Complex Variables I – Problem Set 6

Due at 5 pm on Friday, Oct 20, 2023 via Gradescope

Problem 1

Evaluate the following integrals (all closed curves are oriented counterclockwise):

- 1. $\int_{|z+i|=1}^{\infty} \frac{e^z}{z^2+1} dz$.
- 2. $\int_{|z|=1}^{\infty} \frac{1}{(z-a)^2(z-b)} dz$. Here a, b are not on the circle |z|=1. You answer should depend on a and b.

Problem 2

Let γ be a bounded smooth curve containing its endpoints, and $\phi: \gamma \to \mathbb{R}$ be a continuous function. Use the definition of derivative to prove that the function

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{\phi(w)}{w - z} dw$$

is holomorphic on $\mathbb{C} \setminus \gamma$.

Problem 3

Let $A \subset \mathbb{C}$ be open, and $f_n : A \to \mathbb{C}$ a sequence of holomorphic functions. Suppose that $f_n \to f$ uniformly on all compact subsets of A. Prove that $f : A \to \mathbb{C}$ is also holomorphic.

Problem 4

1. Prove Cauchy's estimates: suppose that $A \subset \mathbb{C}$ is open, $f: A \to \mathbb{C}$ is holomorphic, and $|f(z)| \leq M$ on A. Then for any disk D(w,r) with $\overline{D(w,r)} \subset A$ and any integer n, we have

$$|f^{(n)}(w)| \le \frac{n!M}{r^n}.$$

2. Suppose that $f: \mathbb{C} \to \mathbb{C}$ is entire holomorphic, and there exists constant M > 0 and integer n such that $|f(z)| \leq M|z|^n$. Show that f is a polynomial of degree $\leq n$.

Problem 5

Evaluate

$$\int_0^{\pi} e^{\cos\theta} \cos(\sin\theta) d\theta.$$

Hint: integrate $\int_{\gamma} \frac{e^z}{z} dz$ along a suitable curve.

Problem 6

Prove that a nonconstant entire holomorphic function $f: \mathbb{C} \to \mathbb{C}$ maps \mathbb{C} onto a dense subset of \mathbb{C} . Remark: a subset A of \mathbb{C} is dense, if its intersection with any disk is nonempty.

Remember to justify your answers and acknowledge collaborations and outside help!