Project Report: PowerPulse: Household Energy Usage Forecast

Project Goal:

To develop a highly accurate machine learning model to predict household energy consumption (Global Active Power) using historical, minute-by-minute data, and provide actionable insights into consumption drivers.

Best Model Selected: Extreme Gradient Boosting (XGBoost)

1. Approach and Methodology

The project followed a standard time-series machine learning pipeline, strictly maintaining the chronological order of data to ensure the training data chronologically precedes the test data.

1.1 Data Source

The dataset used was the Individual Household Electric Power Consumption dataset, containing 47 months of minute-by-minute data (over 2 million observations).

1.2 Data Splitting Strategy

Due to the time-series nature of the data, a sequential split was used to prevent data leakage:

- Training Set: The first 80% of the data (historical consumption)
- Testing Set: The last 20% of the data (future consumption)

2. Data Analysis and Preprocessing

The initial Exploratory Data Analysis (EDA) revealed several critical data quality issues that required meticulous cleaning:

2.1 Initial Cleaning and Conversion

- Missing Values: The original data contained '?' symbols representing missing values in all measurement columns (totaling 25,979 missing points). These were converted to NaN.
- Time Series Indexing: The separate 'Date' and 'Time' columns were combined, converted to a Datetime object, and set as the DataFrame's index.
- Imputation: Missing values were filled using a combination of Forward Fill (ffill) and Backward Fill (bfill) to maintain data continuity in the time series.

2.2 Feature Engineering

The model's accuracy was enhanced by deriving features from the raw data:

- Time-Based Features: Hour, DayOfWeek, Month, Year, and WeekOfYear were extracted to capture seasonal and cyclical consumption patterns.
- Lagged Feature: A 24-hour Rolling Mean (Rolling_Mean_24h) of the target variable was created and lagged by one period.

2.3 Feature Scaling

All numerical features (e.g., Voltage, Global_intensity) were scaled using **MinMaxScaler** to normalize their range between 0 and 1.

3. Model Selection and Evaluation

Three distinct regression models were trained and evaluated on the test set.

3.1 Model Comparison Table

The models were assessed using the required project metrics: RMSE, MAE, and R-Squared (R^2).

Model	Root Mean Squared Error (RMSE)	Mean Absolute Error (MAE)	R-Squared (R2)
Linear Regression (Baseline)	0.0390	0.0234	0.9980
Random Forest Regressor	0.0400	0.0251	0.9979
XGBoost Regressor (Selected)	0.0356	0.0236	0.9984

3.2 Selected Model and Performance

The **XGBoost Regressor** was selected as the final model due to its superior performance across all metrics, achieving the lowest RMSE (0.0356) and the highest explanatory power (R^2 of 0.9984).

3.3 Visualization of Predictive Performance

The plot below demonstrates the model's high accuracy on unseen test data.

XGBoost Predictive Performance: Actual vs. Predicted Power

4. Insights and Recommendations

4.1 Feature Importance Analysis

The Feature Importance plot reveals the drivers of consumption:

The most influential features are:

- 1. **Global_intensity:** ~99.5% Importance
- 2. Sub_metering_1 & Sub_metering_3: ~0.1% combined Importance

This overwhelmingly demonstrates that the total power consumed is primarily governed by the instantaneous current draw (Global_intensity).

4.2 Energy Trends Visualization

The Energy Trends plot illustrates the predictable cyclical behavior of consumption, showing clear daily peaks and low overnight usage.

4.3 Actionable Recommendations

Based on the model performance and feature insights, the following recommendations are made:

- 1. **Focus on Current Draw:** Future monitoring systems should prioritize high-frequency current sampling, as this metric provides the most immediate predictive value.
- 2. **Targeted Energy Management:** To reduce overall consumption, households should focus on the specific circuits tracked by Sub-metering 1 and 3.
- 3. **Real-Time Anomaly Detection:** The highly accurate XGBoost model can be deployed for real-time anomaly detection, signaling a fault or high-consumption event.