AI-FLARES

WP5100-D2: Technological service for data analysis of solar flares observations

The technological service offered by AI-FLARES is made of two kinds of pipelines: pipelines already included within the paths related to NASA and ESA missions; stand-alone pipelines included in the AI-FLARES gihthub repository. We now list these pipelines together with the corresponding links.

Pipelines included in missions' trees:

- SE-DESAT (desaturation pipeline release 1.0):

 https://hesperia.gsfc.nasa.gov/ssw/packages/desat/idl/desat_gen__define.pro
 https://hesperia.gsfc.nasa.gov/ssw/packages/desat/idl/desat_pril__define.pro
 https://hesperia.gsfc.nasa.gov/ssw/packages/desat/idl/dst_fit__define.pro
 https://hesperia.gsfc.nasa.gov/ssw/packages/desat/idl/dst_strpril__define.pro
 https://hesperia.gsfc.nasa.gov/ssw/packages/desat/idl/main_desat_pril_test.pro
- MEM_GE (maximum entropy for RHESSI and STIX):
 - o https://hesperia.gsfc.nasa.gov/ssw/gen/idl/image/vis/mem_ge.pro
 - o https://hesperia.gsfc.nasa.gov/ssw/gen/idl/image/vis/mem_ge_fb.pro
 - https://hesperia.gsfc.nasa.gov/ssw/gen/idl/image/vis/mem_ge_mean_visib.p
 ro
- STIX ground software (imaging pipeline):
 - Pixel data construction routines:
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/pixel data/stx construct pixel data.pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/pixel_data/stx_construct_pixel_data_summed.pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/pixel data/stx sum pixel data. pro
 - Visibility construction and calibration routines:
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/vis/stx calibrate visibility.pro
 - https://github.com/i4Ds/STIX GSW/blob/master/stix/idl/processing/vis/stx_construct_calibrated_vis_ibility.pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/vis/stx_construct_visibility.pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/vis/stx pixel data summed2vis ibility.pro
 - Routines for reading auxiliary fits files containing aspect information:
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/aux_data/stx_create_auxiliary_ data.pro

- Routines for performing coordinate transformation (for precisely locating the STIX reconstructed maps):
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/coordinates/stx hpc2rtn coord .pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/coordinates/stx hpc2stx coord. pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/coordinates/stx_rtn2solo_coord_.pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/coordinates/stx_rtn2stx_coord. pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/coordinates/stx_solo2stx_coord_ .pro
 - Routines for calibrating the sub-collimator transmission:
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/subcollimator/stx grid transmi ssion.pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/subcollimator/stx_subc_transmi ssion.pro
- Routines for determining the location of the flare:
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/imaging/stx estimate flare loc ation.pro
- O VIS FWDFIT PSO routines:
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/imaging/vis fwdfit func pso.pr
 o
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/imaging/vis fwdfit pso.pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/imaging/vis fwdfit pso circle struct define.pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/imaging/vis_fwdfit_pso_func_ makealoop.pro
 - https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/imaging/vis fwdfit pso loop s truct define.pro
 - https://github.com/i4Ds/STIX GSW/blob/master/stix/idl/processing/imaging/vis_fwdfit_pso_multipl
 e src_create.pro

- https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/imaging/vis fwdfit pso source 2map.pro
- https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/imaging/vis fwdfit pso src bif urcate.pro
- https://github.com/i4Ds/STIX GSW/blob/master/stix/idl/processing/imaging/vis fwdfit pso src nf urcate.pro
- https://github.com/i4Ds/STIX-GSW/blob/master/stix/idl/processing/imaging/vis fwdfit pso src str ucture define.pro

Stand-alone pipelines:

- Adaptive SE-DESAT (desaturation pipeline release 2.0): https://github.com/theMIDAgroup/AI-FLARES/tree/main/WP2100
 D1/SE DESAT adaptive
- Flare forecasting pipelines:
 - https://github.com/theMIDAgroup/AI-FLARES/tree/main/WP4100-D2/flare forecasting ensemble learning
 - https://github.com/theMIDAgroup/AI-FLARES/tree/main/WP4100-D2/forecasting solar storm september 2017
 - https://github.com/theMIDAgroup/AI-FLARES/tree/main/WP4100-D2/topological descriptor flare forecasting
 - https://github.com/theMIDAgroup/AI-FLARES/tree/main/WP4100-D2/video based DL flare forecasting
- Imaging spectroscopy pipeline for RHESSI
 - https://github.com/theMIDAgroup/AI-FLARES/tree/main/WP3100-D1/RHESSI VisibilityInversionSoftware
- Imaging spectroscopy pipeline for STIX:
 - https://github.com/theMIDAgroup/AI-FLARES/tree/main/WP3100-D1/STIX VisibilityInversionSoftware
- Imaging pipelines
 - o https://github.com/theMIDAgroup/AI-FLARES/tree/main/stx_uv_smooth
 - https://github.com/theMIDAgroup/AI-FLARES/blob/main/stx uv smooth/uv smooth codes/stx uv smooth.pro
 - https://github.com/theMIDAgroup/AI-FLARES/blob/main/stx uv smooth/uv smooth codes/stx make map uv s mooth.pro
 - o https://github.com/theMIDAgroup/AI-FLARES/blob/main/stx uv smooth/uv smooth codes/uv smooth.pro
 - https://github.com/theMIDAgroup/Al-FLARES/blob/main/stx uv smooth/uv smooth codes/uv smooth vs k.pro
 - https://github.com/theMIDAgroup/AIFLARES/blob/main/stx_uv_smoo th/uv_smooth_codes/uv_smooth_augmented_feature.pro

- https://github.com/theMIDAgroup/AIFLARES/blob/main/stx_uv_smoo th/uv_smooth_codes/uv_smooth_vsk.pro
- https://github.com/theMIDAgroup/AI FLARES/blob/main/stx uv smooth/uv smooth codes/matern kernel interp.pro
- https://github.com/theMIDAgroup/AI FLARES/blob/main/stx uv smooth/uv smooth codes/distance matri x.pro