第二章

第6题

6. 设有一个 SPJ 数据库,包括 S、P、J、SPJ 4 个关系模式:

S(SNO, SNAME, STATUS, CITY);

P(PNO, PNAME, COLOR, WEIGHT);

J(JNO, JNAME, CITY);

SPJ(SNO, PNO, JNO, QTY);

供应商表 S 由供应商代码(SNO)、供应商姓名(SNAME)、供应商状态(STATUS)、供应商 所在城市(CITY)组成。

零件表 P 由零件代码(PNO)、零件名(PNAME)、颜色(COLOR)、重量(WEIGHT)组成。

工程项目表 J 由工程项目代码(JNO)、工程项目名(JNAME)、工程项目所在城市(CITY)组成。

供应情况表 SPJ 由供应商代码(SNO)、零件代码(PNO)、工程项目代码(JNO)、供应数量(QTY)组成,表示某供应商供应某种零件给某工程项目的数量为 QTY。

今有若干数据如下:

S表

SNO	SNAME	STATUS	CITY
SI	精益	20	天津
S2	盛锡	10	北京
53	东方红	30	北京
54	丰泰盛	20	天津
S5	为民	30	上海

P表

PNO	PNAME	COLOR	WEIGHT
P1	螺母	ģī.	12
P2	螺栓	经收	17
Р3	螺丝刀	蓝	14
P4	螺丝刀	红	14
P5	凸轮	蓝	40
P6	齿轮	£Ι	30

J表

JNO	JNAME	CITY
J1	三建	北京
J2	一汽	长春
J3	弹簧厂	天津
J4	造船厂	天津
J5	机车厂	唐山
J6	无线电厂	常州
J7	半导体厂	南京

SPJ 表

SNO	PNO	JNO	QTY
SI	P1	JI	200
S1	P1	J3	100
Sl	P1	J4	700
S1	P2	J2	100
S2	Р3	J1	400
S2	Р3	J2	200
S2	Р3	J4	500
S2	Р3	J5	400
S2	P5	J1	400
S2	P5	J2	100
S3	P1	J1	200
S3	Р3	JI	200
S4	P5	JI	100
S4	P6	J3	300
S4	P6	J4	200
S5	P2	J4	100
S5	Р3	Jl	200
S5	P6	J2	200
S5	P6	J4	50

试用关系代数、ALPHA 语言、QBE 语言完成下列操作:

(1) 求供应工程 J1 零件的供应商号 SNO。

答:

关系代数: Π_{SNO}(σ_{JNO='JI'}(SPJ))

ALPHA 语言:GET W(SPJ.SNO):SPJ.JNO='J1'

QBE 语言:

SPJ	SNO	PNO	JNO	QTY
	P.SI		II	

(2) 求供应工程 J1 零件 P1 的供应商号 SNO。

答:

美系代数: []_{SNO}(σ_{JNO='JI', PNO='PI'}(SPJ))

ALPHA 语言:GET W(SPJ.SNO):SPJ.JNO='J1'\SPJ.PNO='P1'

QBE 语言:

SPJ	SNO	PNO	JNO	QTY
	P.S1	P1	J1	

(3) 求供应工程 J1 红色零件的供应商号 SNO。

答

关系代数: $\prod_{SNO}(\prod_{SNO,PNO}(\sigma_{INO} = I_{I})(SPJ))$ $\bowtie \prod_{PNO}(\sigma_{COLOR} = I_{I})(P))$

ALPHA 语言:

RANGE P PX

GET W(SPJ.SNO); SPJ.JNO='J1'\BPX(PX.COLOR='\frac{1}{2}\cdot'\PX.PNO = SPJ.PNO)

QBE 语言:

SPJ	SNO	PNO	JNO	QTY
	P.SI	P1	JI	

P	PNO	PNAME	COLOR	WEIGH
	P1		ér	

(4) 求没有使用天津供应商生产的红色零件的工程号 JNO。

答:

关系代数: $\prod_{JNO}(J) - \prod_{JNO}(\prod_{SNO}(\sigma_{CITY} - \iota_{\mathbb{R}^{lh}} \cdot (S))) \bowtie \prod_{SNO,PNO,JNO}(SPJ)$

$\bowtie \textstyle \prod_{PNO} (\sigma_{COLOR} \, \text{\tiny =}^{!}_{ff} \, \text{\tiny !}(P)))$

解析:

减法运算中,被减的部分是使用了天津供应商生产的红色零件的所有工程号, $\Pi_{JNO}(J)$ 是全部工程的工程号,两者相减就是没有使用天津供应商生产的红色零件的工程号,包括没有使用任何零件的工程号。

ALPHA 语言:

RANGE SPJ SPJX

P PX

SSX

GET W(J.JNO); -3SPJX(SPJX.JNO=J.JNO A

 \exists SX(SX.SNO=SPJX.SNO \land SX.CITY='天津' \land \exists PX(PX.PNO=SPJX.PNO \land PX.COLOR=' \nleq t'))

解析:

- ① S、P、SPJ 表上各设了一个元组变量。
- ② 解题思路是,因为要找的是满足给定条件的工程号 JNO,因此,对工程表 J 中的每一个 JNO 进行判断:
- a. 看 SPJ 中是否存在这样的元组,其 JNO=J.JNO,并且所用的零件是红色的,该零件的供应商是天津的。
 - b. 如果 SPJ 中不存在这样的元组,则该工程号 JNO 满足条件,放入结果集合中。
- c. 如果 SPJ 中存在这样的元组,则该工程号 JNO 不满足条件,不放入结果集中。再对工程表 J 中的下一个 JNO 进行同样的判断。
 - d. 直到所有 JNO 都检查完。
- e. 结果集中是所有没有使用天津供应商生产的红色零件的工程号,包括没有使用任何 零件的工程号。

QBE 语言:

当不考虑没有使用任何零件的工程时:

S	SNO	SNAME	STATUS	CITY
	S1			天津

P	PNO	PNAME	COLOR	WEIGHT
	P1		紅	

SPJ	SNO	PNO	JNO	QTY
-	SI	P1	P.J1	

解析:

本题是从 SPJ 表中输出满足条件的 JNO,没有使用任何零件的工程项目的工程号是不会 出现在 SPJ 中的。所以本题的结果不包括没有使用任何零件的工程项目号。

考虑没有使用任何零件的工程:

J	JNO	JNAME	CITY
-	P.J1		

S	SNO	SNAME	STATUS	CITY
	SI			天津

P	PNO	PNAME	COLOR	WEIGHT
	P1		红	

SPJ	SNO	PNO	JNO	QTY
	S1	P1	JI	

解析:

本题是从J表中输出满足条件的JNO,未使用任何零件的工程项目的工程号也满足条件。所以本题的结果包括未使用任何零件的工程号。

(5) 求至少用了 SI 供应商所供应的全部零件的工程号 JNO。

答:

关系代数: \$\Pi_{PNO}(SPJ) \diameta \Pi_{PNO}(\sigma_{SNO='SI'}(SPJ))\$

解析

第一部分是所有工程与该工程所用的零件,第二部分是 SI 所供应的全部零件号,对于 SPJ 表中的某一个 JNO,如果该工程使用的所有零件的集合包含了 SI 所供应的全部零件号,则该 JNO 符合本题条件,在除法运算的结果集中。

可以看到,使用关系代数的除法运算概念清晰,语言表达也很简洁。

ALPHA 语言:(类似于《概论》[例 2.27])

RANGE SPJ SPJX SPJ SPJY P PX

> GET W(J.JNO); $\forall PX(\exists SPJX(SPJX.PNO = PX.PNO \land SPJX.SNO = SI')$ => $\exists SPJY(SPJY.JNO = J.JNO \land SPJY.PNO = PX.PNO))$

解析:

- ① SPJ表上设了两个元组变量 SPJX、SPJY; P表上设了一个元组变量 PX。
- ② 解题思路是,由于要找的是满足给定条件的工程号 JNO,因此,对工程表 J 中的每一个 JNO(例如 J1),进行以下一组操作;
 - a. 对零件 PX 中的所有零件,依次对每一个零件进行以下检查:
- b. 例如零件 P1,检查 SPJX,看 S1 是否供应了该零件,如果供应了,则再看这一个 JNO (例如 J1) 是否使用了该零件。
- c. 如果对于 S1 所供应的每种零件,这一个 JNO(例如 J1) 都使用了,则该 JNO 为(例如 J1) 满足要求的工程项目。
- ③ 为了帮助理解,读者可以画出所涉及的三个表,给出一些数据,按照上面的解析步骤 逐步分析,就能掌握解题方法。从而达到举一反三的要求。

QBE:(不要求)。

第6章

第2题

2. 建立一个关于系、学生、班级、学会等诸信息的关系数据库。

描述学生的属性有:学号、姓名、出生年月、系名、班号、宿舍区。

描述班级的属性有:班号、专业名、系名、人数、入校年份。

描述系的属性有:系名、系号、系办公室地点、人数。

描述学会的属性有:学会名、成立年份、地点、人数。

有关语义如下:一个系有若干专业,每个专业每年只招一个班,每个班有若干学生。一个系的学生住在同一宿舍区。每个学生可参加若干学会,每个学会有若干学生。学生参加某学会有一个人会年份。

请给出关系模式,写出每个关系模式的极小函数依赖集,指出是否存在传递函数依赖,对 于函数依赖左部是多属性的情况,讨论函数依赖是完全函数依赖,还是部分函数依赖。

指出各关系的候选码、外部码,并说明有没有全码存在。

答:

关系模式:学生 S(SNO,SN,SB,DN,CNO,SA)

班级 C(CNO,CS,DN,CNUM,CDATE)

系 D(DNO,DN,DA,DNUM)

学会 P(PN,DATE1,PA,PNUM)

学生-学会 SP(SNO, PN, DATE2)

其中,SNO 学号,SN 姓名,SB 出生年月,SA 宿舍区;

CNO 班号, CS 专业名, CNUM 班级人数, CDATE 入校年份;

DNO 系号, DN 系名, DA 系办公室地点, DNUM 系人数;

PN 学会名,DATE1 成立年月,PA 地点,PNUM 学会会员人数;

DATE2 人会年份。

依据上面给出的语义,写出每个关系模式的极小函数依赖集如下。

S:SNO-SN,SNO-SB,SNO-CNO,CNO-DN,DN-SA

/*一个系的学生住在同一宿舍区*/

 $C:CNO \rightarrow CS,CNO \rightarrow CNUM,CNO \rightarrow CDATE,CS \rightarrow DN,(CS,CDATE) \rightarrow CNO$

/*每个专业每年只招一个班*/

 $\texttt{D:DNO} {\rightarrow} \texttt{DN} \,, \texttt{DN} {\rightarrow} \texttt{DNO} \,, \texttt{DNO} {\rightarrow} \texttt{DA} \,, \texttt{DNO} {\rightarrow} \texttt{DNUM}$

/*按照实际情况,系名和系号是一一对应的*/

 $P: PN \rightarrow DATE1, PN \rightarrow PA, PN \rightarrow PNUM$

 $SP:(SNO,PN) \rightarrow DATE2$

/*学生参加某学会有一个人会年份*/

S 中存在的传递函数依赖:

因为 SNO→CNO, CNO→DN, 所以存在传递函数依赖 SNO→DN,

因为 CNO→DN, DN→SA, 所以存在传递函数依赖 CNO→SA,

因为 SNO→CNO, CNO→DN, DN→SA, 所以存在传递函数依赖 SNO→SA。

C 中存在的传递函数依赖:

因为 CNO→CS, CS→DN, 所以存在传递函数依赖 CNO→DN。

函数依赖左部是多属性的情况:

(SNO,PN)→DATE2 和(CS,CDATE)→CNO 函数依赖左部具有 2 个属性,它们都是完全函数依赖,没有部分函数依赖的情况。

关系	候选码	外部码	全码
S	SNO	CNO, DN	无
C	CNO 和(CS,CDATE)	DN	无
D	DNO 和 DN	无	无
P	PN	无	无
SP	(SNO,PN)	SNO, PN	无

关系模式 C 和 D 都有 2 个候选码。

第6题 ②③

- 6. 考虑关系模式 R(A,B,C,D,E),回答下面各个问题:
- ① 若 $A \neq R$ 的候选码,具有函数依赖 $BC \rightarrow DE$,那么在什么条件下 $R \neq BCNF$; 答:属性 BC 包含码。
- ② 如果存在依赖: $A \rightarrow B$, $BC \rightarrow D$, $DE \rightarrow A$,列出 R 的所有码; 答:ACE,DEC,BCE。
- ③ 如果存在依赖:A→B,BC→D,DE→A,R 属于 3NF 还是 BCNF?
- 答:因为A、B、C、D、E 都是主属性,所以 R 是 3NF。
- 因为所有函数依赖的决定因素 $A \setminus BC \setminus DE$ 都不含码, R 不是 BCNF。

第7题

第8题

8. 某工厂生产若干产品,每种产品由不同的零件组成,有的零件可用在不同的产品上。这些零件由不同的原材料制成,不同零件所用的材料可以相同。这些零件按所属的不同产品分别放在仓库中,原材料按照类别放在若干仓库中。请用 E-R 图画出此工厂产品、零件、材料、仓库的概念模型。

答:

解析:

对实体之间联系的语义描述有时不是直截了当的,需要从对现实世界的整体描述中进行分析,导出实体之间的某种联系。就如本题中,"零件和仓库的联系"就要从以下描述中分

析:"零件按所属的不同产品分别放在仓库中"。因为一个产品由多种零件组成,所以一个仓库中放多种零件。反过来,一种零件是放在一个仓库还是多个仓库中呢?因为一种零件可以用在多种产品上,这些零件按所属的不同产品分别放在仓库中,于是可以知道一种零件可以放在多个仓库中。所以零件和仓库之间是多对多的联系。

"材料和仓库的联系"则根据"原材料按照类别放在若干仓库"这句话就可以得出:一个仓库中放多种材料,而一种材料只放在一个仓库中,所以仓库和材料之间是一对多的联系。

各实体的属性为:(简便起见,未用图表示)

产品:产品号,产品名

零件:零件号,零件名

原材料:原材料号,原材料名,类别

仓库:仓库号,仓库名

各联系的属性为:

产品组成:使用零件量

零件制造:使用原材料量

零件存储:存储量

材料存放:存放量

第9题

第11题

10. 试把习题 7 和习题 8 中的 E-R 图转换为关系模型。答:

习题 7 中的 E-R 图转换的关系模型如下,其中有下画线的属性是主码属性。

系(系编号,系名,学校名)

班级(班级编号,班级名,系编号)

教研室(教研室编号,教研室,系编号)

学生(学号,姓名,学历,班级编号,导师职工号)

课程(课程编号,课程名)

教员(职工号,姓名,职称,教研室编号)

选课(学号,课程编号,成绩)

习题 8 中的 E-R 图转换的关系模型如下,其中有下画线的属性是主码属性。

产品(产品号,产品名,仓库号)

零件(零件号,零件名)

原材料(原材料号,原材料名,类别,仓库号,存放量)

仓库(仓库号,仓库名)

产品组成(产品号,零件号,使用零件量)

零件组成(零件号,原材料号,使用原材料量)

零件储存(零件号,仓库号,存储量)

第12题

11. 试用规范化理论中有关范式的概念分析习题 7 中所设计的关系模型中各个关系模式的候选码,它们属于第几范式? 会产生什么更新异常?

答.

习题 7 中设计的各个关系模式的码都用下画线注明,这些关系模式都只有一个码,且都是唯一决定的因素,所以都属于 BCNF。不会产生更新异常现象。