# Lecture 16 Sampling Distribution of The Sample Variance

**BIO210** Biostatistics

Xi Chen
Spring 2023

Spring, 2023

School of Life Sciences
Southern University of Science and Technology



# Sampling Distribution of The Sample Variance



$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \qquad \vdots \qquad \vdots \qquad \vdots$$





Sampling distribution of the sample variance

## Start With The Special Case

**Task:** We draw a sample of size n  $(X_1, X_2, \dots, X_n)$  from a population  $(X \sim \mathcal{D})$ , where  $\mathbb{V}\mathrm{ar}(X) = \sigma^2$ , we want to figure out:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left[ (X_{1} - \bar{X})^{2} + (X_{2} - \bar{X})^{2} + \dots + (X_{n} - \bar{X})^{2} \right]$$

**Simplify:** Let  $X_1, X_2, \dots, X_n$  be **i.i.d.** random variables from a normal population  $\mathcal{N}(\mu, \sigma^2)$ 

$$S^{2} = \frac{1}{n-1} \left[ (X_{1} - \bar{X})^{2} + (X_{2} - \bar{X})^{2} + \dots + (X_{n} - \bar{X})^{2} \right]$$

**The question becomes:** what is the sum of a bunch of squared normal random variables?

### The Standard Normal Squared

Let  $Z_1, Z_2, Z_3, \cdots, Z_n$  be **i.i.d.** standard normal random variables:  $Z_i \sim \mathcal{N}(0,1)$ , then

- $Z_1^2 \sim ?$
- $Z_1^2 + Z_2^2 \sim ?$
- •
- $\sum_{i=1}^{n} Z_i^2 \sim ?$

# The Chi-squared $(\chi^2)$ Distribution

#### Friedrich Robert Helmert in 1876:

| Number of $Z_i^2$ | The PDF of the sum                                                  |
|-------------------|---------------------------------------------------------------------|
| 1                 | $\frac{1}{\sqrt{2\pi}}x^{-\frac{1}{2}}e^{-\frac{x}{2}}:\chi^2(1)$   |
| 2                 | $\frac{1}{2}e^{-\frac{x}{2}}:\chi^2(2)$                             |
| 3                 | $\frac{1}{\sqrt{2\pi}}x^{\frac{1}{2}}e^{-\frac{x}{2}}:\chi^2(3)$    |
| 4                 | $\frac{1}{4}xe^{-\frac{x}{2}}:\chi^{2}(4)$                          |
| 5                 | $\frac{1}{3\sqrt{2\pi}}x^{\frac{3}{2}}e^{-\frac{x}{2}}:\chi^{2}(5)$ |
| :                 | :                                                                   |

by induction:

$$\chi^{2}(n): f_{X}(x) = \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}}} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, x \geqslant 0$$

where:

$$\begin{split} &\Gamma(\alpha)=\int_0^\infty t^{\alpha-1}e^{-t}\mathrm{d}t,\ \alpha>0\\ &\Gamma(\alpha)=(\alpha-1)\Gamma(\alpha-1)\\ &\Gamma(k)=(k-1)!\ \text{, when }k\text{ is an integer} \end{split}$$

One parameter - the degree of freedom: the number of independent  $\mathbb{Z}^2$  in the sum

### The Distribution of $S^2$

By definition:

$$\sum_{i=1}^{n} \left( \frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)$$

Replacing  $\mu$  with  $\bar{X}$ :

$$\sum_{i=1}^{n} \left( \frac{X_i - \bar{X}}{\sigma} \right)^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi^2(n-1)$$

Manipulate to get the sample variance:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

### Why n-1? part 1

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \leqslant \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

Why? Because:

$$\sum_{i=1}^{n} (x_i - m)^2 = n \cdot m^2 - \left(2\sum_{i=1}^{n} x_i\right) \cdot m + \sum_{i=1}^{n} x_i^2$$

But why exactly n-1? Wait until **part 2** in **Lecture 18** 

# The Degree of Freedom (DF, DOF, $\nu$ )

**Typical definition:** the number of values in the final calculation of a statistic that are free to vary; the number of independent pieces of information used to calculate the statistic.

There are two types of degrees of freedom:

```
\begin{cases} df \text{ of the data} & -df \text{ left (statistical cash)} \\ df \text{ of the statistical model} & -df \text{ spent (buy with cash)} \end{cases}
```

**Statistical models:** a mathematical process that attempts to describe the population where the sample comes from, allowing us to make predictions.

# Different Types of $d\!f$

**Intuitive thinking:** the number of cells that can vary in a Spreadsheet.

|    | Data  | Model                                      |
|----|-------|--------------------------------------------|
|    | $x_1$ |                                            |
|    | $x_2$ | $1 \sum_{n}^{n}$                           |
|    | $x_3$ | $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ |
|    | :     |                                            |
|    | $x_n$ |                                            |
| df | n     | 1                                          |