MATH 103B Homework 4 - Solutions

Due May 3, 2013

(1) (Gallian Chapter 15 # 2) Prove Theorem 15.2: Let φ be a ring homomorphism from a ring R to a ring S. Then $Ker\varphi$, defined as $\{r \in R : \varphi(r) = 0\}$ is an ideal of R.

Solution: We will prove that $Ker\varphi$ passes the ideal test:

- Nonempty? Since any ring homomorphism $R \to S$ maps 0_R to 0_S , $0_R \in Ker\varphi$.
- Closure under subtraction? Let $x, y \in Ker\varphi$. We will show that $x y \in Ker\varphi$ as well. By the definition of kernel, we need to show that $\varphi(x y) = 0_S$. We compute:

$$\varphi(x-y) \stackrel{\text{hom}}{=} \varphi(x) - \varphi(y) = 0_S - 0_S = 0_S,$$

as required.

• Strong closure under multiplication? Let $x \in Ker\varphi$ and $r \in R$. We will show that $xr \in Ker\varphi$ as well. By the definition of kernel, we need to show that $\varphi(xr) = 0_S$. We compute:

$$\varphi(xr) \stackrel{\text{hom}}{=} \varphi(x)\varphi(r) = 0_S \varphi(r) = 0_S,$$

as required.

Thus, $Ker\varphi$ is an ideal.

- (2) (Gallian Chapter 15 # 10)
 - (a) Is the ring $2\mathbb{Z}$ isomorphic to the ring $3\mathbb{Z}$? Justify your answer.

Solution: No. We consider properties of homomorphism: for each positive n, and each $r \in R$, if φ is a homomorphism then $\varphi(nr) = n\varphi(r)$ and $\varphi(r^n) = (\varphi(r))^n$.

Let $\varphi: 2\mathbb{Z} \to 3\mathbb{Z}$ be an arbitrary ring homomorphism. Consider $\varphi(4)$. By definition, there are some $j, k \in \mathbb{Z}$ such that $\varphi(2) = 3j$ and $\varphi(4) = 3k$. On the one hand, $4 = 2 \cdot 2$. On the other hand, $4 = 2^2$. Therefore,

$$3k = \varphi(4) = 2 \cdot \varphi(2) = 6j$$

and

$$3k = \varphi(4) = (\varphi(2))^2 = 9j^2.$$

Thus, we get $6j = 9j^2$. This is possible if j = 0 or 6 = 9j. In the latter case, $j = \frac{2}{3} \notin \mathbb{Z}$. We conclude that the only homomorphism between $2\mathbb{Z}$ and $3\mathbb{Z}$ is the trivial homomorphism. This homomorphism is neither injective nor surjective so there are no ring isomorphisms between these two rings.

(b) Is the ring $2\mathbb{Z}$ isomorphic to the ring $4\mathbb{Z}$? Justify your answer.

A similar calculation to that above gives

$$4k = \varphi(4) = 2 \cdot 4j = 8j$$
 $4k = \varphi(4) = (4j)^2 = 16j^2$.

Equating the two, we get $8j = 16j^2$. Our two solutions here are j = 0 and $j = \frac{1}{2}$. Thus, again, the only homomorphism is the trivial one and $2\mathbb{Z} \not\cong 4\mathbb{Z}$.

(3) (Gallian Chapter 15 #14) Let $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ and

$$H = \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\}.$$

Show that $\mathbb{Z}[\sqrt{2}]$ and H are isomorphic as rings.

Solution: Consider the map $\varphi: \mathbb{Z}[\sqrt{2}] \to H$ given by

$$\varphi(a+b\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}.$$

We will prove this is an isomorphism.

- 1-1? Let $a, b, a', b' \in \mathbb{Z}$. Suppose $\varphi(a + b\sqrt{2}) = \varphi(a' + b'\sqrt{2})$. We will show this implies that a = a' and b = b'. Recall that two matrices are equal iff they have the same (i, j)-entry for each i, j. Equality of the (1, 1)-entries guarantees that a = a'. Equality of the (2, 1)-entries guarantees that b = b'.
- Onto? From definition of H and φ , any matrix in H can be written as the image of some element in $\mathbb{Z}[\sqrt{2}]$.
- Ring homomorphism?
 - Preserves +? Let $a, b, a', b' \in \mathbb{Z}$. Consider

$$\varphi(a+b\sqrt{2}) + \varphi(a'+b'\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} + \begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix} = \begin{pmatrix} a+a' & 2b+2b' \\ b+b' & a+a' \end{pmatrix}$$
$$= \begin{pmatrix} a+a' & 2(b+b') \\ b+b' & a+a' \end{pmatrix} = \varphi((a+a') + (b+b')\sqrt{2})$$

- Preserves :?

$$\varphi(a+b\sqrt{2})\varphi(a'+b'\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \begin{pmatrix} a' & 2b' \\ b' & a' \end{pmatrix} = \begin{pmatrix} aa' + 2bb' & 2ab' + 2ba' \\ ba' + ab' & 2bb' + aa' \end{pmatrix}$$

$$\varphi((a+b\sqrt{2})(a'+b'\sqrt{2})) = \varphi(aa' + ba'\sqrt{2} + ab'\sqrt{2} + 2bb')$$

$$= \varphi((aa' + 2bb') + (ba' + ab')\sqrt{2}) = \begin{pmatrix} aa' + 2bb' & 2ba' + 2ab' \\ ba' + ab' & aa' + 2bb' \end{pmatrix}$$

and these are equal because addition and multiplication each commute in \mathbb{Z} .

(4) (Gallian Chapter 15 # 44) Let R be a commutative ring of prime characteristic p. Show that the Frobenius map, defined by $x \mapsto x^p$ is a ring homomorphism from R to R.

Solution: We need to prove that this map respects addition and multiplication. Let $x, y \in R$.

• For addition, we use the Binomial Theorem:

$$(x+y)^p \stackrel{\text{Bin Thm}}{=} x^p + \binom{p}{1} x^{p-1} y + \dots + \binom{p}{p-1} x y^{p-1} + y^p.$$

It would be enough to show that each of the binomial coefficients is divisible by p, since we assume that R has characteristic p and so each of the corresponding terms would then be zero.

Combinatorial identity: For any n > 0 and 0 < k < n, $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$.

Therefore, since $\binom{p-1}{k-1} \in \mathbb{Z}^{\geqslant}$, $p|k\binom{p}{k}$ for each k. Since p is prime, by Euclid's Lemma, p|k or $p|\binom{p}{k}$. But, p cannot divide k since k < p. Therefore, for each 0 < k < p, p divides $\binom{p}{k}$, as required.

• For multiplication, we compute

$$(xy)^p = xyxy \cdots xy \stackrel{R \text{ comm.}}{=} x^p y^p,$$

as required.

(5) (Gallian Chapter 16 # 12) If the rings R and S are isomorphic, show that R[x] and S[x] are isomorphic.

Solution: Let $\varphi: R \to S$ be a ring isomorphism. Define $\psi: R[x] \to S[x]$ by $\psi(a_n x^n + \dots + a_0) = \varphi(a_n) x^n + \dots + \varphi(a_0)$

We will prove that this is a ring isomorphism.

- One-to-one: Suppose $p(x), q(x) \in R[x]$ and $\psi(p(x)) = \psi(q(x))$. That is, the coefficients of each pair of corresponding terms in the polynomials $\psi(p(x)), \psi(q(x)) \in S[x]$ are equal. By definition of ψ , each of these coefficients is the image of a coefficient of p(x) or q(x) under φ . Since φ is one-to-one, if the coefficients in $\psi(p(x)), \psi(q(x))$ are equal then so are the coefficients in p(x), q(x). Thus, by definition of equality of polynomials, p(x) = q(x).
- Onto: Let $r(x) = c_n x^n + \cdots + c_0 \in S[x]$. We want to find $p(x) \in R[x]$ such that $\psi(p(x)) = r(x)$. Since φ is onto S, there are $a_n, \ldots, a_0 \in R$ such that $\varphi(a_n) = c_n, \ldots, \varphi(a_0) = c_0$. Let $p(x) = a_n x^n + \cdots + a_0$. Then, by definition of ψ , $\psi(p(x)) = \varphi(a_n) x^n + \cdots + \varphi(a_0) = c_n x^n + \cdots + c_0 = r(x)$, as required.
- Respects +: Let $p(x) = a_n x^n + \cdots + a_0, q(x) = b_n x^n + \cdots + b_0 \in R[x]$. (Without loss of generality, we write these with the same top power; if p(x), q(x) have different degrees, the top terms of the lower degree of the two will be all zero.) Then

$$\psi(p(x) + q(x)) = \psi([a_n + b_n]x^n + \dots + [a_0 + b_0])
= \varphi(a_n + b_n)x^n + \dots + \varphi(a_0 + b_0)
\stackrel{\varphi \text{ hom.}}{=} [\varphi(a_n) + \varphi(b_n)]x^n + \dots + \varphi(a_0) + \varphi(b_0)
= \varphi(a_n)x^n + \dots + \varphi(a_0) + \varphi(b_n)x^n + \dots + \varphi(b_0) = \psi(p(x)) + \psi(q(x)),$$

as required.

• Respects : Let $p(x) = a_n x^n + \cdots + a_0, q(x) = b_m x^m + \cdots + b_0 \in R[x]$. Then

$$\psi(p(x)q(x)) = \psi(\sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j x^{i+j}) = \sum_{i=0}^{n} \sum_{j=0}^{m} \varphi(a_i b_j) x^{i+j}$$

$$\stackrel{\varphi \text{ hom.}}{=} \sum_{i=0}^{n} \sum_{j=0}^{m} \varphi(a_i) \varphi(b_j) x^{i+j} = \psi(p(x)) \psi(q(x)),$$

as required.

(6) (Gallian Chapter 16 # 24) Let F be an infinite field and let $f(x), g(x) \in F[x]$. If f(a) = g(a) for infinitely many elements a of F, show that f(x) = g(x).

Solution: Consider the polynomial h(x) = f(x) - g(x). For each $a \in F$ with f(a) = g(a), h(a) = 0. Therefore, h is a polynomial with infinitely many roots. By corollary to Theorem 16.2, a polynomial of degree n can have at most n many roots. Therefore, h can't have degree n for any n. The only polynomial with no degree is the zero polynomial. Thus, h(x) = 0. In particular, this means that each of the coefficients of h is zero. But, each of these coefficients is the difference between the coefficients of f(x) and g(x). Therefore, f(x) = g(x).

(7) (Gallian Chapter 16 #32) Let F be a field and let $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in F[x]$. Prove that x - 1 is a factor of f(x) if and only if $a_n + \cdots + a_1 + a_0 = 0$.

Solution: Suppose x-1 is a factor of f(x). Then, by Corollary to Theorem 16.2, 1 is a root of f(x). Substituting 1 for x in f(x) gives

$$0 = f(1) = a_n 1^n + \dots + a_1 1 + a_0 = a_n + \dots + a_1 + a_0.$$

Conversely, suppose $a_n + \cdots + a_1 + a_0 = 0$. As we just saw, this implies that f(1) = 0 or that 1 is a zero of f. The corollary is an "if and only if" statement and guarantees that x - 1 is a factor of f(x).

(8) (Gallian Chapter 16 # 46) Prove that $\mathbb{Q}[x]/\langle x^2 - 2 \rangle$ is ring-isomorphic to $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$

Solution: We will use the First Isomorphism Theorem. In particular, we will find an onto ring homomorphism

$$\varphi: \mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}]$$

whose kernel is the ideal $\langle x^2 - 2 \rangle$. Define

$$\varphi(a_n x^n + \dots + a_0) = a_n (\sqrt{2})^n + \dots + a_0.$$

The following claims finish the proof:

• The function φ has codomain $\mathbb{Q}[\sqrt{2}]$, since

$$a_n(\sqrt{2})^n + \dots + a_0 = \sum_{\text{even powers}} a_{2k}(\sqrt{2})^{2k} + \sum_{\text{odd powers}} a_{2j+1}(\sqrt{2})^{2j+1}$$

= $\sum_{\text{even powers}} a_{2k} 2^k + \sum_{\text{odd powers}} a_{2j+1} 2^j \sqrt{2}$.

Since the rational numbers are closed under addition and multiplication, we've expressed the image under φ of an arbitrary element of $\mathbb{Q}[x]$ as an element of $\mathbb{Q}[\sqrt{2}]$.

- The function φ is onto. Why? Let $r + s\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$. Then $r, s \in \mathbb{Q}$ so $sx + r \in \mathbb{Q}[x]$. Moreover, $\varphi(sx + r) = s\sqrt{2} + r$, as required.
- The function φ is a ring homomorphism: note that φ is a restriction of the evaluation function $\varphi_{\sqrt{2}}$ defined in quiz 2 from $\mathbb{R}[x] \to \mathbb{R}$. In that quiz, we proved that the function respects $+, \cdot$ for all pairs of polynomials in $\mathbb{R}[x]$; hence, it will also respect these operations for polynomials in the subset $\mathbb{Q}[x]$.
- The kernel of φ is $\langle x^2 2 \rangle$:
 - (\subseteq) Let $p(x) \in Ker\varphi$. That is, $\varphi(p(x)) = 0$. By definition of φ , this means that $p(\sqrt{2}) = 0$. Suppose, towards a contradiction that $p(x) \notin \langle x^2 2 \rangle$. Since \mathbb{Q}

is a field, Theorem 16.2 gives us the Division Algorithm for $\mathbb{Q}[x]$ and we have $q(x), r(x) \in \mathbb{Q}[x]$ such that

$$p(x) = (x^2 - 2)q(x) + r(x),$$
 $r(x) \neq 0$ and $deg \ r(x) < 2.$

Evaluating both sides at $x = \sqrt{2}$, we get

$$0 = p(\sqrt{2}) = (2-2)q(\sqrt{2}) + r(\sqrt{2}) = 0 + r(\sqrt{2}) = r(\sqrt{2}).$$

But, r is of the form $r(x) = a + b\sqrt{x}$ for some $a, b \in \mathbb{Q}$, not both zero. Therefore,

$$0 = a + b\sqrt{2}.$$

But then, either b=0 (which forces a=0, contradicting that r(x) is nonzero) or

$$\sqrt{2} = \frac{-a}{b} \in \mathbb{Q},$$

contradicting the irrationality of $\sqrt{2}$. Thus, $p(x) \in \langle x^2 - 2 \rangle$.

(\supseteq) Let $p(x) \in \langle x^2 - 2 \rangle$. Then there is some $q(x) \in \mathbb{Q}[x]$ such that $p(x) = q(x)(x^2 - 2)$. By definition of φ ,

$$\varphi(p(x)) = p(\sqrt{2}) = q(\sqrt{2})(\sqrt{2}^2 - 2) = q(\sqrt{2})0 = 0.$$

Thus, $p(x) \in Ker\varphi$.

The First Isomorphism Theorem for rings now implies that $\mathbb{Q}[x]/\langle x^2-2\rangle$ is ring isomorphic to $\mathbb{Q}[\sqrt{2}]$.