Accelerating RHEED Analysis with FPGA-Optimized Neural

Networks

Drexel university

Matt Wilkinson, Pujan Patel, Yichen Guo, Scott Hauck, Joshua Agar, Shih-Chieh Hsu, Geoff Jones

Introduction

Reflection High Energy Electron Diffraction (RHEED) is a technique that uses electron diffraction to monitor thin film growth and surface structure in real-time during deposition.

An electron beam is directed at a surface, and the resulting diffraction pattern reveals information about the surface structure and crystalline quality.

Goal

Use HLS4ML and HLS4ML optimization to deploy a machine learning system to provide real-time analysis for RHEED systems.

Method

The spots in RHEED images tend to be very spread out so cropping individual spots from the image before fitting parameters will save on resources.

Two cropping options:

Post-HLS4ML conversion

- Does not require custom HLS4ML layer
- Requires two separate neural networks
- Requires packaging in HDL to avoid overlapping naming

Pre-HLS4ML conversion

- Allows for a unified model to be trained
- Requires a custom Keras and HLS4ML layer
- Can be trained completely unsupervised on real RHEED data

Gaussian Parameter Estimation

After single spots are cropped from image, they are modeled as gaussians by predicting (mean_x, mean_y, cov_x, cov_y, rotation) with a CNN

Achieved a training loss of 0.0005566 when comparing the original image to a reconstructed image with a MSE loss

Conclusion

FPGAs can be used to alleviate current problems with RHEED analysis like slow inference times and expensive hardware

Next Steps

- > Train a unified python model and test the accuracy and resource usage against the two separate model approach
- Design a system to provide real-time control feedback to the deposition

References

[1] J. Duarte et al 2018 JINST 13 P07027

NSF: MRI: Development of Heterogeneous Edge Computing Platform for Real-Time Scientific Machine Learning (2215789) NSF: MRI: Development of a Platform for Accessible Data-Intensive Science and Engineering (2320600)DOE: Real-time Data Reduction Codesign at the Extreme Edge for ARL: Collaborative for Hierarchical

Agile and Responsive Materials

(CHARM) (W911NF-19-2-0119)