# SECURITY OF CYCLOTOMIC EXTENSIONS AGAINST THE [ELOS] ATTACK ON RLWE

HAO CHEN, KRISTIN LAUTER, AND KATE STANGE

#### 1. Introduction

Let  $m \geq 1$  be any integer and let  $K = \mathbb{Q}(\zeta_m)$ . We will show that under a simplifying assumption, the image of a reduced RLWE error distribution  $D_{\mathcal{R}} \pmod{\mathfrak{q}}$  for a prime  $\mathfrak{q}$  above q, will be non-distinguishable from the uniform distribution  $U(\mathbb{F}_q)$ . The tool we use is Fourier analysis on finite fields.

First, we introduce a class of distributions indexed by even integers  $k \geq 2$ , aiming at approximating discrete Gaussians over  $\mathbb{Z}$ . Here k plays the role of the standard deviation  $\sigma$  for discrete Gaussians.

**Definition 1.1.** For any even integer  $k \geq 2$ , let  $\mathcal{V}_k$  denote the distribution over  $\mathbb{Z}$  such that

$$\operatorname{Prob}(\mathcal{V}_k = m) = \begin{cases} \binom{k}{m + \frac{k}{2}} & \text{if } |m| \leq \frac{k}{2} \\ 0 & \text{otherwise} \end{cases}$$

When q > k, we abuse notations and let  $\mathcal{V}_k : \mathbb{F}_q \to \mathbb{R}$  denote the probability density function of the distribution ' $\mathcal{V}'_k$  over  $\mathbb{F}_q$  defined by the same formula.



FIGURE 1.1. Probability density function of  $V_8$ 

**Definition 1.2** (Modified error distribtuion). Let  $K = \mathbb{Q}(\zeta_m)$  with degree n ring of integers R. Let q be a prime and let  $k \geq 2$  be an even integer. Then a sample from the distribution  $PD_{m,q,k}$  is

$$e = \sum_{i=0}^{n-1} e_i \zeta_m^i \pmod{qR},$$

where the  $e_i$  are sampled independently from  $\mathcal{V}_k$ .

**Assumption** Keeping the above notations,  $\mathcal{R}=(K,q,\sigma,s)$  be an RLWE instance. We assume that the distributions  $PD_{m,q,[\sqrt{2\pi}\sigma]}$  are  $D_{\mathcal{R}}$  are "close modulo  $\mathfrak{q}$ ", in the sense that the two distributions  $PD_{m,q,[\sqrt{2\pi}\sigma]}$  (mod  $\mathfrak{q}$ ) and  $D_{\mathcal{R}}$  (mod  $\mathfrak{q}$ ) are indistinguishable.

We will analyze the distance between  $PD_{m,q,[\sqrt{2\pi}\sigma]} \pmod{\mathfrak{q}}$  and the uniform distribution over  $R/\mathfrak{q}$ .

#### 2. After introduction

We recall the definition and key properties of Fourier transform over finite fields. Suppose f is a real-valued function on  $\mathbb{F}_q$ . The Fourier transform of f is defined as

$$\hat{f}(s) = \sum_{a \in \mathbb{F}_q} f(a)\bar{\chi_s}(a),$$

where

$$\chi_s(a) := e^{2\pi i a s/q}$$

We have the inversion formula:

$$f(a) = \frac{1}{q} \sum_{s \in \mathbb{F}_q} \hat{f}(s) \chi_s(a).$$

Let 1 denote the constant function  $f \equiv 1$ , and let  $\delta$  denote the characteristic function of the one-point set  $\{0\} \subseteq \mathbb{F}_q$ .

#### Proposition 2.1.

- (1) The transform of the  $\delta$  function is  $\hat{\delta} = 1$ .
- (2) The transform of  $\mathbf{1}$  is  $\hat{\mathbf{1}} = q\delta$ ; if U the uniform distribution over  $\mathbb{F}_q$ , then  $\hat{U} = \delta$ .
- (3) convolution becomes product.

**Lemma 2.2.** For all even integers  $k \geq 2$ ,

$$\hat{\mathcal{V}}_k(s) = \cos\left(\frac{\pi s}{q}\right)^k, (\forall s \in \mathbb{F}_q).$$

*Proof.* Routine calculation.

Now we consider the error distribution we obtained from mapping RLWE errors to  $\mathbb{F}_q$ .

**Definition 2.3.** Suppose  $\mathbf{a} = a_1, \dots, a_n$  is a vector in  $\mathbb{F}_q^n$ . Define the following random variable with values in  $\mathbb{F}_q$ 

$$e(\mathbf{a}, k, q) := \sum_{i=1}^{n} a_i e_i \pmod{q}$$

where the  $e_i$  are independent variables with distribution  $\mathcal{V}_k$ . Let E denote its probability density function: E(b) = Prob(e = b) for  $b \in \mathbb{F}_q$ .

Next, using the fact that the probability of a sum of two varaibles is a convolution, we prove

## Lemma 2.4.

$$\hat{E}_{\mathbf{a},k,q}(s) = \prod_{i=1}^{n} \cos\left(\frac{a_i \pi s}{q}\right)^k$$

In particular,  $\hat{E}(0) = 1$  for all  $\mathbf{a}$ , k and q.

*Proof.* Routine calculation.

Next we restrict our attention to cyclotomic fields. Let  $m \geq 1$  be an integer and let  $q \equiv 1 \pmod m$  be a prime. Then q splits completely in the cyclotomic field  $K = \mathbb{Q}(\zeta_m)$ . Let  $\alpha \in \mathbb{F}_q$  be a primitive n-th root of unity. Let

$$e = e(\alpha) = \sum_{i=0}^{n-1} e_i \alpha^i.$$

Then  $e \leftarrow PD_{m,q,k}$ . Let E denote its density function of e. Recall that U denotes the density function of the uniform distribution: U(a) = 1/q for all  $a \in \mathbb{F}_q$ . Now We can compute (E - U)(a) for any  $a \in \mathbb{F}_q$  using the Fourier inversion formula, using the notations in the beginning of this section,

$$E(a) - U(a) = \frac{1}{q} \sum_{s \in \mathbb{F}_q} (\hat{E}(s) - \hat{U}(s)) \chi_s(a)$$
$$= \frac{1}{q} \sum_{s \in \mathbb{F}_q} (\hat{E}(s) - \delta(s)) \chi_s(a)$$
$$= \frac{1}{q} \sum_{s \in \mathbb{F}_q, s \neq 0} \hat{E}(s) \chi_s(a).$$

Since  $|\chi_s(a)| \leq 1$  for all a and all s, we have

### Proposition 2.5.

$$\boxed{|E(a)-1/q| \leq \frac{1}{q} \sum_{y \in \mathbb{F}_q, y \neq 0} |\hat{E}(y)|, \, (\forall a \in \mathbb{F}_q)}$$

Let  $\epsilon(m,q,k,\alpha)$  denote the right hand side of the above inequality, i.e.,

$$\epsilon(m, q, k, \alpha) = \frac{1}{q} \sum_{y \in \mathbb{F}_q, y \neq 0} \prod_{i=0}^{n-1} \cos \left( \frac{\alpha^i \pi y}{q} \right)^k.$$

We let  $\alpha$  run over all primitive n-th root of unities in  $\mathbb{F}_q$  and define

$$\epsilon(m,q,k) := \max_{\alpha: \varphi_m(\alpha) = 0} \epsilon(m,q,k,\alpha)$$

The punchline of our argument is: the value  $\epsilon(m,q,k)$  is usually negligibly small. As a result, the distribution  $PD_{m,q,k} \pmod{\mathfrak{q}}$  is computationally indistinguishable from uniform for all  $\mathfrak{q}$ . The following is a table of data, to demonstrate how small it is.

| Table 2.1. $f = 1$ |         |                                        |  |
|--------------------|---------|----------------------------------------|--|
| m                  | q       | $\left[\log_2(\epsilon(m,q,2))\right]$ |  |
| 244                | 1709    | -230                                   |  |
| 101                | 1213    | -177                                   |  |
| 256                | 3329    | -194                                   |  |
| 256                | 14081   | -208                                   |  |
| 55                 | 10891   | -44                                    |  |
| 197                | 3547    | -337                                   |  |
| 96                 | 4513    | -35                                    |  |
| 160                | 20641   | -61                                    |  |
| 145                | 19163   | -176                                   |  |
| 101                | 101     | -4                                     |  |
| 13                 | 1000039 | -12                                    |  |
| 512                | 7681    | -455                                   |  |
| 512                | 10753   | -431                                   |  |
| 512                | 19457   | -414                                   |  |
|                    |         |                                        |  |

On row -1 and -2 from the above table, we can see the effect of taking the ramified prime, or taking  $q \gg n$ .

Remark 2.6. It is possible to generalize this cryptoanalysis to higher degree primes, where we are looking at general finite fields  $\mathbb{F}_{q^f}$ . In this situation we should interpret  $\chi_s(a) = e^{2\pi i T r(as)/q}$ . Separability tells us this is an isomorphism between  $\mathbb{F}_q$  and its dual, and we can define the Fourier transform this way. So everything goes through? We just want to add a trace to everything, i.e.,

$$E_{\mathbf{a},k,q}(s) = \prod_{i=1}^{n} \cos\left(\frac{\pi Tr(a_i s)}{q}\right)^k$$

Note this is well-defined when k is even, which we always assume.

We have a table for degree 2 primes.

| Table 2.2. $f = 2$ |     |                             |  |
|--------------------|-----|-----------------------------|--|
| m                  | q   | $[\log_2(\epsilon(m,q,2))]$ |  |
| 53                 | 211 | -61                         |  |
| 55                 | 109 | -48                         |  |
| 63                 | 881 | -33                         |  |
| 64                 | 127 | -37                         |  |
| 64                 | 191 | -35                         |  |
| 64                 | 383 | -31                         |  |

## 3. References

https://en.wikipedia.org/wiki/Fourier\_transform\_on\_finite\_groups http://arxiv.org/pdf/0909.5471v1.pdf

https://books.google.com/books?id=-B2TA669dJMC&pg=PA251#v=onepage&q&f=false