Mole Concept:

No. of moles = $\frac{given \; mass(m)}{Molar \; mass(M)} = \frac{given \; no.of \; particles(N\prime)}{Avogadro \; No.(No)}$

Molar mass is atomic mass expressed in gm units.

Valence Of some radicals

Chloride Cl ⁻	-1	Phosphate PO ₄	-3	Flouride F -1	Sulphide S	-2
Sulphate SO ₄	-2	Oxide O	-2	Ammonium NH ₄ ⁺ +1	Iodide I	-1
Nitrate NO ₃	-1	Carbonate CO ₃	-2	Bicarbonate HCO ₃ -1	Hydroxide OH ⁻	-1

- 1. Give the formulas for the following compounds:
 - Copper Chloride
- Potassium Iodide
- Zinc bicarbonate Iron(III) Chloride

- Sodium Sulphate
- Ammonium Chloride
- Magnesium Phosphate
- Calcium bicarbonate
- Magnesium Phosph
- Aluminium Sulphide
- Lithium Oxide
- Hydrogen Oxide
- Copper Nitrate
- 2. Calculate the no. of moles present in 294g of Sulphuric acid.
- 3. Calculate the no. oxygen atoms & oxygen molecules present in 150g CH₃COOH.
- 4. Calculate the no. of molecules required to obtain $5N_o$ nitrogen atoms from Ammonium Nitrate.
- 5. Calculate grams of sodium carbonate required to get 80gm of sulphur.
- 6. What is the mass of 6.5 moles of Carbon dioxide.
- 7. As a product of a reaction a student obtained 12 moles of N³⁻ ions. Calculate the amount of reactant taken if the reactant was Ammonium Phosphate.
- 8. How many moles of water can be obtained if sufficient amt of hydrogen is made to react with 90moles of O_2 .
- 9. $HCI \rightarrow H^{+} + CI^{-}$

$$H_2SO_4 \rightarrow 2H^+ + SO_4^-$$

If 5 moles of HCl & 2 moles of H₂SO₄ were mixed in beaker, calculate the:

- Moles of H⁺ in the solution.
- Moles of Cl⁻ in the solution.
- Moles of SO₄ present in the solution.
- 10. $4AI + 3O_2 \rightarrow 2AI_2O_3$

How many moles of Al₂O₃ can be obtained if 16 moles of Aluminium and 15moles of Oxygen are allowed to react under suiable conditions?

11. $2Mg + O_2 \rightarrow 2MgO$

How many moles of O₂ and Mg are needed to get 4 moles of Magnesium Oxide as product?

- 12. If you are given
 - 6 mols N₂
 - 10 mols H₂
 - 7 mols O₂

Then how many moles of Ammonium Hydroxide can u prepare from it.