HW03 CoderBak.

- I. Short Tree Proofs (undirected)
 - 1. Prove that every connected component in an acydic graph is a tree

if a connected, undirected, acyclic graph is not a tree
We consider its spanning tree.

the extra edge leads to a cycle #

2. Suppose 6 has k connected components.

Prive that if G is acyclic, |E|= |U|-k.

=> \(\Sigma e_i = |E| = \(\Sigma v_i - k = |V| - k \)

3. Prove that a graph with [v] edges contains a cycle.

Otherwise divide it into k parts - |v|-k=|v| χ

II. Towing Hypercube

- O exist Eulerian tonr (=)
 every vertex has even degree (=)
- De Induction. n digits. 00.0 ~ 10.0

n is even

II. Planarity and Graph Complements.

(a).
$$\frac{N(n-1)}{N(n-1)} - e$$
.

$$e \le 3n - 6$$
 $\frac{h(n-1)}{3} - e \le 3n - 6$

$$\Rightarrow n(n-1) \leq 4(3n-6)$$

IV. Modular Practice.

(A)
$$9x+5 \equiv 7 \pmod{13}$$
,
 $9x \equiv 2 \pmod{13}$,
 $9.3x \equiv 6 \pmod{13}$ $\implies x \equiv 6 \pmod{13}$

(b)
$$3x+12 \equiv 0 \pmod{3}$$
 $\neq 1 \pmod{3}$

$$\Rightarrow$$
 $4x = 5 \pmod{7} \Rightarrow x = 3 \pmod{7} \Rightarrow y = 5 \pmod{7}$

(e)
$$(7^{10})^6 \cdot 49 \equiv 5 \equiv x \pmod{1}$$

V. Modular Arithmetic

- [-N]
- (6) X=2 (mod 17)
- (c) True
- (d) x = (9 (mod m)

VI. Wilson Theorem (well-known. skipped).