

$$(-1) + (-1) + (-1) + (-3) + (-1) + (-1) + (-3) + 5 = -6$$

-6	-5	-4
1	0	-3
2	5	0

For each state, the <u>state-value function</u> yields the expected return, if the agent started in that state, and then followed the policy for all time steps.

For each state, the <u>state-value function</u> yields the expected return, if the agent started in that state, and then followed the policy for all time steps.

We call v_{π} the state-value function for policy π

-6	-5	-4
1	0	-3
2	5	0

We call v_{π} the state-value function for policy π . The value of state s under a policy π is

$$\upsilon_\pi(s) = \mathbb{E}_\pi[G_t|S_t = s]$$
 For each state s it yields the expected return

if the

We call v_{π} the state-value function for policy π . The value of state s under a policy π is

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$
 For each state s it yields the expected return if the agent starts in state s and then uses the policy to choose its actions for all time steps

-6	-5	-4
1	0	-3
2	5	0

We call v_{π} the state-value function for policy π The value of state s under a policy π is

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$
 For each state s it yields the expected return if the agent starts in state s and then uses the policy to choose its actions for all time steps

-6	-5	-4
1	0	-3
2	5	0

Note #1: The notation $\mathbb{E}\pi[\cdot]$ is borrowed from the suggested textbook. $\mathbb{E}\pi[\cdot]$ is defined as the expected value of a random variable, given that the agent follows policy π .

Note #2: In this course, we will use "return" and "discounted return" interchangably. For an arbitrary time step t, both terms refer to $G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$, where $\gamma \in [0,1]$. In particular, when we refer to "return", it is not necessarily the case that $\gamma = 1$, and when we refer to "discounted return", it is not necessarily true that $\gamma < 1$. (This also holds for the readings in the recommended textbook.)
