Poszukiwanie największej kliki w grafie

Anna Stępień Adam Stelmaszczyk

Spis treści

1	Zad	anie	
2	Zał	ożenia	
	2.1	Dane wejściowe	
	2.2	Dane wyjściowe	
	2.3	Sytuacje wyjątkowe	
3	Algorytm		
	3.1	Pseudokod	
	3.2	Opis działania	
	3.3	Analiza złożoności	
4	Str	uktury danych	
5	Tes	\mathbf{ty}	
	5.1	Badanie poprawności zwracanych wyników	
	5.2	Badanie czasu wykonania dla różnych typów grafów	

1 Zadanie

Kliką grafu nazywamy podgraf, w którym każde dwa wierzchołki są ze sobą połączone. Maksymalną kliką nazywamy klikę, do której nie można dodać ani jednego wierzchołka więcej, tak aby razem z nią nadal tworzył klikę. Największą kliką nazywamy klikę o największej liczbie wierzchołków. Celem zadania jest implementacja wybranego algorytmu znajdującego największa klikę w grafie oraz analiza otrzymanych wyników.

2 Założenia

Realizowana aplikacja będzie pracowała w trybie konsolowym, z ewentualną możliwością specyfikacji dodatkowych parametrów. W projekcie zostanie wykorzystany zmodyfikowany algorytm Brona–Kerboscha [1], dokładniej opisany w sekcji 3. Do implementacji zadania wykorzystany zostanie język Java.

2.1 Dane wejściowe

Wejściem dla algorytmu jest graf nieskierowany dany macierzą o n wierszach i n kolumnach:

 $q_{i,j}$ równe 0 oznacza, że wierzchołki i oraz j nie są połączone krawędzią. W przeciwnym razie, wierzchołki są połączone.

Macierz jest dana w pliku tekstowym, w formacie FullMatrix¹, w którym pierwszy wiersz specyfikuje liczbę wierszy macierzy, następny informuje o początku danych, natomiast kolejne wiersze definiują właściwą macierz sąsiedztwa grafu.

Kolejne $q_{i,j}$ w wierszu j są oddzielone co najmniej jednym znakiem białym. Przez znak biały rozumiemy spację lub tabulator. $q_{i,j}$ różne od 0 będą traktowane jak 1.

¹http://www.analytictech.com/networks/dataentry.htm

2.2 Dane wyjściowe

Wyjściem jest niepusty zbiór numerów wierzchołków, które tworzą największą klikę w podanym grafie. Wierzchołki numerujemy od 0 do n-1. W grafie może istnieć więcej niż jedna największa klika. W takim przypadku algorytm zwróci pierwszą ze znalezionych klik.

2.3 Sytuacje wyjątkowe

Problemami, które mogą wystąpić podczas działania aplikacji są:

- błędny format danych wejściowych,
- przepełnienie stosu spowodowane zbyt głębokim poziomem rekurencji.

W przypadku, gdy algorytm otrzyma na wejściu błędne dane np. liczba wierszy macierzy będzie niezgodna z zadeklarowaną na początku pliku z danymi, użytkownik zostanie poinformowany o zaistniałej sytuacji a dalsze działanie programu zostanie przerwane.

Ze względu na rekurencyjny charakter algorytmu Brona–Kerboscha może się zdarzyć, iż dla pewnych danych wejściowych algorytm nie będzie w stanie zwrócić wyniku ze względu na ograniczoną pojemność stosu. Próbą rozwiązania tego problemu mogłaby być iteracyjna implementacja algorytmu.

3 Algorytm

Algorytm Brona–Kerboscha jest rekurencyjnym algorytmem z nawrotami, który umożliwia poszukiwanie maksymalnych klik w zadanym grafie niezorientowanym.

Domyślnie algorytm zwraca wszystkie maksymalne kliki. W algorytmie wprowadzona zostanie zmiana, dzięki której zwracana będzie największa ze znalezionych maksymalnych klik, charakteryzująca się największą liczbą wierzchołków.

3.1 Pseudokod

Na ponizszym listingu przedstawiona została podstawowa wersja algorytmu Brona–Kerboscha.

Algorithm 1 Algorytm Brona–Kerboscha (wersja podstawowa)

```
1: compsub \leftarrow \emptyset
 2: candidates \leftarrow V(G)
 3: not \leftarrow \emptyset
 4: cliques \leftarrow \emptyset
 5: function BRON_KERBOSCH(compsub, candidates, not)
         if candidates = \emptyset and not = \emptyset then
 7:
             cliques \leftarrow cliques \cup \{compsub\}
                                                                      ⊳ Maksymalna klika
 8:
         else
             for each v in candidates do
 9:
                 candidates \leftarrow candidates \setminus \{v\}
10:
                 new\_compsub \leftarrow compsub \cup \{v\}
11:
                 new\_candidates \leftarrow candidates \cap neighbors(v)
12:
                 new\_not \leftarrow not \cap neighbors(v)
13:
                 BRON_KERBOSCH(new_compsub, new_candidates, new_not)
14:
                 compsub \leftarrow compsub \cup \{v\}
15:
             end for
16:
         end if
17:
18: end function
```

3.2 Opis działania

Istotą działania przedstawionego algorytmu jest utrzymywanie trzech rozłącznych zbiorów: compsub, candidates oraz not.

Algorytm Brona–Kerboscha znajduje maksymalne kliki składające się ze wszystkich wierzchołków należących do zbioru *compsub*, niektórych należących do zbioru *candidates*, i z żadnego, który należy do zbioru *not*.

Poniżej przedstawiona została charakterystyka każdego ze zbiorów wykorzystywanych przez algorytm:

• compsub

do zbioru należą wszystkie wierzchołki grafu, które tworzą powstającą klikę.

• candidates

do zbioru należą wierzchołki grafu, które mogą posłużyć do rozszerzenia zbioru compsub.

not

do zbioru należą te wierzchołki, które były już wcześniej wykorzystane do rozszerzenia zbioru compsub.

Algorithm 2 Algorytm Brona–Kerboscha (wersja rozszerzona)

```
1: compsub \leftarrow \emptyset
 2: candidates \leftarrow V(G)
 3: not \leftarrow \emptyset
 4: biggest\_clique \leftarrow \emptyset
 5: function BRON_KERBOSCH(candidates, not)
         if candidates = \emptyset and not = \emptyset then
 6:
 7:
             if size(biggest\_clique) < size(compsub) then
                 biggest\_clique \leftarrow compsub

⊳ Największa klika

 8:
             end if
 9:
         else
10:
             pivot \leftarrow vertex\_with\_maxdeg(candidates \cup not)
11:
             candidates\_to\_check \leftarrow candidates \setminus neighbors(pivot)
12:
             for each v in candidates_to_check do
13:
                 compsub \leftarrow compsub \cup \{v\}
14:
                 candidates \leftarrow candidates \setminus \{v\}
15:
                 new\_candidates \leftarrow candidates \cap neighbors(v)
16:
                 new\_not \leftarrow not \cap neighbors(v)
17:
                 BRON_KERBOSCH(new_candidates, new_not)
18:
                 compsub \leftarrow compsub \setminus \{v\}
19:
                 not \leftarrow not \cup \{v\}
20:
21:
             end for
         end if
22:
23: end function
```

Należy zauważyć, iż wszystkie wierzchołki, które są połączone z każdym wierzchołkiem należącym do zbioru *compsub* znajdują się albo w zbiorze *candidates* albo *not*.

Zmodyfikowana wersja algorytmu Brona–Kerboscha wprowadza pojęcie wierzchołka zwrotnego (dalej oznaczanego pivot), który wybierany jest ze zbioru $candidates \cup not$ jako wierzchołek o największym stopniu.

W każdym rekurencyjnym wywołaniu algorytmu rozważane są wierzchołki należące do zbioru candidates. Jeśli zbiory candidates i not są puste, sprawdzane jest czy znaleziona maksymalna klika (oparta na wierzchołkach ze zbioru compsub) jest większa od największej dotychczas znalezionej kliki. Jeśli tak, to znaleziona klika staje się największą, w przeciwnym wypadku największa klika pozostawiana jest bez zmian.

W przypadku, gdy zbiory candidates i not nie są puste, dla każdego wierzchołka ze zbioru $candidates \setminus neighbors(pivot)$ następuje rekurencyjne wy-

wołanie algorytmu, w którym bieżący wierzchołek v dodawany jest do zbioru compsub i usuwany ze zbioru candidates, a w zbiorach candidates i not pozostawiane są tylko te wierzchołki grafu, które są sąsiadami wierzchołka v. Następnie, wierzchołek v jest dodawany do zbioru not jako już wykorzystany do rozszerzenia kliki oraz usuwany ze zbioru compsub.

Wynikiem działania algorytmu jest zbiór biggest_clique, który początkowo inicjowany jest jako zbiór pusty. W przypadku, gdy znaleziona zostanie największa klika, zbiór ten zawiera wierzchołki ją tworzące.

3.3 Analiza złożoności

4 Struktury danych

Graf Do reprezentacji grafu zostanie wykorzystana macierz sąsiedztwa, zaimplementowana jako dwuwymiarowa tablica wartości boolowskich.

Zbiory wierzchołków (compsub, candidates, not, biggest_clique) Zbiory przechowujące wierzchołki zostaną zaimplementowane jako klasa Vertices dziedzicząca po klasie TreeSet języka Java.

5 Testy

Istotną częścią realizowanego zadania jest przeprowadzenie testów związanych zarówno z poprawnością zwracanych wyników jak również wpływem danych wejściowych na czas wykonania algorytmu.

5.1 Badanie poprawności zwracanych wyników

Do weryfikacji poprawności zwracanych przez algorytm wyników zostanie wykorzystana biblioteka igraph², która udostępnia m.in funkcję wyznaczającą maksymalne kliki w zadanym grafie. Podczas testowania planujemy wykorzystać dane zwrócone przez bibliotekę igraph jako rozwiązania referencyjne, które następnie posłużą do porównania z wynikami otrzymanymi przez zaimplementowany algorytm. Rozwiązanie, a więc największa klika zwrócona przez algorytm jest poprawna wtedy, gdy znajduje się na liście rozwiązań referencyjnych.

Proces generowania rozwiązań referencyjnych oraz porównywania wyników zostanie zautomatyzowany.

²http://igraph.sourceforge.net/

5.2 Badanie czasu wykonania dla różnych typów grafów

Z punktu widzenia analizy zaimplementowanego algorytmu istotne jest zbadanie jego zachowania dla różnych typów grafów. W szczególności przeprowadzone zostaną eksperymenty na zestawach grafów o zróżnicowanej gęstości.

Referencje

[1] Coen Bron, Joep Kerbosch, Algorithm 457: finding all cliques of an undirected graph, Communications of the ACM, 16(9): 575–577, 1973.