Tópicos da aula

- Estimador de máxima verossimilhança (EMV);
 - ♦ Existência e unicidade;
 - ♦ Invariância do EMV;
 - ♦ Consistência do EMV;
- Limitações;

Definição 21 (Estimador de máxima verossimilhança)

Para cada possível vetor (de observações) \mathbf{x} , seja $\delta(\mathbf{x}) \in \Omega$ um valor de $\theta \in \Theta$ de modo que a função de verossimilhança, $L(\theta) \propto f(\mathbf{x} \mid \theta)$, atinge o máximo. Dizemos que $\hat{\theta} = \delta(\mathbf{X})$ é o **estimador de máxima verossimilhança** de θ (Fisher, 1922)⁸. Quando observamos $\mathbf{X} = \mathbf{x}$, dizemos que $\delta(\mathbf{x})$ é uma estimativa de θ . Dito de outra forma,

$$\max_{\theta \in \Omega} f(X \mid \theta) = f(X \mid \hat{\theta}).$$

⁸Ronald Aylmer Fisher (1890-1962), biólogo e estatístico inglês. Para a história do desenvolvimento do EMV, ver Aldrich (1997).

Na Definição 21, vemos θ com um número real que indexa a distribuição de probabilidade conjunta dos dados.

- Poderíamos trocar⁹ $f(x \mid \theta)$ por $f(x; \theta)$;
- Com o EMV, procuramos um valor de θ de modo que a probabilidade de observarmos $\boldsymbol{X} = \boldsymbol{x}$ seja máxima;
- Isso não nos diz nada sobre o quão provável $\hat{\theta}$ é;
- \bullet não é uma quantidade aleatória, portanto não admite afirmações probabilísticas.

⁹Mas não vamos, pois a notação fica clara em quase todos os contextos.

Exemplos

- Exponencial;
- Bernoulli;
- Normal;
 - $\diamond \mu$ desconhecida, σ^2 conhecida;
 - $\diamond \mu$ conhecida, σ^2 desconhecida;
 - ϕ μ e σ^2 ambas desconhecidas.

- Exponencial: $\hat{\theta} = \bar{X}_n$;
- Bernoulli $\hat{\theta} = \bar{X}_n$;
- Normal;

Exemplo 5 (EMV para uniforme)

Suponha que $X_1, X_2, ..., X_n$ perfazem uma amostra aleatória de uma distribuição uniforme no intervalo $[0, \theta]$, $\theta \in \mathbb{R}, \theta > 0$. Considere a f.d.p.

$$f(x \mid \theta) = \begin{cases} \frac{1}{\theta}, 0 \le x \le \theta, \\ 0, \text{ caso contrário.} \end{cases}$$
 (12)

A f.d.p. conjunta é

$$f_n(\mathbf{x} \mid \theta) = \begin{cases} \theta^{-n}, 0 \le x_i \le \theta \ (i = 1, 2, \dots, n), \\ 0, \text{ caso contrário,} \end{cases}$$
(13)

 $e \ o \ EMV \ \acute{\theta} = \max(x_1, x_2, \dots, x_n).$

Observação 5

A existência do EMV pode depender de detalhes irrelevantes acerca do espaço de parâmetros, Ω .

Exemplo 6 (Não existência do EMV)

Considere o Exemplo 5, mas agora com uma f.d.p. um pouco diferente:

$$f(x \mid \theta) = \begin{cases} \frac{1}{\theta}, 0 < x < \theta, \\ 0, \text{ caso contrário.} \end{cases}$$
 (14)

É fácil mostrar que, nesse caso, o EMV não existe.

Observação 6 (Unicidade do EMV)

Mesmo quando existe, o EMV nem sempre é único.

Exemplo 7 (EMV para uma uniforme num intervalo de tamanho 1)

Suponha que $X_1, X_2, ..., X_n$ perfazem amostra aleatória de uma distribuição uniforme no intervalo $[\theta, \theta + 1]$. A densidade conjunta é

$$f_n(\mathbf{x} \mid \theta) = \begin{cases} 1, \theta \le x_i \le \theta + 1, \ (i = 1, 2, \dots, n), \\ 0, \ caso \ contrário. \end{cases}$$
(15)

Defina $m := \min(x_1, x_2, ..., x_n)$ e $M := \max(x_1, x_2, ..., x_n)$. Podemos reescrever (15) como

$$f_n(\mathbf{x} \mid \theta) = \begin{cases} 1, M - 1 \le \theta \le m, \ (i = 1, 2, \dots, n), \\ 0, \ caso \ contrário. \end{cases}$$
(16)

Conclusão: $\hat{\theta}$ é qualquer valor no intervalo [M-1, m].

Suponha que estamos interessados em uma transformação do parâmetro θ , $\phi(\theta)$. Por exemplo, se X_1, X_2, \ldots, X_n são Bernoulli com parâmetro p, podemos estar interessados na chance $\omega = \phi(p) = p/(1-p)$.

Teorema 11 (Invariância do EMV)

Considere uma função $\phi: \Omega \to \mathbb{R}$. Se $\hat{\theta}$ é um EMV para θ , então $\phi(\hat{\theta})$ é um EMV para $\omega = \phi(\theta)$.

Prova: Defina a *verossimilhança induzida*:

$$L^*(\omega) := \sup_{\{\theta:\phi(\theta)=\omega\}} L(\theta),$$

e note que o supremo desta função sobre Ω é precisamente o EMV. Ver Casella & Berger, Teorema 7.2.10 (pág. 320) ou De Groot, Teorema 7.6.2 (pág 427). **Exemplo:** O EMV para o quadrado da média de uma normal, μ^2 , é \bar{X}_n^2 .

Consistência do EMV

Sob condições de regularidade, o EMV é consistente, isto é $\hat{\theta}_{\text{EMV}} \to \theta$.

Teorema 12 (Consistência do EMV)

Defina $I(\theta) := \log f_n(\mathbf{x} \mid \theta)$ e assuma que $X_1, X_2, \dots, X_n \sim f(\theta_0)$, isto é, que θ_0 é o valor verdadeiro do parâmetro. Denote $E_{\theta_0}[g] := \int_{\Omega} g(x, \theta) f(\mathbf{x} \mid \theta_0) dx$. Suponha que

- $f(x_i | \theta)$ tem o mesmo suporte;
- θ_0 é ponto interior de Ω ;
- $I(\theta)$ é diferenciável;
- $\hat{\theta}_{EMV}$ é a única solução de $I'(\theta) = 0$.

Então,

$$\hat{\theta}_{EMV} \rightarrow \theta$$
.

Prova: (rascunho) mostrar que, para todo $\theta \in \Omega$,

$$\frac{1}{n}\sum_{i=1}^n\log f(X_i\mid\theta)\to E_{\theta_0}\left[\log f(\boldsymbol{X}\mid\theta)\right],$$

e aplicar a desigualdade de Jensen.

O que aprendemos?

- Estimador de máxima verossimilhança (EMV); "Encontrar o valor do parâmetro que maxima a probabilidade observar os dados obtidos"
- Invariância ; "O EMV é invariante a transformações dos parâmetros; se $\hat{\theta}$ é o EMV para θ , $\psi(\hat{\theta})$ é o EMV para $\psi(\theta)$ "
- Consistência; "Sob condições brandas de regularidade, o EMV converge para valor verdadeiro à medida que $n \to \infty$ "
- Limitações;
 "O EMV não existe necessariamente, e mesmo quando existe, não precisa ser único"

- De Groot seções 7.5 e 7.6;
- * Casella & Berger, seção 7.2.2.
- * Schervish (1995), seção 5.1.3.

• Exercícios recomendados

■ De Groot,

Seção 7.5: exercícios 1, 4, 9 e 10;

Seção 7.6: exercícios 3, 5, 11 e 20.