Electromagnetic Engineering (EC 21006) T U T O R I A L - XI

HERTZIAN DIPOLE

- 1. A short antenna with a uniform current distribution in air has $I_0d=3\times 10^{-4}A$. m and $\lambda=10$ cm. Find $|E_{\theta S}|$ at $\theta=90^{\circ}$, $\phi=0^{\circ}$, and r=:(a)2 cm; (b) 20 cm; (c) 200 cm.
- 2. A short current element has $d = 0.03\lambda$. Calculate the radiation resistance for each of the following current distributions:
 - (a) uniform, I_0 ;
 - (b) linear, $I(z) = I_0(0.5d |z|)/0.5d$;
 - (c)step, I_0 for 0 < |z| < 0.25d and $0.5I_0$ for 0.25d < |z| < 0.5d.
- 3. A dipole antenna in free space has a linear current distribution. If the length d is 0.02λ , what value of I_0 is required to:
 - (a) provide a radiation field amplitude of 100 mV/m at a distance of 1mi. at $\theta = 90^{\circ}$;
 - (b) radiate a total power of 1W.
- 4. A short dipole carrying current $I_0\cos(\omega t)$ in the a_z direction is located at the origin in free space.
 - (a) If $\beta = 1 \, rad/m$, r = 2m, $\theta = 45^{\circ}$, $\emptyset = 0$, and t = 0, give a unit vector in rectangular components that shows the instantaneous direction of \mathbf{E} .
 - (b) what fraction of the total average power is radiated in the belt $80^{\circ} < \theta < 100^{\circ}$?