FCC REPORT

Applicant: REACH Tech (Xiamen) Co., Ltd.

Address of Applicant: RM.303,#18,Guanri Road, Software Park II, Xiamen,361008,

China

Equipment Under Test (EUT)

Product Name: MID

Model No.: EQ823R

FCC ID: Z5JREACH-EQ823R

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Mar., 2014

Date of Test: 21 Mar., to 03 Apr., 2014

Date of report issued: 08 Apr., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	08 Apr.,2014	Original

Prepared by: Date: 08 Apr., 2014

Report Clerk

Reviewed by: 08 Apr., 2014

Project Engineer

3 Contents

			Page
1	С	OVER PAGE	1
2	V	/ERSION	2
3		ONTENTS	
			_
4	TI	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	7
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	T	EST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
		9.1 Conducted Emission Method	
	•		
	6.10	Spurious Emission	
		.10.2 Radiated Emission Method	
_		EST SETUP PHOTO	
7			76
8	E'	UT CONSTRUCTIONAL DETAILS	77

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	REACH Tech (Xiamen) Co., Ltd.
Address of Applicant:	RM.303,#18,Guanri Road, Software Park II, Xiamen,361008, China
Manufacturer:	REACH Tech (Xiamen) Co., Ltd.
Address of Manufacturer:	RM.303,#18,Guanri Road, Software Park II, Xiamen,361008,China
Factory:	REACH Tech (Xiamen) Co., Ltd.
Address of Factory:	5/F,#51,Wanghai Road, Software Park II,Xiamen,361008, China

5.2 General Description of E.U.T.

Product Name:	MID
Model No.:	EQ823R
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-3.55 dBi
AC adapter:	Model:SKL-5WU-U050-0700
	Input:100-240V AC,50/60Hz 0.15A
	Output:5.0V DC 700mA
Power supply:	Rechargeable Li-ion Battery DC3.7V,4800mAh

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

5.3 Test mode

Transmitting mode: Keep the EUT in transmitting mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2013	June 08 2014
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2013	May 24 2014
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2013	May 24 2014
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Coaxial Cable	CCIS	N/A	CCIS0016	Feb. 01 2014	Feb. 31 2015
6	Coaxial Cable	CCIS	N/A	CCIS0017	Feb. 01 2014	Feb. 31 2015
7	Coaxial cable	CCIS	N/A CCIS0018		Feb. 01 2014	Feb. 31 2015
8	Coaxial Cable	CCIS	N/A	CCIS0019	Feb. 01 2014	Feb. 31 2015
9	Coaxial Cable	CCIS	N/A	CCIS0087	Feb. 01 2014	Feb. 31 2015
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Feb. 01 2014	Feb. 31 2015
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2013	June 08 2014
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Feb. 01 2014	Feb. 31 2015
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Feb. 30 2014	Feb. 29 2015
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2013	May. 24 2014
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Feb 01 2014	Feb. 31 2015
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 25 2013	May. 24 2014
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2013	May. 24 2014

Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2013	June 08 2014	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2013	May 24 2014	
3	LISN	CHASE	MN2050D	CCIS0074	Feb 01 2014	Feb. 31 2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	Feb. 01 2014	Feb. 31 2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is -3.55 dBi.

6.2 Conducted Emissions

	Test Requirement:	FCC Part15 C Section 15.207				
	Test Method:	ANSI C63.4:2003				
	Test Frequency Range:	150 kHz to 30 MHz				
	Class / Severity:	Class B				
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Swe	ep time=auto			
	Limit:		Limit (c	lBuV)		
		Frequency range (MHz)	Quasi-peak	Average		
		0.15-0.5	66 to 56*	56 to 46*		
		0.5-5	56	46		
		5-30	60	50		
		* Decreases with the logarithm of	f the frequency.			
	Test setup:	Reference Plane				
AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
	Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
	Test Instruments:	Refer to section 5.7 for details				
	Test mode:	Bluetooth (Continuous transmittir	ng) mode			
	Test results:	Pass				

Measurement Data

Line:

: CCIS Conducted test Site : FCC PART15 B QP LISN LINE : 108RF Site Condition Job No.

: MID EUT : EQ823R Model Test Mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Vincent

Kemark	: Frea	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over	Remark	
-	MHz	dBuV	dB	dB	dBu∇	dBu∇	dB		-
1	0.307	25.24	0.26	10.74	36. 24	50.06	-13.82	Average	
2	0.354	39.39	0.27	10.73	50.39	58.87	-8.48	QP	
3	0.354	29.85	0.27	10.73	40.85	48.87	-8.02	Average	
4	0.406	24.40	0.28	10.72	35.40	47.73	-12.33	Average	
1 2 3 4 5 6 7 8	0.410	33.74	0.28	10.72	44.74	57.64	-12.90	QP	
6	0.558	23.28	0.27	10.77	34.32	46.00	-11.68	Average	
7	0.561	32.74	0.27	10.77	43.78	56.00	-12.22	QP	
8	0.611	21.90	0.25	10.77	32.92	46.00	-13.08	Average	
9	0.763	21.23	0.23	10.80	32.26	46.00	-13.74	Average	
10	0.771	32.40	0.23	10.80	43.43		-12.57		
11	2.033	31.43	0.26	10.96	42.65	56.00	-13.35	QP	
12	3.241	31.72	0.27	10.91	42.90	56.00	-13.10	QP	

Neutral:

Trace: 25

: CCIS Conducted test Site : FCC PART15 B QP LISN NEUTRAL : 108RF Site Condition

Job No. EUT MID : EQ823R Model

Test Mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Vincent

Re

•							
	Read	LISN	Cable		Limit	Over	
Freq	Level	Factor	Loss	Level	Line	Limit	Remark
MHz	−−dBuV	dB		dBu₹	—dBu∀	<u>d</u> B	
0.358	36.90	0.25	10.73	47.88	58.78	-10.90	QP
0.358	30.54	0.25	10.73	41.52	48.78	-7.26	Average
0.406	24.76	0.25	10.72	35.73	47.73	-12.00	Average
0.410	33.76	0.25	10.72	44.73	57.64	-12.91	QP
0.459	23.61	0.28	10.75	34.64	46.71	-12.07	Average
0.510	23.70	0.28	10.76	34.74	46.00	-11.26	Average
0.561	33.66	0.25	10.77	44.68	56.00	-11.32	QP
0.561	24.25	0.25	10.77	35.27	46.00	-10.73	Average
0.763	22.14	0.19	10.80	33.13	46.00	-12.87	Average
0.775	32.46	0.19	10.80	43.45	56.00	-12.55	QP
0.968	32.63	0.22	10.86	43.71	56.00	-12.29	QP
2.099	32.10	0.29	10.96	43.35	56.00	-12.65	QP
	Freq 0.358 0.358 0.406 0.410 0.459 0.510 0.561 0.763 0.775 0.968	Read Level MHz dBuV 0.358 36.90 0.358 30.54 0.406 24.76 0.410 33.76 0.459 23.61 0.510 23.70 0.561 24.25 0.763 22.14 0.775 32.46 0.968 32.63	Read LISN Level Factor MHz dBuV dB 0.358 36.90 0.25 0.358 30.54 0.25 0.406 24.76 0.25 0.410 33.76 0.25 0.459 23.61 0.28 0.510 23.70 0.28 0.561 24.25 0.25 0.561 24.25 0.25 0.763 22.14 0.19 0.775 32.46 0.19 0.968 32.63 0.22	Read LISN Cable Level Factor Loss MHz dBuV dB dB 0.358 36.90 0.25 10.73 0.358 30.54 0.25 10.73 0.406 24.76 0.25 10.72 0.410 33.76 0.25 10.72 0.459 23.61 0.28 10.75 0.510 23.70 0.28 10.76 0.561 33.66 0.25 10.77 0.561 24.25 0.25 10.77 0.763 22.14 0.19 10.80 0.775 32.46 0.19 10.80 0.968 32.63 0.22 10.86	Read LISN Cable Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.358 36.90 0.25 10.73 47.88 0.358 30.54 0.25 10.73 41.52 0.406 24.76 0.25 10.72 35.73 0.410 33.76 0.25 10.72 44.73 0.459 23.61 0.28 10.75 34.64 0.510 23.70 0.28 10.76 34.74 0.561 33.66 0.25 10.77 44.68 0.561 24.25 0.25 10.77 44.68 0.561 24.25 0.25 10.77 35.27 0.763 22.14 0.19 10.80 33.13 0.775 32.46 0.19 10.80 33.13 0.775 32.46 0.19 10.80 43.45 0.968 32.63 0.22 10.86 43.71	Read LISN Cable Level Limit Line MHz dBuV dB dB dB dBuV dBuV 0.358 36.90 0.25 10.73 47.88 58.78 0.358 30.54 0.25 10.73 41.52 48.78 0.406 24.76 0.25 10.72 35.73 47.73 0.410 33.76 0.25 10.72 35.73 47.73 0.410 33.76 0.25 10.72 44.73 57.64 0.459 23.61 0.28 10.75 34.64 46.71 0.510 23.70 0.28 10.76 34.74 46.00 0.561 33.66 0.25 10.77 44.68 56.00 0.561 24.25 0.25 10.77 35.27 46.00 0.561 24.25 0.25 10.77 35.27 46.00 0.763 22.14 0.19 10.80 33.13 46.00 0.775 32.46 0.19 10.80 33.13 46.00 0.775 32.46 0.19 10.80 43.45 56.00 0.968 32.63 0.22 10.86 43.71 56.00	Read LISN Loss Level Limit Limit Over Limit MHz dBuV dB dB dBuV dBuV dB 0.358 36.90 0.25 10.73 47.88 58.78 -10.90 0.358 30.54 0.25 10.73 41.52 48.78 -7.26 0.406 24.76 0.25 10.72 35.73 47.73 -12.00 0.410 33.76 0.25 10.72 35.73 47.73 -12.01 0.459 23.61 0.28 10.75 34.64 46.71 -12.07 0.510 23.70 0.28 10.75 34.64 46.71 -12.07 0.561 33.66 0.25 10.77 44.68 56.00 -11.26 0.561 24.25 0.25 10.77 44.68 56.00 -11.32 0.763 22.14 0.19 10.80 33.13 46.00 -12.87 0.775 32.46 0.19 10.80 43.45 56.00

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

Wiedsurement Data	Measurement Data				
	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	1.89	21.00	Pass		
Middle	2.37	21.00	Pass		
Highest	2.72	21.00	Pass		
	π/4-DQPSK ι	mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	2.85	21.00	Pass		
Middle	3.21	21.00	Pass		
Highest	3.69	21.00	Pass		
8DPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	3.21	21.00	Pass		
Middle	3.57	21.00	Pass		
Highest	Highest 3.82 21.00 F		Pass		

Test plot as follows:

Center 2.48 GHz

18.MAR.2014 16:41:57

Middle channel

Span 10 MHz

Center 2.441 GHz

18,MAR,2014 16;38;58

Highest channel

Middle channel

18.MAR.2014 17:00:37

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

Took showned	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	1050.10	1402.81	1342.69
Middle	1062.12	1370.74	1350.70
Highest	1054.11	1402.81	1346.69

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1002	708.08	Pass
Middle	1118	708.08	Pass
Highest	1046	708.08	Pass
	π/4-DQPSK mod	le	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1006	935.21	Pass
Middle	1002	935.21	Pass
Highest	1002	935.21	Pass
8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1042	900.47	Pass
Middle	1034	900.47	Pass
Highest	1006 900.47		Pass

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	1062.12	708.08
π/4-DQPSK	1402.81	935.21
8DPSK	1350.70	900.47

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Lowest channel

Middle channel

Highest channel

Modulation mode: 8DPSK

Lowest channel

Middle channel

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

6.7 Dwell Time

Test Requirement: FCC Part15 C Section 15.247 (a)(1) Test Method: ANSI C63.4:2003 and KDB DA00-705 Receiver setup: RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak Limit: 0.4 Second Test setup: Spectrum Analyzer Non-Conducted Table Test Instruments: Refer to section 5.7 for details Test mode: Hopping mode Test results: Pass			
Receiver setup: Limit: 0.4 Second Test setup: Spectrum Analyzer Non-Conducted Table Test Instruments: Refer to section 5.7 for details Test mode: RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak 0.4 Second F.U.T Non-Conducted Table	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Limit: Test setup: Spectrum Analyzer Non-Conducted Table Feat Instruments: Refer to section 5.7 for details Test mode: Hopping mode	Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Test setup: Spectrum Analyzer	Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Refer to section 5.7 for details Test mode: Hopping mode	Limit:	0.4 Second	
Test mode: Hopping mode	Test setup:	Non-Conducted Table	
	Test Instruments:	Refer to section 5.7 for details	
Test results: Pass	Test mode:	Hopping mode	
	Test results:	Pass	

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.1315		
GFSK	DH3	0.2712	0.4	Pass
	DH5	0.3228		
	2-DH1	0.1296		
π /4-DQPSK	2-DH3	0. 2712	0.4	Pass
	2-DH5	0.3113		
	3-DH1	0.1309		
8DPSK	3-DH3	0. 2683	0.4	Pass
	3-DH5	0. 3162		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.411*(1600/(2*79))*31.6=131.52ms DH3 time slot=1.695*(1600/(4*79))*31.6=271.2ms DH5 time slot=3.026(1600/(6*79))*31.6=322.77ms

2-DH1 time slot=0.405*(1600/ (2*79))*31.6=129.6ms

2-DH3 time slot=1.659*(1600/ (4*79))*31.6=271.2ms

2-DH5 time slot=2.918(1600/ (6*79))*31.6=311.25ms

3-DH1 time slot=0.409*(1600/ (2*79))*31.6=130.88ms

3-DH3 time slot=1.677*(1600/ (4*79))*31.6=268.32ms

3-DH5 time slot=2.964(1600/ (6*79))*31.6=316.16ms

Test plot as follows:

DH5

Date:

19.MAR.2014 22:29:11

2-DH5

3-DH5

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.4:2003 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.209 and	d 15.205					
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	2.3GHz to 2.5GH	z						
Test site:	Measurement Dis	stance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 10112	Peak	1MHz	10Hz	Average Value			
Limit:	Freque	ency	Limit (dBuV/		Remark			
	Above 1	GHz	54.0		Average Value			
Test setup:	74.00 Peak Value Antenna Tower Horn Antenna Spectrum Analyzer Turn Table A A A A A A A A A A A A A A A A A A A							
Test Procedure:	at a 3 meter composition of the position of the 2. The EUT was was mounted 3. The antenna in determine the polarizations of 4. For each suspitive antenna was turned from 5. The test-receing Bandwidth with 6. If the emission specified, therefore be reported. Core-tested one	amber. The table highest radiation set 3 meters awon the top of a verified highest is varied from maximum value of the antenna are exted emission, was tuned to heigh of degrees to a ver system was an highest hight highest hight highest highest highest hi	e was rotated in. ay from the invariable-height from one meter of the field stree set to make the EUT was hts from 1 me 360 degrees to be degrees to Peak Ded Mode. T in peak mode stopped and dissions that diak, quasi-peak	terference-re antenna tow r to four meter rength. Both the measure arranged to iter to 4 meter to 4 meter to 6 find the material feet at 10dB, the peak valid not have 1	ers above the ground to horizontal and vertical ement. its worst case and then irs and the rota table eximum reading.			
Test Instruments:	Refer to section 5	5.7 for details						
Test mode:	Non-hopping mod	de						
Test results:	Passed							

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: MID EUT Model : EQ823R
Test mode : BT DH1-L MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Vincent

REMARK

E III CHI	200.0		Antenna Factor						
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
	2390, 000 2390, 000								

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : MID Condition

EUT Model : EQ823R
Test mode : BT DH1-L MODE
Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Vincent REMARK :

шини										
	Freq		Antenna Factor							
-	MHz	dBu₹	<u>dB</u> /m	₫B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB		
	2390.000									
2	2390.000	11.14	27.58	5.67	0.00	44.39	54.00	-9.61	Average	

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: MID EUT Model : EQ823R

Test mode : BT DH1-H MODE

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Vincent

	Freq		Antenna Factor						
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBu√/m	dB	
1 2	2483.500 2483.500	24.33 10.94	27.52 27.52	5.70 5.70	0.00 0.00	57.55 44.16	74.00 54.00	-16.45 -9.84	Peak Average

Vertical:

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : MID Model : EQ823R
Test mode : BT DH1-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C I
Test Engineer: Vincent

Huni:55%

REMARK

Freq	Read. Level	Readântenna Level Factor		na Cable Preamp or Loss Factor 1			Over Limit	Remark	
MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>		_
2483.500 2483.500				0.00 0.00					

 $\pi/4$ -DQPSK mode Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: MID EUT Model

: EQ823R : BT 2DH1-L MODE Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Vincent REMARK:

THAT	r :	Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>dB</u>		-
	2390.000 2390.000									

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: MID EUT Model

: EQ823R : BT 2DH1-L MODE Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Vincent REMARK:

unu	5000		Antenna Factor						Remark	
=	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		
	2390.000 2390.000			5.67 5.67	0.00	56.56 44.40	74.00 54.00	-17.44 -9.60	Peak Average	

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Model : EQ823R
Test mode : BT 2DH1-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Vincent

REMARK

	Freq	Read: Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	d <u>B</u>	dBuV/m	dBuV/m	<u>d</u> B	
2	2483, 500 2483, 500								

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : MID

Model : EQ823R
Test mode : BT 2DH1-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Hu
Test Engineer: Vincent

Huni: 55%

REMARK

1 2

Freq	ReadAntenna Freq Level Factor							Remark	
MHz	dBu∀	─dB/m		<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>		-
2483.500 2483.500	26. 24 13. 62	27.52 27.52	5.70 5.70	0.00 0.00	59.46 46.84	74.00 54.00	-14.54 -7.16	Peak Average	

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: MID

Model : EQ823R

Test mode : BT 3DH1-L MODE

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Vincent

REMARK :

	5000	Read Level	Åntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
	2390.000 2390.000								

Vertical:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : MID Condition

EUT

Model : EQ823R
Test mode : BT 3DH1-L MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Vincent REMARK

INTA									
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u> /m	āB	<u>d</u> B	dBuV/m	dBuV/m	dB	
	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : MID Model

: EQ823R : BT 3DH1-H MCDE Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Vincent REMARK :

WI.C			•						
	Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit	Over Limit	Remark
	MHz	dBu∀		<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483, 500	24.14	27.52	5.70	0.00	57.36	74.00	-16.64	Peak
6	2483 500	11 29	27 F2	5 70	0.00	44 51	54 00	-9 49	Average

Vertical:

Site

: 3m chamber : FCC PARI 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : MID

Test mode : BT 3DH1-H MODE
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Vincent
REMARK :

	Freq	Readantenna Level Factor		Cable Preamp Loss Factor		l.evel	Limit Line	Over Limit	Remark
	MHz	₫₿u₹	—dB/n	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/n	<u>d</u> B	
1 2	2483.500 2483.500	25.91 13.86	27.52 27.52	5.70 5.70	0.00 0.00	59.13 47.08	74.00 54.00	-14.87 -6.92	Peak Average

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

GFSK

Date: 19.MAR.2014 23:13:28

30MHz~25GHz

Date: 19.MAR.2014 23:12:31

30MHz~25GHz

Date: 19.MAR.2014 23:13:07

30MHz~25GHz

 $\pi/4$ -DQPSK

Date: 19.MAR.2014 23:15:11

30MHz~25GHz

Middle channel

Date: 19.MAR.2014 23:17:55

30MHz~25GHz

Highest channel

Date: 19.MAR.2014 23:18:28

30MHz~25GHz

Page 52 of 77

8DPSK

Date: 19.MAR.2014 23:23:00

30MHz~25GHz

Date: 19.MAR.2014 23:21:31

30MHz~25GHz

Date: 19.MAR.2014 23:19:11

30MHz~25GHz