20104169 - SUMESH R

Importing Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2008.csv")
df
```

Mounted at /content/drive

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PM10	PM25	PXY	SO_2	TCI
0	2008- 06-01 01:00:00	NaN	0.47	NaN	NaN	NaN	83.089996	120.699997	NaN	16.990000	16.889999	10.40	NaN	8.98	Nal
1	2008- 06-01 01:00:00	NaN	0.59	NaN	NaN	NaN	94.820000	130.399994	NaN	17.469999	19.040001	NaN	NaN	5.85	Nal
2	2008- 06-01 01:00:00	NaN	0.55	NaN	NaN	NaN	75.919998	104.599998	NaN	13.470000	20.270000	NaN	NaN	6.95	Nal
3	2008- 06-01 01:00:00	NaN	0.36	NaN	NaN	NaN	61.029999	66.559998	NaN	23.110001	10.850000	NaN	NaN	5.96	Nal
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160000	21.90	1.43	10.92	1.5
226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.450000	5.15	1.86	9.68	1.2
226388	2008- 11-01 00:00:00	NaN	0.30	NaN	NaN	NaN	41.880001	48.500000	NaN	35.830002	15.020000	NaN	NaN	8.90	Nal
226389	2008- 11-01 00:00:00	0.25	NaN	0.56	NaN	0.11	83.610001	102.199997	NaN	14.130000	17.540001	13.91	NaN	7.00	1.5
226390	2008- 11-01 00:00:00	0.54	NaN	2.70	NaN	0.18	70.639999	81.860001	NaN	NaN	11.910000	NaN	NaN	8.02	1.5
226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.690000	11.42	1.98	8.74	1.4

226392 rows × 17 columns

Data Cleaning and Data Preprocessing

226371 0.53 28079006226387 0.30 28079024226391 0.36 28079099

```
In [3]:
df=df.dropna()
In [4]:
df.columns
Out[4]:
Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
      dtype='object')
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 25631 entries, 4 to 226391
Data columns (total 17 columns):
   Column
             Non-Null Count Dtype
              _____
    date
              25631 non-null object
              25631 non-null float64
 1
    BEN
 2
    CO
              25631 non-null float64
 3
   EBE
             25631 non-null float64
 4
   MXY
             25631 non-null float64
 5
             25631 non-null float64
   NMHC
 6 NO 2
             25631 non-null float64
 7 NOx
              25631 non-null float64
 8 OXY
              25631 non-null float64
 9 0 3
              25631 non-null float64
 10 PM10
             25631 non-null float64
 11 PM25
             25631 non-null float64
 12 PXY
             25631 non-null float64
 13 SO 2
             25631 non-null float64
 14 TCH
             25631 non-null float64
             25631 non-null float64
 15 TOL
16 station 25631 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 3.5+ MB
In [6]:
data=df[['CO' ,'station']]
data
Out[6]:
       CO
            station
    4 0.80 28079006
   21 0.37 28079024
   25 0.39 28079099
   30 0.51 28079006
    47 0.39 28079024
226362 0.35 28079024
226366 0.46 28079099
```

Line chart

```
In [7]:
```

```
data.plot.line(subplots=True)
Out[7]:
array([<Axes: >, <Axes: >], dtype=object)
            CO
   6
   4
   2
      +2.8079e7
 100
  80
  60
                                                            station
  40
  20
        0
                  50000
                              100000
                                          150000
                                                       200000
```

Line chart

```
In [8]:
```

0.5

```
data.plot.line()
Out[8]:
<Axes: >
 2.5
 2.0
                                                               CO
 1.5
                                                               station
 1.0
```


Bar chart

```
In [9]:
```

b=data[0:50]

In [10]:

b.plot.bar()

Out[10]:

<Axes: >

Histogram

In [11]:

data.plot.hist()

Out[11]:

<Axes: ylabel='Frequency'>

Area chart

```
In [12]:
```

```
data.plot.area()
Out[12]:
<Axes: >
     1e7
```


Box chart

2.0 -

```
In [13]:
data.plot.box()
Out[13]:
<Axes: >
     1e7
 2.5
```


Pie chart

In [14]:

```
b.plot.pie(y='station')
```

Out[14]:

<Axes: ylabel='station'>

Scatter chart

```
In [15]:
```

```
data.plot.scatter(x='CO', y='station')
```

Out[15]:

<Axes: xlabel='CO', ylabel='station'>

In [16]:

```
ZUUUI IIUII IIUII
    אנינים
                             LLUALUT
 2
    CO
              25631 non-null
                             float64
 3
    EBE
              25631 non-null
                             float64
    MXY
              25631 non-null float64
 5
    NMHC
              25631 non-null float64
             25631 non-null float64
    NO 2
 7
    NOx
              25631 non-null float64
 8
    OXY
              25631 non-null float64
 9
    0 3
              25631 non-null float64
10 PM10
              25631 non-null float64
11
   PM25
              25631 non-null
                             float64
12
   PXY
              25631 non-null
13
    SO 2
              25631 non-null
                             float64
14 TCH
              25631 non-null float64
              25631 non-null
15
                            float64
    TOL
16 station 25631 non-null int64
dtypes: float64(15), int64(1), object(1)
```

memory usage: 3.5+ MB

In [17]:

df.describe()

Out[17]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	
count	25631.000000	25631.000000	25631.000000	25631.000000	25631.000000	25631.000000	25631.000000	25631.000000	256
mean	1.090541	0.440632	1.352355	2.446045	0.213323	54.225261	98.007732	1.479964	
std	1.146461	0.317853	1.118191	2.390023	0.123409	38.164647	101.448238	1.258928	
min	0.100000	0.060000	0.170000	0.240000	0.000000	0.240000	2.110000	0.140000	
25%	0.430000	0.260000	0.740000	1.000000	0.130000	25.719999	32.635000	0.870000	
50%	0.750000	0.350000	1.000000	1.620000	0.190000	48.000000	71.110001	1.000000	
75%	1.320000	0.510000	1.580000	3.105000	0.270000	74.924999	131.550003	1.760000	
max	27.230000	7.030000	26.740000	55.889999	1.760000	554.900024	2004.000000	28.020000	2
4				188					∷ ⊾ 1

In [18]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       'PM10', 'PXY', 'SO 2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

```
In [19]:
```

```
sns.pairplot(df1[0:50])
```

Out[19]:

<seaborn.axisgrid.PairGrid at 0x7ef0eb316830>

In [20]:

```
sns.distplot(df1['station'])
<ipython-input-20-4bc330f7257f>:1: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(df1['station'])
```

Out[20]:

<Axes: xlabel='station', ylabel='Density'>


```
In [21]:
```

```
sns.heatmap(df1.corr())
```

Out[21]:

<Axes: >

TO TRAIN THE MODEL AND MODEL BULDING

```
In [22]:
```

In [23]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [24]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

```
▼ LinearRegression
LinearRegression()
```

```
In [25]:
lr.intercept_
Out[25]:
28079032.671049826
```

In [26]:

```
coeff=pd.DataFrame(lr.coef_, x.columns, columns=['Co-efficient'])
coeff
```

Out[26]:

	Co-efficient
BEN	-24.990234
co	-0.056987
EBE	-1.552171
MXY	7.716946
NMHC	-24.900897
NO_2	-0.033259
NOx	0.118478
OXY	3.892108
0_3	-0.140412
PM10	0.141664
PXY	1.960910
SO_2	-0.598225
ТСН	19.110382
TOL	-1.946012

In [27]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

 ${\tt <matplotlib.collections.PathCollection}$ at ${\tt 0x7ef0d45fdde0>}$

20 40 60 80 100 +2.8079e7

```
ACCURACY
In [28]:
lr.score(x_test,y_test)
Out[28]:
0.15290366306738545
In [29]:
lr.score(x_train,y_train)
Out[29]:
0.13948682050013284
Ridge and Lasso
In [30]:
from sklearn.linear model import Ridge,Lasso
In [31]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[31]:
     Ridge
Ridge(alpha=10)
Accuracy(Ridge)
In [32]:
```

```
rr.score(x_test,y_test)
Out[32]:
0.15276766850837376

In [33]:
rr.score(x_train,y_train)
Out[33]:
0.13946286669960595

In [34]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[34]:
Out[34]:
```

▼ Lasso

```
In [35]:
la.score(x train, y train)
Out[35]:
0.04093060208584942
Accuracy(Lasso)
In [36]:
la.score(x_test,y_test)
Out[36]:
0.04114787529283537
In [37]:
from sklearn.linear model import ElasticNet
en=ElasticNet()
en.fit(x train, y train)
Out[37]:
▼ ElasticNet
ElasticNet()
In [38]:
en.coef
Out[38]:
        -4.52382059, -0. , -0. , 3.2861883 , -0. , 0.05853171, 0.02289057, 1.5037067 , -0.15964927, 0.1370066 ,
array([-4.52382059, -0.
        1.47937709, -0.92099626, 0. , -2.55540006])
In [39]:
en.intercept
Out[39]:
28079057.486030195
In [40]:
prediction=en.predict(x test)
In [41]:
en.score(x_test,y_test)
Out[41]:
0.09645231136315036
Evaluation Metrics
In [42]:
from sklearn import metrics
```

print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean squared error(y test,prediction))

паээс (атыпа-то) |

```
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
35.69170143740743
1481.8712126387766
38.49508036929883
Logistic Regression
In [43]:
from sklearn.linear model import LogisticRegression
In [44]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
target vector=df[ 'station']
In [45]:
feature_matrix.shape
Out [45]:
(25631, 14)
In [46]:
target vector.shape
Out[46]:
(25631,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit transform(feature matrix)
In [49]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs, target vector)
Out[49]:
        LogisticRegression
LogisticRegression(max iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079099]
In [52]:
logr.classes
Out[52]:
```

```
array([28079006, 28079024, 28079099])
In [53]:
logr.score(fs, target vector)
Out[53]:
0.794194530061254
In [54]:
logr.predict proba(observation)[0][0]
Out[54]:
8.321801665678893e-09
In [55]:
logr.predict_proba(observation)
Out[55]:
array([[8.32180167e-09, 1.19114695e-13, 9.999999992e-01]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x train, y train)
Out [57]:
▼ RandomForestClassifier
RandomForestClassifier()
In [58]:
parameters={ 'max depth':[1,2,3,4,5],
            'min samples leaf': [5,10,15,20,25],
            'n estimators': [10,20,30,40,50]
In [59]:
from sklearn.model selection import GridSearchCV
grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
        RandomForestClassifier
In [60]:
grid search.best_score_
Out[60]:
0.8502310802788671
```

••••••

In [61]:

rfc best=grid search.best estimator

In [62]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5], feature_names=x.columns, class_names=['a','b','c','d'], filled=True)
```

Out[62]:

```
[5934, 5736, 6271] \nclass = c'),
 3, 3458, 1031] \ln s = b'),
 Text(0.125, 0.583333333333334, 'NO 2 <= 46.54 \cdot 10^{-10} = 0.17 \cdot 10^{-10} = 1453 
6, 2036, 69]\nclass = b'),
 Text(0.06666666666666667, 0.416666666666667, 'OXY <= 0.875  rgini = 0.102 \nsamples = 137
7\nvalue = [45, 2013, 68]\nclass = b'),
 19, 61] \n class = c'),
 , 1, 3] \nclass = a'),
 = c'),
 Text(0.1, 0.25, 'PXY \le 0.345 \le 0.029 \le 1305 \le [23, 1994, 7] \le 1305 \le 1
s = b'),
 8, 0] \nclass = a'),
 , 1986, 7] \nclass = b'),
 value = [91, 23, 1] \setminus ass = a',
 0] \nclass = a'),
 1, 0] \setminus ass = a'),
 Text(0.2, 0.25, 'qini = 0.194 \setminus samples = 15 \setminus value = [1, 17, 1] \setminus samples = b'),
 \nvalue = [687, 1422, 962] \setminus class = b'),
 9\nvalue = [684, 262, 805]\nclass = c'),
 Text(0.2333333333333333334, 0.25, 'NMHC <= 0.185 / ngini = 0.456 / nsamples = 587 / nvalue = [65]
0, 119, 150] \nclass = a'),
 Text(0.216666666666666667, 0.0833333333333333333, 'gini = 0.196 \nsamples = 389 \nvalue = [54]
0, 7, 59] \nclass = a'),
 ass = b'),
 Text(0.3, 0.25, 'OXY \leq 0.615\ngini = 0.349\nsamples = 552\nvalue = [34, 143, 655]\nclas
s = c'),
 82, 42]\nclass = b'),
 61, 613]\nclass = c'),
 Text(0.4, 0.41666666666666667, 'Nox <= 33.985 \ngini = 0.214 \nsamples = 837 \nvalue = [3, 1]
160, 157]\nclass = b'),
 Text(0.366666666666666664, 0.25, 'NOx <= 29.315 | ngini = 0.055 | nsamples = 554 | nvalue = [3, 1]
862, 22]\nclass = b'),
 = b'),
 75, 14]\nclass = b'),
 Text(0.433333333333333335, 0.25, 'EBE <= 0.575 | ngini = 0.429 | nsamples = 283 | nvalue = [0, 1]
298, 135]\nclass = b'),
 Text(0.41666666666666667, 0.083333333333333333, 'gini = 0.04 \nsamples = 126 \nvalue = [0, 1]
92, 41 \cdot nclass = b'),
```

```
ss = c'),
  Text(0.73333333333333333, 0.75, 'TOL <= 7.315 \ngini = 0.632 \nsamples = 7953 \nvalue = [511]
1, 2278, 5240]\nclass = c'),
  Text(0.6, 0.58333333333333333334, 'OXY <= 1.005 \ngini = 0.623 \nsamples = 5696 \nvalue = [2403]
, 2102, 4557]\nclass = c'),
  Text(0.53333333333333333, 0.41666666666666667, 'OXY <= 0.595 \ngini = 0.659 \nsamples = 2661
\nvalue = [1200, 1698, 1304] \setminus class = b'),
  Text(0.5, 0.25, '0 3 <= 8.475 \cdot 10^{-2} = 0.387 \cdot 10^{-2} = 0.38
s = b'),
  210, 10]\nclass = b'),
  Text(0.5166666666666667, 0.0833333333333333333, 'gini = 0.455 \nsamples = 416 \nvalue = [78, 10.5]
462, 113]\nclass = b'),
  Text(0.56666666666666667, 0.25, 'BEN <= 0.575 \setminus gini = 0.666 \setminus gamples = 2101 \setminus gamples = [111]
6, 1026, 1181]\nclass = c'),
 lass = c'),
  Text(0.5833333333333334, 0.08333333333333333, 'gini = 0.625 \nsamples = 1267 \nvalue = [99]
9, 483, 515]\nclass = a'),
  \nvalue = [1203, 404, 3253] \nclass = c'),
  1, 198, 2053]\nclass = c'),
  26, 1168 \nclass = c'),
  lass = c'),
  Text(0.7, 0.25, 'EBE \leq 1.755 \cdot 1.755
ass = c'),
  , 153, 881]\nclass = c'),
  Text(0.71666666666666667, 0.083333333333333333, 'gini = 0.43 \nsamples = 270 \nvalue = [65, 1]
53, 319]\nclass = c'),
  Text(0.8666666666666667, 0.5833333333333333334, 'NMHC <= 0.285 \ngini = 0.385 \nsamples = 225
7\nvalue = [2708, 176, 683]\nclass = a'),
 Text(0.8, 0.416666666666666667, 'TOL <= 9.195 | ngini = 0.253 | nsamples = 1415 | nvalue = [1912]
, 50, 273]\nclass = a'),
  Text(0.7666666666666667, 0.25, 'MXY \le 4.685 \setminus gini = 0.406 \setminus gini = 452 \setminus gini = 518,
19, 171] \nclass = a'),
  ss = a'),
  2, 80]\nclass = c'),
  Text(0.8333333333333334, 0.25, 'TCH <= 1.615 \setminus gini = 0.162 \setminus g = 963 \setminus g = [1394]
, 31, 102] \ln a = a'),
  5, 16, 64 \mid \text{nclass} = a'),
  s = a'),
  nvalue = [796, 126, 410] \nclass = a'),
  Text(0.9, 0.25, 'PM10 \le 23.97 = 0.575 = 281 = [83, 106, 260] = 281 = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83, 106, 260] = [83
ss = c'),
  15, 17] nclass = a'),
  91, 243]\nclass = c'),
  Text(0.9666666666666667, 0.25, 'BEN <= 3.155 \ngini = 0.319 \nsamples = 561 \nvalue = [713, 1.25]
20, 150]\nclass = a'),
  ss = a'),
  5, 65]\nclass = a')]
```


Conclusion

Accuracy

In [63]:

```
print("Linear Regression:",lr.score(x_test,y_test))
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.15290366306738545 Ridge Regression: 0.15276766850837376 Lasso Regression 0.04114787529283537 ElasticNet Regression: 0.09645231136315036 Logistic Regression: 0.794194530061254 Random Forest: 0.8502310802788671

Random Forest is suitable for this dataset