

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Miércoles 14 de noviembre de 2007 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
۲-		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
က		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
Tabla periódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
bla pe				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
			1	25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 Np (237)
	Número atómico	El emento Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número	Elem Masa a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
			ı	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	÷	**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. ¿Con qué expresión se obtiene la cantidad (en moles) de una sustancia, si la masa se da en gramos?
 - A. $\frac{\text{masa}}{\text{masa molar}}$
 - $B. \quad \frac{\text{masa molar}}{\text{masa}}$
 - C. $\frac{1}{\text{masa molar}}$
 - D. masa × masa molar
- 2. ¿Cuál es el número total de átomos presentes en 0,20 moles de propanona, CH₃COCH₃?
 - A. $1,2 \times 10^{22}$
 - B. 6.0×10^{23}
 - C. $1,2 \times 10^{24}$
 - D. 6.0×10^{24}
- 3. El etino, C_2H_2 , reacciona con oxígeno de acuerdo con la siguiente ecuación. ¿Qué volumen de oxígeno (en dm³) reacciona con 0,40 dm³ de C_2H_2 ?

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$$

- A. 0,40
- B. 0,80
- C. 1,0
- D. 2,0

4. ¿Cuál es el coeficiente del O_2 cuando la siguiente ecuación se ajusta para 1 mol de C_3H_4 ?

$$C_3H_4 + _O_2 \rightarrow _CO_2 + _H_2O$$

- A. 2
- B. 3
- C. 4
- D. 5
- 5. ¿Cuántos orbitales hay en el nivel n = 3 de un átomo?
 - A. 3
 - B. 5
 - C. 7
 - D. 9
- **6.** Cuando se ordenan el Na, el K y el Mg de forma **creciente** respecto a sus radios atómicos (el menor primero), ¿cuál es el orden correcto?
 - A. Na, K, Mg
 - B. Na, Mg, K
 - C. K, Mg, Na
 - D. Mg, Na, K
- 7. ¿Qué elemento es un metal de transición?
 - A. Ca
 - B. Cr
 - C. Ge
 - D. Se

8.

- I. SiO,
- II. P_4O_6
- III. SO₂
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

9. ¿Cuál es la fórmula de un compuesto iónico formado entre un elemento, X, perteneciente al grupo 2 y un elemento, Y, perteneciente al grupo 6?

- A. XY
- B. X_2Y
- C. XY₂
- $D. \qquad X_2 Y_6$

10. ¿Cuál es la forma del ion CO_3^{2-} y su ángulo de enlace O-C-O aproximado?

¿Qué óxidos producen una solución ácida cuando se los añade al agua?

- A. Lineal, 180°
- B. Plano triangular, 90°
- C. Plano triangular, 120°
- D. Piramidal, 109°

- 11. En las moléculas N₂H₄, N₂H₂ y N₂, los átomos de nitrógeno están unidos por enlaces simple, doble y triple respectivamente. ¿Cuál es el orden correcto cuando estas moléculas se disponen de forma creciente (el más corto primero) respecto de las longitudes de los enlaces nitrógeno-nitrógeno?
 - $A. N_2H_4, N_2, N_2H_2$
 - B. N_2H_4, N_2H_2, N_2
 - C. N_2H_2, N_2, N_2H_4
 - D. N_2, N_2H_2, N_2H_4
- 12. ¿Cuál es la geometría molecular y el ángulo de enlace Cl–I–Cl en el ion ICl₄?
 - A. Plana cuadrada 90°
 - B. Pirámide cuadrada 90°
 - C. Tetraédrica 109°
 - D. Pirámide triangular 107°
- 13. ¿Cuál es la geometría de los enlaces alrededor de un átomo que presenta hibridación sp²?
 - A. 2 enlaces a 180°
 - B. 3 enlaces a 120°
 - C. 2 enlaces a 90°, 1 enlace a 180°
 - D. 4 enlaces a 109°
- 14. ¿Qué le sucederá al volumen de una masa fija de gas si se duplican la presión y la temperatura en Kelvin?
 - A. Permanecerá igual.
 - B. Se duplicará el volumen inicial.
 - C. Se reducirá a la mitad del volumen inicial.
 - D. Se multiplicará por cuatro su volumen inicial.

15. Cuando se entregan 40 joules de calor a una muestra de H_2O sólida a -16,0 °C la temperatura aumenta hasta -8,0 °C. ¿Cuál es la masa de H_2O sólida de la muestra?

[Capacidad calorífica específica del $H_2O(s) = 2.0 \text{ J g}^{-1} \text{ K}^{-1}$]

- A. 2,5 g
- B. 5,0 g
- C. 10 g
- D. 160 g
- 16. A continuación se dan los valores de ΔH^{Θ} para la formación de dos óxidos de nitrógeno.

$$\frac{1}{2} N_2(g) + O_2(g) \rightarrow NO_2(g)$$
 $\Delta H^{\ominus} = -57 \text{ kJ mol}^{-1}$

$$N_2(g) + 2O_2(g) \to N_2O_4(g)$$
 $\Delta H^{\Theta} = +9 \text{ kJ mol}^{-1}$

Use estos valores para calcular ΔH^{Θ} (en kJ) para la reacción:

$$2NO_2(g) \rightarrow N_2O_4(g)$$

- A. -105
- B. -48
- C. +66
- D. +123
- 17. Los valores de ΔH^{\ominus} y ΔS^{\ominus} para una reacción son negativos. ¿Qué sucederá con la espontaneidad de esta reacción a medida que se incremente la temperatura?
 - A. La reacción será más espontánea a medida que aumente la temperatura.
 - B. La reacción será menos espontánea a medida que aumente la temperatura.
 - C. La reacción se mantendrá espontánea a cualquier temperatura.
 - D. La reacción se mantendrá no-espontánea a cualquier temperatura.

- 18. ¿Qué combinación de carga iónica y tamaño iónico produce la mayor entalpía de red?
 - A. Carga elevada, tamaño grande
 - B. Carga elevada, tamaño pequeño
 - C. Carga pequeña, tamaño pequeño
 - D. Carga pequeña, tamaño grande
- 19. ¿Qué cambios producen un aumento de la velocidad de una reacción química?
 - I. aumento de la concentración de una solución acuosa
 - II. aumento del tamaño de partícula de una misma masa de un reactivo sólido
 - III. aumento de la temperatura de la mezcla de reacción
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **20.** Para la reacción $2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g)$ el mecanismo aceptado es:

$$NO_2(g) + F_2(g) \rightarrow NO_2F(g) + F(g)$$
 lenta
 $NO_2(g) + F(g) \rightarrow NO_2F(g)$ rápida

¿Cuál es la expresión de velocidad para esta reacción?

- A. Velocidad = $k[NO_2]^2[F_2]$
- B. Velocidad = $k[NO_2][F_2]$
- C. Velocidad = $k[NO_2][F]$
- D. Velocidad = $k[NO_2]^2$

- **21.** La energía de activación de una reacción se puede obtener a partir de la constante de velocidad, k, y la temperatura absoluta, T. ¿Cuál de estos gráficos produce una línea recta?
 - A. k en función de T
 - B. k en función de $\frac{1}{T}$
 - C. $\ln k$ en función de T
 - D. $\ln k$ en función de $\frac{1}{T}$
- 22. La ecuación del proceso Haber es:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H^{\oplus} = -92.2 \text{ kJ}$

¿Qué condiciones favorecerán la producción de la mayor cantidad de amoniaco en el equilibrio?

- A. Temperatura elevada y presión elevada
- B. Temperatura elevada y presión baja
- C. Temperatura baja y presión elevada
- D. Temperatura baja y presión baja
- 23. ¿Qué combinación de $\Delta H_{\text{vaporización}}$ y punto de ebullición es el resultado de fuerzas intermoleculares elevadas?

	$\Delta H_{ m vaporización}$	Punto de ebullición
A.	elevado	elevado
B.	elevado	bajo
C.	bajo	bajo
D.	bajo	elevado

El pH de una solución varía de pH = 1 a pH = 3. ¿Qué sucede con la $[H^+]$ durante este cambio de pH?

− 10 **−**

- A. Aumenta 100 veces.
- В. Disminuye 100 veces.
- C. Aumenta 1000 veces.
- D. Disminuye 1000 veces.
- **25.** ¿Cuál es la base conjugada del ion HSO₄(aq)?
 - A. $H_2SO_4(aq)$
 - $SO_4^{2-}(aq)$ В.
 - C. $H_2O(1)$
 - $H_3O^+(aq)$ D.
- ¿Cuál es el valor de la [H⁺] en una solución buffer en la que la [CH₃COOH] = 2,0 mol dm⁻³ y la **26.** $[CH_3COO^-] = 1,0 \text{ mol dm}^{-3}$? El K_a para el $CH_3COOH = 1,8 \times 10^{-5} \text{ mol dm}^{-3}$.
 - 6.0×10^{-3} A.
 - $3,6\times10^{-5}$ B.
 - C. 1.8×10^{-5}
 - $9,1\times10^{-6}$ D.
- ¿Qué sal forma la solución más ácida cuando se añade al agua? 27.
 - A. NaCl
 - В. $MgSO_4$
 - C. $Al(NO_3)_3$
 - D. KHCO₃

- El valor de pK_a para un indicador ácido base es 4,0. ¿A qué pH cambiará de color este indicador? 28.
 - A. 2,0
 - В. 4,0
 - C. 8,0
 - D. 12,0
- ¿Qué le sucede al vanadio durante la reacción $VO^{2+}(aq) \rightarrow VO_3^{-}(aq)$? 29.
 - Se oxida y su número de oxidación cambia de +4 a +5. A.
 - B. Se oxida y su número de oxidación cambia de +2 a +4.
 - C. Se reduce y su número de oxidación cambia de +2 a -1.
 - Se reduce y su número de oxidación cambia de +4 a +2. D.
- **30.** ¿Qué ocurre durante la electrólisis de una sal fundida?
 - A. Se produce electricidad por una reacción redox espontánea.
 - B. Se utiliza electricidad para provocar una reacción redox no espontánea.
 - C. Los electrones fluyen a través de la sal fundida.
 - D. Los electrones son eliminados de ambos iones de la sal fundida.
- ¿Cuál es el coeficiente del H⁺ cuando se ajusta la siguiente ecuación redox? 31.

$$\underline{\hspace{0.5cm}} Ag(s) + \underline{\hspace{0.5cm}} NO_{3}^{-}(aq) + \underline{\hspace{0.5cm}} H^{^{+}}(aq) \to \underline{\hspace{0.5cm}} Ag^{^{+}}(aq) + \underline{\hspace{0.5cm}} NO(g) + \underline{\hspace{0.5cm}} H_{2}O(l)$$

- A. 1
- В. 2
- C. 3
- D. 4

32. Los potenciales de electrodo estándar para dos semirreacciones son:

$$V^{2+}(aq) + 2e^{-} \rightarrow V(s)$$
 -1,19V
Tl⁺(aq) + e⁻ \rightarrow Tl(s) -0,34V

¿Cuál es el valor de E^{\ominus} (en Volt) para la reacción:

$$V(s) + 2TI^{+}(aq) \rightarrow V^{2+}(aq) + 2TI(s)$$
?

- A. 0,85
- B. 0,51
- C. -1,53
- D. -1,87
- **33.** ¿Qué variaciones conducen a la formación de más moles de metal durante la electrólisis de una sal fundida?
 - I. utilizar un ion metálico con una carga superior
 - II. aumentar la corriente
 - III. usar más tiempo
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **34.** ¿Qué reacciones puede sufrir el eteno?
 - I. adición
 - II. esterificación
 - III. polimerización
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

− 13 **−**

- **35.** ¿Qué fórmula representa un aldehído?
 - A. CH₃CH₂CHO
 - B. CH₃COCH₃
 - C. CH₃CH₂COOH
 - D. CH₃COOCH₃
- **36.** ¿Qué aminoácido puede existir en forma de isómeros ópticos?

A.
$$H_2N$$
— C — C — OH

B.
$$H_2N$$
— C — C — OH

$$CH_3$$

C.
$$H_2N$$
— C — C —OH
$$CH_3$$

D.
$$H_2N$$
— C — C — OH
 NH_2

-14-

- A. $CH_3(CH_2)_3CH_3$
- B. (CH₃)₂CHCH₂CH₃
- C. C(CH₃)₄
- D. CH₃(CH₂)₂CHO

38. ¿Qué reacciones sufre el benceno?

- I. combustión
- II. deshidratación
- III. sustitución
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

39. ¿Qué combinación de reactivos presenta la mayor velocidad de reacción?

- A. $CH_3(CH_2)_2CH_2F + OH^-$
- B. $CH_3(CH_2)_2CH_2Br + OH^{-1}$
- C. $(CH_3)_3CF+OH^-$
- D. $(CH_3)_3CBr + OH^-$

40. ¿Qué alcohol produce sólo un alqueno cuando se lo calienta con H_2SO_4 concentrado?

- A. $CH_3CH_2CH(OH)CH_3$
- B. CH₃CH₂CH₂CH(OH)CH₃
- C. CH₃CH₂CH₂CH₂OH
- D. $(CH_3CH_2)_2C(OH)CH_3$