IC Design Homework 3

電機三 b08901201 胡雅晴

I. Circuit Diagram

1. kendall rank module

2. agb (a-greater-than-b) module

3. counter module

II. Discussion

1. Finding Concordant Pairs

- (1) Compare all possible combinations of (x_i, x_j) and (y_i, y_j) , where i != j.
- (2) Compare the relationships of (x_i, x_j) and (y_i, y_j) . If $[(x_i > x_j) \text{ AND } (y_i > y_j) \text{ OR } (x_i < y_j)]$
- x_j) AND $(y_i \le y_j)$], then (i,j) is a concordant pair.

2. From Concordant Pairs to Kendall Coefficient

# of concordant	kendall coefficient	kendall	kendall coefficient
pairs		coefficient	in 4-bit signed
		rounded	number
6	1	1	0100
5	0.667	0.75	0011
4	0.333	0.25	0001
3	0	0	0000
2	-0.333	-0.25	1111
1	-0.667	-0.75	1101
0	-1	-1	1100

Through observing the outcomes for 0-6 concordant pairs, we conclude that the 4 output digits each displays TRUE under the following circumstances:

output digits	is TRUE when # of concordant pairs is
kendall[3]	0 OR 1 OR 2
kendall[2]	0 OR 1 OR 2 OR 6
kendall[1]	2 OR 5
kendall[0]	1 OR 4 OR 5

Thus we aim to find the kendall coefficient by finding out the number of concordant pairs by the following algorithm:

- (1) Splitting the 6 inputs into two halves. For example, $101111 \Rightarrow (101)$, (111)
- (2) Find how many 1s there are each in the two halves. For example, $(101) \Rightarrow 2$
- (3) Generate flags that each represent if the number of concordant pairs equates a specific number. For example, there are 5 concordant pairs if there are [(two 1s in the first half AND three 1s in the second half) OR (three 1s in the first half AND two 1s in the second half)]
- (4) Find kendall[0], kendall[1], kendall[2], kendall[3] by utilizing these flags.

3. Tactics in Improving Critical Path

- Paralleling over sequentialing.
- Use multiple small gates instead of few wide gates to process signals.
- Replacing NOT gates with NOR/NAND gates.
- Avoid costly gates such as IV, EN, FA1,