Week 5: Assignment 4: Word relationship analysis

Scout Leonard

2022-05-02

Load Libraries

The code chunk below loads the packages required for this homeowrk assignment:

```
packages=c("tidyr",
            "pdftools",
           "lubridate",
           "tidyverse",
           "tidytext",
           "readr",
            "quanteda",
            "readtext",
           "quanteda.textstats",
            "quanteda.textplots",
            "ggplot2",
            "forcats",
           "stringr",
            "quanteda.textplots",
           "widyr",
            "igraph",
            "ggraph",
            "here")
for (i in packages) {
  if (require(i, character.only=TRUE)==FALSE) {
    install.packages(i,repos='http://cran.us.r-project.org')
  else {
    require(i, character.only=TRUE)
}
```

Read in data

Read in files and make corpus

The code chunk below reads in the EPA report PDFs, makes a corpus of the documents, and removes stop words from the corpus. It also prints a dataframe of the corpus without stop words:

Text	Types	Tokens	Sentences	type	subj	year
EPA_EJ_2015.pdf	2136	8944	263	EPA	EJ	2015
$EPA_EJ_2016.pdf$	1599	7965	176	EPA	EJ	2016
$EPA_EJ_2017.pdf$	2774	16658	447	EPA	EJ	2017
$EPA_EJ_2018.pdf$	3973	30564	653	EPA	EJ	2018
$EPA_EJ_2019.pdf$	3773	22648	672	EPA	EJ	2019
$EPA_EJ_2020.pdf$	4493	30523	987	EPA	EJ	2020

Count and tokenize words

The code chunk below converts the EPA report corpus data to tidy format:

```
#convert to tidy format and apply my stop words
raw_text <- tidy(epa_corp)

#Distribution of most frequent words across documents
raw_words <- raw_text %>%
    mutate(year = as.factor(year)) %>%
    unnest_tokens(word, text) %>%
    anti_join(add_stops, by = 'word') %>%
    count(year, word, sort = TRUE)

#number of total words by document
total_words <- raw_words %>%
    group_by(year) %>%
    summarize(total = sum(n))
```

What are the most frequent trigrams in the dataset? How does this compare to the most frequent bigrams? Which n-gram seems more informative here, and why?

```
tokens <- tokens(epa_corp, remove_punct = TRUE) #list of character vectors - takes each document and sp
toks1<- tokens_select(tokens, min_nchar = 3)

toks1 <- tokens_tolower(toks1)

toks1 <- tokens_remove(toks1, pattern = (stop_vec))

dfm <- dfm(toks1) #create document feature matrix - rows are number of occurances of each word within e

#first the basic frequency stat
tstat_freq <- textstat_frequency(dfm, n = 5, groups = year)

head(tstat_freq, 10) %>%
    knitr::kable()
```

feature	frequency	rank	docfreq	group
environmental	127	1	1	2015
communities	99	2	1	2015
epa	92	3	1	2015
justice	84	4	1	2015
community	47	5	1	2015
environmental	109	1	1	2016
communities	85	2	1	2016
justice	71	3	1	2016
epa	48	4	1	2016
federal	31	5	1	2016

```
toks2 <- tokens_ngrams(toks1, n = 3)

dfm2 <- dfm(toks2)

dfm2 <- dfm_remove(dfm2, pattern = c(stop_vec))
#gives more coherent terms - power of chunking at a different token level

freq_words2 <- textstat_frequency(dfm2, n = 20)

freq_words2$token <- rep("trigram", 20)
#tokens1 <- tokens_select(tokens1, pattern = stopwords("en"), selection = "remove")

head(freq_words2, 5) %>%
    knitr::kable()
```

feature	frequency	rank	docfreq	group	token
justice_fy2017_progress	51	1	1	all	trigram
fy2017_progress_report	51	1	1	all	$\operatorname{trigram}$
$environmental_public_health$	50	3	6	all	$\operatorname{trigram}$
environmental_justice_fy2017	50	3	1	all	$\operatorname{trigram}$

feature	frequency	rank	docfreq	group	token
national_environmental_justice	37	5	6	all	trigram

The most frequent trigrams in the dataset are shown in the table above, with justice_fy2017_progress as the most frequently occurring trigram. This is less informative than the bigram frequency because the word groupings are slightly more nonsensical, probably because linguistically bigrams are more common and trigrams.

Choose a new focal term to replace "justice" and recreate the correlation table and network (see corr_paragraphs and corr_network chunks). Explore some of the plotting parameters in the cor_network chunk to see if you can improve the clarity or amount of information your plot conveys. Make sure to use a different color for the ties!

```
#correlation between co-occuring words
word_cors <- par_words %>%
  add_count(par_id) %>%
 filter(n \ge 50) \%
  select(-n) %>%
 pairwise_cor(word, par_id, sort = TRUE)
#now we can select words cooccurring with the word justice and get correlation coefficients
food_cors <- word_cors %>%
  filter(item1 == "food")
  word_cors %>%
  filter(item1 %in% c("food", "agriculture", "health", "resiliency")) %%
  group_by(item1) %>%
  top_n(6) %>%
  ungroup() %>%
  mutate(item1 = as.factor(item1),
  name = reorder_within(item2, correlation, item1)) %>%
  ggplot(aes(y = name, x = correlation, fill = item1)) +
  geom_col(show.legend = FALSE) +
  facet_wrap(~item1, ncol = 2, scales = "free")+
  scale_y_reordered() +
  labs(y = NULL,
         x = NULL,
         title = "Correlations with key words",
         subtitle = "EPA EJ Reports")
```

Selecting by correlation

Correlations with key words EPA EJ Reports

Write a function that allows you to conduct a keyness analysis to compare two individual EPA reports (hint: that means target and reference need to both be individual reports). Run the function on 3 pairs of reports, generating 3 keyness plots.

```
#test function
dfm_subset <- corpus_subset(epa_corp, grepl("2018|2019", docnames(epa_corp)))

#urite function
keyness_comparison <- function(text1_year, text2_year) {

    #subset the corpus
    corpus_subset <- corpus_subset(epa_corp, grepl(pasteO(text1_year, "|", text2_year), docnames(epa_corp)

    #tokenize corpus
    tokens <- tokens(corpus_subset, remove_punct = TRUE) #list of character vectors - takes each document
    toks <- tokens_select(tokens, min_nchar = 3)
    toks <- tokens_tolower(toks)
    toks <- tokens_remove(toks, pattern = (stop_vec))
    dfm <- dfm(toks) #create document feature matrix - rows are number of occurances of each word within
    keyness <- textstat_keyness(dfm, target = 2)
    textplot_keyness(keyness)
}</pre>
```

Keyness plot 1

Test running the function on 2015 and 2019

keyness_comparison(text1_year = 2015, text2_year = 2019)

Keyness plot 2

Test running the function on 2019 and 2020

keyness_comparison(text1_year = 2019, text2_year = 2020)

Keyness plot 3

Test running the function on 2016 and 2018:

keyness_comparison(text1_year = 2016, text2_year = 2018)

Select a word or multi-word term of interest and identify words related to it using windowing and keyness comparison. To do this you will create two objects: one containing all words occurring within a 10-word window of your term of interest, and the second object containing all other words. Then run a keyness comparison on these objects. Which one is the target, and which the reference? Hint

food systems

Create an object containing all words occurring within a 10 word window of **food systems**.

Create an object containing all other words:

Run a keyness comparison of the objects:

toks_inside is the target, and toks_outside is the reference.