SIGNALS AND SYSTEMS -WEEK 10

Problem!

Identify the system parameters, write down the differential equation and transfer function for this system.

·Read PO: PO=52

· Calculate a:
$$a = \ln \left(\frac{PO}{100} \right) = -0.654$$

• Calculate damping:
$$3 = \frac{100}{4} = \frac{0.654}{10.654^2} = 0.204$$

· Calculate time to peak: tp = 0.168 s

• Calculate natural frequency:
$$\omega n = \frac{\pi}{tp\sqrt{1-j^2}} = \frac{\pi}{0.168\sqrt{1-0.204^2}} = 19.1$$

We can write the transfer function.

$$H(s) = k \cdot \frac{\omega_n^2}{s^2 + 2j\omega_n s + \omega_n^2}$$

From frequency characteristic we see that $|H(0)| = 0 dB = 1 \Rightarrow |K=1|$. It also has a "lowpass" characteristic.

$$H(s) = \frac{19.1^2}{s^2 + 2.0.204.19.1.s + 19.1^2} = \frac{364.7}{s^2 + 7.79s + 364.7}$$

$$\ddot{Y}(t) + 7.79 \dot{Y}(t) + 364.7 \dot{Y}(t) = 364.7 \dot{X}(t)$$

Problem 2

Identify system parameters, write down the differential equation and transfer function for this system.

50)

• Read PO. PO = 1.5
• Calculate a:
$$a = lm(\frac{po}{100}) = -2.354$$

• Calculate damping: $J = \sqrt{\pi^2 + 2.354^2} = 0.599$

· Read Peak time: tp = 0.615s

• Read Peak time:
$$tp = 0.613$$
 s

• Calculate natural frequency: $wn = \frac{TT}{tp\sqrt{1-j^2}} = \frac{TT}{0.615\sqrt{1-0.599^2}} = 6.379$

From IH(w) we see a lowpass characteristic and k=1 (DC-gain)

$$H(s) = k \cdot \frac{\omega n^2}{s^2 + 2 j \omega n s + \omega n^2} = \frac{6.379^2}{s^2 + 2 \cdot 0.599 \cdot 6.379 \cdot s + 6.379^2}$$

$$H(s) = \frac{40.69}{s^2 + 7.64s + 40.69}$$

```
Problem 2
A second order LTIC system has poles P=-1 ± j2.
calculate as, as and from and to, tp, tr, td-PO.
50]
A system transfer function can be written as
           H(s) = \frac{N(s)}{D(s)} = \frac{(s-z_1)(s-z_2)...}{(s-p_1)(s-p_2)...}
In this problem we are only interested in D(s)
    D(s) = (s-(-1+i2))(s-(-1-i2)) = s^2 + 2s + 5
· a = 2
ao = 5
· con = Vao = 223
· } = \frac{\alpha_1}{2\sqrt{a}} = 0.447
```

• Settling time:
$$t_s = \frac{4}{Jwn} = \frac{4}{0.447 \cdot 2.23} = 4 s$$

• Peak time: $t_p = \frac{\pi}{wn\sqrt{1-J^2}} = \frac{1.57}{2.23\sqrt{1-0.447^2}} = 1.57 s$

• Rise time:
$$tr = \frac{1 - 0.5167 j + 2.917 j^2}{\omega_n} = 0.604 s$$

• Delay time!
$$td = \frac{1.1 + 0.125 f + 0.469 f^2}{wn} = 0.558 s$$

Problem 3 Explain the effect of moving poles.

- · Vertical distance from o-axis: wd
- · Horizontal distance from jw-axis: 3 cun
- · Angle between o-axis and pole-position vectors (cosine)
- · Distance from origin to pole: wn

As the poles move from green to red the angle thereeses, and 3 increases. This makes sense when looking at decreases the responses, as the oscillations get less severe.

At the same time wn is reduced and the nise time training on increases.

Problem 3B

Sol The angle stays the same so \$ = constant.

The distance from origin increases from red to green.

10

The po stays the same, but the peak time increases from green to red.

Bandwidth increases from red to green.

Problem 3C

The vertical distance to o-axis stays the same, so wd = constant. The damping decreases from green to red.

po is highest for the red, but to is the same. The

The cutoff frequency is almost unchanged.