PROGETTO OLI RETI

#	4,04

A to K= B=0 Bis vives on a mode or forme, t-2 · $\alpha_{A} = \alpha_{B} = \alpha_{C} = \alpha_{D} = 2$; (4,4), (2,B) TIGHT 12=4 c to da = 08 = 0 = 3 $\beta_{1A} = \beta_{2B} = \frac{1}{1}$; $(1, \Delta)$, (2, A), (2, A) TIGHT +3=1 CONGELATE D t=45 · KA = KB = KC = KD = 4.5 BIA = BEB = 2.5; BEA = 1.5

APRIAMO (TEMPORANEAHENTE) FACILITY2 44-8 t=5. «c= «p= 4,5+&; (1,0),(4,0), (3,0) Max $\sum X_J$ t=5.5 $\alpha'_{c}=\alpha_{D}=5.5$; (4,c), (4,c) ≥ Bij ≤ fi C-2 KJ LBiJ Lolis iEF t=6. «D=6, (D,3) TIGHT SOMFLONE TEHPORANEA t=6.5, $\Delta D=6.5$ (D,3) TIGHT $\frac{1}{4}$, $\frac{1}{4}$, 41, 33 APERTE XJ, BJ > O

byi: Biz>0 Biz>0 JEN Socility in conflitto: cliente J he promesso soli sia a i de a l CON \$ 11 11 0 ORDINE FACILITY Z Ø

TASE 1 ALGORITMO

COSTO SOLUZIONE DUALE =
$$2(m+1) + (3-e^{-1})(m-1) = O(m)$$

COSTO SOLUZIONE PRIMATE = $2(m+1) + (3-e^{-1})(m-1) = O(m)$

COSTO SOLUZIONE PRIMATE = $2(m+1) + (m+2e^{-1})(m-1)$

COSTO SOLUZIONE PRIMATE = $2(m+1) + (m+2e^{-1})(m-1)$

COSTO SOLUZIONE PRIMATE = $2(m+1) + (m+2e^{-1})(m-1) = (m+2e^{-1})(m-1) = (m+2e^{-1})(m-1) = (m+2e^{-1})(m-1) = (m+2e^{-1})(m-1) = (m+1) + (m+1) + (m+1) = (m$

tase 1 algoritmo

