# PS Bootstrap Binary Standardization

Hun & Amy

2/9/2022

The goal of this document is to combine a lot of the functions that Hun has made and made them into functions that can easily to called for the main loop of the simulations function.

#### Function to find the intercept to attain the desired treatment rate

```
treatment_rate_coef <- function(desired_prop, seq_try, df, logit_formula ) {</pre>
  # setting up data setting variables
  seq_select = tibble(seq_try, mean_A = rep(0, length(seq_try)))
  # for loop that goes through all intercept options.
  for(i in c(1:length(seq_try))) {
   beta_0_treat = seq_try[i]
    # this will be where the beta is updated. Must have beta_O_treat in formula
   A_logit <- eval(parse(text=logit_formula ))</pre>
           <- exp(A_logit)/(1+ exp(A_logit))
            <- rbinom(N, 1, p_A) # this decided treat and and non treated
    # getting the mean treated
   seq_select$mean_A[i] = mean(A)
  }
  # # plotting visualizing check
  # seq_select %>%
     ggplot(aes(x=seq\_try, y=mean\_A))+
      geom_point()
  # selecting coeff that gives desired treated untreated proportion
  if( sum(seg select$mean A == desired prop) > 0) {
   beta_0_treat = seq_select %>% filter(mean_A == desired_prop ) %>% pull(seq_try)
  } else {
   beta_0_treat = seq_select %>%
      filter(mean_A < desired_prop + 0.01) %>%
      filter(mean_A > desired_prop - 0.01) %>%
      summarise(
        avg = mean(seq_try)
      ) %>% pull(avg)
  }
  # returning the beta value
  return(mean(beta_0_treat))
```

}

#### Finding the right beta\_effect estimate for binary data

```
binary_outcome_rate <- function(desired_diff, seq_try, df, logit_formula ) {</pre>
  seq_select = tibble(seq_try, prop_save = rep(0, length(seq_try)))
  for(i in c(1:length(seq_try))) {
    beta_effect = seq_try[i]
    # binary outcome
    y_logit <-eval(parse(text=logit_formula ))</pre>
    p_outcome <- exp(y_logit)/(1+ exp(y_logit))</pre>
    y_binary <- rbinom(N, 1, p_outcome)</pre>
    # finding difference between groups
    prop = tibble(y_binary, A = df$A) %>%
      group_by(A) %>%
      summarise( mean_out = mean(y_binary)) %>%
     pivot_wider(
       names_from = A,
        values_from = mean_out
      ) %>%
      mutate (diff = `1`-`0`) %>%
      pull(diff)
    # having the difference
    seq_select$prop_save[i] = prop
  }
  # graphing
  # seq_select %>%
  # ggplot(aes(x=seq_try, y=prop_save))+
     geom_point()
 # saving the best beta.
 beta_effect = seq_select %>%
    filter(prop_save < desired_diff + 0.01) %>%
    filter(prop_save > desired_diff - 0.01) %>%
    summarise(
     avg = mean(seq_try)
    ) %>% pull(avg)
return( beta effect)
}
\# logit\_formula \leftarrow "beta\_effect*df$A + 0.5*df$L2 + 0.3*df$L3"
\# seq_try = seq(-4,4, 0.01)
# desired_diff = 0.4
# beta_effect = binary_outcome_rate(desired_diff, seq_try, df, logit_formula)
```

## Generating data

##

<dbl> <dbl> <int>

```
data_gen <- function(N, desired_prop) {</pre>
  # Setting the Observed Variables
 L1 <- rnorm(N, 0, 1)
 L2 \leftarrow rnorm(N, 0, 1)
 L3 <- rnorm(N, 0, 1)
  # adding the covaraites to dataset
  df <- tibble(L1, L2, L3)</pre>
 desired_prop = 0.2
            = seq(-2,2, 0.01)
  seq_try
  logit_formula <- "beta_0_treat+ 0.5*df$L1 + 0.4*df$L2"</pre>
  # get the desited treatment rate
  beta_0_treat = treatment_rate_coef(desired_prop, seq_try, df, logit_formula)
  # Creating the treatment assignment
  A_logit \leftarrow beta_0_treat + 0.5*df$L1 + 0.4*df$L2
          <- exp(A_logit)/(1+ exp(A_logit))
  p_A
  Α
          <- rbinom(N, 1, p_A)
  # adding the treated untreated data to the dataset
  df$A = A
  # continuous outcome
 y_{continous} < 1*df$A + 0.5*df$L2 + 0.3*df$L3 + rnorm(N, 0,1)
 df$y_continous = y_continous
  # binary outcome
  logit_formula <- "beta_effect*df$A + 0.5*df$L2 + 0.3*df$L3"</pre>
  seq_{try} = seq(-4,4, 0.01)
  desired diff = 0.4
  beta_effect = binary_outcome_rate(desired_diff, seq_try, df, logit_formula)
 y_logit <-eval(parse(text=logit_formula ))</pre>
  p_outcome <- exp(y_logit)/(1+ exp(y_logit))</pre>
 y_binary <- rbinom(N, 1, p_outcome)</pre>
 df$y_binary = y_binary
 return(df)
}
N = 100
desired_prop = 0.2
data_gen(N, desired_prop)
## # A tibble: 100 x 6
##
       L1 L2
                         L3
                                 A y_continous y_binary
```

<int>

<dbl>

```
## 1 -0.969 -1.92 -0.0297
                                       -1.20
## 2 -1.54 0.375 -0.300
                                       -0.896
                                0
## 3 0.362 0.240 0.699
                                0
                                       1.13
                                                     1
## 4 1.25 -0.781 -1.06
                                0
                                        0.282
                                                     0
## 5 -0.266 -0.517 0.103
                                0
                                       -0.990
                                                     0
## 6 -0.132 -1.09 -1.87
                               0
                                                     0
                                       -1.53
## 7 0.882 0.733 -1.06
                               0
                                       -0.175
                                                     0
## 8 -0.154 -0.802 -1.73
                                0
                                        0.454
## 9 0.821 -0.792 0.836
                                1
                                        2.60
                                                     1
                                0
                                        0.168
## 10 0.374 -0.698 0.594
                                                     1
## # ... with 90 more rows
pre_data <- defData(varname = "L1", formula = "0", variance = 1, dist = "normal")</pre>
pre_data <- defData(pre_data, varname = "L2", formula = "0", variance = 1,</pre>
                    dist = "normal")
pre_data <- defData(pre_data, varname = "L3", formula = "0", variance = 1,</pre>
                    dist = "normal")
pre_data <- defData(pre_data, varname = "A", formula = " 0.5*L1 + 0.27*L2 -0.17*L3",
                    dist = "binary", link = "logit")
pre_data <- defData(pre_data, varname = "Y", formula = "0.5*A + 0.8*L2 + -0.1*L3",
                    dist = "binary", link = "logit")
set.seed(7777)
df <- genData(1000, pre_data)</pre>
expit <- function(beta) {</pre>
return(exp(beta)/(1 + exp(beta)))
ATE <- expit(sum(0.5 + 0.8*df_L^2 - 0.1*df_L^3)) - expit(sum(0.8*df_L^2 - 0.1*df_L^3))
# this is not true ATE
# True log odds ratio: 0.5
```

#### Propensity Score Model

#### 500 pairs Propensity Score distribution

```
df %>%
  mutate(ps.grp = round(ps/0.05) * 0.05) %%
  group_by(A, ps.grp) %>%
  summarize(n = n()) \%
  ungroup() %>%
  mutate(n2 = ifelse(A == 0, yes = n, no = -1*n)) \%
  ggplot(aes(x = ps.grp, y = n2, fill = as.factor(A))) +
  geom_bar(stat = 'identity', position = 'identity') +
  geom_text(aes(label = n, x = ps.grp, y = n2 + ifelse(A == 0, 8, -8))) +
  xlab('Probability of Quitting Smoking During Follow-up') +
  ylab('N') +
  ggtitle('Propensity Score Distribution by Treatment Group') +
  scale_fill_discrete('') +
  scale_x_continuous(breaks = seq(0, 1, 0.05)) +
  theme(legend.position = 'bottom', legend.direction = 'vertical',
       axis.ticks.y = element blank(),
        axis.text.y = element_blank())
```

## `summarise()` regrouping output by 'A' (override with `.groups` argument)

## Propensity Score Distribution by Treatment Group





#### Nearest neighbor propensity score matching

```
matched <- matchit(A ~ L1 + L2 + L3, data = df,</pre>
                      distance = "glm", link = "logit",
                      method = "nearest", ratio = 1)
summary(matched)[2]
## $nn
##
                  Control Treated
## All (ESS)
                      487
                              513
## All
                      487
                              513
                      487
## Matched (ESS)
                              487
                      487
                              487
## Matched
## Unmatched
                        0
                               26
## Discarded
plot(matched, type = "jitter", interactive = FALSE)
```

## **Distribution of Propensity Scores**



matched\_df <-

match.data(matched)



## 495 pairs propensity score distribution

```
matched df %>%
  mutate(ps.grp = round(ps/0.05) * 0.05) %%
  group_by(A, ps.grp) %>%
  summarize(n = n()) %>%
  ungroup() %>%
  mutate(n2 = ifelse(A == 0, yes = n, no = -1*n)) %>%
  ggplot(aes(x = ps.grp, y = n2, fill = as.factor(A))) +
  geom_bar(stat = 'identity', position = 'identity') +
  geom_text(aes(label = n, x = ps.grp, y = n2 + ifelse(A == 0, 8, -8))) +
  xlab('Probability of Quitting Smoking During Follow-up') +
  ylab('N') +
  ggtitle('Propensity Score Distribution by Treatment Group') +
  scale fill discrete('') +
  scale_x_continuous(breaks = seq(0, 1, 0.05)) +
  theme(legend.position = 'bottom', legend.direction = 'vertical',
        axis.ticks.y = element_blank(),
        axis.text.y = element blank())
```

## `summarise()` regrouping output by 'A' (override with `.groups` argument)

## Propensity Score Distribution by Treatment Group





#### simple bootstrap

```
nboot <- 100
# set up a matrix to store results</pre>
```

```
boots <- data.frame(i = 1:nboot,</pre>
                     se_ATE = NA,
                     se_OR = NA,
                     log_OR = NA,
                     mean1 = NA,
                     mean0 = NA,
                     difference = NA
# loop to perform the bootstrapping
for (i in 1:nboot) {
  # sample with replacement
  sampl <- matched_df %>% filter(subclass %in% sample(levels(subclass),500, replace = TRUE))
  bootmod \leftarrow glm(Y \sim A + ps, data = sampl,
                  weights = weights, family = binomial)
  # create new data sets
  sampl.treated <- sampl %>%
    mutate(A = 1)
  sampl.untreated <- sampl %>%
    mutate(A = 0)
  # predict values
  sampl.treated$pred.y <-</pre>
    predict(bootmod, sampl.treated, type = "response")
  sampl.untreated$pred.y <-</pre>
    predict(bootmod, sampl.untreated, type = "response")
   # output results
  boots[i, "log_OR"] <- summary(bootmod)$coeff[2,1]</pre>
  boots[i, "se_OR"] <- summary(bootmod)$coeff[2,2]</pre>
  boots[i, "se_ATE"] <-</pre>
    sqrt((summary(bootmod)$coeff[2,2]*mean(sampl.treated$pred.y) *
       (1 - mean(sampl.treated$pred.y)))^2 +
    (summary(bootmod)$coeff[2,2]*mean(sampl.untreated$pred.y) *
       (1 - mean(sampl.untreated$pred.y)))^2)
  boots[i, "mean1"] <- mean(sampl.treated$pred.y)</pre>
  boots[i, "mean0"] <- mean(sampl.untreated$pred.y)</pre>
  boots[i, "difference"] <- boots[i, "mean1"] - boots[i, "mean0"]</pre>
  mean_log_OR <- mean(boots$log_OR)</pre>
  Empirical_se_ATE <- sd(boots$difference)</pre>
  mean_se_ATE <- mean(boots$se_ATE)</pre>
```

```
Empirical_se_log_OR <- sd(boots$log_OR)</pre>
  mean_se_log_OR <- mean(boots$se_OR)</pre>
  ATE <- mean(boots$difference)
  # once loop is done, print the results
  if (i == nboot) {
    cat("ATE:")
    cat(ATE)
    cat("\n")
    cat("\n")
    cat("Empirical_se_ATE:")
    cat(Empirical_se_ATE)
    cat("\n")
    cat("\n")
    cat("mean_se_ATE:")
    cat(mean_se_ATE)
    cat("\n")
    cat("\n")
    cat("95% CI for ATE:")
    cat(ATE - 1.96*Empirical_se_ATE,
        ",",
        ATE + 1.96*Empirical_se_ATE)
    cat("\n")
    cat("\n")
    cat("mean_log_OR:")
    cat(mean_log_OR)
    cat("\n")
    cat("\n")
    cat("Empirical_se_log_OR:")
    cat(Empirical_se_log_OR)
    cat("\n")
    cat("\n")
    cat("mean_se_log_OR:")
    cat(mean_se_log_OR)
    cat("\n")
    cat("\n")
    cat("95% CI for log odds ratio:")
    cat(mean_log_OR - 1.96*mean_se_log_OR,
        mean_log_OR + 1.96*mean_se_log_OR)
  }
}
## ATE:0.1068614
##
## Empirical_se_ATE:0.025629
## mean_se_ATE:0.0601082
## 95% CI for ATE:0.05662853 , 0.1570942
```

```
## mean_log_OR:0.4353995
##
## Empirical_se_log_OR:0.1046255
##
## mean_se_log_OR:0.172854
##
## 95% CI for log odds ratio:0.09660568 , 0.7741934
hist(boots$log_OR)
```

# Histogram of boots\$log\_OR



hist(boots\$se\_OR)

# Histogram of boots\$se\_OR



```
##
## Call:
## glm(formula = Y ~ A + ps, family = binomial, data = sampl, weights = weights)
## Deviance Residuals:
##
      Min
                 1Q
                     Median
                                   3Q
                                          Max
## -1.5387 -1.1270
                     0.8968
                              1.0713
                                        1.4361
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8868
                           0.3264 -2.717 0.00660 **
## A
                0.5997
                           0.1728
                                     3.470 0.00052 ***
## ps
                1.3180
                           0.6373
                                    2.068 0.03863 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 868.96 on 627 degrees of freedom
## Residual deviance: 844.52 on 625 degrees of freedom
## AIC: 850.52
## Number of Fisher Scoring iterations: 4
```