Anells de polinomis en diverses variables

Primavera 2025

Laboratori 3: Teorema de divisió d'Hironaka

Sigui \geq un ordre compatible en el conjunt de monomis de S=K[X_1,...,X_n].

Donat un polinomi $F = \sum a_{\alpha} X^{\alpha}$ de S definim el terme *leader* de F, que denotarem per Lt(F), com el

factor no nul $a_{\alpha} X^{\alpha}$ de F tal que α sigui el més gran respecte l'ordre \geq .

Exemples d'ordres compatibles:

Lexicogràfic (Lex): $\alpha > \beta$ sí i només el primer coeficient per l'esquerra no nul de $\alpha - \beta$ és positiu. Lexicogràfic graduat (DegLex): $\alpha > \beta$ sí i només si $|\alpha| > |\beta|$, o $|\alpha| = |\beta|$ i α es més gran que β respecte l'ordre lexicogràfic.

Lexicogràfic graduat reverse (DegRevLex): $\alpha > \beta$ sí i només si $|\alpha| > |\beta|$, o $|\alpha| = |\beta|$ i el primer coeficient per la dreta no nul de $\alpha - \beta$ és negatiu.

Teorema de Divisió d'Hironaka: Donat un ordre compatible ≥ de **N**^n i donat un conjunt ordenat de polinomis

$$\{f_1,...,f_s\}$$
 de $K[X_1,...,X_n]$.

Per tot polinomi f existeixen polinomis a_1,...,a_s tals que

r=0 o bé r és un combinació lineal de monomis a coeficients en K cap d'ells multiple de Lt(f_1),...,Lt(f_s).

El polinomi r s'anomena reste de la divisió de f respecte {f_1,...,f_s}

El Mathematica permet calcular els coeficients a_1,...,a_s i r mitjançant PolynomialReduce

Ejercici 1: executeu les següents instruccions.

In[173]:=

```
f1 = x^2 + y
          f2 = x^2 * x * y
          \{\{a1, a2\}, r\} = sol
          FullSimplify[a1 * f1 + a2 * f2 + r]
Out[173]=
          x^2 + y
Out[174]=
Out[175]=
         \{x, 0\}, -xy + 2y^2\}
Out[176]=
          x^3 + 2y^2
In[177]:=
          sol = PolynomialReduce[x^5+2*y^2,
            \{x \land 2 + y, x - 2 * x * y\}, \{x, y\}, MonomialOrder \rightarrow DegreeLexicographic]
Out[177]=
         \left\{ \left\{ x^3 - x y, -\frac{1}{4} - \frac{y}{2} \right\}, \frac{x}{4} + 2 y^2 \right\}
In[178]:=
          f1 = x^2 + y
          f2 = x - 2 * x * y
          \{\{a1, a2\}, r\} = sol
          FullSimplify[a1 * f1 + a2 * f2 + r]
Out[178]=
         x^2 + y
Out[179]=
          x - 2 x y
Out[180]=
         \left\{ \left\{ x^3 - xy, -\frac{1}{4} - \frac{y}{2} \right\}, \frac{x}{4} + 2y^2 \right\}
Out[181]=
          x^5 + 2y^2
In[182]:=
          sol = PolynomialReduce[x^3 + 2 * y^3, {x^3 + y^5, x + 2 * x * y},
             {x, y}, MonomialOrder → DegreeReverseLexicographic
Out[182]=
         \{\{0, 0\}, x^3 + 2y^3\}
```

Recupereu els polinomis originals calculant $a_1 f_1 + a_2 f_2 + r$

Exercici 2: Veurem que l'orde dels **f_i** és important. Considerem els polinomis:

In[187]:=
$$f = x * y^2 - x;$$

$$f1 = x * y + 1;$$

$$f2 = y^2 - 1;$$

a) Feu la divisió de f respecte {f1, f2} usant l'ordre Lexicogràfic. Observeu que el reste no és zero.

In[190]:= PolynomialReduce $[f, \{f1, f2\}, \{x, y\}]$

Out[190]= $\{\{y, 0\}, -x-y\}$

 $\{\{x, 0\}, 0\}$

b) Feu la divisió de f respecte {f2, f1} usant l'ordre Lexicogràfic. Observeu que el reste és zero.

In[191]:= PolynomialReduce $[f, \{f2, f1\}, \{x, y\}]$ Out[191]=

> Exercici 2 : Escollint un ordre adequat i una ordenació adequada de les variables demostreu que f=z^2-x^4*y pertany a l'ideal generat per y-x^2, z-x^3

In[192]:= PolynomialReduce $[z^2 - x^4 + y, \{ y - x^2, z - x^3 \},$ $\{y, x, z\}$, MonomialOrder \rightarrow Lexicographic Out[192]= $\{\{-x^4, x^3 + z\}, 0\}$

> Exercici 3: Calculeu la divisió de f respecte {f1,f2,f3} usant els tres ordres compatibles. Què observeu?