# FLS 6441 - Methods III: Explanation and Causation

Week 10 - Matching

Jonathan Phillips

June 2019

#### Classification of Research Designs

|                           |                                          | Independence of Treatment Assignment | Researcher Controls Treatment Assignment? |
|---------------------------|------------------------------------------|--------------------------------------|-------------------------------------------|
| Controlled<br>Experiments | Field Experiments                        | √                                    | ✓                                         |
|                           | Survey and Lab Experiments               | √                                    | √                                         |
|                           |                                          |                                      |                                           |
| Natural<br>Experiments    | Natural Experiments                      | √                                    |                                           |
|                           | Instrumental Variables                   | √                                    |                                           |
|                           | Discontinuities                          | √                                    |                                           |
|                           |                                          |                                      |                                           |
| Observational<br>Studies  | Difference-in-Differences                |                                      |                                           |
|                           | Controlling for Confounding              |                                      |                                           |
|                           | Matching                                 |                                      |                                           |
|                           | Comparative Cases and Process<br>Tracing |                                      |                                           |

#### Section 1

► Controlling for confounding with regression has three weak spots:

- Controlling for confounding with regression has three weak spots:
  - 1. **Lack of overlap** Extreme treated outliers alter our results, even when there are no comparable control units in the data

- Controlling for confounding with regression has three weak spots:
  - 1. **Lack of overlap** Extreme treated outliers alter our results, even when there are no comparable control units in the data
  - 2. **Model-dependence** Variable X is a confounder, but is it linear, quadratic, cubic or what? The wrong model of the real relationship with the outcome biases our results

Matching

00000000000

- Controlling for confounding with regression has three weak spots:
  - 1. **Lack of overlap** Extreme treated outliers alter our results, even when there are no comparable control units in the data
  - 2. **Model-dependence** Variable X is a confounder, but is it linear, quadratic, cubic or what? The wrong model of the real relationship with the outcome biases our results
  - 3. **Researcher/publication bias** Lots of freedom to tweak the regression to get positive results
- ► All of these reflect the fact that regression is **parametric**

- Controlling for confounding with regression has three weak spots:
  - 1. **Lack of overlap** Extreme treated outliers alter our results, even when there are no comparable control units in the data
  - 2. **Model-dependence** Variable X is a confounder, but is it linear, quadratic, cubic or what? The wrong model of the real relationship with the outcome biases our results
  - 3. **Researcher/publication bias** Lots of freedom to tweak the regression to get positive results
- ► All of these reflect the fact that regression is **parametric** 
  - 1. It uses ALL of the data
  - 2. It requires us to specify the parameters of a model

► The solution?

► The solution? **Non-parametric** methods for controlling for confounding

- ▶ The solution? **Non-parametric** methods for controlling for confounding
  - 1. We use ONLY SOME of the data
  - 2. We do not specify the parameters of any model

- ► The solution? **Non-parametric** methods for controlling for confounding
  - 1. We use ONLY SOME of the data
  - 2. We do not specify the parameters of any model
- ▶ Matching is a non-parametric method

- The solution? Non-parametric methods for controlling for confounding
  - 1. We use ONLY SOME of the data
  - 2. We do not specify the parameters of any model
- ▶ Matching is a non-parametric method
  - ► A pre-processing stage
  - ► Analysis of the results is separate and comes later

► If treated and control groups have the **same values** of **all** of the confounding variables, we know that treatment is independent of potential outcomes

- ► If treated and control groups have the **same values** of **all** of the confounding variables, we know that treatment is independent of potential outcomes
- ► There is no variation in the confounders that could possibly explain the difference between the outcomes in treated and control groups

- ► If treated and control groups have the **same values** of **all** of the confounding variables, we know that treatment is independent of potential outcomes
- ► There is no variation in the confounders that could possibly explain the difference between the outcomes in treated and control groups
  - 1. One way of forcing balance is by **ajusting** each treated observation to predict what it would 'look like' if it were identical to a control observation a regression model

- ► If treated and control groups have the **same values** of **all** of the confounding variables, we know that treatment is independent of potential outcomes
- ► There is no variation in the confounders that could possibly explain the difference between the outcomes in treated and control groups
  - One way of forcing balance is by ajusting each treated observation to predict what it would 'look like' if it were identical to a control observation - a regression model
  - An alternative is just to **throw out** all of the treated observations that do not have a comparable control observation - this is matching

- Matching should really be called trimming or pruning
  - Dropping units that don't have good counterfactuals in the data
- ► It succeeds only where we can measure and create balance on all confounding variables

- Matching should really be called trimming or pruning
  - Dropping units that don't have good counterfactuals in the data
- It succeeds only where we can measure and create balance on all confounding variables
- ► Matching is **NOT** an experimental method

1. For each treated unit, find a control unit with very close values of all confounding variables, and keep both

- 1. For each treated unit, find a control unit with very close values of all confounding variables, and keep both
- 2. Repeat for every treated unit

- 1. For each treated unit, find a control unit with very close values of all confounding variables, and keep both
- 2. Repeat for every treated unit
- 3. Drop all the unmatched units (eg. 'extra' treated units that are 'far away' from any control units)

- 1. For each treated unit, find a control unit with very close values of all confounding variables, and keep both
- 2. Repeat for every treated unit
- 3. Drop all the unmatched units (eg. 'extra' treated units that are 'far away' from any control units)
- 4. Assess balance re-run the matching process as many times as you can to maximize balance!

000000000000

Matching

#### 1. For example:



Matching

#### 1. For example:





## 1. For example:



► Matching *always* produces a smaller dataset

- Matching always produces a smaller dataset
  - So there is a trade-off between improving balance and retaining a large sample

- Matching always produces a smaller dataset
  - ➤ So there is a trade-off between improving balance and retaining a large sample
- ► After matching, for the analysis we can either:
  - 1. Calculate the difference in means between treated and control groups

- Matching always produces a smaller dataset
  - ➤ So there is a trade-off between improving balance and retaining a large sample
- ► After matching, for the analysis we can either:
  - Calculate the difference in means between treated and control groups
  - 2. Conduct the normal regression:  $Y \sim D$ 
    - ► Option to include all our matching variables as controls
    - ► This will help control for any **residual imbalance** (esp. for continuous variables)

► Which variables to match on?

- ► Which variables to match on?
  - ► Treatment variable?

- Which variables to match on?
  - ► Treatment variable? **No!** We need treated and control units who are both male

- Which variables to match on?
  - ► Treatment variable? **No!** We need treated and control units who are both male
  - ► Outcome variable?

- ▶ Which variables to match on?
  - ► Treatment variable? **No!** We need treated and control units who are both male
  - ► Outcome variable? **No!** That's selecting on the dependent variable biased!

- Which variables to match on?
  - ► Treatment variable? **No!** We need treated and control units who are both male
  - Outcome variable? No! That's selecting on the dependent variable - biased!
  - ► Post-treatment variables?

- Which variables to match on?
  - ► Treatment variable? **No!** We need treated and control units who are both male
  - Outcome variable? No! That's selecting on the dependent variable - biased!
  - ▶ Post-treatment variables? No! This will bias our causal effect, just as in regression

- Which variables to match on?
  - ► Treatment variable? **No!** We need treated and control units who are both male
  - Outcome variable? No! That's selecting on the dependent variable - biased!
  - ▶ Post-treatment variables? No! This will bias our causal effect, just as in regression
  - ► Pre-treatment Confounders?

- Which variables to match on?
  - ► Treatment variable? **No!** We need treated and control units who are both male
  - Outcome variable? No! That's selecting on the dependent variable - biased!
  - ▶ Post-treatment variables? No! This will bias our causal effect, just as in regression
  - ▶ Pre-treatment Confounders? Yes! We want to remove imbalance due to confounders













► To identify 'close' matches we need some measure of distance between units' covariates

- ► To identify 'close' matches we need some measure of distance between units' covariates
- 1. Matching on few categorical variables: Exact Matching

- ► To identify 'close' matches we need some measure of distance between units' covariates
- 1. Matching on few categorical variables: Exact Matching
- 2. Matching on continuous variables (sequential): **Nearest-Neighbour Matching**

- ► To identify 'close' matches we need some measure of distance between units' covariates
- 1. Matching on few categorical variables: Exact Matching
- Matching on continuous variables (sequential):Nearest-Neighbour Matching
- 3. Matching to maximize balance: **Optimal/Genetic Matching**

- ► To identify 'close' matches we need some measure of distance between units' covariates
- 1. Matching on few categorical variables: Exact Matching
- Matching on continuous variables (sequential):Nearest-Neighbour Matching
- 3. Matching to maximize balance: **Optimal/Genetic Matching**
- Matching on the probability of treatment: Propensity Score Matching

### Section 2

# Alternative Matching Methods









- Exact matching defines clear counterfactuals:
  - ► What is the difference in the outcome between treated and control units for units of the same gender

- Exact matching defines clear counterfactuals:
  - What is the difference in the outcome between treated and control units for units of the same gender
- ► After matching, we **prune/remove** unmatched units

- Exact matching defines clear counterfactuals:
- What is the difference in the outcome between treated and control units for units of the same gender
- ► After matching, we **prune/remove** unmatched units
- ► Then delete the link between the paired units, we don't need it any more

- Exact matching defines clear counterfactuals:
  - What is the difference in the outcome between treated and control units for units of the same gender
- ► After matching, we **prune/remove** unmatched units
- ► Then delete the link between the paired units, we don't need it any more
- ► Then compare the outcome of the **remaining** treated and control units

- Exact matching defines clear counterfactuals:
  - What is the difference in the outcome between treated and control units for units of the same gender
- After matching, we prune/remove unmatched units
- ▶ Then delete the link between the paired units, we don't need it any more
- ▶ Then compare the outcome of the **remaining** treated and control units
  - ▶ Difference in means

- Exact matching defines clear counterfactuals:
  - What is the difference in the outcome between treated and control units for units of the same gender
- ► After matching, we **prune/remove** unmatched units
- ► Then delete the link between the paired units, we don't need it any more
- ► Then compare the outcome of the **remaining** treated and control units
  - ▶ Difference in means
  - ► Or regression of outcome on treatment

|   | Units   | Means Treated | Means Control | Mean Diff |
|---|---------|---------------|---------------|-----------|
| 1 | All     | 0.18          | 0.39          | -0.21     |
| 2 | Matched | 0.27          | 0.27          | 0.00      |















### **Nearest Neighbour Matching**



### Nearest Neighbour Matching



### **Nearest Neighbour Matching**







|   | Units   | Means Treated | Means Control | Mean Diff |
|---|---------|---------------|---------------|-----------|
| 1 | All     | 65.70         | 42.67         | 23.03     |
| 2 | Matched | 65.70         | 56.09         | 9.61      |

► Two potential problems with nearest neighbour matching:

- ► Two potential problems with nearest neighbour matching:
  - 1. **Nearest does not mean close:** The oldest treated units are matched with, but very different to, the oldest control units

- ► Two potential problems with nearest neighbour matching:
  - 1. **Nearest does not mean close:** The oldest treated units are matched with, but very different to, the oldest control units
    - ► We need some **absolute** limits on the distance we can match units within

- ► Two potential problems with nearest neighbour matching:
  - 1. **Nearest does not mean close:** The oldest treated units are matched with, but very different to, the oldest control units
    - ▶ We need some **absolute** limits on the distance we can match units within
    - We can add 'calipers' to matching to match only within a fixed range

- ► Two potential problems with nearest neighbour matching:
  - Nearest does not mean close: The oldest treated units are matched with, but very different to, the oldest control units
    - We need some absolute limits on the distance we can match units within
    - We can add 'calipers' to matching to match only within a fixed range
  - 2. **The order of matching matters:** The first matches use up units that might make better matches for later treated units

- ► Two potential problems with nearest neighbour matching:
  - Nearest does not mean close: The oldest treated units are matched with, but very different to, the oldest control units
    - We need some absolute limits on the distance we can match units within
    - We can add 'calipers' to matching to match only within a fixed range
  - The order of matching matters: The first matches use up units that might make better matches for later treated units
    - To maximize balance we need to 'look ahead' and match in the right order

- ► Two potential problems with nearest neighbour matching:
  - Nearest does not mean close: The oldest treated units are matched with, but very different to, the oldest control units
    - We need some absolute limits on the distance we can match units within
    - We can add 'calipers' to matching to match only within a fixed range
  - 2. **The order of matching matters:** The first matches use up units that might make better matches for later treated units
    - To maximize balance we need to 'look ahead' and match in the right order
    - For this we can use optimal or genetic matching, which is fully automated











|   | Units   | Means Treated | Means Control | Mean Diff |
|---|---------|---------------|---------------|-----------|
| 1 | All     | 65.70         | 42.67         | 23.03     |
| 2 | Matched | 55.41         | 55.46         | -0.06     |

▶ Note: p-values don't mean so much for balance tests

|   | Units   | Means Treated | Means Control | Mean Diff |
|---|---------|---------------|---------------|-----------|
| 1 | All     | 65.70         | 42.67         | 23.03     |
| 2 | Matched | 55.41         | 55.46         | -0.06     |

- ► Note: p-values don't mean so much for balance tests
- ► We always want to improve balance as much as possible

|   | Units   | Means Treated | Means Control | Mean Diff |
|---|---------|---------------|---------------|-----------|
| 1 | All     | 65.70         | 42.67         | 23.03     |
| 2 | Matched | 55.41         | 55.46         | -0.06     |

- ▶ Note: p-values don't mean so much for balance tests
- ▶ We always want to improve balance as much as possible
- ▶ Better to compare (standardized) difference in means









|   | Units   | Means Treated | Means Control | Mean Diff |
|---|---------|---------------|---------------|-----------|
| 1 | All     | 62.60         | 44.64         | 17.96     |
| 2 | Matched | 62.60         | 57.57         | 5.03      |

► With many covariates we have a dimensionality challenge

- ► With many covariates we have a dimensionality challenge
  - ► Overlap is almost zero

- ► With many covariates we have a dimensionality challenge
  - ► Overlap is almost zero
  - ► Counterfactuals are impossible to define
- ► The propensity score collapses matching to a single dimension

- With many covariates we have a dimensionality challenge
  - ► Overlap is almost zero
  - Counterfactuals are impossible to define
- ► The propensity score collapses matching to a single dimension
  - ► Confounders only matter to the extent they affect treatment

- With many covariates we have a dimensionality challenge
  - ► Overlap is almost zero
  - ► Counterfactuals are impossible to define
- The propensity score collapses matching to a single dimension
  - ► Confounders only matter to the extent they affect treatment
  - ► So let's use the confounders to **predict treatment**

- With many covariates we have a dimensionality challenge
  - ► Overlap is almost zero
  - Counterfactuals are impossible to define
- The propensity score collapses matching to a single dimension
  - Confounders only matter to the extent they affect treatment
  - ► So let's use the confounders to **predict treatment**
  - That's different to actual treatment status, with the remainder due to 'random' factors (if we include all confounders)

- With many covariates we have a dimensionality challenge
  - ► Overlap is almost zero
  - Counterfactuals are impossible to define
- The propensity score collapses matching to a single dimension
  - Confounders only matter to the extent they affect treatment
  - ► So let's use the confounders to **predict treatment**
  - ► That's different to actual treatment status, with the remainder due to 'random' factors (if we include all confounders)
- ➤ Then use the propensity score (probability 0-1) to match treated and control units which have the same ex ante probability of treatment

But some concerns about drawbacks of propensity score matching

- But some concerns about drawbacks of propensity score matching
- May have poor balance on individual confounders

- But some concerns about drawbacks of propensity score matching
- ► May have poor balance on individual confounders
- ▶ Balance may get worse as we remove more units

- But some concerns about drawbacks of propensity score matching
- May have poor balance on individual confounders
- ► Balance may get worse as we remove more units
- ► We have to get the functional form of the treatment explanation right (linear, quadratic etc.) so we remain vulnerable to model dependence!

- ► Treatment: 1/0
- ► Confounder: Age
- ► Logit model predicting treatment:

$$Treat_i = \alpha + \beta Age_i + \epsilon_i$$

- ► Treatment: 1/0
- ► Confounder: Age
- ► Logit model predicting treatment:

$$Treat_i = \alpha + \beta Age_i + \epsilon_i$$

$$Predicted\_Treat_i = -7.19 + 0.116Age_i + \epsilon_i$$

- ► Treatment: 1/0
- ► Confounder: Age
- ► Logit model predicting treatment:

$$Treat_i = \alpha + \beta Age_i + \epsilon_i$$

$$Predicted\_Treat_i = -7.19 + 0.116Age_i + \epsilon_i$$

► Match on the values of *Predicted\_Treat<sub>i</sub>* (fitted values of the regression)

- ► Treatment: 1/0
- ► Confounder: Age
- ► Logit model predicting treatment:

$$Treat_i = \alpha + \beta Age_i + \epsilon_i$$

$$Predicted\_Treat_i = -7.19 + 0.116Age_i + \epsilon_i$$

- ► Match on the values of *Predicted\_Treat*<sub>i</sub> (fitted values of the regression)
- ▶ I.e. match units with a similar *probability* of treatment

- ► Treatment: 1/0
- ► Confounder: Age
- ► Logit model predicting treatment:

$$Treat_i = \alpha + \beta Age_i + \epsilon_i$$

$$Predicted\_Treat_i = -7.19 + 0.116Age_i + \epsilon_i$$

- Match on the values of Predicted\_Treat<sub>i</sub> (fitted values of the regression)
- ▶ I.e. match units with a similar *probability* of treatment
- ...Regardless of whether they actually get treated











|   | Units   | Means Treated | Means Control | Mean Diff |
|---|---------|---------------|---------------|-----------|
| 1 | All     | 0.57          | 0.18          | 0.39      |
| 2 | Matched | 0.57          | 0.36          | 0.21      |



Alternative Matching Methods





|   | Units   | Means Treated | Means Control | Mean Diff |
|---|---------|---------------|---------------|-----------|
| 1 | All     | 0.57          | 0.18          | 0.39      |
| 2 | Matched | 0.36          | 0.35          | 0.01      |

► Matching was supposed to be 'non-parametric' to reduce researcher influence, but there are a lot of options here!

- ► Matching was supposed to be 'non-parametric' to reduce researcher influence, but there are a lot of options here!
- ► That's okay! Regression has no measure of 'success', but with matching we want to maximize balance

- Matching was supposed to be 'non-parametric' to reduce researcher influence, but there are a lot of options here!
- ► That's okay! Regression has no measure of 'success', but with matching we want to maximize balance
  - ► Without looking at the outcome variables

- Matching was supposed to be 'non-parametric' to reduce researcher influence, but there are a lot of options here!
- ► That's okay! Regression has no measure of 'success', but with matching we want to maximize balance
  - ► Without looking at the outcome variables
- ► How much trimming/pruning should we undertake?

- Matching was supposed to be 'non-parametric' to reduce researcher influence, but there are a lot of options here!
- ► That's okay! Regression has no measure of 'success', but with matching we want to maximize balance
  - ► Without looking at the outcome variables
- ► How much trimming/pruning should we undertake?
- ▶ We can always enforce **stricter** matching (eg. narrower calipers, more exact matching) to get better balance

- Matching was supposed to be 'non-parametric' to reduce researcher influence, but there are a lot of options here!
- ► That's okay! Regression has no measure of 'success', but with matching we want to maximize balance
  - ► Without looking at the outcome variables
- How much trimming/pruning should we undertake?
- We can always enforce stricter matching (eg. narrower calipers, more exact matching) to get better balance
- ▶ But our N will approach zero, so little statistical power

- Matching was supposed to be 'non-parametric' to reduce researcher influence, but there are a lot of options here!
- ► That's okay! Regression has no measure of 'success', but with matching we want to maximize balance
  - ► Without looking at the outcome variables
- ► How much trimming/pruning should we undertake?
- We can always enforce stricter matching (eg. narrower calipers, more exact matching) to get better balance
- ▶ But our N will approach zero, so little statistical power
- ► A Bias-variance trade-off

- Matching was supposed to be 'non-parametric' to reduce researcher influence, but there are a lot of options here!
- ► That's okay! Regression has no measure of 'success', but with matching we want to maximize balance
  - Without looking at the outcome variables
- How much trimming/pruning should we undertake?
- We can always enforce stricter matching (eg. narrower calipers, more exact matching) to get better balance
- ▶ But our N will approach zero, so little statistical power
- ► A Bias-variance trade-off
- ► Try alternative specifications



► Matching preferred to regression where:

- ► Matching preferred to regression where:
  - ► Never! Do both!
- Matching makes a big contribution where there's poor overlap

- ► Matching preferred to regression where:
  - ► Never! Do both!
- Matching makes a big contribution where there's poor overlap
- ► Matching + Regression = "Doubly Robust"

- ► Matching preferred to regression where:
  - ► Never! Do both!
- Matching makes a big contribution where there's poor overlap
- ► Matching + Regression = "Doubly Robust"
  - If either matching produces balance OR we have the correct functional form for regression, we can make causal inference

## Section 3

Matching vs. Experiments

► Arceneaux, Gerber and Green (2005)

- ► Arceneaux, Gerber and Green (2005)
- ► How does matching work on experimental (IV) data? (eg. for how to get voters to vote)

- ► Arceneaux, Gerber and Green (2005)
- ► How does matching work on experimental (IV) data? (eg. for how to get voters to vote)
- ► Matching is biased compared to the experimental results

- ► Arceneaux, Gerber and Green (2005)
- ► How does matching work on experimental (IV) data? (eg. for how to get voters to vote)
- ► Matching is biased compared to the experimental results
- ► Lots of controls

- ► Arceneaux, Gerber and Green (2005)
- ► How does matching work on experimental (IV) data? (eg. for how to get voters to vote)
- ► Matching is biased compared to the experimental results
- Lots of controls
- But unobserved confounders mean matching can't recover causal estimates

► Bias was due to whether people actually answered phone calls

- ▶ Bias was due to whether people actually answered phone calls
- ► Huge N, **Perfect balance**

- Bias was due to whether people actually answered phone calls
- ► Huge N, Perfect balance
- ► Experimental measure: 0.4

- ▶ Bias was due to whether people actually answered phone calls
- ► Huge N, Perfect balance
- ► Experimental measure: 0.4
- ▶ OLS estimate: 2.7

- ▶ Bias was due to whether people actually answered phone calls
- ► Huge N, Perfect balance
- ► Experimental measure: 0.4
- ▶ OLS estimate: 2.7
- ► Matching estimate: 2.8

- ► Bias was due to whether people actually answered phone calls
- ► Huge N, Perfect balance
- ► Experimental measure: 0.4
- ▶ OLS estimate: 2.7
- ► Matching estimate: 2.8
- ▶ We can't control for likelihood of answering the phone using the (many) covariates they have

- Bias was due to whether people actually answered phone calls
- ► Huge N, Perfect balance
- ► Experimental measure: 0.4
- ▶ OLS estimate: 2.7
- ► Matching estimate: 2.8
- We can't control for likelihood of answering the phone using the (many) covariates they have
- ► Matching still relies on measuring all confounders