High-order integration methods for Brillouin Zone integration

Ewen Lallinec

Laboratoire de Mathématiques d'Orsay

Séminaire des jeunes du CERMICS 25 Février 2025

Table of contents

- Solid-states physics
 - Generalities
 - Quantum formalism
- 2 Brillouin Zone Integration
 - Bulk properties
 - Density Of States
- 3 Brillouin Contour Deformation
- Benchmark

E. Lallinec (LMO) 25/02/25

E. Lallinec (LMO) 25/02/25

Main objective: Numerical simulation of materials

E. Lallinec (LMO) 25/02/25

Main objective: Numerical simulation of materials

Some properties

- Mechanical properties elastic constants
- Thermic properties specific heat
- Electric properties conductivity
- Magnetic properties susceptibility
- Optical properties conductivity

E. Lallinec (LMO)

Main objective: Numerical simulation of materials

Some properties

- Mechanical properties elastic constants
- Thermic properties specific heat
- Electric properties conductivity
- Magnetic properties susceptibility
- Optical properties conductivity

Ok, but why numerics?

Main objective: Numerical simulation of materials

Some properties

- Mechanical properties elastic constants
- Thermic properties specific heat
- Electric properties conductivity
- Magnetic properties susceptibility
- Optical properties conductivity

Ok, but why numerics?

- Cheaper, faster
- Fundamental research
- Material design

Main objective: Numerical simulation of materials

Some properties

- Mechanical properties elastic constants
- Thermic properties specific heat
- Electric properties conductivity
- Magnetic properties susceptibility
- Optical properties conductivity

Ok, but why numerics?

- Cheaper, faster
- Fundamental research
- Material design

Cost of a 2 nm^2 electronic chip?

Main objective: Numerical simulation of materials

Some properties

- Mechanical properties elastic constants
- Thermic properties specific heat
- Electric properties conductivity
- Magnetic properties susceptibility
- Optical properties conductivity

Ok, but why numerics?

- Cheaper, faster
- Fundamental research
- Material design

Cost of a 2 nm^2 electronic chip?

\$30,000

E. Lallinec (LMO) 25/02/25

Infinite periodic crystal

E. Lallinec (LMO) 3 / 20 25/02/25

Infinite periodic crystal

 \implies Physical space: \mathbb{R}^d , Lattice: $\mathcal{R} \equiv \mathbb{Z}^d$

 \implies Physical space: \mathbb{R}^d , Lattice: $\mathcal{R} \equiv \mathbb{Z}^d$ Infinite periodic crystal Infinite number of electrons

E. Lallinec (LMO)

 \implies Physical space: \mathbb{R}^d , Lattice: $\mathcal{R} \equiv \mathbb{Z}^d$ Infinite periodic crystal Infinite number of electrons \implies Fixed electronic density: $\rho(\mathbf{x})$

E. Lallinec (LMO) 25/02/25

```
Infinite periodic crystal \implies Physical space: \mathbb{R}^d. Lattice: \mathcal{R} \equiv \mathbb{Z}^d
Infinite number of electrons
                                     \implies Fixed electronic density: \rho(\mathbf{x})
                                  Too complicated?
```

```
Infinite periodic crystal \implies Physical space: \mathbb{R}^d, Lattice: \mathcal{R} \equiv \mathbb{Z}^d
Infinite number of electrons \implies Fixed electronic density: \rho(\mathbf{x})
                               Too complicated?
                           Reduce the dimension!
```

E. Lallinec (LMO) 25/02/25

Infinite periodic crystal \implies Physical space: \mathbb{R}^d , Lattice: $\mathcal{R} \equiv \mathbb{Z}^d$ Infinite number of electrons \implies Fixed electronic density: $\rho(\mathbf{x})$

Too complicated?

Reduce the dimension!

Schrödinger equation

Further simplifications

- Born-Oppenheimer approximation
- e-e interaction neglected
- Finite basis of localized functions: Wannier functions.

E. Lallinec (LMO) 25/02/25 4/20

Schrödinger equation

Further simplifications

- Born-Oppenheimer approximation
- e-e interaction neglected
- Finite basis of localized functions: Wannier functions

Time Independent Schrödinger Equation

Let $H(\mathbf{R}, \mathbf{R}')$ be the Hamiltonian between two sites of \mathcal{R} . It is a Hermitian matrix of $\mathbb{C}^{M \times M}$ with \mathcal{R} -periodicity which verifies

$$H(\mathbf{R}, \mathbf{R}')\psi_n = E_n \psi_n \tag{TISE}$$

4/20

where the E_n and ψ_n are the eigenvalues and eigenvectors of $H(\mathbf{R}, \mathbf{R}')$.

E. Lallinec (LMO) 25/02/25

Bloch's theorem

Reciprocal lattice

$$\mathcal{R}^* = 2\pi/\mathcal{R} \tag{1}$$

E. Lallinec (LMO) 25/02/25 5/20

Bloch's theorem

Reciprocal lattice

$$\mathcal{R}^* = 2\pi/\mathcal{R} \tag{1}$$

Brillouin zone (\mathcal{R}^* unit cell)

$$\mathcal{B} \equiv [-\pi, \pi]^d \tag{2}$$

E. Lallinec (LMO)

Bloch's theorem

Reciprocal lattice

$$\mathcal{R}^* = 2\pi/\mathcal{R} \tag{1}$$

Brillouin zone (\mathcal{R}^* unit cell)

$$\mathcal{B} \equiv [-\pi, \pi]^d \tag{2}$$

Bloch's transform

Solutions to (TISE) can be expanded in a basis of planewaves modulated by \mathcal{R} -periodic functions called **Bloch waves**.

For $\mathbf{k} \in \mathcal{B}$,

$$\psi_{n\mathbf{k}}(\mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{n\mathbf{k}} \tag{3}$$

where $\forall \mathbf{R} \in \mathcal{R}, u_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r}).$

E. Lallinec (LMO)

Bloch transform

Main Idea: Study the system using these Bloch waves Using the Bloch theorem

E. Lallinec (LMO) 25/02/25 6/20

Bloch transform

Main Idea: Study the system using these Bloch waves Using the Bloch theorem

Bloch transform and Schrödinger equation (again?)

 $\forall \mathbf{k} \in \mathcal{B}$,

$$H_{\mathbf{k}} = \sum_{\mathbf{R} \in \mathcal{R}_L} e^{i\mathbf{k} \cdot \mathbf{R}} H(\mathbf{0}, \mathbf{R}) \in \mathbb{C}^{M \times M}$$
 (4)

 $\forall \mathbf{k} \in \mathcal{B}$,

$$H_{\mathbf{k}}u_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}}u_{n\mathbf{k}} \tag{TISE2}$$

where the $\varepsilon_{n\mathbf{k}}$ are bands and the set of all bands is the band structure of the system.

E. Lallinec (LMO) 25/02/25 6/20

Bloch transform

Main Idea: Study the system using these Bloch waves Using the Bloch theorem

Bloch transform and Schrödinger equation (again?)

 $\forall \mathbf{k} \in \mathcal{B}$,

$$H_{\mathbf{k}} = \sum_{\mathbf{R} \in \mathcal{R}_L} e^{i\mathbf{k} \cdot \mathbf{R}} H(\mathbf{0}, \mathbf{R}) \in \mathbb{C}^{M \times M}$$
(4)

 $\forall \mathbf{k} \in \mathcal{B}$,

$$H_{\mathbf{k}}u_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}}u_{n\mathbf{k}}$$

(TISE2)

where the $\varepsilon_{n\mathbf{k}}$ are bands and the set of all bands is the band structure of the system.

Remark:

- Bloch's transform (among other many great things): Théorie Spectrale et Mécanique Quantique, Ed. 2024, Mathieu Lewin
- Other derivations of Bloch's Theorem: Convergence rates of supercell calculations in the reduced Hartree-Fock model,, David Gontier, Salma Lahbabi

E. Lallinec (LMO)

A band structure example

Figure 1: Band structure of graphene taken from "The Physics of Graphene"

E. Lallinec (LMO) 25/02/25 7/20

Brillouin Zone Integration

Bulk properties

Bulk properties of our system can be written as two types of integrals

$$I(E) = \frac{1}{|\mathcal{B}|} \sum_{n} \int_{\mathcal{B}} f(H_{\mathbf{k}}) \delta(E - \varepsilon_{n\mathbf{k}}) d\mathbf{k}$$

$$F(E) = \frac{1}{|\mathcal{B}|} \sum_{n} \int_{\mathcal{B}} f(H_{\mathbf{k}}) \mathbb{1}(E - \varepsilon_{n\mathbf{k}}) d\mathbf{k}$$

where f is a continuous function of $H_{\mathbf{k}}$.

E. Lallinec (LMO)

Brillouin Zone Integration

Bulk properties

Bulk properties of our system can be written as two types of integrals

$$I(E) = \frac{1}{|\mathcal{B}|} \sum_{n} \int_{\mathcal{B}} f(H_{\mathbf{k}}) \delta(E - \varepsilon_{n\mathbf{k}}) d\mathbf{k}$$

$$F(E) = \frac{1}{|\mathcal{B}|} \sum_{n} \int_{\mathcal{B}} f(H_{\mathbf{k}}) \mathbb{1}(E - \varepsilon_{n\mathbf{k}}) d\mathbf{k}$$

where f is a continuous function of $H_{\mathbf{k}}$.

We restrict ourselves to I(E) where f = 1, the

Density Of States (DOS)

E. Lallinec (LMO) 25/02/25 8/20

E. Lallinec (LMO) 25/02/25 9/20

$$D(E) = \frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{\mathcal{B}} \delta(E - \varepsilon_{n\mathbf{k}}) d\mathbf{k}$$

$$D(E) = \frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{S_n(E)} \frac{1}{|\nabla \varepsilon_{n\mathbf{k}}|} d\sigma(\mathbf{k})$$

where
$$S_n(E) = {\mathbf{k} \in \mathcal{B}, \varepsilon_{n\mathbf{k}} = E}$$

E. Lallinec (LMO) 25/02/25

$$D(E) = \frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{\mathcal{B}} \delta(E - \varepsilon_{n\mathbf{k}}) d\mathbf{k}$$

$$D(E) = \frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{S_n(E)} \frac{1}{|\nabla \varepsilon_{n\mathbf{k}}|} d\sigma(\mathbf{k})$$

where
$$S_n(E) = {\mathbf{k} \in \mathcal{B}, \varepsilon_{n\mathbf{k}} = E}$$

9 / 20

E. Lallinec (LMO) 25/02/25

$$D(E) = \frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{\mathcal{B}} \delta(E - \varepsilon_{n\mathbf{k}}) d\mathbf{k}$$

$$D(E) = \frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{S_n(E)} \frac{1}{|\nabla \varepsilon_{n\mathbf{k}}|} d\sigma(\mathbf{k})$$

where
$$S_n(E) = {\mathbf{k} \in \mathcal{B}, \varepsilon_{n\mathbf{k}} = E}$$

Issues

- Not well-defined
- Singular function of E
- Not easily computable

E. Lallinec (LMO)

Main Idea: Smooth the Dirac with a regular kernel $K_{\eta} \underset{\eta \to 0^+}{\longrightarrow} \delta$

E. Lallinec (LMO) 25/02/25 10/20

Main Idea: Smooth the Dirac with a regular kernel $K_\eta \underset{\eta \to 0^+}{\longrightarrow} \delta$

Smearing

E. Lallinec (LMO) 25/02/25 10/20

Main Idea: Smooth the Dirac with a regular kernel $K_{\eta} \underset{\eta \to 0^+}{\longrightarrow} \delta$

Smearing

Formally:

$$D(E) = \lim_{\eta \to 0^+} (D * K_{\eta})(E) = \lim_{\eta \to 0^+} D_{\eta}(E)$$
 (5)

10 / 20

E. Lallinec (LMO) 25/02/25

Main Idea: Smooth the Dirac with a regular kernel $K_{\eta} \underset{\eta \to 0^+}{\longrightarrow} \delta$

Smearing

Formally:

$$D(E) = \lim_{\eta \to 0^{+}} (D * K_{\eta})(E) = \lim_{\eta \to 0^{+}} D_{\eta}(E)$$
 (5)

Many choices, but the most natural one is the **Lorentzian**:

$$K_{\eta}(E) = \frac{1}{\pi} \frac{\eta}{E^2 + \eta^2} = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{E + i\eta} \right)$$
 (6)

E. Lallinec (LMO)

Smearing and Periodic Trapezoidal Rule

Main Idea: Smooth the Dirac with a regular kernel $K_{\eta} \underset{\eta \to 0^+}{\longrightarrow} \delta$

Smearing

Formally:

$$D(E) = \lim_{\eta \to 0^+} (D * K_{\eta})(E) = \lim_{\eta \to 0^+} D_{\eta}(E)$$
 (5)

Many choices, but the most natural one is the **Lorentzian**:

$$K_{\eta}(E) = \frac{1}{\pi} \frac{\eta}{E^2 + \eta^2} = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{E + i\eta} \right)$$
 (6)

Why?

- Simple expression, simple to compute
- At fixed $\eta \Leftrightarrow \text{Trace of the Green's function}$

E. Lallinec (LMO)

Final Formula

Final Formula

$$D(E) = -\frac{1}{\pi} \lim_{\eta \to 0^{+}} \operatorname{Im} \left(\sum_{n} \int_{\mathcal{B}} \frac{1}{E + i\eta - \varepsilon_{n\mathbf{k}}} d\mathbf{k} \right)$$
$$D_{N,\eta}(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{N^{d}} \sum_{\mathbf{k} \in \mathcal{B}_{N}} \operatorname{Tr} \left(\frac{1}{E + i\eta - H_{\mathbf{k}}} \right) \right)$$

E. Lallinec (LMO) 25/02/25

11/20

Final Formula

$$D(E) = -\frac{1}{\pi} \lim_{\eta \to 0^{+}} \operatorname{Im} \left(\sum_{n} \int_{\mathcal{B}} \frac{1}{E + i\eta - \varepsilon_{n\mathbf{k}}} d\mathbf{k} \right)$$
$$D_{N,\eta}(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{N^{d}} \sum_{\mathbf{k} \in \mathcal{B}_{N}} \operatorname{Tr} \left(\frac{1}{E + i\eta - H_{\mathbf{k}}} \right) \right)$$

where

$$\mathcal{B}_N = \left\{ \frac{2\pi}{N} \mathbf{n} - \pi, \mathbf{n} \in \mathbb{Z}^d, 0 \le n_i \le N - 1, i \in \{1, \dots, d\} \right\}$$
 (7)

11/20

E. Lallinec (LMO) 25/02/25

Final Formula

$$D(E) = -\frac{1}{\pi} \lim_{\eta \to 0^{+}} \operatorname{Im} \left(\sum_{n} \int_{\mathcal{B}} \frac{1}{E + i\eta - \varepsilon_{n\mathbf{k}}} d\mathbf{k} \right)$$
$$D_{N,\eta}(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{N^{d}} \sum_{\mathbf{k} \in \mathcal{B}_{N}} \operatorname{Tr} \left(\frac{1}{E + i\eta - H_{\mathbf{k}}} \right) \right)$$

where

$$\mathcal{B}_N = \left\{ \frac{2\pi}{N} \mathbf{n} - \pi, \mathbf{n} \in \mathbb{Z}^d, 0 \le n_i \le N - 1, i \in \{1, \dots, d\} \right\}$$
 (7)

Take away

- Computes an approximated DOS
- System dependent: hard to automatically tune
- Error in $\mathcal{O}(N^{-1})$

E. Lallinec (LMO)

Final Formula

$$D(E) = -\frac{1}{\pi} \lim_{\eta \to 0^{+}} \operatorname{Im} \left(\sum_{n} \int_{\mathcal{B}} \frac{1}{E + i\eta - \varepsilon_{n\mathbf{k}}} d\mathbf{k} \right)$$
$$D_{N,\eta}(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{N^{d}} \sum_{\mathbf{k} \in \mathcal{B}} \operatorname{Tr} \left(\frac{1}{E + i\eta - H_{\mathbf{k}}} \right) \right)$$

where

$$\mathcal{B}_N = \left\{ \frac{2\pi}{N} \mathbf{n} - \pi, \mathbf{n} \in \mathbb{Z}^d, 0 \le n_i \le N - 1, i \in \{1, \dots, d\} \right\}$$
 (7)

Take away

- Computes an approximated DOS
- System dependent: hard to automatically tune
- Smeared DOS also have a physical meaning and are of use to physicists and chemists.

Error in $\mathcal{O}(N^{-1})$

E. Lallinec (LMO)

 ${\bf Main\ Idea:}\ {\bf Interpolate\ linearly\ the\ bands\ in\ tetrahedra}.$

E. Lallinec (LMO) 25/02/25

12 / 20

Main Idea: Interpolate linearly the bands in tetrahedra.

Reminder:

$$D(E) = \frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{S_n(E)} \frac{1}{|\nabla \varepsilon_{n\mathbf{k}}|} d\sigma(\mathbf{k})$$
 (8)

Main Idea: Interpolate linearly the bands in tetrahedra.

Reminder:

$$D(E) = \frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{S_n(E)} \frac{1}{|\nabla \varepsilon_{n\mathbf{k}}|} d\sigma(\mathbf{k})$$
 (8)

Figure 2: Tetrahedral decomposition of a cube (taken from Wikipedia)

Main Idea: Interpolate linearly the bands in tetrahedra.

Reminder:

$$D(E) = \frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{S_n(E)} \frac{1}{|\nabla \varepsilon_{n\mathbf{k}}|} d\sigma(\mathbf{k})$$
 (8)

Figure 2: Tetrahedral decomposition of a cube (taken from Wikipedia)

Take away

- Explicit formula for the approximated DOS in all dimensions
- Easy to compute from the formulas
- Performs badly for convex or concave functions
- Error in $\mathcal{O}(N^{-2})$

Main idea: Regularize the integrand using contour deformation

Main idea: Regularize the integrand using contour deformation

Lemma

Let I be a \mathbb{R}^* -periodic function, analytic in an open set $U = \mathbb{R}^d + i[-\eta, \eta]^d$. Then, for all \mathbb{R}^* -periodic and continuously differentiable functions $\mathbf{h}(\mathbf{k}) : \mathbb{R}^d \to [-\eta, \eta]^d$, we have

$$\int_{\mathcal{B}} I(\mathbf{k}) d\mathbf{k} = \int_{\mathcal{B}} I(\mathbf{k} + i\mathbf{h}(\mathbf{k})) \det(\mathbf{1} + i\mathbf{h}'(\mathbf{k})) d\mathbf{k}$$

Main idea: Regularize the integrand using contour deformation

Lemma

Let I be a \mathbb{R}^* -periodic function, analytic in an open set $U = \mathbb{R}^d + i[-\eta, \eta]^d$. Then, for all \mathbb{R}^* -periodic and continuously differentiable functions $\mathbf{h}(\mathbf{k}) : \mathbb{R}^d \to [-\eta, \eta]^d$, we have

$$\int_{\mathcal{B}} I(\mathbf{k}) d\mathbf{k} = \int_{\mathcal{B}} I(\mathbf{k} + i\mathbf{h}(\mathbf{k})) \det(\mathbf{1} + i\mathbf{h}'(\mathbf{k})) d\mathbf{k}$$

In our case for n = 0.

$$D(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{\mathcal{B}} \frac{1}{E - \varepsilon_{\mathbf{k} + i\mathbf{h}(\mathbf{k})}} \det \left(\mathbf{1} + i\mathbf{h}'(\mathbf{k}) \right) d\mathbf{k} \right)$$
(9)

Main idea: Regularize the integrand using contour deformation

Lemma

Let I be a \mathbb{R}^* -periodic function, analytic in an open set $U = \mathbb{R}^d + i[-\eta, \eta]^d$. Then, for all \mathbb{R}^* -periodic and continuously differentiable functions $\mathbf{h}(\mathbf{k}) : \mathbb{R}^d \to [-\eta, \eta]^d$, we have

$$\int_{\mathcal{B}} I(\mathbf{k}) d\mathbf{k} = \int_{\mathcal{B}} I(\mathbf{k} + i\mathbf{h}(\mathbf{k})) \det(\mathbf{1} + i\mathbf{h}'(\mathbf{k})) d\mathbf{k}$$

In our case for $\eta = 0$,

$$D(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{\mathcal{B}} \frac{1}{E - \varepsilon_{\mathbf{k} + i\mathbf{h}(\mathbf{k})}} \det \left(\mathbf{1} + i\mathbf{h}'(\mathbf{k}) \right) d\mathbf{k} \right)$$
(9)

Remark

- Cauchy theorem to prove the lemma
- Regular integrand for whatever $\eta \geq 0$

Examples of deformation

Figure 3: 1D and 2D deformations (for monatomic chain and graphene)

Some insights on the BCD

Reminder:

$$D(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{\mathcal{B}} \frac{1}{E - \varepsilon_{\mathbf{k} + i\mathbf{h}(\mathbf{k})}} \det \left(\mathbf{1} + i\mathbf{h}'(\mathbf{k}) \right) d\mathbf{k} \right)$$
(10)

15 / 20

Some insights on the BCD

Reminder:

$$D(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{\mathcal{B}} \frac{1}{E - \varepsilon_{\mathbf{k} + i\mathbf{h}(\mathbf{k})}} \det \left(\mathbf{1} + i\mathbf{h}'(\mathbf{k}) \right) d\mathbf{k} \right)$$
(10)

Discretization:

$$D_N(E) = -\frac{1}{\pi N^d} \operatorname{Im} \left(\sum_{\mathbf{k} \in \mathcal{B}_N} \operatorname{Tr} \left(\frac{1}{E - H_{\mathbf{k} + i\mathbf{h}(\mathbf{k})}} \right) \det \left(\mathbf{1} + i\mathbf{h}'(\mathbf{k}) \right) \right)$$
(11)

15 / 20

Some insights on the BCD

Reminder:

$$D(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{|\mathcal{B}|} \sum_{n=1}^{M} \int_{\mathcal{B}} \frac{1}{E - \varepsilon_{\mathbf{k} + i\mathbf{h}(\mathbf{k})}} \det \left(\mathbf{1} + i\mathbf{h}'(\mathbf{k}) \right) d\mathbf{k} \right)$$
(10)

Discretization:

$$D_N(E) = -\frac{1}{\pi N^d} \operatorname{Im} \left(\sum_{\mathbf{k} \in \mathcal{B}_N} \operatorname{Tr} \left(\frac{1}{E - H_{\mathbf{k} + i\mathbf{h}(\mathbf{k})}} \right) \det \left(\mathbf{1} + i\mathbf{h}'(\mathbf{k}) \right) \right)$$
(11)

15 / 20

Remark:

- The integrand is analytic almost everywhere on the complex space
- How to compute a fitting deformation?
- Discretization using the trapezoidal rule on \mathcal{B}_N

E. Lallinec (LMO) 25/02/25

Main idea: Benchmark our methods on multiple systems in all dimensions.

Main idea: Benchmark our methods on multiple systems in all dimensions.

1D Monatomic Chain: Toy model, everything is computable explicitly

Main idea: Benchmark our methods on multiple systems in all dimensions.

1D Monatomic Chain: Toy model, everything is computable explicitly

Figure 4: DOS of the 1D monatomic chain

Main idea: Benchmark our methods on multiple systems in all dimensions. 1D Monatomic Chain: Toy model, everything is computable explicitly

Figure 5: Relative error (ℓ^{∞}) and computation time for the 1D monatomic chain

Benchmark results: SrVO₃

Strontium Vanadate (SrVO₃): Realistic material, non-explicit Hamiltonian

Benchmark results: SrVO₃

Strontium Vanadate (SrVO₃): Realistic material, non-explicit Hamiltonian

Figure 6: DOS of the SrVO₃

Benchmark results: SrVO₃

Strontium Vanadate (SrVO₃): Realistic material, non-explicit Hamiltonian

Figure 7: Relative error (ℓ^1) and computation time for the SrVO₃

Conclusion

BCD is overall the best-method for the computation of both smeared and non-smeared DOS.

Conclusion

BCD is overall the best-method for the computation of both smeared and non-smeared DOS.

- Low reliability on its internal parameters
- Exponential convergence
- Good for a black-box approach

Conclusion

BCD is overall the best-method for the computation of both smeared and non-smeared DOS.

- Low reliability on its internal parameters
- Exponential convergence
- Good for a black-box approach

Thanks for your attention!

How to compute a good deformation?

Our integrand is analytic in the upper complex space and we want to continue it analytically in the lower complex space.

For $E = \varepsilon_{n\mathbf{k}_0}$, we have near k_0 :

$$L_{\eta}(E - \varepsilon_{n\mathbf{k} + i\mathbf{h}(\mathbf{k})}) = \frac{1}{\pi} \operatorname{Im} \left(\frac{1}{E - \varepsilon_{n\mathbf{k} + i\mathbf{h}(\mathbf{k})} + i\eta} \right) = \frac{1}{\eta \pi} \frac{1}{1 + \frac{(E - \varepsilon_{n\mathbf{k} + i\mathbf{h}(\mathbf{k})})^{2}}{\eta^{2}}}$$
(12)

Thus for small $(E - \varepsilon_{n\mathbf{k}+i\mathbf{h}(\mathbf{k})})/\eta$ we have near k_0

$$\varepsilon_{n\mathbf{k}+i\mathbf{h}(\mathbf{k})} - E \approx \nabla \varepsilon_{n\mathbf{k}_0} \cdot (\mathbf{k}+i\mathbf{h}(\mathbf{k}) - \mathbf{k}_0)$$
 (13)

Therefore to have negative imaginary part near the real axis we need

$$\nabla \varepsilon_{n\mathbf{k}_0} \cdot \mathbf{h}(\mathbf{k}) < 0 \tag{14}$$

Thus we chose

$$\mathbf{h}(\mathbf{k}) = -\alpha \left(\text{Tr} \left(\partial_i H_{\mathbf{k}} \chi \left(\frac{H_{\mathbf{k}} - E}{\Delta E} \right) \right) \right)_{i \in I_1 \dots dN}$$
(15)