

CamTrapAsia: 210 full wildlife capture lists from camera trapping studies

Journal:	Ecology
Manuscript ID	Draft
Wiley - Manuscript type:	Data Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Pereira Mendes, Calebe; Nanyang Technological University, Asian School of the Environment Thapa, Arjun; University of Queensland, School of the Environment Albert, Wido; Fauna & Flora International Shia, Amanda; Hutan Amir, Zachary; The University of Queensland, School of the Environment Ancrenaz, Marc; Hutan Ash, Eric; WildCRU Azhar, Badrul; Universiti Putra Malaysia, Department of Forest Science and Biodiversity, Faculty of Forestry and Environment Bernard, Henry; Universiti Malaysia Sabah Brodie, Jedediah; University of Montana, Wildlife Biology Carr, Elliot; The University of Queensland Clements, Gopalasamy Reuben; Sunway University Davies, Glyn; World Wildlife Fund Malaysia, Sabah Landscape Programme Deere, Nicolas; University of Kent, Durrell Institute of Conservation and Ecology (DICE) Dinata, Yoan; The Zoological Society of London, Indonesia program Donnelly, Christl; University of Oxford, Department of Statistics Duangchantrasiri, Somphot; Department of National Parks, Plant, and Wildlife Conservation, Wildlife Research Division Fredriksson, Gabriella; Pro Natura Foundation Goossens, Benoit; Cardiff University, School of Biosciences Granados, Alys; Felidae Conservation Fund Hearn, Andrew; WildCRU Hon, Jason; World Wildlife Fund Malaysia, Malaysia program Hughes, Tom; Conservation Medicine Jansen, Patrick; Wageningen University, Wildlife Ecology & Conservation; Smithsonian Tropical Research Institute, Kawanishi, Kae; Malaysian Conservation Alliance for Tigers (MYCAT) Kinnaird, Margaret; Mpala Research Center Koh, Sharon; World Wildlife Conservation Society, Viet Nam Country Program Latinne, Alice; Wildlife Conservation Society, Jidonesia program Latinne, Alice; Wildlife Conservation Society, Jidonesia program Latinne, Alice; Wildlife Conservation Society, Jidonesia program Loi, Federica; Istituto Zooprofilattico Sperimentale della Sardegna G Pegreffi, Regional Veterinary Epidemiological Observatory Lynam, Anthony; Wildlife Conservation Society, Thailand program

Page 1 of 33 Ecology

	Mohd-Azlan, Jayasilan; Universiti Malaysia Sarawak, Department of Biology Moore, Jonathan; University of East Anglia, ; SUSTech, Nathan, Senthilvel; Sabah Wildlife Department, Department of Veterinary Services Ngoprasert, Dusit; King Mongkut's University of Technology Thonburi, Conservation Ecology Program
	Novarino, Wilson; Andalas University, Department of Biology Nursamsi, Ilyas; The University of Queensland, School of the Environment O'Brien, Tim; Wildlife Conservation Society, Global Conservation Program Department Ong, Robert; Sabah State Government, Department of Veterinary Services Payne, John; Sabah State Government, Department of Veterinary Services Priatna, Dolly; Pakuan University, Graduate School of Environmental Management Rayan, D. Mark; Wildlife Conservation Society, Malaysia Program Reynolds, Glen; South East Asia Rainforest Research Partnership, Conservation Programme
	Rustam, Rustam; Mulawarman University, Fakulty of Forestry Selvadurai, Sasidhran; Universiti Putra Malaysia, Department of Forest Science and Biodiversity, Faculty of Forestry and Environment Silmi, Muhammad; United Plantations Berhad, Biodiversity Division Sinovas, Pablo; Fauna and Flora International, Cambodia Programme Sribuarod, Kriangsak; Royal Thai Government Department of National Park Wildlife and Plant Conservation, Khlong Saeng Wildlife Research Station Steinmetz, Robert; World Wildlife Fund, Cambodia program Struebig, Matthew; University of Kent, Durrell Institute of Conservation
	struebig, Matthew; University of Rent, Durrell Institute of Conservation and Ecology (DICE) Sukmasuang, Ronglarp; Kasetsart University Sunarto, Sunarto; World wildlife Fund, Indonesia program Tarmizi, Tarmizi; Leuser International Foundation Traeholt, Carl; Copenhagen Zoo, Research and Conservation Division Wearn, Oliver; Fauna and Flora International, Vietnam Programme Wibisono, Hariyo; San Diego Zoo, Conservation Programme Wilting, Andreas; Leibniz Institute for Zoo and Wildlife Research, Department of Ecological Dynamics Wong, Seth; Leibniz Institute of Zoo and Wildlife Research, Department of Ecological Dynamics Wong, Siew Te; Bornean Sun Bear Conservation Centre Word, Jettie; Borneo Project Chiok, Wen; Nanyang Technological University, Asian School of the Environment Luskin, Matthew; The University of Queensland, School of Biological Sciences;
Substantive Area:	Conservation < Population Ecology < Substantive Area, Distributions/Patchiness/Marginal Populations < Population Dynamics and Life History < Population Ecology < Substantive Area, Data paper < Data < Substantive Area
Organism:	Vertebrates < Animals, Mammals < Vertebrates < Animals, Birds (specify type in field below) < Vertebrates < Animals, Reptiles < Vertebrates < Animals
	Rain Forest < Subtropical Zone < Terrestrial < Habitat, Tropical Zone < Terrestrial < Habitat
Geographic Area:	Southeast Asia < Asia < Geographic Area

Ecology Page 2 of 33

Key words/phrases:	data paper, vertebrate, mammal, bird, richness, biodiversity, IUCN Red List, Threatened, Endangered, distribution, Animal, Trail camera
Abstract:	Southeast Asia holds some of the most diverse rainforests on the planet. Despite their importance, information on biodiversity is scattered across published, peer-reviewed, and gray literature and in unpublished raw data. Camera traps are an effective non-invasive method of surveying vertebrates. In this data paper, we compiled and standardized 210 camera trap surveys from across Southeast Asia. The camera deployments included in this study used relatively standardized methods, providing a consistent and reliable data set relative to other large-scale occurrence datasets such as online citizen science repositories. The complete data set comprises 276,805 records of 360 species (225 mammals, 129 birds, and 6 reptiles), making it one of the most extensive and comprehensive biodiversity inventories for the region. The information detailed in this data paper opens opportunities for single-species ecological or conservation studies as well as community ecology and macroecology investigations. For example, the dataset may be useful to understand the effects of habitat loss, fragmentation, climate change, and other human-mediated processes on species and communities. for future ecological research that could be replicated through time and in other regions.

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.

Data S1.rar

SCHOLARONE™ Manuscripts Page 3 of 33 Ecology

1 Title: CamTrapAsia: 210 full wildlife capture lists from camera trapping studies

2

- 3 Authors:
- 4 Mendes, Calebe P¹; Thapa, Arjun²; Albert, Wido R³; Amanda, Shia K. P. ⁴; Amir, Zachary²;
- 5 Ancrenaz, Marc⁴; Ash, Eric⁵; Azhar, Badrul⁶; Bernard, Henry⁷; Brodie, Jedediah⁸; Carr, Elliot²;
- 6 Clements, Gopalasamy Reuben⁹; Davies, Glyn¹⁰; Deere, Nicolas J¹¹; Dinata, Yoan¹²; Donnelly,
- 7 Christl A¹³; Duangchantrasiri, Somphot¹⁴; Fredriksson, Gabriella¹⁵; Goossens, Benoit¹⁶; Granados,
- 8 Alys¹⁷; Hearn, Andrew⁵; Hon, Jason¹⁸; Hughes, Tom¹⁹; Jansen, Patrick²⁰; Kawanishi, Kae²¹;
- 9 Kinnaird, Margaret²²; Koh, Sharon¹⁸; Latinne, Alice²³; Linkie, Matthew²⁴; Loi, Federica²⁵; Lynam,
- Anthony J²⁶; Meijaard, Erik²⁷; Mohd-Azlan, Jayasilan²⁸; Moore, Jonathan H²⁹; Nathan, Senthilvel
- 11 KSS³⁰; Ngoprasert, Dusit³¹; Novarino, Wilson³²; Nursamsi, Ilyas²; O'Brien, Timothy³³; Ong,
- Robert³⁰; Payne, John³⁰; Priatna, Dolly³⁴; Rayan, Mark³⁵; Reynolds, Glen³⁶; Rustam, Rustam³⁷;
- 13 Selvadurai, Sasidhran⁶; Silmi, Muhammad³⁸; Sinovas, Pablo³⁹; Sribuarod, Kriangsak⁴⁰; Steinmetz,
- Robert⁴¹; Struebig, Matthew J¹¹; Sukmasuang, Ronglarp⁴²; Sunarto, Sunarto⁴³; Tarmizi, Tarmizi⁴⁴;
- 15 Traeholt, Carl⁴⁵; Wearn, Oliver R⁴⁶; Wibisono, Hariyo Beebach⁴⁷; Wilting, Andres⁴⁸; Wong, Seth
- Timothy⁴⁸; Wong, Siew Te⁴⁹; Word, Jettie⁵⁰; Xuan, Chiok Wen¹; Luskin, Matthew Scott⁵¹

17

18 Author Affiliations:

- 19 1. Asian School of the Environment, Nanyang Technological University
- 20 2. School of the Environment, University of Queensland, Australia
- 21 3. Fauna & Flora International, Indonesia
- 4. HUTAN, Malaysia
- 5. WildCRU, Oxford, England
- 24 6. Department of Forest Science and Biodiversity, Faculty of Forestry and Environment,
- 25 Universiti Putra Malaysia
- 7. Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah
- 8. Wildlife Biology, University of Montana
- 9. Department of Biological Sciences, Sunway University
- 29 10. Sabah Landscape Programme, World Wildlife Fund
- 30 11. Durrell Institute of Conservation and Ecology (DICE), University of Kent
- 31 12. Indonesia program, Zoological Society of London

Ecology Page 4 of 33

- 32 13. Department of Statistics, University of Oxford
- 14. Wildlife Research Division, Department of National Parks, Plant, and Wildlife Conservation,
- 34 Bangkok, Thailand
- 35 15. Pro Natura Foundation
- 36 16. School of Biosciences, Cardiff University
- 37 17. Felidae Conservation Fund
- 38 18. Malaysia program, World Wildlife Fund
- 39 19. Conservation Medicine
- 40 20. Wildlife Ecology & Conservation, Wageningen University
- 41 21. Malaysian Conservation Alliance for Tigers (MYCAT).
- 42 22. Mpala Research Centre
- 43 23. Viet Nam Country Program, Wildlife Conservation Society
- 44 24. Indonesia program, Wildlife Conservation Society
- 45 25. Regional Veterinary Epidemiological Observatory, Istituto Zooprofilattico Sperimentale
- 46 della Sardegna
- 47 26. Thailand program, Wildlife Conservation Society
- 48 27. Borneo Futures, Brunei Darussalam
- 49 28. Department of Biology, Universiti Malaysia Sarawak
- 50 29. Environmental Science, SUSTech University
- 51 30. Department of Veterinary Services, Sabah Government
- 52 31. Conservation Ecology, King Mongkut's University of Technology Thonburi
- 53 32. Department of Biology, Andalas University
- 33. Global Conservation Program Department, Wildlife Conservation Society
- 55 34. Graduate School of Environmental Management, Pakuan University
- 56 35. Malaysia program, Wildlife Conservation Society Malaysia Program
- 57 36. Conservation Programme, SEARRP
- 58 37. Fakulty of Forestry, Mulawarman University
- 59 38. Biodiversity Division, United Plantations Berhad / PT Surya Sawit Sejati
- 60 39. Cambodia Programme, Fauna & Flora International
- 40. Klongsang Wildlife Research Station, Department of National Park Wildlife and Plant
- 62 41. Cambodia program, World Wildlife Fund

Page 5 of 33 Ecology

63	42. Kasetsart University
64	43. Indonesia program, World Wildlife Fund
65	44. Leuser International Foundation
66	45. Research and Conservation Division, Copenhagen Zoo
67	46. Vietnam Programme, Fauna & Flora International
68	47. Conservation Programme, San Diego Zoo
69	48. Department of Ecological Dynamics, Leibniz Institute of Zoo and Wildlife Research
70	49. Bornean Sun Bear Conservation Centre
71	50. Borneo Project
72	51. Department of Biological Sciences, University of Queensland
73	
74	Corresponding Author:
75	Luskin, Matthew Scott <mattluskin@gmail.com></mattluskin@gmail.com>
76	
77	Open Research statement:
78	The data and code are available in the GitHub directory
79	https://github.com/CalebePMendes/CamTrapAsia.git
80	
81	

Ecology Page 6 of 33

82 83	Class I. Data Set Descriptors A. Data set identity:
84	CamTrapAsia: 210 full wildlife capture lists from camera trapping studies
85	B. Data set identification code:
86	Metadata S1
87	Data S1.zip
88	A. Data set description
89	Originators:
90	Mendes, Calebe Pereira – Asian School of the environment, Nanyang Technological
91	University – calebepm3@gmail.com
92	Tharpa, Arjun – School of the Environment, University of Queensland, Australia –
93	thapa.nature@gmail.com
94	Luskin, Matthew - School of Biological Sciences, University of Queensland -
95	m.luskin@uq.edu.au
96	
97	Abstract:
98	Southeast Asia holds some of the most diverse rainforests on the planet. Despite their
99	importance, information on biodiversity is scattered across published, peer-reviewed, and
100	gray literature and in unpublished raw data. Camera traps are an effective non-invasive
101	method of surveying vertebrates. In this data paper, we compiled and standardized 210
102	camera trap surveys from across Southeast Asia. The camera deployments included in this
103	study used relatively standardized methods, providing a consistent and reliable data set

Page 7 of 33

Ecology

relative to other large-scale occurrence datasets such as online citizen science repositories. The complete data set comprises 276,805 records of 360 species (225 mammals, 129 birds, and 6 reptiles), making it one of the most extensive and comprehensive biodiversity inventories for the region. The information detailed in this data paper opens opportunities for single-species ecological or conservation studies as well as community ecology and macroecology investigations. For example, the dataset may be useful to understand the effects of habitat loss, fragmentation, climate change, and other human-mediated processes on species and communities. for future ecological research that could be replicated through time and in other regions.

B. **Key words/phrases**: Animal, vertebrate, mammal, bird, biodiversity, richness, Southeast Asia, distribution, camera trap, trail camera, covariates, IUCN red list

Ecology Page 8 of 33

116 117		earch origin descriptors Il project description:
118	1.	Identity: CamTrapAsia: 210 full wildlife capture lists from camera trapping
119		studies.
120	2.	Originators: Calebe Pereira Mendes, Arjun Tharpa, Matthew Luskin.
121	3.	Period of study : The data range from 1987 to 2020.
122	4.	Site: Southeast Asia
123	5.	Objectives: The CamTrapAsia dataset aims to facilitate the access and use of
124		camera trap data previously scattered in the literature.
125	6.	Sources of funding:
126		The research was funded by the Smithsonian Institution's ForestGEO program,
127		Nanyang Technological University in Singapore, the University of Queensland
128		(UQ) Centre for Biodiversity and Conservation Science, National Geographic
129		Society #9384-13 and ARC DECRA #DE210101440, and BIFA6_005:
130		Biodiversity Information Fund for Asia "Sharing vertebrate occurrence data from
131		camera traps in Asia".
132		
133	B. Specif	ic subproject description
134	1.	Rationale:
135		Camera traps have existed in some form since 1890 and revolutionized wildlife
136		research since the late 1990s (O'Connell, Nichols, and Karanth 2010). There are
137		numerous advantages to cameras, including researcher time or capacity,

automatically triggered cameras remove much of the observer bias present in

humans. Since 2005, most cameras are digital and detect the heat signature from

138

animals moving within the sensor range, photos are later sorted, and captures (or detections) are noted when a species is present. Cameras monitor wildlife with minimal disturbance, both day and night, contributing to biodiversity inventories (species richness) and images are time-stamped to allow for investigations on topics like wildlife behaviour (e.g. temporal activity patterns). The development of hierarchical modelling methods including mark-recapture for density and occupancy analyses - and the inclusion of covariates into these models - have given scientists a robust glimpse into the ecology of cryptic animals in their natural environments (O'Connell, Nichols, and Karanth 2010; Sollmann 2018).

Camera traps and associated analyses play an important role in monitoring animal populations during the Anthropocene 6th mass extinction (Ceballos et al. 2015). Over 60% of the earth's forest landscapes suffer some degree of degradation (Grantham et al. 2020) and widespread poaching has driven declines >25% of the vertebrate species (Dirzo et al. 2014). Climate change is the next great threat (IPCC 2014). Addressing these challenges requires far larger data volumes than any single research team or organization can collect or manage. Further, monitoring for global and regional trends requires long time series, so there needs to be systematic handing down of projects and datasets to the next generation of scientists, and ideally redundancy to ensure the continuation of critical longitudinal measurements (Beaudrot et al. 2016). These aims can only be met via collaboration and data sharing. The CamTrapAsia dataset for Southeast Asian tropical and subtropical

Ecology Page 10 of 33

forests joins other open online camera trap images and data repositories (Ahumada et al. 2020; Lima et al. 2017).

CamTrapAsia only mobilizes the full capture lists (e.g. we excluded studies that only reported a single species or subset of species) and includes numerous covariates for each study, in a single standardized and accessible format. Providing these covariates is aimed to remove barriers to science. While we endeavoured to exhaustively search the white and grey literature for all available information and requested missing information from authors, we estimate our dataset contains just 20% of the camera trapping conducted to date in the region as much is never published in any form or only selective animal detections are published. There is work yet to be done.

2. Research methods

We searched for Asian camera trap studies using many approaches. We started with a Web of Science using terms "camera*" and Asia* or Thai* or Malaysia* or Indonesia* or Singapore* or Borneo* or Cambodia* or Vietnam* or Lao* or Myanmar* or Burm* or Sumatra* or Borne*. We also used Google Scholar using the terms camera* AND vertebrate* or mammal* or bird* or biodiverse* or richness or Endangered or Threatened or terrestrial or distribution* or abundance* or carnivor* or herbiv* or omnivor* or predator* tiger* or leopard* or rhino* or elephant* or tapir* or deer* or civet*.

Criteria for inclusion of published data were: (i) a complete list of the vertebrate species >1 kg detected, the number of independent records, the trapping effort (with a minimum of 25 trap nights), the number of cameras/stations deployed, the coordinates of the study site and the period when the trapping survey was performed (with a minimum temporal precision of year). The data matching the required criteria was collated in a single table, together with the references needed to locate the original publication. The collated data set was standardized, with all coordinates set to WGS 84, and the species binomial names were verified using the R package Taxize (Chamberlain et al. 2022), based in the taxonomic databases from the National Center for Biotechnology Information and the Global Biodiversity Information Facility (Schoch et al. 2020; GBIF 2022).

To facilitate the usage of this dataset, we also made available a set of 13 spatial covariables including the percentage of forest cover, altitude, terrain roughness, forest landscape integrity index (FLII), human footprint index, ecoregion intactness index, average precipitation, average temperature, night light emissivity, human population, percentage of oil palm, percentage of urban areas and, percentage of protected areas), extracted in 3 spatial scales around the survey locations (10, 20 and 30 km radius). We also added a set of biological traits (adult body mass, percentage of diet composed by invertebrates, percentage of diet composed by plants, diet breadth, trophic level, activity cycle and habitat breadth) for the recorded species extracted from the combine dataset (Soria et al. 2021). Finally, the resulting data set is

Page 12 of 33

provided as a three of .csv tables and as a Darwin Core archive, and available on GBIF. The R code used to assemble the dataset and standardize the species names is also provided.

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

208

209

210

3. Results

CamTrapAsia contains 210 surveys from 133 sites (as labelled in the original papers) from 89 landscapes (here defined as an area encompassing one or more forest patches within 20 km of each other, and which share similar socioenvironmental conditions). The geographical coverage was 11 countries including Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal and far-eastern India (Fig 1 and 2). The temporal coverage spans from 1987 to 2020 (Fig 3). There were 276,805 records from 10,024 camera stations over 561,292 trap nights. A total of 360 species were recorded, from 173 genera and 70 families. Mammals comprised 62.5% of the species (fig 4 and 5), birds comprised 35.8% (fig 6 and 7), and the remaining were reptiles. The most recorded species was Sus scrofa with 42,269 records, followed by Macaca nemestrina (n = 32,964) and Muntiacus muntjac (n = 23,796). A total of 45 species were recorded just once (singletons). The most recorded families were Cervidae, Suidae and Cercopithecidae, with 52,087, 52,076 and 45,891 records respectively. There were 8 families with species recorded once.

228

229

230

4. Project personnel:

Calebe Pereira Mendes, Arjun Tharpa, Matthew Luskin.

231

232

5. Acknowledgements

We would like to acknowledge the incredible work that went into fieldwork to 233 collect this data, including Gregoire Bertagnolio, F. Cheong, Roshan Guharajan, 234 Gurutzeta Guillera, Ferran Jori, FR Khakim, Salwa Khalid, Saurav Hari Kumar, 235 AH Lubis, T Lubiz, Sugesti Marif, Maryati Maryati, Mumponjan Mumponjan, 236 Helga Peters, Alice Porco, Roshan Guharajan, Roslina Ragai, Mila Redkani, N 237 Seuaturien, NM Shwe, Wong Siew, Cedric Tan, Joe Smith, Melvin E Sunquist, 238 Cedric Tan, Shuwoan Teoh, Ha Wahyudi, C.T. Wong, Zulfahmi Zulfahmit. . We 239 also thank Yayasan Sabah, the Sabah Forest Department, the Sabah Biodiversity 240 Council, and the Danum Valley Management Committee, Abdul Hamid, Glen 241 Reynolds, Jedediah Brodie, Katie Doehla, and Tombi Karolus for permission and 242 help conducting fieldwork at Danum Valley. We thank Patrick Jansen, the 243 Smithsonian Institute and the Tropical Ecology Assessment and Monitoring 244 (TEAM) network for collecting data from Pasoh, as well as Yao Tse Leong and 245 the Forest Research Institute Malaysia (FRIM) for permission to work at Pasoh. 246 We thank M. Bt. Mohamad, J. Kulis, and the Sarawak Forestry Department for 247 permission to conduct fieldwork at Lambir Hills and Piyasart 'Guide' Kumhom 248 and NTU field ecology courses for help collecting data. We thank S. Lum, A. 249 250 Loo, M. Khoo, B. Lee, J. Chan, A. Goh, and N. Parks for permission and help with fieldwork in Singapore. We thank W. Chantorn, A. Nathalang, S. 251 Bunyavejchewin, R. Sukmasuang, F. Gutierez, C. Scanlon for permissions and 252 253 help at Khao Yai and Khao Ban Tat. In Sumatra, we thank W. R. Albert, M.

Page 14 of 33

Page 15 of 33 Ecology

262	Class III. Data set status and accessibility
263	C. Status
264	1. Latest update: 03-04-2023
265	2. Latest archive date: 03-04-2023
266	3. Metadata status: 13-04-2023
267	4. Data verification: 13-04-2023
268	D. Accessibility
269	1. Storage location and medium:
270	The data available in the GitHub directory
271	https://github.com/CalebePMendes/CamTrapAsia.git
272	2. Contact persons:
273	Calebe Pereira Mendes, Asian School of the environment -Nanyang Technological
274	University, calebepm3@gmail.com
275	Matthew Luskin, School of Biological Sciences - University of Queensland,
276	m.luskin@uq.edu.au
277	3. Copyright restrictions:
278	The data is fully available to the public for utilization and research. Kindly
279	acknowledge the data paper when utilizing the data.
280	Costs:
281	The data is available for free.

Ecology

Page 16 of 33

283	Class IV. Da	ta structural descriptors
284	A. Data	set file
285	1.	Identity:
286		CamTrapAsia_Captures_20230403.csv
287		CamTrapAsia_Metadata_20230403.csv
288		Captures_raw_20230403.csv
289		Metadata_raw_20230403.csv
290		species_traits.csv
291		Dataset merging and Standardization – 20230123.r
292		
293	2.	Size:
294		904 KB [4458 rows, 16 columns]
295		212 KB [210 rows, 69 columns]
296		389 KB [4536 rows, 8 columns]
297		212 KB [210 rows, 69 columns]
298		65 KB [369 rows, 18 columns]
299		11 KB [318 lines]
300		
301	3.	Format and storage mode:
302		Comma-separated values (.csv)
303		
304	B. Varia	ble information
305		

Page 17 of 33 Ecology

306 metadata.csv

Field Name	Description	Range	NAs	Example	Source
survey_id	Unique ID which connects the records from the metadata table with the capture table.	NA	0	Lambir2017.ECL	compiler
region	General region where sampling was performed	NA	0	Southeast_Asia	original authors
country	Country where sampling was performed	NA	0	Indonesia	original authors
site	Name of the location where sampling was performed	NA	0	Leuser_forest_fragments	original authors
effort	Trapping effort, in trap-nights	28 - 32027	0	45	original authors
size_km2	Size of the forest where the sampling was performed, in km²	0.14 - 278889.37	12	1.80	original authors
Protected_area	Whether the sampling happened within a protected area	"y" for protected areas, "n" for not protected areas and "Mixed" when only a part of the area is protected	22	у	original authors
Y_lat	Latitude in decimal degrees, using WGS84	-8.7 to 33.0	0	3.972066	original authors
X_long	Longitude in decimal degrees, using WGS84	80.2 to 140.1	0	98.08855	original authors
logging	Weather the area was previously logged, not-logged or in a plantation	"logged", "not_logged", "plantation" and "mixed" which includes cameras in both logged and unlogged areas	93	logged	original authors
logging_obs	Observations about logging	text	97	logged	original authors or compiler
edge_1km	Weather the sapling was performed within 1 km from an edge	"edge" for sampling within 1 km of the nearest edge, "interior" for sites farther than 1 km, "both" for	123	edge	original authors

Ecology Page 18 of 33

		sampling with cameras in both edge and interior.			
year_start	Year of the start of the trapping survey	1987 - 2020	0	2014	original authors
year_end	Year of the ending of the trapping survey	1988 – 2020	0	2014	original authors
monthstart	Month of the start of the trapping survey	1 to 12	4	1	original authors
monthfinish	Month of the ending of the trapping survey	1 to 12	6	2	original authors
n_points	Number of sampling points in the survey	1 - 310	3	1	original authors
n_cameras	Number of cameras deployed in the survey	1 - 600	0	1	original authors
cam_spacing	Minimum space between cameras, in meters	60 - 4000	46	1000	original authors
area_cover_km2	Area of the minimum convex polygon of the sampling points in a survey, in km ²	0.04 - 1357	89	NA	original authors
indent_cap_mins	Minimum time allowed between two independent records, in minutes	0 - 60	21	60	original authors
forest_type	Type of forest in which the sampling was deployed	NA	77	Evergreen broadleaf	original authors
study_notes	Notes about the study from which the camera trap data was obtained	NA	172	NA	compiler
veg_notes	Notes about the vegetation where the sampling was deployed	NA	72	Frag	NA
study_author	Correspondent author of the study/data	NA	0	Luskin et al. 2017	original authors
Source	Link or citation to the original publication or the author contact.	NA	0	https://www.nature.com/ articles/s41467-017- 01656-4	original authors

Page 19 of 33 Ecology

forest_cover_10k m	Percentage of area covered by vegetation above 4m in a 10km buffer around the sampling coordinates	0 to 78.22	0	60.26213169	(Sexton et al. 2013)
forest_cover_20k m	Percentage of area covered by vegetation above 4m in a 20km buffer around the sampling coordinates	0 to 75.79	0	57.71243796	(Sexton et al. 2013)
forest_cover_30k m	Percentage of area covered by vegetation above 4m in a 30km buffer around the sampling coordinates	0 to 74.92	0	54.05373898	(Sexton et al. 2013)
altitude_10km	Average altitude in a 10km buffer around the sampling coordinates, in meters	8 to 4798.25	0	56.88501509	(Jaxa 2015)
altitude_20km	Average altitude in a 20km buffer around the sampling coordinates, in meters	9.39 to 4960.17	0	107.5634248	(Jaxa 2015)
altitude_30km	Average altitude in a 30km buffer around the sampling coordinates, in meters	9.13 to 5005.22	0	219.5147203	(Jaxa 2015)
roughness_10km	Roughness index, calculated using the R function terra::terrain() with option v = "roughness", in 10km buffer around the sampling coordinates, in meters	2.85 to 68.80	0	14.36782614	(Jaxa 2015; Hijmans 2022)
roughness_20km	Roughness index, calculated using the R function terra::terrain() with option v = "roughness", in 20km buffer around the sampling coordinates, in meters	2.62 to 59.13	0	17.58147274	(Jaxa 2015; Hijmans 2022)
roughness_30km	Roughness index, calculated using the R function terra::terrain() with option v = "roughness", in 30km buffer around the sampling coordinates, in meters	2.94 to 56.25	0	19.45138369	(Jaxa 2015; Hijmans 2022)

Ecology Page 20 of 33

FLII_10km	Forest Landscape Integrity Index in 10 km buffer around the sampling coordinates, unitless	0 to 9.98	2	5.459989231	(Grantham et al. 2020)
FLII_20km	Forest Landscape Integrity Index in 20 km buffer around the sampling coordinates, unitless	0 to 9.75	1	5.175927237	(Grantham et al. 2020)
FLII_30km	Forest Landscape Integrity Index in 30 km buffer around the sampling coordinates, unitless	0 to 9.63	1	5.403120846	(Grantham et al. 2020)
human_footprint_ 10km	Human Footprint Index in 10 km buffer around the sampling coordinates, unitless	0.14 to 94.66	0	9.853968254	(Venter et al. 2018)
human_footprint_ 20km	Human Footprint Index in 20 km buffer around the sampling coordinates, unitless	1.16 to 95.77	0	11.97931583	(Venter et al. 2018)
human_footprint_ 30km	Human Footprint Index in 30 km buffer around the sampling coordinates, unitless	1.42 to 103.79	0	15.08300954	(Venter et al. 2018)
ecoregion_intactn ess_10km	Ecoregion Intactness Index in 10 km buffer around the sampling coordinates, unitless	0 to 787.88	0	53.77821012	(Beyer et al. 2020)
ecoregion_intactn ess_20km	Ecoregion Intactness Index in 20 km buffer around the sampling coordinates, unitless	0 to 661.38	0	57.35282651	(Beyer et al. 2020)
ecoregion_intactn ess_30km	Ecoregion Intactness Index in 30 km buffer around the sampling coordinates, unitless	0.12 to 636.78	0	87.49029982	(Beyer et al. 2020)
precipitation_10k	Mean annual precipitation in 10km buffer around the sampling coordinates, in mm	585.362637362637 - 4105.63561643836	0	2616.955801	WorldClim 2.1 (http://worldc lim.org)
precipitation_20k	Mean annual precipitation in 20km buffer around the sampling coordinates, in mm	567.015068493151 - 4134.70378006873	0	2614.322536	WorldClim 2.1 (http://worldc lim.org)

Page 21 of 33 Ecology

precipitation_30k	Mean annual precipitation in 30km buffer around the sampling coordinates, in mm	567.131466828971 - 3935.06654456654	0	2588.659534	WorldClim 2.1 (http://worldc lim.org)
temperature_10k	Mean annual temperature in 10km buffer around the sampling coordinates, in degrees Celsius	-1.81 to 27.98	0	25.97048802	WorldClim 2.1 (http://worldclim.org)
temperature_20k m	Mean annual temperature in 20km buffer around the sampling coordinates, in degrees Celsius	-2.36 to 28.04	0	25.72089934	WorldClim 2.1 (http://worldc lim.org)
temperature_30k m	Mean annual temperature in 30km buffer around the sampling coordinates, in degrees Celsius	-2.26 to 28.03	0	25.14833225	WorldClim 2.1 (http://worldc lim.org)
nighttime_lights_ 10km	Mean artificial light emissivity during nighttime in 10km buffer around the sampling coordinates, in microflicks	-0.31 to 50.49	0	0.30145052	(Elvidge et al. 2021)
nighttime_lights_ 20km	Mean artificial light emissivity during nighttime in 20km buffer around the sampling coordinates, in microflicks	-0.41 to 38.77	0	0.420156367	(Elvidge et al. 2021)
nighttime_lights_ 30km	Mean artificial light emissivity during nighttime in 30km buffer around the sampling coordinates, in microflicks	-0.39 to 23.99	0	0.527438576	(Elvidge et al. 2021)
human_populatio n_10km	Human population in a 10km buffer around the sampling coordinates	0 to 3418112	0	8533.319525	(European Commission et al. 2019)
human_populatio n_20km	Human population in a 20km buffer around the sampling coordinates	0 to 6413067	0	77634.95748	(European Commission et al. 2019)
human_populatio n_30km	Human population in a 30km buffer around the sampling coordinates	335 to 7188317	0	265187.7767	(European Commission et al. 2019)

oil_palm_10km	Percentage of area covered by oil palm plantations in 10km buffer around the sampling coordinates	0 to 62.58	0	28.0820553674567	(Miettinen, Shi, and Liew 2016)
oil_palm_20km	Percentage of area covered by oil palm plantations in 20km buffer around the sampling coordinates	0 to 64	0	31.3603581198707	(Miettinen, Shi, and Liew 2016)
oil_palm_30km	Percentage of area covered by oil palm plantations in 30km buffer around the sampling coordinates	0 to 31.39	0	24.9347604936087	(Miettinen, Shi, and Liew 2016)
urban_areas_10k m	Percentage of area covered human settlements in 10km buffer around the sampling coordinates	0 to 46.08	0	0	(FAO et al. 2014)
urban_areas_20k m	Percentage of area covered human settlements in 20km buffer around the sampling coordinates	0 to 24.17	0	0.12303486	(FAO et al. 2014)
urban_areas_30k m	Percentage of area covered human settlements in 30km buffer around the sampling coordinates	0 to 11.80	0	0.579732197	(FAO et al. 2014)
protected_areas_1 0km	Percentage of area protected in 10km buffer around the sampling coordinates	0 to 100	0	57.70151636	(UNEP- WCMC and IUCN 2021)
protected_areas_2 0km	Percentage of area protected in 20km buffer around the sampling coordinates	0 to 100	0	35.98726115	(UNEP- WCMC and IUCN 2021)
protected_areas_3 0km	Percentage of area protected in 30km buffer around the sampling coordinates	0 to 100	0	28.62700027	(UNEP- WCMC and IUCN 2021)

Page 23 of 33 Ecology

309 captures.csv

Field Name	Description	Range	NAs	Example	Source
survey_id	Unique ID which connects the records from the capture table with the metadata table.	NA	0	Lambir2017.ECL	compiler
records	Number of independent records	0 - 3644	0	3	original authors
Y_lat	Latitude in decimal degrees, using WGS84	-8.71 to 33.02	0	3.972066	original authors
X_long	Longitude in decimal degrees, using WGS84	80.25 to 140.09	0	98.08855	original authors
year_start	Year of the start of the trapping survey	1987 - 2020	0	2014	original authors
country	Country where sampling was performed	NA	0	Malaysia	original authors
domestic	States whether the species recorded is domestic or wild	"domestic" or "wild"	0	wild	IUCN Red List
uri	Link for the species webpage at the NCBI or GBIF	NA	0	https://www.ncbi. nlm.nih.gov/taxon omy/37029	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
species	Species name of the recorded animal (when identified to the species taxonomic level)	NA	549	bengalensis	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
genus	Genus name of the recorded animal (when identified at least to the genus taxonomic level)	NA	234	Prionailurus	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
family	Family name of the recorded animal (when identified at least to the family taxonomic level)	NA	102	Felidae	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
order	Order name of the recorded animal (when identified at least to the order taxonomic level)	NA	0	Carnivora	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)

class	Class name of the recorded animal (when identified at least to the class taxonomic level)	Aves, Mammalia or Reptilia	0	Mammalia	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
binomial_verified	Binomial name of the animal recorded, verified in the NCBI or GBIF database.	NA	0	Prionailurus bengalensis	original authors, verified by NCBI or GBIF
taxonomic_level	Taxonomic level in which the animal record was identified	species, genus, order or family	0	species	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)

NCBI - National Center for Biotechnology Information (<u>www.ncbi.nlm.nih.gov</u>)

GBIF - Global Biodiversity Information Facility (www.gbif.org

312 species_traits.csv

310

Field Name	Description	Range	NAs	Example	Source
uri	Link for the species webpage at the NCBI or GBIF	NA	0	https://www.ncbi.nlm. nih.gov/taxonomy/969	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
species	Species name of the recorded animal (when identified to the species taxonomic level)	NA	63	pardus	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
genus	Genus name of the recorded animal (when identified at least to the genus taxonomic level)	NA	33	Panthera	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
family	Family name of the recorded animal (when identified at least to the family taxonomic level)	NA	8	Felidae	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
order	Order name of the recorded animal (when identified at least to the order taxonomic level)	NA	0	Carnivora	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)

Page 25 of 33 Ecology

class	Class name of the recorded animal (when identified at least to the class taxonomic level)	Aves, Mammalia or Reptilia	0	Mammalia	(Schoch et al. 2020; GBIF 2022; Chamberlain et al. 2022)
binomial_verified	Binomial name of the animal recorded, verified in the NCBI or GBIF database.	NA	0	Panthera pardus	original authors, verified by NCBI or GBIF
taxonomic_level	Taxonomic level in which the animal record was identified	species, genus, order or family	0	species	original authors, verified by NCBI or GBIF
adult_mass_g	Average body mass of an adult individual, in grams	25.99 to 3220000	192	53075	(Soria et al. 2021)
dphy_invertebrate	Percentage of the diet composed by invertebrates	0 to 100	192	0	(Soria et al. 2021)
dphy_vertebrate	Percentage of the diet composed by vertebrates	0 to 100	192	100	(Soria et al. 2021)
dphy_plant	Percentage of the diet composed by plants	0 to 100	192	0	(Soria et al. 2021)
det_diet_breadth_n	Number of dietary categories with consumption above 20%, based on EltonTraits	1 to 4	192	1	(Soria et al. 2021)
trophic_level	Trophic level of the species recorded	1 for herbivores, 2 for omnivores and 3 for carnivores	192	3	(Soria et al. 2021)
activity_cycle	Dial activity cycle of the recorded species	1 for strictly nocturnal, 2 for cathemeral and crepuscular, 3 for strictly diurnal species	192	1	(Soria et al. 2021)
habitat_breadth_n	Number of habitats suitable for the species, based on IUCN	1-7	198	6	(Soria et al. 2021)

Ecology Page 26 of 33

iucn2020_binomial	Binomial name of the recorded animal, based on the IUCN taxonomic database	Accipiter gentilis - Zoothera dauma	0	Panthera pardus	(IUCN 2022; Chamberlain et al. 2022)
IUCN	IUCN redlist status	CR - VU	84	VU	(IUCN 2022)

313 NCBI - National Center for Biotechnology Information (<u>www.ncbi.nlm.nih.gov</u>)

GBIF - Global Biodiversity Information Facility (www.gbif.org)

IUCN - The International Union for Conservation of Nature (<u>www.iucn.org</u>)

315316

Page 27 of 33 Ecology

E. Data anomalies:

Not available data is indicated by "NA".

Literature Citations

- Ahumada, Jorge A., Eric Fegraus, Tanya Birch, Nicole Flores, Roland Kays, Timothy G. O'Brien, Jonathan Palmer, Stephanie Schuttler, Jennifer Y. Zhao, Walter Jetz, Margaret Kinnaird, Sayali Kulkarni, Arnaud Lyet, David Thau, Michelle Duong, Ruth Oliver, and Anthony Dancer. 2020. "Wildlife Insights: A Platform to Maximize the Potential of Camera Trap and Other Passive Sensor Wildlife Data for the Planet." Environmental https://doi.org/10.1017/S0376892919000298. Conservation 1-6. (1): https://www.cambridge.org/core/article/wildlife-insights-a-platform-to-maximize-the-potential-of-camera-trap-and-other-passive-sensor-wildlife-data-for-the-planet/98295387F86A977F2ECD96CCC5705CCC.
 - Beaudrot, Lydia, Jorge A. Ahumada, Timothy O'Brien, Patricia Alvarez-Loayza, Kelly Boekee, Ahimsa Campos-Arceiz, David Eichberg, Santiago Espinosa, Eric Fegraus, Christine Fletcher, Krisna Gajapersad, Chris Hallam, Johanna Hurtado, Patrick A. Jansen, Amit Kumar, Eileen Larney, Marcela Guimarães Moreira Lima, Colin Mahony, Emanuel H. Martin, Alex McWilliam, Badru Mugerwa, Mireille Ndoundou-Hockemba, Jean Claude Razafimahaimodison, Hugo Romero-Saltos, Francesco Rovero, Julia Salvador, Fernanda Santos, Douglas Sheil, Wilson R. Spironello, Michael R. Willig, Nurul L. Winarni, Alex Zvoleff, and Sandy J. Andelman. 2016. "Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight." *PLOS Biology* 14 (1): e1002357. https://doi.org/10.1371/journal.pbio.1002357.
 - Beyer, Hawthorne L., Oscar Venter, Hedley S. Grantham, and James E.M. Watson. 2020. "Substantial losses in ecoregion intactness highlight urgency of globally coordinated action." *Conservation Letters* 13 (2): e12692. https://doi.org/https://doi.org/10.1111/conl.12692. https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/conl.12692.
 - Ceballos, Gerardo, Paul R. Ehrlich, Anthony D. Barnosky, Andrés García, Robert M. Pringle, and Todd M. Palmer. 2015. "Accelerated modern human-induced species losses: Entering the sixth mass extinction." *Science Advances* 1 (5): e1400253. https://www.science.org/doi/abs/10.1126/sciadv.1400253. https://doi.org/doi:10.1126/sciadv.1400253.
 - taxize: Taxonomic Information from Around the Web 0.9.100. CRAN.
 - Dirzo, Rodolfo, Hillary S. Young, Mauro Galetti, Gerardo Ceballos, Nick J. B. Isaac, and Ben Collen. 2014. "Defaunation in the Anthropocene." *Science* 345 (6195): 401-406. https://doi.org/doi/10.1126/science.1251817. https://www.science.org/doi/abs/10.1126/science.1251817.
 - Elvidge, Christopher D., Mikhail Zhizhin, Tilottama Ghosh, Feng-Chi Hsu, and Jay Taneja. 2021. "Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019." *Remote Sensing* 13 (5): 922. https://www.mdpi.com/2072-4292/13/5/922.
 - European Commission, Joint Research Centre, D. Ehrlich, A. Florczyk, M. Pesaresi, L. Maffenini, M. Schiavina, L. Zanchetta, P. Politis, T. Kemper, F. Sabo, S. Freire, C. Corbane, and M. Melchiorri. 2019. *GHSL data package 2019: public release GHS P2019*. Publications Office.
 - FAO, John Latham, Renato Cumani, Ilaria Rosati, and Mario Bloise. 2014. Global Land Cover SHARE (GLC-SHARE) database Beta-Release Version 1.0 2014. edited by FAO.
 - GBIF. 2022. The Global Biodiversity Information Facility. GBIF.
 - Grantham, H. S., A. Duncan, T. D. Evans, K. R. Jones, H. L. Beyer, R. Schuster, J. Walston, J. C. Ray, J. G. Robinson, M. Callow, T. Clements, H. M. Costa, A. DeGemmis, P. R. Elsen, J. Ervin, P. Franco, E. Goldman, S. Goetz, A. Hansen, E. Hofsvang, P. Jantz, S. Jupiter, A. Kang, P. Langhammer, W. F. Laurance, S. Lieberman, M. Linkie, Y. Malhi, S. Maxwell, M. Mendez, R. Mittermeier, N. J. Murray, H. Possingham, J. Radachowsky, S. Saatchi, C. Samper, J. Silverman, A. Shapiro, B. Strassburg, T. Stevens, E. Stokes, R. Taylor, T. Tear, R. Tizard, O. Venter, P. Visconti, S. Wang, and J. E. M. Watson. 2020. "Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity." *Nature Communications* 11 (1): 5978. https://doi.org/10.1038/s41467-020-19493-3.
- terra: Spatial Data Analysis. R package version 1.6-17.
- IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth
 Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.

Ecology Page 28 of 33

- 368 IUCN. 2022. The IUCN Red List of Threatened Species. Version 2022-1.
- Jaxa. 2015. ALOS Global Digital Surface Model "ALOS World 3D–30m" (AW3D30).
 - Lima, Fernando, Gabrielle Beca, Renata Muylaert, Clinton Jenkins, Miriam Perilli, Ana Paschoal, Rodrigo Massara, Adriano Paglia, Adriano Chiarello, Maurício Graipel, Jorge Cherem, Andre Regolin, Luiz Oliveira-Santos, Carlos Brocardo, Agustín Paviolo, Mario Di Bitetti, Leandro Moraes, Fabiana Lopes Rocha, Roberto Fusco-Costa, and Mauro Galetti. 2017. "ATLANTIC-CAMTRAPS: a dataset of medium and large terrestrial mammal communities in the Atlantic Forest of South America." *Ecology* 98. https://doi.org/10.1002/ecy.1998.
 - Miettinen, Jukka, Chenghua Shi, and Soo Chin Liew. 2016. "2015 Land cover map of Southeast Asia at 250 m spatial resolution." *Remote Sensing Letters* 7: 701-710. https://doi.org/10.1080/2150704X.2016.1182659.
 - O'Connell, Allan F., James D. Nichols, and K. Ullas Karanth. 2010. *Camera Traps in Animal Ecology*. Springer Tokyo.
 - Schoch, C. L., S. Ciufo, M. Domrachev, C. L. Hotton, S. Kannan, R. Khovanskaya, D. Leipe, R. McVeigh, K. O'Neill, B. Robbertse, S. Sharma, V. Soussov, J. P. Sullivan, L. Sun, S. Turner, and I. Karsch-Mizrachi. 2020. "NCBI Taxonomy: a comprehensive update on curation, resources and tools." *Database (Oxford)* 2020. https://doi.org/10.1093/database/baaa062.
 - Sexton, Joseph O., Xiao-Peng Song, Min Feng, Praveen Noojipady, Anupam Anand, Chengquan Huang, Do-Hyung Kim, Kathrine M. Collins, Saurabh Channan, Charlene DiMiceli, and John R. Townshend. 2013. "Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error." *International Journal of Digital Earth* 6 (5): 427-448. https://doi.org/10.1080/17538947.2013.786146. https://doi.org/10.1080/17538947.2013.786146.
 - Sollmann, Rahel. 2018. "A gentle introduction to camera-trap data analysis." *African Journal of Ecology* 56: 740-749. https://doi.org/https://doi.org/10.1111/aje.12557.
 - Soria, C. D., M. Pacifici, M. Di Marco, S. M. Stephen, and C. Rondinini. 2021. "COMBINE: a coalesced mammal database of intrinsic and extrinsic traits." *Ecology* 102 (6): e03344. https://doi.org/10.1002/ecy.3344.
 - UNEP-WCMC, and IUCN. 2021. Protected Planet: The World Database on Protected Areas (WDPA). Cambridge.
 - Venter, O., E. W. Sanderson, A. Magrach, J. R. Allan, J. Beher, K. R. Jones, H. P. Possingham, W. F. Laurance, P. Wood, B. M. Fekete, M. A. Levy, and J. E. Watson. 2018. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC).

Page 29 of 33 Ecology

Figure 1. Map of the collated camera trap records. $249x249mm \; (300 \; x \; 300 \; DPI)$

Ecology Page 30 of 33

Figure 2. Species richness per survey. $249x249mm (300 \times 300 DPI)$

Page 31 of 33 Ecology

Figure 3. Temporal distribution of the deployment dates for surveys. Note that it often takes years for surveys to be published and that covid shut down most research in 2020, explaining the relatively low number of surveys included with cameras deployed since 2020.

349x199mm (300 x 300 DPI)

Ecology Page 32 of 33

Figure 4. Independent detections per mammalian genus. A total of 104 genera of mammals were observed, from 13 orders.

449x299mm (300 x 300 DPI)

Page 33 of 33 Ecology

Figure 5. Species, genus and order of the recorded mammals. $356 x 357 mm \; (300 \; x \; 300 \; DPI) \label{eq:figure}$

Ecology Page 34 of 33

Figure 6. Independent detection per avian genus. A total of 72 genera of birds were observed from 14 orders. Note that many studies did not identify birds.

449x299mm (300 x 300 DPI)

Page 35 of 33 Ecology

Figure 7. Species, genus and order of the recorded birds. Note that birds were not exhaustively identified in all surveys.

357x357mm (300 x 300 DPI)