

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 061 075 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.12.2000 Bulletin 2000/51

(51) Int. CI.7: **C07D 209/48**, A01N 43/34, C07D 403/12

(21) Application number: 00304787.5

(22) Date of filing: 06.06.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 14.06.1999 US 139152 P

(71) Applicant: ROHM AND HAAS COMPANY Philadelphia, Pennsylvania 19106-2399 (US)

(72) Inventors:

 Jacobson, Richard Martin Chalfont, Pennsylvania 18914 (US) · Mulvihill, Mark Joseph Ambler, Pennsylvania 19002 (US)

. Liu, Changling Tiexi District, Shenyang, Liaoning 110021 (CN)

· Liu, Xiaonan Shenyang, Liaoning 110021 (CN)

(74) Representative:

Buckley, Guy Julian et al ROHM AND HAAS (UK) LTD. **European Operations Patent Department** Lenniq House 2 Mason's Avenue Croydon CR9 3NB (GB)

Substituted triazoles, imidazoles and pyrazoles as herbicides (54)

The present invention relates to novel heterocyclic compounds and their agronomically suitable salts, methods for the use of these compounds in controlling unwanted plant species, and the use of herbicidal compositions containing these compounds. In particular, the present invention pertains to substituted and unsubstituted triazoles, imidazoles and pyrazoles linked to a heterocyclic substituted benzene group. Such compounds are useful as pre-emergent and postemergent herbicides.

100001D- 200

100107649 | -

Description

[0001] The present invention relates to novel heterocyclic compounds and their agronomically suitable salts, methods for the use of these compounds in controlling unwanted plant species, and the use of herbicidal compositions containing these compounds.

[0002] The presence of unwanted plant species causes substantial damage to useful crops, especially agricultural products that satisfy the human being's basic food and fiber needs, such as cotton, rice, corn, wheat, soybean. The current population explosion and concomitant world food and fiber shortage demand improvements in efficiency of producing these crops. Prevention or minimizing loss of a portion of such valuable crops by killing, or inhibiting the growth of unwanted plant species is one way of improving this efficiency. Though many herbicides are available, the need still exists for more effective herbicides.

[0003] The compounds of the present invention in general show a usefully improved level of crop safety on soybean, corn or wheat than the known compounds.

[0004] EP 0 083 055 A2, published July 6, 1983, discloses herbicidal compounds of the following formula (i)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

wherein

15

20

25

30

35

40

45

50

R₁ is hydrogen, alkyl, lower cycloalkyl, lower alkyl(lower)cycloalkyl, lowercycloalkyl(lower)alkyl, lower alkoxyl(lower)alkyl, lower cycloalkenyl, lower cycloalkenyl(lower)alkyl, phenyl, cyano(lower)alkyl, lower alkynyl, lower alkylideneamino, lower alkylthio(lower)alkyl, benzyl, halo(lower)alkyl or lower cycloalkylideneamino;

R₂ is hydrogen, lower alkyl, lower alkoxyl;

X is chlorine or bromine:

Y is oxygen or imino; and

Z is oxygen or sulfur.

[0005] EP 0 273 417 A1 published July 6, 1988 discloses the herbicidal compounds having the formula (ii)

wherein

each of X and Y is hydrogen or halogen; Z is SCH(R)COOR¹:

R is hydrogen, alkyl, and R¹ is alkyl, cycloalkyl, or alkoxyalkyl, or COOQ wherein Q is alkyl, or Y and Z together form

bonded to phenyl ring, wherein R² is H or alkyl, and R³ is alkyl, alkenyl, or alkynyl.

The present invention relates to novel herbicidal compounds and methods for their use in controlling unwanted plant species and their use in herbicidal compositions in agriculture. In particular, the present invention pertains to substituted and unsubstituted triazoles, imidazoles and pyrazoles linked to a heterocyclic substituted benzene group.

It has now been found that certain triazoles, imidazoles and pyrazoles linked to a heterocyclic substituted benzene group are useful as pre-emergent and post-emergent herbicides. These novel compounds are represented by formula l

$$R_1 \xrightarrow{Q} X - Z - N \xrightarrow{A} B \xrightarrow{R_4} R_5$$

wherein

5

20

25

35

R₈

 R_9

45

is selected from H, F, Br, Cl, NO2 and CN; R_1

is selected from F. Cl. Br. H and CN: R_2 30

is selected from H and CN; and alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, cycloalkenyl, haloalkenyl, R_3 haloalkynyl, alkoxy, alkylthio, alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonylcycloalkyl, alkylsulfinylcy-

cloalkyl, aryl, arylalkyl, heteroaryl and heteroarylalkyl, all of which may be further substituted;

are each independently selected from H, halo and CN; and alkyl, cycloalkyl, haloalkyl, alkoxy, alkylthio, R₄ and R₅ alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonylcycloalkyl, alkylsulfinylcycloalkyl, CO2R6, CONR6R13, OR_6 , SR_6 , SO_2R_6 , NR_6R_{13} , $SO_2NR_6R_{13}$, aryl, arylalkyl, heteroaryl and heteroarylalkyl, all of which may

be further substituted;

 R_6 is selected from H, alkyl, cycloalkyl, alkoxy, alkylthio, alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonylcy-

cloalkyl, alkylsulfinylcycloalkyl, aryl and arylalkyl, all of which may be further substituted;

is selected from H, alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, alkylsulfonylalkyl, alkylsulfinylalkyl, alkyl- R_7 sulfonylcycloalkyl, alkylsulfinylcycloalkyl and COR9, all of which may be further substituted;

is selected from alkyl, haloalkyl, cycloalkyl, cycloalkenyl, alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonyl-

cycloalkyl, alkylsulfinylcycloalkyl, aryl and arylalkyl, all of which may be further substituted;

is selected from H, alkyl, alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonylcycloalkyl, alkylsulfinylcycloalkyl,

alkenyl, alkynyl, haloalkyl and cycloalkyl, all of which may be further substituted;

is selected from H, halo, NH2, alkyl, alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonylcycloalkyl, alkylsulfi-R₁₀

nylcycloalkyl, haloalkyl, CN, CO₂(alkyl), CONH(alkyl), CON(alkyl)₂ wherein each alkyl may be the same or different, CH₂CN, CH₂CH=CH₂, CH₂C=CH, CH₂CO₂(alkyl), CH₂OCH₃ and CH₂-1,2,4-triazole, all of which may be further substituted;

is selected from H, CN, alkyl, haloalkyl and CO₂(alkyl); R₁₁ 50

is selected from H, alkyl, CO_2R_6 , $CONR_6R_{13}$, OR_6 , SR_6 , SO_2R_6 , $SO_2NR_6R_{13}$ and NR_6R_{13} ; R₁₂

R₁₃ is H, alkyl, aryl or arylalkyl;

is N or CH; Α

is N or CR₁₀; В

is O, CH(R₃), CO, CS, CONR₁₂ or CSNR₁₂; Z 55

is selected from O, S, NR₁₂, CO₂, OCH(R₆)CO₂, SCH(R₆)CO₂, CH=C(halo)CO₂, CH₂CH(halo)CO₂, Х CONH, OCH(R₆)CONH, SCH(R₆)CONH, CH=C(halo)CONH and CH₂CH(halo)CONH when Z is CH(R₃);

Х is selected from CO, OCH(R₆)CO, SCH(R₆)CO, CH=C(halo)CO and CH₂CH(halo)CO when Z is O;

X is selected from O, S, CO, OCH(R_6), CH=C(halo), CH₂CH(halo), CONH, OCH(R_6)CONH, SCH(R₆)CONH, CH=C(halo)CONH, CH $_2$ CH(halo)CONH and NR $_{12}$ when Z is CO, CS, CONR $_{12}$ or CSNR₁₂; and Q

is selected from NR₇COR₈, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 and

Q1 is 4,5,6,7-tetrahydrophthalimid-2-yl,

Q2 is 5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyridin-3(2H)-one-1-yl,

Q3 is 5,6,7,8-tetrahydro-1H,3H-[1,3,4]thiadiazolo[3,5-a]pyridazineimin-1-yl,

Q4 is 4,5,6,7-tetrahydroimidazo[1,5-a]pyridine-1,3(2H,5H)-dione-2-yl,

Q5 is 1,6,8-triazabicyclo[4,3,0]-nonane-7,9-dion-8-yl,

Q6 is 5-(1-methyethylidene)-2,4-oxazolidinedione-3-yl,

Q7 is 5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2(3H)-one-3-yl,

Q8 is 4-difluoromethyl-4,5-dihydro-3-methyl-1,2,4-triazol-5(1H)-one-1-yl,

Q9 is 2-methyl-1,2,4-oxathazolidine-3,5-dione-4-yl,

Q10 is 4-chloro-1-methyl-5-difluoromethoxy-1H-pyrazol-3-yl,

Q11 is 4-bromo-1-methyl-5-trifluoromethyl-1H-pyrazol-3-yl,

Q12 is 1-substituted-6-trifluoromethyl-2,4-pyrimidione-3-yl, Q13 is 1-substituted-6-trifluorometbyl-1,3,5-triazme-2,4-dione-1-yl,

Q14 is 4,5-disubstituted-4,5-dihydro-1,2,4-triazine-3(2H)-one-2-yl,

Q15 is 4-substituted-1,2,4-triazine-3,5(2H,4H)-dione-2-yl and

Q16 is 5-methyl-6-oxo-4-(trifluoromethyl)-6H-pyridazin-1-yl;

or the agronomically acceptable salts thereof.

As used in the present invention, the term "aryl" is defined as a monocyclic or polycyclic ring selected from [8000] 25 benzene, naphthalene, indene, anthracene, indacene, fluorene, acenaphthalene, phenanthrene and azulene.

"Heteroaryl" is defined as a monocyclic or polycyclic ring selected from furan, thiophene, pyrrole, isoxazole, oxazole, isothiazole, thiazole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole. 1,3,4-thiadiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,3,4-thiadiazole, pyridine, pyr zine, 1,3,5-triazine, 1,2,4-triazine, 1,2,4,5-tetrazine, benzofuran, benzothiophene, indole, benzisoxazole, benzoxazole, benzisothiazole, benzothiazole, benzopyrazole, benzimidazole, benzotriazole, 1,2-methylenedioxybenzene, 1,2-ethylenedioxybenzene, quinoline and isoquinoline. [0010]

The structures of the "Q" heterocyclic groups previously named are

$$\begin{array}{c} Q2 \\ -N \\ N \end{array}$$

5

10

15

20

35

40

45

50

, where R₁₀ and R₁₁ are as previously defined.

[0011] The term "alkyl" includes both branched and straight chain alkyl groups. Typical alkyl groups are methyl, etnyl, *n*-propyl, isopropyl, *n*-butyl, *sec*-butyl, isobutyl, *tert*-butyl, *n*-pentyl, isopentyl, *n*-hexyl, *n*-heptyl, isooctyl, nonyl, decyl, undecyl, dodecyl and the like.

[0012] The term "cycloalkyl" refers to a cyclic aliphatic ring structure such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclohexane, cyclohexane, cyclooctane and the like.

[0013] The term "haloalkyl" refers to an alkyl group substituted with one or more halo groups.

[0014] The term "halo" refers to fluoro, chloro, bromo or iodo.

[0015] The term "alkylsulfonylalkyl" refers to an alkyl group substituted with an alkylsulfonyl (alkyl-SO₂) group, for example methylsulfonylmethyl.

[0016] The term "alkylsulfinylalkyl" refers to an alkyl group substituted with an alkylsulfinyl (alkyl-SO) group, for example methylsulfinylmethyl.

[0017] The term "alkenyl" refers to an ethylenically unsaturated hydrocarbon group, straight or branched, having 1 or 2 ethylenic bonds.

50 [0018] The term "cycloalkenyl" refers to a cyclic aliphatic ring structure having 1 or 2 ethylenic bonds such as cyclopentene, cyclohexene, 1,4-cyclohexadiene and the like.

[0019] The term "haloalkenyl" refers to an alkenyl group substituted with one or more halo groups.

[0020] The term "alkynyl" refers to an unsaturated hydrocarbon group, straight or branched, having 1 or 2 acety-lenic bonds.

55 [0021] The term "arylalkyl" is used to describe a group wherein the alkyl chain can be branched or straight chain with the aryl portion, as defined above, forming a terminal portion of the arylalkyl moiety.

[0022] The term "heteroarylalkyl" is used to describe a group wherein the alkyl chain can be branched or straight chain with the heteroaryl portion, as defined above, forming a terminal portion of the heteroarylalkyl moiety.

5

10

15

20

25

30

35

[0023] The term "alkoxy" includes both branched and straight chain alkyl groups attached to a terminal oxygen atom. Typical alkoxy groups include methoxy, ethoxy, *n*-propoxy, isopropoxy, *tert*-butoxy and the like.

[0024] The term "haloalkoxy" refers to an alkoxy group substituted with one or more halo groups.

The term "alkylthip" includes both broads of the term "alkylthip" includes between the term of the term alkylthip" includes both broads of the term includes a term of the term alkylthip" includes both broads of the term alkylthip in the term alkyl

[0025] The term "alkylthio" includes both branched and straight chain alkyl groups attached to a terminal sulfur atom.

[0026] The term "haloalkylthio" refers to an alkylthio group substituted with one or more halo groups.

[0027] Acceptable acids that may form salts of the compounds of the present invention can be selected from hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid, acetic acid, propinic acid, glycolic acid, methanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, (C₂-C₂₀)alkylbenzenesulfonic acid, sodium hydrogen sulfate and methyl hydrogen sulfate.

[0028] Other agronomically acceptable salts may be formed by complexation of the compounds of the current [0029] A preferred embodiment of this invention.

[0029] A preferred embodiment of this invention are the compounds of formula I wherein

is selected from H, F, Br, Cl, NO₂ and CN;

R₂ is selected from F, Cl, Br, H and CN; R₃ is selected from H. CN and halo; and

is selected from H, CN and halo; and (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, (C_2-C_{12}) alkenyl, cyclo (C_3-C_8) alkenyl, nyl, (C_2-C_{12}) alkynyl, halo (C_1-C_{12}) alkyl, halo (C_2-C_{12}) alkyl, halo (C_2-C_{12}) alkyl, halo (C_2-C_{12}) alkyl, halo (C_2-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonyl, (C_1-C_{12}) alkylsulfonylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkyl, halo (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkyl, halo (C_1-C_{12}) alkyl, halo (C_1-C_{12}) alkyl, all of which may be further substituted with from one three substituents independently selected from bromo, chloro, fluoro, (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, (C_2-C_{12}) alkynyl, halo (C_1-C_{12}) alkyl, halo (C_2-C_{12}) alkynyl, halo (C_1-C_{12}) alkyl, halo (C_2-C_{12}) alkynyl, halo (C_1-C_{12}) alkyl, halo (C_2-C_{12}) alkyl, halo (C_2-C_{12}) alkyl, phen (C_2-C_{12}) alkyl, phen (C_2-C_{12}) alkyl, phen (C_2-C_{12}) alkenyl, cyano, halo (C_1-C_{12}) alkyl, phen (C_2-C_{12}) alkenyl, phen (C_2-C_{12}) alkenyl, cyano, halo (C_1-C_{12}) alkoxy, 1,3-dioxalan-2-yl and nitro;

R₄ and R₅ are each independently selected from H, halo and CN; and (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkyl, (C_1-C_{12}) alkoxy, (C_1-C_{12}) alkylthio, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkylsulfinyl (C_1-C_{12}) alkylsulfonylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyanocyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkoxy, cyano (C_1-C_{12}) alkyl, cyanocyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkoxy, halo (C_1-C_{12}) alkylthio, halocyclo (C_3-C_8) alkyl, C_1-C_1 alkylyl, C_1-C_1 alkyl, C_1-C_1 alkyl, and heteroaryl, aryl (C_1-C_1) alkyl, and heteroaryl, C_2-C_1 alkyl, all bromo, chloro, fluoro, (C_1-C_1) alkyl, cyclo (C_3-C_8) alkyl, (C_2-C_1) alkenyl, cyclo (C_3-C_8) alkyl, (C_2-C_1) alkyl, halo (C_1-C_1) alkyl, halo (C_1-C_1) alkyl, halo (C_1-C_1) alkyl, halo (C_2-C_1) alkylsulfinyl, phenyl, phenyl, (C_1-C_1) alkyl, phen (C_2-C_1) alkoxy, (C_1-C_1) alkyl, cyano, halo (C_1-C_1) alkoxy, 1,3-dioxalan-2-yl and nitro; is selected from H. (C_1-C_1) alkyl, $(C_1-C_$

is selected from H, (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkylsulfonylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkyl, halo (C_1-C_{12}) alkoxy, halo (C_1-C_{12}) alkylthio, halocyclo (C_3-C_8) alkyl, aryl and aryl (C_1-C_{12}) alkyl;

is selected from H, (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkoxy, cyano (C_1-C_{12}) alkyl, cyanocyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkylthio, halocyclo (C_3-C_8) alkyl and CORo:

is selected from (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, cyclo (C_3-C_8) alkenyl, halo (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfinyl (C_1-C_{12}) alkylsulfinyl (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkoxy, cyano (C_1-C_{12}) alkyl, cyanocyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkoxy, halo (C_1-C_{12}) alkylthio, halocyclo (C_3-C_8) alkyl, aryl and aryl (C_1-C_{12}) alkyl;

is selected from H, (C_1-C_{12}) alkyl, (C_2-C_{12}) alkenyl, cyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfinyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfinyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkoxy, cyano (C_1-C_{12}) alkyl, cyanocyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkoxy, halo (C_1-C_{12}) alkylthio and halocyclo (C_3-C_8) alkyl;

is selected from H, chloro, NH₂, (C₁-C₁₂)alkyl, halo(C₁-C₁₂)alkyl, CN, (C₁-C₁₂)alkylsulfonyl(C₁-C₁₂)alkyl, (C₁-C₁₂)alkylsulfonylcyclo(C₃-C₈)alkyl, (C₁-C₁₂)alkylsulfinylcyclo(C₃-C₈)alkyl, cyano(C₁-C₁₂)alkoxy, cyano(C₁-C₁₂)alkyl, cyanocyclo(C₃-C₈)alkyl, halo(C₁-C₁₂)alkoxy, halo(C₁-C₁₂)alkyl, CO₂(C₁-C₁₂)alkyl, CONH(C₁-C₁₂)alkyl, CONH(C₁-C₁₂)alkyl, CONH(C₁-C₁₂)alkyl)₂,

20

25

30

35

40

45

55

 R_7

 R_8

 R_9

		CH ₂ CN, CH ₂ CH=CH ₂ , CH ₂ C≡CH, CH ₂ CO ₂ (C ₁ -C ₁₂)alkyl, CH ₂ OCH ₃ , CH ₂ -1,2,4-triazole;						
	R ₁₁	is selected from H, CN, (C ₁ -C ₁₂)alkyl, halo(C ₁ -C ₁₂)alkyl and CO ₂ (C ₁ -C ₁₂)alkyl;						
	R ₁₂	is selected from H, (C_1-C_{12}) alkyl, CO_2R_6 , $CON((C_1-C_{12})$ alkyl)R6, OR_6 , SR_6 , SO_2R_6 , $SO_2N((C_1-C_1)$						
	12	C_{12})alkyl) R_{13} and $N((C_1-C_{12})alkyl)R_{13}$;						
5	R ₁₃	is H, (C_1-C_{12}) alkyl, aryl or aryl (C_1-C_{12}) alkyl;						
	A	is N or CH;						
	В	is N or CR ₁₀ ;						
	Z	is O, $CH(R_3)$, CO, CS, $CONR_{12}$ or $CSNR_{12}$;						
	X	is selected from O, S, NR_{12} , CO_2 , $OCH(R_6)CO_2$, $SCH(R_6)CO_2$, $CH=C(CI)CO_2$, $CH_2CH(CI)CO_2$, $CONH$,						
10		OCH(R_6)CONH, SCH(R_6)CONH, CH=C(CI)CONH and CH ₂ CH(CI)CONH when Z is CH(R_3);						
	X	is selected from CO, OCH(R_6)CO, SCH(R_6)CO, CH=C(CI)CO, CH ₂ CH(CI)CO when Z is O;						
	X	is selected from O, S, CO, OCH(R ₆), CH-C(CI), CH ₂ CH(CI), CONH, OCH(R ₆)CONH, SCH(R ₆)CONH,						
		CH=C(CI)CONH, CH ₂ CH(CI)CONH and NR ₁₂ when Z is CO, CS, CONR ₁₂ or CSNR ₁₂ ;						
	Q	is selected from NR ₇ COR ₈ , Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 and						
15		Q16;						
	or the agronomically acceptable salts thereof.							

	[0030]	A more preferred embodiment of this invention are the compounds of formula I wherein
20	R	₁ is H, F or Cl;
	R_2	is CI;
25	R	$_3$ is selected from H, bromo, chloro, fluoro, (C_1-C_6) alkyl, cyclo (C_5-C_6) alkyl, (C_2-C_6) alkenyl, cyclo (C_3-C_6) alkenyl, (C_2-C_6) alkynyl, halo (C_1-C_6) alkyl, halo (C_2-C_6) alkenyl, halo (C_2-C_6) alkylthio, aryl, heteroaryl, aryl (C_1-C_1) alkyl and heteroaryl (C_2-C_1) alkyl wherein the aryl or heteroaryl group is selected from furan, naphthalene, phenyl, pyrazole, pyridine, pyrimidine, thiophene and triazole, (C_1-C_1) alkyl aryline (C_1-C_1)
		said aryl and heteroaryl group may be further substituted with from one to three substituents independently selected from bromo, chloro, fluoro, (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, (C_2-C_{12}) alkenyl, cyclo (C_3-C_8) alkenyl, (C_2-C_{12}) alkynyl, halo (C_1-C_{12}) alkyl, halo (C_2-C_{12}) alkenyl, halo (C_2-C_{12}) alkylthio, (C_1-C_{12}) alkylsulfonyl, (C_1-C_{12}) alkylsulfonyl, phenyl, phen (C_1-C_1) alkyl, phen (C_2-C_1) alkylsulfonyl, phenyl, ph
30	R₄ and R₅	C12) alkenyl, phen (C2-C12) alkynyl, cyano, halo (C1-C12) alkoxy, 1,3-dioxalan-2-yl and nitro; are each independently selected from H, bromo, chloro, fluoro, CN, (C1-C6) alkyl, cyclo (C5-C6) alkyl, halo (C1-C6) alkyl, (C1-C6) alkoxy, (C1-C6) alkylthio, CO2R6, CONHR6, CON((C1-C12) alkyl)R6, OR6, SR6, SO2R6, NHR6, N((C1-C12) alkyl)R6, SO2N((C1-C12) alkyl)R6, aryl, heteroaryl, aryl (C1-C12) alkyl and heteroaryl (C2-C12) alkyl, wherein the aryl or heteroaryl group is selected from furan, naphthalene, phenyl, pyra-
35 40		zole, pyridine, pyrimidine, thiophene and triazole, said aryl and heteroaryl group may be further substituted with from one to three substituents independently selected from bromo, chloro, fluoro, (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, (C_2-C_{12}) alkenyl, cyclo (C_3-C_8) alkenyl, (C_2-C_{12}) alkynyl, halo (C_1-C_1) alkynyl, (C_1-C_1) alkynyl, (C_1-C_1) alkyl, halo (C_1-C_1) alkyl, halo (C_1-C_1) alkyl, phenyl, phe
	R ₆	is selected from H, (C ₁ -C ₁₂)alkyl, aryl and aryl(C ₁ -C ₆)alkyl, where the aryl group is naphthyl or phenyl;
	R ₇	is selected from H, (C ₁ -C ₁₂)alkyl, cyclo(C ₃ -C ₈)alkyl, halo(C ₁ -C ₁₂)alkyl and COR ₉ ;
	R ₈	is selected from (C ₁ -C ₁₂)alkyl, cyclo(C ₃ -C ₈)alkyl, cyclo(C ₃ -C ₈)alkenyl, halo(C ₁ -C ₁₂)alkyl, aryl and
		aryl(C ₁ -C ₆)alkyl;
45	R_9	is selected from H, (C_1-C_6) alkyl, (C_2-C_{12}) alkenyl, (C_2-C_6) alkenyl, cyclo (C_3-C_8) alkyl, cyclo (C_5-C_6) alkyl, halo (C_1-C_1) alkyl, halo (C_1-C_6) alkyl;
	R ₁₀	is selected from H, chloro, NH ₂ , (C ₁ -C ₆)alkyl, halo(C ₁ -C ₁₂)alkyl, halo(C ₁ -C ₆)alkyl, CN, CO ₂ (C ₁ -C ₁₂)alkyl, CONH(C ₁ -C ₁₂)alkyl, CONH(C ₁ -C ₁₂)alkyl) ₂ . CH ₂ CN, CH ₂ CH=CH ₂ , CH ₂ C=CH, CH ₂ CO ₂ (C ₁ -C ₁₂)alkyl, CH ₂ OCH ₃ , CH ₂ -1,2,4-triazole;
50	R ₁₁	is selected from H, CN, (C ₁ -C ₆)alkyl, halo(C ₁ -C ₁₂)alkyl, halo(C ₁ -C ₆)alkyl and CO ₂ (C ₁ -C ₁₂)alkyl;
	R ₁₂	is selected from H, (C_1-C_8) alkyl, CO_2R_6 , $CON((C_1-C_8)$ alkyl) R_6 , OR_6 , SR_6 , SO_2R_6 , $SO_2N((C_1-C_8)$ alkyl) R_{13} and $N((C_1-C_8)$ alkyl) R_{13} ;
	R ₁₃	is H, (C_1-C_8) alkyl, aryl or aryl (C_1-C_6) alkyl where the aryl group is naphthyl or phenyl;
	Α	is N or CH;
55	В	is N or CR ₁₀ ;
	Z	is O, CH(R ₃), CO, CS, CONR ₁₂ or CSNR ₁₂ ;
	X	is selected from O, S, NH, CO_2 , OCH(R_6)CO ₂ , SCH(R_6)CO ₂ , CH=C(Cl)CO ₂ , CH ₂ CH(Cl)CO ₂ , CONH, OCH(R_6)CONH, SCH(R_6)CONH, CH=C(Cl)CONH and CH ₂ CH(Cl)CONH when Z is CH(R_3);

		EP 1061 075 A2
	X	is selected from CO OCH/R ACO SCHAR ACO SCHAR ACO SCHAR
	X	is selected from CO, OCH(R_6)CO, SCH(R_6)CO, CH=C(Cl)CO and CH ₂ CH(Cl)CO when Z is O; is selected from O, S, CO, OCH(R_6), CH=C(Cl), CH ₂ CH(Cl), CONH, OCH(R_6)CONH, SCH(R_6)CONH, CH=C(Cl)CONH, CH ₂ CH(Cl)CONH and NR ₁₂ when Z is CO, CS, CONR ₁₂ or CSNR ₁₂ ; is NR ₂ COR ₂ or selected from O1, O2, O3, O3, O3, O3, O3, O3, O3, O3, O3, O3
	Q 5	is NR ₇ COR ₈ , or selected from Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 and Q16;
	or the ag	ronomically acceptable salts thereof selected from those formed from hydrochloric acid, sulfuric acid, acetic
	acia, proj [0031]	
	10	An even more preferred embodiment of this invention are the compounds of formula I wherein
	R ₁	is H, F or CI;
	R ₂	is CI;
	R_3	is selected from H, bromo, chloro, fluoro, (C_1-C_6) alkyl, cyclo (C_5-C_6) alkyl, (C_2-C_6) alkenyl, cyclo (C_3-C_6) alkenyl, (C_2-C_6) alkynyl, balo (C_3-C_6) alkyl, balo
,	5	
•		
		phenyl, 3-(1, 3-dioxolan-2-yl)phenyl, 2-fluorophenyl, 2-chlorophenyl, 2-trifluoromethoxyphenyl, 4-cyano-difluorophenyl, 3,5-dichlorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 3-chloro-4-fluorophenyl, 3,4-difluorophenyl, 3-fluoro-5-trifluoromethylphenyl, 3,4-
2	ר	
25	R ₁ and R ₅	
	• • • • • • • • • • • • • • • • • • • •	
		halo(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy, (C_1 - C_6)alkylthio, CO_2 R ₆ , $CONHR_6$, $CON((C_1$ - C_6)alkyl)R ₆ , CON_6
30		
3 5		pyridyl, 5-fluoro-3-pyridyl, 4-pyridyl, 2-fluoro-4-pyridyl, 2-chloro-3-pyridyl, 2-chloro-6-methyl-4-pyridyl, 2-methoxy-4-pyridyl, 2-cyano-4-pyridyl, 2-chloro-4-pyridyl, 2-chloro-4-pyridyl, 2-thloryl, 3-thloryl, 3-thloryl, 3-thloryl, 3-thloryl, 3-thloryl, 2-chloro-3-thloryl, 2-chloro-4-pyridyl, 2-chloro-4-
	_	
	R_6	
40		
		difluorophenyl, 3-chloro-4-fluorophenyl, 3,4-difluorophenyl, 3,5-dichlorophenyl, 2,4-difluorophenyl, 2,5-fluorophenyl;
	R ₇	is selected from H, (C ₁ -C ₆)alkyl, cyclo(C ₅ -C ₆)alkyl, halo(C ₁ -C ₆)alkyl and COR ₉ ;
	R ₈	- 101 Official Cacion Callette Dallatte Dallatte Cacion Callette Cacion Callette Cacion Cacio
45		
		luorophenyl, 2,5-difluorophenyl, 3-chloro-4-fluorophenyl, 3,4-difluorophenyl, 3-fluoro-5-trifluoromethyl-phenyl and 3,4,5-trifluorophenyl;
50	R_9	is selected from H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, cyclo (C_5-C_6) alkyl and halo (C_1-C_6) alkyl;
	R ₁₀	
	n	
55	R ₁₁	is H, CN, (C_1-C_6) alkyl, halo (C_1-C_6) alkyl and $CO_2(C_1-C_6)$ alkyl;
20	R ₁₂	is selected from H, (C ₁ -C ₈)alkyl, CO ₂ (C ₄ -C ₆)alkyl, CO ₃ (C
	R ₁₃	
	Α	is H, (C_1-C_6) alkyl, aryl or aryl (C_1-C_4) alkyl where the aryl group is naphthyl or phenyl; is N or CH;

В		is N or CR ₁₀ ;
Z		is O, CH(R ₃), CO, CS, CONR ₁₂ or CSNR ₁₂ ;
Χ		is selected from O, S, NH, CO ₂ , OCH(R ₆)CO ₂ , SCH(R ₆)CO ₂ , CH=C(CI)CO ₂ , CH ₂ CH(CI)CO ₂ , CONH,
		OCH(R_6)CONH, SCH(R_6)CONH, CH=C(CI)CONH and CH ₂ CH(CI)CONH when Z is CH(R_3);
Х		is selected from CO, OCH(R ₆)CO, SCH(R ₆)CO, CH-C(CI)CO and CH ₂ CH(CI)CO when Z is O;
Х		is selected from O, S, CO, OCH(R ₆), CH=C(CI), CH ₂ CH(CI), CONH, OCH(R ₆)CONH, SCH(R ₆)CONH,
		CH=C(CI)CONH, CH ₂ CH(CI)CONH and NR ₁₂ when Z is CO, CS, CONR ₁₂ or CSNR ₁₂ ;
Q	1	is selected from Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 and Q16;

or the agronomically acceptable salts thereof selected from those formed from hydrochloric acid, acetic acid, phosphoric acid and oxalic acid.

[0032] A second aspect of this invention relates to herbicidal compositions comprising a compound of formula I and an agronomically acceptable carrier.

[0033] A third aspect of this invention relates to a method of controlling a weed comprising applying a herbicidally effective amount of a composition comprising a compound of formula I and an agronomically acceptable carrier to the weed, to the locus of the weed or to the growth medium of said weed.

[0034] The following examples of the compounds of formula I are presented in Tables 1-25 and are representative of the invention. In these tables, the abbreviation "Ph" is used to mean phenyl, "Ph-4-CI" is used to mean 4-chlorophenyl, "Ph-4-F" is used to mean 4-fluorophenyl, "CH₂Ph" is used to mean benzyl, "CH₂Ph-4-CI" is used to mean 4-chlorobenzyl, "3-Py" is used to mean 3-pyridyl, "Me" is used to mean methyl and "Et" is used to mean ethyl.

Table 1

$$\begin{array}{c|c}
O & R_1 \\
N & R_2 \\
N & N \\
N & N \\
R_3 & R_5
\end{array}$$

where A=B=N, Q=Q1 in a compound of formula I

	No						
	1		R ₂		R_3	R₄	R ₅
15	2	F	CI	CO ₂	Н	Н	Н
	3	F	CI	CO ₂	CH₃	Н	Н
	4	F	CI	CO ₂	C₂H₅	Н	Н
	5	F	CI	CO ₂	C₃H ₇	Н	Н
20	6		CI	CO ₂	Н	CH₃	CH ₃
	7	F	CI	CO ₂	CH₃	Ph	CH₃
	8	F	CI	CO ₂	C₂H₅	Ph-4-CI	н
	9	F	CI	CO ₂	Н	Н	SCH ₃
25	10	F F	CI	CO ₂	CN	Н	Н
	11	F	CI	CO ₂	Ph	H	н
	12	F	CI	CO ₂	CH₂Ph	Н	Н
	13	F	CI	CO ₂	Ph-4-CI	Н	Н
30	14	F	CI	CO ₂	CH ₂ Ph-4-CI	Н	Н
30	15	F	CI	CO ₂	3-Py	Н	Н
	16	F	CI	OCH ₂ CO ₂	Н	Н	Н
	17	F	CI	OCH ₂ CO ₂	CH₃	Н	Н
35	18	F	CI	OCH ₂ CO ₂	C ₂ H ₅	Н	Н
35	19	F	CI	OCH ₂ CO ₂	C₃H ₇	H	Н
	20	F	CI	OCH ₂ CO ₂	H	CH ₃	CH₃
	21	F	CI	OCH ₂ CO ₂	CH₃	Ph	CH₃
	22	F	CI	OCH ₂ CO ₂	C₂H₅	Ph-4-Cl	нĭ
40	23	F	CI	OCH ₂ CO ₂	H	Н	SCH₃
	24	F	CI	OCH ₂ CO ₂	CN	Н	н
	25	F	CI	OCH ₂ CO ₂	Ph	Н	Н
	26	F	CI	OCH ₂ CO ₂	CH₂Ph	Н	Н
45	27	F	CI	OCH ₂ CO ₂	Ph-4-CI	Н	Н
	28	F	CI CI	OCH ₂ CO ₂	CH₂Ph-4-CI	Н	Н
	20	L	CI	OCH ₂ CO ₂	3-Py	Н	H.

10

50

55

5

29	F	CI	OCH(CH ₃)CO ₂	Н	Н	Н
30	F	CI	OCH(CH ₃)CO ₂	CH₃	H	Н
31	F	CI	OCH(CH ₃)CO ₂	C₂H₅	H	Н
32	F	CI	OCH(CH ₃)CO ₂	C₃H ₇	H	H
33	F	CI	OCH(CH ₃)CO ₂	H	CH ₃	CH₃
34	F	CI	OCH(CH ₃)CO ₂	CH₃	Ph	CH₃
35	F	CI	CH=C(CI)CO ₂	H	H	H H
36	F	CI	CH ₂ CH(CI)CO ₂	H	Н	
37	F	CI	OCH(CH ₃)CO ₂	CN	Н	Н
38	F		OCH(CH ₃)CO ₂	Ph	Н	H H
39	F	CI	OCH(CH ₃)CO ₂	CH₂Ph Ph-4-Cl	H	H
40	F	CI	OCH(CH ₃)CO ₂	CH₂Ph-4-CI	H H	Н
41	F	CI	OCH(CH ₃)CO ₂	3-Py	H	H
42	F	CI	OCH(CH ₃)CO ₂	3-ry H	Н	H
43 44	F	CI CI	0	гі СН₃	H	H
45	F	CI	0	C₁₃ C₂H₅	H	H
45 46	F	CI	0	C₂n₅ C₃H₁	Н	H
46 47	F	CI	0	H	CH₃	CH₃
48	F	CI	0	CH₃	Ph	CH ₃
49	F	CI	Ö	C₂H₅	Ph-4-Cl	H
50	F	CI	0	U2' 15 H	H 70.	SCH ₃
51	F	CI	Ö	CN	H	H
52	F	CI	ŏ	Ph	H	H
53	F	CI	Ö	 CH₂Ph	Н	H
54	F	CI	Ŏ	Ph-4-Ci	H	Н
55	F	CI	Ö	CH₂Ph-4-Cl	Н	Н
56	F	CI	Ö	3-Py	H	H
57	F	CI	SCH ₂ CO ₂	H	H	Н
58	F	CI	SCH ₂ CO ₂	CH ₃	Н	Н
59	F	CI	SCH ₂ CO ₂	C₂H ₅	Н	H
60	F	CI	SCH ₂ CO ₂	C_3H_7	Н	Н
61	F	CI	SCH ₂ CO ₂	н [*]	CH₃	CH₃
62	F	CI	SCH2CO2	CH ₃	Ph	CH ₃
63	F	CI	SCH ₂ CO ₂	C₂H₅	Ph-4-Cl	Н
64	F	CI	SCH ₂ CO ₂	H	H	SCH ₃
65	F	CI	SCH ₂ CO ₂	CN	Н	Н
66	F	CI	SCH ₂ CO ₂	Ph	Н	Н
67	F	CI	SCH ₂ CO ₂	CH₂Ph	Н	Н
68	F	CI	SCH ₂ CO ₂	Ph-4-Cl	Н	Н
69	F	CI	SCH₂CO₂	CH₂Ph-4-Cl	Н	Н
70	F	CI	SCH ₂ CO ₂	3-Py	Н	Н
71	F	Н	SCH(CH ₃)CO ₂	Н	Н	Н
72	F	CI	SCH(CH ₃)CO ₂	CH₃	Н	Н
73	F	CI	SCH(CH ₃)CO ₂	C₂H₅	Н	Н
74	F	CI	SCH(CH ₃)CO ₂	C₃H,	Н	Н
75	F	CI	SCH(CH ₃)CO ₂	Н	CH₃	CH ₃
76	F	CI	SCH(CH ₃)CO ₂	CH₃	Ph	CH3

5	77 78 79 80 81	F CI F CI F CI F CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	C₂H₅ H CN Ph CH₂Ph	Ph-4-CI H H H H	H SCH ₃ H H H
10	82 83 84 85 86	F CI F CI F CI F CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ S	Ph-4-Cl CH₂Ph-4-Cl 3-Py H CH₃	Н Н Н Н	H H H H
15	90	F CI F CI F CI F CI	S S S S S	C₂H₅ C₃H₂ H CH₃ C₂H₅	H H CH₃ Ph Ph-4-Cl	H H CH ₃ CH ₃
20	93 94 95	F CI F CI F CI F CI	\$ \$ \$ \$ \$	H CN Ph CH₂Ph Ph-4-Cl	H H H H	SCH₃ H H H
25	97 98 99 100	F CI F CI F CI F CI	S S CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂	CH₂Ph-4-Cl 3-Py CN CN	Н Н Н	H H H H
30	102 (103 (104 (105 (F CI CI CI CI CI CI CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ O OCH ₂ CO ₂ OCH(CH ₃)CO ₂	CH₃ CH₃ H H H	H H H H	H H H H
35	107 C 108 C 109 C		CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CH ₂ CH(CI)CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂	H H CH₃ H H	H H H H	H H H
40	111 C 112 H 113 H 114 H	CI CI	CO ₂ O OCH ₂ CO ₂ OCH(CH ₃)CO ₂	н н н	H H H H	H H H H
45	115 H 116 H 117 H 118 H 119 H	H CI H CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ S SCH ₂ CO ₂ SCH(CH ₃)CO ₂	H H H H	H H H H	H H H H
50	120 H 121 H 122 H 123 F 124 F	H CI H CI H CI CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CO ₂ OCH ₂ CONH	H H H H	H H H H	H H H H
	124 F	CI	SCH₂CONH	Н	Н	Н

Table 2

$$\begin{array}{c|c}
 & R_1 \\
 & R_2 \\
 & R_3 \\
 & R_5
\end{array}$$

$$\begin{array}{c|c}
 & R_4 \\
 & R_{10} \\
 & R_{3} \\
 & R_{5}
\end{array}$$

where A=N, B= CR_{10} and Q=Q1 in a compound of formula I

No	R ₁	R ₂	X	R ₃	R ₄	R ₅	R ₁₀
125	F	CI	CO ₂	Н	Н	Н	H
126	F	CI	CO ₂	CH ₃	H	Н	Н
127	F	CI	CO ₂	C₂H₅	Н	Н	Н
128	F	CI	CO ₂	Н	CI	CI	CO ₂ CH ₃
129	F	CI	CO ₂	н	CH₃	CH₃	Н
130	F	CI	CO ₂	CH ₃	Ph	CH₃	Н
131	F	CI	CO ₂	C₂H₅	Ph-4-Cl	Н	H
132	F	CI	CO ₂	Н	C ₂ H ₅	CO ₂ Et	Н
133	F	CI	CO ₂	CN	Н	Н	Н
134	F	CI	CO ₂	Ph	Н	Н	Н
135	F	CI	CO ₂	CH₂Ph	Н	Н	Н
136	F	CI	CO ₂	Ph-4-Cl	Н	Н	Н
137	F	CI	CO ₂	CH₂Ph-4-CI	Н	Н	Н
138	F	CI	CO ₂	3-Py	Н	Н	Н
139	F	CI	OCH ₂ CO ₂	Н	Н	Н	H
140	F	CI	OCH ₂ CO ₂	CH₃.	Н	Н	Н
141	F	CI	OCH ₂ CO ₂	C₂H₅	Н	Н	H
142	F	CI	OCH ₂ CO ₂	Н	CI	CI	CO ₂ CH ₃
143	F	CI	OCH ₂ CO ₂	Н	CH₃	CH₃	Н
144	F	CI	OCH ₂ CO ₂	CH ₃	Ph	CH₃	Н
145	F	CI	OCH ₂ CO ₂	C₂H₅	Ph-4-Cl	Н	Н
146	F	CI	OCH₂CO₂	Н	C ₂ H ₅	CO₂Et	Н
147	F	CI	OCH ₂ CO ₂	CN	Н	Н	Н
148	F	CI	OCH₂CO₂	Ph	Н	Н	Н
149	F	CI	OCH ₂ CO ₂	CH₂Ph	Н	Н	Н
150	F	CI	OCH ₂ CO ₂	Ph-4-Cl	Н	Н	Н
151	F	CI	OCH ₂ CO ₂	CH₂Ph-4-CI	H	Н	H
152	F	CI	OCH ₂ CO ₂	3-Py	Н	H	Н
153	F	Cl	OCH(CH ₃)CO ₂	Н	Н	H	H
154	F	CI	OCH(CH ₃)CO ₂	CH ₃	Н	Н	Н
155	F	CI	OCH(CH ₃)CO ₂	C₂H₅	H	H	H
156	F	CI	OCH(CH ₃)CO ₂	Н	CI	CI	CO ₂ CH ₃
157	F	CI	OCH(CH ₃)CO ₂	H	CH₃	CH₃	Н
158	F	CI	OCH(CH ₃)CO ₂	CH₃	Ph	CH ₃	Н
159	F	CI	OCH(CH ₃)CO ₂	C₂H₅	Ph-4-Cl	H	Н
160	F	CI	OCH(CH ₃)CO ₂	H	C₂H₅	CO₂Et	Н
161	F	CI	OCH(CH ₃)CO ₂	CN	Н	Н	Н

165 F CI OCH(CH ₃)CO ₂ CH ₂ Ph-4-CI H H 166 F CI OCH(CH ₃)CO ₂ 3-Py H H 167 F CI O H H H	H H
168 F CI O CH ₃ H H 169 F CI O C ₂ H ₅ H H 170 F CI O H CI CI 171 F CI O H CH ₃ CH	H H CO₂CH₃ H₃ H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H D₂Et H H H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н Н Н Н
182 F CI SCH ₂ CO ₂ CH ₃ H H 183 F CI SCH ₂ CO ₂ C ₂ H ₅ H H 184 F CI SCH ₂ CO ₂ H CI CI 185 F CI SCH ₂ CO ₂ H CH ₃ CH	H H CO₂CH₃ I₃ H
187 F CI SCH ₂ CO ₂ C ₂ H ₅ Ph-4-CI H	I₃ H H D₂Et H H H
191 F CI SCH ₂ CO ₂ CH ₂ Ph H H 192 F CI SCH ₂ CO ₂ Ph-4-CI H H 193 F CI SCH ₂ CO ₂ CH ₂ Ph-4-CI H 194 F CI SCH ₂ CO ₂ 3-Py H H	Н Н Н
196 F CI SCH(CH ₃)CO ₂ CH ₃ H H 197 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ H H 198 F CI SCH(CH ₃)CO ₂ H CI CI 199 F CI SCH(CH ₃)CO ₂ H CH ₃ CH	H H H CO ₂ CH ₃
203 F CI SCH(CH ₃)CO ₂ CN H H	H 0₂Et H H
204 F CI SCH(CH ₃)CO ₂ Ph H H 205 F CI SCH(CH ₃)CO ₂ CH ₂ Ph H 206 F CI SCH(CH ₃)CO ₂ Ph-4-CI H 207 F CI SCH(CH ₃)CO ₂ CH ₂ Ph-4-CI H 208 F CI SCH(CH ₃)CO ₂ 3-Py H 209 F CI S H H H	H H H H H

210 F	CI	S	CH₃	Н	Н	Н
211 F	CI	S	C₂H₅	Н	Н	Н
212 . F	CI	S	Н	CI	CI	CO ₂ CH ₃
213 F	CI	S	Н	CH ₃	CH ₃	Н
214 F	CI	S	CH ₃	Ph	CH ₃	Н
215 F	CI	S	C ₂ H ₅	Ph-4-Cl	Н	Н
216 F	CI	S	H	C₂H₅	CO₂Et	Н
217 F	CI	S	CN	H	Н	Н
218 F	CI	S	Ph	Н	Н	Н
219 F	CI	S	CH₂Ph	Н	H	Н
220 F	CI	S	Ph-4-CI	Н	Н	Н
221 F	CI	S	CH₂Ph-4-Cl	Н	Н	Н
222 F	CI	S	3-Py	Н	Н	Н
223 F	CI	CH=C(CI)CO ₂	Н	Н	Н	Н
224 F	CI	CH₂CH(CI)CO₂	Н	Н	Н	Н
225 CI	CI	0	Н	Н	H	Н
226 CI	CI	OCH ₂ CO ₂	Н	H	Н	Н
227 CI	CI	S	Н	Н	Н	Н
228 CI	CI	SCH₂CO₂	Н	Н	Н	H
229 CI	CI	SCH(CH ₃)CO ₂	Н	Н	Н	Н
230 CI	CI	CO ₂	Н	Н	Н	Н
231 H	CI	0	Н	Н	Н	H
232 H	CI	OCH ₂ CO ₂	Н	Н	Н	Н
233 H	CI	S	Н	Н	Н	Н
234 H	CI	SCH₂CO₂	Н	Н	Н	Н
235 H	CI	CO ₂	H	Н	Н	H

Table 3

where A=CH, B=N and Q=Q1 in a compound of formula I

No	R ₁	R ₂ X	R ₃	R₄	R ₅
236	F	CI CO ₂	Н	Н	Н
237	F	CI CO ₂	CH₃	Н	Н
238	F	CI CO ₂	C ₂ H ₅	Н	Н
239	F	CI CO ₂	H	CI	CI
240	F	CI CO ₂	Н	CH ₃	CH₃
241	F	CI CO ₂	CH ₃	Ph	CH ₃
242	F	CI CO ₂	C₂H₅	Ph-4-Cl	Н
243	F	CI CO ₂	Н	Ph-4-Cl	CH₃
244	F	CI CO ₂	CN	Н	Н
245	F	CI CO ₂	Ph	Н	Н
246	F	CI CO ₂	CH₂Ph	Н	Н

5	247 F CI CO ₂ 248 F CI CO ₂ 249 F CI CO ₂ 250 F CI OCH ₂ CO ₂ 251 F CI OCH ₂ CO ₂	Ph-4-Cl H H CH₂Ph-4-Cl H H 3-Py H H H H H CH₃ H H
10	252 F CI OCH ₂ CO ₂ 253 F CI OCH ₂ CO ₂ 254 F CI OCH ₂ CO ₂ 255 F CI OCH ₂ CO ₂ 256 F CI OCH ₂ CO ₂	C₂H₅ H H H CI CI H CH₃ CH CH₃ Ph CH C₂H₅ Ph-4-CI H
15	257 F CI OCH ₂ CO ₂ 258 F CI OCH ₂ CO ₂ 259 F CI OCH ₂ CO ₂ 260 F CI OCH ₂ CO ₂ 261 F CI OCH ₂ CO ₂	H Ph-4-CI CH CN H H Ph H H CH ₂ Ph H H
20	262 F CI OCH ₂ CO ₂ 263 F CI OCH ₂ CO ₂ 264 F CI OCH(CH ₃)CO ₂ 265 F CI OCH(CH ₃)CO ₂ 266 F CI OCH(CH ₃)CO ₂	CH₂Ph-4-CIHH 3-PyHHH HHH CH₃HH
25	267 F CI OCH(CH ₃)CO ₂ 268 F CI OCH(CH ₃)CO ₂ 269 F CI OCH(CH ₃)CO ₂ 270 F CI OCH(CH ₃)CO ₂	C_2H_5 H H H H CI CI H CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ C ₂ H ₅ Ph-4-CI H
30	271 F CI OCH(CH ₃)CO ₂ 272 F CI OCH(CH ₃)CO ₂ 273 F CI OCH(CH ₃)CO ₂ 274 F CI OCH(CH ₃)CO ₂ 275 F CI OCH(CH ₃)CO ₂	H Ph-4-CI CH ₃ CN H H Ph H H CH ₂ Ph H H
35	276 F CI OCH(CH ₃)CO ₂ 277 F CI OCH(CH ₃)CO ₂ 278 F CI O 279 F CI O 280 F CI O	CH₂Ph-4-CIHH 3-PyHHH HHHCH₃HHH
40	281 F CI O 282 F CI O 283 F CI O 284 F CI O	C ₂ H ₅ H H H Cl Cl H CH ₃ CH ₃ CH ₃ Ph CH ₃ C ₂ H ₅ Ph-4-Cl H
45	285 F CLO 286 F CLO 287 F CLO 288 F CLO 289 F CLO	H Ph-4-Cl CH ₃ CN H H Ph H H CH ₂ Ph H H
50	290 F CI O 291 F CI O 292 F CI SCH ₂ CO ₂ 293 F CI SCH ₂ CO ₂ 294 F CI SCH ₂ CO ₂	$Ph-4-CI$ H H $CH_2Ph-4-CI$ H H $3-Py$ H H H H H CH_3 H

295	F	CI SCH2CO2	Н	CI	CI
296	F	CI SCH ₂ CO ₂	Н	CH₃	CH₃
297	F	CI SCH ₂ CO ₂	CH₃	Ph	CH₃
298	F	CI SCH ₂ CO ₂	C₂H₅	Ph-4-Cl	Н
299	F	CI SCH ₂ CO ₂	H	Ph-4-Cl	CH ₃
300	F	CI SCH ₂ CO ₂	CN	Н	Н
301	F	CI SCH ₂ CO ₂	Ph	Н	H
302	F	CI SCH ₂ CO ₂	CH₂Ph	Н	Н
303	F	CI SCH ₂ CO ₂	Ph-4-Cl	Н	Н
304	F	CI SCH ₂ CO ₂	CH ₂ Ph-4-CI	Н	Н
305	F	CI SCH ₂ CO ₂	3-Py	Н	Н
306	F	CI SCH(CH ₃)CO ₂	нí	Н	Н
307	F	CI SCH(CH ₃)CO ₂	CH ₃	Н	Н
308	F	CI SCH(CH ₃)CO ₂	C₂H₅	Н	Н
309	F	CI SCH(CH ₃)CO ₂	H	CI	CI
310	F	CI SCH(CH ₃)CO ₂	Н	CH ₃	CH ₃
311	F	CI SCH(CH ₃)CO ₂	CH ₃	Ph	CH ₃
312	F	CI SCH(CH ₃)CO ₂	C₂H₅	Ph-4-Cl	H
313	F	CI SCH(CH ₃)CO ₂	H	Ph-4-Cl	CH ₃
314	F	CI SCH(CH ₃)CO ₂	CN	Η	H
315	F	CI SCH(CH ₃)CO ₂	Ph	Н	н
316	F	CI S	Н	Н	Н
317	F	CIS	CH ₃	H	Н
318	F	CIS	C ₂ H ₅	H	H
319	F	CIS	H H	CI	CI
320	F	CIS	Н	CH ₃	CH ₃
321	F	CIS	CH ₃	Ph	CH ₃
322	F	CIS	C₂H₅	Ph-4-Cl	H
323	F	CI CH=C(CI)CO ₂	H H	H	н
324	F	CI CH ₂ CH(CI)CO ₂	H	H	Н
325	F	CIS	Ph	Н	H
326	F	CIS	CH₂Ph	CH ₃	CH ₃
327	F	CIS	Ph-4-Cl	H	Н
328	CI	CIO	Н	Н	Н
329	CI	CI OCH,CO,	Н	Н	Н
330	CI	CIS	Н	Н	Н
331	CI	CI SCH,CO,	Н	Н	Н
332	CI	CI SCH(CH ₃)CO ₂	Н	Н	Н
333	CI	CI CO,	Н	Н	Н
334	Н	CIO	Н	Н	Н
335	Н	CI OCH2CO2	H	Н	Н
336	Н	CI S	Н	H .	H
337	Н	CI_SCH ₂ CO ₂	H	H	H
338	Н	CI CO ₂	H	Н	Ĥ,

Table 4

where A=B=N, R_4 = R_5 =H and Q=Q2 in a compound of formula I

			5 6 == = 55	apound of formula
No	R ₁	R ₂	X	R_3
339	F	CI	CO ₂	H
340	F	CI	CO2	 CH₃
341	F	CI	CO2	C₂H₅
342	F	CI	CO2	Ph
343	F	CI	CO2	CH₂Ph
344	F	CI	CO ₂	Ph-4-CI
345	F	CI	CO ₂	CN
346	F	CI	CO ₂	3-Py
347	F	CI		H
348	F	CI	OCH ₂ CO ₂	CH ₃
349	F	CI	OCH2CO2	C₂H₅
350	F	CI	OCH ₂ CO ₂	Ph
351	F	CI		CH₂Ph
352	F	CI		Ph-4-Cl
353	F	CI	OCH ₂ CO ₂	CN
354	F	CI	OCH,CO,	3-Py
355	F	CI	OCH(CH ₃)CO,	H
356	F	CI	OCH(CH ₃)CO,	CH₃
357	F	CI	OCH(CH3)CO3	C ₂ H ₅
358	F	CI	OCH(CH ₃)CO,	Ph
359	F	CI	OCH(CH ₃)CO ₃	CH₂Ph
360	F	CI	OCH(CH ₃)CO ₂	Ph-4-CI
361	F	CI	CH=C(CI)CO,	Н
362	F	CI	CH ₂ CH(CI)CO ₂	Н
363	F	CI	0	Н
364 365	F	CI	0	CH₃
366	F	CI	0	C ₂ H ₅
367	F	CI	0	Ph
368	F F	CI	0	CH₂Ph
369	F	CI	CH=C(CI)CO ₂	CN
370	F	CI	CH ₂ CH(CI)CO ₂	CN
370 371	F	CI	0	3-Py
371	F	CI	SCH ₂ CO ₂	Н
373	F	CI	SCH ₂ CO ₂	CH₃
373 374	F	CI	SCH ₂ CO ₂	C₂H₅
517	Г	CI	SCH ₂ CO ₂	Ph

	375	F	CI	SCH ₂ CO ₂	CH₂Ph
	376	F	CI	SCH ₂ CO ₂	Ph-4-Cl
5	377	F	CI	SCH ₂ CO ₂	CN
	378	F	CI	SCH,CO,	3-Py
	379	F	н	SCH(CH ₃)CO ₂	Н
	380	F	CI	SCH(CH ₃)CO ₂	CH ₃
10	381	F	CI	SCH(CH ₃)CO ₂	C₂H _₅
	382	F	CI	SCH(CH ₃)CO ₂	Ph
	383	F	CI	SCH(CH ₃)CO ₂	CH ₂ Ph
	384	F	CI	SCH(CH ₃)CO ₂	Ph-4-Cl
15	385	F	CI	SCH(CH ₃)CO ₂	CH ₂ Ph-4-CI
.5	386	F	CI	SCH(CH ₃)CO ₂	3-Py
	387	F	CI	S	H
	388	F	CI	S	CH ₃
	389	F	CI	S	C₂H₅
20	390	F	CI	S	Ph
	391	F	CI	S	CH₂Ph
	392	F	CI	S	Ph-4-Cl
	393	F	CI	S	CH ₂ Ph-4-CI
25	394	F	CI	S	3-Py
	395	CI	CI	0	Н
	396	CI	CI	OCH,CO,	H
	397	CI	CI	OCH(CH3)CO2	Н
30	398	CI	CI	CH=C(CI)CO ₂	Н
	399	CI	CI	CH ₂ CH(CI)CO ₂	Н
	400	CI	CI	S Î Î	Н
	401	CI	CI	SCH ₂ CO ₂	Н
35	402	CI	CI	SCH(CH ₃)CO ₂	Н
•	403	CI ·	CI	CO ₂	Н
	404	Н	CI	0	Н
	405	Н	CI	OCH ₂ CO ₂	Н
40	406	H	CI	OCH(CH ₃)CO ₂	Н
	407	Н	CI	CH=C(CI)CO ₂	Н
	408	H	CI	CH ₂ CH(Cl)CO ₂	Н
	409	Н	CI	S	Н
45	410	Н	CI	SCH ₂ CO ₂	Н
	411	Н	CI	SCH(CH ₃)CO ₂	Н
	412	Н	CI	CH=C(CI)CO ₂	Н
	413	Н	CI	CH ₂ CH(CI)CO ₂	Н
50	414	Н	CI	CO ₂	Н
	415	F	CI		Ph-4-F
	416	F	CI	SCH ₂ CO ₂	Ph-4-F

Table 5

 $\begin{array}{c|c}
R_1 & R_2 & R_3 \\
N-N & R_3 & CH_3
\end{array}$

where A=N, B=CH, R_4 = R_5 =CH₃, Q=Q2 in a compound of formula I

No	R,	R ₂	Х	D
417	F	Cĺ	CO ₂	R ₃
418		CI	CO ₂	
419	F	CI	CO ₂	CH ₃
420	F	CI	CO ₂	C₂H₅ Ph
4 21	F	CI	CO ₂	
422	F	CI	CO ₂	CH₂Ph Ph-4-Cl
423	F	CI	CO ₂	CN
424	F	CI	CO ₂	3-Py
425	F	CI	OCH ₂ CO ₂	3-гу Н
426	F	CI	OCH ₂ CO ₂	CH ₃
427	F	CI	OCH ₂ CO ₂	C₁₁₃ C₂H₅
428	F	CI	OCH ₂ CO ₂	C₂⊓₅ Ph
429	F	CI	OCH ₂ CO ₂	CH₂Ph
430	F	CI	OCH ₂ CO ₂	Ph-4-Cl
431	F	CI	OCH ₂ CO ₂	CH ₂ Ph-4-Cl
432	F	CI	OCH,CO,	3-Pv
433	F	CI	OCH(CH ₃)CO ₃	H
434	F	CI	OCH(CH ₃)CO ₃	CH.
435 436	F	CI	OCH(CH ₃)CO ₃	C.H.
436	F	CI	OCH(CH ₃)CO,	Ph
437 438	F F	CI	OCH(CH ₃)CO ₃	CH _a Ph
439	F	Ci	OCH(CH ₃)CO ₂	Ph-4-CI
440	F	CI	OCH(CH ₃)CO ₂	
441	F	CI	OCH(CH ₃)CO ₂	3-Py
442	F	CI CI	0	Н
443	F	CI	0	CH₃
444	F	CI	0	C ₂ H ₅
445	F	CI	0	Ph
446	F	CI	0	CH₂Ph
447	F	CI	0	Ph-4-Cl
448	F	CI	0	CH₂Ph-4-CI
449	F	CI		3-Py
450	F	CI	SCH ₂ CO ₂ SCH ₂ CO ₂	H
451	F	Ci	SCH ₂ CO ₂	CH₃
452	F	CI	SCH ₂ CO ₂	C₂H₅
			00112002	Ph

зυ

453	F	CI	SCH ₂ CO ₂	CH₂Ph
454	F	CI	SCH₂CO₂	Ph-4-Cl
455	F	CI	SCH ₂ CO ₂	CH₂Ph-4-CI
456	F	CI	SCH ₂ CO ₂	3-Py
457	F	CI	SCH(CH ₃)CO ₂	H
458	F	CI	SCH(CH ₃)CO ₂	CH₃
459	F	CI	SCH(CH ₃)CO ₂	C₂H₅
460	F	CI	SCH(CH ₃)CO ₂	Ph
461	F	CI	SCH(CH ₃)CO ₂	CH₂Ph
462	F	CI	SCH(CH ₃)CO ₂	Ph-4-Cl
463	F	Cl	SCH(CH ₃)CO ₂	CH₂Ph-4-Cl
464	F	CI	SCH(CH ₃)CO ₂	3- P y
465	F	CI	S	Н
466	F	CI	S	CH₃
467	F	CI	S	C₂H₅
468	F	CI	S	Ph
469	F	CI	S	CH₂Ph
470	F	CI	S	Ph-4-Cl
471	F	CI	S S	CH₂Ph-4-Cl
472	F	CI	Ş	3-Py
473	CI	CI	0	Н
474	Ci	CI	OCH ₂ CO ₂	Н
475	Cl	CI	· S	Н
476	CI	CI	SCH ₂ CO ₂	Н
477	CI	CI	SCH(CH ₃)CO ₂	H
478	CI	CI	CO ₂	Н
479	Н	CI	0	Н
480	Н	CI	OCH ₂ CO ₂	Н
481	Н	CI	S	Н
482	Н	CI	SCH ₂ CO ₂	Н
483	Н	Cl	CO ₂	H

Table 6

$$\begin{array}{c|c}
R_1 & R_2 \\
N-N & X \\
N & R_3 \\
\end{array}$$

where A=CH, B=N, R_4 = R_5 =H, Q=Q2 in a compound of formula I

No	R,	R ₂	Х	R ₃
484	F	CI	CO ₂	Н
485	F	Cl	CO ₂	CH₃
486	F	CI	CO,	C₂H₅
487	F	CI	CO2	Ph

5	488 489 490 491 492 493 494 495 496	F F F F F F F F	0 0 0 0 0 0 0 0	CO ₂ CO ₂ CO ₂ CO ₂ CO ₂ CO ₂ OCH ₂ CO ₂	CH₂Ph Ph-4-Cl CH₂Ph-4-Cl 3-Py H CH₃ C₂H₅ Ph CH₂Ph CN
15	498 499 500 501 502	F F F F	CI CI CI CI	OCH ₂ CO ₂ OCH ₂ CO ₂ OCH(CH ₃)CO ₂ OCH(CH ₃)CO ₂ OCH(CH ₃)CO ₂	CH₂Ph-4-CI 3-Py H CH₃ C₂H₅
20	503 504 505 506 507	F F F F	CI CI CI CI	OCH(CH ₃)CO ₂	Ph Ph₂Ph Ph-4-Cl CH₂Ph-4-Cl 3-Py
25	508 509 510 511 512	F F F F	CI CI CI CI	0 0 0 0 0	H CH₃ C₂H₅ Ph
30	513 514 515 516	F F F	CI CI CI	O O O SCH ₂ CO ₂	CH₂Ph Ph-4-Cl CH₂Ph-4-Cl 3-Py H
35	517 518 519 520 521	F F F F	CI CI CI CI	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂	CH₃ C₂H₅ Ph CH₂Ph Ph-4-Cl
40	522 523 524 525 526	F F F F	CI CI CI CI	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	CH₂Ph-4-CI 3-Py H CH₃
4 5	527 528 529 530	F F F	CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	C₂H₅ Ph CH₂Ph Ph-4-Cl CH₂Ph-4-Cl
50	531 532 533 534 535	F F F F	CI CI CI CI	SCH(CH ₃)CO ₂ S S S S	3-Py H CH₃ C₂H₅ Ph

536	F	CI	S	CH₂Ph
537	F	CI	S	Ph-4-Cl
538	F	CI	S	CH₂Ph-4-CI
539	F	CI	S	3-Py
540	CI	CI	0	Н
541	CI	CI	OCH ₂ CO ₂	Н
542	CI	CI	S	Н
543	CI	Cl	SCH ₂ CO ₂	Н
544	CI	CI	SCH(CH₃)CO₂	Н
545	CI	CI	CO ₂	Н
546	Н	CI	0	H "
547	H	CI	OCH ₂ CO ₂	Н
548	Н	CI	S	Н
549	н	CI	SCH ₂ CO ₂	Н
550	H	CI	CO ₂	H

Table 7

where A=B=N, R₄=R₅=H, Q=Q3 in a compound of formula I

No	R ₁	R ₂	Х	R ₃
551	F	CÍ	CO ₂	Н
552	F	CI	CO ₂	CH₃
553	F	Cl	CO ₂	C ₂ H ₅
554	F	CI	CO ₂	Ph
555	F	CI	CO ₂	CH₂Ph
556	F	CI	CO ₂	Ph-4-Cl
557	F	Cl	CO ₂	CN
558	F	CI	CO ₂	3-Py
559	F	CI	OCH ₂ CO ₂	Н
560	F	CI	OCH ₂ CO ₂	CH₃
561	F	CI	OCH ₂ CO ₂	C₂H₅
562	F	CI	OCH ₂ CO ₂	Ph
563	F	CI	OCH ₂ CO ₂	CH₂Ph
564	F	CI		Ph-4-Cl
565	F	CI	OCH ₂ CO ₂	CN
566	F	CI	OCH ₂ CO ₂	3- P y
567	F	CI	OCH(CH ₃)CO ₂	H
568	F	CI	OCH(CH ₃)CO ₂	CH₃
569	F	CI	OCH(CH ₃)CO ₂	C₂H₅
570	F	CI	OCH(CH ₃)CO ₂	Ph
571	F	CI	OCH(CH ₃)CO ₂	CH₂Ph

5	572 573 574 575 576	F F F F	CI CI CI CI	OCH(CH ₃)CO ₂ OCH(CH ₃)CO ₂ OCH(CH ₃)CO ₂ O	Ph-4-CI CN 3-Py H CH ₃
10	577 578 579 580 581	F F F F	CI CI CI CI	0 0 0 0	C₂H₃ Ph CH₂Ph Ph-4-Cl CH₂Ph-4-Cl
15	582 583 584 585 586	F F F F	CI CI CI CI	O SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂	3-Py H CH₃ C₂H₅ Ph
20	587 588 589 590 591	F F F F	CI CI CI H	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂	CH₂Ph Ph-4-Cl CH₂Ph-4-Cl 3-Py H
25	592 593 594 595 596	F F F F	CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	CH₃ C₂H₅ Ph CH₂Ph Ph-4-Cl
30	597 598 599 600 601	F F F F	CI CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ S S S	CH₂Ph-4-CI 3-Py H CH₃
35	602 603 604 605 606	F F F F	CI CI CI	\$ \$ \$ \$	C₂H₅ Ph CH₂Ph Ph-4-Cl CH₂Ph-4-Cl
40	607 608 609 610	F CI CI	CI CI CI CI	S CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ O OCH ₂ CO ₂	3-Ру Н Н Н Н
45	611 612 613 614 615	CI CI CI CI	CI CI CI CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂ CO ₂	н н н н
50	616 617 618 619	H H H	CI CI CI	OCH ₂ CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ S	н н н

620	Н	CI	SCH₂CO₂	Н
621	Н	CI	SCH(CH ₃)CO ₂	Н
622	Н	CI	CO ₂	Н
623	F	CI	OCH ₂ CO ₂	Ph-4-F
624	F	CI	SCH ₂ CO ₂	Ph-4-F

Table 8

where A=N, B=CH, R₄=R₅=CH₃, Q=Q3 in a compound of formula I

No	R ₁	R ₂	Х	R ₃
625	F	CI	CO ₂	Н
626	F	CI	CO ₂	CH₃
627	F	CI	CO ₂	C ₂ H ₅
628	F	CI	CO ₂	Ph
629	F	CI	CO ₂	CH₂Ph
630	F	CI	CO₂	Ph-4-Cl
631	F	CI	CO ₂	CH₂Ph-4-Cl
632	F	CI	CO₂	3-Py
633	F	CI	OCH ₂ CO ₂	Н
634	F	CI		CH₃
635	F	CI	OCH ₂ CO ₂	C₂H₅
636	F	CI		Ph
637	F	CI	OCH ₂ CO ₂	CH₂Ph
638	F	Cl	OCH ₂ CO ₂	Ph-4-Cl
639	F	CI	OCH ₂ CO ₂	CH₂Ph-4-Cl
640	F	CI	OCH ₂ CO ₂	3-Py
641	F	CI	OCH(CH ₃)CO ₂	Н
642	F	Ci	OCH(CH ₃)CO ₂	CH₃
643	F	Cl	OCH(CH ₃)CO ₂	C₂H₅
644	F	CI	OCH(CH ₃)CO ₂	Ph
645	F	CI	OCH(CH ₃)CO ₂	CH₂Ph
646	·F	Cl	OCH(CH ₃)CO ₂	Ph-4-Cl
647	F	CI	OCH(CH ₃)CO ₂	CH₂Ph-4-Cl
648	F	CI	OCH(CH ₃)CO ₂	3-Py
649	F	CI	0	Н
650	F	CI	0	CH ₃
651	F	CI	0	C ₂ H ₅
652	F	CI	0	Ph
653	F	CI	0	CH₂Ph
654	F	CI	0	Ph-4-Cl
655	F	CI	0	CH₂Ph-4-CI

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676		ō ō o o o o o o o o o o o o o o o o o o	O SCH ₂ CO ₂ SCH(CH ₃)CO ₂	3-Py H CH ₃ C ₂ H ₅ Ph CH ₂ Ph Ph-4-Cl CH ₂ Ph-4-Cl 3-Py H CH ₃ Ph CH ₂ Ph Ph-4-Cl 3-Py H CH ₂ Ph Ph-4-Cl CH ₂ Ph CH ₃ Ph CH ₂ Ph
	-			
679	F	CI		Ph-4-Cl
680	F		S	CH₂Ph-4-CI
		CI	S	3-Pv

Table 9

where A=CH, B=N, R₄=R₅=H, Q=Q3 in a compound of formula I

No	R ₁	R ₂	Х	R_3
681	F	CÍ	CO ₂	H
682	F	CI	CO,	CH ₃
683	F	CI	CO,	C ₂ H ₅
684	F	CI	CO ₂	C₂∩₅ Ph
685	F	CI	CO ₂	CH₂Ph
686	F	CI	CO ₂	Сп₂гп Ph-4-Cl
687	F	CI	CO ₂	CH₂Ph-4-CI
688	F	CI	CO,	3-Py
689	F	CI	OCH ₂ CO ₂	3-ry H
690	F	CI	OCH ₂ CO ₂	- · ·
691	F	CI	OCH ₂ CO ₂	CH₃
			001.12002	C₂H₅

5	692 693 694	F F F	CI CI CI	OCH ₂ CO ₂ OCH ₂ CO ₂ OCH ₂ CO ₂	Ph CH₂Ph Ph-4-Cl
-	695	F	CI	OCH ₂ CO ₂	CH₂Ph-4-CI
	696	F	C)	OCH ₂ CO ₂	3-Py
	697	F	CI	OCH(CH ₃)CO ₂	H
10	698	F	CI	OCH(CH ₃)CO ₂	CH ₃
10	699	F	CI	OCH(CH ₃)CO ₂	C₂H₅
	700	F	CI	OCH(CH ₃)CO ₂	Ph
	701	F	CI	OCH(CH3)CO2	CH₂Ph
	702	F	CI ·	OCH(CH₃)CO₂	Ph-4-CI
15	703	F	CI	OCH(CH3)CO2	CH₂Ph-4-Cl
	704	F	CI	OCH(CH ₃)CO ₂	3-Py
	705	F	CI	0	Н
	706	F	CI	0	CH₃
20	707	F	CI	0	C₂H₅
	708	F	CI	0	Ph
	709	F	CI	0	CH₂Ph
	710	F	CI	0	Ph-4-Cl
25	711	F	CI	0	CH₂Ph-4-CI
	712	F	CI	0	3-Py
	713	F	CI	SCH ₂ CO ₂	H
	714	F	ÇI	SCH ₂ CO ₂	CH₃
30	715	F	ĆI	SCH ₂ CO ₂	C₂H₅
	716	F	CI	SCH ₂ CO ₂	Ph
	717	F	CI	SCH ₂ CO ₂	CH₂Ph
	718	F	CI	SCH ₂ CO ₂	Ph-4-Cl
35	719	F	CI	SCH₂CO₂	CH₂Ph-4-Cl
	720	F	CI	SCH ₂ CO ₂	3-Py
	721 722	F F	CI	SCH(CH ₃)CO ₂	H
	723	F	CI CI	SCH(CH ₃)CO ₂	CH₃
40	723 724	F	CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	C₂H₅ Ph
40	725	F	Ci	SCH(CH ₃)CO ₂	CH₂Ph
	726	F	Cì	SCH(CH ₃)CO ₂	Ph-4-Cl
	727	F	CI	S S	H
	728	F	CI		CH ₃
45	729	F	CI	S	C₂H₅
	730	F	CI	·S	Ph
	731	F	CI	S S S S	CH₂Ph
	732	F	CI	S	Ph-4-Cl
50	733	F	CI	S	CH₂Ph-4-Cl
	734	F	CI	S	3-Py

Table 10

where A=B=N, $R_4=\stackrel{\smile}{R_5}=H$, Q=Q4 in a compound of formula I

No	R,	R ₂	X	
735	F	Cl	CO ₂	R_3
736	F	Ci	CO ₂	Н
737	F	Cl	CO ₂	CH₃
738	F	CI	CO ₂	C₂H₅
739	F	CI	CO ₂	Ph
740	F	CI	CO ₂	CH₂Ph
741	F	CI	CO ₂	Ph-4-Cl
742	, F	Cl	CO ₂	CN
743	F	CI	CO ₂	3-Py
744	F		OCH ₂ CO ₂	Н
745	F	CI	OCH ₂ CO ₂	CH₃
746	F	CI	OCH ₂ CO ₂	C ₂ H ₅
747	F	CI	OCH ₂ CO ₂	Ph
748	F	CI		CH₂Ph
749	F	CI		Ph-4-CI
750		CI	OCH ₂ CO ₂	CN
751	F	CI		3-Py
752	F	CI		НÍ
752 753	F	CI	OCH(CH ₃)CO ₂	CH ₃
753 754	F	CI	OCH(CH ₃)CO,	C₂H₅
	F	CI	OCH(CH ₃)CO,	Ph
755 750	F	Ci	OCH(CH ₃)CO ₃	CH₂Ph
756 757	F	CI	OCH(CH ₃)CO ₂	Ph-4-CI
757	F	CI	OCH(CH ₃)CO ₂	CN
758	F	CI	OCH(CH ₃)CO ₂	3-Py
759	F	CI	0 "	H.
760	F	CI	0	 CH₃
761	F	CI	0	C₂H₅
762	F	CI	0	Ph
763	F	CI	0	CH₂Ph
764	F	CI	0	Ph-4-Cl
765	F	CI	0	CN
766	F	CI	Ō	3-Py
767	F	CI	SCH ₂ CO ₂	3- - -y H
768	F	CI	SCH ₂ CO ₂	
769	F	CI	SCH ₂ CO ₂	CH₃
770	F	Ci	SCH ₂ CO ₂	C₂H₅
771	F	Cl	SCH ₂ CO ₂	Ph
		٥.		CH₂P h

5

•				
772	F	CI	SCH₂CO₂	Ph-4-Cl
773	F	CI	SCH₂CO₂	CN
774	F	CI	SCH₂CO₂	3-Py
775	F	Н	SCH(CH ₃)CO ₂	H
776	F	CI	SCH(CH ₃)CO ₂	CH ₃
777	F	CI	SCH(CH ₃)CO ₂	C₂H₅
778	F	CI	SCH(CH ₃)CO ₂	P h
779	F	Cl	SCH(CH ₃)CO ₂	CH₂Ph
780	F	CI	SCH(CH ₃)CO ₂	Ph-4-Cl
781	F	CI	SCH(CH ₃)CO ₂	CH₂Ph-4-CI
782	F	CI	SCH(CH ₃)CO ₂	3-Py
783	F	CI	S ` ″ Î	Η
78 4	F	CI	S	CH₃
785	F	CI	S	C ₂ H ₅
786	F	CI	S	Pĥ
787	F	CI	CH=C(Cl)CO ₂	CN
788	F	CI	CH₂CH(ĆI)CO₂	CN
789	F	CI	CH=C(CI)CO2	Н
790	F	CI	CH₂CH(CÍ)CÔ₂	Н
791	CI	CI	0 ' ' '	Н
792	CI	CI	OCH ₂ CO ₂	Н
793	CI	CI	OCH(CH3)CO2	Н
794	CI	CI	SCH ₂ CO ₂ ²	Н
795	CI	CI	CH=C(CI)CO2	Н
796	CI	CI	CH₂CH(ĆI)CO₂	Н
797	CI	CI	co, `´	н
798	Н	CI	o [*]	Н
799	Н	CI	OCH,CO,	Н
800	Н	CI	OCH(CH ₃)CO ₂	Н
801	Н	CI	SCH ₂ CO ₂	Н
802	Н	CI	CH=C(CI)CO2	Н
803	Н	CI	CH ₂ CH(CI)CO ₂	Н
804	Н	CI	CO ₂	Н
805	F	CI	OCH ₂ CO ₂	Ph-4-F
806	F	CI	SCH₂CO₂	Ph-4-F

Table 11

where A=B=N, R₄=R₅=H, Q=Q5 in a compound of formula I

No	R,	R ₂	Χ	R ₃
807	F	Cl	CO ₂	Н

5	808 809 810 811 812	F F F	CI CI CI CI	CO ₂ CO ₂ CO ₂ CO ₂ CO ₂	CH₃ C₂H₅ Ph CH₂Ph Ph-4-CI
10	813 814 815 816 817	F F F F	CI CI CI CI	CO2 CO2 OCH2CO2 OCH2CO2 OCH2CO2	CN 3-Py H CH ₃ C₂H₅
15	818 819 820 821 822	F F F F	CI CI CI CI	OCH,CO, OCH,CO, OCH,CO, OCH,CO, OCH,CO,	Ph CH ₂ Ph Ph-4-CI CN 3-Py
20	823 824 825 826 827	F F F F	CI CI CI CI	OCH(CH ₃)CO ₂	H CH₃ C₂H₅ Ph CH₂Ph
25	828 829 830 831 832	F F F F	CI CI CI CI	OCH(CH ₃)CO ₂ OCH(CH ₃)CO ₂ OCH(CH ₃)CO ₂ O	Ph-4-CI CN 3-Py H
30	833 834 835 836 837	F F F F	CI CI CI CI	0 0 0	CH₃ C₂H₅ Ph CH₂Ph Ph-4-CI
35	838 839 840 841 842	F F F	CI CI CI	O SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂	CN 3-Py H CH₃ C₂H₅
40	843 844 845 846	F F F F	CI CI CI CI	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂	Ph CH₂Ph Ph-4-CI CN 3-Py
45	847 848 849 850 851	F F F	H C C C C	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₃	H CH₃ C₂H₅ Ph
50	852 853 854 855	F F F	0 0 0 0	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ S	CH₂Ph Ph-4-CI CN 3-Py H

856	F	CI	S	CH ₃
857	F	CI	S	C ₂ H ₅
858	F	CI	S	Ph
859	F	CI	S	CH₂Ph
860	F	CI	S	Ph-4-Cl
861	F	CI	CH=C(CI)CO ₂	Н
862	F	CI	CH ₂ CH(CI)CO ₂	Н
863	CI	CI	0	Н
864	CI	CI	OCH ₂ CO ₂	Н
865	CI	CI	OCH(CH ₃)CO ₂	Н
866	CI	CI	SCH ₂ CO ₂	H
867	CI	CI	CH=C(CI)CO ₂	Н
868	CI	Cl	CH₂CH(CI)CO₂	Н
869	CI	Cl	CO ₂	Н
870	H	Cl	0	Н
871	Н	· CI		Н
872	H	CI	OCH(CH ₃)CO ₂	Н
873	Н	CI	SCH ₂ CO ₂	Н
874	Н	CI	CH=C(CI)CO₂	Н
875	н	CI	CH₂CH(CI)CO₂	Н
876	Н	CI	CO ₂	Н
877	F	CI	OCH ₂ CO ₂	Ph-4-F
878	F	Cl	SCH ₂ CO ₂	Ph-4-F

Table 12

$$\begin{array}{c} R_1 \\ O \\ CH_3 \\ CH_3 \end{array}$$

where A=B=N, R_4 = R_5 =H, Q=Q6 in a compound of formula I

No	R,	R ₂	X	R ₃
879	F	CI	CO ₂	Н
880	F	CI	CO ₂	СН₃
881	F	CI	CO ₂	C₂H₅
882	F	CI	CO ₂	Ph
883	F	CI	CO ₂	CH₂Pħ
884	F	CI	CO ₂	Ph-4-Cl
885	F	CI	CO₂	CN
886	F	CI	CO ₂	3-Py
887	F	CI	OCH ₂ CO ₂	^H
888	F	CI	OCH ₂ CO ₂	CH₃
889	F	CI	OCH ₂ CO ₂	C₂H₅
890	F	CI	OCH ₂ CO ₂	Ph

	891	F	CI	OCH ₂ CO ₂	CH₂Ph
	892	F	CI	OCH ₂ CO ₂	Ph-4-Ci
5	893	F	CI	OCH ₂ CO ₂	CN
	894	F	CI	OCH ₂ CO ₂	3-Py
	895	F	CI	OCH(CH ₃)CO ₂	H .
	896	F	CI	OCH(CH ₃)CO ₂	CH ₃
	897	F	CI	OCH(CH ₃)CO ₂	C₂H₅
10	898	F	CI	OCH(CH ₃)CO ₂	Ph
	899	F	CI	OCH(CH ₃)CO ₂	CH₂Ph
	900	F	CI	OCH(CH ₃)CO ₂	Ph-4-Cl
	901	F	Ci	OCH(CH ₃)CO ₂	CH ₂ Ph-4-Cl
	902	F	CI	OCH(CH ₃)CO ₂	3-Py
15	903	F	CI	O (O (13) C O 2	3-гу Н
	904	F	CI	ŏ	⊓ CH₃
	905	F	CI	ŏ	
	906	F	CI	ŏ	C₂H₅ Ph
20	907	F	CI	Ö	
20	908	F	CI	Ö	CH₂Ph Ph-4-Cl
	909	F	ČI	ŏ	CN
	910	F	CI	Ö	3-Py
	911	F	CI	SCH ₂ CO ₂	3- Р у Н
25	912	F	CI	SCH ₂ CO ₂	⊓ СН₃
	913	F	CI	SCH ₂ CO ₂	
	914	F	CI	SCH ₂ CO ₂	C₂H₅
	915	F	CI	SCH ₂ CO ₂	Ph CU Dh
	916	F	CI	SCH ₂ CO ₂	CH₂Ph
30	917	F	CI	SCH ₂ CO ₂	Ph-4-CI
	918	F	CI	SCH ₂ CO ₂	CN 3 D
	919	F	H	SCH(CH ₃)CO ₂	3-Py
	920	F	CI	SCH(CH ₃)CO ₂	H
	921	F	CI	SCH(CH ₃)CO ₂	CH₃
35	922	F	CI	SCH(CH ₃)CO ₂	C₂H₅
	923	F	CI	SCH(CH ₃)CO ₂	Ph
	924	F	CI	SCH(CH ₃)CO ₂	CH₂Ph
	925	F	CI	SCH(CH ₃)CO ₂	Ph-4-Cl
40	926	F	CI	SCH(CH ₃)CO ₂	CH₂Ph-4-CI
40	927	F	CI		3-Ру
	928	F	CI	S S	Н
	929	F	CI	S	CH ₃
	930	F	CI		C₂H₅
45	931	F	CI	S S	Ph
	932	F	CI	S	CH₂Ph
	933	, F	CI		Ph-4-Cl
	934	F	CI	CH=C(CI)CO ₂	H
	935	ĊI	CI	CH ₂ CH(CI)CO ₂	H
50	936	CI	CI	0	H .
	937	CI	CI	OCH ₂ CO ₂	H '
	938	CI		CH=C(CI)CO ₂	H
	900	Ci	CI	CH ₂ CH(CI)CO ₂	Н

939	CI	CI	SCH ₂ CO ₂	Н
940	CI	CI	SCH(CH ₃)CO ₂	Н
941	CI	CI	CO ₂	Н
942	Н	CI	0	Н
943	Н	CI	OCH ₂ CO ₂	Н
944	H	CI	OCH(CH ₃)CO ₂	Н
945	Н	CI	SCH₂CO₂	Н
946	H	CI	CH=C(CI)CO ₂	Н
947	Н	CI	CH2CH(CI)CO2	Н
948	H	CI	CO ₂	Н
949	F	CI	OCH₂CO₂	Ph-4-F
950	F	CI	SCH₂CO₂	Ph-4-F

Table 13

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_3
 R_3
 R_3

where A=B=N, R_4 = R_5 =H, Q=Q7 in a compound of formula I

No	R₁	R ₂	Χ	R ₃
951		CI	CO ₂	H
952	F	CI	CO ₂	CH₃
953		CI	CO ₂	C₂H₅
954	F	CI	CO₂	Ph
955	5 F	CI	CO2	CH₂Ph
956	6 F	CI	CO ₂	Ph-4-CI
957	7 F	CI	CO2	CN
958	3 F	CI	CO,	3-Py
959) F	CI	OCH ₂ CO ₂	н
960) F	CI ·		CH₃
961	F	CI	OCH ₂ CO ₂	C ₂ H ₅
962	2 F	CI	OCH ₂ CO ₂	Ph
963	3 F	CI	OCH ₂ CO ₂	CH₂Ph
964	F F	CI	OCH ₂ CO ₂	Ph-4-CI
965	5 F	CI	OCH ₂ CO ₂	CN
966	6 F	CI	OCH ₂ CO ₂	3-Py
967	7 F	CI	OCH(CH ₃)CO ₂	H .
968	B F	CI	OCH(CH ₃)CO ₂	CH₃
969) F	CI	OCH(CH ₃)CO ₂	C ₂ H ₅
970) F	CI	OCH(CH ₃)CO ₂	Ph
971	1 F	CI	OCH(CH ₃)CO ₂	CH₂Ph
972		CI	OCH(CH ₃)CO ₂	Ph-4-CI
973	3 F	CI	OCH(CH ₃)CO ₂	CH₂Ph-4-Cl

5	974 975 976 977 978 979	F F F F	CI CI CI CI CI	OCH(CH ₃)CO ₂ O O O O O	3-Py H CH₃ C₂H₅ Ph CH₂Ph
10	980 981 982 983 984	F F F F	CI CI CI	O O O SCH₂CO₂	Ph-4-CI CN 3-Py H
15	985 986 987 988	F F F	CI CI CI CI	SCH ₂ CO ₂	CH₃ C₂H₅ Ph CH₂Ph Ph-4-Cl
20	989 990 991 992 993 994	F F F F	CI C	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	CN 3-Py H CH₃ C₂H₅
25	995 996 997 998 999	F F F	CI CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	Ph CH₂Ph Ph-4-Cl CH₂Ph-4-Cl 3-Py
30	1000 1001 1002 1003	F F F	CI CI CI CI	\$ \$ \$ \$ \$	H CH₃ C₂H₅ Ph CH₂Ph
<i>35</i>	1004 1005 1006 1007 1008	F F CI CI	CI CI CI CI	S CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ O OCH ₂ CO ₂	Ph-4-CI H H H
40	1009 1010 1011 1012	CI CI CI	CI CI CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₃	H H H H
45	1013 1014 1015 1016 1017	CI H H H	CI CI CI CI	CO ₂ O OCH ₂ CO ₂ OCH(CH ₃)CO ₂ SCH ₂ CO ₂	H H H H
50	1018 1019 1020 1021	H H F	CI CI CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CO ₂ OCH ₂ CO ₂	H H H Ph-4-F

1022 F CI SCH₂CO₂ Ph-4-F

Table 14

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_3

where A=B=N, R_4 = R_5 =H, Q=Q8 in a compound of formula I

0		R ₂	X	R ₃
			CO ₂	Н
				CH ₃
25		CI	CO ₂	C ₂ H ₅
26	F		CO ₂	Ph
	F		CO ₂	CH₂Ph
				Ph-4-CI
				CN
				3-Py
			OCH ₂ CO ₂	Н
	F			CH ₃
	F			C ₂ H ₅
				Ph
				CH₂Ph
			OCH ₂ CO ₂	Ph-4-Cl
			OCH ₂ CO ₂	CN
				3-Py
				Н
			OCH(CH ₃)CO ₂	CH3
				C ₂ H ₅
				Ph
				CH₂Ph
			OCH(CH ₃)CO ₂	Ph-4-Ci
				CH₂Ph-4-CI
				3-Py
			0	Н
			_	CH₃
				C ₂ H ₅
				Ph
				CH₂Ph
				Ph-4-CI
				CH₂Ph-4-Cl
				3-Py
55	F	Cl	ŞCH₂CO₂	Н
	0 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 51 52 53 54 55	23	23	23 F CI CO ₂ 24 F CI CO ₂ 25 F CI CO ₂ 26 F CI CO ₂ 27 F CI CO ₂ 28 F CI CO ₂ 29 F CI CO ₂ 30 F CI CO ₂ 31 F CI OCH ₂ CO ₂ 32 F CI OCH ₂ CO ₂ 33 F CI OCH ₂ CO ₂ 34 F CI OCH ₂ CO ₂ 35 F CI OCH ₂ CO ₂ 36 F CI OCH ₂ CO ₂ 37 F CI OCH ₂ CO ₂ 38 F CI OCH ₂ CO ₂ 40 F CI OCH ₂ CO ₂ 41 F CI OCH(CH ₃)CO ₂ 42 F CI OCH(CH ₃)CO ₂ 44 F CI OCH(CH ₃)CO ₂ 45 F CI OCH(CH ₃)CO ₂ 46 F CI OCH(CH ₃)CO ₂ 47 F CI OCH(CH ₃)CO ₂ 48 F CI OCH(CH ₃)CO ₂ 49 F CI OCH(CH ₃)CO ₂ 40 F CI OCH(CH ₃)CO ₂ 41 F CI OCH(CH ₃)CO ₂ 42 F CI OCH(CH ₃)CO ₂ 43 F CI OCH(CH ₃)CO ₂ 44 F CI OCH(CH ₃)CO ₂ 45 F CI OCH(CH ₃)CO ₂ 46 F CI OCH(CH ₃)CO ₂ 47 F CI OCH(CH ₃)CO ₂ 48 F CI OCH(CH ₃)CO ₂ 49 F CI OCH(CH ₃)CO ₂ 47 F CI OCH(CH ₃)CO ₂ 48 F CI OCH(CH ₃)CO ₂ 49 F CI OCH(CH ₃)CO ₂

5	1056 1057 1058 1059 1060 1061 1062 1063	F	CI CI CI CI CI	SCH ₂ CO ₂ SCH ₂ CO ₂	CH₃ C₂H₅ Ph CH₂Ph Ph-4-CI CN 3-Py
15	1064 1065 1066 1067 1068 1069	, F	H CI CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ CH=C(CI)CO ₂	H CH₃ C₂H₅ Ph CH₂Ph CN
20	1070 1071 1072	F F	CI CI CI	CH ₂ CH(CI)CO ₂ SCH(CH ₃)CO ₂ S S	CN 3-Py H CH₃
25	1073 1074 1075 1076	F F F	CI CI CI	S S S	C₂Hᢆ₅ Ph CH₂Ph Ph-4-Cl
30	1077 1078 1079 1080	F CI CI	CI CI CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ O	Н Н Н
35	1081 1082 1083 1084 1085	CI CI CI CI	CI CI CI CI CI	OCH ₂ CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂ CO ₂	H H H
40	1086 1087 1088 1089	H H H	CI CI CI	O OCH ₂ CO ₂ OCH(CH ₃)CO ₂	H H H
45	1090 1091 1092 1093 1094	 H H F F	CI CI CI CI	SCH ₂ CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CO ₂ OCH ₂ CO ₂	H H H H Ph-4-F
50		<u> </u>	OI	SCH ₂ CO ₂	Ph-4-F

where A=B=N, R_4 = R_5 =H, Q=Q9 in a compound of formula I

No	R,	R ₂	Х	R ₃
1095	F	Cl	CO ₂	Н
1096	F	CI	CO ₂	CH ₃
1097	F	CI	CO ₂	C₂H₅
1098	F	CI	CO ₂	Ph
1099	F	Cl	CO ₂	CH₂Ph
1100	F	CI	CO ₂	Ph-4-Cl
1101	F	CI	CO ₂	CN
1102	F	CI	CO ₂	3-Py
1103	F	CI	OCH ₂ CO ₂	Н
1104	F	CI	OCH ₂ CO ₂	CH ₃
1105	F	CI	OCH ₂ CO ₂	C ₂ H ₅
1106	F	CI	OCH ₂ CO ₂	Ph
1107	F	CI	OCH ₂ CO ₂	CH₂Ph
1108	F	CI		Ph-4-Cl
1109	F	Cl	OCH ₂ CO ₂	- CN
1110	F	CI	och,co,	3-Py
1111	F	CI	OCH(CH ₃)CO ₂	н
1112	F	CI		CH ₃
1113	F	CI		C ₂ H ₅
1114	F	Cl		Ph
1115	F	Cl		CH ₂ Ph
1116	F	CI		Ph-4-Cl
1117	F	Cl	OCH(CH ₃)CO ₂	CN
1118	F	CI		3-Py
1119	F	CI	0 ` ″ •	Н
1120	F	CI	0	CH ₃
1121	F	CI	0	C₂H¸
1122	F	CI	0	Ph
1123	F	CI	O	CH ₂ Ph
1124	F	CI	0	Ph-4-CI
1125	F	CI	0	CN
1126	F	CI	0	3-Py
1127	F	CI	SCH ₂ CO ₂	H
1128	F	CI	SCH ₂ CO ₂	CH ₃
1129	F	CI	SCH ₂ CO ₂	C₂H₅
1130	F	CI	SCH ₂ CO ₂	Ph

5	1131 1132 1133 1134 1135	F F F	CI CI CI H	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂	CH₂Ph Ph-4-Cl CN 3-Py H
10	1136 1137 1138 1139 1140	F F F F	CI CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	CH₃ C₂H₅ Ph CH₂Ph Ph-4-Cl
15	1141 1142 1143 1144 1145	F F F	CI CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ S S S	CH₂Ph-4-Cl 3-Py H CH₃
20	1146 1147 1148 1149	F F F	CI CI CI	S S S CH=C(CI)CO ₂	C₂H₅ Ph CH₂Ph Ph-4-Cl H
25	1150 1151 1152 1153 1154	F CI CI CI	CI CI CI CI	CH ₂ CH(Cl)CO ₂ O OCH ₂ CO ₂ CH=C(Cl)CO ₂ CH ₂ CH(Cl)CO ₂	H H H H
30	1155 1156 1157 1158 1159	CI CI H	CI CI CI	SCH ₂ CO ₂ SCH(CH ₃)CO ₂ CO ₂ O	н н н н
35	1160 1161 1162 1163	H H H H H	CI CI CI CI	OCH ₂ CO ₂ OCH(CH ₃)CO ₂ SCH ₂ CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂	H H H H
40	1164 1165 1166	H F	CI CI	CO ₂ OCH ₂ CO ₂ SCH ₂ CO ₂	H Ph-4-F Ph-4-F

Table 16

where A=B=N, R₄=R₅=H, \widetilde{Q} =Q10 in a compound of formula I

55

50

	No	R ₁	R ₂	X	R_3
	1167	F	CI	CO ₂	Н
5	1168	F	CI	CO,	CH ₃
-	1169	F	CI	CO ₂	C ₂ H ₅
	1170	F	CI	CO ₂	Ph
	1171	F	CI	CO ₂	CH₂Ph
	1172	F	Cl	CO ₂	Ph-4-CI
10	1173	F	CI	CO ₂	CH ₂ Ph-4-CI
	1 174	F	CI	CO2	3- P y
	1175	F	CI	OCH ₂ CO ₂	н
	1176	F	CI	OCH ₂ CO ₂	CH ₃
	1177	F	CI	OCH,CO,	C ₂ H ₅
15	1178	F	CI	OCH ₂ CO ₂	Ph
	1179	F	CI	OCH ₂ CO ₂	CH₂Ph
	1180	F	CI	OCH ₂ CO ₂	Ph-4-Cl
	1181	F	CI	OCH ₂ CO ₂	CH₂Ph-4-CI
	1182	F	CI	OCH ₂ CO ₂	3-Py
20	1183	F .	CI	OCH(CH ₃)CO ₂	H
	1184	F	Cl	OCH(CH ₃)CO ₂	CH ₃
	1185	F	CI	OCH(CH ₃)CO ₂	C₂H₅
	1186	F	CI	OCH(CH ₃)CO ₂	Ph
25	1187	F	CI	OCH(CH ₃)CO ₂	 CH₂Ph
23	1188	F	CI	OCH(CH ₃)CO ₂	Ph-4-Cl
	1189	F	CI	OCH(CH ₃)CO ₂	CH₂Ph-4-Cl
	1190	F	CI	OCH(CH ₃)CO ₂	3-Py
	1191	F	CI	O	Н
30	1192	F	Ci	Ō.	 CH₃
	1193	F	CI	Ö	C₂H₅
	1194	F	CI	Ö	Ph
	1195	F	CI	Ō	CH₂Ph
	1196	F	CI	O .	Ph-4-Cl
35	1197	F	CI	0	CH₂Ph-4-Cl
	1198	F	CI	Ö	3-Py
	1199	F	CI	SCH ₂ CO ₂	H
•	1200	F	CI	SCH ₂ CO ₂	 CH₃
	1201	F	CI	SCH ₂ CO ₂	C₂H₅
40	1202	F	CI	SCH ₂ CO ₂	Ph
	1203	F	CI	SCH ₂ CO ₂	CH₂Ph
	1204	F	CI	SCH,CO,	Ph-4-Cl
	1205	F	CI	SCH2CO2	CH₂Ph-4-CI
45	1206	F .	CI	SCH ₂ CO ₂	3-Py
	1207	F	Н	SCH(CH ₃)CO ₂	H
	1208	F	CI	SCH(CH ₃)CO ₂	CH ₃
	1209	F	CI	SCH(CH ₃)CO ₂	C₂H₅
	1210	F	CI	SCH(CH ₃)CO ₂	Ph
50	1211	F	CI	SCH(CH ₃)CO ₂	CH₂Ph
	1212	F	CI	SCH(CH ₃)CO ₂	Ph-4-Cl
	1213	F	CI	SCH(CH ₃)CO ₂	CH ₂ Ph-4-Cl
		•	٠.	JUL 13/002	31.721 11 3 31

55

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236	+ + + + + + + 0 0 0 0 0 0 0 1 1 1 1 1 1	000000000000000000000	S S S S S S S CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ O OCH ₂ CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CH ₂ CH(CI)CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂ CO ₂ OCH ₂ CO ₂ OCH(CH ₃)CO ₂ SCH ₂ CO ₂ CH=C(CI)CO ₂ CH=C(CI)CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CH ₂ CH ₂ CO ₂ CH ₂ CH ₂ CO ₂	H CH₃ ₅ Ph CH H H H H H H H H H H H H H H H H H H
1238	F	CI	SCH ₂ CO ₂	Ph-4-F Ph-4-F

Table 17

where A=B=N, R₄=R₅=H, Q=Q11 in a compound of formula I

No	R,	R_2	Х	R ₃
1239	F	CÎ	CO ₂	H
1240	F	CI	CO ₂	CH,
1241	F	CI	CO ₂	C ₂ H ₅
1242	F	CI	CO ₂	O₂⊓₅ Ph
1243	F	CI	CO ₂	CH ₂ Ph
1244	F	CI	CO ₂	Ph-4-CI
1245	F	CI	CO ₂	CH ₂ Ph-4-Cl
1246	F	CI	CO ₂	3-Pγ
1247	F	CI	OCH ₂ CO ₂	3-ry H
1248	F	CI	OCH ₂ CO ₂	CH₃

	1249	F	Cl	OCH ₂ CO ₂	C ₂ H ₅
	1250	F	CI	OCH ₂ CO ₂	Ph
5	1251	F	CI	OCH ₂ CO ₂	CH₂Ph
3	1252	F	CI	OCH2CO2	Ph-4-Cl
	1253	F	CI	OCH ₂ CO ₂	CH₂Ph-4-CI
	1254	F	CI	OCH ₂ CO ₂	3-Ру
	1255	F	Cl	OCH(CH ₃)CO ₂	H
10	1256	F	CI	OCH(CH ₃)CO ₂	CH ₃
	1257	F	CI	OCH(CH ₃)CO ₂	C ₂ H ₅
	1258	F	CI		Ph
	1259	F	CI	OCH(CH ₃)CO ₂	CH₂Ph
	1260	F	CI	OCH(CH)CO	Ph-4-Cl
15	1261	F	CI	OCH(CH ₃)CO ₂	
	1261	F		OCH(CH ₃)CO ₂	CH₂Ph-4-Cl
			CI	OCH(CH ₃)CO ₂	3-Ру
	1263	F	CI	0	Н
	1264	F	CI	0	CH₃
20	1265	F	CI	0	C₂H₅
	1266	F	CI	0	Ph
	1267	F	CI	0	CH₂Ph
	1268	F	CI	0	Ph-4-Cl
	1269	F	CI	0	CH₂Ph-4-CI
25	1270	F	CI	0	3-Py
	1271	F	CI	SCH ₂ CO ₂	Н
	1272	F	CI	SCH ₂ CO ₂	CH₃
	1273	F	CI	SCH ₂ CO ₂	C₂H₅
	1274	F	Cl	SCH ₂ CO ₂	Ph
30	1275	F	CI	SCH ₂ CO ₂	CH₂Ph
	1276	F	CI	SCH ₂ CO ₂	Ph-4-CI
	1277	F	CI	SCH ₂ CO ₂	CH ₂ Ph-4-Cl
	1278	F	CI	SCH ₂ CO ₂	3-Py
	1279	F	Н	SCH(CH ₃)CO ₂	н
35	1280	F	Ċl	SCH(CH ₃)CO ₂	CH ₃
	1281	F	Cl	SCH(CH ₃)CO ₂	C ₂ H ₅
	1282	F	CI	SCH(CH ₃)CO ₂	Ph
	1283	F	CI	SCH(CH3)CO2	CH₂Ph
	1284	F	CI	SCH(CH₃)CO₂	Ph-4-CI
40	1285	F	CI	SCH(CH ₃)CO ₂	CH ₂ Ph-4-Cl
	1286	F	CI	SCH(CH ₃)CO ₂	3- P y
	1287	F	CI	S	H ,
	1288	F	CI	S	CH ₃
45	1289	F	CI		C ₂ H ₅
45	1290	F	CI	S	Ph
	1291	F	CI	S S S	 CH₂Ph
	1292	F	Cl	S	Ph-4-Cl
	1293	F	CI	CH=C(CI)CO ₂	H
50	1294	F	CI	CH ₂ CH(CI)CO ₂	H
	1295	CI	CI	O	H
	1295	CI	CI	OCH ₂ CO ₂	H
	1290	Ci	CI		П

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309	00000 000 11 11 11 11 11 15 15	00000000000000000000000000000000000000	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂ CO ₂ O OCH ₂ CO ₂ OCH(CH ₃)CO ₂ SCH ₂ CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CO ₂ CCO ₂ CCO ₂ CCO ₂ CCO ₂ CCO ₂ CCO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂	H H H H H H H Ph-4-F Ph-4-F
--	--	--	--	---

Table 18

 R_1 R_2 R_3 R_4 R_2 R_3 R_4 R_3

where A=B=N, R_4 = R_5 =H, Q=Q12 in a compound of formula I

No	R,	R_2	X	R ₃	R ₁₀
1311	F	CI	CO ₂	Н	CH ₃
1312	F	CI	CO ₂	 CH₃	CH ₃
1313	F	CI	CO,	C₂H₅	CH ₃
1314	F	CI	CO ₂	H	NH ₂
1315	F	CI	CO ₂	∵ CH₃	
1316	F	CI	CO ₂	C₁1₃ C₂H₅	NH ₂
1317	F	CI	CO ₂	C ₂ ⊓ ₅ CN	NH ₂
1318	F	CI	CO ₂	CN	NH ₂
1319	F	CI	OCH ₂ CO ₂		CH₃
1320	F	CI	OCH ₂ CO ₂	H	CH₃
1321	F	CI		CH ₃	CH₃
1322	F	CI	OCH ₂ CO ₂	C₂H₅	CH ₃
1323	F		OCH ₂ CO ₂	Н	NH ₂
1324	F	CI	OCH ₂ CO ₂	CH₃	NH ₂
1325	F	CI	OCH ₂ CO ₂	C₂H₅	NH ₂
1326		CI	OCH ₂ CO ₂	CN	NH ₂
	F	CI	OCH2CO2	CN	CH ₃
1327	F	CI		Н	CH₃
1328	F	CI	OCH(CH ₃)CO ₂	CH₃	CH₃
1329	F	CI	OCH(CH ₃)CO ₂	C₂H _₅	CH₃
1330	F	CI	OCH(CH ₃)CO ₂	нî	NH ₂
1331	F	CI		CH₃	NH ₂
1332	F	CI		C ₂ H ₅	NH ₂
			. 0, 2	- 22	2

5

5

5	1333 1334 1335 1336 1337 1338 1339	F F F F F	01 01 01 01 01	OCH(CH₃)CO₂ O O O O O O	CN H H CH₃ C₂H₅ H CH₃	NH ₂ H CH ₃ CH ₃ NH ₂ NH ₂
10	1340 1341 1342 1343 1344	F F F F	CI CI CI CI	O O O SCH ₂ CO ₂	C₂Ḧ₅ CN CN H CH₃	NH ₂ NH ₂ CH ₃ CH ₃
15	1345 1346 1347 1348	F F F	CI CI CI	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂	C₂H₅ H CH₃ C₂H₅	CH ₃ NH ₂ NH ₂ NH ₂
20	1349 1350 1351 1352 1353	F F F F	CI H CI CI	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	CN CN H CH₃ C₂H₅	NH ₂ CH ₃ CH ₃ CH ₃
25	1354 1355 1356 1357 1358	F F F F	CI CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂	H CH₃ C₂H₅ H H	NH ₂ NH ₂ NH ₂ NH ₂
30	1359 1360 1361 1362	F F F	CI CI CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ S S	CN CN H H	NH ₂ NH ₂ CH ₃ NH ₂
35	1363 1364 1365 1366 1367	F F F Cl	CI CI CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ O	H CN CN H	CH ₃ CH ₃ CH ₃ CH ₃
40	1368 1369 1370 1371 1372	CI CI CI CI	CI CI CI CI	OCH ₂ CO ₂ OCH(CH ₃)CO ₂ SCH ₂ CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂	H H H H	CH ₃ CH ₃ CH ₃ CH ₃
45	1373 1374 1375 1376 1377	CI H H H	CI CI CI CI	CO ₂ O OCH ₂ CO ₂ OCH(CH ₃)CO ₂ SCH ₂ CO ₂	H H H H	CH ₃ CH ₃ CH ₃ CH ₃
50	1378 1379 1380	H H H	CI CI CI	CH=C(Cl)CO ₂ CH ₂ CH(Cl)CO ₂ CO ₂	Н Н Н	NH ₂ NH ₂ NH ₂

			GC1 12CC2	п	NH ₂	
1382	н	CI	SCH,CO,	ш	•	
1381	Н	CI	OCH ₂ CO ₂	Н	NH ₂	

Table 19

$$\begin{array}{c|c}
R_1 & H \\
R_{10} & N & N \\
CF_3 & N & O
\end{array}$$

where A=B=N, R₄=R₅=H, Q=Q13 in a compound of formula I

				•	
No	R,	R ₂	Х	R ₃	R ₁₀
1383	F	CI	CO ₂	H	CH ₃
1384	F	CI	CO ₂	CH ₃	CH ₃
1385	F	CI	CO ₂	C ₂ H ₅	CH₃
1386	F	CI	CO2	H	NH ₂
1387	F	CI	CO ₂	CH₃	NH ₂
1388	F	CI	CO ₂	C ₂ H ₅	NH ₂
1389	F	CI	CO₂	CÑ	NH ₂
1390	F	CI	CO ₂	CN	CH ₃
1391	F	CI	OCH ₂ CO ₂	Н	CH ₃
1392	F	CI	OCH ₂ CO ₂	CH ₃	CH ₃
1393	F	CI	OCH ₂ CO,	C ₂ H ₅	CH₃
1394	F	CI	OCH ₂ CO ₂	H	NH ₂
1395	F	CI	OCH ₂ CO ₂	CH ₃	NH ₂
1396	F	CI	OCH₂CO,	C ₂ H ₅	NH ₂
1397	F	CI	OCH ₂ CO ₂	CN	NH ₂
1398	F	CI	OCH ₂ CO ₂	CN	CH ₃
1399	F	CI	OCH(CH ₃)CO ₂	н	CH ₃
1400	F	CI	OCH(CH ₃)CO,	CH₃	CH ₃
1401	F	CI	OCH(CH ₃)CO ₂	C₂H _s	CH ₃
1402	F	CI	OCH(CH ₃)CO ₂	н°	NH ₂
1403	F	CI	OCH(CH ₃)CO ₂	CH ₃	NH ₂
1404	F	CI	OCH(CH ₃)CO ₂	C ₂ H ₅	NH ₂
1405	F	CI	OCH(CH ₃)CO ₂	CN	NH ₂
1406	F	CI	OCH(CH ₃)CO ₂	CN	CH ₃
1407	F	CI	0	н	CH₃
1408	F	CI	0	CH₃	CH₃
1409	F	CI	0	C₂H₅	CH ₃
1410	F	CI	0	H	NH ₂
1411	F	CI	0	CH₃	NH ₂
1412	F	CI	0	C₂H₅	NH ₂
1413	F	CI	0	CN	NH ₂
1414	F	CI	0	CN	CH ₃
1415	F	CI	SCH ₂ CO ₂	Н	CH ₃
1416	F	CI	SCH ₂ CO ₂	CH₃	CH ₃
				-	•

зυ

1417	F	CI	SCH ₂ CO ₂	C ₂ H ₅	CH ₃
1418	F	CI	SCH ₂ CO ₂	нĺ	NH ₂
1419	F	CI	SCH ₂ CO ₂	CH₃	NH ₂
1420	F	CI	SCH,CO,	C₂Ḧ₅	NH ₂
1421	F	CI	SCH,CO,	CN	NH ₂
1422	F	CI	SCH,CO,	CN	CH ₃
1423	F	Н	SCH(CH₃)CO₂	Н	CH₃
1424	F	CI	SCH(CH ₃)CO ₂	CH ₃	CH₃
1425	F	CI	SCH(CH ₃)CO ₂	C₂Ḧ́₅	CH ₃
1426	F	Cl	SCH(CH ₃)CO ₂	н°	NH ₂
1427	F	CI	SCH(CH ₃)CO ₂	CH₃	NH_2
1428	F	CI	SCH(CH ₃)CO ₂	C₂H₅	NH ₂
1429	F	CI	CH=C(CI)CO,	ΗĪ	NH ₂
1430	F	CI	CH ₂ CH(CI)CO ₂	н	NH ₂
1431	F	CI	CH=C(CI)CO ₂	CN	NH_2
1432	F	Cl	CH ₂ CH(CI)CO ₂	CN	NH ₂
1433	F	CI	S	Н	CH₃
1434	F	Cl	S	Н	NH_2
1435	F	CI	CH=C(CI)CO ₂	Н	CH₃
1436	F	CI	CH ₂ CH(Cl)CO ₂	H	CH₃
1437	F	CI	CH=C(CI)CO ₂	CN	CH₃
1438	F	CI	CH ₂ CH(CI)CO ₂	CN	CH₃
1439	CI	CI	0	Н	NH ₂
1440	CI	CI	OCH ₂ CO ₂	Н	CH₃
1441	CI	Ci	OCH(CH ₃)CO ₂	H	CH₃
1442	Cl	CI	SCH ₂ CO ₂	н	CH₃
1443	CI	CI	CH=C(CI)CO ₂	Н	CH₃
1444	CI	C1	CH ₂ CH(CI)CO ₂	Н	CH₃
1445	CI	CI	CO₂	Н	CH₃
1446	Н	CI	0	Н	CH₃
1447	H	CI	OCH ₂ CO ₂	Н	CH₃
1448	Н	CI	OCH(CH ₃)CO ₂	Н	CH ₃
1449	Н	CI	SCH ₂ CO ₂	Н	CH₃
1450	Н	CI	CH=C(CI)CO ₂	Н	NH ₂
1451	Н	CI	CH ₂ CH(CI)CO ₂	Н	NH ₂
1452	H	CI	CO ₂	H	NH ₂
1453	Н	CI	OCH ₂ CO ₂	Н	NH ₂
1454	Н	CI	SCH,CO,	Н	NH ₂

Table 20

$$\begin{array}{c|c}
R_{10} & R_1 & R_2 & N & N \\
R_{11} & N & N & R_3 & N
\end{array}$$

1455 F C CO,		No	0					
1456			R₁	R ₂	X	R ₃	R ₁₀	
1457 F CI CO2 C2H, CH3 1458 F CI CO2 H NH; 1459 F CI CO2 CH3 NH; 1460 F CI CO2 C2H5 NH; 1461 F CI CO2 CN NH; 1462 F CI CO2 CN NH; 1462 F CI CO2 CN NH; 1463 F CI CO2 CN NH; 1464 F CI CO2 CN CH3 CH3 1465 F CI CO4; 1465 F CI CO4; 1466 F CI CO4; 1467 F CI CO4; 1468 F CI CO4; 1468 F CI CO4; 1469 F CI CO4; 1470 F CI CO4; 1471 F CI CO4; 1471 F CI CO4; 1472 F CI CO4; 1473 F CI CO4; 1474 F CI CO4; 1475 F CI CO4; 1476 F CI CO4; 1477 F CI CO4; 1477 F CI CO4; 1478 F CI CO4; 1479 F CI CO4; 1470 F CI CO4; 1470 F CI CO4; 1471 F CI CO4; 1471 F CI CO4; 1472 F CI CO4; 1473 F CI CO4; 1474 F CI CO4; 1475 F CI CO4; 1476 F CI CO4; 1477 F CI CO4; 1478 F CI CO4; 1479 F CI CO4; 1480 F CI CO5; 1480	_				CO ₂		CH ₃	
1458 F CI CO ₂ H ₁ NH ₂ 1459 F CI CO ₂ CH ₃ NH ₂ 1460 F CI CO ₂ CH ₃ NH ₂ 1461 F CI CO ₂ CN NH ₂ 1461 F CI CO ₂ CN NH ₂ 1462 F CI CO ₂ CN CH ₃ NH ₂ 1463 F CI CO ₂ CN CH ₃ 1464 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1465 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1466 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1467 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1468 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1469 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1469 F CI OCH ₂ CO ₂ CN NH ₂ 1470 F CI OCH ₂ CO ₂ CN CH ₃ NH ₂ 1471 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1472 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1473 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1474 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1475 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1476 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1477 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1478 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1478 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1480 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1481 F CI OCH ₂ CO ₃ CN NH ₂ 1482 F CI OCH ₂ CO ₃ CN NH ₂ 1483 F CI OCH ₂ CO ₃ CH ₃ NH ₂ 1484 F CI OCH ₃ CO ₃ CH ₃ NH ₂ 1485 F CI OCH ₃ CO ₃ CH ₃ NH ₂ 1486 F CI OCH ₃ CO ₃ CN NH ₂ 1487 F CI OCH ₃ CO ₃ CH ₃ NH ₂ 1488 F CI OCH ₃ CO ₃ CN NH ₂ 1489 F CI OCH ₃ CO ₃ CN NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH ₂ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₃ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₃ CH ₃ NH ₂ 149	5						CH₃	
1459 F CI CO2 CH3 NH2 1460 F CI CO2 CH4, NH2 1461 F CI CO2 CH5, NH2 1462 F CI CO2 CH6, NH2 1462 F CI CO3 CN NH4 1463 F CI OCH,CO3 CN CH3 1464 F CI OCH,CO3 CH3 CH3 1465 F CI OCH,CO3 CH4 1466 F CI OCH,CO3 CH4 1467 F CI OCH,CO3 CH4 1468 F CI OCH,CO3 CH3 NH2 1468 F CI OCH,CO3 CH3 NH2 1469 F CI OCH,CO3 CH3 NH2 1469 F CI OCH,CO3 CH3 NH2 1470 F CI OCH,CO3 CN NH2 1471 F CI OCH,CO3 CH3 NH2 1472 F CI OCH,CO3 CH3 NH2 1473 F CI OCH(CH3)CO3 CH3 NH3 1474 F CI OCH(CH3)CO3 CH3 NH2 1475 F CI OCH(CH3)CO3 CH3 NH2 1476 F CI OCH(CH3)CO3 CH3 NH2 1477 F CI OCH(CH3)CO3 CH3 NH2 1478 F CI OCH(CH3)CO3 CH3 NH2 1479 F CI OCH(CH3)CO3 CH3 NH2 1479 F CI OCH(CH3)CO3 CN CH3 1481 F CI OCH(CH3)CO3 CN CH3 1481 F CI OCH(CH3)CO3 CN CH3 1482 F CI OCH(CH3)CO3 CN CH3 1483 F CI OCH(CH3)CO3 CN CH3 1484 F CI OCH(CH3)CO3 CN CH3 1485 F CI OCH(CH3)CO3 CN CH3 1486 F CI OCH(CH3)CO3 CN CH3 1487 F CI OCH(CH3)CO3 CN CH3 1488 F CI OCH(CH3)CO3 CN CH3 1489 F CI OCH(CH3)CO3 CN CH3 1489 F CI OCH(CH3)CO3 CN CH3 1489 F CI SCH,CO3 CN CH3 1489 F CI SCH,CO3 CH3 NH2 1490 F CI SCH,CO3 CH3 NH2 1490 F CI SCH,CO3 CH3 NH2 1491 F CI SCH,CO3 CH3 NH2 1492 F CI SCH,CO3 CH3 NH3 1493 F CI SCH,CO3 CH3 NH3 1499 F CI SCH,CO3 CH3 NH3 1499 F CI SCH,CO3 CH3 NH3 1499 F CI SCH(CH3)CO3 CN NH3 1499 F CI SCH(CH3)CO3 CN NH3 1499 F CI SCH(CH3)CO3 CH3 NH3 1490 F							CH₃	
1460 F CI CO ₂ C,H ₅ NH ₂ 1461 F CI CO ₂ CN NH ₂ 1462 F CI CO ₂ CN CH ₃ 1463 F CI CO ₂ CN CH ₃ 1464 F CI OCH ₂ CO ₂ H CH ₃ 1465 F CI OCH ₂ CO ₂ C,H ₅ CH ₃ 1466 F CI OCH ₂ CO ₂ C,H ₅ CH ₃ 1467 F CI OCH ₂ CO ₂ C,H ₅ CH ₃ 1468 F CI OCH ₂ CO ₂ C,H ₅ NH ₂ 1469 F CI OCH ₂ CO ₂ C,H ₅ NH ₂ 1469 F CI OCH ₂ CO ₂ C,H ₅ NH ₂ 1470 F CI OCH ₂ CO ₂ CN CH ₃ 1471 F CI OCH ₂ CO ₂ CN CH ₃ 1472 F CI OCH ₂ CO ₂ CN CH ₃ 1473 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1474 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1475 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1476 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1477 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1478 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1480 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1481 F CI OCH ₂ CH ₃ CO ₂ CN NH ₂ 1483 F CI OCH ₂ CH ₃ CO ₂ CN NH ₂ 1484 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1485 F CI OCH ₂ CO ₂ CN NH ₂ 1486 F CI OCH ₃ CO ₂ CN NH ₂ 1487 F CI SCH ₂ CO ₂ CN NH ₂ 1488 F CI OCH ₃ CO ₂ CH ₃ NH ₂ 1489 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1489 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI							NH ₂	
1461 F CI CO2 CN NH2 1462 F CI CO2 CN CH3 1463 F CI CO4, CN CH3 1464 F CI OCH,CO2 H CH3 1464 F CI OCH,CO2 CH3 CH3 1466 F CI OCH,CO2 CH3 CH3 1466 F CI OCH,CO2 CH3 NH2 1467 F CI OCH,CO2 CH3 NH2 1468 F CI OCH,CO2 CH3 NH2 1469 F CI OCH,CO2 CN NH2 1470 F CI OCH,CO2 CN NH2 1471 F CI OCH,CO2 CN NH2 1471 F CI OCH,CO2 CN NH2 1472 F CI OCH,CO2 CH3 CH3 1474 F CI OCH(CH3)CO2 CH3 NH3 1474 F CI OCH(CH3)CO2 CH3 NH4 1475 F CI OCH(CH3)CO2 CH3 NH2 1476 F CI OCH(CH3)CO2 CH3 NH2 1477 F CI OCH(CH3)CO2 CH3 NH2 1478 F CI OCH(CH3)CO2 CH3 NH2 1479 F CI OCH(CH3)CO2 CH3 NH2 1479 F CI OCH(CH3)CO2 CN CH3 1479 F CI OCH(CH3)CO2 CN CH3 1480 F CI OCH(CH3)CO2 CN CH3 1481 F CI OCH(CH3)CO2 CN CH3 1483 F CI OCH(CH3)CO2 CN CH3 1484 F CI OCH(CH3)CO2 CN CH3 1485 F CI OCH(CH3)CO2 CN CH3 1486 F CI OCH(CH3)CO2 CN CH3 1487 F CI SCH,CO2 H NH2 1488 F CI OCH(CH3)CO2 CN CH3 1489 F CI SCH,CO2 CH3 NH2 1490 F CI SCH,CO2 CH3 NH2 1491 F CI SCH,CO2 CH3 NH2 1492 F CI SCH,CO2 CH3 NH2 1493 F CI SCH,CO2 CH3 NH2 1494 F CI SCH,CO2 CH3 NH2 1495 F H SCH(CH3)CO2 CH3 NH2 1497 F CI SCH,CO2 CH3 NH2 1498 F CI SCH,CO2 CH3 NH2 1499 F CI SCH,CO3 CH3 NH2 1499 F CI SCH,CO2 CH3 NH2 1499 F CI SCH,CO3 CH3 NH2 1499 F CI SCH(CH3)CO2 CH3 NH2							NH ₂	
1462 F CI CO ₂ CN NH ₂ 1463 F CI OCH ₂ CO ₂ H CH ₃ 1464 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1465 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1465 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1466 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1467 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1468 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1469 F CI OCH ₂ CO ₂ CN NH ₂ 1470 F CI OCH ₂ CO ₂ CN CH ₃ NH ₂ 1471 F CI OCH ₂ CO ₂ CN CH ₃ NH ₂ 1472 F CI OCH ₂ CO ₂ CN CH ₃ 1473 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1474 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1475 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1476 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1477 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1478 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1480 F CI OCH ₂ CH ₃ CO ₂ CN NH ₂ 1481 F CI OCH ₂ CH ₃ CO ₂ CN NH ₂ 1482 F CI OCH ₂ CH ₃ CO ₂ CN NH ₂ 1483 F CI OCH ₂ CH ₃ CO ₂ CN NH ₂ 1484 F CI OCH ₂ CH ₃ CO ₂ CN NH ₂ 1485 F CI OCH ₂ CH ₃ CO ₂ CN NH ₂ 1486 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1487 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1488 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1489 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH ₂ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂	10						NH ₂	
1463 F CI OCH;CO2 H CH3 1464 F CI OCH;CO2 CH4, CH3 1465 F CI OCH;CO2 CH4, CH3 1466 F CI OCH;CO2 CH3, CH3 1466 F CI OCH;CO2 CH3, NH2 1467 F CI OCH;CO2 CH3, NH2 1468 F CI OCH;CO2 CH3, NH2 1469 F CI OCH;CO2 CH3, NH2 1470 F CI OCH;CO2 CN NH2 1471 F CI OCH;CO2 CN CH3 1473 F CI OCH;CO2 CH3 CH3 1474 F CI OCH;CO2 CH3 CH3 1475 F CI OCH;CH3;CO2 CH3 NH2 1476 F CI OCH;CH3;CO2 CH3 NH2 1477 F CI OCH;CH3;CO2 CH3 NH2 1478 F CI OCH;CH3;CO2 CN NH2 1479 F CI OCH;CH3;CO2 CN CH3 1480 F CI OCH;CH3;CO2 CN CH3 1481 F CI OCH;CH3;CO2 CN CH3 1482 F CI OCH;CH3;CO2 CN CH3 1483 F CI OCH;CH3;CO2 CN CH3 1484 F CI OCH;CH3;CO2 CN CH3 1485 F CI OCH;CH3;CO2 CN CH3 1486 F CI OCH;CH3;CO2 CN NH2 1487 F CI OCH;CH3;CO2 CN NH2 1488 F CI OCH;CH3;CO2 CN NH2 1489 F CI OCH;CO3 CN NH2 1489 F CI SCH;CO2 CH3 NH2 1489 F CI SCH;CO2 CH3 NH2 1489 F CI SCH;CO2 CH3 NH2 1490 F CI SCH;CO2 CH3 NH2 1491 F CI SCH;CO2 CH3 NH2 1492 F CI SCH;CO2 CH3 NH2 1493 F CI SCH;CO2 CH3 NH2 1494 F CI SCH;CO2 CH3 NH2 1495 F H SCH;CH3;CO2 CH3 NH2 1496 F CI SCH;CO2 CH3 NH2 1497 F CI SCH;CO2 CH3 NH2 1498 F CI SCH;CO2 CH3 NH2 1498 F CI SCH;CO2 CH3 NH2 1499 F CI SCH;CO2 CH3 NH2							NH ₂	
1464 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1465 F CI OCH ₂ CO ₂ C ₂ H ₅ CH ₃ 1466 F CI OCH ₂ CO ₂ C ₃ H ₅ CH ₃ 1466 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1468 F CI OCH ₂ CO ₂ CN NH ₂ 1469 F CI OCH ₂ CO ₂ CN NH ₂ 1470 F CI OCH ₂ CO ₂ CN NH ₂ 1471 F CI OCH ₂ CO ₂ CN CH ₃ 1472 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1473 F CI OCH ₂ CO ₂ CH ₃ CH ₄ 1474 F CI OCH ₂ CO ₂ CH ₃ CH ₄ 1475 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1476 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1477 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1478 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1480 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1481 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1482 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1483 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1484 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1485 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1486 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1487 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1488 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1489 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH ₂ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₃ CC ₂ H ₃ NH ₂ 1499 F CI SCH ₂ CO ₃ CC ₂ H ₃ NH ₂ 1499 F CI SCH ₂ CO ₃ CC ₂ H ₃ NH ₂ 1499 F CI SCH ₂ CO ₃ CC ₂ H ₃ NH ₂ 1499 F CI SCH ₂ CO ₃ CC ₂ H ₃ NH ₂ 1499 F CI SCH ₂ CO ₃ CC ₂ H ₃ NH ₂					CO ₂		CH₃	
1465 F CI OCH ₂ CO ₂ C ₂ H ₅ CH ₅ 1466 F CI OCH ₂ CO ₂ C ₂ H ₅ CH ₅ 1467 F CI OCH ₂ CO ₂ CH ₁ NH ₂ 1468 F CI OCH ₂ CO ₂ CH ₁ NH ₂ 1469 F CI OCH ₂ CO ₂ CN NH ₂ 1470 F CI OCH ₂ CO ₂ CN CH ₃ NH ₂ 1471 F CI OCH ₂ CO ₂ CN CH ₃ CH ₅ 1472 F CI OCH ₂ CO ₂ CN CH ₃ CH ₅ 1473 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1474 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1475 F CI OCH ₂ CH ₃ CO ₂ CH ₃ CH ₃ 1476 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1477 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1478 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1479 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1480 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1481 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1482 F CI OCH ₃ CH ₃ CO ₂ CN CH ₃ 1483 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1484 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1485 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1486 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1487 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1488 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1489 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH							CH₃	
1466 F CI OCH ₂ CO ₂ H NH ₂ 1467 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1468 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1469 F CI OCH ₂ CO ₂ CN NH ₂ 1470 F CI OCH ₂ CO ₂ CN CH ₃ 1471 F CI OCH ₂ CO ₂ CN CH ₃ 1472 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1473 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1474 F CI OCH ₂ CH ₃ CO ₂ CH ₃ CH ₃ 1475 F CI OCH ₂ CH ₃ CO ₂ CH ₃ CH ₃ 1476 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1477 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1478 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1481 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1482 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1483 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1484 F CI OCH ₃ CH ₃ CO ₂ CN CH ₃ 1485 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1486 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1487 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1488 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1489 F CI OCH ₄ CH ₃ CO ₂ CN CH ₃ 1489 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH ₂ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂								
1467 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1468 F CI OCH ₂ CO ₂ C ₂ H ₅ NH ₂ 1469 F CI OCH ₂ CO ₂ CN NH ₂ 1470 F CI OCH ₂ CO ₂ CN CH ₃ 1471 F CI OCH ₂ CO ₂ CN CH ₃ 1472 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1474 F CI OCH ₂ CO ₂ CH ₃ CH ₃ 1475 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1476 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1477 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1478 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1479 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1480 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1481 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1482 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1483 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1484 F CI OCH ₂ CH ₃ CO ₂ CN CH ₃ 1485 F CI OCH ₂ CH ₃ CO ₂ CH ₃ NH ₂ 1486 F CI OCH ₂ CO ₂ CH ₃ NH ₂ 1487 F CI OCH ₃ CO ₂ CH ₃ NH ₂ 1488 F CI OCH ₃ CO ₂ CH ₃ NH ₂ 1489 F CI OCH ₄ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1491 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO	15							
1468 F CI OCH2CO2 C2H5 NH2 1469 F CI OCH2CO2 CN NH2 1470 F CI OCH2CO2 CN NH2 1471 F CI OCH2CO2 CN CH3 1471 F CI OCH3CO2 CH3 CH3 1472 F CI OCH3CO2 CH3 CH3 1473 F CI OCH3CO2 CH3 CH3 1474 F CI OCH3CH3CO2 CH3 1475 F CI OCH3CH3CO2 CH3 NH2 1476 F CI OCH3CH3CO2 CH3 NH2 1477 F CI OCH3CH3CO2 CH3 NH2 1478 F CI OCH3CH3CO2 CN NH2 1479 F CI OCH3CH3CO2 CN CH3 1480 F CI OCH3CH3CO2 CN CH3 1481 F CI O CH3CH3CO2 CN CH3 1482 F CI O CH3CH3CO2 CN CH3 1483 F CI O CH3CH3CO2 CN CH3 1484 F CI O CH3CH3CO2 CN CH3 1485 F CI O CH3CH3CO2 CN CH3 1486 F CI O CH3CH3CO2 CN CH3 1487 F CI O CH3CH3CO2 CN CH3 1488 F CI O CH3 CH3 1488 F CI O CH3 CH3 1488 F CI O CH3 CH3 1489 F CI O CN CH3 1489 F CI SCH2CO2 CH3 CH3 1490 F CI SCH2CO2 CH3 CH3 1491 F CI SCH2CO2 CH3 CH3 1492 F CI SCH2CO2 CN CH3 1493 F CI SCH2CO2 CN CH3 1494 F CI SCH2CO2 CN CH3 1495 F H SCH2CO2 CN CH3 1497 F CI SCH2CO2 CN CH3 1498 F CI SCH2CO2 CN CH3 1499 F CI SCH3CO2 CH3 CH3 1499 F CI SCH3CO2 CH3 CH3 1499 F CI SCH3CO2 CH4 NH2 1499 F CI SCH3CO2 CH3 CH3 1499 F CI SCH3CO2 CH4 NH2								
1469 F CI OCH_CO_2 CN NH ₂ 1470 F CI OCH_CO_2 CN CH ₃ 1471 F CI OCH_CH_3CO_2 CN CH ₃ 1471 F CI OCH_CH_3CO_2 CH ₃ CH ₃ 1472 F CI OCH_CH_3CO_2 CH ₃ CH ₃ 1473 F CI OCH_CH_3CO_2 CH ₃ CH ₃ 1474 F CI OCH_CH_3CO_2 CH ₃ NH ₂ 1475 F CI OCH_CH_3CO_2 CH ₃ NH ₂ 1476 F CI OCH_CH_3CO_2 CH ₃ NH ₂ 1477 F CI OCH_CH_3CO_2 CN NH ₂ 1478 F CI OCH_CH_3CO_2 CN CH ₃ 1480 F CI OCH_CH_3CO_2 CN CH ₃ 1481 F CI OCH_CH_3CO_2 CN CH ₃ 1482 F CI OCH_CH_3CO_2 CN CH ₃ 1483 F CI OCH_CH_3CO_2 CN CH ₃ 1484 F CI OCH_CH_3CO_2 CN CH ₃ 1485 F CI OCH_CH_3CO_2 CN CH ₃ 1486 F CI OCH_CH_3CO_2 CN CH ₃ 1487 F CI OCH_CH_3CO_2 CN CH ₃ 1488 F CI OCH_CH_3CO_2 CN CH ₃ 1489 F CI OCH_CH_3CO_2 CN CH ₃ 1489 F CI OCH_CH_3CO_2 CN CH ₃ 1490 F CI SCH_2CO_2 CH ₃ CH ₃ 1491 F CI SCH_2CO_2 CH ₃ CH ₃ 1492 F CI SCH_2CO_2 CH ₃ CH ₃ 1493 F CI SCH_2CO_2 CH ₃ CH ₃ 1494 F CI SCH_2CO_2 CH ₃ NH ₂ 1495 F H SCH_2CO_2 CH ₃ NH ₂ 1496 F CI SCH_2CO_2 CH ₃ NH ₂ 1497 F CI SCH_CCO_2 CH ₃ NH ₂ 1498 F CI SCH_CCO_2 CH ₃ NH ₂ 1499 F CI SCH_CCO_2 CH ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH_CCO_2 CC ₂ H ₃ NH ₂ 1500 F CI SCH								
20								
1471 F CI OCH(CH ₃)CO ₂ H CH ₃ 1472 F CI OCH(CH ₃)CO ₂ CH ₃ CH ₃ 1473 F CI OCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1474 F CI OCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1475 F CI OCH(CH ₃)CO ₂ H NH ₂ 1476 F CI OCH(CH ₃)CO ₂ CH ₃ NH ₂ 1477 F CI OCH(CH ₃)CO ₂ CN NH ₂ 1478 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1480 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1481 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1482 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1483 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1484 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1485 F CI OCH ₃ 1486 F CI OCH ₄ 1487 F CI COCH ₄ 1488 F CI COCH ₄ 1489 F CI COCH ₄ 1490 F CI COCH ₄ 1490 F CI COCH ₄ 1491 F CI COCH ₄ 1491 F CI COCH ₄ 1492 F CI COCH ₄ 1493 F CI COCH ₄ 1494 F CI COCH ₄ 1495 F H SCH ₄ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₄ CO ₂ CH ₃ CH ₃ 1497 F CI SCH ₄ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₄ CO ₂ CH ₃ NH ₂ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂								
1472 F CI OCH(CH ₃)CO ₂ CH ₃ CH ₃ 1473 F CI OCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1474 F CI OCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1475 F CI OCH(CH ₃)CO ₂ CH ₃ NH ₂ 1476 F CI OCH(CH ₃)CO ₂ CN NH ₂ 1477 F CI OCH(CH ₃)CO ₂ CN NH ₂ 1478 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1479 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1481 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1482 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1483 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1484 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1485 F CI OCH ₃ CH ₃ 1486 F CI OCH ₄ CH ₃ 1487 F CI OCH ₄ CH ₃ 1488 F CI CO CH ₃ CH ₄ 1488 F CI CO CH ₃ CH ₄ 1489 F CI CO CN CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1491 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH ₂ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂	20							
1473 F CI OCH(CH ₃)CO ₂ C ₁ H ₅ CH ₅ 1474 F CI OCH(CH ₃)CO ₂ H NH ₂ 1475 F CI OCH(CH ₃)CO ₂ C ₁ H ₅ NH ₂ 1476 F CI OCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1477 F CI OCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1478 F CI OCH(CH ₃)CO ₂ CN NH ₂ 1479 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1480 F CI O CH(CH ₃)CO ₂ CN CH ₃ 1481 F CI O CH ₂ CH ₃ CH ₃ 1482 F CI O CH ₃ CH ₃ 1483 F CI O CH ₃ NH ₂ 1484 F CI O CH ₃ NH ₂ 1485 F CI O CH ₃ NH ₂ 1486 F CI O CN CH ₃ 1487 F CI O CN CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH ₂ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂								
1474 F CI OCH(CH ₃)CO ₂ H NH ₂ 1475 F CI OCH(CH ₃)CO ₂ CH ₃ NH ₂ 1476 F CI OCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1477 F CI OCH(CH ₃)CO ₂ CN NH ₂ 1478 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1479 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1480 F CI O CH(CH ₃)CO ₂ CN CH ₃ 1481 F CI O CH ₄ 1482 F CI O CH ₄ 1483 F CI O CH ₅ 1484 F CI O CH ₄ 1485 F CI O CH ₅ 1486 F CI O CH ₄ 1487 F CI O CH ₅ 1488 F CI O CH ₅ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1489 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH(CH ₃)CO ₂ CN CH ₃ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂								
25								
1476 F CI OCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1477 F CI OCH(CH ₃)CO ₂ CN NH ₂ 1478 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1479 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1480 F CI O CH ₃ CH ₃ 1481 F CI O CH ₃ CH ₃ 1482 F CI O CH ₃ CH ₃ 1483 F CI O CH ₃ NH ₂ 1484 F CI O CH ₃ NH ₂ 1485 F CI O CH ₃ NH ₂ 1486 F CI O CH ₃ NH ₂ 1487 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH ₂ CO ₂ CH ₃ NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1497 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1498 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1497 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1498 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1498 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂	25				OCH(CH3)CO2			
1477 F CI OCH(CH ₃)CO ₂ CN NH ₂ 1478 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1479 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1480 F CI O H CH ₃ 1481 F CI O CH ₃ 1482 F CI O CH ₃ 1483 F CI O CH ₃ 1484 F CI O CH ₃ 1485 F CI O CH ₃ 1486 F CI O CN CH ₃ 1487 F CI SCH ₂ CO ₂ CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ 1491 F CI SCH ₂ CO ₂ CH ₃ 1492 F CI SCH ₂ CO ₂ CH ₃ 1493 F CI SCH ₂ CO ₂ CH ₃ 1494 F CI SCH ₂ CO ₂ CH ₃ 1495 F H SCH(CH ₃)CO ₂ CH ₃ 1496 F CI SCH ₂ CO ₂ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1490 F CI SCH(CH ₃)CO ₂ CH ₃ 1491 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1490 F CI SCH(CH ₃)CO ₂ CH ₃ 1491 NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ 1492 NH ₂ 1501 F CI SCH(CH ₃)CO ₂ CH ₃ 1495 F CI SCH(CH ₃)CO ₂ CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1490 F CI SCH(CH ₃)CO ₂ CH ₃ 1490 F CI SCH(CH ₃)CO ₂ CH ₃ 1490 F CI SCH(CH ₃)CO ₂ CH ₃ 1490 F CI SCH(CH ₃)CO ₂ CH ₃ 1491 NH ₂								
1478 F CI OCH(CH ₃)CO ₂ CN CH ₃ 1479 F CI O H CH ₃ 1480 F CI O CH ₃ CH ₃ 1481 F CI O CH ₃ 1482 F CI O CH ₃ 1483 F CI O CH ₃ 1484 F CI O CH ₃ 1485 F CI O CH ₃ 1486 F CI O CH ₃ 1487 F CI SCH ₂ CO ₂ CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ 1489 F CI SCH ₂ CO ₂ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ 1491 F CI SCH ₂ CO ₂ CH ₃ 1492 F CI SCH ₂ CO ₂ CH ₃ 1493 F CI SCH ₂ CO ₂ CH ₃ 1494 F CI SCH ₂ CO ₂ CH ₃ 1495 F H SCH(CH ₃)CO ₂ CN CH ₃ 1496 F CI SCH ₂ CO ₂ CN CH ₃ 1497 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1490 F CI SCH(CH ₃)CO ₂ CH ₃ 1491 F CI SCH(CH ₃)CO ₂ CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ 1490 F CI SCH(CH ₃)CO ₂ CH ₃		1477			OCH(CH.)CO.			
1479 F CI O H CH ₃ 1480 F CI O CH ₃ CH ₅ 1481 F CI O C ₂ H ₅ CH ₃ 1482 F CI O H NH ₂ 1483 F CI O CH ₃ NH ₂ 1484 F CI O CN NH ₂ 1485 F CI O CN NH ₂ 1486 F CI O CN CH ₃ 1488 F CI SCH ₂ CO ₂ H CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CN NH ₂ 1495 F H SCH(CH ₃)CO ₂ CN CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂		1478	F		OCH(CH ₂)CO ₂			
1480 F CI O CH ₃ CH ₃ 1481 F CI O C ₂ H ₅ CH ₃ 1482 F CI O H NH ₂ 1483 F CI O CH ₃ NH ₂ 1484 F CI O CN NH ₂ 1485 F CI O CN CH ₃ 1486 F CI O CN CH ₃ 1487 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1495 F H SCH ₂ CO ₂ CN NH ₂ 1496 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1497 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1498 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1499 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1498 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂		1479	F					
1481 F CI O C ₂ H ₅ CH ₃ 1482 F CI O H NH ₂ 1483 F CI O CH ₃ NH ₂ 1484 F CI O C ₂ H ₆ NH ₂ 1485 F CI O CN NH ₂ 1486 F CI O CN CH ₃ 1487 F CI SCH ₂ CO ₂ H CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1494 F CI SCH ₂ CO ₂ CN NH ₂ 1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂	30	1480	F					
1482 F CI O H NH2 1483 F CI O CH3 NH2 1484 F CI O CN NH2 1485 F CI O CN NH2 1486 F CI O CN CH3 1487 F CI SCH2CO2 H CH3 1488 F CI SCH2CO2 CH3 CH3 1490 F CI SCH2CO2 H NH2 1491 F CI SCH2CO2 CH3 NH2 1492 F CI SCH2CO2 CH3 NH2 1493 F CI SCH2CO2 CH3 NH2 1494 F CI SCH2CO2 CN NH2 1495 F H SCH(CH3)CO2 H CH3 1496 F CI SCH2CO2 CN CH3 1497 F CI SCH(CH3)CO2 CH3 CH3 1497 F CI SCH(CH3)CO2 CH3 CH3 1498 F CI SCH(CH3)CO2 CH3 CH3 1499 F CI SCH(CH3)CO2 CH3 NH2 1499 F CI SCH(CH3)CO2 CH3 NH2 1500 F CI SCH(CH3)CO2 CH3 NH2			F	CI				
1483 F CI O CH ₃ NH ₂ 1484 F CI O C ₂ H ₆ NH ₂ 1485 F CI O CN NH ₂ 1486 F CI O CN CH ₃ 1487 F CI SCH ₂ CO ₂ H CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ C ₂ H ₅ NH ₂ 1494 F CI SCH ₂ CO ₂ CN NH ₂ 1495 F H SCH(CH ₃)CO ₂ CN CH ₃ 1496 F CI SCH ₂ CO ₂ CN CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂				CI	0			
1484 F CI O C ₂ H ₆ NH ₂ 1485 F CI O CN NH ₂ 1486 F CI O CN CH ₃ 1487 F CI SCH ₂ CO ₂ H CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ C ₂ H ₅ NH ₂ 1493 F CI SCH ₂ CO ₂ C ₂ H ₅ NH ₂ 1494 F CI SCH ₂ CO ₂ CN NH ₂ 1495 F H SCH ₂ CO ₂ CN CH ₃ 1496 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1497 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1498 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1499 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1500 F CI SCH ₂ CO ₂ CH ₃ NH ₂				CI	0			
1485 F CI O CN NH ₂ 1486 F CI O CN CH ₃ 1487 F CI SCH ₂ CO ₂ H CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CN NH ₂ 1494 F CI SCH ₂ CO ₂ CN CH ₃ 1495 F H SCH(CH ₃)CO ₂ CN CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂	35							
1486 F CI O CN CH ₃ 1487 F CI SCH ₂ CO ₂ H CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1489 F CI SCH ₂ CO ₂ C ₂ H ₅ CH ₃ 1490 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1493 F CI SCH ₂ CO ₂ CN NH ₂ 1494 F CI SCH ₂ CO ₂ CN CH ₃ 1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ H CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂						CN		
1487 F CI SCH ₂ CO ₂ H CH ₃ 1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1489 F CI SCH ₂ CO ₂ C ₂ H ₅ CH ₃ 1490 F CI SCH ₂ CO ₂ H NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ C ₂ H ₅ NH ₂ 1493 F CI SCH ₂ CO ₂ CN NH ₂ 1494 F CI SCH ₂ CO ₂ CN CH ₃ 1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂						CN		
1488 F CI SCH ₂ CO ₂ CH ₃ CH ₃ 1489 F CI SCH ₂ CO ₂ C ₂ H ₅ CH ₃ 1490 F CI SCH ₂ CO ₂ H NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ C ₂ H ₅ NH ₂ 1493 F CI SCH ₂ CO ₂ CN NH ₂ 1494 F CI SCH ₂ CO ₂ CN CH ₃ 1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂							CH ₃	
1490 F CI SCH ₂ CO ₂ H NH ₂ 1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ CN NH ₂ 1493 F CI SCH ₂ CO ₂ CN NH ₂ 1494 F CI SCH ₂ CO ₂ CN CH ₃ 1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂								
1491 F CI SCH ₂ CO ₂ CH ₃ NH ₂ 1492 F CI SCH ₂ CO ₂ C ₂ H ₅ NH ₂ 1493 F CI SCH ₂ CO ₂ CN NH ₂ 1494 F CI SCH ₂ CO ₂ CN CH ₃ 1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂	40					C₂H₅		
1492 F CI SCH ₂ CO ₂ C ₂ H ₅ NH ₂ 1493 F CI SCH ₂ CO ₂ CN NH ₂ 1494 F CI SCH ₂ CO ₂ CN CH ₃ 1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1500 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂					SCH ₂ CO ₂			
1493 F CI SCH ₂ CO ₂ CN NH ₂ 1494 F CI SCH ₂ CO ₂ CN CH ₃ 1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂					SCH ₂ CO ₂		NH₂	
1494 F CI SCH ₂ CO ₂ CN CH ₃ 1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂					SCH ₂ CO ₂	C₂H₅	NH₂	
1495 F H SCH(CH ₃)CO ₂ H CH ₃ 1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂	45				SCH ₂ CO ₂			
1496 F CI SCH(CH ₃)CO ₂ CH ₃ CH ₃ 1497 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂					SCH ₂ CO ₂			
1497 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ CH ₃ 1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂					SCH(CH ₃)CO ₂			
1498 F CI SCH(CH ₃)CO ₂ H NH ₂ 1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂					SCH(CH ₃)CO ₂			
1499 F CI SCH(CH ₃)CO ₂ CH ₃ NH ₂ 1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂					SCH(CH3)CO2			
1500 F CI SCH(CH ₃)CO ₂ C ₂ H ₅ NH ₂	50				20H(0H)00			
4504 5 NH2					SCH(CH)CO			
Si Si I-C(Ci)CO ₂ H NH ₂					CH=C(CNCO			
			-	٥.	0,1-0(01)00 ₂	П	NH ₂	

1502	F	Ci	CH ₂ CH(CI)CO ₂	Н	NH ₂
1503	F	CI	CH=C(CI)CO,	CN	NH ₂
1504	F	CI	CH2CH(CI)CO2	CN	NH ₂
1505	F	CI	S	Н	CH₃
1506	F	CI	S	Н	NH ₂
1507	F	CI	CH=C(CI)CO ₂	Н	CH₃
1508	F	CI	CH₂CH(CI)CO₂	Н	CH ₃
1509	F.	CI	CH=C(CI)CO2	CN	CH ₃
1510	F	CI	CH₂CH(CI)CO₂	CN	CH₃
1511	CI	CI	0 ' '	Н	NH ₂
1512	CI	CI	OCH ₂ CO ₂	Н	CH₃
1513	CI	CI	OCH(CH ₃)CO ₂	Н	CH ₃
1514	CI	Cl	SCH ₂ CO ₂	Н	CH ₃
1515	CI	CI	CH=C(CI)CO ₂	Н	CH₃
1516	CI	CI	CH ₂ CH(CI)CO ₂	Н	CH₃
1517	CI	CI	CO ₂	Н	CH₃
1518	Н	CI	0	Н	CH,
1519	Н	CI	OCH ₂ CO ₂	Н	CH₃
1520	Н	CI	OCH(CH ₃)CO ₂	Н	CH₃
1521	Н	CI	SCH₂CO₂	Н	CH₃
1522	Н	CI	CH=C(CI)CO ₂	Н	NH ₂
1523	Н	CI	CH ₂ CH(CI)CO ₂	Н	NH ₂
1524	Н	CI	CO ₂	Н	NH ₂
1525	Н	CI	OCH ₂ CO ₂	Н	NH ₂
1526	H	CI	SCH ₂ CO ₂	Н	NH ₂

Table 21

where A=B=N, $R_4=R_5=H$, Q=Q15 in a compound of formula I

No	R,	R ₂	X	R ₃	R ₁₀
1527	F	CI	CO ₂	Н	CH ₃
1528	F	CI	CO ₂	CH₃	CH ₃
1529	F	CI	CO ₂	C₂H₅	CH ₃
1530	F	CI	CO2	H	NH_2
1531	F	CI	CO ₂	CH₃	NH_2
1532	F	CI	CO ₂	C₂H₅	NH ₂
1533	F	CI	CO ₂	CN	NH ₂
1534	F	CI	CO ₂	CN	CH₃
1535	F	CI	OCH,CO,	Н	CH ₃
1536	F	CI	OCH ₂ CO ₂	CH₃	CH ₃
1537	F	CI	OCH ₂ CO ₂	C₂H₅	CH₃

5	1538 1539 1540 1541 1542	F F F F	CI CI CI CI	OCH ₂ CO ₂ OCH ₂ CO ₂ OCH ₂ CO ₂ OCH ₂ CO ₂	H CH₃ C₂H₅ CN	NH NH NH NH
10	1543 1544 1545 1546 1547	F F F F	G G G G	OCH ₂ CO ₂ OCH(CH ₃)CO ₂	CN H CH₃ C₂H₅ H CH₃	CH CH CH CH NH₂ NH₂
15	1548 1549 1550 1551 1552	F F F	CI CI CI CI	OCH(CH ₃)CO ₂ OCH(CH ₃)CO ₂ OCH(CH ₃)CO ₂ O	C ₂ H ₅ CN CN H CH ₃	NH ₂ NH ₂ CH ₃ CH ₃ CH ₃
20	1553 1554 1555 1556 1557	F F F F	CI CI CI CI CI CI CI CI CI CI CI CI CI C	0 0 0 0	C₂Hँ₅ H CH₃ C₂H₅ CN	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂
25	1558 1559 1560 1561 1562	F F F F	CI CI CI CI	O SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂	CN H CH₃ C₂H₅ H	CH ₃ CH ₃ CH ₃ CH ₃ NH ₂
30	1563 1564 1565 1566 1567	F F F F	CI CI CI H	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂	CH₃ C₂H₅ CN CN H	NH ₂ NH ₂ NH ₂ CH ₃
35	1568 1569 1570 1571 1572	F F F F	CI CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	CH₃ C₂H₅ H CH₃	CH ₃ CH ₃ NH ₂ NH ₂
40	1573 1574 1575 1576 1577	F F F F	CI CI CI	CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂	C₂H₅ H H CN CN	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
45	1578 1579 1580 1581	F F F	CI CI CI CI	S S CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CH=C(CI)CO ₂	H H H CN	CH ₃ NH ₂ CH ₃ CH ₃
50	1582 1583 1584 1585	F CI CI	CI CI CI	CH ₂ CH(CI)CO ₂ O OCH ₂ CO ₂ OCH(CH ₃)CO ₂	CN H H H	CH ₃ NH ₂ CH ₃ CH ₃

1586	CI	CI	SCH ₂ CO ₂	Н	CH₃
1587	CI	CI	CH=C(CI)CO ₂	Н	CH ₃
1588	CI	CI	CH ₂ CH(CI)CO ₂	Н	CH₃
1589	CI	CI	CO ₂	Н	CH₃
1590	Н	Cl	0	Н	CH ₃
1591	Н	CI	OCH ₂ CO ₂	Н	CH ₃
1592	Н	CI	OCH(CH ₃)CO ₂	н	CH₃
1593	Н	CI	SCH ₂ CO ₂	Н	CH₃
1594	Н	CI	CH=C(CI)CO ₂	Н	NH ₂
1595	Н	CI	CH ₂ CH(CI)CO ₂	Н	NH ₂
1596	H	CI	CO ₂	Н	NH ₂
1597	H	CI	OCH ₂ CO ₂	Н	NH ₂
1598	H	CI	SCH ₂ CO ₂	Н	NH ₂

Table 22

$$\begin{array}{c|c}
R_1 & H \\
R_2 & N \\
X & R_3
\end{array}$$

$$CH_3$$

where A=B=N, R₄=R₅=H, Q=Q16 in a compound of formula I

No	R,	R_2	X	R_3
1599	F	CI	CO ₂	н
1600	F	Cl	CO₂	CH₃
1601	F	Ci	CO₂	C₂H₅
1602	F	CI	CO ₂	Ph
1603	F	Cl	CO₂	CH₂Ph
1604	F	Cl	CO ₂	Ph-4-Cl
1605	F	CI	CO₂	CH₂Ph-4-Cl
1606	F	Cl	CO,	3-Py
1607	F	CI	OCH ₂ CO ₂	Н
1608	F	CI	OCH ₂ CO ₂	CH₃
1609	F	CI	OCH ₂ CO ₂	C₂H₅
1610	F	CI	OCH ₂ CO ₂	Ph
1611	F	CI	OCH ₂ CO ₂	CH₂Ph
1612	F	CI	OCH ₂ CO ₂	Ph-4-Cl
1613	F	CI	OCH ₂ CO ₂	CH₂Ph-4-Cl
1614	F	CI	OCH ₂ CO ₂	3-Py
1615	F	CI	OCH(CH ₃)CO ₂	Н
1616	F	Cl	OCH(CH ₃)CO ₂	CH₃
1617	F	CI	OCH(CH ₃)CO ₂	C₂H₅
1618	F	CI	OCH(CH ₃)CO ₂	Ph .
1619	F	CI	OCH(CH ₃)CO ₂	CH₂Ph
1620	F	CI	OCH(CH ₃)CO ₂	Ph-4-Cl
1621	F	CI	OCH(CH ₃)CO ₂	CH₂Ph-4-Cl

5	1622 1623 1624 1625 1626 1627	F F F F	CI CI CI CI CI	OCH(CH ₃)CO ₂ O O O O O	3-Py H CH₃ C₂H₅ Ph
10	1628 1629 1630 1631 1632	F F F	CI CI CI	O O O SCH ₂ CO ₂	CH₂Ph Ph-4-Cl CH₂Ph-4-Cl 3-Py H
15	1633 1634 1635 1636	F F F	CI CI CI CI	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂ SCH ₂ CO ₂	CH₃ C₂H₅ Ph CH₂Ph Ph-4-Cl
20	1637 1638 1639 1640 1641	F F F F	CI CI CI CI	SCH ₂ CO ₂ SCH ₂ CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	CH₂Ph-4-Cl 3-Py H CH₃
25	1642 1643 1644 1645 1646	F F F	CI CI CI	SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂ SCH(CH ₃)CO ₂	C₂H₅ Ph CH₂Ph Ph-4-Cl CH₂Ph-4-Cl
30	1647 1648 1649 1650	F F F F	CI CI CI CI	SCH(CH ₃)CO ₂ S S S S	3-Py H CH₃ C₂H₅ Ph
35	1651 1652 1653 1654 1655	F F Cl	CI CI CI CI	S S CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ O	CH₂Ph Ph-4-CI H H
40	1656 1657 1658 1659 1660	CI CI CI CI	CI CI CI CI	OCH ₂ CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ SCH ₂ CO ₂	H H H H
45	1661 1662 1663 1664 1665	CI H H H	CI CI CI	SCH(CH ₃)CO ₂ CO ₂ O OCH ₂ CO ₂ OCH(CH ₃)CO ₂	H H H H
50	1666 1667 1668 1669	H H H F	CI CI CI	SCH ₂ CO ₂ CH=C(CI)CO ₂ CH ₂ CH(CI)CO ₂ CO ₂ OCH ₂ CO ₂	Н Н Н Н Ph-4-F

1670 F CI SCH₂CO₂ Ph-4-F

Table 23

where A=R₄=R₅=H, A=B=N, R₁₀=CH₃, R₁₁=CH₃, Z=O in a compound of formula I

_					
	No	R ₁	R₂	Χ	Q
	1671	F	CI	OCH(CH ₃)CO	Q1
	1672	F	CI	OCH(CH ₃)CO	Q2
	1673	F	CI	OCH(CH ₃)CO	Q3
	1674	F	CI	OCH(CH ₃)CO	Q4
	1675	F	CI	OCH(CH ₃)CO	Q5
	1676	F	CI	OCH(CH ₃)CO	Q6
	1677	F	CI	OCH(CH3)CO	Q7
	1678	F	CI	OCH(CH ₃)CO	Q8
	1679	F	CI	OCH(CH ₃)CO	Q9
	1680	F	CI	OCH(CH ₃)CO	Q10
	1681	F	CI	OCH(CH ₃)CO	Q11
	1682	F	CI	OCH(CH3)CO	Q12
	1683	F	CI	OCH(CH2)CO	Q13
	1684	F	CI	OCH(CH ₃)CO	Q14
	1685	F	CI	OCH(CH₃)CO	Q16
	1686	F	CI	OCH₂CO	Q1
	1687	F	CI	OCH2CO	Q2
	1688	F	CI	OCH2CO	Q3
	1689	F	CI	OCH₂CO	Q4
	1690	F	CI	OCH₂CO	Q5
	1691	F	CI	OCH₂CO	Q6
	1692	F	CI	OCH₂CO	Q7
	1693	F	CI	OCH₂CO	Q8
	1694	F	CI	OCH ₂ CO	Q9
	1695	F	CI	OCH ₂ CO	Q10
	1696	F	CI	OCH ₂ CO	Q11
	1697	F	Cl	OCH₂CO	Q12
	1698	F	CI	OCH₂CO	Q13
	1699	F	CI	OCH2CO	Q14
	1700	F	CI	OCH ₂ CO	Q16
	1701	F	CI	CH₂CH(CI)CO	Q1
	1702	F	CI	CH₂CH(CI)CO	Q2
	1703	F	CI	CH₂CH(CI)CO	Q3
	1704	F	CI	CH₂CH(CI)CO	Q4
	1705	F	CI	CH₂CH(CI)CO	Q5
	1706	F	CI	CH₂CH(CI)CO	Q6
	1707	F	CI	CH₂CH(CI)CO	Q7

5	1708 1709 1710 1711 1712 1713 1714 1715 1716		000000000	CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO	Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q16 Q1
15	1718 1719 1720 1721 1722	, F F F	0 0 0 0 0	CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO	Q2 Q3 Q4 Q5 Q6 Q7
20	1723 1724 1725 1726 1727	F F F F	CI CI CI CI	CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO	Q8 Q9 Q10 Q11 Q12
25	1728 1729 1730 1731 1732	F F F F	CI CI CI CI	CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CO CO	Q13 Q14 Q16 Q1 Q2
30	1733 1734 1735 1736 1737	F F F F	CI CI CI CI	CO CO CO CO	Q3 Q4 Q5 Q6 Q7
35	1738 1739 1740 1741 1742	F F F F	CI CI CI	CO CO CO CO	Q8 Q9 Q10 Q11
40	1743 1744 1745 1746 1747	F F F F	CI CI CI	CO CO CO SCH₂CO	Q12 Q13 Q14 Q16 Q1
45	1748 1749 1750 1751	F F F	CI CI CI CI	SCH₂CO SCH₂CO SCH₂CO SCH₂CO	Q2 Q3 Q4 Q5 Q6
50	1752 1753 1754 1755	F F F	CI CI CI	SCH₂CO SCH₂CO SCH₂CO SCH₂CO	Q7 Q8 Q9 Q10

5	1756 1757 1758 1759 1760 1761	F F F Cl	CI CI CI CI CI	SCH ₂ CO SCH ₂ CO SCH ₂ CO SCH ₂ CO SCH ₂ CO CH=C(CI)CO	Q11 Q12 Q13 Q14 Q16 Q1
10	1762 1763 1764 1765 1766	CI CI CI CI	CI CI CI CI CI	CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO	Q3 Q6 Q7 Q8 Q10
15	1767 1768 1769 1770	CI CI CI	CI CI CI	CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CH₂CH(CI)CO	Q11 Q12 Q16 Q1
20	1771 1772 1773 1774 1775	CI CI CI CI	CI CI CI CI	CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO	Q3 Q6 Q7 Q8 Q10
25	1776 1777 1778 1779 1780	CI CI CI CI	CI CI CI CI	CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO OCH₂CO OCH₂CO	Q11 Q12 Q16 Q1 Q3
30	1781 1782 1783 1784 1785	CI CI CI CI	CI CI CI CI	OCH₂CO OCH₂CO OCH₂CO OCH₂CO OCH₂CO	Q6 Q7 Q8 Q10 Q11
35	1786 1787 1788 1789 1790	CI CI CI CI CI	CI CI CI	OCH₂CO OCH₂CO SCH₂CO SCH₂CO	Q12 Q16 Q1 Q3
40	1791 1792 1793 1794	CI CI CI	CI CI CI CI	SCH ₂ CO SCH ₂ CO SCH ₂ CO SCH ₂ CO	Q6 Q7 Q8 Q10 Q11
45	1795 1796 1797 1798 1799	CI CI CI CI	CI CI CI CI	SCH₂CO SCH₂CO CO CO	Q12 Q16 Q1 Q3 Q6
50	1800 1801 1802 1803	CI CI CI	CI CI CI	CO CO CO	Q7 Q8 Q10 Q11

5	1804 1805 1806 1807 1808 1809 1810 1811	000000000	0 0 0 0 0 0 0	CO CO CCH(CH ₃)CO OCH(CH ₃)CO OCH(CH ₃)CO OCH(CH ₃)CO OCH(CH ₃)CO OCH(CH ₃)CO	Q12 Q16 Q1 Q3 Q6 Q7 Q8 Q10 Q11
15	1813 1814 1815 1816 1817 1818 1819	00 + + + + :	0 0 0 0 0	OCH(CH ₃)CO OCH(CH ₃)CO CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO	Q12 Q16 Q1 Q3 Q6 Q7
20	1820 1821 1822 1823 1824	H H H H H	CI CI CI CI CI	CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO CH=C(CI)CO	Q8 Q10 Q11 Q12 Q16
25	1825 1826 1827 1828 1829	: H H H	G G G G G	CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO CH₂CH(CI)CO	Q1 Q3 Q6 Q7 Q8
30	1830 1831 1832 1833 1834	: Н Н Н	CI CI CI	CH ₂ CH(CI)CO CH ₂ CH(CI)CO CH ₂ CH(CI)CO CH ₂ CH(CI)CO OCH ₂ CO	Q10 Q11 Q12 Q16 Q1
35	1835 1836 1837 1838	H H H H	CI CI CI CI	OCH,CO OCH,CO OCH,CO OCH,CO OCH,CO	Q3 Q6 Q7 Q8 Q10
40	1839 1840 1841 1842 1843	H H H	CI CI CI CI	OCH ₂ CO OCH ₂ CO OCH ₂ CO SCH ₂ CO SCH ₂ CO	Q11 Q12 Q16 Q1 Q3
45	1844 1845 1846 1847 1848	# # # #	CI CI CI CI	SCH₂CO SCH₂CO SCH₂CO SCH₂CO SCH₂CO	Q6 Q7 Q8 Q10
50	1849 1850 1851	н н н	CI CI	SCH₂CO SCH₂CO CO	Q11 Q12 Q16 Q1

1852	н	CI	CO	Q3
1853	H	CI	co	Q6
		- ·		Q7
1854	Н	CI	CO	
1855	Н	CI	CO	Q8
1856	Н	Cl	CO	Q10
1857	н	CI	CO	Q11
1858	Н	CI	CO	Q12
1859	Н	CI	CO	Q16
1860	н	CI	OCH(CH ₃)CO	Q1
1861	Н	CI	OCH(CH ₃)CO	Q3
1862	н	CI	OCH(CH3)CO	Q6
1863	Н	CI	OCH(CH ₃)CO	Q7
1864	Н	CI	OCH(CH ₃)CO	Q8
1865	н	CI	OCH(CH ₃)CO	Q10
1866	Н	Cl	OCH(CH ₃)CO	Q11
1867	н	CI	OCH(CH₃)CO	Q12
1868	Н	CI	OCH(CH₃)CO	Q16

Table 24

where $R_3=R_4=R_5=H$, A=B=N, $R_{10}=CH_3$ in a compound of formula I

	No	R,	R_2	X	Q	Salt
_	1869	F	CI	0	Q1	HCI .
	1870	F	CI	OCH ₂ CO ₂	Q1	HCI
	1871	F	CI	SCH ₂ CO ₂	Q1	HCI
	1872	F	CI	CO ₂	Q1	HCI
	1873	F	CI	CH2CH(CI)CO2	Q1	HCI
	1874	F	CI	CH=C(CI)CO ₂	Q1	HCI
	1875	F	CI	OCH ₂ CO ₂	Q1	H ₃ PO ₄
	1876	F	CI	OCH ₂ CO ₂	Q1	CH₃CO₂H
	1877	F	CI	OCH₂CO₂	Q1	HCO₂CO₂H
	1878	F	CI	SCH ₂ CO ₂	Q1	HCO ₂ CO ₂ H
	1879	F	CI	CO ₂	Q1	HCO₂CO₂H
	1880	F	CI	CH2CH(CI)CO2	Q1	HCO ₂ CO ₂ H
	1881	F	CI	CH=C(CI)CO ₂	Q1	HCO ₂ CO ₂ H
	1882	CI	CI	0	Q1	HCI
	1883	CI	CI	OCH ₂ CO ₂	Q1	HCI
	1884	Cì	CI	SCH ₂ CO ₂	Q1	HCI
	1885	CI	CI	CO ₂	Q1	HCI
	1886	CI	CI	CH ₂ CH(CI)CO ₂	Q1	HCI
	1887	CI	CI	CH=C(CI)CO ₂	Q1	HCI

5

5	1888 1889 1890 1891 1892	CI CI CI CI	CI CI CI	OCH ₂ CO ₂ SCH ₂ CO ₂ CO ₂ CH ₂ CH(CI)CO ₃	Q1 Q1 Q1 Q1 Q1	HCO ₂ CO ₂ H HCO ₂ CO ₂ H HCO ₂ CO ₂ H HCO ₂ CO ₂ H HCO ₂ CO ₂ H
10	1893 1894 1895 1896 1897 1898	CHHHH	CI CI CI CI	O OCH ₂ CO ₂ SCH ₂ CO ₂ CO ₂	Q1 Q1 Q1 Q1 Q1	HCO₂CO₂H HCI HCI HCI HCI
15	1899 1900 1901 1902 1903		CI CI CI CI	CH ₂ CH(CI)CO ₂ CH=C(CI)CO ₂ O OCH ₂ CO ₂ SCH ₂ CO ₂	Q1 Q1 Q1 Q1 Q1	HCI HCI HCO₂CO₂H HCO₂CO₂H HCO₂CO₂H
20	1904 1905 1906 1907 1908	H H F F	CI CI CI CI	CO ₂ CH ₂ CH(CI)CO ₂ CH=C(CI)CO ₂ O OCH ₂ CO ₂	Q1 Q1 Q1 Q3 Q3	HCO ₂ CO ₂ H HCO ₂ CO ₂ H HCO ₂ CO ₂ H HCI HCI
25	1909 1910 1911 1912	F F F	CI CI CI CI	SCH ₂ CO ₂ CO ₂ CH ₂ CH(CI)CO ₂ CH=C(CI)CO ₂ O	Q3 Q3 Q3 Q3 Q7	HCI HCI HCI HCI HCI
30	1913 1914 1915 1916 1917	F F F F	CI CI CI CI	OCH ₂ CO ₂ SCH ₂ CO ₂ CO ₂ CH ₂ CH(CI)CO ₂ CH=C(CI)CO ₂	Q7 Q7 Q7 Q7 Q7	HCI HCI HCI HCI HCI
35	1918 1919 1920 1921 1922	F F F	CI CI CI CI	O OCH ₂ CO ₂ SCH ₂ CO ₂ CO ₂ CH ₂ CH(CI)CO ₂	Q8 Q8 Q8 Q8	HCI HCI HCI
40	1923 1924 1925 1926 1927	F F F	CI CI CI	CH=C(CI)CO ₂ O OCH ₂ CO ₂ SCH ₂ CO ₂	Q8 Q8 Q10 Q10 Q10	HCI HCI HCI HCI HCI
45	1928 1929 1930 1931	F F F	CI CI CI CI	CO ₂ CH ₂ CH(CI)CO ₂ CH=C(CI)CO ₂ O OCH ₂ CO ₂	Q10 Q10 Q10 Q11 Q11	HCI HCI HCI HCI HCI
50	1932 1933 1934 1935	F F F	CI CI	SCH ₂ CO ₂ CO ₂ CH ₂ CH(CI)CO ₂ CH=C(CI)CO ₂	Q11 Q11 Q11 Q11	HCI HCI HCI HCI

1936	CI	CI	0	Q12	HCI	
1937	CI	CI		Q12	HCI	
1938	CI	CI	SCH ₂ CO ₂	Q12	HCI	
1939	CI	CI	CO ₂	Q12	HCI	
1940	CI	CI	CH ₂ CH(CI)CO ₂	Q12	HCI	
1941	CI	CI	CH=C(CI)CO ₂	Q12	HCI	

Table 25

$$R_1$$
 R_2
 $X-Z$
 R_2
 R_3
 R_4
 R_5

where R_{10} =CH3 when Q is Q12 in a compound of formula I

No	R,	R ₂	X	Z	R ₄	R ₅	,Q	Α	В
1942	F	CI	NH	CO	Н	Н	Q1	N	N
1943	F	CI	NH	CO	CH₃	CH₃	Q1	N	N
1944	F	CI	NH	CO	Н	SCH₃	Q1	N	N
1945	F	Cl	NH	CO	Н	CO₂CH₃	Q1	N	N
1946	F	CI	NH	CO	Ph-4-C		Q1	Ν	N
1947	F	CI	NH	CO	CH ₃	CO₂CH₃	Q1	N	N
1948	F	CI	NH	CO	Н	Н	Q1	N	CH
1949	F	CI	NH	CO	CH ₃	CH ₃	Q1	N	CCO ₂ CH ₃
1950	F	CI	NH	CO	CI	CI	Q1	N	CCONMe ₂
1951	F	CI	NH	CO	C₂H₅	CO₂CH₃	Q1	N	CH
1952	F	CI	NH	CO	CH₃	CONHPh	Q1	N	CH
1953	F	CI	NH	CO		CO ₂ NMe ₂	Q1	N	CCI
1954	F	CI	NH	CO	Н	Н	Q1	CH	N
1955	F	CI	NSO ₂ CH ₃	CO	Н	Н	Q1	N	N
1956	F	CI	NSO ₂ CH ₃	CO	H	н	Q1	N	СН
1957	F	CN	NSO ₂ CH ₃	CO	Н	Н	Q1	CH	N
1958	F	CI	NSO ₂ CF ₃	CO	Н	Н	Q1	N	N
1959	F	CN	NSO ₂ CF ₃	CO	Н	Н	Q1	N	СН
1960	F	CI	NSO ₂ CF ₃	CO	Н	Н	Q1	CH	N
1961	F	CI	NSO ₂ CH ₃	CH₂	Н	Н	Q1	N	N
1962	F	CI	NSO ₂ CH ₃	CH₂	н	Н	Q1	N	СН
1963	F	CI	NSO ₂ CH ₃	CH ₂	Н	Н	Q1	CH	N
1964	F	CI	NSO₂CF₃	CH ₂	Н	Н	Q1	N	N
1965	F	CI	NSO ₂ CF ₃	CH₂	Н	Н	Q1	N	СН
1966	F	CI	NSO ₂ CF ₃	CH ₂	H	н	Q1	CH	N
1967	F	CI	NSO ₂ CH ₃	CO	H	н	Q2	N	N
1968	F	CN	NSO ₂ CH ₃	CO	Н	Н	Q2	N	СН
1969	F	CI	NSO₂CH₃	CO	H	Н	Q2	CH	N
1970	F	CI	NSO ₂ CF ₃	CO	Н	Н	Q2	N	N
1971	F	CI	NSO ₂ CF ₃	CO	Н	Н	Q2	N	CH
			4 3						

1973 F CI NSO,CH, CH, H H Q2 N N N 1974 F CI NSO,CH, CH, H H H Q2 N N N 1975 F CI NSO,CH, CH, H H H Q2 N N N N N 1976 F CI NSO,CH, CH, H H H Q2 N N N N N N N N N N N N N N N N N N		1972 F	Ch	NSO2CF3	CO	н	Н	02 CH N
5		1973 F		2 - 3	CH.			Q2 CH N
1975 F CI NSO,CH, CH, H H Q2 N CH N CO, CH, CH, CH, CH, CH, CH, CH, CH, CH, CH	5	1974 F						
1976 F CI NSO ₂ CF ₃ CH ₂ H H H Q2 N CH 1977 F CN NSO ₂ CF ₃ CH ₂ H H H Q2 N CH 1978 F CI NSO ₂ CF ₃ CH ₂ H H H Q2 N CH 1980 F CI NSO ₂ CF ₃ CO H H Q3 CH N 1980 F CI NSO ₂ CF ₃ CO H H Q3 CH N 1980 F CI NSO ₂ CF ₃ CO H H Q3 CH N 1982 F CI NSO ₂ CH ₃ CO H H Q3 CH N 1982 F CI NSO ₂ CH ₃ CO H H Q3 N N N 1982 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N N 1982 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N CH 1985 F CI NSO ₂ CH ₃ CO H H Q3 N N N CH 1985 F CI NSO ₂ CH ₃ CO H H Q7 N N CH 1985 F CI NSO ₂ CH ₃ CO H H Q7 N N CH 1985 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N N CH 1985 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N N CH 1985 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N N CH 1990 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N N CH 1991 F CI NSO ₂ CH ₃ CH ₂ H H Q8 N N CH 1991 F CI NSO ₂ CH ₃ CH ₂ H H Q8 N N N CH 1992 F CI NSO ₂ CH ₃ CH ₂ H H Q8 N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N N N N N N N N N N N N N N N N	· ·			NSO CH				
1977 F CN NSO ₂ CF ₃ CH ₂ H H H Q2 N N N 1978 F CI NSO ₂ CF ₃ CH ₂ H H H Q2 CH N CH 1980 F CI NSO ₂ CF ₃ CO H H Q3 N CH 1980 F CI NSO ₂ CF ₃ CO H H Q3 N N CH 1981 F CI NSO ₂ CF ₃ CO H H Q3 N N N 1982 F CI NSO ₂ CH ₃ CO H H Q3 N N N 1982 F CI NSO ₂ CH ₃ CO H H Q3 N N N N 1983 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N N N 1984 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N N 1985 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N N N 1986 F CI NSO ₂ CH ₃ CO H H Q3 N N N 1986 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1986 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1988 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1989 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1993 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N N N 1990 F CI NSO ₂ CH ₃ CH ₂ H H Q8 N N N 1991 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1992 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1992 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1993 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1994 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N CH 1996 F CI CH ₂ C(CI) CO H H H Q8 CH N N CH 1996 F CI CH ₂ C(CI) CO H H H Q8 CH N N CH 1996 F CI CH ₂ C(CI) CO H				NSO CE	CH ₂			
1978 F CI NSO ₂ CF ₃ CH ₂ H H H Q2 CH N 1979 F CN NSO ₂ CH ₃ CO H H Q3 N CH 1980 F CI NSO ₂ CH ₃ CO H H Q3 N CH 1981 F CI NSO ₂ CH ₃ CO H H Q3 N N 1982 F CI NSO ₂ CH ₃ CO H H Q3 N N 1982 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N 1983 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N 1985 F CI NSO ₂ CH ₃ CH ₂ H H Q3 CH N 1986 F CI NSO ₂ CH ₃ CO H H Q7 N CH 1987 F CI NSO ₂ CH ₃ CO H H Q7 N CH 1988 F CI NSO ₂ CH ₃ CO H H Q7 N N 1989 F CI NSO ₂ CH ₃ CO H H Q7 N N 1989 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N N 1990 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N N 1990 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N N 1990 F CI NSO ₂ CH ₃ CO H H Q7 N N 1990 F CI NSO ₂ CH ₃ CO H H Q7 N N 1990 F CI NSO ₂ CH ₃ CO H H Q8 N N 1991 F CI NSO ₂ CH ₃ CO H H Q8 N N 1992 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1994 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1996 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1998 F CI NSO ₂ CH ₃ CO H H Q8 N N 1999 F CI NSO ₂ CH ₃ CO H H Q8 N N 1999 F CI NSO ₂ CH ₃ CO H H Q8 N N 1999 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1990 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1990 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1990 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1990 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1990 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1990 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1990 F CI NSO ₂ CH ₃ CO H H Q8 N N 1990 F CI NSO ₂ CH ₃ CO H H Q8 N CH 2000 CI CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2000 CI CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2001 F CI CH ₂ C(CI) CO H H Q8 N CH 2002 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2003 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2004 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2005 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2007 F CI CH ₂ C(CI) CO H H Q8 N CH 2007 F CI CH ₂ C(CI) CO H H Q8 N CH 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N				I NSO CE				
1979 F CN NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 CH N NSO ₂ CH ₃ CO H H Q3 CH N NSO ₂ CH ₃ CO H H Q3 CH N NSO ₂ CH ₃ CO H H Q3 CH N NSO ₂ CH ₃ CO H H Q3 N N N NSO ₂ CH ₃ CO H H Q3 N N N NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N CH NSO ₂ CH ₃ CO H H Q3 N N N N N N N N N N N N N N N N N N				- 2 3				
1980 F CI NSO ₂ CH ₃ CO H H Q3 CH N 1981 F CI NSO ₂ CH ₃ CO H H Q3 CH N 1982 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N 1983 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N 1984 F CI NSO ₂ CH ₃ CH ₂ H H Q3 CH N 1985 F CI NSO ₂ CH ₃ CH ₂ H H Q3 CH N 1986 F CI NSO ₂ CH ₃ CO H H Q7 N CH 1987 F CI NSO ₂ CH ₃ CO H H Q7 N N 1988 F CI NSO ₂ CH ₃ CO H H Q7 N N 1989 F CI NSO ₂ CH ₃ CO H H Q7 N N 1989 F CI NSO ₂ CH ₃ CO H H Q7 N N 1990 F CI NSO ₂ CH ₃ CO H H Q7 N N 1991 F CI NSO ₂ CH ₃ CO H H Q8 N N 1992 F CI NSO ₂ CH ₃ CO H H Q8 N N 1993 F CI NSO ₂ CH ₃ CO H H Q8 N N 1994 F CI NSO ₂ CH ₃ CO H H Q8 N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N 1996 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N N 1998 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N N 1998 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N N 1998 F CI NSO ₂ CH ₃ CO H H Q8 N N 1999 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1990 CI CI CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N CH 1990 CI CI CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2002 CI CI NSO ₂ CF ₃ CO H H H Q8 N N 2003 CI CI NSO ₂ CF ₃ CO H H H Q8 N N 2004 CI CI NSO ₂ CF ₃ CO H H H Q8 N N 2005 CI CI NSO ₂ CF ₃ CO H H H Q8 N N 2006 CI CI NSO ₂ CF ₃ CO H H H Q8 N N 2007 CI CI NSO ₂ CF ₃ CO H H H Q8 N N 2008 CI CI NSO ₂ CF ₃ CO H H H Q8 N N 2011 F CI CH ₂ C(CI) CO H H H Q8 N N 2011 F CI CH ₂ C(CI) CO H H H Q8 N N 2011 F CI CH ₂ C(CI) CO H H H Q8 N N 2011 F CI CH ₂ C(CI) CO H H H Q1 N N 2011 F CI CH ₂ C(CI) CO H H H Q1 N N 2011 F CI CH ₂ C(CI) CO H H H Q1 N N 2011 F CI CH ₂ C(CI) CO H H H Q1 N N	10				CH ₂			Q2 CH N
1981 F CI NSO ₂ CF ₃ CO H H Q3 N N N 1982 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N N 1983 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N N 1985 F CI NSO ₂ CH ₃ CH ₂ H H Q3 N N CH 1985 F CI NSO ₂ CH ₃ CO H H Q7 N CH 1986 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1985 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1987 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1988 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1989 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1989 F CI NSO ₂ CH ₃ CO H H Q7 N N N 1990 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1991 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1991 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1994 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1997 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H	70			2 3			Н	Q3 N CH
1962 F CI NSO,CH, CH, H H Q3 N N 1983 F CI NSO,CH, CH, H H Q3 N N 1984 F CI NSO,CH, CH, H H Q3 N N 1985 F CI NSO,CH, CH, H H Q3 N CH 1986 F CI NSO,CH, CO H H Q7 N CH 1987 F CI NSO,CH, CO H H Q7 N N 1988 F CI NSO,CH, CO H H Q7 N N 1989 F CI NSO,CH, CO H H Q7 N N 1989 F CI NSO,CH, CO H H Q7 N N 1989 F CI NSO,CH, CO H H Q7 N N 1990 F CI NSO,CH, CH, H H Q7 N N 1990 F CI NSO,CH, CH, H H Q7 N N 1991 F CI NSO,CH, CO H H Q8 N CH 1992 F CI NSO,CH, CO H H Q8 N N 1993 F CI NSO,CH, CO H H Q8 N CH 1994 F CI NSO,CH, CO H H Q8 N CH 1995 F CI NSO,CH, CO H H Q8 N CH 1995 F CI NSO,CH, CO H H Q8 N CH 1996 F CI NSO,CH, CO H H Q8 N CH 1997 F CI NSO,CH, CO H H Q8 N CH 1998 F CI NSO,CH, CO H H Q8 N CH 1999 F CI NSO,CH, CO H H Q8 N CH 1996 F CI NSO,CH, CO H H Q8 N CH 1997 F CI NSO,CH, CO H H Q8 N CH 1998 F CI NSO,CH, CO H H Q8 N CH 1999 F CI NSO,CH, CO H H Q8 N CH 1990 CI CI NSO,CH, CO H H Q8 N CH 1990 CI CI NSO,CH, CO H H Q8 N CH 1990 CI CI NSO,CH, CO H H Q8 N CH 1990 F CI NSO,CH, CO H H Q8 N CH 1990 F CI NSO,CH, CO H H Q8 N CH 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N CH 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI NSO,CH, CO H H Q8 N N 1990 F CI CH,CC(I) CO H H H Q8 N N 1990 F CI CH,CC(I) CO H H H Q8 N N 1990 F CI CH,CC(I) CO H H H Q8 N N 1990 F CI CH,CC(I) CO H H H Q8 N N 1990 F CI CH,CC(I) CO H H H Q1 N N 2011 F CI CH,CC(I) CO H H H Q1 N N 2011 F CI CH,CC(I) CO H H H Q1 N N 2011 F CI CH,CC(I) CO H H H Q1 N N 2011 F CI CH,CC(I) CO H H H Q1 N N 2011 F CI CH,CC(I) CO H H H Q1 N N 2011 F CI CH,CC(I) CO H H H Q1 N N 2011 F CI CH,CC(I) CO H H H Q1 N N				NSO ₂ CH ₃		Н	Н	Q3 CH N
1982 F CI NSO ₂ CH ₃ CH ₂ H H H Q3 N N H 1983 F CI NSO ₂ CH ₃ CH ₂ H H H Q3 N CH 1986 F CI NSO ₂ CH ₃ CO H H H Q7 N CH 1986 F CI NSO ₂ CH ₃ CO H H H Q7 N N N 1987 F CI NSO ₂ CH ₃ CO H H H Q7 N N N N 1989 F CI NSO ₂ CH ₃ CO H H H Q7 N N N 1989 F CI NSO ₂ CH ₃ CO H H H Q7 N N N 1990 F CI NSO ₂ CH ₃ CO H H H Q7 N N N 1991 F CI NSO ₂ CH ₃ CO H H H Q8 N N 1992 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1994 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N N N N N N N N N N N N N N N N N N				NSO ₂ CF ₃		H	Н	
1983 F CI NSO ₂ CH ₃ CH ₂ H H H Q3 N CH 1985 F CI NSO ₂ CH ₃ CO H H H Q3 CH N 1986 F CI NSO ₂ CH ₃ CO H H H Q7 N CH 1987 F CI NSO ₂ CH ₃ CO H H H Q7 N N 1988 F CI NSO ₂ CH ₃ CO H H H Q7 N N 1989 F CI NSO ₂ CH ₃ CO H H H Q7 N N 1989 F CI NSO ₂ CH ₃ CO H H H Q7 N N 1990 F CI NSO ₂ CH ₃ CO H H H Q7 N N 1991 F CI NSO ₂ CH ₃ CO H H H Q7 N CH 1991 F CI NSO ₂ CH ₃ CO H H H Q8 N N 1992 F CI NSO ₂ CH ₃ CO H H Q8 N N 1993 F CI NSO ₂ CH ₃ CO H H Q8 N N 1994 F CI NSO ₂ CH ₃ CO H H Q8 N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N 1997 F CI NSO ₂ CH ₃ CO H H Q8 N N 1998 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N N 1998 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CH ₃ CO H H Q8 N CH 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N N 1998 F CI NSO ₂ CH ₃ CO H H Q8 N N 1999 F CI NSO ₂ CH ₃ CO H H Q8 N CH 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2002 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2003 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2004 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2005 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2007 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2008 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N				NSO₂CH₃		Н	Н	
1984 F CI NSO ₂ CH ₃ CO H H H Q3 CH N 1985 F CI NSO ₂ CH ₃ CO H H H Q7 N CH 1986 F CI NSO ₂ CH ₃ CO H H H Q7 N CH 1987 F CI NSO ₂ CH ₃ CO H H H Q7 N N 1988 F CI NSO ₂ CH ₃ CO H H H Q7 N N 1988 F CI NSO ₂ CH ₃ CO H H H Q7 N N 1998 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N CH 1990 F CI NSO ₂ CH ₃ CO H H H Q7 N CH 1991 F CI NSO ₂ CH ₃ CO H H Q8 N N 1992 F CI NSO ₂ CH ₃ CO H H Q8 N N 1993 F CI NSO ₂ CH ₃ CO H H Q8 N N 1994 F CI NSO ₂ CH ₃ CO H H Q8 N N 1995 F CI NSO ₂ CF ₃ CO H H Q8 N N 1995 F CI NSO ₂ CF ₃ CO H H Q8 N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N 1997 F CI NSO ₂ CF ₃ CO H H Q8 N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N N 1990 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2002 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2003 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2004 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2007 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2008 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N CH 2001 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 F CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N	15			NSO ₂ CH ₃	CH ₂	Н	Н	
1985 F CI NSO ₂ CH ₃ CO H H H Q7 N CH 1986 F CI NSO ₂ CH ₃ CO H H H Q7 CH N 1987 F CI NSO ₂ CH ₃ CO H H H Q7 N N 1988 F CI NSO ₂ CH ₃ CO H H Q7 N N 1989 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N N 1990 F CI NSO ₂ CH ₃ CH ₂ H H Q7 CH N 1991 F CI NSO ₂ CH ₃ CO H H Q8 N N 1992 F CI NSO ₂ CH ₃ CO H H Q8 N N 1993 F CI NSO ₂ CH ₃ CO H H Q8 N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N N 1996 F CI NSO ₂ CH ₃ CO H H Q8 N N 1997 F CI NSO ₂ CF ₃ CO H H Q8 N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N N 1999 F CI NSO ₂ CF ₃ CO CH ₃ CH ₃ CH ₄ CH ₃ Q8 CH N 1999 F CI NSO ₂ CF ₃ CO CH ₃ CH ₄ CH ₃ Q8 N CH 2000 CI CI NSO ₂ CF ₃ CO H H Q8 N N 1999 F CI NSO ₂ CF ₃ CO CH ₃ CH ₄ CH ₃ Q8 N CH 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2002 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2004 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2007 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2008 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2007 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2008 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2007 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2008 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2009 F CI CH ₂ C(CI) CO H H Q8 N N 2011 F CI CH ₂ C(CI) CO H H Q8 N N 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q8 N N 2014 F CI CH ₂ C(CI) CO H H Q8 N N 2015 H CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N	.5		CI	NSO ₂ CH ₃				
1986 F CI NSO ₂ CH ₃ CO H H Q7 CH N 1987 F CI NSO ₂ CH ₃ CO H H H Q7 N N N 1988 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N CH 1990 F CI NSO ₂ CH ₃ CH ₂ H H Q7 N CH 1991 F CI NSO ₂ CH ₃ CO H H Q8 N N 1991 F CI NSO ₂ CH ₃ CO H H Q8 CH N 1992 F CI NSO ₂ CH ₃ CO H H Q8 CH N N 1995 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CF ₃ CO H H Q8 N N 1995 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1995 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1997 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1998 F CI NSO ₂ CF ₃ CO CH ₃ CH ₃ Q8 CH N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CH ₃ CO CH ₃ CH ₃ Q8 CH N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CF ₃ CO H H Q8 N N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2000 CI CI NSO ₂ CF ₃ CO H H Q8 N N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1998 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N N N 1999 F CI CI CH ₂ C(CI) CO H H Q8 N N N 1999 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H H Q1 N N 1990 F CI CH ₂ C(CI) CO H H H Q1 N N 1990 F CI			CI	NSO,CH,				
1987 F CI NSO,CH, CO H H Q7 N N 1988 F CI NSO,CH, CH, H H Q7 N N 1989 F CI NSO,CH, CH, H H Q7 N CH 1990 F CI NSO,CH, CH, H H Q7 N CH 1991 F CI NSO,CH, CO H H Q8 N N 1992 F CI NSO,CH, CO H H Q8 N CH 1992 F CI NSO,CH, CO H H Q8 N CH 1994 F CI NSO,CH, CO H H Q8 N CH 1995 F CI NSO,CH, CO H H Q8 N CH 1995 F CI NSO,CH, CO H H Q8 N CH 1996 F CI NSO,CF, CO H H Q8 N CH 1996 F CI NSO,CF, CO H H Q8 N CH 1997 F CI NSO,CH, CO CH, CH, Q8 N N 1998 F CI NSO,CH, CO CH, CH, Q8 N N N 1998 F CI NSO,CH, CO CH, CH, Q8 N CH 2000 CI CI NSO,CH, CO H H Q8 CH N N 2000 CI CI NSO,CH, CO H H Q8 CH N 2000 CI CI NSO,CH, CO H H Q8 CH N N 2000 CI CI NSO,CH, CO H H Q8 CH N N 2000 CI CI NSO,CH, CO H H Q8 N CH 2000 CI CI NSO,CH, CO H H Q8 N CH 2000 CI CI NSO,CH, CO H H Q8 N CH 2000 CI CI NSO,CH, CO H H Q8 N CH 2000 CI CI NSO,CH, CO H H Q8 N CH 2000 CI CI NSO,CH, CO H H Q8 N CH 2000 CI CI NSO,CH, CO H H Q8 N CH 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N CH 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N N N 2000 CI CI NSO,CH, CO H H Q8 N CH N 2000 F CI CH,CC(I) CO H H Q8 N CH N 2000 F CI CH,CC(I) CO H H Q8 N CH N 2001 F CI CH,CC(I) CO H H Q8 N CH N N 2001 F CI CH,CC(I) CO H H Q1 N N CH 2015 F CI CH,CC(I) CO H H Q1 N N CH 2015 F CI CH,CC(I) CO H H Q1 N N CH 2015 F CI CH,CC(I) CO H H Q1 N N CH 2015 F CI CH,CC(I) CO H H H Q1 N N CH 2015 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H Q1 N N 2016 F CI CH,CC(I) CO H H H		1986 F	CI	NSO,CH.				
1988 F CI NSO,CH3 CH2 H H G7 N N 1989 F CI NSO,CH3 CH2 H H H Q7 N CH 1990 F CI NSO,CH3 CH2 H H H Q7 N CH 1991 F CI NSO,CH3 CH2 H H G7 CH N CH 1991 F CI NSO,CH3 CO H H G8 N N 1992 F CI NSO,CH3 CO H H Q8 N N 1992 F CI NSO,CH3 CO H H Q8 N CH 1994 F CI NSO,CH3 CO H H Q8 N CH 1995 F CI NSO,CH3 CO H H Q8 N CH 1995 F CI NSO,CH3 CO H H Q8 N N 1995 F CI NSO,CH3 CO H H Q8 N N CH 1995 F CI NSO,CH3 CO H H Q8 N N CH 1995 F CI NSO,CH3 CO H H Q8 N N CH 1997 F CI NSO,CH3 CO H H Q8 N N CH 1998 F CI NSO,CH3 CO H H Q8 N N N 1999 F CI NSO,CH3 CO CH3 CH3 Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 CH N 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI NSO,CH3 CO H H Q8 N CH 2000 CI CI CH,CC(CI) CO H H Q8 N CH 2000 CI CI CH,CC(CI) CO H H Q1 N N CH 2011 F CI CH,CC(CI) CO H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H Q1 N N CH 2015 F CI CH,CC(CI) CO H H H		1987 F	CI					
1989 F CI NSO2CH3 CH2 H H Q7 N CH 1990 F CI NSO2CH3 CH2 H H Q7 CH N 1991 F CI NSO2CH3 CO H H Q8 N N 1992 F CI NSO2CH3 CO H H Q8 CH N 1994 F CI NSO2CH3 CO H H Q8 N CH 1995 F CI NSO2CF3 CO H H Q8 N CH 1995 F CI NSO2CF3 CO H H Q8 N CH 1996 F CI NSO2CF3 CO H H Q8 N CH 1997 F CI NSO2CF3 CO H H Q8 N CH 1997 F CI NSO2CF3 CO H H Q8 N CH 1998 F CI NSO2CF3 CO CH3 CH3 Q8 N N 1998 F CI NSO2CF3 CO CH3 CH3 Q8 N N 1999 F CI NSO2CF4 CO CH3 CH3 Q8 N N 1999 F CI NSO2CF4 CO CH3 CH3 Q8 N N 1990 CI CI NSO2CH3 CO CH3 CH3 Q8 N CH 2000 CI CI NSO2CH3 CO CH4 CH3 Q8 N N 2001 CI CI NSO2CH3 CO CH4 CH3 Q8 N CH 2002 CI CI NSO2CH3 CO H H Q8 N CH 2003 CI CI NSO2CH3 CO H H Q8 N CH 2004 CI CI NSO2CH3 CO H H Q8 N CH 2005 CI CI NSO2CF3 CO H H Q8 N CH 2006 CI CI NSO2CF3 CO H H Q8 N CH 2007 CI CI NSO2CF3 CO H H Q8 N CH 2008 CI CI NSO2CF3 CO H H Q8 N CH 2009 F CI CH3CCC CH3 CH3 Q8 N CH 2009 F CI CH3CCC CO CH3 CH3 Q8 N CH 2009 F CI CH3CCC CO CH3 CH3 Q8 N CH 2009 F CI CH3CCC CO CH3 CH3 Q8 N CH 2010 F CI CH3CCC CO CH3 CH3 Q8 N CH 2011 F CI CH3CCC CO CH3 CH3 Q8 N CH 2011 F CI CH3CCC CO CH3 CH3 Q8 N CH 2011 F CI CH3CCC CO CH3 CH3 Q8 N CH 2011 F CI CH3CCC CO H H Q8 N CH 2011 F CI CH3CCC CO H H Q1 N N 2013 F CI CH3CCC CO H H Q1 N N 2014 F CI CH3CCC CO H H Q1 N N 2015 F CI CH3CCC CO H H Q1 N N 2016 F CI CH3CCC CO H H Q1 N N 2017 F CI CH3CCC CO H H Q1 N N 2018 F CI CH3CCC CO H H Q1 N N 2018 F CI CH3CCC CO H H Q1 N N 2019 F CI CH3CCC CO H H Q1 N N 2010 F CI CH3CCC CO H H Q1 N N 2011 F CI CH3CCC CO H H Q1 N N 2011 F CI CH3CCC CO H H Q1 N N 2011 F CI CH3CCC CO H H Q1 N N 2011 F CI CH3CCC CO H H H Q1 N N 2011 F CI CH3CCC CO H H H Q1 N N 2011 F CI CH3CCC CO H H H Q1 N N 2011 F CI CH3CCC CO H H H Q1 N N 2011 F CI CH3CCC CO H H H Q1 N N 2011 F CI CH3CCC CO H H H Q1 N N 2011 F CI CH3CCC CO H H H Q1 N N 2011 F CI CH3CCC CO H H H Q1 N N 2011 F CI CH3CCC CO H H H Q1 N N	20	1988 F	CI					
1990 F CI NSO ₂ CH ₃ CO H H GR N N 1991 F CI NSO ₂ CH ₃ CO H H GR N N N 1992 F CI NSO ₂ CH ₃ CO H H GR N N N 1993 F CI NSO ₂ CH ₃ CO H H GR N N N 1994 F CI NSO ₂ CH ₃ CO H H GR N N N 1995 F CI NSO ₂ CH ₃ CO H H GR N N N 1995 F CI NSO ₂ CF ₃ CO H H GR N N N 1996 F CI NSO ₂ CF ₃ CO H H GR N N N 1996 F CI NSO ₂ CF ₃ CO H H GR N N CH 1997 F CI NSO ₂ Et CO CH ₃ CH ₃ QR N N N 1998 F CI NSO ₂ Et CO CH ₃ CH ₃ QR N N CH 1999 F CI NSO ₂ Et CO CH ₃ CH ₃ QR N N CH 2000 CI CI NSO ₂ CH ₃ CO H H QR N N N 1999 F CI NSO ₂ Ct CO CH ₃ CH ₃ QR N CH N 1999 CI NSO ₂ CH ₃ CO H H GR N N N 1999 CI CI CI NSO ₂ CH ₃ CO H H GR N N N 1990 CI CI NSO ₂ CH ₃ CO H H GR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ CH ₃ CO H CH QR N N N 1990 CI CI NSO ₂ Ct CO CH ₃ CH ₃ QR N CH 1990 CI CI NSO ₂ Ct CO CH ₃ CH ₃ QR N CH 1990 CI CI NSO ₂ Ct CO CH ₃ CH ₃ QR N CH 1990 CI CI NSO ₂ Ct CO CH ₃ CH ₃ QR N CH 1990 CI CI NSO ₂ Ct CO CH ₃ CH ₃ QR N CH 1990 CI CI NSO ₂ Ct CO CH CH ₃ CH ₃ QR N CH 1990 CI CI NSO ₂ Ct CO CH CH ₃ CH ₃ QR N CH 1990 CI CI CI NSO ₂ Ct CO CH CH CH QR N N 1990 CH 1990 CI CI CI CH ₂ C(CI) CO H CH H QR N N 1990 CH 1990 CI CI CI CH ₂ C(CI) CO H CH H QR N N 1990 CH 1990 CI CI CI CH ₂ C(CI) CO H CH H QR N N 1990 CH 1990 CI CI CI CH ₂ C(CI) CO H CH H QR N N 1990 CH 1990 CI CI CI CH ₂ C(CI) CO H CH H QR N N 1990 CH 1990 CI CI CI CH ₂ C(CI) CO H CH H QR N N 1990 CH 1990 CI CI CI CH ₂ C(CI) CO H CH H QR N N 1990 CH 1990 CI	20	1989 F						
1991 F CI NSO ₂ CH ₃ CO H H Q8 N N N 1992 F CI NSO ₂ CH ₃ CO H H H Q8 CH N 1994 F CI NSO ₂ CF ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CF ₃ CO H H Q8 N N 1995 F CI NSO ₂ CF ₃ CO H H Q8 N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CF ₃ CO CH ₃ CH ₃ Q8 N N N 1998 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N N 1999 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 1999 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2000 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N N N 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N N N 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N N N 2001 CI CI NSO ₂ CF ₃ CO H H H Q8 CH N 2001 F CI CH ₂ C(CI) CO H H H Q8 CH N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1 N N 2001 F CI CH ₂ C(CI) CO H H H Q1								
1992 F CI NSO ₂ CH ₃ CO H H Q8 CH N N 1993 F CI NSO ₂ CH ₃ CO H H Q8 N CH 1994 F CI NSO ₂ CF ₃ CO H H Q8 N CH 1995 F CI NSO ₂ CF ₃ CO H H Q8 N N N 1995 F CI NSO ₂ CF ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CF ₃ CO H H Q8 N CH 1997 F CI NSO ₂ CF ₃ CO CH ₃ CH ₃ Q8 CH N 1998 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 1999 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2000 CI CI NSO ₂ Ct CO CH ₃ CH ₃ Q8 N CH 2000 CI CI NSO ₂ Ct CO CH ₃ CH ₃ Q8 N CH N 2001 CI CI NSO ₂ Ct CO CH ₃ CH ₃ Q8 N CH N 2002 CI CI NSO ₂ Ct CO CH ₃ CH ₄ Q8 N N N 2003 CI CI NSO ₂ CH ₃ CO H H Q8 N N N 2005 CI CI NSO ₂ CH ₃ CO H H Q8 N N CH 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N N N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N N N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2006 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N CH 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N CH 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N CH 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N N 2011 F CI CH ₂ C(CI) CO H H Q8 N CH N 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q1 N N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N N 2015 F CI CH ₂ C(CI) CO H H Q1 N N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N N 2017 F CI CH ₂ C(CI) CO H H H Q1 N N N 2018 F CI CH ₂ C(CI) CO H H H Q1 N N N 2018 F CI CH ₂ C(CI) CO H H H Q1 N N N 2018 F CI CH ₂ C(CI) CO H H H Q1 N N CH				NSO CH				
25				NSO CH				
1994 F CI NSO ₂ CF ₃ CO H H Q8 N N 1995 F CI NSO ₂ CF ₃ CO H H Q8 N N 1996 F CI NSO ₂ CF ₃ CO H H Q8 N CH 1997 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 1998 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 1999 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2000 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2002 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2003 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2004 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2007 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q8 N CH 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 H CI CH=C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 H CI CH=C(CI) CO H H Q1 N N 2019 H CI CH=C(CI) CO H H H Q1 N N	25			NSO CH				
1995 F CI NSO ₂ CF ₃ CO H H Q8 CH N 1996 F CI NSO ₂ CF ₃ CO H H H 1997 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 1998 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 1999 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 1999 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2000 CI CI CI NSO ₂ CH ₃ CO H H 2001 CI CI NSO ₂ CH ₃ CO H H 2002 CI CI NSO ₂ CH ₃ CO H H 2003 CI CI NSO ₂ CH ₃ CO H H 2004 CI CI NSO ₂ CF ₃ CO H H 2005 CI CI NSO ₂ CF ₃ CO H H 2005 CI CI NSO ₂ CF ₃ CO H H 2006 CI CI NSO ₂ CF ₃ CO H H 2007 CI CI NSO ₂ CF ₃ CO H H 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2009 F CI CH ₂ C(CI) CO H H 2009 F CI CH ₂ C(CI) CO H H 2011 F CI CH ₂ C(CI) CO H H 2011 F CI CH ₂ C(CI) CO H H 2012 F CI CH ₂ C(CI) CO H H 2013 F CI CH ₂ C(CI) CO H H 2014 F CI CH ₂ C(CI) CO H H 2015 H CI CH ₂ C(CI) CO H H 2016 F CI CH ₂ C(CI) CO H H 2017 F CI CH ₂ C(CI) CO H H 2018 F CI CH ₂ C(CI) CO H H 2019 F CI CH ₂ C(CI) CO H H 2010 F CI CH ₂ C(CI) CO H H 2011 N N 2011 F CI CH ₂ C(CI) CO H H 2012 H CI CH ₂ C(CI) CO H H 2013 N N 2014 F CI CH ₂ C(CI) CO H H 2015 H CI CH ₂ C(CI) CO H H 2016 F CI CH ₂ C(CI) CO H H 2017 F CI CH ₂ C(CI) CO H H 2018 F CI CH ₂ C(CI) CO H H 2019 H CI CH ₂ C(CI) CO H H 2010 N CH	25			NSO CE				
1996 F CI NSO ₂ CF ₃ CO H H Q8 N CH 1997 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 1998 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 1999 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2000 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2002 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2004 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2007 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2008 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2009 F CI CH ₂ C(CI) CO H H Q8 N CH 2010 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2013 F CI CH ₂ C(CI) CO H H Q8 N CH 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 H CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N 2019 F CI CH ₂ C(CI) CO H H Q1 N N				NSO ₂ CF ₃				
1997 F CI NSO2Et CO CH3 CH3 Q8 N N 1998 F CI NSO2Et CO CH3 CH3 Q8 CH N 1999 F CI NSO2Et CO CH3 CH3 Q8 N CH 2000 CI CI NSO2CH3 CO H H Q8 N N 2001 CI CI NSO2CH3 CO H H Q8 N CH 2002 CI CI NSO2CH3 CO H H Q8 N CH 2003 CI CI NSO2CH3 CO H H Q8 N CH 2004 CI CI NSO2CF3 CO H H Q8 N CH 2005 CI CI NSO2CF3 CO H H Q8 N CH 2006 CI CI NSO2CF3 CO H H Q8 N CH 2007 CI CI NSO2Et CO CH3 CH3 Q8 N N 2008 CI CI NSO2Et CO CH3 CH3 Q8 N N 2009 F CI CH2C(CI) CO H H Q8 N CH 2010 F CI CH2C(CI) CO H H Q8 N CH 2011 F CI CH2C(CI) CO H H Q8 N CH 2012 F CI CH2C(CI) CO H H Q8 N CH 2013 F CI CH2C(CI) CO H H Q1 N N 2014 F CI CH2C(CI) CO H H Q1 N N 2015 H CI CH2C(CI) CO H H Q1 N N 2016 F CI CH2C(CI) CO H H Q1 N N 2017 F CI CH2C(CI) CO H H Q1 N N 2017 F CI CH2C(CI) CO H H Q1 N N 2017 F CI CH2C(CI) CO H H Q1 N N 2017 F CI CH2C(CI) CO H H Q1 N N 2017 F CI CH2C(CI) CO H H Q1 N N 2017 F CI CH2C(CI) CO H H Q1 N N 2017 F CI CH2C(CI) CO H H Q1 N N 2017 F CI CH2C(CI) CO H H Q1 N N 2018 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H Q1 N N 2019 F CI CH2C(CI) CO H H H Q1 N N 2019 F CI CH2C(CI) CO H H H Q1 N N 2019 F CI CH2C(CI) CO H H H Q1 N N 2019 F CI CH2C(CI) CO H H H Q1 N N 2019 F CI CH2C(CI) CO H H H Q1 N N 2019 F CI CH2C(CI) CO H H H Q1 N N 2019 F CI CH2C(CI) CO H H H Q1 N CH								
1998 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 1999 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2000 CI CI NSO ₂ CH ₃ CO H H 2001 CI CI NSO ₂ CH ₃ CO H H 2002 CI CI NSO ₂ CH ₃ CO H H 2003 CI CI NSO ₂ CH ₃ CO H H 2004 CI CI NSO ₂ CF ₃ CO H H 2005 CI CI NSO ₂ CF ₃ CO H H 2006 CI CI NSO ₂ CF ₃ CO H H 2006 CI CI NSO ₂ CF ₃ CO H H 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2009 F CI CH ₂ C(CI) CO H H 2011 F CI CH ₂ C(CI) CO H H 2011 F CI CH ₂ C(CI) CO H H 2012 F CI CH ₂ C(CI) CO H H 2013 F CI CH ₂ C(CI) CO H H 2014 F CI CH ₂ C(CI) CO H H 2015 H CI CH ₂ C(CI) CO H H 2016 F CI CH ₂ C(CI) CO H H 2017 F CI CH ₂ C(CI) CO H H 2018 F CI CH ₂ C(CI) CO H H 2019 N N 2018 F CI CH ₂ C(CI) CO H H 2010 N CH 2011 F CI CH ₂ C(CI) CO H H 2011 N N 2012 F CI CH ₂ C(CI) CO H H 2011 N N 2013 F CI CH ₂ C(CI) CO H H 2011 N N 2012 F CI CH ₂ C(CI) CO H H 2011 N N 2012 F CI CH ₂ C(CI) CO H H 2011 N N 2012 F CI CH ₂ C(CI) CO H H 2012 CH N 2013 F CI CH ₂ C(CI) CO H H 2013 N N 2014 F CI CH ₂ C(CI) CO H H 2014 R CI CH ₂ C(CI) CO H H 2015 H CI CH ₂ C(CI) CO H H 2016 F CI CH ₂ C(CI) CO H H 2017 F CI SCH ₂ CO H H 2018 F CI CH ₂ C(CI) CO H H 2010 N CH								
1999 F CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 1999 F CI NSO ₂ CH ₃ CO CO CH ₃ CH ₃ Q8 N CH 2000 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CH ₃ CO H H Q8 CH N 2002 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2003 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2004 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N N 2010 F CI CH ₂ C(CI) CO H H Q8 N N 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q8 N CH 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 H CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 H CI CH ₂ C(CI) CO H H Q1 N N	30			NSO ₂ Et			CH₃	Q8 N N
2000 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CH ₃ CO H H Q8 CH N 2002 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2003 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2004 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2009 F CI CH ₂ C(CI) CO H H Q8 N N 2010 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q1 N N 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 H CI CH=C(CI) CO H H Q1 N N 2016 F CI CH=C(CI) CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q1 N N 2018 F CI CH=C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N				NSO ₂ Et				Q8 CH N
2000 CI CI NSO ₂ CH ₃ CO H H Q8 N N 2001 CI CI NSO ₂ CH ₃ CO H H Q8 CH N 2002 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2003 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2004 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2009 F CI CH ₂ C(CI) CO H H Q8 N CH 2010 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q1 N N 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 H CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 H CI CH ₂ C(CI) CO H H Q1 N N				NSO ₂ Et		CH₃	CH₃	Q8 N CH
2001 CI CI NSO ₂ CH ₃ CO H H Q8 CH N 2002 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2003 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2004 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N CH 2010 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q1 N N 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 H CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 H CI CH ₂ C(CI) CO H H Q1 N N				NSO ₂ CH ₃			Н	Q8 N N
2002 CI CI NSO ₂ CH ₃ CO H H Q8 N CH 2003 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2004 CI CI NSO ₂ CF ₃ CO H H Q8 N N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N N 2010 F CI CH ₂ C(CI) CO H H Q8 N N 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 H CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N				NSO ₂ CH ₃			Н	
40 2003 CI CI NSO ₂ CF ₃ CO H H H Q8 N N 2004 CI CI NSO ₂ CF ₃ CO H H H 2005 CI CI NSO ₂ CF ₃ CO H H 2006 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N N 2010 F CI CH ₂ C(CI) CO H H Q8 N N 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 H CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 H CI CH ₂ C(CI) CO H H Q1 N CH	35			NSO₂CH₃		Н	Н	_
40 2005 CI CI NSO ₂ CF ₃ CO H H Q8 CH N 2005 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N N 2010 F CI CH ₂ C(CI) CO H H Q8 CH N 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q1 N N 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N N 2015 H CI CH ₂ C(CI) CO H H Q1 N N 2016 F CI CH ₂ C(CI) CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N				NSO₂CF₃	CO	Н	Н	
2005 CI CI NSO ₂ CF ₃ CO H H Q8 N CH 2006 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N N 2010 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q1 N N 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N CH 2015 H CI CH=C(CI) CO H H Q1 N N 2016 F CI CH=C(CI) CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 H CI CH=C(CI) CO H H Q1 N CH				NSO ₂ CF ₃	CO	Н	Н	_
2006 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N N 2007 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 CH N 2008 CI CI NSO ₂ Et CO CH ₃ CH ₃ Q8 N CH 2009 F CI CH ₂ C(CI) CO H H Q8 N N 2010 F CI CH ₂ C(CI) CO H H Q8 N CH 2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q1 N N 2013 F CI CH ₂ C(CI) CO H H Q1 N N 2014 F CI CH ₂ C(CI) CO H H Q1 N CH 2015 H CI CH=C(CI) CO H H Q1 N N 2016 F CI OCH ₂ C(CI) CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q1 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 H CI CH ₂ C(CI) CO H H Q1 N CH				NSO ₂ CF ₃	CO	Н		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CI	NSO ₂ Et	CO			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40		CI	NSO,Et				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			CI	NSO ₂ Et				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2009 F	CI				-	
2011 F CI CH ₂ C(CI) CO H H Q8 N CH 2012 F CI CH ₂ C(CI) CO H H Q1 N N 2013 F CI CH ₂ C(CI) CO H H Q1 CH N 2014 F CI CH ₂ C(CI) CO H H Q1 N CH 2015 H CI CH=C(CI) CO H H Q1 N N 2016 F CI OCH ₂ CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q3 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 H CI CH ₂ C(CI) CO H H Q1 N N			CI					
2012 F CI CH ₂ C(CI) CO H H Q1 N N 2013 F CI CH ₂ C(CI) CO H H Q1 CH N 2014 F CI CH ₂ C(CI) CO H H Q1 N CH 2015 H CI CH=C(CI) CO H H Q1 N N 2016 F CI OCH ₂ CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q3 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N N 2019 H CI CH ₂ C(CI) CO H H Q1 N N		2011 F		CH-C(CI)				
2013 F CI CH ₂ C(CI) CO H H Q1 CH N 2014 F CI CH ₂ C(CI) CO H H Q1 N CH 2015 H CI CH=C(CI) CO H H Q1 N N 2016 F CI OCH ₂ CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q3 N N 2018 F CI CH ₂ C(CI) CO H H Q1 N CH 2019 H CI CH ₂ C(CI) CO H H Q1 N CH	45			CH-C(CI)				
2014 F CI CH ₂ C(CI) CO H H Q1 N CH 2015 H CI CH=C(CI) CO H H Q1 N N 2016 F CI OCH ₂ CO H H Q1 N N 2017 F CI SCH ₂ CO H H Q3 N N 2018 F CI CH ₂ C(CI) CO H H Q3 N N 2019 H CI CH ₂ C(CI) CO H H Q10 N CH				CH C(CI)				
2015 H Cl CH=C(Cl) CO H H Q1 N N 2016 F Cl OCH ₂ CO H H Q1 N N 2017 F Cl SCH ₂ CO H H Q3 N N 2018 F Cl CH ₂ C(Cl) CO H H Q10 N CH 2019 H Cl CH=C(Cl) CO H H Q10 N CH								
2016 F Cl OCH ₂ CO H H Q1 N N 2017 F Cl SCH ₂ CO H H Q3 N N 2018 F Cl CH ₂ C(Cl) CO H H Q10 N CH								
2017 F CI SCH ₂ CO H H Q3 N N 2018 F CI CH ₂ C(CI) CO H H Q10 N CH								
2018 F CI CH ₂ C(CI) CO H H Q10 N CH	50			SCU				
2019 H CI CH-0(0) 20								
								Q10 N CH
		2013 H	CI	CH=C(CI)	CO	Н	Н	Q10 N N

	2020	F	CI	OCH₂	CO	Н	Н	Q10 N	N
	2021	F	CI	SCH ₂	CO	Н	н	Q10 N	N
-	2022	F	CI	CH ₂ C(CI)	CO	Н	Н	Q11 N	CH
5	2023	Н	·CI	CH=C(CI)	CO	Н	Н	Q11 N	Ν
	2024	F	CI	OCH ₂	CO	Н	Н	Q11 N	N
	2025	F	CI	SCH ₂	CO	Н	Н	Q11 N	Ν
	2026	F	CI	CH₂C(CI)	CO	Н	Н	Q12 N	СН
10	2027	H	CI	CH=C(CI)	CO	н	Н	Q12 N	N
10	2028	F	CI	OCH ₂	CO	Н	H	Q12 N	N
	2029	F	CI	SCH ₂	co	H	H	Q12 N	N
	2030	F	CI	CH ₂ C(CI)	co	H	 Н	Q16 N	СН
	2030	Н	CI	CH=C(CI)	co	H	H	Q16 N	N
15	2031	F	CI		CO	H	H	Q16 N	N
,,,				OCH ₂				Q16 N	N
	2033	F	CI	SCH ₂	CO	Н	H		
	2034	F	CI	NSO₂CH₃	CO	Н	H	Q7 N	N
	2035	F	CI	NSO₂CH₃	CO	Н	H	Q10 N	N
20	2036	F	CI	NSO₂CH₃	CO	Н	H	Q11 N	N
	2037	F	CI	NSO₂CH₃	CO	Н	Н	Q12 N	N
	2038	F	CI	NSO₂CH₃	CO	Н	Н	Q16 N	N
	2039	F	CI	NSO₂CH₃	CH₂	Н	Н	Q7 N	N
	2040	F	CI	NSO₂CH₃	CH₂	Н	Н	Q10 N	N
25	2041	F	CI	NSO₂CH₃	CH₂	Н	Н	Q11 N	Ν
	2042	F	CI	NSO₂CH₃	CH₂	Н	Н	Q12 N	N
	2043	F	CI	NSO₂CH₃	CH₂	Н	Н	Q16 N	N
	2044	CI	ÇI	NSO ₂ CH ₃	CO	Н	Н	Q7 N	Ν
	2045	CI	CI	NSO ₂ CH ₃	CO	Н	Н	Q10 N	Ν
30	2046	CI	CI	NSO ₂ CH ₃	CO	Н	Н	Q11 N	N
	2047	CI	CI	NSO ₂ CH ₃	CO	Н	н	Q12 N	N
	2048	CI	CI	NSO ₂ CH ₃	CO	Н	Н	Q16 N	N
	2049	CI	CI	NSO ₂ CH ₃	CH₂	Н	Н	Q7 N	Ν
•	2050	CI	CI	NSO ₂ CH ₃	CH ₂	H	Н	Q10 N	Ν
35	2051	CI	CI	NSO ₂ CH ₃	CH ₂	H	Н	Q11 N	N
	2052	CI	CI	NSO ₂ CH ₃	CH ₂	H	H	Q12 N	N
	2053	CI	CI	NSO ₂ CH ₃	CH ₂	H	H	Q16 N	N
	2054	H.	CI	NSO ₂ CH ₃	CO	H	H	Q7 N	N
	2055	Н	CI	NSO ₂ CH ₃	CO	H	H	Q10 N	N
40	2056	Н	CI	NSO ₂ CH ₃	co	H	H	Q11 N	N
	2057	Н	CI	NSO ₂ CH ₃	co	H	H	Q12 N	N
				NSO ₂ CH ₃	CO	H	H	Q16 N	N
	2058	н	CI						N
	2059	Н	CI	NSO₂CH₃	CH₂	Н	H	Q7 N	
45	2060	Н	CI	NSO ₂ CH ₃	CH₂	Н	Н	Q10 N	N
	2061	Н	CI	NSO₂CH₃	CH₂	Н	H	Q11 N	N
	2062	Н	CI	NSO₂CH₃	CH₂	Н	H	Q12 N	N
	2063	Н	CI	NSO₂CH₃	CH₂	Н	Н	Q16 N	N
	2064	Н	CI	NSO₂CH₃	CO	Н	H .	Q8 N	N
50	2065	Н	CI	NSO₂CH₃	CO	Н	Н	Q8 CH	
	2066	Н	CI	NSO₂CH₃	CO	Н	Н	Q8 N	СН
	2067	H	CI	NSO ₂ CF ₃	CO	Н	Н	Q8 N	N

2068 2069 2070 2071 2072	H	CI	NSO ₂ CF ₃ NSO ₂ CF ₃ NSO ₂ Et NSO ₂ Et NSO ₂ Et	CO	H H CH ₃ CH ₃	H H CH ₃ CH ₃	Q8 Q8	CH N CH N	CH N
--------------------------------------	---	----	---	----	--	--	----------	-----------	---------

[0035] The compounds of formula I of the present invention can be prepared by the following processes:

Scheme 1

Ester and amide linkages

5

10

15

20

25

40

45

50

55

[0036] For structure II and III, where X is for example CO_2 , $OCH(R_6)CO_2$, $SCH(R_6)CO_2$, $CH_2CH(CI)CO_2$, CH_2

[0037] Compounds II or their sodium, potassium salts are reacted with the one of the following regents: SOCl₂, (COCl)₂, COCl₂, PCl₃ or POCl₃ in a solvent such as chloroform ,dichloromethane, carbon tetrachloride, hexane, benzene, toluene, tetrahydrofuran, dioxane, acetone or methyl ethyl ketone to yield an acid chloride. This acid chloride then reacted with intermediate III, (optionally in the presence of the bases such as Et₃N, pyridine, NaOH, KOH, Na₂CO₃, K₂CO₃, NaHCO₃) at a temperature from -40 °C to the boiling point of the solvent for 3 minutes to 8 hours to afford the Intermediate II may be obtained from the solvent for 3 minutes to 8 hours to afford the

[0038] Intermediate II may be obtained from the ester (made by known methods such as those described in EP 0 083 055 A2) by reacting with K_2CO_3 , NaOH, or KOH in ethanol, then with an inorganic acid such as hydrochloric acid. Intermediate III (where R_3 is alkyl) may be obtained from the known reactions of an aldehyde with IV in the presence or absence of ammonium hydroxide.

HN
$$\stackrel{R4}{=}$$
 + R3-CHO $\stackrel{R3}{=}$ + R3-CHO $\stackrel{R3}{=}$ $\stackrel{R4}{=}$ $\stackrel{R5}{=}$ $\stackrel{R4}{=}$ $\stackrel{R4}{=}$ $\stackrel{R4}{=}$ $\stackrel{R4}{=}$ $\stackrel{R5}{=}$ $\stackrel{R4}{=}$ $\stackrel{R4}{=}$ $\stackrel{R4}{=}$ $\stackrel{R4}{=}$ $\stackrel{R5}{=}$ $\stackrel{R4}{=}$ $\stackrel{R4}{=}$

Ether, thioether, amine linkages

[0040] For structure II (where X is O S, NH) and structure III (where Y=Cl, OSO₂CH₃, etc.), compounds II are

reacted with the intermediates III in the presence of bases such as Et_3N , pyridine, NaOH, KOH, Na₂CO₃, K₂CO₃, NaHCO₃, NaH, NaOCH₃, NaOC₂H₅, in a solvent such as tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, acetonitrile, N,N-dimethylformamide at a temperature from -40°C to the boiling point of the solvent for 30 minutes to 18 hours to afford the final product I.

Scheme 2

5

10

15

25

30

35

40

45

[0041] For structure II where X is for example CO_2 , $OCH(R_6)CO_2$, $SCH(R_6)CO_2$, $CH_2CH(CI)CO_2$ or $CH_2CH(CI)CO_2$ [0042] Compounds II or their sodium, potassium salts are reacted with the one of the following regents: $SOCI_2$, $(COCI)_2$, $COCI_2$, PCI_3 or $POCI_3$ in a solvent such as chloroform, dichloromethane, carbon tetrachloride, hexane, benzene, toluene, tetrahydrofuran, dioxane, acetone or methyl ethyl ketone to yield an acid chloride. This acid chloride then reacted with intermediate V, (optionally in the presence of the bases such as Et_3N , pyridine, NaOH, KOH, Na_2CO_3 , K_2CO_3 or $NaHCO_3$) at a temperature from -40 °C to the boiling point of the solvent for 3 minutes to 8 hours to afford the final product I.

[0043] Intermediates V were prepared by known methods, for example see EP 0 567 827 A1.

Scheme 3

[0044] The preparation of the salts of formula I, for example, is straightforward as shown:

[0045] The salts of formula I can be prepared from I in ethanol or other solvent with HCI, CH_3CO_2H , H_3PO_4 , HO_2CCO_2H etc. or other acids.

[0046] The present invention now will be described in further detail with reference to Examples in order to further guide its practitioner. However, it should be understood that the present invention is by no means restricted by these specific Examples.

PREPARATION EXAMPLE A (Compound No. 15)

[0047]

[0048] 2-(4-Chloro-2-fluoro-5-ethoxycarbonylmethoxyphenyl)-4,5,6,7-tetrahydro-2H-isoindole-1,3-dione (4.0g, made substantially by the methods described in EP 0 083 055 A2) and KOH (85%, 2.1g) in 50ml ethanol were stirred at room temperature for 1 hour and then evaporated to dryness. To the residue was added 100ml chloroform and 8ml SOCl₂. The reaction mixture was then heated to reflux for 2 hours. Potassium chloride was filtered and washed with fresh chloroform. The filtrate was evaporated to dryness. To the residue was added 50ml chloroform and 1.5g 1-hydroxymethyl-(1H)-1,2,4-triazole. The reaction mixture was then stirred at room temperature for 5 hours. Water was added to the mixture, the organic layer was separated and washed with water and brine, dried and concentrated. The residue was purified by silica gel column chromatography to give 2.0g of 2-(4-chloro-2-fluoro-5-[(1,2,4-triazolylmethoxy)-carbonylmethoxy]phenyl)-4,5,6,7-tetrahydro-2H-isoindole-1,3-dione (Compound No. 15). M.P. 151-154 °C.

PREPARATION EXAMPLE B (Compound No. 43)

[0049]

35

40

45

[0050] 2-(4-Chloro-2-fluoro-5-hydroxyphenyl)-4,5,6,7-tetrahydro-2H-isoindole-1,3-dione (4.0g, made by substantially following the methods of EP 0 083 055 A2), K_2CO_3 in 50 ml methyl ethyl ketone and 2.0g chloromethyl-1,2,4-triazole hydrochloride and then the mixture were heated to reflux for 5 hrs. After cooling the mixture was filtered and evaporated. Water and ethyl acetate were added to the residue. The organic layer was separated and washed with water and brine, dried and concentrated. The residue was purified by silica gel column chromatography to give 2.6g of 2-[4-chloro-2-fluoro-5-[(1,2,4-triazol-1H-yl)-methoxy]phenyl]-4,5,6,7-tetrahydro-2H-isoindole-1,3-dione (Compound No. 43) as an oil.

¹H NMR (CDCl₃): 8.32(s,1H), 8.01(s,1H), 7.28(d,2H), 7.06(d,2H), 6.04(s,2H), 2.44(bs,4H), 1.83(bs,4H).

PREPARATION EXAMPLE C (Compound No. 1334)

[0051]

5

10

[0052] To a suspension of 60% NaH(0.5g) in 5 ml N,N-dimethylformamide was added 0.8g of 3-[4-chloro-2-fluoro-5-hydroxyphenyl]-6-trifluoromethyl-2,4-pyrimidione (made by substantially following the methods of EP 0 255 047 A1). After 10 minutes, 0.8g chloromethyl-1,2,4-triazole hydrochloride was added and then the mixture was heated at the bath of 80 °C for 8 hrs. After cooling, water and ethyl acetate were added to the mixture. The organic layer was separated and washed with water and brine, dried and concentrated. The residue was purified by silica gel column chromatography to give 0.75g of 3-[4-chloro-2-fluoro-5-[(1,2,4-triazol-1H-yl)-methoxy]phenyl]-6-trifluoromethyl-2,4-pyrimidione (compound 1334), mp. 216-219 °C

¹H NMR (acetone-D₆): 8.64(s,1H), 7.96(s,1H), 7.55(d,2H), 7.52(d,2H), 6.36(s,1H), 6.27(s,2H).

PREPARATION EXAMPLE D (Compound No. 1335)

[0053]

30

35

45

50

55

[0054] To a suspension of 60% NaH(0.08g) in 5 ml N,N-dimethylformamide was added 0.5g of 3-[4-chloro-2-fluoro-5-[(1.2,4-triazol-1H-yl)-methoxy]-phenyl]-6-trifluoromethyl-2,4-pyrimidione (compound 1334). After 10 minutes, 0.2g of dimethyl sulfate was added and then the mixture was stirred at room temperature overnight. Water and ethyl acetate were added to the mixture. The organic layer was separated and washed with water and brine, dried and concentrated. The residue was purified by silica gel column chromatography to give 0.2g of 1-methyl-3-[4-chloro-2-fluoro-5-[(1,2,4-triazol-1H-yl)-methoxy]phenyl]-6-trifluoromethyl-2,4-pyrimidione (compound 1335).

¹H NMR (CDCl₃): 8.31(s,1H), 7.98(s,1H), 7.36(d,2H), 7.07(d,2H), 6.60(s,1H), 6.06(s,2H), 4.00(s,3H).

PREPARATION EXAMPLE E (Compound No. 1870)

[0055]

5

10

20

15 [0056] 2-[4-Chloro-2-fluoro-5-[(1,2,4-triazol-1H-yl)-methoxy]phenyl]-4,5,6,7-tetrahydro-2H-isoindole-1,3-dione (2.0g) and hydrochloride acid (36%, 0.7g) in 20ml ethanol were stirred at room temperature for 10 minutes and then evaporated to dryness. To the residue was added 5 ml acetone and the mixture was filtered and dried to obtain 1.6g of hydrochloride salt of 2-[4-chloro-2-fluoro-5-[(1,2,4-triazol-1H-yl)methoxy]phenyl]-4,5,6,7-tetrahydro-2H-isoindole-1,3-dione (Compound No. 1870) as a solid.

 $^{1}\text{H NMR (DMSO-D}_{6},\ 300\text{MHz}):\ 8.79(\text{s},1\text{H}),\ 8.12(\text{s},1\text{H}),\ 7.70(\text{d},1\text{H}),\ 7.28(\text{d},1\text{H}),\ 6.25(\text{s}.2\text{H}),\ 4.96(\text{s},2\text{H}),\ 2.36(\text{bs},4\text{H}),\ 1.75(\text{bs},4\text{H}).$

[0057] The compounds of formula I are useful as an active ingredient for herbicides. When the compound of formula I of the present invention is used as a herbicide, the active ingredient can be used in a suitable formulation depending upon the particular purpose and by a suitable application method. Usually, the active ingredient is diluted with an inert liquid or solid carrier, and used in the form of a formulation such as a dust, a wettable powder, an emulsifiable concentrate, aqueous or oil suspension, pellets, granules, etc., If desirable one may also add a surfactant and/or other additive. Furthermore, one of ordinary skill in the art will recognize that the compound of the present invention may be used in combination with an insecticide, a nematocide, a fungicide, other herbicides, a plant growth controlling agent, a fertilizer, etc.

[0058] The compounds of the present invention can be used in the form of compositions or formulations. Examples of the preparation of compositions and formulations can be found in the American Chemical Society publication "Pesticidal Formulation Research," (1969), Advances in Chemistry Series No. 86, written by Wade Van Valkenburg; and the Marcel Dekker, Inc. publication "Pesticide Formulations", (1973) edited by Wade Van Valkenburg. In these compositions and formulations, the active substance is mixed with conventional inert agronomically acceptable (i.e., plant compatible and/or pesticidally inert) pesticide diluents or extenders such as solid carrier material or liquid carrier material, of the type usable in conventional pesticide compositions or formulations. By "agronomically acceptable carrier" is meant any substance which can be used to dissolve, disperse of diffuse the active ingredient in the composition without impairing the active ingredient's effectiveness and which by itself has no significant detrimental effect on the soil, equipment, desirable plants, or agronomic environment. If desired, adjuvants such as surfactants, stabilizers, antifoam agents and anti-drift agents may also be combined. Compositions and formulations according to the present invention may also include known pesticidal compounds. This expands the spectrum of activity of the preparation and may give rise to synergism.

[0059] The formulations, contain from about 0.1% to 99% by weight of active ingredient(s) and at least one of (a) about 0.1% to 20% surfactant(s) and (b) about 1% to 99.9% solid or liquid diluent(s).

[0060] If the compound of formula(I) is formulated with an additional herbicide, the concentration of active ingredient(s) in the compositions can vary within a wide range, depending on the active compound, the applications for which they are destined, the environmental conditions and the kind of formulation. The concentration of active ingredient(s) in the compositions is generally between 1% to 95%, preferably between 5% to 60%.

[0061] The formulations now will be described in detail with reference to typical Formulation Examples and do not limit the scope of this invention. In the following Formulation Examples, "parts" means "parts by weight". The compound number of the active ingredient corresponds to the one in Tables 1-24.

55 Formulation Examples 1a-c

[0062] Compound No. 1, 15 or 43 (all 50 parts), 5 parts of polyoxyethylene alkylaryl ether, 5 parts of sodium dodecylbenzenesulfate and 40 parts of synthetic hydrated silicon dioxide are well mixed while being powdered in order

to obtain a 50% wettable powder.

Formulation Example 2

5

10

20

30

35

[0063] Compound No. 35 (10 parts), 6 parts of polyoxyethylene alkylaryl ether, 4 parts of sodium dodecylbenzenesulfate, 30 parts of xylene and 50 parts of cyclohexanone are well mixed while being powdered in order to obtain a 10% by weight emulsifiable concentrate.

Formulation Example 3

[0064] Compound No. 15 (20 parts), 2 parts of synthetic hydrated silicon dioxide, 3 parts of polyoxyethylene sorbitan monooleate, 5 parts of carboxymethyl cellulose and 70 parts of water are well mixed and pulverized until the particle size of the active ingredient becomes less than 5 microns in order to obtain a 20% by weight granule.

15 Formulation Example 4

[0065] Compound No. 15 (5 parts), 1 part of isopropyl acid phosphate, 64 parts of kaolin clay and 30 parts of talc are well mixed and pulverized until the particle size of the active ingredient becomes less than 5 microns in order to obtain a 5% by weight dust.

Formulation Example 5

[0066] Compound No. 15 (25 parts), 3 parts of polyoxyethylene sorbitan monooleate, 2 parts of polyvinyl alcohol and 70 parts of water are well mixed and pulverized until the particle size of the active ingredient becomes less than 5 microns in order to obtain a 25% an aqueous suspension.

[0067] The effective dose of the compounds of the present invention is usually within a range of from 1g/ha to 3kg/ha, preferably from 5g/ha to 500g/ha.

Biological testing

[0068] The herbicidal activity of compounds of formula (I) with respect to weeds such as *Bidens pilosa* (beggartick, BID), *Solanum nigrum* (nightshade, NS), *Polygonum lapathifolium* (smartweed, SMT), *Abutilon theophrasti* (velvetleaf, VEL) was evaluated.

[0069] For each compounds, the evaluation tests were carried out according to the following operating procedures.

[0070] For preemergence tests, immediately after planting, the test compound was sprayed directly onto the soil surface. The flats or pots were placed in the greenhouse and then watered. For postemergence tests, the seeds were allowed to germinate and grow for 10 to 21 days. Before application, each series of development. The test plants were selected for uniformity, size and stage of development. The test plants were then treated with the test compound, returned to the greenhouse and watered. The plants not treated with the compound under evaluation were used as a comparison.

[0071] The compound to be evaluated was dissolved in an appropriate solvent, usually acetone, or the formulation of the evaluated compounds was added to the water, and sprayed over the flats or pots using a carrier volume equivalent to 187 or 468 liters per hectare at the rate of application in grams per hectare (g/ha). About two or four week s after application of the test compounds, the state of the plant was observed. Each species was evaluated on a scale of 0-100 in which 0 equals no activity and 100 equals total control. Some of the test results are shown in Table 26.

Table 26

Compound	Туре	g/ha	BID	NS	SMT	VEL
15	POST	150	60	100	40	100
43	POST	1200	100	100	100	100

55 Claims

50

1. A compound represented by formula I

10	wherein	
	R ₁ R ₂ R ₃	is selected from H, F, Br, Cl, NO ₂ and CN; is selected from F, Cl, Br, H and CN;
15	R_4 and R_5	is selected from H and CN; and alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, cycloalkenyl, haloalkenyl, haloalkynyl, alkoxy, alkylthio, alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonylcycloalkyl, alkylsulfinylcycloalkyl, aryl, arylalkyl, heteroaryl and heteroarylalkyl, all of which may be further substituted;
	114 4114 115	alkylthio, alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonylcycloalkyl, alkylsulfinylcycloalkyl, CO ₂ R ₆ , CONR ₆ R ₁₃ , OR ₆ , SR ₆ , SO ₂ R ₆ , NR ₆ R ₁₃ , SO ₂ NR ₆ R ₁₃ , aryl anylalkyl, betaronyl and betaragetter.
20	R_G	is selected from H, alkyl, cycloalkyl, alkoxy, alkylthio, alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl,
	R ₇	cycloalkyl, alkylsulfinylcycloalkyl, aryl and arylalkyl, all of which may be further substituted; is selected from H, alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, alkylsulfonylalkyl, alkylsulfinylcycloalkyl, alkylsulfinylcycloalkyl and COR ₉ , all of which may be further substituted; is selected from alkyl, haloalkyl, arylandlad, and core alkyl, haloalkyl, and core alkyl, and core alkyl, baloalkyl, and core alkyl, alkylsulfinylalkyl, alkylsulfinyl
25	R ₈ R ₉ i	fonylcycloalkyl, alkylsulfinylcycloalkyl, aryl and arylalkyl, all of which may be further such at the state of the state o
30	R ₁₀	s selected from H, alkyl, alkylsulfonylalkyl, alkylsulfinylalkyl, alkylsulfonylcycloalkyl, alkylsulfinylcycloalkyl, alkylsulfonylcycloalkyl, alkylsulfinylcycloalkyl, alkylsulfonylcycloalkyl, alkyl
		same or different, CH ₂ CN, CH ₂ CH=CH ₂ , CH ₂ C=CH, CH ₂ CO ₂ (alkyl), CH ₂ OCH ₃ and CH ₂ -1,2,4-triazole, all of which may be further substituted:
	R ₁₁ R ₁₂	is selected from H, CN, alkyl, haloalkyl and CO _o (alkyl)·
35	R ₁₃	is selected from H, alkyl, CO_2R_6 , $CONR_6R_{13}$, OR_6 , SR_6 , SO_2R_6 , $SO_2NR_6R_{13}$ and NR_6R_{13} ; is H, alkyl, aryl or arylalkyl;
	A	is N or CH;
	B	is N or CR ₁₀ ;
	Z X	is O, CH(R ₃), CO, CS, CONR ₁₂ or CSNR ₁₂ ;
40	^	is selected from O, S, NR ₁₂ , CO ₂ , OCH(R ₆)CO ₂ , SCH(R ₆)CO ₂ , CH=C(halo)CO ₂ , CH ₂ CH(halo)CO ₂ , CONH, OCH(R ₆)CONH, SCH(R ₆)CONH, CH=C(halo)CONH and CH ₂ CH(halo)CONH when Z is CH(R ₃);
	X	is selected from CO, OCH(R ₆)CO, SCH(R ₆)CO, CH=C(halo)CO and CH ₂ CH(halo)CO when Z is O;
45	X	is selected from O, S, CO, OCH(R_6), CH=C(halo), CH ₂ CH(halo), CONH, OCH(R_6)CONH, CH=C(halo)CONH, CH ₂ CH(halo)CONH and NR ₁₂ when Z is CO, CS, CONR ₁₂ or CSNR ₁₂ ; and
	Q	is selected from NR ₇ COR ₈ , Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 and Q16 wherein
50		Q1 is 4,5,6,7-tetrahydrophthalimid-2-yl, Q2 is 5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyridin-3(2H)-one- 1-yl,
		Q3 is 5,6,7,8-tetrahydro-1H,3H-[1,3,4]thiadiazolo[3,5-a]pyridazineimin- 1-yl, Q4 is 4,5,6,7-tetrahydroimidazo[1,5-a]pyridine-1,3(2H,5H)-dione-2-yl, Q5 is 1,6,8-triazabicyclo[4,3,0]-nonane-7,9-dion-8-yl, Q6 is 5-(1-methyethylidene)-2,4-oxazolidinedione-3-yl,
55		Q7 is 5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2(3H)-one-3-yl, Q8 is 4-difluoromethyl-4,5-dihydro-3-methyl-1,2,4-triazol-5(1H)-one-1-yl, Q9 is 2-methyl-1,2,4-oxadiazolidine-3,5-dione-4-yl, Q10 is 4-chloro-1-methyl-5-difluoromethoxy-1H-pyrazol-3-yl,

Q11 is 4-bromo-1-methyl-5-trifluoromethyl-1H-pyrazol-3-yl,

Q12 is 1-substituted-6-trifluoromethyl-2,4-pyrimidione-3-yl,

Q13 is 1-substituted-6-trifluoromethyl-1,3,5-triazine-2,4-dione-1-yl,

Q14 is 4,5-disubstituted-4,5-dihydro-1,2,4-triazine-3(2H)-one-2-yl,

Q15 is 4-substituted-1,2,4-triazine-3,5(2H,4H)-dione-2-yl and

Q16 is 5-methyl-6-oxo-4-(trifluoromethyl)-6H-pyridazin-1-yl;

or the agronomically acceptable salts thereof.

10 2. The compound of claim 1 wherein

 R_3

5

15

20

25

30

35

40

45

50

 R_6

 R_7

Ra

 R_9

R₁₀

R₁ is selected from H, F, Br, Cl, NO₂ and CN;

R₂ is selected from F, Cl, Br, H and CN;

is selected from H, CN and halo; and (C_1-C_{12}) alkyl, $cyclo(C_3-C_8)$ alkyl, (C_2-C_{12}) alkenyl, $cyclo(C_3-C_8)$ alkenyl, (C_2-C_{12}) alkynyl, halo (C_1-C_{12}) alkyl, halo (C_2-C_{12}) alkenyl, halo (C_2-C_{12}) alkynyl, (C_1-C_{12}) alkylylylinio, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkylsulfonylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkyl, aryl, halo (C_1-C_{12}) alkyl, halo (C_1-C_{12}) alkoxy, halo (C_1-C_{12}) alkyl, aryl, heteroaryl, aryl (C_1-C_{12}) alkyl and heteroaryl (C_2-C_{12}) alkyl, all of which may be further substituted with from one to three substituents independently selected from bromo, chloro, fluoro, (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, (C_2-C_{12}) alkenyl, cyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkyl, halo (C_2-C_{12}) alkyl, halo (C_2-C_{12}) alkyl, halo (C_2-C_{12}) alkyl, halo (C_2-C_{12}) alkylsulfonyl, (C_1-C_{12}) alkylsulfonyl, (C_1-C_{12}) alkylsulfonyl, phen (C_2-C_{12}) alkylyl, phen (C_2-C_{12}) alkynyl, cyano, halo (C_1-C_{12}) alkoxy, 1,3-dioxalan-2-yl and nitro;

R₄ and R₅ are each independently selected from H, halo and CN; and (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkyl, (C_1-C_{12}) alkoxy, (C_1-C_{12}) alkylthio, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkoxy, cyano (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkylthio, halocyclo (C_3-C_8) alkyl, councyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkylthio, halocyclo (C_3-C_8) alkyl, councyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkylthio, halocyclo (C_3-C_8) alkyl, councyclo (C_3-C_8) alkyl, aryl, heteroaryl, aryl (C_1-C_{12}) alkyl and heteroaryl (C_2-C_{12}) alkyl, all of which may be further substituted with from one to three substituents independently selected from bromo, chloro, fluoro, (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, (C_2-C_{12}) alkenyl, cyclo (C_3-C_8) alkenyl, (C_2-C_{12}) alkynyl, halo (C_1-C_{12}) alkyl, halo (C_2-C_{12}) alkynyl, halo (C_2-C_{12}) alkylsulfinyl, phenyl, phenyl, (C_1-C_{12}) alkyl, phen (C_2-C_{12}) alkenyl, phen (C_2-C_{12}) alkenyl, cyano, halo (C_1-C_{12}) alkoxy, 1,3-thoxalan-2-yl and nitro;

is selected from H, (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfinyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkoxy, cyano (C_1-C_{12}) alkyl, cyanocyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkoxy, halo (C_1-C_{12}) alkylthio, halocyclo (C_3-C_8) alkyl, aryl and aryl (C_1-C_{12}) alkyl;

is selected from H, (C_1-C_{12}) alkyl, $cyclo(C_3-C_8)$ alkyl, halo (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfonylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfonylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkoxy, (C_1-C_{12}) alkoxy, (C_1-C_1) alkoxy, (C_1-C_1) alkoxy, halo (C_1-C_1) alkylthio, halocyclo (C_3-C_8) alkyl and (C_1-C_1) alkylthio, halocyclo (C_3-C_8) alkyl

is selected from (C_1-C_{12}) alkyl, $cyclo(C_3-C_8)$ alkyl, $cyclo(C_3-C_8)$ alkenyl, $halo(C_1-C_{12})$ alkyl, (C_1-C_{12}) alkyl, (C_1-C_{12}) alkyl, (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfinyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkoxy, (C_1-C_{12}) alkyl, (C_1-C_{12}) alkoxy, (C_1-C_{12}) alkyl, (C_1-C_{12}) alkoxy, (C_1-C_{12}) alkyl, (C_1-C_1) al

is selected from H, (C_1-C_{12}) alkyl, (C_2-C_{12}) alkenyl, cyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonyl (C_1-C_{12}) alkyl, (C_1-C_{12}) alkylsulfonylcyclo (C_3-C_8) alkyl, (C_1-C_{12}) alkylsulfinylcyclo (C_3-C_8) alkyl, cyano (C_1-C_{12}) alkoxy, cyano (C_1-C_{12}) alkyl, cyanocyclo (C_3-C_8) alkyl, halo (C_1-C_{12}) alkoxy, halo (C_1-C_{12}) alkoxy, halo (C_1-C_{12}) alkylthio and halocyclo (C_3-C_8) alkyl;

is selected from H, chloro, NH₂, (C₁-C₁₂)alkyl, halo(C₁-C₁₂)alkyl, CN, (C₁-C₁₂)alkylsulfonyl(C₁-C₁₂)alkyl, (C₁-C₁₂)alkylsulfinyl(C₁-C₁₂)alkyl, (C₁-C₁₂)alkylsulfonylcyclo(C₃-C₈)alkyl, (C₁-C₁₂)alkylsulfinylcyclo(C₃-C₈)alkyl, cyano(C₁-C₁₂)alkoxy, cyano(C₁- C₁₂)alkyl, cyanocyclo(C₃-C₈)alkyl, halo(C₁-C₁₂)alkoxy, halo(C₁- C₁₂)alkylhio, halocyclo(C₃-C₈)alkyl, CO₂(C₁-C₁₂)alkyl, CONH(C₁-C₁₂)alkyl, CON((C₁-C₁₂)alkyl)₂, CH₂CN, CH₂CH=CH₂, CH₂C=CH, CH₂CO₂(C₁-C₁₂)alkyl,

		EP 1 061 075 A2
		CH ₂ OCH ₃ , CH ₂ -1,2,4-triazole;
	R ₁₁ R ₁₂	is selected from H, CN, (C_1-C_{12}) alkyl, halo (C_1-C_{12}) alkyl and $CO_2(C_1-C_{12})$ alkyl; is selected from H, (C_1-C_{12}) alkyl, CO_2R_2 , $CON((C_2-C_{12})$ alkyl), CO_2
5	R ₁₃ A	C_{12})alkyl) R_{13} and $N((C_1-C_{12})$ alkyl) R_{13} ; is H, (C_1-C_{12}) alkyl, aryl or aryl (C_1-C_{12}) alkyl; is N or CH;
	В	is N or CR ₁₀ ;
	Z X	is O, CH(R ₃), CO, CS, CONR ₁₂ or CSNR ₁₂ ; is selected from O, S, NR ₂ , CO, OCH(R ₁) CO, OCH(R ₁)
10	X X	is selected from O, S, NR_{12} , CO_2 , $OCH(R_6)CO_2$, $SCH(R_6)CO_2$, $CH=C(CI)CO_2$, $CH_2CH(CI)CO_2$, $CONH$, $OCH(R_6)CONH$, $SCH(R_6)CONH$, $CH=C(CI)CONH$ and $CH_2CH(CI)CONH$ when Z is $CH(R_3)$; is selected from CO, $OCH(R_6)CO$, $SCH(R_6)CO$, $CH=C(CI)CO$, $CH_2CH(CI)CO$ when Z is O; is selected from O, S, $COCCON(R_6)CO$, $CH=C(CI)CO$, $CH_2CH(CI)CO$ when Z is O;
		is selected from 0, S, CO, OCH(R_6), CH=C(CI), CH ₂ CH(CI), CONH, OCH(R_6)CONH, CH=C(CI)CONH and NR ₁₂ when Z is CO, CS, CONR ₁₂ or CSNR ₁₂ ;
15	Q	is selected from NR ₇ COR ₈ , Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 and Q16;
	or the agre	pnomically acceptable salts thereof.
20	3. The comp	ound of claim 2 wherein
	R ₁ R ₂	is H, F or CI; is CI;
25	R ₃	is selected from H, bromo, chloro, fluoro, (C_1-C_6) alkyl, cyclo (C_5-C_6) alkyl, (C_2-C_6) alkenyl, cyclo (C_3-C_6) alkenyl, halo (C_2-C_6) alkynyl, halo (C_2-C_6) alkynyl, halo (C_2-C_6) alkylthio, aryl, heteroaryl, aryl (C_1-C_1) alkyl and heteroaryl (C_2-C_1) alkyl wherein the aryl or heteroaryl group is selected from function, naphthalene, phenyl, pyrazole, pyridine, pyrimidine, thiophene and triazole, said aryl, and betavaguit groups are the property of the said aryl, and betavaguit groups are the property of the said aryl, and betavaguit groups are the property of the said aryl, and betavaguit groups are the said aryl, and are the said are t
30		ophene and triazole, said aryl and heteroaryl group may be further substituted with from one to three substituents independently selected from bromo, chloro, fluoro, (C_1-C_{12}) alkyl, cyclo (C_3-C_8) alkyl, (C_2-C_{12}) alkenyl, cyclo (C_3-C_8) alkenyl, (C_2-C_{12}) alkynyl, halo (C_1-C_{12}) alkyl, halo (C_2-C_{12}) alkenyl, halo (C_2-C_{12}) alkylyl, halo (C_2-C_{12}) alkylsulfinyl, halo (C_1-C_{12}) alkylsulfinyl, phen (C_1-C_{12}) alkyl, phen (C_1-C_{12}) alkyl, phen (C_2-C_{12}) alkyl, phen (C_2-C_{12}) alkyl, cyano, halo (C_1-C_{12}) alkoxy, 1,3-dioxalan-2-yl and nitro;
35	R ₄ and R ₅	are each independently selected from H, bromo, chloro, fluoro, CN, (C_1-C_6) alkyl, cyclo (C_5-C_6) alkyl, halo (C_1-C_6) alkyl, (C_1-C_6) alkyl, (C_1-C_6) alkyl), (C_1-C_6) alkyl), (C_1-C_6) alkyl), (C_1-C_1) alkyl
40		phenyl, pyrazole, pyridine, pyrimidine, thiophene and triazole, said aryl and heteroaryl group may be further substituted with from one to three substituents independently selected from bromo, chloro, (C_1-C_{12}) alkyl, (C_2-C_{12}) alkyl, (C_2-C_{12}) alkenyl, (C_2-C_{12}) alkenyl, (C_2-C_{12}) alkenyl, (C_2-C_{12}) alkenyl, halo (C_2-C_1) alkenyl
45	R ₆	C ₁₂)alkylsulfonyl, (C_1-C_{12}) alkylsulfinyl, phenyl, phenyl, phen (C_1-C_{12}) alkyl, phen (C_2-C_{12}) alkylsulfinyl, phen (C_2-C_{12}) alkynyl, cyano, halo (C_1-C_{12}) alkoxy, 1,3-dioxalan-2-yl and nitro; is selected from H, (C_1-C_{12}) alkyl, aryl and aryl (C_1-C_6) alkyl, where the aryl group is naphthyl or phenyl;
	R ₇	is selected from H, (C ₁ -C ₁₂)alkyl, cyclo(C ₂ -C ₆)alkyl, halo(C ₁₂ C ₁₋₁)alkyl, and COD
	R ₈	aryl(C_1 - C_6)alkyl; cyclo(C_3 - C_8)alkyl, cyclo(C_3 - C_8)alkenyl, halo(C_1 - C_{12})alkyl, aryl and
50	R_9	is selected from H, (C_1-C_6) alkyl, (C_2-C_{12}) alkenyl, (C_2-C_6) alkenyl, cyclo (C_3-C_8) alkyl, cyclo (C_5-C_6) alkyl, halo (C_1-C_1) alkyl, halo (C_1-C_6) alkyl;
	R ₁₀	is selected from H, chloro, NH ₂ , (C ₁ -C ₆)alkyl, halo(C ₁ -C ₁₂)alkyl, halo(C ₁ -C ₆)alkyl, CN, CO ₂ (C ₁ -C ₁₂)alkyl, CONH(C ₁ -C ₁₂)alkyl, CN, CO ₂ (C ₁ -C ₁₂)
	_	C_{12})alkyl, CONH(C_1 - C_{12})alkyl, CON((C_1 - C_{12})alkyl) ₂ , CH ₂ CN, CH ₂ CH=CH ₂ , CH ₂ C=CH, CH ₂ CO ₂ (C_1 - C_{12})alkyl, CH ₂ OCH ₃ , CH ₂ -1,2,4-triazole:

R₁₁ R₁₂ is selected from H, (C_1-C_8) alkyl, CO_2R_6 , $CON((C_1-C_8)$ alkyl) R_6 , OR_6 , SR_6 , SO_2R_6 , $SO_2N((C_1-C_8)$ alkyl) R_6 , SO_2R_6 , $SO_2N((C_1-C_8)$ alkyl) R_6 , $SO_2N((C_1-C_8))$ alkyl) R_6

 C_8)alkyl) R_{13} and $N((C_1-C_8)$ alkyl) R_{13} ;

 R_{13} is H, (C_1-C_8) alkyl, aryl or aryl (C_1-C_6) alkyl where the aryl group is naphthyl or phenyl; is N or CH;

	В	is N or CR ₁₀ ;
	Z	is O, CH(R_3), CO, CS, CON R_{12} or CSN R_{12} ;
	Χ	is selected from O, S, NH, CO_2 , OCH(R_6) CO_2 , SCH(R_6) CO_2 , CH=C(CI) CO_2 , CH ₂ CH(CI) CO_2 ,
		CONH, OCH(R ₆)CONH, SCH(R ₆)CONH, CH=C(CI)CONH and CH ₂ CH(CI)CONH when Z is CH(R ₃);
5	Χ	is selected from CO, OCH(R ₆)CO, SCH(R ₆)CO, CH=C(CI)CO and CH ₂ CH(CI)CO when Z is O;
	Χ	is selected from O, S, CO, OCH(R_6), CH=C(CI), CH ₂ CH(CI), CONH, OCH(R_6)CONH,
		SCH(R ₆)CONH, CH=C(Cl)CONH, CH ₂ CH(Cl)CONH and NR ₁₂ when Z is CO, CS, CONR ₁₂ or
		CSNR ₁₂ ;
	Q	is NR ₇ COR ₈ , or selected from Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15
10		and Q16;

			nomically acceptable salts thereof selected from those formed from hydrochloric acid, sulfuric acid, ace- pionic acid, phosphoric acid and oxalic acid.
15	4.	The compo	und of claim 3 wherein
		R ₁	is H, F or Cl;
		R_2	is CI;
20		R ₃	is selected from H, bromo, chloro, fluoro, (C_1-C_6) alkyl, cyclo (C_5-C_6) alkyl, (C_2-C_6) alkenyl, cyclo (C_3-C_8) alkenyl, (C_2-C_6) alkynyl, halo (C_1-C_6) alkyl, halo (C_2-C_6) alkenyl, halo (C_2-C_6) alkynyl, (C_1-C_6) alkylhio, 3-furyl, 4-chloro-2-furyl, 5-chloro-2-furyl, 5-chloro-3-furyl, 2, 5-dichloro-3-furyl, 1-naphthyl, 2-naphthyl, 4-methylphenyl, 4-methylphenyl, 4-nitrophenyl, 4-fluorophenyl, 4-chlorophenyl, 4-fluorophenyl, 4-trifluorophenyl, 4-tr
25			omethoxyphenyl, 4-cyanophenyl, 3-(1,3-thoxolan-2-yl)phenyl, 2-fluorophenyl, 2-chlorophenyl, 2-trif-luoromethoxyphenyl, 3,5-difluorophenyl, 3,5-dichlorophenyl, 2,4-difluorophenyl, 2, 5-difluorophenyl, 3-chloro-4-fluorophenyl, 3,4-difluorophenyl, 3-fluoro-5-trifluoromethylphenyl, 3,4,5-trifluorophenyl, 2-pyridyl, 4-chloro-2-pyridyl, 4-chloro-2-pyridyl, 5-bromo-3-pyridyl, 5,6-dichloro-3-pyridyl, 5-chloro-3-pyridyl, 5-fluoro-3-pyridyl, 4-pyridyl, 2-chloro-4-pyridyl, 2-chloro-4-pyridyl, 2-chloro-4-pyridyl, 2-chloro-4-pyridyl, 4-pyridyl, 4
30			dyl, 2-chloro-6-methyl-4-pyridyl, 2-methyl-4-pyridyl, 2-methoxy-4-pyridyl, 2-cyano-4-pyridyl, 2,6-dif-luoro-4-pyridyl, 2, 6-dichloro-4-pyridyl, 2-thienyl, 3-thienyl, 4-chloro-2-thienyl, 5-chloro-2-thienyl, 5-chloro-3-thienyl and 2,5-dichloro- 3-thienyl;
		R ₄ and R ₅	are each independently selected from H, bromo, chloro, fluoro, CN, (C_1-C_6) alkyl, cyclo (C_5-C_6) alkyl, halo (C_1-C_6) alkyl, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, CO_2R_6 , $CONHR_6$, $CON((C_1-C_6)$ alkyl) R_6 , OR_6 , SR_6 , SO_2R_6 , NHR_6 , 3 -furyl, 4-chloro-2-furyl, 5-chloro-2-furyl, 5-chloro-3-furyl, 2,5-dichloro-3-furyl, 1-
35			naphthyl, 2-naphthyl, phenyl, 4-methylphenyl, 4-methoxyphenyl, 4-nitrophenyl, 4-fluorophenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 4-bromophenyl, 4-chlorophenyl, 3-fluorophenyl, 4-trifluoromethoxyphenyl, 4-cyanophenyl, 3-(1,3-thoxolan-2-yl)phenyl, 2-fluorophenyl, 2-chlorophenyl, 2-trifluoromethoxyphenyl, 3, 5-difluorophenyl, 3,5-dichlorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 3-chloro-4-fluorophenyl, 3,4-difluorophenyl, 3-fluoro-5-trifluoromethylphenyl, 3,4,5-trifluorophenyl, 2-
40			pyridyl, 4-chloro-2-pyridyl, 6-chloro-2-pyridyl, 4,6-dichloro-2-pyridyl, 3-pyridyl, 5-bromo-3-pyridyl, 5,6-dichloro-3-pyridyl, 5-chloro-3-pyridyl, 5-fluoro-3-pyridyl, 2-fluoro-4-pyridyl, 2-chloro-4-pyridyl, 2-chloro-4-pyridyl, 2-methyl-4-pyridyl, 2-methyl-4-pyridyl, 2-methoxy-4-pyridyl, 2-cyano-4-pyridyl, 2,6-dif-luoro-4-pyridyl, 2-fluoro-4-pyridyl, 2-thienyl, 3-thienyl, 4-chloro-2-thienyl, 5-chloro-3-thienyl and 2,5-dichloro-3-thienyl;
45		R ₆	is selected from H, (C ₁ -C ₆)alkyl, 1-naphthyl, 2-naphthyl, phenyl, 4-methylphenyl, 4-methoxyphenyl, 4-nitrophenyl, 4-fluorophenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 4-bromophenyl, 4-chlorophenyl, 3-fluorophenyl, 4-trifluoromethoxyphenyl, 4-cyanophenyl, 3-(1,3-dioxolan-2-yl)phenyl, 2-fluorophenyl, 2-chlorophenyl, 2-trifluoromethoxyphenyl, 3,5-difluorophenyl, 3,5-difluorophenyl, 2,4-difluorophenyl, 3-fluoro-5-trifluoromethylphenyl
50			and 3,4,5-trifluorophenyl;
		R ₇	is selected from H, (C ₁ -C ₆)alkyl, cyclo(C ₅ -C ₆)alkyl, halo(C ₁ -C ₆)alkyl and COR ₉ ;
		R ₈	is (C_1-C_6) alkyl, cyclo (C_5-C_6) alkyl, halo (C_1-C_{12}) alkyl, 1-naphthyl, 2-naphthyl, phenyl, 4-methylphenyl, 4-methoxyphenyl, 4-nitrophenyl, 4-fluorophenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 4-bromophenyl, 4-chlorophenyl, 3-fluorophenyl, 4-trifluoromethoxyphenyl, 4-cyanophenyl, 3-(1,3-diox-
55			olan-2-yl)phenyl, 2-fluorophenyl, 2-chlorophenyl, 2-trifluoromethoxyphenyl, 3,5-difluorophenyl, 3,5-dichlorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 3-chloro-4-fluorophenyl, 3,4-difluorophenyl, 3-fluoro-5-trifluoromethylphenyl and 3,4,5-trifluorophenyl;
		ь	in colorted from 11.70 C 2-Mark (O C 2-Mar

is selected from H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, cyclo (C_5-C_6) alkyl and halo (C_1-C_6) alkyl;

 R_9

1	
	,

	R ₁₀	is selected from H, chloro, NH ₂ , (C ₁ -C ₆)alkyl, halo(C ₁ -C ₆)alkyl, CN, CO ₂ (C ₁ -C ₆)alkyl, CONH(C ₁ -C ₆)alkyl, CON((C ₁ -C ₆)alkyl) ₂ , CH ₂ CN, CH ₂ CH=CH ₂ , CH ₂ C=CH, CH ₂ CO ₂ (C ₁ -C ₆)alkyl, CH ₂ OCH ₃ and CH ₂ -1,2,4-triazole;
_	B ₁₁	is H, CN, (C_1-C_6) alkyl, halo (C_1-C_6) alkyl and $CO_2(C_1-C_6)$ alkyl;
5	R ₁₂	is selected from H, (C_1-C_8) alkyl, $CO_2(C_1-C_6)$ alkyl, $CON((C_1-C_6)$ alkyl) ₂ , $O(C_1-C_6)$ alkyl, $SO_2(C_1-C_6)$ alkyl, $SO_2(C_1-C_6)$ alkyl) ₂ and $O((C_1-C_6)$ alkyl) ₃ .
	R ₁₃	is H, (C ₁ -C ₆)alkyl, aryl or aryl(C ₁ -C ₄)alkyl where the aryl group is naphthyl or phenyl;
	Α	is N or CH;
	В	is N or CR ₁₀ ;
10	Z	is O, CH(R ₃), CO, CS, CONR ₁₂ or CSNR ₁₂ ;
	X	is selected from O, S, NH, CO ₂ , OCH(R ₆)CO ₂ , SCH(R ₆)CO ₂ , CH=C(CI)CO ₂ , CH ₂ CH(CI)CO ₂ , CONH, OCH(R ₆)CONH, SCH(R ₆)CONH, CH=C(CI)CONH and CH ₂ CH(CI)CONH when Z is CH(R ₃); is selected from CO ₂ CCH(R ₃)CO ₂ COLUMN (SCH(R ₃)CO)CH(R ₃)CO ₃ CH(R ₃)CO ₄ CH(R ₃
	X	is selected from CO OCH/R-1CO SCH/R-1CO CH/CO/CO/CO/CO/CO/CO/CO/CO/CO/CO/CO/CO/CO/
	X	is selected from CO, OCH(R ₆)CO, SCH(R ₆)CO, CH=C(Cl)CO and CH ₂ CH(Cl)CO when Z is O; is selected from O S CO OCH(R ₆)CO, CH=C(Cl)CO and CH ₂ CH(Cl)CO when Z is O;
15		is selected from O, S, CO, OCH(R_6), CH=C(CI), CH ₂ CH(CI), CONH, OCH(R_6)CONH, SCH(R_6)CONH, CH=C(CI)CONH, CH ₂ CH(CI)CONH and NR ₁₂ when Z is CO, CS, CONR ₁₂ or CSNR ₁₂ ;
	Q	is selected from Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 and Q16;

or the agronomically acceptable salts thereof selected from those formed from hydrochloric acid, acetic acid, phosphoric acid and oxalic acid.

- 5. A herbicidal composition comprising a compound as in claim 1, 2, 3 or 4 and an agronomically acceptable carrier.
- 6. The composition of claim 5 which contains from about 0.1% to 99% by weight of said compound.
- 7. The composition of claim 6 further comprising a second pesticide or a fertilizer.
- 8. A method of controlling a weed comprising applying a herbicidally effective amount of a composition of claim 5 and an agronomically acceptable carrier to the weed, to the locus of the weed or to the growth medium of said weed.

20

25

зυ

35

40

45

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 061 075 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 17.01.2001 Bulletin 2001/03
- (43) Date of publication A2: 20.12.2000 Bulletin 2000/51
- (21) Application number: 00304787.5
- (22) Date of filing: 06.06.2000

(51) Int. Cl.⁷: **C07D 209/48**, A01N 43/34, C07D 403/12, A01N 43/653

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States:

AL LT LV MK RO SI

- (30) Priority: 14.06.1999 US 139152 P
- (71) Applicant: ROHM AND HAAS COMPANY
 Philadelphia, Pennsylvania 19106-2399 (US)
- (72) Inventors:
 - Jacobson, Richard Martin Chalfont, Pennsylvania 18914 (US)

- Mulvihill, Mark Joseph Ambler, Pennsylvania 19002 (US)
- Liu, Changling
 Tiexi District, Shenyang, Liaoning 110021 (CN)
- Liu, Xiaonan Shenyang, Liaoning 110021 (CN)
- (74) Representative:

Buckley, Guy Julian et al ROHM AND HAAS (UK) LTD. European Operations Patent Department Lennig House 2 Mason's Avenue Croydon CR9 3NB (GB)

- (54) Substituted triazoles, imidazoles and pyrazoles as herbicides
- (57) The present invention relates to novel heterocyclic compounds and their agronomically suitable salts, methods for the use of these compounds in controlling unwanted plant species, and the use of herbicidal compositions containing these compounds. In particular, the present invention pertains to substituted and unsubstituted triazoles, imidazoles and pyrazoles linked to a heterocyclic substituted benzene group. Such compounds are useful as pre-emergent and postemergent herbicides.

EUROPEAN SEARCH REPORT

Application Number EP 00 30 4787

Category	Citation of document with income of relevant passa	dication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF TH APPLICATION (Int.CI.7)	
Y	EP 0 288 960 A (HOEC 2 November 1988 (198 * examples 40-42 *	HST AG) 8-11-02)	1,5	C07D209/48 A01N43/34 C07D403/12	
Y	US 5 133 799 A (BASF 28 July 1992 (1992-0 * examples 1-4 *	1,5	A01N43/653		
Y	US 5 049 181 A (CIBA 17 September 1991 (1 * example 3.14 - 3.1	991-09-17)	1,5		
l l	EP 0 796 845 A (ISAG 24 September 1997 (19 * claims *	PO RICERCA S.R.L.) 997-09-24)	1,5		
				TECHNICAL FIELDS SEARCHED (Int.CI.7)	
				CO7D A01N	
	The present search report has been	n drawn up for all claims			
	Place of search THE HAGUE	Date of completion of the search		Examiner	
CAT X : particul Y : particul docume	EGORY OF CITED DOCUMENTS larly relevant if taken alone larly relevant it combined with another ent of the same category logical background	E : earlier patent d after the filing d D : document cited	ple underlying the invicument, but publish	Bijlen, H ention ed on, or	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 30 4787

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-11-2000

cite	atent document d in search rep		Publication date		Patent family member(s)	Publication date
EP	288960	A	02-11-1988	DE	3714372 A	10-11-19
				AU	1532788 A	03-11-19
				BR	8802069 A	29-11-19
				DD	268686 A	07-06-19
	_			HU	48584 A	28-06-19
				JP	63280060 A	17-11-19
				ZA	8803069 A	28-12-19
US	5133799	Α	28-07-1992	DE	4015144 A	14-11-19
				CA	2042157 A	11-11-19
				DE	59102319 D	01-09-19
				EP	0456125 A	13-11-19
				JP	4226975 A	17-08-19
บร	5049181	Α	17-09-1991	AU	621166 B	05-03-19
				AU	4554289 A	28-06-19
				BR	8905952 A	19-06-19
				CA	2003666 A	25-05-19
				DΕ	58908499 D	17-11-19
				EP	0370955 A	30-05-19
				JP	2184676 A	19-07-19
				ZA	8908986 A	29-08-19
ΕP	796845	Α	24-09-1997	• _{1, 1} IT. ;	MI960554 A	22-09-19
			, - JOJ J.	1.1	MI960974-A;,	17-11-19
				EP	1020448 A	19-07-20
				JP	11001473 A	06-01-19
				US	5958838 A	28-09-19
				us	5916847 A	29-06-19

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

3

FORM Poase

THIS PAGE BLANK (USPT 3)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)