Содержание

Ι	I Интеграл по мере		5
1	1 Интеграл ступенчатой функции		6
	1.1 Свойства		6
2	2 Интеграл неотрицательной измеримой функции		7
	2.1 Свойства		7
3	3 Суммируемая функция		8
	3.1 Свойство		8
4	4 Интеграл суммируемой функции		9
	4.1 Свойства		9
5	5 Простейшие свойства интеграла Лебега	1	٥.
	5.1 Доказательство		0
	5.2 Доказательство		0
	5.3 Доказательство		10
	5.3 Доказательство 5.4 Доказательство		10 11
	5.4 Доказательство		11
6	5.4 Доказательство 5.5 Доказательство 5.6 Доказательство		l1 l1
6	5.4 Доказательство 5.5 Доказательство 5.6 Доказательство		l1 l1

	6.2	Теорема	12
		6.2.1 Доказательство	12
	6.3	Следствие	13
	6.4	Следствие 2	13
II	Π	редельный переход под знаком интеграла	14
7	Teo	рема Леви	15
	7.1	Доказательство	15
8	Лин	нейность интеграла Лебега	16
	8.1	Доказательство	16
	8.2	Следствие	16
		8.2.1 Доказательство	16
9	Teo	рема об интегрировании положительных рядов	17
	9.1	Доказательство	17
	9.2	Следствие	17
		9.2.1 Доказательство	17
10	Абс	олютная непрерывность интеграла	18
	10.1	Доказательство	18
	10.2	Следствие	18
11	02.0	3.2020	19
	11.1	Теорема Лебега о мажорированной сходимости	19

11.1.1 Доказательство	19
11.2 Теорема Лебега о мажорированной сходимости почти везде	20
11.2.1 Доказательство	20
11.3 Теорема Фату	20
11.3.1 Замечание	20
11.3.2 Доказательство	22
11.3.3 Следствие	22
11.3.4 Следствие 2	22
III Произведение мер	22
12 Произведение мер	25
12 Произведение мер	
	24
13 Теорема о произведении мер 13.1 Доказательство	24
13 Теорема о произведении мер	2 4
13 Теорема о произведении мер 13.1 Доказательство	2 ²
13 Теорема о произведении мер 13.1 Доказательство	2 ²
13 Теорема о произведении мер 13.1 Доказательство 13.2 Замечание 13.3 Дополнительная теорема (без доказательства) 14 Сечения множества	$egin{array}{cccccccccccccccccccccccccccccccccccc$
13 Теорема о произведении мер 13.1 Доказательство 13.2 Замечание 13.3 Дополнительная теорема (без доказательства) 14 Сечения множества	24 2 ² 2 ² 2 ²
13 Теорема о произведении мер 13.1 Доказательство 13.2 Замечание 13.3 Дополнительная теорема (без доказательства) 14 Сечения множества 15 Принцип Кавальери	24 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴
13 Теорема о произведении мер 13.1 Доказательство 13.2 Замечание 13.3 Дополнительная теорема (без доказательства) 14 Сечения множества 15 Принцип Кавальери 15.1 Замечание	24 24 24 26 26

16 Совпадение определенного интеграла и интеграла Лебега	29
16.1 Доказательство	29
16.2 Замечание	29
17 Теорема Тонелли	30
17.1 Доказательство	30
18 Теорема Фубини	32
18.0.1 Следствие	32
19 Какая-то нужная штука для лекции 02.03.2020, потом удалю	33
IV Замена переменных в интеграле	34
19.1 Интегрирование по взвешенному образу меры	35
19.1.1 Доказательство	35
19.1.2 Следствие	36
19.2 Критерий плотности	36
19.2.1 Доказательство	36
19.3 Лемма	36
19.3.1 Доказательство	37
19.4 Лемма об образе малых кубических ячеек	37
19.4.1 Доказательство	37
19.5 Лемма 2	38
19.6 Теорема 2	38
19.6.1 Локазательство	38

Часть І

Интеграл по мере

1 Интеграл ступенчатой функции

 $f = \sum_{k=1}^{n} \lambda_k \cdot \chi_{E_k}, \ f \geqslant 0$, где $E_k \in \mathcal{A}$ — допустимое разбиение, тогда интеграл ступенчатой функции f на множестве X есть

$$\int\limits_{X} f d\mu = \int\limits_{X} f(x) d\mu(x) = \sum_{k=1}^{n} \lambda_{k} \mu E_{k}$$

Дополнительно будем считать, что $0 \cdot \infty = \infty \cdot 0 = 0$.

1.1 Свойства

• Интеграл не зависит от допустимого разбиения:

$$f = \sum \alpha_j \chi_{F_j} = \sum_{k,j} \lambda_k \chi_{E_k \cap F_j}$$
, тогда $\int F = \sum \lambda_k \mu E_k = \sum_k \lambda_k \sum_j \mu(E_k \cap F_j) = \sum \alpha_j \mu F_i = \int F$;

•
$$f \leqslant g$$
, to $\int\limits_X f d\mu \leqslant \int\limits_X g d\mu$.

2 Интеграл неотрицательной измеримой функции

 $f\geqslant 0,$ измерима, тогда интеграл неотрицательной измеримой функции fесть

$$\int\limits_X f d\mu = \sup_{\substack{g\text{ - cTyn.}\\0\leqslant g\leqslant f}} \left(\int\limits_X g d\mu\right).$$

2.1 Свойства

- Для ступенчатой функции f (при $f\geqslant 0$) это определение даёт тот же интеграл, что и для ступенчатой функции;
- $0 \leqslant \int_X f \leqslant +\infty;$
- $0\leqslant g\leqslant f,\,g$ ступенчатая, f измеримая, тогда $\int\limits_X g\leqslant \int\limits_X f.$

3 Суммируемая функция

f— измеримая, f_+ и f_- — срезки, тогда если $\int\limits_X f_+$ или $\int\limits_X f_-$ — конечен, тогда интеграл суммируемой функции есть

$$\int\limits_X f d\mu = \int\limits_X f_+ - \int\limits_X f_-.$$

Если
$$\int\limits_X f
eq \pm \infty$$
, то говорят, что $f c$ уммируемая, а также $\int |f|-$ конечен $(|f|=f_++f_-).$

3.1 Свойство

Если $f \geqslant 0$ — измерима, то это определение даёт тот же интеграл, что и интеграл измеримой неотрицательной функции.

4 Интеграл суммируемой функции

 $E\subset X$ — измеримо
е множество, f— измеримо на X,тогда интеграл
 f по множеству Eесть

$$\int\limits_E f d\mu := \int\limits_X f \chi_E d\mu.$$

f — суммируемая на E если $\int\limits_E f + -$ и $\int\limits_E f_-$ — конечны одновременно.

4.1 Свойства

•
$$f = \sum \lambda_k \chi_{E_k}$$
, to $\int_E f = \sum \lambda_k \mu(E_k \cap E)$;

•
$$f\geqslant 0$$
 — измерима, тогда $\int\limits_E fd\mu=\sup_{\substack{g\text{ - ступ.}\\0\leqslant g\leqslant f}}\left(\int\limits_X gd\mu\right).$

 (X, A, μ) — произвольное пространство с мерой.

 $\mathcal{L}^0(X)$ — множество измеримых почти везде конечных функций.

5 Простейшие свойства интеграла Лебега

1. Монотонность:

$$f \leqslant g \Rightarrow \int_{E} f \leqslant \int_{E} g.$$

5.1 Доказательство

$$\bullet \sup_{\substack{\widetilde{f} \text{ - ctyn.} \\ 0 \leqslant \widetilde{f} \leqslant f}} \left(\int\limits_{X} \widetilde{f} d\mu \right) \leqslant \sup_{\substack{\widetilde{g} \text{ - ctyn.} \\ 0 \leqslant \widetilde{g} \leqslant g}} \left(\int\limits_{X} \widetilde{g} d\mu \right);$$

• f и g — произвольные, то работаем со срезками, и $f_+ \leqslant g_+$, а $f_- \geqslant g_-$, тогда очевидно и для интегралов.

$$2. \int_{E} 1 \cdot d\mu = \mu E, \int_{E} 0 \cdot d\mu = 0.$$

5.2 Доказательство

По определению.

3.
$$\mu E=0,\,f$$
 — измерима, тогда $\int\limits_{E}f=0.$

5.3 Доказательство

- \bullet f ступенчатая, то по определению интеграла для ступенчатых функций получаем 0;
- $f \geqslant 0$ измеримая, то по определению интеграла для измеримых неотрицательных функций также получаем 0;
- f любая, то разбиваем на срезки f_+ и f_- и снова получаем 0.

4. (a)
$$\int -f = -\int f$$
;
(b) $\forall c > 0 : \int cf = c \int f$.

5.4 Доказательство

•
$$(-f)_+ = f_- \text{ if } (-f)_= f_+ \text{ if } \int -f = f_- - f_+ = -\int f.$$

•
$$f\geqslant 0$$
 — очевидно, $\sup_{\substack{g\text{ - ступ.}\\0\leqslant g\leqslant cf}}\left(\int g\right)=c\sup_{\substack{g\text{ - ступ.}\\0\leqslant g\leqslant f}}\left(\int g\right).$

5. Пусть существует
$$\int\limits_E f d\mu$$
, тогда $\left|\int\limits_E f\right| \leqslant \int\limits_E |f|.$

5.5 Доказательство

$$\begin{aligned} -|f| &\leqslant f \leqslant |f|, \\ -\int\limits_{E} |f| &\leqslant \int\limits_{E} f \leqslant \int\limits_{E} |f|. \end{aligned}$$

6.
$$f$$
 — измерима на $E,\,\mu E<+\infty,\,\forall x\in E:a\leqslant f(x)\leqslant b.$ Тогда
$$a\mu E\leqslant \int\limits_E f\leqslant b\mu E.$$

5.6 Доказательство

$$\int_{E} a \leqslant \int_{E} f \leqslant \int_{E} b,$$

$$a\mu E \leqslant \int_{E} f \leqslant b\mu E.$$

6 Счетная аддитивность интеграла (по множеству)

6.1 Лемма

 $A= ig| A_i$, где $A,\,A_i$ — измеримы, $g\geqslant 0$ — ступенчатые. Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} g d\mu.$$

6.1.1 Доказательство

$$g = \sum \lambda_k \chi_{E_k}.$$

$$\int_A g d\mu = \sum \lambda_k \mu(A \cap E_k) = \sum_k \lambda_k \sum_i \mu(A_i \cap E_k) = \sum_i \left(\sum_k \lambda_k \mu(A_i \cap E_k)\right) = \sum_i \int_{A_i} g d\mu.$$

6.2 Теорема

 $f:C \to \overline{R},\, f\geqslant 0$ — измеримая на $A,\, A$ — измерима, $A=\bigsqcup A_i,\,$ все A_i — измеримы. Тогда

$$\int_{A} f d\mu = \sum_{i} \int_{A_{i}} f d\mu$$

6.2.1 Доказательство

- >

$$A = A_1 \sqcup A_2, \sum_{f} \lambda_k \chi_{E_k} = g_1 \leqslant f \chi_{A_1}, g_2 \leqslant f \cdot \chi_{A_2} = \sum_{f} \lambda_k \chi_{E_k}, g_1 + g_2 \leqslant f \cdot \chi_{A_2}$$

$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_{A} g_1 + g_2.$$

переходим к sup g_1 и g_2

$$\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_{A} f$$

по индукции разобьём для $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n,\ A=\bigsqcup_{i=1}^{+\infty}A_i$ и $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где

$$B_n = \bigsqcup_{i\geqslant n+1} A_i$$
, тогда

$$\int\limits_{A}\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f+\int\limits_{B}f\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f\Rightarrow\int\limits_{A}f\geqslant\sum_{i=1}^{+\infty}\int\limits_{A_{i}}f$$

6.3 Следствие

$$f\geqslant 0$$
 — измеримая, $u:\mathcal{A} o\overline{\mathbb{R}}_+,\,
u E=\int\limits_E f d\mu.$ Тогда u — мера.

6.4 Следствие 2

$$A = \bigsqcup_{i=1}^{+\infty} A_i, \, f$$
 — суммируемая на A , тогда

$$\int\limits_A f = \sum\limits_i \int\limits_{A_i} f.$$

Часть II

Предельный переход под знаком интеграла

7 Теорема Леви

 $(X, \mathcal{A}, \mu), f_n$ — измерима, $\forall n : 0 \leqslant f_n(x) \leqslant f_{n+1}(x)$ при почти всех x.

 $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\lim_{n \to +\infty} \int\limits_{Y} f_n(x) d\mu = \int\limits_{Y} f d\mu.$$

7.1 Доказательство

f — измерима как предел измеримых функций.

•

 $f_n(x) \leqslant f(x)$ почти везде, тогда $\forall n: \int\limits_X f_n(x) d\mu \leqslant \int\limits_X f d\mu$, откуда следует, что и предел интегралов не превосходит интеграл предела.

• >

Достаточно доказать, что для любой ступенчатой функции $g:0\leqslant g\leqslant f$ верно $\lim_{n\to\infty}\int_{\mathbb{R}^n}f_n\geqslant\int_{\mathbb{R}^n}g$.

Достаточно доказать, что $\forall c \in (0,1)$ верно $\lim_X \int_X f_n \geqslant c \int_X g.$

$$E_n := X (f_n \geqslant cg), E_n \subset E_{n+1} \subset \dots$$

 $\bigcup E_n = X$, т.к. c < 1, то $cg(x) < f(x), \, f_n(x) o f(x) \Rightarrow f_n$ попадёт в "зазор" cg(x) < f(x).

$$\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} cg = c \int\limits_{E_n} g,$$

 $\lim_{n\to +\infty}\int\limits_X f_n\geqslant \lim_{n\to +\infty}c\int\limits_{E_n}g=c\int\limits_X g, \text{ потому что это непрерывность снизу меры }A\mapsto \int\limits_A g.$

8 Линейность интеграла Лебега

Пусть $f,\,g$ — измеримы на $E,\,f\geqslant 0,\,g\geqslant 0.$ Тогда $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.1 Доказательство

Если f, g — ступенчатые, то очевидно.

Разберём общий случай. Существуют ступенчатые функции $f_n: 0 \leqslant f_n \leqslant f_{n+1} \leqslant \ldots \leqslant f$, и $g_n: 0 \leqslant g_n \leqslant g_{n+1} \leqslant \ldots \leqslant g$, и $f_n(x) \to f(x)$ и $g_n(x) \to g(x)$. Тогда

$$\int\limits_E f_n+g_n=\int\limits_E f_n+\int\limits_E g_n,$$
 сделаем предельный переход, значит при $n\to +\infty$
$$\int\limits_E f+g=\int\limits_E f+\int\limits_E g$$

8.2 Следствие

Пусть f, g — суммируемые на множестве E, тогда f+g тоже суммируема и $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.2.1 Доказательство

$$\begin{split} &(f+g)_{\pm}\leqslant |f+g|\leqslant |f|+|g|.\\ &h:=f+g,\\ &h_{+}-h_{-}=f_{+}-f_{-}+g_{+}-g_{-},\\ &h_{+}+f_{-}+g_{-}=h_{-}+f_{+}+g_{+},\\ &\int h_{+}+\int f_{-}+\int g_{-}=\int h_{-}+\int f_{+}\int g_{+},\\ &\int h_{+}-\int h_{-}=\int f_{+}-\int f_{-}+\int g_{+}-\int g_{-},\text{ тогда}\\ &\int h=\int f+\int g. \end{split}$$

9 Теорема об интегрировании положительных рядов

 $u_n\geqslant 0$ почти везде, измеримы на E. Тогда

$$\int_{E} \left(\sum_{i=1}^{+\infty} u_n \right) d\mu = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu.$$

9.1 Доказательство

Очевидно по теореме Леви.

$$S(x) = \sum_{n=1}^{+\infty} u_n(x)$$
 и $p \leqslant S_N \leqslant S_{N+1} \leqslant \dots$ и $S_N \to S(X)$.

$$\lim_{n \to +\infty} \int_{E} S_{N} = \int_{E} S,$$

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \int_{E} u_k(x) = \int_{E} S(x) d\mu.$$

9.2 Следствие

$$u_n$$
 — измеримая функция, $\sum_{n=1}^{+\infty}\int\limits_E|u_n|<+\infty.$ Тогда

 $\sum u_n$ — абсолютно сходится почти везде на E.

9.2.1 Доказательство

$$S(x) = \sum_{n=1}^{+\infty} |u_n(x)|$$

$$\int\limits_E S(x) = \sum_{n=1}^{+\infty} \int |u_n(x)| < +\infty,$$
 значит $S(x)$ конечна почти всюду.

10 Абсолютная непрерывность интеграла

f — суммируемая функция, тогда верно:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall E \in \mathcal{A} : \mu E < \delta : \left| \int_{E} f \right| < \varepsilon$$

.

10.1 Доказательство

$$X_n=X\,(f\geqslant n),\,X_n\supset X_{n+1}\supset\dots$$
 и $\mu\left(\bigcap_{n=1}^{+\infty}X_n
ight)=0.$

Тогда $\forall \varepsilon > 0: \exists n_{\varepsilon}: \int\limits_{X_{n_{\varepsilon}}} |f| < \frac{\varepsilon}{2} \ (A \mapsto \int\limits_{A} |f| - \text{мера, тогда} \int\limits_{\bigcap X_{n}} |f| = 0$ и по непрерывности меры сверху).

$$\delta := rac{arepsilon}{2n_{arepsilon}},$$
 берём $E : \mu E < \delta.$

$$\left| \int_{E} f \right| \leqslant \int_{E} |f| = \int_{E \cap X_{n_{\varepsilon}}} |f| + \int_{E \setminus X_{n_{\varepsilon}}} |f| \leqslant \int_{X_{n_{\varepsilon}}} |f| + n_{\varepsilon} \mu E < \frac{\varepsilon}{2} + n_{\varepsilon} \frac{\varepsilon}{2n_{\varepsilon}} = \varepsilon.$$

10.2 Следствие

 e_n — измеримое множество, $\mu e_n \to 0, \, f$ — суммируемая. Тогда $\int\limits_{e_n} f \to 0.$

$11 \quad 02.03.2020$

 $f_n \rightrightarrows f$ по мере то же самое, что и $\mu X(|f_n-f|\geqslant \varepsilon) \to 0$. Ещё есть способ $\int\limits_X |f_n-f| d\mu \to 0$. Можно ли вывести хоть какую-нибудь импликацию.

$$\Rightarrow$$
 нельзя, пример: $f_n(x) = \frac{1}{nx}$ в (\mathbb{R}, λ) , тогда $f_n \rightrightarrows 0$ по мере. а $\int \left| \frac{1}{nx} \right| d\mu = +\infty$.

$$\Leftarrow \text{ можно: } \mu X(|f_n-f|\geqslant \varepsilon) = \int\limits_{x_n} 1 d\mu \leqslant \int\limits_{x_n} \frac{|f_n-f|}{\varepsilon} d\mu \leqslant \frac{1}{\varepsilon} \int\limits_{X} |f_n-f| \to 0.$$

Хотим доказать подобие $f_n \to f$, то $\int f_n \to \int f$.

11.1 Теорема Лебега о мажорированной сходимости

 $f_n,\,f$ — измеримые, почти везде конечные функции. $f_n \underset{\mu}{\Rightarrow} f.$ Также существует g, что:

- 1. $\forall n: |f_n| \leqslant g$ почти везде;
- 2. g суммируема на X (g мажоранта).

Тогда
$$\int\limits_X |f_n-f| d\mu \to 0$$
, и тем более $\int\limits_X f_n \to \int\limits_X f$.

11.1.1 Доказательство

 f_n — суммируема в силу первого утверждения про g, f — суммируема по следствию теоремы Рисса. Тем более $\left| \int\limits_V f_n - \int\limits_V f \right| \leqslant \left| \int\limits_V f_n - f \right| \leqslant \int\limits_V |f_n - f|.$

1. $\mu X < +\infty$. Фиксируем $\varepsilon > 0$. $X_n := X(|f_n - f| \geqslant \varepsilon), \, \mu X_n \to 0$.

$$\int\limits_X |f_n-f| = \int\limits_{x_n} + \int\limits_{x_n^c} \leqslant \int\limits_{x_n} 2g + \int\limits_{x_n^c} \varepsilon_0 \leqslant \int\limits_{x_n} 2g + \int\limits_x \varepsilon < \varepsilon(1+\mu X). \text{ (при больших } n \text{ выражение } \int\limits_{x_n} 2g \leqslant \varepsilon \text{)}.$$

2. $\mu X = +\infty$, $\varepsilon > 0$.

Утверждение:
$$\exists A$$
 — измеримое, μA — конечное, $\int\limits_{X\backslash A}g<\varepsilon.$

Доказательство

$$\int G = \sup \left\{ \int g_n : h - \text{ступенчатая функция} 0 \leqslant h \leqslant g \right\}$$

$$\exists h_0: \int\limits_X g - \int\limits_X h_0 < \varepsilon, \ A := \mathrm{supp} \ h_0.$$
 (где $\mathrm{supp} - \mathrm{носитель} \ (\mathrm{support})$)
$$\int\limits_{X \setminus A} g + \int\limits_A g - h_0 < \varepsilon.$$

$$\int\limits_X |f_n - f| = \int\limits_A + \int\limits_{X \setminus A} \leqslant \int\limits_A |f_n - f| + 2\varepsilon < 3\varepsilon \ \mathrm{при} \ \mathrm{большиx} \ n.$$

11.2 Теорема Лебега о мажорированной сходимости почти везде

 $(X,\mathcal{A},\mu),\,f_n,\,f$ — измеримые, $f_n \to f$ — почти везде.

Существует такая g, что:

- 1. $|f_n| \leq g$ почти везде;
- 2. g суммируема.

11.2.1 Доказательство

 f_n, f — суммируемая, тем более — как и раньше.

$$h_n:=\sup(|f_n-f|,|f_{n+1}-f|,\ldots),\,h_n$$
 убывает. $0\leqslant h_n\leqslant 2g.$

$$\lim_{n \to +\infty} h_n(x) = \overline{\lim} |f_n - f| = 0$$
 почти везде.

$$2g-h\geqslant 0$$
, возрастают, тогда по теореме Леви $\int\limits_X 2g-h o \int\limits_X 2g$, значит $\int\limits_X h_n o 0$, тогда $\int\limits_X |f_n-f|\leqslant \int\limits_X h_n o 0$.

11.3 Теорема Фату

$$(X,\mathcal{A},\mu,\,f_n\geqslant 0$$
 — измеримые, $f_n\to f$ почти везде. Если $\exists C>0,$ что $\forall n:\int\limits_X f_n\leqslant C,$ то $\int\limits_X f\leqslant C.$

11.3.1 Замечание

Вообще говоря
$$\int\limits_X f_n \not\to \int\limits_X f.$$

11.3.2 Доказательство

$$g_n = \int (f_n, f_{n+1}, \ldots).$$

 g_n возрастает, $g_n \to f$ почти везде. $\lim g_n = \underline{\lim} f_n = f$ почти везде.

$$\int\limits_X g_n\leqslant \int\limits_X f_n\leqslant C,\,\text{тогда}\,\int F\leqslant C.$$

Примерчик

 $f_n = n \cdot \chi_{[0, \frac{1}{n}]} \to 0$ почти везде.

$$\int_{\mathbb{R}} f_n = 1, \int f = 0.$$

Положительность важна:

$$f_n\geqslant 0$$
, тогда $\int -f_n\leqslant -1$, но $\int f=0\geqslant -1$.

11.3.3 Следствие

$$f_n \underset{u}{\Rightarrow} f \ (f_{n_k} \to f).$$

11.3.4 Следствие 2

 $f_n \geqslant 0$, измеримая. Тогда

$$\int\limits_X \underline{\lim} f_n \leqslant \underline{\lim} \int\limits_X f_n.$$

Доказательство

$$\int\limits_X g_n\leqslant \int\limits_X f_n\leqslant C.$$

Берём n_k

$$\underline{\lim} \left(\int_{Y} f_n \right) = \lim_{k \to +\infty} \left(\int_{Y} f_{n_k} \right).$$

$$\int\limits_X f_{n_k} \to \lim \left(\int\limits_X f_n \right), \text{ a } \int\limits_x g_n \to \int\limits_X \underline{\lim} f_n.$$

Часть III

Произведение мер

12 Произведение мер

 (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) — пространства с мерой.

 $\mathcal{A} \times \mathcal{B} = \{A \times B, A \in \mathcal{A}, B \in \mathcal{B}\}$ — семейство подмножеств в $X \times Y$.

 \mathcal{A}, \mathcal{B} — полукольца, значит и $\mathcal{A} \times \mathcal{B}$ — полукольцо.

 $\mathcal{A} \times \mathcal{B}$ — полукольцо *измеримых прямоугольников* (на самом деле это не всегда так).

Тогда введём меру на $A \times B - \mu_0(A \times B) = \mu(A) \cdot \nu(B)$.

Обозначим $(X \times Y, A \otimes B, \mu \times \nu)$ как произведение пространств с мерой.

13 Теорема о произведении мер

- 1. μ_0 мера на полукольце $\mathcal{A} \times \mathcal{B}$;
- 2. $\mu, \nu \sigma$ -конечное, значит $\mu_0 \sigma$ -конечное.

13.1 Доказательство

1. Проверим счётную аддитивность μ_0 . $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y),\ (x,y)\in X\times Y.$

$$P=\bigsqcup_{C^{\mathbf{q}}}P_k$$
 — измеримые прямоугольники. $P=A\times B$ и $P_k=A_k\times B_k,\,\chi_P=\sum\chi_{P_k}$

 $\chi_A(x)\chi_B(y)=\sum_k\chi_{A_k}(x)\chi_{B_k}(y).$ Интегрируем по ν (по пространству Y).

$$\chi_A(x)\cdot \nu(B) = \sum \chi_{A_k}(x) \nu(B_k).$$
Интегрируем по $\mu.$

$$\mu A \cdot \nu B = \sum \mu A_k \cdot \nu B_k.$$

2. $X=\bigcup X_k,\,Y=\bigcup Y_j,$ где μX_k и νY_j — конечные, $X\times Y=\bigcup_{k,j}X_k\times Y_j.$

$$(\mathbb{R}^m, \mathcal{M}^m, \lambda_m)$$
 и $(\mathbb{R}^n, \mathcal{M}^n, \lambda_n)$.

$$(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu_0)$$
, где $\mathcal{A} \times \mathcal{B}$ — полукольцо.

Запускаем теорему о продолжении меры.

$$\rightsquigarrow (X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu)$$
, где $\mathcal{A} \times \mathcal{B} - \sigma$ -алгебра.

 $\mu, \nu-\sigma$ -конечная, следовательно продолжение определено однозначно.

13.2 Замечание

Произведение мер ассоциативно.

13.3 Дополнительная теорема (без доказательства)

 λ_{m+n} есть произведение мер λ_m и λ_n .

14 Сечения множества

 $X,\ Y$ и $C\subset X imes Y,\ C_x=\{y\in Y:(x,y)\in C\}\subset Y$ — сечение множества C, аналогично определим $C^y=\{x\in X:(x,y)\in C\}.$

Допустимы объедения, пересечения и т.п.

15 Принцип Кавальери

 (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) , а также $\mu, \nu - \sigma$ -конечные и полные.

 $m = \mu \times \nu, C \in \mathcal{A} \otimes \mathcal{B}$. Тогда:

- 1. при почти всех $x \in X$ сечение $C_x \in \mathcal{B}$;
- 2. $x \mapsto \nu(C_x)$ измерима (почти везде) на X;

3.
$$mC = \int_X \nu(C_x) d\mu(x)$$
.

15.1 Замечание

- 1. C измеримая $\not\Rightarrow$ что $\forall x: C_x$ измеримое.
- 2. $\forall x, \forall y, C_x, C^y$ измеримы $\not\Rightarrow$ что C измеримо (пример можно взять из Серпинскиго).

15.2 Доказательство

D- класс множеств $X \times Y$, для который принцип Кавальери верен.

1.
$$D \times \mathcal{B} \subset D$$
, $C = A \times B$, $C_x = \begin{cases} B & x \in A \\ \varnothing & x \notin A \end{cases}$.

$$x \longmapsto C_x : \nu B \cdot \chi_A(x).$$

$$\int_{X} \nu B \chi_A(x) d\mu(x) = \mu A \cdot \nu B = mC.$$

2. E_i — дизъюнктные, $E_i \in D$. Тогда $\bigsqcup E_i \in D$.

 $(E_i)_x$ — измеримые при почти всех x.

При почти всех x все сечения $(E_i)_x, i = 1, 2, \ldots$ измеримые.

$$E_x = \bigsqcup (E_i)_x$$
 — измеримые при почти всех x .

$$u E_x = \sum \nu(E_i)_x$$
, значит $x \mapsto \nu E_x$ измеримая функция.

$$\int\limits_{Y} \nu E_x d\mu = \int\limits_{Y} \sum \nu(E_i)_x d\mu = \sum \int\limits_{Y} \nu(E_i)_x d\mu = \sum mE_i = mE$$

3.
$$E_i \in D, \ldots \supset E_i \supset E_{i+1} \supset \ldots, E = \bigcap_{i=1}^{+\infty} E_i, mE_i < +\infty.$$
 Тогда $E \in D$.

$$\int\limits_{Y}
u(E_i)_x d\mu = mE_i < +\infty \Rightarrow
u(E_i)_x$$
 — почти везде конечны.

$$(E_i)_x\supset (E_{i+1})_x\supset\ldots,\, E_x=\bigcap_{i=1}^{+\infty}(E_i)_x\Rightarrow E_x$$
— измеримое при почти всех $x.$

При почти всех x (для тех x, для который $\nu(E_i)_x$ — конечные сразу все i или при i=1), поэтому можно утверждать, что $\nu E_x = \lim_{i \to +\infty} \nu(E_i)_x \Rightarrow x \mapsto \nu E_X$ — измерима.

$$\int\limits_X \nu E_x d\mu = \int\limits_X \lim (\nu E_i)_x = \lim_{i \to +\infty} \int\limits_X \nu(E_i)_x d\mu = \lim m E_i = m E \text{ (по непрерывности сверху меры } m\text{)}.$$

Перестановка пределов доказывается из теоремы Лебега, которую ещё не доказывали $|\nu(E_i)_x| \le \nu(E_1)_x$ — суммируемая функция.

Мы доказали, что если $A_{ij} \in \mathcal{A} \times \mathcal{B}$, то $\bigcap_{i} \left(\bigcup_{i} A_{ij}\right) \in D$.

$$mE = \inf \left(\sum mP_k, \ E \subset \bigcup P_k \right).$$

4.
$$mE=0\Rightarrow E\in D.$$
 $H=\bigcap_{i}\bigcup_{i}P_{ij},$ $mH=0$ $(P_{ij}\in\mathcal{A}\times\mathcal{B}),$ тогда $E\subset H$ $(H\in D).$

$$0=mH=\int\limits_X
u H_x d\mu \Rightarrow
u H_x=0$$
 при почти всех x , но $E_x\subset H_x$ \Rightarrow при почти всех x $u E_x=0$, значит и $\int
u E_x=0=mE$.

5.
$$C \in \mathcal{A} \otimes \mathcal{B}, mC < +\infty \Rightarrow C \in D.$$

Для множества C существует множество e, что me = 0 и $H = \bigcap \bigcup P_{ij}$ и $C = H \setminus e$, $C_x = H_x \setminus e_x$ и mC = mH.

 $\nu e_x = 0$ при почти всех x, значит $\nu C_x = \nu H_x - \nu e_x$ при почти всех x.

$$\int_{X} \nu C_x d\mu = \int_{X} \nu H_x - \nu e_x = \int_{X} \nu H_x - \int_{X} \nu e_x = mH = mC.$$

6.
$$C$$
 — произвольное, m -измеримое множество, $X = \bigsqcup X_k$ и $Y = \bigsqcup Y_j$, тогда $C = \bigsqcup_{i,j} \left(C \bigcap (X_i \times Y_j) \right) \in D$ по пункту 2. $(\mu X_k, \, \mu Y_j - \text{конечные})$.

15.3 Следствие

$$C\in Q\otimes B,\, P_1(C):=\{x:C_x
eq\varnothing\},\,$$
тогда если $P_1(C)$ — измеримое в $X,\,$ тогда $mC=\int\limits_{P_1(C)} \nu C_x d\mu x.$

15.4 Замечание

Из того, что C измеримое $\not\Rightarrow$ что его проекция измерима.

16 Совпадение определенного интеграла и интеграла Лебега

$$f:[a,b] o \mathbb{R}$$
, непрерывное. Тогда $\int\limits_a^b f(x)dx=\int\limits_{[a,b]}fd\lambda_1.$

16.1 Доказательство

Достаточно доказать для $f \geqslant 0$.

$$f$$
 — непрерывно $\Rightarrow C = \Pi\Gamma\left(f,[a,b]\right)$ измеримо в \mathbb{R}^2 (почти очевидно).

$$C_x = [0, f(x)]$$
 (или \varnothing) \Rightarrow измеримость $\lambda_1 C_x = f(x)$.

$$\int_{a}^{b} f(x)dx = \lambda_2 \left(\Pi\Gamma \left(f, [a, b] \right) \right) = \int_{[a, b]} f(x)d\lambda_1(x).$$

16.2 Замечание

$$f\geqslant 0$$
 измеримое, значит $\lambda_2\Pi\Gamma(f,[a,b])=\int\limits_{[a,b]}f(x)d\lambda_2(x).$

$$f:X imes Y o \overline{\mathbb{R}},\,C\in X imes Y,\,C_x,\,f_x:C_x o \mathbb{R},$$
 т.е. $y\mapsto f(x,y),$ аналогично $f^y:C^y o \overline{\mathbb{R}}.$

17 Теорема Тонелли

 $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ и $\mu, \nu - \sigma$ -конечные и полные, а также $m = \mu \times \nu$.

 $f: X \times Y \to \overline{\mathbb{R}}, \, f \geqslant 0$, измеримая. Тогда

- 1. при почти всех x функция f_x измерима почти везде на Y (аналогично при почти всех y функция f^y также измерима на X);
- 2. $x \mapsto \varphi(x) = \int\limits_Y f_x(y) d\nu(y) = \int\limits_Y f(x,y) d\nu(y)$ измерима почти везде на X (аналогично $y \mapsto \psi(y) = \int\limits_X f(x,y) d\mu(x)$ измерима почти везде на Y);

3.
$$\int_{X\times Y} f(x,y)d\mu = \int_{Y} \left(\int_{X} f(x,y)d\mu(x) \right) d\nu(y) = \int_{X} \left(\int_{Y} f(x,y)d\nu(y) \right) d\mu(x).$$

17.1 Доказательство

1. $f = \chi_c, C \subset X \times Y$, измеримая. $f_x = \chi_{C_x}(y)$. C_x — измеримое при почти всех $x \Rightarrow f_x$ — измеримая при почти всех x.

$$\varphi(x)=\int\limits_{V}\chi_{C_{x}}(y)d\nu(y)=\nu(C_{x})\ (x\mapsto \nu C_{x}$$
— измерима по принципу Кавальери).

$$\int\limits_X \varphi(x) = \int\limits_X \nu C_X = mC = \int\limits_{X\times Y} \chi_C dm.$$

$$2. f = \sum_{\text{KOH.}} a_k \chi_{C_k}, f \geqslant 0.$$

$$f_x = \sum a_k \chi_{(C_k)_x}(y).$$

 $x \mapsto \int f_x(y) d\nu(y) = \sum a_k \nu(C_k)_x$ — измеримая (отдельные слагаемые — измеримые, значит и вся сумма измеримая).

$$\int\limits_X \left(\int\limits_Y f_x(y) d\nu \right) d\mu = \sum a_k \int\limits_X \nu(C_k)_x d\mu = \sum a_k mC_k = \int\limits_{X \times Y} f dm$$

3. $f \geqslant 0, g_n$ — ступенчатые, что ... $\leqslant g_n \leqslant g_{n+1} \leqslant ..., \lim_{n \to +\infty} g_n = f$.

 $f_x = \lim_{n \to +\infty} (g_n)_x$ — измерима как предел измеримых функций.

$$\varphi(x)=\int\limits_Y f_x(y)d\nu(y)=\lim_{n\to+\infty}\int\limits_Y g_nd\nu=\lim_{n\to+\infty}\varphi_n(x),$$
 значит $\varphi(x)$ измерима из-за измеримости φ_n (Теорема Леви).

$$g_n \leqslant g_{n+1} \leqslant \ldots \Rightarrow \varphi_n(x) \leqslant \varphi_{n+1}(x) \leqslant \ldots$$

$$\int\limits_X \varphi(x) = \lim_{n \to +\infty} \int\limits_X \varphi_n(x) = \lim_{n \to +\infty} \int\limits_{X \times Y} g_n dm = \int\limits_{X \times Y} f dm \; (\text{по теореме Леви})$$

Везде должна быть приговорка "при почти всех x".

18 Теорема Фубини

 $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ и $\mu, \nu - \sigma$ -конечные и полные.

 $f: X \times Y \to \overline{\mathbb{R}}$, суммируемая. Тогда

- 1. при почти всех x функция f_x суммируемая почти везде на Y (аналогично при почти всех y функция f^y также измерима на X).
- 2. $x\mapsto \varphi(x)=\int\limits_Y f_x(y)d\nu(y)=\int\limits_Y f(x,y)d\nu(y)$ суммируемая почти везде на X (аналогично $y\mapsto \psi(y)=\int\limits_X f(x,y)d\mu(x)$ суммируемая почти везде на Y).

3.
$$\int\limits_{X\times Y} f(x,y)d\mu = \int\limits_{Y} \left(\int\limits_{X} f(x,y)d\mu(x)\right)d\nu(y) = \int\limits_{X} \left(\int\limits_{Y} f(x,y)d\nu(y)\right)d\mu(x)$$

без доказательства

18.0.1 Следствие

$$\int_{C} f = \int_{X \times Y} f \chi_{C} = \int_{X} \left(\int_{Y} f \cdot \chi_{C} \right) d\mu = \int_{P_{1}(C)} \left(\int_{C_{x}} f(x, y) d\nu(y) \right) d\mu(x).$$

 $P_1(C)$ — проекция, измеримая, $\{x: C_x \neq \varnothing\}$.

19 Какая-то нужная штука для лекции 02.03.2020, потом удалю

 $B(0,1) \subset \mathbb{R}^m$, Хотим найти $\lambda_m B(0,1) = \alpha_m$.

$$\lambda_m B(0, R) = \alpha_m \cdot R^M.$$

$$x_1^2 + x_2^2 + \ldots + x_m^2 \leqslant 1.$$

интеграл обычного кружочка: $\int \chi_B d\lambda_2 = \int\limits_{-1}^1 \int\limits_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 1 dy dy dx = \int\limits_{-1}^1 2\sqrt{1-x^2} dx = \pi$

$$\alpha_m = \int_{\mathbb{R}^m} \chi_B = \int_{-1}^1 \left(\int_{B(0,\sqrt{1-x_1^2}) \subset \mathbb{R}^{m-1}} 1 d\nu \right) dx_1 = \int_{-1}^1 (1-x_1^2)^{\frac{m-1}{2}} \alpha_{m-1} dx_1.$$

$$B(x,y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} dt.$$

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}, \ \Gamma(n) = (n-1)!, \ \Gamma(x+1) = \Gamma(x) \cdot x.$$

Тогда объём шара в \mathbb{R}^m равен $\alpha_{m-1}2\int\limits_0^1(1-t)^{\frac{m-1}{2}}t^{-\frac{1}{2}}dt=B(\frac{1}{2},\frac{m+1}{2})\alpha_{m-1}.$ Тогда объём шара можно

переписать как $\frac{\Gamma(\frac{1}{2})\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m}{2}+1)\alpha_{m-1}}.$

Часть IV

Замена переменных в интеграле

 (X, \mathcal{A}, μ) и $(Y, \mathcal{B},)$ (пространство и алгебру изобрели, а меру нет)

 $\Phi: X \to Y, \, \forall B \in \mathcal{B},$ тогда $\Phi^{-1}(B)$ — измеримое $(\in \mathcal{A})$

Утверждение: $\Phi^{-1}(\mathcal{B}) - \sigma$ -алгебра (упражнение).

Определение: $\nu: \mathcal{B} \to \overline{\mathbb{R}}, \ E \in \mathcal{B}, \ \nu E := \mu(\Phi^{-1}(E))$ — это мера на \mathcal{B} — образ μ при отображении Φ .

И кстати:
$$\nu E = \int\limits_{\Phi^{-1}(E)} 1 d\mu$$
.

$$\nu(\bigsqcup B_i) = \mu\left(\Phi^{-1}(\bigsqcup B_i)\right) = \mu\left(\bigsqcup \Phi^{-1}(B_i)\right) = \sum \mu\Phi^{-1}(B_i)\sum \nu B_i.$$

f — измерима относительна \mathcal{B} . Тогда $f\circ\Phi$ — измерима относительна \mathcal{A} . $X\left(f\left(\Phi(x)\right)< a\right)=\Phi^{-1}\left(Y(f< a)\right)$

Третье замечание: $\omega: X \to \overline{\mathbb{R}}, \, \omega \geqslant 0$, измеримая. $\nu(B) := \int\limits_{\Phi^{-1}(B)} \omega d\mu$ — мера, которая назначает взвешенный образ меры ω — вес.

19.1 Интегрирование по взвешенному образу меры

 $\Phi:X o Y$ — измеримое отображение, $\omega:X o\overline{\mathbb{R}},\,\omega\geqslant 0$ — измеримая на $X.~\omega$ — взвешенный образ меры $\nu.$ Тогда

 $\forall f\geqslant 0$ — измеримой на Y. $f\circ\Phi$ — измерима на X и выполняется следующее свойство:

$$\int_{V} f(y)d\nu(y) = \int_{x} f(\Phi(x))\omega(x)d\mu(x).$$

То же верно для случая f — суммируемая.

19.1.1 Доказательство

1.
$$f = \chi_B, B \in \mathcal{B}$$
. Тогда $f \circ \Phi(x) = \begin{cases} 1 & \Phi(X) \in B \\ 0 & \Phi(x) \notin B \end{cases} = \chi_{\Phi^{-1}(B)}$.

Доказывать нечего (и весёлый смайлик) $\nu B = \int\limits_{\Phi(B)} \omega d\mu;$

- $2. \ f$ ступенчатая, для каждой ступеньки правда, и по линейности интеграла получаем результат;
- 3. $f \geqslant 0$ измеримая. Теорема об аппроксимизации измеримых функций ступенчатыми плюс предельный переход по теореме Леви;

4. f — измеримая, значит |f| — всё верно.

19.1.2 Следствие

$$f$$
 — суммируема на $Y,\,B\in\mathcal{B},\,\int\limits_{B}fd\nu(y)=\int\limits_{\Phi^{-1}}(B)f\circ\Phi wd\mu.$

Частный случай: $X=Y,\, \mathcal{A}=\mathcal{B},\, \Phi=\mathrm{id},\, \omega\geqslant 0$ — измерима.

$$\nu B = \int\limits_{B} \omega(x) d\mu(x),$$
 говорят, что ω — плотность меры ν относительно меры $\mu.$

$$\int\limits_X f(x)d\nu(x) = \int\limits_X f(x)\omega(x)d\mu(x).$$

19.2 Критерий плотности

 $(X,\mathcal{A},\mu),\, \nu$ — ещё одна мера на $\mathcal{A},\, \omega\geqslant 0$ — измеримая. Тогда

$$\omega$$
 — плотность ν относительна $\mu \Leftrightarrow \forall A \in \mathcal{A}$ верное $\inf_A \omega \cdot \mu A \leqslant \nu A \leqslant \sup_A \omega \cdot \mu A \; (0 \cdot \infty = 0).$

19.2.1 Доказательство

- \Rightarrow Очевидно (интеграл μA обладает этими свойствами из-за плотностей);
- \Leftarrow Считаем, что $\omega > 0$. Для $\omega = 0$ получаем: $e := X(\omega = 0), \ \nu e = 0 = \int\limits_e \omega d\mu$, тогда $\nu(A) = \int\limits_A \omega d\mu$, $x \setminus e \ \omega > 0$. Теперь пусть $\omega > 0$, то $q \in (0,1)$. $A_j := A(q^j \leqslant \omega \leqslant q^{j-1}), \ j \in \mathbb{Z}, \ A = \bigsqcup_{j \in \mathbb{Z}} A_j$.

$$q^j \mu A_j \leqslant \nu A_j \leqslant q^{j-1} \mu A_j.$$

$$q^{j}\mu A_{j} \leqslant \int_{A_{j}} \omega d\mu \leqslant q^{j-1}\mu A_{j}.$$

$$q\int\limits_A\omega d\mu=q\sum\int\limits_{A_j}\leqslant\sum q^j\mu A_j\leqslant\nu A\leqslant\frac{1}{q}\sum q^j\mu A_j\leqslant\frac{1}{q}\int\limits_A\omega.$$

Устремим $q \to 1$ и получим доказательство равенства.

19.3 Лемма

$$f,\,g$$
— суммируемые на $X,\,\forall A$ — измеримых $\int\limits_A f=\int\limits_a g.$ Тогда $f=g$ почти везде.

19.3.1 Доказательство

$$h = f - g, \forall A$$
 — измеримых, $\int_A h = 0.$

$$A_{+} = X(h \geqslant 0), A_{-} = X(h < 0), A_{+} \bigcap A_{-} = \emptyset.$$

$$\int\limits_{A_+} |h| = \int\limits_{A_+} h = 0.$$

$$\int\limits_A |h| = -\int\limits_A h = 0.$$

$$X = A_+ \bigsqcup A_-, \int_Y |h| = 0.$$

L и A, тогда $\lambda(L(A)) = |\det L| \lambda A$.

19.4 Лемма об образе малых кубических ячеек

 $\Phi:O\subset\mathbb{R}^m o\mathbb{R}^m,\ a\in O.$ Φ — дифференцируема G в окрестности точки a, $\det\Phi'(a)\neq 0.$ Пусть $c>|\det\Phi'(a)|.$ Тогда

существует такое $\delta > 0$, что для любого куба $Q \subset B(a, \delta)$, $a \in Q$ верно, что $c\lambda\Phi(Q)$.

19.4.1 Доказательство

 $L := \Phi'(a)$ — обратимое линейное отображение линейное отображение. $\Phi(x) = \Phi(a) + L(x-a) + o(x-a)$.

 $a + L^{-1}(\Phi(x) - \Phi(a)) = x + o(x - a)$ (увеличили в константу, поэтому о маленькое остаётся о маленьким).

 $\forall \varepsilon > 0$ можно записать шар $B_{\varepsilon}(a)$, что при $x \in B_{\varepsilon}(a) |\psi(x) - x| < \frac{\varepsilon}{\sqrt{m}} |x - a|$.

 $Q\subset B_{arepsilon},\ a\in Q$ — куб со стороной h, при $x\in Q:|\psi(x)-x|<arepsilon h.$

 $x, y \in Q$, тогда $|\psi(x)_i - \psi(y)_i| = |\psi(x)_i - x_i| + |\psi(y)_i - y_i| + |x_i - y_i| \le |\psi(x) - x| + |\psi(y) - y| + h < (1 + 2\varepsilon)h$.

 $\psi(Q)$ — содержится в кубе со стороной $(1+2\varepsilon)h$, тогда $\lambda\psi(Q)\leqslant (1+2\varepsilon)^m\lambda Q$.

 $\lambda \Phi(Q) \leqslant (1 + 2\varepsilon)^m |\det L| \lambda Q.$

 $< C\lambda Q.$

Берём $\varepsilon: (1+2\varepsilon)|\det L| < C$, где δ — радиус $B_{\varepsilon}(a)$.

$$\lambda A = \inf_{G \text{ - otkphitoe}, A \subset G} \lambda G$$

19.5 Лемма 2

 $f: \underset{\text{откр.}}{O} \subset \mathbb{R}^m \to \mathbb{R}, \, O$ — непрерывное. A — измеримое, $A \subset Q \subset \overline{Q} \subset O$.

Тогда
$$\int\limits_{A\subset G\text{открытое}} \left(\lambda(G)\sup_G f\right) = \lambda A\sup_A f.$$

19.6 Теорема 2

 $\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^m$ — диффеоморфизм. $A\in\mathcal{M}^m,\,A\subset O.$ Тогда

$$\lambda \Phi(A) = \int_{A} |\det \Phi'(a)| d\lambda.$$

19.6.1 Доказательство

 $u A := \lambda \Phi(A)$. Верно ли, что $J_{\Phi}(x) := |\det \Phi'(x)|$ — это плотность ν по отношению к μ .

Достаточно проверить, что $\forall A$ верно: $\inf_A J_{\Phi} \cdot \lambda A \leqslant \nu A \leqslant \sup_A J_{\Phi} \cdot \lambda A$.

Достаточно проверить правое неравенство. Левое — правое для Φ^{-1} и $\widetilde{A} = \Phi(A)$.

$$\lambda \Phi^{-1}\left(\widetilde{A}\right) \leqslant \sum J_{\Phi^{-1}} \cdot \lambda \widetilde{A}.$$

 $\lambda A \leqslant \sup \left| \det(\Phi^{-1})' \right| \lambda \Phi(A).$

$$\sup \frac{1}{|\!\det \Phi'|}$$

$$\frac{1}{\inf|\det\Phi'|}$$

- 1. A кубическая ячейка, $\overline{A} \subset O$. От противного: пусть оказалось, что $\lambda Q \sup J_{\Phi} < \nu Q$. Возьмём $c > \sup_Q J_{\Phi}$, так, что $\lambda Q \cdot c < \nu Q$. Значит существует такая часть Q_i , что $\lambda Q_i \cdot c < \nu Q_i$. $\lambda Q_n \cdot c < nuQ_n$, $a = \bigcap_Q \overline{Q_n}$, накроем точку a этим кубиков. $c > |\det \Phi'(a)|$, тогда $\nu Q_n = \lambda \Phi(Q_n)$. Получили, что $\lambda \Phi(Q_n) > c\lambda Q_n$, а по лемме нужно наоборот.
- 2. Оценка $\nu A \leqslant \sup J_{\Phi} \lambda A$, верна для случая, когда A открытое множество.

$$\nu Q \leqslant \sup_{A} J_{\Phi} \lambda Q.$$

Суммируя по
$$Q$$
: $\nu A \leqslant \sup_{A} J_{\Phi} \lambda A$.

Что было в лемме (и что мы потеряли):

$$\inf_{A\subset G}\left(\lambda G\cdot \sup_G f\right)=\lambda A\cdot \sup_A f.$$

$$G$$
 — открытое, тогда

$$\nu G \leqslant \sup_{G} J_{\Phi} \cdot \lambda G.$$

$$\nu A\leqslant \nu G\leqslant \lambda\lambda A\sup_A f.$$