Weekly Report

Jian Zhao

March 10, 2010

Locality of P2P live streaming

One simple way to improve the locality of P2P live streaming is biased peer selection. Below is the analysis of the biased peer selection: The environment of P2P live streaming considered is: N_1 peers in ISP_1, N_2 peers in other ISPs, which are outside ISP_1 ; the upload capacity is assumed homogeneous, suppose the upload capacity u_p is equal to the playback rate r. The buffer has N units. The probability of buffer unit i is filled by a chunk is $p_1(i)$ for peers in ISP_1 and $p_2(i)$ for peers in other ISPs. One chunk will be played in one time slot. The chunk in buffer unit N is playing. And due to the upload capacity, no more than one chunk will be uploaded by a peer. The server's capacity in ISP_1 is u(s1). Each peer has n partners chosen from their peer list.

First, we calculate the probability that the partners of one peer has chunk i under different situations.

1) calculate the probability that the partners of one peer in ISP_1 has chunk i when a peer just builds intra-ISP connections:

$$Pr[H_p(i)] = 1 - [1 - p_1(i)]^n$$

Here, an interesting question is that how to determine the appropriate number of partners. (?)

2)calculate the probability that the partners of one peer has chunk i when a peer randomly selects neighbors from ISP_1 and other ISPs.

$$Pr[H_p(i)] = 1 - [1 - p_0(i)]^n$$
$$p_0(1) = \frac{N_1 p_1 + N_2 p_2}{N_1 + N_2}$$

 $p_0(i)$ is the probability that a peer's buffer unit i is filled by a chunk under the random peer selection. The initial value $p_0(1)$ equals to the mean value of ISP_1 and other ISPs.

3)calculate the probability that the partners of one peer has chunk i under biased peer selection. Suppose every peer has n_i intra-ISP partners. The inter-ISP partners is then $n - n_i$. For different ISPs, the probability is different. For peers in ISP_1 , the probability is:

$$Pr[H_{p}(i)] = 1 - [1 - p_{1}^{'}(i)]^{n_{i}} [1 - p_{2}^{'}(i)]^{(n-n_{i})}$$
$$p_{1}^{'}(1) = p_{1}(1); p_{2}^{'}(1) = p_{2}(1);$$

Next, The relationship between $p_1(i+1)$ and $p_1(i)$ is given as follows:

$$p_1(i+1) = p_1(i) + q(i)$$

The q(i) is the probability that one peer gets the chunk to fill buffer unit i+1 in time slot i from partners, $p_1(i)$ is the probability that the peer's buffer unit i+1 is filled by the chunk in the buffer unit i after one time slot.

The calculation of q(i) is:

$$q(i) = Pr[H_p(i)] \times Pr[W(i)] \times Pr[S(i)|H_p(i), W(i)]$$

Pr[W(i)] is the probability that one peer doesn't have chunk i: $Pr[W(i)] = 1 - p_1(i)$. $Pr[S(i)|H_p(i),W(i)]$ is the probability that one peer selects chunk i to download when this peer doesn't have chunk i and its partners have chunk i. This probability is related to the chunk selection strategy. Here we refer to the rarest first strategy. And for the rarest first strategy, $Pr[S(i)|H_p(i),W(i)] = 1 - p_1(i)$.

 $p_1(i+1) = p_1(i) + q(i) = p_1(i+1) = p_1(i) + [1 - p_1(i)]^2 \times Pr[H_p(i)]$

So, substitute the $Pr[H_n(i)]$ of three different cases into the above recursive equation, we can get:

(1) the case that a peer just builds intra-ISP connections:

$$p_1(i+1) = p_1(i) + q(i) = p_1(i) + [1 - p_1(i)]^2 \times [1 - [1 - p_1(i)]^n]$$

(2) the case that a peer selects partners randomly from ISP_1 and other ISPs:

$$p_0(i+1) = p_0(i) + q(i) = p_0(i) + [1 - p_0(i)]^2 \times [1 - [1 - p_0(i)]^n]$$
$$p_0(1) = \frac{N_1 p_1 + N_2 p_2}{N_1 + N_2}$$

(3) the case of biased peer selection:

$$p_{1}^{'}(i+1) = p_{1}^{'}(i) + q(i) = p_{1}^{'}(i) + [1 - p_{1}^{'}(i)]^{2} \times [1 - [1 - p_{1}^{'}(i)]^{n_{i}}[1 - p_{2}^{'}(i)]^{(n-n_{i})}]$$

$$p_{1}^{'}(1) = p_{1}(1); p_{2}^{'}(1) = p_{2}(1);$$

Next step, it is necessary to analyze the influence of $Pr[H_p(i)]$ on $p_1(N)$ and inter-ISP traffic. Analyze inter-ISP traffic: With the same server deployments and number of peers, how to calculate the inter-ISP traffic:

- (1) the case that a peer just builds intra-ISP connections: inter-ISP traffic is 0.
 - (2) the case that a peer selects partners randomly from ISP_1 and other ISPs:
- (3) the case of biased peer selection: inter-ISP traffic is $\sum_{i=1}^{n-1} [1-p_1^{'}(i)]^2 \times [1-p_1^{'}(i)]^{n_i} [1-[1-p_2^{'}(i)]^{n-n_i}]$ The impact of server deployments and number of peers: