Preliminary data inspection and findings on the structure of the data, missing values, duplicates, etc

In [1]:

```
# Importing required Libraries to do operations on the data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
# Creating a dataframe by importing an excel file
df=pd.read_excel(r"E:\\DATA SCIENCE\\ML\\Machine Learning _ Rocky _ Resources\\Project\\164
df.head(2)
```

Out[2]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
4														•

Data Description

Variable Description : Age in years. : 1 = male; 0 = female. Sex: cp: : Chest pain type(0:typical angina, 1:atypical angina, 2:non-anginal pain,3:asymptomatic). trestbps: : Resting blood pressure (in mm Hg on admission to the hospital). chol: : Serum cholesterol in mg/dl. fbs: : Fasting blood sugar > 120 mg/dl (1 = true; 0 = false). restecg: : Resting electrocardiographic results (0 = normal, 1 = having ST-T wave abnormality, 2 = showing definite left ventricular hypertrophy(T wave inversions and/or ST elevation or depression of > 0.05 mV)). Maximum heart rate achieved. : chest pain caused by exercise (1 = yes; 0 = no). ST depression induced by exercise relative to rest. slope: : Slope of the peak exercise ST segment(0: downsloping; 1: flat; 2: up sloping). : Number of major vessels (0-3) colored by fluoroscopy. : A blood disorder called thalassemia(0: NULL ;1: fixed defect(no blood

flow in some part of the heart),2:normal blood flow,3:

reversible defect).

Admitted patients status(1= diseased 0= normal).

Exploratory data analysis

In [3]:

```
#Changing the column names of the given dataset
df.columns=['age','sex','chest_pain_type','resting_blood_pressure','cholesterol','fasting_b
       'max_heart_rate_achieved','exercise_induced_angina','st_depression','st_slope_type',
```

In [4]:

df.info() #viewing the information of the dataframe

Dtype 303 non-null int64 age 1 sex 303 non-null int64 2 chest_pain_type 303 non-null int64 3 resting_blood_pressure 303 non-null int64 4 cholesterol 303 non-null int64 5 fasting_blood_sugar 303 non-null int64 6 rest_ecg_type 303 non-null int64 7 max_heart_rate_achieved 303 non-null int64 exercise_induced_angina 303 non-null int64 9 st_depression 303 non-null float64 10 st_slope_type 303 non-null int64 int64 num_major_vessels 303 non-null thalassemia_type 303 non-null 12 int64 303 non-null target int64 13

dtypes: float64(1), int64(13)
memory usage: 33.3 KB

In [5]:

df.shape #checking shape after dropping duplicates from the dataframe

Out[5]:

(303, 14)

In [6]:

df.drop_duplicates(inplace=True) #deleting duplicate rows if exists any
df.shape

Out[6]:

(302, 14)

In [7]:

```
# Re-arranging the df index values
df.reset_index(drop=True,inplace=True)
# checking for null values across all rows if any present
df.isnull().sum()
```

Out[7]:

age	0
sex	0
<pre>chest_pain_type</pre>	0
resting_blood_pressure	0
cholesterol	0
fasting_blood_sugar	0
rest_ecg_type	0
<pre>max_heart_rate_achieved</pre>	0
exercise_induced_angina	0
st_depression	0
st_slope_type	0
num_major_vessels	0
thalassemia_type	0
target	0
dtype: int64	

In [8]:

creating a dataframe which contains only categorical features
ctgl_df=df.drop(columns=['age','resting_blood_pressure','cholesterol','st_depression','max_
ctgl_df.head(5)

Out[8]:

	sex	chest_pain_type	fasting_blood_sugar	rest_ecg_type	exercise_induced_angina	st_slope
0	1	3	1	0	0	
1	1	2	0	1	0	
2	0	1	0	0	0	
3	1	1	0	1	0	
4	0	0	0	1	1	
4						>

In [9]:

```
# Visualising the data of categorical features in the Cardiovascular disease dataset throu
#categorical data
for i, column in enumerate(ctgl_df):
    plt.figure(figsize=(5,2))
    ctgl_df[column].value_counts().plot(kind='barh',color=['black', 'red', 'green', 'blue',
    plt.title(column.upper(),{'size':15})
    plt.grid(axis='x')
    plt.xlabel('count')
    plt.ylabel(column)
```


From the above plots,the observations made from the categorical data in the given dataset is that number of major vessels colored by fluoroscopy that ranged between 0 and 3. Therefore we have to drop the value 4 from the df['num_major_vessels']

```
In [10]:
```

```
ctgl_df.shape #Viewing the shape of categorical data
Out[10]:
(302, 9)
In [11]:
# dropping out the values of 'num_major_vessels=4' from the dataframe 'df'
df=df[df['num_major_vessels']!=4]
# replacing the null value using mode function on thalassemia_type.
df.loc[df.thalassemia_type==0,'thalassemia_type']=2
```

In [12]:

df.thalassemia_type.value_counts() #Viewing the values of thalassemia type to see the index

Out[12]:

165 3 115

18

Name: thalassemia_type, dtype: int64

In [13]:

df.shape #veiwing the shape of the dataframe of entire dataset

Out[13]:

(298, 14)

In [14]:

df.describe() #Viewing the statistical data for every row of the generated data frame

Out[14]:

	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blc
count	298.000000	298.000000	298.000000	298.000000	298.000000	2
mean	54.510067	0.677852	0.959732	131.580537	246.906040	
std	9.030526	0.468085	1.033963	17.669293	51.893097	
min	29.000000	0.000000	0.000000	94.000000	126.000000	
25%	48.000000	0.000000	0.000000	120.000000	211.000000	
50%	56.000000	1.000000	1.000000	130.000000	241.500000	
75%	61.000000	1.000000	2.000000	140.000000	275.000000	
max	77.000000	1.000000	3.000000	200.000000	564.000000	
4						>

In [15]:

new_df=df.copy() #Making a copy of the dataframe df.

Outliers Inspection

In [16]:

```
# Plotting boxplots to verify the outliers in the dataset or not
fig, axs = plt.subplots(5,figsize=(10,15))
plt.subplots_adjust(hspace = 0.8)
df1 = df[['age','resting_blood_pressure','cholesterol','max_heart_rate_achieved','st_depres
for i,column in enumerate(df1):
    sns.boxplot(df1[column], ax=axs[i],color='#33ff33')
    axs[i].set_xlabel(column)
```


In [17]:

In [18]:

```
#Creating a new dataframe by dropping outliers
for column in df1:
    anoms=find_outliers(new_df[column])
    new_df=new_df[new_df[column].isin(anoms) == False]
    print(new_df.shape)
    print('-----')
    print(len(anoms))
new_df.shape # checking the final shape of the dataframe after removing the outliers
```

```
(298, 14)
-----
0
(289, 14)
-----
9
(277, 14)
-----
14
(257, 14)
-----
15
(255, 14)
----
17
Out[18]:
(255, 14)
```

In [19]:

```
#Ploting the boxplots to check whether the data has outliers or not
fig, axs = plt.subplots(5,figsize=(10,15))
plt.subplots_adjust(hspace = 0.8)
for i,column in enumerate(df1):
    sns.boxplot(new_df[column], ax=axs[i],color='#33ff33')
    axs[i].set_xlabel(column)
```


In [20]:

new_df.shape #checking for the rows that had dropped in previous step

Out[20]:

(255, 14)

In [21]:

new_df.isnull().sum() #Checking whether the data has null values or not

Out[21]:

```
0
age
                            0
sex
chest_pain_type
                            0
resting_blood_pressure
                            0
cholesterol
                            0
fasting_blood_sugar
                            0
rest_ecg_type
                            0
max_heart_rate_achieved
                            0
exercise_induced_angina
                            0
st_depression
                            0
st_slope_type
                            0
num_major_vessels
                            0
thalassemia_type
                            0
target
                            0
dtype: int64
```

In [22]:

new_ndf=new_df.copy() # making the copy of the dataframe with numerical data for categorica

In [23]:

```
# Replacing the data of numerical categorical data into alphabetical categorical data
new_df['sex'].replace({1:'Male',0:'Female'},inplace=True)

new_df['chest_pain_type'].replace({0:'typical angina',1:'atypical angina',2:'non-anginal pa
new_df['fasting_blood_sugar'].replace({0:'< 120mg/ml',1:'> 120mg/ml'},inplace=True)

new_df['rest_ecg_type'].replace({0:'normal',1:'abnormal',2:'hyper'},inplace=True)

new_df['exercise_induced_angina'].replace({0:'no',1:'yes'},inplace=True)

new_df['st_slope_type'].replace({2:'downsloping',1:'flat',0:'upsloping'},inplace=True)

new_df['thalassemia_type'].replace({1:'fixed defect',2:'normal blood flow',3:'reversible de

new_df['target'].replace({1:'diseased',0:'healthy'},inplace=True)
```

In [24]:

new_df.info() #Viewing the overall information of the manipulated dataframe

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 255 entries, 0 to 300
Data columns (total 14 columns):
    Column
#
                              Non-Null Count
                                              Dtvpe
     _____
                              _____
0
    age
                              255 non-null
                                               int64
1
                                               object
     sex
                              255 non-null
2
     chest_pain_type
                              255 non-null
                                               object
 3
     resting_blood_pressure
                              255 non-null
                                               int64
4
    cholesterol
                              255 non-null
                                               int64
 5
    fasting_blood_sugar
                              255 non-null
                                               object
6
    rest_ecg_type
                              255 non-null
                                               object
7
    max_heart_rate_achieved 255 non-null
                                               int64
8
    exercise_induced_angina 255 non-null
                                               object
                              255 non-null
9
     st depression
                                               float64
10
                              255 non-null
                                               object
    st slope type
    num_major_vessels
                              255 non-null
                                               int64
11
12
    thalassemia type
                              255 non-null
                                               object
                              255 non-null
13
    target
                                               object
dtypes: float64(1), int64(5), object(8)
memory usage: 29.9+ KB
```

In [25]:

In [26]:

```
#Ploting the entire data to ages to check for the distribution of pateints w.r.t ages
plt.figure(figsize=(15,5))
sns.distplot(new_df['age'],color='#ff3377')
plt.title('The Distribution of Ages of patients',{'size':20})
plt.xticks(new_df['age'])
plt.xlabel('Age')
```

Out[26]:

Text(0.5, 0, 'Age')

In [27]:

```
#plotting the distribution of resting blood pressure of patients admitted in the hospital
plt.figure(figsize=(15,5))
sns.distplot(new_df['resting_blood_pressure'],color='#e60000')
plt.title('The Distribution of Resting blood pressure (in mm Hg)',{'size':20})
```

Out[27]:

Text(0.5, 1.0, 'The Distribution of Resting blood pressure (in mm Hg)')

Patients of age between 57 to 59 are frequently coming for health check up

In [28]:

##

```
# #plotting the distribution of Serum cholesterol of patients admitted in the hospital
plt.figure(figsize=(15,5))
sns.distplot(new_df['cholesterol'],color='#66ff66')
plt.title('The Distribution of Serum cholesterol in mg/dl',{'size':20})
plt.grid(axis='y')
```


In [29]:

```
# # #plotting the distribution of max_heart_rate_achieved of patients admitted in the hospi
plt.figure(figsize=(15,5))
sns.distplot(new_df['max_heart_rate_achieved'],color='#006633')
plt.title('The Distribution of max_heart_rate_achieved',{'size':20})
```

Out[29]:

Text(0.5, 1.0, 'The Distribution of max_heart_rate_achieved')

In [30]:

new_df.describe() #Viewing the statistical extracts of the dataset with continous data

Out[30]:

	age	resting_blood_pressure	cholesterol	max_heart_rate_achieved	st_depression
count	255.000000	255.000000	255.000000	255.000000	255.000000
mean	54.588235	129.682353	244.733333	148.050980	1.034902
std	8.830817	15.654648	44.425372	22.290877	1.082792
min	29.000000	94.000000	126.000000	88.000000	0.000000
25%	48.000000	120.000000	212.000000	132.000000	0.000000
50%	55.000000	130.000000	242.000000	152.000000	0.800000
75%	61.000000	140.000000	273.500000	163.000000	1.800000
max	77.000000	170.000000	360.000000	202.000000	4.400000
4					>

In [31]:

new_df.head()# Checking the data with in the dataframe

Out[31]:

	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blood_sugar	rest
0	63	Male	asymptomatic	145	233	> 120mg/ml	
1	37	Male	non-anginal pain	130	250	< 120mg/ml	
4	57	Female	typical angina	120	354	< 120mg/ml	
6	56	Female	atypical angina	140	294	< 120mg/ml	
7	44	Male	atypical angina	120	263	< 120mg/ml	
4							•

c. Study the occurrence of CVD across the Age category

In [32]:

```
#plot to relate the age w.r.t target variable
sns.catplot(data=new_df,x='age',y='target',hue='sex',kind='swarm')
```

Out[32]:

<seaborn.axisgrid.FacetGrid at 0x17a39673cd0>

In [33]:

ctg_plots('sex') #calling the plot function to plot the distribution of data w.r.t sex

Overall sex distribution of patients

In [34]:

```
#Creating a dataframe of diseased patients
patients_with_cvd=new_df[new_df['target']=='diseased']
patients_with_cvd.shape
```

Out[34]:

(134, 14)

In [35]:

Creating a plot to view the distribution of chest pain types w.r.t target variables
sns.catplot(data=patients_with_cvd,x='age',y='chest_pain_type',hue='sex',kind='swarm',heigh
plt.title('The Distribution of chest pain type of patients with CVD w.r.t AGES',{'size':20}

Out[35]:

Text(0.5, 1.0, 'The Distribution of chest pain type of patients with CVD w. r.t AGES')

The Distribution of chest pain type of patients with CVD w.r.t AGES

##From the above plot ,we can conclude that:

- ~ Most of the patients with non_anginal pain were get diseased with cvd which belongs to the age group of 40 to 55 years.
- \sim Patients with asymptomatic_type chest pain occurs rarely to people of ages between 51 and 70 years.

In [36]:

#ploting the data of resting blood pressure w.r.t ages of patients with CVD
sns.relplot(data=patients_with_cvd,x='age',y='resting_blood_pressure',hue='sex')
plt.title('The Distribution of patients with resting blood pressure with CVD w.r.t AGES',{'

Out[36]:

Text(0.5, 1.0, 'The Distribution of patients with resting blood pressure with CVD w.r.t AGES')

The Distribution of patients with resting blood pressure with CVD w.r.t AGES

In [37]:

```
# #ploting the data of Cholestrol_level w.r.t ages of patients with CVD
plt.figure(figsize=(15,5))
sns.scatterplot(patients_with_cvd['age'],patients_with_cvd['cholesterol'],color='#ff0000',l
plt.title('The Distribution of Cholestrol_level of patients with CVD w.r.t AGES',{'size':20
plt.legend()
```

Out[37]:

<matplotlib.legend.Legend at 0x17a3aa64d00>

Cholestrol level is high in patients with CVD when compared with other patients and most of the patients with CVD are belongs to the age cateogory of 50 to 60 years

In [38]:

```
# ploting the data of sex w.r.t ages of patients with CVD
plt.figure(figsize=(20,3))
plt.scatter(patients_with_cvd['age'],patients_with_cvd['sex'],color='#5900b3')
plt.title('The Distribution of sex of patients with CVD w.r.t Ages',{'size':20})
#plt.xticks(patients_with_cvd['age'])
plt.xlabel('Age',{'size':15})
plt.ylabel('Gender',{'size':15})
plt.grid(axis='y')
```


From the above plot,we conclude that most of male patients of age 40 to 60 years of are facing more cardiac disease than female patients

In [39]:

```
## ploting the data of Number of major vessels (0-3) colored by fluoroscopy w.r.t ages of p
plt.figure(figsize=(20,5))
plt.scatter(patients_with_cvd['age'],patients_with_cvd['num_major_vessels'],color='blue')
plt.title('The Distribution of Number of major vessels (0-3) colored by fluoroscopy of pati
plt.xticks(patients_with_cvd['age'])
plt.xlabel('Age',{'size':15})
plt.ylabel('Number of major vessels (0-3) colored by fluoroscopy',{'size':15})
plt.grid(axis='y')
```


From the plot we can conclude that most patients with cvd found to have no maj or blood vessels coloured by fluo-roscopy.

In [40]:

```
# ploting the data of fasting blood sugar w.r.t ages of patients with CVD
plt.figure(figsize=(20,5))
plt.scatter(patients_with_cvd['age'],patients_with_cvd['fasting_blood_sugar'],color='green'
plt.title('The Distribution of fasting blood sugar of patients with CVD',{'size':20})
plt.xticks(patients_with_cvd['age'])
plt.xlabel('Age',{'size':15})
plt.ylabel(' Fasting blood sugar levels',{'size':15})
plt.grid(axis='y')
```


From the plot we can conclude that most patients with cvd found to have low fas ting blood sugar

In [41]:

```
#Viewing the distribution of resting ecg results of patients with CVD w.r.t ages
plt.figure(figsize=(20,5))
plt.scatter(patients_with_cvd['age'],patients_with_cvd['rest_ecg_type'],color=['#800000'])
plt.title('The Distribution of Resting electrocardiographic results of patients with CVD',{
plt.xticks(patients_with_cvd['age'])
plt.xlabel('Resting electrocardiographic results')
plt.grid(axis='y')
```


From the plot we can conclude that patients with cvd has very rare chances of f acing left ventricular hypertrophy and it occurs to the very old patients of age a bove 70 years

In [42]:

```
#To view the maximum heart rate achieved by pateints with CVD w.r.t age
sns.set_theme(style="darkgrid")
sns.relplot(data=patients_with_cvd,x='age',y='max_heart_rate_achieved',hue='sex',palette="c
plt.title('The Distribution of Maximum heart rate achieved by patients on admission to the
```

Out[42]:

Text(0.5, 1.0, 'The Distribution of Maximum heart rate achieved by patients on admission to the hospital w.r.t AGES')

The Distribution of Maximum heart rate achieved by patients on admission to the hospital w.r.t AGES

from the above plot we can conclude that

- \sim patients of age between 50 to 60, most patients have heart rate between 140 to 18 0.
- \sim Only male patients observe to be has more heart beat rate which is above 180 of the ages 40 to 60 years.

In [43]:

To view the blood disorderness of pateints with CVD w.r.t ages
sns.relplot(data=patients_with_cvd,y='thalassemia_type',x='age',hue='sex',palette='brg_r',h
plt.title('The Distribution of blood disorderness of patients with CVD w.r.t AGES',{'size':

Out[43]:

Text(0.5, 1.0, 'The Distribution of blood disorderness of patients with CVD w.r.t AGES')

The Distribution of blood disorderness of patients with CVD w.r.t AGES

In [44]:

ctg_plots('thalassemia_type')

From the above plot, we can observe that

~ Normal blood flow is commom to the patients with CVD.

 \sim reversible defect and fixed defect are most common types of blood disorders to the male patients with CVD of ages between 40 to 60 years

d.Composition of all patients with respect to the Sex category

In [45]:

```
# Creating a for loop to plot the distribution of non categorical data w.r.t SEX
for column in df1:
    sns.relplot(data=new_df,y=column,x='sex',hue='target',palette='bright',height=4)
    plt.title('The Distribution of {} of patients with CVD w.r.t Sex'.format(column),{'size}
```

The Distribution of age of patients with CVD w.r.t Sex

The Distribution of resting_blood_pressure of patients with CVD w.r.t Sex

The Distribution of cholesterol of patients with CVD w.r.t Sex

The Distribution of max_heart_rate_achieved of patients with CVD w.r.t Sex

The Distribution of st_depression of patients with CVD w.r.t Sex

Insights gained from the above plots:

- ~ Female patients of higher ages had CVD.
- ~ Male patients of higher ages were rarely have CVD.
- ~ Patients who are not diseased were recorded with highest resting blood pressure.
- ~ The diseased Female patients were recorded with highest resting blood pressure o
- \sim The diseased Female patients were recorded with highest cholestorol which is above 350.
- ~ Maximum heart rate were recorded for male dieased patients is of above 200bpm.
- ~ Male patients are recorded with maximum st_depression

e. Study if one can detect heart attacks based on

anomalies in the resting blood pressure (trestbps) of a patient

In [46]:

```
# Creating a dataframe with the outliers present in resting blood pressure of patients
anomaly_df=df[df['resting_blood_pressure']>170]
anomaly_df.shape
```

Out[46]:

(9, 14)

In [47]:

```
#To view the distribution ANomalies w.r.t target variables
plt.figure(figsize=(5,3))
plt.scatter(anomaly_df['target'],anomaly_df['resting_blood_pressure'],color="#003300")
plt.title('Target vs Anomalies of resting blood pressure',{'size':20})
plt.xlabel('Target')
plt.ylabel('Resting_blood_pressure')
```

Out[47]:

Text(0, 0.5, 'Resting_blood_pressure')

Target vs Anomalies of resting blood pressure

From the above plot we can conclude that it is not possible to detect the heart attacks based on the anamalies of resting blood pressure as we can see that from our data support for non-diseased patients is more than the diseased patients

f. Describe the relationship between cholesterol levels and a target variable

In [48]:

```
# A plot to view the distribution of patients cholesterol levels w.r.t target variable
plt.figure(figsize=(15,5))
sns.catplot(data=new_df,x='target',y='cholesterol',hue='sex',palette='inferno_r',kind='swar
plt.title('The Distribution of Cholestrol_level of patients w.r.t target',{'size':20})
plt.grid(axis='y')
```

<Figure size 1080x360 with 0 Axes>

The Distribution of Cholestrol_level of patients w.r.t target

from the above plot, density of patients is more in diseased axis than in non_dis eased axis and that to the diseased patients found to frequently recorded the chol esterol level between 200 to 250.

In [49]:

new_ndf.head()

Out[49]:

	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blood_sugar	rest_ec
0	63	1	3	145	233	1	
1	37	1	2	130	250	0	
4	57	0	0	120	354	0	
6	56	0	1	140	294	0	
7	44	1	1	120	263	0	

In [50]:

A plot to view the correlation between the features of the dataframe new_ndf
plt.figure(figsize=(15,8))
sns.heatmap(new_ndf.corr(),annot=True,cmap="bone",fmt='.2f')

Out[50]:

<AxesSubplot:>

#from the above correlation plot, the target variable is inveresely related to chol esterol but with low variance.

a. State what relationship exists between peak

exercising and the occurrence of a heart attack

In [51]:

```
# View to check how the peaking excercise is related to heart attack w.r.t target variable
plt.figure(figsize=(10,5))
sns.barplot(data=new_df,x='target',y='st_depression',hue='sex')
plt.title(' Peak exercising vs Occurrence of a heart attack',{'size':20})
```

Out[51]:

Text(0.5, 1.0, ' Peak exercising vs Occurrence of a heart attack')

On comparision with non diseased patients, diseased patients are very less effective to peak excercising and also observed that st_depression for diseased patients were observed to range b/w 0.0 to 0.65.

From the correlation plot, the correlation between st_depression and target very is highly correlated and it's value is -0.44 which implies peak excercising is in versely related to target.

h. Check if thalassemia is a major cause of CVD

In [52]:

for column in ctg_df: ctg_plots(column)

Overall sex distribution of patients

Overall chest_pain_type distribution of patients

Overall fasting_blood_sugar distribution of patients

Overall rest_ecg_type distribution of patients

Overall exercise_in@uced_angina distribution of patients

Overall st_slope_type distribution of patients

Overall num_major_vessels distribution of patients

diseased

target

healthy

From the above plots, we can say that thalassemia is not a major cause for CVD, i t's the second major cause for CVD and the first one is fasting blood sugar.

0

j. Use a pair plot to understand the relationship between all the given variables

In [53]:

#To view how the features in the given dataset are related w.r.t pateints health condition
sns.pairplot(data=new_ndf,hue='target',palette='gnuplot2')

Out[53]:

<seaborn.axisgrid.PairGrid at 0x17a398a7a30>

In [54]:

new_ndf.corr()

Out[54]:

	age	sex	chest_pain_type	resting_blood_pressure	cholest
age	1.000000	-0.052817	-0.032437	0.285803	0.133
sex	-0.052817	1.000000	-0.100702	-0.025869	-0.105
chest_pain_type	-0.032437	-0.100702	1.000000	0.068188	-0.106
resting_blood_pressure	0.285803	-0.025869	0.068188	1.000000	0.124
cholesterol	0.133491	-0.105245	-0.106774	0.124527	1.000
fasting_blood_sugar	0.093057	0.067205	0.075466	0.127902	-0.016
rest_ecg_type	-0.133033	-0.087955	0.069505	-0.164634	-0.117
max_heart_rate_achieved	-0.389100	-0.048992	0.254116	-0.089399	-0.036
exercise_induced_angina	0.084150	0.192798	-0.393063	0.003885	0.078
st_depression	0.172874	0.164644	-0.126513	0.124011	0.013
st_slope_type	-0.089862	-0.045427	0.056456	-0.059601	0.045
num_major_vessels	0.383863	0.147246	-0.222827	0.092835	0.122
thalassemia_type	0.043353	0.237732	-0.179072	-0.009717	0.073
target	-0.194985	-0.344471	0.404957	-0.124876	-0.113
4					>

LOGISTIC REGRESSION

Building a baseline model using logistic regression algorithm

In [55]:

```
# importing required libraries to bild a model
from sklearn.model_selection import train_test_split as split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, accuracy_score,confusion_matrix
```

```
In [56]:
```

```
ctg_df.head(2) #checking the data of categorical dataframe
```

Out[56]:

		sex	chest_pain_type	fasting_blood_sugar	rest_ecg_type	exercise_induced_angina	st_slop
	0	Male	asymptomatic	> 120mg/ml	normal	no	up
	1	Male	non-anginal pain	< 120mg/ml	abnormal	no	up
4							•

In [57]:

```
ctg_df.drop(columns=['target'],inplace=True)
ctg_df.shape
```

Out[57]:

(255, 8)

In [58]:

```
ctg_dummies_df=pd.get_dummies(new_df.iloc[:,0:-1],columns=ctg_df.columns)
ctg_dummies_df.head(2)
```

Out[58]:

age resting_blood_pressure cholesterol max_heart_rate_achieved st_depression sex_Femal

0	63	145	233	150	2.3
1	37	130	250	187	3.5

2 rows × 28 columns

1

In [59]:

```
sc=StandardScaler()
X=sc.fit_transform(ctg_dummies_df)
X[0]
```

Out[59]:

```
array([ 0.95441987,  0.98039704, -0.26463274,  0.0876077 , 1.17066432, -0.65159881,  0.65159881,  3.74165739, -0.43133109, -0.62725005, -0.98830369, -2.46644143,  2.46644143, -0.99608609, -0.10910895, 1.0198039 ,  0.71335527, -0.71335527, -0.91352743, -0.9653073 , 3.86490621,  0.88499536, -0.5547002 , -0.39223227, -0.27558913, 3.74165739, -1.09465787, -0.79662751])
```

In [60]:

```
scaled X=pd.DataFrame(X,columns=ctg dummies df.columns)
```

In [61]:

```
scaled_X.head()
```

Out[61]:

	age	resting_blood_pressure	cholesterol	max_heart_rate_achieved	st_depression	sex_
0	0.954420	0.980397	-0.264633	0.087608	1.170664	-0
1	-1.995605	0.020331	0.118784	1.750744	2.281090	-0
2	0.273645	-0.619713	2.464392	0.671953	-0.402439	1
3	0.160182	0.660375	1.111157	0.222457	0.245310	1
4	-1.201368	-0.619713	0.411985	1.121449	-0.957651	-0

5 rows × 28 columns

In [62]:

```
Y=new_df.iloc[:,-1]
Y.head()
```

Out[62]:

- 0 diseased
- 1 diseased
- 4 diseased
- 6 diseased
- 7 diseased

Name: target, dtype: object

In [63]:

```
X_train,X_test,Y_train,Y_test=split(scaled_X,Y,random_state=0,test_size=0.25)

lg_model=LogisticRegression()
lg_model.fit(X_train,Y_train)
Y_predict=lg_model.predict(X_test)

Df=pd.DataFrame({'Actual_y':Y_test,'Predicted_y':Y_predict})
Df.head(5)
```

Out[63]:

Actual_y Predicted_y

189	healthy	healthy
103	diseased	diseased
201	healthy	healthy
124	diseased	diseased
180	healthy	healthy

In [64]:

```
print(confusion_matrix(Y_test,Y_predict))
print('===========')
print(accuracy_score(Y_test,Y_predict))
print(classification_report(Y_test,Y_predict))
```

```
[[29 1]
[ 7 27]]
```

0.875

precision	recall	f1-score	support
0.81	0.97	0.88	30
0.96	0.79	0.87	34
		0.88	64
0.88	0.88	0.87	64
0.89	0.88	0.87	64
	0.81 0.96 0.88	0.81 0.97 0.96 0.79 0.88 0.88	0.81 0.97 0.88 0.96 0.79 0.87 0.88 0.88 0.88 0.87

Building a baseline model using RandomForest Classifier algorithm

In [65]:

```
from sklearn.ensemble import RandomForestClassifier
Rfc=RandomForestClassifier(n_estimators=20,random_state=0)
Rfc.fit(X_train,Y_train)
Y_predict=Rfc.predict(X_test)
```

In [66]:

```
error=[]
for i in range(10, 201, 10):
    classifier = RandomForestClassifier(n_estimators = i,random_state=100)
    classifier.fit(X_train, Y_train)
    pred_i = classifier.predict(X_test)
    error.append(np.mean(pred_i != Y_test))

plt.figure(figsize=(12, 6))
plt.plot(range(10, 201, 10),error,color='blue',linestyle=':',marker='o',markerfacecolor='re
plt.xticks(np.arange(10, 201, step=10))
plt.title('Error Rate n_estimator Value')
plt.xlabel('n_estimator Value')
plt.ylabel('Mean Error');
```


In [67]:

```
print(confusion_matrix(Y_test,Y_predict))
print(classification_report(Y_test,Y_predict))
print(accuracy_score(Y_test,Y_predict))
```

[[27 3] [10 24]]

	precision	recall	f1-score	support
diseased	0.73	0.90	0.81	30
healthy	0.89	0.71	0.79	34
accuracy			0.80	64
macro avg	0.81	0.80	0.80	64
weighted avg	0.81	0.80	0.80	64

0.796875

In [68]:

```
Rfc=RandomForestClassifier(n_estimators=30,random_state=0)
Rfc.fit(X_train,Y_train)
Y_predict=Rfc.predict(X_test)
```

64

In [69]:

```
print(confusion_matrix(Y_test,Y_predict))
print(classification_report(Y_test,Y_predict))
print(accuracy_score(Y_test,Y_predict))
```

0.83

[[29 1] [10 24]]				
	precision	recall	f1-score	support
diseased	0.74	0.97	0.84	30
healthy	0.96	0.71	0.81	34
accuracy			0.83	64
macro avg	0.85	0.84	0.83	64

0.86

0.828125

weighted avg

Building a model with features after feature selection.

Feature Selection through CHISQUARE TEST

0.83

In [70]:

```
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.tools import add_constant as ac
new_ndf_constant=ac(df)
new_ndf_constant.head(3)
```

Out[70]:

	const	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blood_sugar
0	1.0	63	1	3	145	233	1
1	1.0	37	1	2	130	250	0
2	1.0	41	0	1	130	204	0
4							>

In [71]:

from scipy import stats as st

In [72]:

```
st.chisqprob=lambda chisq,new_ndf:st.chi2.smf(chisq,new_ndf)
cols=new_ndf_constant.columns[:-1]
mdl=sm.Logit(new_ndf_constant.target,new_ndf_constant[cols])
result=mdl.fit()
result.summary()
```

Optimization terminated successfully.

Current function value: 0.327823

Iterations 7

Out[72]:

Logit Regression Results

Dep. Variable:	target	No. Observations:	298
Model:	Logit	Df Residuals:	284
Method:	MLE	Df Model:	13
Date:	Thu, 29 Sep 2022	Pseudo R-squ.:	0.5248
Time:	10:20:38	Log-Likelihood:	-97.691
converged:	True	LL-Null:	-205.59
Covariance Type:	nonrobust	LLR p-value:	7.672e-39

	coef	std err	z	P> z	[0.025	0.975]
const	3.3034	2.713	1.218	0.223	-2.013	8.620
age	0.0112	0.025	0.452	0.651	-0.037	0.060
sex	-1.8339	0.488	-3.755	0.000	-2.791	-0.877
chest_pain_type	0.8168	0.192	4.265	0.000	0.441	1.192
resting_blood_pressure	-0.0246	0.011	-2.262	0.024	-0.046	-0.003
cholesterol	-0.0045	0.004	-1.119	0.263	-0.012	0.003
fasting_blood_sugar	0.4455	0.566	0.788	0.431	-0.663	1.554
rest_ecg_type	0.3429	0.363	0.944	0.345	-0.369	1.055
max_heart_rate_achieved	0.0243	0.011	2.231	0.026	0.003	0.046
exercise_induced_angina	-0.9367	0.427	-2.196	0.028	-1.773	-0.101
st_depression	-0.4035	0.224	-1.801	0.072	-0.843	0.036
st_slope_type	0.7930	0.364	2.178	0.029	0.080	1.506
num_major_vessels	-1.2982	0.272	-4.779	0.000	-1.831	-0.766
thalassemia_type	-1.0598	0.315	-3.363	0.001	-1.678	-0.442

In [73]:

```
def feature_sg(new_ndf,tgt,clmn):
    while len(clmn)>0:
        mdl=sm.Logit(tgt,new_ndf[clmn])
        result=mdl.fit(disp=0)
        largest_pvalue=round(result.pvalues,3).nlargest(1)
        if largest_pvalue[0]<(0.05):
            return result
        else:
            clmn=clmn.drop(largest_pvalue.index)
result=feature_sg(new_ndf_constant,new_ndf_constant.target,cols)</pre>
```

In [74]:

```
result.summary()
```

Out[74]:

Logit Regression Results

298	No. Observations:	target	Dep. Variable:
290	Df Residuals:	Logit	Model:
7	Df Model:	MLE	Method:
0.5035	Pseudo R-squ.:	Thu, 29 Sep 2022	Date:
-102.07	Log-Likelihood:	10:20:39	Time:
-205.59	LL-Null:	True	converged:
3.690e-41	LLR p-value:	nonrobust	Covariance Type:

	coef	std err	Z	P> z	[0.025	0.975]	
sex	-1.5373	0.430	-3.576	0.000	-2.380	-0.695	
chest_pain_type	0.7807	0.183	4.277	0.000	0.423	1.138	
max_heart_rate_achieved	0.0221	0.006	3.962	0.000	0.011	0.033	
exercise_induced_angina	-0.9121	0.395	-2.306	0.021	-1.687	-0.137	
st_depression	-0.4530	0.203	-2.233	0.026	-0.850	-0.055	
st_slope_type	0.7444	0.342	2.175	0.030	0.074	1.415	
num_major_vessels	-1.2035	0.244	-4.926	0.000	-1.682	-0.725	
thalassemia_type	-1.0463	0.285	-3.666	0.000	-1.606	-0.487	

In [75]:

```
final_df=new_df[['sex','chest_pain_type','max_heart_rate_achieved','exercise_induced_angina
```

```
In [76]:
```

```
final_df.head(2)
```

Out[76]:

	sex	chest_pain_type	max_heart_rate_achieved	exercise_induced_angina	st_depression	st_
0	Male	asymptomatic	150	no	2.3	
1	Male	non-anginal pain	187	no	3.5	

In [77]:

ctg_df.drop(columns=['fasting_blood_sugar','rest_ecg_type'],inplace=True) #dataframe with s

In [78]:

ctg_df.head(2)

Out[78]:

	sex	chest_pain_type	exercise_induced_angina	st_slope_type	num_major_vessels	thalasse
0	Male	asymptomatic	no	upsloping	0	fix
1	Male	non-anginal pain	no	upsloping	0	normal
4						>

In [79]:

dummies_df=pd.get_dummies(final_df.iloc[:,0:-1],columns=ctg_df.columns) #Creating the dummi

In [80]:

dummies_df.head() # Viewing the first 5 rows of dummy dataframe

Out[80]:

	max_heart_rate_achieved	st_depression	sex_Female	sex_Male	chest_pain_type_asymptomat
0	150	2.3	0	1	
1	187	3.5	0	1	
4	163	0.6	1	0	
6	153	1.3	1	0	
7	173	0.0	0	1	
4					•

In [81]:

x=sc.fit_transform(dummies_df) #Scaling the data of dummies dataframe to normalize the data y=final_df.iloc[:,-1] #A dataframe with target variables.

In [82]:

```
# Spliting the features and target varaibles
x_train,x_test,y_train,y_test=split(x,y,random_state=0,test_size=0.3)
#Viewing the shape of splitted data
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

(178, 20)
(178,)
(77, 20)
(77,)
```

In [83]:

[[33 4]

```
# Building Logistic regression model with selected features
lg=LogisticRegression()
lg.fit(x_train,y_train)
y_pred=lg.predict(x_test)

print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
print(accuracy_score(y_test,y_pred))
```

[7 33]]	precision	recall	f1-score	support
diseased healthy	0.82 0.89	0.89 0.82	0.86 0.86	37 40
accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	77 77 77

0.8571428571428571

With baseline LogisticRegression model the accuracy is 82.8125 % but with the feature selected LogisticRegression model not only accuracy but also f1 score is increased to 85.71%

In [84]:

```
#Building the Random forest classifier with selected features
RFC=RandomForestClassifier(n_estimators=20,random_state=0)
RFC.fit(x_train,y_train)
y_pred=RFC.predict(x_test)

print('confusion_matrix:',confusion_matrix(y_test,y_pred))
print('classification_report:',classification_report(y_test,y_pred))
print('accuracy_score:',accuracy_score(y_test,y_pred))
```

```
confusion_matrix: [[32 5]
 [ 8 32]]
classification_report:
                                      precision
                                                    recall f1-score
                                                                        support
    diseased
                   0.80
                              0.86
                                        0.83
                                                     37
     healthy
                   0.86
                              0.80
                                        0.83
                                                     40
                                        0.83
                                                     77
    accuracy
   macro avg
                   0.83
                              0.83
                                        0.83
                                                     77
                                        0.83
weighted avg
                              0.83
                                                     77
                   0.83
```

accuracy_score: 0.8311688311688312

In [85]:

```
error=[]
for i in range(10, 201, 10):
    classifier = RandomForestClassifier(n_estimators = i,random_state=100)
    classifier.fit(X_train, Y_train)
    pred_i = classifier.predict(X_test)
    error.append(np.mean(pred_i != Y_test))

plt.figure(figsize=(12, 6))
plt.plot(range(10, 201, 10),error,color='blue',linestyle=':',marker='o',markerfacecolor='re
plt.xticks(np.arange(10, 201, step=10))
plt.title('Error Rate vs n_estimator Value')
plt.xlabel('n_estimator Values')
plt.ylabel('Mean_Error')
```

Out[85]:

Text(0, 0.5, 'Mean_Error')

In [86]:

```
# Checking for best accuracy of the building model by fixing the estimator values which giv
RFC=RandomForestClassifier(n_estimators=35,random_state=0)
RFC.fit(x_train,y_train)
y_pred=RFC.predict(x_test)

print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
print(accuracy_score(y_test,y_pred))
```

[[32 5] [8 32]]				
	precision	recall	f1-score	support
diseased	0.80	0.86	0.83	37
healthy	0.86	0.80	0.83	40
accuracy			0.83	77
macro avg	0.83	0.83	0.83	77
weighted avg	0.83	0.83	0.83	77

0.8311688311688312

With baseline RandomForestClassifier model the accuracy is 82.8125% but with feature selection the accuracy has been improved to 83.16%. Beacuse of the feature selection the f1-score of the model is also increased