

Emulador para el Desarrollo de proyectos IoT NioTe

Integrantes

Camilo Andrés Díaz Gómez Juan Esteban Contreras Díaz Jhonatan Mauricio Villarreal Corredor

Tabla de contenido

1. Justificacion

- 9. Mapa de correlación

2. Contexto

10. Metodologia

3. Problematica

- 11. Arquitectura
- 4. Pregunta poblema
- 12. Diagrama de clases

5. Estado del arte

13. Entorno de desarrollo

- 6. Antecedentes
 - 14. Analisis de resultados Objetivos
- Alcances y limitaciones

15. Conclusiones

Contexto

1.

Justificación

2. Contexto

3. Problematica

4.

Pregunta problema ¿Como se puede reducir los costos y tiempos para el desarrollo de proyectos IOT y analítica de datos?

Patrón de diseño mvc

Lenguaje java

Conexión entre sensores

Conexión entre actuadores

Utilidad en procesos educativos, investigación y proyectos

5. Estado del arte

10 trabajos de investigación evaluados

6. Ante	ecede	entes

S		

Proyectos		
Desarrollo de simulación lo		
IOT based wireless sensor network for traffic		
An IoT simulator in NS3 and		
key-based authentication architecture for IoT devices		
using Blockchain		
A Versatile Emulator of MitM		
for the identification of		
ulnerabilities of IoT devices		
case of vulnerabilities of lo		
devices, a case of study:		
smartphones		
Emulation of IoT Devices		
OMNeT ++		
NS3		
TOSSIM		
COOJA		
YAFS		

Simulació Patrón

de

diseño

MVC

Χ

n de datos

Χ

Χ

Χ

Χ

Χ

X

X

Χ

Conexión

entre

sensores

Χ

Χ

X X

Χ

Χ

Χ

Χ

Χ

Lenguaje

JAVA

Conexión

entre

actuadore

S.O

Windows

Χ

Χ

X

X

Utilidad en

procesos

educativos,

investigación y proyectos

Χ

Χ

X

X

X

7. Objetivos

Objetivos generales:

Desarrollar un emulador de redes loT que pueda hacer el diseño lógico de la red y genere datos para facilitar el diseño y prueba conceptual de proyectos de loT o analítica de datos.

Objetivos especificos:

- Especificar los requerimientos de software para emular dispositivos, protocolos y arquitecturas de redes IoT.
- Diseñar los modelos de simulación necesarios para la emulación de dispositivos y enlaces de comunicación loT.
- Construir el emulador loT implementando los modelos de simulación diseñados sobre una aplicación con interfaz gráfica amigable.
- Realizar pruebas funcionales para comprobar el óptimo funcionamiento del emulador.

8.Alcances y limitaciones

Alcances

- El emulador se compromete a tener una interfaz amigable con el usuario con el fin de un fácil y entendimiento ante la aplicación.
- El emulador se compromete a guardar los datos generados en archivos planos.
- El emulador se basará en un modelo realístico para la generación de datos aleatorios.

8.

Alcances y limitaciones

Limitaciones

El emulador no:

- funcionará en ordenadores con sistemas operativos diferentes a Windows.
- tendrá todos los sensores y actuadores que hay disponibles en la actualidad.
- guardara los datos en una base de datos.
- va a generar los datos simulados con precisa precisión, aun así, se buscará
 la forma óptima y eficiente para realizarlos.
- generará estadísticas de los datos generados en su funcionamiento.
- tendrá por el momento un manual para el entendimiento de las diferentes funcionalidades que tendrá este.
- generará datos de datos aleatorios para la simulación de la red.
- tendrá en funcionamiento el BackEnd, en esta instancia, el emulador funciona parcialmente el FrontEnd.

9.

Mapa de correlación

10.Metodología

10. Metodología

Fase 1: Análisis

En esta etapa se realizará el análisis del emulador, con lo cual, análisis de protocolos, análisis de las arquitecturas y se realizará los diferentes diagramas UML.

Actividades:

- Actividad 1: Análisis de requerimientos.
- Actividad 2: Análisis de arquitectura y protocolos.
- Actividad 3: Diagrama Casos de uso.

- Actividad 4: Diagrama de clases.
- Actividad 5: Diagrama de paquetes.
- Actividad 6: Diagrama de arquitectura.

En esta etapa se realizará el diseño del emulador, con lo cual, se realizará un análisis para encontrar un diseño sencillo, puro e intuitivo con el usuario.

Actividades:

10. Metodología

Fase 2: Diseño

- Actividad 7: Análisis del diseño.
- Actividad 8: Diseño del MockUp.
- Actividad 9: Búsqueda de iconos.
- Actividad 10: Diseño y
 modificación de la interfaz en el
 IDE con base al MockUp.
- Actividad 11: Socialización y aprobación del diseño.

10. Metodología

Fase 3: Construcción En esta etapa se realizará el emulador con ayuda del IDE Netberans 8.2, por lo tanto, se harán procesos de implementación del MockUp y realización de la lógica en el interior de este.

Actividades:

- Actividad 12: Conectividad de ventanas y botones.
- Actividad 13: Conexión de lógica con interfaz.

11 Arquitectura

12. Diagrama de clases

· id

+get +set +toString

accion

fecha

actuador

13. Entorno de desarrollo

- El entorno de desarrollo que utilizamos es Netbeans versión 8,2
- Es necesario tener el JDK versión 8
- Para el funcionamiento del emulador es necesario tener mosquito
- Tener la ultima versión de java

 Librerías que utilizaremos para el funcionamiento del emulador

14.

Análisis de resultados

La interfaz del emulador contiene iconos que permiten reconocer al usuario que opción ejerce al ser oprimido.

17 respuestas

La interfaz es agradable.

17 respuestas

14. Análisis de resultados

Los colores para el tema escuro son adecuados.

17 respuestas

La distribución de los paneles esta bien establecida.

17 respuestas

15. Conclusiones

- El emulador permite a los usuarios ahorrar tiempo y recursos a la hora de desarrollar una red IoT.
- El emulador admite crear simulaciones de redes loT de manera fácil y rápida.
- El emulador otorgara una simulación muy acertada a la realidad, con la cual, los usuarios podrán fiarse de esta.

15.1 Lecciones aprendidas

Se presentaron varios inconvenientes en la construcción de la parte visual del emulador ya que se encontraron errores en la estructuración y programación de este; aun así, fueron satisfactoriamente superados con una ardua investigación, la cual, generó y amplio conocimiento en programación con Java y uso del sistema operativo para complementar funciones que se generaron en el FrontEnd.

15.2 Trabajos futuros

El emulador se construyó la parte visual, es decir, el FrontEnd, el cual, no está desarrollado en su totalidad y esta es la razón por la que se continuara con el desarrollo del emulador, donde posteriormente, se desarrollara el BackEnd para la finalizar la construcción del emulador y observar el uso e impacto que generara a los usuarios que vayan a usarlo en un futuro.

Capturas NioTe

Capturas NioTe

Gracias por su atención

¿Alguna pregunta?

Referencias

- Hernandez Perez, A. (2013). Datos abiertos y repositorios de datos . nuevo reto para los bibliotecarios.
- Hernandez, C., & Rodriguez, J. (2008). Preprocesamiento de datos estructurados. Vinculos, 27-48.
- Huang, Y., Wang, L., Hou, Y., Zhang, W., & Zhang, Y. (2018). A prototype IOT based wireless sensor network for traffic information monitoring. International Journal of Pavement Research & Technology.
- Isaac Lera, C. G. (2019). YAFS. Palma. Obtenido de https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8758823
- itop. (20 de agosto de 2018). Recuperado el 13 de marzo de 2020, de IoT: origen, importancia en el presente y perspectiva de futuro: https://www.itop.es/blog/item/iot-origen-importancia-en-el-presente-y-perspectiva-de-futuro.html
- Joyanes Aguilar, L. (29 de mayo del 2019). Inteligencia de negocios y anlitica de datos. Bogota:

 Alfaomega.

Referencias

- Universidad de Alcalá. (2019). ¿Por qué actualmente es tan importante el IoT? Recuperado el 13 de marzo de 2020, de Máster en industria 4.0: https://www.masterindustria40.com/importancia-iot-master/
- Varga, A. (2016). In Modeling and tools for network simulation. Berlin, Heidelberg: Springer.
- Nia, F., Yang, L., Wang, L., & Vinel, A. (2012). Internet of Things. International journal of communication systems. doi:10.1002/dac.2417
- Yacchirema Vargas, D. C., & Palau Salvador, C. E. (s.f.). Smart IoT Gateway For Heterogeneous Devices Interoperability (Octava ed., Vol. 14). IEEE Latin America Transactions. doi:10.1109/TLA.2016.7786378
- arrow. (1 de Julio de 2015). Protocolos para la Internet de las cosas. Recuperado el 17 de Abril de 2020, de arrow: https://www.arrow.com/es-mx/research-and-events/articles/protocols-for-theinternet-of-things

Referencias

- CambioDigital. (12 de diciembre de 2018). Recuperado el 13 de marzo de 2020, de IoT: Qué necesitan saber los profesionales de la red: https://cambiodigital-ol.com/2018/12/iot-que-necesitan-saber-los-profesionales-de-la-red/
- Carlos Gamero Burón, J. L. (2015). Modelos probabilísticos para Variables aleatorias continuas. Malaga, España.
- Castellanos Hernández, W. E., & Chacon Osorio, M. E. (17 de Abril de 2006). Utilización de herramientas software para el modelado y la simulación de redes de comunicaciones. GTI, V(11), 74-75. Recuperado el 26 de Marzo de 2020, de https://revistas.uis.edu.co/index.php/revistagti/article/view/1624/2014
- Corso, C., & Lorena, C. (2009). Aplicacion de algoritmos de clasificacion sepervisan y no supervisada usando Weka. cordoba: Universidad Tecnologi Nacional.