SPRAWOZDANIE Z DRUGIEGO PROJEKTU Z PRZEDMIOTU "SZTUCZNA INTELIGENCJA W AUTOMATYCE"

Numer zadania: 10 Wykonawcy: Daniel Giełdowski Piort Chachuła

Spis treści

1.	Sym	ulacja procesu
	1.1.	Charakterystyka statyczna
	1.2.	Zbiory danych
2.	Mod	elowanie procesu
	2.1.	Opóźnienie
	2.2.	Dobór liczby neuronów
	2.3.	Model z algorytmu BFGS
	2.4.	Symulacja modelu z algorytmu BFGS
	2.5.	Model z algorytmu najszybszego spadku
	2.6.	Model z algorytmu BFGS z uczeniem bez rekurencji
	2.7.	Symulacja modelu z algorytmu BFGS z uczeniem bez rekurencji
	2.8.	Model metodą najmniejszych kwadratów
3.	Regu	ılacja procesu
	3.1.	Implementacja NPL
	3.2.	Strojenie NPL
	3.3.	GPC
4.	Zada	ania dodatkowe
	4.1.	PID
		NO
5.	Użyv	wane skrypty

1. Symulacja procesu

1.1. Charakterystyka statyczna

Zadany układ opisany jest równaniami:

$$\begin{cases} x_1(k) = -\alpha_1 x_1(k-1) + x_2(k-1) + \beta_1 g_1(u(k-3)) \\ x_2(k) = -\alpha_2 x_1(k-1) + \beta_2 g_1(u(k-3)) \\ y(k) = g_2(x_1(k)) \end{cases}$$
(1.1)

gdzie u-sygnał wejściowy, y-sygnał wyjściowy, x_1, x_2 - zmienne stanu, $\alpha_1=-1,422574, \alpha_2=0,466776, <math>\beta_1=0,017421, \beta_2=0,013521$ oraz

$$g_1(u(k-3)) = \frac{exp(5u(k-3)) - 1}{exp(5u(k-3)) + 1}, \quad g_2(x_1(k)) = 1 - exp(-1.5x_1(k))$$
 (1.2)

Podany punkt pracy układu to $u = y = x_1 = x_2 = 0$, więc w wersji statycznej:

$$\begin{cases} x_1 = -\alpha_1 x_1 + x_2 + \beta_1 g_1(u) \\ x_2 = -\alpha_2 x_1 + \beta_2 g_1(u) \\ y = g_2(x_1) \end{cases}$$
 (1.3)

Po przekształceniach:

$$x_1 = \frac{(\beta_1 + \beta_2)g_1(u)}{1 + \alpha_1 + \alpha_2} \tag{1.4}$$

Po podstawieniu równania (1.4) do y otrzymujemy

$$y(u) = g_2(\frac{(\beta_1 + \beta_2)g_1(u)}{1 + \alpha_1 + \alpha_2})$$
(1.5)

Wykres wyznaczonej charakterystyki statycznej dla zadanego zakresu wartości sterowania $(u^{min}=-1,u^{max}=1)$ przedstawiony został na wykresie 1.1. Wykres został wygenerowany za pomocą skryptu $charakterystyka_statyczna.m.$

Rys. 1.1. Charakterystyka statyczna procesu

1.2. Zbiory danych

W celu przygotowania do uczenia sieci neuronowych wygenerowaliśmy dwa zbiory danych. Dane zostały wygenerowane poprzez zasymulowanie zadanego procesu dla sygnału sterowania złożonego o wartości zmieniającej się skokowo co 50 próbek. Obydwa zbiory danych mają po 2000 próbek. Zostały one przedstawione na wykresach 1.2 i 1.3. Użyte zostały skrypty: generowanie_danych.m (do wygenerowania danych) oraz wykres_dancyh.m (do narysowania wykresów).

Rys. 1.2. Dane uczące

Rys. 1.3. Dane weryfikujące

2. Modelowanie procesu

2.1. Opóźnienie

W celu zdefiniowania opóźnienia τ procesu zasymulowaliśmy go dla pojedynczego skoku sterowania. Wyniki symulacji przedstawione są na wykresie 2.1. Skok sterowania nastąpił w 5 kroku działania programu, natomiast wyjście procesu zmieniło się dopiero w kroku 8. Oznacza to, że poszukiwane przez nas opóźnienie wynosi $\tau=3$. Użyty przez nas skrypt to tauwiz.m.

Rys. 2.1. Wizualizacja opóźnienia procesu

2.2. Dobór liczby neuronów

W celu dobrania odpowiedniej liczby neuronów dla sieci zastosowaliśmy wielokrotne uczenie z użyciem programu sieci.exe. Dla każdej ilości neuronów ukrytych od 1 do 10 dokonaliśmy 5 procesów uczenia za pomocą algorytmu BFGS z wykorzystaniem rekurencji. W tym celu wykorzystaliśmy skrypt modelowanie.m. Najmniejszy uzyskany błąd uczenia wraz ze skojarzonym z nim błędem weryfikacji przedstawiony został w tabeli poniżej. Najmniejszy błąd dla obydwu zbiorów występuje dla 9 neuronów. Ostatecznie jednak zdecydowaliśmy się na używanie sieci z pięcioma neuronami ukrytymi. Powodem tego jest mała poprawa w stosunku do większych ilości neuronów oraz chęć zmniejszenia nakładu obliczeń. Dodatkowo sieci o zbyt dużej ilości neuronów ukrytych mają tendencję do przetrenowywania się, w wyniku którego sieć przystosowuje się nie tyle do procesu co do samych danych uczących.

Liczba neuronów	Błąd uczenia	Błąd weryfikacji
1	3.070626e+01	5.548815e+01
2	4.977413e-01	1.060318e+00
3	3.206039e-01	5.111444e-01
4	1.479096e-01	2.625729e-01
5	8.734595e-02	1.534512e-01
6	7.765994e-02	2.087909e-01
7	2.614618e-02	1.727668e-01
8	1.509561e-02	1.095385e-01
9	1.355132e-02	6.725641e-02
10	2.105601e-02	1.136051e-01

Tab. 2.1. Błędy modelu dla różnej ilości neuronów

2.3. Model z algorytmu BFGS

Na wykresie 2.2 przedstawione zostały błędy predykatorów ARX i OE dla kolejnych iteracji uczenia modelu. Zgodnie z ustaleniami z poprzednich punktów zastosowane zostały następujące parametry: tau=3, $neurony\ ukryte=5$. Końcowe błędy dla obydwu predykatorów wynosiły odpowiednio: Eoe=0.0787 i Earx=0.0212. Jak widać błędy te są dosyć małe jak na 2000 próbek co oznacza, że sieć dobrze nauczyła się modelu.

Rys. 2.2. Zmiany błędów predykatora ARX i OE dla kolejnych iteracji uczenia modelu algorytmem BFGS z użyciem rekurencji

2.4. Symulacja modelu z algorytmu BFGS

Model z poprzedniego punktu został zasymulowany w trybie rekurencyjnym dla uczącego oraz weryfikującego zbioru danych. Błędy dla obydwu zbiorów danych wyniosły odpowiednio: Eucz=0.0787 oraz Ewer=0.2172. Błedy otrzymywane były ze wzoru:

$$E = (y(S:end) - y^{M}(S:end))' * (y(S:end) - y^{M}(S:end))$$
(2.1)

gdzie $S = max(n_A, n_B) + 1$, oraz n_A i n_B są współczynniki modelu opisanego wzorem

$$\hat{y}(k) = f(u(k-\tau), ..., u(k-n_B), y(k-1), ..., y(k-n_A))$$
(2.2)

Rys. 2.3. Symulacja modelu uczonego algorytmem BFGS z rekurencją na danych uczących i weryfikujących

2.5. Model z algorytmu najszybszego spadku

Jak widać po poniższych wartościach błędów uczenia oraz z wykresu 2.4 algorytm najszybszego spadku nie radzi sobie najlepiej z uczeniem sieci co skutkuje dużą niedokładnością modelu. Końcowe błędy dla obydwu predykatorów wyniosły Eoe=25.1864 oraz Earx=1.7730, co w obydwu przypadkach wynosi więcej niż przy uczeniu sieci metodą BFGS.

Rys. 2.4. Zmiany błędów predykatora ARX i OE dla kolejnych iteracji uczenia modelu algorytmem najszybszego spadku z użyciem rekurencji

2.6. Model z algorytmu BFGS z uczeniem bez rekurencji

Na wykresie 2.5 można zobaczyć, że algorytm BFGS w wersji bez rekurencji radzi sobie niewiele gorzej niż algorytm BFGS w wersji z rekurencją. Po kilku próbach uczenia sieci udało się osiągnąć błędy uczenia o wartościach Eoe = 0.0925 i Earx = 0.0237, co nadal jest bardzo dobrym wynikiem.

Rys. 2.5. Zmiany błędów predykatora ARX i OE dla kolejnych iteracji uczenia modelu algorytmem BFGS bez użycia rekurencji

2.7. Symulacja modelu z algorytmu BFGS z uczeniem bez rekurencji

Podobnie jak w przypadku modelu nauczonego algorytmem z rekurencją, model z poprzedniego punktu został zasymulowany w trybie rekurencyjnym dla uczącego oraz weryfikującego zbioru danych. Błędy dla obydwu zbiorów danych wyniosły odpowiednio: Eucz = 0.0925 oraz Ewer = 0.3542. Mimo niewielkiej różnicy model ten sprawuje się niestety gorzej niż w wersji z rekurencją, dlatego to na tamtym będziemy wykonywać następne zadania. Jest to logiczne, gdyż model symulowany jest w trybie rekurencyjnym, a uczony był bez niej, więc powinien być gorszy niż model uczony z rekurencją.

Rys. 2.6. Symulacja modelu uczonego algorytmem BFGS bez rekurencji na danych uczących i weryfikujących

2.8. Model metodą najmniejszych kwadratów

Uczenie modelu metodą najmniejszych kwadratów relizowane jest za pomocą obecnej w Matlabie operacji lewego dzielenia:

$$w = \begin{bmatrix} b_3 \\ b_4 \\ a_1 \\ a_2 \end{bmatrix} = M \setminus y_{ucz}(5:end)$$
 (2.3)

gdzie

$$M = \begin{bmatrix} x_{ucz}(2) & x_{ucz}(1) & y_{ucz}(4) & y_{ucz}(3) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ x_{ucz}(n-\tau) & x_{ucz}(n-\tau-1) & y_{ucz}(n-1) & y_{ucz}(n-2) \end{bmatrix}$$

$$(2.4)$$

oraz n = liczba próbek.

Otrzymane błędy były równe: Ewer=294.6949 oraz Eucz=299.7408. Jak widać jakość tego modelu jest bardzo zła i błędy są większe, niż w przypadku modelu uczonego algorytmem BFGS lub najszybszego spadku. Przebiegi przedstawiające działanie modelu dla danych uczących i weryfikujących pokazane są poniżej. Do wyznaczenia modelu oraz wyrysowania wykresu użyty został skrypt mnk.m.

Rys. 2.7. Symulacja modelu wykonanego za pomocą metody najmniejszych kwadratów

3. Regulacja procesu

3.1. Implementacja NPL

NPL jest algorytmem regulacji predykcyjnym z nieliniową predykcją i z linearyzacją oznacza to że do wyznaczania trajektori swobodnej (która zależy tylko od przeszłych sterowań) używamy nieliniowego modelu neuronowego:

$$y^{0}(k+p|k) = w20 + w2 * tanh(w10 + w1 * x(k+p)) + dk$$
(3.1)

gdzie

$$dk = y(k) - y^{M}(k) (3.2)$$

$$x(k) = \begin{bmatrix} u(min(k - \tau + p, k - 1)) \\ u(min(k - \tau - 1 + p, k - 1)) \\ y(k - 1 + p) \\ y(k - 2 + p) \end{bmatrix}$$
(3.3)

p=ilość chwil w przyszłóść. Warto dodać, że we wzore 3.3 dla chwil czasu dalszych od k zakłada się że $y(k+p)=y^0(k+p|k)$.

Aby móc rozwiązać algorytm analitycznie dokonuje się linearyzacji wyjścia modelu. Współczynniki b_3,b_4,a_1,a_2 we wzorze

$$y(k) = b_3 u(k - \tau) + b_4 (k - \tau - 1) - a_1 y(k - 1) - a_2 y(k - 2)$$
(3.4)

otrzymuje się poprzez obliczenie pochodnej cząstkowej po odpowiednim wejściu modelu neuronowego. Mając obliczone współczynniki można użyć ich do wyznaczenia odpowiedzi skokowej ze wzoru

$$s_j(k) = \sum_{i=1}^{\min(j,n_B)} b_i(k) - \sum_{i=1}^{\min(j-1,n_A)} s_{j-i}(k)$$
(3.5)

których można użyć do wypełnienia macierzy dynamicznej M.

$$\mathbf{M} = \begin{bmatrix} s_1 & 0 & \dots & 0 \\ s_2 & s_1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ s_N & s_{N-1} & \dots & s_{N-N_{\mathrm{u}}+1} \end{bmatrix}_{\mathrm{NxN_{\mathrm{u}}}}$$
(3.6)

Na koniec można obliczyć optymalne przyszłe sterowania(przy zadanych horyzontach predykcji N i sterowania Nu oraz współczynniku kary λ).

$$dU = K * (Y_{zad}(k) - Y^0)$$
(3.7)

gdzie $Y_{zad}(k)$ to wektor długości N zawierający aktualną wartość zadaną, Y^0 to wektor N przyszłych, predykowanych wartości wyjścia oraz

$$K = (M' * M + \lambda I)^{-1} * M'$$
(3.8)

3.2. Strojenie NPL

Regulator NPL został nastrojony z użyciem sieci neuronowej wytrenowanej algorytmem BFGS z użyciem rekurencji opisanej w sekcji 2.3. Strojenie regulatora NPL rozpoczęliśmy od parametrów $N=15,\,N_u=2$ oraz $\lambda=1.$ Przebieg dla tych wartości zaprezentowany jest poniżej (rys. 3.1). Jak widać już od samego początku przebieg regulacji nie jest zły, aczkolwiek skoki sterowania są zdecydowanie zbyt ostre. Błąd o wartości 74.554 na 600 próbkach nie jest idealny, ale akceptowalny.

Rys. 3.1. Działanie regulatora NPL z nastawami N=15, Nu=2, λ =1

W celu zmniejszenia gwałtowności sterowania postanowiliśmy zwiększać wartość λ do czasu od sterowanie złagodnieje. Należy oczywiśćie pamiętać, że im większy jest parametr λ , tym regulator będzie wolniejszy. Kompromis pomiędzy szybkością (błędem), a kształtem sygnału sterującego osiągneliśmy dla $\lambda=4$, błąd wynosił 75.8664. Przebieg zaprezentowany jest na rys. 3.2

Rys. 3.2. Działanie regulatora NPL z nastawami N=15, Nu=2, λ =4

Teraz gdy sygnał sterowania jest już łagdoniejszy postanowiliśmy zbadać wpływ horyznto predykcji na jakość regulacji. Zauważyliśmy, że zarówno przy zmniejszaniu, jak i przy zwiększaniu wartości N, błąd rośnie, lecz dla dalszych horyzntów maleje przeregulowanie. Raz jeszcze postanowiliśmy znaleźć kompromis pomiędzy błędem, a przeregulowaniem. Sytuacją taką udało się osiągnąć dla N=19. Błąd wynosił 76.4364, natomiast przeregulowania było prawie niewidoczne. Przebieg ten można zobaczyć na rys. 3.3

Rys. 3.3. Działanie regulatora NPL z nastawami N=19, Nu=2, $\lambda{=}4$

Następnie postanowiliśmy dobrać horyzont sterowania. Niestety zarówno przy zwiększaniu jak i zmniejszaniu horyzontu jakość regulacji pogarszała się, co można zaobserwować na wykresach 3.4 i 3.5. Dla Nu równego 1 błąd regulacji co prawda spadł, ale następują niekontrolowane, ostre skoki sterowania oraz znów pojawiły się przeregulowania. Dla Nu równego 3 wejscie prezentuje się podobnie, nastomiast ucierpiało wyjście.

Rys. 3.4. Działanie regulatora NPL z nastawami N=19, Nu=1, λ =4

Rys. 3.5. Działanie regulatora NPL z nastawami N=19, Nu=3, $\lambda{=}4$

3.3. GPC

Algorytm regulacji GPC, różni się tym od NPL, że na całym horyzocnie predykcji korzysta się z liniowego modelu wyznaczonego metodą najmniejszych kwadratów. Jak można było zauważyć z rys. 2.7 taki model nie gwarantuje najlepszego odwzorowania obiektu, przez co jak można się domyślać jakość regulacji również może być gorsza. Do wyznaczania sterowania w wersji analitycznej wyznacza predykcje wyjscia modelu N chwil do przodu ze wzoru

$$y^{0}(k+p|k) = b_{3}u(min(k-3+p,k-1)) + b_{4}u(min(k-4+p),k-1) - a_{1}y(k-1+p) - a_{2}y(k-2+p)$$
(3.9)

oraz analogicznie do wzoru 3.1 $y(k+p) = y^0(k+p|k)$. Parametry a_i oraz b_i otrzymywane są z metody najmniejszych kwadratów. Macierz dynamiczna jest stała i wyznaczana przy użyciu odpowiedzi skokowej ze wzoru 3.5. Na wykresie poniżej można zauważyć, że jakość regulacji w istocie pozostawia wiele do życzenia (rys 3.6).

Rys. 3.6. Działanie regulatora GPC z nastawami N=19, Nu=2, λ =4

Należy wziąć pod uwagę, że przez silną nieliniowość obiektu, liniowy algorytm GPC może generować duże sterowania, które po nałożeniu ograniczeń wprowadzą obiekt w stałe oscylacje. Można temu zapobiec poprzez zwiększenie współczynnika λ o parę rzędów wielkości. Na rys. 3.7 można zobaczyć, że jakość regulacji polepszyła się, lecz mimo to sterowanie wciąż jest zbyt ostre, a czas regulacji wolniejszy niż w przypadku NPL. W dodatku zarówno dla sterowania jak i wyjścia występują widoczne oscylacje.

Rys. 3.7. Działanie regulatora GPC z nastawami N=19, Nu=2, $\lambda{=}100$

4. Zadania dodatkowe

4.1. PID

Algorytm PID oblicze przyszłe sterowanie na podstawie wartości, pochodnej i całki uchybu w odpowiednich proporcjach. Popularną sposobem strojenia tego regulatora jest metoda Zieglera-Nicholsa, która polega na doprowadzenie obiektu na granice stabilności przy wyłączonych członach I oraz D, zmierzenia okresu drgań a następnie podstawieniu odpowiednich wartości do wzoru. W przypadku obiektu z zadania obiekt był na granicy stabilności (w we wszystkich zadanych przez nas punktach pracy) przy $K_p=4$, co można zaobserwować na rys. 4.1.

Rys. 4.1. Działanie regulatora PID z nastawami Kp $=4,\,\mathrm{Ti}=\mathrm{Inf},\,\mathrm{Td}=0$

Następnie, po podstawieniu zmierzonych wartości (okres drgań $T_u=13$) otrzymaliśmy przebieg przedstawiony na rys. 4.2. Widać, że regulator próbuje naśladować przebieg wartości zadanej, i robi to nie najgorzej (mimo bardzo ostrego sterowania), lecz dla niektórych punktów pracy pojawiają się niegasnące oscylacje. Nastrojony w ten sposób regulator wydaje się dobrze radzić sobie w bliskości granicy przedziału sterowania, a gorzej będąc w jego centrum.

Rys. 4.2. Działanie regulatora PID z nastawami Kp $=2.4,\,\mathrm{Ti}=6.5,\,\mathrm{Td}=1.625$

4.2. NO

Algorytm NO, tym różni się od algorytmu NPL, że do wyznaczania predykcji wyjścia stosuje się model nieliniowy. Oznacza to, że nie można wyznaczyć przyszłych sterowań analitycznie. Posługując się wskaznikiem jakości

$$J(k) = \sum_{p=1}^{N} (y^{zad}(k) - \hat{y}(k+p|k))^2 + \lambda \sum_{p=0}^{N_u} (\Delta u(k+p|k))^2$$
 (4.1)

wyznacza się takie sterowania dla których jest on najmniejszy. Wyliczyjąć predykcje wyjścia jako

$$\hat{y}(k+p|k) = w20 + w2 * tanh(w10 + w1 * x(k+p|k)) + dk \tag{4.2}$$

gdzie

$$x(k+p|k) = \begin{bmatrix} u(k-3+p) \\ u(k-4+p) \\ y(k-1+p) \\ y(k-2+p) \end{bmatrix}$$
(4.3)

We wzorze tym, podobnie jak w równaniu 3.1 i 3.9 dla $y(k+p|k) = \hat{y}(k+p|k)$. Dodatkowo, ponieważ przewidujemy jedynie przez cały horyzont sterowania, zakłada się, że sterowanie dla p > Nu - 1 przyjmuje wartość $u(k+p) = u(k+N_u-1)$. Mając wyznaczone wszystkie wartości można obliczyć zadanie optymalizacji. W tym celu wykorzystaliśmy obecny w Matlabie algorytm fmincon, a optymalizowaną przez nas zmienną było Nu przyszłych sterowań licząc z aktualnym. Regulator NO był testowany z użyciem sieci neuronowej wytrenowanej algorytmem BFGS z użyciem rekurencji opisanej w sekcji 2.3. Wyniki działania algorytmu NO przedstawione są na rysunku 4.3. Jak widać zarówno wyjście obiektu jak i sterowania wyglądają świetnie. Nie występują oscylacje ani przesterowania, a sterowanie jest dosyć łagodne. Niestety dużą wadą algorytmu NO jest, fakt że w każdym kroku algorytmu należy rozwiązać zadanie nieliniowej optymalizacji, co w przypadku obiektów o dłuższych horyzontach predykcji potrafi prowadzić do bardzo długiego czasu wyznaczania sterowań.

Rys. 4.3. Działanie regulatora NO z nastawami N=19, Nu=2, λ =4

5. Używane skrypty

Do wykonania powyższych zadań wykorzystane zostały następujące skrypty:

- Charakterystyka statyczna charakterystyka_statyczna.m
- Dane uczące i weryfikujące generowanie_danych.m oraz wykres_danych.m
- Dobór liczby neuronów modelowanie.m wraz z generowanym plikiem osiagi.txt
- Trenowanie różnych modeli neuronowych naucz_model.m
- Metoda najmniejszych kwadratów mnk.m
- Testowanie algorytmów regulacji regulacja.m, przy czym używane przez niego funkcje poszczególnych algorytmów to: funregnpl.m, funregppc.m oraz funregno.m.

Inne załączone pliki:

- daneucz.mat i danewer.mat wykorzystywane dane uczące i weryfikujące
- $g_1.m$ i $g_2.m$ funkcje procesu
- modelBFGS_OE, modelBFGS_ARX, modelNS_OE, uczenieBFGS_OE, uczenieBFGS_ARX, uczenieNS_OE nauczone sieci neuronowe prezentowane w sekcji drugiej
- siec.m rekurencyjne liczenie wyjścia sieci neuronowej używane w ewaluowaniu modeli