Utilização de Métodos Númericos para Integrais

Jhonattan C. B. Cabral¹, Daniel M. P. Carvalho¹

¹Instituto de Informática e Matemática Aplicada (DIMAp) Universidade Federal do Rio Grande do Norte (UFRN)

jhonattan.yoru@gmail.com, danielmarx08@gmail.com

Abstract. Task applied in the second unit of the discipline of Numerical Calculus (DIM0404), aims to improve and apply the knowledge acquired to solve problems involving integrals.

Resumo. Tarefa aplicada na primeira unidade da disciplina de Cálculo Numérico (DIM0404), tem como objetivo aprimorar e aplicar os conhecimentos adquiridos para resolução de problemas envolvendo integrais.

1. Demonstre a regra 3/8 de Simpson

Vamos utilizar o polinômio interpolador de Newton de grau 3 para efetuar os cálculos, assim teremos:

$$P_3(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3]$$

Agora vamos efetuar as diferenças divididas:

1.
$$f[x_0, x_1] = \frac{y_1 - y_0}{x_1 - x_0}$$

2.
$$f[x_0, x_1, x_2] = \frac{y_2 - 2y_1 + y_0}{x_2 - x_0}$$

3.
$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{\frac{y_3 - 2y_2 + y_1}{x_3 - x_1} - \frac{y_2 - 2y_1 + y_0}{x_2 - x_0}}{x_3 - x_0}$$

Em seguida determinaremos as seguintes igualdades:

\boldsymbol{x}	=	u
x_0		0
x_1		1
x_2		2
x_3		3

Tendo em mãos os resultados das diferenças divididas e as igualdades, Podemos substituir x por u no polinômio, assim ficaremos com:

$$P(u) = y_0 + u(y_1 - y_0) + u(u - 1)(\frac{-2y_1 + y_2 + y_0}{2}) + (u^3 - 3u^2 + 2u)(\frac{y_3 - y_0 + 3y_1 - 3y_2}{6})$$

Como sabemos que $\int_{x_0}^{x_3} P_3(x) dx = \int_0^3 P_3(u) h du$. Logo,

$$\int_0^3 P_3(u)h \, du = h \int_0^3 y_0 \, du + h \int_0^3 u(y_1 - y_0) \, du + h(\frac{-2y_1 + y_2 + y_0}{2}) \int_0^3 u^2 - u \, du + h(\frac{y_3 - y_0 + 3y_1 - 3y_2}{6}) \int_0^3 u^3 - 3u^2 + 2u$$

Resolvendo as integrais, temos:

$$h \left[uy_0 \right]_{u=0}^3 + h \left[\frac{u^2}{2} (y_1 - y_0) \right]_{u=0}^3 + h \left(\frac{-2y_1 + y_2 + y_0}{2} \right) \left[\frac{u^3}{3} - \frac{u^2}{2} \right]_{u=0}^3 + h \left(\frac{y_3 - y_0 + 3y_1 - 3_2}{6} \right) \left[\frac{u^4}{u} - u^3 + u^2 \right]_{u=0}^3$$

Atribuindo os intervalos e isolando o h, conseguimos obter:

$$h\left[3y_0 + \frac{9}{2}(y_1 - y_0) + (\frac{-2y_1 + y_2 + y_0}{2})(9 - \frac{9}{2}) + (\frac{y_3 - y_0 + 3y_1 - 3y_2}{6})(\frac{81}{4} - 27 + 9)\right]$$

$$h\left[3y_0+\frac{9}{2}(y_1-y_0)+\frac{9}{2}(\frac{-2y_1+y_2+y_0}{2})+\frac{9}{4}(\frac{y_3-y_0+3y_1-3y_2}{6})\right]$$

$$h\left[\frac{9}{2}y_1 - \frac{3}{2}y_0 + \frac{9}{4}(-2y_1 + y_2 + y_0) + \frac{3}{8}(y_3 - y_0 + 3y_1 - 3y_2)\right]$$

$$h\left[-\frac{3}{2}y_0 + \frac{9}{4}y_0 - \frac{3}{8}y_0 + \frac{9}{2}y_1 - \frac{9}{2}y_1 + \frac{9}{8}y_1 + \frac{9}{4}y_2 - \frac{9}{8}y_2 + \frac{3}{8}y_3\right]$$

$$h\left[\frac{3}{8}y_0 + \frac{9}{8}y_1 + \frac{9}{8}y_2 + \frac{3}{8}y_3\right]$$

Resultado:

$$\frac{3}{8}h(y_0 + 3y_1 + 3y_2 + y_3)$$

2. Implemente as regras compostas do trapézio, 1/3 de Simpson e 3/8 de Simpson. Utilize-as para integrar a função

$$f(x) = x\sin(x)$$

no intervalo [-5, 5]

2.0.1. *trapezio.cpp*

```
#include <iostream>
  #include <cmath>
  #include <stdlib.h>
  #include <math.h>
  double funcao(double);
  double (*func) (double) = funcao;
  double trapezio(double , double , int , double (*func)(double));
  int main()
10
11
  {
           //Pre-definindo o numero de iteracoes e os intervalos,
12
           //sem interacao com o usuario.
13
           int n = 6; // Numero de sub intervalos
14
           double a = -5;
15
           double b = 5;
16
17
           double result = trapezio(a, b, n, func);
19
           std::cout << std::endl;</pre>
20
           std::cout << ">>Resultado aproximado da integral: ";
21
           std::cout << result << std::endl;</pre>
22
           std::cout << std::endl << std::endl;</pre>
24
           return 0;
25
26
27
  double funcao (double x)
28
29
           return x * std::sin(x);
30
           //return std::pow(x,2); //debug
31
32
33
  double trapezio(double a, double b, int n, double (*func)(double
      ))
35
           double h = (b-a)/n;
36
           double vet_x[n+1];
37
           double vet_y[n+1];
38
39
           double width = (std::abs(a) + std::abs(b))/n;
```

```
41
           vet_x[0] = a;
42
           vet_y[0] = func(vet_x[0]);
43
           for (int i = 1; i < n+1; ++i)
44
45
                    vet_x[i] = vet_x[i-1] + width;
                    vet_y[i] = func(vet_x[i]);
47
           }
48
49
           //ex: Regra do trapezio composta para 7 pontos: (
50
               aplicada 6 vezes)
           //h[f(x0)/2 + f(x1) + f(x2) + f(x3) + f(x4) + f(x5) + f(x6)]
               x6)/2
52
           double result = vet_y[0]/2 + vet_y[n]/2; //f(x0)/2 + f(
53
               xn)/2
54
           for(int i = 1; i < n; ++i) //Restante dos valores sao</pre>
               somados
56
                    result = result + vet_y[i];
57
58
           result = h * result;
59
           return result;
60
61
```

2.0.2. 1 - 3Simpson.cpp

```
#include <iostream>
  #include <cmath>
  #include <stdlib.h>
  #include <math.h>
  double funcao(double);
  double (*func) (double) = funcao; //Ponteiro para a funcaoo
  double um_tres_simpson(double , double , int , double (*func)(
     double)); //Metodo 1/3 simpson
9
  int main()
10
11
           //Pre-definindo o numero de iteracoes e os intervalos,
12
           //sem interacao com o usuario.
13
           int n = 6; // numero de sub intervalos (tem que ser par)
14
           double a = -5;
15
           double b = 5;
16
17
           double result = um_tres_simpson(a, b, n, func);
18
19
           std::cout << std::endl;</pre>
```

```
std::cout << ">>Resultado aproximado da integral: ";
           std::cout << result << std::endl;</pre>
22
           std::cout << std::endl << std::endl;</pre>
23
           std::cout << "Para mais detalhes sobre a funcao</pre>
24
               integrada e o metodo 1/3 de Simpson, consultar o
               codigo." << std::endl;</pre>
25
26
           return 0;
27
28
  double funcao(double x)
31
           return x * std::sin(x);
32
           //return std::pow(x,2);
33
34
35
  double um_tres_simpson(double a, double b, int n, double (*func)
      (double))
37
           double h = (b-a)/n;
38
           double vet_x[n+1];
39
           double vet_y[n+1];
40
           double width = (std::abs(a) + std::abs(b))/n;
42
43
           vet_x[0] = a;
44
           vet_y[0] = func(vet_x[0]);
45
           for (int i = 1; i < n+1; ++i)
46
47
           {
                    vet_x[i] = vet_x[i-1] + width;
48
                    vet_y[i] = func(vet_x[i]);
49
           }
50
51
           //Ex da 1_3 Simpson composta para 7 pontos (Ou seja,
52
               aplicada 3 vezes):
           //h/3*[f(x0) + 4*f(x1) + 2*f(x2) + 4*f(x3) + 2*f(x4) +
53
              4*f(x5) + f(x6)];
54
           double result = vet_y[0] + vet_y[n]; //f(x0) + f(xn)
55
           for (int i = 1; i < n; ++i)
57
                    if(i%2 != 0) //Valor em posicao impar,
                       multiplica por 4
                    {
59
                             result = result + 4 * vet_y[i];
60
                    }
                    else //Valor em posicao par, multiplica por 2
62
```

```
result = result + 2* vet_y[i];

result = result + 2* vet_y[i];

result = (h/3) * result;

return result;

return result;
```

2.0.3. 3 - 8Simpson.cpp

```
#include <iostream>
  #include <cmath>
  #include <stdlib.h>
  #include <math.h>
  double funcao(double);
  double (*func) (double) = funcao; //Ponteiro para a funcao
  double tres_oito_simpson(double , double , int , double (*func)(
      double)); //Metodo 3/8 simpson
  int main()
11
           //Pre-definindo o numero de iteracoes e os intervalos,
12
           //sem interacao com o usuario.
13
           int n = 6; // numero de sub intervalos (tem que ser par)
14
           double a = -5;
15
           double b = 5;
17
           double result = tres_oito_simpson(a, b, n, func);
18
19
           std::cout << std::endl;</pre>
20
           std::cout << ">>Resultado aproximado da integral: ";
21
           std::cout << result << std::endl;</pre>
22
           std::cout << std::endl << std::endl;</pre>
23
           std::cout << "Para mais detalhes sobre a funcao</pre>
24
              integrada e o metodo 1/3 de Simpson, consultar o
              codigo." << std::endl;</pre>
25
26
           return 0;
27
28
29
  double funcao(double x)
30
           return x * std::sin(x);
32
           //return std::pow(x,2);
33
34
35
  double tres_oito_simpson(double a, double b, int n, double (*
      func) (double))
```

```
37
           double h = (b-a)/n;
38
           double vet_x[n+1];
39
           double vet_y[n+1];
40
41
           double width = (std::abs(a) + std::abs(b))/n;
42
           vet_x[0] = a;
44
           vet_y[0] = func(vet_x[0]);
45
           for (int i = 1; i < n+1; ++i)
46
47
                    vet_x[i] = vet_x[i-1] + width;
                    vet_y[i] = func(vet_x[i]);
49
           }
50
51
           //Ex de 3/8 Simpson composta para 7 pontos (Ou seja,
52
               aplicada duas vezes):
           //3h/8 * [f(x0) + 3*f(x1) + 3*f(x2) + 2*f(x3) + 3*f(x4)
53
                + 3*f(x5) + f(x6)]
54
           double result = vet_y[0] + vet_y[n];
55
           for (int i = 1; i < n; ++i)
56
           {
57
                    if (i%3 == 0) //Se o indice e multiplo de 3,
                       multiplica f[i] por 2
                    {
59
                             result = result + 2 * vet_y[i];
60
                    }
61
                    else //Se nao, multiplica por 3
62
63
                             result = result + 3 * vet_y[i];
65
66
           result = (3*h/8) * result;
67
           return result;
68
```

2.1. Calcule o resultado de forma analítica

Para o cálculo utilizaremos o método de integração por partes:

$$\int_{x=-5}^{5} x \sin(x) \, dx$$

Vamos supor que:

$$u = x$$
 $v = -\cos(x)$ $du = 1dx$ $dv = \sin(x)dx$

Sabendo da igualdade

$$\int u \, dv = uv - \int v \, du$$

$$= -x \cos(x) - \int_{x=-5}^{5} -\cos(x) \, 1dx$$

$$= \left[-x \cos(x) - (-\sin(x)) \right]_{x=-5}^{5}$$

Aplicando os intervalos

$$= [-5\cos(5) + \sin(5)] - [-(-5)\cos(-5) + \sin(-5)]$$

Resultado:

$$=-4.754470$$

2.2. Compare os resultados dos métodos numéricos para a mesma quantidade de pontos

Para cada um dos métodos, há um certo número mínimo de pontos para que possam ser aplicados de forma composta. Para o método do trapézio, a quantidade de pontos necessária para que ele funcione é de 2 + K. Para o método 1/3 Simpson, essa quantidade é dada por 3 + 2K e para o método 3/8 Simpson, essa quantia é de 4 + 3K. Em todos os três métodos esse K é um número natural maior ou igual a 0.

Como devemos usar a mesma quantia de pontos para a aplicação dos métodos nessa questão, vamos escolher a quantia mínima que faça com que todos os três funcionem. O método do trazpézio cresce de 1 em 1, 1/3 de Simpson cresce de 2 em 2, e o 3/8 de Simpson de 3 em 3, fazendo algumas observações, conclui-se que o número de pontos que faz com que todos funcionem simultâneamente é dado por 6X + 1, onde X é um natural maior que zero. Assim o número de pontos que será utilizado para comparar os resultados será de 7.

Os resultados são elencados a seguir, como há 7 pontos, tem-se então 6 intervalos para calculo do valor da integral.

Resultado real: -4.754470

Trapézio: * Resultado aproximado da integral: -4.57841

1/3 de Simpson: * Resultado aproximado da integral: -4.46389

3/8 de Simpson: * Resultado aproximado da integral: -2.15408

Dado o número de pontos considerados, o método que melhor se aproximou do valor real foi o do trapézio, isso pode ser explicado levando-se em consideração a forma de onda da função no intervalo considerado. Para um número maior de pontos os outros dois métodos tendem a ser cada vez mais eficazes.T

2.3. Exemplifique com um gráfico hachurado cada uma das fórmulas compostas (plote o gráfico de f(x) junto com os polinômios interpoladores)

A seguir são aparesentados os três gráficos referentes à aplicação composta dos métodos de integração.

Figura 1. Método do trapézio, 6 aplicações

Figura 2. Método de 1/3 de Simpson, 3 aplicações

Figura 3. Método de 3/8 de Simpson, 2 aplicações

Pode-se notar que a soma das áreas das seis funções (retas) geradas pela interpolação dos 7 pontos ao longo do intervalo de -5 a 5, cobrem bem a figura da função que estamos analisando (x*sin(x)). Fazendo jus ao bom resultado do método na aproximação da área real da função.

Em segundo lugar, na qualidade da aproximação, vem o método 1/3 de Simpson, que usando 7 pontos é aplicado 3 vezes. E com um pior desempenho, para 7 pontos, há o método 3/8 de Simpson, que é aplicado 2 vezes, gerando assim duas funções da interpolação dos seus pontos em cada uma das aplicações.