Neural Networks for Visual Computing

Dr. Debdoot Sheet

Assistant Professor, Department of Electrical Engineering Principal Investigator, Kharagpur Learning, Imaging and Visualization Group

Indian Institute of Technology Kharagpur

www.facweb.iitkgp.ernet.in/~debdoot/

Contents

- Simple neuron
- Neural network formulation
- Learning with error backpropagation
- Gradient checking and optimization

Simple Neuron Model

Neural Network Formulation

Error in Prediction

Error Backpropagation

$$\mathbf{X}_{1}$$
 \mathbf{p}_{1} $\hat{\mathbf{p}}_{1}$
 \mathbf{X}_{2} \mathbf{p}_{2} $\hat{\mathbf{p}}_{2}$
 \mathbf{X}_{3} \mathbf{p}_{3} $\hat{\mathbf{p}}_{3}$
 \vdots \vdots \vdots
 \mathbf{X}_{n} \mathbf{p}_{n} $\hat{\mathbf{p}}_{n}$

$$J(\mathbf{W}) = \sum_{n} \|\mathbf{p}_{n} - \hat{\mathbf{p}}_{n}\|$$

$$\mathbf{W} = \arg\min_{\mathbf{W}} \{J(\mathbf{W})\}$$

$$\mathbf{W}^{(k+1)} = \mathbf{W}^{(k)} - \frac{\partial}{\partial \mathbf{W}^{(k)}} J(\mathbf{W})$$

Gradient Descent Learning

Understanding Gradient Descent

Take Home Messages

- Haykin, Simon, Neural Networks and Learning Machines, 2001.
- Toolboxes
 - Matlab Neural Network Toolbox (nprtool)
 - Python Theano, scikits-learn
 - Lua Torch, nn, cuDNN, nngraph