České vysoké učení technické v Praze Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Bc. Jiří Palas

Studijní program: Otevřená informatika (magisterský)

Obor: Počítačové vidění a digitální obraz

Název tématu: Automatizovaná analýza částic v mikroskopických snímcích

Pokyny pro vypracování:

- 1. Seznamte se se stávajícími metodami pro automatickou detekci a klasifikaci částic v dvourozměrných mikroskopických snímcích.
- 2. Na základě provedené analýzy navrhněte a implementujte vhodný způsob (metodu, algoritmus) pro automatizovaný předvýběr hledaných částic v mikroskopickém snímku. Současně navrhněte a implementujte způsob, jakým může laborant ručně opravit automatizovaně provedený výběr a označit jednotlivé třídy částic.
- 3. Navrhněte atributy (příznaky) popisující částice, které mohou sloužit pro automatizovanou identifikaci různým tříd částic, a implementujte metody pro jejich extrakci.
- 4. Implementujte vhodný klasifikátor (např. K-NN, Bayesův klasifikátor, SVM, ...), který umožní automatizovaně klasifikovat částice do příslušných tříd na základě extrahovaných atributů v dalších mikroskopických snímcích.
- 5. Implementujte statistické metody, které budou následně aplikovány na vybrané částice, pro vypočet požadovaných charakteristik, jako je např. počet částic ve třídách, zda částice tvoří/netvoří shluky, kde se částice nachází v prostoru ad.
- 6. Pro implementaci metod použijte programovací jazyk Java v prostředí platformy NetBeans a využijte knihovnu OpenCV.
- 7. Navržené a implementované metody ověřte na reálných datech a získané výsledky vyhodnoťte. Navrhněte možná další zlepšení.

Seznam odborné literatury:

- [1] Szeliski R. 2010. Computer Vision: Algorithms and Applications (1. vydání). Springer-Verlag New York, Inc., New York, NY, USA.
- [2] Ashbrook A., Thacker N.A. Tutorial: Algorithms for 2-Dimensional Object Recognition. Imaging Science and Biomedical Engineering Division, Medical School, University of Manchester, 1998.

Vedoucí diplomové práce: doc. RNDr. Ing. Marcel Jiřina, Ph.D.

Platnost zadání: do konce letního semestru 2015/2016

L.S.

doc. Dr. Ing. Jan Kybic vedoucí katedry

prof. Ing. Pavel Ripka, CSc. **děkan**

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky

Diplomová práce

Automatizovaná analýza částic v mikroskopických snímcích

Bc. Jiří Palas

Vedoucí práce: doc. RNDr. Ing. Marcel Jiřina, PhD.

Studijní program: Otevřená informatika, Magisterský

Obor: Počítačové vidění a digitální obraz

5. května 2015

Poděkování

Na tomto místě bych rád poděkoval mamince za vaření obědů a večeří během krušných hodin psaní.

Prohlášení

Prohlašuji, že jsem práci vypracoval samostatně a použil jsem pouze podklady uvedené v přiloženém seznamu.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu §60 Zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

Abstract

Abstrakt v angličtině.

Abstrakt

TODO Ještě nějak lépe přeformulovat

Tato práce si klade za cíl návrh a implementaci software zaměřeného na automatizovanou analýzu částic v mikroskopických snímcích. Práce se zabývá analýzou současných metod zpracování obrazu a strojového učení využitelnými pro automatizovanou detekci, klasifikaci a analýzu mikroskopických částic. Na jejím základě je navržen a implementován algoritmus pro automatizovanou detekci a klasifikaci částic. V rámci práce jsou navrženy a implementovány metody vizuální a interaktivní analýzu detekovaných a klasifikovaných částic.

Obsah

1	Úvo	d	1			
	1.1	Motivace	1			
	1.2	Cíle	1			
	1.3	Přehled	1			
	1.4	Elektronová mikroskopie	1			
	1.5	Data	1			
2	Dos	tupné metody	3			
	2.1	Detekce	3			
	2.2	Klasifikace	3			
	2.3	Analýza	3			
3	Imp	lementace	5			
	3.1		5			
	3.2	Klasifikace	5			
		3.2.1 Výběr příznaků	5			
	3.3	Analýza	5			
4	Výs	ledky	7			
		Detekce	7			
		Klasifikace	7			
5	Záv	Závěr				
	5.1	Shrnutí práce	9			
	5.2	Další směřování	9			
A	Sezi	nam použitých zkratek	11			
В	Obs	ah přiloženého CD	13			

xii OBSAH

Seznam obrázků

Seznam tabulek

Úvod

1.1 Motivace

Popsat současný stav věci, Klíčové součásti: detekce, klasifikace, analýza

1.2 Cíle

1.3 Přehled

1.4 Elektronová mikroskopie

Krátký stručný popis jak to funguje co se tam

1.5 Data

Popis dat (obrázků, snímků). Co v nich hledáme? Proč to hledáme?

Dostupné metody

2.1 Detekce

Krátká rešerše vybraných metod.

2.2 Klasifikace

Krátká rešerše vybraných metod.

2.3 Analýza

Implementace

3.1 Detekce

Popis použitého algoritmu detekce.

Metoda detekce kontur (přečíst a zpracovat): Suzuki, S. and Abe, K., Topological Structural Analysis of Digitized Binary Images by Border Following. CVGIP 30 1, pp 32-46 (1985)

K implementaci této metody bylo využito OpenCV.

Co se detekovalo špatně během procesu a jak jsem to optimalizoval. Jak vizualizuji výsledky detekce.

3.2 Klasifikace

3.2.1 Výběr příznaků

3.2.2 Výběr klasifikátoru

Popis použitého algoritmu klasifikace. Klasifikátor KNN. Proč jsem zvolil zrovna KNN a ne třeba SVM. Postup do klasifikátoru. Nastavení parametrů jak se přidávají data Jak jsem se vypořádal s problémem registrace klasifikátoru k obrázku. Jak jsem se vypořádal s problémem ukládání naučeného klasifikátoru. Jak vizualizuji výsledky detekce.

3.3 Analýza

Popis navržených metod hierarchického shlukování.

Výsledky

Zde vyhodnocení použitých algoritmů na 10 testovacích obrázcích. Použité obrázky. Do příloh ve velkém formátu.

4.1 Detekce

Vyhodnocení segmentace. Co se nedetekovalo a mělo detekovat

4.2 Klasifikace

Ukázat vstupní nastavení příkladů na kterých se naučí klasifikátor. Ukázat na pár snímcích jak to dopadlo. Plus vyhodnocení jak to dopadlo. Procentuální vyhodnocení úspěšnosti vybraného klasifikátoru.

Závěr

5.1 Shrnutí práce

Čeho jsem dosáhl.

5.2 Další směřování

Co by se dalo přidat nebo změnit.

Příloha A

Seznam použitých zkratek

API - Application Programming Interface

Příloha B

Obsah přiloženého CD

V této kapitole naleznete obsah CD přiloženého k této diplomové práci.

- readme.txt popis obsahu CD s dalšími informacemi
- pattern/ zdrojové kódy aplikace v jazyce Java
- text/
 - src/ zdrojový text v LaTeXu, včetně obrázků a šablon
 - palasjir_2015dip.pdf text diplomové práce ve formátu PDF