Многопроцессорное расписание

Габдрахманов Азат

27 ноября 2024 г.

Введение

- Многопроцессорное расписание важная задача в области теории расписаний и оптимизации.
- Применяется в компьютерных системах, производственных процессах, логистике и других областях.
- Цель: оптимальное распределение заданий между процессорами для достижения наилучшего результата.

Формальное определение задачи

Условие:

- ullet Задано множество заданий T
- Число процессоров т
- ullet Длительность каждого задания I(t) для $t\in T$
- Общий директивный срок D

Вопрос: Существует ли m-процессорное расписание для заданий из T, которое удовлетворяет общему директивному сроку D? Формальное условие:

$$\exists \, o: \, T \to \mathbb{Z}, \quad \forall u \geq 0, \quad \#\{t \in T \mid o(t) \leq u < o(t) + I(t)\} \leq m$$

И

$$\forall t \in T, \quad o(t) + I(t) \leq D$$

Общие виды заданий

• Процессоры с разной производительностью:

- Некоторые процессоры могут выполнять задания быстрее других.
- Время выполнения задания на процессоре P_j : $I(t)/s_j$, где s_j скорость процессора.
- Зависимости между заданиями:
 - Некоторые задания не могут начинаться до завершения других.
- Приоритеты заданий:
 - Задания имеют разные приоритеты, влияющие на порядок их выполнения.

Частные случаи задачи

- Одинаковое время выполнения всех заданий:
 - I(t) = I для всех $t \in T$
 - Проблема становится аналогом задачи разбиения множества (Partition)
 - В этом случае задача может быть решена за полиномиальное время.
- Ограниченное количество процессоров:
 - Для фиксированного т задача может быть проще решаемой.
- Отсутствие дедлайнов:
 - Задача упрощается, если нет ограничений по времени завершения.

Доказательство NP-полноты: Принадлежность к классу NP

Класс NP:

 Включает задачи, решения которых можно проверить за полиномиальное время.

Сертификат для задачи многопроцессорного расписания:

ullet Функция назначения $o: T o \mathbb{Z}$, определяющая время начала выполнения каждого задания.

Процесс проверки корректности расписания:

 Проверка выполнения всех заданий до директивного срока D:

$$\forall t \in T, \quad o(t) + l(t) \leq D$$

 Проверка ограничения на количество одновременно выполняющихся заданий:

$$\forall u \ge 0, \quad \#\{t \in T \mid o(t) \le u < o(t) + I(t)\} \le m$$

Доказательство NP-полноты: NP-Трудность

Класс NP-трудных задач:

• Задачи, к которым любые задачи из NP могут быть сведены за полиномиальное время.

Сведение из задачи Partition:

- Задача Partition:
 - ullet Дано множество чисел $S = \{s_1, s_2, \dots, s_{2m}\}$ с суммой 2K.
 - Вопрос: Можно ли разбить S на два подмножества S_1 и S_2 такие, что $\sum_{s \in S_1} s = \sum_{s \in S_2} s = K$?
- Partition является NP-полной задачей.

Сведение Partition к многопроцессорному расписанию:

- Построение экземпляра задачи расписания:
 - Задания T: Для каждого числа $s_i \in S$ создаём задание t_i с длительностью $I(t_i) = s_i$.
 - Количество процессоров m' = 2.
 - Директивный срок D = K.
- Эквивалентность решений:
 - Если существует расписание, завершающее все задания до K на 2 процессорах, то это соответствует разбиению S_1 на S_1 и S_2 с

Применение задачи многопроцессорного расписания

- Компьютерные системы:
 - Распределение процессов и потоков между ядрами процессора.
- Производственные системы:
 - Планирование производственных процессов на различных машинах или линиях.
- Логистика:
 - Организация доставки и распределения ресурсов.
- Облачные вычисления:
 - Оптимизация использования виртуальных машин и серверов.

Заключение

- Многопроцессорное расписание фундаментальная задача в оптимизации и теории сложности.
- Задача NP-полная, что делает её решение для больших экземпляров вычислительно сложным.
- Практическое применение в различных областях требует использования эвристических и приближенных методов.
- Понимание сложности задачи важно для разработки эффективных алгоритмов распределения ресурсов.

Список литературы

- M. R. Garey, D. S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W.H. Freeman, 1979.
- R. Graham. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1966.
- K. Pruhs, J. R. Rice. Scheduling on Multiprocessors: Algorithms and Complexity. Springer, 1997.