Capture and Analyze Network Traffic Using the Wireshark

1. Install Wireshark

Download from: https://www.wireshark.org/download.html

2. Start Capturing

- Open Wireshark.
- Choose your active network interface (usually Wi-Fi or Ethernet or enp0s3).
- Click on the Start Capturing Packets icon (top left).

3. Generate Network Traffic

While capturing:

- Open a browser and visit 2–3 websites (e.g., example.com, google.com).
- open Command Prompt and run:
 ping google.com

•Open a browser and visit 2–3 websites

```
| (test@parrot] | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 | 101 |
```

open Command Prompt and run:
 ping google.com

```
#ping https://www.google.com Name or service not known Alasa Alas
```

Stop the ping by ctrl+c or ctrl+z

4. Stop Capturing

Wait about 1 minute, then click the red square stop button in Wireshark.

5. Filter Captured Packets by Protocol

Use filters in the top filter bar in Wireshark to isolate protocols:

- DNS → dns
- HTTP → http
- TCP → tcp
- ICMP (for ping) → icmp

TCP filter

DNS filter

ICMP filter

UDP filter

6. Identify 3 Different Protocols

Look at the "Protocol" column.

Identify and note at least 3 distinct protocols, such as:

- TCP
- DNS
- HTTP

1. TCP (Transmission Control Protocol)

- Most traffic was between IPv6 addresses, showing many TCP SYN and Retransmission packets.
- Port 443 (HTTPS) and 593d were involved in communication.
- These may indicate secure web browsing or SSL handshake attempts.

Notable Packet Detail:

Protocol: TCP

Info: [SYN] Seq=0 Win=65320 Len=0 MSS=1420 SACK_PERM TSval=...

Likely a client trying to initiate a TLS/HTTPS connection.

2. DNS (Domain Name System)

- Standard DNS queries from 192.168.0.6 to 192.168.0.1
- Many domain lookups for:
 - o google.com
 - o gstatic.com
 - o start.parrotsec.org
 - o clients6.google.com

Notable Packet Detail:

Query: AAAA google.com

Protocol: DNS Length: 70–85 bytes

3. <u>UDP (User Datagram Protocol)</u>

- Mostly used for DNS traffic (as DNS uses UDP/53)
- DNS queries (like A, AAAA, and PTR) were sent over UDP
- One packet clearly shows Protocol: UDP, Length: 44

4. ICMP (Internet Control Message Protocol)

- Classic ping packets using Echo (ping) request and reply
- These are ICMP type 8 (request) and type 0 (reply)
- All between 192.168.0.6 and 192.168.0.1

Notable Packet Detail:

Protocol: ICMP

Type: Echo (ping) request

Reply received successfully from gateway

7. Export Capture as .pcap File

Go to File > Export Specified Packets.

Save the file with .pcap extension (e.g., mycapture.pcap).

8. Summary of Findings

Protocol	Purpose	Observation
ТСР	Reliable transport (HTTPS, TLS)	Seen with SYN, retransmissions on IPv6
DNS	Domain name resolution	Lookups for Google, ParrotSec, etc.
UDP	Lightweight transport	Used by DNS queries
ICMP	Network diagnostics (ping)	Echo requests & replies between local IPs