Cryptography: notes

Niccolò Simonato

October 11, 2022

Contents

1	Eler	mentary operations	2
	1.1	Notation	2
	1.2	Classification of the algorithms' complexity	2
	1.3	Basic bit operations	3
		1.3.1 Sum of 3 bits - 3-bit-sum	3
		1.3.2 Summation of 2 numbers	3
		1.3.3 Summation of <i>n</i> numbers	3
		1.3.4 Product of 2 numbers	3
		1.3.5 Division of 2 numbers	4
		1.3.6 Production of <i>n</i> numbers	4
	1.4	Optimizations of more complex operations	5
		1.4.1 Powers & Modular Powers	5
		1.4.2 Finding the <i>b</i> representation of $n(n_b)$	5
		1.4.3 Modular inverses	5
	1.5	Reminders of Modular Arithmetic	5
		1.5.1 Little Fermat's Theorem	5
	16	Heeful Facts	5

Chapter 1

Elementary operations

1.1 Notation

- Let b be a numeric base.
- Let n be a number in N.
- Length of a number: $l_b(n)$, k. It's equal to log(n).
- (*a*, *b*) is the Maximum Common Divisor of *a*, *b*.
- Let $n \in N$: $n = (d_{k-1}, d_{k-2}, ..., d_1, d_0)^1$.
- $\phi(n)$: the number of elements a in [1, n] such that (a, n) = 1.
- \equiv_p is the equivalence in base p. Ex.: $5 \equiv_3 = 5 \mod 3 = 2$

1.2 Classification of the algorithms' complexity

In order to better identify the classes of complexity of the algorithms, the following 3 classes are defined:

- Polynomial time: $O(log^{\alpha}(n))$ bit operations, where $\alpha > 0$.
- Exponential time: $O(exp(c \cdot log(n)))$ bit operations, where c > 0.
- Sub-exponential time: $O(exp(c \cdot log(n))^{\alpha})$ bit operations, where $c > 0, \alpha \in]0, 1[$.

•

 $^{^{1}}d_{k-1}\neq 0$

1.3 Basic bit operations

1.3.1 Sum of 3 bits - 3-bit-sum

Given n_1, n_2 their sum produces $n_1 + n_2$ and their carry. Since $n_1, n_2 \in [0, 1]$, then this operation can be done in O(1).

1.3.2 Summation of 2 numbers

Given n_1, n_2 their sum produces $n_1 + n_2$. Since the sum is computed bit by bit, the 3-bit-sum is performed $max\{lenght(n_1), length(n_2)\}$ times. Each time the carry on of the previous sum is added to the two digits. This operation has then complexity $O(max\{lenght(n_1), length(n_2)\}) = O(max\{log(n_1), log(n_2)\})$

1.3.3 Summation of n numbers

The summation of n numbers is simply the sum of two numbers, but performed n-1 times.

Let's assume that $\forall i \in [1, n] : M \ge a_i$.

The complexity of this operation is then $O((n-1) \cdot log(M)) = O(n)$.

1.3.4 Product of 2 numbers

If we consider the classic implementation of the binary multiplication, that is just a sequence of summations.

- The number of summations to execute is equal to the length of the smallest number, O(log(n)).
- The maximum cost of a single summation is O(log(m)).
- Then, $T(m \cdot n) = O(log(m) \cdot log(n))$, but, if we consider the worst case², that becomes $O(log^2(m))$.

²two numbers that are equally large

1.3.5 Division of 2 numbers

Let's consider the division of two numbers m, n. This operations consists in finding two numbers q, r such that $m = q \cdot n + r$.

This is achieved by performing a succession of subtractions, until the ending condition $0 \le r < n$ is reached.

- Let's consider that the number of steps of this algorithm is O(log(q)).
- Moreover, $q \le m$: #steps = O(log(m)).
- It's assumed that the cost of the single subtraction is O(log(n)).
- Then, $T(\frac{m}{n}) = O(log(n) \cdot log(m))$.

1.3.6 Production of n numbers

Let's assume that $j \in [1, s+1]$ and $M = max(m_i)$.

The cost of the operation $\prod_{j=1}^{s+1} m_j$ is then $O(s^2 \cdot log^2(M))$. This will now be considered our inductive hypothesis.

Proof by induction, on *s*:

- (1) Base case: $T(m_1 \cdot m_2) = O(log(m_1) \cdot log(m_2)) = O(k_1 \cdot k_2) \le c \cdot k_M^2$.
- (2) Base case: $T(m_1 \cdot m_2 \cdot m_3) = T(m_1 \cdot m_2) + T((m_1 \cdot m_2) \cdot m_3)$ $\leq c \cdot k_M^2 + c \cdot k_{m_1 \cdot m_2} + k_{m_3}$ $\leq c \cdot k_M^2 + c \cdot k_{M^2} + k_M$
- Inductive step: we assume the inductive hypothesis to be true up to s. Then, $T(\prod_{j=1}^{s+1} m_j) = T([\prod_{j=1}^s m_j] \cdot m_{s+1})$

$$\leq c \cdot \sum_{j=1}^{s} (j \cdot k_M^2)$$

$$= c \cdot k_M^2 \cdot \frac{s \cdot (s-1)}{2}$$

$$= O(k_M^2 \cdot s^2)$$

$$= O(s^2 \cdot log^2(M))$$

Applications

- An analogous dimonstration can be used to prove that $T(\prod_{j=1}^{s+1} m_j mod n) = O(s \cdot log^2(M))$
- This proof can be used to show that $T(m!) = O(m \cdot log^2(m))$.

1.4 Optimizations of more complex operations

1.4.1 Powers & Modular Powers

Trivial implementation

Square & Multiply method for scalars

Square & Multiply method for polynomials

- **1.4.2** Finding the b representation of n (n_b)
- 1.4.3 Modular inverses

1.5 Reminders of Modular Arithmetic

1.5.1 Little Fermat's Theorem

- Let *p* be a prime number.
- Then, $a^{p-1} \equiv_p 1$.

1.6 Useful Facts

• The GMP library is a free library for arbitrary precision arithmetic. It implements all the basic arithmetic operations with the maximum efficency possible