EN 2040

Random Signals and Processes

Simulation Assignment Report

H.K.R.L. GUNASEKARA 180205H

$$\sigma^2 = 1 \cdot \mu = 0$$

$$\sigma^2 = 4$$
 , $\mu = 0$

$$\sigma^2=0.5^2$$
 , $\mu=0$

When σ increases the deviation from the original signal value increases

Q4)

There can be erros in decoding, as shown below

Q5) ${\it Comparison \ between \ builtin \ function \ and \ written \ function \ (no \ of \ bins = 10)}$

The histograms have a distant appearance of Gaussian distribution.

Comparison between builtin function and written function (no of bins = 100)

Upon increasing the no of bins, histograms have obtained a close look of Gaussian distribution.

 $f_{R|S}(r|S=-A), A=1$

b)

0

-3

-4

-2

-1

0

2

3

$$f_{R|S}(r|S = -A), A = 3$$

$$pdf of f_{R|S}(r|S=-A)$$

$$0.45$$

$$0.35$$

$$0.3$$

$$0.25$$

$$0.1$$

$$0.15$$

$$0.1$$

$$f_{R|S}(r|S=A), A=3$$
pdf of $f_{R|S}(r|S=A)$

0.45
0.4
0.35
0.3
0.25
0.1
0.1
0.05

When A increases the pdfs deviates from its initial positions when A=1.

This is due to mean values of the pdfs is -A for $f_{R|S}(r|S=-A)$ and A for $f_{R|S}(r|S=A)$

c)

0

For the expected value,

$$E[X] = \sum_{i=1}^{N} x_i f_{x_i} \Delta x_i$$

Where,

$$f_{x_i} = frequency \ of \ each \ bin$$
 $x_i = mid \ value \ of \ bin$ $\Delta x_i = width \ of \ bin$

	А	E [R S = A]	E [R S = -A]	E [R]
	1	1.0025	-1.0017	0.003864
Ī	2	1.9976	-2.0006	-0.0012
Ī	3	3.0006	-3.0068	-0.0029

Q6)

b)

$$A = 1$$

$$f_{R|S}(r|S = -A)$$

$$f_{R|S}(r|S=A)$$

$$A = 3$$

$$f_{R|S}(r|S = -A)$$

$$f_{R|S}(r|S=A)$$

c)

А	E [R S = A]	E [R S = -A]	E [R]
1	0.9965	-0.9965	-0.000091
2	2.0001	-2.0088	-0.0044
3	2.999	-3.0159	-0.0081

When increasing A, the middle separation of $f_R(r)$ increases, but it is not quite dominant as without the interference (in Q5-d). This is due to interference another Gaussian random signal gets added to the Initial Signal which increased the variance of both $f_{R|S}(r|S=-A)$ and $f_{R|S}(r|S=-A)$.

Q7)

b)

$$\alpha = 0.5, A = 1$$

$$\alpha = 2$$
, $A = 1$

$f_{R|S}(r|S=A)$

$$\alpha = 3$$
, $A = 1$

$$f_{R|S}(r|S = -A)$$

$$f_{R|S}(r|S=A)$$

c) A=1

α	E [R S = A]	E [R S = -A]	E [R]
0.5	0.5011	-0.5090	-0.0038
2	1.9994	-2.0056	-0.0031
3	2.9899	-2.9972	-0.0035

3

4

-5

-4

-3

-2

When increasing α , the middle separation of $f_R(r)$ increases. This is due to mean values of the pdfs is - α A for $f_{R|S}(r|S=-A)$ and α A for $f_{R|S}(r|S=A)$.