

Approximate Nearest One Detector Design for an Improved Logarithmic Multiplier

Zachary Ren, Erjing Luo, Jie Han

Faculty of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada

Logarithmic Multipliers

Logarithmic Multipliers

- Base-2 logarithmic multipliers use the shifting and additive properties of binary addition to compute the approximate product of two n-bit numbers
- Challenge is designing a multiplier that is both accurate and hardware efficient
- Objective: Approximating certain components (Nearest One Detector) to achieve better hardware performance

Mitchell Multipliers (MITCHELL) [1]

- Each number N can be written as the sum of the leading
 power of two and a difference factor x
- Uses an approximation for the base-2 representation of N using the sum of the exponent and the factor x

$$N = 2^k (1+x), \ 0 \le x < 1$$

$$\log_2 N \approx k + x$$
(1)

Improved Logarithmic Multipliers (ILM) [2], [3]

- Mitchell multipliers will always underestimate the final product
- To allow for double-sided error distribution, introduce over and underestimation depending on the number
- Each number N can be written as the sum of the nearest
 power of two and a difference factor depending on if the number is overestimated or underestimated
- Uses an approximation for the base-2 representation of N using the sum of the exponent and the factor

$$V = \begin{cases} 2^{k}(1+x), & 0 \le x < 1\\ 2^{k+1}(1-y), & 0 < y \le 1 \end{cases}$$
 (3)

$$log_2N \approx \begin{cases} k+x, & for \ N=2^k(1+x) \\ k+1-y, & for \ N=2^{k+1}(1-y) \end{cases}$$
 (4)

ILM Architecture

Improved Logarithmic Multiplier Architecture

$$A = 2^{k_1} + q_1 \qquad B = 2^{k_2} + q_2$$

$$A \times B \approx 2^{k_1 + k_2} + 2^{k_1}q_2 + 2^{k_2}q_1 + q_1q_2 \tag{5}$$
Converte product into expenses of base 2 that can be

- Converts product into exponents of base 2 that can be calculated using binary arithmetic
- Last term is disregarded as approximation error
- Uses Nearest One Detector (NOD) to determine exponent values for arithmetic operations

Figure 1.
Improved
Logarithmic
Multiplier Design
from [2]

8-bit Unsigned Nearest One Detector Designs

Exact Nearest One Detector (ENOD)

 Evaluates the nearest one and clears the rest of the bits to zero

Figure 2. Exact Nearest One Detector

Approximate Nearest One Detector (ANOD)

- Uses only the Carry NOD slice and approximates the bottom four bits using a multiplexer
- Retains the NOD for values greater than 2⁴

tor Figure 3. Approximate Nearest One Detector

Figures 4 & 5. Base NOD Slice (top) and Carry NOD Slice (bottom)

Error-Hardware Results

Figure 11. Mean
Relative Error vs.
Power Delay
Product of
Logarithmic
Multipliers

Table 4. PDP x MRED for Logarithmic Multipliers

	PDP (fJ)	MRED	PDP x MRED
Mitchell	97.20	0.0376	3.653
ILM-ENOD	109.1	0.0284	3.097
ILM-ANOD	112.7	0.0310	3.489

Results

Error Metrics

- Each logarithmic multiplier design was simulated using MATLAB for 2⁸ test cases (0-255) each input
- ILM-ENOD uses the exact NOD, ILM-ANOD uses an approximate NOD with the ILM architecture
- Error Metrics used: absolute error, mean relative error distance, and normalized mean error distance

Table 1. Error Metrics for Logarithmic Multipliers

	AE	MRED	NRED
Mitchell	606.398	0.0376	0.0093
ILM-ENOD	0.246	0.0284	0.0070
ILM-ANOD	0.250	0.0310	0.0070

Hardware Metrics

- Each design was implemented on using Verilog HDL on 45 nm process technology and synthesized with Synopsys Design Compiler
- 1 V supply voltage and 250 MHz clock

Table 2. Hardware Metrics for Logarithmic Multipliers

	Area (µm²)	Power (μW)	Delay (nS)	PDP (fJ)
Mitchell	600.5	26.2	3.71	97.20
ILM-ENOD	1252.5	28.4	3.84	109.1
ILM-ANOD	1166.2	29.2	3.86	112.7

Table 3. Hardware Metrics for Nearest One Detectors

	Area (µm²)	Power (µW)	Delay (ns)	PDP (fJ)
ILM-ENOD	230.9	1.31	0.43	0.563
ILM-ANOD	191.5	1.32	0.53	0.700

Results

Figures 7 & 8. Error Comparison for Improved Logarithmic Model and Mitchell Multiplier (Range 0-255)

Figures 9 & 10. Error Comparison for Improved Logarithmic Multipliers Implementing Approximate NOD and Exact NOD (Range 0-15)

Conclusion

- Exact and Approximate ILM were 27.9% and 19.2% more accurate than the Mitchell multiplier
- Both ILM's performed slightly worse than the Mitchell in PDP metrics, requires around twice as much area
- Due to more computationally extensive signed operations within the ILM model
- Approximate ILM had the worst PDP performance,
 however had 7.14% less area than the exact counterpart
- ENOD performed 21.7% better than ANOD in power and delay, ANOD had 18.7% less area
- Both ILM's had a lower PDPxMRED than MITCHELL, with the ILM-ENOD performing 11.9% better than ILM-ANOD
- ILM-ENOD is the best model in terms of error-hardware efficiency, however ILM-ANOD uses less area and works as a similar performing alternative

References

[1] J. N. Mitchell, "Computer Multiplication and Division Using Binary Logarithms," in IRE Transactions on Electronic Computers, vol. EC-11, no. 4, pp. 512-517, Aug. 1962, doi: 10.1109/TEC.1962.5219391.
[2] M. S. Ansari, B. F. Cockburn and J. Han, "A Hardware-Efficient Logarithmic Multiplier with Improved Accuracy," 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 928-931, doi: 10.23919/DATE.2019.8714868.

[3] M. S. Ansari, B. F. Cockburn and J. Han, "An Improved Logarithmic Multiplier for Energy-Efficient Neural Computing," in IEEE Transactions on Computers, vol. 70, no. 4, pp. 614-625, 1 April 2021, doi: 10.1109/TC.2020.2992113.

[4] S. Gandhi, M. S. Ansari, B. F. Cockburn and J. Han, "Approximate Leading One Detector Design for a Hardware-Efficient Mitchell Multiplier," 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 2019, pp. 1-4, doi: 10.1109/CCECE.2019.8861800.

[5] K. H. Abed and R. E. Siferd, "VLSI Implementations of Low-Power Leading-One Detector Circuits," Proceedings of the IEEE SoutheastCon 2006, Memphis, TN, USA, 2006, pp. 279-284, doi: 10.1109/second.2006.1629364.

[6] T. Zhang, Z. Niu and J. Han, "A Brief Review of Logarithmic Multiplier Designs," 2022 IEEE 23rd Latin American Test Symposium (LATS), Montevideo, Uruguay, 2022, pp. 1-4, doi: 10.1109/LATS57337.2022.9936921.

I would like to acknowledge Dr. Jie Han for supervising my project. I would also like to acknowledge Erjing Luo for helping me synthesize my designs. I would also like to acknowledge the github user RatkoFri and their repository MulApprox, licensed under the MIT license.