Topologie et calcul

différentiel

Dual d'un espace de

Banach

Question 1/6

Théorème de représentation de Riesz

Réponse 1/6

Si E est un Hilbert et $\mu \in E^*$ alors in existe un unique $y \in E$ tel que $\mu = \langle y, \cdot \rangle$

Question 2/6

Propriétés de E si E^* est séparable

Réponse 2/6

Si E est un Banach et E^* est séparable alors E l'est

En particulier, si E est séparable et réflexif alors E^* est séparable

Question 3/6

Morphisme canonique $E \to E^{**}$

Réponse 3/6

$$E \longrightarrow E^{**}$$

$$x \longmapsto \begin{pmatrix} \delta_x : E^* \longrightarrow \mathbb{R} \\ f \longmapsto f(x) \end{pmatrix}$$
Cette application est une isométrie

Question 4/6

Application duale

Réponse 4/6

Si E et F sont deux evn et $f: E \to F$ est linéaire et continue alors $f^*: F^* \longrightarrow E^*$ vérifie $|||f||| = |||f^*||$ $\mu \longmapsto (x \mapsto \mu(f(x)))$

Question 5/6

Espace reflexif

Réponse 5/6

Un espace de Banach est réflexif si l'application $E \longrightarrow E^{**}$

$$E \longrightarrow E^{**}$$

$$x \longmapsto \begin{pmatrix} \delta_x : E^* \longrightarrow \mathbb{R} \\ f \longmapsto f(x) \end{pmatrix} \text{ est un}$$

$$\text{isomorphisme}$$

Question 6/6

Théorème de Hahn-Banach

Réponse 6/6

Si E est un evn, V un sev de E et $f:V \to \mathbb{R}$ une application linéaire continue alors f se prolonge en une application continue $\overline{f}:E \to \mathbb{R}$ telle que $\|\overline{f}\|_{E^*} = \|\overline{f}\|_{V^*}$