

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 16: Fluxo Máximo em Redes(Ford-Fulkerson)

Professor Pablo Soares

2022.1

Sumário

- 1. Árvore Geradora Mínima(última aula);
- 2. Fluxo Máximo em Redes
 - a. Fluxo;
 - i. Propriedades
 - b. Rede Residual
 - c. Caminho Aumentante
 - d. Algoritmo de Ford-Fulkerson
 - i. Complexidade do tempo de execução;
 - ii. Exemplo.

- Uma **rede** é um G = (V, E) orientado
 - Em que cada aresta $(u, v) \in E$ possui uma **capacidade**
 - $c(u, v) \ge 0 \text{ se } (u, v) \in E$
 - $c(u, v) = 0 \text{ se } (u, v) \notin E$
 - Dois vértices especiais
 - \blacksquare $s \rightarrow \text{origem} \rightarrow \text{Alcança todos os vértices}$
 - $t \rightarrow destino \rightarrow Alcançado por todos os vértices$

• Um <u>fluxo</u> "f" de *s* a *t* em *G* é uma função que associa um número não negativo f(u, v) para cada aresta $(u, v) \in E$

a.
$$0 \le f(u, v) \le c(u, v), \forall (u, v) \in E$$
; (capacidade)

b. $\sum f(w, u) = \sum f(u, z), \ \forall \ w, z, (u \neq s, u \neq t) \in V;$ (Conservação) c. f(u, v) = -f(v, u) (antissimétrica)

d.
$$|f| = \sum f(s, v), \forall (s, v) \in E$$
 (valor do fluxo)

- Um fluxo "f" de s a t em G é uma função que associa um número não negativo f(u, v) para cada aresta $(u, v) \in E$
 - a. $0 \le f(u, v) \le c(u, v), \forall (u, v) \in E$; (capacidade)
 - b. $\Sigma f(w, u) = \Sigma f(u, z), \ \forall \ w, z, (u \neq s, u \neq t) \in V;$ (Conservação)
 - c. f(u, v) = -f(v, u) (antissimétrica)
 - d. $|f| = \sum f(s, v), \forall (s, v) \in E$ (valor do fluxo)

Como encontrar um fluxo que seja máximo??

Método de Ford-Fulkerson

- 1. Redes Residuais;
- 2. Caminho aumentante;

- Rede Residual
 - a. Arestas que podem admitir mais fluxo;
 - b. Capacidade residual $c_f(u, v) = c(u, v) f(u, v), \forall (u, v) \in E$

 $G_f = (V, E_f), \text{ onde } E_f = \{(u, v) \in E : c_f > 0\}$

c. Seja f um fluxo em G = (V, E), a <u>rede residual</u> induzida por f

- Rede Residual
 - a. Arestas que podem admitir mais fluxo;
 - b. Capacidade residual $c_f(u, v) = c(u, v) f(u, v), \forall (u, v) \in E$
 - c. Seja f um fluxo em G = (V, E), a <u>rede residual</u> induzida por f $G_f = (V, E_f), \text{ onde } E_f = \{(u, v) \in E : c_f > 0\}$

- Caminho aumentante
 - a. Seja f um fluxo em rede G = (V, E), um <u>caminho aumentante</u> \mathbf{P} é um caminho simples de "s" até "t" na **rede residual**;
 - b. Capacidade residual


```
Pseudocódigo Ford-Fulkerson
1. para cada aresta (u, v) ∈ E
        f[u, v]←0
        f[v, u]← 0
    fimpara
    enquanto existir um caminho P de s até t na rede residual G,
5.
        c_f(\mathbf{P}) \leftarrow min\{c_f(u, v): (u, v) \in \mathbf{P}\}
6.
        para cada aresta (u, v) ∈ P
7.
          f[u, v] \leftarrow f[u, v] + c_f(\mathbf{P})
8.
          f[v, u]←- f[u, v]
10.
        fimpara
                                         Complexidade do Tempo de Execução
11. fimenquanto
                                            Usando BFS
Fim.
                                               = O(|E|f^*)
```

Ford-Fulkerson(G, s, t)

Fluxo f = 0

Fluxo f = 0Caminho aumentante P: s - C - F - t $c_f(P) = 4$

Fluxo f = 4

Fluxo f = 4Caminho aumentante P: s - A - D - t $c_f(P) = 2$

Fluxo f = 6

Fluxo
$$f = 6$$

Caminho aumentante P: s - B - D - C - F - t
 $c_f(P) = 1$

Fluxo f = 7

Exercício de Fixação

Determine o fluxo máximo na rede abaixo.

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 16: Fluxo Máximo em Redes(Ford-Fulkerson)

Professor Pablo Soares

2022.1