ELEC 341 – Graded Assignments

Assignment A4 BD Manipulation & Gear-Motors

100 Marks

Required Files

Available on Canvas

e341-a4.pdf
 a4Submit.p
 Assignment description (this document)
 Grading script (LATEST version)

• e341-APE.pdf Instructions for submitting graded work (for reference)

Topics

BD Manipulation

• summing junctions & pick-off points

Motor Model

• block diagram equivalent

Mechanical Transmissions

• gear ratio & equivalent impedance

The MIMO Block Diagram in Figure 1 has 2 inputs ($\mathbf{U_1} \ \& \ \mathbf{U_2}$) and 2 outputs ($\mathbf{Y_1} \ \& \ \mathbf{Y_2}$).

Use block diagram manipulation to solve the system.

Find:

$$G_{11} = Y_1/U_1$$
 $G_{12} = Y_1/U_2$
 $G_{21} = Y_2/U_1$ $G_{22} = Y_2/U_2$

1. 40 mark(s) SISO System

If the same signal is applied to both inputs $U_1=U_2=U$, it becomes a SIMO system.

Use super-position to solve the system.

Find:

$$G_1 = Y_1/U$$

 $G_2 = Y_2/U$

2. 20 mark(s) SIMO System

• Q2.G1 (pure) LTI • Q2.G2 (pure) LTI

COW: Use Simulink to draw the figure **EXACTLY** as in **Figure 2**, but using your **SN**. Use the switches to implement either super-position or SIMO.

The fan in Figure 3 is constructed by attaching a fan blade to a motor & gearbox.

An over-drive gearbox is used to increase the speed of the fan blade, as shown in Figure 4.

The fan blade has inertia J_f and damping B_f (air resistance).

The gearbox also has inertia J_g and damping B_g (gear tooth & bearing friction).

The motor is from Assignment A3, and has the admittances shown in Figure 5.

Find electrical admittance: $Y_e = i_w/V_w$ Find mechanical admittance: $Y_m = \omega/\tau$

3. 20 mark(s) Admittance Functions

• Q3.Ye (A/V) LTI • Q3.Ym (rad/Nms) LTI

Use **feedback()** to find: $G_i = i_w/V_{in}$ Use **feedback()** to find : $G_w = \omega_f/V_{in}$

4. 20 mark(s) Fan Gains

• Q4.Gi (A/V) LTI • Q4.Gw (rad/Vs) LTI

COW: Compare the step response of the fan to the unloaded motor in Assignment A3.