Multiple Sequence Alignment (MSA) di sequenze SARS-CoV-2

Edoardo Silva 816560 Davide Marchetti 815990

A.A.: 2019/2020

1 Abstract

La seconda parte del progetto prevede di elaborare i file prodotti in precedenza ricavando informazioni relative alle alterazioni rilevate e producendo in output una tabella riassuntiva contenente:

- il gene id del gene in cui cade la variazione con lo start e l'end della sua CDS rispetto alla reference
- il codone (o i codoni) alterato della reference, con posizione di inizio rispetto alla CDS, sequenza del codone e amminoacido codifcato
- il nuovo codone generato dalla variazione (o i nuovi codoni generati) specifcando la sequenza del codone e il nuovo amminoacido codifcato

Attraverso le informazioni raccolte in questa fase saremo in grado di identificare in quali geni si concentrano le variazioni rilevate, all'interno di essi, dove queste avvengono e come alterino i codoni causando la produzione di una proteina diversa.

2 Algoritmo

L'algoritmo inizia caricando tutti i file necessari per l'elaborazione, in particolare quelli prodotti in output nella parte precedente del progetto:

- 1. Caricamento della sequenza reference dal fasta corrispondente memorizzato in /project-1/input/reference.fasta.
- 2. Caricamento di uno dei file di output prodotti nella prima parte di progetto. Nel nostro caso è stato utilizzata l'analisi dell'allineamento di ClustalW.
- 3. Lettura del file Genes-CDS.xlsx contenente le informazioni sui geni e le CDS della sequenza di reference. In particolare, una delle CDS analizzate derivava dall'unione (join) di due sequenze. In tal caso è possibile specificare il punto di unione della sequenza.

3 Listati di codice

Code Listing 1: Tabella per la traduzione in amminoacidi

```
aminoacids_lookup_table = {
1
2
      'F': ['TTT', 'TTC'],
      'L': ['TTA', 'TTG', 'CTT', 'CTA', 'CTC', 'CTG'],
3
      'I': ['ATT', 'ATC', 'ATA'],
4
      'M': ['ATG'],
6
      'V': ['GTT', 'GTA', 'GTC', 'GTG'],
      'S': ['TCT', 'TCA', 'TCC', 'TCG', 'AGT', 'AGC'],
7
      'P': ['CCT', 'CCA', 'CCC', 'CCG'],
8
      'T': ['ACT', 'ACA', 'ACC', 'ACG'],
9
      'A': ['GCT', 'GCA', 'GCC', 'GCG'],
'Y': ['TAT', 'TAC'],
'H': ['CAT', 'CAC'],
10
11
12
      'Q': ['CAA', 'CAG'],
13
      'N': ['AAT', 'AAC'],
14
      'K': ['AAA', 'AAG'],
15
      'D': ['GAT', 'GAC'],
16
      'E': ['GAA', 'GAG'],
17
      'C': ['TGT', 'TGC'],
18
19
      'W': ['TGG'],
      'R': ['CGT', 'CGA', 'CGC', 'CGG', 'AGA', 'AGG'],
20
      'G': ['GGT', 'GGA', 'GGC', 'GGG'],
21
22
      'START': ['ATG'],
23
      'STOP': ['TAA', 'TAG', 'TGA']
24
```

Code Listing 2: Memorizzazione dei risultati nella struttura dati a lista

```
1
     for key, value in variations:
2
       for index, cds in affected_cdses.iterrows():
3
4
         variations_to_genes.append({
5
           'gene_id': gene_id,
6
           'gene_start': gene_start + 1, # 1-based position
7
           'gene_end': gene_end,
8
           'cds_start': cds_start + 1, # 1-based position
9
           'cds_end': cds_end,
10
           'original codone': original codone,
11
           'altered_codone': altered_codone,
12
           'relative_start': relative_start + 1, # 1-based position
13
           'relative_end': relative_end,
14
           'alteration': sequence,
15
           'original aminoacid': original aminoacid,
16
           'encoded_aminoacid': encoded_aminoacid
17
         })
```

Dopo la lettura del materiale rilevante a questa fase di elaborazione, l'algoritmo itera le variazioni rilevate nell'allineamento e per ciascuna di esse esegue i seguenti step:

- 1. Identifica le CDS nelle quali avviene l'alterazione rispetto alla reference.
- 2. Recupera le informazioni del gene associato alle CDS rilevate calcolando le posizioni globali e relative alla CDS dell'alterazione.
- 3. Identifica i codoni alterati e ne effettua la ritraduzione in amminoacidi grazie ad una look-up table (listato 1). Vengono ignorate le alterazioni che presentano sequenze di soli –, derivate probabilmente da un sequenziamento errato o un'alterazione posta ai capi dell'allineamento.
- 4. Memorizza tutte le informazioni ricavate in una struttura dati apposita tramite cui derivare la tabella per l'output finale associando i valori a chiavi prestabilite.

Al termine dell'elaborazione di tutte le alterazioni, viene costruito un oggetto di tipo DataFrame fornito dalla libreria pandas.

Le chiavi utilizzate nella costuzione della struttura dati a lista diventeranno le colonne del DataFrame. Questo sarà esportato in CSV nella cartella /project-2/output/alteration-table.csv per permettere una visualizzazione più semplice tramite programmi terzi (come riportato in fig. 1)

4 Informazioni memorizzate

Ad ogni variazione analizzata corrisponde un entrata nella struttura dati a lista contenente le seguenti informazioni:

- gene_id: id del gene in cui cade la variazione
- **gene_start**: inizio del gene in cui cade la variazione (1-based)
- **gene_end**: fine del gene in cui cade la variazione (1-based)
- cds_start: inizio della Coding DNA Sequence della porzione del gene in cui cade la variazione (1-based)
- cds_end: fine della Coding DNA Sequence della porzione del gene in cui cade la variazione (1-based)
- relative_start: inizio della variazione in rispetto all'inizio della cds (1-based)
- relative_end: fine della variazione in rispetto all'inizio della cds (1-based)
- alteration: sequenza della variazione
- original_codone: codone della reference prima della modifica
- original_aminoacid: amminoacido codificato da original_codone
- altered codone: codone della reference modificati dalla variazione
- encoded_aminoacid: amminoacido codificato da altered_codone

gene_id g	gene_id_gene_start_gene_end_cds_	ene_end co		cds_eng_re	lative_start_re	start cds_end relative_start relative_end alteration	original_codone	altered_codone	original_aminoacid	original_aminoacid encoded_aminoacid
Σ	26524	27191	26524	27191	197	197 C	GUG	GUC	>	>
	28275	29533	28275	29533	1100	1100 A	GAG	GAA	Е	Е
	28275	29533	28275	29533	414	414 C	UUG	CUG	Γ	Т
2	28275	29533	28275	29533	561	561 C	UCA	CCA	S	Ь
	28275	29533	28275	29533	556	256 U	ncc	nnc	S	ш
	28275	29533	28275	29533	209	609 AAC	AGGGGA	AAACGA	RG	KR
	28275	29533	28275	29533	604	604 A	AGU	AAU	S	z
ORF10	29559	29674	29559	29674	2	5 U	GGC	099	G	9
	267	21555	267	13483	1131	1131 A	GUA	AUA	>	_
	267	21555	267	21555	1131	1131 A	GUA	AUA	>	_
	267	21555	267	13483	10817	10817 U	NUG	nnn	Г	ш
	267	21555	267	21555	10817	10817 U	UUG	nnn	7	ш
	267	21555	267	21555	18111	18111 U	ACA	UCA	—	S
	267	21555	267	13483	793	793 U	ACC	AUC	—	_
	267	21555	267	21555	793	793 U	ACC	AUC	—	_
	267	21555	267	13483	2771	2771 U	UUC	nnn	ш	ш
	267	21555	267	21555	2771	2771 U	UUC	nnn	ш	T.
	267	21555	267	21555	14142	14142 U	CCU	ncn	Ь	S
	267	21555	267	13483	3637	3637 U	CCA	CUA	۵	Г
	267	21555	267	21555	3637	3637 U	CCA	CUA	Ь	1
	267	21555	267	13483	9248	9248 G	UUA	nng	Г	1
	267	21555	267	21555	9248	9248 G	UUA	nne	Г	1
	267	21555	267	13483	13110	13110 G	ACC	CCC	_	A
	267	21555	267	21555	13110	13110 G	ACC	229	-	A
	267	21555	267	13483	13210	13210 U	909	GUG	А	^
ORF1ab	267	21555	267	21555	13210	13210 U	NGC	nnc	C	ш
	267	21555	267	21555	19218	19218 U	CCU	ncn	V.	S
	267	21555	267	13483	8441	8441 C	099	96C	G	9
	267	21555	267	21555	8441	8441 C	099	GGC	g	g
	267	21555	267	21555	20621	20621 A	AAA	AAA	~	~
	267	21555	267	13483	47	47 U	cnc	cnn	7	Γ
	267	21555	267	21555	47	47 U	cuc	cnn	7	1
	267	21555	267	13483	8516	8516 U	AGC	AGU	S	S
	267	21555	267	21555	8516	8516 U	AGC	AGU	S	S
	267	21555	267	13483	618	618 U	CGU	UGU	2	C
	267	21555	267	21555	618	618 U	CGU	UGU	~	C
	267	21555	267	13483	1082	1082 U	222	CCU	Ь	Ь
	267	21555	267	21555	1082	1082 U	222	CCU	۵	Ь
	267	21555	267	13483	8893	8893 U	noo .	CUU	ط	L
	267	21555	267	21555	8893	8893 U	CCU	cnn	Ь	1
	267	21555	267	13483	9455	9469	CAUUUCUAUUGGUUCUUU	CA	HFYWFF	
	267	21555	267	21555	9455	9469	CAUUUCUAUUGGUUCUUU		HFYWFF	
	267	21555	267	21555	19250	19270	AGAUUGUAUCUCGAUGCUUAUAAC		C RLYLDAYN	
ORF8	27895	28259	27895	28259	250	250 C	UUA	UCA	-	S
	21564	25384	21564	25384	64	64 U	ACU	AUU	_	_
	21564	25384	21564	25384	1172	1172 U	NGC	UGU	C	C
S	21564	25384	21564	25384	1840	1840 G	GAU	GGU	Q	g
	21564	25384	21564	25384	902	905 U	ACG	ACU	-	_
	21564	25384	21564	25384	3751	3751 U	GGA	GUA	ŋ	>
	21564	25384	21564	25384	2313	2313 A	GUU	AUU	>	

Figura 1: Tabella di output delle alterazioni

5 Output

Come riportato in fig. 1 la maggior parte delle alterazioni coinvolgono un singolo codone e quelli ottenuti rimangono traducibili.

In alcuni casi, l'amminoacido risultante dalla traduzione dell'alterazione non viene modificato. La maggior parte delle variazioni si concentrano nel gene ORF1ab identificato da gene_id = 43740578.

Le ultime righe della tabella riportano delle alterazioni che determinano la cacellazione di alcune basi rispetto alla sequenza reference. Queste sono relative solo alla sequenza MT262993.1 e si pensa possano derivare da un errore in fase di sequenziamento.

6 Analisi dei risultati e conclusioni

Le alterazioni appartenenti a geni si concentrano per quasi i tre quarti del totale sul gene ORF1ab. Variazioni minori seguito dai geni gene_name=S e gene_name=N (12% ciascuno) e che gli altri siano quasi invariati. Un'analisi finale si trova nella terza e ultima parte del progetto.

Figura 2: Tipologia di variazioni

6.1 Divisone del lavoro

Durante la realizzazione del progetto entrambi i componenti del gruppo hanno partecipato attivamente alla sua realizzazione. In particolare:

- Edoardo Silva si è occupato principalmente di recuperare e gestire l'output JSON del progetto1 e delle funzioni di supporto.
- Davide Marchetti si è occupato principalmente di generare i file di output e correggere le porzioni di codice relative alle letture delle reference.
- Entrambi hanno lavorato alla creazione ed elaborazione dei dati, alla matrice delle mutazioni e le traduzioni di quest'ultime.