CMSC 510 – L14 Regularization Methods for Machine Learning

Instructor:

Dr. Tom Arodz

Fused Lasso – view involving sets

- If f_i is important for classification, f_{i-1} and f_{i+1} likely to be important, too
- We want a classifier where either both neighboring features are selected (non-zero w_i and w_{i+1}) or both are not selected (w_i=w_{i+1}=0):

$$\Omega(w) = \sum_{f=2}^{F} |[w_{f-1}] - [w_f]|$$

$$[x] = \text{supp}(x) = |\text{sign}(x)|$$

- Ω now is essentially a function defined on a set, not on a vector
 - Set of features with non-zero feature weights w_f
 - E.g. $\Omega(\{f_2, f_3, f_4\})=2$ or $\Omega(\{f_2, f_4\})=4$
 - Detailed values of weights are not what matters to us

Set functions

- $lue{}$ Ω now is essentially a function defined on a set
 - Set of features with non-zero feature weights w_f
 - E.g. $\Omega(\{f_2, f_3, f_4\})=2$
- We have a large set V (the universe),
 Ω is defined for any subset of V, i.e., Ω: 2^V -> R
 (2^V denotes a set of all subsets of V, including V itself, and empty set Ø)
 - V has an element corresponding to each feature, $V=\{f_1, f_2, f_3, f_4,...\}$
- How is Ω defined?
 - We have a graph with V as nodes
 - For an input set S: $\Omega(S) = \text{number of edges between S and V-S}$

Big picture

Submodular set functions => convex regularizers!

- Example: two features: x_a and x_b
- Any linear classifier is $y=sign(w_ax_a + w_bx_b)$
- What are the weights $w=(w_a, w_b)$?
 - To find out, we optimize Risk(w)+Penalty(w)

Risk(w)

We can't just add penalty on the set (of features) $\Omega(S)$ to risk over vectors (of feature weights).

What we want: Risk(w)+Penalty(w) Penalty(w)= $\Omega([w])$ tough to solve!

What we can: Risk(w)+Penalty(w) Penalty(w)= Ω^{-} (w) both convex, so

often easy to solve

Set functions

- Set function over universe V, ie.
 - Ω : 2^V -> R
 - E.g. $\Omega_{GC}(S) =$ **graph cut capacity** = (S, V-S) = sum of weights of edges between S and V-S (or just number of edges)
 - Assumptions:
 - weights are positive
 - no edge = zero weight edge

E.g. $V=\{a,b,c\}$ with this graph:

- $\Omega_{GC}(\{\emptyset\}) = \Omega_{GC}(\{a,b,c\}) = 0$
- $\Omega_{GC}(\{a\}) = \Omega_{GC}(\{b,c\}) = 1$

Set functions

We can use binary cube to visualize a set function

E.g. $V=\{a,b,c\}$ with this graph:

$$\Omega_{GC}(\{\emptyset\}) = \Omega_{GC}(\{a,b,c\}) = 0$$

$$\Omega_{GC}(\{a\}) = \Omega_{GC}(\{b,c\}) = 1$$

•
$$\Omega_{GC}(\{c\}) = \Omega_{GC}(\{a,b\}) = 2$$

$$\Omega_{GC}(\{b\}) = \Omega_{GC}(\{a,c\}) = 3$$

$1_{\{c\}} = (0,0,1)$ $1_{\{b,c\}} = (0,1,1)$ $1_{\{a,b,c\}} = (1,0,1)$ $1_{\{a,b,c\}} = (1,1,1)$ $1_{\{a\}} = (1,0,0)$ $1_{\{a,b\}} = (1,1,0)$

Each dimension corresponds to an element in the universe V

Notation:

vector to set:

[w]=support of w vector of 0's and 1's can be interpreted as a set

set to vector:

 1_S = vector with 1's for coordinates corresponding to members of S, and 0's elsewhere Often we simplify notation and just use set=vector $\Omega(S)=\Omega(1_S)=\Omega([w])$

Submodularity

- Set function over universe V, ie. Ω : 2^{V} -> R
- Ω_{GC} is an example of family of set functions called **submodular set functions**

Diminishing returns: 10th slice of cake is not as good as the first one!

Submodularity

- Set function over universe V, ie. Ω : $2^{V} -> R$
- Ω_{GC} is an example of family of set functions called **submodular set functions**

$$\forall S, T, \{c\} \subseteq V, \ S \subseteq T, \\ \Omega(S \cup \{c\}) - \Omega(S) \ge \Omega(T \cup \{c\}) - \Omega(T)$$

f(red+blue) - f(blue) >= f(red+navy) - f(navy)

 Adding the same element {c} to a set T increases Ω less then adding it to a subset S of T

Is Graph cut submodular? CO

T

$$\Omega(S \cup \{c\}) - \Omega(S) \ge \Omega(T \cup \{c\}) - \Omega(T)$$

number of edges

crossing the cut

from S to V-S

 $\Omega(S)=5$

To check if graph cut is submodular, we need:

- Set T
- Set S, a subset of T
- A vertex c

 (not a member of T, otherwise we have equality)
- Then, we observe what happens to Ω(S) and Ω(T) when we add {c}

Ω(T)=(T,V-T)=6

number of edges

crossing the cut

from T to V-T

Is Graph cut submodular? CO $\Omega(T)=(T,V-T)=6$ $\Omega(S \cup \{c\}) - \Omega(S) \ge \Omega(T \cup \{c\}) - \Omega(T)$ $\Omega(S)=5$... $+(c,T-S) \ge ... -(c,T-S)$ what happens to $\Omega(S)$ and $\Omega(T)$ (c,S) (c,S) when we add {c} $\Omega(S+\{c\})=\emptyset$ $\Omega(T+\{c\})=5$ $=\Omega(S) + (c', V-T) - (c,S) + (c,T-S)$ $=\Omega(T) + (c,V-T) - (c,S) - (c,T-S)$ If vertex c is connected (c,V-T) to vertices in (T-S) with nonzero sum of weights (c,T-S), (c,T-S) we have "≥" inequality So: graph cut capacity is a 10 submodular set function

Is Graph cut submodular? CO T $\Omega(S \cup \{c\}) - \Omega(S) \ge \Omega(T \cup \{c\}) - \Omega(T)$ $\Omega(T) = (T, V-T) = 6$

(c,V-T)

(c,T-S)

We have equality
when (c,T-S)=0, i.e.,
when there are no edges
between vertex c
and vertices in (T-S)

(c,S)

Submodularity

- Set function over universe V, ie. Ω : 2^{V} -> R
- Ω_{GC} is an example of family of set functions called submodular set functions
 - Set function Ω: 2^V -> R is submodular iff:

$$\forall S, T, \{c\} \subseteq V, \ S \subseteq T, \\ \Omega(S \cup \{c\}) - \Omega(S) \ge \Omega(T \cup \{c\}) - \Omega(T)$$

- Adding the same element $\{c\}$ to a set T increases Ω less then adding it to a subset S of T
- Diminishing returns: 10th candy doesn't taste as sweet as the first one! Plot of differences S={Ø}, _S={b}, when adding {c} $T = \{a,b\}$ **T**={b} $\Omega(c)-\Omega(\emptyset) \Omega(a,c)-\Omega(a) \Omega(a,b,c)-\Omega(a,b)$ $\Omega\{c\}-\Omega\{\emptyset\}$ $\Omega\{b,c\}-\Omega\{b\}$ Ω {a,b,c}- Ω {a,b} $S=\{\emptyset\},$ $S=\{a\},$ T= {a,b}

- Submodular set functions are a bit similar to concave functions - they're "bending down"
 - we can plot the function on {a,b} on a unit cube
 - value $\Omega(\{a,b\})$ is lower than $\Omega(\{a\})+\Omega(\{b\})$
 - S=Ø, T={a}, c=b
 - Assume w.l.o.g. $\Omega(\emptyset)=0$

$$\Omega(\{b\}) = \Omega((0,1))$$
 $\Omega(\{a,b\}) = \Omega((1,1))$ $\Omega(\emptyset) = \Omega((0,0))$ $\Omega(\{a\}) = \Omega((1,0))$

submodular Ω

$$orall S,T,\{c\}\subseteq V,\;S\subseteq T, \ \Omega(S\cup\{c\})-\Omega(S)\geq \Omega(T\cup\{c\})-\Omega(T_{\scriptscriptstyle 13})$$

$$\})-\Omega(T_{\!\scriptscriptstyle 13}\!)$$

Alternative definitions

■ Modular set functions: $\Omega(\{a,b,...,z\}) = \Omega_a + \Omega_b + ... + \Omega_z$

$$\forall A, B \subseteq V \quad \Omega(A \cup B) + \Omega(A \cap B) = \Omega(A) + \Omega(B)$$

■ **Sub**modular set functions: $\Omega(\{a,b,...,z\}) \leq \Omega_a + \Omega_b + ... + \Omega_z$

$$\Omega(A \cup B) + \Omega(A \cap B) \le \Omega(A) + \Omega(B)$$

■ Supermodular set functions: $\Omega(\{a,b,...,z\}) \ge \Omega_a + \Omega_b + ... + \Omega_z$ $\Omega(A \cup P) \cup \Omega(A \cap P) > \Omega(A) \cup \Omega(D)$

$$\Omega(A \cup B) + \Omega(A \cap B) \ge \Omega(A) + \Omega(B)$$

If Ω is modular, it is both submodular and supermodular

- Set functions: defined vectors with coordinates $\{0,1\}^F$, e.g. $\{a,c\}=(1,0,1)$
 - i.e. vectors at the corner of unit cube $\{0,1\}^F$ where F=|V| is number of elements in V

$$\Omega(\{b\}) = \Omega((0,1)) \qquad \Omega(\{a,b\}) = \Omega((1,1))$$

$$\Omega(\emptyset) = \Omega((0,0)) \qquad \text{a} \qquad \Omega(\{a\}) = \Omega((1,0))$$

Given a set function Ω can we define a function f(w)
 f: [0,1]^F -> R
 (or even better, R^F -> R)?

- A function that would be somehow related to Ω
 - We already did!
 - When discussing notation:
 - $f(w)=\Omega([w])$ f=# of non-zero elements in w
 - For any vector R^F, we get vector of 0's/1's, which represents a set, and defines value of f(w)
 - What's wrong with using $f(w)=\Omega([w])$?

- Set functions: defined vectors with coordinates $\{0,1\}$, e.g. $\{a,c\}=(1,0,1)$
 - i.e. vectors at the corner of unit cube $\{0,1\}^F$ where F=|V| is number of elements in V $\Omega(\{b\})=\Omega((0,1))$ $\Omega(\{a,b\})=\Omega((1,1))$ $\Omega(\emptyset)=\Omega((0,0))$ $\Omega(\{a\})=\Omega((1,0))$
- Given a set function Ω can we define a "nicely behaving" function f: $[0,1]^F$ -> R (or even better, R^F -> R)?
- A function that would be somehow related to Ω
 - E.g. the light blue piecewise linear function on [0,1] x [0,1] we've seen before:

 $f(w)=\Omega([w])$

Not continuous!

Not convex! e.g. try (1,0) and (0,1) and points in between

16

- Set functions: defined vectors with coordinates $\{0,1\}$, e.g. $\{a,c\}=(1,0,1)$
 - i.e. vectors at the corner of unit cube $\{0,1\}^F$ where F=|V| is number of elements in V $\Omega(\{b\})=\Omega((0,1))$ $\Omega(\{a,b\})=\Omega((1,1))$ $\Omega(\emptyset)=\Omega((0,0))$ $\Omega(\{a\})=\Omega((1,0))$
- Given a set function Ω can we define a "nicely behaving" function f: $[0,1]^F$ -> R (or even better, R^F -> R)?
- A function that would be somehow related to Ω
 - E.g. the light blue piecewise linear function on [0,1] x [0,1] we've seen before:

- Given a set function Ω we define two functions f: $[0,1]^F \rightarrow R$
- Convex closure of Ω : Ω^-
 - It is the **convex envelope** (Ω^{**}) of Ω : pointwise highest convex function that bounds Ω from below: for any w in $\{0,1\}^F$: $\Omega^-(w) \leq \Omega(w)$

 $f^{**}(x)$

Convex closure of set function is piecewise linear: Intuition: Start with any convex function that bounds Ω from below, push every point of it up until you can't without loosing convexity – you will get maxima of hyperplanes

Extensions vs. envelopes

Extension of set function:

- For any set function Ω (submodular or not): $\Omega^{-}([w]) = \Omega([w])$
- **Convex closure** Ω^- is an **extension** of set function Ω , that is, has the same values as Ω on the corners of unit cube $[0,1]^F$
- This is quite remarkable!
 - It's possible because at each dimension, we only have value of Ω at two points, 0 and 1, so we can connect them by straight line (which is convex/concave)
 - Imagine we had a function defined over three not two points in every dimension: {-1,0,1}^F
 - For most of such functions, convex envelope would not go through values of function at the points {-1,0,1}^F
 - Conversely, extension would not be convex
 - E.g. here, extension is not convex, convex envelope is f(w)=0 for any w

Submodular minimization

- Given a submodular set function $\Omega(S) = \Omega(w)$ where $S = 1_w$
- We have a well-defined Lovasz extension Ω^L : $[0,1]^n -> R$
 - For a binary vector w representing set S: $\Omega^{L}(w) = \Omega(S)$
 - Ω^{L} is continuous, convex, piecewise linear
 - $\Omega^{L} = \Omega^{-}$ Pointwise highest convex function bounding Ω from below
- - And minimum is attained at a corner: at some w in {0,1}^F

Submodular minimization

- Given a set function $\Omega(S)=\Omega(w)$ where $S=1_w$
- We have a well-defined Lovasz extension Ω^L : $[0,1]^n -> R$

• Consequence: $\operatorname{argmin}_{w} R_{S}(w) + \Omega^{L}(w) \neq \operatorname{argmin}_{w} R_{S}(w) + \Omega([w])_{21}$

Overall approach

- For any submodular set function $\Omega(1_S)$: $\{0,1\}^F -> R$ we can construct its extension $\Omega^L(w)$: $[0,1]^F -> R$
 - And then define $\Omega^L(w)$: $R^F -> R$
- argmin_w $R_S(w) + Ω^L(w) \neq argmin_w R_S(w) + Ω([w])$
 - But still, $\Omega^L(w)$ captures some aspects of Ω
 - E.g. Penalty=L₁ norm vs. Penalty=# of features used
- Unlike $\Omega([w])$, the extension $\Omega^{L}(w)$ is continuous, convex (though typically non-differentiable)
- We have tool for dealing with non-differentiable, convex terms:
 - Proximal gradient descent, we need: $argmin_w \Omega^L(w) + b||w v||^2$
- So, we can solve problems of the form:
 - Differentiable risk
 - + convex extension of a submodular set function Ω

Big picture

- We can solve problems of the form:
 - Differentiable risk
 - + convex extension of a submodular set function Ω
- What are some interesting submodular set functions?
 - What are their extensions?
 - Can we solve proximal operator for them?