Assessment 01

Introduction to assessment:

You are a data analyst and a small fictional Ice Cream Shop in Rome has asked you do analyse their sales data.

The dataset (IceCreamSales.csv) that you have has the next columns:

- product_id: Unique identifier for the product being sold. Ice Cream Type
- date: The specific date when sales data was recorded.
- sales_amount: The amount of sales or revenue generated on the given date.
- temperature: The recorded temperature on the date in Celcius.
- rainfall: The amount of rainfall.
- weather_condition: A description of the prevailing weather conditions on the so we have "sunny" and "not sunny".

Each correct answer will be counted as 1 point and your result will have to match with the results on the pic below. If yes reward yourself 1 point. This assessment is also testing your independent research skills, therefore you are allowed to use Google to find the answers.

Part I

1. Import the data and show the first 5 rows.

	product_id	date	sales_amount	temperature	rainfall	weather_condition
0	2	2023-01-01	86.320006	10	7	not sunny
1	3	2023-01-02	194.868345	17	8	sunny
2	2	2023-01-03	196.927862	15	2	sunny
3	1	2023-01-04	69.325892	12	6	not sunny
4	1	2023-01-05	45.123280	6	0	not sunny

2. Check for missing values for all columns

product_id	0
date	0
sales_amount	2
temperature	0
rainfall	0
weather_condition	0
dtype: int64	

3. Show where are these nulls

	product_id	date	sales_amount	temperature	rainfall	weather_condition
19	1	2023-01-20	NaN	17	4	sunny
24	2	2023-01-25	NaN	6	6	not sunny

4. Show the descriptive analysis of all values. Focus on sales.

	product_id	sales_amount	temperature	rainfall
count	83.000000	81.000000	83.00000	83.000000
mean	1.927711	95.184456	8.73494	5.144578
std	0.808237	51.995662	5.11355	3.112260
min	1.000000	40.858484	0.00000	0.000000
25%	1.000000	63.683101	5.00000	2.500000
50%	2.000000	78.053205	8.00000	6.000000
75%	3.000000	95.804563	13.00000	7.500000
max	3.000000	285.781178	17.00000	10.000000

^{5.} Show the average sales for each product and average sales for each type of weather condition. You will get two different outputs.

Hint: GroupBy concept: https://www.geeksforgeeks.org/python-pandas-dataframe-groupby/

weather condition not sunny 73,954307 196,785882 sunny

Name: sales amount, dtype: float64

product id

1 90.692164

2 88,447025

3 108.472978

Name: sales amount, dtype: float64

6. Drop ID Columns and check the columns of df

```
Index(['date', 'sales amount', 'temperature', 'rainfall',
'weather condition'], dtype='object')
```

7. Fill the missing values with the mean of the sales with according to the group based on weather condition. Check wether they have really filled with realtive mean?

Hint: GroupBY + Transform : https://www.statology.org/pandas-groupby-transform/

1	weather_condition	rainfall	temperature	sales_amount	date	
,	sunny	4	17	196.785882	2023-01-20	19
,	not sunny	6	6	73.954307	2023-01-25	24

Part II

You will need these libraries

```
import numpy as np #For numeric operations
import pandas as pd #For operations on datasets
import matplotlib.pyplot as plt #For visualization
import seaborn as sns #For visualization
```

8. Plot the correlation plot of the continuous variables.

9. Get dummy variables (1/0) for the weather_condition. Because model doesn't understand the text

Hint: https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html

	date	sales_amount	temperature	rainfall	weather_condition_sunny
0	2023-01-01	86.320006	10	7	0
1	2023-01-02	194.868345	17	8	1
2	2023-01-03	196.927862	15	2	1
3	2023-01-04	69.325892	12	6	0
4	2023-01-05	45.123280	6	0	0

10. Find a correlation for CONTINUOUS and CATEGORICAL VARIABLE. Sales and weather condition.

Import this libraries

from scipy import stats

Hint:

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fwww.statology.org%2 Fcorrelation-between-continuous-categorical-variables%2F

11. Visual Inspection: Analyse the relationship between TEMPERATURE and SALES colored by WEATHER_CONDITION.

Visual Inspection of Temperature and Sales

Part III Modeling

12. Split into train and test. Train will have the columns

from sklearn.model_selection import train_test_split

Check the next print(len(X_train), len(y_train),len(X_test),len(y_test))

66 66 17 17 Do you have the same results?

13. Run the linear regression model of statsmodels with X_train and y_train

import statsmodels.api as sm

Don Vaniahla.	50105 amount	D 5011000	d /	ad).		0.901	
Dep. Variable: Model:	sales_amount		*				
Method:			Adj. R-squared (uncentered): F-statistic: Prob (F-statistic):			0.896 191.1 1.41e-31	
	,	*					
Time:		Log-Like	:lihood:		-:	327.81	
No. Observations:	66					661.6	
Df Residuals:	63					668.2	
Df Model:	3						
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
temperature	4.7498	0.854	5.561	0.000	3.043	6.456	
rainfall	5.0585	1.208	4.186	0.000	2.644	7.473	
weather_condition_sunny	103.8516	13.918	7.462	0.000	76.039	131.664	
Omnibus:	0.563	Durbin-W	atson:		1.688		
Prob(Omnibus):	0.755	Jarque-E	Bera (JB):		0.130		
Skew:	0.002		` ,		0.937		
		, ,					

14. Referring to the results of OLS/Linear regression model above.

- -What is the Adjusted R-Squared of your model? Is it good/bad? What does it indicate.
- -Which variables (coefficents) are significant

