

Data Science At AWS

Rui LIU, Bruno BALDEZ CORREA

Data Science Services at AWS

Amazon Redshift A

Amazon Redshift is a fast, fully managed, petabyte-scale cloud-base data warehouse solution offered by Amazon Web Services that provides simple and cost-effective functionalities to analyze all your data using standard SQL and BI techniques.

Characteristics

- Extensible
- Simple
- Scalable
- Secure

Architecture

Clusters

○ 1 or more compute nodes.

Compute nodes

- send intermediate results

Leader node

(v) distributes it

Architecture

Data Distribution

- ALL
- ≪ KEY

- SortKey
- igotimes Primary and Foreign keys

Getting Started with Amazon Redshift

Step 1: Set Up Prerequisites

Step 2: Create an IAM Role

Step 3: Launch a Sample Amazon Redshift Cluster

Step 4: Authorize Access to the Cluster

Step 5: Connect to the Sample Cluster

Step 6: Load Sample Data from Amazon S3

Step 7: Find Additional Resources and Reset Your

Environment

Redshift Use Scenario

Redshift Use Scenario

	server name:		
ev.cztbcyhł	hp88.us-east-1.redshift.amazonaws.com	Port:	8912
Step 2: Enter a	database on the server:		
testv1			
Step 3: Enter in	formation to log on to the database:		
Username:			
Password:			
rassnolu.			
Step 4: Establish	the connection:		
	Connect		
Ston 5: Solort a	scheme on the cerver		
Step 5: Select a	schema on the server:		
	schema on the server: table or view from the database:		
Step 6; Select a		QL	
Step 6; Select a	table or view from the database:	QL	
Step 6; Select a	table or view from the database:	QL	
Step 6; Select a	table or view from the database:	QL	
Step 6; Select a	table or view from the database:	Źľ	
Step 6; Select a	table or view from the database:	QL	

Redshift Use Scenario

Amazon Machine Learning

Amazon Machine Learning makes it easy for developers to build machine learning model without learning complex algorithm or hiring experts.

Ideal Usage Pattern

Hard to code rules

- Rules are not explicit
- Number of factors are huge

Hard to scale

- Large number of tasks
- Impossible to classify tasks manually

Datasources

Datasource is an object used by Amazon Machine Learning as train data, evaluation data and validation data

- O Data should be well-formatted
- O Datasources should contain one column as target

Train ML Models

Amazon ML applies machine learning algorithms automatically

- ⊗ Binary Classification
- Multiclass Classification

Evaluate ML Models

Accuracy 0.9111

Generate and Interpret Prediction

- Batch Prediction
- Real-Time Prediction

Cost Model

Advantages & Disadvantages

Advantages

- Automatic
- Fast and easy

Disadvantages

- Black box
- Supervised model only

Thanks!

Any questions?

