Übungsaufgaben zur VU Computermathematik Serie 5

A mixed collection of exercises on different topics.

Exercise 5.1: A stability investigation.

Consider the trivial differential equation y'(t) = 0 with given initial value y(0) = 0, such that the solution is $y(t) \equiv 0$. This serves as a simple model problem for the following stability investigation.

Mr. Rembremerdeng proposes to approximate the solution y(t) at integer values $t = n \in \mathbb{N}$ by the three-step recursion

$$(y(n) \approx) y_n := \frac{18}{11} y_{n-1} - \frac{9}{11} y_{n-2} + \frac{2}{11} y_{n-3}, \quad n = 3, 4, \dots$$
 (1)

Here we need three initial values y_0, y_1, y_2 . For $y_0 = y_1 = y_2 = 0$ the solution is $y_n \equiv 0$ (it is exact). Now assume that these zero initial values are perturbed a little bit, e.g., by rounding errors. We ask: What is the effect of such a perturbation?

- a) First, perform a numerical experiment to investigate the behavior of the sequence (y_n) in floating point arithmetic for increasing values of n. (For what range of values of n you observe a significant effect depends on the size of the initial perturbations.)
- b) Now we try to understand theoretically what we have observed in a).

Determine λ_1 , λ_2 , and λ_3 such that the general solution of (1) (for given initial values y_0, y_1, y_2) can be represented in the form

$$y_n = c_1 \lambda_1^n + c_2 \lambda_2^n + c_3 \lambda_3^n$$

with constants c_1, c_2, c_3 (which will depend on $y_0, y_1, and y_2$).

Hint: You can guess one of the solutions (λ_1) and reduce the problem to a quadratic equation. Or simply use solve.

c) Is such a solution asymptotically stable, i.e., does it remain uniformly bounded for $n \to \infty$?

You can answer this question by just inspecting the λ_k ; however, λ_2, λ_3 form a complex conjugate pair. If you are not sure, plot the absolute values of the λ_k^n for increasing n.

Exercise 5.2: Formatted input.

Assume that the coefficients of a multivariate polynomial expression are encoded in a text file in a way as shown here (this example refers to six variables x_1, \ldots, x_6):

[0,2,0,1,0,1] 7 [0,1,1,1,1,0] 6 [0,0,2,1,0,0] -2 [2,0,0,0,0,0] 3

[0,0,0,0,0,0] -1

[0,0,0,0,0,0] -1

Each of the lines represents a power product, where the entries in the list specify the powers with which the variables x_1, \ldots, x_6 occur, and the number at the end of the line specifies a multiplicative factor. I.e., this text file represents the expression

$$7 x_2^2 x_4 x_6 + 6 x_2 x_3 x_4 x_5 - 2 x_3^2 x_4 + 3 x_1^2 - 1$$
.

• Design a procedure readmultinom(filename, var) which reads the data from such a file and returns the corresponding multinomial expression. var is the variable name (e.g., var=x).

Hint: Use readline followed by sscanf. Note that with the %a format specifier, a list is scanned as a single object. For the coefficient at the end of the line, use %d. You may assume that the format is correct, in particular, that all lists have the same length (which you have to determine in a first step when scanning the first line).

Exercise 5.3: Exploring the behavior of a sequence via experiment.

We consider sequences (x_n) defined in a recursive way by

$$x_n := f(x_{n-1}), \quad n = 1, 2, 3, \dots, \quad \text{with } f(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$$

starting from a given initial value x_0 . We observe:

- For $x_0 = 0$ we immediately end up with $x_1 = \infty$.
- For $x_0 = \pm 1$ we have $x_1 = 0$ and $x_2 = \infty$.
- For all other $x_0 \in \mathbb{Q}$, the sequence (x_n) is well-defined for all n. (Why? This is simple to prove. Note that for $x_0 \in \mathbb{Q}$, all x_n are rational numbers.)
- For complex $x_0 \in \mathbb{C}$, $x_0 \notin \mathbb{R}$, the sequence (x_n) is well-defined, with $x_n \notin \mathbb{R}$ for all n.
- For $x_0 \in \mathbb{R}$, the (real) sequence (x_n) cannot be convergent, since the only possible limits are i and -i. (Can you explain this?)
- a) Design a procedure which, for given $n \in \mathbb{N}$, produces a plot of the points (n, x_n) for given x_0 .

Hint: For pointplot, a recommended set of options is

style=point, axes=boxed, symbolsize=20, and symbol=solidcircle

b) Conjecture: For all $x_0 \in \mathbb{C}$ with $\operatorname{Im} x_0 > (<) 0$, the iteration converges to $\pm i$. We explore this experimentally:

Design a procedure which expects $x_0 \in \mathbb{C}$, $\varepsilon > 0$ and $n_{max} \in \mathbb{N}$ as its arguments and which returns the minimal value $n \in \mathbb{N}$ such that $|x_n - (\pm \mathrm{i})| \le \varepsilon$. If no such $n \le n_{max}$ is detected, use error to issue an error message including the value of $x_{n_{max}}$. Use evalf.

Play with your procedure, in particular with x_0 very close to 0.

Exercise 5.4: Simulating the movement of a pendulum.

We consider the movement of a pendulum, described by its angle of deflection $\varphi = \varphi(t)$ as a function of time t. The governing differential equation is

$$\ddot{\varphi}(t) = -\sin(\varphi(t))$$

where $\ddot{\varphi}$ is the second derivative of φ w.r.t. t. Together with initial conditions for φ and $\dot{\varphi}$, e.g.,

$$\varphi(0) = 1, \ \dot{\varphi}(0) = 1$$

the problem has a unique solution $\varphi(t)$ for all t, but the solution cannot be represented in an exact, analytic form. Therefore we investigate some numerical methods. First of all, we introduce the angular velocity $\psi(t) := \dot{\varphi}(t)$ as a separate variable and consider the equivalent system

$$\begin{pmatrix} \dot{\varphi}(t) \\ \dot{\psi}(t) \end{pmatrix} = \begin{pmatrix} \psi(t) \\ -\sin(\varphi(t)) \end{pmatrix}$$
 with initial conditions
$$\begin{pmatrix} \varphi(0) \\ \psi(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

a) We choose a timestep h and use the simplest numerical scheme in order to compute approximations (φ_n, ψ_n) to the solution $(\varphi(t_n), \psi(t_n))$ at the times $t_n := n h$, $n = 0, 1, 2, \ldots$ To this end we replace the derivative $\dot{\varphi}(t_n)$ by the forward difference quotient, i.e.,

$$\dot{\varphi}(t_n) \approx \frac{\varphi_{n+1} - \varphi_n}{h}$$

and analogously for ψ . This leads to the recursion

$$\begin{pmatrix} \varphi_{n+1} \\ \psi_{n+1} \end{pmatrix} = \begin{pmatrix} \varphi_n \\ \psi_n \end{pmatrix} + h \begin{pmatrix} \psi_n \\ -\sin(\varphi_n) \end{pmatrix}, \quad n = 0, 1, 2, \dots, \quad \text{starting from} \quad \begin{pmatrix} \varphi_0 \\ \psi_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Implement this method by a simple loop, using evalf, to generate a list of vectors containing the solution values (φ_n, ψ_n) at the times t_n , $n = 0, 1, 2, \ldots$ Choose the timestep h = 0.1 and produce a pointplot of the (φ_n, ψ_n) , $n = 0, 1, 2, \ldots$, for n up to 200 (i.e., t = 20). The solution should behave periodic. What do you observe?

b) For larger t-intervals, the method from a) produces a qualitatively incorrect approximation. Here is a simple remedy: We use the modified recursion

$$\begin{pmatrix} \varphi_{n+1} \\ \psi_{n+1} \end{pmatrix} = \begin{pmatrix} \varphi_n \\ \psi_n \end{pmatrix} + h \begin{pmatrix} \psi_n \\ -\sin(\varphi_{n+1}) \end{pmatrix}$$

Repeat the experiment from a) using the modified recursion. What do you observe?

c) In addition, apply dsolve with option numeric (without further special settings), and use plots[odeplot]:

```
sol:=dsolve([D(u)(t)=v(t),D(v)(t)=-sin(u(t)),u(0)=1,v(0)=1],[u(t),v(t)],numeric)\\ plots[odeplot](sol,[u(t),v(t)],t=0..200,axes=boxed,thickness=2)
```

What do you observe? Also extend the range from t = 20 to t = 300 and repeat a), b), and c).

Remark: dsolve/numeric delivers a procedure, and calls to this procedure can be use to evaluate the numerical approximation at particular particular times t, or it can be passed to ? plots[odeplot].

Exercise 5.5: Matrix representation of a linear mapping.

Design a procedure GenerateMatrix(f::procedure)

which expects a function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ (in form of a procedure) as its argument and which returns the corresponding coefficient matrix $A \in \mathbb{R}^{m \times n}$. Test with an example of your choice.

(Assume a priori that f indeed is linear and maps Vectors into Vectors.)

Exercise 5.6: Unapply.

Assume that you generate a complicated symbolic formula f(x), and later on you need to evaluate it numerically for many different numerical values of x within a loop. Here it is very inefficient to repeat the symbolic computation again and again within the loop. ¹

To this end, one can use ? unapply. Check this and prepare a tutorial on the topic. Choose your own example, implement and test it, and demonstrate.

Exercise 5.7: Try/catch.

Similarly as in other modern programming languages (e.g., C, Python, Matlab, Julia, ...), the try .. catch construct is convenient for supervising sections of a code where successful execution is not a priori guaranteed but some error (which nay be difficult to predict) may occur.

This is typically used within procedures:

```
try
...
... # do something; if it is O.K. then it is O.K.
...
catch:
    # specify what has to be done if try has failed for some reason, e.g.
error("oops, this does not work"):
    # or some alternative part of code to be executed:
...
end try:
```

Choose your own example, implement it, and test it.

Exercise 5.8: Implicit plots.

Curves in the (x, y)- plane are often specified in an implicit way, i.e., via a functional relation f(x, y) = 0. Finding an explicit representation of the curve may be not so easy (or impossible), but ? plots[implicitplot] tries to do a good job using a numerical pathfollowing algorithm.

Consider the curve defined by

$$f(x,y) = (x^2 + y^2)^3 - 4x^2y^2 = 0,$$

and produce a nice plot.

¹ This topic has been discussed in the lecture: The point is that symbolic computation usually performs much slower than numerical computation.