

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Μάθημα: "Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο"

(7° εξάμηνο, Ακαδημαϊκό Έτος 2023-24)

Διδάσκων : Κ. Τζαφέστας

1^η ΣΕΙΡΑ ΑΝΑΛΥΤΙΚΩΝ ΑΣΚΗΣΕΩΝ (Course Assignment #1)

Άσκηση 1.1 (Πίνακας Παραμέτρων D-H, Ευθεία κινηματική ανάλυση)

Έστω ρομποτικός βραχίονας ο οποίος εικονίζεται στο διπλανό Σχήμα 1, ο οποίος διαθέτει 4 περιστροφικούς άξονες (μεταβλητές αρθρώσεων q_1 , q_2 , q_3 και q_4).

Εφαρμόζοντας τη μέθοδο Denavit-Hartenberg (D-H):

- Να τοποθετηθούν οι άξονες για τα πλαίσια αναφοράς των κινούμενων συνδέσμων και να προσδιορισθεί ο πίνακας των παραμέτρων της μεθόδου.
- Να προσδιορισθεί (συναρτήσει της q1) το μητρώο ομογενούς μετασχηματισμού συντεταγμένων από το πλαίσιο της βάσης στο πλαίσιο του 1°0 κινούμενου συνδέσμου.
- Να προσδιορισθεί (συναρτήσει της q₄) το μητρώο ομογενούς μετασχηματισμού συντεταγμένων από το πλαίσιο του 3^{ου} κινούμενου συνδέσμου στο πλαίσιο του τελικού εργαλείου δράσης.

Σημείωση: Τα σταθερά γεωμετρικά μήκη l_1 , l_2 , l_3 , l_4 και l_5 των συνδέσμων, τα οποία εικονίζονται στο σχήμα, θεωρούνται γνωστά. Το πλαίσιο αναφοράς της ρομποτικής βάσης καθώς και αυτό του τελικού εργαλείου δράσης, σημειώνονται στο Σχήμα 1. Η διάταξη αρχικοποίησης του μηχανισμού είναι αυτή που εικονίζεται στο Σχήμα.

Σχήμα 1: Αρθρωτός ρομποτικός βραχίονας 4 β.ε.

Άσκηση 1.2 (Παράμετροι D-Η, ευθεία κινηματική ανάλυση)

Εστω ρομποτικός βραχίονας 4 βαθμών ελευθερίας (3R-1P) όπως εικονίζεται στο ακόλουθο Σχήμα 2. Η βάση στήριξης του μηχανισμού θεωρείται ότι βρίσκεται στο σημείο O_0 , και το άκρο του τελικού εργαλείου δράσης στο O_E , όπως φαίνεται στο Σχ. 2. Τα σταθερά γεωμετρικά μήκη l_0 , l_1 , ..., l_4 , των συνδέσμων του μηχανισμού, θεωρούνται γνωστά.

Εφαρμόζοντας τη μέθοδο Denavit-Hartenberg (D-H):

- (α) Να τοποθετηθούν οι άζονες για τα πλαίσια αναφοράς των κινούμενων συνδέσμων και να προσδιορισθεί ο πίνακας των παραμέτρων της μεθόδου.
- (β) Να προσδιορισθεί (συναρτήσει της q₄) το μητρώο ομογενούς μετασχηματισμού συντεταγμένων από το πλαίσιο του 3°° κινούμενου συνδέσμου στο πλαίσιο του τελικού εργαλείου δράσης.

Σημείωση: Τα πλαίσια αναφοράς της βάσης και του τελικού εργαλείου δράσης του μηχανισμού δίνονται όπως στο Σχήμα 2. Η διάταξη αρχικοποίησης του μηχανισμού είναι αυτή που εικονίζεται στο Σχήμα 2.

Σχήμα 2: Ρομποτικός βραχίονας 4 βαθμών ελευθερίας (3R-1P).

Άσκηση 1.3 (Μητρώο στροφής, σφαιρικός μηχανισμός καρπού, αντίστροφη κινηματική)

Για τον ρομποτικό μηχανισμό που εικονίζεται στο διπλανό Σχήμα 3 (αποτελούμενο από 3 στροφικές αρθρώσεις), να προσδιορισθούν οι γωνιακές μετατοπίσεις στις αρθρώσεις που οδηγούν σε δεδομένο προσανατολισμό του τελικού εργαλείου δράσης (εκφρασμένου μέσω δεδομένου μητρώου στροφής $R_{\rm F}^0$).

Σημείωση: Η διάταξη αρχικοποίησης του μηχανισμού, καθώς και τα πλαίσια αναφοράς της ρομποτικής βάσης και του τελικού εργαλείου δράσης θεωρούνται όπως στο Σχήμα.

Σχήμα 3: Σφαιρικός μηχανισμός καρπού