Intelligence artificielle

24 juin 2012

1h30 - Aucun document autorisé

Aucun matériel électronique n'est autorisé - Les télephones sont formellement interdits Le barême est donné à titre indicatif et peut être modifié

Exercice 1 (4 points)

Considérez l'arbre de jeu suivant. La racine est un nœud MAX, et les valeurs aux feuilles correspondent à l'utilité obtenue par le joueur MAX. Si MAX gagne la valeur x, le joueur MIN gagnera la valeur -x.

- 1. Appliquez l'algorithme α - β sur cet arbre de jeu, en indiquant bien sur chaque nœud quelles sont les utilités remontées. Quelles branches seront coupées?
- 2. Quelle est l'utilité obtenue par le joueur MAX?

Exercice 2 (4 points)

Soit la base de connaissances suivante. Prouvez par résolution que $S(Emma) \Rightarrow T(Emma, Louis)$.

- 1. $P(Emma) \wedge Q(Louis)$
- 2. $\forall x P(x) \Rightarrow (\exists y Q(y) \land R(x,y))$
- 3. $\exists x P(x) \land (\forall y Q(y) \Rightarrow R(x,y))$
- 4. $\forall x P(x) \land S(x) \Rightarrow R(x, \text{Louis})$
- 5. $\forall x \forall y P(x) \land Q(y) \land R(x,y) \Rightarrow T(x,y)$

Exercice 3 (6 points) Considérez la carte (orientée) suivante. Le but est de trouver un chemin de A vers I. Le coût de chaque connexion est indiqué. Deux heuristiques h_1 et h_2 sont données.

Nœud	A	В	C	D	Е	F	G	Н	I
h_1	11	3	7	10	5	5	3	5	0
h_2	11	3	3	2	5	5	2	4	0

- 1. Appliquez la recherche en largeur d'abord. Vous utiliserez l'ordre alphabétique pour classer les nœuds dans votre arbre si nécessaire. Donner la suite des nœuds développés.
- 2. Appliquez la recherche en profondeur d'abord. Vous utiliserez l'ordre alphabétique pour classer les nœuds dans votre arbre si nécessaire. Donner la suite des nœuds développés.
- 3. Est-ce que h_1 et h_2 sont admissibles? Justifier.
- 4. Est-ce que h_1 domine h_2 ou bien h_2 domine h_1 ? Justifier.
- 5. Appliquez la recherche A* en utilisant l'une des deux heuristiques, h_1 ou h_2 . Justifiez votre choix. Donner la suite des nœuds développés.
- 6. Appliquez la recherche gloutonne en utilisant h_2 . Donner la suite des nœuds développés.

Exercice 4 (6 points)

Soit la carte, composée de 9 pays, suivante :

A	В		
	D		
Е	I	7	G
Н			I

On considère le *problème de coloriage* consistant à associer une couleur à chaque pays de façon à ce que deux régions adjacentes soient de couleurs différentes. Trois couleurs sont disponibles : **R**ouge, **J**aune et **V**ert. Notez que les pays ne se touchent pas en diagonale : *C* ne touche pas *G* par exemple.

- 1. Dessinez le graphe de contraintes correspondant ce problème
- 2. Expliquez ce que sont l'heuristique du degrès, l'heuristique MRV, l'heuristique de la valeur la moins contraignante et la vérification en avant.
- 3. Trouvez un coloriage à 3 couleurs de ce graphe en utilisant l'heuristique MRV et l'heuristique du degrès. Si plusieurs choix s'offrent à vous, vous appliquerez les couleurs en respectant l'ordre {R, J, V}, et vous choisirez les pays par ordre alphabétique.
 - A chaque étape, vous justifierez votre choix en indiquant quelle heuristique vous avez appliqué.