# QC "Qptimizer"

# Hardware-aware Optimal Quantum Circuit Cutting and Knitting

Thang Tran
Advisors: Emmanouil Giortamis, Francisco Romão
Chair of Computer Systems
https://dse.in.tum.de/



### Motivation: Quantum Computing



- Potentially more powerful at solving problems compared to classical computers
  - Superposition
  - Entanglement
- high potential in: machine learning, factorization, optimization, and other



# Challenges



- Size: small
  - Useful applications: millions of qubits
  - Largest QPU: IBM Condor (1121 qubits)
- noisy (NISQ)
  - Limited connectivity
  - Not scalable / fault-tolerance



#### **Potential Solutions**



- Teleportation
  - latency
  - not yet realizable
- Circuit cutting and knitting
  - exponential overheads => How to cut optimally

#### Outline



- Motivation
- Background
- Design
- Implementation
- Evaluation

# Background: Teleportation



- Transfer unknown state  $|\psi
  angle$
- Required a pre-shared EPR pairs
  - Two ancilla qubits
  - Classical communication (latency)
  - Can be geographically distributed



# Background: Circuit cutting and knitting



- Two type of dependencies:
  - Wire dependencies
  - Gate dependencies
- Two steps:
  - Partitioning
  - Knitting
- Gate knitting:  $U = \sum_{i} a_i F_i$





#### Background: Gate Virtualization



- Virtualize any binary gates using only unary gates
- Original probability distribution obtained using knitting formula
  - Rules of stochastically independent events

$$P_i(|x\rangle) = P_i^1(|x\rangle) \cdot P_i^2(|x\rangle)$$



[1]

# Background: Circuit cutting and knitting



#### - Multiple options:

- Swap gate
- Teleportation
- Move Circuit





# Background: Demonstration of Gate Cut





# Background: Demonstration of Wire Cut





#### Outline



- Motivation
- Background
- Design
- Implementation
- Evaluation

# Design: System Overview









- Unary gates are ignored
- Transpile gates into binary gates
- A gate creates a gate-cut-edge
  - creates 2 vertices
    - blue vertices: first vertex of a qubit
    - black vertices: normal vertices
- wire-cut-edge: 2 adjacent vertices on a qubit



- qubit topology
- noise model

**QPU Characteristics** 



QPD parameters

- sampling overhead
- latency

- ...

Teleportation parameters



- minimize total number of cuts
- minimize total sampling overhead
- minimize number of qubits per partitions

-

Objectives

#### Outline



- Motivation
- Background
- Design
- Implementation
- Evaluation

### Implementation

ТΙΠ

- python
- Z3-solver (SAT solver)
- QOS::QVM framework
- clingo grounder (ASP)







#### Outline



- Motivation
- Background
- Design
- Implementation
- Evaluation

#### Evaluation: Sycamore 12 qubits





• •

# Evaluation: Supremacy 12 qubits





#### **Evaluation: Fidelity**





#### **Evaluation: Number of CNOTs**





### Evaluation: Circuit depth





#### Summary



#### Larger circuits:

- harder to execute
- produce less accurate results

#### - Our solution:

- fidelity is improved
- Cutting could take long
- Limited to small circuits ( <= 25 qubits)</li>
- Increased overhead is significant

#### - Future works:

- pre-processing steps fragment the circuits (in the case of sycamore 12 qubits)
- Improve solver efficiency
- Implement teleport