

En este Curso ...

 Aprenderemos a usar el computador como una herramienta para resolver problemas de procesamiento de datos.

¿Qué es un Computador?

- Dispositivo electrónico, utilizado para procesar datos y obtener resultados.
- Capaz de ejecutar cálculos y tomar decisiones a una velocidad muy superior de la que puede hacerlo un ser humano.

Componentes de un Computador

Hardware

Software

Hardware

- Componentes físicos que constituyen y forman parte del computador.
- Un computador consta fundamentalmente de cinco componentes principales:
 - 1. Dispositivos de entrada.
 - 2. Dispositivos de salida.
 - 3. Memoria principal.
 - 4. Unidad central de proceso (CPU).
 - 5. Memoria secundaria.

Arquitectura Básica de un Computador

Dispositivos de Entrada

- Sirven para introducir datos en el computador para su posterior procesamiento.
- Estos datos se leen desde los dispositivos de entrada y se almacenan en la memoria central (en variables).
- Dispositivos de entrada típicos son :
 - Teclado
 - Mouse
 - Micrófono
 - Escáner
 - Lector de código de barra, etc.

Dispositivos de Salida

- Permiten representar los resultados del procesamiento de los datos.
- Dispositivos de salida típicos son :
 - Monitor
 - Impresora
 - Altavoz
 - Plotter, etc.

Memoria Principal

Permite almacenar:

- Datos de entrada
- Programas
- Datos de salida (resultados)
- En la mayoría de los computadores existen dos tipos de memoria principal :
 - Memoria de acceso aleatorio (RAM): que permite almacenar datos y programas de forma temporal. Es volátil y de lectura/escritura.
 - Memoria de solo lectura (ROM) : que permite almacenar datos y programas de forma permanente.

Celdas de Memoria

La **memoria** de un computador es una **secuencia ordenada** de **celdas de memoria**.

- Cada celda tiene una única dirección que indica su posición relativa en la memoria.
- Estas celdas se denominan también palabras. Cada
 palabra puede ser un grupo de 8 , 16 , 32 o 64 bits.
- Si la palabra es de 8 bits se le denomina byte. Cada bit sólo puede contener dos valores posibles, 0 o 1.
- Un dato se almacena en una celda de memoria y constituye el contenido de dicha celda.

Unidades de Medida de Almacenamiento

Tabla 1.1. Unidades de medida de almacenamiento

Byte	Byte (B)	equivale a	8 bits	
				(4.07)
Kilobyte	Kbyte (KB)	equivale a	1.024 bytes	(10^3)
Megabyte	Mbyte (MB)	equivale a	1.024 Kbytes	(10^6)
Gigabyte	Gbyte (GB)	equivale a	1.024 Mbytes	(10^9)
Terabyte	Tbyte (TB)	equivale a	1.024 Gbytes	(10^{12})
Petabyte	Pbyte (PB)	equivale a	1.024 Tbytes	(10^{15})
Exabyte	Ebyte (EB)	equivale a	1.024 Pbytes	(10^{18})
Zettabyte	Zbyte (ZB)	equivale a	1.024 Ebytes	(10^{21})
Yotta	Ybyte (YB)	equivale a	1.024 Zbytes	(10^{24})

1 Tb = 1.024 Gb; 1 GB = 1.024 Mb = 1.048.576 Kb = 1.073.741.824 b

Procesador (CPU)

- Controla el funcionamiento del computador y realiza operaciones de procesamiento de datos (cálculos y comparaciones).
- Cada computador tiene al menos una CPU (ubicada en la placa madre) para :
 - Interpretar y ejecutar las instrucciones de cada programa
 - Realizar operaciones aritméticas y lógicas sobre los datos
 - Comunicarse con las restantes partes de la máquina indirectamente a través de la memoria.

Componentes del Procesador

El procesador esta compuesto por :

- Unidad de Control : dirige y coordina las operaciones en el computador.
- Unidad Aritmética y Lógica: realiza operaciones aritméticas (suma, resta, multiplicación y división) y operaciones lógicas (comparación entre valores y algebra booleana).

Memoria Secundaria

- La memoria secundaria, proporciona capacidad de almacenamiento fuera de la CPU y de la memoria principal.
- Dentro de las tecnologías más importantes de almacenamiento secundario encontramos por ejemplo los discos magnéticos.
- Esta memoria es **NO volátil** y mantiene **datos** y **programas**, incluso cuando se **apaga el computador**.
- La información contenida en la memoria secundaria se conserva en unidades de almacenamiento denominadas archivos.

Arquitectura Básica de un Computador

Software

- El **software** es un **conjunto** de **programas** que controlan y coordinan los componentes **hardware** de un computador.
- Un programa es un conjunto ordenado y finito de instrucciones que le indican al computador las tareas que debe realizar.
- El proceso de escritura o codificación de programas se denomina programación y las personas que se especializan en esta actividad se denominan programadores.

Tipos de Software

- Software del Sistema: conjunto generalizado de programas que gestionan los recursos del computador.
- Software de aplicaciones: conjunto de programas escritos por empresas o profesionales y que instruyen al computador para que ejecute una tarea específica.

Estos dos tipos de **software** están relacionados entre sí, de modo que **usuarios** y **programadores** puedan hacer un uso **eficiente** del **computador**.

Relación entre Software de Aplicación y Software de Sistema

Software de Sistema

- El **software de sistema** es el conjunto de **programas** indispensables para que la **máquina** funcione.
- Algunos de estos programas son :
 - Sistema operativo
 - Traductores

Sistema Operativo

- Un sistema operativo (SO) es el que controla y gestiona todas las operaciones y los recursos del computador. Estos recursos incluyen memoria (principal y secundaria), dispositivos de E/S y el procesador.
- El SO permite que el programador pueda introducir y grabar nuevos programas, así como instruir al computador para que los ejecute.
- Algunos de los SO más populares son :
 - Windows
 - Linux
 - Mac OS

Lenguajes de Programación

- Lenguaje de programación: conjunto de símbolos y las reglas para combinarlos que se usan para escribir programas.
- Sus elementos principales son :
 - **Léxico** : conjunto de **símbolos** que incluye el lenguaje (vocabulario).
 - **Sintaxis** : reglas que indican cómo escribir una instrucción en el lenguaje (cómo combinar los símbolos).
 - Semántica: reglas que permiten determinar el significado de cualquier instrucción en el lenguaje.

Tipos de Instrucciones

• Cada **lenguaje de programación** tiene un repertorio limitado de **instrucciones**.

Las instrucciones básicas y comunes a todo lenguaje son:

- Instrucciones de entrada/salida : que permiten la transferencia de datos entre periféricos y la memoria, tales como "leer..." o "escribir...".
- Instrucciones de cálculo : que permiten que el computador pueda realizar operaciones aritméticas.
- Instrucciones de control: que permiten modificar la secuencia de ejecución de un programa.

Tipos de Lenguajes de Programación

- Lenguajes máquina.
- Lenguajes de bajo nivel.
- Lenguajes de alto nivel.

Lenguaje de Máquina

Sus instrucciones:

- Son cadenas binarias de ceros y unos.
- Pueden ser directamente ejecutadas por el computador.
- Dependen del hardware del computador.

Lenguaje de Bajo Nivel

Sus instrucciones:

- Son nemotécnicos.
- NO pueden ser directamente ejecutadas por el computador, requieren de una fase de traducción.
- Dependen del hardware del computador.

Lenguaje de Alto Nivel

Diseñados para que las personas **escriban y entiendan** los **programas** de **manera más fácil.**

Sus instrucciones:

- NO dependen del HW del computador.
- Deben ser traducidas a Lenguaje de Máquina.

Algunos lenguajes de alto nivel son :

• Python, Java, C, C++, C#, Pascal etc.

Traductores

- Los traductores son programas que transforman un programa fuente escrito en un lenguaje de programación de alto nivel a un lenguaje de máquina comprensible por el computador.
- Los traductores se pueden clasificar :
 - Compiladores
 - Intérpretes

Compilador v/s Intérprete

COMPILADOR	INTÉRPRETE
Traduce todas las instrucciones de un programa fuente a lenguaje de máquina antes de ejecutarlo.	Traduce cada instrucción de un programa fuente y la ejecuta inmediatamente.
Espera hasta terminar la compilación de todo el programa para generar un informe de errores.	Detecta errores en el programa durante el proceso de ejecución.

Software de Aplicación

- El software de aplicación tiene como función principal asistir y ayudar al usuaria/o a ejecutar tareas específicas en el computador.
- Existe una diversidad de aplicaciones para todo tipo de actividades: personales, de negocios, navegación en Internet, gráficos y presentaciones visuales, etc.
- Algunos ejemplos de software de aplicación son :
 - Procesadores de texto (Word)
 - Planillas de Cálculo (Excel)
 - Navegadores de Internet (Google Chrome)
 - App de Correo Electrónico (Gmail)

Dato e Información

- Un dato es una representación simbólica (numérica, alfabética, etc.) de un atributo o variable cuantitativa o cualitativa de un objeto del mundo real.
- La información son datos que han sido procesados y comunicados de tal manera que pueden ser entendidos e interpretados por un receptor.

Tipos de Datos y su Representación

Los tipos de datos más significativos son:

- Textos
- Valores numéricos

Cada uno de ellos se representa **internamente** en el **computador** de una manera específica.

Representación de Textos

Un dato de tipo texto está formado por un conjunto de caracteres que pueden ser :

- Alfabéticos: letras mayúsculas y minúsculas inicialmente del alfabeto inglés (a..z, A..Z)
- **Numéricos** : dígitos del sistema de numeración base 10 (0..9)
- Especiales : símbolos ortográficos y matemáticos (, . ; : + ? !, etc).
- **Geométricos y gráficos** : símbolos que representan figuras geométricas o íconos. (| **### # Ø**)
- De control: representan órdenes de control como el carácter de nueva línea, retorno de carro, etc.

Tablas de Codificación

- Al introducir un texto a través de un periférico de entrada, los caracteres se codifican de acuerdo a un cierto código de modo que a cada carácter se le asocia una determinada combinación de n bits.
- Los códigos más usados son :
 - EBCDIC (Extended Binary Coded Decimal Interchange Code)
 - ASCII (American Standard Code for Information Interchange)
 - UNICODE

EBCDIC

• Este código usa **8 bits** de forma que se puede codificar hasta 2⁸ → 256 símbolos diferentes.

Código EBCDIC

DEC	HEX	CHAR	DEC	HEX	CHAR	DEC	HEX	CHAR	DEC	HEX	CHAF
0	00	NUL	32	20	DS	64	40	SP	96	60	
1	01	SOH	33	21	SOS	65	41	RSP	97	61	1
2	02	STX	34	22	FS	66	42	â	98	62	A
3	63	ETX	35	23		67	43	ä	99	63	Ä
4	04	PF	36	24	BYP	68	44	à	100	64	À
5	05	HT	37	25	LF	69	45	á	101	65	Á
6	06	LC	38	26	ETB	70	46	ã	102	66	Ä
7	07	DEL	39	27	ESC	71	47	å	103	67	Å
8	08	GE	40	28		72	48	ç	104	68	Ç
9	09	RLF	41	29		73	49	ñ	105	639	Ñ
10	0A	SMM	42	2A	SM	74	4A	1	106	бA	1
11	08	VT	43	2B	CU2	75	48	,	107	68	
12	0C	FF	44	2C		76	4C	<	108	6C	%
13	OD.	CR	45	2D	ENQ	77	40	(109	6D	1 2
14	0E	SO	46	2E	ACK	78	4E	+	110	6E	>
15	OF	SI	47	2F	BEL	79	4F	1	111	6F	7
16	10	DLE	48	30		80	50	8.	112	70	#
17	11	DC1	49	31		81	51	é	113	71	É
18	12	DC2	50	32	SYN	82	52	é	114	72	É
19	13	TM	51	33		83	53	e	115	73	E
28	14	RES	52	34	PN	84	54	è	116	74	È
21	15	NL	53	35	RS	85	55	1	117	75	- 1
22	16	BS	54	36	UC	86	56	i	118	76	- i
23	17	IL	55	37	EOT	87	57	ï	119	77	1
24	18	CAN	56	38		88	58	1	120	78	1
25	19	EM	57	39		89	59	8	121	79	
26	1A	CC	58	3A		90	5A		122	7A	:
27	1B	CU1	59	3B	CU3	91	58	\$	123	78	#
28	1C	IFS	60	3C	DC4	92	5C	*	124	7C	@
29	1D	IGS	61	30	NAK	93	5D)	125	7D	
30	1E	IRS	62	3E		94	5E	- 1	126	7E	
31	1F	IUS	63	3F	SUB	95	5F		127	76	

COM II- I. Zamora

Uni II - Conf3: Cod. fte y Fmteo

ASCII

- **Básico**: usa **7 bits** de forma que se puede codificar hasta 2⁷ → 128 símbolos diferentes.
- Extendido : usa 8 bits de forma que se puede codificar hasta $2^7 \rightarrow 128$ símbolos diferentes.

TAB	LA	DE	CAF	RACT	ERE	S D	EL C	ÓDIO	0 A	SCII
1 0	25	49 1	73 I	97 a	121 y	145 æ	169 -	193 4	217 4	241 ±
2 0	26	50 2	74 J	98 b	122 z	146 Æ	170 -	194 -	218 -	242 >
3 💗	27	51 3	75 K	99 c	123 (147 ô	171 %	195	219	243 <
4 •	28 _	52 4	76 L	100 d	124	148 ö	172	196 -	220	244 [
5 🔥	29 **	53 5	77 M	101 e	125	149 6	173 i	197 +	221	245
6 🔥	30	54 6	78 N	102 f	126 ~	150 û	174 «	198	222	246 +
7	31 *	55 7	79 0	103 q	127 #	151 ù	175 »	199	223	247 ≈
8	32	56 8	80 P	104 h	128 C	152 ÿ	176	200	224 a	248 °
9	33 !	57 9	81 Q	105 i	129 ü	153 0	177	201 =	225 B	249 .
10	34 "	58 :	82 R	106 1	130 é	154 Ü	178	202 4	226 Г	250
11	35 #	59 ;	83 S	107 k	131 á	155 ¢	179	203 =	227 #	251 /
12	36 \$	60 <	84 T	108 1	132 ä	156 €	180 -	204	228 🖺	252 "
13	37 %	61 =	85 U	109 m	133 à	157 ¥	181	205 =	229 σ	253 2
14	38 &	62 >	86 V	110 n	134 å	158 P	182 4	206 #	230 4	254 .
15	39 /	63 ?	87 W	111 0	135 c	159 f	183 -	207 =	231 7	255
16 .	40 (64 @	88 X	112 p	136 e	160 á	184		232 0	PRESIONA
17	41)	65 A	89 Y	113 a	137 ĕ	161 1	185	209 =	233 ⊖	LATECLA
18 :	42 *	66 B	90 Z	114 r	138 è	162 6	186	210 +	234 0	[Alt]
19 !!	43 +	67 C	91 [115 s	139 ï	163 u	187	211	235 8	MASEL
20 4	44	68 D	92	116 t	140 î	164 ñ	188	212 -	236 ∞	NÚMERO
21 6	45 -	69 E	93 1	117 u	141 i	165 N	189 4	213 =	237 6	CORTESIA DE:
22	46 .	70 F	94 ^	118 v	142 Å	166 "	190 1	214	238 €	2
23 ‡	47 /	71 G	95	119 w	143 Å	167 .	191 -	215	239 n	()
24 +	48 0	72 H	96 7	120 x	144 É	168 ¿	192	216	240 =	00

UNICODE

 Usa 16 bits de forma que se puede codificar hasta 2¹⁶ → 65536 símbolos diferentes. Lo que permite incluir alfabetos de distintas lenguas.

Alfabeto ruso básico

Representación de Valores Numéricos

- Los valores numéricos son leídos desde el periférico de entrada como una cadena de caracteres que es transformada por el computador a notación binaria.
- Esta transformación puede ser a un valor entero o real según corresponda.

Representación de Enteros

- Los datos de tipo entero se representan en notación binaria. Dependiendo del lenguaje de programación y la arquitectura de la máquina utilizada estos datos pueden ser representados en 2, 4, 8 bytes.
- En el caso de **enteros con signo** (positivos / negativos) se usa un bit para el signo y el resto para representar su magnitud.
- En el caso de **enteros sin signo** se usan todos los bits para representar su magnitud.

Representación de Reales

- Los números reales son aquellos que contienen una parte decimal como 2,6 y 3,14152.
- Los reales se representan en :
 - Notación científica 5.95E01
 - Coma flotante 59.5
- Internamente se representan en notación binaria.

