Mixture Density Estimation Via Hilbert Space Embedding of Measures

Bharath K. Sriperumbudur

Gatsby Unit, University College London

Presenter: Hirakendu Das, UC San Diego

Density Estimation

- ▶ Problem: Given $\{X_1, \ldots, X_n\}$ drawn i.i.d. from an unknown probability measure with density f, estimate f.
- Approaches: Parametric estimation using maximum likelihood

$$f_{\theta^*}$$
, where $\theta^* = \arg\max_{\theta \in \Theta} \prod_{i=1}^n f_{\theta}(X_i)$

- Maximum likelihood is not applicable to non-parametric estimation.
- Method of Sieves [Grenander, 1981]
 - Perform maximum likelihood on a restricted class
 - Slowly increase the size of the class with increase in n.
- Examples: Histogram estimators, penalized estimators, etc.

Mixture Sieves

Setup: $(\mathcal{X}, \mathscr{A})$ is a measurable space, μ is a σ -finite measure on \mathscr{A} .

- ▶ Base class, $\mathcal{C} := \{x \mapsto \phi_{\theta}(x) : \theta \in \Theta \subset \mathbb{R}^d\}$
 - Example: Gaussian family parametrized by mean and variance.
- ► Convex hull of \mathcal{C} : $\mathcal{G} = \{g(x) = \int_{\Theta} \phi_{\theta}(x) d\mathbb{P}(\theta), \mathbb{P} \in M^1_+(\Theta)\}.$

Suppose $f \in \mathcal{G}$. The maximum likelihood estimator is given as

$$\arg\max_{f\in\mathcal{G}}\prod_{i=1}^n f(X_i) = \arg\max_{\mathbb{P}\in M^1_+(\Theta)}\prod_{i=1}^n \int_{\Theta} \phi_{\theta}(X_i) \, d\mathbb{P}(\theta)$$

Mixture Sieves

 \blacktriangleright k-term approximation to \mathcal{G} :

$$\mathcal{G}_k = \left\{ g_k(x) = \sum_{j=1}^k \lambda_j \phi_{\theta_j}(x) : \sum_{j=1}^k \lambda_j = 1, \ \lambda_j \ge 0, \ \forall j \right\}$$

$$g_{k,n} = \arg \max_{g \in \mathcal{G}_k} \prod_{i=1}^n g(X_i) = \arg \max_{\theta \in \Theta, \|\lambda\|_1 = 1, \lambda \succeq 0} \sum_{i=1}^n \log \left(\sum_{j=1}^k \lambda_j \phi_{\theta_j}(X_i) \right)$$

$$= \arg \min_{g \in \mathcal{G}_k} \frac{1}{n} \sum_{i=1}^n \log \frac{f(X_i)}{g(X_i)}$$

$$= \arg \min_{g \in \mathcal{G}_k} D((X_i)_{i=1}^n \|g)$$

where

$$D(f||g) = \int_{\mathcal{X}} f(x) \log \frac{f(x)}{g(x)} d\mu(x)$$

Approximation and Estimation Errors

Approximation and Estimation Errors

Approximation error

Theorem ([Li and Barron, 1999])

For any f, there exists $g_k \in \mathcal{G}_k$ such that

$$D(f||g_k) \leq \inf_{g \in \mathcal{G}} D(f||g) + \frac{4(a + \log(3\sqrt{e}))c_{f,\mathbb{P}}}{k},$$

where

$$a = \sup_{\theta_1, \theta_2, x} \log \frac{\phi_{\theta_1}(x)}{\phi_{\theta_2}(x)}$$

and

$$c_{f,\mathbb{P}} = \int rac{\int \phi_{ heta}^2(x) d\mathbb{P}(heta)}{(\int \phi_{ heta}(x) d\mathbb{P}(heta))^2} d\mu$$

In fact such a g_k can be obtained iteratively as

$$D(f||g_k) \leq \min_{\lambda,\theta} D(f||(1-\lambda)g_{k-1} + \lambda\phi_{\theta}).$$

Greedy Estimation

Choose $g_{k,n} \in \mathcal{G}_k$ such that

$$\sum_{i=1}^{n} \log g_{k,n}(X_i) \geq \max_{\lambda,\theta} \sum_{i=1}^{n} \log \left((1-\lambda)g_{k-1,n}(X_i) + \lambda \phi_{\theta}(x) \right)$$

Clearly the maximum likelihood estimator satisfies the above inequality, i.e., choose $g_{k,n} = \arg\max_{g_k \in \mathcal{G}_k} \sum_{i=1}^n \log g_k(X_i)$.

Error Bound

Theorem ([Li and Barron, 1999])

Suppose ⊖ is a d-dimensional cube with side length A and that

$$\sup_{\mathbf{x} \in \mathcal{X}} |\log \phi_{\theta}(\mathbf{x}) - \log \phi_{\theta'}(\mathbf{x})| \le B \|\theta - \theta'\|_1$$

for any $\theta, \theta' \in \Theta$. Let $g_{k,n}$ satisfy the inequality in red. Then

$$\mathbb{E}\left[D(f\|g_{k,n})\right] \leq inf_{g\in\mathcal{G}}D(f\|g) + \frac{c_1}{k} + \frac{c_2k\log(nc_3)}{n},$$

where c_1 , c_2 and c_3 are constants (dependent on A, B and d) independent of k and n.

Optimal rate:
$$O_f\left(\sqrt{\frac{\log n}{n}}\right)$$
 with $k \sim \sqrt{\frac{n}{\log n}}$

Improved Error Bound

[Rakhlin et al., 2005] showed that for any $g_k \in \mathcal{G}_k$ and any f,

$$D(f||g_{k,n}) - D(f||g_k) \leq \frac{c_1}{k} + \frac{c_2}{\sqrt{n}} + c_3 \int_0^b \sqrt{\frac{\log \mathcal{N}(\mathcal{C}, \epsilon, d_n)}{n}} d\epsilon,$$

where $0 < a \le \phi_{\theta}(x) \le b < \infty$ for all $\theta \in \Theta$ and $x \in \mathcal{X}$.

- $d_n^2(\phi_1,\phi_2) := \frac{1}{n} \sum_{j=1}^n (\phi_1(X_j) \phi_2(X_j))^2$
- $ightharpoonup \mathcal{N}(\mathcal{C},\epsilon,d_n)$ represents the ϵ -covering number of \mathcal{C}
- ▶ If C is a VC-class, then the optimal rate is $O_f\left(\frac{1}{\sqrt{n}}\right)$ with $k \sim \sqrt{n}$.

Issues: Boundedness of f and ϕ_{θ} ; finite entropy integral of C.

Outline

$$\gamma_{K}(\mathbb{P},\mathbb{Q}) = \left\| \int_{\mathcal{X}} K(\cdot,x) \, d\mathbb{P}(x) - \int_{\mathcal{X}} K(\cdot,x) \, d\mathbb{Q}(x) \right\|_{\mathcal{H}},$$

where \mathcal{H} is a reproducing kernel Hilbert space and K is a reproducing kernel.

- Interpretation
- ► *M*-estimator
- Rates of convergence

Reproducing Kernel Hilbert Space

Definition

A Hilbert space \mathcal{H} is said to be an RKHS if the evaluation functionals $(\delta_x(f) = f(x), x \in X, f \in \mathcal{H})$ are bounded and continuous.

- ▶ There exists a unique kernel, $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that $\forall x \in \mathcal{X}, \, \forall \, f \in \mathcal{H}, \, \langle f, K(\cdot, x) \rangle_{\mathcal{H}} = f(x)$.
- ► K is the reproducing kernel (r.k.) of \mathcal{H} as $K(x,y) = \langle K(\cdot,x), K(\cdot,y) \rangle_{\mathcal{H}}, x,y \in X.$
- Every r.k. is a positive definite function.
- For every positive definite function, K on $\mathcal{X} \times \mathcal{X}$, there exists a unique RKHS, \mathcal{H} as K as its r.k.
- ► Example: $K(x,y) = e^{-|x-y|}$, $x,y \in \mathbb{R}$ induces a Sobolev space.

Interpretation [Sriperumbudur et al., 2010]

$$\mathbb{P} \mapsto \int_{\mathcal{X}} K(\cdot, x) \, d\mathbb{P}(x) := \Phi(\mathbb{P}) \in \mathcal{H}$$
$$\gamma_k(\mathbb{P}, \mathbb{Q}) = \|\Phi(\mathbb{P}) - \Phi(\mathbb{Q})\|_{\mathcal{H}}$$

- ▶ Suppose $K(x,y) = e^{-i\langle x,y\rangle_2}$, $x,y \in \mathbb{R}^d$. Then $\gamma_K(\mathbb{P},\mathbb{Q})$ is the L_2 distance between the characteristic functions of \mathbb{P} and \mathbb{Q} .
- ▶ If $K(x,y) = \psi(x-y)$, $x,y \in \mathbb{R}^d$, then $\gamma_K(\mathbb{P},\mathbb{Q})$ is the weighted L_2 distance (weighted by the Fourier transform of ψ) between the characteristic functions of \mathbb{P} and \mathbb{Q} .
- ightharpoonup Φ is a generalization of the characteristic function of \mathbb{P} .

Choice of k

▶ Not all K are interesting: $K(x,y) = \langle x,y \rangle_2, \ x,y \in \mathbb{R}^d$.

$$\gamma_{\mathcal{K}}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{2}.$$

Therefore, $\gamma_K(\mathbb{P},\mathbb{Q}) = 0 \Rightarrow \mathbb{P} = \mathbb{Q}$.

Interesting kernels: Let $K(x,y) = \psi(x-y), x,y \in \mathbb{R}^d$. If the support of the Fourier transform of ψ is \mathbb{R}^d , then

$$\gamma_{\mathcal{K}}(\mathbb{P},\mathbb{Q})=0\Leftrightarrow \mathbb{P}=\mathbb{Q}.$$

► Examples: $e^{-\sigma ||x-y||_2^2}$, $e^{-\sigma ||x-y||_1}$, $\sigma > 0$, etc.

M-Estimator

$$\gamma_{K}(f,g) := \left\| \int_{\mathcal{X}} K(\cdot,x)(f(x) - g(x)) \, d\mu(x) \right\|_{\mathcal{H}},$$

$$\gamma_{K}(S,g) := \left\| \frac{1}{n} \sum_{i=1}^{n} K(\cdot,X_{i}) - \int K(\cdot,x)g(x) \, d\mu(x) \right\|_{\mathcal{H}},$$

and

$$g_{\mathsf{emp}} := \arg\min_{g \in \mathcal{G}_k} \gamma_{\mathcal{K}}(S, g),$$

where $S := \{X_1, \dots, X_n\}$. g_{emp} is called an M-estimator.

Main Result

Theorem

Let $C := \sup_{x \in \mathcal{X}} \sqrt{K(x,x)}$, where K is a continuous kernel on a separable topological space, \mathcal{X} . Then with probability at least $1 - \delta$ over the choice of samples $\{X_j\}_{j=1}^n$ drawn i.i.d. from f, the following hold:

$$\gamma_{K}(f, g_{emp}) - \inf_{g \in \mathcal{G}} \gamma_{K}(f, g) \leq \frac{4C}{\sqrt{n}} + \sqrt{\frac{8C^{2}}{n}} \log \frac{2}{\delta} + \frac{2C}{\sqrt{k}}.$$

In addition,

$$-\frac{2C}{\sqrt{n}} - \sqrt{\frac{2C^2}{n}} \log \frac{1}{\delta} \le \gamma_K(S, g_{emp}) - \inf_{g \in \mathcal{G}} \gamma_K(f, g)$$
$$\le \frac{2C}{\sqrt{n}} + \sqrt{\frac{2C^2}{n}} \log \frac{1}{\delta} + \frac{2C}{\sqrt{k}}.$$

Remarks

- lacktriangle No assumptions on f, $\phi_{ heta}$ and ${\cal C}$
- ► Approximation error: $O\left(\frac{1}{\sqrt{k}}\right)$
- ► Estimation error: $O_f\left(\frac{1}{\sqrt{n}}\right)$
- ▶ Optimal rate: $O_f\left(\frac{1}{\sqrt{n}}\right)$ with $k \sim n$

$$\gamma_{\mathcal{K}}(\mathbb{P},\mathbb{Q}) \leq C\sqrt{2D(\mathbb{P}||\mathbb{Q})}$$

Fast rates

Proof Idea

Let us fix an $\varepsilon > 0$ and a function $g_{\varepsilon} \in \mathcal{G}$ such that

$$\gamma_{K}(f, g_{\varepsilon}) \leq \inf_{g \in \mathcal{G}} \gamma_{K}(f, g) + \varepsilon.$$

$$\gamma_{K}(f, g_{emp}) - \inf_{g \in \mathcal{G}} \gamma_{K}(f, g) = \overbrace{\gamma_{K}(f, g_{emp}) - \gamma_{K}(S, g_{emp})}^{A_{1}} + \overbrace{\gamma_{K}(S, g_{emp}) - \gamma_{K}(S, \tilde{g}_{k})}^{A_{2}} + \overbrace{\gamma_{K}(S, \tilde{g}_{k}) - \gamma_{K}(f, \tilde{g}_{k})}^{A_{3}} + \overbrace{\gamma_{K}(f, \tilde{g}_{k}) - \inf_{g \in \mathcal{G}} \gamma_{K}(f, g)}^{A_{3}} + \gamma_{K}(f, \tilde{g}_{k}) - \inf_{g \in \mathcal{G}} \gamma_{K}(f, g)$$

$$\leq A_{1} + A_{2} + A_{3}$$

$$+ \overbrace{\gamma_{K}(f, \tilde{g}_{k}) - \gamma_{K}(f, g_{\varepsilon})}^{A_{4}} + \varepsilon.$$

Proof Idea

$$A_1 \leq \gamma_K(S, f), \quad A_2 \leq 0, \quad A_3 \leq \gamma_K(S, f), \quad A_4 \leq \gamma_K(\tilde{g}_k, g_{\varepsilon})$$

Using concentration in Hilbert spaces (e.g., Hoeffding's inequality), it can be shown that

$$\gamma_{\mathcal{K}}(\tilde{g}_k, g_{\varepsilon}) \leq \frac{2C}{\sqrt{k}}$$

and with probability at least $1-\frac{\delta}{2}$ over the choice of $\{X_j\}_{j=1}^n$,

$$\gamma_K(S, f) \leq \frac{2C}{\sqrt{n}} + \sqrt{\frac{2C^2}{n}} \log \frac{2}{\delta},$$

Letting $\varepsilon \to 0$ yields the result.

Summary

- Mixture sieve density estimation via RKHS embedding of measures
- \blacktriangleright No assumptions of f and $\mathcal C$
- Fast error rates
- ▶ Disadvantage: Weaker distance than the KL divergence (convergence in γ_K does not imply the convergence in KL)

Thank You

References

- Grenander, U. (1981).

 Abstract Inference.

 Wiley, New York.
- Li, J. and Barron, A. (1999).
 Mixture density estimation.
 In Solla, S. A., Leon, T. K., and Muller, K.-R., editors, *Advances in Neural Information Processing Systems 12*, pages 279–285, San Mateo, CA. Morgan Kaufmann Publishers.
- Rakhlin, A., Panchenko, D., and Mukherjee, S. (2005). Risk bounds for mixture density estimation. ESAIM: Probability and Statistics, 9:220–229.
- Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B., and Lanckriet, G. R. G. (2010). Hilbert space embeddings and metrics on probability measures.

 Journal of Machine Learning Research, 11:1517–1561.