Хомоморфизми, нормални подгрупи и факторгрупи

Сайт: <u>learn.fmi.uni-sofia.bg</u> Разпечатано от: Мартин Попов

Курс: Алгебра 2, поток 1, летен семестър 2021/2022 Дата: Thursday, 24 March 2022, 21:23

Книга: Хомоморфизми, нормални подгрупи и факторгрупи

Съдържание

1. Хомоморфизъм

- 1.1. Примери -1
- 1.2. Свойства
- 1.3. Ядро и образ
- 1.4. Примери -2
- 1.5. Свойство на ядрото

2. Нормална подгрупа

- 2.1. Примери (не нормални подгрупи)
- 2.2. Еквивалентни твърдения за нормални подгрупи
- 2.3. Подгрупи с индекс 2
- 2.4. Примери

3. Факторгрупа

- 3.1. Факторгрупата е група
- 3.2. Примери

4. Теорема за хомоморфизмите

- 4.1. Естествен хомоморфизъм
- 4.2. Теоремата
- 4.3. Примери

1. Хомоморфизъм

Определение:

Нека са зададени две групи (G,\circ) и (L,*). Изображението $\varphi:G o L$ се нарича хомоморфизъм, когато за произволни елементи $g,h\in G$ е изпълнено свойството:

$$\varphi(g\circ h)=\varphi(g)*\varphi(h).$$

Определение:

Казваме, че две групи са uзомор ϕ ни (записваме $G\cong L$), когато съществува изображение $\varphi:G\to L$, което е uзомор ϕ изъм, т.е.:

- φ е хомоморфизъм
- φ е биекция.

Пример 1 ("тривиални" хомоморфизми):

- Ако е дадена група (G,\circ) и (L,*) е произволна групата, винаги може да се състави "тривиалния" хомоморфизъм $\varepsilon(x)=e_L, \forall x\in G.$, който действа по следния начин на всеки елемент от G съпоставяме единичния елемент на групата L.
- Идентитета $\operatorname{id}:G o G$ за произволна група (G,\circ) също е "тривиален" хомоморфизъм.

1.1. Примери -1

Следващите няколко примера на хомоморфизми са от изображения, които сме разглеждали по Алгебра 1

Пример 2:

Да разгледаме множеството от всички обратими матрици от ред n с реални елементи $(GL_n(\mathbb{R}),.)$, което е група относно операцията умножение. От линейната алгебра е известно равенството

$$det(A. B) = det(A). det(B),$$

затова ще разгледаме изображението, което на всяка матрица съпоставя числото, което е нейна детерминанта. По този начин получаваме, че $\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$ е хомоморфизъм на групи, където с \mathbb{R}^* сме отбелязали мултипликативната група на реалните числа.

Пример 3:

Да разгледаме произволно линейно изображение $\psi: V_1 \to V_2$, където пространствата са над едно и също поле F. Линейните пространства са групи, относно операцията събиране на вектори, а от дефиницията за линейно изображение имаме $\psi(a+b)=\psi(a)+\psi(b),\ orall\ a,b\in V_1$, откъдето се получава, че всяко линейно изображение е хомоморфизъм на адитивните групи, съставени от векторите на линейните пространства.

Пример 4:

Известно ни е, че всяко ненулево комплексно число може да се запише в тригонометричен вид $z=r(\cos \alpha+i.\sin \alpha)$ и знаем по какъв начин се пресмята произведението на числа, записани в тригонометричен вид.

Нека на произволно реално число a да съпоставим, комплексното число с модул 1, което има за аргумент число a, т.е. да разгледаме изображението

$$ho: \mathbb{R}
ightarrow \mathbb{C}^*, \ \
ho(a) = \cos(a) + i \sin(a), \ orall \ a \in \mathbb{R}.$$

От формулата за умножение на числа, записани в тригонометричен вид, получаваме равенството

$$\rho(a+b) = \cos(a+b) + i \cdot \sin(a+b) =
= (\cos a + i \cdot \sin a) \cdot (\cos b + i \cdot \sin b) =
= \rho(a) \cdot \rho(b)$$

От това равенство получаваме, че ρ е хомоморфизъм за който групата на реалните числа $\mathbb R$ е записана адитивно, а $(\mathbb C^*,.)$ е мултипликативна група.

1.2. Свойства

Нека $\varphi:G o L$ е хомоморфизъм на групи, тогава се установяват следните свойства на хомоморфизмите:

Свойство 1:

Ако $e_G \in G, e_L \in L$ са неутралните елементи (единичен или нулев в зависимост от записа в групата), тогава е изпълнено

$$\varphi(e_G) = e_L$$
.

Доказателство:

Нека $arphi(e_G)=u\in L$, тогава е изпълнено

$$u = \varphi(e_G) = \varphi(e_G \circ e_G) = u * u.$$

Получихме, че е изпълнено u=u*u , откъдето непосредствено намираме

$$u = u * u \Rightarrow u * u^{-1} = u * u * u^{-1}$$
,

откъдето установяваме $\,e_L=u.\,$

Свойство 2:

Ако $g \in G$, тогава е изпълнено $\varphi(g^{-1}) = (\varphi(g))^{-1}$ (ако двете групи са записани мултипликативно).

Доказателство:

Използваме

$$\varphi(g). \, \varphi(g^{-1}) = \varphi(g. \, g^{-1}) = \varphi(e_G) = e_L \in L,$$

откъдето получаваме, че $(\varphi(g))^{-1} = \varphi(g^{-1}).$

По своята същност това свойство е в сила и когато някоя от двете групи е записана адитивно, тогава в записа трябва да участват симетричните елементи (относно операцията в групата) на g и $\varphi(g)$ в съответните групи. Например, ако първата група е адитивно записана (G,+), а втората е в мултипликативен запис (L,-), тогава това свойство ще изглежда по следния начин $\varphi(-g)=(\varphi(g))^{-1}$.

Нека arphi:G o L е хомоморфизъм на групи, които са записани мултипликативно.

Определение:

Множеството от всички елементи на групата G, които отиват в неутралния елемент (единичен или нулев в зависимост от записа) на групата L се нарича **ядро** на хомоморфизма и се отбелязва с $\mathrm{Ker}(\varphi)$.

$$\operatorname{\mathtt{Ker}}(arphi) = \{a \in G \mid arphi(a) = e_L\} \subset G.$$

Определение:

Образ на хомоморфизма е множеството от образите на всички елементи от G под действието на изображението φ

$$\operatorname{Im}(\varphi) = \{\varphi(x)|\ x \in G\} \subset L$$

Твърдение:

Ако arphi:G o L е хомоморфизъм на групи, тогава

- ullet $\operatorname{Ker}(arphi) < G$ (ядрото е подгрупа на G),
- $\operatorname{Im}(\varphi) < L$ (образът е подгрупа на L).

Доказателство:

Ако $a,b\in \mathtt{Ker}(arphi)$, получаваме

$$\left. \begin{array}{ll} \varphi(a.\,b) = \varphi(a).\,\varphi(b) = e_L & \Rightarrow a.\,b \in \mathtt{Ker}(\varphi) \\ \varphi(a^{-1}) = e_L^{-1} = e_L & \Rightarrow a^{-1} \in \mathtt{Ker}(\varphi) \end{array} \right\} \Rightarrow \mathtt{Ker}(\varphi) < G.$$

Аналогично, ако $u,v\in {
m Im}(arphi)$, следователно съществуват елементи $x,y\in G$ от такива, че $u=arphi(x),\ v=arphi(y)$. Тогава

$$\left. \begin{array}{ll} \varphi(x.\,y) = \varphi(x).\,\varphi(y) = u.\,v & \Rightarrow u.\,v \in \mathtt{Im}(\varphi) \\ \varphi(x^{-1}) = (\varphi(x))^{-1} = u^{-1} & \Rightarrow u^{-1} \in \mathtt{Im}(\varphi) \end{array} \right\} \Rightarrow \mathtt{Im}(\varphi) < L.$$

1.4. Примери -2

Пример 5

При изображението детерминанта $\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$ ядрото се състои от всички матрици с детерминанта 1, а образът е множеството \mathbb{R}^* на всички ненулеви реални числа.

Пример 6:

При разгледаното изображение за аргумента на комплексно число

$$ho: \mathbb{R}
ightarrow \mathbb{C}^*, \ \
ho(a) = \cos(a) + i \sin(a), \ orall \ a \in \mathbb{R},$$

на произволно реално число a сме съпоставили комплексното число с модул 1, което има за аргумент число a и по този начин получаваме, че:

- $Im(\rho) = \{z \in \mathbb{C}^* \mid |z| = 1\}$.
- Всички числа кратни на 2π "отиват" в 1, следователно ядрото е $\mathrm{Ker}(
 ho)=\{2k\pi\ | k\in\mathbb{Z}\}.$

Пример 7: (линейна система)

Да разгледаме линейното изображение $\lambda:\mathbb{R}^3 o\mathbb{R}^4$, което действа по следния начин на вектора $x=(x_1,x_2,x_3)\in\mathbb{R}^3$ съпоставяме

$$\lambda(x)=(\lambda_1(x),\lambda_2(x),\lambda_3(x),\lambda_4(x)), \ \ \text{кьдето} \ \begin{vmatrix} \lambda_1(x)=3x_1-2x_2-x_3,\\ \lambda_2(x)=-x_1+x_2+x_3,\\ \lambda_3(x)=-4x_1+3x_2+2x_3,\\ \lambda_4(x)=2x_1-3x_2-4x_3, \end{vmatrix}$$

Тогава ядрото на този хомоморфизъм (което е точно ядрото на това линейно изображение) е решението на хомогенната система

$$\operatorname{\mathtt{Ker}}(\lambda) : \begin{vmatrix} 3x_1 - 2x_2 - x_3 & = 0, \\ -x_1 + x_2 + x_3 & = 0, \\ -4x_1 + 3x_2 + 2x_3 & = 0, \\ 2x_1 - 3x_2 - 4x_3 & = 0, \end{vmatrix}, \quad \operatorname{\mathtt{Ker}}(\lambda) = \{(\alpha, 2\alpha, -\alpha) \mid \alpha \in \mathbb{R}\}$$

Образът, се състои от тези вектори $b = \begin{pmatrix} b_1 \\ \vdots \\ b_4 \end{pmatrix}$, за които нехомогенната линейна система има решение и от линейната алгебра е

известно, че

$$egin{array}{lll} 3x_1-2x_2-x_3&=b_1,\ -x_1+x_2+x_3&=b_2,\ -4x_1+3x_2+2x_3&=b_3,\ 2x_1-3x_2-4x_3&=b_4, \end{array}$$
 има решение $\Leftrightarrow \ b\in {
m Im}(\lambda)=\ell(c_1,c_2,c_3),$

където
$$c_1=egin{pmatrix} 3\\-1\\-4\\2 \end{pmatrix}$$
 , $c_2=egin{pmatrix} -2\\1\\3\\-3 \end{pmatrix}$, $c_3=egin{pmatrix} -1\\1\\2\\-4 \end{pmatrix}$ са стълбовете на матрицата на системата.

1.5. Свойство на ядрото

Твърдение:

Нека arphi:G o L е хомоморфизъм на групи, които са записани мултипликативно и нека $H=\mathtt{Ker}(arphi)$ Тогава е изпълнено:

- $t \in gH \Leftrightarrow \varphi(t) = \varphi(g)$;
- $t \in Hg \Leftrightarrow \varphi(t) = \varphi(g)$;
- $Hg = gH, \ \forall g \in G$.

Доказателство:

- Ако е изпълнено, че $t\in gH$, от изразяването $t=g.\,h_1,\;h_1\in { t Ker}(arphi)\;$ получаваме, че $arphi(t)=arphi(gh_1)=arphi(g).\,e_L=arphi(g)$;
- Аналогично $t\in Hg\Rightarrow t=h_2.\,g,\;h_2\in {\tt Ker}(\varphi)\;$ и получаваме, че $\varphi(t)=\varphi(h_2.\,g)=e_L.\,\varphi(g)=\varphi(g);$
- Обратно, нека да е в сила $\, arphi(t) = arphi(g), \,$ тогава:
 - ullet от изразяването $e_L=(arphi(g))^{-1}.$ $arphi(t)=arphi(g^{-1}).$ $arphi(t)=arphi(g^{-1}.t),$ следва $g^{-1}.$ $t\in {
 m Ker}(arphi)\Rightarrow t\in gH$
 - ullet от изразяването $e_L=arphi(t)$. $(arphi(g))^{-1}=arphi(t,g^{-1})$ следва $t.\,g^{-1}\in ext{Ker}(arphi)$ и $t\in Hg$
- ullet Нека $g\in G$ е произволен елемент. Видяхме, че

$$t \in gH \iff \varphi(t) = \varphi(g) \iff t \in Hg.$$

От тук следва $Hg=gH, \; \forall g\in G$

Оказва се, че свойството всички леви съседни класове на една подгрупа да съвпадат със съседните десни съседни класове е много важно и поради това има специален термин за такива подгрупи.

2. Нормална подгрупа

Определение:

Подгрупата H на групата G се нарича нормална подгрупа, когато за произволен елемент $g \in G$ е изпълнено gH = Hg и се записва по следния начин $H \lhd G$.

Пример: (тривиални нормални подгрупи)

За всяка група има две тривиални нормални подгрупи и това са:

- ullet подгрупата, която се състои само от единичния елемент $E=\{e\}\lhd G$, е нормална подгрупа, защото е изпълнено $gE=\{g\}=Eg$,
- ullet цялата група G може да се разглежда и като подгрупа и тогава gG=G=Gg и $G\lhd G$

Пример:

Ако групата G е Абелева, тогава за всяка подгрупа H е изпълнено gH=Hg и всяка подгрупа е нормална подгрупа.

Пример:

От предишното твърдение видяхме, че ако съществува хомоморфизъм на групи $\varphi:G \to L$, тогава $\mathtt{Ker}(\varphi) \lhd G$ (ядро е нормална подгрупа на G).

2.1. Примери (не нормални подгрупи)

Пример:

В раздела за съседен клас разгледахме следните примери, за подгрупи, които не са нормални подгрупи:

• В симетричната група S_3 подгрупата $H=\{id,(1,2)\}$ не е нормална подгрупа, защото установихме, че (1,3)H
eq H(1,3) .

• В пълната линейна група $GL_2(\mathbb{R})$ разгледахме подгрупата $H = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \middle| \ a \in \mathbb{R} \right\}$ и левия и десния съседен клас определени от елемента $B = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix}$. Получихме, че $B. \ H \neq H. \ B$ и $B. \ H \cap H. \ B = \{B\}$. Ясно е, че подгрупата H не е нормална подгрупа на $GL_2(\mathbb{R})$.

2.2. Еквивалентни твърдения за нормални подгрупи

Определение:

Елементите h,t се наричат спрегнати елементи в групата G, ако съществува елемент $g \in G$, така че да е изпълнено равенството $t = ghg^{-1}$.

Задача за упражнение: Да се докаже, че спрягането е релация на еквивалентност в G.

Твърдение:

Нека G е група и H е подгрупа, тогава следните твърдения са еквивалентни:

(1) $H \lhd G$ (H е нормална подгрупа);

(2)
$$ghg^{-1} \in H$$
, $\forall g \in G$, $\forall h \in H$;

(3)
$$gHg^{-1} = \{ghg^{-1} \mid h \in H\} = H, \forall g \in G.$$

Доказателство:

 $(1)\Rightarrow (2)$ Нека $g\in G$. Ако е изпълнено gH=Hg , тогава за произволен елемент $h\in H$ имаме $gh\in gH=Hg$ следователно съществува $h_1\in H$ такъв че $gh=h_1g$ от където непосредствено се получава $ghg^{-1}=h_1\in H$.

 $(2)\Rightarrow (3)$ Нека е изпълнено $ghg^{-1}\in H$ за произволни $g\in G,\ h\in H$, което означава, че е изпълнено включването $gHg^{-1}\subset H$.

За да докажем и обратното включване да вземем произволен елемент $h_2\in H$, той може да се изрази $h_2=g(g^{-1}h_2g)g^{-1}=gh_3g^{-1}$. Непосредствено се вижда, че елементът h_3 е спрегнат на елемента h_2 и затова е от подгрупата

От където непосредствено получаваме, че $H=gHg^{-1}.$

 $(3)\Rightarrow (1)$ Нека е изпълнено $gHg^{-1}=H, \forall g\in G$. и да разгледаме един произволен ляв съседен клас gH и да видим произволен елемент от него $gh_4\in gH$. Изпълнено е, че $gh_4g^{-1}=h_5\in H$, откъдето получаваме $gh_4=h_5g\in Hg$ и следователно принадлежи на десния съседен клас, откъдето следва $gH\subset Hg$.

За да се установи обратното включване се взема произволен елемент от десния съседен клас $h_6g\in Hg$, тогава $g^{-1}h_6g\in g^{-1}Hg=H$, следователно съществува елемент $h_7\in H$, за който е изпълнено $g^{-1}h_6g=h_7\Rightarrow h_6g=gh_7\in gH$, откъдето се получава $gH\subset Hg$. Следователно е изпълнено gH=Hg.

При решаването на конкретни задачи, най-лесно се доказва, че една подгрупа е нормална подгрупа при използване на проверката $ghg^{-1} \in H, \ \forall g \in G, \ \ \forall h \in H.$

2.3. Подгрупи с индекс 2

Твърдение:

Всяка подгрупа с индекс 2 е нормална подгрупа.

Доказателство:

Нека G е група, която има подгрупа $\ H$ и |G:H|=2 (индекса е 2).

Ако вземем произволен елемент a
otin H , за него е изпълнено $aH \cap H = \emptyset$.

Индексът е 2 и групата се разбива на обединение на $\partial в a$ непресичащи се леви класове, тогава $G=H\cup aH$. Аналогично и за десен съседен клас, от $a\not\in H$ следва $Ha\cap H=\emptyset$.

Поучава се $\,G=H\cup Ha\,$ и следователно левият и десен съседен клас съвпадат $aH=Ha=G\setminus H.$ Следователно подгрупата е нормална подгрупа $\,H\vartriangleleft G.$

От това твърдение се получава, че алтернативната подгрупа е нормална подгрупа на симетричната група $A_n \lhd S_n$.

2.4. Примери

Пример:

Да разгледаме групата $\,G\,$ от обратими матрици, разглеждана с операцията умножение на матрици и подмножеството $\,H\,$, където

$$G = \left\{ egin{pmatrix} a & b \ 0 & 1 \end{pmatrix} \middle| \ a,b \in \mathbb{R}, a
eq 0
ight\}, \ \ H = \left\{ egin{pmatrix} 1 & b \ 0 & 1 \end{pmatrix} \middle| \ b \in \mathbb{R}
ight\}$$

Показахме, че H не е нормална подгрупа на $GL_2(\mathbb{R})$. Да установим, че H е нормална подгрупа на групата G.

ullet Първо установяваме, че H е подгрупа на G, защото за произволни матрици $B_1=egin{pmatrix} 1 & b_1 \ 0 & 1 \end{pmatrix}$ и $B_2=egin{pmatrix} 1 & b_2 \ 0 & 1 \end{pmatrix}$ от H е изпълнено:

$$egin{aligned} B_1.\,B_2 &= egin{pmatrix} 1 & b_1+b_2 \ 0 & 1 \end{pmatrix} \Rightarrow & B_1.\,B_2 \in H \ B_1^{-1} &= egin{pmatrix} 1 & -b_1 \ 0 & 1 \end{pmatrix} \Rightarrow & B_1^{-1} \in H \end{aligned}
ight\} \Rightarrow H < G.$$

ullet После проверяваме че за произволна $B_1=egin{pmatrix}1&b_1\0&1\end{pmatrix}\in H$ и произволна $C=egin{pmatrix}a&c\0&1\end{pmatrix}\in G$ е изпълнено:

$$C.\,B_1.\,C^{-1}=\left(egin{array}{cc} a & c \ 0 & 1 \end{array}
ight).\left(egin{array}{cc} 1 & b_1 \ 0 & 1 \end{array}
ight).\left(egin{array}{cc} rac{1}{a} & rac{-c}{a} \ 0 & 1 \end{array}
ight)=\left(egin{array}{cc} 1 & ab_1 \ 0 & 1 \end{array}
ight) \ \in H.$$

По този начин се получи, че H е нормална подгрупа на G.

Пример:

Нека да разгледаме цикличната подгрупа $H=<\sigma>$ на S_4 , породена от елемента $\sigma=(1,2,3,4)$. Спрегнатите на цикъла $\sigma=(1,2,3,4)$ са всички цикли с дължина 4 от S_4 , които са 6 броя, а в подгрупата H единствените цикли с дължина 4 са $\sigma=(1,2,3,4)$ и $\sigma^{-1}=(4,3,2,1)$. По този начин установяваме, че за H не е изпълнено условието от твърдението и H не е нормална подгрупа на S_4 .

3. Факторгрупа

По определението имаме, че когато подгрупата $H \lhd G$ е нормална подгрупа, тогава множеството на левите съседни класове съвпада с множество на десните съседни класове. В този случай множеството от всички съседни класове бележим по следния начин:

$$G/H = \{qH \mid q \in G.\}$$

Ще въведем операция в множеството от всички съседни класове по следния начин

$$(gH).(tH) = (g.t)H.$$

Понеже всеки съседен клас е подмножество на групата и той може да се изрази по различни начини в зависимост от това, кой елемент от съседния клас сме взели да го представлява, затова първо трябва да си отговорим на въпроса:

"Коректна ли е написаната дефиниция за операция при съседни класове?"

Нека да вземем двата съседни класа $qH,\ tH$ да се представляват от други елементи

$$g_1H=gH, \quad$$
 където $g_1=gh_1\in gH$ $t_1H=tH, \quad$ където $t_1=th_2\in tH$.

Пресмятаме g_1t_1 като използваме, че H е нормална подгрупа и прилагаме твърдението, че спрегнати на елементи от H също принадлежат на H:

$$egin{array}{ll} g_1.\,t_1 &=& (gh_1)(th_2) = g(h_1t)h_2 = \ &=& g(t.\,t^{-1})(h_1t)h_2 = (gt)(t^{-1}h_1t)h_2 = \ &=& gt(h_3)h_2 = gt.\,h_4 \in (gt)H \ &=& ext{ където } h_3 = t^{-1}h_1t \,\in H; \ \ h_4 = h_3.\,h_2 \in H. \end{array}$$

Получихме g_1 . $t_1 \in (gt)H$, следователно $(g_1t_1)H = (gt)H$ и окончателно се получи, че при H е нормална подгрупа, така дефинираното произведение не зависи от елемента, който сме взели да представлява съседния клас.

Определение:

Ако H е нормална подгрупа, определя се бинарна операция в множеството от съседни G/H по следния начин:

$$(qH).(tH) = (q.t)H.$$

Забележка: Когато групата е записана адитивно (L,+), тогава и операцията между съседните класове се записва с "+" и при $T \lhd L$ записваме: (a+T)+(b+T)=(a+b)+T

3.1. Факторгрупата е група

Твърдение:

$$G \diagup H = \{gH \mid g \in G\}$$

е група, относно въведената операция (gH). (tH)=(g,t)H .

Доказателство:

Показахме, че въведената операция между съседни класове е коректно определена и е бинарна за G/H. Проверяваме дали G/H е група:

• *Асоциативност*: Следва непосредствено от асоциативността на групата G:

$$(gH.tH). pH = (gtH). pH = ((gt)p)H =$$

= $(g(tp))H = gH. (tpH) =$
= $gH. (tH. pH).$

- Единичен елемент: Подгрупата H, разглеждана като съседен клас eH = H играе ролята на единичен елемент в G/H, защото: H, gH = eH, gH = (eg)H = gH.
- ullet Всеки елемент има обратен: Ако gH произволен елемент от G/H, тогава

$$gH. g^{-1}H = (g. g^{-1}). H = eH = H,$$

следователно $(gH)^{-1} = g^{-1}H$.

Определение:

Когато $H \lhd G$ е нормална подгрупа, групата $G \diagup H = \{gH \mid g \in G\}$, с разглежданата операция (gH). (tH) = (g.t)H се нарича факторгрупа на групата G факторизирана по H.

Свойство: Ако $H \lhd G$ е нормална подгрупа на G и индексът |G:H| е крайно число, тогава $|G/H| = |G:H| = \frac{|G|}{|H|}$.

3.2. Примери

Пример

Нека да разгледаме симетричната група S_n , която се разбива на две подмножества

- ullet четни елементи $A_n=\{arphi\in S_n|\ arphi$ четен $\};$
- нечетни елементи $B_n = \{ arphi \in S_n | \; arphi \;$ нечетен $\};$

Знаем, че A_n е нормална подгрупа на S_n с индекс 2 и B_n е съседен клас на A_n . Тогава факторгрупата е $S_n \diagup A_n = \{A_n, B_n\}$ и прилагайки известните правила за четност на композицията на две транспозиции получаваме таблицата за умножение във факторгрупата

$$\begin{array}{c|ccc}
 & A_n & B_n \\
\hline
A_n & A_n & B_n \\
B_n & B_n & A_n
\end{array}$$

Ппимеп

Да разгледаме групата $\mathbb{Z}_n=\{\overline{0},\overline{1},\ldots,\overline{n-1}\}$ от класовете остатъци по модул n. Непосредствено се вижда, че класовете остатъци по модул n са съседни класове на подгрупата $n\mathbb{Z}$:

$$\overline{k} = \{k + nz \mid z \in \mathbb{Z}\} = k + n\mathbb{Z}.$$

Определихме операцията в \mathbb{Z}_n по следния начин:

$$\overline{a} + \overline{b} = \overline{a+b}$$

и ако класовете остатъци $\overline{a},\overline{b}$ се запишат като съседни класове получаваме

$$(a+n\mathbb{Z})+(b+n\mathbb{Z})=(a+b)+n\mathbb{Z}.$$

Следователно методът, по който сме получили групата от класовете остатъци по модул n, е точно начина за факторизиране на адитивната група $\mathbb Z$ по подгрупата $n\mathbb Z$, затова може да напишем

$$\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$$
.

Задача за упражнение: Да се докаже, че факторгрупа на циклична група е циклична група.

4. Теорема за хомоморфизмите

Една от основните зависимости при групите е теоремата за хомоморфизмите, която свързва понятията ядро, образ и факторгрупа при поризволен хомоморфизъм.

В последствие тази зависимост ще бъде продължена и до аналогична теорема за хомоморфизмите при пръстени. В Линейната алгебра аналог на тази теорема е теоремата за ранга и дефекта на линейно изображение.

4.1. Естествен хомоморфизъм

Лема:

Нека $H \lhd G$ е нормална подгрупа, тогава изображението $\eta: G \to G/H$, където $\eta(g) = gH$ е хомоморфизъм, който има ядро $\mathtt{Ker}(\eta) = H$ и се нарича $\mathit{ecmecmbeh}\ \mathit{xomomop}\phi\mathit{us}$ ъм.

Доказателство:

Нека $g,t\in G$ са произволни елементи от групата. Изпълнено е:

$$\eta(gt) = (gt)H = gH. \, tH = \eta(g). \, \eta(t),$$

откъдето получаваме, че $\ \eta$ е хомоморфизъм. Определяме ядрото на хомоморфизма $\mathtt{Ker}(\eta)=\{g\in G|\ \eta(g)=gH=eH=H\}\$ и като приложим свойството, че $gH=H\Leftrightarrow g\in H,\$ получаваме, че $\mathtt{Ker}(\eta)=H.$

Следствие:

Нека G е група и H < G е подгрупа. Тогава е изпълнено:

$$H \lhd G \iff \exists \ \varphi: G \to L$$
(хомоморфизъм) и $H = \mathrm{Ker}(\varphi)$.

Доказателство:

- ⇐) Това е основните свойства на ядрото и е доказано в точка 1.5.
- \Rightarrow) В лемата доказахме, че, когато $H \lhd G$ е нормална подгрупа, тогава H е ядро на естествения хомоморфизъм.

4.2. Теоремата

Теорема (Теорема за хомоморфизмите при групи)

Нека arphi:G o L е хомоморфизъм за групи. Тогава е изпълнено:

- $\operatorname{Ker}(\varphi) \lhd G$;
- $\operatorname{Im}(\varphi) \cong G / \operatorname{Ker}(\varphi)$.

Доказателство:

- ullet В точка 1.5 доказахме основното свойство на ядрото на хомоморфизъм $g.\left(\mathtt{Ker}(arphi)
 ight)=\left(\mathtt{Ker}(arphi)
 ight).g$, откъдето следва че $\mathtt{Ker}(arphi)\lhd G.$
- В същото твърдение показахме, че

$$t \in gH \iff arphi(t) = arphi(g).$$

Това ни дава основание коректно да дефинираме изображение

$$\widetilde{arphi}: G \diagup \mathtt{Ker}(arphi) o \mathtt{Im}(arphi) \subset L$$
, където $\widetilde{arphi}(gH) = arphi(g)$.

Ще покажем, че това изображение е търсения изоморфизъм:

ullet \widetilde{arphi} е хомоморфизъм, защото

$$egin{array}{ll} \widetilde{arphi}(g_1H.\,g_2H) = & \widetilde{arphi}((g_1.\,g_2)H) = \ & = & arphi(g_1.\,g_2) = arphi(g_1).\,arphi(g_2) = \ & = & \widetilde{arphi}(g_1H).\,\widetilde{arphi}(g_2H). \end{array}$$

- ullet \widetilde{arphi} е инекция, защото ако $g_1H
 eq g_2H$, тогава $arphi(g_1)
 eq arphi(g_2)$, откъдето се получава, че $\ \widetilde{arphi}(g_1H)
 eq \widetilde{arphi}(g_2H)$.
- $\widetilde{\varphi}$ е сюрекция, защото за произволен елемент $t=arphi(u)\in \mathrm{Im}(arphi)$ е изпълнено $t=\widetilde{arphi}(uH)\in \mathrm{Im}(\widetilde{arphi})$.

По този начин, се получава че $\widetilde{\varphi}$ е търсеното изображение. Схематично смисъла на доказаното може да се изобрази на следната диаграма

Казваме, че диаграмата е комутативна в смисъл, че по който и от двата пътя да се мине от върха G до върха $\mathrm{Im}(\varphi)\subset L$ се получава едно и също, т.е. $\varphi=\widetilde{\varphi}\circ\eta$.

4.3. Примери

Пример:

Да разгледаме изображението детерминанта $\det:GL_n(\mathbb{R}) o\mathbb{R}^*$, за което установихме че е хомоморфизъм и има ядро

$$\operatorname{\mathtt{Ker}}(\det) = \{A \in GL_n(\mathbb{R}) \mid \det(A) = 1\} = SL_n(\mathbb{R}),$$

което се състои от всички матрици с детерминанта 1 (тази група се нарича специална линейна група от степен n). Образът е множеството \mathbb{R}^* на всички ненулеви реални числа и като приложим теоремата за хомоморфизмите получаваме $GL_n(\mathbb{R})/SL_n(\mathbb{R})\cong \mathbb{R}^*$.

Пример:

Да приложим теоремата за хомоморфизмите към изображението $ho:\mathbb{R} o\mathbb{C}^*,\
ho(a)=\cos(a)+i\sin(a),\ orall\ a\in\mathbb{R}.$

Тригонометричните функции са переодични с период 2π , откъдето получаваме, че ядрото е $\mathrm{Ker}(\rho) = \{2k\pi \mid k \in \mathbb{Z}\} = <2\pi>$. Образът е множеството от комплексните числа с модул 1: $\mathrm{Im}(\rho) = U = \{z \in \mathbb{C} \mid |z| = 1\}$, получаваме $\mathbb{R}/<2\pi> \cong U$.

Пример:

Ако разгледаме отново групата G, с операцията умножение на матрици и нормалната подгрупа H, където

$$G = \left\{ \left(egin{array}{cc} a & b \ 0 & 1 \end{array}
ight) igg| \, a,b \in \mathbb{R}, a
eq 0
ight\}, \;\; H = \left\{ \left(egin{array}{cc} 1 & b \ 0 & 1 \end{array}
ight) igg| \, b \in \mathbb{R}
ight\}$$

Да установим, коя е факторгрупата $\,G/H.\,$

Изображението $\varphi:G o\mathbb{R}^*$, където $\varphi(\begin{pmatrix}a&b\\0&1\end{pmatrix})=a=\det\begin{pmatrix}a&b\\0&1\end{pmatrix}\,$ е хомоморфизъм на групи и намираме ядрото и образа $\mathrm{Ker}(\varphi)=H;\ \ \mathrm{Im}(\varphi)=\mathbb{R}^*,$

като приложим теоремата за хомоморфизмите при групи се получава $G\diagup H\cong \mathbb{R}^*.$