TASK 1 (PIPE tool)

Design a cruise control model in Petri Nets. To model the system follow the below instructions:

- merge the 7 sub-models (see figure on next page) into a single model
 - use the file with the sub-models, which is provided on the class web site
 - the model must behave as defined in the below transition and state definition tables
- after you merge the sub-models remember to model all remaining transitions shown in the transition table (the sub-models describe only selected behavior); useful hints follow:
 - look at rows in the transition table; when you simulate the model, for each state you will need as many enabled transitions as the number of transitions for this state in the table
 - look at columns in the transition table; if a given input in the table is used to perform transition FROM multiple different states, that this input will be modeled by multiple transitions (each responsible for a different input state)
- make sure that your final PN model takes proper number of states
 - simulate, enumerate and verify the states using the software

State definition table

State	Engine	CCS	Throttle	CCS maintains speed
S1	off	off	same	No
S2	on	off	manual	No
S3	on	on	same	Yes
S4	on	on	increase	Yes
S5	on	on	decrease	Yes
S6	on	on	increase	No
S7	on	on	decrease	No

State transition table

inputs	I 1	I2	I3	I4	I 5	I 6	I7	I8	I9	I10	I11	I12
	Engine ON	Engine OFF		CCS OFF	-	pulses below	pulses at desired		brake	increase speed	decrease speed	resume CCS
states					desired frequency		frequency			for CCS	for CCS	control
S1	S2	_	-	-	_	_	_	_	ı	_	_	_
S2	_	S1	S 3	_	_	-	_	-	ı	_	ı	_
S3	-	_	-	S2	S5	S4	_	S4	S7	S4	S5	_
S4	-	_	-	S2	S5	-	S 3	-	S7	S 3	S 3	_
S5	-	_	-	S2	_	S4	S 3	S4	S7	S 3	S 3	_
S6	_	S1	_	S2	_	_	_	_	S7	_	_	S3
S7	_	S1	_	S2	_	_	_	S6	_	_	_	S3

SUBMISSION

Each group must submit the result via email at the end of the lab, by 16:50 at the LATEST.

- No extensions will be given!
- Send the 7 sub-models and the model named "CCS_groupname.xml" in the PIPE format as an attachment to chaari@ualberta.ca and panahand@ualberta.ca.
- Attach also the screenshot of all your models.
- Enter the "ECE321: LAB 8 groupname" as the email subject.

Remember to get confirmation that I received the email before the lab ends!

Thr DEC 3

Thr INC 2