第2讲: Python科学计算库

- □ NumPy
- ☐ Scipy
- ☐ Matplotlib
- ☐ Pandas
- ☐ Scikit-Learn

WANGBIANQIN

Python科学计算库

- □ Numpy: 科学计算的基础库之一,数值计算的基础库,创建多 维数组,以及多维数据的各种运算。
- □ Scipy: 建立在 Numpy 库之上,一个数值算法集合和特定领域 的工具箱,包括信号处理、优化、统计等。
 □ Matplotlib: 科学绘图库,其功能为数据的可视化,它依赖
- Numpy和Scipy两个库
- □ Pandas: 建立在Numpy之上,用于处理和分析数据的库。
- □ Scikit-Learn: 支持回归、分类、聚类等机器学习算法和工具库, 依赖Numpy、Scipy,常与Matplotlib、Pandas协同工作。
- □ Tensorflow: Google的深度学习库,支持DNN,CNN,RNN等

Python科学计算库官网

- □ NumPy http://www.numpy.org/
- □ SciPy https://www.scipy.org/
- ☐ Matplotlib https://matplotlibiorg/
- ☐ Pandas http://pandas.pydata.org/
- ☐ Scikit-learn https://scikit-learn.org
- ☐ Tensorflow http://www.tensorfly.cn/

Anaconda自带常用库

- □ Anaconda自带Numpy、Scipy、Matplotlib、Pandas、Scikit-Learn等
- □ 一些第三方库,例如,Tensorflow等需要单独安装 安装Tensorflow,在终端命令窗口中,执行
 - > python -m pip install -- upgracteppipNQIN
 - > pip install tensorflow
 - > conda uninstall werkzeug
 - > pip install tensorflow
- □ 安装PIL库,执行pip install pillow进行安装,安装库的名字是pillow
- □ 注意:对于Windows10,需用管理员身份运行命令提示符,否则安装过程中可能会提示拒绝访问

Python奉引用

- □ Python自带标准库不用安装,如math,而第三方库需要安装后才可以引用
- □ 库的引入有两种方式:
- □ 第一种: import math WANGBIANQIN 例如,对math库中函数采用math.()形式使用除了使用"import 库名"之外,还可以为库起一个别名
- □ 第二种: from math import <函数名> 例如,对math库中函数可直接用<函数名>()形式使用,例如:

Python库引用

```
In [3]: # 第二种: from math import 〈函数名〉,只导入math库中的exp函数,并起别名e
In [1]: # 第1种导入库的方法
                                                                     from math import exp as e
                                                                     # 计算指数
         import math
                                                                     print(e(1))
         # 计算正弦
         print(math.sin(1))
                                                                     #此时sin(1)和math.sin(1)都会出错,因为没被导入
         # 计算指数
                                                                     print(sin(1))
         print (math. exp(1))
                                                                     2.718281828459045
         # 内置的圆周率常数
         math.pi
                                                                                                      Traceback (most recent call last)
                                                                     <ipython=input=3=3823d6dc766c> in <module>()
         0.8414709848078965
         2.718281828459045
                                                                         6 # 此时sin(1)和math.sin(1)都会出错,因为没被导入
                                                                     ---> 7 print(sin(1))
 Out[1]: 3.141592653589793
                                                                     NameError: name 'sin' is not defined
In [2]: #除了使用"import 库名"之外,还可以为库起一个别名;
         import math as m
                                                             In [4]: # 直接导入库中的所有函数:
         m.sin(1)
                                                                     from math import *
                                                                     print(exp(1))
 Out[2]: 0.8414709848078965
                                                                     print(sin(1))
                                                                     2.718281828459045
                                                                     0.8414709848078965
```

- □ Numpy处理的最基础数据类型是由同种元素构成的多维数组 (ndarray),简称"数组"
- □ 数组中所有元素的类型必须相同,数组中元素可以用整数索引,序号从0开始。 WANGBIANQIN
- □ ndarray类型的维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。一维数组的秩为1,二维数组的秩为2,二维数组相当于由两个一维数组构成。
- □ Numpy常用导入方式: import numpy as np # np为numpy别名

□ Numpy常用创建数组(ndarry类型)函数:

		In	[5]:	# 等入numpy/库 import numpy as np	In	[9]:	#创建特殊数组 print('ones:\n', np.ones((3, 2)))
函数	描述	In	[6]:				print('ones.\n', np.ones((3, 2))) print('zeros:\n', np.zeros((3, 2))) print('eye:\n', np.eye(3))
np.array([x,y,z], dtype=int)	从 Python 列表和元组创造数组 WANCR	Τ /	M	my_list = [1, 2, 3] a = nn			print('diag:\n', np.diag(my_list))
np.arange(x,y,i)	创建一个由 x 到 y, 以 i 为步长的数组	1.1	11 N	<pre>print('Array: ', my_list) print('Array: ', x)</pre>			ones: [[1. 1.] [1. 1.]
np.linspace(x,y,n)	创建一个由 x 到 y, 等分成 n 个元素的数组	_		List: [1, 2, 3] Array: [1 2 3]			[1. 1.] [1. 1.]] zeros:
np.indices((m,n))	创建一个 m 行 n 列的矩阵	In	[7]:	# 创建二维数组 m = np.array([[1, 2, 3], [4, 5, 6]])			[[0.
np.random.rand(m,n)	创建一个 m 行 n 列的随机数组			print(m) [[1 2 3]			[0. 0.]] eye: [[1. 0. 0.]
np.ones((m,n),dtype)	创建一个 m 行 n 列全 1 的数组,dtype 是数据类型	-		[4 5 6]]			[0. 1. 0.] [0. 0. 1.]]
np.empty((m,n),dtype)	创建一个 m 行 n 列全 O 的数组,dtype 是数据类型	In	[8]:	# 创建由O到30以2为扩长的数组 n = np.arange(0, 30, 2) print(n)			ones: [[1. 1.] [1. 1.] [1. 1.]] zeros: [[0. 0.] [0. 0.] [0. 0.]] eye: [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] diag: [[1 0 0] [0 2 0] [0 0 3]
				[0 2 4 6 8 10 12 14 16 18 20 22 24 26 28]			[0 0 3]]

□ ndarray类的常用属性:

属性	描述
ndarray.ndim	数组轴的个数,也被称作秩
ndarray.shape	数组在每个维度上大小的整数WANGBIANQIN
ndarray.size	数组元素的总个数
ndarray.dtype	数组元素的数据类型,dtype 类型可以用于创建数组中
ndarray.itemsize	数组中每个元素的字节大小
ndarray.data	包含实际数组元素的缓冲区地址
ndarray.flat	数组元素的迭代器

```
In [10]: # 创建二维数组
          m = np.array([[1, 2, 3], [4, 5, 6]])
          print(m)
          # 查看m的属性
          print('ndim: ', m.ndim)
          print('shape: ', m.shape)
          print('size: ', m.size)
          print('dtype: ', m.dtype)
          print('itemsize: ', m.itemsize)
          print('data: ', m.data)
          print('flat: ', m.flat)
          [[1 2 3]
           [4 5 6]]
          ndim: 2
          shape: (2, 3)
          size: 6
          dtype: int32
          itemsize: 4
          data: <memory at 0x000000000503CC18>
          flat: <numpy.flatiter object at 0x0000000003EE4700>
```

创建一个数组后,可查看ndarray类型的基本属性

□ ndarray类的形态操作:

方法	描述		
ndarray.reshape(n,m)	不改变数组 ndarray, 返回一个维度为(n,m)的数组		
ndarray.resize(new_shape)	与 reshape()作用相同,直接修改数组 ndarray		
ndarray.swapaxes(ax1, ax2)	将数组n个维度中任意两个维度进行调换		
ndarray. flatten()	对数组进行降维,返回一个折叠后的一维数组		
ndarray.ravel()	作用同 np.flatten(), 但是返回数组的一个视图		

数组在numpy中被当作对象,可以采用<a>.()方式调用一些方法

```
# 创建二维数组
m = np.array([[1, 2, 3], [4, 5, 6]])
print('m =', m)
# 二维数组变形
n = m.reshape(3, 2)
print('n =', n)
q = m.resize(3, 2)
print('q =', q)
print('m =', m)
p = m.flatten()
print('p =', p)
r = m.ravel()
print('r =', r)
m = [[1 2 3]]
 [4 5 6]]
n = [[1 \ 2]]
 [3 \ 4]
 [5 6]]
q = None
m = [[1 \ 2]]
 [3 4]
 [5 6]]
p = [1 2 3 4 5 6]
r = [1 2 3 4 5 6]
```

□ ndarray类的索引和切片方法:

方法	描述		
x[i]	索引第i个元素		
x[-i]	从后向前索引第WAAGBIANQIN		
x[n:m]	默认步长为 1, 从前往后索引, 不包含 m		
x[-m:-n]	默认步长为 1, 从后往前索引, 结束位置为 n		
x[n,m,i]	指定 i 步长的由 n 到 m 的索引		

```
In [22]: # 创建二维数组
m = np.array([[1, 2, 4], [2, 4, 6], [3, 7, 9]])
print('m[0]:',m[0])
print('m[1]:',m[1])
print('m[-1]:',m[-1])
print('m[0:3]:',m[0:3])
# 访问区间为左开右闭

m[0]: [1 2 4]
m[1]: [2 4 6]
m[-1]: [3 7 9]
m[0:3]: [[1 2 4]
[2 4 6]
[3 7 9]]
```

数组切片得到的是原始数组的视图,所有修改都会直接反映到源数组

□ Numpy算术运算函数:

函数	描述			
np.add(x1, x2 [, y])	y = x1 + x2			
np.subtract(x1, x2 [, y])	y=x1-x2 WANGBIANQIN			
np.multiply(x1, x2 [, y])	y = x1 * x2			
np.divide(x1, x2 [, y])	y = x1 / x2			
np floor_divide(x1, x2 [, y])	y=x1//x2, 返回值取整			
np.negative(x [,y])	y = -x			
np.power(x1, x2 [, y])	y = x1**x2			
np.remainder(x1, x2 [, y])	y = x1 % x2			

```
In [23]: p1 = np.ones((3, 3))
          p2 = np.arange(9).reshape(3, 3)
In [24]: print('p1: \n', p1)
          print('p2: \n', p2)
          print('p1 + p2 = \n', p1 + p2)
          print('p1 * p2 = \n', p1 * p2)
          print('p2^2 = \n', p2 ** 2)
          print('p1.p2 = \n', p1.dot(p2))
          p1:
          [[ 1. 1. 1.]
          [ 1. 1. 1.]
          [ 1. 1. 1.]]
          p2:
           [[0 1 2]
           [3 4 5]
           [6 7 8]]
          p1 + p2 =
           [[ 1. 2. 3.]
           [4. 5. 6.]
           [7. 8. 9.]]
          p1 * p2 =
          [[0. 1. 2.]
           [3. 4. 5.]
          [6. 7. 8.]]
          p2^2 =
```

□ Numpy比较运算函数:

函数	符号描述
np. equal(x1, x2 [, y])	y = x1 == x2
np. not_equal(x1, x2 [, y])	y=x1!\(\frac{1}{2}\)\
np. less(x1, x2, [, y])	y = x1 < x2
np. less_equal(x1, x2, [, y])	y = x1 <= x2
np. greater(x1, x2, [, y])	y = x1 > x2
np. greater_equal(x1, x2, [, y])	y = x1 >= x2
np.where(condition[x,y])	根据给出的条件判断输出x还是y

```
a = np.array([-4, -2, 1, 3, 5])
b = np.array([-4, 0, 1, 3, 5])
print('a = ', a)
print('b = ', b)
print('a==b', a==b)
y = np.mean(a == b)
print('y:',y)

a = [-4 -2 1 3 5]
b = [-4 0 1 3 5]
a==b [ True False True True]
y: 0.8
```

□ Numpy统计函数:

```
1. np.mean(x [, axis]) :
  所有元素的平均值,参数是 number 或 ndarray
 2. np.sum(x [, axis]) :
  所有元素的和,参数是 number 或 ndarray
 3. np.max(x [, axis]) :
  所有元素的最大值,参数是 number 或 ndarray
 4. np.min(x [, axis]) :
  所有元素的最小值,参数是 number 或 ndarray
 5. np.std(x [, axis]) :
  所有元素的标准差,参数是 number 或 ndarray
 6. np.var(x [, axis]) :
  所有元素的方差,参数是 number 或 ndarray
 7. np.argmax(x [, axis]):
  最大值的下标索引值,参数是 number 或 ndarray
 8. np.argmin(x [, axis]):
  最小值的下标索引值,参数是 number 或 ndarray
 9. np.cumsum(x [, axis]):
  返回一个同纬度数组,每个元素都是之前所有元素的 累加和,参数是 number 或 ndarray
10. np.cumprod(x [, axis]):
  返回一个同纬度数组,每个元素都是之前所有元素的 累乘积,参数是 number 或 ndarray
```

```
In [2]: a = np. array([-4, -2, 1, 3, 5])
         print('sum: ', a.sum())
         print('min: ', a.min())
         print('max: ', a.max())
         print('argmax: ', a.argmax())
         print('argmin: ', a.argmin())
               3
         sum:
               -4
         min:
               5
         max:
         mean: 0.6
         std: 3.26190128606
         argmax: 4
         argmin: 0
```

□ Numpy其它运算函数:

函数	描述 计算基于元素的整形,浮点或复数的绝对值。		
np.abs(x)			
np.sqrt(x)	计算每个元素的WANGBIANQIN		
np.squre(x)	计算每个元素的平方		
np.sign(x)	计算每个元素的符号: 1(+), 0, -1(-)		
np.ceil(x)	计算大于或等于每个元素的最小值		
np.floor(x)	计算小于或等于每个元素的最大值		
np.rint (x[, out])	圆整,取每个元素为最近的整数,保留数据类型		
np.exp(x[, out])	计算每个元素指数值		
np.log(x), np.log10(x), np.log2(x)	计算自然对数(e),基于 10,2 的对数,log(1+x)		

- □ Scipy: 建立在 Numpy 库之上,一个数值算法集合和特定领域的工具箱,包括信号处理、优化、统计等
- □ Scipy有很多子模块可以应对不同的应用,例如插值运算,优化算法、 图像处理、数学统计等 WANGBIANQIN
- □ 导入方式: import scipy as sp from scipy. <...> import ... 例如,from scipy.linalg import svd

□ 主要包括以下子模块:	模块	功能
□ 特殊函数 (scipy.special)	scipy.cluster	矢量量化 / K-均值
4	scipy.constants	物理和数学常数
□ 积分 (scipy.integrate)	scipy.fftpack	傅里叶变换
□ 最优化 (<u>scipy.optimize</u>)	scipy.integrate	积分程序
□ 插值 (scipy.interpolate) WAN	GBTANQIN	插值
□ 傅立叶变换 (scipy.fftpack)	scipy.io	数据输入输出
□ 信号处理 (scipy.signal)	scipy.linalg	线性代数程序
	scipy.ndimage	n维图像包
□ 线性代数 (<u>scipy.linalg</u>)	scipy.odr	正交距离回归
□ 稀疏特征值 (<u>scipy.sparse</u>)	scipy.optimize	优化
□ 统计 (scipy.stats)	scipy.signal	信号处理
□ 多维图像处理 (scipy.ndimage)	scipy.sparse	稀疏矩阵
· · · · · · · · · · · · · · · · · ·	scipy.spatial	空间数据结构和算法
□ 文件 IO (<u>scipy.io</u>)	scipy.special	任何特殊数学函数
□ 空间数据结果和算法(scipy.spatial)	scipy.stats	统计

□ 稀疏特征值 (scipy.sparse)

```
import numpy as np
# sparse函数的用法
from scipy import sparse
# 生成一个6x6的对角线元素为1,其余元素为0的对角矩阵
m = np.eye(6)
# 将数组转化为CSR格式的Scipy稀疏矩阵
sparse_m = sparse.csr_matrix(m)
# 查看结果
print('m:\n',m)
print('sparse_m:\n', sparse_m)
[[ 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 1.]]
sparse_m:
  (0, 0)
             1.0
  (1, 1)
             1.0
  (2, 2)
             1.0
  (3, 3)
             1.0
  (4, 4)
             1.0
  (5, 5)
             1.0
```

WANGBIANQIN

□ 线性代数 (scipy.linalg)

SVD分解公式:对于任意矩阵A,可分解成三个矩阵:

$$A_{m \times n} = U_{m \times m} \sum_{m \times n} V_{n \times n}^{T}$$
 WANGBIANQIN

□ 计算∑前r个奇异值的平方和占所有奇异值的平方和的比例 ,如果大于90%,选r个奇异值重构矩阵(剩余的数据代 表的可能是噪声,无用数据)。重构的A'为:

$$A_{m \times n} \approx U_{m \times r} \sum\nolimits_{r \times r} V_{r \times n}^{T}$$

$$A_{m \times n} \approx U_{m \times r} \sum_{r \times r} V_{r \times n}^{T}$$

$$r = \frac{\sum_{i=1}^{r} \sigma_{i}^{2}}{\sum_{i=1}^{n} \sigma_{i}^{2}} > 90\%$$

```
# Linalg库中的svd函数对矩阵进行奇异值分解
# 其调用形式为: U, s, V = scd(M)
# 奇异值分解--举例
import numpy as np
from scipy import linalg
A = np. array([[1, -0.3], [-0.1, 0.9]])
U, s, V = linalg.svd(A)
print('A:\n',A)
print('U:\n',U)
print('s:\n',s)
print('V:\n',V)
[[ 1. -0.3]
[-0.1 0.9]]
 [[-0.81937847 0.57325293]
 [ 1.16140394 0.74909338]
[[-0.7548655 0.65587962]
 [ 0.65587962 0.7548655 ]]
```


2019/3/6

数据可视化

□ Anscombe's quartet (安斯库姆四重奏)

	dataset	X	y
0	Ι	10.0	8.04
1	I	8.0	6.95
2	Τ	13.0	7.58
3	Τ	9.0	8.81
4	_	11.0	8.33
5	1	14.0	9.96
6	Τ	6.0	7.24
7	Ι	4.0	4.26
8	I	12.0	10.84
9	I	7.0	4.82
10	Ι	5.0	5.68

1		1	
11	П	10.0	9.14
12	П	8.0	8.14
13	П	13.0	8.74
14	II	9.0	8.77
15	П	11.0	9.26
16	П	14.0	8.10
17	П	6.0	6.13
18	П	4.0	3.10
19	П	12.0	9.13
20	П	7.0	7.26
21	П	5.0	4.74

	22	Ш	10.0	7.46
/	23 24	βIA	13.0	6-77 12.74
	25	III	9.0	7.11
	26	Ш	11.0	7.81
	27	Ш	14.0	8.84
	28	=	6.0	6.08
	29	Ш	4.0	5.39
	30	Ш	12.0	8.15
	31	Ш	7.0	6.42
	32	Ш	5.0	5.73

33	IV	8.0	6.58
34	IV	8.0	5.76
35	IV	8.0	7.71
36	IV	8.0	8.84
37	IV	8.0	8.47
38	IV	8.0	7.04
39	IV	8.0	5.25
40	IV	19.0	12.50
41	IV	8.0	5.56
42	IV	8.0	7.91
43	IV	8.0	6.89

数据可视化

• 这四组数据的共同统计特性如下:

性质	数值	
x的平均数	9	
x的方差	11	
y的平均数	7.50 (精确到小数点后两位)	
y的方差	4.122或4.127 (精确到小数点后三位)	
x与y之间的相关系数	0.816 (精确到小数点后三位)	
线性回归线	y=3.00+0.500x (分别精确到小数点后两位和三位	

Matplotlib

- □ 可视化库: Matplotlib, Pandas, Seaborn
- □ Matplotlib: 提供数据绘图功能的第三方库,其子库pyplot主 要用于实现各种数据展示图的绘制
- □ 导入方式: import matplotlib.pyplot as plt
- □ plt子库提供了一批操作和绘图函数,每个函数代表对图像进行 的一个操作,比如创建绘图区域、添加标注或者修改坐标轴等
- □ 函数采用plt.()形式调用,其中是具体函数名称

Matplotlib

plt绘图区域函数

函数	描述
plt.figure(figsize=None, facecolor=None)	创建一个全局绘图区域
plt.axes(rect, axisbg='w')	创建一个坐标系风格的子绘图区域 WANCRIANOIN
plt.subplot(nrows, ncols, plot_number)	WANGBIANQIN 在全局绘图区域中创建一个子绘图区域
plt.subplots_adjust()	调整子图区域的布局

plt读取和显示函数

函数	描述
plt.legend()	在绘图区域中方式绘图标签(也称图注)
plt.show()	显示创建的绘图对象
plt.matshow()	在窗口显示数组矩阵 WANGBIANQIN
plt.imshow()	在 axes 上显示图像
plt.imsave()	保存数组为图像文件
plt.imread()	从图像文件中读取数组

用于在绘图区域中增加显示内容及读入数据,这些函数需要与其他函数搭配使用

plt基础图表函数

操作	描述		
plt.polt(x, y, label, color, width)	根据 x, y 数组绘制直/曲线		T
plt.boxplot(data, notch, position)	绘制一个箱型图(Box-plot)	plt.polar(theta, r)	绘制极坐标图
price i procincio	888 8 8	plt.pie(data,explode)	绘制饼图
plt.bar(left, height, width, bottom)	绘制一个条形图 WANG	BIPA PAR STEP = 256, pad_to, Fs)	绘制功率谱密度图
plt.barh(bottom, width, height, left)	绘制一个横向条形图	plt.specgram(x, NFFT=256, pad_to, F)	绘制谱图
		plt.cohere (x, y, NFFT=256, Fs)	绘制 X-Y 的相关性函数
plt.contour(X, Y, Z, N)	绘制等值线	plt.scatter()	绘制散点图(x, y 是长度相同的序列)
plt.vlines()	绘制垂直线	plt.step(x, y, where)	绘制步阶图
plt.stem(x, y, linefmt, markerfmt, basefmt)	绘制曲线每个点到水平轴线的垂线	plt.hist(x, bins, normed)	绘制直方图
plt.plot_date()	绘制数据日期		
plt.plotfile()	绘制数据后写入文件		

plt坐标轴设置函数

函数	描述
plt.axis('v','off','equal','scaled','tight','image')	获取设置轴属性的快捷方法
plt.xlim(xmin, xmax)	设置当前x轴取值范围
plt.ylim(ymin,ymax)	设置WANGBJANQIN
plt.xscale()	设置 x 轴缩放
plt.yscale()	设置y轴缩放
plt.autoscale()	自动缩放轴视图的数据
plt.thetagrids(angles, labels, fint, frac)	设置极坐标网格 theta 的位置
plt.grid(on/off)	打开或者关闭坐标网格

plt标签设置函数

函数	描述	
plt.figlegend(handles, label, loc)	为全局绘图区域放置图注	
plt.legend()	为当前坐标图放置图注	
plt.xlabel(s)	设置当前 x 轴的标签	
plt.ylabel(s)	设置当前 y 轴的标签	
plt.xticks(array, 'a', 'b', 'c')	设置当前x轴刻度位置的标签和值	WAN
plt.yticks(array, 'a', 'b', 'c')	设置当前y轴刻度位置的标签和值	
plt.clabel(cs,v)	为等值线图设置标签	
plt.get_figlabels()	返回当前绘图区域的标签列表	
plt.figtext(x, y, s, fontdic) 为全局绘图区域添加文字		
plt.title()	plt.title() 设置标题	
plt.suptitle() 为当前绘图区域添加中心标题		
plt.text(x, y, s, fontdic, withdash)	为坐标图轴添加注释	
plt.annotate(note, xy, xytext, xycoords,	用箭头在指定数据点创建一个注释或	戊一段文本
textcoords, arrowprops)		

WANGBIANQIN

plt.pcolormesh可以画彩图,例如绘制分类边界

Pandas

- □ Pandas: 高性能易用数据类型和分析工具
- □ 在终端命令行安装: pip install pandas
- □ 常用导入方式: import pandas as pd
- □ Pandas基于NumPy,常与NamPy,AMathlotlib一同使用
- □ 两个数据类型: Series, DataFrame
- □ Series, DataFrame数据类型的各类操作:基本操作、运算操作、 特征类操作、关联类操作

Pandas

```
In [31]: # 通常用pd作为Pandas的别名
import pandas as pd
# 创建一个序列s
s = pd. Series([1, 2, 3], index = ['a', 'b', 'c'])
# 创建一个表
d = pd. DataFrame([[1, 2, 3], [4, 5, 6]], columns = ['a', 'b', 'c'])
# 也可以用己有的序列来创建表格
d2 = pd. DataFrame(s)
# 预览前5行数据
d. head()
# 数据基本统计量
d. describe()

Out[31]:

a b c
```

	a	b	С
count	2.00000	2.00000	2.00000
mean	2.50000	3.50000	4.50000
std	2.12132	2.12132	2.12132
min	1.00000	2.00000	3.00000
25%	1.75000	2.75000	3.75000
50%	2.50000	3.50000	4.50000
75%	3.25000	4.25000	5.25000
max	4.00000	5.00000	6.00000

Scikit-learn

- □ Scikit-learn: 封装了常用机器学习算法,依赖NumPy、SciPy, 常与 pandas、Matplotlib 协同工作
- □ 安装: pip install scikit-lear WANGBIANQIN
- □ 导入: import sklearn from sklearn. <...> import ...

例如,from sklearn import model_selection from sklearn.linear_model import LogisticRegression

Scikit-learn

➤ 官网: http://scikit-learn.org/stable/testimonials/testimonials.html

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors,

random forest.... Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Dr.W. read OF BCL prides Q Algorithms: SVR, ridge regression, Lasso,

- Examples

Clustering

Automatic grouping of similar objects into

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift, ... - Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. - Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter

Modules: grid search, cross validation, metrics.

- Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

- Examples

Scikit-Learn

Scikit-Learn

□ 数据集划分

▶ 内置数据集: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets

Scikit-Learn

□ 模型选择: 选择路线图

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Scikit-Learn

□ 训练模型

- Estimator对象
- 从训练数据学习得到的
- 可以是分类算法、回归算法或者是特征规则算法NQIN
- · fit方法用于训练Estimator
- Estimator的参数可以训练前初始化,或者之后更新

Scikit-Learn

□ 测试模型

- model.predict(X_test)
 - 返回测试样本的预测标签
- model.score(X_test, y_test)
 - 根据预测值和真实值计算评分
- score()对Estimator进行评分
 - 回归模型:使用"决定系数"评分(Coefficient of Determination)
 - 分类模型:使用"准确率"评分(accuracy)

```
In [55]: y_pred = knn.predict(X_test)
print("Test set predictions: \n {}*.format(y_pred))

Test set predictions:
[2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0

WANGBI ANQIN
In [56]: print("Test set score: {:.2f}*.format(np.mean(y_pred = y_test)))

Test set score: 0.97

In [59]: print("Test set score: {:.2f}*.format(knn.score(X_test, y_test)))
```

案例--鸢尾龙(Iris)分类

山鸢尾花 Setosa、变色鸢尾花 Versicolor、韦尔吉尼娅鸢尾花 Virginica

初识数据

```
In [34]: from sklearn.datasets import load_iris
          iris_dataset = load_iris()
In [35]: print("Keys of iris_dataset: {}".format(iris_dataset.keys()))
         Keys of iris dataset: dict keys(['target', 'DESCR', 'data', 'target names', 'feature names'])
In [37]: print(iris_dataset['DESCR'][:193] + "\n...")
         Iris Plants Database
         _____
                                                                            WANGBIANQIN
         Notes
         Data Set Characteristics:
             :Number of Instances: 150 (50 in each of three classes)
             :Number of Attributes: 4 numeric, predictive att
In [38]: print("Target names: {}".format(iris_dataset['target_names']))
         Target names: ['setosa' 'versicolor' 'virginica']
In [39]: print("Feature names: {}".format(iris_dataset['feature_names']))
         Feature names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
In [40]: print("Type of data: {}".format(type(iris_dataset['data'])))
         Type of data: <class 'numpy.ndarray'>
In [41]: print("Shape of data: {}".format(iris_dataset['data'].shape))
         Shape of data: (150, 4)
```


初识数据

```
In [42]: print("First five rows of data:\n{}".format(iris dataset['data'][:5]))
      First five rows of data:
      [[5.1 3.5 1.4 0.2]
      [4.9 3. 1.4 0.2]
      [4.7 3.2 1.3 0.2]
      [4.6 3.1 1.5 0.2]
      [5. 3.6 1.4 0.2]]
In [43]: print("Type of target: {}".format(type(iris_dataWyA NeyB)))ANQIN
      Type of target: <class 'numpy.ndarray'>
In [44]: print("Shape of target: {}".format(iris_dataset['target'].shape))
      Shape of target: (150,)
In [45]: print("Target:\n{}".format(iris_dataset['target']))
      Target:
      2 2]
```

数据集分割

探索数据

```
In [61]: # create dataframe from data in X_train

# label the columns using the strings in iris_dataset.feature_names

iris_dataframe = pd.DataFrame(X_train, columns=iris_dataset.feature_names)

# create a scatter matrix from the dataframe, color by y_train

grr=pd.scatter_matrix(iris_dataWrAme(B=VAtrain) figsize=(15, 15), marker='o',

hist_kwds={'bins': 20}, s=60, alpha=.8)
```


构建模型,k近邻算法

评估模型

模型预测

案例总结

▶ fit, predict, score是scikit-learn监督学习模型中最常用的接口

小结

- □ NumPy: 多维数组及其运算
- □ Scipy: 数值算法与特定领域算法集合
- □ Matplotlib: 绘制2D, Wand IANQIN
- □ Pandas: 高性能的数据结构及其分析
- □ Scikit-Learn: 机器学习算法和工具
- □ Tensorflow: 第5讲介绍