MACHINE LEARNING & BIG DATA

Conceptos básicos, Estadística, Exploración y Data Quality

Instructor: José Nelson Zepeda

San Salvador, octubre 2018

Fundamentos Machine Learning

Conceptos Básicos

Estadística Básica

Análisis Exploratorio

Data Quality

Conceptos Básicos

¿Qué es Data?

Data is the **seed** from which information, knowledge and wisdom sprouts and blossoms.

Data is the **key** to answer the right question

Data is a **set of values** of qualitative or quantitative variables.

https://www.youtube.com/watch?v=jbkSRLYSojo&t=2s

¿Qué es Big Data?

"Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it..."

Dan Ariely, Duke University

Casos de Uso de Big Data

Retail		Manufacturing			
 ✓ Customer Relationship Management ✓ Store Location & Layout 	 ✓ Fraud Detection & Prevention ✓ Supply-Chain optimization ✓ Dynamic Pricing 	 ✓ Product Research ✓ Engineering Analysis ✓ Predictive Maintenance 	✓ Process & Quality Metrics ✓ Distribution Optimization		
Financial Services		Media & Telecommunications			
✓ Algorithmic Trading ✓ Risk Analysis	✓ Fraud Detection✓ Portfolio Analysis	✓ Network Optimization ✓ Customer Scoring	✓ Churn Prevention ✓ Fraud Prevention		
Advertising & Public Relations		Energy			
✓ Demand Signaling ✓ Targeted Advertising	✓ Sentiment Analysis ✓ Customer Acquisition	✓ Smart Grid ✓ Exploration	✓ Operational Modeling✓ Power-Line Sensors		
Government		Healthcare & Life Sciences			
✓ Market Governance ✓ Weapon Systems & Counter Terrorism	✓ Econometrics ✓ Health Informatics	✓ Pharmacogenomics ✓ Bioinformatics	 ✓ Pharmaceutical Research ✓ Clinical Outcomes Research 		

Diferencias entre DWH/BI y Big Data

- La escalabilidad del almacenamiento y el poder de procesamiento son diferentes.
- En el enfoque tradicional, la data proviene de sistemas relacionales y estructurados, en la nueva era del Big Data la data puede provenir de todo tipo de fuentes incluyendo las no estructuradas.
- La velocidad de procesamiento de los sistemas tradicionales es menor.
- La complejidad de los algoritmos que se pueden aplicar sobre la data.
- El enfoque tradicional ofrece reporteria y cubos con drill-downs, el nuevo enfoque es mucho más visual incluyendo mapas de calor, graficas de N dimensiones, etc. El Story teller es una realidad y una necesidad.

Que es un Datalake

Un Data Lake, es un repositorio que almacena una gran cantidad de datos estructurados, semi-estructurados y no estructurados en su formato natural, es decir todo está almacenado de forma plana y los datos se van procesando/preparando según sea necesario. Debe ser reconocido como un punto de integración de la data para propósitos de análisis, no como un puente o colaboración entre los sistemas operacionales

Ecosistema en el Datalake (Hadoop)

Que no es Machine Learning

Supongamos que tienes un problema de Machine Learning que debes resolver, sin embargo, no conoces que es Machine Learning. Empezaremos por decirte lo que no es:

No es una investigación sobre las capacidades de un algoritmo.

No es el desarrollo de un algoritmo o de alguna teoria.

No es una investigación esoterica de algun tipo de aprendizaje.

No es la construcción de un agente de inteligencia artificial

No es la construcción de un circuito que emita señales

Machine Learning

Machine Learning son un conjunto de métodos/algoritmos diseñados para encontrar patrones y tendencias en los datos. Se encuentra en la intersección entre las matemáticas y estadística con la ingeniería de software y ciencias de la computación.

Familias de técnicas de ML

- 1. Aprendizaje Supervisado: En este proceso de aprendizaje la variable de salida está bien definida (variable objetivo), es decir estas técnicas nos son útiles cuando nos interesa hacer predicciones sobre una variable objetivo.
- 2. Aprendizaje No Supervisado: Este proceso de aprendizaje no implica tener una variable objetivo bien identificada, su objetivo no es hacer predicciones.

Ciclo Vida Machine Learning

Herramientas para Machine Learning

Las herramientas para soportar las actividades de ML son una gran cantidad, entre las más populares destacan:

- Lenguaje R
- Python
- Weka
- Knime
- RapidMiner
- Azure ML Studio
- TensorFlow
- BigML
- SkyTree
- IBM Watson
- MLIB Spark
- Julia
- Jupyter

Alvs ML vs DL

Machine Learning is a **current application of Al** based around the idea that we should really just be able to give machines access to data and let them learn for themselves

Deep Learning — A Technique for Implementing Machine Learning

El Científico de Datos

Estadística

Estadística: Concepto

Estadística

La estadística es la parte de las matemáticas que se encarga del estudio de una determinada característica de una población, recogiendo los datos, organizándolos en tablas, representándolos gráficamente y analizándolos para sacar conclusiones.

Existen dos tipos de estadística:

Estadística Descriptiva: Realiza estudios sobre los datos, para resumir la información de la forma más sencilla y presentable posible obteniendo así los parámetros que distinguen las características de un conjunto de observaciones, es decir, trata del recuento, ordenación, clasificación y presentación de los datos.

Estadística Inferencial: Realiza el estudio sobre un subconjunto de la población llamado muestra y, posteriormente, extiende/infiere los resultados obtenidos a toda la población. En otras palabras, la estadística inferencial utiliza los resultados de la estadística descriptiva y se apoya en el cálculo de probabilidades para la obtención de conclusiones sobre una población a partir de los resultados obtenidos de una muestra.

Estadística: Tipos de Variables

Estadística: Medidas de Tendencia Central

Estadística: Familias de Medidas

¿Qué es una Distribución de Probabilidad?

En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre

la <u>variable</u> la <u>probabilidad</u> de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los sucesos y cada uno de los sucesos es el rango de valores de la variable aleatoria.

La distribución Normal

La distribución normal es la más importante de todas las distribuciones de probabilidad. Es una distribución de **variable continua** cuyo rango es del menos infinito al más infinito. La popularidad se debe a tres razones principales:

- -La **gran cantidad de fenómenos reales** que se pueden modelizar con esta distribución.
- -Muchas de las distribuciones de uso frecuente **tienden a** aproximarse a la distribución normal bajo ciertas condiciones.
- -En virtud del teorema central del límite, todas aquellas variables que puedan considerarse causadas por un gran número de pequeños efectos tienden a distribuirse con una distribución normal.

Otros Coeficientes

Valor P: El valor P es una medida de la fuerza de la evidencia en sus datos en contra de la hipótesis nula. Por lo general mientras más pequeño sea el valor P, más fuerte será la evidencia para rechazar la hipótesis nula. Tradicionalmente el valor P se compara con valores menores que **0.05 o 0.01**, dependiendo del campo de estudio.

Valor T: Un valor t es el resultado de una prueba estadística. El valor se encuentra en la distribución t de Student que es apropiado para los grados de libertad. La ubicación especifica la probabilidad de obtener el valor t por casualidad. Si la probabilidad es menor que el nivel de significación, el resultado se juzga que es estadísticamente significativo. es aceptable si es **mayor que +2 y menor que -2.**

Estandarización

La estandarización de datos es importante ya que en la mayoría de casos nos encontraremos que dentro de un mismo set de datos, **los atributos tienen diferente naturaleza**, origen y forma de medición, en otras palabras, si los datos no son estandarizados estos no serían comparables

- o $X' = X/(10 \land h)$, h es el parámetro que determina la intensidad del escalamiento que se aplicara, el valor transformado estará en el rango [-1,1]
- Mínimos y máximos: esta transformación se basa en el mínimo y máximo del set de datos en análisis y su salida siempre se espera en el rango [-1,1]
- Índice Z: Esta transformación se basa en el uso de la media y la desviación estándar de la variable a analizar
 - o $X' = \frac{X \mu}{\sigma}$, si la distribución es normal o cercana a esta, esta transformación devolverá valores en el rango [-3,3]

Análisis Exploratorio

Análisis Exploratorio de Datos

Independientemente de la complejidad de los datos disponibles y del procedimiento estadístico que se tenga intención de utilizar, una exploración minuciosa de los datos previa al inicio de cualquier análisis posee importantes ventajas que un analista no puede pasar por alto.

Una exploración minuciosa de los datos permite identificar entre otras cosas:

Posibles errores (datos mal introducidos, respuestas mal codificadas, etc.)

Valores extremos (valores que se alejan demasiado del centro)

Pautas extrañas en los datos (valores que se repiten demasiado o que no aparecen nunca, etc.)

Variabilidad no esperada

AED

AED

Escala de Medida	Tipo de Gráfica	Medidas Tendencia Central	Medidas de Dispersión
Nominal	Diagrama de barras Diagrama de líneas Diagrama de sectores	Moda	
Ordinal	Boxplot	Mediana	Rango Intercuartilico
Intervalo	Histograma	Media	Desviación
Razón		Media Geométrica	Coefic. De Variación.

QQ Plot

Data Quality

Data Quality: Definición

Se puede definir como el conjunto de técnicas/metodologías para mantener la información de las organizaciones, completa, precisa, consistente, actualizada, única y valida

Data Quality: Proceso

Definicion: Se debe definir los Data Owners, Stakeholders, procesos de negocio impactados y las reglas Assessment
(Evaluación): Evaluar la
data tomando en
cuenta las diferentes
variables como
exactitud, completitud,
actualización

Analizar los resultados de la evaluación y establecer si se cumplen con los requisitos mínimos Mejorar: Diseñar planes para superar cualquier problema detectado en la etapa anterior

Control: Verificar periodicamente que la data este conforme los objetivos y definiciones de negocio

Data Quality: Dimensiones

*Source: GCI/CapGemini Report: "Internal Data Alignment", May 2004

Ability to be Joined With	Ability to Download	Ability to I Errors	Identify	Ability	to Upload		
Acceptability	Access by Competition	Accessibility		Accuracy			
Adaptability Age	Adequate Detail Aggregatability	Adequate Alterabilit			eticism int of Data		
Auditable	Authority	Availabili			ania Zita		
Breadth of Data	Brevity	Certified	Extensibility		Extent	Finalization	Flawlessness
Clarity of Origin	Clear Data	Compact	Flexibility		Form of Presentation	Format	Integrity
Clarity of Origin	Responsibility	compaci	Friendliness		Generality	Habit	Historical
Competitive Edge	Completeness	Compret			-		Compatibility
Concise	Conciseness	Confiden	Importance		Inconsistencies	Integration	Integrity
Concise	Content	Context	Interactive		Interesting	Level of Abstraction	Level of
Convenience	Correctness	Corruptic			-		Standardization
Cost of Accuracy	Cost of Collection	Creativity	Localized		Logically Connected	Manageability	Manipulable
Current	Customizability	Data Hie	Measurable		Medium	Meets Requirements	Minimality
Current	Gustomizatiniy	Data File	Modularity		Narrowly Defined	No lost information	Normality
Data Overload	Definability	Depends	Novelty		Objectivity	Optimality	Orderliness
Datail	Detailed Source	Disperse	Origin		Parsimony	Partitionability	Past Experience
Detail	Detailed Source	Disperse	Pedigree		Personalized	Pertinent	Portability
Dynamic	Ease of Access	Ease of (Preciseness		Precision	Proprietary Nature	Purpose
			Quantity		Rationality	Redundancy	Regularity of For
Ease of Data	Ease of Maintenance	Ease of F	Relevance		Reliability	Repetitive	Reproducibility
	Ease of Maintenance	Ease of r	Reputation		Resolution of Graphics	Responsibility	Retrievability
Exchange Ease of Update	Fase of Use	Easy to (Revealing		Reviewability	Rigidity	Robustness
	Endurance	Enlighter	Scope of Info	,	Secrecy	Security	Self-Correcting
Efficiency Error-Free	Expandability	Expense	Semantic		Semantics	Size	Source
FLLOL-FLEE	Expandability	Expense	Interpretation	1			
			Specificity		Speed	Stability	Storage
			Synchronizat	ion	Time-independence	Timeliness	Traceable
			Translatable		Transportability	Unambiguity	Unbiased
			Understanda	ble	Uniqueness	Unorganized	Up-to-Date
			Usable		Usefulness	User Friendly	Valid
			Value		Variability	Variety	Verifiable
			Volatility		Well-Documented	Well-Presented	

Tipos de Errores

Q & A

Bibliografía

Big Data Analytics: Turning Big Data into Big Money

by Frank J. Ohlhorst, November 2012

Hadoop Essentials

by Swizec Teller, April 2015

Scalable Big Data Architecture: A Practitioner's Guide to Choosing Relevant Big Data Architecture

by Bahaaldine Azarmi,2016

Regression Analysis by Example, 4th Edition

by Ali S. Hadi; Samprit Chatterjee,2006

Basic Statistics for Trainers

by Jean Houston Shore, 2006

A Framework for Analysis of Data Quality Research

by Richard Y. Wang,1995

An Introduction to Data Cleaning with R

by Edwin de Jonge & Mark van der Loo,2013