Num_k und $Repr_k$

Tutorium 42, #4

Nach dem Tutorium wurde ich darauf hingewiesen, dass ist bei den Beispielen zu Num_k und $Repr_k$ einen Fehler gemacht habe. Dieses PDF soll die beiden Vorgehensweisen noch einmal richtig und mit den selben Beispielen erklären.

1 Num_k

Ist w ein Wort, welches eine Zahl zur Basis k darstellt (z.B. FFF_{16} oder 1001_2), so ist $Num_k(w)$ die Darstellung des Wortes / der Zahl im Dezimalsystem (Basis 10).

1.1 Definition

Sei $w = w' \cdot x$.

- $Num_k(\epsilon) = 0$
- $Num_k(w' \cdot x) = k \cdot Num_k(w') + num_k(x)$,
 - (!) "+" steht hier für die Addition, nicht für irgendeine Konkatenation.
- $num_k(x) = x$

1.2 Beispiel

```
Sei w_1 = 5_8 (5 zur Basis 8).

Num_8(5)

= 8 \cdot Num_8(\epsilon) + num_8(5)

= 8 \cdot 0 + 5

= 5.

Sei w_2 = 234_9 (234 zur Basis 9).

Num_9(234)

= 9 \cdot Num_9(23) + num_9(4)

= 9 \cdot ((9 \cdot Num_9(\epsilon 2)) + num_9(3)) + num_9(4)

= 9 \cdot (9 \cdot (9 \cdot Num_9(\epsilon)) + num_9(2)) + num_9(3)) + num_9(4)

= 9 \cdot ((9 \cdot 2) + 3) + 4
```

```
= (9 \cdot 9 \cdot 2) + (9 \cdot 3) + 4
= 162 + 27 + 4
= 193.
Sei w_3 = B66_{16} (In Hexadezimal gilt B = 11, also w = 11 \cdot 6 \cdot 6 in der Basis 16). Num_{16}(B66)
= 16 \cdot Num_{16}(B6) + num_{16}(6)
= 16 \cdot (16 \cdot Num_{16}(\epsilon B) + num_{16}(6)) + num_{16}(6)
= 16 \cdot (16 \cdot (16 \cdot Num_{16}(\epsilon)num_{16}(B)) + num_{16}(6)) + num_{16}(6)
= 16 \cdot (16 \cdot 11 + 6) + 6
= (16 \cdot 16 \cdot 11) + (16 \cdot 6) + 6
= 2816 + 96 + 6
= 2918
```

$2 Repr_k$

Während Num_k von anderen Systemen in Dezimal umwandelt, ist $Repr_k$ dafür da, eine ein Wort w welches eine Zahl in dezimal darstellt in eine Zahl vom System k umzuwandeln. Um also von Hexadezimal auf binär zu kommen ist $Repr_2(Num_{16}(w))$, die Hintereinanderauführung von Num_{k_1} und $Repr_{k_2}$, nötig.

2.1 Definition

Sei $w = x_{10}$ eine Dezimalzahl die in Basis k umgerechnet werden soll.

- Fall $x < k : repr_k(x) = x$
- Fall $x \ge k : Repr_k(x \text{ div } k) \cdot repr_k(n \text{ mod } k)$
 - (!) "·" steht hier wieder für die Konkatenation
 - (!) In den Beispielen wird anstelle von "x div k" die Darstellung $\frac{x}{k}$ genutzt. Hier soll es das selbe beschreiben, nämlich das Teilen mit Rest $(\frac{74}{10} = 7, \frac{36}{7} = 5)$, in der Klausur und auf den ÜBs bitte nicht so verwenden.

2.2 Beispiele

```
w = 29 \text{ und } k = 3.
Repr_3(29)
= Repr_3(\frac{29}{3}) \cdot repr_3(29 \text{ mod } 3)
= Repr_3(9) \cdot 2
= Repr_3(\frac{9}{3}) \cdot repr_3(9 \text{ mod } 3) \cdot 2
= Repr_3(3) \cdot 0 \cdot 2
= Repr_3(1) \cdot repr_3(0) \cdot 0 \cdot 2
```

$$= repr_3(1) \cdot 0 \cdot 0 \cdot 2$$

$$= 1 \cdot 0 \cdot 0 \cdot 2 = 1002_3$$

$$w = 53 \text{ und } k = 5.$$

$$Repr_5(53)$$

$$= Repr_5(\frac{53}{5}) \cdot repr_5(53 \text{ mod } 5)$$

$$= Repr_5(10) \cdot repr_5(3)$$

$$= Repr_5(\frac{10}{5}) \cdot repr_5(10 \text{ mod } 5) \cdot 3$$

$$= Repr_5(2) \cdot 0 \cdot 3$$

$$= 2 \cdot 0 \cdot 3 = 203_5$$