Design and Implementation of Vectorized Pseudorandom Number Generators

Master's Thesis Defense and Presentation

Markus Pawellek

May 22, 2020

Outline

Introduction

Pseudorandom Number Generators

Design of the Library

Vectorization and SIMD Architectures

Implementation

Xoroshiro 128+

MT19937

Uniform Distribution Functions

Evaluation and Results

Conclusions and Future Work

What do we need random numbers for?

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

What do we need random numbers for?

Physical Simulations, based on Monte-Carlo Methods

Pseudorandom Number Generators

What is a random sequence?

What is a random sequence?

existing formal concepts not applicable to computer systems

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

Disadvantages:

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

Disadvantages:

Unreproducibility

What is a random sequence?

- existing formal concepts not applicable to computer systems
- nondeterministic, noncomputable, unpredictable
- generated by hardware components based on chaotic processes

Disadvantages:

- Unreproducibility
- Speed Limitations

Pseudorandom Number Generator Definition

$$\mathfrak{G} \coloneqq (S, T, U, G), \qquad T \colon S \to S, \qquad G \colon S \to U$$
 $s_0 \in S, \qquad s_{n+1} \coloneqq T(s_n), \qquad u_n \coloneqq G(s_n)$

Pseudorandom Number Generator Concept

$$s_0 \sim \mathcal{U}_S, \quad u_1 \leftarrow \mathcal{G}(), \quad u_2 \leftarrow \mathcal{G}(), \quad u_3 \leftarrow \mathcal{G}(), \quad \dots$$

Pseudorandom Number Generator Example

$$s_0 \coloneqq 0, \qquad (s_n) = \overline{2310}, \qquad (u_n) = \overline{0110}$$

Design of the Library

Design Components

Usage in C++

```
#include <pxart/pxart.hpp>
std::random device rd{};
pxart::mt19937 rng1{};
pxart::mt19937 rng1{rd};
pxart::mt19937 rng1{pxart::mt19937::default_seeder{rd()}};
//
pxart::xrsr128p rng2{rng1};
//
const auto x = pxart::uniform<float>(rng1);
//
const auto y = pxart::uniform(rng2, -1.0f, 1.0f);
```


$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N}$$

$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N} = \frac{4 \cdot 87}{100} = 3.48$$

$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N} = \frac{4 \cdot 765}{1000} = 3.06$$

$$A = \frac{\pi}{4}, \qquad \hat{\pi} = \frac{4N_A}{N} = \frac{4 \cdot 7856}{10000} = 3.1424$$

Example Usage

```
// ...
#include <pxart/pxart.hpp>
// ...
pxart::mt19937 rng{};
const int samples = 100000000;
int pi = 0;
for (auto i = samples; i > 0; --i) {
  const auto x = pxart::uniform<float>(rng);
  const auto y = pxart::uniform<float>(rng);
  pi += (x * x + v * v <= 1);
pi = 4.0f * pi / samples;
// ...
```

Vectorization and SIMD Architectures

SIMD Architecture

- exploits data-level parallelism
- ► Intel CPUs use fixed-length vector registers
- vector operations are performed independently on all contained values at once

SIMD Features in C++

- SSE (128-bit registers) and AVX (256-bit registers) instruction set features
- Assembler vs.
 Automatic Vectorization vs.
 Manual Vectorization by
 Intrinsics

```
// 128-bit registers
m128 a;
m128d b;
m128i c:
c = mm \ add \ ps(a, b);
// 256-bit registers
m256 a:
 m256i b:
 m256d c;
c = _{mm256\_add\_ps(a, b)};
```

SIMD Architecture

Why should we vectorize PRNGs manually?

- exploit full functionality of today's processors
- no automatic vectorization possible
- other vectorized code needs vectorized random numbers
- faster generation of numbers
- PRNGs are low-level, SIMD is low-level

SIMD Architecture

What are conditions for good vectorization?

- no data dependency
- same processing pipeline
- branchless execution

$$x, y \in \mathbb{R}, \qquad r^2 = x^2 + y^2$$


```
double x = pxart::uniform<double>(rng);
double y = pxart::uniform<double>(rng);

double x2 = x * x;
double y2 = y * y;
double r2 = x2 + y2;
```



```
__m256d x = pxart::uniform<double>(vrng);
__m256d y = pxart::uniform<double>(vrng);
__m256d x2 = __mm256_mul_pd(x, x);
__m256d y2 = __mm256_mul_pd(y, y);
__m256d r2 = __mm256_add_pd(x2, y2);
```

Implementation

Xoroshiro128+ Scheme

- scrambled linear PRNG
- ▶ 128-bit state, 64-bit output

- period: $2^{128} 1$
- jump operations

Xoroshiro 128+ SIMD Scheme

- several parallelization techniques
- multiple instances of the same generator
- seeding variations

MT19937

- de-facto standard
- ▶ linear PRNG
- 19937-bit / 19968-bit state, 32-bit output

- period: $2^{19937} 1$
- 623-dimensional equidistributed

MT19937 Scalar Loop Scheme

implementation could be tested for the same output as the standard

MT19937 SIMD Leap Frogging

vectorized generator will give same output as scalar one, only faster

MT19937 SIMD Loop Scheme

Real Uniform Distribution: Floating-Point Encoding

$$x = (-1)^s \cdot m \cdot 2^{e-o}$$

- ► IFFF 754
- we use only normalized numbers

Real Uniform Distribution

- get random integer
- shift bits with highest entropy into fraction part
- lacktriangle set sign and exponent to generate random floating-point value in [1,2)
- subtract one
- due independent operations easily vectorizable

Integer Uniform Distribution

$$x \in \mathbb{N}_0, x < 2^{32}, \qquad y = \left\lfloor \frac{(b-a) \cdot x}{2^{32}} \right\rfloor + a$$

- only approximation possible with vectorization
- first use bound by next more accurate multiplication
- then add offset

Evaluation and Results

Tests and Performance

- ► Tests: TestU01, dieharder, Unit Tests, API Tests
- Performance: Benchmarks

MT19937 Speed-Up

Xoroshiro128+ Speed-Up

Conclusions and Future Work

Comparison

	pXart	RNGAVXLIB	Intel MKL
Portable	V	×	×
User-Friendly API	~	×	×
Header-Only	~	×	×
Open Source	~	•	×
Documentation	~	×	\sim
Distributions	×	•	✓
CMake and build2 Support	~	×	×
Dependency-Free	~	•	\sim
Easy-to-get	•	\sim	\sim
AVX512	×	\sim	✓

Conclusions and Future Work

- possible applications in simulations
- ► mt19937 vs. xoroshiro128+

Thank you for Your Attention!

References

Processor

Memory Hierarchy

