



# **Predictive Analytics for Business**

Project#3-1 Create an Analytical Dataset

Name: Marwan Saeed Alsharabbi

Date: 26-12-2019

#### INTRODUCTION

The Business Problem

Pawdacity is a leading pet store chain in Wyoming with 13 stores throughout the state. This year, Pawdacity would like to expand and open a 14th store. Your manager has asked you to perform an analysis to recommend the city for Pawdacity's newest store, based on predicted yearly sales.

Your first step in predicting yearly sales is to first format and blend together data from different datasets and deal with outliers.

Your manager has given you the following information to work with:

- 1-The monthly sales data for all of the Pawdacity stores for the year 2010.
- 2-NAICS data on the most current sales of all competitor stores where total sales is equal to 12 months of sales.
- 3-A partially parsed data file that can be used for population numbers.
  4-Demographic data (Households with individuals under 18, Land Area,
  Population Density, and Total Families) for each city and county in the
  state of Wyoming. For people who are unfamiliar with the US city system,
  a state contains counties and counties contains one or more cities.

### Steps to Success

## Step 1: Business and Data Understanding

Your project should include a description of the key business decisions that need to be made.

## Step 2: Building the Training Set

To properly build the model, and select predictor variables, create a dataset with the following columns:

City
2010 Census Population
Total Pawdacity Sales
Households with Under 18
Land Area

Population Density
Total Families

This dataset will be your training set to help you build a regression model in order to predict sales in the Practice Project in the next lesson. Every row should have sales data because we're trying to predict sales.

#### **Notes**

You should be consolidating the data at the city level and **not at the store level.** We only have data at the city wide level so any analysis at the store level will not be sufficient to complete this analysis.

We simply need to focus on cleaning up and blending the data together in this step.

If you've done everything correctly, the sum for each of the above columns should be:

Census Population: 213,862 Total Pawdacity Sales: 3,773,304 Households with Under 18: 34,064

Land Area: 33,071 Population Density: 63 Total Families: 62,653 with 11 rows of data For Alteryx users:

Use the Autofield Tool to help quickly convert your data fields into the appropriate datafields for analysis.

Research these <u>three specific formulas</u> to help you get rid of unwanted characters in the Formula tool: ReplaceFirst, Left, FindString

#### Step 3: Dealing with Outliers

Once you have created the dataset, look for outliers and figure out how deal with your outliers. Use the IQR method to determine if there are outlier cities for each of the variables and then justify which city that has at least one outlier value should be removed.

#### **IQR Steps**

To calculate the upper fence and the lower fence, here are the exact steps:

- 1. Calculate 1st quartile Q1 and 3rd quartile Q3 of the dataset. You can use the Excel function QUARTILE.INC or QUARTILE.EXC
- 2. Calculate the Interquartile Range: IQR = Q3 Q1

- 3. Add 1.5 *IQR to Q3 to get the upper fence: Upper Fence = Q3 + 1.5* IQR
- 4. Subtract 1.5 *IQR to Q1 to get the lower fence: Lower Fence = Q1 1.5* IQR
- 5. Values above the Upper Fence and values below the Lower Fence are outliers

A description of the key business decisions that need to be made. **Note:** Clean data is provided for this project, so you can skip the data preparation step of the Problem Solving Framework.

#### Data

*p2-2010-pawdacity-monthly-sales.csv* - This file contains all of the monthly sales for all Pawdacity stores for 2010.

*p2-partially-parsed-wy-web-scrape.csv* - This is a partially parsed data file that can be used for population numbers.

*p2-wy-453910-naics-data.csv* - NAICS data on the sales of all competitor stores where total sales is equal to 12 months of sales *p2-wy-demographic-data.csv* - This file contains demographic data for each city and county in Wyoming.

## Project 3.1: Data Cleanup

## Step 1: Business and Data Understanding

Provide an explanation of the key decisions that need to be made. (250 word limit)

### **Key Decisions:**

Pawdacity is a leading pet store chain in Wyoming with 13 stores throughout the state. This year, Pawdacity would like to expand and open a 14th store. Your manager has asked you to perform an analysis to recommend the city for Pawdacity's newest store, based on predicted yearly sales.

# Answer these questions What decisions needs to be made?

- 1- Business Issue Understanding
- What decisions needs to be made?
- What information is needed to inform those decisions?
- What type of analysis can provide the information needed to inform those decisions?

### 2- Data Understanding

- What data is needed?
- What data is available?
- What are the important characteristics of the data?

In this project the problem is explained and the data are available and I will choose the necessary data tables in order to clean them by using a program Alteryx

I'm chose three sets data:

p2-2010-pawdacity-monthly-sales.csv - This file contains all of the monthly sales for all Pawdacity stores for 2010.

p2-partially-parsed-wy-web-scrape.csv - This is a partially parsed data file that can be used for population numbers.

p2-wy-demographic-data.csv - This file contains demographic data for each city and county in Wyoming.

In the first part, you will blend and format data and deal with outliers.

#### What data is needed to inform those decisions?

After the process of understanding the data, coordinating and cleaning it, and linking the tables together, shown above, I will get the following columns

City
2010 Census Population
Total Pawdacity Sales
Households with Under 18
Land Area
Population Density
Total Families

The data from the above fields will later be used to create a prediction model for the new store location.

## **Step 2: Building the Training Set**

You should be consolidating the data at the city level and **not at the store level.** We only have data at the city wide level so any analysis at the store level will not be sufficient to complete this analysis. We simply need to focus on cleaning up and blending the data together in this step. Result Data Set after import data form alteryx I use excel

| City         | Total Pawdacity Sales | 2010_Census_P opulation | Land_Area   | Household_wit h_Under_18 | Population_De nsity | Total_Families |
|--------------|-----------------------|-------------------------|-------------|--------------------------|---------------------|----------------|
| Buffalo      | 185328                | 4585                    | 3115.507568 | 746                      | 1.55                | 1819.5         |
| Casper       | 317736                | 35316                   | 3894.309082 | 7788                     | 11.16               | 8756.32        |
| Cheyenne     | 917892                | 59466                   | 1500.178345 | 7158                     | 20.34               | 14612.64       |
| Cody         | 218376                | 9520                    | 2998.957031 | 1403                     | 1.82                | 3515.62        |
| Douglas      | 208008                | 6120                    | 1829.465088 | 832                      | 1.46                | 1744.08        |
| Evanston     | 283824                | 12359                   | 999.4970703 | 1486                     | 4.95                | 2712.64        |
| Gillette     | 543132                | 29087                   | 2748.852783 | 4052                     | 5.8                 | 7189.43        |
| Powell       | 233928                | 6314                    | 2673.574463 | 1251                     | 1.62                | 3134.18        |
| Riverton     | 303264                | 10615                   | 4796.859863 | 2680                     | 2.34                | 5556.49        |
| Rock Springs | 253584                | 23036                   | 6620.202148 | 4022                     | 2.78                | 7572.18        |
| Sheridan     | 308232                | 17444                   | 1893.977051 | 2646                     | 8.98                | 6039.71        |
|              |                       |                         |             |                          |                     |                |
| Sum          | 3773304               | 213862                  | 33071       | 34064                    | 63                  | 62653          |
| average      | 343027.64             | 19442.00                | 3006.49     | 3096.73                  | 5.71                | 5695.71        |

#### And the result for use Alteryx

| Column                   | Sum       | Average   |  |
|--------------------------|-----------|-----------|--|
| 2010 Census Population   | 213,862   | 19442     |  |
| Total Pawdacity Sales    | 3,773,304 | 343027.64 |  |
| Households with Under 18 | 34,064    | 3096.73   |  |
| Land Area                | 33,071    | 3006.45   |  |
| Population Density       | 63        | 5.73      |  |
| Total Families           | 62,653    | 5695.73   |  |

## **Step 3: Dealing with Outliers**

The point is not to simply find outliers, but to understand what the extreme data points that exist in your data that may affect your analysis.

Below are scatter plots and boxplots of the dataset, with each potential predictor variable plotted against the Total Pawdacity Sales for that city.



I'm Calculate 1st quartile Q1 and 3rd quartile Q3 of the dataset. I'm use the Excel function QUARTILE.INC, Calculate the Interquartile Range: IQR = Q3 - Q1 and  $Upper\ Fence = Q3 + 1.5\ IQR$ ,  $Lower\ Fence = Q1 - 1.5\ IQR$  and Alteryx Below is a summary of the dataset by excel

|                    |                       |                         | IQR Steps    |                          |                     |                |
|--------------------|-----------------------|-------------------------|--------------|--------------------------|---------------------|----------------|
| City               | Total Pawdacity Sales | 2010_Census_P opulation | Land_Area    | Household_wit h_Under_18 | Population_De nsity | Total_Families |
| Min                | 185328                | 4585                    | 999          | 746                      | 1                   | 1744           |
| Q1                 | 226152                | 7917                    | 1861.721069  | 1327                     | 1.72                | 2923.41        |
| Median(Q2)         | 283824                | 12359                   | 2748.852783  | 2646                     | 2.78                | 5556.49        |
| Q3                 | 312984                | 26061.5                 | 3504.908325  | 4037                     | 7.39                | 7380.805       |
| Max                | 917892                | 59466                   | 6620.202148  | 7788                     | 20.34               | 14612.64       |
| IQR                | 86832                 | 18144.5                 | 1643.187256  | 2710                     | 5.67                | 4457.395       |
| <b>Upper Fence</b> | 443232                | 53278.25                | 5969.689209  | 8102                     | 15.895              | 14066.8975     |
| <b>Lower Fence</b> | 95904                 | -19299.75               | -603.0598145 | -2738                    | -6.785              | -3762.6825     |
| Std.Dev.           | 203601.17             | 15842.75                | 1542.19      | 2338.85                  | 5.58                | 3638.46        |

#### The result by [Alteryx]

| Q1-PctlNo0 2010 Census Population  | 7917    |                                     |           |
|------------------------------------|---------|-------------------------------------|-----------|
| Q3 PctlNo0 2010 Census Population  | 26061.5 |                                     |           |
| Q1-PctlNo0_Household_with_Under_18 | 1327    |                                     |           |
| Q3_PctlNo0_Household_with_Under_18 | 4037    | Upper FanceTotal Pawdacity Sales    | 443232    |
| Q1-PctlNo0_Land_Area               | 1861.5  | Lower Fence Total Pawdacity Sales   | 95904     |
| Q3_PctlNo0_Land_Area               | 3505    | Upper Fance 2010_Census_Population  | 53278.25  |
| Q1-PctlNo0_Population_Density      | 2       | Lower Fance 2010_Census_Population  | -19299.75 |
| Q3_PctlNo0_Population_Density      | 7.5     | Upper Fance Land_Area               | 5970.25   |
| Q1-PctlNo0_Total Pawdacity Sales   | 226152  | Lower Fance Land_Area               | -603.75   |
| Q3_PctlNo0_Total Pawdacity Sales   | 312984  | Upper Fance Household_with_Under_18 | 8102      |
| Q1-PctlNo0_Total_Families          | 2923.5  | Lower Fance Household_with_Under_18 | -2738     |
| Q3_PctlNo0_Total_Families          | 7380.5  | Upper Fance Population_Density      | 15.75     |
| IQR_Total Pawdacity Sales          | 86832   | Lower Fance Population_Density      | -6.25     |
| IQR_2010_Census_Population         | 18144.5 | Upper Fance Total_Families          | 14066     |
| IQR_Land_Area                      | 1643.5  | Lower Fance Total_Families          | -3762     |
| IQR_Household_with_Under_18        | 2710    |                                     |           |
| IQR_Population_Density             | 5.5     |                                     |           |
| IQR_Total_Families                 | 4457    |                                     |           |

From analyzing our data, and Scatterplot we will not look at the extreme values. We are in the process of opening a new store to solve the incoming problem despite its appearance in Cheyenne the highest Total pawdacity sales are in Cheyenne, Gillette and Cheyenne City for Census Population, Land Area, Population Density, Land Area and Total Pawdacity sales for Gillette. The scatterplot for Land Area vs Sales would indicate to me that Rock Springs follows the downward direction of the line of best fit for that plot with sales roughly in line with other sales values in that plot. Through the data, the most recommended cities to open the new store are Cheyenne and Gillette. My recommendation is to keep Cheyenne because it has appropriate data to open the store through the percentage of sales and population density, and removing Gillette.

Help resources :https://knowledge.udacity.com I wish success to all. Marwan Saeed Alsharabbi