4 Das starke Gesetz der großen Zahlen

Satz 4.1 (Borel-Cantelli Lemma) $Sei(\Omega, \mathcal{A}, P)$ ein Wahrscheinlichkeitsraum und $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}$ eine Folge von Ereignissen.

$$\limsup_{n\to\infty}A_n:=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k$$

ist das Ereignis, dass unendlich viele der A_n 's eintreten.

a) Dann gilt:

$$\sum_{n=1}^{\infty} P(A_n) < \infty \Longrightarrow P(\limsup_{n \to \infty} A_n) = 0.$$

b) Sind die Ereignisse A_n , $n \in \mathbb{N}$ stochastisch unabhängig, so gilt:

$$\sum_{n=1}^{\infty} P(A_n) = \infty \Longrightarrow P(\limsup_{n \to \infty} A_n) = 1.$$

Beweis

a) Sei $B_n := \bigcup_{k=n}^{\infty} A_k$, $n \in \mathbb{N} \Rightarrow P(B_n) \leq \sum_{k=n}^{\infty} P(A_k) \stackrel{n \to \infty}{\longrightarrow} 0$. Da $B_n \downarrow \bigcap_{n=1}^{\infty} B_n$ folgt:

$$P(\limsup_{n \to \infty} A_n) = P(\bigcap_{n=1}^{\infty} B_n) = \lim_{n \to \infty} P(B_n) = 0.$$

b) Sei $P_n := P(A_n), \ n \in \mathbb{N}.(A_n)$ stoch. unabh $\Rightarrow (A_n^c)$ stoch unabh. Es gilt:

$$0 \leq P(\bigcap_{n=1}^{\infty} A_k^c) \quad \stackrel{\text{stetig von oben}}{=} \quad \lim_{N \to \infty} P(\bigcap_{n=1}^N A_k^c)$$

$$\stackrel{\text{unabh.}}{=} \quad \lim_{N \to \infty} \prod_{k=1}^N (1 - P_k)$$

$$\leq \quad \lim_{N \to \infty} \exp(-\sum_{k=1}^N P_k) \stackrel{\text{nach Vor.}}{=} 0$$

Somit:

$$0 \le P((\limsup_{n \to \infty} A_n)^c) = P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c) \le \sum_{n=1}^{\infty} P(\bigcap_{k=n}^{\infty} A_k^c) = 0$$

Definition Es seien X, X_1, X_2, \ldots ZV auf einem W'Raum (Ω, \mathcal{A}, P) . X_n konvergiert P-fast sicher gegen $X, (X_n \xrightarrow{f.s.} X)$ wenn gilt:

$$P\left(\left\{\omega \in \Omega \mid \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1.$$

Bemerkung $\{\lim_{n\to\infty} X_n(\omega) = X(\omega)\} \in \mathcal{A}, \text{ denn: }$

(i) $\sup_{n\geq 1} X_n$ ist \mathcal{A} -messbar, da $\{\sup_{n\geq 1} X_n \leq a\} = \bigcap_{n=1}^{\infty} \underbrace{\{X_n \leq a\}}_{\in \mathcal{A}} \in \mathcal{A}$. $\inf_{n\geq 1} X_n = -\sup_{n\geq 1} (-X_n)$ ist \mathcal{A} -mb. $\Rightarrow \limsup_{n\to\infty} X_n = \inf_{n\geq 1} \sup_{k\geq n} X_k, \liminf_{n\to\infty} X_n$ \mathcal{A} -messbar.

(ii)
$$\{\lim_{n\to\infty} X_n = X\} = (\liminf_{n\to\infty} (X_n - X))^{-1} (\{0\}) \cap (\limsup_{n\to\infty} (X_n - X))^{-1} (\{0\}) \in \mathcal{A}$$

Im Folgenden sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von ZV auf einem W'Raum (Ω, \mathcal{A}, P) . Starke Gesetz der großen Zahlen sind Resultate der Form

$$\frac{1}{a_n} \left(\sum_{i=1}^n X_i - b_n \right) \stackrel{f.s.}{\to} 0$$

wobei $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Der wichtigste Satz ist hier:

Satz 4.2 (Starkes Gesetz der großen Zahlen) $Ist(X_n)_{n\in\mathbb{N}}$ eine Folge von u.i.v. ZV mit $E|X_1|<\infty$, so gilt:

$$\frac{1}{n} \sum_{n=1}^{n} X_i \stackrel{f.s.}{\to} EX_1.$$

Beweis Sei zunächst $X_k \geq 0 \ \forall k \in \mathbb{N}$ und $Y_k := X_k \cdot \mathbf{1}_{[X_k \leq k]} \ (Y_k \text{ entsteht aus } X_k \text{ durch Abschneiden bei } k)$. Sei $S_n^* := \sum_{k=1}^n Y_k \ EY_k = E[X_k \cdot \mathbf{1}_{[X_k \leq k]}] = E\left[X_1 \cdot \mathbf{1}_{[X_1 \leq k]}\right] \overset{k \to \infty}{\longrightarrow} EX_1 \text{ mit S.2.1 (Monotone Konvergenz)}.$ Aus der Analysis: Sei $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n a_k = a.$$

Damit folgt:

$$\lim_{n \to \infty} \frac{1}{n} E S_n^* = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n E Y_k = E X_1.$$

Die Y_n 's sind wieder unabhängig und es gilt:

$$\operatorname{Var}(S_n^*) = \sum_{k=1}^n \operatorname{Var}(Y_k) \le \sum_{k=1}^n EY_k^2 \le \sum_{k=1}^n E[X_k^2 \cdot \mathbf{1}_{[X_k \le n]}] = n \cdot E[X_1^2 \cdot \mathbf{1}_{[0,n]}(X_1)] \ (*)$$

Sei $\alpha > 1$ und $m_n := \lfloor \alpha^n \rfloor \ \forall n \in \mathbb{N}$. Für x > 0 sei $\Psi(x) := \sum_{n=N(x)}^{\infty} \frac{1}{m_n}$ mit $N(x) := \min\{n \mid m_n \geq x\}$

Für beliebige $z \ge 1$ gilt: $\lfloor z \rfloor \ge \frac{z}{2}$ und somit $\frac{1}{m_n} = \frac{1}{\lfloor \alpha^n \rfloor} \le \frac{2}{\alpha^n}$ und $\alpha^{N(x)} \ge \lfloor \alpha^{N(x)} \rfloor = m_{N(x)} \ge x$. Mit $k := \frac{2\alpha}{\alpha - 1}$ gilt:

$$\Psi(x) = \sum_{n=N(x)}^{\infty} \frac{1}{m_n} \le 2 \cdot \sum_{n=N(x)}^{\infty} \frac{1}{\alpha^n} = 2 \cdot \alpha^{-N(x)} \cdot \frac{1}{1 - \frac{1}{\alpha}} \le \frac{k}{x} \ (**)$$

Die Ungleichung von Tschebyscheff liefert $\forall \varepsilon > 0$:

$$\sum_{n=1}^{\infty} P\left(\frac{1}{m_n} | S_{m_n}^* - E S_{m_n}^* | > \varepsilon\right) \stackrel{(*)}{\leq} \sum_{n=1}^{\infty} \frac{1}{\varepsilon^2 m_n} E[X_1^2 \cdot \mathbf{1}_{[0,m_n]}(X_1)]$$

$$\stackrel{\mathrm{S.2.1}}{=} \frac{1}{\varepsilon^2} E[X_1^2 \sum_{n=1}^{\infty} \frac{1}{m_n} \cdot \mathbf{1}_{[0,m_x]}(X_1)]$$

$$= \frac{1}{\varepsilon^2} E[X_1^2 \Psi(X_1)] \stackrel{(**)}{\leq} \frac{k}{\varepsilon^2} EX_1$$

$$\stackrel{\ddot{\coprod}b}{\Longrightarrow} \frac{1}{m_n} (S_{m_n}^* - ES_{m_n}^*) \stackrel{f.s.}{\Longrightarrow} 0 \stackrel{\ddot{\coprod}b}{\Longrightarrow} \frac{1}{m_n} S_{m_n}^* \stackrel{f.s.}{\Longrightarrow} EX_1.$$

Nächstes Ziel: * weg bekommen.

Es gilt:

$$\sum_{n=1}^{\infty} P(X_n \neq Y_n) = \sum_{n=1}^{\infty} P(X_1 > n)$$

$$\leq \int_{[0,\infty]} P(X_1 > x) \mathbf{1}(x) \stackrel{\text{Bsp 3.1}}{=} EX_1 < \infty.$$

$$\overset{S.4.1a)}{\Longrightarrow} P(\underbrace{\{\omega \in \Omega \,|\, X_n(\omega) \neq Y_n(\omega) \text{ für unendlich viele } n\}}_{=:N_0}) = 0$$

 $\forall \, \omega \not\in N_0 \, \exists \, k(\omega) \in \mathbb{N} \text{ mit } X_n(\omega) = Y_n(\omega) \, \, \forall \, n \geq k(\omega).$ Auf N_0^C gilt also:

$$\frac{1}{n}(S_n(\omega) - S_n^*(\omega)) = \frac{1}{n}(\sum_{i=1}^{k(\omega)} X_i(\omega) - Y_i(\omega)) \stackrel{n \to \infty}{\to} 0$$

$$\implies \frac{1}{n}(S_n - S_n^*) \stackrel{f.s.}{\to} 0 \implies \frac{1}{m_n} S_{m_n} \stackrel{f.s.}{\to} EX_1 \quad (\Delta)$$

Jetzt muss die Einschränkung auf die Teilfolge $(m_n)_{n\in\mathbb{N}}$ weg. Da $S_n \geq 0$, gilt für $m_n \leq k \leq m_{n+1}$:

$$\frac{m_n}{m_{n+1}} \cdot \frac{S_{m_n}}{m_n} \le \frac{S_k}{k} \le \frac{m_{n+1}}{m_n} \cdot \frac{S_{m_{n+1}}}{m_{n+1}}$$

Da $\frac{m_{n+1}}{m_n} \stackrel{n \to \infty}{\to} \alpha$ folgt mit (Δ) :

$$\frac{1}{\alpha}EX_1 \leq \liminf_{k \to \infty} \left(\frac{S_k}{k}\right) \leq \limsup_{k \to \infty} \left(\frac{S_k}{k}\right) \leq \alpha EX_1 \quad P\text{-f.s.}$$

Sei N_{α} die Ausnahmemenge zu α in der Konvergenz (Δ). Da $\alpha > 1$ beliebig, gilt auf $(\underbrace{\bigcup_{j=1}^{}N_{1+\frac{1}{j}}}_{P\text{-Nullmenge}})^{C}$:

$$EX_1 \le \liminf_{k \to \infty} (\frac{S_k}{k}) \le \limsup_{k \to \infty} (\frac{S_k}{k}) \le EX_1$$

$$\implies \overline{X_n} := \frac{1}{n} S_n \stackrel{f.s.}{\to} EX_1$$

Jetzt muss noch die Bedingung $X_k \ge 0$ weg. Es folgt:

$$\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k^+ - \frac{1}{n} \sum_{k=1}^n X_k^- \stackrel{f.s.}{\to} EX_1^+ - EX_1^- = EX_1.$$

Beispiel 4.1 (Wiederholte Spiele)

Gegeben 2 Spieler. Spieler A erzielt in Runde $n X_n$ Punkte und Spieler B Y_n Punkte. Die Zufallsvariablen seien alle unabhängig und identisch verteilt. Es sei $D_n := X_n - I_n$ Y_n . Spieler A gewinnt Runde n, falls $D_n > 0$.

Sei $p_n = P(\sum_{k=1}^n D_k > 0)$ die Wahrscheinlichkeit, dass Spieler A nach n Runden mehr Punkte hat. Es gilt nach S.4.2:

$$\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{[D_k > 0]} \stackrel{f.s.}{\to} E\left[\mathbf{1}_{[D_1 > 0]}\right] = p_1.$$

Ist $p_1 > \frac{1}{2}$, so gewinnt Spieler A langfristig mehr Runden als B. Dies gilt jedoch nicht, wenn die Punkte addiert werden! Beispiel dazu:

$$X_k := \begin{cases} n+1, & \text{mit Wahrscheinlichkeit } p_1 \\ 0, & \text{mit Wahrscheinlichkeit } 1-p_1 \end{cases}, \quad Y_k \equiv n \text{ mit Wahrscheinlichkeit } 1$$

Sei
$$p_1 = 0,999, \ n = 1000. \implies p_{1000} = (0,999)^{1000} \approx 0,37$$