Theorem: If $A \in C^{n \times n}$, if $\lambda = \text{eigenvalues of } A$, then $\lambda \in C_i$ for some $\lambda \in C_i$.

Note: $\lambda \in C_i$ $\lambda \in C$

Suppose

Vk = entry s.t. | Vk | 7 | Vil, ..., | Vn | 70

Show Tre Ck ruse it kin A

ÎAkjv; = Xk

1 Duk - Akkul = | ZAki Vi | E Z | Akilluj |
j+k

< 5 |Aks | |Vk | = Vk |Vk |
j+k

So M-Akk / VK / STK / VK / -> 12-AKK / STK

Corollary: If A is stochastic, then any eigenvalue
7 lies in 12/51
Proof: Know 0 5 Aii 51
Know ZECi = { ZE [12 - Aii ≤ ri]
for some i=1,,n, ri=1-Ai
So C1 = {2 : 12 <1}
Fact (requires proof)
dim Ez (A) = 1
AL=2 => ealh culumn
of 2 identical.