Práctica 1 - Parte A. Función Entropía

28 de septiembre del 2022

Marcos Hidalgo Baños

A1. La representación gráfica de la función entropía para dos resultados posibles.

Solución final implementada

```
3  entropiaDosValores <- function(p) {
4
5   if (p > 1 || p < 0) {NA}
6   #Comprobamos que 'p' es un valor de probabilidad válido
7
8   else if (p == 1 || (1-p) == 1) {0}
9   #La entropía en los casos extremos siempre es 0
10
11   else {-(p*log2(p) + (1-p)*log2(1-p))}
12   #Expresión de la entropía aplicada a dos valores
13
14  }</pre>
```

<u>Observación</u>

El vector probabilidad de un suceso que solo puede tomar dos resultados excluyentes entre sí es:

$$p_i = [p, (1-p)]$$

Ejemplos de uso y resultados obtenidos

Comprobaciones del correcto comportamiento de la función.

```
> entropiaDosValores(-1)
[1] NA
> entropiaDosValores(0)
[1] 0
> entropiaDosValores(0.1)
[1] 0.4689956
> entropiaDosValores(0.25)
[1] 0.8112781
> entropiaDosValores(0.5)
[1] 1
> entropiaDosValores(1)
[1] 0
```

Representación gráfica de la función

Cálculo de la entropía para dos valores

Definición de las operaciones y funciones empleadas.

→ log2 (x)

Función para el cálculo del logaritmo en base dos de un valor x.

→ plot (f, x, y)

Función para la graficación de otras funciones. Permite establecer rangos.

→ c(x)

Operador característico de R para la representación de vectores.

 \rightarrow sum (x)

Empleada en el segundo apartado, es la función sumatoria de un vector.

A2. Forma general de la función entropía (para un rango de valores).

Solución final implementada

```
29 v entropia <- function(p_i) {
30
31    if (sum(p_i) != 1) {NA}
32    # La sumatoria de los valores debe ser 1
33
34    else {sum(p_i*log2(1/p_i))}
35    # Expresión general de la entropía
36
37    }</pre>
```

Observación

A diferencia del caso del apartado anterior, ahora sí es necesario emplear la fórmula extendida de la entropía:

$$-\sum_{i=1}^n p_i \log p_i$$

Ejemplos de uso y resultados obtenidos

Como es de esperar, los resultados ya comprobados en la versión reducida de nuestra función entropía concuerdan con los nuevos generalistas.

```
p = c(0.5, 0.25, 1/8, 1/16, 1/16)

Wector de probabilidades de ejemplo

p = c(0.5, 0.5)

Wector de probabilidades de ejemplo

p = c(0.5, 0.5)

p = c(0.5, 0.5, -1)

p = c(0.5, 0.5, -1)

Wector de probabilidades de ejemplo

p = c(0.5, 0.5, -1)

NA
```