"It's not how much time

you have, it's how you use

QUICK NOTE

ĐIỂM:

it."

BT ÔN TẬP HỆ THỰC LƯỢNG SỐ 1

CÂU 1. Giá trị lượng giác nào sau đây là số dương?

- $(\mathbf{B})\cos 137^{\circ}$.
- (C) $\tan 160^{\circ}$.
- $(\mathbf{D})\cot 160^{\circ}.$

CÂU 2. Cho $\sin \alpha = \frac{4}{5}$, $(90^{\circ} < \alpha < 180^{\circ})$. Tính $\cos \alpha$.

- $\textbf{(A)}\cos\alpha = -\frac{4}{5}. \qquad \textbf{(B)}\cos\alpha = -\frac{3}{5}. \qquad \textbf{(C)}\cos\alpha = \frac{5}{3}.$

- \bigcirc $\cos \alpha = \frac{3}{5}$.

CÂU 3. Cho $x \in (0^{\circ}; 90^{\circ})$. Phát biểu nào sau đây là đúng?

- $(\mathbf{A})\sin x > 0.$
- $(\mathbf{B})\cos x > 0.$
- (**C**) $\tan x > 0$.
- $(\mathbf{D})\cot x > 0.$

CÂU 4. Giá trị $\cos 45^{\circ} + \sin 45^{\circ}$ bằng bao nhiêu?

- $(\mathbf{B})\sqrt{2}$.
- $(\mathbf{D})_0$.

CÂU 5. Giá trị của cot 18° là

- $(\mathbf{D})\sqrt{5+2\sqrt{5}}.$

CÂU 6. Trên nửa đường tròn đơn vị cho góc α sao cho $\sin \alpha = \frac{2}{3}$ và $\cos \alpha < 0$. Tính $\tan \alpha$.

- $\bigcirc -\frac{2\sqrt{5}}{5}$.
- $\mathbf{c} \frac{2}{5}$.

CÂU 7. Cho $\sin x + \cos x = \frac{1}{2}$ và $0 < x < 90^{\circ}$. Tính giá trị của $\sin x$

CÂU 8. Chọn phát biểu đúng trong các phát biểu sau?

 $(\mathbf{A})\sin 156^{\circ} \cdot \cos 70^{\circ} < 0.$

(B) $\tan 137^{\circ} \cdot \tan 156^{\circ} < 0$.

(c) $\tan 150^{\circ} \cdot \cot 85^{\circ} < 0$.

 $(\mathbf{D})\sin 110^{\circ} \cdot \cos 110^{\circ} > 0.$

CÂU 9. Phát biểu nào sau đây là đúng?

- $(A)\sqrt{1-\sin^2 140^\circ} = \cos 140^\circ.$
- $(\mathbf{B})\sqrt{1-\cos^2 140^\circ} = \sin 140^\circ.$
- \bigcirc $\sqrt{\frac{1}{\cos^2 140^\circ} 1} = \tan 140^\circ.$
- $\mathbf{D} \frac{1}{\sqrt{\tan^2 140^\circ + 1}} = \cos 140^\circ.$

CÂU 10. Tìm mệnh đề sai trong các mệnh đề sau

- $(\mathbf{B})\sin 0^{\circ} = 0.$
- $\bigcirc \cos 120^\circ = \frac{2}{\sqrt{2}}.$ $\bigcirc \sin 120^\circ = \frac{\sqrt{3}}{2}.$

CÂU 11. Cho α là góc tù. Mệnh đề nào đúng trong các mệnh đề sau?

- $(\mathbf{B})\cos\alpha > 0.$
- (C) $\tan \alpha < 0$.
- $(\mathbf{D})\cot \alpha > 0.$

CÂU 12. Trong các mệnh đề sau, mệnh đề nào sai?

 $(\mathbf{A})\cos 45^{\circ} = \sin 45^{\circ}.$

 $(\mathbf{B})\cos 45^{\circ} = \sin 135^{\circ}.$

 $(\mathbf{C})\cos 30^{\circ} = \sin 120^{\circ}.$

 $(\mathbf{D})\sin 60^{\circ} = \cos 120^{\circ}.$

CÂU 13. Cho hai góc nhọn α và β với $\alpha < \beta$. Tìm mệnh đề sai.

 $(\mathbf{A})\sin\alpha < \sin\beta.$

- $(\mathbf{B})\cos\alpha < \cos\beta.$
- $(\mathbf{C})\cos\alpha = \sin\beta \Leftrightarrow \alpha + \beta = 90^{\circ}.$
- $(\mathbf{D})\tan\alpha + \tan\beta > 0.$

CÂU 14. Cho $0^{\circ} \le \alpha \le 180^{\circ}$. Khẳng định nào sau đây là đúng?

- $(\mathbf{A})\sin\alpha = \sin(180^{\circ} \alpha).$
- (B) $\cos \alpha = \cos(180^{\circ} \alpha)$.
- (C) $\tan \alpha = \tan(180^{\circ} \alpha)$.
- $(\mathbf{D})\cot\alpha = \cot(180^{\circ} \alpha).$

CÂU 15.

♥ VNPmath - 0962940819 ♥				■ ON IAP KIIX 2
QUICK NOTE	_	đơn vị, vị trí nào trong ểm M sao cho $\tan \widehat{xON}$ \bigcirc Vị trí (2) .		(3) (2)
	C Vị trí (3).	D Vị trí (2).	(4)	(1)
				r
				O x
	CÂU 16. Cho hai gố $\sin \beta \sin \alpha$.	ốc α và β với $\alpha + \beta = 18$	80°. Tính giá trị của biể	ểu thức $P = \cos \alpha \cos \beta -$
		$\bigcirc P = 1.$	$\bigcirc P = -1.$	$\bigcap P=2$
	CÂU 17. Khẳng địn $\mathbf{A} \cos 75^{\circ} > \cos 50^{\circ}$		\bigcirc $\sin 80^{\circ} > \sin 50^{\circ}$	
	$\cot 45^{\circ} < \tan 6^{\circ}$		$\mathbf{D}\cos 30^{\circ} = \sin 60^{\circ}$	
	kính đường tròn nội			là nửa chu vi, r là bán Khẳng định nào sau đây
	là khẳng định sai ?		_	
		<i>P</i> .		
	$\mathbf{C}S = \frac{\tilde{M}N \cdot MP}{4R}$	$P \cdot NP$	$\bigcirc S = \frac{1}{2}NM \cdot NF$	$P \cdot \sin N$
	110		2	
			$\delta AB = AC = a$. Tính δ	độ dài đường trung tuyến
	BM của tam giác đã			
		BM = 1.5a.	$\bigcirc BM = \sqrt{2}a.$	
				nh bán kính r của đường
	tròn nội tiếp tam giá		r cm, o cm va o cm. 11	iii baii kiiii / cua duong
		\mathbf{B} $r = \sqrt{5}$ cm.	$(\mathbf{c})r = \sqrt{15} \text{ cm}$	$\mathbf{D}_r - \frac{\sqrt{15}}{2}$ cm
				•
	CÂU 21. Cho tam g A 10.	giác ABC có $\widehat{A}=30^{\circ}, \widehat{A}$ \bigcirc	$\overrightarrow{B} = 45^{\circ} \text{ và } AC = 10\sqrt{2}$	$\overline{\mathbb{D}}$. Độ dài cạnh BC là $\overline{\mathbb{D}}$ 5.
	10.	b 3√ 2.	$\bigcirc \frac{5}{\sqrt{2}}$.	D 3.
	CÂU 22. Cho tam g	giác ABC . Khẳng định	nào sau đây là đúng?	
	$\mathbf{A} S = \frac{abc}{4}$.			
	$\mathbf{C} a^2 = b^2 + c^2 +$	The agg A	$(\mathbf{D})S = r(a+b+c)$)
			` ` `	
		tích của tam giác ABC		
	(A) $2 + 2\sqrt{3}$.	B)1.	$\bigcirc \sqrt{3}$.	D $1 + \sqrt{3}$.
		n giác ABC có góc \widehat{A} =	$=60^{\circ}, AC = 10, AB =$	= 6. Khi đó, độ dài cạnh
	BC là \bigcirc $2\sqrt{19}$.	B)76.	© 14.	\bigcirc $6\sqrt{2}$.
		\smile		
	_ 1	$BC \operatorname{co} AB = 6 \operatorname{cm}, BC$	= 7 cm, CA = 8 cm. G	Giá trị của cos B là
	$\mathbf{A} \frac{1}{2}$.	$\bigcirc \mathbf{B} \stackrel{1}{4}.$	$\mathbf{c} \frac{17}{32}$.	$(\mathbf{D})\frac{11}{16}$.
	CÂU 26.			
	Để đo khoảng cách từ	\hat{A} đến B ngang qua mọn điểm $C,$ sau đó đo đ		C
	các cạnh AC , BC và	à góc C . Biết $AC = 1$	12 m,	
	$BC = 145 \text{ m}, \widehat{C} = 76$	5° , khoảng cách từ A ở	fến B	75°
	gần nhất với giá trị r			
	(A) 155 m. (B) 160	0 m. (C) 165 m. (D) 17	70 m.	

QUICK NOTE

CÂU 27.

 $D^{\hat{e}}$ đo chiều cao CH của một tháp truyền thông, người ta chọn hai điểm quan sát A, B trên mặt đất (hình vẽ). Biết $CAH = 50^{\circ}$, $\widehat{C}B\widehat{H} = 60^{\circ}$ và AB = 80 m, tính chiều cao của tháp.

(**A**) 300,3 m. (**B**) 305,6 m.

(c)301,8 m.

(**D**)306,9 m.

CÂU 28. Cho tam giác ABC có $\widehat{B} = 135^{\circ}$. Khẳng định nào sau đây là đúng?

$$\mathbf{C}S = \frac{\sqrt{2}}{4}bc.$$

CÂU 29. Cho $\triangle ABC$ có S=84, a=13, b=14, c=15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là

(A) 8,125.

(B)130.

 $(\mathbf{C})8,5.$

CÂU 30. Cho $\triangle ABC$ với các cạnh AB=c, AC=b, BC=a. Gọi R, r, S lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp và diện tích của tam giác ABC. Trong các phát biểu sau, phát biểu nào sai?

$$\mathbf{B} R = \frac{a}{\sin A} \ .$$

$$\mathbf{D}a^2 + b^2 - c^2 = 2ac\cos C.$$

CÂU 31. Cho tam giác ABC thỏa mãn hệ thức b+c=2a. Trong các mênh đề sau, mênh đề nào đúng?

 $(\mathbf{A})\cos B + \cos C = 2\cos A.$

$$(\mathbf{B})\sin B + \sin C = 2\sin A.$$

$$\mathbf{\hat{C}}\sin B + \sin C = \frac{1}{2}\sin A.$$

$$\mathbf{D}\sin B + \cos C = 2\sin A.$$

CÂU 32. Tam giác có độ dài ba cạnh là 3, 8, 9. Góc lớn nhất của tam giác có số đo bằng bao nhiêu?

 $(A)93,5^{\circ}.$

(**B**)88,6°.

(C)99,6°.

D)101,3°.

CÂU 33.

Từ một vị trí quan sát A, một người nhìn đỉnh Bvà chân C của nhà cao tầng với các góc tương ứng là 43° và 16° so với phương nằm ngang. Biết chiều cao của tòa nhà là 18 m, tính khoảng cách từ Ađến C (làm tròn kết quả đến hàng phần mười).

(A) 27 m.

(**B**)28 m.

 (\mathbf{C}) 29 m.

(**D**)31 m.

CÂU 34. Cho tam giác ABC có ba cạnh a, b, c và $m_a; m_b; m_c$ là ba đường trung tuyến lần lượt xuất phát từ A, B, C. Tính tổng $S = m_a^2 + m_b^2 + m_c^2$.

$$\mathbf{A}$$
 $S = \frac{3}{2}(a^2 + b^2 + c^2).$

B
$$S = \frac{4}{9}(a^2 + b^2 + c^2)$$

$$\mathbf{B} S = \frac{4}{9}(a^2 + b^2 + c^2).$$

$$\mathbf{D} S = \frac{3}{4}(a^2 + b^2 + c^2).$$

CÂU 35. Cho tam giác ABC có a=49.4; b=26.4; $\widehat{C}=47^{\circ}20'$. Cạnh c gần bằng với số nào sau đây?

(A)38.

(B)37.

(**D**)36.

CÂU 36. Chứng minh biểu thức sau độc lập với đối với x.

$$P = \frac{\tan^2 x - \cos^2 x}{\sin^2 x} + \frac{\cot^2 x - \sin^2 x}{\cos^2 x}.$$

CÂU 37. Cho tam giác ABC, chứng minh rằng $\cos \frac{A}{2} = \sqrt{\frac{p(p-a)}{bc}}$.

QUICK NOTE	CÂU 38. Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB , BC , CA lần lượt là 15, 18, 27.
	a) Tính diện tích và bán kính đường tròn ngoại tiếp tam giác ABC .
	b) Tính diện tích tam giác GBC .

LỜI GIẢI CHI TIẾT

BT ÔN TẬP HỆ THỰC LƯỢNG SỐ 1

CÂU 1. Giá trị lượng giác nào sau đây là số dương?

 $(\mathbf{B})\cos 137^{\circ}.$

 (\mathbf{C}) tan 160°.

 $(\mathbf{D})\cot 160^{\circ}.$

Dèi giải.

Ta có $90^{\circ} < 120^{\circ} < 180^{\circ}$ nên $\sin 190 > 0$.

Do $90^{\circ} < 137^{\circ} < 180^{\circ}$ nên $\cos 137^{\circ} < 0$.

Ngoài ra, $90^{\circ} < 160^{\circ} < 180^{\circ}$ nên $\tan 160^{\circ} < 0$ và $\cot 160^{\circ} < 0$.

Chọn đáp án (A).....

CÂU 2. Cho $\sin \alpha = \frac{4}{5}$, $(90^{\circ} < \alpha < 180^{\circ})$. Tính $\cos \alpha$.

 $\mathbf{C}\cos\alpha = \frac{5}{3}.$

 $\bigcirc \cos \alpha = \frac{3}{\pi}.$

🗭 Lời giải.

Ta có $\sin^2 \alpha + \cos^2 \alpha = 1 \Leftrightarrow \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{16}{25} = \frac{9}{25} \Rightarrow \cos \alpha = \pm \frac{3}{5}$.

Mặt khác $90^{\circ} < \alpha < 180^{\circ}$ nên $\cos \alpha = -\frac{3}{\pi}.$

Chọn đáp án (B).....

CÂU 3. Cho $x \in (0^{\circ}; 90^{\circ})$. Phát biểu nào sau đây là đúng?

 $(\mathbf{A})\sin x > 0.$

 $(\mathbf{B})\cos x > 0.$

 $(\mathbf{C})\tan x > 0.$

 $(\mathbf{D})\cot x > 0.$

🗩 Lời giải.

Khi $x \in \left(\frac{5\pi}{2}; 3\pi\right)$ thì $\begin{cases} \sin x > 0 \\ \cos x < 0 \\ \tan x < 0 \end{cases}$

Chon đáp án (A).....

CÂU 4. Giá trị $\cos 45^{\circ} + \sin 45^{\circ}$ bằng bao nhiêu?

(**A**)1.

(B) $\sqrt{2}$.

 $(\mathbf{C})\sqrt{3}$.

Lời giải.

Bằng cách tra bảng giá trị lượng giác của các góc đặc biệt hay dùng MTCT ta được $\begin{cases} \cos 45^\circ = \frac{\sqrt{2}}{2} \\ \sin 45^\circ = \frac{\sqrt{2}}{2} \end{cases}$

 $\Rightarrow \cos 45^{\circ} + \sin 45^{\circ} = \sqrt{2}.$

Chọn đáp án (B).....

CÂU 5. Giá trị của cot 18° là (**A**)1.

 $(\mathbf{C})_0$.

D) $\sqrt{5+2\sqrt{5}}$.

🗩 Lời giải.

Ta có cot $18^{\circ} = \sqrt{5 + 2\sqrt{5}}$.

Chọn đáp án (D).....

CÂU 6. Trên nửa đường tròn đơn vị cho góc α sao cho $\sin \alpha = \frac{2}{3}$ và $\cos \alpha < 0$. Tính $\tan \alpha$.

 $(c) - \frac{2}{5}$.

 $(\mathbf{D})1.$

Ta có $\cos \alpha = -\sqrt{1-\sin^2 \alpha} = -\frac{\sqrt{5}}{3}$ suy ra $\tan \alpha = -\frac{2\sqrt{5}}{5}$.

Chọn đáp án (A).....

CÂU 7. Cho $\sin x + \cos x = \frac{1}{2}$ và $0 < x < 90^{\circ}$. Tính giá trị của $\sin x$

B $\sin x = \frac{1 - \sqrt{7}}{6}$. **C** $\sin x = \frac{1 + \sqrt{7}}{4}$. **D** $\sin x = \frac{1 - \sqrt{7}}{4}$.

🗩 Lời giải.

Vì $0 < x < 90^{\circ}$ nên $\sin x > 0$. Ta có

$$\sin^2 x + \cos^2 x = 1 \quad \Leftrightarrow \quad \sin^2 x + \left(\frac{1}{2} - \sin x\right)^2 = 1$$

$$\Leftrightarrow \quad 2\sin^2 x - \sin x - \frac{3}{4} = 0$$

$$\Leftrightarrow \quad \left[\sin x = \frac{1 + \sqrt{7}}{4}\right]$$

$$\sin x = \frac{1 - \sqrt{7}}{4} \text{ (loại)}.$$

Chọn đáp án (C).....

CÂU 8. Chon phát biểu đúng trong các phát biểu sau?

$$(\mathbf{A})\sin 156^{\circ} \cdot \cos 70^{\circ} < 0.$$

$$\textbf{B}\tan 137^{\circ} \cdot \tan 156^{\circ} < 0.$$

$$\mathbf{C} \tan 150^{\circ} \cdot \cot 85^{\circ} < 0.$$

$$(\mathbf{D})\sin 110^{\circ} \cdot \cos 110^{\circ} > 0.$$

🗩 Lời giải.

a) Do
$$\begin{cases} \sin 156^{\circ} > 0 \\ \cos 70^{\circ} > 0 \end{cases}$$
 nên $\sin 156^{\circ} \cdot \cos(-70^{\circ}) > 0$.

a) Do
$$\begin{cases} \sin 156^{\circ} > 0 \\ \cos 70^{\circ} > 0 \end{cases}$$
 nên $\sin 156^{\circ} \cdot \cos(-70^{\circ}) > 0.$
b) Do
$$\begin{cases} \tan 137^{\circ} < 0 \\ \tan 156^{\circ} < 0 \end{cases}$$
 nên $\tan 137^{\circ} \cdot \tan 156^{\circ} > 0.$

c) Do
$$\begin{cases} \tan 150^{\circ} > 0 \\ \cot 85^{\circ} > 0 \end{cases}$$
 nên $\tan 150^{\circ} \cdot \cot 85^{\circ} < 0$.

d) Do
$$\begin{cases} \sin 110^\circ > 0 \\ \cos 110^\circ < 0 \end{cases}$$
nên $\sin 110^\circ \cdot \cos 110^\circ < 0.$

Chọn đáp án (C).....

CÂU 9. Phát biểu nào sau đây là đúng?

$$\sqrt{1 - \sin^2 140^\circ} = \cos 140^\circ.$$

$$\sqrt{\frac{1}{\cos^2 140^\circ}} - 1 = \tan 140^\circ.$$

$$(\mathbf{B})\sqrt{1-\cos^2 140^\circ} = \sin 140^\circ$$

Dòi aiải.

$$\text{Do } 140^{\circ} \in (90^{\circ}; 180^{\circ}) \text{ nên } \begin{cases} \sin 140^{\circ} > 0 \\ \cos 140^{\circ} < 0 \\ \tan 140^{\circ} < 0 \end{cases} \text{ nên } \begin{cases} \sqrt{1 - \sin^{2} 140^{\circ}} = -\cos 140^{\circ} \\ \sqrt{1 - \cos^{2} 140^{\circ}} = \sin 140^{\circ} \\ \sqrt{\frac{1}{\cos^{2} 140^{\circ}} - 1} = -\tan 140^{\circ} \\ \frac{1}{\sqrt{\tan^{2} 140^{\circ} + 1}} = -\cos 140^{\circ}. \end{cases}$$
 Chọn đáp án $\text{ } \text{B}$

CÂU 10. Tìm mệnh đề sai trong các mệnh đề sau

$$\triangle \cos 0^{\circ} = 1.$$

$$\mathbf{B}\sin 0^{\circ} = 0.$$

$$\mathbf{C}\cos 120^{\circ} = \frac{2}{\sqrt{2}}.$$

Dèi giải.

Mệnh đề sai là
$$\cos 120^\circ = \frac{2}{\sqrt{2}}$$
 vì $\cos 120^\circ = -\cos 60^\circ = \frac{\sqrt{3}}{2}$.

Chọn đáp án (C)...

CÂU 11. Cho α là góc tù. Mệnh đề nào đúng trong các mệnh đề sau?

$$(\mathbf{A})\sin\alpha < 0.$$

$$(\mathbf{B})\cos\alpha > 0.$$

$$\cot \alpha < 0.$$

$$\bigcirc$$
 $\cot \alpha > 0$.

🗩 Lời giải.

Vì α là góc tù nên $\tan \alpha < 0$.

Chọn đáp án (C).....

CÂU 12. Trong các mệnh đề sau, mệnh đề nào sai?

$$(\mathbf{A})\cos 45^{\circ} = \sin 45^{\circ}.$$

(B)
$$\cos 45^{\circ} = \sin 135^{\circ}$$
.

$$\mathbf{C}\cos 30^{\circ} = \sin 120^{\circ}.$$

$$(\mathbf{D})\sin 60^{\circ} = \cos 120^{\circ}.$$

🗩 Lời giải.

Ta có $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ và $\cos 120^{\circ} = -\cos 60^{\circ} = -\frac{1}{2}$.

Do đó mệnh đề sai là $\sin 60^{\circ} = \cos 120^{\circ}$.

Chọn đáp án $\overline{(D)}$

CÂU 13. Cho hai góc nhọn α và β với $\alpha < \beta$. Tìm mệnh đề sai.

 $(\mathbf{A})\sin\alpha < \sin\beta.$

 $(\mathbf{B})\cos\alpha < \cos\beta.$

 $(\mathbf{C})\cos\alpha = \sin\beta \Leftrightarrow \alpha + \beta = 90^{\circ}.$

 $(\mathbf{D})\tan\alpha + \tan\beta > 0.$

🗩 Lời giải.

Ta có mệnh đề **sai** là $\cos \alpha < \cos \beta$.

Chọn đáp án (B).....

CÂU 14. Cho $0^{\circ} \le \alpha \le 180^{\circ}$. Khẳng định nào sau đây là đúng?

- $(\mathbf{A})\sin\alpha = \sin(180^\circ \alpha). \qquad (\mathbf{B})\cos\alpha = \cos(180^\circ \alpha).$
- $(\mathbf{C})\tan\alpha = \tan(180^\circ \alpha).$ $(\mathbf{D})\cot\alpha = \cot(180^\circ \alpha).$

🗩 Lời giải.

Khẳng định đúng là $\sin \alpha = \sin(180^{\circ} - \alpha)$.

Chon đáp án (A).

CÂU 15.

Trên nửa đường tròn đơn vị, vị trí nào trong các vị trí dưới đây xác định điểm M sao cho $\tan xOM = 1$.

- (**A**) Vị trí (1).
- **B**)Vi trí (2).
- **(C)**Vi trí (3).
- **(D)**Vị trí (4).

🗩 Lời giải.

 \mathring{O} vi trí 1 ta có $\sin \widehat{xOM} = \cos \widehat{xOM}$ nên $\tan \widehat{xOM} = 1$.

Chon đáp án (A).

CÂU 16. Cho hai góc α và β với $\alpha + \beta = 180^{\circ}$. Tính giá trị của biểu thức $P = \cos \alpha \cos \beta - \sin \beta \sin \alpha$.

 $(\mathbf{A})P=0.$

🗩 Lời giải.

Hai gốc α và β bù nhau nên $\sin \alpha = \sin \beta$; $\cos \alpha = -\cos \beta$.

Do đó $P = \cos \alpha \cos \beta - \sin \beta \sin \alpha = -\cos^2 \alpha - \sin^2 \alpha = -(\sin^2 \alpha + \cos^2 \alpha) = -1.$

CÂU 17. Khẳng định nào sau đây sai?

- $(\mathbf{A})\cos 75^{\circ} > \cos 50^{\circ}.$
- $(\mathbf{B})\sin 80^{\circ} > \sin 50^{\circ}.$
- $(\mathbf{c})\tan 45^{\circ} < \tan 60^{\circ}.$
- $(\mathbf{D})\cos 30^{\circ} = \sin 60^{\circ}.$

🗭 Lời giải.

Trong khoảng từ 0° đến 90°, khi giá trị của góc tăng thì giá trị cos tương ứng của góc đó giảm.

Chon đáp án (A).

CÂU 18. Cho tam giác MNP không vuông có diện tích là S, p là nửa chu vi, r là bán kính đường tròn nội tiếp và R là bán kính đường tròn ngoại tiếp. Khẳng định nào sau đây là khẳng định sai?

Dòi giải.

Khẳng định sai là $S = \frac{1}{2}MN \cdot MP$.

Chọn đáp án (A).

CÂU 19. Tam giác ABC vuông tại A và có AB = AC = a. Tính độ dài đường trung tuyến BM của tam giác đã cho.

- BM = 1.5a.
- $\mathbf{C}BM = \sqrt{2}a.$
- $(\mathbf{D})BM = \sqrt{3}a.$

🗩 Lời giải.

M là trung điểm của $AC \Rightarrow AM = \frac{AC}{2} = \frac{a}{2}$

Xét tam giác BAM vuông tại A, ta c

$$BM = \sqrt{AB^2 + AM^2} = \sqrt{a^2 + \frac{a^2}{4}} = \frac{a\sqrt{5}}{2}.$$

CÂU 20. Cho tam giác ABC có 3 cạnh là 4 cm, 8 cm và 6 cm. Tính bán kính r của đường tròn nội tiếp tam giác ABC.

$$\mathbf{A} r = \frac{\sqrt{5}}{3} \text{ cm.}$$

$$\mathbf{B}$$
 $r = \sqrt{5}$ cm.

$$\mathbf{C}r = \sqrt{15} \text{ cm.}$$

$$\mathbf{D}r = \frac{\sqrt{15}}{3} \text{ cm}.$$

□ Lời giải.

Ta có nửa chu vi $\triangle ABC$ là $p = \frac{4+8+6}{2} = 9$ cm.

Diện tích $\triangle ABC$ là $S_{\triangle ABC}=\sqrt{9(9-4)(9-6)(9-8)}=3\sqrt{15}$ cm $^2.$

Suy ra bán kính r của đường tròn nội tiếp tam giác ABC là $r = \frac{S_{\triangle ABC}}{p} = \frac{3\sqrt{15}}{9} = \frac{\sqrt{15}}{3}$ cm.

CÂU 21. Cho tam giác ABC có $\widehat{A}=30^\circ$, $\widehat{B}=45^\circ$ và $AC=10\sqrt{2}$. Độ dài cạnh BC là

$$\bigcirc$$
 $\boxed{\mathbf{B}}$ $5\sqrt{2}$.

$$\mathbf{c}$$
 $\frac{5}{\sqrt{2}}$.

🗭 Lời giải.

Ta có
$$\frac{AC}{\sin B} = \frac{BC}{\sin A} \Rightarrow BC = \frac{AC \cdot \sin A}{\sin B} = \frac{10\sqrt{2} \cdot \sin 30^{\circ}}{\sin 45^{\circ}} = 10.$$

CÂU 22. Cho tam giác ABC. Khẳng định nào sau đây là đúng?

$$\mathbf{C}a^2 = b^2 + c^2 + 2bc\cos A.$$
 $\mathbf{D}S = r(a+b+c).$

🗭 Lời giải.

Gọi a, b, c lần lượt là độ dài ba cạnh của tam giác ABC.

Tam giác ABC có nửa chi vi là $p = \frac{a+b+1}{2}$

Tam giac ABC co nua chi vi la $p = \frac{1}{2}$.

Ta có S = pr. Suy ra $r = \frac{S}{p} = \frac{S}{\underbrace{a+b+c}} = \frac{2S}{a+b+c}$.

Chon đáp án (B).....

CÂU 23. Tính diện tích của tam giác ABC có $b=2, \widehat{B}=30^{\circ}, \widehat{C}=45^{\circ}.$

A
$$2 + 2\sqrt{3}$$
.

$$\bigcirc$$
 $\sqrt{3}$.

$$(\mathbf{D})1 + \sqrt{3}.$$

🗩 Lời giải.

Ta có:
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$
.

Suy ra
$$c = \frac{b \cdot \sin C}{\sin B} = \frac{2 \cdot \sin 45^{\circ}}{\sin 30^{\circ}} = 2\sqrt{2}$$

$$\sin B = \sin 30^{\circ}$$

Ta có $\widehat{A} = 180^{\circ} - \widehat{B} - \widehat{C} = 180^{\circ} - 30^{\circ} - 45^{\circ} = 105^{\circ}$.

Ta có:
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$
.
Suy ra $c = \frac{b \cdot \sin C}{\sin B} = \frac{2 \cdot \sin 45^{\circ}}{\sin 30^{\circ}} = 2\sqrt{2}$.
Ta có $\widehat{A} = 180^{\circ} - \widehat{B} - \widehat{C} = 180^{\circ} - 30^{\circ} - 45^{\circ} = 105^{\circ}$.
Ta có $S = \frac{1}{2}bc \sin A = \frac{1}{2} \cdot 2 \cdot 2\sqrt{2} \cdot \sin 105^{\circ} = 1 + \sqrt{3}$.

Chọn đáp án (D).....

CÂU 24. Trong tam giác ABC có góc $\widehat{A} = 60^{\circ}$, AC = 10, AB = 6. Khi đó, độ dài cạnh BC là

(A) $2\sqrt{19}$.

$$\bigcirc 6\sqrt{2}$$
.

🗩 Lời giải.

Ta có: $BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cos A = 6^2 + 10^2 - 2 \cdot 6 \cdot 10 \cdot \cos 60^\circ = 76.$

Suy ra $BC = 2\sqrt{19}$. Chọn đáp án (A).....

CÂU 25. Cho $\triangle ABC$ có AB=6 cm, BC=7 cm, CA=8 cm. Giá trị của $\cos B$ là

$$\mathbf{B}\frac{1}{4}$$
.

$$\frac{17}{32}$$
.

$$\frac{11}{16}$$
.

🗩 Lời giải.

Ta có $\cos B = \frac{AB^2 + BC^2 - AC^2}{2 \cdot AB \cdot BC} = \frac{6^2 + 7^2 - 8^2}{2 \cdot 6 \cdot 7} = \frac{1}{4}.$

CÂU 26.

 Để đo khoảng cách từ A đến B ngang qua một cái hồ nước, người ta chon điểm C, sau đó đo độ dài các cạnh AC, BC và góc C. Biết AC = 112 m, BC = 145 m, $\widehat{C} = 75^{\circ}$, khoảng cách từ A đến B gần nhất với giá trị nào dưới đây?

(B) 160 m.

(C)165 m.

🗩 Lời giải.

Áp dụng định lí côsin ta có

$$AB^2 = AC^2 + BC^2 - 2AC \cdot BC \cos C$$

= $112^2 + 145^2 - 2 \cdot 112 \cdot 145 \cos 75^\circ$
 $\Rightarrow AB \approx 158.6.$

Chọn đáp án \bigcirc B).....

CÂU 27.

Để đo chiều cao CH của một tháp truyền thông, người ta chọn hai điểm quan sát A, B trên mặt đất (hình vẽ). Biết $\widehat{C}A\widehat{H}=50^{\circ}$, $\widehat{C}B\widehat{H}=60^{\circ}$ và AB=80 m, tính chiều cao của tháp.

(A) 300,3 m.

(B) 305,6 m.

(**c**)301,8 m.

Dòi giải.

Ta có $\widehat{ACB} = \widehat{CBH} = 60^{\circ} - 50^{\circ} = 10^{\circ}$.

Áp dụng định lí sin ta có

$$\frac{AB}{\sin \widehat{ACB}} = \frac{BC}{\sin \widehat{CAH}} \Rightarrow BC = \frac{AB \sin \widehat{CAH}}{\sin \widehat{ACB}} = \frac{80 \sin 50^{\circ}}{\sin 10^{\circ}}.$$

Suy ra $CH = BC \sin \widehat{CBH} = \frac{80 \sin 50^{\circ} \sin 50^{\circ}}{\sin 10^{\circ}} \approx 305,6 \text{ m}.$

Chon đáp án B..... **CÂU 28.** Cho tam giác ABC có $\widehat{B}=135^{\circ}$. Khẳng định nào sau đây là đúng?

 $\mathbf{B}S = -\frac{\sqrt{2}}{4}ac.$

 $\mathbf{C}S = \frac{\sqrt{2}}{4}bc.$

Gọi a, b, c lần lượt là độ dài ba cạnh của tam giác ABC.

Ta có $S = \frac{1}{2}ac\sin B = \frac{1}{2}ac\cdot\sin 135^\circ = \frac{1}{2}\cdot\frac{\sqrt{2}}{2}\cdot ac = \frac{\sqrt{2}}{4}ac.$

Chọn đáp án (D).....

CÂU 29. Cho $\triangle ABC$ có S=84,~a=13,~b=14,~c=15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là (A) 8,125.

P Lời giải.

Ta có $S = \frac{abc}{4R} \Rightarrow R = \frac{abc}{4S} = \frac{13 \cdot 14 \cdot 15}{4 \cdot 84} = 8{,}125.$

CÂU 30. Cho $\triangle ABC$ với các cạnh AB=c, AC=b, BC=a. Gọi R, r, S lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp và diện tích của tam giác ABC. Trong các phát biểu sau, phát biểu nào sai?

$$\mathbf{B}R = \frac{a}{\sin A} \ .$$

$$\mathbf{C}S = \frac{1}{2}ab\sin C \ .$$

Dòi giải.

Theo định lý sin trong tam giác, ta có $\frac{a}{\sin A} = 2R$.

CÂU 31. Cho tam giác ABC thỏa mãn hệ thức b+c=2a. Trong các mệnh đề sau, mệnh đề nào đúng?

$$\mathbf{B}\sin B + \sin C = 2\sin A.$$

$$\mathbf{D}\sin B + \cos C = 2\sin A.$$

Dòi qiải.

Ta có
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \Leftrightarrow \begin{cases} a = 2R \sin A \\ b = 2R \sin B \\ c = 2R \sin C. \end{cases}$$

Mà $b + c = 2a \Leftrightarrow 2R \sin B + 2R \sin C = 4R \sin A \Leftrightarrow \sin B + \sin C = 2 \sin A$.

Chọn đáp án (B).....

CÂU 32. Tam giác có độ dài ba cạnh là 3, 8, 9. Góc lớn nhất của tam giác có số đo bằng bao nhiêu?

Lời giải.

Góc lớn nhất α của tam giác là góc đối diện với cạnh lớn nhất của tam giác.

Áp dung định lí côsin ta có

$$\cos \alpha = \frac{3^2 + 8^2 - 9^2}{2 \cdot 3 \cdot 8} = -\frac{1}{6} \Rightarrow \alpha \approx 99.6^{\circ}.$$

CÂU 33.

Từ một vị trí quan sát A, một người nhìn đỉnh B và chân C của nhà cao tầng với các góc tương ứng là 43° và 16° so với phương nằm ngang. Biết chiều cao của tòa nhà là 18 m, tính khoảng cách từ A đến C (làm tròn kết quả đến hàng phần mười).

🗩 Lời giải.

Ta có $AH = BH \cot \widehat{B}A\widehat{H} = CH \cot \widehat{C}A\widehat{H}$. Suy ra

$$\begin{split} (BC-CH)\cot\widehat{BAH} &= CH\cot\widehat{CAH} \\ \Leftrightarrow CH &= \frac{BC\cot\widehat{BAH}}{\cot\widehat{CAH} + \cot\widehat{BAH}} \\ \Leftrightarrow CH &= \frac{18\cot43^{\circ}}{\cot16^{\circ} + \cot43^{\circ}}. \end{split}$$

Khoảng cách từ A đến C là

$$AC = \frac{CH}{\sin 16^{\circ}} = \frac{18 \cot 43^{\circ}}{(\cot 16^{\circ} + \cot 43^{\circ}) \sin 16^{\circ}} \approx 15.4 \text{ m}.$$

Chọn đáp án \bigcirc

CÂU 34. Cho tam giác ABC có ba cạnh a, b, c và $m_a; m_b; m_c$ là ba đường trung tuyến lần lượt xuất phát từ A, B, C. Tính tổng $S = m_a^2 + m_b^2 + m_c^2$.

$$\mathbf{C}S = \frac{9}{4}(a^2 + b^2 + c^2).$$

$$\bigcirc S = \frac{3}{4}(a^2 + b^2 + c^2).$$

🗩 Lời giải.

$$m_a^2 = \frac{b^2 + c^2}{2} - \frac{a^2}{4}.$$

$$m_b^2 = \frac{a^2 + c^2}{2} - \frac{b^2}{4}.$$

$$m_c^2 = \frac{a^2 + b^2}{2} - \frac{c^2}{4}.$$

Vậy $S = m_a^2 + m_b^2 + m_c^2 = a^2 + b^2 + c^2 - \frac{a^2 + b^2 + c^2}{4} = \frac{3}{4} \cdot (a^2 + b^2 + c^2).$

Chọn đáp án (D)......

CÂU 35. Cho tam giác ABC có $a=49,4; b=26,4; \widehat{C}=47^{\circ}20'.$ Cạnh c gần bằng với số nào sau đây? **(a)** 38. **(b)** 37. **(c)** 39. **(d)** 36.

🗩 Lời giải.

Ta có: $c = \sqrt{a^2 + b^2 - 2ab\cos 47^{\circ}20'} \approx 37.$

Chọn đáp án \fbox{B}

CÂU 36. Chứng minh biểu thức sau độc lập với đối với x.

$$P = \frac{\tan^2 x - \cos^2 x}{\sin^2 x} + \frac{\cot^2 x - \sin^2 x}{\cos^2 x}.$$

🗩 Lời giải.

Ta có

$$P = \frac{\tan^2 x - \cos^2 x}{\sin^2 x} + \frac{\cot^2 x - \sin^2 x}{\cos^2 x}$$

$$= \frac{\tan^2 x}{\sin^2 x} - \frac{\cos^2 x}{\sin^2 x} + \frac{\cot^2 x}{\cos^2 x} - \frac{\sin^2 x}{\cos^2 x}$$

$$= \tan^2 x (1 + \cot^2 x) + \cot^2 x (1 + \tan^2 x) - \tan^2 x - \cot^2 x$$

$$= \tan^2 x + 1 + \cot^2 x + 1 - \tan^2 x - \cot^2 x$$

$$= 2.$$

Vậy P không phụ thuộc vào x.

CÂU 37. Cho tam giác ABC, chứng minh rằng $\cos\frac{A}{2}=\sqrt{\frac{p(p-a)}{bc}}$. \bigcirc Lời giải.

Trên tia đối của tia AC lấy D thỏa AD=AB=c suy ra tam giác BDA cân tại A và $\widehat{BDA}=\frac{1}{2}\widehat{BAC}$ (góc ngoài tam giác). Áp dụng định lý hàm số cô-sin cho $\triangle ABD$ ta có

$$\begin{split} BD^2 &= AB^2 + AD^2 - 2AB \cdot AD \cdot \cos \widehat{BAD} \\ &= 2c^2 - 2c^2 \cdot \cos \left(180^\circ - A \right) \\ &= 2c^2 (1 + \cos A) = 2c^2 \left(1 + \frac{b^2 + c^2 - a^2}{2bc} \right) \\ &= \frac{c}{b} (a + b + c)(b + c - a) = 4c^2 \cdot \frac{p(p - a)}{bc} \\ \text{suy ra } BD &= 2c \sqrt{\frac{p(p - a)}{bc}}. \end{split}$$

Gọi I là trung điểm của BD suy ra $AI \perp BD$. Trong tam giác ADI vuông tại I, ta có

$$\cos \frac{A}{2} = \cos \widehat{ADI} = \frac{DI}{AD} = \frac{BD}{2c} = \sqrt{\frac{p(p-a)}{bc}}.$$

Vậy
$$\cos \frac{A}{2} = \sqrt{\frac{p(p-a)}{bc}}.$$

CÂU 38. Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB, BC, CA lần lượt là 15, 18, 27.

- a) Tính diện tích và bán kính đường tròn ngoại tiếp tam giác ABC.
- b) Tính diện tích tam giác GBC.

🗩 Lời giải.

a) Nửa chu vi của tam giác
$$ABC$$
 là $p=\frac{15+18+27}{2}=30.$ Vậy $S=\sqrt{30\cdot(30-15)\cdot(30-18)\cdot(30-27)}=90\sqrt{2}.$ Ta có

$$S = \frac{abc}{4R} \Rightarrow R = \frac{abc}{4S} = \frac{15 \cdot 18 \cdot 27}{4 \cdot 90\sqrt{2}} = \frac{81\sqrt{81}}{8}.$$

b) Vì G là trọng tâm của tam giác ABCnên $S_{\triangle GBC}=\frac{1}{3}S=30\sqrt{2}.$

