Best Machine Ever

Yara Yaghi, Muhammad Arfin, Shakir Azami, Paula Schultz, Austin Yoo, Sheena Gandham

Business Problem

How can we reduce the frequency of factory machine failures by identifying and addressing the most impactful failure causes?

- Reducing the frequency of factory machine failures is crucial for the efficiency and reliability of machines (Marcellus, 2024)
- Identifying the most impactful failures is important for productivity, optimizing maintenance costs, and improving safety (Sensemore, 2024)

Background

Equipment Malfunction | A Costly Business Challenge and How to Overcome It

Equipment Malfunction / Equipment Malfunction / By Marcellus

- Machine failures can result in a loss of production hours, unintended downtimes, and cause issues concerning safety (Marcellus, 2024)
- Studies estimate the average downtime cost from machine failure is up to about \$532,000 per hour (Weber et al., 2021)

Analytic

Data Summary

- Name: AI4I 2020 Predictive Maintenance Dataset
- Original Data Set: Matzka, Stephan. "Explainable Artificial Intelligence for Predictive Maintenance Applications." 2020 Third International Conference on Artificial Intelligence for Industries (AI4I) (2020): 69-74. (MLA)
- Data File: Excel Spreadsheet (2D Array)
- **Structure:** Tabular
- **Rows:** 10,000 rows
- **Features:** 15
- **Target:** derived binary failure variable

Data Features

	Feature Name	Data Type	Missing Values	Sample/Unique Values	Description
0	UDI	int64	0	5190	Unique identifier for each data point
1	Product ID	object	0	[H35323, L47249, M16184, L48676, L50791, L5103	ID representing the product being manufactured
2	Туре	object	0	[H, L, M]	Category of the product (H, L, M)
3	Air temperature [K]	float64	0	298.5	Temperature of the air in Kelvin
4	Process temperature [K]	float64	0	311.1	Temperature of the process in Kelvin
5	Rotational speed [rpm]	int64	0	1596	Speed of the machine in rotations per minute
6	Torque [Nm]	float64	0	72.0	Torque applied during operation in Newton-meters
7	Tool wear [min]	int64	0	210	Time of tool usage before wear in minutes
8	Machine failure	int64	0	0	Binary indicator of machine failure
9	TWF	int64	0	0	Tool wear failure indicator
10	HDF	int64	0	0	Heat dissipation failure indicator
11	PWF	int64	0	0	Power failure indicator
12	OSF	int64	0	0	Overstrain failure indicator
13	RNF	int64	0	0	Random failure indicator
14	diff	int64	0	0	Difference between computed values?

One Hot Encoding

- Processed
 machine type
 column (H/M/L)
 using one-hot
 encoding
- Updated failures to boolean

Dropped Features:

UDI

ProductID

diff

Scaling

	Air temperature [K]	Process temperature [K]	Rotational speed [rpm]	Torque [Nm]	Tool wear [min]
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
mean	300.004930	310.005560	1538.776100	39.986910	107.951000
std	2.000259	1.483734	179.284096	9.968934	63.654147
min	295.300000	305.700000	1168.000000	3.800000	0.000000
25%	298.300000	308.800000	1423.000000	33.200000	53.000000
50%	300.100000	310.100000	1503.000000	40.100000	108.000000
75%	301.500000	311.100000	1612.000000	46.800000	162.000000
max	304.500000	313.800000	2886.000000	76.600000	253.000000

		norm_power	norm_temp_diff	norm_tool_wear_adjusted
(count	19304.000000	19304.000000	19304.000000
,	mean	0.600788	0.470674	0.494346
	std	0.168741	0.229215	0.255698
	min	0.000000	0.000000	0.000000
	25%	0.501356	0.299809	0.278431
	50%	0.606479	0.444444	0.505882
	75%	0.715278	0.672361	0.729412
	max	1.000000	1.000000	1.000000

Balanced

Synthetic Minority Over-sampling Technique (SMOTE) to balance dataset.

#	Article/Date	Author	Method Used	Improvements to our work
1	"Explainable Artificial Intelligence for Predictive Maintenance Applications."	Stephan Matzka	Supervised Classification (Decision Tree, Random Forest)	Focusing on the root cause analysis of failure rather than just predicting failure events.
2	"Predicting Machine Failures from Multivariate Time-Series: An Industrial Case Study" 2024	Nicoló Vago et al.	Time-Series Analysis	Integrates machine learning algorithms for predicting and explaining failure causes, and real-time monitoring is considered for dynamic insights.
3	"Causes and Impact of Human Error in Maintenance of Mechanical Systems" 2020	Mfundo Nkosi et al.,	Human Factors Analysis	Focusing on predictive maintenance using data analytics and machine learning algorithms to predict potential failures before they occur.

#	Article/Date	Author	Method Used	Improvements to our work
4	"Towards prediction of machine failures: overview and first attempt on specific automotive industry application" 2020	Vincent Ciancio et al.	Predictive Health Monitoring (PHM), FMEA, Bayesian Networks, statistical models, and Al-driven techniques.	They use traditional predictive maintenance with regression model and failure mode analysis based on expert input which doesn't account for complex interactions between failure causes. Our approach will improve predictive accuracy, identify key failure causes and provide more interpretable results for cost effective maintenance.
5	"Predicting machine failures using machine learning and deep learning algorithms"	Devendra Yadav et al.	Machine Learning and Deep Learning	Focuses on comparing ML models (Random Forest, XGBoost, etc.) with deep learning (LSTM) to predict machine failures. It highlights hyperparameter optimization for better performance.

Algorithm Selection for Failure Prediction

- Problem: Classification to Predict Failure from Features
- Selected Algorithms:
 - Decision Tree (DT): Capture non-linearities, may overfit
 - Random Forest: Ensemble of DT, may reduce overfit
 - XG Boost: Gradient Boosted Trees, high performance and accuracy, can utilize GPU support
 - Stacking Ensemble: Combine predictions from other models to potentially improve performance
 - MLP and KNN are rejected not handle collinearity

Hyperparameter Optimization

Configuration settings to improve performance and reduce overfitting

Not part of original data, tuned iteratively in model development

Ranges Tuned to control complexity and reduce overfitting and keeping accuracy

Decision Tree:	Random Forest:	XGBoost:
GridSearchCV Exhaustive Search over Values	RandomizedSearchCV Efficient Random Search	RandomizedSearchCV and RepeatedKFold for Robustness
criterion: ['gini', 'entropy'] max_depth: [6, 8, 10] min_samples_split: [5, 10, 15] min_samples_leaf: [2, 4, 5, 7] ccp_alpha: [0.0, 0.001, 0.01]	n_estimators: 50-200 max_depth: 3-20 min_samples_split: 2-10 min_samples_leaf: 1-4	n_estimators: 100-300 max_depth: 4-10 learning_rate: 0.01-0.15 subsample/colsample_bytree: 0.7-1.0 gamma/reg_alpha/reg_lambda: 0-1 / 0-1 / 1-3 (Regularization)

Model	Final Hyperparameters after Tuning			
DT (Base)	Basic decision tree with default parameters.			
DT (Best)	Tuned with GridSearchCV: 'ccp_alpha': 0.0, 'criterion': 'gini', 'max_depth': 10, 'min_samples_leaf': 2, 'min_samples_split': 5			
RF (Base)	Basic random forest with default parameters.			
RF (Best)	Tuned with RandomizedSearchCV: 'max_depth': 18, 'min_samples_leaf': 1, 'min_samples_split': 3, 'n_estimators': 160			
XGBoost (Base)	Baseline classifier on GPU with DMatrix & early stopping.			
XGBoost (Best)	Tuned using RandomizedSearchCV, refitted with DMatrix. 'subsample': 0.9, 'reg_lambda': 1.5, 'reg_alpha': 0.1, 'n_estimators': 200, 'max_depth': 10, 'learning_rate': 0.1, 'gamma': 0.5, 'colsample_bytree': 0.9}			

Metrics

- 1. Accuracy, most popular evaluation metrics for classification model.
 - * balanced data 50% failure and 50% failure
 - * using decision tree, random forest and XG boost
 - * large data/ classification
- Recall, most failures can be detected
 - 1. Using classification
 - 2. number failure, missing failures
- 3. Precision, predicts actual number of failures
 - * predicted failure vs actual failures
 - * high precision means lower false positive
 - * machine failure prevents unnecessary cost

acc = tp +tn/tp+tn+fp+fn

acc = 1759+1644/3861 = 0.88 %

Rec = tp/tp+fn

Rec = 1759/1759+217 = 0.89 %

pre = tp/tp+fp, pre =1759/2000=0.87

Initial Results

Citation

*We also used Professor Holly Russo's CDS 303-001 slide deck

Matzka, Stephan. "Explainable Artificial Intelligence for Predictive Maintenance Applications." 2020 Third International Conference on Artificial Intelligence for Industries (AI4I) (2020): 69-74

https://www.researchgate.net/publication/362517988 REVIEW OF STUDY OF EFFECT OF MISALIGNMENET ON ROTATING SHAFT

https://www.researchgate.net/publication/340402281 Causes and Impact of Human Error in Maintenance of Mechanical Systems

https://www.machinemetrics.com/blog/machine-failure

https://www.vortec.com/en-us/electronic-equipment-failures-cause-effect-and-resolution?srsltid=AfmBOogEMPlaplijrJtRKx0PWhFimiUHiZ5-QihzAYmvhTyKziPppPiV

https://www.graceport.com/blog/top-10-electrical-failures-by-cause

https://blog.isa.org/worlds-largest-manufacturers-lose-1-trillion/year-to-machine-failure

https://www.rewo.io/the-true-cost-of-downtime-from-human-error-in-manufacturing/

https://vectosystem.com/how-much-do-power-quality-disruptions-cost-us-industry/

https://eworkorders.com/cmms-industry-articles-eworkorders/dust-threat/

https://reliability.thenonstopgroup.com/equipment-malfunction/#:~:text=Unexpected%20equipment%20malfunctions%20can%20result.downtime%20caused%20by%20equipment%20malfunctions.

https://www.assemblymag.com/articles/96518-equipment-failure-is-costly-for-manufacturers

https://sensemore.io/ensuring-machine-reliability-the-role-of-predictive-maintenance/?srsltid=AfmBOoroBs30HAgLgmvLf3Lx1mgXzM1YYcbYQBe9DhWhCJ5gr-uFyNRt

Citation

https://encord.com/blog/an-introduction-to-balanced-and-imbalanced-datasets-in-machine-learning/

https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniques/

https://medium.com/@megha.natarajan/mastering-data-scaling-techniques-visualizations-and-insights-a00b2cb422c2

https://ken-hoffman.medium.com/decision-tree-hyperparameters-explained-49158ee1268e

https://www.geeksforgeeks.org/random-forest-hyperparameter-tuning-in-python/?ref=next_article

https://www.geeksforgeeks.org/hyperparameters-of-random-forest-classifier/

https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/

https://www.sciencedirect.com/science/article/pii/S2405896320301932?ref=pdf_download&fr=RR-2&rr=92948adddac1c974

https://www.sciencedirect.com/science/article/pii/S2667344424000124

https://www.mdpi.com/2075-1702/12/6/357