Введение в математическую логику и теорию алгоритмов

Семинар № 5: Языки 1-го порядка: исчисление предикатов, компактность

Логическое следование

Мы обсуждаем язык первого порядка с некоторой сигнатурой $\Sigma = (\mathsf{Pred}, \mathsf{Func}, \mathsf{Const})$. Вспомним, что если дана интерпретация M этой сигнатуры и замкнутая формула A этой сигнатуры, то определено отношение «формула A истична в интерпретации M», обозначавшееся так $M \models A$.

Пусть A — замкнутая формула, Γ — множество замкнутых формул этой сигнатуры.

Определение 1. Из множества формул Γ *следует* формула A (пишем: $\Gamma \models A$), если для каждой интерпретации M имеем: если все формулы из Γ истинны в M, то формула A истинна в M: $\forall M$ $(M \models \Gamma \Rightarrow M \models A)$.

Пример 1. Сначала неформально. Γ состоит из двух утверждений: «Все греки — мудрецы», «Сократ — грек». Утверждение A таково: «Сократ — мудрец». Читателю должно быть очевидно, что $\Gamma \models A$ (даже несмотря на то, что первая из гипотез не кажется нам верной).

Запишем это формулами. В этом примере сигнатура Σ состоит из одноместных предикатных символов G и W (греки и мудрецы), а также константы s (Сократ). Тогда формулы будут таковы:

$$\{ \forall x (G(x) \to W(x)), G(s) \} \models W(s).$$

Пример 2. Из аксиом групп следуют: единственность нейтрального элемента, единственность обратного.

Исчисление предикатов

Проверить, что $\Gamma \models A$ (даже в случае конечного Γ !) не представляется возможным, если использовать непосредственно определение (как перебрать всевозможные интерпретации M?). Альтернатива — сформулировать исчисление, позволяющее механически выводить из одних формул другие (и, конечно, доказать про это исчисление теорему, что оно выводит все следствия из заданных формул (и только следствия)).

В формулах используют два алфавита переменных: свободные $\{a_0, a_1, \ldots\}$ и связанные $\{x_0, x_1, \ldots\}$.

Исчисление предикатов

Аксиомы:

(А0) все аксиомы исчисления высказываний;

(A1) $\forall x A(x) \rightarrow A(t)$;

(A2) $A(t) \rightarrow \exists x A(x)$.

Правила вывода:

(MP)
$$\frac{A,\ A \to B}{B}$$
 правила Бернайса: (B1) $\frac{B \to A(a)}{B \to \forall x\ A(x)}$ (B2) $\frac{A(a) \to B}{\exists x\ A(x) \to B}$

(в правилах Бернайса переменная a не является свободной в формуле B)

¹Здесь используется тот же символ \models , но в другом смысле! Прежний символ связывал модель M с формулой A; новый символ связывает множество формул Γ с формулой A. Для педантичного читателя — считайте, что это на самом деле другой символ, например, \Vdash . Использование одного и того же символа в данном случае — лишь дань традиции, от которой логики никак не могут (да и не хотят) отказаться.

Определение 2. Из множества *замкнутых* формул Γ *выводима* формула A, если существует вывод из Γ формулы A. (Когда из Γ мы что-либо выводим, то формулы из Γ называем *гипотезами*.)

Bывод из Γ — это конечная последовательность формул $C_1, \ldots, C_n, n \geqslant 1$, в которой каждая формула C_k является либо аксиомой, либо гипотезой (из Γ), либо получена из некоторых предыдущих формул по одному из правил: (MP), (B1), (B2). Вывод считается выводом формулы A, если A — последняя формула в нём: $C_n = A$.

Если из Γ выводима A, то пишем: $\Gamma \vdash A$.

Если при этом $\Gamma = \emptyset$, то пишем $\vdash A$ (A выводима, или A является теоремой исчисления предикатов).

Теорема о корректности и полноте исчисления предикатов.

Для любого множества замкнутых формул Γ и любой формулы A справедливо следующее:

$$\Gamma \vdash A \iff \Gamma \models A.$$

В частности, формула выводима тогда и только тогда, когда она является общезначимой:

$$\vdash A \iff \models A.$$

Задачи

1. Постройте вывод формулы $\forall x P(x) \rightarrow \forall y P(y)$.

Вывод: 1.
$$\forall x\, P(x) \to P(y)$$
 (аксиома (A1))
2. $\forall x\, P(x) \to \forall y\, P(y)$ (по правилу Бернайса (B1))

2. Про Сократа: из гипотез $\forall x (G(x) \to W(x))$ и G(s) выведите формулу W(s).

```
Вывод: 1. \forall x \, (G(x) \to W(x)) (гипотеза)
2. \forall x \, (G(x) \to W(x)) \to (G(s) \to W(s)) (аксиома (A1))
3. G(s) \to W(s) (по правилу (MP) из 1 и 2)
4. G(s) (гипотеза)
5. W(s) (по правилу (MP) из 4 и 3)
```

3. Без Сократа: из гипотез $\forall x (G(x) \to W(x))$ и $\exists y G(y)$ выведите формулу $\exists z W(z)$. Примечание: мы могли всюду использовать x, а не разные переменные x, y, z.

```
1. \forall x (G(x) \to W(x))
                                                    (гипотеза)
2. \forall x (G(x) \to W(x)) \to (G(y) \to W(y))
                                                    (аксиома (А1))
3. G(y) \to W(y)
                                                    (по правилу (МР) из 1 и 2)
4. W(y) \rightarrow \exists z W(z)
                                                    (аксиома (А2))
5. G(y) \rightarrow \exists z W(z)
                                                    (по силлогизму из 3 и 4, см. ниже)
6. \exists y G(y) \rightarrow \exists z W(z)
                                                    (по правилу Бернайса (В2) из 5)
7. \exists y G(y)
                                                    (гипотеза)
8. \exists z W(z)
                                                    (по правилу (МР) из 7 и 6)
```

Здесь под «силлогизмом» скрывается вывод: $A \to B, B \to C \vdash A \to C$.

Этот вывод легко строится в исчислении высказываний (см. Семинар 2), приведём его:

Теорема о дедукции для исчисления предикатов.

 Π усть формулы в множестве Γ и формула A — замкнуты, формула B — произвольная. Тогда

если
$$\Gamma, A \vdash B$$
, то $\Gamma \vdash A \to B$.

Компактность

Пусть $\Omega = (\mathsf{Pred}, \mathsf{Func}, \mathsf{Const})$ — некоторая сигнатура. Замкнутые формулы еще называют *предложениями*. *Теорией* называется произвольное множество предложений (называемых ее *аксиомами*). Напоминание: Интерпретация M называется *моделью* теории T, если T истинна в M; пишут это так: $M \models T$. Теория T называется *выполнимой*, если существует интерпретация M, в которой истинна T. $T \models A$ (из теории T *следует* предложение A), если в каждой модели, в которой истинна T, истинно и A. $T \vdash A$ (из теории T *выводимо* предложение A), если существует *вывод* формулы A из гипотез T.

Теорема о корректности и полноте исчисления предикатов.
$$T \models A \iff T \vdash A$$
.

Из теоремы о полноте вытекает следующий результат:³

Теорема о компактности (две формулировки):

- 1. Если T теория u $T \models A$, то существует конечная теория $T' \subseteq T$, такая что $T' \models A$.
- 2. Если каждое конечное подмножество теории Т выполнимо, то вся теория Т выполнима.

Задачи

- 1. Выведите теорему компактности, пользуясь теоремой о полноте.
- 2. Выведите первую формулировку теоремы о компактности из второй, и наоборот.

Теории с равенством и нормальные модели

Пусть в сигнатуре Ω имеется двуместный предикатный символ «равенства» =. Пусть T — теория в сигнатуре Ω . При изучении теорий с равенством обычно ограничиваются **нормальными** интерпретациями M=(D,*), в которых символ = интерпретируется стандартно, как совпадение элементов носителя: =* = $\{\langle e,e\rangle\mid e\in D\}$. Соответственно модифицируется понятие логического следования: $T\models A$ теперь определяется так: в каждой нормальной интерпретации, в которой истинна теория T, истинно и предложение A.

При этом остаются верными (но требуют отдельного доказательства) **теорема о корректности и полноте**, а также следующий из нее **принцип компактности**.

Задачи

3. В сигнатуре, состоящей лишь из равенства, напишите замкнутые формулы A_n , B_n , C_n , такие что для любой нормальной интерпретации M = (D, *) имеем:

$$M \models A_n \Leftrightarrow |D| \geqslant n;$$
 $M \models B_n \Leftrightarrow |D| \leqslant n;$ $M \models C_n \Leftrightarrow |D| = n.$

- 4. Пусть T теория с равенством, \mathbb{K} класс всех ее **нормальных** моделей.
 - В этом случае еще говорят, что теория T аксиоматизирует класс моделей $\mathbb K.$
 - (a) Напишите систему аксиом, класс нормальных моделей которой модели из \mathbb{K} размера ≤ 3 ; ≥ 5 ; = 7.
 - (b) Напишите систему аксиом, класс нормальных моделей которой все бесконечные модели из К.
- 5. Пусть T и \mathbb{K} как в предыдущей задаче. Пусть в \mathbb{K} имеются сколь угодно большие конечные модели:

$$\forall n \geqslant 1 \; \exists$$
 конечная модель $M = (D, *) \in \mathbb{K}$, у которой мощность носителя $|D| \geqslant n$.

Обозначим: $\mathbb{K}_{<\infty}$ — класс всех конечных моделей из \mathbb{K} , \mathbb{K}_{∞} — класс всех бесконечных моделей из \mathbb{K} .

- (a) Приведите примеры таких теорий T.
- (b) Докажите, что тогда в \mathbb{K} непременно есть и бесконечная модель, то есть $\mathbb{K}_{\infty} \neq \emptyset$. Указание: Каждое конечное подмножество теории $T \cup \{A_n \mid n \geqslant 1\}$ имеет модель (почему?). В силу компактности, вся теория имеет модель M; причем M непременно будет бесконечной.

 $^{^{2}}$ Помним о двух paзныx смыслах употребления символа \models , см. предыдущий семинар!

 $^{^3}$ К. Гёдель в 1930 году доказал теорему компактности как следствие теоремы о полноте исчисления предикатов, и лишь для счетных сигнатур Ω . Академик А. И. Мальцев независимо в 1936 году доказал компактность другими методами, причем для сигнатур Ω произвольной мошности.

- (c) Докажите, что класс $\mathbb{K}_{<\infty}$ невозможно *аксиоматизировать*. ⁴ Указание: Если бы теория Γ аксиоматизировала класс моделей $\mathbb{K}_{<\infty}$, то у этой теории по предыдущему пункту имелась бы бесконечная модель; но в $\mathbb{K}_{<\infty}$ их нет.
- (d) Докажите, что класс \mathbb{K}_{∞} невозможно конечно аксиоматизировать.

 Указание: Допустим конечная теория $\Gamma = \{F_1, \ldots, F_s\}$ аксиоматизирует класс \mathbb{K}_{∞} . Обозначим формулу $F := F_1 \wedge \ldots \wedge F_s$. Теория $T \cup \{A_n \mid n \geqslant 1\}$ тоже аксиоматизирует класс \mathbb{K}_{∞} , см. задачу 4(b). Тогда $T \cup \{A_n \mid n \geqslant 1\} \models F$ (почему?). В силу компактности (задача 1), \exists конечная теория $T' \subseteq T$ и $n \geqslant 1$, такие что $T' \cup \{A_1, \ldots, A_n\} \models F$. У теории $T' \cup \{A_1, \ldots, A_n\}$ есть конечная модель M (почему?). Тогда $M \models F$. Тем самым $M \in \mathbb{K}_{\infty}$, чего не может быть, ибо M конечная модель.

Домашнее задание

- 6. Аксиоматизируйте следующие классы нормальных моделей:
 - а) все линейно упорядоченные множества 6 размера 7;
 - б) все бесконечные линейно упорядоченные множества.
 - в) Можно ли аксиоматизировать все бесконечные линейно упорядоченные множества?
- 7. Докажите:
 - а) нельзя аксиоматизировать класс всех конечных групп;
 - б) нет конечной аксиоматики класса всех бесконечных групп.
- 8. Выпишите аксиомы теории полей в виде предложений сигнатуры $(+, \times, 0, 1, =)$.

Xарактеристика поля F — это наименьшее число $n \geqslant 1$, такое что сумма n единиц равна 0. Если его не существует, то говорят, что F — поле характеристики 0.

- (a) Аксиоматизируйте класс всех полей фиксированной характеристики $n \geqslant 1$.
- (b) Докажите, что класс всех полей всевозможных характеристик $n \geqslant 1$ не аксиоматизируем.
- (с) Аксиоматизируйте класс всех полей характеристики 0.
- (d) Докажите, что класс всех полей характеристики 0 не конечно аксиоматизируем.

 $^{^4\}text{To}$ есть не существует такой теории $\Gamma,$ что $\mathbb{K}_{<\infty}$ — в точности класс всех нормальных моделей теории $\Gamma.$

 $^{^5}$ To есть не существует такой *конечной* теории Γ , что \mathbb{K}_{∞} — в точности класс всех нормальных моделей теории Γ .

⁶Напомним, что *линейно упорядоченным множеством* называется множество с бинарным отношением на нем (D,<), где отношение < иррефлексивно, транзитивно и *линейно* (любые два различных элемента сравнимы). Можно дать аналогичное определение для нестрого линейного порядка \le (какие аксиомы для этого понадобятся?); от одного определения легко перейти к другому.

Для самостоятельного разбора

Вероятно, этот материал будет упомянут и на лекции.

- 9. **Нестандартная модель арифметики.** Обозначим⁷ **ТА** множество всех замкнутых арифметических формул (то есть формул сигнатуры $+, \times, =, <$), истинных в *стандартной интерпретации* $(\mathbb{N}, +, \times, =, <)$.
 - (a) Докажите, что у теории **TA** имеется нормальная интерпретация, не изоморфная \mathbb{N} . Такие интерпретации называются нестандартными моделями арифметики. Обозначим одну из них через M=(D,*). Указание: добавьте в сигнатуру константу c и рассмотрите аксиомы $0 < c, 1 < c, \ldots$
 - (b) **Принцип переноса.** Если арифметическое предложение (без c) истинно в \mathbb{N} , то оно истинно и в M. В частности, нестандартная модель M начинается с «конечных чисел» $0,1,2,\ldots$, между которыми нет других элементов.
 - (c) В нестандартной модели M назовем $\mathit{галактикой}$ всякое подмножество вида $\{e \in D : |e-a| \text{ конечно}\}$, для некоторого элемента $a \in D$. То есть галактику составляют всякий набор элементов данной модели, отстоящих друг от друга на конечное число «шагов». Например, множество «стандартных» чисел $\{0,1,2,\ldots\}$, упомянуте выше, составляет в M галактику (называемую $\mathit{стандартной}$). Остальные галактики называют $\mathit{нестандартнымu}$.

Докажите, что в нестандартной модели галактик бесконечно много.

Домашняя задача:

- 10. Пусть M- (любая) нестандартная модель арифметики.
 - Для двух галактик G и H полагаем $G \prec H$, если $\forall a \in G \ \forall b \in H \ a < b$. Докажите:
 - (а) Любые две галактики сравнимы по данному отношению ≺.
 - (b) Внутри каждой нестандартной галактики элементы упорядочены по типу Z.
 - (c) Докажите, что отношение \prec на множестве всех бесконечных галактик плотный линейный порядок без первого и последнего элемента.
 - (d) Суммы a+b, когда a пробегает одну галактику, b- другую галактику, образует галактику.
 - (е) Почему перемножать галактики аналогичным образом нельзя?

 $^{^7}$ Это множество называется истинной арифметикой, англ. $true\ arithmetic$, откуда и обозначение TA.