Homework 5. Due Wednesday, Oct. 2.

- 1. Calculate the number of flops required for computing a matrix inverse as a function of n where $n \times n$ is the size of the matrix. Consider two algorithms.
 - (a) (5 pts) Algorithm 1. Define an $n \times 2n$ matrix M := (A, I) where I is the $n \times n$ identity matrix. Subject M to row operations to transform it into a matrix of the form (I, B). Then $B = A^{-1}$. Write this algorithm as a pseudocode. For simplicity assume that pivoting is not needed (anyway, row swaps do not involve flops). Calculate the number of flops. An answer of the form $W(n) = Cn^p + O(n^{p-1})$ is good enough. You need to determine the constants C and p.
 - (b) (5 pts) Algorithm 2. Decompose A to A = LU. The cost of this is $W_1(n) = \frac{2}{3}n^3 + O(n^2)$. Compute L^{-1} and U^{-1} and calculate $A^{-1} = U^{-1}L^{-1}$. Write this algorithm as a pseudocode. For simplicity assume that pivoting is not needed. Start it with calling the LU algorithm (you do not need to write a pseudocode for LU, just add its cost to your result). Calculate the number of flops. An answer should be of the form $W(n) = Cn^p + O(n^{p-1})$. You need to determine the constants C and p.
- 2. (a) (4 pts) Consider the set \mathcal{L} of all $n \times n$ lower-triangular matrices with positive diagonal entries.
 - i. Prove that the product of any two matrices in \mathcal{L} is also in \mathcal{L} .
 - ii. Prove that the inverse of any matrix in \mathcal{L} is also in \mathcal{L} .
 - This means that the set of all $n \times n$ lower-triangular matrices with positive diagonal entries forms a group with respect to matrix multiplication.
 - (b) (2 pts) Prove that the Cholesky decomposition for any $n \times n$ symmetric positive definite matrix is unique. Hint. Proceed from converse. Assume that there are two Cholesky decompositions $A = LL^{\top}$ and $A = MM^{\top}$. Show that then $M^{-1}LL^{\top}M^{-\top} = I$. Conclude that $M^{-1}L$ must be orthogonal. Then use item (a) of this problem to complete the argument.
- 3. (5 pts) The Cholesky algorithm is the cheapest way to check if a symmetric matrix is positive definite.
 - (a) Program the Cholesky algorithm. If any L_{jj} turns out to be either complex or zero, make it terminate with a message: "The matrix is not positive definite".
 - (b) Generate a symmetric 100×100 matrix as follows: generate a matrix \tilde{A} with entries being random numbers uniformly distributed in (0,1) and define $A:=\tilde{A}+\tilde{A}^{\top}$. Use the Cholesky algorithm to check if A is symmetric positive definite. Compute the eigenvalues of A using a standard command (e.g. eig in MAT-LAB), find minimal eigenvalue, and check if the conclusion of your Cholesky-based test for positive definiteness is correct. If A is positive definite, compute

- its Cholesky factor using a standard command (e.g. see this help page for MAT-LAB) and print the norm of the difference o the Cholesky factors computed by your routine and by the standard one.
- (c) Repeat item (b) with A defined by $A = \tilde{A}^{\top} \tilde{A}$. The point of this task is to check that your Cholesky routine works correctly.