УДК 576.895.121

XAPAKTEPИСТИКА ТРАНСПОРТА ГЛЮКОЗЫ У ЦЕСТОДЫ EUBOTHRIUM RUGOSUM (PSEUDOPHYLLIDEA, AMPHICOTYLIDAE)

Г. И. Извекова

Получены доказательства существования системы активного транспорта глюкозы у цестоды Eubothrium rugosum. Вычислены ее кинетические характеристики. Показано наличие градиента содержания глюкозы и интенсивности ее аккумуляции вдоль стробилы.

В настоящее время известно, что цестоды обладают системами для опосредованного поглощения органических веществ из окружающей среды. Поскольку у этой группы червей отсутствует пищеварительный тракт, все пищевые субстраты поступают в их организм через покровы тела. Известно, что тегумент у цестод модифицирован морфологически так, что напоминает щеточную кайму кишечника позвоночных (Smith, 1972; Lumsden, 1975; Куперман, 1980), причем во многих отношениях механизмы, обеспечивающие транспортные процессы у гельминтов и позвоночных, очень сходны (Рарраѕ, Read, 1975). В связи с этим изучение поглощения нутриентов у цестод представляет значительный интерес. Существует несколько видов транспорта веществ через мембраны (диффузия, облегченная диффузия и активный транспорт), различающихся кинетикой процессов, энергетическими затратами и отношением к ингибиторам (Рарраѕ, Read, 1975).

В большинстве работ, касающихся транспорта углеводов у цестод, изучалось преимущественно поглощение глюкозы, как основного моносахарида, используемого для синтеза гликогена. Потребление резервных полисахаридов у гельминтов протекает очень интенсивно, что позволяет предположить существование эффективных систем активного транспорта глюкозы (Сопрунов, 1984).

Большинство работ по транспорту углеводов выполнено на модельных видах цестод, выращенных в лаборатории, например на *Hymenolepis diminuta* из кишечника крыс (Read e. a., 1963). Литературные данные по транспорту глюкозы у цестод, паразитирующих в кишечнике рыб, очень малочисленны. Исследование гельминтов, полученных из хозяев, зараженных в природных условиях, связано со значительными сложностями, касающимися получения воспроизводимых данных. Нами была предпринята попытка изучения некоторых характеристик интенсивности поглощения глюкозы цестодой *E. rugosum*, обитающей в кишечнике налима.

материал и методы

Объектом исследований служили половозрелые особи цестод $Eubothrium\ rugosum$ из кишечника налима ($Lota\ lota$) Рыбинского водохранилища. Материал собран в зимне-весенний период. Гельминтов исследовали через 1-2 ч после извлечения их из кишечника. Сразу после получения червей помещали

в раствор Рингера для холоднокровных животных (рН 7.4). Перед помещением цестод в инкубационный раствор их отмывали в трех объемах (по 50 мл) раствора Рингера, слегка осушали фильтровальной бумагой и резали на кусочки 4—6 см. В пробе, как правило, содержалось по 1—2 кусочка. В качестве инкубационного раствора использовали растворы Д-глюкозы, приготовленные на растворе Рингера в концентрации от 0.1 до 10 мМ. Инкубацию проводили в 5 мл раствора глюкозы при температуре 5 и 20° в течение часа. В каждом из поставленных опытов определяли «фоновое» содержание глюкозы, т. е. ее количество в гельминте при инкубации в растворе Рингера без глюкозы. Интенсивность аккумуляции глюкозы определяли по накоплению гексоз за 60 мин инкубации в расчете на 100 мг сырого веса гельминтов и выражали в мМ глюкозы. Концентрацию гексоз определяли модифицированным методом Нельсона (Уголев, Иезуитова, 1969). Значения константы Михаэлиса (К,,,) для процессов аккумуляции и максимальной скорости реакции (V_{max}) определяли методом двойных обратных величин. В каждом опыте исследовали по 10—20 червей от 1—2 налимов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Интенсивность аккумуляции глюкозы. С целью выяснения механизмов поглощения глюкозы цестодой E. rugosum была поставлена серия опытов по определению интенсивности аккумуляции глюкозы в организме гельминтов в зависимости от ее концентрации в инкубационном растворе. При этом оказалось, что абсорбция глюкозы как при 5, так и при 20° носит характер типичной кинетики насыщения (рис. 1). При 5° с увеличением концентрации глюкозы в инкубационной среде от 0.1 до 10 мМ абсорбция глюкозы увеличивается от 1.53 ± 0.26 до 3.31 ± 1.03 мМ, а при 20° от 1.12 ± 0.20 до 2.76 ± 0.23 мМ. При содержании в инкубационной среде от 0.1 до 2.5 мМ глюкозы в тканях гельминта этот моносахарид накапливается против градиента концентрации. Так, интенсивность ее аккумуляции в этих условиях при 5° увеличивается от 1.53 ± 0.26 до 2.31 ± 0.42 мМ, а при 20° — от 1.12 ± 0.20 до $2.85\pm$ ± 0.30 мМ. Кинетика насыщения и накопление глюкозы против концентрационного градиента свидетельствуют о наличии активного компонента транспорта глюкозы у E. rugosum. Интенсивное потребление глюкозы из среды обитания было отмечено у многих видов гельминтов. Сравнение данных, полученных разными авторами, показывает, что все изученные цестоды используют активный механизм транспорта глюкозы, что дало основание предположить сходство их глюкозо-транспортных систем (Pappas, Read, 1975).

Интенсивность аккумуляции глюкозы из инкубационного раствора была примерно одинакова как при 5, так и при 20° (рис. 1). Практически при всех испытанных концентрациях не наблюдалось достоверных различий в интенсивности аккумуляции глюкозы при разных температурах. Так, при $2.5 \, \mathrm{MM}$ концентрации глюкозы в среде интенсивность аккумуляции ее составляла 2.31 ± 0.42 и $2.85 \pm 0.30 \, \mathrm{MM}$ для $5 \, \mathrm{u} \, 20^\circ$ соответственно (при $5 \, \mathrm{mM} - 2.79 \pm 0.9 \, \mathrm{u} \, 3.06 \pm 0.45 \, \mathrm{mM}$ соответственно).

В литературе имеются некоторые сведения о влиянии температуры на транспорт глюкозы. В частности, оптимальная температура поглощения глюкозы для цестоды Calliobothrium verticillatum, обитающей в пищеварительном тракте акулы, равна 20° (Fisher, Read, 1971). Для H. diminuta из кишечника крыс установлен оптимум поглощения при температуре 37—40° в зависимости от времени инкубации (Phifer, 1960). При исследовании E. rugosum значительного влияния температуры на абсорбцию глюкозы не обнаружено. Это, по-видимому, связано с тем, что исследования проводились в зимний период на адаптированном к низким температурам налиме, у которого пищевая активность выше зимой. При этом известно существование как адаптаций обменных

Рис. 1. Интенсивность аккумуляции глюкозы в зависимости от ее концентраций в среде цестодой $E.\ rugosum.$

I — температура 5°, 2 — температура 20°. По оси абсцисс — концентрация глюкозы в среде, мM; по оси ординат — интенсивность аккумуляции глюкозы, мM.

Рис. 2. Кинетика интенсивности аккумуляции глюкозы цестодой *E. rugosum*.

При оси абсцисс — величина, обратная концентрации глюкозы в среде; при оси ординат — величина, обратная интенсивности поглощения.

Остальные обозначения такие же, как на рис. 1.

процессов гельминтов к температуре тела хозяина (Сопрунов, 1984), так и адаптивных перестроек пищеварительных процессов у рыб (Кузьмина, 1985).

Кинетика интенсивности аккумуляции глюкозы. При исследовании взрослых форм цестод H. diminuta и H. microstoma, обитающих в кишечнике крыс, было установлено, что диффузионный компонент транспорта глюкозы пренебрежимо мал и что вся глюкоза поступает в тело гельминтов путем активного транспорта (Pappas, Read, 1975), а у цестоды Calliobothrium verticillatum из пищеварительного тракта акулы активно транспортируется 96 % глюкозы (Fisher, Read, 1971). Исходя из этих данных, а также из полученных нами кривых типичной кинетики насыщения (рис. 1), можно предположить, что глюкоза поступает в организм E. rugosum в основном путем активного транспорта. Это позволило определить константы абсорбции: V_{max} — максимальную скорость транспорта и K_m — константу Михаэлиса для транспортных процессов при 20 и 5° (рис. 2). При этом оказалось, что максимальные значения V_{max}^{20} и V_{max}^{5} примерно одинаковы (3.33 и 3.45 мМ соответственно) и отношение $V_{\rm max}^{20}/V_{\rm max}^{5}$ близко к единице (0.97). Несмотря на это транспортные константы K_m^{20} и K_m^{5} различаются, K_m^{20} значительно меньше K_m^{5} (0.33 и 1.25 мМ соответственно), а отношение K_m^{20}/K_m^{5} меньше единицы (0.26). Как известно, значение константы Михаэлиса является важной кинетической характеристикой, отражающей сродство транспортной системы к транспортируемому веществу (чем ниже K_m , тем больше сродство системы к субстрату). Вследствие этого полученные данные свидетельствуют о том, что при 20° сродство системы к транспортируемой глюкозе выше, чем при 5°. Большее сродство фермента к субстрату при 20° по сравнению с 0° показано для карбогидраз кишечника налима-хозяина изученной цестоды (Кузьмина, Голованова, 1983). Возможно, полученную аналогию в кинетических характеристиках можно объяснить тем, что процессы транспорта у гельминтов тесно связаны с процессами гидролиза, протекающими в кишечнике их хозяев.

«Фоновое» содержание глюкозы в различных участках стробилы $E.\ rugosum$. В связи с определением аккумуляции глюкозы в тканях $E.\ rugosum$ возник вопрос о ее «фоновом» содержании,

Рис. 3. Содержание глюкозы (A) и интенсивность ее аккумуляции (B) в различных участках стробилы $E.\ rugosum.$

По оси абсцисс — отделы стробилы (на A: I — передний, 2 — средний, 3 — задний отдел; на B: I — передний, 2 — задний отдел); по оси ординат: на A — содержание глюкозы, мM; на B — интенсивность аккумуляции глюкозы, мM.

т. е. о количестве глюкозы в тканях изученного гельминта при отсутствии ее в инкубационной среде. Основываясь на особенностях водно-солевого обмена у E. rugosum (Виноградов и др., 1982), можно предположить, что применяемый метод позволяет выявлять содержание глюкозы главным образом в субтегументальном слое, доступном диффузионным процессам. В специальных наблюдениях был определен градиент содержания глюкозы вдоль стробилы E. rugosum (рис. 3, A). Для этого исследуемых особей условно делили на 3 части: 1-я — передний отдел (зона сколекса и шейки), 2-я — средний отдел (следующий за шейным отделом участок длиной 3—5 см), 3-я — задний отдел (длина 6—12 см). В связи с большой длиной заднего отдела его делили на 3 участка по 2—4 см и для характеристики этого отдела использовали среднее значение содержания глюкозы в этих участках. В результате проведенных опытов оказалось, что содержание глюкозы в субтегументальном слое E. rugosum заметно снижается от 1 к 3-му отделу (от 4.85 мM/100 мг сырого веса до 2.82 мM/100 мг сырого веса гельминта, что составляет 87.3 и 50.8 мг %соответственно). Полученные данные хорошо согласуются со сведениями, известными из литературы. В частности, по результатам специфического глюкозооксидазного метода в тканях гельминтов содержится от 0.01 до 1-2~%глюкозы в пересчете на сухой вес ткани (Сопрунов, 1984). Снижение содержания глюкозы вдоль стробилы E. rugosum, видимо, связано с постепенным созреванием половых продуктов от 1-го к 3-му отделу и запасанием резервного гликогена в том же направлении. Данные об относительно высокой концентрации глюкозы, способной экстрагироваться из тканей гельминтов, представляют особый интерес, поскольку свидетельствуют о противоградиентном ее накоплении и являются еще одним доказательством активного поступления глюкозы в червя. При концентрации глюкозы в инкубационном растворе более низкой, чем в гельминте, отмеченное поступление ее в цестоду может происходить только активным путем.

Интенсивность аккумуляции глюкозы в различных участках стробиль $E.\,rugosum$. В связи с морфологической неоднородностью тегумента цестод (Куперман, 1980) и выявленным градиентом содержания глюкозы в стробиле $E.\,rugosum$ возник вопрос о возможном существовании различий в поглощении глюкозы различными участками тела червя. Для этого абсорбция глюкозы была измерена в переднем и в заднем отделах. Результаты опытов представлены на рис. 3, $E.\,$ 0. Оказалось, что при инкубации участков тела в 2.5 мМ растворе глюкозы ее концентрация в переднем отделе увеличивается от 4.85 до 10.85 мМ на 100 мг сырого веса гельминта, а интенсивность аккумуляции глюкозы составляет $E.\,$ 0.0 мМ; в заднем отделе — от 2.82 до 6.34 мМ, а интенсивность аккумуляции глюкозы составляет $E.\,$ 1.03 мМ (рис. 3, $E.\,$ 1.05 следовательно, в переднем отделе стробилы $E.\,$ 1.10 гидоѕит транспортные процессы идут более интенсивно, чем в ее заднем отделе. Возможно, это

связано с возрастными изменениями в разных участках стробилы червей: передний отдел более молодой и обменные процессы в нем, в том числе и транспорт нутриентов, протекают интенсивней, чем в окончательно сформировавшемся заднем отделе.

В заключение важно отметить, что паразитизм в значительной степени определяется пищевыми отношениями, включающими поступление органических растворенных веществ из организма хозяина в тело паразита. В связи с этим структуры и механизмы, участвующие в абсорбции пищевых веществ паразитами, должны иметь первостепенное значение в указанных процессах (Pappas, Read, 1975). Полученные нами данные свидетельствуют о существовании системы активного транспорта у цестоды E. rugosum, обитающей в кишечнике налима. Причем интенсивность этой системы сопоставима, а в ряде случаев более эффективна, чем у некоторых видов рыб (Кузьмина и др., 1986). Кроме того, показано, что кинетические характеристики ее непостоянны и зависят от температуры, что хорошо согласуется с данными по влиянию температуры на кинетические параметры карбогидраз рыб, в частности налима. У изученной цестоды также обнаружено существование градиента содержания глюкозы и интенсивности ее аккумуляции вдоль стробилы, которое может свидетельствовать о существовании функциональной неравномерности в пищеварительных процессах червя.

Литература

- Виноградов Г. А., Давыдов В. Г., Куперман Б. И. Морфофизиологические особен-Виноградов 1. А., давыдов В. 1., куперман Б. и. морфофизиологические осооенности водно-солевого обмена у некоторых псевдофиллидных цестод. — Паразитология, 1982, т. 16, вып. 3, с. 188—193.
 Кузьмина В. В. Температурные адаптации ферментов, осуществляющих мембранное пищеварение у пресноводных костистых рыб. — Журн. общ. биол., 1985, т. 46, № 6, с. 824—838. Кузьмина В. В., Голованова И. Л. Влияние температуры на кинетические характери-
- стики карбогидраз, осуществляющих мембранное пищеварение у рыб. Вопр. ихтиол., 1983, т. 23, вып. 1, с. 135—146.
- Кузьмина В. В., Голованова И. Л., Извекова Г. И. Особенности транспорта углеводов в кишечнике рыб. — В кн.: Мембранное пищеварение и всасывание. Рига, 1986, c. 72-74.
- Куперман Б. И. Ультраструктура покровов цестод и ее значение для систематики. Паразитол. сб. ЗИН АН СССР, 1980, т. 29, с. 84—95. Сопрунов Ф. Ф. Успехи в изучении углеводного обмена гельминтов. Тр. ГЕЛАН СССР,
- 1984, т. 32, с. 121—154.
- Уголев А. М., Иезуитова Н. Н. Определение активности инвертазы и других дисахаридаз. — В кн.: Исследования пищеварительного аппарата у человека (обзор современных
- методов). Л., Наука, 1969, с. 192—196. Fisher F. M., Read C. P. Transport of sugars in the tapeworm Calliobothrium verticillatum. Biol. Bull., 1971, vol. 140, p. 46-62.
- Lumsden R. D. Surfase ultrastructure and cytochemistry of parasitic helminths. Exp. Parasitol., 1975, vol. 37, N 2, p. 267—339. Pappas P. W., Read C. P. Membrane transport in helminth parasites: a review. — Exp. Para-
- sitol., 1975, vol. 37, N 3, p. 469-530.
- Phifer K. O. Permeation and membrane transport in animal parasites: the absorption of glucose by Hymenolepis diminuta. — J. of Parasitol., 1960, vol. 46, p. 51—62. Read C. P., Rothman A. H., Simmons J. E. Studies on membrane transport with special
- reference to parasite-host integration. Annals of the New York Acad. of Science, 1963,
- S mith J. D. Changes in the digestive absorptive surface of cestodes during larval adult differentiation. — Symp. Brit. Soc. Parasitol., 1972, vol. 10, p. 41—70.

Институт биологии внутренних вод АН СССР, Борок

Поступила 10.11.1986

CHARACTERISTICS OF GLUCOSE TRANSPORT IN THE CESTODE EUBOTHRIUM RUGOSUM (PSEUDOPHYLLIDEA, AMPHICOTYLIDAE)

G. I. Izvekova

SUMMARY

Data were obtained proving the presence of the system of glucose active transport in $E.\ rugosum$. Transport kinetic characteristics were estimated and their dependence on the incubation temperature was shown. Heterogeneity of strobila with respect to transport processes was found.