BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2019)

개요

- Transformer(이하 Trm) 인코더를 통해 구현, 레이블이 없는 텍스트 데이터로 사전 훈련된 언어모델
- 다른 작업에 대해서 파라미터 재조정을 위한 추가 훈련 과정을 통해 특정 Task를 수행
- Fine-Tuning vs Feature-based

Fine-Tuning: 입력 임베딩부터 Layer까지 모든 파라미터를재조정

Feature-based: 기존 모델에 추가로 덧붙인 부분에 대해 파라미터 조정

- Bert는 레이블이 없는 방대한 데이터로 사전 훈련된 모델을 구성(Fine-Tuning)
- 레이블이 있는 다른 작업에서 추가 훈련, 하이퍼파라미터 재조정

크기

- Bert는 Trm 인코더를 쌓아올린 구조

모델	Layer 수	임베딩 벡터 차원	셀프 어텐션 헤드 수	
Bert-Base	12	768	12	
Bert-Large	24	1,024	16	

- 초기 Trm보다 큰 네트워크
- Bert-Base는 기존 Open AI GPT-1과 하이퍼 파라미터가 동일(성능 비교가 용이)
- Bert-Large는 최대 성능을 보여주기 위해 만들어진 모델

문맥을 반영한 임베딩

- 입력: 임베딩 층을 거친 768차원의 벡터(Base 모델 기준) / 출력: 문맥 정보를 모두 반영한 임베딩 벡터
- Bert Layer 1개의 동작은 Trm 인코더와 동일
- 입력 > self-attention > Feed Forward Neural Network > 출력
- 가장 큰 특징은 self-attention이 모든 단어들을 참고하여 문맥을 반영한 출력 임베딩 생성

WordPiece(단어임베딩)

- Bert는 단어를 잘개 쪼개는 WordPiece 서브워드 토크나이저 사용
- 자주 등장하는 단어는 그대로 단어집합에 추가하고, 자주 등장하지 않는 단어는 더 작은 서브워드로 분리하여 단어 집합에 추가

예를 들어 embeddings라는 단어 입력

- 1. 해당 단어는 단어 집합에 존재하지 않음
- 2. 단어 집합에 존재하는 서브워드로 분리 필수
- 3. embeddings를 ['em', '##bed', '##ding', '#s']로 분리
- 4. 각 서브워드를 모델 임베딩 벡터 차원에 맞춰서 임베딩 후 입력

포지션 임베딩

- 단어의위치정보를표현
- 기존 Trm에서는 sin, cos 함수를 사용하여 위치에 따라 다른 값을 가지는 행렬을 생성 단어 벡터들과 더하는 방법
- Bert에서는 학습을 통해서 포지션 임베딩을 구함
- Bert에서는최대 512개의 포지션임베딩(0~51

사전 훈련

- Bert는 BookCorpus(8억 단어)와 Wikipedia(25억 단어)로 학습
- MLM과 NSP 두 가지의 훈련을 진행
 - MLM(Masked Language Model)
 - 온전한 문장에서 단어 일부를 Masking하고 Masking된 단어를 예측
 - 어텐션 연산이 모든 단어들에 대해 이루어지기 때문에 Bert는 양방향성 언어 모델
 - 2. NSP(Next Sentence Prediction)
 - 어떤 문장이 주어졌을 때 다음에 이어질 문장이 어떤 것인지 예측하기 위해
 - 연결시킨 두 개의 문장이 이어진 두 문장인지 아닌지 판별

MLM

- 인공신경망에들어가는입력 테스트 15%의 단어를 Masking
- 인공신경망은 Masked 단어들을 예측
- 더 정확하게 설명하면 15%의 Masked 단어들 중
 - 80% 단어: Masking
 - 10% 단어: 랜덤으로 단어를 변경
 - 10% 단어: 동일하게 유지

정리

- 1. 전체 85% 단어: MLM 학습에 사용되지 않음
- 2. 나머지 15%중 80%인 전체의 12%는 Masking, 이후 원래 단어를 예측
- 3. 나머지 15% 중 10%인 전체의 1.5%는 랜덤으로 단어 변경, 원래 단어 예측
- 4. 다른 1.5% 단어는 기존 단어로 유지, 그러나 모델은 변경된 단어인지는 모르기 때문에 단어 예측

NSP: QA(Question Answer), NLI(Natural Language Inference)와 같은 Task를 해결하기 위함

- Bert는 두 개의 문장을 준 뒤, 두 문장이 이어지는 문장인지 아닌지 판별
- 5:5비율로이어진 두 문장(IsNextSentence)과 랜덤으로이어붙인 두 문장을 주고 훈련(NotNextSentence)
- 문장 구분은 입력에서 [SEP] 토큰을 이용, 모든 문장 끝에 넣어줌
- 위의 이진 분류 결과는 [CLS] 토큰 출력 위치에서 연결 문장인지 여부 반환
- MLM과 NSP는 각각 학습하는 것이 아닌 동시에 학습, Loss를 더하여 학습

output	IsNextSentence or NotNextSentence		MLM Classifier				
position	0	1	2	3	4	5	 511
subword	[CLS]	em	[Mask]	##ing	#s	[SEP]	 [PAD]

세그먼트임베딩

- 문장 구분을 위해 또다른 임베딩 층 구성(문장 임베딩)
- Bert의 입력은 3가지의 합
 - 세그먼트 임베딩: 두 개의 문장(실제로는 두 개의 문서 혹은 단락이 될 수도 있음)을 구분하기 위한 임베딩
 - 포지션 임베딩: 512개의 위치 정보를 구분하기 위한 임베딩
 - 단어 임베딩: 30,522개의 단어를 구분하기 위한 임베딩

어텐션 마스크

- BERT가 [PAD] 토큰에 불필요하게 마스킹하지 않도록하기 위함
- 1: [CLS] ~ [SEP], 0: [PAD]로 값이 할당되어지며, 해당 값으로 할당된 시퀀스가 입력
- 아래는 embeddings라는 단어가 입력으로 주어졌을 때의 예

position	0	1	2	3	4	5		511
subword	[CLS]	em	##bed	##ing	#s	[SEP]		[PAD]
attention mask	1	1	1	1	1	1	0	0

실험결과

- GLUE 데이터 셋을 이용한 성능 측정

GLUE 데이터 셋

- 자연어 처리 모델을 여러 task에 적용, 훈련, 평가하는 것이 목적
- 따라서 GLUE 벤치 마크는 전이 학습 모델들의 성능 지표
- GLUE 데이터 셋 훈련 \rightarrow 9개 task에 대해 점수 책정 \rightarrow 최종 점수 계산
- GLUE 데이터 셋의 9개의 task

CoLA	문법 오류 판정	MNLI-mm	문장 A가 문장 B를 수반 혹은 대조 여부
SST-2	영화리뷰 감정분석	QNLI	질문답변 가능여부 판별
MRPC	두 문장의 연관 여부 확인	RTE	문장 수반여부
STS-B	두 문장의 유사도 판별	WNLI	모호단어 대체 가능 여부 판별
QQP	두 문장의 유사 여부 판별		

실험결과

- GLUE 데이터 성능 측정
- 배치 사이즈: 32 / epochs: 3 / learning rate: 2e-5 ~ 5e-5 중 성능이 좋은 것 선택
- 추가적으로적은 데이터 셋에 대해 가끔씩 fine-tuning이 불안정해서 랜덤으로 재시작하는 과정 추가

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

성능상 Bert 모델이 SoTA를 기록 이전 SoTA모델에서 Base 모델의 경우 4.5%, Large 모델의 경우 7% 향상된 결과

실험결과

- SQUAD v1.1, v2.0 데이터셋을 이용한 실험
- QA task에 관련된 데이터 셋으로, 질문 텍스트가 주어졌을 때 답변 텍스트를 예측하는 것이 목적
- SQUAD 2.0 데이터의 경우 1.1보다는 확장된 형태의 데이터 답변을 할 수 없는 텍스트도 포함시켜 실험을 진행
- SWAG 데이터셋을 이용한 실험 1개의 문장이 주어졌을 때 4개의 문장 중 가장 적합한 문장을 선택하는 task

모든 실험에서 Bert 모델이 SoTA 성능을 기록

Ablation Study

- Pre-training의 효과(MLM, NSP의 효과)
- Bert-base 모델에서 NSP를 진행하지 않았을 때와 양방향 어텐션 연산으로 MLM을 하지 않았을 때를 비교

<u> </u>	Dev Set							
Tasks	MNLI-m (Acc)	QNLI (Acc)	MRPC (Acc)	SST-2 (Acc)	SQuAD (F1)			
BERT _{BASE}	84.4	88.4	86.7	92.7	88.5			
No NSP	83.9	84.9	86.5	92.6	87.9			
LTR & No NSP	82.1	84.3	77.5	92.1	77.8			
+ BiLSTM	82.1	84.1	75.7	91.6	84.9			

QA task인 QNLI에서 NSP 학습의 효과를 확연히 알 수 있으며, 양방향 어텐션 연산으로 MLM 학습을 할 때 성능이 더 높음

Ablation Study

- 모델의크기의효과
- Layer의 수(L), 임베딩 차원의 수(H), 셀프 어텐션 헤드 수(A)에 따른 성능 비교

Ну	perpar	ams		Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

모델의 사이즈가 더 클 수록 각 task에서 더 좋은 성능을 기록했음을 알 수 있음

Ablation Study

- Bert를 Feature Based로 학습했을 때 비교

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		-
BERT _{LARGE}	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	-
Second-to-Last Hidden	95.6	_
Last Hidden	94.9	-
Weighted Sum Last Four Hidden	95.9	_
Concat Last Four Hidden	96.1	-
Weighted Sum All 12 Layers	95.5	-

SoTA 모델은 Fine-tuning한 Bert Large 모델이지만 Feature-based 모델들 또한 성능이 엇비슷 특히 Feature-based경우 일부는 pre-trained된 고정된 파라미터들을 쓰면 되기 때문에 연산량에서 큰 이점