極限の7公式

$$\circ \lim_{x\to 0} \frac{\sin x}{x} = 1$$

$$\circ \lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

$$\circ \lim_{x\to 0} \frac{\tan x}{x} = 1$$

$$\circ \lim_{n \to \pm \infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$\circ \lim_{t\to 0} (1+t)^{\frac{1}{t}} = e$$

$$\circ \lim_{t \to 0} \frac{\log(1+t)}{t} = 1$$

$$\circ \lim_{t\to 0} \frac{e^t - 1}{t} = 1$$

1. 極限の計算・極限の応用

1

次の極限値を求めよ。

$$(1) \lim_{x\to 0} \frac{\sin 3x}{\tan 2x}$$

(2)
$$\lim_{x \to 1} \frac{\cos\left(\frac{\pi}{2}x\right)}{x - 1}$$

$$(3) \lim_{n\to\infty} \left(1-\frac{4}{n}\right)^n$$

(4)
$$\lim_{x\to 0} \frac{\log(1+3x)}{2x}$$

(4)
$$\lim_{x \to 0} \frac{\log(1+3x)}{2x}$$
 (5) $\lim_{x \to \infty} 2x \{ \log(x+2) - \log x \}$ (6) $\lim_{x \to 0} \frac{e^{\sin^2 3x} - 1}{x \log(1+x)}$

(6)
$$\lim_{x \to 0} \frac{e^{\sin^2 3x} - 1}{x \log(1 + x)}$$

(7)
$$\lim_{x\to 0} \frac{1-\cos(1-\cos x)}{x^4}$$
 (8) $\lim_{x\to +0} \frac{\log(\sin x)}{\log x}$

(8)
$$\lim_{x \to +0} \frac{\log(\sin x)}{\log x}$$

2

1直線上に3点O,A,Bをこの順序にとり,OA=1,AB=2となるようにする。Oを通 り OA に垂直な直線上の動点を P とし, OP = h, $\angle OPA = \alpha$, $\angle APB = \beta$ とするとき, $\lim_{h\to\infty}\frac{\alpha}{\beta}$ を求めよ。

(千葉大)

・一日を大切にせよ。その差が人生の差につながる。

母線の長さが1である正n角錐を考える。つまり、底面を正n角形 $A_1A_2\cdots A_n$ 、頂点をOと表せば $OA_1=OA_2=\cdots=OA_n=1$ である。そのような正n角錐のなかで最大の体積をもつものを C_n とする。

- (1) C_n の体積 V_n を求めよ。
- (2) $\lim_{n\to\infty} V_n$ を求めよ。

(東工大)

4

n を 2 以上の整数とする。平面上に n+2 個の点 O , P_0 , P_1 , \cdots , P_n があり,次の 2 つの条件をみたしている。

- ① $\angle P_{k-1}OP_k = \frac{\pi}{n} (1 \leq k \leq n)$, $\angle OP_{k-1}P_k = \angle OP_0P_1 (2 \leq k \leq n)$
- ② 線分 OP_0 の長さは1,線分 OP_1 の長さは $1+\frac{1}{n}$ である。

線分 $P_{k-1}P_k$ の長さを a_k とし, $s_n = \sum_{k=1}^n a_k$ とおくとき, $\lim_{n \to \infty} s_n$ を求めよ。

(東京大)

・決して諦めてはいけない。諦めるその時その場所でこそ, 流れが変わろうとしているのだから。

2. 微分法の応用

1

a は実数とする。曲線 $y=e^x$ 上の各点における法線のうちで,点 P(a,3) を通るものの個数を n(a) とする。n(a) を求めよ。

(大阪大)

2

a を実数とし、x>0 で定義された関数 f(x), g(x) を次のように定める。

$$f(x) = \frac{\cos x}{x}$$

$$g(x) = \sin x + ax$$

このとき y=f(x) のグラフと y=g(x) のグラフが x>0 において共有点をちょうど 3 つ持 つような a をすべて求めよ。

(東京大)

・自分の実力の不十分なことを知ることこそ,自分の実力になる。

曲線 $C: y=\frac{1}{x+2}$ (x>-2) を考える。曲線 C 上の点 $P_1\Big(0,\frac{1}{2}\Big)$ における接線を l_1 とし、 l_1 と x 軸との交点を Q_1 ,点 Q_1 を通り x 軸と垂直な直線と曲線 C との交点を P_2 とおく。以下同様に、自然数 n $(n\geq 2)$ に対して、点 P_n における接線を l_n とし、 l_n と x 軸との交点を Q_n 、点 Q_n を通り x 軸と垂直な直線と曲線 C との交点を P_{n+1} とおく。

- (1) l_1 の方程式を求めよ。
- (2) P_n の x 座標を x_n ($n \ge 1$) とする。 x_{n+1} を x_n を用いて表し、 x_n を n を用いて表せ。
- (3) l_n , x軸, y軸で囲まれる三角形の面積 S_n を求め, $\lim_{n\to\infty} S_n$ を求めよ。

(筑波大)

4

関数 $f(x) = xe^x + (1 - e^x)\log(1 - e^x)$ (x < 0) について, 次の問いに答えよ。

- (1) f(x) の増減と極値を調べ、y=f(x) のグラフの概形を描け。ただし、グラフの凹凸と変曲点は調べなくてよい。必要なら、 $\lim_{x\to -\infty} xe^x=0$ 、 $\lim_{x\to +0} x\log x=0$ を用いてもよい。
- (2) 曲線 $C_1: y=e^x+k$ と曲線 $C_2: y=x-e^x$ が共通接線を持つような, 実数 k の範囲を求めよ。

(旭川医科大)

・我々にとって最大の栄光は、一度も失敗しなかったことではなく、 倒れる度に必ず起き上がったことである。

座標平面において,点 P(0,1) を中心とする半径 1 の円を C とする。a を 0 < a < 1 を満たす実数とし,直線 y = a(x+1) と C との交点を Q, R とする。

- (1) △PQR の面積 *S*(*a*) を求めよ。
- (2) a が 0 < a < 1 の範囲を動くとき, S(a) が最大となる a を求めよ。

(東京大)

6

次の連立不等式で定まる座標平面上の領域 D を考える。

$$x^2 + (y-1)^2 \le 1$$
, $x \ge \frac{\sqrt{2}}{3}$

直線 l は原点を通り,D との共通部分が線分となるものとする。その線分の長さ L の最大値を求めよ。また,L が最大値をとるとき,x 軸と l のなす角 $\theta\left(0<\theta<\frac{\pi}{2}\right)$ の余弦 $\cos\theta$ を求めよ。

(東京大)

・行く価値のある場所には近道などひとつもない。

2つの数 $(0.99)^{99}$ と $(1.01)^{-101}$ との大小を比較せよ。

(名古屋大)

8

- (1) x>0 のとき, $\log\left(1+\frac{1}{x}\right)$ と $\frac{1}{x+1}$ の大小関係を調べよ。
- (2) $\left(1+\frac{2001}{2002}\right)^{\frac{2002}{2001}}$ と $\left(1+\frac{2002}{2001}\right)^{\frac{2001}{2002}}$ の大小関係を調べよ。

(名古屋大)

・自分自身に負けない限り、それは敗北ではないのです。

3. 定積分の計算

11次関数との合成型

- (1) $\int_{0}^{\frac{\pi}{2}} \sin 3x dx$ (2) $\int_{0}^{1} e^{2x-1} dx$ (3) $\int_{0}^{1} \sqrt{3-2x} dx$ (4) $\int_{0}^{1} \log(3x+1) dx$

② f,g,g'型

- (1) $\int_0^1 (2x+1)(x^2+x+1)^2 dx$ (2) $\int_0^1 xe^{-x^2} dx$ (3) $\int_0^2 x\sqrt{4-x^2} dx$

$3 \frac{f'}{f}$ \mathbb{Z}

- (1) $\int_0^1 \frac{2x+1}{r^2+r+1} dx$ (2) $\int_0^{\frac{\pi}{4}} \tan x dx$ (3) $\int_0^1 \frac{1}{e^x+1} dx$

4 円の一部型

$$(1) \int_0^1 \sqrt{1-x^2} \, dx$$

(1)
$$\int_0^1 \sqrt{1-x^2} dx$$
 (2) $\int_0^1 \sqrt{2x-x^2} dx$

・周りを巻き込む向上心で突き進め!!

5 置換積分法

(1)
$$\int_0^1 \frac{1}{\sqrt{4-x^2}} dx$$
 (2) $\int_0^1 \frac{1}{3+x^2} dx$ (3) $\int_1^2 \frac{x^3}{(x+2)^2} dx$

(2)
$$\int_0^1 \frac{1}{3+x^2} dx$$

(3)
$$\int_{1}^{2} \frac{x^{3}}{(x+2)^{2}} dx$$

6 部分積分法

$$(1) \int_0^\pi x^2 \cos x \, dx$$

(1)
$$\int_0^\pi x^2 \cos x \, dx$$
 (2) $\int_0^\pi x^2 \sin 2x \, dx$ (3) $\int_0^1 x^3 e^{-x} \, dx$

(3)
$$\int_{0}^{1} x^{3} e^{-x} dx$$

(4)
$$\int_0^1 (x^2 - 2x + 3)e^x dx$$
 (5) $\int_1^e x \log x dx$

7 工夫が必要な積分法

(1)
$$\int_{0}^{2\pi} \sqrt{1 + \cos x} \, dx$$

$$(2) \int_0^{\pi} \sin 3x \sin 2x \, dx$$

(1)
$$\int_0^{2\pi} \sqrt{1 + \cos x} \, dx$$
 (2) $\int_0^{\pi} \sin 3x \sin 2x \, dx$ (3) $\int_0^{\pi} \sin 5x \cos 3x \, dx$

$$(4) \int_0^\pi e^x \sin x \, dx$$

(4)
$$\int_0^{\pi} e^x \sin x \, dx$$
 (5) $\int_1^2 \frac{1}{x(x+1)} \, dx$

・何かを失うほど,何かを全力で求めなくてはならない。

4. 定積分と面積

1

実数 t>1 に対し, xy 平面上の点

$$\mathrm{O}(0$$
 , $0)$, $\mathrm{P}(1$, $1)$, $\mathrm{Q}\Big(t$, $\dfrac{1}{t}\Big)$

を頂点とする三角形の面積を a(t) とし、線分 OP , OQ と双曲線 xy=1 とで囲まれた部分の面積を b(t) とする。このとき

$$c(t) = \frac{b(t)}{a(t)}$$

とおくと, 関数 c(t) は t>1 においてつねに減少することを示せ。

(東京大)

2

曲線 $C: y = \sqrt{3} e \log x$ がある。ここに対数は自然対数で, e はその底とする。

- (1) 原点 O から曲線 C にひいた接線の方程式を求めよ。
- (2) (1) における接線の接点を A とする。曲線 C の下側にあって、x 軸と点 B で接し、かつ A で曲線 C と共通の接線をもつ円の中心を P とする。曲線 C と x 軸および円の弧 AB (中心角 $\angle APB$ < π に対する弧) で囲まれた図形の面積を求めよ。

(東北大)

・失敗を恐れるな。よいことは必ず失敗の後にやってくるのだから。

3つの曲線

$$C_1: y = \sin x \left(0 \le x < \frac{\pi}{2}\right)$$

$$C_2: y = \cos x \left(0 \le x < \frac{\pi}{2}\right)$$

$$C_3: y = \tan x \left(0 \le x < \frac{\pi}{2}\right)$$

について以下の問いに答えよ。

- (1) C_1 と C_2 の交点, C_2 と C_3 の交点, C_3 と C_1 の交点のそれぞれについて y 座標を求めよ。
- (2) C_1 , C_2 , C_3 によって囲まれる図形の面積を求めよ。

(筑波大)

4

a を正の実数とする。座標平面において曲線 $y=\sin x$ $(0 \le x \le \pi)$ と x 軸とで囲まれた図 形の面積を S とし、曲線 $y=\sin x$ $\left(0 \le x \le \frac{\pi}{2}\right)$ 、曲線 $y=a\cos x$ $\left(0 \le x \le \frac{\pi}{2}\right)$ および x 軸 で囲まれた図形の面積を T とする。このとき S:T=3:1 となるような a の値を求めよ。 (京都大)

・解けない問題があるってことは, 解ける問題が増えるっていう合図だよ。

5. 定積分で表された関数

1

関数 f(a) を次の式で与える。

$$f(a) = \int_{a-1}^{a} |x| e^{x} dx$$

a が $a \ge 0$ の範囲を動くとき, f(a) の最小値と, その最小値を与える a の値を求めよ。 (津田塾大)

2

自然数 n に対し, 関数

$$F_n(x) = \int_{x}^{2x} e^{-t^n} dt \quad (x \ge 0)$$

を考える。

- (1) 関数 $F_n(x)$ $(x \ge 0)$ はただ一つの点で最大値をとることを示し, $F_n(x)$ が最大となるような x の値 a_n を求めよ。
- (2) (1) で求めた a_n に対し, 極限値 $\lim_{n\to\infty}\log a_n$ を求めよ。

(筑波大)

・過去が知りたければ,現在の状況を見ろ 未来が知りたければ,現在の行動を見ろ

a>0, t>0 に対して定積分

$$S(a, t) = \int_0^a \left| e^{-x} - \frac{1}{t} \right| dx$$

を考える。

- (1) a を固定したとき, t の関数 S(a,t) の最小値 m(a) を求めよ。
- (2) $\lim_{a\to 0} \frac{m(a)}{a^2}$ を求めよ。

(東工大)

4

実数 x に対して

$$f(x) = \int_0^{\frac{\pi}{2}} |\cos t - x \sin 2t| dt$$

とおく。

- (1) 関数 f(x) の最小値を求めよ。
- (2) 定積分 $\int_0^1 f(x)dx$ を求めよ。

(東工大)

・十のことをして、一つしかうまくいかないのなら、十倍努力すればよいだけである。

6. 区分求積法 • 積分漸化式

1

極限

$$\lim_{n\to\infty}\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}$$

の値はアである。

(早稲田大)

2

O を原点とする xyz 空間に点 $P_k \left(\frac{k}{n}, 1 - \frac{k}{n}, 0\right), k = 0, 1, \cdots, n$, をとる。また、z 軸上 $z \ge 0$ の部分に、点 Q_k を線分 $P_k Q_k$ の長さが 1 になるようにとる。三角錐 $OP_k P_{k+1} Q_k$ の体積を V_k とおいて、極限

$$\lim_{n\to\infty}\sum_{k=0}^{n-1}V_k$$

を求めよ。

(東京大)

・成功の99%は、以前の失敗の上に築かれる。

[A]自然数 n に対して $I_n = \int_1^e (\log x)^n dx$ とする。

- (1) I_1 を求めよ。また, I_{n+1} を I_n を用いて表せ。
- (2) I_4 を求めよ。

[B]負でない整数 n に対して $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$ とする。

- (1) I_{n+2} を I_n を用いて表せ。
- (2) I_4 , I_5 を求めよ。

[C]自然数 n に対して $I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$ とする。

- (1) I_1 , I_2 を求めよ。
- (2) I_{n+2} を I_n を用いて表せ。
- (3) I_4 , I_5 を求めよ。

(頻出問題)

4

(1) 0以上の整数 m, $n = 0, 1, 2, \cdots$ に対し, I(m, n) を

$$I(m, n) = \int_0^1 x^m (1-x)^n dx$$

で定める。

(i) $m \ge 1$ のとき,部分積分法を用いて,

$$I(m, n) = \frac{m}{n+1} \int_0^1 x^{m-1} (1-x)^{n+1} dx$$

が成り立つことを示しなさい。

(ii)
$$I(m,n) = \frac{m!n!}{(m+n+1)!}$$
 を示しなさい。

(2) f(x) を区間 [0,1] で定義された連続関数とする。自然数 $n=1,2,3,\cdots$ に対し、 多項式 $P_n(x)$ を

$$P_n(x) = \sum_{k=0}^{n} {n \choose k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

で定める。ここで、 $_{n}C_{k}=\frac{n!}{k!(n-k)!}$ である。このとき、

$$\lim_{n\to\infty}\int_0^1 P_n(x)dx = \int_0^1 f(x)dx$$

となることを示しなさい。

(東京理科大)

・成功者になろうとするのではなく,価値のある人間になろうとせよ。

7. 関数方程式

1

関数 f(x) は $-\infty < x < \infty$ で連続であり、ある定数 a とすべての正数 x について

$$\int_0^{\log x} f(t)dt = \frac{x}{a} (\log x - 1) \int_0^1 e^t f(t)dt + 1$$

を満たしている。このとき, f(x) と a の値を求めよ。

(東京理科大)

2

連続関数 f(x) はすべての実数 x に対して

$$\int_{0}^{x} f(t)dt + \int_{0}^{x} t f(x-t)dt = e^{-x} - 1$$

を満たしている。

- (1) $\frac{d}{dx} \{f(x)e^x\}$ を求めよ。
- (2) f(x)を求めよ。

(芝浦工業大)

・自分には何が出来て,何が出来ないのか, 他の誰かに自分を決めつけさせるな。

f(x) は微分可能な関数で、その導関数 f'(x) も微分可能とする。 f(x) は方程式

$$f(x) = \sin x + \int_0^x f(x - t) \sin t dt$$

を満たしている。このとき,次の各問いに答えよ。

- (1) f(0) および f'(0) を求めよ。
- (2) f(x) の 2 次導関数 f''(x) を求めよ。
- (3) f(x) を求めよ。

(東京理科大)

4

次の等式を満たす関数 f(x) $(0 \le x \le 2\pi)$ がただ一つ定まるための実数 a,b の条件を求め よ。また、そのときの f(x) を決定せよ。

$$f(x) = \frac{a}{2\pi} \int_0^{2\pi} \sin(x+y) f(y) dy + \frac{b}{2\pi} \int_0^{2\pi} \cos(x-y) f(y) dy + \sin x + \cos x$$

ただし, f(x) は区間 $0 \le x \le 2\pi$ で連続な関数とする。

(東京大)

偶然ではありません。

あなたを訪れるものは、みな、あなたを教えに来るのです。

すべての実数 x の値において微分可能な関数 f(x) は次の 2 条件を満たすものとする。

- ・すべての実数 x, y に対して f(x+y) = f(x) + f(y) + 8xy
- f'(0) = 3

ここで, f'(a) は関数 f(x) の x=a における微分係数である。

以下の問いに答えなさい。

- (a) $f(0) = \boxed{\mathcal{T}}$
- (b) $\lim_{y\to 0} \frac{f(y)}{y} = \boxed{1}$
- (c) f'(1)= ウェ, f'(-1)= オ
- (d) $\int_0^1 f(x) dx = \frac{\cancel{\cancel{7}} \cancel{\cancel{7}}}{\cancel{\cancel{7}}}$

(東京理科大)

6

関数 f(x) は $(-\infty, +\infty)$ において 2 回微分可能で f''(0) = -1 を満たし、かつ任意の実数 x, y に対して、

$$f(x + y) + f(x - y) = 2f(x)f(y)$$

を満たす。

- (1) f(0) の値を求めよ。また, y について微分して f'(0) の値を求めよ。
- (2) f''(x) = -f(x) を導け。
- (3) $F(x) = f(x)\cos x f'(x)\sin x$, $G(x) = f(x)\sin x + f'(x)\cos x$ とおいたとき, 関数 F(x), G(x) はともに定数であることを証明し, それらの値を求めよ。
- (4) f(x) を決定せよ。

(東京理科大)

・人間は努力する限り、迷うものだ。

f(x+y) = f(x) + f(y) + xy, f'(0) = 1

- (1) f(0) の値を求めよ。
- (2) すべての実数 x において, f(x) が微分可能であることを示し, f(x) を求めよ。

(学習院大)

8

関数 f(x) はすべての実数 s,t に対して

$$f(s+t) = f(s)e^{t} + f(t)e^{s}$$

を満たし、さらに x=0 では微分可能で f'(0)=1 とする。

- (1) f(0)を求めよ。
- (2) $\lim_{h\to 0} \frac{f(h)}{h}$ を求めよ。
- (3) 関数 f(x) はすべての x で微分可能であることを, 微分の定義に従って示せ。さらに f'(x) を f(x) を用いて表せ。
- (4) 関数 g(x) を $g(x) = f(x)e^{-x}$ で定める。g'(x) を計算して、関数 f(x) を求めよ。

(東京理科大)

・努力の成果なんて目には見えない。 しかし、紙一重の薄さも重なれば、本の厚さになる。

8. 平面の回転体

1

xy 平面上の 2 曲線 C_1 : $y = \frac{\log x}{x}$ と C_2 : $y = ax^2$ は点 P を共有し、P において共通の接線をもっている。 ただし、A は定数とする。 次の問いに答えよ。

- (1) 関数 $y = \frac{\log x}{x}$ の増減、極値、グラフの凹凸、変曲点を調べ、 C_1 の概形を描け。 ただし、 $\lim_{x \to \infty} \frac{\log x}{x} = 0$ は証明なしに用いてよい。
- (2) Pの座標およびaの値を求めよ。
- (3) 不定積分 $\int \left(\frac{\log x}{x}\right)^2 dx$ を求めよ。
- (4) C_1 , C_2 および x 軸で囲まれる部分を x 軸のまわりに 1 回転してできる立体の体積 V を求めよ。

(横浜国立大)

2

xy 平面上に 2 点 A(-1,0),B(1,0) をとる。 $\frac{\pi}{4} \le \angle APB \le \pi$ をみたす平面上の点 P の全体と点 A,B からなる図形を F とする。 つぎの間に答えよ。

- (1) *F* を図示せよ。
- (2) F & x 軸のまわりに 1 回転して得られる立体の体積を求めよ。

(早稲田大)

・たいしたことができないからといって,何もしないのは最悪の間違いである。今すぐ自分ができることをせよ!!

関数 $y=\frac{x}{\sqrt{1-x^2}}$ のグラフと x 軸および直線 $x=\frac{1}{2}$ で囲まれた図形を x 軸のまわりに回転させてできる回転体の体積を V_1 , y 軸のまわりに回転させてできる回転体の体積を V_2 とすると $V_1=\frac{\pi}{2}$ (お), $V_2=\frac{\pi}{2}$ (か) である。

(慶応大)

4

座標平面上で2つの不等式

$$y \ge \frac{1}{2}x^2$$
, $\frac{x^2}{4} + 4y^2 \le \frac{1}{8}$

によって定まる領域をSとする。Sをx軸のまわりに回転してできる立体の体積を V_1 とし、y軸のまわりに回転してできる立体の体積を V_2 とする。

- (1) V_1 と V_2 の値を求めよ。
- (2) $\frac{V_2}{V_1}$ の値と 1 の大小を判定せよ。

(東京大)

大事なのは、勝ちたいという気持ちではない。それは誰でも持っている。大事なのは、勝つための準備をすることだ。

9. パラメーター

1

- (1) 曲線 $C: \begin{cases} x = \sin 2t \\ y = (1-t)^2 \end{cases} (0 \le t \le 1)$
 - の概形をかけ。
- (2) 曲線 C と x 軸および y 軸とでかこまれる部分 D を y 軸のまわりに 1 回転してできる立体の体積を求めよ。

(関西大)

2

座標平面上の曲線 C を媒介変数 $0 \le t \le 1$ を用いて

$$\begin{cases} x = 1 - t^2 \\ y = t - t^3 \end{cases}$$

と定める。以下の問いに答えよ。

- (1) 曲線 C の概形を描け。
- (2) 曲線 C と x 軸で囲まれた部分が y 軸の周りに 1 回転してできる回転体の体積を求めよ。

(神戸大)

・君が努力していないときでも, 必ずどこかで誰かが努力していることを忘れてはいけない。

座標平面において,動点Pの座標(x,y)が時刻tの関数として

$$x = t^{\frac{1}{4}} (1 - t)^{\frac{3}{4}}$$
, $y = t^{\frac{3}{4}} (1 - t)^{\frac{1}{4}}$ $(0 \le t \le 1)$

で与えられている。

- (1) 動点 \mathbf{P} の x 座標が最大になるのは $t = \frac{\mathbf{F}}{\mathbf{E}}$ のときであり、 \mathbf{y} 座標が最大になるのは $\mathbf{f} = \frac{\mathbf{F}}{\mathbf{F}}$ のときである。
- (2) 0 < t < 1 のとき,動点 P の速さの最小値は $\frac{\sqrt{\square}}{\square}$ である。
- (3) 動点 P が直線 y=x 上に来るのは t=0 のとき, $t=\frac{\square}{\square}$ のとき, t=1 のときの3回である。
- (4) t が $0 \le t \le 1$ の範囲を動くとき, 動点 P の描く曲線を L とする。 L で囲まれる図形の面積は a である。

(上智大)

4

座標平面において,媒介変数 t を用いて

$$\begin{cases} x = \cos 2t \\ y = t \sin t \end{cases} \quad (0 \le t \le 2\pi)$$

と表される曲線が囲む領域の面積を求めよ。

(東京大)

・失敗することが不可能であるかのように信じて行動しろ!!

点 C を中心とする半径 a の円を, x 軸に接しながらすべることなく回転させる。この円の円周上に定点 P をとる。初め, 点 P は原点 O にあるとする。この円が x 軸の正の方向へ角 θ だけ回転したとき, 線分 CP 上の点で, 円と x 軸との接点 Q に最も近い点を R とする。

- (1) $0 \le \theta \le \frac{\pi}{2}$ のとき, 点 R の座標を θ を用いて表せ。
- (2) $0 \le \theta \le \frac{\pi}{2}$ のときの点 R の軌跡, 直線 $x = \frac{\pi}{2}a$, および x 軸で囲まれる図形を S とする。S の面積を求めよ。

(青山学院大)

6

原点を O とし、平面上の 2 点 A(0,1), B(0,2) をとる。 OB を直径とし点(1,1) を通る半円を Γ とする。長さ π の糸が一端を O に固定して, Γ に巻きつけてある。この 糸の他端 P を引き,それが x 軸に到達するまで,ゆるむことなくほどいてゆく。糸と半円との接点を Q とし $\angle BAQ$ の大きさを t とする(図を見よ)。

- (1) ベクトル \overrightarrow{OP} をtを用いて表せ。
- (2) P のえがく曲線と、x 軸および y 軸で囲まれた図形の面積を求めよ。

(早稲田大)

想像力がすべてだ。

それは,人生でこれから起きることの予告編である!!

座標平面上に半径1の円Cがあり、その周上の1点が原点 O で固定されているとする。Cの周上の点Pに長さ $\frac{\pi}{2}$ +1 の糸の端点が固定されていて、最初、円Cと糸は図1の状態にある。この糸の円Cの周上にない部分をx軸と平行に保ちながら、この糸の円Cの周上にない方の端点Qをx軸の負の向きに引いていく(図2参照)。すると、糸の円周上に巻きついている部分が除々に減少し、それとともに円Cは原点Oを固定点として回転し、やがて点Pはy軸上に到達する。ただし、図1、2のいずれにおいても太線が糸を表している。

- (1) 円 C が図 2 のように原点 O を固定点として θ だけ回転したときの糸の端点 Q の座標を求めよ。ただし、 $0 \le \theta \le \frac{\pi}{2}$ とする。
- (2) 点 P が y 軸上に到達するまでに糸が通過する部分は、平面上の図形 D を描く。 D の面積を求めよ。

(東京理科大)

8

半径 10 の円 C がある。半径 3 の円板 D を,円 C に内接させながら,円 C の円周に沿って滑ることなく転がす。円板 D の周上の一点を P とする。点 P が,円 C の円周に接してから再び円 C の円周に接するまでに描く曲線は,円 C を 2 つの部分に分ける。それぞれの面積を求めよ。

(東京大)

・意欲が湧いたから取り組んだのではない 取り組んだから意欲が湧いたのだ。

10. 定積分と不等式

1

次の問いに答えよ。

- (1) $0 \le x \le \frac{\pi}{2}$ のとき, $\sin x \ge \frac{2}{\pi}x$ であることを示せ。
- (2) 次の等式が成り立つことを示せ。

$$\lim_{n\to\infty}\int_0^{\frac{\pi}{2}}e^{-n\sin x}dx=0$$

(大阪市立大)

2

数列 $\{a_n\}$ を $a_n = \int_0^1 x^n e^x dx$ $(n=1,2,3,\cdots)$ で定める。ここで, e は自然対数の底である。

- (1) a_{n+1} と a_n の関係式を求めよ。
- (2) 自然数 n に対して、 $a_n = b_n e + c_n$ となる整数 b_n 、 c_n があることを、数学的帰納法を用いて証明せよ。
- (3) $\lim_{n\to\infty}\frac{b_n}{c_n}=-\frac{1}{e}$ を示せ。

(新潟大)

神は乗り越えられる試練しか与えない。

自然数n に対して

$$a_n = \int_0^{\frac{\pi}{4}} (\tan x)^{2n} dx$$

とおく。このとき,以下の問いに答えよ。

- (1) a₁を求めよ。
- (2) a_{n+1} を a_n で表せ。
- (3) $\lim_{n\to\infty} a_n$ を求めよ。
- (4) $\lim_{n\to\infty}\sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1}$ を求めよ。

(北海道大)

4

n を自然数とし, $I_n = \int_1^e (\log x)^n dx$ とおく。

- (1) I_{n+1} を I_n を用いて表せ。
- (2) すべての n に対して $\frac{e-1}{n+1} \le I_n \le \frac{(n+1)e+1}{(n+1)(n+2)}$ が成り立つことを示せ。

(京都大)

・順調な人には, つまづく心配があるが, つまづいた人には, 起き上がり, 歩き出す楽しみがある。

$$a_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$
, $b_n = \sum_{k=1}^n \frac{1}{\sqrt{2k+1}}$ とするとき, $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} \frac{b_n}{a_n}$ を求めよ。

(東京大)

6

次の各間に答えよ。

(1) 自然数n に対して、次の不等式を証明せよ。

$$n \log n - n + 1 \leq \log(n!) \leq (n+1)\log(n+1) - n$$

(2) 次の極限の収束,発散を調べ,収束するときにはその極限値を求めよ。

$$\lim_{n\to\infty}\frac{\log(n\,!)}{n\log n-n}$$

(首都大)

・ゼロからのスタートならば, 得るものばかりだ。

 $f(x) = \frac{\log x}{x}$ とする。以下の問に答えよ。

- (1) y = f(x) のグラフの概形を次の点に注意して描け:f(x) の増減, グラフの凹凸, $x \to +0$, $x \to \infty$ のときの f(x) の挙動。
- (2) n を自然数とする。 $k=1,2,\cdots,n$ に対して x が $e^{\frac{k-1}{n}} \le x \le e^{\frac{k}{n}}$ を動くときの f(x) の最大値を M_b , 最小値を m_b とし,

$$A_n = \sum_{k=1}^n M_k \left(e^{\frac{k}{n}} - e^{\frac{k-1}{n}} \right),$$

$$B_n = \sum_{k=1}^{n} m_k \left(e^{\frac{k}{n}} - e^{\frac{k-1}{n}} \right)$$

とおく。 A_n , B_n を求めよ。

- (3) $\lim_{n\to\infty} A_n$ および $\lim_{n\to\infty} B_n$ を求めよ。
- (4) 各nに対して $B_n < \int_1^e f(x) dx < A_n$ であることを示せ。

(早稲田大)

8

(1) すべての自然数kに対して、次の不等式を示せ。

$$\frac{1}{2(k+1)} < \int_0^1 \frac{1-x}{k+x} dx < \frac{1}{2k}$$

(2) m > n であるようなすべての自然数 m と n に対して, 次の不等式を示せ。

$$\frac{m-n}{2(m+1)(n+1)} < \log \frac{m}{n} - \sum_{k=n+1}^{m} \frac{1}{k} < \frac{m-n}{2mn}$$

(東京大)

・人生は後ろ向きにしか理解できないが,前向きにしか生きられない。

11. 空間の回転体

1

空間内に 3 点 $P\Big(1,\frac{1}{2},0\Big)$, $Q\Big(1,-\frac{1}{2},0\Big)$, $R\Big(\frac{1}{4},0,\frac{\sqrt{3}}{4}\Big)$ を頂点とする正三角形の板 S がある。S を z 軸のまわりに 1 回転させたとき,S が通過する点全体のつくる立体の体積を求めよ。

(東京大)

2

半径 1 の円板が、その中心 O において直線 l と角度 θ $\left(0 \le \theta < \frac{\pi}{2}\right)$ で交わっている。 l には、O を原点とする座標が定まっているものとする。

- (1) l上の点xにおいて,lと直交する平面と円板が交わるための,xの範囲を求めよ。
- (2) l を軸として、円板を回転してできる立体の体積を求めよ。

(立教大)

・最初はうまくいかなかったのなら、あなたは、ほぼ標準並みである。

xyz 空間内において、yz 平面上で放物線 $z=y^2$ と直線 z=4 で囲まれる平面図形を D とする。点(1,1,0) を通り z 軸に平行な直線を l とし、l のまわりに D を 1 回転させてできる立体を E とする。

- (1) D と平面 z=t との交わりを D_t とする。ただし $0 \le t \le 4$ とする。点 P が D_t 上を動くとき,点 P と点(1,1,t) との距離の最大値,最小値を求めよ。
- (2) 平面 z=t による E の切り口の面積 S(t) ($0 \le t \le 4$) を求めよ。
- (3) *E*の体積 *V* を求めよ。

(筑波大)

4

a を正の実数とし、空間内の2つの円板

$$\begin{split} D_1 &= \{(x, y, z) \mid x^2 + y^2 \leq 1, z = a\} \\ D_2 &= \{(x, y, z) \mid x^2 + y^2 \leq 1, z = -a\} \end{split}$$

を考える。 D_1 を y 軸の回りに 180° 回転して D_2 に重ねる。ただし回転は z 軸の正の部分を x 軸の正の方向に傾ける向きとする。この回転の間に D_1 が通る部分を E とする。E の体積を V(a) とし,E と $\{(x,y,z)\mid x\geq 0\}$ との共通部分の体積を W(a) とする。

- (1) W(a) を求めよ。
- (2) $\lim_{a\to\infty} V(a)$ を求めよ。

(東京大)

・人の価値とは、その人が得たものではなく、 その人が与えたもので測られる。

xyz 空間において、2点 P(1,0,1),Q(-1,1,0) を考える。線分 PQ を x 軸の周りに 1回 転して得られる曲面を S とする。以下の問いに答えよ。

- (1) 曲面 S と, 2 つの平面 x=1 および x=-1 で囲まれる立体の体積を求めよ。
- (2) (1) の立体の平面 y=0 による切り口を, 平面 y=0 上において図示せよ。
- (3) 定積分 $\int_0^1 \sqrt{t^2 + 1} \, dt$ の値を $t = \frac{e^s e^{-s}}{2}$ と置換することによって求めよ。

これを用いて、(2)の切り口の面積を求めよ。

(早稲田大)

6

xyz 空間内の 3 点 O(0,0,0), A(1,0,0), B(1,1,0) を頂点とする三角形 OAB を x 軸のまわりに 1 回転させてできる円すいを V とする。円すい V を y 軸のまわりに 1 回転させてできる立体の体積を求めよ。

(大阪大)

(*)この問題の中で、曲面の方程式について扱います。

・人が失敗する最大の要因は、才能や能力がないからではなく、 自分を信じないことにある。

 $a^2+b^2=1$ を満たす正の実数 a, b の組 (a, b) の全体を S とする。 S に含まれる (a, b) に対し, xyz 空間内に 3 点 P(a, b, b), Q(-a, b, b), R(0, 0, b) をとる。また原点を O とする。このとき以下の各問いに答えよ。

- (1) 三角形 OPQ を x 軸のまわりに 1 回転してできる立体を F_1 とする。 (a,b) が S の中を動くとき, F_1 の体積の最大値を求めよ。
- (2) 三角形 PQR を x 軸のまわりに 1 回転してできる立体を F_2 とする。 $a=b=\frac{1}{\sqrt{2}} \text{ のとき, } F_2 \text{ or } xy \text{ 平面による切り口の周を } xy \text{ 平面上に図示せよ}.$
- (3) 三角形 OPR を x 軸のまわりに 1 回転してできる立体を F_3 とする。 (a,b) が S の中を動くとき, F_3 の体積の最大値を求めよ。

(東京医科歯科大)

8

xyz 空間の原点と点(1,1,1) を通る直線を l とする。

- (1) l上の点 $\left(\frac{t}{3}, \frac{t}{3}, \frac{t}{3}\right)$ を通り l と垂直な平面が、xy 平面と交わってできる直線の方程式を求めよ。
- (2) 不等式 $0 \le y \le x(1-x)$ の表す xy 平面内の領域を D とする。l を軸として D を回転させて得られる回転体の体積を求めよ。

(東工大)

・人生の目的をはっきり決めて, それに沿って自分のすべての行動を組み立てろ。

12. 不等式で表された立体の体積

1

xyz 空間において,不等式

$$\begin{cases} 0 \le z \le 1 + x + y - 3(x - y)y \\ 0 \le y \le 1 \\ y \le x \le y + 1 \end{cases} \dots \dots (*)$$

の表す立体の体積を求めよ。

(東京大)

2

xyz 空間において,立体

$$K: x^2 + y^2 \le 1$$
, $y \ge 2z$, $\frac{1}{4} \le z \le 2$

を考える。

(1) 立体 K と平面 y=t とが交わる条件は,

$$\boxed{\mathbb{Z}} \leq t \leq \boxed{\mathbb{Z}}$$

である。このときの切り口の面積をS(t)とすると,

$$S(t) = \sqrt{\square - t^2} \left(t - \frac{\square}{\square} \right)$$

である。

- (2) 立体 K の体積は $\frac{\square}{\square}\sqrt{\square} + \frac{\square}{\square}\pi$ である。
- (3) 立体 K を y 軸のまわりに 1 回転させてできる立体の体積は $\overline{\mathbb{H}}$ π である。

(上智大)

・自分の失敗ではなく成功に意識を向けて、それを積み重ねよ。

rを正の実数とする。xyz空間において

$$x^2 + y^2 \leq r^2$$

$$y^2 + z^2 \ge r^2$$

$$z^2 + x^2 \leq r^2$$

をみたす点全体からなる立体の体積を求めよ。

(東京大)

13. 斜面で囲まれた立体の体積

1

放物線 $z=\frac{3}{4}-x^2$ を z 軸のまわりに回転して得られる曲面 K を原点を通り回転軸と 45° の角をなす平面 H で切る。曲面 K と平面 H で囲まれた立体の体積を求めよ。

(東京大)

2

xyz 空間において yz 平面上の曲線 $y^2 - \frac{z^2}{2} = 1$ を z 軸のまわりに 1 回転してできる回転 面 Q と 2 平面 z = y + 1 および z = y - 1 によって囲まれる立体図形を K とする。

- (1) 回転面 Q 上の点を P(x, y, z) とするとき, $x^2 + y^2$ を z で表せ。
- (2) 平面 z=y+t $(-1 \le t \le 1)$ を α とし、回転面 Q の方程式と平面 α の方程式から z を 消去することによって、平面 α による K の切り口の xy 平面上への正射影の周の方程式および正射影の面積を求めよ。
- (3) 平面 α による K の切り口の面積 S(t) を求めよ。
- (4) *K*の体積 *V*を求めよ。

(東京理科大)

何事も試されているのは、「どれだけ一生懸命になれるか!!」

座標空間において、yz 平面上の線分 y+z=1 $(0 \le y \le 1)$ を z 軸のまわりに回転して得られる円錐 C がある。

- (1) 円錐 C 上の点(x, y, z) は $x^2 + y^2 = (1 z)^2$ を満たすことを示せ。
- (2) 円錐 C を平面 y+z=t $(-1 \le t \le 1)$ で切ったときの切り口の面積 S(t) を求めよ。
- (3) 円錐 C を平面 $y+z=\frac{1}{2}$ で切ったとき、この平面より上側にある部分の体積 V を求めよ。

(横浜市立大)

もしあなたが泣いたことがないのなら、 あなたの目は美しいはずがない。

14. 立体の共通部分の体積

1

xyz 空間において、平面 z=0 上の原点を中心とする半径 2 の円を底面とし、点(0,0,1) を 頂点とする円すいを A とする。次に、平面 z=0 上の点(1,0,0) を中心とする半径 1 の円を K とする。H と K を 2 つの 底面とする円柱を B とする。円すい A と円柱 B の共通部分を C とする。 $0 \le t \le 1$ をみ たす実数 t に対し、平面 z=t による C の切り口の面積を S(t) とおく。

- (1) $0 \le \theta \le \frac{\pi}{2}$ とする。 $t = 1 \cos \theta$ のとき, S(t) を θ で表せ。
- (2) C の体積 $\int_0^1 S(t)dt$ を求めよ。

(東京大)

2

xyz 空間に 4 点 P(0,0,2), A(0,2,0), B($\sqrt{3}$, -1,0), C($-\sqrt{3}$, -1,0) をとる。四面体 PABC の $x^2 + y^2 \ge 1$ をみたす部分の体積を求めよ。

(東工大)

・他人と過去は変えられない。 自分と未来は変えられる。

xyz 空間に 3 点 O(0,0,0) , A(1,0,1) , $B(0,\sqrt{3},1)$ がある。平面 z=0 に含まれ,中心が O , 半径が 1 の円を W とする。点 P が線分 OA 上を,点 Q が円 W の周および内部を動く とき, $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{OQ}$ をみたす点 R 全体がつくる立体を V_A とおく。同様に点 P が線分 OB 上を,点 Q が円 W の周および内部を動くとき, $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{OQ}$ をみたす点 R 全体が つくる立体を V_B とおく。さらに V_A と V_B の重なり合う部分を V とする。このとき,以下 の問いに答えよ。

- (1) 平面 $z = \cos \theta$ $\left(0 \le \theta \le \frac{\pi}{2}\right)$ による立体 V の切り口の面積を θ を用いて表せ。
- (2) 立体 V の体積を求めよ。

(大阪大)

4

座標空間において、xy 平面内で不等式 $|x| \le 1$ 、 $|y| \le 1$ により定まる正方形 S の 4 つの頂点を A(-1,1,0) ,B(1,1,0) ,C(1,-1,0) ,D(-1,-1,0) とする。正方形 S を,直線 BD を軸として回転させてできる立体を V_1 ,直線 AC を軸として回転させてできる立体を V_2 とする。

- (1) $0 \le t < 1$ を満たす実数 t に対し、平面 x = t による V_1 の切り口の面積を求めよ。
- (2) V_1 と V_2 の共通部分の体積を求めよ。

(東京大)

・チャレンジして失敗を恐れるよりも、何もしないことを恐れる。

15. その他

1

- (1) $\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx$ となることを示し、この式の値を求めよ。
- (2) $\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx$ の値を求めよ。

(芝浦工業大)

2

a を正の定数とする。xy - 座標平面において、曲線 $\sqrt{x}+\sqrt{y}=\sqrt{a}$ と、直線 x+y=a とで囲まれた部分を D とおく。以下の間に答えよ。

- (1) *D* の概形を描き, その面積を求めよ。
- (2) 直線 x + y = a を軸として, D を 1 回転してできる図形の体積を求めよ。

(早稲田大)

自分の考えたとおりに生きなければならない。そうでないと、自分が生きたように考えてしまう。

$$I_n = \int_0^{n\pi} e^{-x} |\sin x| dx \quad (n=1,2,\cdots)$$
 において、 $\lim_{n\to\infty} I_n$ を求めよ。

(東工大)

4

曲線 $y=e^{-x}$ と $y=e^{-x}|\cos x|$ で囲まれた図形のうち, $(n-1)\pi \le x \le n\pi$ をみたす部分の面積を a_n とする $(n=1,2,3,\cdots)$ 。以下の問に答えよ。

- (1) $\int e^{-x}\cos x dx = e^{-x}(p\sin x + q\cos x) + C$ をみたす定数 p, q を求めよ。 ただし, C は積分定数である。
- (2) a₁の値を求めよ。
- (3) a_n の値を求めよ。
- (4) $\lim_{n\to\infty} (a_1+a_2+\cdots+a_n)$ を求めよ。

(早稲田大)

・運は、つかむべく努力している人のもとに訪れる。