5 TEAM DeepLearning Computer Vision

프로젝트 주제

▮ 프로젝트 주제를 선정하게 된 이유와 CV이 필요한 이유

2 Data Set 분석 I 사용한 Data Set 에 대한 분석 및 모델링

3 최적의 Model선정 및 회고 I 사용한 Data set과 model에 대한 회고

프로젝트 주제 & CV의 필요성

2021년 12월 29일 보건복지부 - 보도자료

<주요 악종별 발생률(남녀 전체) 추이 (단위: 명/10만 명) >

구분	위	대장	간	자궁경부	폐	유방	전립선	갑상선
'99	45.6	21.3	28.9	9.7	28.9	12.8	3.2	7.3
'09	45.3	38.2	24.0	6.4	28.9	22.5	10.7	56,7
15	35.5	32.1	19,0	5.6	27.3	28.3	11.4	52,4
18	31,7	29.9	16.8	5.3	28.3	33.0	14.4	49,4
19	30.8	30.0	16.1	4.8	28.2	34.3	15.5	52.3

주요 암 중에서 발생률이 가장 높은 암이 갑상선 암이다.

- 동위원소검사 (갑상선 스캔)

- 조직검사(세침흡인 세포검사)

- 초음파 검사

- 갑상선암 초음파 진단, 인공지능분석으로 보다 정확하게

Data Set 분석 및 모델링

Image Data Sample

데이터에 대한 목표설정

- 1. Model Select: VGG, ResNet, EfficientNet
- DeepLearning : Classification
- 3. 성능 체크 : AUROC
- 4. HeapMap : Grad-CAM

Model Select: VGG, ResNet, EfficientNet

VGGnet

Residual block

ResNext

Figure 18. The schema for 17×17 to 8×8 grid-reduction module. Reduction-B module used by the wider Inception-ResNet-v1 network in Figure 15.

EfficientNet

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

원본 이미지를 통해 학습한 결과

VGG model

ResNet-158 model

EfficientNet model

Epoch	005		
Loss	0.2807		
Accuracy	0.8852		
Val-Loss	1.1896		
Val-Acc	0.2466		

EfficientNet model Grad-CAM

Crop 이미지를 통해 학습한 결과

이미지 데이터 _ Crop

*원본 이미지에서 감상선 부분에 해당하는 부분을 강사님께 들어서 이미지를 crop하였다.

1. VGG model

VGG16 model에 대한 classification 결과

020-0.3502-0.8582-0.3409-0.8680 hdf5

Crop 이미지를 통해 학습한 결과

epoch를 돌릴수록 성능이 더 좋아졌다.

다만 아까 원본 이미지에 대해서 성능이 그마나 좋았던 EfficientNet_B5에 대해서 Grad-CAM을 보았을 때,

Feature 선택이 잘 안되었기에 해당 과정도 함께 확인

VGG model

Epoch	020
Loss	0.3502
Accuracy	0.8582
Val-Loss	0.3409
Val-Acc	0.8680

VGG model

ROC Curves

EfficientNetB5 model

Epoch	006
Loss	0.3090
Accuracy	0.8742
Val-Loss	0.3629
Val-Acc	0.8540

EfficientNet model

Object Detection & MultiInput

Object Detection

MultiInput

```
[34] train_generator = datapen_train.flow_from_dataframe(
dataframe = train_dfl),
directory = train_dflectory,
x_col + 'Best', 'Best',
y_col + 'Best', 'Indignate | Septime | Septime |
x_trays_train_train_dfl, |
x_trays_train_train_dfl, |
class_moder_train_dfl, |
x_train_train_dfl, |
x_train_dfl, |
x_train_dfl,
```

Found 0 validated image filenames belonging to 0 classes.

/usr/local/lib/pythos.7/dist-peckages/koras_preprocessing/image/datafrare_iterator.py:282: UserWarning: Found 8946 invalid image filename(s) in x_col="SubjectID". These filename(s, fornacc, in x_rol="SubjectID". The x_rol

[35] val_generator = datagen_train.flow_from_dataframe(dataframe=train_df), directory_train_directory_, x_col = Sephentio, train_directory_

subset - "validation")

Found 0 validated image filenames belonging to 0 classes.

/usr/local/lib/python3.7/dist-packages/Koras_proprocessing/image/dataframe_iterator.py:282: UserWarning: Found 8946 invalid image filename(s) in x_col="SubjectID". These filename(s) formation in x_col="SubjectID". These filename(s) formation in your local filename(s) for x to your local filename(s) for your local filename(s) for x to your local filename(s) for your local filename(s) for x to your local filename(s) for x to

