Data wykonania ćwiczenia: 5 listopada 2024r

Laboratorium 4 Charakteryzacja czujników alkoholu

1 Spis przyrządów

Do wykonania ćwiczenia wykorzystano:

- Multimetr cyfrowy Sigilent SDM 3055
- Termohigrobarometr LAB-EL LB706B
- Rezystancyjny czujnik alkoholu
- Amperometryczny czujnik alkoholu
- Kolby zawierające odpowiednie stężenia alkocholu oraz acetonu

2 Przebieg i cele doświadczenia

Doświadczenie miało na celu zapoznać nas z zasadami działania różnych typów czujników alkoholu. Celami doświadczenia było wyznaczenie krzywych kalibracyjnych dla rezystancyjnego oraz amperometrycznego czujnika alkoholu, oraz obliczenie nieznanej koncentracji alkocholu w kolbie "X" na podstawie tych krzywych.

3 Obliczenia i analiza wyników

Wykorzystując dane pomiarowe przekształcono zmierzone rezystancję na konduktancje przy pomocy poniższego wzoru:

$$G = \frac{1}{R} \tag{1}$$

Przykładowo dla pomiaru dla wartości 60[ppm]:

$$G = \frac{1}{7.27[k\Omega]} = 0.00013755158[S] \approx 137.552[\mu S]$$
 (2)

Przy pomocy obliczonych wartości konduktancji wyznaczono czułość czujnika dla odpowiednich atmosfer ze wzoru:

$$S = \frac{G_{gaz}}{G_0} \tag{3}$$

Gdzie:

 ${\cal G}_{gaz}$ - konduktancja w atmosferze pomiaru,

 ${\cal G}_0$ - konduktancja w atmosferze zerowej/otoczenia,

Przykładowo dla pomiaru w atmosferze 60[ppm]:

$$S = \frac{137.552[\mu S]}{29.586[\mu S]} = 4.649225 \tag{4}$$

Wszystkie wyniki Konduktancji oraz czułości znajdują się wa Tabeli 1.

Na podstawie wyliczonych konduktancji oraz czułości wyznaczono krzywą kalibracyjną czujnika (G=f(x)) oraz krzywą S=f(x):

Czujnik rezystancyjny - G=f(x)

Czujnik rezystancyjny - S=f(x)

Wykorzystując język programowania R wyznaczono metodą regresji logarytmicznej współczynniki dla krzywej aproksymującej krzywą kalibracyjną G = f(x). Wynik kalkulacji oraz krzywa wyznaczona na podstawie regresji logarytmicznej zostały przedstawione na wykresie G = f(x).

Przekształcając równanie funkcji aproksymującej krzywą kalibracji możemy wyznaczyć wartość stężenia alkocholu w kolbie "X".

$$y = intercept + slope \cdot \ln(x) \tag{5}$$

Gdzie:

intercept - punkt przecięcia z osią Y - wynikający z regresji, slope - nachylenie - wynikające z regresji, x - stężenie cząsteczek alkocholu (w [ppm]), y - konduktancja pomiaru (w [S] - Siemensach),

$$y = intercept + slope \cdot \ln(x) \tag{6}$$

$$y - intercept = slope \cdot \ln(x) \tag{7}$$

$$\frac{y - intercept}{slope} = \ln(x) \tag{8}$$

$$\frac{y - intercept}{slope} = \ln(x)$$

$$x = \exp(\frac{y - intercept}{slope})$$
(8)

Wyliczamy stężenie dla wartości z kolby "X":

$$x = \exp(\frac{0.0003058104 + 0.000397}{0.000125}) = 276.5753[ppm]$$
 (10)

Dla czujnika amperometrycznego wyznaczono wartości maksymalnego natężenia prądu sczytując je z wyświetlacza multimetru i notując w tabeli pomiarowej. Na podstawie tych pomiarów stworzono wykres $i_{max} = f(x)$.

Czujnik amperometryczny - I max=f(x)

Przy pomocy regresji liniowej wyznaczono równanie prostej aproksymującej charakterystykę naszego czujnika. Równanie to podano na wykresie powyżej. Przekształcając równanie prostej możemy wyznaczyć wzór na wartość x (zawartość alkocholu):

$$y = ax + b \tag{11}$$

$$y - b = ax (12)$$

$$x = \frac{y - b}{a} \tag{13}$$

Dla wartości zmierzonej dla kolby "X":

$$x = \frac{235.3 - 3.763}{0.98596} = 234.8329[ppm] \tag{14}$$

Dla jednego pomiaru czujnikiem rezystancyjnym wyznaczono czas odpowiedzi i powrotu:

$$T_{rise} = 52.54[s]$$
$$T_{fall} = 3.99[s]$$

3.1 Tabela 1

$x_{gaz}[ppm]$	$R[k\Omega]$	$I_{max}[\mu A]$	G[S]	S
0	33.8	15.27	0.000030	1
60	7.27	35.73	0.000138	4.649
120	5.32	61.93	0.000188	6.353
240	3.95	290.32	0.000253	8.557
475	2.66	553.52	0.000376	12.707
950	2.11	896.42	0.000474	16.019
X	3.27	235.3	0.000306	10.336
aceton20	18	33.2	0.000056	1.878

4 Wnioski

Na podstawie przeprowadzonych pomiarów udało się otrzymać wyniki dla zawartości alkocholu w kolbie "X". Wyniki w przypadku czujników różnią się lecz wyniki są w podobnym zakresie co pozwala nam typować że zawartość alkocholu w kolbie "X" zawiera się w przedziale 220 – 280 [ppm]. Różnice między wynikami czujnikow mogą wynikać w przypadku czujnika rezystancyjnego z różnego czasu przeznaczonego na stabilizację pomiaru dla różnych roztworów. W przypadku czujnika amperometrycznego można typować że na wynik pomiarów mogło wpływać tępo wstrzykiwania powietrza do czujnika, czas od zassania próbki do czasu wstrzyknięcia.

Różnice w selektywności czujników można określić na podstawie tabeli 1. Zakładając użyteczny zakres pomiarowy na od 60 [ppm] w górę możemy zauważyć że lepszą selektywnością wykazuje się czujnik rezystancyjny. Wartość dla acetonu mieści się znacząco powyżej najwyższej wartości zarejestrowanej w kolbach. Gorzej wypada czujnik amperometryczny którego pomiar dla acetonu różni się o jedynie $2[\mu A]$ od pomiaru dla 60[ppm]. Można więc uznać że w wykorzystaniu czujnika w alkomacie policyjnym lepszym wyborem byłby czujnik rezystancyjny.

References

- [1] https://en.wikipedia.org/wiki/Reactivity-selectivity_principle
- [2] https://en.wikipedia.org/wiki/Breathalyzer
- [3] https://www.olythe.io/alcohol-unit-converter
- [4] https://en.wikipedia.org/wiki/Fuel_cell