

PRAGYAN HARDWARE HACKATHON

Healthcare and Life Sciences SPEAR

Soft Pneumatic Electromyographically Assisted Rehabilitation

Name	Roll Number	UG/PG	Branch	Semester
Nitish Gudapati	111117036	UG	Mech	III
Koushik Kumaran	108117056	UG	ECE	III
Jinesh R	107117045	UG	EEE	III
Deepak S V	107117033	UG	EEE	III
Himadri Poddar	110117035	UG	ICE	III
Mukesh Kanna	111117070	UG	Mech	III

1. Project Abstract:

Stroke patients often suffer from Foot Drop, a paralysis of the muscles in the anterior portion of the lower leg, causing an inability or impaired ability to raise the foot from the ankle. This leads to extremities of the foot dragging along the ground while walking, and can cause tripping and other accidents. Presently, patients are trained to walk with canes, and physiotherapy is also prescribed. The physiotherapy requires the presence of a trainer, and these frequent consultations lead to huge expenditure.

Currently, robotic therapeutic tools exist, but the rigidity does not lend itself to the compliant nature of the body, and are unwieldy. They are bulky and heavy which makes them unwearable under regular usage.

As a bio-inspired solution, SPEAR aims to provide a soft robotic approach to the physio therapy. The end effectors at the ankle are a set of soft pneumatic actuators, controlled by electromyographic signals (EMG). This achieves a reduction of weight at the joint, and can be custom made to fit the patient's needs.

Keywords — Rehabilitative robotics, stroke, foot drop, Soft robotics, soft pneumatic actuators, Electromyography

2. Proposed Design:

A. Objective:

The objective is to rehabilitate patients with foot drop by fabricating a set of soft robotic actuators mimicking the muscle-skeleton system, controlled via electromyography (EMG) signals.

B. Proposed Solution:

a. Block Diagram:

C. Components Required:

COMPONENTS/PARTS	How is it being used in the proposed solution? Explain its role/functionality.
Thermoplastic Polyurethane / Silicone	
rubber tube, Nylon Mesh	Fabricate the pneumatic actuator
Air compressor	To compress the air from atmosphere and transfer the compressed air to pneumatic actuators
Solenoid Valve	To control the air flow to pneumatic actuators
MCU	To control the solenoid valve from the data obtained from the corresponding EMG sensors
Electromyographic (EMG) sensor	To measure the electrical activity of muscles

3. Innovativeness of the Proposed Solution

Compared to other rehabilitative robots, a soft robot will be lighter, smaller and wearable. The soft nature of the robot, makes it more compliant with the human body, giving a great increase in comfort over existing solutions. The weight is also much less than that of a rigid structure, reducing the load on the ankle.

Electromyograph signals (EMG) eliminates the need for manual control, and makes the robot feel like a natural extension of the human body.

Compared to traditional therapeutic methods, the cost will be greatly decreased due to the one-time investment.

4. Impact of the proposed solution (Application):

Ease of physiotherapy for those affected with stroke. Physiotherapy is a costly and continuous process, whereas a robotics solution will be a one-time investment. Because of its compliant nature, SPEAR is lighter, smaller and easier to use, contrary to traditional rigid approaches.

5. References

https://softroboticstoolkit.com

https://hpac.harvard.rdu/softrobotics

PRAGYAN HARDWARE HACKATHON

Healthcare and Medical Sciences

S.P.E.A.R
Soft Pneumatic EMG Assisted
Rehabilitation

Aim

The objective of S.P.E.A.R is to provide an affordable soft robotic ankle foot orthosis for rehabilitative purposes, aimed primarily at stroke survivors.

Application

Ease of physiotherapy for those affected with stroke. Physiotherapy is a costly and continuous process, whereas a robotics solution will be a one-time investment. Because of its compliant nature, SPEAR is lighter, smaller and easier to use, contrary to traditional rigid approaches.

ANKLE MOTION

Block Diagram

Progress Report

- McKibben Muscles have been fabricated.
- The price of a readymade McKibben muscle is minimum Rs.1500
- Using off-the shelf components, cost has been reduced to an average Rs.150, depending on Muscle size, diameter

Component	Cost(Rs.)
Bladder(Silicon Rubber)	40 - 60
Nylon Mesh Sleeve	40 - 60
Miscellaneous (Connectors, Seals)	50
Total	150

Testing Results

Inner Diameter (inch)	Outer Diameter (inch)	Length (cm)	Slack	Contraction (cm)	Percentage Contraction
1/3	1/2	20	No	2.5	12.5
1/3	1/2	20	Yes	0.5	2.5
1/2	5/8	30	No	3	10

Muscle Test

First Prototype

Dorsiflexio n

Plantarflexion

Second Prototype (120° range of motion)

Dorsiflexio

n

Plantarflexion

S.P.E.A.R Workflow

Janua	ary:
Week :	1:
	Fabricator testing
Week 2	2:
	Prototype creation and testing
Week 3	3:
	Pneumatic circuit fabrication, EMG sensor acquisition
Week 4	4:
	Control of Mechanism with hard coded angles, EMG signal processing
Febru	ıary:
Week 1	1:
	EMG signal processing, start of fabrication of orthosis for inversion, eversion
Week 2	2:
	EMG signal processing, completion of orthosis
Week 3	3:
	Completion of EMG signal processing, integration of EMG results with completed orthosis
Week 4	4:
	Testing and refinement