يسم الله الرحمن الرحيم

ساختمانهای داده

جلسه ۲۶

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

Recall Priority Queue ADT

IUT-ECE

- A priority queue stores a collection of entries
- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the Priority Queue ADT
 - insert(e) inserts an entry e
 - removeMin()removes the entry with smallest key

- Additional methods
 - min()
 returns, but does not remove, an entry with smallest key
 - size(), empty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Recall PQ Sorting

- We use a priority queue
 - Insert the elements with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations

- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: $O(n^2)$ time
 - Sorted sequence gives insertion-sort: O(n²)
 time
- Can we do better? Balancing the above

```
Algorithm PriorityQueueSort(L,P):
   Input: An STL list L of n elements and a priority queue, P, that compares
      elements using a total order relation
    Output: The sorted list L
    while !L.empty() do
       e \leftarrow L.front
                              {remove an element e from the list}
       L.\mathsf{pop\_front}()
                           {...and it to the priority queue}
       P.insert(e)
    while !P.empty() do
       e \leftarrow P.\min()
       P.removeMin()
                                {remove the smallest element e from the queue}
       L.\mathsf{push\_back}(e)
                                \{\dots and append it to the back of L\}
```

List-based vs. Heap-based

List-based

Operation	Unsorted List	Sorted List
size, empty	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)
min, removeMin	O(n)	<i>O</i> (1)

Heap-based

Operation	Time
size, empty	<i>O</i> (1)
min	<i>O</i> (1)
insert	$O(\log n)$
removeMin	$O(\log n)$

- Consider a priority queue with n items implemented by means of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time
 - methods size, empty, and min take time
 O(1) time

- Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
 - Construction: n insertions
 - Actual sorting: n removals
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Sequence/List S

(7,4,8,2,5,3,9)

Priority queue P

Phase 1

Input:

- (a) (4,8,2,5,3,9)(b) (8,2,5,3,9)
- (c) (2,5,3,9)(d) (5,3,9)
- (e) (3,9)
- (f) (9)() (g)

Phase 2

- (2) (a) (b) (2,3)
- (g) (2,3,4,5,7,8,9)

(7,4,8,2,5,3,9)

ŀ

	Sequence/List S	Priority queue P
Input:	(7,4,8,2,5,3,9)	()
Phase 1		
(a)	(4,8,2,5,3,9)	
(b) (c) (d)	(8,2,5,3,9) (2,5,3,9) (5,3,9)	<i>i</i> -th insert operation $(1 \le i \le n)$ takes $O(1 + \log i)$
(e)	(3,9)	n elements insertion: O(n logn)
(f)	(9)	Treferres insertion: O(11 logil)
(g)	()	
Phase 2		
(a)	(2)	
(b)	(2,3)	<i>j</i> -th removeMin operation $(1 \le j \le n)$ runs in time $O(1 + \log(n - j + 1))$
 (g)	 (2,3,4,5,7,8,9)	
(6)	(2,3,1,3,1,0,3)	

By max-heap (array implement)

By max-heap (array implement)

up-heap

By max-heap (array implement)

By max-heap (array implement)

Heap down

By max-heap (array implement)

Sorting Comparison

Algorithm	Time	Notes	
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)	
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)	
heap-sort	$O(n \log n)$	 fast in-place for large data sets (1K — 1M) 	
merge-sort	$O(n \log n)$	 fast sequential data access for huge data sets (> 1M) 	

Merging Two Heaps

IUT-ECE

- lacktriangle We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property

IUT-ECE

• if all the elements to be stored in the heap are given in advance?

Example: S={16,15,4,12,6,7,23,20,25,5,11,27,9,8,14}

For simplicity, we describe this bottom-up heap construction assuming the number n of keys is an integer of the type $n = 2^h - 1$. That is, the heap is a complete binary tree with every level being full, so the heap has height $h = \log(n+1)$.

Example: S={16,15,4,12,6,7,23,20,25,5,11,27,9,8,14}

(n+1)/2 elementary heaps

Example: S={16,15,4,12,6,7,23,20,25,5,11,27,9,8,14}

$$(n+1)/4$$
 heaps

Example: S={16,15,4,12,6,7,23,20,25,5,11,27,9,8,14}

$$(n+1)/4$$
 heaps

Example: S={16,15,4,12,6,7,23,20,25,5,11,27,9,8,14}

 $2 \le i \le h$, we form $(n+1)/2^i$ heaps, each storing $2^i - 1$ entries,

Example: S={16,15,4,12,6,7,23,20,25,5,11,27,9,8,14}

Analysis?

IUT-ECE

- if all the elements to be stored in the heap are given in advance, there is an alternative **bottom-up** construction function that runs in O(n) time.
- Compare?
- Impact on heap sort
- Can we improve second phase too?

- Suppose we are given a sequence S=(x0,x1,...,xn-1) that we wish to sort, and assume that all the elements of S are distinct.
- we can represent a comparison-based sorting algorithm with a decision tree T.

- Worst-case #comparison?
- height

- Worst-case #comparison?
- Height
- \bullet Let us associate with each external node v in T, then, the set of permutations of S that cause our sorting algorithm to end up in v.
- The number of permutations of *n* objects is $n! = n(n-1)(n-2)\cdots 2\cdot 1$.

- Worst-case #comparison?
- Height
- ◆ Let us associate with each external node *v* in *T*, then, the set of permutations of *S* that cause our sorting algorithm to end up in *v*.
- The number of permutations of n objects is $n! = n(n-1)(n-2)\cdots 2\cdot 1$.

$$\log(n!) \ge \log\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2}\log\frac{n}{2},$$

which is $\Omega(n \log n)$.

		STL Container	Description
		vector	Vector
		deque	Double ended queue
		list	List
		stack	Last-in, first-out stack
		queue	First-in, first-out queue
Binary heap	—	- priority_queue	Priority queue
		set (and multiset)	Set (and multiset)
		map (and multimap)	Map (and multi-key map)

سوال

را در نظر بگیرید. kامین عنصر بزرگ این لیست را بیابید. n