Chapitre 3: Séries entières partie 1

Safouane TAOUFIK

UM6P-CC

Table of Contents

- Séries entières et rayon de convergence
 - Définition
 - Rayon de convergence
 - Règle de d'Alembert
 - Comparaison
- Opération sur les séries entières
- 3 Régularité de la somme d'une série entière
- 4 Développement d'une fonction en série entière
- 5 Développement en séries entières de fonctions usuelles

Séries entières et rayon de convergence

Définition

Définition 1.1

On appelle série entière toute série de fonctions $\sum f_n$ dont le terme générale est définie par $f_n:z\in\mathbb{C}\to a_nz^n$ avec $(a_n)_{n\in\mathbb{N}}$ une suite complexe.

La série entière est notée simplement $\sum a_n z^n$.

Lemme 1.1

Si $\exists r > 0$ tel que $a_n r^n$ est bornée alors $\forall z \in \mathbb{C}$ tel que |z| < r la série $\sum a_n z^n$ est absolument convergente.

Lemme 1.1

Si $\exists r > 0$ tel que $a_n r^n$ est bornée alors $\forall z \in \mathbb{C}$ tel que |z| < r la série $\sum a_n z^n$ est absolument convergente.

Définition 1.2

On appelle le rayon de convergence de la série entière $\sum a_n z^n$ l'élément $R \in [0, +\infty]$ définie par :

$$R = \sup\{r \ge 0 \text{ tel que } (a_n r^n) \text{ est born\'ee}\}$$

Théorème 1.1

Soit $\sum a_n z^n$ une série entière, R son rayon de convergence et $z \in \mathbb{C}$.

- **1** Si |z| < R alors la série $\sum a_n z^n$ converge absolument.
- ② Si |z| > R alors la série $\sum a_n z^n$ diverge grossièrement.

Exemple 1.1:

• Soit $(a_n)_{n\in\mathbb{N}}$ une suite numérique nulle a partir d'un certain rang déterminer le rayon de convergence de la série entière $\sum a_n z^n$

Exemple 1.1:

- Soit $(a_n)_{n\in\mathbb{N}}$ une suite numérique nulle a partir d'un certain rang déterminer le rayon de convergence de la série entière $\sum a_n z^n$
- ② Déterminer le rayon de convergence de la série entière $\sum z^n$

Exemple 1.1:

- Soit $(a_n)_{n\in\mathbb{N}}$ une suite numérique nulle a partir d'un certain rang déterminer le rayon de convergence de la série entière $\sum a_n z^n$
- **②** Déterminer le rayon de convergence de la série entière $\sum z^n$
- **o** Déterminer le rayon de convergence de la série entière $\sum n! z^n$

Exemple 1.1:

- Soit $(a_n)_{n\in\mathbb{N}}$ une suite numérique nulle a partir d'un certain rang déterminer le rayon de convergence de la série entière $\sum a_n z^n$
- ② Déterminer le rayon de convergence de la série entière $\sum z^n$
- **1** Déterminer le rayon de convergence de la série entière $\sum n!z^n$
- **1** Déterminer le rayon de convergence de la série entière $\sum \frac{1}{n!} z^n$

Remarque 1.1:

Si |z| = R on ne peut pas conclure en générale.

Calculer R le rayon de convergence de la série entière $\sum a_n z^n$ pour chaque cas et discuter le cas |z| = R.

Remarque 1.1:

Si |z| = R on ne peut pas conclure en générale.

Calculer R le rayon de convergence de la série entière $\sum a_n z^n$ pour chaque cas et discuter le cas |z| = R.

- $a_n = \frac{1}{n^2}$

Remarque 1.1:

Si |z| = R on ne peut pas conclure en générale.

Calculer R le rayon de convergence de la série entière $\sum a_n z^n$ pour chaque cas et discuter le cas |z| = R.

- $\mathbf{0} \quad a_n = n$
- **2** $a_n = \frac{1}{n^2}$ **3** $a_n = \frac{1}{n}$

Proposition 1.1

Soit R le rayon de convergence de la série entière $\sum a_n z^n$.

Si la suite $(a_n)_{n\in\mathbb{N}}$ ne s'annule pas à partir d'un certain rang et si

$$\left| \frac{a_{n+1}}{a_n} \right| \xrightarrow[n \to \infty]{} \ell \text{ alors } R = \frac{1}{\ell} \text{ avec la convention} : \frac{1}{0} = +\infty \text{ et } \frac{1}{+\infty} = 0$$

Proposition 1.1

Soit R le rayon de convergence de la série entière $\sum a_n z^n$. Si la suite $(a_n)_{n\in\mathbb{N}}$ ne s'annule pas à partir d'un certain rang et si

$$\left| \frac{a_{n+1}}{a_n} \right| \xrightarrow[n \to \infty]{} \ell \text{ alors } R = \frac{1}{\ell} \text{ avec la convention} : \frac{1}{0} = +\infty \text{ et } \frac{1}{+\infty} = 0$$

Exemple 1.2 : Retrouver le rayon pour les exemples précédents.

Proposition 1.1

Soit R le rayon de convergence de la série entière $\sum a_n z^n$.

Si la suite $(a_n)_{n\in\mathbb{N}}$ ne s'annule pas à partir d'un certain rang et si

$$\left| \frac{a_{n+1}}{a_n} \right| \xrightarrow[n \to \infty]{} \ell \text{ alors } R = \frac{1}{\ell} \text{ avec la convention} : \frac{1}{0} = +\infty \text{ et } \frac{1}{+\infty} = 0$$

Exemple 1.2 : Retrouver le rayon pour les exemples précédents.

Exemple 1.3 : Déterminer le rayon de convergence de $\sum \frac{q^n}{n!} z^n$.

Proposition 1.1

Soit R le rayon de convergence de la série entière $\sum a_n z^n$.

Si la suite $(a_n)_{n\in\mathbb{N}}$ ne s'annule pas à partir d'un certain rang et si

$$\left| \frac{a_{n+1}}{a_n} \right| \xrightarrow[n \to \infty]{} \ell \text{ alors } R = \frac{1}{\ell} \text{ avec la convention} : \frac{1}{0} = +\infty \text{ et } \frac{1}{+\infty} = 0$$

- **Exemple 1.2 :** Retrouver le rayon pour les exemples précédents.
- **Exemple 1.3**: Déterminer le rayon de convergence de $\sum \frac{q^n}{n!} z^n$.
- **Exercice 1.1**: Trouver le rayon de convergence de $\sum z^{2n}$

Théorème 1.2

Soient R_a et R_b les rayons de convergence des séries entières

$$\sum a_n z^n$$
 et $\sum b_n z^n$

- **1** Si $a_n = \mathcal{O}(b_n)$ alors $R_b \leq R_a$
- ② Si $a_n = \circ(b_n)$ alors $R_b \leq R_a$
- **3** Si $a_n \sim b_n$ alors $R_b = R_a$

Théorème 1.2

Soient R_a et R_b les rayons de convergence des séries entières

$$\sum a_n z^n$$
 et $\sum b_n z^n$

- **1** Si $a_n = \mathcal{O}(b_n)$ alors $R_b \leq R_a$
- ② Si $a_n = \circ(b_n)$ alors $R_b \leq R_a$
- 3 Si $a_n \sim b_n$ alors $R_b = R_a$

Exemple 1.4 : Calculer R le rayon de convergence de la série entière $\sum a_n z^n$ dans les cas suivants :

 $a_n = \sin(n)$

Théorème 1.2

Soient R_a et R_b les rayons de convergence des séries entières

$$\sum a_n z^n$$
 et $\sum b_n z^n$

- **1** Si $a_n = \mathcal{O}(b_n)$ alors $R_b \leq R_a$
- ② Si $a_n = \circ(b_n)$ alors $R_b \leq R_a$
- **3** Si $a_n \sim b_n$ alors $R_b = R_a$

Exemple 1.4 : Calculer R le rayon de convergence de la série entière $\sum a_n z^n$ dans les cas suivants :

- $a_n = \sin(n)$
- $a_n = \ln\left(\frac{n+1}{n}\right)$

Théorème 1.2

Soient R_a et R_b les rayons de convergence des séries entières

$$\sum a_n z^n$$
 et $\sum b_n z^n$

- **1** Si $a_n = \mathcal{O}(b_n)$ alors $R_b \leq R_a$
- ② Si $a_n = \circ(b_n)$ alors $R_b \leq R_a$

Exemple 1.4 : Calculer R le rayon de convergence de la série entière $\sum a_n z^n$ dans les cas suivants :

- $a_n = \sin(n)$
- $a_n = \ln\left(\frac{n+1}{n}\right)$
- $a_n = \sin(e^{-n})$

Opération sur les séries entières

Sommes de deux séries entières

Théorème 2.1

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayon R_a et R_b . Soit R Le rayon de convergence de la série entière somme $\sum (a_n + b_n)z^n$.

- ② Si $|z| < \min(R_a, R_b)$, alors : $\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$

Sommes de deux séries entières

Théorème 2.1

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayon R_a et R_b . Soit R Le rayon de convergence de la série entière somme $\sum (a_n + b_n)z^n$.

- ② Si $|z| < \min(R_a, R_b)$, alors : $\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$

Exercice 2.1: Montrer que si $R_a \neq R_b$ alors $R = \min(R_a, R_b)$. Montrer qu'on a pas l'égalité en générale.

Produit de Cauchy de deux séries entières

Théorème 2.2

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons R_a et R_b .

Soit R le rayon de convergence de la série entière produit $\sum c_n z^n$, avec

$$c_n = \sum_{k=0}^n a_k b_{n-k}. \text{On a} :$$

- $\text{Si } |z| < \min(R_a, R_b), \text{ alors } : \sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right)$

Régularité de la somme d'une série entière

Convergence normale

Théorème 3.1

Une série entière de rayon R converge normalement sur tout disque de centre 0 et de rayon **inférieur strictement** à R.

Convergence normale

Théorème 3.1

Une série entière de rayon R converge normalement sur tout disque de centre 0 et de rayon **inférieur strictement** à R.

Corollaire 3.1

La somme d'une série entière de rayon R est continue sur le disque ouvert de centre 0 et de rayon R.

Corollaire 3.1

La somme d'une série entière de rayon R est continue sur le disque ouvert de centre 0 et de rayon R.

Exemple 3.1:

Corollaire 3.1

La somme d'une série entière de rayon R est continue sur le disque ouvert de centre 0 et de rayon R.

Exemple 3.1:

- $2 \mapsto e^z$ est continue sur \mathbb{C} .

Corollaire 3.1

La somme d'une série entière de rayon R est continue sur le disque ouvert de centre 0 et de rayon R.

Exemple 3.1:

- $2 \mapsto e^z$ est continue sur \mathbb{C} .

Remarque 3.1: Si la série entière $\sum a_n z^n$ est de rayon R et si la série numérique $\sum a_n R^n$ converge absolument alors la somme de la série entière est continue sur le disque fermé de centre 0 et de rayon R.

Dans toute la suite on se limitera notre étude des séries entières à la variable réelle et on notera la série $\sum a_n z^n$ avec $z \in \mathbb{R}$ par $\sum a_n x^n$.

Dérivation

Définition 3.1

On appelle série entière dérivée d'une série entière $\sum a_n x^n$ la série entière :

$$\sum_{n>1} n a_n x^{n-1} = \sum_{n>1} (n+1) a_{n+1} x^n$$

Dérivation

Définition 3.1

On appelle série entière dérivée d'une série entière $\sum a_n x^n$ la série entière :

$$\sum_{n>1} n a_n x^{n-1} = \sum (n+1) a_{n+1} x^n$$

Lemme 3.1

Une série entière et sa série entière dérivée ont le même rayon de convergence.

Dérivation

Proposition 3.1

Si la série entière $\sum a_n x^n$ est de rayon R alors sa somme S est de classe \mathcal{C}^1 sur]-R,R[et on a :

$$\forall x \in]-R, R[, S'(x) = \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n$$

Dérivation

Proposition 3.1

Si la série entière $\sum a_n x^n$ est de rayon R alors sa somme S est de classe \mathcal{C}^1 sur]-R,R[et on a :

$$\forall x \in]-R, R[, S'(x) = \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n$$

Proposition 3.2

Si la série entière $\sum a_n x^n$ est de rayon R alors sa somme S est de classe C^{∞} sur]-R,R[et on a :

$$\forall x \in]-R, R[, S^{(p)}(x) = \sum_{n=0}^{+\infty} (n+p)(n+p-1)...(n+1)a_{n+p}x^n$$

20/30

Intégration

Corollaire 3.2

Soit $\sum a_n x^n$ une série entière de rayon R et S sa somme. La fonction $x \in]-R, R[\mapsto \sum \frac{a_n}{n+1} x^{n+1}$ est la primitive de S s'annulant en 0.

Définition 4.1

Une fonction f est dite développable en série entière sur]-r,r[, s'il existe une série entière $\sum a_n x^n$ de rayon $R \geq r$ telle que :

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Définition 4.1

Une fonction f est dite développable en série entière sur]-r,r[, s'il existe une série entière $\sum a_n x^n$ de rayon $R \geq r$ telle que :

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Définition 4.2

Une fonction f est dite développable en série entière en 0, s'il existe r > 0 tel que f est développable en série entière sur]-r,r[.

Théorème 4.1

Si $\sum a_n x^n$ est une série entière de rayon R > 0 de somme S alors :

$$\forall n \in \mathbb{N}, a_n = \frac{S^{(n)}(0)}{n!}$$

Théorème 4.1

Si $\sum a_n x^n$ est une série entière de rayon R > 0 de somme S alors :

$$\forall n \in \mathbb{N}, a_n = \frac{S^{(n)}(0)}{n!}$$

Corollaire 4.1

Si $\sum a_n x^n$ et $\sum b_n x^n$ sont deux séries entières de rayons $R_a, R_b > 0$ de sommes S_a, S_b , alors :

$$(\exists r > 0 \text{ tq } \forall x \in]-r, r[, S_a(x) = S_b(x)) \implies \forall n \in \mathbb{N}, a_n = b_n$$

Théorème 4.2

Si f est développable en série entière sur]-r,r[, alors f est de classe \mathcal{C}^{∞} et :

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Remarque 4.1:

Pour étudier si une fonction f est développable en série entière en 0:

1 Si f n'est pas de classe \mathcal{C}^{∞} alors elle n'est pas développable en série entière.

Remarque 4.1:

Pour étudier si une fonction f est développable en série entière en 0:

- ① Si f n'est pas de classe \mathcal{C}^{∞} alors elle n'est pas développable en série entière.
- ② Si f est de classe C^{∞} on vérifie si $\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \xrightarrow[n \to \infty]{} f(x)$ dans un voisinage de 0. Pour cela, on peut utiliser les formules de Taylor.

Proposition 4.1

Si f et g sont développables en série entière en 0 alors λf , f+g et fg sont développables en série entière en 0. (λ est un scalaire quelconque)

Développement en séries entières de fonctions usuelles

Développements usuels — famille de l'exponentielle

Fonction	Développement	Domaine de validité
$x \mapsto e^x$	$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \cdots$	\mathbb{R}
$x \mapsto \cos(x)$	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$	\mathbb{R}
$x \mapsto \sin(x)$	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$	\mathbb{R}
$x \mapsto \cosh(x)$	$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$	\mathbb{R}
$x \mapsto \sinh(x)$	$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$ $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$	\mathbb{R}

Développements usuels — famille du binôme

Fonction	Développement	Domaine de validité
$x \mapsto \frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \cdots$	x < 1
$x \mapsto \frac{1}{1+x}$	$\sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 + \cdots$	x < 1
$x\mapsto \ln(1-x)$	$-\sum_{n=1}^{\infty} \frac{x^n}{n} = -x - \frac{x^2}{2} - \frac{x^3}{3} + \cdots$	x < 1
$x\mapsto \ln(1+x)$	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots$	x < 1
$x\mapsto \operatorname{arctan}(x)$	$\sum_{n=0}^{n-1} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} + \cdots$	x < 1
$x\mapsto (1+x)^p,\ p\in\mathbb{N}$	$\sum_{\substack{n=0 \\ p \ \text{odd}}} \binom{p}{n} x^n = 1 + px + \frac{p(p-1)}{2} x^2 + \cdots$	\mathbb{R}
$x \mapsto (1+x)^{\alpha}, \ \alpha \notin \mathbb{N}$	$\sum_{n=0}^{\infty} {\alpha \choose n} x^n = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + \cdots$	x < 1