

Business Intelligence & Analytics

Implementación de una solución de big data para el monitoreo y simulación de escenarios para la actividad económica tiempo real

Oficina de Presupuestos

Dirección Académica de Economía (DAE)

Índice

- I. Objetivo
- II. Revisión bibliográfica
- III. Hipótesis de demanda de energía como proxy del PBI
- IV. Arquitectura para el procesamiento de alta frecuencia
- V. Metodología econométrica seleccionada
- VI. Siguientes pasos

I. Objetivo principal

Identificación y cuantificación oportuna de riesgos macroeconómicos para una eficiente previsión presupuestal

II. Revisión bibliográfica

Revisión de literatura : Nowcasting de la actividad económica

Box - Jenkins (1976)

 Metodología ampliamente utilizada para el tratamiento y modelado de series de tiempo no estacionarias.

Scott & Varian (2014)

 Se estudian diversas indicadores proxy de para la actividad económica encontrándose la generación de electricidad como mejor indicador sobre otros.

Bok & Caratelli (2018).

 Se utilizan técnicas de Big Data sobre una plataforma automatizada para la extracción continua de datos y proyección inmediata de diversos indicadores de mercado.

Justificación de selección de metodología
Box - Jenkins

- Metodología base para modelar series de tiempo
- Es parsimoniosa y robusta para muestras sufrientemente grandes.
- Muy intuitiva y simple de implementar.

III. Hipótesis de la demanda de energía como proxy del PBI

Intuición de acuerdo a Scott & Varian, 2014

Tasa de crecimiento interanual del PBI real (estimado)

$$y_t^{PBI} = \beta_0(y_t^{DE}) + \beta_1(\varepsilon_{t-1})$$

Prueba de hipótesis

Metodología de Mínimos Cuadrados Ordinarios

(*) Se tomó una muestra pequeña por ser de rápido procesamiento, pudiendo extenderse esta hasta el año 2001

Donde:

 y_t^{PBI} : Tasa de crecimiento interanual del PBI real (Perú)

 y_t^{DE} : Tasa de crecimiento interanual de la demanda eléctrica

 \hat{y}_t^{PBI} : Tasa de crecimiento interanual del PBI estimada en tiempo real

Pruebas de estacionariedad de las series seleccionadas

III. Hipótesis de la demanda de energía como proxy del PBI

Pruebas de estacionariedad de las series seleccionadas

Pruebas de ADF – Demanda de energía eléctrica (exógena)

Null Hypothesis(H0): Serie has a unit root ADF Statistic: -4.188348 p-value: 0.000689

Critical Values:

1%: -3.581

5%: -2.927

10%: -2.602

Numbers of lag used : 4.000000 Numbers of observations used: 46.000000 Criterio de Información : -232.031085

Se rechaza H0, de rechazar H0 la probabilidad de equivocarnos sería 0.000689

Por tanto: La serie no tiene raíz unitaria, entonces es estacionaria

Pruebas de ADF – PBI (endógena)

Null Hypothesis(H0): Serie has a unit root

ADF Statistic: -3.023517

p-value: 0.032756 Critical Values: 1%: -3.585 5%: -2.928

5%: -2.928 10%: -2.602

Numbers of lag used : 5.000000 Numbers of observations used: 45.000000 Criterio de Información : -226.835148

Se rechaza H0, de rechazar H0 la probabilidad de equivocarnos sería 0.032756 Por tanto: La serie no tiene raíz unitaria, entonces es estacionaria

IV. Arquitectura para el procesamiento de alta frecuencia

Big data pipeline (*)

(*) Se esta evaluando migrar a la arquitectura cloud AWS

IV. Metodología econométrica seleccionada

Metodología de Box – Jenkins

Donde

- p: Trend autoregression order.
- d: Trend difference order.
- q: Trend moving average order.

- P: Seasonal autoregressive order.
- D: Seasonal difference order
- Q: Seasonal moving average order.
- m: The number of time steps for a single seasonal period.

IV. Metodología econométrica seleccionada

Intuición de acuerdo a Scott & Varian, 2014

Evolución de la Demanda de energía eléctrica (Expresado en GW)

Prueba de hipótesis

Metodología SARIMA

=======================================						
Dep. Variable:		Ejecu	tado No.	Observations:		5318
Model: SARI	MAX(1, 0, 1	l)x(1, 0, 1	, 7) Log	Log Likelihood		-35872.769
Date:	We	ed, 22 Jul	2020 AIC			71757.537
Time:		23:1	9:35 BIC			71797.011
Sample:		01-01-	2006 HQIC			71771.329
		- 07-23-	2020			
Covariance Type:			opg			
coef	std err	Z	P> z	[0.025	0.975]	
intercept 73.2865	3.531	20.752	0.000	66.365	80.208	
ar.L1 0.6809	0.008	89.924	0.000	0.666	0.696	
ma.L1 -0.2470	0.008	-31.517	0.000	-0.262	-0.232	
ar.S.L7 0.9512	0.003	367.809	0.000	0.946	0.956	
ma.S.L7 -0.5665	0.005	-124.528	0.000	-0.575	-0.558	
sigma2 4.116e+04	151.256	272.120	0.000	4.09e+04	4.15e+04	
=======================================						
Ljung-Box (Q):		1672.66	Jarque-Ber	a (JB):	1759532	2.26
Prob(Q):		0.00	0.00 Prob(JB):		0.00	
Heteroskedasticity (H):		0.27	Skew:		-4.98	
Prob(H) (two-sided):		0.00	Kurtosis:		91.55	

$y_t = SARIMA(1,0,1)(1,0,1)_7$

- p: Trend autoregression order.
- · d: Trend difference order.
- q: Trend moving average order.
- P: Seasonal autoregressive order.
- . D: Seasonal difference order
- Q: Seasonal moving average order.
- m: The number of time steps for a single seasonal period

(*) "¿Cuánto Tardará la económica peruana en recuperarse?"

Por calcular las diferentes trayectorias y plazos para volver a los niveles de demanda de energía eléctrica previos a la pandemia.

https://www.facebook.com/watch/?v=318813109273668

VI. Siguientes pasos

Cronograma de actividades

Etapa	Item	Actividades	Estatus
Marco Teórico	01	Revisión bibliográfica	Hecho
	02	Selección de bibliografía base	Hecho
Web Scraping -	03	Desarrollo de codigos para la extraccion de datos intradiarios de demanda de energia (COES)	Hecho
	04	Pruebas de hipotesis iniciales (PBI vs electrica)	Hecho
Estrategía metodológica 0	05	Selección metodologica	Hecho
	06	Especificacion econometrica	Hecho
	07	Pruebas de hipotesis, proyecciones y simulacion de escenario para el PBI	Haciendo
Estrategía ETL 🕝 🕝	08	Desarrollo de la infraestructura para la carga y procesamiento de datos masivos	Por hacer
	09	Diseño e implementacion de reportesBI cloud	Por hacer
Integracion al sistema de monitoreo	10	Integracion al modelo para la proyeccion de ingresos academicos y inmobiliarios PUCP	Por hacer

Predicting daily electricity loads for a building on the UC Berkeley campus

https://towardsdatascience.com/time-series-forecasting-with-a-sarima-model-db051b7ae459

Bibliografía

- Bok, B., Caratelli, D., Giannone, D., Sbordone, A., & Tambalotti, A. (2018). Macroeconomic Nowcasting and Forecasting with Big Data. Annual Review Of Economics, 10(1), 615-643. doi: 10.1146/annurev-economics-080217-053214
- Bragoli, D. (2017). Now-casting the Japanese economy. International Journal Of Forecasting, 33(2), 390-402. doi: 10.1016/j.ijforecast.2016.11.004
- Bragoli, D., & Modugno, M. (2017). A now-casting model for Canada: Do U.S. variables matter?. International Journal Of Forecasting, 33(4), 786-800. doi: 10.1016/j.ijforecast.2017.03.002
- Bragoli, D., Metelli, L., & Modugno, M. (2014). The Importance of Updating: Evidence from a Brazilian Nowcasting Model. SSRN Electronic Journal. doi: 10.2139/ssrn.2529168
- Evans, M. (2005). Where Are We Now? Real-Time Estimates of the Macro Economy. SSRN Electronic Journal. doi: 10.2139/ssrn.646103
- Giannone, D., Reichlin, L., & Small, D. (2008). Nowcasting: The real-time informational content of macroeconomic data. Journal Of Monetary Economics, 55(4), 665-676. doi: 10.1016/j.jmoneco.2008.05.010
- Raftery, A., Madigan, D., & Hoeting, J. (1997). Bayesian Model Averaging for Linear Regression Models. Journal Of The American Statistical Association, 92(437), 179-191. doi: 10.1080/01621459.1997.10473615
- Scott, S., & Varian, H. (2014). Predicting the present with Bayesian structural time series. International Journal Of Mathematical Modelling And Numerical Optimisation, 5(1/2), 4. doi: 10.1504/ijmmno.2014.059942
- Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis forecasting and control rev. ed. Oakland, California, Holden-Day, 1976, 37 (2), 238 - 242

Business Intelligence & Analytics

Sergio Valera
Data Analytics
s.valera@pucp.pe

Carlos Loayza
Business Intelligence
Carlos.loayza@pucp.edu.pe

