Corso di Laurea in Ingegneria Informatica, Elettronica e delle Telecomunicazioni a.a. 2016/2017

Principi e Applicazioni dell'Ingegneria Elettrica Quarto appello - 13/06/2017

Scrivere il proprio nome, cognome e numero di matricola nella tabella sottostante. Il parametro k è uguale all'ultima cifra del numero di matricola.

k							
Matricola							
Nome e Cognome							
Corso di Laurea							

I seguenti valori valgono per tutte le figure: $E_1=10$ V, $I_1=4$ A, $R_1=5+k$ Ω , $R_2=1$ Ω , $R_3=10$ Ω , L=150 mH, $e(t) = \sqrt{2} \cdot (100 + 10k)\cos(2\pi 50t) \text{ V}.$

Problema 1 [punti 5]

Dato il circuito di Fig. 1, determinare il valore che la resistenza R_a deve assumere per rendere la corrente I_{R1} pari a 1 A. $R_a =$ Si determini la temperatura T_{R1} raggiunta a regime dalla resistenza R₁, supponendo che la temperatura ambiente sia uguale a 20 °C e che la resistenza termica fra la superficie | T_{R1} = esterna di R₁ e l'ambiente circostante sia pari a 5 °C/W.

Problema 2 [punti 8]

Il circuito di Fig. 2 è inizialmente a regime con l'interruttore S in posizione chiusa. All'istante t=0 S si apre. Determinare $|i_L(t)|$ l'andamento temporale della corrente i_I(t) e l'istante di tempo T₁ per il quale tale corrente raggiunge il valore di 1.5 A.

 $T_1 =$

Problema 3 [punti 6]

Dato il circuito di Fig. 3 si calcoli il valore di C che rende pari a C =1 il fattore di potenza del generatore e(t).

Problema 4 [punti 6]

Dato il circuito di Fig. 3, supponendo C=2 mF, si determini la funzione di trasferimento $H(j\omega)$ che si ottiene considerando in $H(j\omega)$ = ingresso la corrente i_C e in uscita la corrente i_R. Si traccino i diagrammi asintotici di Bode delle ampiezze e delle fasi.

Domanda 1 [punti 5]

Cosa dice e come si dimostra il teorema del massimo trasferimento di potenza?

Domanda 2 [punti 3]

Quanto vale la parte immaginaria dell'impedenza di un circuito in condizioni di risonanza serie?