[15a]. U= (p->(gnal)-> (p->g) 1 (p->n) Dimantic tableaux chick mithod. Theory of soundness and competition: valid formula if the pemantic tablaix of N has only clased branches and is closed (1) ((nc-q) 1 (po-q) (- ((nng) c-q)) T = UT x-rule for (1). p->(g/n) (z) 7/18/ (P->n) (3). B for (2). 7PB gnn (5) B fon (3) (B for 3) bud(1) buu. (7) P 179 (6) もひか(ま) | a-rule for 9 x-rule for d-relle

The permantic tableaux is complete, all the publishmulas being - all the brancher are closed making the tabloux closed-) => 70 is imconsistent => U is valid => =) = (p-> (q nn)) -> (p->q) ~ (p->n). An interpretation rehich evaluates the formula is Vas true is called a model of V. i: (pi..., pm)->17, F5, f(U)=7. A formula is valid (tautology: " =") if it is evaluated as true im all its interpretations. Hi: (pi., pm)-> 17, py, i(U)=T. X-rules 7 (A-1B) 7 (AUB) ANB

B-rules

AUB A-)B 7(ANB)

AB RA TB-

2. syma die prog method => rusalition. Deduction. H1: Amyone who makes on A at Logic Examo studies or is bulliant or is bulliant H2: NO CS student is lucky. H3: Mary is a CS student and made on "A" at Logic Exam
H4: Mary likes to party and does not study. C: Mary is Brilliant. - we use the following unary predicate symbols to express propor omA(x)- x makes on 'A" at Lagic Exam obudin b (x) - x is prelliant o(x) - x studies l(x) - x is lucky. CS(x) - X is CS student p(x) - x likes to party. Mary - constant of the universe of people HI: (AX) (m4(x) -) D(X) N el(X) N fr Hz:7(3x) (CS(x) AD) P((x))=fz Mg: p(Mary) 175 (Mary)=fs Mg: CS(Mary) 1 mA (Mary)= fx C: b/ Mary = f=

Scanned with CamScanner

- The universal variable x was instabled with

the constant May. for finite (S(May) AFR(Mary), f6). - the universal variable x was instacticated with the constant May. 13 trimpl 7D (Mary): fot. In impl (S (Mary): fo for township (Mary): fg And I to the D(Mary) V b(Mary) V l(Mary) =7D(Mary) -> (Blog) ve (Mary)): \$10 1015 pm b(mary) v l(mary): # 7 l(Mary) -> b (mary): f4 Hy 1 Jz + mp 7 (Mary): fiz In fiz 1 b (Mary): fiz = C. the requence of formulas (fir f2, ..., 1-fiz) is a deduction of C from the hypotheses $H_1, H_2, H_3, H_4, H_5, therefore based on the hypotheses we conclude: navy is brilliant".$

3. the combinational circuit has as imputes a variables and as autputes a functions corresponding to the segment:

5	×, —	. SI (x11x21x5/44)
Sz 54 S6	Xz - 7 oxgments.	
5, 55	\times_1 \longrightarrow \Rightarrow segments \times_3 — display \times_3	Sy (x1, x2, x3, x4)
54 imputo	X4 —	

1	71	ime	etruc	- '							1		11.97
Deamal	XI	×2	×3	X4	51	52	54	541	55	56	54		
D	0	. 0	0	0	1	1	1	1	1	1	0	411	(9)
	O	0	0	1	0	. 0	O	0	1	Ĺ	10		
2	0	O	1	0	1	0	1	1	0	1	1	5-4	
E	0	0	1	1	1	0	0 /	1	1	1,	1		
4	0	1	0	0	0	1	O	0	2	1	1		1
5	0	1	D	7	7	2	0	1	1	0.	1	1	C) make it
<u>6</u>	0	1	7	ð	1	1	1	Δ	1	0	1	74	'N WA
7	0	1	1	1	1	0	0	0	1	1	8		
B	12	0	0	0	1	1	.1	1	1	1	1	M	ATT
9	1	0	0	7	1	1	0	1	7	1	1		4
_	1	0	1	0	0	0	0	6	0	0	1	33	TO REAL CONTRACTOR
- ·	1	6	_1_	1	.D	0	0	0	0	0	1	MA	M
-	1	1	0	0	0	0	0	0	0	0	1		V
	1	1	0	7	0	0	0	0	0	0	1	IN	T
_	1	1	1	0	0	0	0	0	0	0	1	10	<u> </u>
	1	1	7	1	6	0	0	0	0	O	1		
		The second	****	Special Control		Parket	17.35	Att Control	4	-	100		(8)

The nimplifation of (Sh) fallows a dual simplification algorithm. Using the Kannough diagram diagram for CCF, the headers of the lines - columns are used to topress the indias of the Maxenms.

Du= MI NMUNMA 1 Mo 1 Mu 1 Miz 1 Mis 1 Min 1 Mis o waleur on the S4 column and enate we lack at the the corresponding CCP). X1X5 00 OT OT TO o , Will With 1 1 My NB MIS MIY Double dual factorizations · Mao M M 1 M 15 M M14 = X/X3 = min 1 · M12 1 MB1 M15 1 M14 = x1x2 = X1x2 = mlm 2 Single dual factivisation. · M15 1 M7 = XXX3VX4 = X2V X3V X4 = min3 · My 1 M2 = X2VX3 VX4 = X2VX3V4 = mon4 Simple deal facturation · M1: x1 U x2 U x3 x x4 = x, U x2 U x3 V x4 = min 5 C= M(f) =) =) SG = [X, UX3) N(X, UX2) N(X2UX3 UX4) N(X2UX3UX4) N XI UXZ UX3 UXI

