Prüfung 4

Polynome, Logarithmen

16. März 2022

- Für die Prüfung habt ihr 90 Minuten Zeit.
- Bitte alleine arbeiten, d.h. keine Kommunikationsmittel benutzen!
- Eine Seite (A4) mit Notizen und Formeln ist erlaubt, nicht aber der Taschenrechner!
- Der Lösungsweg muss ersichtlich sein, sonst gibts keine Punkte.
- Resultate exakt angeben, d.h. $\sqrt{2}$ und nicht 1.41421.
- 1. (6 Punkte, 1 Punkt pro Teilaufgabe) Überführe folgende Ausdrücke in ein Polynom und bestimme dessen Grad:

a)
$$(x^3 - x) + (x + x^3) - 2(x^3 - x)$$

b) $(x^3 + 2x^2 - x) - (x^3 + x^2 + 24)$
d) $(x^4 - x^3 + x^2 - x + 1)(x + 1)$
e) $x(x + 1)(x - 1)$

d)
$$(x^4 - x^3 + x^2 - x + 1)(x + 1)$$

b)
$$(x^3 + 2x^2 - x) - (x^3 + x^2 + 24)$$

e)
$$x(x+1)(x-1)$$

c)
$$(2x^2+2)(x^3+1)$$

f)
$$(x+2)(x-2)(x^2+4)$$

2. (6 Punkte, 2 Punkte pro Teilaufgabe) Führe folgende Polynomdivisionen durch. Tipp: zwei Aufgaben lassen sich ohne Rest lösen, bei einer Aufgabe bleibt ein Rest übrig.

a)
$$(4x^3 - 2x^2 + 40) : (x+2)$$

b)
$$(x^4 - 1) : (x + 1)$$

c)
$$(x^2 + x + 1) : (x - 1)$$

3. (6 Punkte, 1 Punkt pro Teilaufgabe) Berechne folgende Ausdrücke. Tipp: diese Aufgaben lassen sich ohne Anwendung der Logarithmengesetze lösen!

a)
$$\log_{10}(1\,000\,000)$$

e)
$$\log_b \left(\frac{b}{b^2}\right)$$

b) $\log_2(0.25)$

c)
$$\log_b(b^4)$$

d)
$$\log_3(\sqrt[4]{3})$$

f)
$$\log_c \left(\frac{x^2 + 2x + 1}{(x+1)^2} \right)$$

4. (6 Punkte, 2 Punkte pro Teilaufgabe) Schreibe folgende Terme als einen (1) Logarithmus, also in der Form $(\log(...))$. Die Basis des Logarithmus spielt dabei keine Rolle.

a)
$$\log(ab) + \log(a^2) - \log(a^2b)$$

b)
$$\frac{1}{2}\log(a) - 2\log(ab) + \log(\sqrt{a})$$

c)
$$\frac{1}{2}\log(a^{2n}) - (n+2)\log(a)$$

Viel Erfolg!

Lösungen

- 1. a) 2x, Grad: 1
 - b) $x^2 x 24$, Grad: 2
 - c) $2x^5 + 2x^2 + 2x^3 + 2$, Grad: 5
 - d) $x^5 + 1$, Grad: 5
 - e) $x^3 x$, Grad: 3
 - f) $x^4 16$, Grad: 4
- 2. a) $4x^2 10x + 20$
 - b) $x^3 x^2 + x 1$
 - c) $x+2+\frac{3}{x-1}$
- 3. a) $\log_{10}(10^6) = \underline{6}$
 - b) $\log_2(2^{-2}) = \underline{-2}$
 - c) $\log_b(b^4) = 4$
 - $d) \ \log_3(3^{1/4}) = \frac{1}{\underline{4}}$
 - $e) \log_b(b^{-1}) = \underline{-1}$
 - f) $\log_c(1) = \underline{\underline{0}}$
- 4. a) $\log\left(\frac{aba^2}{a^2b}\right) = \underline{\log(a)}$
 - b) $\log\left(\frac{\sqrt{a}\sqrt{a}}{a^2b^2}\right) = \underline{\log\left(\frac{1}{ab^2}\right)}$
 - c) $\log(\sqrt{a^{2n}}) \log(a^{n+2}) = \log\left(\frac{a^n}{a^n a^2}\right) = \frac{\log\left(\frac{1}{a^2}\right)}{2}$