

Data, Decision, and System Analytics

Data Analytics Assessment Overview

Problem: There is currently no standard way to implement and assess performance for data analytics

- Heterogeneous data sources/algorithms without ground truth
- Hard to know what capability is being purchased with few means to assess performance of service
- Dynamic mission space with changing requirements

Solution: Data analytics framework

- Standard data models with ground truth
- Development framework to standardize risk analytics on information sources, algorithms, and processing
- Adaptable framework that can change as mission requirements change

D2D/Data Analytics Approach

Analyst oversees delivery of information products to customer with rigorous quality of service guarantees

Current Approach New Approach Sensors/ISR/ **ISR/Text Data Analyst** Sensor Text/Data **Analyst** (metrics) **Analysis** User Cloud User Infrastructure performance? (metrics)

Data Analytics Performance Assessment

Implementation and assessment of information service can be standardized to assess overall mission performance

Components Can Assess Multiple Mission Types

Incorporate a cloud based open standard for information services development and assessment so basic components can be used assess multiple types of missions

<u>Data Analytics/</u> <u>Data to Decision</u> <u>Elements</u>

<u>Transitionable</u> <u>Components</u>

<u>Same Components</u> <u>Provide Assessment For</u> <u>Multiple Customer Missions</u>

Transition Models

Models can either be added to existing infrastructure or used by existing infrastructure as diagnostics for performance

<u>Model 1</u> (direct integration of components)

<u>Model 2</u> (user integrates remote elements for their analysis)

Mission and Data Set Components

Standard threat or mission graphs and the associated data needed to assess a particular threat are available for baseline assessment and design of future missions analysis

Standard Mission Graphs

Scenario Graph Specifies
What Data Should Be Collected

Standard Data Sets

Standard Data Sets Specify Ground
Truth for Different Data Types &
Provenance of Relevant Data

Imagery Truth Data

Text Analytic Data

Algorithm and Mission Risk Component

The algorithm and mission risk components can calculate

- Provenance and risk of data + algorithm conclusion
- Timeline for output at given data risk level
- Overall mission risk and certainty of conclusion

Algorithms Data Base

Algorithms data base specifies risk incurred for different data types and fidelities and processing time required for actionable information over a given architecture.

Assessment of text algorithm

Assessment of track algorithm

Mission Risk Analysis

Database of algorithm conclusions against different scenarios with specified truth data.

Overall risk to mission with truth

Measure/Model/Manage

Integrated modeling, validation, verification, and management can characterize mission performance with advanced data models

Measurement

We wish to understand how to measure the state of a mission on an infrastructure

What to measure?

How to measure?

Modeling

We must have validated models of mission performance which can come from known models or empirical data

Mission Operation Trade-space

Un-validated Modalities (high mission risk)

Validated Modalities (low mission risk)

Management

How do we close the loop at multiple architectural layers to assure mission performance and verify system policy/protocol is working?

Metrics of Performance

Metrics of performance allow timelines, tracking, and mission performance to be rigorously assessed by analyst/commander in real time.

Example Metrics

Timeline Reduction

Rigorous Mission
Threat/Risk Assessment

Rigorous Data Product Confidence Analysis

<u>Desired Outcome</u>

Risk Analysis and Modeling

Unified methods for data modeling require a rigorous risk assessment in order to assure commanders, analysts, and system operators of performance.

Risk and Autonomy

For automated system performance to be trusted and effective, a strategy for autonomy that enables the lowest mission risk in balancing human workload with automation should be followed

Mission Stack

Measurement, modeling, and management of mission stack must have rigorous performance and risk metrics associated with them

Application Layer

The mission layer may be made up of multiple applications such as sensing, communication, tracking, situational awareness, command and control, etc.

-These methods must be integrated with one unified representation for validation and verification.

Compute Layer

Current computational infrastructures (cloud resources) are currently highly distributed and resource allocation is static. Making this process more dynamic will create resilient system performance.

Critical DOD Apps on MAP-Reduce Measurement Based Graph Cloud Computing Engine Analytics System Performance Verification **Computed System State Representation**

Network Layer

Advances such as software defined networks are changing stove piped network management to a heterogeneous management problem which requires dynamic assessment

Physical Layer

Commercial pressure on spectrum is changing the static and highly segregated assumptions about physical layer performance.

What is Dev-Ops?

Dev-Ops (Wikipedia) is a term used to refer to a set of practices that emphasize the collaboration and communication of both software developers and information technology (IT) professionals while automating the process of software delivery and infrastructure changes

Dev-Ops Approach (Wikipedia)

Pros: Rapid prototyping and deployment of new software as system requirements change (hours vs. months)

Cons: Dev-ops currently is still very manual with humans generating new code and only patches being executed by system

Automated Information Services

Automated information services are typically automated with 5 basic components

 Data ingest/subscription, information modeling, model checking/analysis, action model analysis, action publication

Unified Operation

Measure and verify information system properties among various system constraints

Unified Operation

Units of information translate across heterogeneous domains and can be used to measure and quantify system performance

- Taking this approach can lead to a unified systems and security strategy

State Space Analysis

 State space analysis allows assessment of risk to mission and embedded components on cloud

Current & Future DoD Architectures

An integrated framework to measure, model, and manage mission performance from the application to the physical asset enables the DoD to achieve mission performance guarantees in its future infrastructure.

