

Introduction to Analog Integrated Circuit Design

Fall 2023

Yung-Hui Chung

MSIC Lab **DECE, NTUST**

Instructor and Grading

Instructor: Yung-Hui Chung

- Course time: T6/T7, W2
- Classroom: T6/T7(IB-305), W2(IB-307)
- Office hours: Tue. 09:30~11:30 (by email)
- Office: EE601-2
- TEL: 02-27376394 (#6394)
- Email: yhchung@mail.ntust.edu.tw
- TA: 張繼元/郭哲原 (Lab: EE601-2, #7138)

Grading

Homework: 40%

Mid-Exam: 30%

Final-Exam: 30%

Textbooks and References

Textbook:

 Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2nd Edition, 2017

References:

- Phillip E. Allen, Douglas E. Holberg, CMOS Analog Circuit Design, 3rd Edition, Oxford, 2011
- Tony Chan Carusone, David A. Johns and Kenneth W. Martin,
 Analog Integrated Circuit Design, 2nd Edition, Wiley, 2011
- Gray, Hurst, Lewis and Meyer, Analysis and Design of Analog Integrated Circuits, 5th Edition, Wiley, 2008

Course Content

AIC1 (Introduction to Analog IC Design)

- MOS Device Physics and Modeling
- Review of Amplifiers
- Current Mirrors and Biasing Techniques
- Frequency Response
- Feedback
- Stability and Frequency Compensation
- Short Channel Effects
- AIC2 (Analog IC Design and Applications)
 - Noise
 - Operational Amplifiers (Opamps)
 - Bandgap References
 - Advanced Opamps
 - Nonlinearity and Mismatch
 - Switched-Capacitor Circuits

Course Schedule

Week	Date	Lecture Content (chapter in textbook)	Homework
1	9/5,6	MOST Physics (2)	
2	9/12,13	Review of Amplifiers (3)	
3	9/19,20	Review of Amplifiers (3/4)	HW1
4	9/26,27	Review of Amplifiers (4)	
5	10/3,4	Current Mirrors and Biasing Techniques (5)	HW2
6	10/10,11	Frequency Response (6)	
7	10/17,18	Frequency Response (6)	HW3
8	10/24,25	Midterm Exam	
9	10/31,11/1	Feedback (8)	
10	11/7,8	Feedback (8)	HW4
11	11/14,15	Feedback (8)	
12	11/21,22	Feedback (8) / Stability (10)	HW5
13	11/28,29	Stability and Freq. Compensation (10)	
14	12/5,6	Stability and Freq. Compensation (10)	HW6
15	12/12,13	Short Channel Effects (17)	
16	12/19, <mark>20</mark>	Final Exam	

^{*}Week 17 and 18 are reserved for case study of analog IC design

Analog IC Courses

Microelectronics (I, II) Undergraduate Introduction to Introduction to VLSI **Analog IC Design** Analog IC Design and Semiconductor **IC Layout Practice Applications Physics** Advanced Analog IC Data Conversion IC Design Power IC Design Advanced Analog IC Graduate Filter Circuit Design Layout Advanced Topics on PLLs **Analog Integrated** Biomedical AFE Circuits

Analog Design Challenges

- Transistor Imperfections
- Declining Supply Voltages
 - $-5V\rightarrow2.5V\rightarrow1.2V\rightarrow0.9V$
- Low Power Request
- Circuit Complexity

- Sensitive to PVT Variations
 - Process Corner: TT, FF, SS, SNFP, FNSP
 - Supply Voltage: VDD +/- 10%
 - Temperature: -40° C ~ $+125^{\circ}$ C

Abstraction Levels in Circuit Design

Figure 1.5 Abstraction levels in circuit design: (a) device level, (b) circuit level, (c) architecture level, (d) system level.

Biomedical Analog Front-End

USB 3.0 (Serdes Applications)

- Laptop 1 delivers the data to the cable in the form of a sequence of ONEs and ZEROs
- Since the cable attenuates high frequencies, we may design the equalizer to amplify such frequencies
- Serdes: Serializer and Deserializer (USB, PCIE, SATA, ...)

Conventional RF Communication

- May 2021, Circuits Systems and Signal Processing 40(7): 1-17
- DOI: 10.1007/s00034-020-01579-4

Advanced RF Receiver

- Direct RF Sampling to save more analog circuits (LNA, mixer, PLL, AAF, ...) before ADCs
- As advanced CMOS technologies developed, ADC can be fast enough to directly sampling the RF signal (2.5GHz or higher)

RF Receiver Comparison

- March 2008, IEICE Transactions on Electronics 91-C(3):306-317
- DOI: 10.1093/ietele/e91-c.3.306