第十二周作业答案

于俊骜

2024年5月26日

习题 11.3

7

(1)

证明. 令 $P = \frac{\partial f}{\partial x}, Q = \frac{\partial f}{\partial y}$,则由 Green 公式

$$\iint_{D} \Delta f \, \mathrm{d}x \, \mathrm{d}y = \iint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \mathrm{d}x \, \mathrm{d}y = \oint_{L} -Q \, \mathrm{d}x + P \, \mathrm{d}y = \oint_{L} \nabla f \cdot (\mathrm{d}y, -\mathrm{d}x) = \oint_{L} \frac{\partial f}{\partial \mathbf{n}} \, \mathrm{d}s$$

这是因为将切向量 (dx, dy) 顺时针旋转 $\frac{\pi}{2}$ 可得外法向量 (dy, -dx) 与外法向量同向。

(2)

证明. 由(1)知

$$\int_{L} \cos(\mathbf{a}, \mathbf{n}) \, ds = \int_{L} \mathbf{a} \cdot \mathbf{n} \, ds = \iint_{D} \Delta f \, dx \, dy = 0$$

事实上我们可取 $f(x,y)=(x,y)\cdot \mathbf{a}$,则 $\nabla f=\mathbf{a}$,不难得到 $\Delta f=0$ 。

(3)

证明. 首先,由求导的 Leibniz 法则可知

$$u\Delta v = \nabla \cdot (u\nabla v) - \nabla u \cdot \nabla v$$

$$v\Delta u = \nabla \cdot (v\nabla u) - \nabla u \cdot \nabla v$$

于是作差可得

$$u\Delta v - v\Delta u = \nabla \cdot (u\nabla v) - \nabla \cdot (v\nabla u)$$

因此,结合(1)可知

$$\iint_D (v\nabla u - u\nabla v) \, \mathrm{d}x \, \mathrm{d}y = \iint_D \nabla \cdot (v\nabla u - u\nabla v) \, \mathrm{d}x \, \mathrm{d}y = \oint_L (v\nabla u - u\nabla v) \cdot \mathbf{n} \, \mathrm{d}s = \oint_L \left(v\frac{\partial u}{\partial \mathbf{n}} - u\frac{\partial v}{\partial \mathbf{n}}\right) \, \mathrm{d}s$$

习题 11.7

2

(1)

直接计算可得

$$\nabla \times \mathbf{v} = \nabla \times (2x + y, x + 4y + 2z + 2y - 6z) = 0$$

因此由 Stokes 公式

$$\int_{L} \mathbf{v} \cdot d\mathbf{r} = \int_{P_1}^{P_3} \mathbf{v} \cdot d\mathbf{r} = \int_{a}^{0} 2x \, dx - \int_{0}^{a} 6z \, dz = -4a^2$$

(2)

直接计算可得

$$\nabla \times \mathbf{v} = \nabla \times (x^2 - yz, y^2 - zx, z^2 - xy) = 0$$

因此由 Stokes 公式

$$\int_{L} \mathbf{v} \cdot d\mathbf{r} = \int_{A}^{B} \mathbf{v} \cdot d\mathbf{r} = \int_{0}^{h} z^{2} dz = \frac{1}{3}h^{3}$$

3

(2)

直接计算可得

$$\nabla\times(yz(2x+y+z),xz(2y+z+x),xy(2z+x+y))=0$$

故v是无旋场,从而是有势场。其一个势函数为

$$\int_{(0,0,0)}^{(x_0,y_0,z_0)} \mathbf{v} \, d\mathbf{r} = \int_0^{x_0} 0 \, dx + \int_0^{y_0} 0 \, dy + \int_0^{z_0} x_0 y_0 (2z + x_0 + y_0) \, dz = x_0 y_0 z_0 (x_0 + y_0 + z_0)$$

因此,势函数为

$$\varphi(x, y, z) = xyz(x + y + z) + C$$

4

直接计算可得

$$\nabla \times \mathbf{F} = ((2-2a)x, (1-a)y, (3a-3)z + 5(1-a))$$

因此 **F** 是无旋场当且仅当 a=1。

此时

$$\mathbf{F} = (x^2 + 5y + 3yz, 5x + 3xz - 2, 3xy - 4z)$$

其一个势函数为

$$\int_{(0,0,0)}^{(x_0,y_0,z_0)} \mathbf{F} \, \mathrm{d}\mathbf{r} = \int_0^{x_0} x^2 \, \mathrm{d}x + \int_0^{y_0} (5x_0 - 2) \, \mathrm{d}y + \int_0^{z_0} (3x_0y_0 - 4z) \, \mathrm{d}z = \frac{1}{3}x_0^3 + 5x_0y_0 - 2y_0 + 3x_0y_0z_0 - 2z_0^2$$

因此,势函数为

$$\varphi(x, y, z) = \frac{1}{3}x^3 + 5xy - 2y + 3xyz - 2z^2 + C$$

5

(2)

$$u(x, y, z) = \frac{1}{3}(x^3 + y^3 + z^3) - 2xyz + C$$

6

(5)

直接计算可得

$$\nabla \times \mathbf{v} = \nabla \times \left(1 - \frac{1}{y} + \frac{y}{z}, \frac{x}{z} + \frac{x}{y^2}, -\frac{xy}{z^2}\right) = 0$$

其中 $x,y,z\neq 0$ 。因此 v 是第一卦限的无旋场,从而积分与路径无关。此时

$$\int_{(1,1,1)}^{(2,2,2)} \mathbf{v} \cdot d\mathbf{r} = \int_{1}^{2} dx + \int_{1}^{2} \left(2 + \frac{2}{y^{2}}\right) dy - \int_{1}^{2} \frac{4}{z^{2}} dz = 2$$

(6)

注意到

$$\mathbf{v} = \frac{1}{\sqrt{x^2 + y^2 + z^2}}(x, y, z) = \nabla r$$

故 \mathbf{v} 是 $\mathbb{R}^3 \setminus \{\mathbf{0}\}$ 中的有势场,积分与路径无关。因此

$$\int_{(x_1, x_2, x_3)}^{(x_2, y_2, z_2)} \mathbf{v} \cdot d\mathbf{r} = \int_{(x_1, x_2, x_3)}^{(x_2, y_2, z_2)} \nabla r \cdot d\mathbf{r} = \int_{(x_1, x_2, x_3)}^{(x_2, y_2, z_2)} dr = 0$$

这里 $r = \sqrt{x^2 + y^2 + z^2}$ 。

10

由题

$$0 = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = y(\alpha'' + 4\alpha + 4x\alpha') + \beta' - 2y(2x\alpha' + \beta') - 2\beta \tan 2x$$

为使上式恒成立, 我们需要

$$\begin{cases} \beta' = 2\beta \tan 2x \\ \alpha'' + 4\alpha = 2\beta' \end{cases}$$

直接解方程,可得

$$\beta = Ce^{2\int \tan 2x \, \mathrm{d}x} = C\cos 2x$$

结合 $\beta(0) = 2$ 知 C = 2,因此

$$\beta = 2\cos 2x$$

进而

$$\alpha'' + 4\alpha = 4\cos 2x$$

类似可解得

$$\alpha = (1+x)\sin 2x$$

(2)

由(1)知

$$\int_{(0,0)}^{(0,2)} P \, dx + Q \, dy = \int_0^2 \left((\sin 2x + 2(1+x)\cos 2x + 4x(1+x)\sin 2x) + 2\cos 2x \right) \, dy = 8$$

13

由题

$$e^x \cos y + x^2 + f(x) = \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = f''(x) + e^x \cos y + 2$$

即

$$f''(x) - f(x) = x^2 - 2$$

其特征方程为 $\lambda^2 - 1 = 0$,因此它对应的齐次方程的通解为

$$\tilde{f} = C_1 e^x + C_2 e^{-x}$$

观察得到原方程的解为

$$f(x) = C_1 e^x + C_2 e^{-x} - x^2$$

代入初值条件 f(0) = 0, f'(0) = 2, 得到解为

$$f(x) = e^x + e^{-x} - 2x^2$$

进而

$$(e^x \sin y + ye^x + ye^{-x}) dx + (e^x - e^{-x} + e^x \cos y) = 0$$
(1)

全微分方程的解为

$$e^x \sin y + y(e^x + e^{-x}) = C$$

习题 12.1

1

(1)

直接计算可得

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} -\pi \, dx + \int_{0}^{\pi} x \, dx \right) = -\frac{1}{2}\pi$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} -\pi \cos nx \, dx + \int_{0}^{\pi} x \cos nx \, dx \right)$$

$$= \frac{1}{n^2 \pi} (\cos n\pi - 1) = \frac{1}{n^2 \pi} \left((-1)^n - 1 \right)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} -\pi \sin nx \, dx + \int_{0}^{\pi} x \sin nx \, dx \right)$$

$$= \frac{1}{n} (1 - 2 \cos nx) = \frac{1}{n} (1 - 2(-1)^n)$$

因此

$$f(x) \sim -\frac{1}{4}\pi + \sum_{n=1}^{\infty} \left(\frac{1}{n^2\pi} \left((-1)^n - 1 \right) + \frac{1}{n} \left(1 - 2(-1)^n \right) \sin nx \right)$$

f(x) 的 Fourier 级数在 $x \neq k\pi$ 时收敛于 f(x), 在 $x = k\pi$ 时收敛但不为自身。

(2)

注意到 f(x) 是偶函数,从而 $b_n = 9$ 。计算可得

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos \frac{x}{2} dx = \frac{4}{\pi}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos \frac{x}{2} \cos nx d$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\cos \frac{2n+1}{2} x + \cos \frac{2n-1}{2} x \right) dx$$

$$= \frac{2}{(2n+1)\pi} (-1)^n + \frac{2}{(2n-1)\pi} (-1)^{n-1} = \frac{4}{4n^2 - 1} (-1)^{n-1}$$

因此

$$f(x) \sim \frac{2}{\pi} + \sum_{n=1}^{\infty} \frac{4}{4n^2 - 1} (-1)^{n-1} \cos nx$$

f(x) 的 Fourier 级数收敛于 f(x)。

4

(1)

曲题 $0 = a_0 = \frac{a}{\pi} \int_{-\pi}^{\pi} (2a - |x|) dx = \frac{a}{\pi} \int_{0}^{\pi} (2a - x) dx = \frac{2a}{\pi} \left(2a\pi - \frac{1}{2}\pi^2 \right)$

显然 $a \neq 0$,于是 $a = \frac{\pi}{4}$ 。经检验,满足题中要求。

(2)

由题

$$1 = b_1 = \frac{a}{\pi} \int_{-\pi}^{\pi} x \sin x = 2a \Longrightarrow a = \frac{1}{2}$$

经检验,满足题中要求。

6

(1)

$$t = x + \pi$$
,则

$$a_{2n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos 2nx \, dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos 2nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos 2nx \, dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} f(t - \pi) \cos 2n(t - \pi) \, dt + \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos 2nx \, dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} -f(t) \cos 2nt \, dt + \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos 2nx \, dx = 0$$

$$b_{2n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin 2nx \, dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \sin 2nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin 2nx \, dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} f(t - \pi) \sin 2n(t - \pi) \, dt + \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin 2nx \, dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} -f(t) \sin 2nt \, dt + \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin 2nx \, dx = 0$$

(2)

与(1)完全同理。

7

证明. 令 t = x + h, 结合周期性知

$$\bar{a}_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+h) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi+h}^{\pi+h} f(t) \cos n(t-h) \, dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt-nh) \, dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \cos nh + \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \sin nh$$

$$= a_{n} \cos nh + b_{n} \sin nh$$

$$\bar{b}_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+h) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi+h}^{\pi+h} f(t) \sin n(t-h) \, dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt-nh) \, dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \cos nh - \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \sin nh$$

$$= b_{n} \cos nh - a_{n} \sin nh$$

8

注意到 f(x) 是偶函数,则 $b_n = 0$ 。于是

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} (1 - x^2) dx = 2 - \frac{2}{3} \pi^2$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (1 - x^2) \cos nx dx = -\frac{2}{\pi} \int_{0}^{\pi} x^2 \cos nx = (-1)^{n-1} \frac{4}{n^2}$$

由 f(x) 的连续性知

$$f(x) = 1 - \frac{1}{3}\pi^2 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{4}{n^2} \cos nx$$

于是

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{1}{4} \left(f(0) - 1 + \frac{1}{3} \pi^2 \right) = \frac{\pi^2}{12}$$

进一步,由 Parseval 等式

$$2\left(1 - \frac{1}{3}\pi^2\right)^2 + \sum_{n=1}^{\infty} \frac{16}{n^4} = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = 2 - \frac{4}{3}\pi^2 + \frac{2}{5}\pi^4$$

整理得到

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

问题反馈

- Green 公式的法向形式也很有用,有余力的同学可以记住;
- 在强调一次算叉乘的准确性和熟练度;
- 不是闭的曲面,用 Gauss 公式要补一块儿面积分;
- 求势函数最后要加 C;
- Fourier 级数中, a_0 要除以 2;
- Fourier 级数尽可能写 ~ 而不要写 =, 除非验证了收敛性。