Seminari 8

Matematičke metode za informatičare

Damir Horvat

FOI, Varaždin

Rješenje												
X	У	Z	t				X	У	Z	t		
1	2	1	-3	0			5	10	11	0	0	_
2	4	4	-1	0	+		0	0	<u>2</u> 5	1	0	/· 5
3	6	7	1	0	$/\cdot 1/\cdot 3$		5	10	11	0	0	-
10	20	22	0	0	/: 2		0	0	2	5	0	
5	10	11	0	0			U	U	۷	3	0	
3	6	7	1	$ \begin{array}{c} 0 \\ \hline 0 \\ 2z + 5t = 0 \end{array} $								_
5	10	11	0	0	_		υ λ		2	5 <i>t</i> =	0	
5	10	11	0	0							•	
3	6	7	1	0			$\int x$	z = -	2 <i>u</i> –	$\frac{11}{5}v$		J
5	10	11	0	0	$-/\cdot \frac{-3}{5}$		$ _{\nu}$	y = u		5		
3	6	7	1	0	←		\int_{Z}^{z}	z = v		ι	ı, v ∈	\mathbb{R}
					_ '		$\rightarrow \int t$	x = - $y = u$ $x = v$ $x = -$	$\frac{2}{5}v$,	
												2 / 17

Zadatak 1

Odredite dimenziju i jednu bazu vektorskog prostora R svih realnih rješenja homogenog sustava linearnih jednadžbi

$$x + 2y + z - 3t = 0$$
$$2x + 4y + 4z - t = 0$$
$$3x + 6y + 7z + t = 0$$

i nadopunite dobivenu bazu do baze za \mathbb{R}^4 .

$$R < \mathbb{R}^4$$

$$\begin{cases} x = 4 \\ y = 2 \\ z = 4 \end{cases}$$

$$(x, y, z, t) = \left(-2u - \frac{11}{5}v, u, v, -\frac{2}{5}v\right) =$$

$$= u \cdot (-2, 1, 0, 0) + v \cdot \left(-\frac{11}{5}, 0, 1, -\frac{2}{5}\right)$$

$$\mathcal{B}_R = \left\{ (-2, 1, 0, 0), \left(-\frac{11}{5}, 0, 1, -\frac{2}{5} \right) \right\}$$
 dim $R = 2$

$$\begin{bmatrix} -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 0 & 1 & 0 & 0 \\ -2 & -\frac{11}{5} & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} -\frac{11}{5} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{5} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim egin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \ 0 & -rac{11}{5} & 1 & 2 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 \ 0 & -rac{2}{5} & 0 & 0 & 0 & 1 \ \end{pmatrix} / \cdot 5 \sim egin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \ 0 & -11 & 5 & 10 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 \ 0 & -2 & 0 & 0 & 0 & 5 \ \end{bmatrix} > \sim egin{bmatrix} 1 & 0 & 1 & 0 & 0 \ 0 & -11 & 5 & 10 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & -2 & 0 & 0 & 0 & 5 \ \end{bmatrix} > \sim egin{bmatrix} 2 & 0 & 0 & 0 & 5 \ \end{bmatrix} > \sim egin{bmatrix} 2 & 0 & 0 & 0 & 0 & 5 \ \end{bmatrix} > 0$$

4 / 17

5 / 17

Zadatak 2

 $U \mathcal{P}_3(t)$ zadan je skup $\mathcal{B} = \{t+2, t^2, t^2+t\}$.

- a) Dokažite da je \mathcal{B} baza za $\mathcal{P}_3(t)$.
- b) Bez korištenja matrice prijelaza pronađite koordinate polinoma $p(t) = t^2 + 3t - 5 \text{ u bazi } \mathcal{B}.$
- c) Pomoću matrice prijelaza pronađite koordinate polinoma $p(t) = t^2 + 3t - 5 \ u \ bazi \ \mathcal{B}.$

6/17

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} \rangle \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & -11 & 5 & 10 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 5 \end{bmatrix} / \cdot \frac{11}{2} \sim$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 5 & 10 & 11 & 0 \\ 0 & 0 & 0 & 0 & 2 & 5 \end{bmatrix}$$

Jedna nadopuna do baze za \mathbb{R}^4

$$\left\{ (-2,1,0,0), \left(-\frac{11}{5},0,1,-\frac{2}{5} \right), (1,0,0,0), (0,0,1,0) \right\}$$

Rješenje

a)
$$\mathcal{B}=\left\{t+2,\,t^2,\,t^2+t\right\}$$
 $\mathcal{B}_{\mathsf{kan}}=\left\{1,t,t^2\right\}$ $t+2$ \longrightarrow $(2,1,0)$ t^2 \longrightarrow $(0,0,1)$ t^2+t \longrightarrow $(0,1,1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / : 2 \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \cdot (-1) \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} / \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\implies \mathcal{B}$ je baza za $\mathcal{P}_3(t)$

7 / 17

b)
$$p(t) = t^{2} + 3t - 5$$

$$E = \{t + 2, t^{2}, t^{2} + t\}$$

$$t^{2} + 3t - 5 = \alpha_{1} \cdot (t + 2) + \alpha_{2} \cdot t^{2} + \alpha_{3} \cdot (t^{2} + t)$$

$$t^{2} + 3t - 5 = (\alpha_{2} + \alpha_{3})t^{2} + (\alpha_{1} + \alpha_{3})t + 2\alpha_{1}$$

$$2\alpha_{1} + \alpha_{3} = 3$$

$$2\alpha_{1} = -5\}$$

$$\frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1} \quad \frac{\alpha_{1} \quad \alpha_{2} \quad \alpha_{3}}{0 \quad 1 \quad 1 \quad 0 \quad 0} \quad \frac{\beta_{2}}{0 \quad 1} \quad \frac{\beta_{1} \quad \alpha_{1}}{0 \quad 1} \quad \frac{\beta_{1}}{0 \quad 1} \quad \frac{\beta_$$

c)
$$p(t) = t^2 + 3t - 5$$
 $X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2}$ $\mathcal{B} = \{t + 2, t^2, t^2 + t\}$ $\mathcal{B}_{kan} = \{1, t, t^2\}$ $\mathcal{B}_{kan} = \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix}$ $\mathcal{B}_{kan} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

 $X_{\mathcal{B}_{\mathsf{kan}}} = T_{\mathcal{B}_{\mathsf{kan}} \to \mathcal{B}} X_{\mathcal{B}} \longrightarrow X_{\mathcal{B}} = T^{-1} X_{\mathcal{B}_{\mathsf{kan}}}$

$$X_{\mathcal{B}} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{bmatrix} \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{5}{2} \\ -\frac{9}{2} \\ \frac{11}{2} \end{bmatrix} \stackrel{\leftarrow}{\alpha_{3}} T^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & -1 & 1 \\ -\frac{1}{2} & 1 & 0 \end{bmatrix}$$

Zadatak 3

 $\mathcal{B} \xrightarrow{T^{-1}} \mathcal{B}_{kan}$

9 / 17

Neka je $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}.$

- a) Dokažite da je V potprostor od \mathbb{R}^3 .
- b) Provjerite da je skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ baza za V.
- c) Dokažite da je $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$ također baza za V.
- d) Odredite matricu prijelaza iz baze \mathcal{B}_1 u bazu \mathcal{B}_2 .
- e) Odredite koordinate vektora $(-3,2,-1) \in V$ u bazi \mathcal{B}_2 .

Riešenie

$$V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$$

a) $\alpha, \beta \in \mathbb{R}$, $a, b \in V \stackrel{?}{\Longrightarrow} \alpha a + \beta b \in V$

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

$$b \in V \implies b = (x_2, y_2, x_2 + y_2), \quad x_2, y_2 \in \mathbb{R}$$

$$\alpha \mathbf{a} + \beta \mathbf{b} = \alpha \cdot (x_1, y_1, x_1 + y_1) + \beta \cdot (x_2, y_2, x_2 + y_2) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha (x_1 + y_1) + \beta (x_2 + y_2)) =$$

$$= (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, (\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2))$$

$$\implies \alpha \mathbf{a} + \beta \mathbf{b} \in V \implies V < \mathbb{R}^3$$

12 / 17

$$a \in V \implies a = (x_1, y_1, x_1 + y_1), \quad x_1, y_1 \in \mathbb{R}$$

e)
$$(-3,2,-1)$$
 1. način: pomoću matrice prijelaza

$$X_{\mathcal{B}_2} = egin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} egin{bmatrix} -3 \\ 2 \end{bmatrix} = rac{1}{3} egin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} egin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$$

 $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$

 $\dim V = 2$

d) $\mathcal{B}_1 \xrightarrow{T} \mathcal{B}_2$

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$

 $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

$$(1,1,2) = \frac{1}{1} \cdot (1,0,1) + \frac{1}{1} \cdot (0,1,1)$$
 $T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$ $T = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$

$$X_{\mathcal{B}_1} = T_{\mathcal{B}_1 \to \mathcal{B}_2} X_{\mathcal{B}_2} \xrightarrow{\bullet \bullet \bullet \bullet} X_{\mathcal{B}_2} = T^{-1} X_{\mathcal{B}_1}$$

$$X_{\mathcal{B}_1} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$X_{\mathcal{B}_2} = \begin{bmatrix} \frac{1}{3} \\ \frac{5}{3} \end{bmatrix}$$

14 / 17

15 / 17

$$\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$$
 $V = \{(x,y,x+y) : x,y \in \mathbb{R}\}$ $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$

b) $(x, y, x + y) = x \cdot (1, 0, 1) + y \cdot (0, 1, 1)$

Skup $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ je skup izvodnica za V, a očito je i linearno nezavisni pa je \mathcal{B}_1 jedna baza za V.

(x, y) koordinate vektora (x, y, x + y) u bazi \mathcal{B}_1

c)
$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & -1 & 1 & 1 \end{bmatrix} \overset{/\cdot(-1)/\cdot(-2)}{\leftarrow} \sim \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 3 & -1 & 1 \\ 0 & 3 & -1 & 1 \end{bmatrix} \overset{/\cdot(-1)}{\leftarrow} \sim$$

$$\sim \begin{bmatrix} \boxed{1} & -2 & 1 & 0 \\ 0 & \boxed{3} & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\sim \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 3 & -1 & 1 \end{bmatrix}$ \mathcal{B}_1 i \mathcal{B}_2 razapinju isti potprostor od \mathbb{R}^3 , tj. \mathcal{B}_2 je također baza za V.

 $\mathcal{B}_1 = \{(1,0,1), (0,1,1)\}$ $V = \{(x, y, x + y) : x, y \in \mathbb{R}\}$ $\mathcal{B}_2 = \{(1,1,2), (-2,1,-1)\}$ $\dim V = 2$

2. način: bez korištenja matrice prijelaza

$$(-3,2,-1) = \alpha_1 \cdot (1,1,2) + \alpha_2 \cdot (-2,1,-1)$$

$$\alpha_1 - 2\alpha_2 = -3
\alpha_1 + \alpha_2 = 2
2\alpha_1 - \alpha_2 = -1$$

13 / 17

Geometrijska interpretacija

$$\mathcal{B}_{1} = \big\{ (1,0,1), \, (0,1,1) \big\} \qquad \qquad V = \big\{ (x,y, \cancel{x+y}) : x,y \in \mathbb{R} \big\}$$

$$\mathcal{B}_{2} = \big\{ (1,1,2), \, (-2,1,-1) \big\} \qquad \qquad \qquad z = x+y$$
 ravnina kroz ishodište $\longrightarrow x+y-z=0$

- Potprostor V je ravnina kroz ishodište s jednadžbom x + y z = 0.
- Potprostor V je skup svih rješenja homogenog sustava x + y z = 0 koji se sastoji od jedne linearne jednadžbe s tri nepoznanice.
- ullet Vektorska jednadžba ravnine s istaknutim vektorima iz baze \mathcal{B}_1

$$\vec{r} = u \cdot (1, 0, 1) + v \cdot (0, 1, 1), \quad u, v \in \mathbb{R}$$

• Vektorska jednadžba ravnine s istaknutim vektorima iz baze \mathcal{B}_2

$$\vec{r} = u \cdot (1, 1, 2) + v \cdot (-2, 1, -1), \quad u, v \in \mathbb{R}$$

16 / 17

Geometrijska interpretacija

• Je li *U* potprostor od \mathbb{R}^3 ?

$$U = \left\{ (x, y, (x + y + 1)) : x, y \in \mathbb{R} \right\}$$
ravnina koja ne
prolazi kroz ishodište
 $x + y + 1$
 $x + y - z + 1 = 0$

Skup U nije potprostor od \mathbb{R}^3 jer ne sadrži nulvektor.

- U n-dimenzionalnom afinom prostoru k-ravnina je zadana s točkom i k linearno nezavisnih vektora. Svaka k-ravnina je rješenje sustava od n – k nezavisnih linearnih jednadžbi s n nepoznanica.
- *k*-ravnina je potprostor jedino ako prolazi kroz ishodište, tj. ako sadrži nulvektor. Ravnine koje nisu potprostori zovemo **linearnim mnogostrukostima**.

17 / 17