UNIT III

SWITCHED RELUCTANCE MOTOR

U.NAGABALAN

AP / EEE

RMD ENGINEERING COLLEGE

INTRODUCTION

• SWITCHED RELUCTANCE MOTOR --

Switched reluctance motor (**SRM**) is electromagnetic and electrodynamics equipment which converts the electrical energy into mechanical energy. The electromagnetic torque is produced on variable reluctance principle.

- construction is simple and robust
- It requires less maintenance
- Its **overall efficiency** is better
- It is flexible control driving motor as motoring mode generating mode of operations of the machine can be easily achieved

CONSTRUCTION OF SWITCHED RELUCTANCE MOTOR

CONSTRUCTION OF SYNCHRONOUS RELUCTANCE MOTOR

BLOCK DIAGRAMOF SWITCHED RELUCTANCE MOTOR

PRINCIPLE OF OPERATION

POWER SEMICONDUCTOR SWITCHING CIRCUITS FOR SRM (POWER CONTROLLERS)

- Two power semiconductor switching devices per phase and two diodes.
- (n+1) power semiconductor switching devices (n+1) diodes.
- Phase winding using bifilar wires.
- Split-link circuit used with even-phase number.
- C-dump circuit.

TWO POWER SEMICONDUCTOR SWITCHING DEVICES PER PHASE AND TWO DIODES

(N+1) POWER SEMICONDUCTOR SWITCHING DEVICES (N+1) DIODES

PHASE WINDING USING BIFILAR WIRES

SPLIT-LINK CIRCUIT USED WITH EVEN-PHASE NUMBER

C-DUMP CIRCUIT

TORQUE EQUATION

** TORQUE PRODUCTION IN SWITCHED RELUCTANCE MOTORS:

- Torque is produced due to Variable reluctance Principle.

The blux linkage (A) due to excitation of winding:

$$\lambda = \text{Li} \longrightarrow \emptyset$$

According to Favaday's law of electromagnetic induction, emf (e) due to change in flux linkage,

$$P = (-) \frac{d\lambda}{dt} \longrightarrow \textcircled{3}$$
Substituting λ from eqn $\textcircled{0}$ in $\textcircled{8}$,

$$P = (-) \frac{\partial (\text{Li})}{\partial t} = -L \frac{\partial i}{\partial t} - i \frac{\partial L}{\partial t}$$

Multiply (X) of Divide (\div) by $\partial \textcircled{0}$ on the second tesm,

$$P = (-) L \frac{\partial i}{\partial t} - i \frac{\partial L}{\partial \textcircled{0}} \times \left(\frac{\partial \textcircled{0}}{\partial t}\right)$$

$$P = (-) L \frac{\partial i}{\partial t} + i \frac{\partial L}{\partial \textcircled{0}} \times \left(\frac{\partial \textcircled{0}}{\partial t}\right)$$

Considering only magnitude,

$$P = L \frac{\partial i}{\partial t} + i \frac{\partial L}{\partial \textcircled{0}} \times \left(\frac{\partial L}{\partial \textcircled{0}}\right) \longrightarrow \textcircled{4}$$

TORQUE EQUATION (CONTD...)

Energy Stored in the magnetic field,
$$We = \frac{1}{2} \operatorname{Li}^{2} \longrightarrow \mathfrak{S}$$

$$\operatorname{Mechanical Power developed} = \operatorname{Power input to motor} (-)$$

$$\operatorname{Power due} \text{ to Variation in Stored energy}$$

$$= \left[L \frac{\partial i}{\partial t} + i (\omega) \frac{\partial L}{\partial \theta} \right] i$$

$$= \operatorname{Li} \frac{\partial i}{\partial t} + i \frac{\partial \Delta L}{\partial \theta} \longrightarrow \mathfrak{T}$$

$$\operatorname{Power due} \text{ to Variation in Stored energy} = \frac{d \operatorname{We}}{dt}$$

$$= \frac{d}{dt} \left[\frac{1}{2} \operatorname{Li}^{2} \right]$$

$$= \frac{1}{2} \left[\partial \operatorname{Li} \frac{\partial i}{\partial t} + i \frac{\partial \Delta L}{\partial t} \right]$$

$$= \frac{1}{2} \left[\partial \operatorname{Li} \frac{\partial i}{\partial t} + i \frac{\partial \Delta L}{\partial t} \right]$$

$$= \frac{1}{2} \left[\partial \operatorname{Li} \frac{\partial i}{\partial t} + i \frac{\partial \Delta L}{\partial t} \right]$$

$$= \operatorname{Li} \frac{\partial i}{\partial t} + \frac{i^{2}}{2} \frac{\partial L}{\partial t}$$

$$= \operatorname{Li} \frac{\partial i}{\partial t} + \frac{i^{2}}{2} \frac{\partial L}{\partial t}$$

TORQUE EQUATION (CONTD...)

$$= \text{Li } \frac{\partial i}{\partial t} + \frac{i^2}{2} \frac{\partial L}{\partial \theta} \left(\frac{\partial \theta}{\partial t} \right)$$

$$= \text{Li } \frac{\partial i}{\partial t} + \frac{i^2}{2} \left(\frac{\partial \theta}{\partial \theta} \right) \xrightarrow{\partial L}$$

$$= \text{Subtracting } (2) \text{ from } (3),$$

$$(3) (4) - (3) \Rightarrow$$

$$\text{Mechanical Power developed} = P_m = \frac{1}{2} \frac{\partial I}{\partial t} + \frac{i^2}{2} \frac{\partial L}{\partial \theta}$$

$$- \frac{1}{2} \frac{\partial I}{\partial t} - \frac{i^2}{2} \frac{\partial L}{\partial \theta}$$

$$\therefore P_m = \frac{1}{2} \left[\frac{i^2}{2} \frac{\partial L}{\partial \theta} \right] + \frac{i^2}{2} \frac{\partial L}{\partial \theta}$$

$$\therefore P_m = \frac{\partial T}{\partial t} \xrightarrow{\text{In proposition}} \xrightarrow{$$

TORQUE EQUATION (CONTD...)

Torque corresponds to motoring, when
$$\frac{\partial L}{\partial \theta}$$
 is $\pm \text{Ve}$.

Torque corresponds to generating when $\frac{\partial L}{\partial \theta}$ is $\pm \text{Ve}$.

AS, $\pm \text{Taxia}$, it is independent of direction of current.

* If there is magnetic Saturation equation (a) is invalid & the torque Should be derived as the derivative of Co-energy or field Stored energy.

TORQUE-SPEED CHARACTERISTICS

TORQUE SPEED CAPABILITY CURVE

ROTOR POSITION SENSING

PHOTO TRANSISTOR SENSOR

HAL EFFECT SENSOR

SENSORLESS CONTROL

CLOSED LOOP CONTROL

CLOSED LOOP CONTROL

MICROPROCESSOR CONTROL

MERITS OF SRM

- Construction is simple and robust, as there is no brush.
- Rotor carries no windings, no slip rings and brush-less maintenance.
- No permanent magnet, neither in the stator nor in the rotor.
- Ventilating system is simpler as losses takes place mostly in stator.
- Power semiconductor switching circuitry is simpler.
- No shoot-through fault is likely to happen in power semiconductor circuits.
- Torque developed does not depend upon the polarity of the current

DE-MERITS OF SRM

- Stator phase winding should be capable of carrying the magnetizing current also, for setting up the flux in the air gap.
- For high speed operations, the developed torque has undesirable ripples. As a result it develops undesirable acoustic losses (noise).
- For high speeds, current waveform also has undesirable harmonics. To suppress this
 effect
- large size capacitor is to be connected.
- The air gap at the aligned axis should be very small while the air gap at the inter-polar axis should be very large. It is difficult to achieve. No standardized practice is available.
- The size of the motor is comparable with the size of variable speed induction motor drive.

APPLICATIONS OF SRM

- Washing machines
- Vacuum cleaners
- Fans
- Future automobile applications
- Robotic control applications