and the same of
NOME: FELING ANCHANOO OR CUNHA MONDOS
NA: 2252740
INTEGNALS INPROPRIAS
of loxidy: I SERA CONTINUA EM [0,0-]
a) I(x) dx : \ SERA CONTINUA EM [0,2-]
1-0 INTERVALO DE INTEGRAÇÃO NÃO É CIMITARO
2- A FUNÇÃO POSSUI UMA DOSCONTINUIDADE INFI-
NITA NO INTONVALO CO, UZ
I INTEGNAS IMPNOPNIAS
Dimite Origis IMMODITIES
Q e , d
$\int_{1}^{2} \frac{1}{x^{2}} dx$ $= -\frac{1}{x} \Big _{0}^{2} = -\frac{1}{x} + 1 = 1 - \frac{1}{x}$
$= -\frac{1}{2} = -\frac{1}{2} + 1 = 1 - \frac{1}{2}$
$0=z$: $1-\frac{1}{2}=0,5$
D=10. 2 -1 = 0, 4
er = 1000 .'. 1-1 = 0,999

SAO DOMINIOS DA

GLUMPLO: 120 $= \lim_{x \to x} \int_{-x}^{x} dx$ = lim [lan(x)] = 7 = lin [lan(e)-ln(1)] = lim ln(a) = +00 Exemplo: J'ezxdx = lim Jedy * $\int e^{2x} dx = \int e^{u} du = \frac{1}{2} e^{u} = \frac{1}{2} e^{2x}$ Su=zx = lim [= e2 | 17 - lim [2021 - 1020] = 02 - lim 020 = e2 - 0 = e2

 $\int_{x}^{+\infty} e^{-x^{2}} dx = \lim_{0 \to 0+\infty} \left[-e^{-x^{2}} \right]_{0}^{+\infty}$ = lim [-e+e-02] = lin - e - 2 7 + 1 0 +1, = 1/2// PODEMOS CONCLUIN J x e dx = f x e dx + f x e dx =-1 +1 =0INTEGNOIS COM INTO GRANDOS INKINITUS DI CONTINUE ON Ca, en) I la de lin la de 2) I continue om (0,01 Planex = lin flands

 $= \int_{-1}^{0} x^{-3} dx + \int_{0}^{2} x^{-3} dx$

COMO $\int_{-1}^{0} x^{-3} dx = -2$ PODEMES CUNCUUM

QUE $\int_{-1}^{2} x^{-3} dx$ & DIVENGENTE.