Approaches to Solve Different Types of Computer Vision Problems

CAT

DOG

Read the image as numpy array

CAT

DOG

- Read the image as numpy array
- Build a Neural Network model

CAT

DOG

- Read the image as numpy array
- Build a Neural Network model
- Apply Sigmoid/Softmax Activation at the last layer

Age: 26

Age: 12

Age: 26

Age: 12

Read the image as numpy array

Age: 26

Age:

- Read the image as numpy array
- Build a Neural Network model

Age: 26

Age:

- Read the image as numpy array
- Build an MLP/CNN model
- Apply Sigmoid/Softmax Activation at the last layer

Regression Problem

Age: 26

Age:

- Read the image as numpy array
- Build an MLP/CNN model
- Apply Linear Activation at the last layer

Single Object

Single Object

Single Object

Multiple Objects – Same Class

Single Object

Multiple Objects – Same Class

Multiple Objects -Multiple Class

Action Recognition

Action Recognition

A kid is laughing

A female athlete is running

A group of boys playing football

Action Recognition Extension

A kid is laughing

A female athlete is running

A group of boys playing football

- Action Recognition Extension
- Action + Textual description

A kid is laughing

A female athlete is running

A group of boys playing football

- Action Recognition Extension
- Action + Textual description
- Computer Vision + NLP

Pixel-level Classification

Summary

Problem	Classification	Regression
Classification	✓	×
Regression	×	✓
Object Detection	✓	✓
Action Recognition	✓	×
Image Captioning	✓	×
Image Segmentation	✓	✓

