homeomorfismo y en particular biyectiva, y = f(x) y deducimos $(a,0) = (\phi(x),0) \in \chi(\Gamma_f \cap (U \times V))$. Es decir, χ nos da una linearización local de Γ_f alrededor de (x,f(x)), por lo que Γ_f es una subvariedad de $N \times M$.

La aplicación F, con su codominio restringido a Γ_f , realiza un difeomorfismo entre N y Γ_f . Puesto que $F(N) = \Gamma_f$ tenemos que es exhaustiva. También es inyectiva porque si F(x) = F(y) entonces (x, f(x)) = (y, f(y)) luego x = y. Hemos comprobado inicialmente que es lisa. Por último, la inversa de F es la restricción de π_N sobre Γ_f , que es también lisa. Por lo tanto F es un difeomorfismo.

En particular, la aplicación tangente $T_x F$ nos da un isomorfismo entre $T_x N$ y $T_{F(x)} \Gamma_f$:

$$T_x F \colon T_x N \longrightarrow T_{F(x)} \Gamma_f$$

 $v \longmapsto (v, T_x f(v))$

donde estamos identificando $T_{(x,f(x))}(N\times M)$ con $T_xN\times T_{f(x)}M$. Por lo tanto todo elemento de $T_{F(x)}\Gamma_f$ es de la forma $(v,T_xf(v))$, es decir, $T_{F(x)}\Gamma_f$ es el gráfico de T_xf .