Einführung in die Computergrafik

Prof. Dr. Matthias Hullin

Physikalische Modellierung und Simulation

Heute

- Physikbasierte Simulation und Animation
 - Physikalische Größen
 - Partikelsimulation
 - Bewegungsgleichungen
 - Lösung gewöhnlicher Differentialgleichungen mit numerischer Integration

Physikbasierte Simulation und Animation

- Motivation
 - Bewegung und Wechselwirkung von Objekten unterliegen den üblichen physikalischen Gesetzen
 - Physikbasierte Animation muss nicht jeden Frame von Hand modellieren, sondern nur den Anfangszustand und die Bewegungsgesetze
 - Für Grafikanwendungen:
 - Oft vereinfacht
 - Viel Kontrolle, auch über physikalische Gesetze hinaus

Beispiele

- Dynamik starrer Körper
- Verformbare Körper
 - Textilien
 - Haare
 - Muskeln

- Flüssigkeiten und Gase
- Partikelsysteme

Physikbasierte Simulation und Animation

- Vorteile physikbasierter Ansätze
 - Weniger Handarbeit
 - Plausible Ergebnisse

Physikbasierte Simulation und Animation

Herausforderungen

- Konträre Ziele: Genauigkeit und Effizienz
- Modellierung komplexer Effekte
- Numerische Stabilität
- Skalierbarkeit / Parallelisierung

"Final Fantasy", 2001. 30% der gesamten Simulations- und Renderzeit wurden fürs Haar der Hauptfigur aufgewendet.

universitäthe

Partikelsimulation

- Sehr verbreitet:
 - Einfachheit: Regeln für das Verhalten einzelner Partikel können einfach sein; Komplexität kommt von der Interaktion vieler Partikel
 - Vielseitig: Kann zur Simulation vieler verschiedener Effekte verwendet werden
- Partikel folgen üblicherweise einer Mischung aus physikalischen und nichtphysikalischen Regeln, je nach Anwendung und Randbedingungen.

Partikelsimulation

• Erste computergrafische Verwendung 1978 [Kurzfilm "Asteroids"]

• Einführung in der Filmindustrie in den frühen 80ern ["Star Trek II: The Wrath of Khan"]

Partikelsimulation

- Modellierung:
 - Interagierende/ verbundene Partikel zur Simulation von
 - Körnern einzelne Partikel
 - Fäden –
 1D-Konnektivität
 - Stoff –
 2D-Konnektivität
 - Weiche Körper –
 3D-Konnektivität
 - Flüssigkeiten einzelne Partikel

Beispiel: Stoffmodellierung mit Partikeln

Ein Partikel

- Einfachster Fall
 - Ein **Partikel** = Massepunkt mit **Masse** *m* [kg]

m

Ein Partikel – Kinematik

• Position \vec{x} [m]

Ein Partikel – Kinematik

- Geschwindigkeit (velocity) \vec{v} [m/s]
 - Änderungsrate der Position \vec{x}
 - Vorsicht: Verwechslungsgefahr mit "speed" Länge des Vektors \boldsymbol{v}

$$\vec{v}_{avg}(t_1, t_2) = \frac{\vec{x}(t_2) - \vec{x}(t_1)}{t_2 - t_1} = \frac{\Delta \vec{x}}{\Delta \vec{t}}$$

$$\vec{v}(t) = \frac{d\vec{x}(t)}{d\vec{t}} = \dot{\vec{x}}(t)$$

Ein Partikel – Kinematik

- Beschleunigung (acceleration) \vec{a} [m/s²]
 - Änderungsrate der Geschwindigkeit \vec{v}

$$\vec{a}_{avg}(t_1, t_2) = \frac{\vec{v}(t_2) - \vec{v}(t_1)}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta \vec{t}}$$

$$\vec{a}(t) = \frac{d\vec{v}(t)}{d\vec{t}} = \frac{d}{dt} \left(\frac{d\vec{x}(t)}{d\vec{t}} \right) = \frac{d^2\vec{x}(t)}{d\vec{t}^2} = \ddot{\vec{x}}(t)$$

- Impuls (momentum) \vec{p} [kg m/s]
 - Wichtige Größe, um kinematische und dynamische Größen zueinander in Bezug zu setzen
 - Je größer und schneller ein Partikel, desto höher sein Impuls.
 - Erhaltungsgröße! In geschlossenen Systemen ändert sich der Gesamtimpuls nicht

$$\vec{p}(t) = m\vec{v}(t)$$

- Kraft (force) \vec{F} [1 N = 1 kg m/s²]
 - Änderungsrate des Impulses
 - Kräfte ändern den Bewegungszustand eines Teilchens:
 - 1. Newtonsches Axiom: ein Partikel ohne Krafteinwirkung ist entweder in Ruhe oder bewegt sich mit konstanter Geschwindigkeit. Nur Kräfte können den Bewegungszustand ändern!
 - 2. Newtonsches Axiom: Kräfte erzeugen Beschleunigung

$$\vec{F} = \frac{d\vec{p}}{dt} = m\vec{a} \rightarrow \vec{a} = \frac{\vec{F}}{m}$$

- Arbeit (work) W [1 J=1 N m=1 kg m^2/s^2]
 - Bewegung entgegen einer Kraft erfordert Energieeinsatz (Arbeit); Bewegung in Richtung einer Kraft setzt Energie frei
 - Arbeit = Skalarprodukt von Kraft und Verschiebung

$$p_1$$
 \vec{F}
 $d\vec{x}$

$$\Delta W = \vec{F} \Delta \vec{x}$$

$$dW = \vec{F} d\vec{x} \to W = \int_{p_1}^{p_2} \vec{F} d\vec{x} = \int_{t_1}^{t_2} \vec{F} \vec{v} dt$$

$$\vec{v} = \frac{\mathrm{d}\vec{x}}{\mathrm{d}\vec{t}}$$

- Energie $E [1 J = 1 kg m^2/s^2]$
 - Vermögen (eines Partikels), Arbeit zu verrichten
 - Kinetische Energie: Energie durch bewegte Masse
 - Potentielle Energie: Energie aus Position (z.B. Höhe)

$$E_{kinetic} = \frac{1}{2}m\vec{v}^2$$

(Herleitung als Übung ©)

- Energie $E [1 J = 1 \text{ kg m}^2/\text{s}^2]$
 - Energie kann:
 - umgewandelt werden von kinetischer in potentielle (und umgekert)
 - übertragen werden von einem Partikel auf ein anderes, z.B. durch Stoß
 - In einem geschlossenen System bleibt die Gesamtenergie erhalten!

$$E = E_{kinetic} + E_{potential} + E_{...} = const$$

Maximum potential energy,

- Zentrales Problem:
 - Q: Wie bewegt sich ein Teilchen unter externen Kräften?
 - A: Bestimme die jeweiligen Bewegungsgleichungen!

- Analytisches Beispiel
 - Bewegung eines Partikels unter konstanter Schwerkraft

$$\vec{a}(t) = \frac{\vec{G}}{m} \quad ; \quad d\vec{v}(t) = \vec{a}(t)dt$$
Anfangswerte: \rightarrow

$$\vec{v}(t) = \vec{v}(t_0) + \int_{t_0}^t \vec{a}(t)dt = \vec{v}(t_0) + \int_{t_0}^t \frac{\vec{G}}{m}dt = \vec{v}(t_0) + \frac{\vec{G}}{m}(t - t_0) \quad ; \quad d\vec{x}(t) = \vec{v}(t)dt$$

$$\vec{x}(t) = \vec{x}(t_0) + \int_{t_0}^t \vec{v}(t)dt = \vec{x}(t_0) + \int_{t_0}^t v(t_0) + \frac{\vec{G}}{m}(t - t_0) = \vec{x}(t_0) + v(t_0)(t - t_0) + \frac{\vec{G}}{m}(t - t_0)^2$$

- Analytisches Beispiel
 - Bewegung eines Partikels unter konstanter Schwerkraft
 - Parabelbewegung

$$\vec{x}(t) = \vec{x}(t_0) + v(t_0)(t - t_0) + \frac{\vec{G}}{m}(t - t_0)^2$$

- Allgemeiner Fall
 - Wenn die Anfangsbedingungen (Position und Geschwindigkeit) bekannt sind, sowie die Kraft zu jedem Zeitpunkt, dann ergibt sich die Trajektorie x(t) eines Massepunktes aus der Lösung eines Anfangswertproblems.
 - Der Zustand s eines Teilchens ist vollständig beschrieben durch seine Position und seinen Impuls / seine Geschwindigkeit ("Phasenraum").

$$\vec{s}(t) = \begin{pmatrix} \vec{x}(t) \\ \vec{v}(t) \end{pmatrix}$$

- Allgemeiner Fall
 - Lösung eines Anfangswertproblems.
 - ... ein Satz gewöhnlicher Differentialgleichungen [Gleichungen, die eine Funktion einer Variablen sowie Ableitungen dieser Funktion enthalten] mit gegebenen Startbedingungen mittels numerischer Integration
 - Ziel: Finde die Function x(t) die die Gleichungen löst

Anfangswerte:
$$\vec{v}(t_0)$$

$$\vec{x}(t_0)$$

$$\vec{d} \left(\vec{x}(t) \right) = \left(\sum_{j} \vec{F}^{j}(t, x, v) \atop m \right) = \frac{d\vec{x}(t)}{dt}$$

$$\frac{d}{dt} \left(\vec{x}(t) \right) = \left(\sum_{j} \vec{F}^{j}(t, x, v) \atop m \right) = \frac{d\vec{s}}{dt}$$

Überblick bis hier...

 Für ein einzelnes Partikel haben wir die Größen definiert:

Überblick bis hier...

- Bewegungsgleichungen können durch Lösung eines Systems von Differentialgleichungen berechnet werden [durch numerische Integration]
- Partikelsystem ???
 - Mehrere wechselwirkende Partikel

Partikelsystem

• Einfache Erweiterung – verwende kombinierten Phasenraum!

$$\vec{s}(t) = \begin{pmatrix} \vec{x}(t) \\ \vec{v}(t) \end{pmatrix} \qquad \frac{d}{dt} \begin{pmatrix} \vec{x}_i(t) \\ \vec{v}_i(t) \end{pmatrix} = \begin{pmatrix} \sum_j \vec{F}_i^j(t, x, v) \\ \frac{j}{m_i} \end{pmatrix} ; \quad i = 1..N$$

- Und...3. Newtonsches Axiom:
 - Jede Kraft hat eine gleichgroße, entgegensetzte Kraft ("actio = reactio")
 - Für ein Partikel a, das an b zieht, gilt:

$$\vec{F}_{a \to b} = -\vec{F}_{b \to a}$$

Partikelsystem

- Erhaltung des gesamten Impulses für ein geschlossenes System
 - Folgt aus 1. und 3. Newtonschem Axiom:
 - Nur Kräfte können Impuls ändern
 - "actio = reactio"

$$\vec{F} = 0 \quad \rightarrow \quad \vec{v} = const; \vec{p} = const$$

$$\vec{F}_{a \rightarrow b} = -\vec{F}_{b \rightarrow a}$$

$$\frac{d}{dt} \vec{P} = \sum_{i} \frac{d}{dt} \vec{p}_{i} = \sum_{i} \vec{F}_{i} = 0$$

Gewöhnliche Differentialgleichungen (ODE) und Anfangswertprobleme

- Wir betrachten das Anfangswertproblem
 - **Vektorfeld** *f* (Geschwindigkeit) abhängig sowohl von Zeit als auch Position:

$$\vec{x}(t) = f(t, \vec{x}(t))$$
$$\vec{x}(t_0) = \vec{x}_0$$

ODE und Anfangswertprobleme

- Beispiel:
 - ein 2-dimensionals Vektorfeld

$$f(x,y) = (f_1(x,y), f_2(x,y))$$

$$f_1(x,y) = \frac{x}{\sqrt{x^2 + y^2 + 4}}$$

$$f_2(x,y) = \frac{y}{\sqrt{x^2 + y^2 + 4}}$$

Differentialgleichungen lösen

- Annahme: Zustand eines Punktes x im Raum ist gegeben.
- Geschwindigkeitsfeld f beschreibt, wie sich x über die Zeit hinweg bewegen wird

$$\dot{\vec{x}}(t) = f(t, \vec{x}(t))$$

Naive numerische Integration

- Die zeitliche Änderung ist gegeben durch f
 - Die neue Position (zum Zeitpunkt $t+\Delta t$) lässt sich erhalten durch Verfolgung des Vektorfelds durch numerische Integration

$$\dot{\vec{x}}(t) = f(t, \vec{x}(t))$$

$$\vec{x}(t + \Delta t) = \vec{x}(t) + \Delta t \cdot f(t, \vec{x}(t))$$

Naive numerische Integration

• Ergebnis hängt vom Zeitschritt Δt ab!

Naive numerische Integration: Eulerverfahren

- Das eben beschriebene Verfahren zur numerischen Lösung eines Anfangswertproblems wird Eulerverfahren genannt.
- Für ein stetiges Vektorfeld (ohne "Sprünge") konvergiert die Lösung der Eulermethode gegen die Lösung des Anfangswertproblems.

Naive numerische Integration: Eulerverfahren

 Probleme, die mit dem Eulerverfahren in Verbindung gebracht werden:

$$\dot{\vec{x}}(t + \Delta t) = x(t) + \Delta t \cdot f(t, \vec{x}(t))$$

(und Anhäufung von Ungenauigkeit)

Näherungsfehler

• Das Eulerverfahren nähert die Taylorentwicklung von $\vec{x}(t)$ um den Anfangswert:

$$\vec{x}(t) = \vec{x}(t_0) + (t - t_0) \cdot \dot{\vec{x}}(t_0) + \frac{1}{2}(t - t_0)^2 \cdot \ddot{\vec{x}}(t_0) + \frac{1}{6}(t - t_0)^3 \ddot{\vec{x}}(t_0) + \cdots$$

Lokaler und globaler Fehler

• Fehler eines einzelnen Eulerschritts (lokaler Fehler): $O(h^2)$

$$\vec{x}(t_0 + h) = \vec{x}(t_0) + h \cdot \dot{\vec{x}}(t_0) + O(h^2)$$

• Fehler des Funktionswerts an der Stelle t: Um dorthin zu gelangen, benötigen wir $^{t-t_0}/_h$ Schritte, je mit Fehler $O(h^2)$

=> Gesamter/globaler Fehler: O(h)

Instabilität des Eulerverfahrens

- Wenn die Schrittgröße "zu groß" ist, kann das Eulerverfahren divergieren
 - Dies führt zu komplett falschen Ergebnissen
 - Selbst wenn nur näherungsweise Lösungen gesucht sind, ist dies nicht akzeptabel.

Instabilität des Eulerverfahrens

- Geschwindigkeit versus Stabilität
 - Längere Schritte machen Simulationen "billiger"
 - Z.B. Berechnung der Bewegung eines Systems für eine Sekunde benötigt weniger Schritte und daher weniger Rechenaufwand
 - ...und weniger genau
 - In der Computergrafik ist Genauigkeit oft nicht benötigt
 - …aber Stabilität ist extrem wichtig!
 - Schrittgröße darf die Stabilitätsgrenze nicht überschreiten

Adaptive Schrittgrößen

- Adaptive Steuerung der Schrittgröße
 - Im Allgemeinen kann man schätzen, wie groß die Schritte sein dürfen, um eine vorgegebene Fehlertoleranz bei der Lösung einzuhalten.
 - Schätze den Fehler durch zusätzliche Berechnungen mit anderen Schrittgrößen
 - Automatische Verkleinerung oder Vergrößerung der Schrittgröße

Adaptive Schrittgrößen

- Adaptive Schrittgrößen für das Eulerverfahren
 - Wir verwenden das Eulerverfahren der Anschaulichkeit halber
 - Die Grundidee lässt sich leicht auf ausgefeiltere Integrationsschemata übertragen/ verallgemeinern

- Ein einfacher Ansatz, um die Schrittgröße zu schätzen
 - (a) Rechne einen Eulerschritt mit Schrittgröße h
 - Ergebnis => x_a .
 - (b) Rechne zwei Eulerschritte mit Schrittgröße h/2
 - Ergebnis => x_h .
 - Nimm $||x_a x_b||$ als Fehlermaß und entscheide
 - Schrittgröße weiter reduzieren
 - Schrittgröße beibehalten
 - Schrittgröße erhöhen

- Fehler eines Eulerschrittes wächst mit $O(h^2)$
 - Unser Fehlermaß $||x_a x_b||$ auch
 - Passe Schrittgröße so an, dass der geschätzte Fehler ($||x_a x_b||$) eine gegebene Toleranz erfüllt

- Beispiel:
 - Wenn der zulässige Fehler $10^{.4}$ und der geschätzte Fehler $\|x_a x_b\|$ etwa $10^{.8}$ beträgt, kann die Schrittgröße erhöht werden auf

$$\left(\frac{10^{-4}}{10^{-8}}\right)^{\frac{1}{2}}h = 100h$$

 Wenn der zulässige Fehler wieder 10⁻⁴, der geschätzte aber 10⁻³ beträgt, reduziere Schrittgröße auf

$$\left(\frac{10^{-4}}{10^{-3}}\right)^{\frac{1}{2}}h \approx .316h$$

- Bemerkungen:
 - Diese einfachen Schätzungen können fehlschlagen
 - Lokale, linearisierte Schätzung (Näherung 1. Ordnung) des Fehlers
 - Es können Beispiele konstruiert werden, für die keine Fehlerschätzung funktioniert

• Zurück zum bewegten Partikel...

Integration

- Die Berechnung von Positionen und Geschwindigkeiten aus Beschleunigungen ist nur Integration von Differentialgleichungen
- Wenn die Beschleunigungen durch sehr einfache Gleichungen gegeben sind (wie etwa vorhin die gleichbleibende Beschleunigung), können wir ein analytisches Integral berechnen und erhalten die exakte Position für jeden Wert von t
- In der Praxis sind die Kräfte komplex und unmöglich analytisch zu integrieren. Darum verwenden wir im Allgemeinen gleich den numerischen Ansatz.

 Euler-Vorwärtsintegration ist die einfachste Art, ODEs numerisch zu integrieren

$$\vec{x}_{n+1} = \vec{x}_n + \dot{\vec{x}}_n \Delta t$$

 Verwende lineare Steigung zur Näherung des Funktionswerts an einem nahegelegenen Punkt

 Für Partikel integrieren wir zweimal, um die Position zu erhalten:

$$\vec{v}_{n+1} = \vec{v}_n + \vec{a}_n \Delta t$$

$$\vec{x}_{n+1} = \vec{x}_n + \vec{v}_{n+1} \Delta t$$

Einsetzen ergibt:

$$\vec{x}_{n+1} = \vec{x}_n + (\vec{v}_n + \vec{a}_n \Delta t) \Delta t$$
$$= \vec{x}_n + \vec{v}_n \Delta t + \vec{a}_n (\Delta t)^2$$

Dieses Ergebnis:

$$\vec{x}_{n+1} = \vec{x}_n + \vec{v}_n \Delta t + \vec{a}_n (\Delta t)^2$$

ist sehr ähnlich dem Ergebnis, das wir unter Annahme gleichbleibender Beschleunigung für die Dauer eines Schrittes erhalten würden:

$$\vec{x}_{n+1} = \vec{x}_n + \vec{v}_n \Delta t + \frac{1}{2} \vec{a}_n (\Delta t)^2$$

- Tatsächlich funktioniert es auf beide Arten!
- Beide Verfahren machen Annahmen über das, was während des finite Zeitschritts passiert, und beide sind nur numerische Näherungen der Wirklichkeit
 - Euler: Geschwindigkeit konstant gehalten während Schritt
 - Konstante Beschleunigung: Geschwindigkeit ändert sich gemäß Beschleunigung
 - Für $\Delta t \rightarrow 0$ werden beide äquivalent
 - Für finite Δt können sich jedoch signifikante Unterschiede ergeben, speziell im Hinblick auf Genauigkeit über Zeit, Energieerhaltung

- Vorwärts-Euler ist sehr einfach zu implementieren
- Das Verfahren ist "gut genug" für viele Partikelsysteme in Computeranimationen, aber nicht gut genug für technische Anwendungen (Brücken, Flugzeuge, ...)
- Es gibt viele Systeme, bei denen sich die Kraft sehr schnell ändern kann ("starre Systeme") und nicht mehr linear anzunähern ist.

- Ein Beispiel, für das Euler instabil wird, sind sehr starre Federn
 - Kleine Bewegungen erzeugen große Kräfte
 - Beim Versuch, dies mit großen Zeitschritten zu integrieren, divergiert das System ("explodiert")
 - Daher müssen wir viele kleinere Schritte machen, damit unsere lineare Näherung genau genug ist
 - In diesem Fall kann das einfach zu rechnende Eulerverfahren deutlich langsamer sein als komplexere Verfahren, die pro Iteration mehr kosten, aber deutlich weniger Iterationen erfordern
 - Hier kommen noch einige bessere Verfahren, die nicht sooo viel schwieriger zu implementieren sind

Euler besser machen

Mittelpunktsregel (midpoint rule)

ODE:
$$\dot{x} = f(t, x), x(t_0) = x_0$$

Verwende Wert von f auf halbem Weg entlang des Schritts:

Voraussage 1. Ordnung der Änderung von *x*

$$x_{i+1} = x_i + hf\left(t_i + \frac{h}{2}, x_i + \frac{h}{2}f(t_i, x_i)\right)$$

Fehlerordnung: $O(h^3)$ lokaler Fehler, $O(h^2)$ globaler Fehler

Runge-Kutta-Verfahren 4. Ordnung

ODE: x' = f(t, x)

$$k_{1} = f(t, x)$$

$$k_{2} = f\left(t + \frac{h}{2}, x + \frac{h}{2}k_{1}\right)$$

$$k_{3} = f\left(t + \frac{h}{2}, x + \frac{h}{2}k_{2}\right)$$

$$k_{4} = f(t + h, x + hk_{3})$$

$$t_{n+1} = t_{n} + h$$

$$x_{n+1} = x_{n} + h\frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

Verfahren 4. Ordnung: lokaler Fehler $O(h^5)$, global $O(h^4)$

