Compléments de calcul

Cornou Jean-Louis

5 octobre 2022

1 Compléments d'algèbre

1.1 Sommes finies

1.1.1 Sommes simples

Dans tout ce qui suit, n désigne un entier naturel non nul et $(a_i)_{i \in [\![1,n]\!]}$ une famille de n complexes.

Définition 1 Pour tout entier k dans [[1, n-1]], on définit par récurrence la somme partielle d'indice k via

$$S_1 = a_1$$
 et $S_{k+1} = S_k + a_{k+1}$

La quantité S_n est appelée somme de la famille $(a_i)_{i \in [1,n]}$, elle est notée $\sum_{k=1}^n a_k$.

Remarque

L'indice (ou symbole) k est muet. Il peut être remplacé par n'importe quel autre symbole.

Propriété 1

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Démonstration. On note $\mathcal{P}(n)$ l'assertion « $\sum_{k=1}^n k = n(n+1)/2$ » et on la démontre par récurrence. Initialisation : pour n=1, $\sum_{k=1}^1 k=1$ tandis que 1(1+1)/2=1, ce qui démontre la validité de $\mathcal{P}(1)$. Hérédité : soit n un entier non nul tel que $\mathcal{P}(n)$ est vraie. Alors

$$\sum_{k=1}^{n+1} k = \left(\sum_{k=1}^{n} k\right) + n + 1 = \frac{n(n+1)}{2} + n + 1 = \frac{n+1}{2}(n+2) = \frac{(n+1)(n+2)}{2}$$

ce qui démontre que $\mathcal{P}(n+1)$ est vraie. Il s'ensuit par récurrence que $\forall n \in \mathbb{N}^*, \mathcal{P}(n)$ est vraie.

Propriété 2

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Démonstration. On procède de même par récurrence. Pour $n=1, \sum_{k=1}^{1} k^2=1^2=1$, tandis que 1(1+1)(2+1)/6=1, ce qui prouve l'initialisation. Soit n un entier non nul tel que la somme de 1 à n vérifie l'égalité attendue. Alors,

$$\sum_{k=1}^{n+1} k^2 = \left(\sum_{k=1}^{n} k^2\right) + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{n+1}{6} \left(n(2n+1) + 6(n+1)\right) = \frac{n+1}{6} (2n^2 + 7n + 6) = \frac{n+1}{6} (2n+3)(n+2)$$

ce qui démontre l'égalité souhaitée pour n+1.

Propriété 3

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Démonstration. Encore une fois, la récurrence est une méthode adaptée. Pour n=1, la somme vaut $1^3=1$, tandis que le membre de droite vaut $(1(1+1)/2)^2=1^2=1$, ce qui prouve l'initialisation. Soit n un entier non nul tel qu'on a l'égalité souhaitée. Alors

$$\sum_{k=1}^{n+1} k^3 = \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 = \frac{(n+1)^2}{4}(n^2 + 4(n+1)) = \left(\frac{(n+1)}{2}\right)^2(n^2 + 4n + 4) = \left(\frac{(n+1)}{2}\right)^2(n+2)^2,$$

ce qui démontre l'hérédité.

1.1.2 Manipulation de sommes simples

Propriété 4 Soit $(a_i)_{1 \le i \le n}$ et $(b_i)_{1 \le i \le n}$ deux familles de n complexes et λ un complexe. Alors

$$\sum_{k=1}^{n} (\lambda a_k + b_k) = \lambda \left(\sum_{k=1}^{n} a_k \right) + \left(\sum_{k=1}^{n} b_k \right)$$

Remarque

Cette dernière propriété s'appelle une propriété de linéarité.

Propriété 5 Soit $(a_i)_{1 \le i \le n}$ une famille constante, alors

$$\sum_{k=1}^{n} a_i = na_1$$

Proposition - définition 1 On appelle permutation de [[1,n]] toute fonction de [[1,n]] bijective dans [[1,n]]. Elle ne fait que permuter les éléments entre eux. Il suffit pour cela que tous les $(\sigma(j))_{j \in [[1,n]]}$ soient deux à deux distincts ou encore que $\{\sigma(j)|j \in [[1,n]]\} = [[1,n]]$.

Démonstration. On a vu qu'une application d'un ensemble fini dans un ensemble ayant même nombre d'éléments est bijective ssi elle est injective ssi elle est surjective.

Propriété 6 (Changement d'indice) Pour toute permutation σ de [[1,n]], les familles $(a_{\sigma(j)})_{j \in [[1,n]]}$ et $(a_i)_{i \in [[1,n]]}$ ont même somme. Cela s'écrit

$$\sum_{j=1}^{n} a_j = \sum_{j=1}^{n} a_{\sigma(j)}$$

Démonstration. Reportée au chapitre sur le groupe symétrique. On peut s'en sortir avec une récurrence en composant σ par la transposition $(n, \sigma(n))$ dans le cas $n \neq \sigma(n)$ pour exploiiter l'hypothèse de récurrence.

Proposition - définition 2 Soit I un ensemble fini non vide d'indices et $(b_i)_{i \in I}$ une famille de complexes indexée par I. Alors la somme de cette famille est la somme obtenue en numérotant de n'importe quelle façon les éléments de cette famille de 1 à card(I).

Convention

La somme de toute famille indexée par l'ensemble vide est nulle.

Exemple 1 Une autre démonstration de la somme des entiers de 1 à n. Notons $S_n = \sum_{k=0}^n k$ et effectuons le changement d'indice $k \mapsto n - k$. Alors

$$S_n = \sum_{k=0}^{n} (n-k) = n(n+1) - \sum_{k=1}^{n} k = n(n+1) - S_n$$

On en déduit que $2S_n = n(n+1)$, donc que $S_n = n(n+1)/2$.

Théorème 1 (Changement de variable) Soit I un ensemble fini non vide d'indices et $(b_i)_{i\in I}$ une famille de complexes indexée par I. On considère une bijection $f:I\to J$ et la famille de complexes $(c_j)_{j\in J}=(b_{f^{-1}(j)})_{j\in J}$. Alors

$$\sum_{j\in \mathsf{J}}c_j=\sum_{i\in \mathsf{I}}b_i$$

Exemple 2 Soit n un entier naturel non nul. Alors pour tout entier relatif p

$$\sum_{z \in \mathbb{U}_n} z = \sum_{k=0}^{n-1} e^{2ik\pi/n} = \sum_{k=p}^{p+n-1} e^{i2k\pi/n}$$

Propriété 7 Soit $(a_k)_{0 \le k \le n}$ une famille de n+1 complexes. Alors

$$\sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0$$

On appelle une telle somme une somme télecopique

Démonstration. Par linéarité, cette somme vaut également

$$\left(\sum_{k=1}^{n} a_k\right) - \left(\sum_{k=1}^{n} a_{k-1}\right)$$

On peut effectuer le changement d'indices j = k - 1 dans la seconde somme, ce qui entraîne

$$\left(\sum_{k=1}^{n} a_k\right) - \left(\sum_{k=1}^{n} a_{k-1}\right) = \left(\sum_{k=1}^{n} a_k\right) - \left(\sum_{j=0}^{n-1} a_j\right) = a_n + \sum_{k=1}^{n-1} a_k - \sum_{j=1}^{n-1} a_j - a_0 = a_n - a_0$$

Propriété 8 Soit x un complexe. Alors

$$Six \neq 1, \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.$$
 Sinon $\sum_{k=0}^{n} x^{k} = n + 1$

Démonstration. Si x = 1, alors pour tout entier k, $x^k = 1$ et la somme $\sum_{k=0}^{n} x^k$ vaut $1 \times \text{card}([[0, n]]) = n + 1$. Dans le cas $x \neq 1$, on assemble la quantité

$$(1-x)\sum_{k=0}^{n}x^{k}=\sum_{k=0}^{n}x^{k}-\sum_{k=0}^{n}x^{k+1}=1-x^{n+1}.$$

La dernière égalité est valide par télescopage. Comme $x \neq 1$, on peut diviser par 1-x, ce qui fournit l'égalité attendue.

Exemple 3 Pour tout entier k non nul, on a $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$. On en déduit que pour tout entier naturel non nul n,

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k+1} = 1 - \frac{1}{n+1}$$

Exemple 4 Soit n un entier naturel non nul et $\omega = \exp(2i\pi/n)$. Alors $\omega \neq 1$ et

$$\sum_{k=0}^{n-1} \omega^k = \frac{1 - \omega^n}{1 - \omega} = \frac{1 - 1}{1 - \omega} = 0$$

Propriété 9 Soit a et b deux complexes et n entier naturel, alors

$$a^{n} - b^{n} = (a - b) \left(\sum_{k=0}^{n-1} a^{k} b^{n-1-k} \right)$$

Démonstration. Dans le cas n=0, les conventions d'écriture donnent $a^0-b^0=1-1=0$ pour le membre de gauche, tandis que la somme de droite porte sur un ensemble vide, donc est nulle, ce qui prouve le résultat. Dans le cas n non nul, la quantité de droite donne par linéarité, puis par changement d'indice j=k+1 dans la première somme

$$\sum_{k=0}^{n-1} a^{k+1} b^{n-1-k} - \sum_{k=0}^{n-1} a^k b^{n-k} = \sum_{j=1}^n a^j b^{n-j} - \sum_{k=0}^{n-1} a^k b^{n-k} = a^n b^0 - a^0 b^n = a^n - b^n$$

Application (Factorisation de polynômes)

Soit P un polynôme à coefficients complexes (resp. réels), et a une racine de P (i.e un complexe tel que P(a) = 0). Alors il existe un polynôme Q à coefficients complexes (resp. réels) tel que

$$\forall z \in \mathbb{C}, P(z) = (z - a)Q(z)$$

Démonstration. Notons $(a_m)_{0 \le k \le d}$ les coefficients complexes de P avec d le degré de P. Alors pour tout entier m dans $[\![0,d]\!]$, pour tout complexe z

$$z^{m} - a^{m} = (z - a) \sum_{k=0}^{m-1} z^{k} a^{m-1-k} = (z - a) Q_{m}(z)$$

en posant $Q_m(z) = \sum_{k=0}^{m-1} z^k a^{m-1-k}$ qui est bien une expression polynômiale en z. Mais alors on multiplie chacune des égalités par a_m et on somme de m=0 à d, ce qui donne par linéarité

$$\sum_{m=0}^{d} a_m z^m - \sum_{m=0}^{d} a_m a^m = (z - a) \sum_{m=0}^{d} a_m Q_m(z)$$

On pose alors $Q(z) = \sum_{m=0}^{d} a_m Q_m(z)$ pour tout complexe z, ce qui définit bien un polynôme à coefficients complexes et on reconnaît

$$P(z) - P(a) = (z - a)Q(z)$$

Comme a est une racine de P, on en déduit que

$$\forall z \in \mathbb{C}, P(z) = (z - a)Q(z)$$

Propriété 10 (Somme de suites classiques) Soit $(a_k)_{k\in\mathbb{N}}$ une suite arithmétique, $(g_k)_{k\in\mathbb{N}}$ une suite géométrique de raison q, n, et m deux entiers naturels tels que $n \le m$. Alors

$$\sum_{k=n}^{m} a_k = \frac{a_n + a_m}{2} (m - n + 1)$$

On retient que la somme vaut la moyenne des termes extrêmes fois le nombre de termes.

Si
$$q \ne 1$$
, $\sum_{k=n}^{m} g_k = \frac{g_n - g_{m+1}}{1 - q}$

On retient que la somme vaut le premier terme moins le premier terme oublié, le tout divisé par un moins la raison.

Si
$$q = 1$$
, $\sum_{k=n}^{m} g_k = g_n(n-m+1)$

Démonstration. Notons r une raison de la suite $(a_k)_{k \in \mathbb{N}}$. Alors pour tout entier k, $a_k = a_0 + rk$. Ainsi, par linéarité de la somme

$$\sum_{k=n}^{m} a_k = \sum_{k=n}^{m} (a_0 + rk) = a_0(m-n+1) + r\sum_{k=n}^{m} k = a_0(m-n+1) + r\sum_{k=0}^{m} k - r\sum_{k=0}^{n-1} k = a_0(m-n+1) + rm\frac{m+1}{2} - r(n-1)\frac{n}{2}$$

D'autre part,

$$\frac{a_n + a_m}{2}(m - n + 1) = \frac{a_0 + rn + a_0 + mn}{2}(m - n + 1) = a_0(m - n + 1) + \frac{r}{2}(n + m)(m - n + 1) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m^2 + m - n^2 + n) = a_0(m - n + 1) + \frac{r}{2}(m - n + 1) + \frac{r}{2}(m - n + 1) + \frac{r}{2}(m - n + 1) = a_0(m - n + 1) + \frac{r}{2}(m - n + 1) + \frac{r}{2}(m - n + 1) = a_0(m - n + 1) + \frac{r}{2}(m - n + 1) + \frac{r}{2}(m - n + 1) = a_0(m - n + 1) + \frac{r}{2}(m - n + 1$$

Comme $m^2 + m = m(m+1)$ et $n^2 - n = n(n-1)$, on retrouve le résultat annoncé. Le cas géométrique découle d'un télescopage comme en propriété 8. Le cas q = 1 correspond à celui d'une suite constante comme vue en propriété 5. Dans le cas $q \neq 1$, on a

$$\sum_{k=n}^{m} g_k = \sum_{k=n}^{m} g_n q^{k-n} = g_n \sum_{j=0}^{m-n} q^j = g_n \frac{1 - q^{m-n+1}}{1 - q} = \frac{g_n - g_n q^{m-n+1}}{1 - q} = \frac{g_n - g_{m+1}}{1 - q}$$

Exemple 5 Soit x un réel et n un entier naturel. Déterminer une expression factorisée de $\sum_{k=0}^{n} e^{ikx}$ et en déduire une expression factorisée de $\sum_{k=0}^{n} \cos(kx)$ et $\sum_{k=0}^{n} \sin(kx)$.

La propriété morphique de l'exponentielle complexe assure que la suite $(e^{ikx})_k = (\exp(ix)^k)_k$ est une suite géométrique. On souhaite alors exploiter le résultat précédent, mais il faut bien prêter attention aux deux cas possibles :

— Premier cas: $e^{ix} = 1 \iff x \equiv 0[2\pi]$. Dans ce cas, la suite est constante et $\sum_{k=0}^{n} e^{ikx} = (n+1)$. Les parties réelle et imaginaire entraînent alors dans ce cas

$$\sum_{k=0}^{n} \cos(kx) = n+1 \quad \text{et} \quad \sum_{k=0}^{n} \sin(kx) = 0$$

— Deuxième cas : $e^{ix} \neq 1 \iff x \not\equiv 0[2\pi]$. Dans ce cas,

$$\sum_{k=0}^{n} e^{ikx} = \frac{1 - e^{i(n+1)x}}{1 - e^{ix}}$$

On exploite alors la technique de l'angle moitié pour obtenir une expression factorisée

$$\sum_{k=0}^{n} e^{ikx} = \frac{e^{i(n+1)x/2}}{e^{ix/2}} \frac{-2i\sin((n+1)x/2)}{-2i\sin(x/2)} = e^{inx/2} \frac{\sin((n+1)x/2)}{\sin(x/2)}$$

On peut alors prendre les parties réelle et imaginaire de cette dernière expression, ce qui implique que

$$\sum_{k=0}^{n} \cos(kx) = \frac{\cos(nx/2)\sin((n+1)x/2)}{\sin(x/2)} \quad \text{et} \quad \sum_{k=0}^{n} \sin(kx) = \frac{\sin(nx/2)\sin((n+1)x/2)}{\sin(x/2)}$$

Propriété 11 Soit I un ensemble fini d'indices et $(J_k)_{k \in K}$ une partition de I. On se donne une famille de complexes $(a_i)_{i \in I}$ indexée par I. On lui associe pour tout k dans K les sous-familles $(a_i)_{i \in J_k}$. Alors

$$\sum_{i \in I} a_i = \sum_{k \in K} \left(\sum_{i \in J_k} a_i \right)$$

Remarque

Cette propriété permet de « regrouper les termes » de manière à simplifier les calculs.

Exemple 6

$$\sum_{k=0}^{2n} (-1)^k k = \sum_{\substack{k=0\\k \text{ pair}}}^{2n} (-1)^k k + \sum_{\substack{k=0\\k \text{ impair}}}^{2n} (-1)^k k = \sum_{p=0}^{n} (2p) - \sum_{q=0}^{n-1} (2q+1) = 2\frac{n(n+1)}{2} - 2\frac{(n-1)n}{2} - n = n$$

Exemple 7 Soit n un entier naturel non nul. Pour tout entier k, on note r_k son reste dans la division euclidienne par n. Alors, pour tout entier p

$$\sum_{k=0}^{pn} r_k^2 = \sum_{r=0}^{n-1} \left(\sum_{\substack{k=0 \\ n, =r}}^{pn} r_k^2 \right) = \sum_{r=0}^{n-1} \sum_{k \in [[0, pn]] \cap n\mathbb{Z} + r} r^2 = \sum_{r=1}^{n-1} pr^2 = p \frac{(n-1)n(2n-1)}{6}$$

1.1.3 Sommes multiples

Faire des dessins

Définition 2 Toute somme d'une famille de complexes indexée par une partie I de \mathbb{N}^p avec $p \ge 2$ est appelé somme multiple.

Exemple 8 Soit n et m deux entiers naturels non nuls, $(a_i)_{1 \le i \le n}$ une famille de n complexes, puis $(b_i)_{1 \le i \le m}$ une famille de m complexes. Alors

$$\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{j=1}^{m} b_j\right) = \sum_{(i,j) \in I \times J} \left(a_i b_j\right)$$

Exemple 9 Soit $(a_i)_{1 \le i \le n}$ une famille complexe à n éléments. Alors

$$\left(\sum_{i=1}^{n} a_i\right)^2 = \sum_{i=1}^{n} a_i^2 + 2\sum_{i=1}^{n} \left(\sum_{i=i+1}^{n} a_i a_i\right) = \sum_{i=1}^{n} a_i^2 + 2\sum_{1 \le i \le n} a_i a_j$$

Exemple 10 Soit $(z_i)_{1 \le i \le n}$ une famille de n complexes. Alors

$$\left|\sum_{i=1}^{n} z_{i}\right|^{2} = \left(\sum_{i=1}^{n} z_{i}\right) \left(\sum_{i=1}^{n} \overline{z_{i}}\right) = \sum_{i=1}^{n} |z_{i}|^{2} + 2 \sum_{1 \leq i < j \leq n} \Re \left(z_{i} \overline{z_{j}}\right)$$

Propriété 12 (Sommation rectangulaire) Soit $(a_{i,j})_{l \times J}$ une famille de réels indexées par $l \times J$ le produit cartésien de deux parties finies de \mathbb{N} . Alors

$$\sum_{(i,j)\in I\times J} a_{i,j} = \sum_{i\in I} \left(\sum_{j\in J} a_{i,j}\right) = \sum_{j\in J} \left(\sum_{i\in I} a_{i,j}\right)$$

Propriété 13 (Sommation triangulaire) Soit n un entier non nul et $I = \{(i,j) \in [[1,n]]^2 | i \le j\}$. Alors, pour toute famille $(a_{i,j})_{(i,j)\in I}$ de réels indexée par I,

$$\sum_{(i,j)\in I} a_{i,j} = \sum_{i=1}^{n} \left(\sum_{j=i}^{n} a_{i,j} \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{j} a_{i,j} \right)$$

Exemple 11 Soit $(a_{i,j})_{(i,j) \in [[0,n]]^2}$. Alors

$$\sum_{(i,j)\in[[0,n]]^2} a_{i,j} = \sum_{k=0}^n \sum_{i+j=k} a_{i,j} = \sum_{k=0}^n \sum_{i=0}^k a_{i,k-i}$$

Exemple 12 Pour déterminer la somme $\sum_{0 \le i,j \le n} (i+j)^2$, on peut développer le carré à l'intérieur, puis manipuler trois sommes rectangulaires (faites-le à titre d'exercice). Une autre possibilité est la suivante :

$$\sum_{0 \le i, i \le n} (i+j)^2 = \sum_{k=0}^n \sum_{i+j=k} (i+j)^2 = \sum_{k=0}^n \sum_{i+j=k} k^2 = \sum_{k=0}^n k^2 (k+1) = \sum_{k=0}^n k^3 + \sum_{k=0}^n k^2 = \frac{n^2 (n+1)^2}{4} + \frac{n(n+1)(2n+1)}{6}$$

On trouve alors

$$\sum_{0 \le i, i \le n} (i+j)^2 = \frac{n(n+1)}{2} \left(\frac{n(n+1)}{2} + \frac{2n+1}{3} \right) = \frac{n(n+1)(n+2)(3n+1)}{12}$$

Exemple 13 Pour tout entier p, on note $T_p = \sum_{k=1}^p k = p(p+1)/2$. On considère la famille $(ij)_{(i,j) \in [[1,n]]^2}$ Pour tout entier k dans [[1,n]], on note $I_k = \{k\} \times [[1,k]] \cup [[1,k]] \times \{k\} = \{(i,j) \in [[1,k]]^2 | i = k \lor j = k\}$. Alors

$$\sum_{(i,i)\in I_k} ij = \sum_{j=1}^{k-1} ik + k^2 + \sum_{j=1}^{k-1} kj = k \left(\sum_{j=1}^{k-1} i + k + \sum_{j=1}^{k-1} k \right) = k((k-1)k + k) = k^3$$

On en déduit par regroupement que

$$T_n^2 = \left(\sum_{i=1}^n i\right) \left(\sum_{j=1}^n j\right) = \sum_{1 \le i, j \le n} ij = \sum_{k=1}^n k^3$$

Exemple 14 Soit n un entier naturel non nul. Alors

$$\sum_{1 \le i, j \le n} |i - j| = 2 \sum_{1 \le i < j \le n} (j - i) = 2 \sum_{i = 1}^{n} \sum_{j = i + 1}^{n} (j - i) = 2 \sum_{i = 1}^{n} \frac{(1 + n - i)}{2} (n - i) = \sum_{i = 1}^{n} (n - i) + \sum_{i = 1}^{n} (n - i)^{2}$$

On obtient alors

$$\sum_{1 \le i, j \le n} |i - j| = \frac{n - 1 + 0}{2} n + \sum_{j = 0}^{n - 1} j^2 = \frac{n(n - 1)}{2} + \frac{(n - 1)n(2n - 1)}{6} = \frac{n(n - 1)}{6} (3 + 2n - 1) = \frac{(n - 1)n(n + 1)}{3}$$

1.2 Produits finis

Dans tout ce qui suit *n* désigne un entier naturel non nul.

Définition 3 Soit $(a_k)_{1 \le k \le n}$ une famille de n complexes. On définit par récurrence

$$P_1 = a_1, \forall k \in [[1, n-1]], P_{k+1} = P_k a_{k+1}$$

La quantité P_n est appelé **produit** de la famille $(a_k)_{1 \le k \le n}$ et notée $\prod_{i=1}^n a_i$.

Définition 4 Pour tout entier n non nul, on définit la factorielle de n, notée n! par

$$n! = \prod_{k=1}^{n} k$$

La factorielle de 0 est définie comme 1.

Comme le produit de complexes est commutatif, on peut effectuer le produit dans n'importe quel ordre, ce qui permet de définir le produit $\prod_{i \in I} a_i$ de toute famille indexée par un ensemble d'indices fini l.

Convention

Le produit d'une famille indexée par l'ensemble vide vaut 1.

Propriété 14

$$\prod_{i=1}^{n} (a_i b_i) = \left(\prod_{i=1}^{n} a_i\right) \left(\prod_{i=1}^{n} b_i\right)$$
$$\prod_{i=1}^{n} (\lambda a_i) = \lambda^n \prod_{i=1}^{n} a_i$$

Théorème 2 (Changement de variable) Soit $(b_i)_{i \in I}$ une famille de complexes, $f: I \to J$ une bijection et $(c_i)_{i \in J} = (b_{f^{-1}(i)})_{i \in J}$. Alors

$$\prod_{i \in J} c_j = \prod_{i \in I} b_i$$

Propriété 15 Soit $(a_i)_{1 \le i \le n}$ une famille de complexes tous non nuls. Alors

$$\prod_{k=1}^{n-1} \frac{a_{i+1}}{a_i} = \frac{a_n}{a_1}$$

Cela s'appelle un produit télescopique.

Exemple 15 Soit n un entier naturel non nul et $\omega = \exp(2i\pi/n)$, alors

$$\prod_{k=0}^{n-1} \omega^k = \omega^{\sum_{k=0}^{n-1} k} = \omega^{n(n-1)/2}$$

Attention, on ne peut pas écrire $\omega^{n(n-1)/2} = (\omega^n)^{(n-1)/2}$ car (n-1)/2 n'est pas nécessairement entier. On distingue alors deux cas.

— Premier cas: n est pair. Dans ce cas, il existe un entier p tel que n = 2p et le produit étudié vaut

$$\omega^{p(2p-1)} = (\omega^p)^{2p-1} = (-1)^{2p-1} = -1$$

— Deuxième cas : n est impair. Alors il existe un entier q tel que n = 2q + 1 et le produit étudié vaut

$$\omega^{(2q+1)q} = (\omega^{2q+1})^q = 1^q = 1$$

On remarque que le produit étudié coïncide avec $(-1)^{n+1}$. En conclusion,

$$\prod_{k=0}^{n-1} \omega^k = (-1)^{n+1}$$

Ceux qui osent prendre un logarithme de complexes seront châtiés!

Définition 5 Soit n un entier naturel et k un entier relatif, on définit le coefficient binomial « k parmi n », noté $\binom{n}{k}$ via

$$Si \ k < 0, \quad \binom{n}{k} = 0$$

$$Si \ k > n, \quad \binom{n}{k} = 0$$

$$Si \ k \in [[0, n]], \quad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Propriété 16 Soit k un entier relatif et n un entier naturel. Alors

$$\binom{n}{k} = \binom{n}{n-k}$$
$$\binom{n}{k+1} + \binom{n}{k} = \binom{n+1}{k+1}$$

Démonstration. La première égalité est triviale. Si k = n, la seconde égalité revient à 0 + 1 = 1. Si k < n, on exploite les formes factorielles.

$$\binom{n}{k+1} + \binom{n}{k} = \frac{n!}{(k+1)!(n-k-1)!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(k+1)k!(n-k-1)!} + \frac{n!}{k!(n-k)(n-k-1)!}$$

$$= \frac{n!}{k!(n-k-1)!} \left(\frac{1}{k+1} + \frac{1}{n-k}\right)$$

$$= \frac{n!}{k!(n-k-1)!} \frac{n+1}{(k+1)(n-k)}$$

$$= \frac{(n+1)!}{(k+1)!(n-k)!}$$

$$= \frac{(n+1)!}{(k+1)!(n+1-(k+1))!}$$

$$= \binom{n+1}{k+1}$$

Si k > n ou k < 0, cela revient à vérifier des égalités triviales.

1.3 Le binôme (de Newton)

Théorème 3 Soit n un entier naturel, ainsi que a et b deux complexes.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Démonstration. Procédons par récurrence sur l'entier n. Pour n=0, $(a+b)^0=1$, tandis que

$$\sum_{k=0}^{0} \binom{n}{k} a^k b^{0-k} = \binom{0}{0} a^0 b^0 = 1,$$

ce qui prouve l'initialisation. Soit n un entier tel que l'égalité attendue est vérifiée. Alors

$$(a+b)^{n+1} = (a+b)(a+b)^{n}$$

$$= (a+b)\sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} a^{k} b^{n+1-k} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=0}^{n+1} \binom{n}{k-1} + \binom{n}{k} a^{k} b^{n+1-k}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^{k} b^{n+1-k}$$

Ceci prouve le résultat au rang n+1, et donc sa validité pour tout entier p par récurrence.

Une preuve combinatoire de ce résultat sera détaillée lors du chapitre correspondant.

Exemple 16 Soit N un entier naturel. Pour tout complexe z, on pose $S_N(z) = \sum_{n=0}^N \frac{z^n}{n!}$. Soit a et b deux complexes, alors

$$S_{N}(a+b) = \sum_{n=0}^{N} \frac{(a+b)^{n}}{n!} = \sum_{n=0}^{N} \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} a^{k} b^{n-k} = \sum_{n=0}^{N} \sum_{k=0}^{n} \frac{a^{k}}{k!} \frac{b^{n-k}}{(n-k)!}$$

D'autre part,

$$S_{N}(a)S_{N}(b) = \left(\sum_{i=0}^{N} \frac{a^{i}}{i!}\right) \left(\sum_{i=0}^{N} \frac{b^{j}}{j!}\right) = \sum_{n=0}^{2N} \sum_{i+j=n} \frac{a^{i}}{i!} \frac{b^{j}}{j!} = \sum_{n=0}^{2N} \sum_{k=0}^{n} \frac{a^{k}}{k!} \frac{b^{n-k}}{(n-k)!}$$

Ainsi,

$$S_N(a+b) - S_N(a)S_N(b) = \sum_{n=N+1}^{2N} \sum_{k=0}^n \frac{a^k}{k!} \frac{b^{n-k}}{(n-k)!}$$

Un petit oiseau me dit que cette différence tend vers 0 quand N tend vers $+\infty$.

Application (Linéarisation de fonctions trigonométriques)

Soit x un réel, on a pour objectif de transformer une expression polynômiale en $\cos(x)$ et $\sin(x)$ (par exemple $\cos^4(x)\sin^3(x)$) en expression linéaire, i.e ne faisant intervenir que des $\cos(y)$ et/ou $\sin(z)$ avec y et z des réels adaptés (typiquement, x/2, 2x, 3x, etc), tout cela, à des fins de primitivation. On sait déjà via les formules d'addition que pour tous réels a et b

$$2\cos(a)\sin(b) = \sin(a+b) - \sin(a-b)$$

$$2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b)$$
$$2\sin(a)\sin(b) = \cos(a+b) - \cos(a-b)$$

Par exemple,

$$\cos^3(x) = \frac{1}{2^3} \left(e^{ix} + e^{-ix} \right)^3 = \frac{1}{8} \left(e^{i3x} + 3e^{ix} + 3e^{-ix} + e^{-i3x} \right) = \frac{1}{8} \left(2\cos(3x) + 6\cos(x) \right) = \frac{1}{4} \cos(3x) + \frac{3}{4} \cos(x)$$

Fixons n un entier naturel non nul, alors

$$2^{n} \cos^{n}(x) = \left(e^{ix} + e^{-ix}\right)^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left(e^{ix}\right)^{k} \left(e^{-ix}\right)^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} e^{i(2k-n)x}$$

$$= \sum_{k=0}^{n} \binom{n}{k} e^{i(2k-n)x} + \sum_{k=0}^{n} \binom{n}{k} e^{i(2k-n)x} + \sum_{k=0}^{n} \binom{n}{k} e^{i(2k-n)x}$$

On effectue le changement de variable j = n - k dans la deuxième somme précédemment écrite, cela entraîne

$$\sum_{\substack{k=0\\2k>n}}^{n} \binom{n}{k} e^{i(2k-n)x} = \sum_{\substack{j=0\\2j< n}}^{n} \binom{n}{n-j} e^{i(n-2j)x} = \sum_{\substack{j=0\\2j< n}}^{n} \binom{n}{j} e^{-i(2j-n)x}$$

On regroupe alors les deux premières sommes sous la forme

$$\sum_{\substack{k=0\\2k< n}}^{n} \binom{n}{k} e^{i(2k-n)x} + \sum_{\substack{k=0\\2k> n}}^{n} \binom{n}{k} e^{i(2k-n)x} = \sum_{\substack{k=0\\2k< n}}^{n} \binom{n}{k} \left(e^{i(2k-n)x} + e^{-i(2k-n)x} \right) = \sum_{\substack{k=0\\2k< n}}^{n} \binom{n}{k} 2 \cos((2k-n)x)$$

Au final, lorsque n est impair,

$$\cos^{n}(x) = \frac{1}{2^{n-1}} \sum_{\substack{k=0\\2k < n}}^{n} \binom{n}{k} \cos((2k - n)x)$$

et lorsque n est pair

$$\cos^{n}(x) = \frac{1}{2^{n-1}} \sum_{\substack{k=0\\2k < n}}^{n} \binom{n}{k} \cos((2k - n)x) + \frac{1}{2^{n}} \binom{n}{n/2}$$

Autre exemple,

$$\sin^4(x) = \frac{1}{i^4 2^4} \left(e^{ix} - e^{-ix} \right)^4 = \frac{1}{2^4} \left(e^{i4x} - 4e^{2x} + 6e^{i0x} - 4e^{-i4x} + e^{i4x} \right) = \frac{1}{2^4} \left(2\cos(4x) - 8\cos(2x) + 6 e^{-i4x} + e^{-i4x} \right)$$

Ainsi,

$$\sin^4(x) = \frac{1}{8}\cos(4x) - \frac{1}{2}\cos(2x) + \frac{3}{8}$$

Un dernier exemple

$$\sin^{5}(x) = \frac{1}{i^{5}2^{5}} \left(e^{ix} - e^{-ix} \right)^{5}$$

$$= \frac{i}{2^{5}} \left(e^{i5x} - 5e^{i3x} + 10e^{ix} - 10e^{-ix} + 5e^{-i3x} - e^{-i5x} \right)$$

$$= \frac{i}{2^{5}} \left(2i\sin(5x) - 10i\sin(3x) + 20i\sin(x) \right)$$

$$= -\frac{1}{16}\sin(5x) + \frac{5}{16}\sin(3x) - \frac{5}{8}\sin(x)$$

Vous pouvez à titre d'exercice rechercher une expression générale de $\sin^n(x)$ en fonction des $\sin(kx)$ à l'aide du binôme, ou en vous aidant de la formule précédente de $\cos^n(x)$ et $\sin(x) = \cos(\pi/2 - x)$. C'est la méthode qui importe ici, et non le résultat.

Exercice 1 Soit x un réel. A l'aide des formules d'Euler, linéairiser l'expression $\sin^2(x)\cos^3(x)$. Il y a beaucoup de manières de procéder.

1.4 Systèmes linéaires en dimension 2 et 3

Soit $(a_{i,j})_{1 \le i,j \le 2}$ et $(b_i)_{1 \le i \le 2}$ des familles de complexes (ou de réels). Rechercher les complexes (ou les réels) x_1 et x_2 qui vérifient

$$a_{1,1}x_1 + a_{1,2}x_2 = b_1$$

 $a_{2,1}x_1 + a_{2,2}x_2 = b_2$

c'est résoudre le système linéaire de matrice $A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$, d'inconnue $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, et de second

membre B =
$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
.

Méthode

On effectue ce que l'on appelle des « opérations élémentaires » pour résoudre un tel système. La première égalité

$$a_{1,1}x_1 + a_{1,2}x_2 = b_1$$

est appelée première ligne du système et notée L₁. Le seconde égalité

$$a_{2,1}x_1 + a_{2,2}x_2 = b_2$$

est appelée seconde ligne du système et notée L_2 . Si l'on multiplie la première égalité par le complexe $a_{2,1}$, on obtient

$$a_{2,1}a_{1,1}x_1 + a_{2,1}a_{1,2}x_2 = a_{2,1}b_1$$

Cette opération se symbolise via $L_1 \leftarrow a_{2,1}L_1$ On peut également multiplier la seconde ligne par le complexe $a_{1,1}$, ce que l'on note $L_2 \leftarrow a_{1,1}$, ce qui donne

$$a_{1,1}a_{2,1}x_1 + a_{1,1}a_{2,2}x_2 = a_{1,1}b_2$$

On peut ensuite retrancher la première égalité à la seconde, ce qui s'écrit $L_2 \leftarrow L_1 - L_2$ et donne

$$(a_{1,1}a_{2,2} - a_{2,1}a_{2,2})x_2 = a_{1,1}b_2 - a_{2,1}b_1$$

De manière similaire, $L_1 \leftarrow a_{2,2}L_1 - a_{1,2}L_2$ fournit

$$(a_{1.1}a_{2.2} - a_{1.2}a_{1.2})x_1 = a_{2.2}b_1 - a_{1.2}b_2$$

Si tous les coefficients manipulés sont non nuls, et si la quantité $a_{1,1}a_{1,2}-a_{1,2}a_{2,1}$ est non nulle, les calculs effectués peuvent être remontés, ce qui revient à dire qu'on a manipulé des équivalences et que le sytème possède une unique solution

$$\begin{pmatrix} \frac{a_{2,2}b_1 - a_{1,2}b_2}{a_{1,1}a_{2,2} - a_{1,2}a_{1,2}} \\ \frac{a_{1,1}b_2 - a_{2,1}b_1}{a_{1,1}a_{2,2} - a_{2,1}a_{2,2}} \end{pmatrix}$$

Interprétation géométrique dans le cas réel : Si le couple $(a_{1,1},a_{1,2})$ est différent du couple nul (0,0). La première ligne peut être comprise comme une équation de droite affine. De même pour la seconde ligne dans le cas où le couple $(a_{2,1},a_{2,2})$ est non nul. La résolution du système linéaire revient alors à rechercher l'intersection entre ces deux droites. On a alors trois cas possibles :

— Les deux droites sont sécantes, ce qui se traduit algébriquement par $a_{1,1}a_{1,2} - a_{1,2}a_{2,1} \neq 0$ (cf chapitre sur le déterminant). Alors il existe un unique point d'intersection fourni par l'expression précédemment établie.

- Les deux droites sont parallèles, ce qui se traduit algébriquement par $a_{1,1}a_{1,2}-a_{1,2}a_{2,1}=0$. On a alors deux sous-cas
 - Les deux droites sont confondues, i.e $a_{2,2}b_1=a_{1,2}b_2$. L'intersection vaut alors cette droite entière.
 - Les deux droites sont non sécantes, i.e $a_{2,2}b_1 \neq a_{1,2}b_2$. L'intersection recherchée est alors vide.

Exemple 17 Résolvons $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ d'inconnues réelles x et y. Il peut s'écrire sous la forme

$$\begin{cases} x + 2y &= 0 & (L_1) \\ 3x + 4y &= 1 & (L_2) \end{cases}$$

Via la manipulation élémentaire $L_2 \leftarrow L_2 - 2L_1$, il est équivalent à

$$\begin{cases} x + 2y &= 0 & (L_1) \\ x &= 1 & (L_2) \end{cases}$$

soit encore

$$\begin{cases} y = -1/2 & (\mathsf{L}_1) \\ x = 1 & (\mathsf{L}_2) \end{cases}$$

Remarque

L'ensemble des manipulations élémentaires à effectuer n'est pas unique. On a ici fait le choix d'éliminer l'inconnue y en premier puisque le coefficient multiplicatif à exploiter est entier et non rationnel.

Considérons un système de dimension 3, i.e on dispose de trois lignes L_1, L_2, L_3 correspondant chacune à une équation de plan dans \mathbb{R}^3 (ou \mathbb{C}^3). On commence par isoler les coefficients non nuls devant chaque inconnue x, y ou z. Puis on effectue des multiplications, puis une soustraction pour éliminer l'une des inconnues dans deux lignes. Il ne reste alors qu'un sous-système de dimension 2 auquel on applique la méthode précédente.

Interprétation géométrique dans le cas réel: Résoudre une système linéaire en dimension 3 revient à chercher l'intersection de trois plans affines (dans le cas où chaque ligne du système est non triviale). Plusieurs cas géométriques se présentent: deux plans affines peuvent être sécants, auquel cas leur intersections est une droite. Sinon, deux plans affines sont parallèles, d'intersection un plan ou le vide. Il reste à envisager l'intersection d'une droite affine et d'un plan affine, ce qui peut donner le vide, un point ou une droite affine.

Exemple 18 Résolvons le système linéaire $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ d'inconnues réelles x, y et z. Ecrivons-

le sous la forme

$$x + 2y + 3z = 0$$
 (L₁)
 $3y + 4z = 1$ (L₂)
 $-x + y + z = -1$ (L₃)

Via la manipulation élémentaire $L_3 \leftarrow L_3 + L_1$, il est équivalent à

$$x + 2y + 3z = 0$$
 (L₁)
 $3y + 4z = 1$ (L₂)
 $3y + 4z = -1$ (L₃)

Les lignes L_2 et L_3 sont clairement incompatibles (les plans correspondants sont parallèles et d'intersection vide). Ainsi, ce système ne possède aucune solution.

Exercice 2 Résoudre les systèmes linéaires $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ d'inconnues réelles x, y et z

2 Compléments d'analyse

2.1 Opérations sur les inégalités

On rappelle que la relation \leq est une relation d'ordre sur \mathbb{R} . Elle est réflexive, antisymétrique et transitive. Elle est même totale et on peut lui associer la relation d'ordre strict <, ainsi que la relation opposée \geq ainsi que sa relation d'ordre strict >.

Définition 6 Soit A une partie de \mathbb{R} , et $f:A\to\mathbb{R}$ une application. On dit que f est croissante (resp. décroissante) lorsque

$$\forall (x, y) \in A^2, x \le y \Rightarrow f(x) \le f(y) \quad (resp. f(y) \le f(x))$$

Exemple 19 Pour tout réel $a, \mathbb{R} \to \mathbb{R}$, $x \mapsto ax$ est croissante si $a \ge 0$, et décroissante si $a \le 0$.

Pour tout entier n impair, $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^n$ est croissante.

Pour tout entier n pair, $\mathbb{R}^+ \to \mathbb{R}$, $x \mapsto x^n$ est croissante et $\mathbb{R}^- \to \mathbb{R}$, $x \mapsto x^n$ est décroissante.

 $\mathbb{R}^{+*} \to \mathbb{R}, x \mapsto \ln(x)$ est croissante, et $\mathbb{R} \to \mathbb{R}, x \mapsto \exp(x)$ est croissante.

Démonstration. Soit x et y deux réels tels que $x \le y$. Alors

$$y^{n} - x^{n} = (y - x) \sum_{k=0}^{n-1} y^{k} x^{n-1-k}$$

Si x et y sont positifs ou nuls, pour tout k dans [[0, n-1]], $y^k x^{n-1-k}$ est positif, donc $y^n - x^n$ est positif ou nul. Si x et y sont négatifs ou nuls, alors pour tout k dans [[0, n-1]], $y^k x^{n-1-k}$ est du signe de x^{n-1} , donc positif si n impair et négatif si n pair. La croissance sur \mathbb{R} dans le cas n impair découle de la transitivité de la relation d'ordre.

Propriété 17 Soit a, b, c, d des réels tels que $0 \le a \le b$ et $0 \le c \le d$. Alors

Démonstration. Comme $c \ge 0$, l'application $x \mapsto cx$ est croissante et $ac \le bc$. D'autre part, b est positif ou nul, donc $x \mapsto bx$ est croissante, donc $bc \le bd$. On en déduit le résultat par transitivité.

∧ Attention

Cette inégalité peut être fausse sans critère de positivité.

2.2 Parties de \mathbb{R}

I Remarque

Ces rappels sur les majorants, minorants, maximums, minimums peuvent être faits à l'oral ou passés.

Définition 7 Soit A une partie de \mathbb{R} . On dit que A est majorée lorsque

$$\exists M \in \mathbb{R}, \forall x \in A, x \leq M$$

On dit que A est minorée lorsque

$$\exists m \in \mathbb{R}. \forall x \in a. m < x$$

Définition 8 Soit A une partie de \mathbb{R} . On dit que A admet un maximum lorsque

$$\exists M \in A, \forall x \in A, x \leq M$$

On dit que A admet un minimum lorsque

$$\exists m \in A, \forall x \in a, m \leq x$$

Définition 9 On dit qu'une partie A de \mathbb{R} est bornée lorsqu'elle est à la fois majorée et minorée.

Définition 10 On dit qu'une partie A de $\mathbb R$ est un intervalle lorsqu'elle est de l'une des formes suivantes :

Exercice 3 Parmi tous les intervalles, lesquels sont bornés? minorés? majorés? admettent un minimum? admettent un maximum?

Définition 11 Soit I un intervalle de \mathbb{R} . On note \mathring{I} ou Int(I) l'intevalle privé de ses extrémités, i.e

- $Si I = \emptyset, \mathring{I} = \emptyset$ - $Si I =]a, b[, \mathring{I} =]a, b[.$ - $Si I =]a, b], \mathring{I} =]a, b[.$ - $Si I = [a, b[, \mathring{I} =]a, b[.$ - $Si I = [a, b], \mathring{I} =]a, b[.$ - $Si I = [a, +\infty[, \mathring{I} =]a, +\infty[.$ - $Si I =]a, +\infty[, \mathring{I} =]a, +\infty[.$ - $Si I =]-\infty, b[, \mathring{I} =]-\infty, b[.$ - $Si I =]-\infty, b[, \mathring{I} =]-\infty, b[.$ - $Si I =]-\infty, +\infty[= \mathbb{R}, \mathring{I} = \mathbb{R}.$

On appelle cette partie l'intérieur de l'intervalle I.

Définition 12 Soit I un intervalle de \mathbb{R} . On note \bar{I} ou Adh(I) la réunion de I et de ses extrémités, i.e

- $Si \mid = \emptyset, \mathring{\mid} = \emptyset$ - $Si \mid = \mid a, b \mid, \mathring{\mid} = \mid a, b \mid.$ - $Si \mid = \mid a, b \mid, \mathring{\mid} = \mid a, b \mid.$ - $Si \mid = \mid a, b \mid, \mathring{\mid} = \mid a, b \mid.$ - $Si \mid = \mid a, b \mid, \mathring{\mid} = \mid a, b \mid.$ - $Si \mid = \mid a, +\infty \mid, \mathring{\mid} = \mid a, +\infty \mid.$ - $Si \mid = \mid a, +\infty \mid, \mathring{\mid} = \mid a, +\infty \mid.$ - $Si \mid = \mid -\infty, b \mid, \mathring{\mid} = \mid -\infty, b \mid.$ - $Si \mid = \mid -\infty, b \mid, \mathring{\mid} = \mid -\infty, b \mid.$ - $Si \mid = \mid -\infty, b \mid, \mathring{\mid} = \mid -\infty, b \mid.$ - $Si \mid = \mid -\infty, +\infty \mid = \mid \mathbb{R}, \mathring{\mid} = \mid \mathbb{R}.$

On appelle cette partie l'adhérence de l'intervalle I.

2.3 Valeur absolue

Définition 13 Pour tout réel x, on appelle valeur absolue de x, notée |x| le réel x si $x \ge 0$ et -x sinon.

Propriété 18 L'application $\mathbb{R}^+ \to \mathbb{R}$, $x \mapsto |x|$ est croissante tandis que $\mathbb{R}^- \to \mathbb{R}$, $x \mapsto |x|$ est décroissante. Propriété 19

$$\forall x \in \mathbb{R}, -|x| \le x \le |x|$$

Théorème 4 (Inégalité triangulaire)

$$\forall (x, y) \in \mathbb{R}^2, |x + y| \le |x| + |y|$$

Il y égalité si et seulement si x et y sont de même signe.

Théorème 5 (Inégalité triangulaire inverse)

$$\forall (x, y) \in \mathbb{R}^2, ||x| - |y|| \le |x - y|$$

Démonstration. Se reporter au chapitre sur les complexes pour une preuve.

Théorème 6 (admis) Soit x un réel, alors la partie $\{a \in \mathbb{Z} | a \le x\}$ admet un maximum. Cet unique entier relatif est appelé partie entière de x, noté |x|.

 $D\acute{e}monstration$. Cela résulte de la construction de $\mathbb N$ et de la propriété du bon ordre. Le programme ne nous incite pas à nous étaler sur ce fait.

Propriété 20 Soit x un réel et a un entier relatif. Alors

$$a = \lfloor x \rfloor \iff a \leq x < a + 1$$

Démonstration. Supposons que $a = \lfloor x \rfloor$. Alors $\lfloor x \rfloor$ appartient à l'ensemble $\{b \in \mathbb{Z} | b \leq x\}$, donc $a \leq x$. D'autre part, a+1 est strictement plus grand que a, donc ne peut appartenir à $\{b \in \mathbb{Z} | b \leq x\}$, puisque a en est le maximum. Ainsi, a+1 > x. Réciproquement, supposons que a vérifie les deux inégalités indiquées. Alors a appartient à l'ensemble $\{b \in \mathbb{Z} | b \leq x\}$ d'après la première inégalité. D'autre part, a+1 n'appartient pas à cette partie d'après la seconde inégalité. Par conséquent, comme il n'y a pas d'entiers strictement compris entre a et a+1, a est le maximum de cette partie, donc la partie entière de x.

∧ Attention

Ne pas oublier la condition $a \in \mathbb{Z}$.

3 Etude de fonctions de la variable réelle à valeurs réelles

Définition 14 Soit f une fonction de \mathbb{R} dans \mathbb{R} dont l'ensemble de définition est noté D_f . Le graphe de f est la partie de \mathbb{R}^2 :

$$(x, f(x))|x \in D_f$$

Propriété 21 Soit f une fonction de \mathbb{R} dans \mathbb{R} et a un réel. Alors le graphe de la fonction $g: x \mapsto f(x+a)$ est obtene par translation du graphe de f par le vecteur (-a,0). Dans le cas $a \neq 0$, le graphe de la fonction $hx \mapsto f(ax)$ est obtenue via une affinité du graphe de f de base (0y), de direction (0x) de rapport 1/a.

Exemple 20 On représente plus bas le graphe d'une fonction f en vert, et le graphe de la fonction $g: x \mapsto f(x+2)$ en rouge.

Dans cette seconde illustration, le graphe de la fonction $h: x \mapsto f(2x)$ est représenté en bleu.

Définition 15 On dit qu'une fonction f est paire (resp. impaire) si son ensemble de définition est stable par $x \mapsto -x$ et si $\forall x \in D_f$, f(-x) = f(x) (resp. f(-x) = -f(x)).

Méthode

L'étude d'une fonction paire (resp. impaire) peut être faite uniquement sur $D_f \cap \mathbb{R}^+$. Le restant du graphe est obtenue par symétrie orthogonale par rapport à l'axe (0x) (resp. par une symétrie centrale de centre

Définition 16 Une fonction f est dite périodique si $D_f = \mathbb{R}$ et il existe un réel <u>non nul</u> T tel que $\forall x \in \mathbb{R}$, f(x+T)=f(x).

Exemple 21 La fonction $f : \mathbb{R} \to \mathbb{R}, x \mapsto x - \lfloor x \rfloor$ est périodique de période 1.

Méthode

Soit f une fonction périodique, de plus petite période T. Il suffit alors de l'étudier sur [a, a + T] avec a un réel bien choisi. Le restant du graphe s'obtient par translation du sous-graphe obtenu. Si de plus, la fonction est de plus paire ou impaire, on peut par exemple choisir a = -T/2, et restreindre l'intervalle d'étude à [0,T/2].

Définition 17 Soit f une fonction d'une variable réelle à valeurs réelles et λ un scalaire. Alors on définit la fonction λf via l'expression $(\lambda f)(x) = \lambda f(x)$ pour tout réel x dans D_f .

Soit f et g deux fonctions d'une variable réelle à valeurs réelles. Alors on définit la fonction f + g via l'expression (f+g)(x) = f(x)+g(x) pour tout réel x dans $D_f \cap D_g$. Cette fonction est la somme des fonctions f et g.

Soit f et g deux fonctions d'une variable réelle à valeurs réelles. Alors on définit la fonction fg via l'expression (fg)(x) = f(x)g(x) pour tout réel x dans $D_f \cap D_g$. Cette fonction est le produit des fonctions f et g.

Définition 18 Soit f et g deux fonctions d'une variable réelle à valeurs réelles. Alors on définit la fonction $g \circ f$ via l'expression $(g \circ f)(x) = g(f(x))$ pour tout réel x dans $D_f \cap f^{-1}(D_g)$.

Exemple 22 Donner l'ensemble de définition de la fonction $x \mapsto \tan\left(\frac{\pi}{2}\sqrt{\frac{1+x}{1-x}}\right)$.

Exemple 23 Pour tout f fonction d'une variable réelle à valeurs réelles, on définit |f| la valeur absolue de f comme la composée de f par la fonction valeur absolue. Elle est bien définie sur D_f .

Définition 19 Soit f une fonction d'une variable réelle à valeurs réelles. Soit l un intervalle inclus dans D_f. On dit que f est croissante sur l (resp. décroissante) sur l lorsque

$$\forall (x,y) \in l^2, x \le y \Rightarrow f(x) \le f(y)(resp.f(x) \ge f(y))$$

Définition 20 Soit f une fonction d'une variable réelle à valeurs réelles. Soit l un intervalle inclus dans D_f . On dit que f est strictement croissante sur l (resp. strictement décroissante) sur l lorsque

$$\forall (x, y) \in I^2, x < y \Rightarrow f(x) < f(y)(resp.f(x) > f(y))$$

Définition 21 Soit f une fonction d'une variable réelle à valeurs réelles. Soit f un intervalle inclus dans f D $_f$. On dit que f est monotone sur f (resp. strictement monotone) sur f lorsque f est croissante ou décroissante sur f (resp. strictement croissante ou strictement décroissante sur f).

Définition 22 Soit f une fonction d'une variable réelle à valeurs réelles. On dit que f est majorée (resp. minorée) lorsque

$$\exists a \in D_f, \forall x \in \mathbb{R}, f(x) \leq a \quad (resp. f(x) \geq a)$$

Définition 23 Soit f une fonction d'une variable réelle à valeurs réelles. On dit que f est bornée lorsque f est à la fois majorée et minorée.

Propriété 22 Soit f une fonction d'une variable réelle à valeurs réelles. Alors f est bornée si et seulement si |f| est majorée.

 $D\acute{e}monstration$. Supposons que f est bornée. On note alors m et M un minorant et un majorant de f. Alors en particulier

$$\forall x \in D_f, -|m| \le m \le f(x) \le M \le |M|$$

On pose alors $a = \max(|m|, |M|)$, ce qui assure que

$$\forall x \in D_f, -a \le f(x) \le a, \text{ donc } |f(x)| \le a$$

Réciproquement, supposons que |f| est majorée. Notons a un majorant de |f|. Alors

$$\forall x \in D_f, |f(x)| \leq a$$

On en déduit que

$$\forall x \in D_f, -a \le f(x) \le a$$

Ainsi, a est un majorant de f, et -a est un minorant de f, ce qui prouve que f est bornée.

3.1 Dérivabilité

Définition 24 Soit f une fonction d'une variable réelle à valeurs réelles définie sur un intervalle I non réduit à un point. Soit $a \in I$, on dit que f est dérivable en a lorsque (f(x) - f(a))/(x - a) admet une limite quand x tend vers a en étant différent de f a. On rappelle qu'alors cette limite est unique, on l'appelle le nombre dérivé de f en f en

Définition 25 Soit f une fonction d'une variable réelle à valeurs réelles définie sur un intervalle I non réduit à un point. On dit que f est dérivable sur I lorsque pour tout élément f de I, f est dérivable en f a. Dans ce cas, on appelle fonction dérivée I application $I \to \mathbb{R}$, f (a), notée f.

Notation

Les physiciens notent parfois cette application $\frac{df}{dx}$ pour rappeler la définition via le taux d'accroissement. Attention, cette notation change selon le symbole de la variable utilisé.

Propriété 23 Soit f une fonction d'une variable à valeurs réelles définie sur un intervalle non réduit à un point et a dans l. On suppose que f est dérivable en a. Alors f est continue en a.

 $D\acute{e}monstration.$ On remarque que pour tout x dans I distinct de a,

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}(x - a)$$

Le quotient tend vers f'(a) quand x tend vers a puisque f est dérivable en a. Le terme x-a tend vers 0 quand x tend vers 0. La compatibilité des limites avec le produit implique que f(x)-f(a) tend vers $f'(a)\times 0=0$ quand x tend vers a, i.e f(x) tend vers f(a) quand x tend vers a. Ainsi, f est continue en a.

Remarque

La réciproque est bien entendu fausse. L'application valeur absolue est continue en 0, mais non dérivable en 0.

3.1.1 Opérations sur les applications dérivées

Propriété 24 Soit $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux applications dérivables en $a \in I$, ainsi que λ un réel, alors

- L'application λf est dérivable en a et $(\lambda f)'(a) = \lambda f'(a)$.
- L'application f + g est dérivable en a et (f + g)'(a) = f'(a) + g'(a).
- L'application fg est dérivable en a et (fg)'(a) = f'(a)g(a) + f(a)g'(a).

Démonstration. Pour tout réel x différent de a,

$$\frac{(\lambda f)(x) - (\lambda f)(a)}{x - a} = \lambda \frac{f(x) - f(a)}{x - a}$$

$$\frac{(f + g)(x) - (f + g)(a)}{x - a} = \frac{f(x) - f(a)}{x - a} + \frac{g(x) - g(a)}{x - a}$$

$$\frac{(fg)(x) - (fg)(a)}{x - a} = \frac{f(x)g(x) - f(a)g(x) + f(a)g(x) - f(a)g(a)}{x - a} = \frac{f(x) - f(a)}{x - a}g(x) + f(a)\frac{g(x) - g(a)}{x - a}$$

Propriété 25 Soit $f: I \to \mathbb{R}$ une application dérivable en $a \in I$ et $g: J \to \mathbb{R}$ une application dérivable en $f(a) \in J$. Alors l'application $g \circ f$ est dérivable en a et

$$(g \circ f)'(a) = f'(a)g'(f(a))$$

Démonstration. La dérivabilité de f en a implique qu'il existe une fonction ε de limite nulle en a telle que pour tout réel x,

$$f(x) = f(a) + (x - a)f'(a) + (x - a)\varepsilon(x)$$

La dérivabilité de g en f(a) donne l'existence d'une fonction $\omega(x)$ de limite nulle en f(a) telle que pour tout réel y,

$$g(y) = g(f(a)) + (y - f(a))g'(f(a)) + (y - f(a))\omega(y)$$

En particulier pour tout y = f(x),

$$g(f(x)) = g(f(a)) + (f(x) - f(a))g'(f(a)) + (f(x) - f(a))\omega(f(x)) = g(f(a)) + (x - a)f'(a)g'(f(a)) + (x - a)\varepsilon(x) + (x - a)f'(a)\omega(f(x))$$

On a alors, pour tout réel x différent de a,

$$\frac{(g \circ f)(x) - (g \circ f)(a)}{x - a} = f'(a)g'(f(a)) + \varepsilon(x) + f'(a)\omega(f(x))$$

Quand x tend vers a, $\varepsilon(x)$ tend vers a. Comme a0. Comme a0. Lend vers a0. Comme a0. Comme a0. Lend vers a0. Comme a0. Lend vers a0. Le

Propriété 26 Soit $f: I \to \mathbb{R}$ une application dérivable sur I et $a \in I$. On suppose que f' est continue et que $f'(a) \neq 0$. Alors il existe un voisinage de a, i.e un sous-intervalle J de I contenant a et non réduit à $\{a\}$ tel que $f_{L}^{|f(J)|}$ est bijective. De plus, sa réciproque notée g est dérivable en f(a) et g'(f(a)) = 1/f'(a).

Démonstration. Bijectivité locale admise. On remarque toutefois que $g \circ f = id_J$ et donc par composition que

$$f'(a)g'(f(a)) = 1$$

puisque $x \mapsto x$ est de dérivée $x \mapsto 1$.

3.1.2 Etude de variations

Propriété 27 Soit $f: I \to \mathbb{R}$ une fonction dérivable. Alors f est croissante (resp. décroissante) si et seulement si $f' \ge 0$ (resp. $f' \le 0$). En particulier, f est constante si et seulement si f' = 0 (la fonction constante nulle).

∧ Attention

La caractérisation des fonctions dérivables constantes est fausse si l'ensemble de départ n'est pas un intervalle. Considérer par exemple : $\mathbb{R}^* \to \mathbb{R}$, $x \mapsto x/|x|$.

Propriété 28 Soit $f: I \to \mathbb{R}$ une fonction dérivable. Alors f est strictement croissante (resp. strictement décroissante) si et seulement si $f' \ge 0$ et $f^{-1}(\{0\})$ ne contient pas d'intervalle non réduit à un point (resp. $f' \le 0$ et $f^{-1}(\{0\})$) ne contient pas d'intervalle non réduit à un point). En particuler, il suffit que f' > 0 pour que f soit strictement croissante.

Exemple 24 La fonction $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$ est strictement croissante. En effet sa dérivée $x \mapsto 3x^2$ est positive ou nulle et ne s'annule qu'en un point.

Propriété 29 Soit $f: I \to \mathbb{R}$ dérivable et $a \in I$ distinct des bornes éventuelles de I, i.e $a \in \mathring{I}$. On suppose que f admet un extremum local en a, i.e il existe un sous-intervalle J de I, tel que $a \in \mathring{J}$ et f(a) est un majorant ou un minorant de f_{J} . Alors f'(a) = 0.

C'est faux lorsque a est une extrémité de l. Par exemple, l'application $[0,1] \to \mathbb{R}, x \mapsto x$ atteint son maximum en 1, mais la valeur de sa dérivée y vaut 1.

3.1.3 Dérivées d'ordre supérieur

Définition 26 On définit par récurrence la notion suivante. Soit $f: I \to \mathbb{R}$ et n un entier naturel non nul. On dit que f est n+1-fois dérivable lorsque f est dérivable et f' est n-fois dérivable. On note alors $f^{(n+1)} = (f')^{(n)}$.

Convention

On note $f^{(0)} = f$ et $f'' = f^{(2)}$. Cela se lit « f seconde ». $f^{(3)}$ se lit « f tierce ».

Définition 27 Soit $f: I \to \mathbb{R}$ une fonction dérivable et $a \in \mathring{I}$. On dit que a est un point d'inflexion de f lorsque $x \mapsto f(x) - f(a) - f'(a)(x - a)$ change de signe au voisinage de a.

Propriété 30 Soit $f: I \to \mathbb{R}$ une fonction deux fois dérivable et $a \in \mathring{I}$ un point d'inflexion de f. Alors f''(a) = 0.

Exemple 25 Le point 0 est un point d'inflexion pour la fonction $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$. Ce n'en est pas un pour la fonction $x \mapsto x^4$, même si celle-ci est deux-fois dérivable de double dérivée nulle en 0.

Exemple 26 Démonstration d'inégalités. On note $J:]0, +\infty[\to \mathbb{R}, u \mapsto u \ln u - u + 1 \text{ et } K:]0, +\infty[\to \mathbb{R}, u \mapsto J(u)/u$. Montrer que

$$\forall u \in]0,1], J(u) \ge \frac{1}{2}(1-u)^2$$

$$\forall u \geq 1, \mathsf{K}(u) \geq \frac{1}{2} \left(1 - \frac{1}{u} \right)^2$$

Démonstration par dérivation double

Exercice 4 En déduire que

$$\forall u > 0, u \ln(u) - u + 1 \ge \frac{1}{2} [\max(1 - u, 0)]^2 + \frac{u}{2} [\max((1 - \frac{1}{u}), 0)]^2$$

3.1.4 Extension aux fonctions à valeurs complexes

Définition 28 Soit $f: I \to \mathbb{C}$ une fonction définie sur un intervalle réel. On appelle partie réelle de f l'application $\Re c(f): I \to \mathbb{R}, x \mapsto \Re c(f(x))$ et partie imaginaire de f l'application $\operatorname{Im}(f), I \to \mathbb{C}, x \mapsto \operatorname{Im}(f(x))$

Définition 29 Soit $f: I \to \mathbb{C}$ une fonction définie sur un intervalle réel et a un élément de I. On dit que f est dérivable en a lorsque $\Re f(f)$ et $\mathrm{Im}(f)$ sont dérivables en a. On définit alors la dérivée de f en a via

$$f'(a) = \Re (f)'(a) + i \operatorname{Im}(f)'(a)$$

Opération sur les dérivations étendues : Combinaisons linéaires, produit.

Démonstration.

$$\lambda f + g = (a + ib)(\Re(f) + i\operatorname{Im}(f)) + \Re(g) + i\operatorname{Im}(g) = a\Re(f) - b\operatorname{Im}(f) + \Re(g) + i(a\operatorname{Im}(f) + b\Re(f))$$

Comme on a bien mis en évidence des fonctions à valeurs réelles, le tout est dérivable et les propriétés des fonctions dérivables à valeurs réelles entraînent

$$(\lambda f + g)' = a\Re(f)' - b\operatorname{Im}(f)' + \Re(g)' + i\left(a\operatorname{Im}(f)' + b\Re(f)'\right) = \lambda f' + g'$$

Propriété 31 Soit $f: I \to \mathbb{C}$ une fonction dérivable sur l. Alors l'application $\exp(f)$ est dérivable et

$$\forall x \in I, \exp(f)'(x) = f'(x) \exp(f(x))$$

Démonstration. On a le produit

$$\exp(f) = \exp(\Re c(f)) \exp(i \operatorname{Im}(f))$$

Comme $\Re(f)$ et $\mathrm{Im}(f)$ sont dérivables (par définition de la dérivabilité d'une fonction de $\mathbb R$ dans $\mathbb C$), on peut exploiter une dérivation de produit, ce qui donne

$$\exp(f)' = \exp(\Re c(f))' \exp(i \operatorname{Im}(f)) + \exp(\Re c(f)) \exp(i \operatorname{Im}(f))' = \Re c(f)' \exp(f) + i \operatorname{Im}(f)' \exp(f) = f' \exp(f)$$

Application

Soit $f: I \to \mathbb{C}$ de classe C^2 , alors $\forall x \in I$, $f''(x) = (f'^2 + f'') \exp(f)$. Si $\exp(f)$ vérifie l'équation différentielle $y'' + \lambda y + y = 0$ avec $\lambda: I \to \mathbb{C}$ un freinage dépendant de la position, alors $f'' + \lambda f'^2 + 1 = 0$, ce qui permet de réduire le degré de l'équation différentielle étudiée.