2MCACC2: OPERATING SYSTEMS

Total No. of Hours: 52 Hours/Week: 04

<u>Course Objective:</u> To understand the underlying principles, techniques and how the various elements that underlie operating system interact and provides services for execution of application software.

Course Outcome: Students will be able to

CO1: Understand the basics of Operating System Structure and various managerial functions of Operating System.

CO2: Apply and analyse the techniques of process scheduling, page replacement and disk scheduling algorithms to solve problems.

CO3: Understand the concepts of the Deadlock and different approaches to memory, file & I/O management.

CO4: Demonstrate the impact of virtualization and cloud through case study.

CO5: Analyse and critique example OS – UNIX, LINUX, Android and Windows.

	Introduction: What is an Operating System - The Operating System as an	
	Extended Machine - The Operating System as a Resource Manager History of	
Unit I	Operating System -First – Fifth Generation Computers – Computer Hardware	4 hrs
	Review - The Operating System Zoo - Operating System Concepts - System	
	Calls – Operating System Structure	
	Processes and Threads : Processes - Threads - Interprocess Communication-	
	Scheduling – Classical IPC problems – Research on Processes and Threads.	
Unit II	Memory Management: A memory Abstraction : Address Spaces - Virtual	14 hrs
	Memory – Page Replacement Algorithms – Design Issues for Paging Systems	
	- Implementation Issues - Segmentation - Research on Memory Management	
	File System: Files – Directories- File System Implementation – File System	
	Management and Optimization – Example File Systems- Research on File	
Unit III	Systems. Input/ Output: Principles of I/O Hardware - Principles of I/O	14 hrs
	Software – I/O Software Layers – Disks – Clocks – User Interfaces – Thin	
	Clients – Power Management- Research on Input/output. Deadlocks: Resources	
	- Introduction to Deadlocks - The Ostrich Algorithm - Deadlock detection and	
	recovery - Deadlock Avoidance- Deadlock Prevention - Other issues -	
	Research on Deadlocks	
	Virtualization and the Cloud: History - Requirements for Virtualization -	
Unit IV	Type 1 and Type 2 Hypervisors – Techniques for efficient Virtualization –	12 hrs
	Memory Virtualization - I/O Virtualization - Clouds - Case Study -	

	VMware. Multiple Processor Systems: Multiprocessors – Multicomputers –	
	Distributed Systems. Security : The Security Environment – Operating Systems	
	Security – Controlling Access to Resources – Formal models of Secure Systems	
Unit V	Case Study 1: UNIX, LINUX and ANDROID Case Study 2: Windows	8 hrs

REFERENCE BOOKS

- [1] Andrew S. Tanenbaum, Herbert Bos, "Modern Operating Systems", Pearson Education, Fourth Edition.
- [2] William Stallings, "Operating System", Pearson Education, Eighth Edition.
- [3] Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Concepts", WSE Willey, Eighth Edition.
- [4] Andrew S. Tanenbaum, Albert S Woodhull, "Operating System Design & Implementation", Pearson Education, Third Edition.
- [5] J. Archer Harris, "Schaum's Outline of Operating Systems", McGraw-Hill, Nov 2001.
- [6] Lubomir F. Bic, Alan C. Shaw, "Operating systems principles", Prentice Hall, Nov 2002.