

Machine Learning for everyone

Easily add data-driven decisions and predictive analytics to your company

The Need for Machine Learning

Talk	Text	Purchases	Data	Age	Churn?
148	72	0	33.6	50	TRUE
85	66	0	26.6	31	FALSE
183	64	0	23.3	32	TRUE
89	66	94	28.1	21	FALSE
115	0	0	35.3	29	FALSE
166	72	175	25.8	51	TRUE
100	0	0	30	32	TRUE
118	84	230	45.8	31	TRUE
171	110	240	45.4	54	TRUE
159	64	0	27.4	40	FALSE

.... but this is a simple example

Data Types

1 2 3

1, 2.0, 3, -5.4

numeric

ABC

true, yes, red, mammal

categorical

DATE-TIME

2013-09-25 10:02

DATE-TIME

Be not afraid of greatness: some are born great, some achieve greatness, and some have greatness thrust upon 'em.

text / items

text

YYYY-MM-DD

YEAR

2013

YYYY-MM-DD

MONTH

September

YYYY-MM-DD

DAY-OF-MONTH

M-T-W-T-F-S-D

DAY-OF-WEEK

Wednesday

HH:MM:SS

HOUR

10

25

HH:MM:SS

MINUTE

02

"great"

"afraid"

"born"

"some"

appears 2 times

appears 1 time

appears 1 time

appears 2 times

Text Analysis

Evaluations

Ensembles

Dia	Color	Shape	Fruit
4	red	round	plum
5	red	round	apple
5	red	round	apple
6	red	round	plum
7	red	round	apple

What is a round, red 6cm fruit? All Data: "plum" Sample 1: "plum"

Sample 2: "apple"

Sample 3: "apple"

Bagging! Random Decision Forest!

Supervised Learning

Classification

label

animal	state	 proximity	action
tiger	hungry	 close	run
elephant	happy	 far	take picture

Regression

animal	state	 proximity	min_kmh
tiger	hungry	 close	70
hippo	angry	 far	10

Multi-Label Classification

animal	state		proximity	action1	action2
tiger	hungry	• • •	close	run	look untasty
elephant	happy		far	take picture	call friends

Unsupervised Learning

Clustering

date	customer	account	auth	class	zip	amount
Mon	Bob	3421	pin	clothes	46140	135
Tue	Bob	3421	sign	food	46140	401
Tue	Alice	2456	pin	food	12222	234
Wed	Sally	6788	pin	gas	26339	94
Wed	Bob	3421	pin	tech	21350	2459
Wed	Bob	3421	pin	gas	46140	83
The	Sally	6788	sign	food	26339	51

Anomaly Detection

date	customer	account	auth	class	zip	amount
Mon	Bob	3421	pin	clothes	46140	135
Tue	Bob	3421	sign	food	46140	401
Tue	Alice	2456	pin	food	12222	234
Wed	Sally	6788	pin	gas	26339	94
Wed	Bob	3421	pin	tech	21350	2459
Wed	Bob	3421	pin	gas	46140	83
The	Sally	6788	sign	food	26339	51

sual

BigML Inc Algorithms Demo

Clustering Basics

Clustering

- Customer segmentation
- Item discovery
- Data summarization / compression
- Collaborative filtering / recommender
- Active learning

Isolation Forest:

Now repeat the process several times and use average Depth to compute anomaly score: 0 (similar) -> 1 (dissimilar)

Anomaly Detection

- Unusual instance discovery
- Intrusion Detection
- Fraud
- Identify Incorrect Data
- Remove Outliers
- Model Competence / Input Data Drift

Model Competence

At Training Time

Prediction	Т	Т
Confidence	86%	84%
Anomaly Score	0.5367	0.7124
Competent?	Y	N

At Prediction Time

Unsupervised Learning

Association Discovery

date	customer	account	auth	class	zip	amount
Mon	Bob	3421	pin	clothes	46140	135
Tue	Bob	3421	sign	food	46140	401
Tue	Alice	2456	pin	food	12222	234
Wed	Sally	6788	pin	gas	26339	94
Wed	Bob	3421	pin	tech	21350	2459
Wed	Bob	3421	pin	gas	46140	83
The	Sally	6788	sign	food	26339	51

Rules:

Antecedent --> Consequent

Association Discovery

- Market Basket Analysis
- Web usage patterns
- Intrusion detection
- Fraud detection
- Bioinformatics
- Medical risk factors

Coverage

Percentage of instances which match antecedent "A"

Support

Percentage of instances which match antecedent "A" and Consequent "C"

Confidence

Percentage of instances in the antecedent which also contain the consequent.

Lift

Ratio of observed support to support if A and C were statistically independent.

$$\frac{\text{Support}}{p(A) * p(C)} == \frac{\text{Confidence}}{p(C)}$$

< 1

Lift = 1

> 1

Negative Correlation

No Association

Positive Correlation

Leverage

Difference of observed support and support if A and C were statistically independent.

Support - [p(A) * p(C)]

-1... < 0:

Leverage = 0

>0

...1

Negative Correlation

No Association

Positive Correlation

http://bigmler.readthedocs.org/en/latest/