

>>>>>

3조 길태호, 심재성, 양지윤, 이용빈

>>>>>

TABLE OF CONTENTS

01

02

03

다중 분류 문제

상관도 그래프

원-핫 인코딩

다중 분류의 개념 설명

상관도 그래프를 통해 프로젝트 감을 잡고 전략 세우기 원-핫 인코딩의 개념과 한계점. 관련 함수

04

05

06

소프트맥스

아이리스 품종 예측 실행

실습과제

출력값을 확률로 바꾸어주는 함수

코드 함께 실행해보기

Multi Classification 다중 분류에 대한 개념 설명

☆

0

0

......

Sample / Class / Attribute

By sumitaccess007

〈속성 Attribute〉

- 1. 클래스 속성
- -> 모든 클래스에 동일하게 영향 미침
- 2. 인스턴스 속성
- -) self를 이용해 생성된 인스턴스 내에서만 영향 미침

ex) def __init__ (self)

이항 분류 VS. 다중 분류

이항 분류

>>>>>

다중 분류

클래스가 2개인 분류 -둘 중에 하나를 고름 클래스가 3개 이상인 분류 -여러 개 중에 어떤 것이 답인지 예측함

Kaggle 실습 순서

Stage 1

Kaggle에서 데이터 보기 -5개의 클래스 분류 (흐림, 안개, 비, 해, 일출) Stage 2

API를 이용하여 Kaggle 데이터를 Colab으로 다운로드 *API(Application Programming Interface): 두 소프트웨어 구성 요소가 서로 통신할 수 있게 하는 메커니즘

04. 다음 중 옳지 않은 것을 모두 고르시오. *

- 샘플이 '어떤 것'인지 예측할 때, '어떤 것'에 해당하는 것이 클래스이다.
- 다중 분류는 클래스가 2개 이상일 때 이용된다.
- 상관도 그래프를 통해 속성들이 샘플에 따라 다른 것을 알 수 있다.
- 하나의 클래스에는 하나의 속성만 있다.

>>>>

다중 분류와 이항 분류를 접근하는 방식은 다르다.

02 상관도 그래프

<<<<<

상관도 그래프를 통해 프로젝트 감을 잡고 전략 세우기

>>>>>

.

Seborn dataset

Michael Waskom mwaskom

(1)	mwaskom Merge pull red	quest #27 from koenv 2b29313 2 weeks ago	3 46 commits
	png	More updates	last year
	process	Remove one-off 2021 datapoint from healthexp	5 months ago
	raw	Add dowjones dataset	5 months ago
	README.md	Add dowjones dataset	5 months ago
	anagrams.csv	Rename messy anagrams dataset	2 years ago
	anscombe.csv	Add anscombe dataset	9 years ago
	attention.csv	Add attention dataset	9 years ago
	brain_networks.csv	Add brain networks dataset	8 years ago
	car_crashes.csv	Add 538 car crash dataset	8 years ago
	dataset_names.txt	Add a file containing all available dataset names	2 weeks ago
	diamonds.csv	Add diamonds dataset	4 years ago
	dots.csv	Add dots dataset	5 years ago
	dowjones.csv	Add dowjones dataset	5 months ago
	exercise.csv	Add exercise dataset	9 years ago
	flights.csv	Add flights dataset	8 years ago
	fmri.csv	Change sorting of events in fmri data	5 years ago
	geyser.csv	Add geyser dataset	2 years ago
	glue.csv	Add several new datasets	5 months ago
	healthexp.csv	Remove one-off 2021 datapoint from healthexp	5 months ago
	iris.csv	Add iris dataset	8 years ago
	mpg.csv	Add mpg dataset	4 years ago
	penguins.csv	Change culmen to bill in penguins dataset	2 years ago
	planets.csv	Add planets dataset	9 years ago
	seaice.csv	Add several new datasets	5 months ago
	taxis.csv	Add green taxis to the taxis dataset	last year
	tips.csv	Add tips dataset	9 years ago
	titanic.csv	Update titanic datset to remove index variable	9 years ago

실제 발표는 코랩으로.

>>>>

0

import pandas as pd import seaborn as sns import matplotlib.pyplot as plt df = sns.load_dataset('penguins') df

C→

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female
339	Gentoo	Biscoe	NaN	NaN	NaN	NaN	NaN
340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	Female
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	Male
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	Female
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	Male

['Adelie' 'Chinstrap' 'Gentoo']

→ 1. 원-핫 인코딩이란?

COLOR		RED	BLUE	GREEN	
RED		1	0	0	
BLUE		0	1	0	
GREEN		0	0	1	

0

레이블 인코딩

원-핫 인코딩

LabelEncoder() 함수

Categorical () 함수

CO	
CO	LUR

RED

BLUE

GREEN

COLOR	NUMBER
RED	1
BLUE	2
GREEN	3

•	RED	BLUE	GREEN
	1	0	0
	0	1	0
	0	0	1

2. 원-핫 인코딩의 한계

· 저장 공간	문제	RED	BLUE	GREEN	
COLOR		1	0	0	
RED					
BLUE		0	1	0	
GREEN		0	0	1	•
		:	:	÷	
YELLOW		0	0	0	

YELLOW

0

0

0

⊸ 2.원-핫 인코딩의 한계

>>>>>

0

3. LabelEncoder() 함수

레이블 인코딩

<<<<<

LabelEncoder() 함수

COLOR	COLOR	NUMBER
RED	RED	1
BLUE	BLUE	2
GREEN	GREEN	3

4. Categorical () 함수

원-핫 인코딩

Categorical () 함수

COLOR	NUMBER	RED	BLUE	GREEN
RED	1	1	0	0
BLUE	2	0	1	0
GREEN	3	0	0	1

· tf.keras.utils.to_categorical(y, num_classes=None, dtype='float32')

함수의 인자	의미
У	Array 형태의 클래스값을 행렬로 변환
num_classes	전체 클래스의 수 (None이면 max(y)+1)
dtype	입력 데이터 형태 (Default: float32)

5. Pre-Class 5번 문제

1. 원-핫 인코딩은 여러 개의 Y 값을 0과 1로만 이루어진 형태로 바꿔주는 기법이다.

2.Y값이 문자열인 경우, 문자열을 숫자로 바꾸기 위해 LabelEncoder () 함수를 사용한다.

3.Y값을 숫자 0과 1로만 이루어지도록 하기 위해 tf.keras.utils.categorical() 함수를 사용한다.

4.tf.keras.utils.categorical() 함수는 array ([[1.,0.],[0.,1.]]) 를 array([1,2]) 로 바꾸는 과정이다.

>>>>>

0

—

softmax

softmax

9

데이터 전처리

outlier

Null, NaN, Na

NA : Not Available
NaN: Not a Number

Scaler (표준화, 정규화)

minMaxScaler: 0 ~ 1

maxAbsScaler: -1 ~ 1

standardScaler: 평균이 0 분산이 1로 변환

robustScaler: median 사용 (outlier 최소화)

Quiz 6: 소프트맥스 함수의 출력

정답: (D) = 0.21

Thank you! 감사합니다:)

>>>>

