Statistical Mechanics of Liquids

Hidde Vuijk a Abhinav Sharma a,b

^aLeibniz-Institut für Polymerforschung, Dresden, Germany

 $^b\,TU\,\,Dresden$

 $E ext{-}mail: wuijk@ipfdd.de, sharma@ipfdd.de}$

Abstract...

Contents			
1	Int	roduction	2
	1.1	Course Outline	2
2	Basic Statistical Mechanics		3
	2.1	Ensembles	3
	2.2	Perfect Gasses	3
3	Imp	perfect Gasses	4
4	Distribution Functions		
	4.1	Potential of Mean Force	5
	4.2	The Superposition Approximation	5
5	Integral Equations for $g(r)$		
	5.1	The Kirkwood Equation	6
		5.1.1 Numerical Solution	6
	5.2	The Born-Green-Yvon Equation	6
6	Perturbation Theory		7
	6.1	General Theory and the Van Der Waals Equation	7
	6.2	Barker-Henderson Theory	7
	6.3	Chandler-Weeks-Anderson Theory	7
7	Continuum Mechanics		
	7.1	Phenomenological Theory	8
	7.2	Statistical Foundations	8
8	Kin	netic Theory	9

- 1 Introduction
- 1.1 Course Outline

2 Basic Statistical Mechanics

some intro

- 2.1 Ensembles
- 2.2 Perfect Gasses

3 Imperfect Gasses

- 4 Distribution Functions
- 4.1 Potential of Mean Force
- 4.2 The Superposition Approximation

5 Integral Equations for g(r)

5.1 The Kirkwood Equation

The goal of this section is to derive an integral equation for the pair-distribution function called the Kirkwood equation. The starting point is the identity

$$kT \ln \left(\rho^{(n)}(\boldsymbol{r}_{1},..,\boldsymbol{r}_{n};\xi)\right) = kT \ln \left(\rho^{(n)}(\boldsymbol{r}_{1},..,\boldsymbol{r}_{n};\xi=0)\right) + \int_{0}^{\xi} d\xi' \frac{\partial}{\partial \xi'} kT \ln \left(\rho^{(n)}(\boldsymbol{r}_{1},..,\boldsymbol{r}_{n};\xi')\right).$$
(5.1)

5.1.1 Numerical Solution

5.2 The Born-Green-Yvon Equation

- 6 Perturbation Theory
- 6.1 General Theory and the Van Der Waals Equation
- 6.2 Barker-Henderson Theory
- 6.3 Chandler-Weeks-Anderson Theory

- 7 Continuum Mechanics
- 7.1 Phenomenological Theory
- 7.2 Statistical Foundations

8 Kinetic Theory