Vectors & Vector Arithmetic

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 11.2 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to perform arithmetic operations on vectors and understand the geometric consequences of the operations.
- Know how to compute the magnitude of a vector and normalize a vector.
- Be able to use vectors in the context of geometry and force problems.

PRACTICE PROBLEMS:

1. Find the components of vector \overrightarrow{v} and sketch an equivalent vector with its initial point at the origin.

2. Sketch the vector $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}$ and express it in component form.

3. The figure below is a parallelogram. Express \overrightarrow{w} in terms of \overrightarrow{u} and \overrightarrow{v} .

- 4. Consider the points $P_1(2,3)$ and $P_2=(5,-1)$. Find the components of the vector $\overrightarrow{P_1P_2}$. Sketch P_1 , P_2 , $\overrightarrow{P_1P_2}$, and an equivalent vector with its initial point at the origin.
- 5. Consider the points $P_1(1,2,3)$ and $P_2(5,4,6)$. Find the components of the vector $\overrightarrow{P_1P_2}$.
- 6. Let $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} \mathbf{k}$, $\mathbf{v} = -2\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, and $\mathbf{w} = 7\mathbf{i} + 4\mathbf{j} + \mathbf{k}$. Compute each of the following:
 - (a) 2u 3w
 - (b) $\|\mathbf{u} + \mathbf{v}\|$
 - (c) $\|\mathbf{u}\| + \|\mathbf{v}\|$
 - (d) $\|2\mathbf{u}\|$
 - (e) $\left\| \frac{1}{\|\mathbf{v}\|} \mathbf{v} \right\|$
- 7. For each of the following, find a vector which satisfies the given conditions.
 - (a) A unit vector which is in the opposite direction of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$
 - (b) A unit vector which is in the same direction as the vector from $P_1(1,0,5)$ to $P_2(3,-1,2)$
 - (c) A vector which is in the opposite direction of $\overrightarrow{v} = \langle 1, 2, 3 \rangle$ and whose maginitude is half that of \overrightarrow{v} .
 - (d) A vector which is in the same direction of $\mathbf{w} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ and which has a length of $\sqrt{5}$
 - (e) A vector in 2-space which makes an angle of $\theta = \frac{\pi}{6}$ with the positive x-axis and which has a magnitude of 4.
 - (f) A vector in 2-space which makes an angle of $\theta=210^\circ$ with the positive x-axis and which has a length of 2.

- 8. Find the value(s) of a so that the vectors $\overrightarrow{v} = \langle a^2, 6 \rangle$ and $\overrightarrow{w} = \langle 4a, 2 \rangle$ are parallel.
- 9. Vectors \overrightarrow{v} and \overrightarrow{w} , shown below, are unit vectors. Find the components of $\overrightarrow{v} + \overrightarrow{w}$.

10. For each of the following, find the magnitude of the resultant force and the angle that it makes with the positive x-axis.

(a)

(b)

11. A weight of 200 Newtons (N) is being supported by two wires, as shown below. Find the tension in each wire.

