第9讲MapReduce机器学习算法

IDC实验室 华中科技大学计算机学院

- 需要分别实现训练和测试
- 训练过程
 - 假设类别集合C={C₁, C₂, ..., C_N}
 - 需要计算两种概率: N个先验概率,每个term在每类中出现的条件概率

$$P(C_i) = \frac{N_{C_i}}{N}$$

其中 N_c 为训练集中C类文档的个数,N为训练集中总文档的个数

$$P(t \mid c) = \frac{T_{ct} + 1}{\sum_{t' \in V} T_{ct'} + 1} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B}$$

其中: T_{ct} 为单词t在类别c的文档里出现的次数, $\sum_{t \in V} T_{ct}$ 为类别c里单词总数

V为所有单词集合,B为单词集合的大小

・训练先验概率

- 需要编写一个单独的MapReduce Job ,计算结果写入文件
- 实现一个自定义的InputFormat和RecordReader, ,每读取一个文件(实际上不需要读取文件内容),输出<ClassName,1>,其中ClassName为读取的文件所在的类别目录名,<ClassName,1>为Map的输入,Map不做任何处理,直接输出<ClassName,1>
- Map的输出交给Combine处理,Combine的输入为 < ClassName, {1,1,...,1} > ,在 Combine中计算1的个数,所以Combine的输出为 < ClassName, Count > (Count为属于 ClassName类别的文档个数,但是局部的)
- Combine的输出交给Reducer, Reducer的输入为<ClassName,{count1, count2, ..., countn}>,在Reduce里对count1, count2,...,countn求和,就得到了ClassName的总数TotalCount,Reducer的输出为<ClassName,TotalCount>并写到文件
- 该作业主要统计了每种类别文档的总数目,具体概率的计算放在了后面。作业的输出会产生多个文件(取决于Reducer的个数),每个文件里一行的格式为

类名 文档总数

• 训练条件概率

- 需要编写一个单独的MapReduce Job ,计算结果写入文件
- 实现一个自定义的InputFormat和RecordReader,每读取一个文件中的一行(一个单词),输出<<ClassName,Term>,1>,其中key为<ClassName,Term>,ClassName为读取的文件所在的类别目录名,Term为单词,1表示Term在ClassName的类里出现一次
- Map的输出交给Combine处理, Combine的输入<<ClassName,Term>,{1,1, ...,1}>,在 Combine中计算1的个数,所以Combine的输出为<<ClassName,Term>,Count> (Count 为Term在ClassName的类里出现的次数,但是局部的)
- Combine的输出交给Reducer, Reducer的输入为<<ClassName,Term>,{count1,
 count2,...,countn}>,在Reduce里把count1, count2,...,countn求和,就得到了Term在ClassName的类里出现的总次数TotalCount
- Reduce输出<<ClassName,Term>,TotalCount>
- 该作业只统计了每个 < ClassName, Term > 对出现的总次数,具体条件概率计算放在了后面。 作业的输出会产生多个文件(取决于Reducer的个数),每个文件里一行的格式为

类名 单词 出现次数

• 预测

- 预测前将训练得到文件加载到内存里,计算先验概率和每个类别里单词出现的条件概率,可以交给自定义Mapper类和自定义Reducer类的包装类(比如叫Predition类)来处理,在Predition类里定义成类变量来保存这些学习到的概率,这样自定义Mapper类和自定义Reducer类都可以访问到这些概率。保存这些概率的数据结构应该用HashTable,这样可以高效地读取所需的概率值
- 同时在Predition类实现一个静态方法,计算一个文档属于某类的条件概率P(class|doc)(不需要用MapReduce实现)需要计算其中每个单词出现的频率 //文件内容作为一个字符串输入
 - $double\ Predition. conditional Probability For Class (String\ content, String\ class Name);$
- 做好这些准备工作后,实现MapReduce作业

$$c_{\mathsf{map}} = \argmax_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \le k \le n_d} \log \hat{P}(t_k | c) \right]$$

• 预测

MAP

- 每读取一个文件(这里需要把文件内容作为一个整体读取成为一个String,如何做到?),产生<docld,content>作为Map的输入
- 在Map里做

for each class in C

调用 Predition.conditionalProbabilityForClass(String content,String className)

得到 <docId, <ClassName, Prob>>作为Map的输出

end for

- 因此Map的输入为<docId,content>,Map的输出为list<docId,<ClassName,Prob>>

REDUCE

- 输入为<docId,list<ClassName,Prob>>,找到最大的Prob,输出<docId,最大Prob对应的 ClassName>

EVALUATION

- Per class evaluation measures

	Yes(Ground Truth)	No(Ground Truth)	
Yes(Classified)	true positives (tp)	false positives (fp)	
No(Classified)	false negatives (fn)	true negatives (tn)	

$$P = tp/(tp + fp)$$

$$R = tp/(tp + fn)$$

$$F1 = 2PR/(P+R)$$

P(Precision,精度): 被分类为yes的样本中有多少真实类别是yes

R(Recall,精度): 真实类别是yes的样本中

有多少被分为yes

F1: P和R的调和平均

10

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macroaveraging: Compute performance for each class, then average.
- Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

Micro- vs. Macro-Averaging: Example

Class 1

Truth: Truth: no

Classifi 10 10 10 er: yes

Classifi 10 970 er: no

Class 2

	Truth: yes	Truth:
Classifi er: yes	90	10
Classifi er: no	10	890

Micro.Av. Table

	Truth: yes	Truth:
Classifie r: yes	100	20
Classifie r: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83
- Why this difference?

Macroaveraging gives equal weight to each class, whereas microaveraging gives equal weight to each perdocument classification decision.

EVALUATION

- 读取目录,获得每个文档的真实类别
- 读取预测结果文件,获得每个文档的预测类型
- 计算

```
TP=0; TN=0; FP=0; FN=0; for each c in C if(每个文档的真实类别为c and 每个文档的预测类型为c) TP++; else if(每个文档的真实类别为c and 每个文档的预测类型不为c) FN++; else if(每个文档的真实类别不为c and 每个文档的预测类型为c) FP++; else if(每个文档的真实类别不为c and 每个文档的预测类型不为c) TN++; class c 的Precison = TP/(TP + FP); class c 的Recall = TP/(TP + FN) class c 的F1 = 2PR/(P+R) end for 最后分别用Micro-Average和Micro-Average计算总的Precison, Recall, F1
```

Local Aggregation

■ Local Aggregation

影响MapReduce程序执行效率的一个最重要因素就是中间结果的交换,即mapper的结果传给reducer。因此对mapper产生的中间结果进行局部聚集(Local Aggregation) 非常重要。

□对中间结果的局部聚集第一个方法就是Combiner。 它是一个在 MapReduce框架内的通用机制,可以减少mapper产生的中间结果 的数量

□ WordCound程序的伪代码如下所示(没有Combiner):程序1

```
class Mapper
                                        一次读进一个文档, 利用WholeFileInputFormat类
  method Map(docid a, doc d) -
    for all term t E doc d do
       Emit(term t, count 1)
class Reducer
  method Reduce(term t, counts [c1, c2, . . .])
    sum \leftarrow 0
    for all count c \in counts [c1, c2, ...] do
       sum \leftarrow sum + c
    Emit(term t, count sum)
```

□ 对WordCount程序加上Combiner: 程序2

```
class Mapper
  method Map (docid a, doc d)
    for all term t \( \xi \) doc d do
       Emit(term t, count 1)
class Combiner
  method Combine(term t, counts [c1, c2, . . .])
     sum \leftarrow 0
    for all count c \in counts [c1, c2, ...] do
       sum \leftarrow sum + c
     Emit(term t, count sum)
class Reducer
  method Reduce(term t, counts [c1, c2, . . .])
     sum \leftarrow 0
    for all count c \in counts [c1, c2, ...] do
       sum \leftarrow sum + c
     Emit(term t, count sum)
```

- □ Combiner是利用MapReduce API提供的Hook(钩子)。程序员只需要实现 Combiner类的Combine方法,MapReduce框架会自动调用自定义的 Combiner类的Combine方法。
- □ 然而,我们无法控制Combiner的执行。例如,Hadoop不保证Combiner 被应用了多少次,甚至根本不保证它会被应用。在很多场合,这种不确定 性是无法接受的。
- □ Combiner减少了在网络中shuffled的中间数据量,但实际上并没有减少 Mapper首先发出的键值对的数量。
- □ 我们是否可以自己实现和Combiner类似的功能,但是是自己完全可控的?
- □ 这就是In-Mapper Combining设计模式

□ 对WordCount程序加上In-Mapper Combiner: 程序3

class Mapper method Map(docid a, doc d) H ← new AssociativeArray

value是单词出现次数

AssociativeArray可以是一个Java Map,

里面存放是键值对, key是单词 (term),

for all term $t \in doc d do$

 $H\{t\} \leftarrow H\{t\} + 1$

统计整个文档d范围内,t出现的次数

for all term t ∈ H do

Emit(term t, count H{t})

Mapper的输出是<t, t在d中出现的次数>,注意: 这时map输出的<K,V>对比程序1的Mapper输出的
<K,V>对大大减少了,因为此时的t是不重复的,考虑到一些频繁出现的单词如the,In-Mapper
Combiner大大减少了Mapper输出的键值对数量

Reducer的实现和程序1完全一样

- □ 对In-Mapper Combiner可以进一步改进
- □ 回忆下在第4章介绍的Mapper类的run方法

```
//Mapper类的run方法
public void run(Context context) throws IOException, InterruptedException {
    setup(context); //在任务开始运行调用一次setup完成任务的设置
    while (context.nextKeyValue()) {
        map(context.getCurrentKey(), context.getCurrentValue(), context);
    }
    这里会调用客户定义的map方法(多态)
    cleanup(context); //在任务结束运行调用一次cleanup完成任务的清理
}
```

- □ 在Mapper对象的map方法处理每个键值对前, setup方法首先被调用。在所有的键值对被map方法处理完后, cleanup方法被调用。
- □ setup方法就是MapReduce API为我们提供的Hook(钩子),我们可以在我们实现的 Mapper子类里覆盖这个方法,去初始化一个AssociativeArray,例如一个Java Map,保存<t,count>(t为单词,count为其出现次数)。这样我们可以跨map方法的多次调用保存状态,如果每次map调用的输入是一个文档,我们就可以在 AssociativeArray里跨文档保存<t,count>(t为单词,count为其出现次数)
- □ 同理, 我们可以在Mapper子类里覆盖cleanup方法, 在这里输出键值对

□ 对WordCount程序实现改进版In-Mapper Combiner:程序4

class Mapper method Initialize

H ← new AssociativeArray

method Map (docid a, doc d)

for all term $t \in doc d do$

 $H\{t\} \leftarrow H\{t\} + 1$

method Close

for all term $t \in H$ do

Emit(term t, count H{t})

现在是在Initialize方法里初始化AssociativeArray Initialize方法就是setup方法,后面不再特别说明。 这样可以在Map方法的多次调用间保存状态

由于每次Map调用传进来整个文档,因此现在是跨文档进行单词出现次数统计

现在是在Close方法里输出键值对,Close方法就是cleanup方法,后面不再特别说明。t是跨多个文档的不重复的t,因此In-Mapper Combiner进一步大大减少了Mapper输出的键值对数量

Reducer的实现和程序1完全一样

思考:程序4是在什么范围内跨文档统计词频?

一个Split范围内。一个Split由一个Map Task处理, 一个Map Task会实例化一个Mapper对象,运行该 对象的run方法处理这个Split。

- □现在可以在Mapper里实现键值对的Combine,我们不再需要使用MapReduce框架为我们提供的Combiner钩子。
- □ 这是一种MapReduce的设计模式,将其命名为In-Mapper Combiner
- □ 这个设计模式有二个好处:
 - □完全可控。现在程序员可以完全控制Local Aggregation何时发生,如何实现
 - □ 比MapReduce框架为我们提供的Combiner钩子效率更高,可以大大减少Mapper输出的键值对数量。而MapReduce框架为我们提供的Combiner是无法减少Mapper输出的键值对数量的
- □ 这个设计模式的缺点:
 - □依赖MapReduce框架的内部实现
 - □由于要在Split的范围内,去聚合键值对,对内存要求高

Local Aggregation的正确设计

□ 考虑这样一个例子:我们有一个海量数据集,其中输入的key为字符串,输入的value为整数,我们希望计算每个key所对应的value的均值,其基本实现为:程序5

```
class Mapper
          method Map(string t, integer r)
                     Emit(string t, integer r)
class Reducer
          method Reduce(string t, integers [r1, r2, . . .])
                    sum ← 0
                    cnt \leftarrow 0
          for all integer r \in \text{integers} [r1, r2, ...] do
                     sum ← sum + r
                    cnt \leftarrow cnt + 1
                                        Mean(1, 2, 3, 4, 5) \neq Mean(Mean<math>(1, 2), Mean(3, 4, 5))
          ravg ← sum/cnt
                                         因此我们不能直接用Reducer作为Combiner
          Emit(string t, integer ravg)
```

□ 能否这样实现Combiner? 程序6

```
class Mapper
  method Map(string t, integer r)
     Emit(string t, integer r)
class Combiner
  method Combine(string t, integers [r1, r2, . . .])
     sum \leftarrow 0 cnt \leftarrow 0
     for all integer r \in \text{integers} [r1, r2, \ldots] do
       sum \leftarrow sum + r cnt \leftarrow cnt + 1
                                               Combiner输出的key为string, value为键
     Emit(string t, pair (sum, cnt))
                                               值对(sum, cnt)
class Reducer
     method Reduce(string t, pairs [(s1, c1), (s2, c2) . . .])
       sum \leftarrow 0 cnt \leftarrow 0
     for all pair (s, c) \in \text{pairs } [(s1, c1), (s2, c2) \dots] \text{ do}
        sum \leftarrow sum + s cnt \leftarrow cnt + c
                                            看起来非常完美。不幸是,这个程序是错误的。
     ravg ← sum/cnt
     Emit(string t, integer ravg)
                                                                                                   25
```

□ 能否这样实现Combiner? 程序6

```
Combiner的输入输出必须是: (K2, list(V2)) → list(K2, V2)
class Mapper
                                           即输入输出的key类型必须一致,输入输出的value类型必须一
  method Map(string t, integer r)
                                           致。现在其输入的value为Integer,而输出的value为Pair
     Emit(string t, integer r)
class Combiner
  method Combine(string t, integers [r1, r2, . . .])
     sum \leftarrow 0 cnt \leftarrow 0
     for all integer r \in \text{integers } [r1, r2, \ldots] do
       sum \leftarrow sum + r cnt \leftarrow cnt + 1
     Emit(string t, pair (sum, cnt))
class Reducer
     method Reduce(string t, pairs [(s1, c1), (s2, c2) . . .])
       sum \leftarrow 0 cnt \leftarrow 0
     for all pair (s, c) \in \text{pairs } [(s1, c1), (s2, c2) \dots] \text{ do}
       sum \leftarrow sum + s cnt \leftarrow cnt + c
     ravg ← sum/cnt
     Emit(string t, integer ravg)
                                                                                                26
```

□ Combiner的正确实现:程序7

```
class Mapper
                                                          现在Map输出value是pair(r,1)
           method Map(string t, integer r)
                                                          Combine输入value是pairs [(s1, c1), (s2, c2) . . .])
                       Emit(string t, pair(r,1))
class Combiner
           method Combine(string t, pairs [(s1, c1), (s2, c2) . . .])
                       sum \leftarrow 0 cnt \leftarrow 0
           for all pair (s, c) \in \text{pairs } [(s1, c1), (s2, c2) \dots] do
                       sum \leftarrow sum + r \cdot cnt \leftarrow cnt + c
           Emit(string t, pair (sum, cnt))
class Reducer
           method Reduce(string t, pairs [(s1, c1), (s2, c2) . . .])
                       sum \leftarrow 0 cnt \leftarrow 0
           for all pair (s, c) \in \text{pairs } [(s1, c1), (s2, c2) \dots] \text{ do}
                       sum \leftarrow sum + s cnt \leftarrow cnt + c
           ravg ← sum/cnt
           Emit(string t, integer ravg)
                                                                                                        27
```

□ 利用In Mapper Combiner: 程序8

class Mapper

method Initialize

在Mapper对象初始化时,创建二个AssociativeArray S保存string对应值的sum,C保存string对应值的count

S ← new AssociativeArray

C ← new AssociativeArray

method Map(string t, integer r)

$$S\{t\} \leftarrow S\{t\} + r$$

$$C\{t\} \leftarrow C\{t\} + 1$$

计算string对应值的sum, 计算string对应值的count

method Close

for all term $t \in S$ do

Emit(term t, pair $(S\{t\},C\{t\}))$

Reducer的实现和程序7完全一样

Map函数执行完,在关闭Mapper对象时输出键值对 Key是string t, value是键值对 (sum, count)。 这时整个InputSplit处理完

统计单词的共现性

- □在基于文本的机器学习算法中,除了需要统计单词词频 (Word Count)外,统计单词之间的共现性也是经常需要的
- □ 即需要从海量文档里,计算单词共现矩阵M (Co-occurrence Matrices)
- □单词共现矩阵M为n×n的矩阵,n为文档集合里所有单词的并 集的单词个数,m_{ij}为单词W_i和单词W_j在某个上下文共同出现的 次数,这里的上下文可以是相邻、相隔为k个单词(k>1),在同 一个句子,同一个段落、在同一篇文档等等

□ MapReduce实现共现矩阵算法1:程序9

```
class Mapper

method Map (docid a, doc d)

for all term w \in doc d do

for all term u \in Neighbors(w) do

Emit (pair (w, u), count 1)
```

在嵌套的for循环里,只要是二个单词满足Neighbors关系,就输出(pair (w, u), count 1)
Neighbors(w) 取决于具体上下文(二个单词是邻居的具体定义忽略)

```
class Reducer
  method Reduce(pair p, counts [c1, c2, ...])
  s ← 0
  for all count c ∈ counts [c1, c2, ...] do
     s ← s + c
  Emit(pair p, count s)
```

这种方法称为"<mark>Pairs</mark>"方法,因为将(w,u)对作为Mapper的 输出Key

□ MapReduce实现共现矩阵算法2:程序10

```
class Mapper
  method Map (docid a, doc d)
                                   对每个单词w,创建一个AssociativeArray H,这个矩阵为
    for all term w \in doc d do
                                   行矩阵(stripe),这一行的每一列为w的邻居单词出现的次数
      H ← new AssociativeArray
      for all term u \in Neighbors(w) do
        H\{u\} \leftarrow H\{u\} + 1
                             ] 对单词w的每个邻居u,更新H中u列的内容
      Emit(Term w, Stripe H)
                                   输出key为单词w, value为w对应的stripe H
class Reducer
  method Reduce(term w, stripes [H1,H2,H3, . . .])
    for all stripe H \in \underline{\text{stripes } [H1,H2,H3,...]} do
      Sum(H<sub>f</sub>,H) <del>将H合并到H<sub>f</sub></del>
    Emit(term w, stripe H<sub>f</sub>) 将最后输出(w, H<sub>f</sub>) , H<sub>f</sub>为和单词w共现的完整统计
                                                                             32
```

这种方法称为"Stripes"方法,因为将Stripe H作为Mapper的输出Key

统计单词的共现相对频率

- □ 单词共现矩阵M记录的是单词之间的共现次数, 这个共现次数是绝对次数
- □ 统计单词的绝对共现次数的缺点是: 它没有考虑到有些词比其他词 出现得更频繁这一因素。
 - □单词W_i可能与单词W_j共现次数更多,仅仅是因为W_i是一个非常常见的单词(如the)
- □ 更好的度量是将绝对共现次数转换成相对频率,f(wj|wi)

$$f(w_j|w_j) = \frac{N(w_i,w_j)}{\sum_{w'} N(w_i,w')}$$

在上式中,分母为与单词Wi共现的其他单词的共现次数之和,称为单词W的marginal

□如何利用MapReduce计算海量文本文档的单词共现相对频率矩阵R, 其中r_{ii}为单词W_i和单词W_i在某个上下文共同出现的相对频率 ³⁴

□ MapReduce实现共现相对频率矩阵算法:程序11

```
class Reducer
  method Reduce(term w, stripes [H1,H2,H3, . . .])
    H_f \leftarrow \text{new AssociativeArray}
                                         创建另一个Stripe(行向量)H<sub>r</sub>,含义与H<sub>f</sub>类似,不同的
                                         是每个分量保存的是单词w与另外单词u的共现相对频率
    H_r \leftarrow \text{new AssociativeArray}
    for all stripe H \in \text{stripes} [H1,H2,H3,...] do
       Sum(H_f,H)
    //计算相对频率
                                     Vocabulary是所有文档的单词的并集,其大小为一个
                                     Stripe (行向量) 的维度
    marginal ← 0
    for all term u in Vocabulary
                                          计算单词w的marginal
       ifu不等于W
         marginal \leftarrow marginal + H_f\{u\}
       H_r \leftarrow H_f / \text{marginal}
                                         计算H<sub>r</sub>, 其每个分量= H<sub>r</sub>对应分量/marginal
    Emit(term w, stripe H_r)
```

基于"Stripes"方法计算相对频率很简单,只需要修改程序10的Reducer部分,如上所示

- □ 如何基于"Pairs"方法 (程序9) 计算单词相对频率?
- □ "Pairs"方法里,Reducer接受(w_i,w_j)作为key,然后计算(w_i,w_j)的出现次 数,因此没法计算单词w的marginal
- □ 幸运的是,和In Mapper Combiner的设计模式思想类似,我们可以在Reducer的Initialize方法里创建一个数据结构buffer,这个数据结构可以跨reduce方法(也就是跨不同的输入key)将所有的属于该Reducer对象的Partion里的(w_i,w_j)缓存到该buffer里,然后在该buffer里计算每个单词的marginal

Method Summary				
protected void	cleanup(org. apache. hadoop. mapreduce. Reducer. Context context) Called once at the end of the task.			
protected void	reduce(KEYIN key, Iterable <valuein> values, org. apache. hadoop. mapreduce. Reducer. Context context) This method is called once for each key.</valuein>			
void	run(org. apache. hadoop. mapreduce. Reducer. Context context) Advanced application writers can use the run(org. apache. hadoop. mapreduce. Reducer. Context)			
protected void	setup(org. apache. hadoop. mapreduce. Reducer. Context context) Called once at the start of the task.			

- □要基于"Pairs"方法计算共现相对频率,必须做到以下二点:
 - □必须定义 (w_i, w_j) 对的排序: 首先按左字排序,然后按右字排序。基于这样的排序,Reducer很容易check是否和单词 w_i 相邻的所有 (w_i, w_j) 对都已经遇到,从而很容易计算单词 w_i 的marginal。还记得TextPair吗?
 - 口我们必须确保所有左字相同的 (W_i, W_j) 对都被发送到同一个Reducer。即我们必须定义一个只关注左边单词的自定义Partitioner。也就是说,分区器应该只基于左单词 W_i 的哈希进行分区。
- □这个算法确实可以工作,但是它也有缺点:随着语料库的大小增加,词汇量也会增加,可能没有足够的内存来存储为了计算单词wi的marginal而必须cache的所有(wi,wi)对及其计数

- □采用一种设计模式,称为"order inversion",可以极大地节省内存空间。该模式需要使用MapReduce的几种内在机制
- 口该设计模式的关键就是就是将呈现给Reducer的数据进行排序:如果可以让Reducer在看到具体的((w_i , w_j),[cnt1,cnt2])对之前,能先计算出单词 w_i 的 marginal,那么将很快算出(w_i , w_j)的相对频率: (cnt1+cnt2)/ w_i 的marginal

- □如何让Reducer能先算出单词Wi的marginal?
 - □修改Mapper,让map除了输出正常的((w_i, w_j) ,1)对之外,还额外输出 $((w_i, *), 1)$ 对,其目的是为了让Reducer能先算出单词 w_i 的marginal(因此,和 w_i 共同出现的另外一个单词我们不关心,用*表示)
 - □ 利用MapReduce的Combiner或者In Mapper Combiner设计模式,将这些特殊的((w_i , *), 1)对进行局部聚合,得到单词 w_i 的局部marginal,同时也对正常的((w_i , w_i), 1)对进行聚合,得到((w_i , w_i), cnt)
 - 口在将Map输出的键值对送到Reducer前,会根据键对键值对进行排序。 要保证特殊的键值对($(w_i, *)$, cnt)对一定排在正常的((w_i, w_j) , cnt)对之 前。如何做到?定义特殊的TextPair类型
 - 口最后别忘了,必须确保所有左字相同的 (W_i, W_j) 和 $(W_i, *)$ 对都被发送到同一个Reducer

□ "order inversion" 的具体例子

Values	Computation	进入R (为f
[6327, 8514,]	计算marginal: $\sum_{w'} N(\text{dog}, w') = 42908$	
[2,1]	f(cat dog) = 3/42908	
[1]	f(tiger dog) = 1/42908	后面以do 次进入Re
		7
[2,1,1,1]	f(zebra dog) = 5/42908	
[682, …]	计算marginal: $\sum_{w'} N(\text{doge}, w)$	')=1267
	[6327, 8514, ···] [2,1] [1] [2,1,1,1]	[6327, 8514, …] 計算marginal: $\sum_{w'} N(\text{dog}, w') = 42908$ [2,1] $f(\text{cat} \text{dog}) = 3/42908$ [1] $f(\text{tiger} \text{dog}) = 1/42908$ [2,1,1,1] $f(\text{zebra} \text{dog}) = 5/42908$

第一个键值对(第一行)首先 进入Reducer的reduce方法 (为什么)

后面以dog为左字的键值对依 次进入Reducer的reduce方法

以dog为左字的键值对按排序次序处理完了,再开始处理以doge为左字的键值对