

Patent Claims

1. Haloalkyl carboxamides of the formula (I)

5 in which

R stands for hydrogen or halogen,

R¹ stands for hydrogen or methyl,

R² stands for methyl, ethyl or C₁-C₄ haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms,

10 R³ stands for halogen or C₁-C₄ haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁴ stands for hydrogen, C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case;

15 (C₁-C₈ alkyl)carbonyl, (C₁-C₈ alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ cycloalkyl)carbonyl; (C₁-C₆ haloalkyl)carbonyl, (C₁-C₆ haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,

20 R⁵ stands for hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

25 R⁶ and R⁷ stand independently of one another in each case for hydrogen, C₁-C₈ alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

30 R⁶ and R⁷, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the

heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR¹⁰,

R⁸ and R⁹ stand independently of one another for hydrogen, C₁-C₈-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R⁸ and R⁹, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR¹⁰,

R¹⁰ stands for hydrogen or C₁-C₆ alkyl,

M stands in each case for a phenyl, pyridine or pyrimidine, pyridazine or pyrazine ring with a single substitution by R¹¹ or for a thiazole ring substituted by R^{11-A},

R¹¹ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R^{11-A} stands for hydrogen, methyl, methylthio or trifluoromethyl,

A stands for the group of the formula (A1)

(A1), in which

R¹² stands for hydrogen, cyano, halogen, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy or C₁-C₄ haloalkylthio, in each case with 1 to 5 halogen atoms, aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

R¹³ stands for hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ alkoxy or C₁-C₄ alkylthio,

R¹⁴ stands for hydrogen, C₁-C₄ alkyl, hydroxy-C₁-C₄ alkyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄ haloalkyl, C₁-C₄-haloalkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkoxy-C₁-C₄-alkyl in each case with 1 to 5 halogen atoms, or phenyl,

or

A stands for the group of the formula (A2)

(A2), in which

R^{15} and R^{16} stand independently of one another for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R^{17} stands for halogen, cyano or C₁-C₄ alkyl, or C₁-C₄ haloalkyl or C₁-C₄ haloalkoxy with 1 to 5 halogen atoms in each case,

5

or

A stands for the group of the formula (A3)

R^{18} and R^{19} stand independently of one another for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

10

R^{20} stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A4)

15

R^{21} stands for hydrogen, halogen, hydroxy, cyano, C₁-C₆ alkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy or C₁-C₄ haloalkylthio in each case with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A5)

20

R^{22} stands for halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio or C₁-C₄ haloalkoxy in each case with 1 to 5 halogen atoms,

25

R^{23} stands for hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy in each case with 1 to 5 halogen atoms, C₁-C₄ alkylsulfinyl or C₁-C₄ alkylsulfonyl,

or

A stands for the group of the formula (A6)

R²⁴ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R²⁵ stands for C₁-C₄ alkyl,

Q¹ stands for S (sulfur), O (oxygen), SO, SO₂ or CH₂,

p stands for 0, 1 or 2, whereby R²⁵ stands for identical or various groups if p is 2,

5

or

A stands for the group of the formula (A7)

(A7), in which

R²⁶ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

10

or

A stands for the group of the formula (A8)

(A8), in which

R²⁷ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

15

A stands for the group of the formula (A9)

(A9), in which

R²⁸ and R²⁹ stand independently of one another for hydrogen, halogen, amino, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R³⁰ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

20

or

A stands for the group of the formula (A10)

(A10), in which

R³¹ and R³² stand independently of one another for hydrogen, halogen, amino, nitro, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

25

R³³ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A11)

(A11), in which

R³⁴ stands for hydrogen, halogen, amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, cyano, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

5 R³⁵ stands for halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A12)

(A12), in which

10 R³⁶ stands for hydrogen, halogen, amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, cyano, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R³⁷ stands for halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

15 or

A stands for the group of the formula (A13)

(A13), in which

R³⁸ stands for halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

20 or

A stands for the group of the formula (A14)

(A14), in which

R³⁹ stands for hydrogen or C₁-C₄ alkyl,

R⁴⁰ stands for halogen or C₁-C₄ alkyl,

25 or

A stands for the group of the formula (A15)

(A15), in which

R<sup>41</sup> stands for C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>1</sub>-C<sub>4</sub> haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A16)

(A16), in which

5

R<sup>42</sup> stands for hydrogen, halogen, C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>1</sub>-C<sub>4</sub> haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A17)

(A17), in which

10

R<sup>43</sup> stands for halogen, hydroxy, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> alkylthio, C<sub>1</sub>-C<sub>4</sub> haloalkyl, C<sub>1</sub>-C<sub>4</sub> haloalkylthio or C<sub>1</sub>-C<sub>4</sub> haloalkoxy with 1 to 5 halogen atoms in each case,

or

15

A stands for the group of the formula (A18)

(A18), in which

20

R<sup>44</sup> stands for hydrogen, cyano, C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> haloalkyl with 1 to 5 halogen atoms, C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub> alkyl, hydroxy-C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkylsulfonyl, di(C<sub>1</sub>-C<sub>4</sub> alkyl)aminosulfonyl, C<sub>1</sub>-C<sub>6</sub> alkylcarbonyl or in each case possibly substituted phenylsulfonyl or benzoyl,

R<sup>45</sup> stands for hydrogen, halogen, C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>1</sub>-C<sub>4</sub> haloalkyl with 1 to 5 halogen atoms,

R<sup>46</sup> stands for hydrogen, halogen, cyano, C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>1</sub>-C<sub>4</sub> haloalkyl with 1 to 5 halogen atoms,

25

R<sup>47</sup> stands for hydrogen, halogen, C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>1</sub>-C<sub>4</sub> haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A19)

(A19), in which

 R^{48} stands for $\text{C}_1\text{-}\text{C}_4$ alkyl.

2. Haloalkyl carboxamides of the formula (I) according to Claim 1, in which

5 R stands for hydrogen, fluorine, chlorine or bromine,

10 R^1 stands for hydrogen or methyl,

15 R^2 stands for methyl, ethyl or in each case for methyl, ethyl, n- or isopropyl, n-, iso-, sec or tert-butyl with single or multiple, the same or various, substitution by fluorine, chlorine or bromine.

20 R^3 stands for fluorine, chlorine, bromine, iodine or in each case for methyl, ethyl, n- or isopropyl, n-, iso-, sec or tert-butyl with single or multiple, the same or various, substitution by fluorine, chlorine or bromine.

25 R^4 stands for hydrogen, $\text{C}_1\text{-}\text{C}_4$ alkyl, $\text{C}_1\text{-}\text{C}_4$ alkylsulfinyl, $\text{C}_1\text{-}\text{C}_4$ alkylsulfonyl, $\text{C}_1\text{-}\text{C}_4$ -alkoxy- $\text{C}_1\text{-}\text{C}_4$ -alkyl, $\text{C}_3\text{-}\text{C}_6$ cycloalkyl; $\text{C}_1\text{-}\text{C}_4$ haloalkyl, $\text{C}_1\text{-}\text{C}_4$ haloalkylthio, $\text{C}_1\text{-}\text{C}_4$ haloalkylsulfinyl, $\text{C}_1\text{-}\text{C}_4$ haloalkylsulfonyl, halo- $\text{C}_1\text{-}\text{C}_3$ -alkoxy- $\text{C}_1\text{-}\text{C}_3$ -alkyl, $\text{C}_3\text{-}\text{C}_8$ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl- $\text{C}_1\text{-}\text{C}_3$ -alkyl, ($\text{C}_1\text{-}\text{C}_3$ alkyl)carbonyl- $\text{C}_1\text{-}\text{C}_3$ -alkyl, ($\text{C}_1\text{-}\text{C}_3$ alkoxy)carbonyl- $\text{C}_1\text{-}\text{C}_3$ -alkyl; halo-($\text{C}_1\text{-}\text{C}_3$ alkyl)carbonyl- $\text{C}_1\text{-}\text{C}_3$ -alkyl, halo-($\text{C}_1\text{-}\text{C}_3$ alkoxy)carbonyl- $\text{C}_1\text{-}\text{C}_3$ -alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case;

30 ($\text{C}_1\text{-}\text{C}_6$ alkyl)carbonyl, ($\text{C}_1\text{-}\text{C}_4$ alkoxy)carbonyl, ($\text{C}_1\text{-}\text{C}_3$ -alkoxy- $\text{C}_1\text{-}\text{C}_3$ -alkyl)carbonyl, ($\text{C}_3\text{-}\text{C}_6$ cycloalkyl)carbonyl; ($\text{C}_1\text{-}\text{C}_4$ haloalkyl)carbonyl, ($\text{C}_1\text{-}\text{C}_4$ haloalkoxy)carbonyl, (halo- $\text{C}_1\text{-}\text{C}_3$ -alkoxy- $\text{C}_1\text{-}\text{C}_3$ -alkyl)carbonyl, ($\text{C}_3\text{-}\text{C}_6$ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or $-\text{C}(=\text{O})\text{C}(=\text{O})\text{R}^5$, $-\text{CONR}^6\text{R}^7$ or $-\text{CH}_2\text{NR}^8\text{R}^9$,

35 R^5 stands for hydrogen, $\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_1\text{-}\text{C}_4$ alkoxy, $\text{C}_1\text{-}\text{C}_3$ -alkoxy- $\text{C}_1\text{-}\text{C}_3$ -alkyl, $\text{C}_3\text{-}\text{C}_6$ cycloalkyl; $\text{C}_1\text{-}\text{C}_4$ haloalkyl, $\text{C}_1\text{-}\text{C}_4$ haloalkoxy, halo- $\text{C}_1\text{-}\text{C}_3$ -alkoxy- $\text{C}_1\text{-}\text{C}_3$ -alkyl, $\text{C}_3\text{-}\text{C}_6$ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, R^6 and R^7 stand independently of one another in each case for hydrogen, $\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_1\text{-}\text{C}_3$ -alkoxy- $\text{C}_1\text{-}\text{C}_3$ -alkyl, $\text{C}_3\text{-}\text{C}_6$ cycloalkyl; $\text{C}_1\text{-}\text{C}_4$ haloalkyl, halo- $\text{C}_1\text{-}\text{C}_3$ -alkoxy- $\text{C}_1\text{-}\text{C}_3$ -alkyl, $\text{C}_3\text{-}\text{C}_6$ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

40 R^6 and R^7 , moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or $\text{C}_1\text{-}\text{C}_4$ alkyl, whereby the

heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR¹⁰,

R⁸ and R⁹ stand independently of one another for hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R⁸ and R⁹, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR¹⁰,

R¹⁰ stands for hydrogen or C₁-C₄ alkyl,

M stands for one of the following cyclics

whereby the bond marked with an asterisk ("*") is a link with the amide, and the bond marked with "#" is a link with the haloalkyl group,

R¹¹ stands for hydrogen, fluorine, chlorine, methyl or trifluoromethyl,

R^{11-A} stands for hydrogen, methyl or trifluoromethyl,

A stands for the group of the formula (A1)

R¹² stands for hydrogen, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, cyclopropyl, C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl or aminocarbonylethyl,

R¹³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio or ethylthio,

R¹⁴ stands for hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl,

5

or

A stands for the group of the formula (A2)

R¹⁵ and R¹⁶ stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R¹⁷ stands for fluorine, chlorine, bromine, cyano, methyl, ethyl, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

15

or

A stands for the group of the formula (A3)

R¹⁸ and R¹⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

20 R²⁰ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A4)

25

R²¹ stands for hydrogen, fluorine, chlorine, bromine, iodine, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy or C₁-C₂ haloalkylthio in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

30

A stands for the group of the formula (A5)

(A5), in which

R²² stands for fluorine, chlorine, bromine, iodine, hydroxy, cyano, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

5

R²³ stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₂ alkylsulfinyl or C₁-C₂ alkylsulfonyl,

10

or

A stands for the group of the formula (A6)

(A6), in which

R²⁴ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

15

R²⁵ stands for methyl or ethyl,

Q¹ stands for S (sulfur), SO₂ or CH₂,

p stands for 0 or 1,

or

A stands for the group of the formula (A7)

(A7), in which

20

R²⁶ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A8)

(A8), in which

25

R²⁷ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A9)

(A9), in which

R²⁸ and R²⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

5 R³⁰ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A10)

(A10), in which

10 R³¹ and R³² stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

15 or

A stands for the group of the formula (A11)

(A11), in which

R³⁴ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄ alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

20 R³⁵ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A12)

(A12), in which

25 R³⁶ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄ alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R^{37} stands for fluorine, chlorine, bromine, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A13)

(A13), in which

5

R^{38} stands for fluorine, chlorine, bromine, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A14)

(A14), in which

10

R^{39} stands for hydrogen, methyl or ethyl,

R^{40} stands for fluorine, chlorine, bromine, methyl or ethyl,

or

A stands for the group of the formula (A15)

(A15), in which

15

R^{41} stands for methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A16)

(A16), in which

20

R^{42} stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1-C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A17)

(A17), in which

25

R^{43} stands for fluorine, chlorine, bromine, iodine, hydroxy, C_1-C_4 alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio,

trifluoromethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A18)

(A18), in which

5

R⁴⁴ stands for hydrogen, methyl, ethyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxymethyl, hydroxyethyl, methylsulfonyl or dimethylaminosulfonyl,

10

R⁴⁵ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

15

R⁴⁶ stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, isopropyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

15

R⁴⁷ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A19)

(A19), in which

20

R⁴⁸ stands for methyl, ethyl, n-propyl or isopropyl.

3.

A process for synthesizing haloalkyl carboxamides of the formula (I) according to Claim 1, characterized in that

a) carboxylic acid derivatives the formula (II)

(II)

25

in which

A has the meanings specified in Claim 1 and

X¹ stands for halogen or hydroxy,

are reacted with aniline derivatives of the formula (III)

in which

R, R¹, R², R³, R⁴ and M have the meanings specified in Claim 1,

possibly in the presence of a catalyst, possibly in the presence a condensation agent, possibly in the presence of an acid binder and possibly in the presence of a diluent,

5

or

b) hexylcarboxanilides of the formula (I-a)

10

in which

R, R¹, R², R³, M and A have the meanings specified in Claim 1,

are reacted with halides of the formula (IV)

in which

15

X² stands for chlorine, bromine or iodine,

R^{4-A} stands for C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄ alkoxy . C₁-C₄ alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case;

20

(C₁-C₈ alkyl)carbonyl, (C₁-C₈ alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ cycloalkyl)carbonyl; (C₁-C₆ haloalkyl)carbonyl,

(C₁-C₆ haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,

whereby R⁵, R⁶, R⁷, R⁸ and R⁹ have the meanings specified in Claim 1,

25

30

in the presence of a base and in the presence of a dilution medium.

4. Media for combating undesirable microorganisms, characterized by containing at least one haloalkyl carboxamide of the formula (I) according to Claim 1 together with extenders and/or surface-active materials.

5 5. The use of haloalkyl carboxamides of the formula (I) according to Claim 1 to combat undesirable microorganisms.

6. Processes for combating undesired microorganisms, characterized in that haloalkyl carboxamides of the formula (I) are applied to the microorganisms and/or their
10 environment in accordance with Claim 1.

7. Processes for synthesizing materials to combat undesired microorganisms, characterized in that haloalkyl carboxamides of the formula (I) are mixed with extenders and/or surface-active materials according to Claim 1.

15

8. Aniline derivatives of the formula (III)

in which R, R¹, R², R³, R⁴ and M have the meanings specified in Claim 1.