1	171	Position_init	Le système devra être placé en bas de la planche la plus à gauche de la parcelle
2	172	Chargement initial	Le système devra être chargé de 240 plants avant d'être mis en route
3	173	Plantation	Le système devra respecter l'espacement entre 2 choux (60 cm) et avec les bords de la planche (30 cm)
4	174	Changement de planche	Le système devra être capable de changer de planche une fois arrivé en bout de planche
5	176	Commander la position du robot	Le système devra être commandable en position
6	177	Gérer le déplacement latéral	Le système sera capable de se déplacer latéralement en translation
7	178	Profondeur plants de choux	Le système sera capable de planter les choux à 8cm de profondeur
8	179	Précision de la position du système	L'erreur de position du robot sur la planche sera inférieure à 2cm
9	180	□ Valider la précision du déplacem	La mesure physique de chaque intervales interplants sur la longueur sont identiques pour les 240 plants avec une erreur inférieure à 2cm
10	181	™ Valider le temps de réponse du s	Après modélisation et simulation le temps de réponse devra être inférieur à 1 seconde
11	182	Temps de réponse du système	Le système sera capable de s'arrêter en moins d'une seconde
12	183	Détecter des obstacles	Le système devra être capable de détecter des obstacles devant lui
13	184	Signaler obstacle	Le système avertira l'utilisateur de la présence d'un obstacle
14	185	S'arrêter et attendre	Le robot devra pouvoir s'arrêter et rester statique tant que l'obstacle n'a pas été déplacé
15	186	■ Reprendre le plantage	Lorsque l'obstade aura été évacué, le robot devra reprendre sa tâche ou il s'est arrêté après que l'opérateur aura validé avoir enlevé l'obstade
16	188	Dimension minimale des obstacle	Le système pourra détecter des obstacles de plus de 8cm de haut ou de plus de 10cm cube
17	189	Gérer le stock de plants	Le système devra être capable de détecter que son stock de plants est vide
18	190	Signaler la rupture de stock	Le système devra pouvoir informer l'utilisateur que son stock de plants est vide
19	191	Retourner en début de planche	Le système devra être capable de retourner en début de planche
20	192	Sauvegarder l'état actuel du syst	Le système devra être capable de sauvegarder son état actuel d'avancement sur la planche
21	193	Revenir dans un état sauvegardé	Le système devra être capable de revenir dans un état sauvegardé afin de reprendre ses opérations là ou il s'est arrêté
22	194	☐ Attendre le chargement	Le système devra attendre que l'utilisateur charge les plants puis valide lechargement
23	195	Temps de signalisation de la rupt	Le système devra pouvoir signaler à l'utilisateur la rupture de stock en moins de 5s