Applying Naive Bayes to WSD

- P(c) is the prior probability of that sense
 - Counting in a labeled training set.
- P(w|c) conditional probability of a word given a particular sense
 - P(w|c) = count(w,c)/count(c)
- We get both of these from a tagged corpus like SemCor
- Can also generalize to look at other features besides words.
 - Then it would be P(f|c)
 - Conditional probability of a feature given a sense

Dan Jurafsky

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	fish smoked fish	f
	2	fish line	f
	3	fish haul smoked	f
	4	guitar jazz line	g
Test	5	line guitar jazz jazz	?

Priors:

25

$$P(f) = \frac{3}{4} \frac{1}{4}$$

$$P(g) = \frac{3}{4} \frac{1}{4}$$

V = {fish, smoked, line, haul, guitar, jazz}

Conditional Probabilities:

P(line|
$$f$$
) = (1+1) / (8+6) = 2/14
P(guitar| f) = (0+1) / (8+6) = 1/14
P(jazz| f) = (0+1) / (8+6) = 1/14
P(line| g) = (1+1) / (3+6) = 2/9
P(guitar| g) = (1+1) / (3+6) = 2/9
P(jazz| g) = (1+1) / (3+6) = 2/9

Choosing a class:

$$P(f|d5) \propto 3/4 * 2/14 * (1/14)^2 * 1/14$$

 ≈ 0.00003