Discrete Mathematics Topic 04: Relations and Functions Lecture 01: Relation Concepts and Definitions Dr Kieran Murphy (©) (E) Computing and Mathematics, SETU (Waterford). (kieran.murphy@setu.ie) Graphs and Collections Autumn Semester, 2025/26 Networks

Outline

- Defining a relation via Cartesian product
- Relation Terminology

Enumeration

Relations & Functions

Outline

1. Relation Definition	2
1.1. Cartesian product and Relations	3
1.2. Graphical Representation of Relations using Venn Diagrams	9

Cartesian product

Recall that the Cartesian product of two sets, A and B, is the set of all ordered pairs of all elements where the first element is from set A and the second element is from B.

Definition 1 (Cartesian product)

The Cartesian product of two sets A and B, denoted by $A \times B$ is

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

$$\{(a,b),(c,d)\} = \{(c,d),(a,b)\}$$

• The set $A \times B$ has |A||B| elements.

Cartesian product

Recall that the Cartesian product of two sets, A and B, is the set of all ordered pairs of all elements where the first element is from set A and the second element is from B.

Definition 1 (Cartesian product)

The Cartesian product of two sets A and B, denoted by $A \times B$ is

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

- The order within the pair matters, so $(a, b) \neq (b, a)$.
- But, since $A \times B$ is a set, the order between the pairs is not important.

$$\{(a,b),(c,d)\} = \{(c,d),(a,b)\}$$

• The set $A \times B$ has |A||B| elements.

Example 2

The Cartesian product of $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

Or in Python*..

```
A = {0,1,2,3}
B = {0,1,4}
C = {(a,b) for a in A for b in B}

print (C)
{(0,1), (0,0), (3,0), (3,1), (1,4), (2,1), (2,0), (2,4), (0,4), (1,0), (3,4), (1,1)}
```

^{*}From now on I will break with the upper/lower case programming naming convention that you are probably using in Processing/Java and follow conventions in Mathematics

Example 2

The Cartesian product of $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

```
\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,1),(2,1),(2,4),(3,0),(3,1),(3,4)\}
```

The Cartesian product of $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

$$\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,1),(2,1),(2,4),(3,0),(3,1),(3,4)\}$$

Or in Python*...

```
A = {0,1,2,3}
B = {0,1,4}
C = {(a,b) for a in A for b in B}
print (C)
{(0,1), (0,0), (3,0), (3,1), (1,4), (2,1), (2,0), (2,4), (0,4), (1,0), (3,4), (1,1)}
```

^{*}From now on I will break with the upper/lower case programming naming convention that you are probably using in Processing/Java and follow conventions in Mathematics.

The formal definition of a relation is based on the Cartesian product between two sets, later we will see more initiative but less general definitions.

Definition 3 (Relation)

Given two sets A and B. Any subset of the Cartesian product between A and B is called a relation.

Example 4

The Cartesian product of the sets $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

$$\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,0),(2,1),(2,4),(3,0),(3,1),(3,4)\}$$

$$\bullet$$
 $R = \{(0,0), (1,1), (2,4)\}$

$$K = \{(0,0), (1,0), (2,1), (3,1)\}$$

$$\bullet R = \{(0,0), (1,4)\}$$

$$a R = \Omega$$

relation is based on
$$x \mapsto x \mod 2$$

relation is based on
$$x \mapsto isPrime(x)$$

Relation

The formal definition of a relation is based on the Cartesian product between two sets, later we will see more initiative but less general definitions.

Definition 3 (Relation)

Given two sets A and B. Any subset of the Cartesian product between A and B is called a relation.

Example 4

The Cartesian product of the sets $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

$$\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,0),(2,1),(2,4),(3,0),(3,1),(3,4)\}$$

$$R = \{(0,0), (1,1), (2,4)\}$$

$$R = \{(0,0), (1,1), (2,0), (3,1)\}$$

•
$$R = \{(0,0), (1,0), (2,1), (3,1)\}$$

$$R = \{(0,0),(1,4)\}$$

(relation is based on
$$x \mapsto x^2, x < 3$$
)

(relation is based on
$$x \mapsto x \mod$$

(relation is based on
$$x \mapsto isPrime(x)$$

The formal definition of a relation is based on the Cartesian product between two sets, later we will see more initiative but less general definitions.

Definition 3 (Relation)

Given two sets A and B. Any subset of the Cartesian product between A and B is called a relation.

Example 4

The Cartesian product of the sets $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

$$\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,0),(2,1),(2,4),(3,0),(3,1),(3,4)\}$$

$$P = \{(0,0), (1,1), (2,4)\}$$

•
$$R = \{(0,0), (1,1), (2,0), (3,1)\}$$

•
$$R = \{(0,0), (1,0), (2,1), (3,1)\}$$

$$R = \{(0,0), (1,4)\}$$

•
$$R = \{\}$$

(relation is based on
$$x \mapsto x^2, x < 3$$
)

(relation is based on
$$x \mapsto x \mod 2$$

(relation is based on
$$x \mapsto isPrime(x)$$

The formal definition of a relation is based on the Cartesian product between two sets, later we will see more initiative but less general definitions.

Definition 3 (Relation)

Given two sets A and B. Any subset of the Cartesian product between A and B is called a relation.

Example 4

The Cartesian product of the sets $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

$$\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,0),(2,1),(2,4),(3,0),(3,1),(3,4)\}$$

$$R = \{(0,0), (1,1), (2,4)\}$$

$$R = \{(0,0), (1,1), (2,0), (3,1)\}$$

•
$$R = \{(0,0), (1,0), (2,1), (3,1)\}$$

$$R = \{(0,0),(1,4)\}$$

•
$$R = \{\}$$

(relation is based on
$$x \mapsto x^2, x < 3$$
)

(relation is based on
$$x \mapsto x \mod 2$$
)

(relation is based on
$$x \mapsto isPrime(x)$$

The formal definition of a relation is based on the Cartesian product between two sets, later we will see more initiative but less general definitions.

Definition 3 (Relation)

Given two sets A and B. Any subset of the Cartesian product between A and B is called a relation.

Example 4

The Cartesian product of the sets $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

$$\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,0),(2,1),(2,4),(3,0),(3,1),(3,4)\}$$

So possible relations between A and B include

•
$$R = \{(0,0), (1,1), (2,4)\}$$

 $R = \{(0,0),(1,4)\}$

$$\{ \text{(relation is based on } x \mapsto x^2, x < 3 \}$$

$$R = \{(0,0), (1,1), (2,0), (3,1)\}$$

(relation is based on
$$x \mapsto x \mod 2$$
)
(relation is based on $x \mapsto \text{isPrime}(x)$)

$$P = \{(0,0), (1,0), (2,1), (3,1)\}$$

$$\bullet$$
 $R = \{\}$

The formal definition of a relation is based on the Cartesian product between two sets, later we will see more initiative but less general definitions.

Definition 3 (Relation)

Given two sets A and B. Any subset of the Cartesian product between A and B is called a relation.

Example 4

The Cartesian product of the sets $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

$$\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,0),(2,1),(2,4),(3,0),(3,1),(3,4)\}$$

•
$$R = \{(0,0), (1,1), (2,4)\}$$

•
$$R = \{(0,0), (1,1), (2,0), (3,1)\}$$

•
$$R = \{(0,0), (1,0), (2,1), (3,1)\}$$

$$P = \{(0,0),(1,4)\}$$

•
$$R = \{\}$$

(relation is based on
$$x \mapsto x^2, x < 3$$
)

(relation is based on
$$x \mapsto x \mod 2$$
)

(relation is based on
$$x \mapsto isPrime(x)$$
)

The formal definition of a relation is based on the Cartesian product between two sets, later we will see more initiative but less general definitions.

Definition 3 (Relation)

Given two sets A and B. Any subset of the Cartesian product between A and B is called a relation.

Example 4

The Cartesian product of the sets $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

$$\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,0),(2,1),(2,4),(3,0),(3,1),(3,4)\}$$

•
$$R = \{(0,0), (1,1), (2,4)\}$$
 (relation is based on $x \mapsto x^2, x < 3$)

•
$$R = \{(0,0), (1,1), (2,0), (3,1)\}$$
 (relation is based on $x \mapsto x \mod 2$)

•
$$R = \{(0,0), (1,1), (2,0), (3,1)\}$$
 (relation is based on $x \mapsto x \mod 2$)
• $R = \{(0,0), (1,0), (2,1), (3,1)\}$ (relation is based on $x \mapsto \text{isPrime}(x)$)

•
$$R = \{(0,0), (1,4)\}$$
 (relation is ... unknown?)

•
$$R = \{\}$$
 (remember, an empty set is a set)

The formal definition of a relation is based on the Cartesian product between two sets, later we will see more initiative but less general definitions.

Definition 3 (Relation)

Given two sets A and B. Any subset of the Cartesian product between A and B is called a relation.

Example 4

The Cartesian product of the sets $A = \{0, 1, 2, 3\}$ and $B = \{0, 1, 4\}$ is

$$\{(0,0),(0,1),(0,4),(1,0),(1,1),(1,4),(2,0),(2,1),(2,4),(3,0),(3,1),(3,4)\}$$

So possible relations between A and B include

•
$$R = \{(0,0), (1,1), (2,4)\}$$
 (relation is based on $x \mapsto x^2, x < 3$)

4096 possible relations!

•
$$R = \{(0,0), (1,1), (2,0), (3,1)\}$$
 (relation is based on $x \mapsto x \mod 2$)

•
$$R = \{(0,0), (1,1), (2,0), (3,1)\}$$
 (relation is based on $x \mapsto \text{isPrime}(x)$)

•
$$R = \{(0,0), (1,4)\}$$
 (relation is ... unknown?)

•
$$R = \{\}$$
 (remember, an empty set is a set)

You should spend some time thinking about the consequences of the definition that we have just covered ...

• Given two sets, A and B, how many distinct relations can we construct?

• Relation vs. Cartesian product vs. power set of the Cartesian product

You should spend some time thinking about the consequences of the definition that we have just covered ...

- Given two sets, A and B, how many distinct relations can we construct?
 - Set A and B have |A| and |B| elements respectively.
 - The Cartesian product, $A \times B$, has |A||B| elements.
 - Relation between A and B is any subset of $A \times B$.
 - Sets of size n have 2^n subsets.

• Relation vs. Cartesian product vs. power set of the Cartesian product

You should spend some time thinking about the consequences of the definition that we have just covered ...

- Given two sets, A and B, how many distinct relations can we construct?
 - Set A and B have |A| and |B| elements respectively.
 - The Cartesian product, $A \times B$, has |A||B| elements.
 - Relation between A and B is any subset of $A \times B$.
 - Sets of size n have 2ⁿ subsets.

Number of distinct relations between sets A and B is $2^{|A||B|}$

• Relation vs. Cartesian product vs. power set of the Cartesian product

You should spend some time thinking about the consequences of the definition that we have just covered ...

- Given two sets, A and B, how many distinct relations can we construct?
 - Set A and B have |A| and |B| elements respectively.
 - The Cartesian product, $A \times B$, has |A||B| elements.
 - Relation between A and B is **any** subset of $A \times B$.
 - Sets of size n have 2^n subsets.

Number of distinct relations between sets A and B is $2^{|A||B|}$

• Relation vs. Cartesian product vs. power set of the Cartesian product

Let R be a relation between sets A and B. Then

• *R* is a subset of the Cartesian product of *A* and *B*.

$$R \subseteq A \times B$$

You should spend some time thinking about the consequences of the definition that we have just covered ...

- Given two sets, A and B, how many distinct relations can we construct?
 - Set A and B have |A| and |B| elements respectively.
 - The Cartesian product, $A \times B$, has |A||B| elements.
 - Relation between A and B is any subset of $A \times B$.
 - Sets of size n have 2^n subsets.

Number of distinct relations between sets A and B is $2^{|A||B|}$

• Relation vs. Cartesian product vs. power set of the Cartesian product

Let *R* be a relation between sets *A* and *B*. Then

• *R* is a subset of the Cartesian product of *A* and *B*.

$$R \subseteq A \times B$$

• *R* is an element of the power set of the Cartesian product of *A* and *B*.

$$R \in \mathcal{P}(A \times B)$$

Example 5

Let $A = \{2, 3, 5, 6\}$ and define a relation R from A to A by $(a, b) \in R$ if and only if a divides evenly into b.

The relation R is defined by

$$R = \{(a, b) \mid a \in A, b \in A, a \text{ divides evenly into } b\}$$

The set of pairs that qualify for membership of R is

$$R = \{(2,2), (3,3), (5,5), (6,6), (2,6), (3,6)\}$$

Definition 6 (Relation on a Set)

A relation from set A to A is called a relation on A.

Notation Warning — Divisibility

When explaining relations we will often use (as in the previous example) the idea of "divides". Lets make sure we all agree on what this means . . .

Definition 7 (Divides)

Let $a, b \in \mathbb{Z}$. We say that a divides b, denoted $a \mid b$, if and only if there exists an integer k such that ak = b.

- Be careful in writing about the relation "divides." The vertical line symbol use for this relation, if written carelessly, can look like division. While $a \mid b$ is either **True** or **False**, a/b is a number[†].
- Even worse. We, mathematicians, use the same symbol "|" for "such that" in set builder notation and for "divides".
 - Usually this is not a problem as the intended meaning for "|" will be clear from the context.
 - Use alternative symbols: "|" is replaced by ":" in set builder notation.

Also the direction is different. " $a \mid b$ " means "a divides (evenly) into b", while "a/b" means "the value of a divided by b".

Notation Warning — Divisibility

When explaining relations we will often use (as in the previous example) the idea of "divides". Lets make sure we all agree on what this means . . .

Definition 7 (Divides)

Let $a, b \in \mathbb{Z}$. We say that a divides b, denoted $a \mid b$, if and only if there exists an integer k such that ak = b.

- Be careful in writing about the relation "divides." The vertical line symbol use for this relation, if written carelessly, can look like division. While $a \mid b$ is either **True** or **False**, a/b is a number[†].
- Even worse. We, mathematicians, use the same symbol "|" for "such that" in set builder notation and for "divides".
 - Usually this is not a problem as the intended meaning for "|" will be clear from the context.
 - Use alternative symbols: "|" is replaced by ":" in set builder notation.

[†]Also the direction is different. " $a \mid b$ " means "a divides (evenly) into b", while "a/b" means "the value of a divided by b".

Notation Warning — Divisibility

When explaining relations we will often use (as in the previous example) the idea of "divides". Lets make sure we all agree on what this means . . .

Definition 7 (Divides)

Let $a, b \in \mathbb{Z}$. We say that a divides b, denoted $a \mid b$, if and only if there exists an integer k such that ak = b.

- Be careful in writing about the relation "divides." The vertical line symbol use for this relation, if written carelessly, can look like division. While $a \mid b$ is either **True** or **False**, a/b is a number[†].
- Even worse. We, mathematicians, use the same symbol "|" for "such that" in set builder notation and for "divides".
 - Usually this is not a problem as the intended meaning for "|" will be clear from the context.
 - Use alternative symbols: "|" is replaced by ":" in set builder notation.

[†]Also the direction is different. " $a \mid b$ " means "a divides (evenly) into b", while "a/b" means "the value of a divided by b".

Representing relations graphically can help in identifying its properties ...

Consider the relation R from A into A, where $A = \{2, 3, 5, 6\}$ and $(a, b) \in R$ if and only if a divides evenly into b.

$$R = \{(2,2), (3,3), (5,5), (6,6), (2,6), (3,6)\}$$

- Draw set A.
- This relation is from A to A, so we make a copy of set A and called it B
- Indicate each of the ordered pairs in *R* using an arrow.

Representing relations graphically can help in identifying its properties ...

Consider the relation R from A into A, where $A = \{2, 3, 5, 6\}$ and $(a, b) \in R$ if and only if a divides evenly into b.

$$R = \{(2,2), (3,3), (5,5), (6,6), (2,6), (3,6)\}$$

- Draw set A.

Representing relations graphically can help in identifying its properties ...

Consider the relation R from A into A, where $A = \{2, 3, 5, 6\}$ and $(a, b) \in R$ if and only if a divides evenly into b.

$$R = \{(2,2), (3,3), (5,5), (6,6), (2,6), (3,6)\}$$

- Draw set A.
- This relation is from A to A, so we make a copy of set A and called it B.

Representing relations graphically can help in identifying its properties ...

Consider the relation R from A into A, where $A = \{2, 3, 5, 6\}$ and $(a, b) \in R$ if and only if a divides evenly into b.

$$R = \{(2,2), (3,3), (5,5), (6,6), (2,6), (3,6)\}$$

- Draw set A.
- This relation is from A to A, so we make a copy of set A and called it B.
- Indicate each of the ordered pairs in R using an arrow.

Representing relations graphically can help in identifying its properties ...

Consider the relation R from A into A, where $A = \{2, 3, 5, 6\}$ and $(a, b) \in R$ if and only if a divides evenly into b.

$$R = \{(2,2), (3,3), (5,5), (6,6), (2,6), (3,6)\}$$

- Draw set A.
- This relation is from A to A, so we make a copy of set A and called it B.
- Indicate each of the ordered pairs in R using an arrow.

Things we are interested in seeing ...

• Is there an arrow from every element in the first set?

- Is there an arrow to every element in the second set?
- Are there multiple arrows from some elements?
- Are there multiple arrows into some elements?

Consider the relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{0, 2, 4, 5\}$. We have

Consider the relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{0, 2, 4, 5\}$. We have

$$R = \{(a,b) \mid a \in A, b \in B, a < b\}$$

Consider the relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{0, 2, 4, 5\}$. We have

$$R = \{(a,b) \mid a \in A, b \in B, a < b\} = \{(1,2), (1,4), (1,5), (3,4), (3,5)\}$$

Consider the relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{0, 2, 4, 5\}$. We have

$$R = \{(a,b) \mid a \in A, b \in B, a < b\} = \{(1,2), (1,4), (1,5), (3,4), (3,5)\}$$

Consider the relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{0, 2, 4, 5\}$. We have

$$R = \{(a,b) \mid a \in A, b \in B, a < b\} = \{(1,2), (1,4), (1,5), (3,4), (3,5)\}$$

Consider the relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{0, 2, 4, 5\}$. We have

$$R = \{(a,b) \mid a \in A, b \in B, a < b\} = \{(1,2), (1,4), (1,5), (3,4), (3,5)\}$$

Consider the relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{0, 2, 4, 5\}$. We have

$$R = \{(a,b) \mid a \in A, b \in B, a < b\} = \{(1,2), (1,4), (1,5), (3,4), (3,5)\}$$

Consider the relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{0, 2, 4, 5\}$. We have

$$R = \{(a,b) \mid a \in A, b \in B, a < b\} = \{(1,2), (1,4), (1,5), (3,4), (3,5)\}$$

In python $R = \{ (a,b) \text{ for a in A for b in B if } a < b \}$

Given relation R from set S to set T we have:

- The source, S, is the set that the relation is going from.
- The target, T, is the set that the relation is going to.
- The domain of R, denoted by Dom(R), is the subset of the source for which there is at least one arrow leaving each element.

$$Dom(R) = \{s \mid s \in S, \exists t \in T((s, t) \in R)\} \subseteq S$$
exists at least one arrow leaving each element

• The image of R, denoted by Im(R), is the subset of the target for which there is at least one arrow entering each element.

$$\operatorname{Im}(R) = \{t \mid t \in T, \exists s \in S((s,t) \in R)\} \subseteq T$$
exists at least one arrow entering each element

Relation Terminology — Into vs. Onto

III

From our definitions, we have that the image of a relation is a subset of its target, i.e.,

$$\operatorname{Im}(R) \subseteq T$$

or

This gives us two possibilities ...

12 of 14

From our definitions, we have that the image of a relation is a subset of its target, i.e.,

$$\operatorname{Im}(R) \subseteq T$$

This gives us two possibilities ...

$$\operatorname{Im}(R) \subset T$$

$$Im(R) = T$$

From our definitions, we have that the image of a relation is a subset of its target, i.e.,

$$\operatorname{Im}(R) \subseteq T$$

This gives us two possibilities ...

$$\operatorname{Im}(R) \subset T$$

Example, consider relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{1, 3, 5\}$ is

$$\operatorname{Im}(R) = T$$

Example, consider relation "is less than" from set $A = \{-1, 3, 5\}$ to set $B = \{1, 3, 5\}$ is

Relation Terminology — Into vs. Onto

From our definitions, we have that the image of a relation is a subset of its target, i.e.,

$$\operatorname{Im}(R) \subseteq T$$

This gives us two possibilities ...

$$\operatorname{Im}(R) \subset T$$

Example, consider relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{1, 3, 5\}$ is

$$\operatorname{Im}(R) = T$$

Example, consider relation "is less than" from set $A = \{-1, 3, 5\}$ to set $B = \{1, 3, 5\}$ is

Relation Terminology — Into vs. Onto

From our definitions, we have that the image of a relation is a subset of its target, i.e.,

$$\operatorname{Im}(R) \subseteq T$$

This gives us two possibilities ...

$$\operatorname{Im}(R) \subset T$$

Example, consider relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{1, 3, 5\}$ is

$$Im(R) = T$$

Example, consider relation "is less than" from set $A = \{-1, 3, 5\}$ to set $B = \{1, 3, 5\}$ is

From our definitions, we have that the image of a relation is a subset of its target, i.e.,

$$\operatorname{Im}(R) \subseteq T$$

or

This gives us two possibilities ...

$$\operatorname{Im}(R) \subset T$$

Example, consider relation "is less than" from set $A = \{1, 3, 5\}$ to set $B = \{1, 3, 5\}$ into

A relation, R, in which the image is a proper subset of the target is said to be an into relation.

$$Im(R) = T$$

Example, consider relation "is less than" from set $A = \{-1, 3, 5\}$ to set $B = \{1, 3, 5\}$ is

A relation, R, in which the image is equal to the target is said to be an onto relation.

Relation Terminology — Injective (one-to-one)

Definition 8 (Injective)

A relation is said to be injective (or one-to-one) if there is at most one arrow into every element in the target set.

or

13 of 14

Definition 8 (Injective)

A relation is said to be injective (or one-to-one) if there is at most one arrow into every element in the target set.

or

Consider the relation "is square root of" from set $A = \{-1, 1, 2\}$ to set $B = \{-1, 1, 4, 8\}$.

Consider the relation "is cube root of" from set $A = \{-1, 1, 2\}$ to set $B = \{-1, 1, 4, 8\}$.

Definition 8 (Injective)

A relation is said to be injective (or one-to-one) if there is at most one arrow into every element in the target set.

Consider the relation "is square root of" from set $A = \{-1, 1, 2\}$ to set $B = \{-1, 1, 4, 8\}$.

Consider the relation "is cube root of" from set $A = \{-1, 1, 2\}$ to set $B = \{-1, 1, 4, 8\}$.

Definition 8 (Injective)

A relation is said to be injective (or one-to-one) if there is at most one arrow into every element in the target set.

or

Consider the relation "is square root of" from set $A = \{-1, 1, 2\}$ to set $B = \{-1, 1, 4, 8\}$.

Not injective, since there exists at least one element in the target, (1), which has more than one incoming arrows.

Consider the relation "is cube root of" from set $A = \{-1, 1, 2\}$ to set $B = \{-1, 1, 4, 8\}$.

Is injective, since there is at most one arrow into each element in the target.

Question 1:

Consider the sets $A = \{0, 1, ..., 6\}$ and $B = \{0, 1, ..., 12\}$. Draw each of the following relations, and specify the domain and image of R from A to B and whether it is into or onto, and injective or not.

- $(a,b) \in R \text{ iff } a \text{ divides } b.$
- $a \mid t$

- $(a,b) \in R \text{ iff } a > b$
- **(a**, b) $\in R$ iff number of primes less than a is equal to number of primes less than b
- $(a,b) \in R$ iff number of factors of a is equal to number of factors of b.
- $(a,b) \in R$ iff number of letters in writing a in English is equal number of letters in writing b in English.

Question 2:

Let *R* be the relation from \mathbb{N} to \mathbb{N} where $(a,b) \in R$ iff b=a+2. Is *R* onto?

Question 3:

Let *R* be the relation from \mathbb{Z} to \mathbb{Z} where $(a, b) \in R$ iff b = a + 2. Is *R* onto?

Question 4:

Let *R* be the relation from \mathbb{N} to \mathbb{N} where $(a,b) \in R$ iff $b = a^2$. Is *R* one-to-one?

Question 5:

Let *R* be the relation from \mathbb{Z} to \mathbb{Z} where $(a, b) \in R$ iff $b = a^2$. Is *R* one-to-one?