

Applied Matrix Theory - Math 551

Homework assignment 10

Created by Prof. Diego Maldonado and Prof. Virginia Naibo

Due date: Thursday, April 11th at 5:00pm. Use the drop box adjacent to CW120. No late homework will be accepted.

Instructions: Unless indicated otherwise, you are strongly encouraged to use your calculator or Matlab to complete this assignment. Write legibly, use extra sheets of paper if needed, and **staple your work**. Also, try to do a two-sided printing of this assignment.

Honor pledge: "On my honor, as a student, I have neither given nor received unauthorized aid on this academic work."

Exercises. All answers must be justified by using matrix theory

1. Find the eigenvalues of the matrix

$$A = \left[\begin{array}{cc} 2 & 1 \\ 4 & -1 \end{array} \right]$$

and their corresponding eigenvectors.

2. Find the eigenvalues of the matrix

$$B = \left[\begin{array}{rrr} -2 & 1 & 3 \\ 0 & 3 & -1 \\ 1 & 0 & 1 \end{array} \right]$$

and their corresponding eigenvectors.

3. Find an orthonormal basis of \mathbb{R}^2 consisting of eigenvectors of the matrix

$$C = \left[\begin{array}{cc} 2 & 4 \\ 4 & 2 \end{array} \right].$$

4. Suppose that a square matrix A has the polynomial

$$p(\lambda) = (3 + \lambda)(2 - \lambda)(1 + \lambda)$$

as its characteristic polynomial. Answer the following questions:

- (i) What is the size of A?
- (ii) What are the eigenvalues of A?
- (iii) Is A invertible?
- (iv) Is A diagonalizable?
- (v) What is the value of det(A)?
- (vi) What is the value of det(A-4I)? Here I is the identity matrix.
- (vii) What are the eigenvalues of A^3 ?
- (viii) Can A be an orthogonal matrix?
 - (ix) Can A be a lower-triangular matrix?

5.	Write a Matlab function that takes 3 vectors in \mathbb{R}^3 and outputs the volume of the tetrahedron that has those three vectors as edges.

6. Consider the matrices

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \ D = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & -\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Find a 3×3 matrix P such that

$$D = P^{-1}AP.$$

7. Find the eigenvalues of the matrix

$$N = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

and their corresponding eigenvectors.

8.	True or False - Circle the right one (1 point each)
	${f T}$ or ${f F}$. If A is diagonalizable, then A is invertible.
	${f T}$ or ${f F}$. If A is invertible, then A is diagonalizable.
	T or F . $det(A)$ equals the product of the eigenvalues of A .
	${f T}$ or ${f F}$. The characteristic polynomial of a matrix A always has real roots.
	T or F . If A is a symmetric $n \times n$ matrix, then there exists a basis of \mathbf{R}^n consisting of eigenvectors of A .
P	oints obtained in this assignment (out of 16):