WS 2021/22

Thomas Böhme

BT, EIT, II, MT, WSW, BTC, FZT, LA, MB, MTR, WIW

D

Name, Vorname	Studiengang Matr. Nr.

Aufgabe	1	2	3	4	5a	5b	6a	6b	6c	7a	7b	\sum
Soll Pkte.	6	5	6	6	6	6	3	3	3	3	3	50
Ist Pkte.												

Hinweis: Alle Antworten sind zu begründen, Rechenwege sind anzugeben.

Fachprüfung Mathematik 1, 21.02.2022

Aufgabe 1:

Bestimmen Sie alle komplexen Lösungen der Gleichung

$$(z - 2i)^4 = -8 - i \cdot 8\sqrt{3}$$

und geben Sie die Lösungen in algebraischer Form an.

Aufgabe 2:

Berechnen Sie

$$\sum_{k=0}^{\infty} \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{2k+1}.$$

Aufgabe 3:

Betrachten Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = e^{-3x+2}$. Finden Sie eine explizite Formel für die n-te Ableitung $(n \in \mathbb{N})$ von f und beweisen Sie Ihre Behauptung.

Aufgabe 4:

Bestimmen Sie alle lokalen Extremalstellen der Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = (\cos x)^2$$

und geben Sie jeweils den Typ (Minimum oder Maximum) der Extremstelle an.

Aufgabe 5:

Betrachten Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} A\sin(x) + B : x < \pi \\ -\frac{2}{\pi}x + 4 : \pi \le x, \end{cases}$$

wobei A und B zwei reelle Parameter sind.

- (a) Wie müssen A und B gewählt werden, damit die Funktion stetig ist?
- (b) Wie müssen A und B gewählt werden, damit die Funktion differenzierbar ist?

Geben Sie bei beiden Teilaufgaben alle Wahlmöglichkeiten für A und B an.

Aufgabe 6:

Betrachten Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = (\sin x)^2$.

- (a) Bestimmen Sie das zweite Taylorpolynom von f an der Entwicklungsstelle $x_0=0$.
- (b) Geben Sie das zugehörige Restglied in der Form von Lagrange an.
- (c) Finden Sie eine obere Schranke für den Betrag des Approximationsfehlers, der entsteht, wenn man das zweite Taylorpolynom auf dem Intervall $\left[-\frac{1}{2},\frac{1}{2}\right]$ zur Approximation von f nutzt.

Aufgabe 7:

Berechnen Sie die Integrale:

(a)
$$\int_{0}^{\frac{\pi}{2}} (\cos(2x))^2 dx$$
, (b) $\int_{-1}^{0} \frac{x}{(x-1)^3} dx$.

Nochmals der Hinweis: Verlangt wird der Rechenweg. Es genügt nicht, die Ergebnisse aus einem Nachschlagewerk abzuschreiben.