Congratulations! You passed!

Grade received 90.90%

Latest Submission Grade 90.91%

To pass 80% or higher

Go to next item

2. Consider the continuing Markov decision process shown below. The only decision to be made is in the top state, where two actions are available, left and right. The numbers show the rewards that are received deterministically after each action. There are exactly two deterministic policies, $\pi_{\rm left}$ and $\pi_{\rm right}$. Indicate the optimal policies if $\gamma=0$? If $\gamma=0.9$? If $\gamma=0.5$? [Select all that apply]

1/1 point

$$\square$$
 For $\gamma=0.9,\pi_{\mathrm{left}}$

$$lacksquare$$
 For $\gamma=0.5,\pi_{\mathrm{right}}$

⊘ Correct

Correct! Since both policies return to the start state every two time steps, to determine the optimal policy, it suffices to consider the reward accumulated over the first two time steps. For the policy left, this is equal to 1; for the policy right, this is equal to 1.

$$lacksquare$$
 For $\gamma=0,\pi_{ ext{right}}$

$$lacksquare$$
 For $\gamma=0,\pi_{\mathrm{left}}$

⊘ Correct

Correct! Since both policies return to the top state every two time steps, to determine the optimal policy, it suffices to consider the reward accumulated over the first two time steps. For the policy left, this is equal to 1; for the policy right, this is equal to 0.

$$lacksquare$$
 For $\gamma=0.5,\pi_{ ext{left}}$

⊘ Correct

Correct! Since both policies return to the start state every two time steps, to determine the optimal policy, it suffices to consider the reward accumulated over the first two time steps. For the policy left, this is equal

tο	1.	for	tho	nolicy	, riσht	this is	ادييهم	tο	1
ω	т,	101	uie	policy	/ ΠΧΠι,	. นาเราร	equai	· LO	т.

- ightleftarrow For $\gamma=0.9, \pi_{
 m right}$
 - **⊘** Correct

Correct! Since both policies return to the top state every two time steps, to determine the optimal policy, it suffices to consider the reward accumulated over the first two time steps. For the policy left, this is equal to 1; for the policy right, this is equal to 1.8.

3. Every finite Markov decision process has ___. [Select all that apply]

0/1 point

- A unique optimal value function
- A deterministic optimal policy
 - **⊘** Correct

Correct! Let's say there is a policy π_1 which does well in some states, while policy π_2 does well in others. We could combine these policies into a third policy π_3 , which always chooses actions according to whichever of policy π_1 and π_2 has the highest value in the current state. π_3 will necessarily have a value greater than or equal to both π_1 and π_2 in every state! So we will never have a situation where doing well in one state requires sacrificing value in another. Because of this, there always exists some policy which is best in every state. This is of course only an informal argument, but there is in fact a rigorous proof showing that there must always exist at least one optimal deterministic policy.

- A unique optimal policy
 - X This should not be selected

Incorrect. Take another look at the lesson: Optimal Policies.

A stochastic optimal policy

4.	The of the reward for each state-action pair, the dynamics function p , and the policy π is to characterize the value function v_π . (Remember that the value of a policy π at state s is $v_\pi(s) = \sum_a \pi(a s) \sum_{s',r} p(s',r s,a) [r+\gamma v_\pi(s')]$.)	1 / 1 point
	O Distribution; necessary	
	Mean; sufficient	
	Correct Correct! If we have the expected reward for each state-action pair, we can compute the expected return under any policy.	
5.	The Bellman equation for a given a policy π : [Select all that apply]	1/1 point
	lacksquare Expresses state values $v(s)$ in terms of state values of successor states.	
	Expresses the improved policy in terms of the existing policy.	
	Holds only when the policy is greedy with respect to the value function.	
6.	An optimal policy:	1/1 point
	Is not guaranteed to be unique, even in finite Markov decision processes.	
	O Is unique in every Markov decision process.	
	O Is unique in every finite Markov decision process.	
	○ Correct Correct! For example, imagine a Markov decision process with one state and two actions. If both actions receive the same reward, then any policy is an optimal policy.	

1/1 point

7. The Bellman optimality equation for v_st : [Select all that apply]

lacksquare Expresses state values $v_*(s)$ in terms of state values of successor states.

\bigcirc	Correct
	Correct!

- ✓ Holds for the optimal state value function.
 - ✓ Correct!
- Expresses the improved policy in terms of the existing policy.
- Holds when the policy is greedy with respect to the value function.
- lacksquare Holds for v_π , the value function of an arbitrary policy $\pi.$
- **8.** Give an equation for v_π in terms of q_π and π .

- $igcup v_\pi(s) = \sum_a \gamma \pi(a|s) q_\pi(s,a)$
- $igodesign{ igodesign{ igonesign{ igin{ igonesign{ iginity igonesign{ igin{ igonesign{ igin{ igint igonesign{ ig$
- $igcup v_\pi(s) = \max_a \pi(a|s) q_\pi(s,a)$
- $\bigcirc v_{\pi}(s) = \max_{a} \gamma \pi(a|s) q_{\pi}(s,a)$
 - ✓ Correct!
- **9.** Give an equation for q_π in terms of v_π and the four-argument p.

$$igotimes q_\pi(s,a) = \sum_{s'} \sum_r p(s',r|s,a) [r + \gamma v_\pi(s')]$$

$$igcirc$$
 $q_\pi(s,a) = \max_{s',r} p(s',r|s,a)[r + \gamma v_\pi(s')]$

$$\bigcirc \ q_{\pi}(s,a) = \sum_{s'} \sum_{r} p(s',r|s,a) [r + v_{\pi}(s')]$$

$$igcirc$$
 $q_\pi(s,a) = \sum_{s'} \sum_r p(s',r|s,a) \gamma[r+v_\pi(s')]$

$$igcirc$$
 $q_\pi(s,a) = \max_{s',r} p(s',r|s,a)[r+v_\pi(s')]$

$$igcirc$$
 $q_\pi(s,a) = \max_{s',r} p(s',r|s,a) \gamma [r+v_\pi(s')]$

✓ Correct!

$$lacksquare q_\pi(s,a) = r(s,a) + \gamma \sum_{s'} \sum_{a'} p(s'|s,a) \pi(a'|s') q_\pi(s',a')$$

$$lacksquare q_*(s,a) = r(s,a) + \gamma \sum_{s'} p(s'|s,a) \max_{a'} q_*(s',a')$$

✓ Correct!

$$lacksquare v_\pi(s) = \sum_a \pi(a|s) [r(s,a) + \gamma \sum_{s'} p(s'|s,a) v_\pi(s')]$$

✓ Correct!

$$lacksquare v_*(s) = \max_a [r(s,a) + \gamma \sum_{s'} p(s'|s,a) v_*(s')]$$

- ✓ Correct!
- 11. Consider an episodic MDP with one state and two actions (left and right). The left action has stochastic reward 1 with probability p and q with probability q with probability q and q with probability q and q with probability q with probability q and q with probability q with q

$$\bigcirc 7 + 2p = -10q$$

$$\bigcap 13 + 3p = -10q$$

$$\bigcirc 13 + 3p = 10q$$

$$\bigcirc 13 + 2p = 10q$$

$$\bigcirc 7 + 3p = -10q$$

$$\bigcirc 13 + 2p = -10q$$

$$\bigcirc 7 + 3p = 10q$$

✓ Correct!