

Logic and Computer Design Fundamentals

Chapter 2 – Combinational Logic Circuits

Part 3 – Boolean Algebra and Algebraic Manipulation

Asst.Prof.Dr. Preecha Tangworakitthaworn Semester 2/2023

Overview

- Part 3–Boolean Algebra
 - Boolean Algebra
 - Algebraic Manipulation

I. Boolean Algebra

Boolean Algebra

Boolean algebra is the branch of <u>algebra</u> in which the values of the <u>variables</u> are the <u>truth values</u> (true and false), usually denoted 1 and 0, respectively.

Boolean Algebra

- Boolean algebra is the theoretical foundation for digital system.
- Boolean algebra is a mathematical system with a set of elements, a set of operators and a number of unproved hypothesis.
- Boolean algebra can have only two values, 0 and 1.
 The Boolean 0 and 1 do not represent actual numbers, instead a state of voltage.
- Boolean algebra is used as a tool for the analysis and design of logic circuit.

Boolean Function Evaluation using Truth Table

$$F1 = xy\overline{z}$$

$$F2 = x + \overline{y}z$$

$$F3 = \overline{x}yz + \overline{x}y\overline{z} + xz$$

$$F4 = \overline{x}y + xz$$

Finally, we found that F3 is equal to F4 (F3=F4)

X	y	Z	F1	F2	F3	F4
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	0	0	1	1
0	1	1	0	0	1	1
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	1	1

Boolean Function Evaluation

Equivalent Circuit Diagram

II. Algebraic Manipulation

How to simplify the Boolean algebra?

Algebraic Manipulation

- Algebraic Manipulation is a useful tool for Simplifying the digital circuit.
- Why do we need to do it?

Answer: Simpler mean cheaper, smaller, and faster.

For example

$$F3 = \overline{X}YZ + \overline{X}YZ + XZ$$
is equal to ...

$$F4 = \overline{X}Y + XZ$$

How to simplify?
...go to next
page

Algebraic Manipulation: Basic Identities

An algebraic structure defined on a set of at least two elements, together with three traditional binary operators: Or, And, Not (denoted +, \cdot , -) that satisfies the following basic identities:

1.
$$X + 0 = X$$

3.
$$X+1=1$$

$$5. X + X = X$$

$$7. \quad X + \overline{X} = 1$$

9.
$$\overline{X} = X$$

$$10. \quad \mathbf{X} + \mathbf{Y} = \mathbf{Y} + \mathbf{X}$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

$$14. \quad X(Y+Z) = XY+XZ$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

$$2. \quad X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

$$8. \quad X \cdot \overline{X} = 0$$

11.
$$XY = YX$$

$$13. \quad (XY)Z = X(YZ)$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Recommend

Some Properties of Identities

The identities above are organized into pairs. These pairs have names as follows:

1-4 Existence of 0 and 1 5-6 Idempotence

7-8 Existence of complement 9 Involution

10-11 Commutative Laws 12-13 Associative Laws

14-15 Distributive Laws 16-17 DeMorgan's Laws

Useful Trick! Distributive Pattern

Distributive identities 14 and 15 are most frequently used:

Identity 14:
$$X(Y+Z) = XY + XZ$$

Pattern $X (Y + Z) = (X \cdot Y) + (X \cdot Z)$ $X \cdot Z$

How to apply this trick? given algebra is $F = \overline{ABC} + ABC$

Solution

Step1: Extract shared variables → BC

Step2: Determine functions, you will get \rightarrow BC ($\overline{A}+A$)

Recommend

Useful Trick! Distributive Pattern

Recommend

Identity 15:
$$X+(YZ) = (X+Y)(X+Z)$$

Pattern
$$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$$

$$X + (X + Z)$$

How to apply this trick?

given algebra is $F = (\overline{A} + BC)(A + BC)$

Solution

Step1: Extract shared variables → BC

Step2: Determine functions, you will get \rightarrow BC+ $(\overline{A} \cdot A)$

Algebraic Manipulation Useful Trick! How to apply?

 Step1: To determine Distributive Identity by checking the most shared (or common) variables.

For example:

$$F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$

So, $\overline{X}Y$ is the most shared variables

$$=\overline{X}Y(Z+\overline{Z})+XZ$$

Algebraic Manipulation Useful Trick! How to apply?

Step2: To consider a simplification of the expression by applying some of the identities until getting final literals:

$$F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$

$$= \overline{X}Y(Z+\overline{Z}) + XZ \qquad \text{Distributive, identity 14}$$

$$= \overline{X}Y(1) + XZ \qquad \text{identity 7}$$

$$= \overline{X}Y + XZ \qquad \text{identity 2}$$
Final simplification \rightarrow 4 Literals

...Simplify to contain the smallest number of <u>literals</u> (result variables)

Useful Trick! Distributive Pattern

Recommend

Applied Trick for Identity 15:

$$(A+B)(C+D) = ?$$
Pattern
$$(A + B)(C + D) = AC+AD+BC+BD$$
AD

Proof of Simplification

$$\mathbf{x} \cdot \mathbf{y} + \mathbf{\bar{x}} \cdot \mathbf{y} = \mathbf{y}$$

Proof

$$(X \cdot Y) + (X \cdot Y) = Y$$
 $(X + \overline{X}) \cdot Y = Y$ identity 14
 $(1) \cdot Y = Y$ identity 7
 $Y = Y$ identity 2

Proof of Simplification

$$(x + y)(\overline{x} + y) = y$$

Proof

$$(X + Y)(X + Y) = Y$$

 $(X \cdot X) + Y = Y$ identity 15
 $(0) + Y = Y$ identity 8
 $Y = Y$ identity 1

Useful Theorems

$$x \cdot y + \overline{x} \cdot y = y \quad (x + y)(\overline{x} + y) = y$$

$$\mathbf{x} + \mathbf{x} \cdot \mathbf{y} = \mathbf{x}$$

$$x + x \cdot y = x$$
 $x \cdot (x + y) = x$

$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$
 Consensus
$$(x + y) \cdot (\overline{x} + z) \cdot (y + z) = (x + y) \cdot (\overline{x} + z)$$

$$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$$

$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

 $\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$ DeMorgan's Laws

Boolean Algebraic Proof

Our primary reason for doing proofs is to learn:

- Careful and efficient use of the identities and theorems of Boolean algebra, and
- How to choose the appropriate identity or theorem to apply to make forward progress, in order to simplify the Boolean algebra.

Useful Theorems: Absorption

Proof: X + XY = X (Absorption theorem)

Solution:

$$X + XY = X \cdot 1 + XY$$
 $X \cdot 1 = X$, identity 2
 $= X \cdot (1 + Y)$ Distributive, identity 15
 $= X \cdot 1$ $Y + 1 = 1$, identity 3
 $= X$ $X \cdot 1 = X$, identity 2

Useful Theorems: Simplification

Proof: X + XY = X + Y (Simplification theorem)

Solution:

$$X + \overline{XY} = (X+\overline{X})(X+Y)$$

$$= 1 \cdot (X + Y)$$

$$= X + Y$$

Distributive, identity 15

$$X+\overline{X}=1$$
, identity 7

$$X \cdot 1 = X$$
, identity 2

Useful Trick! Consensus Pattern

$$(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z) = (X \cdot Y) + (\overline{X} \cdot Z)$$

Consensus Pattern

Conclusion

$$(X \cdot Y) + (X \cdot Z)$$

Recommend

Useful Trick! Consensus Pattern

$$(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z) = (X + Y) \cdot (\overline{X} + Z)$$
Consensus Pattern
$$(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z)$$

$$(X + Y) \cdot (\overline{X} + Z)$$

$$(X + Y) \cdot (\overline{X} + Z)$$

Useful Theorems: DeMorgan

Truth Table to verify DeMorgan's Theorem

$$\overline{(X+Y)} = \overline{X} \cdot \overline{Y}$$

(a) X	Υ	X + Y	<u>X</u> + <u>Y</u>	(b)	X	Υ	X	¥	7 ⋅ 7
0	0	0	1		0	0	1	1	1
0	1	1	0		0	1	1	0	0
1	0	1	0		1	0	0	1	0
1	1	1	0		1	1	0	0	0
			-					-50	

Boolean Function Evaluation using Truth table

Useful Trick! DeMorgan Pattern

Recommend

DeMorgan, Identity 16

$$(X + Y) \neq \overline{X} + \overline{Y}$$

$$(\overline{X + Y}) = \overline{X} \cdot \overline{Y}$$

DeMorgan, Identity 17

$$\overline{(X \cdot Y)} \neq \overline{X} \cdot \overline{Y}$$

$$\overline{(X \cdot Y)} = \overline{X} + \overline{Y}$$

Example: Algebraic Proof

 $\bullet \quad (A+B)(A+CD) = A+BCD$

Proof Steps

$$(A+B)(A+CD) = AA+ACD+BA+BCD$$

identity 15

see slide 14

$$= A+ACD+BA+BCD$$

identity 6

$$= A(1+CD+B)+BCD$$

identity 14

$$= A(1) + BCD$$

identity 3

$$=A+BCD$$

identity 2

Example: Algebraic Proof

•
$$(A+B)(\overline{A}+C) = AC + \overline{A}B$$

Proof Steps
 $(A+B)(\overline{A}+C)$
 $= A\overline{A} + AC + B\overline{A} + BC$ by distributive
 $= A\overline{A} + AC + \overline{A}B + BC$ Re-ordering
 $= 0 + AC + \overline{A}B + BC$ by identity 8
 $= AC + \overline{A}B$

*** The redundant term eliminated in the last step by the consensus theorem

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables):

$$AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$$

$$= AB + ABCD + \overline{A}CD + \overline{A}C\overline{D} + \overline{A}BD$$

$$= \overrightarrow{AB} (\overrightarrow{I} + \overrightarrow{CD}) + \overline{A} C (D + \overline{D}) + \overline{A} B D$$

$$= AB + \overline{A}C + \overline{A}BD = B(A + \overline{A}D) + \overline{A}C$$

$$= \mathbf{B} (\mathbf{A} + \mathbf{D}) + \overline{\mathbf{A}} \mathbf{C}$$

Simplification

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Question: Complement $F = \overline{x}y\overline{z} + x\overline{y}\overline{z}$ Solution: $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$ how to prove?

Complementing Functions

Initial algebra is F = XYZ + XYZ

Solve the complementing function of F which is equal to

$$\overline{F} = \overline{\overline{XYZ} + XYZ}$$

Solution!!!

$$= (X+Y+Z)(X+Y+Z)$$

$$=(X+\overline{Y}+Z)(X+Y+Z)$$