FÍSICA 4

SEGUNDO CUATRIMESTRE 2013

Guía 8: Oscilador armónico, Pozos de Potencial en una dimensión

1. Considere el siguiente potencial (pozo infinito):

$$V(x) = \begin{cases} 0 & |x| \le a/2\\ \infty & |x| > a/2 \end{cases}$$

donde a es una constante y representa el ancho del pozo.

- a) Halle las autofunciones de \hat{H} y los niveles de energía de una partícula de masa m.
- b) Grafique φ_1 , φ_2 , φ_3 y φ_4 y sus módulos al cuadrado, donde las φ_i son las funciones de onda de los primeros cuatro estados de la partícula.
- c) Calcule la probabilidad de encontrar a la partícula en el intervalo (0, a/4) para estos cuatro autoestados.
- d) Calcule $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$, Δx , Δp y $\Delta x \Delta p$ para los mismos cuatro estados.
- *e*) Calcule y grafique la probabilidad de que la partícula tenga momento lineal *p* para el primer autoestado y para uno de *n* grande.
- f) Escriba una expresión general para $\psi(x,t)$.
- 2. Sea el potencial:

$$V(x) = \begin{cases} -\infty & x < 0 \\ -V_0 & 0 < x < a \\ 0 & x > a \end{cases}$$

Encuentre las autofunciones de \hat{H} y una ecuación para sus autovalores, para E < 0.

3. Sea el potencial:

$$V(x) = \begin{cases} -V_0 & 0 < |x| < a \\ 0 & |x| > a \end{cases}$$

 $\cos a > 0$. Encuentre las autofunciones de H y una ecuación para sus autovalores para E < 0. Compare con el problema anterior.

4. Sea el potencial:

$$V(x) = \begin{cases} \infty & |x| > b \\ V_0 & a < |x| < b \\ 0 & |x| < a \end{cases}$$

a, b y $V_0 > 0$. Hallar las ecuaciones de autovalores y escriba las funciones de onda correspondientes para los casos:

- a) $0 < E < V_0$
- b) $E > V_0$
- 5. Para el potencial del ejercicio 3 pero esta vez con E > 0, halle los coeficientes de reflexión y de transmisión.
- 6. Sea el potencial:

$$V(x) = \begin{cases} V_0 & |x| \le a \\ 0 & |x| > a \end{cases}$$

a > 0. Halle los coeficientes de reflexión y transmisión para los siguientes rangos de energía de la partícula:

1

- a) $0 < E < V_0$
- b) $E > V_0$.

Discuta físicamente los resultados hallados.

7. Analice en cuáles de los siguientes potenciales existe al menos un estado ligado. Para aquéllos en donde los haya, realice gráficos cualitativos de las autofunciones de \hat{H} para varios valores de energía.

8. Dados los siguientes gráficos de autofunciones de \hat{H} , haga un diagrama cualitativo de los potenciales unidimensionales que las producen, marcando en cada caso una línea horizontal para la energía del sistema e indicando de qué nivel se trata (tome al estado fundamental como n=1).

- 9. Sea un oscilador armónico con Hamiltoniano $H = p^2/2m + (m\omega^2/2)x^2$. Hallar β para que $\phi_0 = A_0 \exp(-\beta x^2)$ sea autofunción de \hat{H} . ¿Cuál es la energía de este estado? ¿Qué argumentos usaría para demostrar que es el estado fundamental?
- 10. Proponiendo que $\phi(x) = h(x) \exp(-\beta x^2)$ es autofunción del hamiltoniano del oscilador armónico \hat{H} , hallar la ecuación diferencial que debe satisfacer h(x). Muestre que h(y) = y y $h(y) = (1 2y^2)$ con $y \equiv \sqrt{2\beta}x$ son soluciones con autovalores $3\hbar\omega/2$ y $5\hbar\omega/2$. Grafique la probabilidad de hallar la partícula en función de x y compare con el caso clásico. ¿Qué puede decir respecto de la paridad de las autofunciones de \hat{H} ?
- 11. Calcule para el estado fundamental del oscilador armónico: $\langle \hat{T} \rangle$, $\langle \hat{V} \rangle$, $\langle \hat{H} \rangle$, $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$ y $\Delta x \Delta p$.
- 12. Considere un pozo infinito unidimensional de ancho a que en un momento dado se expande súbitamente hasta duplicar su ancho (*i.e.* pasa de [0,a] a [0,2a]). La partícula que hay dentro, antes de la expansión se encuentra en el estado fundamental. Se pide:

2

- a) Un gráfico del perfil de la función de onda en el instante inmediatamente posterior a la expansión, las nuevas autoenergías del hamiltoniano y los correspondientes períodos de oscilación (los períodos de oscilación de las autofunciones asociadas a cada energía).
- b) El tiempo que debe dejarse transcurrir para poder restaurar el pozo a su anchura original, de modo tal que la función de onda vuelva a ser la correspondiente al estado fundamental del pozo de lado a.
- c) Suponiendo que la función de onda del pozo expandido puede aproximarse por sus dos componentes de más baja energía, calcular en función del tiempo la probabilidad de encontrar a la partícula en la mitad nueva del pozo (o sea, entre a y 2a).
- 13. Sea una partícula de masa m en un pozo de potencial infinito de ancho a centrado en el origen. En t=0 el estado del sistema es $\psi(x) = \sum_{n=1}^{\infty} c_n \varphi_n(x)$, donde las $\varphi_n(x)$ son las autofunciones de \hat{H} .
 - a) ¿Cuál es la probabilidad P de que una medición de la energía de la partícula, efectuada en un instante t cualquiera, dé un resultado mayor que $5E_1$, siendo E_1 la energía del estado fundamental? Si P=0, ¿cuáles coeficientes deben ser cero y cuáles no?
 - b) Si solo c_1 y c_2 son distinctos de cero, normalizar la función de onda a t=0 en función de ellos y calcular el valor medio de la energía en este estado. ¿Cuánto deben valer $|c_1|^2$ y $|c_2|^2$ para que sea $\langle H \rangle = 2,5E_1$? Si además $\langle \hat{x} \rangle = a/8$, calcular la fase de c_2 si c_1 es real y positivo.
 - c) Calcular $\varphi(x)$ y $\langle \hat{x} \rangle$ para un tiempo t.
 - d) Calcular $\langle \hat{p} \rangle$ para todo tiempo por dos métodos: directamente y usando el teorema de Ehrenfest.