Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Alexandrov Oleg Гр. 320207

Вариант 17

Часть I. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:4f6c:6567::/96

Задание 1.2: разбить сеть из п.1.1 на 10 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'{\Gamma}C},}$	2001:db8:0:4eef:4f6c:6567::/100
Префикс $N_{\text{CPëPS}}$	2001:db8:0:4eef:4f6c:6567:9000:0/100

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (17*16)/256+10=11

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (17*16)/256=16

Дано: Сеть 11.16.0.0/12

Задание **2.1.1:** разбить сеть на 32768 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	16	0	0
Адрес сети	00001011	00010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

- 2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета, а также 3 бит из 1-го октета.
- 3. Итого, получается, что сеть 11.16.0.0/12 мы разбили на 32768 подсети, в каждой из которых по 30 узлов, указываем первые 5 подсетей:

	11	16	0	0
Адрес сети дв.с	00001011	00010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11100000
	255	255	255	224

255	255 25
Адрес сети $N_1/$ Префикс N_1	11.16.0.0/27
Адрес первого узла N_1	11.16.0.1
Адрес последнего узла N_1	11.16.0.30
Широковещательный адрес N_1	11.16.0.31
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.16.0.32/27
Адрес первого узла N_2	11.16.0.33
Адрес последнего узла N_2	11.16.0.62
Широковещательный адрес N_2	11.16.0.63
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.16.0.64/27
Адрес первого узла N_3	11.16.0.65
Адрес последнего узла N_3	11.16.0.94
Широковещательный адрес N_3	11.16.0.95
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.16.0.96/27
Адрес первого узла N_4	11.16.0.97
Адрес последнего узла N_4	11.16.0.126
Широковещательный адрес N_4	11.16.0.127

Адрес сети $N_5/$ Префикс N_5	11.16.0.128/27
Адрес первого узла N_5	11.16.0.129
Адрес последнего узла N_5	11.16.0.158
Широковещательный адрес N_5	11.16.0.159

Дано: Сеть 11.16.0.0/12

Задание 2.1.2: разбить сеть на 150 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	16	0	0
Адрес сети	00001011	00010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить данную сеть на $(150\leqslant 2^8=256)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 4 бит из 2-го октета (получается, что сеть можно разбить на 256 подсетей: $2^8=256$; оставшиеся 12 бит идут под узлы: $2^{12}-2=4094$ в каждой подсети).

	11	16	0	0
Адрес сети дв.с	00001011	00010000	00000000	00000000
Маска дв.с	11111111	11111111	11110000	00000000
	255	255	240	0

3. Указываем первую и последнюю подсети:

Адрес сети $N_1/$ Префикс N_1	11.16.0.0/20
Адрес первого узла N_1	11.16.0.1
Адрес последнего узла N_1	11.16.15.254
Широковещательный адрес N_1	11.16.15.255

$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.25.80.0/20
Адрес первого узла N_2	11.25.80.1
Адрес последнего узла N_2	11.25.95.254
Широковещательный адрес N_2	11.25.95.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 16384 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	16	0	0
Адрес сети	00001011	00010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=14, т.к. $2^{14}-2=16382$. Т.е. нужно выбрать такую маску, которря выделит ровно 14 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^6=1024$ подсетей по 16382 узла(08) в каждой.

	11	16	0	0
Адрес сети дв.с	00001011	00010000	00000000	00000000
Маска дв.с	11111111	11111111	11000000	00000000
	255	255	192	0

3. Указываем последние 5 подсетей:

$oxed{\mathrm{A}}$ дрес сети $N_1/$ Префикс N_1	11.30.192.0/18
Λ дрес первого узла N_1	11.30.192.1
Адрес последнего узла N_1	11.30.255.254
Широковещательный адрес N_1	11.30.255.255

Λ дрес сети $N_2/$ Префикс N_2	11.31.0.0/18
Адрес первого узла N_2	11.31.0.1
Адрес последнего узла N_2	11.31.63.254
Широковещательный адрес N_2	11.31.63.255
$oxed{A$ дрес сети $N_3/$ Префикс N_3	11.31.64.0/18
Адрес первого узла N_3	11.31.64.1
Адрес последнего узла N_3	11.31.127.254
Широковещательный адрес N_3	11.31.127.255
Широковещательный адрес N_3 Адрес сети $N_4/$ Префикс N_4	11.31.127.255
-	
$oxed{A}$ дрес сети $N_4/$ Префикс N_4	11.31.128.0/18
$egin{aligned} { m Aдреc} \ { m Cети} \ N_4/\ { m Префикс} \ N_4 \ \\ { m Aдреc} \ { m первого} \ { m yзла} \ N_4 \ \\ \end{gathered}$	11.31.128.0/18 11.31.128.1
$egin{aligned} { m Aдреc} \ { m Cети} \ N_4/\ { m Префикс} \ N_4 \ \\ { m Aдреc} \ { m первого} \ { m yзла} \ N_4 \ \\ { m Aдреc} \ { m последнего} \ { m yзла} \ N_4 \ \end{aligned}$	11.31.128.0/18 11.31.128.1 11.31.191.254
Адрес сети $N_4/$ Префикс N_4 Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4	11.31.128.0/18 11.31.128.1 11.31.191.254 11.31.191.255
Адрес сети $N_4/$ Префикс N_4 Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4 Адрес сети $N_5/$ Префикс N_5	11.31.128.0/18 11.31.128.1 11.31.191.254 11.31.191.255 11.31.192.0/18

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 1000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	16	0	0
Адрес сети	00001011	00010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=10, т.к. $2^{10}-2=1022 \geqslant 1000$.

	11	16	0	0
Адрес сети дв.с	00001011	00010000	00000000	00000000
Маска дв.с	11111111	11111111	11111100	00000000
	255	255	252	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.16.0.0/22
Адрес первого узла N_1	11.16.0.1
Адрес последнего узла N_1	11.16.3.254
Широковещательный адрес N_1	11.16.3.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.31.252.0/22
Адрес первого узла N_2	11.31.252.1

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 200 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

11.31.255.254

11.31.255.255

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3(макс. 15 баллов):

Адрес последнего узла N_2

Широковещательный адрес N_2

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	16	0	0
Адрес сети	00001011	00010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=8, т.к. $2^8-2=254$.

	11	16	0	0
Адрес сети дв.с	00001011	00010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	00000000
	255	255	255	0

3. Указываем последние 5 подсетей:

11.31.251.0/24
11.31.251.1
11.31.251.254
11.31.251.255
11.31.252.0/24
11.31.252.1
11.31.252.254
11.31.252.255
11.31.253.0/24
11.31.253.1
11.31.253.254
11.31.253.255
11.31.254.0/24
11.31.254.1
11.31.254.254
11.31.254.255
11.31.255.0/24
11.31.255.1
11.31.255.254
11.31.255.255