NOTES ON RANDOM MATRICES

LEONID PETROV

(notes by Bryce Terwilliger; ...)

(BEFORE T_EXING , PLEASE FAMILIARIZE YOURSELVES WITH STYLE SUGGESTIONS AT https://github.com/lenis2000/RMT_Spring_2016/blob/master/TeXing.md)

Contents

1.	Introduction	1
1.1.	Nonrandom and random matrices and their eigenvalues	1
Ref	ferences	2

1. Introduction

ntroflustiidy)?

1.1. Nonrandom and random matrices and their eigenvalues. The study of random matrices as a field is a patchwork of many fields. The main object we study is a probability distribution on a certain subset of the set of matrices $Mat(N \times N, \mathbb{R} \text{ or } \mathbb{C})$, thus giving us a random matrix A.

Definition 1.1. An eigenvalue λ of the matrix A is a root of the polynomial $f(\lambda) = \det(A - \lambda I)$. Equivalently, λ is an eigenvalue if A if the matrix $A - \lambda I$ is not invertible. This second way of defining eigenvalues in fact works even when A is not a finite size matrix, but an operator in some infinite-dimensional space.

We will largely be only concerned with real eigenvalues. That is the eigenvalues of a real symmetric matrix over \mathbb{R} or Hermitian over \mathbb{C} that is where $A^* = A$.

Remark 1.2. The case when eigenvalues can be complex is also studied in the theory of random matrices, sometimes under the keyword *complex random matrices*. See, for example, [GT10] for a law of large numbers for complex eigenvalues.

Proposition 1.3. Every eigenvalue of a Hermitian matrix is real.

Proof. Let A be a Hermitian matrix so that $A^* = A$ (here and everywhere below A^* means $\overline{A^{\mathrm{T}}}$, i.e., transposition and complex conjugation). Let λ be an eigenvalue of A. Let v be a non-zero vector in the null space of $A - \lambda I$. Let $a = \overline{v^{\mathrm{T}}}v = |v|^2$, so that a is a positive real number. Let $b = \overline{v^{\mathrm{T}}}Av$. Then $\overline{b} = \overline{b^{\mathrm{T}}} = \overline{v^{\mathrm{T}}}\overline{A}v = \overline{v^{\mathrm{T}}}Av = b$, so b is real. Since $b = \lambda a$, λ must be real.

Let \mathcal{H}_N be the set of $N \times N$ Hermitian matrices. For each N, let μ_N be a probability measure on \mathcal{H}_N (it can be supported not by the whole \mathcal{H}_N , but by a subset of it, too). Then for each matrix $A \in \mathcal{H}_N$ we may order the real eigenvalues $\lambda_1 \geq \cdots \geq \lambda_N$ of A.

A collection of probability measures μ_N on \mathcal{H}_N for each $N \geq 1$ is said to be a random matrix ensemble. For such an ensemble, the eigenvalues $\lambda_1^{(N)} \geq \cdots \geq \lambda_N^{(N)}$ of matrices N form random point configurations on \mathbb{R} with growing numbers of points. Our main goal is to study the asymptotic properties of these collections of points on \mathbb{R} , as $N \to \infty$.

Date: January 23, 2016.

References

2010circular [GT10] F. Götze and A. Tikhomirov, The circular law for random matrices, Ann. Probab. 38 (2010), no. 4, 1444–1491, arXiv:0709.3995 [math.PR].