Learning without feedback: Fixed random learning signals allow for feedforward training of deep neural networks

Charlotte Frenkel*[‡], Martin Lefebvre[‡] and David Bol

ICTEAM, Université catholique de Louvain, Belgium

[‡] Equal contributions *Now with Institute of Neuroinformatics, UZH and ETH Zürich, Switzerland charlotte@ini.uzh.ch, martin.lefebvre@uclouvain.be

Overview – From feedback alignment to direct random target projection

Releasing the weight transport and update locking of backprop

🛕 Computational and memory cost 💃

Outline

- Sign-based DFA (sDFA) solves synthetic regression and classification tasks
- From sDFA to DRTP: releasing update locking for classification tasks
- DRTP solves classification tasks: MNIST and CIFAR-10 benchmarking
- Conclusion and perspectives

Empirical results on synthetic datasets

Training algorithms

Claim: Weight updates based only on the error sign provide learning to multi-layer networks

Sign-based DFA solves regression tasks Setup

Goal: Approximate 10 non-linear cosine functions

$$y_i^* = \cos(\bar{x} + \phi_i)$$
 with $i \in \mathbb{Z}, i \in [0; 9]$
where $\phi_i = \frac{-\pi}{2} + \frac{i\pi}{9}$
 $\bar{x} = \text{mean}(x)$
 $x_j \sim N(\mu_x, 1)$ with $j \in \mathbb{Z}, j \in [0; 255]$
 $\mu_x \sim U(-\pi, \pi)$

Sign-based DFA solves regression tasks

Loss

- DFA > BP/FA > sDFA > shallow
- sDFA performance drop due to lack of error magnitude information
 - ➤ No reduction of effective learning rate as training progresses
 - Class-dependent error magnitude is lost

Sign-based DFA solves regression tasks Angle

- FA alignment better during 100 first epochs
- sDFA alignment similar to DFA
- Alignment slightly degrades away from the network output

Sign-based DFA solves classification tasks Setup

Goal: Classify 256-dimensional vectors into 10 classes

 (x, y^*) pairs generated by sklearn library (make_classification function)

Sign-based DFA solves classification tasks

Accuracy

- **Training set**: DFA > BP > FA > sDFA > shallow
- **Test set**: BP/FA > DFA/sDFA > shallow

9.57%

4.07%

3.48%

1.84%

1.81%

12.5

——Shallow ——BP ——FA

—DFA

—sDFA

10

Sign-based DFA solves classification tasks Angle

■ FA > DFA/sDFA

Outline

- Sign-based DFA (sDFA) solves synthetic regression and classification tasks
- From sDFA to DRTP: releasing update locking for classification tasks
- DRTP solves classification tasks: MNIST and CIFAR-10 benchmarking
- Conclusion and perspectives

The error sign is known in advance

Claim: For classification, a feedback pathway is no longer needed as the error sign is known in advance

$$e = y^* - y_K \qquad \qquad e_c = \begin{cases} 1 - y_{Kc} & \text{if} \quad c = c^* & \text{Correct class} \\ -y_{Kc} & \text{otherwise} & \text{Incorrect classes} \end{cases}$$

$$y_{Kc} \in [0;1] \quad \text{softmax/sigmoid}$$

$$\text{sign}(e_c) = \begin{cases} +1 & \text{if} \quad c = c^* & \text{Correct class} \\ -1 & \text{otherwise} & \text{Incorrect classes} \end{cases}$$

For a given example, the error sign does not change during training

DRTP solves classification tasks without feedback

Link between sDFA and DRTP

Claim: Direct random target projection (DRTP) delivers useful modulatory signals

DRTP is a simplified version of sDFA

- DRTP is computationally cheaper than sDFA
 DRTP: Label-dependent selection of layerwise random vector sDFA: Matrix product between error vector and fixed random matrix
- 2. DRTP systemically outperforms sDFA on MNIST and CIFAR-10 datasets DRTP: Only the correct class has an impact sDFA: The C-1 incorrect classes outweigh the correct class

The directions of DRTP and BP modulatory signals are within 90° of each other

→ See full proof in the paper

Outline

- Sign-based DFA (sDFA) solves synthetic regression and classification tasks
- From sDFA to DRTP: releasing update locking for classification tasks
- DRTP solves classification tasks: MNIST and CIFAR-10 benchmarking
- Conclusion and perspectives

MNIST assessment

M	N	IST

Network	BP	FA	DFA	DRTP
784-500-10	$1.72 \pm 0.08\%$	$1.92 \pm 0.08\%$	$2.59 \pm 0.11\%$	$4.58{\pm}0.12\%$
784-1000-10	$1.76\pm0.06\%$	$1.90 \pm 0.06\%$	$2.12 \pm 0.05\%$	4.03±0.13%
784-500-500-10	$1.62 {\pm} 0.12\%$	$1.95{\pm}0.07\%$	$4.35{\pm}0.30\%$	$4.57{\pm}0.13\%$
784-1000-1000-10	$1.67 \pm 0.07\%$	$1.90 \pm 0.07\%$	$3.46{\pm}0.25\%$	$4.04 \pm 0.12\%$
CONV* (random)	1.31±0.08%	1.55±0.04%	1.66±0.11%	1.87±0.12%
CONV* (trained)	0.99±0.05%	1.38±0.06%	$2.38 \pm 0.39\%$	1.81±0.14%

^{* 28}x28-32c5-2p-1000-10

Fully-connected networks

Performance degrades as the BP constraints are relaxed DRTP is still competitive

MNIST assessment

Λ	N	Г

Network	BP	FA	DFA	DRTP
784-500-10	$1.72 \pm 0.08\%$	$1.92 \pm 0.08\%$	$2.59 \pm 0.11\%$	$4.58 {\pm} 0.12\%$
784-1000-10	$1.76 \pm 0.06\%$	1.90±0.06%	$2.12 \pm 0.05\%$	4.03±0.13%
784-500-500-10	$1.62 {\pm} 0.12\%$	$1.95 \pm 0.07\%$	$4.35{\pm}0.30\%$	$4.57{\pm}0.13\%$
784-1000-1000-10	$1.67 \pm 0.07\%$	$1.90 \pm 0.07\%$	$3.46{\pm}0.25\%$	$4.04 \pm 0.12\%$
CONV* (random)	$1.31 \pm 0.08\%$	1.55±0.04%	1.66±0.11%	1.87±0.12%
CONV* (trained)	$0.99 \pm 0.05\%$	$1.38 \pm 0.06\%$	$2.38 \pm 0.39\%$	1.81±0.14%

^{* 28}x28-32c5-2p-1000-10

Convolutional neural networks (fixed random convolutional layers)

All training algorithms lie close to each other on MNIST

MNIST assessment

M	IN	115	T

Network	BP	FA	DFA	DRTP
784-500-10	$1.72 \pm 0.08\%$	$1.92 \pm 0.08\%$	$2.59 \pm 0.11\%$	$4.58 {\pm} 0.12\%$
784-1000-10	$1.76 \pm 0.06\%$	$1.90 \pm 0.06\%$	$2.12 \pm 0.05\%$	$4.03 \pm 0.13\%$
784-500-500-10	$1.62 {\pm} 0.12\%$	$1.95 \pm 0.07\%$	$4.35{\pm}0.30\%$	$4.57{\pm}0.13\%$
784-1000-1000-10	$1.67 \pm 0.07\%$	$1.90 \pm 0.07\%$	$3.46{\pm}0.25\%$	$4.04 \pm 0.12\%$
CONV* (random)	1.31±0.08%	1.55±0.04%	1.66±0.11%	1.87±0.12%
CONV* (trained)	$0.99 \pm 0.05\%$	$1.38 \pm 0.06\%$	$2.38 \pm 0.39\%$	1.81±0.14%

^{* 28}x28-32c5-2p-1000-10

Convolutional neural networks (trained convolutional layers)

Only BP allows leveraging training for convolutional layers. Feedback-alignment-based algorithms require parameter redundancy, which is not offered in convolutional layers.

MNIST and CIFAR-10 assessment

	-		
N	/	N	
IV.	/	1	
	, .		, .

Network	BP	FA	DFA	DRTP
784-500-10	$1.72 \pm 0.08\%$	$1.92 \pm 0.08\%$	$2.59 \pm 0.11\%$	$4.58 \pm 0.12\%$
784-1000-10	$1.76 \pm 0.06\%$	$1.90 \pm 0.06\%$	$2.12 \pm 0.05\%$	$4.03 \pm 0.13\%$
784-500-500-10	$1.62 {\pm} 0.12\%$	$1.95{\pm}0.07\%$	$4.35{\pm}0.30\%$	$4.57 \pm 0.13\%$
784-1000-1000-10	$1.67 \pm 0.07\%$	$1.90 \pm 0.07\%$	$3.46{\pm}0.25\%$	4.04±0.12%
CONV* (random)	$1.31 \pm 0.08\%$	$1.55 \pm 0.04\%$	1.66±0.11%	1.87±0.12%
CONV* (trained)	0.99±0.05%	1.38±0.06%	$2.38 \pm 0.39\%$	1.81±0.14%
			* 20, 20, 22	7.7. 1000 10

* 28x28-32c5-2p-1000-10

Network	BP	FA	DFA	DRTP
784-500-10	$48.43 \pm 0.30\%$	$49.59{\pm}0.25\%$	$49.73 \pm 0.24\%$	$53.72 \pm 0.30\%$
784-1000-10	$47.58 {\pm} 0.21\%$	$48.56{\pm}0.28\%$	$48.45{\pm}0.17\%$	$52.99{\pm}0.22\%$
784-500-500-10	$49.23{\pm}0.24\%$	$50.83{\pm}0.20\%$	$50.76 {\pm} 0.24\%$	$53.46{\pm}0.16\%$
784-1000-1000-10	$49.00{\pm}0.22\%$	$50.35{\pm}0.18\%$	$50.51 {\pm} 0.24\%$	$52.83{\pm}0.44\%$
CONV* (random)	30.13±0.31%	30.28±0.37%	30.40±0.46%	32.69±0.38%
CONV* (trained)	$27.45 \pm 0.28\%$	29.84±0.31%	$32.06 \pm 0.29\%$	35.45±0.76%

CIFAR-10

^{* 32}x32x3-64c3-2p-256c3-2p-1000-1000-10

Outline

- Sign-based DFA (sDFA) solves synthetic regression and classification tasks
- From sDFA to DRTP: releasing update locking for classification tasks
- DRTP solves classification tasks: MNIST and CIFAR-10 benchmarking
- Conclusion and perspectives

Take-home messages

- 1. The error sign is sufficient to provide learning to multi-layer networks
- 2. For classification problems, the error sign is known in advance Solves the update locking problem!
- 3. 'Soft' alignment between forward and backward weights

 ⇔ Modulatory signals within 90° of those prescribed by BP
- 4. DRTP is demonstrated on the MNIST and CIFAR-10 datasets

Outlook

Neuroscience

DRTP could come in line with recent findings in cortical areas that reveal the existence of output-independent target signals in the dendritic instructive pathways of intermediate-layer neurons.

[Magee & Grienberger, Annual Review of Neuroscience, 2020]

Circuit implementation

Can lead to record low silicon area and energy overheads to embed on-chip online learning for edge computing devices.

[Frenkel, ISCAS, 2020]

Thank you!

Further resources:

The DRTP preprint: https://arxiv.org/pdf/1909.01311.pdf

Open-source DRTP PyTorch code: https://github.com/chfrenkel

ISCAS paper for the silicon implementation: https://arxiv.org/pdf/2005.06318.pdf

Supplementary – Synthetic datasets

Learning parameters

Regression task: 5k training set, 1k test set **Classification task**: 25k training set, 5k test set

- 500 epochs
- Mini-batches of size 50
- Learning rate of 5×10^{-4} , similar for all training algorithms
- Forward weights (W_k) are drawn from He distributions (BP) or zero-initialized for FA-based training algorithms
- Feedback weights (B_k) are drawn from He distributions

Supplementary - Classification problems

DRTP proof of alignment

Claim: Direct random target projection delivers useful modulatory signals

The directions of DRTP and BP modulatory signals are within 90° of each other

FA proof [Lillicrap, Nat. Comms., 2016]

- Single example
- Forward weights zero-initialized
- 1 linear hidden layer
- Linear output layer
- MSE loss

DRTP proof

- Single example
- Forward weights zero-initialized
- K-1 (arbitrary no.) linear hidden layers
- Softmax/sigmoid output layer
- CCE/BCE loss

Supplementary - Classification problems

DRTP proof of alignment

Claim: Direct random target projection delivers useful modulatory signals The directions of DRTP and BP modulatory signals are within 90° of each other

BP modulatory signals

$$\delta y_k = \delta z_k = -\frac{1}{C} \left(\prod_{i=k+1}^K W_i^T \right) e \qquad \delta y_k = \delta z_k = B_k^T y^*$$

Alignment

$$-\frac{1}{C}e^{T}\left(\prod_{i=k+1}^{K}W_{i}^{T}\right)^{T}B_{k}^{T}y^{*} > 0 B_{k}^{T}y^{*} = -\alpha_{k}^{t}\left(\prod_{i=K}^{k+1}W_{i}^{T}\right)^{+}e$$

DRTP modulatory signals

$$\delta y_k = \delta z_k = B_k^T y^*$$

Theorem

$$B_k^T y^* = -\alpha_k^t \left(\prod_{i=K}^{k+1} W_i^T \right)^+$$

where $\alpha_k^t > 0$

