```
In [36]:
```

```
#%%shell
#jupyter nbconvert --to html /content/GPA ML PROJECT.ipynb
```

Jacob Simmons, Machine Learning Project, 11 Nov 2023

Using a "Duke GPA" dataset provided on Kaggle.com

Project Outline

- · Data cleaning and formatting
- Exploratory data analysis
- Feature engineering and selection
- Compare several machine learning models on a performance metric
- Perform hyperparameter tuning on the best model
- Evaluate the best model on the testing set
- Interpret the model results
- Draw conclusions and document work

Thanks to the below example for providing the outline and guidance for this project.

Example

Goal

Train model to predict GPA based on number of hours studied each week, number of hours sleep, gender, and how many nights they go out.

Response

GPA

Factors

- No. of hours slept (float)
- · No. of hours studied each week (int)
- Nights out / not studying during sample period (float)
- Gender (0 = Female, 1 = Male, float)

```
In [37]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import scipy.stats as stats
```

```
#Read in data into a dataframe
data = pd.read_csv('/content/sample_data/gpa.csv')

#Display first 15 lines in dataframe
data.head(15)
```

-			т.	_	_	7	
()	11	+	1.	~	/		п
v	u	ъ.	Ι.	_)	/		

	gpa	studyweek	sleepnight	out	gender
0	3.890	50	6.0	3.0	female
1	3.900	15	6.0	1.0	female
2	3.750	15	7.0	1.0	female
3	3.600	10	6.0	4.0	male
4	4.000	25	7.0	3.0	female
5	3.150	20	7.0	3.0	male
6	3.250	15	6.0	1.0	female
7	3.925	10	8.0	3.0	female
8	3.428	12	8.0	2.0	female
9	3.800	2	8.0	4.0	male
10	3.900	10	8.0	1.0	female
11	2.900	30	6.0	2.0	female
12	3.925	30	7.0	2.0	female
13	3.650	21	9.0	3.0	female
14	3.750	10	8.5	3.5	female

Data cleaning and formatting

```
In [38]: #See the column data types and non-missing values
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 55 entries, 0 to 54
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- 0 gpa 55 non-null float64
1 studyweek 55 non-null int64
2 sleepnight 55 non-null float64
3 out 55 non-null float64
4 gender 55 non-null object
dtypes: float64(3), int64(1), object(1)
memory usage: 2.3+ KB
```

The above info indicates the "gender" data type is an object. This cannot be processed and needs to be changed to a data type that can be processed in the hereafter machine learning models.

Therefore "Female" will be transferred to 0 and Male will be transferred to 1. This will allow the model to process the input factor appropriately.

This indicates that data is of the correct data types for machine learning processing as well as all values are non-null (not blank).

We will now move to the exploritory efforts.

Exploratory data analysis & Feature engineering and selection

Analysis Plan

The below plan was established to help understand if engineered features could be established to help correlate the impact of the input factors on the intended response.

Line	Exploration Task	Purpose	Result
1	Correlation Heat Map	Determine if significant relationships exist between factors	TBD
2	Box Plot GPA by Gender	Determine if GPA differences between genders are statistically significant	TBD
3	Linear Regression Plot For GPA	Determine if meaningful relationships exist between factors	TBD

The charts will now be generated in accordance with the above plan.

Correlation Heat Map

```
In [41]: #Mask assigned to eliminate the "mirror effect" for the top part of the heatmag
mask = np.triu(np.ones_like(data_mod1.corr(), dtype=bool))
```

Out[41]: [Text(0.5, 1.0, 'Combined Correlation Heat Map')]

In [42]: #Mask assigned to eliminate the "mirror effect" for the top part of the heatman
mask = np.triu(np.ones_like(data_mod1[(data_mod1['gender']==0)].corr(), dtype=k

#Heatmap to use the modified data frame for gender while only calling the data
sns.heatmap(data_mod1[(data_mod1['gender']==0)].corr(),vmin=-1,vmax=1,mask=mask

In [43]: #Mask assigned to eliminate the "mirror effect" for the top part of the heatmany
mask = np.triu(np.ones_like(data_mod1[(data_mod1['gender']==1)].corr(), dtype=k

#Heatmap to use the modified data frame for gender while only calling the data
sns.heatmap(data_mod1[(data_mod1['gender']==1)].corr(),vmin=-1,vmax=1,mask=mask

Out[43]: [Text(0.5, 1.0, 'Male Correlation Heat Map')]

The above heatmaps show R^2 values for each of the factors. R^2 values can provide an estimate of "how well" a change in one factor can affect another. This index generally ranges between 0-1 (1 being a very strong estimator/relationship, and 0 being a very weak estimator/relationship) and is used in-conjunction with other statistical tools to help make informed decisions.

Looking at the "Combined Correlation Heat Map", most of the factors show low correlation, with the highest being +0.38, which is the number of nights out and the number of hours

sleeping (more nights out *might* mean more time sleeping), but this is not an important factor to change GPA. The "Female Correlation Heat Map" shows this as the most important correlation factor at +0.44, but again, this is not important for the purposes of this study.

Looking at the "Male Correlation Heat Map", most of the factors show low correlation, with the hightest being +0.62, which is the number of hours spent studying and the number of hours sleeping (sleeping more *might* mean more studying), again, not important for our purposes.

BoxPlot GPA by Gender

```
In [44]: sns.boxplot(data=data, x='gender', y='gpa').set(title='GPA Box Plot')
Out[44]: [Text(0.5, 1.0, 'GPA Box Plot')]
```



```
In [45]: sns.histplot(data=data, x = 'gpa', hue='gender',element='step').set(title='GPA
ax = sns.histplot(data=data, x = 'gpa', hue='gender',element='step')

ax.text(3,14,"Left Skewed")
ax.text(3,12,"Male p.value = ")
ax.text(3,12,"Male p.value = ")
ax.text(3.45,12,"{:.5f}".format(round(stats.normaltest(data[(data['gender']=='n
ax.text(3.68,12,"- Not Normally Distributed")

ax.text(3,11.2,"Female p.value = ")
ax.text(3.51,11.2,"{:.5f}".format(round(stats.normaltest(data[(data['gender']==
ax.text(3.74,11.2,"-Normally Distributed")
```

Out[45]: Text(3.74, 11.2, '-Normally Distributed')

Before understanding if the differences observed between the GPAs are statistically significant, the normality of the two gender gpa distributions should be understood. The above analysis indicates the male data is not normally distributed.

Looking at the dataset, the dataset is small (Male n = 13), so caution should be used in fully utilizing this dataset.

This would indicate the data needs to be transformed before a statistical difference can be determined. A common practice is to transform the data using Logarithmic, Square, or Reciprocal transformation.

```
In [46]: # Logarithm transformation
         male_transform = np.log10(data[(data['gender']=='male')]['gpa'])
         female_transform = np.log10(data[(data['gender']=='female')]['gpa'])
         #retest normality for male data after transformation
         print("Male p.value after Logarithm transformation:", stats.normaltest(male_tra
         print("Female p.value after Logarithm transformation:", stats.normaltest(female
         # Square transformation
         male transform = np.square(data[(data['gender']=='male')]['gpa'])
         female_transform = np.square(data[(data['gender']=='female')]['gpa'])
         #retest normality for male data after transformation
         print("Male p.value after square transformation:", stats.normaltest(male_transf
         print("Female p.value after square transformation:", stats.normaltest(female_tr
         # Reciprical transformation
         male transform = np.reciprocal(data[(data['gender']=='male')]['gpa'])
         female_transform = np.reciprocal(data[(data['gender']=='female')]['gpa'])
         #retest normality for male data after transformation
         print("Male p.value after reciprocal transformation:", stats.normaltest(male tr
         print("Female p.value after reciprocal transformation:", stats.normaltest(femal
         # Logarithm transformation
         male transform = np.log10(data[(data['gender']=='male')]['gpa'])
         female transform = np.log10(data[(data['gender']=='female')]['gpa'])
         #Run t-test with logarithm transformation data:
         print("T-Test Result Using Logarithm Data: ", stats.ttest ind(a=male transform,
         Male p.value after Logarithm transformation: 0.027970978442275866
         Female p.value after Logarithm transformation: 0.06892880478622003
         Male p.value after square transformation: 0.0003684620607813871
         Female p.value after square transformation: 0.18130675950724842
         Male p.value after reciprocal transformation: 0.16223763286414422
         Female p.value after reciprocal transformation: 0.022267584341110737
         T-Test Result Using Logarithm Data: 0.5983351772246618
```

Looking at the various transformation types applied equally to both datasets, none of them provide the perfect transformation (p.value > 0.05), therefore we will choose the best choice - Logarithm (Male p.value = 0.03, Female p.value = 0.07).

Running the 2-way t-test for the Logarithm Transformation data, the results show a p-value of 0.598. This indicates there is no statistical difference between the Male and Female GPA datasets given the limitations in the data and transformations.

```
In [47]: sns.lmplot(data=data, x='studyweek', y='gpa', hue='gender',height=5).set(title=sns.lmplot(data=data, x='sleepnight', y='gpa', hue='gender',height=5).set(title=sns.lmplot(data=data, x='out', y='gpa', hue='gender',height=5).set(title='GPA v='gender').
```

Out[47]: <seaborn.axisgrid.FacetGrid at 0x7db8d81cb310>

Looking at the data above, the confidence intervals for each regression line is wide and shows little correlation between the factors - which matches our intial correlation matrix as above.

Analysis Results

Line	Exploration Task	Purpose	Result		
1	Correlation Heat Map	Determine if significant relationships exist between factors	No significant linear correlations exist in the dataset while linking Response to the provided input Factors		
2	Box Plot GPA by Gender	Determine if GPA differences between genders are statistically significant	After data transformation, there is no statistical differences between the genders		
3	Linear Regression Plot For GPA	Determine if meaningful relationships exist between factors	No meaningful linear correlations exist in the dataset while linking the Response to the provided input Factors		

This would indicate using Machine Learning models which are non-linear might yield more accurate predictions.

Compare several machine learning models on a performance metric

```
In [48]: #Apply Log function to all Feature/Label data to "normalize the data" for model
         features = data.copy()
         #Select the non-string columns
         numberic_subset = data.select_dtypes('number')
         #Generate logrithmic data for features using non-string columns
         for col in numberic subset.columns:
           #Exclude gpa data row
           if col =='gpa':
             next
           else:
             numberic_subset['log_' + col] = np.log10(numberic_subset[col])
         #Select the string columns after being converted to one-hot encoding
         categorical subset = data mod1['gender']
         #Join the above data subsets into a completed feature dataframe
         features = pd.concat([numberic_subset, categorical_subset], axis = 1)
         #Seperate the data into the Features and Labels data for model processing
         features = features.drop(columns='gpa')
         targets = data['gpa']
         #print(data.shape)
         #print(data.head())
         #print(features.shape)
         #print(features.head())
         #print(targets.shape)
         #targets.head()
         /usr/local/lib/python3.10/dist-packages/pandas/core/arraylike.py:402: RuntimeW
         arning: divide by zero encountered in log10
           result = getattr(ufunc, method)(*inputs, **kwargs)
In [49]: from sklearn.model selection import train test split
         #Split the data into 70% training and 30% testing subsets
         X, X_test, y, y_test = train_test_split(features, targets, test_size = 0.3, rar
```

The dataset will need to be further analysed to ensure the data integrity is solid. It is observed in the dataset that some "inf" exist in the data set, these need to be removed before Machine Learning can be started.

```
In [50]: print(X.info())
    print(X.shape)
    print(X.head())
    print(X_test.info())
    print(X_test.head())
    print(y.info())
    print(y.info())
    print(y_test.info())
    print(y_test.head())
```

```
X.replace([np.inf, -np.inf], np.nan, inplace=True)
X.dropna(subset=["log_out"], how="all", inplace=True)
y=y.drop([0,1])
#y.shape

#print(X.info())
#print(X.shape)
#print(X.head(50))
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 38 entries, 4 to 38
Data columns (total 7 columns):
#
    Column
           Non-Null Count Dtype
--- -----
                   _____
0
    studyweek
                   38 non-null
                                  int64
1
    sleepnight
                   38 non-null
                                  float64
2
    out
                   38 non-null
                                 float64
3
    log studyweek
                   38 non-null
                                  float64
4
    log_sleepnight 38 non-null
                                  float64
5
    log out
                   38 non-null
                                float64
6
    gender
                   38 non-null
                                  int64
dtypes: float64(5), int64(2)
memory usage: 2.4 KB
None
(38, 7)
   studyweek sleepnight out log_studyweek log_sleepnight
                                                         log out \
4
                    7.0 3.0
                               1.397940
                                               0.845098 0.477121
          25
          25
                    8.0 2.0
                                 1.397940
                                                0.903090 0.301030
47
27
         14
                    9.0 3.0
                                 1.146128
                                                0.954243 0.477121
46
          42
                    9.0 2.0
                                1.623249
                                               0.954243 0.301030
                    7.0 2.0
45
          3
                                  0.477121
                                               0.845098 0.301030
   gender
4
        0
47
        1
27
        0
46
        1
45
        1
<class 'pandas.core.frame.DataFrame'>
Int64Index: 17 entries, 31 to 6
Data columns (total 7 columns):
#
   Column
             Non-Null Count Dtype
---
                  _____
0
    studyweek
                   17 non-null
                                  int64
                  17 non-null
                                float64
1 sleepnight
2
   out
                   17 non-null
                                float64
3
    log studyweek
                   17 non-null
                                  float64
   log_sleepnight 17 non-null
4
                                float64
5
    log out
                   17 non-null
                                float64
    gender
                   17 non-null
                                  int64
dtypes: float64(5), int64(2)
memory usage: 1.1 KB
None
   studyweek sleepnight out log studyweek log sleepnight
                                                          log out \
                   7.0 1.0
                                               0.845098 0.000000
31
         20
                                 1.301030
                    7.0 3.0
                                                 0.845098 0.477121
5
          20
                                  1.301030
32
         40
                    7.0 1.0
                                                0.845098 0.000000
                                  1.602060
         21
13
                   9.0 3.0
                                  1.322219
                                               0.954243 0.477121
19
         45
                  6.5 1.5
                                1.653213
                                               0.812913 0.176091
   gender
31
        1
5
32
        0
13
        0
        0
19
<class 'pandas.core.series.Series'>
Int64Index: 38 entries, 4 to 38
```

Series name: gpa

```
_____
         38 non-null
                        float64
         dtypes: float64(1)
         memory usage: 608.0 bytes
         None
         <class 'pandas.core.series.Series'>
         Int64Index: 38 entries, 4 to 38
         Series name: gpa
         Non-Null Count Dtype
         _____
         38 non-null
                        float64
         dtypes: float64(1)
         memory usage: 608.0 bytes
         <class 'pandas.core.series.Series'>
         Int64Index: 17 entries, 31 to 6
         Series name: gpa
         Non-Null Count Dtype
         _____
         17 non-null float64
         dtypes: float64(1)
         memory usage: 272.0 bytes
         None
              3.700
         31
              3.150
         5
         32 3.360
              3.650
         13
         19
              3.575
         Name: gpa, dtype: float64
In [51]: # Function to calculate mean absolute error
         def mae(y true, y pred):
             return np.mean(abs(y true - y pred))
         baseline guess = np.median(y)
         print('The baseline quess is a score of %0.2f' % baseline quess)
         print("Baseline Performance on the test set: MAE = %0.4f" % mae(y test, baseling
         The baseline guess is a score of 3.57
         Baseline Performance on the test set: MAE = 0.2123
         This is the Mean Absolute Error (MAE) calculations, it shows our average estimate on the
         test set is off by 20 pts. The score being from 1-100 indicates that our average error is
         about 20%. This will serve as a baseline for testing with various Machine Learning Models.
In [52]: # Create local files for training data
         X.to csv('sample data/training features.csv', index = False)
         X test.to csv('sample data/testing features.csv', index = False)
         y.to csv('sample data/training labels.csv', index = False)
         y test.to csv('sample data/testing labels.csv', index = False)
In [53]: # Imputing missing values and scaling values
         from sklearn.preprocessing import MinMaxScaler
         # Machine Learning Models
         from sklearn.linear model import LinearRegression
         from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
```

Non-Null Count Dtype

```
from sklearn.svm import SVR
          from sklearn.neighbors import KNeighborsRegressor
          # Hyperparameter tuning
          from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
In [54]: # Read in data into dataframes
          train_features = pd.read_csv('sample_data/training_features.csv')
          test_features = pd.read_csv('sample_data/testing_features.csv')
          train_labels = pd.read_csv('sample_data/training_labels.csv')
          test labels = pd.read csv('sample data/testing labels.csv')
          # Display sizes of data
          print('Training Feature Size: ', train_features.shape)
          print('Testing Feature Size: ', test_features.shape)
          print('Training Labels Size: ', train_labels.shape)
print('Testing Labels Size: ', test_labels.shape)
          Training Feature Size: (36, 7)
          Testing Feature Size: (17, 7)
          Training Labels Size: (36, 1)
          Testing Labels Size:
                                   (17, 1)
In [55]: train_features.head(5)
Out[55]:
             studyweek sleepnight out log_studyweek log_sleepnight log_out gender
          0
                    25
                              7.0 3.0
                                            1.397940
                                                          0.845098 0.477121
                                                                                 0
                    25
                                                          0.903090 0.301030
          1
                              8.0 2.0
                                            1.397940
                                                                                 1
                    14
          2
                                                         0.954243 0.477121
                                                                                 0
                              9.0 3.0
                                            1.146128
          3
                    42
                                            1.623249
                                                          0.954243 0.301030
                              9.0 2.0
                                                                                 1
          4
                     3
                              7.0 2.0
                                            0.477121
                                                         0.845098 0.301030
                                                                                 1
```

In [56]:

Out [56]: studyweek sleepnight out log_studyweek log_sleepnight log_out gender

	studyweek	sleepnight	out	log_studyweek	log_sleepnight	log_out	gender
4	25	7.0	3.0	1.397940	0.845098	0.477121	0
47	25	8.0	2.0	1.397940	0.903090	0.301030	1
27	14	9.0	3.0	1.146128	0.954243	0.477121	0
46	42	9.0	2.0	1.623249	0.954243	0.301030	1
45	3	7.0	2.0	0.477121	0.845098	0.301030	1
53	30	7.5	1.5	1.477121	0.875061	0.176091	0
15	14	6.5	3.0	1.146128	0.812913	0.477121	1
9	2	8.0	4.0	0.301030	0.903090	0.602060	1
16	12	7.5	3.5	1.079181	0.875061	0.544068	1
24	35	8.0	4.0	1.544068	0.903090	0.602060	0
30	8	6.5	2.0	0.903090	0.812913	0.301030	0
37	15	6.0	1.0	1.176091	0.778151	0.000000	0
25	10	8.0	3.0	1.000000	0.903090	0.477121	0
11	30	6.0	2.0	1.477121	0.778151	0.301030	0
0	50	6.0	3.0	1.698970	0.778151	0.477121	0
48	20	6.0	2.0	1.301030	0.778151	0.301030	0
36	18	7.0	1.5	1.255273	0.845098	0.176091	0
40	28	6.0	1.5	1.447158	0.778151	0.176091	0
1	15	6.0	1.0	1.176091	0.778151	0.000000	0
21	10	7.0	3.0	1.000000	0.845098	0.477121	0
2	15	7.0	1.0	1.176091	0.845098	0.000000	0
50	6	8.0	1.0	0.778151	0.903090	0.000000	0
39	11	7.0	1.5	1.041393	0.845098	0.176091	0
35	10	7.0	2.0	1.000000	0.845098	0.301030	0
23	13	6.0	3.5	1.113943	0.778151	0.544068	0
44	42	5.0	1.0	1.623249	0.698970	0.000000	0
10	10	8.0	1.0	1.000000	0.903090	0.000000	0
22	12	8.0	2.0	1.079181	0.903090	0.301030	1
18	4	9.0	3.0	0.602060	0.954243	0.477121	0
54	20	6.0	3.0	1.301030	0.778151	0.477121	0
20	6	7.0	2.5	0.778151	0.845098	0.397940	0
7	10	8.0	3.0	1.000000	0.903090	0.477121	0
42	4	5.0	1.0	0.602060	0.698970	0.000000	1
14	10	8.5	3.5	1.000000	0.929419	0.544068	0
51	20	7.0	3.0	1.301030	0.845098	0.477121	0

	studyweek	sleepnight	out	log_studyweek	log_sleepnight	log_out	gender
38	30	8.0	3.0	1.477121	0.903090	0.477121	1

The below Machine Learning Models will be used to test various parameters to ensure the most accurate model is chosen.

```
In [57]: # Function to calculate mean absolute error
         def mae(y_true, y_pred):
             return np.mean(abs(y_true - y_pred))
         # Takes in a model, trains the model, and evaluates the model on the test set
         def fit_and_evaluate(model):
             # Train the model
             model.fit(X, y)
             # Make predictions and evalute
             model pred = model.predict(X test)
             model_mae = mae(y_test, model_pred)
             # Return the performance metric
             return model_mae
In [58]: | lr = LinearRegression()
         lr mae = fit and evaluate(lr)
         print('Linear Regression Performance on the test set: MAE = %0.4f' % lr mae)
         Linear Regression Performance on the test set: MAE = 0.3292
In [59]: from sklearn.ensemble import GradientBoostingRegressor
         # Create the model
         gradient boosted = GradientBoostingRegressor()
         # Fit the model on the training data
         gradient boosted.fit(X, y)
         # Make predictions on the test data
         predictions = gradient boosted.predict(X test)
         # Evaluate the model
         mae1 = np.mean(abs(predictions - y test))
         print('Gradient Boosted Performance on the test set: MAE = %0.4f' % mael)
         Gradient Boosted Performance on the test set: MAE = 0.3600
In [60]: svm = SVR(C = 1000, gamma = 0.1)
         svm mae = fit and evaluate(svm)
         print('Support Vector Machine Regression Performance on the test set: MAE = %0.
         Support Vector Machine Regression Performance on the test set: MAE = 0.2574
In [61]; random forest = RandomForestRegressor(random state=60)
         random forest mae = fit and evaluate(random forest)
```

```
print('Random Forest Regression Performance on the test set: MAE = %0.4f' % rar
         Random Forest Regression Performance on the test set: MAE = 0.3152
In [62]: gradient boosted = GradientBoostingRegressor(random state=60)
         gradient_boosted_mae = fit_and_evaluate(gradient_boosted)
         print('Gradient Boosted Regression Performance on the test set: MAE = %0.4f' %
         Gradient Boosted Regression Performance on the test set: MAE = 0.3572
In [63]:
         knn = KNeighborsRegressor(n neighbors=10)
         knn_mae = fit_and_evaluate(knn)
         print('K-Nearest Neighbors Regression Performance on the test set: MAE = %0.4f'
         K-Nearest Neighbors Regression Performance on the test set: MAE = 0.2223
In [64]:
         # Dataframe to hold the results
         model_comparison = pd.DataFrame({'model': ['Linear Regression', 'Support Vector'
                                                     'Random Forest', 'Gradient Boosted',
                                                      'K-Nearest Neighbors'],
                                           'mae': [lr_mae, svm_mae, random_forest_mae,
                                                   gradient_boosted_mae, knn_mae]})
         # Horizontal bar chart of test mae
         model_comparison.sort_values('mae', ascending = False).plot(x = 'model', y = 'm
                                                                     color = 'blue', edge
         # Plot formatting
         plt.ylabel(''); plt.yticks(size = 14); plt.xlabel('Mean Absolute Error'); plt.x
         plt.title('Model Comparison on Test MAE', size = 20);
```


The above comparison represents the Mean Absolute Error calculations using the tested Machine Leaning Models. This index represents the difference (or loss) between the calculated and actual values. The lower the number the less error (or loss) the model demonstrates. In our case, the K-Nearest Neighbors model has the lowest error.

There are optimizers within each machine learning model that can be untilized, however for the purpose of this study, it will be determined on the above calucations.

Feature Importance

```
In [65]: model = KNeighborsRegressor(n_neighbors=10)

#importing libraries
import statsmodels.api as sm
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso#Loading the dat
```

```
reg = LassoCV()
reg.fit(X, y)
print("Best alpha using built-in LassoCV: %f" % reg.alpha_)
print("Best score using built-in LassoCV: %f" %reg.score(X,y))
coef = pd.Series(reg.coef_, index = X.columns)

print("Lasso picked " + str(sum(coef != 0)) + " variables and eliminated the ot
imp_coef = coef.sort_values()
import matplotlib
matplotlib.rcParams['figure.figsize'] = (8.0, 10.0)
imp_coef.plot(kind = "barh")
plt.title("Feature importance using Lasso Model")
```

```
Best alpha using built-in LassoCV: 0.016844
Best score using built-in LassoCV: 0.236302
Lasso picked 3 variables and eliminated the other 4 variables
Text(0.5, 1.0, 'Feature importance using Lasso Model')
```

Out[65]:

Feature importance using Lasso Model

As the K-Nearest Neighbor model showed the lowest MAE, the feature importance was determined using the Lasso Model. The above was generated using this StackOverflow post.

In [65]:

Conclusion

This was a great introduction to machine learning as it had a clear outline of the expectations, clearly defined the factors and responses. It also used industry standard libraries to generate the model. We learned the following:

- A machine learning model was able to be developed that was able to predict GPA with a 0.223 MAE using the K-Nearest Neighbor model.
- The importance feature for this model showed number of nights out had a positive impact and the number of hours slept had a negative effect.