Algoritma pencarian rute terpendek dalam routing

Routing in Circuit Switched Network

- Membuat banyak koneksi membutuhkan jalur menuju lebih dari satu switch
- Perlu untuk menemukan sebuah rute (route)
 - **≻**Efficiency
 - Resilience
- Switch telepon umum mempunya struktur pohon
- Roting static menggunakan pendekatan yang sama pada semua waktu
- Dynamic routing mengizinkan perubahan dalam routing,tergantung pada lalu lintas
- Menggunakan sebuah peer structure untuk node

Alternate Routing

- Rute yang memungkinkan antara end offices yang ditentukan
- Membantu switch dalam memilih rute yang cocok
- Route yang dicatat berdasar preference order
- Perbedaan pengesetan dari rute (route) mungkin digunakan/dipakai pada waktu yang berbeda

Diagram Alternate Routing

Route a: X® Y
Route b: X® J® Y
Route c: X® K® Y
Route d: X® I® J® Y

= end office

= intermediate switching node

(a) Topology

Time Period	First route	Second route	Third route	Fourth and final route
Morning	а	b	C	d
Afternoon	а	d	b	С
Evening	а	d	С	b
Weekend	а	С	b	d

(b) Routing table

Routing dalam Packet Switched Network

- kompleks, aspek yang penting pada packet switched networks
- Karakteristik yang dibutuhkan
 - Ketepatan
 - Kesederhanaan
 - Ketahanan
 - Stabilitas
 - > Fairness
 - Optimalisasi
 - Efisiensi

Kriteria Performance

Digunakan untuk seleksi dari route

- Minimum hop
- Harga paling murah / list cost

Contoh Packet Switched Network

Sumber informasi jaringan dan Update Timing

- Keputusan dari routing biasanya berdasar pada pengetahuan dari kondisi jaringan sebelumnya (tidak selalu)
- Distributed routing
 - → Nodes menggunakan lokal knowledge
 - → Dapat mengumpulkan info dari node yang berdekatan
 - → Dapat mengumpulkan info dari semua node pada sebuah potential route
- Central routing
 - → Mengumpulkan info dari semua node
 - Update timing
 - → Ketika info jaringan yang disimpan node di-update
 - → Fixed tidak pernah di-update
 - → Adaptive update yang rutin

Strategi Routing

- Fixed
- Flooding
- Random
- Adaptive

Fixed Routing

- Satu rute permanen untuk setiap pasangan sumber sampai tujuan
- Menentukan route secara manual
- Route fixed, sedikitnya sampai suatu perubahan di (dalam) topologi jaringan

CENTRAL ROUTING DIRECTORY

From Node

1 2

To Node

1	2	3	4	2	6
	1	5	2	4	5
2		5	2	4	5
4	3		5	3	5
4	4	5	_	4	5
4	4	5	5		5
4	4	5	5	6	

Table Fixed Routing

Node 1 Directory

Destination	Next Node	
2	2	
3	4	
4	4	
5	4	
6	d	

Node 2 Directory

Destination	Next Node	
1	1	
3	3	
4	4	
5	4	
6	4	

Node 3 Directory

 Destination	Next Node
1	5
2	5
4	5
5	5
6	5

Node 4 Directory

Destination	Next Node	
1	2	
2	2	
3	5	
5	5	
б	5	

Node 5 Directory

Destination	Next Node	
1	4	
2	4	
3	3	
4	4	
б	6	

Node 6 Directory

Destination	Next Node
1	5
2	5
3	5
4	5
5	5

Flooding

- Tidak ada info jaringan yang dibutuhkan
- Paket dikirimkan oleh node ke setiap client yang lain (neighbor)
- Paket yang datang dikirim kembali pada setiap link selain jalur pengirim
- Secepatnya sejumlah salinan akan tiba di tujuan
- Masing-masing paket telah dinomori secara unik, jadi salinannya dapat dibuang/diputus
- Node dapat mengingat paket yang dikirimkan untuk menjaga agar paket tersebut tidak keluar dari jaringan
- Dapat memasukkan sebuah hop count kedalam paket

Contoh Flooding

Properties of Flooding

- Semua rute yang mungkin dicoba
 - → Sangat sempurna
- Sedikitnya satu paket akan dapat diambil hop count route terkecil
 - → Dapat digunakan set up virtual circuit
- Semua node dilewati
 - → Sangat berguna untuk mendistribusikan informasi (Contoh: routing)

Random Routing

- Node memilih satu jalur outgoing untuk pengiriman ulang paket yang datang
- Seleksi dapat diacak atau round robin
- Dapat memilih jalur outgoing berdasar pada perhitungan probabilitas
- Tidak ada info jaringan yang diperlukan
- Rute biasanya bukan least cost atau minimum hop

Adaptive Routing

- Digunakan oleh hampir seluruh jaringan paket switching
- Keputusan routing berubah ketika kondisi pada jaringan berubah
 - → Kegagalan
 - → Kemacetan pada jalur jaringan
- Membutuhkan informasi tentang jaringan
- Keputusan lebih kompleks
- Tradeoff antara kualitas informasi jaringan dan overhead
- Reaksi yang terlalu cepat dapat menyebabkan osilasi Terlalu
- lambat menjadi relevant

Strategi ARPANET Routing Generasi 1

Generasi pertama

- . 1969
- Distributed adaptive
- Estimasi delay sebagai standart performance
- Node mengubah delay vector dengan neighbors
- Update routing table berdasar pada info yang datang
- Tidak mempertimbangkan kecepatan jalur, hanya panjang antrian
- Panjang antrian bukan sebuah ukuran yang bagus dari delay
- Respond lambat untuk congestion

Strategi ARPANET Routing Generasi 2

Generasi kedua

- . 1979
- Penggunaan delay sebagai standar performance
- Delay dapat diukur secara langsung
- Jika terjadi heavy loads, terjadi sedikit hubungan antara reported delay dan hal-hal sebelumnya

Strategi ARPANET Routing Generasi 3

Generasi ketiga

- 1987
- Biaya perhitungan link dirubah
- Ukuran rata-rata delay tidak lebih dari 10 detik
- Normalnya berbasis pada current value dan previous results

Link Video perkuliahan

https://drive.google.com/file/d/1HxLeXMXgja8Bbxr 2Uyv0664kVCgPX8V3/view?usp=sharing

Terimakasih