STSCI 5080 Probability Models and Inference

Lecture 7: Joint Distributions

September 13, 2018

Example

Let *X* be a continuous random variable with pdf

$$f(x) = \begin{cases} 3x^2 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}.$$

Calculate the cdf and quantile function of X.

Example

Let *X* be a continuous random variable with pdf

$$f(x) = \begin{cases} 3x^2 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}.$$

Calculate the cdf and quantile function of X.

For x < 0, F(x) = 0, for $0 \le x \le 1$,

$$F(x) = \int_0^x 3y^2 dy = x^3,$$

and for x > 1, F(x) = 1. Next, for given $u \in (0, 1)$, solving

$$x^3 = u$$

w.r.t. x leads to $x = u^{1/3}$. So $F^{-1}(u) = u^{1/3}$.

Chapter 3 Joint Distributions

Random vector

Definition

For two random variables X, Y defined on the same sample space Ω , the vector (X, Y) is called a random vector.

Discrete random vector

- If X and Y are discrete with supports $\{x_1, x_2, \dots\}$ and $\{y_1, y_2, \dots\}$, then the vector (X, Y) takes values in $\{(x_i, y_j) : i, j = 1, 2, \dots\}$.
- Some pairs (x_i, y_j) may be given 0 probability.
- But anyway the vector (X, Y) takes values in a finite or countably infinite set.

Discrete random vector (cont.)

Definition

A random vector (X, Y) is discrete if X and Y are discrete.

Joint pmf

Definition

For a discrete random vector (X,Y), the joint probability mass function (joint pmf) is defined by

$$p(x,y) = P(X = x, Y = y) = P(\{X = x\} \cap \{Y = y\})$$

for any x and y.

7

From joint pmf to marginal pmf

- How to calculate the pmf of Y from the joint pmf of (X,Y)?
- The pmf of Y is given by

$$p_Y(y) = \sum_{x} p(x, y).$$

Why?

$$\sum_{x} p(x, y) = \sum_{i} p(x_{i}, y) = \sum_{i} P(X = x_{i}, Y = y)$$

$$= \sum_{i} P(\{X = x_{i}\} \cap \{Y = y\}) = P\left(\bigcup_{i} (\{X = x_{i}\} \cap \{Y = y\})\right)$$

$$= P\left(\left(\bigcup_{i} \{X = x_{i}\}\right) \cap \{Y = y\}\right) = P(\Omega \cap \{Y = y\}) = P(Y = y).$$

Marginal pmf

Theorem

The pmf of Y is given by

$$p_Y(y) = \sum_x p(x, y).$$

We call $p_Y(y)$ the marginal pmf of Y. Similarly, the pmf of X is given by

$$p_X(x) = \sum_{y} p(x, y).$$

Some properties of joint pmf

• The joint pmf p(x, y) satisfies that $p(x, y) \ge 0$ for any x and y, and

$$\sum_{x} \sum_{y} p(x, y) = 1.$$

• For any subset $B \subset \mathbb{R}^2$,

$$P((X,Y) \in B) = P(\{(X,Y) \in B\}) = \sum_{(x,y) \in B} p(x,y).$$

The joint cdf of (X, Y) is defined by

$$F(x,y) = P(X \le x, Y \le y) = \sum_{u \le x} \sum_{v \le y} p(u,v).$$

Example

Suppose you toss a coin three times, and let

X = the total number of heads in the first toss,

Y = the total number of heads.

What is the joint pmf of (X, Y)?

Continuous random vector

Definition (PDF on \mathbb{R}^2)

A function f(x,y) on \mathbb{R}^2 is called a pdf on \mathbb{R}^2 if $f(x,y) \geq 0$ for any $(x,y) \in \mathbb{R}^2$ and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$$

Definition (Continuous random vector)

A random vector (X,Y) is continuous if there exists a pdf f(x,y) on \mathbb{R}^2 such that

$$P((X,Y) \in B) = \iint_B f(x,y) dxdy$$

for any subset $B \subset \mathbb{R}^2$. We say that (X, Y) has joint pdf f(x, y).

Marginal pdf

Theorem

The pdf of Y is given by

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx.$$

We call $f_Y(y)$ the marginal pdf of Y. Similarly, the pdf of X is given by

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy.$$

Joint cdf

Definition

Let (X,Y) be a continuous random vector with joint pdf f(x,y). Then the joint cdf of (X,Y) is defined by

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv.$$

From joint cdf to joint pdf

From the fundamental theorem in multivariate calculus,

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y),$$

whenever the derivative is well defined.

Caution

- If the vector (X, Y) is continuous, X and Y are continuous individually.
- Even if two random variables X and Y are continuous individually, the vector (X, Y) need *not* be continuous.
- Example: Let $X \sim U[0,1]$ and Y = X. Then (X,Y) concentrates on the diagonal line

$$D = \{(x, y) \mid 0 \le x \le 1, x = y\}$$

in the sense that $P((X,Y) \in D) = 1$. However, since D has area 0, if there were a joint pdf f(x,y) for (X,Y), then

$$P((X,Y) \in D) = \iint_D f(x,y) dx dy = 0,$$

a contradiction!

Example

Consider a pdf on \mathbb{R}^2 defined by

$$f(x,y) = \begin{cases} \frac{12}{7}(x^2 + xy) & \text{if } 0 \le x, y \le 1 \\ 0 & \text{otherwise} \end{cases}.$$

What is P(X > Y)? What are the marginal pdfs of X and Y?

Uniform random vector on a 2D set

Definition

Let $A \subset \mathbb{R}^2$ as set with positive and finite area: $0 < |A| < \infty$, where

$$|A| = \iint_A dx dy.$$

Then a function of the form

$$f(x,y) = \begin{cases} \frac{1}{|A|} & \text{if } (x,y) \in A\\ 0 & \text{otherwise} \end{cases}$$

is a pdf on \mathbb{R}^2 . A random vector (X, Y) with pdf f is called a uniform random vector on A.

"(X, Y) is a point randomly chosen from A"

Example

Let $A = \{(x, y) \mid x, y \ge 0, x + y \le 1\}$. Define a pdf f on \mathbb{R}^2 by

$$f(x,y) = \begin{cases} c & \text{if } (x,y) \in A \\ 0 & \text{otherwise} \end{cases}.$$

Find the value of c. Calculate the marginal pdfs of X and Y.