Lycée Buffon DS 8
MPSI Année 2020-2021

Devoir du 20/03/2021

Problème 1 : Dans la suite E est un \mathbb{K} -espace vectoriel et u un endomorphisme de E

On dit que u est nilpotent s'il existe un entier k tel que $u^k = 0$.

Si F est un sous-espace vectoriel de E stable par u, alors $u_F: F \to F$, $x \mapsto u(x)$ est un endomorphisme appelé endomorphisme induit par u sur F.

Pour tout entier n, on note $I_n = \text{Im}(u^n)$ et $K_n = \text{Ker}(u^n)$.

Enfin, on note
$$I = \bigcap_{n \in \mathbb{N}} I_n$$
 et $K = \bigcup_{n \in \mathbb{N}} K_n$

1. Soit $n \in \mathbb{N}$. Prouver que $I_{n+1} \subset I_n$ et $K_n \subset K_{n+1}$.

Soit $x \in I_{n+1}$. Par définition, il existe $t \in E$ tel que $x = f^{n+1}(t)$. On a alors $x = f^n(f(t)) \in I_n$. Ainsi $I_{n+1} \subset I_n$.

Soit $x \in K_n$. Par définition $f^n(x) = 0$ puis $f^{n+1}(x) = f(f^n(x)) = f(0) = 0$ car f est linéaire. Ainsi $K_n \subset K_{n+1}$.

 $2. \quad (a) \ \textit{Montrer que I et K sont des sous-espaces vectoriels de E stables par u}.$

Pour tout entier $n, 0 \in I_n$ donc $0 \in I$.

Soit
$$(x, y, \lambda) \in I^2 \times \mathbb{K}$$
.

Par définition, pour tout entier n, $(x, y, \lambda) \in I_n^2 \times \mathbb{K}$ et, comme I_n est un sous-espace vectoriel de E, $\lambda x + y \in I_n$. Ainsi, $\lambda x + y \in I$.

Par conséquent, I est un sous-espace vectoriel de E. (On peut aussi dire qu'il s'agit d'une intersection de sous-espaces vectoriels de E)

Comme f est linéaire, $0 \in K_0$ donc $0 \in K$.

Soit
$$(x, y, \lambda) \in K^2 \times \mathbb{K}$$
.

Par définition, il existe des entiers n et p tels que $x \in K_n$ et $y \in K_p$. Donc, grâce à la question précédente, en posant m = Max(n,p), on a $(x,y,\lambda) \in K_m^2 \times \mathbb{K}$ et, comme K_m est un sous-espace vectoriel de $E, \ \lambda x + y \in K_m$. Ainsi, $\lambda x + y \in K$.

Par conséquent, K est un sous-espace vectoriel de E.

Soit $x \in I$. Montrons que $u(x) \in I$.

Soit $n \in \mathbb{N}$, par définition $x \in I_n$ donc il existe $t \in E$ tel que $x = f^n(t)$ puis $u(x) = f^{n+1}(t) = f^n(f(t)) \in I_n$. Ainsi, $u(x) \in I$, ce qui prouve que I est

stable par u.

Soit $x \in K$. Montrons que $u(x) \in K$.

Par définition, il existe $n \in \mathbb{N}$ tel que $x \in K_n$ donc $u^n(x) = 0$ puis, par linéarité de $u, u^{n+1}(x) = 0$ soit $u(x) \in K_n$. Ainsi, $u(x) \in K$, ce qui prouve que I est stable par u.

(b) Prouver que u est injectif si, et seulement si, $K = \{0\}$.

Supposons u injectif et prouvons que $K \subset \{0\}$.

Soit $x \in K$. Par définition, il existe $n \in \mathbb{N}$ tel que $u^n(x) = 0$. Comme u^n est une composée d'applications linéaires injectives, c'est aussi une application linéaire injective donc $K_n = \{0\}$ puis x = 0.

Supposons $K = \{0\}$ et prouvons u injectif.

On a $K_1 \subset K = \{0\}$ donc $\text{Ker} u = \{0\}$, ce qui prouve l'injectivité de u.

(c) Prouver que u est surjectif si, et seulement si, I = E. Si I = E, alors $E = I \subset I_1 \subset E$ donc $\operatorname{Im} u = E$, ce qui prouve la surjectivité de u.

Supposons u surjectif. Pour tout entier n, u^n est une composée d'applications linéaires surjectives, c'est aussi une application linéaire surjective donc $I_n = E$ puis I = E.

3. Soit $f \in \mathcal{L}(E)$. Prouver les équivalences suivantes :

$$\operatorname{Ker} f = \operatorname{Ker} f^2 \iff \operatorname{Im} f \cap \operatorname{Ker} f = \{0\}$$

$$\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Im} f + \operatorname{Ker} f = E$$

Supposons $Ker f = Ker f^2$.

Soit $x \in \text{Im} f \cap \text{Ker} f$. Par définition, f(x) = 0 et il existe $t \in E$ tel que x = f(t). On a donc $f^2(t) = 0$ c'est-à-dire $t \in \text{Ker} f^2 = \text{Ker} f$ d'où f(t) = 0 puis x = 0.

Supposons $\operatorname{Im} f \cap \operatorname{Ker} f = \{0\}.$

On a déjà prouvé $\operatorname{Ker} f \subset \operatorname{Ker} f^2$. Soit $x \in \operatorname{Ker} f^2$. On a $f^2(x) = 0$ donc $f(x) \in \operatorname{Ker} f$. Ainsi, $f(x) \in \operatorname{Im} f \cap \operatorname{Ker} f$ donc f(x) = 0 puis $x \in \operatorname{Ker} f$.

Par conséquent, $\operatorname{Ker} f = \operatorname{Ker} f^2 \iff \operatorname{Im} f \cap \operatorname{Ker} f = \{0\}$

Supposons $\text{Im} f = \text{Im} f^2$.

Soit $x \in E$. On a $f(x) \in \text{Im} f = \text{Im} f^2$. Il existe donc $t \in E$ tel que $f(x) = f^2(t)$. On a alors f(x - f(t)) = 0 donc $x - f(t) \in \text{Ker} f$ puis $x \in \text{Im} f \cap \text{Ker} f$. Ainsi, $E \subset \text{Im} f + \text{Ker} f$ puis Im f + Ker f = E.

Supposons Im f + Ker f = E.

On a déjà prouvé que $\operatorname{Im} f^2 \subset \operatorname{Im} f$. Soit $x \in \operatorname{Im} f$. Par définition, il existe $t \in E$ tel que x = f(t) et, comme $E = \operatorname{Im} f + \operatorname{Ker} f$, il existe $(s, v) \in E \times \operatorname{Ker} f$ tel que t = f(s) + v. Ainsi, $x = f(t) = f^2(s)$.

Donc $\operatorname{Im} f = \operatorname{Im} f^2$.

Ainsi, $\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Im} f + \operatorname{Ker} f = E$.

- 4. On suppose dans cette question uniquement qu'il existe un entier n_0 tel que $K_{n_0} = K_{n_0+1}$.
 - (a) Prouver que pour tout entier p, on a $K_{n_0+p} = K_{n_0}$.

Pour tout entier p, on note $H(p) = "K_{n_0+p} = K_{n_0}"$

H(0) est clairement vérifiée.

Soit $p \in \mathbb{N}$ tel que H(p) soit vrai.

D'après la première question, on a déjà $K_{n_0} \subset K_{n_0+p+1}$.

Soit $x \in K_{n_0+p+1}$, on a $un_0 + p + 1^{\ell}x = 0$ donc $u^p(x) \in K_{n_0+1} = K_{n_0}$ donc $un_0 + p^{\ell}x = 0$ soit $x \in K_{n_0+p} = K_{n_0}$.

Ainsi, $K_{n_0+p+1} = K_{n_0}$.

Par conséquent, pour tout entier p, on a $K_{n_0+p} = K_{n_0}$.

- (b) Justifier qu'il existe un plus petit entier s tel que $K_s = K_{s+1}$. La partie $A = \{r \in \mathbb{N} : K_r = K_{r+1}\}$ est une partie de \mathbb{N} non vide par hypothèse; elle possède donc un plus petit élément.
- (c) Prouver que u_K est nilpotent, que u_I est injectif et que $I_s \cap K = \{0\}$.

Grâce à la question précédente, $K = \bigcup_{n \le s} K_n = K_s$ donc pour tout $x \in K$,

 $u^s(x) = 0$. Ainsi, $u_K^s = 0$, ce qui prouve que u_K est nilpotent.

On sait que $K_s = K_{2s}$ donc d'après la question 3, on a $I_s \cap K_s = 0$ donc $I_s \cap K = \{0\}.$

Pour montrer que u_I est injectif, il faut prouver que $I \cap \text{Ker} u = \{0\}$. On a $I_s \cap K_s = 0$. Comme $I \subset I_s$ et $\text{Ker} u \subset K_s$, on en déduit que $I \cap \text{Ker} u = \{0\}$ et donc que u_I est injectif.

(d) Déterminer le plus petit entier p tel que $u_K^p = 0$.

Prouvons que $u_K^{s-1} \neq 0$. Par l'absurde, supposons $u_K^{s-1} = 0$. On a alors $K \subset K_{s-1}$ donc $K_s = K_{s-1}$ ce qui est en contradiction avec la définition de s. Ainsi, s est le plus petit entier tel que $u_K^s = 0$.

- 5. On suppose dans cette question uniquement qu'il existe un entier n_1 tel que $I_{n_1} = I_{n_1+1}$.
 - (a) Prouver que pour tout entier p, on a $I_{n_1+p} = I_{n_1}$.

Pour tout entier p, on note $H(p) = "I_{n_1+p} = I_{n_1}"$.

H(0) est clairement vérifiée.

Soit $p \in \mathbb{N}$ tel que H(p) soit vrai.

D'après la première question, on a déjà $I_{n_1+p+1} \subset I_{n_1}$.

Soit $x \in I_{n_1}$, on a $x \in I_{n_1+1}$ donc il existe $t \in I_{n_1}$ tel que x = f(t). Par hypothèse, $t \in I_{n_1+p}$ donc il existe $s \in E$ tel que $t = f^{n_1+p}(s)$. Ainsi, $x = f^{n_1+p+1}(s) \in I_{n_1+p+1}$.

par suite, $I_{n_1+p+1} = I_{n_1}$.

Par conséquent, pour tout entier p, on a $I_{n_1+p} = I_{n_1}$.

(b) Soit r le plus petit entier tel que $I_r = I_{r+1}$. Montrer que u_I est surjectif et que $E = I + K_r$.

Soit $x \in I$. Par définition, $x \in I_{r+1}$ donc il existe $t \in I_r$ tel que x = f(t). Par définition de r et grâce à la première question, on a $I = I_r$ donc $t \in I$. Ainsi, $\forall x \in I$, $\exists t_i n I : x = u_I(t)$, ce qui prouve la surjectivité de u_I .

Comme $I_r = I_{2r}$, on a grâce à la question 3, $E = I_r + K_r$ donc $E = I + K_r$.

On dit que u est de caractère fini s'il existe des entiers r et s tels que $I_r = I_{r+1}$ et $K_s = K_{s+1}$. Dans la suite, on supposera ces entiers choisis les plus petits possibles.

6. Montrer que si u est de caractère fini, alors $E = I \oplus K$, u_K est nilpotent et u_I est un automorphisme.

Comme $K_s = K_{2s}$, on a grâce à la question 3, $I_s \cap K_s = 0$. Comme $K = K_s$ et $I \subset K_s$, on a donc I et K en somme directe.

Comme $I_r = I_{r+1}$, on a $I_r + K_r = E$. Comme $I = I_r$ et $K_r \subset K$, on a donc $E \subset I + k$.

Ainsi, $E = I \oplus K$.

On a déjà prouvé que u_K est nilpotent et u_I est un automorphisme.

7. (a) Montrer les implications suivantes :

$$\left\{ \begin{array}{ll} I_n &= I_{n+1} \\ K_{n+1} &= K_{n+2} \end{array} \right. \Rightarrow K_{n+1} = K_n \quad \text{ et } \quad \left\{ \begin{array}{ll} K_n &= K_{n+1} \\ I_{n+1} &= I_{n+2} \end{array} \right. \Rightarrow I_{n+1} = I_n$$

Supposons $I_n = I_{n+1}$ et $K_{n+1} = K_{n+2}$. On peut donc appliquer les résultats des questions 4 et 5.

On a déjà prouvé que $K_n \subset K_{n+1}$.

Soit $x \in K_{n+1}$. On a donc $u(u^n(x)) = 0$. Or, $u^n(x) \in I_n$. Or $n \ge r$ donc $I = I_r = I_n$. Ainsi, $u^n(x) \in I$ et $u_I(u^n(x)) = 0$. Comme u_I est injectif, on en déduit que $u^n(x) = 0$ et donc que $x \in K_n$. Ainsi, $K_n = K_{n+1}$.

Supposons $K_n = K_{n+1}$ et $I_{n+1} = I_{n+2}$. On peut donc appliquer les résultats des questions 4 et 5.

On a déjà prouvé que $I_{n+1} \subset I_n$.

Soit $x \in I_n$. Par définition, il existe $t \in E$ tel que $x = u^n(t)$. Comme E = I + K, il existe $(t_1, t_2) \in I \times K$ tel que $t = t_1 + t_2$. Or, $I \subset \text{Im} u$ donc il existe $s \in E$ tel que $t_1 = u(s)$. Et comme $K = K_n$, on a $xu^n(u(s) + t_2) = u^{n+1}(s) \in I_{n+1}$. Ainsi, $I_n = I_{n+1}$.

(b) Prouver que si u est de caractère fini, alors r = s.

Supposons par l'absurde r>s. On a alors $r-1\geq s$ donc on a $\begin{cases} I_r=I_{r+1} \\ K_s=K_{s+1} \end{cases}$ et donc $I_r=I_{r-1}$, ce qui contredit la définition de r.

Supposons par l'absurde s>r. On a alors $s-1\geq r$ donc on a $\left\{ \begin{array}{ll} K_s=K_{s+1}\\ I_{s-1}&=I_s \end{array} \right.$ et donc $K_s=K_{s-1}$, ce qui contredit la définition de s.

Ainsi r = s.

- 8. Montrer que si F et G sont des sous-espaces vectoriels de E vérifiant :
 - -E = F + G
 - F et G sont stables par u,
 - u_G est nilpotent et u_F est bijectif,

alors u est de caractère fini, G = K et F = I.

Comme u_G est nilpotent, il existe $k \in \mathbb{N}$ tel que $u_G^k = 0$.

On va prouver que $I_k = I_{k+1} = F$ et $K_k = K_{k+1} = G$.

Soit $x \in K_{k+1}$. On a $u^{k+1}(x) = 0$. Comme E = F + G, il existe $(x_1, x_2) \in F \times G$ tel que $x = x_1 + x_2$.

Par définition de k, $u_G^k(x_2) = 0$ donc $u^{k+1}(x_2) = 0$ puis $u^{k+1}(x_1) = 0$ c'est-à-dire $u\left(u^k(x_1)\right) = 0$.

Comme $x_1 \in F$ et F stable par u, on a donc $u_F(u^k(x_1)) = 0$. Par injectivité de u_F , $u^k(x_1) = 0$. Comme $u^k(x_2) = 0$, on en déduit que $u^k(x) = 0$. Ainsi $K_k = K_{k+1}$.

De plus, par définition de $k, G \subset K_k$.

Soit $x \in K_k$. Comme E = F + G, il existe $(x_1, x_2) \in F \times G$ tel que $x = x_1 + x_2$. On a donc $u^k(x) = 0 = u_k(x_1) = u_F^k(x_1)$ et comme u_F est injectif, u_F^k aussi donc $x_1 = 0$ puis $x = x_2 \in G$.

Ainsi, $K_k = K_{k+1} = G$ puis G = K.

Soit $x \in I_k$ Par définition, il existe $t \in E$ tel que $x = u^k(t)$. De plus, comme E = F + G, il existe $(t_1, t_2) \in F \times G$ tel que $t = t_1 + t_2$.

On a donc $x = u^k(t_1)$. Comme $t_1 \in F$ et comme u_F est bijectif, il existe $s_1 \in F$ tel que $t_1 = u_F(s_1) = u(s_1)$. Donc $x = u^{k+1}(s_1) \in I_{k+1}$.

Enfin, comme u_F est bijectif, u(F) = F donc $F \subset \text{Im} u \subset I$.

On a aussi prouvé que si $x \in I_k$, alors il existe $t_1 \in F$ tel que $x = u^k(t_1)$. Comme F est stable par u, on en déduit que $I_k \subset F$ donc que I = F.

Problème 2 : Soit $(T_n)_{n\in\mathbb{N}}$ la suite de polynômes de $\mathbb{R}[X]$ définie par $T_0(X)=1$, $T_1(X)=X$ et :

$$\forall n \in \mathbb{N}^*, \quad T_{n+1}(X) = 2XT_n(X) - T_{n-1}(X).$$

I. Étude de la suite des polynômes $(T_n)_{n\in\mathbb{N}}$:

- 1. Déterminer les polynômes T_2 et T_3 . On a $T_2 = 2X^2 - 1$ et $T_3 = 4X^3 - 3X$.
- 2. Déterminer le degré, la parité et le coefficient dominant de T_m pour $m \in \mathbb{N}^*$.

Pour tout $m \in \mathbb{N}^*$, on pose H(m): " T_m est de degré m de coefficient dominant 2^{m-1} et de même parité que m".

Initialisation: H(1) et H(2) sont vraies.

Hérédité : Soit $m \in \mathbb{N}^*$ tel que H(m) et H(m+1) soient vraies. Montrons que H(m+2) l'est aussi.

On a $T_{m+2}(X) = 2XT_{m+1}(X) - T_m(X)$. Par hypothèse de récurrence $2XT_{m+1}(X)$ est de degré m+2et de coefficient dominant $2*2^m=2^{(m+2)-1}$ et T_m est de degré m donc T_{m+2} est de degré m+2 et de coefficient dominant $2^{(m+2)-1}$.

De plus,
$$T_{m+2}(-X) = -2XT_{m+1}(-X) - T_m(-X) = -2X \times (-1)^{m+1}T_{m+1}(X)(-1)_m^T(X) = (-1)^{m+2}T_{m+2}(X)$$
 donc T_{m+2} est de même parité que $m+2$.

Par récurrence double, on a donc prouvé que, pour tout $m \in \mathbb{N}^*$, T_m est de degré m de coefficient dominant 2^{m-1} et de même parité que m.

- 3. Soit $n \in \mathbb{N}^*$. Montrer que la famille (T_0, T_1, \cdots, T_n) est une base de $\mathbb{R}_n[X]$. La famille (T_0, T_1, \cdots, T_n) est échelonnée en degré donc libre. Elle est constituée de n+1 éléments de $\mathbb{R}_n[X]$ qui est de dimension n+1. Il s'agit donc d'une base de $\mathbb{R}_n[X]$.
- 4. Établir par récurrence $\forall x_i n \mathbb{R}, \forall n \in \mathbb{N}, T_n(\cos(x)) = \cos(nx)$ Soit $x \in \mathbb{R}$.

Pour tout entier n, on pose H(n): " $T_n(\cos(x)) = \cos(nx)$ ".

Initialisation: H(0) et H(1) sont vraies.

Hérédité : Soit $m \in \mathbb{N}$ tel que H(m) et H(m+1) soient vraies. Montrons que H(m+2) l'est aussi.

On a $T_{m+2}(\cos(x)) = 2\cos(x)T_{m+1}(\cos(x)) - T_m(\cos(x))$ donc, par hypothèse de récurrence :

$$T_{m+2}(\cos(x)) = 2\cos(x)\cos((m+1)x) - \cos(mx)$$

On utilise la formule trigonométrique $\cos(a+b) + \cos(a-b) = 2\cos a\cos b$, pour obtenir $T_{m+2}(\cos(x)) = \cos((m+2)x)$

Par récurrence double, on a donc prouvé que, pour tout $m \in \mathbb{N}$, $T_m(\cos(x)) = \cos(mx)$

5. (a) Pour tout entier $n \in \mathbb{N}^*$, résoudre dans $[0, \pi]$, l'équation $T_n(\cos(x)) = 0$. Soit $n \in \mathbb{N}^*$. Pour tout réel x, on a

$$T_n(\cos(x)) = 0 \Leftrightarrow \cos(nx) = 0 \Leftrightarrow nx \equiv \frac{\pi}{2}[\pi] \Leftrightarrow x \equiv \frac{\pi}{2n} \left[\frac{\pi}{n}\right]$$

(b) En déduire la décomposition de T_n en facteurs irréductibles dans $\mathbb{R}[X]$.

Pour tout $k \in [0, n-1]$, on pose $\theta_k = \frac{\pi}{2n} + \frac{k\pi}{n}$. Ces angles appartiennent à l'intervalle $[0, \pi]$ sur lequel la fonction cos est injective. Par conséquent, les réels $2\cos\theta_k$, $k \in [0, n-1]$, sont distincts et sont, d'après la question précédente racines de T_n .

Comme T_n est de degré n, on en déduit qu'il possède n racines simples : les réels $2\cos\theta_k,\ k\in[0,n-1]$.

Comme T_n est de coefficient dominant 2^{n-1} , on a donc :

$$T_n = 2^{n-1} \prod_{k=0}^{n-1} \left(X - 2\cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right) \right)$$

II. A. Étude d'un produit scalaire sur $\mathbb{R}[X]$:

A tout couple (P,Q) de polynômes de $\mathbb{R}[X]$ l'intégrale suivante :

$$\phi(P,Q) = \int_0^{\pi} P(\cos(x)) Q(\cos(x)) dx.$$

1. Soit $(p,q) \in \mathbb{N}^2$ tel que $p \neq q$. Calculer $\phi(T_p, T_q)$.

Par définition, en utilisant la question 4, on a :

$$\phi\left(T_p, T_q\right) = \int_0^\pi T_p\left(\cos(x)\right) T_q\left(\cos(x)\right) dx = \int_0^\pi \cos(px) \cos(qx) dx.$$

On utilise la formule trigonométrique $\cos(a+b) + \cos(a-b) = 2\cos a\cos b$ pour obtenir :

$$\phi(T_p, T_q) = \frac{1}{2} \int_0^{\pi} (\cos((p+q)x) + \cos((p-q)x)) dx$$
$$= \frac{1}{2} \left[\frac{\sin((p+q)x)}{p+q} + \frac{\sin((p-q)x)}{p-q} \right]_0^{\pi} = 0.$$

2. En déduire que pour tout $Q \in \mathbb{R}_{n-1}[X]$, $\phi(T_n, Q) = 0$. Soit $Q \in \mathbb{R}_{n-1}[X]$, alors $Q \in \text{Vect}(T_0, \dots, T_n)$. D'après la question précédente, on a :

$$\forall k \in [0, n-1], \quad \phi(T_k, T_n) = 0$$

 $\operatorname{donc}\,\phi\left(T_{n},Q\right)=0.$

3. En déduire que $\phi(T_n, X^n) = \frac{\pi}{2^n}$

Comme X^n est de degré n et de coefficient dominant 2^{n-1} , il existe $Q \in \mathbb{R}_{n-1}[X]$ tel que $T^n = 2^{n-1}X^n + Q$ donc

$$\phi(T_n, X^n) = \phi(T_n, 2^{1-n}T_n) + \phi(T_n, 2^{1-n}Q) = \phi(T_n, 2^{1-n}T_n).$$

Or
$$\phi(T_n, 2^{1-n}T_n) = 2^{1-n}\phi(T_n, T_n) = 2^{1-n}\int_0^{\pi} \cos(nx)\cos(nx) \, dx \, donc$$

$$\phi(T_n, X^n) = 2^{1-n} \frac{1}{2} \int_0^{\pi} (\cos((2n)x) + 1) dx = \frac{1}{2^n} \left[\frac{\sin((2n)x)}{2n} + x \right]_0^{\pi} = \frac{\pi}{2^n}.$$

II. B. Calcul exact d'une intégrale :

Dans toute la suite, on désigne par $n \in \mathbb{N}^*$ et $\forall k \in [1, n], x_k = \frac{2k-1}{2n}\pi$.

A tout polynôme P de $\mathbb{R}[X]$, on associe :

$$I(P) = \int_0^{\pi} P(\cos x) dx \quad \text{et} \quad S_n(P) = \frac{\pi}{n} \sum_{k=1}^n P(\cos(x_k))$$

1. (a) Pour $p \in [0, n-1]$, calculer $I(T_p)$ et $S_n(T_p)$.

On a
$$I(T_p) = \int_0^{\pi} T_p(\cos x) dx = \int_0^{\pi} \cos(px) dx$$

Ainsi, si
$$p \neq 0$$
, alors $I(T_p) = \left[\frac{\sin(px)}{p}\right]_0^{\pi} = 0$ et $I(T_0) = [x]_0^{\pi} = \pi$.

D'autre part
$$S_n(T_p) = \frac{\pi}{n} \sum_{k=1}^n T_p(\cos(x_k)) = \frac{\pi}{n} \sum_{k=1}^n \cos(px_k).$$

Or

$$\sum_{k=1}^{n} \cos(px_k) = \sum_{k=1}^{n} \cos\left(p\frac{2k-1}{2n}\pi\right) = Re\left(\sum_{k=1}^{n} e^{ip\frac{2k-1}{2n}\pi}\right)$$

 $_{
m et}$

$$\sum_{k=1}^{n} e^{ip\frac{2k-1}{2n}\pi} = e^{\frac{-ip\pi}{2n}} \sum_{k=1}^{n} e^{\frac{ikp\pi}{n}} = e^{\frac{-ip\pi}{2n}} \sum_{k=1}^{n} \left(e^{\frac{ip\pi}{n}}\right)^k$$

Ainsi, si $p \neq 0$, alors

$$\sum_{k=1}^{n} e^{ip\frac{2k-1}{2n}\pi} = e^{\frac{-ip\pi}{2n}} e^{\frac{ip\pi}{n}} \frac{1 - e^{ip\pi}}{1 - e^{ip\pi/n}} = \frac{1 - (-1)^p}{-2i\sin\left(p\pi/(2n)\right)} \in i\mathbb{R}$$

donc
$$S_n(T_p) = 0$$
; et $S_n(T_0) = \pi$.

Par suite, pour tout $k \in [0, n-1]$, $I(T_p) = S_n(T_p)$.

- (b) En déduire que pour tout $P \in \mathbb{R}_{n-1}[X]$, on a $I(P) = S_n(P)$. Les applications P et S_n sont clairement linéaires. Comme, pour tout $k \in [0, n-1]$, $I(T_p) = S_n(T_p)$, elles coïncident sur une base de $\mathbb{R}_{n-1}[X]$. Par suite, pour tout $P \in \mathbb{R}_{n-1}[X]$, on a $I(P) = S_n(P)$.
- 2. Soit $P \in \mathbb{R}_{2n-1}[X]$. On note Q et R le quotient et le reste de la division Euclidienne de P par T_n .
 - (a) Montrer que $Q \in \mathbb{R}_{n-1}[X]$ et en déduire à l'aide de II.A que I(P) = R(P). On a $P = T_nQ + R$ avec deg R < n. On en déduit que $T_nQ = P R$ est de degré inférieur ou égal à 2n-1. Comme deg $T_n = n$, on a donc $Q \in \mathbb{R}_{n-1}[X]$. Par linéarité, $I(P) = I(T_nQ + R) = I(T_nQ) + I(R) = \phi(T_n, Q) + I(R)$. Comme $Q \in \mathbb{R}_{n-1}[X]$, on a $\phi(T_n, Q) = 0$ puis I(P) = R(P).
 - (b) En déduire que, $I(P) = S_n(P)$. Par linéarité, $S_n(P) = S_n(T_nQ + R) = S_n(T_nQ) + S_n(R)$. Or

$$S_n(T_n Q) = \frac{\pi}{n} \sum_{k=1}^n T_n(\cos(x_k)) Q(\cos(x_k)) = 0$$

 $\operatorname{car} k \in [1, n], T_n(\cos(x_k)) = 0.$

III. Calcul approché d'une intégrale :

A tout fonction f continue sur [-1,1], on associe

$$I(f) = \int_0^{\pi} f(\cos x) dx \quad \text{et} \quad S_n(f) = \frac{\pi}{n} \sum_{k=1}^n f(\cos(x_k))$$

On admet (théorème sur les sommes de Riemann) que $I(f) = \lim_{n \to +\infty} S_n(f)$. Soit $f: t \mapsto \ln(a^2 - 2at + 1)$ où $a \in \mathbb{R}^{+*} \setminus \{1\}$.

1. Montrer que f est continue sur [-1, 1].

La fonction ln est continue sur \mathbb{R}^{+*} et la fonction $t \mapsto a^2 - 2at + 1$ est continue sur [-1,1]. De plus, pour tout $t \in [-1,1]$,

$$a^{2} - 2at + 1 \in [a^{2} - 2a + 1, a^{2} - 2a + 1] = [(a - 1)^{2}, (a + 1)^{2}] \subset \mathbb{R}^{+*}.$$

Par composition, on en déduit que f est continue sur [-1,1].

2. Déterminer la factorisation en irréductibles de $X^{2n}+1$ dans $\mathbb{C}[X]$. Les racines du polynôme $X^{2n}+1$ sont les racines 2n-ème de -1 donc les complexes e^{ix_k} , avec $k \in [1, 2n]$. Par suite, la factorisation en irréductibles de $X^{2n}+1$ dans $\mathbb{C}[X]$ est

$$X^{2n} + 1 = \prod_{k=1}^{2n} (X - e^{ix_k})$$

3. En déduire celle de $X^{2n} + 1$ dans $\mathbb{R}[X]$. On fera apparaître les réels x_k . Pour tout $k \in [1, 2n]$, on a $e^{ix_k} = e^{ix_{2n-k}}$ donc

$$X^{2n} + 1 = \prod_{k=1}^{n} (X - e^{ix_k}) (X - e^{-ix_k}) = \prod_{k=1}^{n} (X^2 - 2\cos(x_k)X + 1).$$

Pour tout $k \in [1, n]$, le polynôme $X^2 - 2\cos(x_k)X + 1$ est irréductible car de discriminant $-4\sin^2(x_k) < 0$.

Par suite, la factorisation en irréductibles de $X^{2n} + 1$ dans $\mathbb{R}[X]$ est

$$X^{2n} + 1 = \prod_{k=1}^{n} (X^2 - 2\cos(x_k)X + 1).$$

4. Montrer que $S_n(f) = \frac{\pi}{n} \ln \left(a^{2n} + 1\right)$.

Par définition, $S_n(f) = \frac{\pi}{n} \sum_{k=1}^n f(\cos(x_k)) = \frac{\pi}{n} \sum_{k=1}^n \ln(a^2 - 2a\cos(x_k) + 1)$. Donc

$$S_n(f) = \frac{\pi}{n} \ln \left(\prod_{k=1}^n \left(a^2 - 2a \cos(x_k) + 1 \right) \right)$$

La question précédente implique donc que $S_n(f) = \frac{\pi}{n} \ln (a^{2n} + 1)$.

5. En déduire la valeur de I(f). On distinguera les cas $a \in]0,1[$ et a > 1. On applique le théorème sur les sommes de Riemann pour obtenir

$$I(f) = \lim_{n \to +\infty} \frac{\pi}{n} \ln \left(a^{2n} + 1 \right).$$

Si $a \in]0,1[$, alors $\lim_{n \to +\infty} a^{2n} + 1 = 1$ donc $\lim_{n \to +\infty} n \left(a^{2n} + 1\right) = 0$ puis I(f) = 0. Si a > 1, alors $\ln \left(a^{2n} + 1\right) = \ln \left(a^{2n}\right) + \ln \left(a^{-2n} + 1\right)$ et $\lim_{n \to +\infty} a^{-2n} + 1 = 1$ donc $\lim_{n \to +\infty} n \left(a^{-2n} + 1\right) = 0$. De plus, $\frac{\pi}{n} \ln \left(a^{2n}\right) = \frac{\pi}{n} 2n \ln (a) = 2\pi \ln (a)$. Par suite $I(f) = 2\pi \ln (a)$.

6. Donner, suivant les cas, un équivalent de $S_n(f) - I(f)$ quand n tend vers $+\infty$. Si $a \in]0,1[$, alors $S_n(f) - I(f) = \frac{\pi}{n} \ln \left(a^{2n} + 1\right) \sim \frac{\pi a^{2n}}{n}$. Si a > 1, alors $S_n(f) - I(f) = \frac{\pi}{n} \ln \left(1 + a^{-2n}\right) \sim \frac{\pi a^{-2n}}{n}$.

Problème 1 :

Dans la suite E est un \mathbb{K} -espace vectoriel et u un endomorphisme de E.

On dit que u est nilpotent s'il existe un entier k tel que $u^k = 0$.

Si F est un sous-espace vectoriel de E stable par u, alors $u_F: F \to F$, $x \mapsto u(x)$ est un endomorphisme appelé endomorphisme induit par u sur F.

Pour tout entier n, on note $I_n = \text{Im}(u^n)$ et $K_n = \text{Ker}(u^n)$

Enfin, on note $I = \bigcap_{n \in \mathbb{N}} I_n$ et $K = \bigcup_{n \in \mathbb{N}} K_n$

- 1. Soit $n \in \mathbb{N}$. Prouver que $I_{n+1} \subset I_n$ et $K_n \subset K_{n+1}$.
- 2. (a) Montrer que I et K sont des sous-espaces vectoriels de E et qu'ils sont stables par u.
 - (b) Prouver que u est injectif si, et seulement si, $K = \{0\}$.
 - (c) Prouver que u est surjectif si, et seulement si, I = E.
- 3. Soit $f \in \mathcal{L}(E)$. Prouver les équivalences suivantes :

$$\operatorname{Ker} f = \operatorname{Ker} f^2 \iff \operatorname{Im} f \cap \operatorname{Ker} f = \{0\}$$

$$\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Im} f + \operatorname{Ker} f = E$$

- 4. On suppose dans cette question uniquement qu'il existe un entier n_0 tel que $K_{n_0} = K_{n_0+1}$.
 - (a) Prouver que pour tout entier p, on a $K_{n_0+p}=K_{n_0}$.
 - (b) Justifier qu'il existe un plus petit entier s tel que $K_s = K_{s+1}$.
 - (c) Prouver que u_K est nilpotent, que $I_s \cap K = \{0\}$ et que u_I est injectif.
 - (d) Déterminer le plus petit entier p tel que $u_{\kappa}^{p}=0$.
- 5. On suppose dans cette question uniquement qu'il existe un entier n_1 tel que $I_{n_1} = I_{n_1+1}$.
 - (a) Prouver que pour tout entier p, on a $I_{n_1+p} = I_{n_1}$.
 - (b) Soit r le plus petit entier tel que $I_r = I_{r+1}$. Montrer que u_I est surjectif et que $E = I + K_r$.

On dit que u est de caractère fini s'il existe des entiers r et s tels que $I_r = I_{r+1}$ et $K_s = K_{s+1}$. Dans la suite, on supposera ces entiers choisis les plus petits possibles.

- 6. Montrer que si u est de caractère fini, alors $E = I \oplus K$, u_K est nilpotent et u_I est un automorphisme.
- 7. (a) Montrer les implications suivantes :

$$\begin{cases} I_n &= I_{n+1} \\ K_{n+1} &= K_{n+2} \end{cases} \Rightarrow K_{n+1} = K_n \quad \text{ et } \quad \begin{cases} K_n &= K_{n+1} \\ I_{n+1} &= I_{n+2} \end{cases} \Rightarrow I_{n+1} = I_n$$

- (b) Prouver que si u est de caractère fini, alors r = s.
- 8. Montrer que si F et G sont des sous-espaces vectoriels de E vérifiant :
 - --E = F + G,
 - F et G sont stables par u,
 - u_G est nilpotent et u_F est bijectif, alors u est de caractère fini, G = K et F = I.

Problème 2 : Soit $(T_n)_{n\in\mathbb{N}}$ la suite de polynômes de $\mathbb{R}[X]$ définie par : $T_0(X)=1, T_1(X)=X$ et $\forall n\in\mathbb{N}^*, T_{n+1}(X)=2XT_n(X)-T_{n-1}(X)$.

I. Étude de la suite des polynômes $(T_n)_{n\in\mathbb{N}}$:

- 1. Déterminer le degré, la parité et le coefficient dominant de T_m pour $m \in \mathbb{N}^*$.
- 2. Soit $n \in \mathbb{N}^*$. Montrer que la famille (T_0, T_1, \dots, T_n) est une base de $\mathbb{R}_n[X]$.
- 3. Établir par récurrence $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, T_n(\cos(x)) = \cos(nx)$
- 4. (a) Pour tout entier $n \in \mathbb{N}^*$, résoudre dans $[0, \pi]$, l'équation $T_n(\cos(x)) = 0$.
 - (b) En déduire la décomposition de T_n en facteurs irréductibles dans $\mathbb{R}[X]$.

II. A. Étude d'un produit scalaire sur $\mathbb{R}[X]$:

À tout couple (P,Q) de polynômes de $\mathbb{R}[X]$, on associe l'intégrale suivante :

$$\phi(P,Q) = \int_0^{\pi} P(\cos(x)) Q(\cos(x)) dx.$$

- 1. Soit $(p,q) \in \mathbb{N}^2$ tel que $p \neq q$. Calculer $\phi(T_p, T_q)$.
- 2. En déduire que pour tout $Q \in \mathbb{R}_{n-1}[X], \phi(T_n, Q) = 0$.
- 3. En déduire que $\phi(T_n, X^n) = \frac{\pi}{2^n}$.

II. B. Calcul exact d'une intégrale :

Dans toute la suite, on fixe $n \in \mathbb{N}^*$ et pour tout $k \in [1, n]$, on pose $x_k = \frac{2k-1}{2n}\pi$. À tout polynôme $P \in \mathbb{R}[X]$, on associe

$$I(P) = \int_0^{\pi} P(\cos x) dx \quad \text{et} \quad S_n(P) = \frac{\pi}{n} \sum_{k=1}^n P(\cos(x_k))$$

- 1. (a) Pour $p \in [0, n-1]$, calculer $I(T_p)$ et $S_n(T_p)$.
 - (b) En déduire que pour tout $P \in \mathbb{R}_{n-1}[X]$, on a $I(P) = S_n(P)$.
- 2. Soit $P \in \mathbb{R}_{2n-1}[X]$. On note Q et R le quotient et le reste de la division Euclidienne de P par T_n .
 - (a) Montrer que $Q \in \mathbb{R}_{n-1}[X]$ et en déduire à l'aide de II.A que I(P) = I(R).
 - (b) En déduire que, $I(P) = S_n(P)$.

III. Calcul approché d'une intégrale :

A tout fonction f continue sur [-1,1], on associe

$$I(f) = \int_0^{\pi} f(\cos x) dx \quad \text{et} \quad S_n(f) = \frac{\pi}{n} \sum_{k=1}^n f(\cos(x_k))$$

On admet (théorème sur les sommes de Riemann) que $I(f) = \lim_{n \to +\infty} S_n(f)$.

Soit $f: t \mapsto \ln(a^2 - 2at + 1)$ où $a \in \mathbb{R}^{+*} \setminus \{1\}$.

- 1. Montrer que f est continue sur [-1, 1].
- Déterminer la factorisation en irréductibles de X²ⁿ + 1 dans C[X].
 En déduire celle de X²ⁿ + 1 dans R[X]. On fera apparaître les réels x_k.
- 4. Montrer que $S_n(f) = \frac{\pi}{n} \ln \left(a^{2n} + 1\right)$.
- 5. En déduire la valeur de I(f). On distinguera les cas $a\in]0,1[$ et a>1.
- 6. Donner, suivant les cas, un équivalent de $S_n(f) I(f)$ quand n tend vers $+\infty$.