SRM Institute of Science and Technology **Department of Computer Science and Engineering** Delhi – Meerut Road, Sikri Kalan, Ghaziabad, Uttar Pradesh – 201204

OSRM

DELHI-NCR CAMPUS, GHAZIABAD (U.P.)

Academic Year: 2023-24 (ODD)

Cour	se Code & Title: 21MAB201T&Transforms and Boundary Value Problems	Session: 1 Duration: Marks: 30			FN
	Part - A				
Ansv	ver all questions (100	$2 \times 1M =$	10 M	arks)	
Q. No	Question	Marks	BL	co	PO
1	A complete solution of PDE $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} - z = \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}$	1	4	1	1
	 (a) z=ax+by-ab, where a,b are arbitrary constants. (b) z=x²+y²-2ab, where ab and b are arbitrary constants. (c) z=ax²+by²+abxy, where a and b are arbitrary constants. (d) z=ax-by+ab, where a,b are arbitrary constants. 				
2	Which of the following statement is correct for the given partial differential equation	1	4	1	2
	$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2}$				
	 a. It is linear equation of order two. b. It is non-linear equation of order two. c. It is linear equation of order one. d. It is non-linear equation of order one. 				
3	To solve the form of Pp+Qq=R, we form the subsidiary equation of the form:	1	1	1	2
	(a) $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$, (b) $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$, (c) $\frac{xdx}{P} = \frac{ydy}{Q} = \frac{zdz}{R}$. (d) $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$				
4	A partial differential equation has	1	1	1	1
	(a) one independent variable, (b) more than one dependent variable, (d) equal number of dependent and independent variables				
5	Find the Complementary function of $(D^2 + DD' - 2D'^2) = 0$	1	2	1	2
	(a) $z = \phi_1(y - 2x) + \phi_2(y - x)$, (c) $z = \phi_1(y - 2x) + \phi_2(y + x)$				
6	(b) $z = \phi_1(y+2x) + \phi_2(y+x)$ (d) $z = \phi_1(y+2x) + \phi_2(y-x)$				
0	The P.I. of $(D^3 + 7DD'^2 - 6D'^3)_E = e^{2x+3y}$	1	4	1	2
	(a) $\frac{-1}{28}e^{2x+3y}$, (b) $\frac{-1}{12}e^{2x+3y}$, (c) $\frac{1}{28}e^{2x+3y}$, (d) $\frac{-1}{28}e^{2x+3y}$				
7	The two sets of Lagrange's multipliers of (3z-4y)p+(4x-2z)q=2y-3x are	1	4	1	2
	(a) $x,y,z; 2,3,4$ (b) $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}; 2,3,4$ (c) $x,y,z; 4,2,3$ (d) $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}; 4,2,3$				
7	The general solution of $\frac{\partial z}{\partial x} P + \frac{\partial z}{\partial y} Q = z$ is	1	4	1	2
	(a) $f\left(\frac{x}{y}, \frac{y}{z}\right)$ (b) $f\left(\frac{x}{x}, \frac{y}{z}\right)$ (c) $f\left(\frac{x}{z}, \frac{y}{y}\right)$ (d) $f\left(\frac{x}{x}, \frac{y}{y}\right)$				
If	the given PDE is of the type $F(p,q)=0$, its complete solution is given by (a) $z=a+bx+c$ (b) $z=ax+by+c$ (c) $z=ax^2+by^2+c$ (d) $z=ax+b+y+cz$	1	1	1	2
Th	ne complete integral of p=4qx is	1	4	1	1
	(a) $z = ax^2 + ay + c$ (b) $z = 2ax^2 + ay + c$ (c) $z = ax^2 + by + c$ (d) $z = ax^2 + by^2 + c$				

Part B Answer any three questions

 $3Q \times 4M = 12 Marks$

11	Form the Partial	Differential	Equation	2z =	$\frac{x^2}{x^2}$ +	$\frac{y^2}{12}$
10					a	D

Solve
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = x + y$$

Solve the partial differential equation
$$\frac{y-z}{yz}p = \frac{z-x}{zx}q = \frac{x-y}{xy}$$

Solve
$$p \cot x + q \cot y = \cot z$$

13

14

15.

Part C

Answer all questions

$1Q \times 8M = 8 Marks$

(A) Solve
$$(D^2 + DD' - 6D'^2)z = x^2 \sin(x + y)$$

$$\left(D^{3}7DD'^{2}-6D'^{3}\right)z=\cos\left(x-y\right)+x^{2}+xy^{2}+y^{3}$$