Azzolini Riccardo 2020-06-04

Modelli di Herbrand

1 Chiusura universale ed esistenziale

Definizione: Data una formula φ con variabili libere $FV(\varphi) = \{x_1, \dots, x_n\},\$

• la chisura universale di φ è la formula chiusa

$$U(\varphi) = \forall x_1 \dots \forall x_n \varphi$$

- la chisura esistenziale di φ è la formula chiusa

$$Ex(\varphi) = \exists x_1 \dots \exists x_n \varphi$$

Lemma:

- φ è valida se e solo se $U(\varphi)$ è valida;
- φ è soddisfacibile se e solo se $Ex(\varphi)$ è soddisfacibile.

1.1 Forme di Skolem

Data una formula φ , la formula $Ex^S(\varphi)$ – la skolemizzazione della chiusura esistenziale di φ – è chiusa e in forma di Skolem, e si ha che:

 φ è soddisfacibile $\iff \mathit{Ex}(\varphi)$ è soddisfacibile $\iff \mathit{Ex}^S(\varphi)$ è soddisfacibile

Quindi, ogni formula è equisoddisfacibile a una formula chiusa in forma di Skolem.

1.1.1 Esempio

Sia $\varphi = \forall x P(x, y)$. Questa formula non è chiusa, perché $\mathrm{FV}(\varphi) = \{y\}$; la sua chiusura esistenziale è:

$$Ex(\varphi) = \exists y \forall x P(x, y)$$

La formula di partenza φ è soddisfacibile: ad esempio, considerando il modello

$$\mathcal{A} = (\mathbb{N}, I) \qquad I(P) = \{(n, m) \mid n \ge m\}$$

e l'assegnamento e(y) = 0, si ha che $(A, e) \models \varphi$, perché è vero che ogni numero naturale è ≥ 0 . Inoltre, $A \models Ex(\varphi)$: basta considerare il caso in cui il quantificatore esistenziale assegna alla variabile quantificata y l'elemento del dominio 0.

Adesso, si esegue la skolemizzazione, ottenendo

$$Ex^{S}(\varphi) = \forall x P(x, c)$$

dove c è un nuovo simbolo di costante. Estendendo il modello $\mathcal A$ con l'interpretazione di questa nuova costante,

$$\mathcal{A}' = (\mathbb{N}, I')$$
 $I'(c) = 0$ $I'(P) = I(P) = \{(n, m) \mid n > m\}$

si ha che $\mathcal{A}' \models Ex^S(\varphi)$.

2 Termini ground

Definizione: Un termine è **ground** (o **chiuso**) se non contiene variabili. Un'**istanza ground** di un termine $f(t_1, \ldots, t_n)$ è un termine ground ottenuto sostituendo le variabili di $f(t_1, \ldots, t_n)$ con termini ground.

Ad esempio, il termine t = f(x, g(c)) non è un termine ground, perché contiene il simbolo di variabile x, ma una sua istanza ground può essere ottenuta sostituendo la variabile x con un termine ground del linguaggio:

- sostituendola con il termine ground c, si ottiene l'istanza ground f(c, g(c));
- sostituendola con il termine ground f(c, g(c)), si ottiene un'altra istanza ground f(f(c, g(c)), g(c));
- ecc.

3 Universo di Herbrand

Definizione: Sia φ una formula chiusa e in forma di Skolem. L'universo di Herbrand $H(\varphi)$ di φ è l'insieme dei termini ground costruibili a partire dai simboli di φ . Se φ non contiene simboli di costante, se ne aggiunge uno nuovo, e si costruiscono i termini ground a partire da questo.

3.1 Esempi

• Sia $\varphi = \forall x \forall y (A(c, x) \to B(f(y)))$. φ contiene un simbolo di costante c e un simbolo di funzione $f^{(1)}$, quindi genera il seguente universo di Herbrand:

$$H(\varphi) = \{c, f(c), f(f(c)), \ldots\}$$

• Sia $\varphi = \forall x (A(c) \to B(x))$. Essa contiene solo un simbolo di costante c, quindi:

$$H(\varphi) = \{c\}$$

• Sia $\varphi = \forall x \forall y (A(f(x), g(x, y)) \to B(x, f(y)))$. Siccome φ non contiene simboli di costante (mentre contiene i simboli di funzione $f^{(1)}$ e $g^{(2)}$), se ne aggiunge uno nuovo c, e si ha allora:

$$H(\varphi) = \{c, f(c), g(c, c), f(g(c, c)), g(c, f(c)), \ldots\}$$

Osservazione: Se una formula contiene simboli di funzione, il suo universo di Herbrand è un insieme infinito, altrimenti è un insieme finito.

4 Modelli di Herbrand

Definizione: Sia φ una formula chiusa e in forma di Skolem. Un modello $\mathcal{A}=(D,I)$ è un modello (struttura) di Herbrand per φ se:

- $D = H(\varphi)$;
- I(c) = c per ogni costante $c \in H(\varphi)$;
- se f è una funzione n-aria, allora

$$I(f): D^n \to D$$
 $I(f)(t_1, \dots, t_n) = f(t_1, \dots, t_n) \in D$

I predicati, invece, possono essere interpretati arbitrariamente (purché in modo coerente con il dominio scelto, come sempre: $I(P) \subseteq (H(\varphi))^n$ per ogni predicato n-ario P), quindi esistono diversi modelli di Herbrand per una data formula, che variano appunto sull'interpretazione dei predicati.

L'idea di un modello di Herbrand è quella di costruire un modello a partire dal materiale sintattico della formula, scegliendo come elementi del dominio direttamente degli elementi sintattici, i termini chiusi. Allora, un'interpretazione coerente con questa scelta deve far corrispondere ciascun termine chiuso a sé stesso.

4.1 Esempio

Sia $\varphi = \forall x(A(x) \to B(f(x)))$, e quindi $H(\varphi) = \{c, f(c), f(f(c)), \ldots\}$. Un modello di Herbrand per φ è una struttura $\mathcal{A} = (H(\varphi), I)$ nella quale l'interpretazione è tale che:

$$I(c) = c$$
 $I(f) = t \in H(\varphi) \mapsto f(t) \in H(\varphi)$

Quindi, ad esempio, $[\![f(f(c))]\!]_{\mathcal{A}} = f(f(c)).$

I predicati $A \in B$ possono essere interpretati in diversi modi.

• Ponendo, ad esempio,

$$I(A) = \{c, f(f(c))\}$$
 $I(B) = \{f(c), f(f(f(c)))\}$

si ha che $\mathcal{A} \models \varphi$: la struttura di Herbrand \mathcal{A} è un modello per la formula φ .

• Scegliendo invece

$$I(A) = H(\varphi)$$
 $I(B) = \emptyset$

si ha che $\mathcal{A} \not\models \varphi$.

5 Soddisfacibilità e modelli di Herbrand

Teorema: Sia φ una formula chiusa e in forma di Skolem. φ è soddisfacibile se e solo se ha un modello di Herbrand (cioè esiste un modello di Herbrand che la soddisfa).

Dimostrazione: Se φ ha un modello di Herbrand, allora per definizione è soddisfacibile. La parte non banale della dimostrazione è invece quella del viceversa, cioè del fatto che se φ è soddisfacibile allora ha un modello di Herbrand. Sia dunque φ una formula in forma di Skolem, chiusa e soddisfacibile, e sia $\mathcal{M} = (D, I)$ un suo modello $(\mathcal{M} \models \varphi)$.

Per prima cosa, bisogna costruire l'universo di Herbrand di φ . A tale scopo, se φ non contiene costanti, se ne introduce una nuova c, e, scegliendo arbitrariamente un elemento

del dominio $d \in D$, si pone I(c) = d. Stabilire un'interpretazione per c nel modello originale è necessario perché la dimostrazione richiede di poter interpretare in tale modello tutti i termini dell'universo di Herbrand, compresi quelli contenenti la nuova costante.

Adesso, si definisce il modello di Herbrand $\mathcal{H}=(H(\varphi),J)$. Essendo un modello di Herbrand, l'interpretazione di costanti e funzioni è fissa, mentre rimane da specificare quella dei predicati, che qui si definisce in base all'interpretazione degli stessi predicati nel modello originale \mathcal{M} :

$$\widetilde{\forall} P^{(n)} \quad J(P) = \{(t_1, \dots, t_n) \in (H(\varphi))^n \mid (\llbracket t_1 \rrbracket_{\mathcal{M}}, \dots, \llbracket t_n \rrbracket_{\mathcal{M}}) \in I(P)\}$$

Avendo assunto che $\mathcal{M} \models \varphi$, si dimostra che allora anche $\mathcal{H} \models \varphi$, per induzione sulla struttura di φ :

• Caso base: Se $\varphi = P(t_1, \dots, t_n)$ è una formula atomica (chiusa, per ipotesi), allora:

$$\mathcal{M} \models P(t_1, \dots, t_n) \iff (\llbracket t_1 \rrbracket_{\mathcal{M}}, \dots, \llbracket t_n \rrbracket_{\mathcal{M}}) \in I(P)$$
 (semantica dei predicati)
 $\iff (t_1, \dots, t_n) \in J(P)$ (definizione di $J(P)$)
 $\iff \mathcal{H} \models P(t_1, \dots, t_n)$ (semantica dei predicati)

- Passo induttivo: Si dimostra per casi sulla forma di φ .
 - Se $\varphi = \psi_1 \wedge \psi_2$:

$$\mathcal{M} \models \psi_1 \land \psi_2 \iff \mathcal{M} \models \psi_1 \in \mathcal{M} \models \psi_2$$

$$\implies \mathcal{H} \models \psi_1 \in \mathcal{H} \models \psi_2 \qquad \text{(ipotesi induttiva)}$$

$$\iff \mathcal{H} \models \psi_1 \land \psi_2$$

- I casi degli altri connettivi sono analoghi.
- Non si ha mai il caso $\varphi = \exists x \psi$ poiché, per ipotesi, φ è in forma di Skolem.
- $Se \varphi = \forall x\psi,$

$$\mathcal{M} \models \forall x \psi \iff \widetilde{\forall} d \in D \quad (\mathcal{M}, [d/x]) \models \psi$$

ma non si può applicare direttamente l'ipotesi di induzione, perché ψ è una formula aperta, mentre il teorema (e quindi l'ipotesi di induzione) si applica alle formule chiuse.

Invece, si considera il sottoinsieme D^T del dominio D i cui elementi sono denotati da termini chiusi¹ (ovvero termini in $H(\psi)$), cioè:

$$D^T = \{d \in D \mid d = [\![t]\!]_{\mathcal{M}} \text{ per qualche } t \in H(\varphi)\} \subseteq D$$

¹Per alcuni modelli si ha $D^T = D$, ma per altri no, perché un linguaggio potrebbe avere pochi termini chiusi e molti elementi del dominio. Un esempio estremo è un linguaggio sui numeri naturali con un solo simbolo di costante e nessun simbolo di funzione: esso ha un unico termine chiuso, il quale può denotare un singolo elemento tra gli infiniti del dominio \mathbb{N} .

Allora:

$$\mathcal{M} \models \forall x \psi$$

$$\iff \widetilde{\forall} d \in D \quad (\mathcal{M}, [d/x]) \models \psi$$

$$\iff \widetilde{\forall} d \in D^T \subseteq D \quad (\mathcal{M}, [d/x]) \models \psi$$

$$\iff \widetilde{\forall} t \in H(\varphi) \quad (\mathcal{M}, [\llbracket t \rrbracket_{\mathcal{M}}/x]) \models \psi \quad \text{(definizione di } D^T)$$

$$\iff \widetilde{\forall} t \in H(\varphi) \quad \mathcal{M} \models \psi[t/x]$$

$$\psi[t/x] \text{ è chiusa, dunque si può usare l'ipotesi induttiva:}$$

$$\iff \widetilde{\forall} t \in H(\varphi) \quad \mathcal{H} \models \psi[t/x]$$

$$\iff \widetilde{\forall} t \in H(\varphi) \quad (\mathcal{H}, [\llbracket t \rrbracket_{\mathcal{H}}/x]) \models \psi$$

$$\iff \widetilde{\forall} t \in H(\varphi) \quad (\mathcal{H}, [\llbracket t \rrbracket_{\mathcal{H}}/x]) \models \psi$$

$$\iff \widetilde{\forall} t \in H(\varphi) \quad (\mathcal{H}, [t/x]) \models \psi \quad \text{(modello di Herbrand: } \llbracket t \rrbracket_{\mathcal{H}} = t)$$

$$\iff \mathcal{H} \models \forall x \psi$$