Engine Fault Detection Using Vibration Signal Reconstruction in the CA Domain

- I. Arasaratnam, McMaster U.
- S. Habibi, McMaster U.
- C. Kelly, U. Windsor
- T. Fountaine, U. Windsor
- J. Tjong, U. Windsor

Organization

- Engine Fault Detection: Brief Overview
- Test Setup
- Proposed Solution:
 - Sinc-based vibration signal reconstruction in the CA domain
- Main Results
- Concluding Remarks
- Future Work

Overview

- Three types of engine fault detection:
 - In-process test
 - Cold test
 - Hot test
- Measurements used during hot tests:
 - Torque
 - In-cylinder pressure
 - Sound
 - Vibration etc.
- Why vibration measurements are so popular?

Test Setup

- Objective: To classify engines as pass/fail quantitatively
- Test setup:

CID Signal for Referencing

- CID wheel configuration:
 [90-120-60-120-60-120-60-180-90]
- Variable reluctance type sensor

Proposed Solution: 5-Step Procedure

Sinc Interpolation

 Idea: Any band-limited signal x(t) can be reconstructed from its samples at integer spacing as follows:

$$\widetilde{x}(t) = \sum_{k=-\infty}^{\infty} x[k] \operatorname{sinc}\left(\frac{t - kt_s}{t_s}\right)$$

Example:

Sinc Interpolation (Cont'd)

Virtues

- More accurate than the linear/cubic spline method
- Easy to implement

Limitations

- Useful for off-line applications only
- Not suitable for discontinues (broad-band) signals
- Computationally more expensive

Performance Metric

- Ensemble-averaged MSE:
 - Step 1: Calculate the ensemble average

$$\overline{x}_i = \frac{1}{N} \sum_{j=1}^{N} x_{i,j}$$

Step 2: Calculate the instantaneous MSE $e_{i,i} = (x_{i,i} - \overline{x}_i)^2$

$$e_{i,j} = (x_{i,j} - \overline{x}_i)^2$$

Step 3: Calculate the ensemble-averaged MSE

$$e_i = \frac{1}{N} \sum_{j=1}^{N} e_{i,j} = \frac{1}{N} \sum_{j=1}^{N} x_{i,j}^2 - \overline{x}_i^2$$

Results (Cont'd)

Concluding Remarks

- Sinc interpolation method outperforms the linear and cubic-spline in accurately reconstructing vibration signals in the CA domain
- CA domain analysis can be used to further point to the faulty portion of an engine depending on which accelerometer exhibits abnormal spikes
- Faulty valve events can be located by mapping spikes to the valve timing diagrams

SAE International

2011-01-1660

Future Work

- Use the CA domain analysis for fault detection using
 - in-cylinder pressure and
 - acoustic signals
- Investigate the effects of
 - sampling frequency and
 - the number of teeth used in the reference wheel on the final results

Thank you!

Questions?

