A 0.15-Scale Study of Configuration Effects on the Aerodynamic Interaction Between Main Rotor and Fuselage.

Ted Trept
Bell Helicopter Textron Inc.
Fort Worth, Texas 76101

Prepared for Ames Research Center Under Contract NAS2 - 11268

Ames Research Center Moffett Field, California 94035

TABLE OF CONTENTS

	<u>Page</u>
List of Figures	v
List of Tables	xvii
List of Symbols	xviii
Summary	1
Introduction	2
Literature Survey	5
Test Equipment	16
Powered Force Model Test Stand	16
Drive System Fuselage and Drive Train Interface	16 19
Powered Force Model Data Acquisition System Model 222 0.15-Scale Test Rotor Test Stand Fairings Instrumentation	19 20 20 27
Test Facilities	32
BHTI Hover Test Facility Vought Corporation Low Speed Wind Tunnel Facilit	32 Sy 32
Test Procedures	36
Hover Test Procedure Forward Flight Test Procedure Flow Visualization Procedure	36 38 40
Test Schedule Hover Forward Flight	40 40 42
Test Results	42
Data Acquisition and Reduction Hover Test Results	42 49
Fuselage Data Main Rotor Data	. 49 58

TABLE OF CONTENTS (continued)	
,	Page
Forward Flight Test Results	77
Fuselage Force and Moment Data Fuselage Pressure Data Main Rotor Data	77 136 148
Flow Visualization Results	191
Correlation	211
Hover Forward Flight	211 213
Conclusions and Recommendations	235
References	242
Appendix A - Hover Data	A-1
Appendix B - Forward Flight Data	B-1
Appendix C - Pressure Data and Body Contour Definition	C-1

LIST OF FIGURES

Figure	Title	Page
1	Aerodynamic interactions of the single rotor helicopter configuration.	3
2	BHTI powered force model test stand.	17
3	BHTI powered force model with 0.15-scale Model 576 test stand fairing.	18
4	BHTI powered force model data acquisition system installed in LTV low speed wind tunnel.	21
5	BHTI powered force model data acquisition system flow chart.	22
6	Model 222 0.15-scale test rotor.	23
7	Sketches of the 0.15-scale model fairing components.	25
8	Whirl cage floor plan.	33
9	Vought low speed wind tunnel circuit arrangement.	34
10	PFM and Model 576 installed in LTV tunnel.	37
11	Hover test configurations.	41
12	Photographs of several hover test configurations.	43
13	Forward flight test configurations.	45
14	Configuration BHR installed in the LTV 7x10-foot Low Speed Wind Tunnel.	46
15	Definition of sign conventions and reference systems.	50

Figure	Title	Page
16	Flat pitch runup for 0.15-scale Model 222 main rotor.	51
17	Effect of configuration on fuselage download.	53
18	Effect on main rotor-fuselage separation distance on fuselage download.	54
19	Effect of main rotor thrust on BHRF2L IGE and OGE download.	55
20	Ground effect on configuration BHRF2L download.	56
21	Ground effect on fuselage pitching moment.	57
22	Ground effect on fuselage yawing moment.	59
23	Effect of tip speed on fuselage download.	60
24	Effect of configuration on IGE hover performance, Z/R=0.5.	61
25	Effect of configuration on IGE hover performance, Z/R=0.75.	62
26	Effect of configuration on IGE hover performance, Z/R=0.868.	63
27	Effect of configuration on OGE hover performance, Z/R=3.0.	64
28	Effect of rotor-fuselage separation distance on IGE hover performance, Z/R=0.5.	65
29	Effect of rotor-fuselage separation distance on IGE hover performance, Z/R=0.75.	66
30	Effect of rotor-fuselage separation distance on IGE hover performance, Z/R=0.868.	67
31	Effect of rotor-fuselage separation distance on OGE hover performance, Z/R=3.0.	68
32	<pre>IGE rotor-fuselage configuration power required/ isolated rotor power required, Z/R=0.5.</pre>	70

Figure	Title	Pag
33	OGE rotor-fuselage configuration power required/ isolated rotor power required, Z/R=3.0.	71
34	Configuration HR IGE/OGE hover power required.	72
35	Configuration BHR IGE/OGE hover power required.	73
36	Configuration BHRF2U IGE/OGE hover power required.	74
37	Configuration BHRF2L IGE/OGE hover power required.	75
38	Ground effect on IGE/OGE hover power required.	76
39	Effect of tip speed on configuration HR IGE and OGE hover performance.	78
40	Configuration HR power ratio for tip speeds of 159 m/s and 221 m/s.	79
41	Effect of tip speed on configuration BHRF2L IGE and OGE hover performance.	80
42	Configuration BHRF2L power ratio for tip speeds of 159 m/s and 221 m/s.	81
43	The effect of mutual rotor-fuselage interaction on main rotor power required.	82
44	Rotor effect on BHRF2L body lift coefficient μ =0.10.	84
45	Rotor effect on BHRF2L body lift coefficient μ =0.20.	85
46	Rotor effect on BHRF2L body lift coefficient, μ =0.30.	86
47	Rotor effect on BHRF2L body drag coefficient, μ =0.10.	87
48	Rotor effect on BHRF2L body drag coefficient, μ =0.20.	88
49	Rotor effect on BHRF2L body drag coefficient, μ =0.30.	89

Figure	Title	Page
50	Rotor effect on BHRF2L body pitching moment coefficient, μ =0.10.	90
51	Rotor effect on BHRF2L body pitching moment coefficient, μ =0.20.	91
52	Rotor effect on BHRF2L body pitching moment coefficient, μ =0.30.	92
53	Wing lift coefficient versus angle of attack.	93
54	Wing drag coefficient versus angle of attack.	94
55	Rotor effect on wing lift coefficient, μ =0.20	96
56	Rotor effect on wing drag coefficient, μ =0.20.	97
57	Rotor effect on BHRFWO body lift coefficient, μ =0.20.	99
58	Rotor effect on BHRFWO body drag coefficient, μ =0.20.	100
59	Rotor effect of BHRFWO body pitching moment coefficient, μ =0.20.	101
60a	(Powered) Effect of configuration on body lift for powered and unpowered runs, $\mu=0.20$.	102
60b	Unpowered.	103
61a	(Powered) Effect of configuration on body lift for powered and unpowered runs, $\mu=0.30$.	104
61b	Unpowered.	105
62	Effect of configuration on body drag for powered runs, μ =0.20.	106
63	Effect of configuration on body drag for powered runs, μ =0.30.	107
64	Effect of configuration on body pitching moment for powered runs, μ =0.20.	108

Figure	Title	Page
65	Effect of configuration on body pitching moment for powered runs, μ =0.30.	109
66a	(Powered). Effect of configuration on body lift/drag for powered and unpowered runs, μ =0.20.	111
66b	Unpowered.	112
67a	(Powered) Effect of configuration on body lift/drag for powered and unpowered runs, μ =0.30.	113
67b	Unpowered.	114
68	Effect of angle of attack on rotor induced body lift for all configurations, μ =0.20.	115
69	Effect of angle of attack on rotor induced body lift for all configurations, $\mu=0.30$.	116
70	Effect of angle of attack on rotor induced body drag for all configurations, $\mu=0.20$.	117
71	Effect of angle of attack on rotor induced body drag for all configurations, $\mu=0.30$.	118
72	Effect of angle of attack on rotor induced body pitching moment for all configurations, μ =0.20.	119
73	Effect of angle of attack on rotor induced body pitching moment for all configurations, μ =0.30.	120
74	Effect of speed ratio on rotor induced body lift for all configurations, $C_T = .005$ and $\theta_B = 0$.	121
75	Effect of speed ratio on rotor induced body drag for all configurations, $C_T = .005$ and $\theta_B = 0$.	122
76	Effect of speed ratio on rotor induced body drag/rotor-off body drag for all configurations, $C_{\rm T}$ = .005 and $\theta_{\rm B}$ = 0.	123

Figure	Title	Page
77	Effect of speed ratio on rotor induced body pitching moment for all configurations, $C_T = .005$ and $\theta_B = 0$.	124
78	Effect of wake location on BHRF2L body lift.	127
79	Effect of wake location on BHRF2L body drag.	128
80	Effect of wake location on BHRF2L body pitching moment.	129
81	Effect of wake location on body lift for all configurations, $\theta_B^{}=-4$ degrees.	130
82	Effect of wake location on body drag for all configurations, $\theta_B^{}$ = -4 degrees.	131
83	Effect of wake location on body pitching moment for all configurations, θ_{B} = -4 degrees.	132
84	Effect of wake location on body lift for all configurations, $\theta_B = 4$ degrees.	133
85	Effect of wake location on body drag for all configurations, θ_B = 4 degrees.	134
86	Effect of wake location on body pitching moment for all configurations, $\theta_B = 4$ degrees.	135
87	Effect of body angle of attack/rotor induced angle of attack on body lift.	137
88	Effect of body angle of attack/rotor induced angle of attack on body pitching moment.	138
89	Effect of angle of attack on measured configuration B pressure coefficients.	140
90	Effect of angle of attack on measured configuration BF2L pressure coefficients.	141
91	Effect of hub and rotor on measured configuration B pressure coefficients, $C_T = 0.0055$, $\theta_B = 0$.	142

Figure	Title	Page
92	Effect of hub and rotor on measured configuration BF2L pressure coefficients, $C_{\rm T} = 0.0055$, $\theta_{\rm B} = 0$.	143
93	Comparison of measured pressure coefficients for configurations B and BF2L, θ_{B} = 0.	144
94	Comparison of configuration BH and BHF2L pressure coefficients, $\theta_{\rm B} = 0$.	145
95	Comparison of configuration BHR and BHRF2L pressure coefficients, $C_T = 0.0055$, $\theta_B = 0$.	146
96	Increment in configuration BHR and BHRF2L pressure coefficients due to the rotor and hub, $C_T = 0.0055$, $\theta_B = 0$.	147
97	Effect of separation distance on measured pressure coefficients, $C_T = 0.0055$, $\theta_B = 0$.	149
98	Increment in measured pressure coefficients due to separation distance, $C_T = 0.0055$, $\theta_B = 0$.	150
99	Effect of separation distance on measured pressure coefficients, $C_T = 0.003$, $\theta_B = 0$.	151
100	Increment in measured pressure coefficients due to separation distance, $C_T = 0.003$, $\theta_B = 0$.	152
101	Effect of main rotor thrust on configuration BHRF2U measured pressure coefficients, $\theta_{\rm B}$ = 0.	153
102	Effect of main rotor thrust on configuration BHRF2L measured pressure coefficients, $\theta_{\rm B} = 0$.	154
103	Main rotor C_T versus C_P , all configurations, μ =0.15.	156
104	Main rotor $C_{\overline{T}}$ versus $C_{\overline{P}}$, all configurations, μ =0.20.	157
105	Main rotor $C_{\overline{T}}$ versus $C_{\overline{P}}$, all configurations, μ =0.25.	158
106	Main rotor C_T versus C_p , all configurations, μ =0.30.	159

Figure	Title	Page
107	Main rotor C_T versus α_C , all configurations, μ =0.15.	160
108	Main rotor $C_{\overline{T}}$ versus $\alpha_{\overline{C}}$, all configurations, μ =0.20.	161
109	Main rotor $C_{\mathbf{T}}$ versus $\alpha_{\mathbf{C}}$, all configurations, μ =0.25.	162
110	Main rotor C_T versus α_C , all configurations, μ =0.30.	163
111	Main rotor C_p versus α_c , all configurations, $C_T = .005$, $\mu = 0.20$.	164
112	Main rotor C_{p} versus α_{c} , all configurations, $C_{T} = .005$, $\mu = 0.30$.	165
113	Main rotor lateral cyclic versus $\alpha_{\rm C}$, all configurations, $C_{\rm T}$ = .005, μ =0.20	167
114	Main rotor lateral cyclic versus α_{C} , all configurations, C_{T} = .005, μ =0.30.	168
115	Main rotor L/D versus $C_{\rm L}$, all configurations, μ =0.15.	169
116	Main rotor L/D versus C_{L}^{\prime} , all configurations, μ =0.20.	170
117	Main rotor L/D versus C_{L} , all configurations, μ =0.25.	171
118	Main rotor L/D versus C_{L} , all configurations, μ =0.30.	172
119	Main rotor L/D versus $\alpha_{\rm C}$, all configurations, $C_{\rm T}$ = .005, μ =0.30.	173
120	Main rotor $C_{\overline{\mathbf{T}}}$ versus $C_{\overline{\mathbf{X}}}$, all configurations, μ =0.15.	174
121	Main rotor $C_{\overline{\mathbf{T}}}$ versus $C_{\overline{\mathbf{X}}}$, all configurations, $\mu=0.20$.	175
122	Main rotor $C_{\overline{\mathbf{T}}}$ versus $C_{\overline{\mathbf{X}}}$, all configurations, $\mu = 0.25$.	176
123	Main rotor $C_{\overline{\mathbf{T}}}$ versus $C_{\overline{\mathbf{X}}}$, all configurations, μ =0.30.	177

Figure	Title	Page
124	Main rotor $C_{\overline{T}}$ versus $C_{\overline{H}}$, all configurations, μ =0.15.	178
125	Main rotor $C_{\overline{T}}$ versus $C_{\overline{H}}$, all configurations, μ =0.20.	179
126	Main rotor $C_{\overline{T}}$ versus $C_{\overline{H}}$, all configurations, μ =0.25.	180
127	Main rotor $C_{\overline{T}}$ versus $C_{\overline{H}}$, all configurations, μ =0.30.	181
128	Main rotor C_H versus α_C , all configurations, $C_{T}^{=.005}$, $\mu=0.20$.	182
129	Main rotor C_H versus α_C , all configurations, $C_T^{=.005}$, $\mu = 0.30$.	183
130	Main rotor axial force versus $\alpha_{_{\mbox{\scriptsize C}}}$, all configurations, $C_{\mbox{\scriptsize T}}$ =.005, μ =0.20.	185
131	Main rotor axial force versus $\alpha_{_{\mbox{\scriptsize C}}}$, all configurations, $C_{_{\mbox{\scriptsize T}}}$ =.005, μ =0.30.	186
132	Effect of main rotor thrust on rotor axial force center, HR, $\alpha_S^{=-4}$ deg.	187
133	Effect of main rotor thrust on rotor axial force center, BHR, $\alpha_S^{=-4}$ deg.	188
134	Effect of main rotor thrust on rotor axial force center, BHRF2L, $\alpha_S^{=-4}$ deg.	189
135	Effect of main rotor thrust on rotor axial force center, BHRF2U, $\alpha_S^{=-4}$ deg.	190
136	Effect of main rotor thrust on center of H-force, HR, $\alpha_S^{=-4}$ deg.	192
137	Effect of main rotor thrust on center of H-force, BHRF2L, $\alpha_S^{=-4}$ deg.	193
138	Main rotor uncorrected propulsive force versus α_{C} , all configurations, C_{T} =.005, μ =0.20.	194
139	Main rotor uncorrected propulsive force versus α_{C} , all configurations, C_{T} =.005, μ =0.30.	195

Figure	Title	Page
140	Vertical smoke scan of BHRF2L to illustrate visual limits of discrete circulation, μ =0.10, $C_{\rm T}$ = 0.00268, $\theta_{\rm B}$ = 0.	198
141	Vertical smoke scan of BHRF2L to illustrate visual limits of discrete circulation, μ =0.10, C_T = 0.00644, θ_B = 0.	199
142	Streamline shape changes above the nose of BHRF2L, μ = 0.10, $C_{\rm T}$ = 0.00268, $\theta_{\rm B}$ = 0.	200
143	Effect of body pitch attitude on BHRF2L wake trajectory, μ = 0.10, $C_{\rm T}$ = 0.0048.	201
144	Effect of rotor azimuth on BHRF2L tip vortex trajectory, μ = 0.10, C_{T} = 0.00644, θ_{B} = 0.	202
145	Configuration BHRF2L flow visualization at $\mu = 0.15$, $C_T = 0.0047$, $\theta_B = 0$.	203
146	Vertical smoke scan of BHRF2U to illustrate visual limits of discrete circulation, μ = 0.10, θ_B = 0.	204
147	Vertical smoke scan of BHRF2U at μ = 0.10, C_T = 0.00457, θ_B = +4.	205
148	Vertical smoke scan of BHRF2U at μ = 0.10, C_T = 0.00457, θ_B = +8.	206
149	Effect of rotor azimuth on BHRF2U tip vortex trajectory, μ = 0.10, $C_{\rm T}$ = 0.00645, $\theta_{\rm B}$ = 0.	207
150	Vertical smoke scan of BHRF2U from a frontal view, μ = 0.10, $C_{\rm T}$ = 0.00457.	208
151	An illustration of the trailing blade tip vortex, configuration HR.	209
152	Calculated main rotor time-averaged induced velocity distribution for BHR and BHRF2L, C_{T} = 0.005, hover.	212
153	Comparison of measured and calculated download data for BHR and BHRF2L.	214
154	Comparison of measured and calculated isolated body pitching moments for configurations B and	215

Figure	Title	Page
155	Comparison of difference in B and BF2L pitching moment for measured and calculated data.	216
156	Comparison of measured rotor induced body lift with momentum theory.	218
157	Comparison of measured rotor induced body drag with momentum theory.	219
158	Comparison of measured rotor induced body pitching moment with momentum theory.	220
159	Panel models used to calculate B and BF2L pressure distributions.	221
160	Calculated longitudinal pressure distribution for configuration B.	222
161	Calculated longitudinal pressure distribution for configuration BF2L.	223
162	Comparison of calculated and measured pressure distributions for configuration B, $\theta_{B} = 0$.	224
163	Comparison of calculated and measured pressure distributions for configuration BF2L, $\theta_{B} = 0$.	225
164	Comparison of measured and calculated dif- ference in pressure coefficient for B over a 16 degree angle of attack range.	226
165	Comparison of measured and calculated dif- ference in pressure coefficient for BF2L over a l6 degree angle of attack range.	227
166	Comparison of measured and calculated main rotor C_m versus α_C for the isolated rotor, μ = 0.20.	229
167	Comparison of measured and calculated main rotor $C_{\rm T}$ versus $\alpha_{\rm C}$ for the isolated rotor, μ = 0.30.	230
168	Calculated main rotor C_{T} versus C_{D} for configurations HR, BHR, and BHRF2L, μ = 0.20, θ_{B} = 0.	233
169	Calculated main rotor C_T versus C_D for configurations HR, BHR, and BHRF2L, μ = 0.30, θ_D = 0.	234

LIST OF FIGURES (Concluded)

Figure	Title	Page	
170	The effect of fuselage modeling methodology on the calculation of fuselage induced blade angle of attack.		
171	Calculated effect of B, BF2L, and BF2U on fuselage induced blade angle of attack.	237	

LIST OF TABLES

Table	Title	Page
1	Summary of literature survey on main rotor/fuselage interactional aerodynamics.	7
2	Properties of 0.15-scale Model 222 rotor.	24
3	Instrumentation requirements.	28
4	PFM 0.15-scale rotor/fuselage I/A test instrumentation.	30
5	Vought Corporation low speed wind tunnel test section calibration.	35
6	Summary of hover test conditions.	44
7	Summary of foward flight test conditions.	47
8	Effect of separation distance on forward flight rotor performance.	196
9	Fourier analysis of ratio of fuselage induced velocity to true airspeed.	231

LIST OF SYMBOLS

Symbol	Description					
AF	Balance axial force, N					
a ₀ , a ₁ , a ₂ , a ₃	Constants of a Fourier series used to represent fuselage induced velocities in main rotor tip path plane					
В	Nomenclature for baseline isolated body of revolution					
C _H	Main rotor H-force coefficient, $H/\rho \pi R^2 (\Omega R)^2$					
$\mathtt{C}_{\mathtt{L}}$	Main rotor lift coefficient, $L/\rho \pi R^2 (\Omega R)^2$					
$\mathtt{C}_{\mathbf{T}}$	Main rotor thrust coefficient, $T/\rho \pi R^2 (\Omega R)^2$					
c _w	Aircraft weight coefficient, $W/\rho \pi R^2 (\Omega\Omega)^2$					
$^{\rm C}{ m_X}$	Propulsive force coefficient, $X/\rho \pi R^2 (\Omega R)^2$					
$^{\mathrm{C}}_{\mathrm{P}}$	Main rotor power coefficient, $P/\rho \pi R^2 (\Omega R)^3$; differential pressure coefficient, $(p_1 - p_{\infty})/q$					
C _D B	Body drag coefficient, D _B /qS _B					
$c_{L_{W}}$	Winglet drag coefficient D _W /qS _B					
$^{\mathtt{C}}{}^{\mathtt{L}}{}_{\mathtt{B}}$	Body lift coefficient, L _B /qS _B					
$^{\text{C}}_{\text{L}_{\overline{\textbf{W}}}}$	Winglet lift coefficient L _W /qS _B					
C _M Y _B	Body pitching moment coefficient, PMB/qSBdB					
D	Wind axis drag, N					
$\mathtt{d}_{\mathtt{B}}$	Maximum body thickness, m					
F2L	Nomenclature for extended nose in lower position					
F2U	Nomenclature for extended nose in upper position					
FWO	Nomenclature for extended nose in lower position with winglets removed					
Н	Nomenclature for hub; main rotor H-force, N					
HP	Main rotor shaft horsepower					

LIST OF SYMBOLS (continued)

	(
Symbol	Description					
h	Vertical distance between main rotor hub and body upper surface, \boldsymbol{m}					
IGE	Acronym meaning in ground effect					
L	Wind axis lift, N					
1 _B	Body length, m					
M	Wind axis pitching moment, N-m					
MU	Speed ratio, $V/\Omega R$					
NF	Balance normal force, N					
OGE	Acronym meaning out of ground effect					
P	Main rotor power required, W					
PM	Balance pitching moment, N-m					
P_1	Local static pressure, N/m ²					
p_{∞}	Free stream static pressure, N/m ²					
Q	Main rotor torque, N-m					
q	Free stream dynamic pressure, $1/2 \rho V^2$, N/m^2					
R	Nomenclature for main rotor; blade radius, m					
RM	Balance rolling moment, N-m					
r	Main rotor blade radial station, m					
SIG	Main rotor solidity					
SIGPRM	Density ratio					
SF	Balance sideforce, N					
$s_{\mathtt{B}}$	Maximum body cross-sectional area, m ²					
T	Main rotor thrust, N					
V	Free stream velocity, m/s					
W	Aircraft weight, Kg					
X	Main rotor propulsive force, N					

LIST OF SYMBOLS (continued)

	LIST OF SYMBOLS (continued)
Symbol	Description
x	Nondimensional main rotor blade radial location, r/R ; body x-axis coordinate, m
Y	Wind axis sideforce, N
YM	Balance yawing moment, N-m
У	Body y-axis coordinate, m
z	Body z-axis coordinate, m
Z	Distance between main rotor hub and ground, m
α _C	Control axis angle of attack, axis normal to swashplate - positive tilted aft of vertical, deg
$^{\alpha}$ R	Main rotor induced angle of attack, deg
αs	Shaft angle of attack - positive tilted aft of vertical, deg
Δα	Tunnel wall induced angle of attack, deg
Δν	Tunnel wall induced velocity, m/s
θВ	Geometric body angle of attack - positive up, deg
μ	Speed ratio, $V/\Omega R$
v _i	Main rotor induced velocity, m/s
π	Constant equivalent to 3.14159
ρ	Air density, kg/m ³
Ω	Main rotor rotational speed, rad/s
Subscrip	<u>ts</u>
В	Body
R	Rotor
W	Wing
WA	Wind axis

Corrected wind axis

CWA

SUMMARY

In 1981 NASA Ames released RFP2-30412-(LL) entitled "Investigation(s) to Advance Helicopter Aerodynamics or Dynamics Technology." The purpose of the work reported herein was to advance the technical understanding of mutual main rotor and fuselage aerodynamic interference in response to the RFP. Tests were performed on a 0.15-scale model consisting of a Bell Helicopter Textron Incorporated (BHTI) Model 222 main rotor and a set of fuselage fairings. The fuselage fairings were scaled from fairings NASA is scheduled to test in 1986 during its first full-scale main rotor/fuselage interactional aerodynamics test.

Major test objectives included the effect of fairing shape, main rotor/fuselage separation distance and interactions under IGE hover conditions. A total of four configurations in hover and twelve configurations in forward flight were tested to obtain the required data. Major test parameters included airspeed, main rotor collective pitch, rotor tip path plane and fuselage angle-of-attack.

Data acquisition included main rotor torque, forces and moments, and fuselage forces, moments and pressure distribution. The main rotor and fuselage were mounted on separate balances. Data reduction included correction for wall effects and hub tares. Analysis of rotor performance, fuselage aerodynamics and fuselage pressure was performed.

The data show that the rotors effect on the fuselage may be considerably more important to aircraft performance than the fuselage effect on the main rotor. Recommendations for further work include greater analysis of existing data, tests for rotor effects on hub tares and tests specifically for rotor induced effects on airframe drag.

INTRODUCTION

In recent years the rotary wing industry has been evolving at a rapid pace marked by design trends with increasing impact on configuration aerodynamics. This is due in part to changes in system requirements as well as operational doctrines. In both instances the impact on the aircraft aerodynamics has been significant; especially in the areas of mutual interaction between aircraft components. Consequently, aerodynamic interaction identification, understanding, and application have become areas of significant importance and active technical investigation.

isolated aerodynamically, aircraft components their own unique flow field and set of aerodynamic characteristics. However, when the individual components are integrated into an aircraft system a myriad of changes in the aerodynamic environment can and usually do occur. The resultant mutual interaction between the system components may or may not be It is still difficult today to analyze certain isofavorable. lated aircraft components to the degree necessary for design The added complexity of analyzing components in application. close proximity becomes a problem which is an order of magnitude greater than that of the individual component. In 1980 Sheridan and Smith, Reference 1, presented an excellent overview of the Interactional Aerodynamics (I/A) state-of-the-art. Figure 1, taken from Reference 1, graphically illustrates the complexity of mutual interactions experienced by a conventional helicopter configuration.

One of the main areas of specific interest to the technical community is the mutual interaction of the main rotor with the The resultant interaction of these two components can be manifested in two major ways. First the structural coupling of the main rotor and fuselage requires that the main rotor provide any changes in thrust necessary to trim the aircraft due to fuselage download, upload or drag. Second, a purely aerodynamic interaction occurs between both components when in close proximity to each other. The aerodynamic interaction, or influence, of the fuselage on the main rotor is three fold. First, the fuselage displaces the apparent free stream flow; consequently, altering local angle of attack over the rotor disk. the flow field about the fuselage distorts the main rotor wake, hence the far field wake structure changes with a secondary influence on the time-average induced velocity over the rotor Third, the distorted near wake influences the blade/vortex disk. intersections and local instantaneous angles of attack. aerodynamic interaction of the main rotor on the fuselage is First, the main rotor wake emerses the primarily two fold. fuselage in a steady downwash field mostly the result of the far wake structure. Second, the near wake creates unsteady airloads

Figure 1. Aerodynamic interactions of the single rotor helicopter configuration.

on the fuselage due to the local blade passage at a frequency of number of blades per revolution and higher harmonics. The interactions discussed above are based on the assumption that only the main rotor and fuselage are present. To be technically correct indirect and potentially strong interactions between fuselage and main rotor occur. For instance the influence of the main rotor on the hub wake will cause the hub wake's effect on the fuselage aerodynamics to change relative to the rotor-off condition.

In 1979 NASA Ames initiated an Interactional Aerodynamics program including full scale as well as model testing. programs objectives include as a first phase the investigation of mutual rotor/fuselage interaction and its influence on rotor loads and performance as well as fuselage aerodynamic forces, Specific effects to be studied include moments and pressures. rotor/fuselage vertical and longitudinal separation distance, tip path plane angle of attack, and configuration (simulate helicopter nose typical of helicopters in service) on the dynamics of the main rotor as well as the steady state aerodynamics of the main rotor and fuselage. At present the initial full scale test is planned for the BHTI Model 412 rotor on the NASA Ames 1118.6 kw (1500 hp) Model 576 test stand in the Ames (40x80x120-ft) wind This test is scheduled to occur in 1986 under Contract The subject contract, NAS2-11268, was released to NAS2-11090. BHTI to conduct a 0.15-scale performance and powered force and moment test of the full scale test configurations defined under The model test program included hover Contract NAS2-11090. testing in the BHTI Hover Test Facility as well as forward flight testing in the Vought Aeronautics Division Low Speed Wind Tunnel Facility.

The remainder of this contractor report discusses 0.15-scale test program in detail. The literature survey performed under contract will be discussed separately in the next The literature survey is followed by two sections, Test Test Facilities which describe model/facility Equipment and instrumentation requirements and capabilities, The following section defines the test program installation. procedures in detail. The section labeled Test Results discusses data reduction and presents data in a graphical comparative manner most descriptive of the contracts test objectives as opposed to data by individual configuration. The correlation section describes the application of various analytical tools and methodologies utilized to predict the test results. conclusions and recommendations are presented relative to the application of the results as well as tasks for future work. Reduced test data is presented in tabular format in Appendices A hover, forward flight and pressure for respectively.

LITERATURE SURVEY

The objective of this survey is to review available literature on the subject of the mutual interaction of the main rotor and fuselage of the single rotor helicopter. In addition an assessment of the available information as well as recommendations for further work are made. Recommendations based on the results of this contracted effort and the literature will be summarized together in the Conclusions and Recommendations section.

The literature survey conducted consisted of an on-line literature search using the System Development Corporation (ORBIT), Lockheed (DIALOG), Department of Defense (DROLS), and GIDEP data base systems. In addition, NASA documentation resources and references from subject related reports and papers were reviewed. It is believed that this survey includes the major works on the subject published to date. Several sources are included which specifically address the problem of main rotor/fuselage interaction, even though, limited or no data at all is presented. It was felt that this was necessary in order to establish the state-of-the-art as it has evolved in recent years. Only the references reviewed under this contracted effort will be discussed. However, references discussed by the authors of the documents reviewed which may be of interest to the reader will be noted.

A summary of the literature survey is presented in Table 1 to allow the reader a quick overview of available information. For detailed Reference information see the Reference section. The literature of Table 1 is grouped according to whether rotor-fuselage interaction is a primary or secondary subject of the document. The following information provides a guideline to aid the reader in utilizing Table 1.

Ref - Number as listed in the List of References.

Author - Last name of first author listed.

Report identification. Contracted work will be listed by report number. The letter N designates a NASA report number, U designates an Army report number. For joint NASA/Army contracts the NASA report number will be used. Papers will be identified by year and key name identifier; e.g., '79 AHS Forum.

Contents - Document is evaluated as containing information identified by the letter codes defined below.

D	-	Data is presented, D followed by an asterisk indicates the report is primarily a test report including discussion of test parameters, models and procedure.
A	-	The author has provided significant analysis and discussion of the results.
С	-	Data correlation with analysis has been included.
M	-	Methodology has been presented in an analytical form or is being discussed in sufficient detail to be of interest to the reader researching interactional aerodynamics.
СО	-	Calculations only.
Flt Condition	-	H for hover and FF for forward flight.
Comments	-	Provides key information consisting mostly of scale and model information where applicable.

Table 1. Summary of Literature Survey on Main Rotor/Fuselage Interactional Aerodynamics

Ref	Author	Document	Contents	Flt Conditions	Comments
	Ro	tor-Fuselage Aerod	dynamic In	teraction as	Primary Subject
2	Freeman	N TM-X-3476	D*	FF	1/4-scale AH-1G rotor-off
3	Freeman	N TM 74033	D*	FF	1/4-scale AH-1G rotor-on
4	Freeman	N TM 80051	D*	H,FF	4-bladed, 3.15m rotor, super elipse body
5	Wilson	N TM-X-3185	D*,A	FF	40% cutout 2-blader, 3 generic bodies
6	Mineck	N TN D-8198	D*,A	FF	1/6-scale RSRA rotor-off
7	Mineck	N TM-X-3489	D*,A	H,FF	1/6-scale RSRA rotor-on
8	Mineck	N TM-X-3548	D*,A	FF	Further analysis of ref 6
9	Sheridan	U TR-78-23A	D*,A	H,FF	1/5-scale YUH-61A
10	Betzina	N TM 84247	D*,A	FF	1/6-scale AH-1G rotor, 1/6-scale RTA body
1	Sheridan	'79 AHS Forum	D,A	H,FF	I/A Overview
11	Wilson	'75 AHS Forum	D,A,C	H,FF	Overview of hover and . low speed download
12	Flemming	'82 AHS Forum	D,A,C	H,FF	Full-scale RSRA data
13	Smith, CA	'83 AHS Forum	D,A,C,	FF	1/6-scale AH-1G rotor, 1/6-scale Model 576 body
14	Balch	'83 AHS Forum	D,A,C	н	UTTAS body + several main rotors + tail rotor
15	Wilby	'78 4th ERPLA	D,A,M,C,	FF	Parametric calculations
16	Smith, RV	'79 ARO	D,A,M,C	FF	Fuselage effects on rotor
17	Freeman	'80 AHS Forum	D,A,M,C	H,FF	1 and 3-m model data
18	Bramwell	'65 ARC-R/M-3514	M,D,A,C	Н	Mutual body/rotor I/A
19	Soohoo	U TR-78-1A/1B	M,D,A,C		Green's function applied to rotor/fuse/flow separation
20	Freeman	N TP 1656	M,D,A,C		Rotor/fuse analysis
21	Landgrebe	'76 AHS Mideast	M,D,CO		Mainly discussion

Table 1. (Concluded)

Ref	Author	Document	Contents	Flt Conditions	Comments
22	Taylor	'81 7th ERPLA	M,CO		Rotor/fuse flow analysis with separation
23	Huber	182 AGARD	СО	FF	Calculations of fuselage effect on rotor
	Rotor	-Fuselage Aerody	namic Inte	raction as Se	econdary Subject
24	Berry	'83 AHS Journal	D	Н	1/4-scale UH-1
25	Fradenburgh	'79 AHS Journal	D,A	H,FF	S-76
26	Logan	'80 AHS Forum	D,A	FF	YAH-64
27	Landgrebe	'81 AHS Forum	D,A	H,FF	1/4-scale AH-1G
28	Jepson	N CR-152366	D,A,M,C	FF	-
29	Keys	N CR-3083, Vol. II	M,CO	H,FF	Hypothetical aircraft
30	Harris	'79 AHS Forum	M,CO	FF	-
31	Kocurek	'80 AHS Forum	M,CO	Н	AH-1G
32	Cheeseman	'81 7th ERPLA	-	Н	Discussion only

The literature of Table 1 is organized by content rather than hover or forward flight because many references address both subjects. For each grouping of contents, e.g., D,A,C the references are listed in chronological order. The number of a reference is determined by the order in which it appears in the text.

References 2 through 4 contain test results only. Reference 2 and 3 contain baseline data for the AH-1G Cobra which when considered together will yield the rotors influence on the fuse-lage. The model body is not exactly to scale because the body was widened to accommodate the General Rotor Model System (GRMS) test stand; consequently, pitching volume and pitching moment will not be correct. Trends, however, should be characteristic. Reference 4 is a data report on a 3.15 m (10.34 ft) diameter 4-bladed articulated rotor with a body defined by super elipse equations. Only pressure data is presented. The data and body definition lend themselves well for evaluation with panel method analyses.

References 5 through 10 are test reports which include analysis of the results. Reference 5 was a test conducted in the Langley VSTOL tunnel to study the effects of a main rotor on three generic fuselages. The fuselages were representative of attack, utility and observation helicopters of that time frame. Only the utility and attack configurations were tested in the presence of the rotor. The majority of the data was taken in the low speed range with configuration changes resulting from combinations of rotor, fuselage and empennage. Data was taken with variations in pitch and yaw attitude. Tabulated force and moment data as well as graphical force and moment and pressure data is presented. Two factors must be considered in any application of First, the main rotor is a low aspect ratio rotor this data. with 40.2 percent root cutout and no twist. This has a considerable effect on blade loading and may cause a strong vortex at the Second, the fuselage was mounted in an inverted root cutout. position from the ceiling with the main rotor mounted from the floor on its own stand and balance; consequently, hub effects will differ for an actual helicopter. The author concluded from this test that the main rotor has significant influence on fuselage yawing moment for a single rotor helicopter for yaw angles greater than 20 degrees and that Reynolds number has a large effect on the fuselage but in a conservative manner relative to anti-torque requirements.

References 6, 7, and 8 are a series of tests conducted on a 1/6-scale Rotor System Research Aircraft (RSRA) model. Reference 6 contains the rotor-off data including several configuration modifications which must be considered if the data is being compared to the rotor-on data of References 7 and 8. Rotor-on and rotor-off data for the compound as well as helicopter configuration is available in Reference 7. Data are presented over

a range of angle of attack, angle of sideslip and main rotor collective pitch at several advance ratios. Test conditions are varied about estimated trim points. Loads data are presented for the airframe, wing, tail and main rotor. Reference 8 is a further analysis of the compound configuration of Reference 7. Care must be taken when considering rotor-fuselage interaction based on the compound configuration because of the additional influence of the jets and wings.

Reference 9 presents 1/5-scale test results for the YUH-61A (Boeing Utility Tactical Transport Aircraft System (UTTAS)). This test investigated several interactions including rotor/fuselage and rotor/fuselage/ground. This report represents an extensive study containing steady and unsteady pressure data as well as wake survey data and analysis. Considerable work was done to investigate the effect of the ground vortex and its impact on fuselage aerodynamics in low speed flight. Because of the magnitude of the effort and its main intent to understand several problems encountered on the full-scale YUH-61A, insufficient data is available for detailed analytical development. This document is probably the single most important piece of work to date in terms of providing design guidance for future work.

Reference 10 is the first piece of work which addresses the rotor/fuselage interactional aerodynamics phenomena from a parametric point of view rather than being configuration or trim It is similar to the work of Reference 5 in that the body is relatively simple and amenable to analysis by potential flow panel methods. It is the first major attempt at establishing fuselage effects on the main rotor. A 1/6-scale AH-1G main rotor was utilized in conjunction with a 1/6-scale model of the Rotor Test Apparatus (RTA) body. The RTA is a 2237.1 kw (3000 hp) test stand used in the Ames 12.2 x 24.4 x 36.6m (40x80x120foot) wind tunnel for testing full-scale rotors. Consequently, the model results may upon complete evaluation be found to be important in correcting body tares which in turn impact rotor Parameters evaluated included tip path plane angle performance. of attack, body pitch attitude, rotor/fuselage separation distance, nose geometry, speed ratio and rotor thrust. The report concludes that the rotor has a significant impact on the fuselage aerodynamic characteristics. Test results showed that body lift increases when; (1) rotor thrust increases for a constant speed ratio with fixed flapping angle and body pitch attitude and (2) the rotor flaps forward and speed ratio, body pitch attitude and rotor thrust are held constant. Fuselage effects on rotor performance are evaluated using the definition of rotor equivalent L/D which is a measure of the rotors efficiency. The body appears to have a favorable effect on rotor efficiency. Final conclusions on fuselage/rotor interaction will require further study of rotor torque and propulsive force.

Sheridan and Smith in Reference 1 present an excellent discussion on the subject of Interactional Aerodynamics. Interference effects in general are categorized in a well organized manner which allows the reader a good overview of the aircraft I/A problem. Many important points were made in this work related to future I/A studies including; (1) simulation of all main flows, (2) capability for extensive off-the-surface measurements and flow visualization, (3) multidisciplinary support and participation, and (4) more generalized investigation required to establish a technical base for theory development and empirical guidelines.

In Reference 11, Wilson presents an overview of work to that point in time relative to hover download and its importance to overall aircraft performance. He quantifies the cost of download on the performance of a helicopter as; 1 percent loss in thrust results in 1.5 percent figure of merit, 2 percent useful load and 4 percent of payload. This implies a large loss in payload for conventional helicopters and even greater losses for winged Wilson presented some of the more interesting configurations. findings of past investigators. Some of these are presented in the following discussion. Two equations defining download in terms of blocked area and rotor geometry are obtained from references 33 and 34 and presented. It was found in Reference 34 that the greatest vertical drag was experienced when the test panels were within 0.2 rotor radii of the rotor. This was concluded to be the result of two basic mechanisms affecting the panel; (1) the steady component induced by the far wake and (2) the unsteady component due to periodic blade passage close to the body. Wilson discusses some of the early analytical work of references 18, 35 and 36. A review of this work may be useful to the reader in understanding some of the mathematical and numerical related problems associated with more fundamental analyses. As regards the effect of root cutout, Reference 37 presents results showing the loss of rotor lift being somewhat compensated for by a reduction in download. Several fuselage and wing planform combinations were tested with a rotor having a -8 degrees of twist. Wilson reports that the results of this study provide a measure of both airframe download and thrust recovery. Reference 38 is presented in Wilson's paper and an interesting study of the sideloads that are induced by the main rotor. Boatwright in Reference 38 presents three-dimensional velocity measurements in the flow field of a rotor with moderate twist. Wilson suggests that unsymmetrical tailboom shaping may be important in elleviating sideloads with a direct impact on tail rotor yaw control requirements.

Flemming in Reference 12 reports the results of download measurements on the full-scale RSRA aircraft for hover and low speed flight. In hover the data appears to be consistent with model test results which is encouraging in terms of relating

model to full-scale aerodynamics. Included in his data presentation are calculations based on the download methodology of Reference 29. The measured download variation with ground effect in hover was approximately twice as great as the calculation. The measured OGE download decreased with airspeed while IGE download increased with airspeed. Care should be taken when evaluating new aircraft in light of these trends since they may be effected by ground vortex, aircraft trim or configuration dependent parameters.

The 1/6-scale test of Reference 13 was quite similar to that of Reference 10. The primary difference was that a body was fabricated to represent the full-scale body used on the Ames 1118.6 kw (1500 hp) Model 576 test stand. This paper presents the effect of the rotor on the fuselage. Body surface pressure data is presented which is very informative concerning the influence of hub location, particularly in the longitudinal direction. Panel method analysis of the isolated body showed good correlation with test data. A more challenging problem would be one of correlation with a conventional hub and control configuration present. The major conclusion from this work which is of interest to the designer and analyst is that the fuselage lift and pitching moment characteristics can be normalized by what would effectively be considered the wake skew angle. plies that rotor-off wind tunnel data modified by simple momentum theory corrections for angle of attack may work well at high speed forward flight. At this time the test data has not been published.

Some of the results of a recently completed main rotor/fuse-lage/tail rotor interaction test are reported in Reference 14. Considerable data is presented on the main rotors effect on the fuselage. Because several rotors were tested, some insight into the effect of twist and solidity is provided. Twist was varied from 0 for a model H-34 blade to an equivalent linear twist of -0.2795 rad (-16 degrees) for the UH-60A. Solidity varied from .06155 to .09975. The major conclusions drawn were; (1) the fuselage experiences an upload in ground effect, (2) download is nonlinear with thrust for highly twisted blades and (3) effect of twist is attenuated in ground effect.

In Reference 15 Wilby provides a very interesting piece of work which highlights the effects of key design parameters on rotor performance and loads. Fuselage effects on rotor angle of attack distribution, blade lift and torque variation with azimuth and blade and hub loads is presented. The effects of rotor/fuse-lage relative position, tip speed, nose shape, and body width. His primary conclusions from the study are; (1) fuselage upwash can provide a perturbation which can lead to significant blade and hub loads, (2) it is possible with some helicopter configurations to initiate stall over the inner part of the blade near 3.14159 rad (180 degrees) azimuth causing large oscillations in

blade root torsional loads and (3) fuselage upwash distortion of the wake is important when calculating the rotor induced velocity field and should be modelled correctly. Wilby presented several references which may be of interest to the reader. Reference 39 calculates the fuselage upwash effect on blade flapping. The differences between measured and predicted blade loadings in Reference 40 lead to investigations of the effects of the fuselage upwash field. In Reference 41 the inboard portions of the blades on a Wessex helicopter were roughened to cause earlier stall. This caused stall at approximately 60 percent blade radius at 3.14159 rad (180 degrees) azimuth indicating that the blade angle of attack could be quite high in this region. The calculation of loads in the presence of the fuselage is presented in references 42 and 43. Tests were conducted in Reference 44 which investigated rotor/fuselage proximity effects on loads with results reported in Reference 45.

In Reference 16, Smith presents the results of an investigation of main rotor wake distortion due to the fuselage induced flow field. The mathematical modelling of the problem consisted primarily of vortex rings representing the main rotor wake and a single source in a free stream representing the fuselage. Before modelling the wake distortion, Smith investigated the effect of the fuselage upwash on control loads using a Westland stall flutter program. There was no significant effect. He then simulated the close proximity of a vortex and its effect on the blade loading with encouraging results when compared to test data. One of the major findings was that the degree of interaction was highly dependent upon the rotors elastic and response characteristics.

Freeman in 1980 presented a paper, Reference 17, which analyzed data previously obtained from several bodies tested in the Langley VSTOL tunnel. He discusses the effect of body width and separation distance on download. This is compared to strip theory which seems to do well for the general trends. calculations are also presented for Reynolds number effect on His data shows a definite trend of increased nondimensional download with decrease in model scale. A low speed comparison between analysis and measured time-averaged pressures is presented with very good correlation. In addition high speed (speed ratio = 0.3) time-variant pressure data and rotor loads are presented as a function of separation distance. The conclusions drawn from this study are; (1) at a speed ratio of 0.05, fuselage download increases with decreasing rotor fuselage separation, increasing fuselage width, and increasing thrust levels, present theory can calculate download and time-averaged fuselage surface pressures fairly accurately at low speed, (3) unsteady fuselage pressures are significantly affected by separation and (4) chordwise and beam bending moments at the root are significantly effected by separation distance and fuselage width at a blade azimuth of 3.14159 rad (180 degrees).

Reference 18 is one of the earlier works which addressed the problem of rotor/fuselage interactions. Bramwell calculated the pressure distribution on circular and square bodies in the influence of a hovering rotor. Correlation with data measured on a circular body was shown to be quite good. In addition he investigated the change in blade loading due to the passage of the blade close to the body. Significant thrust recovery was demonstrated to occur on the blade. Wilson, Reference 11, noted that it may be questionable whether Bramwell's theory would be applicable to anything other than a circular body.

Soohoo in Reference 19 provides not only a technical manual, Volume A, but also in Volume B a user's guide, test case and fortran listing for program SHAPES (Subsonic Helicopter Aerodynamics Program with Effects of Separation). A Green's function formulation is adapted to the calculation of the flow field of a helicopter configuration including fuselage/pylon/hub and rotor. The main attributes of the program, include; (1) 3-D representation, (2) arbitrary paneling, (3) geometry preprocessor, (4) ability to run all or part of a helicopter configuration, (5) ability to analyze separation effects, (6) automatic generation of rotor and hub wake dynamics and (7) ability to run multibladed rotor configurations. Some correlation data is presented using test data from Reference 5.

Freeman in Reference 20 presents a methodology to calculate time-averaged fuselage pressures in the presence of a main rotor wake. Freeman used a panel method developed by Hess and coupled that with a wake modelled with a modified vortex tube. The vortex tube model allows variation of the spanwise loading. The analysis uses the induced velocities from the wake as onset velocities to the panel method which then solves the potential flow problem. This allows a modification of the flow field about the fuselage but does not allow fuselage effects on the rotor loading. Good correlation was obtained with data from Reference 4 at a speed ratio of 0.05. An analysis of this type can be very useful to the designer if it can adequately identify adverse pressure gradients. Freeman suggests enhancement can be obtained by the inclusion of separated flow techniques and wake distortion.

In Reference 21 Landgrebe provides primarily a discussion for the need for proper rotor/fuselage modelling. He presents a figure of interest which compares the change in blade angle of attack for a coupled (interaction) rotor/fuselage flow field as opposed to a flow field calculated using superposition (interference). The coupled analysis modified the fuselage effect in comparison to the superposition method.

A hover fuselage analysis capable of modelling separation effects is presented by Taylor in Reference 22. A panel method

code designated DOWNLOAD is capable of calculating download with separated flow without having to specify the point of separation. The analysis evaluates the boundary layer and automatically repanels the body to provide the proper fluid body dimensions. Stratford's Criterion, Reference 46, is used to predict separation. The author observes that there are some remaining difficulties related to accurately calculating the point of separation. He presents calculations for three different cross-sectional shapes and notes that the analysis appears to somewhat underpredict download.

Reference 23 presents some calculations of fuselage effects on the flow field at the main rotor. Huber discusses the discrepancies between measured and calculated blade root and hub bending moments. He also presents the effect of the fuselage on local lift versus azimuth with a harmonic analysis of the results. The implication is that the fuselage can definitely effect vibration problems because of its impact on the higher harmonics.

Reference 24 compares the measured download on a UH-1 helicopter in the presence of the standard UH-1 rotor with conventional and improved blades. The improved rotor blades increased the fuselage download possibly due to spanwise loading moving inboard; however, the net hover performance did not suffer because the isolated rotor performance had improved.

In Reference 25 Fradenburgh makes two points which are worth considering; (1) fuselage parasite drag increased in forward flight testing of the S-76 with increased rotor thrust and (2) thrust recovery of the rotor in hover due to the presence of the fuselage amounts to only 1 percent of total thrust. IGE and OGE download data are presented for the S-76.

Logan presents some data on the rotor wake effects on fuse-lage aerodynamics in Reference 26. He concluded that at 61.74 m/s (120 kt) the rotor wake effect on fuselage and pylon lift was equivalent to a change in body angle of attack with the difference comparing closely to that calculated using momentum theory induced velocity. Pressure measurements also showed that the rotor increased suction over the nose relative to the rotor-off pressure distributions.

In Reference 27 Landgrebe discusses the effect of the fuselage on the main rotor wake in low speed flight. He concludes that the fuselage expands the main rotor wake. He presents a figure which shows the influence of the fuselage on the timeaveraged velocities along the trajectory of a rocket fired from an AH-IG Cobra.

Although rotor/fuselage interaction is not the main topic of Reference 28, a considerable amount of data is presented and

discussed. Jepson discusses in detail the methodology of modelling fuselage effects and the manner in which it is coupled with Sikorsky's elastic rotor analysis. The RTA was used extensively to obtain rotor data and its contours are presented along with the velocities it induces in the plane of the rotor. The effects of the fuselage on loads is presented. Jepson concluded that their "... analysis was able to reasonably predict the increases in vibratory moments consistent in magnitude and phase relation with the test data. However, it was unable to predict absolute values of 1/2 peak to peak moments at all cruise speed and rotor lift conditions."

Examples of classical approaches to treating the fuselage aerodynamics in hover and forward flight can be found in References 29 through 31. Included in References 29 and 31 are the respective results of strip analysis in hover of a hypothetical 6534 kg (15000 lb) helicopter and an AH-1G Cobra. Cheeseman in Reference 32 makes only a brief comment related to rotor/fuselage I/A. He notes that in XH-59A hover tests (Reference 47), the separated flows about the smooth circular body were unstable. The separation points were fixed with strakes.

References 48 through 50 contain information which was not reviewed in this survey but are related to the subject and will be of interest to the reader. This concludes the discussion of the literature search.

TEST EQUIPMENT

The test equipment utilized under this contract included the BHTI Powered Force Model (PFM), the BHTI PFM Data Acquisition System, a 0.15-scale Model 222 main rotor and 0.15-scale fairings representative of the full scale fairings to be tested in the Ames 12.2 x 24.4 x 36.6m (40x80x120-ft) wind tunnel under Contract NAS2-11090.

Powered Force Model Test Stand

<u>Drive System</u> - The PFM is a research tool to investigate helicopter main rotor performance, fuselage aerodynamics and general aircraft aerodynamic characteristics. The PFM will accommodate rotors from 1.22 to 3.05m (4 to 10 ft) in diameter with a maximum RPM of 3000. A photograph of the PFM is shown in Figure 2. An assembly drawing of the Model 576 fairing mounted to the PFM is shown in Figure 3.

The PFM consists of a 55.9 kw (75 hp) variable RPM electric motor, a speed reducer, tilting and yawing pylon assembly, rotor controls, and a five-component rotor balance. The speed reduction gearbox is designed to accommodate two 55.9 kw (75 hp) motors at a future date. The output shaft drives the model mast through a flexible disk coupling in the rotor balance. The rotor

Figure 2. BHTI powered force model test stand.

Figure 3. BHTI powered force model with 0.15-scale model 576 test stand fairing.

balance measures all rotor loads except drive torque which is measured by mast torsion strain gages. The balance measures five components with strain gaged flexures. The capabilities are: normal force, 6671 N (1500 lb); pitching-moment, 706 N-m (6250 in-lb); side force, 2500 N (562 lb); rolling moment, 706 N-m (6250 in-lb); and axial force, 2500 N (562 lb). The balance was designed and built by the Vought Corporation to BHTI specifications.

Above the rotor balance is the collective control actuator that can raise and lower the swashplate 3.81 cm (1.5 in). The cyclic actuators ride on the collective slider assembly to provide longitudinal and lateral swashplate tilt of .4189 rad (24 deg). Just below the balance, a yaw actuator can rotate the entire model ±1.309 rad (±75 deg). The PFM has a 40 slip ring assembly package located below the spiral bevel gearbox. The data acquisition system can monitor up to 18 channels of instrumentation in the rotating system.

Fuselage and Drive Train Interface - When a fuselage is mounted on the drive train for interaction studies, it is isolated from the rotor and its balance by a six-component fuselage balance. This balance is of one-piece construction and was manufactured for BHTI by the Vought Corporation. The force and moment capacities are: normal force, 3558 N (800 lb); pitching moment, 226 N-m (2000 in-lb); side force, 1957 N (440 lb); yawing-moment, 124 N-m (1100 in-lb); rolling moment, 68 N-m (600 in-lb); and axial force, 556 N (125 lb).

Powered Force Model Data Acquisition System

To allow maximum utilization and productivity of the BHTI PFM, a dedicated data system consisting of three sections was designed. Section one is the model operator's control console. The control console contains the switching necessary to control model pitch, yaw, collective, and two cyclic actuators. This system provides three switch-selectable actuator rates. The console contains twelve panel meters consisting of digital and analog types. These meters display control actuator position and any additional information required.

Section two is a tape data system that records test data on one inch magnetic tape. The tape system contains signal conditioning modules. This system has an IRIG-B time code generator for time and event synchronization.

The system contains a logic card that provides a control of the tape system automatic calibrate sequence and also produces a level code to provide interrupt signals for use by the BHTI Ground Data Center computer system. Tape data can be recorded in either single-carrier FM or FM multiplex. Single-carrier FM uses one tape track per channel and provides DC to 5 KHz frequency response. FM multiplex allows one track to contain 13 channels. BHTI uses a multiple constant bandwidth multiplex that provides 4 channels with DC to 50 Hz response, 6 channels with DC to 200 Hz response, and 2 channels with DC to 400 Hz response.

Section three is a microcomputer-based data acquisition system. Computing power for this system is provided by a Hewlett-Packard 9835A computer with 128K of read-write memory and a 20-line CRT. The computer is connected via an IEEE 488 Buss to a highspeed scanner capable of scanning channels at 1000 channels per second. Analog-to-digital conversion is performed with a high speed DVM capable of 5000 samples per second.

The PFM data system is also able to read rotor and fuselage balance data, convert these data to engineering units, correct the data for cross-axis loading, and correct for tare loading. Another function performed by the data system is to monitor the model status to ensure that the model is functioning properly. This is done by either reading critical items with the computer system at regular intervals, or by using visual displays such as X-Y monitor scopes or panel meters.

Figure 4 shows the BHTI Data Acquisition System installed and in use in the Vought Corporation Low Speed Wind Tunnel. Figure 5 provides a flow chart of the PFM data system.

Model 222 0.15-Scale Test Rotor

The Model 222 0.15-scale main rotor is a two-bladed teetering rotor. The blade construction consists of a solid graphite leading edge bonded to a balsa afterbody with aluminum web. The blade has a linear twist rate of -0.1778 rad (-10.19 degrees) and a constant chord of 0.11m (.36 ft) from 28 percent radius to the tip. An FX-080 airfoil is utilized along the entire blade. The hub is approximately fifth scale. An illustration of the hub and blades is provided in Figure 6. Rotor properties of interest are listed in Table 2.

Test Stand Fairings

The test program required the use of three basic configurations based on the full scale fairings designed under contract NAS2-11090. Fabrication of ten individual shells out of balsa and fiberglass was required in order to model the full scale fairings. Figure 7 presents sketches of the assembled shells for the three major configurations tested. Split lines defining individual components and major dimensions are provided. The body contours are defined in Appendix C.

BHTI powered force model data acquisition system installed in LTV low speed wind tunnel. Figure 4.

Figure 5. BHTI powered force model data acquisition system flow chart.

Figure 6. Model 222 0.15-scale test rotor.

Table 2. Properties of 0.15-scale Model 222 Rotor

Description	Qu	antity
Number of blades	2	
Blade radius, m	.9144	(3 ft)
Blade chord (constant), m	.110	(.36 ft)
Root cutout (bolt hole), m	.110	(.36 ft)
Blade twist (linear), rad	178	(-10.19 deg)
Weight (per blade), kg	.430	(.948 lb)
Weight moment (per blade), N-m	1.660	(1.22446 ft-lb)
Flapping inertia (per blade), l	kg-m ² .10184	(.075134 slug-ft ²)
Geometric pitch/flap coupling,	rad .192	(11 deg)
Rotor precone, rad	.0611	(3.5 deg)
<pre>Tip speed (full scale), m/s (test speed, SLS), m/s</pre>	220.68 158.50	(724 fps) (520 fps)
Rotor test speed (rpm)	1655.2	
Direction of rotation	(counterclockwise	looking down)

NOTE: BF2U geometry is identical to BF2L except that the transition fairing is on the top. The transition fairing coordinates are provided in Appendix C.

b.) Configuration B (Baseline Fairing)

Model and Fairing Geometry

Configuration	I _{B.}	d _B	S _B	h/R
	(m)	(m)	(m ²)	(-)
В	1.0324	0.3048	0.07297	0.0833
BF2L	1.3868	0.3391	0.08342	0.0833
BF2U	1.3868	0.3391	0.08342	0.0458

Figure 7. Sketches of the 0.15-scale model fairing components.

Figure 7. (continued)

The baseline configuration is the 0.15-scale model of the NASA Ames Model 576 test stand fairing constructed under joint NASA/Army venture by BHTI in 1966. The geometry is essentially a body of revolution with the exception of a protuberance (winglet) at each lift strut attachment point. The coordinates of a NACA 0030-74 airfoil were used to define the test stand fairing to 69.87 percent of chord. The remainder of the fairing was linearly tapered aft of 69.87 percent chord. The full scale maximum diameter and length are 2.03m (6.66 ft) and 6.7m (22 ft) respectively.

The two extended nose configurations only differ in afterbody shape. They represent modifications to the baseline fairing by the extension of the nose to simulate a typical helicopter nose and windscreen. In addition a transition fairing on the afterbody is provided to assure a smooth transition from the nose geometry into the baseline afterbody. The extended nose configurations evolved as a direct result of constraints on the full scale NASA Model 576 test stand. Because of structural interference the full scale fairing could not be moved vertically to simulate separation distance. Consequently, the extended nose was developed to move vertically relative to the baseline afterbody with a transition fairing placed either on the upper or lower surface depending on which separation distance was desired. The result was a configuration which had the same maximum thick-There is a slight difference in afterbody shapes depending on the location of the transition fairing.

Two additional fairings were used during this test. For isolated rotor performance a shield was placed in front of the main rotor balance to reduce wind blast. Enclosure of the test stand with a symmetrical fairing was considered; however, not used because of the size required relative to the rotor diameter. In addition changes in pitch attitude would possibly have resulted in, (1) flow redirection equivalent to that induced by the fairings to be tested, or (2) a vortex beneath the rotor resulting from a fairing sideload. Since the fuselages were built to the same scale as the main rotor, a portion of the lower main rotor balance protruded below the fuselage. This was covered with a fairing. Care was taken to assure that this fairing did not ground the fuselage. These two fairings are also shown in Figure 7.

Instrumentation

The following section provides a brief description of the instrumentation utilized for data acquisition and safety monitoring. Table 3 summarizes the instrumentation requirements by identifying the type of instrumentation, location and the data to be obtained. Table 4 defines the instrumentation setup for this test.

Table 3. Instrumentation requirements.

Item Code	Instrumentation	Location	Data Measured
1	Strain gage	Red blade, .255 radius	Beam bending
2	Strain gage	Red blade, .30 radius	Torsion
m	Strain gage	Hub, .036 radius	Beam bending
4	Strain gage	Hub, .036 radius	Chord bending
2	Strain gage	Red pitch horn	Pitch horn bending
9	Potentiometer	Hub	Flapping
7	Potentiometer	Longitudinal cyclic actuator	F/A cyclic
 &	Potentiometer	Lateral cyclic actuator	Lateral cyclic
o	Potentiometer	Fixed swashplate	Collective
10	Potentiometer	Hub	Red blade feathering
11	Magnetic pickup	At slip ring	M/R rpm
12	Magnetic pickup	At slip ring	M/R azimuth
13	Strain gage	Mast	M/R torque
14	Thermocouple	Main Rotor	Temperature
15	Thermocouple	Upper balance	Temperature
16	Thermocouple	Lower balance	Temperature
17	Pressure gage	Lub oil pump	Lub oil pressure

Table 3. (Concluded)

Item			
Code	Instrumentation	Location	Data Measured
18	Pressure gage	Transmission	Accessory cooling
19	Buzzer & light	LTV balance room	Cooling water "no flow"
20	Main rotor balance	PFM	Main rotor forces and moments
21	Fuselage balance	PFM	Fuselage forces and moments
22	Scanivalve	Inside fuselage	Body surface differrential pressures
23	Scanivalve	Wake rake	Total pressure
24	Potentiometer	PFM pitch actuator	Pitch
25	Potentiometer	PFM yaw actuator	Yaw
26*	Intervelometer	Outside of system	!
27**	Intervelometer	Outisde of system	
* Scanivalve	live scan pulse		

* Scanivalve scan pulse
** Scanivalve home pulse

PFM 0.15-scale rotor/fuselage I/A test instrumentation. Table 4.

					Out	put	Devic	a v	;		
Item ¹ Code	Tape	HP 9835	Printer	Control Console	Osc.	CRT 1 ²	sc. $\frac{\text{CRT'S}}{1^2}$ 2 1	1	Scopes 2 3	4 5	Other
	×					•					
7	×										
က	×				×			×			
4	×				×			×			
2	×				×				×		
9	×				×				×		
7	×	×	×	×	×	×	×				
8	×	×	×	×	×	×	×				
6	×	×	×	×	×	×	×				
10	×										
11	×		X ⁷	×		×	×				
12	×				×				×		
13	×	×	×	×	×	×	×				
14											
15											

16

(Concluded) Table 4.

	Other	×	×	×							×	×	
	r.	-				X ₅							
	4				×4								
	pes 3												
Ge	Scopes 2												
Devi	-												
Output Device	22				×	×			×				
Out	CRT'S 12 2	٠			×	×			×				
ŀ	Osc.					9							
					×	Xe	×	×					
	Control Console				X ₃				×				
	Printer				×	×	÷		×				
۴	9835												
=	98				×	×			×				
	Tape				×	×	×	×	×				
1+0m1	Code	17	18	19	20	21	22	23	24	25	26	27	

1 Corresponds to item code in Table 3.
2 CRT #2 is computer display.
3 Main rotor thurst only.
4 Main rotor rolling and pitching moment only.

⁵Fuselage pitching moment only.

⁶Fuselage lift and pitching moment only.

⁷Required rpm as calculated by computer.

Rotor, hub, mast and pitch link loads were monitored primarily for safety. Blade beam and torsion were monitored at 25.6 and 30.0 percent blade radius respectively. Hub beam and chord loads were monitored at 3.6 percent blade radius. In addition all balance components were being monitored.

The test fairings were instrumented with static pressure taps. A total of 69 pressure taps were installed. The majority of pressure taps correspond to locations chosen for the full scale test. Pressure tap locations are defined in Appendix C. Some had to be moved because of physical restrictions. Pressure data was read with two 48-port scani-valves. Each scani-valve used a 17238 N/m^2 (2.5 psi) range Kulite transducer.

A wake rake was mounted behind the test stand fairing to measure total pressure. Seven Kiel tubes were utilized because of their accuracy over a wide range of angle of attack. The Kiel tubes were placed at a vertical height that aligned them with the center of the model tail cone when the body was at zero angle of attack. The Kiel tubes were located 1.29m (4.23 ft) behind the hub with the shaft axis at zero angle of attack.

TEST FACILITIES

BHTI Hover Test Facility

The model was situated in the center of a 16m diameter covered whirlcage test facility, see Figure 8. The cage consists of a concrete floor, wire mesh walls, and a conical wooden roof 5.4m high at the wall and 8m high at the center. Canvas curtains are available to cover the walls to control outside winds. A hydraulic lift is available in the center of the cage for vertical movement of the model. Instrumentation cables connect the test stand to the PFM data acquisition system and control console located inside a concrete blockhouse adjacent to the cage. A 55.9 kw (75 hp) source and model buildup area are available in a building adjacent to the cage.

Vought Corporation Low Speed Wind Tunnel Facility

This facility is a horizontal single-return, tandem test section, closed circuit facility with overall circuit length of 135m (443 ft) as shown in Figure 9. The 2.1 x 3.05m (7x10-ft) test section is 4.9m (16 ft) long and operates at atmospheric pressure. This section operates through a speed range of 12.2 to 106.7 m/s (40 to 350 ft/sec). Table 5 presents the 2.1 x 3.05m section flow calibration as obtained from Reference 51.

The rectangular 4.6 x 6.1m (15x20 ft) VSTOL test section is 11.9m (39 ft) long and is located upstream of the 2.1 x 3.05m test section in a tandem arrangement. This section operates at a slightly positive static pressure and has a speed range of 2.7 to 23.5 m/s (9 to 77 ft/sec).

Figure 8. Whirl cage floor plan.

Figure 9. Vought low speed wind tunnel circuit arrangement.

Table 5. Vought Corporation Low Speed Wind Tunnel test section calibration.

Test section calibration results are as follows:	2.1 x 3.05 m (7 x 10-ft) Test Section	4.6 x 6.1 m (15 x 20-ft) Test Section
Dynamic pressure variation	±0.75%	±1.50%
Flow angle variation (relative)	±0.0984 red (±0.25 deg)	±0.0984 rad (±0.25 deg)
Static pressure gradient	0.0000276($\Delta P/q$) per cm (0.00007 per in)	0
Turbulence factor (average) (1)	1.01	1.40
Boundary layer thickness at entrance	10.16 cm (4 in)	7.62 cm (3 in)
Boundary layer thickness at exit	12.7 cm (5 in)	12.7 cm (5 in)
Energy ratio (clear tunnel, 386.2 km/hr, 240 mph)	6	

⁽¹⁾ Based upon Reference 53 definition.

A 1118.6 kw (1500 hp) electric motor furnishes power for the tunnel fan. Remote controls for the tunnel fan are provided to each control room. Detailed information pertaining to this facility may be found in Reference 51.

Only the high speed section was utilized for this test. Figure 10 shows the test stand and model installed in the high speed section. Figure 10 defines the relative tunnel/rotor/fuse-lage/balance/wake rake geometry.

TEST PROCEDURES

Before testing began all instrumentation was allowed to warm-up sufficiently to a stable condition. All instrumentation was checked for drift and range. A mechanical inspection of the rotor and test stand was performed including checks for balance grounding. Functional checks of the model, test stand and data acquisition system were performed before initiating any testing. This included check calibrations for sign as well as magnitude. Check calibrations were performed on the main rotor and fuselage balances, torque, hub and blade loads, controls and model pitch. Procedures unique to hover and forward flight are reported in the following sections.

Hover Test Procedure

For all hover testing the whirl cage curtains were lowered to cover the walls with only a .3m (1 ft) clearance at the bottom to minimize recirculation. Recirculation did occur; however, it did not appear to be a factor in testing for configuration effects.

A 3.7 x 3.7m (12 x 12 ft) ground plane was used for inground-effect (IGE) testing. An insert was made to cover the opening through which the test stand was raised and lowered.

The test procedure was as follows:

- 1. Place model at desired height.
- Secure hydraulic lift to prevent slippage.
- Position ground plane around model (IGE only).
- 4. Place ground plane insert around test stand.
- 5. Place model in zero condition (zero collective, zero flapping, place red blade over tail, and zero mast angle).

Figure 10. PFM and Model 576 installed in LTV tunnel.

- 6. Clear and secure test area.
- 7. Read wind-off zeroes.
- 8. Take rotor to operational RPM at nominal thrust of 50 lbs.
- 9. Monitor computer and control console for drift and repeatability.
- 10. Set rotor collective pitch at value below first desired pitch setting and increase rotor pitch to desired setting in order to maintain a positive loading on the system.
- 11. Sweep collective in one degree increments to approximately 1.34 design thrust coefficient for the rotor system tested.
- 12. Repeat the first data point.
- 13. Read wind-off zeroes.

Forward Flight Test Procedure

Several tasks were performed before data acquisition could begin. Number 80 carborundum grit was placed on several fairings to assure that the flow would transition and remain attached. Each nose shell had grit applied at a location equivalent to 5 percent of the bodies length from the nose. The winglets had grit applied at 5 percent chord on both upper and lower surfaces. In addition the extended nose had grit applied to the upper windscreen line.

Before testing began scanivalve data was taken on a strip chart recorder to determine an appropriate sampling rate for the pressure data. Settling rates were extremely fast, on the order of 10 milliseconds. Consequently, the sampling rate was set to 4 ports per second. This provided a settled sample of approximately 6 revolutions.

For rotor-on testing the test procedure was as follows:

- 1. Place nets in the tunnel (advance ratio = 0.1 only).
- Place model in zero condition (zero collective, zero flapping, place red blade over tail, and zero mast angle).
- 3. Clear and secure test area.

- 4. Read wind-off zeroes.
- 5. Take wind-off tares.
- 6. Take rotor to operational RPM at nominal thrust of 50 lbs.
- 7. Bring tunnel speed up to idle and allow rotor to stabilize.
- 8. Set model to desired shaft angle.
- 9. Enter atmospheric conditions, model pitch attitude and collective pitch into data system. System responds with tunnel dynamic pressure and rotor tip speed required to maintain desired tip Mach number and speed ratio.
- 10. Set tunnel speed and rotor tip speed maintaining zero flapping with cyclic controls.
- 11. Monitor data system and control console for drift and repeatability.
- 12. Take prime data record (approximately 17 seconds).
- 13. Sweep collective in one degree increments to approximately 1.34 design thrust coefficient or unitl control/load limit is reached.
- 14. Repeat the first data point.
- 15. Repeat 8 through 12 if shaft angle sweep is not completed.
- 16. Increase tunnel speed and repeat 8 through 15.
- 17. Read wind-off zeroes.

In order to maintain full-scale tip speeds on the 0.15-scale rotor, an operational rpm of 2305 was originally specified. However, due to loads problems the rotor was operated at 1655 rpm. This change in operational tip speed reduced the tunnel dynamic pressure required to maintain the test values of speed ratio. Consequently, drift in the tunnel dynamic pressure became a problem at a speed ratio of 0.10.

For rotor-off testing the blades were removed and the grips were blocked to close the gap left by the blades. The hub was operated at 1000 rpm. An rpm sweep was made which showed no significant changes in rotor or fuselage loads. The test procedure was the same as the rotor-on testing without the collective pitch sweep.

For the isolated body testing the main rotor balance was removed and the opening for the mast and rotating controls was covered. The test procedure was similar to the blades-off testing mentioned above. With the hub and rotating controls removed, only model pitch was activated from the control console.

Flow Visualization Procedure

Flow visualization runs were made in both hover and forward flight. In hover this included only a videotape of tufts on configuration BHRF2L under IGE and OGE conditions.

During the forward flight phase tuft and smoke flow visualization work was conducted. After each performance run was completed, the pressure taps were sealed with tape and tufts were placed on the model shells. All tuft work was performed at the correct tip speeds and tunnel speeds. Some still photographs were taken of the tuft work; however, the primary record was taken on videotape.

Smoke work was performed with a system developed by LTV in conjunction with Dr. S. Shindo of the University of Washington, Reference 52. The fluid from which smoke is produced is commonly referred to as "fog juice". The probe used produces two streams of smoke. In order to optimize tunnel time only one stream was used which allowed approximately 10 minutes of tunnel operation before the tunnel had to be vented. The tunnel nets were installed and the tunnel was operated at approximately 50 fps. Changes in speed ratio were obtained by changing tip speed. All shop lights and tunnel lights were turned off with only control room lights left on. A strobe flood light was provided by LTV which enabled a wide angle view of the smoke filament; however, this did provide some difficulty in obtaining a uniform light intensity throughout the test section. The strobe was operated at a flash rate of twice per revolution. Changing the strobe frequency worked quite well in simulating a slow motion time history of events.

TEST SCHEDULE

The following section provides a summary of the hover and forward flight test schedules. Detail test conditions for hover and forward flight are presented in Appendices A and B respectively.

HOVER

Figure 11 presents sketches of the configurations tested in hover. Photographs of configurations HR and BHRF2L installed in the BHTI Hover Test Facility under IGE and OGE conditions are

Configuration

Test Sequence

HR

Test Stand With Rotor Only

BHR

Add Fairing

BHRF2U

Add Nose Modification in High Position

BHRF2L

Lower Nose Modification

Figure 11. Hover test configurations.

presented in Figure 12. Table 6 provides a summary of configuration designation, run number, tip speed and height above ground in terms of rotor radii. Figure 11 and Table 6 are repeated in Appendix A for the convenience of the reader.

FORWARD FLIGHT

Figure 13 presents sketches of the configurations tested in forward flight. A photograph of configuration BHR installed in the Vought Low Speed 7x10-ft Wind Tunnel Facility is shown in Figure 14. Table 7 provides configuration designation, run mumber, shaft angle and speed ratio. Figure 13 and Table 7 are repeated in Appendix B for the convenience of the reader.

TEST RESULTS

The results of this test program will be presented in three sections; 1) hover, 2) forward flight and 3) flow visualization. Before proceeding with the final results, data acquisition and reduction will be discussed.

Data Acquisition and Reduction

Initially test data was to be recorded by three separate systems; the PFM data system, a 14 track tape system, and the Vought Corporation Data System. The Vought Corporation measures balance as well as pressure data and reduces it as part of its entry fee; consequently, the plan was to utilize their system for taking and reducing pressure data. Because of mechanical problems with the BHTI PFM, the test schedule slipped and the Vought system was lost to another program. The pressure data was then taken on the BHTI 14 track tape system. Because of the magnitude of the data acquired during this test, it was not possible for the PFM data system to digitize the pressure data.

A single output signal was branched to both the PFM computer and the 14 track tape; consequently, the data from each device should be compatible. The 14 track tape system recorded the analog data with care taken not to exceed 60 percent of bandwidth. The tape data has not been digitized, however, a strip chart recorder was used extensively to play back tape data to check its integrity and reduce a limited amount of pressure data (fuselage only, Kiel tube data was not reduced). In addition the signal recorded on tape was being continually monitored by the data package through which the signal was being conditioned and recorded. The PFM computer received those channels required for monitoring, analysis and presentation. All PFM computer data was filtered at 2 Hz and printed as required. All channels on the PFM computer were scanned at 1000 channels per second for a total of 30 samples per channel. It should be noted that the data presented in this report has not been smoothed.

a.) Configuration BHRF2U IGE

b.) Configuration HR IGE

c.) Configuration BHRF2U OGE

d.) Configuration HR OGE

DRIGINAL PAGE IS DE POOR QUALITY

Figure 12. Photographs of several hover test configurations.

Table 6. Summary of hover test conditions.

Configuration	Run No.	TP ⁽¹⁾	Z/R
BHRF2L	108 109 110 111 112 113	520 724 520 724	0.50 0.75 0.8681 0.50 3.00
BHRF2U	114 115 116 117	520	0.50 0.75 0.8681 3.00
BHR	120 121 122 123		0.50 0.75 0.8681 3.0
HR	124 125 126 127 128 129 130	724 520 Sweep 520 724 Sweep	0.50 0.50 0.75 0.8681 0.50 3.00 3.00
BHRF2L	133 135 136 139	520 724	2.00 1.625 1.2639 0.8681

⁽¹⁾ Tip speed indicated is the reference tip speed at sea level standard day conditions.

Figure 13. Forward flight test configurations.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 14. Configuration BHR installed in the LTV 7x10-foot Low Speed Wind Tunnel.

Table 7. Summary of forward flight test conditions.

Configuration	Run No.	Shaft Angle	Speed Ratio
BHR	14*(1) 15 16 17 18	4,0,-4,-8 4,0,-4,-8 4,0,-4,-8,-12 -4	0.10 0.20 0.30 0.25 0.15
BHRF2L	19* 20 21 22 23	4,0,-4,-8 -4 4,0,-4,-8 -4 4,0,-4,-8,12	0.10 0.15 0.20 0.25 0.30
BHRFWO	24* 25 26*	-4 -0,-4,-8 -4	0.10 0.20 0.30
BHRF2U	27* 28 29 30	4,0,-4,-8 -4 4,0,-4,-8 4,0,-4,-8,-12	0.15 0.15 0.20 0.30
HR	31* 32 33 34 35	4,0,-4,-8,-12 4,-4,-12 4,0,-4,-8,-12 4,-4,-12 4,-0,-4,-8,-12	0.10 0.15 0.20 0.25 0.30
H	40* 41* 42* 45*	4 to -12	0.10 0.15 0.20 0.30
BHF2U	46 47 48 49 50	8 to -16	0.10 0.15 0.20 0.25 0.30
BHF2L	51 52 53 54 55	8 to -16	0.10 0.15 0.20 0.25 0.30

Table 7. (Concluded)

Configuration	Run No.	Shaft Angle	Speed Ratio
BHFWO	56 57 58	4 to -12	0.10 0.20 0.30
ВН	59 60 61 62 63	8 to -16	0.10 0.15 0.20 0.25 0.30
B(2)	64 65 66	4 to -12	0.10 0.20 0.30
BF2L ⁽²⁾	67 68 69	4 to -12	0.10 0.20 0.30

⁽¹⁾ An asterisk indicates that graphical data is not presented

⁽²⁾ Although the rotor shaft was removed, test stand pitch attitude was calibrated to the shaft axis. The shaft is titled forward 4 degrees relative to the body waterline; consequently, the shaft angles of (4 to -12 listed correspond to (8 to -8) degrees body pitch attitude.

In hover, the balance data was resolved at the hub and fuselage aerodynamic reference centers for rotor and body data respectively. The fuselage aerodynamic reference center corresponds to that defined under the full-scale effort discussed in the Introduction.

The forward flight data reduction procedure is somewhat more complex. Main rotor balance data was corrected for wind-off tares and wind-off zeroes before being resolved into desired axis systems. Rotor data was resolved at the hub in the shaft axis and wind axis system. Fuselage data was resolved in the body axis and wind axis systems at the fuselage aerodynamic reference Corrections for wall effects are based on fixed wing analogy and consistent with that which will be used for reduction of the full scale data. The rotor was vertically off-centerline in the tunnel which was corrected for using data from Reference 53 and an image system analysis of the Vought Corporation low speed wind tunnel. The boundary correction factor was determined Tabular reduced data is presented in Appendices A through C for hover, forward flight, and pressure data respectively. Figure 15 defines the balance locations, reference centers and force and moment sign conventions.

Hover Test Results

Two sweeps of rpm at zero rotor thrust were performed for the purpose of establishing the mean profile drag coefficient of the main rotor for analytical performance studies. At the beginning of this program the blades had been refurbished; consequently, previously determined values of mean profile drag coefficient were no longer applicable. The rpm sweeps were conducted under IGE and OGE conditions to determine whether there were any differences. Figure 16 shows the results of this test. Main rotor horsepower referred to density ratio is plotted versus Plotted in this manner the data should fall on a rpm cubed. straight line whose slope is directly proportional to the mean profile drag coefficient. Normally an rpm range exists which is sufficiently removed from Reynolds and Mach effects to provide a good measurement of mean rotor drag. Linear curvefits were applied to the data of Figure 16 with a good resultant fit. Utilizing the slope of the curves in Figure 16, mean profile drag coefficients were calculated. For IGE the value was .009367 and for OGE .009052. This represents approximately a 4 percent difference in profile power. The difference falls within the accuracy of the data system at normal thrust levels.

Fuselage Data - Fuselage aerodynamic forces and moments were measured at several heights above the ground for configurations BHR, BHRF2L and BHRF2U. The objective was to determine the influence of configuration and rotor-body separation distance on fuselage aerodynamic loads under IGE and OGE conditions.

a) Force and moment sign convention for all reference centers.

b) Location of rotor and fuselage reference centers in body axis.

c) Definition of axes at rotor and fuselage reference centers.

Figure 15. Definition of sign conventions and reference systems.

Z/R = 0.5 (SQUARE & _____) = 3.0 (DIRMOND & - - - -)

Figure 16. Flat pitch runup for 0.15-scale Model 222 main rotor.

Configurations BHR and BHRF2L have equal separation distances (h/R = 0.0833) with respect to the rotor. However, BHR has a planform area 34 percent less than BHRF2L as well as a different nose shape. Figure 17 compares the IGE and OGE download of the two configurations. BHRF2L with the larger planform area experiences the greater download and a larger rate of change with main rotor thrust coefficient. In ground effect both bodies experience an upload which appears independent of main rotor thrust coefficient. The trends noted above are consistent with those published in References 14 and 25.

Configuration BHRF2U has a slightly different afterbody shape than BHRF2L (see Figure 7); however, the primary difference is that BHRF2U has a rotor-body separation distance of h/R = .0458. Figure 18 compares the two configurations under IGE (Z/R = 0.50) and OGE (Z/R = 3.0) conditions. Both configurations show trends in download/rotor thrust with increased thrust coefficient similar to those reported in References 14 and 25.

The differences are quite small and no consistent trend can be developed. This may be due to the tradeoff between steady and unsteady loads as noted in Reference 11 and discussed in the Literature Survey section. Configurations BHRF2L and BHRF2U both have a rather flat and broad upper surface in front of the mast. This is the result of the configuration constraints encountered during the full-scale geometry definition under contract NAS2-11090; consequently, a considerable area is less than 0.2 rotor radius from the main rotor and may be very sensitive to the effect of the impulsive load on the steady download.

To provide a better definition of ground effect on fuselage loads, configuration BHRF2L was tested at several intermediate heights. The results are shown in Figure 19 for download. The data in Figure 19 were curvefit with a second order polynomial in order to develop the data of Figure 20. Figure 20 shows the ground effect on download at constant thrust coefficients of .004, .005, and .006. The Figure 20 data was purposely fit with a spline to show the flat nature of the curves near $\rm Z/R = 0.5$ and 3.0.

One measure of the influence of fuselage pitching moment is to determine the amount of change in pitch attitude it can cause. Assuming that the aerodynamic pitching moment is reacted only by weight moment and weight is equal to thrust, the static pitching moment equation can be solved for a pitch attitude as a function of the ratio of pitching moment to thrust. Figure 21 presents the results for BHRF2L as a function of height above ground and thrust coefficient. No significant or clear trends are shown and the maximum excursion of pitch attitude is only ±0.00436 rad (±0.25 deg).

Figure 17. Effect of configuration on fuselage download.

CONFIGURATION BHRF2U (SQUARE) BHRF2L (DIAMOND)

Figure 18. Effect of main rotor - fuselage separation distance on fuselage download.

CONFIGURATION BHRF2L (RUN 108 109 110 112 133 135 136)

Z/R = .5/.75/.868/1.26 (SQUARE/DIAMOND/TRIANGLE/CIRCLE) Z/R = 1.625/2/3 (PLUS/X/ASTERISK)

Figure 19. Effect of main rotor thrust coefficient on BHRF2L IGE and OGE download.

CT = .004 (SQUARE) = .005 (TRIANGLE) = .006 (STAR)

Figure 20. Ground effect on configuration BHRF2L download.

CONFIGURATION BHRF2L (RUN 108 109 110 112 133 135 136)

CT = .004 (SQUARE) = .005 (TRIANGLE) = .006 (STAR)

Figure 21. Ground effect on fuselage pitching moment.

Yawing moment for configuration BHRF2L is shown in Figure 22 as a function of height above the ground. Note the very definite This was noted change in the data between Z/R = 0.5 and 0.75. for all configurations tested and at full-scale tip speeds as The yawing moment is primarily due to swirl associated with viscous and induced flow effects. The predominant effect should be due to wake skew angle, and between Z/R = 3.0 and Z/R =0.75, this appears to be the case as the ground distorts the However, the wake must take on a considerable change in character to cause the sudden reversal between Z/R = 0.75 and Z/R A sample of 26 aircraft shows that the average aircraft Z/R while sitting on the ground is .578 with a range from .502 to .67. Figure 22 suggests a possible excursion in yawing moment of 10 percent of main rotor torque which might be of importance in simulation programs.

It should be noted that considerable fuselage data scatter was encountered near the ground. This may very well have been the result of an unstable separated flow around the smooth circular afterbody as noted in Reference 47.

The majority of the data was taken at a tip speed of 520 fps to remain consistent with the forward flight data; however, a full-scale tip speed of 724 fps was tested for its effect. Figure 23 shows the effect on fuselage download. The higher tip speed results in a lower download for a constant thrust coefficient which is most pronounced under OGE conditions (Z/R = 3.0).

Main Rotor Data - Measured rotor hover performance will be presented as power coefficient versus thrust coefficient. To quantify the effects of configuration and separation distance a curvefit was applied to the performance data and then used to ratio measured powers at constant values of thrust. The power coefficient was assumed to be a function of thrust coefficient to the 3/2 power and thrust coefficient squared. This functional relationship provided a very good fit of the data with a coefficient of variation less than 1.0 for all cases.

The effect of configuration on hover performance under IGE and OGE conditions is shown in Figures 24 through 27. Several trends are indicated by the data. First, at Z/R = 0.5 (Figure 24) the baseline body, configuration BHR, reduces rotor thrust at constant power levels over the thrust range tested. Configuration BHRF2L reduces the thrust even further. As height above the ground increases to Z/R = 3.0 (OGE) the effects noted above diminish.

The effect of separation distance was measured and is presented in Figures 28 through 31. Configurations BHRF2L and

CONFIGURATION BHRF2L (RUN 108 109 110 112 133 135 136)

CT = .004 (SQUARE) = .005 (TRIANGLE) = .006 (STAR)

Figure 22. Ground effect on fuselage yawing moment.

CONFIGURATION BHRF2L (RUN 108 111 110 139 112 113)

TIP SPEED = 159/221 MPS (520/724 FPS) (SQUARE/TRIANGLE)

Figure 23. Effect of tip speed on fuselage download.

ROTOR TO GROUND SEPARATION DISTANCE = 18 INCHES (Z/R = .5) CONFIGURATION HR (RUN 124) BHR (RUN 120) BHRF2L (RUN 108)

Figure 24. Effect of configuration on IGE hover performance, Z/R=0.5.

ROTOR TO GROUND SEPARATION DISTANCE = 27 INCHES (Z/R = .75) CONFIGURATION HR (RUN 126) BHR (RUN 121) BHRF2L (RUN 109)

Figure 25. Effect of configuration on IGE hover performance, Z/R=0.75.

ROTOR TO GROUND SEPARATION DISTANCE = 31.25 INCHES (Z/R = .868) CONFIGURATION HR (RUN 127) BHR (RUN 122) BHRF2L (RUN 110)

Figure 26. Effect of configuration on IGE hover performance, Z/R=0.868.

ROTOR TO GROUND SEPARATION DISTANCE = 108 INCHES (Z/R = 3.0) CONFIGURATION HR (RUN 129) BHR (RUN 123) BHRF2L (RUN 112)

Figure 27. Effect of configuration on OGE hover performance, Z/R=3.0.

ROTOR TO GROUND SEPARATION DISTANCE = 18 INCHES (Z/R = .5) CONFIGURATION HR (RUN 124) BHRF2U (RUN 114) BHRF2L (RUN 108)

Figure 28. Effect of rotor-fuselage separation distance on IGE hover performance, Z/R=0.5.

ROTOR TO GROUND SEPARATION DISTANCE = 27 INCHES (Z/R = .75) CONFIGURATION HR (RUN 126) BHRF2U (RUN 115) BHRF2L (RUN 109)

Figure 29. Effect of rotor-fuselage separation distance on IGE hover performance, Z/R=0.75.

ROTOR TO GROUND SEPARATION DISTANCE = 31.25 INCHES (Z/R = .868) CONFIGURATION HR (RUN 127) BHRF2U (RUN 116) BHRF2L (RUN 110)

Figure 30. Effect of rotor-fuselage separation distance on IGE hover performance, Z/R=0.868.

ROTOR TO GROUND SEPARATION DISTANCE = 108 INCHES (Z/R = 3.0) CONFIGURATION HR (RUN 129) BHRF2U (RUN 117) BHRF2L (RUN 112)

Figure 31. Effect of rotor-fuselage separation distance on OGE hover performance, Z/R=3.0.

BHRF2U have the same planform area with a slight afterbody difference as the result of simulating separation distance, which is discussed in the Test Equipment section. Configuration BHRF2U was tested at a rotor/fuselage separation distance of h/R=0.0458 as opposed to .0833 for BHRF2L. Decreasing the separation distance caused thrust to increase at constant power coefficient.

The separation distance effect is consistent with thrust recovery theory; however, the presence of the bodies tested especially in ground effect appears to contradict it. It is worth noting that in Reference 25 Balch halved the separation distance of the UH-60A with mixed results for the range of rotors tested indicating that thrust recovery may not always be an obvious benefit. The separation distance and rotor blockage area of BHRF2U is almost equivalent to the Reference 25 test. The BHRF2U body was even closer to the rotor in an equivalent sense. The major difference lies in the upper surface curvature. Consequently, in a weighted sense the mean separation distance of configuration BHRF2U based on body depth would be considerably less than that of the Black Hawk configuration possibly resulting in a more pronounced effect.

Figure 32 shows BHR, BHRF2L and BHRF2U IGE power ratioed to isolated rotor power for Z/R=0.5. OGE power ratios are presented in Figure 33. The Figure 32 results indicate a sizable effect in terms of percent. The magnitude of the fuselage effect in the Figure 32 hover performance is of concern. It is inconsistent with published data and does represent a sizeable impact on payload. Data accuracy alone could halve the results. However, other factors should be considered including fuselage shaping, blade planform and twist before the results are completely dismissed. The geometric factors are beyond the scope of this program and may warrant a separate parametric study.

Another approach to addressing the question of configuration and separation distance effects would be to compare the IGE/OGE power required ratio for each configuration. Figures 34 through 37 show the IGE/OGE data. Each configuration shows that the ground effect benefit increases with thrust except for the isolated rotor at high thrust levels where a slight reversal is All configurations are compared in Figure 38 at a thrust coefficient of .005 which is approximately the design thrust for the Model 222. Some scatter exists in Figure 38 but most of the shows that the power ratio for the rotor-fuselage configurations is greater than for the isolated rotor. This indicates that the ground effect is not as great rotor-fuselage configuration as for the isolated rotor.

Figure 32. IGE rotor-fuselage configuration power required/ isolated rotor power required, Z/R=0.5.

ROTOR TO GROUND SEPARATION DISTANCE = 108 INCHES (Z/R = 3.0)

Figure 33. OGE rotor-fuselage configuration power required/ isolated rotor power required, Z/R=3.0.

CONFIGURATION HR (RUN 124 126 127 129)

Figure 34. Configuration HR IGE/OGE hover power required.

CONFIGURATION BHR (RUN 120 121 122 123)

Figure 35. Configuration BHR IGE/OGE hover power required.

CONFIGURATION BHRF2U (RUN 114 115 116 117)

Z/R = .5 (---) = .75 (---) = .868 (----)

Figure 36. Configuration BHRF2U IGE/OGE hover power required.

Figure 37. Configuration BHRF2L IGE/OGE hover power required.

HR/BHR/BHRF2L/BHRF2U (STAR/SQUARE/TRIANGLE/DIAMOND)

Figure 38. Ground effect on IGE/OGE hover power required.

As discussed in the fuselage section, tests were conducted at tip speeds of 158.5 m/s (520 fps) and 220.7 m/s (724 fps). Figures 39 through 42 present main rotor performance at these two tip speeds for configurations HR and BHRF2L under IGE and OGE conditions. Increasing tip speed caused a slight increase in power coefficient at constant thrust coefficient for most conditions. The only exception is the OGE high thrust coefficient data of configuration BHRF2L. Consequently, trends observed would not have been significantly altered by testing at the higher tip speeds.

To this point in the discussion fuselage and rotor performance have been treated separately. However, it is worthwhile evaluating the effect of mutual rotor/fuselage interaction on the main rotor performance. Data from Figures 17, 18, 27, and 31 were utilized to calculate the rotor performance of configurations BHR, BHRF2L, and BHRF2U, with the assumption that each configuration is operating at an aircraft weight coefficient. Given a weight coefficient, download was obtained and added to the weight coefficient to determine thrust coefficient. results of this test indicate that under OGE conditions this becomes an iterative process since download is a function of This effect tends to reduce the download by 0.1 percent when comparing download at the required thrust coefficient as opposed to weight coefficient. Once the thrust coefficient is calculated, the power coefficient is obtained from Figures 27 and 31. The results are compared to isolated rotor performance (HR) and shown in Figure 43. The net result at a weight coefficient of .005 is that configuration BHRF2L and BHR respectively required 9.9 and 3.1 percent more power than the isolated rotor. Configuration BHRF2U increases the power required over the isolated rotor by 4.5. percent.

Forward Flight Test Results

The results of the LTV low speed tunnel test are presented in three sections, 1) fuselage data, 2) rotor data, and 3) pressure data.

Fuselage Force and Moment Data - The following fuselage data is presented in nondimensional form. Only the longitudinal aerodynamic characteristics lift, drag and pitching moment will be presented for discussion. Due to the quantity of data taken during this test, a limited number of graphical comparisons considered to be characteristic of the test results will be presented.

TIP SPEED = 221/159 MPS (724/520 FPS) (DIAMOND & STAR/TRIANGLE & SQUARE)

Figure 39. Effect of tip speed on configuration HR IGE and OGE hover performance.

(-)

Figure 40. Configuration HR power ratio for tip speeds of 159 m/s and 221 m/s.

TIP SPEED = 221/159 MPS (724/520 FPS) (DIAMOND & STAR/TRIANGLE & SQUARE)

Figure 41. Effect of tip speed on configuration BHRF2L IGE and OGE hover performance.

Figure 42. Configuration BHRF2L power ratio for tip speeds of 159 m/s and 221 m/s.

Figure 43. The effect of mutual rotor-fuselage interaction on main rotor power required.

For conventional model force and moment tests, data is taken at Reynolds numbers as high as possible and divided by the test dynamic pressure. The data is considered to be applicable over the majority of the speed range for a geometrically similar full-scale aircraft after corrections for leakage, protuberances, etc. For this test the rotor-off force and moment data was taken over the powered configuration speed range and not assumed to be independent of Reynolds number due to the scale of the model tested. This does not assure that the viscous effects on the body aerodynamic characteristics are the same for the powered and unpowered configurations at a given airspeed. However, it may identify any changes in the body aerodynamic characteristics which might lead to incorrect conclusions concerning full-scale interactions. Figures 44 through 52 present data for configurations BF2L, BHF2L, and BHRF2L to show the effect of the rotor on body aerodynamic characteristics. The data was non-dimensionalized by dynamic pressure, maximum body cross-sectional area, and maximum body diameter when appropriate which is similar to a form used in References 10 and 13. This form was chosen for a twofold purpose, first, to identify any variations in rotor-off body characteristics as discussed above and secondly, to determine the nature of the rotors effect with airspeed. Although drift in dynamic pressure was experienced at a speed ratio of 0.10, the 0.10 data is being presented for its qualitative value. The figures are presented for specific speed ratios to identify the rotor test condition.

for the rotor-off configurations, BF2L and BHF2L, correspond to Reynolds numbers based on rotor-on speed ratio and sea level standard conditions. The rotor-off data shows a definite change in lift and drag as a function of airspeed with pitching moment not changing as significantly. This is not the case, however, with the winglets removed (BHFWO). The data for BHFWO remained quite constant for speed ratios of 0.2 and 0.3. Only at the speed ratio of 0.1 (1.5M Reynolds number) is there any indication of change in the aerodynamic characteristic of the body (see Appendix B for BHFWO graphical data). Figures 53 and 54 show the rotor-off winglet lift and drag characteristics which obtained from configurations BHF2L and BHFWO. conclusion drawn from these two figures is that major changes with airspeed for the unpowered conditions appear to be the result of changes in the aerodynamic characteristics of the winglets.

Evaluating the rotor-on data is complex since the rotor interacts with the fuselage and winglets; and the rotor wake changes its skew angle with airpseed and thrust. There is a definite trend for the rotor-on and rotor-off data to converge with increased airspeed implying the influence of wake position;

Figure 44. Rotor effect on BHRF2L body lift coefficient, μ =0.10.

Figure 45. Rotor effect on BHRF2L body lift coefficient, μ =0.20.

Figure 46. Rotor effect on BHRF2L body lift coefficient, μ =0.30.

Figure 47. Rotor effect on BHRF2L body drag coefficient, μ =0.10.

Figure 48. Rotor effect on BHRF2L body drag coefficient, μ =0.20.

Figure 49. Rotor effect on BHRF2L body drag coefficient, μ =0.30.

CONFIG BF2L (DIAMOND) BHF2L (TRIANGLE)
BHRF2L, CT = .004"(SQUARE) = .005 (STAR) = .006 (X)

Figure 50. Rotor effect on BHRF2L body pitching moment coefficient, μ =0.10.

CONFIG BF2L (DIAMOND) BHF2L (TRIANGLE)
BHRF2L. CT = .004 (SQUARE) = .005 (STAR) = .006 (X)

Figure 51. Rotor effect on BHRF2L body pitching moment coefficient, μ =0.20.

CONFIG BF2L (DIAMOND) BHF2L (TRIANGLE)
BHRF2L. CT = .004 (SQUARE) = .005 (STAR) = .006 (X)

Figure 52. Rotor effect on BHRF2L body pitching moment coefficient, μ =0.30.

CONFIGURATIONS BHF2L/BHFW0 (RUNS 51,53,55/56,57,58)

MU = .10/.20/.30 (STAR/TRIANGLE/SQUARE)

Figure 53. Wing lift coefficient versus angle of attack.

CONFIGURATIONS BHF2L/BHFW0 (RUNS 51,53,55/56,57,58)

MU = .10/.20/.30 [STAR/TRIANGLE/SQUARE]

Figure 54. Wing drag coefficient versus angle of attack.

consequently, rotor-on data cannot be obtained at high speeds and then simply divided by dynamic pressure for application at all Using the classical approach of calculating the rotors effect on the fuselage as a change in angle of attack based on momentum theory, one could explain the speed trend for pitching moment. However, the problem does not appear to be that simple at low speed for lift and drag. Note in Figure 44 the trend in body lift with thrust. This suggests that the rotor-on data at zero thrust does not converge anywhere near the rotor-off/hub-on configuration BHF2L. In Figure 47 the drag at low speed appears to converge, however, it may be more a combination of change in flow characteristics and angle of attack. This may explain the rotor-on drag falling below the rotor-off minimum at the positive angles of attack and higher thrust levels. At the higher speeds the general trends are for nondimensional lift and drag to behave more like a change in angle of attack based on simple momentum For configuration BHRF2L the rotor tends to; 1) increase fuselage download with increased thrust, 2) increase drag, and 3) cause a more nose down pitching moment relative to rotor-off pitch ing moment characteristics. However, further analysis of the winglets is required to understand the above observations.

Limited lift and drag data for the winglets were obtained under powered conditions from configurations BHRF2L and BHRFWO. The results are shown in Figures 55 and 56 for a speed ratio of For negative angles of attack the lift curve slope is the same for rotor-on or off conditions. However, this does not hold at positive angles of attack. The rotor-on data indicates no loss in lift as opposed to the rotor-off data. This may be due to the rotor adding energy to the flow around the winglets and The overall trend is for the winglet lift to delaying stall. decrease with increased thrust. In the time averaged sense this says that the main rotor downwash tends to decrease the winglet angle of attack. This should not be considered to be generally valid for all wings regardless of location on the body. difference in drag between the powered and unpowered configurations of Figure 48 are greater than the difference in powered and unpowered winglet drag shown in Figure 56. Consequently, not all the rotor induced change in drag is directly attributable to the winglets. The winglets were located very close aerodynamic center selected for the resolution of pitching moment data; therefore, the effects of the winglets on pitching moment were minimal and is not shown. It may not be possible to completely segregate the causes for the trends observed to this No attempt was made to determine what effects were the result of scaling (Reynolds number), wing-body interference or a combination of both.

The above discussion concerned itself primarily with rotor effects on the total configuration, including winglets, and

Rotor-on, $C_T = .004/.005/.006$ (Square/Star/X) Rotor-off, (Triangle)

Figure 55. Rotor effect on wing lift coefficient, μ =0.20.

Rotor-on, $C_T = .004/.005/.006$ (Square/Star/X) Rotor-off, (Triangle)

Figure 56. Rotor effect on wing drag coefficient, μ =0.20.

The rotors effect on the fuselage winglet characteristics. alone, however, can be seen from configuration BHRFWO data. Figures 57 through 59 present the effect of the rotor on fuselage lift, drag, and pitching moment. The body rotor-off lift characteristics are quite flat. The rotor tends to decrease lift with increase in body angle of attack; and the body lift increases with increased thrust. The trend with angle of attack is not inconsistent with configuration BHRF2L as can be seen from Figure 45. If the difference between rotor-on and rotor-off data from Figure 45 were plotted as body lift coefficient; the effect of the rotor, at a constant thrust, on body lift would be quite The rotor effect on drag and pitching moment are also in agreement between configurations BHRF2L and BHRFW0 when considered on a delta basis rather than in terms of absolutes. increase in body lift with increased thrust was also noted in References 10 and 13. The body lift characteristics with angle of attack may be due in part to the fairing below the body.

The remainder of the fuselage data will be presented in a form which may be more meaningful in determining configuration effects. Body lift will be divided by thrust to provide a better feel for the thrust requirements the body imposes on the rotor. Drag is also presented as a fraction of thrust which will define the differences in propulsive force requirements due to different configurations. Pitching moment is divided by thrust and rotor radius. Because most horizontal stabilizers are approximately one rotor radius away from the main rotor, this form will translate pitching moment into a download required for trim.

Figures 60 through 65 compare the force and moment data for all powered configurations at speed ratios of 0.2 and 0.3. figures establish baseline aerodynamic characteristics of each Lift, drag, configuration in the presence of the rotor. pitching moment are presented as a function of body pitch attitude (angle of attack). The data is presented at a thrust coefficient (.005) approximately equal to design thrust. At a speed ratio of 0.2, Figure 60, the extended nose configurations BHRF2L and BHRF2U both generally exhibit more lift than the body revolution, BHR, for a given angle of attack. Figure 60b which references rotor-off (hub-on) body lift to the same thrust This implies that the lift curves of indicates similar trends. Figure 60a are inherent to each configuration. At a speed ratio of 0.3, Figure 61, the rotor-off lift trends still hold; however, the rotor-on trend for BHRF2L has changed considerably. reduction of body pressure data might be useful in understanding the BHRF2L data. Drag is presented in Figures 62 and 63 and appears to be consistent with rotor-off body data. The drag levels also appear to increase with exposed frontal area. Minimum drag was not reached and the lower test stand fairing suspected of causing the resultant drag characteristic.

BHFWO (TRIANGLE)

BHRFWO. CT = .004 (SQUARE) = .005 (STAR) = .006 (X)

Figure 57. Rotor effect on BHRFWO body lift coefficient, μ =0.20.

BHFWO (TRIANGLE)

BHRFWO. CT = .004 (SQUARE) = .005 (STAR) = .006 (X)

Figure 58. Rotor effect on BHRFWO body drag coefficient, μ =0.20.

CONFIGURATIONS - BHFWO/BHRFWO (RUNS 56/25) MU = 0.20

BHFWO (TRIANGLE) BHRFWO, CT = .004 (SQUARE) = .005 (STAR) = .006 (X)

Figure 59. Rotor effect on BHRFWO body pitching moment coefficient, μ =0.20.

CONFIGURATIONS - BHR/BHRF2L/BHRFWO/BHRF2U RUNS 15/21/25/29 THRUST COEFFICIENT = .005 MU = 0.20

Figure 60a. (Powered) Effect of configuration on body lift for powered and unpowered runs, μ =0.20.

CONFIGURATIONS BH/BHF2L/BHF2U (RUNS 61/53/48)

BH/BHF2L/BHF2U (SQUARE/TRIANGLE/DIAMOND)

Figure 60b. Unpowered.

CONFIGURATIONS - BHR/BHRF2L/BHRF2U RUNS 16/23/30 THRUST COEFFICIENT = .005 MU = 0.30

Figure 61a. (Powered) Effect of configuration on body lift for powered and unpowerd runs, μ =0.30.

CONFIGURATIONS BH/BHF2L/BHF2U (RUNS 63/55/50)

BH/BHF2L/BHF2U (SQUARE/TRIANGLE/DIAMOND)

Figure 61b. Unpowered.

CONFIGURATIONS - BHR/BHRF2L/BHRFWO/BHRF2U RUNS 15/21/25/29 THRUST COEFFICIENT = .005 MU = 0.20

Figure 62. Effect of configuration on body drag for powered runs, μ =0.20.

CONFIGURATIONS - BHR/BHRF2L/BHRF2U RUNS 16/23/30 THRUST COEFFICIENT = .005 MU = 0.30

Figure .63. Effect of configuration on body drag for powered runs, $\mu = 0.30$.

CONFIGURATIONS - BHR/BHRF2L/BHRFWO/BHRF2U RUNS 15/21/25/29 THRUST COEFFICIENT = .005 MU = 0.20

BHR/BHRF2L/BHRFWO/BHRF2U (SQUARE/TRIANGLE/X/DIAMOND)

Figure 64. Effect of configuration on body pitching moment for powered runs, μ =0.20.

CONFIGURATIONS - BHR/BHRF2L/BHRF2U RUNS 16/23/30 THRUST COEFFICIENT = .005 MU = 0.30

Figure 65. Effect of configuration on body pitching moment for powered runs, μ =0.30.

The pitching moment data of Figures 64 and 65 show fairly consistent trends with speed ratio. The difference in the BHR and BHRF2L pitching moment curves is one primarily of volume. The larger volume bodies inherently have greater pitching moment slopes. This will be discussed further in the analytical section. The slight difference between BHRF2L and BHRF2U pitching moment is due to either the amount of hub exposure or the slight change in afterbody shape required to simulate separation distance. The hub-off data for configuration BHRF2U is not available to establish the effect of the afterbody transition fairing. Figures 66 and 67 are presented only to show the relative efficiency of the bodies tested in the powered and unpowered condition.

The next set of Figures, Figures 68 through 77, show the increment in fuselage aerodynamics due to the rotor. The difference is obtained by subtracting the rotor-off data, with rotating hub, from the rotor-on data. How much of the "rotors effect" is actually due to changes in hub/fuselage interaction is beyond the scope of this study and will be considered as one effect. One of the difficulties with this, as noted in reference 10, is the scale of the hub. If the hub is not scaled, its effect is incorrect. Whether trends may be jeopardized is not known. It should be stressed at this point that the following results are not representative of trim conditions and are more parametric in nature. Consequently, trends with body angle of-attack may be misleading to the analyst since the rotors angle-of-attack and wake location relative to the body are also changing.

Figure 68 presents the change in rotor induced body lift as a function of body angle of attack at a speed ratio of 0.2. There is an overall trend for download to increase with increase in angle of attack. With the winglets removed (BHRFWO) the amount of rotor induced download is diminished. Decreasing the separation distance increased the download. Figure 69 shows the change in rotor induced lift with angle of attack for a speed ratio of 0.3. Note that there are definite minimums close to zero angle of attack. The increase in download with decreased separation distance applies to only one angle of attack. A comparison of the results in Figures 68 and 69 with momentum theory will be presented in the correlation section.

Figures 70 and 71 present the change in body drag due to the rotor for speed ratios of 0.2 and 0.3 respectively. At a speed ratio of 0.2 the body of revolution actually shows a favorable interference at all angles of attack. Configurations BHRF2L and BHRFWO show very close to the same drag levels. The primary difference between these two configurations is the winglets.

CONFIGURATIONS - BHR/BHRF2L/BHRFWO/BHRF2U RUNS 15/21/25/29 THRUST COEFFICIENT = .005 MU = 0.20

Figure 66a. (Powered). Effect of configuration on body lift/drag for powered and unpowered runs, μ =0.20.

CONFIGURATIONS BH/BHF2L/BHF2U (RUNS 61/53/48)

BH/BHF2L/BHF2U (SQUARE/TRIANGLE/DIAMOND)

Figure 66b. Unpowered.

CONFIGURATIONS - BHR/BHRF2L/BHRF2U RUNS 16/23/30 THRUST COEFFICIENT = .005 MU = 0.30

Figure 67a. (Powered) Effect of configuration on body lift/drag for powered and unpowered runs, μ =0.30.

CONFIGURATIONS BH/BHF2L/BHF2U (RUNS 63/55/50)

BH/BHF2L/BHF2U (SQUARE/TRIANGLE/DIAMOND)

Figure 67b. Unpowered.

CONFIGURATIONS BHR/BHRF2L/BHRFWO/BHRF2U (RUNS 15/21/25/29)

Figure 68. Effect of angle of attack on rotor induced body lift for all configurations, $\mu = 0.20$.

CONFIGURATIONS BHR/BHRF2L/BHRF2U (RUNS 16/23/30)

Figure 69. Effect of angle of attack on rotor induced body lift for all configurations, μ =0.30.

CONFIGURATIONS BHR/BHRF2L/BHRFWO/BHRF2U (RUNS 15/21/25/29)

BHR/BHRF2L/BHRFWO/BHRF2U (SQUARE/TRIANGLE/X/DIAMONO)

Figure 70. Effect of angle of attack on rotor induced body drag for all configurations, $\mu = 0.20$.

CONFIGURATIONS BHR/BHRF2L/BHRF2U (RUNS 16/23/30)

Figure 71. Effect of angle of attack on rotor induced body drag for all configurations, μ =0.30.

CONFIGURATIONS BHR/BHRF2L/BHRFWO/BHRF2U (RUNS 15/21/25/29)

Figure 72. Effect of angle of attack on rotor induced body pitching moment for all configurations, μ =0.20.

CONFIGURATIONS BHR/BHRF2L/BHRF2U (RUNS 16/23/30)

Figure 73. Effect of angle of attack on rotor induced body pitching moment for all configurations, μ =0.30.

CONFIGURATIONS BHR/BHRF2L/BHRF2U BODY ANGLE OF ATTACK = 0

Figure 74. Effect of speed ratio on rotor induced body lift for all configurations, $C_{\rm T}$ = .005 and $\theta_{\rm B}$ = 0.

CONFIGURATIONS BHR/BHRF2L/BHRF2U BODY ANGLE OF ATTACK = 0

Figure 75. Effect of speed ratio on rotor induced body drag for all configurations, $C_T = .005$ and $\theta_B = 0$.

BHR/BHRF2L/BHRFWO/BHRF2U (SQUARE/TRIANGLE/X/DIAMOND)

Figure 76. Effect of speed ratio on rotor induced body drag/rotor-off body drag for all configurations, $C_{\rm T}$ = .005 and $\theta_{\rm B}$ = 0.

BHR/BHRF2L/BHRF2U (SQUARE/TRIANGLE/DIAMOND)

Figure 77. Effect of speed ratio on rotor induced body pitching moment for all configurations, $C_{\rm T}$ = .005 and $\theta_{\rm B}$ = 0.

Therefore, it can be assumed that the rotor has had little effect on winglet drag for the thrust level being considered. Figure 56 which compares winglet drag for rotor-on and rotor-off conditions supports this conclusion. Figures 62 and 63 showed that at a speed ratio of 0.2 total configuration drag decreased with a decrease in separation distance; however, as can be seen in Figure 70 the rotor influence is to increase drag with a decrease in separation distance. This indicates then, from a fuselage performance consideration only, that reducing hub and rotating controls exposed area is more effective in reducing drag than increasing separation distance. At a speed ratio of 0.3, Figure 71 shows a definite overall increase in the rotor induced drag level for each configuration including the simple body of revolution, BHR. Reducing separation distance still causes an increase in drag for most angles of attack.

Figures 72 and 73 present the rotors effect on pitching moment. The configuration effect shows that the greater the pitching volume, the greater the rotors influence. Also decreasing separation distance increased the rotors influence on the pitching moment. These trends are consistent with speed. The speed ratio of 0.3 shows higher overall levels of rotor influence. At the higher speed there appears to be a tendency for the rotors influence to become less nose down for configurations BHRF2L and BHRF2U at the positive angles of attack.

Figures 74 through 77 show the change in rotor induced body aerodynamics as a function of airspeed. The data are presented for zero body angle of attack and a thrust coefficient of .005. No data is available for BHRF2U at a speed ratio of 0.25; however, it does appear as if there may be a family of curves developing which indicate that the download measured in hover decreases as air speed increases and becomes lift at the higher speeds. It was seen from data in Figures 68 through 73 that the trends varied with body angle of attack. The effect of speed ratio on body aerodynamics at angles of attack other than zero requires further analysis of the data.

Figure 75 shows that the rotors effect on drag generally increases with airspeed. When one considers the rotors effect relative to the total configuration drag, Figure 76 results. In this figure the rotor-on configuration drag is ratioed to the rotor-off drag. This puts each configuration in proper perspective relative to its individual performance. Figure 76 indicates that the maximum rotor influence on total drag does peak over the speed ratio range investigated.

Rotor induced pitching moment as a function of speed ratio is presented in Figure 77. The trend is very consistent for all configurations investigated. The pitching moment data is presented in the form of an equivalent tail download required for trim. Consequently, reducing body-rotor separation distance increases configuration download as opposed to the decrease in

body download seen in Figure 74. The magnitude of this tradeoff would be dependent upon the location of the horizontal stabilizer.

The final set of data presents lift, drag, and pitching moment as a function of a speed ratio defined as the forward flight speed divided by momentum theory hover induced velocity. This form is used in both References 9 and 13 and is similar to the classical definition of wake skew angle. Hence the data to be presented in Figures 78 through 86 show the test results as a function of rotor wake position.

Before proceeding with a discussion of the data several points should be made concerning this form of data presentation. First, this form of data presentation may be misinterpreted. For instance rotor-off data referenced to the same levels of thrust as the rotor-on data will provide a very similar curve. Unless the rotor-off body forces are zero, it is the difference in these two curves which actually defines the rotors influence on the body. It is also not possible to determine whether the body lift is decreasing or increasing with thrust based on these curves. A very strong point in favor of this method of presentation is that any significant nonwake related changes in aerodynamic characteristics will be revealed.

Figures 78 through 80 present the lift, drag, and pitching moment data for configuration BHRF2L. The data is presented for all shaft angles and speed ratios tested for this configuration. Appendix B presents most of this data graphically as body lift coefficient versus thrust. In that form the data is a series of relatively parallel lines shifted primarily by body angle of Note the apparent jumps in the data of Figure 78 at positive body angles of attack. The two parallel lines in the zero degree data for instance is a speed ratio effect. The upper set of data was taken at a speed ratio of 0.25. The lower set of data was taken at speed ratios of 0.20 and 0.30. The cause for this is not completely understood; however, it also appeared in the rotor-off data and may be due to the winglets as is implied The drag and pitching moment data of Figures 79 by Figure 49. and 80 appear to be fairly well behaved. Figures 81 through 86 present the lift, drag, and pitching moment for configuration and separation distance effect at body angles of attack of -4 and 4 degrees.

Based on momentum theory, Figures 78 through 86 represent functions of rotor induced angle of attack. However, the data is still a function of body pitch attitude. The following paragraph shows the development of a more universal parameter for reducing the body data based upon momentum theory.

Utilizing small angle assumptions, the rotor induced angle of attack is:

$$\alpha_R = \sigma_i/V$$

CONFIGURATION - BHRF2L RUNS 19/20/21/22/23

BODY ANGLE OF ATTACK = -8 (X) = -4 (SQUARE) = 0 (TRIANGLE) = 4 (DIAMOND) = 8 (STAR)

Figure 78. Effect of wake location on BHRF2L body lift.

CONFIGURATION - BHRF2L RUNS 19/20/21/22/23

BODY ANGLE OF ATTACK = -8 (X) = -4 (SQUARE) = 0 (TRIANGLE) = 4 (D1AMOND) = 8 (STAR)

Figure 79. Effect of wake location on BHRF2L body drag.

CONFIGURATION - BHRF2L RUNS 19/20/21/22/23

BODY ANGLE OF ATTACK = -8 (X) = -4 (SQUARE) = 0 (TRIANGLE) = 4 (DIAMOND) = 8 (STAR)

Figure 80. Effect of wake location on BHRF2L body pitching moment.

Figure 81. Effect of wake location on body lift for all configurations, $\theta_{\rm B}$ = -4 degrees.

BHR/BHRF2L/BHRFW0/BHRF2U (SQUARE/TBIRNGLE/X/QIDMOND)

Figure 82. Effect of wake location on body drag for all configurations, $\theta_{\rm B}$ = -4 degrees.

TUNNEL VELOCITY/HOVER INDUCED VELOCITY
BHR/BHRF2L/BHRFWO/BHRF2U (SQUARE/TRIANGLE/X/DIAMOND)

Figure 83. Effect of wake location on body pitching moment for all configurations, $\theta_{\rm B}$ = -4 degrees.

Figure 84. Effect of wake location on body lift for all configurations, $\theta_{\rm B}$ = 4 degrees.

BHR/BHRF2L/BHRFWO/BHRF2U (SQUARE/TRIANGLE/X/DIAMOND)

Figure 85. Effect of wake location on body drag for all configurations, θ_B = 4 degrees.

BHR/BHRF2L/BHRFWO/BHRF2U (SQUARE/TRIANGLE/X/DIAMOND)

Figure 86. Effect of wake location on body pitching moment for all configurations, $\theta_{\rm B}$ = 4 degrees.

Assuming $v_i = C_T \Omega R/2\mu$ at high speeds, α_R can be defined by:

$$\alpha_{\rm R} = C_{\rm T}/2\mu^2$$

Lift and pitching moment ratios of Figures 78 and 80 can be defined in coefficient form as follows:

$$L/T = C_{l_B} qS_B/C_T \rho \pi R^2 (\Omega R)^2$$

$$M/TR = C_{M_{Y_B}} qS_B d_B/C_T \rho \pi R^3 (\Omega R)^2$$

Writing dynamic pressure, q, in terms of speed ratio and substituting $\alpha_{\rm R}$ where appropriate results in the following:

$$L/T = (C_{l_B}S_B/4\pi R^2)/\alpha_R$$

$$M/TR = (C_{M_{Y_R}} S_B d_B / 4\pi R^3) / \alpha_R$$

Assuming that lift and pitching moment coefficients are a function of the following expression for body angle of attack;

$$\alpha_{\rm B} = \theta_{\rm B} - C_{\rm T}/2\mu^2 - \Delta\alpha$$

L/T and M/TR become functions of θ_B/α_R . Figures 87 and 88 show the data of Figures 78 and 80 as functions of θ_B/α_R . It should be remembered that the data of Figures 87 and 88 represent total powered configuration aerodynamic characteristics and not the increment of forces and moments due to the rotor.

Fuselage Pressure Data - Pressure data was reduced to evaluate effects of configuration, thrust, and angle of attack at a speed ratio of 0.2. Pressure data variations with speed ratio are not presented. The pressure data will be limited to the upper surface centerline only and presented as differential pressure or pressure coefficient versus body station. Unscaled body profiles are provided at the bottom of each figure to show a relationship between geometry and pressure. Corrections were not made for wall effects or slight variations in thrust coefficient due to insufficient reduced data. However, these effects where checked given the available data and analysis using a panel code. It was determined that the corrections would have no bearing on conclusions drawn from the data presented.

CONFIGURATION - BHRF2L RUNS 21/23

MU = .20/.30 (DIAMOND/X)

Figure 87. Effect of body angle of attack/rotor induced angle of attack on body lift.

CONFIGURATION - BHRF2L RUNS 21/23

MU = .20/.30 (DIAMOND/X)

Figure 88. Effect of body angle of attack/rotor induced angle of attack on body pitching moment.

A study of the pressures in the nose region indicated that there was some flow angularity. This was partly due to the test stand fairing on the lower surface of each body configuration. Consequently, the angles of attack called out in the following text are actually the geometric angles of attack relative to the tunnel floor. Figures 89 and 90 present the pressure distribution for the isolated body (hub-off) configurations B and BF2L. Each figure shows measured pressure data over a 16 degree range of angle of attack. The data show increased suction over the nose with an increase in angle of attack (nose up).

Figures 91 and 92 show the influence of configuration buildup on pressure distribution. Each figure compares the pressure distribution for the isolated body to body with hub only and body with a rotor producing a thrust coefficient of approximately 0.0055. Each configuration has a body geometric angle of zero degrees relative to the tunnel floor. Adding the hub to each configuration shows a pressure increase in front of the hub. Similar results were shown in Reference 13. Because configuration BH has such a short nose the apparent solid body blocking of the hub extends over a greater part of the nose section. The extended nose configuration BHF2L of Figure 92 shows very little deceleration due to the hub from the windscreen to the hub. In fact, there is an apparent flow acceleration over the nose.

The rotor-on data of Figure 91 indicates that relative to the hub-on data of BH the rotor reduces pressure over the entire body. This is contrary to the effect shown in Figure 92 where configuration BHRF2L shows an increase in pressure over a body span equivalent to the length of BHR. This changes, however, over the nose region where the rotor apparently accelerates the flow and decreases the pressure relative to BHF2L. Reference 49 data showed the same acceleration over the nose due to the rotor. This may be due to the time-averaged upwash near the rotors leading edge which is similar to a fixed wing. If the rotor-on afterbody pressure data is correct for BHR and BHRF2L, it may be that the nose is influencial on near wake trajectories and effects.

Figure 93 compares the isolated configurations B and BF2L. The data is referenced to the hub station to provide a correct alignment for comparison of the afterbody data of the two configurations. Figure 94 compares the hub-on data in the same manner. Both figures show that the afterbody pressure distributions are quite similar with only a slight deviation immediately behind the hub. This is not the case, however, for the rotor-on configurations shown in Figure 95. Further evaluation of pressure data will be required to understand whether the effects observed are correct. Figure 96 summarizes the rotors effect on the upper surface pressures by plotting the difference in the rotor-on and isolated body data.

BODY ANGLE OF ATTACK = -8/0/8 (SQUARE/X/DIAMOND)

Figure 89. Effect of angle of attack on measured configuration B pressure coefficients.

BODY ANGLE OF ATTACK = -8/0/8 (SQUARE/X/DIAMOND)

Figure 90. Effect of angle of attack on measured configuration BF2L pressure coefficients.

CONFIGURATION B/BH/BHR (STAR/X/SQUARE)

Figure 91. Effect of hub and rotor on measured configuration B pressure coefficients, $C_T = 0.0055$, $\theta_B = 0$.

CONFIGURATION BF2L/BHF2L/BHRF2L (STAR/X/SQUARE)

Figure 92. Effect of hub and rotor on measured configuration BF2L pressure coefficients, $C_T = 0.0055$, $\theta_B = 0$.

CONFIGURATION B/BF2L (STAR/SQUARE)

Figure 93. Comparison of measured pressure coefficients for configurations B and BF2L, $\theta_{\mbox{\footnotesize B}} = 0\,.$

CONFIGURATION BH/BHF2L (STAR/SQUARE)

Figure 94. Comparison of configuration BH and BHF2L pressure coefficients, $\theta_B^{=0}$.

CONFIGURATION BHR/BHRF2L (STAR/SQUARE)

Figure 95. Comparison of configuration BHR and BHRF2L pressure coefficients, $C_{\rm T} = 0.0055$, $\theta_{\rm B} = 0$.

CP(BHR - B) (STAR). CP(BHRF2L - BF2L) (SQUARE)

Figure 96. Increment in configuration BHR and BHRF2L pressure coefficients due to the rotor and hub, $C_T = 0.0055$, $\theta_B = 0$.

The effect of rotor-body separation distance is shown in Figure 97. Decreasing the separation distance increased the surface pressures along the entire body. The increase was more pronounced ahead of the hub than behind it. This same trend was shown in Reference 13 for a body of revolution identical to configuration BHR with the winglets removed. For this comparison the thrust coefficient was .0055. Figure 98 presents the same data as the difference in pressure between the two configurations. The data of Figures 97 and 98 are repeated in Figures 99 and 100 for a thrust coefficient of approximately .003.

The presentation of pressure data is concluded with the effect of thrust shown in Figures 101 and 102 for configurations BHRF2U and BHRF2L respectively. The pressure increases with thrust for both configurations. The results of these two figures indicate that the change in pressure with rotor thrust is greater as the rotor-fuselage separation distance decreases.

Main Rotor data - Measured rotor data for each configuration except BHRFWO is presented in the forms of thrust coefficient versus power coefficient, control axis angle of attack, H-force coefficient, propulsive force coefficient, and main rotor pitching moment coefficient. In addition, equivalent rotor lift/drag ratio is calculated based on the data and presented versus rotor lift coefficient. Cross plotting is used to present some of the data as a function of control axis angle of attack. The reason for this form is explained further into the text.

In general the rotor performance data was found to be very well behaved. A second order polynomial with respect to thrust was found to provide a very good curvefit of the power required data. An additional check as to the nature of the data was to plot power required as a function of thrust squared. The data was very linear and well behaved to the point at which profile power became significant. The data then became nonlinear with thrust but did not show any significant increases in scatter. Testing in deep stall was not an objective of this test, consequently, blade loading (thrust coefficient/solidity) ranged from approximately .03 to 0.085. For the Model 222 rotor this represents a thrust coefficient range from .0023 to .0065.

Since the presence of a body in a moving fluid stream creates a disturbance in the flow field, it is expected that a rotor in close proximity to the body would experience changes in inflow distribution. Along with the variation of inflow, secondary effects such as wake distortion may become a factor particularly at higher blade loadings. At zero angle of attack a body can be thought of as a simple single source in a free stream. If the strength of the source is varied to maintain a constant fluid body shape, an upwash field normal to the free stream results. The upwash is directly proportional to the free stream velocity

CONFIGURATION BHRF2L/BHRF2U (STAR/SQUARE)

Figure 97. Effect of separation distance on measured pressure coefficients, $C_T = 0.0055$, $\theta_B = 0$.

DELCP = CP(BHRF2L - BHRF2U)

Figure 98. Increment in measured pressure coefficients due to separation distance, $C_T = 0.0055$, $\theta_B = 0$.

SPEED RATIO = 0.2 RUNS 21/29

CONFIGURATION BHRF2L/BHRF2U (STAR/SQUARE)

Figure 99. Effect of separation distance on measured pressure coefficients, $C_{\rm T}$ = 0.003, $\theta_{\rm B}$ = 0.

SPEED RATIO = 0.2 RUNS 21/29

DELCP = CP(BHRF2L - BHRF2U)

Figure 100. Increment in measured pressure coefficient due to separation distance, $C_{\rm T}$ = 0.003, $\theta_{\rm B}$ = 0.

CT = 0.003/0.0055 (X/DIAMOND)

Figure 101. Effect of main rotor thrust on configuration BHRF2U measured pressure coefficients, $\theta_{\rm B}$ = 0.

SPEED RATIO = 0.2 RUN 21

CT = 0.003/0.0055 (STAR/SQUARE)

Figure 102. Effect of main rotor thrust on configuration BHRF2L measured pressure coefficients, $\theta_{\rm B}$ = 0.

inversely proportional to approximately the vertical distance between the body and point of interest squared. In addition the rotor may sense equivalent ground plane or blockage effects due to the body. Consequently, the rotor may be operating at different effective shaft angles for different body configurations, eventhough, the geometric shaft angle is the same.

Rotor thrust coefficient versus power coefficient is presented in Figures 103 through 104 for configurations HR, BHR, BHRF2L, and BHRF2U at speed ratios of 0.15, 0.20, 0.25, and 0.30. Without any flow field distortion due to the presence of a body, all data for a given shaft angle would collapse into one curve within a given error band. However, the spread in the curves implies that the inflow was modified in some manner. The control axis angle of attack data corresponding to Figures 103 through 106 is shown in Figures 107 through 110. This data shows that there are clear shifts between configurations as opposed to scatter. In several cases it was as much as 1 degree or more between configurations. Model position and flapping errors may account for some of the shifts observed, however, position was held to within ±.05 degrees and flapping to within ±.12 degrees.

If the change in control axis is an indication primarily of change in rotor angle of attack, or inflow, the performance data can be corrected by control axis angle of attack. This will not work precisely because the inflow distribution due to each configuration will vary and rotor H-force may not be precisely the The power coefficient data was plotted against control axis angle of attack for a constant thrust coefficient of 0.005. The results are shown in Figures 111 and 112 respectively for speed ratios of 0.2 and 0.3. The performance variations with configuration are reduced considerably and fall within approximately a 4 percent band. Several observations can be made of this data when viewed on a constant control axis angle of attack basis.

- 1. The body of revolution has the least overall impact on performance relative to the isolated rotor.
- 2. Decreasing separation distance reduces power required at a speed ratio of 0.30.
- 3. At a speed ratio of 0.3, the rotor-body configurations tend to decrease power required relative to the isolated rotor under normal forward flight propulsive conditions (possibly ground plane effect). However, BHRF2L and BHRF2U actually increase power required under descent conditions (possible blockage).

CONFIGURATIONS - HR/BHR/BHRF2L/BHRF2Ú (RUNS 32/18/20/28)

Figure 103. Main rotor $C_{\overline{T}}$ versus $C_{\overline{P}}$, all configurations, $\mu = 0.15$.

CONFIGURATIONS - HR/BHR/BHRF2L/BHRF2U (RUNS 33/15/21/29)

Figure 104. Main rotor $C_{\mbox{\scriptsize T}}$ versus $C_{\mbox{\scriptsize P}}$, all configurations, $\mu = 0.20$.

CONFIGURATIONS - HR/BHR/BHRF2L (RUNS 34/17/22)

HR/BHR/BHRF2L (STAR/SQUARE/TRIANGLE)

Figure 105. Main rotor $C_{\mbox{\scriptsize T}}$ versus $C_{\mbox{\scriptsize P}}$, all configurations, $\mu = 0.25$.

CONFIGURATIONS - HR/BHR/BHRF2L/BHRF2U (RUNS 35/16/23/30)

Figure 106. Main rotor $C_{\mbox{\scriptsize T}}$ versus $C_{\mbox{\scriptsize P}}{}'$ all configurations, $\mu = 0.30$.

CONFIGURATIONS - HR/BHR/BHRF2L/BHRF2U (RUNS 32/18/20/28)

Figure 107. Main rotor $C_{\mbox{\scriptsize T}}$ versus $\alpha_{\mbox{\scriptsize C}}$, all configurations, $\mu = 0.15$.

Figure 108. Main rotor $C_{\mbox{\scriptsize T}}$ versus $\alpha_{\mbox{\scriptsize C}}$, all configurations, $\mu = 0.20$.

CONFIGURATIONS - HR/BHR/BHRF2L (RUNS 34/17/22)

HR/BHR/BHRF2L (STAR/SQUARE/TRIANGLE)

Figure 109. Main rotor $C_{\mbox{\scriptsize T}}$ versus $\alpha_{\mbox{\scriptsize C}}$, all configurations, $\mu = 0.25$.

Figure 110. Main rotor $C_{\mbox{\scriptsize T}}$ versus $\alpha_{\mbox{\scriptsize C}}$, all configurations, $\mu = 0.30$.

Figure 111. Main rotor C_P versus α_C , all configurations, C_T = .005, μ =0.20.

Figure 112. Main rotor C_p versus α_C , all configurations, C_T = .005, μ =0.30.

It should be noted that the results of Figure 111 and 112 are not the effect of airframe on trimmed rotor performance. This can only be assessed when the overall trimmed body/rotor configuration is evaluated.

To further investigate body effects on the rotors behavior, lateral cyclic control position was plotted against control axis angle of attack. The results are presented in Figures 113 and 114. The BHRF2L and BHRF2U configurations show a definite requirement for additional left lateral cyclic required to maintain zero flapping as compared to the isolated rotor configuration, HR. Although the body of revolution, BHR, would be expected to cause the same effect, it showed an opposite trend. The lateral cyclic data indicates that the inflow distribution is effected by a body beneath the rotor.

A second approach to evaluating the performance of a rotor uses the definition of rotor efficiency.

$$L/D = L/(P/V - X)$$

Data for -4 degree shaft angle of attack is shown for all configurations in Figures 115 through 118. Significant differences exist between the configurations shown. Except for the speed ratio case of 0.3, all body configurations show a higher efficiency than the isolated rotor. In Reference 10 similar results were shown. In fact the increase in L/D by decreasing separation distance is almost the same as Reference 10 data for zero angle of attack and a speed ratio of 0.2. One noticeable difference between Reference 10 and this study is the isolated rotor efficiency compared to the rotor-body configurations. This may be due in part to the influence of the main rotor wake on the tares since the hub of Reference 10 was above the main rotor.

To assure that differences in L/D were not related to inflow variations, L/D was plotted versus control axis angle of attack for a rotor lift coefficient of .005. The results are shown for an advance ratio of 0.2 in Figure 119 and were found to be relatively insensitive to changes in control axis. Since Figure 111 showed that power required varied only slightly with configuration for a constant control axis angle of attack, the changes in L/D must be due primarily to differences in propulsive force, X. Figures 120 through 123 present thrust coefficient versus propulsive force. A clear difference exists between the various By definition the shifts at constant thrust configurations. levels are due to H-force. Figures 124 through 127 present H-force which has been corrected by the rotor-off hub tares. corrected H-force is plotted against control axis angle of attack as shown in Figures 128 and 129. These figures indicate that L/D is primarily configuration dependent. A slight control axis sensitivity is experienced at the higher speed ratio, but not of

Figure 113. Main rotor lateral cyclic versus $\alpha_{\text{C}},$ all configurations, C_{T} = .005, $\mu\text{=0.20}.$

Figure 114. Main rotor lateral cyclic versus α_{C} , all configurations, C_{T} = .005, μ =0.30.

HR/BHR/BHRF2L/BHRF2U (STAR/SQUARE/TRIANGLE/DIAMOND)

ROTOR LIFT COEFFICIENT

0.005

0.006

0.007

Figure 115. Main rotor L/D versus C_L , all configurations, $\mu = 0.15$.

0.003

0.002

0.004

Figure 116. Main rotor L/D versus C_L , all configurations, μ =0.20.

CONFIGURATIONS - HR/BHR/BHRF2L (RUNS 34/17/22)

HR/BHR/BHRF2L (STAR/SQUARE/TRIANGLE)

Figure 117. Main rotor L/D versus C_L , all configurations, μ =0.25.

Figure 118. Main rotor L/D versus C_L , all configurations, μ =0.30.

Figure 119. Main rotor L/D versus α_{C} , all configurations, C_{T} = .005, μ =0.20.

Figure 120. Main rotor $C_{\overline{\mathbf{T}}}$ versus $C_{\overline{\mathbf{X}}}$, all configurations, $\mu = 0.15$.

HR/BHR/BHRF2L/BHRF2U (STAR/SQUARE/TRIANGLE/DIAMOND)

Figure 121. Main rotor $C_{\overline{T}}$ versus $C_{\overline{X}}$, all configurations, μ =0.20.

C-3

CONFIGURATIONS - HR/BHR/BHRF2L (RUNS 34/17/22)

HR/BHR/BHRF2L [STAR/SQUARE/TRIANGLE]

Figure 122. Main rotor $C_{\overline{\mathbf{T}}}$ versus $C_{\overline{\mathbf{X}}}$, all configurations, $\mu = 0.25$.

Figure 123. Main rotor $C_{\overline{I}}$ versus $C_{\overline{X}}$, all configurations, $\mu=0.30$.

HR/BHR/BHRF2L/BHRF2U (STAR/SQUARE/TRIANGLE/DIAMOND)

H-FORCE COEFFICIENT

Figure 124. Main rotor $C_{\overline{T}}$ versus $C_{\overline{H}}$, all configurations, μ =0.15.

Figure 125. Main rotor $C_{\overline{T}}$ versus $C_{\overline{H}}$, all configurations, $\mu = 0.20$.

CONFIGURATIONS - HR/BHR/BHRF2L (RUNS 34/17/22)

HR/BHR/BHRF2L (STAR/SQUARE/TRIANGLE)

Figure 126. Main rotor $C_{\mbox{\scriptsize T}}$ versus $C_{\mbox{\scriptsize H}}^{}$, all configurations, $\mu = 0.25$.

Figure 127. Main rotor $C_{\overline{I}}$ versus $C_{\overline{H}}$, all configurations, μ =0.30.

HR/BHR/BHRF2L/BHRF2U (STAR/SQUARE/TRIANGLE/DIAMOND)

CONTROL AXIS ANGLE OF ATTACK. DEG

Figure 128. Main rotor $C_{\mbox{\scriptsize H}}$ versus $\alpha_{\mbox{\scriptsize C}}$, all configurations, $C_{\mbox{\scriptsize T}}$ =.005, μ =0.20.

Figure 129. Main rotor C_H versus α_C , all configurations, C_T =.005, μ =0.30.

sufficient magnitude to explain the difference in L/D due to configuration. The real issue becomes one of whether or not H-force is correct.

On the assumption that the rotor wake may have an influence on the hub tares, it is beneficial to look at the uncorrected H-force (hub tare included) or axial force. Figures 130 and 131 present this data for speed ratios of 0.2 and $\overline{0.3}$ respectively. The data of Figure 130 shows that the axial force follows more of an exposed area trend. The isolated rotor had a greater exposed area, whereas, BHRF2L and BHR had identically the same exposed areas. BHRF2U covered approximately 40 percent of the rotating controls which accounts for the substantially lower axial force. At the higher advance ratio the isolated rotor axial force (uncorrected H-force) seems to fall more into line with BHR and Since the total rotor force includes classical H-force as well as hub tares, it is a linear and quadratic function of speed ratio. The hub tares were found to be a function of speed Subtracting the hub tares from the total rotor ratio squared. inplane force yielded in H-force which is not linear with speed This implies a rotor-hub interaction. There is one significant factor in the determination of the hub tares which can influence the calculation of H-force. When the rotor-off hub tares versus dynamic pressure are curvefit they may not pass through zero. To call this a zero shift may not be correct because of insufficient low speed data to give a proper fit. Therefore, in this report the rotor-off hub tare zeroes were not A check was performed as to its impact and it did corrected. reduce the differences in calculated H-force particularly at a speed ratio of 0.30. A zero shift of 90.7 gm (0.2 lb) is approximately the limit on the accuracy of the main rotor balance and it is equivalent to a change in H-force of .00001.

An additional check on the nature of the rotor-on/rotor-off hub tares was performed by analyzing the axial force center. This was done by dividing the main rotor pitching moment as measured at the balance reference center by the axial force. Figures 132 through 135 present the results for configurations HR, BHR, BHRF2L, and BHRF2U respectively. These calculations were only performed for a shaft angle of -4 degrees.

Because the distance between the hub center and balance center is almost 0.3048 m (1 foot) the results should be close to 1 for the rotor-off hub tares. Exposure of the rotating controls should actually drop the axial force centers below 1. For low speeds the rotor-off axial force centers (zero thrust) become sensitive to error and can vary considerably. Note that the rotor-on axial force centers show a definite change with thrust. To define the point at which the rotor H-force acts, it was assumed that the rotor-off tares remained the same for the rotor-on configurations. The rotor-on axial forces and moments were then corrected for hub force and moment tares. The results are pre-

Figure 130. Main rotor axial force versus α , all configurations, $C_T^{=.005}$, $\mu=0.20$.

Figure 131. Main rotor axial force versus α , all configurations, $C_T^{=.005}$, $\mu=0.30$.

CONFIGURATION - H (RUNS 40 THRU 45) HR (RUNS 31 THRU 35)

MU = .10/.15/.20/.25/.30 (STAR/TRIANGLE/DIAMOND/SQUARE/X)
ROTOR OFF TARES (PLUS)

Figure 132. Effect of main rotor thrust on rotor axial force center, HR, $\alpha_{\rm S}^{=-4}$ deg.

CONFIGURATION - BH (RUNS 59 THRU 63) BHR (RUNS 14 THRU 18)

MU = .10/.15/.20/.25/.30 (STAR/TR]ANGLE/DIAMOND/SQUARE/X)
ROTOR OFF TARES (PLUS)

Figure 133. Effect of main rotor thrust on rotor axial force center, BHR, $\alpha_S^{=-4}$ deg.

CONFIGURATION - BHF2L (RUNS 51 THRU 55) BHRF2L (RUNS 19 THRU 23)

MU = .10/.15/.20/.25/.30 (STAR/TRIANGLE/DIAMOND/SQUARE/X)
ROTOR OFF TARES (PLUS)

Figure 134. Effect of main rotor thrust on rotor axial force center, BHRF2L, $\alpha_S^{=-4}$ deg.

CONFIGURATION - BHF2U (RUNS 46 THRU 50) BHRF2U (RUNS 27 THRU 30)

MU = .10/.15/.20/.30 (STAR/TRIANGLE/DIAMOND/SQUARE/X)
ROTOR OFF TARES (PLUS)

Figure 135. Effect of main rotor thrust on rotor axial force center, BHRF2U, $\alpha_{S}^{=-4}$ deg.

sented in Figures 136 and 137 for HR and BHRF2L. Figures 136 and 137 show that the H-force which should be physically located near the plane of the rotor is in fact not, based upon measured data.

Because of questions related to the application of measured H-force to the calculation of rotor efficiency it was determined that propulsive force should be defined to include the hub tares for configuration performance evaluation. This definition of propulsive force was then plotted versus control axis angle of attack and is presented in Figures 138 and 139.

Table 8 is presented to compare the effect of separation distance on rotor performance under trim conditions. assumed that the rotor is operating in the presence of a nonlifting body with an equivalent flat plate drag area of 1.49 sq m (16 sq. ft), not including the drag of the hub and exposed rotating controls. The thrust coefficient required is Propulsive force required for trim is calculated and used in Figures 138 and 139 to determine the control axis angle of attack The control axis angle of attack is then used in Figures 111 and 112 to determine the power required. result is that BHRF2U would use 8.9 percent less power at a speed ratio of 0.2 and 7.1 percent less power at a speed ratio of 0.3. Including body effects would further improve the performance of BHRF2U over BHRF2L. It should be noted that the majority of the performance differences were due to the amount of hub and controls exposure accounted for in the propulsive force. beneath the rotor appear to improve rotor performance with additional benefits to be gained at higher speeds by reducing the rotor-body separation distance. This conclusion must be weighed, however, relatve to other considerations such as canopy drumming and rotor loads.

FLOW VISUALIZATION RESULTS

Although tufts were used for flow visualization in hover and forward flight, only results of the forward flight smoke visualization work will be presented. There was no attempt to obtain quantitative data from the smoke work. Only qualitative investigations were conducted to determine whether specific test parameters or conditions would manifest themselves clearly enough to warrant further work. Some of the parameters investigated include configuration, thrust, speed ratio, body angle of attack, and blade azimuth. All photographs presented in this section were taken with the smoke filament in a vertical plane along the centerline of the fuselage (zero buttline plane).

MU = .10/.15/.20/.25/.3D (STAR/TRIANGLE/DIAMOND/SQUARE/X)
ROTOR OFF TARES (PLUS)

Figure 136. Effect of main rotor thrust on center of H-force, HR, $\alpha_{\rm S}^{=-4}$ deg.

CONFIGURATION - BHF2L (RUNS 51 THRU 55) BHRF2L (RUNS 19 THRU 23)

MU = .10/.15/.20/.25/.30 (STAR/TRIANGLE/DIAMOND/SQUARE/X)
ROTOR OFF TARES (PLUS)

Figure 137. Effect of main rotor thrust on center of H-force, BHRF2L, $\alpha_{\rm S}^{=-4}$ deg.

HR/BHR/BHRF2L/BHRF2U (STAR/SQUARE/TRIANGLE/DIAMOND)

Figure 138. Main rotor uncorrected propulsive force versus α_{C} , all configurations, C_{T} =.005, μ =0.20.

CONTROL AXIS ANGLE OF ATTACK, DEG

Figure 139. Main rotor uncorrected propulsive force versus α_{C} , all configurations, C_{T} =.005, C_{μ} =0.30.

Table 8. Effect of Separation Distance on Forward Flight Rotor Performance

Configuration: Equivalent flat plate drag area = 1.86 sq. m (20 sq ft)
Sea level standard day conditions

Configuration	μ (-)	C _T (-)	C _X	α _C (deg)	c _P	C _P (%)
BHRF2L	0.2	.005	.000318	-11.1	.000269	0
BHRF2U	0.2	.005	.000318	- 9.4	.000245	-8.9
BHRF2L	0.3	.005	.000720	-22.6	.000492	c
BHRF2U	0.3	.005	.000720	-21.3	.000457	-7.1

The flow visualization results are presented for three of the configurations tested. Figures 140 through 145 present photographs of configuration BHRF2L. BHRF2U is shown in Figures 146 through 150. Figure 151 illustrates the trailing blade tip vortex for configuration HR.

Figures 140 and 141 are presented primarily to illustrate the visual extent of the influence of the tip vortex circulation on the smoke filament. The test condition is a speed ratio of 0.10 with a thrust coefficient of 0.00268 and 0.00644 for Figures 140 and 141 respectively. The configuration is BHRF2L at a zero geometric body angle of attack. The thrusting rotor changes the wind axis causing an effective upwash. Consequently, the equivalent body angle of attack for Figures 140 and 141 were 1.25 deg and 3.0 deg respectively. At the low thrust condition of Figure 140 the tip vortex strength is not as great as at the higher thrust condition of Figure 141. However, even at the higher thrust coefficients, the vertical band of visibility appears to have a width equal to 10 to 20 percent radius. Also, note in Figure 141a the apparent interaction between the rotor and winglet.

Figure 142 shows a sequence of photographs in which the smoke filament was moved upward in the vertical plane beginning in Figure 142a at approximately the bodies stagnation point. The test conditions are identical to that of Figure 140. Note in Figure 142b the flatness of the streamline immediately ahead of the windscreen. In Figure 142c the filament is slightly higher and is beginning to show signs of losing some of the finer details associated with the body contour. This tendency of the streamlines to lose the finer details of a fuselage is consistent with results presented in Reference 16. There it was demonstrated that a single source in a free stream meeting certain general criteria was able to predict the upwash induced by a helicopter fuselage as well as a complex panel analysis. This, however, is only applicable in cases where fuselage details do not induce separation and abrupt changes in contour are not large relative to the total thickness of the body of interest.

The effect of body angle of attack is shown in Figure 143. The speed ratio is 0.10 and the thrust coefficient is 0.0048. Note that the wake moves further away from the rotor as the rotor inflow changes. This implies that the rotors effect on the fuselage in terms of unsteady loads would be expected to decrease with increased body angle of attack. However, a noticeable blade-vortex interaction was taking place manifesting itself as an increase in noise. How induced loads from this effect may

ORIGINAL PAGE IS DE POOR QUALITY

EST 33

a)

b)

c)

Figure 140. Vertical smoke scan of BHRF2L to illustrate visual limits of discrete circulation, μ =0.10, C_T = 0.00268, θ_B = 0.

ORIGINAL PAGE IS OF POOR QUALITY

TEST \$43
RUN 135
CC - D-10

a)

b)

Figure 141. Vertical smoke scan of BHRF2L to illustrate visual limits of discrete circulation, μ =0.10, C_T = 0.00644, θ_B = 0.

a)

b)

c)

Figure 142. Streamline shape changes above the nose of BHRF2L, μ = 0.10, C_T = 0.00268, θ_B = 0.

ORIGINAL PAGE IS OF POOR QUALITY

a)
$$\theta_B = 0$$

b) $\theta_B = +4$

c) $\theta_B = +8$

Figure 143. Effect of body pitch attitude on BHRF2L wake trajectory, μ = 0.10, $C_{\overline{T}}$ = 0.0048.

a)

b)

Figure 144. Effect of rotor azimuth on BHRF2L tip vortex trajectory, μ = 0.10, $C_{\rm T}$ = 0.00644, $\theta_{\rm B}$ = 0.

a)

ORIGINAL PAGE IS OF POOR QUALITY

b)

Figure 145. Configuration BHRF2L flow visualization at μ = 0.15, $C_{\mbox{\scriptsize T}}$ = 0.0047, $\theta_{\mbox{\scriptsize B}}$ = 0.

Figure 146. Vertical smoke scan of BHRF2U to illustrate visual limits of discrete circulation, μ = 0.10, θ_B = 0.

ORIGINAL PAGE IS OF POOR QUALITY

a)

b)

c)

Figure 147. Vertical smoke scan of BHRF2U at μ = 0.10, $C_{\mbox{\scriptsize T}}$ = 0.00457, $\theta_{\mbox{\scriptsize B}}$ = +4.

a)

c)

b)

Figure 148. Vertical smoke scan of BHRF2U at μ = 0.10, $C_{\overline{T}}$ = 0.00457, $\theta_{\overline{B}}$ = +8.

ORIGINAL PAGE IS OF POOR QUALITY

a)

b)

Figure 149. Effect of rotor azimuth on BHRF2U tip vortex trajectory, μ = 0.10, $C_{\rm T}$ = 0.00645, $\Theta_{\rm B}$ = 0.

a) $\theta_{B} = +8$

Figure 150. Vertical smoke scan of BHRF2U from a frontal view, μ = 0.10, $C_{\rm T}$ = 0.00457,

a)
$$\mu = 0.10$$
 $\alpha_S = 0$

b)
$$\mu = 0.10$$
 $\alpha_{S} = -4$

c)
$$\mu = 0.086$$
 $\alpha_{S} = 0$

Figure 151. An illustration of the trailing blade tip vortex, configuration HR.

introduce themselves into future main rotor-fuselage interaction studies should be considered. There are two observations worth discussing at this time. In Figure 143a there appears to be a secondary flow just to the left of and below the vortex over the nose. This is most pronounced at the higher thrust levels and clearly seen in all the videotapes for all configurations including the isolated rotor. The second observation is related to flow visualization technique. Figure 141b does not show as intense a vortex as observed in a and c. This is simply due to the probe location. In the case of extreme position error one would obtain flow visualization similar to Figure 141b. The point to be made here is that probe positioning is not only critical but may be prohibitive to certain quantitative testing.

Figure 144 illustrates the effect of blade azimuth. In Figure 144a the blade over the nose is advanced slightly past the nose and shows the beginning of the tip vortex roll-up. In Figure 144b the vortex is well defined and shows downstream movement. This figure also shows the secondary flow previously mentioned. Because the test rotor has two blades, every other vortex is generated by the same blade. Consequently, the vortex nearest the hub in Figure 144a is approximately one revolution old.

Figure 145 presents two photographs at a speed ratio of 0.15. The tunnel velocity is approximately the same as in previous photographs and only the rotor rpm has been decreased. The thrust coefficient is 0.0047 and the body geometric angle of attack is zero. The net result as one would expect is a greater separation distance between the individual tip vortices.

Figure 146 shows a scan of configuration BHRF2U similar to Figures 140 and 141 for configuration BHRF2L. In comparing the photos for these two configurations only the slightest difference in wake trajectory could be noticed. That may be due partly to the integral effect of the body on the wake trajectory not being discernable until after the tip vortex has impacted on the hub and the smoke has become diffused.

Figures 147 and 148 show an increase in body geometric angle of attack relative to Figure 146. These photographs were also taken at a further distance than Figure 146 in order to capture the wake over the entire body. Both figures show results similar to those presented for configuration BHRF2L. Note the diffused flow behind the hub in Figures 147a and b. The trajectory of the diffused smoke is mostly the result of the time-averaged flow induced by the main rotor, although, some entrainment is sure to be present. The hub region definitely diffuses the smoke, however, closeups using the videotape zoom lens showed that the circulation was still there. Figure 147c also shows evidence of a tip vortex coming off the trailing blade. As many as five discrete vortices from the trailing blade could be seen down-With the proper lighting tail rotor and stream of the model. main rotor interactions should also be observable.

210

Figure 149 is similar to Figure 144 in that it shows the effect of rotor azimuth. It was very interesting to observe the rotor blade/vortex interaction as the strobe was used to sweep the blade back and forth through the vortex. The vortex at best showed a slight distortion in close proximity to the blade and showed a measurable vertical displacement with blade passage. Unfortunately the sequence of events was only captured on videotape.

Figures 150 and 151 are presented only for general observation. Figure 150 presents configuration BHRF2U from a frontal view. Good resolution of the vortex core is impossible from this angle; however, it may be useful in future studies by adding a three-dimensional effect. The final flow visualization figure is of the isolated rotor configuration. Figure 151 shows several examples of the trailing blade tip vortex.

The effect of separation distance was not clearly observable from this test. Much stricter control of the test conditions would have to be maintained in order to obtain any useful quantitative data. Speed ratios below 0.10 were not possible during this test; however, a greater configuration effect might be observable below this speed because of decreases in wake skew angle. A definite problem is the maintenance of good smoke quality over a wide speed range. If rpm is used to simulate speed ratio, angle of attack would have to be corrected for wall effects. It was also difficult to maintain blade track at rpm. Consequently, multiple filaments were observed.

CORRELATION

The following section presents correlation with measured hover and forward flight data. This includes hover download, isolated body moments and pressures and rotor performance. Simplified as well as advanced methods are used for correlation to aid in establishing trends as well as levels of sophistication required to analyze aerodynamic interactions.

Hover

Only fuselage downloads were calculated for OGE hover. Download was calculated for configurations BHR, BHRF2L, and BHRF2U using BHTI Hover Performance Methodology Program AR7906, reference 31. Each configuration planform was segmented into rectangular strips and drag coefficients were assigned to each segment based on its cross-sectional shape. Program AR7906 then calculated the time-averaged induced velocity to be applied to each segment. The velocities were calculated at a distance below the rotor equivalent to the distance between the tip path plane and the vertical center of each segment. Figure 152 shows the time-averaged downwash distribution for configurations BHR and BHRF2L produced by the rotor at a thrust coefficient of 0.005.

Figure 152. Calculated main rotor time-averaged induced velocity distribution for BHR and BHRF2L, C_{T} = .005.

Initially segment drag coefficients were selected from Reference 54 in accordance with local Reynolds number. However, the resultant downloads were too high. It was then assumed that due to rotor wake turbulence the bodies were experiencing super-critical flow conditions; hence, experiencing lower drag coefficients. The results of these calculations are presented in Figure 153 for configurations BHR and BHRF2L. Correlation with BHR appears to be fairly good; however, the measured download of BHRF2L is considerably higher than the calculated value. At a thrust coefficient of 0.005, BHR and BHRF2L calculated downloads are respectively 80 and 60 percent of the measured data. The trend with thrust is quite good for both configurations. Download for BHRF2U is not presented; however, it was calculated to be less than BHRF2L by approximately 0.3 percent of thrust. Figure 18 of the hover test results section indicates a similar difference.

Forward Flight

The forward flight calculations consist primarily of body pitching moment characteristics, body pressure data, and rotor performance. The pitching moment characteristics are particularly important since errors in trim due to errors in pitching moment have significant effect on download and drag,

A method for calculating the inherent pitching moments of airship hulls was presented by M. Munk, Reference 55. This method was used to calculate the isolated body pitching moments of configurations BHR and BHRF2L. The results are compared to measured data in Figure 154. The difference between the measured and calculated data is considerable and to a large extent may be due to viscous effects and the presence of the test stand fairing below the models tested. Note that the measured and calculated curves cross at approximately the same body angle of attack. the difference between BHR and BHRF2L is taken for the measured and calculated data, very good correlation can be obtained as shown in Figure 155. Calculations for a variety of BHTI fuselages have been performed in the past and demonstrated that Munk's method works quite well for rotor-off configurations. method can be of value at preliminary design levels and may be of use in conjunction with classical momentum methods for calculating rotor-on effects.

In Reference 56 a method defined by Multhopp is given for fixed wing aircraft which calculates body pitching moment in the presence of a lifting wing. This method is a variation on Munk's method and has been modified for application to helicopter fuse-lages. The application to high speed flight, however, did not fair well and will not be presented. In a previous BHTI study the method did correlate well with AH-IG data from Reference 3 at a speed ratio of 0.05. This was thought to be primarily due to the fact that Multhopp's method accounts for variations in the

Figure 153. Comparison of measured and calculated download data for BHR and BHRF2L.

B/BF2L (SQUARE & - - - -)

Figure 154. Comparison of measured and calculated isolated body pitching moments for configurations B and BF2L.

MEASURED/CALCULATED DELTA M/Q (SQUARE/-----)

Figure 155. Comparison of difference in B and BF2L pitching moment for measured and calculated data.

time-averaged rotor induced velocity along the longitudinal body axis which become quite pronounced at speed ratios below 0.10.

Many classical analyses utilize momentum theory to calculate rotor induced changes in angle of attack and, hence, the rotors effect on the fuselage aerodynamic characteristics. Given the fuselage characteristics of the isolated bodies, the Forward Flight Performance Methodology Program ARAM45, Reference 30, was used to calculate the rotors effect on lift, drag, and pitching moment. The results are compared to measured rotor induced effects in Figures 156 through 158. The effect of configuration on lift is correct; however, the magnitude for BHR with speed does not agree well with the measured data. The correlation with drag is nonexistent. Correlation with pitching moment in general is good. The effect of configuration and the magnitude of the rotors effect is correct; however, the trend with speed is only fair.

Correlation with pressure data was accomplished with a panel method analysis, Reference 57. Figure 159 shows the panel models used for the analysis of BHR and BHRF2L isolated body pressure distributions. The basic geometry, as defined in Appendix C, was input into the program's preprocessor and then repaneled for better definition. A model of the underbody fairing was developed; however, analysis showed little impact on the calculated upper surface pressure. In the presence of the tunnel walls, the fairings impact might be somewhat more significant.

Figures 160 and 161 present the calculated pressure distributions along the longitudinal axis for BHR and BHRF2L respectively over a range of 16 degrees. These results are compared to measured data in Figures 162 and 163. Although there is an apparent shift between the calculated and measured results, it appears from Figures 164 and 165 that the change in pressure coefficient over a 16 degree range in angle of attack is in good agreement. The exception to this is the region where the afterbody wake is influencing the pressure distribution.

This concludes the correlation with fuselage data. Further work with coupled rotor/body analyses are warranted and should be conducted. However, this is beyond the scope of this report. The remainder of the forward flight correlation section will address rotor performance.

CONFIGURATIONS BHR/BHRF2L BODY ANGLE OF ATTACK = 0

Figure 156. Comparison of measured rotor induced body lift with momentum theory.

CONFIGURATIONS BHR/BHRF2L BODY ANGLE OF ATTACK = 0

BHR/BHRF2L (SQUARE ---)

Figure 157. Comparison of measured rotor induced body drag with momentum theory.

CONFIGURATIONS BHR/BHRF2L BODY ANGLE OF ATTACK = 0

Figure 158. Comparison of measured rotor induced body pitching moment with momentum theory.

Figure 159. Panel models used to calculate B and BF2L pressure distributions.

SPEED RATIO = 0.2 RUN 64

BODY ANGLE OF ATTACK = -8/0/8 (SQUARE/X/DIAMOND)

Figure 160. Calculated longitudinal pressure distribution for configuration B.

SPEED RATIO = 0.2 RUN 68

BODY ANGLE OF ATTACK = -8/0/8 (SQUARE/X/DIAMOND)

Figure 161. Calculated longitudinal pressure distribution for configuration BF2L.

SPEED RATIO = 0.2 RUN 64

CALCULATED/MEASURED (STAR/SQUARE)

Figure 162. Comparison of calculated and measured pressure distributions for configuration B, $\theta_{\rm B}$ = 0.

SPEED RATIO = 0.2 RUN 68 X

CALCULATED/MEASURED (STAR/SQUARE)

Figure 163. Comparison of calculated and measured pressure distributions for configuration BF2L, $\theta_{\rm B}$ = 0.

DELCP= CP(8) - CP(-8) CALC/MEASURED (STAR/SQUARE)

Figure 164. Comparison of measured and calculated difference in pressure coefficient for B over a 16 degree angle of attack range.

DELCP = CP(8) - CP(-8) CALC/MEASURED (STAR/SQUARE)

Figure 165. Comparison of measured and calculated difference in pressure coefficient for BF2L over a 16 degree angle of attack range.

Isolated rotor correlation was established before proceeding with calculating fuselage effects on the rotor. An rpm sweep in hover was conducted using ARAM45 and compared to the measured data of Figure 16. The mean profile drag coefficient based on the ARAM45 calculations was lower by 0.0003. Applying this correction and correcting for wall effects provided poor correlation. The control axis variation with thrust was in poor agreement with measured values. The calculated performance was then compared to the data in the control axis system. Figures 166 and 167 present the results. The correlation is quite good at a speed ratio of 0.20; however, at a speed ratio of 0.30 it begins to deviate.

With the isolated rotor analysis completed, fuselage effects on the rotor were calculated using ARAM45. The velocities induced by the fuselage in the rotor plane were calculated by a panel method analysis. The induced velocities were then reduced to a third harmonic Fourier series for input into ARAM45. induced velocities are nondimensionalized by the free stream velocity and presented in Table 9 for BHR and BHRF2L as Fourier coefficients. The fuselage induced effects on the rotor are presented only for zero body angle of attack. Figures 168 and 169 present calculated thrust coefficient versus power coefficient for configurations HR, BHR, and BHRF2L. The body effect is to reduce the power required for a constant thrust coefficient relative to the isolated rotor. This does not completely agree with the test data shown in Figures 104 and 106; however, the larger body (BHRF2L) effects relative to BHR are the same. At a thrust coefficient of 0.005 the calculated reduction in power amounts to approximately 2.4 percent for BHR and 6.0 percent for BHRF2L at a speed ratio of 0.20. At a speed ratio of 0.30 the effect increases to 3.8 and 6.6 percent respectively for BHR and The body effect as presented in Figures 111 and 112 is less than calculated and somewhat mixed; however, a propulsive force and control axis calculation is required for a fair comparison. A fully coupled rotor/fuselage analysis may reduce the effect shown in Figures 168 and 169 as was discussed in Reference 21; consequently, results based on superposition may tend to be optimistic.

Rotor control positions corresponding to Figures 168 and 169 were calculated. The effect of the fuselage on lateral cyclic required to trim the rotor to zero flapping was generally consistent with the trends of Figures 113 and 114. Configuration BHRF2L requires more left lateral cyclic than the isolated rotor or BHR. At a thrust coefficient of 0.005 and speed ratio of 0.20, BHRF2L required 0.5 degrees more left lateral cyclic than HR. The calculated longitudinal cyclic required for zero flapping was not effected by the body. This does not agree with the measured longitudinal control axis results presented in the test results section.

MEASURED/CALCULATED (STAR/---

Figure 166. Comparison of measured and calculated main rotor C_p versus α_c for the isolated rotor, μ = 0.20.

MEASURED/COLCULATED ISTAR/

Figure 163. Comparison of measured and calculated main rotor C_p versus α_c for the isolated rotor, $\mu = 0.30$.

Table 9. Fourier* analysis of ratio of fuselage induced velocity to true airspeed.

Configuration BF2L

Blade Station	Fourier Coefficients				
r/R	a _o	a ₁	a ₂	a ₃	
.12	.0127	0246	.0015	0026	
.192	.0078	- .0378	.0025	0072	
.262	.0072	0484	.0053	0129	
.331	.0096	0563	.0098	0189	
.40	.0121	0592	.0135	0228	
.464	.0123	0554	.0131	0225	
.527	.0109	0475	.0101	0194	
.588	.0093	0393	.0069	0158	
.645	.0080	0320	.0044	0125	
.70	.0071	0260	.0027	0099	
.748	.0064	0213	.0015	0079	
.794	.0061	0178	.0008	0063	
.836	.0059	0150	.0004	0051	
.874	.0058	0129	.0001	0042	
.907	.0057	0113	.0000	0036	
.935	.0057	0102	0001	0031	
.958	.0057	0093	0002	0028	
.970	.0057	0089	0002	0026	

^{*}Positive series

Table 9. (Concluded)

Configuration B

Blade Station	Fourier Coefficients				
r/R	a _o	a _l	a ₂	^a 3	
.12	.0633	0599	.0046	0027	
.192	.0457	0661	.0038	0057	
.262	.0291	0586	0011	0073	
.331	.0170	0481	0060	0077	
.400	.0097	0389	0087	0076	
.464	.0058	0315	0097	0072	
.527	.0039	0256	0095	0065	
.588	.0032	0210	0087	0058	
.645	.0031	0173	0077	0050	
.700	.0033	0144	0067	0043	
.748	.0035	0120	0057	0036	
.794	.0038	0102	0049	0030	
.836	.0041	0088	0042	0026	
.874	.0044	0076	0037	0022	
.907	.0045	0068	0032	0019	
.935	.0047	0061	0029	0017	
.958	.0048	0056	0027	0015	
.970	.0049	0054	0025	0014	

Figure 168. Calculated main rotor C_{T} versus C_{p} for configurations HR, BHR, and BHRF2L, μ = 0.20, Θ_{B} = 0.

Figure 169. Calculated main rotor $C_{\rm T}$ versus $C_{\rm p}$ for configurations HR, BHR, and BHRF2L, μ = 0.30, $\Theta_{\rm B}$ = 0.

Although Figures 170 and 171 do not present correlation with data, they demonstrate the value of utilizing simple theory in establishing basic aerodynamic design characteristics. Figure 170 compares the calculation of fuselage induced angle of attack using a single source in a free stream versus a panel analysis for BHR and BHRF2L. The single source analysis captures the major characteristics of the flow field. Both analyses show that as the nose is moved aft relative to the rotor the maximum fuselage induced upwash velocity moves into a lower blade rotational velocity region; consequently, the effect on local angle of attack is more severe. Figure 171 presents the effect of configuration and separation distance using the single source model. The decreased separation distance increased the fuselage induced angle of attack. Closure could be accomplished by adding a sink to form a simple Rankine body which would enhance the simplified model and possibly render it useful for quick design and pretest analysis.

CONCLUSIONS AND RECOMMENDATIONS

The following will present some general conclusions that were drawn as a result of this study of main rotor/fuselage interactional aerodyanmics.

- 1) Very limited analysis of existing test data is available in the literature.
- Limited parametric data is available for design purposes.
- 3) No data is available on the effects of tunnel walls, tunnel size, mounting structure, or main rotor hubs on main rotor/fuselage interaction.
- 4) Interactions are multidisciplined problems and should be treated as such.

The following conclusions were drawn from the hover test results.

- 1) Decreasing separation distance decreased the download slightly which is consistent with wake theory (See Figure 16).
- Increased main rotor thrust tends to increase dimensional download; and decrease download in terms of percent of thrust. Under IGE conditions the above trend diminishes as the fuselage moves closer to the ground. (See Figure 19)
- 3) Moving closer to the ground under IGE conditions decreases rotor induced fuselage download. At normal

HESS PANEL CODE (----) SINGLE SOURCE (----)

Figure 170. The effect of fuselage modeling methodology on the calculation of fuselage induced blade angle of attack.

Figure 171. Calculated effect of B, BF2L, and BF2U on fuselage induced blade angle of attack.

helicopter touchdown heights the fuselage can experience lift equivalent to 1 percent of main rotor thrust. (see Figure 20)

- 4) The influence of the main rotor was observed to be minimal on fuselage drag, roll, sideforce, and pitching moment in terms of performance impact. However, significant effect on yawing moment occurs and may mean as much as a 5 to 10 percent impact on required tail rotor thrust. In addition, at a Z/R between 0.5 and 0.75 a significant yawing moment gradient with Z/R exists which was measured for all configurations tested. This may be important in simulation studies. (See Figure 22)
- 5) Increasing tip speed decreased the measured fuselage download in terms of percent of thrust for a constant thrust coefficient. Consequently, the rotor effects on the fuselage in hover may be somewhat larger for this test and may not nondimensionalize (See Figure 23).
- 6) Download for configurations BHR and BHRF2L do not follow any simple area rule.
- 7) For the most part the fuselage configurations tested degraded rotor performance. The effect becomes more pronounced as the rotor-fuselage configurations are moved closer to the ground (See Figures 24 27).
- 8) Decreasing the rotor-body separation distance improved rotor performance, (See Figures 28 31).
- 9) The IGE/OGE power ratios at a constant Z/R were higher for the rotor-body configurations than for the isolated rotor, (See Figure 38).
- 10) The influence of the fuselage on rotor performance showed the same trends with tip speed; however, somewhat modified at the higher tip speeds (See Figure 39 and 41).
- 11) The smaller body, BHR, did not degrade rotor performance as much as BHRF2L. It was not determined if this was due to position, size, or shape.

The following conclusions were drawn from the forward flight test results.

1) The rotors effect on the fuselage was one of increasing the download and drag (See Figures 44 - 49). Increasing the thrust increases the fuselage download except with the winglets removed then the trend reverses (Compare Figures 45 and 57). Pitching moment became more nose down (See Figures 50 - 52).

- 2) Winglet lift and drag characteristics change significantly with speed ratio for the rotor-off configuration (See Figures 53 and 54). Under rotor-on conditions, increased thrust was observed to increase the download on the winglets (See Figure 55). The winglets had a significant impact on the fuselage forces and moments under rotor-on and rotor-off conditions (See Figures 60, 62, 64, 66 and Appendix B).
- 3) The rotor induced lift, drag, and pitching moment showed definite trends with body angle of attack and speed ratio (See Figures 68 77). At a speed ratio = 0.20, increasing body size and decreasing separation distance showed a general trend to increase rotor induced download, drag, and nose down pitching moment. The effect of body angle of attack varies somewhat and is related to wake skew angle. At a speed ratio of 0.30, minimums for lift, drag, and pitching moment occurred at various body angles of attack and configuration effects were dependent upon angle of attack.
- 4) Favorable interference effects can be achieved (BHR drag at a speed ratio of 0.20) for specific flight conditions; however, in the integral or mission sense they may not be desirable as drag increases with speed ratio, see Figures 75 and 76.
- by the hub and rotating controls almost as much as by the rotor. The hub induced an increased pressure upstream of the shaft and reduced the pressure downstream of the shaft. The main rotor effect on the afterbody appeared to vary with configuration and should be checked with further data reduction; however, for BHRF2L it created suction over the nose (See Figures 91 and 92). Decreasing separation distance and increasing thrust increased the pressure over the entire fuselage (See Figures 91 and 92). (Note: The pressure data was only evaluated at a speed ratio of 0.20.)
- There appears to be a configuration effect on control axis angle of attack and performance (See Figures 107 110; however, given that the control axis angle of attack and thrust coefficient are held constant fuselage effects on rotor performance fall within a band of approximately +2 percent (See Figures 111 and 112).

- 7) Decreasing separation distance appeared to slightly improve the rotor performance at higher speeds (See Figure 112).
- 8) The fuselage induced flow field sufficiently alters the rotor inflow to require additional left lateral cyclic control for trim when compared to the isolated rotor (See Figures 113 and 114).
- 9) Calculated equivalent rotor L/D was found to be sensitive to measured propulsive force. No definite conclusions should be drawn, however, since the data also indicated a hub tare sensitivity to the main rotor wake and rotor-off hub tares are used to calculate L/D.

The following conclusions were drawn based on correlation studies.

- 1) Hover download calculations indicated that for the models tested drag coefficients for classical strip theory analysis require values normally associated with supercritical Reynolds numbers.
- 2) Simple theory can be used to correct fuselage rotoroff pitching moments and momentum theory can be used to
 calculate rotor induced pitching moments. (See Figures
 155 and 158). However, lift and drag for the configurations tested cannot be adequately calculated by
 momentum theory corrections to rotor-off fuselage force
 and moment data (See Figures 156 and 157).
- 3) Panel methods worked quite well in predicting isolated body pressure distributions over large angles of attack (See Figures 164 and 165).
- 4) Calculated rotor C_T versus C_p , including fuselage induced flow effects, is consistent with measured data relative to configuraton effects (See Figures 104, 168, and 169).
- 5) Fuselage effects on calculated laterial cyclic agreed with the measured data of Figures 113 and 114; however, this was not the case for the longitudinal cyclic.
- 6) Simplified fluid bodies can capture the major effects of the forebody on rotor blade angle of attack.

The following recommendations are made as a result of the literature survey and analysis of the data reported in this text.

 Perform further analysis of available data in the literature and assess the potential impact of main rotor/fuselage interaction on helicopter design from a multidisciplined and trim point of view.

- 2) Establish tunnel effects on interaction test results and data correction procedures.
- 3) Develop a method to evaluate the influence of the rotor on hub tares.
- 4) Test with scaled hubs if possible.
- 5) Do not rely on momentum theory corrections to obtain desired flight conditions.
- 6) Establish a data base which contains parametric and trim data for use by analyst and designer as well.
- 7) Test full configurations including component buildup to assure that trends are correctly understood and applied to aircraft development.
- 8) A comprehensive comparison of pressure and aerodynamic forces should be made to establish the relationship between local geometry and measured aerodynamic interaction.
- 9) A parametric rotor/fuselage geometry study should be conducted in hover to address rotor twist and planform and fuselage shape effects on rotor performance.

REFERENCES

- Sheridan, P.F., and Smith, R.P., "Interactional Aerodynamics

 A New Challenge to Helicopter Technology," presented at
 35th Annual Forum of the American Helicopter Society, May
 1979.
- Freeman, Carl E., Yeager, William T., Jr., "A Wind-Tunnel Investigation of an Unpowered Helicopter Fuselage Model with a V-type Empennage," NASA Langley, NASA TM X-3476, March 1977.
- 3. Freeman, Carl E., Phelps, Arthur E., III, and Mineck, Raymond E., "Aerodynamic Characteristics of a 1/4-Scale Powered Helicopter Model with a V-type Empennage," NASA Langley, NASA TM 74033, August 1978.
- 4. Freeman, Carl E., and Mineck, Raymond E., "Fuselage Surface Pressure Measurements of a Helicopter Wind-Tunnel Model with a 3.15-Meter Diameter Single Rotor," NASA Langley, NASA TM 80051, March 1979.
- 5. Wilson, John C., Mineck, Raymond E., "Wind-Tunnel Investigation of Helicopter-Rotor Wake Effects on Three Helicopter Fuselage Models," NASA Langley, NASA TM X-3185, March 1975.
- 6. Mineck, Raymond E., Freeman, Carl E., and Hassell, James L., Jr., "Aerodynamic Characteristics of a 1/6-Scale Model of the Rotor Systems Research Aircraft with the Rotors Removed," NASA Langley, NASA TN D-8198, 1976.
- 7. Mineck, Raymond E., and Freeman, Carl E., "Aerodynamic Characteristics of a 1/6-Scale Model of the Rotor Systems Research Aircraft," NASA Langley, NASA TM X-3489, June 1977.
- 8. Mineck, Raymond E., "Effects of Rotor Wake on Aerodynamic Characteristics of a 1/6-Scale Model of the Rotor Systems Research Aircraft," NASA Langley, NASA TM X-3548, September 1977.
- 9. Sheridan, Philip F., "Interactional Aeroydnamics of the Single Rotor Helicopter Configuration," Fort Eustis, USARTL-TR-78-23A, September 1978.
- 10. Betzina, Mark D., Shinoda, Patrick, "Aerodynamic Interactions Between a 1/6-Scale Helicopter Rotor and a Body of Revolution," NASA Ames, NASA TM 84247, June 1982.
- 11. Wilson, John C., "Rotorcraft Low-Speed Download Drag Definition and Its Reduction," part of a special report presented to the 31st Annual National Forum of the American Helicopter Society by the ad hoc Committee on Rotorcraft Drag, May 1975.

- 12. Flemming, Robert J., Erickson, Reuben E., "An Evaluation of Vertical Drag and Ground Effect Using the RSRA Rotor Balance System," presented at the 38th Annual Forum of the American Helicopter Society, May 1982.
- 13. Smith, Charles A., and Betzina, Mark D., "A Study of the Aerodynamic Interaction Between a Main Rotor and a Fuselage," presented at the 39th Annual Forum of the American Helicopter Society, May 1983.
- 14. Balch, David T., "Experimental Study of Main Rotor/Tail Rotor/Airframe Interaction in Hover," presented at the 39th Annual Forum of the American Helicopter Society, May 1983.
- 15. Wilby, P. G., Young, C., and Grant, J., "An Investigation of the Influence of the Fuselage Flow Field on Rotor Loads, and the Effects on Vehicle Configuration," 4th European Rotor-craft and Powered Lift Aircraft Forum, 1978.
- 16. Smith, R. V., "Some Effects of Wake Distortion Due to a Fuselage Flow Field on Thrust Limits," ARO Workshop on Rotor Wake Technology, April 1979.
- 17. Freeman, Carl E., and Wilson, John C., "Rotor-Body Interference (ROBIN) Analysis and Test," presented at the 36th Annual Forum of the American Helicopter Society, May 1980.
- 18. Bramwell, A. R. S., and Johnson, J. B. B., "A Theory of the Aerodynamic Interference Between a Helicopter Rotor Blade and a Fuselage and Wing in Hovering and Forward Flight," Aeronautical Research Council, London, ARC-R/M-3514, 1965.
- 19. Soohoo, Paul, et al., "Rotor Wake Effects on Hub/Pylon Flow, Volume I and II," Applied Technology Laboratory (USAAVRAD-COM), Fort Eustis, USARTL-TR-78-1A and 1B, May 1978.
- 20. Freeman, Carl E., "Development and Validation of a Combined Rotor-Fuselage Induced Flow Field Computational Method," NASA Langley, NASA TP 1656, AVRADCOM TR-80-B-3, 1980.
- 21. Landgrebe, A., et al., "Aerodynamic Technology for Advanced Rotorcraft Part II, Journal of the American Helicopter Society, Vol. 22, Number 3, July 1977.
- 22. Taylor, P., "A Method of Predicting Fuselage Loads in Hover," 7th European Rotorcraft and Powered Lift Aircraft Forum, September 1981.
- 23. Huber, H. and Polz, G., "Studies on Blade-to-Blade and Rotor-Fuselage-Tail Interferences," AGARD Presentation, May 1982.

- 24. Berry, John, D., "Wind Tunnel Testing of an Advanced UH-1 Type Rotor System," Journal of the American Helicopter Society, Vol. 28, Number 2, April 1983.
- 25. Fradenburgh, Evan A., "Aerodynamic Design of the Sikorsky S-76 SPIRIT Helicopter," Journal of the American Helicopter Society, Vol. 24, Number 4, July 1979.
- 26. Logan, Andrew H., et al., "The Experimental and Analytical Definition of Helicopter Modeling Effects," presented at the 36th Annual Forum of the American Helicopter Society, May 1980.
- 27. Landgrebe, Anton J., et al., "Helicopter Airflow and Wake Characteristics for Low-Speed and Hovering Flight from Rocket Interference Investigations," presented at the 37th Annual Forum of the American Helicopter Society, May 1981.
- 28. Jepson, D., et al., "Analysis and Correlation of Test Data from an Advanced Technology Rotor System," NASA Ames, NASA CR-152366, July 1980.
- 29. Keys, C. N., "Performance Prediction of Helicopters Volume II of Rotary Wing Aerodynamics," NASA CR 3083, January 1979.
- 30. Harris, Franklin D., et al., "Helicopter Performance Methodology at Bell Helicopter Textron," presented at the 35th Annual Forum of the American Helicopter Society, May 1979.
- 31. Kocurek, J. D., et al., "Hover Performance Methodology at Bell Helicopter Textron," presented at the 36th Annual Forum of the American Helicopter Society, May 1981.
- 32. Cheeseman, I.C., "Developments in Rotary Wing Aircraft Aerodynamics," 7th European Rotorcraft and Powered Lift Aircraft Forum, September 1981.
- 33. Fail, R. A., and Eyre, R. C. W., "Loss of Static Thrust Due to a Fixed Surface Under a Helicopter Rotor," Tech. Note No. AERO 2008, British R.A.E, July 1949.
- 34. Makofski, Robert A., and Menkick, George F., "Investigation of Vertical Drag and Periodic Loads Acting on Flat Panels in a Rotor Slipstream," NACA TN 3900, 1956.
- 35. Polhamus, E. C., et al., "Pressure and Force Characteristics of Noncircular Cylinders as Affected by Reynold Number with a Method Included for Determining the Potential Flow About Arbitrary Shapes," NASA TR-46, 1959.

- 36. Crimi, P. and Trenka, A. R., "Theoretical Prediction of the Flow in the Wake of a Helicopter Rotor Addendum Effects due to a Fuselage in a Constant Nonuniform Flow," Cornell Aero. Lab Report No. BB-1994-S-3, August 1966.
- 37. Cassarino, S. J., "Effect of Rotor Blade Cutout on Vertical Drag," USAAVLABS TR 70-59, October 1970.
- 38. Boatwright, D. W., "Measurements of Velocity Components in the Wake of a Full-Scale Helicopter Rotor in Hover," USAAMRDL TR 72-23, August 1972.
- 39. Wilmer, M.A.P., "Effect of Flow Curvature Due to the Fuselage on the Flapping Motion of a Helicopter Rotor," Royal Aircraft Establishment, Technical Note Naval-61, Ministry of Aviation, London, 1963.
- 40. Schieman, J., "A Tabulation of Helicopter Rotor Blade Differential Pressures, Stresses and Motions as Measured in Flight," NASA TM X-952, 1964.
- 41. Riley, M.J., "A Flight Investigation of the Spanwise Lift Requirements of a Helicopter Rotor Blade by Measurement of the Control Loads Arising from Locally Applied Roughness," ARC R&M 3812.
- 42. McKenzie, K. T., Howell, D.A.S., "The Prediction of Loading Actions on High Speed Semi-Rigid Rotor Helicopters," AGARD CP No. 122, 1973.
- 43. Rogers, V.A.B., "The Design of the WG 13," The Aeronautical Journal, January 1974.
- 44. Marshall, R. J., "Wind Tunnel Tests on the Influence of Rotor-to-Fuselage Proximity on Helicopter Blade Loads," was not published at the time of Wilby's paper.
- 45. Anscombe, A., et al., "Wind Tunnel Testing of Model Rotors at RAE Farnborough, "Proceedings of the 2nd European Rotor-craft and Powered Lift Aircraft Forum, Buckeburg, 1976.
- 46. Stratford, B. S., "The Prediction of Separation of the Turbulent Boundary Layer," Journal Fluid Mechanics, Volume 5, No. 1, 1955, p. 1-16.
- 47. Jenny, D. S., "ABC-TM Aircraft Development Status," 6th European Rotorcraft and Powered Lift Aircraft Forum, 1980.
- 48. Berry, J. D., "Performance Testing of a Main Rotor System for a Utility Helicopter at 1/4 Scale," NASA Langley, NASA TM 83274, April 1982.

- 49. Logan, A. H., Prouty, R. W., Clark, D. R., "Wind Tunnel Tests of Large- and Small-Scale Rotor Hubs and Pylons," Applied Technology Laboratory (USAAVRADCOM), Fort Eustis, USAAVRADCOM-TR-80-D-21, April 1981.
- 50. Bain, Lawrence J., Landgrebe, Anton J., "Investigation of Compound Helicopter Aerodynamic Interference Effects," U.S. Army Aviation Materiel Laboratories, Fort Eustis, USAAVLABS TR67-44, November 1967.
- 51. Holbrook, J. W., "Low Speed Wind Tunnel Handbook," Vought Corporation, Dallas, Texas, Publication Number AER-EOR, 12995-B, July 1978.
- 52. Shindo, S., "Smoke Generator for Low Speed Wind Tunnels," University of Washington, College of Engineering, Technical Note 69-1, February 1969.
- 53. Pope, Alan and Harper, John J., <u>Low-Speed Wind Tunnel Test-ing</u>, John Wiley & Sons, Inc., New York, 1966.
- 54. Hoerner, S. F., <u>Fluid Dynamic Drag</u>, published by the author, Brick Town, N. J., 1965.
- 55. Munk, Max M., "The Aerodynamic Forces on Airship Hulls," NACA RM 184, 1924.
- 56. Multhopp, H., "Aerodynamics of the Fuselage," NACA TM 1036, 1942.
- 57. Hess, J. L., "The Problem of Three-Dimensional Lifting Potential Flow and Its Solution by Means of Surface Singularity Distribution," Computational Methods Appl. Mech. & Engr., Vol. 4, No. 3, November 1974.

APPENDIX A

HOVER DATA

This appendix is a tabulation of the digitized and corrected hover performance data. The tables are ordered by run number and the data is ordered by prime data record number in each table. The tables include dimensional and nondimensional rotor and fuselage data. The dimensional data is not scaled to full-scale values. Reference axes for data reduction can be found in Figure 11. Configuration and test condition data is included for each run. Table A-l provides a key which defines the tabulated output labels.

Figure A-1 presents sketches which define the configurations tested. A summary of all test conditions is presented in Table A-2.

Table A-1. Definition of tabulated output data labels.

Label Definition

RECORD Prime data record number

TEMP Temperature

SIGPRM Air density ratio

TP Tip speed

THETA Root collective pitch (at x = 0.07)

THRUST Thrust

H-FORCE H-force

MRHP Shaft horsepower

CTR Thrust coefficient

CHR H-force coefficient

CPR Power coefficient

LIFT Lift

DRAG Drag

SIDE Sideforce

PM Pitching moment

YM Yawing moment

RM Rolling moment

Configuration

Test Sequence

HR

Test Stand With Rotor Only

BHR

Add Fairing

BHRF2U

Add Nose Modification in High Position

BHRF2L

Lower Nose Modification

Table A-2. Summary of hover test conditions.

Configuration	Run No.	TP ⁽¹⁾	Z/R
BHRF2L	108 109 110 111	520 724	0.50 0.75 0.8681 0.50
	112 113	520 724	3.00 3.00
BHRF2U	114 115 116 117	520	0.50 0.75 0.8681 3.00
BHR	120 121 122 123		0.50 0.75 0.8681 3.0
HR	129 130	724 520 Sweep 520 724 Sweep	0.50 0.50 0.75 0.8681 0.50 3.00 3.00
BHRF2L	133 135 136 139	520 724	2.00 1.625 1.2639 0.8681

 $^{^{(1)}}$ Tip speed indicated is the reference tip speed at sea level standard day conditions.

BDDY PITCH ATTITUDE = +4 DEG *0833 RDTOR-GROUND Z/R = 0.5000	
DEG	
# æ	
# 2 2 2 4	
ROUN	
ATI A	
ROT	
> E	
800 083	
H	
L H/R	
RF2L DY H/R	
1 BHR F2L R-80D Y H/R	
TION BHRF2L DTOR-BODY H/R	
URATION BHRF2L ROTOR-BODY H/R	
FIGURATION BHRF2L O ROTOR-BODY H/R	NS)
CONFIGUR	TIONS
CONFIGUR	NOITIONS
CONFIGUR	T CONDITIONS)
RUN 108 CONFIGURATION BHRF2L SHAFT ANGLE = 0 ROTOR-BODY H/R	TEST CONDITIONS)

TP (FPS)	519 519 519 519 519 540 519 540 540 540 540 540 540 540 540 540 540
SI GPRM	0.9788 0.9788 0.9788 0.9788 0.9788
TEMP (DEG F)	
RECORD	8653 8654 8655 8656 8667

MAIN ROTOR DATA - HUB REFERENCE CENTER

(SHAFT AND WIND	AX IS)		O C C C C C C C C C C C C C C C C C C C			
- i	(8)	(LB)	(HP)) - - -	ξŢ	¥-
	44 • 28	-0.01	2.548	•00250	00000-	.0001521
•	55.75	-0-14	3.070	.00314	-00001	.0001832
•	57.11		3.715	.00378	-00001	.0002217
w	6.13	-0.06	4.541	.00451	00000-	.0002710
ማ	95.90	-0.07	5.498	.00523	00000-	•0003279
=	7.19	-0.25	6.579	•0000	00001	.0003926
Ξ	00.61	-0.03	7.727	.00670	00000	.0004611

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(SHAFT AND WIND AXIS)

*							
RECORD	LIFT (LB)	DRAG (LB)	SIDE (LB)	PM (FI 4.8)	YH (FILE)	RM (FILB)	
862	0.579	0.181	0.570	-0-212	-1.668	-0-055	
863	0.846	0• 083	-0-330	0.122	-0.123	-0.021	
864	0.658	0.196	0.230	-0.166	-1.283	-0.051	
865	1.232	0.297	0800	0.014	-1.327	-0.036	
866	0.894	0.403	0 -220	-0-375	-1.314	-0.043	
867	1.255	-0.033	0.330	-0-353	-1.507	-0-033	
868	1.673	0.297	0.050	-0-302	-1-630	0000	

TEMP 51GPRM TP (FPS) 58.0 0.9788 519.30 58.0 0.9788 519.30 58.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 69.0 0.9769 519.93 60.0 0.9769 619.90 60.0 0.976	SHAFT A	HOLE #	י שפר אטוטא ס					
FEMP SIGPRM (FPS) 58.0 0.9788 519-30 58.0 0.9788 519-30 58.0 0.9769 519-93 59.0 0.9769 519-93 59.0 0.9769 519-93 59.0 0.9769 519-93 59.0 0.9769 519-93 59.0 0.9769 519-93 59.0 0.9769 519-93 59.0 0.9769 519-93 FUETA THRUST H-FORCE MRHP CTR CHER (DEG) 110.0 62-06 -0.15 2.505 .00222 -00001 110.0 62-06 -0.15 2.505 .00289 -00001 110.0 62-06 -0.15 2.505 .00289 -00001 110.0 62-06 -0.15 2.505 .00	(TEST	CONDITIONS	5.}					
58.0 0.9788 519.30 58.0 0.9788 519.30 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 THETA THRUST HFORE MRHP CTR CHR (DEG) (LB) (LB) (HP) (-) (-) 10.0 62.0 0.000 11.0 74.56 -0.15 2.505 .00222 -00000 11.0 74.56 -0.15 2.505 .00320 -00000 11.0 74.56 -0.15 7.884 .00420 -00000 13.0 100.05 -0.10 7.861 .00638 -000000 14.1 113.27 -0.10 7.861 .00638 -000000 14.1 113.27 -0.10 7.861 .00638 -000000 14.1 113.27 -0.10 7.861 .00638 -000000 14.1 113.27 -0.10 7.861 .00638 -000000 14.1 113.27 -0.10 7.861 .00638 -000000 14.1 10.0 81.5 -0.400 -0.275 0.965 0.00000000000000000000000000000000000	RECORD	TEMP	SIGPRM	TP (FPS)				
58.0 0.9788 519.30 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 69.0 0.9769 519.93 MAIN ROTOR DATA - HUB REFERENCE CENTER THETA THRUST H-GRCE MRHP CTR CHR (DEG) (LB) (LB) (HP) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	166	86	0.9788	מאמו	00			
59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 59.0 0.9769 519.93 T AND WIND AXIS) THETA THRUST H-FORCE MRHP CTR CHR (DEG) (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB		60	0.9788 0.9769	מא מא	om			
59.0 0.9769 519.93 MAIN ROTOR DATA - HUB REFERENCE CENTER T AND WIND AXIS) THETA THRUST H-FORCE MRHP CTR CHR (DEG) (LB) (LB) (HP) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-			0.9769	KO I	2			
T AND WIND AXIS) THETA THRUST H-FORCE MRHP CTR (-) B.0 39-40 -0-15 2-505 -0022200001 10.0 62-06 -0-13 3-098 -0028900001 11.0 74-56 -0-05 5-526 -0042000001 12.0 86-74 -0-05 5-526 -0042000001 13.0 100-05 -0-05 5-526 -0042000000 14.1 113.27 -0-10 7-861 -00638000001 T AND WIND AXIS) T AND WIND AXIS) -0-582 0-009 -0-300 -0-275 0-966 -0-00001 -0-582 0-009 -0-300 -0-286 0-631 -0-00001 -0-261 0-152 -0-420 -0-365 0-365 0-00001 -0-261 0-152 -0-420 -0-365 0-365 0-00001 -0-261 0-278 0-0001 0-365 0-00000000000000000000000000000000000	7	66	0.9769	an ka	20			
THETA THRUST H-FORCE MRHP CTR CHR (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB)				DATA	HUB H		ENTER	
THETA THRUST H-FORCE MRHP CTR CHR (DEG) (LB) (LB) (LB) (HP) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	(SHAF1	AND WIN	AXIS)					
B.0 39.40 -0.15 2.505 .0022200001 10.0 62.06 -0.14 3.748 .0028900001 11.0 74.56 -0.05 4.584 .0042000001 12.0 86.74 -0.05 5.526 .0048800000 13.0 100.05 -0.05 5.526 .0048800000 14.1 113.27 -0.10 7.861 .0063800001 TAND WIND AXIS) LIFT DRAG SIDE PM YM RM CLB) (FT-LB) (F	RECORD	THETA (DEG)	THRUST (LB)	168	MRHP (HP)	CTR (-)	CHR (-)	CPR (-)
9.0 51.29 -0.13 3.098 .0028900001 10.0 62.06 -0.14 3.748 .0035000001 11.0 74.56 -0.05 4.584 .0042000000 12.0 86.74 -0.05 5.526 .0048800000 13.0 100.05 -0.10 7.861 .0056300000 14.1 113.27 -0.10 7.861 .0053800000 T AND WIND AXIS) LIFT DRAG SIDE PM YM RM LIFT DRAG SIDE PM YM RM LIFT DRAG SIDE PM YM RM -0.582 0.009 -0.300 -0.275 0.966 0.631 -0.394 0.193 -0.420 -0.286 0.631 -0.0000 0.239 0.307 0.200 -0.302 0.113 0.250 0.239 0.467 -0.110 0.076 0.150 0.000	871	8.0		-0-15	505	00222	00001	.0001495
10.0	872	6	•	-0.13	.098	00289		00001849
T AND WIND AXIS) -0.582 -0.0563 -0.0000 14.1 113.27 -0.10 7.861 .0063800001 FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER LIFT DRAG SIDE PH YM RM (LB) (LB) (FT-LB) (FT-LB) (FT-LB) -0.582 -0.400 -0.261 -0.275 -0.394 -0.276 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307 -0.307	57.0	• •	•			00700		1572000
13.0 100.05 -0.02 6.628 .0056300000 14.1 113.27 -0.10 7.861 .0063800001 T AND WIND AXIS) LIFT DRAG SIDE PM YM RM (LB) (LB) (FT-LB) (FT-LB) (FT-LB) -0.582 0.009 -0.300 -0.275 0.956 0.631 -0.261 0.152 -0.400 -0.305 0.631 0.00111 0.278 0.0400 -0.305 0.345 0.00113 0.279 0.467 -0.310 0.076 0.113 0.001	875		• •	000	526	00488	, ,	.0003292
TAND WIND AXIS) LIFT DRAG SIDE PM YM RM (LB) (LB) (LB) (FT-LB) (FT-LB) (FT-LB) -0.582 0.009 -0.300 -0.275 0.956 0.631 -0.261 0.152 -0.400 -0.155 0.822 0.0239 0.307 0.200 -0.302 0.113 0.279 0.467 -0.110 0.076 0.113 0.113	876	M	8	-0.02	628	00563	•	•0003948
T AND WIND AXIS) LIFT DRAG SIDE PN YM RM (LB) (LB) (LB) (FT-LB) (FT-LB -0.582 0.009 -0.420 -0.275 0.956 0.005 -0.394 0.193 -0.420 -0.285 0.631 -0.00 -0.211 0.278 -0.400 -0.185 0.345 0.002 0.239 0.307 0.200 -0.302 0.113 0.029 0.799 0.467 -0.110 0.076 0.150 0.02	877	•	13.	-0.10	.861	00638	•	.0004683
T AND WIND AXIS) LIFT DRAG SIDE PH YM RM (LB) (LB) (LB) (FT-LB) (FT-LB -0.582 0.009 -0.420 -0.275 0.651 -0.00 -0.261 0.152 -0.400 -0.155 0.822 0.00 0.111 0.278 -0.040 -0.001 0.345 0.04 0.239 0.307 0.200 -0.302 0.113 0.02 0.799 0.467 -0.110 0.076 0.150 0.02		Ĭ.		ı		REFERENC		~
LIFT DRAG SIDE PH YM RM CLB) (FT-LB) ((SHAF1	AND WIN						
-0.582 0.009 -0.300 -0.275 0.966 0.05 -0.394 0.193 -0.420 -0.286 0.631 -0.00 -0.261 0.152 -0.400 -0.155 0.822 0.00 0.111 0.278 -0.040 -0.001 0.345 0.04 0.239 0.307 0.200 -0.302 0.113 0.02 0.799 0.467 -0.110 0.076 0.150 0.02	SECORD.		ORAG	SIDE	PM	¥		
71 -0.582 0.009 -0.300 -0.275 0.966 0.005 72 -0.394 0.193 -0.420 -0.286 0.631 -0.00 73 -0.261 0.152 -0.400 -0.155 0.822 0.00 74 0.111 0.278 -0.040 -0.001 0.345 0.04 75 0.239 0.307 0.200 -0.302 0.113 0.02 76 0.799 0.467 -0.110 0.076 0.150			(18)	(13)	9	11 <u>1</u>	_	o i
72 -0.394 0.193 -0.420 -0.286 0.631 -0.00 73 -0.261 0.152 -0.400 -0.155 0.822 0.00 74 0.111 0.278 -0.040 -0.001 0.345 0.04 75 0.239 0.307 0.200 -0.302 0.113 0.02 76 0.799 0.467 -0.110 0.076 0.150 0.02	871		60000		-0.275	5.0	9	S
73 -0.261 0.152 -0.400 -0.155 0.822 0.00 74 0.111 0.278 -0.040 -0.001 0.345 0.04 75 0.239 0.307 0.200 -0.302 0.113 0.02 76 0.799 0.467 -0.110 0.076 0.150 0.02	872		0.193		-0.286	•	ح	2
74 0.111 0.278 -0.040 -0.001 0.345 0.04 75 0.239 0.307 0.200 -0.302 0.113 0.02 76 0.799 0.467 -0.110 0.076 0.150 0.02	673		0.152		-0-155	0.0	તા	0
75 0.239 0.307 0.200 -0.302 0.113 0.02 76 0.799 0.467 -0.110 0.076 0.150 0.02	874		0.278		100.0	•	ī.	3
76 0.799 0.467 -0.110 0.076 0.150 0.02	875	-	0.307		-0-305	•	m	N
	916	•	0.467		0.076	5	0 (N

BODY PITCH ATTITUDE = +4 DEG •0833 ROTOR-GROUND Z/R = 0.8681	
800 083	
H	
CONFIGURATION BHRF2L ile = 0 ROTOR-8CDY H/R =	ONS
C 3)ITI(
<u> </u>	
RUN 110 SHAFT AN	(TEST

TP (FPS)	519-30 519-30 519-30 519-30 519-30
SIGPRM	0.9788 0.9788 0.9788 0.9788 0.9788 0.9788
TEMP (DEG F)	
RECORD	88888888888888888888888888888888888888

MAIN ROTOR DATA - HUB REFERENCE CENTER

(SHAFT	2 3	ID AXIS)						
RECORD	THETA (DEG)	THRUST (LB)	H-FORCE (LB)	MRHP (HP)	CTR (-)	#£	CPR (-)	
880	00	38.31	-0-19	2.488 3.082	.00216	1 000001	.0001485	
883	000	61.07 72.61	-0•13 -0•15	3.765 4.586	00344	100001	0002247	
888 885 85	12.0	97.51	-0•15 -0•08	5.504 6.598	.00476	100000-	.0003285	
886	14.1	110.23	-0-15	7.786	.00621	00001	.0004647	

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

	RM (FI-B)	000000000000000000000000000000000000000
	YM (FT-LB)	0.000000000000000000000000000000000000
	PM (FT-LB)	0-126 -0-0126 -0-046 -0-046 -0-136
	S IDE (LB)	000000000000000000000000000000000000000
IND AXIS)	DRAG (LB)	0.318 0.318 0.218 0.256 0.442 0.459
3	(LB)	01110100000000000000000000000000000000
(SHAFT AND	RECORD	######################################

(TEST (
- 1							
RECORD	TEMP (DEG F)	SI GPRM	TP (FPS)				
100		0.9769	724.	+1			
0		0.9769	724	•			
0		0.9769	724.	•			
0		0.9769	724	+			
0		0.9769	724.	4			
894	29.0	0.9769	724.	4			
		MAIN ROTOR	DATA	- HUB REF	REFERENCE	CENTER	
(SHAFT	AND WIND	AXIS)		·			
RECORD	THETA (DEG)	THRUST (LB)	H-FORCE	MRHP (HP)	E.C.	¥:	CPR (-)
889	1 0	100 -82	-0.21	!	.00293	-00001	.0001792
960	0	122.54	-0-31		.00356	00001	.0002145
891	-	146.12	-0.25	1.718	.00424	00001	• 0 00 2584
892	12.0	171.44	-0-15	14.068	•00498	00000	•0003102
893	Ë	195.33	-0.28	6.618	.00567	10000	•0003665
894	4	221.69	-0-34	9.747	•00644	00001	•0004354
	₫	FUSELAGE DA	DATA - AER	AEROD YNAMIC	REFERENCE	CE CENTER	~
(SHAFT	AND WIND	AXISI					
CORO	LIFT (LB)	DRAG (LB)	SIDE (B)	PN (FT-LB)	YM (FT-LB	•	RM FT-LB)
ARO	1	0.233	0.620	-0-288			660-0
890	4	0.242	0.580	-0.588			040
891	6	0.465	1-010	619-0-			0.085
892	2.106	0.558	0.710	-0.948		-3.070	-0.078
893	.93	0.596	0.50	-0.726			1,061
* * * *)					

BODY PITCH ATTITUDE = +4 DEG = .0833 ROIOR-GROUND Z/R = 3.0000	
80D)	
11	
CONFIGURATION BHRF2L. E = 0 ROTOR-BODY H/R	ITIONS)
GLE	
112 F AN	T COND
RUN 112 SHAFT ANGL	(TEST

TP (FPS)	519-30 519-93 519-93 519-30 519-30 519-30
SIGPRM	0.9792 0.9773 0.9773 0.9792 0.9792 0.9792
TEMP (DEG F)	00000000000000000000000000000000000000
RECORD	

MAIN ROTOR DATA - HUB REFERENCE CENTER

(SHAFT	AND WI	ND AXIS)						
RECORD THETA (DEG)	THETA (DEG)	THRUST (LB)	H-FORCE (LB)	MRHP (HP)	CTR (-)	C#3	CPR (-)	
897	8.0	35.84	-0.44	2.432	-000505	00000	0001451	
868	0.0	46.24	-0.40	3.026	00200	70000-	2000	
668	10.0	54.96	-0.42	3.629	00E00	10000-	70000	
006	11.0	66.74	-0-38	4.490	00376	20000-	97.3000	
901	12.0	78 - 25	-0.41	5.453	.00441	-00002	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
902	13.0	\$9.06	-0.38	6.579	•00511	-00000	40003924	
903	14.0	100.05	-0.41	7.612	• 00 564	00005	-0004541	

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(SHAFT AND WIND AXIS)

RN (FT-LB)	00000 00000 00000 00000 00000 00000
YM (FT-LB)	-0.252 -0.252 -0.539 -0.584 -0.161
PM (FT-LB)	0.128 0.374 0.376 0.376 0.388
S IDE (LB)	00000000000000000000000000000000000000
DRAG (LB)	0.304 0.356 0.474 0.653 0.683
(LB) (LB)	-2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
RECORD	88894 8999 8999 8999 8999

(TEST	CONDITIONS	5)					
RECORD	TEMP (DEG F)	SI GPRM	TP (FPS				
906	8	0.9792	724	+ 1			
206	6	0.9773	N	•			
906	Ġ	0.9773	V C	•			
900	20°0	0.9773	724	•			
116	•	0.9773	724.	*			
		MAIN ROTOR	DATA	- HUB REF	REFERENCE	CENTER	
(SHAFT	AND WIND	AXIS)					
RECORD	THETA (DEG)	THRUST (LB)	H-FORCE	MRHP (HP)	CTR	- CH	CPR (-)
906			-0.43	7.813	.00241	00001	.0001719
206	0	102.81	0.50	9.523	• 00298	00001	.0002099
800	•			13.081	00.00	-000002	0003082
910	i M		-0°53	O (00002	• 0003709
911	•		-0.30	0	•00200	00001	•0004422
	ī	FUSELAGE DA	DATA – AER	AERODYNAMIC	REFERENCE	CE CENTER	~
(SHAFT	AND WIND	AXIS)	 - 				
RECORD	LIFT (LB)	DRAG (LB)	S IDE (LB)	PN (FT-LB	YM (FT-L	RM LB) (FT	2M 7—LB)
906	4-974	0.745	0.210	0.21	7 -0.25		.020
206	-5.658	0.918	0 • 1 80	0.49		6	0
906	-6.112	0.816	0.370	0.44		_	Ñ
606	-6.965	0.977	0.430	0.378		Q, (0.028
910	-7.192	1.061	0.760	0000		N i	٠
911	-7.362	1.350	0.050	1.84		m	-

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 HOVER

RUN 114 SHAFT A	NGLE	CONFIGURATION BHRF2 = 0 ROTOR-BODY	EC H/R	B0DY = .0458	PITCH A ROTOR	PITCH ATTITUDE = ROTOR-GROUND Z	= +4 DEG
(TEST (CONDITIONS	S)			: ! ! !		
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)			•	
-	6	0.9776	519.9	Ю			
, 18	6	0.9776	519.9	m			
=	Ġ.	0.9776	519.9	10			
-	Ġ	0.9776	219.9	m			
3	Ġ	0.9776	519.9	æ			
921 922	0.09 60.09	0.9757	519.93 520.25	സഹ			
		MAIN ROT	ROTOR DATA -	HUB	REFERENCE	CENTER	
(SHAFT	AND WIND	AXIS)					
RECORD	THETA (DEG)	THRUST (LB)	H-FORCE (LB)	MRHP (HP)	ST.	C. C	CPR (-)
=	•			2.484	.00253	10000	1 =
-		56 . 35	N	3.017	.00317		
\rightarrow	•		m	3.668	.00379	00002	N
-	-		•	4.4.95	•00456	00002	N
920	12.0	93.36	-0.21	5.412	.00525	00001	•0003222
S	ě		•	6.493	•00602	00003	m
N	4		TU .	7.613	• 00668	00003	•
		FUSELAGE DA	DATA - AEROI	AERODYNAMIC	REFERENCE	CE CENTER	~
(SHAFT	AND WIND	AXIS)		i	;		
RECORD	1	DRAG	9	MG	¥,		R
	(LB)	(LB)	(B)	(FT-LB)	(FT-LB) (FT-LB)
-	4	-0-129	-0 -2 00	-0-122		2	0.146
-	S	0.014	0.240	-0-121		_	.055
-	-	0.024	0 350	10.191		m	059
919	0.878	0.061	0.630	0.175	-2.04	•	690-0-
0	9	0.054	-0.330	-0-304		ED.	0.044
2	3	0.040	0-170	0.151		ú	050
N	4	0.190	0.150	0.283		φ	680•0

								HUB REFERENCE CENTER		MRHP CTR CHR CPR (-) (-)	445 .0023000002 .00014	.984 .0029300002 .00017	.736 .0035800002 .00022	****	6-605 -0056200002 -000393	626 .0062500002 .00045	AERODYNAMIC REFERENCE CENTER		PM YM RM (FT-LB) (FT-LB)	-0-017 0-238 0-047	104 0.056 0.04	105 0.670 0.03	58 0.03	
	TP (FPS)	19.9	19.9	19.9	19.9	6.61	519-93 520-25	ROTOR DATA -		H-FORCE (LB)	-0-35	6	-0.38	30	1 4 4 6	ó	DATA - AEROD		S IDE (LB)	9	•13	•26	0.140	
	SIGPRM	0.9776	0.9776	0.9776	0.9776	0.9776	0.9776	MAIN ROT	AXIS)	THRUST (LB)	40 - 85	52.00	63.69	75.02	87.00	110.97	FUSELAGE DA	AXIS)	DRAG (LB)	9	7	9	0.080	
CONDITIONS	TEMP (DEG F)	6	0	6	6	•	59.0 60.0		AND WIND	THETA (DEG)	1 9	•	ċ	=	2	14.1	ī	AND WIND	LIFT (LB)	09	4	.32	-0.146	
(TEST O	RECORD	925	956	927	928	929	930 931		(SHAFT	RECORD	10	10	N	N	O L	931		(SHAFT	RECORD	10	N	N	928	

SHAFT ANGLE	U i	UNFIGURATION BHRF2 = 0 ROTOR-BCDY	BHRF2U -BCD Y H/R	B0DY = .0458		PITCH ATTITUDE = ROTOR-GROUND Z.	. +4 DEG /R = 0.8681	_
Į	COND IT IONS	5)	:					
CORD	TEMP (DEG F)	SIGPRM	TP (FPS)					
•		0.9776	9	Œ.				
S)	59.0	0.9776	'n	M				
٥	Ġ	0.9776	S	M				
_	Ġ	0.9776	· Kī) IVI				
®	6	0.9776	147) PT				
39	6	0.9776	160	M				
Ö	6	0.9776	519.9	m				
		MAIN ROTOR	FOR DATA -	HUB	REFERENCE	CENTER		
SHAFT	AND WIND	AXIS)						
0% 0	THETA (DEG)	THRUST (LB)	H-FORCE (LB)	MRHP (HP)	C.)	¥5	CPR (-)	1
4	8.0	39 83	-0-42	2.456	46600			
S.	0.6	51 - 17	4	9 C C C	* W C C C C	2000	2001402	
٥	10.0	62.37	M	100 y	00700		7081000	
37	11.1	74.01	-0.33	4.545	00416	20000	0022000	
0	12.1	85.19	4	5.449	00479	•	A C F O O C	
0	13.1	8.61	m	6.442	00 544	70000	##35000°	
ο.	14.1	109-36	4	7.640	.00615	00002	.0004548	
	T.	FUSELAGE DA	DATA - AERO	AERODYNAMIC	REFERENCE	CE CENTER		

WIND AXIS)	
Z 3	

		8)	003 045 061 034 030 043
CENTER		RM (FT-LB)	
REFERENCE		YM (FT-LB)	0.0155 0.0086 0.0028 0.0028
FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER		PM (FT-LB)	000000000000000000000000000000000000000
ATA - AER		S IDE (LB)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
USELAGE D	IND AXIS)	DRAG (LB)	0.040 0.261 0.127 0.195 0.257 0.377
L.	SHAFT AND WIND	LIFT (LB)	-0.855 -0.860 -0.761 -0.489 -0.337 -0.323
	(SHAFT	RECORD	934 935 933 943 943

= +4 DEG Z/R = 3.0000
= +4 DEG
= + Z/R
BODY PITCH ATTITUDE .0458 ROTOR-GROUND
B00Y
•
ж п
ATION BHRF2U ROTOR-BODY H/R
¥8
TOR
CONFIGURATION BHRF2U
F 1 G
CONF
IGLE
117 F ANGL
RUN 117
& 10

MAIN ROTOR DATA - HUB REFERENCE CENTER

	H-FORCE MRHP CTR CHR CPR (LB) (HP) (-) (-)	-0.34 2.448 .0021100002 .0001469 -0.46 3.083 .0027000003 .000242 -0.51 4.473 .0032900003 .0002685 -0.57 5.432 .0044900003 .0003260 -0.64 6.490 .0051900004 .0003895 -0.67 7.657 .0058300004 .0004596
		-0.34 2.448 -0.46 3.083 -0.46 3.735 -0.51 4.473 -0.57 5.432 -0.64 6.490
ID WIND AXIS	THETA THRUST (DEG) (LB)	8.0 37.51 9.0 47.91 10.0 58.40 11.1 69.60 12.1 79.81 13.1 103.56
(SHAFT AND WI	RECORD T	9440 9440 9440 950 950

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(SHAFT	(SHAFT AND WIND	D AXIS)		•		
RECORD	LIFT (LB)	DRAG (LB)	S IDE	PM (FT-LB)	M (FT-LB)	RM (FT-LB)
945	-2.394	0.264	0600	0	-0.026	-0.005
946	-2-819	0.324	0000	0	-0-151	600•0
947	-3.265	0.383	0.020	0.3	-0.120	0.022
948	-3.585	0.371	-0.320	E • 0	0.306	600.0
646	-3.784	0.497	0 0 0 0	9.0	-0.429	0.053
950	-4.070	0.437	0.50		-0.283	600.0
951	464.4-	0.618	0.000	6.0	-0.700	0.049

WP SIGPRM (FPS) 0 0.9929 515.85 0 0.99		
TEMP SIGPRM (FPS) (DEG F) 0.9929 515.85 51.0 0.9929 515.85 61.0		
972 51.0 0.9929 515.85 974 51.0 0.9929 515.85 975 51.0 0.9929 515.85 976 51.0 0.9929 515.85 977 51.0 0.9929 515.85 978 51.0 0.9929 515.85 978 51.0 0.9929 515.85 978 61.0 0.9929 515.85 978 MAIN ROTOR DATA — HUB REF CORD THETA THRUST H-FORCE MRHP (DEG) (LB) (LB) (HP) 975 110.0 681.30 0.05 3.709 976 12.0 93.51 -0.05 3.709 977 13.0 107.80 0.03 4.517 84AFT AND WIND AXIS) CORD LIFT DRAG SIDE PM (LB) (LB) (FT-LB) 972 0.407 -0.082 0.340 -0.156 973 0.452 -0.159 0.420 -0.160 975 0.644 -0.273 0.600 -0.381 976 0.644 -0.273 0.600 -0.381	1P (FPS)	
974 51.0 0.9929 515.85 975 51.0 0.9929 515.85 976 51.0 0.9929 515.85 977 51.0 0.9929 515.85 978 51.0 0.9929 515.85 978 51.0 0.9929 515.85 978 11.0 0.9929 515.85 978 0.452 -0.215 0.480 -0.215 978 0.644 -0.316 0.480 -0.215 978 0.644 -0.316 0.480 -0.2181	15	
976 510 0 0 9929 515 85 977 510 0 0 9929 515 85 978 510 0 0 9929 515 85 978 510 0 0 9929 515 85 978 510 0 0 9929 515 85 978 10 0 0 9929 515 85 978 10 0 0 45 43 0 0 0 7 2 48 978 10 0 68 22 0 0 11 3 0 45 978 10 0 68 22 0 0 0 5 3 709 978 11 0 0 81 30 0 0 0 3 5 4 5 17 978 11 0 0 81 30 0 0 0 3 5 4 5 17 978 11 0 0 81 30 0 0 0 3 5 4 5 17 978 11 0 0 81 30 0 0 0 3 5 4 5 17 978 11 0 0 81 30 0 0 0 3 5 4 5 17 978 11 0 0 81 30 0 0 0 3 5 6 5 4 4 978 11 0 0 81 30 0 0 0 3 5 6 5 4 4 978 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15	
977 51.0 0.9929 515.85 978 51.0 0.9929 515.85 978 51.0 0.9929 515.85 SHAFT AND WIND AXIS) CORD THETA THRUST H-FORCE MRHP (DEG) (LB) (LB) (HP) 972 8.0 57.25 0.11 3.048 974 10.0 68.22 0.03 4.517 976 11.0 81.30 0.07 2.488 977 11.0 81.30 0.03 4.517 976 11.0 81.30 0.03 4.517 977 13.0 107.80 0.03 4.517 978 11.0 81.30 0.03 4.517 978 14.0 118.14 -0.24 7.620 CORD LIFT DRAG SIDE PM (LB) (LB) (LB) (FT-LB) 972 0.452 -0.159 0.420 -0.156 974 0.657 -0.215 0.400 -0.381 975 0.644 -0.316 0.400 -0.381	10	
SHAFT AND WIND AXIS) CORD THETA THRUST H-FORCE MRHP (DEG) (LB) (LB) (HP) 972 8.0 45.43 0.07 2.488 974 10.0 68.22 0.05 3.709 975 11.0 81.30 0.03 4.517 976 12.0 93.51 -0.05 3.709 976 14.0 118.14 -0.24 7.620 FUSELAGE DATA - AERODYNAMIC SHAFT AND WIND AXIS) CORD LIFT DRAG SIDE PM (LB) (LB) (LB) (LB) (FT-LB) 972 0.407 -0.082 0.420 -0.150 973 0.452 -0.159 0.420 -0.160 975 0.644 -0.316 0.460 -0.181	120	
CORD THETA THRUST H-FORCE MRHP (DEG) (LB) (LB) (LB) (HP) 972 8.0 45.43 0.07 2.488 973 9.0 57.25 0.11 3.045 974 10.0 68.22 0.05 3.709 975 11.0 93.51 -0.05 3.709 976 12.0 93.51 -0.05 3.709 977 13.0 107.80 0.03 4.517 978 14.0 118.14 -0.24 7.620 FUSELAGE DATA - AERODYNAMIC SHAFT AND WIND AXIS) CORD LIFT DRAG SIDE PM (LB) (LB) (LB) (FT-LB) 972 0.452 -0.159 0.420 -0.156 974 0.657 -0.215 0.340 -0.273 975 0.644 -0.215 0.600 -0.381	ı	
CORD THETA THRUST H-FORCE MRHP 972 8.0 45.43 0.07 2.488 973 9.0 57.25 0.11 3.045 974 10.0 68.22 0.05 3.709 975 11.0 81.30 0.03 4.517 976 12.0 93.51 -0.05 3.709 977 13.0 107.80 0.03 6.544 978 14.0 118.14 -0.24 7.620 FUSELAGE DATA - AERODYNAMIC SHAFT AND WIND AXIS) 972 0.407 -0.082 0.420 -0.156 973 0.452 -0.159 0.420 -0.273 975 0.644 -0.316 0.480 -0.381 976 0.657 -0.273 0.480 -0.381	,	
972 8.0 45.43 0.07 2.488 973 9.0 57.25 0.11 3.045 974 10.0 68.22 0.05 3.709 975 11.0 81.30 0.03 4.517 976 12.0 93.51 -0.05 5.434 977 13.0 107.80 0.03 6.544 978 14.0 118.14 -0.24 7.620 FUSELAGE DATA - AERODYNAMIC SHAFT AND WIND AXIS) CORO LIFT DRAG SIDE PM (LB) (LB) (FT-LB) 972 0.452 -0.159 0.420 -0.150 974 0.657 -0.215 0.340 -0.273 975 0.644 -0.316 0.480 -0.381	ORCE B)	CPR (-)
973 9.0 57.25 0.11 3.045 974 10.0 68.22 0.05 3.709 975 11.0 81.30 0.03 4.517 976 12.0 93.51 -0.05 5.434 977 13.0 107.80 0.03 6.544 978 14.0 118.14 -0.24 7.620 FUSELAGE DATA - AERODYNAMIC CORD LIFT DRAG SIDE PM (LB) (LB) (LB) (FT-LB) 972 0.462 -0.159 0.420 -0.156 974 0.657 -0.215 0.480 -0.218 975 0.644 -0.316 0.480 -0.381	07 2.488 .00256 0.	ł
975 11.0 80.05.7 9.03 5.707 975 11.0 93.51	11 3.045 .00322 0.	
976 12.0 93.51 -0.05 5.434 9.78 13.0 107.80 0.03 6.544 9.78 14.0 118.14 -0.24 7.620 7.620 9.78 14.0 118.14 -0.24 7.620 9.78 1.4.0 118.14 -0.24 7.620 9.78 1.4.0 118.14 -0.24 7.620 9.72 0.452 -0.159 0.420 -0.156 9.73 0.452 -0.159 0.420 -0.156 9.75 0.657 -0.215 0.480 -0.381 9.75 0.6273 0.627	03 4-517 -00458 04	
977 13.0 107.80 0.03 6.544 978 14.0 118.14 -0.24 7.620 FUSELAGE DATA - AERODYNAMIC SHAFT AND WIND AXIS) CORD LIFT DRAG SIDE PM (LB) (LB) (FT-LB) 972 0.452 -0.159 0.420 -0.156 973 0.452 -0.159 0.420 -0.156 974 0.657 -0.215 0.480 -0.273 975 0.644 -0.215 0.480 -0.381 976 0.922 -0.276 0.480 -0.381	05 5.434 .00526 -	
SHAFT AND WIND AXIS) CORD LIFT DRAG SIDE PM (LB) (LB) (FT-LB) 972 0.467 -0.082 0.420 -0.156 973 0.452 -0.159 0.420 -0.156 974 0.657 -0.215 0.480 -0.273 975 0.644 -0.316 0.480 -0.381	03 24	.0003928
SHAFT AND WIND AXIS) CORD LIFT DRAG SIDE (LB) (LB) (LB) (LB) 972 0.407 -0.082 0.540 973 0.452 -0.159 0.420 974 0.657 -0.215 0.340 975 0.644 -0.316 0.480 976 0.622 -0.276 0.600		æ
CORD LIFT DRAG SIDE (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB)		
0.407 -0.082 0.540 0.452 -0.159 0.420 0.657 -0.215 0.340 0.664 -0.316 0.480	IDE PM YM	RM FI-IB)
0.407 -0.082 0.540 0.452 -0.159 0.420 0.657 -0.215 0.340 0.644 -0.316 0.480 0.922 -0.276 0.480		
0.452 -0.159 0.420 0.657 -0.215 0.340 0.644 -0.316 0.480 0.922 -0.276 0.480	•540 -0•156 -1•350	-0 • 0 5 4
0.657 -0.215 0.340 0.644 -0.316 0.480 0.922 -0.276 0.480	-0-160 -0-980 -0-160 -0-980	-0.023
0.922 -0.316 0.480 0.922 -0.276 0.600	340 -0.273 -0.715	-0.027
0000 01700 2760	-480 -0-181 -1-096	-0-018
	600 -0.381 -1.705	
	*500 -0.201 -1.00449	70.07

(TEST C	CONDITIONS	•					
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)				
	ا ا		15.8				
100	•	٠.0	15.8				
900	•	10	15.8				
700	• • •	٠0	45.6	ı id			
984	•	,	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓	•			
985	•	ъ.		n u			
986 987	51.0 51.0	0.9929	515.85	0 ·0			
		MAIN ROTOR	TOR DATA -	HUB REF	REFERENCE	CENTER	
(SHAFT	AND WIND	AXIS)					
			7000	OHOM	at C	CHR	CPR
RECORD	(DEG)		(18)	(HP)	(-)	(-)	()
1 40	1	41.34	1 .	4	0	0000-	1 .0001471
100				3.047	00800	•	0001829
) Q				9	0	0000	•
700	3-			4	0	0000	·
900				4	0	0000	•
280	M			ຜູ	0	0000	0.0003936
987	14.0	114.41	-0.10	•	0	0000	•
	Ĩ	FUSELAGE D	DATA - AEROI	AEROD YNAMI C	REFERENCE	CE CONTER	2
(SHAFT	AND WIND	AXIS)					
RECORD	LIFT	DRAG	S IDE	PH (FT-LB)	FTT	8)	RM FT-LB)
	119	460	940	15		195	03
100	•					234	.02
286	٧.			4		439	.01
983	•	0.092				041	00.
400	7	F 4 0 -0		0.415	•	0.085	200.0
000) (, ,	1	300	0
				į	•	000	

1 6																								
= +4 DEG Z/R = 0.8681									CPR (-)	18		9	9	.0003286	000465	œ		RM FT-LB)	0.006	00	5	5	30	0.020
TCH ATTITUDE ROTOR-GROUND									# (-)	100001	00001	0000	0000	10000-1	000	CE CENTER				۰.۵	_	263	۸.,	۸
Ы								KETEKENCE	E	•00224	.00292	· 00349	-00419	500492	00634	REFERENCE		YM (FT-L8						00.00
B00Y = .0833			8 6	ığ.	លើព	ກທູ	,	2	MRHP (HP)	2.419	3.021	3.664	4.483	0.470	7.748	AEROD YNAMIC		PM (FT~LB)	56	.55	•65	404		0.541
BHR BCD Y H/R		TP (FPS)	150	5	15	51.0 51.0 50.0 50.0 50.0 50.0 50.0 50.0		\ \ \ \	H-FORCE (LB)	IN	-	α,	-	01-0-	—	ı		S IDE				0 4 5		000
ONFIGURATION = 0 ROTOR-		SIGPRM	0.9910	0.9929	0.9929	0.9929	MATH DOTOR		THRUST (LB)	39.82	51.64	62.06	04.40	99.66	112.66	FUSELAGE DATA	AXIS)	DRAG (LB)	0.145	0.086	0.104	101.0	0.148	060-0
GLE	CONDITIONS	TEMP (DEG F)	52.0 51.0		0.10			AND WIND	THETA (DEG)	8.0	0.6	0.0		13.0	◀	J.	AND WIND	LIFT (LB)	-0.070	-0.056	0 to 0	0.159	0.391	0.575
RUN 122 SHAFT AN	(TEST	RECORO	990	992	9 Q Q Q Q	000		(SHAFT	RECORD	0	a	a (7 0	966	O		(SHAFT	RECORD	066	166	266	200	995	966

DEG = 3.0000	
= +4 2/R ::	
BODY PITCH ATTITUDE = +4 DEG = .0833 ROTOR-GROUND Z/R = 3.0000	
.0833	
14	
H/R	1
CONFIGURATION BHR ESCE = 0 ROTOR-BODY H/R = •(TIONS)
RUN 123 SHAFT ANGLE	(TEST CONDA

CURD 6	DEG F) 10 WIND 10 W	0.9910 0.9910 0.9910 0.9910 0.9910 0.9910 MAIN ROTOR AXIS) THRUST HH (LB) (516.48 516.48 516.48 516.48 516.48 516.48 516.48 516.48	HUB MRHP 2 - 30	KCE CE	CENTER CHR (CHR (CHR (CHR (CHR (CHR (CHR (CHR	K 7 45
1 51'		0000000 7 0 90	516.48 516.48 516.48 516.48 516.48 516.48 516.48 516.48	HUB MRHP (HP)	• •	1 100	20 47
41'		000000 Z 0 V 0 1	516-48 516-48 516-48 516-48 516-48 516-48 6-38	HUB HRHP CHP)	, t		80 47
5 i '			516.48 516.48 516.48 516.48 516.48 6.29	HUB MRHF (HP)		1 100	27 T
51 '	00000 M M 00000	0000 7 0 00	516.48 516.48 516.48 516.48 DATA -	HUB MRHF (HP)		1109	27 77
5 1'	N N N N N N N N N N N N N N N N N N N	000 7 0 90	516.48 516.48 516.48 516.48 516.48 60.38	HUB MRHF (HP)		1 109	% C 47
4 1'	E E E E E E E E E E E E E E E E E E E	00 7 0 90	516.48 516.48 DATA - CATA - FORCE LB)	HUB MRHP (HP)		1199	& ? 4 ?
41 '	ETA EEG)	0 7 0 0 0	516.48 DATA - DATA - FORCE LB) -0.38	HUB MRHF (HP)		1 100	87 37
41 '	WIND EFTA 7.9	7 ~ 0 ~	DATA FORCE LB) -0.38			1 100	87 47
41 '	WIND ETA EG)		145 11	MRHP (HP) 2.360	CTR (-)	CHA (-)	A - 141
1'	HET DEG	HRUS (LB.) 35 46	145 600	MRHP (HP) 2.360	CTR (-)	CH2	K 7 41
	100		000 000	2.360	0000	00002	141
I	6		200		けついいつ	1,00002	•
			6	166	.00264		
	•	•)	530	0	Z0000 -	17000
	-	•	0.2	2	0		907000
	8		6	416	00.00		0003869
			04	7.655	00578	00003	000458
		6 E	DATA - AEROD	AMIC	REFERENCE	CE CENTER	ď
₹	AND WIND	AXIS)					
	L1FT (B)	DRAG (LB)	S IDE (LB)	(FT-LB)	¥¥ (F)	8)	RM FT-LB)
	1	15	9	M		080	•02
•	0		} =			224	•02
•) r	y c	4	9		272	• 02
•		יז ע •		4		327	•07
	ם ס ס) P	0.150	2.818	9	274	0.057
	֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֓	שנ	28	9		614	40.
	-1.626	0.458	-10	6		145	90

00		! ! !							
Z/R = 0.5000					CPR (-)	.0001519 .0001817 .0002691 .0003259 .0003924		RM (FI-LB)	
				ENTER	CH (CH	00000 H	E CENTER		
ROTOR-GROUND				HUB REFERENCE CENTER	ST.	00265 00330 00394 00467 00536 00612	REF ERENCE	YM (FT-LB	• • • • •
100		0000	พณษต		MRHP (HP)	2.546 3.0540 3.0580 4.511 5.453 7.583	AERODYNAM1 C	PM (F1-1.8)	• • • • •
800 Y H/R	TP (FPS)	517.4		OR DATA -	H-FORCE (LB)	100.44 100.43 100.73 100.73 110.04	DATA – AERO	\$ IDE (LB)	• • • • •
= 0 ROTOR-80DY TIONS)	SIGPRM	0.9902	0.9902 0.9882 0.9882	MAIN ROTOR Axis)	THRUST (LB)	47.28 58.88 70.27 63.16 95.51 109.13	FUSELAGE DA D AXIS)	DRAG (LB)	••••
ANGLE = 0 CONDITIONS	TEMP (DEG F)	00000 4444 0000		AND WIND	THETA (DEG)	110000 110000 110000 10000	FU AND WIND	LIFT (LB)	• • • • •
SHAFT ANGLE	RECORD	1011 1012 1014 1014	0000	(SHAFT	RECORD	1012 1013 1015 1016 1017	(SHAFT	RECORD	1012 1013 1014 1015 1016

	0		1					1	***************************************	
	= +4 DEG Z/R = 0.5000	+				CPR (-)	.0001759 .0002107 .0002536 .0003025 .0003655		RM (FT-LB)	
					CENTER	¥T		CENTER		
	PITCH ATTITUDE ROTOR-GROUND				REFERENCE CE	ر الج	00303 00367 00449 00675 00637	REFERENCE	YM (FT-LB	• • • • •
	800Y 100				HUB REFE	MRHP (HP)		AERODYNAMIC F	PM (FT-LB)	• • • • •
:	HR BODY H/R =		TP (FPS)	724-14 724-14 724-14 724-14 724-14	OR DATA -	H-FORCE (LB)	100.000 111.000 111.000 111.000	i	S 10 E (1B)	••••
	CONFIGURATION HR	•	SIGPRM	0.9863 0.9863 0.9863 0.9863 0.9863	MAIN ROTOR Axis)	THRUST (LB)	105.37 127.71 150.90 173.35 199.89	FUSELAGE DATA D AXIS)	DRAG (LB)	• • • • •
	BLE	CONDITIONS)	TEMP (DEG F)	000000	AND # IND	THETA (DEG)	000000	AND WIND	(18)	• • • • •
	RUN 125 SHAFT AN	(TEST C	RECORD	1022 1022 1023 1024 1025	(SHAFT	RECORD	1021 1022 1023 1024 1025	(SHAFT	RECORD	1021 1022 1023 1024 1025

SHAFT AN	GLE =	0 ROTOR-BODY	-BODY H/R	1000	20108	ROTOR-GROUND Z	= +4 DEG Z/R = 0.7500	_
(TEST	COND IT IONS)	5)						
RECORD	TENP (DEG F)	SIGPRM	TP (FPS)					! !
02	55.0	0.9882	18	05				1
03	5	0.9882	8	505				
60	5	0.9882	18	50				
	5	0.9882	518.0	50				
MO	3	0.9882	18	25				
MO	5	0.9882	18	35				
M O	9	0.9863		58				
		MAIN ROTOR	DATA	- HUB REF	REFERENCE	CENTER		
(SHAFT	AND WIND	AXIS)						
RECORD	THETA	THRUST	H-F (B) CF	DHOM	oro	95	900	
 	(DEG)	(9)	(4.8)	(HP)	-	<u> </u>	¥ (-)	
02	•		-0-44	2.487	-00234	40000	0001480	
60			-0.42	3.046	10000	20000-	× 1000	
03	•		-0.49	3.680	F 55	1000		
1032	11.0	77.72	-0.63	4.550	00436	\$0000 -	000000	
60	'n		-0.63	5.454	•00498	40000	0003247	
60	3		-0.69	6.598	.00575	40000	ACO.000	
03	•		-0.74	7.625	.00630	00004	.0004532	
	F	FUSELAGE DA	DATA - AER	AERODYNAMIC	REFERENCE	CE CENTER		
(SHAFT	AND WIND	AXIS)						
RECORD	L1FT (L8)	DRAG (LB)	S IDE	PM (FT-LB)	YN (FT-LB		RM FT-LB)	i !
1029	•	•	•	•	•		•	
9	•	•	•	•	•			
M	•	•	•	•	•			
MO	• •	• •) (• (•		•	
03(• (• (• 1		•	
) M	• (• •	• (•	•		•	
700	•	• .	• •	•	•		•	
)	•	•	•	•	•		•	

(TEST C								
	COND 17 10NS	5)		-				
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)					ļ
1040	44.0	1.0115	512.08	6				
4	•	-	2	œ ·				
4		~	2	∞ .				
	4	-	7	•				
4	4	.011	2	6				
3	4	011	77	60				
1046	4	013	2	8				.•
		MAIN ROTOR	TOR DATA -	HUB	REFERENCE (CENTER		
(SHAFT	AND WIND	AXIS)						1
				MOND	CTR	CHR	CPR	
RECORD	THETA (DEG)	(LB)	(18)	(HP)	<u>-</u>	(-)	(-)	
13		** **	10	2-446	.00227	0000	.0001473	
† :	•	44.04	•	3.069	.00295	0000	.0001849	
3		10000	. (500	.00345	0000	.0002162	
2	•	010) C	A-476	00414	0000	•0002696	
*	•	20.00	٠ (K - 4 20	00484	0000	.0003264	
1044	12.0	000		5.507	00558	0.0000	•0003919	
9	,		• •	7.501	00616	0000	.0004572	
5	+	109 - 88	4	***				
		FUSELAGE D	DATA - AERO	AERODYNAMI C	REFERENCE	CE CENTER	~	
(SHAFT	AND WIND	AXIS)						1
RECORD	L1FT (LB)	DRAG (LB)	S 10E (LB)	PM (FT-LB)	<u>.</u>	YM F T-LB) (F	RM FT-LB)	1
14	•	•	•	•	•		•	
•	•	•	•	•	•		•	
•	•	•	•	•	•		•	
•	• (•	•	•	•		•	
1049	• •	•	•	•	•		•	
•	•	•	•	•	•		•	•
•	•	•			•		•	

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 HOVER

SIGPRM 1-0115 1-015 1-0	1086 1086 1086 1086 1086 1086 1086 1086			i i i i i i i i i i i i i i i i i i i	CPR (-)
10 1	7PS 620 940 1250 1250 1251 3140 DATA DATA 0007	H H H H H H H H H H H H H H H H H H H	ERENCE CTR (-)	i i i i i i i i i i i i i i i i i i i	C P R C C P R C C D 1 3 2
	11256 11256 11576 11576 2516 0ATA 0ATA 0000	HHH I O	ERENCE CTR (-)	i i i o	CPR (-)
	1576 1576 1576 2516 3146 DATA DATA 0007	HC BO CO	ERENCE CTR (-)	i	CPR (-)
	157- 188- 314- DATA DATA -0-07- 0-04- 0-04-	HHI 00	ERENCE CTR (-)	1 10	CPR (-)
	198- 251- 314- DATA DATA -0-07	HED IO	ERENCE CTR (-)	iio	CPR (-)
15 100	2514 3146 DATA DATA CRCE LB) 0007		ERENCE CTR (-)	i io	CPR (-)
- 1 <u>- 10</u> 0	DATA DATA FORCE LB) 0.07		ERENCE CTR (-)	i io	CPR (-)
1 - 10 0	PATA FORCE LB)		ERENCE CTR (-)	iio	CPR (-)
1 - 10 0		I G I O	14 (100	CHR (1)	CPR (-)
1 - 1 0 0		THE O	14 (100	CHR (-)	CPR (-)
0===0	000	0	000	0000	00132
N	0000				1
~ ~ ~		50	၁ ၁ (0000	00121
S		9 0	+ 4 1		20100
	0.05	20	361	0000	26000
m m	0.02	0.178	-80E-6	0.00000	• 000009
FUSELAGE DATA	1	X	ER	CENT	
-					
DRAG (LB)	SIDE (LB)	PM (FT-LB)	-14)	LB) (F	RM T-LB)
	! ! ! ! ! !		•		
•	•	•	•		•
•	•	•	•		•
•	•	•	•		•
	•	•	•		• •
•	•	•	•		•
•	•	•	•		•
	• • • • •	•••••	•••••	• • • • • •	• • • • • •

(TEST C	CONDITIONS	•					
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)				
1058		1.0095	512.7	-			
) (C		1.0095	512.7	-			
90	3	1.0095	512.7				
90	5	1.0095	512.7	-			
90	ŝ	1.0095	512.7	, 1			
1063	4 % 0 • 0 4	1.0095	512.71	-			
))		MAIN ROTOR	FOR DATA -	EVE	REFERENCE	CENTER	
(SHAFT	AND WIND	AXIS)					
RECORD	THE TA (DEG)	THRUST (LB)	H-FORCE	RHP (HP)	CTR (-)	CHR (-)	CPR (-)
10	0.8	36.80	-0.28	2.416	•00206	00002	.0001453
) C	•	46.67	-0.42	2.939	.00262	-00005	
)		57.14	-0.47	3.630	.00320	-00003	
) C		68.37	-0.53	4.457	.00383	-00003	
90	12.0	79.28	-0.46	5.370	44400	50000-	
	E	98.90	-0-41	6.546	12500	70000-	
1064	•	103.73	-0.50	7.645	.00581	00003	
	F	FUSELAGE D	DATA - AERC	AEROD YNAMI C	REFERENCE	CE CENTER	œ
(SHAFT	AND WIND	AXIS)					
RECORD	LIFT (LB)	DRAG (LB)	SIDE (B)	PM (FT-LB)	YM (FT-L	B) (RM FT-LB)
1058	•	•	•	•			• (
1059	•	•	•	•	•		•
1060	•	•	•	•	•		•
1061	•	•	•	•	•		•
1062	•	•	•	•	•		•
1063	•		`(•			•
		•		•	,		•

= +4 DEG Z/R = 3.0000											
= +4 Z/R											
PITCH ATTITUDE ROTOR-GROUND			t in a serie distant de Contrata de La Contrata de							REFERENCE CENTER	
B00Y 100											
3 H/R =		1P (FPS)	724.14	724.14	724.14	724.14	724.14	724.14	724-14	DATA - HUB	
IFIGURATION HR 0 ROTOR-BODY H/R		SIGPRM	1.0095	1.0095	1.0095	1.0095	1.0095	1.0095	1.0095	MAIN ROTOR	15)
	NOITIONS)	•	45.0				45.0	5		*	ND WIND AXIS
RUN 130 CON	(TEST CONDITIO		1067	1068	1069	1070	101	1072	1073		(SHAFT AND WIND

RECORD	THETA (DEG)	THRUST (LB)	H-FORCE (LB)	MRHP (HP)	CTR (-)	C.E.	CPR (-)	
1068 1068 1069 1070 1071	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	88 79 106 70 128 68 149 26 174 58 198 14 223 54	- 10.880 - 10.09 - 11.25 - 10.30 - 10.16	8-347 9-891 12-094 14-372 17-384 20-518	00249 00362 00419 00491 00557	1	.0001781 .0002581 .0002581 .0003067 .0003710 .0004378	

CENTER
REFERENCE
AERODYNAMIC
1
DATA
FUSELAGE

						作,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们	
RECORD	(1FT	CRAG (LB)	S 10 E	PM (FI-LB)	YM (FT-LB)	RM B) (FI-LB)	
1067	•	•	•	•	•		
1068	•	•	•	•	•	•	
1069	•	•	•	•	•	•	
1070	•	•	•	•	•	•	
1071	•	•	•	•	•	•	
1072	•	•	•	•	•	•	
1073	•	•	•	•	•	•	

(SHAFT AND WIND AXIS)

						CPR (-)	.0002345 .0001473 .0001109	000098 000088 00087		LB)	
a va ONOONO	1 1 1 1 1 1			CENTER		CHR (-)		044	E CENTER	RM B) (FT-	• • • • •
	<u>.</u>	i 1 1 1		סהההטהאכה	(CTR (-)	2000	000000000000000000000000000000000000000	REFERENCE	YM (FT-L	
00 1	1 1 1 1 1	; 1 1 1	200 200 200 200 200 200 200 200 200 200	9		MRHP (HP)	000	0.000 0.0077 0.0077 0.0077	AERODYNAMIC	PM (FT-LB	• • • • •
-B00 V H/K		TP (FPS)	62 8 94 2 1 57 5 1 57 6 1 88 6 1 88 6	314.	<u>.</u>	H-FORCE (LB)	000	1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I <	S10E (LB)	• • • • •
0 ROTOR-1		SIGPRM	100075 100075 100075 100075	20	AXIS)	THRUST (LB)	P 80	2000 2000 2000 2000 2000 2000 2000 200	FUSELAGE DAT	DRAG (L.B.)	• • • •
ANGLE = 0	ONO	TEM	4444	ç ç	٥	1 ¥ 6	0.0	0044 •••• &≃₩Q	Z		
SHAFT A	(TEST C	ECORD	1076 1077 1078 1079 1080	0 0 0	SHA	RECORD	100	1079 1080 1081 1082	(SHAFT	RECORD	1076 1077 1079 1079

C

c-4

BODY PITCH ATTITUDE = +4 DEG = .0833 ROTOR-GROUND Z/R = 2.0000	
BODY 0 833	
II	
H/R	
CONFIGURATION BHRF2L E = 0 ROTOR-BODY H/R	
出ると	
01 T	
35	•
NFI 10	ITIONS
	DITI
SUN 133 SHAFT ANGL	TEST COND
SUN 133	1S:
S S S	(TE

1P (FPS)	517-73 517-73 517-73 517-73 517-73
SIGPRM	0.9869 0.9869 0.9869 0.9869 0.9869 0.9869
TEMP (DEG F)	60000000000000000000000000000000000000
RECORD TO	1096 1097 1098 1100 1101

MAIN ROTOR DATA - HUB REFERENCE CENTER

(SHAFT	IN ON	ND AXIS)					
RECORD	THETA (DEG)	THRUST (LB)	H-FORCE (LB)	MRHP (HP)	E C C E	CHR (-)	CPR (-)
•	8.0	36 - 34	-0.25	2.455	•00204	00001	.0001466
6001		45.68	10.28	2.981	.00257	- 00002	.0001780
1099	11.0	65.78	-0.20	4.363	00310		• 0002141 • 0002606
1100	12.0	77.58	-0-20	5-321	-00436	00001	.0003178
1102	14.1	101.97	10.0-	7.608	.00497	-00000	.0003794

(SHAFT	AND WI	ND AXIS)					
RECORD	(LB)	DRAG (LB)	S IDE	PM (FT-LB)	YM (FT-LB)	RM (FT-LB)	
1096	-2.193	0.258	1	-0.056	-0.425	-0-023	
1097		0.429	0.340	0.447	-0.777	10000	
1098	-2.898	0.449	0 • 2 9 0	0.345	-0.480	0.007	
7 0 9 9	-3.443	0.491	061.0	0.582	-0.396	-0-010	
1100	-3.600	0.590	0.210	0.336	-0.756	-0.005	
1011	-3.741	0.741	0.530	0.951	-1.264	0.000	
1102	4.046	0.659	0000	0.570	-0.772	90000	

(TEST (COND IT IONS	(1					
RECORD	TENP (DEG F)	SIGPRM	TP (FPS)				
1114	6	0.9869	-	Ĺ)			
-		0.9869	17	(2)			
1 (*		0.9869	17	ių.			
•	8	0.9869	17	· (c)			
•	,	0,9869	17	ių.			
4 ,) u	0900) et			
11120	20°0	0.9869	517-7	าต			
		MAIN ROTOR	TOR DATA -	HUB	REFERENCE	CENTER	
(SHAFT	AND WIND	AXIS)					
RECORD	THETA (DEG)	THRUST (LB)	H-F OR CE	MRHP (HP)	C TR (-)	CHR (-)	CPR (-)
-	8.0	, -	0.09	2.505	.00214	0.00001	.0001496
-	0.0	47.67	0.08	3.049	8	0000	8 00
-	0	56.64	0.05	3.666	E	0000	0021
-	-	67.87	0.07	4.505	8	0000	9200
1118	12.1	78.93	0.17	5.415	.00444	000000	• 0003234
-	'n	91.07	0.21	6.522	5	0000	
-	÷	103.05	0-18	7.695	21	0000	2400 2
	ī	FUSELAGE DA	DATA - AERO	AERODYNAMIC	REFERENCE	ICE CENTER	
(SHAFT	AND WIND	AXIS)					
RECORD	LIFT (LB)	ORAG (LB)	S IDE (B)	PN (FT-LB)	YM (FT-L	B) (RM FI-LB)
1114	-1.936	0.306	4	0.003			00
-	ā	0.434	Ŋ	35			9
-		0.371	Ŋ	.19			8
-	Ö	0.402	d	9			5
1118	-2.985	0.683	0.570	0.680		-1.042 0.	0.019
-	Ö	0.595		0.8			6
				֡)

BODY PITCH ATTITUDE = +4 DEG •0833 ROTOR-GROUND Z/R = 1.2639	
BODY P	
CONFIGURATION BRREZE. E = 0 ROTOR-BODY H/R	(SZ
36 ANGLE	(TEST CONDITION

TP (FPS)	517-73 517-73 517-73 517-73 517-73 517-73
SIGPRM	6986 6986 6986 6986 600 6986 600 600 600 600 600 600 600 600 600 6
TEMP (DEG F)	ດີເວັດ ເວັດ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ
RECORD TEMP (DEG F	1128 1128 1128 1128 1128

MAIN ROTOR DATA - HUB REFERENCE CENTER

		1499 12250 2716 3285 3909 4616
	CPR (-)	.0001499 .0001851 .0002250 .0002716 .0003285
	CH3	000000000000000000000000000000000000000
	C.T.	.00213 .00276 .00334 .00393 .00461
	MRHP (HP)	2.510 3.767 3.767 4.547 5.500 6.544
	H-FORCE (LB)	0.05 0.12 0.11 0.11 0.12 0.33
ND AXIS)	THRUST (LB)	37.96 49.02 59.38 69.87 81.92 92.94 105.72
W		# # # # # # # # # # # # # # # # # # #
(SHAFT AND	RECORD T	1124 1125 1126 1127 1129

	RM (FT-LB)	0.005 0.005 0.005 0.013 0.009
	YM (FT-LB)	
	PM (FT-LB)	0.263 0.263 0.263 0.423 0.408
	S IDE	0.2370 0.370 0.150 0.054 0.050 0.050
AXIS)	DRAG (LB)	0.359 0.359 0.499 0.659 0.274 0.560
(SHAFT AND WIND AXIS)	LIFT (LB)	M08008-
(SHAFT	CORD	1123 1125 1126 1126 1128

= +4 DEG Z/R = 0.8681
BODY PITCH ATTITUDE = +4 DEG .0833 ROTOR-GROUND 2/R = 0.868)
II
CONFIGURATION BERFZL = * 0 ROTOR-BODY H/R
RUN 139 CONF SHAFT ANGLE = 0

	TP (FPS)	724.14 724.14 724.14 724.14 724.14
	SIGPRM	0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900
8	TEN	00000000000000000000000000000000000000
_	RECORD	1152 1153 1154 1155 1156

CHNTED	
9	
1	
AT 42	
00100	
MATAN	
	on The

	CPR (-)	.0001800 .0002129 .0002578 .0003703 .0004263
	CHR (-)	
	CTR (-)	.00264 .00322 .00388 .00453 .00580
	MKHP (HP)	8.274 9.786 11.853 14.169 17.024 19.600
	H-FORCE (LB)	- 00 30 - 00 20 - 00 23 - 00 11 - 00 11
ND AXIS)	THRUST (LB)	92.30 112.40 135.31 158.16 183.54 202.44
-	THETA (DEG)	00000000000000000000000000000000000000
	RECORD	1152 1153 1154 1155 1156

	RM (FT-LB)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	YM (FT-LB)	0.0579 0.0579 0.0579 0.057
	PM (FT-LB)	-0.640 -0.644 -0.644 -0.071 -0.6437 -0.526
	S 10 E (LB.)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WIND AXIS)	DRAG (LB)	0.328 0.675 0.725 0.924 0.760 1.286
	LIFT (LB)	-0.9005 -0.8099 -0.813 -0.033 -0.194
SHAFI	RECORD	1152 1153 1154 1155 1156

APPENDIX B

FORWARD FLIGHT DATA

This appendix is primarily a tabulation of the digitized and corrected forward flight performance data. The tables are ordered by run number and the data is ordered by prime data record number in each table. The tables include dimensional and nondimensional rotor and fuselage data. The dimensional data is not scaled to full-scale values. Reference axes for data reduction can be found in Figure 11. Configuration and test condition data is included for each run. Table B-1 provides a key which defines the tabluated output labels not defined in Table A-1.

Figure B-l presents sketches which define the configurations tested. A summary of all test conditions is presented in Table B-2.

Graphical presentation of select data is included following the tabulated data. Table B-2 entries with an asterisk denote test conditions for which graphical data is not presented. Figure B-2 shows configurations BHR installed in the Vought Low Speed 7x 10-ft Wind Tunnel Facility.

NOTE: For configurations BF2L, BHF2L, BHFF2L, BHFF2U, and BHRF2U Appendix B graphical and tabulated data for CLB, CDB, CYB, CMYB, CMXB, and CMZB should be corrected by 0.95367. This error was the result of having reduced the data by the incorrect cross-sectional area, Sp.

Table B-1*. Definition of tabulated output data labels.

Label Definition

VEL Tunnel speed at the model

Q Dynamic pressure at the model

MU Speed ratio

ALPHS Shaft angle of attack (geometric)

Bl Longitudinal cyclic

Al Lateral cyclic

Y-Force Main rotor Y-force

ALPHW Angle of attack (corrected to

free stream wind axis system)

LIFT Lift

X-Force Propulsive force

L/D Equivalent lift/drag

CLR Lift coefficient

CXR Propulsive force coefficient

CPR Power coefficient

CPRO Profile power coefficient

NF Normal force
AF Axial force
SF, SFB Side force

PMB Pitching Moment

RMB Rolling moment
YMB Yawing moment

CLB Lift coefficient CDB Drag coefficient

CYB Sideforce coefficient

CMYB Pitching moment coefficient
CMXB Rolling moment coefficient

CMZB Yawing moment coefficient

^{*}Definitions provided in Table A-1 will not be repeated.

Confi	guration		Test Sequence
1	BHR	*******	Test Stand with Baseline Fairing, Mast, Hub, and Blades
2	BHRF2L	Thin.	Add Nose Modification In Lower Position
3	BHRFWO	The state of the s	Remove Wings
4	BHRF2U		Raise Nose
5	HR	***************************************	Isolated Rotor
6	н	*******	Remove Blades
7	BHF2U	The state of the s	Add Nose Modification In Upper Position
8	BHF2L		Lower Nose
9	BHRFWO	· · · · · · · · · · · · · · · · · · ·	Remove Wings
10	вн		Remove Nose Modification, Add Wings
11	В		Remove Hub and Controls
12	BF2L		Add Nose Modification In Lower Position

Figure B-1. Forward flight test configurations.

Table B-2. Summary of forward flight test conditions.

Configuration	Run No.	Shaft Angle	Speed Ratio
BHR	14*(1) 15 16 17 18	4,0,-4,-8 4,0,-4,-8 4,0,-4,-8,-12 -4	0.10 0.20 0.30 0.25 0.15
BHRF2L	19* 20 21 22 23	4,0,-4,-8 -4 4,0,-4,-8 -4 4,0,-4,-8,12	0.10 0.15 0.20 0.25 0.30
BHRFWO	24* 25 26*	-4 -0,-4,-8 -4	0.10 0.20 0.30
BHRF2U	27* 28 29 30	4,0,-4,-8 -4 4,0,-4,-8 4,0,-4,-8,-12	0.15 0.15 0.20 0.30
HR	31* 32 33 34 35	4,0,-4,-8,-12 4,-4,-12 4,0,-4,-8,-12 4,-4,-12 4,-0,-4,-8,-12	0.10 0.15 0.20 0.25 0.30
H	40* 41* 42* 45*	4 to -12	0.10 0.15 0.20 0.30
BHF2U	46 47 48 49 50	8 to -16	0.10 0.15 0.20 0.25 0.30
BHF2L	51 52 53 54 55	8 to -16	0.10 0.15 0.20 0.25 0.30

Table B-2 (Concluded)

Configuration	Run No.	Shaft Angle	Speed Ratio
BHFWO	56 57 58	4 to -12	0.10 0.20 0.30
ВН	59 60 61 62 63	8 to -16	0.10 0.15 0.20 0.25 0.30
B(2)	64 65 66	4 to -12	0.10 0.20 0.30
BF2L ⁽²⁾	67 68 69	4 to -12	0.10 0.20 0.30

⁽¹⁾ An asterisk indicates that graphical data is not presented

⁽²⁾ Although the rotor shaft was removed, test stand pitch attitude was calibrated to the shaft axis. The shaft is tilted forward 4 degrees relative to the body waterline; consequently, the shaft angles of (4 to -12 listed correspond to (8 to -8) degrees body pitch attitude.

ORIGINAL PAGE IS OF POOR QUALITY

Figure B-2. Configuration BHR installed in the LTV 7x10-foot Low Speed Wind Tunnel.

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 1	4 CONF	IGURATION 4 ROTOR-	BHR BODY H/R	600 = .083	DY PITCH	ATTI TUDE R-GROUND	= 3.0 Z/R = 1.4	4063
(TEST	COND 1T 10NS	3)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	(LB/FT2	M (
92	2	666.	-		2.0		10	
6	3	. 993	~		2.0	•	• 10	_
46	ŝ	666	17		200	•	919	
	ຄໍ	M 60	1		200	•	0	
0 6	0 0 0 0 0	0.9933 0.9933	517	. 50	52.05 52.05	ง ณ ก็ เก	20	
86	5	• 993	17		2.0	•	• 10	_
		MAIN ROTOR	OR DATA	- HUB	REFERENCE	CENTER		
	AX1S)							
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
00	1	1 4	1 4	1	10	15	1.0	1 3
90	7:1	4	0 0 0	-3.7	63.19	0.29	-1.24	1.76
96	•	•	٠	•	0.0	d.	1.5	7
9	,	•	•	4 1)	-	φ. 	٥٠
0 0	• •	• •	• (•	4.0	• K	7.0	•
86	9	•	•	m	51.5	7	0.8	S.
ONIM	AXIS)							
ίŬ	ALPHW (DEG)	(LB)	X-FORCE	(-)	CLR (-)	CXR (-)	æ:	CPR0 (-)
95	5.57	49.62	100	20°0	.00277	00029	.000090	.000081
9 (0	. (1)	5.5	8.6	•	0042	• 0004	00012	0000
95	8	2.6	10.8	•	0049	900	00015	60000
96	3.6	3.0	4.50	• •	000 000	.0000	0024	0012
86	9	1.3	5.2	•	028	.0002	6000	0008

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 14 CONFIGURATION BHR BODY PITCH ATTITUDE = 8.0 SHAFT ANGLE = 4 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

	Ĺ	FUSELAGE DAT	A - AERODYNAM	1 C	REFERENCE CENTER	TER	
(BODY	AX 1S)						† † † †
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
92	34	59	.23	. 47	0.	60.	
E 6	30	. 52	•20	.51	000	90.	
46	19	.43	•25	•60	0.01	60.	
56 .	.21	•43	•23	•61	0000	40	
96	. 08	•37	.27	.77	0.02	.01	
94 98	0.040	0.510	0.260	0.642	-0.074	0.082	
3	AX 15)				:	·	
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
	5	.23	.63	.23	.47	000	60.
	0	- 20	.56	• 20	.51	•01	•06
	0.3	10	•45	• 25	000	0000	600
	8.0	• 12	946	.23	601	0000	400
	N		37	71 P	2//20	-0-01 -0-01 -0-05	4.00.0
98	0	990.0	0.506	- 26	.72	0.04	.13
QNIA	AX IS)		:				
RECORD	ALPHW (DEG)	CLB (-)	CDB (-)	CYB (-)	CMYB (-)	CMXB	(-)
	5	0943	-2539	0915	.1881	.0011	.0377
	Ò	0816	•2244	•0795	.2039	.0054	.0254
	0.3	.0434	.1619	•0994	.2418	• 0010	•0372
	8	6640.	.1837	.0915	.2463	00	•0174
	~	0026	. 1505	•1074	.3071	1/00*	00000
6 6	9.62	00839	0.12013	15119	0.28736	01935	

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FURWARD FLIGHT

		į	į					
4.0 R = 1.4063) D X	0.101		•		0.101	0.101
TTITUDE =		(LB/FT2)	3.2	3.2	3.5	3.2	3.2	3.2
BODY PITCH ATTITUDE 0833 ROTOR-GROUND		VEL (FPS)	2	52.05	8	8	52.05	5
H/R = .		TP (FPS)	17.	517.89	17.	17.	17.	517.89
CONFIGURATION BHR		SIGPRM	0.9933	0 • 9933	0 • 9933	0.9933	0.9933	0.9933
ш	COND 11 10NS)	EG	55.0	55.0				
RUN 14 SHAFT ANGL	(TEST COND	ECORD	66	100	101	102	103	104

CENTER
REFERENCE
нив
1
DATA
MAIN ROTOR
Z I V E

(SHAFT	AXIS)								
ECO	THETA (DEG)	ALPHS (DEG)	(DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)	!
100	7.0		25		1 56.	400	101	• •	!
1001 001 001	1001		- W W C	1 4 10 4 0 0 0 0 0	93.19 105.35 56.79	0000	-12.03 -2.47	N W 4 0	
3	AX 15))	•	;	•	•	•	•	
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE (LB)	97	CLR (-)	C X X (-)	CPR (-)	CPRO	!
999 1001 1002 1003	1.76 2.55 3.33 1.79	55.85 69.09 81.27 93.06 105.17	- 2.14 - 3.02 - 3.02 - 4.68 - 6.14	44,0004	00312 00386 000454 00520 00587	- 00012 - 00017 - 00022 - 00027 - 00034	.000117 .000142 .000174 .000211	.000081 .000085 .000104 .000117	!

MAIN ROTUR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11263 FORWARD FLIGHT

RUN 14 CONFIGURATION BHR BODY PITCH ATTITUDE = 4.0 SHAFT ANGLE = 0 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

(BODY A	AX 15)					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	NF (LBS)	AF (LBS)		PM (FT-LB)	RM (FT-LB)		, , , , , , , , , , , , , , , , , , ,
	00	9		5	0	60000	
٠ŏ	01	9	.23	.55	•	•03	
C	0.	9	.25	.54	9	•05	
	18	ທ	•28	.67	0	•05	
0	17	0.536		.57	7	•01	
104	•	•	•13	040	Ç	•04	
ONIM	AX IS)					 	
RECORD	ALPHW	LIFT	DRAG	SFB (LB)	PMB	RMB (FI-LB)	YMB (FT-LB)
	3						
6	.7	0	Ō	-0.171		-0.034	
0	-	.07	•61	.23	ຮຸ	0.0	40.
0	S	0.5	• 60	25	• 54 4	0.05	0.02
0	•	.25	.54	•28	.67	0.0	10.
		24	.51	•39	•57		0.03
104	5.79	• 08	.67	• 13	4.9	C	• 0
ONIN	AX15)		,				# # # # # # # # # # # # # # # # # # #
RECORD	Ha	ļ 🗆	10		CMYB	CMXB	CMZB
	(DEG)	(-)	_	(-)	-	-	- 1
66	15	IN	•263	0690	0.20039	.013	500
100	7	315	.2431	•0919	.2207	.0213	.0163
0	S	208	.2403	9660	.2178	.0203	• 0078
0	0	466	47	12	.2682	288	.0072
0	M	954	.2027	.1563	. 2291	0441	.0120
104	5.79	322	.2670	.0521	• 1959	.0232	•0167

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

(TEST	701	-						
	-							
RECORD	TEMP (DEG F)	SI GPRM	TP (FPS		VEL (FPS)	0 (LB/FT2	DW . (3	
105	•	991	18		2.0	1 4	10	
106	•	.991	18		200			
107	ġ,	.991	. 8		2.9	•	• 10	· «u
901	å.	166.	18		S • 0	•	. 10	~
70	•	166	0		3.7	•	• 10	•
	20.0	0.9917	518	900	53.70	WW • • •	00	4 4
		MAIN ROTOR	DATA	EDH -	REFERENCE	E CENTER		
(SHAFT	AXIS)						-	
RECORD		ıα			THRUST	H-FORCE	Y-FORCE	CHOW
	(DEG)	(DEG)	(DEG)	(DEG)	(FB)	(LB)	(E)	(dH)
0		4	6.	•	8.0	5		10
9	•	4	m.	Ė	0.0	4.	1.1	ွှ
5 C	,	•	9-	•	8	4	សូ	•
> C	•	• †	1 4	•	- C	•	1.7	Ō
100	12.1		00	0 m	100.26		9 -	4
_	•	•	6	m	8.7	0.51	-1.01	8°040
CNIM	AX15)							
RECORD	E	=	X-FORCE		1 4			10
	(DEG)	(LB)	(18)	7	(-)	<u>-</u>	(-)	
	4	8.0	5	•	026	0000	0012	2000
Š	71	0	. 7	•	660	• 0001	0014	8000
) (Ø •	æ 1	•	040	0000	00018	8000
ÒČ	•	0	•	•	047	0001	00021	6000
110	-0.76	109.24	1.59	v - c	\$ 0000 5 0000	0.000.0	• 000263	.0000111
-	ď	14) (•)			7700

RUN 14 CONFIGURATION BHR BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

CENTER
Ę
ũ
E C
Ż
REFERENCE
ī
2
7
₹
Z
ζ
5
œ
AERUDYNAMIC
ı
•
≤_
⋖
DATA
Щ
USELAGE
ب
Ä
3

(B0DY	AX15)						***************************************
RECORD	NF (LBS)	S	SF (LBS)	PM (FT-LB)			
10	.83	0.762	-0-170	001		-	
106	-0.756	.71	22	• 75	7.00	40.0	
0	•68	.71	. 22	99		2000	
0	69.	.72	.23	19.	0.0	# T • O	
	.87	• 66	39	999		01.0	
_	.86	• 65	• 46	.72	0.1	0.00	
-	•74	• 85	• 19	•76	0.1	40.0	
Q IND	AXIS)						1
RECORD	ALPHW	LIFT	DRAG (LB)	SFB (LB)	PMB (FT-LB)		YMB (FI-LB)
1				1:	1 9	1	1
0	ູ	ָ מ נ	*	- C	מ מ מ	•	40.0
0	0	17.	90	, c		-	
0	N.	7	900	70	9 6		4
9	0	•		10		9	50.0
> -	٥	, 0	0.602	404	0.729		0
111	1.44	16	. 83	• 19	•76	•14	0.03
	AX 15)						
RECORD	I	۱ ــا	10	۲,	-	CMXB	N
,	(DEG)	1	1	(-)	(-)	1	
10	1 6	1 4	.2943	•0676	.3408	.053	3
106	1.89	9	0.27321	08992	0.30015	280	158
0	N	751	.2642	.0872	-2544	.0454) to
0	9	808	.2661	•0805	•2617	0391	100
0	8	400	.2311	.1471	. 2499	0621	200
-	4	375	. 2254	1737	•2728	\$000 \$100	4 1 5
	4	873	.3119	•0711	• 2845	900	0 7 1

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

-4.0 = 1.4063) M	00.104 00.107 00.110 00.111		FOR CE MRHP LB) (HP)	1.06 1.06 1.06 1.06 1.96 1.96 1.96 1.05 1.05 1.05 1.05		0153 .000082 0223 .000096 0265 .000107 0320 .000120
ATTITUDE = R-GROUND Z/R		0 (LB/FT2)	พพพพพพพพ 4000000	CENTER	H-FORCE Y-(LB)	00000 0000 44400 0000 0000 0000 0000	OXR (-)	0.00036 0.00041 0.00041 0.00047 0.00052
00Y Р1ТСН 833 R0T0		VEL (FPS)	いるイイググ	REFERENCE	THRUST (LB)	51.89 63.91 75.71 68.05 100.95 113.44	CLR (-)	
B H/R = .0		TP (FPS)	518.36 518.36 518.36 518.36 518.36 518.36	ATA - HUB	A1 (DEG)		ORCE L/0 B) (-)	40000000000000000000000000000000000000
ATION BHR ROTOR-BODY		I GPRM	9917 9917 9917 9917 9917	IN ROTOR DA	45 B1		FT × -F	1.62 3.58 5.35 7.64 8.99 10.50
CONFIGURA E = -8 R	IT IONS)	EMP SI	000000	MA!	ETA ALPH EG) (DEG	22-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	PHW LI	246 86 86 67 87 86 87 80 80 80 80 80 80 80 80 80 80 80 80 80
N 14 AFT ANGL	(TEST COND	CORD T	0.000000000000000000000000000000000000	SHAFT AXI	ECORD TH	11111111111111111111111111111111111111	RECORD ALI	2000 4000

RUN 1	ANGLE = -	GURATION BE B ROTOR-BC	BODY H/R =	BODY PITC .0833 RO	H ATTITUDE	= -4.0 Z/R = 1.4	06 3
	Ē	USELAGE DAT	A - AEROD	YNAMIC REF	ERENCE CEN	TER	
(BODY	AXIS)					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM. (FT-LB)	
1	92	85	11.	53	010	16	
<u></u>	95	. 86.	120	04.	.05	900	
116 117 118	-1.150 -0.900 -1.180	0.750 0.770 0.930	0.0440	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0	-0-153 -0-127 -0-108	0.096	
ONIM	AXIS)						# # # # # # # # #
RECORD	ALPI (DE	L1FT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMG (FT-LB)	YMB (FT-LB)
1	40	88	88.	113	53	00	0.17
\rightarrow	800	•94 •92	.88 .88	0-	0.4 0.4 0.4	0.00	000
116	-1 - 33 -1 - 0 7 -2 - 6 6	-1.141 -0.885 -1.136	0.817 0.787 0.984		0.540 0.405 0.818	-0-10-10-10-10-10-10-10-10-10-10-10-10-1	-0.255 -0.255 -0.101
E A.)	AX IS)						
RECORD	ALPHW (DEG)	CLB (-)	(-)	C YB (-)	CMYB (-)	CMXB (-)	CMZB (-)
	2.4	305	. 3328	411	.1985	.0325	99
	o, a	990	3126	•0424 •0424	.1967	0246	6860
	9	3097	.2972	703	•1666	0 166	.0961
116	-1- EE-1-	38244	0.27361	13067	0.18249	05005	.0778
	9 - 0	707	.3211	718	.2670	338	0330

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

(TEST	COND 11 10NS	5)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2)	D.¥	• • • • • • • • • • • • • • • • • • •
119	56.0	66	518	36	03.7	200	20	
1 W W		966	200		103.78	12.7	000	000
N		986	8		03.8	, . V V	. 20	
		MAIN ROTOR	DATA	- HUB	REFERENCE	E CENTER		
(SHAFT	AXIS)							
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FURCE (LB)	Y-FORCE	MRHP (HP)
-	•		€.		4 • 4	1.	1.8	-
120	7 • 1 6 • 1	4 4 0 0	0.	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0°0	5-	- "	E 1
2	6	•	91		5.6	M	2.7	
NV	• •			14.5	118.11 65.87	0.62	-2.82	2.82 1.18
QNIM)	AX15)							
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE (LB)	2	CLR (-)	CXR (-)	CPR (-)	CPR0 (-)
-	5.	=	5.8	•	035	003	9000	0010
S)	91	N.	9	•	940	660000	0000	0011
vο	-	0 N	D (•	200	00004	000010	0012
123	40.	117.72	9.55	4 0	.00657	000053	000130	000140
S	ď	٧	•	,)))

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 15 CONFIGURATION BHR BODY PITCH ATTITUDE = 8.0 SHAFT ANGLE = 4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

CENTER
CEN
REFERENCE
AERODYNAM 1C
1
DATA
JS EL AGE
FUS EL AGE

(BODY	AXIS)						
RECORD	NF (LBS)		S	ΣJ	R R H		1 1 1 1 1 1 1
ļ —	0		10				1 1 1 1 1 1 1
S	0	.35	0.87	49	0.21	49	
N	Ø	.35	1.00	.62	0.19	58	
2	~	.37	1.14	.56	0.17	.72	
123	1.313	1	-	-	0.18		
N	0	•32	0.93	•40	0.23	.53	
ONI M)	AX 15)						
RECORD	ALPHW	L1FT	DRAG	SFB	PMB	E.	YMB
	7			. į	(FI-LB)	(FI-LB)	(FI-LB)
-	•	63	-	9	444	•13	.52
S	9	.13	.55	.87	.40	•13	.51
121	8.74		.53	00.	2	01.	• 60
N (œ (600	.51	• 14	.56	900	• 74
N	9	40.	44	.21	.71	.07	• 70
N	S	• 24 •	. 53	693	• • 0	5 - 5	• 56
QNIM)	AXIS)						
EC	ALPHW		ėoo		CMYB	CMXB	N
1	בור הוני	-	-	7	7	- 1	
-	5		•	948	• 14	0 1	• 05
2	9	• 1135	.2557	.0878	.1497	•0137	•0519
N	-	•0995	.2538	•100B	.1627	0107	• 0606
122	8.84	66	16	4		0900	741
N	•	• 0946	• 2454	.1219	.1717	• 0077	•0708
N	ŝ	. 1244	.2540	.0938	.1406	.0153	.0567

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

SHAFT ANGL								
(TEST	COND 1 T 1 ON	48.)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	(LB/FT)	MU 8)	
N	2	86	1		03.6	18	1.3	0
N		. 98	-	0	03.8		,	
N		• 98	18	9	03.8	3	10	
N	-	96 •	18	0	03.R	,	10	
N	-	•98		9	03.8	,	• •	
130	57.0	0.9898	518	56	103.88	1207	0.20	
			•	N .	• • • • • • • • • • • • • • • • • • • •	ů	N	5
	1	MAIN ROI	TOR DATA	HUB	REFERENCE	E CENTER		
(SHAFT	AXIS)							
RECORD	THET	la			13			
	(DEG)	(DEG)	(Dec.)	(DEG)	(LB)	1 (EB)	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	TYL)
N	•	! •	1	13	10,4	1 0	1	
N	•		•	2	100	α	1	0
∾.			•	•	5.0	7	0	0 0
N	•	•	•	6	7.2		0	4
N I	•	•	•	ě	0.6	9	2	,
130	11.1	0.0	0.9	4.4	111.56	96.0-	Ņ	
ח	•	•	•	8	7.1	6	1.5	
ON IND	AX IS)							
EC	ALPHW	LIFT	10		1 🗔	ļΧ		10
	9 I	i 00 I 12	(18)	(-)	(-)	(-)	ĵ	(-)
125	3	6.9			026	10	0000	1000
N	4	1.4	5		034	90		
N	9	5.0		•	041	0	100	
	690	87.28	-1.03	5.8	•00487	- 00000	.000157	0000
V	-	0.6	0.7	•	055	00	9100	0012
J L	יי מ	۳.		•	062	00	0023	0014
)	•		1.2	•	920	00	6000	6000

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 15 CONFIGURATION BHR BODY PITCH ATTITUDE = 4.0 SHAFT ANGLE = 0 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

(BODY	AX 15)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	¥1	
	• 14	•76	1	6	-0.158		†
Ñ	•04	69.	.82	•01	• 19	•38	
S	.84	•61	.83	• 15	51.	•39	•
Ñ	.97	•63	.81	• 06	.17	.34	
Ň	•86	•62	.95	•08	.17	.46	
130	0.867	2.633	-0.941	1.118	-0-175	.37	
3	•00	• 73	•61	•92	•15	25	
ONIMO	AX 15)			, , ,		•	
RECORD	9	1	A A	! [IΣ	RMG	
	DE	(B)	(LB)	(LB)	1-L	7	
N	3	.93	9		10	-0.128	•
126	4.49	0.833	• 76	0	.01	.16	
3	9.	.63	•67	• 8	.15	.15	.41
Ñ	9	.75	• 70	8	•06	• 14	•36
Ò	-	• 64	•68	6	•08	•13	• 48
M	8	49	69•	0	.11	• 1 4	•39
M	F	•88	.80	9	•92	•13	•26
ONIM	AX IS)						
RECORD	ALPHW (DEG)	CLB (-)	CDB (-)	C YB (-)	CMYB (-)	CMXB (-)	CMZB (-)
125		• 0935	-2849	742	.0945	.0128	.039
126	4	.0835	.2773	823	.1021	•0160	.0401
N	9	.0636	.2679	833	.1159	.0159	.0410
128	9	• 0760	.2710	813	.1068	.0142	• 0360
129	4.79	0.06468	0.26930	09534	O.	01367	8
130	8	.0641	•2704	943	•1120	0143	•0395
131	E.	.0887	.2815	612	.0923	.0133	.0263

ECORD TEMP SIGRM TP (PS) (LB/FT2) MU 132 57.0 0.9898 518.999 103.88 12.7 0.200 134 57.0 0.9898 518.999 103.88 12.7 0.200 135 57.0 0.9898 518.999 103.88 12.7 0.200 136 57.0 0.9898 518.999 103.88 12.7 0.200 137 57.0 0.9898 518.999 103.88 12.7 0.200 138 57.0 0.9898 518.999 103.88 12.7 0.200 139 58.0 0.9879 518.99 103.88 12.7 0.200 130 FERRENCE CENTER SHAFT AXIS) ECORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP (PEC) (DEG) (DEG) (DEG) (LB) (LB) (LB) (LB) (LB) 134 8.1 -4.0 2.6 -2.2 43.13 0.87 -1.83 3.59 135 10.1 -4.0 2.6 -2.2 43.13 0.87 -1.83 3.59 136 11.1 -4.0 2.6 -2.2 43.13 0.87 -1.83 3.59 137 12.1 -4.0 2.4 -2.2 43.13 0.87 -1.83 3.59 138 12.1 -4.0 2.4 -2.2 43.13 0.87 -1.83 3.59 139 12.1 -4.0 2.5 -4.2 107.03 -0.070 130 -3.56 43.0 10.88 4.6 0.00210 0.000127 0.00093 131 -3.45 65.02 2.88 4.6 0.00240 0.00016 0.000167 131 -3.45 65.02 2.88 4.6 0.00220 0.00025 0.00025 134 -3.45 65.02 0.688 0.00025 0.00027 0.00163 135 -3.36 43.0 1.63 4.5 0.00237 0.00037 0.000163	RUN 1	S CONF ANGLE =	IGURATION -4 ROTOR-	BHR HZR	B0 • • 08	ODY PITCH 833 ROT	H ATTITUDE TOR-GROUND	= 0.0 Z/R = 1.	4063
THETA ALPHS SIGPRM (FPS) (FPS) (LB/FT2) MU 57.0 0.9898 518.99 103.88 12.7 0.200 57.0 0.9898 518.99 103.88 12.7 0.200 57.0 0.9898 518.99 103.88 12.7 0.200 57.0 0.9898 518.99 103.88 12.7 0.200 57.0 0.9898 518.99 103.88 12.7 0.200 57.0 0.9898 518.99 103.88 12.7 0.200 57.0 0.9898 518.99 103.88 12.7 0.200 57.0 0.9879 519.30 103.98 12.7 0.200 57.0 0.9879 519.30 103.98 12.7 0.200 57.0 0.9879 519.30 103.88 12.7 0.200 57.0 0.9879 519.30 103.88 12.7 0.200 57.0 0.9879 519.30 103.88 12.7 0.200 57.0 0.9879 519.30 103.88 12.7 0.200 57.0 0.9879 519.30 103.88 12.7 0.200 57.0 0.9879 519.30 103.88 12.7 0.200 57.0 0.9879 519.30 103.88 12.7 0.000 57.0 0.9879 519.30 103.88 12.7 0.000 57.0 0.9879 519.30 105.8 5.6 0.00252 0.000253 0.0012 57.0 0.9879 518.99 103.8 5.6 0.00251 0.00117 57.0 0.9879 518.99 103.8 5.6 0.00251 0.00017 57.0 0.9879 518.99 105.9 106.8 5.6 0.00251 0.00017 57.0 0.9879 518.99 105.9 10.88 4.5 0.00251 0.00017 57.0 0.9879 518.99 105.9 106.8 4.5 0.00251 0.00017 57.0 0.9879 518.99 105.9 106.8 4.5 0.00251 0.00017 57.0 0.9879 518.9 5.7 0.00251 0.00017		NOITION	5.)						
57.0 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9879 519.30 103.88 12.7 0.200 0.9879 519.30 103.88 12.7 0.200 0.9879 103.88 12.7 0.200 0.9879 103.88 12.7 0.200 0.200 0.9879 103.88 12.7 0.200 0.200 0.9879 12.7 0.200 0.200 0.9879 12.7 0.200 0.200 0.200 0.9879 12.7 0.200 0.20		EMP	SIGPRM	PS	_	PS	60	Σ	1
57.0 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 518.99 103.88 12.7 0.200 0.9898 12.7 0.200 0.9898 12.7 0.200 0.9898 12.7 0.200 0.9898 12.7 0.200 0.9898 12.7 0.200 0.200 0.200 0.9898 12.7 0.200 0.2			989	18.		03.8	100	20	0
57.0 0.9898 518.99 103.88 12.7 0.200 58.0 0.9898 518.99 103.88 12.7 0.200 58.0 0.9898 518.99 103.88 12.7 0.200 58.0 0.9898 518.99 103.88 12.7 0.200 AAIS) THETA ALPHS B1 A1 THRUST H-FOR CE Y-FORCE MRHP (DEG) (DEG) (DEG) (LEG) (LEG) (LB) (LB) (LB) (HP) 8.1 -4.0 2.5 -2.2 43.13 0.87 -1.33 2.14 8.1 -4.0 3.8 -3.1 69.40 0.046 -1.77 2.98 11.1 -4.0 5.5 -4.2 43.13 0.87 -1.83 3.200 12.1 -4.0 5.5 -4.2 43.13 0.87 -1.83 2.14 AAIS) ALPHW LIFT X-FORCE L/D CLR CAR CPR (DEG) (LB) (LB) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-		::	989. 989.	8 8		03.8	å	- 20	.00
AXIS) MAIN ROTOR DATA - HUB REFERENCE CENTER AXIS) THETA ALPHS B1 THETA ALPHS B1 THETA ALPHS B1 THE B1		-1	986	8		03.8	i	200	
MAIN ROTOR DATA - HUB REFERENCE CENTER THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP (DEG) (DEG) (DEG) (LEB) (LB) (LB) (LB) To 1 -4.0 2.5 -2.2 43.13 0.87 -1.33 2.14 8.1 -4.0 3.0 -2.7 56.09 0.076 -1.59 2.50 10.1 -4.0 5.5 -4.2 93.79 -0.45 -1.59 2.50 11.1 -4.0 5.5 -4.2 93.79 -0.45 -1.59 2.50 12.1 -4.0 5.5 -4.2 93.79 -0.45 -1.59 2.50 To 1 -4.0 5.5 -4.2 93.79 -0.45 -1.59 2.50 AXIS) AXIS) AXIS ALPHW LIFT X-FORCE L/D CLR CXR CPR CPR CPR CPR CPR CPR CPR CPR CPR CP		. 8	.987	19		03.8	ດໍດໍ	.20	00
AXIS) THETA ALPHS B1 THETA ALPHS B1 THETA ALPHS B1 THRUST H-FORCE Y-FORCE MRHP Toll -4.0			Z	DATA	_	EFEREN	CENTE		
THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP (DEG) (DEG) (DEG) (LB) (LB) (LB) (LB) (HP) 7-1 -4-0 2-5 -2-7 56-09 0-76 -1-59 2-50 9-1 -4-0 3-8 -3-1 59-00 0-76 -1-59 2-50 10-1 -4-0 5-5 -4-2 93-79 -0-45 -2-29 4-28 12-1 -4-0 5-5 -4-7 107-03 -0-07 -1-83 3-59 12-1 -4-0 2-4 7 107-03 -0-07 -1-83 3-59 ALPHW LIFT X-FORCE L/D CLR CXR CPR (DEG) -3-66 43-09 1-88 4-6 -00240 0-00010 -000127 -00009 -3-56 59-31 3-70 5-7 -00387 0-00025 -000127 -00009 -3-56 43-10 1-83 4-5 -00241 0-00017 -000025 -000127 -00009	FT	XIS							
7-1 -4-0 2-5 -2-2 43.13 0.87 -1.33 2.14 10.1 -4.0 3.0 -2.7 56.09 0.76 -1.59 2.96 10.1 -4.0 3.8 -3.1 69.40 0.48 -1.77 2.96 110.1 -4.0 5.5 -4.2 93.79 -0.45 -2.29 4.28 12.1 -4.0 5.5 -4.2 93.79 -0.45 -2.29 4.28 7.1 -4.0 5.5 -4.7 10.79 -0.70 -2.59 5.15 7.1 -4.0 6.2 -4.7 10.79 -0.70 -2.59 5.15 7.1 -4.0 6.2 -4.7 10.92 -1.34 2.14 D ALPHW LIFT X-FORCE L/D CLR CXR CPR CPR (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	٥	EG	FE	1 EG)	A1 CE	159	FOR (LB)	-FORC	MRHP (HP)
D AXIS) AALPHW LIFT X-FORCE L/D (CLR CXR CPR CO000000000000000000000000000000000000		7.1		.5	10	3.1	18	1.3	2.14
10.1 -4.0 4.7 -3.4 82.20 0.07 -1.83 3.59 11.1 -4.0 5.5 -4.2 93.79 -0.45 -2.59 4.28 12.1 -4.0 6.2 -4.7 107.03 -0.70 -2.59 4.28 7.1 -4.0 6.2 -4.7 107.03 -0.70 -2.59 5.15 7.1 -4.0 6.2 -4.7 107.03 -0.70 -2.59 5.15 ALPHW LIFT X-FORCE L/D CLR CXR CPR CPRO (DEG) (LB) (LB) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-		0 0	• •	5 6	2 6	9	7	1.5	S
AXIS) ALIFT X-FORCE L/D CLR CXR CPR CPROTOPO			4) W	70	4 6	- 4	0 4
AXIS) ALPHW LIFT X-FORCE L/D CLR CXR CPR CPRO (-) 5-15 5-15 6-15 6-15 6-15 6-15 6-15 6-15			4	S.	4	3.7	4	2.5	י מ
ALPHW LIFT X-FORCE L/D CLR CXR CPR CPHO (DEG) (LB) (LB) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-			• •	 U 4.	4 0	7.0	7 0	2.5	-
D ALPHW LIFT X-FORCE L/D CLR CXR CPR CPHO (DEG) (LB) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-		15) •	•
3-66 43-09 1-84 4-6 -00240 0.00010 -000127 .00009 3-56 56-02 2-72 5-3 .00313 0.00015 .000148 .00009 3-35 69-31 3-70 5-7 .00387 0.00021 .000176 .00009 3-35 82-07 4-73 5-7 .00458 0.00026 .000127 .00010 3-26 93-61 5-78 5-6 .00522 0.00032 .00012 3-15 106-83 6-58 5-2 .00594 0.00037 .000305 .00014	۵	I E SI		-FORC			IXI		127
3.56 56.02 2.72 5.3 .00313 0.00015 .000148 .00009 3.45 69.31 3.70 5.7 .00387 0.00021 .000176 .00009 3.35 82.07 4.73 5.7 .00458 0.00026 .000212 .00010 3.26 93.61 5.78 5.6 .00522 0.00032 .000253 .00012 3.15 106.83 6.58 5.2 .00596 0.00037 .000305 .00014		3.6	3.0	8	! •	024	• 0001	0012	60000
3.45 69.31 3.70 5.7 .00387 0.00021 .000176 .00009 3.35 82.07 4.73 5.7 .00458 0.00026 .000212 .00010 3.26 93.61 5.78 5.6 .00522 0.00032 .000253 .00012 3.15 106.83 6.58 5.2 .00596 0.00037 .000305 .00014		i S	9.0	1	•	0031	.0001	0014	60000
3.26 93.61 5.78 5.6 .00522 0.00026 .000212 .00010 3.26 93.61 5.78 5.6 .00522 0.00032 .000253 .00012 3.15 106.83 6.58 5.2 .00596 0.00037 .000305 .00014 3.66 43.10 1.83 4.5 .00241 0.00010 .000127 .0000		ין קיני	9	<u>`</u>	•	0038	.0002	00017	60000
3.15 106.83 6.58 5.2 .00522 0.00032 .000253 .00012 3.15 106.83 6.58 5.2 .00596 0.00037 .000305 .00014 3.66 43.10 1.83 4.5 .00241 0.00010 .000127 .00009		3 m	, c		•	0045	• 0005	00021	0000
3.66 43.10 1.63 4.5 .00241 0.00010 .000127 .00000		7 · F	ָט מ	2	•	0052	• 0003	00025	00012
		9	30.0	3	• •	024	0000	0030	0014

= .0833 ROTOR-GROUND Z/R = 1.4063 RUN 15 CONFIGURATION BHR SHAFT ANGLE = -4 ROTOR-BODY H/R

	ų.	FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER	ra - AEROD	YNAMIC REFE	ERENCE CENT	IER
(BODY	AX15)	1				
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20000000000000000000000000000000000000	-0.147 -0.337 -0.477 -0.447 -0.537	0.782 0.969 1.041 1.021 1.36	-0.176 -0.137 -0.133 -0.117 -0.130	00000000000000000000000000000000000000

RECORD

ONIM	AXIS)						
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
921	1 1	13	03	7	1.	-	•
7 6) 4		.02	-	6	0.16	0.50
1 C	ľ		95		1 • 0 4 1	-0.134	-0.085
101		,	92	4	Ç	0.14	.03
001		4	96	4		0.11	•06
900	٩	9	01	ູດ	5	0.13	•04
138	0 0 0 0 0 0 0	0.415	3.078	-0-197	9	0.16	.17
QNIA)	AX 1S)		1				
RECORD	ALPHW (DEG)	CLB (-)	CDB (-)	C Y B	CMYB	CMXB (-)	CMZB (-)
	1"	0255	3044	14	820	177	-
701	1 0 0	7670000	0.30334		0.09719	01691	02040
	נו מ	0000	2961	E	•104	133	0084
	3) =	0000	047	. 102	148	.0035
	10	•	7000	440	113	118	.0062
	•	• P	0000	ŗ		131	.0048
	Ď	5000	1000		9	4410	10175
	7	2	. 3085	ב	•		

						MRHP (HP)	700 000 000 000 000 000 000	PR0 -)	0092 0097 0105 0117 0135 0091
4063	; ;			20000			ମୟ 4 ଦ ଦ ମ	5	0000000
= -4.0 Z/R = 1.		2) MU	446			Y-FORCE	-1.02 -1.35 -1.87 -2.27 -2.35	CPR	0001163 0000238 0000238 0000338 0000338 0000338
ATTITUDE DR-GROUND		CLB/FT2	200	120.7 120.7 120.7 120.7	E CENTER	H-FORCE (LB)	0.77 0.37 0.37 0.19 0.19	CXR	0.00028 0.00048 0.00058 0.00068
0DY PITCH 833 R0T0		VEL (FPS)	05.1	105.21 105.21 105.21 105.31	REFERENCE	THRUST (LB)	43.77 56.33 69.27 82.84 94.63 105.58	. CLR	. 00242 . 00312 . 00383 . 00588
# 00 H)		- - - - - - - - - - - - - - - - - - -	- HUB	A1 (DEG)	040W0W0	90	4000044 0-44-00
BHR -BODY H/R		TP (FPS	000	2000 2000 2000 2000 2000 2000	DATA	B1 (DEG)	w 4 û û û ⊳ w w 0 =	X-FORCE	5 6 6 10 10 10 14 13 13 13 13 13 13 13 13 13 13 13 13 13
IGURATION -8 ROTOR-		SIGPRM	965	0 • 9650 0 • 9650 0 • 9650 0 • 9650 0 • 9650	MAIN ROTOR	ALPHS (DEG)		(LB)	665 665 665 665 665 665 665 665 665
15 CONFI	COND IT IONS	TEMP (DEG F)	•	71.0 71.0 72.0	AXIS)	THETA (DEG)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AXIS) ALPHW (DEG)	17 17 17 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
RUN 18	(TEST	RECORD	444	155 155 158 158 158 158	(SHAFT	RECORD	44000000 640000000000000000000000000000	RECORD	443666 443666 843666

4

RUN 15 CONFIGURATION BHR BDDY PITCH ATTITUDE = -4.0 SHAF1 ANGLE = -8 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

CENTER
REFERENCE
AERODYNAMIC
1 4
DAT
FUSELAGE

(BODY AX1S)

RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
148	INN	3.230	-0.200	1.845	0.002	0.045	
S	2.55	• 18	0.27	- 1	90.	.03	•
s c	.04	200	5.0	88	0.0		
S	2.68	• 16	0.63	19	•01	. 14	
S	2.71	• 24	0.30	96	• 03	• 12	
ONI	AX15)						
RECORD	ALPHW (DEG)	(LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)		YME (FI-LB)
	9	2.43	.35		8	•	•04
140	-3.55	-2,355	3.382	-0.280	1.749	0.044	0.062
S	4	2.35	.32	.27	.71	0	.03
S	M	2.45	.26	.40	11.	•	90.
	3	2.53	• 34	5.	88	9	7 .
S	-	2.50	• 30	63	6/	•	7
S	9	2.49	• 40	• 30	• 96	•	٠. د
ONIA	AX 15)						
RECORD	ALPHW (DEG)	(-) (-)	CDB (-)	CYB (-)	CMYB (-)	CMXB (-)	CMZB (-)
4	9	437	.3360	0200	• 184	0000	004
4	3.5	360	.3391	.0280	1753	0044	.0082
	4.	359	.3336	270	1716	9500.	£500.
S	3.3	459	.3276	.0401	. 1782	0031	2000
S	3.2	540	.3357	.0511	. 1893	.0024	4110
153	-3.16	25079	0.33114	90.	1797	200	0145
	9	504	.3414	300	1972	• 00030	• 0130

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

N BHR BODY PITCH ATTITUDE = 8.0 R-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063		M TP VEL 0 MU (FPS) (FPS) (LB/FT2) . MU	527.47 157.52 28.3 01.29	507.47 157.50 20 3	507.47 157.50 50 3 0 0.00		521.67	527.79 157.67 28.3 0.29	527.79 157.67 28.3 0.	527.79 157.70 26.3 0.29	OTOR DATA - HUB REFERENCE CENTER		1 A1 THRUST H-FORCE V-FORCE	(18) (18) (18) (100 100 100 100 100 100 100 100 100 100		-3 -3-0 86.16 0.64 12.03 .		-8 -4.0 107.86 -0.85 -2.26 2	1 -1.5 47.86		FORCE 1 /D CLD CVD CVD	(18)	.05 5.9 .0027000028 .00062	5-94 7-0 -0034800033 -000050 -000	5.58 7.5 .0041600037 .00000 ZEOOO	•11 7•5 •00478 -•00040 •000072 00015	7.28 7.3 .0053800041 .000098 .00017	
TION BHR OTOR-BODY H/R = •08		4	•9592 527.4	49592 527.4	4502	- 0400 - 0400	1.120 2606.	95/4 527.7	9574 527.7	.9571 527.7	IN ROTOR DATA - HUB		S 81 A	EG) (DE					- 9·2 0·	8-8-0	•0 3•1 -1•		FT X-FORCE 1/	(18)	8.37 -5.05 5.	2.46 -5.94 7.	4.71 -6.58 7.	5.86 -7.11 7.	6.41 -7.28 7.	7.61 -7.40 6
RUN 16 CONFIGURA Shaft angle = 4 R	(TEST CONDITIONS)	RD TEMP (DEG F)	22 /4.0	56 74.0	57 74.0	58 74.0	111	0001	0.67	0.67	M	SHAFT AXIS	AL	EG) (D	A. O.	156 5.9	27 7.0	58 8.0	29 9.0	10.0	61 4.9	ND AX I	ORD ALPHW	(DEG)	55 4.17	156 4.22 6	57 4.27	58 4.31	59 4.34	1 KF. A OA

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 16 CONFIGURATION BHR BODY PITCH ATTITUDE = 8.0 SHAFT ANGLE = 4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

CORD NF SF PM RM FT-LB (FT-LB FT-LB FT-LB FT-LB (FT-LB FT-LB FT-			משוים משוים) ·			
Second Color Col	(BODY	15						
155	1 2		1110	F	T T	RN T-L	14	1 3 1 1 1 2 2
150	101	999	•16	1.51	.85	0.06	76.	
158	ດີເດ	14.	.00	1.65	16	0.10	03	
FORD ALPHW LIFT DRAG SFB FT-LB FT-LB FORD ALPHW LIFT DRAG SFB FT-LB FORD ALPHW LIFT DRAG SFB FT-LB FORD ALPHW LIFT DRAG S-592 S-1650 S-1660 S	10 1	.74	.01	E 6 . C	₩ 000	0.13	37	
ECORD ALPHW LIFT DRAG SFB PMB RMB 155 8-17 3-879 5-770 -1-510 1-859 0-073 1-55 8-22 3-944 5-642 -1-580 1-748 0-035 1-59 8-34 3-944 5-642 -1-580 1-748 0-035 1-59 8-34 3-954 5-642 -1-59 0-077 1-59 0-077 1-59 159 8-34 3-954 5-642 1-1-930 1-831 0-068 1-930 1-831 0-058 1-930 1-831 0-058 1-930 1-831 0-058 1-930 1-831 0-058 1-930 1-831 0-058 1-930 1-831 0-058 1-930 1-831 0-058 1-930 1-8470 1-584 0-093 1-931 1-584 0-093 1-931 1-584 0-093 1-931 1-584 0-093 1-931 1-930 1-931 1-931 0-094 1-931 1-93	900	81	98	2.06	.15	0.03	90	
ECORD ALPHW LIFT DRAG SFB PMB RMB 155 8-17 (LB) (LB) (FT-LB) (FT-LB) 156 8-27 3-944 5-642 -1-580 1-749 0.073 156 8-27 3-944 5-642 -1-580 1-749 0.073 159 8-27 3-944 5-692 -1-650 2-166 0.073 159 8-31 3-944 5-692 -1-690 2-166 0.048 160 8-34 3-944 5-692 -1-650 2-166 0.078 161 8-17 4-042 5-692 -1-470 1-584 0.093 161 8-17 4-042 5-692 -1-470 1-584 0.093 WIND AXIS 4-042 5-692 -1-470 1-584 0.093 WIND AXIS 4-042 5-692 -1-470 1-584 0.093 WIND AXIS (-) (-) (-) </td <td>WIND</td> <td>_</td> <td></td> <td></td> <td></td> <td>, ,</td> <td></td> <td></td>	WIND	_				, ,		
155 8.17 3.879 5.770 -1.510 1.859 0.073 156 8.27 3.644 5.642 -1.580 1.748 0.035 158 8.31 3.974 5.592 -1.650 2.166 0.048 159 8.34 3.974 5.592 -1.930 1.831 0.068 160 8.38 3.655 5.512 -2.060 2.150 0.077 161 8.17 4.042 5.692 -1.470 1.584 0.093 (WIND AXIS) ECORD ALPHW CLB CDB CYB CMYB CMXB 156 8.27 0.1653 0.25383 -07108 0.07364 0.00326 157 8.22 0.17742 0.25383 -07108 0.07364 0.00316 158 8.31 0.17878 0.25383 -07108 0.09346 0.00316 159 8.34 0.17878 0.25576 -09133 0.09402 0.00349 160 8.38 0.16446 0.24796 -006613 0.09574 0.00349 161 8.17 0.18185 0.25609 -06613 0.09472 0.00349	1 H	LPH	18	RA LB	55	PMB T-L	RMB T-L	YMB (FT-LB)
56 8.22 3.944 5.642 -1.580 1.748 0.035 1.58 8.27 3.644 5.592 -1.650 2.166 0.048 1.59 8.31 3.966 5.642 -1.650 2.166 0.0068 0.0077 0.0068 3.94 3.974 5.707 -2.030 2.090 0.077 0.077 0.0077	1 0	7	.87	.77	.51	.85	•07	0
157 8.27 3.644 5.592 -1.650 2.166 0.048 1.58 1 0.068 1.59 8.34 3.974 5.707 -2.030 2.090 0.077 1.650 8.38 3.655 5.612 -2.030 2.150 0.077 1.651 8.37 4.042 5.692 -1.470 1.584 0.093 0.077 1.651 1.584 0.093 0.0032 0.0	Ñ	N	46.	•64	•58	•74	•03	0
158 8.31 3.966 5.642 -1.930 1.631 0.0077 1.659 8.34 3.974 5.707 -2.030 2.090 0.0777 0.077 1.659 8.34 3.974 5.652 -1.470 1.584 0.093 0.0077 1.65 8.37 4.042 5.692 -1.470 1.584 0.093 0.093 0.025 0.25383 -0.7108 0.07864 0.00328 1.56 8.37 0.1745 0.25576 -0.09133 0.09402 0.00344 1.59 8.34 0.17878 0.25576 -0.09268 0.09402 0.00349 1.60 8.38 0.16446 0.24798 -0.06513 0.09402 0.00349 1.61 8.17 0.18185 0.25609 -0.06513 0.09472 0.00349 1.61 8.37 0.18185 0.25509 -0.06513 0.09472 0.00349	S	7	•64	59	• 65	910	400	40
150 8.38 3.655 5.512 -2.060 2.150 0.077 161 8.37 4.042 5.652 -1.470 1.584 0.093 (WIND AXIS) CCLB CDB CYB CMYB CMXB ECORD ALPHW CLB CDB CYB CMYB CMXB 155 8.17 0.17452 0.25959 06793 0.06354 0.00326 156 8.27 0.1742 0.25383 07108 0.07864 0.00326 159 8.31 0.17845 0.25384 06793 0.068236 0.00344 159 8.34 0.17878 0.25384 09683 0.09402 0.00344 160 8.38 0.16446 0.25576 09133 0.09402 0.00344 161 8.17 0.18185 0.25609 06613 0.01126 0.00349	i) i	i.	900	40,	2 C	200	000	0 0
(WIND AXIS) CLB CDB CYB CMYB CMXB ECORD ALPHW CLB CDB CYB CMYB CMXB 155 B.17 0.17742 0.25383 06793 0.06326 0.00326 156 B.27 0.17742 0.25383 07108 0.07864 0.00326 157 B.31 0.17845 0.25158 07423 0.09746 0.00316 159 B.34 0.17845 0.25384 08683 0.09402 0.00344 160 B.38 0.17846 0.25576 09133 0.09402 0.00344 160 B.38 0.18185 0.25609 06613 0.00419	0		- V -	5.0	90	15	100	1.402
ECORD ALPHW CLB CDB CYB CMYB CMXB (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	9	7	40.	69.	.47	•58	60•	•89
ECORD ALPHW CLB CDB CYB CMYB CMXB 155 8-17 0-17452 0-25959 06793 0-06364 0-00326 156 8-22 0-17742 0-25383 07108 0-07864 0-00164 157 8-27 0-16393 0-25158 07423 0-09746 0-00216 158 8-31 0-17845 0-25384 08683 0-09746 0-00316 159 8-34 0-17878 0-25586 09133 0-09402 0-00344 160 8-38 0-16446 0-25576 09133 0-09674 0-00349 161 8-17 0-18185 0-25609 06613 0-07126 0-00419	QNIA	-						
55 8-17 0.17452 0.25383 06793 0.06364 0.00328 56 8-22 0.17742 0.25383 07423 0.07864 0.00164 57 8-27 0.16393 0.25158 07423 0.09746 0.00216 58 8-31 0.17845 0.25384 08683 0.09746 0.00304 59 8-34 0.17878 0.25576 09133 0.09402 0.00344 60 8-38 0.16446 0.24796 09268 0.09674 0.00349 61 8-17 0.18185 0.25609 06613 0.07126 0.00419	ECO	PEG	187	ובו	>	¥	¥.	CMZB (-)
56 8.22 0.17/42 0.25383 -0.7423 0.09746 0.00216 57 8.27 0.15393 0.25384 07423 0.09746 0.00216 58 8.31 0.17845 0.25586 08683 0.08236 0.00304 59 8.38 0.16446 0.24796 09268 0.09402 0.00349 61 8.17 0.18185 0.25609 06613 0.07126 0.00419	וטו	17	. 1745	.2595	0679	.0836	• 0032	044
58 8.31 0.17845 0.2538408683 0.08236 0.00304 59 8.34 0.17878 0.2557609133 0.09402 0.00344 60 8.38 0.16446 0.2479809268 0.09674 0.00349 61 8.17 0.18185 0.2560906613 0.07126 0.00419	S) U	Ņ	16.20	25.58 25.15	0 7 1 0	4700	000	0468
59 8.34 0.17878 0.2567609133 0.09402 0.00344 60 8.38 0.16446 0.2479809268 0.09674 0.00349 61 8.17 0.18185 0.2560906613 0.07126 0.00419	n u	9 10	1784	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0868	0823	.0030	.0621
0 8.38 0.16446 0.2479809268 0.09674 0.00349 1 8.17 0.18185 0.2560906613 0.07126 0.00419) N	'n	1787	.2567	0913	.0940	.0034	.0627
1 8.17 0.18185 0.2560906613 0.07126 0.00419		M	.1644	.2479	0926	.0967	.0034	•0630
		7	. 1818	• 2560	661	• 0712	.0041	.040.

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

E = 4.0 5 Z/R = 1.4063
PITCH ATTITUDI ROTOR-GROUN
80DY H/R = .0833
S CONFIGURATION BHR BODY PITCH ATTITUDE = 4.0 NGLE = 0 ROIDR-BODY H/R = .0833 ROIDR-GROUND Z/R = 1.4063
RUN 16 COI SHAFT ANGLE =

SHAFT	ANGLE =	O ROTOR-	-80DY H/R	R = .08	33 ROT	OR-GROUND	Z/R = 1.	4063
(TEST	COND 1T 10NS	5)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FP	S)	VEL (FPS)	(LB/FT		
9	5	.957	i u		57.7	8	-29	6
Ø	5	.957	2		57.7	8	50	
Ó	ŝ	.957	S		57.7	8	29	. 6
9	ġ	.955	Q	4	57.8	8	. 29	
Ø	•	.955	Ñ	4	57.8	8	29	
167	76.0	0.9553	528	•42	157.84	28.3	29	6
Õ	•	•955	S	4	57.8	8	• 29	a
		MAIN ROTOR	TOR DATA	- HUB	REFERENCE	E CENTER		
(SHAFT	2							
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	(DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
0	•		•	-	18	10	1.6	-
Ø	•		•	2	4.0	1	0	
9	•			8	3.1	4	7	4
Ó	ċ	•	•	E	4.4	0	2	Ø
166	11.0	0.0	8.9	-3.8	96.20	-0.34	-2.67	3.56
•	ò	•	•	4	5.8	3	2.7	S
0	•	•	•	-	4.5	~	Ç	•
(NIND	AX 15.)		• [:				
RECORD	Æ				۱ _			
	(DEG)	(LB)	(8)	7	(-)		(T)	(-)
•	-	8.5	1.3	•	027	000	001	0011
9	ď	4.0	6.0		033	0000	0011	0011
Ó	ù	3.1	0.7	•	040	• 0000	0014	0012
9	6	4.4	4.	•	047	• 0000	0016	0013
166	0 • 34	96 • 20	Ŏ.	7.6	•00536	00001	.000206	.000162
9	M)	ر ا ق	0		650	• 0000	0026	6100
Ó	7	7.6	3	•	027	0000	0010	0011

RUN 16 SHAFT A	CONFI	GURATION BH 0 ROTOR-BO	BODY H/R =	.0833 RO	H ATTITUDE TOR-GROUND	= 4.0 Z/R = 1.4	063
	ĭ	USELAGE DAT	A - AEROD	YNAMIC REF	ERENCE CEN	TER	
(BODY	AX1S)			1		1	
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
104	94	10	6.03	 - -	000	225	
9	88	96	1.05	125	M.	221	•
9	784	96	1 • 20 1 • 24	٥٥	.02	3 m	
167	3.740	5.910	-1.250	1.413	0°003 0°000	0.208	
ONIM	AX 15)						
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
10	-	.48	.37	.93	10	10	12
9	d.	48.	.21	010	a c	200	N C
o 0	Y M	.41	24	1.20	14	0.04	35
166	4.34	3.268	6.225	1.240	1.390	0.050	0.356
O O	? =	32	.27	1.10		0.3	29
ONIA	AX IS)					 	
RECORD	ALPHW (DEG)	(-)	CD8 (-)	(-)	CMYB (-)	CMXB	CMZB (-)
ه ا	13	• 1568	-2866	418	•0481	6000	6600.
اف	ď	• 1503	2795	0494	•054¢	0000	410
ی ق	N F	• 1540 • 1534	2808	539	.0567	.0018	.0161
Õ	m	.1470	.2800	0557	.0625	.0022	.0160
167 168	4 • 38 4 • 18	0.14748 0.14943	0.27795	05624	0.06356 0.05358	0.00084	0.00931 0.01338

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 16	6 CONF ANGLE =	1GURATION -4 ROTOR-	BHR BODY H/R	11 0	00Y PITCH 833 R0T0	ATTITUDE DR-GROUND	= 0.0 Z/R = 1.4	4063
(TEST	COND 1 T TONS	(S)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS	•	VEL (FPS)	(LB/FT2	M C	
169 171 172 173	76.0	0.9557 0.9557 0.9557 0.9557 0.9542	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	444FF	157.82 157.82 157.82 157.94		88888	00000
~~ 1	5	00 T 00 Z 40 Z	528. 528. DATA		57.9 57.9 FERE	28. 28. CENTE	0 0 0 0 0 0	
RECORD	THE COLUMN	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE	Y-FORCE	MRHP (HP)
169 170 171 172 173 174		0000000	100.3 6.00 6.00 6.00	00000000000000000000000000000000000000	48 73 84 73 86 95 80 104 74	1000011 13000011	11111111111111111111111111111111111111	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(WIND	AXIS) ALPHW (DEG)	LIFT (LB)	X-FORCE	30	CLR (-)	C X X	CPR (-)	CPRO (-)
169 171 172 173 174	8007778	48 28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.04 5.004 5.007 7.92 2.92	4 m a m a m a m a m a m a m a m a m a m	.00269 .00343 .00411 .00533 .00582	0.00011 0.00017 0.00023 0.00028 0.00035 0.00044	.000151 .000256 .000267 .000320 .000388	0000121 0000130 0000146 0000170 0000199

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 16 CONFIGURATION BHR BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

(B0DY	AX 1S)		i i i i) 1 1 1 1 1 1		
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-1.9)	RM (FT-LB)	YM (FT-LB)	1 1 1 1 1 1 1
10	10	96	-22	S	N	0	
170	2.910	066.9	0.370	0.781	70	3.5	
- 1	- M	76	04	.57	.23	0.24	
•	.86	.91	.54	•66	.18	0.29	
	.87	.95	• 70	.70	-17	40.0	
~	06.	9				77.0	
V QNIA)	(X1X)					1 1	6 1 1 1 1 1 8
RECORD	H	1	•	FB	BWG.	E WE	YMH
Ì	(DEC)	(18)		~ !	1 1	_ 1	
169	-	0.70	96.	2	.57	N	0.40
1 70	7	98	00.	.37	• 78	•24	0.25
171	N	•03	95	•38	.56	954	0.32
	E	•00	86.	4.0	57	23	0.24
173	0.34 40.	2.819	6.927	0.040	0.000	0.178	
-	L)	.82	5	2	10	•	1 (0 (0 (
-	7	.87	26.	• 38	٠/5	. 21	77.0
ONIA	AX 15)						! ! ! ! !
RECORD	ALPHW (DEG)	CL B	(-)	CYB	CMYB (-)	CMXB	CMZB (-)
10	17	.1385	.3135	6600	.0259	010	.018
1	2	.1297	.3149	•0166	.0351	0110	•0116
	62	• 1366	•3128	0171	•0254	0109	9014B
	3	1391	.3143	•0220	0070	0000	
-		• 1268	3110	9 6 6	0.620.0	0.00000	0109
175	0.18	0.12951	0.31173	0171	.0338	9600	.0102

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 1	16 CONF	FIGURATION -8 ROTOR-	BHR BODY H/R	BOD = .083	DY PITCH 33 ROTO	ATTITUDE OR-GROUND	= -4.0 Z/R = 1.	4063	
(TEST	CONDITION	NS)							i
EC		S1GPRM	TP (FPS)		VEL (FPS)	CLB/FT	Z). MU		
176 177 178 179	0.77. 0.77. 0.77. 0.77. 0.71.	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000000000000000000000000000000000000	 WWWWW	157 94 157 94 157 94 157 94			00000	
HS	AXIS)	r æ	DATA	HUB	FEREN	7E	, v		
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE	Y-FORCE (LB)	MKHP (HP)	į
176 177 178 179 180	11.00 13.00 15.11 15.11		710987 NEGUND	40000	48.68 59.55 71.93 82.57 94.52	00000	-0.81 -0.94 -1.00 -1.27	66.47 6.45 7.45 83.45 7.45 83.65	į
3	AX IS)								
<u>u</u>	AL PHW (DEG)	(LB)	X-FORCE (LB)	(-) (-)	ברא (CXR (-)	CPR (-)	CPRO (-)	į
176 177 178 179 180	-7-83 -7-79 -7-74 -7-71 -7-66	46.38 59.10 71.33 81.81 93.64	5.51 7.36 9.29 11.12 5.61	00// 00// 00// 00// 00// 00// 00// 00/	00270 00330 00398 00456 00522	0.00031 0.00041 0.00052 0.00052 0.00072	.000223 .000266 .000316 .000370		

RUN 16 CONFIGURATION BHR BODY PITCH ATTITUDE = -4.0 SHAFT ANGLE' = -8 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

CENTER
REFERENCE
AERODYNAMIC
DATA -
FUS EL AGE

(BODY AX1S)

RECORD	NF (LBS)	AF (LBS)	SF (LBS)	ZĪ	RM (FT-LB)	YM (FT-LB)	
176 177 178 178 180 181	-0.570 -1.020 -1.290 -1.420	7.200 7.240 7.250 7.260 7.100	11.260 11.260 11.430 11.4400 11.4410	0.866 0.992 1.001 1.120 1.191 0.735	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.037 1.169 1.175 1.017 0.986	
QNI M)	AXIS)					• • • •	
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	
176 177 178 179 180	13.03.03.03.03.03.03.03.03.03.03.03.03.03	-0.088 -0.270 -0.544 -0.817 -0.953	7.222 7.274 7.301 7.348 7.336	-1.260 -1.430 -1.440 -1.260	0.866 0.992 1.001 1.120 1.191 0.735	0.362 0.380 0.388 0.400 0.383	
ONIA	AX IS)						
EC	ALPHW (DEG)		CDB (-)	C YB (-)	CMYB (-)	CMXB (-)	MZH (-)
176 177 178 179 180	-3 -3 -3 -4 -3 -4 -3 -6 -3 -6 -3 -6 -3 -6 -3 -6 -3 -6 -3 -3 -6 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	00397 01215 02449 03674 04288	0.32492 0.32724 0.32848 0.33059 0.33004 0.32022	05669 06164 06434 06299 06344	0.03898 0.04461 0.04505 0.05040 0.05360	0.01530 0.01710 0.01747 0.01802 0.01723	

RUN 16 SHAFT A	16 CONF 1	ONFIGURATION = -12 ROTOR-	BHR -BODY H/R	HODY = .0833	Id	TCH ATTITUDE = ROTOR-GROUND Z	-8.0 /R = 1.4063	63
(TEST	CONDITIONS)	(3						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2)	MU	
182	77.0	0.9545	528.7 528.7	73	157.91	28.3	0.299	
	77.0	ON C	528	73	157.91	•	30	
0			528	33	157.91	• •	ייי	
		MAIN ROTOR	DATA	- HUB	REFERENCE	CENTER		
(SHAFT	15							
Ö	EG	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
100		-12.0	S		101		-0-43	
သ ထ	14.0 0.0	-12.0	υ 4	30	3 0		-0 • 55 -0 • 45	
185 186	O M	-12.0	1.5	-3.7	84.31 49.68	0.97	-0.56	8.32
(WIND	AX 15)							
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE (LB)	97	CLR (-)	CXR (-)	CPR (-)	CPR0

.000121 .000129 .000141 .000160

.000288 .000344 .000411 .000483

0.00052 0.00066 0.00081 0.00096

.00270 .00328 .00399 .00460

6.0 6.6 7.1 7.0

9.27 11.79 14.59 17.24

48.38 58.79 71.58 82.53 48.83

-11.82 -11.79 -11.74 -11.82

883 864 865 86

RUN 16 CONFIGURATION BHR BODY PITCH ATTITUDE = -8.0 SHAFT ANGLE = -12 ROTOR-GODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(B00Y AX1S)

RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	KM (FT-LB)	YM (FI-LB)	
11111111111111111111111111111111111111	6.370 -6.370 -6.200 -5.910	7.400 7.420 7.520 7.310	00000000000000000000000000000000000000	2.961 2.763 2.260 2.871	0.259 0.247 0.201 0.201	0.169 0.169 0.123 0.022 0.047	·
ON I M	AXIS)						
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FI-LB)	RMB (FT-LB)	YMB (FT-LB)
2000 2000 2000 2000 2000	-7.82 -7.79 -7.74 -7.82	-5.303 -5.163 -5.144 -4.849 -5.365	8.198 8.155 8.187 8.244 8.116	-0.290 -0.350 -0.500 -0.510	2.961 2.763 2.763 2.260 2.871	0.234 0.222 0.183 0.196 0.299	0.202 0.196 0.149 0.049
QNI M)	AXIS)						
RECORD	ALPHW (DEG)	(-) (-)	CDB (-)	CYB (-)	CMYB (-)	CMXB (-)	CM2B (-)
2001 2001 2001 2004	-7.82 -7.79 -7.74 -7.70	-23859 -23227 -23144 -21816 -24138	0.36884 0.36688 0.36835 0.37090 0.36513	-01305 -01575 -02249 -02294 -00180	0.13322 0.12430 0.12340 0.10170 0.12915	0.01051 0.01000 0.00622 0.00882	0.00910 0.00882 0.00671 0.00221

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

0.0 R = 1.4063	
11/2	
RUN 17 CONFIGURATION BHR BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063	
800Y	
IJ	
, 3,	
RATION BHR ROTOR-BODY	
34	
E L	;
C0 = =	- 1
17 ANGL	1
RUN	

(TEST	CONDITIONS	()						
RECORD	i mm	SIGPRM	TP (FPS)		VEL (FPS)	0 (LB/FT2	⊃¥ (
10	1 6	986	21.		30.5	10	. 25	
0	4	984	22.		30.6	0	. 25	_
0	4	984	22		30.6	•	. 25	
9	S	983	22		30.8	•	. 25	
0	5	.983	22.		30.8	•	. 25	
196	0.99	0.9811	M	36	130.94	20.0	25	0
0	7	.97	24.	25	31.0	•	• 25	•
		MAIN ROT	TOR DATA	- HUB	REFERENCE	CENTER		
(SHAFT	AXIS)							
BECORD	14	Id				HFORCE		IZ
1	(DEG)	(DEG)	(DEG)	(DEG)	(LB)	(18)	(E)	(HP)
10	i (1 4		1 2	449	-	10	4
192	6	0		-2.6	60.09	1.07	-1.39	2.93
9	•	•	.7	m	2.5	1	1.9	S.
Φ	-	•	8	3	4.1	3	2.5	7
Q	•	•	5.	4	6•9	Q.	0	0
9	'n	•	0	4	8.3	æ	3.1	-
0	•	0 • 4 -		ġ	6.7	Ŋ	m	4
ONIM)	AX 15)			1			 	
ļO	AL PHW (DEG)	(LB)	X-FORCE (LB)	(-)	CLR	CXR (-)	CPR	CPRO (-)
	1.	6.4	8	•	025	.0001	0014	00
Q	3.7	6.6	8	•	033	.0001	0017	0011
9	3.6	2.1	8	•	6E0	•0005	0050	0011
	3.5	4.0	•	•	046	• 0005	00024	0013
0	3.5	6.7	-		053	• 0003	6200	0015
196	-3.45	108.14	7.41	ις O		0.00041	.000357	
	3.7	0.1	Ω.	•	220	• 0001	4 100	0100

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 17 CONFIGURATION BHR BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

(BODY AX	X1S)						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (F1-LB)	
10	1 00 1	89	13	•	0	E 0	
9	7	# 1 7 0	1	62.	90	0.17	•
9 0	900	87	42	57	• 05	0.14	
) Q	50	.83	.42	•65	•02	0.16	
196	1.420	4.870 4.920	-0.540	0.821	0.060	.08	
	X 1S)			:	1		
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB T-L	YMB (FI-LB)
	1	1 8	10	15	4	9	75.4
70.	٧ r	000	0 0		S	10	31
192	0000		4.891	-0-340	0.670	0.066	.17
90	9	629	88	4	S	•05	.14
0	4	.51	.84	.42	9	•05	•16
196	5	.37	88	.54	œ	0.07	909
0	.2	.91	-92	• 10	4	40	.21
V QNIM)	(X1X)						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	ALPHW (DEG)	CLB (-)	COB (-)	C YB (-)	MYB (-)	MXB (-)	MZB (-)
10	13	1184	.3117	.008	.027	•004	(C)
0	M	1110	.3150	.0121	.0352	.0045	.0200
0	M	. 1049	.3113	.0216	•0426	.0042	0111
9	4	.1033	•310B	•0267	•0368	• 0033	0600
	4	• 0966	.3083	.0267	• 0415	.0033	707
196	0.55	0.08744	0.31087	4 W (2250	2000	4710
	4	1215	.3137	•0121	1620.	• 0000	†

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 18	B CONFI ANGLE = -	1GURATION -4 ROTOR-	BHR BUDY H/R	ш O	ODY PITCH	ATTITUDE OR-GROUND	= 0.0 Z/R = 1.4	4 06 3
(TEST	COND 1T LONS	8)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS	•	VEL (FPS)	CLB/FT2	MU (S	
198 199	999	000		986	79.11	7. V. W. V.	15 15 15 15	
000	າທູທ	000 000 000	, , , , , , , , , , , , , , , , , , ,		000		15 15	• M &
00	ູນຄ	.983 .983	22.		1.0	• •	•15 •15	o m
(SHAFT	AXIS)	MAIN ROT	OTOR DATA	HUB	REFERENCE	E CENTER		
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
00		. •	0.0	i did	3.1	7	1.5	0 4
0	0.0) - 0	5	0.8	S S	1.8	9
202) 4 i	100	96.05	N M (-2.660	4.04
0	, ·	0.4	4	'n	04 0	71	1.2	
QNI M)	AX 15)							
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE	(-)	CL.R (-)	CXR (-)	CPR (-)	CPRO (-)
i O	4	-	1 30		023	.0001	0011	8000
O C	ď	41	٠.	•	031	• 0000	0014	0000
201	-2 • 8 B	83.21	3.77	4	•00461	0.00021	.000202	.0001000
0	- 1	٥	M.	•	053	.0002	0024	0011
) C	Ů 4	00	→ 30	• •	020	.0000	0001	0008

RUN 18	ANGLE = +	GURATION 4 ROTOR-	BHR BODY H/R =	600Y PITC •0833 R0	H ATTITUDE	= 0.0 Z/R = 1.4	063
	L	FUSELAGE DAT	A - AE	RODYNAMIC REF	FERENCE CEN	TER	
(BODY	AX15)					•	
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FI-LB)	RM (FT-LB)	YM (FT-LB)	
99	4 E	.81	.5	7.		W. 4	
200	10.560	1.730	-0.540		1	0.00	
00	23.	•68	54	31	40	80	
òc	200	9.0	51	.71	90.0	300	
ONIA	AX IS)						
RECORD	ALPHW	LIFT	DRAG	SFB	PMB	RMS	M.
	(DEG)		ا لـ	_	(FT-LB)	(FT-LB)	(FT-LB)
9	9	•35	•80	.51	•75	•07	•32
Ŏ (•	537	96	• 655	• 75	600	4.0
0	À	מום	68	50	40.	, m	
0	3	.26	.65	54	.31	•03	•0B
203 204	1.42 0.59	-1.380	1.606		1.289	-0.081 0.064	0.086
QNI M)	AX 15)						
ECO	ALPHW (DEG)	(-) (-)	COB (-)	CYB (-)	CMYB (-)	CMXB	MZB (-)
0	10	625	.3150	889	.1319	• 012	• 056
Ò (• 0654	.3148	•1133	•1318	• 0 159	•0734
Ō ¢	3	1028	. 3000 9858	1960	1774	00056	00094
202	1.27	21226	0.27680	0.000	0.22045	0064	
0	4	282	. 2655	.1025	.2131	•0134	•0142
0	ຜູ	524	.3118	•0865	•1220	•0109	.0563

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 19	9 CONFI ANGLE =	CONFIGURATION = 4 ROTOR-	BHRF2L -BODY H/R	B00 R = .083	Y PITCH 3 ROTO	ATTITUDE	= 8.0 Z/R = 1.40	4003
(TEST	COND 1 T LONS	(:			-			
RECORD	TEMP (DEG F)	SIGPRM	TP (FP	8)	VEL (FPS)	0 (LB/FT2	M C	
210	55.0	1.0031	520	•56 •05	51.80	3.2	0 100	
-	က်		18	0	1.8		. 10	
-	ŝ		-	0	1.8		. 10	
~	Ġ		-	Ŋ	3.4		• 10	
-	٥	1.0011	₩.	m (9		01.	
-	:		-	J.	υ. α		•	
		MAIN ROT	ROTOR DATA	- HUB	REFERENCE	CENTER		
S)	AXIS)	. !				 		
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HD)
-	•	•	•	•	-	.2	0.5	•
~ ,	•	•	•	m.	<u>،</u>	N	0.8	•
200	- C	• •	D C	1.00 1.00 1.00	86.96	000	11.82	40.0
-	•	•	•	ů		9	2.3	•
~ ,	-	•	•	•	ď	w i	ø	•
-	٠	•	•	•	J.	3	0	٠

.000080 .000081 .000087 .000098

CPRO

RUN 19 CONFIGURATION BHRF2L BUDY PITCH ATTITUDE = 8.0 SHAFT ANGLE = 4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

CENTER
REFERENCE
AERODYNAMIC
DATA -
FUSEL AGE D

(B0DY	AXIS)						#
ECORD		AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)		
1 -	1	0	18		0	0	
	0.44.0	000	-0-150	73	0	90	
•	M	06	25	.79	•01	0.03	
•	4	88	• 19	69.	00.	0.10	
• -	4M	.87	.25	986	•05	0.10	
•	.41	96	.27	.84	•05	0.12	
216	.41	• 10	.27	•10	00•	0.0	
QNIM	AXIS)						
BECORD	H	=	RA	FB	RWd	RME	YMB
)	(DEG)	(18)	(18)	(LB)	TI	1 1	7 !
! -	1	30	102	-	.75	0.00	•
•	Ö	28	96.	7	.73	•01	0.08
• •	6.0	22	.95	3	•79	000	40.0
-	7.0	•24	46 •	-	69.	0.01	0.00
214	10.95	0.168	0.919	-0.250	0.862	00000-	1100
-	1.1	.22	96.	9	400		7100
-	6.3	• 22	• 15	N	• 10	0000	0.0
3	AXIS)						
RECORD	القيق	(-) (-)	CDB (-)	CYB (-)	CMYB (-)	CMXB (-)	MZB (-)
1 -	! •	1116	.3737	656	.248	.0007	01
-	0	. 1037	•3590	.0693	.2422	.003B	.0273
=	6.0	.0807	.3487	•0912	7002.	1000	7660
-	>	,080. ,0578	0.444C	0.0033	2662	0000	.0340
215	11.14	0.07409	0.31214	08758	2467	.001	0354
•	6.3	.0715	.3635	.0852	•3145	• 0005	.0027

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

SHAFT A	9 CONF	IGURATION 0 ROTOR-	BHRF2L BODY H/R	BO =	DY PITCH	ATTITUDE	= 4.0 Z/R = 1.4	4063	
(TEST (COND IT ION	8)							
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2	N WC		l
217	58•0 58•0	0.9976	90	30	7.3	3.9 4.0		0	l
- 0	66	995	-			4.0	==	ı (Vi m	
90	6	995	10:		0 00 (•		. M :	
V N	0	9999	→ (V		0.0	• •	. 11	ın m	-
		MAIN ROT	TOR DATA	- HUB	REFERENCE	CENTER			
5	AXIS)						,		
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)	į
217	•	00	• •	W 4	3.2	20	4 4	8-	!
	6	000	1.0	14.1	79.31	000	1.21	10 m	
100	•	•	•	5	900	100	0		
N	· ·	• •	• •	• • 0 m	3.9	ວິທ	0.0	οœ	
QNIM)	AX 15)								
RECORD	ALPHW (DEG)	L1FT (LB)	X-FORCE	33	CLR (-)	CXR (-)	CPR (-)	CPRO (-)	!
2117 2219 222 222 223	1188811 1888 1888 1888	53.21 65.99 79.25 91.65 115.96	12.07 1.03.007 1.03.007 1.03.007 1.03.007	NUNUNUN	.00294 .00365 .00438 .00506 .00572	- 00002 - 00002 - 0002 - 00025 - 00031	000128 000128 000187 000226 000272	0000082 0000088 0000098 0000110 0000128	!

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

4.0 BODY PITCH ATTITUDE = CONFIGURATION BHRF2L RUN 19

SHAFT	ANGLE =	O HOTOR-BODY	H/R =	.0833 RD	ROTOR-GROUND	Z/R = 1.4	4063
	***	FUSELAGE DAT	A - AERODYNAM	10	REFERENCE CEN	TER	
	AX15)						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
į –	30	1 %	-25	.32	•02	60.	
=	.15	•24	• 28	•45	0	600	
-	•20	• 23	• 22	529	20.	8	•
220	0.260	25	0.520	0 . 303	0.031	-0.24	
V		10	0 V	28	•	31	
in	25	33	225	640	• 04	• 10	
<u> </u>	AX 15)					. !	6 6 8 8 8 8
080739	Ha	1 1	RA	ш		RW D	Σ
) j	(DEG)	(18)	(LB)	(LB)	(FT-LB)		(FI-LB)
1 -	1	18	-25	-25	.32	0.	0.1
•		• 02	•24	.28	• 45	• •	60.0
-	0	•13	.25	-22	52	000	0.18
Ø	ď	• 12	• 24	252	930	000	0.23
S	ທີ	00	-21	520	4.0	- 6	47.0
222	5.33	0.125	1.233	0.250	0.498	0.032	-0.110
130	AXI		:				
RECORD	H	ı		! >-		CMXB	N
	(DEG)	1	(-)	(-)	(-)	(-)	~
-	15	.0549	.3751	748	.0876	.003	•026
-	9	.0078	.3645	.0817	1192	2000	4 6
÷	0	0379	• 3650	.0642	•0768	0000	V 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q (3	0357	.3534	0712	0//0•	1000	0 Y
N C	ů,	00020	3400	400 400	0.1710	000	804
200 200 200 200 200 200 200 200 200 200	5.33	0.03574	0.38379	06266	.1275	.0081	280
١	1	i					

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RECORD TEMP SIGPRM TP VEL (LB/FT2) MU 224 62.0 0.9896 521.50 53.15 3.2 0.100 225 63.0 0.9896 521.82 53.75 3.4 0.103 226 63.0 0.9896 521.82 55.37 3.4 0.103 227 63.0 0.9896 521.82 55.37 3.4 0.103 228 63.0 0.9880 521.82 55.37 3.9 0.106 229 64.0 0.9880 521.82 55.37 3.9 0.106 220 64.0 0.9862 522.45 60.56 4.3 0.106 220 64.0 0.9862 522.45 60.56 4.3 0.116 221 64.0 0.9862 522.45 60.56 4.3 0.116 222 60.0 0.9862 522.45 60.56 4.3 0.116 223 0.0 0.0 0.9 0.9 0.9 0.16 224 8.0 0.0 0.9 0.9 0.9 0.16 225 0.0 0.0 0.9 0.9 0.9 0.16 226 0.0 0.0 0.0 0.9 0.9 0.16 227 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 228 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 229 0.0 0.0 0.0 0.0 0.0 0.0 0.10 220 0.0 0.0 0.0 0.0 0.0 0.0 0.10 220 0.0 0.0 0.0 0.0 0.0 0.0 0.10 220 0.0 0.0 0.0 0.0 0.0 0.0 0.10 221 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 222 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 223 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	RUN 1	9 CONFI	IGURATION -4 ROTOR-	BHRF2L -BODY H/R	E 0	ODY PITCH 833 ROT	H ATTITUDE	= 0.0 Z/R = 1.	4063
CORD TEMP SIGRRM TP (FPS) (FPS) (LB/FT2) MU 224 62.0 0.9896 521.50 52.15 3.2 0.100 225 63.0 0.9877 521.82 55.375 3.4 0.103 226 63.0 0.9877 521.82 55.375 3.4 0.103 227 63.0 0.9862 522.45 60.56 4.3 0.116 228 63.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 220 CRD THETA ALPHS B1 ALPHS B1 THRUST H-FORCE CENTER CORD THETA ALPHS B1 ALPHS B1 65.20 0.68 -1.27 2.77 224 10.1 -4.0 2.3 -4.1 65.20 0.68 -1.27 2.77 225 10.1 -4.0 2.3 -5.1 91.45 0.652 -2.05 4.04 226 10.1 -4.0 1.3 -4.1 65.20 0.68 -1.27 2.77 227 12.1 -4.0 1.5 -5.1 91.387 0.692 0.00019 228 12.1 -4.0 1.5 -5.0 10.387 0.692 0.00019 229 12.1 -4.0 1.5 -5.0 10.360 0.0019 220 12.1 -4.0 1.47 2.3 0.0292 0.00019 220 1.21 -4.5 1.31 -4.5 0.0019 220 1.21 -4.5 1.31 -4.5 0.00019 220 1.21 -4.5 1.31 -4.5 0.00019 220 1.21 -4.5 1.31 -4.5 0.00019 220 1.21 -4.5 1.31 -4.5 0.00019 220 1.21 -4.5 1.31 -4.5 0.00019 220 1.21 -4.5 1.31 -4.5 0.00019 220 1.21 -4.5 1.31 -4.5 0.00019 220 1.21 -4.5 1.31 -4.5 0.00019 220 1.31 -4.5 1.31 -4.5 0.00019 220 1.31 -4.5 1.31 -4.5 0.00019 220 1.31 -4.5 1.31 -4.5 0.00019 220 1.31 -4.5 1.31 -4.5 0.00019 221 1.31 -4.5 1.31 -4.5 0.00019 222 1.31 -4.5 0.00019 223 1.31 -4.5 0.00019 224 1.31 0.31 -4.5 0.00019 225 1.31 0.31 -4.5 0.00019 226 1.31 0.31 0.30019 227 2.32 0.00019 228 1.31 0.31 0.30019 230 0.30019 240 0.30019 250	(TES	111	8)						
225 62.0 0.9896 521.50 52.15 3.4 0.100 226 63.0 0.9896 521.80 53.75 3.4 0.100 227 63.0 0.9887 521.82 57.62 3.9 0.100 228 63.0 0.9880 521.82 57.62 3.9 0.110 229 64.0 0.9860 521.82 57.62 3.9 0.110 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 12.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.	ECOR	EMP EG F		ו פ פ		VEL	O LB/FT	Σ	
226 63.0 0.9877 521.82 55.37 3.4 0.105 228 64.0 0.9862 521.82 59.08 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 220 CORD THETA ALPHS B1 A1 THRUST H-FORCE (LP) 224 8.0 -4.0 0.9 -3.8 52.82 0.68 -1.27 7.72 225 13.1 -4.0 2.9 -3.8 52.82 0.68 -1.27 7.72 228 13.1 -4.0 2.9 -5.1 116.56 -0.00 229 13.1 -4.0 1.5 -4.0 116.56 -0.00 229 13.1 -4.0 1.5 -4.0 116.56 -0.00 220 13.1 -4.0 1.5 -4.0 116.56 -0.00 220 13.1 -4.0 1.5 -4.0 116.56 0.000131 4.0000131 6.00013	00	00	989	21.		20.1		01:	01
227 63.0 0.9880 521.82 57.62 3.9 0.110 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 229 64.0 0.9862 522.45 60.56 4.3 0.116 220	10	m	.987	21:) ao	9. N		•	າ •0
229 64.0 0.9862 522.45 60.56 4.3 0.113 229 64.0 0.9862 522.45 60.56 4.3 0.116 230 64.0 0.9862 522.45 60.56 4.3 0.116 24 60.56 4.3 0.116 25 64.0 0.9862 522.45 60.56 4.3 0.116 25 60.56 4.3 0.116 26 MAIN ROTOR DATA - HUB REFERENCE CENTER CORD THETA ALPHS B1 A1 THRUST H-FDR CE Y-FDR CE MRHP 225 10.1 -4.0 0.9 -3.8 52.82 0.68 -1.59 3.34 226 10.1 -4.0 1.3 -4.1 652.2 0.68 -1.59 3.34 227 112.1 -4.0 2.9 -5.8 103.87 0.52 -2.02 4.83 228 12.1 -4.0 2.9 -5.8 103.87 0.52 -2.02 4.83 229 13.1 -4.0 1.5 -3.6 54.73 0.62 -1.04 2.34 WIND AXIS) 224 -2.34 52.80 1.47 2.3 .00292 0.00009 .00016 1.000098 225 -1.61 78.20 1.77 2.5 .00432 0.00016 1.000098 226 -1.61 77 2.5 .00432 0.00011 0.000134 0.00014 227 -1.27 2.31 2.59 2.3 .00574 0.00011 0.000134 0.00014 228 -1.27 2.31 2.39 2.39 0.00614 0.000136 0.00014	2	m I	988	21.		7.6	•	. 11	0
SHAFT AXIS) SHAFT AXIS) CURD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP CURD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP CURD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP CURD ALPHW LIFT X-FORCE L/D CLR CURD ALPHW LIFT X-FORCE L/D CLR CURD THETA ALPHS TABLES TO THE	VN	9 4	• 986 • 986	200		900	•	. 11	mv
SHAFT AXIS) CURD THETA ALPHS B1 A1 THRUST H-FORCE V-FORCE MRHPP CURD THETA ALPHS B1 A1 THRUST H-FORCE V-FORCE MRHPP 224 B+0 -4+0 0-9 -3+8 52-82 0-68 -0-94 2-30 225 10-1 -4+0 2-3 -4+1 652-82 0-68 -0-94 2-37 226 12-1 -4+0 2-3 -4+1 652-82 0-68 -0-94 2-37 227 11-1 -4+0 2-3 -5+1 91-49 0-64 -2-02 4-044 229 13-1 -4+0 1-5 -5-8 103-87 0-64 -2-02 4-044 229 13-1 -4+0 1-5 -4+1 65-2 0-000 -3+0 0-64 -2-02 229 13-1 -4+0 1-5 -4+1 65-2 0-000 -3+0 0-64 -2-04 229 13-1 -4+0 1-5 -4+1 65-3 -4+	3	4	• 986	22.		0.0	• •		o c
CORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP CORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP CORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP CORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP CORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP CORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP CORD ALPHW LIFT X-FORCE L/D CLR CXR CPR CORD A1-1-64 91-48 1-988 2-5 -000504 0-00011 -0000235 -000012 CORD A1-2-72 54-71 1-77 2-8 -000507 0-00011 -0000335 -000014 CORD A1-2-72 54-71 1-77 2-8 -000507			AIN RO	OR DATA	HCB	EFEREN	CENTE		
CORD THETA ALPHS B1 (DEG) (DEG) THRUST H-FORCE Y-FORCE MRHP (LB) (DEG) (DEG) (DEG) (LB) THRUST H-FORCE Y-FORCE (HP) (LB) (DEG)	(SHAFT	XIS							
224 8.0 -4.0 0.9 -3.8 52.82 0.68 -0.94 2.37 22.5	10	ET	FE		1 - U	HRUS (LB)	1 E GR	-FORC (LB)	MRHP (HP)
225 9.0 -4.0 1.3 -4.1 65.20 0.68 -1.27 2.77 2.27 2.27 2.27 2.27 2.27 2.27	i N	•			1 .	2.8	1 0	0.9	0E 7
226 10-1 -4.0 1-8 -4.5 78-22 0.71 -1.59 3.34 2.29 1.30	3	6	•	•	4	5.2	9	1.2	
## 110.1	2	ė,	4	•	4	8.2	7.	1.5	m
229 12-1 -4.0 2-9 -5.8 103.87 0.52 -2.64 4.83 23.0 13.1 -4.0 1.5 -5.0 116.56 -0.00 -3.00 5.78 2.34 (WIND AXIS) ECORD ALPHW LIFT X-FORCE L/D CLR CXR CPR (DEG) (LB) (LB) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	V	-	4	•	2	91.4	9	2.0	•
ECORD ALPHW LIFT X-FORCE L/D CLR CXR CPR CFRD (DEG) 10.052 -1.04 2.34 (LB) (LB) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	N	Ň	÷.	•	ŝ	03.8	S	2.0	8
ECORD ALPHW LIFT X-FORCE L/D CLR CXR CPR CPRD (DEG) (LB) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	N r	•	•	•		16.5	0	٠ ا	
ECORD ALPHW LIFT X-FORCE L/D CLR CXR CPR (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	7	•	•	•	r)	4.7	8	1.0	ب
ECORD ALPHW LIFT X-FORCE L/D CLR CXR CPR CPR CPR CPR CPR (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	GNIMO	15		1					
24 -2.34 52.80 1.47 2.3 .00292 0.00008 .000134 .00008 25 -2.07 65.18 1.67 2.4 .00360 0.00009 .000161 .00008 26 -1.81 78.20 1.77 2.5 .00432 0.00010 .000195 .00009 27 -1.64 91.48 1.98 2.5 .00506 0.00011 .000235 .00010 28 -1.45 103.84 2.11 2.4 .00574 0.00012 .000231 .00013 29 -1.27 116.53 2.59 2.3 .00302 0.00014 .000336 .00014 30 -2.72 54.71 1.77 2.8 .00302	ш	LPH		-FOR (LB)		1 _ 1		CPR (-)	137
25 -2.07	N	100	2.8	4		029	0000	0013	0000
27 -1.64 91.48 1.98 2.5 .00432 0.00010 .000195 .000099 28 -1.65 103.84 2.11 2.4 .00574 0.00012 .000235 .00010 29 -1.27 116.53 2.59 2.3 .00644 0.00014 .000336 .00012 30 -2.72 54.71 1.77 2.8 .00302 0.00010 .000134 .00008	V	90	֟֞֜֞֞֜֞֜֜֓֓֓֓֓֓֓֓֟֜֟ ׆	91	•	036	0000	00016	00000
27 -1.54 91.46 1.98 2.5 .00506 0.00011 .000235 .00010 28 -1.45 103.84 2.11 2.4 .00574 0.00012 .000281 .00012 29 -1.27 116.53 2.59 2.3 .00644 0.00014 .000336 .00014 30 -2.72 54.71 1.77 2.8 .00302 0.00010 .000136 .00008	V	9	2	•	•	043	0000	00019	60000
29 -1.27 116.53 2.59 2.3 .00544 0.00014 .000336 .00014 30 -2.72 54.71 1.77 2.8 .00302 0.00010 .000136 .00008	20	• <	4.00	٠ د	•	050	• 0001	00023	000010
30 -2.72 54.71 1.77 2.8 .00302 0.00010 .000136 .00008	10	, 1	20.00	→ ((•	2000		82000	21000
	1 M	1	54.7	7	• •	1000		5000	4000

MAIN ROTOR-FUSELAGE INTERACTION TEST CUNTRACT NAS2-11268 FORWARD FLIGHT

RUN 19 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROWND 2/R = 1.4063

CENTER
REFERENCE
AERODYNAMIC
DATA -
US EL AGE

(B0DY	AX1S)				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	14	
N	16	1.060	•	-0.162	0.053	-0.173	
Ş	•34	1.110	•21	•	•02	610	
2	• 36	1.160	23	•	90.	32.	•
S	•20	1.220	.27	•	•06	•31	
S	5 7	1 •280	•34	•	000	520	
229	-0.240	046.1	36	•	0.05	3.5	
L)	61.	1.450	• •	•	40.	0 Z •	
Q	AX15)	•					
RECORD	בו	IF.	•	SFB	DWG	RME	YMB
	(DEC)	(FB)	(LB)	ا لــ		(FT-LB)	(FT-LB)
IN	9	19	05	.18	•16	•04	.17
S	6	.37	60	.21	•07	•04	• 19
S	-	.40	4	.23	•13	.05	25
Ø	Ę	•25	21	-27	•32	40.	. J.
228	2.55	-0.347	2	-0.340	-0.220	4 4 0 0	20 I
N	-	30	N	• 36	18.	603	. is
m	Š	• 22	4	• 18	E0.	•03	• 26
GNI M)	AX 15)						# # # # # # #
RECORD	ALPHW	άΤό	CDB	CYB	CMYB	CMXB	CMZB
	ב ב	1 (l	1	Į		1
N	9	695	.3849	•0656	L.	0	1
N	¢.	295	.3771	.0721	023	.0140	608
N	7	310	.3715	•0746	38	•0120	•0755
N	63	•0748	• 3625	60808	086	•0126	0840
228	2 • 55	09874	0.36054		201	0112	192
N		824	• 3604	.0977	17	9600	• 0876
m	3	.0603	. 3925	.0488	60	.0091	• 0644

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

(TEST	COND 1T 10N	NS)						
EC		SIGPRM	TP (FPS	•	VEL (FPS)	(LB/FT	M (Z	
m	5	.983	IN		2.0		-11	6
Ę	ŝ	.983	a		2.7		. 12	0
M)	ġ	.982	S		3.4	•	• 12	-
3	•	.982	S		3.4		. 12	-
B	•	.982	S		3.4	•	. 12	-
236	66.0	0.9821	523	50	63.44	4.7	12	
7	•	0	V		ດ າ	•	21.	-
		MAIN ROT	TOR DATA	HVB	REFERENCE	E CENTER		
•	AXIS)							
RECORD	ET	I			THRUST	HARORGE	18	GHAM
	(DEG)	(DEG)	(DEG)	(DEG)	(18)	(LB)	(e)	Ĵ
m	•	8	•	l •	7.2	9	10	1 80
M	•	œ	•		0.0	9	1.3	4
m	-	8	•		2.4	ď	1.6	3
m	ö	8	•	٠	5.5		2.0	•
M	•	8	•	ŝ	6.9	-	2.4	8
236	14.2	-8.0	4.7	-5.7	119.64	-0.27	-2.88	96.9
7	•	æ	•	9	7.2	ູ	0:	6
ONIM	AX IS)							
RECORD	IE	LIFT			ل ا		CF.	CPRO
	(DEG)	(LB)	(18)	(-)	(-)	(-)	(-)	(-)
l LJ	.7	6	0		031	•0003	0016	9000
m	4	•	3	•	038	+0000	0020	6000
E	4	0	•	٠	045	• 0004	00024	0010
234	-5.95	95.02	9.71	2.8	• 00525	0.00054	.000293	.000114
7	1.	4	• •	•	058	• 00005	0034	0012
J.	41	•	9	•	000	9000	0000	0014
7	•	Ô	Ž	•	200	0000	000	8000

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FURWARD FLIGHT

RUN 19 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = -4.0 SHAFT ANGLE = -8 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

CENTER
REFERENCE
AERODYNAMIC
DATA -
FUSEL AGE

(B0DY	AX15)			1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	_	AF (LBS)	SF (LBS)	PM (FI-LB)	RM (FT-LB)	YM (FT-LB)	1 1 1 1 1 1
231	-0.850	1.490	-0.320	-0.549	40	0.1	
m	•80	52	4 M.	99	40	0.23	•
m	98.	52	.41	• 71	•02	0.28	
M	•76	56	.47	.81	•07	0.33	
3	.68	9	.43	•88	•07	0.44	
L)	.58	59	.47	•93	60.	0.50	
M	•78	-	• 36	• 66	90•	0.12	
MIND	×	:					6 6 7 8
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB T-L
İr	10	10	10	10	1540	9	1.0
0 P	74.6-		1.553	-0.340	-0.666	0.057	
M	2	80	S	4	0.71	900	0.27
M	6	.70	58	47	0.61	•08	0.33
3	1.7	69	61	.43	0.88	800	0.43
Ü	1.4	\$5	0	.47	0.93	010	0.20
m	2.7	• 70	0	• 36	99.0	•01	0.12
CNIA	AXISI						! ! ! ! !
RECORD	ALPHW	άπό	COB	CYB	CMYB	CMXB	CMZB
	(DEG)	1 (1 1	ŀ	- 1	. 1	ı
23	-2.72	019	• 3966	830	280	012	.037
m	2.4	. 1862	.3942	.0863	.1520	•0130	.0531
3	Ŋ	. 1988	.3857	.1018	.1587	•0146	620
m	1.9	.1755	.3938	•1167	.1820	.0186	. 0741
235	-	15710	0.39992	10684	9	•0194	1860
n	4	. 1341	. 3985	1167	.2083	.0234	7 2 7 (
m	.7	.1747	• 3990	•0894	489	1910	S

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

SHAFT	ANGLE = .	-4 ROTOR-	-BODY H/R	. = .083	33 ROTO	OR-GROUND	Z/R = 1.	4063	
(TEST	COND IT ION	8)							į
EC	TEMP (DEG F)	SIGPRM	TP (FPS	(9	VEL (FPS)	(LB/FT2	MU (2)		
239	68.0		524	33	77.57	7.0	4 4	00 00	į
4	6	976	2	9	4.6	•	14	n ac	
4	6	916.	4	9	7.6	•	• 14	œ,	
4 4	• c	476	NO	20	7 • 7		• 14	n a	
4		974	200	S	7.7	• •	• 14	n co	
		MAIN ROTOR	TOR DATA	- HUB	REFERENCE	E CENTER			
(SHAFT	(SIXY								
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)	į
l m					4 • 1	1.	10	1 6	į
4	•	0.4-	•	3.	8.5	9	3	3	
4	•	4	•	4	0.0	9.	1.5	£.	
4	-	4	•	4	94.2	4	1.9	0	
4	•	•	•	ŝ	9	Ņ	មិ (Φ,	
245	• 0 • 0	4	9 m 0 0	0 0 0 0 0 0 0 0 0 0 0 0	54.37	0.83	-1.03	2.40	
	AX 15.)								
RECORD		LIFT (LB)	X-FORCE	E L/0	CLR (-)	C X R	£.	CPRO (-)	ļ
l m	1 %	°	l W	•	029	.0001	0013	0008	ļ
4	0	4	0	٠	037	.0001	0016	6000	
4	2.8	ô	3	•	044	• 0001	0019	6000	
242	-2.64	94.18	3.90	3°	•00521	0.00022	.000233	.000110	
4	40	•	•	•	020	0005	0027	0012	
4 4	N.	•	φ. (•	2000	2000	0033	0014	
4	3.5	7	V	٠	030	1000	5 700	0000	

RUN 20 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

	Ū.	USELAGE DAT	۷ ۱ ۷	ERODYNAMIC REF	REFERENCE CENTER	TER	
(BODY	AXISI						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	1 ×	
IM	.20	36	1 2	40.	.01	.31	
4	20	23	3	•10	0	-27	
4	•28	•28	4	.18	• 03	•25	•
4	•53	• 30	4	90	40	930	
4	•46	20 50	4	23	•00	338	
244 245	-0.270	2.350 2.350	-0.590 -0.300	-0.459 -0.150	0.000	-0.364	
	AX IS)					•	
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
1 1	17	10	15	26	40.0	00	0.31
) 4	0	M I O	28	35	010	0	0.27
. 4		32	.27	45	0.18	.02	0.25
4	· (1)	.58	.28	•43	0.08	•03	0.30
4	Ŝ	.52	•23	• 46	0.23	.05	0•38 i
244	1.71	-0.340	2.341	060.0	-0.459	0.057	-0.365
4	•	ם פ	40.	9	C 1 • D		77.0
QNIA)	AX 15)						
RECORD	ALPHW	CLB (=)	CDB	CYB	CMYB	CMXB (-)	CMZB (-)
	ו ו ו	- 1	1		ı		Ì
M	-7	387	.3932	433	065	.0008	78
4	Ò	66E	. 3614	583	•0151	9	• 0414
4	-	543	.3793	•0 750	6720	4004	02200
4	ω, i	974	. 3815	•0717	•0128 0356	4 COO 4	0433
4 4	Ů,	867	2/2	7070	10000-	0.00853	05479
245	0.78	-03037	0.39167	• •	•0224	0003	.0333

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

SHAFT	ANGLE =	4 ROTOR-	BODY H/R	= •083	3 ROT	OR-GROUND	Z/R = 1.4	4063	
(TEST	COND I T I ONS	5)							į
ECO	TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	O (LB/FT2	M) . (2		
444 444 644 644 666 666 666 666 666 666	722.00	0.9722 0.9722 0.9703 0.9703 0.9703	50000000000000000000000000000000000000	000000	1005 1005 1005 1005 1005 1005 1005		00000		į
I	15)	Z Z	DATA	нив	FERE	CENTE) 	,	
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG) (:	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MKHP (TP)	į
246 2447 2448 2448 251 251	6.0 7.0 8.0 9.0 10.0 6.0	44444	00 ₩ 4 ₩ 0		57.26 71.83 85.78 98.97 111.67 58.26	2.4000 2.4040 3.4040 3.100 3.000 3.0	1.1.1.641 1.2.69 1.2.69 1.2.69 1.69	1.17 1.527 1.655 1.93 1.13	
ΙŪ	ALPHW (DEG)	L1FT (LB)	X-FORCE	170	CLR (-)	CXR (-)	CDR (-)	CPR0 (-)	į
200000 44400 500000	44444 4000 4000 4000 4000 4000 4000	56.97 71.49 85.42 98.59 111.47	-7.98 -7.90 -7.90 -9.51	400044 -02000	.00315 .00395 .00472 .00545	00000000000000000000000000000000000000	0000043 0000043 0000111 0000111	.000109 .000113 .000133 .000136	į

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 21 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = 8.0 SHAFT ANGLE = 4 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

	Ĭ.	USELAGE DAT	۷ ۱	ERODYNAMIC REFI	ERENCE CENTER	TER	
(BODY	AX IS)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
14	•33	•66	96.0	66	900	7	
4	60.	•68	.02	.03 7A	900	000	
4 4	90	.75	1.13	0	900	-1	
250	3.020	3.770	-4	2.781	0.060	0.001	
S	•35	•68	9	•	о С		
ON I M	AX 15)					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
RECORD	ALPHW (DEG)	(LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
1 4	14	-75	111	96.0	66.	.08	.10
4	S	• 50	• 09	50° 1	.03	0.0	800
4	9	.57	.13	1.07	.87	90.	0.0
4		• 45	• 17	61.1	0	\$ C	0.00
250	8.88	4	4.191	-1.070	2.008	n a	
Ŋ	4	•77		9	•	•	•
QNIA	AX 15)						
RECORD	ALPHW (DEG)	CLB (-)	CDB (-)	CYB (-)	CMYB (-)	CMXB (-)	CMZB (-)
14	4	.2514	.3749	894	-245	• 000	•008
4	ល្ងំ	.2287	•3739	0660	2662.		V 0000
4	91	• 2349	60113	0700	2471	0000	0086
ハ 4 パ ひ C		0.21913	0.38236	09762	0.22802		900
S	4	. 2529	.3770	.0875	.2467	• 0020	• 000 €
		-					

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

BODY PITCH ATTITUDE = 4.0 /R = .0833 ROTOR-GROUND 2/R = 1.4063	
BODY PITCH ATTITUDE = •0833 ROTOR-GROUND	
CONFIGURATION BHRF2L -E = 0 ROTOR-BODY H/R	
RUN 21 CONFIGURATION BHRF2L SHAFT ANGLE = 0 ROTOR-BODY H/R	

(TEST	COND 1T 1 ON	5)	; ; ;					
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2	D₩ . (3	
252	73.0	968	26.		05.4	18	10	
253	m	. 968	26.		05.4	8	1	
254	m	•968	26.		05.4	8		
263	ů	• 968	26.		05.4	8	10	
256	4	0.9664	7.	47	•	8		. 0
257	4	• 966	27.		05.5	8	3	
258	4	996•	27.		05.5	12.8	0.20	. 0
		MAIN ROT	DR DATA	- HUB	REFERENCE	: CENTER		
	-							
RECORD	ET	Ha			1 5			
	(DEG)	(DEG)	(DEG)	(DEG)	(LB)	(18)	' ~	TY TY TY TY
ļu	1	1			1	-		
) u	•	•	n.	9	4.0	4	1.4	
ŊΨ	٠	•	N.	9	6.7	Ş	1.6	¢.
Òί	,	•		'n	1.3	Φ,	1.8	4
Ö١	•	•	7	•	4.2	ņ	2.1	0
Ō	•	•	•	4	9.9	3	2.5	
257	N	0.0	0	-5.5	119.60	26.0-	8	9
Ñ	•	•	Φ.	m	5.0	-	-1.38	1.86
QNIM)	AX 15)							
RECORD	E	1	16		<u>ل</u> إ			0000
	DEG	(1-8)	(9)	(-)		(-)		1
252	•	54.00	-1.82		029	100	0	10
n i	ů	6	1.8	٠	037	001	0011	0000
n (9	E . 1	1.7	•	045	001	0014	0011
S) l		4	4.1	5		00008		012
ΩL	8	9	m	•	059	000	0021	0014
n u	•	5 4	0	•	990	000	0056	0016
n	•	ָ ס] • S	•	030	000	0010	0010

RUN 21 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = 4.0 SHAFT ANGLE = 0 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

	Ĩ.	USELAGE DAT	I ⋖	AERODYNAMIC REFI	REFERENCE CENTER	TER	
(BODY	AX 15)						1 1 1
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
1 10	i u	96	48.	.55	•03	60.	
S	0	66.	9	5	000		
S	. 13	200	20 C	4 4	0 0		•
S	000	300	٠) V	000) <	
S	• 61	6	7	V (7 C	1	
257 258	1.590	3.950	-0.780	1.274	0.050	-0.048	
A ONIW)	(XIX)			:		- !	
PECORO	1 -	1	I X	I U.	PMB	KMB	YMB
) }	(DEG)	(8)	(8)	(LB)	(FT-LB)	(FT-LB)	
ļ¢		53	60	84	.55	40.	•09
253	4 50 50	1 • 4 39	4.117	-0.890	1.519	0.061	0900
S	9	.40	• 10	.88	441	•08 •	000
S		• 26	60.	69	•29	60.	80.
S	Ø	• 26	10	.91	200	600	0
S	6	.23	.13	0.	60.	01.	4 I 4
S	4	•75	60•	•78	•27	• 0 •	0
ONIM	AX IS)			# # # # # # # # # # # # # # # # # # #		 	
RECORD	ALPHW (DEG)	CLB (-)	ã١	C YB (-)	CMYB (-)	CMXB (-)	CMZB (-)
	•	1 4	0.37323		127	003	-
O	ŝ	. 1312	. 3755	2180.	0 1 7 4 0	0000	1000
S	9	• 1279	• 3746	•080S	1162	7100.	
S		• 1154	.3739	.0848	1004	2000	7000
S	8	1157	.3742	0830	0001		0111
257	40.4	1130	93769	2:0	\$ 000.		000
S	4	• 1604	.3738	1170	***	0000	• 000

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

				1				
ر	TEMP (DEG F)	SI GPRM	TP (FPS	•	VEL (FPS)	O (LB/FT2	O# (
ľ	1 4	966	۱۸	47	05.5	1 2	20	
9	4	996	27.		05.5	å	• 20	
Ø	4	• 966	27.		05.5	8	•20	_
Ø	ŝ	• 964	27.		05.6	ò	• 20	_
Ø	9	• 964	27.		05.6	ċ	• 20	
264 265	75.0	0.9643	527. 527.	00	105.66 105.66	12.8	0.200	00
		MAIN ROT	TOR DATA	- HUB	REFERENCE	CENTER		
	AX1S)							
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FOR CE	MRHP (HP)
1 10		0-4-			9.6	-2		14
0	•	•	•	•	3.3	7	1.3	ဆ္
9	•	4	•	4	6.2	6	1.7	£),
Ø	-	4	•	4	89.4	S	1.9	•
9	•	4	•	ŝ	.	0	m 1	9
265 265	8.0 8.0	0.4	M. M. M.	0.W-	50.77	1.39	-1.21	2.41
(WIND	AX 15)							
ECORD	ALPHW (DEG)	(LB)	X-FORCE (LB)	Q	CLR (-)	CXR (-)	ğ-	CPRO (-)
i N	3.6	9.6	1 81	4 65	002	000	0014	001
o١	ม์ เ	7	-	•	2000	1000		
0 v		- r	ָרָ יַּ	•	400	0000	7000	100
263	3.50	50	5.65	5.0	.00564	0.00031	.000286	.000144
O	3.1	3.1		•	0062	• 0003	0033	0016
١								

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 21 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/H = 1.4063

CENTER
REFERENCE
AERODYNAM1C
1
DAT
FUSEL AGE

(BODY	AX15)					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	F 1 - 1	
10	30	7	S.	0.123	0.048	-0.092	
9 4	000	910	000	70	90	000	
0 4	700	200	9 0	000	90	0.16	
S (C	4	35	.71	.05	•02	0.19	
264	-0.520	4.310	79	• 08 6	0.0	0.17	
9	•15	. 21	• 8	.12	• •		
QNIA	AX15)				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
RECORD	ALPHW (DEG)	L1FT (LB)	DRAG (LB)	SFB (LB)	PMB T-L	RMB (FT-LB)	YMB FT-L
					-		
in	m	3.	•	-0.570	0.123	0	260.0-
ø	Š	•08	.17	. 55	֡֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֡֓֓֓֓֡֓֡֓	N 1	2
9	9	33	•26	962	9.0	200	77.0
9	•	.31	.27	•65	000	500	01.0
263	0.80	~ (4400		ဂ ၁	200	7.00
0	9	200	200	.	9 0	•	
Ø	4	•12	•21	• 4	V	•	61.0
ONIA	AXIS)						
RECORD	ALPHW (DEG)	(-) (-)	(-)	(~) (~)	CMYB (-)	CMXB (-)	CMZB (-)
1 10	M	-024	.3842	520	.010	• 0039	• 007
9	ស្វ	90 78	.3813	501	•0097	• 0052	0148
0	9	.0287	• 3892	•0565	•0163	•0028	•0185
Ø		0285	.3901	593	0000	.0027	0138
Ø	8	0429	• 3963	•0647	• 0044 0004	•0010	9610
264	68.0	- 05356	0.39243	07207	9900	0.00143	0140
O	4	• 0110	. 3841	437	0010	• 0033	001

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

EST	COND 1T 10N	5)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS	S)	VEL (FPS)	(LB/FT2	UM (S	
266	75.0	96	527 527	94	105.77	1000	0000	
1 O O	• • •	400 400 400	120		000	100	200	
- 1-1-	4 M	0.9641 0.9659	200	40	05.5	• • •	200	
(SHAFT	AXIS)	MAIN ROTOR	IOR DATA	- HUB	REFERENCE	E CENTER		
	THE	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
100	100		1 .	MM	0.0	12-	900	0.4
9	-(8	•	m:	0	0	2	30.0
200 200 200 200 200 200 200 200 200 200	13.0	2 0 0 2 0 0	0 0 0	4 4 0	96.64	000	11.00.0	000
-	• •	• •	• •	o m	5.7	40	9.0	00
ONIM	AXIS)							
RECORD	ALPHW (DEG)	L1FT (L8)	X-FORCE	Q	CLR (-)	CXR (-)	& (- - -	CPRO (-)
999	004	889	4 9 B		024 032 039	0000	000017	0010
269 270 271	-7.34 -7.24 -7.15	83.52 95.87 107.61	12.18	₩ ₩ ₩	.00463 .00532 .00597	0.00057 0.00068 0.00078	.000294	.000126
•	0	0	•	•	220	2000	100	0100

RUN 21 CONFIGURATION BHRF2L BUDY PITCH ATTITUDE = -4.0 SHAFT ANGLE = -8 ROTOR-BUDY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

(BODY	AX 1S)		 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)		YM (FT-LB)	
lo	1 0	38	.18	-	60.	.41	
S	.45	.38	.21	1.48	0.05	4 7	
Ó	N	.35	.29	1.59	0.04	•37	٠
S	55	.39	.36	1.63	0.03	444	
)	1.59	.31	.47	1.70	0.04	.37	
. -	-1.480	4 . 330	009.0	78	0.05	•37	
272	1.41	• 33	• 16	1 . 38	50 ° 0	•38	
A IND	AX 15)						
RECORD	ALPHW	LIFT	DRAG	SFB (LB)	PMB (FT-LB)	FT-T	YMB-T-L
1 1 1	ו כ ו נ	}	1				-
26	9	6.0	.45	-	-1.588	-0.070	-0.419
0	ທີ	1.1	.46	.21	1.48	0.02	0.47
0	4.0	101	64 2	•29	e 2 e	000	76.0
0	10	1 .2	.47	.36	1.63	0000	44
1	-3.24	-1.344	4.393	0.470	1.70	2000) • 3 v
~	3.1	1.2	.40	• 60	1.78	0.03	75.00
272	•	1 • 1	.41	• 16	1.38	0.07	9 3 X
QNIA	AXIS)						
RECORD	ALPHW (DEG)	(-)	CDB (-)	C.YB (-)	CMYB	CMXB (-)	9
1 6	19	802	4061	164		.0057	.034
(C	Ŋ	1073	.4070	191	25	• 0053	.0392
Õ	4	.1055	. 4039	264	_	•0015	•0306
9	6.6	.1178	. 4080	•0328	9	90000	0000
1	3.5	• 1226	4007	.0428	9	17000	9070°
271	-3.15	11314	0.40186	05474	- 1	- 00203 00603	10
Ĺ	3.6	. 1033	• 4024	•0146	7	2000	100.

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

ECORD TEMP SIGPRM (DEG F) SIGPRM (DE	CONFIGURATION BHRI	F2L Y H/R = .	BODY PITCH 0833 ROTO	ATTITUDE OR-GROUND	= 0.0 Z/R = 1.	4063
ORD TEMP SIGPRM (DEG F) SIGPRM (DEG F) SIGPRM (DEG F) 0.9656 73.0 0.9656 75.0 0.9657 77.2.0 0.9651 77.7 73.0 0.9651 72.0 0.9671 77.7 72.0 0.9671 72.0	-					
273 . 73.0 0.9656 275 73.0 0.9656 276 72.0 0.9653 277 73.0 0.9653 277 72.0 0.9651 277 72.0 0.9651 278 72.0 0.9671 ECORD THETA ALPHS B 274 9.1 -4.0 4 275 10.0 -4.0 6 275 11.0 -4.0 6 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 8 277 13.0 -4.0 3 277 12.1 -4.0 8 277 13.0 -4.0 3 277 13.0 -4.0 3 277 13.0 -4.0 3 277 13.0 -4.0 3 277 13.0 -4.0 3 277 13.0 -4.0 3 277 13.0 -4.0 3 277 -3.77 45.29 277 -3.77 45.29 277 -3.59 82.30 277 -3.59 94.84	P SIGPR	тр (FPS)	VEL (FPS)	(LB/FT;	4n 4n	• • • • • • • • • • • • • • • • • • •
275 73.0 0.9656 276 72.0 0.9653 277 73.0 0.9653 278 72.0 0.9653 279 72.0 0.9653 279 72.0 0.9653 274 9.1 -4.0 4 275 11.0 -4.0 6 275 11.0 -4.0 6 277 12.1 -4.0 8 278 13.0 -4.0 9 279 8.0 -4.0 9 277 12.1 -4.0 9 279 8.0 -4.0 9 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 8 277 12.1 -4.0 9 279 8.0 -4.0 9 279 -3.77 6.59 273 -3.77 659.53 274 -3.70 659.53 277 -3.52 94.84	96.0) oc a	6.1	100	. 25	
276 72.0 0.9671 277 73.0 0.9653 278 72.0 0.9671 279 72.0 0.9671 (SHAFT AXIS) ECORD THETA ALPHS B 274 9.1 -4.0 4 275 10.0 -4.0 6 276 11.0 -4.0 6 277 12.1 -4.0 8 277 12.1 -4.0 6 277 12.1 -4.0 6 277 12.1 -4.0 6 277 12.1 -4.0 6 277 12.1 -4.0 6 277 12.1 -4.0 6 277 12.1 -4.0 6 277 12.1 -4.0 6 277 12.1 -4.0 6 277 12.1 -4.0 6 277 13.0 -4.0 3 277 13.0 -4.0 3 277 -3.77 45.29 277 -3.77 45.29 277 -3.59 82.30 277 -3.59 94.84	96.0	26.8	70	•	. 25	
277 73.0 0.9653 278 72.0 0.9671 72.0 0.9671 72.0 0.9671 72.0 0.9671 MAIN ROTOR (SHAFT AXIS) ECORD THETA ALPHS B (DEG) (DEG) (DEG) 273 8.0 -4.0 6 275 11.0 -4.0 6 277 12.1 -4.0 8 278 13.0 -4.0 6 277 12.1 -4.0 8 277 -4.0 9 277 -4.0 9	96 • 0	20.5	1.8	C	25	
ECORD THETA ALPHS B CORD ALPHW LIFT X CO	96.0	26.8	2.0	ċ	• 25	
ECORD THETA ALPHS B (DEG) (LB) (DEG) (LB) (DEG) (LB) (LB) (DEG) (DEG) (LB) (DEG) (DE	96.0	S	131.88 131.88	000	0.25	—
ECORD THETA ALPHS B (DEG) (LB) (LB) (DEG) (LB) (LB) (DEG) (LB) (LB) (DEG) (DEG) (LB) (DEG)	AIN ROTOR	DATA - HUB	B REFERENCE	E CENTER		
ECORD THETA ALPHS B 273 8.0 -4.0 4 274 9.1 -4.0 4 275 10.0 -4.0 6 277 12.1 -4.0 6 277 13.0 -4.0 9 277 13.0 -4.0 9 277 13.0 -4.0 3 (WIND AXIS) ECORD ALPHW LIFT X ECORD ALPHW LIFT X ECORD ALPHW LIFT X 273 -3.77 45.29 274 -3.77 45.29 275 -3.59 82.30 277 -3.59 94.84 277 -3.59 94.84						
273 8.0 -4.0 4 275 10.0 -4.0 6 275 11.0 -4.0 6 277 12.1 -4.0 8 278 13.0 -4.0 9 279 8.0 -4.0 9 279 8.0 -4.0 9 279 -4.0 9 273 -3.77 45.29 274 -3.77 45.29 275 -3.59 82.30 277 -3.59 94.84 277 -3.59 94.84	A ALPHS 81 (DEG) (DE	A1 (DEG	THRUST	H-FORCE	Y-FOR CE	MAHD
274 9.1 -4.0 4 275 10.0 -4.0 6 275 11.0 -4.0 6 277 12.1 -4.0 6 277 13.0 -4.0 6 279 8.0 -4.0 9 3 (WIND AXIS) ECORD ALPHW LIFT X 273 -3.77 45.29 274 -3.77 45.29 275 -3.59 82.30 277 -3.52 94.84 278 -3.46 106.10						
ECORD ALPHW LIFT X E275 -3.52 94.84 84.84 10.00	- the O	2,1	45.2	ព្	ŝ	ئ
E75 1100 -400 6 277 1201 -400 6 278 1300 -400 9 279 800 -400 9 279 -400 9 (WIND AXIS) ECORD ALPHW LIFT X (DEG) (LB) 273 -3.77 45.29 274 -3.77 45.29 275 -3.59 82.30 277 -3.59 82.30 277 -3.59 94.84 278 -3.46 106.10	- d - 0 - d - 0 - d - 0 - d - 0 - d - 0 - d - 0 - d - 0 - d - d	֓֞֝֝֟֝֜֝֝֟֝֓֓֓֓֓֓֓֓֟ ֓֓֓֞֞֓֓֞֞֞֞֞֞֞֞֞֞֩֞֞֞֞֞֩֞֞֩֞֞֩֞֩֞֩֞֩֞֩	50.5	ູເ	9	٠ ت
E77 12.1 -4.0 8 278 13.0 -4.0 9 279 8.0 -4.0 9 3 (WIND AXIS) ECORD ALPHW LIFT X (DEG) (LB) 273 -3.77 45.29 274 -3.77 45.29 275 -3.59 82.30 277 -3.52 94.84 278 -3.46 106.10	0 4 1	E.	70.6	Ų.	•	4.
ECORD ALIS) ECORD ALPHW LIFT X ECORD ALPHW LIFT X 273 -3.77 45.29 274 -3.77 45.29 275 -3.59 82.30 277 -3.59 94.84 278 -3.46 106.10	•0	•	87.4	20	4	7
ECORD ALIS) ECORD ALPHW LIFT X ECORD ALPHW LIFT X 273 -3.77 45.29 274 -3.77 45.29 275 -3.59 82.30 277 -3.52 94.84 278 -3.46 106.10	14.0	• t	94.9	m (Ō	9
ECORD ALPHW LIFT X (LB) (LB) (LB) 273 -3.77 45.29 274 -3.70 59.53 275 -3.64 70.59 277 -3.52 94.84 278 -3.46 106.10	0 - 1 - 0	9 - 2 - 8	45.87	1.71	-00.57	2.53
ECORD ALPHW LIFT X (DEG) (LB) 273 -3.77 45.29 274 -3.70 59.53 275 -3.64 70.59 277 -3.52 94.84 278 -3.46 106.10						
73 -3.77 45.2 74 -3.70 59.5 75 -3.64 70.5 76 -3.59 82.3 77 -3.52 94.8 78 -3.46 106.1	W LIFT X-	FORCE L	70 CLR	CXR (-)	CPR (-)	CPRO (-)
74 -3.70 59.5 75 -3.64 70.5 76 -3.59 82.3 77 -3.52 94.8 78 -3.46 106.1	7 45.29	•46 5	•0025	•0000	0014	0011
75 -3.59 82.3 77 -3.52 94.8 78 -3.46 106.1	59.53	2.32 5.	.003	0.00013	.000172	.000118
77 -3.52 94.8 78 -3.46 106.1	70°00'	0 10 10 10 10 10 10 10 10 10 10 10 10 10	V 000	1000	02000	0012
78 -3.46 106.1	94.84	8	0000	2000°	2000	0010
	6 106.10	.71	• 0058	. 0003	00034	0018
79 -3.77 45.8	7 45.89	.31	•0025	•0000	0014	0011

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 22 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

(BODY	AX 15)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	1	YM (FT-LB)	
273	1 •360	6.260	-0.450	-0.186	0.023	-0.153	
-	16	35	5.4	36	90	5	
	-10	.38	.56	•64	•02	.28	
~	.86	.40	•79	99	•03	•30	
-	99.	.42	69.	•54	•03	.43	
-	•24	• 25	• 48	• 22	.03	41.	r
3	AX 15)						
RECORD	1		DRAG	SFB	PMB	RMB	YMB
	ا ق	ا بـ	ا لـ		T (3 i	
-	2	.33	.26	.45	~	0	0.15
-	3	00.	.32	.48	•25	•05	0.24
	3	66	•32	5 4	•36	00	0.22
-	4	.05	38	30	49	•05	0.28
277	0.48	0.807	6.407	0.40	-0.608		60200-
	S	99	.42	69	40.	E 0	0.43
-	N	•21	• 25	4.0	•22	•03	0.14
ONI M)	AXIS)						
RECORD	ALPHW (DEG)	CLB (-)	(-)	CYB (∸)	CMYB (-)	CMXB	CMZB (-)
1	2	.0779	.3658	26	160	.0011	80
1	3	•0587	•3693	•0280	132	•0056	•012B
1	M	.0543	. 3693	315	•0192	• 0014	115
	*	.0615	.3729	•0327	• 0335	• 0014	.0147
	4	.0470	.3741	.0461	.0319	.0014	.0161
278	0.54	0.03503	0.37520	Ň	02853	0.00157	25
1	Š	• 0709	• 3652	•0280	.0117	• 0016	076

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	0 (LB/FT2	2) MU	
000	3	960	27.	62	58.2		-30	0
260	0.47	0.9622	527	· • • •	158.11	78°6		000
0	•	962	27.		58.1	• •	900	00
(SHAFT	AXIS)	MAIN ROTOR	DATA	HUB	REFÉRENCE	E CENTER		
RECORD	THE TA DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
1000			25	12	2.3	104	1.8	100
282	000	9	m W) M	87.91	1.23	4	90
0 00		• •	υœ	• •	60	50	12.46	1.70
ON I M	AXIS)							
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE (LB)	25	CLR (-)	CXR (-)	CPR (-)	CPRO
000	4.22	2.0	9.9	• (0034	8000	00005	014
200	M. 4	87.57	-7.83	7.5	.00487	# 0000 · I	• 00000	.000152
0 0	000	֡֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡֓֡֓֡֓֓֓֓֡֓֡	Ċ	٠	222	¢	60000	3 18

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 23 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = 8.0 SHAFT ANGLE = 4 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

(BODY AXIS)	AXIS)					- 1	
RECORD	(LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	KM (FI-LB)	YM (FI-LB)	
ioo a	40	96	94	9	-0-103		
9	37	16.	1.99	. 45	100	114	
283 284	5.340	7.860 7.910	-1.930	7.917	90.	• 16	
Q	AX [S)						
RECORD	ALPHW (DEG)	(LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMb (FI-LB)
1 00	2	44.	•68	1.94	•61	0	•
0	4	.23	•61	1.89	19.	800	·
285 200 200	8.31 9.41	4.162	8 • 662 8 • 552	0000	7.917	ρ Ο Ο	050-0-
0 0) M	10	58	1.94	79	• 08	
ON I M	AXIS)				 	 	
RECORD	ALPHW (DEG)	(-) (-)	(-)	CYB (-)	CMYB	CMXB (-)	CMZB (-)
2882 2882 2832 2832	8.22 8.27 8.31 8.35	0.18146 0.17292 0.16993 0.16912 0.16912	0.35461 0.35190 0.35370 0.34920 0.35062	-07921 -07717 -08126 -07681	0.31622 0.31607 0.31033 0.29059 0.28616	00209 00325 00306 00334 00317	0.01205 0.00346 0.00576 00182

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RECORD TEMP 291 55.0 293 57.0 294 57.0 295 58.0 296 58.0 (SHAFT AXIS) RECORD THETA (DEG) 292 8.0 293 9.1 294 10.1 295 11.1							
ECORD TEMP 291 55.0 292 55.0 293 57.0 294 57.0 295 58.0 296 58.0 CORD THETA (DEG) 292 890 293 991 294 10.1 294 10.1	5.1						
291 55. 294 57. 295 57. 295 58. 58. (SHAFT AXIS) ECORD THET CORD THET 291 7. 292 8. 293 9. 294 10. 295 11.	~	TP (FPS)		VEL (FPS)	(LB/FT2	MU	
295 57. 296 57. 296 58. ECORD THET ECORD THET 291 7. 292 8. 293 9. 294 10. 295 11.	999	18.		55.2	800	900	
ECORD THET (DEG 291 7.292 8.293 9.294 110.295 11.296 11.206 11.206 11.206 11.206 11.206 11.206 11.206 11.206 11.206 11.206 11.20	0.9975 0.9975 0.9975 0.9956	သသတတ	, ,	155.56 155.56 155.56	28.7 28.7 28.7 28.7	000000000000000000000000000000000000000	••••
ECORD THET (DEG 291 7.292 8.293 9.294 10.295 11.296	MAIN ROT	TOR DATA -	E .	REFERENCE	E CENTER		
291 7. 292 8. 293 9. 294 10. 295 11. 296 7.	ALPHS (DEG)	B1 (DEG) (A1 DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
SIXA GNIW	000000	2000 m m m m m m m m m m m m m m m m m m	00m/	57.79 70.39 81.93 92.80 103.79 57.59	00000 100000 100000	000000000000000000000000000000000000000	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
RECORD ALPHW (DEG)	L1FT (LB)	X-FORCE	30	CL.R	CXR (-)	CP CPR	CPRO (-)
291 292 293 293 0.29 294 0.33 295	57.78 70.38 81.93 92.80 103.79	12.32 11.91 11.56	97777 9m8777		000013	.000108 .0001108 .000143	.000134 .000134 .000140 .000155

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

= .0833 R010R-GROUND Z/R = 1.4063 RUN 23 CONFIGURATION BHRF2L SHAFT ANGLE = 0 ROTOR-BODY H/R

BODY	AX 15)	.					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	NF (LBS)	AF (LBS)	FBS		$\alpha \vdash$	14	# # # # # # # # # # # # # # # # # # #
10	100	180	'	•			
N Q	7	99	77.	E E	7	.18	
N a		65	1.81	.10	-	•10	
N O		99	1.86	.15	-	•05	•
9	00	8.720	87		7	14	
296	3.960	.57	06-1	. 4 J	7	•58	
ONIMO	AXIS)						
RECORD	ALPHW	LIFT	DRAG	SFB	PMB	RMB (FT-LB)	YMB (FT-LB)
	יו ביו ביו				• !		
io	2	4	8	-1.740	4.347	-0.147	
0	2	.21	•92	1.77	E	0.14	22.
0	2	.45	E6 •	1.81	7	41.0	1 (
0	4.33	3.465	8.947	9	. 5	0.15	5
9	L	.32	56.	1.87	9	0.17	
296	N	•32	83	1 •90	4	0 • 1 2	• 20 20
ON I M	AX 15)			,			
RECORD	ALPHW	CLB	COB	CYB	CMYB (-)	CMXB (-)	CMZB (-)
	֡֝֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟֝֓֓֓֓֡֓֡֓֡֓֓֡֓֜֝֓֡֓֡֡֡֡֡֡֡֝	·	ı		i		
10	•	0.13995	0.36075	- 0 7080	158	-000538	
0	N	• 1309	.3630	.0720	• 1586	2000	2000
0	7	.1404	• 3634	•0736	1502	1000	7 000
0	M	.1409	• 3640	•0756	.1520	, co co	\$ 700 °
295	4 • 36	52	.3661	0 160	.1443	910	V + C C
0	8	1351	.3595	•0773	.1623	*00.	9170.

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

		2.1						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2	AU MU	! ! ! !
O C	8	995	19		55.7	1 8	• 30	0
עס ע	, 0	9 9 9 9	96		55 55 56	, w	000	0.0
300	0.00	0.9933	519	6	155.89	28.7	30	.00
90	0	.991	20.		56.0	e e	30	
		MAIN ROTOR	DATA	- HUB	REFERENCE	E CENTER		
(SHAFT	<							
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	
0			-2		7.0	8	10	10.
O O	10.1		יין ניין	•	7.0	90	9	4
,0	: 0	•	ט ויס	9 4	7 · C	Vα	7 4	֓֓֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡֓
301	13.1		O I	40	102.83	0.91	-1.56	5.73
3	•	•	>	• V	•	•	V	• V
RECORD	AL PHW (DEG)	LIFT (LB)	X-FORCE (LB)	SI	CLR (-)	CXR (-)	CPR (-)	CPRO
i o	l m	9	10	۱.	031	.0001	0017	0012
0	3.7	1.	8	•	038	.0001	0050	0013
O (W.	7	6	•	440	• 0005	0023	0013
000 000	000 000 000 000 000	100.00	4 4 5 5 6 7	701	90000	0.00028	000280	.000154
•))						

RUN 23 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

(BODY	AX15)						† † †
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	! ! ! !
1 (1	1 0	1	1 2	000	4	
•	, ·			שׁנְינִי שׁנְינִיי	10		
O,	0	000) (0 4	• (7	
0	.73	.87	7			31	
O	.81	• 94	.37	60	• 16	0.33	
	0.610	8.990	-1.400	0.156	-0.183	-0.423	
302	•03	06•	.77	.83	.17	0.17	
QNI M)	AX15)						
RECORD	19	1	RA	SFB		E W	YMB.
)	(DEG)	(18)	(LB)	ا لـ	1 1	ا ت	וו
10	13	87	•78	•78	0.566	-0.211	0
0	3	.63	.86	• 10	.55	0.21	16.0
١٥	N	.68	.87	•21	. 4 1	61.0	0.37
0	0.32	0.760	8.944	-1.370	60	0.16	٠ د د د
0	3	.55	66.	• 40		8.0	0.4 1
302	2	66.	06•	.77	83	8 1.0	
CNIND	AX 15)						
RECORD	ALPHW (DEG)	CLB (-)	CDB (-)	CYB (-)	I	CMXB (-)	CMZB (-)
10	14	.035	.3573	317	020	-007	016
0	3	.0257	. 3606	•0447	• 0203	> \ 000	5110
Q	N	.0279	• 36 10	•0492	.0153	7/00	00100
300	0.32	0.03092	0.36394	05574	.0033	2000	1
Q	M	.0225	• 3659	¥000.	7 COO •		4900
0	2	• 0406	. 3622	210			

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

ANGLE = -8 ROTOR-BODY H/R = .0833 CONDITIONS) TEMP SIGPRM TP	063		
ANGLE	-4.0 'R = 1.4	1 1 1 1	D X
ANGLE	TTITUDE = -GROUND Z/		O
ANGLE	PITCH A ROTOR		VEL
ANGLE			
ANGLE	BHRF2L BODY H/F		ТF
ANGLE	URATION ROTOR-		SIGPRM
SHAFT AN (TEST CO	•	(SNOITIONS)	TEMP
	RUN 23 SHAFT AN	(TEST CC	RECORD

ECORD	TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	(LB/FT2	D# (
2000 2000 2000 2000 2000	50 50 50 50 50 50 50 50 50 50 50 50 50 5	0.9962 0.9962 0.9962 0.9939 0.9939		00000	155 155 155 155 155 155 155	28.7 28.7 28.7 28.7 26.7	000000000000000000000000000000000000000	
		MAIN ROT	TOR DATA -	HUB	REFERENCE	CENTER		
(SHAFT	AXIS)							
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG) (A1 DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
800 900 900 900 70	11. 12. 13. 14. 10.	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.44E	56.99 68.90 80.50 92.33 56.64	10 10 10 10 10 10 10 10 10 10 10 10 10 1	00-00 00-00 00-00 00-00 00-00 00-00	4.09 4.86 5.70 6.69 4.08
ONIM)	AX 15)				i 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	ALPHW (DEG)	L1FT (LB)	X-FORCE (LB)	(-)	CLR (-)	C XR (-)	C FR (-)	CPR0 (-)
M 400 M 000	-7.80 -7.76 -7.75 -7.68	56.69 68.44 79.92 91.58	6.09 7.98 9.75 11.79	6.8 7.7 7.7 6.6	.00314 .00379 .00443 .00508	0.00034 0.00064 0.00054 0.00065	.000240 .000285 .000335 .000393	.000123 .000129 .000140 .000154

RUN 23 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = -4.0 SHAFT ANGLE = -8 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

E CENTER
C REFERENCE (
AERODYNAMIC
1 Y
DAT
FUSELAGE

(BODY	AX 15)				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	NF (LBS)	AF (LBS)	SF	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
303	-88	-20	-	9		Ō	
304	2.90	23	6.	673	200		
305	2.98	320	7.) - C			
306 307	-2.850	9.190	-0.780	-2.687	າພາ	14	
QNIS	AX 1S)						
RECORD	ALPHW (DEG)	LIFT (LB)		SFB (LB)	PMB T-L	RMB (FT-LB)	YMB (FT-LB)
10	1 4	2.26	37	.77	2.6	0	0
0	7	2.28	40	.91	2.73	0.	0
0	3.7	2.36	449	.12	2.94	200	60
306	-3 •6B	-2.333	9.389	-1.130	67	0.036	- 4
0	8	2.23	.35	2	0 0 N	•	† •
QNI M)	AX 15)						
RECORD	ALPHW (DEG)	CLB (-)	(-)	C YB (-)	CMYB (-)	CMXB (-)	CMZB (-)
8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-3.76 -3.72 -3.68	09212 09313 09641	0.38129 0.38629 0.38629	03133 03703 04557	09654 09993 10758	0.00025 0.00054 0.00078 0.00132	0.00233 0.00051 0.00362 0.00070
307	æ	606	• 3808	•0317	7060	6 100	•

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 2	23 CONF	FIGURATION -12 ROTOR-	BHRF2L BODY H/R	B0D =	Y PITCH	ATTITUDE OR-GROUND	= -8.0 Z/R = 1.0	4063	
(TEST	COND IT I ONS	5)							1
i	TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	0 (LB/FT2	DW (2		
308 309 310	0000 0000	0.9939 0.9939 0.9916 0.9916	5019 519 519	 - - OOMM MMGG		28.7 28.7 28.7 7.88.7	00E • 0	0000	!
		MAIN ROTOR	DATA	- HUB	REFERENCE	E CENTER		٠	
S	AXIS)								
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	МКНР (НР)	
308 309 310	0400 0400 0400	0000	7827 8004	444 400 400 400	56-91 68-74 81-54 57-16	1.71 1.35 0.89	0.20 -0.15 -0.55	5.28 7.52 31	
ONI M)	AX 15)								
RECORD	ALPHW (DEG)	L1FT (LB)	X-FORCE (LB)	179	CLR (-)	C X R	₩ (-)	C PRO (-)	
300 300 300 300 300 300 300 300 300 300	-11.80 -11.76 -11.71	56.06 67.57 80.02 56.28	9.96 12.69 15.68 10.13	6.5 7.0 7.0 6.6	.00311 .00375 .00444	0.00055 0.00070 0.00087 0.00056	.000311 .000372 .000442	.000128 .000137 .000148	

RUN 23 CONFIGURATION BHRF2L BODY PITCH ATTITUDE = -8.0 SHAFT ANGLE = -12 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

(BODY AXIS	AXIS)						; ; ; ; ;
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
308	16		9.1		•14	5.08 5.4	
310	5.900	9.050	-1.390	-6.347	-0-142	0.507	• •
(WIND	AXIS)						
RECORD	ALPHW (DEG)	(LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
308	8.	8	88	.96 .18	00	200	សូស
310	-7.71	4.632	9.760	-1 .390	S	-0.223	တေထ
QNIA	AXIS)				 		
ECO	ALPHW (DEG)	(-) (-)	CDB (-)	C YB (-)	CMYB (-)	CMXB	CMZB (-)
308 309 310	-7.76 -7.76 -7.71 -7.80	-19791 -19752 -18847 -18866	0.40208 0.40389 0.39713 0.39465	03906 04801 05656	22164 23212 21816	00822 00854 00814 00836	0.02062 0.01887 0.02132 0.01770

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

LAC	ANGLE :	ואטוטא זיי	אירה זיטטפי		633 KUI	מא הא הא האם	1 = 1/7	5004
(TEST	COND 11 10N	IS)		1				
RECORD	TEMP (DEG F)	SIGPRM	1P (FPS	8)	VEL (FPS)	0 (LB/FT	MU (2	
316	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0010	517 518	400	51.85	200 200 200 200	00.100	000
-	0 4	00	-		1.8	• •		
		MAIN ROTOR	OR DATA	HUB	REFERENCE	E CENTER		
_	AXI							
RECORD	THETA (DEG)	AL PHS (DEG)	81 (DEG.)	(DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	CHP)
316 317 318 319	100 80 00 00 00 00 00 00 00 00 00 00 00 0	4444	2.5 2.5 2.5 2.5	4440	68.70 80.82 93.31 105.53	0.51 0.32 0.17	-0.97 -1.14 -1.41	9.00 9.58 5.10
	AX 15)							
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE	90	CLR (-)	0 X R	A C C	CPRO (-)
316 317 318	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	68 68 60 80 93 30	1.56 1.56 1.56	80-c	.00381 .00448 .00518	0.00000	.000177 .000211 .000253	0000095

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 24 CONFIGURATION BHRFWO BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

(800Y AX1S	AX 15)				 		# # # # # # # # # # # # # # # # # # #
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-L8)	RM (FT-LB)	YM (FT-LB)	
316 317 318 319	0.030 0.030 0.030	0.880 0.880 0.880 0.850	0.070 0.070 0.010 0.050	-0.229 -0.232 -0.248 -0.350	0.133 0.143 0.130 0.172	-0.155 -0.225 -0.259 -0.346	
ON	AXIS)						
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FI-LB)	RMB (FT-LB)	YMB (FT-LB)
316 317 318 319	2.55 2.55 3.95 3.25 3.25	-0.113 -0.159 -0.115	0.876 0.884 0.675 0.850	0.070 0.070 0.010 0.050	-0.229 -0.232 -0.248 -0.350	0.127 0.133 0.117 0.152	-0.160 -0.231 -0.266 -0.356
ONIM	AXIS)						
RECORD	ALPHW (DEG)	(-) (-)	CDB (-)	CYB (-)	CMYB (-)	CMXB (-)	CMZ b
316 317 318 319	200 200 300 300 300 300 300 300 300 300	04129 05816 04196 00704	0.31981 0.32253 0.31941 0.31031	0.02555 0.02555 0.0365 0.01825	07515 07624 08147 11476	0.04156 0.04347 0.03836 0.04971	05240 07576 08712 11666

Ħ	JUND Z/R = 1.4063
BODY PITCH ATTITUDE	3 ROTOR-GROUND Z/R
BHRFWO	-BODY H/F
CONFIGURATION BHRFWO	O ROTOR
4	
5 CON	SHAFT ANGLE =

(TEST	CONDITION:	5)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	0 (LB/FT2	MC (
IN	130	. •	18.	55	000	1 00	200	0.0
324	0 0 0 0 0 0	0000000	518.0	ດດວ	103.40	12.7	00000	00
2	5	•	18.	92	03.	8	• 20	0
		MA IN ROTOR	DATA	- HUB	REFERENCE	CENTER		
(SHAFT	AX15)							
RECORD	THE TA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
100		00	-0	• •	88.44	שומו	-0.80 -1.05	
328 329	10.9	000	200	-4.8	113.67	0.79	-1.42 -0.55	3.90
۵	AXIS)			į		1		
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE (LB)	973	CLR (-)	CXR (-)	CPR (-)	CPHO (-)
326 327 328 329	0000	88.43 100.79 113.67 75.16	-11 -000 -1000 -1000	សសស ឧសសន	.00491 .00559 .00631	00008 00006 00006	.000153 .000167 .000230	.000108 .000121 .000141

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

= .0833 R010R-GR0UND 2/R = 1.4663 RUN 25 CONFIGURATION BHRFWO SHAFT ANGLE = 0 ROTOR-BODY H/R

(BODY	AXIS)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	KM (FI-LB)	YM (FT-LB)	
.1 (i	5	44	60.	• 04	
N	00000	•	9	75	.05	40.	
N C	0440	• (55.0		0.029	0.019	-
329	-0.350	3.370	-0.510	59	• 00	• 0	
ONIA	AX15)						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	ALPHW	LIFT	DRAG	SFB (18)	PMB (FILB)	RMB (FT-LB)	YMB (FI-LB)
1	(DEG)	(LB)	\FQ\		! !		1
0	4.70		.35	0.52	44.	•	•
10	•	0	3.326	-0.540	2.373	0.046	440.01
10	•	•	.35	0.55	.21	•	•
329	4.60	-0.619	33	0.51	• 59	•	•
ONI M)	AXIS)						
RECORD	ALPHW (DEG)	(-)	(-)	CYB (-)	CMYB (-)	CMXB (-)	CMZB (-)
10	1	165	3080	047	.2021	.007	.004
NO	• d	100	3058	040	1961	.003	.003
4 C	4	-04121	0.30840	05057	0.18272	0.00255	0.00139
329	9	569	•3063	• 046	.2146	00.	200

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

L		-4 KUIUK -	-6000 H/K) 	833 KD10K	ON-GROUND	2/R = 1.	4063	
(TEST	COND I T I ONS	5)							
	TEMP (DEG F)	SI GPRM	TP (FPS		VEL (FPS)	(LB/FT	Z) MU		
320 321 322 323	0000 0000 0000	06666	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	005 005 055	103.40 103.40 103.40	12.7 12.7 12.7	000000000000000000000000000000000000000	0000	
		MAIN ROTOR	DATA	HUH -	REFERENCE	E CENTER			
(SHAFT	—								
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-F0RCE (LB)	Y-FORCE (LB)	MRHP (HP)	į
320 321 322 323	10.9 11.9 12.9	0000	44.1.1		81.91 93.93 107.00 119.14	0.79 0.28 -0.28	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.00 6.00 8.00 8.00 8.00	
GNIA									
EC	ALPHW (DEG)	LIFT (LB)	X-FORCE	(-)	CLR (-)	C X R	(F)	CPRO	į
320 321 322 323	-3.26 -3.15 -3.06	81.82 93.79 106.82 118.91	3.00 5.00 7.00 7.53	ທະນຸດ4 ທີ່4≃ຄ	00454	0.00022 0.00028 0.00038	. 000208 . 000248 . 000248	.000112	į

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2+11268 FORWARD FLIGHT

RUN 25 CONFIGURATION BHRFWO BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

CENTER
REFERENCE
AERODYNAMIC
i
DATA
FUSELAGE

(BODY AXIS	AX IS)						1 1 1
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FI-LB)	
1 0 0	29		N.W.	70	90	0.08	
355	-0.120	3.500	0-	-0.201	0.077	0.045	•
	AX IS)						
RECORD	ALPHW (DEG)	L1FT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
100	10	m c	4 4	L) L	10	80.	90.
125 126 126 126 126	0000	-0.172	3.579	0-	-0.201	0.078	0.044
IA	(SIX))	•			
ļШ	ALPHW (DEG)	CLB	CDB (-)	C YB (-)	CMYB (-)	CMXB (-)	CMZB (-)
9881 8881 8881	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 03031 - 02625 - 01580 - 00727	0.32151 0.32152 0.32163 0.32911	-03034 -02759 -03126	0.01129 0.00002 01660	0.00732 0.00737 0.00643 0.00532	0.00700 0.00303 0.00362 0.01428

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

ANGLE	ROTOR-BODY	ıı	3 ROTOR-	-GROUND Z/F	R = 1.4063
_					
TE (DE		TP (FPS)	VEL (FPS)		MU
. G	 	518.05	103.40	12.7	0.200
55.0		518.05	103.40	12.7	0.200
55.0		518.05	103.40	12.7	0.200
55.0		516.05	103.40	12.7	0.200
	DND I	ANGLE = -8 ROTOR-BODY CONDITIONS) TEMP SIGPRM (DEG F) 55.0 0.9990 55.0 0.9990 55.0 0.9990	ANGLE = -8 ROTOR-BODY H/R = . CONDITIONS) TEMP SIGPRM TP (FPS) 55.0 0.9990 518.05 55.0 0.9990 518.05 55.0 0.9990 518.05 55.0 0.9990 518.05	ANGLE = -8 ROTOR-BODY H/R = . CONDITIONS) TEMP SIGPRM TP (FPS) 55.0 0.9990 518.05 55.0 0.9990 518.05 55.0 0.9990 518.05 55.0 0.9990 518.05	ANGLE = -8 ROTOR-BODY H/R = .0833 ROTOR-CONDITIONS) TEMP SIGPRM TP (FPS) (FPS) (DEG F) (FPS) (FPS) 55.0 0.9990 518.05 103.40 55.0 0.9990 518.05 103.40 55.0 0.9990 518.05 103.40

CENTER

REFERENCE

MAIN ROTOR DATA - HUB

HAF	AXIS)								- 1
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)	
חחו		-8-0 -8-0		-3.7	77.88	0.52 0.29	-0.64	4.41	1
ଷ ମ ମ ମ ମ ମ	12.9	-8-0 -8-0	7.5	-4.0 -5.4	102.33 114.29	-0.10	-1.44 -1.69	6.16	
(WIND AXIS)	AX 15)								1
RECORD		L 1FT (LB)	X-FURCE (LB)	(-)	CLR (-)	CXR (-)	CPR (-)	CPRU (-)	
0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	-7.38 -7.28 -7.19	77.30 89.67 101.51	9.49 11.17 12.90 14.95	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	.00429 .00497 .00563	0.00053 0.00062 0.00072 0.00083	.000260 .000308 .000363	.000106 .000122 .000140	١ .

RUN 25 CONFIGURATION BHRFWG BODY PITCH ATTITUDE = -4.0 SHAFT ANGLE = -8 ROTOR-BODY H/R = .0433 ROTOR-GROUND 2/R = 1.4063

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BDDY AXIS)

RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (F1-L3)	
0-0m 0-0m 0-0m 0-0m 0-0m 0-0m 0-0m 0-0m	0.0100	3.570 3.590 3.710	-0.030 -0.130 -0.220 -0.170	-2.163 -2.128 -2.360 -2.375	0.129 0.115 0.092 0.094	-0.162 -0.130 -0.016 -0.163	
	AXISI						
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FI-LB)	YMB (FT-LB)
0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 1 3 3 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.101 0.036 0.195 0.270	3.570 3.594 3.685 3.701	-0.030 -0.130 -0.220 -0.170	-2.163 -2.128 -2.360 -2.375	0.138 0.122 0.092 0.102	7707
CWIWD	AX15)						
RECORD	ALPHW (DEG)	(-)	(-)	CYB (-)	CMYB (-)	CMXB (-)	CMZB (-)
040m mmmm mmmm	13.09 13.09 13.09	0.00927 0.00330 0.01796 0.02484	0.32829 0.33046 0.33883 0.34030	00276 01195 02023 01563	17876 17588 19506 19628	0.01142 0.01011 0.00764 0.00845	01276 01015 00092 01300

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

BODY PITCH ATTITUDE = 0.0	ROTOR-GROUND Z/R = 1.4063
BODY	.0833
CONFIGURATION BHRFWO	LE = -4 ROTOR-BODY H/R =
RUN 26	SHAFT ANGL

(TEST	COND 11 IONS	()						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	(LB/FT2	UM (S	
334 335 336	57.0 57.0 58.0 58.0	0.9951 0.9951 0.9932 0.9932	20 20 20 20 20 20 20 20 20 20 20 20 20 2	, , , , , , , , ,	155.74 155.74 155.89 155.89	28.7 28.7 28.7 26.7	00 000 000 000 000 000	
		MAIN ROTOR	DATA	- HUB	REFERENCE	E CENTER		
-	AXIS)	*		•				
	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MKHP (HP)
334 335 336 337	100 100 100 100 100 100 100 100 100 100	0000	7.5 8.7 9.9 10.9	64.00 7.40.00	81.47 92.72 103.21 113.89	1.00 0.62 -0.16 -0.95	-0.38 -0.79 -1.41 -1.48	4 • 10 4 • 84 5 • 82 7 • 23
3	AXIS)							
RECORD		(LB)	X-FORCE	Q-1	CLR (-)	EX.	C PR (-)	CPRO (-)
334 336 336	-3.67 -3.64 -3.66	81.37 92.57 102.99 113.60	4.28 5.32 6.71 8.10	8 7 4 3 3	.00451 .00514 .00572	0.00024 0.00030 0.00037 0.00045	.000241 .000245 .000342	.000136 .000152 .000176

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FURWARD FLIGHT

BODY PITCH ATTITUDE = 0.0 .0833 ROTOR-GROUND 2/R = 1.4063 H RUN 26 CONFIGURATION BHRFWO SHAFT ANGLE = -4 ROTOR-BODY H/R

œ
CENTER
5
ú
Ū
4
H
ž
Ū
α
ייי עיייי
ũ
œ
t)
ĭ
X
₹
ξ
۵
O
~
AERODYNAMIC REFERENCE
i
a
DATA
4
DAT
w
ق
USELAGE
H
S
S

(BODY AXIS)

RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	1
334	49		1.2	•51	0.015	0.041	
335 346	0.560	7.760	-1.360	0.285	0	10	
337	63	•	1.3	00•	o•	•05	
ONI	AX 15)						1 1 1 1 1 1 1 1 1
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
AFF	13	95	5	8	.51	.01	•
335	0.03	0.516	7.703	-1.240	0.351	0.023	
336	M	46		17	•28	000	N (
337	4	•57		e.	0	00.	V 0 •
ONIND	AX 15)			 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
RECORD	ALPHW (DEG)	(-)	(-)	CYB (-)	CMYB (-)	CMXB (-)	CMZB (-)
988 988 986	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.01596 0.02101 0.01876 0.02343	0.30851 0.31343 0.31588 0.31581	04883 05045 05534	0.01886 0.01283 0.01042 0.00015	0.00055 0.00086 0.00032 0.00031	0.00152 0.00104 0.00072 0.00106

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

	COND 11 10NO							
Ü	TEMP (DEG F)	SIGPRM	TP (FPS	•	VEL (FPS)	0 (LB/FT2	M	
341	43.0			77	51.28	3.5	0 100	
14	'n	023			1.5	• •		
4	3	.023	11.		1.2	•	• 10	_
4	יין נא	.023			0 r	•	0	
4	m	.023	11.		5.1	• •	100	
		MAIN ROT	TOR DATA	- HUB	REFERENCE	E CENTER		
	AXI					:		
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
14	1 •	1 •			1:0	1 2	10	10
4	•	•	90	m.	4.8	ď	91	30
2 4 4 2 4 4	200	4 4	0 4	7.4-	91.73		2.56	200
4	•	•		5	4 . 4	ູ	-	2
4	•	•		9	1.62	91	\$	9
**	•	•	.	•	ה ה	?	t	•
QNIM	AX 15)							
J		LIFT (LB)	X-FORCE	25	CLR (-)	CXR (-)	# <u></u>	CPRO
14	10	0.8	10		028	002	6000	0008
4	0	4	0.0	•	032	• 0003	0011	0008
4 (4		3 (•	400	0000	00013	80000
4 4 4 4 6 6	6000	20°160	10001	200	000000	1,0000	9000	.0000
14	? -	4	0	•				
þ								

RUN 27 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = 8.0 SHAFT ANGLE = 4 ROTOR-BODY H/R = .0458 ROTOR-GROUND Z/R = 1.4063

(BODY	AX IS)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)		RM (FT-LB)		
İđ	-26	16.	-	•	0	0	
4	989	300	•17	600		200	
4		000	• 0 0	910		0.18	
1 4 M	0.260	0.820	-0.240	28	0.13	.21	
4	.43	.86	•25	• 15	0.16	0.22	
4	•25	•01	. 22	• 36	0•16	0.13	
3	(X1X)					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t
	ALPHW (DEG)	L1FT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
14	9	10	46.	•	4	0	12
4	0	•22	.93	•17	60	F .	0.18
4	4.0	.17	• 89	•20	2	5	0.15
4	0.8	• 16	06.	•24	600	-1.	2 . 2 .
345	11.09	0.097	0.855		1.288	10.1	
4		200		0 0	ין מיל	י מ ט -	
4	4	D O	າ ວ	77	2	•	
ONER	AXIS)				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
RECORD		(-) CLB (-)	CDB (-)	CYB (-)	CMYB (-)	CMXB (-)	MZB (-)
14	1 0	.0381	.3432	•0620	•375	028	90
4	0	• 0805	• 3404	•0620	1625	7 0 0	0.000
4	9 0	00000	4000 F	0875	3909	0564	.0518
4 4		4000	2935	0824	.3977	.0550	577
346	11.11	0.08311	0.30062	081	0	.0613	• 0558 0 30 2
4	4	.0254	• 3274	•0694	•3828	534	205

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

(TEST	COND IT IONS	S)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2	DE C	
4	B 1	.023	11.		8.0		-11	3
4 10	'nM	.023 .023			4.0	•		ıO v
:	3	.023	11.		4.0	• •	-	0 .0
352 353	4 4 0 0 0	1.0235	511.	77	60 - 81	4 4 • • •	===	ono
		MAIN ROTOR	DATA	HUB	ER	CENTE	•	
(SHAFT	AXIS)							
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
4	7.1				8.4	14	1 "	1-
4	8.1	•	٠ ئ	3	1.0	2	•	•
กแ		•	0	4	4.0	7	30	8
352	1001		4.4	14.0	97.39	20°0	40	4.
S		•	. ~	, m	8.7	• •	3.00 3.00 3.00 3.00	2.07
(WIND	AX 15)							
ш	そこ	LIFT (LB)	X-FORCE	93	CLR (-)	C XR (-)	C. C.	CPR0 (-)
4	1.44	4	1.8		032	001	0010	0000
4	9	0		•	039	0013	0014	0000
S	o.	0	3.0	•	046	0017	00017	60000
351	2.28	97.31	Ŋ	2.7	.00540	00022	000000	•000107
S	4	9	4	•	040	0008	4000	
Ų				•			4 7 7 7	

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

BODY PITCH ATTITUDE = 4.0 = .0458 ROTOR-GROUND 2/R = 1.4063 RUN 27 CONFIGURATION BHRF2U SHAFT ANGLE = 0 ROTOR-BODY H/R

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY AXIS)

RECORD	NF (LBS)			PM (FT-LB)	RM (FT-LB)	YM (FI-LB)	1 1 1 1 1
24 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000 00000 00000 00000 00000	1.250 1.280 1.260 1.270 1.280	-0.110 -0.110 -0.230 -0.230	0.865 0.905 0.874 0.927 0.858	-0.155 -0.154 -0.154 -0.178 -0.189	-0.229 -0.348 -0.387 -0.375 -0.407	
QNIA	AX 15)						
RECORD	ALPHW (DEG)	L1FT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)		
1 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-0.089 -0.086 -0.0111 -0.054 -0.054		0.120 -0.110 -0.090 -0.210 -0.230		-0.176 -0.203 -0.213 -0.233 -0.233	
CORD	• <u> </u>	(-)	CDB (-)	C YB (-)	CMYB (-)	CMXB	CMZB (-)
8 4 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2000 2000 2000 2000 2000 2000 2000 200	-02522 -02349 -03017 -02153 -01414	0.35524 0.34700 0.34462 0.33269	-03418 -02987 -02444 -05703 -05969	0.22147 0.22064 0.21334 0.22618 0.20022 0.20686	04494 04583 04948 05320 05441	05458 08085 08973 08636 08938

RUN 27 SHAFT A	ANGLE = -	GURATION A ROTUR-	BHRF2U BODY H/R	B00 = .045	Y PITCH 8 ROT	ATTITUDE OR-GROUND	= 0.0 Z/R = 1.4	.4063
(TEST	COND 1 T I ONS	5)						# # # # #
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2) . MC	
358 358 360 362 362	44444 WWWWW 00000	1.0232 1.0232 1.0232 1.0232 1.0232			51.23 51.23 54.60 56.62 58.62	ᲝᲝᲝᲝᲝ ቀ	0000000	00000-m
(SHAFT	AXI	MAIN ROTOR	DATA	HUB	REFERENCE	E CENTER		
RECORD	EO I	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
900000 900000 900000		44444	147.19E	11111 4400 4000 4000 6000 6000	58.38 70.68 83.22 96.18 109.12 60.73	0.00 0.00 0.00 0.00 0.00 7.00	2.04 2.04 1.095 3.04 3.04 3.04	20.00 00
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE	97	CLR (-)	C XR	E C C C C C C C C C C C C C C C C C C C	CPR0
358 359 360 361 361 362	-2.16 -1.38 -1.38 -1.31 -1.16	58.37 70.66 83.21 96.16 109.09	1.53 1.55 1.95 2.29 2.09	200000	00324 00392 00462 00534 00605	0.0000000000000000000000000000000000000	.000153 .000183 .000259 .000306	.000092 .000096 .000103 .000113

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 27 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0458 ROTOR-GROUND Z/R = 1.4063

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY AX 1S)

,							
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FI-LB)	RM (FT-LB)	YM (FT-LB)	#
358	-0.550	1.070	-0 - 250	0.309	-0.179	30	
n vo	610	0.	.24	.33	0.1	0.35	
9	4.0	•06	•28	• 17	0.2	0.42	
9	4.5	• 18	•33	.17	0 0	M (
9	54	• 25	• 15	• 30	0.0	0.29	
ONI M)	AXIS)						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB	YMB (FT-LB)
i u	1 9	1 4	100	3	30	-0.187	0.24
ŌΨ	9 (40	-26	.21	•20	0.24
7	1	7.4	98	-24	.33	.21	0.34
) (9) t	03	28	.17	•24	0.41
S C	0	-0.507	1.156	-0.330	0,•172	.25	• 42
363		S	.23	• 15	• 30	-22	0.28
3	AX IS)	!					
RECORD	ALPHW (DEG)	(-)	(-)	CYB (-)	CMYB (-)	CMXB (-)	CM2B (-)
1 4	1 9	141	3838	912	.1013	614	.0795
) t	9	1813	3435	0.948	.0686	.0686	0791
) (į (2000	3580	.0875	.1105	• 0705	1142
) (749	.3360	.0908	• 0507	0020	1195
362	2.82	15195	0.34628	09881	0.04637	06823	113
•	4	630	.3519	•0427	• 0775	1750.	• 0 7 3 0

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

(TEST	COND 11 1 CND	10		. [
00	TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	0 (LB/FT2	MU (2	
866 866 866 866		1 00228 1 00228 1 00228	0 0 0 1 1 1 1 1 1		62.17 63.49 64.13	4440A	12000	ን ፡፡ ፋኒኒ
00	ที่ที	0225	511.	~ ~	63.49	0 4	. 12	
(SHAFT	AXIS)	MAIN ROT	TOR DATA -	HUB	REFERENCE	CENTER		
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FURCE	MKHP (HP)
366 366 366 367 368	000000	000000 000000 11111	⊕ − ♥ ₩ ♥ ♥ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	 	64 12 76 67 76 67 89 41 102 39 114 64	00000 00000 00000000000000000000000000	2000 E	3.13 4.43 5.24 6.17
	AXIS)		; ;				•	
RECORD	i <u>o m</u>	LIFT (LB)	X-FORCE	97	CLR (-)	CXR (-)	# <u>C</u>	CPRO (-)
366 366 366 366 368	6.10 6.30 6.10 5.94 5.44	63.78 76.27 88.95 101.87	6.64 7.85 9.12 10.26	0000B	00000 00000 00000 00000 00000 00000	0.00037 0.00044 0.00051 0.00057	000187 000222 000254 000313	.0000995 .000103 .000103 .000114

RUN 27 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = -4.0 SHAFT ANGLE = -8 KOTOR-BODY H/R = .0458 ROTOR-GROUND Z/R = 1.4063

(BODY	AXIS)					# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
364	4	<u>م</u> ا أ	•28	•	0.2	-0.311	
365	.26	ທ	•29	• 1 4	0.24	40	
366	30	Ø	.27	.13	0.24	.57	•
367	-1.050	1.610	-0.320	8	•24	•63	
368	89	4	•36	•55	0.25	•66	
369	•30	Ŋ	.27	• 13	0.25	₽	
ONI M	AXIS)		-				
RECORD	6	LIFT		SFB	PMB	RMB	YMB
	(DEG)	20	(LB)	E	1-1	ا لـ	
364	5	1.07	l N	•	-0.210	•	-0.321
365	5	1.19	9	4	.14	.22	•43
366	-2.16	-1.239	1.628	-0.270	.13		.57
367	Ç	66.0	49	m	400	200	40,
368	. 7	0.84	ø	6	55	27.3	100
369	9	1.22	•	3	•13	•23	• 35
	AX 15)						†
RECORD	۱ 5	Ū	0			CMXB	
	(DEG)	(-)	(-)	(-)	(-)	- 1	(-)
364	S	784	.3943		048	052	4
365	2.3	696	.3976	720	315	•0498	296
366	-	ES6	.3879	643	0520	.0468	1239
367	1.9	323	.3841	747	731	• 0462	.1346
368	-1.74	-• 19231	0.38153	2	147	480	200
369	9	913	. 4001	643	293	• 0201	152

BODY PITCH ATTITUDE = 0.0 .0456 ROTOR-GROUND Z/R = 1.4063	
CONFIGURATION BHRF2U BC	
RUN 28 CONFI SHAFT ANGLE = -	

(TEST	TION	S)				 	 		!
ļΨ		SIGPRM	TP (FPS)		VEL (FPS)	CLB/FT2	MU . (
372 373 374	00000	1 0 0 5 0 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	50 50 50 50 50 50 50 50 50 50 50 50 50 5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	77.02 77.11 77.11	444	0.151 0.150 0.150 0.150		
~ ~	4 4	1001	512	9 5 0 0	7.1	-	• 15		
SH	AXI	ZO OX NICE	5						į
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DE G)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (H9)	
122			-0-		1.5 5.0 8.0	000	-01	เรา	
375 376 377	1201	444		1 1 1 4 0 0 2 • • • 2 • • •	101.08 114.01 62.37	0.00	44m	4.18 2.98 5.22	
	AX 15)				1				ŀ
Ŭ	ALPHW (DEG)	(LB)	X-FORCE	(-)	CL.R (-)	C X R	C PR (-)	CPRO	1
372 373 375 375	22.00 20.00	100.96 113.88	3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4444M4	.00342 .00417 .00592 .00533	0.00019 0.00022 0.00025 0.00028 0.00030	.000150 .000178 .000211 .000250	.000083 .000087 .000093 .000103	
•	•	1	•	•)			! !	

RUN 28 CONFIGURATION BHRF24 BDDY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0458 ROTOR-GROUND Z/H = 1.4063

(B0DY	AX 15)			1			! ! !
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
1 1	-02	.36	• 19	6	-0.197	m	
• •	10	333	.27	•21	•19	0.39	
•	00	.33	939	• 10	.18	0.31	٠
	60	.33	•50	0.	• 19	0.30	
	-0.020	2.330	-0.520	7	• 20	0.37	
377	• 03	• 36	• 18	• 26	•19	0•39	
٥	AX 15)					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
OFCORD	10	<u> </u>	N N	L	₹.	<u> </u>	\mathfrak{D}
	(DEG)	(FB)	(LB)	(FB)		(FT-LB)	(FT-LB)
11		01	•36	.19	.32	0.50	0.37
٠,	0	E 0.	.33	.27	•21	0.19	0.38
. ~	~	. 1 1	.32	93	•10	61.0	0.31
375	1.41	-0.147	2.327	-0.500	0	500	08.
•	S	909	.32	• 52		0.03	0.37
377	æ	• 06	.35	• 18	• 50	0.50	0.39
Q	AXIS)	•				.	
RECORD	ALPHW (DEG)	(-) (-)	(-)	(-)	CMYB (-)	CMXB	CMZB (-)
1 ~	1 8	025	.3827	308	.0470	02956	05409
	0	.0053	.3778	.0437	.0310	287	563
-	2	179	.3776	•0632	0157	•0279	€0458
375	1.41	02391	0.37743	08110	0.00225	300	4400
	S	.0137	.3776	.0843	•0174	0000	7 0 V
	8	106	.3826	291	• 0391	2	200

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

SHAFT	VGLE =	4 ROTOR-	800 Y H/R	= .045	8 ROT	OR-GROUND	Z/R = 1.4	4063	
(TEST	CONDITION	NS.)							
Ü	TEMP (DEG F)	SIGPRM	TP (FPS	•	Шā	0 (LB/FT2	N M C		
378 378 380 382 383	44444	1001001	5112 5112 5112 5112 6112 6112	 	1002 1002 1002 1002 1002 1003 1003 1003	22222	00000	00000	į
ίΛ	-	MAIN ROTOR	DATA	- HUB	REFERENCE	E CENTER			
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)	į
78 80 81 83 83	6.0 7.1 8.0 9.1 10.1 6.0 AX1S)	000000	00m4n0 . 0 ► 2 m 4 0		66 - 28 85 - 52 107 - 81 120 - 23 68 - 64	0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1	######################################	1.16 1.31 1.59 2.70 1.16	
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE	93	CLR (-)	CXR (-)	Æ5	CPRO (-)	!
378 379 380 381 382	44444 00000000000000000000000000000000	66.09 82.28 94.94 107.52 119.94	15.09 17.23 17.99 18.57	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000028 000044 000048 000048	0000049	.00009 .000106 .000106 .000123	j 1

RUN 29 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = 8.0 SHAFT ANGLE = 4 ROTOR-BODY H/R = .0458 ROTOR-GROUND 2/R = 1.4063

(B0DY	AX IS)	 		 			
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	⊒ (YM (FT-LB)	# # # # # # # # # # # # # # # # # # #
11	10.	.37	8	4	-0.352	0	
•	79	42	3	.52	.37	0.22	
- α	77.	.45	0	.54	.37	0.22	
0	92	.59	0	• 50	.37	0.23	
Ø	1	3.510	-1.040	3.479	•40	520	
383	3.120	.58	0	• 60	939	0.14	
WIND	AX 1S 1	1					
PECOPO	10	1 4	N N	1	PMB	RMB	YMB
֡֝֝֝֝֟֝֝֝֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡֓֡֓֜֡֓֓֓֡֓֡֓֡֓֡֡֡֡֓֡֓֡֡֡֡֡֓֡֡֡֓֡֓֡֡֡֡֓֡֡֡֡֡֓֡֡֡֡	(DEG)	(LB)	(18)	(FB)			(FT-LB)
1 1	10	4	.76	•86	4	37	0.12
•	9	24	.80	•94	.52	0.40	0.17
ø	•	2 • 2 13	3.831	-0 • 980	5.4	040	9!
0	8	.33	66•	• 03	500	1 4 0	0.10
0	0	.15	•89	40	4	44.0	02.0
383	8.54	• 55	00•	66.	• 60	0.41	B 0 • 0
WIND	×					# # # # # # # # # # # # # # # # # # #	
RECORD	ALPHW (DEG)	CLB (-)	COB (-)	C YB	CMYB	CMXB (-)	MZB (-)
11	10	2214	.3465	0640	.287	031	10
٦,	9	2063	.3495	•0864	.2915	.0335	.0140
0	-	.2034	.3523	.0901	• 2929	333	.0134
0	8	.2144	• 3675	.0947	2892	• 0339 • 0339	0144
382	8 •95	0.19774	0.35789	09563	2875	• 0.36B	00 C
8	ŝ	.2348	.3681	•0910	•2979	346	• 0008

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

4063					MRHP (HP)	1.88 2.19 3.50 3.917 1.87	CPRD (-)	.000083 .000086 .000094 .000108
= 4.0 Z/R = 1.4		₩.	0000		Y-FORCE (LB)	30000 0000 00000 00000 00000	CPR	000112 000131 000156 000190 000233
ATTITUDE R-GROUND		0 (LB/FT2	2011	CENTER	H-FORCE (LB)	00-1-1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	CXR (-)	
DY PITCH 58 ROTO		VEL (FPS)		REFERENCE	, – –	63.96 77.53 90.46 103.47 115.15 64.36	CLR (-)	.00356 .00431 .00504 .00576 .00541
BUD = .045			00	нов	A1 DEG)		[] []	000000 004000
BHRF2U BODY H/R		TP (FPS)	00000000000000000000000000000000000000	OR DATA -	B1 (DEG) (თოգ4ით •••••• •••••	X-FORCE (LB)	-0.23 -0.15 -0.17 -0.21
GURATION 0 ROTOR-	٦,	S I GPRM	1.0181 1.0181 1.0160 1.0160	MAIN ROT	ALPHS (DEG)	000000	LIFT (LB)	63.96 77.54 90.47 103.48 115.17 64.36
9 CONFI ANGLE =	COND IT IONS	TEMP (DEG F)	44444 440000 00000	AXIS)	THETA (DEG)	7.0 8.1 9.1 10.1 11.1 7.0 AXIS)	AL PHW (DEG)	0.00 0.00 0.00 0.00 0.00 0.00
SHAFT A	(TEST	EC	4884 4884 4884 4884		RECORD	384 385 386 387 388 389	RECORD	488 488 488 488 488 488

RUN 29 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = 4.0 SHAFT ANGLE = 0 ROTOR-BODY H/R = .0458 ROTOR-GROUND 2/R = 1.4063

вору	AX1S)			111111111111111111111111111111111111111			! ! ! !
ORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FI-LB)	#
	100	90		2.296	-0.353	00	
	24	68	72) in (36	0.27	•
387 388	1.110	3.690 3.670	-0.750	940	3. 1.	.15	
•	-23	• 71	•65	• 33	35	0.20	
Q	AX 15)					; ; ;	
a O	ALPHW (DEG)	(LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB T-L
84	5	66	• 78	99	20	. O .	N -
o c	0 7	000	77	72	.13	0.38	0.24
	0	•79	.77	• 75	•20	0.33	0.24
0 0	4 • 91 4 • 51	0.881 0.934	3.759	-0.850	2.331	3 P	0.12
9	AX 1S)						
ORD	ALPHW (DEG)	CLB (-)	(-)	C YB (-)	CMYB (-)	CMXB (-)	28
384	200	0915	3475	05517 06804 06621	0.18977 0.18904 0.17627	888	01948 01612 02000
~ @ c	44	0.07319	0.34668	.0689 .0781	1603	0314	.0201 .0099
.	ņ	• 0829	• 5404	70	0761		

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 29 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0458 ROTOR-GROUND 2/R = 1.4063

CENTER
REFERENCE
AERODYNAM 1C
DATA -
FUSELAGE

(B0DY	AX 15)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM T-L		- 1
IO	.51	8	.5	m	-0.262	•	
391	0 • 4 50	3.900	-0.450	0 •436	0.26		
o	.38	•89	• 34	.36	0.26	•55	*
0	•30	•92	.52	•28	0.29	44.	
Q	•20	.92	• 56	• 25	0.27	•49	
0	•36	• 79	•59	• 49	0.27	.17	
	AX 15)						
RECORD	ALPHW (DEG)	L 1FT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-L9)
	•	•	88	-0.570	0.361	-0.262	Ò
Φ	ູນ	.41	06.	.45	.43	.27	0.38
Φ	9	.33	68.	9 34	•36	956	0.55
393	۲	0.247	0	S	• 28	50	0.44
0	8	• 14	.92	•56	• 22 20 20	.27	0.48
O.	4	.32	• 79	• 59	• 49	.27	0.17
J	AX 15)						
RECORD	ALPHW	Ġrò	ČDB	ÇYB	CMYB	CMXB	CMZB
	<u>ا</u> ک	7	1 (1 1	11	1 1	
0	4	• 04	.3571	.0524	.0298	.0216	074
Q	ຜູ	.0377	.3590	.0413	• 0360	.0223	•0314
O	9	.0307	.3580	.0312	•0298	•0222	.0456
393	0.78		0.36079	04781	0.02349	02444	03673
Φ	8	•0128	•3606	.0514	.0187	• 0230	.0402
Q,	4	.0302	.3487	.0542	.0408	• 0226	.0141

BODY PITCH ATTITUDE = -4.0 .0458 ROTOR-GROUND 2/R = 1.4063 RUN 29 CONFIGURATION BHRF2U SHAFT ANGLE = -8 ROTOR-BODY H/R =

(TEST	COND 1 T 1 ON	S)						
	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2	. MC	
396	45.0	1.0157	512	71	100	12.7	0.200	
Э (តំ	\$ 10°	77		02.5	Š	. 20	_
3	តំ	010	12.		02.2	N.	200	
9	ŝ	012	12.		02.2	ċ	• 20	
0	ູດ	• 015	12.		02.5	å	• 20	
0	ŝ	015	12.	7.1	02.5	٠	• 20	
0	Ŝ	•015	12.	_	02.5	Š	• 20	
		MAIN ROT	TOR DATA	HUB	REFERENCE	CENTER		
(SHAFT	-							
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
10	İ	1:	1	1,		1		
3 (C	,	3 (•	•	5.3	0	9	9
3 0 (•	x	•	ņ	7.6	-	•	•
398	1.0	0.8	4.7	6961	81.55	-0 •4 7	3.53	4 e 34
9	N	.	•	4	1.06	φ,	7	Ŋ.
0	'n	3	•	តំ	9.9	N	á	-
0	4	æ	•	•	18.6	0	4	N
O	•	æ	•	Š	ν. Ω	0	0	•
CHIND	AX IS)		: : :					
RECORD	ALPHW (DEG)	L1FT (L8)	X-FORCE (LB)	91	CL.R (-)	CXR (-)	#d5	CPR0 (-)
0	5	4 • 8			0600	•0000	001	00
9	4	8.5	-	•	0038	• 0000	00021	8000
Φ	m	0.8	0.0	•	0045	•0000	0025	0000
9	N	93.8	1	•	052	.0007	0031	0000
0	-	5.6	4.5	٠	0058	• 0008	0036	0011
401	-7.06	117.46	6.5	η Ο	900	26000-0	400	010
-	ñ	4	•	•	000	• 000	200	

C = 5

RUN 29 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = -4.0 SHAFT ANGLE = -8 ROTOR-BODY H/R = .0458 ROTOR-GROUND 2/R = 1.4063

(BODY	AX IS)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM T-L	T-L	
396	-1.950	4.070	-0.120	-0.377	-0.345	-0.529	
00	000	00	. W. W.	5.5	46	0.50	
0	2002	0	4		300	0.59	
00	1.97	90	133	¢ m		0.42	
QNIA)	AX 15)					•	
0	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
0	3.5	1.69	• 18	• 12	0.37	0.31	0.5
O 0	ال الا م الا	1.79	110	979	0.40 0.00	0.30	0.50 0.50
ď	S	1.79	91	386	0.63	0.30	0.54
0	10 E	1.79	• 18	40	0.72	0.29	0.60
404	-3.56	-1.756	4.060 4.084	-0.130	-0.805	-0-311	4 00
ONIM	AX1S)						
ļ W :	ALPHW (DEG)	(-)	(-)	CYB (-)	CMYB (-)	CMXB	CMZB (-)
10	3.5	57	.3846	0110	0311	257	.045
9	41	50	.3784	.0239	0356	0255	.0428
ە بز		יו עע	4 5 7 C 4	0000	0.0400	ָה הליל הליל	0444V
, 4 , 00 , 00	-3.15	-16482	0.38482	03678	05975	02415	05013
0	3.0	4	.3732	.0579	•0665	.0256	.0366
0	G. S.	72	.3755	.0119	• 030 •	.0252	• 0396

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

SHAFT A	ANGLE =	4 ROTOR-	BODY H/R	. 080	833 ROT	OR-GROUND	Z/R = 1.	4063
(TEST	COND 11 10NS	5)						·
	TEMP (DEG F)	SIGPRM	TP (FPS)			0 (LB/FT?	MU 80	; ; ; ; ; ;
403	9	13	13.		54.0	18	30	0
404	2	011	13.		54.2	8	.30	
405	7.	011	13.		54.5	8	• 30	0
406	-	• 01 1	e e		54.5	8	• 30	c
4 08 8 08	4 4 0 • 0	1.00114	513.5	969 20	154.22	28.6 28.7	0.00	· • -
		MAIN ROT	DR DATA	HUB	REFERENCE	E CENTER	•	
(SHAFT	AXIS)							
RECORD	HET	ALPHS			12		12	MRHD
	(DEG)	(DEG)	(DEG)	(DEG)	(LB)	(48)	(P)	(dH)
0	•	_,●	•		6.0	1	9	0
0	•	•	10	m.	3.3	2	4	0
5 (•	•	NI	•	94.7	ď	3	5
000	• (•	שייים יי	4 n	6 9	ထ္	91	8
408	0.0	0	00	-3.1	70.76	64.0	1.52	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
QNIA	AX IS)							
RECORD	IE	L	X-FORCE		1 4	IX	CPR	1 0
	(DEG)	(LB)	(18)	(-)	(-)	Ī	1	
403	8	.7	6	•	950	0 03	5000	0012
404	4	0	S	•	046	• 0003	9000	200
405	3	ŝ	0	•	052	•0003	00000	00015
406	4.37	106.14	-7.23	7.6	.00591	00040	.000112	.000174
404	4	M, I	~	•	990	• 0000	0015	0020
408	N.	ŝ	. 7	•	980	• 0003	0002	0012

BODY PITCH ATTITUDE = 8.0 •0833 ROTOR-GROUND 2/R = 1.4063 Ħ RUN 30 CONFIGURATION BHRF2U SHAFT ANGLE = 4 ROTOR-BODY H/R

CENTER
REFERENCE
AERODYNAMIC
E DATA -
FUSELAGE

(B00Y	AA 15 J						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FI-LB)	13	
100	16.	01	2.54	•	0.646	•	
0		.4.	2.66	900	900	40.	
0	66.	44.	5.69	.80	65	•18	
404 808	4.810 5.130	320	-2.470	10.220	n 4		
(MIND	AXIS)						
RECORD	ALPHW (DEG)	L1FT (LB)	DRAG (LB)	SFB (LB)	PMB T-L	RMB (FT-LB)	ווות
10	2	.87		2.5	10.152	9.0	m
0	3	• 95	00.	2.61	• 92	0.61	(F)
0	7	.87	• 05	2.66	06.	0.64	613
00	m <	.85	80.	20.	200	100	D 0
80	0.25	4.020	8.030	20.0	225	0.61	ວ ເດ
QNIA	AX 15)						
ŭ	ALPHW (DEG)	(-)	(-)	CYB (-)	CMYB (-)	CMXB (-)	MZB (-)
44444 00000 00000000000000000000000000	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.15812 0.16156 0.15815 0.15733 0.14950	0.32370 0.32896 0.33022 0.33167 0.32167	-10371 -10657 -10861 -10984 -10739	0.37259 0.36433 0.36369 0.35996 0.36269	02207 02266 02375 02466 02527	0.01294 0.01211 0.00510 00336 01051

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 3C	O CONF	IGURATION 0 ROTOR-	BHRF2U-BODY H/R	HOD = .083	Y PITCH	ATTITUDE OR-GROUND	= 4.0 2/3 = 1.4	1063
(TEST	COND 1T ION	S)						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	CLB/FT2	MU (
0	666	888	14.	1001	54.7	0 30 0	900	
1444 1004	444	1.0074	2000 444	991	154.79 154.79 154.79	288. 28.7 58.7	0 301	
(SHAFT	AXIS)	MAIN ROTOR	DATA	HUB -	REFERENCE	E CENTER		
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
44444 00111111 001011111	100000 100000	000000	400/04 	0 m m 4 5 0	72.94 84.29 96.06 106.47	0.80 0.63 0.17 -0.37 -1.25	1.575 1.575 1.32 0.86 2.05	1.689 2.10 2.47 3.01 3.79
(WIND	AX 15)							1
EC	IU	L1FT (LB)	X-FORCE (LB)	(-)	CLR (-)	CXR (-)	CPR (-)	CPR0 (-)
44444 00111110	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60.15 72.94 84.29 96.06 106.48	-1.02 -0.96 -0.61 -0.20 0.55	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.00335 .00406 .00469 .00535 .00533	00006 000003 000003 000003	.000112 .000125 .000147 .000179 .000225	.0001111 .000113 .000120 .000135

RUN 30 CUNFIGURATION BHRF2U BODY PITCH ATTITUDE = 4.0 SHAFT ANGLE = 0 ROTOR-BODY H/R = .0633 ROTOR-GROUND Z/R = 1.4063

(80D)	AX IS)						# # # # # # # # #
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
10	.33	-86	•	2		7	
	.17	.85	1.9	.18	50	0.03	
	04	96.	2.0	60 •	50	0.24	•
412	3.480	7.990	-2.090	5 • 625	50	-0.334	
-	•30	.95	2.3	•65	52	0.1E	
-	• 36	. 89	4.9	•37	4.0	•06	
QNIA	AX 15)						
RECORD	ALP	F	X X			RMB	YMB
)))	(DEC)	(18)	(FB)	(LB)	(FT-LB)	1	
10	2	• 74	80	1 .94	•29	40	•20
-	N	.57	•06	1.93	.18	0.50	000
411	4.30	2.794	8.192	-5.050	060*9	-0.524	0.50
-	3	986	•23	5 • 0 9	•62	0.53	520
~	3	•68	•17	2.30	•65	0.53	0.13
-		.77	• 11	1 •93	.37	0.48	• 10
MIND	AX IS)						
ORD	ALPHW	CLB	CDB	CYB	CMYB (-)	CMXB	CMZB (-)
		-		-			
0	3	11116	.3289	789	• 2303	•0110	•0074
-	N	.1049	. 3281	0 785	• 2263	0184	0000
-	E,	.1137	• 3333	.0834	• 2227	1610	400.4
412	400 4	0-11661	0.33489	- 08504	0 20574	10.00 P	- 010 78
~	m (• 1092	.3327	965	0007	- NTO •	00000
_	N	.1127	. 3302	.0785	6787	1110.	• 0003

MAIN RUTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

		- M						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	0 (LB/FT2	N (€	
			į					
-	8	1 • 0094	14.		54.6	œ	30	
-	6	•	14.		54.7	8	• 30	
~	6	•	14.		54.7	8	930	
-	•	•	14.		54.7	8	• 30	
٠,	ô	•	14.		54.7	œ	• 30	
4 50 0 6	4 N	1.0074	0.4.0	- 0	154.79	28.7	0.301	
J	•	•)			•	•	_
		MAIN ROT	TOR DATA -	HUB	REFERENCE	E CENTER		
(SHAFT								
RECORD	THETA	I			ı	H-FORCE	Y-FORCE	MRHP
	Ŵ	(DEG)	(DEC)	DEC)	(FB)	8	(F)	(HP)
1	, (0-4-		"	7.7	10	10	0
416	10.0		6.4	M	70.14	0.65	3.12	3.40
-	-	4	U	4	2.0	3	-	0
-		4	6.	4	2.9	4.0	6	
~	m	•	•	ŝ	4.7	'n	S	-
N.	Ę,	•	9.0	ູ	10.5	9.	m	4
N	•	4	4	m	4.6	9	2	o.
M	AX IS)				1			
Ü	AL PHW (DEG)	(LB)	X-FORCE	95	CLR (-)	CXR (-)	C -)	CPRO (-)
	. •	7.6	5		032	.0001	0017	0011
~	•	0.0	•	•	039	• 0005	0050	0011
~	•	1.8	6	•	045	• 0005	00023	00012
~	m	2.7	• [J.	•	051	• 0003	0028	00013
419	-3.63	104.47	7.89	ກ (ໝ (.00582	0.00044	.000342	.000153
S)	m)	10.2	9	•	061	• 0000	0038	0017
٦					•		1	

RUN 30 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = 0.0 SHAFT ANGLE = -4 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

	Ĭ	FUSELAGE DAT	V V	ERODYNAMIC REF	REFERENCE CENTER	IER	
(B0DY	AX15)					; ; ; ;	1 1 1 1 1 1 1
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	-	RM (FT-LB)		
	-			((
-	53	.21	3.85°	, v	0 0		
-	. 4 J	.86	3.95	.98	٠ ب	200	
٠,	44.5	40	1.07	.87	44.	16.0	
4 -	0	66	1 . 25	• 73	•46	0.83	
-	4	40	17	.58	-0.484		
• 0	0	7	1.19	•49	•48	1.06	
4 4 2 1 2 2	3.250	8.880	-0.850	31	.37	0.72	
QN I	AX 15)					i 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		į	1 9	u	PWB	R. W.	YMB
RECORD	ALPHE (DEG)	(19)	(LB)	(LB)	(FT-LB)	(FI-LB)	(FT-LB)
						10	104
-	4	3.497	9.222	-0.850	1.293	0000	4 C C C C C
_	3	• 39	989	90	ומ	700	
-	2	040	•05	100	18.	400	
-	117	33	00.	• 25	. 73	4.0	2000
• -) M	39	•06	.17	•58	4.0	5001
• 0	, M	35	• 14	• 19	.49	640	1.00
421	0.21	.21	•89	• 85	.31	0.37	0.0
CWIND	AX IS)			!			
		1 -	10	1 >	>	CMXB	7
KECUKD	(DEG)]-)	3:		(-)	(-)	1
1 4	1		3752	145	.0472	144	10
 -	V (00001	36.10	0386	.0361	0146	.0295
-	•	1 2 0 0 C 1 0 C C C C C C C C C C C C C C C	3685	0435	.0319	•0162	.0335
•	יי ני	456	3665	.0508	.0267	172	.0303
-) M	1380	3687	•0476	.0213	•0179	0377
420	6E.0	0.13664	0.37202	04842	0.01822	01800	V 25.0 •
N	5	• 1309	.3618	•0345	•0480	• 013	603

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

-4.0 /R = 1.4063		⊃¥	0 . 301 0 . 301 0 . 301 0 . 301 0 . 301		Y-FORCE MRHP (LB) (HP)	3.36 4.06 3.22 4.85 2.78 5.67 2.46 6.65 1.94 7.25 2.63 4.09	CPR CPRO	000242 000288 000337 000395 000431
30 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = - ANGLE = -8 ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R		(LB/FT2)	28.7 28.7 28.7 28.7 28.7	E CENTER	H-FORCE (LB)	0.13 -0.33 -0.93 0.91 0.15	CXR (-)	0.00041 0.00053 0.00063
Y PITCH 3 ROT		VEL (FPS)	1554 1554 1554 1554 1554 1554 1554 1554	REFERENCE	THRUST (LB)	58.77 71.08 82.02 94.01 101.04 58.70	CLR (-)	.00325 .00393 .00453 .00519
CONFIGURATION BHRF2U BOOY PITCH ATTI E = -8 ROTOR-BODY H/R = .0833 ROTOR-GR	:	P PS)	50000000000000000000000000000000000000	A - HUB	A1 (DEG)	1 1 1 1 1 w 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CE L/D	00400 00000
) (Fi	0.00.00.00	ROTOR DAT	B1 (DEG)	0110 0010 0010 0010 0010	X-FOR (LB)	
IGURATI -8 ROT	5)	SIGPRM	1 0005 1	MAIN	ALPHS (DEG)	00000 00000 11111	LIFT (LB)	58.30 70.45 81.24 93.06
CON	COND 1 T I ON	TU	000000 110000		THETA (DEG)	AXIS)		-7.75 -7.75 -7.71 -7.65
RUN 3C	(TEST	5	44444 22444 22444 2644 2644	(SHAFT		######################################	ECORD	44444 00000 00000 00450

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT.

£90		: : : : : : : : : : : : : : : : : : : :						1		1.21	1.15	1.10	-0.863 -1.132	 	CMZB (-)	.0442	0389	.0405	03156	•
= -4.0 Z/R = 1.40	ENTER		YM (FT-LB)		0.40	800	111		RMB (FT-LB)	.32	900	u m	-0.327		CMXB (-)	0 12	0110	0114	01196	
H ATTITUDE TOR-GROUND	FERENCE CEN			4.	. m	98.00	0.35		PMB (FT-LB)	2.09	2.34	7.0°7	-2.752 -2.235		CMYB (-)	.0765	• 0858 • 0912	0956	10064	
.0833 RO	ERODYNAMIC REFI		PM (FT-LB)	0.0	0.4 0.4 0.4	2.61	-2.752		SFB (LB)	-25	•41	98	-1.090		CYB (-)	0000	0100	.0358	04435	1000
BHRF2U BODY H/R =	۷ ۱ ۷		SF (LBS)	-22	- 4	688	-1.090		DRAG (LB)	16.	-87	200	8.963 8.890		(-)	.3627	3610	3663	0.36471	100.
TEURATION BY	FUSELAGE DAT		AF (LBS)	0.0	200	.01	97		LIFT (LB)	99.	554	982	0.391	:	(-)	.0269	.0220	.0157	0.01590	• 0302
O CONFIC	ī	AX 1S)	NF (LBS	10	• 0 • 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	61.	0.180	AX 15)	ALPHW (DEG)	17	3.7	(C) (C)	-3.65	AX 15)	ALPHW (DEG)	3.7	7.00	. O	13.65	3.7
RUN 30		(BODY	RECORD	10	S S	N	426 427	CNIND		IN	N	Ň	44 100 100 100	QNIA	RECORD	IN	NO	ÚΝ	426	N

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

(TEST	SINO LE L'ONO	•						
	• [,					
ŭ i	<u>u</u>	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2	MU MU	† † † † † †
428 429	51.0	00	່ນທີ	85 85 85	155.10	28.7	0.30	
W I	.	000	15.		55.0	8	, m	1 == 1
ŋM	•	90	3.0		55.0	.	• س لا	
M	-		15.		55.0	œ	• •	·
		MAIN ROTOR	DATA	- HUB	REFERENCE	E CENTER		
(SHAFT	AXIS)							
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
N		12.	6.	l m	8.7	19	10	14
429 629	1301	0 0	<u>م</u> د	-3.9	59.20	4	F)	
7 17	• <	ů c	11	•	0	0	0	E,
'n	M	• (• 4	• •	2 ° °	- ₹	91	9
m	8	i	9	M	9.1	00	1.08	4.47
CWIND	AX 1S)							
EC	ALPHW (DEG)	LIFT (LB)	X-FORCE (LB)	97	CLR (-)	-	(F)	CPRO (-)
N		8		! •	026	.0005	0026	0000
Ñ		•	1.6	•	032	• 0000	000031	0010
3		9	4.4	•	038	.0008	00037	000011
431	-11.73	75.80	15.67	8.7	.00422	0.00088	. 000412	.000117
יו (י) • [] ·	Ņ	Ö,	•	032	.0000	00034	0010
7					•			

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 30 CONFIGURATION BHRF2U BODY PITCH ATTITUDE = -8.0 SHAFT ANGLE = -12 ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY AXIS)

RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
4444 8000 8000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.470 -0.700 -0.910	-4 - 744 -4 - 647 -4 - 877		-0.095 -0.222 -0.117 0.049	
32 33 IND	44. 000	500	0 M	84	ממ	202	
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RM3 (FT-LB)	YMB (FI-LB)
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-7.15 -7.15 -7.13 -7.13	-3.166 -3.354 -3.334 -3.236 -3.204	9.056 9.048 9.098 9.098 9.066	-0.470 -0.700 -0.910 -0.900		- 200000	-0.125 -0.253 -0.148 0.013 -0.059
CNIND	AX 15)						# # # # # #
EC	ALPHW (DEG)	CLB (-)	CDB (-)	C YB (-)	CMYB (-)	CMXB (-)	CMZB (-)
428 430 431 432 433	-7 • 83 -7 • 79 -7 • 75 -7 • 7 • 7 • 7 • 63	-12882 -13648 -13565 -13167 -13036	0.36847 0.36817 0.36998 0.37018 0.36891 0.36891	-001912 -002848 -03703 -03662 -01506	17353 16995 17838 17838 17838	00778 00783 00791 00972 00871	00456 00925 00540 0.00049 00216

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

	ANGLE	אטוטא 4	-600Y H/R	10	O ROI	OR-GROUND	Z/R = 1.4	1063	
(TEST	COND 11 10	NS.)		. !			•		
RECORD	TEMP (DEG F)	SIGPRM	1P (FPS		VEL (FPS)	0 (LB/FT;	Z) MU		i I
4444 4440 4440 4440	4 4 4 4 4 4 0 0 0 0 0 0 0 0	00000	กับกับกับ เกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิดเกิด	711111	51.57 51.57 51.57 51.57 53.93	ณณณณ๛ ๓๓๓๓๓๓	000000000000000000000000000000000000000		
(SHAFT	×	MAIN ROTOR	UATA	HUB	REFERENCE	E CENTER			•
RECORD		AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	IIQ	
4440 4440 4410	7 8 9 10 11 7	44444	0000 0000		56.83 70.92 84.31 97.36 108.16 59.13	0.04 0.04 0.09 0.09 0.09	200 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.59 1.87 2.28 2.79 3.45	† 1
(WIND RECORD	AXIS) ALPHW (DEG)	(LB)	X-FORCE (LB)	(-)	CLR (-)	CXB	CPR (-)	CPRO (-)	1
4440 4440 4440 4470	5 2 7 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	56.37 70.32 83.57 96.45 107.22 58.67	-7.42 -9.36 -11.24 -13.31 -14.31	4400000 m4m0000	.00315 .00467 .00539 .00599	- 000052 - 000053 - 000053 - 000074 - 000083	.000095 .000112 .000137 .000207	.000088 .000098 .000098 .0000120	1

	SNOTT LONG							
		•						
ũ	TEMP (DEG F)	SI GPRM	1P (FPS	_	VEL (FPS)	OLB/FT2	I	
14	ة ا	.009	~		9.1	•		
4	9	600	-		1.2	•	. 1	
. 4	9	• 000	-		2.5	•	• 12	
· ব	9	600	-		3.2	•	. 12	
447	46.0	1.0103	513	34	63.21	4 1	12	
4	•	•010			4.5	•	. 12	
*	٠	MAIN ROT	TOR DATA	HOH -	REFERENCE	CENTER		
(SHAFT								i 1 1 1 1
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	(DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
1 4	1 .	1 •	•		9.2	0	2.5	Š
1 4	•	•		6	3.4	6	2.9	-
4	•		•	•	6.5	8	3.2	ທີ່
4	•	•	•	4	8	ស្វិ	9	9 4
4 4 7 4 4 8	11.1	00	3.0	0 • M -	51.06	2.15	-2.59	1.79
3	AX15)	1			. (. 1	0 1 1 1
RECORD	ALPHW (DEG)	L1FT (LB)	X-FORCE	(-)	CLR (-)	CXR (-)	C PK	CPR0
14	17	9.2	0	•	02	00	.000108	3600000
4	4	3.3	4	•	032	0000	00012	6000
4	9	6.4	4.0	•	042	0005	2000	
4	8	8.7	4 . 4	•	9 0	2000		1100
447	2.13	101.59	15.14	N C	00000	200	1000	6000
¢	•	?	ָר י	•	3		•))

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

TEMP SIGPRM TP (FPS) (FPS) (LB/FT2) MU TEMP SIGPRM TP (FPS) (FPS) (LB/FT2) MU 47.0 1.0083 513.96 65.86 5.2 0.128 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.0099 47.0 1.0083 513.96 66.49 5.3 0.0099 47.0 1.0083 513.96 66.49 5.3 0.0099 47.0 1.0083 513.96 66.49 5.3 0.0099 47.0 1.0083 513.96 66.49 5.3 0.0099 47.0 1.0083 5.3 0.0099 47.0 1.0083 5.3 0.0099 47.0 1.0083 6.00915 0.00013 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.00915 0.00013 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0093 6.00913 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0099 47.0 1.0083 6.0093 6.00913 47.0 1.0083 6.0093 6.00913 47.0 1.0083 6.0093 6.00913 47.0 1.0083 6.0093 6.00913 47.0 1.0083 6.0093 6.0093 6.0093 6.0093	_ <u>Z</u>	ANGLE = -	-4 ROTOR-	BODY H/R	-	100 ROT	OR-GROUND	Z/R = 1.	4063
TEMP SIGRM TP VEL (LB/FT2)		11	5)		1				! ! !
47.0 1.0083 513.96 65.86 55.2 0.128 65.86 47.0 12.0083 513.96 66.49 55.3 0.129 0.129 47.0 1.0083 513.96 66.49 55.3 0.129 65.3 0.129 65.4 0.083 513.96 66.49 55.3 0.129 67.11 55.4 0.129 67.11 55.4 0.129 67.11 55.4 0.129 67.11 55.4 0.129 67.11 55.4 0.129 67.11 55.4 0.129 67.11 55.4 0.129 67.11 55.3 0.120 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 55.3 0.129 67.11 5		EMP EG F	-	PS		EL PS	O LB/FT	Σ (
### Control		1:	9	13.		5.8		12	0
## 10063 513.96 66.49 5.3 0.129 ## 1.0083 513.96 66.49 5.3 0.129 ## 1.0083 513.96 67.11 5.4 0.129 ## 1.0083 513.96 67.11 5.4 0.121 ## 1.0083 513.96 67.11 5.4 0.129 ## 1.0083 513.96 67.11 5.4 0.129 ## 1.0083 513.96 66.49 5.3 0.129 ## 1.0083 513.96 66.49 5.3 0.129 ## 1.0083 513.96 66.49 6.3 1.29 ## 1.0083 513.96 66.49 6.3 1.29 ## 1.0083 513.96 66.49 6.3 1.29 ## 1.0083 64.89 6.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3		1	08	13.		5.8	•	. 12	ø
47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 67.11 5.4 0.131 47.0 1.0083 513.96 67.11 5.4 0.129 47.0 1.0083 513.96 67.11 5.4 0.129 47.0 1.0083 513.96 67.11 5.4 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 6.129 47.0 1.00 66.49 66.		1.	• 00E	13.		6.4		. 12	•
47.0 1.0083 513.96 67.11 5.4 0.131 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 47.0 1.0083 513.96 66.49 5.3 0.129 AXIS) THETA ALPHS B1 A1: THRUST H-FDRCE Y-FDRCE MRHPP (DEG) (DEG) (DEG) (DEG) (LB) (LB) (LB) (HP) 10.0 -4.0 2.6 -3.9 77.67 1.94 -3.13 3.29 11.0 -4.0 3.4 -4.4 102.94 1.53 -3.53 3.90 12.1 -4.0 3.4 -4.4 102.94 1.53 -3.67 13.1 -4.0 4.5 -5.5 115.54 0.96 -4.42 5.28 AXIS) ALPHW LIFT X-FDRCE L/D CLR CXR CPR (-) 12.9 52.13 0.48 2.8 000291 0.00003 0.001135 0.00018 -2.52 77 3.0 0.055 0.00013 0.000136 0.0001			.008	13.		6.4	٠	. 12	c.
AXIS) MAIN RDTOR DATA - HUB REFERENCE CENTER AXIS) THETA ALPHS B1 CDEG) (DEG) (DEG) (LB) (LB) (LB) (HP) CDEG) (DEG) (DEG) (LB) (LB) (LB) (HP) CON -4.0 2.1 -3.0 52.08 2.25 -2.81 2.27 CON -4.0 2.1 -3.0 52.08 2.25 -3.13 3.23 CON -4.0 3.8 -4.8 102.94 1.38 -3.87 4.62 CON -4.0 1.7 -3.0 52.07 1.53 -3.13 3.23 ALPHW LIFT X-FORCE L/D CLR CXR CPR CPR CPR CPR CPR CPR CPR CPR CPR CP			• 008	13.		7.1	•	. 13	-
AXIS) THETA ALPHS B1 A1: THRUST H-FDRCE Y-FDRCE MRHP (DEG) (DEG) (DEG) (LB) (LB) (LB) (LB) (HP) (HP) (DEG) (DEG) (DEG) (DEG) (LB) (LB) (LB) (HP) (HP) (DEG)			008	13.		7.1		. 13	- 3
THETA ALPHS B1 A1: THRUST H-FORCE Y-FORCE MRRHP (DEG) (DEG) (DEG) (LB) (LB) (LB) (LB) (HP) (HP) (HP) (HP) (HP) (HP) (HP) (HP			AIN RO	DA TA		EFEREN	CEN TE		
HETA ALPHS B1 A1: THRUST H-FORCE Y-FORCE MRHP Beo	SHAFT	X1 S							
## Company Com	i	H H	HU		.	HRUS	404	-FORC	MARHD
8-0 -4-0 1-7 -3-0 52-08 2-24 -2-58 2-70 10-0 -4-0 2-1 -3-3 64-89 2-15 -2-81 2-70 11-0 -4-0 2-6 -3-9 77-67 1-94 -3-13 3-23 11-0 -4-0 3-4 90-44 1-53 -3-53 3-90 12-1 -4-0 3-4 5 -5-5 115-54 0-96 -4-42 5-58 13-1 -4-0 1-7 -3-1 52-71 2-2-9 -2-53 2-28 13-1 -4-0 1-7 -3-1 52-71 2-2-9 15.) ALPHW LIFT X-FORCE L/D CLR CXR CPR CPR CPHD CDEG) (LB) (LB) (-) (-) (-) (-) (-) 2-2-9 52-13 0-48 2-8 -00291 0-00003 -000135 -000193 -2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	i			į	1	וַנ	j į	51	(40)
10.0		•	4	2.	۳ ا	2.0	95	200	S,
11.00 -4.0 3.4 -4.4 90.44 1.53 -3.53 3.90 12.1		,	•	-	, r	9.6	- 0	0 -	- (
12.1 -4.0 3.8 -4.8 102.94 1.38 -3.87 4.62 13.15.1 -4.0 1.38 -4.8 102.94 1.38 -3.87 4.62 5.52 8.0.96 -4.42 5.52 8.52 8.0.96 -4.42 5.52 8.52 8.0.96 -4.42 5.52 8.0.096		• •	• •	9 4	9 4	0	יי	in in	9
13.1 -4.0 4.5 -5.5 115.54 0.96 -4.42 5.52 8.0 8.0 9.0 96 -2.53 2.28 15.) 1S.) ALPHW LIFT X-FORCE L/D CLR CXR CPR CPHD (LB) (LB) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-		2	4	0	4	02.9	מיי נ	9.0	0
8.0 -4.0 1.7 -3.1 52.71 2.29 -2.53 2.28 1S) ALPHW LIFT X-FORCE L/D CLR CXR CPR CPHD (LB) (LB) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-		m	4	٠ د	5	15.5	0	4.4	S
ALPHW LIFT X-FORCE L/D CLR CXR CPR CPHD (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)		•	•		3	2.7	5	2.5	2
ALPHW LIFT X-FORCE L/D CLR CXR CPR CPR CPHD (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	4	15	1						
2-99 52-13 0-48 2-8 -00291 0-00003 -000135 -00009 2-74 64-92 0-96 3-0 -00363 0-00008 -000161 -00011 2-52 77-64 1-48 3-1 -00434 0-00008 -000193 -00011 2-08 102-92 2-36 2-9 -00575 0-00012 -000233 -00011 1-85 115-51 2-76 2-7 -00645 0-00015 -000330 -00015 3-00 52-76 0-47 2-9 -00295 0-00003 -000136 -000099	ہ ا	AL PH	LIFT	-FORC					A Y
2.99 52.13 0.46 2.8 -00291 0.00003 -000151 -000161 2.74 64.92 0.96 3.0 -00363 0.00005 -000161 -00010 2.52 77.64 1.48 3.1 -00434 0.00008 -000193 -00011 2.28 90.43 2.07 3.0 -00505 0.00012 -000233 -00011 2.08 102.92 2.36 2.9 -00575 0.00013 -00013 -00013 1.85 115.51 2.7 2.7 -00645 0.00015 -000330 -00015 3.00 52.76 0.47 2.9 -00295 0.00003 -000136 -000099		DEG	(LB)	(8)		1 (+ 1
2.52 77.64 1.48 3.1 .00434 0.00003 .000193 .00011 2.52 77.64 1.48 3.1 .00434 0.00008 .000193 .00011 2.28 90.43 2.36 2.9 .00575 0.00012 .000233 .00011 1.85 115.51 2.76 2.7 .00645 0.00015 .000330 .00015 3.00 52.76 0.47 2.9 .00295 0.00003 .000136 .00009	i	200	2.1	4	•	0029	0000	0013	6000
2.28 900133 2.07 3.0 00575 0.00012 000233 000111 2.08 102.92 2.36 2.9 00575 0.00013 000276 00011 1.85 115.51 2.76 2.7 00645 0.00015 000330 00015 3.00 52.76 0.47 2.9 00295 0.00003 000136 000009		7	4 6	, <	•	9900			
2.08 102.92 2.36 2.9 .00575 0.00013 .000276 .00013 1.85 115.51 2.7 .00645 0.00015 .000330 .00015 3.00 52.76 0.00095		000		† C	•			7000	
1.85 115.51 2.76 2.7 .00645 0.00015 .000330 .00015 3.00 52.76 0.47 2.9 .00295 0.00003 .000136 .00009		10	0) M	• •	0000		000077	00013
3.00 52.76 0.47 2.9 .00295 0.00003 .000136 .00009		9 6	S	7	•	0064	0000	00033	00015
		9	2.7	4	•	029	• 0000	0013	6000

DECOR	COND 11 10NS							
,	ĪΨ	SIGPRM	TP (FPS		VEL (FPS)	O (LB/FT2	DW (
i vou	1-1	000	m.	30		: :	10	
458	• •	1.0083	513	90	0	. •		0
ທ		• 008	13	9	7.0	•	-	
O 4		.008	M .	ى ن		•		•
တင	9	900	•	S	2.0	•	12	
		MAIN ROT	TOR DATA	- HUB	REFERENCE	E CENTER		
(SHAFT	AXIS)							
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
Ìα	1	18	1	1	1 4	1 6	1.9	1.
S) (C)		8	•	3	6.5	4	2.5	E.
S	-	8	•	4	8.6	6	2.6	0
S	ä	8	•	4	91.6	m.	3.0	8
Ø,	•	•	•	•	 	70	o.	9 4
462	10		1.7	-3.1	5.4	1.00	N	2.79
ONIM	×							
RECORD	ALPHW (DFG)	LIFT	X-FORCE	E L/0	CLR (-)	CXR (-)	C -)	CPRO (-)
) 	11		1	Ţ		
456			4.40	200	.00303	0.00025	.000165	*00009
n u	ז יַּכ	71	† 4	•	7000	200		
n u	•	ۍ . د د	ů,	•	7 to 0		4000	1000
ņĸ	ט נ) (*)	0 æ	• •	0057	4000	0033	0013
9	M	6.4	0	•	0064	• 00005	0039	00015
0	3	3.9	4	•	030	.0002	0016	60000

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 31 SHAFT A	31 CONF ANGLE = -	IGURATION	HR BUDY H/R	900	DY PITCH 00 ROTO	ATTITUDE OR-GROUND	= -8.0 Z/R = 1.0	4003	
(TEST	CONDITION	NS)				:			
ECO		SIGPRM	1P (FPS		VEL (FPS)	(LB/FT	MU WC		
464 465 465 465	4444	1.0063 1.0063 1.0063 0.063	20000 4444	 8888	64.64 64.64 65.92 67.18	พ.พ.พ.พ 00.44	0000		
		MAIN ROTOR	DATA	HUB	REFERENCE	E CENTER			
(SHAFT	S								
RECORD	THET A (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H F OR CE	Y-FORCE	MRHP (HP)	1
4 4 4 4 4 4 6 5 6 5 6 5 6 5 6 5 6 5 6 5	1120 120 130 140 1	1120 1120 1200 1200	იოო 4 იოლი იოლი	1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	69.54 82.09 95.01	1111 1050 1050	12.53 12.53 12.63 13.08	4 4 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1
3	AX 15)								
RECORD	AL PHW (DEG)	LIFT (LB)	X-FORCE (LB)	97	CLR (-)	CXR (-)	C PR	CPRO	i
464 465 465 465	90.40	68.66 81.03 93.74 106.39	11.17 13.24 15.53 17.62	7886	.00384 .00453 .00524 .00595	0.00062 0.00074 0.00087	.000244 .000293 .000349	.000107 .000118 .000131	i

SHAFT	ANGLE =	- KUIUK +						
(TEST	COND 17 10NS	(8)						
	TEMP (DEG F)	SIGPRM	TP (FPS)	Ç	VEL (FPS)	(LB/FT2	. M∪	
467 468 469	444 000	1.0043 1.0043 1.0043	0.44 0.00	965	77.11 77.11 77.11	7.1 7.1 7.1	0 150 0 150 0 150	
		MAIN ROTOR	TOR DATA	HUB	REFERENCE	CENTER		
(SHAFT	¥							
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
467 468 469	8 9 0 7	444	25. 20. 20. 40.	13.00	81.65 95.21 68.06	1 -84 1 -57 2 -08	1.3.00 1.3.35 1.2.75	1.55 1.90 1.34
ONIA	AXIS)							
EC	AL PHW (DEG)	L1FT (LB)	X-FORCE	E L/D	CLR	C XR	C PR	CPR0 (-)
467 468 469	8.16 8.20 8.00	81.15 94.65 67.63	-9.18 -10.44 -7.96	4 M M	.00453 .00529	00051 00058 00044	.000093 .000113	0000101

ANGLE =	FIGURATION -4 ROTOR-	вору н		00	R-GRO	4 .	4063
EMP SIGPRM	į	TP (FPS)		VEL (FPS)	CLB/FT2	₩	
		515 515 515 515 515 515 515 515 515 515	-00000 50000	77-11 77-18 77-18 77-18	7 • 1 7 • 1 7 • 1 7 • 1	0 150	
	9	DATA	HUB	REFERENCE	E CENTER		-
THETA ALPHS B1 (DEG) (DE	00	9	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
9.0 0.1 1.0 1.0 2.1 1.4.0 3.0 3.1 1.4.0 4.0		G ~ 6 0 0 0	11111 1440 1441	65.67 78.89 91.67 104.53	2.16 2.00 1.77 1.23 0.94	-2.91 -3.22 -3.62 -4.06	2.72 3.25 3.86 4.62 5.62
18)		1	1	# # # # # # #			1
ALPHW LIFT X-		-FORCE	25	CLR (-)	CXR (-)	CPR (-)	CPR0
-3.07 65.69 -2.88 78.90 -2.70 91.65 -2.52 104.48 -2.34 117.23		1.36 2.55 3.36	######################################	.00367 .00441 .00512 .00584	0.00008 0.00011 0.00014 0.00019	.000163 .000194 .000230 .000276	.000106 .000112 .000121 .000134

ECORD TEMP SIGPRM TP (FPS) (FPS) (LB/FT2) MU 475 50.0 1.0023 515.22 77.18 7.1 0.4 1 0.4 1 1.0023 515.22 77.18 7.1 0.4 1 0.4 1 1.0023 515.22 77.18 7.1 0.4 1 0.4 1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0)				!
## CORD TEMP SIGPRM (FPS) (FPS) (LB/FT2) ## To So.0	ST	COND 1 T 10N	8)						
475 50.0 1.0023 515.22 77.18 7.1 0.1 0.1 475 50.0 1.0023 515.22 77.18 7.1 0.1 0.1 477 50.0 1.0023 515.22 77.18 7.1 0.1 0.1 477 50.0 1.0023 515.22 77.18 7.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	EC	i 11	SI GPRM	TP FPS		ואנו	FT	Σ	
## SO.0 1.0023 515.22 77.18 7.1 0.1 ### MAIN ROTOR DATA - HUB REFERENCE CENTER SHAFT AXIS ECORD THETA ALPHS	1 ~ ~ ~	0000 0000	888	15. 15.		777	7.1 7.1 7.1		000
SHAFT AXIS ECORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FOR THETA ALPHS B1 A1 THRUST H-FORCE Y-FOR THETA THETA THETA THRUST H-FORCE Y-FOR THETA THETA THRUST H-FORCE Y-FOR THETA THETA THRUST H-FORCE Y-FOR THETA THE	-	•	00	15.		~	7.1	-	0
ECORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FOR (DEG) (DEG) (DEG) (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB			Z	DATA	HUB	EFEREN	CENTE		•
ECORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FOR (LB) (DEG) (DEG) (DEG) (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB	_	AXI			 				· I
475 11.01 -12.0 3.2 -2.9 66.15 1.80 -2.57 476 12.1 -12.0 4.0 -3.4 78.87 1.51 -2.7 -2.7 477 13.1 -12.0 4.7 -3.8 91.54 1.24 -2.9 9.54 478 14.1 -12.0 5.2 -4.4 104.07 1.14 -2.9 9.54 1.24 -2.9 9.54 1.24 1.24 -2.9 91.54 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.2	ıw	THET (DEG	PH	81 (DEG) (A1 DEG)	THRUST (LB)	0 m	-FOR	MKHP (HP)
477 13.1 -12.0 4.7 -3.8 91.54 1.24 -2.9 478 14.1 -12.0 5.2 -4.4 104.07 1.14 -3.2 (WIND AXIS) ECORD ALPHW LIFT X-FORCE L/D CLR CXR CPR (-) (DEG) (LB) (LB) (-) (-) (-) (-) 475 -11.06 65.26 10.92 3.5 .00365 0.00061 .00024 477 -10.88 77.74 13.41 3.6 .00435 0.00086 .00035	100	-%	200	0.0	30	1.0	ဆီလီ	25.5	4 • 11
ECORD ALPHW LIFT X-FORCE L/D CLR CXR CPR (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	7	m 4	00	2.2	m 4	ທິດ	7.	30.0	78°5 6.87
ECORD ALPHW LIFT X-FORCE L/D CLR CXR CPR (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	3	× 1.5							
75 -11.06 65.26 10.92 3.5 .00365 0.00061 .00024 76 -10.88 77.74 13.41 3.6 .00435 0.00075 .00029 77 -10.70 90.18 15.78 3.5 .00574 0.00086 .00035	ECOR	FE	LIFT (LB)	-FORC	53	CLR (-)	CXR (-)	G ()	CPR0 (-)
	475 476 477	-11 .06 -10 .88	65.26 77.74 90.18	10.92 13.41 15.78	1000 m	.00365 .00435 .00504	0.00061 0.00075 0.00086	.000245 .000295 .000350	.000110 .000119 .000133

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

IONS
900
000
MAIN ROTOR
ALPHS (DEG)
44444
L 1F T (LB)
56.27 72.32 86.13 99.38 112.40 56.32

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 33	33 CONF	GURATION 0 ROTOR-	HR BODY H/R	B00 = 10	Y PITCH	ATTITUDE R-GROUND	= 4.0 Z/R = 1.4	.063
(TEST	COND 17 10N	5)	i 	1	1			1 1 1
	TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	O (LB/FT2	. MC	
4 4 4 4 4 4 4 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0000 1.0000 1.0000 0.9997 0.9997	00000000000000000000000000000000000000		103,35 103,35 103,35 103,37	12.7 12.7 12.7 12.7	0.200	
SHAFF	(> 1 × 4	MAIN ROI	TOR DATA	HUB -	REFERENCE	E CENTER		
	THE	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	801111 80111110 80111111111111111111111	000000	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		66.94 66.94 93.29 105.48 117.88	0000 0000 0000 0000	1 1 2 6 6 9 1 3 4 6 9 4 7 5 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.05 2.45 2.45 3.57 4.40 2.05
3 0	-13	iu			1 _1			1 0
KECUKU	(DEG)	(LB)	(9)	(-)	(-)	(-)	(-)	~ 1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000 0000 0000 0000 0000	66.92 80.88 93.26 105.46 117.86	-2.95 -2.77 -2.63 -2.41 -2.13	400444	.00374 .00452 .00521 .00589		.000122 .000146 .0000175 .000262	.000120 .000126 .000137 .000153

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

(TEST	COND 1 T TONS							
10.1	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	0 (LB/FT2	O₩ .	4 6 1 1
0	5	666	~		03.4		. 20	0
3 (,	766.	~		03.4	ċ	• 20	•
3 (C	Ň	166.	—		03.4	ŝ	• 20	_
3 (C	, N	. 997	-		03.4	å	• 20	0
4 4 0 0 0 0	52.0	0.9977	516.	4. 4. 8. 3.	103.47	12.7	0.200	00
		MAIN ROTO	TOR DATA	- HUB	REFERENCE	E CENTER		
(SHAFT	-							
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MKHD (HP)
0	•	4	•		2.0	4	-	
Q	•	4	•	3	5.5	Ŋ	2.9	2
0	-	4	•	•	8.0	8	3.2	9
9	•	4 :	•	4	E 0	ι.	₩.	.0
496	0.6	9.4	3.6	6.2-	61	2.51	-3.99	2.75
QNIM)	AX15)		-			:		
l W	ALPHW (DEG)	(LB)	X-FORCE	SI	CLR (-)	CXR (-)	CPR (-)	CPRO (-)
10	S. E.	2.0	m	•	034	0000	0016	0012
3	3.4	5.5	4	•	0042	. 0001	0019	0012
9	3.3	4.9	7	•	049	•0001	0023	0013
464	-3.20	100 • 30	4 - 23	4.9	•00260	0.00024	.000278	.000153
9	m i	12.7	m) (•	063	.0003	00033	0017
Э,	3.5	? N	,	•	034	00000	0016	0012

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

(TEST	COND 11 10NS	()						
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS		VEL (FPS)	(LB/FT2	M (
100		866	15.		03.0	80	- 20	
37 O		9000	รูเก		03.00	ia	900	
500	50.00	0.9980	515	85 84	103.05	20.0	0 200	
0	i	966	16.		03.1	Ň	. 20	
		MAIN ROTOR	DATA	HUB	REFERENCE	E CENTER		
(SHAFT	AXIS)							
RECORD	THE (DE	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MKHP (HP)
10	-		•	•	9.8	F.	2.7	0
9	år	800	•	m «	4.0	0,4	0 9	9
70	9	• •	• •	ŝ	08.1	0	7 · · · ·	່າເ
501	15.1	-8- -8-0 -8-0	φ4 ων	-5.5 -3.4	120.30	0.22	-4.19 -2.90	7.76 3.96
	AX 1S)							
RECORD	ALPHW (DEG)	(LB)	X-FORCE (LB)	90	CLR (-)	CXR (-)	CP.	CPRD (-)
0	-7.44	9.5	1	•	03	.0003	0023	0012
o (ů.	٠ د د د	ຜູ້ເ	•	000 400	0000	7 Z 0 0 0 0	000013
4 ()	-7 - 14 -7 - 14	107.45		0.4	00602	0.00000	.000393	.000163
Ó	-7-04	4.6	4.5	•	900	.0008	000046	00018
C	4	71.2	8	•	<u>რ</u>	.0003	0023	0011

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 3	33 CONFIG T ANGLE = -12	1GURATION 1	HR BODY H/R	B0D =	Y PITC 0 RO	H ATTITUDE TOR-GROUND	= -8.0 Z/R = 1.	4063	
(TEST	CONDITIONS)			·					
RECORD	TEMP (DEG F)	S1 GPRM	TP (FPS)		VEL (FPS)	(LB/FT	MU WC		İ
503 504 505 506	552 552 552 552 552 552 552 552 552 552	0.9961 0.9961 0.9961 0.9961	516 516 516 54 54 54	2000	103-15 103-15 103-15	0000	00000		1
	-	MAIN ROTOR	B DATA -	HUB	REFERENC	CE CENTER			
(SHAFT	AXIS)								
RECORD	Ŧ0	PHS DEG)	B1 (DEG) (A1 DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)	i
503 504 505 605	1120 1120 1120 111111111111111111111111	0000	5.6 6.8 7.6	8 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	81.38 93.34 106.17 112.77	01110 01110 01110		5.65 6.66 7.81 8.39	i
ONIA	AX 15)	! !							
	ALPHW (DEG)	L1FT (L8)	X-FORCE (LB)	97	CLR (-)	CXR (-)	£5	CPRO	į
808 808 808 808	-11.35 -11.25 -11.15	80 • 19 91 • 84 104 • 38 110 • 85	13.97 16.72 19.43 20.77	0444 0969	.00449 .00514 .00584	0.00078 0.00094 0.00109	. 000337 . 000397 . 000465	.000130 .000144 .000163	i

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

	! !			•	 	a c	20.89		0 - !	132 139 167
4063			0000		 	MRHP (HP)	0.88 0.99 1.28		CPRO (-)	.0000 .0000 .0000
= 8.0 2/R = 1.		MU . (3	0.250 0.250 0.250 0.250		 	Y-FORCE	-2.43 -2.75 -2.90 -3.16		CPR (-)	.000059 .000059 .000076
ATTITUDE	1	Q (LB/FT2	19.7 19.7 19.7	CENTER		H-FORCE (LB)	2.72 2.45 1.80 1.46		CXR (-)	00042 00047 00049
DY PITCH 00 ROTO		VEL (FPS)	129.10 129.10 129.10	REFERENCE		THRUST (LB)	63.37 77.11 89.10 102.06		CLR (-)	.00353 .00430 .00497 .00569
300		•	97 97 97 97 97	- HUB		A1 (DEG)	-2.0 -3.1 -3.1		(-)	6.1 6.1 6.1
HR -BODY H/R	-	TP (FPS	9000 0000 0000	ROTOR DATA .		B1 (DEG)	NW4 N		X-FORCE (LB)	-7.49 -8.35 -8.72 -9.50
GURATION 4 ROTOR	5)	SIGPRM	0.9941 0.9941 0.9941	MAIN RO		AL PHS (DEG)	0000		LIFT (LB)	62.99 76.70 88.69 101.62
S4 CONFI	COND IT IONS	TEMP (DEG F)	0000 0000 0000		AXIS)	THETA (DEG)	9840	AX 1S)	ALPHW (DEG)	4444 6444 6446 6466
RUN 34 SHAFT A	(TEST (Ū	507 508 510 510		(SHAFT	RECORD	5007 5008 5109	ONIA	RECORD	5007 5008 5008

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 34 SHAFT ANGLE	CONF	1GURATION -4 ROTOR-	HR BODY H/R	. B0	BODY PITCH 100 ROTO	ATTITUDE OR-GROUND	= 0.0 Z/R = 1.	.4063	
(TEST	CONDITIONS								
W I	TEMP (DEG F)	SI GPRM	1P (FPS)		VEL (FPS)	0 (LB/FT)	M W C 2		
511 512 513 514	0000 mmmm www.	0.9941 0.9941 0.9941	516-7 516-7 516-7	2020	129•10 129•10 129•10	19.7	0000	0000	1
		MAIN ROTOR	OR DATA -	HUB	REFERENC	CE CENTER		•	
(SHAFT	AXI								
RECORD	THETA (DEG)	AL PHS (DEG)	B1 (DEG) (A1 DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)	
511 513 514	10.0 12.0 13.1	4444	00/00 04/00 04/00	₩₩₩₩ 1.00.00	70.97 82.82 95.47 106.46	11.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	- 2.82 - 3.09 - 3.51 - 3.851	3.19 3.89 4.70 5.65	1
ONIA	AX 15)								
RECORD	ALPHW (DEG)	LIFT (LB)	X-FORCE (LB)	50	CLR (-)	CXR (-)	C PR	CPRO (-)	
511 512 513 514		70.97 82.77 95.38 106.31	24.48 4.05 6.00 6.00	66.2 66.2 86.1	.00398 .00464 .00534	0.00012 0.00018 0.00024	.000190 .000232 .000280	.000128	1

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

EMP	SIGPRM	TP.		VEL	0	O.W.	
	E 10	FPS		(FPS	19	~ i	
0000	2 0 0 0 0 0 0 0 0 0 0 0	516.7	7000	129.12 129.12 129.12	100 100 100 100 100	000	2000 2000 2000
N I V	ROTOR	R DATA -	901	REFERENCE	E CENTER		
AL PHS (DEG)		B1 (DEG) (A1 DEG)	THRUST (LB)	H-FORCE (LB)	Y-FOR CE	i a i
12.000	İ	7.0 7.6 8.7 9.2	40.44 40.00	65.73 78.50 91.05	1.72 1.55 0.86	12.68 13.88 13.36	
	į			1 1 1 1			
LIFT (LB)		X-FORCE	25	CLR (-)	CXR (-)	£5	
64 • 72 77 • 21 89 • 45 95 • 42		11.60 14.26 17.04 18.54	လ လ လ လ စ	.00363 .00433 .00501 .00535	0.00065 0.00080 0.00095 0.00104	.000384 .000384 .000453	

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

	CONDITIONS	?						
RECORD	TEMP (DEG F)	SIGPRM	Ŋ		VEL (FPS)	(LB/FT	MU 8) .	
-	4	66	17.		55.2	18	30	0
N	Š	96	18.		55.3	8	30	
0	ŝ	96.	R		55.3	20	0.5	
Ø	ູ້	• 98	18.		55.3	8	30	
523	55.0	0.9896	518.	05	155,36	28.4	0 30(. 0
N	2	• 98	18.		55.3	\$	• 30	
		MAIN ROT	TOR DATA -	- HUB	REFERENCE	CENTER		
(SHAFT	AXIS)							
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
	1 •	•	4	10	5.3	14	15	1 00
0	•	•	6.	2	8	0	2.6	6
3	•	•		2	0.0	.5	2.8	5
S	6	•	6.	m	2.5	0	3.1	9
523	10.0	0.4	ູ ເຄ	-4.3	112.41	0.01	-3.56	2,38
N	•	•	m	'n	0.9	3	2.4	Ð
CWIND	AX1S)							
RECORD	AL PHW (DEG)	(LB)	X-FORCE	33	CLR (-)	CXR (-)	CPR	CPRO
519	4 -23	65.01	-7.26	6.3	•00364	000	. 000052	.000152
V	71) c	D .	•	M 4 10	• 0000	0000	0015
V	31	2000	400	•	0020	•0000	0000	0017
V	•	7.5	8	•	057	.0005	60000	0010
V	4 (2	•	•	062	004	0014	0022
١					1			1

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

COND 17 IONS TEMP (DEG F)	SIGPRM	TP (FPS)		VEL (FPS)	0 (LB/FT2)	2	
1	0.9877 0.9877 0.9877		986	155.51 155.51 155.51	00000 00000 00000	000m • 0	
	9858 9858 9858 IN RO	₩ ¥	HUB	555 555 665 FER	28. 28. CENTE	000	
ı	AL PHS	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MAHP (HP)
1	000000	oommea		66.83 79.24 90.47 101.68 112.72 66.65	11.74 11.74 00.72 00.23	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 0.
ą.	LIFT (LB)	X-FORCE	97	CLR (-)	CXR (-)	C PR (-)	CPR0 (-)
1	66.82 79.23 90.46 101.68 112.72	-2.33 -2.13 -1.74 -1.36 -0.56	7.0 7.6 8.1 7.4 7.0	00374 00444 00507 00570 00631	000013 000016 000018 000008 00003	.000120 .000140 .000159 .000210	.000136 .000143 .000145 .000178

RUN 3	S CONF	IGURATION	HR HCO Y H/B	800	DY PITCH	ATTITUDE	= 0.0 7.0 = 1.4	W 40
(TEST	1110N)
RECORD	TEMP (DEG F)	S I GPRM	TP (FPS)	# # #	VEL (FPS)	Q (LB/FT)	3 3 3 3 3 3 3 3 3 3	
5 5 5 5 5 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000000000000000000000000000000000000	0.9896 0.9896 0.9877 0.9877 0.9877		00000	155.36 155.36 155.51 155.51 155.51	0000000 0000000 0000000	000 000 000 000 000 000 000 000 000 00	
(SH	AXIS)	MAIN ROTOR	UR DATA -	HUB	REFERENC	CE CENTER		
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG) (A1 DEG1	THRUST (LB)	H-FORCE (LB)	Y FORCE	MRHD (HP)
_ លលលលលល <u> </u>		000000	1008420 00880 00880		65.17 77.34 77.34 88.89 100.60 110.72 66.46	2 00 1 1 7 3 1 1 3 1 2 0 0 7	11111 00000 0000	# W 4 W 0 W W 0 W 0 W 0 W 0 W 0 W 0 W 0 W
RECORD	AXIS) ALPHW (DEG)	(LB)	X-FORCE	129	CLR (-)	CXR (-)	C. C.	CPRD (-)
	10.00 10.00 10.00 10.00 10.00 10.00 10.00	65 16 77 29 88 79 100 44 110 50	00000000000000000000000000000000000000	04.7 04.0 0.0 0.0	00365 00433 006498 00563 00563	0.00013 0.00018 0.00025 0.00032 0.00039	.000197 .000231 .000273 .000328 .000404	.000137 .000156 .000181 .000222

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 3	S CONFI	IGURATION -8 ROTOR-	HR BODY H/R	B00 = 10	Y PITCH 0 ROTO	ATTITUDE	= -4.0 Z/R = 1.4	.4063	
(TEST	CONDITIONS	S)							1
RECORD	TEMP (DEG F)	SIGPRM	1P (FPS)		VEL (FPS)	0 (LB/FT2	MC.	# # # # # #	1
1 M	1:	- 985	18.		55.6	8	• 30		
) M		985	18.		55.6	8	30		
M	7	.985	18.		55.6	å	99		
4	-	985	18.		55.6	8	30		
541	57.0	0.9858	518.9	σ (155.66	28.0	008-0		
đ.	-	• 985	9		000	0	9		
		MAIN ROTOR	DATA	- HUB F	REFERENCE	E CENTER			
(SHAFT	. AX1S)				İ			 	!
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)	!
1 7	1 4	1		1 •	5.3	8	2.0	\$	
200 200 200		0 0	8	-3.8	76.38	1.42	-2.33	5.51	
'n	•	8	.7	4	8.3	0	2.4	4	
4	•	8	•	4	\$.	!	2.0	ુ •	
4	•	ů	•	•	4.	71	4.	•	
4	•	•	•	3	† • •	•	1	•	
ONIA	AXIS)				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				. !
ľŪ	I	1	G		CLR	CXR	SP.	CPRO	
2	(DEG)	(18)	(8)	(-)	1 1			(-)	- 1
i w	1	6	0	•	0036	.0003	0027	0013	
M		8	8	•	042	.0005	0032	0014	
B	9	.7	0.7	•	940	• 0006	00038	00100	
4	9	φ,	Φ.	•	300	0.00000	0000410	000158	
541 142	-7 • 7 0 -7 • 7 7	64 • 35	7.04	6.8	.00359	.0003	0 027	0013	
١									

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11269 FORWARD FLIGHT

NS)
(FPS)
0.9838 5 0.9538 5
98.
MAIN ROTOR DAT
ALPHS B1 (DEG) (DEG)
-12.0 7.7 -12.0 8.8
2.0 9. 2.0 10.
(LB) X-FOR(
52.38 9.44 63.46 12.02 75.42 14.78 81.64 16.20

RUN 40 SHAFT ANGLE	O CONFI	CONFIGURATION = ROTOR-	-800Y H/R	ii	BODY PITCH ALTITUDE ROTOR-GROUND		Z/R = 1.4063	163
TEST	111							
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)	5)	VEL (FPS)	OLB/FT2	MC.	
549	:	0.9835		•	53.12	3.3	•	
550	•	0.9835		•	53.12		•	
551	-	0.9835		•	53.12		•	
50.00	2	0.9816		•	54.76		•	
553	62.0	0.9816		•	54.76		•	•
		MAIN ROT	ROTOR DATA	HUB	REFERENCE	CENTER		
	AXIS)						 	
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)
549		-12.0		•	2 • 89	0.03	2	0.01
550	•		•	•	3,26	-0.07	Ň	0.01
551	•		•	•	3,55	-0.20	-1.14	0.01
000	•		•	•	3.77	-0.20	-1.03	0.01
9 (C	• •	4	•	•	3,96	-0 • 1 0	-0.89	0.01
)	,)					

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

EST CONDITIONS) ORD TEMP 54 63.0 55 64.0 56 64.0 57 65.0 58 65.0 MHAFT AXIS) ORD THETA AL							
CORD TEMP 554 63.0 555 64.0 555 64.0 557 65.0 558 65.0 558 65.0 CORD THETA AL CORD THETA —1							
554 63.0 555 64.0 557 65.0 558 65.0 558 65.0 5HAFT AXIS) CORD THETA AL	SIGPRM	1P (FPS)	VEL (FPS)	(LB/FT2)	D E	 	!
556 64.0 557 65.0 558 65.0 SHAFT AXIS) CORD THETA AL	0.9797	• •	80.24 80.32		• •		! !
SHAFT AXIS) CORD THETA A (DEG) (0.9779 0.9760 0.9757	•••	80.39 80.39	777	• • •		
CORD THETA (DEG)	MAIN ROTOR	DATA - HUB	REFERENCE	CENTER			
ት የተ	ALPHS B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	GHAM (HP)	!
555 558 558 558	-12.0 -7.9 -4.0 4.0	• • • •	3.68 3.68 3.92 4.06	00000 000444 000444	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

ECORD TEMP SIGPRM TP VEL 0 MU (PEG F) (FPS) (LB/FT2) 559 68.0 0.9705 13.7 561 69.0 0.9686 109.07 13.7 562 69.0 0.9686 109.07 13.7 563 69.0 0.9686 109.07 13.7 564 69.0 0.9686 109.07 13.7 ECORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MRHP (DEG) (DEG) (DEG) (DEG) (LB) (LB) (HP) 559 -12.0 3.50 1.43 -0.65 561 -4.0 4.0 4.57 1.33 -0.31 600 0.03		CONF	GURATION - ROTOR	н -800У н.	B(H/R =	BODY PITCH ATTITUDE ROTOR-GROUND		= Z/R = 1.4063	63
TEMP SIGPRM TP VEL 0 (HP/FT2) MU (FPS) (LB/FT2) MU (FPS) (FPS) (LB/FT2) MU (FPS) (FPS) (LB/FT2) MU (FPS) (FPS) (LB/FT2) MU (FPS) (FPS) (LB/FT2) MU (FPS) (FP	- 1		()						
68.00 00.9705 133.7 133.	۵	TEMP (DEG F)	SIGPRM	TE (FF	5)	VEL (FPS)	CLB/FT2	MU.	
AXIS) AXIS) AXIS -12.0 -12.0 -12.0 -12.0 -13.7 -12.0 -13.7 -13.7 -13.7 -13.7 -14.0 AXIS) AXIS) AXIS) AXIS AX		9			•	108.56		•	
AXIS) AXIS) AXIS -12.0 -12.0 -12.0 -12.0 -12.0 -12.0 -13.7 -13.7 -12.0 -14.0 -15	<u> </u>	Ġ:			•	109.07	•	•	
AXIS) MAIN ROTOR DATA - HUB REFERENCE CENTER THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE (DEG) (DEG) (LB) (LB) (LB) -12.0 3.50 1.43 -0.71 -8.0 3.98 1.43 -0.65 -4.0 4.57 1.35 -0.48	(•			•	100601	٠	•	
AXIS) THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE (DEG) (DEG) (LB) (LB) (LB) -12.0 3.50 1.43 -0.71 -8.0 3.98 1.42 -0.65 -4.0 4.57 1.30 -0.31	N M	700			••	109.07		• •	
THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE (DEG) (DEG) (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB					+		CENTER		
D THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB)	(SHAFT	AX15)	•			,			
-12.0 . 3.50 1.43 -0.71 . 3.98 1.43 -0.71 . 3.98 1.42 -0.65	CORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	(DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE . (LB)	MRHP)
-8.0 . 4.18 1.42 -0.67 4.45 1.35 -0.48 4.57 1.30 -0.31	0	•	-12.0	•	•	3.50	1.43	-0.71	0.02
4.45 1.35 -0.48 4.45 1.35 -0.48	٥.	•	000	•	•	2000	1 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 •	0000	9 6
4.57 1.30 -0.31	- 0	• •) 	• (• •	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 to	10.01 3.401	0.0
	u m	• •	4	• •	• •	4.57	1.30	-0.31	0.03

CONFIGURATION H BODY PITCH ATTITUDE = IGLE = ROTOR-BODY H/R = ROTOR-GROUND Z/R = 1.4063	INDITIONS)		4.0 1.0010 . 154.75 26.	7.0 0.9951 . 156.28 28.	58.0 0.9932 . 156.71 29.0 . 58.0 0.9932 . 156.71 29.0 .	MAIN ROTOR DATA - HUB REFERENCE CENTER	(SIX)	THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE MAHP (DEG) (DEG) (LB) (LB) (LB)	-12.0
NGL E	10	ECP	1 4 6		ဆီထီ		AXISI	THETA (DEG)	• • • •
RUN 45 SHAFT A	•	RECORD	574	576	577 578			RECORD	574 575 576 577

FECORD TEMP S1GPRM TP (FPS) (LB/FT2) MU FECORD TEMP S1GPRM TP (FPS) (LB/FT2) MU 582 62.0 0.99772 53.29 3.3 5 53.29 3.3 5 53.29 3.3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RUN 46 SHAFT ANGLE	CONFI	GURATION - ROTOR	-800Y H/R	300) 3 = .045	7 G	TCH ATTITUDE ROTOR-GROUND	Z/R = 1.4063	63
TEMP S1GPRM TP (FPS) (LB/FT2) MU 62.0 0.9610	TEST	OND IT IONS	2)						
582 6620 0.9610 53.19 3.3 5.5 58.20 3.3 5.5 58.29 3.3 5.5 58.20 3.3 58.20 3.3 58	RECORD	EN	SIGPRM	TP (FP	(5	VEL (FPS)	OLB/FT2	J. M. C	
584 64.0 0.9772 53.29 3.3 3 55.8 56.0 0.9772 53.29 3.3 3 3 5.8 58.5 54.0 0.9772 53.29 3.3 3 3 5.8 58.5 54.0 0.9772 58.5 54.15 3.4 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 3.8 56.0 0.9754 56.0 0.9754 56.0 0.9754 3.8 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.9754 56.0 0.975 56.0 0.977 56.0 0.977 56.0 0.975 56.0 0.977 56.0	i do	1 %	0.9610			53,19		•	
584 64.0 0.9772 53.29 3.3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Œ	4	0.9772		•	53,29	•	•	
585 64.0 0.9772 53.29 3.3 5 5 5 6 6 5 0 0.9754 58 5 6 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.9754 58 6 5 0 0.877 1.32 1.63 0.62 1.33 1.55 0.55 1.35 1.55 0.55 1.35 1.55 0.55 1.35 1.55 0.55 1.55 1.55 0.55 1.55 1.55 1.5	ď	4	0.9772	-	•	53,29		•	
586 65.0 0.9754 5.4.94 3.5 5.4 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	à	4	0.9772	•	•	53,29	•	•	
587 65.0 0.9754 3.5 5.24 3.8 5.5 5.6 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.9754 5.6 5.0 0.977 -1.35 5.6 5.0 0.977 -1.35 5.6 5.0 5.6 5.0 5.9 -1.6 5.0 5.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	۵ (S	0.9754	•		54.15	•	•	
589 65.0 0.9754 . 58.73 4.0 . 58.73 4.0) a	Š	0.9754		•	54.94	•	•	
SHAFT AXIS) KAIN ROTOR DATA - HUB REFERENCE CENTER (SHAFT AXIS) ECORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE (LB) (DEG) (DEG) (DEG) (LB) (LB) SB3 -16.0) a	Š	0.9754			57,24		•	
(SHAFT AXIS) ECORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE (LB) (DEG) (DEG) (DEG) (DEG) (LB) (LB) S83 -12.0 S84 -12.0 S85 -4.0 S85 -4.0 S86 -1.37 S87 -1.35 S89 -1.550 S89 -1.550 S89 -1.550 S89 -1.550 S89 -1.550	œ	Š	0.9754		•	58.73	•	•	
(SHAFT AXIS) ECORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE 582 -16.0 (LB) (LB) (LB) (LB) 583 -12.0 1.46 0.20 -1.29 584 -8.0 1.49 0.29 -1.28 585 -4.0 1.57 0.37 -1.32 586 -0.0 1.64 0.62 -1.32 586 -1.36 1.62 0.74 -1.34 589 -1.60 1.64 0.59 -1.35 589 -1.60 0.77 -1.35					- HUB	REFERENCE			
ECORD THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE (DEG) (DEG) (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB	(SHAFT	×						· · · · · · · · · · · · · · · · · · ·	
-16.0 -12.0 -12.0 -13.0 -14.0 -15.0 -1	lш	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	(DEG)	THRUST (LB)	B 08	-FOR	MRHP (HP)
-120 -120 -80 -40 -00 -00 -1.57 -1.30 -1.32 -1.34 -1.34 -1.35	582		-16.0		•	1.46		1.2	0.01
1.57 0.37 -1.30 0. 1.63 0.48 -1.32 0. 1.64 0.62 -1.32 0. 1.62 0.74 -1.34 0. 1.50 0.77 -1.35 0. 1.50 0.77 -1.35 0.	אור מיט מיט מיט מיט מיט מיט מיט מיט מיט מיט	•	1000	•	• •	1.49	A:	1.2	0.01
1.63 0.48 -1.32 0.62 -1.32 0.65 -1.32 0.65 -1.32 0.65 -1.32 0.65 -1.35 0.65 -1.35 0.65 0.74 -1.35 0.65 0.77 -1.35 0.65 0.77 -1.35 0.65 0.59 -1.64 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65		• (•	•	•	1.57	m	1.3	0.01
-0.0	א מ ט ע	•	0.4-	•	•	1.63	*	6	0.01
7 4.0	, K	•	0-0-	•	•	1.64	S	1.3	0.01
8.0 . 1.50 0.77 -1.35 0. 1.48 0.59 -1.64 0.) d	•	0 4	•	•	1.62	~	1.3	0.01
9 -16.0 • • 1.48 0.59 -1.64 0.	0 K	• •	0	•	•	1.50	~	1.3	0.01
	589	•	-16.0	•	•	1.48	S.	1.6	0.01

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 46 CONFIGURATION BHF 2U BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = .0458 ROTOR-GROUND 2/R = 1.4063

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY	AXIS)				1	 	
RECORD	NF (LBS)	AF (LBS)		PM (FT-LB)	œ -	YM (FT-LB)	
5882 5882 5884 5885 5886 589	-0.720 0.250 0.840 0.840 1.340 1.750 -0.950	0.870 1.010 0.940 0.740 0.630	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.013 -0.053 -0.058 -0.098 -0.119 -0.152	0.000000000000000000000000000000000000	
RECORD	ļα,w	L IFT (LB)	DRAG (LB)	1 ~	ĮΣĪ	RW I	YMI3 T-L
500 500 500 500 500 500 500 500 500 500	12 4.05 0.02 3.98 7.97 12.00	-0.523 -0.5236 0.320 0.840 1.281 1.630 2.031		000000000000000000000000000000000000000	0.0496 0.0291 0.636 0.636 0.918 1.951	-0.018 -0.037 -0.067 -0.098 -0.104 -0.084	0.1455 0.128 0.285 0.300 0.334 0.058
RECORD	AX IS) ALPHW (DEG)	(-) CLB		18-	CMYB (-)	CMXB	CMZB (-)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 00 0 00 0 00 0 00 0 00 0 00 1 0 0 0	B B B B B B B B B B B B B B B B B B B	0.35412 0.37265 0.34674 0.33275 0.30946 0.32548 0.33058	0.02831 0.00708 02831 07078 06243 11011	-15775 0.00123 0.09247 0.20246 0.28350 0.40523 0.54397	00560 01188 02118 03100 03040 03132	0.04626 0.04056 0.06040 0.09075 0.10604 0.09188

MAIN RUTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 47 SHAFT ANGLE	CONFI	SURATION - ROTOR-	BHF 2U BODY H/R	BODY R = .0458		PITCH ATTITUDE = ROTOR-GROUND 7	Z/R = 1.4063	163
EST	CONDITIONS		1 1 1 1	† 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS	8)	VEL (FPS)	(LB/FT2)	MU MU	# # # #
10	1 5	0.9732		•	0	7.6	•	
١٥	2	0.9713		•			•	
J O		0.9710		•	81.13		•	
٥٠		0.9710		•	~		•	
١٥		0.9710		•	~		•	
١0		0.9710		•	7		•	
597	67.0	0.9710		•	-		•	
		MAIN ROTOR	OR DATA	1 HUB	REFERENCE	CENTER		
(SHAFT	AXIS			'				• • • • • • • • • • • • • • • • • • •
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FURCE (LB)	Y-FURCE	MRHP (HP)
10		-16-0			1 35	1.33	-1.70	0.01
ħ٥	• •		•	•	1.34	1,35	-1.65	0.01
7 0	• (•	•	1.42	1.38	-1.59	0.01
١σ	• •		•	•	1.43	1.47	-1.54	0.01
١o	•		•	•	1.39	1.55	•	10.0
296	•	4.0	•	•	849	1 659	-1.48	
Q,	•	•	•	•	***	***	•	•

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 47 CONFIGURATION BHF2U BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = .0458 ROTOR-GROUND Z/R = 1.4063

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY	AX 1S)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	Σ	RM (FT-LB)		
0	-02	40	45	50	1 •	1	i i i i
0	35	.23	31	08	0000	. 1	
9	30	.31	0	.73	60.0	63	
0	.53	- 22	.18	-22	0.13	525	
Q,	44	• 01	.31	•13	0.13	.54	
596	3.150	ř.	-0.320		.15		
O.	•77	• 45	• 34	• 96	0.16	44	
QNI M)	AXIS)	!					
RECORD	H	1	R A	L	ĮΣ		
	(DEG)	(۲8)	(LB)		(FT-LB)	(FT-LB)	
0	ļ	1.55	4	•	1.0	9	
0	6	• 02	.39	.31	•08	0.02	. 1 1
9	0	0.13	• 32	•01	.73	0.11	.32
O I	0	.53	• 22	0.18	•25	0.13	.52
595	3.96	2.295			2.134	460°0-	
<u>ي</u> (•	000	100	0.32	97	8000	2.40
ý	• •	υ τ	07.	• 34	96	0.00	• 40
QNIM)	AX15)						;
D C	ALPHW (DEG)	(-)		C YB (-)	CMYB (-)	CMXB (-)	CMZB (-)
10		2383	3712	1000	514	0000	8000
ð	.0	1581	3680	.0476	0115	.0032	.0152
σ	•	.0212	.3572	.0015	.1009	.0155	.0447
	9	• 2350	411	92	.1697	138	.0727
) (, c	. 3527	3340	040	7 462.	0129	00/00
597	11.97	0.52048) (A)	• •	547	600	064

100 - 10063	2001-11 1 X/7
_	KUIUK-GKUUND ZZK F 1.
	1/K = .0456
CONFIGURATION BHF 20	ROTOR-BODY HZR
	ANGLE =
RUN A	SHAFT

(TEST (TEST CONDITIONS	(3			; ; ; ; ;			
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS	5)	VEL (FPS)	(LB/FT2)	S Z	
10	19			•			•	
665	67.0	0.9710		•	108.54	0 4	• (
0	:	•		• (•	•	
၁ C	: ;	• •				•	•	
) C	9	•		•		•	•	
) C	8					•	•	•
0	8	•		•		•	•	
		MAIN ROT	ROTOR DATA	EDH - 1	REFERENCE	CENTER		
(SHAFT	AX15)							i 1 1 1
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DE G)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
10		10	•	•	C.	~(9.1	0
9	•	o d	• (• (0.92	0 0 0 0 0 0 4 0	-1.64	0.0
) C	• •	9	• •	• •	1.15	N	5	0
0	•		•	•	1.25	i.		•
0	•		•	•	e c	• • • •	1001	9 0
604 605	••	-16.0	• •	• •	0.85	3 (1.7	
)								

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

1.4063 •0458 ROTOR-GROUND Z/R = RUN 48 CUNFIGURATION BHF 2U SHAFT ANGLE = --- ROTOR-BODY H/R =

CENTER
REFERENCE
AERODYNAMIC
DATA -
FUS EL AGE

(BODY	AX 1S)						1 1 1 1 1 1
RECORD	NF (LBS)	AF (LBS)	SF (LBS)		RM T-L	1 - L	
8669	-3.860		0.840		000	OMI	
000	0.0	44	22.4	90	940	80	
000	38.	120	42	200	0.20	7.0	
0	986	5.4	80	60.	60.0	90	
(WIND	AX 15)					 	
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	Z I	T-L	YMB T-L
3	-12	0	.25	.84	2.		0
9	9	000	800	49	0.450 0.450	9000	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
9 0		96	49	225	.63	0.16	, co
0	9	86	. 70	45	000	0.19	60.
603		36	3.767	0.4.0	•50	60.	62.
0		0	26	80	000	0.07	80
QNIM	AX15)						
RECORD	ALPHW (DEG)			CYB (-)	MYB (-)	CMXB (-)	MZB (-)
10	17	-26	36	.0726	• 163	• 000	• 005
0	Ó C	1767	3631	0420	• 0.348 0.848	2000	• 0 × 0 • • • • • • • • • • • • • • • •
\circ		.0831	.3126	.0188	2017	.0129	.0635
0	9	.2461	.3178	•0386	•3093	.0147	.0843
0	•	. 3749	• 3234	•0360	•4245	•0074	60900
605 605	12•01 -12	610	3661 3661	0.06869	37.6 619	05.7	0473

(TEST COND RECORD (DE 606 607 608 609 610 77	IT I ONS							
CORD (D		(i 1 1 1 1		
006 009 009 009 009 010 010	EMP EG F)	SIGPRM	TP (FPS		VEL (FPS)	(LB/FT2	M.C.	
110		0.9692			135.96	200 100 100 100 100	•••	
· · · · · · · · · · · · · · · · · · ·		0.9673			136.40 136.85	• • •	•••	
12 7	• • •	0.9655			136.85 136.85		• • •	
(SHAFT AXI	8)	MAIN ROTOR	OR DATA	- HUB	REFERENCE	CENTER		
FO	1 A A	ALPHS (DEG)	B1 (DEG)	A1 (Deg)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	мкнр (НР)
606 607 609 609 610 613		00000000000000000000000000000000000000	•••••	•••••	0.46 0.46 0.87 1.087 1.28 1.26 0.54	WWWWWWWW 44444444444444444444444444	-11-80 -11-76 -11-72 -11-70 -11-64	00000000000000000000000000000000000000

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

1.4063 RUN 49 CONFIGURATION BHF2U BODY PITCH ATTITUDE = ---- SHAFT ANGLE = --- ROTOR-BODY H/R = .0458 ROTOR-GROUND Z/R =

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(B0DY	AX 1S)						
RECORD	NF (LBS)			PM T-L	RM T-L	YM (FT-LB)	
606	94		1.170	-3.597 -1.084	0.144	16	
0		950	96.	41.	•15	.72	
> ⊶	0.0	900	.76	. 87	.0.	63	
-	56	.97	.73	8.86	•39	.48	
	9 0	•46 •65	.05 .05	68°	•24	.35	
GNIM	AX 15)						
CORD	ALPHW (DEG)	L. IFT (LB.)	DRAG (LB)	83)	PMB	RMB (FT-LB)	בת ו
ı Ö		.7	-7	1.170	5	7	-
0	0	•07	•61	90	1.08	90.0	• 34
Ō	•	.47	• 30	39	• 1 4	0.50	.71
Ò٠	•	4.00	06.	(A)	988	0.14	67.
٠,	•	0 0	0 0	97	200		700
612	12.04	8 6) M	500	966	80	40
-	7	96	.84	•05	39	90.0	.37
ONIMO	AX15)						
RECORD	ALPHW (DEG)	(-) (-)	(-)	CYB (-)	MYB (-)	CMXB (-)	MZB (-)
9		. 259	.3697	.0641	.1772	•005	600
0	8.0	.1678	.3609	.0491	.0531	.0026	.0167
9 (0	.0250	. 3442	0212	2020.	00100	.0351
> -	0 4	1213	V 1 7 5 6	0170	91001•	\$ 000 \$ 000	0330
-	0	3152	3169	.0396	4328	.0091	.0745
612	12.04	0.42543	3	02716	555		394
-	<u>ب</u>	• 2696	.3717	•0570	.1658	• 0030	.0184

	! ! !			,	 	; i	
63						MRHP (HP)	00000000000000000000000000000000000000
= 2/R = 1.4063		MU	• • •	••••		Y-FORCE	11. 11. 12. 12. 12. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
PITCH ATTITUDE = ROTOR-GROUND		0 (LB/FT2			CEN TER	H-FORCE	44000440 ••••••• •••••• andoo
BODY PITCH .		VEL (FPS)	1774	165. 165. 165. 165. 165. 165. 165. 165.	REFERENCE	THRUST (LB)	0.17 0.65 0.86 0.87 1.00
ti		8)	• • •		- HUB	(DEG)	• • • • • •
BHF 2U -BODY H/R		TP (FPS)			ROTOR DATA	B1 (DEG)	• • • • • • •
CONFIGURATION = ROTOR		SIGPRM		0.9619 0.9619 0.9619 0.9619	MAIN RO	AL PHS (DEG)	111 0424 0000 0000
NGL E	CONDITIONS	TEMP (DEG F)	5	722.0 722.0 722.0	AXIS)		•••••
RUN 50 SHAFT A	TEST	RECORD		617 618 620 621	-	RECORD	615 613 613 613 620 620

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

1.4063 11 RUN 50 CONFIGURATION BHF2U BODY PITCH ATTITUDE = ---SHAFT ANGLE = --- ROTOR-BODY H/R = .0458 ROTOR-GROUND Z/R

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY AXIS)

10001	1014						
COR	Y	AF	SF	Æ		XX	
1	(LBS)	(LBS)	88			1-1	
614	77	3	9	46		0.334	
_	• 75	•84	.26	.07	•06	59	
<u> </u>	32	•07	1.240	.78	0.10	22	
-	.32	• 74	• 76	.97	.17	.57	
_	.52	•04	•26	85	0000	5.0	
-	8.45	040	•14	3.54	0.5	9	
Ñ	•33	•73	.74	.15	40	4	
N	8.75	•31	19.	5.31	.22	.40	
ONIM	AX 15)						•
RECORD	ALPH	1	A A	18	1 2		
	(DEG)	(LB)	(FB)	(LB)	(FT-LB)	1-1-	1
614	-12		-89	.68			0.367
7	•	•48	.41	•26	.07	0.0	5.0
~	6	•94	• 02	•24	.78	-	7
٠,	0.0		8.739	0.760		0.17	57
÷,	0	*6	04.	•26	9.85	.18	.52
- (9	E .	• 50	• 14	•54	•31	.83
N	0	•68	.93	.74	7.15	•0B	.54
Ŋ	-	.83	• 94	•67	5.31	•13	• 44
ONI M)	AX 15)	:					
RECORD	٦	Ĺ	10	1 >	1 >	ί×	IN
	(DEG)	(-)		<u>-</u>	ľ	Ţ	1
-	-1	.2577	.3714	.0630	.1845	.0040	0
~	1.9	. 1306	• 3534	.0473	.0700	.0005	0201
-	6	.0352	• 3367	.0462	• 0262	.0039	.0071
-	0.0	• 1239	• 3260	•0283	•1668	.0057	•0193
–	0	. 1843	.3137	•0470	.3304	• 0.060	.0845
619	8 0 5	0.27366	0.31738	04253	54	0.01058	3
V	, ,	4 1 00 .	. 3333	•0276	.5752	• 0059	.0519
V	-	1007	• 3/09	•0623	•1783	•0045	.0147

	1.4063
ļ) Z/R = 1
i ti	Z/H
BODY PITCH ATTITUDE	ROTOR-GROUND
	•0833
	# ~
	Ž
CONFIGURATION BHF2L	-80D¥
Š	10R
I V	RO
SUR	ı
I L	1
Ō	11
-	ANGLE
ស	_
Z S S	Ĺ.

(TEST	COND IT I ONS	()						
• —		SIGPRM	TP (FPS)	S }	VEL (FPS)	(LB/FT2)) Y	
625	57.0	0.9884		•	52.18	3.5	•	
S	0			• •	ı Oı		•	
N	8	•		•	a		•	
Š	8	•		•	a	•	•	
M	8	•		•	N.		•	•
m	8	•		•	Φ	•	•	
(1)	8	•		•	0	٠	•	
		MAIN ROT	ROTOR DATA	BUH - 1	REFERENCE	CENTER		
(SHAFT	AX15)							
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	мкнр (нр)
ĺΝ	•	-16.0	•	•	1.09	4	1 4	0.01
N	•		•	•	1.28	Ŋ	4	0.01
2	•	•	•	•	1.41	£.	4	0.02
628	•	0.4-	•	•	1.53	0.29	-0.41	0 • 02
N	•	•	•	•	1.62	Ŋ	m	0.01
M	•	•	•	•	1.60	7	2	0.02
n	•	•	•	•	1.59	7	C	0.02
m	•	•	•	•	1.49	6	-	0.02

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 51 CONFIGURATION BHF2L BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4003

(BODY	AX 1S)						
RECORD	NF (LBS)		SF (LBS)	PM (FT-LB)	TAM-	1.4	
625 626	-1.180		-0	-0.557	0.015	0.070	
20	•15	400	500	000	40.	100	
10	86	50	90.	181	0.0	.13	
la) la	60°	O (44	01.	11.	•18	
חו ניו	22	200	.17	92		.12	
QNIM)	AX 15)					•	
RECORD	ALPHW (DEG)	L1FT (LB)	DRAG (LB)	SFB (LB)	PMB	T-F	YMB T-L
N		-93		7	S	0.0	
Ñ	Ō	52	6	60	•16	0.02	• 05
S	6	0.0	4	• 05	00.	0.05	.11
N	0	04	Ō	03	•22	0.03	•00
2	9	78	90	• 00	.81	0.02	.13
	900	N a	2	44	• 10 • 7	000	200
632	-11.9	-0.929	0	17	92	0.13	• 10
ONIM	AX 15)					:	
RECORD	ALPHW	CLB	802	CYB	CMYB	CMXB	IÑI
		-	-	-		1	
Q	7	• 339	.4716	•0474	1828	0000	.0233
N	6.7	• 2039	• 4376	•0328	.0541	• 0004	.0176
Ņ	6	• 0256	• 4183	•0182	•0010	.0183	.0361
Ñ	0	. 1493	• 3650	•0100	•0729	.0127	.0302
Ñ١	6	. 2877	.3892	•0219	•2674	•0075	.0450
3 14	200	381	44400	0 4 U 4	1048	2020	.0662
632	-11.9	.2854	462	.05	.256	.0360	000

MAIN RGTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 52	ANGLE =	IGURATION ROTOR-	BHF 2L -BUDY H/R	11	BODY PITCH A	PITCH ATTITUDE ROTOR-GROUND	Z/R = 1.4063	163
EST	COND IT I ONS	5)						1
RECORD	TEMP (DEG F)	S1 GPRM	TP (FPS	8)	VEL (FPS)	(LB/FT2	DM (
I M M r	60.00	0.9865			8 80 4		• •	
א נא נ	000	0.9865	•	• • •	8		• • •	
. 6000 6000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9865 0.9865 0.9865			78.89 78.89 78.89	 	• • •	
	;	MAIN ROTOR	TOR DATA	HUB	REFERENCE	CENTER		
RECORD	AXIS) THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DE 6.)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MKHP (HP)
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		115.9		• • • • • •	9.00.00 9.00.00 9.00.00 9.00.00 9.00.00 9.00.00	2-00000 2-00000 2-00000 2-00000	000000000000000000000000000000000000000	
) •	•	•	,	,	 			

MAIN ROTOR-FUSELAGE INTERACTION TEST CUNTRACT NAS2-11268 FORWARD FLIGHT

RUN 52 CONFIGURATION BHF2L BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

(BODY	AX15)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	T I	M I		
633	2.5	2.290	0.090		-0-107	0.167	1 1 1 1
M	.47	• 60	20	98.0	; =	26	
M	•98	.54	.27	33	3	.25	
MI		.42	. 40	61.	7	. 32	-
i) l	• 75	42.	4 • 0 (£.	7	0.0	
J 4	0.09	200	00.	98		15	
ONIM	AX 15)						
Ü	ALPHW (DEG)	L.1FT (LB)	DRAG (LB)	SFB (LB)	PMB	RMB (FT-LB)	YAB
63	-	1.72	.70	60.	8	-	! -
m	6	.33	•67	•01	0.83	.12	.17
m	6	0.29	•62	950	0.34	.17	• 25
M) (0	86.0	54	•27	E (•21	25
ا (۱	9	9	30	04.	67.	5.	. 33
7		- C	200	• • • • • • • • • • • • • • • • • • •		7	- 0
640	•	-1.566	9	090.0	-1.981		12
QNIM)	AX1S)						
		CLB (-)	CDB (-)	CYB (-)	CMYB (-)	CMXB (-)	CMZB (-)
ומו	1110	•2762	.4329	•0144	.2620	•0199	.0202
א נא	9	• 2132	. 4271	00016	• 1204 0402	0180	•0248
א ני	0	1569	4062	0431	.0483	0305	0320
M	6	.3211	.4102	.0639	.1724	.0219	.0477
L) L	6.6	859	•4159	•0767	.3333	174	1650
6 6 9 9	11.98 -12	0.47356	0.42802	000	0.45441	.022	0.03493

SUN 53	CONF.	ROTOR-BODY H/R	• II	0833 ROTOR-GROUND	ROTOR-GROUND Z/R	R = 1.4063
(TEST (2					
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)	VEL (FPS)	0 (LB/FT2)	M
641		0.9869	•	105.26	13.0	•
640	00	6986	•	105.26	13.0	
644 E		0.9869	•	105.26	13.0	•
644	1	0.9888	•	105.16	13.0	•
645		0.9888	•	105.16	13.0	•
646	-	0.9888	•	105.16	13.0	•
647	-	0.9888	•	105.16	13.0	•
648	57.0	0.9888	•	105.16	13.0	•
		MAIN ROTUR DATA	DATA - HUB	REFERENCE CENTER	CENTER	

(SHAFT AXIS)	AXIS							
RECORD	THETA (DEG)	AL PHS (DEG)	a1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHP (HP)
İ	•	-16.0	•		1.13	2 - 19	0.12	0.03
642	•	-11.9	•	•	1.00	20.0		
6 4 4 4 4 4	• •	0 0	• •	• •	1.64	200	0.17	0.03
645	•	0	•	•	1.74	2.01	0.18	E0.0
646	•	0.4	•	•	1.90	200	0.16	M C C
647	•	<u>س</u>	•	•	7.	7 0		
648	•	-16.0	•	•	1.40	K0.7	10.01	50.0

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN S	3 CONFI	GURATION - ROTOR-	BHF 2L BODY H/R =	HODY PITC •0833 RO	H ATTITUDE	Z/R = 1.4	063
		USELAGE DAT	A - AER	ODYNAMIC REF	ERENCE CEN	TER	
(BODY	AX 1S)						
CORD	Z	AF	SF			WA	
	(188)	(LBS)	(LBS)		(FT-LB)	(FT-LB)	
14	3.79	06.	•30	4	•13	2	
4	.72	•16	60.	.89	.14	.41	
643	-1.320	4 - 1 70	060.0-	30	-0.173	0.453	
4	.11	96•	•38	•84	.21	525	
4	.57	• 78	• 49	.45	•30	• 60	
4	•05	• 55	•59	•23	57	000	
4	.40	•16	5 8	16.	•24	•35	
4	.87	• 84	• 20	• 29	-14	37	
ONIM	AX IS)					-	
֡֓֞֜֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡	PH	1	A A	L	Σ	RMB	YMB
	(DEC)	(LB)	(FB)	(LB)	1-1	1-1	7
4	i N	89	9	30	3.43	0.18	-17
4	0	2.12	.49	60.	1.89	0.20	.39
4	O,	1.02	• 25	•00	0.30	0.50	44
4.	0	010	86	.38	84	0.21	.522
4	9	, v	U () (4 0	000	700
4	800	5	80.	90	7	0.20	40.4
648 848	12.00	4.023 -2.985	4.562	0.200	3.290	-0.217	0.337
CNIM	AX 15)	.					
	ALPHW (DEG)	(-) (-)	(-)	C YB (-)	CMYB (-)	CMXB (-)	CMZB (-)
4	-12	.2603	.4133	.0269	.2774	145	.0144
4	6.	• 1904	• 4038	0000	1532	•0163	•0316
4	9	. 0922	• 38 19	0800	•0246	0165	0322
4 4	9	4770	07000	1450.	7000	7710	- 04V
4 4	2 9	• 2003 • 3158	1004A	0440	. 3410	0165	0503
640	12.00	0.41546	0.37851	05210	0.47794	01311	0.03227
4	7	.2681	.4097	•0119	• 2656	•0175	.0272

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

	!	!						
£ 90	! ! ! !					. (MKHP (HP)	00000000 00000000 444444
/R = 1.4063		∑	• • •	• •	• • •		Y-FORCE (LB)	00000000000000000000000000000000000000
PITCH ATTITUDE = ROTOR-GROUND Z.	i 	0 (LB/FT2)	m m m			CENTER	H-FORCE (LB)	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
>- m		VEL (FPS)	131.55	0.00	000	REFERENCE	THRUST (LB)	1.22 1.53 1.78 1.95 2.09 1.37
B00 R = .083		5)	• •		• • •	HUB	A1 (DEG)	• • • • • • •
BHF2L BODY H/R		TP (FPS				ROTOR DATA	81 (DEG)	• • • • • •
GURATION ROTOR-	((SIGPRM			0.9865 0.9846 0.9846	MAIN RO	ALPHS (DEG)	00000000000000000000000000000000000000
A CONFI	COND 1T I ONS	TEMP (DEG F)	2000	8 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A X I S)	THETA (DEG)	• • • • • •
RUN 54 SHAFT A	(TEST	RECORD	400	លល	655 656 657	(SHAFT	RECORD	6656 6556 6556 6556 6556 6556 6556 655

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 54 CONFIGURATION BHF2L BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

(BODY	AX 1S)				:		
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	P. T.	A H		
	-5.890	o.		()		4	
n ư	- 6	7 -) (000	-17	40	
າທ	2.19	222	70) P	200	
Ô	44.	•74	.70	200	12	0.	-
S	•65	•26	.76	•19	.38	14	
S	200	-86	40.	8 8	449	•07	
S	693	.67	• 55	•24	• 15	•45	
ON I M)	AX 15)	! !					
	H	L	I X	ļĿ	II	RMB	ĮΣ
	(DEG)		(18)		FIL	1-1	1-1
4	-12	ស	9		l -	-0.325	i w
S	6	23	•68	.27	3.00	25	61
ú	0	=	.47	60.	06.0	•32	. 78
() I	0	18	-25	61.	90.	•39	•28
U I	0	M	96	.70	900	•05	•08
655 655	16.7	87 0 5			619	225	97.
ט ל	7	50	10) t	000	טיני טיני	. d
	(•)	1)	•
CNIND	AX IS)						
	H	Ī	٥		-	CMXB	7
	(DEG)	(-)	(-)	(-)	(-)	I	J
4		9	. 4053	.0281	672	.0168	.0189
S	0.	.1849	. 3842	.0155	.1554	.0132	.0315
S	0	.0642	•3724	.0051	• 0468	.0170	.0404
S	9	1255	35.2	•010 •	0521	.0203	.0147
Ŋ.	•	• 1743	.3432	•0402	•2175	0026	• 0260
א מ	3 C	222	3367	0437	3720	117	• 0613
657	-12	2633	401	0.03164	.27	01291	0.02107

MAIN RUTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 55 SHAFT A	S CONF	IGURATION ROTOR-	BHF 2L -BODY H/R	BOD = 8	OY PITCH ATT	ri tude sround	Z/R = 1.4063	63	
(TEST C	COND 11 10NS	(9						1 1 1 1 1 1 1	!
ECORD	TEMP (DEG F)	SI GPRM	TP (FPS	(5	VEL (FPS)	(LB/FT2	Z C	† † † †	!
658	16	984	; ; ; ; ; ;	•	158.47	29.4	•		
9 6		982			158.62	•	•		
900		982	•	•	158.62	29.4	•		
661		982			158.62	•	•		
, c		982	_		158.62	Ġ	•		
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		982			158.62	6	•		
9		982		•	158.62	•	•		
665	0.09	0.9827		•	158.62	6	•		
		MAIN RO	ROTOR DATA	H HUB	REFERENCE	CENTER			
(SHAFT	AX1S)				! ! ! !		1		- 1
ECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	(DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE	MRHD (HP)	1
659					1.02	m	10	0.04	
004	• (0	•	•	1.19	4	in	0.04	
N ()	•	10	• •	•	4	ď	đ	0.04	
000	•	9	• •	•	9	10	3	0.04	
100	• (• •	•	1.75	5.19	62.0-	0.04	
760	• •		•	•	0	~	-	0.04	
200	•		•	•	-	9	0	0.04	
900	• •	-16.0	•	•	•	4.	4	0.04	
)	•								

RUN 55 CONFIGURATION BHF2L BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROIOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

	1	USELAGE DAT	V I V	ERODYNAMIC REF	REFERENCE CENTER	TER	٠
(BODY	AX 15)						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	Σĺ	RM (FT-LB)	YM (FT-LB)	
IG	14	14.	.76	47	-22	.82	
S	•66	•95	.57	53	•19	.85	
9	.67	.05	.32	60	•38	.82	
0	8 2	0.	.46	98	.51	•30	
0	8	.24	•90	62	•19	09	
0	.48	44.	•78	,76	• 35	4	
664 665	9.350	6.920 8.550	-1.120	14.499	-0.220	1.657	
QNI M)	AX 15)					•	
000000	10	1 4	1 2	ľ	ĮΣ	EMB E	YMB
	(DEG)	(18)	(LB)	(FB)	F T =	L	(FT-LB)
t u		10	100	74	747	1 0	76
n u	7	ָר בַּי			4 6	0.31	8
6000	70.0	-0.040	9.075	0.320	2.0		
(0	82	0.07	46	1.89	0.51	•30
9	0	.08	.55	•90	6.62	0.08	661
0	•	.37	.27	• 78	• 76	0.15	47
0	0	.70	.71	•12	4.49	0.32	• 76
ø		.51	• 12	80	7.43	0.38	٠/5
ONI M)	AX IS)						
RECORD	ALPHW (DEG)	(-)	CDB (-)	C YB (-)	CMYB (-)	CMXB	CMZB (-)
ÌÑ		262	.3980	.0301	699	0138	.027
Ü	0	1730	.3833	•0226	• 1619	0115	0291
Ó	6	0016	• 3604	•0127	0140	8010	0000
ø٠	9	0211	2005.	2010•	07000		0610
299 649	4 d	ا الا م الا	0.32862	0.000	9 4	00550	
Q (3059	.3462	•0444	.5176	.0114	•0629
9	7	2586	• 4020	.0317	.2655	.0137	•0269

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 56 SHAFT A	CONF NGLE = 1	IGURATION ROTOR	BHFWO -BODY H/R	li	BODY PITCH A	PITCH ATTITUDE = ROTOR-GROUND Z	Z/R = 1.4065	55
(TEST	OND 1T 10	(5)		 		 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***************************************
RECORD	TEMP (DEG F)	SIGPRM	14 (FPS)	7	VEL (FPS)	0 (LB/FT2)	Z Z	
671	10	1.0020				3.1	•	
672	•	1.0020	•		51.01	T • 0	•	
673	•	1.0020	•				•	
674	•	1.0020	•	_		3.1	•	
675	0	1.0020		_		3.1	•	
676	50.0	1.0020	•	_		3.1	•	
		MAIN ROT	ROTOR DATA	- HUB	REFERENCE	CENTER		
(SHAFT	AXIS)							
RECORD	THETA (DEG)	ALPHS (DEG)	81 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FOR CE	MRHP (HP)
11	•	-12.0	•	•	1.48	0.40	-0.48	0.02
	•	-8.0	•	•	1.74	0.40	-0.45	0.00
1	•	0.4-	•	•	1.93	0.33	10.0-	20.0
-	•	0	•	•	2.15	0.38	-0•39	0.02
~	•	0.4	•	•	2.17	0.35	-0.40	0.0
676	•	-12.0	•	•	2.26	0.37	-0•39	0.02

MAIN RUTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWAND FLIGHT

RUN 56 CONFIGURATION BHFWO BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

(BODY	AX 15)					1	
RECORD	NF (LBS)	AF (LBS)	S	Σď	RM (FT-LB)	YM (FT-LB)	
1	-07	-81	•	•	0	Ç	
7	20	800	90	. 0 • 8 4 •		01.	
-	•07	86	• 01	.08	0.0	60.	
675 676	0.120	0.000			-0.061	0.059	
-	AX IS)						
RECORD	ALPHW (DEG)	L1FT (LB)	DRAG (LB)	SFB (LB)		RMB (FT-LB)	YMB T-L
1 ~	0	•04	-81	•13	.51	•02	•05
-	6	.15	.63	60.	.07	•03	.07
-	0	000	.80	•05	448	.03	• 10
-1	9	000	•86	• 01	80°	ر د د د د	100
675 676	8.01 -8.05	-0.065	y 0	0.190	1 • 6 03 -0 • 5 5 6	-0.033	-0.001
ON I M	AXIS)						
RECORD	ALPHW (DEG)	CLB (-)	CDB (-)		CMYB (-)	CMXB (-)	CMZB (-)
i 🏲	0	.016	• 305a	0.489	.1746	.007	.019
-	6	.0575	.3136	•0339	•0249	.0107	.0252
1	0	.0035	.3013	•0075	• 1627	.0132	.0343
674	4.05	34	0.32502	00377	99	4	0352
-	•	•0024	•3450	•0075	.5434	.0176	•0224
Ļ	•	. 0245	.0143	.0715	. 1883	.0112	• 0005

. = 1.4063		OW CERT AND THE COLUMN TO THE
BODY PITCH ATTITUDE = 0833 ROTOR-GROUND Z/R = 1.4063		0
BODY PITCH OB33 ROTO	; ;	VEL
۳ اا		4 D
CONFIGURATION BHFWO	•	SIGPRM
· "	CONDITIONS)	TEMP
RUN 57 SHAFT ANGLE	(TEST CONDIT	RECORD TEM

	• • • • •	
2)	2000000 00000000	CENTER
VE (FP	00000	REFERENCE
TP (FPS)	• • •	DATA - HUB
51	1.0020 1.0020 1.0020 1.0020	MAIN ROTOR DATA
TEM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
RECORD TEM	677 677 678 680 681 682	

CHAPT AXIS	AXISI								ı
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	43	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)	ı
677 678 679 680 681	• • • • •	00000000000000000000000000000000000000	• • • • •	• • • •	1989999	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.000	mm 2 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ŀ
1	•	1	Ì						

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

1.4063 RUN 57 CONFIGURATION BHFWO BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R =

CENTER
REFERENCE
AERODYNAMIC
DATA -
USEL AGE

(SNOI)
(TEST CONDITIONS)

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
RECORD	TEMP (DEG F)	SIGPRM	•	j	0 (LB/FT2)	.¥.	
683	52.0	9981	•	154.70	28.4	•	
684	2	0.9981	•	•	•	•	
685	M	0.9961	•	ů	8	•	
686	53.0	0.9961	•	155.12	28.5	•	
687	6	0.9961	•	ů	9	•	
688	9	0.9961	•	155.12	3		

CENTER
REFERENCE
- HUB
DATA
ROTOR
MAIN

(SHAFT	(SIXY							
RECORD	THETA (DEG)	AL PHS (DEG)	1 a G	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MKHP (HP)
83	•	-12.1	! ! ! !		1.93	~	-0.44	
684	•	-8.0	•	•	1.99	5.19	-0.45	0.05
685	•	0.4-	•	•	2.29	7	J C • 0 -	40.0
686	•	0.0-	•	•	2.44	5.15	-0.65 0.05	\$0 . 0
687	•	4•0	•	•	2.59	0	-0.73	0.04
688	•	-12.0	•	•	1.83	2.57	-0.74	40.0

4

MAIN ROTOR-FUSELAGE INTERACTION TEST CUNTRACT NAS2-11268 FORWARD FLIGHT

RUN 58 CONFIGURATION BHFWO BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROIOR-BODY H/R = .0833 ROIOR-GROUND 2/R = 1.4063

(BODY	AX 15)				:		
RECORD	NF (LBS)	AF (LBS)	SF (LBS)		RM (FT-LB)	: -	
688 688 688 688	0.420 0.060 0.460 1.410	7.090 7.210 7.130 7.030	1.280 0.820 0.320 -0.100	-6.308 -1.788 3.125 7.589	-0.082 -0.139 -0.188 -0.214	0.484 0.710 1.114 1.423	
88		27° 03	0.31 1.14	•03 •96	•20 •13	600	
ORO	• 1	L1FT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)		7.48 7.48 7L
683 685 685 686 686	8 000 000 000 000 000 000 000 000 000 0	0.578 0.564 0.455 0.920 0.499	7.079 7.188 7.130 7.111 7.068	1 280 0 320 0 320 0 310	-6.308 -1.788 3.125 7.589 12.036	-0.188 -0.187 -0.115 -0.003	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
RECORD	AXIS) ALPHW (DEG)	(-) CLB	(-) ROD	C YB	M (-)	ΙŽŢ	1 22 ~
6894 685 685 687 687	840 000 000 000 000 000 000	0.02378 0.02319 0.01864 0.03769 0.06140	0.29106 0.29557 0.29216 0.29136 0.28962 0.28962	0.05263 0.03372 0.01311 -00410 -01270	- 23317 - 06607 0 11510 0 27951 - 21957	000550 0006896 000429	0.01730 0.02584 0.04102 0.05282 0.05236

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

ECORD TEMP SIGPRM (FPS) (FPS) (LB/FT2) MU 693 50.0 1.0040 50.96 3.1 60.96 3.1 60.040 50.040 50.96 3.1 60.040 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69.	RUN 59 SHAFT ANGLE	CONFI	GURATION RUTUR-	BH BODY H/R	H	800Y PITCH A	PITCH ATTITUDE :: ROTOR-GROUND .	Z/H = 1.4063	63
TEMP SIGPRM (FPS) (FPS) (LB/FT2) 50.0		OND ITIONS			! !				1
50.00 1.00040 50.96 3.1 50.96 50.00		ERP	SIGPRM	7 (FP)	5)	VEL (FPS)	B/FT	-	
50.00 1.0040 50.96 3.1 50.96 50.00 50.0040 50.96 3.1 50.0040 50.96 3.1 50.0040 50.0040 50.96 3.1 50.0040 50.0040 50.96 3.1 50.0040 50.0040 50.96 3.1 50.0040 50.0040 50.96 3.1 50.0040 50.0040 50.0040 50.0040 50.0040 50.0040 50.0040 50.0040 50.0040 50.0040 50.004	_	10	1.0040	 	•	50.96	3.1	•	
TAXIS) TAXIS THETA ALPHS B1 -16.0			1.0040		•	50.96	3.1	•	
TAXIS) TAXIS) TAXIS TAXIS -16.00			1.0040		•	20.96	3.1	.•	
50.00 1.0040 50.96 3.1 50.96 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 50.04 60.23 60.02 60.02 60.04 60.05 6		ċ	1.0040		•	50.96	3.1	•	
50.00 1.00040 50.96 3.1 50.06 50.06 50.06 50.06 50.06 50.06 50.0 50.0			1.0040		•	50.96	3.1	•	
50.00 1.00040 . 50.96 3.1	·	0	1.0040		•	50.96	3.1	•	•
THETA ALPHS BI AI THRUST H-FORCE (LB) (DEG) (DEG) (DEG) (LB) (LB) -16.0		d	1.0040		•	50.96	3° 1	•	
THETA ALPHS B1 A1 THRUST H-FORCE (L3) (L5) (L5) (L5) (L5) (L5) (L5) (L5) (L5	۰.	6	1.0040		•	20.96	3.1	•	
THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE M (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB)					ı	REFERENCE	CENTE		
THETA ALPHS B1 A1 THRUST H-FORCE Y-FORCE M (LB) (LB) (LB) (LB) (LB) (LB) (LB) (LB)	AFT	X					 		
-16.0 -12.0 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.0	RD	THET (DEG	ALPHS (DEG)	B1 (DEG)	A1 (DE G)	THRUST (LB)		Y-FORCE	MRHP (HP)
-12.0 -7.9 -7.9 -4.0	-		16	•	•	1.57	.5	-0.21	0.02
2.18 0.55 0.04 0 -4.0	۱ (•	2	•	•	2.04	ŝ	-0-11	0.02
-4.0 0.0 0.0 3.9 3.9 8.0 -16.0	r u	• •	11	•	•	2.06	ທີ	0.04	0.02
2.28 0.58 0.23 0 3.9	.	• (4	•	•	2.18	S	0.50	0.02
3.9) N	•	•	•	•	2.13	ŝ	0.23	0.02
8.0	- a	•	•	•	•	2.28	S	0.24	20.0
16.0 2.21 0.57 0.06 0	0	•		•	•	2,31	4	0.19	0.02
	۵,	•		•	•	2.21	ŝ	90.0	0.02

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

1.4063 RUN 59 CONFIGURATION BH BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = .0833 ROTOR-GROUND 2/R =

(8007	AX 15)						1
RECORD	NF (LBS)				RRM FT-L	1 3 1	
694 695 695 696 700 700	-1.400 -0.640 0.000 0.380 0.750 0.850 -1.180	0.020 0.020 0.050 0.950 0.540 0.540	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.519 0.519 0.610 0.563 0.587 0.587	-0.028 -0.0044 -0.0046 -0.0078 -0.068 -0.059	00000000000000000000000000000000000000	
	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB)
693 695 696 697 698 700 700	-8 -00 -3 -95 0 -03 7 -92 12 -04	-1.163 -0.616 0.069 0.315 0.719 0.719	1.260 1.1950 0.995 0.944 0.836 0.705	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.613 0.613 0.613 0.563 0.527 0.627	00000000	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
RECORD	ALPHW (DEG)	(-) CLB	DG -	6	CMYB (-)	CMXB (-)	CMZB (-)
693 695 695 697 698 009	11 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 447753 - 25301 0 02854 0 12933 0 26322 0 29516	0.51760 0.499087 0.44978 0.38782 0.34347 0.28973 0.49453	0.00504 0.00531 0.00539 0.01643 -00821 0.02464 0.0232	I M HO D HO M N	- 0 184 6 - 0 151 3 - 0 38 2 8 - 0 25 0 2 - 0 25 0 7 - 0 27 7 6	1 − ഗസമ്മമ് മ്മ്ഗ

	•
	1.4063
!	it
1	2/R =
Ħ	7/2
BODY PITCH ATTITUDE	JTOR-GROUND
PITC	2
80D Y	•0833
	H
	H/R
ÐH	ROTUR-800 Y
ATION	ROTOR
CONFIGURATION BH	!
Ĉ	11
_	ANGLE
9	
2 2 2	SHAFT

1631		2 J		1 1 1 1 1 1 1				
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)	8)	VEL (FPS)	(LB/FT2)	2	i i i i
10	15	1.0064		•	76.49	•	•	
0	•	1.0044		•	76.56	•	•	
0	•	1.0044		•	76.56	•	٠	
0	•	1.0044		•	76.56		•	
0	0	1.0044		•	76.56	٠	•	
0	0	1.0044		•	76.56		•	
707	50.0	1.0044		•	76.56	7.0	•	
208	ô	1.0044		•	76.56	٠	•	
		MAIN ROT	ROTOR DATA	HUB	REFERENCE	CENTER.		
(5								
RECORD	THETA	ALPHS	81	A1	THRUST	H-FORCE	Y-FORCE	MRHP
	E 6	(DEG)	(DE G)	(DEC)	(12)	(50)		
0	•	-16.0	•	•	•	1.36	-0.16	0.03
0	•		•	•	•	1,31	0	0
0			•	•	•	1.22	0	0
0	•		•	•	•	1.28	Ś	0
0	•		•	•	•	1.29	4	0
			•	•	•	1.34	4	0
707	•	8.0	•	•	2.65	1.34	4	0.03
C	•	•	•	•	•	1.43	0	0
))	,	ı					

RUN 60 CONFIGURATION BH BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- RUTOR-BODY H/R = .0833 ROTOR-GROUND 2/R = 1.4063

ρ¥	AX 1S)		4			1	! ! ! !
ORD	NF (LBS	AF (LBS)	SF (LBS)		A I	44	
701 702 703 704 705 705	-2.140 0.420 0.420 0.720 1.380 2.140	1.990 2.010 1.6570 1.570 1.370 1.910	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.831 1.079 1.290 0.925 0.900 0.738	-0.047 -0.083 -0.123 -0.126 -0.117 -0.115	0.216 0.0516 0.0522 0.107 0.047 0.209	. •
WIND	AX IS) ALPHW (DEG)	LIFT (LB)	LB K				YMB T-L
000 000 000 000 000 000 000 000 000 00	7m0m8-17	-2.024 -1.9487 -1.9487 0.647 1.175	2.463 2.301 1.977 1.659 1.549 1.481	0.080 0.080 0.080 0.080 0.090 0.090	0.831 1.079 1.290 0.564 0.925 0.900 0.738	10000000000000000000000000000000000000	0.000 0.000 0.005 0.222 0.116 0.062 0.187
KIND	AX IS) ALPHW (DEG)	(-) CLB	(-)	187	CMYB (-)	MX G	MZB (-)
7002 7003 7004 7005 7007		- 36806 - 35287 - 27053 0 07639 0 21373 0 34079	0.44745 0.41849 0.35962 0.32194 0.28181 0.26934 0.43365	0.01455 0.03456 0.03274 0.00546 0.01819 0.021837			0.03665 0.00944 0.00987 0.04042 0.02107 0.01136 00297

RUN 6	RUN 61 CONFIC	FIGURATION BH ROTOR-BODY H/R	Y H/R =	.0833 ROTOR-GROUND	111100E =	Z/R = 1.4063
(TEST ((TEST CONDITIONS)	•		,		
RECORD	TEMP (DEG F)	SIGPRM	TP (FPS)	VEL (FPS)	(LB/FT2)	NΩ
1	16	1.0047		102.29		•
\$0. •		7400	•	102.29	12.5	•
7.10		7900-1	. •	102.19		•
111		1.0067	•	102.19		•
717	. 0	1.0067	•	102.19		•
7.7		1.0067	•	102.19		•
111		1.0067	•	102.19		•
716	49.0	1.0067	•	102.19		•
		MAIN ROTOR DATA -		HUB REFERENCE CENTER	CENTER	

(SHAFT	AXIS)							
RECORD	THET A (DEG)	AL PHS (DEG)	-W	₩ W	$\supset \omega$	H-FORCE (LB)	-FORCE	MRHP (HP)
İ		1	! ! ! ! !	i 	2.24	3		
70.	•		• •	•	2.72	S	-0.25	0.03
017	•	0.21	• •	• •	2.79	5	-0.07	0.04
117	•		•	• •	, K	S	0.15	0.03
712	•		•	• •	200	9	0.36	0.03
713	•	•	•	• (00.0	S	0.46	0.03
714	•	•	• •	• •	00 m	2.38	0.49	0.04
C 7 7	•		•	•	A A . C	4	-0.0A	0.03
716	•	0.01-	•	•	10.0	•	•)

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

SHAFT	ANGLE =	- ROTOR-BODY	- 4/11 - 101))
	ũ.	USELAGE DAT	A - AERODYNAM	YNAMIC REF	ERENCE CEN	TER	
(BODY	AX IS)						
RECORD	NF (LBS)	AF (LBS)			RM (FT-LB)	. –	
0-	8.4	464	.32	58	0.00 0.00 0.13 0.13	040	
	0.65	40	31	187	0.24	40.0	
714 715 716	3.200	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.020	1.536 1.587 1.293	-0.189 -0.106	0.359 0.111 0.398	
CNIND	AXIS)						
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	I B I	1 M 1	YM13
22	176	100	07	.32	. 58 8	14	3.05
i -	000	65	000	.31	.87	. 44.	0.04
715	7.97 11.98 -12	1.891 2.753 -3.324	2.648 2.445 4.081	0.020	1.536 1.587 1.293	-0-171 -0-162 -0-186	0.391 0.148 0.357
QNIA)	AX IS)						
RECURD	ALPHW (DEG)		CDB (-)	CYB (-)	CMYB (-)	CMXB (-)	MZB (-)
710 7110 7112 7114 7115	-7 • 99 -3 • 99 -0 • 04 -0 • 02 7 • 97 11 • 98	-046u08W	-600004-	000000		1 T 4 O C 4 T O B	1200-100c

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 62	2 CONFI ANGLE =	GURATION ROTOR-	BH -800Y H/R	iŧ	BODY PITCH A OB33 ROTOR	PITCH ATTITUDE = ROTOR-GROUND Z.	= Z/R = 1.4063	63
TEST	Z			 				i i i i
RECORD	i L	SIGPRM	TP (FPS)		VEL (FPS)	0 (LB/FT2)	D E	
1 -	10	1 • 00 47	•		127.76		•	
	0	1.0047	•		127.76	19.5	•	
-	•	1.0047	•		127.76	_	•	
~		1.0047	•		127.76	-	•	
10	0	1.0047	•		127,76	_	•	
2	0	1.0047	•		127.76	_	•	•
N	0	1.0047	•		127,76		•	
724		1.0047	•		127.76	_	•	
		MAIN ROTOR	DATA	- HUB	REFERENCE	CENTER		
_	AXIS)							
RECORD	THETA (DEG)	ALPHS (DEG)	B1 (DEG)	A1 (DEG)	THRUST (LB)	H-FORCE (LB)	Y-FORCE (LB)	MRHP (HP)

00000000

W444WWW4 000000V0 011104W00

7117 718 720 721 722 723

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTHACT NAS2-11268 FORWARD FLIGHT

RUN 62 CONFIGURATION BH BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = .0833 ROTOR-GROUND Z/R = 1.4063

CENTER
REFERENCE
T T T
Ž Z
AERODYNAM1C
ا بد
DATA
JS EL AGE
JSEL

(B00Y	AX 15)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	R T - L		
	96		0.280	• •		• •	
<u> </u>	4.0	84	.53	•03	0.43	0.0	
Ō٥	900	.65	• 504	•17	0.29	15	
N	.17	19.	.17	63	0.140	36	
723	32	88.	•02	65 75	0.22	20	
QNI M)	AX 15)						
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	8	PMB 1-1	KMB T-L	YMB
ļ -	 -	4.7	-20	1 •	1	-0.200	l M
-	0	.21	•76	44	•28	19	• 10
-	0	2.14	00	53	E 0	• 42	• 10
2	9	900	.05	0 L	.17	52	.15
N	0	9.0		17	9	60	300
723	12.03		-		•65	.17	•25
N	-	. 78	.21	• 18	• 75	• 23	.4.
ONI M)	AX IS)						
COR	ALPHW (DEG)	CLB (-)	(-)	₹ -	CMYB (-)	EXB (-)	CMZB (-)
17	1 -	-	104	0	14	0 13	.023
-	0	.2753	• 3764	.0287	.1488	.0124	6900
- (•	.1400	• 3266	•0346	1327	• 0276	.0065
20	0 C	1393	2814	00352	1072	0010	.0098 .0484
10	0	1719	2623	.0111	.1722	.0001	.0250
723	•	2366	.2427	0013	• 1730	0112	0163
V	7	0710	• 40 VO		0 1 1 4 0	007	* 000 ×

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

BODY PITCH ATTITUDE = RUN 63 CONFIGURATION BH

(BODY	AXIS)						
RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)	RM (FT-LB)	YM (FT-LB)	
20	24	37	0.04	43	18	000	
727	71	7-300	1.700	1.678	-0.626	1.185	
NN	16	00	0.22	92		.51	
W.	-80	-17	49	-28	•16	.80	
) M	48	42	0.42	99	.22	43	
3	AXIS)				•		
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMB (FT-LB
IN		50	16.	40.	.43	.38	46.
N	6	.38	-17	.61	.72	.30	•20
N	0	• 65	• 36	.70	•67	• 54	•22
S	0	.87	• 72	.87	•64	04.	•37
N	O (4	.25	-25	.92	61	52.0
ומ	800	500	67.	4.	201	000	88.
732	16.06	5.342 -6.754	9.020	0.440	2.505	-0.520	1.361
ON I M)	AXIS)						
RECORD	ALPHW (DEG)	(-) (-)	CD8 (-)	(-)	CMYB (-)	CMXB (-)	CMZB (-)
725	-12 -7-98	24322	0.40264	0.02754	109	017	0.04277
N	0	.0294	.3324	.0767	.0757	.0244	0553
2	0	.0845	.3038	•0392	.0742	.0183	0169
SI	9	.1573	-2824	66000	.0867	0086	0238
J W	0	4 M 4	2484	0054	1522	\$200°	0270
))					֡	֡

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

! ! !		∑	•	•	•	•	•	•
A1111UDE = R-GROUND 2/R =		0 (LB/FT2)	3.1	J. 1	3.1	3.1	3.1	3.1
BODY PITCH ATTITUDE ROTOR-GROUND			50.66	50.88	50.88	50.88	50.88	50.88
11		TP (FPS)	 	•	•	•	•	•
ONFIGURATION B = ROTOR-BODY H/R	•	SIGPRM	1.0070	1.0070	1.0070	1.0070	1.0070	1.0070
NGLE	1	TEMP (DEG F)	4	49.0	49.0	0.64	49.0	49.0
RUN 64 SHAFT A	(TEST	RECORD	736	737	7.38	739	740	741

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FURWARD FLIGHT

1 RUN 64 CONFIGURATION B BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = --- ROTOR-GROUND Z/R =

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY AXIS)

RECORD	NF (LBS)	AF (LBS)	SF (LBS)	ΣŢ		YM (FT-LB)	
736	0.840	0.790	0.150	0.468	0.006	0.037	
ωw	.73	.51	.16	•12 •46	000	000	
44	m →	•76 •47	•16	•56 •55	00.	90	
ON I A)	AX1S)						
RECORD	ALPHW (DEG)	LIFT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	البوا
1 PO PO	60	72	689	-0	460	00	00
יו (א) ני	9	58	404	910	12	00	0.00
740	-7.95 8.07	-0.816 1.231	200	900	0.563	900	900
ONIA	AXIS)						
RECORD	ALPHW (DEG)	(-) crB (-)	(-)	C YB (–)	}_	CMXB (-)	CMZB (-)
736 737 738 738 740 741		OMOMO	0.36916 0.33692 0.26298 0.23012 0.36197	0.05161 0.03696 0.06571 0.04107 0.06571	0.19232 0.24903 0.05283 0.19082 0.23113	0.00281 0.00443 0.00247 0.00586 0.00235	B B B B B B B B B B B B B B B B B B B

		1						
/R =		⊃	•	•	•	•	•	•
li N		Q (LB/FT2)	12.4	12.4	12.4	12.4	10.4 4.4	12.4
BODY PITCH ATTITUDE ROTOR-GROUND		VEL (FPS)	101.75	101 • 75	101.75	101.75	101.75	101.75
Y H/R =		TP (FPS)	•	•	•	•	•	•
CONFIGURATION B E = ROTOR-BODY H/R		1	1-0074	1.0074	1.0074	1.0074	1.0074	1.0074
ל הר	11	TEMP (DEG F)	49.0	49.0	49.0	49.0	49.0	49.0
RUN 65 SHAFT AI	(TEST	RECORD T	742	743	744	745	747	748

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11266 FORWARD FLIGHT

RUN 65 CONFIGURATION B BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = --- ROTOR-GROUND Z/R =

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY AXIS)

1							
RECORD	NF (LBS)	AF (LBS)	SF (LBS)		RM (FT-LB)	. YM (FT-LB)	
7447 7444 7456 7456	1.670 2.550 0.000 1.670		0.430 0.370 0.350 0.140	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.076 0.054 0.003 -0.025 -0.041	0.112	
QNIA) ;)))))	• •	
RECORD	ALPHW (DEG)	L IFT (LB)	LB A	SFB (LB)	PMB (FT-LB)	RMB (FT-LB)	YMH (FI-LB)
744 744 7444 7445 7447	-6 001 -0 003 -0 003 -7 094		2.363 2.839 2.170 1.934 3.338		2.261 2.028 2.115 2.359 2.197	000000000000000000000000000000000000000	1 0 140
QNIM	AX15)						
ECO	ALPHW (DEG)	(-)	CDB (-)	CYB (-)	CMYB (-)	CMXB	CMZB (-)
744 744 744 747	-8 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	- 36070 - 28223 0 00012 0 15778 0 24003	0.34731 0.29147 0.22281 0.19657 0.16555	0.04415 0.03799 0.03594 0.01437 00308	0.23213 0.27760 0.20825 0.21711 0.24226	0.00615 0.00613 0.00020 0.00224 0.00568	0.01245 0.01035 0.00368 0.03299 0.04612

MAIN RUTOR-FUSELAGE INTERACTION TEST CUNTRACT NAS2-11268 FORWARD FLIGHT

			 					•
1		5	; ; ; ; ; ;	•	•	•	•	
ATTITUDE =		0 (LB/FT2)	28.0	28.0	28.0	28.0	28.0	28.0
BUDY PITCH ATTITUDE		VEL (FPS)	153.04	153,19	153.19	153.19	153.19	153.19
Ħ		1P (FPS)	: : : : : :	•	•	•	•	•
CONFIGURATION B		PRM	1.0054	1.0034	1.0034	1.0034	1.0034	1.0034
ANGLE =	(TEST CONDITIONS)	TEMP (DEG F)	50.	-	-	-	51.0	-
RUN 66 SHAFT AN	(TEST CO	ECORD	749	750	751	752	753	754

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

1 30DY PITCH ATTITUDE = ---RUN 66 CONFIGURATION B SHAFT ANGLE = --- ROTOR-BUDY H/R

TER
CENTE
NCE
EREI
REFERENCE
U
Ξ
Z
ERODYNA
AE
1
ATA
۵
JSEL AGE
SEL
SO:

(80DY AXIS)

				1			
RECURD	F B	AF (LBS)	LO	PM (FT-LB)			
749 750 751 752 753		6.300 5.6690 5.060 7.000 6.530	0.940 0.800 0.800 0.580 0.020 0.770	5.025 3.754 4.835 4.518 5.097	0.195 0.000 0.018 0.079 0.029	0.139 0.223 0.5283 0.5889 0.974	
QNIM)	AX1S)						
RECORD	ALPHW (DEG)	L1FT (LB)	DRAG (LB)	SFB (LB)	PMB (FT-LB)		
ቁወረ	000	500	41 888	946	20.0	100	200
752 753 754 754	407	00000000000000000000000000000000000000	4 • 3 3 1 4 • 4 2 3 4 3 4 4 2 9 4 2 9 4 2 9 9 9 9 9 9 9 9 9 9 9	0.020	4.518 5.097 5.160	0.121 0.039 0.186	0.581 0.978 0.326
QNIM)							
RECORD	ALPHW (DEG)	(-) CLB	CDB (-)	C YB (-)	<u>≻</u> □	CMXB	CMZB (-)
749 750 751 752 753	-7.97 -3.96 -0.05 4.04 8.05	34306 11822 00207 0-14245 0-18856 33972	0.33730 0.26754 0.23009 0.19696 0.14745	0.04274 0.03638 0.02637 00091 0.03501	0.22852 0.17071 0.21983 0.20545 0.23177 0.23463	0.00792 00065 00083 0.00548 0.00177	0.00751 0.00948 0.01013 0.02644 0.04447

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FOWWARD FLIGHT

		1	 			·
	 " «		D	• •	••	• •
	117		0 (LB/FT2)		- M	м м • п
	BODY PITCH ATTITUDE		VEL (FPS)	50.85 50.85	50.85 50.85	50.85 50.85
TORRAND PETGE	H/R = -		TP (FPS)	• •	••	• •
	ONFIGURATION BF2L		SIGPRM	1.0084	1.0084	1.0084
	NGLE	TEST CONDITIONS)	EN	0.04	4 4 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	4 4 0 • 0
	RUN 67 SHAFT AI	_	۱ũ	760	762 763	764 765

MAIN ROTOR-FUSELAGE INTERACTION TEST CUNTRACT NAS2-11266 FORWARD FLIGHT

RUN 67 CONFIGURATION BF2L BODY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = --- ROTOR-GROUND Z/R =

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY AXIS)

RECORD	NF (LBS)	1 14 00	1 11 20	<u>ب</u> ا	T.H.	¥ 1 1 1 1 1 1 1 1 1	
760 761 762 763 764	0.920 0.390 0.990 0.970 1.350	0.980	0.020	0.038 0.125 0.633 1.065 0.108	0.0455 0.015 0.021 0.010	0.110 0.110 0.110 0.151 0.219	
ONIND	AX 1S)	;					
RECORD	DE L	LIFT (LB)	DRAG (LB)	SFB (LB)	PMH T-L	KM B	YMB T-L
760 761 762 763 764	-7 -94 -7 -94 -0 -05 -0 -05 -7 -97	-0.787 -0.042 0.391 0.900 1.221 -0.814	00000-		0.038 0.125 0.633 1.065 11.566 0.108	0.00 0 0.00 0 0.00 0 0.00 0 0.05 5	0.116 0.120 0.106 0.160 0.216 0.149
RECORD	AXIS) ALPHW (DEG)	(-) CLB	CDB	C YB (-)	}		CMZB (-)
760 761 762 763 764	1000000	ひ→ 47000			0.01293 0.04230 0.21419 0.36073 0.53026	0.01003 0.00224 0.01115 0.01088 0.01352	0.03912 0.04075 0.03587 0.05404 0.07308

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

1	1 1 1 1 1 1	∑						
1 "	į	•		•				
11 7		(LB/FT2)	12.4	12.4	12.4	12.4	12.4	12.4
BODY PITCH ATTITUDE		VEL (FPS)	101.70	101.70	101.70	101.70	101.70	101.70
II C				•	•	•	•	•
H/R		1P (FPS)						
CONFIGURATION BF2L E = ROTOR-BODY		SIGPRM	1.0084	1.0084	1.0084	1.0084	1.0084	1.0084
NGLI	11	TEMP (DEG F)	49.0	49.0	49.0	0.64	49.0	49.0
RUN 68 SHAFT A	(TEST	RECORD	768	770	771	772	7.73	774

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 66 CONFIGURATION BF2L BODY PITCH ATTITUDE = ---SHAFT ANGLE = --- ROTOR-BODY H/R = --- ROTOR-GROUND Z/R =

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(80DY AXIS)

RECORD		AF (LBS)	SF (LBS)	PM (FT-LB)		YM (FI-LB)	
768	.92	MM	59	, , ,	1 • •	SE	! ! !
7	0.10 1.38	•04		700	90		
1		60	• •	5.569		0.784 0.348	
CWIND	AX1S)						
CORD	ALPHW (DEG)	L 1F1 (LB)	LB A		PMB T-L	RMB (FT-LB)	YMB (FT-LB)
768	0.6	• 1	86	.59	1 • •	•06	-51
7	00	0.10	404	30.00	17	90	500
~~	8.05 -7.95	2.547	90	0.060	5.569	0.063	0.3783 0.338
QNIND	AX 15)						
ŭ į	ALPHW (DEG)	(-) CrB	CDB (-)	CYB (-)	CMYB (-)	CMXB (-)	
977	000	2975 1586 0096	3636 3254 2862	0555	0628	00000	.0431
772 773 774	8.05 -7.95	0.11110 0.23986 31889	0.27036 0.28122 0.35167	0.03296 0.00565 0.06969	0.3227 0.47141 03024	00394 0.00530 00589	0.04880 0.04880 0.06682 0.028682

MAIN ROTUR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

") E	•	•	•	• •	•
17		0 (LB/FT2)	28.0	28°0	000	28.0	28.0
BODY PITCH ATTITUDE		VEL (FPS)	152.94	153.09	90°ESI	153.09	153.24
H/R =		1P (FPS)	•	•	• (• •	•
CONFIGURATION BF2L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SIGPRM	1.0068	1 0048	1.0048	1.0048	1.0028
FT ANGLE =	OND ITIONS	TEMP (DEG F)		. 0016	5100	51.0	52.0
RUN 69 SHAFT A	(TEST CONDI	RECORD	775	924	778	779	780

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

RUN 69 CONFIGURATION BF2L BUDY PITCH ATTITUDE = --- SHAFT ANGLE = --- ROTOR-BODY H/R = --- ROTOR-GROUND Z/R =

FUSELAGE DATA - AERODYNAMIC REFERENCE CENTER

(BODY AXIS)

RECORD	NF (LBS)	AF (LBS)	SF (LBS)	PM (FT-LB)		14	†
100	8.9	• 46	.78 .56		-0.033	0.535	
777 778 779	0.200 2.170 3.430	6.830 5.370 5.390	0.710	40 M	0 0 0 0 0 0 0	7070	
0	.67	46	46.	4 4 8	0.14	51	
ONIMO	AX 1S)						
	ALPHW (DEG)	L1F1 (L8)	DRAG (LB)	SFB (LB)	PMB	RMB (FT-LB)	YAB
775	7.9	279	98.	.78		7	10
777		202	8 9	.26	0.00 4.20	200	.51
778	9	•72	500	.21	9.28	.03	70
780	0	5.570	8.314	1.940	0.4 8		.46
ONIM	AX 1S)						
CO	ALPHW (DEG)	(-) (-)	CDB (-)	CYB (-)	CMYB (-)	CMXB	MZB (-)
1	7.9	.241	.3478	•0.742	060	000	.020
<u>ا</u> برا	9	.0550	.3152	•0650	• 0 19	.0130	.0192
778	000	717	0.27134	0.00876	0.34789		640
~ (9	• 1089	•2509	•0091	.511	.0011	.0701
D	9	. 2323	.3467	6080.	600	.0081	.0182

MAIN ROTOR CT VS CP CONFIGURATION - BHR (RUN 15) MU = 0.20

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

MAIN ROTOR CT VS CH CONFIGURATION - BHR (RUN 15) MU = 0.20

MAIN ROTOR CT VS ALPHAC MU = 0.20

MAIN ROTOR CT VS CX - FORWARD FLIGHT CONFIGURATION - BHR (RUN 15) FORWARD FLIGHT

MAIN ROTOR LIFT/DRAG VS ROTOR CL CONFIGURATION - BHR (RUN 15) NU = 0.20

BODY LIFT COEFFICIENT VS CT

BODY DRAG COEFFICIENT VS CT

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

BODY PITCHING MOMENT COEFFICIENT VS CT

MAIN ROTOR CT VS CP CONFIGURATION - BHR (RUN 16) MU = 0.30

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

MAIN ROTOR CT VS CH CONFIGURATION - BHR (RUN 16) MU = 0.

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHR (RUN 16) MU = 0.30

MAIN ROTOR CT VS CX - FORWARD FLIGHT CONFIGURATION - BHR (RUN 16) MU = 0.30

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - BHR (RUN 16) NU = 0.30

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

4

BODY LIFT COEFFICIENT VS CT

0.5+ 0.3-0.1 -0.1--0.3-

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

MAIN ROTOR THRUST COEFFICIENT

0.005

0.006

0.007

0.004

0.002

0.003

BODY DRAG COEFFICIENT VS CT

BODY PITCHING MOMENT COEFFICIENT VS CT

MAIN ROTOR CT VS CP CONFIGURATION - BHR (RUN 17) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CH CONFIGURATION - BHR (RUN 17) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHR (RUN 17) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CX - FORWARD F'LIGHT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - BHR (RUN 17) VS ROTOR CL

SHAFT ANGLE = -4 (TRIANGLE)

BODY LIFT COEFFICIENT VS CT

0.5+ 0.3 -0.1 -0.3-

MAIN AUTOR THRUST COEFFICIENT

0.005

0.006

0.007

SHAFT ANGLE = -4 (TRIANGLE)

0.004

0.002

0.003

BODY DRAG COEFFICIENT VS CT

SHAFT ANGLE = -4 (TRIANGLE)

BODY PITCHING MOMENT COEFFICIENT VS CT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CP CONFIGURATION - BHR (RUN 18) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CH CONFIGURATION - BHR (RUN 18) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS ALPHAC MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CX - FORWARD FLIGHT CONFIGURATION - BHR (RUN 18) FORWARD FLIGHT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR LIFT/DRAG VS ROTOR CL CONFIGURATION - BHR (RUN 18) HU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

BODY LIFT COEFFICIENT VS CT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR THRUST COEFFICIENT

0.005

0.006

0.007

0.004

0.002

0.003

BODY DRAG COEFFICIENT VS CT

SHAFT ANGLE = -4 (TRIANGLE)

BODY PITCHING MOMENT COEFFICIENT VS CT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CP CONFIGURATION - BHRF2L (RUN 18) CP MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CH CONFIGURATION - BHRF2L (RUN 20) MU = 0.15

0.007 0.006-Δ THRUST COEFFICIENT 0.005 0.004 Δ 0.003-0.002

SHAFT ANGLE = -4 (TRIANGLE)

0.0000

H-FORCE COEFFICIENT

0.0001

0.0002

-0.0001

-0.0002

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHRF2L (RUN 20) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CX - FORWARD FLIGHT CONFIGURATION - BHRF2L (RUN 20) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - BHRF2L (RUN 20) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

BODY LIFT COEFFICIENT VS CT CONFIGURATION - BHRF2L (RUN 20) MU = 0.15

0.3-0.1-Δ -0.1 -0.3-. -0.5-

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR THRUST COEFFICIENT

0.005

0.006

0.007

0.004

0.003

0.002

BODY DRAG COEFFICIENT VS CT CONFIGURATION - BHRF2L (RUN 20) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

BODY PITCHING MOMENT COEFFICIENT VS CT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CP CONFIGURATION - BHRF2L (RUN 21) CP MU = 0.20

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

MAIN ROTOR CT VS CH CONFIGURATION - BHRF2L (RUN 21) MU = 0.20

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHRF2L (RUN 21) MU = 0.20

MAIN ROTOR CT VS CX - FORWARD FLIGHT

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - BHRF2L (RUN 21) NU = 0.20

BODY LIFT COEFFICIENT VS CT CONFIGURATION - BHRF2L (RUN 21) MU = 0.20

BODY DRAG COEFFICIENT VS CT CONFIGURATION - BHRF2L (RUN 21) MU = 0.20

BODY PITCHING MOMENT COEFFICIENT VS CT

MAIN ROTOR CT VS CP CONFIGURATION - BHRF2L (RUN 18) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CH CONFIGURATION - BHRF2L (RUN 22) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHRF2L (RUN 22) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CX - FORWARD FLIGHT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - BHRF2L (RUN 22) NU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

BODY LIFT COEFFICIENT VS CT CONFIGURATION - BHRF2L (RUN 22) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

BODY DRAG COEFFICIENT VS CT CONFIGURATION - BHRF2L (RUN 22) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

BODY PITCHING MOMENT COEFFICIENT VS CT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CP CONFIGURATION - BHRF2L (RUN 23) MU = 0.30

MAIN ROTOR CT VS CH CONFIGURATION - BHRF2L (RUN 23) MU = 0.30

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHRF2L (RUN 23) MU = 0.30

MAIN ROTOR CT VS CX — FORWARD FLIGHT

MAIN ROTOR LIFT/DRAG VS ROTOR CL CONFIGURATION - BHRF2L (RUN 23) MU = 0.30

BODY DRAG COEFFICIENT VS CT

BODY PITCHING MOMENT COEFFICIENT VS CT

MAIN ROTOR CT VS CP CONFIGURATION - BHRFWO (RUN 25) MU = 0.20

0.007+ 0.006-0.005-0.004-0.003-0.002-0.0004 0.0002 0.0005 0.0003 0.0000 0.0001 POWER COEFFICIENT

MAIN ROTOR CT VS CH CONFIGURATION - BHRFWO (RUN 25) MU = 0.20

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHRFWO (RUN 25) MU = 0.20

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND)

MAIN ROTOR CT VS CX - FORWARD FLIGHT

MAIN ROTOR LIFT/DRAG VS ROTOR CL CONFIGURATION - BHRFWG (RUN 25) VS ROTOR CL

BODY LIFT COEFFICIENT VS CT

BODY DRAG COEFFICIENT VS CT CONFIGURATION - BHRFWO (RUN 25) MU = 0.20

SHRFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND)

BODY PITCHING MOMENT COEFFICIENT VS CT

MAIN ROTOR CT VS CP CONFIGURATION - BHRF2U (RUN 18) CP MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CH CONFIGURATION - BHRF2U (RUN 28) MU = 0

MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHRF2U (RUN 28) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CX - FORWARD FLIGHT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR LIFT/DRAG VS ROTOR CL CONFIGURATION - BHRF2U (RUN 28) VS ROTOR CL

SHAFT ANGLE = -4 (TRIANGLE)

BODY LIFT COEFFICIENT VS CT CONFIGURATION - BHRF2U (RUN 28) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

BODY DRAG COEFFICIENT VS CT CONFIGURATION - BHRF2U (RUN 28) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

BODY PITCHING MOMENT COEFFICIENT VS CT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CP CONFIGURATION - BHRF2U (RUN 29) MU = 0.20

MAIN ROTOR CT VS CH CONFIGURATION - BHRF2U (RUN 29) MU = 0.20

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHRF2U (RUN 29) MU = 0.20

MAIN ROTOR CT VS CX - FORWARD FLIGHT CONFIGURATION - BHRF2U (RUN 29) MU = 0.20

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - BHRF2U (RUN 29) MU = 0.20 .

BODY LIFT COEFFICIENT VS CT CONFIGURATION - BHRF2U (RUN 29) MU = 0.20

BODY DRAG COEFFICIENT VS CT CONFIGURATION - BHRF2U (RUN 29) MU = 0.20

BODY PITCHING MOMENT COEFFICIENT VS CT

MAIN ROTOR CT VS CP CONFIGURATION - BHRF2U (RUN 30) MU = 0.30

MAIN ROTOR CT VS CH CONFIGURATION - BHRF2U (RUN 30) MU = 0.30

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

H-FORCE COEFFICIENT

MAIN ROTOR CT VS ALPHAC CONFIGURATION - BHRF2U (RUN 30) MU = 0.30

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

MAIN ROTOR CT VS CX - FORWARD FLIGHT

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - BHRF2U (RUN 30) MU = 0.30

0.5-0.3--0.1--0.3

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

MAIN ROTOR THRUST COEFFICIENT

0.005

0.006

0.007

0.004

-0.5-

0.002

0.003

BODY DRAG COEFFICIENT VS CT

BODY PITCHING MOMENT COEFFICIENT VS CT

MAIN ROTOR CT VS CP CONFIGURATION - HR (RUN 32) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CH CONFIGURATION - HR (RUN 32) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)"

MAIN ROTOR CT VS ALPHAC CONFIGURATION - HR (RUN 32) MU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CX - FORWARD FLIGHT CONFIGURATION - HR (RUN 32) FORWARD FLIGHT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - HR (RUN 32) NU = 0.15

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CP CONFIGURATION - HR (RUN 33) MU = 0.20

MAIN ROTOR CT VS CH CONFIGURATION - HR (RUN 33) MU = 0.20

MAIN ROTOR CT VS ALPHAC CONFIGURATION - HR (RUN 33) MU = 0.20

MAIN ROTOR CT VS CX - FORWARD FLIGHT

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

MAIN ROTOR LIFT DRAG VS ROTOR CL

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

MAIN ROTOR CT VS CP CONFIGURATION - HR (RUN 34) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CH CONFIGURATION - HR (RUN 34) MU = 0.25

SHAFT ANGLE = -4 (TRIANGLE)

0.0000 H-FORCE COEFFICIENT 0.0001

0.0002

-0.0001

-0.0002

MAIN ROTOR CT VS ALPHAC CONFIGURATION - HR (RUN 34) MU = 0.25

0.007+ 0.006-THRUST 0.005 COMPETCIENT 0.004 0.003-0.002 -10 -5 10 -15 -25 -20 CONTROL AXIS ANGLE OF ATTACK, DEG

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CX - FORWARD FLIGHT

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - HR (RUN 34) VS ROTOR CL

SHAFT ANGLE = -4 (TRIANGLE)

MAIN ROTOR CT VS CP CONFIGURATION - HR (RUN 35) MU = 0.30

0.007-0.006-**•** Δ 0.005 0.004-8 0.003-0.002# 0.0000 0.0003 0.0004 0.0005 0.0001 0.0002 POWER COEFFICIENT

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = u (STOC)

MAIN ROTOR CT VS CH CONFIGURATION - HR (RUN 35) MU = 0.30

SHRFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

MAIN ROTOR CT VS ALPHAC GUNFIGURATION - HR (RUN 35) MU = 0.30

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

PROPULSIVE FORCE COEFFICIENT

0.0000

-0.0010

-0.0005

0.0005

0.0010

0.0015

MAIN ROTOR LIFT DRAG VS ROTOR CL CONFIGURATION - HR (RUN 35) WU = 0.30

SHAFT ANGLE = -8 (SQUARE) = -4 (TRIANGLE) = 0 (DIAMOND) = 4 (STAR)

BODY LIFT COEFFICIENT VS ANGLE OF ATTACK (HUB ON)

__MU = 0.1 (SQUARE) = 0.15 (STAR) = 0.2 (DIAMOND) = 0.25 (X) = 0.30 (TRIANGLE)

BODY DRAG COEFFICIENT VS ANGLE OF ATTACK (HUB ON)

MU = 0.1 (SQUARE) = 0.15 (STAR) = 0.2 (DIAMOND) = 0.25 (X) = 0.30 (TRIANGLE)

BODY PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK (HUB ON)

MU = 0.1 (SQUARE) = 0.15 (STAR) = 0.2 (DIAMOND) = 0.25 (X) = 0.30 (TRIANGLE)

BODY LIFT COEFFICIENT VS ANGLE OF ATTACK (HUB ON)

MU = 0.1 (SQUARE) = 0.15 (STAR) = 0.2 (DIAMOND) = 0.25 (X) = 0.30 (TRIANGLE)

BODY DRAG COEFFICIENT VS ANGLE OF ATTACK (HUB ON)

MU = 0.1 (SQUARE) = 0.15 (STAR) = 0.2 (DIAMOND) = 0.25 (X) = 0.30 (TRIANGLE)

BODY PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK (HUB ON)

MU = 0.1 (SQUARE) = 0.15 (STAR) = 0.2 (DIAMOND) = 0.25 (X) = 0.30 (TRIANGLE)

ISOLATED BODY LIFT COEFFICIENT VS ANGLE OF ATTACK

NU - 0.1 (SQUARE) - 0.2 (BINMOMB) - 0.3 (TRIANGLE)

ISOLATED BODY DRAG COEFFICIENT VS ANGLE OF ATTACK

MU = 0.1 (SQUARE) = 0.2 (DIAMOND) = 0.3 (TATAMOLE)

ISOLATED BODY PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK CONFIGURATION BHFWO RUN 56

MU = 0.1 (SQUARE) = [0,2] (SIAMOND) = 0.3 (TRIANGLE)

ORIGINAL PAGE IS DE POOR QUALITY

BODY LIFT COEFFICIENT VS ANGLE OF ATTACK (HUB ON)

HU = 0.1 (SQUARE) = 0.15 (STAR) = 0.2 (DIAMOND) = 0.25 (X) = 0.30 (TRIANGLE)

BODY DRAG COEFFICIENT VS ANGLE OF ATTACK (HUB ON)

MU = 0.1 (SQUARE) = 0.15 (STAR) = 0.2 (DIAMOND) = 0.25 (X) = 0.30 (TRIANGLE)

BODY PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK (HUB ON)

MU = 0.1 (SQUARE) = 0.15 (STAR) = 0.2 (DIAMOND) = 0.25 (X) = 0.30 (TRIANGLE)

ISOLATED BODY LIFT COEFFICIENT VS ANGLE OF ATTACK

MU = 0.1 (SQUARE) = 0.2 (DIAMOND) = 0.3 (TRIANGLE)

ISOLATED BODY DRAG COEFFICIENT VS ANGLE OF ALLERA

MU = 0.1 (SQUARE) = 0.2 (DIAMOND) = 0.3 (TRIANGLE)

ISOLATED BODY PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK CONFIGURATION B RUN 64

MU = 0.1 (SQUARE) = 0.2 (DIAMOND) = 0.3 (TRIANGLE)

ISOLATED BODY LIFT COEFFICIENT VS ANGLE OF ATTACK

MU = 0.1 (SQUARE) = 0.2 (DIAMOND) = 0.3 (TRIANGLE)

ISOLATED BODY DRAG COEFFICIENT VS ANGLE OF ATTACK

MU = 0.1 (SQUARE) = 0.2 (DIAMOND) = 0.3 (TRIANGLE)

ISOLATED BODY PITCHING MOMENT COEFFICIENT VS ANGLE OF ATTACK CONFIGURATION BF2L RUN 67

MU = 0.1 (SQUARE) = 0.2 (DIAMOND) = 0.3 (TRIANGLE)

(This page is intentionally left blank)

APPENDIX C

PRESSURE DATA AND BODY CONTOUR DEFINITION

This appendix is a tabulation of pressure data which was reduced for analysis and presentation in this report. The contour definitions used for pressure and off-body velocity calculations of configurations B and BF2L are also included.

The pressure data is ordered by run number. The data include configuration, record number, test condition, pressure tap number and pressure coefficient.

Figure C-l shows the stations at which pressure taps were located on configurations B and BF2L. Tables C-l and C-2 list the x, y, and z coordinates which define the pressure tap locations for configurations B and BF2L respectively. Tables C-3 and C-4 list the coordinates used to define respectively configuration B and BF2L contours.

NOTE: Stations are full scale.

Figure C-1. Definition of pressure tap stations for configurations B and BF2L.

Table C-1. Pressure tap locations for configuration B.

Pressure Tap Number	x/l _B *	y/1 _B	z/l _B
1	0	0	0
1 2 3 4 5 6 7	.0074	0	.0369
3	.0074	0	0369
4	.0277	0	.0623
5	.0277	0	0623
6	.0480	0	.0874
7	.0480	.0437	.0757
8	.0480	0	0874
9	.0480	0437	.0757
10	.0960	0	.1152
11	.0960	.0576	.0998
12	.0960	0576	.0998
13	.1440	.0657	.1139
15	.1883	.0695	.1256
16	.1883	0695	.1256
17	.3065	0	.1470
18	.3065	.0735	.1273
19	.3065	0735	.1273
20	.4062	0	.1403
21	.4062	.0702	.1215
22	.4062	0702	.1215
23	.5281	0	.1219
24	.6094	Ō	.1060
25	.7682	0	.0660
26	.8642	Ö	.0424
27	.8642	Ö	.0424
28	1.0000	0	0

^{*}All coordinates ratioed to body length where $l_{\rm B}$ = 3.385 ft.

Table C-2. Pressure tap locations for configuration BF2L.

. ·	0	0	0577
30	.0055	Ō	0426
31	.0055	0	0705
32	.0282	0	
33	.0282	0	_
34	.0508	0	0102
35	.0508	.0577	0204
36	.0508	.0801	0342
37	.0508	.0833	0489
38	.0508	.0644	0841
39	.0508	0	0877
40	.0508	0644	0841
41	.0508	0833	0489
42	.0508	0801	0342
43	.0508	0577	0204
4.4	.0962	0	0001
45	.0962	.0657	0113
46	.0962	0657	0113
47	.1278	0	.0390
48	.1278	.0758	.0152
49	.1278	0	1142
50	.1278	0758	.0152
51	.1539	0	.0704
52	.1539	.0728	.0496
53	.1539	0728	.0496
54	.1923	0	.0809
55	.1923	.0817	.0596
56	.1923	0	0201
57	.1923	0817	.0596
58	.2789	0	.0945
59	.2789	.0728	.0638
60 61	.2789 .2789	0 0 728	1259 .0638

^{*}All coordinates ratioed to body length where $l_{\rm B}$ = 4.55 ft.

Table C-2. (concluded)

Pressure tap Number	x/1 _B	y/1 _B	z/l _B
17	.3065	0	.1094
18	.3065	.0547	.0947
19	.3065	0547	.0947
20	.4062	0	.1044
21	.4062	.0522	.0904
22	.4062	0522	.0904
23	.5281	0	.0907
24	.6094	0	.0789
25	.8275	0	.0491
26	.8990	0	.0315
27	.8990	0	.0315
28	1.0	0	0

Table C-3. Configuration B contour definition, full scale.

	10 25 71001 31 03999 0 0 11 25 71001 30 56842 -5 39007
3D COORDINATES DISPLAY	12 25 71001 29 16805 -10 61633
BODY OF REVOLUTION	13 25 71001 26 88141 -15 52003 14 25 71001 23 77800 -19 95213
	14 25 71991 23 77800 -19 95213 15 25 71991 19 95212 -23 77802
BODY NO 1 STATION NO 1 TYPE- NON-LIFT	16 25.71001 15.51999 -26.88141
\$ (X) (Y) (2)	17 25 71001 10 61630 -29 16805 18 25 71001 5 39003 -30 56842
1 0 0 0 0 10000	18 25 71001 5 39003 -30 56842 19 25 71001 0 0 -31 03999
2 6 6 0.01736 0 09848 3 8 8 9.03420 0.09397	
4 g g g g g g g g g g g g g g g g g g g	BODY NO 1 STATION NO 4 TYPE- NON-LIFT
5 0 0 0.06428 0.07660	\$ (X) (Y) (Z)
6 0 0 0.07660 0.06428 7 0 0 0.08660 0.05000	1 38.57001 0.0 35 64999
g gg gg397 0.03420	2 38.57001 6.19055 35.10838 3 38.57001 12.19301 33.50003
9 0 0 0.09848 0.01737	4 38 57001 17 82498 30 87381
10 4.000	5 38.57001 22.91536 27.30948
11 0 0 0.09848 -0.01737 12 0.0 0.09397 -0.03420	6 38.57001 27.30946 22.91539 7 38.57001 30.87379 17.82501
13 0.0 0.48664 -4.43444	7 38 57901 30 87379 17 82501 8 38 57001 33 50003 12 19304
14 0 0 0.97660 -0.06428 15 0 0 0.06428 -0.07660	9 38,57001 35,10838 6,19062
15 0 0 0.06428 -0.07660 16 0 0 0.05000 -0.08660	10 38.57001 35.64999 0 0
17 0 0 0 03420 -0 09397	11 38.57001 35.10838 -6.19062 12 38.57001 33.50003 -12.19304
is 0.0 0.01736 -0.09848	13 38 57001 30 87379 -17 82501
19 0.0 0.0 -0.10000	14 38.57001 27.30946 -22.91539
BODY NO 1 STATION NO 2 TYPE- NON-LIFT	15 38 57001 22.91536 -27.30948 16 38 57001 17.82498 -30.87381
443	16 38.57001 17.82498 -30.87381 17 38.57001 12.19301 -33.50003
\$ (X) (Y) (Z) 1 12.86000 0.0 23.57001	18 38,57001 6,19055 -35,10838
1 12 86000 0.0 23 57001 2 12 86000 4 89289 23 21191	19 38.57001 0.8 -35.64999
3 12 86000 8 06141 22 14856	BODY NO 1 STATION NO 5 TYPE- NON-LIFT
4 12 86000 11 78500 20 41222 5 12 86000 15 15050 18 05566	
5 12.86000 15.15050 18.05566 6 12.86000 18.05566 15.15052	\$ (X) (Y) (Z) (51.42000 0 0 38.23000
7 12 86000 20 41222 11 78503	1 51.42999 0.0 38.23000 2 51.42999 6.63856 37.64919
8 12.86000 22.14856 8.06143	3 51 42999 13 87542 35 92444
9 12 86000 23 21191 4.09296 10 12 86000 23 57001 0 0	4 51 42999 19 11499 33 10814
10 12 85000 23 57001 0 0 11 12 85000 23 21191 -4 09296	5 51 42999 24 57376 29 28587 6 51 42999 29 28586 24 57378
12 12 86000 22 14856 -8 06143	6 51.42999 29.28586 24.57378 7 51.42999 33.10814 19.11501
13 12.86000 20.41222 -11.78503 14 12.86000 18.05566 -15.15052	g 51,42999 36,92444 13,07546
14 12.86000 18.05566 -15.15052 15 12.86000 15.15050 -18.05566	9 51 42999 37 64919 6 63865 18 51 42999 38 23866 9 9
16 12 86000 11 78500 -20 41282	10 51.42999 38.23000 0.0 11 51.42999 37.64919 -6.63865
17 12.86000 8.96141 -22.14856 18 12.86000 4.89289 -23.21191	12 51 48999 35 92444 -13 97546
12 12 86000 4 09289 -23 21191 19 12 86000 0 0 -23 57001	13 51.42999 33.10814 -19.11501
10 10 0000	14 51.42999 29.28586 -24.57378 15 51.42999 24.57376 -29.28587
BODY NO 1 STATION NO 3 TYPE- NON-LIFT	16 51 42999 19 11499 -33.10814
g (X) (Y) (Z)	17 51 48909 13.07542 -35.92444
1 25 71001 0.0 31.03999	18 51.42999 8.63856 -37.64919 19 51.42999 0.8 -38 23000
2 25.71001 5.39003 30.56842	10 31.4600
3 25.71001 10.61630 29.15800 4 25.71001 15.51999 26.88141	BODY NO 1 STATION NO 6 TYPE- NON-LIFT
5 25 71001 19 95212 23 77802	± (X) (Y) (Z)
g 25,71001 23.77800 19.95213	1 64 28999 0 8 39 71001
7 25,71001 26,88141 15,52003 8 25,71001 29,16305 10,61633	2 64.28999 6.89557 39.19672
9 25.71001 30.56842 5.39007	3 64 28999 13 58168 37 31519
-	:

ORIGINAL PAGE IS OF POOR QUALITY

```
BODY NO - 1 STATION NO - 9 TYPE- MON-LIFT
              64 28999
                                                                            34 38988
                                             19 85500
                                            25 52509
30 41962
                                                                            30.41963
25.52512
              64 28999
                                                                                                                                                                                                                                              (Y)
              64 28999
                                                                                                                                                                                                102 89999
102 89999
                                                                                                                                                                                                                                                                   38 75999
38 17114
36 42247
                                            30 41952
34 38986
37 31519
39 10672
39 71001
39 10672
37 31519
34 38986
                                                                                                                                                                                                                                       0 0
6 73060
              64.28999
                                                                            19 85503
             64 28999
64 28999
64 28999
64 28999
                                                                            13 58167
                                                                                                                                                                                                                                     13 25669
19 37999
24 91443
29 69186
                                                                                                                                                                                                   102 89999
                                                                              6 89559
                                                                                                                                                                                                  102 89999
102 89999
102 89999
102 89999
   0
                                                                                                                                                                                                                                                                   33 56714
29 69188
19
                                                                        -6 89559
-13 58167
                                                                                                                                                                                                                                                                    24 91446
                                                                                                                                                                                                                                                                24 91446
19 38002
13 25674
6 73071
0 0
-6 73071
-13 25674
-19 38002
-24 91446
              64.28999
                                                                                                                                                                                                                                     33 56712
36 42247
38 17113
38 75999
                                                                        -19 85503
              64 28999
64 28999
 13
                                            30 41962
25 52509
19 85500
13 58162
                                                                                                                                                                                                   102.89999
                                                                       -25 52512
-30 41963
-34 38988
14
15
                                                                                                                                                                                                  102 89999
102 89999
102 89999
102 89999
              64.28999
                                                                                                                                                                                                                                    38 17113
36 42247
33 56712
29 69186
24 91443
              64 28999
              64.28999
64.28999
                                                                        -37 31519
 17
                                               6 89557
                                                                       -39 10672
-39 71001
18
                                                                                                                                                                                                  102 89999
102 89999
102 89999
103 89999
              64.28999
                                                                                                                                                                                                                                                                 -29.69188
BODY NO. - 1 STATION NO - 7 TYPE- NON-LIFT
                                                                                                                                                                                                                                    19.37999
13.25669
6.73060
                                                                                                                                                                                        16
                                                                                                                                                                                                                                                                 -33.56714
                                                                                                                                                                                                                                                                -36 42247
-38 17114
-38 75999
                      (X)
                                                                                    (Z)
             (X)
77 14000
77 14000
77 14000
77 14000
77 14000
77 14000
77 14000
77 14000
77 14000
77 14000
77 14000
77 74000
77 74000
77 74000
                                                                           39 97996
39 36276
37 55951
34 61594
                                                                                                                                                                                                   102.89999
                                            9.0
6.94071
13.67054
19.98499
                                                                                                                                                                                        BODY NO. - 1 STATION NO. -19 TYPE- NON-LIFT
                                                                       34 61594
39 61879
25 69223
19 98593
13 67957
6 94975
6 9
-6 94975
-13 67959
-19 98593
-25 69223
                                            19 98499
25 69221
39 61879
34 61582
37 55951
39 36276
39 97888
39 36276
                                                                                                                                                                                                               (X)
                                                                                                                                                                                                                                             (Y)
                                                                                                                                                                                               (X)
115.70000
115.70000
115.70000
115.70000
115.70000
115.70000
115.70000
115.70000
115.70000
115.70000
115.70000
   67
                                                                                                                                                                                                                                    0.0
6.52223
12.84627
18.77998
                                                                                                                                                                                                                                                                    37.56000
                                                                                                                                                                                                                                                                   36 98936
35 29485
                                                                                                                                                                                                                                                                   32 52791
28 77264
                                                                                                                                                                                                                                     24.14368
11
12
13
14
15
                                                                                                                                                                                                                                                                   24 14311
18 78003
                                                                                                                                                                                                                                     28 77261
32 52789
                                             37.55951
                                           37.55951
34.61502
30.61879
25.69221
19.98499
13.67054
6.94071
                                                                                                                                                                                                                                                                   12 84630
6 52231
9 0
-6 52231
                                                                                                                                                                                                                                    35 29485
36 98936
37 56666
36 98936
             77.14000
77.14000
77.14000
77.14000
77.14000
77.14000
                                                                        -52 68553
                                                                       -30.61879
-34.61504
-37.55951
16
17
                                                                                                                                                                                        11
                                                                                                                                                                                                                                     35 29485
32 52789
28 77261
                                                                                                                                                                                                                                                                 -12 84630
-18 78003
                                                                                                                                                                                        12
                                                                       -39.36276
18
              77.14800
                                               0.0
                                                                         -39.97000
                                                                                                                                                                                                  115.70000
115.70000
115.70000
115.70000
115.70000
115.70000
19
                                                                                                                                                                                                                                                                -24 14311
-28 77264
-32 52791
-35 29485
                                                                                                                                                                                                                                    24 14308
18 77998
12 84627
BODY NO. - 1 STATION NO. - 8 TYPE- NON-LIFT
                                                                       (2)
39.75400
39.14610
37.35277
34.42451
30.45627
25.55681
19.87562
13.59634
6.96255
0.96255
-13.59634
-19.87562
-25.55681
-30.45627
-34.42451
-37.35277
-39.14610
-39.75600
                                                                                                                                                                                        17
                      (X)
                                                                                                                                                                                                                                       6.52822
                                                                                                                                                                                                                                                                 -36 98936
-37 56000
                                                                                                                                                                                        18
             98 80000
98 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
90 80000
                                           e . 6
6.90251
13.59529
19.87498
25.55689
30.45680
37.35277
39.14610
39.75600
39.14610
37.35277
34.42450
36.45026
25.55680
19.87498
6.96251
                                                                                                                                                                                        19
                                                                                                                                                                                        BODY NO. - 1 STATION NO. -11 TYPE- NON-LIFT
                                                                                                                                                                                                                                                                   (Z)
35.77000
35.22658
33.61281
                                                                                                                                                                                                128.60001
128.60001
128.60001
128.60001
                                                                                                                                                                                                                                     6.81139
12.23466
17.88499
                                                                                                                                                                                                                                                                   30.97774
27.40141
28.99252
10
11
                                                                                                                                                                                                                                     22.99251
27.40140
30.97772
33.61279
                                                                                                                                                                                                   128 60001
128 60001
                                                                                                                                                                                                   128 60001
                                                                                                                                                                                                                                                                    17.88503
                                                                                                                                                                                                                                                                17 88503
12 23411
6 81149
-6 81149
-12 23411
-17 88503
13
14
15
                                                                                                                                                                                                                                     35 .22656
35 .77000
36 .22656
33 .61279
                                                                                                                                                                                                   128 60001
128 60001
16
17
18
                                                                                                                                                                                                    128 60001
                                                                                                                                                                                                                                     30.97778
87.46140
                                                                                                                                                                                                    128.60001
                                                                                                                                                                                                    128.60001
```

Table C-3. (concluded)

```
9 167 18661
18 167 18661
1 167 18661
12 167 18661
13 167 18661
                                                                                                                                                                                                                              27 70264
28 13000
27 70264
                                                                                                                                                                                                                                                                4 88479
                                          22 99251
17 88499
12 23406
6 21139
0 0
                                                                   -27 40141
-30 97774
-33 61281
          128 60001
                                                                                                                                                                                                                                                             0 0
-4 88479
          128 60001
16
                                                                                                                                                                                              167 10001
167 10001
167 10001
167 10001
167 10001
167 10001
167 10001
167 10001
          128 60001
                                                                                                                                                                                                                                                         -9 62106
-14 06504
-18 08162
-21 54884
17
                                                                                                                                                                                                                                       43355
                                                                                                                                                                                    12
                                                                       -35 22658
            128 60001
                                                                                                                                                                                                                               24 36128
           128.60001
                                                                                                                                                                                                                               21 54883
18 08160
14 06500
9 62102
4 88472
9 0
BODY NO - 1 STATION NO -12 TYPE- NON-LIFT
                                                                                                                                                                                    15
                                                                                                                                                                                                                                                         -24 36130
-26 43355
-27 70264
                                                                                                                                                                                   16
                                                    (Y)
                                          0 0
5 82415
11 47135
16 76999
21 55908
                                                                                                                                                                                    18
          141 39999
141 39999
141 39999
                                                                          33.53999
                                                                                                                                                                                                                                                           -28.13000
                                                                         33 03644
31 51727
                                                                                                                                                                                    19
                                                                                                                                                                                    BODY NO. - 1 STATION NO. -15 TYPE- NON-LIFT
                                                                         29 04648
25 69313
21 55910
           141.39999
                                                                                                                                                                                           (X)
188 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
189 90000
           141 39999
                                          21 55908
25 69312
29 04648
31 51727
33 03044
33 53999
33 03044
31 51727
                                                                                                                                                                                                                                       (Y)
                                                                                                                                                                                                                              (Y)

9 9

4 35857

8 58479

12 55909

16 13396

19 22771

21 73723

23 58629

24 71867

25 10001

24 71867

24 71867

23 58629
          141 39999
                                                                                                                                                                                                                                                             25.10001
24 71867
   67
                                                                         16.77000
11.47139
5.82419
0.0
-5.82419
                     39999
           141.39999
                                                                                                                                                                                       3
                                                                                                                                                                                                                                                             23.58629
                                                                                                                                                                                                                                                             21 73723
           141 39999
          141 39999
141 39999
10
                                                                                                                                                                                      5
6
7
8
                                                                                                                                                                                                                                                             16 13399
12 55003
11
                                                                      -11.47139
-16.77660
          141 39999
141 39999
12
                                         31.51727
29 04648
25 69312
21.55908
16.76999
11.47135
5 82415
                                                                                                                                                                                                                                                         12 55903
8 58472
4 35862
9 0
-4 35862
-8 58472
-12 55903
-16 13399
13
                                                                      -21.55910
-25.69313
           141.39999
           141 39999
                                                                                                                                                                                    10
                                                                     -29 04648
-31 51727
          141 39999
141 39999
141 39999
                                                                                                                                                                                    11
                                                                                                                                                                                                                               23.58629
21.73723
17
                                                                      -33.83844
18
                                                                                                                                                                                   13
14
15
                                                                       -33.53999
                                                                                                                                                                                                                               19 22771
                                                                                                                                                                                                                               16.13396
12.55000
8.58470
4.35857
                                                                                                                                                                                                                                                         -19 22772
-21 73723
-23 58629
BODY NO. - 1 STATION NO. -13 TYPE- NON-LIFT
                                                                                                                                                                                    16
17
                                                                                  (Z)
                      (X)
                                                                                                                                                                                                                                                          -24.71867
                                          9 9
5.37614
10.58894
15.48000
19.90070
23.71674
                                                                         30.96001
30.48965
29.09288
                                                                                                                                                                                    18
         154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
154 30000
                                                                                                                                                                                                                                  9.0
                                                                                                                                                                                                                                                            -25 10001
                                                                                                                                                                                    19
                                                                                                                                                                                    BODY NO. - 1 STATION NO. -16 TYPE- HON-LIFT
                                                                         26.81215
                                                                         23.71675
  5
                                                                                                                                                                                           (X)
260 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
261 30005
                                                                                                                                                                                                                                                                      (2)
                                                                        19 90071
15 48004
10 58898
5 37624
0 0
-5 37624
                                                                                                                                                                                                          (X)
                                                                                                                                                                                                                                        (Y)
                                                                                                                                                                                                                                                                5.00000
4.92404
  67
                                                                                                                                                                                                                                  8.8
8.86824
                                           26.81213
                                          29 09288
30 48964
30 96001
30 48964
  ġ
                                                                                                                                                                                                                                  1.71010
                                                                                                                                                                                                                                                                 4.69846
                                                                                                                                                                                      3
                                                                                                                                                                                                                                                               4 33013
3 83022
3 21394
2 50000
1 71010
                                                                                                                                                                                                                                  2.50000
3.21394
                                                                                                                                                                                      4
11
                                                                                                                                                                                                                                  3 83022
                                                                                                                                                                                                                                 3.83022
4.33013
4.69846
4.92404
5.80000
4.92404
4.69846
4.33013
3.83023
                                          29 09288
                                                                       -10.58898
12
                                                                    -15 48004
-19 90071
-23 71675
-26 81215
13
14
                                           23.71674
19.90070
15.48000
10.58894
5.37614
                                                                                                                                                                                      8
                                                                                                                                                                                      9
15
                                                                                                                                                                                   10 11 13
                                                                                                                                                                                                                                                             -0.86825
-1.71010
-2.50000
-3.21394
16
                                                                     -29 69222
17
                                                                      -30.48966
-30.96001
12
                                                                                                                                                                                   14
                                                                                                                                                                                                                                                             -3.83022
-4.33013
-4.69846
                                                                                                                                                                                                                                  3.21394
2.50000
1.71010
BODY NO. - 1 STATION NO. -14 TYPE- NON-LIFT
                                                                                                                                                                                    16
                                                                         (Z)
28.13000
27.70264
26.43355
24.36130
21.54884
18.08162
         (X)
167 10001
167 10001
167 10001
167 10001
167 10001
167 10001
167 10001
                                          0 0
4 88472
9 62102
14 06500
18 08160
21 54883
24 36128
                                                                                                                                                                                                                                   0.86824
                                                                                                                                                                                    18
                                                                                                                                                                                    HIT ENTER
```

9 62166

Table C-4. Configuration BF2L contour definition, full scale.

ORIG IN A	L PAGE IS 4 46.50000 36.88000 -4.63000
3D COORDINATES DISPLAY OF POOR	QUALITY 6 46 50000 36 88000 -27 71001
TEDS TEST CASE	7 46 50000 27 58000 -37 96001 R 46 50000 14 92000 -41 55000
BODY NO - 1 STATION NO - 1 TYPE- NON-LIFT	9 46.50000 0 0 -41.55000
8 (X) (Y) (Z) 1 2 00000 0 0 -15 51000	BODY NO - 2 STATION NO - 3 TYPE- NON-LIFT
2 2 00000 3 50000 -15 51000	\$ (X) (Y) (Z) 1 56,0000 0 0 25 11000
3 2 00000 7.00000 -15.81000	2 56 94000 13 17000 23 61000
	3 56.00000 26.50000 18 03 <u>009</u>
6 2 98988 10.42880 -23 84998	4 56.00000 36.00000 7 94000 5 56.00000 39.00000 -10 01000
7 2 00000 7 00000 -25 37000 8 2 00000 3 50000 -25 67000	6 56 00000 36 08000 -28 56000
9 2 80000 0 0 -25 67000	7 56 00000 26 50000 -39 14000 8 56 00000 13 17000 -42 91000
BODY NO - 1 STATION NO - 2 TYPE- NON-LIFT	8 56.0000 13.17000 -42.91000 9 56.00000 0.0 -42.91000
BODY NO 1 STATION NO - 2 TYPE- NON-LIF! 2 (X) (Y) (Z)	BODY NO 2 STATION NO 4 TYPE- NON-LIFT
1 18 50000 0 0 -5 39000	2 (X) (Y) (Z)
2 18 50000 10 33000 -6 39000 3 18 50000 21 00000 -9 30000	1 79 80000 0 0 29 45000
3 18 50000 21 00000 -9 30000 4 18 50000 29 17000 -14 14000	2 7 0 0000 16 25000 28 64999 3 70 00000 29 75000 21 05000
5 18 50000 30 33000 -19 47000	3 70 00000 29 75000 21 05000 4 70 00000 37 83000 8 15000
6 18 50000 29 17000 -27 05000 7 18 50000 24 17000 -32 30000	5 70.00000 39.00000 -8.15000
7 18.50000 24.17000 -32.30000 8 18.50000 13.67000 -33.97000	6 70.00000 37.83000 -23.75000
9 18 50000 0 0 -33 97000	7 70 00000 29 75000 -36 85001 8 70 00000 16 25000 -43 55000
BODY NO 1 STATION NO - 3 TYPE- NON-LIFT	9 70.00000 0.0 -44.00999
\$ (X) (Y) (Z)	BODY NO 3 STATION NO 1 TYPE- NON-LIFT
1 35 00000 0 0 0	± (x) (Y) (Z)
2 35 66666 12 66666 -0 85666	1 70 00000 0 0 29 45000
3 35 66666 23 92666 -4 16666 4 35 66666 35 33666 -9 94666	2 70.0000 16.25000 28.64999
5 35 00000 36 83000 -16 27000	3 70 00000 29 75000 21 05000 4 70 00000 37 83000 8 15000
6 35 00000 34 33000 -28 27000	4 70.0000 37.8300 8.15000 5 70.0000 39.0000 -8.15000
7 35 66666 25.67600 -37.62000 g 35 66600 14.68600 -39.19000	6 79 80000 37 83000 -23 75000
8 35 00000 14 08000 -39 19000 9 35 00000 0 0 -39 19000	7 70 90000 29 75000 -36 85001 8 70 96000 16 25000 -43 55000
	8 70.00000 16.25000 -43.55000 9 70.00000 0.0 -44.00999
BOBY NO 2 STATION NO 1 TYPE- NON-LIFT	BODY NO 3 STATION NO 2 TYPE- NON-LIFT
\$ (X) (Y) (Z) 1 35.88888 0.0 0.0	
	\$ (X) (Y) (Z) 1 101 50000 0 0 34,50099
3 35,00000 23,92000 -4.10000	2 101 50000 16 20000 32 50999
	3 101 50000 29 75999 23 37000
6 35,00000 34,33000 -28,27000	4 101 50000 37 80000 8 29000 5 101 50000 38 94000 -6 55000
	5 101.50000 38.94000 -6.55000 6 101.50000 37.60001 -21.28999
9 35 00000 14 00000 -39.19000 9 35 00000 0.0 -39.19000	7 101 50000 29 39999 -35 98000
BODY NO 2 STATION NO 2 TYPE- NON-LIFT	8 101 50000 16 20000 -44 91000 9 101 50000 0.0 -45 83000
	BODY NO 3 STATION NO 3 TYPE- NON-LIFT
\$ (X) (Y) (Z) 1 46 50000 0.0 14.29000	
1 46.50000 0.0 14.2000 2 46.50000 14.92000 11 62000	* (X) (Y) (Z)
3 46.50000 27.58000 5.54000	1 133:5000 0.0 37.50000

NOTE: The transition fairing is defined by BODY NO. 3, STATIONS 4, 5, 6, and 7 in the following table.

Table C-4. (concluded)

```
-34 36000
                                                                                                                                         10 244 00000
       133 50000
133 50000
133 50000
                                                        34 34000
                                 16 20000
                                                       24 39999
9 60000
-5 50000
                                 29
                                       89999
                                                                                                                                         BODY NO - 3 STATION NO - 8 TYPE- NON-LIFT
                                 38 66666
                                 39 20000
38 00000
30000
       133
                50000
                                                                                                                                                                                (Y)
                                                      -19 50000
       133 50000
133 50000
                                                                                                                                                                                                 27 50000
                                                                                                                                                 263 80005
263 80005
                                                                                                                                                                            9 9
9 41000
                                                      -34 70000
                                                                                                                                                                                                25 84000
21 07001
13 75000
4 78000
       133
                                                                                                                                                 263
263
                50000
                                 16
                                       20000
                                                     -44 39999
       133
                                                                                                                                                                          17 67999
                                                                                                                                                         80005
                                                      -47 25999
               50000
                                                                                                                                                                          23 82001
27 98000
27 98000
                                                                                                                                                 563
                                                                                                                                                         80005
80005
                                                                                                                                                 263
BODY NO - 3 STATION NO .- 4 TYPE- NON-LIFT
                                                                                                                                                                                              -4 78900
-13 75900
-21 97901
-25 84000
                                                                                                                                           6
                                                                                                                                                 263
                                                                                                                                                                          23 82001
17 67999
9 41000
0 0
                                                                                                                                                 263.89995
263.89995
263.89995
                                                               (Z)
                (X)
                                       (Y)
                                                       39 00000
36 64999
29 88600
19 50000
6 77000
-6 77000
       (X)
154 00000
154 00000
154 00000
154 00000
154 00000
154 00000
154 00000
154 00000
                                (Y)
0 9
13 34000
25 07001
33 77000
38 41000
33 77000
25 07001
13 34000
                                                                                                                                                                                                -27.5<del>0000</del>
                                                                                                                                                 263 80005
                                                                                                                                         10
  3
                                                                                                                                         BODY NO. - 3 STATION NO. - 9 TYPE- NON-LIFT
                                                                                                                                                                                 (Y)
                                                      -28 50000
-38 88000
                                                                                                                                                                                                 24.28000
22.82001
18.60001
12.14000
                                                                                                                                                 277.43994
277.43994
                                                      -45 64999
                                                                                                                                                                          15.61000
21.03000
23.91000
23.91000
21.03000
                                                                                                                                                 277.43994
                                                      -48 00000
                                   0.0
                                                                                                                                                 277
                                                                                                                                                         43994
                                                                                                                                                                                                 4 22000
                                                                                                                                                 277.43994
BODY NO. - 3 STATION NO. - 5 TYPE- NON-LIFT
                                                                                                                                                                                                -12 14000
                                                       (Z)
39.66000
37.27000
30.38000
                                                                                                                                                 277
                                                                                                                                                          43994
                                                                                                                                                 277 43994
277 43994
                                                                                                                                                                          15 61998
8.30000
                                                                                                                                                                                               -18.60001
       184 00000
184 00000
184 00000
184 00000
                                                                                                                                                                                               -22.82001
                                 13 56000
25 49001
34 35001
39 06000
                                                                                                                                                                                                -24.28900
                                                                                                                                                 277.43994
                                                                                                                                                                             0.0
                                25.49001
34.35001
39.06000
39.06000
34.35001
25.49001
13.56000
                                                                                                                                         10
                                                        19 83000
6 89000
-6 89000
                                                                                                                                         BODY NO. - 3 STATION NO. -10 TYPE- NON-LIFT
      184 9000
184 9000
184 9000
184 9000
184 9000
184 9000
184 9000
                                                                                                                                                          (X)
                                                     -21 87000
-35 37000
                                                                                                                                                                                                   5 00000
4 70000
3 83000
2 50000
0 87000
                                                                                                                                                 355.8005
355.8005
355.8005
365.8005
355.8005
                                                                                                                                                                            6.6
1.71000
3.21000
4.33000
4.92000
                                                     -35 37000
-43 08000
-45 67999
                                   0
                                       8
BODY NO. - 3 STATION NO. - 6 TYPE- NON-LIFT
                                                                                                                                                                            4.92000
4.92000
4.33000
3.21000
1.71000
                                                                                                                                                 355.80005
                                                                                                                                                                                                 -2 50000
-3 83000
                                                                                                                                                  355.80005
                                                        36.84000
34.62000
28.22000
18.42000
6.40000
                                                                                                                                                 355.80005
                                                                                                                                                                                                  -4.78000
-5.00000
                                   0.0
                                 12 60000
23 67999
31 89999
36 28000
                                                                                                                                                  355.80005
                                                                                                                                                  355.80005
                                                                                                                                                                             ●.●
       214.00
       214 00000
214 00000
214 00000
214 00000
                                                                                                                                         HIT ENTER
                                 36.28000
31.89999
23.67999
12.60000
                                                     -6.4000
-18.4200
-31.8400
-39.3900
-41.89999
       214 00000
214 00000
214 00000
BODY NO - 3 STATION NO - 7
                                                            TYPE- NON-LIFT
       (X)
244.00000
244.00000
244.00000
                                        (Y)
                                 (Y)

8 8

19 8600

20 39999

27 49001

31 25999

27 49001

20 39999
                                                      31 74001
29 83000
24 31000
15 87000
5 51000
-5 51000
       244 0000
244 0000
244 0000
244 0000
244 0000
                                                      -24 31000
-31 92000
                                                                                                                                        ORIGINAL PAGE IS
```

OF POOR QUALITY

(Z)

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT	MU = 0.200				•									
CONTRACT NASFORMARD	ВНВ	СР	1.0200	0.7828	0.4744	0.2135	0712	4867	3244	1622	0811	0.0406	000000	0.0811
MAIN RO	CONFIGURATION	TAP #	-	~	4	9	10	17	50	23	24	25	56	28
	CONFI	ALPHS (DEG)	-0-3	-0-3	-0-3	-0-3	ۥ0-	-0-3	-0-3	-0-3	-0-3	E-0-	-0-3	-0-3
	RUN 15	RECORD	136	136	136	136	136	136	136	136	136	136	136	136

FLIGHT	MU = 0.200		
FORWARD	BHRF 2L	СР	0.9649 0.32948 0.32948 0.32948 0.21118 0.21118 0.0000 0.0000 0.1006
	CONF 1GURAT ION	TAP #	000444-4860m460m
	CONF	ALPHS (DEG)	000000000000000
	RUN 21	RECORD	00000000000000000000000000000000000000

0		
MU = 0.200		
BHRF2L	СР	0.0000 0.58414 0.38884 0.453315 0.18883 0.1609 0.10000 0.10000
CONFIGURATION BHRF2L	TAP #	000447=4870m4698
CONFI	ALPHS (DEG)	000000000000000
RUN 21	RECORD	

MAIN ROTOR-FUSELAGE INTERACTION TEST

NAS2-11268 TRD FLIGHT	MU = 0.200		
MAIN KUJUK-TUSELAGE CONTRACT NA FORWARD	BHRF 2L	СР	0.9179 0.37884 0.37884 0.37886 1.08825 1.08823 0.0604 0.1408
Z Z Z	NO I	TAP #	000444448510004000
	CONFI	ALPHS (DEG)	000000000000000000000000000000000000000
	RUN 21	RECORD	

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT

1268 HT	0.200			•				•								•	
CONTRACT NASS-11268 FORWARD FLIGHT	BHRF2U MU =	СР	1.2097	0.5456	0.4981	0.9488	0.5930	6642	0237	0.0949	3954	1318	0101	0.0507	0.1724	0.1521	0.2129
	CONFIGURATION	TAP #	29	0 N	4 M	44	47	51	54	58	17	20	23	24	25	56	28
	CONF	ALPHS (DEG)	0.0	00	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RUN 29	RECORD	390	0 C 6 6 M M	390	390	390	390	390	390	390	390	390	390	390	390	390

INTERACTION TEST 2-11268 LIGHT	= 0.200		·											
ROTOR-FUSELAGE INT CONTRACT NAS2-1 FORWARD FLIG	BHRF2U MU =	СР	1.1623 0.8065	0.5693 0.5456	948	521	047	466.	.111	0.0101	. 111	•172	. 192	•273
MAIN RO	CONF IGURAT ION	TAP #	29 30	3 3 4 5	41	4 N	54	58	20	23	24	25	5 6	28
	CONFI	ALPHS (DEG)		000	•	•			•	•	•	•	•	•
	RUN 29	RECORD	392	200	305	0 0 0 0	392	305 006 006	392	392	392	392	392	392

			CONTRACT NAS2-11268 FORWARD FLIGHT	1AS2-11268 > FLIGHT
RUN 29	CONFI	CONFIGURATION	BHRF 2U	MU = 0.200
RECORD	ALPHS (DEG)	TAP #	8	
394	0.0	29	1.1860	
394	0.0	30	0.8302	
394	•	32	16	
394	•	34	.616	
394	•	4 4	966.	
394	•	47	.687	
394	•	51	55	
394		54	.142	
394	•	58	0.1186	
394	•	17	3143	
394	0.0	20	1318	
394	•	23	.030	
394	•	24	.131	
394		25	12	
394	•	56	.233	
394	•	28	.253	

MU = 0.200
BHF2L
CONFIGURATION
53
S N

CP	1.1123 0.66952 0.39409 0.39409 0.4403 1.2549 1.07927 0.0792
*	
TAP #	00044714870044000
ALPHS (DEG)	000000000000000000000000000000000000000
RECORD	00000000000000000000000000000000000000

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT	ATION B MU = 0.200	TAP # CP	1 1-1418	2 0.9718	4 0.6074	6 0.2672	000000 01		20 2077		P40415		26 0.1661	28 0.1869
MAIN ROT	CONFIGURATION B	TAP #	1	~	4	9	10	17	20	23	24	25	56	28
	CONF	ALPHS (DEG)	-8.0	0.8	-8.0	-8.0	0.8	-8.0	-8.0	-8.0	-8.0	-8-0	-8.0	0.8
	RUN 64	RECORD	742	742	742	742	742	742	742	742	742	742	742	742

|--|

MAIN ROTOR-FUSELAGE INTERACTION TEST CONTRACT NAS2-11268 FORWARD FLIGHT	IN B MU = 0.200	d)	1.0447	0.5102	000000	3401	4373	2,9906	0831	0.0415	0.1038	0.2077	0.1869	0.1661
	CONFIGURATION B	TAP #	1	a	4	9	10	17	20	23	24	25	56	28
	CONFI	ALPHS (DEG)	8.0	8.0	8•0	8•0	8.0	8.0	8	8.0	0.8	8.0	8.0	8.0
,	RUN 64	RECORD	747	747	747	747	747	747	747	747	747	747	747	747

<u> </u>	CONF IGURATION	BF2L	MU = 0.200
	TAP #	d)	
	29	0.9961	
	30	1.0204	
	32	0.7045	
	4 E	0.6074	
	44	0.9718	
	47	0.6316	
	51	7045	
	54	1458	
	58	0972	
	17	3.0321	
	20	1869	
	23	1038	
	24	0623	
	25	0.0831	
	56	0-1454	
	28	0.1661	

. 007			
MU = 0.200			
BF2L	СР	1.2643 0.54445 0.94616 0.9475 1.08616	= 0000004
CONFIGURAT ION	TAP #	0 0 0 4 4 4 7 4 4	8-080000 8-08459
CONFIC	ALPHS (DEG)	0000000	
RUN 68	RECORD	100	177

MU = 0.200		
BF2L	8	00000000000000000000000000000000000000
CONFIGURATION BF2L	TAP #	000447=4870m4600 000447=4870m4608
CONFI	ALPHS (DEG)	
RUN 68	RECORD	

1	Report No.	2. Government Access	ion No.	3. Recipient's Catalog	No.				
"	NASA CR-166577				·				
4.	Title and Subtitle			5. Report Date					
	A 0.15-SCALE STUDY OF COM		January 198						
	AERODYNAMIC INTERACTION FUSELAGE	BETWEEN MAIN	ROTOR AND	6. Performing Organiza	Ition Code				
7.	Author(s)			8. Performing Organiza	ition Report No.				
	Ted Trept								
	<u>-</u>			10. Work Unit No.					
9.	Performing Organization Name and Address			T3505					
	Bell Helicopter Textron	Inc.		11. Contract or Grant	No.				
	P.O. Box 482			NAS2-11268					
	Fort Worth, Texas 76101	13. Type of Report an	d Period Covered						
12.	Sponsoring Agency Name and Address			Contractor					
	National Aeronautics and	Space Adminis	stration	14. Sponsoring Agency					
	Washington, D.C. 20546			532-06-11					
	Supplementary Notes			//~ 					
	Point of Contact: P. Shinoda, Ames Research Center, MS 247-1, Moffett Field, CA 94035 (415) 965-6679 or FTS 448-6679								
	Hover and forward flight mutual aerodynamic intera of a conventional helicoptwo-bladed teetering rote NASA Ames 40x80-foot wind Configuration effects wer a typical helicopter forebody were also investigat as pressure data are prestaken over a range of the flight speed ratio was va+4 to -12 degrees. The deconsiderably more imporages effect on the rotor.	ction between ter configora or was combined tunnel 1500 re studied by body. Separated. Rotor are coefficied from 0.1 lata show that ortant to total	the main rotor ation. A 0.15-s ed with a 0.15-s horsepower test modifying the fation distance bad fuselage force whical and tabulents from 0.002 to 0.3 with she the rotors eff	and fuselage cale Model 2 cale model of stand fairing to single tween rotor ar format. It to 0.007. It aft angle value to the fect on the fect on the fect and moment are format.	22 f the ng. mulate and as well Data was n forward rying from uselgage may				
17.	Key Words (Suggested by Author(s))		18. Distribution Statement						
	Rotor/body interaction		Unlimited						
	Aerodynamic interference		Subject categ	ory 02					
İ	nerodynamic interretence		J	, <i>,</i> -					
-	Consider Chariff (of this are and)	20. Security Classif. (d	of this page)	21. No. of Pages	22. Price*				
19.	Security Classif. (of this report) Unclassified	Unclassif							