Linear Measurements vs Matrix-Vector Products

• If A is $n \times n$, matrix-vector products can be simulated with n linear measurements

n linear measurements are at least as powerful as one matrix-vector product

Trace can be computed exactly with one linear measurement

• Requires $\Omega(n)$ matrix-vector products for exact trace

Sun, Woodruff, Yang, Zhang '21 (Triangle detection)

• Requires $\Omega(1/\varepsilon^2)$ for approximating unto $1\pm \varepsilon$

Wimmer, Wu, Zhang '14

Linear Measurements vs Matrix-Vector Products

- If A is $n \times n$, matrix-vector products can be simulated with n linear measurements
- *n* linear measurements are **at least** as powerful as one matrix-vector product
- Trace can be computed exactly with one linear measurement
 - Requires $\Omega(n)$ matrix-vector products for exact trace
 - Sun, Woodruff, Yang, Zhang '21 (Triangle detection)
 - Requires $\Omega(1/\varepsilon^2)$ for approximating unto $1 \pm \varepsilon$
 - Wimmer, Wu, Zhang '14

Upper Bounds