$\label{eq:Reading report of Principles of Mathematical Analysis - Part II} \\ Principles of Mathematical Analysis - Part II \\$

 $002~\mathrm{gxl}$

December 5, 2020

BASIC TOPOLOGY

Notes

2.8 Theorem

Every infinite subset of a countable set ${\bf A}$ is countable . The theorem shows that countable sets represent the "smallest" infinity. Also, this theorem can be used **to show one infinite set is a countable set**, if we can find this set is equivalent to one subset of a countable set ${\bf A}$.

2.12 Theorem

Why the author use the word "Hence"? I can't understand it .

*Typical countable sets

 \mathbb{N} \mathbb{Q} $\bigcup_{\alpha \in \mathbf{A}} \mathbf{B}_{\alpha}$, when $\mathbf{A}, \mathbf{B}_{\alpha}, \forall \alpha \in \mathbf{A}$ are at most countable . set of all **algebraic numbers**.

Cantor's diagonal process

In this text , this process is used to proof ${\bf 2.14~Theorem}$, and it can also be used to proof a typical theorem:

Theorem Let $\mathbf{A} = \{x | x \in [0,1]\}$, and \mathbf{A} is uncountable.

One more thing about 2.14 Theorem

In order to proof ${\bf A}$ is uncountable , the author proofs that every subset of ${\bf A}$ is a proper subset of ${\bf A}$. It should be seperated from **2.6 Remark** (${\bf A}$ is infinite if ${\bf A}$ is equivalent to one of its proper subsets)

Perfect

2.18 Definition (h)

E is *perfect* if **E** is closed and if every point of **E** is a limit point of **E**. We say \mathbb{Q} is **not** perfect due to *Dedekind principle*.

Dense

2.18 Definition (j)

E is *dense* in **X** if every point of **X** is a limit point of **E**, or a point of **E**. We say \mathbb{Q} is dense in **R**, that means: $\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists y \in \mathbb{Q}, d(x,y) < \epsilon$.

2.23 Theorem

Main reason: $x \in \mathbf{E} \iff x \notin \mathbf{E}^c$.

It's important that in some condition it is hard to proof a set is closed, then we can turn to proof its complement is open.

Compact sets

At the quiz of Unit 2 we have seen this definition . A set is compact only if every open cover of it contains a finite subcover.

A compact has many fine property:

2.33 Theorem shows compactness behaves well because it does not rely to the metric it is relative.

 ${\bf 2.34~2.35~Theorem}$ shows compactness has deep relation to closeness.

2.36 2.37 Theorem links the compactness with limit.

By using **2.40 Theorem**, we can put every bounded set E in \mathbb{R}^k into a compact set (a $k-cell\ I$) and use powerful property above.

2.41 Theorem point out the connection between property and definition.

All in all, compact sets is a powerful tool for us.

2.42 Theorem(Weierstrass)

We have known a special case of this theorem when we learn **limit of sequence**, which says a bounded sequence always has a convergent subsequence.

Exersise

1.

Proof. Let A be a empty set.If \exists B , and A is not a subset of B. Then there must be a x ,which $x \in A$ but $x \notin B$. However ,there is no element in A. Then

no x will be found.

2.

Proof. \Box

3.

Proof. From 2. , we know the set of all algebraic numbers is countable. But $\mathbb R$ is uncountable. $\hfill\Box$

4.

No . If so , \mathbb{R} were countable.

5.

Let $A_k = \{k + \frac{1}{n+1} \mid n \in \mathbb{N}^*\}$. $B = \bigcup_{i=1}^3 A_i$. It obvious that $\forall x \in B, 0 \le x \le 4$. So B is the set we seek for.

6.

- (1). $\forall x_0 \notin E'$, then $\exists r > 0, \forall x \in (x_0 r, x_0 + r), x \notin E$. Now we will proof $x \notin E'$, either. There must exists $\epsilon > 0$, then $x_0 r < x \epsilon < x_0 + r$. So x can not be a limit point, that means $x \notin E'$.
- (2). Assuming $x_0 \notin E'$ but x_0 is a limit point of \overline{E} . But we have shown that if x_0 is not a limit point of E, it will not be a limit point of E', too. So $\exists r > 0, \forall x \in (x_0 r, x_0 + r), x \notin E \text{ and } x \notin E'$, which means $x \notin E \cup E'$. \square

Surely E and E' do not always have the same limit points. Just consider the set in Exersise-5.

7.

(a). When n = 1, this theorem is obvious. Let n = 2, and what we can proof that :

$$A_1' \cup A_2' = B_n'$$

$$x \in B'_n \iff \forall \delta > 0 , \exists y \in A_1 \cup A_2 , y \in (x - \delta, x + \delta)$$

 $\iff \forall \delta > 0 , \exists y \in A_1 \text{ or } y \in A_2 , y \in (x - \delta, x + \delta)$
 $\iff x \in A'_1 \cup A'_2$

(b). Let us proof:

$$\bigcup_{i=1}^{\infty} A_i' \subset B'$$

 $\forall x_0 \in \bigcup_{i=1}^{\infty} A_i'$, $\forall \epsilon > 0$, $\exists x \in (x_0 - \epsilon, x_0 + \epsilon)$, $x \in A_i$ for some i. Hence $x_0 \in (\bigcup_i A_i)'$. Then $x \in B'$.

This is a example to indicate this inclusion can be proper. $A_i = \{\frac{1}{i}(1+\frac{1}{n}) \mid n \in \mathbb{N}^*\}.$

Then $A'_i = \{\frac{1}{i}\}\ . \bigcup_{i=1}^{\infty} A'_i = \{\frac{1}{n} \mid n \in \mathbb{N}^*\}.$

But $B = \{0\} \cup \bigcup_{i=1}^{\infty} A_i'$.

8.

- (1). Surely . As its definition says , $\forall x_0 \in E \ , \ \exists \epsilon > 0 \ , \ \forall x \in (x_0 \epsilon, x_0 + \epsilon) \ , \ x \in E.$ Then x is a limit point of E.
- (2). No. Just consider a finite set . It has no limit point but is closed. \Box

9.

(a). Consider one element in E^o called x.

 $\forall x_0 \in E \ , \exists \epsilon > 0 \ , \ \forall y \in (x - \epsilon, x + \epsilon) \ , \ y \in E.$ Then $\forall x' \in (x - \frac{\epsilon}{3}, x + \frac{\epsilon}{3}) \ ,$ there exists $\delta = \frac{\epsilon}{3}$, then $\forall y \in (x - \delta, x + \delta) \ , \ y \in E.$

- So we have found a neighbourhood of x_0 .
- (b). According to the definition? \Box
- (c). If there is $x\in G$ but $x\notin E^o$, then x is not a interior point . Then G is not open. This is contradictory. \Box
- (d). $x \notin E^o$ equals to $x \notin E$ ($x \in E^c$) or every neighbourhood of x has a $y \notin E$ ($y \in E^c$).
- (e). No. Let $E=(-\infty,0)\cup(0,\infty)$, and $\overline{E}=\mathbb{R}.$ Hence $0\notin E^o$ but $0\in\overline{E}^o.$
- \Box

10.

Proof. This is a metric space.

- (1)d(p,p) = 0, and d(p,q) = 1 > 0.
- (2) If $p \neq q$ then d(p,q) = d(q,p) = 1.

(3) If
$$p \neq q$$
, $d(p,q) = 1$, $d(p,r) + d(r,q) \ge 1$.

open subset: every subset closed subset: empty subset? compact subset: empty subset?

11.

1). This is not a metric.

(3) If $p \neq q$, $d(p,q) = (p-q)^2$, $d(p,r) + d(r,q) = (p-r)^2 + (q-r)^2.$ Then we should proof

$$(p-q)^2 = p^2 + q^2 - 2pq \le p^2 + q^2 + 2r^2 - 2r(p+q) = (p-r)^2 + (q-r)^2$$
$$0 \le (r-q)(r-p)$$

But let $r > min\{p,q\}$ and $r < min\{p,q\}$.

- 2). This is a metric.
- (1)d(p,p) = 0, and $d(p,q) = \sqrt{|p-q|} > 0$.
- (2) If $p \neq q$ then $d(p,q) = d(q,p) = \sqrt{|p-q|}$.
- (3) If $p \neq q$, $d(p,q) = \sqrt{|p-q|}$, $d(p,r) + d(r,q) = \sqrt{|p-r|} + \sqrt{|q-r|}$. Now let's proof:

$$\sqrt{|p-q|} \le \sqrt{|p-r|} + \sqrt{|q-r|}$$
$$|p-q| \le |p-r| + |q-r| + \sqrt{|p-r||q-r|}$$

Since $|p-q| \leq |p-r| + |q-r|$ and $\sqrt{|p-r||q-r|} \geq 0$, this inequality is true.

- 3). This is a metric.
- (1)d(p,p) = 0, and $d(p,q) = |p^2 q^2| > 0$.

(1)
$$d(p,p) = 0$$
, and $d(p,q) = |p - q| > 0$.
(2) If $p \neq q$ then $d(p,q) = d(q,p) = |p^2 - q^2|$.
(3) If $p \neq q$, $d(p,q) = |p^2 - q^2|$, $d(p,r) + d(r,q) = |p^2 - r^2| + |r^2 - q^2|$.
Since $|p^2 - q^2| \leq |p^2 - r^2| + |r^2 - q^2|$, $d(p,q) \leq d(p,r) + d(r,q)$ is true.

4). This is not a metric.

$$(2)d(p,q) = |p-2q|$$
 but $d(q,p) = |q-2p|.$ Let $q=0$, $p=1$, and $d(p,q) \neq d(q,p)$.

5). This is a metric.

$$(1)d(p,p) = 0$$
, and $d(p,q) = \frac{|p-q|}{1+|p-q|} > 0$.

(2) If
$$p \neq q$$
 then $d(p,q) = d(q,p) = \frac{|p-q|}{1+|p-q|}$

(1)
$$d(p,p) = 0$$
, and $d(p,q) = \frac{|p-q|}{1+|p-q|} > 0$.
(2) If $p \neq q$ then $d(p,q) = d(q,p) = \frac{|p-q|}{1+|p-q|}$.
(3) If $p \neq q$, $d(p,q) = \frac{|p-q|}{1+|p-q|}$, $d(p,r) + d(r,q) = \frac{|p-r|}{1+|p-r|} + \frac{|r-q|}{1+|r-q|}$.

$$\frac{|p-q|}{1+|p-q|} \leq \frac{|p-r|}{1+|p-r|} + \frac{|r-q|}{1+|r-q|}$$

$$\frac{1}{1+|p-r|} + \frac{1}{1+|r-q|} \leq 1 + \frac{1}{1+|p-q|} \leq 1 + \frac{1}{1+|p-r|+|r-q|}$$

$$\frac{2+|p-r|+|r-q|}{1+|p-r|+|r-q|+|p-r||r-q|} \leq \frac{2+|p-r|+|r-q|}{1+|p-r|+|r-q|}$$

12.

(What's directly from the definition?)

Proof. Let A = [0,1] and A is compact. It is clear that $K \subset A$. And K is closed because its only limit point $0 \in K$. So K is compact.

13.

Proof. Let $K_i=\{i\}\cup\{i+\frac{1}{n}\mid n\in\mathbb{N}^*\}$. It has only limit point i. Now let $K=\bigcup_{i\in\mathbb{Z}}K_i$, and proof K is compact. Hence K is the compact set we are searching for.

14.

Proof. Of course . Just think a subset of \mathbb{R}^1 , (0,1) . It has a open cover \mathcal{A} , $\mathcal{A} = \bigcup_{i=1}^{\infty} (0, 1 - \frac{1}{i})$.

It is clear that A does not have a finity subset.

15.

Proof.

16.

Proof.

17. Countable. No.If we consider 4 as 0 and 7 and 1 in binary system, thus we connect each $x \in E$ with $y \in [0,1]$. Hence [0,1] is uncountable in \mathbb{R}^1 , \mathbb{E} is uncountable. Dense. No . Just think about 0 or 1. compact.perfect. 18. *Proof.* Yes . Just consider \mathbb{R}/\mathbb{Q} . 19. (a). Hence A and B are closed , then $\overline{A}=A$ and $\overline{B}=B$. If they are not separated, there must be a $x \in \overline{A} \cup B$ or $x \in \overline{B} \cup A$. In other words, $x \in A \cup B$ Then A and B is adjoint, in contradiction to our suppose. (b). Assuming there are some $x \in A' \cup B$, then for every neighbourhood of x, there exists a $y \in A$ and $\in B$, in contradiction to our suppose. (c). Using (b). (d). 20. closure.interior. No . Let $A = \{(a_0, b) \mid b \in \mathbb{R}\}$ and $B = \{(a_0, b) \mid a \in \mathbb{R}\}$. A and B are subsets of \mathbb{R}^2 and it is clear $A \cup B$ is connected. Then $(A \cup B)^o$ is empty, thus it is not connected . 21. Proof. 22. *Proof.* Consider the set A whose points have only rational coordinates . $\mathbb Q$ is countable and dense , hence A is countable and dense .

 $A \subset \mathbb{R}^k$ so \mathbb{R}^k is separable.

23.

I'm so vegetable.

Proof. From ${\bf 22}.$ we have known every separable metric space has a countable dense subset . Take all neighbourhoods with rational radius and center in this countable dense subset .

We called this collection of open subsets $V_{\alpha,r}$. $V_{\alpha,r}$ is the neighbourhood whose radius is r and center is α .

For every open subset E, due to its openness and the dense of \mathbb{Q} , this subset if the union of subcollection of $V_{\alpha,r}$, which $\alpha \in E$ and $(\alpha - r, \alpha + r) \subset X$. \square

the union of subcollection of $V_{\alpha,r}$, which $\alpha \in E$ and $(\alpha - r, \alpha + r) \subset X$.	Ш
24.	
Proof.	
25.	
Proof.	
26.	
Proof.	
27.	
Proof.	
28.	
Proof.	
29.	
Proof.	
30.	