

Transformer

Yu Jiening Yu Jiening@umac.mo

Architecture of transformer

 Consists of four parts: input, output, encoder, decoder.

Positional Encoding

$$PE(pos, 2i) = sin(rac{pos}{10000^{rac{2i}{d_{model}}}})$$

$$PE(pos, 2i + 1) = cos(\frac{pos}{10000 \frac{2i}{d_{model}}})$$

Encoder

- Multi-Head Attention
- Add & Norm
- Feed Forward

Multi-Head Attention

Scaled Dot-Product Attention

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Add & Norm

$$D_{in} = A_{out} + C(B(A_{out}))$$

Feed Forward

MLP structure

Decoder

- Masked Multi-Head Attention
- Multi-Head Attention
- Add&Norm
- Feed Forward

Masked Multi-Head Attention

 The point of masking is to mask out future information, making the trained model more accurate

Interactive Attention

Calculation of Q, K, V for self-attention:

$$Q = W_q X + b_q$$

$$K = W_k X + b_k$$

$$V = W_t X + b_t$$

Calculation of Qfor interactive attention

$$Q = W_q Out_{encoder} + b_q$$

CT:

Thank You!