Matrix Class

Generated by Doxygen 1.8.14

Contents

Index

1	Description					
2	Clas	s Index	dex			
	2.1	Class L	ist		3	
3	Clas	s Docur	nentation		5	
	3.1			ss Template Reference	5	
		3.1.1		tor & Destructor Documentation	6	
			3.1.1.1	Matrix() [1/2]	6	
			3.1.1.2	Matrix() [2/2]	6	
		3.1.2	Member I	Function Documentation	6	
			3.1.2.1	feedArray()	7	
			3.1.2.2	fillMatrix()	7	
			3.1.2.3	operator()() [1/2]	7	
			3.1.2.4	operator()() [2/2]	8	
			3.1.2.5	operator*()	8	
			3.1.2.6	operator=()	8	
			3.1.2.7	operator[]()	9	
			3.1.2.8	printToFile()	9	
			3.1.2.9	set()	9	
			3.1.2.10	transpose()	9	
			3.1.2.11	transposeBlock()	10	
		3.1.3	Member I	Data Documentation	10	
			3.1.3.1	cols	10	
			3.1.3.2	Mat	10	
			3.1.3.3	rows	10	

11

Chapter 1

Description

Templatized Matrix class provides cache friendly 1d aray implementation of Matrix Multiplication and Matrix Transpose. the helper functions include printing the matrix to a file, outputting to terminal, reading from console terminal, populating a Matrix using random numbers, using an array to fill the Matrix etc.,

2 Description

Chapter 2

Class Index

^	4	_		1	! - 4
2	1	(:	lace		IQT

Here are the classes, structs, unions and interfaces with brief descriptions:						
Matrix< T >	ļ					

4 Class Index

Chapter 3

Class Documentation

3.1 Matrix < T > Class Template Reference

Public Member Functions

• Matrix ()

constructor which initializes the rows and cols to 0

Matrix (size_t rows, size_t cols)

constructor which takes two arguments of type size_t to set the rows and cols of the Matrix

~Matrix ()

destructor for deleting Matrix

T operator() (size_t i, size_t j) const

getter function which returns value at the position of 'i'th row and 'j'th column of the Matrix

void set (size_t i, size_t j, T val)

setter function to modify the value at the position of 'i'th row and 'j'th column of the Matrix

T & operator() (size_t i, size_t j)

getter function which returns value at the position of 'i'th row and 'j'th column of the Matrix

• void fillMatrix (const T lower_bound, const T upper_bound)

populates a matrix using random numbers between the bounds provided by the user

void feedArray (T *arr)

populates a Matrix using the provided array elements in row major order

void printToFile (ofstream &out) const

prints the Matrix to the output file ofstream object given by the user

Matrix transpose () const

Transposes Matrix without tiling.

• Matrix transposeBlock () const

Uses tiling/blocking to transpose a Matrix.

• Matrix operator* (const Matrix &B) const

Uses overloaded operator* to perform Matrix Multiplication.

Matrix operator= (const Matrix &B)

Uses overloaded operator= to perform Matrix Assignment.

Public Attributes

• size trows

Matrix class contains 3 public members, 1.rows, 2.cols and 3. *Mat.

- size_t cols
- T * Mat

6 Class Documentation

Private Member Functions

• T & operator[] (int index) const getter function which returns value at the index positon in 1d array sequence of the Matrix

3.1.1 Constructor & Destructor Documentation

```
3.1.1.1 Matrix() [1/2]

template<class T>
Matrix< T >::Matrix ( ) [inline]

constructor which initializes the rows and cols to 0
```

USAGE:

```
Matrix <double> M;
```

creates Matrix of type double with 0 rows and 0 columns

size_t cols) [inline]

constructor which takes two arguments of type size_t to set the rows and cols of the Matrix

USAGE:

```
Matrix <double> M(2,3);
```

creates Matrix of type double with 2 rows and 3 columns < rows and cols should be positive numbers

allocate the array size for the respective datatype provided by the user

initialize all the values to zeros

3.1.2 Member Function Documentation

3.1.2.1 feedArray()

populates a Matrix using the provided array elements in row major order

USAGE:

```
int arr[6] = {1,2,3,4,5,6};
M.feedArray(arr);
```

populates M with the values of arr (which is of the same datatype as M)

3.1.2.2 fillMatrix()

populates a matrix using random numbers between the bounds provided by the user

USAGE:

```
M.fillMatrix(0.3, 9.1);
```

populates M with values between 0.3 and 9.1 checks if the bounds are nan values

```
3.1.2.3 operator()() [1/2]
```

getter function which returns value at the position of 'i'th row and 'j'th column of the Matrix

USAGE:

```
double M23 = M(2,3);
```

double variable M23 gets assigned the value of M(2,3) checks for the validity of i and j values

8 Class Documentation

```
3.1.2.4 operator()() [2/2]
```

getter function which returns value at the position of 'i'th row and 'j'th column of the Matrix

checks for the validity of i and j values

3.1.2.5 operator*()

Uses overloaded operator* to perform Matrix Multiplication.

USAGE:

```
Matrix<double> AB = A*B;
```

Note

The AB matrix initialization should be done as shown above

< using Block Matrix Transpose for faster computation

3.1.2.6 operator=()

Uses overloaded operator= to perform Matrix Assignment.

USAGE:

```
Matrix<double> A = B;
```

Note

The AB matrix initialization should be done as shown above

3.1.2.7 operator[]()

getter function which returns value at the index positon in 1d array sequence of the Matrix

checks for the validity of index

3.1.2.8 printToFile()

prints the Matrix to the output file ofstream object given by the user

USAGE:

```
ofstream output_file("output.txt");
M.printToFile(output_file);
```

prints the Matrix to a ofstream file object

3.1.2.9 set()

setter function to modify the value at the position of 'i'th row and 'j'th column of the Matrix

USAGE:

```
M.set(2,3,9.5);
```

the value at M(2,3) gets changed to 9.5 checks for the validity of i and j values

3.1.2.10 transpose()

```
template<class T>
Matrix Matrix< T >::transpose ( ) const [inline]
```

Transposes Matrix without tiling.

USAGE:

```
Matrix<double> Mtrans = M.transpose();
```

using the regular transpose

```
Matrix<double> Mtrans = M.transposeBlock();
```

using the block transpose

Note

The Mtrans matrix initialization should be done as shown above

10 Class Documentation

3.1.2.11 transposeBlock()

```
template<class T>
Matrix Matrix< T >::transposeBlock ( ) const [inline]
```

Uses tiling/blocking to transpose a Matrix.

USAGE:

```
Matrix<double> Mtrans = M.transposeBlock();
```

using the block transpose

Note

The Mtrans matrix initialization should be done as shown above

block size 32 has been used

3.1.3 Member Data Documentation

3.1.3.1 cols

```
template<class T>
size_t Matrix< T >::cols
```

1. cols (columns of the Matrix)

3.1.3.2 Mat

```
template<class T>
T* Matrix< T >::Mat
```

1. *Mat (pointer to the 1d array, storing the matrix elements)

3.1.3.3 rows

```
template<class T>
size_t Matrix< T >::rows
```

Matrix class contains 3 public members, 1.rows, 2.cols and 3. *Mat.

1. rows (rows of the Matrix)

The documentation for this class was generated from the following file:

• /home/anoop/Documents/brain corporation/prob2 Matrix/Transpose/src/Matrix.h

Index

```
cols
     Matrix, 10
feedArray
     Matrix, 6
fillMatrix
     Matrix, 7
Mat
     Matrix, 10
Matrix
     cols, 10
     feedArray, 6
     fillMatrix, 7
     Mat, 10
     Matrix, 6
     operator*, 8
     operator(), 7
    operator=, 8
     operator[], 8
    printToFile, 9
     rows, 10
     set, 9
     transpose, 9
     transposeBlock, 9
Matrix< T >, 5
operator*
     Matrix, 8
operator()
     Matrix, 7
operator=
     Matrix, 8
operator[]
     Matrix, 8
printToFile
     Matrix, 9
rows
     Matrix, 10
set
     Matrix, 9
transpose
     Matrix, 9
transposeBlock
```

Matrix, 9