Chapitre 2: Comparaison de suites

Toutes les suites considérées dans ce chapitre sont à valeurs réelles.

1 Relation de négligeabilité

Définition 1

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites.

On dit que $(u_n)_{n\in\mathbb{N}}$ est **négligeable** devant $(v_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty$ s'il existe un entier n_0 et une suite $(\varepsilon_n)_{n\in\mathbb{N}}$ qui converge vers 0 tels que

$$\forall n \geqslant n_0 \quad u_n = \epsilon_n v_n.$$

On notera $u_n = \underset{n \to +\infty}{o} (v_n)$.

Remarque 1

- 1. Parfois, on omettra le « $n \rightarrow +\infty$ » et on écrira seulement $u_n = o(v_n)$.
- 2. \triangle La notation « petit o » (appelé notation de Landau) est un abus d'écriture : $o(v_n)$ ne désigne pas une suite particulière mais toute suite possédant la propriété d'être négligeable devant $(v_n)_{n\in\mathbb{N}}$. Ainsi, si $u_n=o(v_n)$ et $w_n=o(v_n)$ on n'a pas nécessairement $u_n=w_n$!

Exemple 1

npie	<u> </u>
1.	$n = o(n^2).$
2.	$\sqrt{n} = o(n^2).$
3.	$e^{-n} = o(1).$
4.	Plus généralement, soit $(u_n)_{n\in\mathbb{N}}$ une suite. Alors $u_n=o(1)$ si et seulement si :

Remarque 2

 $Soit \ (u_n)_{n \in \mathbb{N}} \ un \ suite \ convergeant \ vers \ un \ r\'eel \ \ell. \ Alors \ \lim_{n \to +\infty} (u_n - \ell) = 0 \ donc \ u_n - \ell = o(1) \ ou \ encore \ u_n = \ell + o(1).$ Réciproquement $si \ u_n = \ell + o(1) \ où \ \ell \in \mathbb{R} \ alors \ \lim_{n \to +\infty} u_n = \ell.$

Test 1 (Voir la solution.)

Que signifie « $u_n = o(0)$ »?

Test 2 (Voir la solution.)

Montrer que $\frac{1}{n} = o\left(\frac{1}{\sqrt{n}}\right)$.

Proposition 1 (Caractérisation)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites. Si, à partir d'un certain rang, $v_n\neq 0$ alors :

$$u_n = \underset{n \to +\infty}{o}(v_n) \Longleftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 0.$$

Démonstration:

Exemple 2

Dans chaque cas déterminer laquelle des deux suites est négligeable devant l'autre :

1. $u_n = n^2$ et $v_n = n^3$.

2. $u_n = \ln(n)$ et $v_n = n^2$

Test 3 (Voir la solution.)

Dans chaque cas déterminer laquelle des deux suites est négligeable devant l'autre :

1.
$$u_n = 5^n$$
 et $v_n = n^3$.

2.
$$u_n = \ln(n)^7$$
 et $v_n = n$.

3.
$$u_n = n^a$$
 et $v_n = n^b$ avec $0 < a < b$.

Plus généralement, les croissances comparées se traduisent en terme de négligeabilité de la façon suivante :

Proposition 2 (Croissances comparées)

Soient q > 1, a > 0 et b > 0 des réels. On a :

- $\ln(n)^b = \underset{n \to +\infty}{o}(n^a),$
- $n^a = \underset{n \to +\infty}{o} (q^n),$
- $\ln(n)^b = \underset{n \to +\infty}{o} (q^n).$

Exemple 3

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\forall n \in \mathbb{N}, \quad u_n = n^5 + n + 1 \quad et \quad v_n = e^n + 3n^2 + 5.$$

Test 4 (Voir la solution.)

On considère les suites $(u_n)_{n\geqslant 2}$ et $(v_n)_{n\geqslant 2}$ définies par

$$\forall n \ge 2$$
, $u_n = \frac{1}{n^2} + \frac{1}{n} + \frac{1}{3^n}$ et $v_n = \frac{1}{e^n} + \frac{1}{2^n} + \frac{1}{\ln n}$.

Montrer que $u_n = o(v_n)$.

Proposition 3 (Opérations sur les *o*)

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites et $(\lambda,\mu)\in\mathbb{R}^2$.

- 1. (*Transitivité*) Si $u_n = o(v_n)$ et $v_n = o(w_n)$ alors $u_n = o(w_n)$.
- 2. (Combinaison linéaire) Si $u_n = o(w_n)$ et $v_n = o(w_n)$ alors $\lambda u_n + \mu v_n = o(w_n)$.
- 3. (Multiplication par un réel **non nul**) Si $\lambda \neq 0$ et $u_n = o(v_n)$ alors $u_n = o(\lambda v_n)$.
- 4. (Produit) Si $u_n = o(v_n)$ alors $u_n w_n = o(v_n w_n)$.

Démonstration:

$$\forall n \in \mathbb{N}$$
 $u_n = n^2 e^n + 3^n$ et $v_n = 4^n$.

Remarque 3

- 1. En général, on ne garde pas les constantes multiplicatives à l'intérieur du o grâce au troisième point. Par exemple, si $u_n = o(2n)$ alors $u_n = o(\frac{1}{2}2n) = o(n)$. De même, si $u_n = o(2)$ alors $u_n = o(1)$.
- 2. En cas de doutes, il est conseillé de revenir à la définition ou à la caractérisation pour s'assurer que l'opération que l'on souhaite effectuer est licite.

Test 5 (Voir la solution.)

En revenant à la définition de la relation de négligeabilité, démontrer les points 3 et 4 de la proposition.

2 Relation d'équivalence

2.1 Généralités

(Définition 2)-

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites.

On dit que $(u_n)_{n\in\mathbb{N}}$ est **équivalente** à $(v_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty$ s'il existe un entier n_0 et une suite $(\epsilon_n)_{n\in\mathbb{N}}$ qui converge vers 1 tels que

$$\forall n \geqslant n_0 \quad u_n = \epsilon_n v_n.$$

On notera $u_n \underset{n \to +\infty}{\sim} v_n$.

Remarque 4

Parfois, on omettra le « $n \rightarrow +\infty$ » et on écrira seulement $u_n \sim v_n$.

Exemple 5

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On suppose que $u_n \underset{n\to+\infty}{\sim} 0$.

Réciproquement :		

On n'écrira donc jamais cela!

Exemple 6

Montrons que : $n+1 \sim n$.

Proposition 4 (Caractérisation)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites. On a

$$u_n \underset{n \to +\infty}{\sim} v_n \Longleftrightarrow u_n = v_n + o(v_n).$$

En pratique, si à partir d'un certain rang $v_n \neq 0$ alors

$$u_n \underset{n \to +\infty}{\sim} v_n \Longleftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 1.$$

Démonstration: Exercice

Exemple 7

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par : $\forall n\in\mathbb{N}^*$, $u_n=e^n+n^2+2-\frac{1}{n}$. Montrons que : $u_n\underset{n\to+\infty}{\sim}e^n$.

Test 6 (Voir la solution.)

On considère la suite définie par : $\forall n \ge 1$, $u_n = e^n + n^2 + n^3$. 1. Montrer que $u_n \underset{n \to +\infty}{\sim} e^n$. 2. Montrer que $u_n \underset{n \to +\infty}{\sim} e^n + n^2$. 3. A-t-on $u_n - e^n \underset{n \to +\infty}{\sim} n^2$?

Proposition 5 (Opérations sur les équivalents)

Soient $(t_n)_{n\in\mathbb{N}}$, $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ quatre suites et soit $k\in\mathbb{N}$.

- 1. (Symétrie) Si $u_n \underset{n \to +\infty}{\sim} v_n$ alors $v_n \underset{n \to +\infty}{\sim} u_n$.
- 2. (*Transitivité*) Si $u_n \underset{n \to +\infty}{\sim} v_n$ et $v_n \underset{n \to +\infty}{\sim} w_n$ alors $u_n \underset{n \to +\infty}{\sim} w_n$.
- 3. (*Produit*) Si $u_n \underset{n \to +\infty}{\sim} v_n$ et $t_n \underset{n \to +\infty}{\sim} w_n$ alors $t_n u_n \underset{n \to +\infty}{\sim} v_n w_n$.
- 4. (Inverse) Si $u_n \underset{n \to +\infty}{\sim} v_n$ et $t_n \underset{n \to +\infty}{\sim} w_n$ avec $t_n \neq 0$ et $w_n \neq 0$ à partir d'un certain rang alors
- 5. (*Puissance*) Si $u_n \underset{n \to +\infty}{\sim} v_n$ alors $u_n^k \underset{n \to +\infty}{\sim} v_n^k$.
- 6. Si $u_n \underset{n \to +\infty}{\sim} v_n$ alors $|u_n| \underset{n \to +\infty}{\sim} |v_n|$.

Démonstration:

Remarque 5

- 1. Un cas particulier du point 3 en prenant $(t_n)_{n\in\mathbb{N}} = (w_n)_{n\in\mathbb{N}}$ donne : si $u_n \underset{n \to +\infty}{\sim} v_n$ alors $u_n w_n \underset{n \to +\infty}{\sim} v_n w_n$.
- 2. Les points 3 et 4 signifient que la relation d'équivalence est compatible avec le produit et l'inverse.
- 3. En cas de doutes, il est conseillé de revenir à la définition ou à la caractérisation pour s'assurer que l'opération que l'on souhaite effectuer est licite.
- 4. On n'additionne jamais des équivalents.
- 5. On ne peut pas appliquer une fonction de part et d'autre d'une relation d'équivalence!

Test 7 (Incompatibilité avec l'addition, voir la solution.)

On considère les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ par :

$$\forall n \ge 1$$
 $u_n = n + \sqrt{n}$ et $v_n = n + \ln(n)$.

- 1. Montrer que $u_n \underset{n \to +\infty}{\sim} v_n$.
- 2. A-t-on: $u_n n \sim v_n n$?

Test 8 (Incompatibilité avec la composition, voir la solution.)

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par :

$$\forall n \in \mathbb{N}$$
 $u_n = n+1$ et $v_n = n$.

- 1. Montrer que $u_n \underset{n \to +\infty}{\sim} v_n$.
- 2. A-t-on: $e^{u_n} \sim e^{v_n}$?

2.2 Calculer un équivalent

2.2.1 Les outils

Proposition 6 (Équivalents usuels)

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $\lim_{n\to+\infty}u_n=0$. On a les équivalents usuels suivants :

$$\ln\left(1+u_n\right) \underset{n \to +\infty}{\sim} u_n \quad ; \quad e^{u_n} - 1 \underset{n \to +\infty}{\sim} u_n \quad ; \quad \left(1+u_n\right)^a - 1 \underset{n \to +\infty}{\sim} au_n \ (a \in \mathbb{R}^*).$$

2. Soit $(a_0, a_1, ..., a_k) \in \mathbb{R}^{k+1}$ avec $a_k \neq 0$. Alors

$$a_0 + a_1 n + \dots + a_{k-1} n^{k-1} + a_k n^k \underset{n \to +\infty}{\sim} a_k n^k.$$

Exemple 8

On a:

$$n^2 + 3n^3 + n^4 \sim$$
 et $n^3 + 6n^5 \sim$ $n \rightarrow +\infty$

donc:

$$\frac{n^2 + 3n^3 + n^4}{n^3 + 6n^5} \underset{n \to +\infty}{\sim}$$

Proposition 7 (Limite et équivalent)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites.

- 1. Si $u_n \underset{n \to +\infty}{\sim} v_n$ et si $(u_n)_{n \in \mathbb{N}}$ converge vers $\ell \in \mathbb{R} \cup \{\pm \infty\}$ alors $(v_n)_{n \in \mathbb{N}}$ converge aussi vers ℓ .
- 2. Si $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ non nul alors $u_n\underset{n\to+\infty}{\sim}\ell.$

Exemple 9

On cherche la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$\forall n \in \mathbb{N}^* \quad u_n = \frac{(3n+4)^3(8n^{-2}+2n^{-4})}{9n+10}.$$

2.2.2 Quelques méthodes

• Pour déterminer un équivalent simple, on peut procéder de manière directe : souvent de la même manière que pour lever une forme indéterminée (factorisation par le terme prépondérant, multiplication par la quantité conjuguée...).

Exemple 10

1. On considère la suite suivante :

$$\forall n \in \mathbb{N}^*$$
 , $u_n = n - \ln(n)^2$.

2. On considère la suite suivante :

$$\forall n \in \mathbb{N}^*, \quad u_n = \sqrt{n+1} - \sqrt{n-1}.$$

Test 9 (Voir la solution.)

Déterminer un équivalent simple de la suite définie par : $\forall n \in \mathbb{N}^*$, $u_n = \sqrt{n^2 + 1} - \sqrt{n}$.

Test 10 (Voir la solution.)

Déterminer un équivalent simple de la suite définie par : $\forall n \ge 2$, $u_n = \frac{1}{n-1} - \frac{1}{n+1}$.

• On peut aussi parfois déterminer un équivalent d'une suite $(u_n)_{n\in\mathbb{N}}$ à l'aide d'un encadrement par deux suites équivalentes entre elles.

Exemple 11

-	emple 11	
	Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $\forall n\in\mathbb{N}, 2n+1\leqslant \frac{u_n}{2}\leqslant 2n+2.$	
	Montrons que $u_n \underset{n \to +\infty}{\sim}$	

Test 11 (Voir la solution.)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que

$$\forall n \in \mathbb{N}, \quad n + \sqrt{n} \leq u_n \leq n + 2\sqrt{n}.$$

Montrer que $u_n \underset{n \to +\infty}{\sim} n$.

2.3 Les erreurs à ne pas commettre

- 1. Il ne faut pas sommer (ou soustraire) les équivalents (voir les tests 6 et 7).
- 2. On ne compose pas les équivalents : on ne passe pas à l'exponentielle, au logarithme dans un équivalent; cela est faux en général ou demande une justification (voir test 8)!
- 3. On ne passe pas à la « puissance *n* » dans un équivalent (où *n* est l'indice de la suite) : dans la proposition 5.5 l'exposant est indépendant de *n* (voir TD exercice 4)!
- 4. On n'écrit jamais $u_n \sim 0$: lorsqu'on écrit cela, dans 99,99% des cas c'est qu'on a faux (dans le 0,01% de cas où c'est juste, c'est dire de façon inutilement compliquée que $u_n = 0$ à partir d'un certain rang...)
- 5. On ne supprime pas les constantes multiplicatives dans les équivalents (contrairement à ce qu'on a pu voir sur les o):

$$u_n = o(2e^n) \Longleftrightarrow u_n = o(e^n)$$

mais

$$u_n \underset{n \to +\infty}{\sim} 2e^n$$
 n'a rien avoir avec $u_n \underset{n \to +\infty}{\sim} e^n$.

8

3 Objectifs

- 1. Connaître et avoir compris la définition de suite négligeable devant une autre, de suites équivalentes.
- 2. Savoir montrer que deux suites sont équivalentes ou que l'une est négligeable devant l'autre à l'aide de la définition ou de la caractérisation.
- 3. Connaître par coeur les croissances comparées en terme de petits *o* et les équivalents usuels.
- 4. Savoir manipuler les opérations avec les petits o et les équivalents pour déterminer une limite.
- 5. Savoir déterminer un équivalent par encadrement ou de manière directe.