Выпуклость. Гладкость Методы оптимизации

Александр Безносиков

Московский физико-технический институт

11 сентября 2025

Рассмотрим безусловную задачу: $\min_{x \in \mathbb{R}^d} f(x)$.

Рассмотрим безусловную задачу: $\min_{x \in \mathbb{R}^d} f(x)$.

Локальный минимум

Точка x^* называется локальным минимумом функции f на \mathbb{R}^d (локальным решением задачи минимизации f на \mathbb{R}^d), если существует r>0 такое, что для любого $y\in B_2^d(r,x^*)=\{y\in\mathbb{R}^d\mid \|y-x^*\|_2\leq r\}$ следует, что $f(x^*)\leq f(y)$.

Рассмотрим безусловную задачу: $\min_{x \in \mathbb{R}^d} f(x)$.

Локальный минимум

Точка x^* называется локальным минимумом функции f на \mathbb{R}^d (локальным решением задачи минимизации f на \mathbb{R}^d), если существует r>0 такое, что для любого $y\in B_2^d(r,x^*)=\{y\in\mathbb{R}^d\mid \|y-x^*\|_2\leq r\}$ следует, что $f(x^*)\leq f(y)$.

Глобальный минимум

Точка x^* называется глобальным минимумом функции f на \mathbb{R}^d (глобальным решением задачи минимизации f на \mathbb{R}^d), если для любого $y \in \mathbb{R}^d$ следует, что $f(x^*) \leq f(y)$.

Рассмотрим безусловную задачу: $\min_{x \in \mathbb{R}^d} f(x)$.

Локальный минимум

Точка x^* называется локальным минимумом функции f на \mathbb{R}^d (локальным решением задачи минимизации f на \mathbb{R}^d), если существует r>0 такое, что для любого $y\in B_2^d(r,x^*)=\{y\in\mathbb{R}^d\mid \|y-x^*\|_2\leq r\}$ следует, что $f(x^*)\leq f(y)$.

Глобальный минимум

Точка x^* называется глобальным минимумом функции f на \mathbb{R}^d (глобальным решением задачи минимизации f на \mathbb{R}^d), если для любого $y \in \mathbb{R}^d$ следует, что $f(x^*) \leq f(y)$.

Определение можно обобщить и до локального/глобального минимума на множестве \mathcal{X} , т.е. для задачи вида $\min_{x \in \mathcal{X}} f(x)$. Для этого надо брать $y \in B_2^d(r, x^*) \cap \mathcal{X}$ и $y \in \mathcal{X}$ в соответствующих определениях.

Теорема об условии оптимальности локального минимума

Пусть x^* – локальный минимумом функции f на \mathbb{R}^d , тогда если f дифференцируема, то $\nabla f(x^*) = 0$.

Теорема об условии оптимальности локального минимума

Пусть x^* – локальный минимумом функции f на \mathbb{R}^d , тогда если f дифференцируема, то $\nabla f(x^*) = 0$.

Легко проверить, что обратное неверно.

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где
$$\lim_{x \to x^*} \frac{o(\|x - x^*\|_2)}{\|x - x^*\|_2} = 0.$$

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{x\to x^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\tilde{x} = x^* - \lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума.

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{x\to x^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\hat{x}=x^*-\lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \hat{x} попал в нужную окрестность из определения локального минимума. Понятно, что такое λ можно найти.

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{x\to x^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\tilde{x} = x^* - \lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума. Понятно, что такое λ можно найти. Тогда с одной стороны:

$$f(\tilde{x}) \geq f(x^*), \quad \mathsf{u}$$

Доказательство

Пойдем от противного и предположим $\nabla f(x^*) \neq 0$. Разложим в ряд в окрестности локального минимума:

$$f(x) = f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + o(||x - x^*||_2),$$

где $\lim_{x\to x^*} \frac{o(\|x-x^*\|_2)}{\|x-x^*\|_2} = 0.$

Рассмотрим $\tilde{x}=x^*-\lambda \nabla f(x^*)$. Цель: выбрать λ , чтобы \tilde{x} попал в нужную окрестность из определения локального минимума. Понятно, что такое λ можно найти. Тогда с одной стороны:

$$f(\tilde{x}) \geq f(x^*), \quad \mathsf{u}$$

$$f(\tilde{x}) = f(x^*) + \langle \nabla f(x^*), \tilde{x} - x^* \rangle + o(\|\tilde{x} - x^*\|_2)$$

= $f(x^*) - \lambda \|\nabla f(x^*)\|^2 + o(\lambda \|\nabla f(x^*)\|_2)$

Доказательство

Набросим еще одно ограничение на "малость" λ . Пусть теперь еще выполнено, что $|o(\lambda\|\nabla f(x^*)\|_2)|\leq \frac{\lambda}{2}\|\nabla f(x^*)\|_2^2$. Тогда для подобранного $\lambda>0$

$$f(\tilde{x}) \leq f(x^*) - \frac{\lambda}{2} \|\nabla f(x^*)\|^2$$

Пришли к противоречию, что x^* – локальный минимум.

Локальный и глобальный минимум

- Наша цель глобальный минимум (или точка близкая к нему в некотором смысле).
- Заветная мечта придумать метод решающий все задачи оптимизации. Выглядит нереалистично, но чем черт не шутит.
- Но уже на прошлой лекции мы поняли, что ее в полной мере не осуществить.
- Нам нужны дополнительные предположения на целевую задачу, чтобы построить оптимистичную теорию.

Выпуклость: определение

Определение выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является выпуклой, если для любых $x,y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Выпуклость: определение

Определение выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является выпуклой, если для любых $x,y \in \mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

На 5 семинаре будет еще одно определение (эквивалентное в случае дифференцируемых функций).

Определение выпуклой функции

Будем говорить, что она является выпуклой, если для любых $x,y\in\mathbb{R}^d$ и для любого $\lambda\in[0;1]$ выполнено

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Выпуклость

Ограничение снизу на поведение.

Сильная выпуклость: определение

Определение μ -сильно выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является μ -сильно выпуклой $(\mu>0)$, если для любых $x,y\in\mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2.$$

Сильная выпуклость: определение

Определение μ -сильно выпуклой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является μ -сильно выпуклой $(\mu>0)$, если для любых $x,y\in\mathbb{R}^d$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2.$$

Определение μ -сильно выпуклой функции

Будем говорить, что она является μ -сильно выпуклой, если для любых $x,y\in\mathbb{R}^d$ и для любого $\lambda\in[0;1]$ выполнено

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) - \lambda(1-\lambda)\frac{\mu}{2}||x-y||_2^2$$

Сильная выпуклость

Более сильное ограничение снизу на поведение.

Условие оптимальности: выпуклый случай

Теорема об условии оптимальности безусловной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*) = 0$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Условие оптимальности: выпуклый случай

Теорема об условии оптимальности безусловной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*) = 0$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Доказательство

Запишем определение выпуклости:

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle = f(x^*).$$

Условие оптимальности: выпуклый случай

Теорема об условии оптимальности безусловной выпуклой задачи

Пусть дана выпуклая непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Если для некоторой точки $x^* \in \mathbb{R}^d$ верно, что $\nabla f(x^*) = 0$, то x^* – глобальный минимум f на всем \mathbb{R}^d .

Доказательство

Запишем определение выпуклости:

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle = f(x^*).$$

В обратную сторону уже доказывали выше для произвольных функций.

Выпуклое множество: определение

Определение выпуклого множества

Множество $\mathcal X$ называется выпуклым, если для любых $x,y\in\mathcal X$ и для любого $\lambda\in[0;1]$ следует, что

$$\lambda x + (1 - \lambda)y \in \mathcal{X}$$
.

Выпуклое множество: определение

Определение выпуклого множества

Множество $\mathcal X$ называется выпуклым, если для любых $x,y\in\mathcal X$ и для любого $\lambda\in[0;1]$ следует, что

$$\lambda x + (1 - \lambda)y \in \mathcal{X}.$$

Смысл: вместе с любыми двумя точками множества в множество входит и отрезок с концами в этих точках. Подробнее на 4 семинаре.

Выпуклое множество: пример

Вопрос: какие множества здесь выпуклые?

Выпуклое множество: пример

Вопрос: какие множества здесь выпуклые? 1 (смотрите на границы 3)

Выпуклое множество: пример

Вопрос: какие множества здесь выпуклые? 1 (смотрите на границы 3) Вопрос: понятие выпуклости функции можно обобщить на множество $\mathcal X$ (необязательно $\mathbb R^d$), но важно, чтобы множество $\mathcal X$ было выпуклым. Зачем?

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – выпуклая, $\mathcal X$ - выпуклое. Тогда всякий локальный минимум f на $\mathcal X$ является и глобальным.

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} .

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ?

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} . **Вопрос**: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум.

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x — произвольная точка из \mathcal{X} . **Вопрос**: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум. Тогда уже по выпуклости f

$$f(x^*) \le f(x_\lambda) \le \lambda f(x) + (1 - \lambda)f(x^*).$$

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x — произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум. Тогда уже по выпуклости f

$$f(x^*) \le f(x_\lambda) \le \lambda f(x) + (1 - \lambda)f(x^*).$$

Вопрос: что получили?

Доказательство

Пусть x^* – локальный минимум. Рассмотрим точку вида

$$x_{\lambda} = \lambda x + (1 - \lambda)x^*,$$

где x – произвольная точка из \mathcal{X} . Вопрос: что можно сказать про x_{λ} ? $x_{\lambda} \in \mathcal{X}$ в силу выпуклости \mathcal{X} . Подберем $\lambda > 0$ достаточно малым, что x_{λ} попадает в окрестность, где x^* локальный минимум. Тогда уже по выпуклости f

$$f(x^*) \le f(x_\lambda) \le \lambda f(x) + (1 - \lambda)f(x^*).$$

Вопрос: что получили? $f(x) \ge f(x^*)$. В силу произвольности $x \in \mathcal{X}$ минимум из локального превратился в глобальный.

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – выпуклая, $\mathcal X$ - выпуклое. Тогда множество точек минимума $\mathcal X^*$ выпукло.

Доказательство

Пустое множество и множество из 1 точки выпуклы.

Доказательство

Пустое множество и множество из 1 точки выпуклы. Пусть теперь $x_1^*, x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*,$ где $\lambda \in [0;1].$ $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Доказательство

Пустое множество и множество из 1 точки выпуклы. Пусть теперь $x_1^*, x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*,$ где $\lambda \in [0;1].$ $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

В силу выпуклости функции f:

$$f^* \le f(x_{\lambda}^*) \le \lambda f(x_1^*) + (1 - \lambda)f(x_2^*) = f^*.$$

Доказательство

Пустое множество и множество из 1 точки выпуклы. Пусть теперь $x_1^*, x_2^* \in \mathcal{X}^*$. Рассмотрим $x_\lambda^* = \lambda x_1^* + (1-\lambda)x_2^*,$ где $\lambda \in [0;1].$ $x_\lambda^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

В силу выпуклости функции f:

$$f^* \le f(x_{\lambda}^*) \le \lambda f(x_1^*) + (1 - \lambda)f(x_2^*) = f^*.$$

Откуда $f(x^*_\lambda) = f^*$, а значит $x^*_\lambda \in \mathcal{X}^*$.

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – cильно выпуклая, \mathcal{X} - выпуклое. Тогда множество точек минимума \mathcal{X}^* может состоять только из одного элемента.

Доказательство

От противного: пусть есть $x_1^* \neq x_2^* \in \mathcal{X}^*$. Рассмотрим $x_{\lambda}^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in (0;1)$. Опять же $x_{\lambda}^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Доказательство

От противного: пусть есть $x_1^* \neq x_2^* \in \mathcal{X}^*$. Рассмотрим $x_{\lambda}^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in (0;1)$. Опять же $x_{\lambda}^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Но теперь в силу сильной выпуклости функции f:

$$f^* \leq f(x_{\lambda}^*) \leq \lambda f(x_1^*) + (1 - \lambda)f(x_2^*) - \lambda(1 - \lambda)\frac{\mu}{2} \|x_1^* - x_2^*\|_2^2$$

= $f^* - \lambda(1 - \lambda)\frac{\mu}{2} \|x_1^* - x_2^*\|_2^2$.

Доказательство

От противного: пусть есть $x_1^* \neq x_2^* \in \mathcal{X}^*$. Рассмотрим $x_{\lambda}^* = \lambda x_1^* + (1-\lambda)x_2^*$, где $\lambda \in (0;1)$. Опять же $x_{\lambda}^* \in \mathcal{X}$ в силу выпуклости \mathcal{X} .

Но теперь в силу сильной выпуклости функции f:

$$f^* \le f(x_{\lambda}^*) \le \lambda f(x_1^*) + (1 - \lambda)f(x_2^*) - \lambda(1 - \lambda)\frac{\mu}{2} \|x_1^* - x_2^*\|_2^2$$

= $f^* - \lambda(1 - \lambda)\frac{\mu}{2} \|x_1^* - x_2^*\|_2^2$.

Последнее слагаемое < 0 в силу выбора $x_1^* \neq x_2^*$ и $\lambda \in (0;1)$. Противоречие.

Теорема о минимумах выпуклых функций

Рассмотрим задачу

$$\min_{x \in \mathcal{X}} f(x),$$

где f – cильно выпуклая, \mathcal{X} - выпуклое. Тогда множество точек минимума \mathcal{X}^* может состоять только из одного элемента.

 На самом деле для сильно выпуклой функции можно доказать, что решение строго единственное (т.е. добавить к предыдущей теореме существование). Это следует из того, что мы снизу всегда подперты параболой. Смотри док-во в конспекте.

Сильная выпуклость: больше фактов

Теорема об еще одном определении сильной выпуклости

Пусть функция $f:\mathbb{R}^d \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y\in\mathbb{R}^d$ выполнено

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2.$$

Сильная выпуклость: больше фактов

Теорема об еще одном определении сильной выпуклости

Пусть функция $f:\mathbb{R}^d \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y\in\mathbb{R}^d$ выполнено

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2.$$

Теорема о критерии сильной выпуклости

Пусть функция $f:\mathbb{R}^d \to \mathbb{R}$ дважды непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любого $x \in \mathbb{R}^d$ выполнено

$$\nabla^2 f(x) \succeq \mu I$$
.

Сильная выпуклость: больше фактов

Теорема об еще одном определении сильной выпуклости

Пусть функция $f:\mathbb{R}^d \to \mathbb{R}$ непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любых $x,y\in\mathbb{R}^d$ выполнено

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2.$$

Теорема о критерии сильной выпуклости

Пусть функция $f:\mathbb{R}^d \to \mathbb{R}$ дважды непрерывно дифференцируема на \mathbb{R}^d . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любого $x \in \mathbb{R}^d$ выполнено

$$\nabla^2 f(x) \succeq \mu I$$
.

Оба факта доказаны в пособии. Второй пригодится для ДЗ: 🗈 🗦 🔗

Гладкость: определение

Определение L-гладкой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что данная функция имеет L-Липшицев градиент (говорить, что она является L-гладкой), если для любых $x,y \in \mathbb{R}^d$ выполнено

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2.$$

Гладкость: определение

Определение L-гладкой функции

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^d \to \mathbb{R}$. Будем говорить, что данная функция имеет L-Липшицев градиент (говорить, что она является L-гладкой), если для любых $x,y\in\mathbb{R}^d$ выполнено

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2.$$

Определение L-гладкости можно писать и в не евклидовой норме. Поэтому формально в предыдущем определении можно указывать, что имеется в виду L-гладкость в терминах $\|\cdot\|_2$.

Теорема (свойство L - гладкой функции)

Пусть дана L - гладкая функция $f:\mathbb{R}^d \to \mathbb{R}$. Тогда для любых $x,y \in \mathbb{R}^d$ выполнено

$$|f(y)-f(x)-\langle \nabla f(x),y-x\rangle|\leq \frac{L}{2}||x-y||_2^2.$$

Доказательство

Начнем с формулы Ньютона-Лейбница

$$f(y) - f(x) = \int_{0}^{1} \langle \nabla f(x + \tau(y - x)), y - x \rangle d\tau$$
$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

Доказательство

Начнем с формулы Ньютона-Лейбница

$$f(y) - f(x) = \int_{0}^{1} \langle \nabla f(x + \tau(y - x)), y - x \rangle d\tau$$
$$= \langle \nabla f(x), y - x \rangle + \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

Тогда

Гогда
$$|f(y)-f(x)-\langle
abla f(x),y-x
angle|=\left|\int\limits_0^1\langle
abla f(x+ au(y-x))-
abla f(x),y-x
angle d au
ight| \\ \leq \int\limits_0^1|\langle
abla f(x+ au(y-x))-
abla f(x),y-x
angle|d au$$

Доказательство

Применим КБШ:

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \int_{0}^{1} |\langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle| d\tau$$

$$\le \int_{0}^{1} ||\nabla f(x + \tau(y - x)) - \nabla f(x)||_{2} ||y - x||_{2}$$

Доказательство

Применим КБШ:

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \int_{0}^{1} |\langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle| d\tau$$

$$\le \int_{0}^{1} ||\nabla f(x + \tau(y - x)) - \nabla f(x)||_{2} ||y - x||_{2}$$

Далее определение L-гладкости:

еделение
$$L$$
-гладкости: $|f(y)-f(x)-\langle
abla f(x),y-x
angle|\leq L\|y-x\|_2^2\int\limits_0^1 au d au$ $=rac{L}{2}\|x-y\|_2^2$

Гладкость: физический смысл

Ограничение сверху на поведение (рост) – растет не слишком быстро.

Гладкость: физический смысл

