Machine Learning for Engineering and Science Applications

Introduction to Numerical Optimization
Gradient Descent-1

Need for Numerical Optimization

- Optimization we saw so far was analytical.
- This requires explicit expressions for the objective function in terms of the features (variables).
 - $\square \quad \mathsf{Example} : \mathsf{J}(\mathbf{w}) = w_1^2 + w_2^2 + w_3^2 + 4$
- However, usually we only know the function as a "black" box.
 - In machine learning this "black box" is our Machine Learning Model (e.g. Neural network)
- So, we have to develop numerical (rather than analytical techniques)

Iterative optimization -- Fundamental idea

• We want to drive $\nabla_w J$ to 0 but we do not have an analytical expression.

Iterative Process

- Guess for w
- Run through the black box and find value of J(w)
 - This value may be obtained through a program instead of an expression
- Find $\nabla_w J$
 - we will discuss methods for determining $\nabla_w J$ numerically in later videos
- If $\nabla_w J = 0$, we stop, else we need to take a new guess
 - More precisely, improve our guess
- A very common method for improving guess is called Gradient Descent

Gradient Descent (Scalar case)

- Our task is to improve our guess for w such that we move from a region of higher gradient to a region of lower gradient
- For scalar (i.e. one component) w, this is easy

$$w^{new} = w^{old} - \alpha \left(\frac{dJ}{dw}\right)$$

Gradient Descent (vector case)

For the vector case, we rely on a theorem that says

At any given point the gradient gives the direction of steepest descent

- We will show a quick proof near the end of the video
- The general gradient descent algorithm is

$$w^{new} = w^{old} - \alpha \nabla_w J$$

 α is called the learning rate is chosen by the user

$$J(w) = w_1^2 + w_2^2 + 4$$

$$\nabla_w J(w) = \begin{bmatrix} 2w_1 \\ 2w_2 \end{bmatrix}$$

Gradient Descent gives the iterative formula

$$w_1^{k+1} = w_1^k - \alpha (2w_1^k)$$

$$w_2^{k+1} = w_2^k - \alpha (2w_2^k)$$

We know that the actual minimum is at $\mathbf{w} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ Let us start with an initial guess of $\mathbf{w}^0 = \begin{bmatrix} 3 & 4 \end{bmatrix}^T$ Let us see different cases for various choices of α

$$\alpha = 2, 1, 0.1, 0.5$$

$$J(w) = w_1^2 + w_2^2 + 4$$

$$\nabla_w J(w) = \begin{bmatrix} 2w_1 \\ 2w_2 \end{bmatrix}$$

$$w_1^{k+1} = w_1^k - \alpha (2w_1^k)$$

$$w_2^{k+1} = w_2^k - \alpha (2w_2^k)$$

$$\mathbf{w}^0 = [3 \ 4]^T \qquad \alpha = 2$$

Iteration (k)	w ^k	$\nabla_{w}J=2[\mathbf{w}_{1}\ \mathbf{w}_{2}]$	J	$w^{k+1} = w^k - \alpha \nabla_{\mathbf{w}} \mathbf{J}$
0	[3 4]	[6 8]	29	$[3 \ 4] - 2 * [6 \ 8] = [-9 \ -12]$
1	-[9 12]	-[18 24]	229	[27 36]
2	[27 36]	[54 72]	2029	- [81 108]

$$J(w) = w_1^2 + w_2^2 + 4$$

$$\nabla_w J(w) = \begin{bmatrix} 2w_1 \\ 2w_2 \end{bmatrix}$$

$$\nabla_{w}J(w) = \begin{bmatrix} 2w_1 \\ 2w_2 \end{bmatrix}$$

$$w_1^{k+1} = w_1^k - \alpha \left(2w_1^k \right)$$

$$w_2^{k+1} = w_2^k - \alpha \left(2w_2^k \right)$$

$$\mathbf{w}^0 = [3 \ 4]^T \qquad \alpha = 1$$

Iteration (k)	w ^k	$\nabla_{w}J=2[\mathbf{w}_{1}\ \mathbf{w}_{2}]$	J	$w^{k+1} = w^k - \alpha \nabla_{\mathbf{w}} \mathbf{J}$
0	[3 4]	[6 8]	29	$[3 \ 4] - 1 * [6 \ 8] = [-3 \ -4]$
1	-[3 4]	-[6 8]	29	[3 4]
2	[3 4]	[6 8]	29	[-3 - 4]

$$J(w) = w_1^2 + w_2^2 + 4$$

$$\nabla_w J(w) = \begin{bmatrix} 2w_1 \\ 2w_2 \end{bmatrix}$$

$$w_1^{k+1} = w_1^k - \alpha (2w_1^k)$$

$$w_2^{k+1} = w_2^k - \alpha (2w_2^k)$$

$$\mathbf{w}^0 = [3 \ 4]^T \qquad \alpha = 0.1$$

Iteration (k)	w ^k	$\nabla_{w}J=2[\mathbf{w}_{1}\ \mathbf{w}_{2}]$	J	$w^{k+1} = w^k - \alpha \nabla_{\mathbf{w}} \mathbf{J}$
0	[3 4]	[6 8]	29	$[3 \ 4] - 0.1 * [6 \ 8] = [2.4 \ 3.2]$
1	[2.4 3.2]	[4.8 6.4]	20	[1.92 2.56]
2	[1.92 2.56]	[3.84 5.12]	14.24	[1.536 2.048]
30	[0.0037 0.005]		4.0000	

$$J(w) = w_1^2 + w_2^2 + 4$$

$$\nabla_w J(w) = \begin{bmatrix} 2w_1 \\ 2w_2 \end{bmatrix}$$

$$\nabla_{w} J(w) = \begin{bmatrix} 2w_{1} \\ 2w_{2} \end{bmatrix}$$

$$w_{1}^{k+1} = w_{1}^{k} - \alpha (2w_{1}^{k})$$

$$w_{2}^{k+1} = w_{2}^{k} - \alpha (2w_{2}^{k})$$

$$\mathbf{w}^0 = [3 \ 4]^T \qquad \alpha = 0.5$$

Iteration (k)	w ^k	$\nabla_{w}J=2[\mathbf{w}_{1}\ \mathbf{w}_{2}]$	J	$w^{k+1} = w^k - \alpha \nabla_{\mathbf{w}} \mathbf{J}$
0	[3 4]	[6 8]	29	$[3 \ 4] - 0.5 * [6 \ 8] = [0 \ 0]$
1	[0 0]	[0 0]	4	[0 0]
2	[0 0]	[0 0]	4	[0 0]

Some lessons from the example

- It is possible for the gradient descent algorithm to
 - Diverge
 - Oscillate without diverging or converging
 - Converge slowly
 - Converge rapidly
- All these behaviors can manifest for the sample example depending on the learning rate α
- The choice of α is part of algorithm design
- α is a hyperparameter a parameter that must be set before learning begins

In the next video

Some details of the algorithm will be covered

Proof of the steepest descent property

Stopping criterion

Calculating gradients when there is no analytical expression