Herramientas Computacionales para Ciencias Homework 8

Mauricio Sevilla*

01/04/2019

Rules

Note Read carefully the complete homework before starting, so you will know what is the results you have to get!.

This week we are going to concentrate on $\mathtt{matplotlib}$ (plotting). On this assignment you will have to construct some functions and use the $\mathtt{matplotlib} + \mathtt{NumPy}$ structure to plot the results. There is an additional point that must be developed on class before sending the assignment. This part must be saved on a jupyter Notebook named as your UniAndes username.

[0.5/4.0] Simple Pendulum!

The free pendulum equation can be written as,

$$\frac{d^2\theta}{dt^2} + \frac{g}{\ell}\sin\theta = 0,\tag{1}$$

with g the action of the gravity, ℓ the length of the pendulum. It is usually approximated by using the small angles approximation such that $\sin(\theta) \approx \theta$.

To see the regime in which this approximation makes sense, use the figure structure to make two axes with the following plots, (Use the interval $\theta = [0, \pi/2]$ (it is, 0-90 deg)).

- Axes 1: A plot of $\sin(\theta)$ and θ as a function of θ . (You will have two plots in the first axes!).
- Axes 2: A plot of $sin(\theta) \theta$ vs θ .

Using these two plots, try to guess an approximate limit value where the approximation becomes meaningless.

Note: The plots must have legend, labels and title!!.

But, what happen if we have $\theta > \theta_{\text{Limit}}$? We will see some examples.

[1.0/4.0] Dumped Pendulum!

A more realistic model takes into account the friction (Can be the air effect).

$$\frac{d^2\theta}{dt^2} + \gamma \frac{d\theta}{dt} + \frac{g}{\ell} \sin \theta = 0, \tag{2}$$

Load the data from the repository by using this path,

https://raw.githubusercontent.com/jmsevillam/Herramientas-Computacionales-UniAndes/master/Data/dumped.dat There you can find 5 columns t time, θ_1 , ω_1 , θ_2 , ω_2 where the index 1 and 2 mean that the solution is done for two pendulums with slightly different initial conditions.

The parameters used are

$$\begin{array}{ccc} g & 9.8 \\ \ell & 9.8 \\ \gamma & 0.2 \\ \Delta t & 0.04 \\ \text{Time Steps} & 2500 \\ \theta_1 & 0.2 \\ \theta_2 - \theta_1 = \Delta \theta & 0.0001 \\ \omega 1 = \omega 2 & 0.2 \\ \end{array}$$

Table 1: Parameters of the simulation

^{*}email=j.sevillam@uniandes.edu.co

Plot the following relations,

- time vs θ_1
- time vs θ_2
- time vs ω_1
- ullet time vs ω_2
- θ_1 vs ω_1
- θ_2 vs ω_2
- Discuss the previous plots, did you expect these results?
- The two plots of θ_i looks the same, so plot the difference time vs $|\theta_1 \theta_2|$ (Hint: Use np.abs)
- Plot again the difference time vs $|\theta_1 \theta_2|$ but use logarithmic scale on $y(Hint: Use ax.set_yscale('log'))$. As the relationship looks exponential, the logarithmic scale transform it into a straight line. (I am talking about the maximums, because it looks like some mountains).

[2.0/4.0] Driven Pendulum!

$$\frac{d^2\theta}{dt^2} + \gamma \frac{d\theta}{dt} + \frac{g}{\ell} \sin \theta = F_0 \sin(\Omega t), \tag{3}$$

we took $F_0=1.2$ so that, the pendulum can reach the top and pass it (Non small angles), and $\Omega=2/3$.

Repeat the same plots of the previous case but now, with the data

https://raw.githubusercontent.com/jmsevillam/Herramientas-Computacionales-UniAndes/master/Data/Driven.dat Your results are going to be completely different!, try to interpret them.

Do a comparison among the last plot of this point, and the last one of the previous one.

Note

This procedure is done when you are looking for the *chaos* in a system, so all of it will have a huge interpretation that we will discuss at some point!, don't worry if some of these things look new or strange for you.

[0.5/4.0] Light on a Mirror

On this last part, we are going to do a single plot result of a 2D Lattice-Boltzmann simulation for waves.

The system is a light source considering that it is a source of plane waves, travelling from left to right until it gets to the *spherical* mirror where it reflects getting concentrated in the focus.

The data can be found at

 $\verb|https://raw.githubusercontent.com/jmsevillam/Herramientas-Computacionales-UniAndes/master/Data/LBWaves.dat| \\$

there, you have a *Matrix* of electric field, so plot it by using matplotlib.pylab.imshow or another similar. Try to guess the position of the focus of the mirror.