PAIRS Wave 7

Emorie D Beck October 19, 2016

${\bf Contents}$

1	Woı	rkspace	2
	1.1	Packages	2
	1.2	Load Data	2
	1.3	Prepare data	2
	1.4	Screen Participants	3
	1.5	Replace Agreeableness items	3
	1.6	Within-Person Centering	3
	1.7	Random Networks for Comparison	5
	1.8	Temporal Relationships	5
	1.9	Population Level Questions	11
		1.9.1 Global Network Structure	11
		1.9.2 Local Network Structure	12
	1.10	Inter-Individual Questions	15
		1.10.1 Bootstrapped Confidence Intervals of Parameter Estimates	15
2	Gra	aphical VAR Models	.7
	2.1	Idiographic Questions	17
		2.1.1 Global Network Structure	
		2.1.2 Local Network Structure	18

1 Workspace

1.1 Packages

```
library(ggplot2)
library(qgraph)
library(graphicalVAR)
library(bootnet)
library(NetworkComparisonTest)
library(knitr)
library(plyr)
library(gridExtra)
library(gridExtra)
library(Rmisc)
library(psych)
library(psych)
library(lme4)
```

1.2 Load Data

```
wave7_all <- read.csv("~/Box Sync/network/PAIRS/Wave 7/esm_w7_RENAMED_all.csv")
wave7_all <- tbl_df(wave7_all)</pre>
```

Going to add item table here.

1.3 Prepare data

```
#Getting necessary columns, subject ID in col2
#Keeping subject ID and all esm.BFI items
w7 <- dplyr::select(wave7_all, esm.IDnum.w7, esm.PR001.w7, esm.PR003.w7, esm.PR004.w7, esm.PR005.w7, m
w7 <- w7[,-which(colnames(w7) %in% c("esm.BFI20.w7", "esm.BFI12.w7"))]
#Renaming variables for better ease of use
varnames <- c("SID", "freq", "hourBlock", "day", "beepvar",</pre>
              "E_outgoing", "E_quiet",
              "C lazy", "C reliable",
              "N_worried", "N_relaxed",
              "N_depressed", "A_rude",
              "A_kind")#, "authentic",
              #"SE", "Happy", "Lonely",
              #"pos_emotion", "neg_emotion")
colnames(w7) <- varnames</pre>
\#varnames \leftarrow varnames[-c(17:18)]
#w7 <- dplyr::select(w7, -pos_emotion, -neg_emotion)
w7$SID <- factor(w7$SID)
refcols <- c("SID", "freq", "hourBlock", "day", "beepvar",
              "A_rude", "E_quiet", "C_lazy",
              "N_relaxed", "N_depressed", "E_outgoing",
```

```
"A_kind", "C_reliable", "N_worried")#,

#"pos_emotion", "neg_emotion", "authentic",

#"SE", "Happy", "Lonely")

w7 <- w7[,c(refcols,setdiff(names(w7), refcols))]
```

1.4 Screen Participants

To be able to construct individual networks for participants, we ideally need approximately 50 measurement points. However, for current purposes, we will keep all participants who have at least 20 responses, lest we eliminate a large portion of our subjects.

```
problem <- plyr::count(w7$SID)
problem <- problem$x[which(problem$freq < 10)]

excluded <- w7[which(w7$SID %in% problem),]
w7 <- w7[-which(w7$SID %in% problem),]</pre>
```

1.5 Replace Agreeableness items

```
# replace NA values for agreeableness items with person average #
for (i in unique(w7$SID)){
   mean_A_rude <- mean(w7$A_rude[w7$SID == i])
   w7$A_rude[is.na(w7$A_rude)] <- mean_A_rude
   mean_A_kind <- mean(w7$A_kind[w7$SID == i])
   w7$A_kind[is.na(w7$A_kind)] <- mean_A_kind
}</pre>
```

1.6 Within-Person Centering

```
w7 <- w7[order(w7$SID, w7$day, w7$hourBlock),]
w7_com <- w7[complete.cases(w7),]</pre>
w7_com <- w7_com[order(w7_com$SID, w7_com$day, w7_com$hourBlock),]
w7_com$beepvar2 <- NA
w7_com$beepvar3 <- NA
for (i in unique(w7_com$SID)){
  for (k in unique(w7_com$day[which(w7_com$SID == i)])){
   n \leftarrow dim(w7_com[which(w7_com$SID == i & w7_com$day == k),])[1]
    w7_com$beepvar2[which(i == w7_com$SID & w7_com$day == k)] <- seq(1,n,1)
 n2 \leftarrow dim(w7_com[which(w7_com$SID == i),])[1]
  w7_{com}= i) <- seq(1,n2,1)
}
w7_centered <- data.frame(ddply(w7_com[,-c(2:5,15:16)], .(SID), colwise(function(x) x-mean(x, na.rm = T
# Make numeric subject IDs for each df because mlVAR #
# won't run for factors #
w7_com$SID2 <- as.numeric(w7_com$SID)</pre>
w7_centered$SID2 <- as.numeric(w7_centered$SID)</pre>
```

```
write.csv(w7, "~/Box Sync/network/PAIRS/Wave 7/esm_w7_networks.csv", row.names = F)
write.csv(w7, "~/Box Sync/network/PAIRS/Wave 7/esm_w7_centered.csv", row.names = F)
```

Variable	New Name	Description
esm.IDnum.w7	SID	numeric variable; identification number
esm.BFI37.w7	${ m A_rude}$	agreeablness, negative; "During the last hour, how rude were you?" Likert scale from 1 to 5; $1 = \text{No}$ a lot, $3 = \text{Somewhat}$, $5 = \text{Very}$
esm.BFI21.w7	E_quiet	extraversion, negative; "During the last hour, how quiet were you?" Likert scale from 1 to 5; $1 = Nc$ a lot, $3 = Somewhat$, $5 = Very$
esm.BFI23.w7	C_{lazy}	conscientiousness, negative; "During the last hour how lazy were you?" Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very
esm.BFI09.w7	N_relaxed	neuroticism, positive; "During the last hour, how relaxed were you?" Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very
esm.BFI04.w7	$N_{depressed}$	neuroticism, positive; "During the last hour, did you feel 'depressed, blue'?" Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very
esm.BFI36.w7	E_outgoing	extraversion, positive; "During the last hour, how 'outgoing, sociable' were you?" Likert scale from to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very
esm.BFI32.w7	$A_{ m kind}$	agreeablness, positive; "During the last hour, how 'considerate, kind' were you?" Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very
esm.BFI13.w7	$C_{reliable}$	conscientiousness, positive; "During the last hour how reliable were you?" Likert scale from 1 to 5; = Not a lot, 3 = Somewhat, 5 = Very
esm.BFI19.w7	N_worried	neuroticism, positive; "During the last hour, how worried were you?" Likert scale from 1 to 5; 1 = Not a lot, 3 = Somewhat, 5 = Very
esm.BFI20.w7	O_imagine	openness, positive; "During the last hour, how actively imaginative were you?" Likert scale from to 5 ; $1 = \text{Not a lot}$, $3 = \text{Somewhat}$, $5 = \text{Very}$
esm.BFI12.w7	${ m A_quarrel}$	neuroticism, positive; "During the last hour, how quarrelsome were you?" Likert scale from 1 to 5; = Not a lot, 3 = Somewhat, 5 = Very

```
# raw data #
fit1_w7 <-
    mlVAR_test(w7_com,
        vars = colnames(w7)[6:14], #4:18
    idvar = "SID2",
    lags = 1,
    #dayvar = "day",
    beepvar = "beepvar3",
    temporal = "orthogonal",
    verbose = FALSE,
    scale = FALSE)</pre>
```

1.7 Random Networks for Comparison

1.8 Temporal Relationships

The graphs below show (1) the raw, directed network using gLASSO estimation and (2) the estimated, directed network using a univariate multilevel vector autoregressive models.

```
# Compare temporal relationships
cors <- cor_auto(w7[,6:14], detectOrdinal = F)</pre>
par(mfrow = c(1,2))
# graph <- qgraph(
   cors.
  title = "True temporal relationships",
#
#
  layout = "spring",
#
  graph = "glasso",
#
  sampleSize = length(unique(w7$SID2)),
#
  tuning = .5,
#
  directed = T
#
   details = T)#,
   \#minimum = .2)
#qgraph(getWmat(graph), directed = T)
plot_w7 <-
#makeBW(
  plot(fit1_w7,
     "temporal",
     #title = "Raw Estimated temporal relationships",
    layout = "spring",
```

```
groups = list(Neuroticism = c(4,5,9),
                   Extraversion = c(2,6),
                   Agreeableness = c(1,7),
                   Conscientiousness = c(3,8)),
     shape = "square",
     cut = .015,
     label.color = "white",
     label.font = 2,
     nonsig = 'hide',
     curve = -1,
     \#legend.cex = .3,
     legend = FALSE,
     repulsion = .5,
     node.width = 1.4,
     edge.width = 2,
     label.cex = 6,
     label.fill.vertical = 1,
     label.fill.horizontal = 1,
     \#qray = T, \#),
     color = c("gray15", "gray30", "gray45", "gray50"))
\# text(.7,1, labels = "negative", adj = 0, cex = 1.2)
# text(.7,1.1, labels = "positive", adj = 0, cex = 1.2)
# text(.55, 1.2, labels = "Edge Weights", adj = 0, cex = 1.2)
\# segments(.55, 1, x1 = .65, lty = 2, lwd = 1.5)
\# segments(.55, 1.1, x1 = .65, lty = 1, lwd = 1.5)
plot_w7_centered <-</pre>
#makeBW(
  plot(fit1_w7_centered,
     "temporal",
     #title = "Raw Estimated temporal relationships",
     layout = "spring",
     groups = list(Neuroticism = c(4,5,9),
                   Extraversion = c(2,6),
                   Agreeableness = c(1,7),
                   Conscientiousness = c(3,8)),
     shape = "square",
     cut = .015,
     label.color = "white",
     label.font = 2,
     nonsig = 'hide',
     curve = -1,
     \#legend.cex = .3,
     legend = FALSE,
     repulsion = .5,
     node.width = 1.4,
     edge.width = 2,
     label.cex = 6,
     label.fill.vertical = 1,
     label.fill.horizontal = 1,
     gray = F, #),
     color = c("gray15", "gray30", "gray45", "gray50"))
```


Table 2: Estimated Temporal Relationships

from	to	lag	fixed	SE	Р	ran_SD
A_rude	A_rude	1	0.022	0.024	0.370	0.059
A _rude	$E_{\underline{}}$ quiet	1	-0.050	0.047	0.284	0.000
A _rude	C_{lazy}	1	-0.025	0.050	0.625	0.140
A _rude	$N_{relaxed}$	1	0.019	0.039	0.629	0.019
A _rude	$N_{depressed}$	1	0.010	0.030	0.736	0.042
A _rude	E_outgoing	1	0.057	0.047	0.220	0.000
A _rude	A _kind	1	-0.017	0.036	0.635	0.084
A _rude	$C_{reliable}$	1	0.015	0.037	0.689	0.061
A _rude	N_worried	1	0.037	0.036	0.305	0.000
$E_{\underline{}}$ quiet	A_{rude}	1	-0.009	0.016	0.597	0.000
$E_{\underline{}}$ quiet	$E_{\underline{}}$ quiet	1	0.001	0.035	0.984	0.000
$E_{\underline{}}$ quiet	C_{lazy}	1	0.002	0.033	0.951	0.021
$E_{\underline{}}$ quiet	N_relaxed	1	-0.025	0.029	0.380	0.000
E_quiet	$N_{depressed}$	1	0.011	0.021	0.582	0.000
E quiet	E outgoing	1	0.011	0.035	0.754	0.000

from	to	lag	fixed	SE	P	ran_SD
E_quiet	A kind	1	0.044	0.024	0.068	0.000
E_quiet	C reliable	1	0.037	0.026	0.156	0.000
E_quiet	N worried	1	0.003	0.027	0.903	0.000
C_lazy	A_rude	1	0.012	0.017	0.496	0.064
C_lazy	E_quiet	1	-0.004	0.029	0.896	0.000
C_lazy	C_lazy	1	0.024	0.035	0.501	0.138
C_lazy	N_relaxed	1	0.019	0.024	0.416	0.000
C_lazy	$N_{depressed}$	1	-0.006	0.019	0.753	0.037
C_lazy	E_outgoing	1	0.010	0.030	0.734	0.048
C_lazy	A _kind	1	0.020	0.020	0.326	0.013
C_lazy	$C_{reliable}$	1	-0.010	0.027	0.713	0.091
C_lazy	N_worried	1	-0.029	0.022	0.189	0.000
N_relaxed	A_{rude}	1	-0.027	0.017	0.106	0.000
N relaxed	E_quiet	1	0.096	0.037	0.009	0.069
$N_{relaxed}$	C_lazy	1	0.007	0.033	0.823	0.000
$N_{relaxed}$	N_relaxed	1	-0.021	0.032	0.514	0.081
N relaxed	N depressed	1	-0.007	0.021	0.738	0.000
N relaxed	E_outgoing	1	-0.056	0.035	0.112	0.000
N relaxed	A kind	1	-0.041	0.025	0.099	0.000
N relaxed	C reliable	1	-0.045	0.027	0.093	0.000
N relaxed	N worried	1	0.019	0.033	0.558	0.120
N depressed	A rude	1	-0.013	0.021	0.529	0.000
N_depressed	E_quiet	1	0.025	0.045	0.574	0.000
N_depressed	C_{lazy}	1	0.002	0.042	0.960	0.000
N_depressed	N relaxed	1	-0.134	0.041	0.001	0.083
N_depressed	N_depressed	1	0.029	0.040	0.466	0.175
N_depressed	E_outgoing	1	-0.036	0.044	0.412	0.000
N_depressed	A kind	1	-0.059	0.040	0.139	0.134
N_depressed	C reliable	1	-0.035	0.038	0.355	0.082
N_depressed	N worried	1	0.104	0.035	0.003	0.000
E_outgoing	A rude	1	0.011	0.017	0.538	0.000
E_outgoing	E_quiet	1	0.014	0.037	0.708	0.000
E_outgoing	C_lazy	1	0.017	0.035	0.622	0.000
E_outgoing	N_relaxed	1	-0.043	0.030	0.161	0.000
E_outgoing	N_depressed	1	0.005	0.022	0.820	0.023
E_outgoing	E_outgoing	1	-0.019	0.037	0.613	0.000
E_outgoing	A_kind	1	0.007	0.026	0.785	0.000
E outgoing	C_reliable	1	0.005	0.028	0.863	0.019
E outgoing	N_worried	1	-0.012	0.029	0.662	0.023
A_kind	A rude	1	-0.007	0.018	0.691	0.021
A kind	E_quiet	1	-0.021	0.038	0.578	0.000
A kind	C_lazy	1	0.014	0.036	0.687	0.000
A kind	N relaxed	1	0.043	0.031	0.166	0.000
A kind	N depressed	1	-0.022	0.025	0.384	0.067
A kind	E_outgoing	1	0.042	0.038	0.260	0.000
A kind	A kind	1	0.030	0.030	0.307	0.081
A kind	C reliable	1	0.045	0.029	0.123	0.000
A kind	N_worried	1	-0.012	0.029	0.689	0.000
C reliable	A rude	1	-0.014	0.017	0.408	0.015
C reliable	E_quiet	1	-0.021	0.036	0.565	0.000
C reliable	C_lazy	1	0.012	0.034	0.722	0.000
C reliable	N relaxed	1	-0.002	0.030	0.943	0.000
S_10110010	11_10101100	1	0.002	0.000	0.010	5.000

from	to	lag	fixed	SE	Р	ran_SD
C_reliable	N_depressed	1	0.005	0.025	0.853	0.077
$C_{reliable}$	E_outgoing	1	0.037	0.036	0.293	0.000
$C_{reliable}$	A _kind	1	0.008	0.025	0.757	0.000
$C_{reliable}$	$C_{reliable}$	1	0.052	0.027	0.056	0.000
$C_{reliable}$	N_worried	1	-0.016	0.030	0.595	0.069
N_worried	A_{rude}	1	0.023	0.018	0.195	0.000
N_worried	$E_{\underline{}}$ quiet	1	0.158	0.038	0.000	0.000
N_worried	C_{lazy}	1	-0.025	0.035	0.482	0.000
N_worried	N_relaxed	1	-0.043	0.038	0.254	0.136
N_worried	N_depressed	1	0.060	0.023	0.008	0.000
N_worried	E_outgoing	1	-0.084	0.038	0.028	0.046
N_worried	A_{kind}	1	-0.022	0.028	0.438	0.051
N_worried	$C_{reliable}$	1	-0.051	0.029	0.075	0.000
N_worried	N_worried	1	0.127	0.036	0.000	0.138

kable(sum_fit1_w7_centered\$temporal, caption = "Estimated Temporal Relationships")

Table 3: Estimated Temporal Relationships

from	to	lag	fixed	SE	Р	ran_SD
A rude	A rude	1	0.021	0.024	0.376	0.061
A rude	E quiet	1	-0.050	0.046	0.277	0.000
A_rude	C_lazy	1	-0.024	0.050	0.634	0.145
A_rude	N_relaxed	1	0.018	0.039	0.640	0.053
A_rude	N_depressed	1	0.011	0.029	0.697	0.044
A _rude	E_outgoing	1	0.057	0.046	0.210	0.000
A _rude	A_{kind}	1	-0.016	0.037	0.662	0.095
A _rude	$C_{reliable}$	1	0.015	0.037	0.688	0.066
A _rude	N_worried	1	0.039	0.036	0.279	0.000
$E_{\underline{}}$ quiet	A_{rude}	1	-0.009	0.016	0.591	0.000
$E_{\underline{}}$ quiet	E_quiet	1	0.001	0.034	0.980	0.000
$E_{\underline{}}$ quiet	C_{lazy}	1	0.002	0.033	0.946	0.047
$E_{\underline{}}$ quiet	$N_{relaxed}$	1	-0.025	0.028	0.373	0.000
$E_{\underline{}}$ quiet	N_depressed	1	0.012	0.020	0.571	0.000
$E_{\underline{}}$ quiet	E_outgoing	1	0.011	0.034	0.756	0.000
$E_{\underline{}}$ quiet	A _kind	1	0.044	0.024	0.066	0.000
$E_{\underline{}}$ quiet	$C_{reliable}$	1	0.037	0.026	0.152	0.000
$E_{\underline{}}$ quiet	N_{worried}	1	0.002	0.026	0.925	0.021
C_lazy	A _rude	1	0.012	0.017	0.496	0.065
C_lazy	E_quiet	1	-0.004	0.029	0.892	0.015
C_lazy	C_{lazy}	1	0.023	0.035	0.516	0.139
C_{lazy}	$N_{relaxed}$	1	0.019	0.023	0.405	0.000
C_{lazy}	$N_{depressed}$	1	-0.006	0.019	0.758	0.040
C_lazy	E_outgoing	1	0.010	0.030	0.729	0.056
C_{lazy}	A _kind	1	0.021	0.020	0.307	0.023
C_{lazy}	$C_{reliable}$	1	-0.009	0.027	0.742	0.094
C_{lazy}	N_{worried}	1	-0.029	0.022	0.186	0.000
$N_{relaxed}$	A _rude	1	-0.027	0.016	0.103	0.000
$N_{relaxed}$	$E_{}$ quiet	1	0.096	0.037	0.009	0.080
$N_{relaxed}$	C_{lazy}	1	0.007	0.033	0.826	0.000
$N_{relaxed}$	$N_{relaxed}$	1	-0.022	0.032	0.494	0.086

from	to	lag	fixed	SE	Р	ran_SD
N_relaxed	N_depressed	1	-0.007	0.021	0.747	0.000
$N_{relaxed}$	E_outgoing	1	-0.056	0.034	0.101	0.000
$N_{relaxed}$	A _kind	1	-0.041	0.024	0.091	0.000
$N_{relaxed}$	$C_{reliable}$	1	-0.045	0.026	0.086	0.000
$N_{relaxed}$	N_{worried}	1	0.019	0.033	0.563	0.127
$N_{depressed}$	$A_{\underline{}}$ rude	1	-0.013	0.021	0.534	0.000
$N_{depressed}$	$E_{\underline{}}$ quiet	1	0.025	0.044	0.562	0.000
$N_{depressed}$	C_{lazy}	1	0.001	0.041	0.974	0.000
$N_{depressed}$	$N_{relaxed}$	1	-0.133	0.041	0.001	0.090
$N_{depressed}$	$N_{depressed}$	1	0.029	0.040	0.470	0.175
$N_{depressed}$	E_outgoing	1	-0.036	0.044	0.409	0.000
$N_{depressed}$	$A_{\underline{}}$ kind	1	-0.060	0.040	0.136	0.137
$N_{depressed}$	$C_{reliable}$	1	-0.034	0.038	0.369	0.089
$N_{depressed}$	N_{worried}	1	0.104	0.034	0.002	0.000
E_outgoing	$A_{\underline{}}$ rude	1	0.011	0.017	0.534	0.000
E_outgoing	$E_{\underline{}}$ quiet	1	0.014	0.036	0.699	0.000
E_outgoing	C_{lazy}	1	0.017	0.034	0.613	0.000
E_outgoing	$N_{relaxed}$	1	-0.042	0.030	0.155	0.000
$E_outgoing$	$N_{depressed}$	1	0.006	0.022	0.801	0.031
$E_outgoing$	$E_outgoing$	1	-0.019	0.036	0.599	0.000
$E_outgoing$	A _kind	1	0.007	0.025	0.776	0.000
$E_outgoing$	$C_{reliable}$	1	0.005	0.028	0.868	0.025
E_outgoing	N_{worried}	1	-0.012	0.028	0.660	0.032
$A_{\underline{}}$ kind	$A_{\underline{\hspace{0.1cm}}}$ rude	1	-0.007	0.018	0.694	0.024
$A_{\underline{}}$ kind	$E_{\underline{}}$ quiet	1	-0.021	0.037	0.573	0.000
$A_{\underline{}}$ kind	C_{lazy}	1	0.015	0.035	0.670	0.000
$A_{\underline{}}$ kind	$N_{relaxed}$	1	0.042	0.031	0.171	0.000
$A_{\underline{}}$ kind	$N_{depressed}$	1	-0.022	0.025	0.384	0.071
$A_{\underline{}}$ kind	E_outgoing	1	0.042	0.037	0.257	0.000
$A_{\underline{}}$ kind	$A_{\underline{}}$ kind	1	0.029	0.030	0.327	0.085
$A_{\underline{}}$ kind	$C_{reliable}$	1	0.044	0.028	0.119	0.000
$A_{\underline{}}$ kind	$N_{worried}$	1	-0.011	0.029	0.705	0.000
$C_{reliable}$	$A_{\underline{}}$ rude	1	-0.014	0.017	0.400	0.018
$C_{reliable}$	$E_{\underline{}}$ quiet	1	-0.021	0.035	0.549	0.000
$C_{reliable}$	C_{lazy}	1	0.012	0.033	0.717	0.000
$C_{reliable}$	$N_{relaxed}$	1	-0.001	0.029	0.967	0.022
$C_{reliable}$	$N_{depressed}$	1	0.005	0.025	0.840	0.078
$C_{reliable}$	E_outgoing	1	0.038	0.035	0.282	0.000
$C_{reliable}$	$A_{\underline{}}$ kind	1	0.008	0.025	0.742	0.000
$C_{reliable}$	$C_{reliable}$	1	0.052	0.027	0.055	0.000
$C_{reliable}$	N_{worried}	1	-0.016	0.030	0.585	0.073
N_worried	$A_{\underline{}}$ rude	1	0.023	0.018	0.186	0.000
N_worried	$E_{\underline{}}$ quiet	1	0.159	0.037	0.000	0.000
N_{worried}	C_{lazy}	1	-0.026	0.035	0.464	0.000
N_{worried}	$N_{relaxed}$	1	-0.041	0.038	0.274	0.143
N_{worried}	$N_{depressed}$	1	0.060	0.022	0.007	0.000
$N_{worried}$	$E_outgoing$	1	-0.086	0.038	0.024	0.055
$N_{worried}$	A _kind	1	-0.022	0.028	0.434	0.054
$N_{worried}$	$C_{reliable}$	1	-0.052	0.028	0.067	0.018
N_worried	$N_{worried}$	1	0.126	0.036	0.000	0.143

1.9 Population Level Questions

1.9.1 Global Network Structure

1.9.1.1 Network Size

```
network_size <- data.frame(
#temporal - significant only
temporal = c(
sum(sum_fit1_w7$temporal$P < .05),
sum(sum_fit1_w7_centered$temporal$P < .05)))
rownames(network_size) <- c("Raw", "Within-Person Centered")
kable(t(network_size), caption = "Network Size")</pre>
```

Table 4: Network Size

	Raw	Within-Person Centered
temporal	7	7

1.9.1.2 Network Density

Calculating Density:

- 1. From Bringmann et al. (2016): averaging over the absolute values of the slopes or edges in the network of the emotions of interest
- 2. Per Yoed's suggestion:
 - Potential Connections: $PC = \frac{n*(n-1)}{2}$, where n is the number of nodes.
 - Network Density: Actual Connections Potential Connections, where actual connections is the sum of the number of edges in the network.

```
n <- 9
PC <- (n * (n-1))/2
density <- data.frame(
#temporal
temporal = c(
sum(sum_fit1_w7$temporal$P < .05)/PC,
sum(sum_fit1_w7_centered$temporal$P < .05)/PC))
rownames(density) <- c("Raw", "Within-Person Centered")
kable(t(density), caption = "Network Density")</pre>
```

Table 5: Network Density

	Raw	Within-Person Centered
temporal	0.1944444	0.1944444

1.9.1.3 Network Activation

```
temporal <- data.frame(positive_edges = c(
    sum(sum_fit1_w7$temporal$P < .05 & sum_fit1_w7$temporal$fixed > 0), # positive edges
    sum(sum_fit1_w7_centered$temporal$P < .05 & sum_fit1_w7_centered$temporal$fixed > 0))) # positive edges

temporal$negative_edges <- c(
    sum(sum_fit1_w7$temporal$P < .05 & sum_fit1_w7$temporal$fixed < 0), # negative edges
    sum(sum_fit1_w7_centered$temporal$P < .05 & sum_fit1_w7_centered$temporal$fixed < 0)) # negative edges

temporal$t_value <- c(
    #t test comparing positive and negative edges; not run because of too few observations
    t.test(abs(sum_fit1_w7$temporal$fixed[which(sum_fit1_w7$temporal$P < .05 & sum_fit1_w7$temporal$fixed >
    #centered
    #t test comparing positive and negative edges; not run because of too few observations
    t.test(abs(sum_fit1_w7_centered$temporal$fixed[which(sum_fit1_w7_centered$temporal$P < .05 & sum_fit1_w7
    rownames(temporal) <- c("Raw", "Within-Person Centered")
    kable(t(temporal), caption = "Network Activation (Positive v. Negative Edges)")</pre>
```

Table 6: Network Activation (Positive v. Negative Edges)

	Raw	Within-Person Centered
positive_edges	5	5.0000000
$negative_edges$	2	2.0000000
t_value	0	-0.0174453

1.9.1.4 Bootstrapped Confidence Intervals

1.9.2 Local Network Structure

1.9.2.1 Centrality

Not sure why centrality plots for contemporaneous and between-subjects networks are identical.

```
#temporal
#raw
temporal_centrality_w7_raw <- centrality_auto(sum_fit1_w7$temporal[,c(1,2,4)])</pre>
## Node 1, Reach 9, Total 9
## Node 2, Reach 9, Total 18
## Node 3, Reach 9, Total 27
## Node 4, Reach 9, Total 36
## Node 5, Reach 9, Total 45
## Node 6, Reach 9, Total 54
## Node 7, Reach 9, Total 63
## Node 8, Reach 9, Total 72
## Node 9, Reach 9, Total 81
temporal_centrality_w7_raw_plot <- centralityPlot(sum_fit1_w7$temporal[,c(1,2,4)])
## Note: z-scores are shown on x-axis rather than raw centrality indices.
## Node 1, Reach 9, Total 9
## Node 2, Reach 9, Total 18
```

```
## Node 3, Reach 9, Total 27
## Node 4, Reach 9, Total 36
## Node 5, Reach 9, Total 45
## Node 6, Reach 9, Total 54
## Node 7, Reach 9, Total 63
## Node 8, Reach 9, Total 72
## Node 9, Reach 9, Total 81
```


#centered

```
\label{lem:contrality_w7_centered} $$ \leftarrow \operatorname{centrality\_auto}(\operatorname{sum\_fit1\_w7\_centered}(\operatorname{sum\_fit1\_w7\_centered})) $$
```

```
## Node 1, Reach 9, Total 9

## Node 2, Reach 9, Total 18

## Node 3, Reach 9, Total 27

## Node 4, Reach 9, Total 36

## Node 5, Reach 9, Total 45

## Node 6, Reach 9, Total 54

## Node 7, Reach 9, Total 63

## Node 8, Reach 9, Total 72

## Node 9, Reach 9, Total 81
```

 $temporal_centrality_w7_centered_plot <- \ centralityPlot(sum_fit1_w7_centered\$temporal[,c(1,2,4)])$

```
## Note: z-scores are shown on x-axis rather than raw centrality indices.
```

```
## Node 1, Reach 9, Total 9
## Node 2, Reach 9, Total 18
## Node 3, Reach 9, Total 27
## Node 4, Reach 9, Total 36
## Node 5, Reach 9, Total 45
## Node 6, Reach 9, Total 54
## Node 7, Reach 9, Total 63
## Node 8, Reach 9, Total 72
```

Node 9, Reach 9, Total 81

1.9.2.1.1 Bootstrapped Confidence Intervals

1.9.2.2 Clustering Coefficients

1.10 Inter-Individual Questions

Going to duplicate the analyses below (temporal subject networks) with contemporaneous subject networks

1.10.1 Bootstrapped Confidence Intervals of Parameter Estimates

```
raw_models <- fit1_w7$output
raw_boot_CI <- llply(raw_models, function(X) confint(X, method = "boot"))

centered_models <- fit1_w7_centered$output
centered_boot_CI <- llply(centered_models, function(X) confint(X, method = "boot"))</pre>
```

1.10.1.1 Raw Values

```
#Error in data[[idvar]] : subscript out of bounds
\#Error\ in\ .subset2(x,\ i,\ exact\ =\ exact):
# attempt to select less than one element in get1index
#data[[beepvar]] <- ave(data[[idvar]], data[[idvar]], data[[dayvar]],</pre>
     FUN = seq\_along)
#problem appears to be in dayvar
#Error in validObject(.Object) :
  #invalid class "dqCMatrix" object: invalid object for slot "i" in class "dqCMatrix":
  #got class "numeric", should be or extend class "integer"
w7$beepvar <- ave(w7[["SID"]], w7[["SID"]], w7[["day"]],</pre>
                  FUN = seq_along)
bootnet(w7,
        default = "none",
        nBoots = 25.
        type = "nonparametric",
        prepFun = null,
        prepArgs = list(),
        estFun = mlVAR::mlVAR,
        estArgs = list(data = w7,
                       vars = colnames(w7)[4:16],
                       idvar = "SID2",
                        dayvar = "day",
                        beepvar = "beepvar",
                       lags = 1,temporal = "orthogonal",
                       verbose = FALSE),
        graphFun = function(x)x,
        graphArgs = list(type = "temporal",
                         title = "Estimated temporal relationships",
                         layout = "spring"),
        intFun = null,
        intArgs = list())
```

1.10.1.2 Centered Values

```
#Error in data[[idvar]] : subscript out of bounds
#Error in .subset2(x, i, exact = exact) :
# attempt to select less than one element in get1index
#data[[beepvar]] <- ave(data[[idvar]], data[[idvar]],</pre>
```

```
# FUN = seq\_along)
#problem appears to be in dayvar
#Error in validObject(.Object) :
 #invalid class "dgCMatrix" object: invalid object for slot "i" in class "dgCMatrix":
  #got class "numeric", should be or extend class "integer"
w7_centered$beepvar <- ave(w7_centered[["SID"]], w7_centered[["SID"]], w7_centered[["day"]],</pre>
                  FUN = seq_along)
bootnet(w7_centered,
       default = "none",
       nBoots = 25,
       type = "nonparametric",
       prepFun = null,
       prepArgs = list(),
        estFun = mlVAR::mlVAR,
        estArgs = list(data = w7_centered,
                       vars = colnames(w7_centered)[2:14],
                       idvar = "SID2",
                       dayvar = "day",
                       beepvar = "beepvar",
                       lags = 1,temporal = "orthogonal",
                       verbose = FALSE),
        graphFun = function(x)x,
        graphArgs = list(type = "temporal",
                         title = "Estimated temporal relationships",
                         layout = "spring"),
        intFun = null,
        intArgs = list())
```

2 Graphical VAR Models

2.1 Idiographic Questions

2.1.1 Global Network Structure

2.1.1.1 Network Size

```
#Partial Contemporaneous Correlations (PCC)
sum(fit10308$PCC != 0)
sum(fit10219$PCC != 0)

#Partial Directed Correlations (PDC)
sum(fit10308$PDC != 0)
sum(fit10219$PDC != 0)
```

2.1.1.2 Network Density

```
n <- 13
PC <- (n * (n-1))/2

#PCC
sum(fit10308$PCC != 0) / PC
sum(fit10219$PCC != 0) / PC

#PDC
sum(fit10308$PDC != 0) / PC
sum(fit10219$PDC != 0) / PC</pre>
```

2.1.1.3 Network Activation

```
#Partial Contemporaneous Correlations (PCC)
#Subject 10308
sum(fit10308$PCC > 0) # positive edges
sum(fit10308$PCC < 0) # negative edges</pre>
#t test comparing positive and negative edges; not run because of too few observations
\#t.test(abs(sum(fit10308\$PCC > 0)), abs(sum(fit10308\$PCC < 0)), equal.var = T)
#Subject 10219
sum(fit10219$PCC > 0) # positive edges
sum(fit10219$PCC < 0) # negative edges</pre>
#t test comparing positive and negative edges; not run because of too few observations
\#t.test(abs(sum(fit10219\$PCC > 0)), abs(sum(fit10219\$PCC < 0)), equal.var = T)
#Partial Directed Correlations (PDC)
#Subject 10308
sum(fit10308$PDC > 0) # positive edges
sum(fit10308$PDC > 0) # positive edges
#t test comparing positive and negative edges; not run because of too few observations
\#t.test(abs(sum(fit10308\$PCC > 0)), abs(sum(fit10308\$PCC < 0)), equal.var = T)
#Subject 10219
sum(fit10219$PDC < 0) # negative edges</pre>
sum(fit10219$PDC < 0) # negative edges</pre>
#t test comparing positive and negative edges; not run because of too few observations
\#t.test(abs(sum(fit10219\$PCC > 0)), abs(sum(fit10219\$PCC < 0)), equal.var = T)
```

2.1.2 Local Network Structure

2.1.2.1 Centrality

```
#PCC
#adjacency matrices
PCC_adj_10308 <- melt(fit10308$PCC)</pre>
PCC_adj_10219 <- melt(fit10219$PCC)</pre>
#Subject 10308
PCC_centrality_10308 <- centrality_auto(PCC_adj_10308)</pre>
centralityPlot(PCC_adj_10308)
#Subject 10219
PCC_centrality_10219 <- centrality(PCC_adj_10219)</pre>
centralityPlot(PCC_adj_10219)
#PCC
#adjacency matrices
PDC_adj_10308 <- melt(fit10308$PDC)
PDC_adj_10219 <- melt(fit10219$PDC)
#Subject 10308
PDC_centrality_10308 <- centrality_auto(PDC_adj_10308)
centralityPlot(PDC_adj_10308)
#Subject 10219
PDC_centrality_10219 <- centrality_auto(PDC_adj_10219)</pre>
centralityPlot(PDC_adj_10219)
```