

TABLE OF CONTENTS

01 Introduction 04 Demo

Q-learning & Sarsa O5 Analysis Learning

03 Methodology 06 Conclusion

Introduction

The Problem states:

THE TAXI DRIVES TO THE PASSENGER'S LOCATION, PICKS UP THE PASSENGER, DRIVES TO THE PASSENGER'S DESTINATION, AND THEN DROPS OFF THE PASSENGER BY USING THE SHORTEST OPTIMAL PATH.

Background understanding

When Reinforcement learning Agent is playing a game, it does two things:

- 1. Taking action Behavior Policy
- 2. Learning which actions are good or bad in a given state. Using this learning agent updates its estimates of Q values. The agent has to use a policy to update its estimate of Q-values Target Policy

Background understanding

Behavior Policy:

The policy that the agent uses to determine its action(behaviour) in a given state.

Target Policy

The policy that the agent uses to learn from the rewards received for its actions, i.e. to determine updated updated Q-value

ON Policy & OFF policy Learner

ON Policy

The target policy is same from the behaviour policy.

OFF Policy

The target policy is different from the behaviour policy.

Q-Learning

- MODEL-FREE REINFORCEMENT LEARNING
- OFF POLICY
- BEHAVIOUR POLICY IS DIFFERENT FROM THE TARGET POLICY
- MAKE A Q-TABLE
- UPDATE Q-TABLE TILL CONVERGENCE

Q-Learning

What is SARSA-Learning

- MODEL-FREE REINFORCEMENT LEARNING
- ON POLICY
- BEHAVIOUR POLICY IS THE SAME AS THE TARGET POLICY
- MAKE A Q-TABLE
- UPDATE Q-TABLE TILL CONVERGENCE

SARSA-Learning

OPENAI GYM [TOY TEXT]: Taxi-V3

TRAINING:

- Training the Q-Table in every episode
- Fixed max steps = 99 in each episode
- 1st approach:
 updating the value till convergence in Q-table
- 2nd approach: updating till large number of episodes.

OPENAI GYM [TOY TEXT]: Taxi-V3

TESTING:

- Test the Q-function on environment
- 2nd approach was more successful as it was giving the optimal policy

Q-learning

BEHAVIOUR POLICY --> EPSILON GREEDY

TARGET POLICY --> GREEDY POLICY

SARSA-learning

BEHAVIOUR POLICY --> GREEDY POLICY

TARGET POLICY --> GREEDY POLICY

Demo

Q-Learning

Q-Learning

SARSA-Learning

Q-Learning vs SARSA-Learning

Q-Learning vs SARSA-Learning

Q-Learning vs SARSA-Learning

CONCLUSION

- SARSA is computationally faster than Q-Learning
- Both Converge faster when the learning rate is high
- The exploration-Exploitation Rate has minimal effect on Convergence
- The Maximum (Average) Rewards are the same for both SARSA and Q-Learning, in all conditions.

REFRENCES

- Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning:
 An Introduction. Vol. 1, MIT press, Cambridge
- https://www.gymlibrary.dev/environments/toy_text/taxi/
- https://youtu.be/FhSaHuCOu2M

THANK YOU FOR WATCHING

TAXI