CRUPA: B

(6) Zadatak:

- (3) Postavi kompletan optimisacijski problem komplimiracije proizvednje elektr energije i rotirajuće rozerva četiri alaktrana koja sudjetuju na zdrutanom tri električne energije i pomočnih usluga (u ulazi operatora tržišta) (1) Navedite koje su varijable a koje konstante u problemu:
- (I) Definirajte riječima što je to cijena u sjeni električne energije, a što cijena u rezerve.
- (1) Povežite tržišne cijene odn. cijene u sjeni ograničenja slektrične energije i pems usluga s pripadajućim ograničenjima u problemu

Pretpostavke:

- Zahtjev za rezervom u sustavu je najmanje R = 250 MW.
- Potrošnja koju treba zadovoljiti je D = 720 MW.
- Operator tržišta (OT) zaprima ponude (cijenu i količinu) za električnu energiju di rotirajuću rezervu zaprima ponudu bez cijene (samo količina).

Ponude za električnu energiju i rotirajuću rezervu;

Elektra	Marginalni trošak			
1	proizvodnje ee (€/MWh)	P _{min}	P _{max}	
2	5	50		R _{mis}
3	15	100	250	56
5	32	50	150	- 60
	60	120	300	10
		300	750	50

(4) Zamislite da ste Operator sustava koji je ujedno i Operator tržišta na cent aukcijskom tržištu. Postavite optimizacijski problem minimizacije troškova aukcijskom tržištu. Postavite optimizacijski problem minimizacije troškova

Predvidjeli ste potrošnju u Borduriji na iznos 500 MW, a u Syldaviji 1500 MW. Prijenosna moć prijenosnog voda koji spaja Borduriju i Syldaviju je 490 MW, Reaktancija voda je $X_{85} = 40 \Omega$,

Linijski čvorišni naponi su jednaki u oba čvorišta i iznose U = 140 kV.

Ponuda proizvođača (marginalni trošak) u Borduriji je: $MC(P_B) = 10 \pm 0.01 \cdot 1$

Ponuda proizvođača (marginalni trošak) u Syldaviji je: $MC(P_S) = 13 \pm 0.02 \cdot P_S$

ELU LATE E SO 1. ISPITNI ROK IZ EKONOMIJE U ENERGETICI 2015 nagradi su bodovi. Zadaća ima ukupno 55 bodova. Prag je 27.5 bodo

te da ste Operator sustava koji je ujedno i Operator tržišta na centraliziranom

Postavite optimizacijski problem minimizacije troškova sustava uz zadovoljava rošnje sustava, prijenosnih ograničenja i gubitaka u vodu.

zvedi funkciju marginalnog troška radnih gubitaka u vodu (koristi koeficijent K) zvedi funkciju potrošačevog viška uzrokovanog gubitcima u vodu.

vidjeli ste potrošnju u Borduriji na iznos 500 MW, a u Syldaviji 1500 MW. nosna moč prijenosnog voda koji spaja Borduriju i Syldaviju je 490 MW,

u obzir gubitke u vodu koristeći koeficijent K=0.00005 MW⁻¹.

ki čvorišni naponi su jednaki u oba čvorišta i iznose U = 140 kV.

da proizvođača (marginalni trošak) u Borduriji je: $MC(P_B) = 10 + 0.01 \cdot P_B$ (

pay of one is obout Operators southers to before, stogs

- de la Montalización de la compacta del la compacta de la compacta
- # 13) Modelines are ograničenje protovodnih jedinica i mreže koršiteči podatke is tabilice as Est Koriotine allosingerio proračun tokova snage (DC power flow) za proračun optimal
- 43 fixpline jednadžbe ravnoteže tokova snaga za čvoršta.
- d) (3) Povežne čvorišne cijene (cijena w sjeni) s pripadajućim ograničenjima u problemu.
- Pretpostavka je da postoje ograničenja na prijenos snage u vodovima, postoje tri sabir tri voda prema slici.

ine podatke ili oznake iz tablice:

Potrośnija koju treba zadovoljiti je:	Instalirana snaga generatora:
Sabirnica 1: D ₁ = 520 MW Sabirnica 2: D ₂ = 520 MW	 Ugljen: P_A ***** 600 MW Plin: P_B ******* 300 MW
* Sabirnica 3: D ₃ = 220 MW	* NE: Pc 400 MW
	 Biomasa Pomas 50 MW

Prijeriosna moć vodova:

- Vod 1-2: F₁₂^{max} = 226 MW
- Vod 1-3; F₁₈ nav = 550 MW
- Vod 2-3: F₂₃^{max} = 330 MW

Marginalni troškovi proizvodnje:

- MC(P_A) = 30 €/MWh
- MC(P_B) = 70 €/MWh
- MC(Pc) = 11.8 €/MWh
- MC(Po) = 39.5 €/MWh

Reaktancije vodova:

Naponi u čvorištima:

Vod 1-2: X₁₂ = 40 Ω

Vod 1-3: X₁₃ = 31 Ω

Vod 2-3: X₂₃ = 35 Ω

- Sabirnica 1: U₁ = 220 kV Sabirnica 2: U₂ = 220 kV
- Sabirnica 3: $U_3 = 220 \text{ k}$

I. ISPITNI ROK IZ EKONOMIJE U ENERGUTICI 2018

Napamena: Brojevi u zagradi su bodovi. Zadaća ima ukupno 35 bodova. Posi, te 275. bošova. Trujung successis titi. se GRUPA: B

razmatrate investiranje u termoelektranu na ugljen od 500 MW. Zaši ulazni podaci su

World Property

westicijski trošak	1021 €/kW	
jek trajanja elektrane		
ergetska vrijednost goriva za 1 kWh	30 godina	
sak goriva	9419 Btu/kWh	
tor iskorištenja	1.25 €/MBtu	
na električne enrgije	0.8	
ontna stopa	32 €/MWh	
Difference accepts	8.7 %	

jenite isplativost investicije koristeći:

CHRISTIANA

(0.5) neto sadašnju vrijednost (NPV) i

(0.5) internu stopu rentabilnosti (IRR).

10 DE 49

Estrulja totalnog troška nekog price-toker protrvođača električne energije

$$100 \le P \le 250 \text{ (MW)}$$
: $C(P) = 11.57 \cdot P + 78 \cdot \frac{6}{h}$
 $250 \le P \le 400 \text{ (MW)}$: $C(P) = 12.35 \cdot P - 117 \cdot \frac{6}{h}$
 $400 \le P \le 500 \text{ (MW)}$: $C(P) = 12.35 \cdot P - 117 \cdot \frac{6}{h}$

 $490 \le P \le 500 \ (MW): \ C(P) = 13.00 \cdot P - 377 \ (\frac{\epsilon}{h})$ (1) Skicirajte krivulju ponude ovog price-toker proizvođača s cijenam

(0.5) Ukoliko je (rezidualna) potražnja električne energije savršeno n 10 sijeće x-06 krivulje ponude iz (a) u točci 55 MW, koliko će €/MWh proisvodač (Skiciraj potražnju)?

(0.5) Ukoliko je cijena na tržištu jednaka 20 €/MWh, kolika će bi također kolika će biti proizvodnja ako je cijena na tržištu 11 €/MWh.

1. ISPITNI ROK IZ EKONOMIJE U ENERGETICI 2015 Napomena: Brojevi u zagradi su bodovi. Zadaća ima ukonom 55 bodova. Prak iz 27.5 bodova. Trajurac opi ORUPA: B y Ako je agregirana krivulja marginalnog troška nekog sustava slijedeća:

$$100 \le P \le 500 \text{ (MW)}$$
: $MC(P) = 0.2 \cdot P \cdot \frac{\mathcal{E}}{MWK}$
 $Savršeno neelastična ponuda$

- g. (1) Skicirajte krivulju ponude ovog proizvođača s cijenama i iznosima. (1) Ako je krivulja potražnje definirana sa $\pi = -0.01 \cdot P + 130 \left(\frac{e}{\mu WR}\right)$ odredi tri cijenu i protrgovanu količinu. (Skiciraj krivulju)
 - (1) Ako je krivulja potražnje definirana sa $\pi = -0.01 \cdot P + 80 \left(\frac{\epsilon}{MWh}\right)$ odredi o tržišnu cijenu i protrgovanu količinu. (Skiciraj krivulju).

ISPITNI ROK IZ EKONOMIJE U ENERGETICI 2015 GRUPA: B pay 55 bedres. Post je 27.5 te

prelivodna tvrtka u svom portfelju irna tri elektrane, čiji su troškovi aproksimirani sljede adhadibana: Elektrana A: C(P_A) = 10 + 1,2 P_A+0,02P_A Elektrana B: C(Pa) = 15 + 1,4 Pa+0,04Pa Elektrana C: C(Pc) = 15 + 1,6 Pc+0,04Ps

(1.5) postavi kompletan optimizacijski problem minimizacije troškova pritom uvaža Ako trebaju zadovoljiti potražnju od D = 450 MW Ako je minimalna izlazna snaga Elektrane A, $p_A^{min} = 100 \text{ MW}$

2.

Ako je maksimalna izlazna snaga Elektrane A, $P_A^{min}=100~\text{MW}$ 3. Ako je minimalna izlazna snaga Elektrane B, $p_B^{min} = 200 \text{ M}$ 4. Ako je maksimalna izlazna snaga Elektrane B, $p_A^{min} = 50 \text{ MW}$ 3.

Ako je maksimalna izlazna snaga Elektrane B, $P_B^{min} = 50 \text{ MW}$ 6. Jedinica C nema ograničenja

(2) Nađi plan proizvodnje za slučaj a.

(0.5) Ukoliko je moguće dio potražnje pokriti kupovinom na tržištu po cijeni 8 EUR/MWh, kakav će tada biti plan proizvodnje?

1) 17665 STEPHEN

I. ISPITNI ROK IZ EKONOMIJE U ENERGETICI 2015

GRUPA: B bodova Pras je 27.5 bodova Trajanje nojta je 100 manuta.

GRUPA: B polikedna tvrtka u svom portfelju ima tri elektrane i sudjeluje na tržištu električne polikejama:

gjektrana A: C(Pa) = 15+1,4 pa+0,04pa²

gjektrana B: C(Pa) = 25+1,6 pu+0,05pa²

gjektrana C: C(Pc) = 20+1,8 pc+0,02pa²

pokav če biti plan proizvodnje ako je cijena na tržištu 10 EUR/MWh?

[3] Sokav če biti plan proizvodnje ako je cijena na tržištu 10 EUR/MWh?

[4] Sokav če biti plan proizvodnje ako je cijena na tržištu 10 EUR/MWh i ako zbog kvara

[5] Kokav če biti plan proizvodnje ako je cijena na tržištu 10 EUR/MWh i ako zbog kvara

[6] Kokav če biti plan proizvodnje ako je cijena na tržištu 10 EUR/MWh i ako Elektrane A i E

INPITNI ROK EZ EKONOMIJE U ENERGETICI 2015
GRUDA - B
GRUDA - B
GRUDA - B h. paramotrimo reverzibilnu HE (RHE) s akumulacijom za koju je utrošeno 1000 MWh kako bi (4) partials. Efikasnost cijelog ciklusa je 75%. okumulaciju puni tijekom 4 sata na selectiju: gor ove Hz co.
por ov akumulaciju proizvodi 4 sata tijekom najviše cijene električne energije. (0.5) Koliki je profit ili gubitak elektrane u razmatranom razdoblju, za kojeg su podaci dani u tablici. u tablici. (0.5) Kolika bi morala biti efikasnost elektrane, da profit/gubitak bude jednak 10 000€. 41 6... 45 7 8 56 58 10 11 60 63 60 55

4.1 12 49 (44)

1925 865)=41175 I. INPITNI ROK IZ EKONOMIJE U ENERGETICI 2015

GRUPA: B

kompanije prodaju električnu energiju s pretpostavkom da za njih važi Cournotov mod

= 15-Pa = 15-Pa = 15-Pe

= 15.Po

(3) Odredite kako će svaki od njih postaviti svoju proizvodnju. a) (1) Odredite također profite za svaku tvrtku.

ražnje: π(D) = 100 − D , (€/MWh). Gdje je D ukupna potražnja.

se nadmeće 9 proizvođača ukupne proizvodnje Q, i proizvođač Gamabe se nadne oć Gamabet d.o.o. ima kratkoročnu krivulju totalnog troška

$$TC(q) = 10q^2 + 0.1q + 1 \in$$

(2) Postavi optimizacijski problem maksimizacije dobiti tvrtke Gamabet, te iz nje (1) ponude kojom Gamabet d.o.o. maksimizira svoju dobit

povilju posliki poslik

0.515 = 0.2. 2) Skiciraj krivulje ponude na jednom grafu tako da se približno vide njihovi o 2) Skichoj ko se elastičnost potražnje promijenila sa $\varepsilon(D)$ = -20 (elastična potražnja) na 10000.

(0.5) Kakva bi tada bila potražnja:

- a) elastična,
- b) neelastična,
- c) savršeno elastična.
- d) savršeno neelastična.

(0.5) Također, krivulja ponude gamabeta d.o.o. je tada jednaka kao ie je:

- a) Savršena konkurencija
- b) Nesavršena konkurencija
- c) Duopol
- d) Monopol

ASSESSED AS A STATE OF THE PROPERTY OF THE PARTY OF THE P

apital A I potrošač V žele sklopiti tirovi.

progradač A i potrošač V žele sklopni ugovor za 800 tevy, a postworfer D i potrošac Z za 500 64W.

i politiodas c i potrosas D sa 300 MW.

protevodać B i potrošać Z za 300 MW.

graćunaj tokove snaga kroz vodove i odredi jeti moguća realizacija ovih ogovora.

	geaktancija (p.u.)	Prijenosna moć (MW)
10	0,4	100
1	0,4	300
1	0,2	150

I. ISPITNI ROK IZ EKONOMIJE U ENERGETICI 2018.

GRUPA: B. GRUPA: B. Company of the participation of the participat

zentraliziranom aukcijskom tržištu sudjeluju tri proizvodača i tri potrošača sa ponudama

	Quantity	-
Price	(MWh)	1
(\$55(Wh)	200	1
12.00	50	84
15.00	50	800
20:00	150	Red
16.00	50	Oren
17.00	100	Oses
13.00	50	Blac
18.00		gisc .

Ponude opskrbljivača za kupr

Company	Quantity	Price
Yellow	(MWb)	(S/MWh)
Yellow	50	13.00
Purple	100	23.00
Purple	50	11.00
Orange	150	22.00
Orange	50	10.0
	200	25.00

u ulozi operatora tržišta odredi:

- 1. (0.5) agregiranu krivulju ponude i potražnje (napiši jedinice za x i y os).
- 2. (0.5) tržišnu cijenu električne energije, protrgovanu količinu električne energije.
- slučaju b, operator tržišta je odlučio da je bolje predvidjeti dan-unaprijed potražnju slučaju b, op gara savršeno neelastičnom i ako je prognozirana potražnja 200 MWh. 1. (0.5) Nacrtaj krivulju potražnje u tom slučaju i
- (0.5) protrgovanu količinu i cijenu

(1) (0.5) Napitā izraz za indeks profitabilisosti. (0.5) Namači i opiti sie paramete a indeks.

 (1) Matematički izvedite uvjet optimalne proizvodnje elektrane na savršen tržištu. Pri tome pretpostavite da je P proizvodnja električne energije u MV ukupnih troškova elektrane, a π cijena električne energije u satu t.