## Re-escritura de consultas

Clase 15

IIC 3413

Prof. Cristian Riveros

#### Re-escritura de consultas



Management System (DBMS Database

### Zoom al optimizador de consultas



### Plan lógico

#### Definición

Un plan lógico es un árbol ordenado y etiquetado  $\mathcal T$  tal que:

- label(h) es una relación,
- label(n) es un operador de algebra relacional y
- | children(n) | = arity(| label(n))

para todo nodo hoja  $h \in \text{nodes}(\mathcal{T})$  y nodo interno  $n \in \text{nodes}(\mathcal{T})$ .



#### Re-escritura de consultas

- 1. Convertir el árbol de parsing en un plan lógico.
- 2. Reescribe consulta aplicando reglas de algebra relacional.
- 3. Crea un set de planes lógicos prometedores para ser optimizados.

# Outline

Construcción de primer plan

Reglas de reescritura

Heuristicas

# Outline

Construcción de primer plan

Reglas de reescritura

Heuristicas

## ¿cómo convertimos un árbol de parsing en un plan lógico?

1. Combinamos las relaciones en el <FromList> con productos cruz:

$$R_1 \times \ldots \times R_n$$

2. Aplicamos selección con la condición C dada en el <Condition>:

$$\sigma_{<\texttt{Condition}>}(R_1 \times \ldots \times R_n)$$

3. Aplicamos proyección con las atributos dados en el <SelList>:

$$\pi_{\text{}} \left( \sigma_{\text{}} (R_1 \times \ldots \times R_n) \right)$$

## Ejemplo de árbol de parsing a plan lógico



## Uso de vistas (no materializadas)

Por cada vista V en un plan lógico P:

- $lue{}$  usamos su definición para construir un plan lógico P' para V.
- $lue{}$  colgamos P' en cada nodo que es mencionada en P.

## Uso de vistas (no materializadas)



## Uso de vistas (no materializadas)



Uso de consultas anidadas

Consultas anidada: consulta que contienen una subconsulta embebida en:

- FROM
- WHERE
- HAVING

### Uso de consultas anidadas

#### **Ejemplos**

#### Anidación en FROM:

SELECT DISTINCT pName, pYear FROM

```
Players, (
          SELECT
                  mld
                  Matches
          FROM
                  mGoals \ge 3
          WHERE
```

WHERE pld = mld

### Uso de consultas anidadas

```
Ejemplos
Anidación en WHERE:
     SELECT
             pName, pGoals
     FROM
             Players
                          SELECT MAX(pGoals)
              pGoals = (
     WHERE
                          FROM
                                   Players
     SELECT
             DISTINCT pName
     FROM
             Players
                                   mYear
              pYear IN
                          SELECT
     WHERE
                          FROM Matches
                          WHERE
                                  type = 'World Cup' )
```

#### Uso de consultas correlacionadas

Consulta correlacionada: consulta anidada que contienen una subconsulta embebida con una referencia a la consulta externa.

#### ¿cómo desanidamos estas consultas?

(ver pizarra)

# Outline

Construcción de primer plan

Reglas de reescritura

Heuristicas

### Reglas de reescritura de consultas

#### Definición

Dos consultas  $Q_1$  y  $Q_2$  en algebra relacional son equivalentes  $(Q_1 = Q_2)$  ssi:

para toda instancia D, se tiene que:  $Q_1(D) = Q_2(D)$ .

#### Reescritura de consultas

Dado una consulta Q, buscar una consulta Q' tal que:

- 1. Q = Q' y
- 2. evaluar Q' con un plan físico sea más eficiente.

#### ¿cómo encontramos Q'?

## Reglas de reescritura de consultas

Usando reglas muy sencillas de algebra relacional:

- 1. Conmutatividad.
- 2. Asociatividad.
- 3. Distributividad.
- 4. Distribución de selección (push-selection).
- 5. Distribución de proyección (push-projection).
- 6. Simplificación de productos.
- 7. Eliminación de duplicados.

Una de las grandes ventajas de algebra relacional!

#### Conmutatividad

Las siguientes consultas son equivalentes:

$$R \times S = S \times R$$
  
 $R \bowtie S = S \bowtie R$   
 $R \cap S = S \cap R$   
 $R \cup S = S \cup R$ 

Estas reglas son validas tanto para set- como bag-semantics.

- ¿es *p*-join conmutativo?
- ¿cuál es la importancia de estas reglas?

#### Asociatividad

Las siguientes consultas son equivalentes:

$$(R \times S) \times T = R \times (S \times T)$$
  
 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$   
 $(R \cap S) \cap T = R \cap (S \cap T)$   
 $(R \cup S) \cup T = R \cup (S \cup T)$ 

Estas reglas son validas tanto para set- como bag-semantics.

- ¿es *p*-join asociativo?
- ¿cuál es la importancia de estas reglas?

#### Distributividad

Las siguientes consultas son equivalentes:

$$R \cap_S (S \cup_S T) = (R \cap_S S) \cup_S (R \cap_S T)$$

¿qué ocurre para bag-semantics?

Selección: AND y OR

Las siguientes consultas son equivalentes:

$$\sigma_{p_1 \text{ AND } p_2}(R) = \sigma_{p_1}(\sigma_{p_2}(R)) = \sigma_{p_2}(\sigma_{p_1}(R))$$

$$\sigma_{p_1 \text{ OR } p_2}(R) = \sigma_{p_1}(R) \cup_S \sigma_{p_2}(R)$$

¿cuál es la utilidad de esta regla?

Las siguientes consultas son equivalentes:

$$\sigma_{p}(R \times S) = \sigma_{p}(R) \times S$$

$$\sigma_{p}(R \bowtie S) = \sigma_{p}(R) \bowtie S$$

$$\sigma_{p}(R \bowtie_{q} S) = \sigma_{p}(R) \bowtie_{q} S$$

$$\sigma_{p}(R \cap S) = \sigma_{p}(R) \cap S$$

si R tiene todos los atributos mencionados en p.

#### Análogamente:

$$\sigma_{p}(R \times S) = R \times \sigma_{p}(S)$$

$$\sigma_{p}(R \bowtie S) = R \bowtie \sigma_{p}(S)$$

$$\sigma_{p}(R \bowtie_{q} S) = R \bowtie_{q} \sigma_{p}(S)$$

$$\sigma_{p}(R \cap S) = R \cap \sigma_{p}(S)$$

si S tiene todos los atributos mencionados en p.

Si R y S tiene todos los atributos mencionados en p, simultáneamente:

$$\sigma_p(R \bowtie S) = \sigma_p(R) \bowtie \sigma_p(S)$$
  
 $\sigma_p(R \cap S) = \sigma_p(R) \cap \sigma_p(S)$ 

Las siguientes consultas son siempre equivalentes:

$$\sigma_p(R \cup S) = \sigma_p(R) \cup \sigma_p(S)$$

$$\sigma_p(R - S) = \sigma_p(R) - \sigma_p(S) = \sigma_p(R) - S$$

### Ejemplo

Considere las relaciones R(a, b) y S(b, c), transformar:

$$\sigma_{(a=1 \text{ OR } a=3) \text{ AND } b < c}(R \bowtie S)$$

- Una de las reglas mas importante de los optimizadores!
- ¿es siempre útil hacer push-selection?
- ¿puede ser útil hacer "pop-selection"?

### Proyección: push-projection

"Haremos push-projection siempre y cuando solo eliminamos atributos que no son usados por los ancestros de ese nodo"

### Proyección: push-projection

Las siguientes consultas son equivalentes:

$$\pi_{L}(R \bowtie S) = \pi_{L}(\pi_{M}(R) \bowtie \pi_{N}(S))$$

$$\pi_{L}(R \bowtie_{p} S) = \pi_{L}(\pi_{M}(R) \bowtie_{p} \pi_{N}(S))$$

$$\pi_{L}(R \times S) = \pi_{L}(\pi_{M}(R) \times \pi_{N}(S))$$

$$\pi_{L}(R \cup_{B} S) = \pi_{L}(R) \cup_{B} \pi_{L}(S)$$

$$\pi_{L}(\sigma_{p}(R)) = \pi_{L}(\sigma_{p}(\pi_{M}(R)))$$

si M y N no "interfieren" con el join ni la proyección de L.

### Ejemplo

Considere las relaciones R(a,b,c) y S(b,c,d), transformar:

$$\pi_{a,b}(R \bowtie S)$$

### Joins y productos

Las siguientes consultas son equivalentes:

$$R \bowtie_p S = \sigma_p(R \times S)$$
  
 $R \bowtie S = \pi_L(\sigma_q(R \times S))$ 

donde:

$$q := \bigwedge_{x \in \mathsf{attrib}(R) \ \cap \ \mathsf{attrib}(S)} R.x = S.x$$

$$L := \mathsf{attrib}(R) \cup_{S} \mathsf{attrib}(S).$$

¿cuál es la utilidad de esta regla?

### Eliminación de duplicados

Las siguientes consultas son equivalentes:

$$\delta(R \times S) = \delta(R) \times \delta(S)$$

$$\delta(R \bowtie S) = \delta(R) \bowtie \delta(S)$$

$$\delta(R \bowtie_{p} S) = \delta(R) \bowtie_{p} \delta(S)$$

$$\delta(\sigma_{p}(R)) = \sigma_{p}(\delta(R))$$

Siempre considerar que  $\delta(R) = R$  si R NO tiene duplicados como:

- R tiene una llave primaria.
- R es el resultado de un group-by.
- R es el resultado de operadores con set-semantics.

## GroupBy

- Reglas dependen mucho de las funciones de agregación.
- Algunas reglas:

$$\delta(\gamma_L(R)) = \gamma_L(R)$$
  
 $\gamma_L(\delta(R)) = \gamma_L(R)$  (\*)

(\*) si L considera funciones de agregación como MAX o MIN.

# Outline

Construcción de primer plan

Reglas de reescritura

Heuristicas

### ¿qué reglas usar?

#### No existe una regla única!

#### Uso de heurísticas:

- hacer push de las selecciones lo mas abajo posible.
- hacer push de las proyecciones lo mas abajo posible.
- proyectar y eliminar atributos que no se usarán.
- convertir los productos en equi-joins.
- elegir el mejor orden\* de joins, uniones o intersecciones.
- remover eliminación de duplicados.

### ¿qué reglas usar?



## ¿cómo decidir cuales planes lógicos son prometedores?

En base a (posibles criterios):

- tamaño de las relaciones intermedias.
- uso de índices.
- posibles sorting de los resultados.