- L import pandas as pd
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 5 import os
- 6 #from sklearn.cluster import KMeans
- 7 #from yellowbrick.cluster import KElbowVisualizer
- 8 #from sklearn import metrics
- 1 df = pd.read_csv('/content/Live.csv')
- df.drop(['status_id', 'status_published', 'Column1', 'Column2', 'Column3', 'Column4'], axis=1,
- 3 df.head()

	status_type	num_reactions	num_comments	num_shares	num_likes	num_loves	num_w
0	video	529	512	262	432	92	
1	photo	150	0	0	150	0	
2	video	227	236	57	204	21	
3	photo	111	0	0	111	0	
4	nhoto	213	0	0	204	9	
◀							•

- from sklearn.preprocessing import LabelEncoder
- 2 le = LabelEncoder()
- 3 df['status_type'] = le.fit_transform(df['status_type'])
- 4 df.head()

	status_type	num_reactions	num_comments	num_shares	num_likes	num_loves	num_w
0	3	529	512	262	432	92	
1	1	150	0	0	150	0	
2	3	227	236	57	204	21	
3	1	111	0	0	111	0	
4	1	213	Ω	Ω	204	9	→

- 1 df.dropna(inplace=True)
- 2 df.head()

```
num reactions num comments num shares num likes num loves
1 X = df
2 y = df['status_type']
                                150
                                                             U
                                                                      150
1 y
    0
    1
            1
    2
            1
    4
            1
    7045
            1
    7046
           1
    7047
           1
    7048
            1
    7049
    Name: status_type, Length: 7050, dtype: int64
1 from sklearn.preprocessing import MinMaxScaler
2 ms = MinMaxScaler()
3 X = ms.fit_transform(X)
1 from sklearn.cluster import KMeans
2 kmeans = KMeans(n_clusters=2, random_state=0)
3 kmeans.fit(X)
    KMeans(n_clusters=2, random_state=0)
1 kmeans.cluster_centers_
    array([[3.28506857e-01, 3.90710874e-02, 7.54854864e-04, 7.53667113e-04,
            3.85438884e-02, 2.17448568e-03, 2.43721364e-03, 1.20039760e-03,
            2.75348016e-03, 1.45313276e-03],
           [9.54921576e-01, 6.46330441e-02, 2.67028654e-02, 2.93171709e-02,
            5.71231462e-02, 4.71007076e-02, 8.18581889e-03, 9.65207685e-03,
            8.04219428e-03, 7.19501847e-03]])
1 kmeans.inertia
    237.75726404419646
1 labels = kmeans.labels
2 # check how many of the samples were correctly labeled
3 correct_labels = sum(y == labels)
4 print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size))
    Result: 63 out of 7050 samples were correctly labeled.
```

