

Real-time error mitigation for variational optimization on quantum hardware

Alejandro Sopena¹, Matteo Robbiati², Andrea Papaluca⁴ and Stefano Carrazza² 35

² TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy.
 ³ CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland.
 ¹ Instituto de Fi'sica Teo'rica, UAM-CSIC, Universidad Aut´onoma de Madrid, Cantoblanco, Madrid, Spain.
 ⁴ School of Computing, The Australian National University, Canberra, ACT, Australia.
 ⁵ Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.

Aim

we put forward the inclusion of error mitigation routines in the process of training Variational Quantum Circuit (VQC) models. In detail, we define a Real Time Quantum Error Mitigation (RTQEM) algorithm to coadiuvate the task of fitting functions on quantum chips with VQCs.

Schematic pipeline of the RTQEM algorithm

Ansatz

We tackle multi-dimensional regression problems using a VQC as Quantum Machine Learning (QML) model. The data x are encoded into the circuit via Data Reuploading:

$$|0\rangle - L(x_1|\boldsymbol{\theta}_{1,1})$$

$$|0\rangle - L(x_2|\boldsymbol{\theta}_{1,2})$$

$$|0\rangle - L(x_3|\boldsymbol{\theta}_{1,3})$$

$$|0\rangle - L(x_4|\boldsymbol{\theta}_{1,4})$$

$$|0\rangle - L(x_1|\boldsymbol{\theta}_{N_{\text{layers}},2})$$

$$\cdots - L(x_1|\boldsymbol{\theta}_{N_{\text{layers}},2})$$

$$\cdots - L(x_1|\boldsymbol{\theta}_{N_{\text{layers}},3})$$

$$\cdots - L(x_1|\boldsymbol{\theta}_{N_{\text{layers}},4})$$

$$\cdots - L(x_1|\boldsymbol{\theta}_{N_{\text{layers}},4})$$

$$\cdots - L(x_1|\boldsymbol{\theta}_{N_{\text{layers}},4})$$

where we use the following definition of the uploading channel:

$$L(x_j|\boldsymbol{\theta}_{l,j}) = R_z(\theta_3 x_j + \theta_4) R_y(\theta_1 \kappa(x_j) + \theta_2) , \qquad (1)$$

which uploads the j-th component of \boldsymbol{x} at the circuit layer l.

Noise of a quantum hardware

We consider a quantum system affected by local pauli noise with parameters $-1 \le q_X, q_Y, q_Z \le +1$ and readout noise parametrized by bit-flip probability $(1-q_M)/2$. This setup gives rise to Noise-Induced Barren Plateaus (NIBP), which tend to concentrate the expectation value around 0.

To mitigate the effect of the noise, we use the Importance Clifford Sampling (ICS) technique, which is a learning-based method which can be used to learn a noise map ℓ using a training set of Clifford circuits $\mathcal{S} = \{\mathcal{C}_{\text{cliff}}^i\}$ built on top of the target circuit \mathcal{C}^0 .

Simulation 1-dim: u-quark PDF

We firstly use a single-qubit circuit to fit the u-quark Parton Distribution Function (PDF).

Simulation n-dim

We then tackle a simple multi dimensional target to scale up with the number of qubits.

References

