Explaining Preference-Driven Schedules: the EXPRES Framework

Alberto Pozanco, Francesca Mosca, Parisa Zehtabi, Daniele Magazzeni, Sarit Kraus

Motivation

Scheduling is the task of assigning a set of <u>scarce resources</u> distributed over <u>time</u> to a set of <u>agents</u>, who typically have <u>preferences</u> about the assignments. Due to the <u>constrained</u> nature of these problems, <u>satisfying all agents' preferences is often infeasible</u>.

Providing **explanations** has been shown to increase <u>satisfaction</u> and <u>trust</u> in solutions. We present the EXPRESS framework, which explains **why a given preference was unsatisfied in a given optimal schedule**.

J.P.Morgan use case: return to office after COVID-19 restrictions required scheduling of employees to a limited number of desks over a fixed time period while considering their preferences.

Problem Setup: Preference-driven Scheduling

A **PRES** problem is a tuple PRES = $\langle R, Ag, T, C, P, O \rangle$ where:

- R: a set of resource types C: the set of all constraints
- Ag: a set of agents P: the set of all agents' preferences
- T: a set of time slots O: a totally ordered set of preference types

EXPRES: Explaining PRES Solutions

A **EXPRES** problem is a tuple EXPRES = $\langle PRES, S, u \rangle$ where:

- PRES = $\langle R, Ag, T, C, P, O \rangle$
- S: a set of assignments that optimally solve PRES
- u: an unsatisfied preference

Solution to an EXPRESS problem is an explanation which is a <u>set of reasons</u> why preference u was unsatisfied. A <u>reason</u> is preference u from assignment u was unsatisfied due to preference u being satisfied.

Well Defined Reasons

- Provide exactly **one reason** for each of the **Involved assignments**
- Only reasons where the given assignment is affected by the preference are selected
- Only more/equally important preferences are used to justify less/equally important unsatisfied preferences

Edith: "Why my *preferred* day on Thursday was not satisfied?"

	Mon	Tue	Wed	Thu	Fri
Edith					
George				1	
Han					
Bob				2	
Charlie				3	
Daphne					
Alice				4	
Fei				5	

One reason for each of the involved assignments (1,2,3,4,5)

Clustered Explanation

- 1, 2, 3 George's, Bob's and Charlie's minimum number of days
- 4 Alice's meeting
- 5 Fei's working group

Clustered Anonymized Explanation

- 1, 2, 3 3 employees' minimum number of days
- 4 One employee's meeting
- 5 One employee's working group

User Studies Results

Hypothesis 1: The EXPRES framework produces solutions faster than humans

	avg	Scenario std dev	avg	Scenario 2 std dev EXPRES			
time (s) difficulty	195.9	80.8 1.4	186.3	96.2 1.1	0.8		

Results of User Study 1. Time is in seconds, difficulty is on 5-point Likert (1= Very easy, 5= Very difficult)

Hypothesis 2: Humans find EXPRES solutions at least as satisfying as the human-generated ones

			E1	E2	E3	tot.E	H4	H5	Н6	tot.H
	s1	# selections rank score	22 47	19 36	14 24	55 107	17 37	5 10	7 14	29 61
,	s2	# selections rank score	23 55	17 28	11 17	51 100	14 34	8 12	11 22	33 68

Results of User Study 2. The rank score is $3x_1 + 2x_2 + x_3$ (x_i is n. of times an explanation has been ranked as i)

AI RESEARCH

