1 Modèles dynamiques

1.1 Rétroaction positive

General Structure

dS/dt = Net Inflow Rate = gS

Le stock accumule du inflow $S(t) = S(0)e^{gt}$

Le temps de doublement du stock est de $2S(0) = S(0)e^{gt_d}$ on a donc $t_d = \frac{\ln(2)}{g} = \frac{70}{100g}$

1

1.2 Rétroaction négative et décroissance exponentielle

Le stock perd du outflow $S(t)=S(0)e^{-dt}$ Le temps de division par 2 du stock est de $t_d=ln(2)\tau=0.70\tau$

1.3 Système non linéaires croissance en S

L'équation du système est $\frac{dP}{dt} = b(\frac{P}{C})P - d(\frac{P}{C})P$

La croissance nette est une fonction de la population P : $\frac{dP}{dt} = g(P,C)P = g(1-\frac{P}{C})P$ Modèle logistique : $g(1-\frac{P}{C})$

Equation logistique :
$$P(t) = \frac{C}{1 + [\frac{C}{P(0)} - 1]e^{-gt}}$$

1.4 Modèle SI et SIR

• S : susceptibles

 $\bullet~$ I : infectés

 \bullet R : rétablit

1.4.1 Equation du modèle SI

$$N=S+I \rightarrow \frac{dS}{dt} = -(ciS)\frac{I}{N} = -(I_R)$$
IR = Infection Rate $\frac{dI}{dt} = ci \cdot I(1-\frac{I}{N})$

1.4.2 Equation du modèle SIR

$$\frac{dS}{dt} = -(ciS)\frac{I}{N}$$

$$R_R = \frac{I}{d}$$

$$\frac{dI}{dt} = (ciS)\frac{I}{N} - \frac{I}{d}$$

$$\frac{dR}{dt} = \frac{I}{d}$$

$$N = S + I + R$$

Point de bascule $I_R>R_R\to ciS(\frac{I}{N})>\frac{I}{d}$ ou $cid(\frac{S}{N}>1)$

1.5 Retard

Un retard est un processus dont la sortie correspond à l'entrée translatée dans le temps