Presentacion: trabajo final CoderHouse

"Análisis de Suscripción a Depósitos"

Fernando D. Guerrero

El dataset proviene de Kaggle

Autor: ASLAN AHMEDOV

Titulo: Predict Term Deposit

Link:

Predict Term Deposit (kaggle.com)

Contexto:

"En el competitivo sector bancario, captar depósitos a plazo fijo es crucial para la estabilidad financiera de las instituciones. Este proyecto tiene como objetivo analizar y predecir la probabilidad de que un cliente suscriba un depósito a plazo, utilizando un conjunto de datos de campañas de marketing telefónico."

"El dataset utilizado proviene de Kaggle y se denomina 'Predict Term Deposit'. Contiene información sobre interacciones previas, demografía y características financieras de los clientes."

Resumen:

Objetivo:

identificar los factores más influyentes en la decisión de suscripción y desarrollar un modelo predictivo eficaz. Los modelos utilizados deben asegurar la precisión y robustez de los resultados."

Objetivo 2:

"Identificar las características clave que afectan la decisión de los clientes."

"Desarrollar y comparar modelos predictivos para determinar el mejor enfoque para predecir la suscripción."

Hipótesis

"Los clientes con mayor interacción previa tienen más probabilidades de suscribirse."

"Las características demográficas y el historial financiero son predictores clave en la decisión."

Análisis Exploratorio (EDA)

Rango etario predominante

Comparativa salarial de suscritos

Correlación de columnas

Premisa

"Estos análisis sugieren que los clientes más jóvenes, con balances más altos y que han sido contactados recientemente, son más propensos a suscribirse."

Modelos electos para el proyecto:

Random Forest:

- "Se utilizó el modelo Random Forest por su capacidad para manejar grandes conjuntos de datos con múltiples variables categóricas y numéricas."
- "El modelo alcanzó una precisión del 90.3%, con una F1-score de 0.95 para la clase negativa (no suscripción) y 0.51 para la clase positiva (suscripción)."

Modelo Complementario:

- "Además, se implementó un segundo modelo
- (Kmeans) para comparar resultados y mejorar la robustez del análisis."
- "La comparación entre modelos mostró que el Random Forest tuvo un mejor rendimiento general, pero el segundo modelo ofreció mejores insights sobre la probabilidad individual de suscripción."

Random forest

Objetivo: Clasificar si un cliente se suscribe a un depósito a plazo fijo.

Resultados:

-Exactitud: 90.3%

-Principales Métricas:

-Precisión: 92% (Clase 0), 65% (Clase 1)

-Recall: 97% (Clase 0), 42% (Clase 1)

-F1-Score: 0.95 (Clase 0), 0.51 (Clase 1)

Insight Principal: El modelo es fuerte en la clasificación de clientes que no se suscriben, pero se debe mejorar en la clasificación de clientes que sí se suscriben.

K-means

Objetivo: Agrupar clientes en segmentos distintos basados en características similares.

Aplicación:

Segmentación: Identificación de segmentos de clientes que son más propensos a suscribirse a un depósito a plazo fijo.

Valor Añadido: Los clusters proporcionan un contexto adicional que permite a las estrategias de marketing ser más focalizadas, mejorando la precisión del Random Forest al integrar segmentos específicos.

Recomendaciones y próximos pasos:

"Se recomienda focalizar las campañas de marketing en los clientes jóvenes, con balances más altos, y durante los meses más exitosos identificados."

"Considerar la integración de más datos contextuales para mejorar la precisión del modelo, especialmente en la predicción de la clase positiva."

Fin de la presentación

muchas gracias por la atención y me encuentro disponible para dudas y sugerencias