

Introduction

Project Overview:

Scope of work

- 1. Efficient water management is essential for precision farming.
- 2. Our project aims to predict soil moisture in unsensed areas using limited sensor data.
- 3. Machine learning helps reduce the need for many sensors.
- 4. This makes precision farming more affordable and scalable.

Key Goals:

- 1. Predict soil moisture levels at unsensed points using data from central sensors.
- 2. Enhance irrigation planning with accurate, real-time soil moisture estimates.

Project Setup

Marked Coordinates:

1. Center: (11,8)

2. Point1: (13.5, 10.5)

3. Point2: (16,13)

4. Collected moisture data at marked points individually on different days using a single sensor.

Data Cleaning and Exploration

- 1. Splitting the data into manageable datasets.
- 2. Handle missing values using Mean and Forward Fill (ffill).

df_	3.head(3)	
The		<pre>and rows in df3 :(285, 2) volumetric_water_content[%]</pre>
793	2024-11-18 19:02:56	5.33
794	2024-11-18 19:08:00	5.35
795	2024-11-18 19:13:04	5.35
0.150		

	<pre>surrounding_values1 = df_3.loc[796:801] surrounding_values1</pre>					
k		timestamp	volumetric_water_content[%]			
	796	2024-11-18 19:18:08	5.35			
	797	2024-11-18 19:23:12	5.35			
	798	2024-11-18 19:28:16	NaN			
	799	2024-11-18 19:33:24	5.38			
	800	2024-11-18 19:38:25	5.38			

749	2024-11-18 15:20:04	9.60
750	2024-11-18 15:25:08	9.60
751	2024-11-18 15:30:13	9.60
752	2024-11-18 15:35:17	9.60
753	2024-11-18 15:40:21	NaN

Feature Engineering

Calibration of Time:

- Align the timestamps across all datasets.
- Combine datasets into a single table based on the common time column.

Calibration of Soil Moisture:

- Split data into training and test sets.
- Compute the mean of training data and normalize both train and test data.

Time(M	lin) Mo	oisture-1	Moisture-2	Moisture-3
0	0	22.84	8.36	5.33
1	5	20.86	11.26	5.35
2	10	20.01	11.55	5.35
3	15	19.69	11.61	5.35
4	20	19.45	11.61	5.35

train_df.head()					
	Time(Min)	Moisture-1	Moisture-2	Moisture-3	
268	1340	-1.125903	-0.444626	0.05163	
25	125	1.024097	0.915374	-0.15837	
86	430	0.544097	0.065374	0.00163	
144	720	-0.165903	-0.164626	0.03163	
137	685	-0.055903	-0.134626	0.03163	

train_mois	ture_means
	0
Moisture-1	18.055903
Moisture-2	10.044626
Moisture-3	5.558370

Data Visualisation

Model Training:

- Using data from these marked points, we trained a machine learning model, such as the Random Forest Regressor, Linear Regression, Decision Tree and XGBoost.
- 2. Train-Test Split: The dataset was divided into training and testing sets to evaluate the model's performance.

```
X_train=train_df[['Time(Min)', 'Moisture-1']]
y_train=train_df[['Moisture-2', 'Moisture-3']]

X_test=test_df[['Time(Min)', 'Moisture-1']]
y_test=test_df[['Moisture-2', 'Moisture-2']]
```

```
y_train.head()

Moisture-2 Moisture-3

268 -0.444626 0.05163

25 0.915374 -0.15837

86 0.065374 0.00163

144 -0.164626 0.03163

137 -0.134626 0.03163
```

```
models = {
    "Linear Regression": LinearRegression(),
    "Decision Tree": DecisionTreeRegressor(random_state=42),
    "Random Forest": RandomForestRegressor(random_state=42, n_estimators=100),
    #"Gradient Boosting": GradientBoostingRegressor(random_state=42),
    "XGBoost": XGBRegressor(random_state=42)
}
results = {}
```

```
def get_cv_scores(model, X, y, scoring='neg_mean_squared_error'):
    kf = KFold(n_splits=5, shuffle=True, random_state=42)
    cv_scores = cross_val_score(model, X_train, y_train, cv=kf, scoring=scoring)
    return cv_scores
```

Evaluation:

 The model's performance was assessed using Mean Squared Error (MSE) and R-Squared values, with the aim of minimizing error and increasing prediction accuracy for moisture management in real agricultural fields. Cross-validation scores for Linear Regression:

MSE scores: [0.05127959 0.04714992 0.01858615 0.02266745 0.15090443]

Mean MSE: 0.05811750793360314 Std MSE: 0.0481578500297779

R-squared scores: [0.72978175 0.71899462 0.77578391 0.69818396 0.28457833]

Mean R-squared: 0.6414645134557825 Std R-squared: 0.18024283517996872

Cross-validation scores for Decision Tree:

MSE scores: [0.00097609 0.00194348 0.0005 0.00043556 0.09429889]

Mean MSE: 0.019630801932367162 Std MSE: 0.03733793803969098

R-squared scores: [0.98491663 0.98305332 0.96888365 0.96796186 0.6503396]

Mean R-squared: 0.9110310120984956 Std R-squared: 0.13053302859758412

Cross-validation scores for Random Forest:

MSE scores: [0.00156472 0.00528905 0.00036141 0.00023962 0.10146982]

Mean MSE: 0.021784921724637696 Std MSE: 0.039884382897729255

R-squared scores: [0.98662447 0.97419862 0.97952681 0.97797001 0.62838389]

Mean R-squared: 0.9093407628982788 Std R-squared: 0.1405362098457169

Cross-validation scores for XGBoost:

MSE scores: [0.00142014 0.09236248 0.00051744 0.0003334 0.0941941]

Mean MSE: 0.037765513972655075 Std MSE: 0.04533118746834057

R-squared scores: [0.98574167 0.67167962 0.97231293 0.97265792 0.65371323]

Mean R-squared: 0.8512210726737977 Std R-squared: 0.1541106234764069

Model Training:

1. Using data from these marked points (**time**, **moisture**), we trained a machine learning model, using VotingRegressor.

```
model = VotingRegressor(
    estimators=[
        ('DecisionTree', DecisionTreeRegressor(random_state=42)),
        ('RandomForest', RandomForestRegressor(random state=42)),
        ('XGBoost', XGBRegressor(objective='reg:squarederror', random state=42))
mod1=model.fit(X_train, train_df['Moisture-2'])
mod2=model.fit(X train, train df['Moisture-3'])
test df with preds = test df.copy()
for col in ['Moisture-2', 'Moisture-3']:
    # Train the model
   model = model.fit(X_train, y_train[col])
   y_pred = model.predict(X_test)
   test_df_with_preds[f'Predicted-{col}'] = y_pred
```

Actual vs Predicted

Recalibrating Predicted Values:

- 1. Using moisture means which we calculated for the train data.
- 2. we have added those means to the predicted values to get the Actual Moisture

	Time(Min)	Moisture-1	Moisture-2	Predicted-Moisture-2	Moisture-3	Predicted-Moisture-3
5	25	19.32	11.56	11.580166	5.350	5.353302
6	30	19.26	11.56	11.573500	5.368	5.365349
9	45	19.20	11.43	11.459768	5.380	5.379765
22	110	19.33	11.01	11.069612	5.400	5.398990
24	120	19.20	10.96	11.045908	5.400	5.400291

Simulating Moisture Prediction Over Time

Model -2 Training:

- 1. Using data from these marked points (time, moisture, distance), we trained a machine learning model, such as the Random Forest Regressor.
- 2. The goal was to **predict moisture levels at points not directly measured**, using only a small number of sensors (2 or 3).
- 3. Train-Test Split: The dataset was divided into training and testing sets to evaluate the model's performance.

Time(Min)	Moisture-1	Moisture_Point	Predicted_Moisture	Distance
0	4.797113	Moisture-2	-1.684754	3.535534
0	4.797113	Moisture-3	-0.228620	6.403124
5	2.817113	Moisture-3	-0.208620	6.403124
5	2.817113	Moisture-2	1.215246	3.535534
10	1.967113	Moisture-2	1.505246	3.535534

Time(Min)	Moisture-1	Distance
0	4.797113	3.535534
0	4.797113	6.403124
5	2.817113	6.403124
5	2.817113	3.535534
10	1.967113	3.535534

Predicted_Moisture
-1.684754
-0.228620
-0.208620
1.215246
1.505246

Train a model (e.g., Random Forest Regressor)
model = RandomForestRegressor(random_state=42)
model.fit(X_train, y_train)

Predictions
y_pred = model.predict(X_test)

Mean Squared Error: 0.0003300785368421089 Predicted Moisture: -0.5164535211267623 Mean Squared Error: 0.0003300785368421089

R-squared: 0.9975462733352372

Simulating Moisture Prediction Over Time

Simulating Moisture Prediction Over Time

Simulated Data for Moisture Prediction:

- we simulate the moisture behavior over time at both the center of the soil and two sensor points (Point 1 and Point 2).
- The center moisture decreases linearly over time, simulating the gradual absorption and evaporation of moisture.
- The distances to the sensor points are fixed at 3.5 and 6.0 units.

Explanation:

- Initial Moisture at Center: Starting moisture at the center is set to 1.647113, decreasing by 0.05 per minute over time.
- Prediction for Points 1 and 2: The model predicts moisture levels at fixed distances (3.5 and 6.0 units) as time progresses.
- Plotting the Results: The plot shows moisture levels at the center (dashed line) and predicted moisture at two points (solid lines in different colors).

Future Scope and Enhancements

Model Expansion:

- Extend the model to handle larger, diverse agricultural fields.
- Incorporate additional variables like temperature, humidity, and soil type for more precise predictions.

Automation and Integration:

- Automate the deployment of optimized sensor grids using drones or robots.
- Integrate real-time data collection for dynamic adjustments.

Data-Driven Insights:

- Utilize advanced machine learning algorithms to improve prediction accuracy.
- Develop user-friendly dashboards for farmers to monitor soil conditions.

Scalability:

- Scale the solution for use in industrial agriculture.
- Test with different crops and environmental conditions.

Sustainability Focus:

- Reduce energy consumption by minimizing sensor usage.
- Promote sustainable farming practices through precision agriculture.

THANK YOU