LECTURE NO. 23

7.1 Parametric Equations

Wright State University

Parametric Equations

- A function y = f(x) with $a \le x \le b$ defines a curve in the 2-dim plane. For examples, $y = 2x^2$ with $0 \le x \le 2$ is part of a parabola.
- Parametric Equations give another way to define a curve in the 2-dim plane, in which
 each of x and y is a continuous function of the parameter t.
- Example: x = 2t + 2, y = t 1, $-1 \le t \le 2$.

$$t = -1$$

 $x = -2 + 2 = 0$
 $y = -1 - 1 = -2$
 $t = 2$
 $x = 4 + 2 = 6$
 $y = 2 - 1 = 1$

Graph the parametric Equation $x = t^2 - 5$, y = 2t + 1, $-2 \le t \le 3$

t	\sim	y
-2	-1	-3
_ 1	-4	-1
O	-5	1
1	-4	3
2	-1	5
3	4	7

Graph the parametric Equation $x=2\cos t,\ y=2\sin t,\ 0\leq t\leq 2\pi$

(Radian)	x=26st	y= 25int
0	2	0 = (==21)
74	$\sqrt{2}$	1/2
9-2	0	2
39	- J2	$\sqrt{2}$
7	-2	0
59 4	- 52	-52
39	0	- 2
39/2 7/4	J ₂	-52

It may be useful to eliminate the parameter t

$$x = t^{2} - 3, y = 2t + 1, -2 \le t \le 3$$

$$50 \text{ for } t \text{ from } y = 2t + 1$$

$$y - 1 = 2t$$

$$t = \frac{1}{2}(y - 1)$$

$$x = \frac{1}{2}(y - 1) \text{ into the } x - \text{equation}$$

$$x = \frac{1}{2}(y - 1)^{2} - 3$$

$$x = \frac{1}{4}(y - 1)^{2} - 3$$

$$x = \frac{1}{4}(y - 1)^{2} - 3$$

$$x = \frac{1}{4}(y - 1)^{2} - 3$$

$$x = -3 \le y \le 7$$

Eliminate the parameter t in $x=2\cos t$, $y=3\sin t$, $0 \le t \le 2\pi$

$$Sin^{2}t + \omega s^{2}t = 1$$

$$\chi = 2\omega st \implies \omega t = \frac{x}{3}$$

$$y = 3Sint \qquad Sint = \frac{y}{3}$$

$$\left(\frac{y}{3}\right)^2 + \left(\frac{x}{z}\right)^2 = 1$$

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
 ellipse!

Find a parametric equation for the line segment from (-2,3) to (1,7)

Remark
$$x = 3t - 2$$

$$y = 4t + 3$$

each
$$x$$
 and y is a linear function of t

$$x = mt + b$$

$$y = nt + c$$
Easy way
$$t = 0 \text{ for } (-2, 3) \text{ (starting point)}$$

$$t = 1 \text{ for } (1, 7) \text{ (ending point)}$$

$$b = -2, \quad C = 3 \quad t = 1$$

$$x = mt - 2 \quad x = m - 2 = 1 \Rightarrow m = 1$$

$$x = m - 2 = 1 = m = 3$$

 $y = n + 3 = 7 = m = 4$
 $x = 3t - 2$, $y = 4t + 3$

y = n + + 3