EXERCICE 1.

Trouver les limites suivantes :

1.
$$x(3+x)\frac{\sqrt{x+3}}{\sqrt{x}\sin\sqrt{x}} \text{ en } 0$$

3.
$$\frac{(1-\cos x^2)e^{\frac{1}{x}}}{x^5+x^3} \text{ en } 0^+$$

2.
$$\frac{(1-e^x)(1-\cos x)}{3x^3+2x^4}$$
 en 0

5.
$$(\tanh x)^{\ln x}$$
 en $+\infty$

EXERCICE 2.

Calculer, si elles existent, les limites de

1.
$$\sqrt[3]{x^3+1} - \sqrt{x^2+x+1}$$
 en $+\infty$,

2.
$$\left(1 + \frac{1}{x}\right)^x$$
 en 0.

EXERCICE 3.

Etudier les limites suivantes :

1.
$$\lim_{x \to +\infty} \frac{(\ln(\ln x))^2 - \cos^2 x + \ln x}{2^x - 50x^6}$$
7.
$$\lim_{x \to +\infty} \left(\cos\left(\frac{1}{\ln x}\right)\right)^{x^2}$$

2.
$$\lim_{x \to +\infty} \left(\frac{x^2 + 2x - 3}{x^2 - x - 1} \right)^x$$
.

$$3. \lim_{x\to 0} \frac{\cos 3x - \cos x}{x^2}.$$

4.
$$\lim_{x\to 0} \frac{a^x - b^x}{x}$$
 avec $0 < a < b$.

5.
$$\lim_{x \to 1} \frac{\sqrt{2 - x^2} - 1}{\ln x}$$
.

6.
$$\lim_{x \to +\infty} \sin\left(\frac{1}{x}\right) e^{\cos x}$$
.

7.
$$\lim_{x \to +\infty} \left(\cos \left(\frac{1}{\ln x} \right) \right)^{x^2}$$
.

8.
$$\lim_{x \to \frac{\pi}{2}} (\tan x)(\tan 2x).$$

9.
$$\lim_{x \to 1} \frac{e^{x^2 + x} - e^{2x}}{\cos\left(\frac{\pi x}{2}\right)}$$
.

10.
$$\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} \cos x - \sin x}{x - \frac{\pi}{3}}.$$

11.
$$\lim_{x\to 0} \frac{e^x - 1 + x^2 + \sin^3 x}{\sqrt[3]{1+x} - 1}$$
.

12.
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$$
.

Exercice 4.

Soit
$$f(x) = x \ln \left(1 + \frac{\ln \left(1 + \frac{1}{x} \right)}{\ln x} \right)$$
.

- **1.** Démontrer que $f(x) \sim \frac{1}{\ln x}$.
- 2. En déduire la limite en $+\infty$ de $\left(e^{f(x)}-1\right)\ln x$.
- 3. Soit $g(x) = \left[\left(\frac{\ln(x+1)}{\ln x} \right)^x 1 \right] \ln x$. Déterminer la limite de g en $+\infty$.

EXERCICE 5.

n et p désignant deux entiers naturels non nuls, calculer la limite quand x tend vers 1

$$\frac{nx^{n+1} - (n+1)x^n + 1}{x^{p+1} - x^p - x + 1}$$

Exercice 6.★

Soient a, b et c trois réels positifs. Etudier le comportement en $+\infty$ de

$$f(x) = \left(\frac{a^{1/x} + b^{1/x} + c^{1/x}}{3}\right)^{x}.$$

Exercice 7.

Lever les formes indéterminées suivantes :

1.
$$\lim_{x\to 0} \frac{2\cos(x) - x\tan(x)}{\sin^3(x)}$$
;

3.
$$\lim_{x\to 1} \frac{x}{x-1} - \frac{1}{\ln(x)}$$
;

2.
$$\lim_{x\to 0} \frac{x\cos(x) - \tan(x)}{\sin(x)(x - \tan(x))};$$

4.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1}$$
.

EXERCICE 8.

 $\sqrt{x}(\ln x)^2$ au voisinage de 0^+ et $+\infty$.

EXERCICE 9.

Déterminer un équivalent au point considéré des fonctions suivantes :

1.
$$x \ln(1+x) - (x+1) \ln x \text{ en } +\infty$$
.

6.
$$\ln(\cos x)$$
 en 0.

2.
$$\lfloor x \rfloor \ln \left(1 + \frac{1}{x^2} \right)$$
en $+\infty$.

7.
$$x(e^{\frac{1}{x}} - \cos\left(\frac{1}{x}\right))$$
 en $+\infty$.

3.
$$\sqrt{x+1} - \sqrt{x^2+1}$$
 en 0.

8.
$$\frac{\ln(\ln x) - \left(\frac{1}{2}\right)^x}{\left(\frac{1}{x}\right)^3 - \left(\frac{1}{3}\right)^x} \text{ en } +\infty.$$

4.
$$\frac{\sin x + \cos x - 1}{\tan(x - x \cos x)}$$
 en 0.

9.
$$e^{\sin x} - e^{\tan x}$$
 en 0.

5.
$$\frac{\sqrt{1+\tan^2 x}-1}{\tan x}$$
 en 0.

10.
$$\tan\left(\frac{\pi x}{2x+3}\right)$$
 en $+\infty$.

Exercice 10.

Déterminer des équivalents de :

1.
$$\cos x$$
 en $\frac{\pi}{2}$

3.
$$\sqrt[3]{1+x^3} - x \text{ en } +\infty$$

2.
$$\tan x$$
 en $\frac{\pi}{2}$

4.
$$\frac{1}{1+x} - \frac{1}{2}$$
 en 1

Exercice 11.

Déterminer des équivalents simples des expressions suivantes :

1.
$$\frac{x\sin(x^2)}{e^x - 1} \text{ en } 0$$

2.
$$\frac{\sqrt{1+x}-1}{1-\cos x}$$
 en 0

3.
$$\frac{\ln(1+\sqrt{x})}{\tan(x)\arctan(x^3)} \text{ en } 0$$

4.
$$\frac{x^2 \sin\left(\frac{1}{x^3}\right)}{e^{\frac{1}{x^2}} - 1} \text{ en } +\infty$$

Exercice 12.

Déterminer des équivalents simples des expressions suivantes.

1.
$$\sin(x) + \tan(x)$$
 en 0

2.
$$x^3 + e^x - 1$$
 en 0

3.
$$\arcsin(x) + \cos(x) - 1 \text{ en } 0$$

4.
$$\sqrt{1+\frac{1}{x}} - \sqrt[3]{1+\frac{1}{x^3}}$$
 en $+\infty$

EXERCICE 13.

Déterminer un équivalent simple de la suite de terme général

$$u_n = 2\sqrt{n} - \sqrt{n+1} - \sqrt{n-1}.$$

Exercice 14.

Déterminer des équivalents simples en 0 des expressions suivantes,

1.
$$arccos(x) - \pi/2$$
;

5.
$$\frac{1}{1-x}-1+x$$
;

2.
$$x^4 + x + x^2$$
;

3.
$$\arcsin(x) + x + x^2$$
;

4.
$$\arctan(x) + x$$
;

6.
$$\frac{x^2}{1+x} - x$$
.

EXERCICE 15.

Donner un équivalent en 0 de l'expression

$$\ln\left(\frac{e^x+1}{2}\right)-\frac{4x+x^2}{8}.$$

Exercice 16.★

Donner un équivalent en 0 de l'expression

$$\sin(\sinh(x)) - \sinh(\sin(x)).$$

Exercice 17.

Déterminer le DL₅(0) de

$$f(x) = \frac{\arcsin(x)}{\sqrt{1 - x^2}}.$$

Exercice 18.★

Calculer le développement limité à l'ordre $\mathfrak n$ au voisinage de $\mathfrak 0$ des expressions suivantes :

1.
$$e^x \sin(x)$$
 et $n = 3$;

6.
$$\sqrt{1+2x}$$
 et n = 3;

2.
$$\sin^3(x) - x^3 \cos(x)$$
, pour $n = 6$;

7.
$$\sqrt{4-x}$$
 et $n=3$;

3.
$$x^3\sqrt{1+x}$$
 et $n=5$;

8.
$$\cos(\frac{\pi}{3} + x)$$
 et $n = 3$;

4.
$$\frac{1}{2+x}$$
 et n = 3;

9.
$$ln(2 + x)$$
 et $n = 3$;

5.
$$\frac{1}{3-x^2}$$
 et n = 5;

10.
$$\exp(3-x)$$
 et $n=3$;

11.
$$(1+x)^{1/x}$$
 et $n=2$.

Exercice 19.★

On considère la fonction numérique f définie sur l'intervalle I =]-1, 1[par

$$f(x) = x + \ln(1 + x).$$

- 1. Déterminer le développement limité à l'ordre 3 de f(x) au voisinage de 0.
- 2. Démontrer que f réalise une bijection de I sur un intervalle J qu'on explicitera.
- 3. En admettant qu'il existe, déterminer le développement limité à l'ordre 3 de $f^{-1}(x)$ au voisinage de 0.

Exercice 20.★

Développements en vrac.

1. Calculer les développements limités à l'ordre 4 des expressions suivantes au voisinage de x_0 :

a.
$$e^x$$
, $x_0 = 1$;

f.
$$arctan(x), x_0 = 1$$
;

b.
$$\cos(x), x_0 = \pi/4;$$

c.
$$\sin(x), x_0 = \pi/6$$
;

g.
$$\frac{\sqrt{x^2-1}}{x}$$
, $x_0=+\infty$;

d.
$$ln(x), x_0 = e;$$

e.
$$\frac{1}{1+x^2}$$
, $x_0 = 1$;

h.
$$(\tan(x))^{\tan(2x)}$$
, $x_0 = \pi/4$;

- 2. Calculer les développements limités
 - **a.** à l'ordre 3 au voisinage de $+\infty$ de

$$\sqrt[3]{x^3+x^2}-\sqrt[3]{x^3-x^2}$$
;

b. à l'ordre 2 au voisinage de $\pi/4$ de

$$\cos(x) + \sin(x)$$
;

c. à l'ordre 2 au voisinage de $\pi/4$ de tan(x).

Exercice 21.★

Déterminer le $DL_4(0)$ de

$$f(x) = x(ch(x))^{1/x}.$$

Exercice 22.★

Déterminer le $\mathsf{DL}_2(0)$ de la fonction g définie par

$$g: x \longmapsto (1 + \arctan(x))^{\frac{x}{\sin^2(x)}}$$

Exercice 23.

Déterminer le $\mathsf{DL}_3(0)$ de la fonction f définie sur $\mathbb R$ par

$$f: x \longmapsto ln(3e^x + e^{-x}).$$

Exercice 24.

Déterminer le $DL_4(0)$ de la fonction définie par,

$$f(x) = \frac{1}{1 + \cos(x)}.$$

Exercice 25.

Chercher un développement limité d'ordre 5 de la fonction

$$f(x) = \frac{x^2 \sin(x)}{1 + x}.$$

Exercice 26.

Déterminer un $DL_4(0)$ des expressions suivantes :

$$\mathbf{1.} \ \mathbf{f}(\mathbf{x}) = \frac{\cos(\mathbf{x})}{\sqrt{1-\mathbf{x}}};$$

3.
$$h(x) = e^{\cos(x)}$$
;

2.
$$g(x) = \sqrt{1 + \cos(x)}$$
;

4.
$$i(x) = \frac{\cos(x)}{1 + x^2}$$
.

Exercice 27.

1. Soit $n \in \mathbb{N}$. Calculer le développement limité à l'ordre n au voisinage de 0 de

$$x\mapsto ln\left(\sum_{k=0}^n x^k\right)$$

2. Soit $n \in \mathbb{N}^*$. Calculer le développement limité à l'ordre n au voisinage de 0 de

$$x \mapsto \ln \left(\sum_{k=0}^{n-1} \frac{x^k}{k!} \right)$$

3. Déterminer le développement limité à l'ordre 6 au voisinage de 0 de

$$x \mapsto \int_{x}^{x^2} e^{-t^2/2} dt$$

EXERCICE 28.

Chercher trois termes du développement asymptotique de la fonction f définie par

$$f(x) = \sqrt{x^2 + x}$$

au voisinage de $+\infty$.

EXERCICE 29.

- **1.** Montrer que pour tout $x \in [0, 1], x \frac{x^3}{6} \le \sin x \le x$.
- 2. Montrer que $\sum_{k=1}^{n} \sin \frac{k}{n^2} = \frac{1}{2} + \frac{1}{2n} + o\left(\frac{1}{n}\right)$

EXERCICE 30.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, l'équation $\cos x = nx$ possède une unique solution $x_n \in [0, 1]$.
- **2.** Déterminer la limite de (x_n) .
- **3.** Etudier la monotonie de (x_n) .
- **4.** Etablir que $x_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.
- 5. Déterminer un équivalent de $x_n \frac{1}{n}$.

Exercice 31.

- **1.** Montrer que pour tout entier $n \ge 2$, l'équation $x = \ln x + n$ admet deux solutions sur \mathbb{R}_+^* . On note x_n la plus petite et y_n la plus grande de ces deux solutions.
- **2. a.** Montrer que $\lim_{n \to +\infty} x_n = 0$.
 - **b.** Montrer que $x_n \sim_{n \to +\infty} e^{-n}$.
 - **c.** On pose $u_n = x_n e^{-n}$ pour $n \ge 2$. Montrer que $u_n \underset{n \to +\infty}{\sim} e^{-2n}$.
 - **d.** Déterminer un équivalent simple de $u_n e^{-2n}$.
- 3. a. Montrer que $\lim_{n \to +\infty} y_n = +\infty$.
 - **b.** Montrer que $y_n \sim_{n \to +\infty} n$.
 - **c.** On pose $v_n = y_n n$ pour $n \geqslant 2$. Montrer que $v_n \underset{n \to +\infty}{\sim} \ln n$.
 - **d.** Déterminer un équivalent simple de $\nu_n \ln n$.

EXERCICE 32.

Déterminer les réels a et b tels que

$$f(x) = \cos(x) - \frac{1 + ax^2}{1 + bx^2}$$

soit, au voisinage de 0, un infiniment petit d'ordre le plus grand possible.

Exercice 33.

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = x^{1+\frac{1}{x}}$ si x > 0 et f(0) = 0. Soit \mathcal{C} la courbe représentative de f.

- **1.** Montrer que f est continue en 0.
- **2.** f est-elle dérivable en 0 ?
- 3. Déterminer la limite de f en $+\infty$.
- **4.** Etudier les variations de f.
- **5.** Etudier les branches infinies de C.
- 6. Déterminer le développement limité à l'ordre 3 en 1 de f.
- 7. Préciser l'équation de la tangente T à $\mathcal C$ au point d'abscisse 1. Préciser la position relative de T et $\mathcal C$ au voisinage du point d'abscisse 1.
- 8. Tracer $\mathcal C$ avec soin. On placera notamment la tangente T déterminée à la question précédente.

Exercice 34.

Soit $f: x \mapsto xe^x$.

- 1. Montrer que f est une bijection de \mathbb{R}_+ sur un ensemble à déterminer.
- **2.** Déterminer le développement limité de f^{-1} à l'ordre 2 au voisinage de 0.
- 3. Donner un équivalent simple de f^{-1} en $+\infty$.

Exercice 35.★

On cherche à déterminer le comportement au voisinage de 0 de la fonction f définie par l'expression

$$\frac{1}{\arcsin(x)} - \frac{1}{x}$$
.

- 1. Quel est l'ensemble de définition de f?
- **2.** Prouver que f est prolongeable par continuité en 0. On note encore f ce prolongement.
- **3.** La fonction f est-elle dérivable en 0 ?
- **4.** Étudier la position position relative du graphe de f et de sa tangente au voisinage de l'origine.

EXERCICE 36.

Soit f la fonction définie par

$$x \longmapsto (1+x)e^{1/x}$$
.

Etudier les branches infinies de f et déterminer la position des asymptotes par rapport à la courbe.

EXERCICE 37.

Démontrer que la fonction définie par

$$f(x) = x^2 \ln \left(\frac{x+1}{x-1} \right)$$

a pour asymptote la droite d'équation y = 2x en $+\infty$.

Exercice 38.

Déterminer les asymptotes à la courbe représentative de f définie par $f(x) = \sqrt{x^2 + x}e^{\frac{1}{x}}$.

Exercice 39.

Soit $f:\mathbb{R}\to\mathbb{R}$ de classe \mathcal{C}^2 . Soit $x_0\in\mathbb{R}$. Déterminer la limite en 0 de

$$\tau: h \mapsto \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2}$$

Exercice 40.

On dit qu'une fonction $f:\mathbb{R}\longrightarrow\mathbb{R}$ admet une dérivée symétrique en $\mathfrak{a}\in\mathbb{R}$ lorsque le rapport

$$\frac{f(\alpha+h)-f(\alpha-h)}{2h}$$

admet une limite lorsque h tend vers 0.

- **1.** Prouver que la dérivabilité en a est *une condition suffisante* de dérivabilité symétrique en a.
- **2.** Est-ce une condition nécessaire ?

Exercice 41.

On pose
$$u_n = \int_{n^2}^{n^3} \frac{dt}{1+t^2}$$
. Montrer que $u_n \underset{n \to +\infty}{\sim} \frac{1}{n^2}$.

Exercice 42.

On pose pour
$$n \in \mathbb{N}$$
 $u_n = \int_0^1 \frac{dx}{1 + x^n}$.

- **1.** Montrer que (u_n) converge et donner sa limite.
- 2. A l'aide d'une intégration par parties, donner un développement asymptotique à deux termes de \mathfrak{u}_n .