Asymptotic genealogies of sequential Monte Carlo algorithms

Suzie Brown

with Paul Jenkins, Adam Johansen & Jere Koskela

4 December 2020

Outline

- 1. Sequential Monte Carlo
- 2. Resampling and degeneracy
- 3. SMC genealogies
- 4. Examples

Sequential Monte Carlo

Approximate a sequence of distributions by simulating a population of particles evolving in time

Sequential Monte Carlo

Approximate a sequence of distributions by simulating a population of particles evolving in time

Iterate these steps:

- 1. Mutate particles via Markov transition density q_t
- 2. Weight particles by potential function g_t
- 3. Resample particles in proportion to their weights

Resampling

Stochastically map continuous weights $(w_t^{(1)}, \ldots, w_t^{(N)})$ to discrete offspring counts $(\nu_t^{(1)}, \ldots, \nu_t^{(N)})$

Resampling

Stochastically map continuous weights $(w_t^{(1)}, \ldots, w_t^{(N)})$ to discrete offspring counts $(\nu_t^{(1)}, \ldots, \nu_t^{(N)})$

Properties:

- Number of particles constant $\sum_{i=1}^{N} \nu_{t}^{(i)} = N$
- ► Equal weights after resampling $w_{t\perp}^{(i)} = 1/N$
- Unbiased $\mathbb{E}[\nu_t^{(i)}|w_t^{(1:N)}] = Nw_t^{(i)}$

Ancestral degeneracy: for $t \ll T$, few distinct samples are available

Resample less often?

Resample less often?

Adaptive resampling: only resample when effective sample size falls below some threshold.

Resample more cleverly?

Resample more cleverly?

Low-variance resampling: resample in a way that reduces the extra randomness added by the resampling step.

Make use of killed samples?

Make use of killed samples?

Backward simulation: use a backward pass to sample new ancestors for the terminal particles.

Analysing genealogies

- \blacktriangleright How many particles should I use to maintain k distinct trajectories across time horizon T?
- ▶ How big a lag can I use in fixed-lag smoothing?
- ▶ How reliable is my smoothing estimator?
- ▶ How do resampling schemes compare?

▶ Label time in reverse

- Label time in reverse
- ► Population of *N* particles
- ▶ Sample $n \le N$ terminal particles at random

- ▶ Label time in reverse
- ► Population of *N* particles
- ▶ Sample $n \le N$ terminal particles at random
- lacktriangle Describe genealogy by stochastic process $(G_t^{(n,N)})_{t\in\mathbb{N}_0}$ on space of partitions of $\{1,\ldots,n\}$
- ▶ Elements i, j are in the same block of the partition $G_t^{(n,N)}$ iff particles i and j share a common ancestor at time t

- ▶ Label time in reverse
- Population of N particles
- ▶ Sample $n \le N$ terminal particles at random
- lacktriangle Describe genealogy by stochastic process $(G_t^{(n,N)})_{t\in\mathbb{N}_0}$ on space of partitions of $\{1,\ldots,n\}$
- ▶ Elements i, j are in the same block of the partition $G_t^{(n,N)}$ iff particles i and j share a common ancestor at time t
- ▶ Initially $G_0^{(n,N)} = \{\{1\}, \dots, \{n\}\}$
- ▶ The only possible non-identity transitions are those that merge blocks
- ▶ The trivial partition $\{\{1, ..., n\}\}$ is an absorbing state

Kingman's *n*-coalescent¹

- Continuous-time Markov chain on the space of partitions of $\{1, \ldots, n\}$
- ► Single pair mergers only
- Each pair merges independently at rate 1 (total merge rate $\binom{k}{2}$ while there are k distinct lineages)

image: Wikimedia Commons

¹J F C Kingman, Stochastic Processes & their Applications, 1982.

Time scale

Pair merger probability conditional on $(\nu_t^{(1)}, \dots, \nu_t^{(N)})$:

$$c_{N}(t) = rac{1}{(N)_{2}} \sum_{i=1}^{N} (
u_{t}^{(i)})_{2}$$

Time scale

Pair merger probability conditional on $(\nu_t^{(1)}, \dots, \nu_t^{(N)})$:

$$c_N(t) = rac{1}{(N)_2} \sum_{i=1}^N (
u_t^{(i)})_2$$

Rescale time by inverse:

$$au_{\mathit{N}}(t) := \inf \left\{ s \geq 1 : \sum_{r=1}^{s} c_{\mathit{N}}(r) \geq t
ight\}$$

Main theorem

Conditions:

▶ Parent-offspring assignments are uniform given offspring counts

Main theorem

Conditions:

- ▶ Parent-offspring assignments are uniform given offspring counts
- lacktriangle Time scale does not explode (i.e. $\mathbb{P}[au_N(t)=\infty]=0$ for all finite t)

Main theorem

Conditions:

- ▶ Parent-offspring assignments are uniform given offspring counts
- lacktriangle Time scale does not explode (i.e. $\mathbb{P}[au_N(t)=\infty]=0$ for all finite t)
- ▶ There exists a sequence (b_N) such that $\lim_{N\to\infty}b_N=0$ and

$$\frac{1}{(N)_3} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_3] \leq b_N \frac{1}{(N)_2} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_2]$$

Main theorem

Conditions:

- ▶ Parent-offspring assignments are uniform given offspring counts
- ▶ Time scale does not explode (i.e. $\mathbb{P}[\tau_N(t) = \infty] = 0$ for all finite t)
- ▶ There exists a sequence (b_N) such that $\lim_{N\to\infty} b_N = 0$ and

$$\frac{1}{(N)_3} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_3] \leq b_N \frac{1}{(N)_2} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_2]$$

Then the finite-dimensional distributions of the time-rescaled genealogies $\left(G_{\tau_N(t)}^{(n,N)}\right)_{t\geq 0}$ converge to Kingman's n-coalescent as $N\to\infty$.

Examples

- Multinomial resampling
- ► Stochastic rounding
- ► Conditional SMC with multinomial resampling

Multinomial resampling

Resample from a Categorical distribution, so offspring counts are Multinomial:

$$(
u_t^{(1)}, \dots,
u_t^{(N)}) \sim \mathsf{Multinomial}\left(N, (w_t^{(1)}, \dots, w_t^{(N)})\right)$$

Suzie Brown

²J Koskela, PA Jenkins, AM Johansen, D Spanò. Annals of Statistics, 2020.

Multinomial resampling

Resample from a Categorical distribution, so offspring counts are Multinomial:

$$(
u_t^{(1)}, \dots,
u_t^{(N)}) \sim \mathsf{Multinomial}\left(N, (w_t^{(1)}, \dots, w_t^{(N)})\right)$$

Suppose the potentials g_t and transition densities q_t satisfy

$$\frac{1}{a} \leq g_t(x, x') \leq a$$
 $\varepsilon h(x') \leq q_t(x, x') \leq \frac{1}{\varepsilon} h(x')$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probability distribution $h(\cdot)$.

Suzie Brown

²J Koskela, PA Jenkins, AM Johansen, D Spanò. *Annals of Statistics*, 2020.

Multinomial resampling

Resample from a Categorical distribution, so offspring counts are Multinomial:

$$(
u_t^{(1)}, \dots,
u_t^{(N)}) \sim \mathsf{Multinomial}\left(N, (w_t^{(1)}, \dots, w_t^{(N)})\right)$$

Suppose the potentials g_t and transition densities q_t satisfy

$$\frac{1}{a} \leq g_t(x, x') \leq a$$
 $\varepsilon h(x') \leq q_t(x, x') \leq \frac{1}{\varepsilon} h(x')$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probability distribution $h(\cdot)$.

Then the rescaled genealogies converge to the *n*-coalescent.²

Suzie Brown

²J Koskela, PA Jenkins, AM Johansen, D Spanò. *Annals of Statistics*, 2020.

 $\mathbf{Y}: \mathbb{R}_+^N o \mathbb{N}^N$ is a *stochastic rounding* of \mathbf{X} if for $i = 1, \dots, N$

$$Y_i \mid X_i = egin{cases} \lfloor X_i
floor & ext{with probability } 1 - X_i + \lfloor X_i
floor \\ \lfloor X_i
floor + 1 & ext{with probability } X_i - \lfloor X_i
floor \end{cases}$$

³D Crisan, T Lyons. Probability Theory & Related Fields, 1997.

⁴M Gerber, N Whiteley, N Chopin. *Annals of Statistics*, 2019.

 $\mathbf{Y}: \mathbb{R}_+^N o \mathbb{N}^N$ is a *stochastic rounding* of \mathbf{X} if for $i=1,\ldots,N$

$$Y_i \mid X_i = egin{cases} \lfloor X_i
floor & ext{with probability } 1 - X_i + \lfloor X_i
floor \\ \lfloor X_i
floor + 1 & ext{with probability } X_i - \lfloor X_i
floor \end{cases}$$

- lacksquare Take $X_i = Nw_t^{(i)}$ and $Y_i =
 u_t^{(i)}$
- ▶ By construction $\mathbb{E}[Y_i \mid \mathbf{X}] = X_i$
- ▶ Require further constraint $Y_1 + \cdots + Y_N = N$

³D Crisan, T Lyons. *Probability Theory & Related Fields*, 1997.

⁴M Gerber, N Whiteley, N Chopin. *Annals of Statistics*, 2019.

 $\mathbf{Y}: \mathbb{R}_+^N o \mathbb{N}^N$ is a *stochastic rounding* of \mathbf{X} if for $i = 1, \dots, N$

$$Y_i \mid X_i = egin{cases} \lfloor X_i
floor & ext{with probability } 1 - X_i + \lfloor X_i
floor \\ \lfloor X_i
floor + 1 & ext{with probability } X_i - \lfloor X_i
floor \end{cases}$$

- lacksquare Take $X_i = Nw_t^{(i)}$ and $Y_i =
 u_t^{(i)}$
- ▶ By construction $\mathbb{E}[Y_i \mid \mathbf{X}] = X_i$
- ▶ Require further constraint $Y_1 + \cdots + Y_N = N$
- ▶ Examples: systematic, residual-stratified, branching system³, SSP⁴ resampling

³D Crisan, T Lyons. *Probability Theory & Related Fields*, 1997.

⁴M Gerber, N Whiteley, N Chopin. *Annals of Statistics*, 2019.

Resample using any stochastic rounding procedure.

Resample using any stochastic rounding procedure.

Suppose the potentials g_t and transition densities q_t satisfy

$$\frac{1}{a} \leq g_t(x, x') \leq a$$
 $\varepsilon \leq q_t(x, x') \leq \frac{1}{\varepsilon}$

for constants $0 < \varepsilon \le 1 \le a < \infty$.

Resample using any stochastic rounding procedure.

Suppose the potentials g_t and transition densities q_t satisfy

$$\frac{1}{a} \le g_t(x, x') \le a$$
 $\varepsilon \le q_t(x, x') \le \frac{1}{\varepsilon}$

for constants $0 < \varepsilon \le 1 \le a < \infty$.

Then the rescaled genealogies converge to the *n*-coalescent.

A particle Gibbs⁵ scenario...

▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

- ▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$
- Gibbs sampler: alternate samples from $p(\theta \mid x_{0:T}, y_{0:T})$ (easy) and $p(x_{0:T} \mid \theta, y_{0:T})$ (using SMC)

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

- ▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$
- Gibbs sampler: alternate samples from $p(\theta \mid x_{0:T}, y_{0:T})$ (easy) and $p(x_{0:T} \mid \theta, y_{0:T})$ (using SMC)
- Standard SMC updates don't target the correct distribution

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

- ▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$
- ► Gibbs sampler: alternate samples from $p(\theta \mid x_{0:T}, y_{0:T})$ (easy) and $p(x_{0:T} \mid \theta, y_{0:T})$ (using SMC)
- Standard SMC updates don't target the correct distribution
- ▶ Use SMC updates that are *conditioned* on the previous $X_{0:T}$ trajectory (states and ancestors)

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

- ▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$
- ► Gibbs sampler: alternate samples from $p(\theta \mid x_{0:T}, y_{0:T})$ (easy) and $p(x_{0:T} \mid \theta, y_{0:T})$ (using SMC)
- ▶ Standard SMC updates don't target the correct distribution
- ▶ Use SMC updates that are *conditioned* on the previous $X_{0:T}$ trajectory (states and ancestors)
- Resampling must deterministically propagate this "immortal lineage"

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

Consider a conditional SMC algorithm with multinomial resampling.

Consider a conditional SMC algorithm with multinomial resampling.

Assume

$$\frac{1}{a} \leq g_t(x,x') \leq a$$
 $\varepsilon h(x') \leq q_t(x,x') \leq \frac{1}{\varepsilon} h(x').$

Consider a conditional SMC algorithm with multinomial resampling.

Assume

$$\frac{1}{a} \leq g_t(x,x') \leq a$$
 $\varepsilon h(x') \leq q_t(x,x') \leq \frac{1}{\varepsilon} h(x').$

Then the rescaled genealogies converge to the *n*-coalescent.

Quantities of interest

► Time to MRCA: first time when there is only one distinct lineage

Quantities of interest

- ► Time to MRCA: first time when there is only one distinct lineage
- $ightharpoonup T_k$: time interval where there are exactly k distinct lineages

Quantities of interest

- ► Time to MRCA: first time when there is only one distinct lineage
- $ightharpoonup T_k$: time interval where there are exactly k distinct lineages
- ► Total branch length: storage cost

▶ Adaptive resampling: should slow down the time-scale on which the coalescent is recovered (it may have some other effect)

- ▶ Adaptive resampling: should slow down the time-scale on which the coalescent is recovered (it may have some other effect)
- ▶ Low-variance resampling: stochastic rounding schemes have minimal variance

- ▶ Adaptive resampling: should slow down the time-scale on which the coalescent is recovered (it may have some other effect)
- ▶ Low-variance resampling: stochastic rounding schemes have minimal variance
- ▶ Backward simulation: the backward-in-time process is not a pure coalescent, and is not induced by resampling

In conclusion...

- ► Genealogies can help us to analyse performance of SMC algorithms which suffer ancestral degeneracy
- ▶ We have simple conditions under which these genealogies converge to Kingman's *n*-coalescent
- ▶ These conditions are verified for some important classes of SMC algorithms

Open questions

- ▶ Weak convergence
- ▶ Other resampling schemes (stratified, residual-multinomial, ...)
- Effect of adaptive resampling
- \blacktriangleright Estimating the time scale τ_N a priori (since it depends on observed offspring counts)
- Finite-N behaviour

Thank you!

pre-print at arXiv:2007.00096