WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 277/34, 417/12, 417/06, 417/10, 417/14

(11) International Publication Number:

WO 98/37073

A1

(43) International Publication Date:

27 August 1998 (27.08.98)

(21) International Application Number:

PCT/EP98/00818

(22) International Filing Date:

13 February 1998 (13.02.98)

(30) Priority Data:

9703310.4 18 February 1997 (18.02.97) GB 9703338.5 18 February 1997 (18.02.97) GB 9703334.4 18 February 1997 (18.02.97) GB

(71) Applicant (for all designated States except US): SMITHKLINE BEECHAM PLC [GB/GB]; New Horizons Court, Brentford, Middlesex TW8 9EP (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GILES, Robert, Gordon [GB/GB]; SmithKline Beecham Pharmaceuticals, Old Powder Mills, Near Leigh, Tonbridge, Kent TN11 9AN (GB). LEWIS, Norman, John [GB/GB]; SmithKline Beecham Pharmaceuticals, Old Powder Mills, Near Leigh, Tonbridge, Kent TN11 9AN (GB). MOORE, Stephen [GB/GB]; SmithKline Beecham Pharmaceuticals, Old Powder Mills, Near Leigh, Tonbridge, Kent TN11 9AN (GB). POOL, Colin, Ripley [GB/GB]; SmithKline Beecham Pharmaceuticals, Old Powder Mills, Near Leigh, Tonbridge, Kent TN11 9AN (GB). QUICK, John, Kirby [GB/GB]; SmithKline Beecham Pharmaceuticals, Old Powder Mills, Near Leigh,

Tonbridge, Kent TN11 9AN (GB). URQUHART, Michael [GB/GB]; SmithKline Beecham Pharmaceuticals, Old Powder Mills, Near Leigh, Tonbridge, Kent TN11 9AN (GB).

(74) Agent: RUTTER, Keith; SmithKline Beecham plc, Corporate Intellectual Property, Two New Horizons Court, Brentford, Middlesex TW8 9EP (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROCESS FOR THE PREPARATION OF SUBSTITUTED THIAZOLIDINEDIONE

(57) Abstract

A process for preparing a compound of formula (I, I) or a tautomeric form thereof or a pharmaceutically acceptable salt thereof or a pharmaceutically acceptable solvate thereof, wherein: J represents O or S; T represents a substituted or unsubstituted aryl group and T1 is O or S; which process comprises reducing a compound of formula (II, II) or a tautomeric form thereof or a salt thereof or a solvate thereof, wherein T and T1 are as defined in relation to formula (I), with a complex hydride reducing agent or a source of a complex hydride reducing agent; and thereafter, as required, preparing a pharmaceutically acceptable salt or a pharmaceutically acceptable solvate of the compound of formula (I) or a tautomeric form thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel .	MR	Mauritania	UG	Uganda
BY	Belarus .	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
· CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
İ					•		
						_	

5

10

20

25

30

PROCESS FOR THE PREPARATION OF SUBSTITUTED THIAZOLIDINEDIONE

This invention relates to a novel process and in particular to a process for preparing certain substituted thiazolidinedione derivatives and to certain intermediates to the substituted thiazolidinedione derivatives

European Patent Application, Publication Number 0306228 discloses certain thiazolidinedione derivatives of formula (A):

$$A \xrightarrow{R} (CH_2)_n \xrightarrow{P} CH \xrightarrow{R} R$$

$$S \xrightarrow{NH} NH$$

$$(A)$$

or a tautomeric form thereof or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, wherein:

Aa represents a substituted or unsubstituted aromatic heterocyclyl group;
Ra represents a hydrogen atom, an alkyl group, an acyl group, an aralkyl group,
wherein the aryl moiety may be substituted or unsubstituted, or a substituted or
unsubstituted aryl group;

R^b and R^c each represent hydrogen or R^b and R^c together represent a bond; A^b represents a benzene ring having in total up to five substituents; and n' represents an integer in the range of from 2 to 6.

EP 0306228 also discloses a process for reducing the compounds of formula (A) wherein R^b and R^c together represent a bond (the 'benzylidene thiazolidine-2, 4-diones') to the corresponding compounds of formula (A) wherein R^b and R^c each represent hydrogen (the 'benzylthiazolidine-2, 4-diones'). The particular reduction methods disclosed in EP 0306228 are catalytic hydrogenation methods and dissolving metal reduction methods.

Selective reduction of the exocyclic double bond in the benzylidene thiazolidine-2, 4-dione moiety by complex hydride reducing agents is not considered to provide the basis for a viable commercial process due to a general expectation that the required selectivity would not be achieved, with particular reference to the aluminium hydrides, and/or that the reaction would give poor yields. We have now surprisingly discovered that a benzylidene thiazolidine-2,4-dione group is selectively

reduced to the corresponding benzyl thiazolidine-2,4-dione, by use of a complex hydride reducing agent in a high yielding and commercially viable process.

Accordingly, the present invention provides a process for preparing a compound of formula (I):

5

or a tautomeric form thereof or a pharmaceutically acceptable salt thereof or a pharmaceutically acceptable solvate thereof, wherein:

J represents O or S;

T represents a substituted or unsubstituted aryl group and T¹ is O or S; which process comprises, reducing a compound of formula (II):

15

20

25

10

or a tautomeric form thereof or a salt thereof or a solvate thereof, wherein T and T¹ are as defined in relation to formula (I), with a complex hydride reducing agent or a source of a complex hydride reducing agent; and thereafter, as required, preparing a pharmaceutically acceptable salt or a pharmaceutically acceptable solvate of the compound of formula (I) or a tautomeric form thereof.

Suitable complex hydride reducing agents include borohydride reducing agents and aluminium hydride reducing agents.

Suitable borohydride reducing agents include diborane and metal borohydrides.

A suitable metal borohydride is an alkali metal borohydride, such as a lithium, sodium or potassium borohydride, especially lithium or potassium.

Borohydrides include unsubstituted and substituted borohydrides.

Suitable substituted borohydrides include borohydrides with up to three substituents on boron selected from such as alkyl and phenyl groups.

Suitable alkyl groups are C_{1-6} alkyl groups, such as ethyl and, especially, butyl groups.

Particular butyl groups are sec and tert butyl groups.

5

10

15

20

25

30

35

Particular borohydride reducing agents are those which comprise the trihydroborane, triethylborane, tributylborane or triphenylborane moiety.

Favoured borohydride reducing agents include lithium tri-sec-butyl borohydride, potassium tri-sec-butyl borohydride/lithium chloride, sodium tri-sec-butyl borohydride, potassium triphenylborohydride, lithium triethylborohydride, lithium borohydride and sodium borohydride.

One preferred borohydride reducing agent is lithium borohydride.

One preferred borohydride reducing agent is lithium tri-sec-butyl borohydride.

When an unsubstituted metal borohydride is used as the reducing agent, it is preferred if the reduction is carried out in the presence of a base such as pyridine a substituted pyridine, quinoline, a substituted quinoline, a secondary or tertiary amine, such as piperidine or triethylamine, or a phosphine such as triphenylphosphine.

Conveniently, the said base is used as a solvent or co-solvent for the reaction. A preferred base is pyridine.

A suitable aluminium hydride reducing agent is lithium aluminium hydride.

The reaction conditions for the reduction reaction are the appropriate conditions dictated by the nature of the complex hydride reducing agent chosen:

In one aspect, when the reagent is a borohydride reducing reagent suitable solvents include alkanols, such as methanol and ethanol, tetrahydrofuran and pyridine or mixtures thereof.

When the reducing reagent is an alkali metal borohydride a preferred solvent is pyridine/tetrahydrofuran.

When the reducing reagent is an alkali metal trialkyl or triphenyl borohydride, a preferred solvent is tetrahydrofuran.

The borohydride reduction is carried out at a temperature which provides a suitable rate of formation of the required product, usually at ambient or an elevated temperature, suitably at an elevated temperature, preferably above 50°C, for example 65°C and conveniently at the reflux temperature of the required solvent. Usually the reactants are mixed at ambient temperature and the reaction mixture is heated at the reflux temperature of the solvent.

In a further aspect, when the reagent is an aluminium hydride reducing reagent, suitable solvents include aprotic solvents such as tetrahydrofuran.

The aluminium hydride reduction is carried out at a temperature which provides a suitable rate of formation of the required product, usually at low to ambient temperature, for example a temperature in the range of from -10 to 10°C, suitably in the range of from -5 to 0°C.

It is considered that the reduction of the compounds of formula (II), wherein T^1 is S, especially when the reducing agent is a borohydride reducing agent, proceeds via an intermediate of formula (III):

10 (III)

5

15

20

25

30

or a tautomeric form thereof, or salt thereof, or a solvate thereof, wherein J and T are as defined in relation to formula (I).

The intermediate of formula (III) is obtained in better yield when the reduction is carried out at low temperature. Thus, in a further aspect, the present invention provides a process for preparing a compound of the above defined formula (III), which process comprises, reducing a compound of the above defined formula (II) with a metal hydride reducing agent, preferably a borohydride reducing agent, preferably wherein the reaction is carried at low temperature, suitably below ambient temperature, for example between 0° and 5°C; and thereafter, as required, preparing a salt or a solvate of the compound of formula (III).

A preferred reducing agent for preparing a compound of formula (III) is lithium or potassium tri-sec-butylborohydride (also known as "L-selectride" or "K-selectride"), preferably lithium tri-sec-butylborohydride.

The present invention further provides a compound of the above defined formula (III) or a tautomeric form thereof, or salt thereof, or a solvate thereof, which compound is useful as an intermediate.

The present invention further comprises a process for converting the above defined compound of formula (III) into the above defined compound of formula (I), which process comprises heating the compound of formula (III), suitably in a solvent, and thereafter as required preparing a pharmaceutically acceptable salt or a pharmaceutically acceptable solvate of the compound of formula (I).

Suitable solvents for the said conversion of the compound of formula (III) into compound (I) include those mentioned above for the preparation of the compound of formula (III).

It will be appreciated from the foregoing discussion that the reduction of the compound of formula (II) to provide a compound of formula (I), especially when employing borohydride reducing agents, is preferably carried out at a temperature high enough to ensure conversion of the intermediate of formula (III) into the compound of formula (I), suitably the temperature is above 50°C, for example 65°C and conveniently the reflux temperature of the reaction solvent.

5

10

15

20

25

30

Suitable general reaction conditions for the borohydride and aluminium hydride reductions are also as described in "Reductions by the Alumino- and Borohydrides in Organic Synthesis" by J. Seyden-Penne (VCH Publishers, Inc. / Lavoisier - Tec & Doc, published 1991) and the references disclosed therein.

The compounds of formula (I) (or (III)) are isolated from the reaction and subsequently purified by use of conventional isolation and purification methods such as chromatography and crystallization/recrystallization.

The complex hydride reducing agents of the process are usually commercially available or they can be prepared using conventional procedures, for example the borohydride and aluminium hydride reagents can be prepared using methods such as those described in "Reductions by the Alumino- and Borohydrides in Organic Synthesis" (ibid) and particularly in the references cited therein.

Certain of the borohydride reducing agents are conveniently prepared in situ. For example, lithium tri-sec-butyl borohydride is conveniently prepared from tri-sec-butyl borane and lithium aluminium hydride.

Also, lithium borohydride is conveniently prepared from sodium borohydride and a lithium salt according to known procedures such as those disclosed in Inorg. Chem. 1981, 20, 4454; J. Am. Chem. Soc. 1953, 75, 209; Nature 1954, 173, 125 and J. Am. Chem. Soc. 1955, 77, 6209.

Suitably T represents a moiety selected from the list consisting of (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), (Ih), (Ii), (Ij), (Ik), (Il), (Im), (In), (Io), (Ip) and (Iq):

$$A \stackrel{\stackrel{1}{\longrightarrow} N}{\longrightarrow} (CH_2)_n \stackrel{O}{\longrightarrow} O$$
(Ia)

wherein A¹, A², R¹ and n are as defined in relation to formula (I) of EP 0306228;

5

$$\begin{array}{c|c}
 & 1 \\
 & 1 \\
 & C \\
 & 1 \\
 & 3
\end{array}$$
(Ib)

wherein R^2 , L^1 , L^2 and L^3 are as defined in relation to formula (I) of EP 0008203;

wherein R¹, R², R³, R⁴, R⁵, W and n are as defined in relation to formula (I) of EP 0139421;

$$R^{1}$$
 R^{2}
 R^{3}
(Id)

wherein R¹, R² and R³ are as defined in relation to formula (I) of EP 0032128;

$$R^{1}$$
 R^{1}
 R^{1

wherein A, R, R¹ and X are as defined in relation to formula (I) of EP 0428312;

(If)

(lh)

when A, B, R and R¹ are as defined in relation to formula (II) of EP 0428312;

wherein R¹ is as defined in relation to formula (I) of EP 0489663;

10

5

wherein R^1 , R^2 , R^3 and n are as defined in relation to formula (I) of EP 0155845;

$$R^{1}$$
 $OH_{2}OH_{2}O$
(Ii)

15

when R¹ is as defined in relation to formula (I) of EP 0257781;

$$\begin{array}{c|c}
R^{4} & R^{5} \\
R^{3}O & V & (CH_{2})_{n} - O - (Ar)
\end{array}$$

20

(Ij)

wherein Ar, R¹, R², R³, R⁴, R⁵, n, U and W are as defined in relation to formula (I) of United States Patent No. 5104888;

when A, R¹, R² and X are as defined in relation to formula (I) of EP 0208420;

$$R^{1} \times R^{2}$$
(CH₂)_n—O—(CH₂)_n—(CH

when R¹, R², X, Z m and n are as defined in relation to formula (I) of EP 0177353;

according to formula (I) of EP 0319189;

5

10

20

$$X^1$$
 Z
 M_{n}
 X
 A
 B
(In)

wherein A, B, X, X^1 , X^2 , n and Z are as defined in relation to formula (I) of EP 0332331;

wherein V, W, X, Y, Z, Z¹ and n are as defined in EP 0332332; and

5

10

15

(lo)

wherein Q and X are as defined in relation to formula (I) of International Application No. WO 92/18501.

Favourably, T represents a moiety of the above defined formula (Ia), (Ic), (Ie), (If), (Ii), (Ik) or (Io).

In particular T represents a moiety selected from the list consisting of (a), (b), (c), (d), (e), (f), (g), (h) (i) and (j):

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} CH_3 \\ N-(CH_2)_2\text{-}O \end{array} \end{array} \end{array} \end{array}$$

(e) , (f)
$$CH_3$$

Preferably, T represents a moiety of the above defined formula (Ia).

Preferably, T¹ represents S.

Preferably J represents O.

Thus, in a preferred aspect, the invention provides a process for preparing a compound of formula (I) as defined in EP 0306228: Accordingly, the invention provides a process for preparing a compound of formula (IA):

10

5

or a tautomeric form thereof or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, wherein:

A¹ represents a substituted or unsubstituted aromatic heterocyclyl group;

R¹ represents a hydrogen atom, an alkyl group, an acyl group, an aralkyl group, wherein the aryl moiety may be substituted or unsubstituted, or a substituted or unsubstituted aryl group;

A² represents a benzene ring having in total up to five substituents; and n represents an integer in the range of from 2 to 6; which process comprises, treating a compound of formula (IIB):

$$A^{1}$$
 N $(CH_{2})_{\overline{\Omega}}$ O A^{2} CH O NH

(IIB)

or a tautomeric form thereof or a salt thereof, or a solvate thereof, wherein A¹, A², R¹ and n are as defined in relation to formula (IA) with a complex hydride reducing agent or a source of a complex hydride reducing agent, such as a borohydride reducing agent or a source of a borohydride reducing agent; and thereafter, as required, preparing a pharmaceutically acceptable salt, or a pharmaceutically acceptable solvate of the compound of formula (IA) or a tautomeric form thereof.

In a preferred aspect, the compound of formula (III) is a compound of formula (IIIA):

20

25

10

15

wherein A¹, A², R¹ and n are as defined in relation to formula (IA) herein.

Unless mentioned to the contrary herein, the suitable, apt, favoured and preferred values for each variable in the above mentioned moieties of formula (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), (Ih), (Ii), (Ij), (Ik), (Il), (Im), (In), (Io) or (Ip) are as defined in the European and International patent applications or United States patents mentioned above in respect of each of the said formulae.

In particular, the suitable, apt, favoured and preferred values of the variables A¹, A², R¹ and n in formulae (IA), (IIB) and (IIIA) are as defined in relation to formula (I) of EP 0306228.

A most preferred value of A¹ in formulae (IA), (IIB) and (IIIA) is a 2-pyridyl group.

A most preferred value of A² in formulae (IA), (IIB) and (IIIA) is a moiety of formula:

5

10

15

20

25

30

35

A most preferred value of R¹ in formulae (IA), (IIB) and (IIIA) is a methyl group.

A most preferred value of n in formulae (IA), (IIB) and (IIIA) is 2.

Most favourably, T represents a moiety of the above defined formula (a), (c) or (d).

A preferred value of T is a moiety of the above defined formula (a).

A most preferred value of formula (IA) is 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl}-2,4-thiazolidinedione, or a tautomeric form thereof or a salt thereof, or a solvate thereof.

A most preferred value of formula (IIB) is 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzylidene}-2,4-thiazolidinedione or a tautomeric form thereof or a salt thereof, or a solvate thereof.

When the reaction comprises a compound of formula (IIB) as substrate it is preferred if the reaction is carried out at an elevated temperature, preferably above 50° C, for example at 65°C.

A preferred example of a compound of formula (IIIB) is 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl}-5-{1-[2,4-dioxothiazolidin-5-yl]-1-[4-(2-(N-methyl-N-(2-pyridyl)amino)ethoxy)phenyl]methyl}-2,4-thiazolidinedione.

Suitable salts are pharmaceutically acceptable salts.

Suitable solvates are pharmaceutically acceptable solvates.

Unless mentioned to the contrary herein, the suitable, apt, favoured and preferred pharmaceutically acceptable salts, pharmaceutically acceptable solvates and tautomeric forms of each of the compounds in the above mentioned moieties of formula (Ia), (Ib), (Ic), (Id), (Ie), (If), (Ig), (Ih), (Ii), (Ij), (Ik), (Il), (Im), (In), (Io) or (Ip) are as defined in the European or International patent applications or United States patents mentioned above in respect of each of the said formulae.

In particular it should be mentioned that suitable pharmaceutically acceptable salts include metal salts, such as for example aluminium, alkali metal salts such as sodium or potassium, alkaline earth metal salts such as calcium or magnesium and ammonium or substituted ammonium salts, for example those with lower alkylamines

such as triethylamine, hydroxy alkylamines such as 2-hydroxyethylamine, bis-(2-hydroxyethyl)-amine or tri-(2-hydroxyethyl)-amine, cycloalkylamines such as bicyclohexylamine, or with procaine, dibenzylpiperidine, N-benzyl-b-phenethylamine, dehydroabietylamine, N,N'-bisdehydroabietylamine, glucamine, N-methylglucamine or bases of the pyridine type such as pyridine, collidine or quinoline.

In addition should be mentioned those pharmaceutically acceptable salts provided by pharmaceutically acceptable acids including mineral acids, for example for compounds of formula (I) wherein T represents a moiety of formula (Ia) suitable salts are those disclosed in WO 94/05659 including salts provided by mineral acids, such as hydrobromic, hydrochloric and sulphuric acids, and organic acids, such as methanesulphonic, tartaric and maleic acids, especially tartaric and maleic acid.

The compounds of formula (II) may be prepared according to known methods, for example by use of the appropriate method disclosed in the abovementioned European and International patent applications or United States patents. The contents of the abovementioned European and International patent applications and United States patents are incorporated herein by reference.

In particular compounds of formula (IIB) may be prepared according to the methods disclosed in EP 0306228.

The following examples illustrate the invention but do not limit it in any way.

Example 1: Preparation of 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl}-2,4-thiazolidinedione (IA) via reduction of 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzylidene}2,4-thiazolidinedione (IIB).

(a) Using lithium tri-sec-butyl borohydride.

5

10

15

20

25

30

35

A 1M solution of lithium tri-sec-butyl borohydride in tetrahydrofuran (220 ml, 0.22 moles) was added to a suspension of IIB (35.5 g, 0.1 moles) in tetrahydrofuran (310 ml) at 25°C over 30 minutes. The resulting mixture was heated and held at reflux temperature for two and a half hours, and then cooled to 5°C. An aqueous solution of sodium hydroxide (10% w/v, 100 ml, 0.25 moles) was added, followed by 27% aqueous hydrogen peroxide solution (50 ml, 0.4 moles). The resultant solution was stirred at 25°C for three hours, diluted with water (100 ml), and then concentrated via vacuum distillation until a residual volume of 300 ml was achieved. Hydrochloric acid (2.5 M, approx. 200 ml) was added to the rapidly stirred mixture at 20 to 25° C and the resulting precipitate was filtered, washed with water, and dried at 50 dec C in

vacuo, to give (IA) (34.4 g). The crude product was recrystallised from 99% IMS (20 ml per g of crude (IA) giving a 79% overall yield.

(b) Using lithium borohydride.

5

10

15

A solution of lithium borohydride (67.5g, 3.1mole) in tetrahydrofuran (1.54L) was added *via* cannular to a stirred suspension of (IIB) (500g, 1.4mol) in tetrahydrofuran (950ml) and pyridine (1.13L) at room temperature under nitrogen over 1.5 hours. The mixture was heated to reflux, stirred for 3 hours and cooled to room temperature. The stirred reaction mixture was quenched into hydrochloric acid (670ml) and water (4.4L) at 8°C over 0.67 hours using tetrahydrofuran (250ml) to wash out residual material. The quench mixture was stirred at 26°C for 0.25 hours, heated to reflux and stirred for 0.75 hours. The hot mixture was allowed to stand for 0.17 hours, filtered through celite, the residue was pulled to dryness and washed with water (500ml). The aqueous washings were added to the filtrate and stirred at room temperature for 14 hours. The precipitated product was collected by filtration under *vacuo*, pulled to dryness, washed with water (2.8 L) and pulled dry. The damp solid was washed with industrial methylated spirit (2 × 500ml), and dried at 45°C for 72 hours to give (IA) (386.5g, 77%).

20

25

30

35

c) <u>Using sodium borohydride and lithium chloride</u>. (in-situ preparation of lithium borohydride)

A solution of sodium borohydride (0.24g, 6.34mmole) in pyridine (5ml) was stirred at 25°C under nitrogen for 0.25 hours then heated to 65°C under reflux. A solution of lithium chloride (0.40g, 9.44mmole) in pyridine (5ml) was added dropwise *via* cannular to the stirred mixture at 65°C which was then held at this temperature for 2 hours, diluted with tetrahydrofuran (20ml) and heated at reflux for a further 0.5 hours. The mixture was cooled to 30°C, (IIB) (1.0g, 2.82mmole) was added in portions and the reaction mixture was heated to reflux for 4 hours. A solution of hydrochloric acid (1ml) and water (10ml) was added dropwise to the reaction mixture at 5°C. The mixture was concentrated in *vacuo*, pyridine (4ml) and water (6ml) were added and the mixture was stirred at 5°C with the pH being adjusted to 6 using hydrochloric acid. Water (10ml) was added and the mixture was stirred for 15 hours. The suspension was filtered, the residue was washed with water (10ml), pulled dry and dried at 50°C for 24h to give (IA), (0.88g, 88%).

Example 2: Preparation of 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl}-2,4-thiazolidinedione (IA) via reduction of 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzylidene}2,4-thiazolidinedione (IIB), using lithium aluminium hydride.

5

10

15

20

25

30

To a suspension of lithium aluminium hydride (1.13 g, 1 mole equivalent) in tetrahydrofuran (200 ml) at 0°C was added (IIB) (10 g, 1 mole equivalent) in portions over 15 minutes. The temperature was kept below 5°C during the addition. The mixture was stirred at 0°C for 30 minutes, and then at 10°C until the reaction was judged to be complete by HPLC (1.75 hours). The solution yield of (IA) was 69%.

Example 3: Preparation of 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl}-5-{1-[2,4-dioxothiazolidin-5-yl]-1-[4-(2-(N-methyl-N-(2-pyridyl)amino)ethoxy)phenyl]methyl}-2,4-thiazolidinedione (IIIA) from 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzylidene}2,4-thiazolidinedione (IIB).

To a solution of compound (IIB) (3.56 g) in tetrahydrofuran (THF, 120 ml) at -5 to 0°C was added a 1M solution of lithium tri-sec-butylborohydride (L-selectride) in THF (22 ml). The resulting mixture was stirred for 40 minutes, and then cooled to -10°C to stop the reaction. Sodium hydroxide solution (10% w/w, 40 ml) was carefully added, followed by aqueous hydrogen peroxide (27% w/w, 10 ml) to ensure destruction of the borohydride reagent. THF was removed in vacuo, and the aqueous mixture was neutralised to pH 7 using 2M hydrochloric acid. The resulting solid was filtered and discarded, and the filtrate was cooled to 4°C. After standing overnight a second crop of solid was obtained and this was purified twice by flash column chromatography using dichloromethane/methanol as eluent. Compound (IIIC)was isolated as white crystals (109 mg, 3% isolated yield).

Example 4. Preparation of 5-{4-[2-(5-ethyl-2-pyridyl)ethoxy]benzyl}-2,4-thiazolidine-2,4-dione (ID) *via* reduction of 5-{4-[2-(5-ethyl-2-pyridyl)ethoxy]benzilidene}-2,4-thiazolidine-2,4-dione (IID).

A 2.0 M solution of lithium borohydride in tetrahydrofuran (31 ml, 62.0 mmol) was added dropwise to a stirred suspension of 5-{4-[2-(5-ethyl-2-pyridyl)ethoxy]benzilidene}-2,4-thiazolidine-2,4-dione (10.0 g, 28.22 mmol) in tetrahydrofuran (19 ml) and pyridine (23 ml) at 30°C under nitrogen. The resulting mixture was heated under reflux for 4 h (reaction monitored by HPLC) and then cooled to ambient temperature and added dropwise to an efficiently stirred solution of conc. hydrochloric acid (13.5 ml) in water (88.7 ml) between

10°C and 20°C. The resulting orange suspension was heated to reflux temperature and held for 30 minutes and then cooled to ambient temperature. The resulting suspension was stirred for 30 minutes and the product was collected by filtration and washed with water (20 ml x 3). The crude product was heated to reflux in acetic acid (50 ml) and charcoal was added (1.5 g) to the resulting solution, which was then diluted with ethanol (50 ml), filtered through celite, and the celite bed washed through with hot ethanol (50 ml). The filtrate and washings were combined and allowed to cool to 5°C resulting in crystallisation of a white solid which was isolated by filtration to give compound (ID) (5.29 g, 53%). A second crop of material was obtained by partial concentration of the mother liquor (0.81 g, 8.1%).

Claims:

1. A process for preparing a compound of formula (I):

(I)

(II)

or a tautomeric form thereof or a pharmaceutically acceptable salt thereof or a pharmaceutically acceptable solvate thereof, wherein:

10 J represents O or S;

T represents a substituted or unsubstituted aryl group and T¹ is O or S; which process comprises, reducing a compound of formula (II):

15

20

5

or a tautomeric form thereof or a salt thereof or a solvate thereof, wherein T and T¹ are as defined in relation to formula (I), with a complex hydride reducing agent or a source of a complex hydride reducing agent; and thereafter, as required, preparing a pharmaceutically acceptable salt or a pharmaceutically acceptable solvate of the compound of formula (I) or a tautomeric form thereof.

2. A process according to claim 1, wherein the complex hydride reducing agent is a borohydride reducing agents or an aluminium hydride reducing agent.

- 3. A process according to claim 2, wherein the borohydride reducing agent is diborane or a metal borohydride.
- 4. A process according to claim 3, wherein the metal borohydride is an alkali metal borohydride.

- 5. A process according to claim 3 or claim 4, wherein the metal borohydride is lithium, sodium or potassium borohydride.
- 5 6. A process according to any one of claims 3 to 5, wherein the metal borohydride is an unsubstituted or a borohydride in which the boron is substituted with up to three substituents selected from alkyl and phenyl.
- 7. A process according to any one of claims 3 to 6, wherein the metal

 borohydride is selected from the list consisting of: lithium tri-sec-butyl borohydride,
 potassium tri-sec-butyl borohydride, sodium tri-sec-butyl borohydride, potassium
 triphenylborohydride, lithium triethylborohydride, lithium borohydride and sodium
 borohydride.
- 15 8. A process according to claim 2, wherein the complex hydride reducing agent is an unsubstituted borohydride and the reaction is carried out in the presence of a base.
- 9. A process according to claim 8, wherein the base is pyridine, a substituted pyridine, quinoline, a substituted quinoline, a secondary or tertiary amine or a phosphine.
 - 10. A process according to claim 8 or claim 9, wherein the base is used as a solvent or co-solvent for the reaction.
 - 11. A process according to any on e of claims 8 to 11, wherein the base is pyridine.
- 12. A process according to claim 2, wherein the aluminium hydride reducing agent is lithium aluminium hydride.
 - 13. A process according to any one of claims 1 to 12, wherein T represents a moiety selected from the list consisting of (a), (b), (c), (d), (e), (f), (g), (h) (i) and (j):

(a), (b)
$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{3}H_{3}$$

$$C_{4}H_{3}$$

(d) ,CH₃

(c)

0=0 (e) **(f)**

,CH₃ (g) (h),

> (i), and НО (j).

A process according to any one of claims 1 to 13, wherein T¹ represents S and J represents O.

10

15. A process according to claim 1, for preparing a compound of formula (IA):

or a tautomeric form thereof or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable solvate thereof, wherein:

Al represents a substituted or unsubstituted aromatic heterocyclyl group; Rl represents a hydrogen atom, an alkyl group, an acyl group, an aralkyl group, wherein the aryl moiety may be substituted or unsubstituted, or a substituted or unsubstituted aryl group;

A² represents a benzene ring having in total up to five substituents; and n represents an integer in the range of from 2 to 6; which process comprises, treating a compound of formula (IIB):

$$A^{1}$$
 N
 $(CH_{2})_{n}$
 O
 A^{2}
 CH
 S
 NH

15

20

25

5

10

(IIB)

or a tautomeric form thereof or a salt thereof, or a solvate thereof, wherein A¹, A², R¹ and n are as defined in relation to formula (IA) with a complex hydride reducing agent or a source of a complex hydride reducing agent; and thereafter, as required, preparing a pharmaceutically acceptable salt, or a pharmaceutically acceptable solvate of the compound of formula (IA) or a tautomeric form thereof.

16. A process according to claim 15, wherein (IA) is 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl}-2,4-thiazolidinedione, or a tautomeric form thereof or a salt thereof, or a solvate thereof and (IIB) is 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzylidene}-2,4-thiazolidinedione or a tautomeric form thereof or a salt thereof, or a solvate thereof.

10

17. A compound of formula (III):

(III)

- or a tautomeric form thereof, or salt thereof, or a solvate thereof, wherein J and T are as defined in relation to formula (I) in claim 1.
 - 18. A compound according to claim 17, being 5-{4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl}-5-{1-[2,4-dioxothiazolidin-5-yl]-1-[4-(2-(N-methyl-N-(2-pyridyl)amino)ethoxy)phenyl]methyl}-2,4-thiazolidinedione.
 - 19. A compound according to claim 17 or 18, for use as an intermediate.
- 20. A process for preparing a compound of formula (I) according to claim (I) which process comprises:
 - (a) reducing a compound of formula (II), as defined in claim 2, with a metal hydride reducing agent at low temperature, optionally isolating the compound of formula (III); and/or
- (b) heating a compound of formula (III) to provide the compound of formula (I); and
 thereafter as required preparing a pharmaceutically acceptable salt or a pharmaceutically acceptable solvate of the compound of formula (I).

INTERNATIONAL SEARCH REPORT

In: .tional Application No PCT/EP 98/00818

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D277/34 C07D417/12 C07D41	7/06 C07D417/10 (CO7D417/14		
	o International Patent Classification(IPC) or to both national classif SEARCHED	ication and IPC			
	SCANCINED Commentation searched (classification system followed by classification)	ition symbols)	•		
IPC 6	CO7D				
Documental	tion searched other than minimumdocumentation to the extent that	such documents are included in the fi	elds searched		
Electronic d	ata base consulted during the international search (name of data t	pase and, where practical, search term	s used)		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.		
Х	CHEMICAL ABSTRACTS, vol. 115, no	0. 17,	1-8		
	28 October 1991 Columbus, Ohio, US;				
	abstract no. 183284f,				
	page 926; XP002066776				
	see abstract		1		
	& JP 03 077 875 A (KAKEN PHARMA)	CEUTICAL CO			
	LTD) 3 April 1991				
Α	EP 0 306 228 A (BEECHAM GROUP PI	_C) 8 March	1-20		
	1989 cited in the application				
	see page 8, line 41 - page 8, l	ine 49;			
	claims; example 7		·		
		-/			
		•			
	her documents are listed in the continuation of box C.	Y Patent family members are	listed in annex.		
	tegories of cited documents :	"T" later document published after to or priority date and not in confl			
consid	ent defining the general state of the art which is not lered to be of particular relevance	cited to understand the princip invention			
filing d	•	"X" document of particular relevanc cannot be considered novel or	e; the claimed invention cannot be considered to		
which	ant which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified)	involve an inventive step when "Y" document of particular relevance	the document is taken alone		
"O" docume	ent referring to an oral disclosure, use, exhibition or	cannot be considered to involv document is combined with on	e an inventive step when the e or more other such docu-		
"P" docume	means ent published prior to the international filing date but	ments, such combination being in the art.	`		
-	actual completion of theinternational search	"&" document member of the same Date of mailing of the internatio			
3	June 1998	06/07/1998			
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer			
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	llaner 2			
1	Fax: (+31-70) 340-3016 Henry, J				

INTERNATIONAL SEARCH REPORT

Int .tional Application No PCT/EP 98/00818

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.			
A	WO 93 13095 A (THE UPJOHN COMPANY) 8 July 1993 see claims		1-20		
A	EP 0 454 501 A (SANKYO COMPANY LIMITED) 30 October 1991 see page 19 - page 23 see page 25, line 31 - page 26, line 35; claims 47,48	1-20			
			·		
:					
•					

INTERNATIONAL SEARCH REPORT

Information on patent family members

In ational Application No PCT/EP 98/00818

					
Patent document cited in search repor	1	Publication date		atent family member(s)	Publication date
EP 306228	Α	08-03-1989	AU	2173888 A	09-03-1989
			CA	1328452 A	12-04-1994
			DK	490288 A	05-03-1989
			EP	0842925 A	20-05-1998
			JP	1131169 A	24-05-1989
			JP	2614497 B	28-05-1997
			JP	9183771 A	15-07-1997
			JP	9183726 A	15-07-1997
		-	JP	9183772 A	15-07-1997
		•	PT	88410 A,B	31-07-1989
			US	5646169 A	08-07-1997
			US	5002953 A	26-03-1991
			US	5521201 A	28-05-1996
			US	5232925 A	03-08-1993
			US	5194443 A	16-03-1993
			US	5260445 A	09-11-1993
WO 9313095	Α	08-07-1993	AU	3231093 A	28-07-1993
			CA	2122712 A	08-07-1993
			ΕP	0618915 A	12-10-1994
			JP	7502530 T	16-03-1995
			US	5585495 A	17-12-1996
EP 454501	Α	30-10-1991	EP	0839812 A	06-05-1998
			JP	4225978 A	14-08-1992
			ÜS	5387596 A	07-02-1995