

MOSFET PG-T0247-3

600V CoolMOS™ CM8 Power Transistor

Built on Infineon's world-class super-junction MOSFET platform with an integrated fast body diode, making it suitable for a wide range of applications. It enables highest power density at lowest possible system cost with superior reliability. It is enhancing Infineon's WBG offering and the successor of the 600 V CoolMOS™ 7 MOSFET family.

Features

- Best-In-Class SJ Mosfet Performance
- Address broad hard and soft switching applications with outstanding commutation ruggedness
- Integrated fast body diode and ESD protection
- .XT interconnection technology for best-in-class thermal performance

Benefits

- Provides the best price performance ratio with Best-In-Class SJ Mosfet Performance
- Ease of use and shorter design in cycle
- Enable multiple topologies
- 14-42% lower R_{th} for improved thermal performance

Potential applications

- Datacenter, Al server, Telecom Power Supply
- Micro and Residential Hybrid Inverter
- Portable and Residential Energy Storage, UPS
- · EV Charging, Light electric vehicles, Electric Forklift
- High Voltage Solid State Power Distribution
- Home & Professional Tools

Product validation

Fully qualified according to JEDEC for Industrial Applications

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Table 1 Key performance parameters

Parameter	Value	Unit
V _{DS} @ T _{j,max}	650	V
R _{DS(on),max}	55	mΩ
$Q_{g,typ}$	51	nC
I _{D,pulse}	148	А
E _{oss} @ 400V	7.0	μЈ
Body diode di _F /dt	1300	A/μs
ESD class (HBM)	2	

Part number	Package	Marking	Related links
IPW60R055CM8	PG-TO247-3	60R055C8	see Appendix A

Public

600V CoolMOS™ CM8 Power Transistor IPW60R055CM8

Table of contents

Description	
Maximum ratings	
Thermal characteristics	
Electrical characteristics	
Electrical characteristics diagrams	7
Test circuits	
Package outlines	
Appendix A	
Revision history	
Trademarks	
Disclaimer	15

1 Maximum ratings

at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Davamakan	Cumphal		Values		1155	Maka / Tankana di Mara	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition	
Continuous drain current ¹⁾	I _D	-	-	44	Α	T _c =25°C	
Continuous drain current	I _D	-	-	27	А	T _C =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	148	Α	T _C =25°C	
Avalanche energy, single pulse	E _{AS}			87	m	1 -2 0 4 · V - = = = = = + = + = 10	
Avalanche energy, repetitive	E _{AR}		-	0.44	- mJ	I _D =3.9A; V _{DD} =50V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	3.9	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	120	V/ns	V _{DS} =0400V	
Gate source voltage (static)	V _{GS}	-20	-	20	٧	static;	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	٧	AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	227	W	T _C =25°C	
Storage temperature	$T_{\rm stg}$	55		150	°C		
Operating junction temperature	T _j	-55	-	150			
Extended operating junction temperature	$T_{\rm j}$	150	-	175	°C	≤50 h in the application lifetime	
Mounting torque	-	-	-	60	Ncm	M3 and M3.5 screws	
Continuous diode forward current	I _S			44		T 250C	
Diode pulse current ²⁾	I _{S,pulse}]-	-	148	A	T _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt			70	V/ns	I/ -0 400V / <444 T-25°C coo	
Maximum diode commutation speed	di _F /dt]-	-	1300	A/μs	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ ≤44A, $T_{\rm j}$ =25°C see table 8	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	V _{rms} , T _C =25°C, <i>t</i> =1min	

¹⁾ Limited by T_{j,max}.

²⁾ Pulse width t_p limited by T_{j,max}

 $^{^{\}rm 3)}$ $\,$ Identical low side and high side switch with identical $\rm R_{\rm G}$

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol	Values			l lmit	Nate / Test condition
raiametei	Symbol	Min.	Тур.	Max.		Note / Test condition
Thermal resistance, junction - case	R_{thJC}	-	-	0.55	K/W	-
Thermal resistance, junction - R _{thJA}		-	-	62	K/W	leaded
Thermal resistance, junction - ambient for SMD version $R_{\rm thJA}$		-	-	-	K/W	-
Soldering temperature, wavesoldering only allowed at leads	T_{sold}	-	-	260	°C	1.6mm (0.063 in.) from case for 10s

3 Electrical characteristics

at T_i =25°C, unless otherwise specified

Table 4 Static characteristics

Davamakar	Cymphol		Values			Note / Test condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition	
Drain-source breakdown voltage	V _{(BR)DSS}	600	-	-	V	$V_{\rm GS}$ =0V, $I_{\rm D}$ =1mA	
Gate threshold voltage	$V_{\rm (GS)th}$	3.7	4.2	4.7	V	$V_{\rm DS} = V_{\rm GS}$, $I_{\rm D} = 0.44$ mA	
Zero gate voltage drain current],	-	-	1		$V_{\rm DS}$ =600V, $V_{\rm GS}$ =0V, $T_{\rm j}$ =25°C	
	I _{DSS}		52.6	-	μΑ	$V_{\rm DS}$ =600V, $V_{\rm GS}$ =0V, $T_{\rm j}$ =150°C	
Gate-source leakage current	$I_{\rm GSS}$	-	-	0.1	μΑ	$V_{\rm GS}$ =20V, $V_{\rm DS}$ =0V	
Drain-source on-state resistance	D		0.046	0.055	Ω	$V_{\rm GS}$ =10V, $I_{\rm D}$ =18.2A, $T_{\rm j}$ =25°C	
	$R_{\mathrm{DS(on)}}$	-	0.101	-] ``	$V_{\rm GS}$ =10V, $I_{\rm D}$ =18.2A, $T_{\rm j}$ =150°C	
Gate resistance	R_{G}	-	6.2	-	Ω	<i>f</i> =1MHz	

Table 5 Dynamic characteristics

Davamatar	Symphol	Values			11	Note / Took on dition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition	
Input capacitance	C _{iss}		2245		рF	\/ -0\/ \/ -400\/ €250\/Hz	
Output capacitance	$C_{\rm oss}$	_	29	-	pΓ	V _{GS} =0V, V _{DS} =400V, <i>f</i> =250kHz	
Effective output capacitance, energy related ⁴⁾	$C_{\rm o(er)}$	-	87	-	рF	V _{GS} =0V, V _{DS} =0400V	
Effective output capacitance, time related ⁵⁾	$C_{\rm o(tr)}$	-	894	-	рF	$I_{\rm D}$ =constant, $V_{\rm GS}$ =0V, $V_{\rm DS}$ =0400V	
Turn-on delay time	t _{d(on)}		23.2				
Rise time	t _r		8.9		ns	V_{DD} =400V, V_{GS} =13V, I_{D} =8.7A,	
Turn-off delay time	$t_{\sf d(off)}$]	103.6	_	115	$R_{\rm G}$ =5.3 Ω ; see table 9	
Fall time	t_{f}		7.8				

⁴⁾ $C_{\rm o(er)}$ is a fixed capacitance that gives the same stored energy as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400V

 $C_{\rm o(tr)}$ is a fixed capacitance that gives the same charging time as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400V

Table 6 Gate charge characteristics

Darameter	Symbol		Values			Note / Test condition
Parameter	Syllibot	Min.	Тур.	Max.		Note / Test condition
Gate to source charge	$Q_{ m gs}$		14		nC	
Gate to drain charge	$Q_{ m gd}$		18		nC	
Gate charge total	$Q_{ m g}$]-	51	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =8.7A, $V_{\rm GS}$ =0 to 10V
Gate plateau voltage	$V_{ m plateau}$		6.0		V	

Table 7 Reverse diode characteristics

Parameter	Symbol	Values			Linit	Note / Test condition
	Syllibol	Min.	Тур.	Max.	Unit	Note / Test condition
Diode forward voltage	$V_{\rm SD}$	-	0.9	-	V	$V_{\rm GS}$ =0V, $I_{\rm F}$ =8.7A, $T_{\rm j}$ =25°C
Reverse recovery time	t _{rr}		97.84	122.29	ns	
Reverse recovery charge	$Q_{\rm rr}$]-	0.48	0.72	1 11(.	$V_{\rm R}$ =400V, $I_{\rm F}$ =8.7A, d $I_{\rm F}$ /d t =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}		10.20	-	Α	see table o

4 Electrical characteristics diagrams

5 Test circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

6 Package outlines

PACKAGE - GROUP NUMBER:	PG-10247-3-006					
DIMENSIONS	MILLIM	ETERS				
DIMENSIONS	MIN.	MAX.				
Α	4.83	5.21				
A1	2.27	2.54				
A2	1.85	2.16				
b	1.07	1.33				
b1	1.90	2.41				
b2	2.87	3.38				
С	0.55	0.68				
D	20.80	21.10				
D1	16.25	17.65				
D2	0.95	1.35				
E	15.70	16.13				
E1	13.10	14.15				
E2	3.68	5.10				
E3	1.00	2.60				
е	5.44					
N	3					
L	19.80	20.32				
L1	3.95	4.47				
øΡ	3.50	3.70				
Q	5.49	6.00				
s	6.04	6.30				

IOTF:

DIMENSIONS DO NOT INCLUDE MOLDFLASH; PROTRUSION OR GATE BURRS

Figure 1 Outline PG-TO247-3, dimensions in mm

7 Appendix A

Table 11 Related links

- IFX CoolMOS CM8 Webpage
- IFX CoolMOS CM8 application note
- IFX CoolMOS CM8 simulation model
- IFX Design tools

Public

600V CoolMOS™ CM8 Power Transistor IPW60R055CM8

Revision history

IPW60R055CM8

Revision 2025-03-20, Rev. 2.1

Previous revisions

Revision	Date	Subjects (major changes since last revision)
2.0	2024-12-18	Release of final version
2.1	2025-03-20	Update of maximum transient thermal impedance and SOA

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2025 Infineon Technologies AG All Rights Reserved.

Important notice

The products which may also include samples and may be comprised of hardware or software or both ("Product") are sold or provided and delivered by Infineon Technologies AG and its affiliates ("Infineon") subject to the terms and conditions of the frame supply contract or other written agreement(s) executed by a customer and Infineon or, in the absence of the foregoing, the applicable Sales Conditions of Infineon.

General terms and conditions of a customer or deviations from applicable Sales Conditions of Infineon shall only be binding for Infineon if and to the extent Infineon has given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties of non-infringement of third-party rights and implied warranties such as warranties of fitness for a specific use/purpose or merchantability.

Infineon shall not be responsible for any information with respect to samples, the application or customer's specific use of any Product or for any examples or typical values given in this document.

The data contained in this document is exclusively intended for technically qualified and skilled customer representatives. It is the responsibility of the customer to evaluate the suitability of the Product for the intended application and the customer's specific use and to verify all relevant technical data contained in this document in the intended application and the customer's specific use. The customer is responsible for properly designing, programming, and testing the functionality and safety of the intended application, as well as complying with any legal requirements related to its use.

Unless otherwise explicitly approved by Infineon, Products may not be used in any application where a failure of the Product or any consequences of the use thereof can reasonably be expected to result in personal injury. However, the foregoing shall not prevent the customer from using any Product in such fields of use that Infineon has explicitly designed and sold it for, provided that the overall responsibility for the application lies with the customer.

If the Product includes security features:

Because no computing device can be absolutely secure, and despite security measures implemented in the Product, Infineon does not guarantee that the Product will be free from intrusion, data theft or loss, or other breaches ("Security Breaches"), and Infineon shall have no liability arising out of any Security Breaches.

If this document includes or references software:

The software is owned by Infineon under the intellectual property laws and treaties of the United States, Germany, and other countries worldwide. All rights reserved. Therefore, you may use the software only as provided in the software license agreement accompanying the software. If no software license agreement applies, Infineon hereby grants you a personal, non-exclusive, non-transferable license (without the right to sublicense) under its intellectual property rights in the software (a) for software provided in source code form, to modify and reproduce the software solely for use with Infineon hardware products, only internally within your organization, and (b) to distribute the software in binary code form externally to end users, solely for use on Infineon hardware products. Any other use, reproduction, modification, translation, or compilation of the software is prohibited.

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www. infineon.com).