GRINN - GARMENT RECOGNITION IN NEURAL NETWORKS

NEHA PATIL, AKANKSHA BHALLA, PRASHANT MADAAN, THAO TRAN, ANTONIO ORR

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE

IN ASSOCIATION WITH: 2ULAUNDRY

Computer Vision's state-of-the-art solution to cataloging clothes

ABSTRACT

- 2ULaundry, a company that handles your laundry for you, has received customer complaints about "missing" clothes due to lack of proper cataloging.
- We have devised a model that efficiently tracks the category and number of garments for every customer.
- This computer vision solution will help solve logistics and routing for 2ULaundry.

OUR OWN DATASET

Example images from our dataset.

CHALLENGES

Multi-labeling and **Data Creation** Generalization of Labels Class **Imbalance**

TRAINING DATASET

Example images of different categories and attributes in DeepFashion dataset that is used for training.

TRAINING DATASET

Number of images for top 20 categories in DeepFashion dataset.

TRAINING DATASET

Example images of different categories in ETH80k Fashion dataset that is used for training.

MODEL

NOTES ABOUT MODEL

- Proposed model and algorithm can work with video directly without having a person pick the best frames to make predictions on.
- With the overhead camera, we can capture, detect, and store the garments for every customer.

DEMO VIDEO

RESULTS

Some example outputs from our pipeline. On the left-hand side of each example, top 5 predicted labels are shown along with their votes. Ground truth is displayed with green color. In case the ground truth and top-most predicted label differ, red represents the top predicted label.

ACCURACY

Performance of our model on the test video using different training datasets.

COMPARISIONS

Methods	Category	
	top-3	top-5
WTBI	43.73	66.26
DARN	59.48	79.58
FashionNet	82.58	90.17
LU et al.	86.72	92.51
Corbiere et al.	86.30	92.8
Wang et al.	90.99	95.78
Liu et al. (State-of-the-Art)	91.16	96.12
OURS	81.40	93.02

Comparative analysis of experimental results on the DeepFashion dataset. Results from our model are marked in bold.

ACKNOWLEDGEMENTS

Adjunct professor, CCI: Stephen Welch

Head of R&D, 2ULaundry: Gregory Baker

GITHUB

https://github.com/thaotrongtran/GRINN

OTHER LINKS

- 2ULaundry: https://www.2ulaundry.com/
- DeepFashion Dataset & Paper
- ETH 80K Dataset & Paper
- State-of-the-art comparisons on DeepFashion

