MLR: Model Selection in R

Math 430, Winter 2017

Highway accident data

Variable Description

adt average daily traffic count (thousands)

trks truck volume as a percent of the total volume

lane total number of lanes of traffic

acpt number of access points per mile

sigs number of signalized interchanges per mile

itg number of freeway-type interchanges per mile

slim speed limit

len length of the Highway segment (miles)

lwid lane width (feet)

shld width in feet of outer shoulder on the roadway

htype type of roadway/funding source

rate accident rate per million vehicle miles


```
## 1 ambda RSS
## 1 1.594529 26.41210
## 2 -1.000000 45.59093
## 3 0.000000 33.75636
## 4 1.000000 27.29810
```

```
Highway <- mutate(Highway, sigs1 = (sigs * len + 1)/len)
full_mod_tform <- lm(log(rate) ~ log(adt) + log(trks) + I(1/lane) + log(acpt) +
   itg + slim + log(len) + poly(lwid, 2) + poly(shld, 2) + htype + log(sigs1),
   data = Highway)</pre>
```


Added-Variable Plots

The step command

Backward elimination

```
belim <- step(full mod tform, scope = list(lower = ~ 1), direction = "backward")
broom::tidy(belim)
##
                     estimate std.error statistic
               term
                                                           p.value
## 1
        (Intercept) 3.24639448 0.75119775 4.3216244 0.0001764473
## 2
           log(adt) -0.14429407 0.07746273 -1.8627547 0.0730195963
## 3
          log(acpt) 0.18987179 0.10707212 1.7733075 0.0870567742
## 4
                slim -0.02011261 0.01007683 -1.9959263 0.0557516497
## 5
           log(len) -0.25644916 0.07871784 -3.2578279 0.0029403083
## 6
     poly(lwid, 2)1 0.13688282 0.25106602 0.5452065 0.5899285279
## 7
     poly(lwid, 2)2 -0.60177023 0.23510121 -2.5596220 0.0161662281
            htypefai 0.33059140 0.33000676 1.0017716 0.3250331856
## 8
## 9
            htypepa -0.21786065 0.21955592 -0.9922786 0.3295598277
## 10
            htypema -0.06105924 0.18951707 -0.3221833 0.7497070874
         log(sigs1) 0.17789568 0.05689946 3.1264916 0.0040983118
## 11
```

Forward selection

```
null mod <- lm(slog(rate) ~ 1, data = Highway)</pre>
fselect <- step(null mod, scope = list(lower = ~ 1,
upper = ~ log(adt) + log(trks) + lane + acpt + itg + slim + log(len) +
    lwid + shld + htype + sigs1),
direction = "forward")
broom::tidy(fselect)
##
            term estimate std.error statistic
                                                       p.value
## 1 (Intercept) 4.16654113 0.741064508 5.622373 2.666474e-06
## 2
            slim -0.03185201 0.010261763 -3.103951 3.832823e-03
## 3
       log(len) -0.23573454 0.084896763 -2.776720 8.867186e-03
            acpt 0.01100449 0.006669289 1.650025 1.081474e-01
## 4
       log(trks) -0.32903691 0.213483661 -1.541274 1.325068e-01
## 5
```

Stepwise selection

```
step hwy <- step(null mod, scope = list(lower = ~ 1,</pre>
upper = \sim log(adt) + log(trks) + lane + acpt + itg + slim + log(len) +
    lwid + shld + htype + sigs1),
direction = "both")
broom::tidy(step hwy)
##
           term estimate std.error statistic p.value
## 1 (Intercept) 4.16654113 0.741064508 5.622373 2.666474e-06
## 2
           slim -0.03185201 0.010261763 -3.103951 3.832823e-03
## 3
     log(len) -0.23573454 0.084896763 -2.776720 8.867186e-03
## 4
           acpt 0.01100449 0.006669289 1.650025 1.081474e-01
## 5
      log(trks) -0.32903691 0.213483661 -1.541274 1.325068e-01
```

Using BIC rather than AIC

```
belim bic <- step(full mod tform, scope = list(lower = ~ 1), direction = "backward",
                   k = log(nrow(Highway)))
broom::tidy(belim bic)
##
                term
                     estimate std.error statistic
                                                           p.value
## 1
        (Intercept) 3.24639448 0.75119775 4.3216244 0.0001764473
## 2
            log(adt) -0.14429407 0.07746273 -1.8627547 0.0730195963
          log(acpt) 0.18987179 0.10707212 1.7733075 0.0870567742
## 3
                slim -0.02011261 0.01007683 -1.9959263 0.0557516497
## 4
## 5
            log(len) -0.25644916 0.07871784 -3.2578279 0.0029403083
     poly(lwid, 2)1 0.13688282 0.25106602 0.5452065 0.5899285279
## 6
## 7
      poly(lwid, 2)2 -0.60177023 0.23510121 -2.5596220 0.0161662281
## 8
            htypefai 0.33059140 0.33000676 1.0017716 0.3250331856
## 9
            htypepa -0.21786065 0.21955592 -0.9922786 0.3295598277
## 10
            htypema -0.06105924 0.18951707 -0.3221833 0.7497070874
         log(sigs1) 0.17789568 0.05689946 3.1264916 0.0040983118
## 11
```

The regsubsets command

All subsets in R

```
library(leaps)
regfit_full <- regsubsets(log(rate) ~ log(adt) + log(trks) + I(1/lane) + log(acpt) +
   itg + slim + log(len) + poly(lwid, 2) + poly(shld, 2) + htype + log(sigs1),
   data = Highway, method = "exhaustive", nvmax = 11, nbest = 1)
reg summary <- summary(regfit full)</pre>
```

Investigating the results

```
plot(regfit_full, scale = "adjr2")
```


Investigating the results

```
plot(regfit_full, scale = "bic")
```


Another plot option

Extracting goodness-of-fit measures

Calculate AIC

```
# The first number is equiv. d.f., the second is AIC
extractAIC(step hwy, k = 2)
## [1] 5.00000 -97.53195
Calculate AICc
n <- nrow(Highway)</pre>
nslope <- length(step hwy$coefficients) - 1</pre>
extractAIC(step hwy, k = 2) + 2 * (nslope + 1) * (nslope + 2) / (n - nslope - 1)
## [1] 6.764706 -95.767241
Calculate BIC
extractAIC(step hwy, k = log(n))
## [1] 5.00000 -89.21414
```

Training and test data sets

```
# Select rows for a training data set
train_id <- sample(1:nrow(df), size = round((2/3) * nrow(df)))
# Create the training and test data sets
train <- df[train_id,]
test <- df[-train_id,]</pre>
```