	Jan 26
Recall: We study the Gambler I ruin problem	Jan 26
p(n) = P(R Xo=u)	
We showed (by conditioning on the first ex that $p(n) = p(n+1)p + p(n-1)(1-p)$	rent)
that p(n) = p(n+1)p+p(n-1)(1-p)	04n K
with boundary condition p(0):1 and q	
To solve this recurrence equation, the general is to first solve the associated characterist equation (see week 2 online page)	
is to first solve the associated characterist	<u>~</u>
equation (see week 2 online page)	
$X = X^{2}p + (1-p) = pX^{2} - X + (1-p)$	
s the roots allow to find a general solul	ion
of $p(n) = p(n+1)p + p(n-1)(1-p) +$ depends on 2 constants.	hat
- to determine the constant, we use the	John Ann
conditions.	
COUNT NOOS.	

Cax $p = \frac{1}{2}$: By solving $p \times^2 - X + (1-p) = 0$ we find $\Delta = 0 = 0$ one root $X = \frac{1}{2} = 1$ In this case the general solution is $p(n) = \alpha \times^n + \beta \cdot n \times^n$, where α and β are constants

Conclusion:
$$P(ruin | X_0 = n) = \int_{-\infty}^{\infty} \frac{1 - \alpha^{-1}}{\alpha^{N-1}} i \int_{-\infty}^{\infty} p + \frac{1}{2} and where$$

$$1 - \frac{n}{N} i \int_{-\infty}^{\infty} p = \frac{1}{2}$$

· We saw that the states in \[1,..., N-13 were transient (i.e the probability of revisiting the state is < 1). Can we find this probability \(fi \)?

Answer: YES! -> see Jupyter Note book and more properties on recurrence and transience.

Proporties of transience and recoverence.

· Let Ni = # f n > 0 | Xn = i }

No = How many times Xn was eq. to O N, = r r r r r r

Ruk: Ni is a random variable on MUStoo?

Ni = \frac{1}{2} (\text{Xn} = \text{i});

Where I(Xn=i) (indicator) = I if Xn=i
function) = O else

 $E\left(1_{(X_{n}=i)}\right) = Pr\left(X_{n}=i\right)$

$$(=1. Pr(I(x_{n=i})=1)$$

+0. $Pr(I(x_{n=i})=0)$

Interpretation: A recurrent state is re-visited or. by many times, while for a transient state, the chaid doesn't religit the state after a certain time

Proof: (i) $fi = 1 \implies \text{the process returns to } i \text{ W.p.}$ so $P(N; \ge 1 \mid X_0 = i) = 1$, but after returning, the process essentially starts afresh, so it returns again

so $P(N; \ge 2) X_0 = i) = 1$ etc.

So $\forall M P(N; \geq M \mid X_0 = i) = 1$ $\Rightarrow \forall k \in IN P(N; = k \mid X_0 = i) = 0$ So $P(N; = \omega \mid X_0 = i) = 1$

