Theoretical Guide As Meninas Superpoderosas

Docinho, Lindinha & Florzinha

1 Math

 $\wedge =$ and =conjunction $\vee =$ or =disjunction

1.1 Trigonometry

1.2 Logarithm

$$\log_b mn = \log_b m + \log_b n \qquad \log_b \frac{m}{n} = \log_b m - \log_n n \qquad \log_b n^p = p \log_b n$$

$$\log_b \sqrt[q]{n} = \frac{1}{q} \log_b n \qquad \log_b n = \log_a n \log_b a \qquad b^{\log_b k} = k$$

$$\log_b a = \frac{\log_c a}{\log_c b} \qquad \log_b a = \frac{1}{\log_a b} \qquad \log_b a \ \log_a c = \log_b c$$

$$\log_b 1 = 0 \qquad \log_b b = 1$$

1.3 Truth Tables

a	b	$a \Rightarrow b$		
0	0	1		
0	1	1		
1	0	0		
1	1	1		

a	b	$a \oplus b$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

1.4 De Morgan

$$\neg (p \land q) \iff \neg p \lor \neg q$$
$$\neg (p \lor q) \iff \neg p \land \neg q$$

1.5 2-SAT

Check and finds solution for boolean formulas of the form:

$$(a \lor b) \land (\neg a \lor c) \land (a \lor \neg b)$$

As $a \lor b \iff \neg a \Rightarrow b \land \neg b \Rightarrow a$, we construct a directed graph of these implications. It's possible to construct any truth table of 1 or 2 variables with only and's from pairs of or's.

$$(a \lor b)$$
 turn of only the case $a = 0, b = 0$
 $(a \lor \neg b)$ turn of only the case $a = 0, b = 1$
 $(\neg a \lor b)$ turn of only the case $a = 1, b = 0$
 $(\neg a \lor \neg b)$ turn of only the case $a = 1, b = 1$

Examples:

$$a \oplus b = (a \lor b) \land (\neg a \lor \neg b)$$

$$a \land b = (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b)$$

2 C++

template<class T> using min_priority_queue = priority_queue<T, vecto
string(1, 'a')</pre>

2.1 Pragma optimize

```
#pragma GCC optimize("Ofast")
#pragma GCC target("avx,avx2,fma")
```

Ordered set and multiset 4 GEOMETRY

Ordered set and multiset

typedef tree<pair<11, 11>, null type, less<pair<11, 11>>, rb | tree tag, tree order statistics+hede update> ordered set;

To change to multiset switch equal to less equal.

Optimized unordered map

mp. reserve (8192); mp. max load factor (0.25);

2.4 Interactive Problems

freopen("input.txt", "r", stdin); freopen ("output.txt", "w", stdout);

Identities

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{i=1}^{n} \frac{1}{i} \approx \log n \qquad \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$

Geometry

Trigonometry

4.1.1 Sines Rule

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

4.1.2 Cossines Rule

$$a^2 = b^2 + c^2 - 2bccos(\alpha)$$

4.2 Triangle Existence Condition

$$a+c \geq b$$

$$b+c \geq a$$

Shoelace Formula

$$A = \frac{1}{2} \left| \sum_{i=1}^{n-1} (p_i \times p_{i+1}) = \frac{1}{2} \left| \sum_{i=1}^{n-1} (x_i y_{i+1} - x_{i+1} y_i) \right| \right|$$

Where the points p_1, p_1, \ldots are in adjecent order and the first and last vertex is the same, that is, $p_1 = pn$

4.4 Pick's Theorem

$$A = a + \frac{b}{2} + 1$$

where A is the area of the polygon, a is the number of integer points inside the polygon and b is the number of integer points in the boundary of the polygon

4.5Distances

$$d(p,q) = \sqrt{(q.x - p.x)^2 + (q.y - p.y)^2}$$

$$d(p,q)|p.x - q.x| + |p.y - q.y|$$

Maximum possible Manhattan distance between two points given n points

Given n points, for instance:

4.7 Boundary points 5 CONSTANTS

Rotate all coordinates 45^o do that (x, y) becomes (x + y, y - x), so, p becomes p' and q becomes q'.

The maximum manhattan distance is obtaining by choosing the two points that maximize:

$$max(|p'.x - q'.x|, |p'.y - q'.y|)$$

4.7 Boundary points

The number of integer points in the boundary of a polygon is:

$$B = v + b$$

where v is the number of vertices (integer points as well) and b is the number of integer points situated between two vertices, like in the following figure:

b can be calculated for every line connecting two points (including the line between the last and the first point) as follows:

$$boundary_points(p,q) = \begin{cases} |p.y - q.y| - 1 & p.x = q.x \\ |p.x - q.x| - 1 & p.y = q.y \\ gcd(|p.x - q.x|, |p.y - q.y|) - 1 \end{cases}$$

4.8 3D Shapes

Volume of Sphere: $\frac{4}{3}\pi r^3$

Prism: V = bh

Pyramid: $\frac{bh}{3}$

Cone: $\frac{\pi r^2 h}{3}$

4.9 2D Shapes

Perimeter of circle: $2\pi r$

Area of circle: πr^2

Area of triangle: $\frac{b*h}{2}$

Square: l^2

Rectangle: hr

Rhombus:

D is the biggest diagonal and d is the smallest diagonal

$$A = \frac{1}{2} * D * d$$

5 Constants

LLINF = 0x3f3f3f3f3f3f3fLL

MOD = 998'244'353

PI = acos(-1)

 $INT_MIN \qquad INT_MAX \qquad INT64_MIN \qquad INT64_MAX$

5.1 Some Powers of Two 7 NUMBER THEORY

5.1 Some Powers of Two

$2^0 \approx 10^0$	$2^1 \approx 10^0$	$2^2 \approx 10^0$	$2^3 \approx 10^0$	$2^4 \approx 10^1$	$2^5 \approx 10^1$
$2^6 \approx 10^1$	$2^7 \approx 10^2$	$2^8 \approx 10^2$	$2^9 \approx 10^2$	$2^{10} \approx 10^3$	$2^{11} \approx 10^3$
$2^{12} \approx 10^3$	$2^{13} \approx 10^3$	$2^{14} \approx 10^4$	$2^{15} \approx 10^4$	$2^{16} \approx 10^4$	$2^{17} \approx 10^5$
$2^{18} \approx 10^5$	$2^{19} \approx 10^5$	$2^{20} \approx 10^6$	$2^{21} \approx 10^6$	$2^{22} \approx 10^6$	$2^{23} \approx 10^6$
$2^{24} \approx 10^7$	$2^{25} \approx 10^7$	$2^{26} \approx 10^7$	$2^{27} \approx 10^8$	$2^{28} \approx 10^8$	$2^{29} \approx 10^8$
$2^{30} \approx 10^9$	$2^{31} \approx 10^9$	$2^{32} \approx 10^9$	$2^{33} \approx 10^9$	$2^{34} \approx 10^{10}$	$2^{35} \approx 10^{10}$
$2^{36} \approx 10^{10}$	$2^{37} \approx 10^{11}$	$2^{38} \approx 10^{11}$	$2^{39} \approx 10^{11}$	$2^{40} \approx 10^{12}$	$2^{41} \approx 10^{12}$
$2^{42} \approx 10^{12}$	$2^{43} \approx 10^{12}$	$2^{44} \approx 10^{13}$	$2^{45} \approx 10^{13}$	$2^{46} \approx 10^{13}$	$2^{47} \approx 10^{14}$
$2^{48} \approx 10^{14}$	$2^{49} \approx 10^{14}$	$2^{50} \approx 10^{15}$	$2^{51} \approx 10^{15}$	$2^{52} \approx 10^{15}$	$2^{53} \approx 10^{15}$
$2^{54} \approx 10^{16}$	$2^{55} \approx 10^{16}$	$2^{56} \approx 10^{16}$	$2^{57} \approx 10^{17}$	$2^{58} \approx 10^{17}$	$2^{59} \approx 10^{17}$
$2^{60} \approx 10^{18}$	$2^{61} \approx 10^{18}$	$2^{62} \approx 10^{18}$	$2^{63} \approx 10^{18}$	$2^{64} \approx 10^{19}$	$2^{65} \approx 10^{19}$
$2^{66} \approx 10^{19}$	$2^{67} \approx 10^{20}$	$2^{68} \approx 10^{20}$	$2^{69} \approx 10^{20}$	$2^{70} \approx 10^{21}$	$2^{71} \approx 10^{21}$

5.2 Some Factorials

$6! \approx 10^2$					
$12! \approx 10^8$					
$18! \approx 10^{15}$	$19! \approx 10^{17}$	$20! \approx 10^{18}$	$21! \approx 10^{19}$	$22! \approx 10^{21}$	$23! \approx 10^{22}$

6 Bitwise

Turn on bit i x & (1 << i)Turn off bit i x & $(^{\sim}(1 << i))$

6.1 XOR from 1 to N

$$f(n) = \begin{cases} n & n \equiv 0 \pmod{4} \\ 1 & n \equiv 1 \pmod{4} \\ n+1 & n \equiv 2 \pmod{4} \\ 0 & n \equiv 3 \pmod{4} \end{cases}$$

7 Number Theory

$$(a+b) \bmod m = (a \bmod m + b \bmod m) \bmod m$$

$$(a-b) \bmod m = (a \bmod m - b \bmod m) \bmod m$$

$$(a \times b) \bmod m = ((a \bmod m) \times (b \bmod m)) \bmod m$$

$$a^b \bmod m = (a \bmod m)^b \bmod m$$

$$a \equiv b \pmod m \iff (b-a)|m$$

$$\gcd(a_1, a_2, a_3, a_4) = \gcd(a_1, \gcd(a_2, \gcd(a_3, a_4)))$$
$$\operatorname{lcm}(a, b) \times \gcd(a, b) = a \times b$$
$$\operatorname{lcm}(a, b) = \frac{a \times b}{\gcd(a, b)} = \frac{a}{\gcd(a, b)} \times b$$

7.1 Sum of digits of N written in base b

$$f(n,b) = \begin{cases} n & n < b \\ f\left(n, \left\lfloor \frac{n}{b} \right\rfloor + (n \mod b) \right) & n \ge b \end{cases}$$

7.2 Some Primes

999999937 1000000007 1000000009 1000000021 1000000033 $10^{18} - 11 \quad 10^{18} + 3$ 2305843009213693951 = $2^{61} - 1$ 998244353 = $119 \times 2^{23} + 1 \quad 10^{6} + 3$

7.3 Prime counting function - $\pi(x)$

Expected to have $\frac{x}{\log x}$ primes within [1, x]. The prime counting function is asymptotic to $\frac{x}{\log x}$, by the prime number theorem.

X	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
$\pi(x)$	4	25	168	1229	9592	78498	664579	5761455

7.4 Number of Divisors

The number of divisors of n is about $\sqrt[3]{n}$.

n	6	60	360	5040	55440	720720	4324320	21621600
d(n)	4	12	24	60	120	240	384	576

7.5 Large Prime Gaps

For numbers until 10^9 the largest gap is 400. For numbers until 10^{18} the largest gap is 1500.

7.6 Fermat's Theorems

Let P be a prime number and a an integer, then:

$$a^p \equiv a \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

Lemma: Let p be a prime number and a and b integers, then:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

Lemma: Let p be a prime number and a an integer. The inverse of a modulo p is a^{p-2} :

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

7.7 Divisibility Criteria

7.7.1 Other bases

Claim 1:

The divisibility rule for a number a to be divided by n is as follows. Express the number a in base n+1. Let s denote the sum of digits of a expressed in base n+1. Now $n|a \iff n|s$. More generally, $a \equiv s \pmod{n}$.

- 2 The last digit is even
- 3 The sum of the digits is divisible by 3
- 4 The last 2 digits are divisible by 4
- 5 The last digit is 0 or 5
- 7 Double the last digit and subtract it from a number made by the other digits. The res
- 8 The last three digits are divisible by 8
- 9 The sum of the digits is divisible by 9
- 11 Add and subtract digits in an alternating pattern (add digit, subtract next digit, add a
- 3 Multiply the last digit of N with 4 and add it to the rest truncate of the number. If th

Example:

Before setting to prove this, we will see an example of this. Say we want to check if 13|611. Express 611 in base 14.

$$611 = 3 \times 14^2 + 1 \times 14^1 + 9 \times 14^0 = (319)_{14}$$

where $(319)_{14}$ denotes that the decimal number 611 expressed in base 14. The sum of the digits s=3+1+9=13. Clearly, 13|13. Hence, 13|611, which is indeed true since $611=13\times47$.

7.8 Diophantine Equations

8 Notes

• number of digits in n!

$$\log_b n! = \log_b (1 \times 2 \times 3 \times ... \times n) = \log_b 1 + \log_b 2 + \log_b 3 + ... + \log_b n$$

9 Progressions

9.1 Geometric Progression

General Term: a_1q^{n-1}

Sum:
$$\frac{a_1(q^n-1)}{q-1}$$

Infinite Sum:

$$-1 < q < 1$$

$$\frac{a_1}{1 - q}$$

10 Counting Problems

10.1 Burnside's Lemma

Let G be a group that acts on a set X. The Burnside Lemma states that the number of distinct orbits is equal to the average number of points fixed by an element of G.

$$T = \frac{1}{|G|} \sum_{g \in G} |\mathtt{fix}(g)|$$

Where a orbit orb(x) is defined as

$$\mathtt{orb}(x) = \{ y \in X : \exists g \in G \ gx = y \}$$

and fix(g) is the set of elements in X fixed by g

$$\mathtt{fix}(g) = \{x \in X : gx = x\}$$

Example: With k distinct types of beads how many distinct necklaces of size n can be made? Considering that two necklaces are equal if the rotation of one gives the other.

$$T = \frac{1}{n+1} \sum_{i=0}^{n} k^{\gcd(i,n)} \qquad T = \frac{1}{n} \sum_{i=0}^{n-1} k^{\gcd(i,n)}$$