Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination

Physics A

Unit 1 Electricity

For this paper you must have:

- · a pencil and a ruler
- a calculator
- a Data and Formulae Booklet (enclosed).

Time allowed

1 hour

Instructions

- · Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- · Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

For Examiner's Use		
Examine	r's Initials	
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
TOTAL		

5 A student investigates how the power dissipated in a variable resistor, Y, varies as the resistance is altered.

Figure 1 shows the circuit the student uses. Y is connected to a battery of emf ε and internal resistance r.

Figure 1

Figure 2 shows the results obtained by the student as the resistance of Y is varied from $0.5\,\Omega$ to $6.5\,\Omega$.

Figure 2

5 (a)	Describe how the power dissipated in Y varies as its resistance is increased to 6.5Ω .	from 0.5Ω
		[2 marks]
5 (b)	The emf of the battery is $6.0V$ and the resistance of Y is set at 0.80Ω .	
5 (b) (i)	Use data from Figure 2 to calculate the current through the battery.	
		[3 marks]
	current	A
5 (b) (ii)	Calculate the voltage across Y.	[2 marks]
	voltage	V
F (L) (!!!)		
5 (D) (III)	Calculate the internal resistance of the battery.	[2 marks]
	internal resistance	Ω
	Question 5 continues on the next page	

5 (c)	The student repeats the experiment with a battery of the same emf but negligible internal resistance. State and explain how you would now expect the power dissipated in Y to vary as the resistance of Y is increased from 0.5Ω to 6.5Ω . [3 marks]

6	The critical temperature of tin is –269 $^{\circ}\mathrm{C}.$ The resistivity of tin increases as its temperature rises from –269 $^{\circ}\mathrm{C}.$	
6 (a) (i)	Define resistivity.	2 marks]
6 (a) (ii)	State the significance of the critical temperature of a material.	2 marks]
6 (b)	A sample of tin in the form of a cylinder of diameter $1.0mm$ and length $4.8m$ h resistance of $0.70\Omega.$	as a
	Use these data to calculate a value of the resistivity of tin. State an appropriate unit for your answer.	l marks]
	resistivity unit	
	Turn over for the next question	

7 A thermistor is to be used as a temperature sensor. In order to find out how the voltage across the thermistor varies with temperature the circuit shown in Figure 3 is set up.

Figure 3

- 7 (a) Data have to be obtained so that a graph can be plotted to show how the reading on the voltmeter varies with temperature between 0 °C and 100 °C. Design an experiment, using this circuit, to obtain enough data to plot the graph. Your answer should include:
 - details of the measurements taken
 - · details of how the temperature of the thermistor can be varied
 - an explanation of the need for resistor R
 - an explanation of how the thermistor can then be used to measure the temperature of a room.

The quality of your written communication will be assessed in your answer. [6 marks	
	••

7 (b)	The experiment you designed in part (a) is repeated with the voltmeter connected across R instead.
	State and explain how the readings on the voltmeter would be different. [3 marks]
	[S marks]
	END OF QUESTIONS

Q1. A battery of emf 9.0 V and internal resistance, r, is connected in the circuit shown in the figure below.

- (a) The current in the battery is 1.0 A.
 - (i) Calculate the pd between points A and B in the circuit.

(ii) Calculate the internal resistance, r.

(iii) Calculate the total energy transformed by the battery in 5.0 minutes.

	(iv)	Calculate the percentage of the energy calculated in part (iii) that is dissipated in the battery in 5.0 minutes.
		answer =
(b)		e and explain one reason why it is an advantage for a rechargeable battery to have a nternal resistance.
		(2) (Total 10 marks)
	In the	circuit shown the battery has emf \in and internal resistance r .
		♥ <i>r</i>
		Σ 2.4 Ω
(a)	(i)	State what is meant by the emf of a battery.
	(ii)	When the switch S is open, the voltmeter, which has infinite resistance, reads 8.0 V. When the switch is closed, the voltmeter reads 6.0 V. Determine the current in the circuit when the switch is closed.

Q2.

	(iv)	the energy dissipated by resistor A in 20 s.
			(Total 8 marks)
5			n experiment can be performed to determine whether a particular component is an imic conductor.
5	(a)	St	ate what is meant by an ohmic conductor.
			(1 mark)
5	(b) (i)	Dı	raw a suitable circuit diagram for such an experiment.
			(2 marks)
5	(c) (i)	St	ate the principal property of a superconductor.
			(1 mark)
5	(c) (ii)	St	ate what is meant by critical temperature.
			(1 mark)
5	(c) (iii) Gi	ive one use of a superconductor.
			(1 mark)

(iii) the power dissipated in resistor A,

5	(b) (ii)	For the circuit diagram you have drawn, describe a suitable experiment. Your account should include details of:
		 what measurements you would take how you would use your measurements how you would reach a conclusion.
		The quality of written communication will be assessed in your answer.

6 Figure 2 shows a 12 V battery of negligible internal resistance connected to a combination of three resistors and a thermistor.

Figure 2

- **6** (a) When the resistance of the thermistor is $5.0 \text{ k}\Omega$
- 6 (a) (i) calculate the total resistance of the circuit,

6 (a) (ii) calculate the current in the battery.

7		A copper connecting wire is 0.75 m long and has a cross-sectional area of $1.3 \times 10^{-7} \text{m}^2$.
7	(a)	Calculate the resistance of the wire.
		resistivity of copper = $1.7 \times 10^{-7} \Omega \mathrm{m}$
		resistance = Ω (2 marks)
7	(b)	A $12V$ $25W$ lamp is connected to a power supply of negligible internal resistance using two of the connecting wires. The lamp is operating at its rated power.
7	(b) (i)	Calculate the current flowing in the lamp.
		current =
7	(b) (ii)	Calculate the pd across each of the wires.
		$pd = \dots V$ (1 mark)
		(1 mark)

	emf =V
7 (c)	The lamp used in part (b) is connected by the same two wires to a power supply of the same emf but whose internal resistance is not negligible.
	State and explain what happens to the brightness of the lamp when compared to its brightness in part (b).
	(2 marks

7 (b) (iii) Calculate the emf (electromotive force) of the power supply.

5	(a)	Some materials exhibit the property of superconductivity under certain conditions.				
		:	State what is meant by superconductivity. Explain the required conditions for the material to become superconducting.			
			(3 marks)			
5	(b)		re 4 shows the cross-section of a cable consisting of parallel filaments that can be experconducting, embedded in a cylinder of copper.			
			Figure 4 copper cylinder			
			filament			
			()			
			•••			
5	(b)	(i)	The cross-sectional area of the copper in the cable is $2.28 \times 10^{-7} \text{m}^2$. The resistance of the copper in a 1.0m length of the cable is 0.075Ω . Calculate the			
			resistivity of the copper, stating an appropriate unit.			
			answer =			
_	(I-)	(::)				
5	(b)	(ii)	State and explain what happens to the resistance of the cable when the embedded filaments of wire are made superconducting.			
			(3 marks)			

6 Figure 5 shows an arrangement of resistors.

Figure 5

6 (a) Calculate the total resistance between terminals A and B.

answer =
$$\Omega$$
 (2 marks)

Q5. (a) A student wishes to investigate how the resistance of a thermistor changes with temperature.	
(i) Draw a labelled diagram of a suitable circuit that would enable the student to measure the resistance of the thermistor.	
(2	2)
(ii) Describe the procedure the student would follow in order to obtain accurate and reliable measurements of the resistance of the thermistor at different temperatures.	
The quality of your written communication will be assessed in this question.	
(1	6)

3.	A student wishes to collect data so he can plot the <i>I-V</i> curve for a semiconductor diode.	
(a)	i) Draw a suitable diagram of the circuit that would enable the student to collect this data.	
		(3)
(ii) sem	Describe the procedure the student would follow in order to obtain an <i>I-V</i> curve for the onductor diode.	
The	uality of your written communication will be assessed in this question.	
		(6)

Q3.	X an	d Y are two lamps. X is rated at 12	2 V 36 W and Y at 4.5 V 2.0 W.		
(a)	Ca	lculate the current in each lamp w	hen it is operated at its correct wor	king voltage.	
			X	A	
			Υ	A	
					(2)
(b)	emf (two lamps are connected in the ci of 24 V and negligible internal resi amps are operating at their correct 24 V	rcuit shown in the figure below. Thistance. The resistors, $R_{_1}$ and $R_{_2}$ at working voltage.	e battery has an re chosen so that	
			R_2 Y X		
	(i)	Calculate the pd across R ₁ .			
	(ii)	Calculate the current in $R_{_{1}}$.	answer	. V	(1)
	(iii)	Calculate the resistance of R ₁ .	answer	. A	(1)
	(iv)	Calculate the pd across R ₂ .	answer	. Ω	(1)
	(v)	$\label{eq:Calculate the resistance of R2} \textbf{Calculate the resistance of R2}.$	answer	. V	(1)
			answer	. Ω	(1)

			END OF QUESTIONS	(2 marks)
7	(c)		e and explain the effect of attempting to use a battery with a much higher stance to start the car.	internal
			answer =	(3 marks)
7	(b)	(ii)	Calculate the rate of dissipation of energy due to its internal resistance appropriate unit.	stating an
			answer =	V (2 marks)
7	(b)	(i)	Calculate the potential difference across the terminals of the battery.	
7	(b)	The	battery is used to provide the starting motor of a car with a current of 800	A.
				(1 mark)
7	(a)	(11)	Explain what is meant by the internal resistance of the battery.	
_				(1 mark)
	(4)	(-)	Emplana white is meant by the chiral of the caucely.	
7	(a)	(i)	Explain what is meant by the emf of the battery.	
•	ri ca	Date	ery has all eng of 12 v and all internal resistance of 5.0 × 10 22.	