```
In [1]: import pandas as pd
    from darts import TimeSeries
```

In [2]: df = pd.read_csv("MY3_May_2023_KNN_Imputed.csv")

df

Out[2]:

	Datetime	id	field1	field2	field3	field4	field5	field6	field7	field8
0	2022-07-03 20:30:00	2.200000e+01	8.871990	0.000000	398.496241	3.636364	26.00000	71.000000	45.666667	55.000000
1	2022-07-03 20:45:00	6.700000e+01	3.802281	0.000000	229.323308	0.000000	25.00000	62.000000	44.666667	53.333333
2	2022-07-03 21:00:00	1.120000e+02	12.674271	0.000000	184.210526	0.000000	25.00000	60.000000	43.666667	52.750000
3	2022-07-03 21:15:00	1.560000e+02	16.476553	0.000000	165.413534	0.000000	24.00000	59.666667	43.333333	52.666667
4	2022-07-03 21:30:00	5.307278e+05	321.540266	190.816359	794.429588	371.997558	27.25921	61.186420	18.749892	20.904609
28042	2023-04-21 23:00:00	1.061851e+06	397.944200	225.108225	700.960219	489.898990	29.00000	69.000000	27.666667	29.000000
28043	2023-04-21 23:15:00	1.061896e+06	392.070485	225.974026	707.818930	492.424242	29.00000	69.000000	31.666667	36.000000
28044	2023-04-21 23:30:00	1.061941e+06	393.538913	225.974026	716.049383	493.686869	29.00000	70.000000	33.333333	39.333333
28045	2023-04-21 23:45:00	1.061986e+06	392.070485	225.108225	727.023320	488.636364	29.00000	70.000000	35.333333	42.666667
28046	2023-04-22 00:00:00	1.062008e+06	414.096916	220.779221	720.164609	496.212121	29.00000	70.000000	37.000000	44.000000

28047 rows × 10 columns

df train = df3[:train1]

df test = df3[train1-24:train1+test1]

```
In [3]: df1 = df
         df1['Datetime'] = pd.to datetime(df['Datetime'])
         df1 = df.set_index('Datetime')
         #df1
         df2=df1.resample('1H').mean()
         df2.reset index(inplace = True)
Out[3]:
                                         id
                       Datetime
                                                field1
                                                           field2
                                                                     field3
                                                                               field4
                                                                                         field5
                                                                                                  field6
                                                                                                            field7
                                                                                                                     field8
            0 2022-07-03 20:00:00 4.450000e+01
                                              6.337136
                                                        0.000000 313.909774
                                                                             1.818182 25.500000 66.500000
                                                                                                        45.166667 54.166667
               95.408180
                                                                484.620809
                                                                           185.998779 25.879605
                                                                                              60.509877
                                                                                                        31.124946 36.806471
            2 2022-07-03 22:00:00 5.307278e+05 321.540266 190.816359 794.429588
                                                                           371.997558 27.259210 61.186420
                                                                                                       18.749892 20.904609
               2022-07-03 23:00:00 5.307278e+05 321.540266
                                                      190.816359
                                                                794.429588
                                                                           371.997558
                                                                                     27.259210 61.186420
                                                                                                        18.749892 20.904609
               2022-07-04 00:00:00 5.307278e+05 321.540266 190.816359 794.429588 371.997558 27.259210 61.186420
                                                                                                       18.749892 20.904609
          7008
              2023-04-21 20:00:00 1.061380e+06 395.374449
                                                      224.242424
                                                                685.528121
                                                                           498.737374
                                                                                     30.000000
                                                                                              68.500000
                                                                                                        22.833333 23.916667
                                                                                              69.000000 25.500000 27.250000
               225.757576
                                                                692.386831
                                                                           496.527778 29.750000
          7010
               2023-04-21 22:00:00 1.061738e+06 393.538913 227.056277 710.562414 493.686869
                                                                                     29.000000
                                                                                              69.000000
                                                                                                       31.000000 34.833333
               225.541126 712.962963 491.161616 29.000000
                                                                                              69.500000
                                                                                                        32.000000 36.750000
         7012 2023-04-22 00:00:00 1.062008e+06 414.096916 220.779221 720.164609 496.212121 29.000000 70.000000 37.000000 44.000000
         7013 rows × 10 columns
In [4]: test1 = 24*7
         trainl = len(df2) - test1
         df3 = df2.set index('Datetime')
```

```
In [5]: targets = ['field1','field2','field3','field4','field7','field8']
        covariates = ['field5','field6']
        X_train_df = df_train[covariates]
        Y train df = df train[targets]
        X_test_df = df_test[covariates]
        Y_test_df = df_test[targets]
In [6]: X_train = TimeSeries.from_dataframe(X_train_df)
        Y_train = TimeSeries.from_dataframe(Y_train_df)
        X_test = TimeSeries.from_dataframe(X_test_df)
        Y_test = TimeSeries.from_dataframe(Y_test_df)
In [7]: from darts.models import LightGBMModel
        import warnings
        warnings.filterwarnings("ignore")
        n = len(Y_test)
        # Initialize the LightGBM model
        modelgbm = LightGBMModel(lags=24, lags_past_covariates=24, output_chunk_length=24 )
        # Train the model on the training data
        modelgbm.fit(Y_train, past_covariates=X_train)
```

Out[7]: LightGBMModel(lags=24, lags_past_covariates=24, lags_future_covariates=None, output_chunk_length=24, add_enc oders=None, likelihood=None, quantiles=None, random_state=None, multi_models=True, use_static_covariates=Tru e, categorical_past_covariates=None, categorical_future_covariates=None, categorical_static_covariates=None)

In [8]: predgbm1 = modelgbm.predict(n, past_covariates = X_test)
 predictions = TimeSeries.pd_dataframe(predgbm1)
 predictions

Out[8]:

component	field1	field2	field3	field4	field7	field8
Datetime						
2023-04-15 01:00:00	236.654303	131.256030	971.778697	274.433483	44.642005	55.872391
2023-04-15 02:00:00	234.272876	131.489841	933.737946	275.134834	44.690564	53.076310
2023-04-15 03:00:00	234.330164	131.079942	875.621723	274.240319	40.307826	44.437782
2023-04-15 04:00:00	235.595233	129.105586	848.216065	271.321883	39.951555	49.712745
2023-04-15 05:00:00	233.550415	128.263549	863.698270	264.853221	41.495975	49.978437
2023-04-22 20:00:00	227.294735	128.249004	639.766720	249.824056	22.836582	24.673267
2023-04-22 21:00:00	227.569225	130.060764	699.607650	242.731075	17.601612	23.341107
2023-04-22 22:00:00	231.200047	132.068712	715.596295	256.451034	17.245505	21.593850
2023-04-22 23:00:00	219.432741	132.116203	693.136155	264.042528	18.386934	23.291541
2023-04-23 00:00:00	237.247010	131.696295	761.298249	261.004756	23.053891	23.752423

192 rows × 6 columns

```
In [20]: from darts.metrics import rmse, mae
         # Convert actual and predicted values to TimeSeries
         actual_series_list = [TimeSeries.from_dataframe(Y_test_df[[target]]) for target in targets]
         predicted_series_list = [TimeSeries.from_dataframe(predictions[[target]]) for target in targets]
         # Calculate RMSE and MAE for each target field
         rmse_values = []
         mae_values = []
         for actual, predicted in zip(actual_series_list, predicted_series_list):
             rmse_value = rmse(actual, predicted)
             mae_value = mae(actual, predicted)
             rmse_values.append(rmse_value)
             mae_values.append(mae_value)
         # Create a DataFrame to store the results for LightGBM
         results_df = pd.DataFrame({
             'Field': targets,
             'RMSE_LightGBM': rmse_values,
             'MAE_LightGBM': mae_values
         })
         # Save the LightGBM results to a CSV file
         results_df.to_csv('lightgbm_multi_results.csv', index=False)
```


15 Apr 2023

