Vector Space-3

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Affine

- Which are affine sets?
 - Square in R^2
 - R^2

 - **■** {*x*}

Convex combination

A convex combination of points v_1, v_2, \dots, v_k in \mathbb{R}^n is a linear combination of the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_k\mathbf{v}_k$$

such that $c_1 + c_2 + \cdots + c_k = 1$ and $c_i \ge 0$ for all i. The set of all convex combinations of points in a set S is called the **convex hull** of S, denoted by conv S.

- The convex hull of a single point v_1 ?
- What are the points in the $conv(v_1, v_2)$?
 - $y = (1 \alpha)v_1 + \alpha v_2 \quad 0 \le \alpha \le 1$
 - lacksquare The line segment between v_1,v_2 denoted by $\overline{v_1v_2}$

Convex Set

 A set S is convex any two points in the set, the line segment between them is contained in the set.

(b) A convex polytope. ...

Convex Set

- Theorem: A set (S) is convex iff every convex combination of points of S lines in S.
 - S is convex if and only if S=conv(S)

Affine and Convex set

Theorem: Let $\{S_{\alpha} : \alpha \in A\}$ be any collection of convex sets. Then $\bigcap_{\alpha \in A} S_{\alpha}$ is convex.

Theorem: Let $\{S_{\alpha} : \alpha \in A\}$ be any collection of affine sets. Then $\bigcap_{\alpha \in A} S_{\alpha}$ is affine.

Convex Hull

- Convex Hull Conv(S) is set of all convex combinations of points in S
- Convex Hull is the smallest convex polygon containing a given set of points

the conv(S) is:

Convex hull

Theorem: For any set P, the convex hull of P (conv(P)) is the intersection of all the convex sets that contain P.

For any $P \subseteq \mathbb{R}^d$ we have

$$conv(P) = \left\{ \sum_{i=1}^n \lambda_i p_i \ \middle| \ n \in \mathbb{N} \ \land \ \sum_{i=1}^n \lambda_i = 1 \ \land \ \forall i \in \{1, \dots, n\} \ : \ \lambda_i \geqslant 0 \land p_i \in P \right\}$$

Convex hull

- One way:
 - Phase 1: Find the lowest point (anchor point)
 - Phase 2: Form a nonintersecting polygon by sorting the points counterclockwise around the anchor point
 - Phase 3: While the polygon has a nonconvex vertex, remove it

- Algorithms for finding a convex hull:
 - Graham Scan
 - Jarvis March
 - Divide & Conquer

Convex hull

Theorem:

(Caratheodory) If S is a nonempty subset of \mathbb{R}^n , then every point in conv S can be expressed as a convex combination of n+1 or fewer points of S.

- Proof later
- Example

$$S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\} \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 5 \\ 4 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\frac{1}{4}\mathbf{v}_1 + \frac{1}{6}\mathbf{v}_2 + \frac{1}{2}\mathbf{v}_3 + \frac{1}{12}\mathbf{v}_4 = \mathbf{p} = \begin{bmatrix} \frac{10}{3} \\ \frac{5}{2} \end{bmatrix}$$

$$\frac{17}{48}\mathbf{v}_1 + \frac{4}{48}\mathbf{v}_2 + \frac{27}{48}\mathbf{v}_3 = \mathbf{p}$$

Example

Find the convex combination and convex hull of following two vectors:

Properties of Convex Hull

- Convex hull is always a convex set.
- Convex hull is the smallest set that contains the underlying set.

Convex function

- A function is convex iff its epigraph is a convex set.
- Epigraph or supergraph

$$\mathrm{epi} f = \{(x,\mu) \,:\, x \in \mathbb{R}^n,\, \mu \in \mathbb{R},\, \mu \geq f(x)\} \subseteq \mathbb{R}^{n+1}$$

$$f((1-\theta)x^{(0)} + \theta x^{(1)}) \le (1-\theta)f(x^{(0)}) + \theta f(x^{(1)}), \quad \forall \theta \in [0,1]$$

Convex and Concave Function

second derivative is nonnegative on its entire domain

Convexity

- The following operations preserve convexity:
 - The intersection of (a possibly in finite) set of convex sets
 - The sum two convex sets
 - The product of two convex sets
 - The image of a convex set under an affine function (a linear function plus an set). Similarly, the inverse image of a convex set under an affine function
 - The projection of a convex set onto some of its coordinates.

Hyperplanes

- Hyperplanes play a special role in the geometry of \mathbb{R}^n because they divide the space into two disjoint pieces, just as a plane (ax + by + cz = d) separates \mathbb{R}^3 into two parts and a line (ax + by = d) cuts through \mathbb{R}^2 .
- Hyperplane: $\{x | a^T x = b\}$
- Halfspace: $\{x | a^T x \le b\}$

affine and convex convex

Computer Vision

Detecting outliers

Anomaly Detection

 The use of a convex hull make it possible to draw the boundary between normal and abnormal data behaviour.

Fig. 2. Examples of convex hulls on parameter spaces using the dataset Normal-vs-2. The green line shows H_U and the blue line H_N . A normal sample detection is shown in (a) and an anomaly detection shown in (b).

Complexity of vector computations

- Computers store (real) numbers in floating-point format
- Floating point= 64 bits or 8 bytes
 - How many possible sequences of bits?
 - How many bytes to store n-vector?
- Current memory and storage devices, with capacities measured in many gigabytes (109 bytes), can easily store vectors with dimensions in the millions or billions.
- Sparse vectors are stored in a more efficient way that keeps track of indices and values of the nonzero entries.
- Note about floating point operations and round-off error.

Complexity of vector computations

- How quickly the vector operations can be carried out by a computer depends very much on the computer hardware and software, and the size of the vector.
- Basic arithmetic operations (addition, multiplication, . . .) are called Floating Point Operations (FLOP)s.
- Estimate the time of computation= counting the total number of Floating Point Operations (FLOP)s.
- The complexity of an operation is the number of flops required to carry it out, as a function of the size or sizes of the input to the operation.
- Crude approximation of time to execute: (flopsneeded)/(computer speed)
- current computers are around 1Gflop/sec (10^9 flops/sec)

Complexity of vector computations

	#FLOPS		Complexity	
Operation	General	Sparse	General	Sparse
Scalar product				
Vector sum				
Inner product				
Outer product				
Hadamard product				

Reference

- Chapter 2,3,4: LINEAR ALGEBRA: Theory, Intuition, Code
- Chapter 1: Introduction to Applied Linear
 Algebra Vectors, Matrices, and Least Squares
- Chapter 8: Linear Algebra and its applications
- Chapter 2: Linear Algebra Jim Hefferon
- Chapter 4: Linear Algebra Devid Cherney