Exercice 2 (4 points)

- 1. Quel est le protocole qui fait la résolution d'adresse en IPv6? (0.25 point)
- 2. Préciser l'avantage majeur du protocole qui fait la résolution d'adresse en IPv6 par rapport à l'IPv4. (0.5 point)
- 3. Décrire le mécanisme de détection d'adresse dupliquée (DAD) en spécifiant le message ICMPv6 qu'il utilise. (0.5 point)
- 4. Dans quel type de configuration d'adresses IPv6 utilse-t-on DAD? Justifier la réponse (0.5 point)
- 5. Soit la capture Wireshark suivante d'un message Neighbor Solicitation

```
⊕ Frame 25 (78 bytes on wire, 78 bytes captured)

■ Ethernet II,
    Destination:
    Source: Asustekc_39:29:2b (00:11:d8:39:29:2b)
    Type: IPv6 (0x86dd)
■ Internet Protocol Version 6
    Version: 6
    Traffic class: 0x00
    Flowlabel: 0x00000
    Payload length: 24
    Next header:
    Hop limit: 255
    Source address:
    Destination address:
■ Internet Control Message Protocol v6
    Type:
              (Neighbor solicitation)
    Code: 0
    Checksum: 0x504d [correct]
    Target:
```

Complèter les champs suivants en justifiant la réponse:

- a) L'adresse MAC destination de la trame Ethernet. (0.5 point)
- b) Le protocole dans le Next Header du paquet IPv6. (0.25 point)
- c) L'adresse IPv6 source du paquet IPv6. (0.25 point)
- d) L'adresse IPv6 destination du paquet IPv6. (0.5 point)
- e) La valeur du champ Type dans le message ICMPv6. (0.25 point)
- f) L'adresse IPv6 dans le champ Target dans le message ICMPv6. (0.5 point)

Exercice 3 (11 points)

I. Un étudiant A envoie un email à un étudiant B en utilisant **une application d'email** par exemple Microsoft Outlook. Les captures Wireshark suivantes représentent certains messages échangés que vous allez interpréter à travers les questions.

1.

```
Source
                Destination
                                 Protocol Info
                                  DNS Standard query 0x7956 A mail.patriots.in
   110.10.1.4 10.10.1.1
   2 10.10.1.1 10.10.1.4
                                  DNS Standard guery response 0x7956 A mail.patriots.in CNAME
                                  TCP 1470 → 25 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 SACK_PERM
   3 10.10.1.4 74.53.140.153
                                  TCP 25 → 1470 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460
   474.53.140... 10.10.1.4
                                  TCP 1470 → 25 [ACK] Seg=1 Ack=1 Win=65535 Len=0
   5 10.10.1.4 74.53.140.153
Frame 2: 142 bytes on wire (1136 bits), 142 bytes captured (1136 bits)
> Ethernet II, Src: Netgear_d9:81:60 (00:1f:33:d9:81:60), Dst: Cradlepo_3c:17:c2 (00:e0:1c:3c:17
Internet Protocol Version 4, Src: 10.10.1.1, Dst: 10.10.1.4
ser Datagram Protocol, Src Port: 53, Dst Port: 56166
Domain Name System (response)
  Transaction ID: 0x7956
 Flags: 0x8180 Standard query response, No error
  Ouestions: 1
  Answer RRs: 2
  Authority RRs: 2
  Additional RRs: 0
 - Queries
   mail.patriots.in: type A, class IN
 Answers
   mail.patriots.in: type CNAME, class IN, cname patriots.in
   patriots.in: type A, class IN, addr 74.53.140.153
 - Authoritative nameservers
   patriots.in: type NS, class IN, ns ns2.patriots.in
   patriots.in: type NS, class IN, ns ns1.patriots.in
  [Request In: 1]
```

- a) Pourquoi une requête DNS est envoyée en premier message? (0.5 point)
- b) Sur quel protocole de transport est transportée la requête DNS? Justifier la réponse. (0.5 point)
- c) Quel(s) type(s) d'enregistrement DNS sont présents dans la réponse DNS d'après la capture? Préciser le rôle de chaque enregistrement. (0.5 point)
- d) Si le serveur de nom **ns1.partriots.in** tombe en panne, comment sera la requête traitée d'après la capture? (0.5 point)
- e) On suppose que le serveur **ns1.partriots.in** a l'adresse 2001:BEEF:DEAD:5170:201:15:ACE1:1. Décrire le contenu de son enregistrement pointeur PTR. (0.5 point)
- f) D'après la capture, les messages TCP échangés appartiennent à quelle phase de connexion? Justifier la réponse. (0.5 point)
- g) D'après la capture, quel protocole de la couche application est transporté dans les messages TCP. Justifier la réponse. (0.5 point)

No.	Source	Destination	Protocol	Info					
	1810.10.1.4	74.53.140.153	TCP	$1470 \rightarrow 25$	[PSH,	ACK] Seq=106	Ack=393	Win=65143	Len=39
	1974.53.140.153	10.10.1.4	TCP	25 → 1470	[PSH,	ACK] Seq=	Ack=	Win=5840	Len=14
	2010.10.1.4	74.53.140.153	TCP	1 470 → 2 5	[PSH,	ACK] Seq=	Ack=	Win=	Len=6
	2174.53.140.153	10.10.1.4	TCP	25 → 1470	[PSH,	ACK] Seq=	Ack=	Win=	Len=56
	2210.10.1.4	74.53.140.153	TCP	1 470 → 2 5	[ACK]	Seq= Ack=	Win=	65073 Len=	1460
	2310.10.1.4	74.53.140.153	TCP	1 470 → 2 5	[ACK]	Seq=1611 Ack	=463 Win	=65073 Len	=1460
	2410.10.1.4	74.53.140.153	TCP	1 470 → 2 5	[ACK]	Seq=3071 Ack	=463 Win	=65073 Len	=1460
	2510.10.1.4	74.53.140.153	TCP	1470 → 25	[ACK]	Seq=4531 Ack	=463 Win	=65073 Len:	=1460

- a) Identifier les drapeaux TCP activés sur la capture et préciser leurs rôles. (0.5 point)
- b) A quelle phase de connexion TCP appartiennent les messages explicités dans la capture? Justifier la réponse. (0.5 point)
- c) Reprendre le tableau suivant et complèter les valeurs qui manquent (2.5 points):

Numéro du message	SEQ	ACK	WIN
19			
20			
21			
22			

L'envoi du message numéro 25 se fait dans une phase d'évitement de congestion (CA) au 30 ème pas de transmission avec une fenêtre de congestion égale à 65700 octets.

- d) Calculer le nombre de messages TCP envoyés entre t=0.29s et t=0.3s lorsque RTT=10ms. (0.5 point)
- e) Que se passe-t-il après la réception du message TCP numéro 25? Justifier la réponse. (0.5 point)
- f) Préciser la phase qui suit l'évitement de congestion et donner les nouvelles valeurs de SSthreshold et de cwnd si TCP TAHOE est mis en place. (0.5 point)
- g) Préciser la phase qui suit l'évitement de congestion et donner les nouvelles valeurs de SSthreshold et de cwnd si TCP RENO est mis en place. (0.5 point)

II. L'étudiant A se connecte à son compte gmail depuis son **navigateur WEB pour envoyer un email** à l'étudiant B.

- 1. Préciser le(s) protocole(s) utilisé(s) ainsi que son/leurs rôle(s). (0.5 point)
- 2. Dessiner un bref diagramme de séquence qui explicite les échanges nécessaires en précisant les numéros de port sur les serveurs. (0.5 point)

III. L'étudiant B se connecte à son compte gmail depuis son **navigateur WEB pour lire** l'étudiant A.

- 1. Préciser le(s) protocole(s) utilisé(s) ainsi que son/leurs rôle(s). (0.5 point)
- 2. Dessiner un bref diagramme de séquence qui explicite les échanges nécessaires en précisant les numéros de port sur les serveurs. (0.5 point)