Исследование энергетического спектра бетачастиц и определение их максимальной энергии при помощи магнитного спектрометра

Шмаков Владимир, ФФКЭ - Б04-105

Цель работы

Исследовать энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}.$ Определить максимальную энергию частиц.

Теоретические сведения

Бета-распад — превращение ядер, при котором массовое число остаётся неизменным, а заряд изменяется на единицу. В данной работе имеем дело с электронным распадом при котором выделяется антинейтрино.

$${}_{
m Z}^{
m A}{
m X}
ightarrow {}_{
m Z-1}^{
m A}{
m X}+e^-+\widetilde{
u}$$

Найдём вероятность того что электрон вылетит с импульсом $(\vec{p},\vec{p}+d\vec{p})$, а антинейтрино с импульсом $(\vec{k},\vec{k}+d\vec{k})$.

1. Закон сохранения энергии:

$$E_e - E - ck = 0$$

2. Релятивистский инвариант:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2$$

3. Искомая вероятность пропорциональна произведению дифференциалов $d^3 \vec{k}$ и $d^3 \vec{p}$. Предположим что коэффициент пропорциональности равен D. При этом при помощи δ функции можем учесть условие закона сохранения энергии:

$$dw = D \,\, \delta(E_e-E-ck) \,\, d^3ec p \,\, d^3ec k$$

4. Перепишем выражение для dw с использованием элементов телесных углов вылета электрона и нейтрино - $d\Omega_e$ и $d\Omega_{\nu}$ соответственно:

$$dw = D \,\, \delta(E_e - E - ck) \,\, p^2 dp \,\, k^2 dk \, d\Omega_e \,\, d\Omega_
u$$

Вероятность dw может быть использована для нахождения числа распадов при которых импульс электрона лежит в диапазоне $(\vec{p},\vec{p}+d\vec{p})$, а импульс нейтрино в диапазоне $(\vec{k},\vec{k}+d\vec{k})$: $dN=N_0dw$.

Проинтегрируем dw по всем значениям импульса нейтрино и по всевозможным направлениям вылета. В результате получим выражение, описывающее форму β -спектра:

$$N(E) = rac{dN}{dE} = N_0 B \sqrt{E(E+2mc^2)} (E_e - E)^2 (E+mc^2)$$

Энергетический спектр рассматриваемого в эксперименте β распада. $B = D*(16\pi^2/c^4)$

В нерелятивистском приближении форма спектра немного упрощается:

$$N(E) = rac{dN}{dE} = \sqrt{E}(E_e - E)^2$$

В реальности спектр имеет более сложную форму. Дело в том, что формула выше не учитывает конверсионную область спектра.

Конверсионные электроны — электроны испускаемые вторичными ядрами. Конверсионные электроны <<рождаются>> со строго определённой энергией.

Методика

Оборудование

- Источник β излучения
- Магнитная линза
- Форвакуумный насос
- ПЭВМ и электронный счетчик

Экспериментальная установка

Рисунок 1. Схема β-спектрометра

Энергия частиц измеряется при помощи спектрометра, изображенного на рисунке 1. Для заряженных частиц тонкая катушка эквивалентна линзе, фокусное расстояние которой $f \propto p_e^2/I^2.$

Таким образом при заданной силе тока на входное окно счётчика фокусируются электроны с определённым импульсом. Так как геометрия прибора в течение всего опыта остается неизменной, импульс сфокусированных электронов пропорционален величине тока: $p_e = kI$.

Обработка экспериментальных данных

Исходные данные (с учетом измерения фона) изображены на рисунке 2.

Рисунок 2. Данные полученные в ходе эксперимента.

Откалибруем спектрометр. Для этого воспользуемся известным значением энергии конверсионных электронов. При помощи функции argmax найдём ток I_{κ} - ток соответствующий энергии конверсии. Теперь можем найти калибровочный коэффициент $k=E_{\kappa}/(c*I_k)$, где $E_{\kappa}=634$ — энергия электронов конверсии.

Значение калибровочного коэффициента позволяет изобразить энергетический спектр β распада:

Рисунок 3. Энергетический спектр β распада.

Для нахождения максимальной энергии электрона воспользуемся процедурой Ферми-Кюри — построим зависимость величины $\sqrt{N}/p^{3/2}$ от энергии, и найдём наилучшую прямую, проходящую через точки, лежащие в середине спектра:

Рисунок 4. График Ферми — Кюри

Пересечение наилучшей прямой с осью x есть максимальная энергия электрона. В нашем эксперименте она оказалась равной: $E_m=610\pm 10 \kappa$ эВ.

Вывод

В результате эксперимента удалось исследовать энергетический спектр β распада цезия 137. Результат эксперимента сходится с теоретической моделью. Форма спектра действительно похожа на <<колокол>>.

Экспериментальная установка спроектирована достаточно точно. Разрешающая способность установки(по энергии) может быть оценена из добротности конверсионного пика: $R \sim Q_\kappa/2 \sim 20~\kappa$ эВ.