Timing Corners

To ensure a chip can continue to function under various conditions, the chip must undergo static timing analysis under different **timing corners**.

The timing corners are a combination of characteristics, specifically four, two being as a result of the process:

- **Parasitic/Interconnect Corners**: Metal layers may have slightly different geometry based on manufacturing, which will affect the wires' parasitics (capacitance and resistance.)
- **Transistor Corners**: Also called "process corners", more commonly, variance in transistor carrier mobility, denoted as follows:
 - o s, t, f for whether NMOS transistors are slow, typical, or fast respectively.
 - Another s, t, f but for PMOS transistors. For example, a corner with fast NMOS and PMOS would be denoted ff. See Process Corners for more info.

And two that are dependent on the operation environment:

- **Temperature**: A higher temperature causes transistors to switch slower.
- **Voltage**: A higher voltage causes transistors to switch faster.

Common EDA files incorporate these corners as follows:

- spef files are usually a function of interconnect corners, but temperature, voltage and process corners may also affect the parasitic values at smaller nodes.
- .spice files usually incorporate a specific combination of interconnect and transistor corners, but temperature and voltage are continuously variable.
- .1ib files characterize a circuit at a full corner.
 - For standard cells, the parasitic effect is minimal, leading to the common acronym "PVT": Process/Transistor Corner, Voltage and Temperature for their lib files.
 - For macros, the parasitic effect is significant, and a lib file for one parasitic corner is not necessary applicable for others.

Note

The default extraction utility for OpenLane, OpenROAD OpenRCX, only accounts for the interconnect corner.

Default Flow Configuration

In its current state, the default OpenLane flow allows SCLs to configure the following:

- A list of PVT-corners with names that correspond to .lib files
- A list of interconnect corners with arbitrary names that *may* correspond to any of:
 - O TECH_LEF

The sky130A/sky130_fd_sc_hd SCL, for example, comes with configurations for these corners:

• PVT: Corner data stored in LIB

Name	Process {NMOS, PMOS}	Voltage (V)	Temperature (C)	Corresponding Fi
"tt_025C_1v80"	{T, T}	1.8	25	sky130_fd_sc_hdtt_025C_
"ss_100C_1v60"	{S, S}	1.6	100	sky130_fd_sc_hdss_100C
"ff_n40C_1v95"	{F, F}	1.95	-40	sky130_fd_sc_hdff_n40C

• Interconnect: Corner data stored in TECH_LEFS and RCX_RULESETS

Name	Description	Corresponding Technology LEF	Corresponding Rules
"nom"	The nominal interconnect corner	sky130_fd_sc_hdnom.tlef	rules.openrcx.sky130A.nom.c
"min"	The minimal interconnect corner	sky130_fd_sc_hdmin.tlef	rules.openrcx.sky130A.min.c
"max"	The maximum interconnect corner	sky130_fd_sc_hdmax.tlef	rules.openrcx.sky130A.max.c

As a user, you are free to override these values as you would any other PDK/SCL variables, however, it is your responsibility to keep the consistent.

Copyright © 2020-2023 Efabless Corporation and contributors Made with Sphinx and @pradyunsg's Furo