SC1004 Part 2

Lectured by Prof Guan Cuntai (teaching materials by Prof Chng Eng Siong)

Email: ctguan@ntu.edu.sg

Quiz 2 and Exam:

1. Quiz 2

- Coverage: Ch 6,7,8

- Time/Date: Week 13, last lecture time (10:30-11.20am, 17th April

2024)

2. Final Exam

- Coverage : Ch 6, 7, 8 (Q3 & Q4)

- Date/Time: 2 May 2024 (Thursday), 1.00-3.00pm

(Ch 9 will not be tested)

Syllabus for Part 2

Chapte r	Topics	Week (Lecture)	Week (Tut)
6	Orthogonality	8-9	9-10
7	Least Squares	9-10	10-11
8	EigenValue and Eigenvectors	11-12	12-13
9	Singular Value Decomposition (SVD)	13	

Table 1: schedule

Online Video learning Schedule

https://www.youtube.com/channel/UCBzG5jg3huxiPkCt-Serrjw

Week	Part	Topic	Notes
8	6.1.1-6.2.3	Orthogonality, Normalization, Dot-Product, Inequalities,	Lecture 1: 6.1.1 - 6.1.3 Lecture 2: 6.1.4 - 6.2.3
9	6.2.4-6.3.2	Orthogonal/Orthonormal Sets, Basis, Gram Schmidt and QR Decomposition	Lecture 3: 6.2.4 Lecture 4: 6.2.5 – 6.3.2
10	7.1.1-7.2.1	Least Squares and Normal Eqn, Projection Matrix, Applications	Lecture 5: 7.1.1 – 7.1.3 Lecture 6: 7.1.4 – 7.2.1
11	8.1.1-8.1.2	Eigenvectors, Eigen-values, Characteristics Eqn	Lecture 7: 8.1.1 Lecture 8: 8.1.2
12	8.1.3-8.1.5	Diagonalisation, Power of A, Change of basis	Lecture 9: 8.1.3 Lecture 10: 8.1.4 – 8.1.5
13	9.1.1-9.2	Introduction to SVD and PCA (Not examined in quiz/exam)	Lecture 11: 9.1.1 – 9.2 Lecture 12: Quiz 2

How will we conduct the course?

- 1) Before the lectures, watch the videos according to the schedule in Table 1
 - You can watch past years zoom video recordings at https://www.youtube.com/@linearalgebra1884/playlists?view=50&sort=dd&shelf_id=2

- 2) During lecture hours
 - We will summarize the lectures and highlight the key points
 - Q&A.

References

Linear Algebra and Its Applications by David Lay, Steven Lay, Judi McDonald

3Blue1Brown on YouTube

Essence of linear algebra preview

https://www.youtube.com/playlist?list=PLZ HQObOWTQDPD3MizzM2xVFitgF8hE_ab Lecture (Week 10)

(Chapter 7.1.1-7.2.1)

Revision

<u>Key points – Ch 6: Orthogonal Projection</u>

- Project a vector to a line (1-d subspace): $\hat{y} = Proj_u y = \frac{y \cdot u}{u \cdot u} u$
- Project a vector to a subspace spanned by $\{u_1, u_2 \cdots u_p\}$:

$$\circ \widehat{\mathbf{y}} = Proj_w \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

ightharpoonup where $\{u_1, u_2 \cdots u_p\}$ is an **orthogonal** basis

 \blacktriangleright where $\{u_1, u_2 \cdots u_p\}$ is an **orthonormal** basis. U spans the subspace W.

<u>Key points – 7.1.1 Consistency in a System of Equations</u>

- Definition:
 - \circ For a linear system: Ax = b $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^n$
 - If no solution exists, it is an inconsistent system
- Explain: inconsistency happens when one of the following conditions is true
 - *b* is not in column space of *A*: *b* is not formed by linear combinations of *A*'s columns.
 - The rows of A are dependent, but their corresponding b values are not consistent.
 - Rank (A) < Rank (A|b): rank of A is less than that of the augmented matrix.
- In most cases, inconsistency occurs when $M \gg N$ (over-determined), where there are more equations than unknowns.

Example of an inconsistent system

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 4 & 6 \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} 3 \\ 2 \\ 6 \end{bmatrix}$$

<u>Key points – 7.1.2 The Least Square Problem</u>

Definition

o If there is no solution for system: Ax = b, we can find an \hat{x} , which is the closet approximation: $A\hat{x} = \hat{b}$, such that $||A\hat{x} - b|| < ||Ax - b||$

• Explain:

- Columns of A spans a subspace W
- \circ $\hat{b} = A\hat{x}$ is the linear combination of columns of A, so \hat{b} is in subspace W
- o If $\hat{\boldsymbol{b}}$ is the orthogonal projection of \boldsymbol{b} onto W, then $||A\hat{\boldsymbol{x}} \boldsymbol{b}|| = ||\hat{\boldsymbol{b}} \boldsymbol{b}||$ (residual) is orthogonal to W
- \circ So, $||A\hat{x} b||$ is the least distance from **b** to W

- Recall 6.5.2 (see graph above) Best Approximation Theorem : $||y \hat{y}|| < ||y v||$
 - $\mathbf{v} = \mathbf{b}$
 - $\hat{y} = \hat{b}$
 - v (red color) is an any vector in W

Key points – 7.1.3 Norm Equation (LS Solution)

- Definition
 - o From Ax = b, define "normal equation": $A^T A \hat{x} = A^T b$

$$A = [\mathbf{a_1} \quad \mathbf{a_2} \quad \cdots \quad \mathbf{a_i} \quad \cdots \quad \mathbf{a_n}]$$
$$A \in R^{m \times n}, \mathbf{a_i} \in R^m$$

- Explain
 - O Since Ax = b does not have a solution (b is not a linear combination of columns of A), we project b to W spanned by the columns of A as \hat{b} :

$$A\widehat{x} = \widehat{b}$$

which has a solution (because \hat{b} is on W)

- $b \hat{b} = b A\hat{x}$ is the residual of **b** onto **W**
- o $b A\hat{x}$ is orthogonal to all columns of A: $a_i \cdot (b A\hat{x}) = 0$
- o Use matrix form: $a_i \cdot (b A\widehat{x}) = a_i^T (b A\widehat{x}) = 0$, for all $i = 1, \dots, n$

o Finally:
$$\begin{bmatrix} a_1^T \\ \vdots \\ a_n^T \end{bmatrix} (\boldsymbol{b} - A\widehat{\boldsymbol{x}}) = \mathbf{0} \Rightarrow A^T (\boldsymbol{b} - A\widehat{\boldsymbol{x}}) = 0 \Rightarrow A^T A\widehat{\boldsymbol{x}} = A^T \boldsymbol{b}$$

o If A^TA is invertible, we get **Least-Square solution**: $\hat{x} = (A^TA)^{-1}A^Tb$

This Least-Square solution is derived from the normal equation directly.

Key points – 7.1.3 Find Least Square Solution

• Example: find least square solution using normal equation $\hat{x} = (A^T A)^{-1} A^T b$, if $A^T A$ is invertible.

o Given
$$A$$
 and \mathbf{b} : $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$

$$\circ \text{ Find } A^T A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \text{ (Invertible)}$$

$$\circ \text{ We have } (A^T A)^{-1} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}^{-1} = \frac{1}{17 \times 5 - 1 \times 1} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix}$$

$$\circ \text{ Find } A^T \boldsymbol{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

o Finally,
$$\widehat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b} = \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix} \begin{bmatrix} 19 \\ 11 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 84 \\ 168 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Invert a 2×2 matrix:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

<u>Key points – 7.1.3 Find Least Square Solution(2).</u>

• Example to find a least square solution for Ax = b. If A^TA is not invertible, using Gaussian Elimination approach.

•
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix}$$

• Following normal equation $A^T A \hat{x} = A^T b$

•
$$A^T A = \begin{bmatrix} 6 & 2 & 2 & 2 \\ 2 & 2 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix}$$
 (not invertible, rank=3), $A^T \mathbf{b} = \begin{bmatrix} 4 \\ -4 \\ 2 \\ 6 \end{bmatrix}$

• Use Gaussian elimination:
$$\begin{bmatrix} 6 & 2 & 2 & 2 & 4 \\ 2 & 2 & 0 & 0 & 2 & 4 \\ 2 & 0 & 2 & 0 & 2 & 6 \\ 2 & 0 & 0 & 2 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & -1 & -5 \\ 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_4 = 3 \\ x_2 - x_4 = -5 \\ x_3 - x_4 = -2 \end{bmatrix} \rightarrow$$

• Finally the least square solutions (infinite):
$$\hat{x} = \begin{bmatrix} 3 \\ -5 \\ -2 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Comments on Least Square Solutions (so far)

• The least-square solution: to find a solution so that $\hat{b} = A\hat{x}$ is the orthogonal projection to column space of $A \in R^{m \times n}$.

• When we have orthogonal columns in $A = [a_1, a_2, \dots, a_n]$

$$\mathbf{\hat{b}} = Proj_{w}\mathbf{b} = \frac{\mathbf{\hat{b}} \cdot \mathbf{a}_{1}}{\mathbf{a}_{1} \cdot \mathbf{a}_{1}}\mathbf{a}_{1} + \dots + \frac{\mathbf{y} \cdot \mathbf{a}_{n}}{\mathbf{a}_{n} \cdot \mathbf{a}_{n}}\mathbf{a}_{n} = \mathbf{\mathcal{A}}$$

• For any A, the least-square solution can be found using $A^T A \hat{x} = A^T b$

- If $A^T A$ is invertible (rank(A)=n), unique solution: $\hat{x} = (A^T A)^{-1} A^T b$
- If A^TA is not invertible (rank(A)<n), there are infinite solutions
 - o Is \hat{x} unique?
 - o Is \hat{b} unique?
- Visualization:
 - \circ A has three columns to form a 2-D subspace (one of the columns is a linear combination of the other two).
 - \circ \hat{b} can be a linear combination of any two or three vectors.

Visualize Least Square Solutions

 When we have orthogonal columns in $A = [a_1, a_2, \cdots, a_n]$

•
$$\widehat{\boldsymbol{b}} = Proj_{w}\boldsymbol{b} = \underbrace{\begin{pmatrix} \boldsymbol{b} \cdot \boldsymbol{a}_{1} \\ \boldsymbol{a}_{1} \cdot \boldsymbol{a}_{1} \end{pmatrix}}_{\boldsymbol{\lambda}_{1}} \boldsymbol{a}_{1} + \cdots + \underbrace{\frac{\boldsymbol{y} \cdot \boldsymbol{a}_{n}}{\boldsymbol{a}_{n} \cdot \boldsymbol{a}_{n}}}_{\boldsymbol{\lambda}_{1}} \boldsymbol{a}_{n}$$

- If A^TA is invertible (rank(A)=n), unique solution: $\widehat{x} = (A^T A)^{-1} A^T b$
 - If $A^T A$ is not invertible (rank(A)<n), there are infinite solutions

<u>Key points – 7.1.4 Projection Matrix</u>

$$\rightarrow \widehat{b} = \widehat{P}b$$

- Explain:
 - $\hat{b} = Proj_W \ b = A \hat{x}$ is the orthogonal projection of b onto a subspace W
 - o Bring in the Least Square solution $\hat{x} = (A^T A)^{-1} A^T b$ into the above equation $\hat{x} = (A^T A)^{-1} A^T b$

$$\circ \ \hat{\boldsymbol{b}} = A \ \hat{\boldsymbol{x}} = A \ (\ (A^T A)^{-1} A^T \boldsymbol{b} \) = A (A^T A)^{-1} A^T \boldsymbol{b} \ \rightarrow \ P = A (A^T A)^{-1} A^T$$

Properties of project matrix

$$\circ P^T = P$$

$$\circ \widetilde{P^N} = P \times P \times \cdots \times P = P \text{ (idempotent)}$$

$$A(A'A)A')(A(A'A)'A')$$

$$A(A'A)'A')(A'A)(A'A)'A'$$

$$I = A(A'A)'A'$$

Key points – 7.1.5 Least Square Solution Using

• Definition:

Pefinition: Recall:
$$\hat{y} = Proj_{p} \hat{y} = (y \cdot u_{1})u_{1} + \dots + (y \cdot u_{p})u_{p}$$

$$= (u_{1}^{T}y)u_{1} + \dots + (u_{p}^{T}y)u_{p} = [u_{1}u_{2} \dots u_{p}]\begin{bmatrix} u_{1}^{T}y \\ \vdots \\ u_{p}^{T}y \end{bmatrix} = [u_{1}u_{2} \dots u_{p}]$$

- \circ Given (Ax = b)
- Using QR factorization: A = QR○ So we have QRx = Qb → multiply Q^T on both sides $Q^TQRx = Q^Tb$ Since $Q^TQ = I$, we get: $Rx = Q^Tb$ → $x = R^{-1}Q^Tb$

• Explain why $x = R^{-1}Q^T b$ is a Least Square solution

- o Since $\mathbf{x} = R^{-1}Q^T\mathbf{b}$, than $A\mathbf{x} = (A(R^{-1}Q^T\mathbf{b}) = Q(R^T)Q^T\mathbf{b}) = Q(Q^T)\mathbf{b} \not\models \widehat{\mathbf{b}}$ (Orthogonal Projection of **b** onto column space of **Q** and **A**)
- \circ Recall: Q is orthonormal. Col (Q) spans the same subspace W as Col (A)
- o So, x is the least square solution.

 $\circ A^T A$ is sensitive to small errors, so QR method is often used.

<u>Key points – 7.2.1 Applications of Least Square</u>

Recall: $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$

 Least Square method is used to find a linear regression (linear curve fitting) – try to find a line which fits the discrete data points

$$y = \beta_0 + \beta_1 x$$

such that $\sum (y_i - \hat{y}_i)^2$ is minimal (\hat{y}_i is the estimated value from the linear equation $y = \beta_0 + \beta_1 x$, and β_0 , β_1 called regression coefficients)

Given p data points, the system equations are:

$$y_1 = \beta_0 + \beta_1 x_1$$

$$y_n = \beta_0 + \beta_1 x_n$$

• The least square solution: $\beta = (X^T X)^{-1} X^T y$

$$O X = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$$

FIGURE 2 The least-squares line $y = \frac{2}{7} + \frac{5}{14}x$.

Key points – 7.2.1 Applications of Least Square (2)

- Least square fitting of other curves
 - If we can use certain known functions to fit the discrete data points,

$$y = \beta_0 f_0(x) + \beta_1 f_1(x) + \dots + \beta_k f_k(x)$$

we can use least square method to find regression coefficients β_0 , β_1 , \cdots , β_k

• For data shown on the right, we could fit it with a combination of linear and quadratic functions, i.e.

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

So we can form the system equations as:

$$y_{1} = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{1}^{2} \\ \vdots \\ y_{n} = \beta_{0} + \beta_{1}x_{n} + \beta_{2}x_{n}^{2}$$

$$y_{2} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} 1 & x_{1} & x_{1}^{2} \\ \vdots & \vdots & \vdots \\ 1 & x_{n} & x_{n}^{2} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \end{bmatrix} = X\boldsymbol{\beta} \Rightarrow \boldsymbol{\beta} = (X^{T}X)^{-1}X^{T}\boldsymbol{y}$$

FIGURE 3
Average cost curve.

End

Additional notes:

- Differences between LU and QR factorization
 - C LU is applied to any square matrix, QR is applied to a matrix with independent columns
 - LU factorization produces an upper-triangle and a lower-triangle matrix
 - QR factorization produces an orthonormal matrix and an upper-triangle
 - o Find LU factorization through Gaussian elimination
 - o Find QR factorization using the Gram-Schmidt algorithm
 - o Different use cases:
 - LU factorization is used to find solutions of systems of linear equations, matrix inversion, and matrix determinant.
 - o QR factorization is used in least-squares, eigenvalue, and signal processing.