Examenul național de bacalaureat 2025 Proba E. c) Matematică M_mate-info BAREM DE EVALUARE ȘI DE NOTARE

Model

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$i \cdot z_1 + z_2 = 4i + i^2 + 2 - 4i =$	2n
	$l \cdot z_1 + z_2 = 4l + l + 2 - 4l =$	3 p
	=-1+2=1	2p
2.	$f(a) = 5$, de unde obţinem $a^2 - 3a = 0$	3p
	a=0 sau $a=3$	2p
3.	$\log_6(7x-5) = \log_6(x^2+x)$, deci $7x-5=x^2+x$, de unde obținem $x^2-6x+5=0$	3p
	x = 1, care nu convine, sau $x = 5$, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, numerele 27, 45, 63, 81 și 99 sunt multiplii	•
	impari de 9, deci sunt 5 cazuri favorabile, de unde obținem $p = \frac{5}{90} = \frac{1}{18}$	3p
5.	$m_{OB} = 2$	2p
	$m_{AC} = \frac{a}{3}$ și, cum $m_{OB} = m_{AC}$, obținem $a = 6$	3p
6.	$\sin B = \frac{3}{5}$	3p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot BC \cdot \sin B}{2} = \frac{1}{2} \cdot 6 \cdot 10 \cdot \frac{3}{5} = 18$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{vmatrix} = 0 \cdot 0 \cdot 0 + (-1) \cdot (-1) \cdot 1 + 0 \cdot 0 \cdot 0 - 1 \cdot 0 \cdot 0 - 0 \cdot (-1) \cdot 0 - 0 \cdot (-1) \cdot 0 =$	
	$ \det A = -1 0 0 = 0 \cdot 0 \cdot 0 + (-1) \cdot (-1) \cdot 1 + 0 \cdot 0 \cdot 0 - 1 \cdot 0 \cdot 0 - 0 \cdot (-1) \cdot 0 - 0 \cdot (-1) \cdot 0 = 0$	3p
	= 0 + 1 + 0 - 0 - 0 - 0 = 1	2p
b)	$B(x) \cdot A = \begin{pmatrix} -x & 0 & 1 \\ -1 & -x & 0 \\ 0 & -1 & -x \end{pmatrix}, \ A - B(x) \cdot A = \begin{pmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{pmatrix} =$	3р
		Ор
	$\begin{bmatrix} x \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = xI_3, \text{ pentru orice număr real } x$	2p
c)	$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $C(y) = A^{-1} P(y) = \begin{pmatrix} 0 & -1 & -x \\ y & 0 & 1 \end{pmatrix}$ negative entry	
	$A^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}, C(x) = A^{-1} \cdot B(x) = \begin{pmatrix} 0 & -1 & -x \\ x & 0 & -1 \\ 1 & x & 0 \end{pmatrix}, \text{ pentru orice număr real } x$	3р
	$C(x)-C(y) = \begin{pmatrix} 0 & 0 & -x+y \\ x-y & 0 & 0 \\ 0 & x-y & 0 \end{pmatrix} = (y-x)A, \text{ pentru orice numere reale } x \text{ §i } y$	2 p

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

2.a)	$1*3=1^2 \cdot 3 + 1 \cdot 3^2 + 1 + 3 =$ $= 3 + 9 + 4 = 16$	3p
	=3+9+4=16	2p
b)	$x*\frac{2}{x} = \frac{3x^2 + 6}{x}$, pentru orice număr real nenul x	3 p
	$\frac{3x^2+6}{x} = 9x$, de unde obţinem $x = -1$ sau $x = 1$, care convin	2p
c)	m * n = (m+n)(mn+1), pentru orice numere întregi m și n	2p
	$(m+n)(mn+1)=1$ și, cum m și n sunt numere întregi, cu $m \le n$, obținem perechile $(0,1)$ și $(-2,1)$	3p

SUBIECTUL al III-lea

(30 de puncte)

	· · · · · ·	,
1.a)	$f'(x) = \frac{\frac{1}{x} \cdot x^3 - 3x^2 \ln x}{x^6} =$	3p
	$=\frac{x^2 - 3x^2 \ln x}{x^6} = \frac{1 - 3\ln x}{x^4}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln x}{x^3} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{3x^2} = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Rightarrow x = \sqrt[3]{e}$; pentru orice $x \in (0, \sqrt[3]{e}]$, $f'(x) \ge 0$, deci f este crescătoare pe $(0, \sqrt[3]{e}]$ și, pentru orice $x \in [\sqrt[3]{e}, +\infty)$, $f'(x) \le 0$, deci f este descrescătoare pe $[\sqrt[3]{e}, +\infty)$	2p
	$\lim_{x \to 0} f(x) = -\infty, \ f(\sqrt[3]{e}) = \frac{1}{3e} \text{ si } f \text{ este continuă, deci mulțimea numerelor reale } m \text{ pentru}$ care ecuația $f(x) = m$ are cel puțin o soluție este $\left(-\infty, \frac{1}{3e}\right]$	3 p
2.a)	$\int_{1}^{4} \left(f(x) - e^{x} \right) dx = \int_{1}^{4} \left(x^{2} - 1 \right) dx = \left(\frac{x^{3}}{3} - x \right) \Big _{1}^{4} =$	3 p
	$=\frac{64}{3}-4-\left(\frac{1}{3}-1\right)=18$	2p
b)	$\int_{1}^{2} \frac{e^{x}}{f(x) - x^{2}} dx = \int_{1}^{2} \frac{e^{x}}{e^{x} - 1} dx = \int_{1}^{2} \frac{\left(e^{x} - 1\right)'}{e^{x} - 1} dx = \ln\left(e^{x} - 1\right)\Big _{1}^{2} =$	3p
	$= \ln(e^2 - 1) - \ln(e - 1) = \ln(e + 1)$	2p
c)	$\int_{0}^{1} \frac{x}{f(x)+1} dx = \int_{0}^{1} \frac{x}{e^{x}+x^{2}} dx \text{ si, cum } e^{x}+x^{2} \ge e^{x} \text{, pentru orice } x \in [0,1], \text{ obținem relația}$ $\int_{0}^{1} \frac{x}{f(x)+1} dx \le \int_{0}^{1} x e^{-x} dx$	3 p
	$\int_{0}^{1} xe^{-x} dx = \int_{0}^{1} x\left(-e^{-x}\right)' dx = -e^{-x}\left(x+1\right) \Big _{0}^{1} = 1 - \frac{2}{e}, \det \int_{0}^{1} \frac{x}{f(x)+1} dx \le 1 - \frac{2}{e}$	2p