7.1. Poly-encoders architectures and pre-training strategies for fast and accurate multi-sentence scoring

논문: https://arxiv.org/pdf/1905.01969.pdf

참고자료

https://minhobby.tistory.com/50

https://blog.pingpong.us/ml-seminar-season-4/

Sentence간 연결의 방법론 2가지

Figure 1: Diagrams of the three model architectures we consider. (a) The Bi-encoder encodes the context and candidate separately, allowing for the caching of candidate representations during inference. (b) The Cross-encoder jointly encodes the context and candidate in a single transformer, yielding richer interactions between context and candidate at the cost of slower computation. (c) The Poly-encoder combines the strengths of the Bi-encoder and Cross-encoder by both allowing for caching of candidate representations and adding a final attention mechanism between global features of the input and a given candidate to give richer interactions before computing a final score.

Cross-encoder

• 두 시퀀스를 동시에 입력으로 사용해 시퀀스 간의 full self-attention을 수행하는 방법 • Attention 크기가 토큰 길이 제곱으로 커져서 연산시간이 느림

$$y_{ctxt} = red(T_1(ctxt)) \ y_{cand} = red(T_2(cand))$$

 y_{ctxt} : Input Context에 대한 Representation

ycand : Candidate에 대한 Representation

 $T(x)=h_1,..,h_N$: Input Token에 대한 토큰 길이 N개에 대한 Token별 Representation 값 (Transformer 모델의 인코더류)

 $red(\cdot)$: 전체 토큰 Representation을 하나의 백터로 줄이는 함수 (첫번째 토큰만 쓰거나 평균내거나 등)

$$s(ctxt, cand_i) = y_{ctxt} \cdot y_{cand_i}$$

Dot Product를 해서 pairwise scoring 계산

의문) 꼭 Dot Product를 써야하는가? 레이어를 추가하거나 KNN같은 머신러닝은 안되나?

Bi-encoder

- 두 시퀀스를 별도로 입력으로 사용해 두 시퀀스의 Representation 사이의 스코어를 계산하는 방법
- Cross-encoder보다 성능이 낮으나 연산속도는 빠름

$$y_{ctxt,cand} = h_1 = first(T(ctxt, cand))$$

Context와 Candidate를 같이 입력으로 전체 토큰중 첫번째 토큰(<CLS>류)를 추출

$$s(ctxt, cand_i) = y_{ctxt, cand_i} W$$

<CLS>토큰과 Weight를 행렬 곱(토큰 히든셀 크기, 클래스 수) 해서 scoring

Poly-encoder

- Bi-encoder와 비슷한 연산속도 높은 성능을 만들도록 모델 구조 제안
 Bi-encoder에 2중 Attention을 곁들임
- - 1. Learnable Vector와 Context Token Representation 간의 Attention
 - Query : Learnable Vector => Query 개수는 inference time에 맞춰 m 개 지정(하이퍼파라미터)
 - Key, Value : Context Token Representation

 - 일반적인 Attention임 => softmax(Q*K)*V
 Q*K => (하이퍼파라미터 m, 토큰 수 n)
 - 2. 1번의 결과와 Candidate간의 Attention
 - Query : Candidate Vector

 - Key, Value : 1번 결과
 일반적인 Attention임 => softmax(Q*K)*V

$$y_{ctxt}^{i} = \sum_{j} w_{j}^{c_{i}} h_{j}$$
 where $(w_{1}^{c_{i}}, ..., w_{N}^{c_{i}}) = \operatorname{softmax}(c_{i} \cdot h_{1}, ..., c_{i} \cdot h_{N})$

So $(Q k) V_{1} + ... + 5 O(Q k) V_{N}$

$$y_{ctxt} = \sum_{i} w_i y_{ctxt}^i$$
 where $(w_1, ..., w_m) = \operatorname{softmax}(y_{cand_i} \cdot y_{ctxt}^1, ..., y_{cand_i} \cdot y_{ctxt}^m)$

실험

Bi-Encoder Cross-Encoder 비교

Negatives	31	63	127	255	511
R@1/20	81.0	81.7	82.3	83.0	83.3

Table 2: Validation performance on ConvAI2 after fine-tuning a Bi-encoder pre-trained with BERT, averaged over 5 runs. The batch size is the number of training negatives + 1 as we use the other elements of the batch as negatives during training.

Fine-tuned parameters	Bi-encoder	Cross-encoder
Top layer	74.2	80.6
Top 4 layers	82.0	86.3
All but Embeddings	83.3	87.3
Every Layer	83.0	86.6

Table 3: Validation performance (R@1/20) on ConvAI2 using pre-trained weights of BERT-base with different parameters fine-tuned. Average over 5 runs (Bi-encoders) or 3 runs (Cross-encoders).

Bi-Encoder Cross-Encoder Poly-Encoder 비교

Dataset	ConvAI2	DSTC 7		Ubuntu v2		Wikipedia IR		
split	test	test		test		test		
metric	R@1/20	R@1/100	MRR	R@1/10	MRR	R@1/10001		
(Wolf et al., 2019)	80.7							
(Gu et al., 2018)	-	60.8	69.1	-	-	-		
(Chen & Wang, 2019)	-	64.5	73.5	-	-	-		
(Yoon et al., 2018)	-	-	-	65.2	-	-		
(Dong & Huang, 2018)	-	-	-	75.9	84.8			
(Wu et al., 2018)	-	-	-	-	-	56.8		
pre-trained BERT weights from (Devlin et al., 2019) - Toronto Books + Wikipedia								
Bi-encoder	81.7 ± 0.2	66.8 ± 0.7			88.0 ± 0.3	-		
Poly-encoder 16	83.2 ± 0.1	67.8 ± 0.3	75.1 ± 0.2	81.2 ± 0.2	88.3 ± 0.1	-		
Poly-encoder 64	83.7 ± 0.2	67.0 ± 0.9	74.7 ± 0.6	81.3 ± 0.2	88.4 ± 0.1	-		
Poly-encoder 360	83.7 ± 0.2		76.2 ± 0.2	80.9 ± 0.0	88.1 ± 0.1	-		
Cross-encoder	84.8 ± 0.3	67.4 ± 0.7	75.6 ± 0.4	82.8 ± 0.3	89.4 ± 0.2	-		
Our pre-training on Toro	Our pre-training on Toronto Books + Wikipedia							
Bi-encoder	82.0 ± 0.1	64.5 ± 0.5	72.6 ± 0.4	80.8 ± 0.5	88.2 ± 0.4	-		
Poly-encoder 16	82.7 ± 0.1	65.3 ± 0.9	73.2 ± 0.7	83.4 ± 0.2	89.9 ± 0.1	-		
Poly-encoder 64	83.3 ± 0.1	65.8 ± 0.7	73.5 ± 0.5	83.4 ± 0.1	89.9 ± 0.0	-		
Poly-encoder 360	83.8 ± 0.1	65.8 ± 0.7	73.6 ± 0.6	83.7 ± 0.0	90.1 ± 0.0	-		
Cross-encoder	84.9 ± 0.3	65.3 ± 1.0	73.8 ± 0.6	83.1 ± 0.7	89.7 ± 0.5	-		
Our pre-training on Reddit								
Bi-encoder	84.8 ± 0.1	70.9 ± 0.5	78.1 ± 0.3	83.6 ± 0.7	90.1 ± 0.4	71.0		
Poly-encoder 16	86.3 ± 0.3		78.4 ± 0.4	86.0 ± 0.1	91.5 ± 0.1	71.5		
Poly-encoder 64	86.5 ± 0.2	71.2 ± 0.8	78.2 ± 0.7	85.9 ± 0.1	91.5 ± 0.1	71.3		
Poly-encoder 360	86.8 ± 0.1	71.4 ± 1.0	78.3 ± 0.7	85.9 ± 0.1	91.5 ± 0.0	71.8		
Cross-encoder	87.9 ± 0.2	71.7 ± 0.3	79.0 ± 0.2	86.5 ± 0.1	91.9 ± 0.0	-		

Table 4: Test performance of Bi-, Poly- and Cross-encoders on our selected tasks.

	Scoring time (ms)			
	CPU		GPU	
Candidates	1k	100k	1k	100k
Bi-encoder	115	160	19	22
Poly-encoder 16	122	678	18	38
Poly-encoder 64	126	692	23	46
Poly-encoder 360	160	837	57	88
Cross-encoder	21.7k	2.2M*	2.6k	266k*

Table 5: Average time in milliseconds to predict the next dialogue utterance from C possible candidates on ConvAI2. * are inferred.

Figure 2: (a) The Bi-encoder (b) The Cross-encoder (c) The Poly-encoder with first m vectors. (d) The Poly-encoder with m learnt codes.