Literature Review of GO, PO, AFIM, GTD, UTD, PTD, FW, EEC, FPR and Shadowing Measurement

20190415

Duxin (D1)

Outline of today presentation:

- Literature review
- Shadowing measurement

Terminology and Abbreviations

GO	Geometrical optics	
РО	Physical optics	
GTD	Geometrical theory of diffraction	
UTD	Uniform geometrical theory of diffraction	
AFIM	Aperture field integration method	
PTD	Physical theory of diffraction	
FW	Fringe wave	
FPR	Fictitious penetrating rays	
EEC	Equivalent edge currents	

Terminology: SB and RB

EM numerical computation method

Full-wave Numerical Methods:

FDTD, MoM, FEM, MODE...

Huge calculation time

Large memory size requirement

High-Frequency Asymptotic Methods

High-Frequency Asymptotic Methods

GO (ray-based)

✓ Reflection

X Diffraction

PO (wave-based)

✓ Diffraction

✓ Scattering

• GTD, UTD, PTD...

Relation Map for GO, PO, GTD, UTD, AFIM and PTD

Outline of Literature review [1]-[3]

- GO
- GTD
- UTD
- PO
- PTD
- AFIM
- FPR

- [1] Masayuki Oodo, Tsutomu Murasaki, and Makoto ANDO "Errors of Physical Optics in Shadow Region Fictitious Penetrating Rays" IEICE Trans, Electron., Vol.E77-C, No.6, pp.995–127, 1994/06.
- [2] Ken-ichi SAKINA, Suomin CUI, and Makoto ANDO "Derivation of Uniform PO Diffraction Coefficients Based on Field Equivalence Principle" IEICE, C, Vol.J83-C, No.2, pp.118–127, 2000/09.
- [3] Tetsu Shijo, Makoto ANDO
- "Elimination of Fictitious Penetrating Rays from PO and Hybridization with AFIM" IEEJ Trans, FM, Vol.123, No.12, pp.1185–1192, 2003.
- PO-AF and PTD-AF
- EEC and diffraction coefficients

Geometrical optics (GO)

Reflected Ray

$$E^{r} = E_{0}R \frac{e^{-jk(d_{2}+d_{3})}}{d_{2}+d_{3}}$$

Fresnel reflection coefficient

Reflection Coefficient

- $\mu_1 = \mu_2$
- ε_1 air
- ε_2 material

Parallel polarization

$$R_{\parallel} = \frac{-\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}\cos\theta_{i} + \sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}\cos\theta_{r}}{\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}\cos\theta_{i} + \sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}\cos\theta_{r}}$$

Perpendicular polarization

$$R_{\perp} = \frac{\sqrt{\frac{\mu_2}{\varepsilon_2}} \cos \theta_i - \sqrt{\frac{\mu_1}{\varepsilon_1}} \cos \theta_r}{\sqrt{\frac{\mu_2}{\varepsilon_2}} \cos \theta_i + \sqrt{\frac{\mu_1}{\varepsilon_1}} \cos \theta_r}$$

Geometrical theory of diffraction (GTD)

Already presented in 2018/06/10 See appendix

$$\xi^{i} \equiv 2k\rho \cos^{2} \frac{(\phi - \phi_{i})}{2}$$
$$\xi^{r} \equiv 2k\rho \cos^{2} \frac{(\phi + \phi_{i})}{2}$$

$$E^{S} = E_{0} \left\{ \left(\int_{-\infty}^{j} e^{j\xi^{i}} e^{jk\rho} \int_{-\infty}^{\sqrt{\xi^{i}}} e^{-jt^{2}} dt \right) - \left(\int_{-\infty}^{j} e^{j\xi^{r}} e^{jk\rho} \int_{-\infty}^{\sqrt{\xi^{r}}} e^{-jt^{2}} dt \right) := E^{GO} + E^{d}$$

Incident (GO + Diffraction)

Reflection (GO + Diffraction)

$$E^{d} = E_{0} \frac{e^{-\frac{j\pi}{4}} e^{-jk\rho}}{2\sqrt{2k\pi\rho}} \left\{ -\left(\cos\frac{(\phi - \phi_{i})}{2}\right)^{-1} + \left(\cos\frac{(\phi + \phi_{i})}{2}\right)^{-1} \right\} = -E_{0} \frac{e^{-jk\rho - \frac{j\pi}{4}}}{\sqrt{2k\pi\rho}} D_{\parallel}^{GTD}$$

Diffraction coefficient of GTD:

$$2D_{\parallel}^{GTD} = \sec\frac{\phi - \phi_i}{2} - \sec\frac{\phi + \phi_i}{2}$$

Uniform theory of diffraction (UTD)

Diffraction coefficient of GTD:
$$2D_{\parallel}^{GTD} = \sec \frac{\phi - \phi_i}{2} - \sec \frac{\phi + \phi_i}{2}$$

Divergent at SB ($\phi=\pi+\phi_i$) and RB ($\phi=\pi-\phi_i$)

Diffraction coefficient of UTD:
$$2D_{\parallel}^{UTD} = F_{-} \sec \frac{\phi - \phi_{i}}{2} - F_{+} \sec \frac{\phi + \phi_{i}}{2}$$

(GTD_F)

Where,
$$F_{\pm} = F(2k\rho\cos^2\frac{\phi \pm \phi_i}{2})$$

$$F(x) = 2j\sqrt{x}e^{jx}\int_{\sqrt{x}}^{\infty}e^{-jr^2}dr$$
 Modified Fresnel function

Physical optics (PO)

Diffraction coefficient of PO:

$$2D_{\parallel}^{PO} = \tan\frac{\phi - \phi_i}{2} - \tan\frac{\phi + \phi_i}{2}$$

	PO (numerical)	GTD (analytical)			
Caustic/focus	✓ Surface integral	× Divergent due to ray > approximation			
Edge	× Error due to infinite plane approximation	✓ Semi-infinite plane and perturbation	PTD		
SB/RB	× Divergent due to diffraction coefficient	× Divergent due to diffraction coefficient -			
Fictitious penetrating rays	Error due to planeassumption for scattererwith curvature/corner	✓ The ray emanating from invisible edges are omitted			
Source $m \neq 2$ $m \neq 3$ $m = 4$ $E^{d}(GTD) = \sum_{m=1,2} E^{d}_{m}(GTD)$ $m \neq 2$ $m = 4$ $E^{d}(GTD) = \sum_{m=3,4} E^{d}_{m}(GTD)$ $m = 4$ Observer $E^{d}(GTD) = \sum_{m=1,4} E^{d}_{m}(GTD)$ Observer $E^{d}(GTD) = \sum_{m=1,4} E^{d}_{m}(GTD)$ Observer					
m=1			13		

Physical theory of diffraction (PTD)

$$2D_{\parallel}^{GTD} = \sec\frac{\phi - \phi_i}{2} - \sec\frac{\phi + \phi_i}{2}$$
 (at visible edge)
$$2D_{\parallel}^{PO} = \tan\frac{\phi - \phi_i}{2} - \tan\frac{\phi + \phi_i}{2}$$
 (at ALL edge ---- EEC)

$$2D_{\parallel}^{PO} = \tan \frac{\phi - \phi_i}{2} - \tan \frac{\phi + \phi_i}{2}$$
 (at ALL edge ---- EEC)

Fringe wave:
$$2D_{\parallel}^{FW}=2D_{\parallel}^{GTD}-2D_{\parallel}^{PO}=\frac{1-\sin\frac{\phi-\phi_i}{2}}{\cos\frac{\phi-\phi_i}{2}}-\frac{1-\sin\frac{\phi+\phi_i}{2}}{\cos\frac{\phi+\phi_i}{2}}$$
 (at visible edge)

$$E^{s}(\text{PTD}) = \sum_{m=all\ edge} E^{d}_{m} (\text{PO}) + \sum_{m=visible\ edge} E^{d}_{m} (\text{FW})$$
 Do NOT divergent at SB/RB
$$= \sum_{m=all\ edge} E^{d}_{m} (\text{GTD}) + \sum_{m=visible\ edge} E^{d}_{m} (\text{PO})$$
 Still has FPR error

$$= \sum_{m=visible\ edge} E_m^d \text{ (GTD)} +$$

m= invīsible edge

Still has FPR error

Correct PO error at edge

Surface integral solve GTD singular like caustic

Aperture field integration method (AFIM)

- AFIM+: radiate to shadowing region (forward scattering) also called Kirchhoff approximation
- AFIM-: radiate to reflection region (backward scattering)

$$2D_{\parallel}^{PO} = \tan\frac{\phi - \phi_i}{2} - \tan\frac{\phi + \phi_i}{2}$$
$$2D_{\parallel}^{AFIM+} = \tan\frac{\phi - \phi_i}{2}$$
$$2D_{\parallel}^{AFIM-} = -\tan\frac{\phi + \phi_i}{2}$$

Simulation for PO, AFIM+ and AFIM-

Rotating Rx for calculate RCS

RCS for AFIM+ (shadow radiation)

From the RCS fig. we find only the reflection region (180 deg.) do not receive the scattered field.

RCS for AFIM- (reflection radiation)

From the RCS fig. we find only the shadowing region (0 deg.) do not receive the scattered field.

Fictitious penetrating rays (FPR)

- FPR: PO assumes scatterer with corner is plane.
- AFIM+: No FPR
- AFIM-: Has FPR causing error

$$E^{d}(AFIM +) = \sum_{m=1,2} E^{d}_{m} (AFIM +) = \mathbf{0}$$

$$E^{d}(AFIM -) = \sum_{m=1,2} E^{d}_{m} (AFIM -) \neq \mathbf{0}$$

$$E^{d}(AFIM -) = \sum_{m=1,2} E^{d}_{m} (AFIM -) \neq \mathbf{0}$$
FPR

PO-AF and PTD-AF

- Omit AFIM- from surface integral to omit FPR.
- Left AFIM- diffraction from visible edge.

$$E^{s}(PO-AF) = -j\omega\mu \int_{S_{0}} J^{AFIM}+Gds + \sum_{m=visible\ edge} E^{d}_{m} (AFIM-)$$

$$\mathbf{E}^{\mathbf{S}}(\mathsf{PTD-AF}) = -j\omega\mu \int_{S_0} \mathbf{J}^{\mathbf{AFIM}+} G ds + \sum_{m=\ visible\ edge} \{\mathbf{E}^{\mathbf{d}}_{m} \ (\mathsf{AFIM-}) + \mathbf{E}^{\mathbf{d}}_{m} \ (\mathsf{FW})\}$$

- ✓ PO surface integral to reduce GO singularity
- ✓ GTD diffraction coefficient to deal with edge inaccuracy
- ✓ AFIM decomposition to reduce FPR error
- ✓ Do NOT need Fresnel integral but still converge at SB/RB

Equivalent edge currents (EEC)

$$J^{EEC} = \frac{2E^i}{j\omega\mu} D_{\parallel}$$

$$M^{EEC} = -\frac{2H^i}{j\omega\varepsilon}D_{\perp}$$

$$E^{d} = -\frac{\omega\mu}{4} \sum_{m=1}^{2N} \sqrt{\frac{2}{\pi k \rho_{m}}} e^{-jk\rho_{m} + \frac{j\pi}{4} J^{EEC}}$$

$$H^{d} = -\frac{\omega\varepsilon}{4} \sum_{m=1}^{2N} \sqrt{\frac{2}{\pi k \rho_{m}}} e^{-jk\rho_{m} + \frac{j\pi}{4}} M^{EEC}$$

Diffraction coefficient

	$2D_{\parallel}$	$2D_{\perp}$
GTD	$\sec\frac{\phi - \phi_i}{2} - \sec\frac{\phi + \phi_i}{2}$	$-\sec\frac{\phi-\phi_i}{2}-\sec\frac{\phi+\phi_i}{2}$
UTD (GTD _F)	$F_{-}\sec\frac{\phi-\phi_{i}}{2}-F_{+}\sec\frac{\phi+\phi_{i}}{2}$	$-F_{-}\sec\frac{\phi-\phi_{i}}{2}-F_{+}\sec\frac{\phi+\phi_{i}}{2}$
РО	$\tan\frac{\phi-\phi_i}{2}-\tan\frac{\phi+\phi_i}{2}$	$-\tan\frac{\phi-\phi_i}{2}-\tan\frac{\phi+\phi_i}{2}$
PTD (FW)	$\frac{1-\sin\frac{\phi-\phi_i}{2}}{\cos\frac{\phi-\phi_i}{2}} - \frac{1-\sin\frac{\phi+\phi_i}{2}}{\cos\frac{\phi+\phi_i}{2}}$	$-\frac{1-\sin\frac{\phi-\phi_i}{2}}{\cos\frac{\phi-\phi_i}{2}}-\frac{1-\sin\frac{\phi+\phi_i}{2}}{\cos\frac{\phi+\phi_i}{2}}$
AFIM+	$ anrac{\phi-\phi_i}{2}$	$- anrac{\phi-\phi_i}{2}$
AFIM-	$-\tan\frac{\phi+\phi_i}{2}$	$-\tan\frac{\phi+\phi_i}{2}$

Summary of literature review

Outline of Shadowing measurement

- Measurement objective
- Measurement equipment
- Measurement environment
- Shadowing objects
- Measurement scenarios

2019/02/19 – 2019/02/21 NTT R&D Yokosuka

Objective of Measurement

Objective:

Establishment of an accurate prediction technique of shadowing effect by 3D shadowing objects based on physical optics approach, by comparing with the measurement results.

Points:

- Anechoic chamber room
- Shadowing objects with different shape and thickness
- 66.5 GHz frequency band

Measurement Equipment Tx

Measurement Equipment Rx

Environment

Anechoic chamber room

Vertical view of room

Cross-section view of room

Height of antenna: 2.2m

Shadowing objects

- Rectangular metal plane (thickness 0.01 m)
- Rectangular metal box (thickness 0.01 m)
- Human-shape metal plane (thickness 0.3 m)
- Human-shape metal box (thickness 0.3 m)
- Human (thickness about 0.3 m)

Shadowing objects

Rectangular metal

Human-shape metal

Measurement scenarios

- Rectangular metal plane \times [p+8 to p-8] \times 4 times
- Rectangular metal box \times [p+8 to p-8] \times 4 times
- Human-shape metal plane \times [p+8 to p-8] \times 3 times
- Human-shape metal box \times [p+8 to p-8] \times 2 times
- Human \times ([p+3 to p-3] + [p+2 to p-2])

Future work of measurement

- Wait measurement data from NTT
- Wait photograph of environment and equipment
- Do data analysis
- Do PO simulation and KEDM simulation

 Improve prediction of shadowing effect technique for shadowing objects with different shape and thickness based on measurement data and PTD-AF.

Thank you for your listening

Appendix

Maxwell's Equations

Maxwell's Eq. where $\frac{\partial}{\partial t} \equiv j\omega$

$$\nabla \times \mathbf{H} = j\omega \varepsilon \mathbf{E} + \mathbf{J}$$

$$\nabla \times \mathbf{E} = -j\omega \mu \mathbf{H}$$

$$\nabla \cdot \boldsymbol{B} = 0 \quad \Rightarrow \nabla \cdot (\mu \boldsymbol{H}) = 0$$

$$\nabla \cdot \mathbf{D} = \rho$$

For free space
$$\begin{cases} \mathbf{D} = \varepsilon \mathbf{E} \\ \mathbf{B} = \mu \mathbf{H} \end{cases}$$

Terminology [8]:

- *E* electric field intensity
- **H** magnetic field intensity
- **B** magnetic flux density
- **D** electric flux density
- ε permittivity
- μ permeability
- ω angle frequency
- *I* impressed electric current
- A- vector potential
- Ø- scaler potential

Vector formula: $\bigcirc \nabla \cdot (\nabla \times A) = 0 \bigcirc \nabla \times \nabla \emptyset = 0$

$$\nabla \times \mathbf{E} = -j\omega(\nabla \times \mathbf{A}) \Rightarrow \nabla \times (\mathbf{E} + j\omega\mathbf{A}) = 0$$

$$\nabla \cdot \mathbf{B} = 0 \implies \nabla \cdot (\mu \mathbf{H}) = 0 \implies \exists \mathbf{A} s. t \ \nabla \times \mathbf{A} = \mu \mathbf{H}$$
 $\exists \phi s. t \ \mathbf{E} + j\omega \mathbf{A} = -\nabla \phi$

$$\nabla \times \nabla \times \mathbf{A} = \mu(\nabla \times \mathbf{H}) = j\omega \varepsilon \mu \mathbf{E} + \mu \mathbf{J}$$

$$\nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = j\omega \varepsilon \mu (-j\omega \mathbf{A} - \nabla \mathbf{\emptyset}) + \mu \mathbf{J}$$

$$\nabla^2 \mathbf{A} + k^2 \mathbf{A} = \nabla (\mathbf{j} \omega \varepsilon \mu \mathbf{0} + \nabla \cdot \mathbf{A}) - \mu \mathbf{J} \text{ where } k = \omega \sqrt{\varepsilon \mu}$$

$$\downarrow \qquad \qquad \text{(wave number)}$$

$$j\omega\varepsilon\mu\emptyset + \nabla\cdot A = 0 \Rightarrow \nabla^2 A + k^2 A = -\mu J \Rightarrow \text{Next Page}$$

(Lorentz condition) (Vector Helmholtz equation)

$$E = -j\omega A - \nabla \phi = -j\omega A + \frac{\nabla(\nabla \cdot A)}{j\omega \varepsilon \mu}$$
, $H = \frac{\nabla \times A}{\mu}$

[8] Balanis/Advanced Engineering Electromagnetics, 2nd eds, Wiley, 2012.

Green's Function

$$\begin{array}{c} \boxed{ \nabla^2 A + k^2 A = -\mu \textbf{\textit{J}} \Rightarrow \nabla^2 A_x + k^2 A_x = -\mu \textbf{\textit{J}}_x \Rightarrow \nabla^2 \phi + k^2 \phi = -q } \\ \text{(Vector H. equation)} & \text{(Scaler H. equation)} \\ \hline \nabla^2 \psi + k^2 \psi = 0 \Rightarrow \psi = \frac{e^{-jkr}}{r} & \text{(particular solution)} \\ \hline \iiint_V (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \, dV = \iint_S \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right) \, ds & \text{Observation point} \\ \hline \iiint_V (\phi (-k^2 \psi) - \psi (-q - k^2 \phi)) \, dV = \lim_{a \to 0} \iint_{S+s'} \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right) \, ds \\ \hline \frac{\partial \psi}{\partial n'} = -\frac{\partial \psi}{\partial r} = \frac{e^{-jkr} + jkre^{-jkr}}{r} \stackrel{\cong}{=} \frac{e^{-jka}}{a^2} \Rightarrow \lim_{a \to 0} \iint_{S'} \left(\phi \frac{\partial \psi}{\partial n'} - \psi \frac{\partial \phi}{\partial n'} \right) \, ds \cong 4\pi \phi \\ \hline \text{(inward vs outward)} \\ \phi = \frac{1}{4\pi} \iiint_V \frac{e^{-jkr}}{r} \, q \, dV + \frac{1}{4\pi} \iint_S \left(\frac{\partial \phi}{\partial n} \frac{e^{-jkr}}{r} - \phi \frac{\partial}{\partial n} \frac{e^{-jkr}}{r} \right) \, ds \\ \hline A = \frac{\mu}{4\pi} \iiint_V \frac{e^{-jkr}}{r} \, J \, dV \end{array} \tag{(Free space Green's Function)}$$

Physical Optics (PO)

Field Equivalence Theorem:

$$J^{eq} = n \times H$$
 equivalent electric current $M^{eq} = E \times n$ equivalent magnetic current

- PO approximation:
- Currents are only generated on the illuminated side of the object.
- > Integrate over the surface to give the scattered field.
- ➤ Infinite PEC plane.

Far field (kr>>1): $\mathbf{E} \cong -j\omega(\mathbf{A} - \hat{\mathbf{r}}(\mathbf{A} \cdot \hat{\mathbf{r}}))$

Scattering Problem in Cylindrical Coordinates

$$\nabla^2 \mathbf{A} + k^2 \mathbf{A} = -\mu \mathbf{J} \Rightarrow \nabla^2 \mathbf{A}_c + k^2 \mathbf{A}_c = 0 \Rightarrow \nabla^2 \psi_A + k^2 \psi_A = 0$$
 where $\mathbf{A}_c = \hat{\mathbf{z}} \psi_A$

(Inhomogeneous D.E.) (Homogeneous D.E.)

(Complementary Solution)

$$\Rightarrow \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \psi_A}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \psi_A}{\partial \phi^2} + \frac{\partial^2 \psi_A}{\partial z^2} + k^2 \psi_A = 0 \text{ Let } \psi_A(\rho, \phi, z) = R(\rho) \Phi(\phi) Z(z)$$
(P.D.E)

$$\Rightarrow \frac{1}{\rho R} \frac{d}{d\rho} \left(\rho \frac{\partial R}{\partial \rho} \right) + \frac{1}{\rho^2 \Phi} \frac{d^2 \Phi}{d\phi^2} + \frac{1}{|z|} \frac{d^2 Z}{\partial z^2} + k^2 = 0 \Rightarrow Z(z) = A_z e^{-jk_z z} + B_z e^{+jk_z z}$$

$$\Rightarrow \frac{\rho}{R} \frac{d}{d\rho} \left(\rho \frac{\partial R}{\partial \rho} \right) + \left(\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} \right) + \left(\frac{k^2 - k_z^2}{k^2} \right) \rho^2 = 0 \Rightarrow \Phi(\phi) = A_\phi \cos n\phi + B_\phi \sin n\phi$$

$$\frac{Z}{\rho} \cos \phi = 0$$

$$\Rightarrow \rho \frac{d}{d\rho} \left(\rho \frac{\partial R}{\partial \rho} \right) + \left(k_{\rho}^{2} \rho^{2} - n^{2} \right) R = 0 \Rightarrow R(\rho) = B_{n}(k_{\rho}\rho)$$

(Bessel Equation nth order) (Bessel Function)

Bessel Function

Harmonic Function	$B_n(x)$	Name
cos x	$J_n(x)$	1st kind of Bessel function
sin x	$N_n(x)$	2nd kind of Bessel function
$e^{+jx} = \cos x + j\sin x$	$H_n^{(1)}(x) = J_n(x) + jN_n(x)$	1st kind of Hankel function
$e^{-jx} = \cos x - j\sin x$	$H_n^{(2)}(x) = J_n(x) - jN_n(x)$	2nd kind of Hankel function
$e^{+x} = e^{+j(-jx)}$	$I_n(x) = j^n J_n(-jx)$	1st kind of modified Bessel function
$e^{-x} = e^{-j(-jx)}$	$K_n(x) = \frac{\pi}{2} (-j)^{n+1} H_n^{(2)} (-jx)$	2nd kind of modified Hankel function

Field Produced by the Line Current

$$\psi_{A} = (A_{z}e^{-jk_{z}z} + B_{z}e^{+jk_{z}z})(A_{\phi}\cos n\phi + B_{\phi}\sin n\phi)(A_{\rho}H_{n}^{(1)}(k_{\rho}\rho) + B_{\rho}H_{n}^{(2)}(k_{\rho}\rho))$$

Boundary condition:

$$\begin{aligned} \frac{\partial}{\partial z} &= 0 \Rightarrow k_z = 0 \Rightarrow k_\rho = k \\ \frac{\partial}{\partial \phi} &= 0 \Rightarrow n = 0 \text{ , } B_\phi = 0 \\ \text{Outgoing wave} &\Rightarrow A_\rho = 0 \end{aligned}$$

$$\Rightarrow \psi_A = A_0 H_0^{(2)}(k\rho)$$

Unknown IL

$$H_{\phi} = A_0 k H_1^{(2)}(k\rho) \quad \Leftarrow$$

inward

$$E_{\rho} = E_{\phi} = H_z = 0$$

$$E_z = \frac{k^2}{j\omega\varepsilon}\psi_A$$

$$H_{\phi} = -\frac{\partial \psi_A}{\partial \rho}$$

$$H_{\rho} = -\frac{1}{\rho} \frac{\partial \psi_A}{\partial \phi}$$

$$H_1^{(2)}(k\rho) = J_1(k\rho) - jN_1(k\rho) \cong \frac{k\rho}{2} - j(-\frac{2}{\pi k\rho}) \cong \frac{2j}{\pi k\rho}$$

Ampere's Law:
 $(k\rho \ll 1)$

$$I_Z$$
 Ampere's Law

e's Law:
$$I_z = H_\phi \cdot 2\pi\rho \Rightarrow A_0 = -\frac{j}{4}I_z \Rightarrow \psi_A = -\frac{j}{4}I_z H_0^{(2)}(k\rho)$$

$$\Rightarrow E_{z} = -\frac{\mu\omega}{4} I_{z} H_{0}^{(2)}(k\rho) \rightarrow -\frac{\mu\omega}{4} I_{z} \sqrt{\frac{2}{\pi k\rho}} e^{-j(k\rho - \frac{\pi}{4})} \equiv E_{0}$$
(\rho \times \infty) \tag{Plane wave from the infinite} 43

Electric Line Current Scattering by a Conductor Wedge

Diffraction by Semi-infinite Plane

Geometrical Theory of Diffraction (GTD)

If
$$\cos\frac{(\phi-\phi_s)}{2}>0\Rightarrow E_i=E_0\sqrt{\frac{j}{\pi}}e^{j\xi^i}e^{jk\rho}(\int_{-\infty}^{+\infty}e^{-jt^2}dt-\int_{\sqrt{\xi^i}}^{+\infty}e^{-jt^2}dt)$$

Wave front $\rho\cos(\phi-\phi_s)$
Observer $\varphi-\phi_s$
Inc. GO (consider phase) $\rho\cos(\phi-\phi_s)$
Plane wave $\rho\cos(\phi-\phi_s)$
 $\rho\cos(\phi-\phi_s)$