

CLAIMS

What is claimed is:

- 1 1. A content addressable memory (CAM) device comprising:
 - 2 a plurality of CAM cells;
 - 3 match lines coupled to respective rows of the CAM cells;
 - 4 storage circuits coupled to the match lines and configured to store, in response to assertion
 - 5 of a first timing signal, match indications signaled on the match lines; and
 - 6 a timing control circuit coupled to the storage circuits and configured to assert the first
 - 7 timing signal at either a first instant or a second instant according to the state of a
 - 8 mode select signal.
- 1 2. The CAM device of claim 1 wherein the timing control circuit receives a clock signal and a
- 2 first compare signal, and wherein the second instant occurs at least one cycle of the clock
- 3 signal after the first compare signal is asserted.
- 1 3. The CAM device of claim 2 wherein the first instant occurs prior to the second instant and
- 2 after the compare signal is asserted.
- 1 4. The CAM device of claim 2 wherein the second instant is substantially coincident with a
- 2 selected transition of the clock signal that occurs at least one cycle of the clock signal after
- 3 the first compare signal is asserted.
- 1 5. The CAM device of claim 4 wherein the selected transition of the clock signal follows a
- 2 first transition of the clock signal, the first transition of the clock signal occurring after the
- 3 first compare signal is asserted.

- 1 6. The CAM device of claim 5 wherein the first transition of the clock signal and the selected
- 2 transition of the clock signal are both rising edge transitions of the clock signal.
- 1 7. The CAM device of claim 5 wherein the first instant occurs after the first transition of the
- 2 clock signal and prior to the selected transition of the clock signal.
- 1 8. The CAM device of claim 7 wherein the timing control circuit comprises a delay circuit to
- 2 enable assertion of the first timing signal after a delay interval following the first transition
- 3 of the clock signal, the length of the delay interval determining the first instant.
- 1 9. The CAM device of claim 8 wherein the delay circuit includes a select input to receive a
- 2 delay control value, the delay circuit being responsive to the delay control value to select
- 3 one of a plurality of different time intervals to be the delay interval.
- 1 10. The CAM device of claim 9 further comprising a configuration circuit to store a value
- 2 indicative of the delay control value.
- 1 11. The CAM device of claim 10 wherein the configuration circuit comprises a run-time
- 2 programmable configuration register.
- 1 12. The CAM device of claim 10 wherein the configuration circuit comprises a storage
- 2 location to store a value that controls the state of the mode select signal.
- 1 13. The CAM device of claim 1 further comprising an integrated circuit contact to receive a
- 2 signal that controls the state of the mode select signal.

1 14. The CAM device of claim 1 wherein the second instant coincides with an edge of a clock
2 signal.

1 15. The CAM device of claim 1 wherein the timing control circuit comprises a delay circuit to
2 enable assertion of the first timing signal after a delay interval, the length of the delay
3 interval determining the first instant.

1 16. The CAM device of claim 15 wherein the delay circuit comprises a select circuit to select
2 one of a plurality of different time intervals to be the delay interval according to the state of
3 a delay control value.

1 17. The CAM device of claim 15 further comprising a one-shot circuit coupled to an output of
2 the delay circuit and configured to assert the timing control signal for a period of time after
3 the delay interval.

1 18. The CAM device of claim 1 wherein the timing control circuit comprises:
2 a first timing circuit to assert a first intermediate timing signal at the first instant;
3 a second timing circuit to assert a second intermediate timing signal at the second instant;
4 and
5 a select circuit to select, in response to the mode select signal, either the first intermediate
6 timing signal or the second intermediate timing signal to be the first timing signal.

1 19. The CAM device of claim 18 wherein the second timing circuit is configured to assert the
2 second intermediate timing signal at a time substantially coincident with a selected
3 transition of a clock signal.

- 1 20. The CAM device of claim 19 wherein the first timing circuit is configured to assert the first
- 2 intermediate timing signal a delay time after a first transition of the clock signal, the first
- 3 transition of the clock signal preceding the selected transition of the clock signal, and the
- 4 delay time being less than the time interval between the first transition of the clock signal
- 5 and the selected transition of the clock signal.
- 1 21. A content addressable memory (CAM) device comprising:
 - 2 a CAM array to generate a plurality of match indications;
 - 3 a configuration circuit to store a delay control value;
 - 4 a timing control circuit coupled to receive the delay control value from the configuration
 - 5 circuit and configured to generate a timing control signal a delay time after assertion
 - 6 of a first control signal, the delay time being selected from one of a plurality of
 - 7 different time intervals according to the delay control value; and
 - 8 a storage circuit coupled to receive the match indications from the CAM array and
 - 9 configured to store match indications in response to the timing control signal.
- 1 22. The CAM device of claim 21 wherein the configuration circuit is a run-time programmable
- 2 storage register.
- 1 23. The CAM device of claim 22 wherein the configuration circuit comprises fused elements
- 2 that are blown in a programming operation to store the delay control value.
- 1 24. A method of operation within a content addressable memory (CAM) device comprising:
 - 2 generating a plurality of match indications in response to assertion of a compare signal; and
 - 3 storing the plurality of match indications at either a first time or a second time according to

- 4 the state of a mode select signal.
- 1 25. The method of claim 24 wherein generating a plurality of match indications in response to
2 assertion of a compare signal comprises asserting a compare enable signal in response to a
3 transition of a clock signal that occurs after assertion of the compare signal, the compare
4 enable signal enabling a comparand value to be output to an array of CAM cells within the
5 CAM device for comparison with contents thereof.
- 1 26. The method of claim 24 wherein storing the plurality of match indications at the second
2 time comprises storing the plurality of match indications substantially coincidentally with a
3 selected clock signal transition that follows assertion of the compare signal.
- 1 27. The method of claim 26 wherein storing the plurality of match indications substantially
2 coincidentally with a selected clock signal transition:
3 detecting a first transition of the clock signal that follows assertion of the compare signal;
4 detecting a second transition of the clock signal that follows the first transition of the clock
5 signal; and
6 storing the plurality of match indications in response to the second transition of the clock
7 signal.
- 1 28. The method of claim 27 wherein the first transition of the clock signal and the second
2 transition of the clock signal are both rising edge transitions of the clock signal.
- 1 29. The method of claim 27 wherein storing the match indications at the second time comprises
2 storing the plurality of match indications after the first transition of the clock signal and
3 prior to the second transition of the clock signal.

- 1 30. The method of claim 24 wherein storing the match indications at the second time comprises
- 2 delaying for a first time interval after assertion of the compare signal before storing the
- 3 match indications.
- 1 31. The method of claim 30 wherein delaying for a first time interval comprises delaying for a
- 2 time required for a timing signal to propagate through a delay circuit.
- 1 32. The method of claim 31 further comprising outputting a delay control value to the delay
- 2 circuit to select one of a plurality of different times required for the timing signal propagate
- 3 through the delay circuit.
- 1 33. The method of claim 32 further comprising storing the delay control value within a
- 2 configuration circuit of the CAM device.
- 1 34. The method of claim 33 wherein storing the delay control value within the configuration
- 2 circuit comprises issuing an instruction to a control circuit of the CAM device, the
- 3 instruction instructing the control circuit to store the delay control value within the
- 4 configuration circuit.
- 1 35. The method of claim 33 wherein storing the delay control value within a configuration
- 2 circuit of the CAM device comprises programming the delay control value within the
- 3 configuration circuit in a one-time programming operation.
- 1 36. The method of claim 35 wherein programming the delay control value within the
- 2 configuration circuit in a one-time programming operation comprises blowing one or more

3 fused elements within the CAM device.

1 37. The method of claim 24 wherein generating the plurality of match indications comprises
2 generating signal levels on a plurality of match lines of the CAM device, and wherein
3 storing the plurality of match indications at either a first time or a second time comprises
4 asserting a detect signal at either the first time or the second time to enable a plurality of
5 logic circuits to generate logic level outputs according to respective signal levels on the
6 plurality of match lines.

1 38. The method of claim 37 wherein generating signal levels on a plurality of match lines of
2 the CAM device comprises selectively discharging the match lines of the CAM device
3 according to whether corresponding data words stored within the CAM device match a
4 comparand value.

1 39. The method of claim 24 wherein storing the plurality of match indications at either a first
2 time or a second time comprises generating a pulse at either the first time or the second
3 time to enable a plurality of storage circuits to store the match indications.

1 40. The method of claim 24 wherein generating a pulse at either the first time or the second
2 time to enable a plurality of storage circuits to store the match indications comprises
3 asserting and then deasserting a latch enable signal to enable a plurality of latch circuits to
4 store the match indications.

1 41. The method of claim 24 further comprising generating a match address that corresponds to
2 a selected one of the match indications.

1 42. The method of claim 24 further comprising setting the mode select signal to a first state
2 during a wafer test of the CAM device and setting the mode select signal to a second state
3 during normal operation of the CAM device.

1 43. The method of claim 42 wherein setting the mode select signal to the first state comprises
2 contacting a contact point of the CAM device with a test probe.

1 44. A content addressable memory (CAM) device comprising:
2 means for generating a plurality of match indications in response to assertion of a compare
3 signal; and
4 means for storing the plurality of match indications at either a first time or a second, later
5 time according to the state of a mode select signal.

1 45. The CAM device of claim 44 wherein the means for storing the match indications at the
2 second time comprises means for storing the plurality of match indications after a first
3 transition of a clock signal and prior to a second transition of the clock signal.

1 46. The CAM device of claim 45 wherein the means for storing the match indications at the
2 first time comprises means for storing the plurality of match indications in response to the
3 second transition of the clock signal.