Examenul național de bacalaureat 2021 Proba E. c)

Matematică M tehnologic

BAREM DE EVALUARE ȘI DE NOTARE

Testul 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	Rația progresiei geometrice este $q = -2$	2p
	$b_5 = b_1 q^4 = 3 \cdot (-2)^4 = 48$	3p
2.	$x_1 + x_2 = 3$, $x_1 x_2 = \frac{1}{2}$	2p
	$x_1 + x_2 - 6x_1x_2 = 3 - 6 \cdot \frac{1}{2} = 3 - 3 = 0$	3р
3.	$\sqrt[3]{27x+8} = -1 \Leftrightarrow 27x+8 = -1$	3p
	$x = -\frac{1}{3}$	2p
4.	$x + \frac{15}{100} \cdot x = 92$, unde x este prețul produsului înainte de scumpire	3p
	x = 80 de lei	2p
5.	$AB = \sqrt{144 + a^2}$	2p
	$\sqrt{144 + a^2} = 13$, de unde obținem $a = -5$ sau $a = 5$, care convin	3p
6.	Unghiul A are măsura egală cu 30° , deci $\sin A = \frac{1}{2}$	2p
	$\mathcal{A} = \frac{AB \cdot AC \cdot \sin A}{2} = \frac{14 \cdot 14 \cdot \frac{1}{2}}{2} = 49$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 1 \cdot 2 - (-1) \cdot 1 =$	3p
	=2+1=3	2p
	$A(x) \cdot A(1) = \begin{pmatrix} 3 & 3 \end{pmatrix}$ si $3(A(x) - I_2) = \begin{pmatrix} 3 & 3 \end{pmatrix}$, pentru orice număr real x	3р
	$\begin{pmatrix} 2x-2 & x-4 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 3x-3 & 3x-6 \\ 3 & 3 \end{pmatrix}, \text{ de unde obținem } x=1$	2p
c)	$xA(x) - A(x^2) = \begin{pmatrix} x^2 & x^2 - 2x \\ x & 2x \end{pmatrix} - \begin{pmatrix} x^2 & x^2 - 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & -2x + 2 \\ x - 1 & 2x - 2 \end{pmatrix}, \text{ pentru orice număr real } x$	2p
	$\det\left(xA(x)-A(x^2)\right)=0-(-2x+2)(x-1)=2(x-1)^2\geq 0, \text{ pentru orice număr real } x$	3 p
2.a)	$1*5=3\cdot1\cdot5-\frac{1+5}{3}+1=$	3p
	=15-2+1=14	2p

Probă scrisă la matematică $M_tehnologic$

Barem de evaluare și de notare

Testul 5

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

b)	$3*x = 9x - \frac{3+x}{3} + 1 = \frac{26x}{3}$, pentru orice număr real x	3p
	$\frac{26x}{3} = -52$, de unde obținem $x = -6$	2p
c)	$0*(3n) = -n+1 \Rightarrow n*(0*(3n)) = n*(-n+1) = \frac{-9n^2 + 9n + 2}{3}$, pentru orice număr natural n	2p
	$\frac{-9n^2 + 9n + 2}{3} \ge \frac{2n}{3} \Leftrightarrow -9n^2 + 7n + 2 \ge 0 \text{si, cum } n \text{ este număr natural, obținem } n = 0 \text{ sau}$ $n = 1$	3р

SUBIECTUL al III-lea (30 de nuncte)

OUDIE	UBIECTUL al III-lea (30 de pi	
1.a)	$f'(x) = -6x^2 - 12x + 18 =$	3p
	$=-6(x^2+2x-3)=-6(x-1)(x+3), x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = -3 \text{ sau } x = 1$	2p
	$x \in (-\infty, -3] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(-\infty, -3]$, $x \in [-3, 1] \Rightarrow f'(x) \ge 0$,	
	deci f este crescătoare pe $[-3,1]$, $x \in [1,+\infty) \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe	3 p
	$[1,+\infty)$	
c)	Panta tangentei la graficul funcției f în punctul $A(-2, f(-2))$ este $f'(-2) = -6 \cdot (-3) \cdot 1 = 18$	2p
	Panta tangentei la graficul funcției f în punctul $B(0, f(0))$ este $f'(0) = -6 \cdot (-1) \cdot 3 = 18$,	2 n
	deci tangentele la graficul funcției f în punctele A și B au pantele egale	3 p
2.a)	$\int_{1}^{3} (f(x) - \ln x) dx = \int_{1}^{3} (x - 2) dx = \left(\frac{x^{2}}{2} - 2x\right) \Big _{1}^{3} =$	3 p
	$=\frac{9}{2}-6-\left(\frac{1}{2}-2\right)=0$	2p
b)	$\int_{1}^{e} (f(x) - x + 2) dx = \int_{1}^{e} \ln x dx = (x \ln x - x) \Big _{1}^{e} =$	3p
	=0-(-1)=1	2p
c)	F este primitivă a funcției $f \Rightarrow F'(x) = f(x), x \in (0, +\infty)$	2p
	$F''(x) = f'(x) = 1 + \frac{1}{x} \ge 0$, pentru orice $x \in (0, +\infty)$, deci F este convexă	3 p