

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Β΄, ΤΜΗΜΑ Ρ-Ω, ΑΚΑΔ. ΕΤΟΣ 2022–2023

3η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Διηλεκτοικά υλικά, Πόλωση, Κατοπτοισμός σε διηλεκτοικά υλικά

Άσκηση 1

Η διάταξη του διπλανού σχήματος αποτελείται από δύο τέλεια αγώγιμους ημικυλινδοικούς οπλισμούς, με ακτίνες a και b, αντίστοιχα, μεταξύ των οποίων εφαρμόζεται τάση U. Ανάμεσά τους υπάρχει ένα διηλεκτρικό υλικό σταθερής επιτρεπτότητας ε_1 , το οποίο εκτείνεται κατά, την αζιμουθιακή διεύθυνση, μέχρι τη γωνία φ_0 . Το υπολοιπόμενο τμήμα πληρούται με διηλεκτρικό υλικό ανομοιογενούς επιτρεπτότητας $\varepsilon_2(\varphi) = \varepsilon_0 \cos^2 \varphi + \varepsilon_1$, $\varphi_0 \le \varphi \le \pi$. Το μήκος της διάταξης κατά τον άξονα z είναι L. Υπό τη συνθήκη ότι το μήκος $b-a \ll L$, $\varphi_0 a$, $(\pi-\varphi_0)a$

ΔΙΔΑΣΚΩΝ: ΓΡΗΓΟΡΙΟΣ ΖΟΥΡΟΣ

 ε_1

ώστε να αμελείται το φαινόμενο των άκρων, και δεδομένου ότι δεν υπάρχουν ελεύθερα χωρικά φορτία στα δύο διηλεκτρικά, να υπολογιστούν οι ακόλουθες ποσότητες.

- (α') Τα πεδιακά μεγέθη $\mathbf{E}_{1,2}$, $\mathbf{D}_{1,2}$ και τα ηλεκτροστατικά δυναμικά $\Phi_{1,2}$ συναφτήσει της θέσης, όπου ο δείκτης «1» αντιστοιχεί στην περιοχή με επιτρεπτότητα ε_1 και ο δείκτης «2» στην περιοχή με επιτρεπτότητα $\varepsilon_2(\varphi)$.
- (β') Οι πολώσεις $\mathbf{P}_{1,2}$ και όλες οι πυκνότητες φορτίων πόλωσης (χωρικές και επιφανειακές) που ενδεχομένως αναπτύσσονται στη διάταξη.
- (γ) Να ελεγχθεί εἀν αναπτύσσεται επιφανειακή πυκνότητα ελεύθερου φορτίου στη διεπιφάνεια $\varphi=\varphi_0$, καθώς και εἀν ικανοποιείται η συνέχεια των εφαπτομενικών συνιστωσών του ηλεκτρικού πεδίου στην ίδια διεπιφάνεια.
- (δ') Να υπολογιστεί η χωρητικότητα της διάταξης.

Ασκηση 2

Ηλεκτρικό δίπολο $\mathbf{p}=q\mathbf{d}$, $\mathbf{d}=d\hat{z}$, είναι τοποθετημένο στον αξρα σε απόσταση h>d/2 από το επίπεδο z=0. Ο χώρος z<0 καλύπτεται από διηλεκτρικό επιτρεπτότητας ε_1 .

- (α') Να υπολογιστεί το ηλεκτροστατικό δυναμικό παντού στο χώρο, λαμβάνοντας υπόψη ότι αυτό μηδενίζεται στο άπειρο.
- (β') Να υπολογιστεί το ηλεκτροστατικό δυναμικό στην περιοχή z>0, υπό τη συνθήκη $r\gg h\pm d/2$. Εκφράστε το αποτέλεσμα σε σφαιρικές συντεταγμένες (r,θ) με αρχή το σημείο O (βλ. σχήμα).

(δ') Δείξτε ότι, όταν h=0 και $\varepsilon_1=\varepsilon_0$, το αποτέλεσμα (γ') ανάγεται στο γνωστό αποτέλεσμα για το ηλεκτροστατικό δυναμικό ενός ιδανικού ηλεκτρικού διπόλου τοποθετημένου σε απεριόριστο χώρο ε_0 , με $r\gg d$.