Notes

Maxim Zhilyaev

August 25, 2020

1 Abstract

The recent interest in mix-net differential privacy raises a question of productization of protocols based on shuffling algorithms. While interesting protocols have been developed in the literature, the cost aspect of them has been largely ignored. Since mix-net shufflers rely on multiple (often cascading) PKI operation, sending too many shuffled records may render a particular protocol impractical, even though its other metrics show good performance. In particular, reporting multivariate data of large dimensions, by sending data for each dimension separately will multiple the cost of reporting by the number of dimensions - rendering such solution infeasible. Hence, the motivation to develop industrials strength protocol suitable for very large dimensions and comparable in sensitivity and DP to single dimension protocols, but without the cost explosion caused by high dimensionality. Given that the network handshaking and the PKI operations are the likely bottle neck in the mix-net processing, our cost model is proportional to the number (but not the size) of reports being shuffled, which implies that low cost protocols should ideally send high dimensionality data as single reports.

In this research we focus on reporting indicator vectors from multitude of users. The indicator-vector reporting protocols uses a concept of fake records, whereby in addition to reporting (potentially randomized) real (true) user data, users also construct special fake records (indistinguishable from the true ones) and send them to the shuffler as well. A measurer knows the amount of fake records, but can't tell a fake record from a true one. This technique greatly improves our ability to reduce randomization noise and allows to achieve high sensitivity without altering (ϵ, δ) privacy settings. The fake noise increases the transmission cost, but it's often justified by the radical reduction of the randomization noise.

The study proceeds as the following

- We establish equivalency of (ϵ, δ) differential privacy and the pair wise indistinguishability for the finite sets.
- Then we prove an important result that if a shuffling algorithm (applied to a finite domain) emits randomization noise enough to establish (ϵ, δ) differential privacy for n records, same level of noise is also enough for n + 1 reports. In other words, randomization that protect

n user records is sufficient for same DP protection for any number of records above n. This result is later used to enable an effective shuffling protocol for cases when number of users is moderate.

- We then proceed with in-depth study of a single. randomized bit shuffling protocol. This algorithm requires users to bit flips their true bit before reporting to a mix-net. We prove that (ϵ, δ) differential privacy for an arbitrary collection of true user bits subjected to such protocol can be bound by a collection containing only zero true bits. We then use this result to derive an important formula that expresses the flipping frequency through (ϵ, δ) and the number of users n. We show that the measurement accuracy of the average is proportional to $\frac{1}{n}$, rather than to $\frac{1}{\sqrt{n}}$ (as in local DP), and comparable to the central DP for large n. It's notable that the single-bit research has also significantly improved the symmetrical Chernoff bound for the Poisson-Binomial distributions arising in randomized response studies. We finally show how fake bits can improve sensitivity without altering (ϵ, δ) differential privacy settings. Single bit results are then used to develop high dimensional indicator vector protocols.
- We then move to multidimensional 1-hot vector reporting. The first protocol requires n users to report their true indicator vectors in clear, but m users also report a fake indicator vector to the shuffler. DP is established when the number of fake records m and dimensions d obey the bound (5.10):

$$\frac{m}{d} \ge 3\log\frac{4}{\delta} \left(\frac{e^{\epsilon} + 1}{e^{\epsilon} - 1}\right)^2$$

For realistic (ϵ, δ) settings and moderate d this technique enables low measurement for very reasonable communication cost. However, since the choice of m is proportional to the number of dimensions d, the protocol is impractical for very large d. Which necessitated development of the protocols able to provide same performance for very large dimensions.

• The large dimension protocols employ both fake noise and bit flipping. Users still submit both true and fake indicator vectors, but bit flip each bit of the reported records before sending to the shuffler. These techniques allows radical reduction of bit flipping frequency (even for moderate n) and enables high precision measurement without sacrificing DP protection. In particular, when n is small (or unknown) and dimensionality is very large (d >> m), the number of fake records m and the bit flipping frequency q must obey the bound (5.26) to guarantee DP:

$$qm \ge 3 \ln \frac{4}{\delta} \left(\frac{e^{\epsilon} + 1}{e^{\epsilon} - 1} \right)^2$$

It's remarkable that both **clear** and **bit-flipping** fake report algorithms generate essentially same bound, whereby they require that the expectation of records produced by the fake noise in each dimension stay above a constant computed from (ϵ, δ) privacy settings.

We also present a general bound (5.16) suitable for any arrangement of real of fake records.

$$q(n+m) \ge \frac{3ln\frac{4}{\delta}}{\left[1 - e^{-\epsilon/2}\right]^2} + \frac{4}{\left[1 - e^{-\epsilon/2}\right]}$$

For large n the positive effects of the fake records becomes negligiable, and the deviation of the estimate of the true bit sums in every dimension tents to a constant:

$$\sigma = \sqrt{\frac{3ln\frac{4}{\delta}}{\left[1 - e^{-\epsilon/2}\right]^2} + \frac{4}{\left[1 - e^{-\epsilon/2}\right]}}$$

In conclusion, the fake noise protocols provide viable alternative to local DP as they achieve sufficient measurement precision (lower but comparable to central DP) without significant increase in transmission cost. Details and engineering considerations are provided in the sequel.

2 Differential privacy and point-wise indistinguishability for finite domains

A record is an element of some space \mathcal{D} , and a database \mathbf{x} is a vector of n records: $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{D}^n$. A randomized algorithm \mathcal{R} maps the database into another space: $\mathcal{R} : \mathcal{D}^n \to \mathcal{S}$. The result of applying an algorithm to a database is termed an **transcript**. The notion of differential privacy for an algorithm \mathcal{R} is that the resulting transcripts does not change substantially when a record in the database is modified, i.e., transcripts are not sensitive to particular individual records in the database. Hence, releasing transcript of \mathcal{R} publicly will not jeopardize privacy, since information regarding individual records cannot be gained by analyzing the outcome of $\mathcal{R}(\mathbf{x})$.

Differential privacy for a randomized algorithm \mathcal{R} is formulated by comparing the transcripts generated by applying \mathcal{R} to two very similar databases $\mathbf{x}, \mathbf{x}' \in \mathcal{D}^n$. We say the databases **differ** in **one row** if $\sum_{i=1}^n I(x_i \neq x_i') = 1$. Such datasets are commonly called **neighboring** database or **neighbors**.

Definition. A randomized algorithm \mathcal{R} is (ϵ, δ) -differentially private if, for any two databases $\mathbf{x}, \mathbf{x}' \in \mathcal{D}^n$ differing in one row,

$$P[\mathcal{R}(\mathbf{x}) \in S] \le \exp(\epsilon) \cdot P[\mathcal{R}(\mathbf{x}') \in S] + \delta$$
 (2.1)

for all $S \subset \mathcal{S}$ (measurable).

In other words, the outcomes from the two databases databases differing in one row are close in distribution, may be with the exception of very unlikely outcomes whose probability is less than δ

Definition. A randomized algorithm \mathcal{R} generates point-wise (ϵ, δ) -indistinguishable outcomes for two databases $\mathbf{x}, \mathbf{x}' \in \mathcal{D}^n$ when

$$P\left(\frac{P[\mathcal{R}(\mathbf{x}) = s]}{P[\mathcal{R}(\mathbf{x}') = s]} \le \exp(\epsilon)\right) \ge 1 - \delta$$
(2.2)

Proposition 2.1. A randomized algorithm \mathcal{R} is (ϵ, δ) -differentially private if for every pair of neighboring databases $\mathbf{x}, \mathbf{x}' \in \mathcal{D}^n$, \mathcal{R} generates point-wise (ϵ, δ) -indistinguishable outcomes. Per reference [2]. (Ryan Rogers, etc..)

To restate.

$$P\left(\frac{P[\mathcal{R}(\mathbf{x}) = s]}{P[\mathcal{R}(\mathbf{x}') = s]} \le \exp(\epsilon)\right) \ge 1 - \delta, \text{ for any two neighbors } \mathbf{x}, \mathbf{x}'$$
(2.3)

$$\implies \mathcal{R} \ is \ (\epsilon, \delta) - differentially \ private$$
 (2.4)

Note that the condition 2.3 also implies

$$P\left(\exp(-\epsilon) \le \frac{P[\mathcal{R}(\mathbf{x}) = s]}{P[\mathcal{R}(\mathbf{x}') = s]} \le \exp(\epsilon)\right) \ge 1 - \delta$$

Because **x** and **x'** are interchange-able. We commonly use the above notation in the sequel and bound both sides of the **privacy loss ratio** $R = \frac{P[\mathcal{R}(\mathbf{x}) = s]}{P[\mathcal{R}(\mathbf{x}') = s]}$.

In general, (ϵ, δ) point-wise indistinguishability doesn't always imply (ϵ, δ) differential privacy. However, for finite domains these two definitions are equivalent, which we prove in the propositions below.

Proposition 2.2. If S if finite, there exists a set $S_m \subset S$, such that it maximizes the **differential** privacy difference below (or **DP** difference for short)

$$P[\mathcal{R}(\mathbf{x}) \in S] - \exp(\epsilon) \cdot P[\mathcal{R}(\mathbf{x}') \in S]$$

S if finite. Then the for any $S \subset S$ respective set inclusion probabilities are

$$P[\mathcal{R}(\mathbf{x}) \in S] = \sum_{s \in S} P[\mathcal{R}(\mathbf{x}) = s]$$

$$\mathsf{P}[\mathcal{R}(\mathbf{x}') \in S] = \sum_{s \in S} \mathsf{P}[\mathcal{R}(\mathbf{x}') = s]$$

Consider a set $S_m \subset \mathcal{S}$ containing all and only $s \in S$, such that $P[\mathcal{R}(\mathbf{x}) = s] > \exp(\epsilon) P[\mathcal{R}(\mathbf{x}') = s]$, that is - all point-wise distinguishable values of s. The **DP** difference $\sum_{s \in S} P[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) P[\mathcal{R}(\mathbf{x}') = s]$ reaches maximum in S_m . Indeed, any set S different from S_m will contain either point-wise indistinguishable values of s and they would reduce the DP difference, or miss point-wise distinguishable values of s, which would also reduce the DP difference. More formally:

$$\sum_{s \in S_m} \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s] - \sum_{s \in S} \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s]$$

$$= \sum_{s \in S_m \setminus S} \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s] - \sum_{s \in S \setminus S_m} \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s]$$

$$Since$$

$$\sum_{s \in S \setminus S_m} \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s] < 0, \ since \ \forall s \in S \setminus S_m, \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] < \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s]$$

$$\& \sum_{s \in S_m \setminus S} \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s] \ge 0, \ since \ \forall s \in S_m \setminus S, \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] > \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s]$$

$$hence \sum_{s \in S_m \setminus S} \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s] - \sum_{s \in S \setminus S_m} \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s] > 0$$

Proposition 2.3. For finite domains S the (ϵ, δ) -differential privacy and (ϵ, δ) -indistinguishability are equivalent - one implies the other.

Suppose S if finite. Then the (ϵ, δ) -differentially private condition holds if the following holds:

$$\sum_{s \in S} \mathsf{P}[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) \, \mathsf{P}[\mathcal{R}(\mathbf{x}') = s] \le \delta, \forall S \subset \mathcal{S}$$
 (2.5)

And it holds for the maximal set S_m containing all and only point-wise distinguishable values of s. The probability of s being point-wise distinguishable is exactly the probability $P[s \in S_m]$ since it contains just the distinguishable s, and hence if \mathcal{R} is (ϵ, δ) -differentially private, then it's also (ϵ, δ) -indistinguishable.

Now assume \mathcal{R} is (ϵ, δ) -indistinguishable, then by definition

$$P(P[\mathcal{R}(\mathbf{x}) = s] > \exp(\epsilon) P[\mathcal{R}(\mathbf{x}') = s]) < \delta$$

$$\Rightarrow P(P[\mathcal{R}(\mathbf{x}) \in S_m] > \exp(\epsilon) P[\mathcal{R}(\mathbf{x}') \in S_m]) < \delta$$

$$\Rightarrow \sum_{s \in S_m} P[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) P[\mathcal{R}(\mathbf{x}') = s] < \delta$$

$$\Rightarrow \forall S \subset \mathcal{S}, \sum_{s \in S} P[\mathcal{R}(\mathbf{x}) = s] - \exp(\epsilon) P[\mathcal{R}(\mathbf{x}') = s] < \delta \qquad by \text{ maximality of } S_m$$

3 Record shuffling protocol setup

We now prove an important (although intuitive) result applicable to the large class of shuffling algorithms. The result states that if n records taken from a finite domain are randomized with procedure \mathcal{R} before shuffling, and the shuffled dataset is (ϵ, δ) -differentially private, then the exact same procedure guarantees (ϵ, δ) -differential privacy for n+1 records. In short - if randomization noise is enough for n records, it's enough for more than n records.

Assume there are n users, each holding a user value $x_i \in \mathcal{X}$. User values form a dataset $\mathbf{x} = \{x_1, \ldots, x_n\}$. Each user applies a randomization procedure $\mathcal{R}(x) : \mathcal{R} : \mathcal{X} \to \mathcal{S}$, then submits $\mathcal{R}(x_i)$ to an anonymizer that shuffles the data and makes it impossible to determine which user submitted a record. We call this algorithm

$$M(x_1,\ldots,x_n)=\pi(\mathcal{R}(x_1),\ldots,\mathcal{R}(x_n))$$
 where π permutes its elements.

If S a finite domain of dimension d, we can write the output of M as a histogram $h \in \mathbb{N}^d$ over the entire domain S. $M(x_1, \ldots, x_n) = \{h_1, h_2, \ldots, h_d\}$. Where each histogram value h_i represents the number of users reported a particular value $s_i \in S$. We then describe M as a mapping $M(\mathbf{x}): M: \mathbf{x} \to \mathcal{H}_n = \mathbb{N}^d$, whereby an outcome of $M(\mathbf{x})$ is a particular histogram $h \in \mathcal{H}_n$, that is a histograms of d-bins and n-records.

Proposition 3.1. If M is (ϵ, δ) -differentially private for n records, then it's (ϵ, δ) -differentially private for n+1 records. Thus, protection for n records is enough for any number of records above n

Assume M is (ϵ, δ) -differentially private for n values of \mathbf{x} . Then for any neighboring datasets \mathbf{x} and \mathbf{x}' of size n, and any $H_n \subset \mathcal{H}_n$

$$P[M(\mathbf{x}) \in H_n] - \exp(\epsilon) \cdot P[M(\mathbf{x}') \in H_n] \le \delta$$
(3.1)

$$\sum_{h \in H_n} (P[M(\mathbf{x}) = h] - \exp(\epsilon) P[M(\mathbf{x}') = h]) \le \delta \qquad \mathcal{H}_n \text{ is finite}$$
 (3.2)

Add another user record x, then respective probabilities of an outcome $h = \{h_1, h_2, ..., h_d\}$ produced by $M(\mathbf{x} \cup x)$ and $M(\mathbf{x}' \cup x)$ is given below:

$$P[M(\mathbf{x} \cup x) = h] = \sum_{i}^{d} P[\mathcal{R}(x) = s_i] P(M(\mathbf{x}) = \{h_1, \dots, h_i - 1, \dots, h_d\}$$
 (3.3)

$$P[M(\mathbf{x}' \cup x) = h] = \sum_{i=1}^{d} P[\mathcal{R}(x) = s_i] P(M(\mathbf{x}') = \{h_1, \dots, h_i - 1, \dots, h_d\}$$
(3.4)

Since \mathcal{H}_{n+1} if finite, then for every set $H_{n+1} \subset \mathcal{H}_{n+1}$:

$$P[M(\mathbf{x} \cup x) \in H_{n+1}] - \exp(\epsilon) \cdot P[M(\mathbf{x}' \cup x) \in H_{n+1}]$$

$$= \sum_{h \in H_{n+1}} \left(P[M(\mathbf{x} \cup x) = h] - \exp(\epsilon) P[M(\mathbf{x}' \cup x) = h] \right)$$

$$= \sum_{h \in H_{n+1}} \left(\sum_{i}^{d} P[\mathcal{R}(x) = s_i] P(M(\mathbf{x}) = \{h_1, \dots, h_i - 1, \dots, h_d\} \right)$$

$$= \sum_{h \in H_{n+1}} \left(\sum_{i}^{d} P[\mathcal{R}(x) = s_i] P(M(\mathbf{x}') = \{h_1, \dots, h_i - 1, \dots, h_d\} \right)$$

$$(3.3) and (3.4)$$

Rearranging the oder of summation and combining terms with same $P[\mathcal{R}(x) = s_i]$, we have:

$$P[M(\mathbf{x} \cup x) \in H_{n+1}] - \exp(\epsilon) \cdot P[M(\mathbf{x}' \cup x) \in H_{n+1}] \\
= \begin{pmatrix}
P[\mathcal{R}(x) = s_1] \sum_{h \in H_{n+1}} (P(M(\mathbf{x}) = \{h_1 - 1, h_2, \dots, h_d\} - \exp(\epsilon) P(M(\mathbf{x}') = \{h_1 - 1, h_2, \dots, h_d\}) \\
+ P[\mathcal{R}(x) = s_2] \sum_{h \in H_{n+1}} (P(M(\mathbf{x}) = \{h_1, h_2 - 1, \dots, h_d\} - \exp(\epsilon) P(M(\mathbf{x}') = \{h_1, h_2 - 1, \dots, h_d\}) \\
& \dots \\
+ P[\mathcal{R}(x) = s_d] \sum_{h \in H_{n+1}} (P(M(\mathbf{x}) = \{h_1, h_2, \dots, h_d - 1\} - \exp(\epsilon) P(M(\mathbf{x}') = \{h_1, h_2, \dots, h_d - 1\}) \end{pmatrix}$$

Note that each sum of the form

$$\sum_{h \in H_{n+1}} (P(M(\mathbf{x}) = \{h_1, \dots, h_i - 1, \dots, h_d\} - \exp(\epsilon) P(M(\mathbf{x}') = \{h_1, \dots, h_i - 1, \dots, h_d\})$$

is done over histograms of size n, and represents a differential privacy difference, which by assumption (3.2) bounded by δ

$$P[M(\mathbf{x}) \in H_n] - \exp(\epsilon) \cdot P[M(\mathbf{x}') \in H_n] \le \delta$$

From here:

$$\begin{split} & \mathsf{P}[M(\mathbf{x} \cup x) \in H_{n+1}] - \exp(\epsilon) \cdot \mathsf{P}[M(\mathbf{x}' \cup x) \in H_{n+1}] \\ & = \begin{pmatrix} \mathsf{P}[\mathcal{R}(x) = s_1] \sum_{h \in H_{n+1}} \left(\mathsf{P}(M(\mathbf{x}) = \{h_1 - 1, h_2, \cdots, h_d\} - \exp(\epsilon) \, \mathsf{P}(M(\mathbf{x}') = \{h_1 - 1, h_2, \cdots, h_d\}) \right) \\ & + \mathsf{P}[\mathcal{R}(x) = s_2] \sum_{h \in H_{n+1}} \left(\mathsf{P}(M(\mathbf{x}) = \{h_1, h_2 - 1, \cdots, h_d\} - \exp(\epsilon) \, \mathsf{P}(M(\mathbf{x}') = \{h_1, h_2 - 1, \cdots, h_d\}) \right) \\ & + \mathsf{P}[\mathcal{R}(x) = s_d] \sum_{h \in H_{n+1}} \left(\mathsf{P}(M(\mathbf{x}) = \{h_1, h_2, \cdots, h_d - 1\} - \exp(\epsilon) \, \mathsf{P}(M(\mathbf{x}') = \{h_1, h_2, \cdots, h_d - 1\}) \right) \\ & = \sum_{i} \mathsf{P}[\mathcal{R}(x) = s_i] \left(\mathsf{P}[M(\mathbf{x}) \in H_n^i] - \exp(\epsilon) \cdot \mathsf{P}[M(\mathbf{x}') \in H_n^i] \right) \\ & \leq \sum_{i} \mathsf{P}[\mathcal{R}(x) = s_i] \delta \\ & = \delta \sum_{i} \mathsf{P}[\mathcal{R}(x) = s_i] \end{split}$$

Since $\sum_{i=0}^{d} P[\mathcal{R}(x) = s_i] = 1$, we arrive to the desired proof

$$P[M(\mathbf{x} \cup x) \in H_{n+1}] - \exp(\epsilon) \cdot P[M(\mathbf{x}' \cup x) \in H_{n+1}] \le \delta$$

4 Single bit flipping and shuffling protocol

We now consider an important scenario where users report bit values, which they flip and send randomized result to the shuffler. There are n users, each holding a value $x \in \{0, 1\}$. User bits form a dataset $D \subset \mathcal{D} = \{0, 1\}^n$. Each user applies a randomization procedure $\mathcal{R}(x) : \mathcal{R} : \{0, 1\} \to \{0, 1\}$, which flips the original bit value with probability q and keeps it unchanged with probability p = 1 - q. A user, then submits a randomized bit $\mathcal{R}(x_i)$ to an anonymizer that shuffles the data and makes impossible to trace a reported bit to its sender. As before, we consider algorithm

$$M(D) = \pi(\mathcal{R}(x_1), \dots, \mathcal{R}(x_n))$$
 where π permutes its elements.

Since the the reported bits are shuffled, the measurer can only add them up, and the outcome M(D) is uniquely determined by the sum of the reported randomized bits $s \in \mathcal{S} = \{0, 1, \dots, n\}$. Let D be a set of n bits and construct a neighboring pair of datasets by adding to D a set bit 1 and a zero bit 0. Note that the domain \mathcal{S} is finite. Hence, due to proposition 2.3, there are two equivalent expression for the (ϵ, δ) -differential privacy condition.

The algorithm M is differentially private if, for any subset $Z \subset \mathcal{S}$

$$P[M(D \cup 0) \in Z] \le e^{\epsilon} P[M(D \cup 1) \in Z] + \delta \tag{4.1}$$

$$\&P[M(D \cup 1) \in Z] \le e^{\epsilon}P[M(D \cup 0) \in Z] + \delta \tag{4.2}$$

Equivalently, the algorithm M is differentially private, if it is (ϵ, δ) -indistinguishable:

$$P\left(e^{-\epsilon} \le \frac{P(M(D \cup 0) = s)}{P(M(D \cup 1) = s)} \le e^{\epsilon}\right) \ge 1 - \delta, \forall s \in \{0, 1, \dots, n+1\}$$

$$\tag{4.3}$$

The quantity in parenthesis is referred as a **privacy loss ratio** R. For every instance of D, one can express the privacy loss ratio at a particular outcome s as:

$$R(s|D) = \frac{P(M(D \cup 0) = s)}{P(M(D \cup 1) = s)} = \frac{P(s|D \cup 0)}{P(s|D \cup 1)}$$
(4.4)

Note that 4.3 requires both R and its reciprocal 1/R be δ -bounded by e^{ϵ} . Whereby the first case corresponds to replacing a user bit 1 with 0 bit, and the second is reversed. We shall show the symmetry of both ratios later in the sequel.

Conditioning on possible values the added bit could generate:

$$P(s|D \cup 0) = p \cdot P(s|D) + q \cdot P(s-1|D) \tag{4.5}$$

Indeed, if 0 bit is randomized to itself (with probability p), then s must be generated by D alone, while if 0 bit was flipped (with probability q) then D must generate s-1 total bit sum. Similarly

$$P(s|D \cup 1) = p \cdot P(s-1|D) + q \cdot P(s|D)$$
(4.6)

Combining two conditioning expressions into the privacy loss ratio one arrives to:

$$R(s|D) = \frac{p \cdot P(s|D) + q \cdot P(s-1|D)}{p \cdot P(s-1|D) + q \cdot P(s|D)} = \frac{p \cdot P(s|D)}{p + q \cdot P(s-1|D)} + q - q \cdot P(s|D)}{p + q \cdot P(s-1|D)}$$
(4.7)

Let $\rho(s|D) = \frac{P(s|D)}{P(s-1|D)}$ be a **probability ratio** between adjacent values of s. It's related to R(s|D) as in:

$$R(s|D) = \frac{p\frac{P(s|D)}{P(s-1|D)} + q}{p + q\frac{P(s|D)}{P(s-1|D)}} = \frac{q + p\rho(s|D)}{p + q\rho(s|D)}$$
(4.8)

Corollary 4.1. R(s) is monotonicity increasing/decreasing as $\rho(s)$ increases/decreases.

Proof. Let $g(x) = \frac{q+px}{p+qx}$, the function g is increasing over x > 0, since

$$g'(x) = \frac{p - q}{(p + qx)^2} > 0.$$

Lemma 4.1. The privacy loss ratio R(s) decreases monotonically as s grows, reaching its maximum in s = 0 and minimum in s = n.

Proof. Suppose D contains m set bits, then the distribution of s is a sum of two binomial distributions, and is a Poisson Binomial distribution.

$$s \sim Bin(m, p) + Bin(n - m, q) \tag{4.9}$$

As show by Wang, Y. H. (1993). "On the number of successes in independent trials", for any Poisson Binomial distribution, the probability of consecutive values are related as follows

$$\begin{aligned} &P(s)^2 > P(s-1) \cdot P(S+1) \\ &\Longrightarrow \rho(s-1) > \rho(s) \\ &\Longrightarrow R(s-1) > R(s) \end{aligned}$$
 by 4.1

According to corollary 2.2 there exists a set S_m containing all and only point-wise distinguishable values of s. Then, by lemma 4.1 such set includes only values from 0 to k for which $R(s) > e^{\epsilon}$. This immediately gives us an expression for (ϵ, δ) -differential privacy in binary case.

Lemma 4.2. The algorithm M is (ϵ, δ) -differentially private if and only if

$$(2pe^{\epsilon} - 1)P(k|D) - (e^{\epsilon} - 1)\sum_{i=0}^{k} P(i|D) \le \delta, \forall k \in \{0, 1, \dots, n\}$$
(4.10)

Proof. Consider probability $P[s \in S_m | D \cup 0]$, suppose $S_m = \{0, 1, \dots, k\}$, then

$$P[s \in S_m | D \cup 0]$$

$$= \sum_{i=0}^k [pP(i|D) + qP(i-1|D)]$$

$$= pP(k|D) + (q+p)P(k-1|D) + (q+p)P(k-2|D) + \dots + (q+p)P(0|D)$$

$$= pP(k|D) + \sum_{i=0}^{k-1} P(i|D)$$

Similarly

$$P[s \in S_m | D \cup 0] = qP(k|D) + \sum_{i=0}^{k-1} P(i|D)$$

From here, the (ϵ, δ) -differential privacy condition fulfills when

$$P[s \in S_m | D \cup 0] \le e^{\epsilon} P[s \in S_m | D \cup 1] + \delta \tag{4.11}$$

$$pP(k|D) + \sum_{i=0}^{k-1} P(i|D) - e^{\epsilon} \left(qP(k|D) + \sum_{i=0}^{k-1} P(i|D) \right) \le \delta$$
 (4.12)

$$(p - qe^{\epsilon})P(k|D) - (e^{\epsilon} - 1)\sum_{i=0}^{k-1} P(i|D) \le \delta$$
 (4.13)

$$(2pe^{\epsilon} - 1)P(k|D) - (e^{\epsilon} - 1)\sum_{i=0}^{k} P(i|D) \le \delta$$
 (4.14)

The formula 4.10 reveals the very nature of (ϵ, δ) -privacy for the bit reporting. In essence, it's a difference in PDF and CDF of the underling distribution of s. The left tail probabilities grow as s increases, but so does the cumulative sum of them. At some point CDF becomes greater than the probability at given s, and then all consequent values of s are all pair-wise indistinguishable. As long as this difference stays under δ , the (ϵ, δ) privacy holds.

Despite its simple form, the expression 4.10 does not immediately provide a simple way to express q from (ϵ, δ) and the size of the dataset. A theorem below makes possible to bound R(s) of any distribution of the form 4.9 with the R(s) of the dataset containing only 0 bits.

Proposition 4.1. Denote a collections of n bits containing m set bits and n-m zero bits as D_m . Further denote the corresponding quantities:

- privacy loss ratio at a particular value s as $R(s|D_m) = \frac{P(s|D_m \cup 0)}{P(s|D_m \cup 1)}$
- probability ratio at a particular value s as $\rho(s|D_m) = \frac{P(s|D_m)}{P(s-1|D_m)}$
- expected value of s as $\mu_m = p \cdot m + q \cdot (n-m)$

Choose a distance l such that l > npq, then

$$\rho[\mu_m - l|D_r] \le \rho[\mu_0 - (l+2)|D_0]$$

That is, the probability ratio for any collection D_m is bound by the probability ratio of the zero collection D_0 .

Proof. PROOF IS INVOLVED AND WILL BE GIVEN LATER IN APPENDIX. Max needs to fix Dave's notations, skipping for now. \Box

From lemma (4.1) and proposition 4.1 we immediately receive the corollary that bounds the left tail of the distribution 4.9

Corollary 4.2. For left deviations $l \ge npq$ from the mean the privacy loss ratio for the collection of n bits is bounded by the privacy loss ratio for the collection of n zero bits

$$R[\mu_m - l|D_m] \le R[\mu_0 - (l+2)|D_0]$$

We present the properties of a zero valued dataset below along with derivation of the (ϵ, δ) -bound for such collection, and a formula to compute the flipping frequency q. We then apply corollary 4.2 to bound an arbitrary set of bits.

4.1 properties of a zero valued collection of bits

Let D consists of n zero bits, the neighboring dataset D' is achieved by replacing a zero bit with set bit. The outcome of applying the algorithm M is a sum of randomized bits s. The following relationships hold.

$$\mu = E(s) = q \cdot n \tag{4.15}$$

$$P(s=i|D) = \binom{n}{i} q^i p^{n-i} \tag{4.16}$$

$$P(s=i|D') = \binom{n-1}{i} q^{i+1} p^{n-1-i} + \binom{n-1}{i-1} q^{i-1} p^{n-i+1}$$
(4.17)

$$R(i) = \frac{P(s=i|D)}{P(s=i|D')} = \frac{\binom{n}{i}q^{i}p^{n-i}}{\binom{n-1}{i}q^{i+1}p^{n-1-i} + \binom{n-1}{i-1}q^{i-1}p^{n-i+1}}$$
(4.18)

$$R(i) = \frac{1}{\frac{n-i}{n}\frac{q}{p} + \frac{i}{n}\frac{p}{q}}$$
 (4.19)

By applying Chernoff bound to the distribution of s, we receive

$$P(|s - \mu| > t\mu) \le 2e^{-\frac{t^2\mu}{3}} \tag{4.20}$$

Setting $t = \sqrt{\frac{3}{\mu} ln \frac{2}{\delta}}$ one arrives to

$$P\left(|s-\mu| > \sqrt{3nq \cdot \ln\frac{2}{\delta}}\right) \le \delta \tag{4.21}$$

Setting $l = \sqrt{3nq \cdot ln_{\delta}^2}$, one is ensured that values of $P(s \in [\mu - l, \mu + l]) \ge 1 - \delta$. Conditioned on $s \in [\mu - l, \mu + l]$ we bound the privacy loss ratio R(i) in this interval in the following way:

$$e^{\epsilon} \ge R(i) \ge e^{-\epsilon}$$
 (4.22)

$$\Longrightarrow e^{-\epsilon} \le \frac{1}{R(i)} \le e^{\epsilon} (4.23)$$

$$\Longrightarrow \qquad e^{-\epsilon} \le \frac{n-i}{n} \frac{q}{p} + \frac{i}{n} \frac{p}{q} \le e^{\epsilon} \tag{4.24}$$

We first bound the left side of the inequality, setting $i = \mu - l$

$$\frac{n-i}{n}\frac{q}{p} + \frac{i}{n}\frac{p}{q} \ge e^{-\epsilon} \tag{4.25}$$

$$\frac{n - (\mu - l)}{n} \frac{q}{p} + \frac{\mu - l}{n} \frac{p}{q} \ge e^{-\epsilon} \tag{4.26}$$

$$\frac{n - (nq - l)}{n} \frac{q}{p} + \frac{nq - l}{n} \frac{p}{q} \ge e^{-\epsilon} \tag{4.27}$$

$$\frac{np+l}{n}\frac{q}{p} + \frac{nq-l}{n}\frac{p}{q} \ge e^{-\epsilon} \tag{4.28}$$

$$q + \frac{l}{n}\frac{q}{p} + p - \frac{l}{n}\frac{p}{q} \ge e^{-\epsilon} \tag{4.29}$$

$$1 - \frac{l}{n} \frac{p - q}{pq} \ge e^{-\epsilon}. \tag{4.30}$$

$$l \le \left[1 - e^{-\epsilon}\right] \frac{npq}{p - q} \tag{4.31}$$

Plugging expression for l one arrives to the bound of q

$$\sqrt{3nq \cdot \ln\frac{2}{\delta}} \le \left[1 - e^{-\epsilon}\right] \frac{npq}{p - q} \tag{4.32}$$

$$\frac{(p-q)^2}{q \cdot p^2} \le \frac{n \left[1 - e^{-\epsilon}\right]^2}{3ln_{\frac{7}{6}}} \tag{4.33}$$

since
$$\frac{(p-q)^2}{p^2} \le 1$$
, then (4.34)

$$\frac{(p-q)^2}{q \cdot p^2} \le \frac{1}{q} \le \frac{n \left[1 - e^{-\epsilon}\right]^2}{3 \ln \frac{2}{\delta}} \tag{4.35}$$

$$q \ge \frac{3ln_{\overline{\delta}}^2}{n\left[1 - e^{-\epsilon}\right]^2} \tag{4.36}$$

In a similar fashion, one arrives to the right side bound

$$i = \mu + l \tag{4.37}$$

$$\frac{l}{n}\frac{p-q}{pq} \le e^{\epsilon} - 1 \tag{4.38}$$

$$\sqrt{3nq \cdot ln^{\frac{2}{\delta}}} \le [e^{\epsilon} - 1] \frac{npq}{p - q} \tag{4.39}$$

$$q \ge \frac{3ln^{\frac{2}{\delta}}}{n\left[e^{\epsilon} - 1\right]^2} \tag{4.40}$$

Since $e^{\epsilon} - 1 \ge 1 - e^{-\epsilon}$, if q bound (4.36) is met, then (4.40) is also met.

The low bounds are symmetrical to the upper bounds, as immediately follows from 4.24 bound for the privacy loss ratio. Hence, the lemma bellow.

Lemma 4.3. The shuffling algorithm M on a collection of n zero bits is (ϵ, δ) -differentially **private** when the flipping frequency q of the randomization procedure \mathcal{R} satisfy (4.36).

$$q \ge \frac{3 \cdot \ln \frac{2}{\delta}}{n \left[1 - e^{-\epsilon}\right]^2}$$

4.2 Properties of an arbitrary distribution of the form 4.9

4.2.1 Symmetry

Consider a zero collection of D_0 of n zero bits, its distribution is binomial $s \sim Bin(n,q)$. The distribution for D_n - a collection of n set bits, is also binomial $s \sim Bin(n,p)$. These two distributions are mirror images of each other, which follows directly from the binomial probabilities for each collection, hence the corollary.

Corollary 4.3. A binomial distribution with success probability q is a mirror image of a binomial distribution with success probability p = 1 - q

Proof.

$$P(s = i|D_0) = \binom{n}{i} q^i p^{n-i}$$

$$P(s = n - i|D_n) = \binom{n}{n-i} p^{n-i} q^i$$

$$\binom{n}{n-i} = \binom{n}{i}$$

$$\Longrightarrow P(s = i|D_0) = P(s = n - i|D_n)$$

This property extends to each D_m per the corollary below.

Corollary 4.4. Each distribution D_m , where $m \leq n/2$, has a symmetrical mirror distribution D_{n-m} . Where probabilities are related as below.

$$P(s=i|D_m) = P(s=n-i|D_{n-m})$$

Proof. Split D_m into two sets r (which contains m set bits), and z (which contains n-m zero bits). The probability $P(s=i|D_m)$ can be written as a sum of conditional probabilities of generating certain number of success from r and z.

$$P(s = i|D_m) = \sum_{j=0}^{i} P(s = j|r)P(s = i - j|z)$$

The collection D_{n-m} again contains two sets - r' with m zero bits, and z' with n-m set bits, which sets have mirror distributions of r and z. Hence

$$P(s = n - i|D_{n-m}) = \sum_{j=0}^{i} P(s = m - j|r')P(s = n - m - (i - j)|z')$$

$$P(s = j|r) = P(s = m - j|r')$$

$$P(s = i - j|z) = P(s = n - m - (i - j)|z')$$

$$\implies \sum_{j=0}^{i} P(s = j|r)P(s = i - j|z) = \sum_{j=0}^{i} P(s = m - j|r')P(s = n - m - (i - j)|z')$$

$$\implies P(s = i|D_m) = P(s = n - i|D_{n-m})$$

4.2.2 Chernoff bounds of an arbitrary distribution

This section proves that the Chernoff bound for zero valued collection is also valid to an arbitrary collection of bits. That is, for any collection of n bits containing m set bits the following holds.

$$P(|s - \mu_m| > t\mu_m) \le 2e^{-\frac{t^2\mu_0}{3}} = 2e^{-\frac{t^2nq}{3}}$$

Proposition 4.2. Chernoff right tail bound for the distribution $P(s = i|D_0)$ holds for any distribution $P(s = i|D_m)$

Proof. Recall that the right distribution tail is bounded by its moment generating function, hence for any D_m

$$P(s > (1+\alpha)\mu_m|D_m) \le \frac{\mathbb{E}(e^{ts}|D_m)}{e^{t(1+\alpha)\mu_m}}$$

$$(4.41)$$

$$\mathbb{E}(e^{ts}|D_m) = (q + pe^t)^m (p + qe^t)^{n-m}$$
(4.42)

$$\Longrightarrow P(s > (1+\alpha)\mu_m|D_m) \le \frac{(q+pe^t)^m(p+qe^t)^{n-m}}{e^{t(1+\alpha)\mu_m}}.$$
(4.43)

Taking the ratio of the right side of the equality for D_0 and D_m

$$\frac{e^{-t(1+\alpha)\mu_0}(p+qe^t)^n}{e^{-t(1+\alpha)\mu_m}(q+pe^t)^m(p+qe^t)^{n-m}} =$$
(4.44)

$$e^{t(1+\alpha)(\mu_m - \mu_0)} \left(\frac{p + qe^t}{q + pe^t}\right)^m \tag{4.45}$$

Chernoff right bound is obtained by choosing $t = ln(1+\alpha)$, at which value the ratio above resolves

to

$$(1+\alpha)e^{(1+\alpha)(\mu_m-\mu_0)} \left(\frac{p+q(1+\alpha)}{q+p(1+\alpha)}\right)^m =$$

$$(1+\alpha)e^{(1+\alpha)m(p-q)} \left(\frac{1+q\alpha}{1+p\alpha}\right)^m =$$

$$(1+\alpha)\left(e^{1+\alpha}e^{p-q}\frac{1+q\alpha}{1+p\alpha}\right)^m$$

Note that since $\alpha > 0$, p > q and p + q = 1, the expression in parenthesis is always greater than e.

$$e^{p-q} > 1$$

$$\frac{1+q\alpha}{1+p\alpha} \ge \frac{1}{1+\alpha}$$

$$\implies e^{1+\alpha}e^{p-q}\frac{1+q\alpha}{1+p\alpha} > \frac{e^{1+\alpha}}{1+\alpha} > e$$

$$\implies (1+\alpha)\left(e^{1+\alpha}e^{p-q}\frac{1+q\alpha}{1+p\alpha}\right)^m > 1$$

$$\implies \frac{\mathbb{E}(e^{ts}|D_0)}{e^{t(1+\alpha)\mu_0}} > \frac{\mathbb{E}(e^{ts}|D_m)}{e^{t(1+\alpha)\mu_m}}$$

Hence, the Chernoff right tail bound for the distribution D_0 also bounds right tail distribution of any D_m .

Proposition 4.3. Chernoff left tail bound of D_n holds for any D_m

Proof. The left tail of D_n distribution is the right tail of D_0 distribution. Should there exists D_m which left tail not bound by the Chernoff bound of D_n , then, by corollary 4.4, there exists a distribution D_{n-m} which right tail is not bound by the Chernoff bound of D_0 , which contradicts proposition 4.2

Since distributions of D_0 and D_n are symmetrical the symmetrical bound of D_0 also applies to D_n . Then by two propositions above, both tails are bound by either D_0 or D_n bounds, which finally gives the desired theorem.

Proposition 4.4. Any distribution D_m is bounded by the Chernoff bound of D_0

$$P(|s - \mu_m| > t\mu_m) \le 2e^{-\frac{t^2\mu_0}{3}} = 2e^{-\frac{t^2nq}{3}}$$
(4.46)

An obvious consequence of 4.5 is

$$P(|s - \mu_m| > t\mu_0) \le 2e^{-\frac{t^2nq}{3}}$$
, because $\mu_0 < \mu_n$ (4.47)

4.2.3 Bounding privacy loss for an arbitrary distribution

Due to the distributional symmetry (corollary 4.4), the reciprocal of the privacy loss ratio $\frac{1}{R(s)}$ behaves like a mirror-image of R(s). It monotonically grows with s, reaches maximum at n, and the corollary 4.2 holds for collection D_n with respect to $\frac{1}{R(s)}$.

Corollary 4.5. For the right deviations $l \ge npq$ from the mean the reciprocal of privacy loss ratio for the collection of n bits is bounded by the reciprocal of the privacy loss ratio for the collection of n set bits

$$\frac{1}{R[\mu_m + l|D_m]} \le \frac{1}{R[\mu_n + (l+2)|D_n]}$$

We now ready to prove the main result of this section

Proposition 4.5. The algorithm M is (ϵ, δ) -differentially private on a set of any n bits if the flipping frequency q obeys the following bound:

$$q \ge \frac{3ln_{\delta}^{2}}{n\left[1 - e^{-\epsilon}\right]^{2}} + \frac{4}{n\left[1 - e^{-\epsilon}\right]}$$
(4.48)

Proof. The privacy loss ratio of D_0 is symmetrical to its reciprocal in D_m

$$P(s = i|D_0) = P(s = n - i|D_n)$$

$$R(|D_0) = \frac{P(i|D_0)}{P(i - 1|D_0)} = \frac{P(n - i|D_0)}{P(n - (i - 1)|D_0)} = \frac{1}{R(n - i|D_m)}$$

Hence, the upper bound of $R(s|D_0)$ is also an upper bound of $\frac{1}{R(s=i|D_m)}$. By corollaries 4.2 and 4.5:

$$R[\mu_m - l|D_m] \le R[\mu_0 - (l+2)|D_0]$$

$$\& \frac{1}{R[\mu_m + l|D_m]} \le \frac{1}{R[\mu_n + (l+2)|D_n]} = R(s - (l+2)|D_0)$$

$$\implies R(\mu_m - l|D_m) \le e^{\epsilon}$$

$$\& \frac{1}{R[\mu_m + l|D_m]} \le e^{\epsilon} , \text{ if } R(\mu_0 - (l+2)|D_0) \le e^{\epsilon}$$

In other words, privacy loss at $R(\mu_0 - (l+2)|D_0)$ bounds the privacy loss ratio and its reciprocal on the interval $[\mu_m - l, \mu_m + l]$ for any D_m .

Now, recall that each distribution of D_m is bounded by 4.47

$$P(|s_m - \mu_m| > tnq) \le 2e^{-\frac{t^2nq}{3}}$$

Setting $t = \sqrt{\frac{3}{nq} ln \frac{2}{\delta}}$ one arrives to

$$P\left(|s_m - \mu_m| > \sqrt{3nq \cdot ln\frac{2}{\delta}}\right) \le \delta \tag{4.49}$$

Which ensures that the number of successes s_m generated by a collection D_m falls into the interval $[\mu_m - l, \mu_m + l]$ with probability $1 - \delta$, where $l = \sqrt{3nq \cdot ln_{\delta}^2}$

$$P(s \in [\mu_m - l, \mu_m + l]) \ge 1 - \delta$$

Following exact same steps that proved lemma 4.3, one receives after trivial manipulation:

$$R(\mu_0 - (l+2)|D_0) \le e^{\epsilon}$$
 (4.50)

$$l+2 \le \left[1 - e^{-\epsilon}\right] \frac{npq}{p-q} \tag{4.51}$$

$$\sqrt{3nq \cdot ln^{\frac{2}{\delta}}} \le \left[1 - e^{-\epsilon}\right] \frac{npq}{p - q} - 2 \tag{4.52}$$

since
$$\frac{p-q}{pq} = \frac{1}{q} - \frac{1}{p} < \frac{1}{q}$$
 (4.53)

$$q < \frac{pq}{p-q} \tag{4.54}$$

$$\sqrt{3nq \cdot ln\frac{2}{\delta}} \le \left[1 - e^{-\epsilon}\right] nq - 2 \tag{4.55}$$

$$3nq \cdot ln\frac{2}{\delta} \le \left[\left[1 - e^{-\epsilon} \right] nq \right]^2 - 4 \left[1 - e^{-\epsilon} \right] nq \tag{4.56}$$

$$q \ge \frac{3ln_{\delta}^{2}}{n[1 - e^{-\epsilon}]^{2}} + \frac{4}{n[1 - e^{-\epsilon}]}$$
 (4.57)

4.3 Sensitivity

One extracts estimate of the number of set bits among n users as follows. Should there be m set bits in the collection, then

$$\mathbb{E}(s) = pm + (n - m)q$$

$$\mathbb{E}(s) = m(p - q) + nq$$

$$\implies \bar{m} = \frac{s - nq}{p - q}$$

Note that variance of the above estimate \bar{m} is

$$VAR(\bar{m}) = \frac{VAR(s)}{(p-q)^2} = \frac{npq}{(p-q)^2}$$

Using expression 4.57 for the flip frequency one receives.

$$VAR(\bar{m}) = \left[\frac{3ln_{\bar{\delta}}^2}{[1 - e^{-\epsilon}]^2} + \frac{4}{[1 - e^{-\epsilon}]} \right] \frac{p}{(p - q)^2}$$
(4.58)

Fro large n the corresponding q becomes very small, which makes $\frac{p}{(p-q)^2}$ approach 1, which in turn makes the variance independent of n. Of corse, most applications compute a proportion of m/n, which reduces deviation significantly

$$VAR(\frac{\bar{m}}{n}) = \left[\frac{3ln_{\bar{\delta}}^2}{[1 - e^{-\epsilon}]^2} + \frac{4}{[1 - e^{-\epsilon}]} \right] \frac{p}{n^2(p - q)^2}$$
(4.59)

$$\sigma(\frac{\bar{m}}{n}) = \frac{\sqrt{p}}{n(p-q)} \sqrt{\frac{3ln^{\frac{2}{\delta}}}{[1-e^{-\epsilon}]^{2}} + \frac{4}{[1-e^{-\epsilon}]}}$$
(4.60)

Local DP achieves deviation of a ratio estimate proportional to $\frac{1}{\sqrt{n}}$. This method allows to drive down deviation proportional to 1/n. When n is large, the flipping frequency q is small and the leading term $\frac{\sqrt{p}}{(p-q)}$ approaches 1. This makes this protocol comparable to central DP, since the measurement error is $O(\frac{1}{n})$ up to a constant factor.

4.4 Adding fake records to the protocol

One obvious limitation revealed by 4.60 is that for low n, the flipping frequency computed by 4.57 could be high enough to make $\frac{\sqrt{p}}{(p-q)}$ significant. We can reduce $\frac{\sqrt{p}}{(p-q)}$ to 1 without changing privacy settings by letting users report randomized fake bits along with their true bits. Suppose k users randomize a fake zero bit and send it to a shuffler along with their randomized true bits. Then the collection of the original bits contains m set bits and n+k-m zero bits. The flipping frequency q is computed from:

$$q = \frac{3ln_{\delta}^{2}}{(n+k)\left[1 - e^{-\epsilon}\right]^{2}} + \frac{4}{(n+k)\left[1 - e^{-\epsilon}\right]}$$

Hence, q can be made arbitrary small by increasing k, which in turn reduces $\frac{\sqrt{p}}{(p-q)}$ to 1. On the other hand, the estimate of m is now:

$$\mathbb{E}(s) = pm + (n+k-m)q$$

$$\mathbb{E}(s) = m(p-q) + (n+k)q$$

$$\implies \bar{m} = \frac{s - (n+k)q}{p-q}$$

The deviation of the estimate is

$$\sigma(\bar{m}) = \sqrt{\frac{VAR(s)}{(p-q)^2}} = \sqrt{\frac{(n+k)pq}{(p-q)^2}}$$
(4.61)

$$= \frac{\sqrt{p}}{p - q} \left[\frac{3ln_{\bar{\delta}}^2}{[1 - e^{-\epsilon}]^2} + \frac{4}{[1 - e^{-\epsilon}]} \right]$$
 (4.62)

Choosing k large enough eliminates the leading term $\frac{\sqrt{p}}{p-q}$, thus reducing deviation without loss of privacy. This is an interesting property of the fake noise, it enables increase of measurement

precision for same privacy settings for the expense of sending more volume to the shuffler. Of corse, adding volume to the mix-net traffic is not free, and at some point adding fake noise becomes infeasible. However, for small number of users, it provides desired precision increase. This useful property will be exploited in the following sections that present industrial strength shuffling protocol for indicator vectors.

5 indicator vector reporting protocols

5.1 Clear Reports Protocol

We now turn to mix-net model protocols suitable for indicator vectors. The first and the simplest protocol of the kind is when users report their indicator vectors in clear, but some fraction of users also send randomly generated indicator vectors to the shuffler.

Assume that the data comes from a universe $\mathcal{X} = [d]$ of d elements. Each individual $i \in [n]$ of n users has a data element $x_i \in \mathcal{X}$. We will write a data entry in bold $\mathbf{x}_i \in \{0,1\}^d$ to be the one-hot vector where x_i is zero in every position except position $\mathbf{x}_i \in \mathcal{X}$, where it is one. Furthermore, we will denote a dataset $\mathbf{x} = \{x_1, \dots, x_n\}$ to be a collection of all users' one-hot vectors. We will have each user donate his data \mathbf{x}_i . Further, we will inject some fake reports $z_j \in \mathcal{X}$ for $j \in [m]$, and corresponding one-hot vector notation \mathbf{z}_j , where each data entry is chosen uniformly at random from \mathcal{X} . We then pass $\{\mathbf{x}_i : i \in [n]\}$ and $\{\mathbf{z}_j : j \in [m]\}$ to an anonymizer that shuffles the data and makes it impossible to determine whether a data record is real or fake. We call this algorithm

$$M(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)=\pi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n,\boldsymbol{z}_1,\ldots,\boldsymbol{z}_m)$$
 where π permutes its elements.

We then compute the privacy loss of such an algorithm M. Equivalently, we could write the output as a histogram over the entire database, as in $M(\mathbf{x}_1, \dots, \mathbf{x}_n) = \sum_{i=1}^n \mathbf{x}_i + \sum_{j=1}^m \mathbf{z}_j$. Note that rather than inject random noise to these counts, as in central differential privacy, we want to consider anonymized differential privacy, where data records are transmitted through a mix net to break any identifiers with each data entry and the server sees the aggregated records in some random order. In this model, there is no trusted server that injects noise to ensure DP. Rather, the user needs to only trust the anonymizer to shuffle real and fake records.

We then consider the privacy loss for a general mechanism M. Consider an outcome $h \in \mathbb{N}^d$, which is a histogram over the full dataset domain and neighboring datasets \boldsymbol{x} and \boldsymbol{x}' .

$$L(h) = \log \left(\frac{\Pr[M(\boldsymbol{x}) = h]}{\Pr[M(\boldsymbol{x}') = h]} \right)$$
(5.1)

If we can bound L(h) by ϵ for any outcome h then we say that M is ϵ -DP. If we can bound L(h) by ϵ with probability at least $1 - \delta$ where the randomness is over $h \sim M(\boldsymbol{x})$, then we say that M is (ϵ, δ) -DP.

We now focus on M being the mechanism described above, which injects m fake reports. We can then write the privacy loss in the following way where we assume, without loss of generality, that \boldsymbol{x} and \boldsymbol{x}' only differ in the first record, i.e. $\boldsymbol{x}_i = \boldsymbol{x}_i'$ for all $i \neq 1$.

$$L(h) = \log \left(\frac{\Pr[x_1 + \sum_{i=2}^{n} \boldsymbol{x}_i + \sum_{j=1}^{m} \boldsymbol{z}_j = h]}{\Pr[x_1' + \sum_{i=2}^{n} \boldsymbol{x}_i + \sum_{j=1}^{m} \boldsymbol{z}_j = h]} \right)$$

$$= \log \left(\frac{\Pr[\sum_{j=1}^{m} \boldsymbol{z}_j = h - \boldsymbol{x}_1 - \sum_{i=2}^{n} \boldsymbol{x}_i]}{\Pr[\sum_{j=1}^{m} \boldsymbol{z}_j = h - \boldsymbol{x}_1' - \sum_{i=2}^{n} \boldsymbol{x}_i]} \right)$$

$$= \log \left(\frac{\Pr[\sum_{j=1}^{m} \boldsymbol{z}_j = h - \sum_{i=1}^{n} \boldsymbol{x}_i]}{\Pr[\sum_{j=1}^{m} \boldsymbol{z}_j = h - \sum_{i=1}^{n} \boldsymbol{x}_i - (\boldsymbol{x}_1' - \boldsymbol{x}_1)]} \right)$$

We denote \hat{h} to be the histogram of the fake records only $\hat{h} = h - \sum_{i=1}^{n} \boldsymbol{x}_{i}$, with respective counts in each histogram bin $\hat{h} = \{\hat{h}_{1}, \hat{h}_{2}, \dots, \hat{h}_{d}\}$. Then the privacy loss ratio can be written as:

$$L(h) = \log \left(\frac{\Pr[\sum_{j=1}^{m} \boldsymbol{z}_j = \hat{h}]}{\Pr[\sum_{j=1}^{m} \boldsymbol{z}_j = \hat{h} + \boldsymbol{x}_1 - \boldsymbol{x}_1')]} \right)$$

The one-hot vectors \boldsymbol{x}_1 and \boldsymbol{x}_1' may only differ in two positions, let these positions be ℓ and ℓ' . \boldsymbol{x}_1 and \boldsymbol{x}_1' must have opposite bit-values in positions i and i' (otherwise these vectors are identical). Without loss of generality assume $x_{1,\ell}=1, x_{1,\ell'}=0$ and $x_{1,\ell}'=0, x_{1,\ell'}'=1$. Adding \boldsymbol{x}_1 adds 1 to h_i , while subtracting \boldsymbol{x}_1' removes 1 from h_ℓ' . Hence, if $\hat{h}=\{\hat{h}_1,\hat{h}_2,\ldots,\hat{h}_\ell,\ldots,\hat{h}_{\ell'},\ldots,\hat{h}_d\}$, then $\hat{h}+\boldsymbol{x}_1-\boldsymbol{x}_1'=\{\hat{h}_1,\hat{h}_2,\ldots,\hat{h}_\ell+1,\ldots,\hat{h}_{\ell'}-1,\ldots,\hat{h}_d\}$.

Further, note that the count the fake bits $\hat{h}_{\ell} = \sum_{j=1}^{m} \mathbf{z}_{j,\ell}$ is a binomial distribution $h_{\ell} \sim \text{Bin}(m, 1/d)$, and the distribution of the fake bit counts across the bins takes the multinomial form $\hat{h} \sim \text{Multinomial}(m, (1/d, \dots, 1/d))$. We then aim to bound the following quantity.

$$\begin{split} L(h) &= \log \left(\frac{\Pr[\sum_{j=1}^{m} \boldsymbol{z}_{j} = \hat{h}]}{\Pr[\sum_{j=1}^{m} \boldsymbol{z}_{j} = \hat{h} + \boldsymbol{x}_{1} - \boldsymbol{x}_{1}']} \right) \\ &= \log \left(\frac{\binom{\hat{h}_{1}, \hat{h}_{2}, \dots, \hat{h}_{\ell}, \dots, \hat{h}_{\ell'}, \dots, \hat{h}_{d}}{\binom{m}{hath_{1}, \hat{h}_{2}, \dots, \hat{h}_{\ell} + 1, \dots, \hat{h}_{\ell'} - 1, \dots, \hat{h}_{d}}} \right) \\ &= \log \left(\frac{\hat{h}_{\ell} + 1}{\hat{h}_{\ell'}} \right) \end{split}$$

It must be stressed that for a given pair of (x_1, x_1') , the corresponding position pair (ℓ, ℓ') where their bits are different is fixed, and the privacy loss only surfaces while observing the counts in

the corresponding histogram bins $(h_{\ell}, h_{\ell'})$. It's entirely possible to see high ratio between counts in some other histogram bins, but it wouldn't contribute to the privacy loss for a concrete pair (x_1, x'_1) . This observation allows us to focus only on a single pair of the histogram bins, ignoring the rest of the histogram as immaterial.

By applying a Chernoff bound, we have a bound (symmetric for the upper and lower tail) for the sum of the fake bits in any bin $\hat{h}_k = \sum_{j=1}^m z_{j,k}, k \in [d]$

$$\Pr\left[\left|\hat{h}_k - \frac{m}{d}\right| > t \frac{m}{d}\right] \le 2e^{-\frac{m}{d} \frac{t^2}{3}}, \quad \text{for } 0 < t < 1.$$

Choose t from the expression below

$$2e^{-\frac{m}{d}\frac{t^2}{3}} = \frac{\delta}{2}$$
$$-\frac{m}{d}\frac{t^2}{3} = \log\frac{\delta}{4}$$
$$\frac{m}{d}\frac{t^2}{3} = \log\frac{4}{\delta}$$
$$t = \sqrt{\frac{3d}{m}\log\frac{4}{\delta}}$$

Using this expression for t turns our Chernoff bound into,

$$Pr\left[\left|\bar{h}_k - \frac{m}{d}\right| > \sqrt{\frac{3m}{d}\log\frac{4}{\delta}}\right] \le \frac{\delta}{2}$$
 (5.2)

Given any pair of the histogram bins at positions (ℓ, ℓ') , the probability of observing large deviation from the mean in at least one bin obeys the unions bound.

$$\Pr\left[\max_{k\in(\ell,\ell')}\left|\hat{h}_k - \frac{m}{d}\right| > \sqrt{\frac{3m}{d}\log\frac{4}{\delta}}\right] \le \delta$$

We then condition on the event that both counts \hat{h}_l or $\hat{h}_{l'}$ fall in the interval $m/d \pm \sqrt{\frac{3m}{d}} \log \frac{4}{\delta}$, which event occurs with probability at least $1 - \delta$. Conditioned on there being the given number of fake records, we can upper bound the privacy ratio L(h)

$$L(h) = \log\left(\frac{\hat{h}_{\ell} + 1}{\hat{h}_{\ell'}}\right) \le \log\left(\frac{m/d + \sqrt{\frac{3m}{d}\log\frac{4}{\delta}} + 1}{m/d - \sqrt{\frac{3m}{d}\log\frac{4}{\delta}}}\right) \le \epsilon \tag{5.3}$$

From the above, we then get a condition on the number of fake records m to ensure DP.

$$\frac{m/d + \sqrt{\frac{3m}{d}\log\frac{4}{\delta}} + 1}{m/d - \sqrt{\frac{3m}{d}\log\frac{4}{\delta}}} \le e^{\epsilon}$$

$$(5.4)$$

$$\Longrightarrow \frac{m}{d}(e^{\epsilon} - 1) - \sqrt{\frac{3m}{d}\log\frac{4}{\delta}}(e^{\epsilon} + 1) - 1 \ge 0 \tag{5.5}$$

$$\Longrightarrow \frac{m}{d}(e^{\epsilon} - 1) - \sqrt{\frac{3m}{d}\log\frac{4}{\delta}}(e^{\epsilon} + 1) \ge 0 \tag{5.6}$$

$$\Longrightarrow \sqrt{\frac{m}{d}} \left(\sqrt{\frac{m}{d}} (e^{\epsilon} - 1) - \sqrt{3 \log \frac{4}{\delta}} (e^{\epsilon} + 1) \right) \ge 0 \tag{5.7}$$

$$\Longrightarrow \sqrt{\frac{m}{d}}(e^{\epsilon} - 1) - \sqrt{3\log\frac{4}{\delta}}(e^{\epsilon} + 1) \ge 0 \tag{5.8}$$

$$\implies \sqrt{\frac{m}{d}} \ge \frac{\sqrt{3\log\frac{4}{\delta}}(e^{\epsilon} + 1)}{e^{\epsilon} - 1} \tag{5.9}$$

$$\Longrightarrow \frac{m}{d} \ge 3\log\frac{4}{\delta} \left(\frac{e^{\epsilon} + 1}{e^{\epsilon} - 1}\right)^2 \tag{5.10}$$

As for the lower bound of L(h), it's met if the upper bound is met.

$$\begin{split} L(h) &= \log \left(\frac{\hat{h}_{\ell} + 1}{\hat{h}_{\ell'}} \right) \ge \log \left(\frac{m/d - \sqrt{\frac{3m}{d} \log \frac{4}{\delta}} + 1}{m/d + \sqrt{\frac{3m}{d} \log \frac{4}{\delta}}} \right) \ge -\epsilon \\ &\Longrightarrow \frac{m/d - \sqrt{\frac{3m}{d} \log \frac{4}{\delta}} + 1}{m/d + \sqrt{\frac{3m}{d} \log \frac{4}{\delta}}} \ge e^{-\epsilon} \\ &\Longrightarrow \frac{m/d + \sqrt{\frac{3m}{d} \log \frac{4}{\delta}}}{m/d - \sqrt{\frac{3m}{d} \log \frac{4}{\delta}} + 1} \le e^{\epsilon} \\ &\Longrightarrow \frac{m/d + \sqrt{\frac{3m}{d} \log \frac{4}{\delta}} + 1}{m/d - \sqrt{\frac{3m}{d} \log \frac{4}{\delta}}} \le e^{\epsilon} \end{split}$$

Note that the measurement standard error in any bin is

$$\sigma = \sqrt{\frac{m}{d}(1 - \frac{1}{d})} = \frac{e^{\epsilon} + 1}{e^{\epsilon} - 1}\sqrt{3\log\frac{4}{\delta}(1 - \frac{1}{d})}$$

It's independent of m, and since the term $1 - \frac{1}{d}$ approaches 1 as d grows, the deviation becomes also independent of d even for moderate number of dimensions. For realistic privacy settings and moderate d (within hundreds), the number of fake records ranges in thousands to tens of thousand

- a very reasonable cost compared to the volume of modern data surveying involving millions of users. Which makes this technique a weapon of choice for small to moderate dimensionality.

tAn obvious disadvantage of this protocol is its infeasibility for large d. If vector dimensions is many thousands, sending millions of fake records through the mix-net becomes prohibitively expensive. Which problem can be resolved by adding bit flipping to both true and fake records.

5.2 Fake records and bit flipping protocol

We now apply the exact same protocol with a bit flipping twist. Users produce n real and m fake reports, but flip bits of either 1-hot vector with frequency q before sending to the shuffler. More formally, a randomization procedure $\mathcal{R}(y)$ flips each bit of an arbitrary 1-hot-vector y with probability q and keeps it the same with probability p = 1 - q. The resulting mechanism M_r becomes a permutation of randomized true and fake records:

$$M_r(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)=\pi(\mathcal{R}(\boldsymbol{x}_1),\ldots,\mathcal{R}(\boldsymbol{x}_n),\mathcal{R}(\boldsymbol{z}_1),\ldots,\mathcal{R}(\boldsymbol{z}_m))$$
 where π permutes its elements.

Without loss of generality assume x_1 is replaced with x_1' to receive a neighboring data set x'. The outcome is a histogram $g \in \mathbb{N}^d$ containing sums of randomized bits in each dimension, and the privacy loss:

$$L(g) = \log \left(\frac{\Pr[M_r(\boldsymbol{x}) = g]}{\Pr[M_r(\boldsymbol{x}') = g]} \right)$$
(5.11)

The combined set $\mathbf{x} + \mathbf{z}$ gives raise to a histogram $h \in \mathbb{N}^d$ received by applying the before discussed mechanism M (clear true records plus fake records). Hence, the $Pr[M_r(x) = g]$ can be written as a sum of probabilities over the domain of h:

$$Pr[M_r(x) = g] = \sum_{h \in \mathbb{N}^d} Pr[M(\mathbf{x}) = h] \cdot Pr[g|h]$$

$$\Longrightarrow L(g) = \log \left(\frac{\sum_{h \in \mathbb{N}^d} Pr[M(\mathbf{x}) = h] \cdot Pr[g|h]}{\sum_{h' \in \mathbb{N}^d} Pr[M(\mathbf{x}') = h'] \cdot Pr[g|h']} \right)$$

Noting that

$$Pr[M(\boldsymbol{x}) = h] = Pr[M(\boldsymbol{x}') = h - \boldsymbol{x}_1 + \boldsymbol{x}_1']$$

And regrouping the privacy loss ratio to have summands with same $Pr[M(\mathbf{x}) = h]$ in identical

positions in numerator and denominator, and applying (8.2) we have:

$$\begin{split} \log \left(\max_{h \in \mathbb{N}^d} \left(\frac{Pr\left[M(\boldsymbol{x}) = h\right] \cdot Pr[g|h]}{Pr\left[M(\boldsymbol{x}') = h - \boldsymbol{x}_1 + \boldsymbol{x}_1'\right] \cdot Pr[g|h - \boldsymbol{x}_1 + \boldsymbol{x}_1']} \right) \right) \geq L(g) \text{ , and } \\ L(g) \geq \log \left(\min_{h \in \mathbb{N}^d} \left(\frac{Pr\left[M(\boldsymbol{x}) = h\right] \cdot Pr[g|h]}{Pr\left[M(\boldsymbol{x}') = h - \boldsymbol{x}_1 + \boldsymbol{x}_1'\right] \cdot Pr[g|h - \boldsymbol{x}_1 + \boldsymbol{x}_1']} \right) \right) \end{split}$$

Probabilities $Pr[M(\mathbf{x}) = h]$ and $Pr[M(\mathbf{x}') = h - \mathbf{x}_1 + \mathbf{x}'_1]$ cancel each other out in each ratio, hence giving us the bounds of the privacy loss over domain of h.

$$\log \left(\max_{h \in \mathbb{N}^d} \left(\frac{Pr[g|h]}{Pr[g|h - \boldsymbol{x}_1 + \boldsymbol{x}_1']} \right) \right) \ge L(g) \ge \log \left(\min_{h \in \mathbb{N}^d} \left(\frac{Pr[g|h]}{Pr[g|h - \boldsymbol{x}_1 + \boldsymbol{x}_1']} \right) \right)$$

Since bits are flipped independently, the probability of finding certain number of bits in a particular histogram bin g_l depends only on how many not-yet-randomized set bits there are in the dimension l, that is the value of h_l . Such independence allows to re-write Pr[g|h] as a product of probabilities for each dimension.

$$Pr[M_r(x) = g] = Pr[\{g_1, g_2, \dots, g_d\} | \{h_1, h_2, \dots, h_d\}] = \prod_{i=1}^d Pr[g_i | h_i]$$

Without loss of generality assume that \mathbf{x}_1 and \mathbf{x}'_1 differ in the first and second positions, that is $\mathbf{x}_{1,1} = 1, \mathbf{x}_{1,2} = 0$ and $\mathbf{x}'_{1,1} = 0, \mathbf{x}'_{1,2} = 1$, then

$$h - \mathbf{x}_{1} + \mathbf{x}'_{1} = \{h_{1} - 1, h_{2} + 1, \dots, h_{d}\}$$

$$\Rightarrow \frac{Pr[g|h]}{Pr[g|h - \mathbf{x}_{1} + \mathbf{x}'_{1}]} = \frac{Pr[\{g_{1}, g_{2}, \dots, g_{d}\} | \{h_{1}, h_{2}, \dots, h_{d}\}]}{Pr[\{g_{1}, g_{2}, \dots, g_{d}\} | \{h_{1} - 1, h_{2} + 1, \dots, h_{d}\}]}$$

$$\Rightarrow \frac{Pr[g|h]}{Pr[g|h - \mathbf{x}_{1} + \mathbf{x}'_{1}]} = \frac{Pr[g_{1}|h_{1}]Pr[g_{2}|h_{2}] \prod_{i=3}^{d} Pr[g_{i}|h_{i}]}{Pr[g_{1}|h_{1} - 1]Pr[g_{2}|h_{2} + 1] \prod_{i=3}^{d} Pr[g_{i}|h_{i}]}$$

$$\Rightarrow \frac{Pr[g|h]}{Pr[g|h - \mathbf{x}_{1} + \mathbf{x}'_{1}]} = \frac{Pr[g_{1}|h_{1}]}{Pr[g_{1}|h_{1} - 1]} \cdot \frac{Pr[g_{2}|h_{2}]}{Pr[g_{2}|h_{2} + 1]}$$

Plugging the above formula into (5.11), the privacy loss bounds become:

$$\begin{split} &\max_{h\in\mathbb{N}^d} \left(\log\left(\frac{Pr[g_1|h_1]}{Pr[g_1|h_1-1]} \cdot \frac{Pr[g_2|h_2]}{Pr[g_2|h_2+1]}\right)\right) \geq L(g) \geq \min_{h\in\mathbb{N}^d} \left(\log\left(\frac{Pr[g_1|h_1]}{Pr[g_1|h_1-1]} \cdot \frac{Pr[g_2|h_2]}{Pr[g_2|h_2+1]}\right)\right) \\ &\Longrightarrow \max_{h\in\mathbb{N}^d} \left(\log\left(\frac{Pr[g_1|h_1]}{Pr[g_1|h_1-1]}\right)\right) + \max_{h\in\mathbb{N}^d} \left(\log\left(\frac{Pr[g_2|h_2]}{Pr[g_2|h_2+1]}\right)\right) \geq L(g) \text{ , and } \\ &L(g) \geq \min_{h\in\mathbb{N}^d} \left(\log\left(\frac{Pr[g_1|h_1]}{Pr[g_1|h_1-1]}\right)\right) + \min_{h\in\mathbb{N}^d} \left(\log\left(\frac{Pr[g_2|h_2]}{Pr[g_2|h_2+1]}\right)\right) \end{split}$$

Basically, the privacy loss is bound by the sum of privacy losses in each of the affected dimensions. Which enables relatively simple path to the bound.

Proposition 5.1. Bit flipping shuffling algorithm M applied to a collection of n true and m fake records is (ϵ, δ) -private when the bit flipping frequency obeys the bound below:

$$q \ge \frac{3ln\frac{4}{\delta}}{(n+m)\left[1 - e^{-\epsilon/2}\right]^2} + \frac{4}{(n+m)\left[1 - e^{-\epsilon/2}\right]}$$
 (5.12)

Proof. We are bounding the product of privacy loss ratios in the affected dimensions to stay between $e^{-\epsilon}$ and e^{ϵ} with probability $1 - \delta$.

$$P\left(e^{\epsilon} \ge \frac{Pr[g_1|h_1]}{Pr[g_1|h_1-1]} \cdot \frac{Pr[g_2|h_2]}{Pr[g_2|h_2+1]} \ge \frac{1}{e^{\epsilon}}\right) \le 1 - \delta$$
(5.13)

We achieve the condition above by bounding the ratio in each dimension separately. Suppose that the following holds

$$P\left(e^{\frac{\epsilon}{2}} \ge \frac{Pr[g_1|h_1]}{Pr[g_1|h_1-1]} \ge \frac{1}{e^{\frac{\epsilon}{2}}}\right) \le 1 - \delta/2 \tag{5.14}$$

$$\&P\left(e^{\frac{\epsilon}{2}} \ge \frac{Pr[g_2|h_2]}{Pr[g_2|h_2+1]} \ge \frac{1}{e^{\frac{\epsilon}{2}}}\right) \le 1 - \delta/2 \tag{5.15}$$

Then, by the union bound, the combined probability of either ratio falling outside its bound is δ , and with probability $1 - \delta$, both ratios stay between $e^{-\frac{\epsilon}{2}}$ and $e^{\frac{\epsilon}{2}}$, hence the product of the ratios is bounded in $[e^{-\epsilon}, e^{\epsilon}]$.

By proposition 4.5 an algorithm M that shuffles results of the bit flipping procedure \mathcal{R} executed over a set of n+m bits is (ϵ, δ) -private if the bit flipping frequency is chosen according to 4.57:

$$q \geq \frac{3ln\frac{2}{\delta}}{(n+m)\left[1-e^{-\epsilon}\right]^2} + \frac{4}{(n+m)\left[1-e^{-\epsilon}\right]}$$

Plugging (ϵ, δ) settings needed to satisfy condition 5.24, one arrives to the bound of the flipping frequency

$$q \ge \frac{3ln^{\frac{4}{\delta}}}{(n+m)\left[1 - e^{-\epsilon/2}\right]^2} + \frac{4}{(n+m)\left[1 - e^{-\epsilon/2}\right]}$$
 (5.16)

The above choice of q introduces sensitivity that closely follows that of the binary case 4.62. The estimate of the sum of randomized bits in each bucket can be extracted as follows. Denote r be a number of the fake set bits (before randomization) in each bucket. r is a binomial random variable with success probability $\frac{1}{d}$.

$$r \sim Bin(m, 1/d)$$

Assuming a number of true set bits in the same bucket is z and the total sum of randomized bits is s, we have the expectation equation below:

$$s = p(z+r) + (n+m-r-z)q (5.17)$$

$$\mathbb{E}(s) = pz + \mathbb{E}(r)p + (n+m)q - \mathbb{E}(r)q - zq \tag{5.18}$$

$$\mathbb{E}(s) = z(p-q) + \mathbb{E}(r)(p-q) + (n+m)q \tag{5.19}$$

$$\Longrightarrow \bar{z} = \frac{s - \frac{m}{d}(p - q) - (n + m)q}{p - q} = \frac{s - (n + m)q}{p - q} - \frac{m}{d}$$
 (5.20)

The variance of the estimate is

$$VAR(\bar{z}) = \frac{VAR(s)}{(p-q)^2} + VAR(r) = \frac{(n+m)pq}{(p-q)^2} + \frac{m}{d}(1-1/d)$$

In practice, it's the percentage of overall population falling into each bucket sought. In which case, the deviation is reduced by n, and the ratio per bucket estimate has deviation as below:

$$\sigma(\frac{\bar{z}}{n}) = \frac{1}{n} \sqrt{\frac{p}{(p-q)^2} \left[\frac{3ln\frac{4}{\delta}}{\left[1 - e^{-\epsilon/2}\right]^2} + \frac{4}{\left[1 - e^{-\epsilon/2}\right]} \right] + \frac{m}{d} (1 - 1/d)}$$
 (5.21)

Expressions 5.20 and 5.21 give insight on how the fake noise machinery may help. If d>>m, then the term $\frac{m}{d}(1-1/d)$ becomes negligible, which reduces sensitivity to the single bit case, and the number of fake records is chosen to minimize $\frac{\sqrt{p}}{p-q}$ enough without incurring large communication cost.

5.3 protocol improvement for moderate n

For moderate n we can further improved q bound when the d >> m. Recall that by proposition 3.1 protection for n records is enough to protect any records above n. Assuming that d >> m and $\frac{m}{d} \to 0$, the fake bits in each bin could be assumed all zeros. Suppose there's only one user record x_1 , that has a bit set in position 1, and it's replaced with another record x_1' that has a set bit in position 2. Then x and x' have configuration bellow:

$$m{x} = egin{cases} 0 & 0 & 0 \ 0 & 0 & \ & \ddots & \ddots & \ 0 & 0 & \ 1 & 0 & \ \end{pmatrix} m{x}' = egin{cases} 0 & 0 \ 0 & 0 \ & \ddots & \ddots \ 0 & 0 \ 0 & 1 \ \end{pmatrix}$$

For that specific setup we can use results for zero-bit collection directly. Again we are bounding the ratio 5.13, which could be re-written in terms of the privacy loss ratio $R(s|D_0)$ for the zero bit collection:

$$P\left(e^{\epsilon} \ge \frac{Pr[g_1|h_1]}{Pr[g_1|h_1-1]} \cdot \frac{Pr[g_2|h_2]}{Pr[g_2|h_2+1]} \ge \frac{1}{e^{\epsilon}}\right) \le 1 - \delta$$
 (5.22)

$$\Longrightarrow P\left(e^{\epsilon} \ge R(s_1|D_0)) \cdot R(s_2|D_0) \ge \frac{1}{e^{\epsilon}}\right) \le 1 - \delta \tag{5.23}$$

Recall that the ratio $R(s|D_0)$ is (ϵ, δ) bounded on a set of m bits if

$$q \geq \frac{3ln\frac{2}{\bar{\delta}}}{m\left[1-e^{-\epsilon}\right]^2}$$

However, the reciprocal $\frac{1}{R(s|D_0)}$ needs less noise

$$q \ge \frac{3ln\frac{2}{\delta}}{m\left[e^{\epsilon} - 1\right]^2}$$

Which we can exploit this fact to make q bound tighter than 5.16 for small n. Consider two positive numbers α and β both chosen from interval [0,1], such that $\alpha + \beta = 1$. Again we bound the ratio in each dimension separately by letting the following hold:

$$P\left(e^{\alpha\epsilon} \ge \frac{Pr[g_1|h_1]}{Pr[g_1|h_1 - 1]} \ge e^{-\beta\epsilon}\right) \le 1 - \delta/2 \tag{5.24}$$

$$\&P\left(e^{\beta\epsilon} \ge \frac{Pr[g_2|h_2]}{Pr[g_2|h_2+1]} \ge e^{-\alpha\epsilon}\right) \le 1 - \delta/2 \tag{5.25}$$

By the union bound, the combined probability of either ratio falling outside its bound is δ , and with probability $1 - \delta$, the product of the ratios bounded in $[e^{-\epsilon}, e^{\epsilon}]$ (since $\alpha + \beta = 1$). Re-writing q bound in each dimension one receives:

$$q \geq \frac{3ln\frac{4}{\delta}}{m\left[1 - e^{-\alpha\epsilon}\right]^2}$$
 & $q \geq \frac{3ln\frac{4}{\delta}}{m\left[e^{\beta\epsilon} - 1\right]^2}$

Setting
$$t = \sqrt{\frac{3\ln\frac{4}{\delta}}{mq}}$$

$$\frac{1}{t} \ge \frac{1}{1 - e^{-\alpha \epsilon}}$$

$$\frac{1}{t} \ge \frac{1}{e^{\beta \epsilon} - 1}$$

$$\Rightarrow$$

$$t \le 1 - e^{-\alpha \epsilon}$$

$$t \le e^{\beta \epsilon} - 1$$

$$\Rightarrow$$

$$e^{\alpha \epsilon} \ge \frac{1}{1 - t}$$

$$e^{\beta \epsilon} \ge t + 1$$

$$\Rightarrow e^{\alpha \epsilon} e^{\beta \epsilon} \ge \frac{t + 1}{1 - t}$$

$$\Rightarrow e^{\epsilon} \ge \frac{t + 1}{1 - t}$$

$$\Rightarrow t \ge \frac{e^{\epsilon} - 1}{e^{\epsilon} + 1}$$

Plugging expression for t into the formula above we receive the bound for q

$$q \ge \frac{3\ln\frac{4}{\delta}}{m} \left(\frac{e^{\epsilon} + 1}{e^{\epsilon} - 1}\right)^2 \tag{5.26}$$

6 Appendix: Ratios of sums: properties

Here we establish some results around bounding and comparing ratios of sums, which will be useful in working with the privacy ratio.

Lemma 6.1. Suppose $a_1, \ldots, a_m, b_1, \ldots, b_m \in \mathbb{R}$ with $b_i > 0$ all i. Then

$$\max\left(\frac{a_1}{b_1},\dots,\frac{a_m}{b_m}\right) \ge \frac{a_1+\dots+a_m}{b_1+\dots+b_m} \ge \min\left(\frac{a_1}{b_1},\dots,\frac{a_m}{b_m}\right).$$

Proof. Write

$$\frac{a_1 + \dots + a_m}{b_1 + \dots + b_m} = \frac{a_1}{b_1} \frac{b_1}{b_1 + \dots + b_m} + \dots + \frac{a_m}{b_m} \frac{b_m}{b_1 + \dots + b_m} = \sum_{i=1}^m \frac{a_i}{b_i} \lambda_i$$

where $\lambda_1 + \cdots + \lambda_m = 1$. Then

$$\frac{a_1 + \dots + a_m}{b_1 + \dots + b_m} = \sum_{i=1}^m \frac{a_i}{b_i} \lambda_i \le \sum_{i=1}^m \max\left(\frac{a_i}{b_i}\right) \lambda_i = \max\left(\frac{a_i}{b_i}\right) \sum_{i=1}^m \lambda_i = \max\left(\frac{a_i}{b_i}\right)$$

The low bound is derived in a similar fashion.

7 Appendix B - proof of zero collection maximality

It is instructive to first consider the case where each record in the collection consists of a single bit, as the expressions simplify considerably.

When L = 1, each original and synthetic record is either 1 or 0, and the transformation R flips each record with probability q. Partition the collection space \mathcal{D}^n according to the number of records that are 1:

$$\mathcal{D}^n = \bigcup_{m=0}^n \mathcal{D}^n_m \quad \text{where} \quad \mathcal{D}^n_m := \bigg\{ \mathbf{x} \in \mathcal{D}^n \, : \, \sum_{i=1}^n I(x_i = 1) = m \bigg\}.$$

For $\mathbf{x} \in \mathcal{D}_m^n$, we have

$$A(\mathbf{x}) = \Phi \circ R(\mathbf{x}) = (A_n(m), n - A_n(m)),$$

where

$$A_n(m) := \sum_{i=1}^n I(R(x_i) = 1) = \sum_{i: x_i = 1} I(R(1) = 1) + \sum_{i: x_i = 0} I(R(0) = 1)$$
$$\sim Bin(m, p) + Bin(n - m, q),$$

a sum of two independent Binomial random variables with support $\{0,\ldots,n\}$. Furthermore, if $\mathbf{x} \in \mathcal{D}_m^n$ and \mathbf{x}, \mathbf{x}' differ in one row, then $\mathbf{x}' \in \mathcal{D}_{m-1}^n \cup \mathcal{D}_{m+1}^n$. Defining

$$\pi_n(s;m) := \frac{\mathsf{P}[A_n(m) = s]}{\mathsf{P}[A_n(m+1) = s]} \quad \text{for } s \in \{0, \dots, n\} \text{ and } m \in \{0, \dots, n-1\},$$

the privacy ratio becomes

$$\pi((s, n-s); \mathbf{x}, \mathbf{x}') = \begin{cases} \pi_n(s; m-1) & x_1 = 1\\ \pi_n(s; m)^{-1} & x_1 = 0 \end{cases}.$$

Hence, in the L=1 case, it suffices to study the behaviour of $\pi_n(s;m)$.

7.1 Recursive relationship over n and m

The conditioning argument (??) yields a recursive relationship that lets us express the distribution of A_n in terms of that of A_{n-1} .

Recall that $A_n(m)$ is the outcome of applying the bit transformation R to n original bits, m of which are 1 and n-m are 0. For $m \ge 1$, we can condition on the outcome of one of the original 1s:

$$A_n(m) \sim Ber(p) + Bin(m-1,p) + Bin(n-m,q) \sim Ber(p) + A_{n-1}(m-1),$$

and so

$$P[A_n(m) = s] = p P[A_{n-1}(m-1) = s-1] + q P[A_{n-1}(m-1) = s].$$
(7.1)

If s = 0, the first term on the RHS is interpreted as 0, and if s = n, the last term is. Similarly, for $m \le n - 1$, conditioning on an original 0,

$$A_n(m) \sim Ber(q) + Bin(m, p) + Bin(n - m - 1, q) \sim Ber(q) + A_{n-1}(m),$$

from which

$$P[A_n(m) = s] = q P[A_{n-1}(m) = s - 1] + p P[A_{n-1}(m) = s].$$
(7.2)

The recursive formulas (7.1) and (7.2) give some insight into how the distribution of $A_n(m)$ changes as n and m vary:

- as n increases by 1, the probabilities shift slightly, with $P[A_n(m) = 0] \leq P[A_{n-1}(m) = 0]$ and $P[A_n(m) = s]$ falling between $P[A_{n-1}(m) = s 1]$ and $P[A_{n-1}(m) = s]$ for each $s \geq 1$ (i.e., the hump of the pmf shifts to the right);
- the distribution of $A_n(m+1)$ is not so different to that of $A_n(m)$, since $P[A_n(m) = s]$ and $P[A_n(m+1) = s]$ both lie between consecutive pmf values of $A_{n-1}(m)$. In particular, this allows us to express the privacy ratio $\pi(s;m)$ in terms of $A_{n-1}(m)$.

Writing $P_{n,m}(s) := P[A_n(m) = s]$, the formulas (7.1) and (7.2) can be expressed as

$$P_{n,m}(s) = pP_{n-1,m-1}(s-1) + qP_{n-1,m-1}(s)$$
 for $0 \le s \le n$, $1 \le m \le n$

and

$$P_{n,m}(s) = qP_{n-1,m}(s-1) + pP_{n-1,m}(s)$$
 for $0 \le s \le n$, $0 \le m \le n-1$.

7.2 The probability ratio

The probabilities in the privacy ratio represent the likelihood of observing the same synthetic collection outcome given two different original collections. In the expression $\pi_n(s;m) = P_{n,m}(s)/P_{n,m+1}(s)$, the probabilities correspond to the distributions of $A_n(m)$ and $A_n(m+1)$, respectively. However, using the decomposition (7.1) and (7.2), we can rewrite π_n in terms of probabilities from the same distribution, which is more convenient to work with.

Applying (7.2) to the numerator and (7.1) to the denominator, we obtain

$$\pi_n(s;m) = \frac{qP_{n-1,m}(s-1) + pP_{n-1,m}(s)}{pP_{n-1,m}(s-1) + qP_{n-1,m}(s)} = \frac{q + p\frac{P_{n-1,m}(s)}{P_{n-1,m}(s-1)}}{p + q\frac{P_{n-1,m}(s)}{P_{n-1,m}(s-1)}}$$

for $s \geq 1$, and $\pi_n(0; m) \equiv p/q$. Define the **probability ratio**

$$\rho_n(s;m) := \frac{P_{n,m}(s)}{P_{n,m}(s-1)} \quad \text{for } 1 \le s \le n$$

a ratio of consecutive probabilities from the distribution of $A_n(m)$, and let $g(x) = \frac{q+px}{p+qx}$, so that $\pi_n = g \circ \rho_{n-1}$. The function g is increasing over x > 0, since

$$g'(x) = \frac{p - q}{(p + qx)^2} > 0.$$

Therefore, properties of monotonicity and extrema established for ρ_n (for all n) carry over to π_n as well.

The probability ratio can be expressed in a concise way using the following recursive property of the distribution of $A_n(m)$.

Lemma 7.1. *For* $n \ge 1$,

$$(s+1)P_{n,m}(s+1) = \left\{ (m-s)\frac{p}{q} + (n-m-s)\frac{q}{p} \right\} P_{n,m}(s) + (n-s+1)P_{n,m}(s-1)$$
 (7.3)

for $0 \le m \le n$ and $0 \le s \le n - 1$ (with $P_{n,m}(-1) := 0$).

Proof. We proceed by induction on n. Suppose first n=1, s=0. If m=1, then $A_1(1) \sim Ber(p)$, and (7.3) holds since $(mp/q+(1-m)q/p)\cdot P_{1,1}(0)=p=P_{1,1}(1)$. The argument is similar when m=0. Next assume (7.3) holds for $A_{n-1}(m)$, and suppose $m\leq n-1$ and $1\leq s\leq n-2$. Observe that

$$\begin{split} \left\{ (m-s)\frac{p}{q} + (n-m-s)\frac{q}{p} \right\} P_{n,m}(s) + (n-s+1)P_{n,m}(s-1) \\ &= \left\{ (m-s)\frac{p}{q} + (n-1-m-s)\frac{q}{p} \right\} \left[qP_{n-1,m}(s-1) + pP_{n-1,m}(s) \right] \\ &+ (n-1-s+1) \left[qP_{n-1,m}(s-2) + pP_{n-1,m}(s-1) \right] + \frac{q}{p}P_{n,m}(s) + P_{n,m}(s-1) \\ &= p \left[\left\{ (m-s)\frac{p}{q} + (n-1-m-s)\frac{q}{p} \right\} P_{n-1,m}(s) + (n-1-s+1)P_{n-1,m}(s-1) \right] \\ &+ q \left[\left\{ (m-(s-1))\frac{p}{q} + (n-1-m-(s-1))\frac{q}{p} \right\} P_{n-1,m}(s-1) \\ &+ (n-1-(s-1)+1)P_{n-1,m}(s-2) \right] \\ &- \left(p + \frac{q^2}{p} \right) P_{n-1,m}(s-1) - qP_{n-1,m}(s-2) + \frac{q^2}{p} P_{n-1,m}(s-1) + qP_{n-1,m}(s) \\ &+ qP_{n-1,m}(s-2) + pP_{n-1,m}(s-1) \\ &= p(s+1)P_{n-1,m}(s+1) + qsP_{n-1,m}(s) + qP_{n-1,m}(s) \\ &= (s+1) \left[qP_{n-1,m}(s) + pP_{n-1,m}(s+1) \right] = (s+1)P_{n,m}(s+1), \end{split}$$

applying the induction hypothesis for s and for s-1 together with (7.2). If s=0, the argument is similar:

$$\left\{ m\frac{p}{q} + (n-m)\frac{q}{p} \right\} P_{n,m}(0) = p \left\{ m\frac{p}{q} + (n-1-m)\frac{q}{p} \right\} P_{n-1,m}(0) + q P_{n-1,m}(0)$$
$$= p P_{n-1,m}(1) + q P_{n-1,m}(0) = P_{n,m}(1).$$

Given m, the probability ratio can be expressed using (7.3):

$$\rho(s+1;m) = \frac{m-s}{s+1} \frac{p}{q} + \frac{n-m-s}{s+1} \frac{q}{p} + \frac{n-s+1}{s+1} \frac{1}{\rho(s;m)}$$
$$\rho(1;m) = m \frac{p}{q} + (n-m) \frac{q}{p}$$

Write

$$\eta(s) := \frac{n-s+1}{s+1} \quad \text{and} \quad \gamma_m(s) := \frac{1}{s+1} \left[(m-s)\frac{p}{q} + (n-m-s)\frac{q}{p} \right],$$

to get

$$\rho(s+1;m) = \eta(s)\rho(s;m)^{-1} + \gamma_m(s); \quad \rho(1;m) = \gamma_m(0).$$
(7.4)

Note also that $\gamma_m(s)$ can be expressed in terms of $\mathsf{E}\,A_n(m) = \mu_m = nq + m(p-q)$:

$$(s+1)\gamma_m(s) = \frac{\mu_m - s}{pq} - n + 2s.$$

The probability ratio has the following properties (TODO):

- decreasing in s for fixed m
- increasing in m for fixed s.

7.3 Bounding the probability ratio

For A to satisfy local differential privacy, the privacy ratio $\pi_n(s;m)$ must be bounded for all s except for a set of small probability with respect to the distribution $P[A_n(m) = \cdot]$. Furthermore, this bound must hold regardless of the original collection described through m.

Fix $\delta > 0$. Given m, we show that the probability ratio for $s \in [\mu_m - \delta, n]$ is bounded by a value $\rho(s^*; 0)$, where s^* is expressed in terms of $\mu_0 - \delta$. Together with the fact that $P_{n,m}(\mu_m - \delta) \le P_{n,0}(\mu_0 - \delta)$ (TODO - is this necessary?), this implies that the bound for local differential privacy, required to hold for all m, can be computed in terms of $A_n(0)$ alone. Note that, since ρ is decreasing in s for fixed m, it is sufficient to consider the probability ratio at the smallest integer value belonging to the interval $[\mu_m - \delta, n]$.

TODO: how to handle the left endpoint. What is the min value of δ ?

For $\delta > 0$ let $s_m(\delta) := \lceil \mu_m - \delta \rceil \vee 0$, and define $R_m(\delta) := \rho(s_m(\delta); m)$. Note that $R_m(\delta) \leq R_m(\delta')$ for $\delta \leq \delta'$, and $s_m(\delta + 1) = (s_m(\delta) - 1) \vee 0$.

Proposition 7.1.

$$R_m(\delta) \le R_0(\delta + 2)$$
 for $m = 0, \dots, n$

provided $\delta > \sigma_0 + 1$, where $\sigma_0^2 = \text{Var } A_n(0) = npq$.

Proof. Fix $\delta > \sigma_0 + 1$. (TODO) If $s_0(\delta) < 2$

Assume $s_0(\delta) \geq 2$, and suppose $R_m(\delta) > R_0(\delta + 2)$ for some m. Then, we have

$$R_0(\delta) \le R_0(\delta + 1) \le R_0(\delta + 2) < R_m(\delta) \le R_m(\delta + 1),$$

implying that

$$R_0(\delta+2)^{-1} = \frac{R_0(\delta+1) - \gamma_0(s_0(\delta+2))}{\eta(s_0(\delta+2))} > \frac{R_m(\delta) - \gamma_m(s_m(\delta+1))}{\eta(s_m(\delta+1))} = R_m(\delta+1)^{-1}$$

via (7.4). Write $s_m := s_m(\delta + 1)$, $s_0 := s_0(\delta + 2)$. Since $R_m(\delta) > R_0(\delta + 1)$ by assumption, we obtain:

$$\{\eta(s_m) - \eta(s_0)\}R_0(\delta + 1) + \{\eta(s_0)\gamma_m(s_m) - \eta(s_m)\gamma_0(s_0)\} > 0.$$
(7.5)

Furthermore,

$$\eta(s_m) - \eta(s_0) = \frac{n - s_m + 1}{s_m + 1} - \frac{n - s_0 + 1}{s_0 + 1} = -\frac{(n+2)(s_m - s_0)}{(s_0 + 1)(s_m + 1)},$$

and

$$\begin{split} &\eta(s_0)\gamma_m(s_m) - \eta(s_m)\gamma_0(s_0) \\ &= \frac{n - s_0 + 1}{s_0 + 1} \cdot \frac{(\mu_m - s_m)/pq - n + 2s_m}{s_m + 1} - \frac{n - s_m + 1}{s_m + 1} \cdot \frac{(\mu_0 - s_0)/pq - n + 2s_0}{s_0 + 1} \\ &= \frac{(n + 2)(s_m - s_0) + (\mu_0 s_m - \mu_m s_0)/pq + (n + 1)[\mu_m - \mu_0 - (s_m - s_0)]/pq}{(s_0 + 1)(s_m + 1)}, \end{split}$$

so (7.5) implies

$$-(n+2)(s_m - s_0)(R_0(\delta + 1) - 1) + \frac{\mu_0(s_m - s_0) - m(p-q)s_0}{pq} + \frac{(n+1)[m(p-q) - (s_m - s_0)]}{pq} > 0.$$
 (7.6)

Now, let $\delta_0 := \delta - \{ \lceil \mu_0 - \delta \rceil - (\mu_0 - \delta) \} = \mu_0 - \lceil \mu_0 - \delta \rceil$, i.e., $\delta_0 = \inf\{\lambda : s_0(\lambda) = s_0(\delta) \}$. Then $s_0(\delta) = s_0(\delta_0) = \mu_0 - \delta_0$, an integer, and $s_m(\delta_0) - s_m(\delta) \in \{0, 1\}$, since $0 \le \delta - \delta_0 < 1$. Consequently, since

$$s_m(\delta_0) - s_0(\delta_0) = \lceil \mu_0 + m(p-q) - \delta_0 \rceil - (\mu_0 - \delta_0) = \lceil m(p-q) \rceil,$$

$$s_m - s_0 = (s_m(\delta) - 1) - (s_0(\delta) - 2) = s_m(\delta) - s_m(\delta_0) + \lceil m(p - q) \rceil + 1$$

 $\in \{ \lceil m(p - q) \rceil, \lceil m(p - q) \rceil + 1 \},$

and

$$\mu_0(s_m - s_0) - m(p - q)s_0 = \mu_0(s_m - s_0) - m(p - q)(s_0(\delta_0) - 2)$$

= $\mu_0[(s_m - s_0) - m(p - q)] + m(p - q)(\delta_0 + 2).$

Applying these identities in (7.6) gives

$$-(n+2)(s_m-s_0)(R_0(\delta+1)-1) + \frac{m(p-q)(\delta_0+2)}{pq} + \frac{n+1-\mu_0}{pq}(m(p-q)-(s_m-s_0)) > 0.$$

Since $s_m - s_0 \ge m(p - q)$,

$$(n+2)(R_0(\delta+1)-1) < \frac{\delta_0 + 2}{pq} \frac{m(p-q)}{s_m - s_0} < \frac{\delta_0 + 2}{pq}.$$

$$(7.7)$$

Next, recall that $R_0(\delta+1) = P_{n,0}(s_0(\delta+1))/P_{n,0}(s_0(\delta+1)-1)$. Since $P_{n,0}(\cdot) = P[Bin(n,q) = \cdot]$,

$$R_0(\delta+1) - 1 = \frac{n - s_0(\delta+1) + 1}{s_0(\delta+1)} \cdot \frac{q}{p} - 1 = \frac{\mu_0 - (\mu_0 - \delta_0 - 1) + q}{p(\mu_0 - \delta_0 - 1)} = \frac{\delta_0 + q + 1}{p(\mu_0 - \delta_0 - 1)}.$$

Hence, substituting this expression in (7.7) yields

$$(\delta_0 + 2)(\mu_0 - \delta_0 - 1) > (n+2)q(\delta_0 + q + 1) > \mu_0(\delta_0 + q + 1)$$

$$\iff -\delta_0^2 - 3\delta_0 + 2\mu_0 - 2 > (1+q)\mu_0$$

$$\iff -\delta_0^2 - 3\delta_0 + npq > 0,$$

which requires that δ_0 lie between the roots of the quadratic equation. In particular,

$$\delta_0 \le -\frac{3}{2} + \frac{1}{2}\sqrt{9 + 4npq} \le -\frac{3}{2} + \frac{3}{2} + \sqrt{npq} = \sqrt{npq}.$$

Finally, since $0 \le \delta - \delta_0 < 1$, we conclude that

$$\delta = \delta_0 + \delta - \delta_0 < \sigma_0 + 1,$$

contradicting our initial choice of δ .

References

[1] A Note on Differential Privacy: Defining Resistance to Arbitrary Side Information. Shiva Prasad Kasiviswanathan Adam Smith [2] Privacy Odometers and Filters: Pay-as-you-Go Composition. Ryan Rogers, Aaron Roth, Jonathan Ullman, Salil Vadhan

8 IGNORE BELOW THIS LINE

Suppose a new 1-bit is added to both collections, then $R_{n+1}(S)$ is derived by conditioning

$$R_{n+1}(S) = \frac{P(S|D \cup 1)}{P(S|D' \cup 1)} = \frac{P(S|D)q + P(S-1|D)p}{P(S|D')q + P(S-1|D')p}$$

By lemma (8.2) and lemma (4.1) we have

$$\frac{P(S-1|D)}{P(S-1|D')} \ge \frac{P(S|D)q + P(S-1|D)p}{P(S|D')q + P(S-1|D')p} \ge \frac{P(S|D)}{P(SD')}$$
(8.1)

$$\Longrightarrow R_n(S-1) \ge R_{n+1}(S) \ge R_n(S) \tag{8.2}$$

$$\Longrightarrow R_n(S) \ge R_{n+1}(S+1) \ge R_n(S+1) \tag{8.3}$$

Suppose R_n is (ϵ, δ) -private. Since R_n is monotonically decreasing with S (lemma (4.1)), there exist two values $\alpha + \beta \leq \delta$, such that R_n is upper bounded on the left at a particular limiting value S_{α}

$$R_n(S_\alpha) \le e^{\epsilon} \text{ and } P_n(S \le S_\alpha) \le \alpha$$
 (8.4)

And it's low bounded on the right at a particular limiting value S_{β}

$$R_n(S_\beta) \ge \frac{1}{e^\epsilon} \text{ and } P_n(S \ge S_\beta) \le \beta$$
 (8.5)

Consider the left (upper) bound first, and recall that according to (8.3)

$$R_n(S_{\alpha}) > R_{n+1}(S_{\alpha} + 1) > R_n(S_{\alpha} + 1)$$

 $R_{n+1}(S_{\alpha}+1)$ is bounded because $R_n(S_{\alpha})$ is bounded per (8.4). Hence, R_{n+1} could only be over the bound at S_{α} , however the cumulative sum of probabilities up to S_{α} is always less for n+1 bits than for n bits.

$$P_{n+1}(S \le S_{\alpha}) \le P_n(S \le S_{\alpha}) \tag{8.6}$$

We shall prove (8.6) in a moment. The important fact is that R_n upper bounds R_{n+1} at the left tail of distribution of S.

Similarly,

As show by Wang, Y. H. (1993). "On the number of successes in independent trials", for any Poisson Binomial distribution, the probability of consecutive values are related as follows

$$P(S)^{2} > P(S-1) \cdot P(S+1)$$

$$\implies \rho(S-1) > \rho(S)$$

$$\implies R(S-1) > R(S)$$

Lemma 8.1. The privacy loss reduces as S increases, reaching its maximum in S = 0 and minimum in S = N.

the privacy loss reduces as S increases, reaching its maximum in S=0 and minimum in S=N.

Note that $\frac{P(S|D)}{P(S-1|D)}$ as a **probability ratio** between adjacent values of S. It's easy to see that privacy loss ratio maximizes when **probability ratio** maximizes.

Recall that p > q and consider two positive values A and B

$$\frac{p \cdot A + q}{p + q \cdot A} \ge \frac{p \cdot B + q}{p + q \cdot B}$$
$$p^2 A + q^2 B \ge p^2 B + q^2 A$$
$$A(p^2 - q^2) \ge B(p^2 - q^2)$$
$$A \ge B$$

The above confirms that the distributions with largest **probability ratio** also exhibit larger privacy loss ratio. Hence we can focus on studying **probability ratio** instead of privacy loss ratio and choose those D that demonstrate sharpest decrease of probabilities in the left tail.

Consider a collection D of N bits, subjected to randomization procedure \mathcal{R} , whereby a bit is flipped with probability q and kept unchanged with probability p = 1 - q. The outcome of \mathcal{R} is a a- sum of bits after randomization. The neighboring set D_m is received form Assuming that D contains m set bits, we consider a privacy loss ratio R_s computed for the outcome s:

$$R_s = \frac{P(s|D)}{P(s-1|D)}$$

consisting of m ones and N-m zeros. Denote probability of number of successes for that collection as P(S|D). The probability ratio at s is given by:

$$R_s = \frac{P(s|D)}{P(s-1|D)}$$

Denote expectation of s as μ :

$$\mu = mp + (N - m)q$$

For simplicity, denote probabilities at s for D as:

$$P(s|D) = P_s$$

It's known that for all $s < \mu$, the ratio R_s is greater than 1 and increasing:

Property 1.

$$R_{s-1} = \frac{P_{s-1}}{P_{s-2}} > R_s = \frac{P_s}{P_{s-1}} \tag{8.7}$$

$$P_{s-1}^2 > P_s P_{s-2} \tag{8.8}$$

Create two collections by adding to D one 1 and one 0. Call them D_1 and D_0 respectively. The probability of observing s from D_1 the is given by:

$$P(s|D_1) = pP_{s-1} + qP_s$$

Similarly for the second collection (with extra 0):

$$P(s|D_0) = qP_{s-1} + pP_s$$

Now consider the probability ratio for the collections D_1 and D_0 collections at some s:

$$R_s(D_1) = \frac{pP_{s-1} + qP_s}{pP_{s-2} + qP_{s-1}}$$
(8.9)

$$R_s(D_0) = \frac{qP_{s-1} + pP_s}{qP_{s-2} + pP_{s-1}}$$
(8.10)

N user bits are subjected to

Lemma 8.2. Suppose $a_1, \ldots, a_m, b_1, \ldots, b_m \in \mathbb{R}$ with $b_i > 0$ all i. Then

$$\max\left(\frac{a_1}{b_1}, \dots, \frac{a_m}{b_m}\right) \ge \frac{a_1 + \dots + a_m}{b_1 + \dots + b_m} \ge \min\left(\frac{a_1}{b_1}, \dots, \frac{a_m}{b_m}\right).$$

Proof. Write

$$\frac{a_1 + \dots + a_m}{b_1 + \dots + b_m} = \frac{a_1}{b_1} \frac{b_1}{b_1 + \dots + b_m} + \dots + \frac{a_m}{b_m} \frac{b_m}{b_1 + \dots + b_m} = \sum_{i=1}^m \frac{a_i}{b_i} \lambda_i$$

where $\lambda_1 + \cdots + \lambda_m = 1$. Then

$$\frac{a_1 + \dots + a_m}{b_1 + \dots + b_m} = \sum_{i=1}^m \frac{a_i}{b_i} \lambda_i \le \sum_{i=1}^m \max\left(\frac{a_i}{b_i}\right) \lambda_i = \max\left(\frac{a_i}{b_i}\right) \sum_{i=1}^m \lambda_i = \max\left(\frac{a_i}{b_i}\right)$$

The low bound is derived in a similar fashion.

9 JUNK

Given the independence

$$Pr[M_r(x) = g] = \sum_{h \in \mathbb{N}^d} Pr[M(\boldsymbol{x}) = h] \cdot Pr[g|h] = \sum_{h \in \mathbb{N}^d} \left(Pr[M(\boldsymbol{x}) = h] \cdot \prod_{i=1}^d Pr[g_i|h_i] \right)$$

$$\implies L(g) = \log \left(\frac{\sum_{h \in \mathbb{N}^d} \left(Pr[M(\boldsymbol{x}) = h] \cdot \prod_{i=1}^d Pr[g_i|h_i] \right)}{\sum_{h' \in \mathbb{N}^d} \left(Pr[M(\boldsymbol{x'}) = h'] \cdot \prod_{i=1}^d Pr[g_i|h'_i] \right)} \right)$$

More formally, the value of g_l is a sum of binomial distributions Where r is the number of set bits (both clear and fake) in the dimension l. This allows us to

The value of g_l distributed as a sum of two binomial variables.

$$g_l \sim Bin(h_l, p) + Bin(n + m - h_l, q)$$

Applying (8.2) gives bounds of R(S)

$$\frac{p \cdot P(S|D) + q \cdot P(S-1|D)}{p \cdot P(S-1|D) + q \cdot P(S|D)} R(S|D) = \frac{p \cdot P(S|D) + q \cdot P(S-1|D)}{p \cdot P(S-1|D) + q \cdot P(S|D)}$$
(9.1)

10 ignore

We study a variety of the shuffling protocols for reporting one-hot vectors from multiple users with respect to privacy, sensitivity and practicality. From a practical standpoint, the cost of shuffling is not zero. Assuming that the data comes from a universe $\mathcal{X} = [d]$ of d elements. Each individual $i \in [n]$ of n users has a data element $x_i \in \mathcal{X}$. We will write a data entry in bold $\mathbf{x}_i \in \{0,1\}^d$ to be the one-hot vector where x_i is zero in every position except position $\mathbf{x}_i \in \mathcal{X}$, where it is one. Furthermore, we will denote a dataset $\mathbf{x} = \{x_1, \dots, x_n\}$ to be a collection of all users' one-hot vectors. We consider multiple mix-net protocols for reporting 1-hot vectors. A simple one would require each user to donate his data \mathbf{x}_i in clear, but, in addition, inject some fake reports $z_j \in \mathcal{X}$ for $j \in [m]$, and corresponding one-hot vector notation \mathbf{z}_j , where each data entry is chosen uniformly at random from \mathcal{X} . We then pass $\{\mathbf{x}_i : i \in [n]\}$ and $\{\mathbf{z}_j : j \in [m]\}$ to an anonymizer that shuffles the data and makes it impossible to determine whether a data record is real or fake. We call it the "clear-fake records" protocol and show that it provides adequate protection with the cost proportional to [d]. Hence if dimensions are not large then the "clear-fake records" protocol is preferred for its simplicity.

When [d] is significant, the cost of sending and shuffling many fake records becomes prohibitive. Another protocol is developed, which parameters are independent of [d]. It's called a "fake and flip" protocol, whereby a user still generates true and fake one-hot report vectors that are both randomized by bit flipping before being sent to the shuffler. This enables adequate protection at reasonable cost. Depending on the data collection setting, various flavors of the "fake and flip" protocol are discussed.

In discussing mathematical properties of the protocols involving randomization we will rely upon results received for a single dimension bit reporting. Which results we provide in the first sections, along with some theoretical result claiming that if a randomization algorithm \mathcal{R} is (ϵ, δ) -private on a dataset of n elements, it's also (ϵ, δ) -private on a dataset of n+1 elements, that is adding more elements to the shuffled set does not reduce privacy. These results are, then, used to develop bounds for each protocol.