Proyecto Semestral: Desarrollo de un Programa de Simulación para Física

Simulador de Caída Libre

Carrera de Ingeniería en Software

18 de marzo de 2025

Revisión del Modelo Definido

- Se revisó el modelo físico de caída libre, basado en las siguientes ecuaciones:
 - Posición vertical: $y(t) = y_0 + v_0 t + \frac{1}{2}gt^2$
 - Velocidad final: $v_f = \sqrt{2gh}$
 - Tiempo de caída: $t = \sqrt{\frac{2h}{g}}$
- Variables del simulador:
 - h: Altura inicial (en metros).
 - g: Gravedad (en m/s², por defecto 9.81).
 - t: Tiempo de caída (en segundos).
 - v_f : Velocidad final (en m/s).

Estructuración del Código Base

- Implementación en JavaScript con HTML5 Canvas.
- Funciones principales:
 - resetBall: Reinicia la posición y velocidad de la pelota.
 - update: Actualiza la posición y velocidad de la pelota en cada frame.
 - draw: Dibuja la pelota en el canvas.
 - animate: Función principal de animación.
 - showSummary: Muestra un resumen de la simulación.
- Estructura de datos:
 - **ball**: Objeto con propiedades como posición (x, y), radio (radius), velocidad (velocityY), y altura inicial (initialHeight).

Pruebas Iniciales y Depuración

- Pruebas realizadas con $h = 10 \,\mathrm{m}$ y $g = 9.81 \,\mathrm{m/s}^2$:
 - Tiempo de caída simulado: 1.43 s.
 - Tiempo de caída teórico: 1.43 s.
 - Velocidad final simulada: 14.0 m/s.
 - Velocidad final teórica: 14.0 m/s.
- Errores y soluciones:
 - Error: La pelota no se detenía al tocar el suelo.
 - Solución: Se agregó una condición para detener la animación cuando y + radius ≥ ground.

Reflexión y Ajustes Finales

- Mejoras propuestas:
 - Agregar controles para modificar el radio de la pelota y la gravedad.
 - Mejorar la interfaz gráfica con una barra de progreso.
 - Optimizar el código para dispositivos móviles.
- Estrategias para mejorar la precisión y visualización.

Recursos Necesarios

- Computadoras con entorno de desarrollo configurado (Visual Studio Code, Node.js, etc.).
- Acceso a herramientas de simulación matemática (MATLAB, PhET, GeoGebra, etc.).
- Documentación técnica sobre la implementación del modelo de caída libre.

Preguntas y Discusión

¿Preguntas?