I. Uniform continuitatea funcțiilor reale

Definiția 1. Fie $f: A \subseteq \mathbb{R} \to \mathbb{R}$, $H \subseteq A$ o mulțime. Spunem că f este **uniform** continuă pe H dacă $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon} > 0$ astfel încăt $\forall x,y \in H$ cu $|x-y| < \delta_{\varepsilon} \Longrightarrow |f(x) - f(y)| < \varepsilon$.

Propoziția 1. O funcție continuă pe un interval compact este uniform continuă.

Propoziția 2. O funcție $f: H \subseteq \mathbb{R} \to \mathbb{R}$ uniform continua duce orice șir Cauchy într-un șir Cauchy.

Cum folosim această propoziție în exerciții? Dacă găsim $(x_n)_n \subseteq H$ șir Cauchy (adică convergent), dar $(f(x_n))_n$ nu este șir Cauchy (convergent), atunci f nu este uniform continuă.

Propoziția 3. Fie $f: H \subseteq \mathbb{R} \to \mathbb{R}$. Atunci sunt echivalente afirmațiile:

- f este uniform continuă pe H;
- $\forall (x_n)_n, (y_n)_n \subseteq H$ cu $\lim_{n \to +\infty} (x_n y_n) = 0$, avem $\lim_{n \to +\infty} (f(x_n) f(y_n)) = 0$.

Cum folosim această propoziție în exerciții? Dacă găsim $(x_n)_n, (y_n)_n \subseteq H$ astfel încât $\lim_{n \to +\infty} (x_n - y_n) = 0$, dar $\lim_{n \to +\infty} (f(x_n) - f(y_n)) \neq 0$, atunci f nu este uniform continuă.

Propoziția 4. Orice funcție Lipschitz (i.e. $\exists M>0$ astfel încât $|f(x)-f(y)|\leq M|x-y|$, $\forall x,y)$ este uniform continuă.

În exerciții vom folosi următorul corolar: Orice funcție derivabilă cu derivata mărginită este funcție Lipschitz, deci uniform continuă.

Propoziția 5. Dacă $f: I \cup J \to \mathbb{R}$ astfel încât $I \cap J \neq \emptyset$ și f este uniform continuă pe I si J, atunci f este uniform continuă pe $I \cup J$.

Propoziția 6. Fie $f:(a,b]\to\mathbb{R}$. Atunci sunt echivalente afirmațiile:

- f este uniform continuă pe (a, b];
- $\exists \tilde{f} \colon [a,b] \to \mathbb{R}$ continuă, astfel încât $\tilde{f}_{\lfloor (a,b]} = f$.

II. Exerciții

1. Studiați continuitatea, derivabilitatea si uniform continuitatea următoarelor funcții:

(a)
$$f \colon \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} x \arctan \frac{1}{x}, \text{ dacă } x \in \mathbb{R} \setminus \{0\} \\ 0, \text{ dacă } x = 0 \end{cases}$$

(b)
$$f \colon \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} e^{-\frac{1}{x}}, \text{ dacă } x > 0 \\ 0, \text{ dacă } x \le 0 \end{cases}$$

(c)
$$f \colon [0, \infty) \to \mathbb{R}, f(x) = \begin{cases} x \cos \frac{1}{x} + \frac{\ln(x^2 + x + 1)}{2x}, \text{ dacă } x > 0 \\ \frac{1}{2}, \text{ dacă } x = 0 \end{cases}$$

(d)
$$f \colon [0, \infty) \to \mathbb{R}, f(x) = \begin{cases} \sin(x+1) - \frac{2\sin x}{x}, & \text{dacă } x > 0 \\ -2 + \sin 1, & \text{dacă } x = 0 \end{cases}$$

(e)
$$f: (-\infty, 0] \to \mathbb{R}, f(x) = \begin{cases} \arctan(\frac{1}{x^2}) + \frac{\ln(1-x)}{2x}, \text{ dacă } x \in (-\infty, 0) \\ \frac{\pi-1}{2}, \text{ dacă } x = 0 \end{cases}$$

(f)
$$f: (0, \infty) \to \mathbb{R}, f(x) = \frac{|\ln x|}{\sqrt{x}}$$

2. Studiați uniform continuitatea următoarelor funcții:

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = e^x$.

(b)
$$f: (0,1] \to \mathbb{R}, f(x) = \frac{\sin x}{x}$$

(c)
$$f: (0,1] \to \mathbb{R}, f(x) = \sin \frac{1}{x}$$
.

(d)
$$f: (0, \infty) \to \mathbb{R}, f(x) = \frac{2}{x^2 + 3x}$$
.