COMP4222 Machine Learning with Structured Data

Recommender Systems 2

Instructor: Yangqiu Song

Slides credits: Jure Laskovec

Presentation

- Starts from next week
- Rubrics
 - Content Clearness (20%)
 - Description of Methods (20%)
 - Experiments and Components (20%)
 - Insight Sharing (20%)
 - Time Management (20%)
- Each group will be graded by me and 2 Tas
 - Average will be taken as the final score

Conventional Collaborative Filtering

- Conventional collaborative filtering model is based on Matrix Factorization (MF).
 - Use shallow encoders for users and items
 - For every $u \in U$ and $v \in V$, we prepare shallow learnable embeddings $u, v \in \mathbb{R}^D$.
 - Score function for user u and item v is f $(u, v) = u^D v$.

Learnable shallow user/item embeddings

Limitations of MF

- The model itself does not explicitly capture graph structure
 - The graph structure is *only implicitly* captured in the training objective.
- Only the first-order graph structure (i.e., edges) is captured in the training objective.
 - **High-order graph structure** (e.g., *K*-hop paths between two nodes) is **not explicitly captured.**

Motivation

- We want a model that...
 - explicitly captures graph structure (beyond implicitly through the training objective)
 - captures high-order graph structure (beyond the first-order edge connectivity structure)
- GNNs are a natural approach to achieve both!
 - Neural Graph Collaborative Filtering (NGCF) [Wang et al. 2019]
 - LightGCN [He et al. 2020]
 - A simplified and improved version of NGCF

NGCF: Overview

- Neural Graph Collaborative Filtering (NGCF) explicitly incorporates high-order graph structure when generating user/item embeddings.
- Key idea: Use a GNN to generate graph-aware user/item embeddings.

NGCF Framework

- Given: User-item bipartite graph.
- NGCF framework:
 - Prepare shallow learnable embedding for each node.
 - Use multi-layer GNNs to propagate embeddings along the bipartite graph.
 - High-order graph structure is captured.
 - Final embeddings are explicitly graph- aware!
- Two kinds of learnable parameters are jointly learned:
 - Shallow user/item embeddings
 - GNN's parameters

Initial Node Embeddings

- Set the shallow learnable embeddings as the initial node features.
 - For every user $u \in \mathbf{U}$, set $\mathbf{h}_v^{(0)}$ as the user's shallow embedding.
 - For every item $v \in V$, set $h_u^{(0)}$ as the item's shallow embedding.

Learnable shallow user/item embeddings

Neighbor Aggregation

 Iteratively update node embeddings using neighboring embeddings.

$$\boldsymbol{h}_{v}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{v}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{u}^{(k)}\right\}_{u \in N(v)}\right)\right)$$
$$\boldsymbol{h}_{u}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{u}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{v}^{(k)}\right\}_{v \in N(u)}\right)\right)$$

- High-order graph structure is captured through iterative neighbor aggregation.
- Different architecture choices are possible for AGGR and COMBINE.
 - AGGR(·) can be MEAN ·
 - COMBINE(x, y) can be ReLU Linear(Concat(x, y))

Final Embeddings and Score Function

- After K rounds of neighbor aggregation, we get the final user/item embeddings $\boldsymbol{h}_{n}^{(K)}$ and $\boldsymbol{h}_{n}^{(K)}$.
- For all $u \in U$, $v \in V$, we set

$$\boldsymbol{u} \leftarrow \boldsymbol{h}_{v}^{(K)}, \ \boldsymbol{v} \leftarrow \boldsymbol{h}_{v}^{(K)}.$$

• Score function is the inner product:

Score
$$(u, v) = \mathbf{u}^{\mathsf{T}} \mathbf{v}$$

NGCF: Summary

- Conventional collaborative filtering uses shallow user/item embeddings.
 - The embeddings do *not explicitly* model graph structure.
 - The training objective does not model high-order graph structure.
- NGCF uses a GNN to propagate the shallow embeddings.
 - The embeddings are explicitly aware of high-order graph structure.

LightGCN

LightGCN: Motivation

- Recall: NGCF jointly learns two kinds of parameters:
 - Shallow user/item embeddings
 - GNN's parameters
- Observation: Shallow learnable embeddings are already quite expressive.
 - They are learned for every node.
 - Most of the parameter counts are in shallow embeddings when N (#nodes) \gg D (embedding dimensionality)
 - Shallow embeddings: O(ND).
 - GNN: $O(D^2)$.

LightGCN: Motivation

- Can we simplify the GNN used in NGCF (e.g., remove its learnable parameters)?
 - Answer: Yes!
 - Bonus: Simplification improves the recommendation performance!
- Overview of the idea:
 - Adjacency matrix for a bipartite graph
 - Matrix formulation of GCN
 - Simplification of GCN by removing non-linearity
 - Related: SGC for scalable GNN [Wu et al. 2019]

Adjacency and Embeddings Matrices

- Adjacency matrix of a (undirected) bipartite graph.
- Shallow embedding matrix.

Matrix Formulation of GCN

- Let **D** be the degree matrix of **A**.
- ullet Define the normalized adjacency matrix $\widetilde{m{A}}$ as

$$\widetilde{A} \equiv D^{-1/2}AD^{-1/2}$$

Note: Different from the original GCN, self-connection is omitted here.

- Let $E^{(k)}$ be the embedding matrix at k-th layer.
- Each layer of GCN's aggregation can be written in a matrix form:

$$E^{(k+1)} = \text{ReLU}(\widetilde{A}E^{(k)}W^{(k)})$$
Neighbor aggregation Learnable linear transformation

Matrix of node embeddings $\mathbf{E}^{(k)}$

Each row stores node embedding

Simplifying GCN

- Simplify GCN by removing ReLU non-linearity: $E^{(k+1)} = \widetilde{A}E^{(k)}W^{(k)}$
- The final node embedding matrix is given as

$$E^{(K)} = \widetilde{A} E^{(K-1)} W^{(K-1)}$$

$$= \widetilde{A} (\widetilde{A} E^{(K-2)} W^{(K-2)}) W^{(K-1)}$$

$$= \widetilde{A} (\widetilde{A} (\cdots (\widetilde{A} E^{(0)} W^{(0)}) \cdots) W^{(K-2)}) W^{(K-1)}$$

$$= \widetilde{A}^{K} E (W^{(0)} \cdots W^{(K-1)})$$

Simplifying GCN

Removing ReLU significantly simplifies GCN!

$$\mathbf{E}^{(K)} = \widetilde{\mathbf{A}}^K \mathbf{E} \mathbf{W} \qquad \mathbf{W} \equiv \mathbf{W}^{(0)} \cdots \mathbf{W}^{(K-1)}$$

- It's considered as diffusing node embeddings along the graph
- Algorithm: Apply $E \leftarrow \widetilde{A}E$ for K times.
 - Each matrix multiplication diffuses the current embeddings to their one-hop neighbors.
 - Note: \widetilde{A}^K is dense and never gets materialized. Instead, the above iterative matrix-vector product is used to compute $\widetilde{A}E$

Multi-scale Diffusion

We can consider multi-scale diffusion

$$\alpha_0 E^{(0)} + \alpha_1 E^{(1)} + \alpha_2 E^{(2)} + \cdots + \alpha_K E^{(K)}$$

- The above includes embeddings diffused at multiple hop scales.
- $\alpha_0 E^{(0)} = \alpha_0 \widetilde{A}^0 E^{(0)}$ acts as a self-connection (that is omitted in the definition \widetilde{A})
- The coefficients, α_0 , ..., α_K , are hyper-parameters.
- For simplicity, LightGCN uses the uniform coefficient, i.e.,

$$\alpha_k = \frac{1}{K+1}$$
 for $k = 0, \dots, K$.

- Given:
 - Adjacency matrix A
 - Initial learnable embedding matrix E

- Iteratively diffuse embedding matrix $m{E}$ using $\widetilde{m{A}}$
- For k = 0 ... K 1,

Average the embedding matrices at different scales.

• Score function: Use user/item vectors from E_{final} to score user-item interaction

LightGCN: Intuition

- Question: Why does the simple diffusion propagation work well?
- Answer: The diffusion directly encourages the embeddings of similar users/items to be similar.
 - Similar users share many common neighbors (items) and are expected to have similar future preferences (interact with similar items).
- Remember $(I \alpha D^{-1}W)^{-1} = \lim_{t \to \infty} \sum_{k=0}^{t-1} (\alpha D^{-1}W)^k$
- If $L = U\Lambda U^T$, then $L^{-1} = U\Lambda^{-1}U^T$
 - L^{-1} is considered as a low-pass filter

LightGCN and MF: Comparison

- Both LightGCN and Matrix Factorization (MF) learn a unique embedding for each user/item.
- The difference is that
 - MF directly uses the shallow user/item embeddings for scoring.
 - LightGCN uses the diffused user/item embeddings for scoring.
- LightGCN performs better than MF but are also more computationally expensive due to the additional diffusion step.
 - The final embedding of a user/item is obtained by aggregating embeddings of its multi-hop neighboring nodes.

LightGCN: Summary

- LightGCN simplifies NGCF by removing the learnable parameters of GNNs.
- Learnable parameters are all in the shallow input node embeddings.
 - Diffusion propagation only involves matrix-vector multiplication.
 - The simplification leads to better empirical performance than NGCF.

PinSAGE

Motivation

• P2P recommendation

PinSAGE: Pin Embedding

- Unifies visual, textual, and graph information.
- The largest industry deployment of a Graph Convolutional Networks
- Huge Adoption across Pinterest
- Works for fresh content and is available in a few seconds after pin creation

Application: Pinterest

PinSage graph convolutional network:

- Goal: Generate embeddings for nodes in a large-scale Pinterest graph containing billions of objects
- Key Idea: Borrow information from nearby nodes
 - E.g., bed rail Pin might look like a garden fence, but gates and beds are rarely adjacent in the graph

- Pin embeddings are essential to various tasks like recommendation of Pins, classification, ranking
 - Services like "Related Pins", "Search", "Shopping", "Ads"

Harnessing Pins and Boards

Very ape blue structured coat

Nitty Gritty

Hans Wegner chair Room and Board

Promoted by Room & Board

This is just a beautiful image for thoughts. Yay or nay, your choice.

mid century modern ...

Man Style Gavin Jones

men + style I FIG+SALT

Plants HelloSandwich

Men's Style Andrea Sempi

Mid century modern Tyler Goodro

Plants Moorea Seal

Mid century modern ... Prettygreentea

PinSAGE: Graph Neural Network

- Graph has tens of billions of nodes and edges
- Further resolves embeddings across the Pinterest graph

PinSAGE: Methods for Scaling Up

- In addition to the GNN model, the PinSAGE paper introduces several methods to scale the GNN to a billion-scale recommender system (e.g., Pinterest).
 - Shared negative samples across users in a mini-batch
 - Hard negative samples
 - Curriculum learning
 - Mini-batch training of GNNs on a large-graph (to be covered in the future lecture)

PinSAGE Model

- Task: Recommend related pins to users.
- Learn node embeddings z_i such that $d(z_{\text{cake1}}, z_{\text{cake2}}) < d(z_{\text{cake1}}, z_{\text{sweater}})$

Training Data

- 1+B repin pairs:
 - From Related Pins surface
 - Capture semantic relatedness
 - Goal: Embed such pairs to be "neighbors"
- Example positive training pairs (Q,X):

Shared Negative Sample

$$d(z_{\text{cake1}}, z_{\text{cake2}}) < d(z_{\text{cake1}}, z_{\text{sweater}})$$

- Similar to KG embedding, we can build a loss function for the positive pair and sampled negative pairs
- Using more negative samples $V_{\text{neg}} = \{v_{\text{neg}}\}$ for one positive sample v_{pos} per user $u^* \in U_{\text{mini}}$ improves the recommendation performance, but is also expensive.
 - We need to generate $|\textbf{\textit{U}}_{\min}| \cdot |\textbf{\textit{V}}_{\text{neg}}|$ embeddings for negative nodes.
 - We need to apply $|U_{\min}| \cdot |V_{\text{neg}}|$ GNN computational graphs (see right), which is expensive.

Shared Negative Sample

- Key idea: We can share the same set of negative samples $V_{\text{Cop}} = \{v_{\text{Cop}}\}$ across all users U_{mini} in the mini-batch.
- This way, we only need to generate $|V_{\rm neg}|$ embeddings for negative nodes.
 - This saves the node embedding generation computation by a factor of $|U_{\min}|$!
 - Empirically, the performance stays similar to the non-shared negative sampling scheme.

Curriculum Learning

- Key insight: It is effective to make the negative samples gradually harder in the process of training.
- At n-th epoch, we add n-1 hard negative items.
 - #(Hard negatives) gradually increases in the process of training.
- The model will gradually learn to make finer-grained predictions.

PinSAGE: Curriculum Learning

- Idea: use harder and harder negative samples
- Include more and more hard negative samples for each epoch

Source pin

Positive

Easy negative

Hard negative

Hard Negatives

- Challenge: Industrial recsys needs to make extremely fine-grained predictions.
 - #Total items: Up to billions.
 - #Items to recommend for each user: 10 to 100.
- Issue: The shared negative items are randomly sampled from all items
 - Most of them are "easy negatives", i.e., a model does not need to be finegrained to distinguish them from positive items.
- We need a way to sample "hard negatives" to force the model to be fine-grained!

Hard Negatives

- For each user node, the hard negatives are item nodes that are close (but not connected) to the user node in the graph.
- Hard negatives for user $u \in U$ are obtained as follows:
 - Compute personalized page rank (PPR) for user u.
 - Sort items in the descending order of their PPR scores.
 - Randomly sample item nodes that are ranked high but not too high, e.g., $2000^{th} 5000^{th}$.
 - Item nodes that are close but not too close (connected) to the user node.
- The hard negatives for each user are used in addition to the shared negatives.

PinSAGE: Negative Sampling

- (q, p) positive pairs are given but various methods to sample negatives to form (q, p, n)
- Distance Weighted Sampling (<u>Wu et al., 2017</u>)
 - Sample negatives so that query-negative distance distribution is approx U[0.5, 1.4]

(b) Sample distribution for different strategies.

Fine-Grained Object Similarity

Query

Visual only

PinSAGE: Summary

- PinSAGE uses GNNs to generate high-quality user/item embeddings that capture both the rich node attributes and graph structure.
- The PinSAGE model is effectively trained using sophisticated negative sampling strategies.
- PinSAGE is successfully deployed at Pinterest, a billion-scale image content recommendation service.
 - Uncovered in this lecture: How to scale up GNNs to large-scale graphs.