LISTING OF CLAIMS:

This listing of claims will replace all prior versions of claims in the application:

- 1 (Currently amended) A magnetoresistive sensor comprising: 1 2 first and second magnetically free layers; 3 a magnetically pinned layer structure comprising CoFeV with an atomic percent of Fe ranging from 20-60 atomic percent and an atomic percent of V 4 5 ranging from 2-10 atomic percent sandwiched between the first and 6 second free layers, said magnetically pinned layer being self pinned; 7 a first electrically insulating barrier layer sandwiched between said first 8 magnetically free layer and said pinned layer; and 9 a second electrically insulating barrier layer sandwiched between said second free layer and said pinned layer. 10
- 1 2. (Withdrawn) A magnetoresistive sensor as in claim 1 wherein said pinned layer
 2 is pinned by a combination of magnetostriction of the pinned layer and compressive
 3 stress within the sensor.
- 1 3. (Currently amended) A magnetoresistive sensor as in claim <u>17</u> 4 wherein said 2 pinned layer comprises Co and Fe, wherein the atomic percent of Fe is about 50%.
- 4. (Currently amended) A magnetoresistive sensor as in claim <u>17</u> + wherein said
 pinned layer comprises CoFe with an atomic percent of Fe ranging from 20 to 60 percent.

- 1 5. (Currently amended) A magnetoresistive sensor as in claim 17 4 wherein said
- 2 pinned layer comprises CoFeV, with an atomic percent of Fe ranging from 20 to 60
- 3 percent and an atomic percent of V ranging from 2 to 10 percent.
- 1 6. (Withdrawn) A magnetoresistive sensor as in claim 1 wherein said pinned layer
- 2 comprises a single ferromagnetic layer comprising Co and Fe.
- 1 7. (Withdrawn) A magnetoresistive sensor as in claim 1 wherein said pinned layer
- 2 comprises a single ferromagnetic layer comprising Co, Fe and V.
- 1 8. (Cancelled)
- 1 9. (Currently amended) A magnetoresistive sensor as in claim 17 8, wherein said
- 2 three ferromagnetic layers comprise Co and Fe and wherein the atomic percent of Fe in
- 3 each layer is 20 to 60 percent.
- 1 10. (Currently amended) A magnetoresistive sensor as in claim 17.8, wherein said
- 2 three ferromagnetic layers comprise c
- 3 of Fe in each layer ranges from 20 to 60 percent and wherein the atomic percentage of V
- 4 ranges from 2 to 10 percent.

1.	II .	(Currently amended) A magnetoresistive sensor comprising:
2		first and second magnetically free layers;
3		a magnetically pinned sandwiched between the first and second free layers, said
4		magnetically pinned layer being self pinned;
5		a first electrically insulating barrier layer sandwiched between said first
6		magnetically free layer and said pinned layer; and
7		a second electrically insulating barrier layer sandwiched between said second free
8		layer and said pinned layer;
9		A magnetoresistive sensor as in claim 1, wherein said pinned layer comprises first
10		two outer ferromagnetic layers and one inner ferromagnetic layers, the
11		outer and inner ferromagnetic layers comprising Co and Fe, said outer
12		ferromagnetic layers having a thickness of about 5 angstroms and said
13		inner ferromagnetic layer having a thickness of about 10 angstroms.
1	12.	(Withdrawn) A magnetoresistive sensor as in claim 1, wherein said pinned layer
2		comprises a single layer of ferromagnetic material comprising Co and Fe and
3		wherein said single ferromagnetic layer has a thickness of 5 to 15 angstroms.
1	13.	(Currently amended) A magnetoresistive sensor as in claim 174, wherein said
2		barrier layers comprise Aluminum Oxide.
1	14.	(Currently amended) A magnetoresistive sensor as in claim 174, wherein said
2	barrie	r lavers comprise magnesium oxide.

- 1 15. (Currently amended) A magnetoresistive sensor as in claim 17.4, wherein at least
- 2 one of said free layers comprises CoFe.
- 1 16. (Currently amended) A magnetoresistive sensor as in claim 17.4, wherein at least
- 2 one of said free layers comprises a layer of CoFe and a layer of NiFe, the CoFe
- 3 layer being disposed closer to the pinned layer than the NiFe layer.
- 1 17. (Currently Amended) A magnetoresistive sensor comprising:
- 2 first and second magnetically free layers;
- 3 a magnetically pinned sandwiched between the first and second free layers, said
- 4 <u>magnetically pinned layer being self pinned;</u>
- 5 a first electrically insulating barrier layer sandwiched between said first
- 6 magnetically free layer and said pinned layer; and
- 7 a second electrically insulating barrier layer sandwiched between said second free
- 8 layer and said pinned layer;
- 9 A magnetoresistive sensor as in claim 11, wherein said three ferromagnetic layers layer
- 10 of said pinned layer are separated from one another by first and second non-magnetic
- 11 coupling layers.
- 1 18. (Currently amended) A magnetoresistive sensor comprising:
- 2 first and second magnetically free layers;
- a magnetically pinned sandwiched between the first and second free layers, said
- 4 magnetically pinned layer being self pinned;

5	a first electrically insulating barrier layer sandwiched between said first
6	magnetically free layer and said pinned layer; and
7	a second electrically insulating barrier layer sandwiched between said second free
8	layer and said pinned layer;
9	A mangetoresistive sensor as in claim 11, wherein said three ferromagnetic layers of said
10	pinned layers are separated from one on another by first and second non-magnetic
11	coupling layers comprising Ru.

- 19. (Withdrawn) A magnetic data storage system, comprising:
 - a motor;
 - a magnetic disk rotatably connected with said motor;
 - a suspension;
 - a slider connected with said suspension for movement adjacent to said disk;
 - a magnetoresistive sensor, connected with said suspension, said
 - magnetoresistive sensor further comprising:

first and second magnetically free layers;

- a magnetically pinned layer sandwiched between the first and second
 - free layers, said magnetically pinned layer being self pinned;
- a first electrically insulating barrier layer sandwiched between said first
 - magnetically free layer and said pinned layer; and
- a second electrically insulating barrier layer sandwiched between said second free layer and said pinned layer.