RedHawk-SC Explorer & Reporting Utilities

RedHawk-SC Modular Training Series

Version: RedHawk-SC 2020_R3

Prerequisite for the Training

No.	Training Program	Must be familiar with
1.	RedHawk-SC Modular Training	Creating Views including DesignView, TimingView and ExtractView
2.	Basic Python	Familiarity with Basic Python Programming. Ability to comprehend Python Scripts.

Table of Contents

- A few helpful and needed Python Functions
- Data Integrity Reports
- Grid Robustness Reporting
- Power Reporting
- Voltage Reporting

A few helpful Python Constructs

functools.partial

- The Python Partial Function
 - Convert a 'n' argument function to a 'm' argument function (m < n)

```
In [1]: from functools import partial
In [2]: def add(a, b): return a+b
In [3]: add(2, 3)
Out[3]: 5
In [4]: add2 = partial(add, b=2)
In [5]: add2(6)
Out[5]: 8
In [6]: add5 = partial(add, b=5)
In [7]: add5(2)
Out[7]: 7
In [8]: add2(3) + add5(5)
Out[8]: 15
```

RedHawk-SC automatically imports partial to its environment when running

str.format

```
string = '{0:10.5f} {1:25} {2}'.format(234.212345, 'Hello', 'Hero')
print(string + '\n')
# >>> _234.21234_Hello_______Hero
```


str.format

Simplified Format language specification*

```
{element index:format spec}
element index := integer
format spec := [[align][width][,][.precision][type]]
align := '<', '>', '^'
                                                               element_index
width := integer
precision := integer
                                                                  align
type := 'f', 'g', '%'
                                                                 width
                                                                 precision
                                                                  type
                                  {0:>10,.2f}
```


^{*} Refer to https://docs.python.org/2/library/string.html#format-string-syntax for the full syntax spec

gp_delayed_object

- SeaScape Specific object to Schedule Jobs/Functions on the Workers
- Allows fall-through
 - Does not hold up the Master Console when executing
- Call get on the gp delayed object to use the results
- Please refer to the next few slides for details

Serial Execution of Jobs

```
def long calculation(args):
    return do something(args)
def longer calculation(args):
    return do something else(args)
def process result(aa, bb):
    return calculate(aa, bb)
def write to file(file name, value):
   with open(file_name, 'w') as fp:
        fp.write(value + '\n')
intermediate result 1 = long calculation(args)
intermediate_result_2 = longer_calculation(args 2)
final result = process result (intermediate result 1, intermediate result 2)
write_to_file('output', final result)
print("Calculated")
```


Making the Calculations fall-through with gp_delayed_object

- We provide a decorator, sch_func that can be applied to a function to make it a gp delayed object
- This allows the function to run on workers, freeing up the Master Console and making the whole script fall-through

Making the Calculations fall-through with gp_delayed_object

```
@sch func
def long calculation(args):
    return do something(args)
@sch func
                                         File View Worker Plot
def longer calculation(args):
                                         Jobs
    return do something else(args)
                                            W2@H1
                                                                      longer_calculation(
@sch func
def process result(aa, bb):
    data 1 = aa.qet()
    data 2 = bb.qet()
    return calculate(data 1, data 2)
@sch func
def write to file(file name, value):
    with open (file name, 'w') as fp:
        fp.write('{0}\n'.format(value.get()))
intermediate result 1 = long calculation(args)
intermediate result 2 = longer calculation(args 2)
final result = process result (intermediate result 1, intermediate result 2)
write to file('output', final result)
print("Submitted")
```


write_to_file(./output.sc_0_..

Data Integrity Reports

Data Integrity Reports: Design View

data_integrity_reports.create_dv_di_reports

```
di = data_integrity_reports.create_dv_di_reports(dv)
data_integrity_summary = di.get()
```

```
'apl cap check': {'Combinational': {'covered': 67, 'total': 67},
                'Decap': {'covered': 0, 'total': 0},
                'Filler': {'covered': 0, 'total': 0},
                'ICG': {'covered': 0, 'total': 0},
                'MBFF': {'covered': 0, 'total': 0},
                'Macro': {'covered': 1, 'total': 1},
                'Power_Gate': {'covered': 0, 'total': 1},
                'Sequential': {'covered': 8, 'total': 8}},
'apl current_check': {'Combinational': {'covered': 67, 'total': 67},
                    'Decap': {'covered': 0, 'total': 0},
                    'Filler': {'covered': 0, 'total': 0},
                    'ICG': {'covered': 0, 'total': 0},
                    'MBFF': {'covered': 0, 'total': 0},
                    'Macro': {'covered': 1, 'total': 1},
                    'Power_Gate': {'covered': 0, 'total': 1},
                    'Sequential': {'covered': 8, 'total': 8}},
```


Design View Data Integrity Reports: Available Checks

data_integrity_reports.create_dv_di_reports

Available Design	View Data	Integrity	Checks

	•		
apl_cap_check	List of cells that have no APL Cap Models in the design		
apl_current_check	List of cells that have no APL Current Models in the design		
ccs_cap_check	List of Cells that have no CCS Power Cap Models in the Design		
ccs_current_check	List of Cells that have no CCS Current Models in the Design		
ccs_timing_check	List of Cells that have no CCS Timing Models in the Design		
lef_check	List of Cells that do not have a LEF Cell in the Design		
lib_check	List of Cells that do not have a Liberty Model in the Design		
lib_nldm	List of Cells that do not have Liberty Delay Models in the Design		
lib_nlpm	List of Cells that do not have Liberty Power Models in the Design		
macro_model_check	List of Macro Cells that do not have Macro Models in the Design		

Design View Data Integrity Reports: Argument(s)

data_integrity_reports.create_dv_di_reports

Required Argument

dv

Optional Arguments				
celltype_excludes	By default, Filler and Decap will be excluded from all checks			
detailed_reports	False			
<pre>detailed_reports_directory</pre>	"./data_integrity_reports"			

Design View Data Integrity Reports: celltype_excludes

data_integrity_reports.create_dv_di_reports

Valid options for celltype_excludes

Combinational

Decap

Filler

ICG

MBFF

Macro

Power Gate

Sequential

DesignView Data Integrity Reports: Usage Examples

Create the DesignView data integrity reports for the design

data_integrity_reports.create_dv_di_reports(dv, detailed_reports=True)

DesignView Data Integrity Reports: Usage Examples

Using celltype_excludes to control the type of cells being reported

©2020 ANSYS, Inc. / Confidential

SPEF Data Integrity Reports

```
data_integrity_reports.create_spef_data_integrity_reports
```

```
sdi = data_integrity_reports.create_spef_data_integrity_reports(evx)
spef_data_integrity_summary = sdi.get()
```


SPEF Data Integrity Reports: Available Checks

data_integrity_reports.create_spef_data_integrity_reports

spef_check	List of Instances that have all their pins covered in the input SPEF
zero_cap_check	List of Instances that have non-zero capacitance annotated from the input SPEF

©2020 ANSYS, Inc. / Confidential

SPEF Data Integrity Reports: Argument(s)

data_integrity_reports.create_spef_data_integrity_reports

Required Argument

evx

Optional Arguments

scenario_view None

detailed_reports False

filter_func None

filter_types

detailed_reports_file_name "./spef_detailed_reports.xxx"

SPEF Data Integrity Reports: filter_types

data_integrity_reports.create_spef_data_integrity_reports

Valid options for filter_types

Combinational

Decap

Filler

ICG

MBFF

Macro

Power Gate

Sequential

22

SPEF Data Integrity Reports: Usage Examples

Create the detailed SPEF Data Integrity Reports for the design

data_integrity_reports.create_spef_data_integrity_reports(evx, detailed_reports=True)

```
#Instance
                                            Net
ZBUF 314 inst 65462
                                            ZBUF 314 4214
ZBUF 3658 inst 51786
                                            ZBUF 3658 69
ZBUF_603_inst_65321
                                            ZBUF 603 4207
ZBUF 2 inst 54949
                                            ZBUF 2 2382
core2.regfile data memory.DFF X1 100
                                        QN
                                            core2.regfile data memory. 26781
core2.regfile data memory.DFF X1 101
                                             core2.regfile data memory. 26782
                                        QN
core2.regfile data memory.DFF X1 102
                                        ON
                                            core2.regfile data memory. 26783
core2.regfile data memory.DFF X1 103
                                        QN
                                             core2.regfile data memory. 26784
core2.regfile data memory.DFF X1 104
                                            core2.regfile data memory. 26785
core2.regfile_data_memory.DFF_X1_1042
                                             core2.regfile_data_memory._27723
core2.regfile_data_memory.DFF_X1_1043
                                            core2.regfile data memory. 27724
core2.regfile_data_memory.DFF_X1_105
                                            core2.regfile_data_memory._26786
```

```
#Instance
                                            Net
ZBUF 314 inst 65462
                                            ZBUF 314 4214
ZBUF 3658 inst 51786
                                             ZBUF 3658 69
ZBUF_603_inst_65321
                                            ZBUF_603_4207
ZBUF 2 inst 54949
                                            ZBUF 2 2382
core2.regfile data memory.DFF X1 100
                                            core2.regfile data memory. 26781
core2.regfile data memory.DFF X1 101
                                            core2.regfile data memory. 26782
core2.regfile data memory.DFF X1 102
                                       ON
                                            core2.regfile data memory. 26783
core2.regfile data memory.DFF X1 103
                                            core2.regfile data memory. 26784
core2.regfile data memory.DFF X1 104
                                            core2.regfile data memory. 26785
core2.regfile_data_memory.DFF_X1_1042
                                            core2.regfile_data_memory._27723
core2.regfile data memory.DFF X1 1043
                                            core2.regfile data memory. 27724
core2.regfile_data_memory.DFF_X1_105
                                            core2.regfile_data_memory._26786
```

spef check zero cap check

SPEF Data Integrity Reports: Usage Examples

Using filter_types to control the type of cells being reported

SPEF Data Integrity Reports: Usage Examples

Using filter_func to filter instances

```
def filter_func(instance, dv, skip_pattern):
    instance_name = dv.convert_to_name(instance)
    if re.search(skip_pattern, instance_name.get_name()):
        return True
    else:
        return False
data_integrity_reports.create_spef_data_integrity_reports(evx,
    detailed_reports=True, filter_func=partial(filter_func, dv=dv,
    skip pattern=re.compile('.*filler.*', re.I))
```


STA Data Integrity Reports

data_integrity_reports.create_timing_view_data_integrity_reports

```
summary = data_integrity_reports.create_timing_view_data_integrity_reports(tv)
```

```
summary
{'chdata': None,
'slew_summary': defaultdict(<type 'int'>, {'Sequential': 70726, 'Macro': 8, 'Combinational': 283055}),
'total_count': defaultdict(<type 'int'>, {'Sequential': 72072, 'Macro': 8, 'Combinational': 305402}),
'tw_summary': defaultdict(<type 'int'>, {'Sequential': 70649, 'Macro': 8, 'Combinational': 290388})}
```


STA Data Integrity Reports: Available Checks

data_integrity_reports.create_timing_view_data_integrity_reports

tw_check	List of instances which has no timing window for at least one of its pins
slew_check	List of instances which have no slew for at least one of its pins

STA Data Integrity Reports: Argument(s)

data_integrity_reports.create_timing_view_data_integrity_reports

Required Argument

tv

Optional Arguments

STA Data Integrity Reports: exclude_cell_types

data_integrity_reports.create_timing_view_data_integrity_reports

Valid options for exclude_cell_types

Combinational

Decap

Filler

ICG

MBFF

Macro

Power Gate

Sequential

STA Data Integrity Reports: Usage Examples

Create the detailed STA Data Integrity Reports for the design

```
Failing_pins
#Instance
ZBUF 314 inst 65462
ZBUF_2_inst_65247
ZBUF_603_inst_65321
ccd_drc_inst_65432
ccd_drc_inst_65433
ccd drc inst 65434
ccd_drc_inst_65435
HFSBUF 2 26908
ZBUF_1684_inst_65207
ZBUF 1047 inst 65209
ZBUF 752 inst 65211
ZBUF_2_inst_65230
ZBUF_2_inst_65250
ZBUF 2 inst 65252
```

```
sta_check
```

```
#Instance
                                                    Failing pins
ZBUF 314 inst 65462
ZBUF_2_inst_65247
ZBUF_603_inst_65321
ccd drc inst 65432
ccd_drc_inst_65433
ccd drc inst 65434
ccd drc inst 65435
HFSBUF 2 26908
ZBUF_1684_inst_65207
ZBUF 1047 inst 65209
ZBUF 752 inst 65211
ZBUF_2_inst_65230
ZBUF_2_inst_65250
ZBUF 2 inst 65252
```

slew_check

STA Data Integrity Reports: Usage Examples

Using exclude_cell_types to control the type of cells being reported

STA Data Integrity Reports: Usage Examples

Using file_name to change the output files

Construction Check Reports: Disconnected Instances

data_integrity_reports.write_unconnected_pg_pins_report

data_integrity_reports.write_unconnected_pg_pins_report(ev)

# loc_x	loc_y	Gell_name	pin	net	logical_disconnect	physical_disconnect	instance
1215.62	222.6	INV_X4	VDD	VDD	0	1	ZINV_133_inst_52478
1215.62	222.6	INV_X4	VSS	VSS	0	1	ZINV_133_inst_52478
1216.57	222.6	INV_X4	VDD	VDD	0	1	ZINV_133_inst_52482
1216.57	222.6	INV_X4	VSS	VSS	0	1	ZINV_133_inst_52482
1215.62	85.4	INV_X2	VDD	VDD	0	1	ZINV_49_inst_52486
1215.62	85.4	INV_X2	VSS	VSS	0	1	ZINV_49_inst_52486
1215.62	110.6	INV_X2	VDD	VDD	0	1	ZINV_51_inst_52489
1215.62	110.6	INV_X2	VSS	VSS	0	1	ZINV_51_inst_52489
1216.19	110.6	INV_X2	VDD	VDD	0	1	ZINV_51_inst_52492
1216.19	110.6	INV_X2	VSS	VSS	0	1	ZINV_51_inst_52492
1216.76	110.6	INV_X2	VDD	VDD	0	1	ZINV_51_inst_52495
1216.76	110.6	INV_X2	VSS	VSS	0	1	ZINV_51_inst_52495

Disconnected Instance Reports: Argument(s)

data_integrity_reports.write_unconnected_pg_pins_report

Required Argument

ev

output_file "./unconnected_instance_pin.rpt"

columns

formats

header

footer

max_lines 5000

Disconnected Instance Reports: columns

data_integrity_reports.write_unconnected_pg_pins_report

```
Valid options for columns

loc_x

loc_y

cell_name

pin

net

logical_disconnect

physical_disconnect

instance
```


35

Disconnected Instance Report: Usage Examples

Report all the disconnected instance pins in the design

data_integrity_reports.write_unconnected_pg_pins_report(ev, max_lines=None)

Construction Check Reports: Shorted Nodes

data_integrity_reports.write_short_report

data_integrity_reports.write_short_reports(ev)

```
#Net_1
            Net 2
                                    Location
                       Layer
VSS
           core3/VDD INT metal1
                                      653.2150, 1.4525
VSS
           core3/VDD INT metal1
                                      660.8850, 1.4450
VSS
           core3/VDD_INT metal1
                                      660.8850, 1.4775
VSS
           core3/VDD INT metal1
                                      690.8850, 1.4525
VSS
           core3/VDD_INT metal1
                                      720.8850, 1.4450
VSS
           core3/VDD_INT metal1
                                      720.8850, 1.4775
VSS
           core3/VDD_INT metal1
                                      724.4925, 1.4525
VSS
           core3/VDD_INT metal1
                                      726.1000, 1.4450
VSS
           core3/VDD_INT metal1
                                      841.2500, 1.4450
VSS
           core3/VDD_INT metal1
                                      726.1000, 1.4775
VSS
           core3/VDD_INT metal1
                                      732.4925, 1.4775
VSS
           core3/VDD_INT metal1
                                      740.8850, 1.4775
VSS
           core3/VDD_INT metal1
                                      770.8850, 1.4775
```


Shorted Node Report: Argument(s)

data_integrity_reports.write_short_report

Required Argument

ev

Optional Arguments

output_file

"./unconnected_instance_pin.rpt"

Construction Check Reports: Disconnected Nodes

data_integrity_reports.write_unconnected_node_report

```
data_integrity_reports.write_unconnected_node_report(ev)
```

```
#Total disconnected nodes = 5780 . Line limit used = 100000
                          Layer
                                               Net
  944.3675
             796.1800
                          metal1
                                              VDD
                          metal1
 1218.6600
               2.8000
                                              VDD
 1223.2200
               2.8000
                          metal1
                                              VDD
               2.8000
                          metal1
 1225.5000
                                              VDD
                          metal1
 1226.3550
               2.8000
                                              VDD
 1226.5450
               2.8000
                          metal1
                                              VDD
 1226.7350
               2.8000
                          metal1
                                              VDD
                          metal1
 1218.6600
               5.6000
                                              VDD
               5.6000
                          metal1
 1223.2200
                                              VDD
 1225.5000
               5.6000
                          metal1
                                              VDD
 1226.3550
               5.6000
                          metal1
                                              VDD
 1226.5450
               5.6000
                          metal1
                                              VDD
 1226.7350
               5.6000
                          metal1
                                              VDD
```


D

Disconnected Node Report: Argument(s)

data_integrity_reports.write_unconnected_node_report

Required Argument

ev

Optional Arguments

1	
output_file	"./disconnected_nodes.rpt"
limit	100,000

Power/Voltage/Current/Resistance Reports

emir_reports

- Power Reports
- Voltage/Current Reports
 - Bump Current/Voltage Reports
 - Demand/Supply Current Reports
 - Instance Voltage Reports
 - Layer Voltage Report/Node Voltage Report
 - Switch Voltage Report
 - Electromigration Report
- Resistance Reports
 - SPR Report
 - Fast Effective Resistance Report

Power Reports

emir_reports.write_instance_power_report_and_summary

```
**** RedHawk-SC Power Summary Report ****
Created: Mon May 4 23:52:30 2020
 total of 1185384 instances were summarized for this report while 807905 were omitted due to missing power data (31.84% coverage).
 total of 0 pins were omitted because they were not attached to a power domain.
rouping
                   clock_pin_power(W) internal_power(W) leakage_power(W) switching_power(W) total_power(W) percent_power(%) pin_count instance_count
*** Power Domains:
                                                                                                                                    282689
                                                                                                                                               282689
                        0.061068
                                           0.038358
                                                              0.010882
                                                                                0.068866
                                                                                                   0.11808
                                                                                                                     82.16
core3/VDD_INT
                        0.0085734
                                          0.0046497
                                                              0.003602
                                                                                0.018233
                                                                                                   0.025648
                                                                                                                     17.84
                                                                                                                                    94790
                                                                                                                                               94790
                        0.869641
                                           0.843888
                                                              0.014484
                                                                                0.087898
                                                                                                   0.14373
                                                                                                                     166.88
                                                                                                                                   377479
                                                                                                                                               377479
*** Frequency Domains:
.25e+08
                        0.869641
                                                                                                                      160.00
                                                                                                                                    377479
                                                                                                                                                377479
                                           0.042917
                                                              0.014484
                                                                                0.687098
                                                                                                   0.14373
Total
                        0.069641
                                           0.842917
                                                              0.014484
                                                                                0.087098
                                                                                                   0.14373
                                                                                                                     160.88
                                                                                                                                    377479
                                                                                                                                               377479
*** User Defined Groups:
combinational logic
                            0
                                          0.0060018
                                                             0.8887147
                                                                                0.083258
                                                                                                   8.096534
                                                                                                                     67.17
                                                                                                                                    305671
                                                                                                                                                305671
sequential logic
                        0.069641
                                           0.037575
                                                             0.0057252
                                                                                0.0038403
                                                                                                   0.047141
                                                                                                                     32.80
                                                                                                                                    71800
                                                                                                                                               71800
                                          7.6725e-86
                                                              4.43e-65
                                                                                    0
                                                                                                  5.1973e-05
                                                                                                                      0.04
                                                                                                                                     8
                                                                                                                                                 8
nemory
Total
                        0.069641
                                           0.043585
                                                              0.014484
                                                                                                   8.14373
                                                                                                                                    377479
                                                                                0.087098
                                                                                                                     160.00
                                                                                                                                               377479
**** End Report ****
```

```
>>> summary = emir reports.write instance power report and summary(scn)
'clock': {'Total': {'percent_power': 0}},
domain': {"Net('VDD')": {'clock pin power': 0.06106774578938712,
                        'instance_count': 282689,
                        'internal_power': 0.0383582320820679,
                        'leakage power': 0.010882196835498625,
                        'percent_power': 82.15531222478005,
                        'pin_count': 282689,
                        'switching_power': 0.0688658116659866,
                        'total_power': 0.11808100451804293},
         "Net('core3/VDD_INT')": {'clock_pin_power': 0.008573434120080492,
                                  'instance count': 94790,
                                  'internal power': 0.004649668683926134,
                                  'leakage_power': 0.003602008892117148,
                                  'percent_power': 17.84468777521995,
                                  'pin count': 94790,
                                  'switching_power': 0.01823250459287351,
                                  'total power': 0.0256479903824558}
```


Power Reports: Argument(s)

emir_reports.write_instance_power_report_and_summary

Required Argument

view

Optional Arguments	
<pre>file_name_detailed_report</pre>	"./power.rpt"
file_name_summary_report	"./power_summary.rpt"
columns	
sort	True
sort_order	'descending'
sort_columns	['total_power']
header_instance_report	
header_summary_report	
<pre>format_instance_report</pre>	
<pre>format_summary_report</pre>	
<pre>max_lines_detailed_report</pre>	5000
write_instance_file	False

Power Reports: columns

emir_reports.write_instance_power_report_and_summary

Allowed values for columns
instance
cell_name
loc_x
loc_y
pin
domain
clock_pin_power
frequency

Allowed values for columns	
internal_power	
leakage_power	
source	
switching_power	
toggle_rate	
total_power	
voltage	

Power Reports: Creating Instance Power File

emir_reports.write_instance_power_report_and_summary(scn,
write_instance_file=True, max_lines_detailed_report=None)

# clock_			d in internal				a transmission and the	n Arriet executive		carries (fighted)	
# pin	domain	frequency	toggle_rate	clock in power	internal_power	leakage_power	switching_power	total_power	voltage	cell_name	instance
#		(Hz)		(W)	(W)	(W)	(W)	(W)	(V)		
VDD	VDD	1.25e+08	2.00	0	4.875e-86	4.321e-07	7.132e-05	7.582e-05	1.10	INV_X32	cts_inv_525660807
VDD	VDD	1.25e+08	2.00	0	1.828e-86	2.16e-07	8.136e-05	8.261e-05	1.10	INV_X16	cts_inv_526160812
VDD	VDD	1.25e+08	2.00	0	4.849e-86	4.321e-07	7.4e-05	7.848e-05	1.10	INV_X32	cts_inv_526560816
VDD	VDD	1.25e+08	2.00	0	9.244e-07	2.16e-07	6.886e-85	7e-85	1.10	INV_X16	cts_inv_527260823
VDD	VDD	1.25e+08	2.00	Ð	1.816e-86	2.433e-07	6.484e-85	6.61e-05	1.10	INV_X16	cts_inv_584061391
VDD	VDD	1.25e+08	2.00	Ð	-1.962e-07	2.16e-07	6.138e-85	6.14e-05	1.10	INV_X16	cts_inv_527360824
VDD	VDD	1.25e+08	2.00	0	1.399e-66	2.433e-07	5.751e-85	5.915e-05	1.10	INV_X16	cts_inv_584561396
VDD	VDD	1.25e+08	2.00	0	9.803e-07	2.433e-07	6.954e-85	7.076e-05	1.10	INV_X16	cts_inv_584661397
VDD	VDD	1.25e+08	2.00	0	1.502e-06	2.433e-07	4,663e-85	4.837e-05	1.10	INV_X16	cts_inv_584761398
VDD	VDD	1.25e+08	2.00	0	2.806e-06	2.433e-07	5.574e-85	5.799e-05	1.10	INV_X16	cts_inv_585661407
VDD	VDD	1.25e+08	2.00	0	1.676e-86	2.433e-07	5.136e-05	5.328e-05	1.10	INV_X16	cts_inv_585961410
VDD	VDD	1.25e+08	2.00	Ð	1.012e-06	2.433e-07	5.961e-85	6.087e-05	1.10	INV_X16	cts_inv_586161412
VDD	VDD	1.25e+08	2.00	0	2.886e-86	2.433e-07	5.653e-85	5.878e-05	1.10	INV_X16	cts_inv_586561416
VDD	VDD	1.25e+08	2.00	0	-4.219e-07	1.216e-07	4.462e-85	4.432e-05	1.10	INV_X8	inv_drc_cln62326
VDD	VDD	1.25e+08	2.00	0	-7.325e-07	1.08e-07	3.476e-85	3.414e-05	1.10	INV_X8	cts_inv_525860809
VDD	VDD	1.25e+08	2.00	0	-2.786e-07	2.433e-07	6.638e-85	6.634e-05	1.10	INV_X16	cts_inv_526360814
VDD	VDD	1.25e+08	1.00	0	-2.895e-06	8.52e-08	3.28e-05	2.999e-05	1.10	BUF_X4	ZBUF_62_inst_51475
VDD	VDD	1.25e+08	2.00	0	7.505e-07	2.698e-08	3.686e-86	4.384e-06	1.10	CLKBUF_X3	ZBUF_314_inst_65462

Power Reports: Usage Examples

Customize the columns reported in the Instance Power File

```
columns = ['pin', 'domain', 'total_power', 'instance']
formats = '{0:10} {1:10} {2:10.4f} {3}'
header = '{0:10} {1:10} {2:10} {3}'.format(*columns)

emir_reports.write_instance_power_report_and_summary(
    scn, write_instance_file=True, columns=columns,
    format_instance_report=formats, header_instance_report=header)
```


Bump Voltage/Current Reports

emir_reports.write_bump_currents
emir_reports.write_bump_voltages


```
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,
```

VDD/VSS Bump Voltage in SignalViewer

Bump Voltage/Current Reports

```
emir_reports.write_bump_currents
emir_reports.write_bump_voltages
```

Required Argument

analysis_view

Optional Argument

output_file "./bump_currents.sv"

Optional Argument

output_file "./bump_voltages.sv"

Demand/Supply Current Reports

emir_reports.write_demand_currents emir_reports.write_supply_currents

VDD/VSS Demand Currents in SignalViewer

Bump Voltage/Current Reports

```
emir_reports.write_demand_currents
emir_reports.write_supply_currents
```

Required Argument

analysis_view

Optional Argument

output_file "./demand_current.sv"

Optional Argument

output_file "./supply_current.sv"

Instance Voltage Report

emir_reports.write_all_instance_voltages

>>> emir_reports.write_all_instance_voltages(av_dynamic)

# loc_x	loc_y	eff_Vdd	max_pg_tw	min_pg_tw	min_pg_sim	max_pg_sim	min_vdd_tw	max_vss_tw	pg_arc instance
# (u)	(u)	(v)	(v)	(v)	(v)	(v)	(v)	(v)	pwr/gnd
894.735	518.105	0	1.104	1.081	1.016	1.114	1.09	0.00878	core3/VDD_INT/VSS core3/regfile_program_memory.DFF_X1_5801
894.355	518.105	1.078	1.101	1.018	1.018	1.114	1.101	0.08243	core3/VDD_INT/VSS core3/cts_inv_529824785
898.725	518.105	0	1.104	1.081	1.018	1.114	1.09	0.008812	core3/VDD_INT/VSS core3/regfile_program_memory.DFF_X1_620
39.9	1141.0	1.069	1.1	1.02	1.02	1.123	1.025	0.005166	VDD/VSS cts_inv_551661067
41.61	1143.8	1.073	1.1	1.072	1.02	1.124	1.087	0.01495	VDD/VSS core1.regfile_data_memory.DFF_X1_5956
893.785	518.105	1.084	1.114	1.081	1.021	1.114	1.09	0.008772	core3/VDD_INT/VSS core3/regfile_program_memory.NAND3_X1_302
37.81	1143.8	1.074	1.1	1.074	1.022	1.124	1.089	0.01513	VDD/VSS core1.regfile_data_memory.DFF_X1_1621
894.165	518.105	0	1.114	1.082	1.022	1.114	1.091	0.00865	core3/VDD_INT/VSS core3/regfile_program_memory.NAND2_X1_940
46.74	1143.8	0	1.124	1.072	1.023	1.124	1.087	0.01477	VDD/VSS core1.regfile_data_memory.MUX2_X1_4796
279.3	732.2	0	1.1	1.086	1.024	1.121	1.094	0.007483	VDD/VSS core1.regfile_program_memory.INV_X1_3086
275.69	729.4	1.074	1.1	1.024	1.024	1.121	1.029	0.005383	VDD/VSS cts_inv_558261133

Instance Voltage Report: Arguments

emir_reports.write_all_instance_voltages

Opti	onal	Argu	ments

output_file "./voltage_stats.rpt"

columns

sort True

sort_order descending

sort_columns ['min_pg_sim']

formats

header

footer

max_lines 5000

domain_filter None

skip_instances_with_no_effdvd False

report_macros False

av

Required Argument

Instance Voltage Report: columns

emir_reports.write_all_instance_voltages

Valid column names
loc_x
loc_y
eff_Vdd
max_pg_tw
min_pg_tw
min_pg_sim**
max_pg_sim

Valid column names
min_vdd_tw
max_vss_tw
pg_arc
pin_pg_arc*
cell_name*
instance

^{*} Not printed out by default

^{**} Available only for a Static AnalysisView

Instance Voltage Report: Report all instances in the design

emir_reports.write_all_instance_voltages(av, max_lines=None, sort=False)

# loc_x	loc_y	eff_Vdd	max_pg_tw	min_pg_tw	min_pg_sim	max_pg_sim	min_vdd_tw	max_vss_tw	pg_arc instance
# (u)	(u)	(v)	(v)	(v)	(v)	(v)	(v)	(v)	pwr/gnd
894.735	518.105	0	1.104	1.081	1.016	1.114	1.09	0.00878	core3/VDD_INT/VSS core3/regfile_program_memory.DFF_X1_5801
894.355	518.105	1.078	1.101	1.018	1.018	1.114	1.101	0.08243	core3/VDD_INT/VSS core3/cts_inv_529824785
898.725	518.105	0	1.104	1.081	1.018	1.114	1.09	0.008812	core3/VDD_INT/VSS core3/regfile_program_memory.DFF_X1_620
39.9	1141.0	1.069	1.1	1.02	1.02	1.123	1.025	0.005166	VDD/VSS cts_inv_551661067
41.61	1143.8	1.073	1.1	1.072	1.02	1.124	1.087	0.01495	<pre>VDD/VSS core1.regfile_data_memory.DFF_X1_5956</pre>
893.785	518.105	1.084	1.114	1.081	1.021	1.114	1.09	0.008772	core3/VDD_INT/VSS core3/regfile_program_memory.NAND3_X1_302
37.81	1143.8	1.074	1.1	1.074	1.022	1.124	1.089	0.01513	VDD/VSS core1.regfile_data_memory.DFF_X1_1621
894.165	518.105	0	1.114	1.082	1.022	1.114	1.091	0.00865	core3/VDD_INT/VSS core3/regfile_program_memory.NAND2_X1_940
46.74	1143.8	0	1.124	1.072	1.023	1.124	1.087	0.01477	VDD/VSS core1.regfile_data_memory.MUX2_X1_4796
279.3	732.2	0	1.1	1.086	1.024	1.121	1.094	0.007483	VDD/VSS core1.regfile_program_memory.INV_X1_3086
275.69	729.4	1.074	1.1	1.024	1.024	1.121	1.029	0.005383	VDD/VSS cts_inv_558261133

Instance Voltage Report: Usage Examples

Customize the columns reported in the Voltage Report File

Instance Voltage Report: Usage Examples

Sorting the output report by a different column

Instance Voltage Report: Usage Examples

Using domain_filter to set voltage thresholds for reporting

Instance Voltage Report: Full Custom Reports

 write_all_instance_voltages is a convenience API over a fast and efficient data structure

- The ChunkedData Data Structure is directly accessible to the user
 - Easy to create fast, custom reports
 - Can be saved and reloaded from the SeaScapeDB
 - Missing fields in the report can be added
 - Helps in analytics across multiple AnalysisViews

Interlude: Creating and Accessing a ChunkedData Object

```
def _get_voltage_info(instances, av, voltage_info):
   dv = av.get_related_views(DesignView)[0]
   items = dict()
   for instance in instances:
        try:
            effdvd = av.get_voltage_stats(instance).get_fullsim_effdvd()
        except ProbeError:
            continue
       try:
            oversim = av.get_voltage_stats(instance).get_fullsim()
        except ProbeError:
            continue
        items[instance] = (effdvd.get min(), oversim.get min())
    partition_id = dv.get_partition_id(instances)
   voltage_info.add_chunk_data(partition_id, items)
    return voltage_info
```


Instance Voltage Report: Creating the ChunkedData Container

```
data = emir_reports.get_instance_voltage_data(av)
voltage_data = data.get()
```


Instance Voltage Report: Instance Voltage Data

The parts of the ChunkedData are organized as a dict of dicts of dicts in the following format

```
part_data[<Instance>][<pgarc tuple>]['cell_id'] = Integer representing the ID of the Cell
part_data[<Instance>][<pgarc tuple>]['ideal_voltage'] = Ideal voltage of Net attached to the Power pin
part_data[<Instance>][<pgarc tuple>]['power_net'] = Net connected to Power Pin
part_data[<Instance>][<pgarc tuple>]['ground_net'] = Net connected to Net Pin
part data[<Instance>][<pgarc tuple>]['coord'] = <Instance>.get coord()
    effdvd = <voltage arc stat>.get fullsim effdvd()
part_data[<Instance>][<pgarc tuple>]['effdvd'] = effdvd.get_min()
part_data[<Instance>][<pgarc tuple>]['effdvd_vdd_avg'] = effdvd.get_vdd_at_min()
part_data[<Instance>][<pgarc tuple>]['effdvd_vss_avg'] = effdvd.get_vss_at_min()
   mintw = <voltage arc stat>.get_fullsim_over_tw()
part_data[<Instance>][<pgarc tuple>]['mintw'] = mintw.get_min()
part_data[<Instance>][<pgarc tuple>]['mintw_vss_min'] = mintw.get_vss_at_min()
part_data[<Instance>][<pgarc tuple>]['mintw_vdd_min'] = mintw.get_vdd_at_min()
   oversim = <voltage arc stat>.get fullsim()
part_data[<Instance>][<pgarc tuple>]['oversim'] = oversim.get_min()
part data[<Instance>][<pgarc tuple>]['oversim vss min'] = oversim.get vss at min()
```


Instance Voltage Report: Creating a Custom Report

```
def _seq_report(dv, ivolt_chunked, chunk_part_id, fp):
    fp.initialize_part(str(chunk_part_id))
    data_dict = ivolt_chunked.get_chunk_data(chunk_part_id)
                                                                             def process_voltage_data(dv, file_name, chunked_data):
    results = list()
                                                                                 fp = qp.qp_distributed_file(file_name)
    for instance, pgarc_dict in part_data.iteritems():
                                                                                 mm = qp.MapReduce(dv)
        cell_id = instance.get_cell_id()
                                                                                 for chunk id in chunked data.get chunks():
        cell_type = dv.get_cell_type(Cell(cell_id))
                                                                                     mm.map part(partial( seg report, dv=dv, ivolt chunked=chunked data,
        if not cell_type.is_seq_cell():
                                                                                                         chunk part id=chunk id, fp=fp))
            continue
                                                                                 mm.reduce()
        for pgarc, data_dict in pgarc_dict.iteritems():
            eff_dvd = data_dict['effdvd']
            min_tw = data_dict['mintw']
                                                                             ivolt_d = gp_delayed_object(emir_reports.get_instance_voltage_data(av))
            min_wc = data_dict['oversim']
                                                                             ivolt chunked = ivolt d.get()
            results.append((instance, eff_dvd, min_tw, min_wc))
                                                                             process_voltage_data(dv, './my_seq_cells.rpt', ivolt_chunked)
    for result in dv.convert_to_name(results):
        fp.write('{0:50} {1:7.4f} {2:7.4f} \{3:7.4f}\n'.format(*result))
    fp.close()
    return fp
```

Example showing a method to generate the voltage report for only sequential cells

Layer Voltage Report

emir_reports.write_layer_voltage_report

summary = emir_reports.write_layer_voltage_report(av_dynamic)

# min_x	min_y	min_voltage_drop	max_x	max_y	max_voltage_drop	layer_drop	net	layer
# (u)	(u)	(v)	(u)	(u)	(v)	(v)		
1047.54	617.4	0.004531	896.72	518.105	0.08243	0.0779	VSS	metal1
1157.005	579.6	0.004114	43.025	1142.4	0.07452	0.07041	VDD	metal1
1178.0	0.0	0.00163	71.6	64.8	0.01449	0.01286	VSS	metal12
1175.14	578.2	0.005415	31.615	7.0	0.01762	0.0122	VSS	metal2
1174.94	578.2	0.005437	31.74	7.0	0.01748	0.01204	VSS	metal3
1174.94	578.2	0.005451	31.74	7.0	0.01737	0.01192	VSS	metal4
1175.14	578.2	0.005459	31.69	7.0	0.01732	0.01186	VSS	metal5
1175.14	578.2	0.005467	31.69	7.0	0.01726	0.01179	VSS	metal6
1172.5	578.2	0.005473	33.34	7.0	0.01721	0.01174	VSS	metal7
1175.02	578.2	0.005497	31.66	7.0	0.01699	0.01149	VSS	metal8
1172.08	578.2	0.005528	32.08	7.0	0.01672	0.01119	VSS	metal9
1172.5	572.6	0.005542	33.34	1.4	0.01662	0.01108	VSS	metal10
975.14	599.2	0.005381	415.14	918.4	0.01644	0.01106	VDD	metal2
1178.8	613.6	0.005506	33.34	61.6	0.0158	0.0103	VSS	metal11
1040.0	0.0	0.002128	28.0	1080.53	0.01235	0.01022	VDD	metal12
974.94	599.2	0.005514	414.94	918.4	0.0154	0.009882	VDD	metal3
974.94	599.2	0.005606	414.94	918.4	0.01461	0.009008	VDD	metal4
975.14	599.2	0.005656	415.14	918.4	0.01415	0.008498	VDD	metal5
975.14	599.2	0.005706	415.14	918.4	0.0137	0.007995	VDD	metal6
974.69	599.2	0.005748	414.69	918.4	0.01329	0.007538	VDD	metal7
1039.205	539.105	0.005851	13.76	1122.8	0.01196	0.00611	VDD	metal8
1042.4	567.6	0.006017	27.2	1124.4	0.01213	0.00611	VDD	metal11
1039.625	525.105	0.005907	14.18	1122.8	0.01197	0.006063	VDD	metal9
1041.725	525.105	0.00593	14.18	1122.8	0.01197	0.006044	VDD	metal10

Layer Voltage Reports: Argument(s)

emir_reports.write_layer_voltage_report

Required Argument

analysis_view

Optional Arguments	
output_file	"./layer_voltage.rpt"
columns	
sort	True
sort_order	'descending'
sort_columns	['layer_drop']
formats	
header	
footer	
report_type	'relative'

Layer Voltage Report: columns

emir_reports.write_layer_voltage_report

Valid column names	
min_x	
min_y	
max_x	
max_y	

Valid column names	
net	
layer	
min_voltage	
max_voltage	
layer_drop	

Layer Voltage Report: Usage Examples

Customize the columns reported in the Layer Voltage Report File

Node Voltage Report

emir_reports.write_node_voltage_report

emir_reports.write_node_voltage_report(av_dynamic)

#	contents	are sorted	in decending	order	hν	layer, net, node_voltage
#	loc_x	loc_y	layer	net	~ ,	node_voltage
#	(u)	(u)	,			(v)
	71.6	64.8	metal12	VSS		0.01449
	76.4	64.8	metal12	VSS		0.01448
	71.6	63.2	metal12	VSS		0.01448
	73.2	64.8	metal12	VSS		0.01447
	76.4	63.2	metal12	VSS		0.01447
	74.8	64.8	metal12	VSS		0.01447
	73.2	63.2	metal12	VSS		0.01446
	74.8	63.2	metal12	VSS		0.01446
	74.0	64.8	metal12	VSS		0.01446
	73.2	66.4	metal12	VSS		0.01445
	74.8	66.4	metal12	VSS		0.01445
	76.4	66.4	metal12	VSS		0.01445
	71.6	66.4	metal12	VSS		0.01445
	74.0	66.4	metal12	VSS		0.01445
	74.0	63.2	metal12	VSS		0.01444
	73.2	61.6	metal12	VSS		0.01441
	74.8	61.6	metal12	VSS		0.01441
	74.0	61.6	metal12	VSS		0.01441
	76.4	61.6	metal12	VSS		0.01441
				• • •		

Node Voltage Reports: Argument(s)

emir_reports.write_node_voltage_report

Required Argument

av

Optional Arguments						
output_file	"./node_voltage.rpt"					
columns						
sort	True					
sort_order	'descending'					
sort_columns	<pre>['layer', 'net', 'node_voltage']</pre>					
formats						
header						
footer						
max_lines	5000					
report_type	'relative'					

Node Voltage Report: columns

emir_reports.write_node_voltage_report

Valid column names

loc_x

loc_y

net

layer

node_voltage

Node Voltage Report: Usage Examples

Customize the columns reported in the Node Voltage Report File

```
columns = ['loc_x', 'loc_y', 'net', 'layer', 'node_voltage']
formats = '{0:10} {1:10} {2:20} {3:20} {4:10.5f}'
header = '{0:10} {1:10} {2:20} {3:20} {4:10}\n'.format(*columns)
sort_by = ['node_voltage']
emir_reports.write_node_voltage_report(av, columns=columns, formats=formats, header=header, sort_columns=sort_by)
```


Switch Voltage Report

emir_reports.write_switch_report

emir_reports.write_switch_report(av_dynamic)

#instance_name	internal_pin_Voltage	switch_voltage	idsat
core3/inst_sw_S1_0	1.1075	0.0002	1.712463e-04
core3/inst_sw_S1_7	1.1076	0.0002	2.173246e-04
core3/inst_sw_S1_14	1.1076	0.0002	2.020508e-04
core3/inst_sw_S1_21	1.1076	0.0002	1.732654e-04
core3/inst_sw_S1_28	1.1075	0.0002	1.577121e-04
core3/inst_sw_S1_35	1.1075	0.0002	2.106169e-04
core3/inst_sw_S1_42	1.1075	0.0003	2.245411e-04
core3/inst_sw_S1_49	1.1075	0.0003	2.038293e-04
core3/inst_sw_S1_56	1.1074	0.0003	2.163459e-04
core3/inst_sw_S1_63	1.1074	0.0003	1.750101e-04
core3/inst_sw_S1_70	1.1075	0.0002	1.554035e-04
core3/inst_sw_S1_77	1.1075	0.0002	2.719516e-04
core3/inst_sw_S1_84	1.1073	0.0004	2.900841e-04
core3/inst_sw_S1_91	1.1073	0.0004	1.779328e-04
core3/inst_sw_S1_98	1.1072	0.0005	1.569088e-04
			• • • • • • • • • • • • • • • • • • • •

Switch Voltage Report: Argument(s)

emir_reports.write_switch_report

Required Argument

av

Optional Argument

output_file

"./switch_voltage_stats.rpt

Electromigration Reports: Metal Segments

emir_reports.write_em_metal_report

emir_reports.write_em_metal_report(emv)

```
em_type = DC, ignore_sliver = True, 'length' column is blech length
                   from
                                                                                               constraint violation status net
 layer
                                           to
                                                            length
                                                                        width
                                                                                     current
                                                                                      (A)
                                                                                                             (%)
                    (u)
                                           (u)
                                                             (u)
                                                                        (u)
                                                                                                  (A)
             (662.46,197.505)
                                    (662.885,197.505)
                                                            84.19
                                                                         0.07
                                                                                                                      PASS core3/VDD_INT
metal1
                                                                                  0.0002431
                                                                                             0.0006909
                                                                                                           35.19
metal1
             (662.27, 197.505)
                                     (662.46,197.505)
                                                            84.19
                                                                                                           35.19
                                                                                                                            core3/VDD_INT
                                                                         0.07
                                                                                  0.0002431
                                                                                             0.0006909
                                                                                                                      PASS
metal1
                                                            84.19
                                                                         0.07
                                                                                                           35.19
            (661.795,197.505)
                                     (662.27,197.505)
                                                                                 0.0002431
                                                                                                                            core3/VDD INT
                                                                                             0.0006909
                                                                                                                      PASS
                                                                                                                           core3/VDD_INT
metal1
            (660.885,197.505)
                                                            84.19
                                                                                                                      PASS
                                    (661.795,197.505)
                                                                         0.07
                                                                                  0.0002431
                                                                                             0.0006909
                                                                                                           35.19
metal1
            (662.885,197.505)
                                     (663.25, 197.505)
                                                            84.19
                                                                         0.17
                                                                                 0.0002431
                                                                                              0.001738
                                                                                                           13.99
                                                                                                                      PASS
                                                                                                                           core3/VDD INT
metal1
             (663.25, 197.505)
                                                            84.19
                                                                         0.17
                                                                                 0.0002428
                                                                                              0.001738
                                                                                                           13.97
                                                                                                                      PASS
                                                                                                                            core3/VDD_INT
                                    (663.595,197.505)
            (663.595,197.505)
                                    (664.0175,197.505)
                                                            84.19
                                                                         0.17
                                                                                 0.0002428
                                                                                              0.001738
                                                                                                           13.97
                                                                                                                            core3/VDD_INT
metal1
                                                                                                                      PASS
                                                                                                                           core3/VDD_INT
metal1
                                     (664.2, 197.505)
                                                            84.19
                                                                                                           13.96
            (664.0175, 197.505)
                                                                         0.17
                                                                                  0.0002425
                                                                                              0.001738
                                                                                                                      PASS
                                                                                 0.0002425
metal1
             (664.2, 197.505)
                                    (664.545,197.505)
                                                            84.19
                                                                         0.17
                                                                                              0.001738
                                                                                                           13.95
                                                                                                                      PASS
                                                                                                                           core3/VDD_INT
metal1
                                                                                                           13.94
                                                                                                                           core3/VDD_INT
             (666.07,197.505)
                                    (666.425,197.505)
                                                            84.19
                                                                         0.17
                                                                                 0.0002422
                                                                                              0.001738
                                                                                                                      PASS
metal1
                                                            84.19
                                                                         0.17
                                                                                 0.0002422
                                                                                              0.001738
                                                                                                                            core3/VDD_INT
             (665.86,197.505)
                                     (666.07, 197.505)
                                                                                                           13.94
                                                                                                                      PASS
metal1
             (665.68, 197.505)
                                     (665.86,197.505)
                                                            84.19
                                                                         0.17
                                                                                 0.0002422
                                                                                              0.001738
                                                                                                           13.94
                                                                                                                      PASS
                                                                                                                           core3/VDD INT
metal1
            (665.305,197.505)
                                    (665.495,197.505)
                                                            84.19
                                                                         0.17
                                                                                  0.0002422
                                                                                                           13.94
                                                                                                                            core3/VDD_INT
                                                                                              0.001738
                                                                                                                      PASS
. . . . . .
                                                                                                           . . . . .
                                                             . . . . .
                                                                         . . . .
```


EM Metal Reports: Argument(s)

emir_reports.write_em_metal_report

Required Argument

electromigration_view

Optional Arguments	
output_file	"./metal.em.rpt"
ignore_nets_file	
columns	
sort	True
sort_order	'descending'
sort_columns	['violation']
formats	
header	

Optional Arguments	
footer	
<pre>max_lines</pre>	5000
nets	None
nets_regex	None
layers	None
layer_regex	None
em_range	None
ignore_sliver	True

EM Metal Reports: columns

emir_reports.write_em_metal_report

Valid column names

metal_line_number_factor

layer

applied_duty_ratio

lifetime_factor

violation

vomin

power_grid

em_type

Valid column names

constraint_expr

net

from

constraint

seg_length

current

to

length

Valid column names

si_width

applied_pulse_width

pulse_width

duty_ratio

width

status

current_direction

Report all EM Violations in the output report

emir_reports.write_em_metal_report(emv, max_lines=None, sort=False)

Report violations for only one Net in the output file

```
# ignore_nets_file
VDD
core3/VDD_INT
```

```
emir_reports.write_em_metal_report(emv, ignore_nets_file='./ignore_nets_file')
emir_reports.write_em_metal_report(emv, nets=['VSS'])
emir_reports.write_em_metal_report(emv, nets_regex=CMRegex('VSS'))
```


Report violations for only two layers in the output file

```
emir_reports.write_em_metal_report(emv, layers=['metal1', 'metal2'])
emir_reports.write_em_metal_report(emv, layers_regex=CMRegex('metal[4,5]'))
```


Specify the violation ranges for the output

```
emir_reports.write_em_metal_report(emv, em_range=80)
emir_reports.write_em_metal_report(emv, em_range=(80, 500))
```

©2020 ANSYS, Inc. / Confidential

Electromigration Reports: Via Segments

emir_reports.write_em_via_report

emir_reports.write_em_via_report(emv)

#	em_type	= DC, ignore_s	sliver = True							
#	layer	loc_x	loc_y	via_length	via_width	current	constraint	violation	status	net
#		(u)	(u)	(u)	(u)	(A)	(u)	(%)		
	via8	662.145	197.505	0.4	0.4	6.207e-05	0.0001244	49.88	PASS	VDD
	via8	659.625	197.505	0.4	0.4	6.206e-05	0.0001244	49.87	PASS	VDD
	via8	660.465	197.505	0.4	0.4	6.192e-05	0.0001244	49.76	PASS	VDD
	via8	661.305	197.505	0.4	0.4	6.192e-05	0.0001244	49.76	PASS	VDD
	via7	660.885	197.505	0.4	0.4	4.986e-05	0.0001244	40.07	PASS	VDD
	via7	661.725	197.505	0.4	0.4	4.976e-05	0.0001244	39.99	PASS	VDD
	via7	660.045	197.505	0.4	0.4	4.971e-05	0.0001244	39.95	PASS	VDD
	via7	659.205	197.505	0.4	0.4	4.934e-05	0.0001244	39.65	PASS	VDD
	via7	662.565	197.505	0.4	0.4	4.929e-05	0.0001244	39.61	PASS	VDD
	via2	660.885	197.505	0.07	0.07	0.0001287	0.0003871	33.26	PASS	VDD
	via8	762.145	19.705	0.4	0.4	3.397e-05	0.0001244	27.29	PASS	VSS
									• • • • • •	• • • •

EM Via Reports: Argument(s)

emir_reports.write_em_via_report

Required Argument

electromigration_view

Optional Arguments	
output_file	"./via.em.rpt"
ignore_nets_file	
columns	
sort	True
sort_order	'descending'
sort_columns	['violation']
formats	
header	

Optional Arguments	
footer	
max_lines	5000
nets	None
nets_regex	None
layers	None
layer_regex	None
em_range	None
ignore_sliver	True

EM Via Reports: columns

emir_reports.write_em_via_report

Valid column names
loc_x
loc_y
num_cuts
metal_line_number_factor
layer
from
wb
constraint

Valid column names
violation
lb
current
to
wu
lu
power_grid
via_length

Valid column names
em_type
via_width
net
is_upstream
constraint_expr
lifetime_factor
status
current_direction

Report all EM Violations in the output report

emir_reports.write_em_via_report(emv, max_lines=None, sort=False)

Report violations for only one Net in the output file

```
# ignore_nets_file
VDD
core3/VDD_INT
```

```
emir_reports.write_em_via_report(emv, ignore_nets_file='./ignore_nets_file')
emir_reports.write_em_via_report(emv, nets=['VSS'])
emir_reports.write_em_via_report(emv, nets_regex=CMRegex('VSS'))
```


Report violations for only two layers in the output file

```
emir_reports.write_em_via_report(emv, layers=['via1', 'via2'])
emir_reports.write_em_via_report(emv, layers_regex=CMRegex('via[4,5]'))
```


Specify the violation ranges for the output

```
emir_reports.write_em_via_report(emv, em_range=80)
emir_reports.write_em_via_report(emv, em_range=(80, 500))
```


Resistance Reports: SPR

emir_reports.report_instance_pin_spr

emir_reports.report_instance_pin_spr(ev)

```
spr_value cell_name
                                                         instance_name
                                               layer
345.183
          INV X4
                          1116.895
                                     1.4
                                                metal1
                                                         ZINV_142_inst_52481
343.164
          INV_X4
                          1113.855
                                     1.4
                                                metal1
                                                         ZINV_142_inst_52483
342.405
          INV_X4
                          1112.715
                                                metal1
                                                        ZINV_142_inst_52479
                                     1.4
327.482
          INV_X4
                         1116.895
                                                metal1
                                                        ZINV_142_inst_52481
325.467
          INV_X4
                         1113.855
                                                metal1
                                                        ZINV 142 inst 52483
                                     0.0
324.712
          INV_X4
                         1112.715
                                     0.0
                                                metal1
                                                        ZINV_142_inst_52479
223.198
          INV_X4
                         1173.535
                                     435.565
                                                         core3/ZINV_221_inst_26118
                                                metal1
213.474
          BUF_X8
                          1167.65
                                     435.565
                                                metal1
                                                         core3/ZBUF_49_inst_25959
211.294
          CLKBUF_X1
                         1121.47
                                     1094.8
                                                metal1
                                                         ZBUF_46_inst_55212
210.916
          CLKBUF_X1
                         1120.9
                                     1094.8
                                                metal1
                                                         ZBUF_36_inst_55211
210.538
                                                         ZBUF 45 inst 55210
          CLKBUF_X1
                          1120.33
                                     1094.8
                                                metal1
```


SPR Report: Argument(s)

emir_reports.write_instance_pin_spr

Required Argument

ev

Optional Arguments	
output_file	<pre>"./pin_SPR.rpt"</pre>
max_lines	5000
threshold	None
report_type	best
ignore_disconnects	True
ignore_cell_types	<pre>['is_filler_cell', 'is_decap_cell']</pre>

Optional Arguments	
sort	True
columns	
formats	
header	
sort_columns	['spr_value']

SPR Report: columns

emir_reports.write_instance_pin_spr

Valid column names pin_name spr_value cell_name x y layer instance_name

SPR Report: Usage Examples

Custom output columns in the report

SPR Report: Usage Examples

Ignore Sequential and Filler cells from the output Skip instance-pin pairs whose SPR is less than 50 ohms

Resistance Reports: Effective Resistance

emir_reports.report_effective_resistance

emir_reports.report_effective_resistance(reff)

#Reff Report				
#instance_name	pin_name	min	avq	max
xofiller!FILLCELL_X1!x12266400y0	VSS	412.694	412.694	412.694
xofiller!FILLCELL_X1!x12266400y14000	VSS	412.694	412.694	412.694
xofiller!FILLCELL_X1!x12264500y14000	VSS	412.568	412.568	412.568
xofiller!FILLCELL_X1!x12264500y0	VSS	412.568	412.568	412.568
xofiller!FILLCELL_X1!x12262600y14000	VSS	412.442	412.442	412.442
xofiller!FILLCELL_X4!x12256900y0	VSS	412.254	412.254	412.254
xofiller!FILLCELL_X8!x12247400y14000	VSS	411.876	411.876	411.876
xofiller!FILLCELL_X8!x12241700y0	VSS	411.498	411.498	411.498
xofiller!FILLCELL_X16!x12217000y14000	VSS	410.364	410.364	410.364
xofiller!FILLCELL_X16!x12211300y0	VSS	409.987	409.987	409.987
xofiller!FILLCELL_X32!x12156200y14000	VSS	407.342	407.342	407.342
xofiller!FILLCELL_X32!x12150500y0	VSS	406.964	406.964	406.964
xofiller!FILLCELL_X32!x12089700y0	VSS	402.898	402.898	402.898
xofiller!FILLCELL_X32!x12028900y0	VSS	398.805	398.805	398.805

Effective Resistance Report: Argument(s)

emir_reports.report_effective_resistance

Required Argument

reff

Optional Arguments

file_name	<pre>"./reff_report.rpt"</pre>
report_type	None
max_lines	5000
sort_columns	['max_res']

Effective Resistance Report: Usage Examples

Report the effective resistance for all instances in the design

emir_reports.report_effective_resistance(reff, max_lines=None)

Effective Resistance Report: Usage Examples

Report the top 50 instances in the design with the highest effective resistance

emir_reports.report_effective_resistance(reff, max_lines=50, report_type='max_res')

Documentation Ansys

Reporting Utilities in RedHawk-SC

Version: 2019.03.20

Table of Contents

L Introduction	2
2. Power, Voltage and Electromigration Reports	2
2.1 Power Reports	
2.1.1 Power Summary and Instance Power Summary	
2.2 Voltage and Current Reports	
2.2.1 Bump Current Report	
2.2.2 Bump Voltage Report	
2.2.3 Demand Current Report	
2.2.4 Supply(Battery) Current Report	

```
>>> help(emir_reports)
help(emir_reports)
FUNCTIONS
get_instance_voltage_data(av, scdb=None, tag_name='instance_voltage_chunked_data', report_
macros=False)
   Return a MapReduce object (ChunkedData) holding a defined set of Instance Arc Voltage Da
ta.

report_effective_resistance(reff, file_name='./reff_report.rpt', report_type=None, max_lin
es=5000, sort_columns=['max_res'])
   Create Reff report file.

report_instance_pin_spr(ev, output_file='pin_SPR.rpt', max_lines=5000, threshold=None, rep
ort_type='best', ignore_disconnects=True, ignore_cell_types=['is_filler_cell', 'is_decap_c
ell'], exclude_cells=None, sort=False, columns=None, formats=None, header=None, sort_colum
ns=['spr_value'], report_pg_arcs=None)
   Write the SPR values at the instance pin to a file.
```

