

Presentation: V. Vijayarajan, Associate Professor of School of Computing Science and Engineering,

VIT University

Courtesy for Presentation (Edited): Yaser Abu Mostafa, Professor of Electrical Engineering and Computer Science, Caltech

The Learning Problem

Today's Agenda:

- Examples of Machine Learning
- Components of Learning
- A Simple Model
- Types of Learning

The Learning Problem

Essene of machine learning:

• Without data no business of taking about Machine Learning

• A pattern must exists in data

• We cannot pin it down mathematically

Components of learning

Metaphor: Credit Approval

Applicant Information:

age	23 Years
gender	male
annual salary	Rs. 30,000
years in residence	1 year
years in job	1 year
current dept	Rs. 15,000

Approve credit?

The Learning Problem

Essene of machine learning: (Confirmation)

- A pattern exists
- We cannot pin it down mathematically
- We have data on it

Components of Learning

Formalization:

- Input: x (customer application)
- Output: y (good/bad customer)
- Target function: $f: X \rightarrow Y$ (ideal credit approval formula)
- Data: (X_1, Y_1) , (X_2, Y_2) , (X_N, Y_N) (historical records)
 - **1 1**
- Hypothesis: $g: X \rightarrow Y$ (formula to be used)

Solution Components:

The 2 solution components of the learning problem

• The Hypothesis set

$$\mathcal{H} = \{h\} \qquad g \in \mathcal{H}$$

• The Learning Algorithm

Together, they are referred to as the learning model

A simple hypothesis set – the 'perceptron':

For input $x=(x_1, x_2, ..., x_d)$ attribute of a customer

Approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$

Deny credit if
$$\sum_{i=1}^{d} w_i x_i < \text{threshold}$$

This linear formula $h \in \mathcal{H}$ can be written as

$$d$$

$$\mathbf{A}(x) = sign \left(\sum_{i=1}^{n} \mathbf{w}_i x_i - threshold \right)$$

A simple hypothesis set – the 'perceptron':

d

$$\mathbf{A}(\mathbf{x}) = \operatorname{sign} \left(\left(\sum_{i=1}^{\mathbf{w}_i} \mathbf{x}_i \right) + \mathbf{w}_0 \right)$$

Introduce an artificial co-ordinate $x_0=1$:

$$\mathbf{A}(\mathbf{x}) = \operatorname{sign} \left(\sum_{i=0}^{d} \mathbf{w}_{i} \mathbf{x}_{i} \right)$$

In vector form, the perceptron implements

$$\mathbf{h}(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w}^{\mathrm{T}}\mathbf{x}\right)$$

'linearly separable' data

A simple learning algorithm PLA:

The perceptron implements

$$\mathbf{h}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathrm{T}}\mathbf{x})$$

Given the training set:

$$(x_1,y_1), (x_2,y_2), \dots (x_N,y_N)$$

pick a misclassified point:

sign
$$(w^T x_n) \neq y_n$$

and update the weight vector

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_n \mathbf{x}_n$$

Iterations of PLA:

• One iteration of the PLA:

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{y}_{n} \mathbf{x}_{n}$$

where (x, y) is a misclassified training point

• At iteration t = 1, 2, 3, pick a misclassified point from

$$(x_1,y_1), (x_2,y_2), \dots (x_N,y_N)$$

and run a PLA iteration on it.

• That's it!

Basic premise of learning

"using a set of observations to uncover an underlying process"

broad premise ⇒ many variations

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Reinforcement learning

```
Instead of (input,correct output), we get (input,some output,grade for this output)
```

- Multilayer Perceptron Neural Networks (MLP)
- Radial Basis Function Networks (RBFN)
- Support Vector Machines (SVMs)
- Single Decision Tree (SDT)
- Decision Tree Forests (DTF)
- Deep Learning
- Transfer Learning

14-01-2020 18

Biologically Inspired Learning Algorithms for Classification

- Mathematical optimization is the selection of the best solution from an available set of alternatives.
- Optimization functions are generally
 - a) Convex function having unique minimum and hence converge faster
 - b) Non Convex function having many local minima and hence stuck in local minima without converging to global minima
- The following statements are true about the convex minimization problem:
 - a) if a local minimum exists, then it is a global minimum.
 - b) the set of all (global) minima is convex.
 - c) for each strictly convex function, if the function has a minimum, then the minimum is unique.
- Global Optimization is a NP complete problem and heuristic approaches like Genetic Algorithms (GA), Particle Swarm Optimization and Simulated Annealing have been used to provide near optimum solutions for non-convex optimization problems.
- Some of the existing biologically inspired optimization algorithms are:
 - a) Genetic Algorithm (GA)
 - b) Particle Swarm Optimization (PSO)
 - c) Bee Colony Optimization (BCO)

My Inspirational Research Quote for ever is: "It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong"