Титульный лист материалов по дисциплине

ДИСЦИПЛИНА

(полное наименование дисциплины без сокращений)

ИНСТИТУТ

ИТ

Математического обеспечения и стандартизации информационных технологий полное наименование кафедры)

ВИД УЧЕБНОГО МАТЕРИАЛА

(в соответствии с пп.1-11)

ПРЕПОДАВАТЕЛЬ

Муравьёва Екатерина Андреевна (фамилия, имя, отчество)

СЕМЕСТР <u>3 семестр, 2023-2024 уч. год</u> (указать семестр обучения, учебный год)

Практическое задание 6

Тема: основные алгоритмы работы с графами.

Цель: получение практических навыков по выполнению операций над структурой данных граф.

Задание 1. Ответьте на вопросы и выполните упражнения:

- 1. Дайте определения понятиям: ориентированный граф, неориентированный граф, взвешенный граф, связный граф, центр графа, диаметр графа, матрица смежности.
- 2. Что такое остовное дерево графа?
- 3. Какое количество ребер в остовном графе?
- 4. Постройте остовное дерево, используя алгоритм Прима. Стартовая вершина 4.

- 5. Что такое кратчайший путь в графе?
- 6. Найдите кратчайший путь от вершины 1 до вершины 9, используя алгоритм Дейкстры.

7. В чем отличие алгоритма Дейкстры от алгоритма Флойда-Уоршала. Какова вычислительная сложность каждого алгоритма по времени и памяти. 8. Обойдите граф, используя метод поиска а) в ширину; б) в глубину. Стартовая вершина -1.

Задание 2.

- 1. Разработать класс «Граф», обеспечивающий хранение и работу со структурой данных «граф», в соответствии с вариантом индивидуального задания:
 - Реализовать метод ввода графа с клавиатуры, наполнение графа осуществлять с помощью метода добавления одного ребра.
 - Реализовать методы, выполняющие задачи, определенные вариантом индивидуального задания.
 - Разработать доступный способ (форму) вывода результирующего дерева на экран монитора.
- 2. Разработать программу, демонстрирующую работу всех методов класса.
- 3. Произвести тестирование программы на одном из графов, предложенных в таблице.
- 4. Составить отчет, отобразив в нем описание выполнения всех этапов разработки, тестирования и код всей программы со скриншотами результатов тестирования.

Таблица 1. Варианты заданий

Номер	Представление	Задачи
варианта	графа в памяти	
1	Матрица	Определить центр графа.
	смежности	Составить программу реализации алгоритма
		Крускала построения остовного дерева
		минимального веса.

2	Список	Определить мосты графа.
	смежных	Составить программу реализации алгоритма
	вершин	Крускала построения остовного дерева
		минимального веса.
3	Матрица	Найти и вывести Эйлеров цикл в графе.
	смежности	Составить программу реализации алгоритма
		Прима построения остовного дерева
		минимального веса.
4	Список	Определить диаметр графа.
	смежных	Составить программу реализации алгоритма
	вершин	Прима построения остовного дерева
		минимального веса.
5	Матрица	Вывести все цепочки в графе, используя метод
	смежности	поиска в глубину.
		Составить программу нахождения кратчайших
		путей в графе заданным методом «Построения
		дерева решений». Вывести пути, полученные
		методом.
6	Список	Вывести все цепочки в графе, используя метод
	смежных	поиска в ширину.
	вершин	Составить программу нахождения кратчайших
		путей в графе заданным методом «Естественное
		слияние». Вывести пути, полученные методом.
7	Матрица	Определить, является ли граф связным.
	смежности	Составить программу нахождения кратчайшего
		пути в графе от заданной вершины к другой
		заданной вершине методом «Дейкстры» и
		вывести этот путь.
8	Список	Составить программу нахождения кратчайших
	смежных	путей методом «Флойда».
	вершин	Используя результат алгоритма вывести путь
		между вводимыми парами вершин.
9	Матрица	Определить медиану неориентированного
	смежности	графа.
		Составить программу нахождения кратчайших
		путей методом «Йена».
		Используя результат алгоритма вывести путь
		между вводимыми парами вершин.

10	Список	Определить Эксцентриситет заданного узла.
	смежных	Составить программу нахождения кратчайших
	вершин	путей методом «Беллмана-Форда». Используя
		результат алгоритма вывести путь между
		вводимыми парами вершин.
11	Матрица	Определить, является ли граф связанным.
	смежности	Составить программу нахождения кратчайшего
		пути в графе от заданной вершины к другой
		заданной вершине методом «Дейкстры».
		Вывести этот путь.
12	Список	Определить, есть ли в графе Эйлеров цикл.
	смежных	Составить программу реализации алгоритма
	вершин	построения остовного дерева обходом дерева в
		глубину для неориентированного графа.
13	Матрица	Определить глубину графа.
	смежности	Составить программу реализации алгоритма
		построения остовного дерева методом поиска в
		ширину в неориентированном графе.
14	Список	Определить глубину графа.
	смежных	Составить программу, которая определяет
	вершин	является ли граф ациклическим.
15	Список	Определить степень вершины графа.
	смежных	Составить программу нахождения кратчайшего
	вершин	пути в графе от заданной вершины к другой
		заданной вершине методом «Дейкстры».
		Вывести этот путь.
16	Матрица	Найти корень ациклического графа.
	смежности	Составить программу нахождения самого
		длинного пути в ациклическом графе. Вывести
		кратчайший путь между двумя заданными
1.5		вершинами.
17	Список	Составить «рейтинг» вершин с наибольшим
	смежных	количеством соседей.
	вершин	Составить программу нахождения кратчайшего
		пути в графе от заданной вершины к другой
		заданной вершине методом «Дейкстры». Вес
		каждого ребра в пути не должны превышать К.
		Вывести этот путь.

18	Матрица	Определить цикл с наименьшим весом,
	смежности	состоящий из К вершин.
		Наличие ребра между вершинами означает
		знакомство двух людей. Определить, можно ли
		разбить людей на 2 группы, чтобы в каждой
		группе были только незнакомые люди.
19	Список	Найти и вывести цикл Гамильтона.
	смежных	Составить программу нахождения кратчайшего
	вершин	пути в графе от заданной вершины к другой
		заданной вершине методом «Дейкстры». Вес
		каждого ребра в пути не должны быть меньше
		К. Вывести этот путь.
20	Матрица	Определить цикл с наибольшим весом,
	смежности	состоящий из К вершин.
		Наличие ребра между вершинами означает
		знакомство двух людей. Определить, можно ли
		опосредованно перезнакомить их всех между
		собой.
21	Матрица	Определить центр графа.
	смежности	Составить программу реализации алгоритма
		Крускала построения остовного дерева
		минимального веса.
22	Список	Определить мосты графа.
	смежных	Составить программу реализации алгоритма
	вершин	Крускала построения остовного дерева
		минимального веса.
23	Матрица	Найти и вывести Эйлеров цикл в графе.
	смежности	Составить программу реализации алгоритма
		Прима построения остовного дерева
		минимального веса.
24	Список	Определить диаметр графа.
	смежных	Составить программу реализации алгоритма
	вершин	Прима построения остовного дерева
		минимального веса.
25	Матрица	Вывести все цепочки в графе, используя метод
	смежности	поиска в глубину.
		Составить программу нахождения кратчайших
		путей в графе заданным методом «Построения

		дерева решений». Вывести пути, полученные
		методом.
26	Список	Вывести все цепочки в графе, используя метод
	смежных	поиска в ширину.
	вершин	Составить программу нахождения кратчайших
		путей в графе заданным методом «Естественное
		слияние». Вывести пути, полученные методом.
27	Матрица	Определить, является ли граф связным.
	смежности	Составить программу нахождения кратчайшего
		пути в графе от заданной вершины к другой
		заданной вершине методом «Дейкстры» и
		вывести этот путь.
28	Список	Составить программу нахождения кратчайших
	смежных	путей методом «Флойда».
	вершин	Используя результат алгоритма вывести путь
		между вводимыми парами вершин.
29	Матрица	Определить медиану неориентированного
	смежности	графа.
		Составить программу нахождения кратчайших
		путей методом «Йена».
		Используя результат алгоритма вывести путь
		между вводимыми парами вершин.
30	Список	Определить степень вершины графа.
	смежных	Составить программу нахождения кратчайшего
	вершин	пути в графе от заданной вершины к другой
		заданной вершине методом «Дейкстры».
		Вывести этот путь.

Таблица 2. Примеры графов для тестирования алгоритмов

No	Граф
1	2 10 7 3

