MMXXI - MCMLXXVIII

XLIII

- 1978

escola britânica de artes criativas & tecnologia

Profissão: Cientista de Dados

Algebra Linear

Minimizar erros

Redes Neurais

Fonte da imagem

escola britânica de artes criativas & tecnologia

Profissão: Cientista de Dados

Algebra Linear

Vetores

Vetores

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \vec{v}' = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

Vetores

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

O que é um vetor?

- Podemos entender um vetor como uma lista de valores que representam uma observação, alguns exemplos:
 - No problema da gorjeta: [valor da conta, valor da gorjeta]
 - Base de pinguins: [comprimento do bico, comprimento da nadadeira]
 - Titanic: [idade, valor da passagem]

 Vetores podem ter mais de 2 dimensões, mas para aproveitar a intuição geométrica deles, vamos começar com vetores em 2 dimensões.

Vetores - Exemplo

	p1	p2
0	8,9	9,3
1	8,4	8,0
2	10,0	8,9
3	3,9	3,2
4	5,9	4,9
5	1,6	2,3
6	4,8	5,4
7	0,4	1,0
8	10,0	10,0
9	2,7	3,0

Vetores - Exemplo

Isto é um vetor

Vetores - Exemplo

Dependendo do que estamos fazendo, podemos ter a visão vetorial de linha ou de coluna da nossa base de dados.

escola britânica de artes criativas & tecnologia

Profissão: Cientista de Dados

Algebra Linear

Operações com vetores

Operações com vetores

• Temos basicamente duas operações com vetores:

• Soma

Multiplicação por um número (escalar)

$$a \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax \\ ay \end{bmatrix}$$
 Ex: $2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

Soma de vetores

Multiplicação de vetor por um número

$$a \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax \\ ay \end{bmatrix}$$

Ex:
$$2\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}2\\4\end{bmatrix}$$

Esse número é chamado de "escalar"

Ele altera a escala do vetor.

O que é o vetor mesmo?

O vetor:

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Pode ser reescrito como:

$$\vec{v} = 1\vec{i} + 2\vec{j}$$

$$\operatorname{Com} \vec{\iota} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} e \vec{\jmath} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 \vec{i} e \vec{j} são chamados de Base Vetorial

Combinações lineares

Combinação linear

Qualquer:

$$\vec{u} = a\vec{v} + b\vec{w}$$

Com \vec{v} e \vec{w} sendo vetores, a e b sendo escalares.

Com uma combinação linear dos vetores da base apresentada, podemos chegar em qualquer ponto do plano x, y

Combinação linear

Qualquer:

$$\vec{u} = a\vec{v} + b\vec{w}$$

Com \vec{v} e \vec{w} sendo vetores, a e b sendo escalares.

Nesse caso, não conseguimos representar o plano em função de v e w.

Dizemos que eles são Linearmente Dependentes.

Combinação linear

Bases vetoriais

	p1	p2
0	8,9	9,3
1	8,4	8,0
2	10,0	8,9
3	3,9	3,2
4	5,9	4,9
5	1,6	2,3
6	4,8	5,4
7	0,4	1,0
8	10,0	10,0
9	2,7	3,0

No gráfico, estamos expressando os dados na base (i, j)

	p1	p2
0	8,9	9,3
1	8,4	8,0
2	10,0	8,9
3	3,9	3,2
4	5,9	4,9
5	1,6	2,3
6	4,8	5,4
7	0,4	1,0
8	10,0	10,0
9	2,7	3,0

Considere os vetores:

$$\vec{v} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} e \vec{w} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Também conseguimos representar qualquer ponto do gráfico como

$$a\vec{v} + w\vec{l}$$

 \vec{v} e \overrightarrow{w} são outra base vetorial que "alcança" o mesmo espaço vetorial.

	p1	p2
0	8,9	9,3
1	8,4	8,0
2	10,0	8,9
3	3,9	3,2
4	5,9	4,9
5	1,6	2,3
6	4,8	5,4
7	0,4	1,0
8	10,0	10,0
9	2,7	3,0

Considere os vetores:

$$\vec{v} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} e \vec{w} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Na combinação $a\vec{k}+b\vec{l}$ fixando a e variando b, atingimos valores ao longo de uma reta.

Provavelmente daí vem o nome "combinação linear"

	p1	p2
0	8,9	9,3
1	8,4	8,0
2	10,0	8,9
3	3,9	3,2
4	5,9	4,9
5	1,6	2,3
6	4,8	5,4
7	0,4	1,0
8	10,0	10,0
9	2,7	3,0

Assim, com:

$$\vec{v} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} e \vec{w} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Conseguimos representar os nossos dados em uma nova base vetorial.

Pra que serve isso?

	p1	p2	média	evolução
0	3,0	2,2	2,6	-0,8
1	6,1	5,1	5,6	-0,9
2	5,3	3,6	4,5	-1,6
3	0,6	1,5	1,1	1,0
4	0,1	0,7	0,4	0,6
5	1,7	0,5	1,1	-1,3
6	5,2	4,0	4,6	-1,2
7	7,8	6,7	7,3	-1,1
8	3,3	2,5	2,9	-0,8
9	2,9	4,5	3,7	1,5

Considere resumir os dados em um único valor: **a média**

$$\overrightarrow{m} = \frac{1}{2}\overrightarrow{p_1} + \frac{1}{2}\overrightarrow{p_2}$$

Embora seja um bom resumo, ainda há perda de informação

A média é
$$a\ combina$$
ção $\frac{1}{2}p_1 + \frac{1}{2}p_2$

	p1	p2	média	evolução
0	3,0	2,2	2,6	-0,8
1	6,1	5,1	5,6	-0,9
2	5,3	3,6	4,5	-1,6
3	0,6	1,5	1,1	1,0
4	0,1	0,7	0,4	0,6
5	1,7	0,5	1,1	-1,3
6	5,2	4,0	4,6	-1,2
7	7,8	6,7	7,3	-1,1
8	3,3	2,5	2,9	-0,8
9	2,9	4,5	3,7	1,5

Considere a diferença:

$$d = p_2 - p_1$$

Podemos escrevê-la como a combinação linear:

$$\vec{d} = -\vec{\imath} + \vec{\jmath}$$

Com base na média e na diferença, podemos expressar qualquer par p1, p2 e vice versa.

	p1	p2	média	evolução
0	3,0	2,2	2,6	-0,8
1	6,1	5,1	5,6	-0,9
2	5,3	3,6	4,5	-1,6
3	0,6	1,5	1,1	1,0
4	0,1	0,7	0,4	0,6
5	1,7	0,5	1,1	-1,3
6	5,2	4,0	4,6	-1,2
7	7,8	6,7	7,3	-1,1
8	3,3	2,5	2,9	-0,8
9	2,9	4,5	3,7	1,5

Considere a diferença:

$$d = p_2 - p_1$$

Podemos escrevê-la como a combinação linear:

$$\vec{d} = -\vec{\imath} + \vec{\jmath}$$

Com base na média e na diferença, podemos expressar qualquer par p1, p2 e vice versa.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} x \\ c \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix}$$

Uma outra forma de ver esta operação é como uma combinação linear dos vetores coluna da matriz, ponderada por x e y.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

Repare nas dimensões da matriz e do vetor

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

O número de colunas do primeiro objeto deve ser igual ao número de linhas do segundo

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$
2 × 2 2 × 1 2 × 1

O objeto resultante tem o número de linhas do primeiro e o número de colunas do segundo

Comutatividade

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} x & y \end{bmatrix} \qquad \begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix}' = \begin{bmatrix} a & \mathbf{c} \\ \mathbf{b} & d \end{bmatrix}$$

$$\mathbf{M}\mathbf{v} = (\mathbf{v}' \ \mathbf{M}')'$$

$$\begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} [x & y] \begin{bmatrix} a & \mathbf{c} \\ \mathbf{b} & d \end{bmatrix} \end{pmatrix}'$$

Exemplo

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \hat{\alpha} + \hat{\beta}x_1 \\ \hat{\alpha} + \hat{\beta}x_2 \\ \vdots \\ \hat{\alpha} + \hat{\beta}x_n \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}$$

 \hat{y} é uma combinação linear do intercepto e de x.

Exemplo

$$\begin{bmatrix} 1 & x_{1,1} & x_{1,2} \\ 1 & x_{2,1} & x_{2,2} \\ \vdots & \vdots & \vdots \\ 1 & x_{n,1} & x_{n,2} \end{bmatrix} \begin{bmatrix} \hat{\alpha} \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}$$

Lembra daquela conta?

MMXXI

- MCMLXXVIII

XLIII

$$X\widehat{B} = \widehat{Y}$$

 \hat{y} é uma combinação das variáveis explicativas (incluindo o intercepto).

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$2 \times 2 \quad 2 \times 1$$

$$2 \times 1$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 & ax_2 + by_2 \\ cx_1 + dy_1 & cx_2 + dy_2 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 & ax_2 + by_2 \\ cx_1 + dy_1 & cx_2 + dy_2 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 & ax_2 + by_2 \\ cx_1 + dy_1 & cx_2 + dy_2 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 & ax_2 + by_2 \\ cx_1 + dy_1 & cx_2 + dy_2 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 & ax_2 + by_2 \\ cx_1 + dy_1 & cx_2 + dy_2 \end{bmatrix}$$

$$x_1 \begin{bmatrix} a \\ c \end{bmatrix} + y_1 \begin{bmatrix} b \\ d \end{bmatrix}$$

$$x_2 \begin{bmatrix} a \\ c \end{bmatrix} + y_2 \begin{bmatrix} b \\ d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{bmatrix}$$

$$\begin{bmatrix} ax_1 + by_1 & ax_2 + by_2 & \dots & ax_n + by_n \\ cx_1 + dy_1 & cx_2 + dy_2 & \dots & cx_n + dy_n \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1k} \\ b_{21} & b_{22} & \cdots & b_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pk} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1k} \\ c_{21} & c_{22} & \cdots & c_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nk} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{p} a_{ik} * b_{kj}$$

Exemplo

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} \hat{\alpha} + \hat{\beta}x_1 \\ \hat{\alpha} + \hat{\beta}x_2 \\ \vdots \\ \hat{\alpha} + \hat{\beta}x_n \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}$$

 \hat{y} é uma combinação linear do intercepto e de x.

Transformações lineares

Transformações lineares

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix}$$

Transformações lineares

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{bmatrix}\right) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{bmatrix}\right) = \begin{pmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

Transformação linear (exemplo)

Transformações lineares (exemplos)

Visualização 2

$$\begin{bmatrix} 0.5 & 0.5 \\ -1.0 & 1.0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0.5x + 0.5y \\ -x + y \end{bmatrix} \xrightarrow{\text{Novo } x}$$

Transformações lineares (exemplos)

Visualização 1

$$\begin{bmatrix} 0.5 & 0.5 \\ -1.0 & 1.0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 0.5 \\ -1.0 \end{bmatrix} + y \begin{bmatrix} 0.5 \\ 1.0 \end{bmatrix}$$

Visualização 2

$$\begin{bmatrix} 0.5 & 0.5 \\ -1.0 & 1.0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0.5x + 0.5y \\ -x + y \end{bmatrix} \xrightarrow{\text{Novo y}}$$

