

SDPL: Shifting-Dense Partition Learning for UAV-View Geo-Localization

Quan Chen, Tingyu Wang, Zihao Yang, Haoran Li, Rongfeng Lu, Yaoqi Sun, Bolun Zheng, Chenggang Yan March 2024

> Домницкий Егор Алексеевич, студент М4130 ИПКН, инженер ФБИТ

Задача Cross-View Matching

- Имеется набор данных: спутниковая или аэрофотосъемка географических или рукотворных объектов
- Беспилотное средство (воздушное или наземное) оснащено оптической моноили стереосистемой камер и получает видеопоток
- В режиме реального времени или отсроченно необходимо распознать объекты в кадре (т.е. получить геотег/идентификатор объекта в поле зрения или ограниченной области)

SUES-200 Cross-view Image Matching Benchmark

Принципы Cross-View representation learning

- Большая разница в визуальных признаках между платформами: зависимость от угла наблюдения, освещения, повороты, смещение, масштаб
- Handmade дескрипторы и статистические подходы не обеспечивают устойчивую дистинктивность/схожесть
- Подход DL: выучиваем кроссдоменный инвариант, общее латентное пространство (Classification, Metric Learning)

(a) Ground Image

(b) Matching Satellite Image (c) Unmatching Satellite Image

Референсные модели (Drone<>Satellite)

- CVM Net (Hu et al, IEEE Conference on CV and PR, 2018)
 CNN + NetVLAD + Soft margin ranking loss
- SAFA (Shi et al, Neural Information Processing Systems, 2019)
 CNN + извлечение Spatial Aware Embedding (макспул по каналам и генерация маски важности) + Triplet loss
- LCM (Ding et al, Remote Sensing 2020)
 ResNet + FC + Cls, cross entropy loss, cosine distance (все более ранние работы + бейзлайны бенчмарков похожи)
- <u>CVFT (Shi et al. AAAI 2020)</u>
 CNN + Cross domain feature alignment (regression, cross-view feature transport) + Triplet loss

Референсные модели (Drone<>Satellite)

- <u>FSRA (Dai et al. IEEE Transactions 2021)</u>
 ViT-s + Feature Segmentation and Region Alignment (FSRA)
 Сегментация областей при помощи хитмапа, сравнение фич из агрегированных областей, Triplet Loss
- LPN (Wang et al, IEEE Transactions 2022)
 CNN+Square Partition Strategy (далее), cross entropy loss
- MBF (Zhu et al, Sensors 2023)
 Фьюжн ResNet признаков с BERT эмбеддингами описания в ViT, cross entropy + triplet loss
- MCCG (Shen et al, IEEE Transactions 2023)
 ConvNeXt + кросс пространственные свертки + triplet loss между эмбеддингами и cross entropy loss для классификации

Local Partition Network (Wang et al)

ИІТМО

- Идея вдохновлена принципом фокусировки зрения: распознаваемый объект находится в "фокусе", но окружение также задает необходимый контекст
- Хотим явно фокусироваться на окружении
- Как сайд-эффект: устойчивость к повороту

SDPL: Shifting-Dense Partition Learning for UAV-View Geo-Localization

Local Partition Network (Wang et al)

Local Partition Network (Wang et al)

		Univer	rsity-1652	2
Method	Drone	→ Satellit	te Satellite	$e \rightarrow Drone$
	R@1	AP	R@1	AP
Instance Loss [2]	58.49	63.31	71.18	58.74
Contrastive Loss [23]	52.39	57.44	63.91	52.24
Triplet Loss ($M = 0.3$) [57]	55.18	59.97	63.62	53.85
Triplet Loss $(M = 0.5)$ [57]	53.58	58.60	64.48	53.15
Soft Margin Triplet Loss [9]	53.21	58.03	65.62	54.47
Ours (w/o Google)	74.18	77.39	85.16	73.68
Ours	75.93	79.14	86.45	74.79
Ours (w/ CVUSA distractors)	70.61	73.53	-	_

Method	Publication	Backbone	CVUSA				
Method			R@1	R@5	R@10	R@Top1%	
CVFT [7]	AAAI'20	VGG16	61.43	84.69	90.94	99.02	
SAFA [1]	NIPS'19	VGG16	89.84	96.93	98.14	99.64	
Ours	-	VGG16	79.69	91.70	94.55	98.50	
Ours	-	ResNet-50	85.79	95.38	96.98	99.41	
CVFT [7] + Ours	-	VGG16	68.20	88.00	92.69	99.30	
SAFA [1] + Ours	-	VGG16	92.83	98.00	98.85	99.78	

Анализ LPN

TABLE V
ABLATION STUDY ON ROTATING IMAGES DURING INFERENCE ON UNIVERSITY-1652.

Rotatio	n Angle	Drone -	→ Satellite	Satellite	\rightarrow Drone
Query	Gallery	R@1	AP	R@1	AP
0°	0°	75.93	79.14	86.45	74.79
16°	0°	75.64	78.86	85.16	72.78
45°	0°	72.04	75.62	85.16	72.27
67°	0°	70.39	74.09	85.73	73.06
90°	0°	68.80	72.67	86.31	75.31
180°	0°	70.76	74.47	85.45	74.03
204°	0°	69.92	73.68	84.45	72.22
270°	0°	69.06	72.49	86.73	75.12
317°	0°	72.29	75.87	84.17	71.85
32°	75°	73.19	76.69	83.17	66.41
216°	87°	69.54	73.27	83.45	65.29

1

Is LPN robust to the shifted query image?

Shifting-Dense Partition (Chen et al)

- Увеличение числа разбиений, начиная с 4, не приводит к улучшению качества в LPN
- Можно постепенно увеличивать область "фокуса", накладывая базовые разбиения
- Для того, чтобы сделать модель устойчивой к смещениям центра - можно на этапе обучения извлекать разбиения со сдвигом

Shifting-Dense Partition (Chen et al)

Анализ SDPL

		University-1652 [9]					
Method	Publication	Drone→S	atellite	Satellite→	Satellite→Drone		
		Recall@1	AP	Recall@1	AP		
Instance Loss [9]	ACMMM'2020	59.69	64.80	73.18	59.40		
Soft Margin Triplet Loss [57]	CVPR'2018	54.77	59.93	66.87	55.19		
LCM [15]	Remote Sens'2020	66.65	70.82	79.89	65.38		
LPN [11]	TCSVT'2021	77.71	80.80	90.30	78.78		
SDPL [‡] (w. ResNet-50)	-	82.57	85.08	88.73	80.79		
SDPL (w. ResNet-50)	<u> </u>	85.25	87.48	88.45	79.79		
MCCG [34](w. ConvNeXt)	TCSVT'2023	89.28	91.01	94.29	89.29		
Swin-B [52]	CVPR'2021	84.15	86.62	90.30	83.55		
FSRA [18]	TCSVT'2021	84.51	86.71	88.45	83.37		
SwinV2-B [56]	CVPR'2022	86.99	89.02	91.16	85.77		
Dai <i>et al</i> . [58]	TIP'2023	82.22	84.78	87.59	81.49		
MBF [‡] [10]	Sensors'2023	89.05	90.61	93.15	88.17		
SDPL (w. SwinV2-B)	=	90.16	91.64	93.58	89.45		

Анализ SDPL (SUES - 200)

			Drone→	Satellite				
Mathad	150n	n	200n	n	250r	n	300r	n
Method	Recall@1	AP	Recall@1	AP	Recall@1	AP	Recall@1	AP
SUES-200 [21]	55.65	61.92	66.78	71.55	72.00	76.43	74.05	78.26
LCM [15]	43.42	49.65	49.42	55.91	54.47	60.31	60.43	65.78
LPN [II]	61.58	67.23	70.85	75.96	80.38	83.80	81.47	84.53
FSRA [18]	68.25	73.45	83.00	85.99	90.68	92.27	91.95	93.46
MBF [10]	85.62	88.21	87.43	90.02	90.65	92.53	92.12	93.63
MCCG [34]	82.22	85.47	89.38	91.41	93.82	95.04	95.07	96.20
SDPL	82.95	85.82	92.73	94.07	96.05	96.69	97.83	98.05
			Satellite-	→Drone				
Method	150n	n	200n	n	250r	n	300r	n
Method	Recall@1	AP	Recall@1	AP	Recall@1	AP	Recall@1	AP
SUES-200 [21]	75.00	55.46	85.00	66.05	86.25	69.94	88.75	74.46
LCM [15]	57.50	38.11	68.75	49.19	72.50	47.94	75.00	59.36
LPN [11]	83.75	66.78	88.75	75.01	92.50	81.34	92.50	85.72
FSRA [18]	83.75	76.67	90.00	85.34	93.75	90.17	95.00	92.03
MBF [10]	88.75	84.74	91.25	89.95	93.75	90.65	96.25	91.60
MCCG [34]	93.75	89.72	93.75	92.21	96.25	96.14	98.75	96.64
SDPL	93.75	83.75	96.25	92.42	97.50	95.65	96.25	96.17

Анализ SDPL (смещения на University 1652)

Padding	LPN (Re	sNet) [11]	FSR	FSRA (ViT) [18]		ResNet)
Pixel (P)	Recall@1	AP	Recall@	1 AP	Recall@1	AP
(0,0)	78.08_{-0}	80.94_{-0}	86.41_0		85.25_{-0}	87.48_{-0}
(+20,0)	76.72_1.36	$79.7\overline{2}_{-1.22}$	85.51_0.9	$87.59_{-0.75}$	84.44_0.81	86.80_0.68
(+40,0)	$73.04_{-5.04}$	$76.47_{-4.47}$	$82.77_{-3.6}$	$85.30_{-3.04}$	$82.46_{-2.79}$	$85.15_{-2.33}$
(+60,0)	$69.54_{-8.54}$	$73.36_{-7.58}$	$77.95_{-8.4}$	81.18_7.16	$78.68_{-6.57}$	$81.91_{-5.57}$
(+80,0)	$61.13_{-16.95}$	$65.80_{-15.14}$	70.90_{-15}	51 74.99 _{-13.35}	$74.48_{-10.77}$	$78.33_{-9.15}$
(+100,0)	$47.87_{-30.21}$	$53.50_{-27.44}$	62.10_{-24}	$67.05_{-21.29}$	$68.19_{-16.34}$	$73.57_{-13.91}$
(+20,+20)	$74.75_{-3.33}$	$77.94_{-3.00}$	83.59_2.8	$85.95_{-2.39}$	$83.24_{-2.01}$	$85.76_{-1.72}$
(+40,+40)	$73.04_{-5.04}$	$69.56_{-11.38}$	74.15_{-12}	26 77.80 _{10.54}	$77.90_{-7.35}$	$81.20_{-6.28}$
(+60,+60)	$54.37_{-23.71}$	$59.38_{-21.56}$	57.60_{-28}	81 62.88_25.46	$65.56_{-19.69}$	$70.45_{-17.03}$
(+80,+80)	$36.95_{-41.13}$	$42.79_{-38.15}$	41.30_{-45}	11 47.15_41.19	$54.11_{-31.14}$	$60.12_{-27.36}$
(+100,+100)	$24.03_{-54.05}$	$29.76_{-51.18}$	28.07_{-58}	$33.73_{-54.61}$	$45.19_{-40.06}$	$51.84_{-35.64}$
(-20,-20)	$76.41_{-1.67}$	$79.44_{-1.50}$	84.35_2.0	86.62_1.72	$84.06_{-1.19}$	$86.47_{-1.01}$
(-40, -40)	$70.28_{-7.80}$	$74.04_{-6.90}$	$78.10_{-8.3}$	81.24_7.10	$81.00_{-4.25}$	$83.92_{-3.56}$
(-60,-60)	$62.90_{-15.18}$	$67.32_{-13.62}$	67.73_{-18}	68 71.97_16.37	$76.81_{-8.44}$	$80.27_{-7.21}$
(-80, -80)	$48.94_{-29.14}$	$54.43_{-26.51}$	54.60_{-31}	81 59.80-28.54	$69.95_{-15.30}$	$74.34_{-13.14}$
(-100,-100)	$19.14_{-58.94}$	$24.79_{-56.15}$	42.45_{-43}	$96 48.10_{-40.24}$	$60.09_{-25.16}$	$65.62_{-21.86}$
(+20,-20)	$78.73_{+0.65}$	$81.48_{+0.54}$	84.23_2.	18 86.55_1.79	$83.77_{-1.48}$	$86.21_{-1.27}$
(+40,-40)	$73.18_{-4.90}$	$76.60_{-4.34}$	$77.90_{-8.8}$	$81.09_{-7.25}$	$81.15_{-4.10}$	$84.03_{-3.45}$
(+60,-60)	$62.78_{-15.30}$	$67.28_{-13.66}$	67.29_{-19}	12 71.62_16.72	$76.94_{-8.31}$	$80.41_{-7.07}$
(+80,-80)	$48.81_{-29.27}$	$54.31_{-26.63}$	53.90_{-32}	59.21_29.13	$70.12_{-15.13}$	$74.54_{-12.94}$
(+100,-100)	$35.86_{-42.22}$	$41.78_{-39.16}$	41.69_{-44}	$72 47.41_{-40.93}$	$61.80_{-23.45}$	$67.14_{-20.34}$
(-20,+20)	$76.98_{-1.10}$	$79.87_{-1.07}$	83.46_2.9	95 85.85_2.48	$82.32_{-2.93}$	$84.94_{-2.54}$
(-40, +40)	$68.77_{-9.31}$	$72.51_{-8.43}$	74.47_{-11}	$94 78.05_{-10.29}$	$76.40_{-8.85}$	$79.85_{-7.63}$
(-60,+60)	$54.45_{-23.63}$	$59.43_{-21.51}$	58.05_{-28}	36 63.27_25.07	$66.43_{-18.82}$	$71.17_{-16.31}$
(-80, +80)	$36.81_{-41.27}$	$42.69_{-38.25}$	41.69_{-44}	72 47.52-40.82	$54.80_{-30.45}$	$60.78_{-26.70}$
(-100,+100)	$24.16_{-53.92}$	$29.90_{-51.04}$	27.93_{-58}	48 33.67_54.67	$44.19_{-41.06}$	$50.89_{-36.59}$

Реализация

- SUES-200 (300m)
- Drone → Satellite
- Pytorch
- Kaggle (GPU P100)
- 1 epoch (15 min на 1 эпоху, валидация на трейне)

Спасибо за внимание!

ITSMOre than a UNIVERSITY

Домницкий Е.А. egor.dom0923@gmail.com +7 952 202 93 78