	Студент, группа	Чечеткин И. А.
Лабораторная работа № 3	Дата выполнения	
	Подпись	
Метод имитации отжига	Дата отчёта	
	Оценка	
	Подпись	

Цель работы:

- 1. познакомиться с методом имитации отжига;
- 2. реализовать алгоритм на языке программирования;
- 3. получить значения минимума функции на некоторых входных данных.

Исследуемая функция:

$$f(x,y) = x^2 + 5\frac{|x|}{\sqrt{|x| + 0.1}} + \frac{|x - 0.2|}{\sqrt{|x - 0.2| + 0.01}} + \frac{|x + 0.2|}{\sqrt{|x + 0.2| + 0.01}} + y^2.$$

График исследуемой функции:

Полученные результаты:

радиус поиска R	температура Т	кол-во итераций N	X	y	f(x, y)
2.0	1.0	100	-0.164146	0.299630	2.476386
1.0	20.0	50	0.276907	-1.074900	4.431628
1.0	100.0	50	-0.213127	-2.945829	11.349116
0.5	100.0	25	0.000254	0.826744	1.560382
1.0	1.0	100	0.006295	0.034139	0.970501
0.5	100.0	10	0.160743	0.201890	2.409911
0.3	1.0	100	-0.011509	-0.465819	1.261922

Рассчитанный с помощью мат. пакета минимум: 0.872872 при $x=0,\ y=0.$

Исходный код программы

```
from __future__ import division
from random import random
import numpy as np

def func(x, y):
    return x ** 2 + 5 * abs(x) / np.sqrt(abs(x) + 0.1) + \
    abs(x - 0.2) / np.sqrt(abs(x - 0.2) + 0.01) \
    abs(x + 0.2) / np.sqrt(abs(x + 0.2) + 0.01) \
    + y ** 2

    r = float(raw_input('Input R: '))
    t = float(raw_input('Input R: '))
    n = int(raw_input('Input N: '))

    x0 = (random() - 0.5) * r
    y0 = (random() - 0.5) * r
    f0 = func(x0, y0)

for i in range(n):
    x = (random() - 0.5) * r + x0
    y = (random() - 0.5) * r + y0
    i = func(x, y)
    if f < f0:
    x0, y0, f0 = x, y, f
else:
    #print ' jump from {1:.5f} to {0:.5f} '.format(f, f0)
    x0, y0, f0 = x, y, f
    x0, y0, f0 = x
```