Minimum spannig trees Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2021/22

Spanning trees

- A spanning tree of a graph is
- . A spanning subgraph: it includes all nodes . It is a tree: it is acyclic, and connected

Minimum spanning trees

- A minimum spanning tree (MST) is a spanning tree of weighted graph with minimum total weigh
 MST is a fundamental problem with many applications
 - including - Network design (communication, transportation

 - Network design (communication, transportation, electrical, _____)
 Cluster analysis
 Approximate solutions to traveling salesman problem
 Chject/network recognition in images
 Avoiding cycles in broadcasting in communication networks

 - networks

 Dithering in images, audio, video

 Error correction codes
 - DNA sequencing

The 'cut property'

- . A cut of a graph is a partition that divides its nodes into two disjoint * Given any cut, the edge with the lowest weight across the cut is in the MST

Prim-Jarník algorithm

Prim-Jarník algorithm

- · Prim-Jarník algorithm is a greedy algorithm for finding an MST for a weighted undirected graph Algorithm starts with a single 'start' node, and grows the MST greedily
 - At each step we consider a cut between nodes visited and the rest of the nodes, and select the minimum edge across the cut

 - · Repeat the process until all nodes are visited

Prim-Jarník algorithm

- * Two loops over number of nodes n, $O(n^2)$ if we need to search
- If we use a priority queue for Q, then complexity becomes O(m log m)

 $\begin{array}{l} \text{pick any node s} \\ \mathsf{C}[s] \leftarrow 0 \\ \text{for each node } v \neq s \text{ do} \end{array}$ $C[v] \leftarrow \infty$ $E[v] \leftarrow None$

- : E|y| ← rooms : Q ← nodes : Q ← nodes : while Q is not empty do : Find the node v with min C[v] : Connect v to T : for edge (v, w), where w is in Q do : connect where w is in Q do
- if cost(v, w) < C[w] then $C[w] \leftarrow cost(v, w)$ $E[w] \leftarrow v$

Kruskal's algorithm

- · Another popular algorithm for finding MST on undirected graphs
- The main idea is starting with each node in its own partition . At each iteration, we choose the edge with the minimum weight acre
- two clusters, and join them · Algorithm terminates when there are no clusters to joir

Kruskal's algorithm

Kruskal's algorithm

- . Loop over edges, but beware of the
- sorting requirement With simple data structure complexity is O(m log m)
- T ← Ø
 for each node v do
 create_cluster(v)
 for (u,v) in edges sorted by weight do
 - if cluster(u) \neq cluster(v) then $T \leftarrow T \cup \{(u, v)\}$ union(cluster(u), cluster(v))

Directed trees

- · Trees with directed edges come in few flavors
 - frees with directed edges come in few flavors

 A rotal directed tree (arboroscence) is an acyclic
 directed graph where all nodes are reachable from
 the root node through a single directed path (this is
 what computational linguists simply calls a tree)

 An anti-arboroscence is a rooted directed tree where
 - A polytree (also called a directed tree) is a directed graph where undirected edges form a tree
- The equivalent of finding an MST in a directed graph is finding a rooted directed tree (arborescence)

Chu-Liu/Edmonds algorithm

- The MST for a directed graph has to start from a designated root node
 If selected node has any incoming edges, remove them
 It is also a common practice to introduce an artificial root node with equal-weight edges to all nodes
- * For all non-root nodes, select the incoming edge with lowest weight, remove
- . If the resulting graph has no cycles, it is an MST
- . If there are cycles break them
- Repeat until no cycles remain
- Consider the cycle as a single nod
 Select the incoming edge that yiel e lowest cost if used for breaking the cycle

Chu-Liu/Edmonds algorithm Chu-Liu/Edmonds algorithm The algorithm is generally defined recursively: at each step, create a new graph with a contracted cycle call the procedure with the new graph At most n recursions: the cycle has to include more nodes at every step At each call, m steps for finding minimum incoming edge (also finding a cycle with O(n), but m ≥ n) \bullet The 'vanilla' algorithm runs in O(mn) There are improved versions Chu-Liu/Edmonds algorithm in Computational Linguistics Chu-Liu/Edmonds for dependency parsing subject root object Marry * Begin with fully connected weighted graph, except the root node has no incoming edges \ast Weights are estimated from a treebank, typically determined by a machine ning method train We often use probabilities rather than costs/distances, so, rather than minimizing, maximize the weight of the tree · In a dependency analysis, the st cture of the sentence is represented by asymmetric binary relations between syntactic units * Given the fully connected graph, now the parsing becomes finding the MST . Each relation defines one of the words as the head and the other as dependent This method is one of the most common (and successful) approaches to dependency parsing . Often an artificial root node is used for comput The links (relations) may have labels (dependency types) · A dependency analysis (parse) is simply a rooted directed tree Summary Acknowledgments, credits, references · Minimum spanning trees have many applications An MST of a undirected graph can be found (efficiently) using Prim-Jamik or Kruskal's algorithms For directed graph, the corresponding problem can be solved using Chu-Liu/Edmonds algorithm (technically what we find is a rooted directed Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013) Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. is * MST also has quite a few applications in CL/NLP Next: · Maps and hashing Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 10)