```
In [2]:
         import pandas as pd
         import numpy as np
         import re
         import warnings
         warnings.filterwarnings('ignore')
         import matplotlib.pyplot as plt
         import seaborn as sns
         import scipy.stats as stats
         import datetime as dt
         import dateutil.relativedelta as rd
         from sklearn.model_selection import train_test_split as split
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import classification_report, accuracy_score
         plt.style.use('ggplot')
In [3]:
         data = pd.read_excel("C:\\Users\\mahi2\\Desktop\\Project2_Dataset (1)\\Dataset\\data.xJ
         data
In [4]:
Out[4]:
                 UniqueID
                           disbursed amount asset cost
                                                         Itv branch_id supplier_id manufacturer_id Curr
              0
                   420825
                                      50578
                                                 58400 89.55
                                                                    67
                                                                            22807
                                                                                               45
                   417566
                                      53278
                                                 61360 89.63
                                                                    67
                                                                            22807
                                                                                               45
              2
                   539055
                                      52378
                                                 60300 88.39
                                                                            22807
                                                                                               45
                                                                    67
                   529269
                                      46349
                                                 61500 76.42
                                                                            22807
                                                                                               45
                                                                    67
              4
                   563215
                                      43594
                                                 78256 57.50
                                                                    67
                                                                            22744
                                                                                               86
         233149
                   561031
                                      57759
                                                 76350 77.28
                                                                     5
                                                                            22289
                                                                                               51
         233150
                   649600
                                      55009
                                                 71200 78.72
                                                                   138
                                                                            17408
                                                                                               51
         233151
                   603445
                                      58513
                                                 68000 88.24
                                                                   135
                                                                            23313
                                                                                               45
         233152
                   442948
                                      22824
                                                 40458 61.79
                                                                   160
                                                                            16212
                                                                                               48
         233153
                   545300
                                      35299
                                                                     3
                                                                            14573
                                                                                               45
                                                 72698 52.27
        233154 rows × 41 columns
```

preliminary analysis

Perform preliminary data inspection and report the findings as the structure of the data, missing values, duplicates etc. The variable names in the data are not in accordance with the identifier naming in Python. Change the variable names accordingly.

```
In [5]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 233154 entries, 0 to 233153
Data columns (total 41 columns):
    Column
                                        Non-Null Count
                                                        Dtype
    -----
                                        -----
                                        233154 non-null int64
0
    UniqueID
1
    disbursed amount
                                       233154 non-null int64
    asset_cost
                                       233154 non-null int64
3
                                       233154 non-null float64
    ltv
4
    branch_id
                                       233154 non-null int64
    supplier id
                                       233154 non-null int64
6
    manufacturer id
                                       233154 non-null int64
    Current_pincode_ID
                                       233154 non-null int64
    Date.of.Birth
                                       233154 non-null datetime64[ns]
                                       225493 non-null object
    Employment.Type
10 DisbursalDate
                                       233154 non-null datetime64[ns]
                                       233154 non-null int64
11 State ID
12 Employee_code_ID
                                       233154 non-null int64
                                       233154 non-null int64
13 MobileNo_Avl_Flag
14 Aadhar flag
                                       233154 non-null int64
15 PAN flag
                                       233154 non-null int64
                                      233154 non-null int64
16 VoterID_flag
17 Driving_flag
                                      233154 non-null int64
18 Passport flag
                                      233154 non-null int64
19 PERFORM CNS.SCORE
                                      233154 non-null int64
                                     233154 non-null object
20 PERFORM_CNS.SCORE.DESCRIPTION
21 PRI.NO.OF.ACCTS
                                      233154 non-null int64
22 PRI.ACTIVE.ACCTS
                                      233154 non-null int64
                                      233154 non-null int64
23 PRI.OVERDUE.ACCTS
                                      233154 non-null int64
24 PRI.CURRENT.BALANCE
                                      233154 non-null int64
233154 non-null int64
25 PRI.SANCTIONED.AMOUNT
26 PRI.DISBURSED.AMOUNT
27 SEC.NO.OF.ACCTS
                                      233154 non-null int64
28 SEC.ACTIVE.ACCTS
                                      233154 non-null int64
                                      233154 non-null int64
29 SEC.OVERDUE.ACCTS
30 SEC.CURRENT.BALANCE
                                      233154 non-null int64
31 SEC.SANCTIONED.AMOUNT
                                      233154 non-null int64
                                      233154 non-null int64
32 SEC.DISBURSED.AMOUNT
33 PRIMARY.INSTAL.AMT
                                      233154 non-null int64
34 SEC.INSTAL.AMT
                                      233154 non-null int64
35 NEW.ACCTS.IN.LAST.SIX.MONTHS 233154 non-null int64
36 DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS 233154 non-null int64
37 AVERAGE.ACCT.AGE
                                      233154 non-null object
38 CREDIT.HISTORY.LENGTH
                                       233154 non-null object
39 NO.OF INQUIRIES
                                       233154 non-null int64
40 loan_default
                                       233154 non-null int64
dtypes: datetime64[ns](2), float64(1), int64(34), object(4)
```

column names need to be changed

```
In [6]: data.columns = data.columns.str.replace('.','_').str.lower()
In [7]: print('Are there any duplicated rows ??',data.duplicated().any())
```

Are there any duplicated rows ?? False

memory usage: 72.9+ MB

missing values

```
print('Missing values in variable')
In [8]:
         print(data.isnull().sum())
        Missing values in variable
                                                    0
         uniqueid
         disbursed amount
                                                    0
                                                    0
         asset_cost
         ltv
                                                    0
         branch_id
         supplier_id
                                                    0
        manufacturer id
                                                    0
                                                    0
         current_pincode_id
         date_of_birth
                                                    0
                                                 7661
         employment_type
         disbursaldate
                                                    0
         state id
                                                    0
                                                    0
         employee_code_id
        mobileno_avl_flag
                                                    0
                                                    0
         aadhar_flag
                                                    0
         pan_flag
         voterid_flag
                                                    0
         driving_flag
                                                    0
         passport_flag
                                                    0
         perform cns score
                                                    0
         perform_cns_score_description
                                                    0
         pri_no_of_accts
                                                    0
                                                    0
         pri_active_accts
                                                    0
         pri_overdue_accts
         pri current balance
                                                    0
                                                    0
         pri_sanctioned_amount
         pri_disbursed_amount
                                                    0
        sec_no_of_accts
                                                    0
                                                    0
         sec_active_accts
                                                    0
         sec_overdue_accts
                                                    0
         sec current balance
         sec_sanctioned_amount
                                                    0
         sec_disbursed_amount
                                                    0
         primary_instal_amt
                                                    0
         sec_instal_amt
                                                    0
         new_accts_in_last_six months
                                                    0
         delinquent_accts_in_last_six_months
                                                    0
         average_acct_age
                                                    0
                                                    0
         credit history length
         no_of_inquiries
                                                    0
         loan default
                                                    0
         dtype: int64
In [9]: #Checking Missing Values
         missing_vars = pd.DataFrame(data.isnull().sum())
         missing_vars.columns = ["count"]
         missing_vars.loc[missing_vars["count"] > 0]
```

```
Out[9]: count
employment_type 7661
```

Provide the statistical description of the numerical data variables¶

exploring the unique ids

Overall Statistical Description

identifying categorical data:

description for categorical columns

```
In [14]: data.describe(include = 'category')
```

Out[14]:		branch_id	supplier_id	manufacturer_id	state_id	pri_no_of_accts	pri_active_accts	pri_overdue
	count	233154	233154	233154	233154	233154	233154	2
	unique	82	2953	11	22	108	40	
	top	2	18317	86	4	0	0	
	freq	13138	1432	109534	44870	116950	137016	2
4								

description for binary data using value counts

[15]:	<pre>data.describe(include = 'category')</pre>							
15]:		branch_id	supplier_id	manufacturer_id	state_id	pri_no_of_accts	pri_active_accts	pri_overdue
	count	233154	233154	233154	233154	233154	233154	2
	unique	82	2953	11	22	108	40	
	top	2	18317	86	4	0	0	
	freq	13138	1432	109534	44870	116950	137016	2

description for binary data using value counts

```
In [16]: for i in binary_columns:
    vc = data[i].value_counts()
    print(i.replace('_',' ').upper(), ':')
    for j in vc.index :
        print(j ,':', vc[j])
```

```
EMPLOYMENT TYPE :
Self employed: 127635
Salaried: 97858
AADHAR FLAG:
1:195924
0:37230
PAN FLAG:
0: 215533
1: 17621
VOTERID FLAG:
0:199360
1:33794
DRIVING FLAG:
0 : 227735
1:5419
PASSPORT FLAG:
0: 232658
1:496
LOAN DEFAULT:
0: 182543
```

1:50611

describe quantitative data

```
In [17]: col = cat_cols + binary_columns
           quant = data.loc[:,~data.columns.isin(col)]
           quant.describe().loc[['min','25%','mean','50%','75%','max','std']].round(1)
Out[17]:
                 uniqueid disbursed_amount asset_cost ltv current_pincode_id employee_code_id mobileno_
            min
                 417428.0
                                     13320.0
                                                37000.0 10.0
                                                                            1.0
                                                                                              1.0
                 476786.2
                                     47145.0
                                                65717.0 68.9
                                                                         1511.0
                                                                                            713.0
                 535917.6
                                     54357.0
                                                75865.1 74.7
                                                                         3396.9
                                                                                           1549.5
           mean
            50%
                 535978.5
                                     53803.0
                                                70946.0 76.8
                                                                         2970.0
                                                                                           1451.0
                                                79201.8 83.7
                                                                                           2362.0
            75%
                 595039.8
                                     60413.0
                                                                         5677.0
            max
                 671084.0
                                    990572.0
                                              1628992.0 95.0
                                                                         7345.0
                                                                                           3795.0
                                                                         2238.1
                                                                                            975.3
             std
                   68315.7
                                     12971.3
                                                18944.8 11.5
```

unique Values in the data

```
In [18]: data.nunique()
```

11/16/23, 6:40 AM PROJECT CAPSTONE

Out[18]: uniqueid 233154

disbursed_amount 24565 asset_cost 46252 ltv 6579 branch id 82 supplier_id 2953 manufacturer id 11 current_pincode_id 6698 date_of_birth 15433 employment_type 2 disbursaldate 84 state id 22 employee_code_id 3270 mobileno_avl_flag 1 aadhar flag 2 2 pan flag 2 voterid_flag driving_flag 2 2 passport_flag 573 perform cns score perform_cns_score_description 20 108 pri_no_of_accts pri_active_accts 40 pri_overdue_accts 22 pri_current_balance 71341 pri_sanctioned_amount 44390 pri disbursed amount 47909 sec_no_of_accts 37 sec_active_accts 23 9 sec_overdue_accts sec_current_balance 3246 sec sanctioned amount 2223 sec_disbursed_amount 2553 primary_instal_amt 28067 sec instal amt 1918 new_accts_in_last_six_months 26 delinquent_accts_in_last_six_months 14 192 average_acct_age 294 credit_history_length no of inquiries 25 loan_default 2

dtype: int64

How is the target variable distributed overall?

```
In [19]: data.loan_default.value_counts()
Out[19]: 0    182543
1     50611
Name: loan_default, dtype: int64

In [20]: def transform(x):
        if x == 1: return 'Defaulter'
        if x == 0: return 'Non-Defaulter'
data['loan_default_text'] = data.loan_default.apply(transform)
```

```
In [21]:
         f, axes = plt.subplots(1,2, figsize = (18,6))
         vc = data.loan_default_text.value_counts()
         vc.plot.pie(ax = axes[0], radius = 1, cmap = Set2, explode = [0.01,0.1], shadow = [0.01,0.1]
                     textprops = {'color': 'black', 'weight': 'bold', 'size': 16}, )
         axes[0].set_ylabel('')
         sns.countplot(x='loan_default_text', data = data, ax = axes[1], palette='Set2')
         for i in range(len(vc)):
              axes[1].annotate(str(vc[i]), (i-0.1,(vc[i]/2)), fontsize = 14)
         axes[1].set_ylim(0,axes[1].set_ylim()[1]+5)
         axes[1].set_xlabel('Loan Default',fontsize = 18)
         axes[1].set_ylabel('Count',fontsize = 18)
         axes[1].set_xticklabels(axes[1].get_xticklabels(),fontsize = 14)
         f.suptitle('Default Rate\n', fontsize = 30)
         plt.tight_layout(pad = 4)
         plt.show()
```

Default Rate

Study the distribution of the target variable across the various categories such as branch, city, state, branch, supplier, manufacturer etc.

Univariate Analysis and Variable vs Target

```
In [22]:
    def barplot(var):
        var_name = var.replace('_',' ').title()
        plt.figure(figsize = (20,5))
        sns.countplot(x='loan_default_text',data = data, palette='Set2')
        plt.title(var_name+'\n',family='Times New Roman', weight ='bold',fontsize= 25)
        plt.xlabel(var_name,family='Times New Roman',fontsize= 16)
        plt.ylabel('Frequency',family='georgia',fontsize= 16)
        plt.show()

In [23]:
    def cat_vs_target(var):
        var_name = var.replace('_', '').title()
        plt.figure(figsize = (20,5))
        sns.countplot(x='loan_default_text',hue = 'loan_default_text', data = data, palett)
```

```
plt.tight_layout()
  plt.xlabel(var_name ,family='Times New Roman',fontsize= 16)
  plt.ylabel('Frequency',family='georgia',fontsize= 16)
  plt.show()

In [24]:

# is the category and target dependent on each other??

def chi_test(var):
    ct = pd.crosstab(data[var], data.loan_default_text)
    st, p, df, ef = stats.chi2_contingency(ct)
    var_name = var.replace('_',' ')
    if p >= 0.05:
        text = ('{} and Target are independent'.format(var_name.title()))
    else:
        text = ('{} and Target are dependent'.format(var_name.title()))
    plt.figure(figsize = (1,1))
    plt.plot([0,0],[0,0])
```

plt.annotate(text,xy = (2.5,2.5), fontsize= 25)

plt.title(var_name + ' vs Target',family='Times New Roman', weight ='bold',fontsiz

1. branch_id

plt.show()

plt.xlim(0,50)
plt.ylim(0,5)
plt.axis('off')

Branch Id and Target are dependent

Supplier Ids

Supplier Id and Target are dependent

What are the different employment type given in the data? Can a strategy be developed to fill in the missing values (if any)? How does employment type define defaulters and non-defaulters? Use pie charts to express.

For Missing values: Employment Type

Only employment_type var has nulls

```
In [27]: # Checking unique values
print("Distinct Emp Type :",data.employment_type.unique())
```

```
#Checking missing valus in percentage
print("Missing Emp Type {:.2f} %".format(data.employment_type.isnull().sum() / len(dat

Distinct Emp Type : ['Salaried' 'Self employed' nan]
Missing Emp Type 3.29 %
```

Few ways to fill in the missing values: ¶

- Remove the rows as it is a very low percentage
- fill with modal values
- fill with a third type as other

For this analysis the unique values in the Variable include Self Employed and Salaried. There may be applicants may be unemployed. So it seems logical to fill the missing values with 'Unemployed'

```
data.employment_type.fillna('Unemployed',inplace = True)
In [28]:
In [29]: var = 'employment_type'
         var_name = var.replace('_',' ').title()
         f, axes = plt.subplots(1,2, figsize = (18,6))
         vc = data[var].value_counts()
         vc.plot.pie(ax = axes[0], radius = 1, cmap = 'Set2', explode = [0.01,0.01, 0.01], shape = (0.01,0.01, 0.01)
                     textprops = {'family': 'Times New Roman','color': 'black','weight': 'bold',
         axes[0].set ylabel('')
         sns.countplot(x = var, data = data, hue = 'loan_default_text',ax = axes[1], palette='r
         axes[1].set_ylim(0,axes[1].set_ylim()[1]+5)
         axes[1].set_xlabel(var_name,fontsize = 18, family = 'Times New Roman')
         axes[1].set_ylabel('Count',fontsize = 18, family = 'Times New Roman')
         axes[1].set_xticklabels(axes[1].get_xticklabels(),fontsize = 14, family = 'Times New F
         vc2 = pd.crosstab(data[var], data.loan_default_text).loc[vc.index]
         vc2['Perc_Def'] = (vc2.Defaulter/vc2.sum(axis = 1)*100).round(2)
         vc2['Perc_NDef'] = (vc2['Non-Defaulter']/vc2.sum(axis = 1)*100).round(2)
         for i in range(len(vc2.index)):
              axes[1].annotate(str(vc2.iloc[i]['Perc_NDef'])+' %', (i - 0.35,vc2.iloc[i]['Non-Defeated...
              axes[1].annotate(str(vc2.iloc[i]['Perc_Def'])+' %', (i + 0.05,vc2.iloc[i]['Default
         f.suptitle(var name , fontsize = 30, family = 'Times New Roman')
         plt.tight_layout(pad = 4)
         plt.show()
```

Employment Type

Has age got something to do with defaulting ? what is the distribution of age w.r.t. to defaulters and non-defaulters?

Age in years as on disbursal date

```
In [30]: data['disbursaldate'] = pd.to_datetime(data['disbursaldate'])
data['date_of_birth'] = pd.to_datetime(data['date_of_birth'])

In [31]: data['age_on_disbursal'] = data.apply(lambda row: (row['disbursaldate'] - row['date_of'])

In [32]: plt.figure(figsize = (15,5))
    sns.countplot(x='age_on_disbursal', data = data[data.loan_default ==0],palette='Set2')
    plt.title('Age on Disbursal for Non Defaulters',family='Times New Roman', weight ='bol
    plt.tight_layout()
    plt.xlabel('Age',family='Times New Roman',fontsize= 16)
    plt.ylabel('Frequency',family='georgia',fontsize= 16)
    plt.show()
```



```
In [33]: plt.figure(figsize = (15,5))
    sns.countplot(x='age_on_disbursal', data = data[data.loan_default ==1],palette='Set2')
    plt.title('Age on Disbursal for Defaulters',family='Times New Roman', weight ='bold',f
    plt.tight_layout()
    plt.xlabel('Age',family='Times New Roman',fontsize= 16)
```

```
plt.ylabel('Frequency',family='georgia',fontsize= 16)
plt.show()
```


What id type was presented by most of the customers as proofs?

a. Study the credit bureau score distribution. How is the distribution for defaulters vs non defaulters? Explore in detail.¶

In [35]:	<pre>data[['perform_cns_score', 'perform_cns_score_description']]</pre>					
Out[35]:		perform_cns_score	perform_cns_score_description			
	0	0	No Bureau History Available			
	1	0	No Bureau History Available			
	2	0	No Bureau History Available			
	3	0	No Bureau History Available			
	4	0	No Bureau History Available			
	•••					
	233149	14	Not Scored: Only a Guarantor			
	233150	14	Not Scored: Only a Guarantor			
	233151	11	Not Scored: More than 50 active Accounts found			
	233152	11	Not Scored: More than 50 active Accounts found			
	233153	11	Not Scored: More than 50 active Accounts found			

233154 rows × 2 columns

```
In [36]: plt.figure(figsize = (10,5))
    sns.distplot(data[(data.loan_default == 0)& (data.perform_cns_score >=100)].perform_cr
    sns.distplot(data[(data.loan_default == 1) & (data.perform_cns_score >=100)].perform_c
    plt.show()
```


For both the defaluters and non Defaulters the distribution of CNS score follow a similar distribution

re categorising the variable

```
In [39]: data["perform_score"] = 'No Score'
    data.loc[data.perform_cns_score_description.str.contains('High'),'perform_score'] = "High data.loc[data.perform_cns_score_description.str.contains('Very High'),'perform_score']
    data.loc[data.perform_cns_score_description.str.contains('Low'),'perform_score'] = "Lot data.loc[data.perform_cns_score_description.str.contains('Very Low'),'perform_score']
    data.loc[data.perform_cns_score_description.str.contains('Medium'),'perform_score'] =

In [40]: plt.figure(figsize=(10,5))
    sns.countplot(x='perform_score',hue='loan_default_text',data=data, palette='Set2')
    plt.show()
```



```
cmap = ['tab20','Set2','summer','Accent','terrain', 'rainbow','Paired']
In [41]:
         perf_cat = list(data.perform_score.unique())
         perf cat.sort()
         f,ax = plt.subplots(2,int(data.perform_score.nunique()/2),figsize = (25,10))
         k = 0
         for j in range(2):
             for i in range(int(len(perf_cat)/2)):
                 subdata = data[data.perform_score==perf_cat[k]].copy()
                 vc = subdata.perform_cat.value_counts()
                 vc.plot.pie(cmap =cmap[k], autopct = '%0.1f%%', radius = 1.25, explode = [0.01
                                  textprops = { 'family': 'Times New Roman', 'color': 'black', 'wei
                 ax[j,i].set_ylabel('')
                 ax[j,i].set_title('Perform Score = '+str(perf_cat[k])+'\n\n')
                 k += 1
         plt.tight_layout(w_pad = 1)
```


Explore the primary and secondary account details. Is the information in some way related to loan default probability?

```
In [42]: pri_account_info = data.columns[data.columns.str.contains('pri')]
```

exploring the primary account details¶

Figure1: Histogram and Bos Plot of Pri No Of Accts

Figure 2: Histogram and Bos Plot of Pri Active Accts

Figure 3: Histogram and Bos Plot of Pri Overdue Accts

Figure 4: Histogram and Bos Plot of Pri Current Balance

Figure 5: Histogram and Bos Plot of Pri Sanctioned Amount

Figure 6: Histogram and Bos Plot of Pri Disbursed Amount

Figure 7: Histogram and Bos Plot of Primary Instal Amt

Exploring Secondary account information

```
In [44]: sec_account_info = data.columns[data.columns.str.contains('sec')]

In [45]: i = 1
    for col in sec_account_info:
        f, (ax_box, ax_hist) = plt.subplots(2,1, figsize = (12,5),sharex = True, gridspec_plt.suptitle('Figure' + str(i) + ': Histogram and Bos Plot of ' + col.replace('_', sns.boxplot(data[col], ax= ax_box,color = 'red')
        sns.distplot(data[col], ax = ax_hist, color = 'magenta')
        sns.despine(ax = ax_box, left = True)
        sns.despine(ax= ax_hist, left = True)
        i = i+1
        plt.show()
```

Figure 1: Histogram and Bos Plot of Sec No Of Accts

Figure 2: Histogram and Bos Plot of Sec Active Accts

Figure 3: Histogram and Bos Plot of Sec Overdue Accts

Figure 4: Histogram and Bos Plot of Sec Current Balance

Figure 5: Histogram and Bos Plot of Sec Sanctioned Amount

Figure 7: Histogram and Bos Plot of Sec Instal Amt

Explore the distribution of other variables w.r.t. target

cols to be used

perform a baseline predictive analytics.

selecting features to drop

```
In [48]:
         a = (list(data.columns))
In [49]:
         a.sort()
In [50]:
         def text_months(x):
             year = int(re.findall('\d',x)[0])
             month = int(re.findall('\d',x)[1])
             total = year*12 +month
             return total
In [ ]:
         # Creating new categories
In [51]:
         data['avg_acnt_age_month'] = data.average_acct_age.astype('str').apply(text_months)
         data['credit_history_months'] = data.credit_history_length.astype('str').apply(text_mc
         data["credit_hist_cat"] = "Low"
In [52]:
         data.loc[data.credit history months <= 48,"credit hist cat"] = "Low"</pre>
         data.loc[data.credit_history_months > 48,"credit_hist_cat"] = "Medium"
         data.loc[data.credit_history_months> 96,"credit_hist_cat"] = "High"
In [53]:
         data["loan_tenure"] = 'least_pref'
         data.loc[data.avg_acnt_age_month<= 60,"loan_tenure"] ="most_pref"</pre>
         data["preferred age"] = 'Negative'
In [54]:
         data.loc[data.age_on_disbursal >= 336, "preferred_age"] = "most_pref"
         cat_columns = ['branch_id', 'supplier_id', 'manufacturer_id', 'state_id', 'employment]
In [55]:
                        'mobileno_avl_flag', 'aadhar_flag', 'pan_flag', 'voterid_flag', 'drivir
                        'new_accts_in_last_six_months','delinquent_accts_in_last_six_months',
                        'pri_no_of_accts', 'pri_active_accts','pri_overdue_accts','sec_no_of_ac
                         'perform_cat', 'perform_score','preferred_age','loan_default']
```

```
quant_columns = ['disbursed_amount', 'asset_cost', 'ltv', 'pri_current_balance', 'pri_s
                           'sec_current_balance', 'sec_sanctioned_amount', 'sec_disbursed_amount'
In [56]:
          final_columns = cat_columns + quant_columns
          cat_columns
In [57]:
         ['branch_id',
Out[57]:
           'supplier_id',
           'manufacturer_id',
           'state_id',
           'employment_type',
           'mobileno_avl_flag',
           'aadhar_flag',
           'pan_flag',
           'voterid_flag',
           'driving_flag',
           'passport_flag',
           'new_accts_in_last_six_months',
           'delinquent_accts_in_last_six_months',
           'pri_no_of_accts',
           'pri_active_accts',
           'pri_overdue_accts',
           'sec_no_of_accts',
           'sec_active_accts',
           'sec_overdue_accts',
           'loan_tenure',
           'credit_hist_cat',
           'perform_cat',
           'perform_score',
           'preferred_age',
           'loan_default']
          final_columns
In [58]:
```

```
['branch_id',
Out[58]:
           'supplier_id',
           'manufacturer_id',
           'state_id',
           'employment_type',
           'mobileno_avl_flag',
           'aadhar_flag',
           'pan_flag',
           'voterid_flag',
           'driving_flag',
           'passport_flag',
           'new_accts_in_last_six_months',
           'delinquent_accts_in_last_six_months',
           'pri_no_of_accts',
           'pri_active_accts',
           'pri_overdue_accts',
           'sec_no_of_accts',
           'sec_active_accts',
           'sec overdue_accts',
           'loan_tenure',
           'credit_hist_cat',
           'perform_cat',
           'perform_score',
           'preferred_age',
           'loan_default',
           'disbursed_amount',
           'asset_cost',
           'ltv',
           'pri_current_balance',
           'pri_sanctioned_amount',
           'pri_disbursed_amount',
           'sec_current_balance',
           'sec_sanctioned_amount',
           'sec_disbursed_amount',
           'primary instal amt',
           'sec_instal_amt']
          final_data = data[final_columns]
In [59]:
          final_data.info()
In [60]:
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 233154 entries, 0 to 233153

Data columns (total 36 columns): # Column Non-Null Count Dtype ----------0 branch_id 233154 non-null category 1 supplier id 233154 non-null category 233154 non-null category 2 manufacturer id 3 state id 233154 non-null category 4 employment_type 233154 non-null object mobileno avl flag 233154 non-null int64 6 aadhar_flag 233154 non-null int64 7 pan_flag 233154 non-null int64 8 voterid_flag 233154 non-null int64 9 driving flag 233154 non-null int64 10 passport flag 233154 non-null int64 11 new accts in last six months 233154 non-null category 12 delinquent_accts_in_last_six_months 233154 non-null category pri no of accts 233154 non-null category 14 pri active accts 233154 non-null category 15 pri overdue_accts 233154 non-null category 233154 non-null category 16 sec_no_of_accts 17 sec_active_accts 233154 non-null category 18 sec_overdue_accts 233154 non-null category 19 loan tenure 233154 non-null object 20 credit hist cat 233154 non-null object 21 perform cat 233154 non-null category 22 perform_score 233154 non-null object 23 preferred age 233154 non-null object 24 loan default 233154 non-null int64 25 disbursed amount 233154 non-null int64 233154 non-null int64 26 asset cost 27 ltv 233154 non-null float64 28 pri current balance 233154 non-null int64 29 pri sanctioned amount 233154 non-null int64 30 pri_disbursed_amount 233154 non-null int64 31 sec current balance 233154 non-null int64 233154 non-null int64 32 sec_sanctioned_amount 33 sec disbursed amount 233154 non-null int64 34 primary instal amt 233154 non-null int64 35 sec_instal_amt 233154 non-null int64 dtypes: category(13), float64(1), int64(17), object(5)

memory usage: 44.1+ MB

In [61]: final_data

Out[61]

:		branch_id	supplier_id	manufacturer_id	state_id	employment_type	mobileno_avl_flag	aadha
	0	67	22807	45	6	Salaried	1	
	1	67	22807	45	6	Self employed	1	
	2	67	22807	45	6	Self employed	1	
	3	67	22807	45	6	Salaried	1	
	4	67	22744	86	6	Self employed	1	
	•••							
	233149	5	22289	51	9	Self employed	1	
	233150	138	17408	51	9	Self employed	1	
	233151	135	23313	45	4	Self employed	1	
	233152	160	16212	48	16	Self employed	1	
	233153	3	14573	45	1	Self employed	1	

233154 rows × 36 columns

analysing relation ship using pair plot

In []: sns.pairplot(final_data, hue = 'loan_default', palette='Set1')

split into train and test

In [62]:	final_	_data.describe()					
Out[62]:		mobileno_avl_flag	aadhar_flag	pan_flag	voterid_flag	driving_flag	passport_flag
	count	233154.0	233154.00000	233154.000000	233154.000000	233154.000000	233154.000000
	mean	1.0	0.84032	0.075577	0.144943	0.023242	0.002127
	std	0.0	0.36631	0.264320	0.352044	0.150672	0.046074
	min	1.0	0.00000	0.000000	0.000000	0.000000	0.000000
	25%	1.0	1.00000	0.000000	0.000000	0.000000	0.000000
	50%	1.0	1.00000	0.000000	0.000000	0.000000	0.000000
	75%	1.0	1.00000	0.000000	0.000000	0.000000	0.000000
	max	1.0	1.00000	1.000000	1.000000	1.000000	1.000000

```
for i in cat_columns:
In [63]:
               if i != 'loan_default':
                    final_data[i]= final_data[i].astype('object')
           final_data.describe()
In [64]:
                   loan_default disbursed_amount
                                                                              pri_current_balance pri_sanctio
Out[64]:
                                                      asset_cost
           count 233154.000000
                                    233154.000000 2.331540e+05 233154.000000
                                                                                    2.331540e+05
                       0.217071
                                     54356.993528 7.586507e+04
                                                                    74.746530
                                                                                    1.659001e+05
           mean
                       0.412252
                                     12971.314171 1.894478e+04
                                                                    11.456636
                                                                                    9.422736e+05
             std
            min
                       0.000000
                                     13320.000000 3.700000e+04
                                                                     10.030000
                                                                                    -6.678296e+06
                                                                                                           (
            25%
                       0.000000
                                     47145.000000 6.571700e+04
                                                                    68.880000
                                                                                    0.000000e+00
                                                                                                           (
            50%
                       0.000000
                                     53803.000000
                                                 7.094600e+04
                                                                    76.800000
                                                                                    0.000000e+00
            75%
                       0.000000
                                                 7.920175e+04
                                                                    83.670000
                                     60413.000000
                                                                                    3.500650e+04
            max
                       1.000000
                                    990572.000000 1.628992e+06
                                                                    95.000000
                                                                                    9.652492e+07
           final_data.describe(include = 'object').T
```

Out[65]:		count	unique	top	freq
	branch_id	233154	82	2	13138
	supplier_id	233154	2953	18317	1432
	manufacturer_id	233154	11	86	109534
	state_id	233154	22	4	44870
	employment_type	233154	3	Self employed	127635
	mobileno_avl_flag	233154	1	1	233154
	aadhar_flag	233154	2	1	195924
	pan_flag	233154	2	0	215533
	voterid_flag	233154	2	0	199360
	driving_flag	233154	2	0	227735
	passport_flag	233154	2	0	232658
	new_accts_in_last_six_months	233154	26	0	181494
	delinquent_accts_in_last_six_months	233154	14	0	214959
	pri_no_of_accts	233154	108	0	116950
	pri_active_accts	233154	40	0	137016
	pri_overdue_accts	233154	22	0	206879
	sec_no_of_accts	233154	37	0	227289
	sec_active_accts	233154	23	0	229337
	sec_overdue_accts	233154	9	0	231817
	loan_tenure	233154	2	most_pref	230077
	credit_hist_cat	233154	3	Low	214224
	perform_cat	233154	7	0	129785
	perform_score	233154	6	No Score	129785
	preferred_age	233154	1	Negative	233154

In [66]: train,test =split(final_data, test_size = 0.3, random_state = 12)

apply logistic regression

```
In [67]: data_dummy = pd.get_dummies(final_data)
data_dummy.columns
```

```
Index(['loan_default', 'disbursed_amount', 'asset_cost', 'ltv',
Out[67]:
                 'pri_current_balance', 'pri_sanctioned_amount', 'pri_disbursed_amount',
                 'sec_current_balance', 'sec_sanctioned_amount', 'sec_disbursed_amount',
                 'perform_cat_6', 'perform_cat_7', 'perform_cat_8', 'perform_score_High',
                 'perform_score_Low', 'perform_score_Medium', 'perform_score_No Score',
                 'perform_score_Very High', 'perform_score_Very Low',
                 'preferred_age_Negative'],
                dtype='object', length=3392)
In [68]: train, test = split(data_dummy, test_size = .30, random state = 12)
         train.shape
         train.head(2)
         X_train = train.drop('loan_default', axis = 1)
         Y train = train.loan default
         X_test = test.drop('loan_default', axis = 1)
         Y_test = test.loan_default
         lr = LogisticRegression()
         lr.fit(X_train,Y_train)
         pred = lr.predict(X_test)
         print('Accuracy Score',accuracy_score(y_true = Y_test,y_pred = pred))
```

Accuracy Score 0.7854661386478333

```
In [69]: print(classification_report(y_true=Y_test,y_pred = pred))
```

support	f1-score	recall	precision	
54941	0.88	1.00	0.79	0
15006	0.00	0.00	0.50	1
69947	0.79			accuracy
69947	0.44	0.50	0.64	macro avg
69947	0.69	0.79	0.72	weighted avg