Discrete Mathematics MATH1064, Lecture 33

Jonathan Spreer

Extra exercises for Lecture 33

Section 10.3: Problems 5-8, 10-25

Section 10.5: Problems 30-40, 44

HOW TO ANNOY A GRAPH THEORY PH. D.

Question

Which of the two graphs below have a Eulerian circuit?

- The first only
- The second only
- Both
- Meither

Eulerian circuit: circuit using every edge exactly once

Hamiltonian circuit (or Hamiltonian cycle): circuit using every vertex exactly once. (Except for start = end vertex, which must appear twice.)

Testing for a Eulerian circuit: simple

Testing for a Hamiltonian circuit?

Does this graph contain a Hamiltonian circuit?

Does this graph contain a Hamiltonian circuit?

Does this graph contain a Hamiltonian circuit?

Watch: https://youtu.be/AVe-OA-fcVO

Does this graph contain a Hamiltonian circuit?

Find a simple test for whether a Hamiltonian circuit exists—or prove that you cannot—and you can have \$1 000 000!

This would solve the famous P vs NP problem.

Jonathan Spreer Discrete Mathematics 8 / 20

Reminder: P vs NP

A decision problem is a yes/no question, for which we wish to find an algorithm.

Examples:

Input: A graph G.
Question: Does G have a Eulerian circuit?

Input: A graph G.
Question: Does G have a Hamiltonian circuit?

P vs NP is about which decision problems you can solve quickly (i.e., in running time a polynoial in the input size, eg. O(n), $O(n^3)$, $O(n^{100})$), and which problems you can verify quickly.

9/20

Reminder: P vs NP

Here: Is finding a Hamiltonian circuit as difficult as verifying that a given circuit is a Hamiltonian circuit?

Look up the lcosian game: https://www.geogebra.org/m/u3xggkcj

More about P vs. NP:

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Jonathan Spreer Discrete Mathematics 10 / 20

When are two graphs "the same"?

Are these graphs the same?

Remember: A graph G is defined purely in terms of V(G) and E(G). Its drawing does not matter.

What about these graphs?

And what about these?

Graph isomorphism

Two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are said to be isomorphic, written $G_1\cong G_2$, if there exists a bijective function $\phi:V_1\to V_2$ such that

$$\phi(E_1) = \{ \{ \phi(v_1), \phi(v_2) \} | \{ v_1, v_2 \} \in E_1 \} = E_2.$$

Graph isomorphism

Given two graphs G_1 and G_2 , are they isomorphic (does $G_1 \cong G_2$ hold)?

This question is known as the graph isomorphism problem.

It is famous for being "probably not difficult" to answer in general.

Matrices

Let $n \in \mathbb{N}$. An $n \times n$ matrix is just an $n \times n$ grid of numbers.

Example 3 × 3 matrix:
$$\mathbf{M} = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 1 \\ -1 & 0 & -4 \end{bmatrix}$$

Let **M** be an $n \times n$ matrix. We write $\mathbf{M} = (m_{i,j})$, where for each i = 1, 2, ..., n and j = 1, 2, ..., n, the symbol $m_{i,j}$ denotes the entry in row i, column j.

$$m_{1,2} =$$

$$m_{3,1} =$$

$$m_{3,3} =$$

Multiplying matrices

Let $\mathbf{A} = (a_{i,j})$ and $\mathbf{B} = (b_{i,j})$ be $n \times n$ matrices.

The product **AB** is an $n \times n$ matrix **AB** = $(m_{i,j})$, with entries:

$$m_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} = a_{i,1} b_{1,j} + a_{i,2} b_{2,j} + \ldots + a_{i,n} b_{n,j}$$

Example:

$$\left[\begin{array}{ccc} 1 & 0 & 2 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 0 & 2 & 3 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{array}\right] =$$

Matrix multiplication has some (but not all) nice properties:

- It is associative:
- It has an identity:

An aside

Why this over-complicated formula for multiplication?

Why not just have $m_{i,j} = a_{i,j} \cdot b_{i,j}$?

The answer:

- $n \times n$ matrices essentially describe linear functions $f: \mathbb{R}^n \to \mathbb{R}^n$.
- Our formula is chosen so that multiplying matrices corresponds to the composition of functions $g \circ f$.

You will learn more about this in linear algebra!

Representing graphs using matrices

Let G a graph with n vertices, and suppose we label these vertices $V(G) = \{1, 2, ..., n\}$.

The adjacency matrix of G is the $n \times n$ matrix $\mathbf{A} = (a_{i,j})$, where each entry $a_{i,j}$ is the number of edges with endpoints $\{i,j\}$ (counted with multiplicity).

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 & 0 & 1 \\ 0 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 2 \end{bmatrix}$$

Theorem

Let G be a graph with vertices $V(G) = \{1, 2, ..., n\}$, and adjacency matrix **A**.

Then the number of paths of length k from vertex i to vertex j is the entry in row i, column j of the kth power $\mathbf{A}^k = \mathbf{A} \cdot \mathbf{A} \cdot \ldots \cdot \mathbf{A}$.

Proof: Let's use induction! Let $\mathbf{A} = (a_{i,j})$. Some more notation:

- Let $w_{i,j}^{(k)}$ denote the number of paths of length k from i to j.
- Let $a_{i,j}^{(k)}$ denote the entry in row i, column j of \mathbf{A}^k .

We must prove that $w_{i,j}^{(k)} = a_{i,j}^{(k)}$.

Basis step:

Consider k = 1.

A path of length 1 from i to j is just an edge with endpoints $\{i, j\}$!

Therefore the number of such paths is exactly the number of edges with endpoints $\{i,j\}$. That is: $w_{i,j}^{(1)} = a_{i,j} = a_{i,j}^{(1)}$.

Inductive step:

Let $k \ge 1$ and assume that, for all vertices $i, j, w_{i,j}^{(k)} = a_{i,j}^{(k)}$.

We must prove that, for all vertices i, j, $w_{i,j}^{(k+1)} = a_{i,j}^{(k+1)}$.

Consider a path of length k+1 from i to j.

What is the second-last vertex on the path?

This could be any of 1, 2, ..., n. We take cases!

- The number of paths with second-last vertex 1 is $w_{i,1}^{(k)} \cdot w_{1,j}^{(1)}$, since we first path along k edges from i to 1, and then we path along one more edge from 1 to i.
- The number of paths with second-last vertex 2 is $w_{i,2}^{(k)} \cdot w_{2,i}^{(1)}$.
- ...
- The number of paths with second-last vertex n is $w_{i,n}^{(k)} \cdot w_{n,j}^{(1)}$.

Summing over all cases, the total number of paths of length k+1 from \emph{i} to \emph{j} is

$$w_{i,1}^{(k)}w_{1,j}^{(1)}+w_{i,2}^{(k)}w_{2,j}^{(1)}+\ldots+w_{i,n}^{(k)}w_{n,j}^{(1)}.$$

So: the total number of paths of length k + 1 from i to j is

$$w_{i,1}^{(k)}w_{1,j}^{(1)}+w_{i,2}^{(k)}w_{2,j}^{(1)}+\ldots+w_{i,n}^{(k)}w_{n,j}^{(1)}.$$

By the inductive hypothesis, this is

$$a_{i,1}^{(k)}a_{1,j}^{(1)}+a_{i,2}^{(k)}a_{2,j}^{(1)}+\ldots+a_{i,n}^{(k)}a_{n,j}^{(1)}.$$

Recall that $a_{i,j}^{(k)}$ denotes the entry in row i, column j of \mathbf{A}^k , and $a_{i,j}^{(1)}$ denotes the entry in row i, column j of \mathbf{A}^1 .

The line above is the formula for matrix multiplication! The number $a_{i,1}^{(k)}a_{1,j}^{(1)}+a_{i,2}^{(k)}a_{2,j}^{(1)}+\ldots+a_{i,n}^{(k)}a_{n,j}^{(1)}$ is just the entry in row i, column j of $\mathbf{A}^k \cdot \mathbf{A}^1 = \mathbf{A}^{k+1}$.

Therefore $w_{i,j}^{(k+1)} = a_{i,j}^{(k+1)}$ for all vertices i, j, as required!

By mathematical induction, it follows that, for all path lengths k, we have $w_{i,j}^{(k)} = a_{i,j}^{(k)}$ for all vertices i, j.

19 / 20

- Note that every loop edge contributes 2 to the respective diagonal entry of the adjacency matrix.
- In the above theorem this means we count paths with loop edges twice, once per orientation of the loop edge.
- \rightarrow a single path with k loop edges is counted 2^k times.
- However: in our definition of a path, these paths are all considered to be the same.
- We can remove this ambiguity by only adding 1 per loop edge on the diagonal entry.