ZASADY ZALICZENIA PRZEDMIOTU SYSTEMY ODPORNE NA BŁĘDY PROJEKT

mgr inż. Michał Młodawski

Katedra Systemów Informatycznych PŚk

- 1. Obecność na zajęciach projektowych jest obowiązkowa.
- 2. Od studenta oczekuje się pracy nad projektem przez cały semestr i systematyczne przedstawianie postępów na zajęciach projektowych prowadzącemu.
- 3. Oceniane będą następujące elementy:
 - a. Sprawozdanie, które powinno zawierać elementy takie jak:
 - I. Temat pracy,
 - II. Nazwiska autorów,
 - III. Opis użytych technologii,
 - IV. Opis zastosowanych algorytmów,
 - V. Diagramy głównych klas,
 - VI. Diagramy przypadków użycia,
 - VII. Przedstawienie działania aplikacji w formie zrzutów ekranu,
 - VIII. Wnioski
 - b. Działanie programu i spełnienie założeń projektowych,
 - c. Znajomość projektu
- 4. Łączna liczba punktów sumuje się do 100. Ocena końcowa zależna jest od łącznej liczby uzyskanych punktów:
 - a. 0-49 punktów 2,0 niedostateczny,
 - b. 50-59 punktów 3,0 dostateczny,
 - c. 60-69 punktów 3,5 dostateczny plus,
 - d. 70-79 punktów 4,0 dobry,
 - e. 80-89 punktów 4,5 dobry plus,
 - f. 90–100 punktów 5,0 bardzo dobry
- 5. Link do repozytorium z plikami projektu i historią zmian na e-mail prowadzącego dydaktyka@pm.me z tematem S_SOnB_PO_NUMER-TEMATU_GRUPA_NAZWISKO.
- 6. W razie wykrycia plagiatu praca zostanie oceniona na zero punktów bez możliwości poprawy.
- 7. Student przed rozpoczęciem kursu ma obowiązek zapoznać się z instrukcją BHP obowiązującą w laboratorium i poświadczyć to na piśmie.
- 8. Dopuszczalne jest odstąpienie od niniejszych reguł w uzasadnionych przypadkach (zaświadczenia o niepełnosprawności, okres rekonwalescencji, itp.), tylko za obustronnym porozumieniem osób zainteresowanych i prowadzącego. Jednakowoż

- niedopuszczalne jest ograniczenie zakresu materiału, którego opanowanie w ramach zajęć określone jest w karcie przedmiotu.
- 9. W sprawach nieuregulowanych niniejszymi zasadami zastosowanie mają ogólnie obowiązujące przepisy, w szczególności Regulamin Studiów i ogólnie przyjęte zasady.

ORGANIZACJA ZAJĘĆ PRZEDMIOTU SYSTEMY ODPORNE NA BŁĘDY

- 1. Wychodzenie z sali dozwolone jest tylko po zgłoszeniu prowadzącemu.
- 2. Na laboratoriach obowiązuje zakaz spożywania posiłków i napojów.
- 3. Okrycia wierzchnie należy pozostawić w szatni.
- 4. Plecaki, czy torby należy umieścić w miejscu nie przeszkadzającym w chodzeniu.
- 5. Podczas laboratorium należy zachować ciszę. Konwersację z innymi członkami zespołu należy prowadzić, tak aby nie zakłócić ciszy
- 6. Na każdych zajęciach sprawdzana jest lista obecności.
- 7. Instrukcje laboratoryjne umieszczane są pod adresem: achilles.tu.kielce.pl lub github.com/SimpleMethod/PSK-SemestZimowy
- 8. Literatura podstawowa i uzupełniająca podana jest w karcie przedmiotu

WYMAGANIA PROJEKTOWE PRZEDMIOTU SYSTEMY ODPORNE NA BŁĘDY

- 1. Projekt powinien wykorzystywać system kontroli wersji Git i być umieszczony w repozytorium do którego prowadzący ma dostęp,
- 2. Dopuszcza się wykorzystanie dowolnego języka programowania,
- 3. Komunikacja powinna być oparta o TCP/IP lub pamięci dzielonej z wykorzystaniem semaforów lub innym rozwiązaniem umożlwiającym komunikację w czasie rzeczywistym pomiędzy elementami systemu,
- 4. Każdy element systemu powinien działać jako osobny wątek, proces, program,
- 5. Celem projektu jest wierne zasymulowanie działania algorytmu, a nie jego implementacja. Niedopuszczalnym jest użycie gotowych bibliotek implementujących rozwiązanie lub jego część.
- 6. Program powinien posiadać interfejs graficzny umożliwiający:
 - a. Monitorowanie pracy poszczególnych elementów systemu,
 - b. Możliwość wprowadzania usterki i jej usuwania w poszczególnych elementach systemu,
 - c. Możliwość wprowadzania nowych wartości do systemu
- 7. Program powinien mieć funkcjonalność wstrzykiwania minimum 3 różnych rodzajów błędów do każdego elementu systemu, nawet do elementów, które nie tolerują danego rodzaju błędu.

TEMATY PROJEKTÓW 2021/2022

Numer	Temat	Opis
1	Paxos głosowanie	Zastosowanie algorytmu Paxos do głosowania nad wartością. System powinien składać się z 8 serwerów z
		zdefiniowanym liderem, algorytm ma na celu porozumiewanie się pomiędzy elementami systemu i ustalenie na
		drodze głosowania wspólnej wartości, a następnie jej zwrócenie.
2	Paxos wybór lidera	Algorytm paxos wybiera lidera pośród dostępnych serwerów i aktualizuje wartość. System powinien składać się z 6
		serwerów. Należy zapewnić możliwość wykrycia uszkodzonego lidera i wybór nowego.
3	RAID	Symulacja macierzy dyskowych typu RAID0, RAID1, RAID3 złożonych z 4 symulowanych dysków, zawierających co
		najmniej 128 sektorów o pojemności co najmniej 32 bajtów każdy. Symulacja pracy pod obciążeniem (losowym) i
		tworzenie statystyk obciążenia poszczególnych dysków.
4	CRC	Symulacja pracy 10 komputerów połączonych ze sobą w kształt grafu. Pomiędzy wybranymi przez użytkownika
		węzłami można przesyłać informacje zabezpieczone kodem CRC o długości 16 bitów (dowolny wielomian
		wprowadzany przez użytkownika). Symulacja błędów wielokrotnych.
5	Głosowanie przybliżone	Symulacja pracy 8 serwerów czasu (co najmniej godzina, minuta i sekunda) połączonych w topologii gwiazdy z
		centralnym komputerem, wyznaczającym w drodze głosowania przybliżonego o najbardziej prawdopodobny czas.
		Możliwość ustawienia wag (przez użytkownika) dla każdego komputera satelitarnego z osobna.
6	Wykrywanie błędów	System składający się z 8 serwerów połączonych w graf. Serwer nadzorujący wysyła 16 bitową informacje
	kodem Bergera	zabezpieczoną kodem korekcyjnym Bergera.
7	Nadmiarowość TMR	Symulacja działania pamięci dzielonej w układzie TMR. Symulacja oparta o 6 serwerach
8	Nadmiarowość TMR	Symulacja wykonywania obliczeń w układzie TMR. Symulacja oparta o 6 serwerach
9	Zatwierdzenie	System powinien składać się z 6 serwerów oraz koordynatora. System powinien aktualizować wartość i ją zwracać.
	dwufazowe	
10	Korekcja błędów	System składający się z 8 serwerów połączonych w graf. Serwer nadzorujący wysyła 16 bitową informacje
	Hamminga	zabezpieczoną kodem korekcyjnym Hamminga.
11	Korekcji błędów	System składający się z 4 serwerów połączonych w graf. Lider wysyła wiadomość w formie 16 znakowego
		komunikatu do pozostałych serwerów z dodaniem korekcji błędów Reeda-Solomona. Jeżeli wiadomość będzie zbyt
	Reeda-Solomona	uszkodzona i suma kontrolna nie będzie się zgadzać, wówczas klient wysyła żądanie o retransmisję danych.
		Projekt powinien mieć możliwość ustalenie stopnia uszkodzenia wiadomości na każdej ze ścieżek.