CPSC 486/586: Probabilistic Machine Learning Out: January 18, 2023 Problem Set 1 Instructor: Andre Wibisono Due: February 1, 2023

- (P1) Let $f: \mathbb{R}^d \to \mathbb{R}$ be the quadratic function: $f(x) = \frac{1}{2} ||x||^2$.
 - (a) Write down the gradient descent algorithm with step size $\eta > 0$:

$$(\mathsf{GD}_f)$$
: $x_{k+1} = x_k - \eta \nabla f(x_k)$.

Solve the recursion and determine how fast x_k converges to its limit x^* as $k \to \infty$. What is x^* ? For which step size η does the conclusion hold?

(b) Write down the proximal gradient method with step size $\eta > 0$:

(PG_f):
$$x_{k+1} = \arg\min_{x \in \mathbb{R}^d} f(x) + \frac{1}{2\eta} ||x - x_k||^2$$
.

Solve the recursion and determine how fast x_k converges to its limit x^* as $k \to \infty$. For which step size η does the conclusion hold?

(c) Write down the solution to the gradient flow dynamics:

$$(\mathsf{GF}_f)$$
: $\dot{X}_t = -\nabla f(X_t)$.

Write X_t in terms of X_0 and t, and determine how fast X_t converges to its limit x^* as $t \to \infty$. Suppose $t = \eta k$. How does your answer compare to part (a) and (b)?

- (P2) Suppose we want to minimize $h: \mathbb{R} \to \mathbb{R}$ given by h(x) = f(x) + g(x) where $f(x) = \frac{1}{2}(x-1)^2$ and $g(x) = \frac{1}{2}(x-1)^2$. Suppose we can only use the gradient descent $\mathsf{GD}_f, \mathsf{GD}_g$ or proximal gradient $\mathsf{PG}_f, \mathsf{PG}_g$ for f and g separately (but we cannot do GD_{f+g} or PG_{f+g}).
 - (a) For each algorithm below, write down its recursion explicitly, and determine its limit $x_{\eta}^* = \lim_{k \to \infty} x_k$.

i.
$$x_{k+1} = \mathsf{GD}_q \circ \mathsf{GD}_f(x_k)$$

ii.
$$x_{k+1} = \mathsf{GD}_g \circ \mathsf{PG}_f(x_k)$$

iii.
$$x_{k+1} = \mathsf{PG}_g \circ \mathsf{GD}_f(x_k)$$

iv.
$$x_{k+1} = \mathsf{PG}_g \circ \mathsf{PG}_f(x_k)$$

(b) For which combination above is the algorithm *consistent*, i.e. the limiting point x_{η}^* of the algorithm equal to the true minimizer $x^* = \arg\min_{x \in \mathbb{R}} f(x) + g(x)$? Can you explain why only certain combinations are consistent?

1-1

- (P3) Let $X \sim \mathcal{N}(0, C)$ be a Gaussian random variable on \mathbb{R}^d with mean $0 \in \mathbb{R}^d$ and covariance matrix $C \in \mathbb{R}^{d \times d}$. Assume $C \succ 0$ has eigenvalues $0 < \lambda_1 \leq \cdots \leq \lambda_d$. Evaluate the integral to compute the values below.
 - (a) Write down the following expression as a function of $\lambda_1, \ldots, \lambda_d$:

$$\int_{\mathbb{R}^d} e^{-\frac{1}{2}x^{\top}C^{-1}x} dx.$$

- (b) For $\theta \in \mathbb{R}^d$, compute $\mathbb{E}[e^{\theta^\top X}]$. When is it finite?
- (c) For t > 0, compute $\mathbb{E}[e^{t||X||^2}]$. When is it finite?
- (d) Compute the (negative) entropy $H(\rho) = \mathbb{E}[\log \rho(X)]$. How does it scale with C?
- (P4) Consider the noisy recursion:

$$x_{k+1} = (1 - \eta)x_k + \epsilon z_k$$

where $\eta > 0$ is step size and $\epsilon > 0$ is noise scale (usually $\eta, \epsilon \ll 1$), and $z_k \sim \mathcal{N}(0, I)$ an independent Gaussian random variable in \mathbb{R}^d . We start from any $x_0 \sim \rho_0$ to get $x_k \sim \rho_k$.

- (a) Compute the mean $m_k = \mathbb{E}_{\rho_k}[x_k]$ and covariance matrix $C_k = \mathsf{Cov}_{\rho_k}(x_k)$ as a function of m_0, C_0, k . Determine how fast they converge to the limit $m_\infty = \lim_{k \to \infty} m_k$ and $C_\infty = \lim_{k \to \infty} C_k$.
- (b) Determine what is the limiting distribution $\pi^* = \lim_{k \to \infty} \rho_k$ of the recursion. How does it depend on the step size and noise scale?
- (c) Suppose $\epsilon = \eta$. What happens to the limiting distribution π^* for small $\eta \to 0$?
- (d) Suppose $\epsilon = \sqrt{\eta}$. What happens to the limiting distribution π^* for small $\eta \to 0$?
- (P5) (a) Recall the one-dimensional integration by parts formula (you may consult textbooks).
 - (b) Use the formula above to prove the following multi-dimensional integration by parts identity. Let $f: \mathbb{R}^d \to \mathbb{R}^d$ be a differentiable function with $\lim_{\|x\| \to \infty} f(x) = 0$. Let $v: \mathbb{R}^d \to \mathbb{R}^d$ be a differentiable vector field with $\lim_{\|x\| \to \infty} \|v(x)\| = 0$. Show that:

$$\int_{\mathbb{R}^d} \langle \nabla f(x), v(x) \rangle \, dx = -\int_{\mathbb{R}^d} f(x) \, \nabla \cdot v(x) \, dx \tag{1}$$

(c) Let $X \sim \mathcal{N}(0, I)$ be a Gaussian random variable in \mathbb{R}^d . Prove **Stein's identity**:

$$\mathbb{E}[\nabla f(X)] = \mathbb{E}[X f(X)]$$

If $X \sim \mathcal{N}(m, C)$ for some $m \in \mathbb{R}^d$, $C \succ 0$, how does the identity above change?

Additional questions for 586

(Q1) Let $0 < \epsilon \ll 1$ and y be a second-order perturbation of $x \in \mathbb{R}^d$ for some $u, v \in \mathbb{R}^d$:

$$y = x + \epsilon u + \epsilon^2 v$$

- (a) Compute $||y||^2 ||x||^2$ as a polynomial in ϵ .
- (b) Let $f: \mathbb{R}^d \to \mathbb{R}$ be three-times differentiable. Compute f(y) f(x) up to $O(\epsilon^3)$ terms: $f(y) = f(x) + a(x)\epsilon + b(x)\epsilon^2 + O(\epsilon^3)$. Compute a(x), b(x) in terms of derivatives of f(x).
- (c) Let $\tilde{y} = x + \epsilon u$. Compute $f(\tilde{y}) f(x)$ as a function of ϵ , and compare with f(y) f(x).
- (d) Suppose we want to minimize f and we choose $u = -\nabla f(x)$, so up to first-order we are following gradient descent. What v should we choose to further decrease f(y)?
- (Q2) Consider the recursion

$$x_{k+1} = x_k - \eta \nabla f(x_k) + b$$

where $0 < \eta \le \frac{1}{L}$ is step size and $b \in \mathbb{R}^d$. Assume f is α -strongly convex and L-smooth for some $\alpha > 0, L < \infty$.

- (a) Show the map $F_{\eta}(x) = x \eta \nabla f(x) + b$ is contractive: $||F_{\eta}(x) F_{\eta}(y)|| \le (1 \alpha \eta)||x y||$.
- (b) Show that there is a unique limit point $x_{\infty} \in \mathbb{R}^d$ of F_{η} and that $x_k \to x_{\infty}$ exponentially fast: $||x_k x_{\infty}|| \le e^{-\alpha \eta k} ||x_0 x_{\infty}||$ for all $k \ge 0$. Compute x_{∞} in terms of b, f, η .
- (c) Let $x^* = \arg\min_{x \in \mathbb{R}^d} f(x)$. Give an upper bound to $||x_{\infty} x^*||$ in terms of b, α, η .
- (Q3) Describe your research. What is the problem? How does it relate to probabilistic modeling or inference? (If you don't have research experience, you may describe a topic from a paper or a book.)