fflchain: RRPlot Demo

Jose Tamez

2023-04-28

Contents

```
1 RRPLOTS and flchain
                                                                         1
  library(survival)
library(FRESA.CAD)
## Loading required package: Rcpp
## Loading required package: stringr
## Loading required package: miscTools
## Loading required package: Hmisc
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
     format.pval, units
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
     cov, smooth, var
#library(corrplot)
source("~/GitHub/FRESA.CAD/R/RRPlot.R")
op <- par(no.readonly = TRUE)</pre>
pander::panderOptions('digits', 3)
pander::panderOptions('keep.trailing.zeros',TRUE)
```

1 RRPLOTS and flchain

```
odata <- flchain
odata$chapter <- NULL
pander::pander(table(odata$death))</pre>
```

0	1
5705	2169

0	1
4562	1962

1.1 Exploring Raw Features with RRPlot

```
convar <- colnames(dataFL)[lapply(apply(dataFL,2,unique),length) > 10]
convar <- convar[convar != "time"]
topvar <- univariate_BinEnsemble(dataFL[,c("status",convar)],"status")
pander::pander(topvar)</pre>
```

age	kappa	lambda	creatinine
0	0	0	0

Relative Risk: age

Relative Risk: age

Kaplan-Meier: age

Number at risk

Low Risk < 69.000	4248	4022	3865	3610	2934	55
69.000 <= Risk < 73.000	720	653	604	521	422	16
High Risk >= 73.000	1556	1212	938	684	437	10

Relative Risk: kappa

Kaplan-Meier: kappa

Number at risk

Low Risk < 1.640	4600	4420	4149	3790	3097	70
LOW 1(13K < 1.040	4099	4420	4149	3/90	3097	70
1.640 <= Risk < 1.959	7/2	CCC	500	E02	262	Ġ
1.040 <= Nisk < 1.939	143	666	599	503	363	О
High Dick s = 1 050	1000	004	CEO.	E00	222	Ė
High Risk >= 1.959	1082	801	659	522	333	Э

Relative Risk: lambda

Kaplan-Meier: lambda

Number at risk

Low Risk < 1.900	4759	4459	4177	3810	3082	62
1.900 <= Risk < 2.250	726	647	590	501	371	11
High Risk >= 2.250	1039	781	640	504	340	8

Relative Risk: creatinine

Kaplan-Meier: creatinine

Number at risk

Low Risk < 1.200	4913	4537	4220	3827	3100	68
1.200 <= Risk < 1.300	679	600	550	483	345	9
High Risk >= 1.300	932	750	637	505	348	4

names(RRanalysis) <- topFive</pre>

1.2 Reporting the Metrics

```
ROCAUC <- NULL
CstatCI <- NULL
RRatios <- NULL
LogRangp <- NULL
Sensitivity <- NULL
Specificity <- NULL
for (topf in topFive)
  CstatCI <- rbind(CstatCI,RRanalysis[[topf]]$c.index$cstatCI)</pre>
  RRatios <- rbind(RRatios, RRanalysis[[topf]]$RR_atP)</pre>
  LogRangp <- rbind(LogRangp,RRanalysis[[topf]]$surdif$pvalue)</pre>
  Sensitivity <- rbind(Sensitivity,RRanalysis[[topf]]$ROCAnalysis$sensitivity)</pre>
  Specificity <- rbind(Specificity,RRanalysis[[topf]]$ROCAnalysis$specificity)</pre>
  ROCAUC <- rbind(ROCAUC,RRanalysis[[topf]]$ROCAnalysis$aucs)</pre>
rownames(CstatCI) <- topFive</pre>
rownames(RRatios) <- topFive</pre>
rownames(LogRangp) <- topFive</pre>
rownames(Sensitivity) <- topFive</pre>
rownames(Specificity) <- topFive</pre>
```

rownames(ROCAUC) <- topFive</pre>

pander::pander(ROCAUC)

	est	lower	upper
age	0.822	0.811	0.834
kappa	0.682	0.667	0.696
lambda	0.665	0.650	0.680
creatinine	0.590	0.574	0.606

pander::pander(CstatCI)

	mean.C Index	median	lower	upper
age	0.775	0.775	0.764	0.785
kappa	0.671	0.671	0.658	0.683
lambda	0.657	0.657	0.645	0.670
creatinine	0.586	0.586	0.572	0.600

pander::pander(RRatios)

	est	lower	upper
age	4.06	3.79	4.35
kappa	2.36	2.21	2.53
lambda	2.23	2.08	2.39
creatinine	1.92	1.78	2.07

pander::pander(LogRangp)

age	0.00e+00
kappa	1.07e-176
lambda	1.14e-142
creatinine	6.21e-73

pander::pander(Sensitivity)

	est	lower	upper
age	0.560	0.538	0.582
kappa	0.319	0.298	0.340
lambda	0.297	0.276	0.317
creatinine	0.242	0.223	0.262

pander::pander(Specificity)

	est	lower	upper
age	0.9	0.891	0.908
kappa	0.9	0.891	0.908
lambda	0.9	0.891	0.908
creatinine	0.9	0.891	0.908

meanMatrix <- cbind(ROCAUC[,1],CstatCI[,1],Sensitivity[,1],Specificity[,1],RRatios[,1])
colnames(meanMatrix) <- c("ROCAUC","C-Stat","Sen","Spe","RR")
pander::pander(meanMatrix)</pre>

	ROCAUC	C-Stat	Sen	Spe	RR
age	0.822	0.775	0.560	0.9	4.06
kappa	0.682	0.671	0.319	0.9	2.36
lambda	0.665	0.657	0.297	0.9	2.23
${f creatinine}$	0.590	0.586	0.242	0.9	1.92