Tracé des vecteurs vitesse (version sans fonction)

```
In [1]:
```

```
import matplotlib.pyplot as plt
%matplotlib inline
import csv
```

In [2]:

```
with open("chute_balle.csv", 'r', encoding='utf-8') as f :
    rfichier = csv.reader(f, delimiter=";")
    tableau=[]
    index_row=0 # indice d'une ligne du fichier
    N=1 # nombre de lignes d'en-têtes
    for row in rfichier:
         if index_row < N:</pre>
             index_row = index_row+1
         else :
             for i in range (len(row)):
                 if len(tableau) <= i:</pre>
                     X = []
                     tableau.append(X)
                 try:
                     tableau[i].append(float(row[i].replace(",",'.')))
                 except ValueError:
                     print('erreur:contenu de cellule non numérique')
                     continue
t=tableau[0]
print(t)
x=tableau[1]
print(x)
y=tableau[2]
print(y)
[0.76, 0.8, 0.84, 0.88, 0.92, 0.96, 1.0, 1.04, 1.08, 1.12, 1.16, 1.2, 1.24, 1.28, 1.32,
1.36]
[0.00865710739046, 0.106770991149, 0.204884874908, 0.302998758666, 0.398226939961,
0.493455121256, 0.588683302551, 0.675254376456, 0.767596855287, 0.857053631656,
0.946510408024, 1.03019577946, 1.11676685337, 1.19756652235, 1.27836619132,
1.36205156277]
[1.98247759242, 1.97093478256, 1.94496346039, 1.89590651851, 1.83530676678, 1.7545070978,
1.66216461897, 1.55827933028, 1.43707982682, 1.29568040611, 1.15139528293,
0.984024540049, 0.807996689776, 0.605997517332, 0.403998344888, 0.187570660127]
In [3]:
\nabla x = \prod
for i in range (len(x)-1):
    vxi=(x[i+1]-x[i])/(t[i+1]-t[i])
    vx.append(vxi)
```

In [4]:

```
vy=[]
for i in range (len(y)-1):
    vyi=(y[i+1]-y[i])/(t[i+1]-t[i])
    vy.append(vyi)
```

In [5]:

In []: