Geometria Riemanniana

Índice

1	Aula 1 1.1 Lembrando	1
	Aula 2	5
	Aula 2 2.1 Fibrados vetoriais	5
	2.1.1 Tensores	7
	2.2 Grupos de Lie	10
3	Aula 3: A primeira aula	12
	3.1 Lembrando geometria diferencial de curvas e superfícies	12
	3.2 Riemann	

1 Aula 1

1.1 Lembrando

Definição Variedade diferenciável

- 1. M espaço topológico Hausdorff (T²), base enumerável. Essas duas condições são equivalentes à existência de partições da unidade.
- 2. M localmente euclídeo, i.e. $\mathcal{A} = \{(\chi_{\lambda}, U_{\lambda})\}, \chi_{\lambda} : U_{\lambda} \subset M \to \chi_{\lambda}(U_{\lambda}) \subset \mathbb{R}^{n}$, com $M = \bigcup_{\lambda} U_{\lambda}$. Dizemos que n é a *dimensão* de M.
- 3. Restringindo dois abertos U_{λ} , U_{μ} com $U_{\lambda} \cap U_{\mu} \neq \varnothing$, a *mudança de coordenadas* $\chi_{\mu} \circ \chi_{\lambda}^{-1} : \chi_{\lambda}(U_{\lambda} \cap U_{\mu}) \to \chi_{\mu}(U_{\lambda} \cap U_{\mu})$ deve ser diferenciável. (Nesse curso diferenciável é C^{∞} a menos que especifiquemos).
- 4. Maximalidade, i.e. \mathcal{A} é maximal.

Definição (Mapa diferenciável) $f: M^n \to N^m$ se para todo ponto com cartas (x, U) de M e (y, V) de N o mapa $y \circ f \circ x^{-1}$ é diferenciável. Denotaremos o conjunto de funções diferenciaveis por $\mathcal{F}(M, N)$. Em particular $\mathcal{F}(M) := \mathcal{F}(M, \mathbb{R})$.

Definição (Espaço tangente) $\mathcal{F}_p(M)$ é o espaço de funções definidas num aberto de p identificando duas delas se coincidem em qualquer aberto contendo p.

$$T_{\mathfrak{p}}M:=\{\nu\in\mathcal{F}_{\mathfrak{p}}(M)^*:\nu(fg)=f(\mathfrak{p})\nu(g)+g(\mathfrak{p})\nu(f)\}$$

Pergunta $\mathcal{F}_p(M)$ es el stalk de la gavilla de funciones suaves? Qué pasa si definimos algo como las derivaciones en $\mathcal{F}(U)$.

A la hora de definir base de T_pM con los operadores ∂_i necesitamos fijar una carta, así que en realidad no hay una base canónica de T_pM .

Definição (Diferencial de uma função)

$$df_p: T_pM \to T_{f(p)}N$$

definida para $g \in T_{f(p)}N$ como

$$df_{\mathfrak{p}}(v)(g) = v(g \circ f)$$

Observação A regra da cadeia é uma tautologia dessa definição!

Definição (Base canônica do espaço tangente) Definimos

$$\partial_i \big|_p = \frac{\partial}{\partial x_i} \Big|_p \in T_p M$$

como, para $g \in T_p M$,

$$\frac{\partial}{\partial x_i}\Big|_p(g) = \frac{\partial (g\circ x^{-1})}{\partial u_i}$$

Exercício Mostre que $\{\partial_1|_p, \dots, \partial_n|_p\}$ é uma base de T_pM .

Solution. Primeiro note que $\{\partial_i|_{\mathfrak{p}}\}$ é linearmente independente. Suponha que

$$\sum a_i \partial_i|_p = 0$$

Then for every function this gives zero, so in particular for coordinate functions $x_i:U\to\mathbb{R}$, so

$$0 = \Big(\sum \alpha_i \partial_i\Big) x_j = \sum \alpha_i \delta_{ij} = \alpha_j \qquad \text{for all } j.$$

Now let's check span $\partial_i|_p=T_pM.$ Choose a vector $\nu\in T_pM$ and let

$$w := v - \sum_{i} v(x_i) \partial_i|_{p}.$$

We wish to show that w = 0.

Then there's the following trick: a function $g:\mathbb{R}\to\mathbb{R}$ with g(0)=0 can be written g(t)=th(t) for some continuous function h (subexercise: construct h, it's an integral). So if we define $\tilde{g}(t)=g(t)-g(0)$ we can write for any $g:\mathbb{R}\to\mathbb{R}$ (without asking that g(0)=0) just g(t)=g(0)+th(t)

Subexercise Mostre que para toda $g: \mathbb{R} \to \mathbb{R}$ existe $h: \mathbb{R} \to \mathbb{R}$ contínua tal que g(t) = g(0) - th(t). **Solution.** Let $m_x: \mathbb{R} \to \mathbb{R}$ be the function that multiplies t times a fixed number x. Notice that, for a fixed x, by fundamental theorem of Calculus

$$\int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} (g \circ m_x)(t) \mathrm{d}t = g(x) - g(0)$$

and also

$$\int_0^1 \frac{d}{dt} (g \circ m_x)(t) dt = \int_0^1 g'(xt) \cdot x = x \int_0^1 g'(xt) dt$$

Then we define

$$h(x) := \int_0^1 g'(xt) dt$$

and immediately we get g(x) = g(0) - xh(x).

Subsubexercise Now do that for $g: \mathbb{R}^n \to \mathbb{R}$. I think the correct claim is that there exists $h: \mathbb{R}^n \to \mathbb{R}^n$ such that for every $\vec{x} \in \mathbb{R}^n$ we have $g(\vec{x}) = g(\vec{0}) + \vec{x} \cdot h(\vec{x})$. **Solution.** Now m_x multiplies the vector x times the real number t, it is a function $m_x: \mathbb{R} \to \mathbb{R}^n$. We get

$$\int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} (g \circ \mathfrak{m}_{\kappa})(t) \mathrm{d}t = g(\vec{x}) - g(\vec{0}).$$

And also

$$\int_0^1 \frac{d}{dt} (g \circ m_x)(t) dt = \int_0^1 \nabla_{t\vec{x}} g \cdot \vec{x} dt = \int_0^1 \sum_{i} \frac{\partial}{\partial x_i} g \Big|_{t\vec{x}} x_i dt = \sum_i x_i \cdot \int_0^1 \frac{\partial g}{\partial x_i} \Big|_{t\vec{x}}.$$

Definimos

$$h(\vec{x}) := \left(\int_0^1 \frac{\partial g}{\partial x_1} \bigg|_{t\vec{x}} dt, \dots, \int_0^1 \frac{\partial g}{\partial x_n} \bigg|_{t\vec{x}} dt \right)$$

Back to the original exercise... Let's try to use this trick to conclude that w(g) = 0 for all $g \in \mathcal{F}_p$. Since it's a local statement I just suppose that g is a function $g : \mathbb{R}^n \to \mathbb{R}$. Then there is a function $h : \mathbb{R}^n \to \mathbb{R}^n$ such that for every $x \in \mathbb{R}^n$, $g(x) = g(0) + x \cdot h(x)$.

Right so remember that I chose an arbitrary vector $v \in T_pM$ and defined $w = v - \sum v(x_i)\partial_i|_p$. I can see that $w(x_i) = 0$ for all coordinate functions x_i . But also for g as above I get

$$\begin{split} w(g) &= w(g(0) + x \cdot h(x)) = w(x \cdot h(x)) = w\left(\sum x_i h_i(x)\right) = \sum w(x_i h_i(x)) \\ &= \sum w(x_i) h_i(x) + x_i h_i(x) \end{split}$$

and the second term also vanishes if we suppose that the coordinates of our point, x_i , are all zero. Which makes me think: I think that's the point of the trick, that it somehow manages to put the coordinates of the point inside the whole thing, and then we can suppose the coordinates are 0 and simplify everything.

Definição (Fibrado tangente) Como os $\mathcal{F}_p(M)$ são disjuntos, porque M é Hausdorff, os espaços tangentes são disjuntos para pontos distintos.

$$TM := \bigsqcup_{p \in M} T_p M$$

com a estrutura diferenciável que você já conhece.

A projeção natural $\pi: TM \to M$ é uma sumersão no sentido da seguinte definição. (Exercício?)

Definição (Imersão e sumersão)

- 1. Imersão se para todo $p \in M$, df_p é injetiva (e isso implica que $n \leq m$).
- 2. *Sumersão* de df_p é sobrejetiva para todo p, implicaq ue $n \ge m$.
- 3. *Difeomorfismo local* se para todo ponto df_p é um isomorfismo. Isso é equivalente a que para todo ponto existe um aberto tal que $f|_U:U\to V$ é um difemorfismo (teo. função inversa). (Checar.)

Note que $f:M\to N$ contínua é como dizer que a topologia induzida por $f,\tau_f\subset\tau_M$. Mas a igualdade nem sempre tem (e.g. figura 8). f é um mergulho se $\tau_f=\tau_M$. Isso é equivalente a que $f(M)\subset N$ seja uma subvariedade e $f:M\overset{difeo}{\simeq} f(M)\subset N$.

Definição (Campo coordenado) Numa vizinhança U de p,

$$\begin{split} \partial: U &\longrightarrow TU \subset TM \\ p &\longmapsto \frac{\partial}{\partial x_i} \Big|_p \in T_pM \end{split}$$

Observação Podemos quase extender esse campo. Num aberto $V \subset U$ cujo fecho $\bar{V} \subset U$. Pega a coberta $\{M \setminus \bar{V}, U\}$. Então existe part. unidade (ξ, ϕ) . Por definição, $\phi|_V = 1$. Defina $x = \phi \partial_i$.

Definição (Fibrado vetorial) Um *fibrado vetorial* E^k sobre M^n de posto $k \in \mathbb{N} \cup \{0\}$ é

- 1. $\pi: E \to M^n$ submersão sobrejetiva.
- 2. $\forall p \in M$, $E_p = \pi^{-1}(p)$ é um \mathbb{R} -e.v. de dimensão k.
- 3. $\forall p \in M$, existe $p \in U \subset M$ y ϕ_U tal que
 - (a) $\varphi_U : \pi^{-1}(U) \stackrel{\text{dif}}{\simeq} U \times \mathbb{R}^k$.
 - (b) φ_U conmuta con la proyección, i.e.

(c) $\forall q \in U, \, \phi|_{E_q} : E_q \to \{q\} \times \mathbb{R}^k \cong \mathbb{R}^k$ é um isomorfismo linear.

Isso é equivalente a pedir que exista um *atlas trivializante* de E. É $\{(\phi,\underbrace{\pi(U)}_{\subseteq E}:$

 $U \in \Lambda \subset \tau_M$ } es decir una familia de abiertos en E indexada por una familia de abiertos de M. Considere dos de estos abiertos con $W := U \cap V \neq \emptyset$.

onde estamos parametrizando numa variedade! Ou seja, implícitamente estamos pegando cartas nela, mas podemos deixá-lo assim.

Temos as funções de transição

$$\phi_{VU} = \phi_{V} \circ \phi_{U}^{-1}|_{W \times \mathbb{R}^{k}} : W \times \mathbb{R}^{k} \to W \times \mathbb{R}^{k}$$

que realmente estão determinadas por a parte linear:

$$\varphi_{VU}(Q, \nu) = (Q, \xi_{VU}(Q)(\nu)$$

onde

$$\xi_{VU}: W \to GL(k, \mathbb{R})$$

e são chamadas de *funções de transição* de E. Elas satisfacem

$$\xi_{VU} \circ \xi_{SV} = \xi_{SU}$$
 cocycle condition no seria... $\xi_{VU} \circ \xi_{US} = \xi_{VS}$

Então podemos formar um fibrado vetorial a partir das funções de transição só.

2 Aula 2

2.1 Fibrados vetoriais

Definição Um fibrado vetorial é uma submersão sobrejetora

$$\pi: E \to M$$

onde π é a *projeção*, E o *espaço total* e M a *base*. Satisfazendo

1. E possui um *atlas trivializante*, i.e. para todo $p \in M$ existe $U \ni p$ aberto e carta

$$\phi:\pi^{-1}(U)\stackrel{difeo}{\to} U\times \mathbb{R}^k$$

tal que

- $\pi \circ \phi_U = \pi|_{\pi^{-1}(U)}$
- Se $W = U \cap V \neq \emptyset$,

$$\varphi_{V} \circ \varphi_{U}^{-1}|_{W \times \mathbb{R}^{k}} : W \times \mathbb{R}^{k} \longrightarrow W \times \mathbb{R}^{k}$$
$$(\mathfrak{p}, \mathfrak{v}) \longmapsto (\mathfrak{p}, \xi_{W}(\mathfrak{p})(\mathfrak{v}))$$

onde pedimos que $\xi_{VU}: W \to GL(k, \mathbb{R})$, e chamamos esas funções de *funções de transição* de E.

Note que as fibras são espaços vetoriais: para $Q \in U$, $E_Q \stackrel{\text{def}}{=} \pi^{-1}(Q) \subset E$. Pegue dois elementos $x,y \in E_Q$. Definimos a soma deles a traves de

$$\phi(x+y)=(Q,\bar{\phi}(x)+\bar{\phi}(y))=(Q,\bar{\phi}(x+y))$$

onde $\bar{\phi}$ é a parte "linear". Note que isso faz automaticamente que as trivializações sejam lineares nas fibras, i.e. $E_{\mathfrak{p}} \to \{\mathfrak{p}\} \times \mathbb{R}^k$ linear.

Definição As seções de E são

$$\Gamma(\mathsf{E}) = \left\{ \begin{array}{c} \lambda : \mathsf{M} \longrightarrow \mathsf{E} \\ & \stackrel{\mathsf{id}}{\longrightarrow} \downarrow \\ & \mathsf{M} \end{array} \right\}$$

Pergunta Existe uma coleção de k seções que são uma base de T_pM em cada ponto? Não.

Observação Existe uma base de seções iff $E \cong M \times \mathbb{R}^k$. Mas isso ainda nem tem sentido...

Definição Um mapa de fibrados é

$$F: E \longrightarrow E$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi'}$$

$$M \stackrel{f}{\longrightarrow} M'$$

que é linear nas fibras, i.e.

$$F|_{E_Q}:E_Q\to E'_{f(Q)}.$$

F é um *isomorfismo* de fibrados vetoriais iff F é um difeomorfismo e um mapa de fibrados. (Obviamente isso implica que a inversa é um mapa de fibrados.)

Observação Todo fibrado vetorial possui uma base *local* de seções. Porque pego uma base em $U \times \mathbb{R}^k$ numa trivialização local e pusho ela pra $\pi^{-1}(U)$.

Exemplo (Fibrado dual) A observação anterior nos da um jeito super simples de construir o fibrado dual: para cada trivialização local, e para cada ponto definimos a base dual do espaço vetorial original no ponto, e é isso, tudo segue.

Outros exemplos podem ser construidos do mesmo jeito: $\operatorname{End}(E)$, $\Lambda^r(V)$. A ideia e que "a álgebra linear pode ser fibralizada por causa de que temos bases locais".

Exemplo

Outro exemplo, embora não é um fibrado vetorial, é o conjunto de orientações de \mathbb{V} , $\mathbb{O}(\mathbb{V}) := \{\text{bases de }\mathbb{V}\} / \sim$. Definimos um *fibrado orientável* se $\mathbb{O}(E)$ tem uma seção global. Isso se traduz a que em cada ponto exista uma carta tal que a orientação.. seja compatível?

Também podemos definir M *orientável* se TM orientavel *como fibrado*. TM sempre é orientavel *como variedade* porque TTM é orientável *como fibrado*.

Exemplo (Tensores=aplicações multilineares) Pega \mathbb{V} esp. vect e considere os tensores $\{T: \mathbb{V} \times \ldots \times \mathbb{V} \to \mathbb{R}\} := \text{Multi}(E)$. As seções disso são $\mathfrak{X}^r(E)$. No caso do fibrado tangente se denotam $T \in \mathfrak{X}^r(M) \stackrel{\text{def}}{=} \Gamma T M$, e se chamam *campos tensoriais*.

2.1.1 Tensores

Isso daqui é como eu acho que deveria ser: acho que em aula definimos $\mathfrak{X}^r(M)$ como sendo o conjunto de mapas r-multilineares $T:M\to \underbrace{T_pM\times\ldots\times T_pM}_{r\text{ vezes}}$, mas na verdade

deveria ser $(T^*M)^r := \bigotimes_r T^*M$. (Devemos pegar produto tensorial para construir um fibrado vetorial certinho.)

Exercício Mostre que os seguintes dois $\mathcal{F}(M)$ -módulos são isomorfos:

$$\begin{cases}
T: M \longrightarrow (T^*M)^r \\
p \longmapsto T(p): (T_pM)^r \longrightarrow \mathbb{R} & r\text{-}\mathbb{R}\text{-multilinear}
\end{cases}$$

$$\begin{cases} \hat{T}: \mathfrak{X}^{\mathrm{r}}(\mathsf{M}) \longrightarrow \mathcal{F}(\mathsf{M}) \\ X_1, \dots, X_r \longmapsto \hat{T}: \mathsf{M} \longrightarrow \mathbb{R} \end{cases} r\text{-}\mathcal{F}(\mathsf{M})\text{-multilinear} \end{cases}$$

Solução. Defina o primeiro conjunto como A e o segundo como B. Pegue T ∈ A e defina

$$\begin{split} \hat{T}: \mathfrak{X}^r(M) &\longrightarrow \mathcal{F}(M) \\ V_1, \dots, V_r &\longmapsto \hat{T}: M &\longrightarrow \mathbb{R} \\ p &\longmapsto T(p)(V_{1,p}, \dots, V_{r,p}) \end{split}$$

Ao contrário, pegue $\hat{T} \in B$ e defina

$$T: M \longrightarrow (T^*M)^r$$

$$p \longmapsto \frac{T(p): (T_pM)^r \longrightarrow \mathbb{R}}{(\nu_1, \dots, \nu_r) \longmapsto \hat{T}(V_1, \dots, V_r)}$$

onde V_i é uma extensão de v_i usando partição da unidade.

Upshot (del ejercicio) Que es lo mismo pensar en un operador que come campos vectoriales y da funciones, o un campo *covectorial*, una cosa que en cada punto me da un operador que come vectores.

Siguiente cosa (A dupla personalidade dos campos vetoriais) Que podemos pensar que los campos vectoriales son derivaciones. $\hat{X}: \mathcal{F}(M) \to \mathcal{F}(M)$. Sí porque un campo de vectores en un punto puede ser evaluado en una función y da un número, y bueno satisface Leibniz.

Va otra construcción:

E, pega $\Lambda^r(E)$, os mapas r-alternantes de E, que é um fibrado vetorial. As seções dele, $\Gamma(\Lambda^r E)$. No caso do fibrado tangente, $\Omega^r(M) := \Lambda^r(TM)$. Entonces a ver de nuevo: pega $\omega \in \Lambda^r TM$. En cada punto me da una aplicación *e*-multiniear alternante, pero también lo puedo ver como un mapa $\omega : \mathfrak{X}M \times ... \times \mathfrak{X}M \to \mathcal{F}M$.

Exercício M^n é orientável $\iff \Lambda^n M$ possui seção nunca nula.

Solution. (\Longrightarrow) Em cada ponto $\mathfrak{p}\in M$ temos uma base orientada $\{e_i\}$ de $T_\mathfrak{p}M$. Essa base me permite expressar qualquer coleção de \mathfrak{n} vetores $\nu_1,\ldots,\nu_\mathfrak{n}\in T_\mathfrak{p}M$ como uma matriz (ν_i^i) . O determinante dessa matriz é uma \mathfrak{n} -forma alternante.

Note que essa função está bem definida na classe Definindo $\omega_p(\nu_1, \dots, \nu_n) = \det \nu_j^i$ obtemos uma seção não nula de $\Lambda^n M$.

Para argumentar que essa é uma correspondência suave devemos argumentar que o mapa $\Theta(M) = \{bases\}/\sim \longrightarrow \Lambda^n TM$ é suave. Para isso deveríamos olhar para a estrutura diferenciável de $\Theta(M)$.

 (\Leftarrow) Pegue $\omega \in \Lambda^n TM$, qualquer ponto $\mathfrak{p} \in M$ e uma base $\{v_i\} \subset T_\mathfrak{p}M$ tal que $\omega_\mathfrak{p}(v_i) = 1$. Afirmo que $\mathfrak{p} \mapsto [\{v_i\}] \in \Theta(M)$ é uma seção global de $\Theta(M)$.

Lembre que $\Omega_c^n(M)$ é o espaço de formas cujo suporte tem fecho compacto.

Observação M orientada \Longrightarrow integral está bem definida. Sim, porque o teorema de mudança de variáveis diz que para $\varphi: U \to V$, $\omega \in \Omega^n(V)$, $\int_U \varphi^* \omega = \text{*sinal!*} \int_V \omega$. Então para que não se faça uma bagunça precisamos que os determinantes das mudanças de coordenadas coincidam.

Definição (Fibrado pullback)

$$f^*(E) \xrightarrow{\pi_2} E$$

$$\pi_1 \downarrow \qquad \qquad \downarrow \pi$$

$$M \xrightarrow{f} N$$

onde

$$f^*(E) = \{(p, v) \in M \times E : \pi(v) = f(p)\}$$

(Note que botamos o p em (p, v) para obter que o espaço total de $f^*(E)$ seja uma coleção *disjunta* de fibras.)

Essa é uma definição ótima. Note que π_2 é um mapa de fibrados que aparece de graça. (Não é um isomorfismo.)

Observação O pullback é mágico porque ele leva todas as propriedades de E como curvatura, conexão, etc.

Observação Se f é constante obtemos o fibrado trivial.

Pergunta Me queda claro que si f es constante, la fibra de f*E siempre es $(f*E)_p \cong E_{f(*)}...$

Observação Pega $\xi \in \Gamma(f^*E)$. Então temos para $p \in M$ um elemento $\xi(p) = (p, \bar{\xi}(p))$. Então olha

$$\bar{\xi}: M \longrightarrow E$$

$$\downarrow^{\pi}$$

$$N$$

então essas seções se chamam de $\mathfrak{X}_f \cong \Gamma(f^*(E))$ seções ao longo de f.

Entonces el punto es que, por construcción cada sección del pullback me da un elemento en el otro vb y de ahi quiero que la proyección me devuelva f.

Note que para um campo vetorial $X \in \mathfrak{X}(M)$ temos um campo f_*X que $n\tilde{ao}$ é um campo vetorial em N. É um campo vetorial com base M e espaço total f^*TN . Parecidamente, se $Y \in \mathfrak{X}(N)$, obtemos um campo sobre M com valores em f^*TN mediante $Y \circ f$.

Definição Dos campos $X \in \mathfrak{X}(M)$ e $Y \in \mathfrak{X}(N)$ están f-*relacionados* $X \stackrel{f}{\sim} Y$ se $Y \circ f = f_*X$ donde $f: M \to N$. Pero pérame porque a mí me habían dicho que no siempre f_*X está bien definido. Ah, porque aquí f_*X es un campo *ao longo de* f_* así *siempre* está bien definido. Entonces tiene sentido la definición $Y \in \mathcal{X}(M)$ el ejercicio:

Exercício Pegue $X_i \in \mathfrak{X}(M)$, $Y_i \in \mathfrak{X}(N)$, i = 1, 2. Mostre que

$$X_{\mathfrak{i}} \overset{f}{\sim} Y_{\mathfrak{i}} \implies [X_1, X_2] \overset{f}{\sim} [Y_1, Y_2]$$

Hint. Pensa que um campo é uma coisa que pega uma função e me da uma função.

Solução. Queremos ver que

$$f_*[X_1, X_2] = [Y_1, Y_2] \circ f \in \mathfrak{X}_f$$

i.e. que esses campos são iguais *como campos vetoriais ao longo de* f, que é um negócio bem estranho porque, de novo, o espaço base é M e o espaço total é f*TN (que é bem parecido a TN mas não é TN—pode ser incluído eu acho).

E isso é super importante porque esclarece o jeito de proceder que é: pega $p \in M$ e $g \in \mathcal{F}(N)$. Beleza então temos

$$\begin{split} \left([Y_1, Y_2] \circ f \right)_p(g) &= Y_{1, f(p)} \Big(Y_2(g) \Big) - Y_{2, f(p)} \Big(Y_1(g) \Big) \qquad \text{blz} \\ &\stackrel{\text{hip}}{=} f_* X_{1, p} \Big(Y_2(g) \Big) - f_* X_{2, p} \Big(Y_1(g) \Big) \\ &\stackrel{\text{hip}}{=} f_* X_{1, p} \Big(f_* X_2(g) \Big) - f_* X_{2, p} \Big(f_* X_2(g) \Big) \\ &= f_* [X_1, X_2]_p(g). \end{split}$$

2.2 Grupos de Lie

Definição Um grupo de Lie é um grupo G que é uma variedade diferenciável tal que

$$\cdot: G \times G \to G$$
 $^{-1}: G \to G$

são diferenciaveis.

Os grupos de Lie tem um monte de difeomorfismos dados pela multiplicação a esquerda: $h \in G \leadsto L_h : G \to G$, $L_h(g) = h \cdot g$. Como $L_{h^{-1}} \circ L_h = Id$, $L_h \in Dif G$.

Exercício $v \in T_eG$, $X_v(g) = d(L_g)_e(v) \in T_gG$, $\Longrightarrow X_v \in \mathfrak{X}(G)$. **Note** que vai precisar usar que o produto do grupo é diferenciável.

Solução. Basta mostrar que, pegando qualquer vizinhança coordenada de qualquer ponto $g \in G$, as funções coordenadas de X_v são diferenciáveis.

Pegue um sistema de coordenadas em $g \in G$, digamos (U,x). Como L_g é um difeomorfismo, obtemos um sistema de coordenadas $(L_{g^{-1}}(U),x')$ de $e \in G$. Suponha que $v = \sum v^i \partial_i$ nessas coordenadas. Então

$$\begin{split} (d_e L_g) \nu &= (d_e L_g) \left(\sum \nu^i \partial_i \right) \\ &= \sum (\nu^i \circ L_g) d_e L_g \partial_i \end{split}$$

Então essas funções coordenadas são suaves: para $h \in G$ temos

$$(\nu^{\mathfrak{i}}\circ L_g)(h)=\nu^{\mathfrak{i}}(gh)$$

que é suave porque é a composição de duas funções suaves, e porque o produto do grupo de Lie é suave. $\hfill\Box$

E aí fica que uma base $\{v_i\} \subset T_eG$ nos da uma base global de seções. Em outras palavras, o fibrado tangente de um grupo de Lie é trivial. Isso é rarísimo, uma variedade com fibrado tangente trivial, se chama variedade paralelizável.

Observação $\forall g \in G, X_{\nu} \stackrel{L_g}{\sim} X_{\nu}$ para todo $\nu \in T_eG$. Acho que é por regra da cadeia. Queremos ver que em todo ponto $g \in G$,

$$\left((L_g)_*(X_{\nu}) \right)_h = (X_{\nu})_h$$

então fica que

$$\left((L_g)_*(X_\nu) \right)_h = \left((d_{g^{-1}h} L_g) (d_e L_{g^{-1}h}) \nu \right)_h = \left(d_e (L_g \circ L_{g^{-1}h}) \nu \right)_h = \left(d_e L_h \nu \right)_h = (X_\nu)_h$$

Mas ainda, se um campo vetorial X está L_g relacionado com ele mesmo para todo $g \in G$ (isso se chama ser *invariante* à *esquerda*), então ele é um X_v para algum v. Conta:

$$\nu := X_e \implies X_h = (L_{h,*}X)_h = (d_eL_hX_e)_h = d_eL_h\nu.$$

Então ai fica essa equivalência, e ademais, se pegamos $v, w \in T_eG$ podemos pensar em X_v, X_w , e *definimos* $X_{[v,w]} := [X_v, X_w]$. E ai obtemos a *álgebra de Lie* de G, que é $(T_eG, [,]) := \mathfrak{g}$.

Mais um Pegue $X \in \mathfrak{g}$ e γ curva integral de X passando por e, i.e. $\gamma(0) = e$. Prove que

- 1. Se φ_t é o fluxo de $X \implies L_q \circ \varphi_t = \varphi_t \circ L_q$, $\varphi_t = R_{\gamma(t)}$.
- 2. γ é homomorfismo de grupos $\mathbb{R} \to G$. Isso permite definir $\exp^G : \mathfrak{g} \to G$ dada por $\exp^G(X) = \gamma(1)$. Prove que $\exp^G(tX) = \gamma(t)$.

Hint. O último implica os outros.

Solução.

1. Pegue $h \in G$. O único que sei de ϕ_t é que

$$\frac{d}{dt}\Big|_{t=0} \phi_t(h) = X_h$$

E quero ver que

$$\phi_t(gh) = (\phi_t \circ L_g)(h) \stackrel{quero}{=} (L_g \circ \phi_t)(h) = g\phi_t(h) = L_g(\phi_t(h))$$

Então derivo:

$$\frac{d}{dt}\Big|_{t=0}\phi_t(gh) = X_{gh} \stackrel{def}{=} d_e L_{gh}(X_e) \stackrel{chain}{\stackrel{rule}{=}} d_h L_g d_e L_h(X_e) \stackrel{def}{=} d_h L_g X_h = d_h L_g \left(\frac{d}{dt}\Big|_{t=0}\phi_t(h)\right)$$

de forma que as derivadas das coisas que quero que sejam iguais coincidem. Avaliando em t=0 vemos que as funções devem ser iguais.

A comprovação de que $\phi_t=R_{\gamma(t)}$ é análoga: definindo $X:=X_X$ (e é assim porque $X\in\mathfrak{g}$), tenho duas funções

$$\begin{split} R_{\gamma(t)}: G &\longrightarrow G & \phi_t: G &\longrightarrow G \\ g &\longmapsto g \cdot \gamma(t) & g &\longmapsto \underset{\substack{\text{integro } X_g \\ \text{e avanco } t}}{\text{integro } t} \end{split}$$

Derivo:

$$\frac{d}{dt}\Big|_{t=0}g\cdot\gamma(t)=\frac{d}{dt}\Big|_{t=0}(L_g\circ\gamma)(t)\stackrel{chain}{=} d_eL_g\cdot\gamma'(0)=X_g=\frac{d}{dt}\Big|_{t=0}\phi_t(g)$$

avaliando em t = 0 obtemos a igualdade.

2. Talvez tô errado mas acho que é o mesmo: queremos ver que

$$\gamma(t_1+t_2) \stackrel{quero}{=} \gamma(t_1)\gamma(t_2) \stackrel{def}{=} L_{\gamma(t_1)}\gamma(t_2)$$

então derivo respeito a t2

$$\begin{split} \frac{d}{dt_2}\Big|_{t_2=0} L_{\gamma(t_1)} \gamma(t_2) &\overset{chain}{=} d_{\gamma(0)} L_{\gamma(t_1)} \gamma'(0) = d_e L_{\gamma(t_1)} X_e \\ &= X_{\gamma(t_1)} \overset{\gamma \text{ curva}}{=} \gamma'(t_1) = \frac{d}{dt_2}\Big|_{t_2=0} \gamma(t_1+t_2) \end{split}$$

e de novo, avaliando em $t_2 = 0$ obtemos a igualdade.

Por fim, para o último exercício queremos achar uma curva integral de tX, t fixo, i.e.

$$\tilde{\gamma}: \mathbb{R} \to G$$
 tal que $\tilde{\gamma}'(s) = (tX)_{\gamma(s)} \forall s \in \mathbb{R}$.

Sinto no cora que

$$\tilde{\gamma}(s) := \gamma(ts)$$
 vai dar certo.

Então derivo

$$\frac{d}{ds}\Big|_{s=s}\tilde{\gamma}(s) = \frac{d}{ds}\Big|_{s=s}\gamma(ts) = \gamma'(ts)t = X_{\gamma(ts)}t = (tX)_{\gamma(ts)} = (tX)_{\tilde{\gamma}(s)}$$

olha só

$$exp^G(tX) = \tilde{\gamma}(1) = \gamma(t).$$

3 Aula 3: A primeira aula

3.1 Lembrando geometria diferencial de curvas e superfícies

A história começa com o Gauss em 1827.

A geometria de superfícies se faz assim. Pega $p\in M^2\subset \mathbb{R}^3$. Pode botar uma métrica canônica usando a inclusão i, i.e.

$$\begin{split} \left\langle \cdot, \cdot \right\rangle_p : T_p M^2 \times T_p M^2 &\longrightarrow \mathbb{R} \\ (\nu, w) &\longmapsto \left\langle i_{*,p} \nu, i_{*,p} w \right\rangle_p \end{split}$$

Também pode só derivar curvas na superfície, obtendo vetores em \mathbb{R}^3 , e usando o produto usual de \mathbb{R}^3 .

O Gauss definiu o mapa normal N(p), derivando ele para obter

$$A := d_p N : T_p M^2 \to T_p M^2$$

que ressoltou ser um endomorfismo autoadjunto (respeito a aquela métrica que a gente falou). Dai apareceram

$$tr A = H$$
 curvatura média

E ai o Gauss descobriu que K depende s ó da métrica, i.e. $K = K(\langle \cdot, \cdot \rangle)$. A curvatura média não. (E.g. um plano pode ser mergulhado em \mathbb{R}^3 como um cilindro, K fica igual, enquanto H muda.)

3.2 Riemann

Definição Uma *variedade Riemanniana* é uma variedade diferenciável Mⁿ junto com um tensor

$$\langle \cdot, \cdot \rangle : \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathcal{F}(M)$$

simétrico e positivo definido. De acordo com aquele exercício, isso significa que para cada $p \in M$ temos uma forma bilinear simétrica positiva definida $\langle \cdot, \cdot \rangle_p : T_pM \times T_pM \longrightarrow \mathbb{R}$.

A variedade é *semi-Riemanniana* se, em lugar de positivo definido, o tensor é não degenerado, i.e. $\forall v \in \mathsf{T_p} M$, se $\langle v, w \rangle_p = 0 \ \forall w \in \mathsf{T_p} M$, então v = 0. Nesse caso, definimos o *índice* da forma como sendo

$$\mathfrak{i}(\left\langle \cdot,\cdot\right\rangle _{p}:=max\left\{ dim\,\mathbb{L}\overset{sub}{\subset}\mathsf{T}_{p}M:\left\langle \cdot,\cdot\right\rangle |_{\mathbb{L}\times\mathbb{L}}<0\right\}$$

Bom pegue um sistema coordenado (x, U). Podemos definir para $Q \in M$

$$g_{ij}(Q) := \langle \partial_i(Q), \partial_j(Q) \rangle \in \mathcal{F}(U)$$

i.e.

$$(g_{ij})_O: U \longrightarrow GL(n, \mathbb{R}) \cap Sym(n)$$

ou seja, a variedade é Riemanniana quando essas funções são positivas.

Se a variedade é Riemanniana temos uma norma $\|v\| := \sqrt{v, v}$. (Se não não.)

Observação A definição de variedade Riemanniana foi dada por Weil nos anos 30.

Definição (Isometrias) $f: M \to N$. Primeiro note que podemos definir o pullback de qualquer tensor. Para $f: M \to N$ e T tensor da forma $T: \mathfrak{X}(N) \times \mathfrak{X}(N) \longrightarrow \mathcal{F}(N)$, definimos

$$f^*(T)_p(u,v)_p := T(f(p))(f_*u,f_*v)$$

Note que de graça é simétrico se o tensor em N é simétrico.

Para ver positivo definido temos que o pullback é positivo definido \iff f é um mergulho. Prova: considera a norma. A norma de $f_{*,p}u$ é positiva \iff $u \neq 0$. Para asegurar que a preimagem desse vetor também não é zero precisamos que seja mergulho.

$$f:(N^{\mathfrak{m}},\left\langle \cdot,\cdot\right\rangle _{N})\longrightarrow(M^{\mathfrak{m}},\left\langle \cdot,\cdot\right\rangle _{M}\text{ \'e uma }\textit{imers\~{ao}}\textit{ isom\'etrica}\text{ se }\left\langle \cdot,\cdot\right\rangle _{N}=f^{*}\left\langle \cdot,\cdot\right\rangle _{M}.$$

Uma *isometria* entre variedades Riemannianas é $f: M^n \to \tilde{M}^n$ difeomorfismo e isometria (como imersão).

Uma isometria local é um difeo local e isometria.

Observação (Isomorfismos canônicos) Para qualquer espaço vetorial \mathbb{V} , temos um *isomorfismo canônico* (i.e. não depende de escolha de base) $\mathbb{V}^n \cong T_p \mathbb{V}^n$ dado por

$$\mathbb{V}^n \ni \nu \longmapsto \alpha'_{p,\nu}(0), \qquad \alpha_{p,\nu}(t) = p + t\nu$$

Tem outro isomorfismo canônico: $M \ni p, M' \ni p'$,

$$T_{(\mathfrak{p},\mathfrak{p}')}(M\times M')\cong T_{\mathfrak{p}}M\times T_{\mathfrak{p}'}M'$$

$$w \longmapsto (\pi_{*,(\mathfrak{p},\mathfrak{p}')}(w),\pi'_{*,(\mathfrak{p},\mathfrak{p}')}(w)$$

onde

Exercício Mostre que o inverso desse mapa ai é

$$(\pi_{*,(p,p')}(w),\pi'_{*,(p,p')}(w)\longmapsto (i_p)_{*p'}(\nu')+(i'_{p'})_{*p}(\nu)$$

com as inclusoes naturais.

Cuidado (Acho) Nem sempre é certo que $T(M \times M') \cong "TM \times TM"$. Porque as funções coordenadas dependem de dois parámetros: $Z \in \mathfrak{X}(M \times M')$, Z = X + X',

$$\sum \alpha_i(p,p')\partial_i|_p + \sum_j b_j(p,p')\partial_j$$

Exemplo

- 1. \mathbb{R}^n com o produto canônico usando o isomorfismo canónico de $\mathbb{R}^n \cong T_p \mathbb{R}^n$ acima.
- 2. (Grupo de Lie.) $h \in G$, L_h traslação a esquerda. Usemos as traslações a esquema para definir uma métrica em G. Pegue qualquer produto interno $\langle \cdot, \cdot \rangle_e$ em \mathfrak{g} . E traslade:

$$\langle \cdot, \cdot \rangle_{h} := L_{h}^{*} \langle \cdot, \cdot \rangle_{e}$$

i.e.,

$$\langle v, w \rangle_{h} = \langle dL_{h^{-1}}(v), dL_{h^{-1}}(w) \rangle_{e}$$

Exercício

- (a) Isto define uma métrica Riemanniana em G.
- (b) $\forall X, Y \in \mathfrak{g}, \langle X, Y \rangle = \text{cte.}$
- (c) $\langle \cdot, \cdot \rangle$ é invariante a esquerda, i.e. $\forall h \in G$, L_h é isometria de $(G, \langle \cdot, \cdot \rangle)$.

Observação Essa métrica é invariante a *a esquerda*. Nem tem que ser invariante a direita.

Observação Vai ter um exercício de do Carmo dizendo que se G é compacto vai ter uma métrica bi-invariante, i.e. o promédio.

dani: parece que sempre que temos uma ação homogênea podemos transportar a métrica de g pra todos lados.

3. $M^n \subset \mathbb{R}^{n+[}$ subvariedade regular (=inclusão é um mergulho). Podemos fazer o que Gauss fez:

$$\langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{p}} := \langle \mathbf{i}_{*,\mathbf{p}} \mathbf{u}, \mathbf{i}_{*,\mathbf{p}} \mathbf{v} \rangle_{can}^{\mathbb{R}^{n+\mathbf{p}}}$$

Pergunta Será que toda variedade Riemanniana admite um mergulho isométrico em algum \mathbb{R}^{n+p} ? Quem é p?

Nash O caso C¹ é fácil,

Pergunta (dani) Em topo dif vimos primeiro uma prova de que pode mergulhar qualquer variedade em um \mathbb{R}^N com N muito grande. Depois os teoremas de Whitney mostrarem que N pode ser mais o menos pequeno. Aqui podemos mostrar que o mergulho/imersão existe para N \gg mais o menos facilmente?

Proposição (Existência de métricas Riemannianas) Se M é uma variedade diferenciável, existe uma métrica Riemanniana em M.

What que em toda variedade tem um aberto denso difeomorfo a uma bola.

Demostração. Pegue um atlas $\{(X_{\lambda}, U_{\lambda})\}$ localmente finito para usar uma partição da unidade subordinada $\{\rho_{\lambda}\}$. Pega qualquer carta e puxe a métrica de \mathbb{R}^n , i.e. se $x_{\lambda}:U_{\lambda}\longrightarrow\mathbb{R}^n, x_{\lambda}^*\langle\cdot,\cdot\rangle_{can}$ é uma métrica riemanniana em U_{λ} .

 $\rho_{\lambda} x_{\lambda}^* \langle \cdot, \cdot \rangle_{can}$. Fica um tensor simétrico *semi* positivo definido, i.e. ≥ 0 .

No final define para $p \in M$, $v \in T_p M$,

$$\langle \nu, \nu \rangle := \sum_{\lambda \mid \rho_{\lambda}(?) > 0} \rho_{\lambda}(p) \|x_{\lambda})_{*,p} \nu \|^{2} > 0$$

i.e. fica positiva.

Definimos o angulo entre $v, w \in T_pM$ como satisfazendo

$$cos(angulo(v, w)) := \frac{\langle v, w \rangle}{\|v\| \|w\|}$$

Soft exercise Ortogonalize Gram-Schmidt uma base $\{v_i\}$ de um espaço vetorial \mathbb{V} para obter uma base ortonormal $\{e_i\}$ (com a mesma orientação).

Observação O processo pode ser feito igualzinho para campos vetoriais: se $X_1, ..., X_n$ é uma base local de campos, \exists ! base ortonormal de campos $\{e_i\}$. **Cuidado:** em geral, o colchete desses campos não é zero, i.e. $[e_i, e_j] \neq 0$.

Proposição (Elemento de volume) M^n variedade Riemanniana orientada $\implies \exists! \ \omega \in \Omega^n(M^n)$ tal que

$$\omega(bon+)=1$$

bon+=base ortonormal orientada.

Lembre Para duas top-forms, uma se expressa como a outra multiplicando pelo determinante da mudança de base.

Demostração. Como M é orientada, sabemos que $\exists \sigma \in \Omega^n(M^n)$ positiva. Buscamos a função f tal que $\omega = f\sigma$. Pega um ponto, bases coordenadas $\{\partial_i\}$ e ortonormaliza para obter $\{e_i\}$. Como queremos que

$$\omega(e_1,\ldots,e_n) \stackrel{quero}{=} 1 \stackrel{quero}{=} f|_U \sigma(e_1,\ldots,e_n)$$

só tem um jeito de definir f:

$$f|_{U} = \sigma(e_1, \ldots, e_n).$$

E isso determina por completo f como uma função global suave, e portanto temos ω. \Box