Algebra 2R **Problem List 1**

Weronika Jakimowicz

EXERCISE 1.

Proof that $\mathbb{C} = \mathbb{R}[z]$ *for every complex number* $z \in \mathbb{C} \setminus \mathbb{R}$.

To begin with, let us take any $z \in \mathbb{C} \setminus \mathbb{R}$ such that z = ai for some $a \in \mathbb{R}$. We have that

$$\mathbb{R}[z] = \{f(z) : f \in \mathbb{R}[X]\}.$$

Let $I = (X^2 + a^2) \triangleleft \mathbb{R}[X]$ be an ideal of $\mathbb{R}[X]$ generated by a polynomial with no real roots. We know that $\mathbb{R}[X]/I \cong \mathbb{C}$.

This is because \mathbb{R} is a field and so $\mathbb{R}[X]$ is an euclidean domain: if we take any $f \in \mathbb{R}[X]$ then we can write it as $f = v(X^2 + a^2) + w$, where w is of degree 0 or 1 (< def($X^2 + a^2$)) and so f in $\mathbb{R}[X]/I$ is represented only by w. Now it is quite easy to map polynomials with real coefficients and maximal degree 1 to \mathbb{C} , for example $f : \mathbb{R}[X]/I \to \mathbb{C}$ such that f(aX + b) = ai + b. Therefore $\mathbb{R}[X]/I \cong \mathbb{C}$.

Consider the evaluation homomorphism ϕ_z which maps $\mathbb{R}[X] \ni w \mapsto w(z) \in \mathbb{R}[z]$. We can see that $\ker(\phi_z) = (X^2 + a^2) = I$. Therefore, by the fundamental theorem on ring homomorphism we have an isomorphism

$$f: Im(\phi_z) = \mathbb{R}[z] \to \mathbb{R}[X]/ker(\phi_z) = \mathbb{R}[X]/I$$

and as mentioned above, $\mathbb{R}[X]/I \cong \mathbb{C}$. Hence, $\mathbb{R}[z] \cong \mathbb{C}$.

EXERCISE 2.

Assume that $K \subset L$ are fields and $a, b \in L$. For a rational function $f(X) \in K(X)$ define f(a) as $\frac{g(a)}{h(a)}$, where $g, h \in K[X]$, $f = \frac{g}{h}$ and $h(a) \neq 0$, provided such g, h exist. If not, f(a) is undetermined. Prove that

(a) if $f(X) \in K(X)$ and f(a) is defined, then f(a) is determined uniquely (does not depend on the choice of g, h)

Suppose by contradiction that f(a) depends on which g, h we choose. That means that there exist g, h, g', h' \in K[X], h(a) \neq 0, h'(a) such that f = $\frac{g}{h} = \frac{g'}{h'}$ but $\frac{g(a)}{h(a)} + c = \frac{g'(a)}{h'(a)}$, where $c \in L \setminus \{0\}$.

From $f = \frac{g}{h} = \frac{g'}{h'}$ we get that $g \cdot h' = g' \cdot h$ and in particular

$$(gh')(a) = (g'h)(a)$$

 $g(a)h'(a) = g'(a)h(a)$
 $g(a)h'(a) - g'(a)h(a) = 0$

From the assumption that f(a) depends on the choice of polynomials we get that

$$\frac{g'(a)}{h'(a)} = \frac{g(a)}{h(a)} + c$$

$$g'(a)h(a) = g(a)h'(a) + ch'(a)$$

$$g'(a)h(a) - g(a)h'(a) = ch'(a) \neq 0$$

Which is a contradiction because $c \neq 0$, $h'(a) \neq 0$ and we have no zero divisors.

(b)
$$K(a) = \{f(a) : f \in K(X) \text{ and } f(a) \text{ is defined}\}$$

We know that K(a) is a subfield of L that is generated by K \cup {a}. Let us label this field as L'. We will show that L' = K(a).

$$L' \subset K(a)$$

Let us take any $x \in L'$. Then x is a finite linear combination of elements from K and {a.a⁻¹}:

$$x = \sum_{0 \le k \le n} \alpha_k a^{i_k k}, \quad i_k \in \{1, -1\}, \ \alpha_k \in K.$$

We need to change this into a rational function. Take $p_k \in K[X]$ such that $p_k(X) = \alpha_k X^k$. We have that

$$x = \sum_{0 \le k \le n} p_k(a^{i_k}).$$

It is clear that when working with rational functions we may say that $p_k(a^{-1}) = \frac{1}{p_k'(a)}$ where $p_k(X) = \alpha_k^{-1} X^k$.

$$x = \sum_{0 \leq k \leq n} p_k(a^{i_k}) = \frac{\sum_{0 \leq k \leq n} p_k(a) \prod_{\substack{0 \leq l \leq n, \\ i_l = -1}} p'_k(a)}{\prod_{\substack{0 \leq k \leq n \\ i_k = -1}} p'_k(a)} \in K(a)$$

$$K(a) \subseteq L'$$

Let us take any $f \in K(X)$ such that f(a) is defined. We may write $f = \frac{g}{h}$ for $g, h \in K[X]$ and $h(a) \neq 0$. We have that $g(a) \in L'$ and $h(a) \in L'$. Therefore, $\frac{g(a)}{h(a)} = g(a) \cdot [h(a)]^{-1} \in L'$.

(c)
$$K(a, b) = (K(a))(b)$$

Let

$$I_{ab} = I((a, b)/K[x, y])$$

$$I_{a} = I(a/(K[y])[x])$$

$$I_{b} = I(b/(K(a))(y))$$

and j_a, j_b, j_{ab} are quotient functions defined as below. We know that $ker(j_a) = I_a, ker(j_b) = I_b$ and $ker(j_{ab}) = I_{ab}$. Let ϕ_a be an evaluation function that substitutes only one variable:

$$\phi_{\mathsf{a}}:\mathsf{K}(\mathsf{x},\mathsf{y})\to(\mathsf{K}(\mathsf{a}))(\mathsf{y})$$
 $\phi_{\mathsf{a}}(\mathsf{f}(\mathsf{x},\mathsf{y}))=\mathsf{f}(\mathsf{a},\mathsf{y})$

that is ϕ_a returns a rational function with changed coefficients. ϕ_b , ϕ_{ab} are defined as evaluation functions without such modifications.

Function ψ is a ring homomorphism defined as composition of ϕ_a and ϕ_b :

$$\psi: \mathsf{K}(\mathsf{x},\mathsf{y}) \to (\mathsf{K}(\mathsf{a}))(\mathsf{y})$$

$$\psi = \phi_\mathsf{h} \circ \phi_\mathsf{a}$$

For f to be an isomorphism

$$f:(K(a))(b)\to K(a,b)$$

we need to show that $\ker(\phi_{ab}) = \ker(\psi)$ because then

 $ker(\phi_{ab}) = ker(\psi)$

 \subseteq

 $f \in \ker(\phi_{ab})$ means that f(a, b) = 0. That is, either of the following is true for any $x, y \in K$

f(a, b) = 0 this directly implies that $f \in ker(\psi)$.

f(a, y) = 0 the same as above.

f(x, b) = 0 we know that for any $x \in K$ f(x, b) = 0 then for x = a this is also true and so f(a, b) = 0 and $f \in ker(\psi)$.

 \supseteq

 $f \in \ker(\psi)$ means that f(a, b) = 0 or f(a, y) = 0. This means that $f \in \ker(\phi_{ab})$.

Therefore, there exists an isomorphism $K(a, b) \cong (K(a))(b)$.

EXERCISE 3.

Assume that $K \subseteq L$ are fields and $f_1,...,f_m \in K[X_1,...,X_n]$ have degree 1.

(a) Prove that if the system of equations $f_1 = ... = f_m = 0$ has a solution in L then it has a solution in K. (hint: use linear algebra).

Let

$$f_i = \sum_{1 \le k \le n} b_{i,k} X_k$$

for i = 1, ..., m.

We are working on linear equations, therefore we can construct a matrix that stores the same information as the system of equations $f_1 = ... = f_m$. Let

$$f_i = \sum_{1 \le k \le n} b_{i,k} X_k$$

for i = 1, ..., m. The matrix representation of this system of equations is:

$$\begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} & \dots & b_{1,n-1} & b_{1,n} \\ b_{2,1} & b_{2,2} & b_{2,3} & \dots & b_{2,n-1} & b_{2,n} \\ \dots & \dots & \dots & \dots & \dots \\ b_{m,1} & b_{m,2} & b_{m,3} & \dots & b_{m,n-1} & b_{1,n} \end{bmatrix} X = 0.$$

Using Gaussian algorithm, we can create an upper triangular matrix with coefficients from K. The solution would be found by backwards substitution. That is, a_n would be in the bottom right corner of the matrix and it is an element of K because such are the coefficients within my matrix. Then a_{n-1} would be a combination of a_n with two elements of K, hence it would still be in K and so on. Each a_i would be a linear combination of elements from K and a_k , k < i, which we know are in K.

(b) Does K contain a generic solution of this system (over K)?

From Remark 1.4. we know that \overline{a} is a generic solution \iff for any other solution $\overline{a}' \in K^n$ we have only one homomorphism $h: K[\overline{a}] \to K[\overline{a}]$ such that $h(\overline{a}) = h(\overline{a}')$ and $h \upharpoonright K = \operatorname{id}_K$. It is suffice to notice that because $K[\overline{a}]$ and $K[\overline{a}']$ are evaluations of polynomials with coefficients from K, then they are finite combinations of elements from K and therefore $K[\overline{a}] \subseteq K$ and $K[\overline{a}'] \subseteq K$. Therefore $K[\overline{a}] \subseteq K$ and thus is unique.

ZADANIE 5.

Which of the following solutions of the equation $X_1^2 - X_2^3 = 0$ in the field of rational functions $\mathbb{C}(X)$ are generic over the field \mathbb{Q} ?

(a) (1, 1)

ZADANIE 6.

Assume that $f \in K[X]$ is irreducible, deg(f) = n > 0, char(K) = 0 and L is the splitting field of polynomial f over K. Prove that the field L has at least n distinct automorphisms.

First of all, I need f to have n distinct roots in L.

If a is at least a double root of f then f'(a) = 0. Let

$$\mathsf{f}(\mathsf{x}) = \alpha_\mathsf{n} \mathsf{x}^\mathsf{n} + \alpha_\mathsf{n-1} \mathsf{x}^\mathsf{n-1} + \ldots + \alpha_\mathsf{1} \mathsf{x} + \alpha_\mathsf{0}$$

where $\alpha_n \neq 0$. Then, the derivative is

$$f'(x) = n\alpha_n x^{n-1} + (n-1)\alpha_{n-1} x^{n-1} + ... + \alpha_1$$

and because we char(K) = 0, then $n\alpha_n = \alpha_n + ... + \alpha_n \neq 0$. Thus, $f'(x) \not\equiv 0$.

We know that $f \in K[X]$ is irreducible and f' has lower degree, hence f' does not divide f. From Bezout's identity I get that there exist $p, q \in K[X] \setminus \{0\}$ such that

$$fp + f'q = 1.$$

If
$$f'(a) = 0$$
, then

$$0 = f(a)p(a) + f'(a)q(a) = 1$$

which is a contradiction, hence $f'(a) \neq 0$ and f has only simple roots.

Let $\phi \in \text{Aut}(L)$ such that $\phi_{\uparrow K} = \text{id}_{K}$. Let $a_{1},...,a_{n} \in L$ be roots of f. Then for i = 1,..., n we have

$$0 = \phi(f(a_i)) = \phi\left(\sum_{k=0}^{n} \alpha_k a_i^k\right) = \sum_{k=0}^{n} \phi(\alpha_k a_i^k) =$$
$$= \sum_{k=0}^{n} \phi(\alpha_k) \phi(a_i^k) = \sum_{k=0}^{n} \alpha_k \phi(a_i)^k = f(\phi(a_i))$$

which implies that we can define an automorphism on L by simply mapping a_i to any of the roots of f and keeping the coefficients from K in place. This gives us with at least n such permutations of roots.

EXERCISE 8.

Prove that the set $\{\sqrt{p} : p \text{ is a prime number}\}\$ is linearly independent over the field \mathbb{Q} .

Consider a polynomial $a_1x_1 + a_2x_2 + ... + a_nx_n \in \mathbb{Q}[x_1,...,x_n]$