

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

MAESTRÍA EN CIENCIAS MATEMÁTICAS

Program	Solución Numérica de Ecuaciones Programa de la actividad académica Diferenciales Ordinarias (Métodos en Diferencias)						iones en					
Clave			Crédit 9	tos	Campo conocimie	Análisis Numérico y Computación Científica (Incluyendo Modelación)						
Modalidad Curso Básic		Básico	ю		Tipo	T (X)	P()	T/P	()			
Carácter Obligatorio de elección					Horas							
Duración del programa Semestral				Semana Semestre								
			•				Teórica	as: 4.5		Teór	ricas: 72	
				Prácticas: 0		Prácticas: 0						
							Total:	4.5		Tota	l: 72	

	Seriación				
		Ninguna (X)			
		Obligatoria()			
Actividad antecedente	académica				
Actividad subsecuente	académica				
		Indicativa ()			
Actividad antecedente	académica				
Actividad subsecuente	académica				

Objetivo general:

Que el alumno conozca las características fundamentales que debe cumplir un esquema de discretización para resolver problemas de condiciones iniciales, y los resultados que relacionan los conceptos de consistencia y estabilidad con el de convergencia. Experimentar con esquemas que no necesariamente cumplen dichas características.

Objetivos específicos:

Que el alumno:

- Conozca los principales grupos de métodos (Métodos lineales multipaso, métodos Predictor
 -Corrector, métodos Runge Kutta), para resolver problemas de condiciones iniciales en su
 desarrollo y características de orden de convergencia y estabilidad lineal.
- Conozca de esquemas para la estimación del error y en control automático de paso, y de su implementación.
- Experimente y conozca de las dificultades que se presentan al resolver los llamados problemas rígidos (stiff), los aprenda a reconocer y conozca acerca de las características que deben cumplir los métodos adecuados para estos problemas.

	Índice temático						
	Tema	Horas semestre					
		Teóricas	Prácticas				
1	Introducción a los Métodos Numéricos	15	0				
2	Métodos Lineales Multipaso	14	0				
3	Métodos Predictor-Corrector	14	0				
4	Métodos de un paso	14	0				
5	Ecuaciones diferenciales Stiff. Teoría de estabilidad lineal	15	0				
	Total	72	0				
	Suma total de horas	7	2				

	Contenido Temático					
	Tema y subtemas					
1	Introducción a los Métodos Numéricos 1.1 Conceptos básicos: discretización, errores local y global, consistencia, estabilidad y convergencia					
2	Métodos Lineales Multipaso 2.1 Errores local y global 2.2 Cotas de error 2.3 Teoría de estabilidad lineal 2.4 Métodos BDF (Backward Differential Formula)					
3	Métodos Predictor-Corrector 3.1 Error local de truncamiento 3.2 Teoría de estabilidad para los métodos predictor-corrector 3.3 Estrategias de paso variable (longitud)					
4	 Métodos de un paso 4.1 Introducción a los métodos de Runge-Kutta, consistencia, error local, orden y convergencia 4.2 Introducción a la teoría de Butcher, condiciones de orden 4.3 Métodos explícitos, implícitos y semi-implícitos 4.4 Teoría de estabilidad para los métodos de Runge- Kutta 					
5	Ecuaciones diferenciales Stiff. Teoría de estabilidad lineal 5.1 La naturaleza de stiffness 5.2 Métodos implícitos en el contexto de stiffness 5.3 Métodos lineales multipaso 5.4 Métodos de Runge-Kutta 5.5 Correlación con métodos en diferencias para ecuaciones diferenciales Parciales					

Estrategias didácticas	Evaluación del aprendizaje		
Exposición		Exámenes parciales	Χ
Trabajo en equipo		Examen final	Χ
Lecturas		Trabajos y tareas	Χ
Trabajo de investigación		Presentación de tema	
Prácticas (taller o laboratorio)		Participación en clase	Χ
Prácticas de campo		Asistencia	
Aprendizaje por proyectos	Х	Rúbricas	
Aprendizaje basado en problemas		Portafolios	
Casos de enseñanza		Listas de cotejo	
Otras (especificar)		Otras (especificar)	

Perfil profesiográfico				
Grado	Maestro o Doctor en Ciencias Matemáticas			
Experiencia docente				
Otra característica				

Bibliografía Básica:

- Celia, M.A. Y Gray, W.G., Numerical Methods for Differential Equations Fundamental Concepts for Scientific And Engineering Applications, Prentice Hall, 1992.
- Hairer E Y Norsett S.P., Wanner G, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer 2° Edition, 1993.
- Lambert, J.D.., Numerical Methods for Ordinary differential Systems. The Initial Value Problem, Wiley 2° Edition, 1991.
- Shampine, L.F., Numerical Solution of Ordinary Differential Equations, Chapman \$ Hall, 1994.

Bibliografía Complementaria:

- Butcher, J.C., The Numerical Analysis Of Ordinary Differential Equations, Wiley, 1987.
- Hairer. E, Norsett, S.P. Y Wanner, G., Solving Ordinary Differential Equations li: Stiff and Differential-Algebraic Problems, Springer, 1991.