Détection d'anomalies

Module 6

Objectifs

Objectifs¹

- comprendre les différents modes de détection d'anomalie
- détecter des anomalies locales et globales
- utiliser les méthodes applicables aux grands datasets

Introduction

Introduction

- avant, beaucoup utilisée en préprocessing. Pourquoi?
- récemment beaucoup moins le cas. Pourquoi?
- très utilisée en :
 - détection d'intrusion
 - détection de fraude
 - prévention de fuite de données
 - monitoring de patients

Définition

- une anomalie diffère de la norme par ses features
- les anomalies sont rares comparées aux instances normales

Modes de détection d'anomalie

Mode supervisé

Problème de classification normal. Réseaux de neurones et SVM très performants.

Qu'en est-il des arbres?

Modes semi-supervisé

Détection de nouveauté. Pas traité ici. One-class SVM très utilisé.

Mode non-supervisé

Méthodes très nombreuses :

- statistiques
- par voisinnage
- par réseaux de neurones
- par clustering
- par arbres

Souvent lourdes à calculer

Mode non-supervisé

Programme:

- méthode classique (lente)
- méthode par clustering
- méthode statistique
- méthode par arbres
- méthode par réseaux de neurones

Local Outlier Factor

Local Outlier Factor

- anomalies locales
- basé sur les k voisins du point
- définit une « atteignabilité » par les distances de ces voisins
- calcule un ratio moyen d'atteignabilité du point et de ses voisins

 \rightarrow Anomalie si le ratio moyen d'atteignabilité est beaucoup plus faible que celui de ses plus proches voisins

Local Outlier Factor

Désavantages

- lent (quadratique)
- a des priors sur la distribution des données

Prior

Unweighted Cluster-Based

Outlier Factor

Unweighted Cluster-Based Outlier Factor

- anomalies globales
- fonctionne comme LOF mais voisinnage = cluster
- clusters calculés avec k-means
- \rightarrow Anomalie si le ratio moyen d'atteignabilité est beaucoup plus faible que celui dans son cluster

Unweighted Cluster-Based Outlier Factor

Histogram-based Outlier Score

Histogram-Based Outlier Score

- calculer un histogramme pour chaque feature
- $HBOS(x) = \sum_{f \in F} \log(\frac{1}{hist_f(x)})$
- linéaire sur les données au train, instantané au test
- suppose l'indépendance des features (!!!)
- efficace sur les anomalies globales

Isolation forest

Isolation tree

- arbre aléatoire (comme random forest mais le split est aléatoire, ExtraTree)
- but : isoler une anomalie plus vite qu'un exemple normal
- petit chemin pour arriver à une feuille : anomalie
- \rightarrow Se sert du fait que les features des anomalies ne sont pas distribuées comme les autres.

Isolation forest

- forêt d'isolation trees
- construits sur des sous-échantillons sans replacement des données
- sous-échantillons plus petits que dans random forest typiquement, pour mieux isoler les anomalies
- converge souvent vite: 100 arbres souvent suffisants

Isolation forest

Auto-encodeurs

Introduction

- auto-encodeur = réseau de neurone
- input = output : le réseau apprend à reproduire
- pénalisé quelque part pour éviter la copie
- anomalie si le réseau reproduit mal

Introduction

encoder

Auto-encodeur « standard »

- apprend parce que z est plus petit que X : compression
- dur à entrainer : éviter la mémorisation
- très faisable cependant avec un recherche d'hyperparamètres

Auto-encodeur débruiteur

Auto-encodeur débruiteur

- apprend parce que X est bruité
- (apprend parce que z est plus petit que X : compression)
- plus facile à entrainer : la mémorisation devient compliquée pour le réseau, en fonction du type de bruit

Auto-encodeur variationnel

Auto-encodeur variationnel

- apprend parce que z est une gaussienne : mémorisation dure
- (apprend parce que z est plus petit que X : compression)
- intéressant : vecteurs des écart-types = très bonne information pour les anomalies
- \rightarrow Deux moyens de scorer une anomalie : erreur de reconstruction ou écarts-types élevés de ${\bf z}$

Conclusion

Conclusion

- plusieurs modes de détection d'anomalies
- méthodes globales ou locales
- état de l'art : isolation forest et auto-encodeurs variationnels

