EMA2: Lecture contents, week 4

1.3.2. Non-homogeneous linear ODE of order n

1. Method of variation of parameter.

Given: an equation $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = b(x)$.

Step 1. Using the method of characteristic numbers find a general solution y_h of associated homogeneous equation. It has the form $y_h(x) = c_1 \cdot u_1(x) + \ldots + c_n \cdot u_n(x)$.

Step 2. Variation of parameter: We look for solution of the form

$$y(x) = c_1(x) \cdot u_1(x) + \ldots + c_n(x) \cdot u_n(x)$$
. We find $c_i(x)$ by solving equations:

$$c'_1(x)u_1(x) + \ldots + c'_n(x)u_n(x) = 0$$

$$c'_1(x)u'_1(x) + \ldots + c'_n(x)u'_n(x) = 0$$

$$c'_1(x)u_1^{(n-2)}(x) + \ldots + c'_n(x)u_n^{(n-2)}(x) = 0$$

$$c'_1(x)u_1^{(n-1)}(x) + \ldots + c'_n(x)u_n^{(n-1)}(x) = 0$$

 $c_1'(x)u_1^{(n-2)}(x) + \ldots + c_n'(x)u_n^{(n-2)}(x) = 0$ $c_1'(x)u_1^{(n-1)}(x) + \ldots + c_n'(x)u_n^{(n-1)}(x) = b(x)$ From this we get $c_i'(x)$ and then by integrating $c_i(x)$, these we sub into $y(x) = \sum c_i(x)u_i(x)$. If we take for $c_i(x)$ particular antiderivatives, we get one particular solution $y_p(x)$, then a general solution is $y = y_p + y_h$.

If when looking for $c_i(x)$ we use $+C_i$ while integrating, then after substituting into y(x)= $\sum c_i(x)u_i(x)$ we get a general solution right away.

Example.

General solution of $y'' - \frac{x}{2(x-2)}y' + \frac{1}{2(x-2)}y = \frac{x-2}{x}$.

1) Associated homogeneous equation: general solution $y_h(x) = ax + be^{x/2}$, $x \neq 2$ (see labs in week 3).

2) Variation: $y(x) = a(x)x + b(x)e^{x/2}$, equations

$$\begin{bmatrix} a'(x)x + b'(x)e^{x/2} = 0 \\ a'(x)[x]' + b'(x)[e^{x/2}]' = \frac{x-2}{x} \end{bmatrix} \Longrightarrow \begin{bmatrix} a'(x)x + b'(x)e^{x/2} = 0 \\ a'(x) + b'(x)[e^{x/2}]' = \frac{x-2}{x} \end{bmatrix} \Longrightarrow \begin{bmatrix} a'(x)x + b'(x)e^{x/2} = 0 \\ a'(x) + b'(x)\frac{1}{2}e^{x/2} = \frac{x-2}{x} \end{bmatrix} \Longrightarrow \begin{bmatrix} a'(x) = -\frac{2}{x} \\ b'(x) = 2e^{-x/2} \end{bmatrix}$$
a) $a(x) = -2 \ln|x|$, $b(x) = -4e^{-x/2}$, hence $y_p(x) = -2 \ln|x|x - 4e^{-x/2}e^{x/2}$ and

 $y(x) = -2x \ln|x| - 4 + ax + be^{x/2}, x \neq 2.$

b) $a(x) = -2\ln|x| + a$, $b(x) = -4e^{-x/2} + b$, hence

 $y(x) = (a - 2 \ln |x|)x + (b - 4e^{-x/2})e^{x/2}, x \neq 2.$

Example.

Cauchy problem: $\ddot{x} + x = \frac{1}{\cos(t)}, \quad x(0) = 2, \, \dot{x}(0) = 0.$

1) Associated homogeneous equation: $\ddot{x} + x = 0$. $\lambda^2 + 1 = 0$, hence $\lambda = \pm j$, general solution $x_h(t) = a\sin(t) + b\cos(t), t \in \mathbb{R}.$

2) Variation: $x(t) = a(t)\sin(t) + b(t)\cos(t)$, equations

$$\begin{bmatrix} a'(t)\sin(t) + b'(t)\cos(t) = 0 \\ a'(t)[\sin(t)]' + b'(t)[\cos(t)]' = \frac{1}{\cos(t)} \end{bmatrix} \implies \begin{bmatrix} a'(t)\sin(t) + b'(t)\cos(t) = 0 \\ a'(t)\cos(t) - b'(t)\sin(t) = \frac{1}{\cos(t)} \end{bmatrix}$$

From this (by elimination or Cramer) a'(t) = 1, $b'(t) = -\frac{\sin(t)}{\cos(t)}$

a) a(x) = t, $b(x) = \ln |\cos(t)|$, hence $x_p(t) = t \sin(t) + \ln |\cos(t)| \cos(t)$ and

 $x(t) = t\sin(t) + \ln|\cos(t)|\cos(t) + a\sin(t) + b\cos(t), t \neq \frac{\pi}{2} + k\pi$

b) a(x) = t + a, $b(x) = \ln|\cos(t)| + b$, hence

 $x(t) = (t+a)\sin(t) + (\ln|\cos(t)| + b)\cos(t), t \neq \frac{\pi}{2} + k\pi$

$$3) x(t) = t \sin(t) + \ln|\cos(t)| + b \cos(t), t \neq \frac{1}{2} + kk.$$

$$\dot{x}(t) = \sin(t) + t\cos(t) - \sin(t) - \ln|\cos(t)|\sin(t) + a\cos(t) - b\sin(t)$$
 $0 = a$

Hence $x(t) = t \sin(t) + \ln|\cos(t)|\cos(t) + 2\cos(t), t \in (-\frac{\pi}{2}, \frac{\pi}{2}).$

2. Guessing method, method of unknown coefficients

Theorem. (on **guessing solution** for special right hand-side) 2 = b

EMA2 lecture 4 © pHabala 2007

Consider a linear ODE with constant coefficients $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = b(x)$. Assume that $b(x) = e^{\alpha x}[P(x)\sin(\beta x) + Q(x)\cos(\beta x)]$ for some polynomials P, Q with $m = \max(\deg(P), \deg(q))$. Let k be the multiplicity of the number $\alpha \pm \beta j$ as a characteristic number of the given equation (we put k = 0 if it is not a char. no. at all).

Then there are polynomials \widetilde{P} , \widetilde{Q} of order at most m such that $y(x) = x^k e^{\alpha x} [\widetilde{P}(x) \sin(\beta x) + \widetilde{Q}(x) \cos(\beta x)]$ is a solution of the given equation on \mathbb{R} .

Example.

General solution of $y'' + y = e^{-x} [4\sin(x) + 5x\cos(x)].$

- 1) Associated homogeneous equation: y'' + y = 0. $\lambda^2 + 1 = 0$, hence $\lambda = \pm j$, general solution $y_h(x) = a\sin(x) + b\cos(x)$, $x \in \mathbb{R}$.
- 2) Right hand-side is special: $b(x) = e^{(-1) \cdot x} [4\sin(1 \cdot x) + (5x)\cos(1 \cdot x)].$

Thus $\alpha = -1$, $\beta = 1$, hence $\alpha + \beta j = -1 + j$, then k = 0.

P(x) = 4, $\deg(P) = 0$; Q(x) = 5x, $\deg(Q) = 1$, $m = \max(0, 1) = 1$. Thus there is a solution of the type $y(x) = x^0 e^{-x} [(Ax + B)\sin(x) + (Cx + D)\cos(x)]$. We find A, B, C, D by substituting into the given equation:

$$[e^{-x}[(Ax+B)\sin(x) + (Cx+D)\cos(x)]]'' + e^{-x}[(Ax+B)\sin(x) + (Cx+D)\cos(x)]$$

= $e^{-x}[4\sin(x) + 5x\cos(x)]$

$$[(A+2C)x + (-2A+B-2C+2D)]e^{-x}\sin(x) + [(-2A+C)x + (2A-2B-2C+D)]e^{-x}\cos(x)$$
= $[0x+4]e^{-x}\sin(x) + [5x+0]e^{-x}\cos(x)$ and by comparison
$$A+2C=0$$

$$-2A + B - 2C + 2D = 4$$

$$-2A + C = 5$$
 $\Rightarrow A = -2, B = -2, C = 1, D = 2.$

$$2A - 2B - 2C + D = 0$$

Hence $y_p(x) = -(2x+2)e^{-x}\sin(x) + (x+2)e^{-x}\cos(x)$ and general solution is $y(x) = -(2x+2)e^{-x}\sin(x) + (x+2)e^{-x}\cos(x) + a\sin(x) + b\cos(x), x \in \mathbb{R}$.

Simpler forms for partial right hand-sides:

- $b(x) = P(x) \implies y(x) = x^k \widetilde{P}(x)$, where k is multiplicity of 0.
- $b(x) = P(x)e^{\alpha x} \implies y(x) = x^k \widetilde{P}(x)e^{\alpha x}$, where k is multiplicity α ;
- $b(x) = P(x)\sin(\beta x) + Q(x)\cos(\beta x) \implies y(x) = x^k[\widetilde{P}(x)\sin(\beta x) + \widetilde{Q}(x)\cos(\beta x)],$ where k is multiplicity of $0 \pm \beta j$;

Theorem. (principle of superposition)

Consider a linear ODE with left hand-side $L(y) = y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y$. Let y_1 be a solution of $L(y) = b_1(x)$ on an open interval I and y_2 be a solution of $L(y) = b_2(x)$ on I.

Then $y_1 + y_2$ is a solution of $L(y) = b_1(x) + b_2(x)$ on I.

Example.

General solution of $y'' - 2y' + y = 2e^x + 27e^{-2x} + 1$.

- 1) Associated homogeneous equation: y'' 2y' + y = 0. $\lambda^2 2\lambda + 1 = (\lambda 1)^2 = 0$, hence $\lambda = 1$ (2×), general solution $y_h(x) = ae^x + bx e^{-x}$, $x \in \mathbb{R}$.
- 2) Right hand-side is a combination of three special ones:
- a) $2e^x$: $\alpha + \beta j = 1$, k = 2; $\deg(P) = 0$, hence $x^2 A e^x$.
- b) $27e^{-2x}$: $\alpha + \beta j = -2$, k = 0; $\deg(P) = 0$, hence Be^{-2x} .
- c) 1: $\alpha + \beta j = 0$, k = 0; $\deg(P) = 0$, hence C.

There is a solution of the type $y(x) = Ax^2e^x + Be^{-2x} + C$. We find A, B, C by substituting into the given equation:

$$[Ax^{2}e^{x} + Be^{-2x} + C]'' - 2[Ax^{2}e^{x} + Be^{-2x} + C]' + [Ax^{2}e^{x} + Be^{-2x} + C] = 2e^{x} + 27e^{-2x} + 1$$

 $[2A]e^x + [9B]e^{-2x} + C = [2]e^x + [27]e^{-2x} + [1], \text{ hence } A = 1, B = 3, C = 1,$ general solution $y(x) = y_p + y_h = x^2e^x + 3e^{-2x} + 1 + ae^x + bx e^{-x}, x \in \mathbb{R}.$