Universidade Federal de Pelotas

Cursos de Ciência e Engenharia de Computação

Disciplina: Cálculo Numérico Computacional

Prof^{a.} Larissa A. de Freitas

Relatório 3 – Interpolação e Ajuste de Função

1) Os dados a seguir para a densidade do gás nitrogênio versus a temperatura são provenientes de uma tabela que foi medida com alta precisão. Use polinômios de primeiro a quinto graus para fazer uma estimativa da densidade em uma temperatura de 330 K. Qual é sua melhor estimativa?

T, K	200	250	300	350	400	450
Densidade, kg/m ³	1,708	1,367	1,139	0,967	0,854	0,759

2) O volume específico de um vapor superaquecido está listado em tabelas de vapor para diversas temperaturas. Por exemplo, na pressão absoluta de 3.000lb/pol²:

T, °C	370	382	394	406	418
υ, Litro/kg	5,9313	7,5838	8,8428	9,7960	10,5311

Determine v em T = 400 °C.

3) As funções de Bessel aparecem com frequência em análises avançadas de engenharia tais como o estudo de campos elétricos. Essas funções geralmente não são passíveis de avaliação simples e, portanto, são frequentemente compiladas em tabelas matemáticas padrões. Por exemplo:

X	1,8	2,0	2,2	2,4	2,6
$J_1(x)$	0,5815	0,5767	0,5560	0,5202	0,4708

Estime $J_1(2,1)$, a) utilizando um polinômio interpolador e b) utilizando splines cúbicas naturais. Observe que o valor verdadeiro é 0,5683.

4) A viscosidade dinâmica da água $\mu(10^{-3} \text{ N.s/m}^2)$ está relacionada com a temperatura T(°C) da seguinte maneira:

T(°C)	0	5	10	20	30	40
μ (10 ⁻³ N.s/m ²)	1,787	1,519	1,307	1,002	0,7975	0,6529

- a) Trace o diagrama de dispersão dos dados.
- b) Use o método dos mínimos quadrados para ajustar uma reta, um equação de potência e uma parábola. Para a equação de potência empregue transformações para linearizar os dados.
- c) Verifique e justifique qual a equação do melhor ajuste. Utilize ela para prever μ em T = 7,5 °C.