In [1]:

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline

import warnings

warnings.filterwarnings('ignore')

data = pd.read csv('creditcard.csv') data.head()

In [2]:

Out[2]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21
0	51435.0	1.197490	- 0.352125	- 0.135904	0.222100	0.231128	1.086617	0.420363	0.391464	0.672499	 0.337999
1	78049.0	0.976047	- 0.289947	1.465321	1.300002	- 1.382887	- 0.479586	- 0.632572	0.064533	0.710743	 0.322829
2	157168.0	- 1.395302	0.478266	- 0.584911	- 1.201527	0.928544	- 0.743618	0.755504	- 0.141397	- 2.118499	 0.282803
	69297.0										
4	144504.0	- 0.312745	- 1.202565	2.249806	- 0.297210	- 0.963389	1.207532	- 0.837776	- 0.057654	1.121421	 0.274386

5 rows × 31 columns

data.shape

(186000, 31)

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 186000 entries, 0 to 185999

Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	Time	186000 non-null	float64
1	V1	186000 non-null	float64
2	V2	186000 non-null	float64
3	V3	186000 non-null	float64
4	V4	186000 non-null	float64
5	V5	186000 non-null	float64
6	V6	186000 non-null	float64
7	V7	186000 non-null	float64
8	V8	186000 non-null	float64

In [3]:

Out[3]:

In [4]:

```
9
   V9
           186000 non-null float64
10 V10
           186000 non-null float64
           186000 non-null float64
11 V11
12 V12
          186000 non-null float64
13 V13
          186000 non-null float64
14 V14
          186000 non-null float64
15 V15
          186000 non-null float64
16 V16
          186000 non-null float64
17 V17
           186000 non-null float64
          186000 non-null float64
18 V18
19 V19
          186000 non-null float64
20 V20
          186000 non-null float64
          186000 non-null float64
21 V21
22 V22
          186000 non-null float64
23 V23
          186000 non-null float64
          186000 non-null float64
24 V24
25 V25
          186000 non-null float64
26 V26
          186000 non-null float64
           186000 non-null float64
27 V27
28 V28
          186000 non-null float64
29 Amount 186000 non-null float64
30 Class
           186000 non-null int64
```

dtypes: float64(30), int64(1)

memory usage: 44.0 MB

data.describe()

In [5]:

Out[5]:

	out[o].						
	Time	V1	V2	V3	V4	V5	
count	186000.000000	186000.000000	186000.000000	186000.000000	186000.000000	186000.000000	186000.00
mean	94829.405134	-0.003211	0.001000	0.000697	-0.000765	0.001546	0.000522
std	47498.820375	1.960298	1.658303	1.510441	1.412797	1.401870	1.342198
min	0.000000	-56.407510	-72.715728	-48.325589	-5.683171	-113.743307	-26.16050
25%	54169.000000	-0.921761	-0.594771	-0.888268	-0.846676	-0.690550	-0.767943
50%	84669.500000	0.012918	0.069063	0.179846	-0.023288	-0.053598	-0.274187
75%	139336.000000	1.313242	0.807190	1.028361	0.740716	0.615143	0.396718
max	172792.000000	2.454930	19.167239	9.382558	16.875344	34.801666	73.301626

8 rows × 31 columns

In [6]:

sns.countplot(x='Class', data=data)

print("Fraud: ", data.Class.sum()/data.Class.count())

Fraud: 0.001586021505376344

Fraud_class = pd.DataFrame({'Fraud': data['Class']})
Fraud_class.apply(pd.value_counts).plot(kind='pie',subplots=True)

array([<AxesSubplot:ylabel='Fraud'>], dtype=object)

fraud = data[data['Class'] == 1]

valid = data[data['Class'] == 0]

fraud.Amount.describe()

In [8]:

In [7]:

Out[7]:

In [9]:

Out[9]:

```
count
         295.000000
         126.596983
mean
         251.386390
std
min
          0.000000
25%
           1.000000
50%
          14.460000
         112.015000
75%
        1809.680000
max
Name: Amount, dtype: float64
                                                                        In [12]:
plt.figure(figsize=(20,20))
plt.title('Correlation Matrix', y=1.05, size=15)
sns.heatmap(data.astype(float).corr(),linewidths=0.1,vmax=1.0,
            square=True, linecolor='white', annot=True)
                                                                       Out[12]:
<AxesSubplot:title={'center':'Correlation Matrix'}>
```

Correlation Ma

Time -	1	0.11-	0.009	90.42	-0.11	0.17	0.061	0.083	0.037	0.008	0.028	-0.25	0.12	0.066	0.099	-0.18	0.011
V1 -	0.11	1	0.013	0.00 1 0	30005	2.0020	80006	8.016	0.002	0.003	0.012	0.0024	9.0074	0.0024	3.0024	9.002	70.01
V2 -	0.0099	D.013	1	0.012	0.007	0.0033	0.002	0.0058	0.0064	0.001	0.0046	0.004	7.0042	0.001	8.0024	0.003	0.002
V3 -	-0.424	0.001	5 0.012	1	0.004	0.0014	0.009	90.029	0.0032	0.006	9.009	3.006	7-0.0 1 0	.0009	1.0074	3.001	0.01
V4 -	-0.110	.0005	2 .007	9 .004€	1	0.0031	0.001	0.0074	0.0030	10002	060064	0.002	3.004€	0.0011	0.0050	.0007	Ø.007
V5 -	0.17-	0.002	30033	0.0011	0.0031	1	0.021	0.049	0.0091	0.003	0.003	1.0024	0.0024	3.001	9.003	0.002	-0.01
V6 -	0.060	.0006	8.002	0.009	0.001	0.021	1	0.023	0.0040	.0002	2.001	3.0034	9.003	0.0014	0.005	3.0043	0.002
V7 -	0.083	0.016	0.0058	0.025	0.0077	0.045	0.023	1	0.024	0.006	0.019	0.008	-0.013	0.0027	0.012	0.0024	0.000
V8 -	0.037	0.0021	0.0064	0.0032	0.003	0.0091	0.004	0.024	1	0.004	3.0074	3.003	9.0067	0.003	1.0094	9.0030	30003
V9 -	0.008	0.003	7.0014	0.0060	10002	060030	70002	2.006	9.004	1 (.0008	6 .004	0.004	0.001	9.007	5.0014	0.003
V10 -	0.028	0.012	0.0044	0.009	3.0064	0.003	0.001	50.019	0.0070	30008	3 1	0.0064	9.0060	10006	9 .014	0.0024	0.007
V11 -	-0.250	0.0024	0.004	J.0067	0.0020	3.0024	0.003	90.008	0.003	90.004	0.0064	1	0.0060	.0007	3004€	0.001	0.005
V12 -	0.12-	0.007	10042	-0.01	0.0046	0.0024	9.003	40.013	0.0067	0.004	9.006	1.0062	1	.0009	07.009	3.0014	0.006
V13 -	0.06€	0.002	3.0010	30009	10014	0.001	9.001	0.0024	0.0034	9.0010	10006	©0047	30009	7 1	0.0011	0.0015	0.001
V14 -	0.099	0.002	9.0024	0.007	3.0057	0.003	9.005	3 0.012	0.0094	9.007	0.014	0.0044	9.009	3.0011	1 (.0009	7.007
V15 -	-0.184	0.002	7 .003i	3.00 1	90007	10.002	0.004	0.0024	0.003	3.0014	9.0020	0.001	0.0013	0.0010	.0009	710	.0002
V16 -	0.011	-0.01	0.002	0.011	0.007	-0.010	0.0024	0.0000	30003	B0034	9.0070	3.005	0.006	0.001	0.0070	30002	9 1
V17 -	0.076	-0.010	0.0084	0.016	0.003€	0.007	0.003	70.021	0.0049	0.005	0.012	0.008	-0.010	0.0037	0.011	0.0014	0.012
V18 -	0.09-	0.001	7.0058	0.0070	90005	D.002	0.003	2.008	3.0014	9.003	3.005	3.001-	0.0060	20008	11.0020	70003	9.002
V19 -	0.029	0.001	3 .0000	50009	1.0010	20002	190010	10009	3.0040	50007	5.001	3.0021	0.0010	.0006	9004	20010	3000
V20 -	-0.05	0.013	0.0032	0.013	0.004	0.022	0.018	0.016	0.021	.0003	060034	0.004	1001	0.001	0.001	0.0024	8.008

```
In [13]:
from sklearn.preprocessing import RobustScaler
rs = RobustScaler()
data['Amount'] = rs.fit transform(data['Amount'].values.reshape(-1, 1))
data['Time'] = rs.fit transform(data['Time'].values.reshape(-1, 1))
                                                                          In [14]:
X = data.drop(['Class'], axis = 1)
Y = data["Class"]
                                                                          In [15]:
from sklearn.model selection import train test split
# Split the data into training and testing sets
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2,
random state = 1)
                                                                          In [16]:
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification report, accuracy score,
precision_score, recall_score, f1_score
from sklearn.metrics import confusion matrix, precision recall curve,
roc auc score
                                                                          In [17]:
def evaluate(Y pred, Y pred prob):
   print("Accuracy: ",accuracy score(Y test, Y pred))
    print("Precision: ",precision score(Y test, Y pred))
    print("Recall: ",recall_score(Y_test, Y pred))
   print("F1-Score: ",f1 score(Y test, Y pred))
   print("AUC score: ",roc auc score(Y test, Y pred))
   print(classification report(Y test, Y pred, target names = ['Normal',
'Fraud'l))
    conf matrix = confusion matrix(Y test, Y pred)
    plt.figure(figsize = (6, 6))
    sns.heatmap(conf matrix, xticklabels = ['Normal', 'Fraud'],
            yticklabels = ['Normal', 'Fraud'], annot = True, fmt ="d");
   plt.title("Confusion matrix")
   plt.ylabel('True class')
   plt.xlabel('Predicted class')
   plt.show()
   p, r, t = precision recall curve(Y test, Y pred prob)
```

```
plt.plot(p, r)
   plt.xlabel('Recall')
    plt.ylabel('Precision')
   plt.title('Precision Recall Curve')
                                                                          In [18]:
#logistic regression
lr = LogisticRegression()
lr.fit(X_train, Y_train)
Y_pred_lr_i = lr.predict(X_test)
                                                                          In [19]:
Y_pred_prob_lr_i = lr.predict_proba(X_test)[:,1]
                                                                          In [20]:
evaluate(Y_pred_lr_i, Y_pred_prob_lr_i)
Accuracy: 0.9991129032258065
Precision: 0.7857142857142857
Recall: 0.676923076923077
```

F1-Score: 0.72727272727272						
AUC score: 0	.8382999658	211723				
	precision	recall	f1-score	support		
Normal	1.00	1.00	1.00	37135		
Fraud	0.79	0.68	0.73	65		
accuracy			1.00	37200		
macro avg	0.89	0.84	0.86	37200		
weighted avg	1.00	1.00	1.00	37200		

In [21]:

random forest model creation rfc = RandomForestClassifier() rfc.fit(X_train, Y_train) # predictions

Y pred_rf_i = rfc.predict(X_test)

Y_pred_prob_rf_i = rfc.predict_proba(X_test)[:,1]

evaluate(Y_pred_rf_i, Y_pred_prob_rf_i)

Accuracy: 0.9993279569892473 Precision: 0.8703703703703 Recall: 0.7230769230769231 F1-Score: 0.7899159663865546 AUC score: 0.8614442108315813

	precision	recall	f1-score	support
Normal	1.00	1.00	1.00	37135
Fraud	0.87	0.72	0.79	65
accuracy			1.00	37200
macro avg	0.93	0.86	0.89	37200
weighted avg	1.00	1.00	1.00	37200

In [22]:

In [23]:

In [24]:

In [25]:

In [26]:

decision tree model creation
dtc = DecisionTreeClassifier()

dtc.fit(X_train, Y_train)

predictions

Y_pred_dt_i = dtc.predict(X_test)

Y_pred_prob_dt_i = dtc.predict_proba(X_test)[:,1]

evaluate(Y_pred_dt_i, Y_pred_prob_dt_i)

Accuracy: 0.9990322580645161
Precision: 0.7101449275362319
Recall: 0.7538461538461538
F1-Score: 0.7313432835820897
AUC score: 0.8766537891891332

	precision	recall	f1-score	support
Normal	1.00	1.00	1.00	37135
Fraud	0.71	0.75	0.73	65
accuracy			1.00	37200
macro avg	0.85	0.88	0.87	37200
weighted avg	1.00	1.00	1.00	37200

In [27]:

#random forest balanced weights

from sklearn.ensemble import RandomForestClassifier

random forest model creation

rfb = RandomForestClassifier(class_weight='balanced')

rfb.fit(X train, Y train)

predictions

Y_pred_rf_b = rfb.predict(X_test)

Y_pred_prob_rf_b = rfb.predict_proba(X_test)[:,1]

evaluate(Y pred rf b, Y pred prob rf b)

Accuracy: 0.999247311827957 Precision: 0.8363636363636363 Recall: 0.7076923076923077 F1-Score: 0.766666666666666 AUC score: 0.8537249743658792

	precision	recall	f1-score	support
Normal	1.00	1.00	1.00	37135
Fraud	0.84	0.71	0.77	65
accuracy			1.00	37200
macro avg	0.92	0.85	0.88	37200
weighted avg	1.00	1.00	1.00	37200

In [28]:

In [29]:

pip install -U imbalanced-learn
Collecting imbalanced-learn

Downloading imbalanced_learn-0.7.0-py3-none-any.whl (167 kB)
Requirement already satisfied, skipping upgrade: numpy>=1.13.3 in
c:\users\revan\anaconda3\lib\site-packages (from imbalanced-learn) (1.19.2)
Requirement already satisfied, skipping upgrade: joblib>=0.11 in
c:\users\revan\anaconda3\lib\site-packages (from imbalanced-learn) (0.17.0)
Requirement already satisfied, skipping upgrade: scikit-learn>=0.23 in
c:\users\revan\anaconda3\lib\site-packages (from imbalanced-learn) (0.23.2)
Requirement already satisfied, skipping upgrade: scipy>=0.19.1 in
c:\users\revan\anaconda3\lib\site-packages (from imbalanced-learn) (1.5.2)
Requirement already satisfied, skipping upgrade: threadpoolctl>=2.0.0 in
c:\users\revan\anaconda3\lib\site-packages (from scikit-learn>=0.23>imbalanced-learn) (2.1.0)
Installing collected packages: imbalanced-learn
Successfully installed imbalanced-learn-0.7.0
Note: you may need to restart the kernel to use updated packages.

In [32]:

from imblearn.over_sampling import SMOTE

In [33]:

smote = SMOTE(random_state=56)
smote_X, smote_Y = smote.fit_resample(X, Y)
In [34]:

sns.countplot(smote_Y)

Out[34]:

In [31]:

X_train, X_test, Y_train, Y_test = train_test_split(smote_X, smote_Y,
test size=0.2, random state=1)

In [36]:

In [35]:

#using smote

lr smote = LogisticRegression()

lr smote.fit(X train, Y train)

Y_pred_lr_smote = lr_smote.predict(X_test)

Y_pred_prob_lr_smote = lr_smote.predict_proba(X_test)[:,1]

In [37]:

In [38]:

 $\verb|evaluate(Y_pred_lr_smote, Y_pred_prob_lr_smote)|\\$

Accuracy: 0.9483993430440752
Precision: 0.9761665758453552
Recall: 0.918948107349209
F1-Score: 0.9466935539948543
AUC score: 0.9483178942932277

	precision	recall	f1-score	support
Normal	0.92	0.98	0.95	37244
Fraud	0.98	0.92	0.95	37038
accuracy			0.95	74282
macro avg	0.95	0.95	0.95	74282
weighted avg	0.95	0.95	0.95	74282

In [39]:

#using randomforest

rf_smote = RandomForestClassifier()

rf_smote.fit(X_train, Y_train)

Y_pred_rf_smote = rf_smote.predict(X_test)

Y_pred_prob_rf_smote = rf_smote.predict_proba(X_test)[:,1]

In [41]:

In [40]:

evaluate(Y pred rf smote, Y pred prob rf smote)

Accuracy: 0.9998788400958509 Precision: 0.999757065349421

Recall: 1.0

F1-Score: 0.999878517918607 AUC score: 0.9998791751691547

	precision	recall	f1-score	support
Normal Fraud	1.00	1.00	1.00	37244 37038
accuracy	1.00	1.00	1.00	74282 74282
weighted avg	1.00	1.00	1.00	74282

In [43]:

In [45]:

In [46]:

#using decision tree

dt_smote = DecisionTreeClassifier()

dt_smote.fit(X_train, Y_train)

Y_pred_dt_smote = dt_smote.predict(X_test)

Y_pred_prob_dt_smote = dt_smote.predict_proba(X_test)[:,1]

evaluate(Y pred dt smote, Y pred prob dt smote)

Accuracy: 0.9985326189386392
Precision: 0.9978430262341934
Recall: 0.9992170203574707
F1-Score: 0.9985295506360705

AUC score: 0.9985345116823332

	precision	recall	f1-score	support
Normal	1.00	1.00	1.00	37244
Fraud	1.00	1.00	1.00	37038
accuracy			1.00	74282
macro avg	1.00	1.00	1.00	74282
weighted avg	1.00	1.00	1.00	74282

In []: