ESERCIZIO 2

· f(78,0) = 10 , l(73,1)=13

(A) Data la funzione $h(x,i) =_{Def} (x+3i) \mod 17$, si illustri l'inserimento delle chiavi

 $23,\ 43,\ 21,\ 5,\ 62,\ 72,\ 58,\ 48,\ 52,\ 46,\ 78,\ 55,\ 35,\ 17,\ 51$

in una tabella hash di dimensione 17, inizialmente vuota e organizzata con l'indirizzamento aperto, utilizzando h(x,i) come funzione hash.

(B) Si enunci l'ipotesi di hashing uniforme, si forniscano dei limiti superiori al numero medio di scansioni in ricerche con e senza successo in una tabella hash con fattore di carico α , assumendo l'ipotesi di hashing uniforme.

A)				,	-			_		_									1.			
A												9										
			17	52	35	51	21	5	23	12		43	58	62	46	78	48	_	55			
		R1:	3,0) :	23	m	اه	1 7 :	: 6	•								17				
			'				1											34				
		Rly	3 0) :	. a																	
		r (4	,,,	,													V	51 68				
	1	0 (\		٠,																	
	ŀ	A(2	1,01	2	4																	
		Λ.																				
	•	R(9	5,0	2	5																	
		Rl	62.0	s (11																	
		ρ(Z , .	Ι.	. ,		() [e a												
		rı	7,0	' '	4		, 1	A (74	, \]													
	-	Q (.	_) :			n	1.	1													
	ļ.	11	58,0) /	4	,	V	153	, ():	? (U											
		0 (
	•	R14	8,0	=	14																	
			·																			
		f (5	۱, ,	ŧ	1																	
		A CS	-, 0 j																			
		f 14		١.	10																	
	Ť	ril	6 , 0) -	1.5																	

· R(55,0): 4 -> 7 -> 10 -> 13 -> 16

reman rucount
$$O\left(\frac{1}{1-d}\right)$$

i. L. o

while $(i \mid l \mid m \mid n \mid n \mid T(\mid l \mid k), i) \neq n \mid l \mid l$

IF $(T(\mid l \mid k), i) = k)$

RETURN THE

Search
$$(T, K)$$
 con success $O(\frac{1}{a} \ln \frac{1}{1-a})$

Concollerant + Harring and. replies

Never muce.
$$O(a+1)$$

E $\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{i,j}\right)\right]$
 $\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{i,j}\right)\right]$
 $\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{i,j}\right)\right]$
 $\left[\frac{1}{m}\sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m}X_{i,j}\right)\right]$

(\(\lambda m - \(\lambda \)

 $1 + \frac{\ell}{mm} \left(\frac{2}{m} - \frac{m(n+1)}{2} \right)$

 $\frac{d}{2} = \frac{1}{2m} \times 0 \left(1 + \frac{d}{2} \right)$

1 + 2 m

Riverca serra succeso ->
$$\theta(a+1)$$
 compress d'ealcole de $h(x)$

// con Duceyr =>
$$O(\frac{\lambda}{2}+1)$$

$$\begin{bmatrix}
\frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} X_{ij}\right)
\end{bmatrix}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{j=i+1}^{m} E[X_{ij}] \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(1 + \sum_{i=i+1}^{m} \frac{1}{m}\right)$$

$$= 1 + \frac{1}{mm} \sum_{i=1}^{m} (m-i)$$

$$= 1 + \frac{\ell}{mm} \left(\sum_{i=1}^{m} m - \sum_{i=1}^{m} 1 \right)$$

$$= \frac{1}{4} + \frac{1}{4m} \left(\frac{z}{m} - \frac{m(m+1)}{2} \right)$$

$$= \left(\frac{(m-1)}{2m} \right)$$

$$= 1 + \frac{d}{2} - \frac{d}{2m} \sim O\left(1 + \frac{d}{2}\right)$$

$$\left(1+\frac{d}{2}\right)$$