Challenge 3: Synthesis Prediction

Giovanni Filomeno

Artificial Intelligence in Life Science

Problem overview

The goal of this task is to predict the reactant SMILES strings from given product SMILES using a sequence-to-sequence model. The model is trained on a dataset of chemical reactions formatted as "[Reactants] >> [Products]", aiming to learn the reverse transformation.

Model Architecture

- **Architecture**: Sequence-to-Sequence model based on the T5 transformer (ReactionT5v2).
- Pretrained Model: Initialized with sagawa/ReactionT5v2-retrosynthesis, specialized for retrosynthesis tasks.
- **Tokenizer**: Uses a SMILES-aware tokenizer from the HuggingFace Transformers library.
- Training Objective: Given a product SMILES, predict the corresponding reactant SMILES.
- Loss Function: Cross-entropy with label smoothing (0.1) to improve generalization.
- Evaluation Metric: Top-1 accuracy, based on exact matching of canonicalized SMILES sets.
- **Inference Strategy**: Beam search (num_beams=10) for robust generation of SMILES predictions.

Training Strategy & Tuning

- **Fine-Tuning**: The model is fine-tuned on a custom dataset of [Reactants] >> [Products] reactions.
- **Train/Test Split**: 90% training, 10% validation split from tokenized dataset.
- **Batching**: Effective batch size of 16 via gradient accumulation (batch size 4 x 4 steps).
- Learning Rate: Set to 5e-4 with a cosine scheduler and weight decay of 0.01.
- **Early Stopping**: Training stops early if no improvement in top-1 accuracy for 3 consecutive evaluations.
- **Label Smoothing**: 0.1 factor used to mitigate overfitting and encourage confident predictions.

Results

#	Top-1 Accuracy	Description	Upload Date
1	0.233	Try_before_christmas_4	June 22, 2025, 9:34 p.m.

> 0.20

