Bachelor of Science in Marine Engineering

COURSE OUTLINE

Title:	Part B: Cours	e Outline	Date Created:
Course Code	Auto 1		Rev. No. 0
Prerequisites	Electro 2 & Mo	echanics	
Descriptive Title	Basic Control l	Engineering	
Course Credits	3 units		
Contact Hours	96 hrs for 16 w	reeks	
Lecture	3 hours/week f	or 16 weeks =48 hours	
Laboratory	3 hours/week f	or 16 weeks = 48 hours	
References	Annex C of CN	MO no. 67, s2017	
	STCW '78 as a	mended 2017 ed.	
		ourse 7.04 "Officer in Charge of an Engineering Watch"	
	IMO Model Co	ourse 7.02 "Chief Engineer Officer and Second Engineer	er Officer"
Prepared by:		Checked by:	Approved by
Eng'r.Wenceslao M. Ca MEP-MEM	awagas III	C/E Alexander V. Tabobo Dean, College of Marine Engineering	Dr. Ronald D. Barro, D. Eng Asst. Supt ATRE

FUNCTION: ELECTRICAL, ELECTRONIC & CONTROL ENGINEERING AT THE OPERATIONAL LEVEL

Legend:

F = Function

C= Column

KUP=Knowledge Understanding Proficiency

Competence	KUP	Course Content	Learning Outcomes	Hou	rs
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F1: C2: KUP.8 Basic construction and operation principles of machinery systems including: .8 automatic control systems	Week 1 Lecture 1.Fundamentals of Automatic Control	 1.1 define an automatic control and state its purpose 1.2 describe what devices/equipment construct control systems and their role/function 1.3 relate sensing unit, controller, controlled variable, manipulating variable and controlled object to each of them in the control system 1.4 describe what sort of devices are included in the sensing unit 1.5 describe variety of controllers such as electronic (PID, PLC, computer) controller and pneumatic controller 1.6 define setting value, input value, deviation and output value/controlled variable in the controller 1.7 describe what sort of devices are included as manipulators 1.8 describe variety of controlled objects 1.9 describe how automatic controls are utilized in the ship's propulsion machinery taking examples of temperature and level control systems, including control parameters such as time lag, time constant, dead time, first/second order lag element, disturbance and offset 	3	
		Laboratory WSA#1 Block Diagram of an Automatic Control System	 Interpret process and instrument diagrams of automation system based on the industry standards. 		3

Competence	KUP	Course Content	Learning Outcomes	Но	urs
A-III/1; F2: C1:	A-III/1; F1: C2: KUP.8	Week 2	2.1 classify systematically automatic	3	
Operate electrical,	Basic construction and	Lecture	control in terms of control		
electronic and control	operation principles of	2. Various Automatic Controls	methodologies		
systems	machinery systems including:		2.2 state what an optimal control means		
	.8 automatic control systems		2.3 explain briefly feedback control and feedforward control		
			 2.4 describe briefly on off control, sequential control, PID control and program control 2.5 explain how these automatic controls are applied to the control systems 2.6 explain briefly program control and how the control is realized 2.7 describe the applications of program 		
		Laboratory	control in the ship's propulsion machinery Differentiate basic construction		3
		WSA#2 Feedback Control	and principles in automation		3
		Systems	regarding various measuring		
		Systems	instruments and automation		
			devices used onboard ships.		
A-III/1; F2: C1:	A-III/1; F1: C2: KUP.8	Week 3	3.1 explain what ON-OFF control means	3	
Operate electrical,	Basic construction and	Lecture	3.2 explain the characteristics of ON-OFF		
electronic and control	operation principles of	3. ON-OFF controls	control		
systems	machinery systems including:		3.3 explain how ON-OFF control is utilized		
	.8 automatic control systems		3.4 list components comprising ON-OFF control system		
			3.5 describe ON-OFF control taking some applications as examples		
		Laboratory	Demonstrate performance test in		3
		WSA#3 ON-OFF Control	accordance with themanufacturer's		
			standards forthe automatic control devices.		

Competence	KUP	Course Content	Learning Outcomes	Но	urs
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP 3 Basic configuration and operation principles of the following electrical, electronic and control equipment .3 Control systems: 3a Various automatic control methodologies and characteristics	Week 4 Lecture 4. Sequential Control	 4.1 explain what a sequential control means 4.2 explain the characteristic of sequential control 4.3 explain how a sequential control is utilized 4.4 list components comprising a sequential control system 4.5 describe sequential controls taking some applications as example 	3	
		Laboratory WSA#4 Sequential Control	 Interpret process and instrument diagrams of automation system based on the industry standards 		3
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP 3 Basic configuration and operation principles of the following electrical, electronic and control equipment .3 Control systems: 3b Proportional -Integral-Derivative (PID) control characteristics and associated system device for process control	Week 5 Lecture 5 Proportional Integral Derivative Control	 5.1 explain the principles/theory of PID Control 5.2 explain how P, I and D actions can be electrically/pneumatically available showing simple electronic circuits and pneumatic diagram 5.3 state that PID control is classical control methodology but even now it is still firm basis for controlling any physical/process value 5.4 state that PLC and computer controller produces the same actions as analogue PID controller when controlling any physical/process value 5.5 explain P, I, D, PI, PD & PID actions respectively using step or ramp input 	3	
		Laboratory WSA#5 Performance Check of a PID Controller	 Demonstrate performance test in accordance with the manufacturers standards for the monitoring systems and automatic control devices 		3

Competence	KUP	Course Content	Learning Outcomes	Но	urs
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP .1 Basic configuration and operation principles of the following electrical, electronic and control equipment; .3 control systems: .3a various automatic control methodologies and characteristics .3b Proportional-Integral-Derivative (PID) control characteristics	Week 6 Lecture PID Control	5.6explain the characteristic of P action as well as the proportional band (PB) 5.7 explain the characteristics of I and D actions 5.8 explain how P,I and D actions contribute to control systems, stating that P value contributes to strength of control, I value contributes to accuracy of control and D value contributes to speed of control 5.9 describe the step response test to PID action and what can be understood by its results 5.10 explain how P,I and D parameters for optimal control can be determined 5.11describe the components comprising PID control systems including sensing unit, transducer, manipulator and controller	3	urs
		Laboratory WSA#6 Controller Tuning	 Demonstrate performance test in accordance with the manufacturers standards for the monitoring systems and automatic control devices 		3
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP 3 Basic configuration and operation principles of the following electrical, electronic and control equipment .3 Control systems: .3a various automatic control methodologies and characteristics	Week 7 Lecture 6 Temperature Measurement	 6.1 Mechanical Thermometers 6.1.1 state that it is common practice to call the measuring instrument for temperatures: above 500OC a pyrometer below 500OC a thermometer 6.1.2state the temperature range for which mercury is used 6.1.3name the fluids which can be used 	3	

Competence	KUP	Course Content	Learning Outcomes	Ho	urs
		Laboratory WSA#7 Performance Test of an	for the measurement of lower temperatures 6.1.4describe the principal features of thermometers based on the filled system, including: mercury in steel vapor pressure gas-filled 6.1.5describe the principal features of bi metallic thermometer Demonstrate performance test in accordance with the manufacturers		3
		PT100 (RTD) Sensor WSA#8 Calibration of a PT100 (RTD) Transmitter	standards for the monitoring systems and automatic control devices		
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP 3 Basic configuration and operation principles of the following electrical, electronic and control equipment .3 Control systems: .3a various automatic control methodologies and characteristics	Week 8 Lecture 6 Temperature Measurements contd.	 6.2 Electrical Thermometers 6.2.1 state that the range and accuracy vary according to the material used in the detecting element 6.2.2 sketch and describe a resistance-type measuring instrument based on the Wheatstone bridge 6.2.3 describe the characteristics of a thermistor and the conditions for which it is suitable 6.2.4 sketch a circuit used in a thermocouple and describes its operation 6.2.5 describe the principle of optical pyrometer 	3	
		 Midterm Practical Assessment PA 01: Calibration of Pt100 Transmitter 	 Demonstrate skills in performance test and automatic control devices Provide feedback on the practical aspects of automation 		3
A-III/1; F2: C1:	A-III/1; F2: C2: KUP 3	Week 9	6.3 Pressure	3	<u> </u>

Competence	KUP	Course Content	Learning Outcomes	Но	urs
Operate electrical,	Basic configuration and	Lecture	6.3.1 describe the principal features of,		
electronic and control	operation principles of the	6.3 Pressure Measurement	and compares, the following:		
systems	following electrical, electronic		manometers:		
	and control equipment		simple water		
	.3 Control systems:		wide cistern or well		
	3a various automatic control		inclined tube		
	methodologies and		mercury		
	characteristics		pressure gauges:		
			bourdon		
			 diaphragm-sealed gauge 		
			twin bellows		
			 differentialpressure cell 		
			strain gauge		
			6.3.2 describe how pressure gauges can be		
			tested on board ship		
			6.3.3 test a pressure pump		
			6.3.4 sketch calibration curves for a		
			bourdon pressure gauge, showing the		
			effect of:		
			zero adjustment		
			 multiplication adjustment 		
			angularity adjustment		
			6.3.5 state the calibration and testing are		
			normally performed by specialists		
		Laboratory	 Demonstrate performance test in 		3
		WSA#9 Performance Test of TC	accordance with the manufacturers		
		"K" Sensor	standards for the monitoring		
			systems and automatic control		
		WSA# 10 Calibration of a TC"	devices		
		K" Transmitter	 Differentiate basic construction 		
			and principles in automation		
		WSA# 11 Performance Test of a	regarding various measuring		
		Pressure Switch	instruments and automation		
			devices used onboard ships.		
A-III/1; F2: C1:	A-III/1; F2: C2: KUP 3	Week 10	6.4 Level (Direct Method)	3	
Operate electrical,	Basic configuration and	Lecture	6.4.1 describe the principle of a float-		

Competence	KUP	Course Content	Learning Outcomes	Ho	urs
electronic and control	operation principles of the	6.4 Level measurement (Direct	operated level measuring device		
systems	following electrical, electronic	Method)	6.4.2 describe the principle of a probe		
	and control equipment	,	element		
	.3 Control systems:		6.4.3 describe a displacement gauge		
	3a various automatic control		6.5.1 explain the principle of inferential		
	methodologies and		method		
	characteristics		6.5.2 describe a level sensor based on		
			immersed resistors		
		6.5 Level measurement	6.5.3 describe a level indicator based on a		
		(Inferential Method)	bubbler system		
			6.5.4 describe a pneumercator gauge		
		Laboratory	 Demonstrate performance test in 		3
		WSA# 12 Performance test of a	accordance with the manufacturers		
		Float Level Sensor	standards for the monitoring		
			systems and automatic control		
			devices		

Competence	KUP	Course Content	Learning Outcomes	Hours
Competence A-III/1; F2: C1: Operate electrical, electronic and control systems	KUP A-III/1; F2: C2: KUP 3 Basic configuration and operation principles of the following electrical, electronic and control equipment 3 Control systems: 3a various automatic control methodologies and characteristics	Course Content Week 11 Lecture 6.6. Flow Measurement	Learning Outcomes 6.6.1 explain the difference between a quantity meter and a rate of flow meter 6.6.2 explain that quantity metre is basically a rate of flow metre combined with an integrator 6.6.3 describe the function of the two elements of a flow meter 6.6.4 sketches a graph to show the relationship between velocity of a fluid and its pressure difference 6.6.5 from the above objective, show the velocity is proportional to the square root of pressure 6.6.6 explain the situations in which extractions of a square roots are necessary 6.6.7 describe the principal features of: a rotormeter a rotameter 6.6.8 sketch an orifice and a venturi, showing the direction of flow and the pressure=measuring point 6.6.9 explain how a manometer can be	Hours 3
			6.6.8 sketch an orifice and a venturi, showing the direction of flow and the pressure=measuring point	
			6.6.10 state that extractions of square root can be accomplished pneumatically and electrically	

Competence KUP Course Laboratory	Content Learning Outcomes Demonstrate performance test in	
WSA#13 Perfort DP Transmitter	mance Test of a Demonstrate performance test in accordance with the manufacturers standards for the monitoring systems and automatic control devices	3

Competence	KUP	Course Content	Learning Outcomes	Hours
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP 3 Basic configuration and operation principles of the following electrical, electronic and control equipment .3 Control systems: 3a various automatic control methodologies and characteristics	Week 12 Lecture 6.7 General Measurement of Process	 6.7.1 explain the principle of a tachometer 6.7.2 explain the principles of AC and DC electric tachometer 6.7.3explain the principles of a torque metre based on the effect of stress in a magnetic field 6.7.4explain how the above objective can be developed to measure power 6.7.5explain the principal features of a viscometer 6.7.6describe the application of a photocell to: a n oil in- water a smoke- density detector an oil mist detector a flame detector 	3
		Laboratory WSA# 14 Boiler Flame Scanner (Photocell)	 Demonstrate performance test in accordance with the manufacturers standards for the monitoring systems and automatic control devices 	3

Competence	KUP	Course Content	Learning Outcomes	Hours
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP 3 Basic configuration and operation principles of the following electrical, electronic and control equipment .3 Control systems: 3a various automatic control methodologies and characteristics	Week 13 Lecture 6.7 General Measurement of Process contd.	 6.7.7 describe the common type of fire detectors 6.7.8 describe the principal features of: an explosive gas detector a vibration monitors an oxygen analyzer a CO2 analyzer a relative humidity meter salinity measurement a dissolved oxygen meter a pH meter 6.7.9 describe or perform routine setting up, testing and maintenance of the measuring devices included in the above objectives 	3
F2: Electrical, electronic and control engineering at the operational level A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP .1 Basic configuration and operation principles of the following electrical, electronic and control equipment; .3 control systems: .3a various automatic control methodologies and characteristics	7 Transmission of Signals A. Transmitters	71 Describe the function of a transducer/transmitter	
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP 3 Basic configuration and operation principles of the following electrical, electronic and control equipment .3 Control systems: 3a various automatic control methodologies and characteristics	Week 14 Lecture B. Controlling Elements	B1: Pneumatic 7.1 describe the flapper nozzle arrangement 7.2 explain what is meant by negative feedback and by positive feedback 7.3 sketch a flapper and nozzle arrangement with negative feedback 7.4 explain the function of a force balance transducer 7.5 describe the principal features of an electro-pneumatic transducer B2: Electrical	3

Competence	KUP	Course Content	Learning Outcomes	Ho	urs
			7.6 use a Wheatstone bridge used as a		
			transducer		
			7.7 describe the principles of a variable		
			inductance		
			7.8 describe the priciples of a variable		
			capacitance transducer		
			7.9 describe the principles of an electronic force balance transducer		
			7.10 describe the principles of a voltage current transducer		
			B3: Receivers		
			7.11 describe the principal features of:		
			a pneumatic receiver integrator		
			 a potentiometric pen recorder 		
			7.12 explain the function of an XY		
			recorder		
			7.13 describe the basic principles of AC		
			and DC servomotors		
		Laboratory	 Differentiate basic construction 		3
		WSA# 16 AC and DC	and principles in automation		
		Servomotors	regarding various measuring		
			instruments and automation		
			devices used onboard ships		
A-III/1; F2: C1:	A-III/1; F2: C2: KUP 3	Week 15	8.1 State that the final controller might be	3	
Operate electrical,	Basic configuration and	Lecture	operated pneumatically, hydraulically	3	
electronic and control	operation principles of the	8.Manipulator Elements	or electrically		
systems	following electrical, electronic	A: Pneumatic	8.2 Sketch a diaphragm operated control		
Systems	and control equipment		valve		
	.3 Control systems:		8.3 Describe the characteristics of a motor		
	3a various automatic control		element and the correcting element in		
	methodologies and		the above objective		
	characteristics		8.4 describes or, preferably, determines by		
			experiment the flow characteristics		
			and applications of:		
			mitre valves		

Competence	KUP	Course Content	Learning Outcomes		Hours	
Competence	KUP	Course Content	 vee-ported valves 8.5 explains what is meant by "turn-down ratio" 8.6 describes the conditions which may dictate the need for a positioned 8.7 describes the principal features of a positioned 8.8 explains the circumstances when piston actuators might be used 	<u>Ho</u>	urs	
			8.9 describes the conditions where butterfly valves might be used 8.10 describes the wax-element temperature-control valve and states its normal temperature range			
		Laboratory WSA# 17 Diaphragm Operated Control Valve	 Differentiate basic construction and principles in automation regarding various measuring instruments and automation devices used onboard ships. 		3	
A-III/1; F2: C1: Operate electrical, electronic and control systems	A-III/1; F2: C2: KUP 3 Basic configuration and operation principles of the following electrical, electronic and control equipment .3 Control systems: 3a various automatic control methodologies and characteristics	Week 16 Lecture B: Electrical servomotors C: Hydraulic servomotor	8.11 describes a D.C. servomotor and explains how it varies from the common motor 8.12 explains the problems of using a three-phase 8.13 describes the principles of a swash plate pump 8.14 explains the advantage of using high pressures 8.15 explains the applications of a hydraulic ram servomotor	3		
		Laboratory Submission of Compilation Final Practical Assessment PA02: Controller Tuning	 Provide feedback to the instructor on the practical aspect of Control Engineering Demonstrate confidence in dealing with automated system TOTAL (hours) 	48	3 48	