

数学实验

Mathematical Experiments

第13讲

统计方法III 回归分析

实验13 内容提要

回归分析(Regression Analysis)简介

- 1. 实例及其数学模型
- 2. 一元线性回归分析
- 3. 多元线性回归分析

从应用角度介绍回归分析的基本原理、 方法和软件实现

回归分析

• 回归分析是研究变量间关系的统计学课题

在数据的定量分析中,往往需要处理存在着一定 联系的变量,需要刻画变量之间有怎样的相互关 系,以及如何发生相互影响

一元线性回归分析、多元线性回归分析、非线性 回归分析、时间序列分析,以及逻辑回归分析等

回归分析的主要步骤

- 收集一组包含因变量和自变量的数据;
- 选定因变量与自变量之间的模型,利用数据 按照最小二乘准则计算模型中的系数;
- 给出结果参数的概率解释;
- 判断得到的模型是否适合于这组数据,诊断 有无不适合回归模型的异常数据;
- 利用模型对因变量作出预测或解释。

回归(regression)的由来 Francis Golton (1822-1911)

- •一般说来高个子的父代会有高个子的子代.
- •子代的身高比父代更加趋向一致("向平庸的回归").

 $\bar{x} \approx 68, \bar{y} \approx 69$ 儿子比父亲平均高**1**英寸

对于身高72英寸的父亲, 儿子身高多数不到73英寸;

对于身高64英寸的父亲, 儿子身高多数超过65英寸;

回归直线 y=0.516 x+33.73

Pearson: 1078个父亲和儿子身高的散点图

实例及其数学模型 例1 血压与年龄

为了解血压随年龄增长而升高的关系,调查了30个成年人的血压(收缩压,mmHg)与年龄:

序号	血压	年龄	序号	血压	年龄	序号	血压	年龄
1	144	39	11	162	64	21	136	36
2	215	47	12	150	56	22	142	50
3	138	45	13	140	59	23	120	39
4	145	47	14	110	34	24	120	21
5	162	65	15	128	42	25	160	44
• • •	•••	•••	• • •	•••	• • •	• • •	•••	•••

- •用这组数据确定血压与年龄的关系;
- 从年龄预测血压可能的变化范围;
- •回答"平均说来60岁比50岁的人血压高多少"

例1 血压与年龄

模型 记血压(因变量) y, 年龄(自变量) x,

作数据 (x_i, y_i) (i=1,2,...30) 的散点图

y与x大致呈线性关系

$$y = \beta_0 + \beta_1 x$$

由数据确定系数 β_0 , β_1 的估计值 $\hat{\beta}_0$, $\hat{\beta}_1$

- 曲线拟合(求超定线性方程组的最小二乘解);
- 从统计推断角度讨论 β_0 , β_1 的置信区间和假设检验;
- •对任意的年龄 x 给出血压 y 的预测区间。

例2 血压与年龄、体重指数、吸烟习惯

消華大学

又调查了例1中30个成年人的体重指数、吸烟习惯:

序号	丘压	年龄	体重 指数	吸烟	序号	压	年龄	体重 指数	吸烟	序号	血 压	年龄	体重 指数	吸烟
1	144	39	24.2	0	11	162	64	28.0	1	21	136	36	25.0	0
2	215	47	31.1	1	12	150	56	25.8	0	22	142	50	26.2	1
3	138	45	22.6	0	13	140	59	27.3	0	23	120	39	23.5	0
4	145	47	24.0	1	14	110	34	20.1	0	24	120	21	20.3	0
5	162	65	25.9	1	15	128	42	21.7	0	25	160	44	27.1	1
•••	•••	•••	•••	•••	•••	•••	• • •	•••	•••	•••	•••	•••	•••	•••

体重指数: 体重(kg) /[身高(m)]² 吸烟习惯: 0~不吸烟, 1~吸烟

例2 血压与年龄、体重指数、吸烟习惯

模型 记血压 y,年龄 x_1 、体重指数 x_2 、吸烟习惯 x_3

作数据 y 对 x_2 的散点图 y与 x_2 大致呈线性关系

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

由数据确定系数 $\beta_0, \beta_1, \beta_2, \beta_3$

的估计值 $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$

例3 软件开发人员的薪金

建立模型研究薪金与资历、管理责任、教育程度的关系, 分析人事策略的合理性,作为新聘用人员薪金的参考. 46名软件开发人员的档案资料

编号	薪金	资历	管理	教育	编号	薪金	资历	管理	教育
01	13876	1	1	1	42	27837	16	1	2
02	11608	1	0	3	43	18838	16	0	2
03	18701	1	1	3	44	17483	16	0	1
04	11283	1	0	2	45	19207	17	0	2
05	11767	1	0	3	46	19346	20	0	1

资历~从事专业工作的年数;管理~1=管理人员,0= 非管理人员;教育~1=中学,2=大学,3=研究生

模型

 $y\sim$ 薪金, $x_1\sim$ 资历(年)

 $x_2 = 1$ ~ 管理人员, $x_2 = 0$ ~ 非管理人员

1=中学 教育

$$x_3 = \begin{cases} 1, & \text{中学} \\ 0, & \text{其它} \end{cases}$$

$$x_4 = \begin{cases} 0, & \text{其它} \end{cases}$$
 大学: $x_3 = 1, x_4 = 0, \end{cases}$ 大学: $x_3 = 0, x_4 = 1;$ 研究生: $x_3 = 0, x_4 = 0$

3=研究生
$$x_4 = \begin{cases} 1, & 1 \\ 0, & 1 \end{cases}$$

研究生: $x_3=0, x_4=0$

假设

- 资历每加一年薪金的增长是常数:
- 管理、教育、资历之间无交互作用.

线性回归模型 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$

由数据确定 $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$

例4 酶促反应

酶~高效生物催化剂; 酶促反应~经过酶催化的化学反应

酶促反应的反应速度主要取决于反应物(底物)的浓度:

- 底物浓度较小时,反应速度大致与浓度成正比;
- 底物浓度很大、渐进饱和时,反应速度趋于固定值.

Michaelis-Menten模型

$$y = \frac{\beta_1 x}{\beta_2 + x} \beta_1$$

 $y \sim$ 酶促反应的速度, $x \sim$ 底物浓度

待定系数 β_1 (最终反应速度)

$$\beta_1$$
 $\beta_1/2$
 β_2
 β_2
 β_2

$$\beta_2$$
 (半速度点)

例4 酶促反应

为研究酶促反应中嘌呤霉素对反应速度与底物浓度之间关系的影响,设计了两个实验:使用的酶经过嘌呤霉素处理;使用的酶未经嘌呤霉素处理。

实验数据

底物浓度(ppm)		0.0	02	0.06 0.11		0.22		0.56		1.10			
反应	处理	76	47	97	107	123	139	159	152	191	201	207	200
速度	未处理	67	51	84	86	98	115	131	124	144	158	160	/

对未经嘌呤霉素处理的反应,用实验数据估计参数 β_1 , β_2 ; 用实验数据研究嘌呤霉素处理对参数 β_1 , β_2 的影响。

模型 $y = \frac{\beta_1 x}{\beta_2 + x}$ \rightarrow 对 β_1 , β_2 非线性

$$\frac{1}{y} = \frac{1}{\beta_1} + \frac{\beta_2}{\beta_1} \frac{1}{x} = \theta_1 + \theta_2 \frac{1}{x}$$
对 \theta_1, \theta_2 \text{ 线性}

1/x较小时有很好的线性趋势, 1/x较大时出现很大的分散.

$$\theta_1 = 6.972 \times 10^{-3}, \ \theta_2 = 0.215 \times 10^{-3} \ \ \beta_1 = 143.43, \ \beta_2 = 0.0308$$

x较大时, y有较大偏差. 参数估计时, x较小(1/x很大)的数据控制了参数的确定.

直接考虑非线性模型

一元线性回归分析

问 已知一组数据 (x_i, y_i) , i=1,2,...n (平面上的n个点),

题 用最小二乘准则确定一个线性函数(直线)

$$y = \widehat{\beta}_0 + \widehat{\beta}_1 x$$

1. 血压与年龄

2. 合金强度与碳含量

系数的计算二者没有什么区别; 2的拟合效果比1好得多.

怎样衡量由最小二乘准则拟合得到的模型的可靠程度? 怎样给出模型系数的置信区间和因变量的预测区间?

一元线性回归模型 $y = \beta_0 + \beta_1 x + \varepsilon$

$$y = \beta_0 + \beta_1 x + \varepsilon$$

x~自变量 β_0 , β_1 ~回归系数

 ε ~随机变量(影响y的随机因素的总和)

基本假设

独立性: x_i 相互独立, y_i 相互独立

线性性: y的期望是x的线性函数

齐次性:对于不同的x,y的方差是常数

正态性:对于给定的x,y服从正态分布

 ε 是相互独立的、期望为0、方差为 σ^2 、正态分布的 随机变量,即 $\varepsilon \sim N(0, \sigma^2), \varepsilon$ 称(随机)误差。

回归系数的最小二乘估计

数据
$$x_i, y_i$$
 ($i=1,...n$)代入 $y = \beta_0 + \beta_1 x + \varepsilon$ $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

$$\frac{\partial Q}{\partial \beta_0} = 0, \frac{\partial Q}{\partial \beta_1} = 0$$

$$\frac{\partial Q}{\partial \beta_0} = 0, \frac{\partial Q}{\partial \beta_1} = 0 \qquad \qquad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \ s_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2, \ s_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

直线 $y = \hat{\beta}_0 + \hat{\beta}_1 x$ 通过 x_i, y_i 的均值点 (\bar{x}, \bar{y})

最小二乘估计

一元线性回归的统计分析

1.误差方差 $D\varepsilon = \sigma^2$ 的估计

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, i = 1, 2, \dots n$$
 y_i 理论值(期望)的估计

$$e_i = y_i - \hat{y}_i, i = 1, 2, \dots n$$
 称残差

$$Q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\sigma^2$$
的无偏估计 $s^2 = \frac{Q}{n-2}$

$$\mathbf{E}(s^2) = \sigma^2$$

 $n-2\sim Q$ 的自由度=数据容量 – 模型中所含参数的个数

s²~剩余方差(样本方差), s~剩余标准差(样本标准差)

一元线性回归的统计分析

2. 回归系数的区间估计和假设检验

统计性质: $\hat{\beta}_1 \sim N(\beta_1, \sigma^2/s_{xx})$, $Q/\sigma^2 \sim \chi^2_{(n-2)}$, $\hat{\beta}_1$ 和Q相互独立

$$t \mathcal{T} = \frac{(\hat{\beta}_1 - \beta_1)\sqrt{s_{xx}}/\sigma}{\sqrt{Q/(n-2)\sigma^2}} = \frac{(\hat{\beta}_1 - \beta_1)\sqrt{s_{xx}}}{s} \sim t_{(n-2)}$$

$$eta_1$$
的置信区间 $\left[\hat{\beta}_1 - t_{(n-2),1-\alpha/2} \frac{S}{\sqrt{S_{xx}}}, \hat{\beta}_1 + t_{(n-2),1-\alpha/2} \frac{S}{\sqrt{S_{xx}}}\right]$

问:怎样缩短 β_1 的置信区间?

对 β_1 的假设检验 $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$

$$|t| = \left| \frac{\hat{\beta}_1 \sqrt{s_{xx}}}{s} \right| > t_{(n-2),1-\alpha/2}$$
 | 拒绝 H_0 | 回归模 | β_1 的置信区间型有效 | 不包含零点

一元线性回归的统计分析

3.模型的有效性检验 偏差的分解: $y_i - \bar{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$S = U + Q$$

总偏差平方和 回归平方和 残差平方和

决定系数 $R^2 = U/S$ 因变量的总变化中自变量引起的部分的比例

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i} \qquad \bar{y} = \hat{\beta}_{0} + \hat{\beta}_{1}\bar{x} \qquad U = \hat{\beta}_{1}^{2}\sum_{i=1}^{n}(x_{i} - \bar{x})^{2} = \hat{\beta}_{1}^{2}s_{xx}$$
若 H_{0} 成立 $U/\sigma^{2} = \hat{\beta}_{1}^{2}s_{xx}/\sigma^{2} \sim \chi^{2}(1)$

$$Q/\sigma^{2} \sim \chi^{2}(n-2),$$

$$F = \frac{U}{Q/(n-2)} \sim F(1, n-2)$$

给定 α ,有 $F_{1-\alpha}$ (1,n-2) $F > F_{1-\alpha}$ (1,n-2) [拒绝 H_0] 型有效

回归方程的显著性检验, F检验

$$\widehat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\overline{x}^2}{L_{XX}}\right)\right), \quad \widehat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{L_{XX}}\right)$$

$$\frac{\mathbf{Q}}{\sigma^2} \sim \chi^2(n-2)$$

$$\frac{\mathbf{Q}}{\sigma^2} \sim \chi^2 (n-2)$$

$$H_0: \beta_1 = 0$$
 VS $H_1: \beta_1 \neq 0$

回归平方和
$$U = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 = \widehat{\beta}_1^2 L_{XX} \Rightarrow \frac{U}{\sigma^2} \sim \chi^2(1)$$

且U与Q独立。
$$F = \frac{\mathbf{U}}{\mathbf{Q}/(n-2)} \sim F(1, n-2)$$

回归方程系数的t检验和区间估计

$$\widehat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\overline{x}^2}{L_{XX}}\right)\right), \quad \widehat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{L_{XX}}\right)$$

$$\frac{\mathbf{Q}}{\sigma^2} \sim \chi^2(n-2)$$

$$\frac{\mathbf{Q}}{\sigma^2} \sim \chi^2 (n-2)$$

$$S_{\beta_0}^2 = \left(\frac{1}{n} + \frac{\bar{x}^2}{L_{XX}}\right) \cdot \frac{Q}{n-2}, \qquad S_{\beta_1}^2 = \frac{Q}{(n-2)L_{XX}}$$

当
$$\mathbf{H}_0: \beta_0 = 0$$
成立时, $\frac{\widehat{\beta}_0}{S_{\beta_0}} \sim t(n-2);$ 当 $\mathbf{H}_0: \beta_1 = 0$ 成立时, $\frac{\widehat{\beta}_1}{S_{\beta_1}} \sim t(n-2)$

$$eta_0$$
的区间估计 $\left[\widehat{eta}_0 - t_{1-\alpha/2}(n-2) \cdot S_{eta_0}, \widehat{eta}_0 + t_{1-\alpha/2}(n-2) \cdot S_{eta_0}\right]$
 eta_1 的区间估计 $\left[\widehat{eta}_1 - t_{1-\alpha/2}(n-2) \cdot S_{eta_1}, \widehat{eta}_1 + t_{1-\alpha/2}(n-2) \cdot S_{eta_1}\right]$

利用一元线性回归模型进行预测

$$x_0$$
给定, y_0 的预测值: $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$

性质: \hat{y}_0 无偏,且 $E(\hat{y}_0 - y_0)^2$ 最小

$$\frac{100}{100} \left[\hat{y}_0 - t_{1-\alpha/2}(n-2)s\sqrt{\frac{(x_0 - \overline{x})^2}{s_{xx}} + \frac{1}{n} + 1}, \ \hat{y}_0 + t_{1-\alpha/2}(n-2)s\sqrt{\frac{(x_0 - \overline{x})^2}{s_{xx}} + \frac{1}{n} + 1} \right]$$

s~剩余标准差

n很大且 x_0 接近 \bar{x}

$$[\hat{y}_0 - u_{1-\alpha/2}s, \hat{y}_0 + u_{1-\alpha/2}s]$$

$$\delta(x) = t_{(n-2),1-\alpha/2} s \sqrt{\frac{(x-\bar{x})^2}{s_{xx}} + \frac{1}{n} + 1} \approx u_{1-\alpha/2} s$$

一元线性回归的MATLAB实现

b=regress(y,X)
[b,bint,r,rint,s]=regress(y,X,alpha)

输入: y~因变量(列向量),X~1与自变量组成的矩阵,alpha~显著性水平 α (缺省时设定为0.05).

输出: $b = (\hat{\beta}_0, \hat{\beta}_1)$,bint~ β_0 , β_1 的置信区间,r~残差(列向量),rint~残差的置信区间.

s(4个统计量):

决定系数 R^2 ; F值; F(1,n-2)分布大于F值的概率p; 剩余方差 s^2 . 当 $p < \alpha$ 时拒绝 H_0 ,回归模型有效.

例1 血压与年龄 模型 $y = \beta_0 + \beta_1 x$ 数据

xueya1.m

回归系数	回归系数估计值	回归系数置信区间					
$oldsymbol{eta}_0$	98.4084	[78.7484 118.0683]					
$oldsymbol{eta}_1$	0.9732	[0.5601 1.3864]					
R^2 =0.4540, F =23.2834, p <0.0001, s^2 =273.7137							

模型 β_1 置信区间不含零点; $p < \alpha$; $F_{(1,n-2),1-\alpha} = 4.1960 < F$ 检验 β_1 置信区间较长, R^2 较小,模型精度不高.

由残差图剔除异常数据后

回归系数	回归系数估计值	回归系数置信区间					
$oldsymbol{eta}_0$	96.8665	[85.4771 108.2559]					
$oldsymbol{eta_1}$	0.9533	[0.7140 1.1925]					
$R^2 = 0.7123$, $F = 66.8358$, $p < 0.0001$, $s^2 = 91.4305$							

R^2 =0.4540, F=23.2834, p<0.0001

血压与年龄 模型 $y = \beta_0 + \beta_1 x$ xueya1.m

剔除异常点 (x_2, y_2)

又出现两个新的异常点.

 $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 = 144.5298$ 对50岁人的血压进行预测:

预测区间 (α =0.05): [124.5406 164.5190]

> 简化 (t→u): [125.7887 163.2708]

多元线性回归分析

模型
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon, \ \varepsilon \sim N(0, \sigma^2)$$

估计回归系数

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_m x_{im} + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2), \ i = 1, \dots n$$

$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1m} \\ \cdots & & & \\ 1 & x_{n1} & \cdots & x_{nm} \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \cdots \\ \varepsilon_n \end{bmatrix}, \quad \beta = [\beta_0, \beta_1, \cdots \beta_m]^T \quad \begin{cases} Y = X\beta + \varepsilon \\ \varepsilon \sim N(0, \sigma^2) \end{cases}$$

$$Q(\beta) = \sum_{i=1}^{n} \varepsilon_i^2 = (Y - X\beta)^T (Y - X\beta) \qquad \frac{\partial Q}{\partial \beta_i} = 0, \quad i = 0, 1, \dots m$$

$$\frac{\partial Q}{\partial \beta_i} = 0, \quad i = 0, 1, \dots m$$

思考 怎样保证 X^TX可逆

为什么要求 n>m

多元线性回归的统计分析

1.误差方差 σ 的估计

一元回归

多元回归

模型

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

 $y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon$

估计值

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_m x_{mi}$

残差

$$e_i = \hat{\varepsilon}_i = y_i - \hat{y}_i$$

 $e_i = \hat{\varepsilon}_i = y_i - \hat{y}_i$

残差 平方和

$$Q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 $Q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

剩余方差

$$s^2 = \hat{\sigma}^2 = \frac{Q}{n-2}$$

 $s^2 = \hat{\sigma}^2 = \frac{Q}{n - m - 1}$

Q的自由度

n-(m+1) (m+1个参数)

2. 回归系数的区间估计和假设检验

一元回归

多元回归

$$\hat{\beta}_1 \sim N(\beta_1, \sigma^2 / s_{xx}), \quad s_{xx} = \sum_{i=1}^n (x_i - \overline{x})^2$$

$$\hat{\beta}_{j} \sim N(\beta_{j}, \sigma^{2}c_{jj}), \quad c_{jj} \sim (\tilde{X}^{T}\tilde{X})^{-1}$$
 的 j 对角元

$$Q/\sigma^2 \sim \chi^2(n-2),$$

$$Q/\sigma^2 \sim \chi^2(n-m-1)$$

$$t = \frac{(\hat{\beta}_1 - \beta_1)\sqrt{s_{xx}} / \sigma}{\sqrt{Q/(n-2)\sigma^2}} = \frac{(\hat{\beta}_1 - \beta_1)\sqrt{s_{xx}}}{s} \sim t(n-2)$$

$$t = \frac{(\hat{\beta}_{1} - \beta_{1})\sqrt{s_{xx}}/\sigma}{\sqrt{Q/(n-2)\sigma^{2}}} = \frac{(\hat{\beta}_{1} - \beta_{1})\sqrt{s_{xx}}}{s} \sim t(n-2) \quad t_{j} = \frac{(\hat{\beta}_{j} - \beta_{j})/\sigma\sqrt{c_{jj}}}{\sqrt{Q/(n-m-1)\sigma^{2}}} = \frac{\hat{\beta}_{j} - \beta_{j}}{s\sqrt{c_{jj}}} \sim t(n-m-1)$$

$$[\hat{\beta}_1 \pm t_{1-\alpha/2}(n-2)\frac{s}{\sqrt{s_{xx}}}]$$

$$[\hat{\beta}_j \pm t_{1-\alpha/2}(n-m-1)s\sqrt{c_{jj}}]$$

$$H_0: \beta_1 = 0, \quad H_1: \beta_1 \neq 0$$

$$H_0^{(j)}: \beta_j = 0, \quad H_1^{(j)}: \beta_j \neq 0$$

$$|t| = \left| \frac{\hat{\beta}_1 \sqrt{s_{xx}}}{s} \right| > t_{1-\alpha/2} (n-2)$$

$$|t| = \left| \frac{\hat{\beta}_1 \sqrt{s_{xx}}}{s} \right| > t_{1-\alpha/2}(n-2)$$
拒绝 H_0 , 模型有效
$$|t_j| = \left| \frac{\hat{\beta}_j}{s\sqrt{c_{jj}}} \right| > t_{1-\alpha/2}(n-m-1)$$

3. 模型的有效性检验

一元回归

偏差分解 S = U + Q

决定系数 $R^2 = U/S$

 $H_0: \beta_1 = 0, \quad H_1: \beta_1 \neq 0$

 H_0 成立 $U/\sigma^2 \sim \chi^2(1)$, $Q/\sigma^2 \sim \chi^2(n-2)$,

$$F = \frac{U}{Q/(n-2)} \sim F(1, n-2)$$

检验 $F > F_{1-\alpha}(1,\mathbf{n-2})$

多元回归

$$S = U + Q$$

$$R^2 = U/S$$

$$H_0^{(j)}: \beta_j = 0, \quad H_1^{(j)}: \beta_j \neq 0$$

 $U/\sigma^2 \sim \chi^2(m), \ Q/\sigma^2 \sim \chi^2(n-m-1)$

$$F = \frac{U/m}{Q/(n-m-1)} \sim F(m, n-m-1)$$

 $F > F_{1-\alpha}(m, n-m-1)$

拒绝H₀,模型有效

利用多元线性回归模型进行预测

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_m x_m$$

性质: \hat{y}_0 无偏, 且 $E(\hat{y}_0 - y_0)^2$ 最小

预测区间

$$[\hat{y} - \delta(x), \hat{y} + \delta(x)]$$

$$\delta(x) = t_{1-\alpha/2}(n-m-1) \cdot s \sqrt{(x-\bar{x})^T (\tilde{X}^T \tilde{X})^{-1} (x-\bar{x}) + \frac{1}{n} + 1} \approx u_{1-\alpha/2} s$$

与一元回归对比
$$\delta(x) = t_{1-\alpha/2}(n-2) \cdot s \sqrt{\frac{(x-\bar{x})^2}{s_{xx}} + \frac{1}{n} + 1} \approx u_{1-\alpha/2}s$$

多元线性回归的MATLAB实现

与一元回归相同

b=regress(y,X) 注意 X 的构造 [b,bint,r,rint,s]=regress(y,X,alpha)

例2 血压与年龄、体重指数、吸烟习惯 xueya2.m

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$
 剔除两个异常点后 $\hat{y} = 58.5101 + 0.4303 x_1 + 2.3449 x_2 + 10.3065 x_3$

- •年龄和体重指数相同,吸烟者比不吸烟者的血压(平均)高10.3
- 与例1"血压与年龄"的结果 \hat{y} = 96.8665 + 0.9533 x_1 相比,年龄增加1岁血压的升高值(即 β_1)为何有这么大的差别?

线性最小二乘拟合与多元线性回归的一般形式

线性回归模型 $y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$ (1)

"线性"是指y是系数 β 的关系(非指y与x的关系)

$$y = \beta_0 + \beta_1 x^2$$
, $y = \beta_0 + \beta_1 e^{x_1} + \beta_2 / x_2$ ~线性回归

线性回归 一般形式

$$y = \beta_0 + \beta_1 r_1(x) + \dots + \beta_m r_m(x) + \varepsilon, \varepsilon \sim N(0, \sigma^2) \quad (2)$$

$$x = (x_1, \dots x_k), \quad r_j(x) (j = 1, \dots, m)$$
 是已知函数

$$\diamondsuit r_j(x)=u_j$$
, 则(2) \rightarrow (1)

多元线性回归中的交互作用

例3 软件开发人员的薪金 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$

 $y\sim$ 新金, $x_1\sim$ 资历, $x_2=1\sim$ 管理人员, $x_2=0\sim$ 非管理人员 $x_3=1, x_4=0\sim$ 中学; $x_3=0, x_4=1\sim$ 大学; $x_3=0, x_4=0\sim$ 研究生

系数	系数估计	置信区间					
β_0	11033	[10258 11807]					
β_1	546	[484 608]					
$oldsymbol{eta}_2$	6883	[6248 7517]					
β_3	-2994	[-3826 -2162]					
$oldsymbol{eta_4}$	148	[-636 931]					
$R^2=0.957$ $F=226$ $p<0.0001$							

 $R^2, F, p \to 模型整体上可用$

xinjin1.m

资历增加1年 薪金增长546 管理人员多6883 中学程度比更高的少2994 大学程度比更高的多148 β₄置信区间包含零点,

解释不可靠!

用残差分析发现交互作用

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4$$

考察残差 $e = y - \hat{y}$ 是否为 $N(0, \sigma^2)$

残差大概分成3个水平, 6种管理—教育组合混在 一起,未正确反映

管理与教育的组合

组合	1	2	3	4	5	6
管理	0	1	0	1	0	1
教育	1	1	2	2	3	3

e与管理—教育组合的关系

残差全为正,或全为负, 管理—教育组合处理不当 应增加x₂与x₃,x₄的交互项

增加管理x2与教育x3, x4的交互项

xinjin2.m

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_2 x_3 + \beta_6 x_2 x_4 + \varepsilon$$

系数	系数估计值	置信区间				
β_0	11204	[11044 11363]				
β_1°	497	[486 508]				
β_2	7048	[6841 7255]				
β_3	-1727	[-1939 -1514]				
β_{4}	-348	[-545 -152]				
$oldsymbol{eta_5}$	-3071	[-3372 -2769]				
β_6	1836	[1571 2101]				
$R^2=0.999$ $F=554$ $p<0.0001$						

R², F有改进,所有回归系数置信 区间都不含零点,模型完全可用 消除了不正常现象

异常数据(33号)应去掉

去掉异常数据后的结果

系数	系数估计值	置信区间				
$oldsymbol{eta}_0$	11200	[11139 11261]				
$oldsymbol{eta}_1$	498	[494 503]				
$oldsymbol{eta}_2$	7041	[6962 7120]				
β_3	-1737	[-1818 -1656]				
$oldsymbol{eta_4}$	-356	[-431 -281]				
$oldsymbol{eta_5}$	-3056	[-3171 –2942]				
β_6	1997	[1894 2100]				
$R^2 = 0.9998$ $F = 36701$ $p < 0.0001$						

 $R^2: 0.957 \rightarrow 0.999 \rightarrow 0.9998$

 $F: 226 \rightarrow 554 \rightarrow 36701$

置信区间长度更短

xinjin3.m

残差图十分正常

最终模型的结果可以应用

模型应用 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_2 x_3 + \hat{\beta}_6 x_2 x_4$

制订6种管理—教育组合人员的"基础"薪金(资历x1=0)

组合	管理 x_2	教育 (x ₃ , x ₄)	系数	"基础"薪 金
1	0	(1,0)	β_0 + β_3	9463
2	1	(1,0)	β_0 + β_2 + β_3 + β_5	13448
3	0	(0,1)	eta_0 + eta_4	10844
4	1	(0,1)	β_0 + β_2 + β_4 + β_6	19882
5	0	(0,0)	$oldsymbol{eta}_0$	11200
6	1	(0,0)	eta_0 + eta_2	18241

大学程度管理人员比更高程度管理人员的薪金高

大学程度非管理人员比更高程度非管理人员的薪金略低

线性回归的特殊情形----多项式回归

例1 西红柿的施肥量与产量 14块同样大小土地的数据

序号	产量	施肥(千克)	序号	产量	施肥(千克)
1	1035	6.0	•••	•••	•••
2	624	2.5	12	1030	9.0
3	1084	7.5	13	985	11.0
• • •	•••	•••	14	855	12.5

模型 $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$

b=regress(y,X)求解

$$\hat{y} = 175.62 + 217.87 x - 13.15 x^2$$

一元多项式回归模型的一般形式

$$y = \beta_0 + \beta_1 x + \dots + \beta_m x^m + \varepsilon$$

MATLAB求解

xihongshi.m

regress(y,X)

- polyfit(x,y,m)
- polytool(x,y,m,alpha)

例1的交互式画面

注意3个程序的用法与所得结果的相同点和不同点

例2 商品销售量与价格

某厂生产的一种电器的销售量y与竞争对手的价格 x_1 和本厂的价格 x_2 有关。

下表是该商品在10个城市的销售记录。

x ₁ (元)	120	140	190	130	155	175	125	145	180	150
x ₂ (元)	100	110	90	150	210	150	250	270	300	250
y (个)	102	100	120	77	46	93	26	69	65	85

- 1)根据这些数据建立y与 x_1 和 x_2 的关系式,对得到的模型和系数进行检验。
- 2) 若某市本厂产品售价160元, 竞争对手售价170元, 预测该市的销售量。

例2 商品销售量与价格

 $y=x_2$ 有较明显的线性关系, $y=x_1$ 的关系难以确定. 需要试验不同的回归模型,用统计分析决定优劣.

线性模型 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

shangpin.m

系数	系数估计	置信区间			
$oldsymbol{eta_0}$	66.5176	[-32.5060 165.5411]			
$oldsymbol{eta_1}$	0.4139	[-0.2018 1.0296]			
$oldsymbol{eta_2}$	-0.2698	[-0.4611 -0.0785]			

 $R^2 = 0.6527, F = 6.5786, p = 0.0247, s^2 = 351.0445$

置信区间包含零点

整体检验效果不好

二次函数

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \varepsilon$$

回归模型

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \varepsilon$$

多元二项式回归的一般形式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \sum_{1 \le j,k \le m} \beta_{jk} x_j x_k + \varepsilon$$

MATLAB命令: rstool(x,y,'model',alpha)

X~n×m自变量矩阵,y~因变量向量,model选择:

linear (只包含线性项));

purequadratic (包含线性项和纯二次项);

interaction(包含线性项和纯交互项);

quadratic(包含线性项和完全二次项)。

输出一个交互式画面

例2 商品销售量与价格

model = purequadratic

4个模型的输出比较

	$oldsymbol{eta}_{\scriptscriptstyle 0}$	$eta_{\scriptscriptstyle 1}$	eta_2	$oldsymbol{eta_3}$	$eta_{\scriptscriptstyle 4}$	$oldsymbol{eta_5}$	S
Purequadratic	-312.5871	7.2701	-1.7337	-0.0228	0.0037		16.6436
quadratic	-307.3600	7.2032	-1.7374	0.0001	-0.0226	0.0037	18.6064
interaction	137.5317	-0.0372	-0.7131	0.0028			19.1626
linear	66.5176	0.4139	-0.2698				18.7362

变量选择

回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测值的误差也愈小,模拟的效果愈好。

但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。因此在多元回归模型中,选择适宜的变量数目进行回归尤为重要。

$$S = U + Q$$

校正判定系数

$$R_a^2 = 1 - \frac{U/(n-k-1)}{S/(n-1)}$$
 $S = U+Q$

校正判定系数和未校面判定系数的关系:

(1)
$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-k-1}$$

- (2) k > 1时, $R_a^2 < R^2$,且随着解释变量的增力两者的差距将越来越太 也就是说校正的比未校正的判定系数增加慢些!
- (3) 判定系数 R^2 非负(取值在0,1);但是, R_a^2 取值可能为负,这时规 R_a^2 =0

逐步回归

- 从候选集合中确定一初始子集;
- ·从子集外(候选集合内)中引入一个对y影响显著的;
- 对集合中的变量进行检验,剔除影响变得不显著的;
- 迭代式地进行引入和剔除,直到不能进行为止。
- 选择衡量影响显著程度的统计量,通常用偏F统计量;
- 适当选取引入变量的显著性水平 α_{in} 和剔除变量的 α_{out} 。
- 引入新的变量后原来模型内影响显著的变量变得不显著,从而被剔除~自变量之间存在较强相关性的结果.

多重共线性 某些自变量之间的相关性很强

矩阵XTX病态 口回归系数的置信区间较大

MATLAB中的逐步回归

stepwise (x,y,inmodel,penter,premove)

x~n×k自变量数据矩阵(k~全部变量数), y~因变量向量, inmodel~初始模型中候选变量的指标(x的列序数, 缺省时为全部候选变量),

penter ~ 引入变量的显著性水平 α_{in} (缺省时为0.05) premove~剔除变量的显著性水平 α_{out} (缺省时为0.10)

输出交互式画面

例 儿童的体重与身高和年龄

序号	体重(kg)	身高(m)	年龄	序号	体重(kg)	身高(m)	年龄
1	27.1	1.34	8	7	30.9	1.39	10
2	30.2	1.49	10	8	27.8	1.21	9
3	24.0	1.14	6	9	29.4	1.26	10
4	33.4	1.57	11	10	24.8	1.06	6
5	24.9	1.19	8	11	36.5	1.64	12
6	24.3	1.17	7	12	29.1	1.44	9

可能存在二次函数关系

例 儿童的体重与身高和年龄

ertong.m

初始结果

最终结果

 $\hat{y} = 25.8287 + 5.3289 x_1 - 2.6849 x_2 + 0.2380 x_2^2$

实验练习

- 目的
- 1、了解回归分析的基本原理
- 2、根据问题的要求提出模型
- 3、对已确定的模型,使用MATLAB确定参数

作业 5(犯罪),10(收入),11(药物)