Math 395

Homework 4

Due: 2/27/2024

Name: Avinash Iyer

Collaborators:

Problem 1

Let F be a field, with F[x] denoting the ring of polynomials with coefficients in F. Let $f(x) \in F[x]$ be a monic polynomial. Let $g(x) \in F[x]$ be a nonzero polynomial. We will show that there exist unique q(x) and r(x) in F[x] such that f(x) = g(x)q(x) + r(x), where r(x) = 0 or $\deg r(x) < \deg g(x)$.

Consider the ideal generated by g(x), $\langle g(x) \rangle \subseteq F[x]$.

Problem 4

Let $p \in \mathbb{Z}$ be a prime. Let $\mathfrak{m} = \{(pa, b) \mid a, b \in \mathbb{Z}\}$. We will prove that \mathfrak{m} is a maximal ideal in $\mathbb{Z} \times \mathbb{Z}$.

We will do so by showing that $(\mathbb{Z} \times \mathbb{Z})/\mathfrak{m}$ is isomorphic to the field $\mathbb{Z}/p\mathbb{Z}$. Let $\varphi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ be defined by $\varphi((i,j)) = [i]_{\rho}$. We will show that φ is a surjective homomorphism with kernel \mathfrak{m} . Let $(i,j), (k,\ell) \in \mathbb{Z} \times \mathbb{Z}$. Then,

$$\varphi((i,j) + (k,\ell)) = \varphi((i+k,j+\ell))$$

$$= [i+k]_p$$

$$= [i]_p + [k]_p$$

$$= \varphi((i,j)) + \varphi((k,\ell)),$$

and

$$\varphi((i,j)(k,\ell)) = \varphi((ik,j\ell))$$

$$= [ik]_p$$

$$= [i]_p[k]_p$$

$$= \varphi((i,j))\varphi((k,\ell)).$$

Finally, for any $[a]_p \in \mathbb{Z}/p\mathbb{Z}$, we set $(a,1) \in \mathbb{Z} \times \mathbb{Z}$ such that $\varphi((a,1)) = [a]_p$, meaning φ is surjective.

For $\varphi((x,y)) = [0]_p$, it must be the case that $[x]_p = [0]_p$, meaning x = pa for some $a \in \mathbb{Z}$. Thus, $\ker \varphi = \{(pa,b) \mid a,b \in \mathbb{Z}\} = \mathfrak{m}$. By the first isomorphism theorem, it is the case that $(\mathbb{Z} \times \mathbb{Z})/\mathfrak{m} = \mathbb{Z}/p\mathbb{Z}$. Since $\mathbb{Z}/p\mathbb{Z}$ is a field, \mathfrak{m} must be maximal.

Problem 5

Let p be a prime, and let J be the collection of polynomials in $\mathbb{Z}[x]$ whose constant term is divisible by p. We will show that J is a maximal ideal in $\mathbb{Z}[x]$.

Let $\varphi : \mathbb{Z}[x] \to \mathbb{Z}/p\mathbb{Z}$ be defined by

$$a_0 + a_1x + \cdots + a_nx^n \mapsto [a_0]_p$$
.

For any $[a]_p \in \mathbb{Z}/p\mathbb{Z}$, we select an element of $\mathbb{Z}[x]$ with constant term equal to a, meaning that φ is a surjective map. We will show that φ is a homomorphism. Let $a=a_0+a_1x+\cdots+a_nx^n$ and $b=b_0+b_1x+\cdots+b_mx^m$ be elements of $\mathbb{Z}[x]$. Without loss of generality, $n \geq m$. Then,

$$\varphi(a+b) = \varphi((a_0 + b_0) + (a_1 + b_1)x + \dots + (a_m + b_m)x^m + \dots + a_nx^n)$$

$$= [a_0 + b_0]_p$$

$$= [a_0]_p + [b_0]_p$$

$$= \varphi(a_0 + a_1x + \dots + a_nx^n) + \varphi(b_0 + b_1x + \dots + b_mx^m),$$

and

$$\varphi(ab) = \varphi((a_0 + a_1 x + \dots + a_n x^n)(b_0 + b_1 x + \dots + b_m x^m))
= \varphi((a_0 b_0) + \dots + (a_n b_m) x^{n+m})
= [a_0 b_0]_p
= [a_0]_p [b_0]_p
= \varphi(a_0 + a_1 x + \dots + a_n x^n) \varphi(b_0 + b_1 x + \dots + b_m x^m)
= \varphi(a) \varphi(b).$$

Therefore, φ is a homomorphism with

$$\ker \varphi = \{a_0 + a_1 x + \dots + a_n x^n \mid a_i \in \mathbb{Z}, [a_0]_p = [0]_p\},\$$

which is precisely the set of all polynomials in $\mathbb{Z}[x]$ with with $a_0|p$, or J. By the first isomorphism theorem, it is thus the case that $\mathbb{Z}[x]/J \cong \mathbb{Z}/p\mathbb{Z}$. Since $\mathbb{Z}/p\mathbb{Z}$ is a field, it must be the case that J is a maximal ideal.

Problem 7

Let R be a commutative ring with identity. Let $I \subset R$ be an ideal. The radical of I is defined as

rad
$$I = \{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{Z}_{>0} \}$$

We say I is a radical ideal if rad I = I. We will show that every prime ideal of R is a radical ideal.

Let I be a prime ideal. Let $r \in \text{rad } I$. Then, $\exists n \in \mathbb{Z}_{>0}$ such that $r^n \in I$. We will show that $r \in I$ by induction.

In the base case, we let n=1. Then, since $r^1=(1)(r)\in I$. Since I is prime, it must be the case that either 1 or r is an element of I; however, since $I\neq R$, it must be the case that $1\notin I$ (as 1 is a unit in R), so $r\in I$.

Suppose that for $2, \ldots, n-1$, it is the case that if $r^{n-1} \in I$, then $r \in I$. Then, if $r^n \in I$, we have $r^n = (r^{n-1})(r) \in I$. Since I is prime, either $r \in I$ or $r^{n-1} \in I$. If the first is the case, then we are done; otherwise, if $r^{n-1} \in I$, the inductive hypothesis holds that $r \in I$. Thus, rad $I \subseteq I$.

Let $a \in I$. Then, since $a \in R$, we have that $a^1 \in I$, meaning n = 1, so $a \in \text{rad } I$. Thus, $I \subseteq \text{rad } I$. Therefore, for I a prime ideal, rad I = I.