Using SVD to Predict Movie Ratings

Serdar Sali

sali@soe.ucsc.edu

Collaborative filtering

Similar tastes in the past : similar tastes in the future

Customers Who Bought This Item Also Bought

HP Pavilion TX1420US 12.1" Laptop (AMD Turion 64 X2 Dual-Core...

***** (11) \$1,169.99

HP Pavilion DV6775US 15.4" Entertainment Laptop (Intel Core 2...

★★★☆ (18) \$1,099.99

HP Pavilion DV2740SE 14.1" Entertainment Laptop (AMD Turion 64...

****** (12) \$1,179.83

HP Pavilion TX1320US 12.1" Entertainment Notebook PC (AMD Turi...

******* (35) \$1,199.99

HP Artist Edition Messenger
Case
\$49.99

Our domain: Movie Ratings

- We would like to predict how a user would rate a given movie
- A multi-label classification problem
 - Ratings: 1 to 5
 - Only available data: User movie rating triplets

Problem Formulation

- R: uxm matrix of ratings
 - u : number of users
 - m : number of movies
- Ideally, we would have:
 - A set of features for each movie: f_i
 - A set of preference multipliers for each user : call p_i
 - Then rating of user i for movie j becomes r_{ij} = p_if_j^T

Problems

- Feature list for movies are hard to obtain
 - Task is inherently subjective and difficult, classification is hard
 - Dependence on external data resources
 - Tremendous effort required to clean-up data
- Notice that R already contains this data, but it is lumped together in a sum.
 - Can we retrieve it somehow?

Singular Value Decomposition

- SVD states that every mxn matrix A can be written as $A = USV^T$ where
 - U is an mxm orthogonal matrix,
 - S is an mxn diagonal matrix with singular values of A along the diagonal,
 - V is an mxn orthogonal matrix.

Full vs Reduced SVD

 Since S is diagonal, we can obtain a more compact representation:

SVD for Matrix Approximation

- Instead of using all the singular values of S, use only the most significant r
- Compute a rank-r approximation A' to A such that A' = U'S'V'^T where U' is mxr, S' is rxr, and V' is mxr
- This approximation minimizes the Frobenius form: ||A-A'||_F = sqrt(∑(a_{ii}-a'_{ii})²)

SVD for Movie Rating Prediction

- Given a matrix of ratings R, we want to compute an approximate matrix R_{app} such that RMSE is minimized.
- But RMSE = ||R-R_{app}||_F
- So, SVD is a perfect fit to our problem

SVD for Movie Rating Prediction

- Recall R_{uxm}: ratings matrix
- Compute an SVD for R and just lump the singular value matrix in the sum:
 - $R = P_{uxf} F_{mxf}^T$
 - P : Preference matrix for f features for u users
 - F: f-features matrix for m movies

But...

- SVD is not defined for sparse matrices
 - Netflix data: 8.5B possible entries, 8.4B empty
- Fill in with averages, some clever combinations
 - Perturbs the data too much
 - And even if we fill in the missing values...
- Computing SVD for large matrices is computationally very expensive

Incremental SVD Method

- Devised by Simon Funk
- Only consider existing values
- Do a gradient descent to minimize the error:
 - $E = (R-R_{app})_{ij}^2$
 - Take the derivative wrt p_{ij} and f_{jk}, and the updates become
 - $p_{ik}^{(t+1)} = p_{ik}^{(t)} + learning_rate*(R-R_{app})_{ij}*f_{jk}^{(t)}$
 - $f_{jk}^{(t+1)} = f_{jk}^{(t)} + learning_rate*(R-R_{app}) *p_{ik}^{(t)}$

Implementation

- Online update
- Set each feature & each multiplier to 0.1
- Train the most significant feature first, and then the second, etc.
- Parameters:
 - Number of features
 - Learning rate
 - Regularization : very simple : -K*(update target)
 - Different starting values

- Smaller dataset
 - 2000 movies, 480189 users
 - 10314269 ratings
 - Just blind downsampling
- Test: predict 3000 ratings
- Does not perform as well as it does on whole dataset

Number of Features

#feats	Training	Test
10	0.7623	0.9858
20	0.7128	0.9869
30	0.6820	0.9882
40	0.6619	1.0028
50	0.6468	1.0438
Combined : 0.9895		

Regularization

Reg Rate	Training	Test	
0.0000	0.6118	0.9973	
0.005	0.6418	0.9899	
0.010	0.6705	0.9823	
0.015	0.7027	0.9787	
0.020	0.7333	0.9686	
Combined : 0.0741			

Combined: 0.9741

Different learning rates

Lrate	Training	Test		
0.0005	0.8180	0.9755		
0.0010	0.7666	0.9765		
0.0015	0.7464	0.9843		
0.0020	0.7365	0.9904		
0.0025	0.7314	0.9955		
Combined : 0.9756				

Different starting values

	Base = 1	Base = Average	Base = Average + Offset
Training	0.7651	0.7638	0.7638
Test data	1.0144	1.0156	1.0158

Combined: 0.9741

Conclusion

- Overfitting is a problem
 - Especially with my smaller dataset, models tend to overfit the training data very easily
- Even a blind combination of results give surprisingly good results
 - This implies that different models work good for different cases
 - A combination of different models is the way to go

Future Work

- Many parameters to adjust
- More clever downsampling of the dataset
- Use the computed features as input to another algorithm?
 - May help fine-tune the results at least
- Different regularization methods

Questions?

