C0544

Tutorial 01

$$= \chi_{1}\omega_{1} + \chi_{2}\omega_{2} - 1.5\omega_{0} + \Delta$$

$$= \chi_{1} \times 1 + \chi_{2} \times 1 - 1.5(-1.5) \text{ NO}$$

$$= \chi_{1} + \chi_{2} + 2.25 \text{ NO}$$

$$= \chi_{1} + \chi_{2} - 2.55$$

$$= \chi_{1} + \chi_{2} + 2.25$$

①
$$x_1 w_1 + x_2 w_2 + w_0$$

= $x_1(1) + x_2(1) - 1.5$
= $x_1 + x_2 - 1.5$

Perceptron rule: $\chi_1 + \chi_2 - 1.5 > 0$ & $\chi_1 + \chi_2 - 1.5 \leq 0$ Prediction = 1

Let's substitute values of AND gate

AND Gata

ROWI

$$x_1 = 0$$
, $x_2 = 0$
 $0 + 0 - 1.5$ $x_0 \rightarrow x$. Prediction = 0

Row 2

$$x_1 = 0$$
, $x_2 = 1$
 $0 + 1 - 1.5 = -0.5 < 0 \rightarrow .$ prediction z 0

ROW 3 xy= f x2 20

Row 4

As shown about Bubshirthing each inputs of A and B to 24 & 22 gives the same output as the AND gate.

So the give perceptron model can be used to achieve an AND gate.

$$\omega = (0,0) + 0.1 \times (1-0) \times (1,0)$$

$$= (0,0) + (0.1,0)$$

$$^{2}(0.1,0)$$

$$^{2}(0.1,0)$$

$$00. 2 + 0.1 \times (1,0) = 0.1$$

Applying to d1, d2, d3 & d4 $d_1 \Rightarrow 0.1 \times 0 + 0 \times 0 + 0.1 = 0.1 \times 0.5$ $d_2 \Rightarrow 0.1 \times 0 + 0 \times 1 + 0.1 = 0.1 \times 0.5$ $d_3 \Rightarrow 0.1 \times 1 + 0 \times 0 + 0.1 = 0.2 \times 0.5$ $d_4 \Rightarrow 0.1 \times 1 + 0 \times 1 + 0.1 = 0.2 \times 0.5$ $d_4 \Rightarrow 0.1 \times 1 + 0 \times 1 + 0.1 = 0.2 \times 0.5$ $d_{20} \times 0.1 \times 1 + 0.1 + 0.1 = 0.2 \times 0.5$

consider d4

$$\omega = (0,0) + 0.1 \times (1-0) \times (1,1)$$

$$= (0.180.1)$$

w. 2 0 + 0.1 x (1-0) 2 0.1

Applyind to da, dz, d3 & d4

d₁ ⇒ 0.1×0 +0.1×0 +0.1 ≥ 0.1 <0.5

d2 = 0.1x0+0.1x1+0.1=0.2 <0.5

 $d_3 \Rightarrow 0.1 \times 1 + 0.1 \times 0 + 0.1 \Rightarrow 0.2 \angle b.5$ $4 = 0.1 \times 1 + 0.1 \times 0 + 0.1 \Rightarrow 0.2 \angle b.5$

Q4 ⇒ 0.1 × 1+0.1×1 + 0.1 2 0.3 < 0.5

Take this set as the final $\omega = (0.1, 0.1)$ $\omega_0 = (0.1, 0.1)$

```
nº2 Again de, de & da are miss classified.
    Consider de
     w= (0.1,0.1) + 0.1x(1-0)x(0,1)
       = (o.1, o.1) + (o, o.1)
        2(0 11,0.2)
    0002011+0.1x(1-0)20.2
     Applying to de, d2, d3 & d4
      di=) 0.1x0+0.2x0+0.220.02 C0.5
               1d20 V
      de = 0.1 x 0 + 0.2 x 1 + 0.2 2 0.4 60.5
                             Y20 X
      d3-) 0.1x1+0.2x0+0.2 2013-20.5
                           y 2 0 X
      04=01x1+0.2x1+0.2 =0.5 >0.5
      Consider d3
       \omega = (0.1, 0.1) + (0.1 \times (1-0) \times (1,0)
         = (0.2,0.1)
       wo 20.2
     Applying to de, de, de, de,
     d1 = 0.2 x 0 + 0.1 x 0 + 0.2 2 0.2 L0.5
                           Y20 V
     d2 => 0.2 x 0 + 0.1 x 1 + 0.7 = 0.3 < 0.5
     d3 => 0.2 ×1+0.1 ×0+0.2 = 0.4 L0.5
                             Y 20 X
```

*0.2x1+0.1x1+0.2 = 0.5 / 0.5

Scanned by TapScanner

consider d_{4} $\omega = (0.1, 0.1) + 0.1x (1-0)x(1,1)$ 2(0.2, 0.2) $\omega_{0.2} = 0.2$

Applying to d₁, d₂, d₃ & d₄ $d_1 \Rightarrow 0.2 \times 0 + 0.2 \times 0 + 0.2 = 0.2 \angle 0.5$ $Y = 0 \quad V$ $d_2 \Rightarrow 0.2 \times 0 + 0.2 \times 1 + 0.2 = 0.4 \angle 0.5$ $Y = 0 \times 0.2 \times 1 + 0.2 \times 0 + 0.2 = 0.4 \angle 0.5$ $Y = 0 \times 0.2 \times 1 + 0.2 \times 0 + 0.2 = 0.4 \angle 0.5$ $Y = 0 \times 0.2 \times 1 + 0.2 \times 1 + 0.2 = 0.6 \times 0.5$ $Y = 0 \times 0.2 \times 1 + 0.2 \times 1 + 0.2 = 0.6 \times 0.5$ $Y = 0 \times 0.2 \times 1 + 0.2 \times 1 + 0.2 = 0.6 \times 0.5$ $Y = 0 \times 0.2 \times 1 + 0.2 \times 1 + 0.2 = 0.6 \times 0.5$ $Y = 0 \times 0.2 \times 1 + 0.2 \times 1 + 0.2 = 0.6 \times 0.5$

Take this set as the final on this step $\omega = (0.2, 0.2)$ $\omega = 0.2$

Now only de and de are miss classified.

 $N = \frac{3}{3} consider d2$ $\omega = (0.2, 0.2) + 0.1 \times (1-0) \times (0, 1)$ $\omega = (0.2, 0.2) + 0.1 \times (1-0) \times (0, 1)$ $\omega = (0.2, 0.2) + 0.1 \times (1-0) \times (0, 1)$ $\omega = (0.2, 0.2) + 0.1 \times (1-0) \times (0, 1)$ $\omega = (0.2, 0.2) + 0.1 \times (1-0) \times (0, 1)$ $\Delta_1 \Rightarrow 0.2 \times 0 + 0.3 \times 0 + 0.3 \times 0 + 0.3 \times 0.3 \times 0.3$ $\Delta_2 \Rightarrow 0.2 \times 0 + 0.3 \times 1 + 0.3 \times 0 + 0.3 \times 0.5$ $\Delta_2 \Rightarrow 0.2 \times 1 + 0.3 \times 1 + 0.3 \times 0.5$ $\Delta_3 \Rightarrow 0.2 \times 1 + 0.3 \times 1 + 0.3 \times 0.5$ $\Delta_4 \Rightarrow 0.2 \times 1 + 0.3 \times 1 + 0.3 \times 0.5$

When (w = (0,2,0.3) and 00,20.3 all the predicted outputs are correctly classified. So we can take, $w_1 = 6.2$ 4 5 $w_2 = 0.3$ and $w_0 = 20.3$

Round	Missclassified	1					,	
0	Record de, de, d4	100	102	600	di	do	d3	d4
		-	0	0	0	0	0	0
	d2, d3, d4	0.1	0.1	0.1	0.10	0.2	0.2	0.3
2	d_2, d_3	0.2	0.2	0-2	0.2			
3		0.2	0.3	- m	X Com	0.4	0.4	0.6
		V 1.8 X		6.3	0.3	0.6	0.5	0.8
		He a .A	ina Isa	4	10 - el	2 211	11- 3	7

(002502)

(8 9 1 -0)

(India) / (a-I) / ia de la sassa de la sas

ph & philipping A

ENGRED TO A SEE OF CARROLLES

as objects

Ment config des confide des consentrations de photos de la lace de lace de la lace de lace de

Scanned by TapScanner