DEVELOPING CLOSURES FOR TURBULENT FLOW OF VISCOELASTIC FENE-P FLUIDS

F. T. Pinho

Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal

C. F. Li

Dep. Energy, Environmental and Chemical Engineering, Washington University of St. Louis, St Louis, MO, USA

Currently at School of Energy and Power Engineering, Zhenjiang, Jiangsu 212013, PR China

B. A. Younis

Dep. Civil and Environmental Engineering, University of California, Davis, USA

R. Sureshkumar

Dep. Energy, Environmental and Chemical Engineering, Washington University of St. Louis, St Louis, MO, USA

Acknowledgments: FCT, Gulbenkian Foundation

Conference on "Whither rheology?" 2nd-4th April 2007 Lake Vyrnwy Hotel, Mid Wales, UK

Relevance: drag reduction in turbulent pipe flow

- Reduction of shear Reynolds stress (DR)
- Increase of normal streamwise Reynolds stress
- Dampening of normal radial and tangential Reynolds stress

Deficit of Reynolds stress

Time-average governing equations: turbulent flow & FENE-P

Continuity:
$$\frac{\partial U_i}{\partial x_i} = 0$$

- instantaneous

Overbar or capital letter- time-average or small letter- fluctuations

Momentum balance:

$$\rho \frac{\partial U_i}{\partial t} + \rho U_k \frac{\partial U_i}{\partial x_k} = -\frac{\partial \overline{p}}{\partial x_i} + \eta_s \frac{\partial^2 U_i}{\partial x_k \partial x_k} - \frac{\partial}{\partial x_k} \left(\rho \overline{u_i u_k}\right) + \left(\frac{\partial \overline{\tau}_{ik,p}}{\partial x_k}\right)$$

Rheological constitutive equation: **FENE-P** $\overline{\tau}_{ij} = 2\eta_s S_{ij} + \overline{\tau}_{ij,p}$

$$\hat{\tau}_{ij,p} = \frac{\eta_p}{\lambda} \left[f(\hat{C}_{kk}) \hat{C}_{ij} - f(L) \delta_{ij} \right]$$

$$f(\hat{C}_{kk}) \hat{C}_{ij} + \lambda \left(\frac{\partial \hat{C}_{ij}}{\partial t} + \hat{U}_k \frac{\partial \hat{C}_{ij}}{\partial x_k} - \hat{C}_{jk} \frac{\partial \hat{U}_i}{\partial x_k} - \hat{C}_{ik} \frac{\partial \hat{U}_j}{\partial x_k} \right) = f(L) \delta_{ij}$$

$$\left(\frac{\partial \hat{C}_{ij}}{\partial t} + \hat{U}_k \frac{\partial \hat{C}_{ij}}{\partial x_k} - \hat{C}_{jk} \frac{\partial \hat{U}_i}{\partial x_k} - \hat{C}_{ik} \frac{\partial \hat{U}_j}{\partial x_k} \right) = \hat{C}_{ij} = -\frac{\hat{\tau}_{ij,p}}{\eta_p}$$

DNS case: LDR

DNS, DR=18% (LDR)

$$We_{\tau} = 25, Re_{\tau} = 395$$

$$\beta = 0.9, L^{2} = 900$$
 $We_{\tau} = \frac{\lambda u_{\tau}^{2}}{v_{0}}$

$$Re_{\tau} = \frac{hu_{\tau}}{v_{0}}$$

Reynolds decomposition of conformation tensor

$$\hat{B} = B + b'$$
 where $\overline{b'} = 0$

Function: $f(C_{kk}) = \frac{L^2 - 3}{L^2 - C_{kk}}$

Time average polymeric stress

$$\overline{\tau}_{ij,p} = \frac{\eta_p}{\lambda} \left[f(C_{kk}) C_{ij} - f(L) \delta_{ij} \right] + \frac{\eta_p}{\lambda} \underbrace{f(C_{kk} + c_{kk}) c_{ij}}_{ij}$$

Time average conformation tensor equation

$$\lambda C_{ij}^{\nabla} + \lambda \left[u_k \frac{\partial c_{ij}}{\partial x_k} - \left(c_{kj} \frac{\partial u_i}{\partial x_k} + c_{ik} \frac{\partial u_j}{\partial x_k} \right) \right] = - \left[f(C_{kk}) C_{ij} - f(L) \delta_{ij} + \overline{f(C_{kk} + c_{kk}) c_{ij}} \right]$$

$$C_{ij}^{\nabla} + \overline{u_k} \frac{\partial c_{ij}}{\partial x_k} - \left(\overline{c_{kj}} \frac{\partial u_i}{\partial x_k} + \overline{c_{ik}} \frac{\partial u_j}{\partial x_k} \right) = -\frac{\overline{\tau}_{ij,p}}{\eta_p}$$

$$CT_{ij} \qquad NLT_{ij}$$

Neglected

 $f'c_{ii}$ (see slide)

Simplifying assumptions: justification from DNS

Polymer stress: DNS

Modeling requirements

 CT_{ij} : originates in advective term, it is negligible no need for modeling

DNS: Housiadas et al (2005), Li et al (2006) JNNFM

What about:

- 1) Reynolds stresses?
- 2) Turbulent kinetic energy?
- 3) Dissipation of turbulent kinetic energy or of Reynolds stresses?

Transport equation for the Reynolds stresses and k

$$\rho \frac{\partial \overline{u_i u_j}}{\partial t} + \rho U_k \frac{\partial \overline{u_i u_j}}{\partial x_k} = P_{ij} + Q_{ij} + Q_{ij}^V + D_{ij,N} + \Pi_{ij} - \rho \varepsilon_{ij}^N - \rho \varepsilon_{ij}^V$$

$$Q_{ij}^{V} = \frac{\partial}{\partial x_{k}} \left(\overline{u_{i} \tau_{jk,p}} + \overline{u_{j} \tau_{ik,p}} \right)$$
 Viscoelastic turbulent transport due to fluctuations polymeric stresses

$$\varepsilon_{ij}^{V} = \frac{1}{\rho} \left(\overline{\tau_{jk,p}^{'}} \frac{\partial u_{i}}{\partial x_{k}} + \overline{\tau_{ik,p}^{'}} \frac{\partial u_{j}}{\partial x_{k}} \right)$$

 $\varepsilon_{ij}^{V} = \frac{1}{\rho} \left(\overline{\tau_{jk,p}^{'}} \frac{\partial u_{i}}{\partial x_{k}} + \overline{\tau_{ik,p}^{'}} \frac{\partial u_{j}}{\partial x_{k}} \right) \begin{array}{l} \text{Viscoelastic work of polymer chains:} \\ \text{dissipation of energy plus stored free} \\ \text{energy} \\ \text{(<0 ou >0)} \end{array}$

$$\rho \frac{Dk}{Dt} + \rho \overline{u_{i}} u_{k} \frac{\partial U_{i}}{\partial x_{k}} = -\rho \overline{u_{i}} \frac{\partial k'}{\partial x_{i}} - \frac{\partial \overline{p'} u_{i}}{\partial x_{i}} + \eta_{s} \frac{\partial^{2}k}{\partial x_{i} \partial x_{i}} - \eta_{s} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{i}}{\partial x_{k}} + \frac{\partial \overline{\tau'}_{ik,p} u_{i}}{\partial x_{k}} - \overline{\tau'}_{ik,p} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{i}}{\partial x_{k}} + \frac{\partial \overline{\tau'}_{ik,p} u_{i}}{\partial x_{k}} - \overline{\tau'}_{ik,p} \frac{\partial u_{i}}{\partial x_{k}}$$

Transport equation of \mathcal{E}^N

$$2v_{s}\frac{\partial u_{i}}{\partial x_{m}}\frac{\partial}{\partial x_{m}}\left(\rho\frac{Du_{i}}{Dt}\right)+2v_{s}\frac{\partial u_{i}}{\partial x_{m}}\frac{\partial}{\partial x_{m}}\left(\rho u_{k}\frac{\partial U_{i}}{\partial x_{k}}\right)+2v_{s}\frac{\partial u_{i}}{\partial x_{m}}\frac{\partial}{\partial x_{m}}\left(\rho\frac{\partial u_{i}u_{k}}{\partial x_{k}}\right)$$

$$+2v_{s}\frac{\partial u_{i}}{\partial x_{m}}\frac{\partial}{\partial x_{m}}\left(\frac{\partial \rho'}{\partial x_{k}}\right)-2\rho v_{s}^{2}\frac{\partial u_{i}}{\partial x_{m}}\frac{\partial}{\partial x_{m}}\left(\frac{\partial^{2} u_{i}}{\partial x_{k}^{2}}\right)-2v_{s}\frac{\partial u_{i}}{\partial x_{m}}\frac{\partial}{\partial x_{m}}\left(\frac{\partial \tau'_{ik,p}}{\partial x_{k}}\right)=0$$
New term

As for Newtonian fluids, the whole equation will be approximated

Budget of Reynolds stress

- Need to model viscoelastic stress work
- Need to model pressure strain (effect of elasticity)- Advanced mod.
- Viscoelastic turbulent transport is not so important

Viscoelastic work

$$\varepsilon^{V} = \frac{1}{\rho} \overline{\tau'_{ik,p}} \frac{\partial u_{i}}{\partial x_{k}} = \frac{\eta_{p}}{\rho \lambda} \left[C_{ik} \overline{f(C_{mm} + c_{mm})} \frac{\partial u_{i}}{\partial x_{k}} + \overline{c_{ik} f(C_{mm} + c_{mm})} \frac{\partial u_{i}}{\partial x_{k}} \right]$$

Assumptions & DNS:

$$C_{ik} f(C_{mm} + c_{mm}) \frac{\partial u_i}{\partial x_k} < c_{ik} f(C_{mm} + c_{mm}) \frac{\partial u_i}{\partial x_k}$$

Performance of the viscoelastic work model

Modeling NLT_{ii} 1

Key ideas:

- 1) Write down exact equation- complex 4 lines long
- 2) Assumptions, physical insight, trial-and-error
- 3) Do *a priori* testing of each term
- 4) Select appropriate combination and dimensional homogeneity
- 5) Try in code under investigation

$$\overline{u_{i}u_{m}}\frac{\partial c_{kj}}{\partial x_{m}} + \overline{u_{i}u_{m}}\frac{\partial C_{kj}}{\partial x_{m}} \approx Coef \times \overline{u_{i}u_{m}}\frac{\partial C_{kj}}{\partial x_{m}}$$

$$f(C_{mm})\frac{NLT_{ij}}{\lambda} = function\left(S_{ij}, W_{ij}, C_{ij}, \varepsilon_{ij}^{N}, \frac{\partial \overline{u_{i}u_{j}}}{\partial x_{k}}, \frac{\partial C_{ij}}{\partial x_{k}}, \frac{\partial NLT_{ij}}{\partial x_{n}}, M_{ij}, \overline{u_{i}u_{j}}\right)$$

$$f\left(C_{mm}\right)\frac{NLT_{ij}}{\lambda} = f_{\mu_1}\left[C_{\gamma_1}\frac{\partial \overline{u_k u_n}}{\partial x_n}\frac{\partial C_{ij}}{\partial x_k} + \frac{C_{E_3}u_{\tau}^2}{v_0^2}C_{kk}\overline{u_i u_j} + \frac{C_{\alpha_{14}}}{v_0}\left(\overline{u_i u_k}W_{kn}C_{nj} + \overline{u_j u_k}W_{kn}C_{ni} + \overline{u_k u_i}W_{jn}C_{nk}\right)\right]$$

Blue model

Red model

$$C_{E_3} = 0.0004; C_{\gamma_1} = 3; C_{\alpha_{14}} = 0.00015$$

$$C_{E_3} = 0.00035; C_{\gamma_1} = 0; C_{\alpha_{14}} = 0.00015$$

$$f_{\mu_1} = (1 - \exp(-y^+/26.5))^2$$

Viscoelastic turbulent transport

$$Q^{V} = \frac{\partial \overline{\tau'_{ik,p}u_{i}}}{\partial x_{k}} = \frac{\eta_{p}}{\lambda} \frac{\partial}{\partial x_{k}} \left[C_{ik} \overline{f(C_{mm} + c_{mm})u_{i}} + \overline{c_{ik} f(C_{mm} + c_{mm})u_{i}} \right]$$

$$C_{kk} > \sqrt{\overline{c'_{kk}^2}}$$

$$f(\hat{C}_{mm}) = \frac{L^2 - 3}{L^2 - (C_{mm} + c_{mm})}$$

Weak coupling between c_{kk} and c_{ij} , u_i

$$C_{kk} > \sqrt{c'_{kk}^2}$$

$$f(\hat{C}_{mm}) = \frac{L^2 - 3}{L^2 - (C_{mm} + c_{mm})}$$

$$C_{ik} \overline{f(C_{mm} + c_{mm})} u_i < \overline{c_{ik}} f(C_{mm} + c_{mm}) u_i$$
Neglect of this term is

Neglect of this term is irrelevant because non-neglected term is modeled

$$Q^{V} = \frac{\eta_{p}}{\lambda} \frac{\partial}{\partial x_{k}} \left[f(C_{mm}) CU_{iik} \right]$$
Seneral case
Needs model (CU_{ijk})

Model for CU_{ijk}

- Same modelling approach as with NLT_{ii}

$$\frac{f(C_{mm})CU_{ijk}}{\lambda} = f_{\mu_2} \left[-C_{\beta_1} \left(\overline{u_i u_m} \frac{\partial C_{kj}}{\partial x_m} + \overline{u_j u_m} \frac{\partial C_{ik}}{\partial x_m} \right) - \frac{C_{\beta_7}}{\lambda} f(C_{mm}) \left[\pm \sqrt{\overline{u_j^2}} C_{ik} \pm \sqrt{\overline{u_i^2}} C_{jk} \right] \right]$$

$$C_{\beta_1} = 1.3; C_{\beta_7} = 0.37$$

$$f_{\mu_2} = 1 - \exp\left(-\frac{y^+}{26.5}\right)$$

Final equations: low $Re k-\varepsilon$ type model for channel flow

Momentum:
$$\frac{d}{dy} \left[\eta_{s} \frac{dU}{dy} + \overline{\tau}_{p,xy} - \rho \overline{uv} \right] - \frac{d\overline{p}}{dx} = 0$$

$$\overline{\tau}_{xy,p} = \frac{\eta_{p}}{\lambda} f(C_{kk}) C_{xy}$$

$$f(C_{kk}) C_{xy} = \lambda C_{yy} \frac{dU}{dy} + \lambda NLT_{xy}$$

$$f(C_{kk}) C_{yy} = \lambda NLT_{yy} + 1$$

$$f(C_{kk}) C_{xx} = 2\lambda C_{xy} \frac{dU}{dy} + \lambda NLT_{xx} + 1$$

$$f(C_{kk}) C_{xx} = \lambda NLT_{zz} + 1$$

Reynolds stress:

$$-\rho \overline{uv} = \rho v_T \frac{dU}{dy} \quad \text{with} \quad v_T = C_\mu f_\mu \frac{k^2}{\tilde{\varepsilon}^N}$$

k and ε transport equations: modified Nagano & Hishida

$$0 = \frac{d}{dy} \left[\left(\eta_s + \frac{\rho v_T}{\sigma_k} \right) \frac{dk}{dy} \right] + P_k - \rho \tilde{\varepsilon}^N - \rho D + \eta_p \frac{d}{dy} \left[\frac{f(C_{mm})}{\lambda} \frac{CU_{nny}}{2} \right] - \eta_p \frac{f(C_{mm})}{\lambda} \frac{NLT_{nn}}{2}$$

$$\varepsilon^N = \tilde{\varepsilon}^N + D^N$$

$$D^N = 2\eta_s \left(\frac{d\sqrt{k}}{dy} \right)^2$$

$$0 = \frac{d}{dy} \left[\left(\eta_s + \frac{\rho v_T}{\sigma_{\varepsilon}} \right) \frac{d\tilde{\varepsilon}^N}{dy} \right] + \rho f_1 C_{\varepsilon_1} \frac{\tilde{\varepsilon}^N}{k} \frac{P_k}{\rho} - \rho f_2 C_{\varepsilon_2} \frac{\varepsilon^{N^2}}{k} + \rho E + E_{\tau_p} \right]$$

$$E = \frac{\eta_s}{\rho} v_T \left(1 - f_\mu \right) \left(\frac{d^2 U}{dy^2} \right)^2$$

$$f_2 = 1 - 0.3 \exp\left(-R_T^2\right)$$

$$f_1 = 1$$

$$f_{\mu} = \left[1 - \exp\left(\frac{-y^+}{26.5}\right)\right]^2$$

based on Newtonian model of Nagano & Hishida (1984)

Predictions 1: $Re_{\tau 0}$ = 395; $We_{\tau 0}$ = 25; β =0.9, L^2 =900

X DNS

Black: Newtonian

$$\eta = \eta_{wall}$$
; same \dot{Q} ; Re _{τ_0} = 443

FENE-P simulations

$$C_{\beta_1} = 1.3; C_{\beta_7} = 0.37; C_{\alpha_{14}} = 1.5 \times 10^{-4}$$
 $C_{\varepsilon_V} = 1.076$

$$C_{E3} = 1.93 \times 10^{-4}$$

Without

$$\boldsymbol{\varepsilon}^p$$

$$C_{E3} = 2.86 \times 10^{-4}$$

Predictions 2: $Re_{\tau 0}$ = 395; $We_{\tau 0}$ = 25; β =0.9, L^2 =900

Predictions 3: $Re_{\tau 0}$ = 395; $We_{\tau 0}$ = 25; β =0.9, L^2 =900

Predictions 4: $Re_{\tau 0}$ = 395; $We_{\tau 0}$ = 25; β =0.9, L^2 =900

Predictions 5: $Re_{\tau 0}$ = 395; $We_{\tau 0}$ = 25; β =0.9, L^2 =900

Predictions 6: $Re_{\tau 0}$ = 395; $We_{\tau 0}$ = 25; β =0.9, L^2 =900

Conclusions

- Developed simplified k- ε model: code and closures are working
- Viscoelastic stress power well modeled by NLT_{ij}
- Viscoelastic turbulent transport (CU_{ijk}) is not that relevant at 18%
- NLT_{ij} is also required for C_{ij}
- -Closure for NLT_{ij} has deficiencies and needs significant improvement
- Excessive dissipation of turbulence
- Need to model viscoelastic turbulence production close to wall
- Isotropic turbulence does not allow a good model
- Need to consider anisotropic turbulence: anisotr. k- ε and RSM
- Closure for CU_{ijk} is fair but also needs improvement: small impact

Conclusions: Models for other constitutive equations

Constitutive equations can be rewritten as a function of the conformation tensor

$$\tau_{ij} = 2\eta_s S_{ij} + \frac{\eta_p}{\lambda} \left[f_1(C_{kk}, L, \ldots) C_{ij} - f_2(C_{kk}, L, \ldots) \delta_{ij} \right]$$

Different functions are used

Turbulence models can be modifications of turbulence models developed for FENE-P

Summary

- Relevance: some facts about drag reduction
- Governing equations for FENE-P in RANS form
- Reynolds decomposition of FENE-P equations
- Closure needs and analysis of DNS case (LDR)
- A simplified closure with a priori testing of DNS data
- Some concerns regarding limiting cases
- Some preliminary results
- Conclusions

Direct evidence of Reynolds stress deficit

FENE-P model

$$\tau_{ij} = 2\eta_s S_{ij} + \frac{\eta_p}{\lambda} \left[f(C_{kk}) C_{ij} - f(L) \delta_{ij} \right]$$

$$\beta = \frac{\eta_s}{\eta_s + \eta_p}$$

Molecular conformation

$$f(C_{kk})C_{ij} + \lambda C_{ij}^{\nabla} = \delta_{ij}$$

with

$$f(C_{kk}) = \frac{L^2}{L^2 - C_{kk}}$$
$$f(L) = \frac{L^2}{L^2 - 3}$$

Couette flow

$$\eta(\dot{\gamma}) = \eta_p C_{22}(\dot{\gamma}) + \eta_s$$

 $C_{22}(\dot{\gamma})$: analytical solution

Important relationships

Extensive DNS: **FENE-P model** → Basis for turbulence model ↓

Other constitutive models → **Extensions of this turbulence** model

Function f()

$$f(C_{kk}) = \frac{L^2}{L^2 - C_{kk}}$$
 e $f(L) = \frac{L^2}{L^2 - 3}$

Most used in laminar flow

$$f(C_{kk}) = \frac{L^2}{L^2 - C_{kk}}$$

e
$$f(L)=1$$

Most used in DNS (Beris et al)

$$f(C_{kk}) = \frac{L^2 - 3}{L^2 - C_{kk}}$$

$$e f(L) = 1$$

Sureshkumar et al

Generally speaking: $f(C_{kk})$ and f(L)

Trouton ratio: FENE-P model

Transport equation for the Reynolds stresses 2

$$P_{ij} = -\rho \left(\overline{u_i u_k} \frac{\partial U_j}{\partial x_k} + \overline{u_j u_k} \frac{\partial U_i}{\partial x_k} \right)$$
 Production of Reynolds stresses

$$Q_{ij} = -\frac{\partial}{\partial x_k} \left(\rho \overline{u_i u_j u_k} \right) \quad \text{``Turbulent'' diffusion'}$$

$$\Pi_{ij} = -\left(\overline{u_i} \frac{\partial p'}{\partial x_j} + \overline{u_j} \frac{\partial p'}{\partial x_i}\right) \text{ Pressure fluctuations: redistribution (pressure-strain) and turbulent transport}$$

$$\overline{p' \frac{\partial u_i}{\partial x_j} + p' \frac{\partial u_j}{\partial x_i}} - \frac{\partial \overline{p' u_i}}{\partial x_j} - \frac{\partial \overline{p' u_j}}{\partial x_i}$$

$$\frac{1}{p' \frac{\partial u_i}{\partial x_j} + p' \frac{\partial u_j}{\partial x_i}} - \frac{\partial \overline{p' u_i}}{\partial x_j} - \frac{\partial \overline{p' u_i}}{\partial x_j} - \frac{\partial \overline{p' u_j}}{\partial x_i}$$

$$D_{ij}^{N} = \eta_{s} \frac{\partial^{2} u_{i} u_{j}}{\partial x_{k} \partial x_{k}}$$
 Molecular diffusion by solvent

$$\varepsilon_{ij}^{N} = 2v_{s} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}}$$
 Viscous dissipation by solvent \rightarrow Transport eq. of ε

Solvent viscosity

Budget of Reynolds stress 2

- Viscoelastic turbulent transport is not so important

Model for Cuijk 1

Same key ideas, but simpler implementation

- 1) Write down exact equation for $CU_{ijk} = f(\hat{C}_{mm})(u_i c_{kj} + u_j c_{ik})$
- 2) Identify new and existing terms
- 3) Apply previous simplifying assumptions
- 4) Found: new terms have a kin existing term: $u_i u_m \frac{\partial c_{kj}}{\partial x_m}; \overline{u_i u_m} \frac{\partial C_{kj}}{\partial x_m}$
- 5) Perform the de-correlation

$$\overline{u_i u_m} \frac{\partial c_{kj}}{\partial x_m} + \overline{u_i u_m} \frac{\partial C_{kj}}{\partial x_m} \approx Coef \times \overline{u_i u_m} \frac{\partial C_{kj}}{\partial x_m}$$

Alternative model: Corrections for limiting behaviour

$$\lambda \to 0 \longrightarrow \tau_{ij} = 2\eta_s S_{ij} + 2\eta_p S_{ij}$$
 Predictions must be identical to
$$\tau_s = 2(\eta_s + \eta_p)_{Newtonian} S_{ij}$$

In the absence of "correct" models

$$\varepsilon^{V} \approx \frac{\eta_{p}}{\rho \lambda} f(C_{mm}) \frac{NLT_{nn}}{2} \rightarrow \varepsilon^{V} \approx \varepsilon^{p} + \frac{\eta_{p}}{\rho \lambda} f(C_{mm}) \frac{NLT_{nn}}{2}$$

(The trouble is double role of NLT_{ij})

Newtonian-like dissipation due to shear-thinning polymer

$$Q^{V} \approx \frac{\eta_{p}}{\lambda} \frac{\partial}{\partial x_{k}} \left[f(C_{mm}) \frac{CU_{iik}}{2} \right] \quad \text{with} \quad \frac{f(C_{mm})CU_{nny}}{2\lambda} = \frac{\mu_{p}}{\eta_{p}} \frac{\partial^{2}k}{\partial x_{k} \partial x_{k}} + \dots$$
or
$$Q^{V} \approx \mu_{p} \frac{\partial^{2}k}{\partial x_{i} \partial x_{i}} + \frac{\eta_{p}}{\lambda} \frac{\partial}{\partial x_{k}} \left[f(C_{mm}) \frac{CU_{iik}}{2} \right]$$

k and ε equations: including alternative model

$$\tilde{\varepsilon}^{N} = \frac{\eta_{s}}{\eta_{s} + \mu_{p}} \tilde{\varepsilon}^{Np}$$

$$\tilde{\varepsilon}^p = \frac{\mu_p}{\eta_s + \mu_p} \tilde{\varepsilon}^{Np}$$

$$0 = \frac{d}{dy} \left[\left(\eta_s + \mu_p + \frac{\rho v_T}{\sigma_k} \right) \frac{dk}{dy} \right] + P_k - \rho \tilde{\epsilon}^{Np} - \rho D + \eta_p \frac{d}{dy} \left[\frac{f(C_{mm})}{\lambda} \frac{CU_{nny}}{2} \right] - \eta_p \frac{f(C_{mm})}{\lambda} \frac{NLT_{nn}}{2}$$

$$\varepsilon^{Np} = \tilde{\varepsilon}^{Np} + D^{Np}$$

$$D^{Np} = D^{N} + D^{p} = 2\left(\eta_{s} + \mu_{p}\right) \left(\frac{d\sqrt{k}}{dy}\right)^{2}$$

$$0 = \frac{d}{dy} \left[\left(\eta_s + \mu_p + \frac{\rho v_T}{\sigma_{\varepsilon}} \right) \frac{d\tilde{\varepsilon}^{Np}}{dy} \right] + \rho f_1 C_{\varepsilon_1} \frac{\tilde{\varepsilon}^{Np}}{k} \frac{P_k}{\rho} - \rho f_2 C_{\varepsilon_2} \frac{\varepsilon^{Np^2}}{k} + \rho E + E_{\tau_p} \right]$$

$$E = \frac{\eta_s + \mu_p}{\rho} v_T \left(1 - f_\mu \right) \left(\frac{d^2 U}{dy^2} \right)^2$$

$$f_2 = 1 - 0.3 \exp\left(-R_T^2\right)$$

$$f_1 = 1$$

$$f_{\mu} = \left[1 - \exp\left(\frac{-y^+}{26.5}\right)\right]^2$$