INSTALLATION GUIDE FOR SOFTWARE PROTOTYPE

This guide describes how to install and run the software prototype across three different codes with step-by-step instructions: CNN_B0, CNN_B0_SVM, and CNN_B0_SVM_GENETIC. The first two codes are originally developed in Google Colab and the third code is developed in Visual Studio Code. The guide shows how to execute these codes in a local machine using Visual Studio Code coding plataform.

REQUIREMENTS

Ensure you have Python installed on your system. The recommended version is Python 3.8 or higher.

1. Brain Tumor MRI Dataset:

Download dataset_brain_tumor_mri dataset from <u>Github</u> or directly in <u>Kaggle</u>.

2. General Packages:

• pip install numpy pandas matplotlib seaborn scikit-learn tensorflow keras

3. Specific Packages:

CNN_B0_SVM_GENETIC: pip install pygad plotly

CODE MODIFICATIONS FOR LOCAL EXECUTION

The code was developed in Google Colab, you need to modify it to run on a local machine. Specifically, remove or comment out this line related to Google Colab import and functionality:

```
# from google.colab import drive
# drive.mount('/content/drive')
```

RUNNING THE CODE LOCALLY

I. EfficientNetB0 Prototype

- a) Download the code from CNN BO Colab Link or GitHub.
- b) Install the required packages as listed above. Modify the code to remove Google Colab-specific lines.
- c) Correct path for 'dataset_brain_tumor_mri'

II. Support Vector Machine Prototype

- a) Download the code from <u>CNN_BO_SVM Colab Link</u> or <u>GitHub</u>.
- b) Install the required packages as listed above.. Modify the code to remove Google Colab-specific lines.
- c) Correct path for 'dataset_brain_tumor_mri' and the saved EfficientNetB0 model.

III. Genetic Algorithm for Support Vector Machine Hyperparameter Optimization:

- a) Download the code from CNN BO SVM GENETIC GitHub Link.
- b) Install the required packages listed above
- c) Correct path for 'dataset_brain_tumor_mri' and the saved EfficientNetB0 model.

FINAL NOTES

- The Pre-Trained EfficientNetB0 ('efficientnetb0_model.h5') model Can be downloaded from GitHub.
- Ensure the paths to the **dataset_brain_tumor_mri** image directory and to the pre-trained model are correctly set in the code.