

Departamento de Engenharia Informática

Veículos de Braitenberg Introdução à Inteligência Artificial 2016-2017

Gabriel Cardoso, 2014195477, gbc@student.dei.uc.pt, PL5 João Lopes, 2014205453, jllopes@student.dei.uc.pt, PL5 Luís Almeida, 2014214377, lmsimoes@student.dei.uc.pt, PL1

5 de Março de 2017

Conteúdo

1	Introdução	3
2	Veículos	3
	2.1 Medo	3
	2.2 Agressão	3
	2.3 Apaixonado	4
	2.4 Explorador	4
	2.5 Oito	4
	2.6 Elipse	4
3	Funções de Ativação	4
4	Limites e Limiares	5
5	Conclusão	5
6	Bibliografia	5

1 Introdução

No âmbito da cadeira de Introdução à Inteligência Artificial, foi realizado este trabalho de forma a consolidar o conhecimento adquirido até ao momento sobre agentes reativos, tendo sido por isso desenvolvidos alguns veículos de Braitenberg, com diferentes comportamentos. Este trabalho foi realizado na plataforma Unity, tendo como base o código disponibilizado pelos docentes, contendo um veículo base com um fotosensor, foram então criadas variações deste veículo de forma a corresponderem aos comportamentos pretendidos.

2 Veículos

Veículo de Braitenberg é a designação para os veículos cujo movimento é definido por sensores, levando o seu comportamento a parecer complexo ou até inteligente. Foi disponibilizado pelos docentes um veículo inicial apenas composto por um fotosensor, a partir deste conceito inicial, foram desenvolvidos outros conceitos, todos eles dependentes de fotosensores e/ou de sensores de proximidade. Desta forma foi possível a criação de vários cenários para testar o funcionamento destes mesmos veículos.

Tabela 1: Opções de Escolhas

- 1 Função Linear
- 2 Função Linear com Limiares
- 3 Função Linear com Limiares e Limites
- 4 Função Gaussiana
- 5 Função Gaussiana com Limiares
- 6 Função Gaussiana com Limiares e Limites
- 7 Função Linear Inversa

2.1 Medo

Este conceito faz com que o veículo se afaste de todos os objetos existentes no cenário (fontes de luz e blocos), parecendo desta forma que o veículo tem medo dos mesmos. Isto é concretizado através de fotosensores e sensores de proximidade. Ao detetar um objeto num dos sensores, o veículo irá fazer com que a roda situada no mesmo lado do sensor aumente a velocidade, desviando-se assim dos blocos.

2.2 Agressão

Ao contrário do conceito anterior, neste caso o veículo é atraído pelos objetos existentes no cenário, apresentando um comportamento agressivo. O desenvolvimento deste conceito é bastante semelhante ao anterior, no entanto, ao ser

detetado um objecto num sensor, não será a roda do lado desse sensor a aumentar a velocidade, mas sim a roda do lado contrário, levando a que o carro se dirija a encontro do objeto.

2.3 Apaixonado

Neste conceito, o veículo é atraído pelas fontes de luz, sendo que, se desloca sempre para a fonte de luz mais proxima, reduz a velocidade proporcionalmente à distância, até chegar a uma fonte de luz, o que o fará parar.

2.4 Explorador

Este conceito leva a que o veículo seja atraído pelos objetos, no entanto, ao chegar perto do mesmo irá mudar de direção de forma a explorar todo o meio ambiente.

2.5 Oito

Foi proposto o desenvolvimento de um conceito cujo objetivo seria o veículo fazer um percurso com a forma de um 8 à volta de duas fontes de luz. Isto foi conseguido através de uma função gaussiana com os seguintes valores.

Tabela 2: Valores U	tilizados
Média	0.5
Desvio Padrão	0.12
Limite Inferior	0.05
Limite Superior	0.6
Minímo Limiar	0.25
Máximo Limiar	0.75

2.6 Elipse

Foi também proposto o desenvolvimento de um conceito em que o veículo fizesse um percurso com a forma de uma elipse entre duas fontes de luz.

3 Funções de Ativação

Na implementação inicial do veículo, os sensores seguiam uma função de ativação linear, no entanto, foi pedido que implementássemos uma função gaussiana de formar a possibilitar a implementação de vários comportamentos que não seriam atingíveis com uma função linear. De forma a implementar esta função gaussiana, pesquisámos então a sua fórmula:

$$f(x) = a \cdot e^{-\frac{(x-b)^2}{2 \cdot c^2}}$$

4 Limites e Limiares

Foram também implementados limites de forma a controlar a velocidade do veículo e ainda limiares de ativação para os sensores. Tudo isto permite um melhor controlo do comportamento dos veículos através de 4 varíaveis, limite mínimo, limite máximo, limiar mínimo de ativação e limiar máximo de ativação.

5 Conclusão

Este trabalho prático serviu para consolidarmos o conhecimento adquirido até agora sobre agentes reativos e também sobre os veículos de Braitenberg. Foi incitada também a aquisição de conhecimentos perante a plataforma usada, Unity, visto ser uma ferramenta sobre a qual nenhum dos elementos do grupo tinha qualquer conhecimento.

6 Bibliografia

Pequeno simulador online dos veículos de Braitenberg:

• http://www.harmendeweerd.nl/braitenberg-vehicles/