sine basis 02

Design matrix

Statistics: p-values adjusted for search volume

set-level				peak-level					mm mm mm		
рс	P _{FWE-corrFDR-c}	corr E puncorr	p _{FWE-c}	g orrFDR-co	<i>T</i> orr	$(Z_{_{\equiv}})$	$p_{ m uncorr}$			11111	
	1.000 0.505 1.000 0.431 1.000 0.567 1.000 0.345	17 0.194 23 0.134 14 0.236 29 0.096	1.000 1.000 1.000 1.000 1.000	0.638 0.665 0.667 0.667 0.739 0.667	2.94 2.91 2.90 2.90 2.76 2.90	2.92 2.90 2.89 2.88 2.75 2.88	0.002 0.002 0.002 0.002 0.003 0.002	50 -30 -2 -16 -18 30	-72 -22 -20 -64 -72 -60	26 32 16 56 62 -40	
	1.000 0.345 1.000 0.711 1.000 0.627 1.000 0.577 1.000 0.422	7 0.403 11 0.293 13 0.253	1.000 1.000 1.000 1.000 1.000	0.670 0.670 0.675 0.678 0.686 0.800	2.89 2.88 2.87 2.87 2.85 2.69	2.88 2.87 2.86 2.85 2.84 2.68	0.002 0.002 0.002 0.002 0.002 0.004	18 -20 22 20 6 0	-28 -26 -52 -70 -36 -30	32 48 30 -38 -6	
	1.000 0.577 1.000 0.687 1.000 0.741 1.000 0.612 1.000 0.552 1.000 0.780 1.000 0.683 1.000 0.438	8 0.370 6 0.440 12 0.272 15 0.221 5 0.484 16 0.207 8 0.370	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.705 0.705 0.705 0.705 0.720 0.725 0.732 0.732 0.733 0.739	2.83 2.82 2.82 2.80 2.79 2.78 2.77 2.76	2.81 2.81 2.80 2.78 2.77 2.76 2.75 2.75	0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003	-44 -16 -32 -38 -20 -6 -10 -38 -48 -34	-10 -48 -48 -42 -16 -16 -8 -28 -6 -46	48 -32 -30 -34 22 0 18 38 36 0	