МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе№3 по дисциплине «Организация ЭВМ и систем» Тема: Представление и обработка целых чисел. Организация ветвящихся процессов.

Студент гр. 1303	Беззубов Д.В.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров вычисляет значения функций.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4.

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

$$f1 = <$$
 / 15-2*i , при a>b
 $3*i+4$, при a<=b
 $f4 = <$ / -(6*i - 4) , при a>b
 $3*(i+2)$, при a<=b
 $f3 = <$ / $|i1+i2|$, при k=0
 $min(i1,i2)$, при k/=0

Выполнение работы

Были реализованы функции из Каталога Заданий, соответствующие 3 Варианту. Реализованная программа протранслирована с различными тестовыми данными.

Для выполнения данного задания были использованы такие команды общего назначения как:

Команды передачи данных.

1) *mov* – присваивание

Двоичные арифметические команды.

- 1) *add* сложение
- 2) *sub* вычитание
- 3) *стр* сравнение
- 4) neg смена знака

Команды побитового сдвига.

1) *sal* - арифметический сдвиг влево

Команды передачи управления.

- 1) *јтр* команда безусловного перехода
- 2) *Int* вызов программного прерывания
- 3) *jg(jump greater)* выполняет короткий переход, если первый операнд больше второго операнда при выполнении операции сравнения с помощью команды стр.
- 4) *Ine(jump negative equal)* выполняет короткий переход, если первый операнд не равен второму операнду при выполнении операции сравнения с помощью команды стр.
- 5) *jl(jump less)* выполняет короткий переход, если первый операнд меньше второго операнда при выполнении операции сравнения с помощью команды стр.

Для реализации ветвления в программе использовались метки. Метка - это символьное имя, обозначающее ячейку памяти, которая содержит некоторую команду.

```
DOSBox 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Progra... — X

The DOSBox Team http://www.dosbox.com

Z:\>SET BLASTER=AZZ0 I7 D1 H5 T6

Z:\>MOUNT C "C:\Users\Danii\Downloads\comp_arch_materials\comp_arch_materials\labs\tools"

Drive C is mounted as local directory C:\Users\Danii\Downloads\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_materials\comp_arch_ma
```

рис.1 -Трансляция программы

Тестирование

Программа выполнена в пошаговом режиме под управлением отладчика с фиксацией значений используемых переменных.

№ теста	Тестируемый	Функции для	Данные	
	случай	данного случая	входные	выходные
1	a > b	f1 = 15 - 2*i	a = 1, b = 0	f1 = 13 = 000D
	k = 0	f2 = -(6*i - 4)	$\mathbf{k} = 0$	f2 = -2 = FFFE
		f3 = abs(f1 + f2)	i = 1	f3 = 11 = 000B
2	a > b	f1 = 15 - 2*i	a = 1, b = 0	f1 = 13 = 000D
	k!=0	f2 = -(6*i - 4)	k = 1	f2 = -2 = FFFE
		$f3 = \min(f1, f2)$	i = 1	f3 = -2 = FFFE
3	a <= b	f1 = 3*i + 4	a = 1, b = 1	f1 = 7 = 0007
	k = 0	f2 = 3*(i+2)	$\mathbf{k} = 0$	f2 = 9 = 0009
		f3 = abs(f1 + f2)	i = 1	f3 = 16 = 0010
4	a <= b	f1 = 3*i + 4	a = 1, b = 1	f1 = 7 = 0007

k != 0	f2 = 3*(i+2)	k = 1	f2 = 9 = 0009
	$f3 = \min(f1, f2)$	i = 1	f3 = 7 = 0007

Выводы

В ходе выполнения лабораторной работы были получены навыки разработки программы с заданными целочисленными значениями на языке программирования Ассемблер.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: source.asm

```
ASSUME CS:CODE, SS: AStack, DS: DATA
```

AStack SEGMENT STACK

DW 12 DUP('!')

AStack ENDS

DATA SEGMENT

a DW 0

b DW 0

i DW 0

k DW 0

i1 DW 0

i2 DW 0

res DW 0

DATA ENDS

CODE SEGMENT

Main PROC FAR

push DS

sub AX, AX

push AX

mov AX, DATA

mov DS, AX

;Вычисление f1 и f2

mov AX, a

mov CX, i

cmp AX, b

```
jg A_Greater

sal CX, 1 ; i<<1 = i*2
add CX, i ; i*2+i = i*3
add CX, 4 ; i*3 + 4

mov i1, CX

mov CX, i
add CX, 2 ; i+2
mov AX, CX ; ποмещаем i+2 B ax
sal CX, 1 ; (i+2)*2
add CX, AX ; (i+2)*2 + (i+2)
mov i2, CX

jmp FUNCTION_3</pre>
```

A Greater:

mov AX, 15
sal CX, 1
sub AX, CX
mov i1, AX

mov CX, i
mov AX, 4
sal CX, 1 ;i*2
add CX, i ;i*2 + i = 3i
sal CX, 1 ; 3i*2
sub AX, CX
mov i2, AX

FUNCTION 3:

mov AX, k
cmp AX, 0
JNe K_NOT_EQUAL_ZERO
mov AX, i1
add AX, i2

```
cmp AX, 0
jl SUM_LESS_ZERO
mov res, AX
jmp QUIT
```

SUM_LESS_ZERO:

neg AX
mov res, AX
jmp QUIT

K NOT EQUAL ZERO:

mov AX, i1
mov CX, i2
cmp AX, i2
jl i1_LESS_i2
mov res, CX
jmp QUIT

i1_LESS_i2:

mov res, AX

QUIT:

int 20h

Main ENDP CODE ENDS

END Main