BRAC UNIVERSITY

CSE331 : Automata and Computability Assignment 1

1. Draw the state diagram of a DFA for the following RL:

- $L_1(M) \rightarrow \{w \in \Sigma^* \mid w \text{ doesn't contain } 00\}, \text{ where } \Sigma = \{0, 1\}.$
- $L_2(M) \rightarrow \{w \in \Sigma^* \mid w \text{ doesn't contain } 11\}, \text{ where } \Sigma = \{0, 1\}.$
- A. $L(M) \rightarrow \{w \in \Sigma^* \mid \text{ the length of } w \text{ is a multiple of 2 or 3}\}$, where $\Sigma = \{0, 1\}$. (use 6 states)
- B. $L(M) \rightarrow \{w \in \Sigma^* \mid \text{the sum of the symbols of } w \text{ is a multiple of } 3\}$, where $\Sigma = \{0, 1, 2\}$.
- C. $L(M) \rightarrow \{w \in \Sigma^* \mid \text{ the decimal equivalent of } w \text{ is a multiple of 5} \}$, where $\Sigma = \{0, 1\}$.
- D. $L(M) \rightarrow \{w \in \Sigma^* \mid |w| \% 4 = 2\}$
- E. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ is any string not in } 0^*1^*\}$, where $\Sigma = \{0, 1\}$.
- F. $L(M) \to \{w \in \Sigma^* \mid \text{Every even position letter in } w \text{ is different from the first letter of } w \}$, where $\Sigma = \{0, 1\}$.
- G. $L(M) \rightarrow (L_1 \cap L_2)'$ (use 4 states)

2. Write a RE for the following RL:

- $L_1(M) \to \{w \in \Sigma^* \mid \text{ every third position in } w \text{ is } 1\}, \text{ where } \Sigma = \{0, 1\}.$
- $L_2(M) \to \{w \in \Sigma^* \mid \text{ every 1 in w is followed by at least two 0}\}, \text{ where } \Sigma = \{0, 1\}.$
- A. $L(M) \to \{w \in \Sigma^* \mid |w| \% \ 3 \neq 1\}$, where $\Sigma = \{0, 1\}$.
- B. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ starts and ends with the same symbol}\}\$, where $\Sigma = \{0, 1\}$.
- C. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ contains equal numbers of } 01 \text{ and } 10\}, \text{ where } \Sigma = \{0, 1\}.$
- D. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ contains at most two } 11\}$, where $\Sigma = \{0, 1\}$.
- E. $L(M) \rightarrow \{w \in \Sigma^* \mid w \text{ does not contain } 101\}$, where $\Sigma = \{0, 1\}$.
- F. $L(M) \rightarrow L_1'$
- G. $L(M) \rightarrow L_1 \cap L_2$