Devoir surveillé n°1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Montrer que pour tout $(a, b, c, d) \in \mathbb{Z}^4$, il existe $(m, n) \in \mathbb{Z}^2$ tel que

$$(a^2 + b^2)(c^2 + d^2) = m^2 + n^2$$

II. Autour de π .

1) On pose $I = \left]0; \frac{\pi}{2}\right[$ et, pour tout $x \in I$,

$$f(x) = \frac{1}{3}(2\sin(x) + \tan(x))$$
 et $g(x) = \frac{3\sin(x)}{2 + \cos(x)}$.

On pose aussi, pour tout $x \in I$,

$$u(x) = f(x) - x$$
 et $v(x) = g(x) - x$.

- a) Factoriser le polynôme $P = 2X^3 3X^2 + 1$ en produit de polynômes réels.
- b) Justifier que u est dérivable sur I et que, pour tout $x \in I$,

$$u'(x) = \frac{P(\cos(x))}{3\cos^2(x)}.$$

- c) En déduire les variations de u sur I.
- d) Justifier que v est dérivable sur I et déterminer un polynôme réel Q tel que, pour tout $x \in I$,

$$v'(x) = \frac{Q(\cos(x))}{(2 + \cos(x))^2}.$$

- e) En déduire les variations de v sur I.
- f) Montrer que, pour tout $x \in I$, g(x) < x < f(x).
- **2)** a) En utilisant le fait que $\frac{\pi}{12} = \frac{\pi}{4} \frac{\pi}{6}$, calculer $\cos\left(\frac{\pi}{12}\right)$, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12}\right)$.
 - b) Déduire de la question 1)f) un encadrement de π .
- 3) On pose, pour tout entier naturel n,

$$a_n = \sin\left(\frac{\pi}{3 \times 2^n}\right)$$
 et $b_n = \cos\left(\frac{\pi}{3 \times 2^n}\right)$.

- a) Justifier que, pour tout réel θ , $\cos(2\theta) = 1 2\sin^2(\theta)$.
- b) En déduire que, pour tout entier naturel n,

$$a_{n+1} = \sqrt{\frac{1-b_n}{2}}$$
 et $b_{n+1} = \sqrt{\frac{1+b_n}{2}}$.

c) Montrer que, pour tout entier naturel n,

$$9 \times 2^n \frac{a_n}{2 + b_n} < \pi < 2^n \left(2a_n + \frac{a_n}{b_n} \right).$$

d) Justifier que les deux termes de l'encadrement précédent tendent vers π quand n tend vers $+\infty$.

Indication: On pourra déterminer la limite de (b_n) et, pour (a_n) , utiliser la limite de $\frac{\sin(x)}{x}$ lorsque x tend vers 0.

III. Involutions continues de \mathbb{R} .

L'objectif de ce problème est de déterminer l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues et involutives (ou qui sont des involutions), c'est-à-dire vérifiant $f \circ f = \mathrm{Id}_{\mathbb{R}}$, ce qui signifie que

$$\forall x \in \mathbb{R}, \ f(f(x)) = x.$$

On admettra le théorème de la limite monotone : toute fonction $\varphi : \mathbb{R} \to \mathbb{R}$ monotone admet une limite en $+\infty$ ainsi qu'en $-\infty$, finie ou infinie.

- 1) Donner deux exemples différents d'une telle fonction $f: \mathbb{R} \to \mathbb{R}$, involutive et continue.
- 2) On considère une telle fonction $f: \mathbb{R} \to \mathbb{R}$, involutive et continue. Montrer que f est injective, c'est-à-dire que pour tout $x, y \in \mathbb{R}$, si f(x) = f(y), alors x = y.

Nous avons montré en DM qu'une telle fonction était alors nécessairement strictement monotone, nous ne le redémontrerons pas ici.

On considère donc maintenant une fonction $f: \mathbb{R} \to \mathbb{R}$ involutive, continue et strictement monotone.

- 3) Montrer que si f est strictement croissante, alors $f = \mathrm{Id}_{\mathbb{R}}$ (on pourra raisonner par l'absurde et supposer qu'il existe $x \in \mathbb{R}$ tel que $x \neq f(x)$).
- 4) On suppose dans cette question que f est strictement décroissante. On considère $g = \mathrm{Id}_{\mathbb{R}} f$, c'est-à-dire

$$g: x \mapsto x - f(x)$$
.

- a) Montrer que pour tout $y \in \mathbb{R}$, il existe $x \in \mathbb{R}$ tel que y = f(x).
- b) En déduire que f n'est pas majorée. On montrerait de même que f n'est pas minorée (on ne demande pas de le montrer, et on pourra utiliser ce résultat).
- c) Tracer le tableau des variations de f.
- d) Construire le tableau des variations de g, et montrer que g admet une réciproque, dont on donnera aussi le tableau des variations.
- e) Montrer que $f = g^{-1} \circ (-\mathrm{Id}_{\mathbb{R}}) \circ g$.
- 5) Réciproquement, considérons une fonction $g: \mathbb{R} \to \mathbb{R}$ continue, strictement croissante et vérifiant

$$g(x) \xrightarrow[x \to +\infty]{} +\infty$$
 et $g(x) \xrightarrow[x \to -\infty]{} -\infty$.

Montrer que $q^{-1} \circ (-\mathrm{Id}_{\mathbb{R}}) \circ q$ est une involution, continue et strictement décroissante.

6) Exhiber une infinité d'involutions $f: \mathbb{R} \to \mathbb{R}$ continues.

— FIN —