

Diplomski studij

Informacijska i komunikacijska tehnologija:

Telekomunikacije i informatika

Računarstvo:

Programsko inženjerstvo i informacijski sustavi

Računarska znanost

Ak.g. 2009./2010.

Raspodijeljeni sustavi

11.

Primjena alata za vrednovanje performansi raspodijeljenih aplikacija

Dr. Dalibor F. Vrsalović dalibor.f.vrsalovic@fer.hr

Sadržaj predavanja

- ♦ I dio: Alat PDQ (Pretty Damn Quick)
- ♦ II dio: Primjeri uporabe alata PDQ
- III dio: Primjer analize performansi web aplikacije

♦ IV dio: Domaća zadaća

Raspodijeljeni sustavi 2 od 60

Alat PDQ (Pretty Damn Quick)

Raspodijeljeni sustavi 3 od 60

Alat Pretty Damn Quick (PDQ)

- Omogućava izgradnju modela za vrednovanje performansi računalni sustava
- Modeli se grade primjenom načela teorije redova
- Značajke modela izračunavaju s primjenom analitičkih postupka i algoritama
- Dodatne informacije http://www.perfdynamics.com/Tools/PDQ.html

Raspodijeljeni sustavi 4 od 60

Alat Pretty Damn Quick (PDQ)

Raspodijeljeni sustavi 5 od 60

Primjeri uporabe alata PDQ

Raspodijeljeni sustavi 6 od 60

Primjer 1: Posluživanje zahtjeva na disku

- Disk za trajno spremanje podataka obrađuje 50 zahtjeva u sekundi. Srednje vrijeme obrade zahtjeva operacija pisanja i čitanja je 10 ms.
 - Kolika je prosječna zaposlenost diska?

Raspodijeljeni sustavi 7 od 60

Primjer 1: Posluživanje zahtjeva na disku

Analitičko rješenje

- ♦ Propusnost sustava X = 50 z/s
- ♦ Srednje vrijeme obrade zahtjeva S = 10 ms/z
- Prosječna zaposlenost diska U
 U = X * S = 50 z/s * 0.01 s/z = 0.5 (50 %)

Raspodijeljeni sustavi 8 od 60

Primjer 1: Posluživanje zahtjeva na disku


```
main() {
 extern int nodes, streams;
 float L = 50;
 float S = 0.01;
 PDQ_Init("Diskovni podsustav");
 nodes = PDQ_CreateNode("Posluzitelj", CEN, FCFS);
 streams = PDQ CreateOpen("Operacije", L);
 PDQ_SetDemand("Posluzitelj", "Operacije", S);
 PDQ_Solve(CANON);
 PDQ Report();
```

pr1.c

Raspodijeljeni sustavi 9 od 60

Primjer 2: Čekanje na posluživanje zahtjeva s diska

- Disk iz prethodnog slučaja ima prosječno 1 zahtjev u repu
 - Koliko je prosječno vrijeme čekanja na obradu zahtjeva ?

Raspodijeljeni sustavi 10 od 60

Primjer 2: Čekanje na posluživanje zahtjeva s diska

Analitičko rješenje

- ◆ Ulazni ritam zahtjeva L = 50 z/s
- ♦ Broj zahtjeva u repu Q = 1 z
- Vrijeme zadržavanja zahtjeva u sustavu R R = Q/L = (1 z) / (50 z/s) = 20 ms
- Vrijeme zadržavanja uključuje vrijeme čekanja u repu
 (W) i vrijeme obrade zahtjeva (S): R = W + S
- ♦ Vrijeme čekanja na obradu W
 W = R S = 20 ms 10 ms = 10 ms

Raspodijeljeni sustavi 11 od 60

Primjer 2: Čekanje na posluživanje zahtjeva s diska


```
main() {
 extern int nodes, streams;
 float L = 50;
 float S = 0.01;
 PDQ_Init("Diskovni podsustav");
 nodes = PDQ_CreateNode("Posluzitelj", CEN, FCFS);
 streams = PDQ CreateOpen("Operacije", L);
 PDQ_SetDemand("Posluzitelj", "Operacije", S);
 PDQ_Solve(CANON);
 PDQ_Report();
```

pr2.c

Primjer 3: Komunikacijski kanal

- Mjerenjem na pristupnoj točki mreže dobivamo srednji protok od 125 paketa u sekundi i srednje vrijeme posluživanja 0.002 sekunde.
 - Što je sve moguće zaključiti o promatranom kanalu ?

Raspodijeljeni sustavi 13 od 60

Primjer 3: Komunikacijski kanal

Analitičko rješenje

- Srednji protok X = 125 p/s
- Srednje vrijeme posluživanja S = 0.002 s/p
- Prosječna zaposlenost komunikacijskog sustava U
 U = X * S = (125 p/s) * (0.002 s/p) = 0.25 (25 %)
- Srednje vrijeme zadržavanja paketa u sustavu (R)
 R = S/(1 U) = (0.002 s/p)/(1 0.25) = 0.0026666 s
- Srednji broj paketa u repu (Q)
 Q = X*R = (125 p/s)*(0.0026 s) = 0.333 p

Raspodijeljeni sustavi 14 od 60

Primjer 3: Komunikacijski kanal


```
main() {
 extern int nodes, streams;
 float L = 125;
 float S = 0.002;
 PDQ_Init("Mrezni podsustav");
 nodes = PDQ_CreateNode("Posluzitelj", CEN, FCFS);
 streams = PDQ CreateOpen("Operacije", L);
 PDQ_SetDemand("Posluzitelj", "Operacije", S);
 PDQ_Solve(CANON);
 PDQ_Report();
```

pr3.c

Raspodijeljeni sustavi 15 od 60

Primjer 4: Vrijeme čekanja i broj zahtjeva

- Sustav ima prosječno vrijeme posluživanja 1 sekunda i učestalost dolazaka zahtjeva je 0.5 zadatka u sekundi.
 - Kolika je srednja vrijednost ukupnog vremena čekanja (R) i srednja vrijednost broja zahtjeva u repu (Q)?

Raspodijeljeni sustavi 16 od 60

Primjer 4: Vrijeme čekanja i broj zahtjeva

Analitičko rješenje

- ♦ Prosječno vrijeme posluživanja S = 1 s/z
- ◆ Učestalost pristiglih zahtjeva L = 0.5 z/s
- Prosječna zaposlenost sustava U
 U = S * L = (1 s/z) * (0.5 z/s) = 0.5 (50 %)
- Srednje vrijeme zadržavanja paketa u sustavu (R)
 R = S / (1 U) = (1) /(1 0.5) = 2 s
- Srednja vrijednost broja zahtjeva u sustavu (Q)
 Q = U / (1 U) = 0.5/(1 0.5) = 1 z

Raspodijeljeni sustavi 17 od 60

Primjer 4: Vrijeme čekanja i broj zahtjeva


```
main() {
 extern int nodes, streams;
 float L = 0.5;
 float S = 1.0;
 PDQ_Init("Posuzitelj s repom");
 nodes = PDQ_CreateNode("Posluzitelj", CEN, FCFS);
 streams = PDQ CreateOpen("Zadaci", L);
 PDQ_SetDemand("Posluzitelj", "Zadaci", S);
 PDQ_Solve(CANON);
 PDQ Report();
```

=

pr4.c

Primjer 5: Posluživanje u seriji

- Sustav sadrži 3 serijske procesne jedinice s prosječnim vremenima posluživanja 1 s, 2 s i 3 s.
 - Koliko će biti vrijeme zadržavanja u sustavu uz ulazni ritam zahtjeva od 0.1 z/s ?
 - Koliki će biti prosječni broj zahtjeva u sustavu ?

Raspodijeljeni sustavi 19 od 60

Primjer 5: Posluživanje u seriji

Analitičko rješenje

- Prosječna vremena posluživanja S₁ = 1 s/z, S₂ = 2 s/z, S₃
 = 3 s/z
- ♦ Propusnost sustava X = 0.1 z/s
- ♦ Vremena zadržavanja R_N = S_N /(1 X*S_N)
 R₁ = 1.11s, R₂ = 2.5s, R₃ = 4.29s
- Prosječni broj zahtjeva u repu Q

Q =
$$X * (R_1 + R_2 + R_3) =$$

0.1 z/s * (1.11 + 2.5 + 4.29) = 0.79 z

Raspodijeljeni sustavi 20 od 60

Primjer 5: Posluživanje u seriji


```
main() {
 extern int nodes, streams:
 float L = 0.1; float S1 = 1.0; float S2 = 2.0; float S3 = 3.0;
 PDQ_Init("Serija tri posluzitelja");
 streams = PDQ_CreateOpen("Zadaci", L);
 nodes = PDQ_CreateNode("Posluzitelj1", CEN, FCFS);
 nodes = PDQ_CreateNode("Posluzitelj2", CEN, FCFS);
 nodes = PDQ_CreateNode("Posluzitelj3", CEN, FCFS);
 PDQ_SetDemand("Posluzitelj1", "Zadaci", S1);
 PDQ_SetDemand("Posluzitelj2", "Zadaci", S2);
 PDQ_SetDemand("Posluzitelj3", "Zadaci", S3);
 PDQ_Solve(CANON);
 PDQ_Report();
```

pr5.c

- Web aplikacija uključuje podršku korisnicima putem chat usluge. Kupci sami odabiru jedan od 10 repova čekanja. Mjerenja pokazuju da zahtjevi prosječno dolaze 3 upita u minuti te da svaki kupac prosječno čeka 3 minute u repu i prosječno provodi 2 minute u konverzaciji.
 - Koliko bi dodatnih tehničara trebalo zaposliti da se prosječno vrijeme čekanja svede na 1 minutu ?

Raspodijeljeni sustavi 22 od 60

Raspodijeljeni sustavi 23 od 60

Analitičko rješenje

- Prosječno vrijeme posluživanja S = 2 min/z
- ♦ Broj pristiglih zahtjeva u jednom repu L = 3 z/min
- Prosječna zaposlenost sustava (U)
 U = S L = (2 min/z) (3 z/min) = 6
- Faktor iskorištenja (ro)ro = U/N = 6/10 = 0.6
- ◆ Srednje vrijeme zadržavanja korisnika u sustavu (R)
 R = S / (1 ro) = 2 / (1 0.6) = 5 min
- Srednje vrijeme čekanja u repu (W)
 W = R S = 5 min 2 min = 3 min

Raspodijeljeni sustavi 24 od 60

Rješenje za broj tehničara

Za zadani sustav ne postoji analitičko rješenje. Rješenje se određuje primjenom numeričkih metoda ili primjenom metode pokušaja i promašaja.

Kao rješenje dobije se da je potrebno 18 tehničara

pr5.xls

Raspodijeljeni sustavi 25 od 60

Odabrano rješenje

- Broj poslužitelja (tehničara) N = 18
- Prosječno vrijeme posluživanja S = 2 min/z
- Propusnost sustava X = 3 z/min
- Prosječna zaposlenost sustava U
 U = X * S = (3 z/min) * (2 min/z) = 6
- ♦ Faktor iskorištenja ro ro = U/N = 6/18 = 0.33
- ♦ Srednje vrijeme zadržavanja korisnika u sustavu (R) R = S / (1 - ro) = 2 / (1 - 0.33) = 2.985 min
- ◆ Srednje vrijeme čekanja u repu (W)
 W = 2.985 2 = 0.985 min


```
main() {
  extern int nodes;
  extern int
              streams;
         L = 3;
  double
            S = 2;
  double
  char nName[30];
  char cName[30];
  int
       count = 10;
  int
  PDQ_Init("Aplikacija korisnicke podrske");
```

pr6.c

Raspodijeljeni sustavi 27 od 60


```
for( i=0; i<count; i++ ) {
 sprintf(nName, "Serv %2d", i);
 sprintf(cName, "CInt %2d", i);
 nodes = PDQ_CreateNode(nName, CEN, FCFS);
 streams = PDQ_CreateOpen(cName, L/count);
for( i=0; i<count; i++ ) {
 sprintf(nName, "Serv %2d", i);
 sprintf(cName, "CInt %2d", i);
 PDQ_SetDemand(nName, cName, S);
PDQ_Solve(CANON);
PDQ_Report();
```


Raspodijeljeni sustavi 28 od 60

- Paketi dolaze u komunikacijski kanal s učestalošću 0.5 paketa u sekundi i zahtijevaju 0.75 sekundi za obradu. Za 30 % paketa dogodi se pogreška pri prijenosu i takvi paketi se umeću u rep za ponovno slanje.
 - Koliko vremena paket prosječno provede u kanalu ?

Raspodijeljeni sustavi 29 od 60

Raspodijeljeni sustavi 30 od 60

Analitičko rješenje

- ♦ Broj pristiglih paketa u sekundi L = 0.5 p/s
- ♦ Prosječno vrijeme obrade paketa S = 0.75 s/p
- ♦ Vjerojatnost pogreške paketa pri prijenosu p = 0.3
- \downarrow L₁ = L / (1 p) = 0.5 / 0.7 = 0.714 p/s
- Prosječna zaposlenost kanala U
 U = L₁ * S = 0.714 p/s * 0.75 s/p = 0.536 (53.6 %)
- ◆ Srednje vrijeme čekanja u repu WW = S*U / (1 U) = 0.866 s/p
- Srednje vrijeme zadržavanja paketa u kanalu (R1)
 R1 = W + S = 0.866 s/p + 0.75 s/p = 1.616 s/p

Prosječno vrijeme u kanalu: R = R1 /(1-p) = 2.31 s

Raspodijeljeni sustavi 31 od 60


```
main() {
 extern int nodes, streams;
 float p err = 0.30;
 float L = 0.50;
 float S = 0.75;
 float V = 1.0 / (1.0 - p_err);
 PDQ_Init("Posluzitelj s repom i povratnom vezom");
 nodes = PDQ_CreateNode("Kanal", CEN, FCFS);
 streams = PDQ_CreateOpen("Poruka", L);
 PDQ_SetVisits("Kanal", "Poruka", V, S);
 PDQ_Solve(CANON);
 PDQ_Report();
```


pr7.c

Primjer 8: Poslužitelj aplikacija

- Poslužitelj aplikacija omogućava skupini inženjera razvoj programa u dijeljenom vremenu. Mjerenjem su utvrđene sljedeće značajke sustava:
 - Srednji broj aktivnih razvojnih inženjera m = 230
 - ♦ Srednje vrijeme između kompilacija je Z = 300 s
 - Srednje iskorištenje poslužitelja je U = 0.48
 - ♦ Srednje vrijeme kompilacije S = 0.63 s
- Upravitelj sustava želi odrediti:
 - Propusnost sustava (X)?
 - Koliko je srednje vrijeme kompilacije (R)?

pr8.c

Raspodijeljeni sustavi 33 od 60

Poslužitelj aplikacija

Raspodijeljeni sustavi 34 od 60

Primjer 8: Poslužitelj aplikacija

Rješenje

- ♦ Broj generatora zahtjeva m=230
- Srednje vrijeme između kompilacija je Z = 300 s
- Srednje iskorištenje poslužitelja je U = 0.48
- Srednje vrijeme kompilacije S = 0.63 s/kom

Propusnost sustava (X)

$$X = U/S = 0.48 / 0.63 s = 0.7619 kom/s$$

Srednje vrijeme zadržavanja u sustavu (R)

$$R = m / X(m) - Z$$

$$\mathbf{R} = (230 \text{ kom} / 0.7636 \text{ kom/s}) - 300 \text{ s} = 1.21 \text{s}$$

Raspodijeljeni sustavi 35 od 60

Primjer 8: Zatvoreni sustav s paralelnim poslužiteljima

- Proširivanje sustava iz prethodnog primjera
 - ♦ Što će se dogoditi sa sustavom ako poduzeće zaposli novih 200 programera?

Odgovor: U = 0.88; R = 5.009 s

Koliko će se situacija popraviti ako se poslužitelju doda drugi procesor sa istim značajkama?

Odgovor korištenjem *repair.c*:

- Praksa je pokazala da se u multi-procesorskim sistemima postoji dodatni teret zbog sinkronizacije procesora. Uobičajeni faktor je 3 - 5% tj. u našem slučaju uzmimo da se S rate se povećava na ~ 0.66s
- Program daje slijedeće rezultate:

$$\bullet$$
 U = 0.47; R = 0.8465s

repair.c

Raspodijeljeni sustavi 36 od 60

Primjer analize performansi web aplikacije

Raspodijeljeni sustavi 37 od 60

Primjer analize raspodijeljene aplikacije

- Logička arhitektura raspodijeljene aplikacije
- Fizička arhitektura raspodijeljene aplikacije
- Model raspodijeljene aplikacije
- Vrednovanje značajki performansi aplikacije

Raspodijeljeni sustavi 38 od 60

Logička arhitektura aplikacije

Raspodijeljeni sustavi 39 od 60

Fizička arhitektura aplikacije

Raspodijeljeni sustavi 40 od 60

Model aplikacije

Raspodijeljeni sustavi 41 od 60

Primjer analize raspodijeljene aplikacije

- Svaki od podsustava aplikacije na jednom računalu
- Učestalost dolazaka zahtjeva na podsustave
 - ightharpoonup L_{IM} = p_{IM}L, v_{IM} = p_{IM}
 - ♦ $L_{AP} = p_{BP}L_{AP} + (1 p_{IM})L \Rightarrow$ $L_{AP} = [(1 p_{IM})/(1 p_{BP})]L$ $V_{AP} = [(1 p_{IM})/(1 p_{BP})]$

 - ♦ $L_{77} = L$, $V_{ZZ} = 1$
 - ightharpoonup L_{PO} = L, V_{PO} = 1

Raspodijeljeni sustavi 42 od 60

Primjer analize raspodijeljene aplikacije

Skalirana vremena posluživanja

$$ightharpoonup$$
 $D_{IM} = V_{IM} S_{IM} = p_{IM} L$

$$\bullet$$
 D_{AP} = V_{AP} S_{AP} = $[(1 - p_{IM})/(1 - p_{BP})]$ L \Rightarrow

$$\bullet$$
 D_{BP} = v_{BP} S_{BP} = p_{BP} [(1 - p_{IM})/(1 - p_{BP})] S_{AP}

$$\bullet$$
 D_{ZZ} = v_{ZZ} S_{BP} = 1 S_{BP}

$$\bullet$$
 D_{PO} = V_{PO} S_{BP} = 1 S_{PO}

Vrijeme zadržavanja zahtjeva

♦ R =
$$D_{IM}/(1 - L D_{IM}) + D_{AP}/(1 - L D_{AP}) + D_{BP}/(1 - L D_{BP}) + D_{ZZ}/(1 - L D_{ZZ}) + D_{PO}/(1 - L D_{PO})$$

Raspodijeljeni sustavi 43 od 60

Raspodijeljeni sustavi 44 od 60

Vrednovanje značajki performansi

Učestalosti pristupa podacima

Veličina grozda baze podataka

Promjena organizacije podataka

Promjena stupnja sigurnosti

Učestalost pristupa podacima

Raspodijeljeni sustavi 46 od 60

Ap_Prist.xls

Veličina grozda baze podataka

Raspodijeljeni sustavi 48 od 60

Ap_Rac.xls

Raspodijeljeni sustavi 49 od 60

Promjena organizacije podataka

Replikacija podataka

- Skup računala od kojih svako u spremniku sadrži kopiju cijele baze podataka
- Zahtjevi se raspoređuju na računala s ciljem raspoređivanja opterećenja

Raspoređivanje zahtjeva

Raspodijeljeni sustavi 50 od 60

Promjena organizacije podataka

Segmentacija podataka

- Skup računala od kojih svako u spremniku sadrži dio cijele baze podataka
- Zahtjevi se prosljeđuju prema računalu s traženim zapisima

- Pretpostavke
 - Uniformna raspodjela zahtjeva na zapise
 - Linearna složenost obrade zahtjeva o količini zapisa

Raspodijeljeni sustavi 51 od 60

Promjena organizacije podataka

Raspodijeljeni sustavi 52 od 60

$$\longrightarrow$$
 N = 1 (REP) \longrightarrow N = 10 (REP) \longrightarrow N = 10 (SEG)

 N_{AP}

 N_{BP}

= 0.3

 S_{BP} = 2.5

 S_{IM} = 0.5

= 0.001

 S_{PO} = 0.001

= 0.1 p_{IM}

= 0.15 p_{BP}

Ap_Pod.xls

Učestalost dolazaka zahtjeva [z/s]

53 od 60 Raspodijeljeni sustavi

Utjecaj stupnja sigurnosti

- Imenik aplikacije sadrži informacije o korisnicima
 - Korisnički identiteti
 - Korisnička prava pristupa
- Sigurnosna značka
 - Određuje sigurnosne postavke korisnika aplikacije
 - Značka se dohvaća iz imenika
- ♦ Životni vijek sigurnosne značke
 - Ograničeni broj pristupa
 - Zadano vrijeme korištenja
 - Ostali sigurnosni modeli

Raspodijeljeni sustavi 54 od 60

Promjena stupnja sigurnosti

Raspodijeljeni sustavi 55 od 60

Ap_Sig.xls

Raspodijeljeni sustavi 56 od 60

Utjecaj stupnja sigurnosti

- Zašto vrijeme zadržavanja opada?
 - Modelirano je vrijeme zahtjeva zadržavanja ali ne i ukupno vrijeme zadržavanja aplikacije koje doživljava korisnik

Raspodijeljeni sustavi 57 od 60

Domaća zadaća

Raspodijeljeni sustavi 58 od 60

Domaća zadaća

- ◆ Zadatak 1: Web aplikacija uključuje podršku korisnicima putem chat usluge. Kupci sami odabiru jedan od 10 repova čekanja u kojima upite poslužuje po jedan tehničar. Mjerenja pokazuju da zahtjevi prosječno dolaze 3 upita u minuti te da svaki kupac prosječno čeka 3 minute u repu i prosječno provodi 2 minute u razgovoru. (nadogradnja primjera 6)
 - 1) Kakvi će biti odzivi sa 10 i 18 tehničara ako publiciranje Web stranice sa odgovorima na najčešća pitanja smanji broj upita na 2 u minuti?
 - 2) Kakve će rezultate dati smanjenje razgovora na 1.5 minutu?

Raspodijeljeni sustavi 59 od 60

Domaća zadaća

- Zadatak 2: Oblikovati proizvoljnu raspodijeljenu aplikaciju i ostvariti analizu performansi ostvarene aplikacije
 - 1) Definirati logičku i fizičku arhitekturu aplikacije
 - 2) Izgraditi model aplikacije primjenom teorije repova
 - Odrediti analitičko rješenje funkcije zadržavanja zahtjeva u aplikaciji R=f(L)
 - 3) Izgraditi model aplikacije za alat PDQ
 - Primjenom izgrađenog modela odrediti vrijednosti funkcije zadržavanja zahtjeva R=f(L) u nekoliko točaka
 - 4) Usporediti i obrazložiti dobivene rezultate

Raspodijeljeni sustavi 60 od 60