Joel dos Passos Moraes Júnior Lucas Schüler Costa Otávio Muck Schein Pedro Henrique Marques

Plano de Projeto de Software

1) Introdução:

Viagens, em geral, são umas das maiores alegrias da vida, e esse é um consenso bem geral na população. Porém, há sempre a parte complexa de planejamento da viagem. Isso inclui montar um roteiro, determinar meios de locomoção, calcular e estimar custos, escolher atrações turísticas...

Isso tudo se torna mais complexo para viagens internacionais, onde não falamos a língua nativa, a própria cultura do país implica algumas normas culturais que podem ser desconhecidas para nós brasileiros. Em cima disso tudo, há a questão da segurança com relação à confiança das informações recebidas.

O software a ser desenvolvido, melhora a experiência de seus usuários, que tem uma sensação de segurança melhorada, lendo uma informação e considerando-a verdadeira. Em cima dessa oferta de informações confiáveis, o software trabalhará para auxiliar no processo de decisão de montagem de roteiro da viagem. (Lucas, Pedro)

2) Estimativas do projeto

• Requisitos funcionais:

- o Permitir login identificando cada usuário de maneira independente;
 - Cadastrar usuários.
 - Permitir login com redes sociais
- Criar o cadastro de uma viagem
 - Cadastrar o local de destino, data de início\data de fim;
- Sugere atrações turísticas, baseadas em uma média de custo desejada;
 - Faz uma busca na base de dados de atrações turísticas disponíveis, com base nos parâmetros da viagem
 - Monta uma lista com base nos parâmetros de período da viagem e custo médio desejado.
- Permite que o usuário edite o roteiro sugerido, mudando datas e removendo alterações não desejadas.
- Fornece informações sobre as atrações selecionadas
 - Horário de funcionamento

- Custo
- Breve descrição sobre a atração
- Mantém o controle, do que tem sido gasto até então;
 - O usuário entra no detalhe de cada atividade, após essa ter sido realizada, e informa o custo exato envolvido.
- Emite alertas de voos agendados e reserva de hotéis/estadia;
 - Lembrete de atividades agendadas, que são cadastradas pelo usuário

(Joel, Lucas, Pedro, Otávio)

• Requisitos não funcionais

- Permitir o login através de diversas redes sociais;
- Montar uma base de dados de atrações turísticas, restaurantes, meios de transporte. Que inclua custo estimado, horários disponíveis e descrições.
- Realizar acesso aos bancos de dados;
- Possuir uma interface intuitiva, que resuma os dados de maneira clara;
- Ser um aplicativo mobile e de navegador;

(Joel, Lucas, Pedro, Otávio)

2.1) Por se tratar de um desenvolvimento de aplicativo mobile será utilizado o React-native como ferramenta de desenvolvimento. Como o projeto não faz parte de uma empresa com histórico de softwares entregues, não há dados históricos para ajudar a estipular valores por hora. Com isso, os valores escolhidos abaixo, são estimados na experiência individual dos membros do grupo.

Definimos que a média de produtividade da equipe é 1000 LOC/pessoas-mês ou 100 PF/pessoas-mês e o custo médio por linha 10 R\$/LOC ou 40 R\$/PF.

2.2) Foram definidas duas técnicas principais, para fazer a estimativa de custos (valor e tempo) do projeto. Sendo a primeira, a técnica de Pontos por função, definindo complexidade e tipo das atividades. A segunda técnica é a de Linhas de código por função. Assim conseguiremos ter uma estimativa razoável dos custos desse projeto.

Função	Otimista	Mais provável	Pessimista	Esperado
Cadastrar usuários.	300	350	400	350
Permitir login com redes sociais	600	700	800	700
Criar o cadastro de uma viagem	300	350	400	350
Busca de atrações turísticas	1000	1800	2500	1750
Criar o roteiro de atrações turísticas	1000	1800	2500	1750
Edição do roteiro cadastrado	1000	1800	2500	1750
Exibição de detalhes das atividades	1000	1800	2500	1750
Cadastro de gastos nas atividades	300	350	400	350
Cadastro de agenda de datas de ativio	600	700	800	700
Modelagem do banco de dados	800	1200	1500	1150
LOC total	6900	10850	14300	10600

2.2.2) Levando em consideração dados históricos entende-se que a produtividade média da equipe é 1000 LOC/pessoas-mês e o custo médio por linha 10 R\$/LOC.
Na tabela obtemos um LOC estimado de 10600 por tanto o esforço é 10600/1000 = 10,6 meses e um custo total de 10600 * 10 = R\$106.000,00. (Lucas, Otávio)

2.2.3) Contagem de pontos por função

- A. Análise de Pontos de Função (APF) é uma técnica para a medição de projetos de desenvolvimento de software, visando a estabelecer uma medida de tamanho, em Pontos de Função (PF), considerando a funcionalidade implementada, sob o ponto de vista do usuário.
 - a. O valor esperado é calculado como sendo: FP = contagem total x
 [0,65 + 0,01 x ∑ (F i)]

B.

Função	Entradas	Saídas	Consultas
Cadastrar o usuário	3	0	0
Autenticação da rede social	2	0	1
Cadastrar uma nova viagem	3	0	0
Visualizar as atividades sugeridas	0	10	8
Edição de atividades que foram sugeridas	10	0	10
Aprovação do roteiro criado	10	10	8
Consultar detalhes sobre as atividades	0	10	8
Cadastro de gastos obtidos nas atividades	1	0	1
Criar agenda de atividades	1	0	2
Consulta da agenda	0	10	2
Total	30	40	40

C.

O sistema requer salvamento (backup) e recuperação confiável (recovery)?	4
São necessárias comunicações de dados especializadas para transferir informações para a aplicação ou da aplicação?	4
Há funções de processamento distribuído?	2
O desempenho é crítico?	1
O sistema rodará em um ambiente operacional existente e intensamente utilizado?	4
O sistema requer a entrada de dados on-line?	3
A entrada on-line de dados requer que a transação de entrada seja composta em múltiplas telas ou operações?	3
Os ILFs são atualizados on-line?	4
As entradas, saídas, arquivos ou consultas são complexas?	4
O processamento interno é complexo?	4
O código é projetado para ser reutilizável?	3
A conversão e instalação estão incluídas no projeto?	1
O sistema é projetado para múltiplas instalações em diferentes organizações?	1
aplicação é projetada para facilitar a troca e o uso pelo usuário?	1
Total	39

Função	Contagem	Simples	Médio	Complexo	
Entradas	30	3	4	6	120
Saídas	40	4	.5	7	200
Consultas	40	3	4	6	160
					480

D.

E.
$$PF = 480 \times (0.65 + 0.01 \times 39)$$

PF = 481,04

Utilizando-se Dados Históricos:

- Produtividade Média = 12h/PF
- Custo Médio = 20 \$/h

ESFORÇO = 12hs/PF x 481,04 = 5.772,48 h

CUSTO = 5.772,48 x 20 = \$115.449,6 (Lucas)

2.3) Estimativas finais do projeto

A partir dos dados obtidos é possível gerar uma média dos custos e dos prazos de desenvolvimento, o custo foi obtido com a soma do custo LOC com o custo PF:

Custo = 106.000,00 LOC + 115.449,6 PF / 2 = R\$ 110.724,80

Prazo = 25 meses PF + 10 meses LOC = 35 / 2 = 17,5 meses (Lucas, Otávio)

2.4) Recursos de projeto

Pessoas:

Entrevistador: Duas pessoas

Analista: Duas pessoas Projetista: Uma pessoa

Programador: Duas pessoas

Testador: Uma pessoa

Documentador: Uma pessoa

Qualidade: Uma pessoa

Hardware:

8 Computadores com configurações mínimas para executar o projeto

1 iPhone

1 Windows Phone

1 Smartphone Android

2 MacBook

Software:

Visual Studio

Xamarin

XCode

MySQL ou SQLServer

Essa definição de recursos pode ser alterada caso haja a necessidade de integrar um novo indivíduo ao projeto. Além de também existir a possibilidade da aquisição de um software ou hardware além dos citados anteriormente (Joel, Pedro).

3) Cronograma do Projeto

3.1) Conjunto de tarefas do projeto

O desenvolvimento do projeto seguirá o modelo de desenvolvimento iterativo, onde cada incremento vai adicionando ao sistema novas capacidades funcionais, até a obtenção do sistema final. (Lucas)

3.2) Decomposição funcional

Segue a decomposição de cada etapa do projeto:

- Product backlog- Lista com todas as funcionalidades definidas para o produto.
- Concepção- Analisar as funcionalidades, montar os protótipos e diagramas.

- Criação- Definição da linguagem, ferramentas, biblioteca de desenvolvimento e criar o projeto no github.
- Desenvolvimento codificar de maneira iterativa, realizando testes e versionando o projeto.
- Entrega- Revisar código, documentar e liberar a versão final para o cliente. (Joel, Otávio)

3.3) Rede de tarefas

O gerenciamento das tarefas pode ser acompanhado acessando o link:

https://trello.com/b/octwyHb6/aula-engenharia-de-software

3.4) Gráfico de Gantt

	Assigned	Progress
eng-software		0%
▼ Projeto de viagens		0%
cadastro de usuário		0%
autenticação por rede social		
cadastrar nova viagem		
busca de atrações turísticas		0%
criar roteiro		
editar roteiro		0%
exibir detalhes das atividades		0%
cadastro de gastos em atividades		0%
cadastro da agenda de atividades		
modelagem do banco de dados		

(Otávio)

4) Gestão de Risco

4.1) Possíveis riscos:

Imprevistos com os recursos utilizados, ou seja, a experiência da equipe em relação a tecnologia desenvolvida. Levando em conta que por mais que os integrantes conheçam React-Native, não é uma tecnologia totalmente dominada, o que pode levar um tempo a mais para se adaptar e desenvolver o projeto. Entende-se que é um risco médio pois há a possibilidade de disponibilizar treinamentos em relação a ferramenta e seu uso. Entende-se que seja um risco de custo, pois pode afetar o andamento do projeto, porém sem um grau de impacto alto, mas de nível 2 em uma escala de 1-5.

Por mais que o projeto seja baseado no processo incremental com técnicas de SCRUM, a comunicação com o usuário pode vir a ser um problema caso haja alguma falha de comunicação ou entendimento pelas partes. É um risco baixo pois como há técnicas de SCRUM, haverá ciclos de desenvolvimento e testagem contínua, impossibilitando que seja construído um sistema completo que não entregue as funcionalidades mencionadas. É um risco de custo, com baixa probabilidade e grau de impacto 3.

Não atingir os requisitos é um risco baixo, pois há técnicas de SCRUM e levantamento de dados para mitigar esse risco. Entende-se que com isso as funcionalidades serão implementadas e testadas atingindo o objetivo definido. Quantificando esse impacto de 1-5, seria um impacto 4 de moderado para alto, porém a probabilidade desse impacto é baixa.

Monitoramento e controle do processo de desenvolvimento de forma ineficaz é um risco a se levar em conta pois possui um impacto moderado/alto de grau 4, porém com uma probabilidade baixa de acontecer levando em conta todos os processos de SCRUM utilizados para manter esse controle e gerenciar os ciclos de desenvolvimento e entrega. (Joel)

4.2) Tabela de Riscos:

Risco	Probabilidade	Impacto	Mitigação
-------	---------------	---------	-----------

	T		
Imprevisto com	60%	2	Levando em
recursos			conta que há
utilizados			treinamentos
			disponíveis e o
			time já possui
			experiência com
			desenvolvimento
Comunicação	30%	3	Técnicas de
com usuário.			SCRUM para
			entrega,
			interação e
			testagem
			contínua em
			ciclos.
			_,
Atingir requisitos	15%	4	Técnicas de
definidos			SCRUM e
			levantamento de
			dados/requisitos
			para mitigar esse
			risco feitos de
			forma eficaz,
			tendo um real
			entendimento do
			que o sistema
			deve fazer. Além
			de sessões de
			brainstorming e
			técnicas de
			Design Thinking.
Monitoramento e	30%	4	Processos de
controle do			SCRUM
processo de			utilizados para
desenvolvimento			manter esse

controle e
gerenciar os
ciclos de
desenvolvimento
e entrega.
Permitindo uma
interação mais
regular entre
desenvolvedores
, gerente de
projeto, partes
interessadas e
usuários.

(Joel, Lucas)

4.3) Nível de impacto considerado para escolha adequada dos riscos a serem efetivamente geridos:

Tendo em vista que os riscos mencionados estão focados nas tecnologias utilizadas e nos processos de gerenciamento de desenvolvimento, entende-se que com as ações de mitigação mencionadas, eles podem ser evitados de forma eficaz, sem que haja falhas de comunicação, entregas de funcionalidades incorretas e custos de tempo/dinheiros elevados. Além disso, com a técnicas de monitoramento de entrega, o risco de atrasar o desenvolvimento completo das soluções é baixo. Portanto, são todos riscos efetivamente possíveis de se gerir. (Joel)

5) Organização da equipe

O projeto vai ser baseado no processo incremental. Porém, algumas técnicas modernas do SCRUM serão adotadas em parceria. Portanto, na rotina da equipe, ocorrerão dailys, que servem para manter o time atualizado com o contexto atual do projeto.

5.1) O paradigma a ser utilizado será o aberto, pois a equipe irá trabalhar separando cada tarefa entre os membros, mas contando com a troca de ideias e comunicação para tomar qualquer decisão. A equipe terá uma mínima hierarquia para ter uma figura que lida com gestão de projeto.

- Gerente de projeto para tomar decisões maiores para o grupo, gerenciar os recursos humanos, materiais e financeiros, além de assegurar que o escopo do projeto fique no custo e prazo estimado.
- Analista Levante os requisitos para deixar o produto final completo, ele diz "o que" deve ser feito no projeto.
- **UI** Coletar os requisitos do software e realizar um protótipo para que seja autorizado e desenvolvido pelos programadores.
- **Programadores** desenvolver o software seguindo o protótipo e as regras declaradas para o produto, eles dizem "como" deve ser feito o projeto.
- Usuário final A pessoa na qual irá usufruir do produto final. (Pedro, Otávio)

Cadastrar todas as atividades na ferramenta de gestão de projeto adotada pelo grupo, sendo que a maioria adotou o Trello:

https://trello.com/b/octwyHb6/aula-engenharia-de-software

(Joel, Lucas, Otávio, Pedro)