# Density-Based Spatial Clustering of Applications with Noise

Presented by Wondong Lee

Written by M.Ester, H.P.Kriegel, J.Sander and Xu.

# Why Density-Based Clustering?

Results of k-means algorithm for k = 4



→ The result is not satisfiable!!

#### **DBSCAN**

- Relies on a density-based notion of cluster
- Discovers clusters of arbitrary shape in spatial databases with noise
- Basic Idea
  - Group together points in high-density
  - Mark as outliers 
     points that lie alone in low-density regions



#### **DBSCAN**

- Local point density at a point p defined by two parameters
  - (1)  $\varepsilon \rightarrow$  radius for the neighborhood of point p:
  - ε-Neighborhood: all points within a radius of ε from the point p
     N<sub>ε</sub>(p) := {q in data set D | dist(p, q) ≤ ε}
  - (2) *MinPts*  $\rightarrow$  minimum number of points in the given neighborhood N(p)

# High Density?

ε-Neighborhood of an point contains at least MinPts



ε-Neighborhood of *p* ε-Neighborhood of *q* 

Q. When MinPts = 4?

Density of p is "high"

Density of q is "low"

## Core, Border & Outlier

- Three category for each point
  - Core point: if its density is high
  - Border point: density is low (but in the neighborhood of a core point)
  - Noise point: any point that is not a core point nor a border point



MinPts = 5

## **Density-Reachability**

- Directly density-reachable
  - A point q is directly density-reachable from a point p:
  - -If p is a core point and q is in p's ε-neighborhood



Minpts = 4

Q. p is directly density-reachable from q?

No, why?

Q. Density-reachability is asymmetric

# **Density-Reachability**

- Density-reachable
  - A point p is density-reachable from a point q
  - -If there is a chain of points  $p_1, \ldots, p_n$ , with  $p_1 = q$ ,  $p_n = p$  such that  $p_{i+1}$  is directly density-reachable from  $p_i$



MinPts = 7

- p1 is directly density-reachable from q
- p2 is directly density-reachable from p1
- p is directly density-reachable from p2
- There is a chain from q to p  $(q \rightarrow p1 \rightarrow p2 \rightarrow q)$

Q. q is density-reachable from p?

No, why?

# **Density-Connectivity**

- Density-connected
  - A pair of points p and q are density-connected
  - -If they are commonly density-reachable from a point o



MinPts = 7

Q. o is density-reachable from p? Yes, why?

Q. Density-connectivity is symmetric

## Formal Description of Cluster

- Given a data set D, parameter ε and MinPts,
- A cluster C is a subset of D satisfying two criteria:
  - Maximality
    - $\forall p, q \text{ if } p \in \mathbf{C}$  and if q is density-reachable from p, then also  $q \in \mathbf{C}$
  - Connectivity
    - $\forall$  p,  $q \in \mathbf{C}$ , p and q are density-connected
- Note: cluster contains core points as well as border points

#### Parameter

•  $\varepsilon$  = 2, *MinPts* = 3



```
if p is not ped classified then
  if p is a core-point then
     collect all points density-reachable from p
     and assign them to a new cluster.
  else
  elsessign p to NOISE
     assign p to NOISE
```

# exmaple)

#### Parameter

•  $\varepsilon$  = 2, *MinPts* = 3



```
if p is not yet classified then
if p is a core-point then
collect all points density-reachable from p
and assign them to a new cluster.
else
```

assign p to NOISE

# exmaple)

#### Parameter

•  $\varepsilon$  = 2, *MinPts* = 3



 $\in D$  do

if p is not yet classified thenif p is a core-point thencollect all points density-reachable from pand assign them to a new cluster.

else assign *p* to NOISE

# Example



**Original Points** 



Point types: core, border and outliers

$$\epsilon$$
 = 10, MinPts = 4

## When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes



**Clusters** 

## When DBSCAN Does Not Work Well

Cannot handle varying densities



**Original Points** 



 $(\varepsilon = 9.92, MinPts = 4)$ 

## When DBSCAN Does Not Work Well

#### Sensitive to parameters



#### K-means VS DBSCAN



**Winner is DBSCAN** 

#### K-means VS DBSCAN



Winner is K-means

# Thank you for attention Any Questions?



#### Reference

- Comparing Clustering Algorithm
  - http://www.cise.ufl.edu/~jmishra/clustering/DataMiningPresentation.ppt
- Density-Based Clustering
  - http://www.cse.buffalo.edu/faculty/azhang/cse601/density-based.ppt
- Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." Kdd. Vol. 96. No. 34. 1996.