Elliptic Curves and Elliptic Curve Cryptography

Khandaker Md. Al-Amin (PhD Student)
Secure Wireless System Lab
Information and Communication Systems
Okayama University

Outline

- Groups, Abelian Groups and Fields
- Elliptic Curves Over the Real Numbers
- Elliptic Curves Over a Finite Field
- Elliptic Curve Discrete Logarithm Problem

Elliptic Curves: Background

- Elliptic Curve itself is not a crypto-system.
- Elliptic curves have been extensively studied long before it is introduced in Cryptography as algebraic/ geometric entities.
- Elliptic curve was applied to cryptography in 1985. It
 was independently proposed by Neal Koblitz from
 the University of Washington, and Victor Miller, at
 IBM.

What is Elliptic Curve?

An elliptic curve E is the graph of an equation of the

form
$$y^2 = x^3 + ax + b$$

- Also includes a "Point at infinity" denoted by 'O'.
- What do elliptic curves over Real numbers look like?

 $y^2=x^3-2x+0.8$

Elliptic Curves Over the Real Numbers

- Let a and b be real numbers. An elliptic curve E over the field of real numbers R is the set of points (x,y) with x and y in R that satisfy the equation
 y² = x³ + ax + b
- If the cubic polynomial x³+ax
 +b has no repeated roots, we say the elliptic curve is non-singular.
- A necessary and sufficient condition for the cubic polynomial x³+ax+b to have distinct roots is 4a³ + 27 b² ≠ 0.

Group Definition

- 1. A group is a non-empty set G with a binary operation * that satisfies the following axioms for all a, b, c in G:
- 2. Closure: a*b in G
- 3. Associativity: (a*b)*c = a*(b*c)
- 4. Identity: There exists an element e in G such that a* e = a = e*a. We call e the identity element of G.
- 5. Inverse: For each a in G, there exists an element d in G such that a*d = e = d*a. We call d the inverse of a.
- 6. If a group G also satisfies the following axiom for all a, b in G:
- 7. Commutativity: a*b = b*a, we say G is an abelian group.
- 8. The order of a group G, denoted |G| is the number of elements in G. If |G| < Infinity, we say G has finite order.

Field Definition

- 1. A field F is a non-empty set with two binary operations, usually denoted + and *, which satisfy the following axioms for all a, b, c in F:
- 1. a+b is in F
- 2. (a+b)+c = a+(b+c)
- 3. a+b = b+a
- 4. There exists 0_F in F such that $a+0_F = a = 0_F+a$. We call 0_F the additive identity.
- 5. For each a in F, there exists an element x in F such that $a+x=0_F=x+a$. We call x the additive inverse of a and write x=-a.

Field Definition (cont.)

- 6. Field axioms (cont.): For all a, b, c in F,
- 7. a*b in F
- 8. (a*b)*c = a*(b*c)
- 9. a*b = b*a
- 10. There exists 1_F in F, $1_F \neq 0_F$, such that for each a in F, $a*1_F = a = 1_F*a$. We call 1_F the multiplicative identity.
- 11. For each $a \ne 0_F$ in F, there exists an element y in F such that $a^*y = 1_F = y^*a$. We call y the multiplicative inverse of a and write $y = a^{-1}$.
- 12. $a^*(b+c) = a^*b + a^*c$ and $(b+c)^*a = b^*a + c^*a$. (Distributive Law)

Field Examples

- Note that any field is an abelian group under + and the non-zero elements of a field form an abelian group under *.
- Some examples of fields:
- Real numbers
- Z_p, the set of integers modulo p, where p is a prime number is a finite field.
- For example,
- $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$ and $Z_{23} = \{0, 1, 2, 3, ..., 22\}$.

An Elliptic Curve Lemma

Elliptic Curve Lemma:

Any line containing two points of a non-singular elliptic curve contains a unique third point of the curve, where

- Any vertical line contains O, the point at infinity.
- Any tangent line contains the point of tangency twice.

Geometric Addition of Elliptic Curve

- Using the Elliptic Curve Lemma, we can define a way to geometrically "add" points P and Q on a non-singular elliptic curve E.
- First, define the point at infinity to be the additive identity, i.e. for all P in E,
 - P + O = P = O + P.
- Next, define the negative of the point at infinity to be - O = O.

Geometric Addition of Elliptic Curve (cont.)

- For $P = (x_P, y_P)$, define the negative of P to be -P = (x_P, y_P) , the reflection of P about the x-axis.
- From the elliptic curve equation, y² = x³ + ax + b
 we see that whenever P is in E, -P is also in E.

Geometric Addition of Elliptic Curve (cont.)

- Assume that neither P nor Q is the point at infinity.
- For $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ in E, there are three cases to consider:
- 1. P and Q are distinct points with $x_P \neq x_Q$.
- 2. Q = -P, so $x_P = x_Q$ and $y_P = -y_Q$.
- 3. Q = P, so $x_P = x_Q$ and $y_P = y_Q$.

Geometric Case 1: x_P ≠ x_Q

- By the Elliptic Curve Lemma, the line L through P and Q will intersect the curve at one other point.
- Call this third point -R.
- Reflect the point -R about the xaxis to point R.
- P+Q = R

Geometric Case 2: $x_P = x_Q$ and $y_P = -y_Q$

- In this case, the line L through
 P and Q = -P is vertical.
- By the Elliptic Curve Lemma, L will also intersect the curve at O.
- P+Q = P+(-P) = O
- It follows that the additive inverse of P is -P.

Geometric Case 3: $x_P = x_Q$ and $y_P = y_Q$

- Since P = Q, the line L through P and Q is tangent to the curve at P.
- If $y_P = 0$, then P = -P, so we are in Case 2, and P+P = 0.
- For y_P ≠ 0, the Elliptic Curve Lemma says that L will intersect the curve at another point, -R.
- As in Case 1, reflect -R about the x-axis to point R.
- P+P = R
- Notation: 2P = P+P

$$y^2 = x^3 - 7x + 6$$

Algebraic Elliptic Curve Addition

- Geometric elliptic curve addition is useful for illustrating the idea of how to add points on an elliptic curve.
- Using algebra, we can make this definition more clear for implementation point of view.
- As in the geometric definition, the point at infinity is the identity, O = O, and for any point P in E,
 -P is the reflection of P about the x-axis.

Algebraic Elliptic Curve Addition (cont.)

- In what follows, assume that neither P nor Q is the point at infinity.
- 2. As in the geometric case, for $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ in E, there are three cases to consider:
 - 1. P and Q are distinct points with $x_P \neq x_Q$.
 - 2. Q = -P, so $x_P = x_Q$ and $y_P = -y_Q$.
 - 3. Q = P, so $x_P = x_Q$ and $y_P = y_Q$.

Algebraic Case 1: x_P ≠ x_Q

- First we consider the case where P = (x_P,y_P) and Q = (x_Q,y_Q) with x_P ≠ x_Q.
- The equation of the line L though P and Q is y = λ x+v, where

$$\lambda = \frac{y_Q - y_P}{x_Q - x_P} \quad \text{and} \quad \nu = y_P - \lambda x_P = y_Q - \lambda x_Q.$$

In order to find the points of intersection of L and E, substitute
λ x + v for y in the equation for E to obtain the following:

$$(\lambda x + \nu)^2 = x^3 + ax + b,$$
 (2)

- The roots of (2) are the x-coordinates of the three points of intersection.
- Expanding (2), we find:

Algebraic Case 1: $x_P \neq x_Q$ (cont.)

$$x^{3} - \lambda^{2}x^{2} + (a - 2\lambda\nu)x + b - \nu^{2} = 0, \quad (3)$$

- Since a cubic equation over the real numbers has either one or three real roots, and we know that x_P and x_Q are real roots, it follows that (3) must have a third real root, x_R.
- Writing the cubic on the left-hand side of (3) in factored form

$$x^{3} - \lambda^{2}x^{2} + (a - 2\lambda\nu)x + b - \nu^{2} = (x - x_{P})(x - x_{Q})(x - x_{R}),$$

 $x_{R} = \lambda^{2} - x_{P} - x_{Q}.$

we can expand and equate coefficients of like terms to find

Algebraic Case 1: $x_P \neq x_Q$ (cont.)

- We still need to find the y-coordinate of the third point, $-R = (x_R, -y_R)$ on the curve E and line L.
- To do this, we can use the fact that the slope of line L is determined by the points P and -R, both of which are on L:

$$\lambda = \frac{-y_R - y_P}{x_R - x_P}.$$

Thus, the sum of P and Q will be the point R = (x_R, y_R) with $x_R = \lambda^2 - x_P - x_Q$ and $y_R = \lambda(x_P - x_R) - y_P$,

where
$$\lambda = \frac{y_Q - y_P}{x_Q - x_P}.$$

Algebraic Case 2: $x_P = x_Q$ and $y_P = -y_Q$

- In this case, the line L through P and Q = -P is vertical, so L contains the point at infinity.
- As in the geometric case, we define P+Q = P+(-P)
 = O, which makes P and -P additive inverses.

Algebraic Case 3: $x_P = x_Q$ and $y_P = y_Q$

- Finally, we need to look at the case when Q = P.
- If $y_P = 0$, then P = -P, so we are in Case 2, and P+P = 0.
- Therefore, we can assume that y_P ≠ 0.
- Since P = Q, the line L through P and Q is the line tangent to the curve at (x_P,y_P).

Algebraic Case 3: $x_P = x_Q$ and $y_P = y_Q$

 The slope of L can be found by implicitly differentiating the equation y² = x³ + ax + b and substituting in the coordinates of P:

$$\lambda = \frac{3x_P^2 + a}{2y_P}.$$

• Arguing as in Case 1, we find that P+P = 2P = R, with R = (x_R, y_R) , where $x_R = \lambda^2 - 2x_P$ and $y_R = \lambda(x_P - x_R) - y_P$.

Elliptic Curve Groups

From these definitions of addition on an elliptic curve, it follows that:

- 1. Addition is closed on the set E.
- 2. Addition is commutative.
- 3. *O* is the identity with respect to addition.
- 4. Every point P in E has an inverse with respect to addition, namely -P.
- 5. The associative axiom also holds.

Elliptic Curves Over Finite Fields

- Instead of choosing the field of real numbers, we can create elliptic curves over other fields.
- Let a and b be elements of Z_p for p prime, p > 3. An elliptic curve E over Z_p is the set of points (x,y) with x and y in Z_p that satisfy the equation

$$y^2 \pmod{p} = x^3 + ax + b \pmod{p},$$

together with a single element O, called the point at infinity.

- As in the real case, to get a non-singular elliptic curve, we'll require 4a³ + 27 b² (mod p) ≠ 0 (mod p).
- Elliptic curves over Z_p will consist of a finite set of points.

Addition on Elliptic Curves over Z_p

- Just as in the real case, we can define addition of points on an elliptic curve E over Z_p, for prime p>3.
- This is done in the essentially the same way as the real case, with appropriate modifications.

Addition on Elliptic Curves over Z_p (cont.)

- Suppose P and Q are points in E.
- Define P + O = O + P = P for all P in E.
- If $Q = -P \pmod{p}$, then P+Q = O.
- Otherwise, $P+Q=R=(x_R,y_R)$, where

$$x_R = \lambda^2 - x_P - x_Q \pmod{p}$$
 and $y_R = \lambda(x_P - x_R) - y_P \pmod{p}$,

with

$$\lambda = \begin{cases} (y_Q - y_P)(x_Q - x_P)^{-1} \pmod{p}, & \text{if } P \neq Q \pmod{p} \\ (3x_P^2 + a)(2y_P)^{-1} \pmod{p}, & \text{if } P = Q \pmod{p}. \end{cases}$$

Cryptography on an Elliptic Curve

- Using an elliptic curve over a finite field, we can exchange information securely.
- For example, we can implement a scheme invented by Whitfield Diffie and Martin Hellman in 1976 for exchanging a secret key.

Diffie-Hellman Key Exchange via an Elliptic Curve

- Alice and Bob publicly agree on an elliptic curve E over a finite field Z_p.
- Next Alice and Bob choose a public base point B on the elliptic curve E.
- 3. Alice chooses a random integer 1<α<|E|, computes P = α B, and sends P to Bob. Alice keeps her choice of α secret.</p>
- 4. Bob chooses a random integer 1<β<|E|, computes Q = β B, and sends Q to Alice. Bob keeps his choice of β secret.</p>

- 1. Alice and Bob choose E to be the curve $y^2 = x^3+x+6$ over Z_7 .
- 2. Alice and Bob choose the public base point to be B=(2,4).
- Alice chooses $\alpha = 4$, computes $P = \alpha B = 4(2,4) =$ (6,2), and sends P to Bob. Alice keeps α secret.
- Bob chooses $\beta = 5$, computes $Q = \beta B = 5(2,4) =$ (1,6), and sends Q to Alice. Bob keeps β secret.

Diffie-Hellman Key Exchange via an Elliptic Curve (cont.)

- 5. Alice computes $K_A = \alpha Q = \alpha(\beta B)$.
- 6. Bob computes $K_B = \beta P = \beta(\alpha B)$.
- 7. The shared secret key is $K = K_A = K_B$. Even if Eve knows the base point B, or P or Q, she will not be able to figure out α or β , so K remains secret!
- 5. Alice computes $K_A = \alpha Q = 4(1,6) = (4,2)$.
- 6. Bob computes $K_B = \beta P = 5(6,2) = (4,2)$.
- 7. The shared secret key is K = (4,2).

Elliptic Curve Discrete Logarithm Problem

- At the foundation of every crypto-system is a hard mathematical problem that is computationally infeasible to solve.
- The discrete logarithm problem is the basis for the security of many crypto-systems including the Elliptic Curve Crypto-system.
- ECC relies upon the difficulty of the Elliptic Curve Discrete Logarithm Problem (ECDLP).
- Recall that we examined two geometrically defined operations over certain elliptic curve groups. These two operations were point addition and point doubling.
- By selecting a point in a elliptic curve group, one can double it to obtain the point 2P.
- After that, one can add the point P to the point 2P to obtain the point 3P.
- The determination of a point nP in this manner is referred to as Scalar Multiplication of a point.
- The ECDLP is based upon the intractability of scalar multiplication products.

Scalar Multiplication

- Scalar Multiplication of Point in EC Additive group is a combination of point doubling and point addition.
- Under additive notation: computing kP by adding together k copies of the point P.
- If k = 23; then, kP = 23*P = 2(2(2(2P) + P) + P) + P
- Using multiplicative notation, this operation consists of multiplying together k copies of the point P, yielding the point P*P*P*...*P = Pk.

Elliptic Curve Discrete Logarithm Problem

- In multiplicative group Z_p*, DLP is: given elements r and q of the group, and a prime p, find a number k such that r = qk mod p.
- If the elliptic curve groups is described using multiplicative notation, then the elliptic curve discrete logarithm problem is: given points P and Q in the group, find a number that Pk = Q; k is called the discrete logarithm of Q to the base P.
- When the elliptic curve group is described using additive notation, the elliptic curve discrete logarithm problem is: given points P and Q in the group, find a number k such that [k]P = Q

Elliptic Curve Discrete Logarithm Problem

- In the elliptic curve group defined by $y^2 = x^3 + 9x + 17$ over F_{23} , What is the discrete logarithm k of Q = (4,5) to the base P = (16,5)?
- Naive way to find k is to compute multiples of P until Q is found. The first few multiples of P are:

```
P = (16,5)

2P = (20,20)

3P = (14,14)

4P = (19,20)

5P = (13,10)

6P = (7,3)

7P = (8,7)

8P = (12,17)

9P = (4,5)
```

- Since 9P = (4,5) = Q, the discrete logarithm of Q to the base P is k = 9.
- In a real application, k would be large enough (e.g. 192bit) such that it
 would be infeasible to determine k in this manner.

ElGamal Cryptography

- Public-key crypto-system related to D-H
- Uses exponentiation in a finite field
- With security based difficulty of computing discrete logarithms, as in D-H.
- Each user generates their key
- Chooses a secret key (number): 1 < x_A < q-1
- Compute their public key: y_A = a^x_A mod q

ElGamal Message Exchange

- 1. Bob encrypts a message to send to Alice computing
 - 1. Represent message M in range 0 <= M <= q-1
 - 2. chose random integer k with $1 \le k \le q-1$
 - 3. compute one-time key $K = y_A^k \mod q$
 - 4. Encrypt M as a pair of integers (C1,C2) where C1 = a^k mod q; C2 = KM mod q.
- 2. Alice then recovers message by
 - Recovering key K as K = C1^xA mod q
 - 2. computing M as $M = C2 K^{-1} \mod q$
- 3. A unique k must be used each time otherwise result is insecure

ElGamal Example

- 1.Let's us consider field GF(19) q=19 and a=10
- 2. Alice computes her key:
 - 1. Chooses $x_A = 5 \& computes y_A = 10^5 \mod 19 = 3$
- 3.Bob send message m=17 as (11,5) by
 - 1. choosing random k=6
 - 2. computing $K = y_A^k \mod q = 3^6 \mod 19 = 7$
 - 3. computing C1 = ak mod $q = 10^6 \mod 19 = 11$;
 - 4. $C2 = KM \mod q = 7.17 \mod 19 = 5$
- 4. Alice recovers original message by computing:
 - 1. recover $K = C1^x_A \mod q = 11^5 \mod 19 = 7$
 - 2. compute inverse $K^-1 = 7^-1 = 11$
 - 3. recover $M = C2 K^{-1} \mod q = 5.11 \mod 19 = 17$

ElGamal With Elliptic Curve

- Set up an elliptic curve E over a field Fq and a point P of order N.
- We need a public function f:m→Pm, which maps messages m to points Pm on E. It should be invertible, and one way is to use m in the curve's equation as x and calculate the according y
- Choose a secret key x ∈ [1, N-1] randomly, publish the point Y=[x]P as public key.
- Encryption: choose random k ∈ [1,N-1], then calculate C1 = [k]P and C2 = kY and calculate Pm = f(m). The cipher text is the tuple (C1,C2+Pm).
- Decryption: From a cipher text (C,D), calculate C'=[x]C and retrieve the point Pm with Pm=D-C'=(k([x]P)+Pm)-(x(kP)).
- Then calculate the message m with f^-1(Pm).

Thank you