Целочисленная арифметика многократной точности

Милёхин Александр НПМмд-02-21

Цель лабораторной работы

Ознакомление с алгоритмами целочисленной арифметики многократной точности, а также их последующая программная реализация.

Длинная арифметика

Высокоточная (длинная) арифметика — это операции (базовые арифметические действия, элементарные математические функции и прочее) над числами большой разрядности (многоразрядными числами), то есть числами, разрядность которых превышает длину машинного слова универсальных процессоров общего назначения (более 128 бит).

Сложение неотрицательных целых чисел

- Вход. Два неотрицательных числа $u=u_1u_2\dots u_n$ и $v=v_1v_2\dots v_n$; разрядность чисел n; основание системы счисления b.
- Выход. Сумма $w=w_0w_1\dots w_n$, где w_0 цифра переноса, всегда равная 0 либо 1
- 1. Присвоить j=n, k=0 (j идет по разрядам, k следит за переносом).
- 2. Присвоить $w_j = \left(u_j + v_j + k\right) \pmod{b}$, где $k = \left[\frac{u_j + v_j + k}{b}\right]$.
- 3. Присвоить j=j-1. Если j>0, то возвращаемся на шаг 2; если j=0, то присвоить $w_0=k$ и результат: w.

Вычитание неотрицательных целых чисел

- Вход. Два неотрицательных числа $u=u_1u_2\dots u_n$ и $v=v_1v_2\dots v_n$, u>v; разрядность чисел n; основание системы счисления b.
- Выход. Разность $w = w_0 w_1 ... w_n = u v$.
- 1. Присвоить j=n, k=0 (k заём из старшего разряда).
- 2. Присвоить $w_j = (u_j v_j + k) \pmod{b}$; $k = \left[\frac{u_j v_j + k}{b}\right]$.
- 3. Присвоить j=j-1. Если j>0, то возвращаемся на шаг 2; если j=0, то результат: w.

Умножение неотрицательных целых чисел столбиком

- Вход. Числа $u=u_1u_2\dots u_n$, $v=v_1v_2\dots v_m$; основание системы счисления b.
- Выход. Произведение $w = uv = w_1w_2 ... w_{m+n}$.
- 1. Выполнить присвоения: $w_{m+1}=0, w_{m+2}=0, \dots, w_{m+n}=0, j=m$ (j перемещается по номерам разрядов числа v от младших κ старшим)
- 2. Если $v_j=0$, то присвоить $w_j=0$ и перейти к шагу 6.
- 3. Присвоить i=n, k=0 (значение i идет по номерам разрядов числа u, k отвечает за перенос).
- 4. Присвоить $t = u_i \cdot v_j + w_{i+j} + k$, $w_{i+j} = t \pmod{b}$, $k = \left\lfloor \frac{t}{b} \right\rfloor$.
- 5. Присвоить i=i-1. Если i>0, то возвращаемся на шаг 4, иначе присвоить $w_j=k$.
- 6. Присвоить j = j 1. Если j > 0, то вернуться на шаг 2. Если j = 0, то результат: w.

Быстрый столбик

- Вход. Числа $u = u_1 u_2 \dots u_n$, $v = v_1 v_2 \dots v_m$; основание системы счисления b.
- Выход. Произведение $w = uv = w_1w_2 ... w_{m+n}$.
- 1. Присвоить t=0.
- 2. Для s от 0 до m+n-1 с шагом 1 выполнить шаги 3 и 4.
- 3. Для i от 0 до s с шагом 1 выполнить присвоение $t=t+u_{n-i}\cdot v_{m-s+i}$.
- 4. Присвоить $w_{m+n-s}=t \pmod{b}, t=\left\lfloor \frac{1}{b} \right\rfloor$. Результат: w.

Деление многоразрядных целых чисел

- Вход. Числа $u=u_n \dots u_1 u_0$, $v=v_t \dots v_1 v_0$, $n \geq t \geq 1$, $v_t \neq 0$.
- Выход. Частное $q=q_{n-1}\dots q_0$, остаток $r=r_t\dots r_0$.
 - 1. Для j от 0 до n-t присвоить $q_i=0$.
 - 2. Пока $u \ge v b^{n-t}$, присвоить $q_i = 0$.
 - 3. Для i=n,n-1,t+1 выполнять пункты 3.1 3.4:
 - 3.1. если $u_i \geq v_t$, то присвоить $q_{i-t-1} = b-1$, иначе присвоить $q_{i-t-1} = \frac{u_i b + u_{i-1}}{v_t}$.
 - 3.2. пока $q_{i-t-1}(v_tb+v_{t-1})>u_ib^2+u_{i-1}b+u_{i-2}$ выполнять $q_{i-t-1}=1$.
 - 3.3 присвоить $u = u q_{i-t-1}b^{i-t-1}v$.
 - 3.4. если u<0, то присвоить ${\bf u}=u+vb^{i-t-1}$, $q_{i-t-1}=q_{i-t-1}-1$.
 - 4. r=u. Результат q и r.

Результаты выполнения лабораторной работы

Я изучил алгоритмы целочисленной арифметики, а также реализовал их программно на языке Python.

Спасибо за внимание