NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases) research creates knowledge about and treatments for the most chronic, costly, and consequential diseases.

The objective is to predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset.

Build a model to accurately predict whether the patients in the dataset have diabetes or not.

In [162]:

#import libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [163]:

df = pd.read_csv('health care diabetes.csv')

In [164]:

df.head()

Out[164]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67:
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
4)

Pregnancies - Number of times pregnant

Glucose - Plasma glucose concentration in an oral glucose tolerance test

BloodPressure - Diastolic blood pressure (mm Hg)

SkinThickness - Triceps skinfold thickness (mm)

Insulin - Two hour serum insulin

BMI - Body Mass Index

DiabetesPedigreeFunction - Diabetes pedigree function

Age - Age in years

```
Outcome
               - Class variable (either 0 or 1). 268 of 768 values are 1, and the others
are 0
```

In [165]:

```
df.shape
Out[165]:
(768, 9)
In [166]:
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

Processing Missing Values

In [167]:

```
#column-wise missing values
round((df.isnull().sum()/df.shape[0])*100,2)
```

Out[167]:

Pregnancies	0.0
Glucose	0.0
BloodPressure	0.0
SkinThickness	0.0
Insulin	0.0
BMI	0.0
DiabetesPedigreeFunction	0.0
Age	0.0
Outcome	0.0

dtype: float64

#No missing values available

zero does not make sense and thus indicates missing value for columns Glucose/BloodPressure/SkinThickness/Insulin/BMI

11

```
In [168]:
missing_value_columns = ["Glucose","BloodPressure","SkinThickness","Insulin","BMI"]
In [169]:
#Missing values in Glucose
df["Glucose"].value_counts()[0]
Out[169]:
5
In [170]:
#Missing values in BloodPressure
df["BloodPressure"].value_counts()[0]
Out[170]:
35
In [171]:
#Missing values in SkinThickness
df["SkinThickness"].value_counts()[0]
Out[171]:
227
In [172]:
#Missing values in Insulin
df["Insulin"].value_counts()[0]
Out[172]:
374
In [173]:
#Missing values in BMI
df["BMI"].value_counts()[0]
Out[173]:
```

localhost:8892/notebooks/Data_Science/Programs/Python/Simplilearn/Final_Capstone_Project/Final_Capstone_Project/HealthCare/HealthCare... 3/48

In [174]:

```
df.describe()
```

Out[174]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabete
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	_
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

In [175]:

```
mean_df_glucose = df.groupby('Outcome')['Glucose'].mean()
mean_df_glucose
```

Out[175]:

Outcome

109.980000 1 141.257463

Name: Glucose, dtype: float64

In [176]:

```
missing_value_col_updated = ["Glucose","BloodPressure","SkinThickness","Insulin","BMI"]
```

In [177]:

```
mean_nonDiabestes = df.loc[df["Outcome"]==0].mean()
mean_nonDiabestes
```

Out[177]:

Pregnancies	3.298000
Glucose	109.980000
BloodPressure	68.184000
SkinThickness	19.664000
Insulin	68.792000
BMI	30.304200
DiabetesPedigreeFunction	0.429734
Age	31.190000
Outcome	0.000000

dtype: float64

In [178]:

```
nonDiabetic_Glucose_Mean = round(mean_nonDiabestes["Glucose"],0)
nonDiabetic_Glucose_Mean
```

Out[178]:

110.0

In [114]:

```
mean_diabestes = df.loc[df["Outcome"]==1].mean()
mean_diabestes
```

Out[114]:

Pregnancies	4.865672
Glucose	141.257463
BloodPressure	70.824627
SkinThickness	22.164179
Insulin	100.335821
BMI	35.142537
DiabetesPedigreeFunction	0.550500
Age	37.067164
Outcome	1.000000

dtype: float64

In [179]:

```
diabetic_Glucose_Mean = round(mean_diabestes["Glucose"],0)
diabetic_Glucose_Mean
```

Out[179]:

141.0

In [180]:

```
df.head()
```

Out[180]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
4							•

```
In [181]:
```

```
etMissingValues(missing_value_columns) :
or column in missing_value_columns:
    df[column] = np.where((df[column] == 0) & (df['Outcome'] == 0), round(df.loc[df['Outcome df[column] = np.where((df[column] == 0) & (df['Outcome'] == 1), round(df.loc[df['Outcome'] == 1))
```

In [182]:

```
missing_value_col_updated = ["Glucose","BloodPressure","SkinThickness","Insulin"]
```

In [183]:

```
setMissingValues(missing_value_col_updated)
```

In [184]:

```
df["BMI"] = np.where((df["BMI"] == 0) & (df['Outcome'] == 0), round(df.loc[df['Outcome'] == 0)
df["BMI"] = np.where((df["BMI"] == 0) & (df['Outcome'] == 1), round(df.loc[df['Outcome'] == 1)
```

In [185]:

```
df.describe()
```

Out[185]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabete
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	121.691406	72.266927	26.677083	118.971354	32.435286	
std	3.369578	30.460693	12.117110	9.601847	93.535785	6.881492	
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	
25%	1.000000	99.750000	64.000000	20.000000	69.000000	27.500000	
50%	3.000000	117.000000	72.000000	23.000000	100.000000	32.050000	
75%	6.000000	141.000000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

Visually explore these variables using histogram

In [186]:

```
sns.set(style='whitegrid')
sns.histplot(data = df, x= "Glucose", kde=True)
```

Out[186]:

<AxesSubplot:xlabel='Glucose', ylabel='Count'>

In [133]:

```
sns.histplot(data = df, x= "BloodPressure", kde=True)
```

Out[133]:

<AxesSubplot:xlabel='BloodPressure', ylabel='Count'>

In [187]:

```
sns.histplot(data = df, x= "SkinThickness", kde=True)
```

Out[187]:

<AxesSubplot:xlabel='SkinThickness', ylabel='Count'>

In [188]:

```
sns.histplot(data = df, x= "Insulin", kde=True)
```

Out[188]:

<AxesSubplot:xlabel='Insulin', ylabel='Count'>

In [189]:

```
sns.histplot(data = df, x= "BMI", kde=True)
```

Out[189]:

<AxesSubplot:xlabel='BMI', ylabel='Count'>

Skewness is almost normal except few outlier observed which we can consider later

count (frequency) plot describing the data types and the count of variables

In [190]:

```
## Removing outliers
def remove_outliers(df1):
    IQR = df1.quantile(0.75) - df1.quantile(0.25)
    ub = df1.quantile(0.75) + 1.5*IQR
    lb = df1.quantile(0.25) - 1.5*IQR

new_vals = []
for val in df1.values:
    if val<lb:
        new_vals.append(lb)
    elif val>ub:
        new_vals.append(ub)
    else: new_vals.append(val)

return new_vals
```

In [191]:

```
df['Glucose'] = remove_outliers(df['Glucose'])
df['BloodPressure'] = remove_outliers(df['BloodPressure'])
df['SkinThickness'] = remove_outliers(df['SkinThickness'])
df['Insulin'] = remove_outliers(df['Insulin'])
df['BMI'] = remove_outliers(df['BMI'])
df['DiabetesPedigreeFunction'] = remove_outliers(df['DiabetesPedigreeFunction'])
df['Age'] = remove_outliers(df['Age'])
```

In [192]:

```
df.dtypes.value_counts().plot(kind='bar');
```


Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action

In [193]:

```
df['Outcome'].value_counts().plot(kind='bar')
df['Outcome'].value_counts()
```

Out[193]:

500 0 1 268

Name: Outcome, dtype: int64

As the Outcome is skewed required SMOTE for class 1

```
In [194]:
```

```
X = df.drop(['Outcome'],axis=1)
y = df['Outcome']
```

In [195]:

X.shape

Out[195]:

(768, 8)

In [196]:

y.shape

Out[196]:

(768,)

In [144]:

```
# installing imblearn to implement smote and random oversampling
!pip install imblearn
Collecting imblearn
  Downloading imblearn-0.0-py2.py3-none-any.whl (1.9 kB)
Collecting imbalanced-learn
  Downloading imbalanced_learn-0.9.1-py3-none-any.whl (199 kB)
     ----- 199.3/199.3 kB 549.7 kB/s eta 0:0
0:00
Requirement already satisfied: scikit-learn>=1.1.0 in c:\software install de
tails\anaconda3\envs\tensorflow_keras\lib\site-packages (from imbalanced-lea
rn->imblearn) (1.1.1)
Requirement already satisfied: numpy>=1.17.3 in c:\software_install_details
\anaconda3\envs\tensorflow keras\lib\site-packages (from imbalanced-learn->i
mblearn) (1.22.3)
Requirement already satisfied: joblib>=1.0.0 in c:\software_install_details
\anaconda3\envs\tensorflow_keras\lib\site-packages (from imbalanced-learn->i
mblearn) (1.1.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\software_install_d
etails\anaconda3\envs\tensorflow_keras\lib\site-packages (from imbalanced-le
arn->imblearn) (2.2.0)
Requirement already satisfied: scipy>=1.3.2 in c:\software_install_details\a
naconda3\envs\tensorflow_keras\lib\site-packages (from imbalanced-learn->imb
learn) (1.7.3)
Installing collected packages: imbalanced-learn, imblearn
Successfully installed imbalanced-learn-0.9.1 imblearn-0.0
```

In [197]:

```
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=100)
print("No. of rows before smote implementation: ",X.shape[0])
X \text{ res}, y \text{ res} = \text{sm.fit resample}(X, y)
print("No. of rows after smote implementation: ",X_res.shape[0])
```

No. of rows before smote implementation: 768 No. of rows after smote implementation: 1000

In [198]:

```
from collections import Counter
print("Class distribution before Smote: ",Counter(y))
print("Class distribution after Smote: ",Counter(y_res))
```

Class distribution before Smote: Counter({0: 500, 1: 268}) Class distribution after Smote: Counter({1: 500, 0: 500})

In [199]:

```
y_res.value_counts().plot(kind='bar')
y_res.value_counts()
```

Out[199]:

1 500 500 0

Name: Outcome, dtype: int64

Scatter charts between the pair of variables to understand the relationships.

In [200]:

df.columns

Out[200]:

```
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insuli
n',
       'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
      dtype='object')
```

In [201]:

```
sns.set(style='whitegrid')
cols = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'Diab
sns.pairplot(df, hue="Outcome", size=2)
```

C:\Software_Install_Details\Anaconda3\envs\TENSORFLOW_KERAS\lib\site-package s\seaborn\axisgrid.py:2076: UserWarning: The `size` parameter has been renam ed to `height`; please update your code. warnings.warn(msg, UserWarning)

Out[201]:

<seaborn.axisgrid.PairGrid at 0x2a69f1a6670>


```
In [202]:
```

```
df_res = pd.concat([X_res, y_res], axis=1)
df_res
```

Out[202]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	
0	6	148	72.000000	35.000000	100.000	33.600000	0.627000	5
1	1	85	66.000000	29.000000	69.000	26.600000	0.351000	3
2	8	183	64.000000	22.000000	100.000	23.300000	0.672000	3:
3	1	89	66.000000	23.000000	94.000	28.100000	0.167000	2
4	0	137	40.000000	35.000000	168.000	43.100000	1.200000	3
995	1	194	67.339649	39.147229	214.625	30.393586	0.221848	5.
996	1	123	67.577838	20.605540	100.000	28.792743	0.245522	3
997	4	146	84.512270	22.000000	100.000	35.104316	0.528838	6
◀								>

In [203]:

```
sns.pairplot(df_res, hue="Outcome", size=2)
```

Glucose has direct relationship with Outcome. None of the feature cannot distinguish the **Outcome**

Perform correlation analysis. Visually explore it using a heat map

In [204]:

```
X_res.corr()
```

Out[204]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	
Pregnancies	1.000000	0.116768	0.230917	0.010173	0.002220	0.02
Glucose	0.116768	1.000000	0.207077	0.157186	0.458336	0.22
BloodPressure	0.230917	0.207077	1.000000	0.106406	0.001746	0.27
SkinThickness	0.010173	0.157186	0.106406	1.000000	0.368001	0.55
Insulin	0.002220	0.458336	0.001746	0.368001	1.000000	0.27
ВМІ	0.021314	0.229038	0.277786	0.552147	0.276885	1.00
DiabetesPedigreeFunction	-0.016627	0.128014	0.006742	0.157079	0.195965	0.14
Age	0.549501	0.280322	0.360853	0.001379	0.064783	0.03
4						•

In [205]:

```
plt.figure(figsize=(12,7))
sns.heatmap(X_res.corr(), cmap='Blues', annot=True);
```


There is significant relationship between two pairs - Pregnancies-Age and SkinThickness-BMI

Data Modeling:

Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.

Apply an appropriate classification algorithm to build a model.

Compare various models with the results from KNN algorithm.

Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc.

For this classication problem we will check all the classification machine learning algorithm to get better performance and result

Logistic Regression

Decision Tree

RandomForest Classifier

K-Nearest Neighbour (KNN)

Support Vector Machine (SVM)

Naive Bayes Classifier

Ensemble Learning - Adaptive Boosting

Ensemble Learning - Gradient Boosting (XGBClassifier)

Scaling

In [207]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X_res,y_res,train_size=0.75,random_state=1
```

In [208]:

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

In [209]:

```
X_train.shape, X_test.shape
```

```
Out[209]:
```

```
((750, 8), (250, 8))
```

```
In [333]:
models = []
model_accuracy = []
model_f1 = []
model_auc = []
```

Logistic Regression

```
In [334]:
```

```
#Hyperparameter tuning
from sklearn.linear_model import LogisticRegression
parameters = {
    'penalty' : ['11','12','elasticnet'],
    'solver' : ['newton-cg','liblinear','lbfgs'] ,
    'C':np.logspace(-5, 5, 50)
}
```

In [335]:

```
from sklearn.model_selection import GridSearchCV
logreg = LogisticRegression()
clf = GridSearchCV(logreg,
             param_grid=parameters,
             scoring = "accuracy",
             cv=5)
```

In [336]:

```
import warnings
warnings.filterwarnings('ignore')
clf.fit(X_train,y_train)
```

Out[336]:

```
GridSearchCV
▶ estimator: LogisticRegression
     ▶ LogisticRegression
```

In [337]:

```
clf.best_params_
```

Out[337]:

```
{'C': 0.04714866363457394, 'penalty': '12', 'solver': 'liblinear'}
```

```
In [338]:
```

```
clf.best_score_
```

Out[338]:

0.75866666666668

Model Building

```
In [339]:
```

```
logreg = LogisticRegression(penalty='12',solver = 'liblinear')
logreg.fit(X_train,y_train)
```

Out[339]:

```
LogisticRegression
LogisticRegression(solver='liblinear')
```

In [340]:

```
logreg.score(X_test,y_test)
```

Out[340]:

0.78

In [341]:

```
y_pred = logreg.predict(X_test)
```

In [342]:

```
from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.79	0.77	0.78	128
1	0.77	0.79	0.78	122
accuracy			0.78	250
macro avg	0.78	0.78	0.78	250
weighted avg	0.78	0.78	0.78	250

In [343]:

```
sification_report, auc, roc_curve, roc_auc_score,precision_recall_curve,average_precision_sc
```

In [344]:

```
# Preparing ROC Curve (Receiver Operating Characteristics Curve)
probs = logreg.predict_proba(X_test)
                                                 # predict probabilities
probs = probs[:, 1]
                                                 # keep probabilities for the positive outc
auc_lr = roc_auc_score(y_test, probs)
                                                 # calculate AUC
print('AUC: %.3f' %auc_lr)
fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
plt.plot([0, 1], [0, 1], linestyle='--')
                                                 # plot no skill
plt.plot(fpr, tpr, marker='.')
                                                 # plot the roc curve for the model
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.857

In [345]:

```
# Precision Recall Curve
precision, recall, thresholds = precision_recall_curve(y_test, probs) # calculate precision
f1 = f1_score(y_test, y_pred)
                                                                  # calculate F1 score
auc_lr_pr = auc(recall, precision)
                                                                       # calculate precision
ap = average_precision_score(y_test, probs)
                                                                       # calculate average p
print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_lr_pr, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                       # plot no skill
plt.plot(recall, precision, marker='.')
                                                                       # plot the precision-
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve");
```

f1=0.777 auc_pr=0.824 ap=0.827

In [346]:

```
models.append('LR')
model_accuracy.append(accuracy_score(y_test, y_pred))
model f1.append(f1)
model_auc.append(auc_lr)
```

DecisionTree

In [347]:

```
#Performing hypermarameter tunning using RandomizedSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import RandomizedSearchCV
tree = DecisionTreeClassifier()
param_grid = {
              "criterion": ["gini", "entropy"],
              "max_depth": [3,4,5],
              "max_features":[3,5,7],
              "min_samples_leaf": [2,3,5,7]
}
randomized_cv = RandomizedSearchCV(estimator = tree,
                   param_distributions = param_grid,
                   cv=5)
randomized_cv.fit(X_train,y_train)
```

Out[347]:

```
RandomizedSearchCV
• estimator: DecisionTreeClassifier
     ▶ DecisionTreeClassifier
```

In [348]:

```
randomized_cv.best_params_
```

Out[348]:

```
{'min_samples_leaf': 3, 'max_features': 7, 'max_depth': 5, 'criterion': 'gin
i'}
```

In [349]:

```
#creating model with Decision tree algorithm
dt = DecisionTreeClassifier(criterion = 'gini',
                                max depth= 4,
                                max_features= 5,
                               min samples leaf = 5)
dt.fit(X_train,y_train)
```

Out[349]:

```
DecisionTreeClassifier
DecisionTreeClassifier(max_depth=4, |max_features=5, min_samples_leaf=5)
```

In [350]:

```
#Checking accuracy on train and test
y_test_pred = dt.predict(X_test)
y_train_pred = dt.predict(X_train)
print("Train Accuracy is: ", metrics.accuracy_score(y_train,y_train_pred))
print("Test Accuracy is: ", metrics.accuracy_score(y_test,y_test_pred))
```

Train Accuracy is: 0.876 Test Accuracy is: 0.88

In [351]:

```
print(classification_report(y_test,y_test_pred))
```

	precision	recall	f1-score	support
0	0.88	0.89	0.88	128
1	0.88	0.87	0.88	122
accuracy			0.88	250
macro avg	0.88	0.88	0.88	250
weighted avg	0.88	0.88	0.88	250

In [352]:

```
# Preparing ROC Curve (Receiver Operating Characteristics Curve)
probs = dt.predict_proba(X_test)
                                                # predict probabilities
probs = probs[:, 1]
                                                 # keep probabilities for the positive outc
auc_dt = roc_auc_score(y_test, probs)
                                                 # calculate AUC
print('AUC: %.3f' %auc_dt)
fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
plt.plot([0, 1], [0, 1], linestyle='--')
                                                 # plot no skill
plt.plot(fpr, tpr, marker='.')
                                                 # plot the roc curve for the model
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.943

In [353]:

```
# Precision Recall Curve
precision, recall, thresholds = precision_recall_curve(y_test, probs) # calculate precision
f1 = f1_score(y_test, y_test_pred)
                                                                       # calculate F1 score
auc_dt_pr = auc(recall, precision)
                                                                       # calculate precision
ap = average_precision_score(y_test, probs)
                                                                       # calculate average p
print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_dt_pr, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                       # plot no skill
plt.plot(recall, precision, marker='.')
                                                                       # plot the precision-
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve");
```

f1=0.876 auc_pr=0.938 ap=0.917

In [354]:

```
models.append('DT')
model_accuracy.append(accuracy_score(y_test, y_test_pred))
model f1.append(f1)
model_auc.append(auc_dt)
```

RandomForest Classifier

In [355]:

```
#Performing hypermarameter tunning using RandomizedSearchCV
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
parameters = {
    'n_estimators': [50,100,150],
    'max_depth': [None,1,3,5,7],
    'min_samples_leaf': [1,3,5]
}
gs_rf = GridSearchCV(estimator=rf, param_grid=parameters, cv=5, verbose=0)
gs_rf.fit(X_train,y_train)
```

Out[355]:

```
GridSearchCV
▶ estimator: RandomForestClassifier
     ▶ RandomForestClassifier
```

In [357]:

```
gs_rf.best_params_
```

Out[357]:

```
{'max_depth': None, 'min_samples_leaf': 1, 'n_estimators': 50}
```

In [358]:

```
gs_rf.best_score_
```

Out[358]:

0.91200000000000001

In [359]:

```
#creating model with RandomForest algorithm
rf = RandomForestClassifier(max_depth=None, min_samples_leaf=5, n_estimators=100)
rf.fit(X_train,y_train)
```

Out[359]:

```
RandomForestClassifier
RandomForestClassifier(min_samples_leaf=5)
```

In [360]:

```
#Checking accuracy on train and test
y_test_pred = rf.predict(X_test)
y_train_pred = rf.predict(X_train)
print("Train Accuracy is: ", metrics.accuracy_score(y_train,y_train_pred))
print("Test Accuracy is: ", metrics.accuracy_score(y_test,y_test_pred))
```

Train Accuracy is: 0.946666666666667

Test Accuracy is: 0.904

In [361]:

```
print(classification_report(y_test,y_test_pred))
```

	precision	recall	f1-score	support
0	0.93	0.88	0.90	128
1	0.88	0.93	0.90	122
accuracy			0.90	250
macro avg	0.91	0.90	0.90	250
weighted avg	0.91	0.90	0.90	250

In [362]:

```
# Preparing ROC Curve (Receiver Operating Characteristics Curve)
probs = rf.predict_proba(X_test)
                                                # predict probabilities
probs = probs[:, 1]
                                                 # keep probabilities for the positive outc
auc_rf = roc_auc_score(y_test, probs)
                                                 # calculate AUC
print('AUC: %.3f' %auc_rf)
fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
plt.plot([0, 1], [0, 1], linestyle='--')
                                                 # plot no skill
plt.plot(fpr, tpr, marker='.')
                                                 # plot the roc curve for the model
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.967

In [363]:

```
# Precision Recall Curve
precision, recall, thresholds = precision_recall_curve(y_test, probs) # calculate precision
f1 = f1_score(y_test, y_test_pred)
                                                                       # calculate F1 score
auc_rf_pr = auc(recall, precision)
                                                                       # calculate precision
ap = average_precision_score(y_test, probs)
                                                                       # calculate average p
print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_rf_pr, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                       # plot no skill
plt.plot(recall, precision, marker='.')
                                                                       # plot the precision-
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve");
```

f1=0.905 auc_pr=0.963 ap=0.963

In [364]:

```
models.append('RF')
model_accuracy.append(accuracy_score(y_test, y_test_pred))
model f1.append(f1)
model_auc.append(auc_rf)
```

K-Nearest Neighbour (KNN) Classification

In [365]:

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn_neighbors = [i for i in range(2,16)]
parameters = {
    'n_neighbors': knn_neighbors
gs_knn = GridSearchCV(estimator=knn, param_grid=parameters, cv=5, verbose=0)
gs_knn.fit(X_train,y_train)
```

Out[365]:

```
GridSearchCV
▶ estimator: KNeighborsClassifier
     ▶ KNeighborsClassifier
```

In [366]:

```
gs_knn.best_params_, gs_knn.best_score_
```

Out[366]:

```
({'n_neighbors': 8}, 0.83466666666668)
```

In [367]:

```
knn = KNeighborsClassifier(n_neighbors=8)
knn.fit(X_train,y_train)
```

Out[367]:

```
KNeighborsClassifier
KNeighborsClassifier(n_neighbors=8)
```

In [368]:

```
#Checking accuracy on train and test
y_test_pred = knn.predict(X_test)
y_train_pred = knn.predict(X_train)
print("Train Accuracy is: ", metrics.accuracy_score(y_train,y_train_pred))
print("Test Accuracy is: ", metrics.accuracy_score(y_test,y_test_pred))
```

Train Accuracy is: 0.874666666666667 Test Accuracy is: 0.816

#slightly overfitting

In [369]:

```
print(classification_report(y_test,y_test_pred))
```

	precision	recall	f1-score	support
0	0.84	0.79	0.81	128
1	0.79	0.84	0.82	122
accuracy			0.82	250
macro avg	0.82	0.82	0.82	250
weighted avg	0.82	0.82	0.82	250

In [370]:

```
# Preparing ROC Curve (Receiver Operating Characteristics Curve)
probs = knn.predict_proba(X_test)
                                                 # predict probabilities
probs = probs[:, 1]
                                                 # keep probabilities for the positive outc
auc_knn = roc_auc_score(y_test, probs)
                                                 # calculate AUC
print('AUC: %.3f' %auc_knn)
fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
plt.plot([0, 1], [0, 1], linestyle='--')
                                                 # plot no skill
plt.plot(fpr, tpr, marker='.')
                                                 # plot the roc curve for the model
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.891

In [371]:

```
# Precision Recall Curve
precision, recall, thresholds = precision_recall_curve(y_test, probs) # calculate precision
f1 = f1_score(y_test, y_test_pred)
                                                                       # calculate F1 score
auc_knn_pr = auc(recall, precision)
                                                                        # calculate precisio
ap = average_precision_score(y_test, probs)
                                                                       # calculate average p
print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_knn_pr, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                       # plot no skill
plt.plot(recall, precision, marker='.')
                                                                       # plot the precision-
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve");
```

f1=0.817 auc_pr=0.880 ap=0.854

In [372]:

```
models.append('KNN')
model_accuracy.append(accuracy_score(y_test, y_test_pred))
model_f1.append(f1)
model_auc.append(auc_knn)
```

Support Vector Machine (SVM)

In [373]:

```
from sklearn.svm import SVC
svm = SVC()
parameters = {
    'C':[1, 5, 10, 15, 20, 25],
    'gamma':[0.001, 0.005, 0.0001, 0.00001]
gs_svm = GridSearchCV(estimator=svm, param_grid=parameters, cv=5, verbose=0)
gs_svm.fit(X_train,y_train)
```

Out[373]:

```
▶ GridSearchCV
▶ estimator: SVC
     ▶ SVC
```

In [374]:

```
gs_svm.best_params_, gs_svm.best_score_
```

Out[374]:

```
({'C': 10, 'gamma': 0.005}, 0.74933333333333334)
```

In [375]:

```
svm = SVC(kernel='rbf', C=10, gamma=0.005, probability=True)
svm.fit(X_train, y_train)
```

Out[375]:

```
dvc
SVC(C=10, gamma=0.005, probability=True)
```

In [376]:

```
#Checking accuracy on train and test
y_test_pred = svm.predict(X_test)
y_train_pred = svm.predict(X_train)
print("Train Accuracy is: ", metrics.accuracy_score(y_train,y_train_pred))
print("Test Accuracy is: ", metrics.accuracy_score(y_test,y_test_pred))
```

Train Accuracy is: 0.752 Test Accuracy is: 0.76

In [377]:

```
print(classification_report(y_test,y_test_pred))
```

	precision	recall	f1-score	support
0	0.77	0.77	0.77	128
1	0.75	0.75	0.75	122
accuracy			0.76	250
macro avg	0.76	0.76	0.76	250
weighted avg	0.76	0.76	0.76	250

In [378]:

```
# Preparing ROC Curve (Receiver Operating Characteristics Curve)
probs = svm.predict_proba(X_test)
                                                 # predict probabilities
                                                 # keep probabilities for the positive outc
probs = probs[:, 1]
auc_svm = roc_auc_score(y_test, probs)
                                                  # calculate AUC
print('AUC: %.3f' %auc_svm)
fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
plt.plot([0, 1], [0, 1], linestyle='--')
                                                 # plot no skill
plt.plot(fpr, tpr, marker='.')
                                                 # plot the roc curve for the model
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.856

In [379]:

```
# Precision Recall Curve
precision, recall, thresholds = precision_recall_curve(y_test, probs) # calculate precision
f1 = f1_score(y_test, y_test_pred)
                                                                       # calculate F1 score
auc_svm_pr = auc(recall, precision)
                                                                        # calculate precisio
ap = average_precision_score(y_test, probs)
                                                                       # calculate average p
print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_svm_pr, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                       # plot no skill
plt.plot(recall, precision, marker='.')
                                                                       # plot the precision-
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve");
```

f1=0.754 auc_pr=0.820 ap=0.822

In [380]:

```
models.append('SVM')
model_accuracy.append(accuracy_score(y_test, y_test_pred))
model_f1.append(f1)
model_auc.append(auc_svm)
```

Naive Bayes

In [285]:

```
pip install scikit-optimize
```

Collecting scikit-optimizeNote: you may need to restart the kernel to use up dated packages.

```
Downloading scikit_optimize-0.9.0-py2.py3-none-any.whl (100 kB)
             ----- 100.3/100.3 kB 720.2 kB/s eta 0:0
0:00
Requirement already satisfied: scipy>=0.19.1 in c:\software_install_details
\anaconda3\envs\tensorflow_keras\lib\site-packages (from scikit-optimize)
Requirement already satisfied: joblib>=0.11 in c:\software_install_details\a
naconda3\envs\tensorflow_keras\lib\site-packages (from scikit-optimize) (1.
1.0)
Collecting pyaml>=16.9
 Downloading pyaml-21.10.1-py2.py3-none-any.whl (24 kB)
Requirement already satisfied: numpy>=1.13.3 in c:\software_install_details
\anaconda3\envs\tensorflow_keras\lib\site-packages (from scikit-optimize)
(1.22.3)
Requirement already satisfied: scikit-learn>=0.20.0 in c:\software_install_d
etails\anaconda3\envs\tensorflow keras\lib\site-packages (from scikit-optimi
ze) (1.1.1)
Requirement already satisfied: PyYAML in c:\software_install_details\anacond
a3\envs\tensorflow_keras\lib\site-packages (from pyaml>=16.9->scikit-optimiz
e) (6.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\software_install_d
etails\anaconda3\envs\tensorflow_keras\lib\site-packages (from scikit-learn>
=0.20.0->scikit-optimize) (2.2.0)
Installing collected packages: pyaml, scikit-optimize
Successfully installed pyaml-21.10.1 scikit-optimize-0.9.0
```

In [381]:

```
from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB
gnb = GaussianNB()
gnb.fit(X train, y train)
```

Out[381]:

```
▼ Gaus$ianNB
GaussianNB()
```

In [382]:

```
#Checking accuracy on train and test
y_test_pred = gnb.predict(X_test)
y_train_pred = gnb.predict(X_train)
print("Train Accuracy is: ", metrics.accuracy_score(y_train,y_train_pred))
print("Test Accuracy is: ", metrics.accuracy_score(y_test,y_test_pred))
```

Train Accuracy is: 0.764 Test Accuracy is: 0.78

In [383]:

```
print(classification_report(y_test,y_test_pred))
```

	precision	recall	f1-score	support
0	0.78	0.79	0.79	128
1	0.78	0.77	0.77	122
accuracy			0.78	250
macro avg	0.78	0.78	0.78	250
weighted avg	0.78	0.78	0.78	250

In [384]:

```
# Preparing ROC Curve (Receiver Operating Characteristics Curve)
probs = gnb.predict_proba(X_test)
                                                 # predict probabilities
probs = probs[:, 1]
                                                 # keep probabilities for the positive outc
auc_gnb = roc_auc_score(y_test, probs)
                                                  # calculate AUC
print('AUC: %.3f' %auc_gnb)
fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
plt.plot([0, 1], [0, 1], linestyle='--')
                                                 # plot no skill
plt.plot(fpr, tpr, marker='.')
                                                 # plot the roc curve for the model
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.857

In [385]:

```
precision, recall, thresholds = precision_recall_curve(y_test, probs) # calculate precision
f1 = f1_score(y_test, y_test_pred)
                                                                       # calculate F1 score
auc_gnb_pr = auc(recall, precision)
                                                                        # calculate precisio
ap = average_precision_score(y_test, probs)
                                                                       # calculate average p
print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_gnb_pr, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                       # plot no skill
plt.plot(recall, precision, marker='.')
                                                                       # plot the precision-
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve");
```

f1=0.774 auc_pr=0.829 ap=0.832

In [386]:

```
models.append('NB')
model_accuracy.append(accuracy_score(y_test, y_test_pred))
model f1.append(f1)
model_auc.append(auc_gnb)
```

Ensemble Learning - Ada Boosting

In [387]:

```
from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier()
parameters = {'n_estimators': [100,200,300,400,500,700,1000]}
gs_ada = GridSearchCV(ada, param_grid = parameters, cv=5, verbose=0)
gs_ada.fit(X_train, y_train)
```

Out[387]:

```
GridSearchCV
▶ estimator: AdaBoostClassifier
     ▶ AdaBoost¢lassifier
```

In [388]:

```
gs_ada.best_params_,gs_ada.best_score_
```

Out[388]:

```
({'n_estimators': 100}, 0.8893333333333333)
```

In [389]:

```
ada = AdaBoostClassifier(n_estimators=100)
ada.fit(X_train, y_train)
```

Out[389]:

```
AdaBoostClassifier
AdaBoostClassifier(n_estimators=100)
```

In [390]:

```
#Checking accuracy on train and test
y_test_pred = ada.predict(X_test)
y_train_pred = ada.predict(X_train)
print("Train Accuracy is: ", metrics.accuracy_score(y_train,y_train_pred))
print("Test Accuracy is: ", metrics.accuracy_score(y_test,y_test_pred))
```

Train Accuracy is: 0.9586666666666667

Test Accuracy is: 0.888

#overfitting

In [391]:

```
print(classification_report(y_test,y_test_pred))
```

	precision	recall	f1-score	support
0	0.90	0.88	0.89	128
1	0.87	0.90	0.89	122
accuracy			0.89	250
macro avg	0.89	0.89	0.89	250
weighted avg	0.89	0.89	0.89	250

In [392]:

```
# Preparing ROC Curve (Receiver Operating Characteristics Curve)
probs = ada.predict_proba(X_test)
                                                 # predict probabilities
                                                 # keep probabilities for the positive outc
probs = probs[:, 1]
                                                  # calculate AUC
auc_ada = roc_auc_score(y_test, probs)
print('AUC: %.3f' %auc_ada)
fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
plt.plot([0, 1], [0, 1], linestyle='--')
                                                 # plot no skill
plt.plot(fpr, tpr, marker='.')
                                                 # plot the roc curve for the model
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.948

In [393]:

```
precision, recall, thresholds = precision_recall_curve(y_test, probs) # calculate precision
f1 = f1_score(y_test, y_test_pred)
                                                                       # calculate F1 score
auc_ada_pr = auc(recall, precision)
                                                                        # calculate precisio
ap = average_precision_score(y_test, probs)
                                                                       # calculate average p
print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_ada_pr, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                       # plot no skill
plt.plot(recall, precision, marker='.')
                                                                       # plot the precision-
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve");
```

f1=0.887 auc_pr=0.937 ap=0.937

In [394]:

```
models.append('ADA')
model_accuracy.append(accuracy_score(y_test, y_test_pred))
model f1.append(f1)
model_auc.append(auc_ada)
```

Ensemble Learning - Gradient Boosting

```
In [316]:
pip install XGBoost
Collecting XGBoost
  Downloading xgboost-1.6.2-py3-none-win_amd64.whl (125.4 MB)
        ------ 125.4/125.4 MB 2.1 MB/s eta 0:0
0:00
Requirement already satisfied: numpy in c:\software_install_details\anaconda
3\envs\tensorflow keras\lib\site-packages (from XGBoost) (1.22.3)
Requirement already satisfied: scipy in c:\software_install_details\anaconda
3\envs\tensorflow_keras\lib\site-packages (from XGBoost) (1.7.3)
Installing collected packages: XGBoost
Successfully installed XGBoost-1.6.2
Note: you may need to restart the kernel to use updated packages.
In [395]:
from xgboost import XGBClassifier
xgb = XGBClassifier(use_label_encoder=False, objective = 'binary:logistic', nthread=4, seed
parameters = {
    'max_depth': range (2, 10, 1),
    'n_estimators': range(60, 220, 40),
    'learning_rate': [0.1, 0.01, 0.05]
gs_xgb = GridSearchCV(xgb, param_grid = parameters, scoring = 'roc_auc', n_jobs = 10, cv=5,
gs_xgb.fit(X_train, y_train)
Out[395]:
        GridSearchCV
 ▶ estimator: XGBClassifier
       ▶ XGBClassifier
```

In [396]:

```
gs_xgb.best_params_,gs_xgb.best_score_
```

Out[396]:

```
({'learning_rate': 0.05, 'max_depth': 6, 'n_estimators': 180},
0.9705565544491861)
```

In [397]:

```
xgb = XGBClassifier(use_label_encoder=False, objective = 'binary:logistic',
                    nthread=4, seed=10, learning_rate= 0.05, max_depth= 6, n_estimators= 18
xgb.fit(X_train,y_train)
```

Out[397]:

```
XGBClassifier
XGBClassifier(base_score=0.5, booster=|'gbtree', callbacks=None,
              colsample_bylevel=1, colsample_bynode=1, colsample_bytree=
1,
              early_stopping_rounds=Nohe, enable_categorical=False,
              eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwi
se',
              importance_type=None, interaction_constraints='',
              learning_rate=0.05, max_bin=256, max_cat_to_onehot=4,
              max_delta_step=0, max_depth=6, max_leaves=0, min_child_wei
ght=1,
```

In [398]:

```
#Checking accuracy on train and test
y_test_pred = xgb.predict(X_test)
y_train_pred = xgb.predict(X_train)
print("Train Accuracy is: ", metrics.accuracy_score(y_train,y_train_pred))
print("Test Accuracy is: ", metrics.accuracy_score(y_test,y_test_pred))
```

Train Accuracy is: 1.0 Test Accuracy is: 0.916

In [399]:

print(classification_report(y_test,y_test_pred))

	precision	recall	f1-score	support
0	0.94	0.89	0.92	128
1	0.89	0.94	0.92	122
accuracy			0.92	250
macro avg	0.92	0.92	0.92	250
weighted avg	0.92	0.92	0.92	250

In [400]:

```
# Preparing ROC Curve (Receiver Operating Characteristics Curve)
probs = xgb.predict_proba(X_test)
                                                 # predict probabilities
probs = probs[:, 1]
                                                 # keep probabilities for the positive outc
auc_xgb = roc_auc_score(y_test, probs)
                                                  # calculate AUC
print('AUC: %.3f' %auc_xgb)
fpr, tpr, thresholds = roc_curve(y_test, probs) # calculate roc curve
plt.plot([0, 1], [0, 1], linestyle='--')
                                                 # plot no skill
plt.plot(fpr, tpr, marker='.')
                                                 # plot the roc curve for the model
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.974

In [402]:

```
precision, recall, thresholds = precision_recall_curve(y_test, probs) # calculate precision
f1 = f1_score(y_test, y_test_pred)
                                                                       # calculate F1 score
auc_xgb_pr = auc(recall, precision)
                                                                        # calculate precisio
ap = average_precision_score(y_test, probs)
                                                                       # calculate average p
print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_xgb_pr, ap))
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                       # plot no skill
plt.plot(recall, precision, marker='.')
                                                                       # plot the precision-
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve");
```

f1=0.916 auc_pr=0.969 ap=0.969

In [411]:

```
models.append('XGB')
model_accuracy.append(accuracy_score(y_test, y_test_pred))
model_f1.append(f1)
model_auc.append(auc_xgb)
```

In [412]:

```
model_summary = pd.DataFrame(zip(models,model_accuracy,model_f1,model_auc), columns = ['mod
model_summary = model_summary.set_index('model')
```

In [413]:

```
model summary.plot(figsize=(16,5))
plt.title("Comparison of Different Classification Algorithms");
```


In [414]:

model_summary

Out[414]:

	accuracy	f1_score	auc
model			
LR	0.780	0.777328	0.857262
DT	0.880	0.876033	0.942783
RF	0.904	0.904762	0.967405
KNN	0.816	0.817460	0.891425
SVM	0.760	0.754098	0.855917
NB	0.780	0.773663	0.856814
ADA	0.888	0.887097	0.947618
XGB	0.916	0.916335	0.973617

Both RandomForest and XGBoost has given good accuracy and f1_score. But if we check the train and test accuracy RF does not seems to be overfitted. Therefore we will opt RandomForest. (Decision Tree also given very good result with robust train and test accuracy)

In [415]:

```
#Final Model Report
selected model = rf
```

In [416]:

```
#Classification Report
print(classification_report(y_test, selected_model.predict(X_test)))
```

	precision	recall	f1-score	support
0 1	0.93 0.88	0.88 0.93	0.90 0.90	128 122
accuracy macro avg weighted avg	0.91 0.91	0.90 0.90	0.90 0.90 0.90	250 250 250

In [417]:

```
#Confusion Matrix
confusion = confusion_matrix(y_test, selected_model.predict(X_test))
print("Confusion Matrix:\n", confusion)
```

```
Confusion Matrix:
[[112 16]
   8 114]]
```

In [418]:

```
TP = confusion[1,1] # true positive
TN = confusion[0,0] # true negatives
FP = confusion[0,1] # false positives
FN = confusion[1,0] # false negatives
Accuracy = (TP+TN)/(TP+TN+FP+FN)
Precision = TP/(TP+FP)
Sensitivity = TP/(TP+FN) # also called recall
Specificity = TN/(TN+FP)
print("Accuracy: %.4f"%Accuracy)
print("Precision: %.4f"%Precision)
print("Sensitivity: %.4f"%Sensitivity)
print("Specificity: %.4f"%Specificity)
print("AUC: %.4f"%auc_rf)
```

Accuracy: 0.9040 Precision: 0.8769 Sensitivity: 0.9344 Specificity: 0.8750

AUC: 0.9674

In []: