Exercice 1 Considérons un échantillon de n=5 individus où chaque individu $\boldsymbol{x}_i \in \mathbb{R}^d$ est décrit par d=3 variables réelles. Cet échantillon est représenté par la matrice $\mathbf{X}=(\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_3,\boldsymbol{x}_4,\boldsymbol{x}_5)^t$ suivante :

$$\mathbf{X} = \sqrt{10} \begin{pmatrix} 2 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 1 & 4 \\ 2 & 1 & 3 \end{pmatrix}$$

On va faire une ACP centrée réduite de ce jeu de données.

- 1. Calculer l'individu moyen (le centre de gravité du nuage de données) $\bar{\boldsymbol{x}}$
- 2. Calculer la matrice $\mathbf Y$ des données centrées
- 3. Calculer les écarts types σ_j de chacune des variables
- 4. Calculer la matrice Z des données centrées-réduites
- 5. Calculer la matrice de variance-covariance Σ de Z et la matrice de corrélation R de X.

 Commenter.
- 6. Effectuer une décomposition spectrale de la matrice de corrélation \mathbf{R} : déterminer les valeurs propres λ_j associées aux vecteurs propres non-nuls \mathbf{u}_j de \mathbf{R} .
- 7. Déterminer les facteurs principaux \mathbf{f}_j et les axes principaux \mathbf{a}_j du nuage des individus. Vérifier leurs propriétés statistiques
- 8. Calculer pour chacun des axes factoriels, l'inertie du jeu de données projetées sur l'axe considéré, et la part d'inertie qu'il explique.
- 9. Calculer les composantes principales \mathbf{c}_j pour les individus. Comment s'interprètent les composantes principales en fonction des variables de départ. Vérifier leur propriétés statistiques.
- 10. Représenter graphiquement le nuage des individus sur le plan factoriel défini par les deux premiers axes factoriels. Commenter.
- 11. Représenter graphiquement le nuage des variables sur le plan factoriel défini par les deux premiers axes factoriels. Commenter.

Exercice 2 Considérons un échantillon de n individus où chaque individu $x_i \in \mathbb{R}^d$ est décrit par d=3 variables réelles qui ont pour matrice de corrélation

$$\mathbf{R} = \left(\begin{array}{ccc} 1 & \rho & -\rho \\ \rho & 1 & \rho \\ -\rho & \rho & 1 \end{array} \right)$$

ave $-1 \le \rho \le 1$.

On va faire une ACP centrée-réduite de ce jeu de données.

- 1. Effectuer une décomposition spectrale de la matrice de corrélation ${\bf R}$: déterminer les valeurs propres λ_j associées aux vecteurs propres non-nuls ${\bf u}_j$ de ${\bf R}$.
- 2. Quelles sont les valeurs possibles pour ρ . Justifier que ρ doit vérifier $-1 \le \rho \le 1$.
- 3. Calculer pour chacun des axes factoriels, l'inertie du jeu de données projetées sur l'axe considéré, et la part d'inertie qu'il explique. Faire une représentation graphique.
- 4. Calculer les composantes principales \mathbf{c}_j pour les individus. Comment s'interprètent les composantes principales en fonction des variables de départ. Vérifier leur propriétés statistiques.
- 5. Comment s'interprète en fonction des données d'origines x_i l'unique composante à retenir dans ce cas.