

Titulación: Grado en Ciencia e Ingeniería de Datos

Asignatura: Álgebra Lineal

Profesores: Claudi Busqué (UMU) y Francisco Periago (UPCT)

Hoja de ejercicios tema 2: vectores, matrices y tensores

- 1. Determina la verdad o falsedad de la siguiente afirmación: si u_1 es combinación lineal de u_2 y u_3 , entonces u_3 es combinación lineal de u_1 y u_2 .
- 2. Consideremos los vectores u = (1, 1, 0) y v = (0, 1, 1). Encuentra un vector w ortogonal a u y v. Comprueba que w es ortogonal a cualquier combinación lineal de u y v. Encuentra ahora un vector que \underline{no} sea combinación lineal de u, v y comprueba que no es ortogonal a w.
- 3. Haz un dibujo de los siguientes sunconjuntos de \mathbb{R}^2 :

$$\{(x,y) \in \mathbb{R}^2 \text{ tal que } ||(x,y)||_1 = 1\}$$

$$\{(x,y) \in \mathbb{R}^2 \text{ tal que } ||(x,y)||_2 = 1\}$$

$$\{(x,y) \in \mathbb{R}^2 \text{ tal que } ||(x,y)||_{\infty} = 1\}$$

- 4. Prueba que $||u||_2 \le \sqrt{||u||_1||u||_{\infty}}$.
- 5. Dos vectores son ortogonales cuando su producto escalar es cero, pero ¿qué pasa si su producto escalar es próximo a cero? Sean x=[1,-0.75] e y=[0.3,0.3]. Calcula el producto escalar $x\cdot y$ y el ángulo que forman. ¿Qué conclusión puedes sacar?

Si dos vectores x, y son unitarios, entonces $-1 \le x \cdot y \le 1$ (¿por qué?). En este caso, ¿que podemos decir si $x \cdot y$ es aproximadamente -1, 1 o cero?

- 6. Sean u, v dos vectores unitarios de \mathbb{R}^n que forman un ángulo de 60°. Calcula ||2u + v||.
- 7. Sean u,v dos vectores de \mathbb{R}^n de norma 2 y 3 respectivamente que forman un ángulo de 60°. ¿Qué ángulo forman los vectores u y 2u-v?
- 8. Calcula $A+B, (A+B)^{\top}, AB, BA, (AB)^{\top}, A^{\top}B^{\top}$ y $B^{\top}A^{\top}$ para las matrices:

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 3 \\ 3 & 0 & 3 \end{bmatrix} \quad \text{y} \quad B = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

- 9. Prueba que no existe ninguna matriz A tal que $A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
- 10. ¿Es cierta para matrices la igualdad $(A + B)^2 = A^2 + B^2 + 2AB$?
- 11. ¿Existen matrices reales no nulas 2×2 tales que $A \cdot A^{\top} = 0$? ¿y si son matrices complejas?

1

- 12. Sean A, B matrices tales que I + AB es invertible y sea S la inversa de I + AB. Prueba que I + BA también es invertible y si inversa es I BSA.
- 13. Sea A una matriz $n \times p$ y B una matriz $p \times m$. Si llamamos **flop** a una operación, ya sea una suma, resta, multiplicación o división, prueba que para calcular AB son necesarios mn(2p-1) flops (haciendo la multiplicación de forma estándar). Si A es una matriz 10×2 , B una matriz 2×10 y C una matriz 10×10 y queremos calcular ABC, ¿qué es mejor desde el punto de vista computacional, calcular (AB)C o A(BC)?
- 14. Dadas dos matrices cuadradas A, B, se define el **conmutador** de A, B como

$$[A, B] = AB - BA$$

Por otra parte, el spin de un electrón se suele representar a través de las siguientes tres matrices, llamadas matrices de Pauli:

$$S_x = \frac{1}{2}\bar{h} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad S_y = \frac{1}{2}\bar{h} \begin{bmatrix} 0 & -j \\ j & 0 \end{bmatrix} \quad S_z = \frac{1}{2}\bar{h} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

donde $\bar{h} = \frac{h}{2\pi}$, con h la constante de Plank. Comprueba que

$$[S_x, S_y] = j\bar{h}S_z, \quad [S_y, S_z] = j\bar{h}S_x, \quad [S_z, S_x] = j\bar{h}S_y$$

y que

$$S_x^2 + S_y^2 + S_z^2 = \frac{3}{4}\bar{h}^2 I_3$$

con I_3 la matriz identidad 3×3 .

- 15. Si A es una matriz simétrica, ¿son las a matrices $B^{\top}AB$, $A+A^{\top}$ y $A-A^{\top}$ simétricas?
- 16. Prueba que si A es una matriz invertible simétrica, entonces A^{-1} es también simétrica.
- 17. Sean u_1, \ldots, u_m vectores de \mathbb{K}^n y supongamos que para ciertos escalares x_1, \ldots, x_m se tiene $x_1u_1 + \cdots + x_mu_m = 0$. Expresa esta última igualdad en forma matricial
- 18. Sean u, v dos vectores no nulos vistos como matrices columna $n \times 1$. Observa que $1 + v^{\top}u$ es un escalar, que suponemos no nulo. Prueba que la matriz $I + uv^{\top}$ es no singular y su inversa es

$$(I + uv^{\top})^{-1} = I - \frac{uv^{\top}}{1 + v^{\top}u}$$

19. Sea A la matriz dada por bloques

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

con A_{11} invertible. Prueba que existen matrices X, Y tales que

$$A = \left[\begin{array}{cc} 1 & 0 \\ X & 1 \end{array} \right] \left[\begin{array}{cc} A_{11} & 0 \\ 0 & S \end{array} \right] \left[\begin{array}{cc} I & Y \\ 0 & I \end{array} \right]$$

donde $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$ e I es la matriz identidad del tamaño adecuado (la matriz S se denomina el **complemento de Schur** de A_{11}).

20. Expresa la matriz AB como suma de matrices de rango 1, donde

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 1 & 0 & 5 \end{bmatrix}$$

21. Sea $u^{\top}=[1/\sqrt{2},0,1/\sqrt{2}],\ v^{\top}=[-1/\sqrt{3},1/\sqrt{3},1/\sqrt{3}]$ y $w^{\top}=[a,b,c].$ Halla a,b,c para que la matriz Q=[u,v,w] sea ortogonal de determinante 1.