

Pràctica 4. Teoremes de la superposició i de Thévenin

En aquesta pràctica s'analitzen diversos circuits utilitzant els teoremes de la superposició i de Thévenin i es comproven posteriorment amb simulacions i experimentalment. Per a les simulacions, es continuarà utilitzant el programari de simulació de circuits Proteus. La pràctica consta d'un estudi previ (qüestions P1 i P2) i un treball experimental (qüestions E1 i E2). Addicionalment, hi ha un treball complementari que inclou tant estudi previ (qüestió TC1) com treball experimental (qüestió TC2).

Estudi previ

- P1. És comprovarà el teorema de la superposició amb el circuit de la Figura 1. A tal fi
 - a. Trobeu l'expressió algebraica de la tensió V_{R2} en funció de V_1 i V_2 amb dos mètodes: 1) sense aplicar superposició i 2) aplicant superposició de les fonts independents V_1 i V_2 . Comproveu que l'expressió final és la mateixa.
 - b. Calculeu el valor numèric de V_{R2} a partir dels dos mètodes anteriors si V_1 = 5 V, V_2 = 15 V, R_1 = 10 k Ω , R_2 = 12 k Ω i R_3 = 15 k Ω . Comproveu que dona el mateix resultat. En el cas de superposició especifiqueu clarament les contribucions degudes a V_1 i V_2 .
 - c. Simuleu el circuit amb els valors de l'apartat b i de dues maneres: 1) sense aplicar superposició i 2) aplicant superposició (en aquest cas es pot definir un valor zero a la font de tensió que es vulgui anul·lar). Per a la mesura de $V_{\rm R2}$ utilitzeu el voltímetre DC de la paleta d'instruments. Anoteu els resultats i comproveu que concordin amb els valors teòrics.

Figura 1. Circuit per comprovar el teorema de la superposició.

- P2. Es comprovarà el Teorema de Thévenin amb el circuit de la Figura 2. A tal fi
 - a. Trobeu les expressions algebraiques de la tensió i la resistència de l'equivalent Thévenin.
 - b. Calculeu els valors numèrics de la tensió i resistència de l'equivalent Thévenin si $V_1 = 5 \text{ V}$, $V_2 = 15 \text{ V}$, $R_1 = 10 \text{ k}\Omega$ i $R_2 = 12 \text{ k}\Omega$.
 - c. Amb l'equivalent Thévenin, calculeu el valor de V_o quan connectem a la seva sortida els següents valors de resistència: $1 \text{ k}\Omega$, $10 \text{ k}\Omega$, $100 \text{ k}\Omega$ i infinit (circuit obert).
 - d. Simuleu el circuit de la Figura 2 i també el seu equivalent Thévenin amb els següents valors de resistència connectats a la sortida: 1 k Ω , 10 k Ω , 100 k Ω i infinit (circuit

obert). Anoteu els valors de la tensió de sortida i comproveu que és coincident per ambdós circuits (Figura 2 i equivalent Thévenin) i que també coincideix amb els valors teòrics de l'apartat c.

Figura 2. Circuit per comprovar el Teorema de Thevenin.

Busqueu en el vostre material les resistències R1, R2 i R3 i tingueu-les preparades pel treball experimental.

Treball experimental

Configureu dues de les sortides de la FA amb valors de 5 V i 15 V, respectivament, i un límit de corrent raonable.

- E1. Es comprovarà experimentalment el Teorema de la superposició. A tal fi
 - a. Munteu el circuit de la Figura 1 tot utilitzant la FA per a la generació de V_1 i V_2 i els valors esmentats a la qüestió P1.b.
 - b. Mesureu V_{R2} amb el MD i comproveu que concorda amb el valor teòric.
 - c. Anul·leu V_1 (podeu anul·lar-la curtcircuitant els seus terminals de sortida) i mesureu V_{R2} . Comproveu que concorda amb el valor teòric.
 - d. Restituïu V_1 i anul·leu V_2 . Mesureu V_{R2} i comproveu que concorda amb el valor teòric. Així mateix, comproveu que sumant la lectura a la de l'apartat c concorda amb la lectura de l'apartat a.
- E2. Es comprovarà experimentalment el Teorema de Thevenin. A tal fi
 - a. Munteu el circuit de la Figura 2 amb els valors esmentats a la qüestió P2.b.
 - b. Mesureu V_0 i comproveu que concorda amb la calculada de Thevenin.
 - c. Mesureu la resistència de Thevenin anul·lant les fonts independents V_1 i V_2 . Comproveu que concorda amb la calculada.
 - d. Restituïu V_1 i V_2 i mesureu V_0 connectant successivament a la sortida una resistència d' 1 k Ω , 10 k Ω i 100 k Ω . Comproveu que concorda amb els càlculs previs.
 - e. Substituïu el circuit de la Figura 2 pel seu equivalent Thevenin i utilitzant com a tensió la trobada en l'apartat b (mesureu-la amb el MD). Per a la resistència Thevenin podeu utilitzar les resistències R_1 i R_2 .
 - f. Mesureu la tensió a la sortida en circuit obert i connectant successivament a la sortida una resistència d'1 k Ω , 10 k Ω , 100 k Ω i infinit (circuit obert). Comproveu que concorda amb els resultats anteriors.

Treball complementari

- TC1. Es comprovarà novament el teorema de la superposició amb el circuit de la Figura 1 sent un dels senyals sinusoïdal
 - a. Trobeu l'expressió de V_{R2} si $V_1 = 5 \cdot \sin(\omega t)$, on $\omega = 2\pi 1000$, i la resta de paràmetres prenen els mateixos valors que a l'apartat P1.b. Dibuixeu el senyal resultant i doneu les lectures que obtindríeu amb el MD configurat per a la mesura de tensions en DC i en AC.
 - b. Simuleu el circuit amb els valors de l'apartat anterior. Per a simular V_1 , utilitzeu el generador de senyal de la paleta d'instruments. Per a la mesura de V_{R2} utilitzeu per una banda els voltímetres DC i AC i per l'altra l'oscil·loscopi de la paleta d'instruments. Comproveu si tots els resultats concorden amb els previstos.
- TC2. Es realitzarà ara la comprovació experimental
 - a. Torneu a muntar el circuit de la Figura 1 igual que a l'apartat E1.a a excepció de la tensió V_1 , per la qual heu d'utilitzar el GF enlloc de la FA. Amb el GF genereu el senyal V_1 esmentat a l'apartat TC1.a.
 - b. Visualitzeu V_{R2} amb l'OSC i comproveu que concorda amb el previst.
 - c. Mesureu V_{R2} amb el multímetre configurat en DC i en AC. Comproveu que concorda amb els valors previstos.