eCommerce Model

Types

- Customer
 - o ID
 - year of birth
 - gender
 - country
- Order
- Items
 - Type
 - Price

▼ Customer Generation

Attributes

- *ID* → "customer1", "customer2", ...
- *Gender* → 50:50
- YearOfBirth \rightarrow normal(μ : 30, σ : 10)
- **▼** *Country* → EU-Population distribution

EU Countries

Country	% of Population
Germany	18.81%
France	15.18%
Italy	13.12%
Spain	10.72%
Poland	8.20%
Romania	4.25%
Netherlands	3.97%

Country	% of Population
Belgium	2.62%
Czech Republic	2.41%
Sweden	2.35%
Portugal	2.33%
Greece	2.32%
Hungary	2.14%
Austria	2.03%
Bulgaria	1.44%
Denmark	1.32%
Finland	1.24%
Slovakia	1.21%
Ireland	1.16%
Croatia	0.86%
Lithuania	0.64%
Slovenia	0.47%
Latvia	0.42%
Estonia	0.30%
Cyprus	0.21%
Luxembourg	0.15%
Malta	0.13%

Registration

Assumption: at the beginning, there are no customers, then the customer base grows exponentially

- GLOBAL_REGISTRATION_DELAY_LOWER_DAYS, GLOBAL_REGISTRATION_DELAY_UPPER_DAYS
 - upper and lower limit on how long to wait until a new customer registers itself
- GROWTH_COEFF

 chance of which a newly registered customer will "recruit" a second one (to spark exponential growth)

Login

- LOCAL_LOGIN_DELAY_LOWER_DAYS,
 LOCAL_LOGIN_DELAY_UPPER_DAYS
 - upper and lower limit on how long to wait until "the same" customer logs in again

Order

If the customer is logged in, there is a chance of *CHANCE_OF_ORDER* that he will create an order

(Currently, a customer places at most one order per "session", i.e., login-logout)

▼ Add Items

▼ Item list

We have 20 different items with different price ranges. Per Order, we add between 1-10 items.

Туре	Price Range
Sunscreen	\$5 - \$20
Umbrella	\$10 - \$40
Laptop	\$300 - \$3,000
Smartphone	\$200 - \$1,500
T-shirt	\$10 - \$30
Swimwear	\$10 - \$50
Jeans	\$30 - \$80
Coffee maker	\$20 - \$200
Headphones	\$20 - \$300
Sneakers	\$30 - \$150
Camera	\$200 - \$2000
Camera Bag	\$5 - \$50
Tennis racket	\$20 - \$200
Pet food	\$10 - \$50
Jacket	\$70 - \$200

Туре	Price Range
Car battery	\$50 - \$150
Multivitamin	\$5 - \$20
Necklace	\$20 - \$100
Printer	\$50 - \$300
Tent	\$50 - \$300

The probability of picking an item is **evenly distributed**, but there are the following **association rules**:

- Younger people (<25) → electronics
 - with a chance of 50%, draw out of: Laptop, Smartphone, Headphones,
 Printer
- Older people (>35) → old people stuff
 - with a chance of 50%, draw out of: multivitamin, pet food, coffee maker
- Sunny (Spain, Portugal, Greece, Cyprus, Malta)
 - with a chance of 50% draw out of: Sunscreen, Swimwear
- Rainy (Ireland, Belgium, Luxembourg, Netherlands, Denmark)
 - with a chance of 50%, draw out of: Umbrella, Jacket
- Also account for combinations: Young-Sunny, Young-Rainy, Old-Sunny, Old-Rainy

Association rules within an order:

When camera is picked, there is a chance of *ASSOCIATION_STRENGTH*, that a camera bag is picked as well

Between adding Items to an order, there is a random delay between 0-10 min

▼ Orders and Delivery

User places the order (same length of delay as when adding an item, after adding the last one), he is logged out

Payment

2 Cases:

- With a probability of CHANCE_PAY_INSTANT, the user pays online directly
 after placing the order, then the payment is confirmed, then the invoice is
 sent.
- Alternatively, the user "pays via invoice": after the invoice is sent, the user takes 1-14 days to pay, only after confirming the payment.
 - During the first 7 days, there is a chance of CHANCE_CANCELATION that the user cancels the order. Then, there are no further actions.

Only after confirming the payment, preparing the delivery is continued.

Delivery

With a chance of CHANCE_CANCELATION, the user selects a "fast delivery", otherwise he chooses "normal delivery". With an error of CHANCE_WRONG_DELIVERY_OPTION, the package is shipped normally instead of fast (or vice versa)

Distribution of Order to packages:

- An order is decomposed into a random amount of packages, the items are assigned to the packages in a random order
 - suppose there are itemsLeftToPackage items that still need to be packaged
 - pick a packageSize randomly from [1, itemsLeftToPackage]
 - form a package of packageSize items that are randomly chosen from the items that are not packaged yet and continue with its delivery
 - o continue until there are no items left to package
- Then the packages are shipped individually (fast-if chosen "fast delivery", slower - otherwise)
 - give to carrier (fast/normal)
 - carrier confirms (fast/normal)
 - delivery (fast/normal)
 - delivered

With a chance of *PACKAGE_DEVIATION*, the package is packed wrongfully, then:

- With a chance of CHANCE_ITEM_ADD, another item (that was not ordered) is packed
- With a chance of 1-CHANCE_ITEM_ADD, a random item of the order is missed

▼ Time Block

Configuration:

- STARTOFWORK: Time of day that work starts
- ENDOFWORK: Time of day that work ends
- distribution of time on "target day" is variable and can be passed as a parameter
 - exemplary functions:
 - *drawTimeWeekdayEx()* normally distributed with μ =20:15h, σ =2h
 - drawTimeWeekdayEx() normally distributed with two peaks: μ_1 =12h, σ_1 =3h, μ_2 =18h, σ_2 =3h

Functions

- delayByDays(days, drawTimeWeekday, drawTimeWeekend)
 - time is delayed by days days, then a target time is randomly chosen according to drawTimeWeekday or drawTimeWeekend depending on whether the target day is on a weekend or not
- delayByWeekdays(days, drawTime)
 - time is delayed by days working days, then a target time is randomly chosen according to drawTime
- delayByWorkingHours(hours)
 - time is delayed by hours working hours (i.e., hours that are not on a weekend and within [STARTOFWORK,ENDOFWORK])

▼ ToDos & Problems

▼ ToDos

	✓ Buy Camera → Buy Camera Bag
~	Fix Long-term dependency remaining tokens
~	Item packaging conformance issues
	✓ add item
	✓ remove items
~	Package fast/normal delivery conformance issues
	Logging