2023 - 2024

Forme Trigonométrique Corrigé

DARVOUX Théo

Octobre 2023

\mathbf{E}	xercices.	
	Exercice 7.1	2
	Exercice 7.2	2

Exercice 7.1 $[\blacklozenge \lozenge \lozenge]$

Calculer $(1+i)^2023$.

On a:

$$(1+i)^{2023} = (\sqrt{2}e^{i\frac{\pi}{4}})^{2023} = \sqrt{2}^{2023}e^{i\frac{2023\pi}{4}} = \sqrt{2}^{2023}e^{-i\frac{\pi}{4}}$$

Soient trois réels x, y, z tels que $e^{ix} + e^{iy} + e^{iz} = 0$. Montrer que $e^{2ix} + e^{2iy} + e^{2iz} = 0$. On a :

$$e^{ix} + e^{iy} + e^{iz} = 0$$

$$\iff e^{-ix} + e^{-iy} + e^{-iz} = 0$$

Et :

$$(e^{ix} + e^{iy} + e^{iz})^2 = e^{2ix} + e^{2iy} + e^{2iz} + 2(e^{ixy} + e^{ixz} + e^{iyz})$$

$$\iff e^{2ix} + e^{2iy} + e^{2iz} = -2(e^{ixy} + e^{ixz} + e^{iyz})$$

Or:

$$2(e^{ixy} + e^{ixz} + e^{iyz}) = 2e^{i(x+y+z)}(e^{-ix} + e^{-iy} + e^{-iz}) = 0$$

Ainsi,

$$e^{2ix} + e^{2iy} + e^{2iz} = 0$$