Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ по ознакомительной практике

Выполнил: Р. М. Филиппов

Студент группы 321701

Проверил: В. Н. Тищенко

СОДЕРЖАНИЕ

Bı	ведение	3
1	Постановка задачи	4
2	Формализованные фрагменты теории интеллектуальных компьютер-	
	ных систем и технологий их разработки	5
3	Формальная семантическая спецификация библиографических ис-	
	точников	13
3	аключение	15
\mathbf{C}	писок использованных источников	16

ВВЕДЕНИЕ

Цель:

Закрепить практические навыки формализации информации в интеллектуальных системах с использованием семантических сетей.

Задачи:

- Построение формализованных фрагментов теории интеллектуальных компьтерных систем и технологий их разработки.
- Построение формальной семантической спецификации библиографических источников, соответствующих указанным выше фрагментам.
- Оформление конкретных предложений по развитию текущей версии Стандарта интеллектуальных компьтерных систем и технологий их разработки.

1 ПОСТАНОВКА ЗАДАЧИ

Предметная область и онтология чисел и числовых структур

- \Rightarrow библиографическая ссылка*:
 - Стандарт OSTIS
 - Монография OSTIS
 - Кантор И.Л.ГиперЧ-1973кн
 - *Фомин С.В.СистеС-1987кн*
 - ОсновСС-эл
 - \Rightarrow *URL**:

[https://habr.com/ru/articles/124395/]

- ПериоДДФиПР-эл
 - \Rightarrow *URL**:

[https://www.webmath.ru/poleznoe/]

- БескоПиНДД-эл
 - \Rightarrow URL^* :

[https://resolventa.ru/beskonechnye-desyatichnye-drobi]

- КонечиБДД-эл
 - \Rightarrow URL^* :

[https://resolventa.ru/drobi1decimal]

- СмешаДПиНДФиПР-эл
 - \Rightarrow URL^* :

[https://www.webmath.ru/poleznoe/]

2 ФОРМАЛИЗОВАННЫЕ ФРАГМЕНТЫ ТЕОРИИ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМ И ТЕХНОЛОГИЙ ИХ РАЗРАБОТКИ

система счисления

- ∈ параметр
- := [способ записи(представления) чисел]
- \Rightarrow noschehue*:

[Каждая *система счисления* представляет собой класс синтаксически эквивалентных файлов, хранимых в sc-памяти, каждый из которых может являться идентификатором какого-либо *числа*.

Каждая *система счисления* характеризуется алфавитом, т.е. конечным множеством символов (*цифр*), которые допускается использовать при построении файлов принадлежащих данной *системе счисления*.]

- \Rightarrow разбиение*:
 - **{•** позиционная система счисления
 - \Rightarrow noschehue*:

[При записи *числа* в *позиционной системе счисления* значение каждой *цифры* зависит от ее позиции(разряда) в *числе*.]

- \Rightarrow разбиение*:
 - однородная система счисления
 - \Rightarrow пояснение*:

[однородная система счисления - позиционная система счисления, в которой для всех позиций(разрядов) числа набор допустимых символов($\mu u \phi p$) одинаков.]

- \Rightarrow однородные позиционные системы счисления*:
 - двоичная система счисления
 - восьмеричная система счисления
 - десятичная система счисления
 - шестнадцатеричная система счисления
 - **)**
- смешанная система счисления

...

 \Rightarrow noschehue*:

[смешанная система счисления - позиционная система счисления, в которой в каждой позиции(разряде) числа набор допустимых символов($\mu\mu\phi p$) может отличаться от наборов других разрядов.]

 \Rightarrow смешанные позиционные системы счисления*:

- система измерения времени...
- непозиционная система счисления
- \Rightarrow пояснение*:

}

[При записи *числа* в *непозиционной системе счисления* каждая *цифра* имеет величину, не зависящую от ее позиции(разряда).]

 \Rightarrow непозиционные системы счисления*:

- ⟨ единичная система счисления
 - древнеегипетская десятичная система счисления
- ... }

}

- ⇒ библиографический источник*:
 - Основы систем счисления
 - \Rightarrow URL^* :

[https://habr.com/ru/articles/124395/]

двоичная система счисления

- ∈ система счисления
- \Rightarrow пояснение*:

[Двоичная система счисления использует для записи числа 2 цифры: 0 и 1.]

- ⇒ библиографический источник*:
 - Основы систем счисления
 - \Rightarrow *URL**:

[https://habr.com/ru/articles/124395/]

восьмеричная система счисления

- ∈ система счисления
- \Rightarrow noяснение*:

[Восьмеричная система счисления использует для записи числа цифры от 0 до 7.]

- ⇒ библиографический источник*:
 - Основы систем счисления
 - $\Rightarrow URL^*$:

[https://habr.com/ru/articles/124395/]

десятичная система счисления

- ∈ система счисления
- \Rightarrow noяснение*:

[Десятичная система счисления использует для записи числа цифры от 0 до 9.]

- ⇒ библиографический источник*:
 - Основы систем счисления
 - $\Rightarrow URL^*$:

[https://habr.com/ru/articles/124395/]

шестнадцатеричная система счисления

- ∈ система счисления
- \Rightarrow noschehue*:

[*Шестнадцатеричная система счисления* использует для записи *числа цифры* от 0 до 9 и латинские буквы от A до F(они обозначают *числа* от 10 до 15 соответственно).]

- ⇒ библиографический источник*:
 - Основы систем счисления
 - $\Rightarrow URL^*$:

[https://habr.com/ru/articles/124395/]

единичная система счисления

- ∈ система счисления
- \Rightarrow пояснение*:

[Число в единичной системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа.]

- ⇒ библиографический источник*:
 - Основы систем счисления
 - \Rightarrow *URL**:

[https://habr.com/ru/articles/124395/]

древнеегипетская десятичная система счисления

- ∈ система счисления
- \Rightarrow noschehue*:

[В Древнем Египте использовались специальные символы ($\mu u\phi p \omega$) для обозначения $\mu ucen$ 1, 10, 10^2 , 10^3 , 10^4 , 10^5 , 10^6 , 10^7 . $\mu ucna$ в $\theta peeheerunemckoŭ cucmeme cuucnehus$ записывались, как комбинация этих символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось $\mu ucna$.]

- ⇒ библиографический источник*:
 - Основы систем счисления
 - \Rightarrow *URL**:

[https://habr.com/ru/articles/124395/]

комплексное число

- := [множество комплексных чисел]
- ⊂ гиперкомплексное число
- \Rightarrow пояснение*:

[комплексное число – число вида z=a+b*i, где a и b – вещественные числа, i – Мнимая единица.]

⇒ библиографический источник*: Стандарт OSTIS

число, сопряженное к комплексному

- ∈ комплексное число
- \Rightarrow noschehue*:

[Каждому *комплексному числу z=a+b*i* можно сопоставить другое *комплексное число z_c=a-b*i*, которое называется *сопряженным к z*.]

- \Rightarrow asmop*:
 - Кантор И.Л.
 - Солодовников А.С.
- ⇒ библиографический источник*:
 - Гиперкомплексные числа
 - \Rightarrow *URL**:

[http://librams.ru/book-27838.html]

модуль комплексного числа

- ∈ действительное число
- \Rightarrow noschehue*:

[модуль комплексного числа z=a+b*i - неотрицательное действительное число $|z|=\sqrt{a^2+b^2}$]

- автор*: Кантор И.Л. Солодовников А.С. библиографический источник*: Гиперкомплексные числа URL*: \Rightarrow [https://studfile.net/preview/19300085/] число Эйлера [e] \in иррациональное число \Rightarrow пояснение*: [число Эйлера - математическая константа, являющася основанием натурального логарифма. Иррациональное число, приблизительно равное 2.71828.] способы определения числа Эйлера*: \Rightarrow через предел: $e = \lim_{x \to \infty} (1 + \frac{1}{x})^x$ как сумма ряда: $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ как единственное число a, для которого выполняется $\int_1^a \frac{dx}{x} = 1$ библиографический источник*: \Rightarrow е(число) URL*: \Rightarrow [https://ru.wikipedia.org/wiki/] обыкновенная дробь := [множество дробей] [множество простых дробей] := \Rightarrow пояснение*: [обыкновенная дробь - это запись рационального числа в виде $\pm \frac{m}{n}$, где $n \neq 0$. Горизонтальная черта обозначает знак деления, в результате которого получается частное. Делимое называется числителем $\partial poб u$, а делитель — знаменателем.] разбиение*: \Rightarrow {● правильная дробь пояснение*: [Обыкновенная дробь называется **правильной**, если ее числитель меньше* знаменателя] правильные дроби*: $\overline{12}$
 - знаменателя или *равен** ему] чеправильные дроби*:

[Обыкновенная дробь называется неправильной, если ее числитель больше*

 \Rightarrow неправильные дроби*: $\bullet \qquad \frac{5}{2}$

пояснение*:

неправильная дробь

• $\frac{21}{5}$ • $\frac{24}{24}$ • ...

 \Rightarrow примечание*:

[Неправильную дробь можно представить в виде смешанного числа - числа, в состав которого входит целое число и правильная дробь. Целое число называют целой частью смешанного числа, а правильная дробь называется дробной частью смешанного числа.]

 \Rightarrow смешанные дроби*:

 $\begin{array}{cccc}
 & & 1\frac{1}{3} \\
 & & 5\frac{4}{5} \\
 & & 2\frac{5}{15} \\
 & & & \dots
\end{array}$

 \Rightarrow библиографический источникst:

• Правильные и неправильные дроби. Смешанные дроби

 $\Rightarrow URL^*$

[https://www.webmath.ru/poleznoe/]

десятичная дробь

:= [множество десятичных дробей]

 \Rightarrow пояснение*:

[decsmuuhas dpoбь — разновидность дроби, которая представляет собой способ представления действительных чисел в виде $\pm d_m...d_1d_0,d_{-1}d_{-2}...$, где, — десятичная запятая, служащая разделителем между целой и дробной частью числа, d_k m — десятичные цифры.]

 \Rightarrow разбиение*:

{● конечная десятичная дробь

 \Rightarrow noschehue*:

[конечная десятичная дробь - дробь или смешанное число, имеющее знаменатель 10, 100, 1000 и так далее. К ним также относят и такие дроби, которые можно привести к дробям, имеющим знаменатель 10, 100, 1000 и так далее.]

 \Rightarrow конечные десятичные дроби*:

4,23
 1,03462
 2/5
 ...

• бесконечная десятичная дробь

 \Rightarrow noschehue*:

[бесконечная десятичная дробь - десятичная дробь, в записи которой после запятой стоит бесконечное число десятичных знаков.]

 \Rightarrow разбиение*:

 \Rightarrow пояснение*:

[бесконечная периодическая десятичная дробь - такая дробь,

десятичные знаки которой, начиная с некоторого, представляют собой повторение одной и той же группы $\mu u \phi p$, состоящей или из одной $\mu u \phi p$ ы, отличной от 0 и 9, или из нескольких $\mu u \phi p$, причем последовательность $\mu u \phi p$ при повторении в этой группе не изменяется.

Повторяющаяся группа *цифр* называется периодом *беско- нечной периодической десятичной дроби*. Для обозначения периода *десятичной дроби* используют круглые скобки]

 \Rightarrow разбиение*:

- **{•** чистая периодическая дробь
- \Rightarrow noschehue*:

[*чистая периодическая дробь* - *периодическая дробь*, у которой период начинается сразу после запятой.]

⇒ чистые периодические дроби*:

```
(• 7,(87)
• 2,(4)
• \frac{1}{3}
• ...
```

- смешанная периодическая дробь
- \Rightarrow noяснение*:

[смешанная периодическая дробь - такая десятичная дробь, у которой между запятой и периодом есть не менее одной неповторяющейся бесконечное число раз цифры.]

 \Rightarrow смешанные периодические дроби*:

```
    2,03(12)
    56,2(123)
    0,0000(1)
    ...
```

- бесконечная непереодическая дробь
- \Rightarrow понятие*:

[Бесконечная десятичная дробь, не являющаяся периодической, называется непериодической.]

 \Rightarrow бесконечные непереодические десятичные дроби*:

```
(• 1,7893757029875783985...
• 5474,848043469399293...
• ...
)
```

⇒ библиографический источник*:

}

• Конечные десятичные дроби

 $\Rightarrow URL^*$:

[https://resolventa.ru/drobi1decimal]

• Бесконечные периодические и непериодические десятичные дроби

 \Rightarrow *URL**:

[https://resolventa.ru/beskonechnye-desyatichnye-drobi]

- Периодические десятичные дроби
 - $\Rightarrow URL^*$:

[https://www.webmath.ru/poleznoe/]

гиперкомплексное число

- := [множество гиперкомплексных чисел]
- := [гиперкомплексная система]
- \Rightarrow noschehue*:

[Выражение вида $a_0 + a_1 i_1 + a_2 i_2 + ... + a_n i_n$, (где $a_0, a_1, a_2, ..., a_n$ - произвольные действительные числа, $i_1, i_2, ..., i_n$ - некоторые символы) называется **гиперкомплексным числом**, если для него выполняются условия:

- 1. cymma* двух таких выражений определяется формулой: $(a_0+a_1i_1+...+a_ni_n)+(b_0+b_1i_1+...+b_ni_n)=(a_0+b_0)+(a_1+b_1)*i_1+...+(a_n+b_n)*i_n;$
- 2. произведение* двух таких выражений $((a_0+a_1i_1+...+a_ni_n)*(b_0+b_1i_1+...+b_ni_n))$ производится по обычному правилу умножения суммы* на сумму*(каждое слагаемое первой суммы* умножаем на каждое слагаемое второй и результаты суммируем*), причем произведения* вида $(a_\alpha*i_\alpha)*(b_\beta*i_\beta)$ переписываем как $a_\alpha*b_\beta*(i_\alpha*i_\beta)$ и заменяем $i_\alpha*i_\beta$ по формуле: $i_\alpha*i_\beta=p_{\alpha\beta,0}+p_{\alpha\beta,1}*i_1+...+p_{\alpha\beta,n}*i_n$; набор чисел $p_{\alpha\beta,i}$ задает собой таблицу умножения.

1

- \Rightarrow asmop*:
 - Кантор И.Л.
 - Солодовников А.С.
- \Rightarrow библиографический источник*:
 - Гиперкомплексные числа
 - \Rightarrow *URL**:

[http://librams.ru/book-27838.html]

дуальное число

- := [множество дуальных чисел]
- := [комплексное число параболического типа]
- ⊂ гиперкомплексное число
- \Rightarrow noschehue*:

[дуальное число - гиперкомплексное число вида $z=a+b*\omega$, где a и b - вещественные числа, а $\omega^2=0(\omega\neq0)$.]

- \Rightarrow asmop*:
 - Кантор И.Л.
 - Солодовников А.С.
- ⇒ библиографический источник*:
 - Гиперкомплексные числа
 - $\Rightarrow URL^*$:

[http://librams.ru/book-27838.html]

двойное число

- := [множество двойных чисел]
- := [комплексное число эллиптического типа]

- ⊂ гиперкомплексное число
- \Rightarrow noschehue*:

[двойное число - гиперкомплексное число вида z=a+b*e, где a и b - вещественные числа, а $e^2=1$.]

- \Rightarrow asmop*:
 - Кантор И.Л.
 - Солодовников А.С.
- ⇒ библиографический источник*:
 - Гиперкомплексные числа
 - \Rightarrow *URL**:

[http://librams.ru/book-27838.html]

3 ФОРМАЛЬНАЯ СЕМАНТИЧЕСКАЯ СПЕЦИФИКАЦИЯ БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ

Гипер Ч-1973кн

- \Rightarrow ключевой знак*:
 - комплексное число
 - число, сопряженное к комплексному
 - модуль комплексного числа
 - гиперкомплексное число
 - диальное число
 - двойное число
- \Rightarrow аннотация*:

[Эта брошюра посвящена гиперкомплексным числам— обобщению обычных комплексных чисел. В ней рассказывается о том, к чему приводит замена одной «мнимой единицы» і несколькими мнимыми единицами, иначе говоря, рассказывается о величинах вида a+b*i+c*j+... В частности, книга знакомит читателя с замечательными примерами гиперкомплексных чисел - кватернионами и октавами. Эти числа играют большую роль в различных математических вопросах. В книге рассматриваются два такие вопроса: разыскивание "алгебр с делением" (теорема Фробениуса) и разыскание "нормированных алгебр" (теорема Гурвица).]

 \Rightarrow uumama*:

[Неотрицательное действительное число $\sqrt{a^2+b^2}$ называется модулем комплексного числа z и обозначается |z|: $|z|=\sqrt{a^2+b^2}$]

← пояснение*:

модуль комплексного числа

 \Rightarrow uumama*:

[Каждому комплексному числу z = a + b * i можно сопоставить другое комплексное число a - b * i, которое называется сопряженным к z.]

- \Leftarrow пояснение*:
 - число, сопряженное к комплексному
- \Rightarrow aemop*:
 - Кантор И.Л.
 - Солодовников А.С.

ОсновСС-2011эл

- \Rightarrow ключевой знак*:
 - система счисления
 - двоичная система счисления
 - восьмеричная система счисления
 - десятичная система счисления
 - шестнадцатеричная система счисления
 - единичная система счисления
 - древнеегипетская десятичная система счисления
- \Rightarrow uumama*:

[Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа.]

← пояснение*:

единичная система счисления

 \Rightarrow uumama*:

[Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны <math>10, 11, 12, 13, 14, 15 соответственно.]

= пояснение*: шестнадцатеричная система счисления

- ⇒ библиографический источник*:
 - Основы систем счисления
 - $\Rightarrow URL^*$:

[https://habr.com/ru/articles/124395/]

ЗАКЛЮЧЕНИЕ

В результате работы были изучены различные литературные, научные и электронные источники на тему "Предметная область и онтология чисел и числовых структур". На их основе были выбраны различные понятия, отсутствующие в стандарте OSTIS, которые в дальнейшем были формализованы с помощью SCn-кода. Кроме этого, была построена формальная семантическая спецификация данных источников. Таким образом, стандарт OSTIS был пополнен новыми понятиями и библиографическими источниками.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Бесконечные периодические и непериодические десятичные дроби. 2021. https://resolventa.ru/beskonechnye-desyatichnye-drob.
- [2] Кантор, И.Л. Гиперкомплексные числа / И.Л. Кантор. Наука, 1973. C. 144.
- [3] Конечные и бесконечные десятичные дроби. 2021. https://resolventa.ru/drobi1#decimal.
- [4] Основы систем счисления.— 2011. https://habr.com/ru/articles/124395/.
- [5] Периодические десятичные дроби, формулы и примеры решений.— 2021. https://www.webmath.ru/poleznoe/formules_12_18.php.
- [6] Смешанные дроби. Правильные и неправильные дроби, формулы и примеры решений. 2021. https://www.webmath.ru/poleznoe/.
 - [7] Фомин, С.В. Системы счисления / С.В. Фомин. Наука, 1987. С. 48.