Intro to ML

October 20th, 2021

CHAPTER 6: Dimensionality Reduction

Why Reduce Dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Fewer parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

 Feature selection: Choosing k<d important features, ignoring the remaining d – k

Subset selection algorithms

• Feature extraction: Project the original x_i , i = 1,...,d dimensions to new k < d dimensions, z_j , j = 1,...,k

Subset Selection

- There are 2^d subsets of d features
 - Exhaustive search is not possible
- Forward search: Add the best feature at each step
 - Set of features F initially Ø.
 - At each iteration, find the best new feature $j = \operatorname{argmin}_i E(F \cup x_i)$ Use train, validation, test setup
 - Add x_i to F if $E(F \cup x_i) < E(F)$
- Backward search: Start with all features and remove one at a time, if possible.
- Hill-climbing $O(d^2)$ algorithm
- Floating search (Add k, remove l, k>l)

Iris data: Single feature

Iris data: Add one more feature to F4

Principal Components Analysis

- Find a low-dimensional space such that when **x** is projected there, information loss is minimized.
- The projection of x on the direction of w is: $z = w^T x$
- Find \mathbf{w} such that Var(z) is maximized information

$$Var(z) = Var(\mathbf{w}^{T}\mathbf{x}) = E[(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})^{2}]$$

$$= E[(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})]$$

$$= E[\mathbf{w}^{T}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}\mathbf{w}]$$

$$= \mathbf{w}^{T} E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}]\mathbf{w} = \mathbf{w}^{T} \sum \mathbf{w}$$
where $Var(\mathbf{x}) = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}] = \sum$

• First projection: Maximize $Var(z_1)$ subject to $|| \mathbf{w_1} || = 1$

$$\max_{\mathbf{w}_1} \mathbf{w}_1^T \Sigma \mathbf{w}_1 - \alpha \left(\mathbf{w}_1^T \mathbf{w}_1 - 1 \right) \qquad \qquad \text{A Lagrange problem}$$

$$\sum_{\mathbf{w}_1} \mathbf{w}_1 = \alpha \mathbf{w}_1 \text{ that is, } \mathbf{w}_1 \text{ is an eigenvector of } \Sigma$$
 Choose the one with the largest eigenvalue for $Var(z)$ to be max

• Second principal component: Max $Var(z_2)$, s.t., $||w_2||=1$ and orthogonal to w_1

$$\max_{\mathbf{w}_2} \mathbf{w}_2^\mathsf{T} \Sigma \mathbf{w}_2 - \alpha (\mathbf{w}_2^\mathsf{T} \mathbf{w}_2 - 1) - \beta (\mathbf{w}_2^\mathsf{T} \mathbf{w}_1 - 0)$$

 $\sum w_2 = \alpha w_2$ that is, w_2 is another eigenvector of \sum with the second largest eigenvalues and so on

- ∑ is symmetric -> two eigenvectors orthogonal
- ∑ is positive definite -> all eigenvalues are positive
- \sum is singular -> it has a lower rank (dimension require k < d)

What PCA does

$$z = \mathbf{W}^T (\mathbf{x} - \mathbf{m})$$

where the columns of W are the eigenvectors of Σ and m is sample mean Centers the data at the origin and rotates the axes

How to choose k?

Proportion of Variance (PoV) explained

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d}$$

when λ_i (eigenvalues) are sorted in descending order

- Typically, stop at PoV>0.9
- Scree graph plots of PoV vs k, stop at "elbow"
 - adding another eigenfactor does not add much variances

13

After PCA

- From d-dimension to k-dimension
 - K<d, parametric discriminant function rely on fewer parameters (due to lesser features)
 - Since these features are projected to be uncorrelated (orthogonal is you assume Normal distribution)
 - The multivariate Gaussian's covariance matrix can now be assumed to be diagonal
- PCA is an unsupervised method of dimension reduction -> does not require the knowledge of label, just the data

Another formulation of PCA

- Find a matrix W such that when we have $z=W^Tx$, we will get cov(z) = D, where D is any diagonal matrix (uncorrelated zi)
- Form a dxd matrix C, whose ith column is the normalized eigenvectors ci of S, $C^TC = I$

S=SCC^T= S(c1, c2, c3...cd)C^T= $(\lambda_1 c_1, \lambda_2 c_2 ... \lambda_d c_d)$ C^T=CDC^T Where D = diagonal matrix with eigenvalues on the diagonal

- We also call this spectral decomposition of S
- $C^TSC = D$
- z=W^Tx, Cov(z) = W^TSW, want this to be a diagonal matrix, just set W=C

Factor Analysis

• Find a small number of unobservable factors **z**, which when combined generate **x**:

$$X_i - \mu_i = V_{i1}Z_1 + V_{i2}Z_2 + ... + V_{ik}Z_k + \varepsilon_i$$

where z_j , j = 1,...,k are the latent factors with $E[z_j]=0$, $Var(z_j)=1$, $Cov(z_i, z_j)=0$, $i \neq j$,

Factors are:
Unit normal and
uncorrelated

 ε_i are the noise sources

E[
$$\varepsilon_i$$
]=0, Var(ε_i)= ψ_i , Cov(ε_i , ε_j) =0, $i \neq j$, Cov(ε_i , z_j) =0 and v_{ij} are the factor loadings

PCA vs FA

- PCA From x to z
- FA From z to x

$$z = \mathbf{W}^T(\mathbf{x} - \boldsymbol{\mu})$$

$$x - \mu = Vz + \varepsilon$$

Factor Analysis

• In FA, factors z_j are stretched, rotated and translated to generate ${\bf x}$

•
$$X_i - \mu_i = V_{i1}Z_1 + V_{i2}Z_2 + ... + V_{ik}Z_k + \varepsilon_i$$

• Z

$$Var(Xi) = V_{i1}^2 + V_{i2}^2 + \Psi_i$$

 Variance of Xi attributed to common factor 1-k and noise

$$\sum = \text{cov}(X) = \text{cov}(Vz + \varepsilon)$$

$$= \text{cov}(Vz) + \text{cov}(\varepsilon)$$

$$= V \text{cov}(z) V^{T} + \Psi$$

$$= VV^{T} + \Psi$$
Diagonal matrix

Assume there are two 'hidden factors', and two observable features

$$Cov(x1,x2) = v_{11}v_{21} + v_{12}v_{22}$$

- Cov(x1,x2)= $v_{11}v_{21} + v_{12}v_{22}$
- If x1 x2 have high covariance due to the first 'factor'
 - The $v_{11}v_{12}$ will be high or $v_{12}v_{22}$ will be high
 - Either way the above terms will be high
- If they depend on different factors, one term high one term low, this summation will be small

$$Cov(x_1, z_2) = Cov(v_{12}z_2, z_2) = v_{12}$$

- Cov(x,z) = V
- Loading represent correlation between variables and the factors
- S estimate ∑

PCA: FIND THE EIGENVECTOR OF S

Factor analysis basically solves the following equation

$$S=VV^T+\Psi$$

• $z=W^Tx$, $Cov(z)=W^TSW$, want this to be a diagonal matrix, just set W=C