Examenul național de bacalaureat 2022 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 + 6 \cdot \left(\frac{1}{2} + \frac{1}{3}\right) = 1 + 6 \cdot \frac{5}{6} =$	3p
	=1+5=6	2p
2.	f(3)=1	2p
	f(2)=0, de unde obţinem $f(3)-f(2)=1-0=1$	3 p
3.	3x+1=4	3p
	x = 1, care convine	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Numerele n din mulțimea A pentru care numărul $10-n$ este par sunt 2, 4, 6 și 8, de	
	unde obținem 4 cazuri favorabile, deci $p = \frac{4}{9}$	3 p
5.	Pentru orice număr real a , $AB = \sqrt{(a-a)^2 + (6-0)^2} =$	3 p
	$=\sqrt{6^2}=6$	2p
6.	AC = 10	2p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{5 \cdot 10}{2} = 25$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 7 & 3 \\ 3 & 1 \end{vmatrix} = 7 \cdot 1 - 3 \cdot 3 =$	3p
	=7-9=-2	2p
b)	$A - 4I_2 = \begin{pmatrix} 7 & 3 \\ 3 & 1 \end{pmatrix} - \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & -3 \end{pmatrix} =$	3p
	$=3\begin{pmatrix}1&1\\1&-1\end{pmatrix}=3B$	2p
c)	$X \cdot (I_2 + B) = A$ și, cum $I_2 + B = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ și $\det(I_2 + B) \neq 0$, obținem $X = A \cdot (I_2 + B)^{-1}$	2p
	$(I_2 + B)^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}$, de unde obținem $X = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}$	3p
2.a)	$2*3=2\cdot3(2+3-4)=$	3p
	$=6 \cdot 1 = 6$	2p

b)	$1*x = x^2 - 3x$, pentru orice număr real x	2p
	$x^2-3x-4=0$, de unde obținem $x=-1$ sau $x=4$	3 p
c)	$2^x * 2^x = 2^{2x} (2^x + 2^x - 4)$, pentru orice număr real x	2p
	$2^{2x}(2^x + 2^x - 4) = 2^{3x} \Leftrightarrow 2^x + 2^x - 4 = 2^x \Leftrightarrow 2^x = 4, \text{ de unde obținem } x = 2$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 3x^2 - 9 \cdot 2x =$	3 p
	$=3x^2-18x=3x(x-6), x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Rightarrow x = 0 \text{ sau } x = 6$	2p
	Pentru orice $x \in (-\infty,0]$, $f'(x) \ge 0 \Rightarrow f$ este crescătoare pe $(-\infty,0]$, pentru orice $x \in [0,6]$,	
	$f'(x) \le 0 \Rightarrow f$ este descrescătoare pe $[0,6]$ și pentru orice $x \in [6,+\infty)$, $f'(x) \ge 0 \Rightarrow f$ este	3p
	crescătoare pe $[6,+\infty)$	
c)	$\lim_{x \to 1} \frac{f'(x) - f'(1)}{3f(x) - xf'(x)} = \lim_{x \to 1} \frac{3(x^2 - 6x + 5)}{9(1 - x^2)} =$	2p
	$= \lim_{x \to 1} \frac{3(x-1)(x-5)}{-9(x-1)(x+1)} = \lim_{x \to 1} \frac{x-5}{-3(x+1)} = \frac{2}{3}$	3р
2.a)	$\int_{0}^{2} \frac{f(x)}{e^{x}} dx = \int_{0}^{2} (x-1) dx = \left(\frac{x^{2}}{2} - x\right) \Big _{0}^{2} =$	3р
	=2-2=0	2p
b)	$\int_{0}^{1} f(x)dx = \int_{0}^{1} (x-1)e^{x}dx = (x-1)e^{x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 0$	3р
	=1-(e-1)=2-e	2p
c)	$\int_{2}^{n} \frac{x}{f(x) \cdot f(-x)} dx = \int_{2}^{n} \frac{x}{1 - x^{2}} dx = -\frac{1}{2} \int_{2}^{n} \frac{(x^{2} - 1)'}{x^{2} - 1} dx = -\frac{1}{2} \ln x^{2} - 1 \Big _{2}^{n} = \frac{1}{2} \ln \frac{3}{n^{2} - 1}$	3p
	$\frac{1}{2}\ln\frac{3}{n^2-1} = \frac{1}{2}\ln\frac{3}{8}$ și, cum <i>n</i> este număr natural, $n > 2$, obținem $n = 3$	2p