Davis Putnam ATP

Shane Aston Spring 2015

Automated Theorem Prover

- Takes in Premises and a Conclusion
- Returns the validity of the argument
- Davis Putnam Algorithm
 - Herbrand's theorem
 - "A formula is valid if and only if its negation is unsatisfiable"*

Davis Putnam Algorithm

- Negate Conclusion
- Convert each statement to CNF
- Turn CNFs into a set of clauses (S)
- Satisfiable(S)
- If True, Argument Invalid
- If False, Argument Valid

boolean Satisfiable(S):

```
if S = {} return true;
```

if $S = \{\{\}\}$ return false

select $L \in lit(S)$;

return Satisfiable(SL) || Satisfiable(SL');

Add-ons

- Subsumption Elimination
 - [A,B] subsumes [A,B,C]
 - remove the subsumed statements
- Pure-Literal Elimination
 - $L \in S AND \sim L \notin S$
 - remove all statements containing L

- Unit Literal
 - [L] ∈ S
 - no need to branch on L and ~L
- Tautological Elimination
 - [A, ~A]
 - [A, ~A, B]

The Program

- Python 2.7
- Command Line Interface
- Flags to determine usage of add-ons
- Hosted on GitHub

Input Formats

"Classic" format:

"New" format:

A implies (N or Q)

 $A \rightarrow (N \vee Q)$

not(N or not A)

~(N v ~A)

A implies Q

A -> Q

Or some combination

CNF

- Putting in CNF is Hard....
- Two approaches:
 - Regular Expressions
 - Wolfram-Alpha

$$A < -> (N \lor Q)$$

$$\sim$$
(N \wedge (Q \vee \sim P) \wedge J) $<->$ A

Regular Expressions

A

- Fast
- Only for simple expressions

- re.match('(\w)\$', line, re.l)
- A <-> ~B
 - m = re.match('(\w+) xnor NOT (\w+)\$', line, re.l)

Wolfram Alpha

- Slow...
 - Multithreading
- Any complexity

- Free Developer API
 - 2000 queries/month
 - Simple HTTP requests
 - Returns XML

Demo!