$\iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{6} t_{1} (2 \ \mathcal{A}^{\alpha_{i}}_{\ \alpha} \ \mathcal{A}_{i \ \theta}^{\ \theta} - 4 \ \mathcal{A}_{\alpha \ \theta}^{\ \theta} \ \partial_{i} f^{\alpha_{i}} + 4 \ \mathcal{A}_{i \ \theta}^{\ \theta} \ \partial^{i} f^{\alpha}_{\ \alpha} - 2 \ \partial_{i} f^{\theta}_{\ \theta} \partial^{i} f^{\alpha}_{\ \alpha} - 2 \ \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha}_{\ \alpha} + 4 \ \partial^{i} f^{\alpha}_{\ \alpha} \partial_{\theta} f^{\ \theta}_{\ i} - 6 \ \partial_{\alpha} f_{i \ \theta}$ $\partial^{\theta}f^{\alpha i} - 3\,\partial_{\alpha}f_{\theta i}\,\partial^{\theta}f^{\alpha i} + 3\,\partial_{i}f_{\alpha\theta}\,\partial^{\theta}f^{\alpha i} + 3\,\partial_{\theta}f_{\alpha i}\,\partial^{\theta}f^{\alpha i} + 3\,\partial_{\theta}f_{\alpha i}\,\partial^{\theta}f^{\alpha i} + 6\,\mathcal{A}_{\alpha\theta i}\,\left(\,\mathcal{A}^{\alpha i\,\theta} + 2\,\partial^{\theta}f^{\alpha i}\right)\right) + 0$ $r_{\underline{c}} \left(\partial_{i} \mathcal{A}_{\theta \ \kappa}^{\ \kappa} \partial^{\theta} \mathcal{A}_{\alpha \ \alpha}^{\alpha_{\alpha}} - \partial_{\theta} \mathcal{A}_{\kappa \ \kappa}^{\ \kappa} \partial^{\theta} \mathcal{A}_{\alpha}^{\alpha_{1}} - (\partial_{\alpha} \mathcal{A}_{\alpha}^{\alpha_{1}\theta} - 2 \partial^{\theta} \mathcal{A}_{\alpha \ \alpha}^{\alpha_{1}}) \left(\partial_{\kappa} \mathcal{A}_{\kappa \ \theta}^{\ \kappa} - \partial_{\kappa} \mathcal{A}_{\theta \ \nu}^{\ \kappa} \right) \right))[t, \ x, \ y, \ z] \ dz \ dy \ dx \ dt$ Wave operator $0^+\mathcal{A}^{\parallel \ 0^+f^{\parallel \ 0^+f^{\perp}}} \quad 0^-\mathcal{A}^{\parallel \ 0^+f^{\perp}}$ 0⁺*A*^{||}† 0 0

PSALTer results panel

${}^0{\mathscr A}^{\parallel}$ †	0	0	0	-t. 1	$1^+_\cdot\mathcal{A}^_{lphaeta}$	$^{1^{+}}_{\cdot}\mathcal{F}^{\perp}_{lphaeta}$	$1.^+f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{H}^{\perp}{}_{lpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$				
				$^{1^{+}}\mathcal{H}^{\parallel}$ $\dagger^{lphaeta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_{i}}{\sqrt{2}}$	$-\frac{i k t}{\sqrt{2}}$	0	0	0	0				
				$^{1.}^{+}\mathcal{A}^{\perp}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0				
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	0	0	0	0	0	0				
				$^{1}\mathcal{R}^{\parallel}\dagger^{lpha}$	0	0	0	$k^2 r_1 + \frac{t_1}{6}$							
				$^{1}\mathcal{H}^{\perp}\dagger^{lpha}$	0	0	0	$\frac{\frac{t_1}{1}}{3\sqrt{2}}$	$\frac{t}{3}$	0	$\frac{1}{3} i \sqrt{2} kt.$				
				$\frac{1}{2}f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0				
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ikt$.	$-\frac{1}{3}i\sqrt{2}kt_1$	0	$\frac{2 k^2 t}{3}$	$^{2,^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$2^+f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$	
											$^{2^{+}}\mathcal{A}^{\parallel}$ † lphaeta	t. 1/2	$-\frac{i k t}{\sqrt{2}}$	0	
											$2.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	k^2t .	0	
											$2^{-}\mathcal{A}^{\parallel} + ^{\alpha\beta\chi}$			t. <u>1</u> 2	
Saturated propagator															
	0.⁺σ∥ 0	0 ⁺ τ 0	. + τ [⊥]	$0^{-}\sigma^{\parallel}$											
0,+ σ †	0	0	0	0											

0.0

 $1.^{+}\tau^{\parallel} + \tau^{\alpha\beta} \left[\frac{i\sqrt{2}k}{t_{.}^{1} + k^{2}t_{.}^{1}} \frac{i(2k^{3}r_{.}^{2} - kt_{.}^{2})}{(1+k^{2})^{2}t_{.}^{2}} - \frac{-2k^{4}r_{.}^{2} + k^{2}t_{.}^{2}}{(1+k^{2})^{2}t_{.}^{2}} \right]$

·. τ"	T $\begin{bmatrix} t + k^2 t \\ 1 \end{bmatrix}$	$(1+k^2)^2 t_1^2$	$(1+k^2)^2 t_1^2$	U	U	U	U				
1 ⁻ c ⁻	1 † ^α 0	0	0	$\frac{1}{k^2 r_{.5}}$	$-\frac{1}{\sqrt{2} (k^2 r. + 2 k^4 r.)}$	0	$-\frac{i}{kr.+2k^3r.}_{5}$				
1. o	- † ^α 0	0	0	$-\frac{1}{\sqrt{2} (k^2 r_1 + 2 k^4 r_1)}$	$\frac{6k^2r.+t.}{2(k+2k^3)^2r.t.}$	0	$\frac{i (6 k^2 r. +t.)}{\sqrt{2} k (1+2 k^2)^2 r. t.}$				
1 ⁻ τ ¹	¹ † ^α 0	0	0	0	0	0	0				
1 ⁻ 7 ⁻	¹ † ^α 0	0	0	$\frac{i}{kr.+2k^3r.}$	$-\frac{i(6k^2r_1+t_1)}{\sqrt{2}k(1+2k^2)^2r_1t_1}$	0	$\frac{6 k^2 r. + t.}{(1 + 2 k^2)^2 r. t.}$	2 ⁺ σ αβ	$2^+_{\cdot} \tau^{\parallel}{}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$	
							$^{2,+}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t.}$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$		
							$\overset{2^+}{\cdot} \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t.}$	$\frac{4 k^2}{(1+2 k^2)^2 t_1}$	0	
							$e^{2}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	$\frac{2}{t}$	
Source constrai	nts										
Spin-parity form	Covariant	form							Multip	licities	
$^{0^{+}}\sigma^{\parallel} == 0$	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} == 0$								1		
$0^+_{\cdot} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{F}\right)$	$(\alpha)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}$	$\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha}$						1		
$0^+_{\cdot} \tau^{\perp} == 0$	$\frac{\partial^{+} \tau^{\perp} = 0}{\partial_{\beta} \partial_{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \beta} = 0}$										
$\frac{1}{2 i k 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} = 0} \qquad \partial_{\chi} \partial_{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} = \partial_{\chi} \partial^{\chi} \partial_{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\beta \alpha \chi}$											
$1 \cdot \tau^{\parallel \alpha} == 0$	$\frac{1}{1} \tau^{\parallel^{\alpha}} == 0 \qquad \qquad \partial_{\chi} \partial_{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\beta \chi} == \partial_{\chi} \partial^{\chi} \partial_{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\beta \alpha}$										
$i k i + \sigma^{\perp \alpha \beta} + i + \tau^{\perp \alpha \beta} = 0 \qquad \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 2 \partial_{\sigma} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\sigma} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} = 0$											
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$										
$-2 i k \stackrel{2^{+}}{\sim} \sigma^{\parallel}{}^{\alpha\beta} + \stackrel{2^{+}}{\sim} \tau^{\parallel}{}^{\alpha\beta} == 0 -i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi}{}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 5 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 5 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 6 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 6 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 6 \partial_{\delta} \partial^{\alpha} \partial^{$											
$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+$											

 $3\,\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\,(\Delta+\mathcal{K})^{\alpha\beta} + 3\,\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\,(\Delta+\mathcal{K})^{\beta\alpha} + 4\,i\,\,k^{\chi}\,\,\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta} -$

 $6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 6 \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 6 \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\beta \alpha} \partial^{\alpha} \partial^{\alpha$

 $2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau(\Delta+\mathcal{K})^{\chi\delta} - 2\ \eta^{\alpha\beta}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{\ \chi} - 4\,i\ \eta^{\alpha\beta}\ k^{\chi}\ \partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\chi}\sigma^{\delta}_{\ \delta}{}^{\epsilon}) == 0$

(No particles)

Massive spectrum

Total expected gauge generators:

Massless spectrum

Tote residue.	r. 5	$\overset{t}{\underset{1}{\cdot}}$	t. ²							
Polarisations:	2									
Unitarity conditions										

Ur $r_{.5} < 0 \&\& (t_{.1} < 0 || t_{.1} > 0)$