MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction

— Supplementary Material —

Lingwei Dang¹, Yongwei Nie^{1*}, Chengjiang Long², Qing Zhang³ and Guiqing Li¹

¹School of Computer Science and Engineering, South China University of Technology, China ²JD Finance America Corporation, USA

³School of Computer Science and Engineering, Sun Yat-sen University, China

Abstract

In this supplementary material, we provide the loss function used to train the proposed MSR-GCN model. We also describe the detailed structure of MSR-GCN in a table.

1. Loss Function

We use ℓ_2 loss to optimize MSR-GCN. Let the j^{th} joint position in the t^{th} frame at s^{th} scale be $\hat{p}^s_{j,t}$, and the corresponding ground-truth be $p^s_{j,t}$, then the loss function for N training pose sequences each having J^s joints and T frames is written as

$$\mathcal{L}^{s} = \frac{1}{N \times J^{s} \times T} \sum_{n=1}^{N} \sum_{j=1}^{J^{s}} \sum_{t=1}^{T} \|\hat{p}_{j,t}^{s} - p_{j,t}^{s}\|_{2}.$$
 (1)

The above loss is calculated at all S scales and added up to optimize the proposed model, that is,

$$\mathcal{P}^* = \arg\min_{\mathcal{P}} \sum_{s=1}^{S} \lambda^s \mathcal{L}^s, \tag{2}$$

where \mathcal{P} indicates network parameters, and λ denotes hyper parameters and we set them as 1 at all scales.

2. Model Structure

The detailed MSR-GCN model structure is shown in Table 1. As mentioned in the main paper, our proposed approach is composed of three kinds of GCNs, called "Start GCNs", "Descending (D0-D3)/Ascending (A0-A3) GCNs", and "End/Decoding GCNs (E0-E3)".

Module	Layers	Output Size	Operations
	GCL	66 × 64	GCL, A(66×66), W(35×64)
Start GCN	GCLs	66 × 64	2-layer GCLs, $A(66 \times 66)$,
			$W(64 \times 64)$, res-connection
			6-layer GCLs, $A(66 \times 66)$,
D0	GCLs	66×64	$W(64 \times 64)$, res-connection
Downsampling 0	Linear1	36 × 64	linear transformation, $W(66 \times 36)$
	Linear2	36×128	linear transformation, W(66 \times 36)
D1	GCLs	36 × 128	6-layer GCLs, $A(66 \times 66)$,
			$W(64 \times 64)$, res-connection
	Linear1	21 × 128	linear transformation, W(36 \times 21)
Downsampling 1	Linear1	21×128 21×256	linear transformation, $W(38 \times 21)$
	Linearz	21 × 230	6-layer GCLs, $A(21 \times 21)$,
D2	GCLs	21 × 256	
			$W(256 \times 256)$, res-connection
Downsampling 2	Linear1	12 × 256	linear transformation, W(21 \times 12)
	Linear2	12 × 512	linear transformation, W(256 \times 512)
D3	GCLs	12 × 512	6-layer GCLs, A(12 \times 12),
			W(512 \times 512), res-connection
A3	GCLs	12 × 512	6-layer GCLs, A(12 \times 12),
			W(512 \times 5124), res-connection
Upsampling 2	Linear1	21×21	linear transformation, W(12 \times 21)
	Linear2	21×256	linear transformation, $W(512 \times 256)$
A2	GCLs	21 × 256	6-layer GCLs, $A(21 \times 21)$,
			W(256 \times 256), res-connection
Upsampling 1	Linear1	21×36	linear transformation, W(21 \times 36)
	Linear2	256×128	linear transformation, W(256 \times 128)
A1	GCLs	36 × 128	6-layer GCLs, $A(36 \times 36)$,
			W(128 \times 128), res-connection
Upsampling 0	Linear1	66 × 128	linear transformation, W(36 \times 66)
	Linear2	66×64	linear transformation, $W(128 \times 64)$
4.0	CCT	66 64	6-layer GCLs, $A(66 \times 66)$,
A0	GCLs	66×64	$W(64 \times 64)$, res-connection
E0	GCLs	66 × 64	3-layer GCLs, A(66 \times 66),
			$W(64 \times 64)$, res-connection
	GCL	66 × 35	GCL, A(66×66), W(64×35)
E1	GCLs	36 × 128	3-layer GCLs, $A(36 \times 36)$,
			$W(128 \times 128)$, res-connection
	GCL	36 × 35	GCL, A(36 \times 36), W(128 \times 35)
E2	GCLs	21 × 256	3-layer GCLs, $A(21 \times 21)$,
			W(256 \times 256), res-connection
	GCL	21 × 35	GCL, A(21 \times 21), W(256 \times 35)
E3	GCLs	12 × 512	3-layer GCLs, $A(12 \times 12,$
			$W(512 \times 512)$, res-connection
	GCL	12 × 35	GCL, A(12 × 12), W(512 × 35)
			,(-==/,(e-= // 00)

Table 1. Detailed architecture of MSR-GCN.

The most basic buildingblock is Graph Convolution Layer (GCL), which is consist of a graph convolution layer, a batch normalization layer, a tanh activation layer, and a

^{*}Corresponding author: nieyongwei@scut.edu.cn

dropout layer (with rate 0.1). A graph convolution layer has an adjacency matrix ${\cal A}$ and parameters ${\cal W}.$

Each GCN is composed of several GCLs. The size of A and W of these GCLs are shown in the table. We use linear layers for downsampling and upsampling. The size of the parameters in these linear layers are also shown in the table. In the third column of the table, we give the output size of the corresponding layer. We hope with these information the proposed MSR-GCN can be re-implemented by others.