Final Exam

December 15, 2011

1. (20pts) Show that for any two events A and B in a probability space (S,F, P) the following relationship holds:

$$P(A)P(B) - P(A \bigcap B) = P(A \bigcap B) - P(A)P(B) = P(A \bigcap B) - P(A)P(B).$$

- 2. (20pts) Let X have exponential distribution $f_X(x) = \frac{1}{\mu} e^{-x/\mu} 1_{[0,)}(x)$.
 - **a.** (10pt) Find $P\{\mu < X \le 2\mu\}$.
 - **b.** (10pt) Find the conditional density $f_X(x|\mu < X \le 2\mu)$.
- 3. (20pts) Consider a random variable X with men η_x and standard deviation σ_x . Find the mean and standard deviation of random variable Y if $Y = (X \eta_x)/\sigma_x$.
- 4. (20pts) Let X and Y be independent random variables with variances with variances σ_x^2 and σ_y^2 , respectively. Consider the sum

$$Z = aX + (1 - a)Y$$
 for $0 \le a \le 1$.

Then, find a that minimize the variance of Z.

- 5. (20pts) Consider independent and identically distributed random variables X_1, X_2, \dots, X_n with mean η and standard deviation σ . Find the mean and standard deviation of random variable Z if $Z = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- 6. (20pts) Express $F_{zw}(z, w)$ in terms of $F_{xy}(x, y)$ if $z = \max(x, y)$ and $w = \min(x, y)$.
- 7. (20pts) Consider a random variable X with mean η and standard deviation σ . For any $\epsilon > 0$, prove

$$P\{|X \ge \epsilon|\} \le \frac{\sigma^2}{\epsilon^2}.$$