CMSC 510 – L19 Regularization Methods for Machine Learning

Part 19b: Greedy Pretaining

Instructor:

Dr. Tom Arodz

Historically, deep networks (with many layers) were difficult

to train

- A lot effort in recent years went into making training easier
 - ReLU instead of sigmoid
 - Unsupervised pre-training
 - Normalization techniques

- Pre-training for dealing with depth of the network
 - Greedy layer-wise pretraining
- First, training an autoencoder unsupervised network

- Two networks: an encoder + a decoder
- Unsupervised training (no classes)
 - MSE: (x decoder(encoder(x))²

- Pre-training for dealing with depth of the network
 - Greedy layer-wise pretraining
- Second:
 - eliminate the decoder
 - take the encoder part
 - add a layer or two
 - softmax on top
 - train for classification (e.g. cross-entropy)

training an autoencoder unsupervised network

If the final supervised network needs to be large (many layers)
 the autoencoder also needs to be large (many layers)

- Autoencoder with many layers
 - n layers may be as difficult to train as a deep supervised network with n layers

- Greedy layer-wise pretraining
 - First train a shallow autoencoder (one hidden layer – green)
 - Next, add another hidden layer (violet)
 - Keep the previous weights as initialization
 - Repeat, adding one layer at a time
 - Actually, two: one in encoder one in decoder

Output

Input

Pre-training can help in training deep nets

 (no pre-training)
 (with pre-training)

- Pre-training serves as a regularizer
 - Different runs of pre-trained nets are similar, and converge during training
 - Different runs of non-pre-trained nets progress in different directions during training (blue to green)

- Pre-trained networks overtrain less
 - For the same training loss test loss is lower for pre-trained net

De-noising autoencoder:

Can make the network more resistant to minor variations in input

Original Noisy Code Output

- Pre-training for dealing with depth of the network
 - Greedy layer-wise pretraining
 - Is not as much needed these days there are other techniques for helping with optimization of deep nets
- Pre-training (not greedy, not layer-wise)
 is still very useful for dealing with limited training data
 - Transfer learning
 - Teacher-student learning