ABSTRACT

There is provided a T-type calcium channel blocker that is optically active 1,4-dihydropyridine compound, a pharmaceutically acceptable salt thereof or a solvate thereof, of formula (1)

wherein R^1 and R^2 are independently of each other C_{1-6} alkyl group or R^1 and R^2 together form -CR⁵R⁶-CR⁷R⁸-, -CR⁵R⁶-CR⁷R⁸-CR⁹R¹⁰- or

-CR⁵R⁶-CR⁷R⁸-CR⁹R¹⁰-CR¹¹R¹²-, etc., X¹ and X² are independently of each other O or NR¹³, Ar is optionally substituted phenyl group, etc., R^a and R^b are independently of each other C₁₋₆ alkyl group, -L²-NR¹⁶R¹⁷, CH₂O-L²-NR¹⁶R¹⁷, CN,

 $-L^2-N(CH_2CH_2)_2NR^{16}$ or $NR^{16}R^{17}$, etc., Y is C_{1-20} alkyl group, $-L^3-NR^{18}R^{19}$

$$-L^{3}-N$$
 $N-R^{18}$
,
 $-L^{3}-N$
 $N-R^{18}$
 $N-R^{$

and * is absolute configuration of R.