

Monte-Carlo: récap des séances passées

On est souvent confronté à calculer une quantité du type: $I \stackrel{\text{def}}{=} \int \varphi(x) f(x) dx$.

Par exemple, avec:		
1. $f = ext{densit\'e non normalis\'ee}$ et φ =	= 1: I = constante de normalisation	

_

4. $f = \text{densit\'e à posteriori normalis\'ee et } \varphi : x \mapsto x : I = \text{Estimateur de Bayes.}$

2. $f = \text{densit\'e normalis\'ee} \text{ et } \varphi = \mathbb{1}_A$: I = Probabilit'e d'un 'evenement

3. $f = \text{densit\'e normalis\'ee} \text{ et } \varphi: x \mapsto x^k: I = \text{moment d'ordre } k \text{ de loi a posteriori.}$

Monte-Carlo: récap des séances passées

On est souvent confronté à calculer une quantité du type: $I \stackrel{\text{def}}{=} \int \varphi(x) f(x) dx$.

Par exemple, avec:

- 1. f = densit'e non normalis'ee et $\varphi = 1$: I = constante de normalisation
- 2. $f = \text{densit\'e normalis\'ee} \text{ et } \varphi = \mathbbm{1}_A$: I = Probabilit'e d'un 'evenement
- 3. $f = \text{densit\'e normalis\'ee} \text{ et } \varphi: x \mapsto x^k: I = \text{moment d'ordre } k \text{ de loi a posteriori.}$
- 4. f = densit'e à posteriori normalis\'ee et $\varphi: x \mapsto x$: I = Estimateur de Bayes.

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Monte-Carlo: récap des séances passées

On est souvent confronté à calculer une quantité du type: $I \stackrel{\text{def}}{=} \int \varphi(x) f(x) dx$.

