CSC 261/461 Database Systems

Eustrat Zhupa

October 8, 2018

Second Normal Form

- ► Uses the concepts of *FDs* and *primary key*
- ▶ Definitions
 - ► Prime attribute: An attribute that is member of the primary key *K*
 - ▶ Full functional dependency: a FD $Y \rightarrow Z$ where removal of any attribute from Y causes FD to not hold any more
 - ➤ X → Y is a partial dependency if some attribute can be removed from X and the dependency still holds
- ► A relation schema R is in second normal form (2NF) if every non-prime attribute A in R is fully functionally dependent on the primary key

Third Normal Form

- ▶ Transitive functional dependency: a FD $X \rightarrow Z$ that can be derived from two FDs $X \rightarrow Y$ and $Y \rightarrow Z$
- ► A relation schema R is in **third normal form** (3NF) if it is in 2NF and no non-prime attribute A in R is transitively dependent on the primary key.

Normal Forms

▶ 1st normal form:

All attributes depend on the key

▶ 2nd normal form:

All attributes depend on the whole key

▶ 3rd normal form:

All attributes depend on nothing but the key

General Definition of 2NF

A relation schema R is in second normal form (2NF) if every nonprime attribute A in R is not partially dependent on any key of R.

General Definition of 3NF

A relation schema R is in third normal form (3NF) if, whenever a nontrivial functional dependency $X \to A$ holds in R, either X is a superkey of R, or A is a prime attribute of R.

General Definition of 3NF

Boyce-Codd Normal Form

A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever a *nontrivial* FD $X \to A$ holds in R, then X is a superkey of R

Boyce-Codd Normal Form

TEACH

Student	Course Instructor		
Narayan	Database	Mark	
Smith	Database Navathe		
Smith	Operating Systems		
Smith	Theory Schulma		
Wallace	Database	Mark	
Wallace	Operating Systems Ahamad		
Wong	Database	Omiecinski	
Zelaya	Database	Navathe	
Narayan	Operating Systems	Ammar	

R				
	<u>A</u>	<u>B</u>	С	
FD1			A	
FD2				

[3]

Boyce-Codd Normal Form

FD1: $\{Student, Course\} \rightarrow Instructor$

FD2: $Instructor \rightarrow Course$

- 1. R1(Student, Instructor) and R2(Student, Course)
- 2. R1(Course, Instructor) and R2(Course, Student)
- 3. R1(Instructor, Course) and R2(Instructor, Student)

Decomposition

- FD1: $\{Student, Course\} \rightarrow Instructor$
- FD2: $Instructor \rightarrow Course$
 - 1. R1(Student, Instructor) and R2(Student, Course)
 - 2 R1(Course, <u>Instructor</u>) and R2(<u>Course</u>, <u>Student</u>)
 - R1(Instructor, Course) and R2(Instructor, Student)

NJB (Nonadditive Join Test for Binary Decompositions)

A decomposition $D=\{R_1,R_2\}$ of R has the *lossless* (nonadditive) join property with respect to a set of functional dependencies F on R if and only if either

- ▶ The FD $((R_1 \cap R_2) \rightarrow (R_1 R_2))$ is in F^+ , or
- ▶ The FD $((R_1 \cap R_2) \rightarrow (R_2 R_1))$ is in F^+

