HW2_jaeyounglee

Jaeyoung Lee

September 14, 2020

Problem 3

First of all, it is to handle a mistake. Also, one can handle various versions of a code and see the history of a code. Furthermore, using version control, it is easy to collaborate with others. This is because one can share a code and work on the cloud such as GitHub.

Problem 4

For each dataset, you should perform the cleaning 2x: first with base R functions (ie no dplyr, piping, etc), second using tidyverse function. Make sure you weave your code and text into a complete description of the process and end by creating a tidy dataset describing the variables, create a summary table of the data (summary, NOT full listing), note issues with the data, and include an informative plot.

a. Sensory data from five operators. $\label{lem:http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.} \\ dat$

```
######## Sensory data #######
# Getting "https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.dat"
url_sensory <- "https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.dat"
sensory_rawdata <- fread(url_sensory, fill = TRUE, skip = 2, data.table = FALSE)
saveRDS(sensory_rawdata, 'sensory_rawdata.RDS')
sensory_rawdata <- readRDS('sensory_rawdata.RDS')</pre>
```

The raw data has missing values and the categories "Items" are in the data. We need to remove them from the data.

```
# Tidy data with base R function
matrix_sensory <- t(as.matrix(sensory_rawdata)) # Transpose the raw data
na <- which(is.na(matrix_sensory==TRUE)) # Find the indexes of Missing value

# The indexes where Item numbers are in the data
x <- 1
item <- x
for (i in 1:9){
    x <- x+18
    item <- c(item, x)
}

# Remove missing values and Item numbers from the data
# To focus on items, transpose the data table and rename the column names
sensory_data <- t(matrix(matrix_sensory[-c(na,item)], byrow = T, nrow = 10))
sensory_data <- data.table(sensory_data)
colnames(sensory_data) <- paste('Item', 1:10)</pre>
```

```
Opr <- rep(paste('Opr', 1:5), 3)
sensory_data <- cbind(Opr,sensory_data)
sensory_data <- sensory_data[order(sensory_data$Opr)]</pre>
```

Above is the converted tidy data frames using the base R functions. A summary of the data is as follows:

Opr	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10
Length:15	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.
Ü	:3.300	:4.200	:1.300	:5.90	:4.90	:1.100	:0.700	:3.000	:6.700	:2.80
Class	1st	1st	1st	1st	1st	1st	1st	1st	1st	1st
:character	Qu.:4.05	0Qu.:4.70	0Qu.:2.35	0Qu.:6.40	Qu.:5.70	Qu.:1.75	0Qu.:1.00	0Qu.:4.40	0Qu.:7.95	0Qu.:3.9
Mode	Median	Median	Median	Median	Median	Median	Median	Median	Median	Median
:character	:4.400	:5.300	:2.600	:6.90	:5.90	:2.100	:1.200	:4.600	:8.800	:4.80
NA	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
	:4.467	:5.313	:2.773	:6.88	:5.92	:2.393	:1.407	:4.427	:8.467	:4.52
NA	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd
	Qu.:5.10	0Qu.:5.95	0Qu.:3.05	0Qu.:7.20	Qu.:6.15	Qu.:3.15	0Qu.:1.55	0Qu.:4.80	0Qu.:9.00	0Qu.:5.1
NA	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.
	:5.700	:6.300	:4.600	:8.20	:7.00	:4.000	:3.100	:4.900	:9.400	:5.50

```
# Sensory data with tidyverse package
matrix_sensory <- sensory_rawdata %>% as.matrix() %>% t() # Transpose the raw data
na <- which(is.na(matrix_sensory==TRUE))</pre>
                                                 # Find the indexes of Missing value
# The indexes where Item numbers are in the data
x <- 1
item \leftarrow x
for (i in 1:9){
  x < -x+18
  item <- c(item, x)
# Remove missing values and Item numbers from the data
# To focus on items, transpose the data table and rename the column names
sensory_data <- matrix_sensory[-c(na,item)] %>% matrix(byrow = T, nrow = 10) %>% t()
sensory_data <- data.table(sensory_data)</pre>
Opr <- rep(paste('Opr', 1:5), 3)</pre>
sensory_data <- bind_cols(Opr,sensory_data)</pre>
## New names:
## * NA -> ...1
colnames(sensory_data) <- c('Opr',paste('Item', 1:10))</pre>
sensory_data <- sensory_data[order(sensory_data$0pr)]</pre>
```

The summary of the data converted by tidyverse is as follows.

Opr	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10
Length:15	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.	Min.
	:3.300	:4.200	:1.300	:5.90	:4.90	:1.100	:0.700	:3.000	:6.700	:2.80
Class	1st	1st	1st	1st	1st	1st	1st	1st	1st	1st
:character	Qu.:4.05	50Qu.:4.70	00Qu.:2.35	50Qu.:6.40	Qu.:5.70	Qu.:1.75	60Qu.:1.00	00Qu.:4.40	00Qu.:7.95	50Qu.:3.9

Opr	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10
Mode	Median	Median	Median	Median	Median	Median	Median	Median	Median	Median
:character	:4.400	:5.300	:2.600	:6.90	:5.90	:2.100	:1.200	:4.600	:8.800	:4.80
NA	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
	:4.467	:5.313	:2.773	:6.88	:5.92	:2.393	:1.407	:4.427	:8.467	:4.52
NA	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd	3rd
	Qu.:5.10	0Qu.:5.95	0Qu.:3.05	0Qu.:7.20	Qu.:6.15	Qu.:3.15	0Qu.:1.55	0Qu.:4.80	0Qu.:9.00	0Qu.:5.1
NA	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.	Max.
	:5.700	:6.300	:4.600	:8.20	:7.00	:4.000	:3.100	:4.900	:9.400	:5.50

b. Gold Medal performance for Olympic Men's Long Jump, year is coded as 1900=0. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat

```
######## Long Jump data #######
# Getting "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat"
url_medal <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat"
medal_rawdata <- fread(url_medal)
## Warning in fread(url_medal): Detected 12 column names but the data has 8
## columns. Filling rows automatically. Set fill=TRUE explicitly to avoid this
## warning.
saveRDS(medal_rawdata, 'medal_rawdata.RDS')
medal_rawdata <- readRDS('medal_rawdata.RDS')</pre>
```

The raw data has missing values and wide type data. It is better to covert into long type data. Also, we need to vectors: 'Year' and 'Long Jump'.

```
# Tidy data by base R function
# Year is coded as 1900 = 0
# Combine year and long jump into two vectors
year <- c(medal_rawdata[[1]], medal_rawdata[[3]], medal_rawdata[[5]], medal_rawdata[[7]]) + 1900
longjump <- c(medal_rawdata[[2]], medal_rawdata[[4]], medal_rawdata[[6]], medal_rawdata[[8]])
# Bind the vectors as a data table and rename the categories
medal_data <- data.table(year[1:(length(year)-2)], longjump[1:(length(longjump)-2)])
colnames(medal_data) <- c('Year', 'Long Jump')</pre>
```

Above is the converted tidy data frames using the base R functions. A summary of the data is as follows:

Year	Long Jump
Min. :1896	Min. :249.8
1st Qu.:1921	1st Qu.:295.4
Median:1950	Median $:308.1$
Mean : 1945	Mean $:310.3$
3rd Qu.:1971	3rd Qu.:327.5
Max. :1992	Max. $:350.5$

```
# Using tidyverse
# Year is coded as 1900 = 0
# Combine year and long jump into two vectors
medal_data <- medal_rawdata[,1:8]
colnames(medal_data) <- paste(rep(c('Year', 'Jump'),4), rep(1:4,each = 2))</pre>
```

```
year <- medal_data[,c(1,3,5,7)] %>% gather(key = 'name1', value = 'Year', 1,2,3,4) %>% filter(Year != n
## Warning in Year != na: longer object length is not a multiple of shorter object
## length
year[,2] <- year[,2] + 1900
jump <- medal_data[,c(2,4,6,8)] %>% gather(key = 'name2', value = 'LongJump', 1,2,3,4) %>% filter(LongJump' = na: longer object length is not a multiple of shorter
## warning in LongJump != na: longer object length is not a multiple of shorter
## object length
## Bind the vectors as a data table and rename the categories
medal_data <- bind_cols(year[,2], jump[,2])
## New names:
## * NA -> ...1
## * NA -> ...2
colnames(medal_data) <- c('Year', 'Long Jump')</pre>
```

The summary of the data converted by tidyverse is as follows.

Year	Long Jump
Min. :1896	Min. :249.8
1st Qu.:1921	1st Qu.:295.4
Median $:1950$	Median $:308.1$
Mean : 1945	Mean $:310.3$
3rd Qu.:1971	3rd Qu.:327.5
Max. :1992	Max. $:350.5$

c. Brain weight (g) and body weight (kg) for 62 species. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat

```
######## Brain weight data #######
# Getting "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat"
url_brain <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat"
brain_rawdata <- fread(url_brain)
## Warning in fread(url_brain): Detected 12 column names but the data has 6
## columns. Filling rows automatically. Set fill=TRUE explicitly to avoid this
## warning.
saveRDS(brain_rawdata, 'brain_rawdata.RDS')
brain_rawdata <- readRDS('brain_rawdata.RDS')</pre>
```

The data needs two columns which are 'Body Wt' and 'Brain Wt'.

```
# Tidy data with base R function
bodywt <- c(brain_rawdata[[1]], brain_rawdata[[3]], brain_rawdata[[5]])
brainwt <- c(brain_rawdata[[2]], brain_rawdata[[4]], brain_rawdata[[6]])

brain_data <- data.table(bodywt[-length(bodywt)], brainwt[-length(brainwt)])
colnames(brain_data) <- c('Body Wt', 'Brain Wt')</pre>
```

Above is the converted tidy data frames using the base R functions. A summary of the data is as follows:

Body Wt	Brain Wt
Body Wt	Brain Wt
Min.: 0.005 1st Qu.: 0.600 Median: 3.342 Mean: 198.790 3rd Qu.: 48.202 Max.:6654.000	Min.: 0.10 1st Qu.: 4.25 Median: 17.25 Mean: 283.13 3rd Qu.: 166.00 Max.:5712.00

```
# Tidy data with tidyverse
brain_data <- brain_rawdata[,1:6]
colnames(brain_data) <- paste(rep(c('bw', 'brw'),3), rep(1:3,each = 2))
bw <- brain_data[,c(1,3,5)] %>% gather(key = 'name1', value = 'BW', 1,2,3)
brw <- brain_data[,c(2,4,6)] %>% gather(key = 'name2', value = 'BRW', 1,2,3)

# Bind the vectors as a data table and rename the categories
brain_data <- bind_cols(bw[,2], brw[,2])

## New names:
## * NA -> ...1
## * NA -> ...2
colnames(brain_data) <- c('Body Wt', 'Brain Wt')</pre>
```

The summary of the data converted by tidyverse is as follows.

Body Wt	Brain Wt
Min.: 0.005	Min.: 0.10
1st Qu.: 0.600	1st Qu.: 4.25
Median: 3.342	Median: 17.25
Mean: 198.790	Mean: 283.13
3rd Qu.: 48.202	3rd Qu.: 166.00
Max. $:6654.000$	Max. $:5712.00$
NA's :1	NA's :1

d. Triplicate measurements of tomato yield for two varieties of tomatos at three planting densities. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat

```
######## Tomato data #######
# Getting "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat"
url_tomato <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat"
tomato_rawdata <- fread(url_tomato, skip = 1)

## Warning in fread(url_tomato, skip = 1): Detected 3 column names but the data has
## 4 columns (i.e. invalid file). Added 1 extra default column name for the first
## column which is guessed to be row names or an index. Use setnames() afterwards
## if this guess is not correct, or fix the file write command that created the
## file to create a valid file.
saveRDS(tomato_rawdata, 'tomato_rawdata.RDS')
tomato_rawdata <- readRDS('tomato_rawdata.RDS')</pre>
```

The data above should split the values.

```
# Tidy data with base R function
# Need to split the values
cells <- strsplit(unlist(tomato_rawdata), split = ',', fixed = T) # split the data
categories <- unlist(c(cells[1],cells[2])) # two categories
values <- as.numeric(unlist(c(cells[3:8]))) # numerical data

# Combine into data frame
tomato_matrix <- matrix(values, byrow = T, ncol = 3)
tomato_matrix <- t(cbind(tomato_matrix[1:2,], tomato_matrix[3:4,], tomato_matrix[5:6,]))
tomato_data <- data.frame(tomato_matrix, as.character(rep(c(10000,20000,30000)), each=3))
colnames(tomato_data) <- c(categories, 'Density')</pre>
```

Above is the converted tidy data frames using the base R functions. A summary of the data is as follows:

Ife#1	PusaEarlyDwarf	Density
Min. :15.30	Min.: 8.10	Length:9
1st Qu.:16.60	1st Qu.:10.10	Class :character
Median:18.00	Median $:12.70$	Mode :character
Mean :18.11	Mean $:12.02$	NA
3rd Qu.:19.20	3rd Qu.:13.70	NA
Max. $:21.00$	Max. $:15.40$	NA

```
# Using tidyverse
tomato_data <- tomato_rawdata[,-1] %>%
    separate(col = '10000', into = c("1","2","3"), sep = ",", convert = T) %>%
    separate(col = '20000', into = c("4","5","6"), sep = ",", convert = T) %>%
    separate(col = '30000', into = c("7","8","9"), sep = ",", convert = T) %>%
    as.matrix() %>% t()

## Warning: Expected 3 pieces. Additional pieces discarded in 1 rows [2].
dens <- rep(c(10000,20000,30000), each = 3)

tomato data <- tomato data %>% cbind(dens) %>% as.data.table()
```

colnames(tomato_data) <- tomato_rawdata[,1] %>% unlist() %>% c("Density")

Ife#1	PusaEarlyDwarf	Density
Min. :15.30	Min.: 8.10	Min. :10000
1st Qu.:16.60	1st Qu.:10.10	1st Qu.:10000
Median:18.00	Median $:12.70$	Median $:20000$
Mean : 18.11	Mean $:12.02$	Mean $:20000$
3rd Qu.:19.20	3rd Qu.:13.70	3rd Qu.:30000
Max. $:21.00$	Max. $:15.40$	Max. $:30000$

Problem 5

Finish this homework by pushing your changes to your repo. In general, your workflow for this should be:

1. git pull – to make sure you have the most recent repo

- 2. In R: do some work
- 3. git add this tells git to track new files
- 4. git commit make message INFORMATIVE and USEFUL
- 5. git push this pushes your local changes to the repo

If you have difficulty with steps 1-5, git is not correctly or completely setup. See me for help.

Only submit the .Rmd and .pdf solution files. Names should be formatted $HW2_lastname.Rmd$ and $HW2_lastname.pdf$

Optional preparation for next class:

TBD

Appendix

```
knitr::opts_chunk$set(echo = TRUE)
library(data.table)
library(tidyverse)
####### Sensory data #######
# Getting "https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.dat"
url sensory <- "https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.dat"
sensory_rawdata <- fread(url_sensory, fill = TRUE, skip = 2, data.table = FALSE)
saveRDS(sensory_rawdata, 'sensory_rawdata.RDS')
sensory_rawdata <- readRDS('sensory_rawdata.RDS')</pre>
# Tidy data with base R function
matrix_sensory <- t(as.matrix(sensory_rawdata)) # Transpose the raw data
na <- which(is.na(matrix_sensory==TRUE))</pre>
                                            # Find the indexes of Missing value
# The indexes where Item numbers are in the data
x <- 1
item \leftarrow x
for (i in 1:9){
 x < -x+18
  item <- c(item, x)
# Remove missing values and Item numbers from the data
# To focus on items, transpose the data table and rename the column names
sensory_data <- t(matrix(matrix_sensory[-c(na,item)], byrow = T, nrow = 10))</pre>
sensory_data <- data.table(sensory_data)</pre>
colnames(sensory_data) <- paste('Item', 1:10)</pre>
Opr <- rep(paste('Opr', 1:5), 3)</pre>
sensory_data <- cbind(Opr,sensory_data)</pre>
sensory_data <- sensory_data[order(sensory_data$0pr)]</pre>
knitr::kable(summary(sensory_data))
# Sensory data with tidyverse package
matrix_sensory <- sensory_rawdata %>% as.matrix() %>% t() # Transpose the raw data
```

```
na <- which(is.na(matrix_sensory==TRUE))</pre>
                                                   # Find the indexes of Missing value
# The indexes where Item numbers are in the data
x <- 1
item <- x
for (i in 1:9){
 x < -x+18
 item <- c(item, x)</pre>
}
# Remove missing values and Item numbers from the data
# To focus on items, transpose the data table and rename the column names
sensory_data <- matrix_sensory[-c(na,item)] %>% matrix(byrow = T, nrow = 10) %>% t()
sensory_data <- data.table(sensory_data)</pre>
Opr <- rep(paste('Opr', 1:5), 3)</pre>
sensory_data <- bind_cols(Opr,sensory_data)</pre>
colnames(sensory_data) <- c('Opr',paste('Item', 1:10))</pre>
sensory_data <- sensory_data[order(sensory_data$Opr)]</pre>
knitr::kable(summary(sensory_data))
####### Long Jump data #######
 \textit{\# Getting "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat"} \\
url_medal <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat"
medal_rawdata <- fread(url_medal)</pre>
saveRDS(medal rawdata, 'medal rawdata.RDS')
medal rawdata <- readRDS('medal rawdata.RDS')</pre>
# Tidy data by base R function
# Year is coded as 1900 = 0
# Combine year and long jump into two vectors
year <- c(medal_rawdata[[1]], medal_rawdata[[3]], medal_rawdata[[5]], medal_rawdata[[7]]) + 1900</pre>
longjump <- c(medal_rawdata[[2]], medal_rawdata[[4]], medal_rawdata[[6]], medal_rawdata[[8]])</pre>
# Bind the vectors as a data table and rename the categories
medal_data <- data.table(year[1:(length(year)-2)], longjump[1:(length(longjump)-2)])</pre>
colnames(medal_data) <- c('Year', 'Long Jump')</pre>
knitr::kable(summary(medal_data))
# Using tidyverse
# Year is coded as 1900 = 0
# Combine year and long jump into two vectors
medal data <- medal rawdata[,1:8]</pre>
colnames(medal_data) <- paste(rep(c('Year', 'Jump'),4), rep(1:4,each = 2))</pre>
year <- medal_data[,c(1,3,5,7)] %>% gather(key = 'name1', value = 'Year', 1,2,3,4) %>% filter(Year != n
year[,2] \leftarrow year[,2] + 1900
jump <- medal_data[,c(2,4,6,8)] %>% gather(key = 'name2', value = 'LongJump', 1,2,3,4) %>% filter(LongJump', 1,2,3,4)
# Bind the vectors as a data table and rename the categories
medal_data <- bind_cols(year[,2], jump[,2])</pre>
colnames(medal_data) <- c('Year', 'Long Jump')</pre>
####### Brain weight data #######
```

```
# Getting "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat"
url_brain <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat"</pre>
brain_rawdata <- fread(url_brain)</pre>
saveRDS(brain_rawdata, 'brain_rawdata.RDS')
brain_rawdata <- readRDS('brain_rawdata.RDS')</pre>
# Tidy data with base R function
bodywt <- c(brain_rawdata[[1]], brain_rawdata[[3]], brain_rawdata[[5]])</pre>
brainwt <- c(brain rawdata[[2]], brain rawdata[[4]], brain rawdata[[6]])</pre>
brain_data <- data.table(bodywt[-length(bodywt)], brainwt[-length(brainwt)])</pre>
colnames(brain_data) <- c('Body Wt', 'Brain Wt')</pre>
knitr::kable(summary(brain_data))
# Tidy data with tidyverse
brain_data <- brain_rawdata[,1:6]</pre>
colnames(brain_data) <- paste(rep(c('bw', 'brw'),3), rep(1:3,each = 2))</pre>
bw <- brain_data[,c(1,3,5)] %>% gather(key = 'name1', value = 'BW', 1,2,3)
brw <- brain_data[,c(2,4,6)] %>% gather(key = 'name2', value = 'BRW', 1,2,3)
# Bind the vectors as a data table and rename the categories
brain_data <- bind_cols(bw[,2], brw[,2])</pre>
colnames(brain_data) <- c('Body Wt', 'Brain Wt')</pre>
####### Tomato data #######
# Getting "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat"
url tomato <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat"
tomato rawdata <- fread(url tomato, skip = 1)</pre>
saveRDS(tomato_rawdata, 'tomato_rawdata.RDS')
tomato_rawdata <- readRDS('tomato_rawdata.RDS')</pre>
# Tidy data with base R function
# Need to split the values
cells <- strsplit(unlist(tomato_rawdata), split = ',', fixed = T) # split the data</pre>
categories <- unlist(c(cells[1],cells[2])) # two categories</pre>
values <- as.numeric(unlist(c(cells[3:8]))) # numerical data</pre>
# Combine into data frame
tomato_matrix <- matrix(values, byrow = T, ncol = 3)</pre>
tomato_matrix <- t(cbind(tomato_matrix[1:2,], tomato_matrix[3:4,], tomato_matrix[5:6,]))</pre>
tomato_data <- data.frame(tomato_matrix, as.character(rep(c(10000,20000,30000)), each=3))
colnames(tomato_data) <- c(categories, 'Density')</pre>
knitr::kable(summary(tomato data))
# Using tidyverse
tomato_data <- tomato_rawdata[,-1] %>%
  separate(col = '10000', into = c("1","2","3"), sep = ",", convert = T) %>%
  separate(col = '20000', into = c("4","5","6"), sep = ",", convert = T) %>%
  separate(col = '30000', into = c("7","8","9"), sep = ",", convert = T) %>%
  as.matrix() %>% t()
dens <- rep(c(10000, 20000, 30000), each = 3)
tomato_data <- tomato_data %>% cbind(dens) %>% as.data.table()
```

colnames(tomato_data) <- tomato_rawdata[,1] %>% unlist() %>% c("Density")