Lab 04: Numerical Solutions of Non- Linear Equations (Root finding methods)

1. Closed Methods (Bracketing Methods)

- Bisection Method
- False Position Method

Closed Method

Bisection Method

Formula

$$x_3 = \frac{x_1 + x_2}{2}$$

Errors

1. True Errors

$$\varepsilon_t = \left| \frac{true \ value - Appr \ Value}{True \ value} \right| *100$$

Percentage Relative Error

<u>Absolute Error</u> | *true value – approximate value* |

2. Estimated Error

Percentage Relative Error

$$\varepsilon_a = \left| \frac{x_3^{new} - x_3^{old}}{x_3^{new}} \right| *100$$
$$\left| x_3^{new} - x_3^{old} \right|$$

Absolute Error

If
$$f(x_1) * f(x_3) < 0$$
 set $x_2 = x_3$
 $f(x_1) * f(x_3) > 0$ set $x_1 = x_3$

False Position Method

Algorithm

To determine the value of f(x)=0, given two values xo and x1 that bracket the root: that is f(xo) and f(x1) are of opposite sign.

Formula:

$$x_2 = x_1 - f(x_1) * \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

If f(x2) is of opposite sign to f(xo) Then Set x1 = x2

Else xo = x2

LAB TASKS

A. Implement Bisection Method for the given polynomial in R and find the real root with extimated error.

$$f(x) = 5x^3 - 5x^2 + 6x - 2$$

Using bisection method to locate the root. Employ the initial guesses of $x_l = 0$, and $x_u = 1$ and iteration until the estimated error ε_a fall below the level of 10%.

```
%initialize x1,x2 and x3

x1=0;
x2=1;
x3=[];
```

$$x_1 = 0$$
, $f(x_1 = 0) = -2$ $x_3 = \frac{x_1 + x_2}{2}$ $x_2 = 1$, $f(x_2) = 4$

```
%iterate by using for or while loop

for i=2:10
%your code goes here
%calculate mid point by the formula
% x3= x1+x2/2
% check if f(x1)*f(x3) < 0
%swap x2 and x3
%check if f(x1)*f(x3) > 0
%swap x1 and x3
%calculate the estimated error
% ea = abs((x3new - x3old)/x3new) * 100
%check if ea < 10
%break the loop
%print the iterations, x1,x2,x3 f(x3),f(x1)*f(x3) and ea</pre>
```

Verify the results with the values in the table given below:

Iterations	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_3)$	$f(x_1)f(x_3)$	$\varepsilon_a = \frac{\left \frac{x_3^{new} - x_3^{old}}{x_3^{new}}\right *100}{\left \frac{x_3^{new} - x_3^{old}}{x_3^{new}}\right } $
0	0	1	0.5		-0.75 < 0 $x_2 = x_3$	
1	0	0.5	0.25		$ \begin{array}{c} 1.46876 > 0 \\ x_1 = x_3 \end{array} $	100%
2	0.25	0.5	0.375		$0.13913 > 0$ $x_1 = x_3$	33.3%
3	0.375	0.5	0.4375		-0.01642 < 0 $x_2 = x_3$	14.285%
4	0.375	0.4375	0.40625		$0.00994>0 x_1 = x_3$	7.692%

The real root of given equation is 0.40625, with 7.692% error.

B. Implement False Position Method for the same polynomial in R and find the real root with estimated error.

$$f(x) = 5x^3 - 5x^2 + 6x - 2$$