Appunti

Andreas Araya Osorio 3 June 2021

Contents

1 Insiemi

1.1 Introduzione

Definizione 1:

Un insieme è una "collezione" di oggetti.

Sia A un INSIEME, la scrittura $x \in A$ significa che x appartiene ad A. Analogamento, scrivendo $x \notin A$ si intende che x non appartiene ad A. Gli insiemi **finiti** si possono denotare all'interno di parentesi graffe " $\{,\}$ " Un qualsiasi insieme può definirsi mediante una **proprietà astratta**

Esempio 1.

$$A = \{ x \in \mathbb{N} \mid x \ pari \}$$
 (1)

Questo insieme raccoglie **tutti i numeri naturali pari** e si può meglio riscrivere così:

$$A = \{ x \in \mathbb{N} \mid \exists y \in \mathbb{N} : x = 2y \}$$
 (2)

1.2 Insiemi ed operazioni

Sia X un insieme e siano $A, B \subseteq X$

• UNIONE $A \cup B$, L'unione di A e B come l'insieme

$$A \cup B = \{ x \in X : x \in A \ o \ x \in B \}$$
 (3)

• INTERSEZIONE $A \cap B$, L'intersezione di A e B come l'insieme

$$A \cap B = \{x \in X : x \in A \ e \ x \in B \}$$
 (4)

• DIFFERENZA $A \setminus B$, che equivale a

$$A \setminus B = \{ x \in X : x \in A \ e \ x \notin B \}$$
 (5)

• COMPLEMENTARE L'insieme complementare di A in X è:

$$A^C = X \setminus A = \{x \in X : x \notin A\}$$
 (6)

Esempio 2.

Il complementare dell'unione è l'intersezione dei complementari, mentre il complementare dell'intersezione è l'unione dei complementari.

- $\bullet \ X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$
- $\bullet \ X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$

DIMOSTRAZIONE 1.

Si dice relazione da A a B ogni sottoinsieme R di $A \times B$ Se $(a, b) \in R$. a è in relazione R con b, si scrive aRb.

$$R = \{(a,b) \in \mathbb{N} \times \mathbb{N} : \exists p \in \mathbb{N} \mid a = p \cdot b \}$$
 (7)

1.3 Relazioni d'ordine

Sia $A \neq \emptyset$ un insieme non vuoto e sia $R \subseteq A \times A$ una relazione di A con A. R è:

- 1. riflessiva se $xRx \quad \forall x \in A$,
- 2. simmetrica se $xRy \rightarrow yRx$,
- 3. transitiva se $xRy \wedge yRz \rightarrow xRz$,
- 4. antisimmetrica se $xRy \wedge yRz \rightarrow x = y$.

Una **relazione d'equivalenza** è tale se è RIFLESSIVA, SIMMETRICA E TRAN-SITIVA.

Definizione 2:

Una relazione d'ordine su un insieme $X \neq \emptyset$ è detta di ordine totale se $\forall x,y \in X$ si ha $x \leq y \vee y \leq x$. Se su X c'è una relazione d'ordine totale, X è totalmente ordinato.

Definizione 3:

Sia (X, \leq) , insieme non vuoto e ordinato e sia $A \subseteq X$, $A \neq \emptyset$

- $x \in X$ è un maggiorante di A se $a \le x \ \forall a \in A$
- $y \in X$ è un **minorante** di A se $y < x \ \forall a \in A$
- A ha massimo se $\exists \lambda \in A \mid a \leq \lambda \ \forall a \in A \implies \lambda = \max A$
- A ha minimo se $\exists \mu \in A \mid \mu \leq a \ \forall a \in A \implies \mu = \min A$

Definizione 4:

Siano (X, \leq) un insieme ordinato e $A \subseteq X, A \neq \varnothing$. A ha estremo superiore se l'insieme dei maggioranti di A è non vuoto e ha minimo. supA è il più piccolo dei maggioranti. Analogamente l'estremo inferiore è presente se l'insieme dei minoranti di A è non vuoto ed esso ne è il più piccolo: infA.

Definizione 5:

Proprietà di sup e inf:

Siano (X, \leq) un insieme ordinato $e A \subseteq X, A \neq \varnothing$. SUP Si ha che $\lambda = \sup A$ se e solo se

- 1. $a \leq \lambda \quad \forall a \in A$;
- 2. $\lambda_1 \in X$, $a \le \lambda_1 \quad \forall a \in A \implies \lambda \le \lambda_1$

INF Si ha che $\mu = inf A$ se e solo se

- 1. $\mu \leq a \quad \forall a \in A;$
- 2. $\mu_1 \in X$, $\mu_1 \le a \quad \forall a \in A \implies \mu_1 \le \mu$

Definizione 6:

Siano (X, \leq) un insieme ordinato e $A \subseteq X, A \neq \emptyset$, allora:

- 1. $se\ A\ ha\ massimo,\ allora\ si\ ha\ maxA\ =\ supA$
- 2. se A ha minimo, allora si ha minA = infA

1.4 Numeri reali

Un **gruppo commutativo** e' un insieme X dotato di un'operazione binaria $*: X \times X \to X$ tale che:

- 1. PROPRIETÀ ASSOCIATIVA: $(x \star y) \star z = x \star (y \star z) \quad \forall x, y, z \in X$
- 2. Elemento neutro: $\exists e \in X \rightarrow e * x = x * e = e$
- 3. INVERSO: $\forall x \in X \quad \exists y \in X \rightarrow x * y = y * x = e$
- 4. Proprietà commutativa; $\forall x, y \in X \rightarrow x * y = y * x$

Se le prime 3 proprietà sono valide allora X e' un gruppo. Se e' valida solo la prima allora si chiama semigruppo

Definizione 7 (Campo dei numeri reali \mathbb{R}):

I 6 assiomi di completezza:

- A_1) $(\mathbb{R}, +) \to gruppo\ commutativo,\ neutro = 0$
- A_2) ($\mathbb{R} \setminus \{0\}, \cdot$) \rightarrow gruppo commutativo, neutro = 1
- A_3) $x \cdot (y+z) = x \cdot y + x \cdot z \quad \forall x, y, z \in \mathbb{R}$, proprietà distributiva

- A_4) $(\mathbb{R}, \leq) \to totalmente ordinato$
- A_5) (\leq) \rightarrow compatibile con $+ \wedge \cdot$
- A_6) $(\mathbb{R}, \leq) \to completo$

Le proprietà $A_1, \ldots, A_3 \Longrightarrow (\mathbb{R}, +, \cdot) \to campo$ Le proprietà $A_1, \ldots, A_6 \Longrightarrow (\mathbb{R}, +, \cdot, \leq) \to campo$ ordinato e completo.

Definizione 8 (Sottoinsiemi induttivi):

Un sottoinsieme $I \subseteq \mathbb{R}$ si dice **induttivo** se:

1. $1 \in I$

2.
$$x \in I \implies x+1 \in I$$

 \mathcal{F} indica la famiglia degli insiemi induttivi di \mathbb{R} :

$$\mathbb{N} \stackrel{def.}{=} \{ x \in \mathbb{R} : x \in I \forall I \in \mathcal{F} \}$$
 (8)

ℕ è per definizione l'interesezione di tutti gli insiemi induttivi

$$\mathbb{N} = \bigcap_{I \in \mathcal{F}} I \tag{9}$$

DIMOSTRAZIONE 2 (Il principio di induzione).

Se $M \subseteq \mathbb{N}$ è induttivo $\iff M = \mathbb{N}$

Dato che M è induttivo $\mathbb{N} \subseteq M \iff \mathbb{N} = M$

Questo ragionamento introduce il principio di induzione.

Definizione 9 (Il minimo di \mathbb{N}):

$$1 < n \ \forall n \in \mathbb{N} \tag{10}$$

 $Il \ min \mathbb{N} = 1$

Definizione 10 (\mathbb{Z} l'anello dei numeri interi):

$$\mathbb{Z} \stackrel{def.}{=} \mathbb{N} \cup \{0\} \cup \{-n : n \in \mathbb{N}\}$$
 (11)

 \mathbb{Z} è chiuso per somma e motliplicazione

$$n, m \in \mathbb{Z} \implies n + m, \ n \cdot m \in \mathbb{Z}$$
 (12)

Se $A \subseteq \mathbb{Z}, A \neq \emptyset$

• se A è superiormente limitato, ammette massimo \exists maxA

• se A è inferiormente limitato ammette minimo \exists minA

Definizione 11 (Q l'anello dei numeri razionali):

$$\mathbb{Q} \stackrel{def.}{=} \left\{ \frac{p}{q} : \in \mathbb{Z}, q \in \mathbb{N} \right\}$$
 (13)

Q è chiuso per somma e moltiplicazione

$$x, y \in \mathbb{Q} \implies x + y, x \cdot y \in \mathbb{Q}$$
 (14)

 $\mathbb Q$ è un campo totalmente ordinato ossia sono validi gli assiomi $A_1,\ \dots,A_5$ escluso l' A_6

1.5 Radice n-esima

Sia $n \in \mathbb{N}$ e sia $x \in \mathbb{R}, x \ge 0$.

 $y \in \mathbb{R}$ è la radice n-esima di x se $y \geq 0, y^n \ = \ x$

$$y \stackrel{\text{def.}}{=} x^{\frac{1}{n}}, \sqrt[n]{x} \tag{15}$$

Definizione 12:

Proprietà della radice n-esima: per ogni $x, y \in \mathbb{R}, x, y \geq 0$:

$$P_1 \ x^n \le y^n \iff x \le y$$

$$P_2 x^n = y^n \iff x = y$$

$$P_3 \ x^n < y \iff \exists \epsilon \in \mathbb{R}, \epsilon > 0, : (x + \epsilon)^n < y$$

$$P_4 \ x^n > y \iff \exists \epsilon \in \mathbb{R}, \epsilon > 0, : (x - \epsilon)^n > y$$

1.6 Funzioni esponenziali in $\mathbb Q$

Definizione 13:

Sia $a > 0, \ \forall x \in \mathbb{Q}$:

$$a^x := \sqrt[q]{a^p} \Rightarrow x = \frac{p}{q} , \ p \in \mathbb{Z}, q \in \mathbb{N}$$
 (16)

Se
$$x = \frac{p}{q} = \frac{m}{n} \implies np = mq$$

1.
$$a^{x+y} = a^x a^y \ \forall x, y \in \mathbb{Q}$$

$$2. \ a^x > 0 \ \forall x \in \mathbb{Q}$$

3.
$$(a^x)^y = a^{xy} \ \forall x, y \in \mathbb{Q}$$

se a > 1

$$x < y \Longrightarrow a^x < a^y \ \forall x, y \in \mathbb{Q}$$

se a < 1

$$x < y \Longrightarrow a^y < a^x \ \forall x, y \in \mathbb{Q}$$

In parole povere se la **base è minore di 1**, con un esponente maggiore (y) avremo un numero inferiore rispetto a quello di un esponente minore (x), viceversa quando avremo la **base maggiore di 1**, con esponente maggiore avremo un numero maggiore rispetto ad uno con base minore.

2 Successioni

2.1 Successioni in \mathbb{R}

Sia $X \neq \emptyset$, una qualsiasi funzione $f : \mathbb{N} \to X$ si dice: **successione in** X. In notazione si indica $\{f_n\}_{n\in\mathbb{N}}$ o f_1, f_2, \ldots, f_n f_n si chiama termine n-esimo.

 k_1, k_2, \dots, k_n è una successione di numeri naturali:

$$k_1 < k_2 < \dots < k_n < k_{n+1} < \dots \quad \forall n \in \mathbb{N}$$
 (17)

La successione $\{f_{k_n}\}$ è una sottosuccessione di $\{f_n\}$.

Il limite di una successione $\{a_n\} = l$. Vale a dire che $l \in \mathbb{R}$ è un numero vicino ai termini della successione. Esso è più precisamente un **numero reale** tale che *comunque si scelga* un intervallo di numeri intorno ad a.

$$\underbrace{(a-\epsilon,a+\epsilon)}_{\text{un intervallo attorno a }l}, \epsilon > 0 \mid \exists \underline{\overline{n}}, n > \overline{n}.$$
 (18)

 a_n si trova in questo *intorno*

Definizione 14 (Successione):

Una successione è una legge che ad ogni numero **naturale** n fa corrispondere**uno** ed uno solo numero reale a_n .

$$\{a_n\}_{n\in\mathbb{N}} = a_1, a_2, a_3, \dots, a_n$$
 (19)

Una successione è una funzione che collega degli indici n a dei numeri reali $a \in \mathbb{R}$

Definizione 15:

Se a_n tende $a \ l \in \mathbb{R}$ per $n \to \infty$, si dice che

$$\lim_{n \to \infty} a_n = l$$

$$\downarrow \qquad \qquad \downarrow$$

$$\forall \epsilon > 0, \ \exists \overline{n} : (n > \overline{n} \Rightarrow |a_n - l| < \epsilon)$$

$$\downarrow \qquad \qquad \downarrow$$

$$|a_n - l| < \epsilon$$

$$(20)$$

 $\{a_n\}$ converge ad l ed esso è il **limite** di tale **tale successione**

Esempio 3.

$$\lim_{n \to \infty} \frac{1}{n} = 0 \tag{21}$$

Ovvero

$$\forall \epsilon > 0 \exists \overline{n} : \forall n \in \mathbb{N} \left(n > \overline{n} \Rightarrow \left| \frac{1}{n} - 0 \right| < \epsilon \right)$$
 (22)

DIMOSTRAZIONE 3 (Il limite se esiste è unico).

$$\lim_{x \to \infty} a_n = l \quad \land \quad \lim_{x \to \infty} a_n = m \quad \iff \quad l = m \tag{23}$$

Esempio 4.

Poniamo per assurdo che $l \neq m$ Fissiamo $\epsilon > 0$

$$\underbrace{|a_n - l| < \frac{\epsilon}{2}}_{n > \overline{n_1}} & \underbrace{|a_n - m| < \frac{\epsilon}{2}}_{n > \overline{n_2}}$$

$$\underbrace{|a_n - m| < \frac{\epsilon}{2}}_{n > \overline{n_2}}$$

 \parallel

Ricordiamo che $|a_n - m| = |m - a_n|$

$$| -\alpha_n - l - -\alpha_n + m | |a_n - l| + |m - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (25)

 \parallel

$$|m-l| < \epsilon \implies |m-l| = 0$$
 (26)

Ma questo è assurdo perchè: $\epsilon > 0, \forall \epsilon \in \mathbb{R}$

$$m = l (27)$$

Definizione 16:

Se $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ converge ad $l\in\mathbb{R}$ ogni sua sottosuccessione $\{a_{k_n}\}_{n\in\mathbb{N}}$ converge ad l

DIMOSTRAZIONE 4 (Limiti).

Se $\{a_n\}_{n\in\mathbb{N}}$ converge $l\in\mathbb{R}$ \Longrightarrow $\{a_{k_n}\}_{k_n\in\mathbb{N}}$ converge $l\in\mathbb{R}$

Si ha che:

$$\forall \epsilon > 0 \ \exists \overline{n} \in \mathbb{N} : n > \overline{n} \implies |a_n - l| < \epsilon$$
 (28)

$$\forall \epsilon > 0 \ \exists \overline{n} \in \mathbb{N} : n > \overline{n} \implies |a_{k_n} - l| < \epsilon$$
 (29)

$$\lim_{n \to \infty} a_{k_n} = l \tag{30}$$

Esempio 5.

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \qquad \& \qquad k = 2, \lim_{k_n \to +\infty} \frac{1}{k_n} = 0 \tag{31}$$

Esercizio 1.

DIMOSTRAZIONE 5.

$$\lim_{n \to +\infty} (a_n + b_n) = l + m \tag{32}$$

$$\lim_{n \to +\infty} a_n = l \quad \& \quad \lim_{n \to +\infty} b_n = m \tag{33}$$

 $\downarrow \downarrow$

$$|a_n - l| < \frac{\epsilon}{2} \quad \text{se} \quad n > \overline{n_1}$$
 (34)

$$|b_n - m| < \frac{\epsilon}{2} \quad \text{se} \quad n > \overline{n_2}$$
 (35)

 $n > \max\{\overline{n_1}, \overline{n_2}\}$

$$|a_n + b_n - l - m| \le |a_n - l| + |b_n - m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

$$(36)$$

$$\forall \epsilon > 0, \exists \overline{n} \equiv \max\{\overline{n_1}, \overline{n_2}\} : n > \overline{n} \Rightarrow \underbrace{|(a_n + b_n) - (l + m)|}_{0} < \epsilon$$
 (37)

$$(a_n + b_n) - (l + m) = 0 (38)$$

$$a_n + b_n = l + m \tag{39}$$

DIMOSTRAZIONE 6 (Permanenza del segno).

$$\forall \epsilon > 0, \exists \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow \underbrace{|a_n - l < \epsilon|}_{l - \epsilon < a_n < l + \epsilon \quad \forall n > \overline{n}}$$

$$\tag{40}$$

$$\epsilon = |l|$$

Da questo otteniamo che

$$\underbrace{l-|l|}_{0} < a_n < \underbrace{l+|l|}_{2l} \tag{41}$$

In conclusione avremo che:

se
$$l > 0 \Rightarrow a_n > 0$$

se $l < 0 \Rightarrow a_n < 0$

Definizione 17 (Teorema dei 2 carabinieri):

Se
$$\underbrace{\{a_n\},\{b_n\}}_{convergono\ a}$$
, $\{c_n\}$

è ovvio che:
$$a_n \le c_n \le b_n \implies c_n converge \ a \ l$$
 (42)

DIMOSTRAZIONE 7.

$$\forall \epsilon > 0, \exists \overline{n_1}, \overline{n_2} \in \mathbb{N} : \tag{43}$$

$$l - \epsilon < a_n < l + \epsilon \qquad \& \qquad l - \epsilon < b_n < l + \epsilon \tag{44}$$

se $n > \max\{\overline{n_1}, \overline{n_2}\}$

 $\downarrow \downarrow$

$$l - \epsilon < a_n \le c_n \le b_n < l + \epsilon \qquad \forall n > \overline{n} \tag{45}$$

$$\underbrace{l - \epsilon < c_n < l + \epsilon}_{|c_n - l| < \epsilon} \Longrightarrow \lim_{n \to +\infty} c_n = l \tag{46}$$

Definizione 18:

Sia una successione $\{a_n\}_n \subseteq \mathbb{R}$ è detta:

- superiormente limitata, se $\exists M \in \mathbb{R} : a_n \leq M \ \forall n \in \mathbb{N}$
- inferiormente limitata, se $\exists M \in \mathbb{R} : a_n \geq M \ \forall n \in \mathbb{N}$
- $limitata, se \exists M \in \mathbb{R} : |a_n| \leq M \ \forall n \in \mathbb{N}$

Definizione 19 (Ogni successione convergente è limitata): $Sia \{a_n\}_{n\in\mathbb{N}} \subseteq \mathbb{R}, \ a_n \underset{n\to\infty}{\to} l$ $Allora \ (con \ \epsilon = 1)$

$$\exists \overline{n} : \forall n \in \mathbb{N} (n > \overline{n} \implies |a_n - l| < 1) \tag{47}$$

Segue quindi che $|a_n| \le |a_n - l| + |l| < 1 + |l|, \ n > \overline{n}$

$$|a_n| \le 1 + |l| \tag{48}$$

Definizione 20 (Retta reala ampliata):

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\} \cup \{-\infty\} \tag{49}$$

Definizione 21:

 $Sia\ \{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$

$$\lim_{n \to +\infty} a_n = +\infty$$

$$\downarrow \qquad \qquad \downarrow$$

$$\forall k \in \mathbb{R} \exists \overline{n} \in N : \forall n \in \mathbb{N} (n > \overline{n} \implies a_n > k)$$
(50)

La scrittura è analoga per $-\infty$ invertendo il segno: $(a_n < k)$ Potremo dire che a_n diverge positivamente o negativamente

2.2 Forme indeterminate

Se $\{a_n\}, \{b_n\} \subseteq \mathbb{R}$ e $\{a_n\} \to +\infty, \{b_n\} \to -\infty\}$ allora:

$$a_n + b_n \to +\infty - \infty = ? \tag{51}$$

 $+\infty~e~-\infty~non~sono~veri~e~propri~numeri,~piuttosto~sono~dei~simboli,~quindi~il~risultato~sarà~detto:$ FORMA INDETERMINATA $+\infty~-\infty$

Altri tipi di forme indeterminate sono:

$$\frac{\infty}{\infty}, \ \frac{0}{0}, \ 0 \cdot \infty, \ 1^{\infty}, \ 0^0, \ \infty^0$$
 (52)

2.3 Teoremi generali di esistenza

Una successione $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ è detta monotona crescente se

$$a_n \le a_{n+1}, \ \forall n \in \mathbb{N}$$
 (53)

Si dice invece monotona decrescente se

$$a_n > a_{n+1}, \forall n \in \mathbb{N}$$
 (54)

Sono rispettivamente **strettamente** monotone crescenti o decrescenti se le disuguaglianze sono **strette** (<,>)

Le scritture $a_n \nearrow e a_n \searrow$ indicano monotonia crescente e decrescente

Definizione 22 (Successioni costanti):

Se $a_n = a \ \forall n \in \mathbb{N}$, con a numero reale fissato si dice che

$$\{a_n\}_{n\in\mathbb{N}} = l, \ l\in\mathbb{R} \quad \{a_n\} \nearrow \searrow = costante$$
 (55)

Definizione 23:

Ogni successione monotona ammette limite: Se $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$:

1.
$$a_n \nearrow \Longrightarrow \lim_{n \to +\infty} a_n = \sup_{n \in \mathbb{N}} a_n$$

2.
$$a_n \searrow \Longrightarrow \lim_{n \to +\infty} a_n = \inf_{n \in \mathbb{N}} a_n$$

DIMOSTRAZIONE 8.

Se $\{a_n\}$ è superiormente limitata per l'assioma di completezza:

$$\exists \sup_{n \in \mathbb{N}} a_n = \lambda \tag{56}$$

Per la proprietà del sup si ha che $a_n \leq \lambda, \forall n \in \mathbb{N}$ dunque:

$$a_n < \lambda + \epsilon \ \forall n \in \mathbb{N}, \ \forall \epsilon > 0$$
 (57)

$$\forall \epsilon > 0, \exists \overline{n} \in \mathbb{N} : \lambda < a_{\overline{n}} + \epsilon \tag{58}$$

La definizione di limite è:

$$\lim_{n \to +\infty} a_n = \lambda \tag{59}$$

Esercizio 2 (Il numero di nepero e).

$$e \equiv \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n \tag{60}$$

Si nota che $a_n = \left(1 + \frac{1}{n}\right)^n$ e $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$ sono successioni **convergenti** che hanno lo stesso limite e, inoltre sono **strettamente monotone**

$$a_n < a_{n+1} \quad e \quad b_n > b_{n+1} \ \forall n \in \mathbb{N}$$
 (61)

Inoltre

$$a_n < b_n \ \forall n \in \mathbb{N} \tag{62}$$

allora:

$$a_n < a_p < b_p < b_m \quad \forall n, m, p; p = \max\{n, m\}$$
 (63)

Entrambe le successioni convergono: a_n è monotona crescente e superiormente limitata e b_n è monotona decrescente e inferiormente limitata.

$$\lim_{n \to +\infty} \frac{b_n}{a_n} = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right) = 1 \tag{64}$$

Questo implica che:

$$\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n = e \tag{65}$$

DIMOSTRAZIONE 9.

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1} \quad \& \quad b_{n+1} = \left(1 + \frac{1}{n+1}\right)^{(n+1)+1} \tag{66}$$

$$\frac{b_n}{b_{n+1}} > 1 \Longrightarrow \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n+1}\right)^{(n+1)+1}} > 1 \quad \forall n \in \mathbb{N}$$

$$= \left(1 + \frac{1}{n}\right)^{n+1} \left(1 + \frac{1}{n}\right) = \left(\frac{n+1}{n}\right) \left(\frac{n+1}{n}\right) > 1$$

$$= \left(1 + \frac{1}{n+1}\right)^{n+2} \left(1 + \frac{1}{n+1}\right)^2 = \left(\frac{n+2^n}{n+1}\right) \left(\frac{n+2}{n+1}\right)^2 > 1$$

$$= \left(\frac{(n+1)(n+2)}{n(n+1)}\right)^n \cdot \left(\frac{n+1}{n}\right) \cdot \left(\frac{n+2}{n+1}\right)^2 > 1$$

$$= \left(\frac{n+2}{n}\right)^n \cdot \left(\frac{n+2}{n}\right) \cdot \left(\frac{n+2}{n+1}\right) > 1$$

$$= \left(\frac{n+2}{n}\right)^{n+1} > \left(\frac{n+2}{n+1}\right)$$

Definizione 24 (Bolzano - Weierstrass):

Ogni successione reale limitata ammette una sottosuccessione convergente.

DIMOSTRAZIONE 10.

Per ogni $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ esiste M>0: $|a_n|\leq M, \ \forall n\in\mathbb{N} \ \exists k_n\nearrow: \ a_{k_n}\underset{n\to+\infty}{\to} l\in\mathbb{R}$

$$-M \le a_n \le M \ \forall n \in \mathbb{N} \tag{68}$$

$$\alpha_n = \sup a_k : k \ge n, \ n \in \mathbb{N} \implies -M \le \alpha_n \le M \ \forall n \in \mathbb{N}$$
 (69)

Quindi dalla definizione ne segue che:

$$\alpha_{n+1} \le \alpha_n \ \forall n \in \mathbb{N} \Rightarrow \alpha_n \searrow$$

$$\downarrow \downarrow$$

$$(70)$$

$$\exists \lim_{n \to +\infty} \alpha_n \equiv l \quad \Longrightarrow \quad l \equiv \inf_{n \in \mathbb{N}} \alpha_n \tag{71}$$

$$\forall \epsilon > 0, \ \forall p \in \mathbb{N} \ \exists n \ge p : l - \epsilon \le a_n$$

$$\alpha_p \searrow \Rightarrow l \le \alpha_p \Rightarrow l - \epsilon < \alpha_p \ \forall \epsilon > 0 \ \forall p$$

$$(72)$$

Dato che $\alpha_p = \sup\{a_n : n \geq p\}$, deve esistere $n \geq p : a_n > l - \epsilon$ Sia $k_n : \mathbb{N} \to \mathbb{N}$ definita per ricorrenza:

$$\begin{cases}
k_1 = \min\{k \in \mathbb{N} : l - 1 < a_k\} \\
k_{n+1} = \min\{k \in \mathbb{N} : k > k_n \land l - \frac{1}{n+1} < a_k\}
\end{cases}$$
(73)

 $\downarrow \downarrow$

$$k_{n+1} > k_n, \ \forall n \quad \land \quad l - \frac{1}{n} < a_{k_n} \ \forall n$$
 (74)

Questo implica che $\{a_{k_n}\}_{n\in\mathbb{N}}$ verifica le disuguaglianze

$$l - \frac{1}{n} < a_{k_n} \le \alpha_{k_n} \implies \alpha_{k_n} \underset{n \to +\infty}{\longrightarrow} l \implies a_{k_n} \to l \tag{75}$$

Definizione 25 (Successioni di Cauchy):

Una successione $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ si chiama successione di Cauchy se:

$$\forall \epsilon > 0, \ \exists \overline{n} \in \mathbb{N} : \ \forall n, m \in \mathbb{N} (n, m > \overline{n} \Rightarrow |a_n - a_m| < \epsilon)$$
 (76)

Una successione si dice di Cauchy se i suoi termini sono "arbitrariamente" vicini tra loro.

Definizione 26 (Ogni successione convergente è di Cauchy):

$$\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}, a_n\to l\in\mathbb{R}=di\ Cauchy$$
 (77)

DIMOSTRAZIONE 11.

Se $\lim_{n\to+\infty} a_n = l \in \mathbb{R}$ implica che:

$$\forall \epsilon, \epsilon > 0 \exists \overline{n} \forall n \left(n > \overline{n} \Rightarrow |a_n - l| < \frac{\epsilon}{2} \right)$$
 (78)

La scrittura $\exists \overline{n}$ significa che esiste un indice dopo il quale ogni indice successivo sarà maggiore di quello.

Di conseguenza:

$$|a_n - a_m| = |(a_n - l) + (l - a_m) \le |a_n - l| + |a_m - l| \le 2 \cdot \frac{\epsilon}{2} \quad n, m > \overline{n}$$
 (79)

 $\{a_n\}$ è di Cauchy

$$\{a_n\}$$
 di Cauchy $\Rightarrow \{a_n\} \nearrow \iff \{a_n\} \nearrow \Rightarrow \{a_n\}$ di Cauchy (80)

2.4 Rappresentazione decimale di numeri reali

Se $x \in \mathbb{R}$ è:

$$[x] = \text{parte intera} = \max\{p \in \mathbb{Z} : p < x\}$$

$$\downarrow \downarrow$$
(81)

$$[x] \le x < [x] + 1 \ \forall x \in \mathbb{R} \tag{82}$$

$$x_n = \frac{[b^n x]}{b^n} \tag{83}$$

Le seguenti affermazioni sono vere:

- 1. $\{x_n\} \nearrow$
- 2. $x_n \le x < x_n + \frac{1}{b_n} \ \forall n \in \mathbb{N}$
- $3. \lim_{n \to +\infty} x_n = x$
- 4. $\exists \alpha_0 \in \mathbb{Z}, \exists \{\alpha_n\}_{n \in \mathbb{N}} \subseteq \mathbb{Z}$

Definizione 27 (Decimali):

I numeri decimali sono i numeri razionali:

$$\frac{m}{10^n} (m \in \mathbb{Z}, n \in \mathbb{N}) \tag{84}$$

Ogni numero decimale si può scrivere come

$$x = \alpha_0 + \frac{\alpha_1}{10} + \frac{\alpha_2}{10^2} + \dots + \frac{\alpha_n}{10^n}$$
 (85)

 $con \ \alpha_0 \in \mathbb{Z}, \ \alpha_1 \alpha_2, \dots, \alpha_n \in \{0, 1, 2, \dots, 9\}$

Definizione 28 (Decimali propri):

Sia $x \in \mathbb{R}$, $x = \alpha_0, \alpha_1, \ldots, \alpha_n, \ldots$ La rappresentazione decimale di x si dice **propria** se:

$$\nexists p \in \mathbb{N} : \alpha_n = 9 \ \forall n > p \tag{86}$$

Ogni numero reale ammette un'**unica** rappresentazione decimale propria. Se $x \in \mathbb{R} \implies x = \alpha_0, \alpha_1, \dots, \alpha_n, \dots$ è la rappresentazione decimale propria di x se e solo se

$$\alpha_0, \alpha_1, \dots, \alpha_n \le x < \alpha_0, \alpha_1, \dots, \alpha_n + \frac{1}{10^n} \ \forall n \in \mathbb{N}$$
 (87)

2.5 Cardinalità di insiemi

Due insiemi $A, B \neq \emptyset$ si dicono **equipotenti** se

$$\exists f: A \underset{1-1}{\overset{su}{\to}} B \quad \Longrightarrow \quad A \cong B \tag{88}$$

Vale a dire che esiste una **funzione biunivoca** fra i due insiemi ed essi hanno stessa **cardinalità**

$$card(A) = card(B) \tag{89}$$

$$I_n = \{k \in \mathbb{N} : 1 \le k \le n\}, \quad card(A) \cong card(I_n) \implies card(A) = n \quad (90)$$

A è un insieme finito. Un iniseme è infinito se non è finito.

- A è finito $B \subseteq A, B \neq \emptyset \implies B$ è finito
- $\bullet \ A$ è finito e B è sottoinsieme proprio di $A \implies A \cong B$
- A è finito, allora il numero dei suoi elementi è unico
- B è infinito e $B \subseteq A \implies A$ è infinito

Altre proposizione che ne conseguono sono:

- $A \neq \emptyset \implies A \cong A$
- $A \cong B \iff B \cong A$
- $A \cong B$. $B \cong C \implies A \cong C$

L'equipotenza è una relazione di **equivalenza**

Definizione 29 (\mathbb{N} è infinito):

Dimostriamo che \mathbb{N} è equivalente ad un suo sottoinsieme proprio:

$$P = \{ n \in \mathbb{N} := 2m, n \in \mathbb{N} \}, \ f : P \to \mathbb{N}, f(n) = \frac{n}{2}$$
 (91)

 $f \ \dot{e} \ biunivoca \ quindi \ P \subset \mathbb{N} \implies P \cong \mathbb{N}$

Definizione 30 ($\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ sono infiniti):

Tutti questi insiemi contengono N

Definizione 31 (Insiemi numerabili):

Un insieme si dice numerabile se è equipotente ad $\mathbb N$

Un insieme A è numerabile se si possono elencare i suoi elementi: ovvero se esiste una successione biiettiva $\{a_n\}_{n\in\mathbb{N}}$ che ha come immagine A, il nome di tale successione è **numerazione**

Definizione 32:

Sia A un insieme numerbaile se $M \subseteq A$, M è infinito $\implies M \cong \mathbb{N}$

Ogni sottoinsieme infinito di un insieme numerabile $\hat{\mathbf{e}}$ numerabile. Ogni sottoinsieme di \mathbb{N} $\hat{\mathbf{e}}$ un insieme infinito o numerabile.

Definizione 33 (Assioma della scelta):

Sia \mathcal{B} una famiglia $\neq \emptyset$ di insiemi. Sia A un insieme t.c.

$$B \subseteq A \ \forall B \in \mathcal{B} \tag{92}$$

$$\exists \varphi : \mathcal{B} \to A : \varphi(B) \in \mathcal{B} \forall B \in \mathcal{B} \Rightarrow \mathbf{AC}$$
 (93)

Ovvero in parole: data una famiglia di insiemi \mathcal{B} non vuoti, esiste una funzione che ad ogni insieme della famiglia fa corrispondere un suo elemento.

L'assioma assicura che, quando viene data una collezione di insiemi non vuoti si può sempre costruire un nuovo insieme "scegliendo" un singolo elemento da ciascuno di quelli di partenza.

Definizione 34:

Dati due insiemi A, B:

$$card(A) \le card(B)$$
 (94)

Se esiste $B_0 \subseteq B$, t.c. $card(A) = card(B_0)$. Se $card(A) \leq card(B)$ e $card(A) \neq card(B) \Longrightarrow card(A) < card(B)$

Un insieme si dice finito se e solo se: $card(A) < card(\mathbb{N})$

Definizione 35 (Numeri algebrici):

Un numero reale si dice **algebrico** se risolve un'equazione

$$p(x) = 0, \qquad p \in \mathbb{Z} \tag{95}$$

con p un polinomio con coefficienti in \mathbb{Z} .

I nuemri reali **non** algebrici si dicono **trascendenti**

DIMOSTRAZIONE 12.

I numeri algebrici sono i razionali, infatti essi sono:

$$x = \frac{m}{n} \implies nx - m = 0 \tag{96}$$

$$p(x) = 3x^7 - 5x^2 + 3 \to h = 7 + 3 + |-5| + 2 + 3 = 20$$
 (97)

Definizione 36 (Gerarchia di infiniti):

Esiste una gerarchi di **infiniti**, ovvero "certi infiniti valgono di più di altri infiniti"

$$\mathcal{N}_0 = card(\mathbb{N}), \mathcal{N}_1 = card(\mathbb{R}) \implies \mathcal{N}_0 < \mathcal{N}_1$$
 (98)

2.6 O grande, o piccolo, \sim equivalente

Definizione 37 (o piccolo):

Siano $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ due successioni reali, si dice che a_n è un "o piccolo" di b_n per $n\to+\infty$

$$a_n = o(b_n) \ (n \to +\infty) \quad \iff \quad \lim_{n \to +\infty} \frac{a_n}{b_n} = 0$$
 (99)

Definizione 38 (O grande):

Siano $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ due successioni reali, si dice che a_n è un "O grande" di b_n per $n\to+\infty$

$$a_n = O(b_n) \ (n \to +\infty) \quad \iff \quad \exists \overline{n} \in \mathbb{N}, \exists M \in \mathbb{R} : \left(\left| \frac{a_n}{b_n} \right| \le M \ \forall n > \overline{n} \right)$$

$$\tag{100}$$

Occore notare che se esiste il limite di $\frac{a_n}{b_n}$

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = l \in \mathbb{R} \tag{101}$$

Si può sempre scrivere $a_n = O(b_n)$

Definizione 39 (\sim equvialente):

Siano $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ due successioni reali, si dice che a_n è un "equivalente" di b_n per $n\to+\infty$

$$a_n \sim b_n \ (n \to +\infty) \quad \iff \quad \lim_{n \to +\infty} \frac{a_n}{b_n} = 1$$
 (102)

Questo vale a dire che le due successioni hanno lo stesso limite.

Consideriamo anche che, se due successioni sono equivalenti $a_n \sim b_n$ implica che :

$$a_n \sim b_n \implies a_n = O(b_n) \iff b_n = O(a_n)$$
 (103)

3 Topologia della retta euclidea

3.1 Intervalli

Siano $a, b \in \mathbb{R}$, si pone per definizione

aperto
$$]a, b[= \{x \in \mathbb{R} : a < x < b\}$$

semiaperto $[a, b[= \{x \in \mathbb{R} : a \le x < b\}$
semiaperto $]a, b] = \{x \in \mathbb{R} : a < x \le b\}$
chiuso $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ (104)

Se uno degli estremi è $\pm \infty$, $(a = -\infty, b = +\infty)$

$$]a, +\infty[= \{x \in \mathbb{R} : x > a\}$$

$$] -\infty, a[= \{x \in \mathbb{R} : x < a\}$$

$$[a, +\infty[= \{x \in \mathbb{R} : x \ge a\}$$

$$] -\infty, a] = \{x \in \mathbb{R} : x \le a\}$$

$$(105)$$

Definizione 40:

Se $x_0 \in \mathbb{R}, \rho > 0$, si pone

$$B(x_0, \rho) =]x_0 - \rho, x_0 + \rho[$$
 (106)

si chiama intorno aperto di x_0 di raggio $\rho \in \mathbb{R}_+$. La famiglia degli intorni aperti di x_0 si denota come

$$\mathcal{U}_{x_0} = \{ |x_0 - \rho, x_0 + \rho[: \rho > 0 \}$$
 (107)

3.2 Punti di accumulazione, isolati e aderenti

Definizione 41 (Punti di accumulazione):

Siano $A \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$, si dice che x_0 è un **punto di accumulazione** di A se per ogni W (intorno) $\in \mathcal{U}_{x_0}$ (famiglia degli intorni):

$$A \setminus \{x_0\} \cap W = \emptyset \tag{108}$$

$$\downarrow \downarrow$$

$$(A \setminus \{x_0\}) \cap |x_0 - \rho, x_0 + \rho| \neq \emptyset \ \forall \rho > 0$$
 (109)

In parole, se prendiamo l'insieme A e ad esso sottriamo un qualsiasi punto x_0 e ad esso intersechiamo l'intervallo formato di raggio rho " ρ " e con centro x_0 . Questo insieme è un punto di accumulazione se quanto citato prima **non** è un insieme vuoto, ovvero in esso troviamo almeno **un elemento**.

L'insieme dei punti di accumulazione si chiama derivato di A = D(A). Per definizione poniamo $D(\emptyset) = \emptyset$

Definizione 42 (Punto isolato):

Se $x \in A$ e $x \notin D(A)$ si dice che x è un **punto isolato**

DIMOSTRAZIONE 13.

Se $A \subset R$ è un insieme finito, questo implica che $D(A) = \emptyset$.

- 1. Se $A = \emptyset \implies D(\emptyset) = \emptyset$
- 2. Se $A = \{x_1, x_2, \dots, x_p\}$ Nessuno $z \in \mathbb{R}$ è punto di accumulazione per A:

$$z \notin D(A), \ \forall z \in \mathbb{R}$$
 (110)

(111)

• Supponiamo che z non sia in \mathbb{R} : $z \in \mathbb{R} \setminus A \rightarrow z \neq x_i, \forall j = 1, \dots, p$

$$z \in \mathbb{R} \setminus A \rightarrow z \neq x_j, \ \forall j = 1, \dots, p$$

$$\rho = \{ |z - x_j| : j = 1, \dots, p \}$$

 $|z-x_j|=0 \iff z=x_j$ ma z è escluso dall'insieme A

$$(A \setminus \{z\} \cap]z - \rho, z + \rho [= \varnothing$$
 (112)

• Supponiamo invece che z sia in A: $z \in A \rightarrow z = x_1$

$$\rho = \{ |x_1 - x_j| : j = 2, \dots, p \}$$
(113)

 $\rho > 0$ dato che i punti di $x_j \in A$ sono diversi tra loro. Se ne deduce quindi che l'intorno aperto $B(x_1, \rho)$ di centro x_1 di raggio ρ esclude qualsiasi altro punto di A

$$(A \setminus \{x_1\}) \cap]x_1 - \rho, x_1 + \rho [= \varnothing$$
 (114)

Esempio 6 $(A \subseteq \mathbb{R} \ e \ D(A) \neq \emptyset \implies A \ e \ infinito)$.

Ovvero, se A è un insieme contenuto nell'insieme dei numeri reali e l'insieme dei suoi punti di accumulazione **non** è vuoto allora A è infinito.

Ciò non è vero in quanto questa proposizione è solamente una **condizione** necessaria ma non sufficiente.

 \mathbb{N} è infinito ma $D(\mathbb{N}) = \emptyset$

Definizione 43:

Siano $A \subseteq \mathbb{R}, x_0 \in \mathbb{R}, allora:$

$$x_0 \in D(A) \iff \exists \{x_n\}_{n \in \mathbb{N}} \subseteq A \setminus \{x_0\} : x_n n \xrightarrow{\rightarrow} +\infty x_0$$
 (115)

4 Funzioni

4.1 Introduzione

Definizione 44:

Una funzione f é una relazione tra gli elementi di due insieme A e B che ad ogni elemento di A associa uno ed un solo elemento di B.

Una funzione è definita assegnando:

- un insieme A detto DOMINIO
- \bullet un insieme B detto CODOMINIO
- $\bullet\,$ una relazione $f:A\to B$ che associa ogni elemento di A
 uno ed un solo elemento di B

4.2 Tipi di funzioni

Una funzione f(x) può essere di 3 tipi:

- 1. suriettiva
- 2. iniettiva
- 3. biiettiva se è sia iniettiva e suriettiva

Definizione 45:

Una funzione si dice **iniettiva** quando ad elementi **distinti** del DOMINIO corrispondono elementi **distinti** del CODOMINIO

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2 \tag{116}$$

Figure 1: grafico iniettiva

Definizione 46:

Una funzione si dice **suriettiva** qunado **ogni** elemento del codominio è immagine di **almeno** un elemento del dominio.

$$b \in B \to \exists a \in A : f(a) = b \tag{117}$$

Figure 2: graifco suriettiva

Esercizio 3.

Dimostra di che tipo è questa funzione:

$$f: \mathbb{R} \to \mathbb{R} \qquad f(x) = x^2$$
 (118)

DIMOSTRAZIONE 14.

Non può essere iniettiva perchè per ogni numero reale positivo ne esiste uno uguale negativo, il cui qudrato sarà il **medesimo**.

$$se \quad x_1 = -x_2 \quad \Rightarrow \quad f(x_1) = f(x_2) \tag{119}$$

si può provare inoltre che non è una funzione suriettva in quanto **nessun**

numero negativo fa parte del codominio ed esso è formato da $\mathbb R$ dunque

$$-4 \neq f(x) \qquad \forall x \in \mathbb{R} \tag{120}$$

Esercizio 4.

Dimostra di che tipo è questa funzione:

$$f: \mathbb{N} \to \mathbb{N}$$
 $f(x) = x^2$ (121)

DIMOSTRAZIONE 15.

se cambiamo il dominio e il codominio nell'insieme dei numeri naturali e consideriamo la stessa legge possiamo deddure che:

$$\forall n, m : n \neq m \quad \Rightarrow \quad n^2 \neq m^2 \tag{122}$$

Per **qualsiasi** coppia di numeri naturali diversi fra loro non è possibile pensare che il loro quadrato sia uguale, per tanto la funzione è iniettiva. Inoltre **qualsiasi** numero dispari non avrà una propria immagine, in quanto

l'insieme racchiude **solo** numeri interi positivi. Ovvero:

$$\exists \frac{x}{2} \in \mathbb{N} : \{ y = x + 1 \} \quad \Rightarrow \quad y \neq n^2 \qquad \forall n \in \mathbb{N}$$
 (123)

4.3 Funzioni invertibili

Definizione 47:

Una funzione $f: A \to B$ si dice invertibile se esiste una funzione $g: B \to A$ chiamata funzione inversa tale che:

- $\forall a \in A, \quad g(f(a)) = a$
- $\forall b \in B, \quad f(g(b)) = b$

Essa si può considerare invertibile se è biiettiva.

Esercizio 5.

Dimostra se la funzione $f: \mathbb{R} \to \mathbb{R}$ f(x) = 2x + 1 è inversibile.

DIMOSTRAZIONE 16.

Ponendo l'equazione y = 2x + 1 deduciamo che

$$f^{(-1)}(x) = \frac{x - 1}{2} \tag{124}$$

quindi:

$$f^{(-1)}(f(x)) = f^{(-1)}(2x + 1) = \frac{(2x + 1) - 1}{2} = x;$$
 (125)

e allo stesso tempo

$$f(f^{(-1)}(y)) = f(\frac{y-1}{2}) + 1 = y$$
 (126)

4.4 Piano Cartesiano

Fissando un'origine e un'unità di misura ad **ogni** punto di una retta orientata corrisponde uno ed un solo numero reale. Si stabilisce così una **corrispondenza biunivoca** tra i punti della retta orientata e i numeri reali. Data la funzione

$$f: A \to B \quad A, B \subseteq \mathbb{R} \times \mathbb{R} = \mathbb{R}^{2}$$

$$\xrightarrow{A \quad B \quad AB>0 \quad BA<0}$$

$$\xrightarrow{B \quad A \quad BA>0 \quad AB<0}$$

Figure 3: la retta orientata

Definizione 48:

Definiamo una coppia di rette orientate disposte perpendicolarmente fra loro assi coordinati.

- La retta da destra verso sinistra viene chiamata asse delle ascisse
- la retta dal basso verso l'alto viene chiamata asse delle ordinate

Il punto del piano in cui si incontrano viene chiamato **origine degli assi** e viene indicato con O

Un qualsiasi punto del piano P viene identificato con una ascissa x_p ed una ordinata y_p , quindi $P(x_p, y_p)$.

Il piano viene diviso in IV quadranti numerati in senso antiorario.

Figure 4: il piano cartesiano

4.5 Grafici di funzioni

Ora possiamo rappresentare graficamente coppie ordinate di numeri reali sul piano, quindi possiamo rappresentare il **grafico** di una funzione

$$f: A \subseteq \mathbb{R} \to B \subseteq \mathbb{R} \tag{128}$$

e tutte le coppie (x, f(x)) tali che $x \in A$:

$$G(f) = \{(x, f(x))\} : x \in A$$
 (129)

Figure 5: il grafico di una funzione crescente

4.6 Funzioni Pari e Dispari

Definizione 49:

Una funzione $f:[-a,a] \rightarrow \mathbb{R}$ si dice **pari** se f(x)=f(-x)

Figure 6: Una funzione pari

Si deduce quindi che il grafico di una funzione così definita è simettrico rispetto all'asse delle ordinate

Definizione 50:

Una funzione $f:[-a,a] \to \mathbb{R}$ si dice **dispari** se f(-x) = -f(x)Si deduce quindi che il grafico di una funzione così definita viene **specchiata** in due quadranti uno **oppsoto** all'altro

Figure 7: Una funzione dispari

4.7 Funzioni crescenti e decrescenti

Definizione 51:

Una funzione $f:[-a,a] \rightarrow \mathbb{R}$ si dice **crescente** se

$$f(x_2) \ge f(x_1) \quad \forall x_2 > x_1 \in [a, b]$$
 (130)

Si dice strettamente crescente se

Figure 8: il grafico di una funzione crescente

Definizione 52:

Una funzione $f:[-a,a] \rightarrow \mathbb{R}$ si dice **decrescente** se

$$f(x_2) \le f(x_1) \quad \forall x_2 > x_1 \in [a, b]$$
 (132)

Si dice strettamente decrescente se

$$f(x_2) < f(x_1) \quad \forall x_2 > x_1 \in [a, b]$$

$$(133)$$

Figure 9: il grafico di una funzione decrescente

4.8 Funzioni inverse

Se i punti di una funzione $f:A\to B$ $A,B\subseteq\mathbb{R}$ si ottengono dalle coppie $(a,b)\in A$ \times B

Definizione 53:

Il grafico di una funzione inversa si ottiene invertendo le coordinate dei punti del grafico. Ovvero i punti del grafico della **funzione inversa** si ottengono dalle coppie $(b,a) \in B \times A$ // Per via grafica esso può essere ottenuto **riflettendo** il grafico rispetto alla **bisettrice** del **primo** e **terzo** quadrante

Figure 10: Il grafico di una funzione inversa

4.9 Modelizzazione matematica

Definizione 54:

Per modelizzazione matematica si intende un porcesso che ha per scopo quello di interpretare fenomeni legati al mondo reale partendo da dati sperimentali e traducendoli in problemi matematici

Per passare da un fenomeno reale alla sua descrizione mediante modello matematico è necessario un processo di **astrazione** e **traduzione** del fenomeno in termini matematici e rigorosi.

Quando si vuole modelizzare un certo fenomeno, si vuole capire **come** le variabili coinvolte siano in relazione tra loro, ovvero stabilire delle **leggi matematiche** che descrivono queste relazioni.

La procedura di modelizzazione è:

- 1. si identifica l'incognita del problema
- 2. si analizza il fenomeno fisico e si raccolgono informazioni
- 3. si individuano le relazioni tra le informazioni raccolte, che poi vengono tradotte in equazioni

4. si risolvono le equazioni ottenute e se ne verifica la validità del modello

In un modello matematico che coinvolge due grandezze x ed y ci interessa capire come la **variabile dipendente** (y) varia al variare di quella **indipendente**

Esempio 7.

Supponiamo di aver formulato la legge y = f(x)

Se il modello è giusto potremmo ricavare il valore di y a partire da qualsiasi valore di x senza effettuare ulteriori esperimenti e misurazioni.

Rappresentandolo graficamente:

Figure 11: Il grafico dell'andamento dei bitcoin

Questo è il grafico di y = f(x) dove y="valore del bitcoin in dollari" e x="tempo".

4.10 Proporzioni

Definizione 55:

Due grandezze A e B si dicono direttamente proprozionali se esiste un numero c detto costante di proporzionalità tale che:

$$A = cB (134)$$

Questo significa che le due grandezze sono legate da una certa legge, per la quale quando una raddoppia, triplica, dimezza, di conseguenza la seconda raddoppia, triplica, dimezza etc.

Esempio 8.

A = "quantità di chilometri che l'auto può percorrere"

B = "litri di carburante nel serbatoio"

Definizione 56:

Due grandezze A e B si dicono inversamente proprozionali se esiste un numero c detto costante di proporzionalità tale che:

$$AB = c \tag{135}$$

Questo significa che le due grandezze sono tali che all'aumentare di una, l'altra diminuisce proporzionalmente.

Esempio 9.

A = "numero di partecipanti all'acquisto di un immobile"

B = "quota per partecipante"

 $c = \cos to dell'immobile$

5 Combinatoria e probabilità

5.1 Introduzione

Definizione 57:

L'analisi combinatoria è la branca della matematica applicata per risolvere problemi nel quale è necessario saper "contare" efficacemente esiti e probabilità di determinate situazioni.

Essa è infatti la disciplina che ci permette di contare senza contare

5.2 Combinatoria

Definizione 58 (Principio di moltiplicazione):

Un insieme X soddisfa le ipotesi del principio di moltiplicazione se:

- è possibile ottenere ciascuno dei suoi elementi come risultato di una procedura composta da n fasi successive.
- se ad una fase interemedia si sono ottenuti due esisti distinti allora la procedura conduce ad elementi distinti di X

Nella prima fase avremo m_1 possibili esiti nella seconda fase avremo m_2 esiti sino alla n-esima fase avremo m_n esiti

$$|X| = m_1 \times m_2 \times \dots \times m_k \tag{136}$$

Esercizio 6.

Calcoliamo il numero di coppie ordinate (a, b) contenenti un numero primo ed uno non primo compresi tra 1 ed 8

DIMOSTRAZIONE 17.

I numeri primi tra 1 e 8 sono $\{2,3,5,7\}$ mentre i numeri non primi tra 1 e 8 sono $\{1,4,6,8\}$

- I. Scegliamo un qualsiasi elemento di I_8 : abbiamo 8 possibilità.
- II. Se il primo elemento era primo il secondo non lo sarà, e viceversa se il numero non era primo. In ogni caso avremo 4 distinte possiblità

Il numero di coppie è: $8 \times 4 = 32$

Esercizio 7.

Consideriamo un'estrazione in successione di 3 numeri della tombola **tenendo conto dell'ordine**. Quanti sono i possibili esiti?

DIMOSTRAZIONE 18.

I numeri della tombola sono 90. Gli scenari possibili sono 2:

Nel primo caso **senza rimpiazzo** se ogni numero può essere scelto una volta sola, mentre sarà **con rimpiazzo** se un numero può essere scelto più di una volta.

Nel primo caso $(a_1, a_2, a_3) :\rightarrow (a_1 \neq a_2 \neq a_3)$:

I FASE: $a_1 = 90$

II FASE: $a_2 = 90 - 1 = 89$

III FASE: $a_3 = 90 - 2 = 88$

Quindi il numero di possibili esiti è:

$$90 \times 89 \times 88 = 704880 \tag{137}$$

Nel secondo caso $(a_1, a_2, a_3) :\rightarrow (a_1 = a_2 = a_3)$:

I FASE: $a_1 = 90$

II fase: $a_2 = 90$

III FASE: $a_3 = 90$

Quindi il numero di possibili esiti è:

$$90 \times 90 \times 90 = 90^3 = 729000 \tag{138}$$

Definizione 59:

Definiamo una regola general per k-sequenze di I_n . Siano $k, n \in \mathbb{N}$ definiamo k-sequenza di I_n una k-upla **ordinata** (a_1, \ldots, a_k) di elementi **non necessariamente distinti** di I_n Ovvero:

$$(a_1, \dots, a_k) \in \underbrace{I_n \times \dots \times I_n} \tag{139}$$

Nella definzione di sequenze l'ordine degli elementi della k-upla è importante: le 3-sequenze (2,1,3) e (3,1,2) sono diverse anceh se composte dagli stessi numeri. Vengono comunemente dette **disposizioni** di ${\bf n}$ oggetti a k a k

Esempio 10.

Sia $I_4 = 1, 2, 3, 4$. Allora

$$(1, 2, 3, 3, 4), \qquad (1, 1, 1, 1, 1), \qquad (2, 2, 1, 3, 4)$$
 (140)

sono 5-sequenze di I_4 . Invece

$$(1,2,3), \qquad (1,1,1), \qquad (2,3,4)$$

sono 3-sequenze di I_4

5.3 Fattoriale

$$5! = 5 \times 4 \times 3 \times 2 \times 1 \tag{142}$$

$$n! = \begin{cases} n \times (n-1) \times (n-2) \times \dots & 3 \times 2 \times 1 & \text{se } n \ge 1 \\ 1 & \text{se } n = 0 \end{cases}$$
 (143)

Definizione 60:

Il fattoriale di un numero equivale al prodotto di quel numero per tutti i numeri che lo precedono. I valori dei fattoriale crescono esponenzialmente

$$0! = 1$$
 $5! = 120$ $6! = 720$ $7! = 5040$ $10! = 3628800$ (144)

5.4 Numero di Insiemi

Definizione 61:

Il numero di sottoinsiemi di k elementi di I_n si distinguono esclusivamente dagli elementi di cui fanno parte: l'ordine non conta.

Spesso un sottoinsieme di k elementi di un insieme di n elementi viene chiamato **combinazione** (semplice, senza ripetizioni) di n elementi a k a k

Definizione 62:

Siano $k, n \in \mathbb{N}$ il **binomiale** di n su k è:

Il numero di sottoinsiemi di k elementi di I_n è

Esempio 11.

Calcola i sotttoinsiemi con 3 elementi di I_6

DIMOSTRAZIONE 19.

La soluzione è data da una semplice applicazione della formula prima vista:

$$\begin{cases} 6\\3 \end{cases} = \frac{6!}{3!3!} = 20 \tag{147}$$

Esempio 12.

Calcola il numero di partite giocate nella fase a gironi dei Mondiali di calcio. Ci sono 32 squadre divise in 8 gironi da 4 squadre ed in ogni girone una squadra deve giocare contro le altre una volta sola.

DIMOSTRAZIONE 20.

Il numero di partite totale è 8 volte le partite giocate in un singolo girone. L'insieme delle 4 squadre in un girone possiamo identificarlo con I_4 , e una partita tra 2 squadre con un sottoinsieme di 2 elementi di I_4 . Il numero di partite giocate in un girone**è il numero di sottoinsiemi** di 2 elementi di I_4 ovvero:

$${4 \brace 2} = \frac{4!}{2!(4-2)!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 2} = \frac{24}{4} = 6$$
 (148)

Infine il risultato equivale a: $6 \times 8 = 48$