

# Net-Zero America - north dakota state report

2021-03-15

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at <a href="https://netzeroamerica.princeton.edu">https://netzeroamerica.princeton.edu</a>.

#### Notes

- These data are all data from the study available at <a href="https://netzeroamerica.prince-ton.edu">https://netzeroamerica.prince-ton.edu</a>.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

## Data by category and subcategory

| 1  | E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial              | . 1  |
|----|------------------------------------------------------------------------------|------|
| 2  | E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand      | . 1  |
| 3  | E+ scenario - PILLAR 1: Efficiency/Electrification - Overview                | . 1  |
| 4  | E+ scenario - PILLAR 1: Efficiency/Electrification - Residential             | . 1  |
| 5  | E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation          | . 2  |
| 6  | E+ scenario - PILLAR 2: Clean Electricity - Generating capacity              | 2    |
| 7  | E+ scenario - PILLAR 2: Clean Electricity - Generation                       | . 2  |
| 8  | E+ scenario - PILLAR 3: Clean fuels - Bioenergy                              | 3    |
| 9  | E+ scenario - PILLAR 4: CCUS - CO2 capture                                   | 3    |
| 10 | E+ scenario - PILLAR 4: CCUS - CO2 pipelines                                 | 3    |
| 11 | E+ scenario - PILLAR 4: CCUS - CO2 storage                                   | 4    |
| 12 | E+ scenario - PILLAR 6: Land sinks - Agriculture                             | 4    |
| 13 | E+ scenario - PILLAR 6: Land sinks - Forests                                 | 5    |
| 14 | E+ scenario - IMPACTS - Fossil fuel industries                               | . 7  |
| 15 | E+ scenario - IMPACTS - Health                                               | . 7  |
| 16 | E+ scenario - IMPACTS - Jobs                                                 | . 7  |
| 17 | E- scenario - PILLAR 1: Efficiency/Electrification - Commercial              | 9    |
| 18 | E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand      | 9    |
| 19 | E- scenario - PILLAR 1: Efficiency/Electrification - Overview                | 9    |
| 20 | E- scenario - PILLAR 1: Efficiency/Electrification - Residential             | 9    |
| 21 | E- scenario - PILLAR 1: Efficiency/Electrification - Transportation          | 10   |
| 22 | E- scenario - PILLAR 6: Land sinks - Agriculture                             | 10   |
| 23 | E- scenario - PILLAR 6: Land sinks - Forests                                 | . 11 |
| 24 | E- scenario - IMPACTS - Health                                               | 13   |
| 25 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial           | 14   |
| 26 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand . | 14   |
| 27 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview             | 14   |
| 28 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential          | 14   |
| 29 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation       | 15   |
| 30 | E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity           | 15   |
| 31 | E+RE+ scenario - PILLAR 2: Clean Electricity - Generation                    | 15   |
| 32 | E+RE+ scenario - PILLAR 6: Land sinks - Agriculture                          | 16   |
| 33 | E+RE+ scenario - PILLAR 6: Land sinks - Forests                              | 16   |
| 34 | E+RE+ scenario - IMPACTS - Health                                            | . 19 |
| 35 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial           | . 19 |
| 36 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand   | . 19 |
| 37 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview             | . 19 |
| 38 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential          | 20   |
| 39 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation       | 20   |
| 40 | E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity           | 21   |
| 41 | E+RE- scenario - PILLAR 2: Clean Electricity - Generation                    | 21   |
| 42 | E+RE- scenario - PILLAR 6: Land sinks - Agriculture                          | 21   |
| 43 | E+RE- scenario - PILLAR 6: Land sinks - Forests                              | 22   |

| 44 | E+RE- scenario - IMPACTS - Health                                         | 24 |
|----|---------------------------------------------------------------------------|----|
| 45 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial         | 25 |
| 46 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 25 |
| 47 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview           | 25 |
| 48 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential        | 25 |
| 49 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation     | 26 |
| 50 | E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity         | 26 |
| 51 | E-B+ scenario - PILLAR 2: Clean Electricity - Generation                  | 26 |
| 52 | E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy                         | 26 |
| 53 | E-B+ scenario - PILLAR 4: CCUS - CO2 capture                              | 27 |
| 54 | E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines                            | 27 |
| 55 | E-B+ scenario - PILLAR 4: CCUS - CO2 storage                              | 27 |
| 56 | E-B+ scenario - PILLAR 6: Land sinks - Agriculture                        | 27 |
| 57 | E-B+ scenario - PILLAR 6: Land sinks - Forests                            | 28 |
| 58 | E-B+ scenario - IMPACTS - Health                                          | 31 |
| 59 | REF scenario - PILLAR 1: Efficiency/Electrification - Commercial          | 31 |
| 60 | REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand  | 32 |
| 61 | REF scenario - PILLAR 1: Efficiency/Electrification - Overview            | 32 |
| 62 | REF scenario - PILLAR 1: Efficiency/Electrification - Residential         | 32 |
| 63 | REF scenario - PILLAR 1: Efficiency/Electrification - Transportation      | 32 |
| 64 | REF scenario - PILLAR 6: Land sinks - Forests                             | 33 |
| 65 | REF scenario - PILLAR 6: Land sinks - Forests - REF only                  | 35 |
| 66 | REF scenario - IMPACTS - Health                                           | 35 |

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Commercial HVAC investment in 2020s -      |      | 2,165 | 2,361 |       |       |       |       |
| Cumulative 5-yr (million \$2018)           |      |       |       |       |       |       |       |
| Sales of cooking units - Electric          | 44.8 | 57.1  | 84    | 89.3  | 89.6  | 89.6  | 89.6  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 55.2 | 42.9  | 16    | 10.7  | 10.4  | 10.4  | 10.4  |
| Sales of space heating units - Electric    | 6.09 | 4.46  | 15.5  | 53    | 81.8  | 86.3  | 86.7  |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 9.99 | 5.81  | 8.04  | 12    | 12.9  | 12.9  | 12.9  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 9.8  | 2.42  | 0.475 | 0.02  | 0     | 0     | 0     |
| Sales of space heating units - Gas Furnace | 74.1 | 87.3  | 76    | 35    | 5.3   | 0.843 | 0.483 |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 1.62 | 1.17  | 6.88  | 27.5  | 44    | 46.5  | 46.7  |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 13.6 | 7.49  | 13.1  | 33.4  | 49.8  | 52.4  | 52.6  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 82.1 | 90.4  | 79.3  | 38.4  | 5.51  | 0.416 | 0     |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 2.67 | 0.964 | 0.742 | 0.696 | 0.692 | 0.695 | 0.695 |

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025  | 2030  | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|-------|-------|------|------|------|------|
| Electricity distribution capital invested - |      | 0.777 | 0.801 | 1.5  | 1.61 | 1.57 | 1.66 |
| Cumulative 5-yr (billion \$2018)            |      |       |       |      |      |      |      |

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 25.2 | 24.8 | 24   | 22.9 | 21.6 | 20.3 | 19.5 |
| Final energy use - Industry (PJ)       | 124  | 130  | 131  | 130  | 129  | 129  | 130  |
| Final energy use - Residential (PJ)    | 38.3 | 36.3 | 34.5 | 31.9 | 28.4 | 25   | 22.3 |
| Final energy use - Transportation (PJ) | 104  | 97.6 | 88.2 | 76.6 | 66   | 59.6 | 57.2 |

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Residential HVAC investment in 2020s vs.   |       | 0.514 | 0.598 |       |       |       |       |
| REF - Cumulative 5-yr (billion \$2018)     |       |       |       |       |       |       |       |
| Sales of cooking units - Electric          | 80.2  | 84.4  | 97.3  | 99.9  | 100   | 100   | 100   |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 19.8  | 15.6  | 2.66  | 0.134 | 0     | 0     | 0     |
| Sales of space heating units - Electric    | 8.4   | 12.9  | 25.9  | 58.5  | 84    | 88    | 87.9  |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 28.4  | 34.1  | 30.9  | 19.4  | 10.1  | 8.76  | 8.9   |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 13.7  | 18.3  | 14.3  | 8.01  | 3.29  | 2.43  | 2.5   |
| Sales of space heating units - Gas (%)     | 49.5  | 34.6  | 28.9  | 14.1  | 2.65  | 0.854 | 0.684 |
| Sales of water heating units - Electric    | 0     | 0.203 | 3.49  | 14.3  | 21.9  | 23    | 23.1  |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 52.4  | 66.9  | 67.7  | 71.6  | 76.1  | 76.8  | 76.8  |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 47.6  | 32.8  | 28.8  | 14    | 2.01  | 0.152 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 0.036 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 173   | 442   | 719   | 1,088 | 1,186 | 1,130 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.024 |       | 0.353 |       | 1.57  |       | 2.54  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.043 |       | 8.49  |       | 37.8  |       | 61.2  |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.96  | 2.17  | 1.42  | 0.461 | 0.082 | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 2.56  | 11.1  | 39.9  | 79.2  | 96    | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 92.2  | 82.7  | 55.6  | 19.2  | 3.64  | 0.601 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 3.1   | 3.59  | 2.75  | 1.07  | 0.251 | 0.052 | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.113 | 0.363 | 0.237 | 0.075 | 0.015 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.12  | 0.116 | 0.081 | 0.029 | 0.005 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0     |

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                      | 2020  | 2025  | 2030  | 2035  | 2040   | 2045   | 2050    |
|-------------------------------------------|-------|-------|-------|-------|--------|--------|---------|
| Capital invested - Biomass power plant    | 0     | 0     | 0     | 0     | 0      | 0      | 0       |
| (billion \$2018)                          |       |       |       |       |        |        |         |
| Capital invested - Biomass w/ccu allam    | 0     | 0     | 0     | 0.024 | 0      | 0.007  | 0       |
| power plant (billion \$2018)              |       |       |       |       |        |        |         |
| Capital invested - Biomass w/ccu power    | 0     | 0     | 0.081 | 0     | 0      | 0.013  | 0       |
| plant (billion \$2018)                    |       |       |       |       |        |        |         |
| Capital invested - Wind - Base (billion   |       | 0     | 0     | 0.287 | 0.603  | 3.22   | 9.02    |
| \$2018)                                   |       |       |       |       |        |        |         |
| Capital invested - Wind - Constrained     |       | 0.092 | 1.88  | 4.94  | 9.39   | 26.8   | 72.8    |
| (billion \$2018)                          |       |       |       |       |        |        |         |
| Installed renewables - OffshoreWind -     | 0     | 0     | 0     | 0     | 0      | 0      | 0       |
| Base land use assumptions (MW)            |       |       |       |       |        |        |         |
| Installed renewables - OffshoreWind -     | 0     | 0     | 0     | 0     | 0      | 0      | 0       |
| Constrained land use assumptions (MW)     |       |       |       |       |        |        |         |
| Installed renewables - Rooftop PV (MW)    | 0.496 | 0.883 | 1.13  | 1.5   | 2      | 2.58   | 3.26    |
| Installed renewables - Solar - Base land  | 0     | 0     | 0     | 0     | 0      | 0      | 0       |
| use assumptions (MW)                      |       |       |       |       |        |        |         |
| Installed renewables - Solar -            | 0     | 0     | 0     | 0     | 0      | 0      | 0       |
| Constrained land use assumptions (MW)     |       |       |       |       |        |        |         |
| Installed renewables - Wind - Base land   | 4,732 | 4,732 | 4,732 | 4,963 | 5,473  | 8,346  | 16,863  |
| use assumptions (MW)                      |       |       |       |       |        |        |         |
| Installed renewables - Wind - Constrained | 4,732 | 4,732 | 5,564 | 9,404 | 16,174 | 39,067 | 104,561 |
| land use assumptions (MW)                 |       |       |       |       |        |        |         |

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------|------|------|------|------|------|------|------|
| Biomass power plant (GWh)             | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Biomass w/ccu allam power plant (GWh) | 0    | 0    | 0    | 23.9 | 23.9 | 30.8 | 30.8 |
| Biomass w/ccu power plant (GWh)       | 0    | 0    | 90.7 | 90.7 | 90.7 | 105  | 105  |

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

| Item                                     | 2020   | 2025   | 2030   | 2035   | 2040   | 2045    | 2050    |
|------------------------------------------|--------|--------|--------|--------|--------|---------|---------|
| OffshoreWind - Base land use             | 0      | 0      | 0      | 0      | 0      | 0       | 0       |
| assumptions (GWh)                        |        |        |        |        |        |         |         |
| OffshoreWind - Constrained land use      | 0      | 0      | 0      | 0      | 0      | 0       | 0       |
| assumptions (GWh)                        |        |        |        |        |        |         |         |
| Solar - Base land use assumptions (GWh)  | 0      | 0      | 0      | 0      | 0      | 0       | 0       |
| Solar - Constrained land use assumptions | 0      | 0      | 0      | 0      | 0      | 0       | 0       |
| (GWh)                                    |        |        |        |        |        |         |         |
| Wind - Base land use assumptions (GWh)   | 19,216 | 19,216 | 19,216 | 20,024 | 21,802 | 32,070  | 62,105  |
| Wind - Constrained land use assumptions  | 19,216 | 19,216 | 22,168 | 35,712 | 58,941 | 137,238 | 352,916 |
| (GWh)                                    |        |        |        |        |        |         |         |

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

| Table 6. L. Scenario Tilling. Sicarifac      | no biocitoi | 91   |      |       |       |       |       |
|----------------------------------------------|-------------|------|------|-------|-------|-------|-------|
| Item                                         | 2020        | 2025 | 2030 | 2035  | 2040  | 2045  | 2050  |
| Biomass purchases (million \$2018/year)      |             | 0    | 4.97 | 410   | 529   | 609   | 1,023 |
| Conversion capital investment -              |             | 0    | 74.4 | 5,477 | 1,614 | 1,086 | 5,582 |
| Cumulative 5-yr (million \$2018)             |             |      |      |       |       |       |       |
| Number of facilities - Allam power w ccu     | 0           | 0    | 0    | 1     | 1     | 2     | 2     |
| (quantity)                                   |             |      |      |       |       |       |       |
| Number of facilities - Beccs hydrogen        | 0           | 0    | 0    | 7     | 10    | 13    | 17    |
| (quantity)                                   |             |      |      |       |       |       |       |
| Number of facilities - Diesel (quantity)     | 0           | 0    | 0    | 0     | 0     | 0     | 0     |
| Number of facilities - Diesel ccu (quantity) | 0           | 0    | 0    | 1     | 2     | 3     | 3     |
| Number of facilities - Power (quantity)      | 0           | 0    | 0    | 0     | 0     | 0     | 0     |
| Number of facilities - Power ccu             | 0           | 0    | 1    | 1     | 1     | 2     | 2     |
| (quantity)                                   |             |      |      |       |       |       |       |
| Number of facilities - Pyrolysis (quantity)  | 0           | 0    | 0    | 0     | 0     | 0     | 0     |
| Number of facilities - Pyrolysis ccu         | 0           | 0    | 0    | 1     | 2     | 3     | 3     |
| (quantity)                                   |             |      |      |       |       |       |       |
| Number of facilities - Sng (quantity)        | 0           | 0    | 0    | 0     | 0     | 0     | 0     |
| Number of facilities - Sng ccu (quantity)    | 0           | 0    | 1    | 1     | 1     | 2     | 2     |
|                                              |             |      |      |       |       |       |       |

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Annual - All (MMT)                 |      | 0    | 0.09 | 7.12 | 9.17 | 10.5 | 17.7 |
| Annual - BECCS (MMT)               |      | 0    | 0.09 | 7.08 | 9.15 | 10.5 | 17.7 |
| Annual - Cement and lime (MMT)     |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Annual - NGCC (MMT)                |      | 0    | 0    | 0.03 | 0.03 | 0.02 | 0.01 |
| Cumulative - All (MMT)             |      | 0    | 0.09 | 7.21 | 16.4 | 26.9 | 44.6 |
| Cumulative - BECCS (MMT)           |      | 0    | 0.09 | 7.17 | 16.3 | 26.8 | 44.5 |
| Cumulative - Cement and lime (MMT) |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - NGCC (MMT)            |      | 0    | 0    | 0.03 | 0.06 | 0.08 | 0.09 |

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

| Item                                   | 2020 | 2025 | 2030 | 2035  | 2040  | 2045  | 2050  |
|----------------------------------------|------|------|------|-------|-------|-------|-------|
| All (km)                               | 2020 | 0    | 554  | 2,251 | 2,490 | 3,079 | 4,487 |
| Cumulative investment - All (million   |      | 0    | 416  | 2,905 | 3,053 | 3,385 | 4,468 |
| \$2018)                                |      | U    | 410  | 2,703 | 3,033 | 3,303 | 4,400 |
| Cumulative investment - Spur (million  |      | 0    | 217  | 1,178 | 1,327 | 1,659 | 2,742 |
| \$2018)                                |      |      |      |       |       |       |       |
| Cumulative investment - Trunk (million |      | 0    | 199  | 1,726 | 1,726 | 1,726 | 1,726 |
| \$2018)                                |      |      |      |       |       |       |       |
| Spur (km)                              |      | 0    | 416  | 1,805 | 2,044 | 2,633 | 4,042 |
| Trunk (km)                             |      | 0    | 138  | 446   | 446   | 446   | 446   |

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

| Item                                                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045  | 2050  |
|-------------------------------------------------------------------------|------|------|------|------|------|-------|-------|
| CO2 storage (MMT)                                                       |      | 0    | 2.19 | 6.17 | 11.7 | 18.9  | 25.2  |
| Injection wells (wells)                                                 |      | 0    | 4    | 15   | 26   | 44    | 54    |
| Resource characterization, appraisal, permitting costs (million \$2020) |      | 135  | 406  | 542  | 542  | 542   | 542   |
| Wells and facilities construction costs (million \$2020)                |      | 0    | 113  | 439  | 783  | 1,309 | 1,625 |

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

| Table 12: E+ Scenario - PILLAR 6: Land Sink                   | ks - Agricu.<br>2020 | <i>1ture</i><br>2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|---------------------------------------------------------------|----------------------|----------------------|------|------|------|------|---------|
| Item Carbon sink potential - Aggressive                       | 2020                 | 2025                 | 2030 | 2035 | 2040 | 2045 | -551    |
|                                                               |                      |                      |      |      |      |      | -551    |
| deployment - Corn-ethanol to energy<br>grasses (1000 tCO2e/y) |                      |                      |      |      |      |      |         |
| Carbon sink potential - Aggressive                            |                      |                      |      |      |      |      | -10,108 |
| deployment - Cropland measures (1000                          |                      |                      |      |      |      |      | -10,108 |
| tCO2e/y)                                                      |                      |                      |      |      |      |      |         |
| Carbon sink potential - Aggressive                            |                      |                      |      |      |      |      | -660    |
| deployment - Permanent conservation                           |                      |                      |      |      |      |      | -000    |
|                                                               |                      |                      |      |      |      |      |         |
| cover (1000 tC02e/y)  Carbon sink potential - Aggressive      |                      |                      |      |      |      |      | -11,319 |
| deployment - Total (1000 tCO2e/y)                             |                      |                      |      |      |      |      | -11,319 |
|                                                               |                      |                      |      |      |      |      |         |
| Carbon sink potential - Moderate                              |                      |                      |      |      |      |      | -551    |
| deployment - Corn-ethanol to energy                           |                      |                      |      |      |      |      |         |
| grasses (1000 tC02e/y)                                        |                      |                      |      |      |      |      | F 000   |
| Carbon sink potential - Moderate                              |                      |                      |      |      |      |      | -5,330  |
| deployment - Cropland measures (1000                          |                      |                      |      |      |      |      |         |
| tCO2e/y)                                                      |                      |                      |      |      |      |      |         |
| Carbon sink potential - Moderate                              |                      |                      |      |      |      |      | -330    |
| deployment - Permanent conservation                           |                      |                      |      |      |      |      |         |
| cover (1000 tCO2e/y)                                          |                      |                      |      |      |      |      |         |
| Carbon sink potential - Moderate                              |                      |                      |      |      |      |      | -6,211  |
| deployment - Total (1000 tCO2e/y)                             |                      |                      |      |      |      |      |         |
| Land impacted for carbon sink -                               |                      |                      |      |      |      |      | 300     |
| Aggressive deployment - Corn-ethanol to                       |                      |                      |      |      |      |      |         |
| energy grasses (1000 hectares)                                |                      |                      |      |      |      |      |         |
| Land impacted for carbon sink -                               |                      |                      |      |      |      |      | 9,928   |
| Aggressive deployment - Cropland                              |                      |                      |      |      |      |      |         |
| measures (1000 hectares)                                      |                      |                      |      |      |      |      |         |
| Land impacted for carbon sink -                               |                      |                      |      |      |      |      | 1,092   |
| Aggressive deployment - Permanent                             |                      |                      |      |      |      |      |         |
| conservation cover (1000 hectares)                            |                      |                      |      |      |      |      |         |
| Land impacted for carbon sink -                               |                      |                      |      |      |      |      | 11,320  |
| Aggressive deployment - Total (1000                           |                      |                      |      |      |      |      |         |
| hectares)                                                     |                      |                      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                      |                      |                      |      |      |      |      | 300     |
| deployment - Corn-ethanol to energy                           |                      |                      |      |      |      |      |         |
| grasses (1000 hectares)                                       |                      |                      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                      |                      |                      |      |      |      |      | 5,237   |
| deployment - Cropland measures (1000                          |                      |                      |      |      |      |      | •       |
| hectares)                                                     |                      |                      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                      |                      |                      |      |      |      |      | 546     |
| deployment - Permanent conservation                           |                      |                      |      |      |      |      |         |
| cover (1000 hectares)                                         |                      |                      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                      |                      |                      |      |      |      |      | 6,083   |
| deployment - Total (1000 hectares)                            |                      |                      |      |      |      |      | 5,550   |
| asp.symone rotal (1000 motal ob)                              |                      |                      |      |      |      |      |         |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

| Item                                                                          | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-------------------------------------------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate                                     |      |      |      |      |      |      | -38.5   |
| regeneration (1000 tCO2e/y)                                                   |      |      |      |      |      |      |         |
| Carbon sink potential - High - All (not                                       |      |      |      |      |      |      | -23,528 |
| counting overlap) (1000 tCO2e/y)                                              |      |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid                                          |      |      |      |      |      |      | -821    |
| deforestation (1000 tC02e/y)                                                  |      |      |      |      |      |      |         |
| Carbon sink potential - High - Extend                                         |      |      |      |      |      |      | -414    |
| rotation length (1000 tCO2e/y)                                                |      |      |      |      |      |      | 00.7    |
| Carbon sink potential - High - Improve                                        |      |      |      |      |      |      | -20.6   |
| plantations (1000 tCO2e/y)                                                    |      |      |      |      |      |      | /15     |
| Carbon sink potential - High - Increase                                       |      |      |      |      |      |      | -41.5   |
| retention of HWP (1000 tCO2e/y)                                               |      |      |      |      |      |      | 0.0/0   |
| Carbon sink potential - High - Increase                                       |      |      |      |      |      |      | -3,342  |
| trees outside forests (1000 tC02e/y)  Carbon sink potential - High - Reforest |      |      |      |      |      |      | -13,386 |
| cropland (1000 tCO2e/y)                                                       |      |      |      |      |      |      | -13,300 |
| Carbon sink potential - High - Reforest                                       |      |      |      |      |      |      | -5,274  |
| pasture (1000 tC02e/y)                                                        |      |      |      |      |      |      | -5,214  |
| Carbon sink potential - High - Restore                                        |      |      |      |      |      |      | -191    |
| productivity (1000 tC02e/y)                                                   |      |      |      |      |      |      | -171    |
| Carbon sink potential - Low - Accelerate                                      |      |      |      |      |      |      | -19.3   |
| regeneration (1000 tCO2e/y)                                                   |      |      |      |      |      |      | -17.5   |
| Carbon sink potential - Low - All (not                                        |      |      |      |      |      |      | -8,666  |
| counting overlap) (1000 tC02e/y)                                              |      |      |      |      |      |      | -0,000  |
| Carbon sink potential - Low - Avoid                                           |      |      |      |      |      |      | -137    |
| deforestation (1000 tC02e/y)                                                  |      |      |      |      |      |      | 101     |
| Carbon sink potential - Low - Extend                                          |      |      |      |      |      |      | -159    |
| rotation length (1000 tC02e/y)                                                |      |      |      |      |      |      | 107     |
| Carbon sink potential - Low - Improve                                         |      |      |      |      |      |      | -10.5   |
| plantations (1000 tCO2e/y)                                                    |      |      |      |      |      |      | .0.0    |
| Carbon sink potential - Low - Increase                                        |      |      |      |      |      |      | -13.8   |
| retention of HWP (1000 tCO2e/y)                                               |      |      |      |      |      |      | .5.5    |
| Carbon sink potential - Low - Increase                                        |      |      |      |      |      |      | -1,170  |
| trees outside forests (1000 tCO2e/y)                                          |      |      |      |      |      |      | , -     |
| Carbon sink potential - Low - Reforest                                        |      |      |      |      |      |      | -6,693  |
| cropland (1000 tCO2e/y)                                                       |      |      |      |      |      |      | -,-     |
| Carbon sink potential - Low - Reforest                                        |      |      |      |      |      |      | -400    |
| pasture (1000 tCO2e/y)                                                        |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Restore                                         |      |      |      |      |      |      | -64.3   |
| productivity (1000 tCO2e/y)                                                   |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Accelerate                                      |      |      |      |      |      |      | -28.9   |
| regeneration (1000 tCO2e/y)                                                   |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - All (not                                        |      |      |      |      |      |      | -16,097 |
| counting overlap) (1000 tCO2e/y)                                              |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Avoid                                           |      |      |      |      |      |      | -479    |
| deforestation (1000 tCO2e/y)                                                  |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Extend                                          |      |      |      |      |      |      | -286    |
| rotation length (1000 tCO2e/y)                                                |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Improve                                         |      |      |      |      |      |      | -15.4   |
| plantations (1000 tCO2e/y)                                                    |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Increase                                        |      |      |      |      |      |      | -27.6   |
| retention of HWP (1000 tCO2e/y)                                               |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Increase                                        |      |      |      |      |      |      | -2,256  |
| trees outside forests (1000 tCO2e/y)                                          |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Reforest                                        |      |      |      |      |      |      | -10,039 |
| cropland (1000 tCO2e/y)                                                       |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Reforest                                        |      |      |      |      |      |      | -2,837  |
| pasture (1000 tCO2e/y)                                                        |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Restore                                         |      |      |      |      |      |      | -127    |
| productivity (1000 tCO2e/y)                                                   |      |      |      |      |      |      |         |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Table 13: E+ scenario - PILLAR 6: Land sin     |      | ·    |      | JUJE | 207.0 | 207E | 2050         |
|------------------------------------------------|------|------|------|------|-------|------|--------------|
| Item Land impacted for carbon sink potential - | 2020 | 2025 | 2030 | 2035 | 2040  | 2045 | 2050<br>6.3  |
| High - Accelerate regeneration (1000           |      |      |      |      |       |      | 0.3          |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 111          |
| High - Avoid deforestation (over 30 years)     |      |      |      |      |       |      | 111          |
| (1000 hectares)                                |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 211          |
| High - Extend rotation length (1000            |      |      |      |      |       |      | 211          |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       | +    | 7.59         |
| High - Improve plantations (1000               |      |      |      |      |       |      | 1.07         |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 0            |
| High - Increase retention of HWP (1000         |      |      |      |      |       |      | U            |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 317          |
| High - Increase trees outside forests          |      |      |      |      |       |      | 311          |
| (1000 hectares)                                |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 885          |
| High - Reforest cropland (1000 hectares)       |      |      |      |      |       |      | 000          |
|                                                |      |      |      |      |       |      | 150          |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 150          |
| High - Reforest pasture (1000 hectares)        |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 63.2         |
| High - Restore productivity (1000              |      |      |      |      |       |      |              |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 1,752        |
| High - Total impacted (over 30 years)          |      |      |      |      |       |      |              |
| (1000 hectares)                                |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 3.15         |
| Low - Accelerate regeneration (1000            |      |      |      |      |       |      |              |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 104          |
| Low - Avoid deforestation (over 30 years)      |      |      |      |      |       |      |              |
| (1000 hectares)                                |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 80.8         |
| Low - Extend rotation length (1000             |      |      |      |      |       |      |              |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 3.79         |
| Low - Improve plantations (1000                |      |      |      |      |       |      |              |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 0            |
| Low - Increase retention of HWP (1000          |      |      |      |      |       |      |              |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 167          |
| Low - Increase trees outside forests           |      |      |      |      |       |      |              |
| (1000 hectares)                                |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 443          |
| Low - Reforest cropland (1000 hectares)        |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 26           |
| Low - Reforest pasture (1000 hectares)         |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 38.2         |
| Low - Restore productivity (1000               |      |      |      |      |       |      |              |
| hectares)                                      |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 866          |
| Low - Total impacted (over 30 years)           |      |      |      |      |       |      |              |
| (1000 hectares)                                |      |      |      |      |       |      |              |
| Land impacted for carbon sink potential -      |      |      |      |      |       |      | 4.72         |
| Mid - Accelerate regeneration (1000            |      |      |      |      |       |      | ··· <b>-</b> |
|                                                |      |      |      |      |       |      |              |

|              |              |                          |                | _         |             |
|--------------|--------------|--------------------------|----------------|-----------|-------------|
| Table 13. Ex | ccanario -   | DIII $\Lambda D A \cdot$ | Land sinks -   | Enracte   | lcontinuedl |
| Table 15. LT | occiiui iu - | FILLAN U.                | Luiiu siiiks - | ו טו בטנט | lcontinucui |

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 108   |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 146   |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 5.71  |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 242   |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 664   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 188   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 77    |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,435 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

## Table 14: E+ scenario - IMPACTS - Fossil fuel industries

| Item                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|-----------------------------------------|------|------|------|------|------|------|-------|
| Natural gas consumption - Annual (tcf)  |      | 98.1 | 82.7 | 66.3 | 49.9 | 31.4 | 21.8  |
| Natural gas consumption - Cumulative    |      |      |      |      |      |      | 1,997 |
| (tcf)                                   |      |      |      |      |      |      |       |
| Natural gas production - Annual (tcf)   |      | 690  | 653  | 568  | 481  | 381  | 296   |
| Oil consumption - Annual (million bbls) |      | 46   | 42.8 | 37.1 | 31.1 | 26.4 | 21.8  |
| Oil consumption - Cumulative (million   |      |      |      |      |      |      | 1,120 |
| bbls)                                   |      |      |      |      |      |      |       |
| Oil production - Annual (million bbls)  |      | 598  | 600  | 599  | 475  | 386  | 257   |

#### Table 15: E+ scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 24.9  | 0.018 | 0.017 | 0.013 | 0.008 | 0     |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 6.03  | 3.33  | 2     | 1.7   | 1.07  | 0.466 |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 24.3  | 22.3  | 16.7  | 9.47  | 4.22  | 1.6   |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 2.82  | 0.002 | 0.002 | 0.001 | 0.001 | 0     |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 0.681 | 0.376 | 0.225 | 0.192 | 0.121 | 0.053 |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 2.73  | 2.51  | 1.88  | 1.06  | 0.474 | 0.179 |

## Table 16: E+ scenario - IMPACTS - Jobs

| 2020 | 2025   | 2030                   | 2035                                    | 2040                                                                                     | 2045                                                                                                                                                                | 2050                                                                                                                                                                                                        |
|------|--------|------------------------|-----------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 819    | 825                    | 1,384                                   | 1,095                                                                                    | 696                                                                                                                                                                 | 883                                                                                                                                                                                                         |
|      | 8,513  | 7,968                  | 9,267                                   | 7,706                                                                                    | 8,666                                                                                                                                                               | 11,179                                                                                                                                                                                                      |
|      | 10,549 | 11,439                 | 13,536                                  | 12,081                                                                                   | 9,891                                                                                                                                                               | 11,265                                                                                                                                                                                                      |
|      |        |                        |                                         |                                                                                          |                                                                                                                                                                     |                                                                                                                                                                                                             |
|      | 11,230 | 8,984                  | 7,222                                   | 4,831                                                                                    | 3,348                                                                                                                                                               | 2,008                                                                                                                                                                                                       |
|      | 2020   | 819<br>8,513<br>10,549 | 819 825<br>8,513 7,968<br>10,549 11,439 | 819     825     1,384       8,513     7,968     9,267       10,549     11,439     13,536 | 819         825         1,384         1,095           8,513         7,968         9,267         7,706           10,549         11,439         13,536         12,081 | 819         825         1,384         1,095         696           8,513         7,968         9,267         7,706         8,666           10,549         11,439         13,536         12,081         9,891 |

Table 16: E+ scenario - IMPACTS - Jobs (continued)

| Jiitiiiueuj |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2020        |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9,514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 13,835  | 12,551                                                                                                                                       | 13,935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11,576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11,698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14,875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 11,621  | 10,352                                                                                                                                       | 10,762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9,983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 366     | 320                                                                                                                                          | 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 21,431  | 19,639                                                                                                                                       | 21,671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17,778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17,039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20,585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 2,590   | 2,276                                                                                                                                        | 2,366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |         | 432                                                                                                                                          | 3,217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5,307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 1,398   | 306                                                                                                                                          | 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 3,938   | 2,787                                                                                                                                        | 4,099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13,277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 6,390   | 5,139                                                                                                                                        | 3,906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 0       | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 28,669  | 26,333                                                                                                                                       | 24,126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17,859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13,626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8,672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |         |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64,907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | ,       | ,                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 7.418   | 6.719                                                                                                                                        | 7.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | .,      | -,                                                                                                                                           | ,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 2.761   | 2,462                                                                                                                                        | 2.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | _,      | _,                                                                                                                                           | _,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _,:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 8.039   | 7.274                                                                                                                                        | 7.902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | -,      | .,                                                                                                                                           | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 339     | 311                                                                                                                                          | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |         | · · ·                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 31,286  | 28.372                                                                                                                                       | 30.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25,141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 0.,200  | 20,012                                                                                                                                       | 00,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20,1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27,110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 9 249   | 8 361                                                                                                                                        | 9 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 7,247   | 0,001                                                                                                                                        | 7,247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 2 470   | 2 197                                                                                                                                        | 2 489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 2,410   | 2,171                                                                                                                                        | 2,407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 2 964   | 2 658                                                                                                                                        | 2 793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 2,704   | 2,030                                                                                                                                        | 2,1 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | /,83    | /,51                                                                                                                                         | /,9/,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /,በ8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 400     | 401                                                                                                                                          | 474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 3/, 677 | 21 /.71                                                                                                                                      | 37, 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32,297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 34,011  | 31,411                                                                                                                                       | 34,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21,720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20,070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32,271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 10 227  | 14 7.95                                                                                                                                      | 17797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/. 5/.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/, 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17,296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 10,221  | 10,425                                                                                                                                       | 11,121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14,545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14,170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11,270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 11 020  | 10 102                                                                                                                                       | 10.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.07.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11,109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 11,239  | 10,123                                                                                                                                       | 10,964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11,109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 7,000   | / / / 1                                                                                                                                      | 7.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F 707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 1,000   | 6,441                                                                                                                                        | 1,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 0.100   | 0.000                                                                                                                                        | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 / 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 3,122   | 2,839                                                                                                                                        | 3,060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 10.170  | 0.010                                                                                                                                        | 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 /1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 10,168  | 9,310                                                                                                                                        | 10,238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9,785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 0.010   | 07/7                                                                                                                                         | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 3,018   | 2,747                                                                                                                                        | 3,007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 2020    | 2020 2025<br>267<br>1,477<br>4,758<br>8,804<br>3,426<br>13,835<br>11,621<br>366<br>21,431<br>2,590<br>1,923<br>72<br>1,398<br>3,938<br>6,390 | 2020         2025         2030           267         230           1,477         1,486           4,758         4,147           8,804         7,514           3,426         2,545           13,835         12,551           11,621         10,352           366         320           21,431         19,639           2,590         2,276           1,923         1,882           72         432           1,398         306           3,938         2,787           6,390         5,139           0         0           28,669         26,333           2,034         2,406           5,420         5,854           60,555         60,862           7,418         6,719           2,761         2,462           8,039         7,274           339         311           31,286         28,372           9,249         8,361           2,470         2,197           2,964         2,658           483         451           34,677         31,471           18,22 | 2020         2025         2030         2035           267         230         262           1,477         1,486         1,775           4,758         4,147         4,634           8,804         7,514         6,824           3,426         2,545         4,160           13,835         12,551         13,935           11,621         10,352         10,762           366         320         328           21,431         19,639         21,671           2,590         2,276         2,366           1,923         1,882         3,450           72         432         3,217           1,398         306         18.4           3,938         2,787         4,099           6,390         5,139         3,906           0         0         0           28,669         26,333         24,126           2,034         2,406         3,519           5,420         5,854         6,728           60,555         60,862         61,280           7,418         6,719         7,403           2,761         2,462         2,735           < | 2020         2025         2030         2035         2040           267         230         262         270           1,477         1,486         1,775         1,313           4,758         4,147         4,634         4,202           8,804         7,514         6,824         5,155           3,426         2,545         4,160         3,639           13,835         12,551         13,935         11,576           11,621         10,352         10,762         8,735           366         320         328         272           21,431         19,639         21,671         17,778           2,590         2,276         2,366         1,932           1,923         1,882         3,450         3,008           72         432         3,217         1,824           1,398         306         18.4         13.6           3,938         2,787         4,099         4,717           6,390         5,139         3,906         2,818           0         0         0         0           28,669         26,333         24,126         17,859           2,034         2,406 | 2020         2025         2030         2035         20-40         2045           267         230         262         270         396           1,477         1,488         1,775         1,313         1,210           4,758         4,147         4,634         4,202         4,756           8,804         7,514         6,824         5,155         4,501           3,426         2,545         4,160         3,639         5,794           11,621         10,352         10,762         8,735         8,341           366         320         328         272         273           21,431         19,639         21,671         17,778         17,039           2,590         2,276         2,366         1,932         1,907           1,923         1,882         3,450         3,008         2,575           72         432         3,217         1,824         3,002           1,398         306         18,4         13,6         10,5           3,938         2,787         4,099         4,717         8,046           6,390         5,139         3,906         2,818         2,150           2,034 |

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Commercial HVAC investment in 2020s -      |      | 2,165 | 2,363 |       |       |       |       |
| Cumulative 5-yr (million \$2018)           |      |       |       |       |       |       |       |
| Sales of cooking units - Electric          | 44.8 | 49.3  | 53.1  | 63    | 76.9  | 85.5  | 88.5  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 55.2 | 50.7  | 46.9  | 37    | 23.1  | 14.5  | 11.5  |
| Sales of space heating units - Electric    | 6.09 | 3.87  | 4.9   | 7.61  | 14.7  | 26.5  | 37    |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 9.99 | 5.53  | 5.63  | 6.05  | 7.05  | 8.18  | 8.82  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 9.8  | 2.84  | 2.83  | 2.55  | 2.12  | 1.71  | 1.57  |
| Sales of space heating units - Gas Furnace | 74.1 | 87.8  | 86.6  | 83.8  | 76.1  | 63.6  | 52.6  |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 1.62 | 0.913 | 1.44  | 2.92  | 6.86  | 13.4  | 19.4  |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 13.6 | 7.24  | 7.77  | 9.19  | 13.1  | 19.6  | 25.5  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 82.1 | 90.8  | 89.8  | 86.9  | 79.2  | 66.1  | 54.3  |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 2.67 | 1.01  | 0.99  | 0.955 | 0.899 | 0.868 | 0.856 |

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025  | 2030  | 2035  | 2040 | 2045 | 2050 |
|---------------------------------------------|------|-------|-------|-------|------|------|------|
| Electricity distribution capital invested - |      | 0.635 | 0.643 | 0.813 | 0.84 | 1.28 | 1.36 |
| Cumulative 5-yr (billion \$2018)            |      |       |       |       |      |      |      |

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

|                                        | 11 11 |      |      |      |      |      |      |  |  |  |
|----------------------------------------|-------|------|------|------|------|------|------|--|--|--|
| Item                                   | 2020  | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |  |  |  |
| Final energy use - Commercial (PJ)     | 25.2  | 24.8 | 24.2 | 23.7 | 23.1 | 22.6 | 22.2 |  |  |  |
| Final energy use - Industry (PJ)       | 124   | 130  | 132  | 133  | 133  | 134  | 134  |  |  |  |
| Final energy use - Residential (PJ)    | 38.3  | 36.3 | 34.8 | 33.5 | 32.4 | 31.2 | 29.7 |  |  |  |
| Final energy use - Transportation (PJ) | 104   | 98.2 | 91.1 | 85.7 | 81.6 | 76.8 | 71   |  |  |  |

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Residential HVAC investment in 2020s vs.   |       | 0.511 | 0.578 |       |       |       |       |
| REF - Cumulative 5-yr (billion \$2018)     |       |       |       |       |       |       |       |
| Sales of cooking units - Electric          | 80.2  | 80.7  | 82.5  | 87.3  | 93.9  | 98    | 99.5  |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 19.8  | 19.3  | 17.5  | 12.7  | 6.06  | 1.96  | 0.527 |
| Sales of space heating units - Electric    | 8.4   | 11.6  | 12.7  | 15.6  | 22.9  | 33.8  | 43    |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 28.4  | 34.3  | 33.8  | 33    | 30.5  | 26.9  | 23.9  |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 13.7  | 19    | 18.9  | 18    | 16.1  | 13.6  | 12    |
| Sales of space heating units - Gas (%)     | 49.5  | 35.1  | 34.6  | 33.4  | 30.5  | 25.7  | 21.2  |
| Sales of water heating units - Electric    | 0     | 0.054 | 0.328 | 1.13  | 3.24  | 6.62  | 9.51  |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 52.4  | 66.9  | 67    | 67.1  | 67.8  | 69.2  | 70.5  |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 47.6  | 33    | 32.6  | 31.8  | 29    | 24.2  | 19.9  |
| (%)                                        |       |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 0.036 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 0     | 27.7  | 58.9  | 198   | 626   | 911   |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.024 |       | 0.106 |       | 0.58  |       | 1.63  |
| _units)                                    |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.043 |       | 2.55  |       | 14    |       | 39.2  |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.4  | 96    | 91.3  | 79.8  | 58.2  | 32.1  | 13.7  |
| Vehicle sales - Heavy-duty - EV (%)        | 0.498 | 1.45  | 4.11  | 10.8  | 23.6  | 39.5  | 51    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.228 | 0.236 | 0.239 | 0.225 | 0.179 | 0.109 | 0.051 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.094 | 0.104 | 0.107 | 0.092 | 0.06  | 0.03  |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.332 | 0.969 | 2.74  | 7.17  | 15.7  | 26.3  | 34    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.28  | 1.46  | 1.95  | 2.25  | 1.96  | 1.14  |
| Vehicle sales - Light-duty - diesel (%)    | 1.96  | 2.3   | 2.13  | 1.72  | 1.14  | 0.593 | 0.252 |
| Vehicle sales - Light-duty - EV (%)        | 1.41  | 3.65  | 9.65  | 22.3  | 44.4  | 69.4  | 86.5  |
| Vehicle sales - Light-duty - gasoline (%)  | 93.2  | 89.4  | 83.1  | 71.2  | 50.7  | 27.7  | 12.1  |
| Vehicle sales - Light-duty - hybrid (%)    | 3.19  | 4.09  | 4.66  | 4.44  | 3.53  | 2.2   | 1.11  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.114 | 0.392 | 0.35  | 0.276 | 0.203 | 0.115 | 0.053 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.121 | 0.124 | 0.116 | 0.102 | 0.075 | 0.042 | 0.019 |
| Vehicle sales - Medium-duty - diesel (%)   | 64.8  | 62.2  | 57.7  | 49.4  | 35.6  | 19.6  | 8.37  |
| Vehicle sales - Medium-duty - EV (%)       | 0.664 | 1.94  | 5.49  | 14.3  | 31.4  | 52.6  | 68    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.8  | 34.7  | 34.7  | 31.9  | 24.4  | 14.2  | 6.33  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.418 | 0.464 | 0.478 | 0.414 | 0.275 | 0.141 |
| Vehicle sales - Medium-duty - hydrogen     | 0.166 | 0.485 | 1.37  | 3.58  | 7.86  | 13.2  | 17    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.266 | 0.279 | 0.286 | 0.258 | 0.184 | 0.102 |

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

| Item                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-----------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -551    |
| deployment - Corn-ethanol to energy     |      |      |      |      |      |      |         |
| grasses (1000 tCO2e/y)                  |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -10,108 |
| deployment - Cropland measures (1000    |      |      |      |      |      |      |         |
| tCO2e/y)                                |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -660    |
| deployment - Permanent conservation     |      |      |      |      |      |      |         |
| cover (1000 tC02e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -11,319 |
| deployment - Total (1000 tCO2e/y)       |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -551    |
| deployment - Corn-ethanol to energy     |      |      |      |      |      |      |         |
| grasses (1000 tCO2e/y)                  |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -5,330  |
| deployment - Cropland measures (1000    |      |      |      |      |      |      |         |
| tCO2e/y)                                |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -330    |
| deployment - Permanent conservation     |      |      |      |      |      |      |         |
| cover (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -6,211  |
| deployment - Total (1000 tCO2e/y)       |      |      |      |      |      |      |         |
| Land impacted for carbon sink -         |      |      |      |      |      |      | 300     |
| Aggressive deployment - Corn-ethanol to |      |      |      |      |      |      |         |
| energy grasses (1000 hectares)          |      |      |      |      |      |      |         |
| Land impacted for carbon sink -         |      |      |      |      |      |      | 9,928   |
| Aggressive deployment - Cropland        |      |      |      |      |      |      |         |
| measures (1000 hectares)                |      |      |      |      |      |      |         |
| Land impacted for carbon sink -         |      |      |      |      |      |      | 1,092   |
| Aggressive deployment - Permanent       |      |      |      |      |      |      |         |
| conservation cover (1000 hectares)      |      |      |      |      |      |      |         |

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|------------------------------------------|------|------|------|------|------|------|--------|
| Land impacted for carbon sink -          |      |      |      |      |      |      | 11,320 |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |        |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 300    |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 hectares)                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 5,237  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 546    |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 hectares)                    |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 6,083  |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |        |

## Table 23: E- scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -38.5   |
| regeneration (1000 tC02e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -23,528 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -821    |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -414    |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -20.6   |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -41.5   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -3,342  |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |         |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -13,386 |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -5,274  |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - High - Restore    |      |      |      |      |      |      | -191    |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Accelerate  |      |      |      |      |      |      | -19.3   |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Low - All (not    |      |      |      |      |      |      | -8,666  |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Avoid       |      |      |      |      |      |      | -137    |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Extend      |      |      |      |      |      |      | -159    |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Improve     |      |      |      |      |      |      | -10.5   |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -13.8   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -1,170  |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -6,693  |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -400    |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Restore     |      |      |      |      |      |      | -64.3   |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Accelerate  |      |      |      |      |      |      | -28.9   |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item Carbon sink potential - Mid - All (not                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050<br>-16,097 |
|---------------------------------------------------------------|------|------|------|------|------|------|-----------------|
| counting overlap) (1000 tCO2e/y)                              |      |      |      |      |      |      |                 |
| Carbon sink potential - Mid - Avoid                           |      |      |      |      |      |      | -479            |
| deforestation (1000 tCO2e/y)                                  |      |      |      |      |      |      |                 |
| Carbon sink potential - Mid - Extend                          |      |      |      |      |      |      | -286            |
| rotation length (1000 tC02e/y)                                |      |      |      |      |      |      |                 |
| Carbon sink potential - Mid - Improve                         |      |      |      |      |      |      | -15.4           |
| plantations (1000 tCO2e/y)                                    |      |      |      |      |      |      |                 |
| Carbon sink potential - Mid - Increase                        |      |      |      |      |      |      | -27.6           |
| retention of HWP (1000 tCO2e/y)                               |      |      |      |      |      |      | 0.05/           |
| Carbon sink potential - Mid - Increase                        |      |      |      |      |      |      | -2,256          |
| trees outside forests (1000 tC02e/y)                          |      |      |      |      |      |      | 10.000          |
| Carbon sink potential - Mid - Reforest                        |      |      |      |      |      |      | -10,039         |
| cropland (1000 tCO2e/y)                                       |      |      |      |      |      |      | 0.027           |
| Carbon sink potential - Mid - Reforest pasture (1000 tCO2e/y) |      |      |      |      |      |      | -2,837          |
| Carbon sink potential - Mid - Restore                         |      |      |      |      |      |      | -127            |
| productivity (1000 tCO2e/y)                                   |      |      |      |      |      |      | -121            |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 6.3             |
| High - Accelerate regeneration (1000                          |      |      |      |      |      |      | 0.3             |
| hectares)                                                     |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 111             |
| High - Avoid deforestation (over 30 years)                    |      |      |      |      |      |      | 111             |
| (1000 hectares)                                               |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 211             |
| High - Extend rotation length (1000                           |      |      |      |      |      |      | 211             |
| hectares)                                                     |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 7.59            |
| High - Improve plantations (1000                              |      |      |      |      |      |      |                 |
| hectares)                                                     |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 0               |
| High - Increase retention of HWP (1000                        |      |      |      |      |      |      |                 |
| hectares)                                                     |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 317             |
| High - Increase trees outside forests                         |      |      |      |      |      |      |                 |
| (1000 hectares)                                               |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 885             |
| High - Reforest cropland (1000 hectares)                      |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 150             |
| High - Reforest pasture (1000 hectares)                       |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 63.2            |
| High - Restore productivity (1000                             |      |      |      |      |      |      |                 |
| hectares)                                                     |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 1,752           |
| High - Total impacted (over 30 years)                         |      |      |      |      |      |      |                 |
| (1000 hectares)                                               |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 3.15            |
| Low - Accelerate regeneration (1000                           |      |      |      |      |      |      |                 |
| hectares)                                                     |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 104             |
| Low - Avoid deforestation (over 30 years)                     |      |      |      |      |      |      |                 |
| (1000 hectares)                                               |      |      |      |      |      |      | 00.0            |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 80.8            |
| Low - Extend rotation length (1000                            |      |      |      |      |      |      |                 |
| hectares)                                                     |      |      |      |      |      |      | 0.70            |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 3.79            |
| Low - Improve plantations (1000                               |      |      |      |      |      |      |                 |
| hectares)                                                     |      |      |      |      |      |      |                 |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 0               |
| Low - Increase retention of HWP (1000                         |      |      |      |      |      |      |                 |
| hectares)                                                     |      |      |      |      |      |      |                 |

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  | 2020 | 2020 | 2000 | 2000 | 2040 | 2040 | 167   |
| Low - Increase trees outside forests       |      |      |      |      |      |      | 101   |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 443   |
| Low - Reforest cropland (1000 hectares)    |      |      |      |      |      |      | 443   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 26    |
| Low - Reforest pasture (1000 hectares)     |      |      |      |      |      |      | 20    |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 38.2  |
| Low - Restore productivity (1000           |      |      |      |      |      |      | 30.2  |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 866   |
| Low - Total impacted (over 30 years)       |      |      |      |      |      |      | 000   |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4.72  |
| Mid - Accelerate regeneration (1000        |      |      |      |      |      |      | 4.72  |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 108   |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      | 100   |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 146   |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      | 140   |
| hectares)                                  |      |      |      |      |      |      |       |
|                                            |      |      |      |      |      |      | 5.71  |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 5.71  |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      | 0     |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | U     |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      | 0/0   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 242   |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 664   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      | 100   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 188   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 77    |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      | 4.0-  |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,435 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

Table 24: E- scenario - IMPACTS - Health

| Item                                  | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 24.9  | 0.018 | 0.017 | 0.013 | 0.008 | 0     |
| Coal (million 2019\$)                 |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 6.06  | 2.98  | 1.58  | 0.901 | 0.439 | 0.301 |
| Natural Gas (million 2019\$)          |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 24.6  | 24.4  | 23.4  | 20.8  | 16.4  | 11.1  |
| Transportation (million 2019\$)       |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 2.82  | 0.002 | 0.002 | 0.001 | 0.001 | 0     |
| Coal (deaths)                         |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 0.684 | 0.337 | 0.178 | 0.102 | 0.05  | 0.034 |
| Natural Gas (deaths)                  |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 2.77  | 2.75  | 2.63  | 2.34  | 1.84  | 1.25  |
| Transportation (deaths)               |      |       |       |       |       |       |       |

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Commercial HVAC investment in 2020s -      |      | 2,165 | 2,361 |       |       |       |       |
| Cumulative 5-yr (million \$2018)           |      | ,     | ,     |       |       |       |       |
| Sales of cooking units - Electric          | 44.8 | 57.1  | 84    | 89.3  | 89.6  | 89.6  | 89.6  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 55.2 | 42.9  | 16    | 10.7  | 10.4  | 10.4  | 10.4  |
| Sales of space heating units - Electric    | 6.09 | 4.46  | 15.5  | 53    | 81.8  | 86.3  | 86.7  |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 9.99 | 5.81  | 8.04  | 12    | 12.9  | 12.9  | 12.9  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 9.8  | 2.42  | 0.475 | 0.02  | 0     | 0     | 0     |
| Sales of space heating units - Gas Furnace | 74.1 | 87.3  | 76    | 35    | 5.3   | 0.843 | 0.483 |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 1.62 | 1.17  | 6.88  | 27.5  | 44    | 46.5  | 46.7  |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 13.6 | 7.49  | 13.1  | 33.4  | 49.8  | 52.4  | 52.6  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 82.1 | 90.4  | 79.3  | 38.4  | 5.51  | 0.416 | 0     |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 2.67 | 0.964 | 0.742 | 0.696 | 0.692 | 0.695 | 0.695 |

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025  | 2030  | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|-------|-------|------|------|------|------|
| Electricity distribution capital invested - |      | 0.777 | 0.801 | 1.5  | 1.61 | 1.57 | 1.66 |
| Cumulative 5-yr (billion \$2018)            |      |       |       |      |      |      |      |

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 25.2 | 24.8 | 24   | 22.9 | 21.6 | 20.3 | 19.5 |
| Final energy use - Industry (PJ)       | 124  | 130  | 131  | 130  | 129  | 129  | 130  |
| Final energy use - Residential (PJ)    | 38.3 | 36.3 | 34.5 | 31.9 | 28.4 | 25   | 22.3 |
| Final energy use - Transportation (PJ) | 104  | 97.6 | 88.2 | 76.6 | 66   | 59.6 | 57.2 |

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Residential HVAC investment in 2020s vs.   |       | 0.514 | 0.598 |       |       |       |       |
| REF - Cumulative 5-yr (billion \$2018)     |       |       |       |       |       |       |       |
| Sales of cooking units - Electric          | 80.2  | 84.4  | 97.3  | 99.9  | 100   | 100   | 100   |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 19.8  | 15.6  | 2.66  | 0.134 | 0     | 0     | 0     |
| Sales of space heating units - Electric    | 8.4   | 12.9  | 25.9  | 58.5  | 84    | 88    | 87.9  |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 28.4  | 34.1  | 30.9  | 19.4  | 10.1  | 8.76  | 8.9   |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 13.7  | 18.3  | 14.3  | 8.01  | 3.29  | 2.43  | 2.5   |
| Sales of space heating units - Gas (%)     | 49.5  | 34.6  | 28.9  | 14.1  | 2.65  | 0.854 | 0.684 |
| Sales of water heating units - Electric    | 0     | 0.203 | 3.49  | 14.3  | 21.9  | 23    | 23.1  |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 52.4  | 66.9  | 67.7  | 71.6  | 76.1  | 76.8  | 76.8  |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 47.6  | 32.8  | 28.8  | 14    | 2.01  | 0.152 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 0.036 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 173   | 442   | 719   | 1,088 | 1,186 | 1,130 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.024 |       | 0.353 |       | 1.57  |       | 2.54  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.043 |       | 8.49  |       | 37.8  |       | 61.2  |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.96  | 2.17  | 1.42  | 0.461 | 0.082 | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 2.56  | 11.1  | 39.9  | 79.2  | 96    | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 92.2  | 82.7  | 55.6  | 19.2  | 3.64  | 0.601 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 3.1   | 3.59  | 2.75  | 1.07  | 0.251 | 0.052 | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.113 | 0.363 | 0.237 | 0.075 | 0.015 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.12  | 0.116 | 0.081 | 0.029 | 0.005 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0     |

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                      | 2020  | 2025  | 2030   | 2035   | 2040   | 2045    | 2050    |
|-------------------------------------------|-------|-------|--------|--------|--------|---------|---------|
| Capital invested - Wind - Base (billion   |       | 0     | 0      | 0.709  | 3.37   | 14.5    | 34.2    |
| \$2018)                                   |       |       |        |        |        |         |         |
| Installed renewables - OffshoreWind -     | 0     | 0     | 0      | 0      | 0      | 0       | 0       |
| Base land use assumptions (MW)            |       |       |        |        |        |         |         |
| Installed renewables - OffshoreWind -     | 0     | 0     | 0      | 0      | 0      | 0       | 0       |
| Constrained land use assumptions (MW)     |       |       |        |        |        |         |         |
| Installed renewables - Solar - Base land  | 0     | 0     | 0      | 0      | 0      | 0       | 0       |
| use assumptions (MW)                      |       |       |        |        |        |         |         |
| Installed renewables - Solar -            | 0     | 0     | 0      | 0      | 0      | 0       | 0       |
| Constrained land use assumptions (MW)     |       |       |        |        |        |         |         |
| Installed renewables - Wind - Base land   | 4,732 | 4,732 | 4,732  | 5,303  | 8,154  | 21,114  | 53,385  |
| use assumptions (MW)                      |       |       |        |        |        |         |         |
| Installed renewables - Wind - Constrained | 9,463 | 9,463 | 12,337 | 22,217 | 73,658 | 278,472 | 365,562 |
| land use assumptions (MW)                 |       |       |        |        |        |         |         |

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                     | 2020   | 2025   | 2030   | 2035   | 2040    | 2045    | 2050      |
|------------------------------------------|--------|--------|--------|--------|---------|---------|-----------|
| OffshoreWind - Base land use             | 0      | 0      | 0      | 0      | 0       | 0       | 0         |
| assumptions (GWh)                        |        |        |        |        |         |         |           |
| OffshoreWind - Constrained land use      | 0      | 0      | 0      | 0      | 0       | 0       | 0         |
| assumptions (GWh)                        |        |        |        |        |         |         |           |
| Solar - Base land use assumptions (GWh)  | 0      | 0      | 0      | 0      | 0       | 0       | 0         |
| Solar - Constrained land use assumptions | 0      | 0      | 0      | 0      | 0       | 0       | 0         |
| (GWh)                                    |        |        |        |        |         |         |           |
| Wind - Base land use assumptions (GWh)   | 19,216 | 19,216 | 19,216 | 21,195 | 31,306  | 76,704  | 185,837   |
| Wind - Constrained land use assumptions  | 38,431 | 38,431 | 48,634 | 83,200 | 259,155 | 921,913 | 1,175,106 |
| (GWh)                                    |        |        |        |        |         |         |           |

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -551    |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |         |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -10,108 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |         |
| tCO2e/y)                                 |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -660    |
| deployment - Permanent conservation      |      |      |      |      |      |      |         |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -11,319 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -551    |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |         |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -5,330  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |         |
| tCO2e/y)                                 |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -330    |
| deployment - Permanent conservation      |      |      |      |      |      |      |         |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -6,211  |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |         |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 300     |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |         |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |         |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 9,928   |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |         |
| measures (1000 hectares)                 |      |      |      |      |      |      |         |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 1,092   |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |         |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |         |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 11,320  |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |         |
| hectares)                                |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 300     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |         |
| grasses (1000 hectares)                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 5,237   |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |         |
| hectares)                                |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 546     |
| deployment - Permanent conservation      |      |      |      |      |      |      |         |
| cover (1000 hectares)                    |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 6,083   |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |         |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -38.5   |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -23,528 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -821    |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -414    |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -20.6   |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -41.5   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|---------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Increase                                                                 |      |      |      |      |      |      | -3,342  |
| trees outside forests (1000 tC02e/y)                                                                    |      |      |      |      |      |      | 10.00   |
| Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)                                         |      |      |      |      |      |      | -13,386 |
| Carbon sink potential - High - Reforest pasture (1000 tC02e/y)                                          |      |      |      |      |      |      | -5,274  |
| Carbon sink potential - High - Restore productivity (1000 tCO2e/y)                                      |      |      |      |      |      |      | -19     |
| Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)                                    |      |      |      |      |      |      | -19.3   |
| Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)                                 |      |      |      |      |      |      | -8,666  |
| Carbon sink potential - Low - Avoid deforestation (1000 tC02e/y)                                        |      |      |      |      |      |      | -13     |
| Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)                                     |      |      |      |      |      |      | -15     |
| Carbon sink potential - Low - Improve plantations (1000 tC02e/y)                                        |      |      |      |      |      |      | -10.    |
| Carbon sink potential - Low - Increase retention of HWP (1000 tCO2e/y)                                  |      |      |      |      |      |      | -13.8   |
| Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)                             |      |      |      |      |      |      | -1,170  |
| Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)                                          |      |      |      |      |      |      | -6,69   |
| Carbon sink potential - Low - Reforest pasture (1000 tC02e/y)                                           |      |      |      |      |      |      | -40     |
| Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)                                       |      |      |      |      |      |      | -64.    |
| Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)                                    |      |      |      |      |      |      | -28.    |
| Carbon sink potential - Mid - All (not counting overlap) (1000 tC02e/y)                                 |      |      |      |      |      |      | -16,09  |
| Carbon sink potential - Mid - Avoid<br>deforestation (1000 tCO2e/y)                                     |      |      |      |      |      |      | -47     |
| Carbon sink potential - Mid - Extend<br>rotation length (1000 tCO2e/y)                                  |      |      |      |      |      |      | -28     |
| Carbon sink potential - Mid - Improve plantations (1000 tCO2e/y)                                        |      |      |      |      |      |      | -15.    |
| Carbon sink potential - Mid - Increase retention of HWP (1000 tC02e/y)                                  |      |      |      |      |      |      | -27.    |
| Carbon sink potential - Mid - Increase<br>trees outside forests (1000 tCO2e/y)                          |      |      |      |      |      |      | -2,25   |
| Carbon sink potential - Mid - Reforest<br>cropland (1000 tCO2e/y)                                       |      |      |      |      |      |      | -10,03  |
| Carbon sink potential - Mid - Reforest pasture (1000 tCO2e/y)                                           |      |      |      |      |      |      | -2,83   |
| Carbon sink potential - Mid - Restore productivity (1000 tCO2e/y)                                       |      |      |      |      |      |      | -12     |
| Land impacted for carbon sink potential -<br>High - Accelerate regeneration (1000<br>hectares)          |      |      |      |      |      |      | 6.      |
| Land impacted for carbon sink potential -<br>High - Avoid deforestation (over 30 years)                 |      |      |      |      |      |      | 1       |
| (1000 hectares) Land impacted for carbon sink potential - High - Extend rotation length (1000 hectares) |      |      |      |      |      |      | 2       |
| Land impacted for carbon sink potential -<br>High - Improve plantations (1000<br>hectares)              |      |      |      |      |      |      | 7.5     |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|-------------------------------------------------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -<br>High - Increase retention of HWP (1000 |      |      |      |      |      |      | 0     |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 317   |
| High - Increase trees outside forests                                               |      |      |      |      |      |      |       |
| (1000 hectares)                                                                     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 885   |
| High - Reforest cropland (1000 hectares)                                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 150   |
| High - Reforest pasture (1000 hectares)                                             |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 63.2  |
| High - Restore productivity (1000                                                   |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      | 1,752 |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 1,752 |
| High - Total impacted (over 30 years)<br>(1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 3.15  |
| Low - Accelerate regeneration (1000                                                 |      |      |      |      |      |      | 3.13  |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 104   |
| Low - Avoid deforestation (over 30 years)                                           |      |      |      |      |      |      | 104   |
| (1000 hectares)                                                                     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 80.8  |
| Low - Extend rotation length (1000                                                  |      |      |      |      |      |      | 00.0  |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 3.79  |
| Low - Improve plantations (1000                                                     |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 0     |
| Low - Increase retention of HWP (1000                                               |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 167   |
| Low - Increase trees outside forests                                                |      |      |      |      |      |      |       |
| (1000 hectares)                                                                     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 443   |
| Low - Reforest cropland (1000 hectares)                                             |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 26    |
| Low - Reforest pasture (1000 hectares)                                              |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 38.2  |
| Low - Restore productivity (1000                                                    |      |      |      |      |      |      |       |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 866   |
| Low - Total impacted (over 30 years)                                                |      |      |      |      |      |      |       |
| (1000 hectares)                                                                     |      |      |      |      |      |      | / 70  |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 4.72  |
| Mid - Accelerate regeneration (1000 hectares)                                       |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 108   |
| Mid - Avoid deforestation (over 30 years)                                           |      |      |      |      |      |      | 100   |
| (1000 hectares)                                                                     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 146   |
| Mid - Extend rotation length (1000                                                  |      |      |      |      |      |      | 140   |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 5.71  |
| Mid - Improve plantations (1000 hectares)                                           |      |      |      |      |      |      | 0     |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000                                               |      |      |      |      |      |      | 9     |
| hectares)                                                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                           |      |      |      |      |      |      | 242   |
| Mid - Increase trees outside forests (1000                                          |      |      |      |      |      |      |       |
| hectares)                                                                           | 1    | ı    |      |      |      |      |       |

| T 11 00 E DE '             | DTI I AD ( ) I ' I     |                       |
|----------------------------|------------------------|-----------------------|
| Table 33: F+RF+ scenario - | PILLAR 6. Land sinks - | - Forests icontinuedi |

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 664   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 188   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 77    |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,435 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

#### Table 34: E+RE+ scenario - IMPACTS - Health

| Item                                  | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 24.9  | 0.018 | 0.017 | 0.013 | 0.008 | 0     |
| Coal (million 2019\$)                 |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 5.52  | 2.94  | 1.21  | 0.905 | 0.477 | 0.265 |
| Natural Gas (million 2019\$)          |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 24.3  | 22.3  | 16.7  | 9.47  | 4.22  | 1.6   |
| Transportation (million 2019\$)       |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 2.82  | 0.002 | 0.002 | 0.001 | 0.001 | 0     |
| Coal (deaths)                         |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 0.623 | 0.332 | 0.136 | 0.102 | 0.054 | 0.03  |
| Natural Gas (deaths)                  |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 2.73  | 2.51  | 1.88  | 1.06  | 0.474 | 0.179 |
| Transportation (deaths)               |      |       |       |       |       |       |       |

## Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                                                      | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Commercial HVAC investment in 2020s -<br>Cumulative 5-yr (million \$2018) |      | 2,165 | 2,361 |       |       |       |       |
| Sales of cooking units - Electric<br>Resistance (%)                       | 44.8 | 57.1  | 84    | 89.3  | 89.6  | 89.6  | 89.6  |
| Sales of cooking units - Gas (%)                                          | 55.2 | 42.9  | 16    | 10.7  | 10.4  | 10.4  | 10.4  |
| Sales of space heating units - Electric<br>Heat Pump (%)                  | 6.09 | 4.46  | 15.5  | 53    | 81.8  | 86.3  | 86.7  |
| Sales of space heating units - Electric<br>Resistance (%)                 | 9.99 | 5.81  | 8.04  | 12    | 12.9  | 12.9  | 12.9  |
| Sales of space heating units - Fossil (%)                                 | 9.8  | 2.42  | 0.475 | 0.02  | 0     | 0     | 0     |
| Sales of space heating units - Gas Furnace (%)                            | 74.1 | 87.3  | 76    | 35    | 5.3   | 0.843 | 0.483 |
| Sales of water heating units - Electric<br>Heat Pump (%)                  | 1.62 | 1.17  | 6.88  | 27.5  | 44    | 46.5  | 46.7  |
| Sales of water heating units - Electric<br>Resistance (%)                 | 13.6 | 7.49  | 13.1  | 33.4  | 49.8  | 52.4  | 52.6  |
| Sales of water heating units - Gas Furnace (%)                            | 82.1 | 90.4  | 79.3  | 38.4  | 5.51  | 0.416 | 0     |
| Sales of water heating units - Other (%)                                  | 2.67 | 0.964 | 0.742 | 0.696 | 0.692 | 0.695 | 0.695 |

## Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025  | 2030  | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|-------|-------|------|------|------|------|
| Electricity distribution capital invested - |      | 0.777 | 0.801 | 1.5  | 1.61 | 1.57 | 1.66 |
| Cumulative 5-yr (billion \$2018)            |      |       |       |      |      |      |      |

## Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ) | 25.2 | 24.8 | 24   | 22.9 | 21.6 | 20.3 | 19.5 |

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

| The state of the s | -    | -    |      | -    |      |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
| Final energy use - Industry (PJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 124  | 130  | 131  | 130  | 129  | 129  | 130  |
| Final energy use - Residential (PJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38.3 | 36.3 | 34.5 | 31.9 | 28.4 | 25   | 22.3 |
| Final energy use - Transportation (PJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104  | 97.6 | 88.2 | 76.6 | 66   | 59.6 | 57.2 |

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Residential HVAC investment in 2020s vs.   |       | 0.514 | 0.598 |       |       |       |       |
| REF - Cumulative 5-yr (billion \$2018)     |       |       |       |       |       |       |       |
| Sales of cooking units - Electric          | 80.2  | 84.4  | 97.3  | 99.9  | 100   | 100   | 100   |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 19.8  | 15.6  | 2.66  | 0.134 | 0     | 0     | 0     |
| Sales of space heating units - Electric    | 8.4   | 12.9  | 25.9  | 58.5  | 84    | 88    | 87.9  |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 28.4  | 34.1  | 30.9  | 19.4  | 10.1  | 8.76  | 8.9   |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 13.7  | 18.3  | 14.3  | 8.01  | 3.29  | 2.43  | 2.5   |
| Sales of space heating units - Gas (%)     | 49.5  | 34.6  | 28.9  | 14.1  | 2.65  | 0.854 | 0.684 |
| Sales of water heating units - Electric    | 0     | 0.203 | 3.49  | 14.3  | 21.9  | 23    | 23.1  |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 52.4  | 66.9  | 67.7  | 71.6  | 76.1  | 76.8  | 76.8  |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 47.6  | 32.8  | 28.8  | 14    | 2.01  | 0.152 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 0.036 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 173   | 442   | 719   | 1,088 | 1,186 | 1,130 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.024 |       | 0.353 |       | 1.57  |       | 2.54  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.043 |       | 8.49  |       | 37.8  |       | 61.2  |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.96  | 2.17  | 1.42  | 0.461 | 0.082 | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 2.56  | 11.1  | 39.9  | 79.2  | 96    | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 92.2  | 82.7  | 55.6  | 19.2  | 3.64  | 0.601 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 3.1   | 3.59  | 2.75  | 1.07  | 0.251 | 0.052 | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.113 | 0.363 | 0.237 | 0.075 | 0.015 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.12  | 0.116 | 0.081 | 0.029 | 0.005 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0     |

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                      | 2020  | 2025  | 2030  | 2035  | 2040  | 2045   | 2050   |
|-------------------------------------------|-------|-------|-------|-------|-------|--------|--------|
| Capital invested - Wind - Base (billion   |       | 0     | 0     | 0     | 0.232 | 0.325  | 0      |
| \$2018)                                   |       |       |       |       |       |        |        |
| Capital invested - Wind - Constrained     |       | 0     | 0.248 | 1.04  | 2.61  | 3.33   | 0.033  |
| (billion \$2018)                          |       |       |       |       |       |        |        |
| Installed renewables - OffshoreWind -     | 0     | 0     | 0     | 0     | 0     | 0      | 0      |
| Base land use assumptions (MW)            |       |       |       |       |       |        |        |
| Installed renewables - OffshoreWind -     | 0     | 0     | 0     | 0     | 0     | 0      | 0      |
| Constrained land use assumptions (MW)     |       |       |       |       |       |        |        |
| Installed renewables - Solar - Base land  | 0     | 0     | 0     | 0     | 0     | 0      | 0      |
| use assumptions (MW)                      |       |       |       |       |       |        |        |
| Installed renewables - Solar -            | 0     | 0     | 0     | 0     | 0     | 0      | 0      |
| Constrained land use assumptions (MW)     |       |       |       |       |       |        |        |
| Installed renewables - Wind - Base land   | 4,732 | 4,732 | 4,732 | 4,732 | 4,928 | 5,218  | 5,218  |
| use assumptions (MW)                      |       |       |       |       |       |        |        |
| Installed renewables - Wind - Constrained | 4,732 | 4,732 | 4,917 | 5,753 | 7,961 | 10,934 | 10,965 |
| land use assumptions (MW)                 |       |       |       |       |       |        |        |

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

| Item                                     | 2020   | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |
|------------------------------------------|--------|--------|--------|--------|--------|--------|--------|
| OffshoreWind - Base land use             | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| assumptions (GWh)                        |        |        |        |        |        |        |        |
| OffshoreWind - Constrained land use      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| assumptions (GWh)                        |        |        |        |        |        |        |        |
| Solar - Base land use assumptions (GWh)  | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Solar - Constrained land use assumptions | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| (GWh)                                    |        |        |        |        |        |        |        |
| Wind - Base land use assumptions (GWh)   | 19,216 | 19,216 | 19,216 | 19,216 | 19,895 | 20,908 | 20,908 |
| Wind - Constrained land use assumptions  | 19,216 | 19,216 | 19,875 | 22,824 | 30,646 | 41,008 | 41,114 |
| (GWh)                                    |        |        |        |        |        |        |        |

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

| Item                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-----------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -551    |
| deployment - Corn-ethanol to energy     |      |      |      |      |      |      |         |
| grasses (1000 tCO2e/y)                  |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -10,108 |
| deployment - Cropland measures (1000    |      |      |      |      |      |      |         |
| tCO2e/y)                                |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -660    |
| deployment - Permanent conservation     |      |      |      |      |      |      |         |
| cover (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive      |      |      |      |      |      |      | -11,319 |
| deployment - Total (1000 tCO2e/y)       |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -551    |
| deployment - Corn-ethanol to energy     |      |      |      |      |      |      |         |
| grasses (1000 tCO2e/y)                  |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -5,330  |
| deployment - Cropland measures (1000    |      |      |      |      |      |      |         |
| tCO2e/y)                                |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -330    |
| deployment - Permanent conservation     |      |      |      |      |      |      |         |
| cover (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate        |      |      |      |      |      |      | -6,211  |
| deployment - Total (1000 tCO2e/y)       |      |      |      |      |      |      |         |
| Land impacted for carbon sink -         |      |      |      |      |      |      | 300     |
| Aggressive deployment - Corn-ethanol to |      |      |      |      |      |      |         |
| energy grasses (1000 hectares)          |      |      |      |      |      |      |         |

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|------------------------------------------|------|------|------|------|------|------|--------|
| Land impacted for carbon sink -          |      |      |      |      |      |      | 9,928  |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |        |
| measures (1000 hectares)                 |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 1,092  |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |        |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |        |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 11,320 |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |        |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 300    |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |        |
| grasses (1000 hectares)                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 5,237  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |        |
| hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 546    |
| deployment - Permanent conservation      |      |      |      |      |      |      |        |
| cover (1000 hectares)                    |      |      |      |      |      |      |        |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 6,083  |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |        |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -38.5   |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -23,528 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -821    |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -414    |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -20.6   |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -41.5   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -3,342  |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |         |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -13,386 |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -5,274  |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - High - Restore    |      |      |      |      |      |      | -191    |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Accelerate  |      |      |      |      |      |      | -19.3   |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Low - All (not    |      |      |      |      |      |      | -8,666  |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Avoid       |      |      |      |      |      |      | -137    |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Extend      |      |      |      |      |      |      | -159    |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Improve     |      |      |      |      |      |      | -10.5   |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -13.8   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -1,170  |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -6,693  |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |         |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

| Conhon sink notantial Low Referent         | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 205<br>-40 |
|--------------------------------------------|------|------|------|------|------|------|------------|
| Carbon sink potential - Low - Reforest     |      |      |      |      |      |      | -40        |
| pasture (1000 tC02e/y)                     |      |      |      |      |      |      |            |
| Carbon sink potential - Low - Restore      |      |      |      |      |      |      | -64.       |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      |            |
| Carbon sink potential - Mid - Accelerate   |      |      |      |      |      |      | -28.       |
| regeneration (1000 tCO2e/y)                |      |      |      |      |      |      |            |
| Carbon sink potential - Mid - All (not     |      |      |      |      |      |      | -16,09     |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      |            |
| Carbon sink potential - Mid - Avoid        |      |      |      |      |      |      | -47        |
| deforestation (1000 tCO2e/y)               |      |      |      |      |      |      |            |
| Carbon sink potential - Mid - Extend       |      |      |      |      |      |      | -28        |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      |            |
| Carbon sink potential - Mid - Improve      |      |      |      |      |      |      | -15.       |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      |            |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -27.       |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      | 21.        |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      | +    | -2,25      |
| trees outside forests (1000 tCO2e/y)       |      |      |      |      |      |      | -2,20      |
|                                            |      |      |      |      |      |      | 10.02      |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -10,03     |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      | 0.00       |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -2,83      |
| pasture (1000 tCO2e/y)                     |      |      |      |      |      |      |            |
| Carbon sink potential - Mid - Restore      |      |      |      |      |      |      | -12        |
| productivity (1000 tCO2e/y)                |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 6.         |
| High - Accelerate regeneration (1000       |      |      |      |      |      |      |            |
| hectares)                                  |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1          |
| High - Avoid deforestation (over 30 years) |      |      |      |      |      |      |            |
| (1000 hectares)                            |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      | +    | 2          |
| High - Extend rotation length (1000        |      |      |      |      |      |      | _          |
| hectares)                                  |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 7.5        |
|                                            |      |      |      |      |      |      | 1.5        |
| High - Improve plantations (1000           |      |      |      |      |      |      |            |
| hectares)                                  |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      |            |
| High - Increase retention of HWP (1000     |      |      |      |      |      |      |            |
| hectares)                                  |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 31         |
| High - Increase trees outside forests      |      |      |      |      |      |      |            |
| (1000 hectares)                            |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 88         |
| High - Reforest cropland (1000 hectares)   |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      | +    |      |      |      |      | 15         |
| High - Reforest pasture (1000 hectares)    |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      | +    |      | +    |      |      | 63.        |
| High - Restore productivity (1000          |      |      |      |      |      |      | 00.        |
| hectares)                                  |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,75       |
| ·                                          |      |      |      |      |      |      | 1,75       |
| High - Total impacted (over 30 years)      |      |      |      |      |      |      |            |
| (1000 hectares)                            |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.1        |
| Low - Accelerate regeneration (1000        |      |      |      |      |      |      |            |
| hectares)                                  |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 10         |
| Low - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |            |
| (1000 hectares)                            |      |      |      |      |      |      |            |
| Land impacted for carbon sink potential -  |      | +    |      |      |      |      | 80.        |
| Low - Extend rotation length (1000         |      |      |      |      |      |      | 00.        |
| hectares)                                  |      |      |      |      |      |      |            |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

| 2020 | 2025 | 2030      | 2035           | 2040 | 2045                     | 2050                                    |
|------|------|-----------|----------------|------|--------------------------|-----------------------------------------|
|      |      |           |                |      |                          | 3.79                                    |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 0                                       |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 167                                     |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 443                                     |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 26                                      |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 38.2                                    |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 866                                     |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 4.72                                    |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 108                                     |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 146                                     |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 5.71                                    |
|      |      |           |                |      |                          | • • • • • • • • • • • • • • • • • • • • |
|      |      |           |                |      |                          | 0                                       |
|      |      |           |                |      |                          | Ū                                       |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 242                                     |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 664                                     |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 188                                     |
|      |      |           |                |      |                          | 100                                     |
|      |      |           |                |      |                          | 77                                      |
|      |      |           |                |      |                          | • • • • • • • • • • • • • • • • • • • • |
|      |      |           |                |      |                          |                                         |
|      |      |           |                |      |                          | 1,435                                   |
|      |      |           |                |      |                          | 1,400                                   |
|      |      |           |                |      |                          |                                         |
|      | 2020 | 2020 2025 | 2020 2025 2030 |      | 2020 2025 2030 2035 2040 | 2020 2025 2030 2035 2040 2045           |

Table 44: E+RE- scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 24.9  | 0.018 | 0.017 | 0.013 | 0.008 | 0     |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 6.1   | 3.38  | 3.33  | 3.08  | 1.42  | 0.482 |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 24.3  | 22.3  | 16.7  | 9.47  | 4.22  | 1.6   |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 2.82  | 0.002 | 0.002 | 0.001 | 0.001 | 0     |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 0.689 | 0.381 | 0.376 | 0.348 | 0.16  | 0.054 |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 2.73  | 2.51  | 1.88  | 1.06  | 0.474 | 0.179 |

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Commercial HVAC investment in 2020s -      |      | 2,165 | 2,363 |       |       |       |       |
| Cumulative 5-yr (million \$2018)           |      |       |       |       |       |       |       |
| Sales of cooking units - Electric          | 44.8 | 49.3  | 53.1  | 63    | 76.9  | 85.5  | 88.5  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 55.2 | 50.7  | 46.9  | 37    | 23.1  | 14.5  | 11.5  |
| Sales of space heating units - Electric    | 6.09 | 3.87  | 4.9   | 7.61  | 14.7  | 26.5  | 37    |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 9.99 | 5.53  | 5.63  | 6.05  | 7.05  | 8.18  | 8.82  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 9.8  | 2.84  | 2.83  | 2.55  | 2.12  | 1.71  | 1.57  |
| Sales of space heating units - Gas Furnace | 74.1 | 87.8  | 86.6  | 83.8  | 76.1  | 63.6  | 52.6  |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 1.62 | 0.913 | 1.44  | 2.92  | 6.86  | 13.4  | 19.4  |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 13.6 | 7.24  | 7.77  | 9.19  | 13.1  | 19.6  | 25.5  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 82.1 | 90.8  | 89.8  | 86.9  | 79.2  | 66.1  | 54.3  |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 2.67 | 1.01  | 0.99  | 0.955 | 0.899 | 0.868 | 0.856 |

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025  | 2030  | 2035  | 2040 | 2045 | 2050 |
|---------------------------------------------|------|-------|-------|-------|------|------|------|
| Electricity distribution capital invested - |      | 0.635 | 0.643 | 0.813 | 0.84 | 1.28 | 1.36 |
| Cumulative 5-yr (billion \$2018)            |      |       |       |       |      |      |      |

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| 10.010 11.1 = 10.011.011   10.011   11.011 |      |      |      |      |      |      |      |  |  |  |
|--------------------------------------------|------|------|------|------|------|------|------|--|--|--|
| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |  |  |  |
| Final energy use - Commercial (PJ)         | 25.2 | 24.8 | 24.2 | 23.7 | 23.1 | 22.6 | 22.2 |  |  |  |
| Final energy use - Industry (PJ)           | 124  | 130  | 132  | 133  | 133  | 134  | 134  |  |  |  |
| Final energy use - Residential (PJ)        | 38.3 | 36.3 | 34.8 | 33.5 | 32.4 | 31.2 | 29.7 |  |  |  |
| Final energy use - Transportation (PJ)     | 104  | 98.2 | 91.1 | 85.7 | 81.6 | 76.8 | 71   |  |  |  |

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Residential HVAC investment in 2020s vs.   |       | 0.511 | 0.578 |       |       |       |       |
| REF - Cumulative 5-yr (billion \$2018)     |       |       |       |       |       |       |       |
| Sales of cooking units - Electric          | 80.2  | 80.7  | 82.5  | 87.3  | 93.9  | 98    | 99.5  |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 19.8  | 19.3  | 17.5  | 12.7  | 6.06  | 1.96  | 0.527 |
| Sales of space heating units - Electric    | 8.4   | 11.6  | 12.7  | 15.6  | 22.9  | 33.8  | 43    |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 28.4  | 34.3  | 33.8  | 33    | 30.5  | 26.9  | 23.9  |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 13.7  | 19    | 18.9  | 18    | 16.1  | 13.6  | 12    |
| Sales of space heating units - Gas (%)     | 49.5  | 35.1  | 34.6  | 33.4  | 30.5  | 25.7  | 21.2  |
| Sales of water heating units - Electric    | 0     | 0.054 | 0.328 | 1.13  | 3.24  | 6.62  | 9.51  |
| Heat Pump (%)                              |       |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 52.4  | 66.9  | 67    | 67.1  | 67.8  | 69.2  | 70.5  |
| Resistance (%)                             |       |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 47.6  | 33    | 32.6  | 31.8  | 29    | 24.2  | 19.9  |
| (%)                                        |       |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 0.036 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         |       | 0     | 27.7  | 58.9  | 198   | 626   | 911   |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.024 |       | 0.106 |       | 0.58  |       | 1.63  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.043 |       | 2.55  |       | 14    |       | 39.2  |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.4  | 96    | 91.3  | 79.8  | 58.2  | 32.1  | 13.7  |
| Vehicle sales - Heavy-duty - EV (%)        | 0.498 | 1.45  | 4.11  | 10.8  | 23.6  | 39.5  | 51    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.228 | 0.236 | 0.239 | 0.225 | 0.179 | 0.109 | 0.051 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.094 | 0.104 | 0.107 | 0.092 | 0.06  | 0.03  |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.332 | 0.969 | 2.74  | 7.17  | 15.7  | 26.3  | 34    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.28  | 1.46  | 1.95  | 2.25  | 1.96  | 1.14  |
| Vehicle sales - Light-duty - diesel (%)    | 1.96  | 2.3   | 2.13  | 1.72  | 1.14  | 0.593 | 0.252 |
| Vehicle sales - Light-duty - EV (%)        | 1.41  | 3.65  | 9.65  | 22.3  | 44.4  | 69.4  | 86.5  |
| Vehicle sales - Light-duty - gasoline (%)  | 93.2  | 89.4  | 83.1  | 71.2  | 50.7  | 27.7  | 12.1  |
| Vehicle sales - Light-duty - hybrid (%)    | 3.19  | 4.09  | 4.66  | 4.44  | 3.53  | 2.2   | 1.11  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.114 | 0.392 | 0.35  | 0.276 | 0.203 | 0.115 | 0.053 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.121 | 0.124 | 0.116 | 0.102 | 0.075 | 0.042 | 0.019 |
| Vehicle sales - Medium-duty - diesel (%)   | 64.8  | 62.2  | 57.7  | 49.4  | 35.6  | 19.6  | 8.37  |
| Vehicle sales - Medium-duty - EV (%)       | 0.664 | 1.94  | 5.49  | 14.3  | 31.4  | 52.6  | 68    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.8  | 34.7  | 34.7  | 31.9  | 24.4  | 14.2  | 6.33  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.418 | 0.464 | 0.478 | 0.414 | 0.275 | 0.141 |
| Vehicle sales - Medium-duty - hydrogen     | 0.166 | 0.485 | 1.37  | 3.58  | 7.86  | 13.2  | 17    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.266 | 0.279 | 0.286 | 0.258 | 0.184 | 0.102 |

## Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                   | 2020 | 2025 | 2030  | 2035  | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|-------|-------|------|------|------|
| Capital invested - Biomass power plant | 0    | 0    | 0     | 0     | 0    | 0    | 0    |
| (billion \$2018)                       |      |      |       |       |      |      |      |
| Capital invested - Biomass w/ccu allam | 0    | 0    | 0     | 0.025 | 0    | 0    | 0    |
| power plant (billion \$2018)           |      |      |       |       |      |      |      |
| Capital invested - Biomass w/ccu power | 0    | 0    | 0.093 | 0     | 0    | 0    | 0    |
| plant (billion \$2018)                 |      |      |       |       |      |      |      |

## Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------|------|------|------|------|------|------|------|
| Biomass power plant (GWh)             | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Biomass w/ccu allam power plant (GWh) | 0    | 0    | 0    | 25.4 | 25.4 | 25.4 | 25.4 |
| Biomass w/ccu power plant (GWh)       | 0    | 0    | 104  | 104  | 104  | 104  | 104  |

#### Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

| Item                                         | 2020 | 2025 | 2030 | 2035   | 2040  | 2045   | 2050  |
|----------------------------------------------|------|------|------|--------|-------|--------|-------|
| Biomass purchases (million \$2018/year)      |      | 0    | 7.15 | 1,263  | 1,720 | 2,728  | 2,728 |
| Conversion capital investment -              |      | 0    | 85.5 | 14,002 | 5,075 | 11,208 | 0     |
| Cumulative 5-yr (million \$2018)             |      |      |      |        |       |        |       |
| Number of facilities - Allam power w ccu     | 0    | 0    | 0    | 1      | 1     | 1      | 1     |
| (quantity)                                   |      |      |      |        |       |        |       |
| Number of facilities - Beccs hydrogen        | 0    | 0    | 0    | 15     | 19    | 32     | 32    |
| (quantity)                                   |      |      |      |        |       |        |       |
| Number of facilities - Diesel (quantity)     | 0    | 0    | 0    | 0      | 0     | 0      | 0     |
| Number of facilities - Diesel ccu (quantity) | 0    | 0    | 0    | 1      | 1     | 1      | 1     |
| Number of facilities - Power (quantity)      | 0    | 0    | 0    | 0      | 0     | 0      | 0     |
| Number of facilities - Power ccu             | 0    | 0    | 1    | 1      | 1     | 1      | 1     |
| (quantity)                                   |      |      |      |        |       |        |       |
| Number of facilities - Pyrolysis (quantity)  | 0    | 0    | 0    | 0      | 0     | 0      | 0     |

## Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy (continued)

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-------------------------------------------|------|------|------|------|------|------|------|
| Number of facilities - Pyrolysis ccu      | 0    | 0    | 0    | 1    | 1    | 1    | 1    |
| (quantity)                                |      |      |      |      |      |      |      |
| Number of facilities - Sng (quantity)     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Number of facilities - Sng ccu (quantity) | 0    | 0    | 1    | 1    | 1    | 1    | 1    |

## Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Annual - All (MMT)                 |      | 0    | 0.11 | 18.1 | 24.6 | 39   | 39   |
| Annual - BECCS (MMT)               |      | 0    | 0.11 | 18   | 24.6 | 39   | 39   |
| Annual - Cement and lime (MMT)     |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Annual - NGCC (MMT)                |      | 0    | 0    | 0.02 | 0.02 | 0.01 | 0.01 |
| Cumulative - All (MMT)             |      | 0    | 0.11 | 18.2 | 42.8 | 81.8 | 121  |
| Cumulative - BECCS (MMT)           |      | 0    | 0.11 | 18.1 | 42.7 | 81.7 | 121  |
| Cumulative - Cement and lime (MMT) |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - NGCC (MMT)            |      | 0    | 0    | 0.02 | 0.04 | 0.05 | 0.06 |

## Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

| Item                                           | 2020 | 2025 | 2030 | 2035  | 2040  | 2045  | 2050  |
|------------------------------------------------|------|------|------|-------|-------|-------|-------|
| All (km)                                       |      | 0    | 455  | 2,328 | 2,992 | 3,878 | 3,913 |
| Cumulative investment - All (million \$2018)   |      | 0    | 366  | 3,445 | 3,929 | 5,013 | 5,032 |
| Cumulative investment - Spur (million \$2018)  |      | 0    | 166  | 1,623 | 2,107 | 3,191 | 3,210 |
| Cumulative investment - Trunk (million \$2018) |      | 0    | 199  | 1,822 | 1,822 | 1,822 | 1,822 |
| Spur (km)                                      |      | 0    | 317  | 1,882 | 2,546 | 3,432 | 3,467 |
| Trunk (km)                                     |      | 0    | 138  | 446   | 446   | 446   | 446   |

#### Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

| Item                                                                    | 2020 | 2025 | 2030 | 2035  | 2040  | 2045  | 2050  |
|-------------------------------------------------------------------------|------|------|------|-------|-------|-------|-------|
| CO2 storage (MMT)                                                       |      | 0    | 4.62 | 20.3  | 40.4  | 56.1  | 58.5  |
| Injection wells (wells)                                                 |      | 0    | 10   | 38    | 68    | 113   | 141   |
| Resource characterization, appraisal, permitting costs (million \$2020) |      | 135  | 623  | 975   | 975   | 975   | 975   |
| Wells and facilities construction costs (million \$2020)                |      | 0    | 293  | 1,142 | 2,035 | 3,403 | 4,225 |

#### Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

| Item                                  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|---------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - Aggressive    |      |      |      |      |      |      | -1,265  |
| deployment - Corn-ethanol to energy   |      |      |      |      |      |      |         |
| grasses (1000 tC02e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive    |      |      |      |      |      |      | -9,446  |
| deployment - Cropland measures (1000  |      |      |      |      |      |      |         |
| tCO2e/y)                              |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive    |      |      |      |      |      |      | 0       |
| deployment - Cropland to woody energy |      |      |      |      |      |      |         |
| crops (1000 tCO2e/y)                  |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive    |      |      |      |      |      |      | 0       |
| deployment - Pasture to energy crops  |      |      |      |      |      |      |         |
| (1000 tCO2e/y)                        |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive    |      |      |      |      |      |      | -619    |
| deployment - Permanent conservation   |      |      |      |      |      |      |         |
| cover (1000 tCO2e/y)                  |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive    |      |      |      |      |      |      | -11,329 |
| deployment - Total (1000 tCO2e/y)     |      |      |      |      |      |      |         |

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|------------------------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - Moderate                           |      |      |      |      |      |      | -1,265  |
| deployment - Corn-ethanol to energy                        |      |      |      |      |      |      |         |
| grasses (1000 tCO2e/y)                                     |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate                           |      |      |      |      |      |      | -4,981  |
| deployment - Cropland measures (1000                       |      |      |      |      |      |      |         |
| tCO2e/y)                                                   |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate                           |      |      |      |      |      |      | 0       |
| deployment - Cropland to woody energy crops (1000 tCO2e/y) |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate                           |      |      |      |      |      |      | 0       |
| deployment - Pasture to energy crops<br>(1000 tCO2e/y)     |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate                           |      |      |      |      |      |      | -309    |
| deployment - Permanent conservation                        |      |      |      |      |      |      |         |
| cover (1000 tC02e/y)                                       |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate                           |      |      |      |      |      |      | -6,555  |
| deployment - Total (1000 tCO2e/y)                          |      |      |      |      |      |      | -,      |
| Land impacted for carbon sink -                            |      |      |      |      |      |      | 925     |
| Aggressive deployment - Corn-ethanol to                    |      |      |      |      |      |      |         |
| energy grasses (1000 hectares)                             |      |      |      |      |      |      |         |
| Land impacted for carbon sink -                            |      |      |      |      |      |      | 22,983  |
| Aggressive deployment - Cropland                           |      |      |      |      |      |      | 22,700  |
| measures (1000 hectares)                                   |      |      |      |      |      |      |         |
| Land impacted for carbon sink -                            |      |      |      |      |      |      | 63.5    |
| Aggressive deployment - Cropland to                        |      |      |      |      |      |      | 00.0    |
| woody energy crops (1000 hectares)                         |      |      |      |      |      |      |         |
| Land impacted for carbon sink -                            |      |      |      |      |      |      | 0       |
| Aggressive deployment - Pasture to                         |      |      |      |      |      |      | J       |
| energy crops (1000 hectares)                               |      |      |      |      |      |      |         |
| Land impacted for carbon sink -                            |      |      |      |      |      |      | 1,024   |
| Aggressive deployment - Permanent                          |      |      |      |      |      |      | 1,02-1  |
| conservation cover (1000 hectares)                         |      |      |      |      |      |      |         |
| Land impacted for carbon sink -                            |      |      |      |      |      |      | 24,995  |
| Aggressive deployment - Total (1000                        |      |      |      |      |      |      | 2 1,770 |
| hectares)                                                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                   |      |      |      |      |      |      | 925     |
| deployment - Corn-ethanol to energy                        |      |      |      |      |      |      | ,20     |
| grasses (1000 hectares)                                    |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                   |      |      |      |      |      |      | 4,910   |
| deployment - Cropland measures (1000                       |      |      |      |      |      |      | 4,710   |
| hectares)                                                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                   |      |      |      |      |      |      | 63.5    |
| deployment - Cropland to woody energy                      |      |      |      |      |      |      | 00.0    |
| crops (1000 hectares)                                      |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                   |      |      |      |      |      |      | 0       |
| deployment - Pasture to energy crops                       |      |      |      |      |      |      | U       |
| (1000 hectares)                                            |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                   |      |      |      |      |      |      | 512     |
| deployment - Permanent conservation                        |      |      |      |      |      |      | 512     |
| cover (1000 hectares)                                      |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate                   |      |      |      |      |      |      | 6,411   |
| deployment - Total (1000 hectares)                         |      |      |      |      |      |      | 0,411   |
| deproyment - rotar (1000 nectares)                         |      |      |      |      |      |      |         |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

| Item                                                                  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|-----------------------------------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y) |      |      |      |      |      |      | -38.5   |
| Carbon sink potential - High - All (not                               |      |      |      |      |      |      | -23,528 |
| counting overlap) (1000 tCO2e/y)                                      |      |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid                                  |      |      |      |      |      |      | -821    |
| deforestation (1000 tCO2e/y)                                          |      |      |      |      |      |      |         |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|--------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - High - Extend      |      |      |      |      |      |      | -414    |
| rotation length (1000 tC02e/y)             |      |      |      |      |      |      |         |
| Carbon sink potential - High - Improve     |      |      |      |      |      |      | -20.6   |
| plantations (1000 tC02e/y)                 |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase    |      |      |      |      |      |      | -41.5   |
| retention of HWP (1000 tC02e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - High - Increase    |      |      |      |      |      |      | -3,342  |
| trees outside forests (1000 tC02e/y)       |      |      |      |      |      |      | 40.007  |
| Carbon sink potential - High - Reforest    |      |      |      |      |      |      | -13,386 |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - High - Reforest    |      |      |      |      |      |      | -5,274  |
| pasture (1000 tC02e/y)                     |      |      |      |      |      |      | 404     |
| Carbon sink potential - High - Restore     |      |      |      |      |      |      | -191    |
| productivity (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Accelerate   |      |      |      |      |      |      | -19.3   |
| regeneration (1000 tC02e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Low - All (not     |      |      |      |      |      |      | -8,666  |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Avoid        |      |      |      |      |      |      | -137    |
| deforestation (1000 tCO2e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Extend       |      |      |      |      |      |      | -159    |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Improve      |      |      |      |      |      |      | -10.5   |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Increase     |      |      |      |      |      |      | -13.8   |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Increase     |      |      |      |      |      |      | -1,170  |
| trees outside forests (1000 tCO2e/y)       |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest     |      |      |      |      |      |      | -6,693  |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest     |      |      |      |      |      |      | -400    |
| pasture (1000 tCO2e/y)                     |      |      |      |      |      |      |         |
| Carbon sink potential - Low - Restore      |      |      |      |      |      |      | -64.3   |
| productivity (1000 tCO2e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Accelerate   |      |      |      |      |      |      | -28.9   |
| regeneration (1000 tC02e/y)                |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - All (not     |      |      |      |      |      |      | -16,097 |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      | ,       |
| Carbon sink potential - Mid - Avoid        |      |      |      |      |      |      | -479    |
| deforestation (1000 tC02e/y)               |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Extend       |      |      |      |      |      |      | -286    |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      |         |
| Carbon sink potential - Mid - Improve      |      |      |      |      |      |      | -15.4   |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      | 10      |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -27.6   |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      | 21.0    |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -2,256  |
| trees outside forests (1000 tC02e/y)       |      |      |      |      |      |      | -2,200  |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -10,039 |
| cropland (1000 tC02e/y)                    |      |      |      |      |      |      | -10,037 |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -2,837  |
| ·                                          |      |      |      |      |      |      | -2,031  |
| pasture (1000 tC02e/y)                     |      |      |      |      |      |      | 107     |
| Carbon sink potential - Mid - Restore      |      |      |      |      |      |      | -127    |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 6.3     |
| High - Accelerate regeneration (1000       |      |      |      |      |      |      |         |
| hectares)                                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 111     |
| High - Avoid deforestation (over 30 years) |      |      |      |      |      | I    |         |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Ttom                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|-------------------------------------------|------|------|------|------|------|------|-------|
| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 211   |
| High - Extend rotation length (1000       |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 7.59  |
| High - Improve plantations (1000          |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 0     |
| High - Increase retention of HWP (1000    |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 317   |
| High - Increase trees outside forests     |      |      |      |      |      |      | 0     |
| (1000 hectares)                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 885   |
|                                           |      |      |      |      |      |      | 000   |
| High - Reforest cropland (1000 hectares)  |      |      |      |      |      |      | 150   |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 150   |
| High - Reforest pasture (1000 hectares)   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 63.2  |
| High - Restore productivity (1000         |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 1,752 |
| High - Total impacted (over 30 years)     |      |      |      |      |      |      |       |
| (1000 hectares)                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 3.15  |
| Low - Accelerate regeneration (1000       |      |      |      |      |      |      | 00    |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 104   |
|                                           |      |      |      |      |      |      | 104   |
| Low - Avoid deforestation (over 30 years) |      |      |      |      |      |      |       |
| (1000 hectares)                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 80.8  |
| Low - Extend rotation length (1000        |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 3.79  |
| Low - Improve plantations (1000           |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 0     |
| Low - Increase retention of HWP (1000     |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 167   |
| Low - Increase trees outside forests      |      |      |      |      |      |      | 101   |
| (1000 hectares)                           |      |      |      |      |      |      |       |
|                                           |      |      |      |      |      |      | // 0  |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 443   |
| Low - Reforest cropland (1000 hectares)   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 26    |
| Low - Reforest pasture (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 38.2  |
| Low - Restore productivity (1000          |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 866   |
| Low - Total impacted (over 30 years)      |      |      |      |      |      |      |       |
| (1000 hectares)                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 4.72  |
| Mid - Accelerate regeneration (1000       |      |      |      |      |      |      | 7.12  |
|                                           |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      | 100   |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 108   |
| Mid - Avoid deforestation (over 30 years) |      |      |      |      |      |      |       |
| (1000 hectares)                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - |      |      |      |      |      |      | 146   |
| Mid - Extend rotation length (1000        |      |      |      |      |      |      |       |
| hectares)                                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential - | +    | +    | +    |      |      |      | F 74  |
|                                           |      |      |      |      |      |      | 571   |
| Mid - Improve plantations (1000 hectares) |      |      |      |      |      |      | 5.71  |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 242   |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 664   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 188   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 77    |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,435 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

## Table 58: E-B+ scenario - IMPACTS - Health

| Item                                  | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 24.9  | 0.018 | 0.017 | 0.013 | 0.008 | 0     |
| Coal (million 2019\$)                 |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 5.8   | 2.74  | 1.77  | 1.3   | 0.704 | 0.304 |
| Natural Gas (million 2019\$)          |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 24.6  | 24.4  | 23.4  | 20.8  | 16.4  | 11.1  |
| Transportation (million 2019\$)       |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 2.82  | 0.002 | 0.002 | 0.001 | 0.001 | 0     |
| Coal (deaths)                         |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 0.654 | 0.309 | 0.2   | 0.147 | 0.079 | 0.034 |
| Natural Gas (deaths)                  |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 2.77  | 2.75  | 2.63  | 2.34  | 1.84  | 1.25  |
| Transportation (deaths)               |      |       |       |       |       |       |       |

## Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Commercial HVAC investment in 2020s -      |      | 2,141 | 2,215 |       |       |       |       |
| Cumulative 5-yr (million \$2018)           |      |       |       |       |       |       |       |
| Sales of cooking units - Electric          | 44.8 | 47.8  | 47.9  | 47.8  | 47.9  | 47.9  | 48    |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of cooking units - Gas (%)           | 55.2 | 52.2  | 52.1  | 52.2  | 52.1  | 52.1  | 52    |
| Sales of space heating units - Electric    | 6.09 | 9.24  | 32.5  | 59.3  | 67.6  | 69.1  | 69.4  |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of space heating units - Electric    | 9.99 | 6.97  | 13.8  | 23.6  | 29.3  | 30.1  | 30.1  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 9.8  | 2.76  | 2.28  | 1.06  | 0.17  | 0.016 | 0     |
| Sales of space heating units - Gas Furnace | 74.1 | 81    | 51.4  | 16    | 2.93  | 0.762 | 0.485 |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 1.62 | 0.827 | 0.827 | 0.829 | 0.828 | 0.824 | 0.82  |
| Heat Pump (%)                              |      |       |       |       |       |       |       |
| Sales of water heating units - Electric    | 13.6 | 7.16  | 7.17  | 7.13  | 7.14  | 7.14  | 7.13  |
| Resistance (%)                             |      |       |       |       |       |       |       |
| Sales of water heating units - Gas Furnace | 82.1 | 91    | 91    | 91    | 91    | 91    | 91    |
| (%)                                        |      |       |       |       |       |       |       |
| Sales of water heating units - Other (%)   | 2.67 | 1.01  | 1.01  | 1.01  | 1     | 1.01  | 1.01  |

## Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Electricity distribution capital invested - |      | 0.725 | 0.744 | 0.892 | 0.926 | 0.943 | 0.974 |
| Cumulative 5-yr (billion \$2018)            |      |       |       |       |       |       |       |

## Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 25.2 | 25.4 | 25.5 | 25.4 | 25.2 | 25.4 | 26   |
| Final energy use - Industry (PJ)       | 124  | 133  | 138  | 143  | 148  | 154  | 160  |
| Final energy use - Residential (PJ)    | 38.3 | 36.6 | 35.5 | 34.8 | 34.5 | 34.4 | 34.4 |
| Final energy use - Transportation (PJ) | 104  | 98.2 | 91.8 | 88.1 | 88.4 | 90.8 | 94   |

#### Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                                                               | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Residential HVAC investment in 2020s vs.<br>REF - Cumulative 5-yr (billion \$2018) |       | 0.501 | 0.505 |       |       |       |       |
| Sales of cooking units - Electric<br>Resistance (%)                                | 80    | 80    | 80    | 80    | 80    | 80    | 80    |
| Sales of cooking units - Gas (%)                                                   | 20    | 20    | 20    | 20    | 20    | 20    | 20    |
| Sales of space heating units - Electric<br>Heat Pump (%)                           | 8.16  | 12.8  | 12.9  | 13.2  | 13.6  | 14.2  | 14.8  |
| Sales of space heating units - Electric<br>Resistance (%)                          | 28.5  | 33.8  | 33.6  | 33.4  | 32.8  | 32.4  | 31.9  |
| Sales of space heating units - Fossil (%)                                          | 13.8  | 18.3  | 17.1  | 16.2  | 15.9  | 15.6  | 15.8  |
| Sales of space heating units - Gas (%)                                             | 49.6  | 35.1  | 36.3  | 37.2  | 37.7  | 37.8  | 37.6  |
| Sales of water heating units - Electric<br>Heat Pump (%)                           | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Sales of water heating units - Electric<br>Resistance (%)                          | 52.4  | 66.9  | 66.9  | 66.7  | 66.7  | 66.6  | 66.5  |
| Sales of water heating units - Gas Furnace (%)                                     | 47.6  | 33.1  | 33.1  | 33.3  | 33.3  | 33.4  | 33.4  |
| Sales of water heating units - Other (%)                                           | 0.036 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 |

## Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                             | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vehicle sales - Heavy-duty - diesel (%)          | 98.1  | 98.2  | 97.9  | 97    | 95.6  | 93.5  | 91.6  |
| Vehicle sales - Heavy-duty - EV (%)              | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Vehicle sales - Heavy-duty - gasoline (%)        | 0.229 | 0.242 | 0.257 | 0.274 | 0.294 | 0.317 | 0.343 |
| Vehicle sales - Heavy-duty - hybrid (%)          | 0.083 | 0.096 | 0.112 | 0.13  | 0.15  | 0.174 | 0.202 |
| Vehicle sales - Heavy-duty - hydrogen FC (%)     | 0.119 | 0.138 | 0.16  | 0.186 | 0.216 | 0.25  | 0.29  |
| Vehicle sales - Heavy-duty - other (%)           | 1.51  | 1.31  | 1.57  | 2.37  | 3.69  | 5.71  | 7.57  |
| Vehicle sales - Light-duty - diesel (%)          | 1.96  | 2.31  | 2.26  | 2.09  | 1.9   | 1.78  | 1.69  |
| Vehicle sales - Light-duty - EV (%)              | 2.22  | 3.88  | 4.45  | 5.36  | 6.61  | 7.88  | 8.97  |
| Vehicle sales - Light-duty - gasoline (%)        | 92.5  | 89.3  | 87.8  | 86.5  | 84.8  | 82.9  | 81.2  |
| Vehicle sales - Light-duty - hybrid (%)          | 3.11  | 4.04  | 4.96  | 5.55  | 6.2   | 6.95  | 7.69  |
| Vehicle sales - Light-duty - hydrogen FC (%)     | 0.113 | 0.391 | 0.37  | 0.335 | 0.337 | 0.341 | 0.353 |
| Vehicle sales - Light-duty - other (%)           | 0.12  | 0.124 | 0.122 | 0.123 | 0.124 | 0.123 | 0.127 |
| Vehicle sales - Medium-duty - diesel (%)         | 65.2  | 63.5  | 61.6  | 59.6  | 58    | 56.5  | 55.2  |
| Vehicle sales - Medium-duty - EV (%)             | 0.027 | 0.105 | 0.329 | 0.671 | 0.895 | 0.973 | 0.993 |
| Vehicle sales - Medium-duty - gasoline (%)       | 34    | 35.5  | 37    | 38.5  | 39.7  | 40.8  | 41.7  |
| Vehicle sales - Medium-duty - hybrid (%)         | 0.365 | 0.427 | 0.496 | 0.577 | 0.674 | 0.793 | 0.929 |
| Vehicle sales - Medium-duty - hydrogen<br>FC (%) | 0.175 | 0.208 | 0.242 | 0.285 | 0.339 | 0.409 | 0.487 |
| Vehicle sales - Medium-duty - other (%)          | 0.255 | 0.271 | 0.298 | 0.345 | 0.42  | 0.528 | 0.671 |

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

| Table 64: REF scenario - PILLAR 6: Land si                           | ınks - Forest | :s   |      |      |      |      |         |
|----------------------------------------------------------------------|---------------|------|------|------|------|------|---------|
| Item                                                                 | 2020          | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
| Carbon sink potential - High - Accelerate                            |               |      |      |      |      |      | -38.5   |
| regeneration (1000 tCO2e/y)                                          |               |      |      |      |      |      |         |
| Carbon sink potential - High - All (not                              |               |      |      |      |      |      | -23,528 |
| counting overlap) (1000 tCO2e/y)                                     |               |      |      |      |      |      |         |
| Carbon sink potential - High - Avoid                                 |               |      |      |      |      |      | -821    |
| deforestation (1000 tCO2e/y)                                         |               |      |      |      |      |      |         |
| Carbon sink potential - High - Extend                                |               |      |      |      |      |      | -414    |
| rotation length (1000 tCO2e/y)                                       |               |      |      |      |      |      |         |
| Carbon sink potential - High - Improve                               |               |      |      |      |      |      | -20.6   |
| plantations (1000 tCO2e/y)                                           |               |      |      |      |      |      |         |
| Carbon sink potential - High - Increase                              |               |      |      |      |      |      | -41.5   |
| retention of HWP (1000 tCO2e/y)                                      |               |      |      |      |      |      |         |
| Carbon sink potential - High - Increase                              |               |      |      |      |      |      | -3,342  |
| trees outside forests (1000 tCO2e/y)                                 |               |      |      |      |      |      | -,      |
| Carbon sink potential - High - Reforest                              |               |      |      |      |      |      | -13,386 |
| cropland (1000 tCO2e/y)                                              |               |      |      |      |      |      | 10,000  |
| Carbon sink potential - High - Reforest                              |               |      |      |      |      |      | -5,274  |
| pasture (1000 tC02e/y)                                               |               |      |      |      |      |      | 0,214   |
| Carbon sink potential - High - Restore                               |               |      |      |      |      |      | -191    |
| productivity (1000 tC02e/y)                                          |               |      |      |      |      |      | -171    |
| Carbon sink potential - Low - Accelerate                             |               |      |      |      |      |      | -19.3   |
| regeneration (1000 tC02e/y)                                          |               |      |      |      |      |      | -17.5   |
| Carbon sink potential - Low - All (not                               |               |      |      |      |      |      | -8,666  |
| •                                                                    |               |      |      |      |      |      | -0,000  |
| counting overlap) (1000 tCO2e/y) Carbon sink potential - Low - Avoid |               |      |      |      |      |      | -137    |
|                                                                      |               |      |      |      |      |      | -137    |
| deforestation (1000 tC02e/y)                                         |               |      |      |      |      |      | 100     |
| Carbon sink potential - Low - Extend                                 |               |      |      |      |      |      | -159    |
| rotation length (1000 tC02e/y)                                       |               |      |      |      |      |      | 10.5    |
| Carbon sink potential - Low - Improve                                |               |      |      |      |      |      | -10.5   |
| plantations (1000 tC02e/y)                                           |               |      |      |      |      |      | 40.0    |
| Carbon sink potential - Low - Increase                               |               |      |      |      |      |      | -13.8   |
| retention of HWP (1000 tC02e/y)                                      |               |      |      |      |      |      |         |
| Carbon sink potential - Low - Increase                               |               |      |      |      |      |      | -1,170  |
| trees outside forests (1000 tCO2e/y)                                 |               |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest                               |               |      |      |      |      |      | -6,693  |
| cropland (1000 tCO2e/y)                                              |               |      |      |      |      |      |         |
| Carbon sink potential - Low - Reforest                               |               |      |      |      |      |      | -400    |
| pasture (1000 tCO2e/y)                                               |               |      |      |      |      |      |         |
| Carbon sink potential - Low - Restore                                |               |      |      |      |      |      | -64.3   |
| productivity (1000 tCO2e/y)                                          |               |      |      |      |      |      |         |
| Carbon sink potential - Mid - Accelerate                             |               |      |      |      |      |      | -28.9   |
| regeneration (1000 tCO2e/y)                                          |               |      |      |      |      |      |         |
| Carbon sink potential - Mid - All (not                               |               |      |      |      |      |      | -16,097 |
| counting overlap) (1000 tCO2e/y)                                     |               |      |      |      |      |      |         |
| Carbon sink potential - Mid - Avoid                                  |               |      |      |      |      |      | -479    |
| deforestation (1000 tCO2e/y)                                         |               |      |      |      |      |      |         |
| Carbon sink potential - Mid - Extend                                 |               |      |      |      |      |      | -286    |
| rotation length (1000 tCO2e/y)                                       |               |      |      |      |      |      |         |
| Carbon sink potential - Mid - Improve                                |               |      |      |      |      |      | -15.4   |
| plantations (1000 tCO2e/y)                                           |               |      |      |      |      |      |         |
| Carbon sink potential - Mid - Increase                               |               |      |      |      |      |      | -27.6   |
| retention of HWP (1000 tCO2e/y)                                      |               |      |      |      |      |      | -       |
| Carbon sink potential - Mid - Increase                               |               |      |      |      |      |      | -2,256  |
| trees outside forests (1000 tCO2e/y)                                 |               |      |      |      |      |      | ,       |
| Carbon sink potential - Mid - Reforest                               |               |      |      |      |      |      | -10,039 |
| cropland (1000 tCO2e/y)                                              |               |      |      |      |      |      | .5,007  |
| Carbon sink potential - Mid - Reforest                               |               | +    |      |      |      |      | -2,837  |
| pasture (1000 tC02e/y)                                               |               |      |      |      |      |      | 2,501   |
| Carbon sink potential - Mid - Restore                                |               | +    | +    |      |      | +    | -127    |
| productivity (1000 tC02e/y)                                          |               |      |      |      |      |      | 121     |
| p. 3445tivity (1505 too25/1)                                         |               |      |      |      |      |      |         |
|                                                                      |               |      |      |      |      |      |         |

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 6.3   |
| High - Accelerate regeneration (1000       |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 111   |
| High - Avoid deforestation (over 30 years) |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 211   |
| High - Extend rotation length (1000        |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 7.59  |
| High - Improve plantations (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| High - Increase retention of HWP (1000     |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 317   |
| High - Increase trees outside forests      |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 885   |
| High - Reforest cropland (1000 hectares)   |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 150   |
| High - Reforest pasture (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 63.2  |
| High - Restore productivity (1000          |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,752 |
| High - Total impacted (over 30 years)      |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.15  |
| Low - Accelerate regeneration (1000        |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 104   |
| Low - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 80.8  |
| Low - Extend rotation length (1000         |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.79  |
| Low - Improve plantations (1000            |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Low - Increase retention of HWP (1000      |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 167   |
| Low - Increase trees outside forests       |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 443   |
| Low - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 26    |
| Low - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 38.2  |
| Low - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      | -    |      |      |      | 866   |
| Low - Total impacted (over 30 years)       |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      | +    |      |      |      | 4.72  |
| Mid - Accelerate regeneration (1000        |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

<u>Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)</u>

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 108   |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |       |
| (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 146   |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 5.71  |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 242   |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 664   |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 188   |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 77    |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 1,435 |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |       |
| hectares)                                  |      |      |      |      |      |      |       |

#### Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

| Item                                      | 2020   | 2025 | 2030   | 2035 | 2040 | 2045 | 2050   |
|-------------------------------------------|--------|------|--------|------|------|------|--------|
| Business-as-usual carbon sink - Natural   | -1.19  |      | 0.158  |      |      |      | 0.045  |
| uptake (Mt CO2e/y)                        |        |      |        |      |      |      |        |
| Business-as-usual carbon sink - Retained  | -0.011 |      | -0.023 |      |      |      | -0.025 |
| in Hardwood Products (Mt CO2e/y)          |        |      |        |      |      |      |        |
| Business-as-usual carbon sink - Total (Mt | -1.2   |      | 0.135  |      |      |      | 0.021  |
| CO2e/y)                                   |        |      |        |      |      |      |        |

## Table 66: REF scenario - IMPACTS - Health

| Item                                  | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 77.4  | 35.6  | 21.7  | 17.1  | 14.9  | 14.2  |
| Coal (million 2019\$)                 |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 6.77  | 6.14  | 6.34  | 4.48  | 3.82  | 3.17  |
| Natural Gas (million 2019\$)          |      |       |       |       |       |       |       |
| Monetary damages from air pollution - |      | 24.6  | 24.8  | 25    | 25.3  | 25.7  | 26.1  |
| Transportation (million 2019\$)       |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 8.74  | 4.02  | 2.45  | 1.93  | 1.68  | 1.61  |
| Coal (deaths)                         |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 0.764 | 0.693 | 0.716 | 0.506 | 0.431 | 0.358 |
| Natural Gas (deaths)                  |      |       |       |       |       |       |       |
| Premature deaths from air pollution - |      | 2.77  | 2.79  | 2.81  | 2.85  | 2.89  | 2.93  |
| Transportation (deaths)               |      |       |       |       |       |       |       |