

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

GODFREY LOWELL CABOT SCIENCE LIBRARY of the Harvard College Library

This book is FRAGILE

and circulates only with permission.

Please handle with care
and consult a staff member
before photocopying.

Thanks for your help in preserving Harvard's library collections.

HYDRAULIC TABLES,

TO AID THE CALCULATION OF

WATER AND MILL POWER, WATER SUPPLY, AND DRAINAGE OF TOWNS,

ANT

Improvement of Navigable Kivers;

TOGETHER WITH THE PROPERTIES AND STRENGTH OF MATERIALS; USEFUL NUMBERS, AND LOGARITHMS.

ALSO,

TIDE TABLES for 1852, 1853, 1854; TIDAL CONSTANTS;

WITH VARIOUS

PHENOMENA OF TIDAL RIVERS.

BY NATHANIEL BEARDMORE,

MEMBER OF THE INSTITUTION OF CIVIL ENGINEERS; FELLOW OF THE GEOLOGICAL SOCIETY; MEMBER OF THE BRITISH METEOROLOGICAL SOCIETY;

ETC. ETC.

London:

PRINTED AND PUBLISHED BY WATERLOW AND SONS, PARLIAMENT STREET, WESTMINSTER; BIRCHIN LANE, AND LONDON WALL, CITY.

WEALE, 59, HIGH HOLBORN;
A. & C. Black, Edinburgh; Webb & Hunt, Liverpool; J. & J. Thomson,
Manchester; Armenquad, Paris.

1852.

Eng 965.1.9.

28.1

Digitized by Google

ERRATA.

Page xvi	. For	lines—						
Seve	ern Fran	nilode to Hock Crib,	14	miles	8 (i	nches fa	ll per i	mile).
Hoc	k Crib t	o Sharpness Point	24	,,	5	**	"	
Read								
Fran	milode t	o Hock Crib	8	miles	12.5	(inches i	all per	mile).
Hoc	k Crib t	o Sharpness Point	8	"	14	"	"	
Page lxx	cxi., line	2 of concluding rea	nar!	ks				
For	date rec	d data.						
On table	19, pag	e 36, last line but fo	ur-	-				
For	Irish M	ile == 3038 yards,						
Rea	A	= 2240 yards.						
Page 6.	Table	2, column 2,—again	st ·S	4, for	41.17,	read 42	17.	
**	:99	column 4,again	st ·5	5, for	86.69,	read 86	:89.	

TO

JAMES MEADOWS RENDEL, F.R.S.,

PRESIDENT OF THE INSTITUTION OF CIVIL ENGINEERS

IN RECOGNITION OF HIS GREAT ABILITIES,

AND IN

TOKEN OF MANY ACTS OF KINDNESS

THROUGH AN ACQUAINTANCE OF TWENTY ONE YEARS,

Chis Work is Inscribed,

BY HIS OLD PUPIL,

THE AUTHOR.

PREFACE TO THE FIRST EDITION.

In the computation of hydraulic questions daily required by an Engineer, much labour is saved by the systematic use of Tables; the means of detecting errors are far greater than in isolated calculations; and the results, when tabulated, are more useful than any mere formula: the one shows the object attained—the other gives the means only.

In the following treatise, the author has endeavoured to extend the basis of hydraulic calculations, on which there should not be much difference of opinion, to systematic results; the Tables are reduced to uniform measurements throughout, and the range of computations for slopes, velocities, &c., are such as will be required in practice; the whole being expressed in decimal measures, which give great facility for application.

To these are added the general qualities of materials, with computations for the strength of iron beams of approved proportions, concluding with Tables of Numbers, &c., generally required in a treatise intended for ordinary use of the Practical Engineer. The powers, roots, and logarithms of numbers are appended in a simple and legible form, to save the labour of searching them from different works in the numerous requirements of the profession.

The computations of all the principal Tables are original, and have taken much time and labour. It would be scarcely possible to enumerate all the authorities; among others consulted are—Robison, Leslie, Bossut, D'Aubuisson, Rennie, &c.; without previous researches, it would be useless to

PREFACE TO THE FIRST EDITION.

attempt a treatise of this kind, and therefore, probably, the suggestions of many have been useful, although not specifically acknowledged.

The leading object has been to induce a more general and systematic application of hydraulic formulæ to practice: for the principles, being subject to the laws of gravity, must be uniform; therefore, however varying the means and circumstances, the results should be consistent.

The remarks upon rain-fall and the produce of springs, have been made rather to give examples than to propound any particular theory. It is hoped that others may be induced to give their experience and facts, to throw more light upon the subject.

When time permits, it is intended to add a Supplement, containing a generalized view of the phenomena of tidal estuaries, as practically useful to the engineer, with some more extended remarks on the flow of water from large districts.

13, Great College-street,
Westminster, May, 1850.

PREFACE TO THE SECOND EDITION.

THE First Edition of this work was received with much greater favour than the author had at all expected; and by the kindness of his friends, the sale was large, for so technical a work. This will be the best excuse for the new form in which the book is offered. To extend the use of this edition as a hand-book for the Engineer, in matters relating to Hydraulics and Hydrodynamics, many new Tables have been constructed, and Tide Tables are inserted at the close of the book, chiefly compiled from the data offered in the annual Admiralty Tide Tables, and from the Nautical Almanac.

The Table of Constants for time and height of high water and mean spring range has been much extended, from various sources, including our own observations; where blanks are left, it will be easy to fill up as opportunity requires and offers.

The introductory remarks on the use of the Tables, have been amended, and more information is interwoven, chiefly on our English rivers—the drainage areas of the more important of which have been especially computed from the Ordnance Map. The original remarks on tides and rivers are limited, or otherwise we should have been travelling out of the scope of this treatise; experience and practice are the great guide; and therefore, to obtain the best data for practical results, we have carefully collated all the well-authenticated data within our reach or personal experience, and had them condensed into tabular forms. The author has to thank several professional friends—Messrs. Cubit, Rendel,

PREFACE TO THE SECOND EDITION.

Rennie, Simpson, &c.—for their kind assistance in permitting the use of, and communicating original papers. We have also to acknowledge accessible information at the disposal of Admiral Sir F. Beaufort, F.R.S., Captain Drinkwater Bethune, and Captain Vetch, of the Admiralty Harbour department, whose published reports contain good data—not omitting to mention Captain Beechey's very valuable published papers; others to whom we are indebted, are named especially when the information is due to them.

Considering the small extent of engineering literature, and the immense stores of knowledge constantly accumulating in the office of an Engineer, it is to be wished that more of these data were placed at the public disposal, for it is on such alone that any true theories can be constructed.

Both editions of this work have been got up among a multitude of other necessary avocations; and the laborious details of calculation have been carefully and I believe accurately worked out by assistants—Mr. A. Sanderson for the first, and Mr. R. Despard in the present edition.

September, 1851.

CONTENTS

OF THE

REMARKS OF THE USE OF THE TABLES.

and the second of the second o	
Sluices, &c.—Table 1. Description and Use—to find Discharge,	• l
with examples	1 <u>7</u> 7—2
Weirs.—Table 2. Formula; Practical Application	xixii
Velocities, Surface, Mean and Bottom of Rivers, &c.—Table 3,	
	zii—ziii
Arterial Drains, New Cuts, and Rivers, Tables 4 and 4a. Des-	
cription and Formula applicable to twelve or more rates of fall	
beyond those in the Table: Fall of Lincolnshire Drains;	
Characteristics of Rivers; Table of Velocities and Fall of	
	ziii—zvi
Circular and Egg-shaped Culvert.—Tables 4b and 4c	xvii
Pipe under Pressure.—Tables 5 and 5a—Universally appli-	44
cable; formula for table, and for obtaining velocity, head, and	
diameter—Practical Remarks—Experiments on the Height and	
Discharge of Jets, at Southwark, Preston, Leeds, London, New York, Philadelphia—French Experiments—Fire Engine	
Power	xvii—xxi
Priction of Bends, Bridges, and Pipes.—Table 6 and 6a.	
Formula for construction—New Application to varying sec- tional areas—Remarks on Bends in the Vertical Plane—	
tional areas—Remarks on Bends in the Vertical Plane—	
Remarks on other causes of diminution of Discharge—Obstruc-	
tion of Bridges-Smeaton's table for Pipes	xxi—xxiii
Water Power.—Table 7. Value of Horse Power—Commercial	
Effect varies in application-Fairbairn's Water-wheels-Mr.	
	xxiii—xxiv
Rennie's Experiments	TAIL TAIL
Comish Engine for Dumping Wester required for Food	
—Cornish Engine for Pumping—Water required for Feed	XXV
Pressure of Mercury and Water, per square inch and per square	
foot.—Table 9	XXV
Weight per yard, and Strength of Pipes.—Table 10 Flood Discharges.—Table 11. Description of Tables—Dis-	XXV
Flood Discharges. — Table 11. Description of Tables—Dis-	
charge for Draining or Town Supplies-Reference to Rain	
General Application of concret laws waviable. Estimate of	
Caugos Applicament of general laws, variable institution of	
Gauges—Application of general laws, variable—Estimate of Floods on the Shannen—Severn—Nene—Pentland Hills—Bol-	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bol-	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bol- ton—London Sewers—Heavy Rain near the Peak district—	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bol- ton—London Sewers—Heavy Rain near the Peak district— Examples of extensive width of Rainfalls—Floods of Small	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bol- ton—London Sewers—Heavy Rain near the Peak district— Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bol- ton—London Sewers—Heavy Rain near the Peak district— Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow— London Sewers—Mr. Leslie's Paper on a method for dividing	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bol- ton—London Sewers—Heavy Rain near the Peak district— Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow— London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	##V-##ix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district— Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow— London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Flow from Large Districts,—Table 12. Remarks on the	erv—xxix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Flow from Large Districts.—Table 12. Remarks on the Flow of Water from large districts—Springs draw from Areas	exy—xxix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Flow from Large Districts.—Table 12. Remarks on the Flow of Water from large districts—Springs draw from Areas beyond their Water-shed—Improved Drainage is damaging the	ezv—zriz
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Flow from Large Districts.—Table 12. Remarks on the Flow of Water from large districts—Springs draw from Areas beyond their Water-shed—Improved Drainage is damaging the low districts—Table of Mean Discharge from large districts—	erv—rrix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Remarks on the Flow of Water from large districts—Springs draw from Areas beyond their Water-shed—Improved Drainage is damaging the low districts—Table of Mean Discharge from large districts—Table of ordinary Summer ditto—remarks thereon—Discharge	nxa—xxix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Flow from Large Districts.—Table 12. Remarks on the Flow of Water from large districts—Springs draw from Areas beyond their Water-shed—Improved Drainage is damaging the low districts—Table of Mean Discharge from large districts—Table of ordinary Summer ditto—remarks thereon—Discharge of Sewers—instances of draughts, and the reverse in precipitous seaboard escarpments	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Flow from Large Districts.—Table 12. Remarks on the Flow of Water from large districts—Springs draw from Areas beyond their Water-shed—Improved Drainage is damaging the low districts—Table of Mean Discharge from large districts—Table of ordinary Summer ditto—remarks thereon—Discharge of Sewers—instances of draughts, and the reverse in precipitous seaboard escarpments	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Flow from Large Districts.—Table 12. Remarks on the Flow of Water from large districts—Springs draw from Areas beyond their Water-shed—Improved Drainage is damaging the low districts—Table of Mean Discharge from large districts—Table of ordinary Summer ditto—remarks thereon—Discharge of Sewers—instances of draughts, and the reverse in precipious seaboard escarpments	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Flow from Large Districts.—Table 12. Remarks on the Flow of Water from large districts—Springs draw from Areas beyond their Water-shed—Improved Drainage is damaging the low districts—Table of Mean Discharge from large districts—Table of ordinary Summer ditto—remarks thereon—Discharge of Sewers—instances of draughts, and the reverse in precipious seaboard escarpments	
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	zxix—zxxii
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	**************************************
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	**************************************
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	**************************************
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	**************************************
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	**************************************
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	**************************************
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	xxix—xxxii xxxix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge Flow from Large Districts.—Table 12. Remarks on the Flow of Water from large districts—Springs draw from Areas beyond their Water-shed—Improved Drainage is damaging the low districts—Table of Mean Discharge from large districts—Table of ordinary Summer ditto—remarks thereon—Discharge of Sewers—instances of draughts, and the reverse in precipitous seaboard escarpments Wells.—Remarks on supply from—Tables of experiments at King's Langley on absorption or filtration; Table of Wells near London; instances of water yearly falling; Wells in the New Red Sandstone; Mr. Robert Stephenson's conclusions at Liverpoo; cost of Sinking and Pumping there; tabular comparison between Wells and Gravitation, Liverpool and London Tables 13 and 14.—Notice of—Table for value of Water by Meter Rainfall of Great Britain—Table 15 and 15a. Description—places of Observation—Analysis of Heavy Falls of Rain—Remarks on Evaporation—Experiments by Howard and Watson; general observations—capteriments by Howard and Watson; general observations—capteriments by Howard and Watson; general observations—capteriments by Howard and Watson; general observations—Analysis of Heavy Falls of Rain—Remarks on Evaporation.	xxix—xxxii xxxix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	xxix—xxxii xxxix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	xxix—xxxii xxxix xxxix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	xxix—xxxii xxxix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	xxix—xxxii xxxix xxxix
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	xxix—xxxii xxxix xxxix—xliii xliii
Floods on the Shannen—Severn—Nene—Pentland Hills—Bolton—London Sewers—Heavy Rain near the Peak district—Examples of extensive width of Rainfalls—Floods of Small Districts; the Fens—Experiment on 82 acres of Meadow—London Sewers—Mr. Leslie's Paper on a method for dividing Flood Waters from ordinary discharge	xxix—xxxii xxxix xxxix

CONTENTS OF THE REMARKS ON THE USE OF THE TABLES.

Marine Surveying.—Table 24. Notice—Approximate variation of	PAGE.
Compass	zlv—zlvi
for Correction of Instrument - Air-Gravity - Capillarity-	
Gaseous Vapour—Example of Use—practical remarks on Mountain Barometers—mean readings of Barometer and Thermo-	
meter	zlvi—l
Tables 26 to 35—General Notice	Ĩ—li
General Remarks on Tidal Phenomena.—Airy's tables of	
velocity of tidal wave—law for velocity—Report to the British Association in 1837—results of experiments on waves in differ-	
ent forms of channel—velocity of waves—the River Clyde	li—l vi i
Tides of the Irish Sea.—Abstract of Captain Beechey's paper in the Phil. Trans. 1847—reference to Plates I. & II.—direction	
of streams—tides meet at Morecambe Bay—velocity of streams,	
which all turn nearly at the same instant of time-lines of	
equal range of tide, Plate II.—mean level of tide at Holyhead	
—table of ditto—duration of tides—comparison between tides of Irish with those of the English channel—connection of the tidal streams, reference to Plates III. and IV.—velocity of wave in Irish and English channels—nodes of the north and south	
tidal streams, reference to Plates III. and IV.—velocity of wave	
in Irish and English channels—nodes of the north and south	
tides compared—remarks on hydrodynamic and vibratory action of Water and laws of equilibrium—Airy's remarks on effect of	
depth on velocity of tidal wave	lvii—l xv
Diurnal Inequality. —Abstract of Whewell's paper, <i>Phil. Trans.</i>	
1847—varying form of disturbances—suggestions as to form of ocean bed, being an unknown element of calculation—reference	
to chart of cotidal lines of the globe, Plate V	lxv—lxvii
Tides of Rivers and Estuaries.—Remarks on the Thames—	
effect of improvements—rise, level of tides and sectional areas in 1823, 1831, & 1845—Mr. Giles' survey—Notices of the River	
Waveney—improvements of the Nene—Ouse—Humber—Tay—alteration of tidal flow—Notice of the Tyne—Clyde—Mersey and Dee—Captain Beechey's survey of the Severn—its bore-reference to to Plate VII.—velocity of bore and wave—surface	
alteration of tidal flow—Notice of the Tyne—Clyde—Mersey	
and Dee—Captain Beechey's survey of the Severn—its bore— reference to to Plate VII —velocity of hore and wave—surface	
fall in floods—concluding remarks	lxviii—lxxxi
Tables of Phenomena of Tidal Rivers.—THAMES—rise and	
fall of a spring and neap tide—velocity of wave, St. Katherine's to Teddington—levels of tide referred to Ordnance datum.	
WAYENEY—simultaneous registers at various points of a spring and neap tide—velocities of Wave. News—levels and inclina-	
and neap tide—velocities of Wave. NEWE—levels and inclina-	
tion of spring and neap tides when high and low water at Wis-	
beach. Husbee—rise and fall of spring and neap tides at Grimsby. Tay—comparison of tides and velocity of wave in 1833 and 1844. Tayse—rise and fall of a spring and neap tide at various places—velocity of wave at ditto, and inclination of the contraction of the contraction of the contraction of the contraction.	
1833 and 1844. Tyne—rise and fall of a spring and neap tide	
surface, with areas. CLYDE—simultaneous observations from	
Glasgow to Port Glasgow at a spring and neap tide—velocities of wave—inclination of water surface—area, width, depth—velocities of flood and ebb streams. Mersey—simultaneous observations of a spring and neap tide at various places—area of section—velocities of tidal wave. DEE—observations of rise	
of wave-inclination of water surface-area, width, depth-	
velocities of nood and edd streams. Mensey—simultaneous	
of section velocities of tidal wave. DEE—observations of rise	
tidal wave—tidal range. SEVERN—Heights of high and low water, spring and neap tides—comparative velocity of tidal	
wave and bore at various points—fall and sectional area of sum-	
mer low water—ditto when in flood	lxxxii—ciii
Dimensions of Docks.—Levels of cills, length, breadth, &c. at twenty various ports	civ
Ditto at Liverpool and Birkenhead	CA.
Reference to Plates	cvi
APPENDIX TO THE REMARKS ON THE USE OF THE	TABLES.
The Tyne.—Remarks on floods. Steam Boilers.—Fairbairn's table of strength	amii
Hydraulic Ram.—Experiments. Tides of the English	c v ii
Channel.—Notices of Captain Beechey's recent paper	cviii
Hydraulic Problems—Occasionally useful to an Engineer—from Hutton's Tracts	cix-cxv
Hutton's Tracts	CLE-CEV
·	

REMARKS ON THE USE OF THE TABLES.

DISCHARGE OF SLUICES, RESERVOIRS, &c. - Table 1.

DESCRIPTION AND USE OF THE TABLE.

This Table is computed on the law that the velocity of a body, at any height expressed in feet per second, is as 8.04 times the square root of the height. When water falls freely under highly favourable circumstances, its velocity is nearly this theoretic quantity, and is represented in column B, in feet per minute, opposite various heights shown in column A.

The column C is calculated from a co-efficient 7.5 \(\) h, and should be used for finding the effective velocity of water passing through orifices of the form of the venâ contractâ, through well-constructed bridges, and ordinary sluices with good side walls; very large and well-placed sluices; and through wide openings whose bottom is level with that of the reservoir. This table also gives the discharge through well-placed and large vertical pipes, and narrow bridge openings, by deducting 1-9th from the tabular velocities.

The column D is calculated from a co-efficient of $5 \sqrt{h}$, and should be used for the effective velocity of water through sluices without side-walls, such as are used commonly upon mill-streams and rivers, undershot wheel gates, and canal lock or dock-gate sluices; except built under very favourable circumstances, an intermediate between columns C and D is sometimes useful.

RULES AND EXAMPLES FOR THE TABLE.

First.—When the area of the orifice and the head of water are given, to find the discharge in cubic feet per minute; Multiply the number in the table of the column C or D, according to the case, by the area of the orifice expressed in feet and decimals.

Examples.—The fall of water is .05 through a bridge which has 500 feet of sectional area; what is the discharge?

Tabular number of column C, opposite .05, is 100.3 × 500 = 50,150

cubic feet per minute.

The difference of level between the upper and lower ponds of a canal is 6 feet; what is the discharge with a sluice having 4 feet superficial

area of opening?

The total height being 6 feet, and opposite 6.00 in column D, is 734.7×4 = 2,938, which divided by 2 for the mean discharge due to the height, gives 1,469 cubic feet per minute. If the lock be 100 feet long and 18 feet wide, it will hold 10,800 cubic feet of water, and consequently take 7.34 minutes to fill; this would be too long, therefore the lock should have two sluices, each of 4 feet area.

Second.—When the discharge and the area of the opening are given, to find the head required; divide the given discharge in feet, per minute (adding 1-8th for pipes) by the area of the orifice in feet, find the result in column C or D, according to the case, and column A will show the head required.

Third.—When the discharge and the head of water are given, to find the area of opening; divide the given discharge (or half such with a head decreasing* to zero) by the tabular discharge opposite the given head (deducting 1-9th of column C for pipes) and the result will be the area of the orifice required.

Examples may be worked from the former ones, thus:—Required the area of lock sluices to run 2,938 cubic feet per minute, with six feet difference of level; or, in other words, to empty a lock 100 × 18 in 3.67 minutes.

The tabular number for 6 feet of head, in column D. is 734.7, and the mean discharge for the gradually decreasing head of the emptying lock, will be half, or 367.3 cubic feet per minute; then 387.3 = 8 feet area of sluice required.

A vertical pipe is required to discharge 138 cubic feet per minute, from a reservoir with 50 feet head; required the area and consequent diameter? The tabular number opposite 50 feet of head is 3181.95, which reduced 1-9th is 2828.4. Then 1878 = .049 for the area of the pipe, which by the table of areas will be found to be four inches diameter.

GENERAL RULES FOR DISCHARGE FROM SLUICES, TANKS, RESERVOIRS, AND VERTICAL PIPES.

First Case.—Multiply the square root of the given head in feet, by 450 (400 or 300) times the given area in feet; the result is the discharge in cubic feet per minute.

Second Case.—Divide the discharge in cubic feet per minute by 450 (400 or 300) times the area in feet; the square of the result is the head in feet.

Third Case.—Divide the discharge in cubic feet per minute by the product of 450 (400 or 300), multiplied by the square root of the given head in feet; the result is the area of the pipe or opening.

Note.—450 is the multiplier for bridges, &c.
400 "pipes. &c.
300 "ordinary sluices, &c.

Where the orifice of the sluice is covered, as in locks and river sluices, the "head of water" is the difference of level between the respective surfaces; in other cases, the head is to be taken from the surface to the centre of the opening; and for bridges, or similar cases, the accurate difference of level between the water surface on the upper and lower side of the bridge. When water is drawn down, as out of a lock with a head gradually diminishing to nothing, the discharge will be as the maximum head in half the time; or in other words, for a head of six feet gradually diminishing to nothing, the main discharge will be half the tabular number (for 6 feet) per minute for the whole time. Other cases of reservoirs, &c., emptying or filling with an increasing or decreasing or decreasing and, require intricate calculation, and we have therefore inserted in the Appendix some interesting problems from Hutton's Tracts which can be best understood by perusal.

The Rules and Tables above described, when carefully applied, will be found to meet all ordinary cases in practice. The observer will frequently find his sluices, &c., more or less favourably circumstanced, and he must exercise his discretion accordingly. Where there are very severe bends in pipes and culverts a loss of discharge is occasioned, which is treated of in another place.

DISCHARGE OF WEIRS OR OVERFALLS.—Table 2.

DESCRIPTION OF THE TABLE.

This Table is computed by the formula $d = 214 \sqrt[3]{h^3}$, where d is the discharge in cubic feet per minute, of one foot in width of the waste-board or cill of the weir, and h is the true height from the top edge of such cill to the surface of water where it is at rest, or nearly so. The principle of the formula is, that the curve of the water falling over is a parabola; consequently there can be discharged only two-thirds of the water which would pass the full section due to h; the constant 214 is two-thirds of 321, which has been found, by frequent trials, to represent the factor, to be multiplied by 1/h for giving the mean velocity in feet per minute of water passing over an obstacle such as a waste-board. The constant 214 is consequently liable to some variation under favourable circumstances; for instance, where the weir is formed of a number of short bays, divided by beams. In these cases, the water passing the edges assumes the vend contractá form, and consequently the width of the opening should be reduced for the true quantity of water passing. These and other causes which may render the observation liable to error, must be treated with judgment, according to circumstances.

PRACTICAL APPLICATION FOR GAUGING.

The best way of gauging weirs is to have a post with a smooth head. level with the edge of the waste-board or cill; to be driven firmly in some part of the pond above the weir which has still water. A common rule can then be used for ascertaining the depth, or a gauge, shewing at sight the depth of water passing over, may be nailed on, with its zero at the level of the cill of the weir. The depths in the table are given in feet and decimals, as used in ordinary levelling: this unit abridges calculation, and is altogether better than measurement by inches, which has been the more usual custom. Among practical engineers, gauging by a weir has been always justly held to afford the most certain and efficient result, and especially for ascertaining the comparative discharges of streams, which, in cases of litigation and arbitrations, is often as important as ascertaining the real quantity. The plain rules for correct gauging should be, absence of wind and current, a good thin-edged waste-board, and a weir not so long in proportion to the width above it as to wire-draw the stream; for, in this case, the water will arrive at the weir with an initial velocity due to a fall which is not estimated in the gauging, and the result will be too small, in all probability. A weir, for correct gauging, should always have a free fall over; but there are sometimes cases where measurements are required with drowned weirs—so called when the tail water has risen above the level of the cill. In this case we have two conditions to deal with; first, the water passing at a depth represented by the difference of levels of the upper and lower may be treated by this Table as a simple overfall; secondly, there is a section of water passing between the top of the waste-board and level of the lower water, whose mean velocity will be that due to the difference of level or head above-mentioned. The velocity and discharge of this portion of the weir can then be computed from column D, Table 1: the sum of the two will give very nearly the true discharge.

The application of the Table in constructing weirs for relief of flooded

lands is obvious.

A paper has been lately read before the Institution of Civil Engineers, by T. E. Blackwell, Esq., the Engineer of the Kennet and Avon canal: it is on the eve of publication in their Transactions, and will be found well worth the study of those interested in these pursuits, as containing a condensed account of a vast number of experiments which must have taken great time and labour. The results of Mr. Blackwell's experiments seem to be, that under favourable circumstances, the constant by which the Table No. 2 is calculated, is substantially correct; that is to say, in a good situation for the flow of water approaching, and with a thin waste-board. With thick waste-boards, and narrow openings, the results are generally .80 of those which would be given by the Table.

One important and useful set of his experiments, are on weirs with a lip three feet wide, having an edge level, or with a small slope in the transverse section; this is a kind of case frequently met with in practice, and we find that the results of Mr. Blackwell's experiments give from .70 to .75 of the Tables; this is quite consistent with the allowance we have generally found it necessary to make, where so much friction is

involved.

SURFACE, MEAN, AND BOTTOM VELOCITIES Of Rivers, Streams, and Estuaries.—Table 3.

DESCRIPTION OF THE TABLE.

This Table is computed from the formula $b = \sqrt{s-1}$, where the velocity at the surface in the middle of a river is s, and that at the bottom

b. The column of mean velocities is $\frac{s+b}{s}$; or may be found in an easier

way by taking the mean velocity, $m = s - \sqrt{s + .5}$. In the formula, the velocities are expressed in inches per second, but in the Table they are reduced to feet per minute, which is made the unit throughout this work, where applicable to ordinary use and custom.

PRACTICAL APPLICATION.

The Table shews, by inspection, the relative velocities of streams of all kinds, extending from 5 to 950 feet per minute. Its most important use is for gauging any quantity of water passing down any river or stream. For this purpose, get the surface velocity at the central part of the stream, by observing, either with a current meter, or with floats barely reaching the surface, and offering no space to the action of the wind; their velocity being noted by fixed buoys or by marks upon shore. The mean velocity corresponding to that of the surface as then obtained, is, in fact, an imaginary quantity, representing the mean of the whole area of water passing

the place of observation; therefore, when the discharge of a stream is required, take cross sections where the channel is straight, and observe the velocity of the surface; look in the Table for the corresponding mean velocity, and multiply it by the area of the section in feet; the result will be the discharge in cubic feet per minute. If a current meter is used, take the velocity at the place of section; or if floats, take their time of passing between two sections; in either case repeating the observations at several places, for obtaining an average, and using the greatest judgment in selection of places for trial, for otherwise the whole is liable to be incorrect.

The bottom velocities are chiefly useful for shewing the permanent limit of the bank, &c., of a stream which may be required to be straightened or made de novo. If any river pass at a greater rate than the banks will bear, it is a beautiful law of nature, and most certain in its effects, that a greater sectional area is cut out; and thus the hydraulic mean depth being increased, the surface slope becomes flatter, and the general velocity and scouring action is reduced. It is most essential to the success of artificial cuts that their bottom velocities should not exceed the permanent limit of the material through which they pass. The first action of this kind destroys the whole economy of a work,—deepening unequally is commenced,—eddies and shoals must follow, and inequality of water surface accompanies the evil, reproducing these effects.

The second page of this Table is headed by a statement of the effect of bottom velocities on materials through which rivers usually are cut, and they form a criterion for the limiting bottom velocities of new cuts. It will be found, however, that the Table somewhat over-rates the effect produced by currents when applied to rivers as they exist; for there are constant occurrences of higher velocities than these, offering no permanent damage to the bed of rivers; in point of fact, the bottom invariably becomes covered with weed or slime, which much prevents the effect of

abrasion.

The most useful instrument for getting velocities, where a float is not applicable, and where an under current is probable, is the current meter, formed by a vane in the Archimedean form, carrying an endless screw, which turns a wheel divided on the circumference. We have had one which turns a wheel divided on the circumference. made lately with a second or differential wheel, worked by the same screw, having one tooth less than the first, and shewing in its revolution about 1,128 turns of the first wheel; this gives the power of leaving the instrument under water for a considerable time, which is frequently very desirable for obtaining a good mean velocity. In gauging by velocities, care should be taken to ascertain that the current does not under-run at the place of observation. This phenomenon frequently occurs in rivers and tidal streams, where the passage is narrow and deep, the latter generally an effect of the under-current rather than a cause. At sharp bends of large rivers, and at headlands on sea-coasts, this generally occurs, and is detected on the surface by the races which are formed. Striking instances may be seen off the Isle of Portland, and some of the bold headlands of Cornwall, Wales, and the north and west of Ireland and Scotland.

ARTERIAL DRAINS, RIVERS, &c.—Tables 4 & 4a.

The rule on which this table is constructed is—multiply the hydraulic mean depth in feet by twice the fall in feet per mile; take the square root of the product and multiply it by 55; the result is the mean velocity of the stream in feet per minute; this again multiplied by the sectional area in square feet, gives the discharge in cubic feet per minute. The hydraulic

mean depth is obtained by dividing the sectional area of the stream by the border or wetted perimeter: in pipes this is simply one-fourth of the diameter. The table is arranged for falls of 2, 3, 4, 5, 6, and 9 inches, per mile, but, by referring to the short table at the commencement of page 8, it can be readily extended to 12 more rates of fall per mile—and even further extended by using the following rule, viz.: the velocity and discharge varying as the square root of the fall, half the discharge or velocity of any given fall will be the discharge or velocity for one-fourth that fall: or vice versa, for the discharge or velocity of four times any given fall per mile, take twice the discharge or velocity of such fall.

Table 4 is given chiefly for application to large rivers, and it will be

Table 4a is given chiefly for application to large rivers, and it will be found to include in its dimensions some of the greatest examples. As applied to tidal rivers it shows that enormous power of discharge is given to large sectional areas, however small the fall, simply because the tabular results are based upon uniform construction and regular beds. Having analysed numerous actual observations of rivers, the author has never found the rule for this table at fault, when the conditions were fairly

represented in the experiments.

The application of these tables to cuts of all kinds for straightening rivers, for forming mill heads and carrying off flood waters, is sufficiently obvious. The tables shew the slopes that rivers of various sizes will assume under the laws of gravity influenced by friction of the bed; giving by mere inspection what would otherwise require tedious computation.

The following Statement of Falls of Lincolnshire Drains, &c., is by Mr. Utting, of Wisbeach, the Surveyor to the Nene Outfall Commissioners.

Fen land ranges from 8 to 14 feet above the level of low water at sea. On the river Ouse, between February 21st and April 2nd, 1848, during the prevalence of the heaviest flood that had occurred for several years, the average fall per mile on the surface of low water, from Denver Sluice to Free Bridge, was under 7½ inches per mile, and the maximum inclination was, on March 23rd, less than 9 inches per mile. Also, during the six weeks' flood, from October 9th to November 19th, 1848, the average fall was less than 7" per mile, and the maximum under 9" per mile. During the fourteen weeks, from November 15th, 1847, to February 20th, 1848, the average fall was 6½ inches per mile; and from November 15th, 1847, to April 16th, 1848, the average fall was less than 7 inches per mile.

On the 16th July, 1849, the total fall from Denver Sluice to Free Bridge, was only 2'9', or 2.6 inches per mile, for 12 miles 5 furlongs. In the Nene, between the North Level Sluice and Sutton Bridge, the

In the Nene, between the North Level Sluice and Sutton Bridge, the fall in the ordinary state of the river does not exceed 1½ or 2 inches per mile; and at the height of the flood of March, 1848, it did not exceed 4 inches per mile: and at the same time, the fall from the Horseshoe to the North Level Sluice (4½ miles), was only 6" more than ordinary. Below Sutton Bridge, the fall is ordinarily about 1 inch per mile, though the surface of low water is frequently level.

From March 13th to 26th, 1848, low water at Sutton Bridge, was, on

the average, 4'8".6 lower than at Free Bridge.

The original dimensions for the upper end of the Nene outfall cut, were 410 feet wide at top, or at the level of high water spring tides; 250 feet wide at bottom, and 20 feet deep; giving an area of 6597 square feet.

The Eau Brink cut, at spring tides, has 5535 square feet of sectional

GENERAL APPLICATION TO RIVER IMPROVEMENTS.

The following Table of the Characteristics of Rivers, from the *Phil. Trans.*, gives a good outline of their general conditions.

The velocities and inclinations shew what may be expected under given conditions, and will be thus practically useful; it will be found to describe well the nature of the rivers of Great Britain, which frequently embrace in their course nearly all the eight descriptions. The insertions in blacker type are the author's.

CHARACTERISTICS OF RIVERS.	Velocity in Feet per minute.	Inclination. Inches per Mile.
First.—Channels where resistance from the bed and other obstacles equal the current acquired from the declivity; so that the waters would stagnate were it not for the impulse of back water	50 to 120	2.00 to 5.28
Second.—Rivers in low flat countries, full of turns and windings, and of a very slow current, subject to frequent and lasting inundations	60	12.18
Third.—Artificial canals in the Dutch and Austrian Netherlands.	80 to 40	2.00 to 9.05
Fourth.—Rivers in most countries that are a mean between flat and hilly, which have good currents, but are subject to over- flow; also the upper parts of rivers in flat countries	90	15.84
Fifth.—Rivers in hilly countries, with a strong current, and seldom subject to inundations; also all rivers near their sources have this declivity and velocity, and often much more	130	19.8
Sixth.—Rivers in mountainous countries, having a rapid current and straight course, and very rarely overflowing	180	24.37
Seventh.—Rivers in their descent from among mountains down into the plains below, in which plains they run torrent wise	300	31.68
Eighth.—Absolute torrents among mountains	480	37.27

The following is a Table of the Size, Velocity, and Fall of several Important Rivers.

It is compiled from Mr. Rennie's Reports en Hydraulics; the English Rivers from the Author's Notes; those marked (a) from a paper by Mr. David Stevenson, C.E., Edinburgh; the Nile is from some late remarks made at the Institution of Civil Englacers, by Robert Stephenson, Eq., M.P.

NAME, DESCRIPTION, AND SECTION OF RIVER.	Surface velocity. Feet • Min.	Fall per Mile. Inches.
Dee, lower part above Chester(a)		11
Lune , Lancaster(a)		23
Forth " near Stirling(a)		13
Thames average—Oxford to Teddington, in-		
cluding weirs	176	21
,, Hampton Court160×6	143	below weir
" Below Staines Bridge160×7	130	3.73
" " more water, 160×8	101	1.50
" Hurley (deep section)166×11	40 to 50	between weirs
Severn, Worcester to Gloucester 150 × 16	190	5.
" Gloucester to Longney10 miles.		1.25
" Longney to Framilode 2 "		9.
" Framilode to Hock Crib14 "		8 .
" Hock Crib to Sharpness Pt. 24 "		5.
" Sharpness to Old Passage15 "		12.
, Old Passage to King's Road 8 ,		nearly level
Shannon, Limerick to Lough Allen		12
Nene, above Peterborough, below weirs(b)	. 50 to 70	5 to 12
" Northampton to Wansford average	. 50 00 70	38.7valley
"Wansford to Peterborough, average		21.8valley
Detember on the Combine 14 Value	66	2.0
, New Cut at Cross Keys Wash		4.9
Eau Brink Cut, in Norfolk		5.0
Drains, in Lincolnshire		5.0
New River—18×4.4 (fall including sluices)	50 to 60	5.0
" " (fall of surface)		2.5
Seine, at Paris (mean depth 3.6 feet)	,	9 to 12.67
. Paris to Havre, mean	125	12.4
Loire, between Pouilly and Briare		8.4
Briare and Orleans		4.6
Rhone, from Besancon to the Mediterranean		24.18
Lys and Scheldt		9.5
Canals in Flanders	275	6.33
Po	-/3	6.
Rhine, between Schaffhausen and Strasburg		48.
" " Strasburg & Schenckenschantz	1	24.
Canal of Pius 6th—Ordinary state: 1st length		17.23
2nd length		4.31
" Flood time: 1st length		16.47
2nd length		5.76
Uffente		3.1 to 6.0
Amazon		2.34
Ganges (valley 9 ins. per mile), dry season	264	4.
,, rate of inundation, at Rajmahal (c)	44	*
Neva, at St. Petersburgh900×63	156	1.7
	1	

CIRCULAR AND EGG-SHAPED CULVERTS. Tables 4b & 4c.

Table 4b gives the discharge and velocity for culverts from 8 feet to 1 foot in diameter, as if half full and three-fourths full; showing also the area of water-way at such depths respectively. The data given are with inclinations from 2 to 7 feet per mile, which will embrace the usual practical range. It is computed by the formula as described for table 4, but it does not differ materially from the results obtained from table 5, although the method of computation is totally different.

Table 4c gives the same information in every respect as table 4b, for oval culverts; the vertical and transverse dimensions are given in the first column; in table 4b will be found circular culverts of the same sectional areas while half full and three-fourths full, so that a comparison is

afforded of the discharge of the circular and oval form.

PIPES UNDER PRESSURE.—Table 5.

This is a universal table* for the discharge of pipes and culverts from one inch to ten feet in diameters from one inch to ten feet; its mode of use is explained on the table, the constants merely require to be divided by the square root of the rate of fall to give the discharge in cubic feet per minute.

The formula is
$$\frac{2,356 \times \sqrt{d^3}}{\sqrt{\frac{l}{h}}}$$
 = discharge in cubic feet per minute.

Where d = diameter of the pipe in feet, k = head in feet, and l = the length in feet, and 2,356 is a constant.

If the velocity in feet per minute is required for a given fall and diameter of pipe, divide the discharge (as found by the table) by the area of

the pipe, expressed in square feet.

If the head is required for a given discharge, length, and diameter of pipe, divide the tabular number of the diameter by the discharge, and square the quotient; then divide the length by this number, and the result will be the head in feet.

EXAMPLE.—A pipe 2 feet in diameter and 5,000 feet in length, is required to carry 300 cubic feet per minute, what should be the head?

Tabular number for 2 feet pipe = $\frac{13.327}{300}$ = 44.4; then 44.4° = 1,971.3 and $\frac{5000}{1971.3}$ = 2.54 feet, which is the head required.

If the diameter of pipe is required for a given head, length, and dis-

charge, then '235 $\sqrt[5]{\frac{l \times q^2}{h}}$ = diameter in feet, l and h being as before, and

q being the quantity discharged in cubic feet per second.

This last is a tedious formula, and the table gives the same result for a vast range of discharges, by following the second rule thereon.

Where culverts are not circular, take the diameter corresponding to a circle of the same sectional area, and the result will be very nearly correct.

^{*} The design of this table is due to Mr. James Leslie, C.E., Edinburgh, who has kindly permitted its use. The table is entitled "Pipes Under Pressure," as particularly adapted for such use; but it is also applicable to Culverte, &c., of course apportioning the amount filled, whether half or three-fourths, and having due reference to the slope not creating too high a velocity and over gorging.

PIPES UNDER PRESSURE.—Table 5a,

Gives, by inspection, the discharge and velocity for pipes from 3 to 60 inches in diameter, and at rates of fall from 5 to 35 feet per mile. The table is computed from the formula of table 5, and will be found useful for ready inspection, besides which the knowledge of comparative results is highly desirable when designing works or computing their probable effect.

In using these tables we must repeat a caution given elsewhere, that a due feed into a train of pipes, absence of inequality in slopes, of sudden bends, &c., are highly necessary to obtain a proper discharge. Under proper conditions we are inclined to believe that small pipes will be likely to give a less result than the tables, and large pipes a greater result.

For pipes under pressure, 200 feet per minute is a very good working velocity, giving probably better proportional discharge than greater fall and consequent speed is likely to do; a velocity of 150 per minute will generally prevent deposit in pipes and sewers.

The foregoing table will meet cases of pipes and culverts, under simple conditions; but where bends (see friction of bends) and other complications are introduced, calculation becomes extremely difficult. The following experiments and facts from practice, are inserted so as to throw light upon the loss of head in town supplies, and the effective value of pressure through long ranges of street main.

EXPERIMENTS ON THE HEIGHT AND DISCHARGE OF JETS, By the Southwark Water Company, January, 1844.

Pressure at Battersea 120 feet, and every service pipe or other outlet kept shut. Stand Pipes 23 inches diameter.

First Experiment—in Union Street, between High Street and Gravel Lane, Borough, through stand pipes, hose, and jets; there being six stand pipes, each 360 feet apart, connected to a 7-inch main 2,400 ft. in length, the head being carried on through a 9

ene near pering	Carried on m		"	"	1,000	27	,,
**	**	12	"	99			29
"	**	15	"		1,650		97
23	99	20	77	"	10,350	"	29

Making a total distance of....... 16,500 feet from the

Head at Battersea.

Second Experiment—in Tooley Street, 9-inch main 4,200 ft. in length, the head being carried on through a 15 ", ", 3,000 ", ", 12,750 ", "

Standpipes used.	Length of Hose.	Diameter of Jet.	Height of Jet.	Discharge per Minute.		
Number.	Feet.	Inches.	Feet.	Cubic Feet.		
2 3	40 40	7 2 7	45 40	=		
4 5	40	7 8 7 8	35 30	=		
1	80	7 7 8	_	16.6		
1	40	2 2	40	16.0 42.1		
$aa\begin{cases} 1\\2\\bb\end{cases}$	40 40 40	7 8 7 8 7 8 7 8 8	40 31 34	13.17 10.90 11.98		
1 2	40 40 40 40	- 18 7 18 7 18 7 18 7 18 7 18 7 18 7 18	60 60	9.30 17.15 — 14.90		
	used. Number. 1 2 3 4 5 6 1 1 1 2 4 5 6 1 1 1 1	Used. Hose.	Number. Feet. Inches.	Number. Feet. Inches. Feet.		

aa are through 600 feet of 5-inch main, but fitted on a 4-inch main close to the 5-inch main; bb are through 600 feet of 5-inch main and 600 feet of 4-inch main, both in addition to the 19,950 feet of main before described.

EXPERIMENTS ON THE HEIGHT AND DISCHARGE OF JETS, By the Preston Water Company, March, 1844.

From 6-inch Main. Pressure 110 feet.

				neign		scharge.			
With	1	jet.	. 3 -in	. 57	feet l	2.5 cub,	ft. per min	. by d	ay.
99	1	٠,, ٠	. "	64	,, 1	4.4	,,	by n	ight.
"	2	jet s	31	56	" l	2.5	,,	by da	
**	2	,,	99	62	"···· l	4.0	**	by ni	ght.
			From	6-inc	ch Main.	Press	ure 46 feet.		

			isch arge.	
With	l jet	₹-in 24 feet	4.8 cub. ft. per	min. by day.
"	l "	· ,,28 ,,	5.6 "	by night.
"	2 jets	" 20 "	4.5 ,,	by day.
•	2 ,,	.,25 .,	4.8	by night.

At Leeds, the author has seen jets thrown 60 to 70 feet high, and with great body and force, 40 to 50 feet high in the lower part of the town,

where the pressure was 180 feet, and services in full draught.

At the West Middlesex Water Works, from experiments by W. T. Clarke, Esq., the friction of the pipes was found to reduce the head of

water between one-fourth and one-fifth.

The Grand Junction Water Company's new eugine at Kew, works against 205 feet of head, while the gauge on the other side of the stand, (indicating the back pressure from London,) gives only 170 feet; showing a loss of 35 feet head, by the draught on the great 45-inch main.

At New York the height of the water is 115 feet above high water;

105 feet above the lowest, and sixty feet above the highest streets. distance from the distributing reservoir is 4 miles, by a direct 36 inch The city fountains throw from 60 to 70 feet high. At Harlaem River Valley, on the line of the squeduct, a 12" pipe and 6" jet throws the water 110 feet high, with 180 feet pressure.

At Philadelphia the surface of water in the reservoirs is 98 feet above high water; 55 feet above the highest, and 93 feet above the lowest points The distance from the reservoir to extreme point of mains in the city. and pipes (which are always charged), is 6 miles, by a main from 20" to The loss of head, by friction in the pipes, is about 25 feet while the city is drawing. The mains are from 10 to 12 inches in the principal streets, and from 4 to 6 inches in the minor ones.

The water will rise from a hose attached to a fire-plug in the streets at the extreme point of delivery, during the night, to the height of about 45 to 50 feet; during the day, when the consumption of water is very

great, the pressure is about 25 feet, as above stated.

THE FOLLOWING TABLE is from experiments by Mariotte. and second columns give the relative height of jets and their head; the third column gives the discharge by an ajutage .53 inch diameter, and the fourth column contains the diameter which ought to be given to the service pipes for an ajutage of .53 inch, relatively to the altitudes in the second column. They are computed on the hypothesis that for an ajutage of .53 inch in diameter, and an altitude of 16 feet of water in the reservoir, the conduit pipes must be 2.49 inches in diameter, and upon the principle that the squares of the diameters of the conduit tubes are as the squares of the diameters of the ajutages multiplied by the square roots These experiments are conof the altitude of water in the reservoir. siderably at variance with those made in the foregoing tables, in Southwark, &c., especially while water is being drawn for other purposes; they were probably made under circumstances considerably differing from the ordinary demands of practice.

Height of Jet.	Height of Reservoir.	Dis. per min. from ajutage .53-inch diameter.	Diam. of services suited to preceding column.
Feet.	Feet.	Cubic Feet.	Inches.
5.32	5.41	0.89	1.87
10.68	11.00	1.25	2.31
15.97	16.77	1.55	2.49
21.30	22.71	1.80	2.76
26.62	28.84	2.03	2.93
31.95	35.14	2.25	3.02
37.27	41.62	2.44	3.20
42.60	48.27	2.64	3.29
47.92	55.11	2.80	3.38
53.25	62.12	3.00	3 • 47
58.57	69.31	3.17	3.56
63.90	76.68	3.33	3.65
69.22	84.22	3 - 47	3 · 74
74 - 55	91.94	3.64	3.83
79.87	99.84	3.78	3.91
85.20	107.91	3.94	4.00
90.52	116.17	4.08	4.09
95.85	124.60	4.22	4.18
101.17	133.21	4.39	4.27
106.50	141.99	4 53	4.36
		l	

FIRE ENGINE POWER.

The best form of London engine has two cylinders of 7 inches diameter and 8 inches stroke, working levers being 41 to 1; weight 171 cwt. + 4 cwt. for hose and tools, which is quite as heavy as two fast horses can manage, for a distance under 6 miles, with five firemen and a driver,

The rule for determining the size of the jet, is to make its diameter one-eighth of an inch for every inch diameter of the cylinder for each 8 inches of stroke. When it is necessary to throw the water to an unusual height or distance, a jet one-seventh less in area is used, with a branch

about 5 feet long.

The usual rate of working an engine this size is 40 strokes of each cylinder per minute, the engine throwing 14.12 cubic feet per minute, or, adding one third for waste, 6,777 cubic feet required for 6 hours; this multiplied by the number of engines used, will give an idea of the quantity of water required at a fire. When the houses of Parliament were burnt down, 522,720 cubic feet of water was supplied, and 23 jets were playing at one time.

With 40 feet of leather hose, and a $\frac{7}{8}$ -inch jet, the pressure is 30 lbs. on the square inch = 68 feet head of water; this gives 10.4 lbs. to each man to move a distance of 226 feet in one minute. The friction for every additional 40 feet of hose increases the labour 2½ per cent.; hence the necessity of having the engine, and of course the supply of water, close to the fire.—(Braidwood, &c. Min. Inst. Civ. Engrs.)

FRICTION OF BENDS.—Table 6.

DESCRIPTION OF THE TABLE.

This table is computed on the formula $h = v^2 \times sine^2 \times n \times .0003$, where v is the velocity of water in a pipe or stream, expressed in inches per second; or in words; multiply the square of v by the sum of the squares of the sine of the angle of bends (of which the resistance is to be estimated) and the product by the constant .0003; the result expresses the resistance h = the head in inches necessary to overcome the angular friction, which varies as the square of the velocity and of the sine of the angle of bend with the straight line of direction. When the angle is reversed, or more than 90°, the square of the sine of the complementary angle + 1 must be used. The rule was adopted by Robison, from French experiments made upon pipes of small diameter, and he shows its applicability to rivers, giving an opinion that the measure of resistance is too great, as "in a pipe the diameter is uniform, whereas in a properly formed river, the capacity of section should be increased." This, theoretically, is true; but, practically, it is certain that both in natural and artificial rivers, the effect of bends is invariably to render the bed more or less uneven. Under all the considerations, we may, therefore, come safely to the conclusion that the friction of bends, even where a drain is kept in good order, is at least as high as the amount given in the table.

The velocity for computation is of course that theoretically due to the fall, and the loss by bends must be deducted from the head, the discharge being again calculated from the reduced slope. The loss of head, however, manifestly varies not only according to the size of the angle, but also to the volume to be carried. Applying the principles adopted in the

former tables, the variable term of resistance will be best expressed by the square root of the hydraulic mean depth in feet, and the loss of head should be divided by this quantity to give the final resistance. By this form of the equation, when the hydraulic mean depth falls below unity, the tabular numbers are increased as the square of such depth. With pipes, this quantity being one-fourth of the diameter, the increase of

resistance h will be
$$=\frac{v^2 \times \text{sine}^2 \times n \times .0003}{\sqrt{\frac{d}{4}}}$$
 This modification in

the formula is new, and the whole computation is highly theoretical; but it sufficiently agrees with experiments and with observation to be worthy The principle of the correction is well founded where bends are uniform; but when they are made at sharp angles, the experiments of Mr. Rennie clearly show that they are out of the reach of calculation.

Taking the second example at the head of the table, and applying it to a drain having 6 feet depth, 18 feet bottom, and 2 to 1 slopes, we find by table 4, that with a velocity of 110 feet per minute, such a cut will discharge 19,803 cubic feet per minute, and require six inches per mile of fall; we have then, for the bends specified, to make a reduction (in round numbers) of one inch fall per mile, if they occur in that length; but this quantity will have to be divided by 2, which is the square root of the hydraulic mean depth of the drain in question. Therefore to deliver the same quantity of water, the drain must have 6.5 inches fall in the mile; or, vice versa, if the fall is limited, the effective slope will be reduced to 5.5 inches per mile, and the discharge to 18,915 cubic feet per minute, with a mean velocity of 105 feet per minute, instead of 110 feet, as originally assumed.

Bends in the vertical plane are subject to disturbance of the discharge from two other causes, which will interfere far more than the dynamical effect of change of direction. The first is the great tendency to collection of air at the summit of vertical bends; this evil can only be treated mechanically, by air valves, which will free themselves, or can be opened at the pleasure of the water officer. The second defect in vertical bends is when from local circumstances they occur on a pipe at any given distance B, from the fountain head A; this point not being sufficiently high above B to pass the full quantity of water which could otherwise pass on to a lower point c; under these conditions it will be impossible for the pipe to discharge at c the amount due to its diameter, and to the total fall from A to C; and neither can the fall be fully available from B to C, because there will not be sufficient feed at B. This obviously shews that under these circumstances the pipe A B must be larger than B C; neglect of such a precaution has frequently produced serious disappoints. pointments; excellent provisions against the evils above stated were made by Mr. Jardine of Edinburgh, in the great main, ten miles in length, which he constructed twenty-seven years since; the upper three miles being flat, is 21 inches in diameter, but the lower portion is only 15 inches diameter; the actual discharge at Edinburgh is not greater than would be given by a pipe only the smaller diameter, with a uniform fall for the entire distance. This main was one of the earliest works in iron on so great a scale, and the whole arrangement is a model of its kind; at the present price of iron, such a work would not cost more than one-third of the amount then disbursed, but the value of this kind of construction may be judged from the fact that this main has not cost anything whatsoever in repairs, and has never ceased delivering water from the day it was finished up to this date.

Other causes will arise to lessen discharge, unless due precautions are taken in the form of inlet and outlet of pipes; which will evidently

affect the final delivery. The preceding rules and tables will meet all ordinary cases of practice, if the work is well laid out, and care is taken to avoid sharp angles and vertical bends, rising near to the level of the original head. If the form of nozzles or sluices starting from a reservoir is bad, the calculated discharge will be diminished in Etelwein's proportion of 8 to 6 or 5, however much labour or money be spent on the general line of works.

River Bends are especially liable to banks or shoals, always occurring where an alteration of velocity is suddenly caused; these shoals act as weirs, in point of fact, forming separate steps in the surface fall, and thus rendering a great aggregate slope of less value than a very small slope, with uniform bed. The effect therefore of bends, and want of uniformity, is of the highest inconvenience in rivers (like the Severn, below Gloucester, for instance) where there is a great fluctuation in the quantity of water, and a shifting material in the bed of which it is composed. The uneven bed of a river is very analogous to the defect from bends in the vertical plane, in the case of pipes.

FRICTION OF BRIDGES AND PIPES,—Tables 6a,

The first table is explained thereon, as giving an approximate idea of the rise of water caused by bridges, weirs, &c., at varying velocities; taking the proportions of obstruction from one-tenth to six-tenths of the

whole section of river.

The second table is that used by Smeaton, giving the head required to drive water at various velocities through 100 feet lineal of pipes; on a small scale the table is useful; but our tables 5 and 5a will give a greater range of results, and agree more with the modern practice of laying mains, and their sizes and material.

VALUE OF WATER POWER.—Table 7.

This table gives the nominal value in horse power for one foot of fall of streams, discharging from 5 to 10,000 cubic feet per minute; i. e., the weight in pounds of the given number of cubic feet, per minute, divided by the constant 33,000. The effective value of the ordinary applications of water is given according to the best authorities. In estimating the value of a given quantity and fall of water, the mode of application and therefore the commercial effect, will vary considerably; for in low falls under-shot or breast-wheels must be used, which are far more wasteful of water than over-shot wheels (in proportion to the power developed), especially when liable to be loaded with tail-water. The column headed "Turbine" is computed at 75 per cent. of the nominal power or actual weight of water consumed. The "turbine," and some very perfectly constructed overshot wheels are said to do this amount of duty.

THE FOLLOWING TABLE of Water-Wheels, as constructed by Mr. Fairbairn, of Manchester, will afford a useful practical example of the best applications of Water Power. (Jamieson's Practical Mechanic.)

Fall of Water	Cubic Feet of Water taken per Min.	Dia	m.	Brea	dth		pth of ket.	Revols. per Min.		Horse	Diam. of internal Driving Segment		of	
Ft. In.			In.	Ft.	In.	Ft.	In.	Ft. Dec.	Ft. Dec.		Ft.		In.	
	••	65	٥	6	0	1	0			••	63		10 X 3	
33 2 26 6 16 6	••	36	0	16	7	1	4	1.95	214.8	•••	33	8	14×3	
26 6	••	28	0	13	0	1	10	••	••	••	•		•• _	
16 6	2760	20	0	17	0	1	8	••	229.2	60	18		12 × 32	
13 3 16 0		18	0	21	0	1	8	4.78	270.0	•••	16	I	14×3	
	2160	18	0	20	0	1	6	٠٠٠ ا	•• -	52			••	
10 0	••	18	0	18	0	I	10	6.15	339-6		14	_ o <u>₹</u>	12 X 3	
16 0	1200	18	0	12	0	1	5	•••	••	30			••	
9 0	6960	16	0	21	0	2	0	ا : ا		70	14			
7 10	• • •	16	0	20	0	1	8	7.8	384.6	••	15		8×3	
9 6	2700	16	0	18	۰	1		••	330.0	••	14		12 X 3	
~ ".	••	16	0	16	٥,	2	0		••	••	14		12 X 3	
8 0	••	16	9	14	91	I	8		375.0	••	14	-	9×3	
8 0	::-	15	6	17	6	1		••	332.4	••	•	•	••	
14 6	480	15	0	٥	۰	0	10	••	••	12	•	•	••	

The following table is compiled from a tract by Weale, of experiments by the late Mr. Rennie, made about sixty years since. It was kindly put into the author's hands by George Rennie, Esq., F.R.S., the author of well-known works on hydraulics, which have been highly useful in compiling this treatise. The principal value is to show the actual water used by the variously-constructed wheels, as the water used appears to have been taken with great care.

Name and		all	W	at	er '	w	hee	al.	1	tak	e of ing ter.	Water ac-	Hor Pow	
Description of Mill.	of Water		Speed per Min.	Diam.		Brdth		Dpth. of Boket	Head.		Sluice open.	tually used per Min.	Nomi- nal.	Effec- tive.
Oartford, Saw	19 6 5 4 10	060 00000	556. I 270. 5 432.2 400.0 515.3	16 14 22 13 15 14 14 18	0 0 6 0 0 0 0 0	4 2 4 3 3 3	In 6 6 0 7 0 9 10 4 10 0	Ins. 15 9 10 10 16 14 12 9 15½ 12?	Ft 2 1 . 46 2 50	In 96 5 781 4 1 81		C. Ft. 3,000 194-4 257.0 1290 2444 2199 1341 430 93 58	5.73	6.86

^{*} Hammer 7 Cwt., 106 blows per min., 20" high. † 12.74 lbs. ground per min.

VALUE OF STEAM POWER.—Table 8,

Is taken from Weale's edition of *Tredgold*, and contains a useful resume of the requirements of a steam engine; as applied in the best way, more economical results are now exhibited in the power developed for the coal consumed. The table is in fact the old Boulton and Watt standard, and only to be used as such when comparison with other forms of nominal horse power are required.

In Manchester, steam power for manufacturing purposes is charged at £25 to £30 per horse power per annum, including the rental of the room. About twelve looms are considered equal to a horse power; and, for ordinary weaving 45 to 50 shillings per loom is charged, including sufficient room for receiving goods and making them ready for market.

cient room for receiving goods and making them ready for market.

For drainage and town supplies, the Cornish engine, working with high steam, great expansion and slow combustion, is highly economical; 70,000,000 lbs. raised 1 foot high with a bushel of coals, or 94 lbs., is an effect that can be obtained for long periods with very trifling repairs or stoppages. The duty of these engines, where employed in pumping water in the metropolis, is, for a 90-inch cylinder, about 500 cubic feet per minute, against 150 feet head, burning five cwt. of coals per hour. See also page 36, for cost of pumping at Liverpool.

At the West Middlesex works, two 70-horse engines drive 390 cubic feet per minute into Kensington Reservoir, against 122 feet of head.

The table is headed with the quantity of water required for feed and condensation, per horse power, of condensing steam-engines; the actual quantity of water used will of course depend upon the area of cooling pond.

PRESSURE OF MERCURY & WATER—Table 9, WEIGHT & STRENGTH OF PIPES—Table 10,

Are sufficiently explained therein: in the latter table is given the safe head of water which can be borne by pipes of the several dimensions. It will be seen, that in smaller pipes the limit of thinness of metal is not strength, but the practicability of making a good casting, and its after durability. In large pipes, strength of metal should be thrown into the ends, especially the upper or socket end.

FLOOD DISCHARGES-Table 11,

Gives the quantity of water, in cubic feet per minute, which would run off the ground, assuming that the several depths of rain, specified at the head of each column, were to be discharged in twenty-four hours. The first table contains the quantities necessary to be provided for 1 to 100 acres, in farm drainage and in sewage of towns, where, under favourable circumstances, rain will occasionally discharge an enormous amount over small areas. For instance, during the thunder-storm of August 1, 1846, there fell over a great part of London from three to four inches of rain in a much less time than three hours; nearly the whole of this must have found its way at once into the sewers.

The second table contains the discharge for 1 to 10 square miles, from one thirty-second of an inch up to 1 inch of rain in twenty-four hours. In the numerous cases where an engineer is called upon to discuss the amount of water that he may expect over a given area, either for the purposes of town supplies, for estimating the scouring effect of floods, or for ascertaining the size required for new drains, or improvement of riverchannels, this table will give a key to the problem to be solved, if used with a due experience of the observed quantities which districts have been known to produce, as compared with the amount collected in rain gauges. It is, unfortunately, not in our power to collect many of these data, wellfounded enough to ground a perfect theory, or embracing considerations sufficient for generalization; the application of examples must also be taken with due caution, because the quantity running away will vary according to the general slope of the country, and the geological nature of the rocks of which it is composed. Years of the same actual depth of rain in the gauge likewise vary in their stream-producing powers; one season is hot and dry, with heavy thunder showers; another is moist, with rain coming down frequently in small falls, supplying more for evaporation and less for streams.

ESTIMATE OF FLOODS.

In a paper by Mr. Mulvany, one of the Irish Commissioners of Drainage, are the following facts as to floods in the Shannon, which we have put into form, shewing the fractions of an inch of rain, distributed over very large drainage areas:—

Lough Allen is a reservoir of 8,852 acres.
Drainage area being 146 square miles.
Drainage area being 146 square miles. Floods rise frequently 3 ins. in 24 hours = .284 inches rain over the whole surface.
Less frequently 4 ,, , = .379 ,, ,
And sometimes 6 , $= .568$,
Lough Derg, above Killaloe, is 30,313 acres.
Drainage area of Shannon, above Killaloe, being 3,611 sq. miles.
" " of the immediate basin of L. Derg 960 "
This Lough, before the improvements of the Shannon,
Rose frequently 3 ins. in 24 hours = .148 inches rain over the whole surface,
Less frequently 4 ,, ,, = .190 ,, ,, About once in each year 6 ,, ,, = .296 ,, ,,
About once in each year 6 ,, = .296 ,,
17th November, 1840 12 ,, in less than 24 hrs = .600 ,,
The register of the rise of this flood in Lough Derg, is as follows:—
Gauge. ft. in.
1840, November 13th, to 9 8
to the 16th, when rain began 9 9
17th, 10 9
18th,
19th, 11 3
20th, 11 4
21st, 11 4
20-4
22nd, 11 8

By Captain Beechey's Admiralty survey, of 1849, it appeared that, on the 4th December, the Severn rose 4.60 feet at Newnham, and 7.32 feet at Diglis; the particulars of this flood, compared with summer low water, are given in the pages devoted to the "Tides of the Severn." The discharge of this flood below Gloucester was at the rate of 751,245 cubic feet per minute, or 193.12 cubic feet per minute per square mile, being 00.99 feet or \$\frac{1}{8}\$ of an inch nearly run off the surface in 24 hours,

on the drainage area of 3,890 square miles. The summer run of this river, from Captain Becchey's observations, is given at page 33, at 33,111 cubic feet per minute, or 8.49 cubic feet per minute per square mile.

In flat districts of England, without any very high ground, we have an experiment, made between the 21st and 23rd of May, 1849, on the River Nene, at Higham Ferrars. This place is intermediate between the water-shed and Peterborough, being distant about twenty-five miles

from the water-shed all round the west and north sides.

The drainage area above Higham Bridge is 383 square miles. On the 20th of May about one inch of steady continuous rain fell, raising the stream from its ordinary run of about 5,000 cubic feet per minute, to a quantity averaging about 32,000 cubic feet per minute, lasting from the evening of the 20th to that of the 23rd, when the river, in the course of a very short time, relapsed into its usual state. Dividing this quantity over the drainage area, we shall find that there flowed off the ground about .156 or just three sixteenths of an inch—thus the proportion flowing off the ground was about one-sixth of the rain-fall; in this example it must be recollected that the weather was beginning to be warm, and the flooding of meadows along the valley would have absorbed at least three inches in depth, which would represent about 1-16th of an inch more of rain having come down into the valley. The floods on the Nene have frequently twice, and sometimes three or four times, this volume.

August 8th, 1846, a storm, giving 1.88 inches in the gauge at Glencorse produced for four hours a run of 24,180 cubic feet per minute; this amount from 3,820 acres, would be equal to .437 or nearly 7-16ths of an inch of rain on the surface in this short time; probably more than this came down, as the reservoir had to be filled before the flood passed over the weir used for gauging; this is an indication of the violence of the celebrated Lammas flood of this date, which washed down several of the

bridges on the North British Railway, then recently opened.

Mr. Bateman records an experiment near Bolton, where on a drainage area of 5,400 acres, 5 inches was measured in the rain guage, having fallen during eight consecutive days previous to the 10th of June (the end of May having been very wet); the flow of water had passed off entirely by the 12th of the month, when a quantity of water was found to have fallen=4.625 inches over the drainage area. This flood is exceeded fre-

quently by twice and three times the volume.

In table 15a we have given, from the Report on supply of water to Manchester, by S. C. Homersham, Esq., C.E., an average of the heavy rain of .4 inch and upwards in each twenty-four hours, from observations at Manchester and in the range of hills between that place and Sheffield; it appears that these falls are from 40 to 50 per cent. of the total rainguage returns. He records the following facts:—"At Waterhouse Lock on the Macclesfield Canal, on the night of the 8th May, 1847, a depth of two inches of rain fell during twelve hours; and, in the same time, 18 inches fell at Coomb's reservoir. Dr. Dalton remarks, that on the 22nd April, 1792, at Kendal, 4.592 inches of rain fell in twenty-four hours. It is not an uncommon circumstance for '3 inch of rain to fall in hilly districts, in one hour; this quantity was registered at Coomb's reservoir on the 5th April, 1847. In 1844, out of 33 inches which fell at Chapelen-le-Frith, one half was registered in the short space of thirty days."

In our own notes we find that the heaviest day's rain in each year coincide at Glencorse and Gilmourton, although they are fifty miles apart on the East and West side of Scotland respectively; comparing other heavy days of rain at these places, we have the following examples to shew, (if proof be needed) that heavy falls of rain extend very uniformly over

wide districts.

Inches of Rain i	n 1845—August.	1846-August.	847—December.
Chiswick	.70-18&19 .	. 1.28-4&5	. 34—18
Boston	.86-19820 .	83-4&5	.94-18819
Newcastle	1.53-19820 .	. Not known	1.70-18
Applegarth, Dumfries			
Gilmourton	.50-21&22 .	. 2.10-7&8	. 59—18
Glencorse	2.18-19820 .	. 2.72—7&8	1.21-18&19
Orkney, Sandwich	.38—19&20 .	. 1.07-9,10,&1	1 Not known.

FLOODS OF SMALL DISTRICTS.

Mr. Glynn considers that for draining fen districts more than ten horses power per 1,000 acres is seldom required, the water being lifted about ten feet. Two inches per month is about the maximum rain-fall requiring to be discharged; assuming this quantity to be thrown at a rate of 500 cubic feet per minute, a ten-horse engine will perform the duty in about 232 hours.—(Paper on Steam Drainage of the Fens.)

Mr. Roe states that he measured and drained off to one outlet 82 acres of meadow land, and made observations on the flow for six months; the greatest amount found to reach the drain from a fall of half an inch of rain in the hour, was three cubic feet per minute per acre at the period of greatest flow, which was generally from three-quarters to one hour after

the heaviest rain.—(Evidence.)

Mr. Phillips thinks that sewers should be made large enough to carry one inch of rain per hour, i.e. 60 cubic feet per minute per acre; this is the calculated quantity which ran in some London sewers in the thunder-

storm of August 1st, 1846.—(Evidence.)

The flood levels given in this gentleman's evidence, generally indicate a discharge from thunder-storms of 25 to 35 cubic feet per minute from each acre of urban drainage; this is equal to 1.66 and 2.33 inches of rain in 4 hours.

DIVISION OF FLOOD WATERS FROM ORDINARY DISCHARGE.

While upon the subject of floods it will be interesting to quote the substance of a paper by James Leslie, Esq., of Edinburgh, Civil Engineer, read before the Institution of Civil Engineers in April, 1851, as

follows :-

It is frequently a problem to ascertain by guaging the average flow of a stream during a part of the year, exclusive of flood-waters; it being difficult to assign any fixed time when a stream is and when it is not in a proper state for guaging, as it would require a knowledge of the very fact which it is wished to ascertain; moreover, persons must be found frequently to guage for many months together, without discretion as to what should be excluded, and sometimes stated intervals are named in an Act of Parliament. Mr. Leslie therefore proposes the following method:—

First.—The guagings are all to be set down in a table, in the order of their quantities—the whole number of observations is to be divided into four equal parts, whereof the lowest fourth will be held to be extreme droughts; and the highest floods; the average of the middle half is to be ascertained, and all above that quantity of the original table is held to be flood water.

A new table is then to be constructed, in which all the guagings not exceeding the average of the middle half are put down at their actual

quantity; but all that are above the average are put down as equal to that average quantity; the mean of the whole of the new table is to be considered as a fair average of the water flowing in the stream, exclusive of floods. Mr. Leslie gives a table of a stream thus treated, which varied in its run from 1,902 to 59,861 cubic feet per minute. Average of the whole was 10,231 cubic feet per minute; the average of the middle half was 7,234 cubic feet per minute; and the average quantity, exclusive of floods, was 5,830 cubic feet per minute.

Mr. Leslie also suggests that his plan might be used by dividing the guagings into only three equal parts, which gives a rather smaller result, but makes no important difference; the above stream treated in this manner gives the average of the middle third 7,085 cubic feet per minute; and the quantity, exclusive of flood water, 5,758 cubic feet per minute. An example is also given of a small stream varying from .27 to

272.4 cubic feet per minute.

										abic feet r minute
The entire a										
Average of	middle	half								18.51
	••	third		•						17.90
Final averag	ze, exc	luding	flo	ods	by	mi	ddle	half	plan	13.65
"	"		"		by	mi	iddle	third	l plan	13.40

FLOW FROM LARGE DISTRICTS.—Table 12.

Estimate of Annual Discharge in relation to Rainfall.

The Rain Guage is a most useful instrument in the hands of an engineer, if used with due experience of the effects which its records are known to produce in similar districts; although the results may be occasionally not altogether synchronous, yet on examining the broad facts we shall not find anything at variance with the general laws which govern the collection of vapours and their deposit in rain. Districts may greatly vary in their general slope and geological character; graüwacke, granite, and the volcanic districts generally throw water in great rapidity, and are equally liable to great drought in summer time, unless they are capped by moss beds, which act as sponges not always the most pure; some of the newer rocks, on the other hand, such as the old and new red sandstones, have great power of storing water; the latter rocks from their flatness, generally holding it as indicated by the wells, which are always plentiful in this formation; the former, on the other hand, generally give out the puress spring water when occurring on mountain slopes, rising above the plains occupied by our numerous coal fields.

In the chalk districts this porous material absorbs a great portion of the rain that it receives, collecting it in great underground sheets represented by the numerously-interlaid flint beds, and pouring out almost rivers at places that have no indication of a feeder; so strongly is this marked, that the chalk districts may be always identified upon the Ordnance maps by the absence of streamlets on its surface, a characteristic likewise of some

of the mountain limestones and colites.

In this latter formation we lately had occasion to examine springs which, although most copious, could be scarcely recognised to have any area of drainage beyond them; the rock, having a very flat underlie, was fetching water far away from the outcrop, and pouring it out at a point not 40 feet below the summit level of the hills whence it proceeded.

These instances are familiar to all who have studied the water bearing properties of the hills of Great Britain; watching the progress of agriculture and drainage, we find the hill pastures scored in all directions with sheep drains, while in agricultural districts thorough draining steadily advances; all these operations are rapidly contributing to pour out floods on the dwellers in the plains, the inhabitants of the rich levels at the mouth, or on the lower course of our rivers, who, by this simple but incontrovertible order of events, find themselves forced into improvement, which the natural resources of their soil had too long delayed. Frequently in this state of affairs, the march of improvement has commenced in the harbour at the mouth, and tidal volume is sent up vastly higher and sooner than known before; dredging machines are set to work, and bold piers or long river walls are constructed; and although the landowner may find his outfall better, he also discovers that a concurrent high tide and upland flood has topped the walls and robbed his meadows of their burthen, or swept down his ripening corn.

In the estimate of floods, at pages 26-9, we have endeavoured to sketch out a few examples, with which the engineer should expect to deal, in constructing outfalls, or improving lowland rivers. In the following table we give a few examples of actual discharge from considerable districts, where the total flow of water has been guaged for the whole year round. The Bann Reservoirs, and some of those near Manchester, are from Mr. Bateman's paper in the *Philosophical Memoirs* of that town.

TABLE OF ACTUAL DISCHARGE FROM LARGE DISTRICTS.

with the amount given per square mile, the amount of water run off in depth over the surface, and the storage in reservoirs where existing or intended.

	Height above Sea.	Drainage Area.	Total Discharge for the Year.	Discharge per Square Mile.	Representing Rain-fall per Annum.	Registered Rain-fall per Annum.	Reservoir Room per Square Mile.
Bann Reservoirs, 1837-8,	n. n.	miles.	pr. min.	cube ft. pr.min.	ms.	ins.	cu.ft.in millns.
moorland	400 to 2,800	5.15		210. 2	48.0	72.0	
Greenock, 1827-8, flat moor.		7.88	1416.6		41.0	60. o	38. O
Bute (a), 1826, low country.		7.80	819.0		23.9	45-4	•••
Glencorse Pentland Hills (b)		6.00	600.0		22. 3	37.0	7.66
Belmont, 1843, moorland	850 to 1,600	2.81	630.4	224.3	50.7	63.4	26.8
,, 1844 ,,	•••		412.8	146 4	33-3	50.0	•••
,, 1845 ,,	•••		511.2	181.9	41.2	55.0	•••
,, 1846 .,	•••		411.3	146.3	33.2	49.8	•••
Rivington Pike (c) 1847-8	1,545	16. 25	1752.0	107.8	24. 25	55.5	29.6
Turton and Entwistle, 1836.	500 to 1,300	3. 18	576.7	181.3	41.0	46. 2	31.43
,, ,, ,, 1837 .		·	548. 2	172.3	39.0	48.2	• • • •
Bolton Waterworks, moor	800 to 1,600	.80	100.2	125. 2	32.7	•••	25.6
Sheffield, since enlarged		1.42	1		·'	•••	₹6. ¢
Ashton, 1844	•••	• 59	40.7	65.5	15.5	40.0	21.0

⁽a) This year's rain was about 12 inches less than an average.

⁽b) Glencorse discharge is only the amount exclusive of floods; the reservoir supply totally failed in the drought of 1843; it is now in course of enlargement. The Glencorse drainage is generally precipitous.

⁽c) Rivington Pike Reservoirs are not yet made. The amount running down for two years was gauged. The country is moor, partly flat, and partly precipitous.

In 1846-7 the author conducted an experiment by accurately gauging for four months the water, flowing from 3,800 acres, into the Glencorse Reservoir, in the Pentland Hills, belonging to the Edinburgh Water Company, as follows:—

Cubic Feet. Inches. 1846, December.—Supply into Reservoir.. 19,762.000=fall of rain 1.43 .. Registered ditto 1.02 1847, January.—Supply into Reservoir .. 14,524,200=fall of rain 1.05 Registered ditto .750 .. 18,637,100=fall of rain 1.34 " February.—Supply into Reservoir .. Registered ditto 1.56 " March.—Supply into Reservoir .. 9,662,520=fall of rain .69 Registered 1.02 ditto The total rain passing into the Reservoir being registered in rain gauges at level of Reservoir being .. 4.35 Ditto on the Hills being ..

Again, in the Bonally district adjoining, but about 500 feet higher than Glencorse, we found the mean run of the streams to be 112 cubic feet per minute, or equal to a fall of rain over 879 acres of 4.55 inches, the registered fall being as before 4.71 inches.

As a contrast to the foregoing table, we now offer a second:—

TABLE OF ORDINARY SUMMER DISCHARGE

of various rivers, streams, and springs as uninfluenced by any immediate rain; with the drainage area, and amount run off the surface represented in depth of rain.

RIVERS.	Height above Sea. Valley. Hill.	Drainage Area.	Total Discharge.	Discharge per Square Mile.	Representing Rain-fall per Annum.	Total average Rain-fall per Annum.
Themes at Chalman shalls were	ft. ft.	sqre.	cubic ft.	cubic ft.	inches	inches
Thames at Staines—chalk, green- sand, Oxford clay, oolites, &c	49 to 700	3,086		12.98	2.93	
Severn at Stonebench—silurian.	400 to 2, 600	3,900	33,111	8.49	1.98	24.5
Frent at its mouth—colites and	400 10 2,000	3,900	33,	7	1.90	l
Oxford clay	100 to 600	3,921	1	1		
Loddon (Feb., 1850)—greensand	110 to 700	221.8	3,000	13.53	3.01	25.4
Nene, at Peterborough-oolites,	'		-		1	້ໍ
Oxford clay, and lias	10 to 600	620.0	5,000	8.45	1.88	23.1
Mimram, at Panshanger—chalk	200 to 500	29.2	1,500	51.4	11.58	26.6
Lee at Lee Bridge — chalk	٠. ا	l	!	_		
(Rennie, April, 1796)	30 to 600	570.0	8,880	15.58	3-53	l
Wandle, below Carshalton—chalk	70 to 350	41.0	1,800	43.9	9.93	24.0
Medway, driest seasons (Rennie, 1787)—clay		481.5		4		
Ditto, ordinary Summer run		401.5	2,209	4.59	1.04	i
(Rennie, 1787)		481.5	2,520	5.23	2.10	
Verulam, at Bushey Hall—chalk	150 to 500	120.8	1,800	14.9	3.37	ł
Gade, at Hunton Bridge—chalk	150 to 500	69.5	2,500	36.2	8.19	1
Plym, at Sheepstor-granite	800 to 1,500	7.6	500	71.4	15.10	45.0
Woodhead Tunnel-millstone grit	1,000		139	''	j	46.0
Glencorse Burn (e)	750 to 1,600	6.0	130	21.6	4.9	37-4
Crawley Spring—felspar and por-			-			
phyry— Summer (e)	556 to 1,600	.6	54	90.0	20.2	
Winter (e)	, ,	.6	77	128.3	29.0	
Blacksprings—felspar—Sum. (e)	1,000 to 1,600	.1	30	300.0	70.0	(6)
Winter (e)	,"	Ι.	40	400.0	92.0	(6)
Bavelaw — sandstone — Summer(e)	900 to 1,600	1.42	120	84.5	19.0	(6)
Colzium ,, ,, (e)	, , , , , , , , , , , , , , , , , , ,	4.20	113	29.9	6.87	(¢)

The examples here given have generally been corroborated by our own observations; the rain at the places marked (c) has not been kept, but that at Glencorse represents the rain for the lowest point of the district; the rain on the hills is much higher.

The Blacksprings indicate a drainage from a district far beyond the water shed; they occur at a protrusion of basalt; these springs and others marked (e) are from gaugings made at different periods, under the provisions of Acts of Parliament, for the protection of parties having water privileges.

The Wandle, Verulam, and Gade, all flowing out of the chalk towards the metropolis, are from Mr. Telford's gaugings made in 1833, a period which he terms "the driest season known for the last half-century;" but there is reason to believe that this was not the time of the minimum

discharge.

The table gives the run of the several streams per square mile of drainage area, which is an excellent measure of their productiveness, and we have likewise reduced the amount (as supposed to run uniformly during the year, irrespective of floods) into the quantity distributed over the drainage area, as fed by rain; for example, the summer run of the Thames is equal to 12.98 cubic feet per minute for each square mile, and represents 2.93 inches of rain falling over its drainage area, while the summer run of the Mimram is 51.4 cubic feet per minute for each square mile, representing 11.58 inches of rain.

DISCHARGE OF SEWERS.

By gaugings of various Westminster Sewers, made in the summer of 1845, Mr. Hawkins reported that the mean summer discharge of the Westminster district, urban and suburban, was .277 of a cubic foot per minute per acre; the urban only was .876 of a cubic foot per minute per acre.

GENERAL REMARKS.

In generalizing on the discharge of districts in ordinary and flood time, the observer will be well aware, that there are seasons of drought when the most certain streams are seriously affected in their water-bearing properties; the table exhibits the very high power of the Pentland Hills, yet we have it on record that almost the whole of these sources were dried up in the summer of 1843; there appear to be, indeed, rare occasions when hill-country suffers more from drought than lower districts—the lake district of Cumberland was similarly affected at about the same time.

In hotter countries these facts are proverbial; in the great tertiary plains of central Spain, which are 1,200 feet and upwards above the sea. large rivers shrink into dry gravel beds, while at the same time the seaward face of the mountains which fringe the Bay of Biscay, are clothed with verdure caused by perpetual rains; this grand escarpment is broken up into the wildest and most precipitous glens, where the vapours rolling from the sea are caught and poured down with astonishing rapidity and The character of this great condensation, as it were, is so marked that severe droughts are experienced on the inland side of the escarpment (5,000 to 7,000 above the sea) while within a very few miles rains are daily pouring down. These effects occur in a similar manner along the escarpment of the Bombay peninsula, where the rainfall is from 80 to 150 inches in the year, while it gradually recedes to 10 or 15 inches in the Deccan or dry country; the same is to be traced on the coast of Arracan, and in California on the West Coast of America. The rainfall of the Western Highlands is remarkable, likewise that of the Lake district, as shewn by Mr. Millar, of Whitehaven, in his papers published by the Royal Society, whence we have drawn for Table 15.

SUPPLY OF WELLS.

We are naturally led into this subject when treating of the quantity of water falling over the surface of the ground, for it is evident that the supply of wells depends upon the freedom with which rocks will permit the passage of water, and on the absence of free discharge at escarpments or lower valleys to which the strata may dip. Faults must of necessity drain away the water due to the strata which they intercept, the extent depending upon the nature of such faults and the free character of the rocks; as faults are generally numerous, it is evident that the supply of wells must vary, according to the accident of position and depth; but this rule is not without exception, for there are many districts where, with pervious beds laying in great depth on impervious rocks, water is always to be found at the point where it would naturally be deposited by gravity.

gravity.

Mr. John Dickinson has kept for many years, at King's Langley, an ordinary rain gauge, united with one of Dalton's plan, arranged so as to catch the rain passing down three feet below the surface through the natural soil, which has been filled in after the placing of the gauge in its position. The following tables, extracted from Mr. Josiah Parkes's Essays, exhibit the mean of eight years of the rain caught in the ordinary rain-gauge, with the amount passing through three feet of soil, and its proportion of the whole; the comparisons are highly useful, and if done on a more extended scale, they would be valuable additions to science.

	Octol	er to M	arch.	April	mber.	Total	of each	Year.	
YEAR.	Rain.	Filtratn.	₽ Cent. filtered.	Rain.	Filtratn.	P Cent. flitered.	Rain.	Filtratn.	₩ Cent. filtered.
A.D.	Inches.	Inches.		Inches.	Inches.		Inches.	Inches.	
1836	18.80	15.55	82.7	12,20	2.10	17.3	31.0	17.65	56.9
1837	11.30	6.85	60.6	9.80	.10	1.0	21.10	6.95	32.9
1838	12.32	8.45	68.8	10.81	. 12	1.2	23.13	8.57	37.0
1839	13. 87	12.31	88.2	17.41	2.60	15.0	31.28	14.91	47.6
1840	11.76	8.19	60.6	9.68	0.00	0.0	21.44	8.19	38.2
1841	16.84	14.10	84.2	15.26	0.00	0.0	32.10	14.19	44.2
1842	14.28	10.46	73.2	12.15	1.30	10.7	26.43	11.76	44.4
1843	12.43	7.11	57.2	14.04	-99	7.1	26.47	8.10	36.0
Mean	13.95	10.39	74-5	12.67	0.90	7.1	26.61	11.29	42.4

The mean of each month for the above eight years, is:-

	Rain, Inches.	1	Filtration Inches.	,	Per cent. Filtered.
January	1.84		1.30		70.7
February	1.97		1.54		78.4
March	1.61		1.08		66.6
April	1.45		.30		21.0
May	1.85		.11		5.8
June	2.21		.04		1.7
July	2.28		.04		1.8
August	2.42		.03		1.4
September	2.64		.37		13.9
October	2.82		1.40		49.5
November	3.83		3.26		84.9
December	1.64		1.80		100.0

Mr. Parkes remarks, that on the 7th and 8th November, '48 inch rain fell; and on the 9th, '46 passed through to the filter gauge, and by an

experiment on inch draining tiles, 24 feet asunder and three feet deep, which appear to have carried off all in 12 hours, he concludes that they

were equal to such a discharge, viz., half-an-inch in 12 hours.

Referring to our table of the ordinary summer run of streams, and to the amount of rain-fall per annum which such run will require, we may safely assume that the mean is certainly not more than ten cubic feet minute per square mile, or (Table 12), somewhat more than two inches per annum. If we double this quantity for the average of the whole year, due to springs and ordinary rain, or say 4 inches, we shall be probably tolerably near the ordinary run of a river, taking summer and winter, exclusive of floods, and assuming no very wet or high mountain districts.

Now the average filtration, from April to September, of the above eight years, may be taken as nothing for all practical purposes; while, from October to March, we have an average of 10.39 inches filtered through, out of 13.95 inches total fall. Of this winter portion of 10.39, we must allow at least six inches for floods running away at the time of rain, and then we have only 4.39 inches left from supply of rivers and wells, which, assuming our estimate of four inches for that due to rivers, leaves only .39 of an inch for wells alone. It is certain that this small quantity would give all that we have as yet known of the draft of wells in all ordinary cases; for how notorious is it, that ordinary wells fail in summer time, and how few wells are there of a never-failing character, unless they have some substantial reason for that quality.

When we consider the enormous tendency to collect given to an area, by the preponderating gravitation from the surrounding strata, produced by jumping at a depth of 100 to 200 or 300 feet below the surface, the wonder should be, rather the small produce of wells generally, than an argument for the great supply from wells. Considering the exertions made to get water at Liverpool by wells, the results shewn at page xxxvii are small; and of the larger instances in London, given at page xxxvi, some are notoriously influenced by the high tide of

the Thames.

Whether wells, if unduly worked, are not another form of taking water out of the adjacent rivers or the springs which supply them, is a point which is at all events open to question; and the evidence is certainly rather favourable to such a conclusion in chalk districts. In the recent case of Dickinson v. The Grand Junction Canal Company, where defendants sank a well near the summit level of the chalk stream, flowing towards the Coln, and pumped thence over the watershed line into the canal locking northwards, Lord Langdale referred the matter to Mr. Cubitt, President of the Institution of Civil Engineers, who advised that the Canal Company should divide the water pumped, sending half down towards the Coin, and the other half northwards. This decision was in fact admitting the doctrine; qualified in some degree by the proximity of the well to the watershed line.

Wells and springs, in character identical, are provisions for the wants of humanity, ordained by Providence, so that man shall have water in detail wherever he may require it, for his daily use; and in order that the supply may be pure, the chemist informs us that the carbonic acid in the soil constantly purifies the percolating water in the slow passage (filtration) downwards; thus returning the liquid pure from the manure and other impurities of the upper soil—from the animal and vegetable wonders of the microscope, children of light and air, that cannot exist below; so that the earth, synonymous with corruption, is also all-powerful in the production and support of new life, as described by a great apostle before chemistry was known. Wherever immense popula-

XXXV

REMARKS ON THE USE OF THE TABLES.

tions are gathered together, these conditions are interfered with so as to upset the ordinary economy of nature, and give rise to the complications which the engineer is called upon to adjust.

WELLS IN THE LONDON CLAY AND CHALK.

The chief supply to the wells of London is the bed of sand which lies on the chalk under the great bed of London and plastic clays; the nature of this bed renders the communication between different wells undoubted, and it is equally certain that all the large wells have constantly to be deepened, to enable them to keep up their supply.

Mr. Clutterbuck, (Mins. Inst. Civ. Engrs.) says, that the permanent depression between 1841 and 1848, has been 12 feet or 18 inches per

annum, the progress being thus:-

Hendon Union Workhouse	6	feet	in 8 years
Cricklewood	10	,,	**
Kilburn	2 0	"	,,
Zoological Gardens, Regent's Park	19	"	"
Hampstead Road	10	***	"

Mr. F. Braithwaite gives a table, of which the following is an abstract, shewing the effect of pumping from the sand springs under the blue clay at Coombe's Brewery, Long Acre:

DEPTH OF WATER BELOW GROUND.

	1838.		1841.		18 44 .		1847.		1849.
January	113.6	•••	119.0	•••	131.0	•••	133.8	•••	148.6
March	116.0	•••	121.6		135.6	•••	133.1	•••	152.6
June	113.0	•••	124.0	•••	137.0	•••	139.1	•••	158.0
September	0.811	•••	124.3	•••	134.6	•••	146.0	•••	160.6
December	117.0	•••	124.6	•••	135.6	•••	140.0	•••	155.9

At Greenwich the well ebbs and flows \ Land springs 2 feet.

At Coombe's Brewery, additional borings in the chalk, 100, 200, and 300 feet deep, gave only 4 cubic feet per minute more water; the water of this well has lowered 60 feet and upwards in 25 years past.

At Meux's Brewery, 260 feet boring in chalk only gave 1.6 cubic feet per minute more water.

These examples are taken from various discussions in the Minutes of the Institution of Civil Engineers, and we must leave the reader to draw his own conclusions. From the same sources we give the following table of

WELLS IN LONDON AND THE NEIGHBOURHOOD.

Depth below ground. feet.	Below T. H. Water. feet.	Depth in Chalk. foet.	Depth of supply Bored. e. ft per feet. minute.
Bushey Meadows, Watford	–		200.0
Hanwell		—	20.4
Hampstead Rd., (a) Aug. 1838 183	105	37	10.3
" March 1839 —		—	21.I
Trafalgar Square 400		100	65.0
Reid's—chalk exposed 1,600 sq. ft. —		—	32.0
Greenwich Hospital253			
Woolwich			
Booth's at Brentford $\dots(b)$ \dots 415 \dots	<u> </u>	–	100 13.0
Well at Gravesend, 1837			

(a) Well, finished in February, 1838. Depth 183 feet; worked by a 20-horse engine, a cost of £2 17s. for each 24 hours. Grosscost of well, engine and pumps, £12,422.
(b) Supply chiefly from Sand Spring.

WELLS IN THE NEW RED SANDSTONE.

In Mr. Stephenson's late Report on the supply of Water to Liverpool, he comes to the following general conclusions:

That an abundance of water is stored up in the new red sandstone, and may be obtained by sinking shafts and driving tunnels about the level of low water.

That the sandstone is generally very pervious, admitting of deep wells drawing their supply from distances exceeding one mile; but its permeability is occasionally interfered with by faults or fissures filled with argillaceous matter, sometimes rendering them partially or wholly watertight.

That neither by sinking, tunnelling or boring, can the yield of any well be very materially and permanently increased, except so far as the contributing area may be thereby enlarged.

That the contributing area to any given well is limited by the amount of friction experienced by the movement of the water through the fissures and pores of the sandstone.

That there is evidence to show, that the tendency of the river water inland is slightly preponderating over the pressure of the body of water in the sandstone towards the Mersey, the wells being generally sunk about 20 feet below low water mark.

That it might be a fair conclusion under existing circumstances, that the equilibrium would be very nearly adjusted, because the mass of the wells draw their supply from the sandstone at a level somewhere between high and low water mark, and the column of fresh water from the sandstone exerting its natural pressure, prevents any ingress from the fluctuating column of tidal water; but that the uniform pressure of the column of fresh water is interfered with by the great extent of pumping from the wells; the effect of this, in many cases, being to lower the surface line of water in the sandstone below the river surface, when a reverse action ensues, and the brackish water obtains a slight advantage.

That the various proposals for obtaining water, by sinking at one point in the immediate vicinity of Liverpool, will not produce the stipulated

quantity. That experience shews the necessity of deepening the wells in Liverpool, from time to time, from the great demand. That there is little or no probability of obtaining permanently more than about 1,000,000 or 1,200,000 gallons per day, from any one well, and this only when not interfered with by other deep wells.

That the most, if not the only feasible plan for making the water contained in the sandstone available for the general supply of Liverpool, is to sink a series of wells scattered over a large area of country lying to the East or North-East of the town.

The Report states that the net cost of working the deep wells at Liverpool is as follows:-

Name of Station.	Height Water Lifted.	Quantity Raised.	Total Cost per Ann. of Raising Water.		Cost po Raising Gall 160,51	1,00 ons,	0,000 er	
	Feet,	Cubic ft. perMinute.	£	8.	d.	£	8.	đ,
Bootle	40	100.6	1445	3	3	4	7	8
Bush	123	29.I	716	3	5	1 7	10	I
Soho	123	51.7	833	17	ī	4	18	9
Hotham Street .	110	24.7	603	4	8	7	9	4
Water Street	156	45.8	874	ż	10	5	16	6
Windsor	210	71.1	949	Ö	3	4	I	6
Green Lane	185	112.2	920	2	7	2	10	ı

The gross cost of raising 112 cubic feet per minute, or 1,000,000 gallons per diem at Green Lane and Windsor Wells, is-

For current expenses including superintendence£1,100 Depreciation upon Engines and Machinery, Enginehouses and Cooling-pond, £11,200 at 2 per cent.

Total per annum. £1,324

From which Mr. Stephenson estimates each new station, including Mains for delivery into the Distributing Reservoir, thus:-

Current expenses, including superintendence	£1,100
Depreciation upon Engines and Machinery, Engine-houses and Cooling-ponds, £12,000 at 2 per Cent.	240
Depreciation of Mains, £8,000 at ½ per Cent	20
Interest on Capital, namely—£30,800 at 4½ per Cent.	1,386
Compensation to Landowners	250
Middle and the state of the sta	

Total per annum for distributing 112 cubic feet per? minute, exclusive of service pipes

Mr. Stephenson suggests, that if Liverpool is to be supplied with Water from Wells, they should be, as above stated, scattered at wide distances over the area to the East of the town; he estimates that each new station and its mains to the Kensington Reservoirs would cost £28,000, and allowing one station for each 1,000,000 gallons supplied, and the same quantity for each of the two present stations, (which cost, exclusive of

capital, £2,648 per annum) he gives the following comparison of the Annual Cost of supplying Liverpool with Water from Wells and from Rivington Pike:—

To obtain	Gravitation. Rivington, including interest on Capital of £500,000.	Pumping. Wells, including interest on Capital.		
Gal. per day. C. ft. per min. 8,000,000 or 891.4 wil	Cost pe	r Annum	£ 28,100	£ 20,624
9,000,000 ,, 1,002.8	, 0000 pc.	79	28,356	23,620
10,000,000 ,, 1,114.3	"	"	28,612	26,616
11,000,000 ,, 1,225.7	99	,,	28,868	29,612
12,000,000 ,, 1,337.1	19	,,	29,125	32,608
13,000,000 , 1,448.6	**	"	29,381	35,604
				·

The following is a return delivered by W. C. Mylne, Esq., to the Metropolis Water Committee, on 31st July, 1851:—

"ESTIMATE of the difference in the expense of supplying water to the New River Head, by means of Gravitation or by Pumping.

By Gravitation.

Interest, at 5 per cent., on the capital reported to Parliament, in 1821, as expended for bringing the water from Chadwell and	•		
Amwell to London, viz., £472,170	£23,600	0	0
Annual expenses on the river	4,600	0	0
	£98 900		_

By Pumping.

Interest on capital, and annual expense of pumping the same quantity of water from the River Lee, at or below Tottenham, into the New River) •	0	0
	£12,700	0	0

Note.—The New River is capable of bringing 30 per cent. more water, without any extra cost. This extra quantity, if pumped from or below Tottenham, would add 30 per cent. to the cost of pumping."

We must observe that the capitalized cost of the New River was an estimate only, and that it was laid out originally for a limited quantity; four times the amount of water, if it had been then wanted, could have been brought in at no greater original cost of construction. The quantity of water brought by the New River from the Lee at Hertford, according to the returns of the company, is about 1,300 cubic feet per minute.

EXPENDITURE OF WATER.—Table 13,

Is arranged to show readily the relation of cubic feet per minute with the same quantity in gallons, for a minute, day, and year of 365 days.

THE FOLLOWING TABLE gives the value of water per annum, at a penny per 1,000 gallons, from 1 to 50 cubic feet per minute, and from 1,000 to 500,000 gallons per diem; the year being taken at 313 working days.

Cubic feet	Gallons	Value per	Gallons	Cubic feet	Value per		
per	per	Annum, at 1d.	per	per	Annum, at 1d.		
Minute.	Diem.	per 1,000 Gals.	Diem.	Minute.	per 1,000 Gals.		
1 2 3 4 5 10 50	9,000 18,000 27,000 36,000 45,000 90,000 450,000	£ s. d. 11 14 9 23 9 6 35 4 3 46 19 0 58 13 9 117 7 6 586 17 6	1,000 2,500 5,000 10,000 50,000 100,000 500,000	0.111 0.277 0.555 1.111 5.555 11.111 55.555	£ s. d. 1 6 1 3 5 2½ 6 10 5 13 0 10 65 4 2 130 8 4 652 1 8		

WATER SUPPLY AND POPULATION,—Table 14,

Is arranged to give a ready measure of the quantity of water required to supply various amounts of population at different rates of consumption; with these are given the number of square miles of ground required according to different sources of supply, with the cubic contents of Reservoirs. These data are given to guide, rather than to lay down any rule upon the subject; we have found this form useful in judging of the capabilities of districts where there is absence of special data. In using this Table the information given at pages xxx. to xxxii. will be applicable.

RAIN TABLES 15 and 15 a.

As a guide for practical application to the circumstances of any especial case, we have constructed from authentic sources these Tables of Rainfall at 55 places.

Table 15 shows the fall of rain averaged over a stated number of years, with the maximum and minimum quantity for those periods. Each year is formed of three periods of four months each—commencing with November, December, January, and February, for the winter division; March, April, May, and June, for the Spring division; July, August, September, October, for the summer division; each year being made up of these periods, instead of the customary twelve months.

This plan of division is adopted because, for purposes of comparison, it gives the seasons in better arrangement than the ordinary division into months; for instance, a wet November and December are not unusually followed by a dry January and February, and vice versa. To expect, therefore, a small discharge in March because the fall of rain may be small in the two preceding months only, would be calculated to lead into error. Moreover, the amount of deduction for evaporation, and especially absorption, will arrange itself more systematically under these divisions.

The blanks for Greenwich, in Table 15, should be filled up as follows; the details given by R. W. Mylne, Esq., were received too late for insertion thereon.

Mean. Maximum, 1841. Minimum, 1840.								D.			
WINTER	SPRING	SUMMER	TOTAL	WINTER	SPRING.		TOTAL 13 mos.	WINTER	SPRING	SUMMER	TOTAL 12 mos.
Ine. 7. 50	Ins. 6.37	Ins. 10. 10	Ins. 23-97	Ins. 9 · S	Ins. 8. 1	Ins. 15.8	Ins. 33 · 4	Ins. 6. 3	Ins. 3 · 7	Ins. 6. 6	Ins. 16.6

The average of 20 years, from 1830 to 1849, was as follows:--

Braing.	SUMMER.	AUTUMN.		WINTER.		TOTAL.	,
4. 15 ins	5. 55 ins	7.75 ins.	***	5. 55 ins.	•••	23. 09 is	ns.
The maximum of The minimum The minimum ave	20 years, in 1: , 1: erage of 5 year	841 832 rs, viz., the	yea	rs 1832-4-	7-40		Inches. 33.40 16.10 17.48
e years 1832, 1833	3, and 1834, ga	ve only 16.	I, 20	.g. and 17	. 8 in	ches con	secutivel

The years 1892, 1893, and 1894, gave only 16. I, 20.9, and 17. 8 inches consecutively, or an average of 18. 26 inches.

The mean			Was	
"	22	1830 , 1839 1840 , 1849	***************************************	
29	**	1840 , 1849	***************************************	23.90
Average f	rom	1820 to 1849	W85	23.95

The following is the Devonport rain-fall for 9½ years, 1840 to 1849, taken about 80 feet above high water:—

	Mean. Maximum, 1841.				1	Cinimu	m, 184	6.			
SPRING	Sumer	AUTUMR	TOTAL	SPEING SUMMER AUTUMN TOTAL SPRING SUM 12 mos.					Summer	AUTUMN	TOTAL 13 mos.
Ins. 12.81	Ins. 8.02	Ins. 10. 51	Ins. 31-34	Ins. 14.91	Ins. 11.93	Ins. 17- 43	Ins. 44-27	Ins. 11.43	Ins. 7. 20	lins. 8. 50	Ine. 27.13

Table 15 a is constructed from good specimens of the hill and the low country of Great Britain.

Glencorse is a deep valley in the Pentland Hills, 10 miles from Edinburgh, where observations have been kept by the Water Company since 1830, at the level of their reservoir or the lowest point of the basin; the hills rise precipitously all round to heights of 1,200 to 1,600 feet above the sea, and are about twelve miles from the Firth of Forth.

Gilmourton is in a valley of flatter character, with hills rising to 1,600 feet, at two to five miles distance in the south and west direction from the gauge—the hills are twenty miles from Glasgow, and the same distance from the west coast of Scotland.

The Boston observations are well known to represent the steady character of weather of the low country of Eastern England.

In this Table the object has been to show, in juxtaposition, the amount of rain falling in quantities so heavy as to affect streams, and the total amount given by the rain-gauge during each month. The minimum quantity, taken as "heavy rain" falling in each twenty-four hours, is 3 inch. The average number of days in the months and years in which the rain per diem was this, or above, is also given in the Table.

It will be at once seen, by those familiar with the subject, that this mode of arrangement indicates an amount probably available for streams, not at all unlike the result of experiments.

GENERAL REMARKS ON RAIN, AND LOSS BY EVAPORATION.

In using the term evaporation, as applied to this great process which is always at work in nature, the engineer has only to deal with the resultant facts; it is quite clear that the amount actually passing off the ground in the state of vapour may even exceed that shown by the rain-gauge. As an instance, we have drawn up the following statement of evaporation from surface of water in a shallow vessel, as compared with the amount of rain received in an adjacent gauge. The observations were made by Mr. Luke Howard, at Plaistow, and are averaged from 1812 to 1815:—

			•	•	June. Ins.	•	_	•			•
RAIM 1.93	2.00	1.46	2.48	1.71	2.14	2.19	0.98	2.85	2.05	1.75	1.60
EVAP 1.20	1.63	1.42	2.47	2.67	2.85	2.99	2.25	1.33	•49	-44	- 39

On adopting the	former div	ision		AGE inches	EVAP. inches
we have for th	e Winter	PERIO	D	7.28	3.66
**	SPRING	,,		7.79	10.41
"	SUMMER	**	•••••	8.08	70.6
Total Average fo	or the Years	bein	g	23.15	21.13

The experiments of Bishop Watson on evaporation went to shew that, during the time of bright hot sun, when there had been no rain for a month, the evaporation from grass was at the rate of '035 inch in 12 hrs. A nother experiment one day efter a thunder extern. 2087

Another experiment one day after a thunder-storm , '087 , Looking at these results, we must come to the conclusion that the supply which is given from above for evaporation, &c., must be far beyond the susceptibility of any ordinary rain-gauge, and cannot therefore shew the amount of liquid, in all forms, which is deposited by night and day during the year. When therefore, we speak of a certain proportion of the amount recorded by the rain-gauge being lost, and the remaining passing off the ground, we state the result of experiments; without at all questioning that there must be a far greater quantity evaporated to be again supplied by dew and vegetable absorption. Unless there are these sources of supply, beyond the indication of the rain-gauge, it would be impossible to account for the enormous evaporation produced each day, for long succession, in tropical countries, where dew has the effect of rain in early morning, and the year passes round with only a few thundershowers, as in Egypt and part of the West Coast of America.

The author of the article Physical Geography, in the work of the Society of Useful Knowledge, has the following remarks upon this subject:

"Other things being equal, evaporation is the more abundant, the greater the warmth of the air above that of the evaporating body, and least of all when their temperature is the same. Neither does much take place whenever the atmosphere is more than fifteen degrees colder than the surface upon which it acts. Winds powerfully promote evaporation, because they bring the air into continual, as well as into closer and more violent contact with the surface acted upon; and also, in the case of liquids, increase, by the agitation which they occasion, the number of points of contact between the atmosphere and the liquid.

"In the temperate zone, with a mean temperature of 52½ degrees, the annual evaporation has been found to be between 36 and 37 inches. At Cumana, on the coast of South America (N. lat. 10½), with a mean temperature of 81.86 degrees, it was ascertained to be more than 100 inches in the course of the year; at Guadaloupe, in the West Indies, it has been observed to amount to 97 inches. The degree of evaporation very much depends upon the difference (greater or less) between the quantity of vapour which the surrounding air is able to contain, when saturated, and the quantity which it actually contains. M. Humboldt, from observations made in the passage across the Atlantic, found that in the torrid zone, the quantity of vapour contained in the air, is much nearer to the point of saturation than in the temperate zone. The evaporation within the tropics and in hot weather, is in temperate zones, on this account, less than might have been supposed from the increase of the temperature.

"The average yearly quantity of rain is greatest within the tropics; and it seems, in general, to diminish, the further we recede from the equator. In the torrid zone it amounts, at a medium, to 100 or 110 inches; while in the north temperate zone, it cannot be stated at more than 30 or 35 inches. These quantities are very differently distributed throughout the year in the two zones: the number of rainy days towards the equator is, in the majority of places, less than in the higher latitudes, and the rain consequently descends there in the most violent torrents: at Bombay, 16 inches have been collected in a guage in the space of twenty-four hours. In general, much more rain falls in mountainous countries than in plains, and in countries covered with extensive forests than in those where wood is less abundant. Annexed, is a table of the annual quantities which have been observed at several places.

Places.			1	Latitude.	Mean annual fall of rain.
Island of St. Domingo				19º N.	120 inches.
Ditto Grenada				12	112 "
Calcutta				121	70 to 75
Rome				42	36 ,,
Paris				49	21 "
London			••	51 ½	23 or 24
Liverpool :			• •	53]	34 "
Kendal, Westmoreland	١		••	5 41	60 "
St. Petersburgh				60	16 "
Upsal	••	••	••	60	26 "

"The average annual fall of rain at Bombay in the ten years 1817 to 1826, was 78.1 inches; of those years, the most rainy was in 1822, in the course of which nearly 113 inches fell: whereas in 1824, a season of extreme drought and famine, the supply did not much exceed 34 inches. At Arracan, in 1825, nearly 60 inches were registered in the month of July, and above 43 in August; from which we may conclude that the whole quantity within the year was at least 150 inches."

THE FOLLOWING IS A TABLE of the mean temperature of different latitudes, which will be useful in indicating the temperature of spring and other water, under ground.

MEAN TEMPERATURE AT DIFFERENT LATITUDES.

Stations.	Lat.	Temp.	Stations.	Lat.	Temp
	D. M.	Fah.		D. M.	Fah.
Equator	0. 0	81.50	London	51.30	50.74
Columbo	6. 58	80.90	Dublin	53.21	48.65
Chandernagore	22. 52	75. 10	Kendal	54.17	47.58
Cairo	30.02	70.56	New Malton	54.10	47.53
Funchal	32- 37	68.62	Copenhagen	55.41	45.95
Rome	41.54	60.66	Edinburgh	55.57	45.64
Montpelier	43.36	59.03	Carlscrona	56.16	45.46
Bourdeaux	44- 50	57.82	Stockholm	59.20	41.57
Milan	45. 28	58. 28	Upsal	59.51	40.94
Nantes	47. 13	55.35	Abo	60.27	40.28
Paris	48.50	53.65	Umeo	63.50	35.96
Brussels	50.50	51.47	Uleo	65.30	34.38

(See Article Mountain Barometer for further Tables of mean temperature.)

COMPARATIVE VELOCITIES, GRADIENTS, AND MEASURES—Tables 16, 17 and 18,

Are arranged for ordinary reference, as explained thereon. Table 18 has also the angle of various rates of slope, and the difference of length between the base and slope measures of each.

USEFUL WEIGHTS AND MEASURES. Tables 19 and 19a.

Contain a table showing the decimal proportions of a foot or unity, in reference to a duodecimal division or inches; likewise the decimals which represent the ordinary fractions of an inch (or any other measure) from one-sixteenth to fifteen-sixteenths; thus, four inches and eleven-sixteenths, or 4.6875 inches, is .390 of a foot. These conversions are useful in computations of all kinds. The table has several useful numbers, and the multipliers for converting the principal foreign measures into English.

Table 19a contains areas of segments of a circle, and lengths of their arcs; height of apparent above true level, for rotundity of the earth; square yards in decimals of an acre; and the number of bricks taken in a given amount of work.

WEIGHT AND STRENGTH OF MATERIALS.— Tables 20 and 21,

Require no explanation beyond what will be found thereon. These Tables have been collated from the best authorities, but rocks and earths, &c., will necessarily be found somewhat variable.

SUSPENSION BRIDGES.—Table 22.

Gives the chief principles involved in catenary curves, and can be thus applied in all cases where the strength is required for suspended chains of any kind.

The strain in lbs. a rope will bear safely = girt $^{\circ} \times 200$ Do. cable = girt $^{\circ} \times 120$

Chain Cable.—Take the safe strain at about 8 tons per square inch of the iron of which it is made—i. e. four tons for each side of the link.

Of good chain, the proof weight should be 10 tons per square inch of each side of the link.

THE FOLLOWING IS A TABLE of the size and strength of Newall's wire rope.

Rope.	Wire Rope of Equivalent Strength.						
Weight per Fathom.	Circum- ference.	Weight per Fathom.	Breaking Strain.	Working Load.			
The.	Ins.	Ths.	Tons.	Cwt.			
2	I	1 1	à	6			
4	1 5	2	4	12			
5	1 7	. 3	6	18			
7	2 l	4	8	24			
9	2 3 8	5	10	30			
10	2 5	6	12	36			
12	2 7	7	14	42			
14	3 g	8	16	48			
16	3 8	9	18	54			
18	3 1/2	10	20	60			
22	3 3	12	24	72			
26	4	15	28	48			
30	48	16	32	96			
	Weight per Fathom. The. 2 4 5 7 9 10 12 14 16 18 22 26	Weight per Fathom. Ds. Ins. 1	Weight per Fathom. Circumference. Weight per Fathom. Ds. Ins. Ds. 2 I I 4 I 5/8 2 5 I 7/8 3 7 2 1/8 4 9 2 3/8 5 10 2 5/8 6 12 2 7/8 7 14 3 1/8 8 16 3 3/8 9 18 3 1/2 10 22 3 3/4 12 26 4 15	Weight per Fathom. Circumference. Weight per Fathom. Breaking Strain. Ds. Ins. Ds. Tons. 2 I I I 4 Ist fe			

ROOFS AND LOCK GATES.—Table 22a,

Contains the tension of the tie-bar of roofs or trusses, at several angles; giving the proportion of tension when the weight is unity. Also, the strain on three feet depth of surface of a lock gate in tons, and the size of oak timber necessary to bear three times the strain at different lengths of gate. This is from a paper by P. W. Barlow, Esq., C.E., in the first volume of the Transactions of the Institution of Civil Engineers. The strain is taken for gates placed at an angle of 19°.25' with the square, which he shows to be the angle of greatest strength, taking all thrusts into consideration.

CAST IRON BEAMS.—Table 23.

Gives the safe load to be borne by beams having the specified dimension of bottom flange. This is constructed on Professor Hodgkinson's rule.

- 1. Multiply the area of the bottom flange by the depth of the beam, and divide the product by the length between supports (all in inches); the quotient multiplied by 514 will give the breaking weight at the centre.*
- 2. When a beam is uniformly loaded and supported at both ends, it will bear double the first result.
- 3. When a beam is fixed at one end and uniformly loaded, it will bear the same as the first result.
- 4. When a beam is fixed at one end and loaded at the other, it will bear only half the first result.

In the tables we have taken the safe load at one third of the breaking weight; but for railway girders it should not exceed one sixth, or half the tabular numbers. For safe deflection, a rough rule is—allow one fortieth of an inch for each foot of span.

In ordinary wrought iron beams, we have found that the first rule is very fairly applicable, using a constant of 1,500 for the breaking weight in general use, a beam of wrought iron should not be strained beyond one-third of its ultimate strength, but it has the advantage of being able to bear on an emergency two-thirds, without any serious damage; whereas this would be imminent risk with east iron, especially with moving weight; hence the superiority of wrought iron, for floors where motion is likely to be freely communicated.

In long cast-iron beams, a proportion of six area of bottom flange to one area of the top flange will not give sufficient stiffness to the latter; with a wide bottom flange it is also necessary to have angle stays to secure it to the central web, and to insure continuity of strain through the vertical direction.

The depth of a beam may decrease at any point towards the extremities in the proportion of the multiples of the segments of its length; thus, if a beam is 12 inches deep at the middle, and it is twenty feet in length, then at five feet from each bearing, the depth should be as $10 \times 10 : 15 \times 5 :: 12 : 9$ inches = required depth; but surplus strength and a thorough bed at the point of support are indispensable for security.

MARINE SURVEYING.—Table 24,

Contains various Tables useful for the nautical branch of the profession, especially in the use, for engineering purposes, of charts, which are generally constructed on astronomical measurement. The tide table is for computing rise or fall by time from high or low water; the surveyor on the British coast will find the Admiralty Tide Tables to be his best guide; their usefulness is being extended every year. The Tide Tables at the end of this volume give similar information for 1852-3-4, with the basis for calculating any other year by the use of the nautical almanac; the tables will thus be found useful in examining and comparing observations in past years, when occasion may require a comparison.

This rule is somewhat empirical, but it has the advantage of being below the mark.

THE FOLLOWING TABLE gives the variation of the compass for different latitudes and longitudes, for which we are indebted to Raper's Tables.

APPROXIMATE VARIATION OF THE COMPASS.

Lat	W.	Longitude—East.											
Deg.	10	0	10	20	30	40	50	60	70	80	90	100	110
	w.	w.	w.	w.	w.	w.	w.	B.	E.	B.	B.	E.	B.
35	22	19	17	14	10	7	3	I	5	5 6	4	3	I
3 <i>5</i> 38	22	20	18	15	10	7	2,	I	5		4	3	1
40	23	21	18	14	10	7	1	I	5	6	5	3	Ţ
42	24	21	18	14	8	7	I	2	5	6	5	3	1
44	25	21	19	14	8	6	0	2	5 5 5	6	5	3	1
46	26	22	19	13	8	6	IE	3	5	7	5	3	1
48	27	22	19	13	8	5	1	3	5 5 6	7	5	3	1
50	27	23	20	12	8	5	1	4		7	6	3	1
52	28	24	20	12	8	5	2	4	6	7	6	3	I
54	29	24	20	12	8	4	2	5	6	8	7	4	1
54 56	30	25	20	13	8	4	2	5	7	8	7	4	1
58	31	25	20	13	8	4	2	5	7	8	7	4	2
60	32	26	19	13	8	3	3	5 5 5 5		8	8		2,
62	34	27	19	13	8	3	2	5	8	9	8	5	3

MOUNTAIN BAROMETER.—Table 25.

This is a very useful instrument, when properly managed, for surveys and other geodesic operations, which occasionally have to be made in districts, where even the level and theodolite is useless, until some idea of the line of country is sketched out. In finding the relative summit levels of different gaps or passes in a mountainous country, we have used it with great advantage over ground which, in fact, was inaccessible to ordinary instruments, which must be used step by step.

For finding the height in feet, subtract the logarithm of the upper station from that of the lower; multiply by six, and remove the decimal point four places to the right; the result is the elevation in English feet, generally sufficiently accurate for all purposes to which a mountain barometer should be applied. If perfect accuracy be required in a fixed instrument, we have to correct the mercurial column, when the scale is of brass, by deducting the fraction, opposite the temperature (in degrees Fahrenheit) of the instrument, from the observations,

First, for the Mountain Barometer, we have the correction in Table b, deducting, if upper station be coldest, the amount opposite the difference of temperature of the attached thermometers in degrees centigrade; or

adding the amount if the upper station be the warmest.

Secondly, for the expansion of the air take the first correction and shift its decimal point three places to the left, and multiply it by twice the sum of the detached thermometer expressed in degrees centigrade; the product to be deducted or added as before.

Thirdly, for gravity the correction is to be added, as taken from Table

C. according to the latitude and approximate height.

When an instrument having a cistern is used, we have the correction for capillarity in Table F, to be added to each observation before calculation; when a syphon barometer is used, we have no necessity for this correction.

Lastly, if fine and scientific observations are required, and accuracy is aimed at in hot weather and tropical countries, the observer should always have a portable dry and wet bulb thermometer; by this the original observations can be reduced to what they would be if the air at each station were perfectly dry. This is done by the rule in Table E, whence being obtained the temperature of the dew point, we can obtain the fraction to be deducted from the observation by Table D.

Then $.01602 \times 6 = .09612$ and shifting the decimal point four places to the right the height of B above A is given = 961.2 feet.

But we will suppose that the temperature of the instrument at A is 27 cent

difference = 14 deg.

B is 13

The temperature of the air being at A

The correction in Table B for 14 degrees is 67.58; for the expansion of air, by the rule we have .06758 to be multiplied by the double sum of the detached thermometers, or .06758 \times 78 = 5.27 feet.

72.75

less...... 961.20

and adding for gravity... 2.80

corrected height 891.25 feet

If corrections for the aqueous vapour should be required, we will assume that at station A the dry bulb is 77 Fah.

> wet bulb is $68 = \text{diff.} 9 \text{ deg.} \times 1.7 = 15.3 - 77 = 61.7$ degrees for the dew point.

at station B the dry bulb is 57

wet bulb is 53=diff.4 deg. \times 1.9=7.6-57=49.4 degrees for the dew point.

The correction then for these observations is thus Station A Bar. reads	
	29.902
Station B Bar. reads force for 49.4 from Table D	
	28.980

We have then the true barometric heights which \ 29.902 for Station A. may be treated as given in the example \ 28.980 for Station B.

PRACTICAL REMARKS.

There are many varieties of mountain barometers; there is the standard one which is only fit for observations at a fixed station, because the setting of a large floating surface of mercury to an index, renders the observations liable to index error. The closed-cistern barometer, commonly called Englefield's, has the disadvantage of requiring a correction for the filling of the cistern, and we have also found these instruments sluggish in their action. The lightest and most philosophical instrument is Gay Lussac's; it requires no correction for capillary attraction, and having only to be read by the difference of the two legs of the syphon, there is an equal chance of index error in both readings.

A great superiority of this instrument is, that a magazine can always be carried, containing a number of spare tubes; and on a breakage, a new one can be put into the frame, and the instrument rendered again fit for

use in a few minutes.

The Mountain Barometer is always arranged to read to 1,000th part of an inch, but we have generally found that two successive readings cannot be taken nearer than the third part of this quantity; excepting perhaps in the Gay Lussac, which can be inverted and read frequently, and not vary more than .002 in the result. No one travelling now should be without an aneroid or manometer, which are very susceptible, and far less liable to fracture or disturbance by motion.

MEAN READINGS OF THE BAROMETER.

As computed from Greenwich Observations, by James Glaisher, F.R.S.

Four times daily the reading of the barometer is at its mean value; these times in the several months are as follows:—

	1	h. m.			h. m.		h. m.
In Januaryat midnight	at i	B 04	s.m	at	0 40 p.m.	and s	t 5 0 p.m.
"February " midnight	,, 1	82	,,	,,,	1 40 ,	,,	6 20 ,
" March " midnight	,,	7 85	,,	, ,,	1 50 ,	*** 79	60,
" April " 1h. 0m. a.m	**	6 40	,,	. ,,	140 "	,,	720,,
" May, 1 0 "	"	8 20	,,	, ,,	10 "	,,	80,
"June, midnight	"	4 20	,,	* **	140 "	,,	9 20 "
" July " 1h. 0m. a.m	11	6 25	27	, ,,	140 "	*** 27	845 "
"August, 1 0 "	"		,,			,,	785 "
"September " 1 0 "	27	7 80	,,	. ,,	10,	,,	70.,
					1 10 "	,,	50,
					11 40 a.m.		5 45 "
" December " 0 40 "	n	7 40	,,	"	0 45 p.m.	*** 17	65,,

That mean reading takes place with the greatest degree of steadiness which occurs between mid-day and 2 p.m.; the actual time varies however with the season.

MEAN READINGS OF THE THERMOMETER.

TABLE I., showing the corrections to be applied to the Monthly Mean reading of a thermometer (placed four feet above the soil, with its bulb freely exposed to the air, but in other respects protected from the influence of radiation and rain) at any hour, to deduce the true mean temperature of the air for the month from the observations taken at that hour.

1												
Local mean time.	Jan.	Feb.	March.	April.	May.	June.	July.	August.	Bept.	October	Nov.	Dec.
Midnt. 1a.m. 2 3 4 5 6 7 8 9 10 11 Noon. 1 p.m. 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	+0.9 +1.2 +1.3 +1.6 +1.8 +1.9 +1.9 +1.5 +1.0 +0.2 -1.3	+1.6 +1.8 +2.0 +2.1 +2.3 +2.2 +2.1 +1.6 +0.5 -2.1 -3.2 -3.9 -3.8 -1.6 -0.3 +0.6 +1.3	+3.36.90.96 +3.4.36.90.96 +3.5.2.95.08 +4.3.55.08 +4.3.55.08 -5.55.38 -5.55.38 +4.97 +4.73	+4.82 +5.72 +6.67 +6.67 +6.67 +2.09 -7.88 -7.77 -8.77 -8.77 -7.45	+5.4 +6.4 +6.7 +6.3 +4.6 +2.6 +2.6 -2.0 -5.5 -7.7 -7.3 -3.0 +0.9 +2.3	+0.2 +7.1 +8.0 +8.7 +8.8 +6.4 +3.0 -2.5 -7.3 -8.6 -7.3 -8.6 -7.4 -6.1 -2.5 -6.1 -2.6 -1.6 -1.6		+3.3 +0.9 -1.6 -3.5 -5.4 -6.5 -7.7 -7.0 -5.5 -3.6 -3.0	+4.55 +6.62 +5.3 +6.4 +5.3 +4.0 -7.1 -5.5 -4.2 -7.1 -7.6 -7.1 -7.6 -7.1 -7.1 -7.1 -7.1 -7.1 -7.1 -7.1 -7.1	+3.0 +3.0 +3.0 +3.8 +3.8 +3.8 +3.8 +3.5 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7	-3.1 -3.5	+1.0 +1.0 +1.4 +1.4 +1.5 +1.3 +0.0 -1.3 -2.1 -2.3 -1.9 -0.8 -0.1 +0.2 +0.5
11	+0.7	+1.5	+2.6	+4·I	+4.5	+5.0	+42	+4.3	+3.4	+2.4	+1.5	+0.8

The numbers are degrees Fahrenheit, and are to be added or subtracted as denoted by the signs.

To get the mean temperature truly, observations should be taken several times in the day, and at such times the algebraical sum of the corrections is a minimum.

Table II., showing the corrections to be applied subtractively to the simple arithmetical mean of the maximum and minimum thermometers, to deduce from their readings the true temperature of the air.

January	•••	•••		0.2	Jul y		•••	1.9
February	•••	•••	•••	0.4	August			
March	•••	•••	•••	1.0	September			
A pril					October	•••	•••	1.0
May	•••	•••	•••	1.7	November	•••	•••	0.4
June					December		•••	0.0

We have thus two easy methods of finding the true mean temperature; first, by taking observations several times a day, and applying corrections

to their means from Table I.; and, secondly, by taking the half of the maximum and minimum readings and correcting it by the numbers in Table IL

At all places the form of the diurnal variation is a single progression, having one ascending branch and one descending branch, the maximum occurring early in the afternoon, and the minimum occurring at about sunrise; but the amount of the difference of these extremes is variable, depending upon latitude, elevation, locality, and geological formation of the country.

If we compare the mean temperatures of places that differ considerably from each other in latitude, we shall find that the mean values are lower

as we proceed north.

If we compare the mean temperatures of places having the same latitude, we shall find that the mean value of those situated at the higher

level will be less than those at the lower level.

If we compare places having the same latitude, we shall find that the mean temperatures of those places situated inland will be higher in the summer months, and lower in the winter months, than those situated in the vicinity of the sea.

If we compare places differing only in their geological formations, we shall find that those places situated upon an arid, dry soil, will have a greater range of temperature than those situated upon a clayey, wet soil.

It is therefore possible that the corrections in Table I. may not be of universal application, but as the form of the curve described by the daily march is similar at all places, with the exception of being more or less bold, the turning points occurring at nearly the same local time, it is most probable that the amount of the correction applicable to any hour at any place, is the same part of the whole monthly mean daily range at that place, as the correction at Greenwich is of the monthly mean daily range at Greenwich.—Excerpt Phil. Trans. Part I, 1848.

Tables 26, 27, 27a, 28, 29, and 30,

Contain the area and circumference of circles; squares, cubes, square roots, cube roots, and reciprocals 1 to 100; squares, square roots, and cube roots, 101 to 1,100; logarithms of numbers 1 or 100 to 1,000: logarithmic sines and cosines, 0 to 90 degrees for each 10 minutes; and natural sines, tangents, &c. &c.

These Tables need no explanation here; they are inserted as collateral aid, in applying the tables to the various wants of the Engineer, as outlined in the foregoing pages; any further application of them will be obtainable from the ordinary works on the mathematical branches of the

profession.

Tables 31, 31a, 31b, and 31c,

Contain short abstracts for finding the value of Annuities and Leases, with the present value of a Reversion in perpetuity, and the value of Annuities according to the Legacy Act; taken from Inwood's Tables, by permission of Mr. Weale, the publisher.

Tables 32, 32a, 32b, and 32c, 33, 34, and 35,

Contain the method of calculating the time and height of tides of all the principal British Ports. Complete explanation will be found at pages 78 and 79. Table 32c, gives the Admiralty form for computing the height of the tide, and any period before or after high water, which is useful both for computations and for reducing soundings in nautical surveys, always recollecting, however, that river tides have different times of rise and fall, as will be seen in the tables of tidal rivers.

GENERAL REMARKS ON TIDAL PHENOMENA.

We suppose the reader of our notes to be previously well acquainted with the chief theories and phenomena of the tides, and if he wishes to make himself master of the subject as far as theory can carry him, the most elaborate and invaluable treatise on Tides and Waves, by the learned Astronomer Royal, will afford all that can be desired of theoretical computation and practical deduction. We will not therefore attempt to follow this treatise in its detail, but, to shew the enormous practical effect of depth and freedom of motion in length of waves, we give the following Table of the velocity of free or solitary waves. (Treatise on Tides and Waves, pp. 291, 292).

Depth	Length of Wave in feet.								
of Water	•	10	100	1,000	10,000	100,000	1,000,000	10,000,000	
in feet.			Corr	espond	ing veloc	city in feet	per second	l.	
1	2.26	5-34 7-15	5.67	5.67 17.92	5.67 17.93	5.67	5.67 17.93	5.67 17.93	
100	2.26	7.15	22.62	53.39	56.67	17.93 56.71	56.71	56.71	
1,000	2.26		22.62	71.54	168.83	179.21	179.33	179.33	
10,000	2.26	7.15	22. 62 22. 62	71.54	226. 24 226. 24	533.90 715.43	566. 72 1688. 3	567.10 1792.1	

"From which it appears that-

"1st. When the length of wave is not greater than the depth of water the velocity depends (sensibly) only on its length, and is proportionate to

the square root of its length.

"2nd. When the length of the wave is not less than one thousand times the depth of the water, the velocity of the wave depends (sensibly) only on the depth, and is proportionate to the square root of the depth. It is in fact the same as the velocity which a free body would acquire by falling from rest through a height equal to half the depth of water.

"3rd. For intermediate proportion of length of wave and depth of

water, the velocity can only be got by the general equation.

"The wave originally produced by the action of the sun or moon, may be called the *Free Tide Wave*. The semi-diurnal tide wave is of this character, and may be taken to have a period of 12 hours 24 minutes; now by the foregoing table we see that a wave proceeding 10,000,000

feet, will travel with a velocity sensibly independent of its length; on this principle, therefore, is calculated the following

TABLE FOR THE SEMI-DIURNAL FREE TIDE WAVE.

Depth of Water, in feet.	Velocity of free tide wave per second, in feet.	Length of free tide wave, in miles.	Space described by free tide wave per hour, in miles.
1 4 10 20 40 60 80 100 200 600 800 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 20,000 30,000	5.67 11.34 17.93 25.36 35.87 43.93 50.71 80.20 113.42 138.62 179.33 253.61 310.62 358.67 401.00 439.27 474.47 507.23 538.00 567.70 802.00 982.25	47.94 95.89 151.62 214.42 303.24 371.38 428.88 479.46 678.05 958.91 1174.4 1356.1 1516.2 2144.2 2626.1 3032.4 3390.2 3713.8 4011.4 4288.3 4548.5 6780.5 8304.4	3.86 7.73 12.28 17.29 24.45 29.95 34.58 38.66 54.68 77.33 94.71 109.36 122.27 172.92 211.78 244.55 273.41 299.50 323.50 345.84 366.82 386.66 546.82 669.71
40,000 50,000 60,000	1134.2 1268.1 1389.1	9589.1 10721. 11744.	773.32 864.59 947.11

"The diurnal and other tidal waves, so far as they are free, may be all considered as travelling with the same velocity, but the column of lengths of the wave must be doubled for the diurnal wave."

In addition, however, to the free tide wave, which is that originally produced by the sun and moon, but not affected by them in the velocity of its propagation, we have that which Professor Airy calls the forced tide wave, produced by the immediate action of the sun and moon, with its highest or lowest point always at a determinate distance in that place (in the supposed canal) at which the disturbing forces vanish.

The following contains the substance of the general results of the inquiries made by the Committee of the British Association, in 1837, in a report for which we are indebted to Mr. John Scott Russell, who claimed to have discovered the existence of a GREAT PRIMARY WAVE of fluid, differing in its origin, its phenomena, and its laws, from the undulatory and oscillatory waves. The report stated—

"2. That the velocity of this wave in channels of uniform depth is independent of the breadth of the fluid, and equal to the velocity acquired

by a heavy body falling freely by gravity through a height equal to half the depth of the fluid, reckoned from the top of the wave to the bottom of the channel.

"3. That the velocity of this primary wave is not affected by the velocity of impulse with which the wave has been originally generated, neither do its form or velocity appear to be derived in any way from the form of

the generating body.

"4. This wave has been found to differ from every other species of wave in the motion which is given to the individual particles of the fluid through which the wave is propagated. By the transit of the wave the particles of the fluid are raised from their places, transferred forwards in the direction of the motion of the wave, and permanently deposited at rest in a new place at a considerable distance from their original position. There is no retrogradation, no oscillation; the motion is all in the same direction, and the extent of the transference is equal throughout the whole depth. Hence this wave may be descriptively designated THE GREAT PRIMARY WAVE OF TRANSLATION. The motion of translation commences when the anterior surface of the wave is vertically over a given series of particles, it increases in velocity until the crest of the wave has come to be vertically above them, and from this moment the motion of translation is retarded, and the particles are left in a condition of perfect rest, at the instant when the posterior surface of the wave has terminated its transit through the vertical plane in which they lie. This phenomenon has been verified up to depths of five feet.

"5. That the elementary form of the wave is cycloidal; when the height of the wave is small in proportion to its length, the curve is the prolate cycloid, and as the height of the wave increases the form approaches that of the common cycloid, becoming more and more cusped until at last it becomes exactly that of the common cycloid with a cusped summit; and if by any means the height be increased beyond this, the curve becomes the curtate cycloid, the summit assumes a form of unstable equilibrium, the summit totters, and falling over on one side forms a created wave, or

breaking surge.

The report stated

"That in the rectangular channel the velocity is that of gravity due to half the depth. In the sloping or triangular channel the velocity is that due to one-third of the greatest depth. In a parabolic channel the velocity is that due to three-eighths or three-tenths of the greatest depth, according as the channel is convex or concave; and finally that the velocity of the great primary wave of translation of a fluid is that due to gravity acting through a height equal to the depth of the centre of gravity of the transverse section of the channel below the surface of the fluid.

"7. The height of a wave may be indefinitely increased by propagation into a channel which becomes narrower in the form of a wedge, the increased height being nearly in the inverse ratio of the square root of the

breadth.

"8. If waves be propagated in a channel whose depth diminishes uniformly, the waves will break when their height above the surface of the level fluid becomes equal to the depth at the bottom below the surface.

"9. The great waves of translation are reflected from surfaces at right angles to the direction of their motion without suffering any change but

that of direction.

"10. The great primary waves of translation cross each other without change of any kind, in the same manner as the small oscillations produced on the surface of a pool by a falling stone.

"11. The WAVES OF THE SEA are not of the first order—they belong to the second or oscillatory order of waves—they are partial displacements

at the surface, which do not extend to considerable depths, and are therefore totally different in character from the great waves of translation, in which the motion of displacement of the particles is uniform to the greatest depth. The displacement of the particles of the fluid in the waves of the sea is greatest at the surface, and diminishes rapidly. There are generally on the surface of the sea, several coexistent classes of oscillations of varying direction and magnitude, which by their union give the surface an appearance of irregularity which does not exist in nature.

"12. When waves of the sea approach a shore, or come into shallow water, they become waves of translation, and obeying the laws already mentioned, always break when the depth of the water is not greater than

their height above the level.

"17. A tidal bore is formed when the water is so shallow at low water that the first waves of flood tide move with a velocity so much less than that due to the succeeding part of the tidal wave, as to be overtaken by the subsequent waves, or wherever the tide rises so rapidly, and the water on the shore or in the river is so shallow that the height of the first wave of the tide is greater than the depth of the fluid at that place. Hence in deep water vessels are safe from the waves of rivers, which injure those on the shore.

"18. The identity of the tide wave, and of the great wave of translation, show the nature of certain variations in the establishment of ports situated on tidal rivers. Any change in the depth of the rivers produces a corresponding change on the interval between the moon's transit and the high water immediately succeeding. It appears from the observations in this report, that the mean time of high water has been rendered 37 minutes earlier than formerly by deepening a portion of about 12 miles in the channel of a tidal river, so that a tide wave which formerly travelled at the rate of 10 miles an hour, now travels at the rate of nearly 15 miles an hour.

"19. It also appears that a large wave or a wave of high water of spring tides travels faster than a wave of high water of neap tides, showing that there is a variation on the establishment, or on the interval between the moon's transit and the succeeding high water, due to the depth of the fluid at high water, and which should, of course, enter as an element into the calculation of tide tables for an inland port derived from those of a port on the sea shore. The variation of the interval will vary with the square root of mean depth of the channel at high water.

The report suggests that "these results give us principles, 1st, for the construction of canals; 2nd, for the navigation of canals; 3rd, for the improvement of tidal rivers; 4th, for the navigation of tidal rivers; 5th,

for the improvement of tide tables.

"The following experiments were made for the purpose of determining whether the velocity of the so called great primary wave were not affected by the initial velocity given to the fluid at its generation by the moving body. The velocity of genesis, or of the vessel by whose displacement the elevation of fluid was produced, is given in miles per hour, and the time occupied by the wave in describing 700 feet is given in seconds.

Velocity of genesis.			Space described by the wave.	Interval of time.
(1.)	5	miles an hour	700 feet	62. seconds
(2.)	3	,,	700 "	61. "
(3.)	10	"	700 "	61. "
(4-)	7	99	700 "	62. "
(5.)	7	,,	700 "	62. ,,
(6.)	4	**	700 ,,	61.5 "

"From this it is manifest that the velocity of the propagation of the wave does not vary with the velocity of its genesis.

"To determine whether the height of the wave produced any variation in its velocity, the following experiments were made:-

	Height of the wave above the level.	Space described.	Interval.
(7.)	6.0 inches	700 feet	61.50 seconds
(8.)	5.0 "	700 ,,	61.75 ,,
(9.)	3.5 "	700 ,,	62.50 "
(10.)	2.0 ,,	700 ,,	63.50 "

"It appears from these examples that, in a given reservoir of fluid, the higher wave moves more rapidly than the lower; and it was afterwards found that the increase in height was equivalent in its effect on the velocity to an equal addition to the depth of the fluid in the reservoir.

"To determine whether the depth of the fluid affected the velocity of the wave, the following experiments were made in the same channel filled to different depths: -

	Depth of fluid.	Space described.	Velocity of wave.
(11.) (12.)	5.6 feet	486. feet	9.594 miles an hour
(12.)	3.4 "	150. "	7.086 "

"The former of these observations is exclusive of the height of the wave, and adding six inches to the depth of the fluid in this case, the height of the wave being already added to the depth in (12.), we find that the velocities are nearly proportional to the square roots of the depths, and are nearly equal to the velocities that would be acquired by a heavy body in falling through heights equal to half the depth of the fluid.

" In the last case the channel was rectangular, and consequently the depth of the fluid was uniform across the whole depth of the channel; it was next of importance to ascertain what law held in those cases where the depth diminished towards the edges of the channel. For this purpose two channels were selected having the greatest depths in their middle, and diminishing towards the sides. The following are the results:—

	Greatest depth in the middle of the channel.	Space described.	Velocity of wave.
(13.) (14.)	5.5 feet	1000 feet 820 "	7.84 miles an hour

"In these instances the diminished depth at the sides has diminished the velocity of the wave below that due to the greatest depth in a ratio in the first example nearly of 9.5 to 7.8, and in the second of 7. to 6.

See Experiments (11) and (12).

"The following three experiments are instructive as having been made on channels in which the maximum depth was nearly the same in all; but in (15) the depth remained constant to the side which was vertical, in (16) the sides had a slope of nearly 20°, and in (17) a slope of nearly 40°, so as to diminish the depth towards the sides.

	Maximum depth.	Form of channel.	Space described.	Velocity.		
(15.)	5.6 feet	Rectangular	486 feet	9.59 miles		
(16.)	5.5 "	Slope of 20°	2038 ,,	8.83 ,,		
(17.)	5.5 "	Slope of 40°	1000 ,,	7.84 ,,		

"From these it is manifest that the depth of the channel, while it modifies the depth of the fluid, affects the velocity of the wave. It was not found that the breadth of the channel produced any similar effect.

"The report contained some experiments made on the river Clyde.

The stations extended from the Bromielaw to Port Glasgow.

	9.1 inches. 7.0 inches. 6.1 inches. 5.2 inches. 2.2 inches.	33 inches. 31 inches. 27 inches.	H. W. time. 83 mins. 76 mins. 61 mins. 43 mins. 64 mins. 6 mins. 0 mins.
--	---	--	---

"From a laborious discussion of the observations, it appeared that the wave of high water travelled

```
IX. to VIII.
                                     14 miles 80 miles an hour.
From
                      in 6 min.
      VIII. to
From [
               VIL
                      in 9 min.
                                   4.25 miles 20 miles an hour.
       VII. to
                VI.
                      in 6 min.
From
From
        VI. to
                      in 18 min.
From
         V. to
                IV.
                                   2.5 miles 8.1 miles an hour.
                      in 19 min.
        IV. to
From
                III.
                      in 18 min.
       III. to
                                   2.75 miles 15 miles an hour.
From
                 П.
                      in 15 min.
        II. to
From
                  L
                      in 7 min.
```

"These results shew that in the deep water being between 40 and 60 fathoms, or between 240 and 360 feet deep, the wave travels at the enormous rate of 80 miles an hour; that on reaching water from 20 to 30 feet deep, the velocity is diminished to 20 miles an hour; and from V. to II. where the river is wide, shelving, and shallow, the velocity of the tide water is retarded to 8 miles an hour; while on ascending further up, where the banks nearly upright, and the contracted width give an increase of mean depth, the velocity has a corresponding increase to 15 miles an hour.

"It appeared by the plans that the average depth of the river, from I.t. to III., was 15 feet. From III. to V. the river is wide and shallow, spreading over extensive banks, where there are not 2 feet of water, for which we may take a third part of the greatest as a mean depth, or about 5 feet. In the division from V. to VII., both depth and breadth increase very rapidly to about 35 and 37; taking 25 feet as the mean depth, we have

Velocities of the Tide- wave as observed.	Mean depth.	Velocity due to depth.		
80 miles an hour.	240-360 feet.	60—80 miles.		
20 miles an hour.	25 feet.	19.3 miles.		
8.1 miles an hour.	5 feet.	8.6 miles.		
15 miles an hour.	15 feet.	14.9 miles.		

The remaining experiments have not much practical bearing upon the objects of this treatise; we have abstracted the essential parts of the Committee's Report to the British Association, as highly instructive to the practical engineer in dealing with tidal rivers and canals, especially in the experimental portions. Professor Airy regards the great primary wave as simply the solitary wave in its earliest and simplest condition, in which a particle is actually moved a certain distance by the wave, and then remains at rest in a new position; this wave, he observes, by mathematical reasoning, may travel without any force to maintain its motion

provided it be long in proportion to the depth of the fluid, and that its velocity by $\sqrt{g \frac{k}{2}}$ k being the depth, and g the force of gravity in feet

per second.

As to ordinary waves Mr. Russell's experiments shew that a wave always breaks when its elevation above the general level becomes equal to the depth of water; this fact is strikingly evident in the breaking of surf; as the friction on the bottom shortens the wave in proportion to its depth, it topples over. In a similar manner the effect is produced when urged on by wind in open sea, until the height of the wave becomes greater than gravity will permit it to stand.

As an excellent and accurate example of tidal action in seas and estuaries, we give the following abstract from a paper in the "Philosophical Transactions" for 1847, being observations on the

TIDES OF THE IRISH SEA,

And upon the great similarity of Tidal Phenomena of the Irish and English Channels. By Captain F. W. Beechey, R.N., F.R.S.

"The observations have shewn that, notwithstanding the variety of times of high water throughout the channel, the turn of the stream is simultaneous; that the northern and southern streams in both channels commence and end in all parts (practically speaking) at the same time, and that time happens to correspond with the time of high and low water on the shore at Morecambe Bay; an estuary rendered remarkable as being the point where the opposite tides, coming round the extremities of Ireland, finally meet. So that it is necessary only to know the times of high and low water at Morecambe Bay to determine the hour when the

stream of either tide will commence or terminate.

"The chart of curves or lines of direction of the stream, Plate II., will shew at once the effect of the tide upon a vessel, wherever she may be placed in the channel, and especially direct her where, with a beating wind, she will be benefited by standing in shore or otherwise; and taken in connection with the very valuable series of observations which were carried round Ireland by the Ordnance at the suggestion of Professor Airy, we are made acquainted with several curious facts: first, that whilst it is high water at one end of the channel, it is low water at the other: that the same stream makes both high and low water at the same time; that there are two spots in the channel, in one of which the stream runs with considerable velocity without the water either rising or falling, and in the other, that the water rises and falls from sixteen to twenty feet without having any visible horizontal motion of its surface; and that during the first half of the flowing, and last half of the ebbing tide-wave. the stream in the south channel runs in a contrary direction to the wave, and goes up an ascent of about one foot in 41 miles.

"Plate II. shows the lines of direction of the stream with the rate of the tide at its greatest velocity on the day of syzygy, all being reduced to the

same standard.

"An inspection of the Plate will show that the tide enters the Irish Sea by two channels; of which Carnsore Point and Pembroke are the limits of the southern one, and Rathlin and the Mull of Kintire the boundaries of the northern.

"The stream in the southern channel (as before stated) has been ascertained to move simultaneously in one vast current throughout; running six hours nearly each way, at an average rate of from two to three knots per hour at the height of the springs, increasing to four knots and upwards near the banks and at the pitch of the headlands; its times of slack water corresponding sufficiently near for all practical purposes, with the times of high and low water for the day at Morecambe Bay, or more correctly at Fleetwood, which is twelve minutes earlier than Liverpool.

"The central portion of the stream of flood or ingoing stream, runs nearly in a line from a point midway between the Tuskar and the Bishops, to one six miles due west of Holyhead; beyond which it begins to expand eastward and westward, but its main body preserves its direction straight forward for the Calf of Man, which it passes to the eastward with increased velocity as far as Languess Point, and then at a more moderate rate on towards Maughold Head. Here it is arrested by the flood or southern stream from the north channel coming round the Point of Ayre, and is first swayed round to the eastward by it, and then goes on with it

at an easy rate direct for Morecambe Bay.

"The outer portions of the stream are necessarily deflected from the course of the great body of the water by the impediments of banks on the Irish side of the Channel, and by the tortuous form of the coast on the Welsh. The eastern portion passing Linney Head rushes with great rapidity between the Smalls, Grassholm, and Milford Haven, towards the Bishops, which it passes at a rate of between four and five knots; sets sharply round those rocks in an E.N.E. direction, right over the Bass bank, and into Cardigan Bay; makes the circuit of that bay; and sets out again towards Bardsey at the other extremity of it; then sweeping to the N. by W. past the island and through the sound, it gradually takes the course of the shore, round Caernarvon Bay, filling the Menai Strait as far as Bangor; but the stream still continuing outside towards the South Stack, which it rounds, setting towards the Skerries at a rate of upwards of four knots; and finally, turns sharply round those rocks for Liverpool and Morecambe Bay; completing in its way the high water in the Menai, and filling the Dee, Mersey, and Ribble.

"The western portion of the stream, after passing the Saltee, runs nearly in the direction of the Tuskar, sets sharply round it, and then takes a N.E. ½ N. direction, setting fair along the coast, but over the banks skirting the shore. Abreast of the Arklow is situated that remarkable spot in the Irish Channel, where the tide neither rises nor falls. The stream, notwithstanding, sweeps past it at the rate of four knots at the springs, and reaches the parallel of Wicklow Head. Here it encounters an extensive bank recently known; and whilst the outer portion takes the circuit of the bank, the inner sweeps over it, occasioning an overfall and strong rippling all round the edge, by which the bank may generally be discovered; beyond this point the streams unite and flow on towards Howth and Lambay, growing gradually weaker as they proceed, until they ultimately expend themselves in a large space of still water situated between the Isle of Man and Carlingford, where occurs the phenomenon of the water rising and falling without having any perceptible stream. This space of still water is marked by a bottom of blue mud.

"In the north channel the stream enters between the Mull of Kintire and Rathlin simudaneously with that passing the Tuskar into the southern channel, but flows in the contrary direction. It runs at the rate of three knots at the springs, increasing to five knots near the Mull, and to four near Torr Head on the opposite side of the channel. The eastern branch of this stream turns round the Mull towards Ailsa and the Clyde, a portion passing round Sanda up Kilbrannin Sound and Loch Fyne.

"The main body sweeps to S. by E., taking nearly the general direction of the channel, but pressing more heavily on the Wigtownshire coast; off which it has scooped out a remarkable ditch, upwards of twenty miles long by about a mile only in width, in which the depth is from 400 to 600 feet greater than that of the general level of the bottom about it. Near the Mull of Galloway the stream increases in velocity to five knots, the eastern portion turns sharply round the promontory towards the Solway, and splits off St. Bee's Head; one portion running up the Solway.

way, and the other towards Morecambe Bay.

"The central portion from a midway between the Mull of Galloway and the Copeland Islands, presses on towards the northern half of the Isle of Man, and while one portion of it flows toward the Point of Ayre, the other makes for Contrary Head, and is there turned back at a right angle nearly to its early course. Passing Jurby it reunites with the other portion of the stream, and they jointly rush with a rapidity of from four to five knots round the Point of Ayre, and directly across all the banks lying off there, and catching up the stream from the south channel off Maughold Head, they hurry on together towards that great point of union, Morecambe Bay. This bay, the grand receptacle of the streams from both channels, is notorious for its huge banks of sand heaped up in terrible array against the mariner unacquainted with its locality, and also remarkable for a deep channel scoured out by the stream, and known as the Lune Deep, which, to the wary navigator, is the great hidden beacon of his safety, and serves him, alike in fog or in sunshine, as a guide to his position, and to a harbour of safety in case of need.

"We have now only to speak of the western limit of the stream, which we left off Torr Head running at a rate of four knots off the pitch of the point. Hence it strikes directly towards the Maidens, boiling over the Highlander and Russell rocks, and other reefs in the vicinity of that dangerous group; and takes the direction of the coast again from Muck Island to Black Head, at the entrance of the Lough of Belfast, which

it fills.

"The portion of the stream which sets up the Lough splits again off Grey Point; one portion flowing up towards Garmoyle, while the other bends back along the shore of Bangor, Grimsport and Orlock, and blends with the general stream which has come on from the Maidens and Blackhead, and passes with it through the sounds of the Copeland Islands. Hence it proceeds along the coast, brushes the South rock, and runs on towards St. John's Point; off which, the stream, like that coming from the southward, expends itself in a large space of still water, which remains undisturbed although pressed upon by streams from various quarters.

"Such is a general description of the streams in both channels which attend the flowing of the water, or which, for the purpose of distinction,

we may designate the ingoing stream.

"The ebbing or outgoing streams do not materially differ from the reverse of these, except that in the southern channel they press rather more

over towards the Irish coast.

"This is a general idea of the course of the streams throughout the Irish Sea, represented in Plate II.; but besides these there are (as usual) at all the points and headlands, when abrupt, counter streams or eddies beginning at about two hours after the offing stream, increasing with the strength of the tide, and occasioning races and overfalls at the places marked on the chart. In the direction of the offing stream there is as little variation of the current at the different hours of tide as will be met with in any sea of similar extent, and indeed it is only with the slackening of the tide that the variations occur, which happens from about forty

minutes before to about forty minutes after high or low water at Morecambe Bay.

During the time these observations on the stream were in progress, others were made upon the rise and fall of the water at several stations in the channel, and wherever practicable at places in the offing. By combining these observations with the range of tide on the coast of Ireland, published in Professor Whewell's admirable paper on the Tides in the 'Philosophical Transactions' for 1836, Part II., and with observations made by Captains Robinson, Denham, Frazer, Sherringham, Williams, &c., Captain Beechey constructed a chart of lines of equal range of tide, Plate I. in order that the seaman may ascertain by a simple inspection of the chart, wherever he may be placed in the channel, the amount of spring range to which he has to adapt his soundings. In this chart the lines denote the range of tide at the places over which they pass, on a day when a spring tide at Liverpool rises thirty feet.

"In the Irish Sea it was found that the place of the water at the halftide interval did not correspond with that of a mark at the half range of the wave, but that it was always below it, showing that the upper half of the wave rose and fell more rapidly than the lower. It was also found that the curve of the Irish Sea tide did not correspond with that of the Bristol Channel tide; that neither followed the law of the sines to cor-

responding arcs of tidal intervals.

"In connection with the range of tide is that of the apparent mean elevation of the water. All the observations confirm the remark of Professor Airy (Phil. Trans. 1845, Part I. p. 31.), viz., that this mean level is higher at the springs than at the neaps. The mean place of the water, however, for an entire lunation, during the summer months at least, is tolerably constant, and affords a fair standard to which the reductions used in our nautical surveys may be referred in the event of the gauge being removed by which the observations were made; annexed is the result of observations made at Holyhead during nearly four entire years.

APPARENT MEAN PLACE OF THE WATER, AT HOLYHEAD.

Month.	1838.		18	1839.		1846.		1847.		Mean of Months.		
January February March April May June July August September October November .	ft. 11 10 10 10 10 10 10 10 10 10 10 10	in. 31 61 1 1 2 1 6 4 34 7 7	ft. 10 10 9 9 10 10 10	in. 6 3 2 10 9 1 10 7 33 22 2	ft. 	in	ft. 10 9 10 9 9 9 9 10 10	in. 7 10 4 11 11 11 10 10 10 10 10 11 10 11 10 11 10 11 10 11 10 11	ft. 10 10 10 9 10 10 10 10	in. 91-31-11-11-11-11-11-11-11-11-11-11-11-11	Summer months.	
Mean of the year	10	5	10	23	10	5 <mark>}</mark>	10	3 1	10	35		

[&]quot;All the tides of the Irish Sea partake of the nature of river tides in having their ebb longer than their flood, except those of Tuskar and Holyhead, which are the reverse. The respective intervals are given in the order in which the places occur.

DURATION OF TIDE.

	Rising.			Falling.		
	h.	m.		h.	m.	
Tuskar	6	27		6	8	
Bardsey	5	24		6	52	
Holyhead	6	18		6	ŏ	
Peel, Isle of Man	6	0		6	15	
Ramsay, Isle of Man	5	48		6	3.5	
Fleetwood	5	46	٠.	6	39	

" All these are the mean of many observations.

"The change at Holyhead is remarkable, and if we follow the durations up to Ramsay, we shall see that Peel also, an intermediate station, is affected. The cause of this may possibly be connected with the effort of the water to maintain its level; for in projecting the curve of the wave on paper, this peculiarity, in connection with the very short flood of Bardsey, has the effect of reducing the curve from what it would assume, were Holyhead similarly influenced with other places.

Captain Beechey proceeds to trace the course of the stream from Pembroke to the Land's End; to connect the tides of the Irish Sea with those of the Bristol and English Channels, and finally with those of the offing. His following observations will be explained by reference to Plates III. and IV., which shew the tidal streams in the English and Irish Channels respectively.

"It seemed evident that the water was influenced by forces acting in opposition nearly to each other, and that there was a tide in the offing whose streams of ebb and flood did not correspond with those of the channels. By applying this idea first to the English Channel, the observations responded to it; and carrying it to the offing of the Irish Sea, and considering that channel as comprising the Bristol Channel within its limits, as the English Channel does the Gulf of St. Malo, the idea was confirmed so far as the observations themselves extended. This offing stream appears to be of great extent, setting to the north and south along the coast of Biscay and the British Isles, running six hours nearly each way, and exercising an influence with more or less effect over all the waters of the channels and estuaries it passes in its progress, diverting their courses, and in some cases, when the streams oppose, wholly overpowering or reversing their direction. From the connection of the observations of the Irish Sea with those of the Bristol Channel, it is clear that the whole of the ebb or outgoing stream of the eastern half of the Irish Channel runs into the Bristol Channel, and forms the flood or ingoing tide of the northern half of that great estuary; and vice versa the ebb or outgoing stream from the northern half of the Bristol Channel, forms the flood of the Irish Sea, each tide passing to and fro with great rapidity round St. Govan's Head. The centre and southern half of the Bristol Channel receive their waters from the offing and the English Channel, the coast stream bringing the waters up from the Land's End and the English Channel, as the stream on the northern half did those of the Irish Channel, and vice versâ.

"The great offing stream at the entrance of the English Channel ex-

"The great offing stream at the entrance of the English Channel extends its influence as far up as Cape La Hague, beyond which, owing perhaps to the sudden contraction which there occurs in the Channel, the stream suffers no interruption, but, as in the Irish Sea, passes up and down the Channel six hours nearly each way as far as a line joining Dungeness and Cape Grisnez, the apparent virtual head of the tidal channel. Here the influence of the North Sea stream begins to be felt, and here, as in the Irish Channel, again the time of high and low water at

the virtual head of the tide regulates the turn of the up and down stream along the whole channel as far as the contraction. Beyond this the offing stream being governed by its own high water, and that occurring at about six hours earlier than that of the head of the channel, the offing stream either butts against the returning streams from the channels, or withdrawing its water, solicits their streams and thus alters their course, making them for the most part set across the Channel in curves more or less bent as the spot is more or less removed from the offing; so that there seems to be but one hour's tide each way that passes clean down the Channel from Beachy Head to Scilly, and round the Land's End to Bristol. The outgoing stream from Beachy Head encounters the ingoing stream of the offing tide somewhere about the Start Point, and both are turned down into the great Gulf of St. Malo, which seems to receive the accumulated waters of these opposite tides.

"Whether or not this influx is instrumental in raising the water here to the extraordinary height of forty-seven feet perpendicular range at springs, or whether it be owing to its form and position as regards the advancing tide wave, is a problem; but it is a coincidence that cannot escape observation, that this spot, like the Bristol Channel, is the concentration of streams from opposite directions; that it has its waters raised to the same extraordinary elevation nearly to a foot, and that its time of

high water is nearly the same.

"On the change of tide, this great bay, like the Bristol Channel, as it received so it returns its waters in opposite directions, the tide splitting somewhere between Alderney and the Start; but here especially, as also in a similar locality in the Irish Channel, we are in want of observations.

"In tracing these streams, it was impossible not to be impressed with the many coincidences which assimilate the tidal phenomena of the two channels, so much so as to render it probable that they are subjected to

precisely the same laws.

"Considering the Irish Channel to extend from a line joining the Land's End and Cape Clear to the end of the tidal flow, which is either at Morecambe Bay or Peel, in the Isle of Man; and the English Channel as reaching from a line connecting Ushant with the Land's End, to the end of its tidal flow, or to Dungeness. We shall then see that the English Channel, from its outer limit to the end of its tidal stream, is 262 geographical miles, and that the Irish Channel, from its western limit to the end of its tidal stream, is nearly the same; being about 265 geographical miles. In both channels the stream enters from the south-west, and flows up until stopped by a counter stream. In both channels there is a contraction of the strait almost midway, by the promontories of Cape La Hague in one instance, and St. David's Head in the other, and at very nearly the same distances from the entrance. This contraction is, in both cases, the commencement of the regular stream, which flows six hours nearly each way, the turn of the stream throughout coinciding with the times of high and low water at the virtual head of the channel, situated in both cases about 145 miles above the contraction, and that time being very nearly the same, viz., 10h. 50m. at full and change; below this contraction, away from the land, the stream in both cases varies its direction nearly every hour, according to the force exerted upon it by the opposing offing stream.

"In both cases, between the contraction and the southern horn of the channel, there is situated a deep estuary, the Bristol Channel and the Bay of St. Malo, in which the times of high water coincide, and where, in both cases, the opposing streams meeting in the channel pour their waters into these gulfs, and where the tides in both places rise to the extraordinary elevation of forty-seven feet at the syzygies. From the

Land's End to the meeting of these streams in the Bristol Channel is seventy-five miles, and from Brest to the meeting of the streams of Guernsey the same. A still further coincidence is apparent between the phenomena of these channels. In one, at a place called Courtown, a little above the contraction of the strait, and at 150 miles from Cape Clear (its entrance), there is scarcely any rise or fall of the water; and in the other channel (about Swanage), situated also a little above the contraction of the strait, and just 150 miles from the Land's End, there is only five feet rise of the water at a spring range. In both cases these points of small range of tide are situated on the opposite side of the channel to that of the high elevation above mentioned, and in both cases these spots are the node of the tide-wave (on either side of which the times of high and low water are reversed). And again we trace a similarity in an increased rise of the water on the south-east sides of both channels abreast of the virtual head of the tide: at Liverpool in one case, where the range amounts to thirty-two feet, and at Cayeux in the other, where it is thirty-four feet.

"It may also be shown that the progress of the tide-wave along the side of the channels opposite the node is not very dissimilar. Reckoning in both cases from the line which we have before drawn, as the outer limits of the channel, we find that in the English Channel, from this line to Cherbourg, opposite the small range of tide,—

	per hour.	Miles.
••	50] at	616
similar line	to to	i
••	52 2	649
••	32 } 8 =	₹ 397
••	16	193
• •	78 冒音	959
••	75	922
	••	per hour 50 similar line to 52 32 16 78

These numbers are given roughly, merely for the purpose of showing the general resemblance in the character and motion of the wave; and it is probable a more judicions selection of positions and numbers would give a still nearer coincidence. Besides which we are somewhat uncertain as to the establishment at our starting-point. As a comparison, however, the numbers run fairly together. In both cases the retardation of the tide-wave about mid-channel, and the great elongation of the wave towards the end of the strait are remarkable, especially in the Irish Sea.

"Lastly, we may notice a singular coincidence in more respects than one, indeed, between the situation of the node placed by Professor Whewell in the North Sea, and a corresponding point of small range and inversion of tide at the back of Kintire. The node or hinge of the tide in the North Sea is curiously enough situated as nearly as possible at the same distance from the head of the tide off Dungeness, as the node at or near Swanage is on the opposite side of it; and the node at Kintire communicated by Captain Robinson, is about the same distance from the meeting of the tide in the Irish Sea as the North Sea node is from the meeting of the waters off Dungeness, and is similarly situated with respect to the node of Courtown as the North Sea node is with regard to Swanage." The forthcoming part of the "Philosophical Transactions" will contain a most interesting extension of Captain Beechey's investigation on the tides of the English Channel. (See Appendix.)

We have given this example of the Irish Sea with Captain Beechey's remarks at great length, because it is a type of what we find practically and may expect from theory in the development of the simple tidal wave, and the numerous offshoots or minor vibrations, and the secondary efforts

produced by Mr. Airy's "forced tidal wave." These great vibrations follow the deepest and smoothest channels with their maximum velocity, and are retarded by laws which there is no doubt could be strictly defined, if we had the nature of bottom, and other disturbing forces, as elements in the calculation. It is evident that the primary, or great tidal wave, passes in at each end of the channels with the deepest line of sounding; this produces the alternate overflow and recession of the central volume towards the coasts, while the offing tide, which is described as apparently passing across the entrance of the channels, is nothing more than the same effect of a great succession of waves, following the disturbing or creative cause round the globe, and turning over towards the gradually shoaling of the bottom, approaching the British Isles, where again, the line of least resistance is taken up the channels, by the diverging waves. On reference to our remarks on the various rivers and estuaries of which we have given the phenomena from accurate experiments, we see precisely the same effects produced, although frequently developed to a greater degree by rapid diminution of width and depth, or vice versa; and in tracing the action of both the hydrodynamic and the vibratory action of water, we must always recollect that it is a non elastic fluid; so that wherever at a point, in a given channel, there is want of area, we have increased head or oscillation, and as a secondary effect, increased velocity; while on the other hand, where there is cessation of velocity, we have increase of area. So, where the bed and banks are capable of being acted upon, (and what are not?) we find invariably that, unless perfection of regularity exists, there is perfect irregularity; that is to say, for every indentation there is projection—for every depth too great there is depth too little; for every variation above the mean, or true velocity, we have a similar falling below the mean; a perpetual recurring equilibrium which is attained by velocity or depth, by time or space.

Thus it is the great law of equilibrium which indicates what should be the proportion of artificial hydraulic construction; the more nature is aided in creating such equilibrium, the more rapidly are her powers developed; by deepening, and straightening, and reducing into train any channel or tidal river, we get nature to aid in producing the effect, calling in assistance of a tenfold effect, because it is one developing upon

itself, and generating new powers from the combination.

We subjoin remarks from Airy's Treatise in reference to the cotidal lines of the globe, as they have especial relation to the question of

depth and its effects.

"In all places where the circumstances of depth, &c., vary much in a small extent of sea, we may consider the alteration in the tides through that extent as following simply the laws of waves on which no force is acting, (because the length of the column of water on which the sun or moon acts is too small to allow their attraction sensibly to medify their pressures.) Suppose now that in the neighbourhood of any particular coast, the bottom shelves gradually from deep sea to one comparatively This would be attended, theoretically, with two consequences. The first is, that the wave would travel more slowly, and therefore the separation of the cotidal lines corresponding to successive hours would be less, or the cotidal lines would appear to be crowded together on the The second is, that the magnitude of the tides would be much increased. And these circumstances might be found in places where the change in the depth was not known from observation; for the usual limit of sounding is 200 fathoms, which is probably a small quantity compared with the depth of the ocean. We may then expect that, where the cotidal lines approach closely, the magnitude of the tides will be

increased. Now this does occur. A well-marked instance is the Bay of St. George, in South America, in which a close approximation of cotidal lines is accompanied with large tides. It is possible here that the tides may be still further increased by the converging form of the waves.

"Another curious effect of the same cause is the distortion of the lines produced by islands, surrounded by shoals, in the ocean. The shoals prevent the tide-wave from advancing rapidly, and the cotidal line is therefore thrown back; but, conceiving the ridge of the wave to be thus bent, it is easy to imagine that after passing the island the two lateral parts of the wave will bend round it till they unite, and will then form a straight front nearly as before coming to the island. The successive cotidal lines will have forms corresponding to the forms of the ridge of this wave at successive times. Of this there are several instances apparently beyond doubt. Thus the 1 o'clock line is thrown back by the Azores; the 11 o'clock line is bent by the Bermudas, and its lateral branches nearly meet; the 10 o'clock line, after having been interrupted, just meets behind New Zealand. A similar effect of the same cause is, the universal dragging of the wave along the shore.

"The velocity of the tide-wave ought, with the assistance of the table, to give us good information as to the depth of the sea. Thus in the North Sea, the tide-wave in 9 hours appears to describe somewhat less than 6 degrees of latitude, or, on the average about 45 miles per hour. This, by the table in page lii, corresponds to a depth of 140 feet. We believe that the average depth along the line of deep channel is greater than this, and that at the sides less; and it is probable that the actual velocity is effected by both these. If the tide-wave of the Atlantic were purely derivative, it might be considered as describing 90 degrees of latitude, from the southern 1 o'clock line to the northern 1 o'clock line, in 12 hours, or to move about 520 miles per hour; which would imply a depth of about 18,000 feet or 3½ miles. The reader will have no difficulty in extending similar remarks to other seas; in this, Plate V. will assist his

inquiries.

In closing this part of our remarks we quote from Dr. Whewell's paper on the Tides, read to the Royal Society in December, 1847, relating chiefly to the tides of the Pacific and the diurnal inequality. He remarks that the cotidal lines in the observations of 1834 and 1835 shewed one feature, viz., their meeting the shore at a very acute angle, and following its flexures with an almost parallel course at a little distance, and that consequently the tide-wave which runs up the middle of a channel is very much in advance of its place at the sides; this is quite in harmony with the laws of fluids, and with the effect of friction and decrease of depth along shore.

ON THE DIURNAL INEQUALITY

Dr. Whewell remarks that it was noticed by Newton at Plymouth and Bristol, and has been commonly called the difference between the day and night tide, which is in fact only a temporary distinction.

"It depends upon the moon's declination, and changes to alternate tides when the moon's declination changes from north to south, and vice

versa. Its rule is expressed in the following form:—

For moon's N. Add to the tide following moon's South transit, declination

For moon's S. Subtract from the tide following moon's N. transit, declination

Add to the tide following moon's N. transit,

the quantity added or subtracted being greater as the declination is greater; and the declination being taken for one, two, or three days

previous to the tide. According to this law, the inequality has been introduced into the Tide Tables for Liverpool, Bristol, and Plymouth, as

given at page 80 et seq.

"This rule of the diurnal tide may, for some months, produce the effect of making the afternoon tides greater than the morning tides, or vice versâ. Suppose the place to be one where the tide happens (in general terms) soon after the moon's (south or superior) transit; then, beginning from new moon, the afternoon tide for a fortnight follows the south transit of the moon. Supposing that during this fortnight the moon has north declination; then the diurnal inequality is additive by the rule, and therefore the afternoon tide is, during this fortnight, the highest. Now at the end of a fortnight of north declination, the declination changes to south. But at the end of a fortnight, the afternoon tide begins to be that which follows the north or inferior transit of the moon; and therefore again, by the second part of the rule, the inequality is still additive, and the afternoon tide is still the greater. And this will continue to be the case till the points of no lunar declination are shifted away from the syzygies by the motion of the moon's nodes relative to the sun. But if the declination pass from north to south, or the reverse, at a different period from that which transfers the afternoon tides from one transit to the opposite one, we shall no longer have this apparent constancy in the relation of morning and afternoon tides. If, for instance, the tide-hour being such as has already been supposed, the change of declination, north and south, takes place when the tide is at four, five, six, or seven o'clock; the afternoon tide will then (or rather one or two days later) change from being the greater to being the less, or vice versa. Or if the tide-hour be six o'clock, the tide being (in general terms) six hours after the moon's transit, the afternoon tide will follow a south transit of the moon from the time when the moon is six hours west of the sun to the time when she is six hours east of him, and then change and follow a north transit; and so on alternately. Hence, if in this case the moon's ascending node be at six hours west from the sun, the declination will be north while the afternoon tide follows a south transit, and therefore the afternoon tide will be the greater for the whole lunation. But if, in this case, the node be in conjunction with the sun, the afternoon tide will change from smaller to larger, or the reverse, at the syzygy, that is, when the tide is at six o'clock; or rather, a day or two later.

"This last-mentioned circumstance, that the change in the features of the tides takes place a day or two, or perhaps longer, after the astronomical configuration by which it is determined, is common to all the empirical laws of the tides. It has recently been shown by Mr. Airy that this is a result which follows from supposing the tidal motions of the sea to be affected by friction. The amount of this retardation of the phenomena for each place, or, as we may term it, the 'age of the tide' relative to the diurnal inequality, is different for different places; and must, for each place, be learnt from observation;" as is shewn in our "Tide Tables for British Ports."

"The inequality of heights appears in the zigzag form of the line drawn through the summits of ordinates projected from the heights of successive tides. This zigzag structure is sometimes of a moderate degree of abruptness, as in the tides of the coast of North America, and of Portugal, and those of Plymouth, and sometimes extremely abrupt, as the heights of low water at Singapore. In this latter case, the diurnal inequality sometimes makes a difference of no less than six feet between the height of the morning and afternoon tide; the whole rise of the mean tide being only seven feet at springs, and the difference of mean spring and neap tides not more than two feet.

"While in some places it affects the heights, and at other places principally affects the times, for instance, the diurnal inequality which alters the low water four feet at Port Essington, and six feet at Singapore, affects the high water to a still greater extent in the Gulf of Cambay, and disturbs the times at the entrance of the Persian Gulf.

"It was remarked on the occasion of the observations of 1835, that the diurnal inequality on the coast of North America followed the changes of the moon's declination almost instantaneously; while on the coasts of Portugal, Spain, and France, the changes of lunar declination were represented in the diurnal inequality two or three days later; and at the Cape of Good Hope, about the same time." Dr. Whewell considers that this feature throws great difficulty in the conception of that motion of the waves by which the tides are produced, and suggests the necessity of some new mode of conceiving that motion. But we think the discrepancies are rather indicative of geographical and local difficulties in the form of the ocean bed, than any interference with the laws of fluid motion, which, however complicated in their details, are simple in their original forms. It is very certain that some of the most remarkable tides in the British coasts—as, for instance, the 18-inch spring-tide rise on one side of Fairhead, and the four-feet rise at a like distance on the other side of the same point, accompanied by terrible races and currents—similar phenomena also occurring at the Bill of Portland-are each and all mainly caused by bluff underwater cliffs, which directly reflect the tidal

wave out of its course.

Plate V. is a cotidal chart of the globe, partly from Mr. Airy's treatise, and corrected from Mr. Whewell's paper above quoted; undoubtedly the coast lines give a vast amount of information touching the tide hours, and times of high water approaching various shores and islands; in one point, however, we would suggest that there is room for much greater inquiry and speculation. As the tidal wave first proceeds from the sun and moon direct, much as if the ocean were pulled up over an enormous area, and then suddenly or as rapidly dropped again, it is clear that the wave must traverse, almost unchecked, in the depths of ocean adjacent to the equator; from this region it is natural to suppose, on the same principles of which we have positive proof in our channels and estuaries, that the waves diverge in a circular form, with velocities varying as influenced by depth and friction. Unfortunately deep sea tides are beyond reach of experiment; but we imagine that it would meet the requirements of theory if the cotidal lines in the southern hemisphere were adjusted as encircling or radiating from the equator, as those in the northern side are shown to do; this would affect not the hours along shore of South America, New Holland, and the Polynesian Islands, but the supposed direction in which the tide-wave works up the coasts; and if we take this view of the theory, it may account for many anomalies in the tides of the complicated region round Singapore. Mr. Whewell's remark that the cotidal lines always run almost parallel to the shore, indicate how immediately the tide is retarded in velocity when coming out of deep water, and how large must be the radius of each progressive wave; his own remarks indicate the above hypothesis.

With regard to the semi-diurnal tide, we find it practically perceptible in the Thames, and it is also visible in the tides of the Humber. In a tidal canal branching from the Thames, which is under our management, it is found that at neap tides the inequality is highly useful by enabling advantage to be taken of the highest tide for keeping up the water to better working level, there being occasionally nearly two feet difference; we have also experienced a similar advantage by the lower ebbing out in erecting tidal works at Plymouth.

TIDES OF RIVERS AND ESTUARIES.

With a view to a more general knowledge and comparison of the tidal phenomena of English rivers, we have formed a collection* of the principal characteristics of their tidal flow and ebb; of the velocity of the tidal wave, and other accompanying circumstances, such as the depth, width, and sectional area; and also the actual relative level of the water or tidal wave, at various points in the course of the respective rivers. We have collected the whole of the matter at the end of this article, amounting to twenty-two consecutive pages, viz.—

Tidal phenomena of the

Thames2 pages.	Tyne4 pages.
Waveney 3 "	Clyde3 "
Nenel "	Mersey3 "
Humber 1 ,,	Dee1 ,,
Tay1 "	Severn3 ,,

And we have closed them by a schedule of the size of Docks in the United Kingdom, depth of cills, and other information, useful to shew the capability of the different ports, and accommodation in relation to their natural flow of tide, additional information on which is also given in the tables of the Tides of British Ports.

The following preliminary remarks upon each example will give all that we have been able to collect; they should be read in conjunction with the tables of the tidal phenomena relating thereto.

THE RIVER THAMES.

The river Thames has now a free tide-way up to Teddington Lock, near Richmond, but previously to the removal of old London Bridge it was, for all practical purposes, held up as by a weir at that point. Much discussion arose on the probable effect of its removal, and Messrs. Rennie conducted surveys for the city, at various periods, by Mr. Giles and others, to ascertain the probable effects; to save the reader labour of going through all the observations so ably put together by Mr. Rennie in his papers on Hydraulics, in the Reports of the British Association, we have laid together the following remarks and tables from this and other sources, endeavouring to trace down the various improvements and alterations in this great river; a careful perusal of the following statements will show to the student or others seeking for examples, the enormous advantage produced by removing obstacles to the full tidal flow.

Mr. Rennie quotes from the Philosophical Transactions for 1720, observa-

Mr. Rennie quotes from the *Philosophical Transactions* for 1720, observations, taken in Lambeth Reach, of the Thames, by Mr. Saumarez, 8th and 19th June, 1719; we place them here in juxta-position with the present state of the river, showing the enormous changes that have been produced.

^{*} The collection has of course been gathered from various sources, as acknowledged in each case. Unless very great liberality had been shewn to me by Mr. Rendel and other friends, I could not have attempted the labour. One endeavour has been to adopt none but what could be relied on as strictly engineering surveys, and of undoubted accuracy.

			1	720.	18	49.
			H.	M.	H.	M.
Time of Flo	od Spring Ti	de	3	50	5	15
	b do.		8	40	7	5
Time of Flo	od Neap Tide	е	4	50	6	0
Ditto Eb	ob do.	•••••	7	35	6	20
			17	20.		
Miles run by	Flood Spring	g Tide	5.	25 \		
Ditto	Ebb d	ō	10.	50 (Pres	ent facts
Ditto	Flood Neap	do	4.	75 (not	known.
Ditto	Ebb do.	do	7.	75 J		

In the river Thames the tidal wave is now affected much less from friction and obstacles than might be expected. From reference to Mr. Lloyd's observations on the rise of the tides at Sheerness, with the mean of Mr. Lubbock's at the London Docks, it appears that in 1828—

The spring tide high water a		Feet.	
same at Sheerness, was			
The mean high water	ditto	ditto 2. 248	
The neap tide	ditto	ditto 2. 858	
The spring tide low water	ditto	ditto 1.662	
The mean level of the tides	ditto	ditto 2.086	0.368
Or, taking more correctly the high and low water at Sheet	half differness, the n	rence between spring nean spring level is 1.725	

It seems, from the above summary, that as the water decreases in height, so the height of the water's surface at London Docks above the same at Sheerness also decreases, with the exception of spring tides at the London Docks and at neap tides. The above are means, not of the highest tides, but of the tides at a particular time of the moon's southing; Trinity high-water mark at London Bridge was found by Mr. Lloyd to be 1.904 above mean spring tide high-water mark at Sheerness.

With respect to the influence of the winds on these tides; during strong north-westerly gales, the tide marks high water earlier than otherwise, and does not give so much water, whilst the ebb tide runs out later and marks lower; but upon the gales abating and the weather moderating, the tides put in, and rise much higher, whilst they also run along after high water is marked, and with more velocity of current; nor do they run out so long or so low: a south-westerly gale has a contrary effect generally, and an easterly one gives some water; but the tides in all these cases always improve the moment the weather moderates.

Comparing observations taken at spring tides, for three days in March, 1833, before Old London Bridge foundations were removed, we find that high water at London Bridge was 1 hour 37 minutes after Sheerness; whereas now, in 1851, it is only 1 hour 20 minutes at spring tides, later than at Sheerness.

In March, 1833, the rise of tide at Sheerness was18 7
Ditto ditto at Fresh Wharf.......20 5
Ditto ditto at New London Bridge 18 3

Comparing the rise of these tides with those of June, 1849, at page lxxxii, it will be seen that London Bridge (although the old fall of 2ft. 2ins. is long since obliterated) is still the culminating point of the tidal wave of the Thames, owing to the narrowness of the river at this point, and quantity of ships at anchor in the pool; thus—

						Tí	me.
			Ft.	Ins.		Ħ.	ĸ.
Spring tide, J	June 20th, 1849	, at Deptford	20	8	•••	1	15
Ditto	ditto	at London					
Ditto	ditto	at Batterse					
Ditto		Sheerness					
Th							

But the most striking instance of the change in the tidal head of the Thames is shewn by the following comparison of the

TIME AND HEIGHTS OF HIGH AND LOW WATER, in 1828 & 1845.

Datum 20 feet below Trinity High Water, in this and all other Tables of the River Thames.

SPRING TIDE.

	Δ.	pril 29	th, 189	28.	April 25th, 1845.					
Stations.	Нісн	WATER.	Low V	VATER.	H16H W	ATER.	LOW WATER.			
	Time.	Height	Time.	Height	Time.	Height	Time.	Height		
London Docks	a.m., H. M. 4 15	Ft. Ins.	a.m. H. M. 11 18	Ft. Ins.	р.m. н. м. 1	Ft. Ins. 20 3		Ft. Ins.		
Battersea Bridge	5 I	18 9	p.m. 0 45	8 6	4 50	20 3 20 I	0 40	19 3		
Putney Bridge	5 13	19 0	15	98	5 0	20 O	1 15	6 4		
Kew Bridge Teddington Lock	5 40 6 28	19 7 21 9	2 20 4 59	13 5 20 11		20 2 20 11}	2 20 a.m. 10 0	10 8 17 81		

NEAP TIDE.

	3	Lay 5tl	h, 18 2 8	3.	May 1st, 1845.					
Stations.	Нюн Л	VATER.	Low V	VATER.	Нісн '	WATER.	LOW WATER.			
	Time.	Height	Time.	Height	Time.	Height	Time.	Height		
	р.m. н. м.	Ft. Ins.	a.m. H. M.	Ft. Ins.	a.m. H. M.	Ft Ins.	a.m. H. M.	Ft. Ins.		
London Docks	9 7	15 3	3 21	19	9 45	17 0	4 35	1 0		
Battersea Bridge	10 8	14 11	5 38	6 2	10 25	16 10	p.m. 6 ro a.m.	5 4		
Putney Bridge	10 31	15 2	6 35	8 3	10 55	16 11	7 10	6 11		
Kew Bridge	10 49	15 10	8 15	11 8	o o p.m.	19 0	9 15	11 0 17 10		
Teddington Lock	11 50	19 4	10 40	19 0	0 20	18 41	p.m.	17 10		

This is evidently not the time of the commencement of the flood, but the time of low water; the down stream continuing for some hours afterwards.

COMPARATIVE SECTIONS BETWEEN WESTMINSTER AND LONDON BRIDGES.

Taken in 1823 and 1831 by Messrs. Rennie, and in 1845 by Mr. Page.

Locality.		below Water.	Low	Area below Trinity High Water.				
	1823.	1831.	1845.	1823.	1831.	1845.		
230 yards north of Westmin-	Sup. Ft.	Sq. Ft.	Sq. Ft.	Sq. Ft.	Sq. Ft.	Sq. Ft.		
ster Bridge	3,939	3, 487	5,642	19, 348	20,046	20,953		
Near Whitehall Stairs	4,757	6, 570	6, 845	21, 168	23,660	24,744		
Near Hungerford Stairs	3,891	3,920	6,458	19,974	21,822	24, 768		
Waterloo Bridge	3,752	3, 947	4, 276	20, 570	20, 905	22, 705		
Bouverie Street Between Blackfriars & South-	4, 332	3,900	6, 153	18, 291	18, 210	22,005		
wark Bridges	3,976	3, 381	4, 320	16,958	17, 203 1832.	15,460		
London Bridge				7, 360	17,650	17,600		

TABLE OF VELOCITIES OF FLOOD AND EBB TIDE.

Giving the effect of removing old London Bridge.

	Fir of F	rst lood.	La of F		Fir of F		Last of Ebb.		
	1831.	1833.	1831.	1833.	1831.	1833.	1831.	1833.	
Between Westminster & Wa-	Ft. per Min.								
terloo Bridges Waterloo & Black-	139.8	150.4	155.9	170.0	163.8	170.4	169.4	191. 3	
friars Bridges Blackfriars & South-		172.9	l .	209.7	186.0	218.6	196. 3	238.9	
wark Bridges Southwark & London Bridges		174.2		268. I 254.4	262.3 363.0	277·7 317.6	252.0 337·5	295.6 287.1	

AVERAGE LEVELS OF HIGH AND LOW WATER, IN 1832, 1833, AND 1834.

	No. of Tides	Put	ney Bridge.		Kew Bridge.				Richmond Br.				Teddington Lk. MEAN LEVEL OF				
Years.	in each Year.	ME	an L	EVE	EVEL OF MEAN LEVEL OF MEAN LEVEL OF												
	1 car.	Hi Wa	gh ter.		ow ster.		High Low Water. Water			High Water.		Low Water.		High Water.		Low Water.	
1832	88	Ft. 18		Ft.	Ins.	Ft.	Ins. 8	Ft.		Ft.	Ins. 3	Ft.	Ins. 9	Ft.	Ins. 7	Ft.	Ins 4
1833	84	18	-	8	-	19		12		19	-		4	19		20	0
1834	89	18	2	7	8	18	6	10	11	18	10	14	7	19	8	18	3

VELOCITIES OF FLOOD AND EBB TIDE, 19th JUNE, 1834.

(Wind W.S.W. Fresh breeze and clear). From experiments by Messrs. Rennie.

	Distance from	/n	lood Tid d downwa			Ebb Tide ad upwar	
Stations.	London Bridge.	Time.	Height at London Bridge.	Velocity per minute.	Time.	Height at London Bridge.	Velocity per minute.
London Bridge Southwark Bridge Southwark Bridge Blackfriars Bridge Waterloo Bridge Waterloo Bridge Hungerford Market Westminster Bridge Vauxhall Bridge Chelsea Bridge ½-mile above ditto 1 mile ditto 1 do. (Wandsworth) Putney Bridge 2½ miles 3½ miles 3½ miles 4 miles Hammersmith Brdg. 5½ miles 64 miles	1.34 1.50 2.42 2.95 4.21 5.54 6.04 7.48 8.54 8.54 9.20	h. m. 8 6 8 8 53 9 14 9 23 9 50 10 3 10 55 11 90 11 51 11 50 11 2 20 12 20 12 35 *1 15 51 1 35	Ft. Ins. 2 9 5 1 7 7 0 8 7 9 2 10 9 11 2 1 14 2 15 10 16 10 17 6 0 18 9 18 19 3 19 4 19 2 17 1	Feet. 0.00 61.60 190.08 147.84 94.16 202.4c 216.25 204.24 227.68 32 240.24 240.24 240.24 211.20 176.00 176.00	5 16 5 2 4 47 4 21 4 16 3 58	Ft. Ins. 0 10 1 0 1 1 0 1 1 6 1 11 2 2 7 3 6 4 4 10 5 4 4 10 5 11 7 0 7 3 8 8 10 9 5 7 11 11 13 1	Feet. 296.56 275.44 249.04 249.04 198.88 224.40 198.00 214.72 181.128 176.00 195.36 07.36 146.96 176.00 146.08 185.68 110.00 119.68
High Water at London Bridge	<u> </u>	p.m. 12 30 a.m. 7 35	19 4	132.00	p.m. 12 30	13 11	
In 1823 Mr. G. London Bridge Do. The velocity of eb Between Westm "Water "Blackf Finally, we give The sectional area Level— Before Re After	and Put Sou b tide he inster a loo and riars an from M at Old	tney Bri	dge and W to be erloo Br iars Bri on Bridg	estminst ridges dges ges ge, belov	220 176 176 198 242 w Trini	feet per " " " " ity High	minute " " " "
At Old London Br Ditto Range of Spring I Ditto do Low water springs Ditto do	idge the do. Tides below T	fall thr	ough wa do.	as, in 18 18 . in 18	32 34 32 1 34 1	reatest. ft. in. 3 6 0 5 16 9 19 9 15 5	Least. ft. in. 1 10 0 3

The foregoing remarks are in a great measure drawn from Mr. Rennie's treatise. We have embodied them with other observations at our disposal, in order to give a picture of what has occurred by the changes of this important river, thus offering condensed data for future comparisons. The rapid changes even now daily occurring by ballasting, and by the increased area and flattening of the bed, originally caused by the removal of Old London Bridge, renders the Thames a highly instructive example; its present state is brought up to 1849, at pages lxxxii-iii.

THE RIVER WAVENEY

Has some of its phenomena given in the tables at pages lxxxiv-v-vi; united with the Yare, it is emptied by a long narrow channel at Yarmouth Pier, about 1½ miles below the town; here it has a great obstruction in the old bridge, which will be shortly removed, and doubtless have a very happy effect upon the navigation. Our tabulated observations pass above Yarmouth, where the river spreads into a large lake called Burgh Flats; they are continued by St. Olave's Bridge, where the Yare has divided off from the Waveney proper, and pass on to Beccles; we give also the simultaneous height at the Mutford Lock (Waveney side), and This river is well known to be extremely sluggish in at Lowestoft Pier. its tidal flow, and the form of its mouth and the wide expanse of Burgh Flats, with a great want of a deep channel, give all the conditions for bad propagation of the wave, consequently small oscillation of tide, and deficient drainage. Mutford Lock is remarkable as a point where local jealousy of interference with back water, belonging to the Yarmouth River, has caused the construction of a lock and gates so arranged as to prevent any tidal flow passing to or from the Lowestoft entrance of the tidal wave; if the passage were free, these two points, viz., the north side of Mutford Lock, and Lowestoft Pier, being only four miles distant, would have but little difference in their tidal flow, while a greatly increased flow would be carried on towards St. Olave's Bridge, with advantage to all interests, and prejudice to none, if proper arrangements were made simultaneously with relation to the Yarmouth river.

THE RIVER NENE.

In the year 1813 the Commissioners of the North Level (drained by the river Nene) applied to Mr. Rennie for advice, which he gave in the following year; from his observations it then appeared that the fall at low water from Sutton Wash to Crab Hole (below the sands of the Wash) was 12 feet in about 4 miles; from the surface of the water at Gunthorpe Sluice to Crab Hole, a distance of 5½ miles, the fall was 13 feet; from Guyhern to Crab Hole, a distance of 17 miles, the fall was 14 feet 6 inches; and from Peterborough Bridge to the same point, a distance of 30½ miles, the fall was only 18 feet 6 inches.

It appeared, therefore, evident that the great bar to the discharge of the waters of the Nene, and of course to the general drainage of the fens, was the high and shifting sands between Gunthorpe Sluice and Crab Hole, independently of the narrow and confined state of the river above; Mr. Rennie, therefore, recommended the river to be carried by a new cut, of a suitable capacity, across the marshes to Crab Hole, $5\frac{1}{4}$ miles

in length.

The Cut was carried into execution under the direction of Messrs. Telford and Rennie, and completed in 1834; the original dimensions are shewn at page xiv, but the section has deepened and generally improved since completion; its effects exceeded the most sanguine expectations, having reduced the fall between Crab Hole and Gunthorpe to about three inches per mile, where it was formerly more than two feet per mile; low water below Sutton Bridge being now five feet below that at The scouring effect was so great, that the King's Lynn, on the Ouse. Sutton Wash Bridge, erected during the progress of the outfall, was in great danger of being undermined, requiring stone to be thrown in, much to the detriment of greater improvement of the river. This has been amended last year by the construction of a new bridge, and the old one is now being removed (1851). There is no doubt that the cill of the North Level Sluice, laid during the making of the Nene outfall, will shortly be capable of being lowered more than two feet. For the present surface fall see the Table, and also page xiv. We have these facts from Mr. Utting, Surveyor to the Commissioners, who states that the Nene outfall lowered the water at the north level sluice ten feet; in the town of Wisbeach, spring tides rose four feet only, and now rise thirteen feet; and neap tides, which in 1769 did not reach the town, now rise nine feet.

Notwithstanding the enormous advantage of this outfall to the river below Wisbeach, yet the narrowness of that town and its bridge have the effect of keeping up the waters of the upper Nene, so that there is ordi-

narily two feet of fall through Wisbeach at low water.

The tidal flow and sectional areas of the Nene are given at page lxxxvii, from our own observations, taken for Mr. Rendel. Attempts are now being made to obtain powers for improving the river through and above Wisbeach; but an enormous area of land which should have drained by the Nene, with an advantage of five feet fall, is now carried by the Middle Level Drainage into the Ouse; there is, however, ample inducement for an improvement of the Nene, both in respect of drainage and of navigation; for the banks and narrows above Wisbeach, and especially Guyhern, render the river little better than a shallow pond; although, properly improved, it would have a very free and considerable tidal ebb and flow, even at neaps.

THE RIVER OUSE.

Another of the rivers emptying into the Wash, has a marked bore which, like that of the Severn, is created by the shoals at the mouth below Lynn, causing a greater fall at the outlet than further up the river. We believe this will be found to be universally the case where the bore prevails. The ocean tidal wave comes up from deep water, and meeting with the sudden rise and resistance of the bed, the wave assumes a head which, too great for its depth, topples over in the characteristic form of the bore.

The Eau Brink Cut, originally projected by Mr. Nathaniel Kinderley, in the year 1720, was completed by Mr. Rennie in 1825, according to the award of Messrs. Huddart and Mylne; its object was to conduct the waters of the river Ouse by a direct cut across the marshes from Eau Brink to Lynn, of about two miles and a half in length, instead of allowing them to flow by the old circuitous channel of upward of five miles in length.

The area of Eau Brink Cut, just below Freebridge, at low water spring tides, or 2' 3" on Freebridge gauge, is 2,620 square feet, the depth then being 11' 9' and width at water line 312 feet.

The area at high water springs, rising to 16'9" on the same gauge, is 7,879 square feet, the depth then being 26'3" and width at water line 412 feet.

The surface fall at Eau Brink Cut is given at page xiv.

In December, 1821, the tide rose on the average eleven feet ten inches on the cill of Old Denver Sluice; while at low water the average depth on the cill was 9.6 inches.

Since the completion of the Eau Brink Cut, the results have been-

That the low-water mark has fallen six feet lower than it formerly stood at Denver Sluice, and from eight to nine feet at Eau Brink.

That the spring tides now rise at Denver Sluice thirteen feet, and

neap tides eight feet.

That the river has deepened between Denver Sluice and Eau Brink ten feet upon the average, and its general sectional area has increased

from one-fourth to one-third.

That the low-water mark in Lynn harbour has fallen four feet, and the navigable channel in Lynn harbour has deepened seven feet; and that where there were formerly twelve feet in depth of water in the intercepted bed of the old Ouse between Eau Brink and Lynn, there is now a tract of 900 acres of land under cultivation, all of which has been effected by the process of warping.

The tide in the Eau Brink flows three hours, and rises in that time fifteen feet, at spring tides, thus leaving nine hours of ebb; the young flood then assumes all the characteristics of a bore, rising at the first two minutes from one to three feet, and subsiding again, for a short time, to

half the first height when the wave has passed on.*

Notwithstanding the enormous improvement by the Eau Brink Cut, low water spring tides at King's Lynn are still about five feet higher than in the roads at the entrance of the river, owing to the circuitous course of the channel, and the prevalence of bars and banks of sand and mud; to remedy this and to aid the formation of the great Estuary of the Wash enclosure, Sir John Rennie is now cutting an outfall from opposite King's Lynn to the Roads, a length of four miles, which will have the effect of bringing dead low water practically up to Lynn, or, in other words, lower the water at the end of Eau Brink Cut nearly five feet.

This new cut is 250 feet wide at bottom, and 500 feet wide at top, and 32 feet deep; it is 14' 3" deep at low water spring tides, or 2' 3" on Freebridge gauge, with an area of 3,960 square feet, and width at water

line of 355 feet.

The depth of the cut at high water spring tides, or 16'9" on Freebridge gauge, will be 28'9" with an area of 9,990 square feet, and width at water

line of 474 feet.

The cut passes inland for two miles, and the remaining two miles crosses the channel and sand banks of the estuary into Lynn deeps; the first portion containing about four millions of cubic yards, has been nearly finished in the short space of fourteen months, by the vigorous appliances of Messrs. Peto and Betts, forming a work at the present moment highly interesting to an engineer.

THE RIVER HUMBER.

We have not access to any engineering survey of the tides of the Humber, and can therefore only give, at page lxxxviii, the curves of spring and neap tide at Grimsby; diurnal inequality appears to be strongly

^{*} This is chiefly from Mr. S. Rennie's Report on Hydraulics.

marked here. Humber tides are strong, and, like the Ouse, Severn, and Mersey, carry much silt, depositing it capriciously wherever an opportunity offers, and readily cutting out deep channels in the bed when tidal stream is diverted on any spot, from general or accidental causes. The great tidal power of this river and its deep channels offer great facility for the effective drainage of the vast area of marsh lands bordering upon its ramifications, as is also the silt in their warping and fertilization.

THE RIVER TAY

Is a river subject to great floods, from the mountainous character of its sources, and other causes, much aggravated, occasionally, by the effect of the deep Falls on Lock Tay. It is interesting as having had great improvements effected on its upper tidal portion, from Newburgh to Perth, under direction of Messrs. Stevenson, of Edinburgh, who dredged out in this division 815,000 tons, between 1835 and 1841, at an expense of about £53,000.

In a report, made in 1845, by these gentlemen, to the conservators of the river, they describe the Tay as draining 2,283 square miles, and having a mean discharge at Perth of 218,158 cubic feet per minute*; about seven miles below that city, the Earn adds its volume, giving, by the same

authority, a mean discharge of 54,959 cubic feet per minute.

The head of navigation at Perth is 23 miles from Dundee, and 32 from the German Ocean, but the tide extends to 21 miles above Perth.

The extreme tides from neaps to springs:-

At Dundee, range from 7 to 18 feet. At Newburgh, ,, 6.5 to 15 ,, At Perth. 6 to 13 ,,

The depth of water in the Frith ranges from 36 to 54 feet at high water, the bar having about 34 feet at spring tides. From Flisk point to Newburgh the river gradually shoals from 30 feet to 18 feet; and from Newburgh to Perth, from 18 to 15 feet at high water spring tides; the navigable breadth being scarcely ever less than 100 yards.

Previous to the commencement of Messrs. Stevenson's improvements, the river was impeded by fords and salmon weirs, or fishings, so that vessels drawing from 10 to 11 feet frequently missed even spring tides. The river was also obstructed by large boulders. The works executed

were, in the words of the Report:-

"First.—The fords, and many intermediate shallows, were deepened by steam dredging; and the system of harrowing, which was so successfully practised on the Mersey, was employed on some of the softer banks on the lower part of the river.

" Second .- The large detached boulders and fishing-cairns, which obstructed the passage of vessels, were removed by means of lighters,

mounted with cranes, and by pontoons.

"Third.—Three subsidiary channels at Sleepless, Darry, and Balhepburn islands, were shut up by means of embankments formed of the produce of the dredging, so as to confine the whole of the water to the navigable channel.

^{*} According to this, the amount run off the surface would represent about 21.5 inches in the year. The ordinary summer run (July) of the Tay at Perth, amounts to 60,000 cubic feet per minute, or 26 cubic feet per minute per square mile, but in a dry autumn there is not above one-third of this quantity. High floods in the Tay have discharged, for more than twenty-four hours consecutively, as much as 660,000 cubic feet per minute, or 286 cubic feet per square mile, or nearly three-sixteenths of an then in death over the surface run off. inch in depth over the surface run off.

." Fourth.—In some places the banks on each side of the river beyond low water mark, where much contracted, were excavated and removed, in order to equalize the currents, by allowing sufficient space for the free passage of the water.

"Fifth.—A great part of the dredged material was deposited along the banks of the river in a careful manner, so as to form new Fishing

Beaches, to compensate for the removal of others."

The commercial effect of these improvements shew that in 1833, 12 vessels, of 100 to 144 tons and upwards, frequented the port; while in 1844 there were 37 vessels, from 100 to 400 tons, and the customs rose from £2,969 to £16,837.

At page lxxxix we have given, from Messrs. Stevenson's report, the chief phenomena of the velocity of the tidal wave and fall of the river surface, which the reader will observe have a close relation to each other. For instance, between Newburgh and Perth the low water surface fall

In 1833 was 467 feet per mile. Velocity of wave 301 feet per minute. In 1844 , '233 , Velocity of wave 452 ,

So that the tide begins to flow now fifty minutes sooner at Perth, than before the improvements.

The results of observations in 1833 and 1844, at Newburgh, shew that the duration of flood and ebb tides at that place are unchanged. The times are as follows:—

Spring tides flow 4	20
" ebb 7	20
Neap tides flow 4	30
,, ebb 6	45
At Perth, in 1833,—	
Spring tides flowed 2	20
" ebbed 7	0
Neap tides flowed 3	15
, ebbed 7	0
At Perth, in 1844,—	
Spring tides flowed 3	10
" ebbed 7	0
Neap tides flowed 3	10
, ebbed 7	0
Increase of duration flood at Perth 0	50
In 1833 the river ran at its natural level at spring	•
tide 1	45
In 1844 it runs at its natural level at spring tide 1	0
Giving a decrease in the time of standing at low	
water, or in the absence of tidal influence at Perth, at spring tides, of 0	45

We have abstracted these facts at some length, because the Tay is a most striking instance of the advantages of expediting the tidal wave and flow, by the formation of a uniform passage, without any violent changes in the form of the channel itself, and at a comparatively moderate expense.

THE RIVER TYNE,

From want of improvement, has seen other ports rapidly outstrip its ancient pre-eminence; the river suffers grievously from a bar, and also from being subject to great floods at the point where the tide meets, which in the course of ages have brought down heavy gravel deposits. These floods, from want of proper train and regularity of conservation, do great harm when they might be productive of good. The bar of the Tyne has a very serious effect on its general feature, being literally a weir preventing the proper flow and ebb of the tidal waters, which is again further checked by the large expanse of Jarrows lake within the river mouth (like the Burgh flats on the Waveney), which aids greatly in checking the concentration of tidal flow up stream. Plate VII. gives the form of the wave when high water at Newcastle.

THE RIVER CLYDE

Has had large sums of money spent in deepening its bed and regulating its banks. These works have been similar to those described on the Tay, and have been equally effective. High water at springs now rises nearly two feet higher than before the improvements, and the draft of water is increased from six feet to fourteen or fifteen feet, while the time of high water at Glasgow is accelerated twenty minutes, and the time of young flood far more, and on the ebbing out has been equally delayed. At pages xciv-v-vi, are the chief phenomena of the river, placed in a similar manner with those of the Tay.

THE RIVER MERSEY

Is too well known to require much reference. We have given, in Plate VI., the form of tidal wave, from observations taken with extreme accuracy, in the parliamentary contest for the Birkenhead Docks. The river is loaded with sands at its mouth; but the vast body of water passing in and out offers a powerful check on the counter effect of winds and waves on the vast shifting sands. In the diagram, the growing up of the tidal wave, at the narrow part opposite Liverpool, the faltering again at the wide expanse between Eastham and Ellesmere Port, and the heading up again when narrowing at Runcorn, is shewn very strikingly. The great rise and volume of tide, and straight even sides not too far within the mouth, are the great safeguards of the port of Liverpool; the ample dock space, and cheapness of construction from the rock foundation, and tidal ebbing off, give the great pre-eminence of Liverpool aport. The phenomena of springs and neaps from the mouth, to Warrington the head of the tidal flow, are given at pages xcvii-viii-ix.

THE RIVER DEE,

In form, is strikingly the reverse of Liverpool; an injudicious mode of enclosure, unaccompanied by proper dredgings, has rendered useless what might have been a great improvement of its upper course; while the want of a proper application of capital lower down has permitted evils to gather strength.

lxxix

REMARKS ON THE USE OF THE TABLES.

Even with the serious sand banks at the mouths, and the want of a great natural channel inside, to give direction and effect to the currents, we still are of opinion that a sum of money, boldly spent, would effect a vast revolution in the commerce of the Dee, and with great benefit; for Chester is well placed for commercial intercourse with the mining districts and potteries.

THE RIVER SEVERN.

The river Severn was surveyed in 1849 by Captain Beechey, F.R.S., by order of the Lords of the Admiralty. A short statement accompanies his elaborate maps, and from these documents we have compiled the information given at pages ci., cii., ciii., Captain Beechey's labours are here condensed into a form that will be best understood by a careful examination of the tables. The phenomena of the bore are shown to fluctuate in the inverse ratio of the velocity of the tidal wave, and in connexion with this, it will be observed that the fall of the Severn increases as it approaches the sea; with this fact the cause of the bore is closely connected; as we have before hinted in the case of the Ouse at King's Lynn, in the best form of rivers, the surface fall generally decreases in approaching to the tide way.

Low water at spring tides below Lidney is (as ordinarily) lower than at neaps; but above Lidney the reverse takes place;* this Captain Beechey thinks is occasioned by the waves throwing more water into the river than can escape at spring tides. The form of high and low water springs and neaps is shown at page ci. It will be seen that the maximum height of springs is between Framilode and Rosemary, dropping downwards to Haw Bridge, after which it ascends, until lost in the ordinary slope of the river. The diagram, Plate VII. shews the most characteristic surface lines.

The table at page ciii shows the progress of the crest of the tide-wave, the rate of the bore and the rate of the stream answering to the various ranges of the tide at Sharpness, including times when the river was under the influence of strong freshes. Between Sharpness and Hock Crib, the wave passes at an unusually rapid rate. And Captain Beechey thinks it is possible that the perpendicular surface of the cliff at Hock Crib, and its situation at right angles to the progress of the wave, may occasion a premature high-water at that particular spot. In the following table, therefore, Hock Crib is omitted, and the interval between Sharpness and Newnham is taken.

TABLE OF VELOCITY OF THE TIDAL WAVE AND BORE OF THE SEVERN AT SPRING TIDES.

Between—		L WAY			ORE. per Min.
Beachley and Sharpness		1,600		8	374
Sharpness and Newnham					87
Newnham and Framilode		1,900	••••	4	75
Framilode and Rosemary Point		992		8	320
Rosemary and Stonebench					526
Stonebench and Haw Bridge	• • • •	1,053		1	138
Haw Bridge and Hythe Bridge		729		1	23
Hythe Bridge and Upton Bridge		1,053	• • • •	8	320

^{*} This is not unfrequently the case in rivers having many shoals and considerable fall in their bed.

"After passing Framilode, the rate of the tide-wave suffers a material diminution between that place and Rosemary Point. The river, after much encumbrance from sand-banks, assumes its average contracted dimensions, from which it afterwards scarcely deviates to any amount. There are besides some very sharp turns in the river at and above Rosemary, all of which assist in retarding the progress of the wave, so that its rate is reduced to about 10 miles an hour, or half the rate at which it travels at Sharpness; and at this reduced rate nearly it continues its progress up the river as far as the observations can be made with accuracy.

"The Bore, or the foot of the wave, travels at a very irregular rate; its advance at all times depends upon the magnitude of the tide; but, in addition to the irregularity arising from this cause, its speed is affected by particular winds, by the shallowness of the river, and especially by low dry sand-banks. The inclination of the surface of the water it has to surmount also appears to produce a sensible effect upon its rate of travel-Thus, between Beachley and Sharpness, where the ascent of the low-water surface is 1.75 feet per mile, the bore advances at the rate of 870 feet per minute; and between this place and Rosemary Point, where the ascent is 1.12 feet per mile, the rate of the bore is still only 550 feet per minute; but from Rosemary upwards, where the ascent is only 0.12 foot per mile, the rate increases to upwards of 1,300 feet per minute, and this easy ascent continuing, the wave continues to roll up the river at a speed nearly double that of its original rate. It must, however, be borne in mind that in all that part of the river where the rate is so small, the river is encumbered with sand-banks, which are the causes also of the rapid descent of the river-surface, the space being occupied by numerous small rapids.

"On a comparison of the rates of the tidal wave and the bore, it appears that, in the early stage of the tide, the crest of the tide-wave is rapidly overtaking the bore and, consequently, momentarily increasing the height of it; and there can be no doubt that this retardation of the foot of the wave, occasioned by friction of shallows and sand-banks, is the primary cause of the bore. Above Rosemary, the bore, unobstructed by sand-banks, rolls on at a rate which more than equals that of the crest of the wave; and the phenomenon is shortly found to diminish, to lose its wave character as it proceeds, and to become scarcely perceptible above

the Partings (Gloucester).

"When the reaches of the river are straight, the bore travels evenly up the river; but at the turnings it is thrown off towards the further side, where it rises higher than in the straight reaches; thence it recoils and impinges upon the opposite shore, and so, like a disturbed pendulum, it oscillates from side to side, and only regains its steady course when the

reaches lengthen.

"The highest tide of the year rolled up the Severn on the 1st of De-There was about 2 feet of water above the ordinary summer cember. level in the river, and the morning was calm and favourable to the phenomenon. The stream at low water ran down at the rate of 250 feet per minute, until the bore came rolling up the river with a breast from 5 to 6 feet high at the sides, and 3 feet 6 inches in the centre. The wave was glassy smooth, and as it advanced towards a spectator stationed at Stonebench, a singular effect was produced by the distorted surface of the wave reflecting the rising sun, and brilliantly illuminating the stems and branches of the wood skirting the river as the bore passed along; an effect which greatly enhanced the interest of the phenomenon. stream turned at the instant after the bore passed, and ran at the rate of 380 feet per minute, which was about half the average rate of the bore, which varied from 12 to 7 miles per hour.

"In the table the effect of the fresh, or a certain depth of water in the river, upon the advance of the bore is remarkable. At dry periods the great obstruction to the progress of the bore lies between Sharpness and Bullopill; and, at such times, the many dry sand-banks prevent the bore attaining a rate greater than about 4 miles an hour, as shewn in the table; but when the river is under the influence of freshes, and the water raised, covering some of the banks, it appears to roll on at a rate of 10 miles an hour in opposition to the stream, which about Hock Crib is there running down at the rate of upwards of 4 miles an hour.

The state of the surface fall of the river Severn in flood, which we have tabulated in conjunction with the sectional area, &c., at page cii., will be found of great value, being a rare example; at pages xxvi., xxvii., we have given a short statement of the discharge of this river in the flood of December 4th, 1849, and its relation to the drainage area on that day. Plate VII. gives the form of spring tide of this river, with its summer

low water and flood surface.

CONCLUDING REMARKS.

We have now finished our sketch of the different rivers of which the succeeding pages afford the date referred to; the object has been to pourtray the actual conditions of things and their effects; such as the velocities of the tidal waves, sectional area, width, depth, &c., of each case; so that any one wishing to search for a precedent as it were, to shew what may be expected, under given circumstances, can here find, at all events, an approximation to the investigation Much more could be done if professional men would find time to follow up the subject, and we have an earnest hope that this will be done. Constant calls from our daily avocations have broken in upon and frequently destroyed the work of long previous consideration, which has had again to be taken up at a great sacrifice of time and labour. In the labour we have, at all events, found that there is a mine of unexplored phenomena open to inquiry; the great aim of our own study has been to trace out the bearings of the laws of gravity, with which the Tables commence, and which determine all hydrodynamic computation, and to shew how they are affected by friction, and other resistances; all are mere modifications of this first cause, and the practical result of their various forms and conditions is what the Engineer requires for a skilful adaptation of his works.

The succeeding pages contain the tides of the several rivers we have described. At the end will be found a few diagrams, shewing the form of tidal flow, and the section of the river bed of the Mersey, Severn, Tyne, and Nene; preceded by the tide charts of the Irish and English Channels, referred to in the abstract of Captain Beechey's paper; there is also added a map of the world, with cotidal lines from Airy and

Whewell's maps.

lxxxíí

REMARKS ON THE USE OF THE TABLES.

TIDES OF THE THAMES.

TABLE OF THE RISE AND FALL OF A SPRING AND NEAP TIDE

At the undermentioned points, taken simultaneously from the Ordnance Metropolitan Survey observations, in 1849.

Note.—Zero is 20 feet below the Ordnance datum or mean half-tide level at Liverpool, which is 12.5 below Trinity high water standard.

SPRING TIDE	. June 20th	1849.	NEAP	TIDE.	June 30th	. 1849.
-------------	-------------	-------	------	-------	-----------	---------

TIME.	Deptiord.	London Bridge.	Batter- sea.	TIME.	Deptford.	London Bridge.	Batter- sea.
н. ж,	Feet.	Feet.	Feet.	H. M.	Feet	Feet.	Feet.
7 30a.m.	13.62LW	15.00	17.25	30a.m.	24.C7	23.70	20.90
80,	13.66	14.25	16.60	80,	25.78	25.40	22.55
8 30 ,,	15.43	14.66	16.05	8 30 ;;	27.32	27.00	24.10
90,	18. 27	17.60	15.60LW	90 ;	28.71	28.45	25.75
9 30 "	20.84	20.80	17.75	9 30 "	29.62	29.60	27.15
10 0 "	23. 56	23.05	19.80	10 0 ,	30. 10	30.20	28.50
10 30 🦷	25.77	25.40	22.15	10 30 "	29.70	30.30	28.95
11 0 ,	27.68	27.40	24.35	11 0 ,	28.22	29.30	28.80
11 30 ,,	29.18	28.8o	26.30	11 30 ,	26.47	27.60	27.50
12 0 "	30.52	30.30	27.85	12 0 ,	24.67	25.90	26. 10
0 30р.т.	31.68	31.60	29.35	0 30p.m.	23. 10	24.40	24.70
10,	32.73	32.80	30.80	1 0 ,,	21.65	23.00	3- 45
1 30 "	32.85	33.45HW	31.85	1 30 ,	20.33	21.60	22. 25
2 0 ,	31.73	32.75	32.15HW	2 0 ,	19.00	20. 30	21.10
2 30 ,	29.64	30.95	31.20	2 30 ",	17.90	19.20	20. 15
30 ,	27-43	29.00	29.20	3 0 ,	16.21.	18.10	19.15
3 30 "	25.48	27.00	27.50	3 30 "	16.08	17.15	18.35
4 0 ,	23-73	25.30	26. IO	4 0 ,	15.49	16.30	17.65
4 30 ,	22.12	23.80	24.70	4 30 ,	15.80	15.90	17.00
5 0 ,	20.56	22.25	23.40	5 0 ,	17.13	16.80	16.40
5 30 "	19.14	20.85	22. 10	5 30 🖫	18.62	18. 45	16.40
7 55a.m.	13.60LW			10 5a.m.	30.15HW		
8 15 "	1	14. 15LW		10 20 ,		30.30HW	
1 15p.m.	33. I4HW			10 40 %	J		29.05HW
	· · · ·		•	4 10p.m.	15. 39LW		
1	i			4 40 ,,		15.80LW	•• . ••
				5 20 ,			16. 10LW

VELOCITIES OF THE HEAD AND FOOT OF A TIDAL WAVE, From the above observations.

SPRING TIDE. June 20th, 1849.

DILLIG	IID.	s, sum	, with	1020.		
	Dis-	Tidal		e per rute.		
STATIONS.	Apart.	Range.	Foot of Wave.	Head of Wave.	Foot.	Head.
Between Deptford and London Bridge London Bridge and Battersea	Feet. 20,600 25,700	Feet. 19.54D 19.30 L	Mins. 20 45	Mins. 15 30	Feet. 1,030 571	Feet. 1, 373 856. 6
Deptford and Battersea	46,300	16.55 B	65	45	712.3	1028.8

NEAP TIDE, June 20th, 1849.

STATIONS.	Dis-	Tidal	Pas	val of sage	Rate per Minute.			
BIAIIUNB.	Apart.	Range.	Foot of Wave.	Head of Wave.	Foot.	Head.		
Between Deptford and London Bridge London Bridge and Battersea	Feet. 20,600 25,700	Feet. 14.76D 14.50 L	Mins. 30 40	Mins. 15 20	Feet. 686. 6 642, 5	Feet. 1,373.2 1,285.0		
Deptford and Battersea	46,800	12.95 B	70	85	661.4	1,823		

lxxxiii

REMARKS ON THE USE OF THE TABLES.

TIDES OF THE THAMES,

VELOCITIES OF THE HEAD AND FOOT OF A TIDAL WAVE,

At a Spring and Neap Tide, from St. Katharine's Docks to Teddington Lock, from Mr. Page's observations in 1845.

SPRING TIDE, April 25th, 1845.

Names of Stations.	Dis-	Tidal		val of	Rate per Minute.		
Names of Stations.	apart.	Range	of	Head of Wave	Foot.	Head.	
Between St. Katharine's Docks and Battersea Br. Battersea Bridge and Putney Bridge Putney Bridge and Kew Bridge Kew Bridge and Teddington Lock St. Katharine's Docks and Tedding. Lock	15,840 20,7∞ 26,4∞	Ft. In. 19-75K 14-50B 12-67P 9-49K 3.25 T		Mins. 37 10 15 45	Feet. 429 452.6 457	Feet. 788 1,584 1,980 587	

NEAP TIDE, May 1st, 1845.

Names of Stations.	Dis-	Tidal		val of sage	Rate per Minute.		
names of Stations.	tances apart.	Range	of	Head of Wave	Foot.	Head.	
Between St. Katharine's Docks and Battersea Br. Battersea Bridge and Putney Bridge Putney Bridge and Kew Bridge Kew Bridge and Teddington Lock	29, 160 15, 840 29, 700 26, 400	Ft. In. 15. 50K 11.50B 10. 0P 6.16K	Mins. 85	40 30 20 65	Feet. 343	Feet. 729 528 1,485 406	
St. Katharine's Docks and Tedding. Lock	101,100	0. 50 T	•	155	••	652.6	

RESULTS OF THE TIDAL OBSERVATIONS,

TAKEN FOR THE ORDNANCE SURVEY OF THE METROPOLIS, BETWEEN 19th JUNE and 19th JULY, 1849,

Taken in 10 Minutes' observations.

The zero of the heights is 20 feet below Ordnance datum or mean half-tide at Liverpool.	Deptfrd.	London Bridge.	Batter- sea.
Highest High Water observed during the month Lowest Low Water Mean High Water for the month Low Water Mean Half-tide Mean Half-tide at London, above approximate Half-tide	10.81 30.98 13.06	Feet. 33.45 11.75 31.23 13.65 22.44	Feet. 32. 15 14. 45 29.95 15.04 22. 50
at Liverpool	2.02	2.44	2.50

HEIGHT OF TRINITY HIGH WATER MARKS ABOVE ZERO.

Mark at	Lomer's Quay, Billingsgate	32. 36	Feet.
	Hermitage Entrance, London Docks	22.50	
29	Shadwell Entrance, London Docks	32.50	
	Limehouse Entrance, West India Dock Basin	12.75	
	Blackwall Entrance, South Dock	22.72	"
	" West India Dock	22.77	73
,,	,,	31/	10

lxxxiv

REMARKS ON THE USE OF THE TABLES.

TIDES OF THE WAVENEY.

TABLE OF THE RISE AND FALL OF THE TIDE

At various points, taken simultaneously from the mouth of the river at Yarmouth to Beccles, and at Lowestoft.

Datum line 5 feet below Old Zero at Mutford Bridge.

NEAP TIDE, March 21st, 1850.

Time.).	Pier.		Yar- mouth Bridge.		rgh ats.	sh St. Olave's.		Burgh St. Peter's.				Mut- ford Lock, N. Side.		Lowes- toft Pier.		
H.	M		Ft.	Ins.	Ft	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins.
6	0	8.M	3	3‡	4	야	4	64	5	11	5	3‡	5	5	5	5è	3	6
6	30	20	2	8‡	3	9ŧ	4	4	5	야	5	41	5	5 1	5	5È	3	0
7	0	**	2	51	3	54	4	2	4	11‡	5	31	5	51	5	41	•	6
7	30	29	2	IŽ	3	31	4	14	4	9ŧ	5	2	5	41	5	3‡	2	•
8	0	**	1	114	3	I	4	o ţ	4	8\$	5	2	5	31	5	21	ı	9
8	30	w	1	9‡	2	114	3	112	4	7\$	5	o l	5	缩	5	I.	1	6
9	0	,	1	112	2	IOŽ	3	9ŧ	4	6	4	114	5	11	5	o <u>ł</u>	1	7
9	30	"	2	41	2	117	3	8	4	52	4	юį	5	oŧ	4	114	1	IO
10	0	"	2	94	3	14	3	84	4	4	4	94	4	11‡	4	104	2	5
10	30	. 27	3	52	3	51	3	71	4	34	4	8‡	4	10	4	9‡	2	11
1 1	0	33	4	oł	3	9 1	3	98	4	23	4	7 ž	4	91	4	81	3	7
1 1	30	"	4	42	3	111	4	0	4	22	4	61	4	8	4	7 1	4	0
12	0		4	61	4	17	4	22	4	32	4	6}	4	71	4	6]	4	3
0	30	p.m	4	8]	4	41	4	32	4	5 2	4	52	4	6	4	52	4	6
1	0	"	4	10}	4	61	4	52	4	63	4	62	4	6	4	6	4	9
i	30	"	4	117	4	7 1	4	62	4	72	4	7 ł	4	6	4	7	5	0
2	0	n	5	ΟĮ	4	81	4	72	4	82	4	8 Į	4	6	4	8	5	3
2	30	**	5	oł	4	81	4	82	4	92	4	9}	4	72	4	9	5	5
3	0	33	4	117	4	81	4	82	4	102	4	101	4	9	4	10	5	6
3	30	"	4	9}	4	7 1	4	92	4	112	4	117	4	to <u>ł</u>	4	11	5	4
4	0	27	4	31	4	51	4	82	4	112	5	야	4	10	5	0	4	11
4	30	,,	3	9 ł	4	31	4	63	5	08	5	ož	5	٥	5	OŽ	4	5
5	0	27	3	32	3	112	4	22	4	112	5	12	5	1	5	11	4	0
5	30	*	2	юį	3	81	4	22	4	102	5	11	5	ıį	5	ıŧ	3	7
6	0	,	2	5 1	3	42	4	12	4	91	5	야	5	11	5	야	3	0

lxxxv

REMARKS ON THE USE OF THE TABLES.

TIDES OF THE WAVENEY.

TABLE OF THE RISE AND FALL OF THE TIDE

At various points, taken simultaneously from the mouth of the river at Yarmouth to Beccles and at Lowestoft.

Datum line 5 feet below Old Zero at Mutford Bridge.

SPRING TIDE, March 29th, 1850.

-	Cime	•	m	ar- outh ier.	m	ar- outh idge.		irgh lats.	gh St. Olave		Burgh St. Peter's.		l		Mut ford Lock, N. Side.		Lowes- toft Pier.	
H.	M.		Ft.	Ins.	Ft	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins.	FŁ.	Ins.	Ft.	Ins.	Ft.	Ins.
6	0 1	s.m	2	6}	2	31	3	12	3	112	4	51	4	61	4	52	,	6
6	30	"	3	117	3	61	3	12	3	111	4	41	4	S≹	4	41	3	0
7	0	17	4	7 1	4	oł	3	41	3	102	4	31	4	41	4	32	3	10
7	30	"	5	야	4	41	3	91	4	OŽ	4	21	4	31	4	21	4	4
8	0	n	5	31	4	7 1	4	ો	4	21	4	11	4	21	4	11	4	8
8	30	**	5	52	4	91	4	22	4	32	4	2}	4,	7 <u>‡</u>	4	12	5	1
9	0	"	5	91	4	102	4	52	4	52	4	34	4	I	4	2]	5	5
9	30	,	5	10}	5	O Į	4	62	4	62	4	41	4	12	4	4	5	9
10	0	"	5	104	5	11	4	82	4	8‡	4	52	4	3 1	4	52	6	T
10	30	**	5	91	5	14	4	92	4	102	4	7₹	4	51	4	7	6	5
11	0	"	5	7 1	5	14	4	112	4	112	4	82	4	78	4	81	6	3
11	30	"	5	야	5	oł	5	02	5	12	4	101	4	91	4	92	5	9
12	0	20	4	32	4	9}	5	0	5	25	5	야	4	102	4	111	5	•
0	30 _I).m.	3	24	4	22	5	야	5	32	5	11	4	112	5	1	4	1
ŧ	0	"	2	61	3	91	4	72	5	11	5	12	5	oł	5	2	3	11
1	30	20	2	17	3	6‡	4	51	4	11‡	5	12	5	ış	5	21	2	9
2	0	"	1	7‡	3	3‡	4	2	4	92	5	11	5	22	5	2	1	11
2	30	29	1	11	2	117	4	o ₂	4	81	5	OŽ	5	21	5	1	1	5
3	0	29	0	81	2	7 1	3	10	4	6	4	114	5	14	4	114	۰	10
3	30	"	٥	41	2	41	3	92	4	52	4	10}	5	여	4	10	o	Y OVS6FO
4	0	29	۰	21	2	21	3	7 2	4	4	4	8	4	114	4	91	0	3
4	30	29	0	17	2	야	3	6	4	31	4	74	4	101	4	8‡	٥	7
5	.0	*	0	31	1	11‡	3	52	4	12	4	6	4	9	4	7	۰	3
. 5	30	*	0	24	1	111	3	48	4	Ož	4	52	4	8	4	6	٥,	O bove
6	0	**	•	3‡	2	14	3	3	3	112	4	41	4	62	4	42	ľ	8
			٠		•				ı									

TIDES OF THE WAVENEY.

TABLE OF VELOCITIES OF THE HEAD AND FOOT OF TIDAL WAVE,

From Yarmouth Pier to Deccles Bridge, and to Lowestoft, at a Spring and Neap Tide.

NEAP TIDE, March 21st, 1850.

Names of Stations.	Dis-	Tidal	Pas	val of		e per
Mames of Statums.	apart.	Range	Foot Head of of Wave Wave		Foot.	Head.
Between	Feet.	Ft. In.	н. м.	H, M.	Feet.	Feet.
Yarmouth Pier and Yarmouth Bridge	13,860	3 3	0 30	0 30	46a	462
Yarmouth Bridge and Burgh Flats	20,988	1 10	1 30	0 30	233	700
Burgh Flats and St. Olave's	26,070	1 2	0 30	1 0	869	434-5
St. Olave's and Burgh St. Peter's	29, 436	0 10	1 30	0 30	327	981.2
Burgh St. Peter's and Beccles	34, 980	0 71	0 30	I 30	116.6	388.7
Yarmouth Pier and Beccles	125,834	B 114	4 80	4 0	464.2	522.8
Yarmouth Pier and Lowestoft	38, 148	4 0		o 30		1271.6

SPRING TIDE, March 29th, 1850.

	Dis-	T	idal	1	iter Pas				e per aute.
Names of Stations.	apart.	Re	ruge		oot of ave	-	ead of ave	Foot	Head.
Between	Feet.	Ft	In.	H.	M.	н.	X.	Feet.	Feet.
Yarmouth Pier and Yarmouth Bridge	13,860	5	9	٥	30	1	٥	462	231
Yarmouth Bridge and Burgh Flats	20,988	3	2	1	30	1	٥	462	349.8
Burgh Flats and St. Olave's	26,070	1	11	1	٥	1	0	434- 5	434-5
St. Olave's and Burgh St. Peter's	29, 436	1	44	1	٥	٥	30	491.6	981. 1
Burgh St. Peter's and Beccles	34, 980	1	얘	1	0	1	٥	583	583
Yarmouth Pier and Beccles	125,834	1	12	5	0	4	30	417.8	464.2
Yarmouth Pier and Lowestoft	38, 148	7	۰	.	•	1	٥		635.8

TIDES OF THE NENE.

TIMES AND HEIGHTS OF HIGH AND LOW WATER, AT SPRING AND NEAP TIDES,

With Sectional Area, Width and Depth at each place.

From observations taken under the direction of J. M. Rendel, Esq., F.R.S.

Datum Cill of the North Level States.

Stations		Spr	ing	Tic	le,	Apr	il 1	7, 10	351 .	Ne	ар	Tide	b, A	pri	24	, 18	51.
	Dis- tances.	H	gh '	Wat	er.	L	ow '	Wat	er.	Hi	gh	Wat	er.	L	₩ T	Wate	er.
April 17th, 1851.		Ti	ne.	He	ight	Ti	me.	He	lght	Ti	me.	Hei	ght	Ti	ne.	Hei	ight
Area. Wdth. Dpth. Sq.Ft. Ft. Ft.	Feet.	H.		Ft.	In.		w. m.	Ft.	In.		M. m.	Ft.	In.		M. m.	Ft.	In.
Horseshoe		8	15	20	۰	5	30	5	3	0	55	13	٥	9	0	5	6
Phillips'Brewery 1563 120×19	} 0,000	8	20	19	6	5	20	8	6	1	5	12	9	9	45	7	7
Waldersea Sluice 1464 112×23	12, 540	8	50	19	1	6	0	11	1	2	10	13	۰		30 m.	9	11
Guyhirn 1432 140×14	} 16, 5∞	9	20	18	9	7	15	13	6	1	55	14	2		10	11	9
Cross Guns 421 57×12	} 17, 16o	10	•	16	9	8	0	14	10	3	15	13	9	1	20	13	3
Dog and Doublet	25,080		_ 5	16	6	9	5	16	5	4	20	15	3	2	20	15	2
Peterborough	27,720		m. 5	16	5	11	0	16	7.	6	20	16	۰	4	20	16	٥
	105,600					ŀ							ì				

INCLINATION OF RIVER SURFACE AT TIMES OF HIGH AND LOW WATER AT WISBEACH.

_		Spri	ng	Tid	le, <i>I</i>	April 1'	7, 1851.	Neap !	Tide, A	pril 24	, 1851.
Stations and Sections of River at Low Water,	Dis- tances.		Height on Gauge.		n'	Inclin	nation file.		tht on uge.	Inclin	
April 17th, 1851.		At H. W		L. Y		At H. W. Fall.	At L. W. Rise.	At H. W.	L. W.	At H. W. Fall.	At L. W. Rise.
Area. Wdth. Dpth., sq.Ft. Ft. Ft.	Feet.	Ft. I	n.	Ft.	In.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
Horseshoe		20 (۰	5	3			13 0	5 6		
Wisbeach Bridge	4,620	19.1	۰	7	1	. 185	2.091	12 10	6 7	. 185	1.234
Phillips'Brewery 469 80× 8	1,980	19	5	8	5	1.120	3 - 547	12 7	7 8	.666	2.880
Waldersea Sluice 709 78×15	12, 540	18	6	11	2	. 387	1. 157	12 O	10 0	. 227 Rise.	.981
Guyhirn	16, 500	17	۰	14	3	.480	.985	12 11	12 11	.281	-934
Cross Guns	37, 160	16	11	15	۰	. 270 Rise.	.230	13 2	13 2	.077	.077
Dog and Doublet	25,080	16	3	16	3	.025	.263	15 I	15 1	.400	.400
Peterborough 500 60 × 9	27,720	16	7	16	7	. 063	.063	15 6	15 6	.080	.080
Average	105,600	<u> </u>				.171	.566			.125	.500

lxxxviii

REMARKS ON THE USE OF THE TABLES.

TIDES OF THE HUMBER,

AT GREAT GRIMSBY.

TABLE SHEWING THE RISE AND FALL OF A SPRING & NEAP TIDE,

Together with the Tidal Range, and Semi-diurnal Inequality for three successive days of Spring and Neap Tides.

Datum Line 4 feet above Cill of 70 feet Lock.

!										
8	PB	IN	G !	TIDE	8.		NE	AP 1	IDE	3.
Oct. 5, 18	346 .	Semi-	7	ality.	in.	Oct. 14	1 84 6.	Semi- liurnal	in- equality	17. fng.
Time. H	ght		diurnal	equality	# = # #	Time.	Hght	Semi- diurnal	1 B	e:0 a=
H. M. H a.m. ft. 5 0 24	i. w. . ins.		Tidal Kange.	p.m.	7, 10g. 7, 11g. 7, 11g. 1	H. M. S.M. 7 O	L. W. ft. ins. 6 6	Tidal Bange.	P.H.	7. ing. 50 5 6 11
5 30 24 6 0 23 6 30 21	٠ ،		Tidal	E.B.	4224 2740	7 30 8 0 8 30	6 9 7 3 8 0	Tidal	A.B.	ft. fna. 9 10 9 4 9 3
7 0 20 7 30 18	3 6		Water.	Height on Gauge.	유업업업 및 4 / -	9 0 9 30	8 9 9 8	Water	Reight on Gauge.	ft. ins. 18 3 Water. 8 11
8 0 16 8 30 13 9 0 11	3 9	E.	High .	Time.	E. E. 5 op.m. 5 45 6 20	10 0 10 30 11 0	10 8 12 0 13 0	E. High		H. K. 11 30p.m. Low 6 40 6 30
9 30 8	1	BANG	Water	Height on Gauge.	F 12.0	11 30 12 0 p.m. 0 30	13 10 14 8 15 4	BANG.	Beight on Gauge.	ft. fns. 7 10 Water. 15 10 16 7
1130	3 3	IDAL	MOT	Time.	н. ж. 11 108.m. о 15р.m. о 30	1 30	15 9 H. W. 15 10	IDAL		5 00 m. High 1 30
p.m. 1	1 4 L. W. 1 3 2 6	H	Water.	Height on Gange.	# # # # # # # # # # # # # # # # # # #	2 0 2 30 3 0	15 9 15 5 14 10	T	Height on Gauge.	ft. ins. 77 8 7 8 6 6
2 0	4 3 6 3		High	Time.	я. 5 ов. 5 о	3 30 4 0 4 30	14 3 13 3 12 3	di de		H. K. 11 15a.m. Low 5 30
3 0 1	2 2	Moone	10 at	noon.	days. 14 15 16	5 0 5 30	11 I 10 4	Moon's	age at noon.	daye. 23 24 25
4 0 r 4 30 r 5 0 2 5 30 2 5 45	9 8 1 6 2 4 H. W.		Date.	1846.	October 4th	6 0 6 30 6 40	9 6 9 0 1. W. 8 11	-	1846.	September 13th October 14th November 12th

lxxxix

REMARKS ON THE USE OF THE TABLES.

TIDES OF THE TAY.

RESULTS OF TIDAL OBSERVATIONS,

Made at various times between 1833 and 1844, by Mesars. Stavenson of Edinburgh, shewing the results of the improvements in the river, by dredging, &c.

	1833 & 1834. 1842, and 1					Impr	ovemnt.
Stations.	Distance.	Diff.	Tidal Wave	Diff. of H. W.	Vel. of Tidal Wave per Min.	Time.	Velocity per Minute.
Between	Feet.	Mins	Feet.	Mins.	Feet.	Mins.	Feet.
Dundee and Balmerino	26, 400	16	1,650	ר	•	•	ı
Balmerino and Flisk Point	15,470		533-4	sam	e as in t	he yes	rs 1888
Flisk Point and Balmbreich	10,771	20 26	414.3	ſ	and		
Balmbreich and Newburgh	18, 058	53	340.7	J			
Newburgh (a) and Perth (b)	45, 197	150	301. 3	100	452	50	150.7
Dundee and Perth	115,896	274	422.9	224	517.4	50	94.5
Newburgh (a) and Carpon Carpon and Kinfauns Kinfauns and Perth (b)	7, 022 25, 925 12, 250	Κ obs	ot erved 1834	25 55 20	281. 462. 3 612. 5		

LEVELS OF HIGH WATER SURFACE.

The levels of the surface of high water, at different stations, have been found to be unchanged, and the following results refer to the years 1833 and 1844.

,	Dis-	Sp: 183	ring T 3 & 1	ide, 844.	N 188	eap T	ide, 1844.
Stations.	tances.	Rise.	Fall.	Rate per Mile.	Rise.	Fall.	Rate per Mile.
Between	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
Flisk Point and Balmbreich	10,771		. 42	.206		21	. 103
Balmbreich and Newburgh	18,058	. 62		.181	.50		. 145
Newburgh and Perth	45, 197	1.00	••	.117	1.00		. 117

LEVELS OF LOW WATER SURFACE.

	Dis-		7 Tide, 33.		g Tide. 44.
Stations.	tances.	Rise.	Rate per Mile.	Rise.	Rate per Mile.
Between	Feet.	Feet.	Feet.	Feet.	Feet.
Flisk Point and Balmbreich	10,771	•33	. 161	- 33	. 161
Balmbreich and Newburgh	18,058	2.66	1.304	2.66	1. 304
Newburgh and Perth	45, 197	4.00	-467	2.00	. 233

Note.—The result of the observations in 1844, gives a depression on the level of low water mark of 2 feet, at Perth tidal harbour, the point to which Perth observations refer.

TIDES OF THE TYNE,

TABLE OF THE RISE AND FALL OF THE TIDE,

At various points, taken simultaneously from the mouth of the river to Newburn, under the direction of J. M. Rendel, Esq., F.R.S.

ļ

Zere is the mark at Prior's Stone, being Low Water of May 31st, 1818.

SPRING TIDE, May 8th, 1850.

	Time.	Prior's	Ballast Office.	How- don.	BfII Point.	Old Quay.	Els- wick.	Stella.	New- burn.
H	. ¥.	Ft. Ins		Ft. Ins.	Ft. Ins	Ft. Ins.	Ft. Ins.	Ft. Ins	Ft. Ins.
10	30 a.m.	O IOLW	10 45 a.m.	11 15	l		i .	1	Į.
11	0 "	1 2	1 5	I TOLW	l	ł	l		
11	30 "	2 2	2 0	1 11	12 15 p.m			1	ŀ
12	ο"	3 2	3 3 .	2 11	3 2 LW		ļ	1	İ
0	30 p.m.	4 6	46'	4 2	3 5	3 4LW	Ì		ŀ
1	Ο"	6 2	6 2	5 6	4 4	3 11	145.	l	
1	30 "	8 0	7 9	7 1	5 6	4 11	5 4LW	1	ł
.2	О"	9 10	96	8 9	7 3	6 4	5 8	ł	1
2	30 "	71 2	10 10	10 3	9 0	8 1	6 10	3 15	
3	0 "	12 2	12 0	11 6	10 7	9 7	8 0	8 of LW	1
3	30 "	12 9	12 8	12 5	11 9	10 11	9, 6	8 2	}
4	0 "	13 2	13 2	13 0	12 8	12 0	10 10	9 01	
. 4	30 "	13 2	13 0	13 4HW	13 12	12 9	12 0	10 11	II ILW
5	0 "	12 8	12 10	13 0	13 3HW 12 0	! -	12 10	11 5	12 3
6	30 "	11 10	12. 3	12 2 <u>2</u> 11 1	12 9	13 2	13 4± 13 2	•	
6	30 _	10 11	11 3	10 24	11 5	12 0		13 7 1 12 10	13 9 13 0
7	^ "	98	9 0	96	10 6	11 2		12 1	12 3
,	90 "	6 4	7 6	8 3	9 6	10 3	-	11 5	11 9
8	^ "	4 10	6 0	7 0	8 5	9 4		10 9	11 3
8	30	3 7	4 8	5 10	7 6	8 6	9 6	10 2	11 1
9	0 ,	2 7	3 7	4 9	6 84	7 8	8 11	9 9	11 0
9	30 ,	r 8	2 7	3 10	6 0	7 0	8 3	9 3	_
10	0 ,	1 · 1	19	30	5 3	6 3	79	8 11	
10	30 "	0 IILW	15	2 5	4 9	5 78	7 5	8 8	1
11	0 "	••	I 2LW	1 11	4 3	50	70	8 6	
11	30 "	••		1 orm	3 9	46	67	8 4	
12	0 "	••	••		3 5	4 0	6 3	8 3	
0	30 a.m.	••			3 2LW	3 7	5 11	8 2	
1	0,	••	••	••	••	3 5LW	5 71	8 1	
1	30 "	••			••	••	5 5	8 r	
1	50 "	<u></u>	••	<u></u>	••	••	5 44EW	8 OFTM	
4	15 ,		13 3HW						
5	15 ,	••		}		13 4EW		1	
5	45 "			•••	••			13 9HW	13 IOHW

TIDES OF THE TYNE.

TABLE OF THE RISE AND FALL OF THE TIDE,

At various points, taken simultaneously from the mouth of the river to Newburn, under the direction of J. M. Bendel, Esq., F.B.S.

Zero is the mark at Prior's Stone, being Low Water of May 31st, 1818.

NEAP TIDE, April 2nd, 1849.

7	Cime.	Prior's Stone.	Ballast Office.	How- don.	Bill Point.	Old Quay.	Els- wick.	Stella.	New- burn.
H.	м. 45 а.т.				Ft. Ins	Ft. Ins.	Ft. Ins.	Ft. Ins	Ft. Ins.
5	^	1 .	4 °	4 5			ĺ	ĺ	
5	20 "	,		4 3 4 0 LW		1]	j	1
6	^ "	-	3 111	4 0gLW	4 81	1]	Ì	l
6	20 "	4 6	4 7	4 64	4 9	ļ		1]
7	0 "	5 0	5 4	5 I	5 I	S ILLW	1	1	1
7	30 .	5 9	6 0	5 84	5 6	5 3	ì	i	1
8	0 ",	6 8	7 0	6 74	6 2	6 0	7 ALW		I
8	30 "	7 7	7 10	7 6	7 1	6 11	7 3		1
9	0 "	8 6	8 10	8 (4	8 0	7 84	7 8	1	l
9	30 "		9 8	9 3	9 0	8 7	8 54	9 45 9 9LW	1
10	ο "		10 4	10 2	0 10	9.4	9 2	9 10	
10	30 "	11 2 HW	10 10	10 83	10 7	10 3	9 11	10 4	11 14
11	0 "		II 2HW	11 Pg	11 2	10 11	10 8	11 0	12 7
11	30 "		11 2	11 SHW	11 6	11 5	11 4	11 7	12 7
12	0 "	••	11 0	11 2 <u>}</u>	11 8}##W	11 7	11 10	12 0	12 10
0	30 p.m.		10 7	10 10	11 7	11 8	II IOHW	12 I	12 11HW
ı	0 "	••	10 0	10 4	11 0	11 2	11 7	11 10}	12 10
1	30 "	••	9 2	96	10 4	10 7	11 1	11 7	12 9
2	ο "	••	8 3	8 8	9 7	10 0	10 7	11 3	12 8
2	30 "	••	7 4	7 10	8 10	9 31	10 I	10 11	12 62
3	۰,,	••	6 6	6 114	8 2	8 71	97	10 7	12 5
3	30 "	4 11	5 6	6 I	7 6	8 0	9 I	10 31	12 4
4	۰,	4 2	4 10	5 4	6 10	7 5	8 8	10 0	12 3
4	30 "	3 6	3 10	4 8	6 3	6 11	8 31	9 10}	12 2}
5	0 "	2 11	3 5	4 1	5 9	6 4	7 11	9 82	
5	30 "	2 8LW	3 0	3 72	5 3	5 9	7 7	9 71	
6	0 "	••	2 IILW	3 31	4 10	5 5	7 31	9 61	
6	30 "	••		3 2LW	4 4	5 0	7 1	9 54	
7	0 "	••			7	4 71	6 11	9 5LW	
7	30 "	••	••		••	4 4 4 2LW	. '		
8 8	0 , 30 .	:		::		4 2LW	6 7 6 6LW	ļ	
12	15 p.m.	••			••	11 8∯HW		12 1 <u>3</u> HW	
7	45 " 15 "	••	:	::		••			12 2LW

TIDES OF THE TYNE.

VELOCITIES OF THE HEAD AND FOOT OF A TIDAL WAVE,

At a Spring and Neap Tide, from the mouth of the river to Newburn.

From observations taken under the direction of J. M. Rendel, Esq., F.R.S.

SPRING TIDE, May 8th, 1850, one day after Full Meon.

Yours of Shatisms	Dis-	T	idal	Pas	val of lage	Aut	e per aute.
Names of Stations.	tances.	Ra	nge.	Foot of Wave	Head of Wave	Foot.	Head.
Between	Feet.	Ft	. In.	Mins.	Mins.	Ft.	Ft.
Tynemouth Haven and Prior's Stone	2,640	12	7 T H		15		176.0
Prior's Stone and Ballast Office	3,894	12	4P8	15	15	259.6	259.6
Ballast Office and Howdon	13,200	12	∘ B 0	30	15	440.0	88 0. 0
Howdon and Bill Point	20,064	11	6 H	60	25	334-4	802.6
Bill Point and Old Quay	15,576	10	:BP	30	20	519.2	778.8
Old Quay and Elswick	,	10	•0 Q	6 0	15	213.4	853.6
Elswick and Stella	18,942	8	oł E	90		210.5	••
Stella and Newburn	7, 524	5	8 #8 t.	75	15	1∞.3	501.6
Tynemouth and Newburn	94,644	2	9 N	360	120	262.9	788.7

NEAP TIDE, April 2nd, 1849.

	Dis-	T	idal		val of lage r	18A	e per aute.
Names of Stations.	tances,	Ra	nge.	of	Head of Wave	Foot.	Head.
Between	Feet.	Ft	In.	Mins.	Mins.	Ft.	Ft.
Tynemouth Haven and Prior's Stone	2,640	7	6TH	15	15	176.0	176.0
Prior's Stone and Ballast Office	3,894	7	6 P 8	15	15	259.6	259.6
Ballast Office and Howdon	13,200	7	3 B 0	30	30	440.0	440.0
Howdon and Bill Point	20,064	7	4è H	40	30	501.5	668.8
Bill Point and Old Quay	15, 576	7	∘B P	30	15	519.2	1038.4
Old Quay and Elswick	12,804	6	70 Q	80	••	160.5	••
Elswick and Stella	18,942	4	8 E	90		210. 5	••
Stella and Newburn	7,524	2	4 St.	90	15	83.6	501.6
Tynemouth and Newburn	94,644	0	8èN	390	120	242.7	788.7

TIDES OF THE TYNE.

INCLINATION OF WATER SURFACE

At the times of High and Low Water, at Tynemouth Haven and at Newburn, with Fall of River Bed, Sectional Area, &c.

Zero is the Mark at Prior's Stone, being Low Water of May 31st, 1813.

SPRING TIDE, May 8th, 1850.

When High and Low Water at Tynemouth	Dis-		ht on ige.	Aver Inclina per l	ation	at Hig	ea, &c. gh Wa	ter.
Haven.	tances.	At H. W.	At L. W.	At H.W. Fall.	At L.W. Rise.	Area.	Great- est Wdth.	est
	Feet.	Ft, In.	Ft. In.	Feet.	Feet.	Sq. Ft.	Feet.	Feet.
Tynemouth Haven		13 4	0 8	, i	\ \			ļ
Prior's Stone	2,640	13 2	0 11	-333	.500	1 1	Į į	ļ
Ballast Office	3,894	13 2	1 5		.686	1		1
Howdon	13, 200	13 0	2 5	.064	.400	24, 500	1, 550	25
Bill Point	20,064	12 8	4 9	.087	.613	10,770	750	25
Old Quay	15, 576	12 0	5 74	.230	.295	6, 935	363	22
Mansion House	1, 386	11 11	5 11	.316	1.115	7,000	560	13
Elswick	11,418	10 10	7 5	.5∞	.696	6, 270	660	13
Stella	18, 942	9 ⊶}	8 8	. 500 Rise.	- 349	1,800	300	13
Newburn	7, 524	11 1	11 0	1.436	1.670	1,300	320	5
Average	94,644	1	۱ ٔ	·	.579	1	1	ļ
			o Stella	. 259		l	1	
		Height on Gauge.			<u> </u>			
When High	Dis-			Aver	rage nation Mile.	4	rea, &c	
•	Dis- tances.	Ga	age.	Aver	nation Mile.	at Lo	Great-	
and Low Water		Ga	At L. W.	Aver Inclin per l At H.W. Fall.	ation Mile.	at Lo	Great-	Great-
and Low Water at Newburn. Newburn	tances.	At H. W.	At L. W.	Aver Inclin per l At H.W. Fall.	At L.W. Rise.	at Lo	Great- est Wdth	Greatest Dpth.
and Low Water at Newburn. Newburn	Feet.	At H. W. Ft. In. 13 9 13 72	At L. W. Ft. In.	Aver Inclin per l AtH.W. Fall. Feet. 	At L.W. Rise.	Area. Sq. Ft. 100 360	Greatest Wdth.	Greatest Dpth.
and Low Water at Newburn. Newburn Stella	Feet	At H. W. Ft. In. 13 9 13 72 13 2	At L. W. Ft. In.	Aver Inclin per l At H.W. Fall.	At L.W. Rise. Feet. 	Area. 8q. Ft. 100 360 600	Greatest Wdth. Feet.	Greatest Dpth. Feet.
and Low Water at Newburn. Newburn Stella Elswick Mansion House	Feet	At H. W. Ft. In. 13 9 13 72 13 2 12 11	At L. W. Ft. In. 11 01 9 9 8 11 7 11	Average Inclination per la Ath.W. Fall. Feet084 .128 .115	At L.W. Rise. Feet	Area. Sq. Ft. 100 360 600 1,000	Greatest Wdth. Feet. 200 150 300 530	Greatest Dpth. Feet. 2.25 7.33 5.0 3.25
and Low Water at Newburn. Newburn Stella Elswick Mansion House Old Quay	Feet 7, 524 . 18, 942 . 11, 418 . 1, 386	Ga: At H. W. Ft. In. 13 9 13 72 13 2 12 11 12 9	At L. W. Ft. In. 11 01 9 9 8 11 7 11 7 8	Aver Inclin per l At H.W. Fall. Feet	At L.W. Rise. Feet	Area. Sq. Ft. 100 360 600 1,000 2,770	Great- est Wdth. Feet. 200 150 300 530 363	Greatest Dpth. Feet. 2.25 7.33 5.0 3.25 II.0
nd Low Water at Newburn. Newburn Stella Elswick Mansion House Old Quay Bill Point	Feet. 	Ga: At H. W. Ft. In. 13 9 13 72 13 2 12 11 12 9 12 2	At L. W. Ft. In. 11 04 9 9 8 11 7 11 7 8 6 84	Avei Inclin per I At H.W. Fall. Feet. .084 .115 .615 .196	At L.W. Rise. Feet	Area. 8q. Ft. 100 360 600 1,000 2,770 2,874	Great- est Wdth. Feet. 200 150 300 530 363 400	Greatest Dpth. Feet. 2.25 7.33 5.0 3.25 II.0
nd Low Water at Newburn. Newburn Stella Elswick Mansion House Old Quay Bill Point Howdon	Feet 7, 524 . 18, 942 . 11, 418 . 1, 386 . 15, 576 . 20, 064	Ga: At H. W. Ft. In. 13 9 13 72 13 2 12 11 12 9 12 2 11 1	At L. W. Ft. In. 11 01 9 9 8 11 7 11 7 8	Aver Inclin per l At H.W. Fall. Feet	At L.W. Rise. Feet	Area. Sq. Ft. 100 360 600 1,000 2,770	Great- est Wdth. Feet. 200 150 300 530 363	Greatest Dpth. Feet. 2.25 7.33 5.0 3.25 II.0
nd Low Water at Newburn. Newburn Stella Elswick Mansion House Old Quay Bill Point	Feet. 	Ga: At H. W. Ft. In. 13 9 13 72 13 2 12 11 12 9 12 2 11 1	At L. W. Ft. In. 11 04 9 9 8 11 7 11 7 8 6 84	Aver Incline per I At H. W. Fall. Feet	At L.W. Rise. Feet	Area. 8q. Ft. 100 360 600 1,000 2,770 2,874	Great- est Wdth. Feet. 200 150 300 530 363 400	Greatest Dpth. Feet. 2.25 7.33 5.0 3.25 II.0
and Low Water at Newburn. Newburn Stella Elswick Mansion House Old Quay Bill Point Howdon Ballast Office	Feet 7,524 .18,942 .11,418 .1,386 .15,576 .20,064 .13,200 .3,894	Ga: At H. W. Ft. In. 13 9 13 72 13 2 12 11 12 9 12 2 11 1 11 3	At L. W. Ft. In. 11 02 9 9 8 11 7 11 7 8 6 82 4 9	Avei Inclin per I At H.W. Fall. Feet. .084 .115 .615 .196 .284 Rise.	Rise. At L.W. Rise. Feet	Area. 8q. Ft. 100 360 600 1,000 2,770 2,874	Great- est Wdth. Feet. 200 150 300 530 363 400	Greatest Dpth. Feet. 2.25 7.33 5.0 3.25 II.0
and Low Water at Newburn. Newburn Stella Elswick Mansion House Old Quay Bill Point Howdon Ballast Office	Feet 7,524 .18,942 .11,418 .1,386 .15,576 .20,064 .13,200 .3,894	Ga: At H. W. Ft. In. 13 9 13 7 13 2 12 11 12 9 12 2 11 1 11 3 10 11	At L. W. Ft. In. 11 of 8 11 7 8 6 84 4 9 3 7	Avei Inclin per l At H. W. Fall. .084 .118 .615 .196 .284 Rise. .004 Fall.	Rise. At L.W. Rise. Feet905 .232 .463 .961 .326 .516	Area. 8q. Ft. 100 360 600 1,000 2,770 2,874	Great- est Wdth. Feet. 200 150 300 530 363 400	Greatest Dpth. Feet. 2.25 7.33 5.0 3.25 II.0

TIDES OF THE CLYDE,

TABLE OF TIDAL OBSERVATIONS.

Taken simultaneously between Port Glasgow and Glasgow, in 1840; shewing also the acceleration in the time of high water.

Datum, 20 feet below coping of South Quay Wall, near Glasgow Bridge.

SPRING TIDE, 20th March, 1840.					NEAP TIDI	2, 27th 1	March	, 1840.
Time	Port Glagow	Bowl- ing.	Clyde Bank.	Glagow	Stations. Hi	gh Low V. W.	Range.	Remarks
H. M. 8 0 9 0 10 0 11 0 12 0 0 2 0 3 10 4 10 5 10 7 10 8 10 9 10	Ft. In. 1 8 3 9 5 0 6 9 8 8 10 3 10 1 7 11 5 4 3 4 1 4 0 2 1	Ft. In. 2 10 4 3 5 4 6 11 9 2 10 10 9 5 8 1 6 10 5 7 4 2 2 11	Ft. In. 3 8 4 9 6 1½ 7 10 10 0½ 10 7 9 4 8 0 6 8½ 5 7 4 5⅓ 3 4	Ft. In. 3 OLW 4 8 6 0 7 9 9 10 11 1 14 8 3 7 0 5 10 14 9 3 9	Pt. Glasgow 7 Bowling 7 Clyde Bank 7 Glasgow 7 High Wai 24th F Port Glasgow R Bowling 1 Bowling Note.—High Wai than 1 Note.—In 1824, later than at	ter of S December, resh Wir t. In. Cly is o Gls ter at Gl at Port G H. W. a	5 3 5 3 5 4 pring 1839, ad, We de Ban asgow asgow at Glassgow tt Glassgow.	H. W. at Glasgow 6" higher than Fort Glasgow. L. W. at Glasgow. Tide, St. Ft. In. K
7 10 8 38 9 30 P.M. 1 25 2 5 2 50	0 2%LW 10 5}HW	2 4LW	3 ILW		Acceleration of Interest of In	Flood an	d Ebb	Streams, RatepM. Fld. Ebb. Fest Feet. 18.5 78.8

VELOCITIES OF THE HEAD AND FOOT OF A TIDAL WAVE, Between Port Glasgow and Glasgow.

SPRING TIDE, 20th, March, 1840.

STATIONS.	Dis-	Tidal	Interval of Passage Minute.			Width of River	
STATIONS.	Apart.	Range	Foot of Wave.	Head of Wave.	Foot.	in 1846.	
Between Port Glasgow and Bowling		Ft. In. 10 22PtG	Mins. 88	Mins.	Feet. 491. 2	Feet. 1080. 7	Feet.
Bowling and Clyde Bank	26, 290	8 6B	52	45	505.6	584.2	250 CB
Clyde Bank and Glasgow	28, 820	7 9CB	30	20	960. 6	1,441	420 G
Port Glasgow & Glasgow	98,340	8 14 G	170	105	578.5	936.6	İ

TIDES OF THE CLYDE

INCLINATION OF WATER SURFACE,

At the times of High and Low Water at Port Glasgow and Glasgow, at the Spring
Tide of March 20th, 1840.

Datum 20 feet below Coping of South Quay Wall.

WHEN HIGH WATER AT PORT GLASGOW - 1.25 p.m.
AND LOW WATER ,, ,, - 7.20 ,,

	Dis-	Height o	n Gauge.	Inclin. per Mile.		
STATIONS.	tances.	or 25 minutes	At 7.10 pcm. or 10 minutes before L. W	or 25 minutes	or 10 minutes	
Port Glasgow Bowling Ciyde Bank Glasgow Average	Feet. 43,230 26,290 28,820 98,340	Ft. In. 10. 3½ 9. 2½ 7.10 7. 9	Ft. In. o 2½ 4 2 5 7 5 10½	Feet. 0. 132 0. 279 0. 014 0.136	Feet. 0.483 0.285 0.053	

WHEN HIGH WATER AT GLASGOW - - - - 3.10 p.m. - AND LOW WATER ", ", - - - - - 10, 0 a.m.

STATIONS:	Dis-			Inclin. per Mile.		
BIAILUNBY	tances.	At High Water. FALL.	At Low Water. RISE.	At High Water. FALL.	At Low Water. Rise.	
Glasgow Clyde Bank Bowling Port Glasgow Average	Feet. 28,820 26,290 43,230 98,340	Ft. In. 11 12 10 7 9 5 7 11	Ft. In. 3 0 3 8 4 3 5 0	Feet. 0.099 0.233 0.183	Feet. 0. 122 0. 116 0. 092 0.107	

SECTIONAL AREAS.

	At :	High W	ater.	At :	At Low Water.		
Spring Tide, March 20th, 1840.	Area.	Greatest Width.	Greatest Depth	Area.	Greatest Width.	Greatest Depth.	
GlasgowClyde Bank	Sq. Feet.	Feet.	Ft. Ins.	Sq. Feet.	Feet.	Ft. Ins.	
	3, 148	198	18. 3	1, 549	191	10 0	
	4, co5	273	17.0	1, 911	245	9.0	
Weap Tide, March 27th, 1840.	2, 524	195	15. 7	I, 494	191	10.3	
Glasgow	3, 186	255	14.6	I, 840	245	9.3	

TIDES OF THE CLYDE.

MEAN TIDAL RANGE AND DURATION OF FLOOD AND EBB STREAMS,

For six Spring and six Neap Tides, from observations by W. Bald, Esq.

Spring Tides.		sgow.	Clyde Bank.		Bowling.		Port Glasgow.	
Tidal Range	8 H. 5	4 M. 10	Ft. 8 H. 5	Ins. o M. 15	Ft. 8 H. 5	Ins. 9 M. 24	Ft. 10 H. 6	Ins, 5 M. 6
Neap Tides.	7 Ft. 6	3	Ft.	Ins.	Ft.	Ins.	FL 6	Ins.
Duration of Flood	H. 5	M. 14 16	н. 5 7	ж. 43 1	н. 5 6	ж. 52 37	н. 6 5	ж. 26 59

MEAN VELOCITIES OF FLOOD AND EBB STREAMS.

Station opposite.	Distance below Glas- gow Bridge.	Velocity of Flood per Minute.	Velocity of Ebb per Minute.
Dumbarton Castle	Feet. 72,000	Feet. 58.75	Feet. 144-53
Dunglass Castle	59, 500	92, 73	145.71
Donald's Quay	52,000	114.43	147.13
Rushalee Pier	45,000	54-53	120.00
Centre of Newshot Isle	39,000	70.00	150.00
Average below Newshot Isle		78.10	141.48
1,000 yards below mouth of the Cart	31,000	6 0.00	100.00
Scotstoun House	24,000	26.66	85.70
200 yards below Crawford's Quay	15,000	50.00	75.00
600 yards above the mouth of the Kelvin	9, 500	17.63	54-53
Average above Newshot Isle		38.56	78.80

During high floods, immediately below Glasgow Bridge, Mr. Bald found the Ebb Stream run at the rate of 256.6 feet per minute; and in the narrow parts of the river, at the rate of 321.4 feet per minute. This was at the water's surface, in the middle of the river.

TIDES OF THE MERSEY.

TABLE OF THE RISE AND FALL OF THE TIDE

At various points, taken simultaneously from the mouth of the river at Formby Point to the head of the tide at Warrington; from Mr. Rendel's experiments in the summer of 1844. Datum line 6 feet below Old Dock Cill, or 10.75 feet below the Ordnance half-fide datum.

SPRING TIDES, June 3rd, 1844.

		IMIMO	1111	o, sunc	91u, 105	17.	
TIME.	Formby Point.	New Brighton	Livrpool.	Elles- mere Port.	Duke's Dock, Runcorn.		rington Bridge.
Distance.		42,240 ft.	10,560 ft.	47,520 ft.	35,200 ft.	28,160 ft.	27,400 ft.
н. м.	Ft. In.	Ft. In.	Ft. In.	Ft. In.	Ft. In.	Ft. In.	Ft. In,
7 0 s.m.	— 3 10				ł		
7 30 "	-29	-4 2	-4 5				
80,	— 0 10	- 3 2	— 3 S]	
8 30 ,,	1 10	- o 8	- o 10			i l	
90,	5 6	3 6	2 10	-			
9 30 "	99	8 2	76				
10 0 "	14 0	12 7	11 9	6 4			
10 30 "	17 6	16 5	15 1g	10 7			
11 0 "	20 4	19 2	18 o	15 0	10 7		
11 30 "	22 2	21 5	20 6	18 3	16 9		
12 0 "	23 3	22 8	22 2	21 2	20 8		
0 30р.т.	23 4	23 0	23 4	23 5	23 1	17 6	
10,	22 6	22 8	23 7	24 7	24 11	22 6	18 I
1 30 "	21 2	21 4	22 7	24 2	25 4	24 9	18 3
2 0 "	19 4	19 6	20 7	22. 9	24 I	25 2	23 0
2 30 "	16 11	16 8	17 7	20 11	22 3	24 0	25 9
30,	14 0	13 9	14 7	18 3	20 0	22 6	23 10
3 30 "	10 11	11 0	11 10	15 9	18 3	21 8	22 8
4 0 "	8 2	8 4	9 4	13 4	16 3	20 8	21 10
4 30 "	5 4	5 10	6 10	10 7	14 5	19 10	21 1
50,	2 9	3 8	4 4	8 6	13 1	19 4	20 8
5 30 "	0 9	1 7	2 0	7 2	12 3	18 10	20 2
60 "	- o 10	0 0	0 4	6 7LW	11 6	18 7	19 9
6 30 "	- 2 0	- 1 5	- 1 3		10 11	18 2	19 6
70,	- 2 7	- 2 4	- 2 8		10 7	17 10	19 3
7 30 "		-36	-36		10 4	17 6	19 O
1	1	1	I	<u>ا </u>	1	'	'

TIDES OF THE MERSEY.

TABLE OF THE RISE AND FALL OF THE TIDE

At various points, taken simultaneously from the mouth of the river at Formby Point to the head of the tide at Warrington; from Mr. Rendel's experiments in the summer of 1844. Datum line 6 feet below Old Dock Cill, or 10.75 feet below the Ordnance half-tide datum.

NEAP TIDES, June 10th, 1844.

				,			
TIME.		Brighton	Prince's Dock, Livrpool.		Duke's Dock, Runcorn.	Fiddlers' Ferry.	War- rington Bridge.
Distance.		42,240 ft.	10,560 ft.	47,520 ft.	35,200 ft.	28,160 ft.	27,400 ft.
н. м. 1 30р.m.	Ft. In. 3 3	Ft. In.	Ft. In. 2 9	Ft. In.	Ft. In.	Ft. In.	Ft. In.
20,	4 0	3 1	3 1	2 3			
2 30 "	5 2	4 0	4 I	3 0			
30,	6 8	5 5	5 - 5	4 2			
3 30 "	8 4	7 3	7 3	*5 9			
4 0 "	10 2	9 4	9 3	7 2			
4 30 "	12 3	11 6	11 4	97	8 8		
50,	14 3	13 6	I3 4	11 10	89.		}
5 30 "	15 6	15 2	15 0	13 8	10 10		
60,	16 10	16 3	16 3	15 5	13 6		
6 30 "	17 7	17 2	17 4	16 7	15 10		
70,	17 9	17 7	18 0	17 7	17 4	16 1	
7 30 "	17 7	17 7	18 o	18 4 18 7 H.W.	18 5	16 2	İ
80,	16 11	16 10	17 6	18 3	19 0	16 10	
8 30 "	15 9	15 11	16 4	17 5	18 6	18 3	18 1
90,	14 9	14 4	15 I	16 2	17 5	18 10	18 1
9 30 "	13 2	12 9	13 6	14 4	16 4	18 2	18 5
10 0 "	12 3	11 0	11 6	12 8	15 2	17 9	18 9
10 30 "	99	9 5	10 0	10 9	13 10	17 4	18 8
11 0 "	8 3	7 11	8 5	9 1	12 9	17 1	18 6
1130 "	6 3	6 4	6 11	7 9	12 0	16 10	18 5
12 0 "	5 4	5 0	5 6	6 8	11 3	16 8	18 4
0 30a.m.	4 4	3 10	4 3	*4 6	10 9	16 7	18 2
10,	3 7	2 10	3 4	3 0	10 3	16 4	18 14
130 "	3 ILW	2 6LW	2 9LW	2 0	9 4	16 3	18 12

^{*} Below these points the Eilesmere tide is taken at Pool Hall Deep, about a mile below where there is a full range at Neap Tides.

TIDES OF THE MERSEY.

TABLE OF VELOCITIES OF THE HEAD AND FOOT OF TIDAL WAVE,

From the mouth to the head of the Tide at Warrington, at a Spring and Neap Tide.

Section of River from Prince's Dock to Seacombe.

Area. Sq. Ft.		Width. :	Depth . Ft.	Area. Sq. Ft.		Width. Ft.	Depth. Ft.
L.W.S.T114,548	•••	8,214 ×	50	H.W.N.T182,771	•••	8,544	× 70
L.W.N.T138,415	•••	8,300 x	57	H.W.S.T208,579	•••	8,544	× 77

SPRING TIDE, June 3rd, 1844.

Wannan of Ghabiana	Dis-	Tidal	Dos	val of		Rate per Minute of Tidal Wave.				
Names of Stations.	apart.	Rnge	of	Head of Wave	Foot of Wave.	Head of Wave.	Flood Stream			
Between	Feet.	Feet.	Min.	Min.	Feet.	Feet.	Feet.			
Formby Point and New Brighton	42, 240	27.5	50	20	845	2, 112				
New Brighton and Princes Dock	10,560	27.2	6	10	1,760	1,056	401.4			
Princes Dock and Ellesmere	47,520	28.0	140	20	340	2, 376	336.6			
Ellesmere and Runcorn	35,200	18.3	50	14	704	2, 514				
Rancorn and Fiddler's Ferry	28, 160	14.9	85	26	331	1,084				
Fiddler's Ferry and Warrington	27,400	7.8	66	40	415	685	,			
Formby Point and Warrington	191,080	7.8	397	130	481	1,470				

NEAP TIDE, June 10th, 1844.

	Dis-	Tidal	Page	val of		per M lidal W	
Hames of Stations.	apart.	Rnge	Foot of Wave	Head of Wave	Foot of Wave.	Head of Wave.	Flood Stream
Between	Feet.	Feet.	Min.	Min.	Feet.	Feet.	Feet.
Formby Point and New Brighton	42, 240	14.5	••	20		2, 112	
New Brighton and Princes Dock	10, 560	15.1	25	20	422	528	
Princes Dock and Ellesmere	47, 520	15.3		35		1, 358	
Ellesmere and Runcorn	35, 200	16.8	190	15	185	2, 347	
Runcorn and Fiddler's Ferry	28, 160	10.4	150	54	188	525	
Fiddler's Ferry and Warrington	27,400	1.8	95	46	288	595	
Formby Point and Warrington	191,080	0.8	460	190	415	1,006	

TIDES OF THE DEE.

TABLE OF PHENOMENA BETWEEN GREENFIELD AND CHESTER, Taken from Minutes of Admira'ty inquiry at Chester, in 1849.

The zero of heights is L.W.S.T. opposite Greenfield, or 22.75 below zero of Chester standard, being about 13.5 teet below mean half-tide level at Liverpool.

FORCED	GPRIMA	TIDE
	BIMIMU	1100,
With	Westerly Gale	•
77001	TADV #h	1040

SUMMER LOW WATER.

F	EBRU	ARY	6th,	1849).			l								
Time.	Flint.	Con- nah's Quay	. S	andy roft.	СР	est	8 1	Stations.				Len	gth	Fall per Mile.		
н. м.	Ft. In.		n.Ft	. In.	Ft	. 1	n.	Bet	tween					Fee	et.	Feet.
9 Oa.m.	9 9LW	1	1					Green	ifield	and	Pe	ntre	Rocl	30,0	95	1.84
9 15 ,	13 0		-		1			Pentr	e Ro	ck ar	ıd (Con.	Quay	15, 5	75	I. 42
9 30 "	15 10	l	1		1		ı	Con. (Quay	and	Sa	ndy	Crof	17, 1	60	. 31
9 45 ,	18 3							Sandy	Cro	oft ar	ıd f	Baltı	18 y	17, 2	50	•75
	20 6	14 3L	₩		1		1	Saltne	e y a r	ad Cl	105	ter .	• • • • •	7,0	40	. 2.I
10.10	23 0		1		ı							-	<u>, </u>	200	м	<u> </u>
10.20		' ·	16	OLW]		-			ĕ.	ا <u>ب</u> ا	Head.	1	1557.5 1966.5	క్ష్మి	1780
10.40	23 4 25 0	19 8	20	OLW				WAVE,		Rate per	Tinute.		1 '		ei ≒`	<u> </u>
"	26 4	24 10	22	9	17	9L	J	V		Ba		Foot.	Foot.	4 2 2	4 4 ~	495.6
11 15	27 IO	26 7	24	7	20	9L	"					Ĕ	Ä,	1 2 5	8 R	8
11 30 ,	29 5	28 3	26	8	22	9		TIDAL		۵,		Head of Wave.	1	~ <u>o</u> o	× ×	80
	29 11HW			-		•	ı			Interval of		₩¥.	4	-		8
11 45 "	29 6	30 OE	28	9	27	4	1			198	٥	ë e	1 1	2 10 0	~ ^	0
	290	30 6	31	3HW	30	9		8	ا . ا	H	۱	Wave. Wave.	Kins	3 25 %	¥ ¥	3
1	28 3	296	31	0	31	5H	w	FOOT OF	19		7	8	4 6	AAO	200	ਠ
	27 6	29 0	30	•	31	0		န	From Flint to Chester	3		Range	1	18.10	~	18.8
0 45 "	26 4	28 I	29	4	30	5			2	_		4				-
	25 3	27 3	28	4	29	7		AND	1	Lagth			H ort	15.575 17,150	7,250	61,950
	24 3	26 4	27	6	29	0			2		1		Ä.	4 ₹.	5.5	8
· · ·	23 4	25 5	26	10	28	X		HEAD	ا څ				Ī	. P. C.	::	: 1
~	22 4	24 6	25	10	27	4		8	٦					- కార్త		
. " 1	21 3	23 7	25	0	26	8	1							d b	he :	
	20 0	22 7	24	6	26	0	1	0.			2.	:	1	and Connah's ay and Sandy	Ĭ.	
	19 0	21 6	23	4	25	2					Stations.		6	ပိုင်း	2 5	4
	17 8	20 6	22	9	24	5		E			i		}	and a	100	ent.
- "	16 7	19 8	21	9	1	10		VELOCITY			ĕ	i	أوا	2 4 B	E S	ಕ
	15 7	18 11	1	10	23	2		H					90	F 25	5 🕏	pu
	14 7	18 0	20	4	22	6		▶.					Ветжееп	Funt and Fentre Book Pentre Rock and Conn. Connah's Quay and Sa	Sandy Croft and Saltney Saltney and Chester	Flint and Chester
3 45 "	14 0	17 6	19	9	22	0							"	: 55;	8 8 8	E
		Ь Т		\neg	Ц.	1	لـ			_	_		┰		_	
AUGU	8T 6th 1	849.	Gree fiel		Flin	t.		entre lock.	Da Qu	h's		indy roft	16.	ltny.	Ch	ster
High Wat	•	p. Tde.	Pt. 27			In. 7	F 2	7 8	Ft. 28	In. 8	F1 24		F 2		Ft.	In. 8
Low Wate	er "	» »	۰	•	9	1	T	0 6	14	2	15	5 5	I	79	18	ī
Tidal Ran	ge "	, ,	27	6 1	8	6	1	7 2	14	6	1	B 11	1	1 10	11	7

TIDES OF THE SEVERN.

TABLE SHEWING THE HEIGHTS OF HIGH AND LOW WATER.

At Springs and Neaps, and the times of Flood and High Water at the principal points between Portishead and Diglis Lock, (just below Worcester) from Capt. Beechey's survey, 1849.

Note.—The zero of the Tidal Heights is that called the Ordnance Datum or half-tide level at Liverpool, being 4.75 feet above the Old Dock Cill.

Stations.	Distance	1 -	ing T 3. 20, :			ap Tide. 3. 13, 1849.	Flo aft maki	er ng at hley	H.	W. er ng at hley
		H.W.	L.W.	Range	H.W.	L.W. Rang	Aug. 20th.	Aug. 18th.	Aug. 20th	Aug. 18th.
Portishead	Foot.	Ft. In.	Ft.In.	Ft. In.	Ft. In.	Ft. In. Ft. L	н. м.	н. м.	н. ж.	E. M.
Beachley	58,000	23 6	19 1	42 7			1			
Sharpness	60,950	25 6	2 0	27 6	16 10	2 6 19	2 48	2 36	0 39	0 42
Hock Crib	39, 829	25 11	6 9	19 2	16 10	5 6 11	4 3 54	4 42	0 42	1 08
Newnham	19, 552	25 9	9 11	15 10	17 5	8 10 8	7 4 29	5 28	1 10	I 34
Framilode	24,800	2 6 9	16 1	10 8	17 7	15 1 2	6 4 46	6 38	1 23	2 03
Rosemary	21,000	26 11	17 6	9 5	17 7	16 8 0 1	1 5 32	7 20	x 36	2 44
Stonebench	23,650	25 7	18 2	7 5			6 ∞		2 8	• •
Gloucester	18,940	24 4	18 9	5 7	18 4	17 11 0	s 6 14		2 22	••
Haw Bridge	40,000	23 1	19 10	3 3	no	tide felt	7 01		3 16	••
Mythe Bridge.	27,800	23 1	21 3	1 10					3 58	••
Upton Bridge .	29,770	23 5	22]	1 4			8 12	••	4 16	••
Pixham	34,060	24 5	24 2	0 3						••
Diglis	16,780	²⁵ 7	25 7		25 3			•••		••

TABLE OF AVERAGE RATE OF THE CREST Of the Tidal Wave and of the Bore,

From Beachley to Upton Bridge, where the latter phenomenon ceases.

SPRING TIDES.	Rate of Crest of Tidal Wave.	Rate of the Bore.
Between	Feet p Min.	Feet w Min
Beachley and Sharpness	1, 599	328
Sharpness and Newnham	T, 944	511
Newnham and Framilode	1,900	713
Framilode and Rosemary	996	460
Rosemary and Stonebench	872	1, 206
Stonebench and Haw Bridge	1,057	1,075
Haw Bridge and Mythe Bridge	728	1
Mythe Bridge and Upton Bridge	1,058	713

TIDES OF THE SEVERN.

TABLE OF FALL AND SECTIONAL AREA OF SUMMER LOW WATER, Between Portishead and Diglis, from Captain Beechey's Admiralty Survey.

Note.-The datum of the heights given is the Ordnance mean half-tide at Liverpool.

STATIONS.	Dis-	Mean Fall of		Sharpn	ess Gau	w Water. auge, or 7'.9" on k Gauge.								
	Apart.	River Bed Mile.	Height on Gauge.	Fall per Mile.	Area.	rge, or 7 Gauge. Gray Width Feet. 3370 2730 030 1370 400 450 217 122 170 100	Depth.							
	Feet.	Feet.	Feet.	Feet.	Sq. Ft.	Feet.	Feet.							
Portishead (below datum) Beachley " Inward Point " Lidney " Sharpness " Newnham (above datum) Framilode Stonebench Glöster (say Lower Parting) Haw Bridge Mythe Bridge Upton Bridge Upton Bridge Prisham Digits	58,000 16,750 36,500 7,700 59,381 24,800	1.86 1.98 1.64 .80 .85 0.30 528 .265 .301 .209	20.31 18.90 17.55 3.87 2.79 8.86 15.00 16.92 17.15 18.81 20.16 21.23 23.44 24,84	 .013 .425 1.98 .74 1.03 1.31 .227 .064 .219 .256 .189	50,000 6,840 1,230 4,176 1,900 3,600 632 783 784 570 805 255	3370 2730 630 1370 400 450 217 122 170	46. 0 5. 25 3. 0 11. 25 10. 10 11. 00 5. 50 9. 00 5. 75 7. 50 5. 00							

THE RIVER SEVERN IN FLOOD.

TABLE of the Rate of Fall as indicated by the Gauges

With the Sectional Areas and Fall per Mile in a High Flood, as observed

December 4th, 1849.

Note.—These observations were taken at or before low water, when uninfluenced by the Tide.

	Vario	us Fr	eshes.	FLOOD December 4th, 18						
STATIONS,	on.	on	on	Hght. on Gauge	per	Area.		test Depth		
	Feet.	Feet.	Feet.	Feet.	Feet.	Sq. Ft.	Feet.	Feet.		
Portishead Beachley Inward Point Lidney Sharpness (below datum) Newnham (above datum)	Freshes	:	felt 2.58	here I. 00 I3. 46		7, 596 4, 522				
Framilode	15.92 17.75 19.00 20.75 22.33	16.66 19.25 20.84 23.16 24.92	16.33 19.08 21.16 23.75 25.75	19.16 25.00 29.08 32.84 35.23	1.21 .69 1.135 .496	5, 467 2, 582 2, 328	500 275 170	15.33 13.25 19.50 20.00 20.50		
Upton Bridge	23. 58 26. 00 27. 42		30. 50	38.∞	. 68	3,025 2,248	175 167	22.50 20.50		

TIDES OF THE SEVERN.

TABLE OF VELOCITIES OF THE TIDAL WAVE AND BORE.

Between Sharpness and Upton, at different ranges of tide, from Captain Beechey's

Admiralty Survey of the River, in the summer of 1849.

Rames of Stations.	Dis-	Range at Sharp	Fasi	arka	Rate	per M	inute.
	apart.		Wave	Bore.	Wave.	Bore.	Flood Stream
Between	Feet.	Feet.	Min.	Min.	Feet.	Feet.	Feet.
Sharpness and Hock Crib	39, 100	18	23	134	1,700	292	
n n	,,	20	141	165	2,696	237	••
n n	,,	21	10	88	3,910	444	
, ,, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	27	6	66	6, 517	592	389.9
Hock Crib and Newnham	19, 550	18	36	44	543	444	
29 29 ······	,,	20	29	43	674	455]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	21	37	43	528	455	
, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	27	24	41	815	477	
Sharpness and Newnham	59, 381	27	30		1,979	••	
Newnham and Framilode	24,800	20	27	62	918	400	••
, ,,	,,	21	15	5 1	1,654	486	
n n	,,	27	13	30	1,907	827	217
Framilode and Rosemary	21,000	21	32	54	656	389	
n n	,,	27	21	40	1,000	525	435
Rosemary and Stonebench	23,650	21		29		816	
. " "	,,	27	27	17	876	1,373	538
Stonebench and Haw Bridge	58,940	21	69	59	854	999	405
Stonebench and Gloucester	,,	27	13	17			405
Haw Bridge and Mythe Bridge	27,800	27	38		732		
Mythe Bridge and Upton	29,770	27	28		1,063]	
Haw Bridge and Upton	57, 570	27		70		822	<u></u>

Rate of Flood Stream, Dec. 1st, 1849,

Being Spring Tides, was about 400 feet per minute, near Stonebench, as taken by a Bloat drifting, but properly watched.

Sectional Area then about 2,150 square

Rate of Ebb Stream, Dec. 11th, 1849,

Being Average Tides, was about 275 feet per minute, near Stonebench, as taken by a Float drifting, but properly watched.

Sectional Area then about 1,700 square feet.

TABLE OF DIMENSIONS OF DOCKS,

Depths of Water over Sills, Area of Water Space, &c. &c., of some of the principal Establishments in the United Kingdom.

NAME OF PORT	Date of	W	ensio et Do		0v	EI	PT I	ii.	Widt		If I	in L	tere	d
AND OF DOCK.	Com- mence- ment.	Area	Logth	Brdth	At Hi Wate Sprin Tide	200	Spr	Low ter ing les.	of En- tramo		Length		Brdth.	
		Acres	Yards	Yards	Ft. I	in.	Pt.	Ins	Ft. In	ه.	Ft. Is	8.	Ft Is	16 .
HARTLEPOOL. Victoria Dock	1832	20]	645	160	22	۰	6	0	45	d	148	۵	45	
W. Harbour Dock	1844		258	126	21	6	5	6	42	d	٠	٦	٠	
Ditto Extension	1850	84	310	132	23	6	7	6	500e6	٥	••	-	••	i
SUNDERLAND. Wearmouth Dock	1837	6	182	165	20	2		6	şo	d	90	۵	70	
Sunderland Dock	1850	19	645	147	20	3	ş	0	60	d	٦.,		'	-
LEITH.	1800	-1	250	100	17	6		۰	36	1	160		36	
East Dock	1800	5‡ 5‡	250	100	' ⁷	U	l°.		36	3	100	٩	30	٩
New Dock	1848	5	233	100	19	0	8	0	60	d	••		••	- 1
DUNDEE.	1815	61	240	126	15	6	_			J				
William IV. Dock Earl Grev Dock		51	180	140	18	0		6	40 55		150 210	0	40	
Victoria Dock (in progress)	1833	14	430	170	21	٥		6	55 60		230	0	55 60	0
MONTROSE. Dock	1830	3 1	150	106	19	0	3	6	55	٩				
ARERDEEN.		54	.,,		٠,	٦	١,			1	••		••	
Victoria Dock	1844	33₺	950	175	21	0	10	٥	606≥7	ď	150	0	60	0
DUBLIN.	1780	14	252	32	15	٥	4	6	27	J	118		27	ا
Royal Canal Dock	1770	2	139		18	o	⁴.	- 1	36	a		٦	-/	٦
George's Dock	1770 1816	12	107	72 86	18	0			36	d			••	١
Grand Canal Dock	1793	41	217	100 120	18	0	7.	٠6	36 35	9	180 150	0		8
GALWAY.	1/93	-41	1005	120	10	٦	7	٦	"	٦	150	٦	35	٦
New Dock	1833	71	239	193	16	0	1	0	56	þ	••	ı	••	
LIMERICK.		72	270	130	22	٥			50	۵		1	i	
Dock (in progress)			2/0	1,0		٦	•	•	30	٦	••	1	••	- 1
North Dock	••	6		٠٠)	18	6	6	اه	45	d	180	0	45	٦
BRISTOL,		12	••	ر ۰۰		_	1	-	77	1		Ĭ	7,	٦
Cumberland Basin	1804	4	245	90	30	0	۰	7	5484	ıd	260		548	67
Bathurst Basin		2	140	70	••	1	0	'nΙ	54&4 35	8	152	٥		- 1
Floating Harbour		631	1800	85	30to	34			45 &:	: 5	} 18	082	} 45 3	æ
PLYMOUTH.	l l							ì				,-	, ,	۱ ۳
Great Western Dock	1847	13	420	150	24	٥	6	٥	80	d	250	0	55	٥
NEWPORT. Dock	1835	4	270	73	25	0	25	0	61	J	125	0	61	۰
CARDIFF.			•		1		1			١	-			ı
Bute Docks	1838	21 124	1333	66 80	19 21	6	19	6	36	<u>.</u>	152	0	36	o'
SWANSEA (in progress). IPSWICH.	1849	141	760	~	2.	٦	•	٦	56 &r	1	:05	٦	56	0
Dock	1837	33	I 120	140	16	6	3	0	45	9	150	0	45	0
GREAT GRIMSBY. Dock (in progress)	1846	20	600	167	26			۰	70	1	300	0		
HULL	1040			'		٦	4	٠,		٦	,	٦	70	٥
Old Dock	1774	10	567	84	18	0	2	9	38	þ	121	9	38	0
Humber Dock	1803 1826	7	300 214	110 140	24	٩	5	٥	42 36	2	158 130	9	42 36	6
Junction Dock	1845	25	240	55	::		:	.	43	a	٠,٠	ı	,,,	٠
Victoria Dock	1846	124	480	126	25	0		6	50	d	120	6	32	٥
Ditto Half-Tide Basin		3	110	115	25	٩	6	6	60 &;	4	120	익	66 &	32
Barge Dock	1820	3	290	50	9	0	9		2.2 (۱ ب	72	6	19	6
Barge Dock Ship Dock Harbour Dock	1820	31	234	67	17		17		29 (1	119	이	29	6
Steam Shin Dock	1820 1836	1½ 4	120	67	17 19		17 19	0	33 C	í	/42 I 110	19	19 29 22 & 58	33
Steam Ship Dock	1847	24	200	67	19	0	19	ŏ	58	١,	110	9	58	Ö
I STOCKTON.		10	400		,			1		J		ا	-	-
Middlesborough Dock	1039	10	400	130	19		5	۰	150 C	_	132	9	30	_0

TABLE OF DOCKS AT LIVERPOOL, With the principal Dimensions, Depth of Water over Sills, &c.

	OLA	Dock Sill.	Old	V. below Dock Sill,
Average Spring Tides				
, Neap Tides. Equinocitial Spring Tides Extraordinary Spring Tide, as marked on LeasoweaLighthouse	•••	90.0 25.0	••	11.0

Total Area of Docksacres 177.80 .. Quay Space 14.7 miles.

" Dry Basins " 20. 2 .. River Wall.... 5.0 "

		Dimensions of Wet Dock.		DEPTH over Sill.		Width	12	
NAME OF DOCK.	Area of Water space.	Lngth	Brdth	At High Water Spring Tides.	At Low Water Spring Tides.			Width of Entrance. Feet, 50
Lau Varantita v	Acres	Yards	Yards	Ft. In.	Ft. Ins.	Ft. Ins.	1 :	
TIDAL BASINS.			150	1000	100	100	## o o	
Sandon Basin			150			100	, 10 H	
Prince's Basin			140	100	340	170.0	F. 12 . 01	
Seacombe Basin	0.37		25			1000	tri-	
George's Basin	3.38		90		3.0	170.0	over	
George's Ferry Basin	0. 28		23				AF.	
Queen's Basin	5.04		100		Dry, or above		Day O Ema	
South Ferry Basin	1.0	000	30		L. W.	20	Depth H.W.S.T. Fr. Ins. 39 0 23 3	
Sandon Dock	10, 02	320	145	24 9	2 3	70 0		
Wellington Half-tide Dock	3.17	120	100	25 0		70 850		
Wellington Dock	7.85	300	120	24 3	2 9	70 0	0 1 m Bb	
Bramley Moore Dock	9.64	350	120	24 3	2 9	60 & 60	Area. Acres 33 7	
Nelson Dock	7.99	266	120	24 9		60 0	74	
Stanley Dock	7.03	183	146	23 11	3 1	51 0		
Collingwood Dock	5.05	166	120	25 0	2 0	60 0		
Salisbury Dock	3.44	170	90	25 2	1 10	60 8 50	1 1 1	
Clarence Dock	5-77	235	100	21 5	5 7	47 0	1 1 1 1	
Clarence Half-tide Dock	3-93	210	100	13 9	3 3	50 8045		
Trafalgar Dock	5.88	272	120	23 9	3 3	45 & 45	111	
Clarence Half-tide Dock Trafalgar Dock Victoria Dock Waterloo Dock	5.03	265	100	23 2	3 10		1 1 1 1	
Waterloo Dock	5. 50	260	115	24 8	2 4	40 845	1 2 2 1	
Prince's Dock	11, 13	495	115	24 2		45 8045	2.5.3	
George's Dock	5.03	225	98	22 9 24 6	4 3	42 8:40	4.10	
Capping Half tide Deals	4.00	200	70			45 0		
Albert Deals	2. 55	235	150			45 6245		
Sulthouse Dook	7.01	255	130	24 7		45 845	181	
Salthouse Dock King's Dock Queen's Dock	4.05	275		24 3		45 0	Great Low Water Basin Morpeth Dock Egerton Dock Great Float	
Oneon's Dock	7- 59	448	145	21 5	5 7	42 0	H .	
Union Dock Coburg Dock Brunswick Dock	10, 30	126	86	20 0		42 8:42	# ~ · ·	
Cohora Dook	2. 59	180	110	3.70		42 0 70 I	F44	
Brungwick Dook	4.4/	415	142	23 3	3 9		200#	
Brunswick Half-tide Dock	14.44	100	60	24 3	2 9		Low th Do on Do Float	
Toxteth Dock	1. 07			23 3	3 9	45 & 42 40 0	Great Low Wa Morpeth Dock Egerton Dock Great Float	
GRAVING DOCKS.	2.07	859	25.1	~3 3	3 3	40 0	a dra	
Sandon, No. 1 East	20.0	180.0		21 9	5 3	60 o	Great Morpe Egerto Great	
, No. 2	100	180.0		21 9	E 2	70 0	OME	
" No. 3	0.17	180.0		21 9	£ 2	60 O	60	
" No. 4	2 (1)	180.0		21 9	5 3	70 0	DOCKS	
" No. 5	1111	180.0		21 9	5 3	45 0	8	
No 0		180.0		21 9	5 3	45 0	ă	
Huskisson	1 . 0	103.0		24 9	2 3	80 O		
Clarence, No. 1, Old		135.0		21 3	5 9	45 0	9	
No. 1, New		97.0		18 9	8 3	45 0	00 222	
35 No. 2, Old		138.0	1	21 3	5 9	45 0	8	
No. 2, New		96.0		18 9	8 3	32 10	2	
Canning, No. 1		147.0		16 7	10 5	35 9	12	
" No. 2		160.0		18 10	8 2	35 91	BIRKENHEAD	
Queen's, No. 1	100	146.0		19 11	7 I	42 0	8	
" No. 2		145.0		19 11	7 1	42 8:70	m	
					2	ut.H.w		
Brunswick, No. 1		133.0		20 9	6 3	42 0		
n No. 2		133.0		20 9	6 3	42 0		

LIST OF PLATES.

		PLATE NO.
Tid	Chart of the Irish Channel, shewing lines of equal range at new	
	and full moon	1
Tid	Chart of the Irish Channel, shewing the set and rate of the	
	flood stream	8
Sk	tch of the course of the 7 o'clock stream of tide in the English	
	Channel, at new and full moon	8
Do.	do. do. Irish Channel	4
Ma	of the World, shewing cotidal lines	5
Riv	er Mersey-Diagram from simultaneous observations, shewing	
	surface of water when high and low water at various points	6
Ri	er Severn-Diagram shewing line of high and low water, and	
	flood levels	7
Ri	er Tyne—Diagram of surface of river when high and low water	
	at either end, during a spring tide	7
Ri	er Nene-Diagram shewing surface of river when high and low	
	water at Wisbech, during a spring tide	8

Lith. Waterlow & Sons, London.

Leth. Waterlow & Sons, Landon.

30

کر کرک

· Digitized by Google

it til 3rd 1

4

Digitized by Google

ide:

Digitized by Google

APPENDIX

TO

REMARKS ON THE USE OF THE TABLES.

FLOODS OF LARGE DISTRICTS.

Extract from Mr. Thomas John Taylor's work on the Improvement of the Tyne, page 26. Lambert, Newcastle, 1851.

"It is not unusual for the river Tyne, during a land flood, to discharge 36 millions of tons of water in 24 hours, being equivalent to a net quantity of half an inch of rain over the entire extent of its basin. The highest sources are about 1,200 feet above the sea level; but the melevation of the basin may be taken at 500 feet. Now 36 million tons in 24 hours are 25,000 tons per minute; and a horse-power being 33,000lbs, equal to 14.7 tons, we have $\frac{25,000 \times 500}{14.7} = 850,340$ horses' power.

"A flood which rose, at its highest elevation, a few inches above the floor of the house at Ryton island, discharged, according to my calculation, upwards of 70 millions of tons of water in 24 hours (70,383,909), to which may be added the waters at the same time extending over the Haughs, estimated at 9,874,286: in all 80,258,195 tons, or say 80 millions of tons in 24 hours.

"By way of contrast, I may mention the quantity of water passing the same point on July 19, 1850, when the river was free from tide or fresh, and extremely low; the rate of discharge was only 16,025 cubic feet per minute, equal to 659,890 tons in 24 hours.

"Thus the Tyne varies in its volume of land water in the proportion

of 1 to 120.

"The ordinary state of the Nile is to its flood state as 1 to 5.

"The ordinary state of the Ganges is to its flood state as 1 to 5."

STRENGTH OF CYLINDRICAL STEAM BOILERS.

TABLE OF THICKNESS OF METAL

For boilers of equal strength, at a pressure of 450 lbs. per square inch, taking bursting pressure at the ultimate strength of the riveted joints, or 34,000 lbs. per square inch.

Diameters	Thickness	Diameters	Thickness
of Boilers.	of Plates.	of Boilers.	of Plates.
Ft. Ins. 3 0 3 6 4 0 4 6 5 0 5 6	Inch25 .29 .33 .37 .42 .46	Ft. Ins. 6 0 6 6 7 0 7 6 8 0	Inch. .50 .54 .58 .62 .66

EXPERIMENTS ON THE HYDRAULIC RAM.

By Mesars. HUNTER and ENGLISH.

Falf in feet.	Quantity of Water expended in gallons.	Water raised in gallons.	Height of Stand Pipe. Feet.	Time in minutes.
9.32	515	68	. 40.93	. 14
9.41	493	68	40.84	20
9.33	530	68	40.92	. 14
9.31	504	68	40.94	21
9.32	514	68	40.93	22

Nors.—The height from the outlet of the ram to the top of the stand pipe is 50.25 feet. Therefore the fall in feet deducted from the above will give the height to which the water was raised above the head. The difference in time of filling the cistern is owing to variations in the adjustment of the best of the valve,—slow motion giving the best duty.

TIDES OF THE ENGLISH CHANNEL AND NORTH SEA

Captain Beechey's paper, in the Philosophical Transactions, Part II., for 1851, contains his investigations into the currents and tides of these seas similar to those on the tides of the Irish Sea. Instead of these channels having a stream turning progressively later as the tide advances up the strait, it was found that the tide turns off the Start on one side of Dover, and the Lynn deeps on the other side; between these points the tide sets steadily towards Dover, while the water is rising there; and away from Dover in each direction when the tide is falling there. This "true channel stream" is about 180 miles in length each way, from the point of union, towards Lynn in one direction, and towards the Start in the other. The point of union of the tides off the straits of Dover oscillates between Beachy Head and the North Foreland, a distance of sixty miles. When the water at Dover begins to fall the separation takes place off Beachy Head, gradually creeping to the eastward as the fall of tide at Dover continues—at two hours after high water it gets to Hastings, at three hours it arrives at Rye; and when it is low water at Dover the line of separation is between Dunkirk and the North Foreland.

It appears, from the elaborate charts which accompany Captain Beechey's paper, " that for a period of six hours after high water at Dover and for five hours before that time, the great stream of the English Channel and North Sea maintain a steady direction from and towards Between Cromer and the North Foreland, Captain Beechey states, that there is not half an hour's retardation in the time of slack water from the time of high water at Dover, while in the establishment there is a difference of five hours; on the other side the stream, between Start point and Alderney, turns with high water at Dover, although the difference of establishment is also five hours. The whole paper is worth close study, being accompanied by very elaborate maps and diagrams. Reasoning on these facts, we find that when it is high water at Dover (which is five hours after high water at Start point) the tide has fallen about thirteen feet off the Start-or there is about fifteen feet actual difference of level in the water surface at the two places, when the current turns at spring tides; taking this difference, we have a fall of one inch per mile of the surface; this is ample for the gravitating power to produce the tidal stream, which appears to vary from 120 to 400 feet per minute.

HYDRAULIC PROBLEMS.

WHICH ARE OCCASIONALLY USEFUL TO THE ENGINEER, INVOLVING THE USE OF FLUXIONAL CALCULUS.

(From Dr. Hutton's Mathematical Tracts.)

PROBLEM—To determine the Time of emptying any Ditch, or Inundation, &c., by a Cut or Notch, from the Top to the Bottom of it.

Let x = AB, the variable height of the descending water at

any time;

b = AC, the breadth of the cut;

d = the whole or first depth of water;

A = the area of the surface of the water in the ditch;

 $q = 16 \frac{1}{16}$ feet, the descent by gravity in 1".

Now, the velocity at any point D, is as \(\forall BD\), that is as the ordinate DE of a parabola BEC, whose base is AC, and altitude AB. Therefore the velocities at all the points in AB are as all the ordinates in the parabola. Consequently, the quantity of water running through the cut ABGC, in any time, is to the quantity which would run through an equal aperture placed all at the bottom, in the same time, as the area of the parabola ABC, to the area of the parallelogram ABGC, that is, as 2 to 3.

But \sqrt{g} : \sqrt{x} :: 2g: $2\sqrt{gx}$, the velocity at Ac; therefore $2\sqrt{gx} \times bx$ $\times \frac{2}{3} = \frac{2}{3} bx\sqrt{gx}$ is the quantity discharged per second through ABGO; and consequently $\frac{4bx\sqrt{gx}}{3A}$ is the velocity per second of the descending

surface. Hence then $\frac{4bx\sqrt{gx}}{3\lambda}$: $-\dot{x}$:: 1": $\frac{-3\lambda\dot{x}}{4bx\sqrt{gx}}=\dot{t}$, the fluxion of the time of descending.

Now when A the surface of the water is constant, or the ditch is equally broad throughout, the correct fluent of this fluxion gives t =

 $\frac{3A}{2b\sqrt{g}} \times \frac{\sqrt{d-\sqrt{x}}}{\sqrt{dx}}$ for the general time of sinking the surface to any

depth x. And when x = 0, this expression is infinite; which shows that the time of a complete exhaustion is infinite,

APPENDIX TO REMARKS ON THE USE OF THE TABLES.

But if d = 9 feet, b = 2 feet, $A = 21 \times 1000 = 21000$, and it be required to exhaust the water down to $\frac{1}{16}$ of a foot, deep; then $x = \frac{1}{16}$, and the above expression becomes $\frac{3 \times 21000}{4 \times 4\frac{1}{16}} \times \frac{3 - \frac{1}{4}}{\frac{3}{4}} = 14400^{\circ}$, or just 4 hours for that time. And if it be required to depress it 8 feet, or till 1 foot depth of water remain in the ditch, the time of sinking the water to that point will be 43' 38".

Again, if the ditch be the same depth and length as before, but 20 feet broad at bottom, and 22 at top; then the descending surface will be a variable quantity, and it will be $\frac{90+x}{90} \times 20,000$; hence, in this case the fluxion of the time, or $\frac{-3 \, \text{Az}}{4bx \sqrt{gx}}$, becomes $\frac{-500}{3b \sqrt{g}} \times \frac{90+x}{x \sqrt{x}} \, \dot{x}$; the

correct fluent of which is $t = \frac{1000}{3bVg} \times (\frac{90-x}{\sqrt{x}} - \frac{90-d}{\sqrt{d}})$ for the time of sinking the water to any depth x.

Now when x = 0, this expression for the complete exhaustion becomes infinite.

But if ... x = 1 foot, the time t is 42' 56"\frac{1}{2}\$. And when $x = \frac{1}{18}$ foot, the time is 3\text{\text{\$\text{3}}} \text{50'} 28"\frac{1}{2}\$.

PROBLEM.—To determine the Time of filling the Ditches of a Fortification 6 feet deep with Water, through the sluice of a trunk of 3 feet square, the bottom of which is level with the bottom of the Ditch; the height of the supplying water being 9 feet above the bottom of the Ditch.

Let ACDB represent the area of the vertical sluice, being a square of 9 square feet, and AB level with the bottom of the ditch. And suppose the ditch filled to any height AB, the surface being then at EF,

Put a = 9 the height of the head or supply; b = 3 = AB = AC; $g = 16\frac{1}{12}$; A = the area of a horizontal section of the ditches;

Then \sqrt{g} : \sqrt{x} :: 2g: $2\sqrt{gx}$ the velocity with which the water presses through the part AEFB; and therefore $2\sqrt{gx} \times \text{AEFB} = 2b\sqrt{gx} (a-x)$ is the quantity per second running through AEFB. Also, the quantity running per second through ECDF is $2\sqrt{gx} \times \frac{1}{12000} = \frac{1}{12}b\sqrt{gx}$

x = a - AE, the height of the head above EF.

(b-a+x) nearly. For the real quantity is, by proceeding as in the last problem, the difference between two parab. segs. the alt. of the one being x, its base b, and the alt. of the other a-b; and the medium of that dif. between its greatest state at AB, where it is $\frac{a}{b}$ AD, and its least state at CD, where it is 0, is nearly $\frac{1}{2}$ ED. Consequently, the sum of the two, or $\frac{1}{2}b\sqrt{gx}$ (a+11b-x) is the quantity per second running in by the whole sluice ACDB. Hence, then, $\frac{1}{6}b\sqrt{gx} \times \frac{a+11b-x}{A} = v$, the rate or velocity per second with which the water rises in the ditches; and so $v: -\dot{x}:: 1'': \dot{t} = -\frac{\dot{x}}{v} = \frac{-6A}{b\sqrt{g}} \times \frac{x^{-\frac{1}{2}}x}{c-x}$ the fluxion of the time of filling to any height AE, putting c = a + 11b.

Now when the ditches are of equal width throughout, \mathbf{A} is a constant quantity, and in that case a correct fluent of this fluxion is $t = \frac{6\mathbf{A}}{b\sqrt{gc}} \times \log$. $(\frac{\sqrt{c} + \sqrt{a}}{\sqrt{c} - \sqrt{a}} \times \frac{\sqrt{c} - \sqrt{x}}{\sqrt{c} + \sqrt{x}})$ the general expression for the time of filling to any height $\mathbf{A}\mathbf{B}$, or a - x, not exceeding the height $\mathbf{A}\mathbf{C}$ of the sluice. And when $x = \mathbf{A}\mathbf{C} = a - b = d$ suppose, then $t = \frac{6\mathbf{A}}{b\sqrt{gc}} \times \log$. $(\frac{\sqrt{c} + \sqrt{a}}{\sqrt{c} - \sqrt{d}})$ is the time of filling to co the top of the sluice.

Again, for filling to any height GH above the sluice, x denoting as before a-Ac the height of the head above GH, $2\sqrt{gx}$ will be the velocity of the water through the whole sluice AD: and therefore $2b^2\sqrt{gx}$ the quantity per second, and $\frac{2b^2\sqrt{gx}}{A} = v$, the rise per second of the water in the ditches; consequently $v: -\dot{x}:: 1'': \dot{i} = -\frac{\dot{x}}{v} = \frac{-A}{2b^2\sqrt{g}} \times \frac{\dot{x}}{\sqrt{x}}$ the general fluxion of the time; the correct fluent of which, being 0, when x = a - b = d, is $t = \frac{A}{b^2\sqrt{g}}(\sqrt{d} - \sqrt{x})$ the time of filling from CD to GH.

Then the sum of the two times, namely, that of filling from AB to CD, and that of filling from CD to GH, is $\frac{A}{b\sqrt{g}} \left[\frac{\sqrt{d-\sqrt{x}}}{b} + \frac{6}{\sqrt{x}} \log \left(\frac{\sqrt{c}+\sqrt{a}}{\sqrt{c}-\sqrt{a}} \cdot \frac{\sqrt{c}-\sqrt{d}}{\sqrt{c}+\sqrt{d}} \right) \right]$ for the whole time required. And, using the numbers in the prob., this becomes $\frac{A}{3\sqrt{g}} \left[\frac{\sqrt{6}-\sqrt{3}}{3} + \frac{6}{\sqrt{42}} \times 1 \right]$. $\left(\frac{\sqrt{42}+\sqrt{9}}{\sqrt{42}-\sqrt{9}} \cdot \frac{\sqrt{42}-\sqrt{6}}{\sqrt{42}+\sqrt{6}} \right) = 0.03577277A$, the time in terms of A

APPENDIX TO REMARKS ON THE USE OF THE TABLES.

the area of the length and breadth, or horizontal section of the ditches. And if we suppose that area to be 200,000 square feet, the time required will be 7154", or 1° 59' 14".

And if the sides of the ditch slope a little, so as to be a little narrower at the bottom than at top, the process will be nearly the same, substituting for A its variable value, as in the preceding problem. And the time of filling will be very nearly the same as that above determined.

PROBLEM.—If the Water for filling the Ditches be the Tide, which at low water is below the bottom of the trunk, and rises to suppose 9 feet above the bottom of it by a regular rise of one foot in half-anhour; it is required to ascertain the time of filling it to 6 feet high, as in the last problem.

Let ACDB represent the sluice; and when the tide has risen to any height GH, below CD the top of the sluice, without the ditches, let FF be the mean height of the water within.

And put
$$b = 3 = AB = AC$$
;
 $g = 16\frac{1}{12}$;
 $A = \text{horizontal section of the ditches}$;
 $x = AG$;
 $z = AB$.

Then \sqrt{g} : $\sqrt{\text{EG}}$:: 2g: $2\sqrt{g}$ (x-z) the velocity of the water through AEFB; and \sqrt{g} : $\sqrt{\text{EG}}$:: $\frac{1}{3}g$: $\frac{1}{3}\sqrt{g}$ (x-z) the mean velocity through BGHF; therefore $2bz\sqrt{g}$ (x-z) is the quantity per sec. through AEFB; and $\frac{1}{3}b$ (x-z) \sqrt{g} (x-z) is the same through EGHF; consequently $\frac{2}{3}b\sqrt{g} \times (2x+z)$ $\sqrt{(x-z)}$ is the whole through AGHE per second. This quantity divided by the surface

A, gives $\frac{2b\sqrt{g}}{3A} \times (2x+z)\sqrt{(x-z)} = v$ the velocity per second with which EF, or the surface of the water in the ditches, rises. Therefore

$$v: i: 1": i = \frac{s}{v} = \frac{3\lambda}{2b\sqrt{g}} \times \frac{s}{(2x+z)\sqrt{(x-z)}}.$$

But as GH rises uniformly 1 foot in 30' or 1800", therefore 1 : AG :: 1800" : 1800x = t the time of the tide rising through AG; consequently

$$i = 1800\dot{x} = \frac{3A}{2b\sqrt{g}} \times \frac{\dot{s}}{(2x+z)\sqrt{(x-z)}}, \text{ or } m\dot{z} = (2x+z)\sqrt{(x-z)}.\dot{x}$$

APPENDIX TO REMARKS ON THE USE OF THE TABLES.

is the fluxional equa. expressing the relation between z and z; where $m = \frac{\Delta}{1200b\sqrt{g}} = \frac{3200}{231}$ or $13\frac{27}{231}$ when $\Delta = 200,000$ square feet.

Now to find the fluent of this equation, assume $z = \Delta x^{\frac{5}{2}} + Bx^{\frac{5}{2}} + Cx^{\frac{11}{2}} + Dx^{\frac{14}{2}}$ &c. So shall

$$\sqrt{(z-z)} = x^{\frac{1}{2}} - \frac{A}{2}x^{\frac{4}{3}} - \frac{A^{2} + 4B}{8}x^{\frac{7}{3}} - \frac{A^{3} + 4AB + 8C}{16}x^{\frac{19}{3}} &c.,$$

$$2x + z = 2x + \Delta x^{\frac{5}{2}} + Bx^{\frac{5}{2}} + Cx^{\frac{1}{2}} & &c.$$

$$(2x + z) \sqrt{(x - z)} \dot{x} = 2x^{\frac{3}{2}} \dot{x}_{\pm} - \frac{3\Delta^{2}}{2} x^{\frac{5}{2}} \dot{x}_{\pm} - \frac{\Delta^{2} + 6\Delta B}{2} x^{\frac{12}{2}} \dot{x}_{\pm} &c.,$$

and $m\dot{x} = \frac{9}{2}mAx^{\frac{3}{2}}\dot{x} + \frac{9}{2}mBx^{\frac{9}{2}}\dot{x} + \frac{1}{2}mCx^{\frac{9}{2}}\dot{x} + \frac{1}{2}mDx^{\frac{19}{2}}\dot{x}$ &c.

Then equating the coefficients of the like terms,

so shall and consequently,
$$\frac{5}{2}mA = 2, \qquad A = \frac{4}{5m},$$

$$\frac{3}{2}mB = 0, \qquad B = 0,$$

$$C = -\frac{24}{275m^2}$$

$$C = -\frac{16}{875m^4}$$

$$D = -\frac{16}{875m^4}$$

c.; &c

Which values of A, B, C, &c., substituted in the assumed value of z, give $z = \frac{4}{5m}x^{\frac{5}{2}} * -\frac{24}{275m^3}x^{\frac{11}{2}} - \frac{16}{875m^4}x^{\frac{14}{2}} &c.$ or $z = \frac{4}{5}x^{\frac{5}{2}}$ very nearly.

And when x=3 = AC, then z=.886 of a foot, or $10\frac{3}{3}$ inches, =AE, the height of the water in the ditches when the tide is at CD or 3 feet high without, or in the first hour and half of time.

Again, to find the time, after the above, when EF arrives at CD, or when the water in the ditches arrives as high as the top of the sluice,

The notation remaining as before, then $2bz\sqrt{g}(x-z)$ per sec. runs through AF, and $\frac{3}{2}b(3-z)\sqrt{g}(x-z)$ per sec. through BD nearly; therefore $\frac{3}{2}b\sqrt{g} \times (12+z)\sqrt{(x-z)}$ is the whole per sec. through AD nearly.

conseq. $\frac{2b\sqrt{g}}{5A} \times (12+z)\sqrt{(x-z)} = v$ is the velocity per second of the point x; and therefore

Appendix to Remarks on the use of the Tables.

$$v : \dot{z} :: 1'' : \dot{i} = \frac{\dot{z}}{v} = \frac{5A}{2b\sqrt{g}} \times \frac{\dot{z}}{(12+z)\sqrt{(x-z)}} = 1800\dot{z} \text{ or }$$

$$m\dot{z} = (12+z)\sqrt{(x-z)} \dot{z}, \text{ where } m = \frac{A}{720b\sqrt{g}} = 23\frac{2}{33} \text{ nearly.}$$

$$Assume \ z = Ax^{\frac{3}{2}} + Bx^{\frac{3}{2}} + Cx^{\frac{3}{2}} + Dx^{\frac{3}{2}} & \text{dc. So shall}$$

$$\sqrt{(x-z)} = x^{\frac{3}{2}} - \frac{A}{2}x^{\frac{3}{2}} - \frac{A^2 + 4B}{8}x^{\frac{3}{2}} - \frac{A^2 + 4AB + 8C}{16}x^{\frac{3}{2}} & \text{dc.}$$

$$12 + z = 12 + Ax^{\frac{3}{2}} + Bx^{\frac{3}{2}} + Cx^{\frac{3}{2}} & \text{dc.}$$

$$(12+z) \cdot \sqrt{(x-z)} \cdot \dot{z} = 12x^{\frac{1}{2}}\dot{z} - 6Ax^{\frac{3}{2}}\dot{z} - (\frac{3}{4}A^2 + 6B)x^{\frac{3}{2}}\dot{z} & \text{dc.}$$

$$m\dot{z} = \frac{3}{2}mAx^{\frac{1}{2}}\dot{z} + \frac{4}{2}mBx^{\frac{3}{2}}\dot{z} + \frac{4}{2}mCx^{\frac{3}{2}}\dot{z} & \text{dc.}$$
Then, equating the like terms, &c., we have
$$A = \frac{8}{m}, B = \frac{24}{m^2}, C = \frac{96}{5m^3}, D = \frac{64}{3m^4} \text{ nearly, &c.}$$
Hence $z = \frac{8}{m}x^{\frac{3}{2}} - \frac{24}{m^2}x^2 + \frac{96}{5m^3}x^{\frac{3}{2}} + \frac{64}{3m^4}x^3 & \text{dc.}$

$$Or \ z = \frac{8}{m}x^{\frac{3}{2}} \text{ nearly.}$$

But, by the first process, when x = 3, z = .886; which substituted for them, we have z = .886, and the series = 1.63; therefore the correct fluents are

$$z - .886 = -1.63 + \frac{8}{m}x^{\frac{3}{2}} - \frac{24}{m^{\frac{3}{2}}}x^{\frac{3}{2}} &c.$$

or $z + .744 = \frac{8}{m}x^{\frac{3}{2}} - \frac{24}{m^{\frac{3}{2}}}x^{\frac{3}{2}} &c.$

And when z = 3 = Ac, it gives x = 6.369 for the height of the tide without when the ditches are filled to the top of the sluice, or 3 feet high; which answers to 3^h 11' 4''.

Lastly, to find the time of rising the remaining 3 feet above the top of the sluice; let

x = cc the height of the tide above co,

 $z = c \mathbf{E}$ ditto in the ditches above cD;

and the other dimensions as before.

Then $\sqrt{g}: \sqrt{EG}: 2g: 2\sqrt{g(x-z)} =$ the velocity with which the water runs through the whole sluice AD; conseq.

AD $\times 2\sqrt{g(x-z)} = 18\sqrt{g(x-z)}$ is the quantity per

second running through the sluice, and $\frac{18\sqrt{g}}{A}$ (x-2) = v the velocity of z, or the rise of the water in the ditches, per second;

APPENDIX TO REMARKS ON THE USE OF THE TABLES.

hence
$$v: \dot{s}:: 1'': \dot{s} = \frac{\dot{s}}{v} = \frac{\Delta}{18\sqrt{g}} \times \frac{\dot{s}}{\sqrt{(x-z)}} = 1800\dot{s}, \text{ and } m\dot{s} = \dot{s}$$

$$\sqrt{(x-z)}$$
 is the fluxional equation; where $m = \frac{\Lambda}{180^2 Vg} = \frac{3200}{2079}$

To find the fluent,

Assume $z = Ax^{\frac{1}{2}} + Bx^{\frac{4}{2}} + Cx^{\frac{4}{2}} + Dx^{\frac{6}{2}}$ &c.

Then $z - z = z - Az^{\frac{1}{2}} - Bz^{\frac{1}{2}} - Cz^{\frac{1}{2}} &c.$

$$\dot{x}\sqrt{(x-z)} = x^{\frac{1}{2}}\dot{x} - \frac{\Lambda}{2}x^{\frac{3}{2}}\dot{x} - \frac{\Lambda^2 + 4B}{8}x^{\frac{3}{2}}\dot{x} &c.$$

$$mz = \frac{1}{2}nAx^{\frac{1}{2}} + \frac{1}{2}nBx^{\frac{1}{2}} + \frac{1}{2}nCx^{\frac{1}{2}} &c.$$

Then equating the like term, gives

$$A = \frac{2}{3n}$$
, $B = \frac{-1}{6n^2}$, $C = \frac{1}{90n^2}$, $D = \frac{-1}{810n^4}$, &c.

Hence
$$z = \frac{2}{3n}x^{\frac{3}{2}} - \frac{1}{6n^3}x^2 + \frac{1}{90n^2}x^{\frac{4}{2}} - \frac{1}{810n^4}x^2$$
 &c.

But by the second case, when z = 0, s = 3.369, which being used in the series, it is 1.936; therefore the correct fluent is $z = -1.936 + \frac{2}{3\pi} - \frac{1}{6\pi^2} x^2$ &c. And when z = 3, z = 7; the heights above the top of the sluice, answering to 6 and 10 feet above the bottom of the ditches. That is, for the water to rise to the height of 6 feet within the ditches, it is necessary for the tide to rise to 10 feet without, which just answers to 5 hours; and so long it would take to fill the ditches 6 feet deep with water, their horizontal area being 200,000 square feet.

Further, when x = 6, then z = 2.117 the height above the top of the sluice; to which add 3, the height of the sluice, and the sum 5.117, is the depth of water in the ditches in $4\frac{1}{2}$ hours, or when the tide has risen to the height of 9 feet without the ditches.

HYDRAULIC AND OTHER TABLES.

TABLES

FOR FACILITATING CALCULATIONS

DAILY BEQUIRED BY

AN ENGINEER,

WITH AN

APPENDIX OF TIDE TABLES.

BY NATHANIEL BEARDMORE,

CIVIL ENGINEER.

LONDON:

PRINTED BY WATERLOW AND SONS, CARPENTERS' HALL,

1851.

INDEX AND CONTENTS.

Discharges are all given in cubic feet per minute.—Velocities are all given in lineal feet per minute.

	of Table.	Page.
Sluices, Tanks, Reservoirs, and Vertical Pipes, Discharge at heads of .02 to 250 feet	1	4-5
Weirs or Overfalls. Discharge for one foot in width at depths from .02 to 3 feet	2	6-7
Velocities of Rivers. Surface, Mean and Bottom, 5 to 950 feet per minute	8	8-9
Arterial Drains, Rivers, &c. Discharge and Velocities	4-4a	10-13
Circular and Egg-shaped Culverts. Discharge and Velocities	4b-4c	14-15
Pipes under Pressure.—Universal Table	5	16
Do. do. at Specified Rates of Fall	5a.	17
Friction of Bends. Theoretic Head required 10° to 90°	6	18
Friction of Bridges and Pipes	6a.	19
Motion and Resistance of Water and Air, by theory, to	.03.0-	00.00
one square foot at different velocities and angles	6b-6c	20-21
Value of Water Power in Nominal Horse Power	7	22
Value of Steam Power. Proportions of Double Acting Steam Engines	8	23
Pressure of Mercury and Water per square inch and per square foot, with their equivalent columns	9	24
Weight of Pipes per yard, 3 to 48 inches diameter, with safe head of water each will bear	10	25
Flood Discharges per diem, for 1 to 100 scres and 1 to 10 square miles, up to 4 inches of rain	11	26
Mean Discharge of Annual Rain, 2 to 60 inches per annum	12	27
Subsoil Drains. Length in one acre, at 5 to 36 feet apart	12	27
Expenditure of Water; per minute, per diem, per annum	13	28
Water Supply and Population, proportional drainage areas and reservoirs	14	29
Synopsis of Rainfall in Great Britain for 55 places	15	30-31
Detail of Monthly Rain, and proportion of heavy fall	15a	32-33
Velocities. Feet per minute and miles per hour	16	84
Gradients. Rate, with equivalent feet per mile and per chain	17	34
Comparative Measures. Chains, Yards, and Feet, with a table of reduction for slope measure	18	35
Useful Weights and Measures, &c. Inches in decimals of a foot—Miscellaneous—Reduction of Foreign Measures into English.—Areas of segments and length of ares.—Square yards in decimals of an acre.—Apparent above true level.—Brickwork, &c	19	36-37
Weight, Strength. &c., of Metals, Building Materials, Timber, Fluids, and Gasses	20	38-40
Weight of Iron, &c. Round, Square, Flat, and Sheet	21	41
Suspension Bridges, Length and Tension of Chains, and Rules for Catenary Curves	22	42
		~~

INDEX AND CONTENTS.

	Number of Table.	Page.
Roofs and Lock Gates. Strain thereupon	22a	43
Cast Iron Beams. Safe Load for Beams, 6 to 80 inches		
deep, with size of bottom flange	23	44-45
Marine Surveying. Various useful tables	94	46-47
Mountain Barometer. Six tables of corrections	25	48-49
Circles. Area and Circumference	26	50-51
Powers and Roots. Squares, Cubes, Square Roots, Cube Roots, Fifth Powers, and Reciprocals 1 to 100	327	52-53
Do. Do. Squares, Square Roots, and Cube		
Roots 100 to 1.100	27a	54-68
Logarithms of Numbers. 190 to 999	28	64-69
Logarithmic Sines and Cosines, for each 10 minutes.	29	70-71
Trigomometric Ratios in satural proportion	80	72
Certain Term; value in years' parchase <	31 31a 31b 31c	74 75 76 76
TIDE TABLES OF BRITISH PORTS.		
Description and use of		78-79
Table for Time of High Water at twenty places ,	89	80
do. Height do	32a	81
Moon's Declination and Parallax, &c	82°b	82
Table for intermediate heights of Tide	32c	88
Constants of Time and Heights for 160 places	33	84-85
Moon's Transit and Declination at Noon, 1859-8-4	84	36-9 1
Moon's Horisontal Parallax at Noon	35	92

SLUICES, TANKS, RESERVOIRS, & VERTICAL PIPES .- TABLE 1

TABLE OF DISCHARGE FOR VARIOUS HEADS.

.02 to .80 Feet.

Column B, gives the natural or theoretic velocity in feet, per minute, acquired by water, or any other body, falling at the several heights in the column A.

Column C, gives the effective velocity of water passing through crifices of the form of the vena contracts—through bridges well constructed—through ordinary sluices with good side walls, and for very large sluices—through wide openings whose bottom is level with that of the reservoir. This column also gives the discharge through vertical pipes and narrow ill-built bridges, by deducting 1-9th from the product.

Column D, gives the effective velocity of water passing through sluices without side walls, such as used commonly upon mill-streams and rivers, undershot wheel-gates and canal-locks.

Rule.—Multiply the area of the orifice, in feet, by the discharge opposite the given height, either in column C or D, according to the nature of the case. See also page 1-2 for further uses.

A Head of Water.	B Natural Velocity.	C Effective Velocity.	D Effective Velocity.	A Head of Water.	B Natural Velocity.	C Effective Velocity.	D Effective Velocity.
Feet.	Feet per minute.	Feet per minute.	Feet per minute.	Feet.	Feet per minute.	Feet per minute.	Feet per minute.
	66		١	.41	308.48	288.0	192.1
.02	67.96 83.38	63.7	42.4	1 -42	312.33	291.6 295.1	194.4
.04	96.40	90.0	51-9	·43 ·44	310.04	208.3	190.7
.05	107.72	100.3	67.0	·45	323.42	301.0	201.1
.06	118.00	110.2	73.4		326.79	305.1	201.4
.07	127.49	118.8	79.3	-47	330.41	308.5	205.6
.08	136.40	127.3	84.8	.48	334.02	311.8	207.8
.09	144.60	135.0	90.0	3 73	337.40	375.0	210.0
.10	152.31	142.2	94.8	-50	240.77	318.1	219.1
.11	159.54	148.9	99.4	.51	344-15	321.3	214.2
.12	166.77	155.7	103.9	.52	347 - 52	324.4	216.3
.13	173.52	162.0	108.1	•53	350.89	327.6	218.4
•14	180.27	168.3	113.2	-54	354.27	330.7	220.4
.15	186.53	174.1	116.1	-55	357.16	333.7	222.5
.17	192.80 198.58	185.4	120.0	.56	360. y3 363.91	336.6	224.5 220.5
.18	204.37	103.4	123.0	.57 .58	367.04	339.7	228.4
.19	210.15	196.2	130.7		370.17	342.7 345.6	230.4
.20	215.45	201.1	134.1	.68	878.31	348.5	232.3
.21	220.75	206.1	137.4	.61	376.44	351.4	234.3
.22	226.06	211.0	140.7	.62	379-33	354. ī	236.2
.23	231.12	215.5	143.8	.63	382.50	357.1	238. E
.24	236.18	220.5	146.9	-64	385.60	360.0	240.0
-25	241.00	225.0	150.0	-65	388.49	362.7	241.8
.26	245.82	229.5	152.9	.66	391.38	365.4	243.7
.27	250.40	233.5	155.8	.67 .68	394-27	368.3	245.5
.28	254.98	238.0	158.7 161.5	.60	397 • 45	371.0	247.4
.80	259.56 263.99	246.4	164.3	.70	403.24	373.8 876.5	249.2 251.0
.31	268.33	250.5	167.0	.71	406.13	379.2	252.8
.32	272.57	254.5	169.6	.72	408.97	381.8	254.5
•33	276.67	258.4	172.3	•73	411.62	384.3	250.3
•34	281.00	262.3	174.9	•74	414.52	387.0	258.ó
-35	285.10	266.2	177-4	•75	417.41	389.7	259.8
.36	289.20	270.0	180.0	.76	420.06	392.2	261.5
•37	293.05	273.6	182.4	•77	422.71	394.6	263.2
-38	296.91	277.3	184.9	.78	425.60	397.3	264.9 266.6
.40	3∞.77 304.62	280.9 284.5	187.3	. 80	428.50 430.91	402.8	268.3
'	ı	ŀ	1		ı	l	1

SLUICES, TANKS, RESERVOIRS, & VERTICAL PIPES.-TABLE 1

TABLE OF DISCHARGE FOR VARIOUS HEADS.

.81 to 250. Feet.

			.81 to 28	50. Fe	et.		
A Head of Water.	B Natural Velocity.	C Effective Velocity.	D Effective Velocity.	A Head of Water.	B Natural Velocity.	C Effective Velocity.	D Effective Velocity.
Feet.	Feet per minute.	Feet per minute.	Feet per minute.	Feet.	Feet per minute.	Feet per minute.	Feet per minute.
.81 .82	433.80 436.21	405.00	270.∞ 271.6	7·25 7·50	1298.01	1211.8	807.9 821.7
.83	439. 10	407.5 409.9	273.3	7.75	1341.80	1252.8	835.2
.84	441.51	412.4	274.9 270.6	8.00	1341.89 1363.09	1272.6	848.4 861.6
.85 .86	444-40 446-81	414.9	270.6 278.2	8.25 8.50	1384.30	1292.4	861.6
.87	449.56	417.1 420.6	279.8	8.75	1405.03	1311.7	874.5 887.4
.88	452.11	422.T	281.4	9.00	1446.00	1350.0	900.0
.80 .90	454.52 457.22	424.3 426.9	281.9 284.5	9.50	1425.75 1446.00 1465.76 1486.52	1350.0 1368.4 1386.9	924.6
.91	459.83	429.3	286. I	9.75	1504.80	1404.9	936.6
.92	462.24	431.5	287.7	10.00	1524.08	1422.9	948.6 960.6
·93	464.65 467.06	433.8 436.3	289.2 290.8	10.25	1543.36 1561.68	1440.9	972.0
.95	469.76	478.6	292.3	10.75	1580.47	1475-5	983.7
.95 .96	472.21	440.8	293.9	11.00	1598.79 1616.62	1492.6	995.1 1006.2
.97 .98	474-77 477-18	443.2	295.4 296.9	11.25		1509.3	1000.2
.00	470-50	445.5	208.4	11.75	1634.46 1652.29	1525.9 1542.6	1017.3
1.00	479-59 482.00	450.0	208.4 300.0	12.00	1669.6 48	1558.8	1039.2
1.10	505.62	472.0	314.6	12.25	1687.00	1575.0	1050.0
1.20 1.25	527.79 538.87	492.7 503.1	328.6 335.4	12.50	1703.87	1590.7 1606.9	1060.5
1.30	549.58	513.0	342.0	13.00	1737.61	1622.2	1081.5
1.40	570.20	532.3	354.9	13.25	1754.48	1618.0	1092.0
1.50	590.30	551.1	307.4	13.50	1770.86	1653.3	1102.2
1.70	609.73	569.2 586.8	379 · 5 391 · 1	13.75	1787.25 1803.64	1683.9	1112.4
1.75	637.68 646.60		396.8	14.25 14.50	1819.55	1698.7 1713.60	1142.4
1	ł	603.7	402.5		1819.55 1835.45	l	[[
1.90	664.19 681.55	620.1	413.5	14.75	1850.88 1866.78	1728.00 1742.85	1152.0
2.10	699.86	652.5	424.2 434.7	15.00	1897.63	1771.65	1181.1
2.20	714.80	657.3	444-9	16.00	1928.00	1800.00	1200.3
2.25	723.00	675.0	450.0	16.50	1957.88	1 27.90	1218.6
2.40	730.95 746.62	682.4	454.9 464.7	17.00 17.50	1987.28 2016.20	1855.35 1882.35	1236.9 1254.9
2.50	762.04	711.4	474.2	18.00	2045.12	1909.35	1272.0
2.50 2.60	776.98 7 91.92	725.4	483.7 498.9	18.50	2073.08 2101.03	1961.55	1200.3 1307.7
2.70	1	789.8 746.1		19.00	2128.51	2007.20	1307.7
2.75 2.80	799 · 15 806 · 38	752.8	497 - 5	19.50	2155.50	2012.40	1341.6
2.90	820.84	766.3	\$10.9	25.00	2410.00	2250.00	1500.0
3.00	834.82	779·5 811.3	519.6	30.00	2639.91	2464.65 2662.20	1643.1
3.25 3.50	869.04 901.82	841.9	540.9	35.00 40.00	2851.51 3048.16	2845.80	1774.8
3.75	933.15	871.2	580.8	45.00	3233.25	3018.60	2012.4
4.00	964.00	900.0	600.0	500	3408.22	3181.95	2121.3
4.25 4.50	1022.32	954.4 954.4	618.3 636.8	55.∞ 60.∞	3733.57 3733.57	3337.2 8485.7	2224.8 2323.8
4.75	1050.76	981.0	654.0	65.00	3885.88	3627.9	2418.6
5.00 5.25	1077.75	1006.2	670.8	70.00 75.00	4032.41 4174.12	3764.70 3897.0	2509.8
5.50	1130.26	1055.2	703.5	80.00	4311.00	4024 80	2508.0 2683.2
5.75 6.00	1155.83	1079.1	7*9-4	85.00	4443.55	4148.5	2765.7
6.00	1180.42	1101.0	734.7	95.00	4572.73 4698.05	4148.5 4269.1 4386.1	2846. I 2924. I
6.40	1228.62	1140.0	764.7	100.00	4820.00	4500.0	3000.0
6.75 7.00	1252.23	1169.1	7793.4	200.00	6816.44	6363.90	4242.6
7.00	1275.37	1190.7	1 793.8	250.00	7615.0	7110.00	4740.0

WEIRS OR OVERFALLS.—TABLE 2

DISCHARGE,

IN CUBIC FEET PER MINUTE FOR ONE FOOT IN LENGTH.
RULE.—Multiply the Quantity in the Table, opposite the given Depth, by
the length of the Weir in Feet; using Decimals for Fractional Parts.

Depth falling over.	Discharge per Minute.	Depth falling over.	Discharge per Minute.	Depth falling over.	Discharge per Minute.
Feet.	Cubic Feet,	Feet.	Cubic Feet.	Feet.	Cubic Feet.
	_	.51	77.53	1.01	217.21
.02	0.60	.52	79.87	1.02	220.42
.03	1.10	•53	82.22	1.03	223.63
.04	1.70	· 5 4	84.56	1.04	226.84
.05	2.37	•55	86.69	1.05	230.05
•06	3.13	.56	89.24	1.06	233.47
.07	3.93	•57	91.59	1.07	236.68
.08	4.82	. 58	93.93	1.08	240.32
.09	5.75	.59	96.49	1.09	243.53
-10	6.73	-60	98.83	1.10	246.95
.11	7.77	.61	101.38	1.11	250.38
.12	8.84	.62	103.94	I.12	253.80
.13	9.97	.63	106.50	1.13	257.23
,14	11.14	.64 .65	109.05	1.14	260.65 264.07
.15	12.35	.66		1.15	
.16	13.63	.67	114.17		267.50
.17 .18	14.91	.68		1.17	270.92
.10	16.18	.69	119.28	1.10	274 - 35
· 2 0	17.46 19.05		124.60	1.20	277·77 281.19
.21	18.95	.70		1.21	284.83
.22	20.44 21.93	.71 .72	127.37	1.22	288.26
.23	23.43	.73	132.91	1.23	291.89
.24	24.92	•74	135.46	1.24	295.32
,25	26.62	•75	138.88	1.25	298.95
.26	28.11	.76	141.66	1.26	302.59
.27	29.82	•77	144.45	1.27	306.23
.28	31.60	.78	147.23	1.28	309.87
.29	33.22	•79	150.22	1.29	313.51
·30	34.93	-80	153.00	1.30	317.14
,31	36.63	18.	156.00	1.31	320.57
.32	38.34	.82	158.78	1.32	324.42
•33	40.25	.83	161.78	1,33	328.23
•34	41.17	.84	164.56	1.34	331.70
.35	43.88	.85	167.77	1.35	335.34
.36	45.00	.86	170.55	1.36	339.19
•37	47.71	.87	173.55	1.37	343.04
.38	49.84	.88	176.55	1.38	346.89
•39	51.76	,89	179.54	1.39	350.74
· 4 0	53.67	.90	182.54	1.40	354.38
.41	55.80	.91	185.75	1.41	358.02
,42	57.93	.92	188.74	1.42	361.87
•43	60.06	•93	191.74	1.43	365.94
•44	62.19	-94	194.95	1.44	369.79
•45	64.32	•95	197.95	1.45	373.64
,46	66.45	.96	200.94	1.46	377.28
.47	68.58	.97	204.37	1.47	381.13
.48	70.71	.98	207.58	1.48	384.98
· 50	73.05 75.10	1. 00	210.79	1.49	389.65
•00	75.19	T.UU	214.00	1.50	392.90

WEIRS OR OVERFALLS.—TABLE 2

DISCHARGE,

IN CUBIC FEET PER MINUTE FOR ONE FOOT IN LENGTH.
RULE.—Multiply the Quantity in the Table, opposite the given Depth, by
the length of the Weir in Feet; using Decimals for Fractional Parts.

	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
Depth	Discharge	Depth	Discharge	Depth	Discharge
falling over.	per Minute.	falling over.	per Minute.	falling over.	per Minute.
.,,,,,	#1.11UVC.	U161.		U. 61.	Ainute.
Feet.	Cubic Feet.	Feet.	Cubic Feet.	Feet.	Cubic Feet.
1.51	396.97	2.01	609.90	2.51	850.65
1.52	401.03	2.02	614.18	2.52	855.78
1.53	404.89	2.03	618.89	2.53	860.70
1.54	408.95	2.04	623.38	2.54	866.27
1.55	412.80	2.05	627.66	2.55	871.40
1.56	416.87	2.06	632.58	2.56	876.54
1.57	420.94	2.07	637.50	2.57	881.46
1.58	425.00	2.08	641.78	2.58	886.60
1.59	429.07	2.09	646.28	2.59	891.73
1.60	433.13	2.10	651.20	2.60	896.87
1.61	437.20	2.11	655.69	2.61	902.01
1.62	441.26	2.12	659.40	2.62	907.14
1.63	445.33	2.13	664.90	2.63	912.92
1.64	449.18	2.14	669.82	2.64	918.06
1.65	453·25	2.15	674.53	2.65	923.19
1.66	457.10	2.16	679.02	2.66	928.33
1.67	461.59	2.17	683.94	2.67	933.68
r.68	465.88	2.18	688.44	2.68	939.46
1.69	470.16	2.19	692.71	2.69	943.95
1.70	474.44	2.20	698.07	2.70	949.30
1.71	478.29	2.21	702.77	2.71	954.44
1.72	482.57	2.22	707.70	2.72	959 • 79
1.73	486.85	2.23	712.40	2.73	965.14
1.74	491.13	2.24	717.11	2.74	970.27
1.75	495.41	2.25	722.25	2.75	975.62
1.76	499.69	2.26	726.74	2.76	980.97
1.77	503.97	2.27	731.45	2.77	986.32
1.78	508.25	2.28	736.59	2.78	992.31
1.79	512.53	2.29	741.29	2.79	997.02
1.80	516.81	2.30	746 .00	2.80	1,002.32
1.81	521.09	2.31	751 - 35	2.81	1,007.72
1.82	525.37	2.32	756.06	2.82	1,013.29
1.83	529.65	2.33	760.77	2.83	1,018.64
1.84	533.93	2.34	766.12	2.84	1,023.99
1.85	538.42	2.35	770.82	2.85	1,029.55
1.86	542.92	2.36	775.53	2.86	1,034.90
1.87	546.98	2.37	780.67	2.87	1,040.46
1.88	551.48	2.38	785.80	2.88	1,045.81
1.89	555.97	2.39	790.51	2.89	1,051.38
1.90	560.25	2.40	795.44	2.90	1,056.94
1.91	564.74	2.41	800.36	2.91	1,062.29
1.92	569.02	2.42	805.28	2.92	1,067.86
1.93	573.52	2.43	810.63	2.93	1,073.42
1.94	578.22	2.44	815.55	2.94	1,078.34
1.95	582.50	2.45	820.49	2.95	1,083.91
1.96	587.21	2.46	825.40	2.96	1,089.47
1.97	591.49	2.47	830.32	2.97	1,095.03
1.98	596.20	2.48	835.88	2.98	1,100.60
1.99	600.48	2.49	840.80	2.99	1,106.38
2.00	605.19	1 2.5√	845.73	1 3.00	1,111.94

VELOCITIES OF RIVERS.—TABLE 3

TABLE OF SURFACE, MEAN & BOTTOM VELOCITIES

OF

STREAMS, RIVERS AND TIDAL ESTUARIES.

From 5 to 200 Peet per Minute.

BULE.—The first column represents the average surface velocities at the middle of a river. Any corresponding mean velocity, when multiplied by the area, will give the discharge in cubic feet, per minute. The bottom velocities represent the action on the sides and bottom of any stream, pipe, or cubert, whose mean velocity is known.

Note.—For velocities in inches, per second, divide the tabular numbers by 5.

For miles per hour, multiply the tabular numbers by .01136.

Surface Velocity.	Mean Velocity.	Bottom Velocity.	Surface Velocity.	Mean Velocity.	Bottom Velocity.
Feet Winute.	Feet Winute.	Feet Minute.	Feet Winute.	Feet Minute.	Feet Winute
		1	102.5	82.35	62.2
5.	2.50	.0	105.	84.60	64.2
7.5	3.90	•3	107.5	86.80	66.1
10.	5.45	.9	110.	89.05	68.1
12.5	7.10	1.7	112.5	91.30	70.1
15.	8.85	2.7	115.	9 3⋅55	72.1
17.5	10.65	3.8	117.5	95.75	74.0
20.	12.50	5.0	120 .	98.00	76.0
22.5	14.40	6.3	122.5	100.25	78.0
25.	16.35	7.7	125.	102.50	80.0
27.5	18.30	9.1	127.5	104.75	82.0
30.	20.25	10.5	130.	107.00	84.0
32.5	22.05	12.0	132.5	109.25	86.0
35•	24.30	13.6	135.	111.55	88.1
37.5	26.30	15.1	137.5	113.80	90.1
4 0.	28.35	16.7	140.	116.05	92.1
4 ² ·5	30.45	18.4	142.5	118.30	94.1
45.	32.50	20.0	145.	120.60	96.2
47.5	34.60	21.7	147.5	122.85	98.2
50.	36.70	23.4	150.	125.15	100.3
52.5	38.80	25.1	152.5	127.40	102.3
55.	40.95	26.9	155.	129.65	104.3
57.5	43.05	28.6	157.5	131.95	106.4
60.	45.20	30.4	160.	134.20	108.4
62.5	47.35	32.2	162.5	136.50	110.5
65.	49.50	34.0	165.	138.80	112.6
67.5	51.65	35.8	167.5	141.05	114.6
70.	53.80	37.6	170.	143.35	116.7
72.5	55.95	39.4	172.5	145.65	
75.	58.15	41.3	175.	147.95 150.20	120.9
77.5	60.30	43.I	177.5 180 .		122.9 125.0
80.	62.50	45.0	182.5	152.50	
82.5	64.70	46.7		154.80	127.1
85.	66.90 69.10	48.8	185. 187.5	157.10 159.40	129.2
87.5	-	50.7 52.6	190.	161.70	
90.	71.30		192.5	164.00	133.4
92.5	73.50	54.5	192.5	166.30	135.5
95.	75.70	56.4 58 4		168.60	
100.	77.55 80.15	60.3	197.5 200 .	170.90	139.7 141.8

VELOCITIES OF RIVERS .- TABLE 3

TABLE OF SURFACE, MEAN & BOTTOM VELOCITIES

STREAMS, RIVERS AND TIDAL ESTUARIES.

From 202.5 to 950 Feet per Minute,

Note.-Bottom velocities-

30 feet per minute will not disturb clay with sand and stones.
40 ,, ,, will sweep along coarse sand.
60 ,, ,, fine gravel.
120 ,, ,, ,, rounded pebbles.
180 ,, ,, ,, angular stones.

Surface Velocity.	Mean Velocity.	Bottom Velocity.	Surface Velocity.	Mean Velocity.	Bottom Velocity.
Feet Winute.	Feet Winute.	Feet Winute.	Feet Winute.	Feet Minute.	Feet Winute.
202.5	173.20	143.9	305	268.4	231.9
205.0	175.50	146.0	310	273.1	236.3
207.5	177.80	148.1	315	277.8	240.6
210.0	180.10	150.2	320	282.5 287.2	245.0
212.5	182.40	152.3	325		249.4
215.0	184.75	154.5	330	291.9 296.6	253.8
217.5	187 05	156.6	335		258.2
220.0	189.35	158.7	340	301.2	262.5
222.5	191.65	160.8	345	305.9	266.9
225.0	193.95	162.9	350	310.6	271.3
227.5	196.30	165.1	355	315.3	275.7
230.0	198.60	167.2	360	320.1	280.2
232.5	200.90	169.3	365	324.8	284.6
235.0	203.25	171.5	370	329.5	289.0
237.5	205.55	173.6	375	334.2	293.4
240.0	207.85	175.7	380	338.9	297.8
242.5	210.20	177.9	385	343.6	302.3
245.0	212.50	180.0	390	348.3	306.7
247.5	214.85	182.2	395	353.0	311.1
250.0	217.15	184.3	400	357.8	315.6
252.5	219.50	186.5	405	362.5	320.0
255.0	221.80	188.6	410	367.2	324.5
257.5	224.15	190.8	415	371.9	328.9
260.0	226.45	192.9	420	376.7	333.4
262.5	228.80	195.1	425	381.4	337.8
265.0	231.10	197.2	430	386.1	342.3
267.5	233.45	199.4	435	390.8	346.7
270.0	235.75	201.5	440	395.6	351.2
272.5	238.10	203,7	445	400.3	355.7
275.0	240.45	205.9	450	405.1	360.2
277.5	242.75	208.0	500	452.5	405.0
280.0	245.10	210.1	550	500.0	450.1
282.5	247 - 45	212.4	600	547 • 7	495.5
285.0	249.75	214.5	650	595.5	541.0
287.5	252.10	216.7	700	643.3	586.7
290.0	254.45	218.9	750	691.2	632.5
292.5	256.75	221.0	800	739.2	678.5
295.0	259.10	223.2	850	787.3	724.6
297.5	261.45	225.4	900	835.4	770.8
300.0	263.75	227.5	l 950	883.6	817.2

ARTERIAL DRAINS, NEW CUTS AND RIVERS .- TABLE 4

TABLE OF DISCHARGE AND VELOCITIES,

IN CUBIC AND LINEAL FEET PER MINUTE,

For Cuts of any kind at the Specified Rates of Fall per Mile, and with the Depths of Water and Bottom Widths stated in the First Column.

With Slopes of 2 to 1 throughout.

For the Discharge and Velocity of any Cuthaving a Fall per Mile of Take twice the Discharge & Velocity from the Columns respectively of	In. 2 3 4 5 6 9	For the Discharge and Velocity of any Cut having a Fall per Mile of	In 4 1 1 1 1 1 1 2 1 2 1 1	Take half the Dis- charge and Velocity from the Columns respective- ly of	In. 2 3 4 5 6 9
--	-----------------	---	----------------------------	--	-----------------------------------

							•		•	~, -			
F	ALL.	2 inc		3 inc	hes. nile.		c hes. mile.	5 inc	c hes . mile.	6 in	ches. nile.	9 ind	
W	ttom idtha Feet	charge cubic	Vel. feet.	Dis- charge cubic feet.	Vel. feet.	Dis- charge cubic feet.	Vel. feet.	Dis- charge cubic feet.	Vel.	Dis- charge cubic feet.	Vel. feet.	Dis- charge cubic feet.	Vel. feet.
Depth 1.5 Feet.	34567	•	30.6 31.4 32.1 32.7 33.2		37.4 38.5 39.3 40.0 40.6	389 466 543 624 703	43.2 44.4 45.3 46.2 46.9	435 521 609 698 787	48.3 49.6 50.8 51.7 52.5	476 571 666 764 858	52.9 54.4 55.5 56.6 57.2	578 698 811 925 1056	64.3 66.5 67.6 69.3 70.4
Depth 1	8 10 12 14	554 612 669 783 897	33.6 34.0 34.3 34.8 35.2	680 749 817 958 1099	41.2 41.6 41.9 42.6 43.1	784 866 946 1007 1270	47.5 48.1 48.5 49.2 49.8	876 966 1057 1237 1415	53.1 53.7 54.2 55.0 55.5	960 1056 1156 1354 1555	58.2 58.7 59.3 60.2 61.0	1171 1296 1416 1658 1907	70.9 72.0 72.6 73.7 74.8
O Feet.	34 56 7	477 563 642 726 820	34.1 35.2 35.7 36.3 37.3	585 686 794 900 1003	41.8 42.9 44.1 45.0 45.6	677 798 918 1034 1161	48.4 49.9 51.0 51.7 52.8	759 888 1020 1114 1295	54.2 55.5 56.6 57.2 58.8	831 976 1118 1264 1414	59.4 61.0 62.1 63.2 64.3	1016 1196 1375 1556 1729	72.6 74.8 76.4 77.8 78.6
Depth 2.0 Feet.	8 9 10 12 14	897 985 1081 1245 1429	37·4 37·9 38.6 38.9 39·7	1109 1214 1324 1529 1742	46.2 46.7 47.3 47.8 48.4	1279 1401 1523 1750 2019	53·3 53·9 54·4 55·0 56.1	1425 1557 1702 1968 2257	59.4 59.9 60.8 61.5 62.7	1716 1862 2161	65.4 66.0 66.5 67.6 68.7	2279 2656	79·7 80.8 81.4 83.0 84.1
5 Feet.	345 67	754 868 985 1103 1221	37.7 38.6 39.4 40.1 40.7		46.1 47.3 48.3 49.2 49.9	1066 1228 1387 1556 1731	53·3 54·6 55·5 56·6 57·7	1552 1738	58.8 61.0 62.1 63.2 64.3	1496 1705 1905	64.9 66.5 68.2 69.3 70.4	1841 2090 2343	79.7 81.9 83.6 85.2 86.3
Depth 2.5 Feet.	8 10 12 14	1463 1582 1823	41.2 41.8 42.2 42.9 43.6	1561 1938 2235	50.6 51.2 51.7 52.6 53.4	1894 2058 2227 2571 2926	58.3 58.8 59.4 60.5 61.6	2310 2493 2873	64.9 66.0 66.5 67.6 68.7	2520 2741 3153	71.5 72.0 73.1 74.2 75.3	3097 336e 3880	87.4 88.5 89.6 91.3 92.4
	•	,	•	•	•		•	•	•		•	1	i

ARTERIAL DRAINS, NEW CUTS AND RIVERS-TABLE 4

DISCHARGE AND VELOCITIES

IN CUBIC AND LINEAL FEET PER MINUTE.

At the following Rates of Pall.

FA	LL.	2 inches per mile.		3 inches per mile.		4 inch: s per mile.		5 inches per mile.		6 inc		9 inches per mile.	
wi	ttom dths. Feet.	Dis- charge cubic feet.	Vel.	Dis- charge cubic feet.	Vel.		Vel. feet.	Dis- charge cubic feet.		Dis- charge cubic feet.	Vel.	Dis- charge cubic feet.	Vel. feet.
00 feet.	4 6 8 10 12	1245 1551 1865 2179 2495	44·4 45·4	2664	50.9 52.9 54.4 55.5 56.6	2196 2633	58.8 61.0 62.7 63.8 64.9	2455 2931 3432	65.4 68.2 69.8 71.5 72.6	2160 2812 3234 3773 4304	72.0 74.8 77.0 78.6 79.7	3287 3948 4617	91.3 94.0 96.2
Depth 8,00 feet.	14 16 18 20 25	2814 3135 3456 3783 4594	47.5 48.0 48.5	3847 4233 4617	57.2 58.3 58.8 59.2 60.5	4428 4867	66.0 67.1 67.6 68.2 69.8	4929 5465 5959	73 · 7 74 · 8 75 · 9 76 · 4 78 · 1	4848 5405 5976 6521 7923	80.8 81.9 83.0 83.6 85.2	6639 7322 8018	99.0 100.6 101.7 102.8 104.5
50 feet.	6 8 10 12 14	2093 2483 2656 3271 3675	46.0 47.3 48.3 49.2 50.0	3029 3534 3983	56.1 57.7 59.4 59.9	2953 3491 4052 4608 5174	64.9 66.5 68.1 69.3	3927 4516	72.6 74.8 75.9 77.5 78.6	3626 4273 4968 5672 6350	79.7 81.4 83.5 85.3 86.4	5255 6087 6942	97.3 100.1 102.3 104.4 105.5
Depth 8,50 feet.	16 18 20 25 30	4073 4480 4885 5913 6915	50.6 51.2 51.7 52.8 53.4	4999 5486 5972 7201	61.1 62.7 63.2 64.3 64.9	6300 6908 8310	71.5 72.0 73.1 74.2 75.3	6416 7070 7692	79·7 80.8 81.4 83.0	7043 7752 8420 10, 225 11, 966	87.5 88.6 89.1 91.3 92.4	9476	111.0
00 feet.	6 8 10 12 14	2565 3187 3672 4160 4646	45.8 49.8 51.0 52.0 52.8	3904 4478 5104	59.4 61.0 62.2 63.8 64.3	4505 5184 5848	68.7 70.4 72.0 73.1 74.2	4278 5030 5781 6552 7304	78.6 80.3 81.9	4710 5530 6336 7216 8034	84.1 86.4 88.0 90.2 91.3	5757 6752 7718 8800 9829	110.3
Depth 4.00 feet.	16 18 20 25 80	5126 5616 6104 7339 8527	53·4 54·5 54·5 55·6 56·1	6864 7448 9002	65.4 66.0 66.5 68.2 69.3	8624 10, 375	75·3 76·4 77·0 78·6 79·7	8073 8871 9609 11,616 13,543	85.3 85.8 88.0	8870 9724 10, 528 12, 698 14, 865	92.4 93.5 94.0 96.2 97.8	10, 925 11, 897 12, 936 15, 615 18, 225	114.4 115.5 118.3
.50 feet.	8 10 12 14 16	4005 4565 5140 5692 6311	\$2.3 \$3,4 \$4.4 \$5.0 \$6.1	5591 6284 6996	63.8 65.4 66.5 67.6 68.7	6438 7276	73 · 7 75 · 3 77 · 0 77 · 8 78 · 6	6303 7190 8108 9056 9967	84. I 85. 8	6946 7800 8883 9905 10,890	90.8 92.4 94.0 95.7 96.8	8,500 9,687 10,915 12,130 13,365	113.3
Depth 4.50 feet.	18 20 25 30 85	6, 864 7, 464 8, 920 10, 424 11, 860	56.5 57.2 58.3 59.4 59.9	8408 9109 10, 939 12, 741 14, 592	69.2 69.8 71.5 72.6 73.7	12,622	79·7 80.8 82.5 83.6 84.7	10, 825 11, 771 14, 121 16, 409 18, 850	90.2 92.3	18,041	97.9 99.0 101.2 102.8 103.9	14, 569 15, 790 18, 926 22, 095 25, 265	121.0 123.7 125.9

ARTERIAL DRAINS, NEW CUTS AND RIVERS .- TABLE 4

DISCHARGE AND VELOCITIES

IN CUBIC AND LINEAL PERT PER MINUTE,

At the following Rates of Pall.

F	LL.	2 inches. per mile.		3 incl		4 incl		5 inch per mi		6 inc		9 inc	
wi	ttom dths. Feet.	Dis- charge cubic feet.	Vel. feet.	Dis- charge cubic feet.		Dis- charge cubic feet.	Vel. feet.	Dis- charge cubic feet.	Vel. feet.	Dis- charge cubic feet.	Vel.	Dis- charge cubic feet.	Vel.
00 feet.	8 10 13 14 16	4896 5560 6215 6924 7579	54: 55: 56: 57: 59:	5985 6810 7612 8448 9295	66 68 69 70 71	6930 7860 8833 9768 10725	77 78 80 81 82	7767 8800 9867 10884 12012	86 88 90 91 92	8505 9630 10769 11952 13156	94 98 180 101	10395 11830 13244 14628 16055	115 118 120 122 123
Depth 5.00 feet.	18 20 25 30 36	8232 8985 10075 12320 14107	58 60 61 62 63	10080 10965 12985 15180 17325	72 73 74 76.	11704 12615 14997 17480 19912	83 84 86 87 88	13090 14100 16835 19580 22275	93 94 96 98 99	14322 15510 18462 21440 24480	102 103 105 107 109	17556 18960 22610 26280 29947	125 126 129 131
6.00 feet.	10 12 14 16 18	7906 8784 9609 10533 11394	60 61 62 63 63	9649 10771 11840 12936 13950	73 75 76 77 77	11180 12441 13650 14884 16146	85 86 87 88 90	12474 13867 15272 16732 18018	94 96 98 99 100	13728 15192 16723 18276 19803	104 105 107 109 110	16830 18604 20498 22344 24246	127 129 131 133
Depth 6.	20 25 30 35 40	12249 14518 16758 19063 21278	64 65 66 67 68	15091 17826 20512 23265 26083	78 80 81 82 83	17433 20512 23688 26987 30201	55 35 S	19430 22954 26586 30230 33789	101 103 105 107 108	21331 25152 29106 33022 37065	111 113 115 117 110	26150 30880 35758 40467 45302	126 139 142 143 145
7.00 feet.	10 12 14 16 18	10718 11811 12936 13965 15142	64 65 66 66 67	13120 14396 15836 17199 18457	78. 79. 81. 82.	15170 16707 18326 19845 21436	90 94 93 95	17001 18709 20462 22155 23878	101 103 104 105 106	1 564 20511 22402 24255 26252	119 113 114 115	22713 24988 27479 29799 32144	135 137 140 142 143
Dep h 7	20 25 30 35 40	16231 19055 21837 24696 27631	68 70 71 72 73	19873 23286 26765 30184 33679	83 85 87 88 89	22919 26863 30984 34883 39085	96 98 100 102 103	25622 30030 34557 39033 43659	108 100 112 114 115	28155 32869 37884 42737 47703	118 120 123 125 126	34557 40376 46415 52444 58627	145 148 151 153 155
8.00 feet.	12 15 20 25 30	15388 17310 20736 24173 27526	69 70 72 74 75	18838 21303 25372 29618 33782	84 86 88 90 92	21683 24552 29289 34079 39008	96.8 99.0 102 104 106	24259 27404 32774 38244 43534	108 110 114 116 118	26611 29958 35884 41820 47729	119 121 125 127 130	32636 36803 44035 51233 58475	146 148 153 156 159
Depth 8.	35 40 45 50 60	30967 34496 37820 41500 48092	76 77 77 78 79	37903 42112 46457 50846 58854	93 94 95 96 97	43941 48518 53680 58660 68217	107 108 110 111	49123 54700 60121 65630 76243	120 122 123 124 125	53815 59852 65733 71913 83113	132 133 135 136 137	65973 73158 80528 87964 102326	162 163 165 166 168
												-	

ARTERIAL DRAINS, NEW CUTS AND RIVERS .- TABLE 42

DISCHARGE AND VELOCITIES

IN CUBIC AND LINEAL FEET PER MINUTE,

With Slopes of 8 to 1,

CHIEFLY FOR APPLICATION TO LARGE RIVERS.

(See Remarks in the Rules for Use.)

At the following Rates of Pall.

FALL.	2 inches per mile.		4 inches per mile.	_	5 inch per mi		6 inch per mil	
Bottom widths. Feet.	Dis- charge in cubic feet.	Dis- charge et. in cubic feet.			Dis- harge cubic feet.	Vel. feet.	Dis- charge in cubic feet.	Vel. feet.
40 60 60 100 120 120 140	52,483 7 66,310 8	75 47, 308 92 88 64, 310 96 81, 452 98 11 98, 704 99 115, 200 100 133, 824 102	54-774 10 73,920 11 104,016 11 114,080 11 133,632 11 154,816 11	0 3 I 5 I	60, 928 83, 328 04, 832 26, 976 49, 760 71, 872	119 124 126 128 130 131	66,560 90,720 114,816 139,872 164,736 188,928	130 135 138 141 143 144
100 feet. 100 feet. 140 fe	77, 220 8	70,700 IOI 94,500 IO5 118,800 IO8 141,700 IO9 166,500 III 190,400 II2	81,200 11 108,900 12 136,400 12 163,800 12 192,000 12 221,000 13	1 1 1 1 1 6 1 8 2 2 2	91,000 21,500 52,900 83,300 14,500 46,500	130 135 139 141 143 145	100,100 133,200 167,200 200,200 235,500 270,300	143 148 152 154 157 159
Dept. 18 feet. 190 190 190 190 190 190 190 190 190 190	131,083 9 156,182 9 183,268 9 209,088 9	286,944 122	149,760 13 185,136 13 220,320 13 258,336 13 295,680 14 331,632 14	3 2 5 2 8 2 0 3	67,040 07,408 46,432 90,160 31,584 71,616	145 149 151 155 157 158	183,168 228,288 269,280 318,240 364,264 409,248	159 164 165 170 172 174
18 feet: 100 120 140 140 140 140 140	205.680 11	7 266, 240 130 9 314, 944 133 10 362, 880 135 12 412, 090 137	254,016 14 309,248 15 364,672 15 422,016 15 475,264 15 532,480 16	3 4 4 7 4 8 5 5 5	83, 392 46, 112 07, 296 70, 500 32, 416 95, 712	164 169 172 175 177 179	301,040 378,880 445,206 513,408 583,550 652,288	180 185 188 191 194 196
100 140 180 180 220 260 300	488,000 12	12 604,000 ISI 15 739,200 IS4 17 873,600 IS6 19 1011,200 IS8	\$40,800 16 696,000 17 850,600 17 1008,000 18 1164,800 18 1324,800 18	4 7 7 9 0 11 2 13	01,600 76,000 50,400 31,200 05,600 90,400	188 194 198 202 204 207	662,400 852,000 1041,600 1237,600 1427,200 1627,200	207 213 217 221 223 226
A 2 300	816, 480 13 960, 996 13	5 1003, 968 166 17 1177, 344 168 10 1362, 528 171 11 1544, 544 173	946, 380 18 1155, 168 19 1359, 552 19 1569, 696 19 1776, 672 19 1987, 488 20	1 124 4 15 7 17 9 19	63, 392 94, 272 20, 736 52, 960 90, 944 24, 800	209 214 217 220 223 225	1165,152 1421,280 1667,904 1928,256 2178,432 2432,448	229 235 238 242 244 246
世界 600 2 800 2 1000	1153, 040 14 2073, 456 15 3006, 864 15 3935, 568 15 4917, 624 16	15 1415, 456 178 13 2547, 776 188 17 3696, 336 193 19 4851, 392 196 12 5979, 344 197 12 7118, 496 198	1638, 112 20 2040, 784 21 4251, 744 22 5593, 952 22 6950, 608 22 8233, 008 22	7 32 2 47 6 62 9 77	28, 960 93, 136 68, 848 37, 504 39, 760 67, 760	230 243 249 252 255 255	1964,144 3604,832 5228,496 6831,552 8468,208 10066,560	247 266 273 276 279 280

CIRCULAR CULVERTS .- TABLE 4b.

TABLE OF DISCHARGE AND VELOCITIES,

IN CUBIC AND LINEAL FRET PER MINUTE,

For Culverts or Sewers of different diameters, not full, but carrying Water to two several Depths and Areas specified in each case.

The use of this Table may be extended by the following Rule:-

1	Ft. 4º Mile.						F	, <i>t. ₩</i> t. ₩	vwai	y 40066.	Ft.₩ Ft.				t. 🌮 file.	
	For the Discharge and Velocity of a Culvert 20 from					charg elocit	take 3 For Disched 4 elocity 5 city of Culve				1	ha Di & fro	schar Veloci	he ge ity he	he 3 re 4 ty 5	
	RATE 2 Feet Wile.				₩.	Feet Mile. 1760	₩.	Feet Mile. 1320	5 Feet & Feet W Mile.			7 F	file.			
	_		ATITY	_	1	 	1	<u> </u>	T	\vdash	ī		1		ī	
Dia of Cu	1	Run Depth	NING.	Dis.		Dis. per Min.	Vel per Min.	Dis. per Min.	Vel. per Min.	Dis. per Min.	Vel. per Min.	Dis. per Min.	Vel. per Min.	Dis. per Min,	Vel. per Min.	
Pt. I	'n.		1	t.C. F	1		1	C. Ft	1 1	C. Ft.	Feet.	C. Ft.	Feet.	C. Ft.	Feet.	
8.0	{	6. o 4. o	40. 4 25. 1	23,91	1 155.6	8, 460 4, 782	190.	9,777 5,529	242. 0 220. 0	10, 932 6, <i>1</i> 78	270. 6 245. 8	11, 977 6, 772	296. 4 269. 5	12, 932 7, 312	320. I 290. g	
7.0	{	5· 3 3· 6	30. 9 19. 2	3 4, 93 42, 79	3 159. 5 4 145. 2	6, 056 3, 429	195. 8 178. 2	6, 990 3, 968	226. o 206. 2	7, 825 4, 423	253. 0 229. 9	8, 557 4, 857	276. 6 252. 4	9, 254 5, 238	299. 2 272. 2	
6.0	1	4.6 3.0	22. 7 14. I	2 3, 349 3 1, 90	147·4 134·7	4, 111 2, 331	180. g 165. c	4, 748 2, 689	209. o 190. 3	5, 311 3, 008	233.7 212.8	5, 811 3, 303	255.7 233.7	6, 273 3, 559		
5.0	1	3. 9 2. 6	15.7 9.8	82, 13 61, 21	135. 3 123. 2	2, 612 1, 486	165. 5 150. 7	3,020 1,719	191.4 174.3	3, 376 1, 920	113.9 194.7	3,697 2,099	234. 3 212. 8	3, ç92 2, 265	253.0 229.9	
4.8	1	3.6 2.4	13. 7 8. 5	61,786 21,∞7	120. 8 118. 2	2, 195 1, 237	159. 5 145. 2	2, 535 1, 429	184. 2 167. 7	2, 830 1, 598	205. 7 187. 5	3, 103 1,748	225. 5 205. 1	3, 353 1, 888	243. 6 221. 6	
4.31	{		11. 5 7. 1.	11, 431 805	124. 3 113. 3	1,754 990	152. 3 138. 6	2,026 I, I43	176. o 160. o	2, 266 1, 280		2, 482 I, 402		2,678 1,512		
4.0	{	3. O 2. O	10. 10 6. 21	1, 22 2 691	121. o 110. o	I, 494 846	147.9 134.7	1,728 974	171. 0 155. I	1,933 1,091	191. 4 173. 8	2, 116 1, 195	209. 5 190. 3	2, 289 I, 292		
3.9	₫,	2. 9 . 10			117. 1	1, 268 723	143. o 130. g	1, 468 832	165. 5 150. 7	1, 639 932	184. 8 168. 8	1, 795 1, 020	202. 4 184. 8	1, 942 1. 098	218. o 199. 6	
3.41	1	2.6] 1.8]	7. 17 4. 47		110. 5 100. 1	970 548	135. 3 122. 6	1, 120 634	156. 2 141. 9	1, 254 708	174. 9 158. 4	1, 372 777	191. 4 173. 8	1, 483 838	206. 8 187. 5	
8.0	1	2. 3 1. 6	5. 68 3. 53		104. 5 95. I	725 412	127. 6 116. 6	837 476	147·4 134·7		165. 0 150. 7	1,028 582	180. g 165. a	1, 109 629	195. 2 178. 2	
2.9	(2. 0] I. 4]	4-77			585 332	122. 6 111. 6	677 384	141.9 129.2	756 430	158. 4 144. 6		173. & 158. 4	895 508	187. 5 171. 0	
2.54	(. 101 I. 22	3. 82 2. 37				1 16. 0 105. 0	511 288	133.6 121. 5	57 I 322	149. 6 135. 8	626 353	163. 9 149. 0	677 381	177. I 160. 6	
2.0 {		1.6 1.0	2. 52 1. 57			263 149	104. 5 95. 1	304 173	120. 4 110. 0	340 193	134. 7 123. 2		147• 4 134• 7	402 228	159. 5 145. 2	
1.6 {		· 9	I. 41 0.88			127 72	90. 2 81. 9	147 83	104. 5 94. 6		16. 6 105. 6		127. 6 116. 0	195	38.0 24.8	
1.0 {		:8	o. 63 o. 39	38 22		46 26	73·7 67·1	54 30	85. 2 77· 5	60 34	95. I 86. 9		104. 5 95. I		12. 7 102. 8	

EGG-SHAPED CULVERTS .- TABLE 4c.

TABLE OF DISCHARGE AND VELOCITIES,

IN CUBIC AND LINEAL FRET PER MINUTE,

For different sized Culverts or Sewers of the Egg form, not full, but carrying Water to the several Depths and Areas specified in each case.

The use of this Table may be extended by the following Rule:—

	Ft. *P* Mile.				Ft.∦ Mile				Ft. P Mile.							't. †P Mile.	
J	and Velocity of a 20 Culvert having a fall of 24				Take wice the Discharge 2 Velocity rom the Columns f			For the Discharge and Velo- city of any Culvert having a light					half Dis & V fron	charge elocity		2 8 4 5 6 7	
	RATE	o f	FA	LL.		Feet Mile.		Feet Mile.		Feet Mile.		Feet Mile.		Feet Mile.		Feet Mile.	
	Size Culve		QU RU Dept	ANTITY NNING. h Area	Dis. per Min.	Vel. per Min.	Dis. per Min.	Vel per Min.	Dis. per Min.	Vel. per Min.	Dis. per Min.	Vel. per Min.	Dis. per Min.	Vel. per Min.	Dis. per Min.	Vel. per Min.	
Fi	. Ins. Ft /ert. 7	. Ins.	Ft. I	. 8q.Ft.				l	C.Ft.	1 1	ł	Feet.		Feet.	C.Ft.		
6	8×8	9{	3 2	1		1		ı	ı					198.5		1	
5	10×8	6 {	4 3					1	ı	1 1			ļ	206.8 189.2		1	
5	5×3	s {	4 0	1				1				1		200.2 182.6		111	
4	7×2	ر	3 5	7.51										185.3			
-	1 ^ 20	9 {	2 3	4.48	436	97•3	534	119.3	618	138.a	692	154.5	756	168.8	818	182.6	
8	9×2	s {	2 9 1 10	4.93		-								167.2 148.5	1	180.4 160.6	
8	4×2	₀{	2 6 1 8	4.01					i 1	128. I				156.7 143.5		169.4	
2	0×1		1 6			70.9				100.6		112.7		123.2		133.1	
Z	O×1	3 {	т о	0.87	52	59.9	64	73.7	74	85.2	82	95.1	90	103.9	98	112.7	
1	4×0	10{	1 0 0 8	0.66	38 20	58.3 53.3	47 25	70.9 66.0		81.9 75.9		91.8 85.2		100.6 93.5	. 1	108.9	
											l			1			

PIPES UNDER PRESSURE.-TABLE 5.

TABLE FOR DISCHARGE,

IN CUBIC FEET PER MINUTE,

APPLICABLE TO ANY LENGTH AND FALL

Diameter of Pipes 1 inch to 10 feet.

RULE.—When the length, fall, and diameter are given, divide the tabular number opposite the diameter by the square root of the rate of inclination; the result will be the discharge in cable feet per minute.

When the length, fall, and discharge are given, multiply the discharge by the square roof of the rate of inclination; find the nearest corresponding number in the table, and opposite to it is the required diameter.

When the length, discharge and diameter of pipes are given, divide the tabular number for the given diameter by 'he discharge; square the result, and divide by it the length of pipe; the quotient is the head required for driving the given quantity of water through the pipe.

Note .- All terms are to be taken in feet and cubic feet oer minute.

	meter ipes.	Tabular No.		meter Pipes	Tabular No.		meter Pipes.	Tabular No.
Ft.	In.	+√Fall.	Ft	. In.	+ VFall.	Ft.	In.	+√Fall.
0	1	47	- 1	9	9, 544	3	6	53,994
0	13	13.0	- 6	10	10,717	3	7	57, 250
0	2	26.4	- 1	6.6	4,971	3	8	60,625
0	3	73.6	2	0	13, 327	3	9	64, 142
0	4	150.7	2	4	14,753	3	10	67,770
0	5	262.9	2	2	16, 267	3	11	71,494
0	6	416.5	2	3	17,881	4	0	75, 391
0	7	611.4	2	4	19, 523	4	3	87,713
0	8	852. 8	2	5	21,375	4	6	101, 190
0	9	1, 147.7	2	6	23, 282	4	9	115,844
0	10	1,492.1	2	7	25, 263	5	0	131,700
0	11	1,892	2	8	27, 335	5	6	167, 134
6	0	2, 356	2	9	29, 545	6	0	207,752
1		2,875	2	10	31,826	6	6	253,764
1	2	3, 459	2	11	34, 208	7	0	305, 384
1	3	4, 115	3	0	36, 726	7	6	362, 871
1	4	4, 806	3	1	39, 319	8	0	426, 436
•	5	5,621	3	2	42,018	8	6	496, 220
1	6	6, 492	3	3	44, 861 '	9	0	572, 343
1	7	7, 259	3	4	47,674	9	6	655, 124
	8	8, 439	3	5	50,811	10	0	745,014

EXAMPLE.—Required the discharge of a pipe 6 inches diameter and 2,000 feet long, with 20 feet fall:—

$$\frac{2,000}{20}$$
 = fall 1 in 100, then $\sqrt{100}$ = 10

and Tabular Number $\frac{416.5}{10} = 41.65$ cubic feet per minute.

Note.—If half the tabular numbers be taken, the discharge will be nearly that for pipes half full, and the table is thus applicable to sewers, drains, &c.

PIPES UNDER PRESSURE.-Table 5a.

TABLE OF DISCHARGE AND VELOCITIES,

IN CUBIC AND LINEAL FEET PER MINUTE.

FOR PIPES RUNNING FULL WITH A CONSTANT HEAD.

Diameters from 3 to 60 Inches,

With Rates of Fall extending from 5 feet to 35 feet per Mile.

					-									_
FALL.		eet lile.		Feet file.		Feet (ile.		Feet (ile.	25 I	Feet lile.		Feet Mile.		Feet Kile.
RATE.	l in i	056.	i in	528.	l in	352.	1 in	264.	l in 2	211.2	i in	176.0	linl	50.86
Diam. of Pipes.	Disch. per Min.	Vel per Min.	Disch. per Min.	Vel. per Min.	Disch. per Min.	Vel. per Min.	Disch. per Min	Vel. per Min.	Disch. per Min.	Vel. per Min.	Disch. per Min.	Vel. per Min.	Disch, per Min.	Vel. per Min
INCHES.	C Feet	Feet.	C Feet		C Feet		C Feet					Feet.		
3	2,26	45.3	3.2		' '	78.4	4-5	'	1		- ••	111.0		119.8
6	12.8	65.4	18.1	92.4	22.2	113.3	25.6	130.7	28.6	146.1	31.4	160.0	33.9	172.9
9	35.3	79.9	49.9	113.0	61.1	138.3	70.6	159.5	79.0	178.4	86.5	195.6	93.4	211.1
12	72.5	92.5	102.5	130.6	126	159.5	155	196.7	162	205.9	178	225.5	192	243.6
15	127	103.8	179	146.8	219	179.8	253	207.5	283	231.9	310	254-4	335	274.6
18	200	113.5	282	160.3	346	196.5	399	226.8	447	253.7	489	278.0	528	300.4
21	294	122.4	415	173.0	509	211.2	587	244. I	657	273.1	720	299.3	777	323.2
24	410	130.6	580	184.7	710	226.2	820	261.a	917	292.0	1,005	319.7	1,085	345-5
27	550	138.6	778	196.0	953	240. I	1, 100	277.1	1, 230	309.9	1, 348	339-5	1,456	366.5
30	716	146.2	1,013	206.8	1,241	253.1	1,432	292.2	1,602	326.8	1,755	358. I	1,895	386.6
33	909	153.3	1, 286	216.8	1, 575	265.5	1,817	306.3	2, 033	342.7	2, 228	375.6	2, 405	405.5
36	1, 130	160.1	1, 598	226.3	1,957	277 - 3	2, 259	319.9	2, 527	357.8	2, 769	392.2	2,989	423 - 4
39	1, 380	166.5	1,952	235.4	2, 391	288.4	2,759	332.8	ვ, ი 8 6	372.3	3, 383	408.7	3,652	440.4
42	1,661	172.7	2, 350	244.2	2, 878	299.2	3, 32 }	345.3	3,715	386.3	4,071	423.4	4, 395	457.1
45	1,974	178.8	2, 791	252.8	3,419	309.7	3,945	357.3	4, 413	399.8	4, 836	437-2	5, 221	473.0
48	2, 320	184.7	3, 281	261.2	4,018	319.9	4, 637	369. I	5, 187	412.9	5, 684	452.5	6, 137	488.5
51	2,699	190.3	3,817	269.2	4,675	329.7	5, 394	380.3	6,035	425.5	6,614	466.3	7, 140	503.4
54	3, 110	195.6	4, 403	276.9	5, 393	339.2	6, 223	391.4	6,959	437.7	7,630	479-9	8, 237	518.1
57	3, 564	201.1	5,041	284.5	6, 174	348.4	7, 124	401.9	7,967	449.6	8,735	492.7	9, 430	531.9
60	4, 052	206.4	5,731	291.9	7,020	357.6	8, 1∞ I	412.6	9,058	461.4	9,930	505.8	10720	546.1
	•	,		•	-		-				-		-	

FRICTION OF BENDS.—Table 6

THEORETIC HEAD IN INCHES

Required to overcome resistance of Bends from 10° to 9

FOR PIPES, CULVERTS, DRAINS, AND RIVERS,

With Currents having the mean velocities stated in the first column

Norz.—The numbers give the height in inches or decimals required to drive water past the specified bends, varying according to the velocity of discharge.

Examples.—A pipe carrying water at a mean velocity of 300 feet per minute has 3 bends of 20 degrees each $.126 \times 3 = .378$ and 7 bends of 50 degrees each $.632 \times 7 = 4.424$ and 20 bends of 40 degrees each $.446 \times 20 = 8.920$

Total head required 13.722 inches.

A River having a mean velocity of 110 feet per minute

has 5 bends of 45 degrees each = .072 × 5 = .360

and 3 bends of 70 degrees each = .128 × 3 = .384

and 2 bends of 90 degrees each = .144 × 2 = .288

Total additional fall required 1.032 inch.

Mean Velocity		An	gles of	Bend v	with fo	rward	line of	directi	on.	
of Current.	10°	20°	80°	40°	45°	50°	60°	70°	80°	90°
Feet per Minute. 15 20 25 30 35	Ins. of Head. .0008 .00014 .00022 .0003	Ins. of Head. .0003 .0005 .0009 .0012 .0017	Ins. of Head. .0006 .0012 .0018 .0027 .0036	Ins. of Head. .0011 .0020 .0031 .0044 .0060	Ins. of Head. .0013 .0024 .0037 .0054 .0073	Ins. of Head. .0016 .0028 .0044 .0063 .0086	Ins. of Head. .0020 .0036 .0056 .0081	Ins. of Head. .0024 .0042 .0066 .0095 .0129	Ins. of Head. .0026 .0046 .0072 .0104 .0142	Ins. of Head. .0027 .0048 .0075 .0108 .0147
40 45 50 55 60	.0006 .0007 .0009 .0011 .0013	.0022 .0028 .0035 .004 .005	.0048 .0060 .0075 .009	.008 .010 .012 .015	.0096 .012 .015 .018 .021	.012 .014 .017 .021	.014 .018 .022 .027 .032	.016 .021 .026 .032 .038	.018 .023 .029 .035 .042	.019 .024 .030 .036 .043
65 70 75 80 85	.0015 .0017 .0020 .0023 .0026	.006 .007 .008 .009	.012 .015 .017 .019	.021 .024 .028 .031 .036	.025 .029 .033 .038 .043	.029 .034 .039 .042 .051	.037 .044 .050 .057 .064	.045 .052 .060 .068 .076	.049 .057 .065 .074 .084	.050 .059 .007 .077 .087
90 95 100 105 110	.0029 .0032 .0036 .0039 .0043	.011 .012 .014 .015	.024 .027 .030 .033 .036	.040 .045 .049 .054 .060	.048 .054 .060 .066	.057 .063 .070 .077 .085	.072 .081 .090 .099 .108	.086 .095 .106 .117 .128	.094 .105 .116 .128 .140	.097 .108 .120 .134 .144
120 130 140 150 175	.0052 .0061 .0070 .0081 .0111	.020 .023 .027 .031 .043	.043 .050 .059 .067 .092	.071 .083 .097 .111	.086 .101 .117 .135 .185	.101 .119 .138 .158 .217	.129 .151 .176 .202 .277	. 152 . 179 . 207 . 238 . 327	.167 .196 .228 .261	.173 .202 .235 .270
200 250 800 350 400	.014 .022 .032 .044 .057	.056 .087 .126 .172 .224	.120 .187 .270 .367 .480	.198 .309 .446 .607 .793	.240 .375 .540 .735 .960	.281 .439 .632 .867 1.125	.360 .562 .810 1.102 1.440	.424 .662 .953 1.298 1.695	.405 .726 1.046 1.424 1.860	.480 .750 1.080 1.470 1.920

ICTION OF BRIDGES AND PIPES.—TABLE 6a.

TABLE OF APPROXIMATE RISE OF WATER,

CASIONED BY BRIDGES, WEIRS, &c.,

From Gregory's "Mathematics for Practical Men."

.—This table is approximative only, because the velocity must be an ever varying quantity, fluctuating at all times with the amount of river flood, and also greatly depending on the state of river section above and below bridge. The table was taken by Dr. Olinthus Gregory, from Du Buat's theorems.

Vel. of Stream	t	Obstruct enths; eing tak	tions fro the whole ten as u	om one- le section nity.	tenth to of the	
	.10	.20	.30	.40	.50	.60
Feet per Min.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
180	. 05	. 12	.21	.36	.61	1.07
240	.08	. 18	- 34	.58	- 97	1.70
800	. 12	.28	.52	.88	1.49	2.60
360	.16	-37	.69	1. 18	1.99	3-49
480	. 27	. 64	1.19	2.03	3.42	5.99
600	. 42	-99	1.83	3. 12	5.27	9.22

SMEATON'S TABLE OF THE HEAD

FOR DRIVING WATER THROUGH 100 FEET LINEAL OF PIPES,

From 1 to 12 inches diameter, at Velocities increasing from 90 to 270 feet per minute, with the relative discharge in cubic feet per minute, compiled from Smeaton's Papers.

Diam		sume	d Vel	ociti	es of	Wat	er th	rougi	ı Pip	es in	Feet	per	Minu	te.
of Pipes	9	0	15	30	14	50	18	30	21	10	24	FO.	2	70
•		Head.	Dis.	Head.	Dia.	Head	Dis.	Head.	Dis.	Head	Dis.	Head.	Dis.	Head.
Inches.	C. Ft. per M.	Feet.	C. Ft. per M.	Feet.	C. Ft. per M	Feet.	C. Ft per M.	Feet.	C. Ft per M.	Feet.	C Ft. per M	Feet	CFt. per M.	Feet.
1	• 45	1.46	. 60	2.40	.76	3.58	. 92	5. 04	1.08	6.83	1.23	8.92	1.39	11.30
1.5	1.01	0.97	1.36	1.60	1.69	2. 38	2.03	3. 36	2.36	4.56	2.92	5- 94	3.05	7. 52
2	1.81	0.74	2.41	1.20	3. 01	1.80	3.62	2.52	4. 22	3.42	4.82	4.46	5 • 43	5.63
8	4.41	0.42	5.88	o. 8o	7- 35	1.20	8. 82	1.68	10.3	2.28	11.7	2.97	13. 2	3.76
4	7.69	0. 37	10. 26	o .6 o	12.82	0.90	15.39	1. 26	17.9	1.72	20. 5	2. 23	23.1	2.81
6	17.7	0.24	23. 5	0.40	29.4	o .6 0	35. 2	0.84	41. 2	I. I4	47.0	1.48	53.0	1.87
9	39.8	0. 156	53.04	0.27	66. 3	0.40	79.6	0.56	92.8	0.76	106	0.99	119	1.25
12	70.7	0. 12	94-2	0. 20	118	0.31	141	0.42	165	0. 57	188	0.74	212	0.94

This Table will be found to be somewhat similar in its results to Table 5, but is not of so extensive an application, and gives too low a discharge on the larger class of pipes.

EXAMPLE.—42 feet is the head per 100 feet to drive 141 cubic feet, at a velocity of 180 feet per minute, through a 12-inch pipe.

MOTION AND RESISTANCE OF WATER.—Table 6b.

TABLE OF THE RESISTANCE TO ONE SQUARE FOOT,

Moving through Water (or vice versâ),

At Velocities from 60 to 900 Feet per Minute,

And at angles with the line of force from 6 to 90 Degrees.

Note.—This table gives the theoretical resistance due to the several velocities, and is computed by the formula .975 × √ vel. in feet per second — resistance at right angles per square foot, in lbs. The angular resistances are computed from the same formula as Hutton's Experiments, as explained at the head of Table 6c. Resistance for variable figures appears to be almost beyond any assigned rule; for the best information see Beaufoy's Experiments. Resistance under circumstances of compound motion should be at its maximum, according to the known effects of water-wheels, when the surface moves at from one-half to two-thirds of the velocity of the finid, when the best applications produce 75 per cent. of the weight; although at high velocities only 30 per cent. is produced.

Angle of Surface,	Pressu	re per Sq	uare Foo	t for the	followin	g Veloci	ties per l	Minute.
with Line of Resist- ance.	60 Feet.	120 Feet.	180 Feet.	240 Feet.	800 Feet.	480 Feet.	600 Feet.	900 Feet.
Degrees	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
6	.022	.090	.202	•359	.561	1.435	2.242	5.046
7	.027	.109	,246	•437	.682	1.747	2.730	6.142:
8	.033	.133	.298	•530	.829	2.122	3.315	7.459
9	.039	.156	.351	.624	•975	2.496	3.900	8.775
10	.045	.179	.404	.718	1.121	2.870	4.485	10.091
15	.089	-355	.798	1.420	2.218	5.678	8.872	19.963
20	. 152	.608	1.369	2.434	3.802	9.734	15.210	34.222
25	.235	.940	2.115	3.760	5.874	15.038	23.497	52.869
80	.338	1.353	3.045	5.413	8.458	21.653	33.832	76.123
85	•449	1.798	4.045	7.192	11.237	28.766	44.947	101.132
40	.565	2.258	5.081	9.032	14.113	36.130	56.452	127.018
45	.665	2.660	5.985	10.639	16.624	42.557	66.495	149.614
50	.749	2.995	6.739	11.981	18.720	47.923	74.880	168.480
55	.812	3.249	7.310	12.995	20.304	51.979	81.217	182.739
60	.864	3 455	7.775	13.822	21.596	55.286	86.385	194.366
65	.902	3 607	8.117	14.430	22.547	57.720	90.187	202.922
70	.932	3.728	8.389	14.914	23.302	59.654	93.210	209.722
75	.953	3.810	8.573	15.241	23.814	60.965	95.257	214.329
80	.966	3.857	8.678	15.428	24.107	61.714	96.427	216,926
85	.973	3.892	8.757	15.569	24.326	62.275	97.305	218.936
90	.975	3.900	8.775	15.600	24.375	62.400	97.500	219.375

MOTION AND RESISTANCE OF AIR.—Table 6c.

TABLE OF THE RESISTANCE TO ONE SQUARE FOOT,

Moving through Air (or vice versa),

At Velocities from 720 to 3,600 Peet per Minute,

And at angles with the line of force from 6 Degrees to 90 Degrees, or Right Angles.

From Hutton's Experiments.

Note.—Dr. Hutton found that the resistance varied as the square of the velocity nearly, and to an inclined surface, as the 1.84 power of the sine × cosine. This table is constructed thus:—841 s 1.84 c = resistance in ounces to a plate 82 square inches, moving at the rate of 12 feet per second. Mr. Hutton's experiments went to show that the figure of a plane makes no sensible difference in the resistance, but that a convex surface of a hemisphere with a surface double the base, had only half the resistance, and a cone with 74 inches area, at an angle of 25.42, suffers far less resistance than a plane of equal angle, with 32 inches area; the areas being as 74 to 32, and the resistance as 87 to 25. It must be observed that at high velocities, railway and fast canal boat experiments shew that resistance becomes nearly a constant quantity.

with Line of Resist- ance.	720 Feet.	1,080 Feet.	1,440 Feet.	1,800 Feet.	2,400 Feet.	3,000 Feet.	3,600 Feet.
Degrees	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
8	.0054	.0121	.0216	.0337	.060	.094	135
7	.0066	.0148	.0264	.0412	.074	.115	.165
8	.0080	.0180	.0320	.0500	.089	.139	. 200
9	.0094	.0211	.0376	.0587	.105	. 163	.235
10	.0109	.0245	.0436	.0680	.121	. 189	. 272
15	.0215	.0484	.0860	.1344	.239	-373	.537
20	.0368	.0828	.1472	.2300	.409	.639	.920
25	.0569	.1280	.2276	.3556	.632	.988	I.422
30	.0820	. 1845	.3280	.5325	.911	1.423	2.050
35	.1089	.2450	.4356	.6806	1.210	1.890	2.722
40	. 1368	.3078	. 5472	.8550	1.520	2.375	3.420
45	.1611	.3625	. 6444	1.0069	1.790	2.797	4.027
50	.1814	.4081	.7256	1.1337	2.015	3.149	4.535
55	.1968	.4428	.7872	1.2300	2.186	3.416	4.920
60	. 2093	·4709	.8372	1.3081	2.325	3.633	5.232
65	.2185	.4916	.8740	1.3656	2.427	3.793	5.462
70	. 2258	.5080	.9032	1.4112	2.509	3.920	5.645
75	. 2308	.5193	.9232	1.4415	2.564	4.007	5.770
80	. 2336	. 5256	•9344	1.46oc	2.596	4.055	5.840
85	.2358	.5305	.9432	1.4737	2.620	4.093	5.895
90	.2362	.5314	.9448	1,4762	2.624	4.100	5.905

VALUE OF WATER POWER.-TABLE 7

TABLE OF NOMINAL HORSE POWER,

FOR ONE FOOT OF FALL,

With the different Effective Values as applied to Undershot Breast and Overshot Wheels and to the Turbine.

Rule.—Add together the numbers, from the column applicable to the case, opposite the several amounts of cubic feet making up the estimated run of the streams, and multiply the sums by the number of feet of fall; the result is the H. power of the Mill.

Note.—An ordinary Mill will grind about 1 bushel per horse power per hour—a very good one 1.2 bushels—therefore multiply the tabular numbers by 1 or 1.2 (according to the case), and by the number of hours worked, for the bushels ground per diem.

Discharge of Stream	Nominal Horse	Undershot Wheel.	Breast Wheel.	Overshot Wheel.	Turbine.
per Minute.	Power.	Effective H. Power.	Effective H. Power.	Effective H. Power.	Effective H. Power.
Cubic Feet.					
5	.0095	.0033	.0052	,00615	.0071
10	.019	.0066	.016	.012	.0142
15	.028	.0099	.015	.018	.021
20	.038	.013	.020	.024	.028
25	.048	.016	.026	.031	.035
30	.057	.020	.031	.037	.042
35	.066	.023	.036	.043	.050
40	.076	.026	.041	.049	.057
45	.085	.030	.046	.055	.064
50	.095	.033	.052	.061	.071
55 60	.104	.036	.057	.068	.078
60	.114	.040	.062	.074	.085
65	.124	.043	.c67	.080	.092
70	.133	.046	.072	.086	.099
75	.142	.050	.078	.092	.106
80	.152	.053	.083	.098	.113
85	.161	.056	.088	.104	. 121
90	.171	.059	.093	.111	. 1 28
95	.180	.063	.098	.117	.135
10Ŏ	.190	.066	.104	.123	.142
200	.380	130	.208	. 246	. 284
300	.570	.200	.312	.369	.426
400	.760	.260	.416	.492	. 568
500	.950	.330	.520	.615	.710
600	1.140	.400	.624	.738	.852
700	1.330	.460	.728	.861	.994
800	1.520	.530	.832	.984	1.136
900	1.710	.590	.936	1.107	1,278
1,000	1.900	.660	1.040	1.230	1.420
2,000	3.800	1.300	2.080	2.460	2.846
3,000	5.700	2.000	3.120	3.690	4.260
4,000	7.600	2.600	4.160	4.920	5.680
5,000	9.500	3.300	5.200	6.150	7.100
6,000	11.400	4.000	6.240	7.380	8.520
7,000	13.300	4.600	7.280	8.610	9.940
8,000	15.200	5.300	8.320	9.840	11.360
y,000	17.100	5.950	9.360	11.070	12.780
10,000	19.000	6.600	10.400	12.300	14.200

VALUE OF STEAM POWER.—TABLE 8

PROPORTIONS OF DOUBLE-ACTING STEAM ENGINES, Expansive and Non-expansive,

WITH THE WATER EVAPORATED AND COALS CONSUMED.

NOTE .- For Condensation allow 30 Cubic Feet of Water for every Cubic Foot evaporated.

Total Water required for Supply of an Engine = .41 Cubic Feet per Minute per Horse-Power.

STEAM ACTING EXPANSIVELY.

Mean pressure being 6.1 lbs. per square inch through the Stroke.

Steam acting at full pressure throughout the stroke, or 9ib. per square inch.

								are inch.
Horse Power.	Diameter of Piston.	Velocity of Piston per minute.	Length of Stroke.	Strokes per minute.	Water evaporated per hour.	Coals con- sumed per hour.	Horse Power.	Coals con- sumed per hour.
	inches.	feet.	feet.	number.	cubic feet.	lbs.		lbs.
I	7.8	114	1.3	44	0.8	15	1.46	31.5
2	10.25	131	1.75	371	1.57	23	2.95	48
3	12.05	141	2.	35	2.36	30 38	4.4	64 80
4	13.52 14.9	149	2.25	33 314	3.13	3° 45	5.9	94
5 6 7 8	15.9	162	2.65	30	4.7	1 22	7·4 8.85	1111
7	16.9	167	2.8	29	5.5	53	10.3	126
8	17.85	171	2.97	29 281	6.3	67	11.8	140
9	18.7	175	3.1	281	7.05	73	13.3	153
10	19.5	180	3.25	264	7.82	80	14.6	168
12	20.9	186	3.5	26	9.4	95	17.7	199
14 16	22.3	191	3.7	25 t 25	11.0	109 122	20.7	230 256
18	24.7	201	4.1	244	14.1	135	26.5	283
20	25.75	206	4.1	24	15.7 18.8		29.5	312
24	27.7	213	4.6	231	18.8	149 176	35.5	370
28	29.45	220	4.9	224	22.0	203	41.3	425
30	30.27	222	5.04	22	23.5	216	44.2	451
34	31.82	229	5.3	211	26.7	243	50.	510 561
38	33.3	234	5.55	21 21	29.7	269 283	56. 59•	501
40 44	34.0	237 241	5.85	201	34.5	311	85.	596 652
48	36.5	246	6.1	201	37.7	338	70.5	700
50	37.13	248	6.2	20	39.3	353	73.5	739 798 856
54	38.3	252	6.4	19	42.4	381	79.3	798
58 60	39.4	255	6.57	198	45.4	409	85.1 88.1	856 887
	39.9	257	6.65	19#	47.0	423	80.1	007
64	41.0	260	6.83	19 18 1	50.2	452	93.9	946
68	42.0	263	7.0	18 1 18 1	53.4	481	99.7	1005
70 74	42.5 43.4	265 268	7.1 7.23	181	55.0	495	102.7	1035 1094
78	44.4	270	7.4	181	61.5	554	174.3	1153
78 80	44.8	272	7.47	181	62.5	563	117.3	1182
85	45.9	275	7.65	18	66.5	599 635	124.6	1256
∞ 95	46.97	279	7.83 8.0	17	70.5	635	131.9	1330
95	48.0	282	1	17₹	74-4	670	139.2	1404
100	49.0	284	8.16	171	78.2 86.0	704	146.0 161.6	1478
I 10 I 20	50.9	290 294	8.5	17 16 1	93.8	774 844	175.2	1774
130	54.4	200	9.0	161	101.7	015	189.8	1921
140	56.7	302	9.35	161	109.5	936	204.4	2069
150 160	57.6	308	9.6	16	117.3	1055	219.0	2217
	59.1 62.0	312	9.83	15	125.2	1127	233.6	2364
180 200		320	10.3	15	133.0	1197	248.4	2512 2956
200	67.7	334	11.3	14	156.4	1.400	-y	2930
L	1		•	·		•		

PRESSURE OF MERCURY AND WATER.—TABLE 9

EQUIVALENT COLUMNS OF MERCURY & WATER; with their Pressure per square inch and per square foot.

Applicable to Steam Gauges and Pressure Gauges, for Pumping Engines, and for calculating the strength of Pipes, Tanks, & e., & e.

		Carcumang	the strengt	a or ripes,	Taules, cc.,		
Column of Mercury.	Equivalent of Water.	Pressure per sq.inch	Pressure per sq.foot.		Equivalent of Water.	Pressure per sq.inch	Pressure per sq.foot.
Inches.	Feet.	lbs.	lbs.	Inches.	Feet.	lbs.	lbs.
. 1	.113	.049	7.07	28.56	32.39	14.00	2016
.2	.226	.098	14.14	29.00	32.88	14.21	2050
-3	•339	·147	21.21	30.00	33.92	14.70	2121
-4	.452	.196	28.28	30.60	34.71	15.00	2160
.5	.565	.245	35.35	31.00	35.05	15.19	2191
.6	.678	.294	42.42	32.00	36.18	15.68	2262
.7	.791	•343	49.49	32.64	37.02	16.00	2304
.8	.904 1.017	.392	56.56 63.63	33.00	37.31	16.17 16.68	2333
1.0	1.1306	.441 . 490	70.70	34.68	39.33	17.00	2404 2448
2.0	2.260	.980	10.10	35.00	39.57	17.15	2474
2.04	2.314	1.00	144	36.00	40.70	17.64	² 545
3.0	3 39	1.47	212	36.72	41.62	18.00	2592
4.0	4.52	1.96	282	37.00	41.83	18.13	2616
4.08	4.63	2.00	288	38.00	42.96	18.62	2686
5.	5.65	2.45	353	38.76	43.96	19.00	2736
ŏ.	6.78	2.94	424	39.00	44.09	19.11	2757
6.12	6.94	3.00	432	40.00	45.22	19.60	2828
7.	7.91	3 • 43	495	40.80	46.28	20.00	2880
8.	9.04	3.92	565	42.84	48.59	21.00	3024
8.16	9.25	4.00	576	44.88	50.90	22.00	3168
9.	10.17	4.41	636	45.00	50.87	22.05	3181
10.	11.306	4.90	707	46.92	53.21	23.00	3312
10.20	11.57	5.00	720	48.96	55.52	24.00	3456
11.	12.43	5.39	790	50.00	56.53	24.50	3535
12.	13.56	5.88	848	51.00	57.83	25.00	3600
12.24	13.88	6.00	864	60.00	67.83	29.40	4242
13.	14.69	6.37	919	70.00 80.00	79.14	34.30	4949
14.28	16.20	7.00	1. 008	90.00	90.44 101.75	39.20 44.10	5656 6363
15.	16.96	7.36	1,060	100.00	113.06	49.00	7070
16.	18.09	7.85	1,130	110.	124.34	53.90	7777
16.32	18.51	8.00	1,152	120.	135.67	58.80	8484
17.	19.22	8.34	1,202	130.	146.70	63.70	9194
18.	20.35	8.83	1,272	140.00	158.	68.70	9898
18.36	20.82	9.00 l	1,296	150.5	170.	73.78	10625
19.	21.48	9.32	1,343	159.3	180.	78.12	11249
20.	22.61	9.81	1,414	168.2	190.	82.46	11874
20.40	23.14	10.00	1,440	177.	200.	86,80	12499
21.	23.74	10.29	1,484	194.7	220 .	95. 4 8	13749
22.	24.87	10.78	1,555	212.3	240.	104.16	14999
22.44	25.45	11.00	1,584	221.3	250.	108.50	15624
23.0	26.00	11.27	1,626	230.1	260.	112.80	16243
24·	27.13	12.06	1,696	265.3	280. 300.	121.50	17496
24.48 25.00	27.76	12.25	1,767	283.06	320.	130.20	19987
26.	29.39	12.74	1,838	_03.00	350.	151.90	21873
26.52	30.08	13.00	1,872	1	400.	173.60	24998
27.	30.52	13.23	1,909	l	450.	195.30	28123
28.	31.65	13.72	1979			217.00	31248

WEIGHT AND STRENGTH OF PIPES-TABLE 10

WEIGHT PER YARD AND SAFE HEAD OF WATER FOR CAST-IRON

Diameters 3 to 48 inches.

Note.—The weight includes a proportion for socket at every 9 feet, allowing the clear length of each pipe when laid to make 3 yards, thus each pipe would be about 9 feet inches from out to out. The safe head is that to which the pipes may be constantly exposed. The proof head may be double the tabular amount if the circumstances require.

Bore.	Thick- ness.	w	eigh	t.	Safe Head of Water.	Bore.	Thick- ness.	w	eigh	t.	Safe Head of Water.
inches.	inches.	cwts. O O O	qrs. 1 1 2 2	lbs. 0 14 0 14	feet. 1000 1500 2000 2500	inches. 14	inches.	cwts. 2 3 3	qrs. 2 0 2 0	lbs. 17 18 19	feet. 535 642 750 857
4	-feedo-taedo	0000	1 1 2 3	9 25 15 5	744 1128 1500 1872	15	raposter la I	2 3 3 4	3 1 3 1	8 12 19 23	500 600 700 800
5	desci colcato	0 0 0 1	1 2 3 0	18 11 4 0	600 900 1200 1500	16	specification of the state of t	3 3 4 4	0 2 0 3	9 18 0	468 565 652 750
. 6	oło-bedooje	0 I I	3 0 1	22 18 18	750 1000 1250 1500	18	500344748 1	3 4 4 5	1 0 2 0	12 0 16 23	412 500 583 666
7	e-kaaked-ake	0 I I	3 0 1 2	8 9 10 14	640 857 1068 1284	21	1 1	3 4 5 6	3 2 1	18 15 15 14	360 428 500 572
8	edo-descipade	0 I I	3 0 2 3	20 25 3 9	564 750 936 1128	24	-\$1000 1	4 5 6 7	I 1 I 0	19 0 0	312 374 400 500
9	e-fractisch-coke	I I 1 2	0 1 2 0	4 12 20 4	500 666 832 1000	30	1 1 10 14	6 8 9	3 3 1 0	14 24 16 7	300 400 450 500
10	• konjeso-cojo	I I I 2	0 2 3 1	16 0 12 8	450 600 750 900	36	1 10 14	8 10 11 13	0 2 2 0	23 21 11 20	249 333 375 412
11	-tandizorien tac	1 2 2 2	2 0 1 3	15 4 21 12	525 684 816 960	42	1 1 1 20	9 12 14 15	3 2 0 2	0 12 7 0	216 288 312 360
12	ni-sekunbec	1 2 2 3	3 0 2 0	3 23 17 12	500 625 750 875	48	3 4 1 18 18 14	11 14 16 17	0 0 0	14 17 3 0	187 250 280 312

FLOOD DISCHARGES.—TABLE 11

DISCHARGE,

IN CUBIC FEET PER MINUTE,

For 1 to 100 Acres, with the following amounts of Rain-fall in 24 hours.

Rain in 24 Hours.	In. 1—32	In. 1—16	In. 1—8	In. 1—4	In. 1—2	In. 3—4	<u>In</u> .	Ins.	Ins.	Ins.
Acres.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per min.
1 2 3 4 5	.078771 .157 .236 .315	.15754 .31 .47 .63	.31508 .6301 .9452 1.260 1.575	.63016 1.26 1.89 2.52 3.15	1.26 2.52 3.78 5.04 6.30	1.8903 3.781 5.671 7.562 9.452	7.56	5.0413 10.08 15.12 20.16 25.20	7.5620 15.12 22.68 30.25 37.81	10.082 20.1 30.2 40.3 50.4
6 7 8 9 10	.472 .551 .630 .709	.94 1.10 1.26 1.42 1.57	1.890 2.205 2.520 2.835 3.151	3.78 4.41 5.04 5.67 6.30	7.56 8.82 10.08 11.34 12.60	11.34 13.23 15.12 17.01 18.90	15.12 17.64 20.16 22.68 25.20	30.25 35.29 40.33 45.37 50.41	45·37 52·93 60·49 68·06 75·62	60.5 70.6 80.6 90.7 100.8
20 30 40 50	1.575 2.363 3.150 3.938	3.15 4.72 6.30 7.87	6.301 9.452 12.60 15.75	12.60 18.90 25.20 31.51	25.20 37.81 50.41 63.01	37.81 56.71 75.62 94.52	50.41 75.62 100.8 126.0	100.8 151.2 201.6 252.0	151.2 226.8 302.5 378.1	201.6 302.5 403.3 504.1
60 70 80 90 100	4.726 5.514 6.301 7.090 7.877	11.03 12.60 14.18	18.90 22.05 25.20 28.35 31.51	37.81 44.10 50.41 56.71 63.01	75.62 88.22 100.8 113.4 126.0	132.3	151.2 176.4 201.6 226.8 252.0	302.5 352.9 403.3 453.7 504.1	453.7 529 3 604.9 680.6 756.2	604.9 705.8 806.6 907.4 1008.2

For 1 to 10 Square Miles, with the following amounts of Rain-fall in 24 hours.

Rain in 24 Hours.	In. 1—32	In. 1—16	<u>In.</u> 1—8	In. 1—4	In. 3—8	In. 1—2	In. 5—8	In. 8—4	<u>In.</u> 7—8	In.
Square Miles.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per m.	Cub. ft. per min.
1 2 3	50.413 100.8 151.2	100.82 201.6 302.5		806.6	604.96 1209.9 1814.9	1613.2	2016.5	2419.8		
	201.6 252.0 302.5	403.3 504.1 604.9	1008.2	2016.5	2419.8 3024.7 3629.7	4033.0	5041.3	6049.6	7057.8	6452.9 8066.1 9679.3
7 8 9 10	352.9 403.3 453.7 504.1	806.6	1613.2	3226.4 3629.7	4234.7 4839.7 5444.7 6049.6	7259.4	8006.1 9074.4	9679.3 10889.3	11292.6	11292.6 12905.8 14519.0 16132.3
10	504.1	1008.2	2016.4	4033.0	6049.6	8006.5	10082.0	12099.2	14115.7	10132.3

MEAN DISCHARGE OF ANNUAL RAIN.—TABLE 12

DISCHARGES DUE TO RAINFALL

IN DEPTH FROM TWO TO SIXTY INCHES PER ANNUM.

Rain per Annum.	Cubic feet	per minute.	Cubic fee	per Diem.	Gallons	per Diem.
Inches.	For 1 acre.	For 1 square mile.	For 1 acre.	For 1 square mile.	For 1 acre.	For 1 square mile.
2 4 6 8	.013802 .027604 .041406 .055208 .069011	8.83 17.66 26.50 35.33 44.16	19.87 39.75 59.62 79.50 99.37	12,720 25,440 38,160 50,880 63,600	123.8 257.6 371.4 495.2 619.0	79, 145 158, 491 237, 736 316, 982 396, 228
12 14 16 18 20	.082813 .096614 .110416 .124219 .138022	\$3.00 61.83 70.66 79,50 88.33	119.25 139.12 159.00 178.87 198.74	76, 320 89, 040 101, 760 114, 480 127, 200	742.9 866.6 990.5 1114.2 1238.0	475, 473 554, 718 633, 964 713, 210 792, 456
22 24 26 28 30	.151824 .165626 .179427 .193228 .207033	97.16 106.00 114.83 123.66 132.50	218.62 238.50 258.37 278.24 298.12	139, 920 152, 640 165, 360 178, 080 190, 800	1362.0 1485.8 1609.5 1733.2 1857.0	871,701 950,947 1030,193 1109,438 1188,664
33 36 42 48 54 60	.2277 .248438 .289842 .331252 .372657 .414066	145.73 159.00 185.50 212.00 238.50 205.00	327.90 357.75 417.37 477.00 536.62 596.25	209, 851 228, 960 267, 140 305, 280 343, 440 381, 600	2042.8 2228.7 2599.8 2971.6 3342.6 3714.0	1307, 372 1426, 420 1109, 437 1901, 894 2139, 630 2377, 368

SUBSOIL DRAINS.—Table C.

LENGTH OF DRAIN PIPES REQUIRED IN ONE ACRE.

No. of feet apart.	Length in feet.	Length in Rods of 164 feet.
5	8,702	527.3
6	7,262	440.1
8	5,445	330.1
10	4,350	263.6
12	3,631	220.0
15	2,900	175.7
16	2,640	160.0
18	2, 421	146.7
21	2, 073	125.6
24	1, 815	110.0
27	1, 614	97.8
30	1, 450	87.8
33	1, 314	80.0
36	1, 210	73.3

EXPENDITURE OF WATER.—TABLE 13

DISCHARGE FOR MINUTES, DAYS AND YEARS,

IN CUBIC FEET AND IMPERIAL GALLONS.

Per	Minute.	PER	Dirm.	Per Annum.
Cubic Feet.	Gallons.	Cubic Feet.	Gallons.	Cubic Feet. Millions.
1	6.23	1,440	8,971	.526
2,	12.46	2,880	17,948	1.052
3	18.69	4,320	26,922	1.578
4	24.92	5,760	35,896	2.104
5 6	31.16	7,200	44,870	2.630
	37.39	8,640	53,844	3.156
7 8	43.62	10,080	62,818	3.682
	49.85	11,520	71,792	4.208
10	56.08	12,960	80,766	4.734
10	62.32	14,400	89,740	5.260
20	124.64	28,800	179,480	10.520
25	155.80	36,000	224,350	13.150
30	186.96	43,200	269,220	15.780
35	218.12	50,400	314,090	18.410
40	249.28	57,600	358,960	21.040
45	280.44	64,800	403,830	23.670
50	311.60	72,000	448,700	26.300
55 60	342.76	79,200	493,570	28.930
	373.92	86,400	538,440	31.560
65	405.08	93,600	583,310	34.190
70	436.24	100,800	628,180	36.820
7 5	467.40	108,000	673,050	39.450
80	498.56	115,200	717,920	42.080
85	529.72	122,400	762,790	44.710
90	560.89	129,600	807,660	47.340
95	592.05	136,800	852,530	49.970
100	623.21	144,000	897,408	52.600
200	1,246.4	288,000	1,794,816	105.200
300	1,869.6	432,000	2,692,224	157.800
400	2,492.8	576,000	3,589,632	210,400
500	3,116.1	720,000	4,487,040	263.000
600	3,739.2	864,000	5,384,448	315.600
700	4,362.4	1,088,000	6,281,856	368.200
800	4,985.6	1,152,000	7,179,264	420.800
900	5,608.9	1,296,000	8,076,672	473.400
1,000	6,232.1	1,440,000	8,974,080	526.000
2,000	12,464.0	2,880,000	17,948,160	1,052.000
3,000	18,696.0	4,320,000	26,922,240	1,578.000
4,000	24,928.0	5,760,000	35,896,320	2,104.000
5,000	31,160.0	7,200,000	44,870,400	2,630.000
6,000	37,392.0	8,640,000	53,844,480	3,156.000
7,000	43,625.	10,080,000	62,818,560	3,682.000
8,000	49,857.	11,520,000	71,792,640	4,208.000
9,000	56,089.	12,960,000	80,766,720	4,734.000
10,000	62,322.	14,400,000	89,740,800	5,260.000
11,000	68,554. 74,786.	15,840,000	98,714,880	5,786.000 6,312.000

WATER SUPPLY AND POPULATION .- TABLE 14

WATER SUPPLY AND DRAINAGE AREAS

Required for various amounts of Pepulation, at different rates of Supply, with a Guide to the Cubic Contents of Reservoirs, where that method of Supply is adopted.

of Su	of Supply is adopted.												
Discha Bequis	ROS	Numbe	a or PoruL	1710¥.	Gaternine Requi		Reservota abquiesd.						
Cubic Feet per Minuric.	Gallons per Diem.	At 30 Gallens per Head, per Diem.	At 40 Gallons per Head, per Diem.	At 50 Gallons per Head, per Diem.	With Stream delivering 8 cubic feet per sq. mile.	With 12 in. of Rain per ann. or 53 c. feet per minute, per eq. mile.	Holding Water for 4 months, at 53 c. feet per min.						
Cubic Feet.	Millions.	Number.	Number.	Number.	Square Miles.	Square Miles.	Cubic Feet. Millions.						
27.8	-25	8,333	6,250	5,000	3.48	.52	4.88						
55-7	.50	16,666	12,500	10,000	6.96	1.05	9.76						
85.5	-75	25,000	18,750	15,000	10.44	1.57	14.65						
111.4	1.00	33,333	25,000	20,000	. 13.93	2.10	19.53						
139.2	1.25	41,666	31,250	25,000	17-41	2.63	24.42						
167.1	1.50	g0,000	37,500	30,000	20.89	3.15	29.30						
195.0	1.75	58,333	43,750	85,000	94.87	3.68	34.18						
222.8	2.00	66,666	50,000	40,000	27.85	4.21	39.07						
250.7	2.25	75,000	56,250	45,000	31.33	4-73	43 - 95						
278.5	2.50	83,333	62,500	50,000	34.82	5.26	48.84						
334-3	3.00	100,000	75,000	60,000	41.78	6.31	58.60						
190.0	3.50	116,666	3 7,500	70,000	48.75	7.36	68.37						
445.7	4.00	133,333	100,000	80,000	55.7 1	8.41	78.14						
557.1	5.00	166,666	125,000	100,000	69.64	10.52	97.68						
668.6	6.00	200,000	150,000	120,000	83.57	12.62	117.21						
780.0	7.00	233,338	175,000	140,000	97.50	14-74	136.75						
* 891.4	8.00	266,666	200,000	160,000	111.43	16.82	156.28						
1,002.8	9.00	300,000	225,000	180,000	123,11	18.92	175.82						
1,114.3	10.00	333,333	250,000	200,000	139.29	21.02	195.36						
2,228.6	20.00	666,666	\$00,000	400,000	278.58	42.05	390.72						
3,343.0	30.00	1,000,000	750,000	600,000	417.87	63.07	586.08						
4-457-3	40.00	1,333,333	1,000,000	800,000	557.16	84.10	781.44						
5.571.6	50.00	1,666,666	1,250,000	1,000,000	696.45	105.13	976.80						
6,686.0	60.00	2,000,000	1,500,000	1,200,000	835.74	126.15	1,171.16						
7,800.3	70.00	4333,333	1,750,000	1,400,000	975-04	147.18	1,367.52						
8,914.6	80.00	2,666,666	2,000,000	1,600,000	1,114.33	168.21	1,562.88						
10,029.0	90.00	3,000,000	2,250,000	1,800,000	1,253.62	189.23	1,758.24						
11,143.3	100.00	3,338,338	2,500,000	2,000,000	1,392.91	210.25	1,958.60						

SYNOPSIS OF RAINFALI

Pensance Cornwall Feet Varion		Height	Year com-	Years		Me	an.	
Pensance		ahove	mencing Obser-		Winter	SPRING.	бонива	Total
St. Breock								I a.
Pencarrow	PensanceCornwall	40	1825		17.4	12.2	13.5	43.1
Primouth Primouth	Pencarrow	}	1841			l		45.1
Honiton	Plymouth Devon	30	1826	10			11.7	35.7
Exeter	Goodamoor "	800	1834	16	23.0	14.0	19.8	56.8
Exeter	Honiton	l		5	11.3	9.0	12.0	33.2
Hungerford Berks 320 1838 12 17 8.2 7.1 10.1 25.	Exeter	141			11.0	8.2	10.0	29.2
Reading	Hungerford Somerset	220	1818			1	1	32.4
Chiswick 25 1825 25 7.4 0.0 10.0 24		,			8.2	7.1	10. 1	25.4
Chiswick Surrey So 1825 25 7.4 0.0 10.0 24	Gosport Hampshire	30		7	10.6	8.5	11.1	30.2
Cobham Lodge	HastingsSussex			12	l			31.9
Committee Comm	Cohham Lodge Surrey		1825		7.4			24.0
Tottenham	Greenwich Observatory		1838	12	l '''	",		23.9
Tottenham	London (Howard's average)	1	1800	20	8.0	6.7	0.2	24.8
Aylesbury	TottenhamMiddlesex	50	1812	7	8.5	7.9		24.
Wellingborough	Epping Essex	ł			8.1	7.3	11.2	26.6
Dickleborough Norfolk 120 1840 10 1843 5 1843 5 1843 5 1843 5 1844 6 7.2 8.7 11.1 27.	Wellingborough Northampton	160	1830		7-7	7.7	9.5	24.9
Dickleborough Norfolk 120 1840 10 1843 5 1843 5 1843 5 1843 5 1844 6 7.2 8.7 11.1 27.	Swaffham Balbeck . Cambridge	l	1841	,	6.4	7.2	0.6	22.1
Felthorp	Dickleborough Norfolk	120	1840	10	l -		"	40.0
Rottingham (Highneid House)	Felthorp	ł	1843	5	4.	۱ ـ ـ	الما	22.6
Hyde	Nottingham (Highfield House)	30		25		8.7	11.1	27.0
Hyde	Chapel-en-le-Frith Derhy	1121	1840	R				A2.0
Liverpool	HydeLancashire		1811	10	11.8	9.8	13.6	35.2
Bolton	Liverpool,	l				1	ا ا	34 -7
Bury	Fairfield	320			12.2	10.1	14.9	37·3
Bury	Bolton	320	1831	10	17.7	12.6	19.2	49.5
Stabbins	Bury ,,	300	1832	13	l ''	1		41.7
Moss Lock, near Rochdale	Sowerby BridgeYork	300			9.9	7.3	10.0	27.2
White Holme, Blackstone Edge 1200 1830 18	Moss Lock, near Rochdale	500	1830		10.9	7.5	11.9	30.3
White Holme, Blackstone Edge 1200 1830 18	Rochdale	500	1832	16	l	1		46.7
Whitehaven	White Holme, Blackstone Edge	1200	1810	18	l .	l		36.1
Cockermouth 1845 3 13.0 11.2 21.2 45. Keswick Westmoreland 258 1845 3 19.9 16.0 24.2 60. Beathwaite " 1845 3 48.0 25.3 34.2 167. Gatesgarth " 326 1845 3 44.8 28.0 44.4 117. Stychead " 1290 1846 2 20.0 27.5 45.3 92.1 Sparkling Tarn " 1900 1846 2 22.0 48.7 53.3 12.4 19.1 Great Gable " 2025 1849 2 10.0 41.0 36.4 89.0 West Denton, near ditto 276 1845 5 9.1 13.0 14.7 36.5 Applegarth Dumfries 1838 12 10.4 9.1 14.2 33.8 Gilmourton Lanark 600 1845 5 18.8	Whitehaven Cumberland		1830		14.3			
Gramere, 180 1845 3 48.6 25.3 34.2 107. Seathwatte, 326 1845 3 55.8 31.5 52.3 14.2 107. Stylehead, 1290 1846 2 20.0 27.5 45.3 93.1 Sparkling Tarn 1290 1846 2 20.0 27.5 45.3 93.1 Sparkling Tarn 2005 1846 2 20.0 48.7 53.3 124. Sylehead, 1290 1846 2 21.0 48.7 53.3 124. Sylehead, 1290 1846 2 21.0 48.7 53.3 124. Newcastle-upon-Tyne	Cockermouth	~	1845		13.0	11.2		45.4
Gramere, 180 1845 3 48.6 25.3 34.2 107. Gatesgarth, 326 1845 3 55.8 32.5 52.3 147. Stychead, 1290 1846 2 20.0 27.5 45.3 92.1 Sparkling Tarn, 1900 1846 2 22.0 48.7 53.3 124. Sparkling Tarn, 2025 1849 2 10.0 43.0 36.4 89.1 Newcastle-upon-Tyne 121 1846 2 5.3 6.8 5.5 17.6 West Denton, near ditto, 276 1845 5 9.1 13.0 14.7 36.4 Allenheads, 1390 1843 7 15.6 15.4 16.9 47.5 Applegarth Dumfries Gilasgow 1838 12 10.4 9.1 14.2 33.1 Gilasgow 1848 2 15.5 8.3 9.8 33.7 Edinburgh 300 1825 21	KeswickWestmoreland	258	1844		10.0	16.0	24.2	60.1
Gatesgarth	Grasmere "		1845	3	48.0	25.3	34.2	
Styehead 1290 1846 2 20.0 27.5 45.3 92.1		226	1845		55.8	32.5		
Great Gable	O4		1846	2	20.0			91.8
Great Gable	Sparkling Tarn	1900	1846	2	22.0	48.7	63.2	124.0
West Denton, near ditto 276 1845 5 9.1 13.0 14.7 36.8 Allenheads 8, 1300 1843 7 15.6 15.4 16.9 36.8 Applegarth		2925	1849	2	10.0		36.4	89.4
Applegarth Dumfries 1838 12 10.4 9.1 14-3 33.8 Gilmourton Lanark 600 1845 5 18.8 11.6 17.3 47.7 Glasgow 8 18.48 2 15.5 8.3 9.8 33.9 Edinburgh 300 1825 21 21 25.6	West Denton, near ditto		1840		5.3	6.8	5.5	17.6
Gilmourton Lanark 600 1845 5 18.8 11.6 17.3 47.7 Glasgow 8 18.8 2 15.5 8.3 9.8 33. Edinburgh 300 1825 21 25.6			1843	7			16.9	30.8 47-9
Gilmourton Lanark 600 1845 5 18.8 11.6 17.3 47.7 Glasgow 8 18.8 2 15.5 8.3 9.8 33. Edinburgh 300 1825 21 25.6	ApplegarthDumfries		1838	12	10.4	9.1	14.3	33.8
Edinburgh	GilmourtonLanark		1845	5		11.6	17.3	47-7
	Edinburgh				15.5	8.3	9.8	33.6
Giencorse (Fentiana Hills) 734 1831 19 11.6 10.2 14.3 16.1	Glencorse (Pentland Hills)	734	1831	19	11.6	10.2	14.3	36.1

The above Tables give the average maximum and minimum, for periods of four months, with the total for each year of the three periods.

The Winter period is for November, December, January and February.

The Spring March, April, May and June.

The Summer July, August, September and October.

IN GREAT BRITAIN .- TABLE 15

1	M	aximun	ì.		Minimum.							
WIFFER.	Spring.	SUMMAN.	Total 12 mos.	Year of Maxim.	Wipter.	Spring.	Summer.	Total 12 mes.	Year of Minimum			
Ins. 23.2	Ins. 16.7	Ins. 15.0	Ina. 53.9 51.9	A.B. 1828 1841	Ina. 19-5	Ins. 4-7	Ins. 10.5	Ins. 34.7 32.0	A.B. 18a6 1840 1844			
11.5 27.0	14.1 15.6	19.4 27.5	57·3 45·4 70.1	1841 1829 1839	6.3 19.8	10.0 9.3	11.6 12.5	37.9 27.9 41.6	1830 1844			
11.3	12.4 12.4	18.0 12.7	41.7 39.2 37.8	1841 1828 1842	6.9	6.3 8.4	8.9 8.7	25.5 24.0	1844 1830			
9.0	31.4	12.4	34.07 32.8	1848 1848	8. 1	3-3	9.8	19.28 21.2	1847 1844			
15.7	8.7	9.9	34·3 43·53	1828 1848	6.9	8.4	8.7	24.0 22.36	1830 1847			
9.2 8.6	7.0 10.6	13.5 12.5	29.7 31.7 33.2	1846 1848 1841	4.8 5·3	4.7 5.0	5.7 6. <u>\$</u>	15.2 16.8 16.4	1847 1847 1840			
8.5	7:2 8.6	13.4 18.1	29° 1 32.2 34-7	1816 1829 1848	6.1 5.6	7.7 7.4	5.5 9.5	19.3 22.5 22.5	1814 1832 1847			
8.1	10.4	14.8	33-3	1848	5.8	3.3	8.7	17.8	1844			
7.0	10.1	12.6	29.7 32.4 25.8	1843 1848 1843	3.6	8.1	7.9	19.6 18.4 20.0	1842 1847 1845			
7·3 9·9	6.7	14.8 16.4	28.8 38.5	1829 1848	5.7 7.2	3.2 4.9	7.2 8.0	16.1 20.1	1834 1844			
13.0	12.8	13.8	52.3 39.6 49.5	1841 1833 1841	9.2	11.0	10.4	33.0 30.6 22.2	1844 1832 1826			
13.4	11.2	20.5	45.1 40.7	1823 1845	14.2	3.9	12.2	30.3 24.8	1826 1842			
16.0	11.3	31.3	58.6 50.6	1833 1833	19.2	7.6	15.4	42.2 28.6	1837 1844			
11.7	9.5	9.6	30.8	1833 1830	8.8	10.0	7.7	26.5 26.1	1832 1832			
20.9	2.5	10.3	37.7	1834	6.8	8.4	10.7	25.9	1831			
33.6 16.2 16.2	9-3	12.6	61.1 47.4 55.5 52.0	1836 1833 1834 1846 1846	8.4 10.3 9.8	8.7 10.3 9.1	15.6 14.4 16.0	34.4 24.8 32.7 35.0	1844 1844 1831 1847 1847			
25.7	19.5	25.9 29.1	55+4 74+3	1846	14.1	13.3	19.6	34·9 47·0	1847			
				-0.4								
4.8 7·/ 23.2	7.1 13.6 16.0	7·4 15.0 19.3	19.3 36.4 58.5	1846 1846 1848	5.7 11.6 13.1	7.5 11.6 10.5	3.6 8.3 14.7	15.8 31.5 38.3	1847 1847 1844			
11.4	9.3	23.4	44.I 60.3	1839 1846	6.9	7.5	9.6	24.0	1847			
26.5 16.4	13.7 8.1	21.1 9-4	33.9 32.59	1846 1849 1827	8.8 14.7	12.8 8.5	13.7	35.3 33.5 15.27	1847 1848 1826			
14.5	14.2	17.2	45.9	1836	5.4	10.0	8.1	23.5	1847			

Where years only are given, the details have not been accessible to the author. The observations are all from authentic data, many kindly furnished from private sources. The Lancashire observations are from Mr. Homersham's reports; the Cumberland and Westmoreland from Mr. Miller, of Whitehaven; Nottingham from Mr. Lowe; Wellingberough from Mr. Bevan, C.E.; Cobham Lodge from Miss Molesworth's diurnal observations.

DETAIL OF MONTHLY RAIN AND

_		Janu	ury.	Pobr	uary.	Ma	rch.	A	ril.	hay.		June.	
_ Y	ear.	Total fall.	Heavy fall.	Total	Heavy fall.	Total fall.	Heavy fall.	Total fall.	Heavy fall.	Total fall.	Heavy fall.	Total fall.	Hvy.
Glencorse.	1831 1832 1833 1834 1835 1837 1836 1837 1839 1840 1841 1842 1843 1844	Ins89 .96 .78 6.24 2.81 2.388 6.20 2.11 1.32 3.51 2.54 3.29 2.75	Ins42	Ina. 3.92 1.75 4.31 2.31 3.52 1.99 3.22 1.92 3.45 2.58 1.18 1.89 2.05 3.04 3.24	Ins. 3.09 .88 3.21 .97 2.34 1.50 .94 1.92 2.71 1.53 1.07 2.04 2.04 2.25	Ins. 3.29 2.23 3.40 3.69 4.08 7.32 3.10 3.12 .05 1.95 4.31 .99 3.82 2.08	Ins. 2.10 1.00 1.85 3.01 3.72 5.61 2.42 2.17 2.6478 3.52 3.63 1.57 1.49	Ins. 2.04 1.53 2.75 1.31 2.11 3.07 3.01 .57 .35 1.86 2.66 .81 1.51 2.93	Ins57 .80 I.20	Ins82 2.00 1.35 1.15 3.14 .63 1.54 3.93 1.47 4.35 1.74 2.12 3.61 .71 2.94 2.42	Ins. 1.15 -96 -33 1.87 -33 -63 3.33 -81 3.04 1.87 1.34 1.50	Ins. 2.08 4-43 6.18 2.15 1.66 4-15 2.43 5-55 4-40 3.88 4-37 3.88 4-34	Ins. 3.2 1.27 4.25 .32 2.70 1.87 5.19 3.38 1.54 1.34 1.34 1.34 1.34 1.31
Av	erage	2.98	2.21	2.60	1.80	3.15	2.22	1.73	.82	2.12	2.15	3.46	
y Gilmourton	1845 1846 1847 erage	4.30 5.50 2.10	3.75 4.30 1.69	2.10 3.40 2.10	1.75 2.90 1.50	3.00 5.20 1.45 3.22	2.30 4.15 1.20	1.80 1.50 4.00	.40 .30 3.40	2.20 2.20 4.10 2.83	.40 1.45 3.20	4.20 4.80 3.30	3.15 4-40 2.70
١.	1831 1832 1833 1834 1835 1836 1837 1839 1840 1841 1842 1843 1844 1845 1847	1.67 .77 .64 2.41 1.72 1.11 3.26 1.40 1.25 1.55 2.40 1.68 1.42 2.50	1.15 0.00 .65 .70 .2.26 .50 .36 .85 .40 .68 1.32	2.50 .12 4.54 .45 2.00 1.87 1.02 1.10 1.28 1.58 1.48 1.48 1.40 1.80 .90	1.65 2.58 .39 1.04 .51 .51 .31 1.34 1.16	1.13 1.47 2.26 .36 2.68 2.24 .41 1.09 2.59 .70 1.20 2.08 .61 1.89 1.98	.32 .67 .89 .79 .31 .32 .72 .65 1.51	0.90 1.60 2.30 .64 1.79 1.60 2.00 1.68 .75 .54 1.69 1.34 1.39 1.12 3.23 1.77	.72 1.35 .63 .73 .34 1.08 .79 .30 .87 1.54 .34 2.32	0.98 2.70 .53 .81 2.10 .40 1.08 1.08 2.46 1.42 2.48 3.80 .52 3.37 1.45 5.41	.77 1.95 .96 .69 1.19 .72 1.22 2.89 .35 2.14 0.40 3.75	1.80 3.17 1.36 2.04 1.48 1.79 2.86 4.59 3.05 1.05 1.78 1.49 2.04 1.08	.67 1.93 3.26 .35 1.35 .40 .96 1.07 3.41 .71 1.10 .79 1.13 .95 1.50
AV	erage	1.59	·740	1.56	.674	1.42	.523	1.42	·709	1.89	-999	2.24	1 32

AVERAGE OF RAIN FOR 1844, 1845, 1846 & 1847,

Amounting to .4 inch and upwards in 24 hours; from Mr. Homersham's Report on Supply of Water to Manchester.

LOCALITY.	Above Sea.	Rain per Ann.				ays of .4 in. and above.		
Manchester	120	 36.49		16.25	••	26		206
Marple							٠.	122
Combs	720	 45.80	••	27.60				160
Chanel-en-le-Frith						28		136

GREATEST DEPTH IN ONE DAY.

	1844 .		1845.		1846.	,	1847.
Manchester	. 1.36	••	1.48	••	0.77		1.20
Marple	2.90		2.10		0.80		2.30
Combs	. 1.50	••	2.00	••	1.00	••	2.00
Chapel-en-le-Frith	. 1.10		1.70		1.20	••	1.30
Glencorse, October 3rd.							
Gilmourton ,, .			1.50	••	2.50		,

Note.—There fell without intermission, on June 23 and 24, 1846, at Glencorse 1.83 and 1.35 inches; at Gilmourton 1.50 and 1.50 inches.

PROPORTION OF HEAVY FALL.—TABLE 15a

Ju	ly.	Aug	ust.	Se	pt.	0	ot.	N	0▼.	D	80.			Total No. of
Total fall.	Hvy. fall.	Total fall.	Hvy. fall.	Total fall.	Hvy.	Total fall.		Total fall.	Hvy. fail.	Total fall.	Hvy. fall.	Total Anni. fall.	Total Heavy fall.	Days Heavy fall.
Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	Ins.	
2.98 1.62	1.05	3.93 6.55	3.27 5.41		1.24	3.70 7.83	1.82 6.64	3.20 1.83			.38 2.49		16.62	33 34
3.22	2.48		1.07		1.27			3. IO				39.70	26.62	23
5.13	4-52	1.85	.63	6.20	4.32			2.92		2.70	2.28	37.72		
7.85	6.33	2.64			2.57	4.85	3.18 1.02				1.87	39.11 49.08	25.69 36.98	43 56
6.22	4.84	2.73 5.12	2.23 4.60		2.34							41.61	29.95	48
3.∞	. 12	4.33	3.67	4.84	4.13	3.46	3.20	3.20	2.90	1.70	- 59	40.45	31.98	48
4.30	3.77	3.06		3.88		2.90	2.08	3.13	2.15	2.10		36.86		
5.45 4.41	3.69 2.10	2.50			1.43			3.89 2.68		1.13	4.15	36.70 38.51		
1.85	.70		4.27 I.01		1.72								23.52 15.84	33
4-34	3.21	2.44	.51	1.35	.57	5.23	3.67	4.05	2.34	-94	5.05	33-34	25.72	33
2.51	1.82	2.26	.95					5.59		.20	:	30.12		
5.59	1.0I 4.2I	5.38	3.71 4.50			8.0E				4.43 1.02	3-25 -77	43.63 38.45		
الدرر ا	7.2.	3.,50	4.33		****	,	,,,	2.00	,		'''	,0.43	~3.92	ا " ا
3.95	2.69	3.58	2.58	3.46	2.33	4.12	3.08	3.21	2.15	3.∞	2.39	37.38	25.61	41.7
										1				1
2.80	1.95	4. 10	2.37	5.80				7.80					48.87	74
6.10	4.90	6.30	5.90	2.50	2.05	5.20		2.40	1.40			47.30	37.10	
2.10	1.50	1.30	- 40	4.40	2.00	5.90	4.90	6.00	4.95	4.50	3.20	41.25	31.24	62
		, ,				,								ا ا
3.67	2.78	3.90	2.89	4.23	3.00	7.6ა	0.08	5.40	4.48	5.50	4.65	49.38	39.07	66.3
2.35	1.55	5.03	4.54	2.90	2.12	2.46	1.19	1.95	.82	1.96	. 38	25.57	15.88	30
1.55	1.00	3.89	2.14	-90	.49 .63	1.85	1.08		.90	2.03	.32	22.55	973	25
.60	.30	2.02		1.49	.63	2.23	1.49		.67	1.98	.30	22.62	11.89	23
3.84 1.20	3.18	0.84	.92 .40	1.30 2.61	·75	.67 3.58	2.64	.79 1.74	.50 .72	.64 .27	.32	14.66	6.67	12 25
1.60	-34		-33	2.18		2.73	1.95	3.46	1.93	1.22	.78		7.79	13
1.88	.83	7.00	3.05		.86	1.96	1.06	1.55	-34	2.58	1.29	23.58	12.44	21
1.64		2.85		1.82	1.03		.92	1.17	.30	0.79	• 34	18.95	8.09	16
4.36 2.76	3.50 I.54		2.28		-42 -78	1.63	1.31	3.23	2.07 .46	1.77 .85	• 35	28.48 18.61	16.64	29 14
3.74	1.02	2.80	1.02	2.42	2. IQ	1.03	1.62	2.11	.98	1.67	.:	27.26	14 20	27
3.57	1.66	1.05	.64	3.72		.88		3.80	1.87	.88	.63	24.73	1403	21
2.40	1.37		1.67	0.47		3.35	1.61	2.84	1.67	. 12	••	24.29	14.89	30
2.63	1.49 .78	2.57 4.85	3.82	2.50 1.26		2.37	1.58	3.40 1.13	2.85	,40 2.32	.73	21.64	12.48 12.87	24
1.98	1.22		2.44			4.38	2.64		1.18	2,00	1.46	23.40	14.28	20
.86		1.46			.88	2.52	1.78		-53	3.06			13.65	23
2.32	1.37	2.64	1.80	1.93	1.02	2.28	1.30	2.10	1.06	1.44	.53	22.30	11.93	13.11

The above Table shows the quantity of rain in each month of the years specified, placed in juxtaposition with the amount of rain given by falls of 3 inch and upwards, as extracted from the diurnal registries.

The places are Glencorse in the Pentland Hills, 734 feet above the sea.

Gilmourton , Avondale , 600 Boston, Lincolnshire, about 40 The two former give fair specimens of rain-fall in ordinary hill districts. The last gives the average rain in the flat central parts of Great Britain.

The following Table of Rain in Ireland is extracted from a very useful treatise on Hydraulic Engineering, by John Dwyer, C.E., of Dublin.

LOCALITY.	No. of Yrs.	Average.
Dublin		30.87 Inches.
Belfast	6	34.96 ,,
Castlecomer	18	
Cork County	6	40.20 ,,
Cork City	. 6	36.03 "
Derry	7	31.12 ,,

Feet per Minute and miles per Hour.

For feet per second divide by 60 For inches per second divide by 5 For miles per hour multiply by .01136

Rate and Fall in Feet per Mile and per Chain.

For feet per mile divide 5280 by the rate. For feet per chain divide 66 by the rate.

				Rate.	FA	LL.	Rate.	FA	ш.
Feet per min.	Miles per hour	Feet per min.	Miles per hour		Feet per mile.		one in	Feet per mile.	
10 11 12 13 14	.1136 .1250 .1364 .1478 .1592	280 300 320 340 360 380	3.181 3.408 3.035 3.862 4.089	\$ 6 7 8 9 10	1056 880 754.2 666 586.6 528.0	13.2 11.0 9.43 8.25 7.40 6.66	180 182.1 188.6 190 195.6	29.3 29.0 28 27.8 27 26.4	.366 .362 .349 .347 .337
15 16 17 18 19	.1706 .1820 .1934 .2048 .8162	400 420 440 460	4.544 4.771 4.998 5.225	12 14 16 18	440 377.1 330 293	5.50 4.71 4.13 3.66	211.2 220 229.6 240	25 24 23 22	.312 .300 .288 .275
20 25 30 31 40 45 50 65	.2272 .2840 .3409 .3981 .5118 .5682 .6250 .6819 .7387	480 500 550 600 650 700 750 800 850 900	5.453 5.080 6.248 6.814 7.384 7.952 8.420 8.988 9.008 IO.228	20 25 30 35 40 45 50 55 65	264 211.2 176 150.8 131 117.3 105.6 96.0 88.0 81.2	3.30 2.64 2.20 1.88 1.65 1.46 1.32 1.20 1.10	251.4 264 267.9 293.3 310.6 330.0 352.0 377.1 406.1 440.0	21 20 19 18 17 16 15 14 13	.262 .250 .237 .224 .212 .200 .187 .175 .162
70 75 80 85 90 95 100 105 110	.7955 .8531 .9108 .967 1.024 1.080 1.137 1.193 1.250 1.307	950 1000 1056 1232 1408 1584 1760 1936 2112 2288	10.796 11.365 12. 14. 16. 18. 20. 22. 24.	70 75 80 82 84 86 88 90 92.6	75-4 70-4 66.0 64-4 62.8 61.4 60.0 58.6 57.0 55-5	.94 .88 .82 .80 .78 .76 .75 .73	480.0 528.0 586.7 660.0 754-3 880.0 960 1056 1173 1320	11 10 9 8 7 5.50 5.50 4.5 4.0	.138 .125 .112 .100 .0874 .0750 .0625 .0562
120 125 130 135 140 145 150 155 165	1.364 1.421 1.478 1.535 1.592 1.649 1.763 1.820 1.827	2464 2640 2816 2902 3168 3344 3520 3696 3872 4048	28. 30. 31. 34. 36. 38. 40. 42. 44.	96 98 100 101.5 103.5 105.6 110 115 120	55.0 53.8 52.8 52.0 51.0 50.0 48.0 45.9 44.0	.68 .67 .65 .63 .63 .60 .57 .55 .52	1508 1760 1920 2112 2346 2640 3017 3520 4224 5280	3.5 3.0 2.75 2.50 2.25 2. 1.75 1.5	.0437 .0375 .0345 .0312 .0481 .0250 .0218 .0187 .0156
170 175 180 185 190 195 200 220 240 260	1.934 1.991 2.048 2.105 2.162 2.217 2.272 2.499 2.720 1.953	4324 4400 4840 5280 5720 6160 6600 7040 7920 8800	48. 50. 55. 60. 65. 70. 75. 80. 90.	130 135 140 145 150 155 160 165 170 176	40.6 39.1 37.7 36.4 35.2 34.0 33.0 31.0 30.0	.507 .488 .471 .455 .440 .425 .410 .388 .375	\$760 6336 7040 7585 9051 10500 12078 15840 21120 31680 63360	inches. II 10 9 8 7 6 5 4 3 2 I	.0111 .0104 .0093 .0087 .0073 .0052 .0052 .0043 .0031 .0031

COMPARATIVE MEASURES.—TABLE 13

CHAINS, YARDS, AND FEET,

With their Reciprocal Equivalents, and a Table of Reductions for Slopes.

Link - 7.92 inches. Chain - 792 inches.

Cha	ins into	Feet.	Fee	t inte Ch	ains.	For each 100 on Slope			
Chains Links.	Yards.	Feet.	Feet.	Yards.	Links.	Rate of Fall.	Angle. Deg. Min.	Deduct.	
0. I 0. 2 0. 3 0. 4 0. 5	.22 .44 .66 .88	1.98 2.64	.10 .20 .25 .30	.033 .066 .082 .010	0.15 0.30 0.38 0.45 0.60	1 in 20 ,, 19 ,, 18	1.0 2.0 2.52 3.01 3.11	.015 .061 .126 .137	
o. 6 o. 7 o. 8 o. 9 0. 10	1.32 1.54 1.76 1.98 2.20	3.96 4.62 5.28 5.94	.50 .60 .70 .75	.166 .200 .233 .250	0.76 0.91 1.06 1.13 1.21	" 17 " 16 " 15 " 14 " 13		.173 .198 .225 .254 .297	
o. 20 o. 30 o. 40 o. 50 o. 60	6.60 8.80 11.00	19.80 26.40 33.00	.90 1.00 2.0 3.0 4.0	.300 .33 .66 1.000	1.36 1.51 3.0 4.5 6.0	1 in 12 ,, 11 ,, 10 ,, 9 ,, 8	4.46 5.12 5.45 6.20 7.10	·343 ·406 ·503 ·610 ·781	
0. 70 0. 80 0. 90 1. 00	17.60 19.80	52.80 59.40 66.00	5.0 6.0 7.0 8.0 9.0	1.66 2.00 2.33 2.66 3.00	7·5 9·1 10·6 12·1 13.6	,, 7 ,, 6 1 in 5	8.10 9.30 10.00 11.20 12.00	1.014 1.373 1.519 1.950 2.185	
3· 4· 5· 6. 7·	66.00 88.00 110. 132. 154.		10.0 15.0 20.0 24.0 27.	3·33 5·00 6·66 8·00 9·00	15.1 22.7 30.3 36.3 40.9	1 in 4	13.00 14.02 15.00 16.00 17.00	2.563 2.980 3.408 3.874 4.369	
8. 9. 10. 20. 30.	176. 198. 220. 440. 660.	528. 594. 660. 1320. 1980 .	30. 33. 36. 39. 40.	10.00 11.00 12.00 13.00 13.33	45.4 50.0 54.5 59.1 60.6	ı in 3	18.00 18.26 19.00 20.00 21.00	4.894 5.130 5.448 6.031 6.642	
35· 40· 45· 50·	770. 880. 990. 1100.	2310. 2640. 2970. 3300. 3630.	42. 45. 48. 50. 51.	14.0 15.00 16.00 16.66 17.00	63.3 68.2 72.7 75.7 77.3		22.00 23.00 24.00 25.00 26.00	7.282 7.949 8.645 9.369 10.120	
60. 65. 70. 75. 80.	1540.	3960. 4290. 4620. 4950. 5280.	54· 57· 60. 63. 66.	18.00 19.00 20.00 21.00 22.00	81.8 86·3 90.9 95·4 100.	1 in 2 " 1 in 1 1 " 1		10.570 10.900 11.645 16.667 29.290	
L			• 			' 	·)	

USEFUL WEIGHTS AND MEASURES.—TABLE 19

In	ches a	nd Fr	actio	ons (expr	esse	d in	Dec	ima	ls o	fa.]	Foot.	Inches and Fractions expressed in Decimals of a Foot.									
No	Note.—The first column gives the decimals corresponding to the fractional parts																					
The	of units in the next column; thus three-sixteenths is ,1875 of an inch. The remaining columns give the decimals of a foot corresponding to inches																					
The remaining columns give the decimals of a foot corresponding to inches and parts: thus 5f inches = .448 of a foot. 1																						
Decimals																						
of Unity or an Inch.	Inches.	0	1	2	8	4	5	6	7	8	9	10	11									
	Parts.	Foot.	Foot.	Foot.			Foot. . 416	Foot.	Foot.	Foot.	Foot.	Foot 833	Foot.									
.0625	1 - 16	.005208	088	172	.250 255	.333 338	422	505	288	671	750 755 760	838	922									
.1250	1 - 8	.010416	094	177	260	344	427	510	594	682	760	844	927									
.1875	3 - 16	.015025	099 IO4	187	265 271	349 354	432	515 520	599 604	687	765 771	849 854	932									
.3125	5-10	.016041	109	193	276	359	443	526	600	692	776	850	943									
.3750	3 - 8	.03125	114	198	281	304	448	531	614	697	781	864	948									
-4375	7 - 16	.036458 .04166	120	203	286 291	371	457 458	536 541	620	703	786 791	870	953									
.562.5	9-16	.046875	130	213	297	375 380	403	547	610	713	797	875 880	958 963 969									
. 9625 . 6250	5 - 8	.052083	135	210	302	385	469	552	625	718	797 802	885	969									
.6875	11 - 16	.057291	140	224	307 312	390	474	557 562	646	723	807	890	974									
.75 .8125	13 - 4	.06250	146	229	318	396 401	479 484	568	651	734	818	901	979 984									
.8750	7 - 8	.072916	156	239	323	406	489	573	656	739	823	006	989									
-9375	15 - 16	.078125	161	245	328	411	495	578	661	744	828	911	995									
		Misc	llan	6011	N	ımb	ers	and	Ru	les.												
		No. of D		ad.×.	01745	Gra	ins in	ı lb.	Avoire	lupois		.=700	x									
Circum.	of Circle=	Dia.×3. Dias ×.	1416			Cul		h. in	Imper	ial Ga.	Hon .	·=27	274									
Ellipse A	,, =	T. Axis x	7034 C. Ax	18×.7	844	Lb	Do. . in tl	ne Impi	erial	Gallon	W.	.=10	001									
Spheroid	Cube =	Rov. Axis	3 X f.	Axis×	.5236	Lb	ı in th	ie Cut	ic Foo	t		.=62	. 5									
Sphere	Surface= ube =	Dia ³ ×	1416			Im	perial	Gallor	18 in 1	Cubic	Foot.	.=6.:	23									
Parabola	Area =	trds of b	. 52.50 ase x l	eight		Lei	es in a	f Seco	nds P	end. I	at. <1	.=69. =39.	13038									
Parabolo	id Cube =	∍i base x	height	;			" į	99		,,		=9.	785									
Cone & P	yr. Sur.= Cube=	girt. of area of b	base x ase x i	slant l heigi	height ht	· [" ‡	30 30		"		=4.3	49									
<u> </u>		uction				Me			nto :		lish.		·									
	enc h.		Engli			1	Pre	nch.		- 0	Engli	sh.										
Millimetr	е	= 0.039		ches		Are	(lama		=	3.95)	perche	6										
Centimet Decimetr		= 0.39	77 I	"		"	••	• ••			sq. ys		,									
Metre		=30.370	270	"		He	tare	· ••	==	2.471	142 .		,									
"		= 3.280	o8 feet			[Cag	pacity.			:									
Myriame		= 1.09	30 yar	1.5		Lit	re	• ••	=	0.220	773 PE	nts allons										
Toise (ol		=76.68	inch	165		Dec	alitre	• ::	=	2.201	gallor	18	,									
Foot (pi	ed.)	=12.78	**				tolitre	в	=	22.01	. ,,		4									
Inch (po		= 1.06	578 " 8815"			1	**	••	=	2.751 eight.	2 busi	ieis										
Line (lig	tre	=35.317	cubi	c feet		Dec	igram	me	=	1.542	8 grai	ns										
Kil. per s	q. Millm.	=1422.	lbs. pe	er sq. i	nch	Gra	mme	••	=	15.42	8 3 lbs. '	m	:									
		=61.025 =1.196	verde	inche	es •	Kil	ogram	me	=	2.000	3 108. ' c lb=	Y AUGA	lupois									
Metre, sq	,	=10.76	feet s	quare		Qui	ntål	•••		220.5		.,										
	Nations,		Engli					Nation			Engl											
Berlin i		= 12.1						mile (s mile)IL)=	2025. 6869	2 yard	.5									
Copenh Dantzio		= 12.3	9	# ,,				league		=	4263	"	1									
Hambu	rgh ft.	= 11.2	19,	,		1	**	nautic	al	=	:6075	"	i									
Naples	Palm	=10.	8 ,			G	erman	long		=	10126 6859		į									
Roman Russian	100t	= 11.6))		Ir	ish	SHOLL	, 99 99		3038	"										
Spanish	١	= 11.1	3 ,))		P	russiaı		"	=	8468	,,	1									
ll	vara	= 31.2	.72.	,		R	ussian	verst		=	1167	**	!									
Eng. m	He (5280	t.)=1760	ya.	rds		1 8	hernieu	leagu	TQ	=	4635	*	1									
					_		_					_										

USEFUL WEIGHTS AND MEASURES. - TABLE 19a.

Areas of Segments of a Circle, and Lengths of Circular Arcs,

Taking diameter as unity for Areas, and base of segments as unity for Lengths.

RULE FOR AREAS.—Multiply the area of the circle of which the given segment is a part, by the tabular area, the result will be the area required.

V. Sin.	Area.	Length.	V. Sin.	Area.	Length.	V. Sin	Area.	Length.
.01	.0013		.18	.0961	1.084	· · · · · · · · · · · · · · · · · · ·		
.02	.0037		.19	. 1039	1.093	-35	-2450	1.300
.03	.0068		.20	.1118	1.103	. 36	.2545	1.316
-04	.0105		.21	.1199	1.114	•37	.2642	1.332
.05	.0147		.22	. 1281	1.124	. 38	-2739	1.349
.06	.0192	1.006	.23	.1364	1.135	.39	.2836	1.366
-07	.0241	1.018	.24	1449	1.147	.4ó	.2934	1.383
.08	.0294	1.014	.25	.1535	1.159	.41	.3032	1.401
.00	.0350	1.020	.26	.1623	1.171	.42	.3130	1.418
.10	.0409	1.026	.27	.1711	1.184	-43	.3229	1.437
.11	•0470	1.032	.27 .28	.1800	1.197	-44	.3328	1.455
. 12	.0534	1.038	.29	. 1890	1. 212	-45	.3428	1.474
.13	.0000	1.044	.36	. 1981	1.225	.46	.3527	1.493
.14	.0668	1.051	.31	.2074	1.239	-47	.3627	1.512
. 15	.0739	1.059	.32	.2167	1.254	.48	-3727	1.531
. 16	.0811	1.067	-33	.2260	1.269	-49	. 3827	1.551
. 17	.0885	1.075	-34	-2355	1.284	.50	.3927	1.571

Length of Degrees and Minutes of an Arc,

Height of Apparent above True Level.

RADIUS BEING UNITY.

The Correction for Refraction is to be applied when necessary.

Deg.	Length.	Min.	Length.	Dist. Chns.	Subtract Feet.	Dist. Chns.		Dist. Chns.	Subtract Feet.
1 2 3 4 5 6 7 8	0.0174533 0.0349060 0.0523599 0.0698132 0.0872665 0.1047198 0.1221731 0.1396264 0.1570797 0.1745330	1 2 3 4 5 6 7 8 9	0.0002000 0.0005818 0.0008727 0.0011636 0.0014545 0.0017454 0.0020363 0.0023272 0.0026181 0.0029000	3 44 56 78 9 10	0.00 0.001 0.002 0.003 0.004 0.005 0.007 0.008 0.010	11 12 13 14 15 16 17 18 19 20	0.012 0.015 0.018 0.020 0.023 0.027 0.030 0.033 0.037 0.041	21 22 23 24 25 26 27 28 29 30	0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090

Square Yards in Decimals of an Acre.

BRICKWORK.

Rod takes 4,200 to 4,500 Bricks; 270 to 300 Bricks = 1 ton. A rod is 306 c. ft., or 11.33 c. yards.

8q.	Decimal	8q.	Decimal of	Bq.	Decimal	Wall	Contains Bricks.		
Yards	of an Acre.	Yards	an Acre.	Yards	an Acre.	sup. feet.	At 1 Brick.	At 1 Brick.	
	. 000206		.0043	200	.0413	I	11 21	16	
3	.00041	30 30	.0062	300	.0619	3	33	33 49 66	
5	.00083	40 50	.0103	500 600	. 1033	ş	55 66	82	
7	.00124	60 70	.0124	7∞	. 1239	7	77 88	115	
9	.00165	80 90	.0165	800 900	. 1653	9	99	132 148	
10	.00206	100	.0206	1000	. 2066	10	110	165	

WEIGHT, STRENGTH, &c. OF MATERIALS.-TABLE 20

METALS, BUILDING MATERIALS, FLUIDS, &c.

TABLES OF VARIOUS PROPERTIES.

The different qualities of materials in these tables express an average, from the best authorities, and in many cases from original experiments. Allowance must be made, in many cases, for the nature of the materials, when applying the tables, as many are in their nature variable.

Tenacity varies as the sectional area.

Transverse strength as the square of the depth \div by the length for rectangular beams; or as the cube of the diameter \div by the length in cylindric beams.

Resistance to crushing increases generally in a much more rapid ratio than the area.

The multipliers for transverse strength give the breaking weight for rectangular beams, fixed at one end and loaded at the other; thus, $\frac{\text{Tab. No. } \times \text{d}^2}{\text{length}} = \text{breaking weight in Ibs.};$

When fixed at one end and uniformly loaded, take twice the tabular number.
When supported at both ends and loaded in the middle, take four times the tabular number.
When supported at both ends and uniformly loaded, take eight times the tabular number.

Norz.-Safe load should not be more than one-fourth to one-sixth of the breaking weight.

metals.		Weight of a cubic Foot in lbs.avds.	Melting Point. Fah.	Tenacity per Sq. Inch in lbs.	Crushing Force per Sq. Inch.	Expansion 32° to 212°.
Antimony, Cast	8.399 8.607	613 525 538	810° 472 1869 2548 2590	1066 3250 17968 19072* 20450	10304	1.0011 1.0014 1.0020 1.0018 1.0016
Gold Coin Iron, Cast (variable) Iron, Swedish Iron, Malleable, best	7.104	444	3479	{ 13440 } 23000 } 68000	TONS. 40 to 50	1.0011†
BarLead	7.700		612	60000‡ 1824	20 to 30	1.0012
Mercury, Fluid Platinum, Purified Silver, Standard Steel, Soft Tin Zinc	20.250 10.300	644 490 455	wire 1280° 442 700°	56000 40900 120000 5322 { 16090 } 20000 }		1.0160§ 1.0009 1.0019 1.0011 1.0022

^{*} Wrought Copper Tenacity 33,000 lbs.

Multipliers for transverse strength.

Cast Iron average 8,000. Wrought Iron average 16,000.

§ Boils at 660°; expansion of glass tube 32° to $212^{\circ} = 1.0008$.

[†] Shrinks, when cast, i inch per foot.

[‡] Tenacity of Common Bar (say) 15 tons per square inch; Elastic Power (say) two-thirds of ultimate strength; Best Iron one-half. Compression begins at 10 to 12 tons.

WEIGHT, STRENGTH, &c. OF MATERIALS.-TABLE 20

BUILDING AND OTHER MATERIALS.	Specific Gravity.	Weight of a Cubic Foot in lbs.	No. of Feet in a Ton.	Crushing force per Square Inch, in Res.	REMARKS.
Alabaster	2.699		13.3]	Crushing force of fire-bricks as high
Basalt	2.864		12.5	1500	as 5,500 lbs.
Brick	1.557	97 135	23.0 16.6	2000	(Buchanan.)
Brickwork, in Cement	1.680	105	21.4		Mortar.
Do. in Mortar	1.568		22.9		c feet 1 Dorking Lime
Concrete, Portld. Cement Do. common Lime	2.272		15.8		/3 Sand
Do. common Lime Cement, Portland		1 2	28.0		1 Water
Do. Roman	1.040		34.4		5 Total, will make
Chalk	2.315		15.4	500	2.9 cubic feet of Mortar, or dry
Clay, Medway	1.440		25.0	l	Mortar, or dry materials to Mor-
Do. common			17.0		tar, as 4 to 3, nearly.
Do. Welsh	1.337	83	27.		
		_ ~	27.6		Flooring.
	1.400	89	25.2		80 lbs. per foot superficial.
Coke	•744		22.6		Glass.
Earth, rammed	1.584 2.630		22.0		
Flooring					Expansion 32° to 212°—.00086.
Glase, plate	2.453	153			a
Gravel			18.6		Crushing Weights
Granite, Cornish			13.5	8000	are probably a
Do. Aberdeen Do. Red Egyptian			13.5	3000	minimum, as
Lime, of Stone			42.2		strength increases more than as
Do. of Chalk	.704		51.0		the square of the dimensions.
Limestone, Bolsover			15.4		umousions.
Do. Blue lias Do. Plymouth			14.5	i	Lime.
Do. Statuary marble.			13.5	6400	70 lbs. p. bsh. Stone 56 lbs. " Chalk
Do. Purbeck	2.601		13.7		,
Marl	\$1.600 2.800	100	22.4	1	Sand
			13.2		Shrinks one-third if wetted.
Mortar Oolite, Bath			19.5		
Do. Portland	2.145	134	16.6	3729	
Porphyry	2.765	173	12.9		Roofing.
Pozzolano	1.444	90	25.0		For force per of wind sq.ft.
Sand, River	1.886		19.2		of wind sq.ft. take 40 lbs. Slating 12 ,,
Roofing	2.506		14.4		Plain tiling 17 ,,
Do. Darley Dale	2.628	164	13.5		Great wrought-
Do. Craigleith	2.266		15.8	5800	iron roof of Lime- street railway sta-
Do. York Landing			15.4		tion, 153.5 ft. span;
Serpentine, Green	2.574 1.424		13.6		length 374 feet; principals 21.5 ft.
Slate, Welsh and Valencia	2.888		12.4		apart; weight of
Do. Westmoreland	2.791	174	12.7		iron in each prin- cipal 10 tons; cost
Sulphur	2.033	127	17.6		£22 per square; proof load 72 lbs.
Tile	1.815	113	20.0		proof load 72 lbs. per foot sup.
<u> </u>			<u> </u>	l	

WEIGHT, STRENGTH, &c. OF MATERIALS.—TABLE 20

TIMBER.	Specific Gravity.	Weight of a Cubic Foot in Ibs.	No. of Feet in a Ton.	Tenacity per square inch in lbs.	Crushing force per square inch in lbs.	Multiplier for Trans- verse Strength.
			1			1
Alder	.800	50.0	44.8	14186	6895	١ ١
Ash	.767	49.0	45.7	17207	9023	2026
Beech	.777	43.12	51.0	16817	. 9048	1560
Birch		49.5	45.2	15000	4567	1900
Box	.960	60.0	37.3	19891	10299	
Ebony		70.4	30.0			
Cork	.240	15.0				
Elm		36.7	61.0	13489	10331	1030
Larch	. 522	32.6	68.6	10220		900
Lance Wood		63.9	35.1	24696		
Lignum Vitee	1.220	76.2	29.3	11800		
Mahogany, Spanish	.800	50.0	44.8	16500	8198	
Do. Honduras		35.0	64.0	8700	•••	
Oak, English		58.3	38.3	17300	ł	1800
Do. Canadian		54 • 5	41.1	10253		1760
Do. Dantzic		47.2	47.4	12780	,	1450
Do. African		60.7	36.8	} ··		2000
Green Heart		62.5	35.0			2700
Pine, Red	.657	41.0	54.5		5375	1340
Do. American Yellow		28.8	77.7		5445	
Plane Tree		40.0	56.0	11700	•••	
Sycamore		43.1	52.0	13000		ا .:: ا
Teak		41.0	54.5	15000	12101	2460
Walnut	.671	41.9	53 · 4	8130	6645	
FLUIDS.			Boiling Point.	Expan- sion 32° to 212°.	Rane	ARES.
Alcohol, Commercial	.837	52.3	173°	1.110	}	
Ammonia	.897	56.1				
Ether, Sulphuric Milk	.739	46.3	1000	1.070	Į.	
Milk	1.032	64.5	•••		Ī	j
Muriatic Acid Naptha		75.0	2220	1.060	ł	
Olive Oil	.915	57.2		1.080	ŀ	
Sperm Oil		54.5	••	1.080	ŀ	
Sulphuric Acid	1.841	115.6		1.060	l	
Turpentine, Spirit	.870	54.9	3 1 6°	1.070	ł	
Water, Rain	1.000	62.5	2120	1.047	at 77° ez	гр. г.оез
Do. Sea	1.026	64.1	2130.2	· · · · ·	ł	- 1
Ice		58.7			1	l
GASES.		Grains.			Tocor-	ert moist
Air	1.000	525.0		1.375		gas into
Ammoniacal Gas	0.596	319.8	••	Do.	dry:-	
Carbonic Acid	1.524	800.1	•••	Do.	, wy	Multi-
Chlorine	0.470	246.7	••	Do.	Deg. Deg	g. ply
Carburetted Hydrogen	0.420	220.5		Do.	53 to 57	
Hydrogen		43.7	••	Do.		980
Oxygen	1.103	627.8	•••	Do.		976
Sulphureous Acid	2.234	1207.9	••	Do.	69 to 73	974
ll .					l	- 1

WEIGHT OF IRON, &c.—Table 21

M	IALLI	EABLE	IR	ON,	FOR	ON	E FO	OT I	N L	ENG'I	H.
Fo	r weight	of cast ir steel copper	21	-	.95 1.02 1.13	Fo	r weigh	t of braz lead zinc	l	iply by i	. 06 . 50 . 92
	ROUND	AND S	QUAI	E BA	R.			FLA	T BAI	R.	
Size.	Round.	Square.	Size.	Round	Square	Wide	Thick.	Thick.	Thick.	Thick.	Thick.
ins.	lbs. 0.7 1.0	lbs. 0.8 1.3	ins. 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	lbs. 67 69 73	lbs. 84 88 93	ins. 14 14 15 14	lbs. 0.8 I.1 I.3	lbs. 1.3 1.6 1.9	lbs. 1.7 2.1 2.5	lbs. 2.1 2.6 3.2	lbs. 2.5 3.2 3.8
	2.0 2.7 3.4	2.6 3.4 4.3	5 1	76 81 84	97 102 107	1 ³ / ₄ 2 2 4	1.5 1.7	2.2 2.5 2.9	3.0 3.4 3.8	3.7 4.2 4.8	4·4 5.1 5·7
1 in tends	4.2 5.0	5·3 6.4	5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	91 88	111	2 d 2 d	2.1	3.2 3.5	4.2	5·3 5.8	7.0
1 I I I I	6.0 7.0 8.1 9.3	7.6 8.9 10.4 11.9	B 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	95 103 112 121	121 132 142 154	93 to toud	2.5 2.7 3.0 3.2	3.8 4.1 4.4 4.8	5.1 5.5 5.9 6.3	6.9 7.4 7.9	7.6 8,2 8.9 9.5
2 2 2 2 2 2	10.6 12.0 13.4	13.5 15.3 17.1	7 74 74 74 74	130 139 149	165 177 190	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.4 3.6 3.8	5.1 5.4 5.7	6.8 7.2 7.6	8.4 9.0 9.5	10.1 10.8 11.4
28 24 24 24 24 24 28	16.7 18.3 20.1	21.1 23.3 25.6	8 8 8	159 170 180 192	203 216 230 244	5	4.0 4.2 4.4 4.6	6.0 6.3 6.7	8.0 8.4 8.9 9.3	10.0 10.6	12.0 12.7 13.3 13.9
3 3 3	21.9 23.9 25.9	27.9 30.4 33.0	81 9 91	203 215 227	258 273 289	51 54 6	4.9 5.1	7·3 7.6	9.7	12.1 12.7	14.6 15.2
34 38	28.0 30.2	35·7 38·5	91 94	239 252	305 321	Wire gauge	Thick ness.		T	oot Su er. Brase	i
34 34 34 38	32.5 34.9 37.3 39.9	41.4 44.4 47.5 50.8	10 10 10 10	266 278 292 306	337 355 372 390	No.	ins. de 1 7-8	e. lbs. 40	lbs. 45	_	lbs. 60.
4	42.5 45.2 48.0	54.1 57.5 61.1	11 11 11 11 11 11 11 11 11 11 11 11 11	321 336 351	409 427 447		3-4 · 5-8	75 30 25 50 20	33. 28. 22.	90 32.4 25 27.0 60 21.6	45· 37·5 30.
44 48 49 49	50.8 53.8 56.8	64.7 68.4 72.3	114 12 13	366 382 447	466 486 570	1 2		17.5 15.6 12.5 19.12.5	16.	77 18.9 95 16.2 5 13.8 8 13.3	18.75
4 ² / ₄ / ₁	60.0	76.3 80.3	14	515 596	661 758	4 6 7	1-4 .2	11 8.	9.	3 10.8	
Size	IGHT (ight.	Size.		ght.	8	.1	17 6.6	7.	4 7.1	9.90
ins.	1	bs.	ins.	n	26.	11 12	1-8 .1	12 5.0	5.	6 5.4 8 4.6	7.50 6.65
3	3	.136 .10 .70	6 7 8	47	.00	14 16 18	1-16.0	6 2.5 5 1.5	2.	6 3.4 8 2.7 1 2.0 7 1.7	3.75
5	17.	70	9 10		.00		1-32	1 2	9	3 1.4	

SUSPENSION BRIDGES.—Table 22

LENGTH AND TENSION OF CHAINS.

With Sines and Cosines of the Angles of Direction for given Deflections.

Rule.—For Tension—Multiply the total weight to be suspended by the factor opposite the deflection or versed sine of the Chains; the product is the total tension at the middle, or point of suspension, as may be required. The use of the other columns are obvious.

Angle at Point of Suspension.	Versed Sine or Deflection.	Chain,	Tension at the Middle weight sus- pended being Unity.	Tension at each p int of Suspension. Weight sus- pended being Unity.	Sine of the Angle at Point of Suspension.	Cosine of Angle at Point of Suspension.
543 1119 1352 1455 1557 1706 1833 1959 2148	I-40th I-20th I-16.28 I-15th I-14th I-13th I-12th I-11th I-10th	1.012 1.015 1.018 1.020 1.0246 1.0288	4.995 2.485 2.003 1.877 1.753 1.625 1.490 1.373 1.252	5.200 2.536 2.080 1.943 1.823 1.700 1.572 1.463 1.349	0.0996 0.1962 0.2396 0.2574 0.2747 0.2940 0.3181 0.3417	0.9950 0.9805 0.9708 0.9663 0.9615 0.9558 0.9480 0.9398 0.938

GENERAL RULES FOR CATENARY CURVES.

To find angle of direction (x) of curve at point of suspension, when the chord line and versed sine are given?

sine of
$$s = \frac{2 \text{ v. sine}}{\sqrt{(2 \text{ v. sine}^2 + \text{semichord}^2)}}$$

To find the tension at each point of suspension (T) when the angle of direction (x) at such points is given?

T=Total weight suspended.

To find the tension at the lowest point of the curve (i) when the angle of direction (x) at the point of suspension is given? $t = \frac{1}{2}$ the weight suspended \times cosine x

sine x.

Note.—For an easy rule, although not precisely accurate, take—t=chord × weight

8 v. sine

Horizontal pull on the points of suspension = $T \times cosine x$; therefore if chains are unbalanced, this will represent the tendency to upset the towers; and if the chains pass back at an unequal angle, the difference of the cosines of the angles of direction is the measure of resistance on each.

Vertical pressure on the points of suspension= $T \times \sin \alpha x$. This pressure is additive in any case, for both sides of the point for the tension on the backstay must balance the main chains, the difference of pressure on each side is therefore only as the sine of the angle x = (Drewry, on S. Bridges.)

ROOFS AND LOCK GATES .- TABLE 22a.

TENSION OR THRUST OF ROOFS, &c.

Table of the Proportional Tension of BC, the angle BAC, and the versed sine AD being given; taking the weight on AB and AC as unity for the tension, and the length BC as unity for the length of AD.

Subtended Angle. B A C	Pitch or V. Sine.	Tension.	Subtended Angle. B A C	Pitch or V. Sine.	Tension.	Subtended Angle. BAC	Pitch or V. Sine.	Tension.
Deg. Min.	Bess-10	Wt =1 00	Deg. Min.	Rese_1.0	WL-140	Deg. Min.	Bess-1.6	Wt -1.00
179.30	. 002	1149	170.00	.043	5.76			
179.00	.004	57.47	100.30	.046	5.49	156.	. 106	2.46
178.30	.006	38. 17	160.00	.048	5.24	155.	. 110	3.36
178.00	.008	28.65	168. 30	.050	5.02	154.	. 115	2. 28
177.30	.011	12.93	168.00	. 052	4-81	153.	. 120	2. 20
177.00	.013	19. 12	167. 30	.054	4 62	152.	- 124	2. 13
176.30	.015	16.39	167.00	.057	4.45	151.	.120	2.06
176.00	.017	14.35	166.30	.059	4.18	150.	-134	2.00
175.30	.019	12.75	166.00	.coi	4.13	145.	-157	1.74
175.00	.022	11.48	165.30	.063	3.99	140.	. 182	1.55
174.30	.024	10.44	165.	.065	3.86	135.	.207	1.41
174.00	.ಂಚ	9.57	164.	.070	3.63	130.	.233	1.30
173.30	.028	8.81	163.	.074	3.42	125.	.260	1.22
173.00	.030	8.20	162.	.079	3.23	120.	. 188	1.15
172.30	.032	7.66	161.	.083	3.07	115.	.318	1.10
172.00	.035	7.18	160.	.088	2.92	110.	.350	1.06
171.30	.037	6.76	159.	.092	2.79	105.	. 383	1.03
171.00	.039	6.39	158.	.097	2.67	100.	.419	1.01
170.30	.041	6.06	157.	. tot	2.50	90.	.50ó	1.00

STRAIN AND DIMENSIONS OF LOCK GATES.

Table of Transverse Strain from Pressure of Water, upon 3 feet depth of Surface, at the stated heads; with the dimensions of square cak timber necessary to bear three times such strain; the Gates being placed at an angle of 19°.25'.

Gate.	61	eet.	8 I	est.	10 1	Poet.	12 1	Poet.	14 1	Poet.	16 I	eet.	18 1	Poet.	20	Feet.
Length of G	Stra. on 3 feet dpth. of sur- face.	Size to bear three times' strain	Birn. on 8 feet dpth. of sur- face	Sine to bear three times'	Strn. on 3 feet dpth. of sur- face	Size to bear three times' strain			Strn on 3 feet dpth of sur- face			bear three	Strn. on 3 feet dpth of sur- face			Sine to bear three times' strain.
Feet 6 7	Tms 1.9 2.2	Inches 5: 49 6: 09	2.5		3.2		3.8		4.5		5.3	7.62	5.7	Inches 7 · 93 8 · 78	6.4	
7 8 9 10	2.5 2.8 3.2	7.20	3.4 3.8	7.32	4.2 4.8	7.89 8.54	š. i 5.7	8.39 9.07	5.9 6.7	8.83 9.55 10.24	6.8 7.6	9.23	7.6 8.6	9.60 10.38	8. ş 9.6	
11 12	3. § 3. 8	8.72	5. 1	9.60	6.4	IO. 34	7.6	10.98	8.9	11. 57	10. 2	12. 10	11.5	12. 58	12.8	12. 30 13. 03
13 14 15	4 4 4 8	9.67 9.67 10.12	5.9	10. 12 10. 64 11. 14	7.4	11.46	8.9	11. 59 12. 18 12. 75	10.4	12. 82	11.9	13.40	13.4	13.94	14.9	13. 74 14. 44 15. 12
16 17 18	5.4	11.00	7. 2	12. 11	9.0	13.05	10.8	13.86	12. Ó	14.60	14.5	15. 26	16. 3	15. 86	18. I	15.78 16.43 17.07
19	6.0	11.85	8. I	13.04	10. I	14.04	I2. I	14 93	14 İ	15.72	16.2	16. 43	18. 2	17.09	20. 2	17. 70 18. 31

CAST IRON BEAMS.—Table 23

TABLE OF SAFE LOAD.

IF EQUALLY DISTRIBUTED, EXPRESSED IN CWTS.

Por Beams 6 to 16 Inches deep.

Rule.—Multiply the area which a proposed beam has to support, by the weight of the floor or bridge, and the greatest load, due to such area, all in cwts.; find the nearest corresponding number in the table, having the required depth and length, and the proper dimensions of the bottom Flange will be found at top of the column. The tables also give the safe weight to be borne by beams of any of the stated dimensions.

Note.—Floors should generally be reckoned to carry 2.5 cwts. per foot superficial, including their own weight.

Road Bridges , " , 5.0 cwts. , " , Ballway Bridges , " , 10.0 cwts. , " , 10.0 cwts. , " , but for railway girders of cast iron, beyond 18 feet span, only half the tabular numbers should be used.

1											
	Beam	6 incl	es des		Beam 8 inches deep.						
Dimensions o bottom Flang- in inches.		5×1	6×1	8×11	9×11	4×1	SXI	6×1	8×15	9×11	
Length, feet 5 6	Cwts.	Cwts. 166 139	Cwts. 200 166	Cwta 333 277	Cwts. 391 126	Cwts. 177 148	Cwts. 222 185	Cwts. 266	Cwts. 444 370	Cwts. 521 435	
10 8	83 66	104 83	125	208 166	244 195	111 89	139	166	277 223	325 260	
12 14 16 18	55 47 41 37	59 52 46	83 71 62 55	138 119 104 92	163 140 122 108	74 63 55 49	92 79 69 62	95 83 74	185 159 138 123	217 187 163 144	
	Beam	10 incl	hes dee	p.		Beam 12 inches deep.					
Dimensions of bottom Flange in inches.		6×1	8×11	9×11	10 × 11	6×1	8×1‡	9×11	10×1	11×1}	
Length, feet.		Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	
6	231	208	463	521	578	333	555 416	625	694	916 688	
8 10	173	166	346 278	391	434 347	250	333	469 375	52I 417	550	
12	115	139	230	260	289	166	278	312	347	458	
		119	108	223	248	100	218	268	208		
14 16	99 86	104	172	195	217	125	208	234	261	393	
18			154	173	193	111	185	208	232	344	
20	69	93 83	138	156	173	100	166	187	209	275	
	Beam	14 incl	nes des	p.		E	eam 16	3 inche	s deep.		
Dimensions of bottom Flange in inches.	8×17	9×11	10 X 14	11×13	12×14	8×1‡	9×11	10×11	11×13	12×14	
Length, feet.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts	
8	486	547	607	802	875	555	625	694	916	1000	
10	389	438	486	642	700	444	500	555	733	800	
12 14	324 278	365	405	535	584	370	417	463	011	667	
		313	347	459	501	317	357	397	524	572	
16	243	274	304	401	437	278	313	347	458	500	
18	216 195	244 219	270	357	389	246	278	309	407 366	444	
20 22	177	199	243 221	201	350 318	202	250	278 250	333	164	
	-77	- //			,,,,		/		,,,	,,,,	

CAST IRON BEAMS.—Table 23

	TABLE OF SAFE LOAD. For Beams 18 to 30 inches deep.											
										-		
		Beam :	18 inch	es dee	p.		B	eam 2	inche	s deep.		
Dimensio bottom F in inch	lange	9×1‡	10×14	12×14	13 × 14	14×13	10 X 14	12×11	14×1}	15×13	16×14	
Length,		Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	
ł	10 12	562 469	625 524	900 750	975 813 696	1050 875	875 720	1050 875	1225 1021	1312 1094	1400	
1	14	402 351	524 446	750 643 562	696 609	750 656	729 625 540	750 656	875 766	937 820	1000 875	
<u> </u>	16 18	312	390 347	500		583	486	181	681		778	
1	20	281	112	450	542 487	525	437	525	613	729 656	700 637	
l.	22	256 234	284 261	409 375	443 406	477 437	398 364	477 437	557 510	596 547	637 583	
ļ		-,4						437		34/		
II				Bea	m 24 1	nches	deep.					
Dimensio bottom F in inch	ns of lange les.	10×14	12×14	14×1}	15×14	16×13	16×2	17×13	17×2	18×14	18×2	
Length,		Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	
i	19	833	1000 857	1166	1250	1333	1778	1416	1819	1500	2000 1714	
ll .	16	714 623	75° 666	875	937 833	1143 900	1333	1062	1365	1125	1500	
	18 20	555 500	600	777	833 750	889 800	1185	944 849	1213	1000	1333 1200	
1	22		545	636	682	727 666		772	992	818	1091	
	24	454 416	100	583	625		970 889 836	708 656	910	750	1000	
	26 28	384 357	461 428	538 500	577 535	615 571	762	607	840 780	692 643	923 857	
ii .	80	333	400	467	500	534	711	566	728	600	800	
				Bea	m 27 i	nches	leep.					
Dimensio					Ī	<u> </u>	<u> </u>		l	l		
bettom F in inch	lange es.	12 X 19	14×14	14×2	15×14	15×2	16×14	16×2	17×13	17×2	18×1	
Length,		Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	
į	14 18	964 740	1125 863	1166	937	1607 1249	1286	1714	1366	1821 1416	1928 1500	
	29	740 613	715 656	954	707	1022	818	1091	869	1159	1227	
li	24 28	562 482	562	875 750	703	937 803	750 643	1000 857	797 683	911	964	
ll .	80	450	525	700	562	750	600	800	637	850	000	
Į.	32	422	402 463	656	527	702 661	562	750	598 502	797	843	
H	34 36	397 375	403	618 583	496 469	625	530 500	706 666	53 I	750 708	794 750	
!	40	337	437 388	525	421	563	450	600	478	708 638	750 675	
				Bes	m 30 i	nches	deep.					
Dimensis bottom F in inch	lange	14×1}	14×1	15×14	15×2	16×13	16×2	18×2	20 X 2	22×2	24×2	
Length,		Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	Cwts.	
!	18 22	972 795	1296	1041 852	1389 1136	1111	1481	1666	1852	2038	2222 1818	
	24	714	952 816	781 669	1041	832	1111	1250	1388	1526	1664	
	28 20	612 571	816 761	669	892	714 679	952 889	1071	1111	1309 1245	1428 1358	
i	32	536		586	780	624	833	1	1040	1144	1248	
	84	514 486	715 685	122	734 695	589	783	937 882	070	1080	1178	
l	36 40	486 428	648 570	521	695	555	740 666	833	927 633	1019	1110	
i.	44	397	529	469 426	568	454	606	750 681	757	833	908	

MARINE SURVEYING .- TABLE 24

ANGLES OF THE POINTS OF THE COMPASS WITH THE MERIDIAN.

	of m	agnetic needle	1850,	latitude 51°	=
Dip.	_				-

North.	South.	Points.	Deg. Min.	North.	South.
N.W.	8. by W. 8.S.W. 8.W. by S. 8.W. by W. 8.W. by W. W.S.W. W. by S. West	Add for 14 " 1 2 2 3 4 5 5 6 7 8	2 48 45 5 37 30 8 26 15 11 15 22 30 33 45 45 00 56 15 67 30 78 45 90 00	N. by E. N.N.E. N.E. by N. N.E. by E. E.N.E. E. by N. Rast	S.É.

MILES IN A DEGREE OF LONGITUDE AT EVERY DEGREE OF LATITUDE.

Degs. Lat.	Miles.	Degs. Lat.	Miles.	Degs. Lat.	Miles.	Degs. Lat.	Miles.	Degs. Lat.	Miles.	Degs. Lat.	Miles.
ı	59.99	16	57.67	31	51.43	46	41.68	61	29.09	76	14.52
2,	59.96	17	57.38	32	50.88	47	40.92	62	28.17	77	13.50
3	59.92	18	57.06	33	50.32	48	40.15	63	27.24	78	12.47
	59.85	19	56.73	34	49.74	49	39.36	64	26.30	79	11.45
	59.77	20	56.38	35	49.15	50	38.57	65	25.36	80	10.42
6	59.67	21	56.01	36	48.54	51	37.76	66	24.40	81	9.39
7	59 - 55	22	55.63	37	47.92	52	36.94	67	23.44	82	8.35
8	59.42	23	55.23	38	47.28	53	36.11	68	22.48	83	7.31
9	59.26	24	54.81	39	46.63	54	35.27	69	21.50	84	6.27
	59.08	25	54.38	40	45.96	55	34.41	70	20.52	85	5.23
11	58.89	26	53.93	41	45.28	56	33.55	71	19.53	86	4.19
12	58.68	27	53.46		44.59	57	32.68	72	18.54	87	3.14
13	58.46	28	52.97	43	43.88	58	31.80	73	17.54	88	2.09
	58.22	29	52.47		43.16	59	30.90	74	16.54	89	1.05
15	57.95	30	51.96		42.43	60	30.00	75	15.53	90	0.00

2.4856 miles = mean circumference of Earth. diameter of Earth.

7921 " 20921180 feet radius of the Equator.

polar semi-axis.
length of Geogr. or nautical mile.
ratio of nautical to English mile.
length of pendulum at the Equator. at latitude 45.

length of pendulum at London. Edinburgh.

force of gravity at London, in feet per second.
"
"
Edinburgh
"

MARINE SURVEYING.—Table 24 a, b, c.

Table 24a. VELOCITY AND PRESSURE OF THE WIND.

Table 24 b. For finding the Height of Tide at any period after High Water.

			attor man				
Feet F Min.		Force in lbs. on Sq. Foot.	DESCRIPTION.	Time from High Water.	Multiplier.		
88	1	.005	Hardly perceptible.	Hours. Min.			
352	4	.0797	Gentle wind and	000	1.000		
440	5	0.123	breezes.	0 30	-975		
88o	10	0.4927	G 1 1	1 00	.916		
1320	15	1.107	Good breeze.	1 30	.841		
1760	20	1.970	Brisk gale.	200	·74I		
2640	30	4.429 }		2 30	.625		
3080	35	6.027	High winds.	3 00	. 500		
3520	40	7.870)	*** a * *	3 30	•375		
3960	45	9.960	Very high.	4 00	.258		
4400	50	12.300	Storm.	4 30	. 158		
5280	60	16.710	Great storm.	5 ∞	.083		
7040	80	31.490}	TT	5 30	.025		
8800	100	49.200	Hurricane.	Parla Multi	inly the range		

TIDES occur twice in every 24 hours and 504 minutes. When a place is on the same side of the Equator as the moon, the Tide which is produced, while the moon is above the horizon, is greater than while the moon is under the horizon of the place. When a place is on the opposite side of the Equator to the moon, the effect is reversed. In Midsummer, the afternoon Tides are higher than the morning Tides. In winter the morning Tides are highest.

Rule.—Multiply the range of Tide for the day by the Factor opposite the hour at which the height is required.

Example.—The total rise of Tide at Limehouse, on the rath of April, was 20.4 feet; High Water made at 2 p.m.: what was the height of Tide at 4 p.m.?

20.4×74=15.11 feet.

Table 24 c.

SHOWING THE LENGTH IN FEET OF ONE MINUTE OF LONGITUDE AND LATITUDE,

Being One Nautic Mile.

Note.—To obtain the number of miles in a degree, at any latitude or longitude, multiply the tabular numbers by 60, and divide by 5280; thus, at the Equator, the length of a degree is 60.15 miles.

0 60 2 60 4 60	Feet. 085.2 081.6 070.2	Feet. 6085.20	Deg.	Feet.	Feet.	Dam	774	774
2 6	081.6	6085.20				Deg.	Feet.	Feet.
2 6	081.6	-		4990.2	6105.0	53	3670.2	6124.8
8 6			35 36	4920.0		54	3585.0	
6 60	2 . 2 l	1	37 38	4866.o		55	3498.0	
			38	4801.2		55 56 57 58	3410.4	
	26.4		39	4735-2		57	3322.2	
10 59	993 • 4		40	4668.0		58	3232.2	
12 50	953.2	6087.78	41	4599.0	6111.6	59	3141.6	6130.1
14 40	905.8			4528.8		59 60 61	3050.4	• •
16 \ <8	851.2		44444	4457 - 4	i	61	2958.0	
18 57	789.4		44	4384.2		62	2864.4	
	721.6		45	4309.8		63 64	2770.2	
22 50	545.4		46	4234.2		64	2675.8	
24 5	562.0	6095.22	47	4157.4	6118.2	65	2578.8	6135.6
26 4	472.6		47 48	4079-4		65 66 68 69	2482.2	
	77.2	1	49	3999.6		67	2384.4	
	74.0		50	3919.2		68	2286.0	
	165.4		51 52	3837.0		69	2187.0	ı
	950.2 I		52	3754.2	1	70	l 2087.4 l	

MOUNTAIN BAROMETER.—TABLE 25

Diffe	TABLE B. Difference of Temperature.				TABLE A. For reduction to Freezing Point.						
Diff. of	Correc-	Diff. of	Correc-	T	Corn	ections for t	he Baromet	er at			
Temp.	tions.	Temp.	tions.	Temp.	27 Inches.	28 Inches.	29 Inches.	30 Inches.			
Cent. degs. 0.5	feet. 2.46	Cent. degs. 10.5	feet. 50.69 53.15	Fah. degs. 32	inch. .0086	inch. .0088	inch. .0091	inch. .0094			
1.5 2.0	4.92 7.21 9.51 11.97	11.5 12.0 12.5	55·44 57·74	36 38 40	.0183	.0188 .0238 .0288	.0194	.020 t .0255			
3.0 3.5 4.0	14.43 16.89 19.35	13.0 13.5 14.0	62.66 65.12 67.58	42 44 46	.0327 .0375 .0423	.0338 .0388 .0438	.0350 .0402 .0454	.0362 .0416 .0470			
4·5 5·0 5·5	21.81 24.27 26.57	14.5 15.0	70.04 72.50	48 50 52	.0471 .0519	.0488 .0538	.0506	.0523			
6.0 6.5 7.0	28.87 31.33 33.79	16.0 16.5 17.0	77.10 79.56 82.02	54 56 58 60	.0616 .0664 .0712 .0760	.0638 .0688 .0738	.0661 .0713 .0765	.0684 .0738 .0791			
7.5 8.0 8.5 9.0	36.25 38.71 41.00 43.30	17.5 18.0 18.5 19.0	84.48 86.94 89.40 91.86	62 64 66	.0809 .0857 .0906	.0788 .0838 .0888	.0868	.0845 .0898 .0951 .1005			
9.5 10.0 Tabl	45.76 48.22 e A can be	19.5 20.0 applied t	94.32 96.78 o any ba-	68 70	.1000	.0988	.1023	.1058			
rometer, deducting the number for the temperature from the observa- tions for heights. Table B gives the amount to be				72 74 76 78	.1049 .1097 .1146	.1087 .1137 .1187 .1237	.1126	.1165 .1218 .1272 .1325			
deducted from the height, according to the difference of the attached thermometers—or to be added, if the upper station should be warrner than the lower. For correction due to ex-					.1241 .1289 .1338	.1286 .1336 .1386	.1332 .1384 .1435	.1378 .1432 .1485			
pansion Tabl	of air, &c. o C gives or gravity !	see "Ra	nles."	86 88 90	.1385 .1433 .1482	.1435 .1485 .1535	.1486 .1538 .1589	.1538 .1591 .1644			

TABLE C. Gravity and Centrifugal force. CORRECTIONS TO BE ADDED.

Latitude.	to 10°	15°	20°	25°	30°	35°	40°	45°	50°	55°
Approx. height.				6 0 m4	S	6004	foot	4-4		•
600	feet.	feet	feet.	feet.	feet. 2.6	feet.	feet.	feet.	feet.	feet.
	3.9	3 • 3	3.3	3.3		2.6	- 1	1.9	-	- 2
1300	7.9	7.2	6.5		5.9	5.6	4.6	3.9	3 3	2.6
2000	11.1	10.5	9.8	9.2	8.5	7.9	6.5	5.9	5.2	3.9
2600	14.7	14.1	14.0	12.4	11.5	10.2	6.2		6.5	5.5
3300	20.1	17.5	17.3	15.7	14.1	12.4	11.1	10.1	8.5	7.2
400C	22.9	20.9	19.7	19.0	16.7	15.1	13.7	11.8	10.1	8.5
4600	26.9	24.9	23.3	22.0	20.0	17.7	15.7	13.7	11.8	9.8
5300	30.2	28.9	26.9	24.9	22.9	20.3	18.3	15.7	14.0	11.1
5900	34.1	32.1	30.8	38.2		22.9	20.6	17.7	15.1	12.4
6600	37.7	36.1	34.1	31.5	28.9	25.7	22.9	19.7	17.3	13.7

MOUNTAIN BAROMETER.—Table 25 a

Table D. TABLE OF THE ELASTIC FORCE OF AQUEOUS VAPOUR,

WITH THE WEIGHT, IN GRAINS TROY, OF A CUBIC FOOT,

At the following Temperatures of the Dew Point, in Degrees Fahrenheit.

					_			
Temp. f Dew Point.	Force of Aqueous Vapour.	Weight in Grns. Troy of Cub. Ft. of Vapour.	of Dew	Force of Aqueous Vapour.	Weight in Grns. Troy of Cub. Ft. of Vapour	of Dew	Force of Aqueous Vapour.	Weight in Grns. Troy of Cub. Ft. of Vapour.
Fah.	Inches.	Grains.	Fah.	Inches.	Grains.	Fah.	Inches.	Grains.
50	.074	0.93	310	0.192	1.20	510	. 386	4.42
10	.089	1.11	32	. 199	2.37	52	.400	4.56
12	.ogå	1.19	33	.207	2.45	53	-414	4.71
14	. 104	T.28	34	.214	2.53	54	.428	4.86
15	. 108	1.32		.122	2.62	55	-442	5.02
16	. I 12	1.37	35 36	.230	2.71	55 56	.458	5.18
17 18	. 116	1.41	37	.238	2.80	57 58	-473	5-34
	. 120	1.47	38	.246	2.89	58	.489	5.51
19	. 125	1.52	39	.255	1.99	59 60	.506	5.69
20	. 129	1.58	40	.164	3.09	60	. 523	5.87
21	. 134	1.63	4I	.274	3.19	62	-559	6.25
22	.139	1.69	42	. 283	3.30	64	-597	6.65
23	. 144	1.75	43	. 293	3.41	66	.638	7.08
24	. 150	1.81	44	.304	3.52	68	.681	7 - 53
25 26	. 155	1.87	45	.315	3.04	70	.727	8.00
26	. 161	1.93	44 45 46	.326	3.76	72	.776	8.50
27 28	. 167	2.00	47 48	•337	3.88	74 76 78 80	.827	9.04
	.173	2.07	48	-349	4.01	76	.882	9.60
29	. 179	2.14	49	.361	4-14	78	.940	10.19
30	. 186	2.21	50	-373	4.28	80	1,001	10.81

Table F. CORRECTIONS.

To be added to the Mercurial Column Factors for deducing the Dew Point from the Temperature of Evaporation.

Diam. of Tube.	Correction	Diam. of Tube.	Correction		
Inch.	Inch.	Inch.	Inch.		
. 10	.140	.30	.029		
.12	.113	-35	.021		
. 14 . 16	-094	.40	.015		
. 16	•079	•45	.011		
. 18	.068	.50	.008		
.20	.058	-55	.006		
.25	.041	.60	.004		

Note.—This correction is practically unnecessary, excepting for scientific reduction of observations.

Mountain Barometers, when varying in size, when used for simultaneous observations, should have their comparative errors determined by inspection.

Rule for Table D.

This Table shows the amount to be de-This Table shows the amount to be adducted from the mercurial column, to obtain the true pressure of dry air; the dew point having been previously computed by Table E, from observations of the ordinary dry and wet bulb thermometer.

Example.

The Barometer stands at .. h hen the dew-point, by calculation,

is 16.2°, the pressure =

True pressure of air = 29.158 660_

Table E. DRY AND WET BULB THER-MOMETERS.

	Readings of the Dry Bulb Thermometer. Fah.							
Between	28° and	29°	5.7					
,,	29 ,,	30	5.0					
99	30 ,,	31	4.6					
**	3T ,,	32	3.6					
**	32 ,,	33	3.1					
**	33 ,,	34	2.8					
29	34 "	35	2.6					
"	35 ,,	40	2.4					
**	40 "	45	2.3					
**	45 **	50	2.2					
>>	50 ,,	55	2.1					
**	§§ "	60	1.9					
99		70 80	1.8					
	70 ,,	80	1.7					

Rule for Table E.

Multiply the difference between the two thermometers by the factor corresponding to the temperature of the dry bulb thermometer; the product, subtracted from the latter, gives the temperature of the dew point.

Example.

Dry bulb thermometer = 66° Wet bulb thermometer = 57

> Difference.. Difference.... = 9 Factor for 66° .. = 1.8

> > Product = 16.2

-16.2° = 49.8° temp. of dew point.

CIRCLES .- TABLE 26

AREA AND CIRCUMFERENCE OF CIRCLES.

Diameters.1 to 43,

The Square Root of any Area is the side of an equivalent Square.

-											
Diam.	Area.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.			
			13.25	137.88	41.62	28.25	626.79	88.75			
:			13.5	143.14	42.41	28.5	627.04	89.53			
1	0.007	- 31	13.75	148.49	43.19	28.75	649.18	90.32			
.2	0.031	.64	14.	153.94 159.48	43.98	29.	600.51	91.10			
-3	0.070	1.26	14.25 14.5	165.13	44.77	29.25	671.95 683.49	91.89			
-4	0.125 0.106	1.57	14.75	170.87	45.55 46.34	29.75	695.12	93.46			
5	0.282	1.57 1.88	15.	176.71	47.12	30.	706.85	94.24			
•7	0.384	2.20	15.25	182.65	47.90 48.69	30.25		95.03			
:₹	0.502	2.51	15-5	188.69	48.69	30.5	730.61	95.81			
1.00	0.636	2.82	15.75 16.	194.82	49.48	30.75	742.64	96.60			
1.00	.7854	3.1416	16.	201.06	50.26	31.	754.76	97.38			
1.25	1.22	3.92	16.25	207.39	51.05	31.25	766.99	98.17			
1.5	1.76	4.71	16.5	213.82	51.83	31.5	779-31	98.96			
1.75	2.40	5.49 6.28	16.75	220.35 226.98	52.62	31.75 32.	791.73 804.24 816.86	99-74			
2.25	3.14 3.97	7.06	17.	233.70	53.40 54.19	32.25	816.86	100.53			
2.5	4.90	7.85	17.5	240.52	54.07	32.5	820.57	102.10			
2.75	5.93	8.63	17.75	247 - 44	54.97 55.70	32.75	829.57 842.38	102.88			
8.	7.06	9.42	18.75	264.47	56.54	33.	855.29	103.67			
3.25	8.20	10.21	18.25	266.58	57.33	33.25	868.30	104.45			
3.5	9.62	10.99	18.5	268.80	58.11	33.5	881.41	105.24			
3.75	11.04	11.78	18.75	276.11	58.go	33.75	894.61	106.02			
4-	12.56	12.56	19.	283.53	59.69 60.47 61.26	34.	907.92	106.81			
4-25	14.18	13.35	19.25	291.04 298.64	67.47	34.25	921.32	107.59			
4.5	15.90	14.14 14.92	19.5	306.35	62.04	34.5	948.41	100.30			
4.75 5.	19.63	15.70	20.	314.16	62.83	34.75 35 .	002.11	109.95			
'											
5.25	21.65	16.49	20.25	322.06	63.61	35.25	975-90	110.74			
5.5	23.76	17.28 18.06	20.5	330.06	64.40 65.18	35.5	989.79	111.52			
5.75 6.	25.97 28.27	18.85	20.75	338.16 346.36	65.97	35.75	1003.78	112.31			
6.25	30.68	19.63	21.25	354.65	66.75	36.25	1032.06	113.88			
6.5	33.18	20.42	21.5	363.05	67.54 68.32	26.5	1046.34	114.66			
6.75	35.78	21.20	21.75	371.54	68.32	36.75	1060-73	115.45			
7.	38.48	21.99	22.	380.13	69.11	87.	1075-21	116.23			
7.25	41.28	22.77	22.25	388.82	69.90 70.68	37.25	1089.79	117.02			
7.5	44.17	23.56	22.5	397.60		37.5	1104.46	117.80			
7.75	47.17	24.34	22.75	406.49	71.47	37.75	1119-24	118.59			
8.	50.26	25.13	23.	415-47	72.25 73.04	36. 38.25	1134.11	119.38			
8.15 8.5	53·45 56·74	25.92 26.70	23.25	424.55 433.73	73.82	38.5	1164.15	120.10			
8.75	60.13	27.49	23.75	443.0I	74.61	38.75	1179.32	121.73			
9.	63.62	28.27	24.	452.39	75.39	39.	1194.59	122.52			
9.25	67.20	29.06	24.25	461.86	76.18	39-25	1209.95	123.30			
9.5	70.88	29.84	24.5	471.43	76.96	39.5	1225.41	124.00			
9.75	74.66	30.63	24.75	481.10	77.75	39.75	1240.97	124.87			
10.	78-54	31.42	25.	490.87	78.53	40.	1256.63	125.66			
10.25	82.52	32.20	25.25	500.74	79.32	40.25	1272.39	126.44			
10.5	86.59 90.76	32.98	25.5	\$10.70 520.76	80.11 80.80	40.5	1288.24	127.23			
10.75	95.03	33·77 34·55	25.75 26.	520.76	81.68	40.75	1304.20 1320.25	128.80			
11.25	99.40	35.34	26.25	541.18	82.46	41.25	1336.40	129.59			
11.5	103.87	36.13 36.91	26.5	551.54	83.25 84.03	41.5 41.75	1352.65	130.37 131.16			
11.75	113.00	37.69	26.75 27.	572.55	84.82	42.73	1385.44	131.04			
12.25	117.86	38.48	27.25	583.20	85.60	42.25	1401.98	132.73			
12.5	122.72	39.27	27.5	593.95	86.39	42.5	1418.64	133.51			
12.75	127.67	40.05	27.75	604.80	87.17	42.75	1435.36	134.30			
13.	132.73	40.84	28.	615.75	87.96	43.	1452.20	135.08			

CIRCLES .- TABLE 26

AREA AND CIRCUMFERENCE OF CIRCLES.

Diameters 43,25 to 100.

The Square Root of any Area is the side of an equivalent Square.

Diam.	Area.	Circum.	Diam.	Area.	Circum.	Diam.	Area.	Circum.
43.25	1469.13 1486.16	135.87	58.25	2664.90	182.99	73.25	4214.10	230.12 230.90
43.5	1480.10	136.65	58.5	2687.82	183.78	73.5	4242.91	231.60
43 - 75	1503.30	137.44	58.75	2710.85 2733.97	184.56 185.35	73·75 74·	4300.84	232.47
44.	1520.53	138.23 139.01	59. 59.25	2757.18	186.13	74.25	4329.94	233.26
44.25	1556.28	139.80	59.5	2780.50	186.92	74.5	4359.15	234.04
44.75	1572.80	140.58	59.75	2803.92	187.71	74.75	4388.46	234.83
45.	1590.41	141.37	60.	2827.43	188.49	75.	4417.86	235.61
45.25	1608.15	142.15	60.25	2851.04	189.28	75.25	4447.36	236.40
45.5	1625.97 1643.88	142.94	60.5	2874.75 2898.56	190.06	75.5	4476.96 4506.66	237.19
45.75 46.	1643.88	143.72	60.75	2898.50	190.85	75.75 76.	4500.00	237.97 238.76
46.	1661.90	144.51	61.	1911.46	191.63	10.	4536.45	230.70
46.25	1680.01	145.29	61.25	2946.47	192.42	76.5	4596.34	240.33
46.5	1698.22	146.08	61.5	2970.57	193.20	77•	4656.62	241.90
1 46 70	1716.53	146.86	61.75	2894.77	193.99	77.5	4717.29	243 - 47
47.	1734-94	147.65	62.	3019.07	194.77	78.	4778.36	245.04 246.61
47.25	1753.45	148.44	62.25	3043.46	195.56	78.5	4839.81 4901.66	248.18
47.5	1772.05	149.22	62.5 62.75	3067.96 3092.55	190.34	79.	4963.91	249.75
47.75	1790.75	150.79	63.	3117.24	197.92	79.5 80 .	5026.54	251.32
47. 47.25 47.5 47.75 48.		-30./9		,,				1
40.23	1828.45	151.58	63.25	3142.03	198.70	80.5	5089.57	252.89
48.5	1847.45 1866.54	152.36	63.5	3166.92	199.49	81.	5152.99 5216.81	254.46
48.75	1860.54	153.15	63.75	3191.90	200.27	81.5 82.		256.03
49.	1885.74	153.93	64. 64.25	3216.99	201.06 201.84	82.5	5281.01 5345.61	259.18
49.25	1905.83	154.72	64.5	3242.17 3267.45	202.63	83.	5410.60	260.75
49.5	1924.42 1943.90	155.50 156.29	64.75	3292.83	203.41	83.5	5475.99	262.32
50.75	1903.49	157.07	65.	3318.30	204.20	84.	5541.76	263.89
	' ' '	-3,,				_	1	
50.25	1983.17	157.96	65.25	3343.88 3369.55	204.98	84.5	5607.93	265.46
50.5	2002.96	158.65	65.5	3369.55	205.77	85.	5674.50	267.03 268.60
50.75	2022.84	159.43	65.75	3395-32	206.55	85.5 86.	5741.45 5808.80	270.17
51.	2042.82	160.22	66.25	3421.19 3447.16	207.34	86. ₅	5876.54	271.74
51.25	2083.07	161.79	66.5	3473.22	208.91	87.	5944.67	273.31
51.75	2103.34	162.57	66.75	3499-39	209.70	87.5	6013.20	274.88
52.	2123.71	162.57 163.36	67.	3525.65	210.48	88.	6082.12	276.46
			67.25	2000 00	211.27	88.5	6151.43	278.03
52.25	2144.18	164.14 164.93	67.5	3552.01 3578.47	212.05	89.	6221.13	279.60
52.5 52.75	2185.41	165.71	67.75	3605.02	112.84	89.5	6291.23	281.17
53.	2206.18	166.50	68.	3631.68	213.62	90.	6361.72	282.74
53.25	2227.04	167.28	68.25	3658.43	214.41	90.5	6432.60	284.31
53.5	2248.00	167.28 168.07	68.5	3685.28	215.19	91.	6503.88	285.88
53.75 54.	2269.06	168.86	68.75	3712.23	215.98	ģ1.5	6575.54	287.45
54.	2290.22	169.64	69.	3739.28	216.76	92.	6647.61	289.02
54.25	2311.47	170.43	69.25	3766.42	217.55	92.5	6720.06	290.59
54.5	2332.82	171.21	69.5	3793.66	218.34	93.	6702.00	290.59 292.16
54.75	2354.28	172.00	69.75	3821.01	219.12	93.5	6866.14	293.73
55.	2375.82	172.78	70.	3848.45	219.91	94.	6939.77	295.30
55.25	2397 - 47	173.57	70.25	3875.99	220.69	94.5	7013.80	296.88
55.5	2419.22	174-35	70.5	3903.62	221.48	95.	7088.21	298.45 300.02
\$5.75 56.	2441.06	175.14	70.75 71.	3931.36	121.27 223.05	96.	7163.02	301.59
50.	2463.00	175.92	14	3959.19	,.0,		, _, _,	,,
56.25	2485.04	176.71	71.25	3987.12	223.84	96.5	7313.82	303.16
56.5	2507.18	177.49 178.28	71.5	4015.15	224.62	97•	7389.81 7466.19	304.73 306.30
56.75	2520.42	178.28	71.75	4043.28	225.41	97.5	7400.19	
57.	2551.75	179.07	72.25	4071.50	226.19 226.98	98. 98.5	7542.96 7620.12	307.87 309.44
57.25	2574.19	179.85 180.64	72.25	4128.24	227.76	99.	7697.68	311.01
57.5	2596.72 2619.35	181.42	72.75	4156.77	228.55	99.5	7775.63	312.58
57-75 58.	2642.07	182.21	72.75	4185.38	229.33	100.5	7853.98	314.15

POWERS AND ROOTS.—Table 27

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, FIFTH POWERS AND RECIPROCALS.

From 1 to 50.

						D. Januaria
Num.	Squares.	Cubes.	Sq. Roots.	Cube Roots	Fifth Power.	Reciprocals.
1	1	1	1.000	1.000	3	.1000000000
2	4	8	1.414	1.260	32	.500000000
3	9	27	1.732	1.442	243	•33333333
4	16	64	2.000	1.587	1024	.250000000
	25	125	2.236	1.710	3125	.166666667
5	36	216	2.449	1.817	7776	
7	49	343	2.645	1.913	16807	.142857143
8	64	512	2.828	2.000	32768	.125000000
و ا	81	729	3.000	2.080	59049	.100000000
10	100	1000	3.162	2.154	100000	.090909091
11	121	1331	3.316	2.223	161051 248832	.083333333
12	144	1728	3.464	2.289		.076923077
13	169	2197	3.605	2.351	371293	.071428571
14	196	2744	3.741	2.410	537824	.066666667
15	225	3375	3.873	2.466	75937 5 10485 76	.662500000
16	256	4096	4.000	2.520	1419857	.058823529
17	289	4913	4.123	2.571	1889568	.05555556
18	324	5832	4.242	2.668	2476099	.052631579
19	361	6859	4.359	2.714	3200000	.050000000
20	400	8000	4.472	2.759	4084101	.047619048
21	441	9261	4.582	2.802	5153632	.045454545
22	484	10648	4.690	2.844	6436343	.043478261
2.3	529	13824	4.899	2.884	7962624	.041666667
24	576	15625	5.000	2.924	9765625	040000000
25	625	17576	5.000	2.962	11881376	.038461538
26	676	19683	5.196	3.000	14348907	.037037037
27	729	21952	5.291	3.036	17210368	.035714286
28	784 841	24389	5.385	3.072	20511149	.034482759
30	900	27000	5.477	3.107	24300000	.033333333
	961	29791	5.567	3.141	28629151	.032258065
31 32	1024	32768	5.657	3.175	33554432	.031250000
33	1089	35937	5.744	3.207	39135393	.030303030
34	1156	39304	5.831	3.239	45435 424	.029411765
35	1225	42875	5.916	3.271	52521875	.028571429
36	1296	46656	6.000	3.302	60466176	.027777778
37	1369	50653	6.082	3.332	69343957	.027027027
38	1444	54872	6.164	3.362	79235168	.026315789
39	1521	59319	6.245	3.391	90224199	.025641026
4 0	1600	64000	6.324	3. 42 0	102400000	
41	1681	68921	6.403	3.448	115856201	.024390244
42	1764	74088	6.480	3.476	130691232	.023809524
43	1849	79507	6.557	3.503	147008443	.022727273
44	1936	85184	6.633	3.530	16491622 4 184528125	.022727273
45	2025	91125	6.708	3 • 557	205962976	.021739130
46	2116	97336	6.782	3.583	205902970	.021276600
47	2209	103823	6.855	3.609 3.634	254803968	.020833333
48	2304	110592	6.928	3.659	282475249	.020408163
49	2401	117649	7.000 7.071	3.684	312500000	.020000000
. 50	2500	125000	1.011	U.UUZ		

POWERS AND ROOTS .- TABLE 27

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, FIFTH POWERS AND RECIPROCALS.

From 51 to 100.

Num.	Squares.	Cubes.	Sq. Roots.	CubeRoots	Fifth Power.	Reciprocals.
51	2601	132651	7.141	3.708	345025251	.019607843
52	2704	140608	7.211	3.732	380204032	.019230769
53	2809	148877	7.280	3.756	418195493	.018867925
54	2916	157464	7.348	3.780	459165024	.018518519
55	3025	166375	7.416	3.803	503284375	.018181818
56	3136	175616	7.483	3.826	550731776	.017857143
57	3249	185193	7 - 549	3.848	601692057	.017543860
58	3364	195112	7.615	3.871	656356768	.017241379
	3481	205379	7.681	3.893	714924299	.016949153
59 60	3600	216000	7.745	3.915	777600000	.016666667
61	3721	226981	7.810	3.936	844596301	.016393443
62	3844	238328	7.874	3.958	916132832	.016129032
63	3969	250047	7.937	3.979	992436543	.015873016
64	4096	262144	8.000	4.000	1073741824	.015625000
65	4225	274625	8.062	4.021	1160290625	.015384615
66	4356	287496	8.124	4.041	1252332576	.015151515
67	4489	300763	8.185	4.061	1350125107	.014925373
68	4624	314432	8.246	4.081	1453933568	.014705882
69	4761	328509	8.306	4.101	1564031349	.014492754
76	4900	343000	8.366	4.121	18 80700000	.014285714
71	5041	357911	8.426	4.141	1804229351	.014084507
72	5184	373248	8.485	4.160	1934917632	.013888889
73	5329	389017	8.544	4.179	2073071593	.013698630
74	5476	405224	8.602	4.198	2219006624	.013513514
75	5625	421875	8.660	4.217	2373046875	.013333333
76	5776	438976	8.718	4.236	2535525376	.013157895
77	5929	456533	8.775	4.254	2706784157	.012987013
78	6084	474552	8.831	4.272	2887174368	.012820513
79	6241	493039	8.888	4.291	3077056399	.012658228
80	6400	512000	8.944	4.309	3276800000	.012500000
81	6561	531442	9.000	4.326	3486784401	.012345679
82	6724	551368	9.055	4.344	3707398432	.012195122
83	6889	571787	9.110	4.362	3939040643	.012048193
84	7056	592704	9.165	4.379	4182119424	.011904762
85	7225	614125	9.219	4.397	4437053125	.011764706
86	7396	636056	9.273	4.414	4704270176	.011627907
87	7569	658503	9.327	4.43E	4984209207	.011494253
88	7744	681472	9.381	4.447	5277319168	.011363636
89	7921	704969	9.434	4.464	5584059449	.011235955
90	8100	729000	9.487	4.481	5904900000	.01111111
91	8281	753571	9.539	4.498	6240321451	.010989011
92	8464	778688	9.591	4.514	6590815232	.010869565
93	8649	804357	9.643	4.530	6956883693	.010752688
94	8836	830584	9.695	4.547	7339040224	.010638298
95	9025	857375	9.746	4.563	7737809375	.010526316
96	9216	884736	9.798	4.579	8153726976	.010416667
97	9409	912673	9.849	4.594	8587340257	.010309278
98	9604	941192	9.899	4.610	9039207968	.010204082
100	9801 10000	970299 100000	10000	4.626	1000000000000	.010000000

POWERS AND ROOTS.—Table 278

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

From 101 to 200.

Num.	Squares.	Square Roots	Cube Roots.	Num.	Squares.	Square Roots	Cube Roots
101	10201	10.050	4.657	151	22801	12.288	5.325
102	10404	10.099	4.672	152	23104	12.329	5.337
103	10609	10.149	4.687	153	23409	12.369	5.348
104	10816	10.198	4.702	154	23716	12.409	5.360
105	11025	10.247	4.717	155	24025	12.450	5.371
106	11236	10.295	4.732	156	24336	12.490	5.383
107	11449	10.344	4.747	157	24649	12.530	5 - 394
108	11664	10.392	4.762	158	24964	12.570	5.406
109	11881	10.440	4.777	159	25281	12.609	5.417
110	12100	10.488	4.791	160	25600	12.649	5.429
111	12321	10.535	4.806	161	25921	12.688	5.440
112	12544	10.583	4.820	162	26244	12.728	5.45I
113	12769	10.630	4.834	163	26569	12.767	5.462
114	12996	10.677	4.849	164	26896	12.806	5.474
115	13225	10.724	4.863	165	27225	12.845	5.485
116	13456	10.770	4.877	166 167	27556	12.884	5.496
117	13689	10.816	4.891	168	27889	12.923	5.507
110	13924 14161	10.909	4.905 4.918	169	28224 28561	12.961	5.518
120	14400	10.954	4.932	17Ó	28900	13.038	5.539
121	14641	11.000	4.946	171	29241	13.076	5.550
122	14884	11.045	4.959	172	29584	13.115	5.561
123	15129	11.090	4.973	173	29929	13.153	5.572
124	15376	11.135	4.986	174	30276	13.191	5.583
125	15625	11.180	5.000	175	30625	13.229	5.593
126	15876	11.225	5.013	176	30976	13.266	5.604
127	16129	11.269	5.026	177	31329	13.304	5.614
128	16384	11.313	5.039	178	31684	13.341	5.625
129	16641	11.358	5.052	179	32041	13.379	5.636
13Ó	16900	11.402	5.065	180	32.400	13.416	5.646
131	17161	11.445	5.078	181	32761	13.453	5.656
132	17424	11.489	5.091	182	33124	13.490	5.667
133	17689	11.532	5.104	183	33489	13.527	5.677
134	17956	11.576	5.117	184	33856	13.564	5.688
135	18225	11.619	5.130	185	34225	13.601	5.698
136	18496	11.662	5.142	186	34596	13.638	5.708
137	18769	11.704	5.155	187	34969	13.675	5.718
τ38	19044	11.747	5.167	188	35344	13.711	5.728
139	19321	11.790	5.180	189	35721	13.747	5.739
140	19600	11.832	5.192	190	36.100	13.784	5.749
141	19881	11.874	5.204	191	36481	13 820	5.759
142	20164	11.916	5.217	193	36864 37249	13.856	5.769 5.779
143	20449	11.958	5.241	194	37249	13.928	5.779
144	21025	12.041	5.253	195	38025	13.964	5.799
146	21316	12.083	5.265	196	38416	14.000	5.809
147	21609	12.124	5.277	197	38809	14.035	5.818
148	21904	12.165	5.289	198	39204	14.071	5.828
149	22201	12.206	5.301	199	39601	14.107	5.838
15Ó	22500	12.247		200	4 0000	14.142	5.848
ll							

POWERS AND ROOTS.—Table 278

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

From 201 to 300.

Num.	Squares.	Square Roots	Cube Roots	Num.	Squares.	Square Roots	Cube Roots
201	40401	14.177	5.858	251	6300t	15.843	6.308
202	40804	14.212	5.867	252	63504	15.874	6.316
203	41209	14.248	5.877	253	64009	15.906	6.325
204	41616	14.283	5.887	254	64516	15.937	6.333
205	42025	14.318	5.896	255	65025	15.969	6.341
206	42436	14-353	5.906	256	65536	16.000	6.349
207	42849	E4.387	5.915	257	66049	16.031	6.358
208	43264	14.422	5.925	258	66564	16.062	6.366
209	43681	14.456	5.934	259	67081	16.093	6.374
210	44100	14.491	5. 943	1260	67600	16.124	6.382
211	44521	14.526	5.953	261	68121	16.155	6.390
212	44944	14.560	5.962	262	68644	16.186	6.399
213	45369	14-594	5.972	263	69169	16.217	6.407
214	45796	14.629	5.981	264	69696	16.248	6.415
215	46225	14.662	5.991	265	70225	16.279	6.423
216	46656	14.697	6.000	266	70756	16.309	6.431
217	47089	14.731	6.009	267	71289	16.340	6.439
218	47524	14.765	6.018	268	71824	16.371	6.447
219	47961	14.798	6.027	269	72361	16.401	6.455
220	48400	14.832	6.037	270	72900	16.431	6.463
221	48841	14.866	6.045	271	73441	16.462	6.471
222	49284	14.899	6.055	272	73984	16.492	6.479
223	49729	14.933	6.064	273	74529	16.522	6.487
224	50176	14.966	6.073	274	75076	16.552	6.495
225	50625	15.000	6.082	275	75625	16.583	6.503
226	51076	15.066	6.091	276	76176	16.613	6.511 6.518
228	51529 51984	15.099	6.100	277 278	76729 77284	16.678	6.526
229	52441	15.133	6.118		77841	16.703	6.534
230	52900	15.166	6.126	²⁷⁹ 280	78400	16.733	6.542
231	53361	15.198	6.135	281	7896t	16.763	6 550
232	53824	15.231	6.144	282	79524	16.793	6.557
233	54289	15.264	6.153	283	80089	16.822	6.565
234	54756	15.297	6.162	284	80656	16.852	6.573
235	55225	15.330	6.171	285	81225	16.882	6.581
236	55696	15.362	6.179	286	81796	16.911	6.588
237	56169	15.395	6.488	287	82369	16.941	6.596
238	56644	15.427	6.197	288	82944	16.970	6.604
239	57121	15.459	6.205	289	83521	17.000	6.611
240	576 00	15.492	6.214	290	84100	1.7029	6.619
241	5808 E	15 524	6.223	291	8468E	17.058	6.627
242	58564	15.556	6.231	292	· 85264	£7.088	6.634
243	59049	15.588	6.240	293	85849	17.117	6.642
244	59536	15.620	6.249	294	86436	17.146	6.649
245	60025	15.652	6.257	295	87025	17.175	6.657
246	60516	15.684	6.266	296	87616	17.204	6.664
247	61009	15.716	6.274	297	88209	17.233	6.672
248	61504	15.748	6.283	298	88804	17.262	6.679
249	62001	15.780	6.291	299	89401	17.291	6.687
250	62500	15.811	6.299	300	90000	17320	6.694

POWERS AND ROOTS.—Table 27a

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

Prom 301 to 400.

				T		l	G 1 . D
Num.	Squares.	Square Boots	Cube Roots.	Num.	Squares.	Square Roots	Cube Roots
301	90601	17.349	6.702	351	123201	18.735	7.054
302	91204	17.378	6.709	352	123904	18.761	7.060
303	91809	17.407	6.716	353	124609	18.788	7.067
304	92416	17.435	6.724	354	125316	18.815	7.074
305	93025	17.464	6.731	355	126025	18.841	7.080
306	93636	17-493	6.738	356	126736	18.868	7.087
307	94249	17.521	6.746	357	127449	18.894	7.094
308	94864	17.550	6.753	358	128164	18.921	7.100
300	95481	17.578	6.760	359	128881	18.947	7.107
310	96100	17.607	6.786		129600	18.973	7.114
311 312	96721	17.635	6.775 6.782	361 362	130321	19.000	7.120
-	97344	17.663	6.789	363	131044	19.026	7.127
313	97969 98596	17.720	6.797	364	131769	19.052	7.133 7.140
314	99225	17.748	6.804	365	132496 133225	19.076	7.146
315	99856	17.776	6.811	366	133956	19.131	7.153
316	100489	17.804	6.818	367	134689	19.157	7.159
318	101124	17.832	6.825	368	135424	19.183	7.166
319	101761	17.860	6.833	369	136161	19.209	7.172
320	102400	17.888			136900	19.235	7.179
321	103041	17.916	6.847	371	137641	19.261	7.185
322	103684	17.944	6.854	372	138384	19.287	7.192
323	104329	17.972	6.861	373	139129	19.313	7.198
324	£04976	18.000	6.868	374	139876	19.339	7.205
325	105625	18.028	6.875	375	140625	19.365	7.211
326	106276	18.055	6.882	376	141376	19.391	7.217
327	106929	18.083	6.889	377	142129	19.416	7.224
328	107584	18.111	6.896	378	142884	19.442	7.230
329	108241	18.138	6.903	379	143641	19.468	7.237
330	108900	18.166	6.910	380	144400	19.493	7.243
331	109561	18.193	6.917	38 t	145161	19.519	7.249
332	110224	18.221	6.924	382	145924	19-545	7.256
333	110889	18.248	6.931	383	146689	19.570	7.262
334	111556	18.275	6.938	384	147456	19.596	7.268
335	112225	18.303	6.945	385	148225	19.621	7.275
336	112896	18.330	6.952	386	148996	19.649	7.281
337	113569	18.357	6.959	387	149769	19.672	7.287
338	114244	18.385	6.966	388	150544	19.698	7.293
339	114921	18.412	6.972	389	151321	19.723	7.300
340	115600	18.439	6.979	390	152100	19.748	7.306
341	116281 116964	18.466	6.986	391	152881	19.774	7.312
342	117649	18.493	6.993	392	153664	19.799	7.318
343	117049		7.000	393	154449	19.849	7.325
344 345	119025	18.547	7.007 7.013	394	155236	19.874	7.331
346	119025	18.601	7.013	395	156816	19.074	7.343
347	120409	18.628	7.027	396 397	157609	19.925	7.343
348	121104	18.655	7.034	397	158404	19.950	7.356
349	121801	18.681	7.040	399	159201	19.975	7.362
	122500	18.708		400	160000	20.000	7.358
1		. 20.100	• ••	.200	120000	, 20.000	
H							

POWERS AND ROOTS.—TABLE 278

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

From 401 to 500

Num.	Squares.	Square Roots	Oube Boots.	Num.	Squares.	Square Roots	Cube Roots.
401	160801	20.025	7 - 374	451	203401	21.236	7.669
402	161604	20.050	7.380	452	204304	21.260	7.674
403	162409	20.075	7.386	453	205209	21.284	7.680
404	163216	20.100	7.392	454	206116	21 307	7.686
405	164025	20.124	7.398	455	207025	21.331	7.691
406	164836	20.149	7.405	456	207936	21.354	7.697
407	165649	20.174	7.411	457	208849	21.377	7.702
408	166464	20.199	7-417	458	209764	21.401	7.708
409	167281	20.224	7.423	459	210681	21.424	7.719
410	168100	20.248	7.429	460	211600	21.447	7.719
411	168921	20.273	7.435	461	212521	21.471	7 . 725
412	169744	20.298	7.441	462	213444	21.494	7.730
413	170569	20.322	7 - 447	463	214369	21.517	7.736
414	171396	20.347	7 • 453	464	215296	21.540	7.742
415	172225	20.371	7.459	465 466	216225	21.564	7 · 747
416	173056	20.396	7.465 7.471	467	217156	21.587	7.753
417	174724	20.420	7.477	468	219024	21.633	7.758
419	175561	20.469	7.483	469	219961	21.656	7.769
420	176400	20.494	7.489	470	220900	21.679	7.775
421	177241	20.518	7.495	471	221841	21.702	7.780
422	178084	20.542	7.501	472	222784	21.725	7.786
423	178929	20.567	7.506	473	223729	21.748	7.791
424	179776	20.591	7.512	474	224676	21.771	7.797
425	180625	20.615	7.518	475	225625	21.794	7.802
426	181476	20.640	7.524	476	226576	21.817	7.808
427	182329	20.664	7.530	477	227529	21.840	7.813
428	183184	20.688	7.536	478	228484	21.863	7.819
429	184041	20.712	7.542	479	229441	21.886	7.824
430	184900	20.736	7.548	480	230400	21.909	7.830
431	185761	20.760	7 - 553	481	231361	21.932	7.835
432	186624	20.784	7.559	482	232324	21.954	7.840
433	187489	20.808	7.565	483	233289	21.977	7.846
434	188356	20.832	7-571	484	234256	22.000	7.851
435	189225	20.856	7.577	485	235225	22.023	7.857
436	190096	20.880	7.583	486	236196	22.045	7.862
437	190969	20.904	7.588	487	237169	22.068	7.867
438	191844	20.928	7.594	488	238144	22.091	7.873
439	192721	20.952	7.600	489	239121	22.113	7.878
440	193600	20.976	7.606	490	240100	22.136	7.884
441	194481	21.000	7.611	491	241081	22.158	7.889
442	195364	21.024		492	242064	22.181	7.894
443	196249	21.047	7.623	493	243049	22.203	7.900
144	197136	21.095	7.634	494	244036	22.248	7.905
445 446	198015	21.119	7.640	495 496	246016	22.271	7.910 7.916
447	199809	21.142	7.646	497	247009	22.293	7.910
448	200704	21.166	7.652	498	248004	22.316	2.926
449	201601	21.189	7.657	499	249001	22.338	7.932
45Ó	202500	21.213	7.663	50ó	250000	22.360	7.937
11			, ,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,,,,
<u> </u>							

POWERS AND ROOTS.—Table 27a

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

From 501 to 600

502 252004 22.405 7.947 552 304704 23.494 8 503 253009 22.427 7.953 553 305809 23.516 305809 23.516 306916 23.516 306916 23.558 556 306916 23.558 556 306916 23.558 556 309136 23.558 556 309136 23.579 557 310249 23.601 23.601 23.601 23.601 23.601 23.601 23.601 23.601 23.601 23.602 23.601 <t< th=""><th>8.198 8.203 8.203 8.218 8.218 8.218 8.223 8.228 8.228 8.227 8.252 8.257 8.252 8.257</th></t<>	8.198 8.203 8.203 8.218 8.218 8.218 8.223 8.228 8.228 8.227 8.252 8.257 8.252 8.257
502 252004 22.405 7.947 552 304704 23.494 8 503 253009 22.427 7.953 553 305809 23.516 8 504 254016 22.450 7.968 554 306916 23.537 8 505 255025 22.447 7.963 555 308025 23.558 23.558 556 309136 23.559 8 23.559 8 23.579 8 301369 23.601 8 23.601 8 23.601 8 311364 23.622 8 312481 23.622 8 312481 23.643 8 312481 23.643 8 312481 23.643 8 313600 8 31643 31690 23.684 8 8 315844 23.706 8 8 8 316969 23.727 8 564 316969 23.727 8 316969 23.727 8 316922 23.748 8 319225 23.748 <th>8.203 8.208 8.218 8.218 8.228 8.228 8.233 8.237 1.242 8.237 8.237 8.247 8.252 8.257 8.252</th>	8.203 8.208 8.218 8.218 8.228 8.228 8.233 8.237 1.242 8.237 8.237 8.247 8.252 8.257 8.252
503 253009 22.427 7.953 553 305809 23.516 8 504 254016 22.450 7.958 554 306916 23.516 8 505 255025 22.472 7.968 555 308025 23.579 8 506 256036 22.516 7.974 557 310249 23.501 8 507 257049 22.516 7.974 557 310249 23.601 8 508 258064 22.539 7.979 558 311364 23.622 8 509 259081 22.561 7.984 559 312481 23.643 8 511 261121 22.605 7.989 561 313600 23.684 8 512 261121 22.627 8.000 562 315844 23.706 8 514 264196 22.671 8.010 564 318696 23.728 8 515 265225	8.208 8.213 8.218 8.228 8.228 8.237 8.237 8.247 8.247 8.252 8.257 8.252
503 2533009 22.427 7.953 553 305809 23.516 8 504 254016 22.450 7.968 554 306916 23.537 8 505 255025 22.494 7.968 309136 23.558 23.559 8 507 257049 22.516 7.974 557 310249 23.601 8 509 259081 22.561 7.984 559 311364 23.622 8 511 2601121 22.605 7.995 561 313600 23.684 8 512 261121 22.627 8.000 561 315844 23.706 8 513 263169 22.649 8.005 563 316969 23.727 8 514 264196 22.691 8.010 564 318265 23.728 8 515 265222 22.693 8.015 565 31699 23.728 8	8.213 8.218 8.223 8.228 8.237 8.237 3.242 8.247 8.252 8.257 8.257
505 256025 22.492 7.963 555 308025 23.558 8 506 25036 22.494 7.968 556 309136 23.559 8 507 257049 22.516 7.974 557 310249 23.601 82.509 259081 22.561 7.984 509 259081 22.561 7.984 511 22.605 7.995 560 311364 23.622 8 312481 23.643 8 313600 28.664 22.512 22.512 262144 22.627 8.000 561 315844 23.706 8 513 263169 22.671 8.010 564 318096 23.748 515 265225 22.693 8.015 565 319225 23.770 8	8.218 8.223 8.228 8.233 8.237 3.242 8.247 8.252 8.257 8.262
505 255025 22.492 7.963 555 308025 23.558 8 506 256036 22.494 7.968 556 309136 23.579 8 507 257049 22.516 7.974 557 310249 23.601 8 508 259081 22.561 7.984 559 3112481 23.622 8 511 261121 22.563 7.995 560 313600 28.864 8 512 261121 22.627 8.000 561 315844 23.706 8 512 263169 12.649 8.005 563 316969 13.727 8 514 264196 22.671 8.010 564 318261 23.748 8 515 265225 22.693 8.015 565 319225 23.730 8	8.223 8.228 8.233 8.237 3.242 8.247 8.252 8.257 8.262
507 257049 22.516 7.974 557 310349 23.601 8 508 259064 22.539 7.979 558 311364 23.602 8 500 260100 22.583 7.984 559 313600 23.643 313600 23.684 8 511 261121 22.607 8.000 561 314721 23.685 8 512 263164 22.647 8.000 562 315844 23.706 8 514 264196 22.671 8.010 564 318096 23.748 8 515 265225 22.693 8.015 565 319225 23.770 8	8.228 8.233 8.237 3.242 8.247 8.252 8.257 8.262
507 257049 22.516 7.974 557 310249 23.601 8 508 258064 22.539 7.979 558 311364 23.622 8 509 259081 22.561 7.984 312481 23.632 8 511 261121 22.605 7.995 560 314721 23.664 8 512 262144 22.647 8.000 562 315844 23.706 8 513 263169 22.649 8.005 563 316969 23.728 8 514 264196 22.671 8.010 564 318096 23.748 23.748 515 265225 22.693 8.015 565 319225 23.748 23.770 8	8.233 8.237 3.242 8.247 8.252 8.257 8.262
509 259081 22.561 7.984 559 312481 23.643 8 13600 511 261121 22.605 7.995 561 314721 23.685 8 513 263144 22.627 8.000 562 315844 23.706 8 513 263169 22.671 8.010 564 318096 23.748 515 265225 22.693 8.015 565 318096 23.748 515 265225 22.693 8.015 565 319225 23.748 523.748	8.237 3.242 8.247 8.252 8.257 8.262
509 259081 22.561 7.984 559 312481 23.643 8.3643 8.569 313600 23.643 8.569 313600 28.644 8.562 315844 23.685 8.564 315844 23.706 8.563 316969 23.727 8.564 318096 23.727 8.565 316969 23.727 8.565 318096 23.748 23.727 8.565 319225 23.727 8.565 26.5225 22.693 8.015 565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 8.565 319225 23.727 319225	8.237 3.242 8.247 8.252 8.257 8.262
511 261121 22.605 7.995 561 314721 23.685 8 512 262144 22.627 8.000 562 315844 23.706 8 513 263169 12.649 8.005 563 316969 23.727 8 514 264196 22.671 8.010 564 318096 23.748 515 265225 22.693 8.015 565 319225 22.770 8	8.247 8.252 8.257 8.262
512 262144 22.627 8.000 562 315844 23.706 8 513 263169 12.649 8.005 563 316969 13.727 8 514 264196 22.671 8.010 564 318096 23.748 8 515 265225 22.693 8.015 565 319225 23.770 8	8.252 8.257 8.262
513 263169 12.649 8.005 563 316969 23.727 8 514 264196 22.671 8.010 564 318096 23.748 8 515 265225 22.693 8.015 565 319225 23.748	8.257 8.262
514 264196 22.671 8.010 564 318096 23.748 8 515 265225 22.693 8.015 565 319225 22.770 8	8.262
515 265225 22.693 8.015 565 319225 23.770 8	
515 265225 22.693 8.015 565 319225 23.770 8	8.267
	8.272
517 267289 22.737 8.026 567 321489 23.812 8	8.277
	8.281
	8.286
	3.291
521 271411 22.825 8.046 571 326041 23.895 8 522 272484 22.847 8.052 572 227184 23.016 8	8.296
1 501 3000 300 300 300 300 300 300 300 300	8.301
	8.306
	8.310
	8.315
1 202 30-11 37-11 37-11	8.320
	8.325
	8.330
	8.335
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000	3.339
	8.344
1 40. 1 20. 20. 1 2 2 1 3 1 3 1 3 1 3 1 3 1	8.349
1 200 21 31 22 2120 200 32300 24,142 3	8.354
	8.358
1 22 3 3 3 3 3 3 3 3	8.363 8.368
	8.373
1 20 1 20 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2	8.378
	8.382
	3.387
	8.392
	8.396
ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	8.401
	8.406
545 297025 23,345 8.168 595 354025 24.392 8	8.411
546 298116 23.366 8.173 596 355216 24.413 8	8.415
547 299209 23.388 8.178 597 356409 24.433 8	8.420
	8.425
	8.429
	3.434
	・エレモ

POWERS AND ROOTS.—TABLE 278

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

From 601 to 700

Num.	Squares.	SquareRoots	Cube Roots.	Num.	Squares.	SquareRoots	Cube Roots.
601	361201	24.515	8.439	651	423801	25.515	8.667
602	362404	24.535	8.443	652	425104	25.534	8.671
603	363609	24.556	8.448	653	426409	25.554	8.675
604	364816	24.576	8.453	654	427716	25.573	8.680
605	366025	24.597	8.457	655	429025	25.593	8.684
606	367236	24.617	8.462	656	430336	25.612	8.689
607	368449	24.637	8.467	657	431639	25.632	8.693
608	369664	24.657	8.471	658	432964	25.651	8.698
609	370881	24.678	8.476	659	434281	25.671	8.702
610	372100	24.698	8.481	660	435600	25.690	8.706
(II	373321	24.718	8.485	661	436921	25.720	8.711
612	374544	24.738	8.490	662	438244	25.729	8.715
613	375769	24.759	8.495	663	439569	25.749	8.720
614	376996	24.779	8.499	664	440896	25.768	8.724
615	378225	24.799	8.504	665	442225	25.787	8.728
616	379456	24.819	8 508	666	443556	25.807	8.733
617	380689	24.839	8.513	667	444899	25.826	8.737
618	381924	24.859	8.518	668	446224	25.845	8.741
619	383161	24.880	8.522 9.50#	669	447561	25.865	8.746
620	38 <u>44</u> 00	24.900	8.527	670	448900	25.884	8.750
621	385641	24.920	8.531	671	450241	25.903	8.754
622	386884	24.940	8.536	672	451584	25.923	8.759
623	388129	24.960	8.541	673	452929	25.942	8.763
624	389376	24.980	8.545	674	454276	25.961	8.768
625 626	390625	25.000	8.550	675 676	455625	25.981	8.776
627	391876	25.020	8.554 8.559	677	456976	26.000	8.781
628	393129 394384	25.040	8.563	678	459684	26.038	8.785
629	395641	25.080	8.568	679	461041	26.057	8.789
63Ó	396900	25.100	8.572	680	462400	26.077	8.793
631	398161	25.120	8.577	681	463761	26.096	8.798
632	399424	25.140	8.581	682	465124	26.115	8.802
633	400689	25.159	8.586	683	466489	26.134	8.806
634	401956	25.179	8.591	684	467856	26.153	8.811
635	403225	25.199	8.595	685	469225	26.172	8.815
636	404496	25.219	8.600	686	470596	26.191	8.819
637	405769	25.239	8.604	687	471969	26.210	8.824
638	407044	25.258	8.609	688	473344	26.230	8.828
639	408321	25.278	8.613	689	474721	26.249	88.32
640	409600	25.298	8.618	690	476100	26.268	8.836
641	410881	25.318	8.622	69 i	477481	26.287	8.841
642	412164	25 338	8.627	692	478864	26.306	8.845
643	413449	25.357	8.631	693	480249	26.325	8.849
644	414736	25.377	8.635	694	481636	26.344	8.853
645	416125	25.397	8.640	695	483025	26.363	8.858
646	417316	25.416	8.644	696	484416	26.382	8.862
647	418609	25.436	8.649	697	485809	26.401	8.866
648	419904	25.456	8.653	698	487204	26.419	8.870
649	421201	25.475	8.658	699	488601	26.438	8.875
650	422500	25.495	8.662	700	490.000	26.457	8.879
I							_

POWERS AND ROOTS.—Table 272

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

From 701 to 800.

Num.	Squares.	Square Roots	Cube Roots.	Num.	Squares.	Square Roots	Cube Roots.
701	491401	26.476	8.883	751	564001	27.404	9.089
702	492804	26.495	8.887	752	565504	27.422	9.093
703	494209	26.514	8.891	753	567000	27.441	9.098
704	495616	26.533	8.896	754	568516	27.459	9.102
705	497025	26.552	8.900	755	570025	27.477	9.106
706	498436	26.570	8.904	756	571536	27.495	9.110
707	499849	26.589	8.908	757	573049	27.513	9.114
708	501264	26.608	8.913	758	574564	27.532	9.118
709	502681	26.627	8.917	759	576081	27.550	9.122
710	504100	26.646	8.921	760	577600	27.568	9.126
711	505521	26.664	8.925	761	579121 580644	27.586	9.130
712	506944	26.683	8.929	762	582169	27.604	9.134 9.138
713	508369	26.702	8.933 8.938	763	583696	27.640	9.138
714	509796	26.739	8.942	764 765	585225	27.658	9.146
715 716	511225	26.758	8.946	705 766	586756	27.677	9.150
710	514089	26.777	8.950	762	588289	27.695	9.154
718	514009	26.795	8.954	768	589824	27.713	9.158
719	516961	26.814	8.958	769	591361	27.731	9.161
720	518400	26.833	8.963	770	592900	27.749	9.165
721	519841	26.851	8.967	771	594441	27.767	9.169
722	521284	26.870	8.971	772	595984	27.785	9.173
723	522729	26.888	8.975	773	597529	27.803	9.177
724	524176	26.907	8.979	774	599076	27.821	9.181
725	525625	26.926	8.983	775	600625	27.839	9.185
726	527076	26.944	8.987	776	602176	27.857	9.189
727	528529	26.963	8.992	777	603729	27.875	9.193
728	529984	26.981	8.996	778	605284	27.892	9.197
729	531441	27.000	9.000	779	606841	27.910	9.201
730	532900	27.018	9.004	780	608400	27.928	9.205
731	534361	27.037	9.008	781	609961	27.946	9 209
732	535824	27.055	9.012	782	611524	27.964	9.213
733	537289	27.074	9.016	783	613089	27.982	9.217
734	538756	27.092	9.020	784	614656	28.000 28.018	9.221
735	540225	27.111	9.024	785 786	617796	28.018	9.225
736	541696 543169	27.129	9.029	786 787	619369	28.053	9.232
737	544644	27.146	9.033	787 788	620944	28.071	9.236
738	544044	27.184	9.037 9.041	700 789	622521	28.089	9.240
740	547600	27.203	9.045	790	624100	28.107	9.244
741	549801	27.221	9.049	791	625681	28.125	9.248
742	550564	27.239	9.053	792	627624	28.142	9.252
743	552049	27.258	9.057	793	628849	28.160	9.256
744	553536	27.276	9.061	794	630436	28.178	9.260
745	555025	27.294	9.065	795	632025	28.196	9.264
746	556516	27.313	9.069	796	633616	28.213	9.267
747	558009	27.331	9.073	797	635209	28.231	9.271
748	559504	27.349	9.077	798	636804	28.247	9.275
749	561001	27.368	9.081	799	638401	28.266	9.279
750	562500	27.386	9.085	800	640000	28.284	9.283
			· '	-			

POWERS AND ROOTS.-Table 27a

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

From 801 to 900

						1	
Num.	Squares.	Square Roots	Cube Roots.	Num.	Squares.	Square Roots	Cube Roots
801	641601	28.302	9.287	851	724201	29.172	9.476
802	643204	28.319	9.291	852	725904	29.189	9.480
803	644809	28.337	9.295	853	727609	29.206	9.484
804	646416	28.355	9.298	854	729316	29.223	9.487
805	648025	28.372	9.302	855	731025	29.240	6.491
806	649636	28.390	9.306	856	732736	29.257	9.495
807	651249	28.408	9.310	857	734449	29.274	9.498
808	652864	28.425	9.314	858	736164	29.291	9.502
809	654481	28.443	9.318	859	737881	29.309	9.506
810	656100	28.460	9.321	1860	739600	29.326	9.509
811	657721	28.478	9.325	861	741321	29.343	9.513
812	659344	28.495	9.329	862	743044	29.360	9.517
813	660969	28.513	9.333	863	744769	29.377	9.521
814	662596	28.530	9.337	864	746496	29.394	9.524
815	664225	28.548	9.341	865	748225	29.411	9.528
816	665856	28.566	9.344	866	749956	29.428	9.532
817	667489	28.583	9.348	867	751689	29.445	9.535
818	669124	28.600	9.352	868	753424	29.462	9.539
819	670761	28.618	9.356	869	755161	29.479	9.543
820	672400	28.635	9.360	187Ò	756900	29.496	9.546
821	674041	28.653	9.364	871	758641	29.513	9.550
822	675684	28.670	9.367	872	760384	29.529	9.554
823	677329	28.688	9.371	873	762129	29.546	9 - 557
824	678976	28.705	9.375	874	763876	29.563	9.561
825	680625	28.723	9.379	875	765625	29.580	9.564
826	682276	28.740	9.382	876	767376	29.597	9.568
827	683929	28.757	9.386	877	769129	29.614	9.572
828	685584	28.775	9.390	878	770884	29.631	9 - 575
829	687241	28.792	9.394	879	772641	29.648	9.579
830	688900	28.810	9. 398	880	774400	29.665	9.583
831	690561	28.827	9.401	881	776161	29.681	9.586
832	692224	28.844	9.405	882	777924	29.698	9.590
833	693889	28.862	9.409	883	779689	29.715	9 · 594
834	695556	28.879	9.413	884	781456	29.732	9 - 597
835	697225	28.896	9.416	885	783225	29.749	9.601
836	698896	28.913	9.420	886	784996	29.766	9.604
837	700569	28.931	9.424	887	786769	29.782	9.608
838	702244	28.948	9.428	888	788544	29.799	9.612
839	703921	28.965	9.431	889	790321	29.816	9.615
810	705600	28.983	9.435	890	792100	29.833	9.619
841	707281	29.000	9.439	891	793881	29.849	9.622
842	708964	29.017	9.443	892	795664	29.866	9.626
843	710649	29.034	9.446	893	797449	29.883	9.630
844	712336	29.051	9.450	894	799236	29.900	9.633
845	714025	29.069	9.454	895	801025	29.916	9.637
846	715716	29.086	9.458	896	802816	29.933	9.640
847	717409	29.103	9.461	897	804609	29.950	9.644
848	719104	29.120	9.465	898	806404	29.966	9.648
849 850	720801	29.137	9.469	899	808201 810000	29.983 30.000	9.651 9.655
טטס	722500	29.155	9.472	1900	OTOUR	30.000	g.000
ll							

POWERS AND ROOTS.—Table 27a.

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

Prom 901 to 1,000.

ļ							1
Num.	Squares.	SquareRoots	Cube Roots.	Num.	Squares.	Square Roots	Cube Roots.
901	811801	30.017	9.658	951	904401	30.838	9.834
902	813604	30.033	9.662	952	906304	30.854	9.837
903	815409	30.050	9.666	953	908209	30.870	9.841
904	817216	30.066	9.669	954	910116	30.887	9.844
905	819025	30.083	9.672	955	912025	30.903	9.847
906	820836	30.100	9.676	956	913936	30.919	9.851
907	822649	30 116	9.680	957	915849	30.935	9.854
908	824464	30.133	9.683	958	917764	30.951	9.858
909	826281	30.150	9.687	959	919681	30 968	9.861
910	828100	30.166	9.690	960	921600	30.984	9.865
911	829921	30.183	9.694	961	923521	31.000	9.868
912	831744	20.199	9.697	962	925444	31.016	9.871
913	833569	30.216	9.701	963	927369	31.032	9.875
914	835396	30.232	9.705	964	929296	31.048	9.878
915	837225	30.249	9.708	965	931225	31.064	9.882
916	839056	30.265	9 712	966	933156	31.080	9.885
917	840889	30.282	7.715	967	935089	31.096	9.889
918	842724	30.298	9.719	968	937024	31.112	9.892
919	844561	30.315	9.722	969	938961	31.129	9.895
920	846400	30.331	9.726	970	940900	31.145	9.899
921	848241	30.348	9.729	97 I	942841	31,161	9.902
922	850084	30.364	9.733	972	944784	31.177	9.906
923	851929	30.381	9.736	973	946729	31.193	9.909
924	853776	30.397	9.740	974	948676	31.209	9.912
925	855625	30.414	9 · 743	975	950625	31.225	9.916
926	857476	30.430	9 · 747	976	952576	31.241	9.919
927	859329	30.446	9.750	977	954529	31.257	9.923
928	861184	30.463	9.754	978	956484	31.273	9.926
929	863041	30.479	9.757	979	958441	31.289	9.929
11	864900	30.496		980	960400	31.305	9.933
931	866761	30.512	9.764	981	962361	31.321	9.936
932	868624	30.528	9.768	982	964324	31.337	9.939
933	870489	30.545	9.771	983	966289	31.353	9.943
934	872356	30.561	9.775	984	968256	31.369	9.946
935	874225	30.578	9.778	985	970225	31.385	9.950
936	876096	30 594	9.782	986	972196	31.400	9.953
937	877969	30.610	9.785	987	974169	31.416	9.956
938	879844	30.627	9.789	988	976144	31.432	9.960
939	881721	30.643	9.792	989	978121	31.448	9.963
940	883600	30.659		990	980100	31.464	9,966
941	885481	30.676	9·799 9.803	991	982081 984064	31.480	9.970
942	887364	30.692		992		31.496	9.973
943	889249	30.708	9.806 9.810	993	986049 988036	31.512	9.976
944	891136	30.724	9.813	994		31.528	9.980
945	893025	30.741	9.813	995	990025 992016	31.543	9.983
946	894916	30.757	9.810	996		31.559	9.986
947	8968c9	30.773		997	994009	31.575	9.990
948	898704	30.789 30.806	9.823 9.827	998	996004	31.591	9.993
949	900601	90.000	9.830	999	1000000		9.996 1 0.000
950	902500	30.822	₽. 03U	אַטעיון	TOOOOO	91.023	10.000
<u> </u>		<u>. </u>	<u> </u>		1	<u> </u>	<u> </u>

POWERS AND ROOTS.—Table 27a.

SQUARES, SQUARE ROOTS, AND CUBE ROOTS.

Prom 1,001 to 1,100.

Num.	Squares.	SquareRoots	Cube Roots	Num.	Squares.	SquareRoots	Cube Roots.
1001	1000201	31.638	10.003	1051	1104601	32 419	10.167
1002	1004004	31.654	10.006	1052		32.434	10.170
1003	1006009	31.670	10.010	1053	1108809	32.450	10.173
1004	1008016	31.686	10.013	1054	1110916	32.465	10.176
1005	1010025	31.702	10.016	1055	1113025	32.481	10.180
1006	1012036	31.717	10.020	1056	1115136	32.496	10.183
1007	1014049	31.733	10.023	1057	1117249	32.511	10 186
1008	1016064	31.749	10.026	1058	1119364	32.527	10.190
1009	1018081	31.765	10.030	1059	1121481	32.542	10.193
	1020100	31.780		1060	1123600	32.558	10.196
1011	1022121	31.796	10.036	1061	1125721	32.573	10.199
1012	1024144	31.812	10.039	1062	1127844	32.588	10.202
1013	1026169	31.828	10.043	1063	1129969	32.603	10.205
1014	1028196	31.843	10.046	1064	1132096	32.619	10.209
1015	1030225	31.859	10.050	1065	1134225	32.634	10.212
1016	1032256	31.875	10.053	1066	1136356	32.650	10.215
1017	1034289	31.890	10.056	1067	1138489	32.665	10.218
1018	1036324	31.906	10.059	1068	1140624	32.680	10.221
1019	1038361 1040400	31.922 31.937	10.063 10.066	1070	1142761 1144900	32.696 32.711	10.225 10.228
	1040400 1042441		10.069	1071	1147041		10.220
1021	1044484	31.953 31.969	10.009	1072	1149184	32.726 32.741	10.234
1023	1046529	31.984	10.076	1073	1151329	32.757	10.237
1024	1048576	32.000	10.079	1074	1153476	32.772	10.240
1025	1050625	32.016	10.082	1075	1155625	32.787	10.244
1026	1052676	32.031	10.086	1076	1157776	32,802	10.247
1027	1054729	32.047	10.089	1077	1159929	32.818	10.250
1028	1056784	32.062	10.092	1078	1162084	32.833	10.253
1029	1058841	32.078	10.096	1079	1164241	32.848	10.257
	1060900	32.094		108Ó	1166400	32.863	10.260
1031	1062961	32.109	10.102	1081	1168561	32.879	10.263
1032	1065024	32.125	10.105	1082	1170724	32.894	10.266
1033	1067089	32.140	10.109	1083	1172889	32.909	10.269
1034	1069156	32.156	10.112	1084	1175056	32.924	10.272
1035	1071225	32.171	10.115	1085	1177225	32.939	10.276
1036	1073296	32.187	10.118	1086	1179396	32.954	10.279
1037	1075369	32.202	10.121	1087	1181569	32.970	10.282
1038	1077444	32.218	10.125	1088	1183744	32.985	10.285
1039	1079521	32.233	10.128	1089	1185921	33.000	10.288
1040	1081600	32.249		1090	1188100	33.015	10.291
1041	1083681	32.264	10.134	1091	1190281	33.030	10.295
1042	1085764	32.280	10.138	1092	1192464	33.045	10.298
1043	1087849	32.295	10.141 10.144	1093	1194649	33.061 33.076	10.301
1044	1089936	32.311 32.326	10.144	1095	1199025	33.091	10.304
1045	1092025	32.342	10.151	1095	1201216	33.106	10.310
1046	1094110	32.342	10.151	1090	1201210	33.121	10.313
1047	1098304	32.373	10.157	1098	1205604	33.136	10.317
1049	1100401	32.388	10.160	1099	1207801	33.151	10.320
1050	1102500	32.404	10.164		1210000	33.166	10.323
1000							
<u> </u>		`					

1	No. 100,	Log. 2	2.00000	00 to No.	249,	Log. 2	.396199	
No.	Log.	Diff.	No.	Log.	Diff.	No.	Log.	Diff.
100	000000	4.00	150	176091	289	200	301030	217
101	004321	432 428	151	178977	287	201	303196	216
102	008600	424	152	181844	285	202	305351	215
103	012837	420	153	184691	283	203 204	307496 309630	213
104	017033	416	154	187521	281	-		212
105	021189	412	155	190332	279	205 206	311754 313867	211
106	025306	8مه	156	193125	278	207	315970	210
107	029384	404	157 158	198657	276	208	318063	209
109	037426	400	159	201397	274	209	320146	208
110		397	160	204120	272	210	322219	207
111	041393	393	161	206826	271	211	324282	206
112	049218	389	162	209515	269	212	326336	205
113	053078	386	163	212188	267 266	213	328380	204
114	056905	383 379	164	214844	264	214	330414	203
115	060698		165	217484	262	215	332438	1
116	064458	376	166	220108	261	216	334454	202.
117	068186	373	167	222716	259	217	336460	201
118	071882	370 366	168	225309	258	218	338456	199 199
119	075547	363	169	227887	256	219	340444	198
120	079181	360	170	230449	255	220	342423	197
121	082785	357	171	232996	253	221	344392	196
122	086360	355	172	235528	252	222	346353	195
123	089905	352	173	238046	250	223	348305 350248	194
124	093422	349	174	240549	249			193
125	096910	346	175	243038	248	225 226	352183	193
126	100371	343	176	245513	246	227	354108 356026	192
127	103804	341	177 178	247973 250420	245	228	357935	191
129	110590	338	179	252853	243	229	359835	190
	ł	335	180	• • • •	242	230	361728	189
130	113943	333	181	255273 257679	241	231	363612	188
132	120574	330	182	26007I	239	232	365488	188
133	123852	328	183	262451	238	233	367356	187 186
134	127105	325 323	184	264818	237 235	234	369216	185
135	130334	i I	184	267172	1	235	371068	· • I
136	133539	321	186	269513	234	236	372912	184
137	136721	318 316	187	271842	233.	237	374748	184 183
138	139879	314	188	274158	230	238	376577	182
139	143015	311	189	276462	229	239	378398	181
140	146128	309	190	278754	228	240	380211	181
141	149219	307	191	281033	227	241	382017	180
142	152288	305	192	283301	226	242	383815 385606	179
143	155336	303	193	285557 287802	225	243 244	387390	178
144	158362	301			223			178
145	161368	299	195	290035	222	² 45 ² 46	389166	177
146	164353 167317	296	196	292256 294466	22 I	247	390935 392697	176
147 148	170262	295	198	296665	220	248	394452	176
149	173186	292	199	298853	219	249	396199	175
1		291			1 410			1 4/4]

The Logs, in the Table are decimals; the Index is one less than the figures of the number; the Log., therefore, in the Table, stands for any number—thus, Log. of 12 — 1.079191 Log. of 130 — 2.079181 Log. of 1200 — 2.079181 Log.

 $\mathsf{Digitized}\,\mathsf{by}\,Google$

	No. 250,	Log.	2.379	940 to N	o. 399 ,	Log.	2.600973	3
No.	Log.	Diff.	No.	Log.	Der.	No.	Log.	Deff.
250	397940		300	477121	145	350	544068	124
251	399674	173 173	301	478566	144	351	545307	124
252	401401	172	302	480007	144	352	546543	123
253	403121	171	303	481443	143	353	547775	123
254	404834	171	304	482874	143	354	549003	123
255	406540	170	305	484300	142	355	550228	122
256	408240	169	306	485721	142	356	551450	122
257	409933	169	307	487138	141	357	552668 553883	121
258	411620	168	308	488551	141	358	555094	121
259	413300	167	309	489958	140	359		121
260	414973	167	310	491362	140	360	556303	120
261	416641	166	311	492760	139	361	557507	120
262	418301	165	312	494155	139	362	558709	120
263	419956	165	313	495544	139	363 364	559907 561101	119
264	421604	164	314	496930	138			119
265	423246	164	315	498311	138	365	562293	119
266	424882	163	316	499687	137	366	563481	119
267	426511	162	317	501095	137	367 368	564666	118
268	428135	162	318	502427	136	369	565848 567026	118
269	429752	161	319	503791	136			118
270	431364	161	320	505150	136	370	568202	117
271	432969	160	321	506505	135	371	569374	117
272	434569	159	322	507856	135	372	570543	117
273	436163	159	323	509203	134	373	571709 572872	116
274	437751	158	324	510545	134	374	•	116
275	439333	158	325	511883	133	375	574031	116
276	440909	157	326	513218	133	376	575188	115
277	442480	157	327	514548	132	377	576341 577492	115
278	444045	156	328	515874	132	378	578639	115
279	445604	155	329	517196	132	379		114
280	447158	155	330	518514	131	380	579784	114
281	448706	154	33 L	519828	131	381	580925	114
282	450249	154	332	521138	131	382 383	582063 583199	114
283 284	451786	153	333	522444 523746	130	384	584331	113
	453318	153	334		130			113
285	454845	152	335	525045	129	385	585461	113
286	456366	152	336	526339	129	386	586587	112
287 288	457882	151	337	527630	129	387 388	587711 588832	112
289	459392	151	338	528917 530200	128	389	589950	112
1 1	460898	150	339		128		• • • • •	112
290	462398	140	340	531479	128	390	591065	111
291	463893	149	341	532754	127	391	592177 593286	111
292	465383 466868	149	342	534026	127	392	593288	111
293 294	468347	148	343 344	535294 536558	126	393 394	595496	110
1		148			126		596597	110
295	469822	147	345	537819	126	395 396	590597 597695	110
296	471292	146	346	539076 540220	125	390	598791	110
297 298	472756	146	347 348	540329 541579	125	398	599883	109
299	474216 475671	146	349	542825	125	399	600973	109
	4,20,	145	ידי ו	J,	124			109

	No. 400,	Log.	2.6020)60 to No	. 549,	Log.	2.739572	}
No.	Log.	Diff.	No.	Log.	Diff.	No.	Log.	Diff.
400	602060	108	450	653213	96	500	698970	87
401	603144	108	451	654177	96	501	699838	87
402	604226	108	452	655138	96	502	700704	86
403	605305	108	453	656098	96	503	701568	86
404	606381	107	454	657056	96	504	702431	86
405	607455	107	455	658011	95	505	703291	86
406	608526	107	456	658965	95	506	704151	86
407 408	609594 610660	107	457	659916 660865	95	507 508	705008 705864	86
409	611723	106	458 459	661813	95	509	706718	85
1	1	106		_	95			85
410	612784	106	460 461	662758 663701	94	510 511	707570 708421	85
411 412	614897	106	462	664642	94	512	709270	85
413	615950	105	463	665581	94	513	710117	85
414	617000	105	464	666518	94	514	710963	85
	1 .	105			94			84
415	618048 619093	105	465 466	667453 668386	93	515 516	711807 712650	84
416	620136	104	467	669317	93	517	713491	84
418	621176	104	468	670246	93	518	714330	84
419	622214	104	469	671173	93	519	715167	84
		104			93		. •	84
420	623249 624282	103	470	672098 673021	92	520 521	716003 716838	83
421 422	625312	103	471 472	673942	92	522	717671	83
423	626340	103	473	674861	92	523	718502	83
424	627366	103	474	675778	92	524	719331	83
425	628389		475	676694	92	525	720159	83
426	629410	102	476	677607	91	526	720986	83
427	630428	102	477	678518	91	527	741811	82
428	631444	102	478	679428	91	528	722634	82 82
449	632457	101	479	680336	91 91	529	723456	82
430	633468	· .	48o	681241	1	530	724276	l 1
431	634477	101	481	682145	90	531	725095	82 82
432	635484	100	482	683047	90	532	725912	82
433	636488	100	483	683947	90	533	726727	81
434	637490	100	484	684845	90	534	727541	81
435	638489	100	485	685742	1 1	535	728354	81
436	639486		486	686636	89 89	536	729165	81
437	640481	99 99	487	687529	89	537	729974	81
438	641474	99	488	688420	89	538	730782	81
439	642465	99	489	689309	89	539	731589	18
440	643453	98	490	690196	89	540	732394	80
44 I	644439	98	491	691081	88	541	733197	80
442	645422	98	492	691965	88	542	733999	80
443	646404	98	493	692847	88	543	734800	80
444	647383	98	494	693727	88	544	735599	80
445	648360	97	495	694605	88	545	736397	80
446	649335	97	496	695482	87	546	737193	79
447	650308	97	497	696356	87	547	737987	79
448	651278	97	498 499	697229 698101	87	548 549	738781	79
449	1 -3-240	97	777	1 333.01	87	377	1373/4	79

	No. 550,	Log.	2.7408	363 to No	. 699,	Log.	2.844477	
No.	Log.	Diff.	No.	Log.	Diff.	No.	Log.	Diff.
550	740363	79	600	778151	72	650	812913	67
551	741152	79	601	778874	72	651	813581	67
552	741939	79	602	779596	72	652	814248	67
553	742725	78	603	780317	72	653	814913 815578	66
554	743510	78	604	781037	72	654		66
555	744293	78	605	781755	72	655	816241	66
556	745075	78	606	782473	72 .	656	816904	66
557	745855	78	607 608	783189	71	657 658	817565 818226	66
558	746634	78	609	783904 784617	71	659	818885	66
559	747412	78			71		1	66
560	748188	77	610	785330	71	660 661	819544	66
561	748963	77	611 612	786041	71	662	820201 820858	66
562	749736	77	613	786751 787460	71	663	821514	66
563 564	750508 751279	77	614	788168	71	664	822168	65
	- '	77			71	665	822822	65
565	752048	77	615	788875	71	666		65
566	752816	77	616 617	789581 790285	70	667	823474 824126	65
567 568	753583	77	618	790988	70	668	824776	05
569	754348 755112	76	619	791691	70	669	825426	65
LI I		76			70			65
570	755875	76	620	792392	70	670 671	826075 826723	65
571	756636	76	621 622	793092	70	672	827369	65
572	757396	76	623	793790 794488	70	673	828015	65
573	758155 758912	76	624	795185	70	674	828660	64
574		76			70			64
575	759668	75	625 626	795880	69	675 676	829304 829947	64
576	760422	75	627	796574 797268	69	677	830589	64
577 578	761176 761928	75	628	797960	69	678	831230	64
579	762679	75	629	798651	69	679	831870	64
		75			69	680	832509	64
580	763428	75	630 631	799341 800029	69	681	833147	64
581 582	764176 764923	75	632	800717	69	682	833784	64
583	765669	75	633	801404	69	683	834421	64
584	766413	74	634	802089	69 69	684	835056	64 63
585	767156	74	635	802774		685	835691	
586	767898	74	636	803457	68	686	836324	63
587	768638	74	637	804139	68	687	836957	63
588	769377	74	638	804821	68 68	688	837588	63
589	770115	74 74	639	805501	68	689	838219	63
1) • • [770852		640	806180		690	838849	1 1
590 591	771587	74	641	806858	68 68	691	839478	63 63
592	772322	73	642	807535	68	692	840106	63
593	773055	73	643	808211	67	693	840733	63
594	773786	73 73	644	808886	67	694	841359	63
595	774517		645	809560		695	841985	62
595 596	775246	73	646	810233	67 67	696	842609	62
597	775974	73	647	810904	67	697	843233	62
598	776701	73 73	648	811575	67	698	843855	62
599	777427	73	649	812245	67	699	844477	62
		,-			<u>' - '</u>			

	No. 700	, Log	2.845	098 to N	o. 849 ,	Log	2.928908	•
No.	Log.	Diff.	No.	Log.	Diff.	No.	Log.	Diff.
700	845098	62	750	875061	58	800	903090	54
701	845718	62	751	875640	58	801	903633	54
702	846337	62	752	876218	58	802	904174	54
703	846955	62	753	876 7 95 877371	58	803 804	904716	54
704	847573	62	754		58	-	905256	54
705	848189	62	755	877947	57	805	905796	54
706	848805	61	756	878522	57	806	906335	54
707	849419 850033	61	757 758	879096 879669	57	807 808	906874 907411	54
709	850646	61	759	880242	57	809	907949	54
1 1		61	760	886814	57	810		54
710	851258 851870	6 t	761	881385	57	811	908485 909021	54
712	852480	61	762	881955	57	812	909556	54
713	853090	61	763	882525	57	813	910091	53
714	853698	61 61	764	883093	57 57	814	910624	53
715	853306		765	883661		815	911158	53
716	854913	61	766	884220	57	816	911690	53
717	855519	61 6-	767	884795	57	817	912222	53
718	856124	61 60	768	885361	57 57	818	912753	53
719	856729	60	769	885926	56	819	913284	53 53
720	857332		770	886491	56	820	913814	
721	857935	60 60	771	887054	56	821	914343	53
732	858537	60	772	887617	56	822	914872	53 53
723	859138	60	773	838179	56	823	915400	53
724	859739	60	774	888741	56	824	915927	53
725	860338	60	775	889302	56	825	916454	53
726	860937	60	776	889862	56	826	916980	53
727	861534	60	777	890421	56	827	917506	52
728	862131	60	778	890980 891537	56	828 829	918030 918555	52
729	862728	60	779		56			52 ·
730	863323	59	780	892095	56	830	919078	52
731	863917	59	781 782	892651 893207	56	831	91960 1 920123	52
732	864511 865104	59	783	893762	56	832 833	920645	52
733 734	865696	59	784	894316	55	834	921166	52
1 1	866287	59	785	894870	55	835	921686	52
735	866878	59	786	895423	55	836	921000	52
737	867467	59	787	895975	55	837	922725	52
738	868056	59	788	896526	55 55	838	923244	52 52
739	868644	59 59	789	897077	55	839	923762	52
740	869232		790	897627		840	924279	
741	869818	59	791	898176	55 55	841	924796	52
742	870404	59 58	792	898725	55 55	842	925312	52 52
743	870989	58	793	899273	55	843	925828	51
744	871573	58	794	899821	55	844	926342	51
745	872156	58	795	900367	55	845	926857	51
746	872739	58	796	900913	55	846	927370	51
747	873321	58	797	901458	54	847	927883	51
748	873902	58	798	902003	54	848	928396 928908	51
749	874482	58	799	902547	54	849	920900	51

No. 850, Log 2.929419 to No. 999, Log 2.999565										
No.	Log.	Diff.	No.	Log.	Diff.	No.	Log.	Diff.		
850	929419		900	954243	48	950	977724	46		
851	929930	51	901	954725	48	951	978181	46		
852	930440	51 51	902	955207	48	952	978637	46		
853	930949	51	903	955688	48	953	979093	46		
854	931458	51	904	956168	48	954	979548	46		
855	931966	51	905	956649	48	955	980003	45		
856	932474	51	906	957128	48	956	980458	45		
857	932981	51	907	957607	48	957	980912	45		
858	933487	51	908	958086 958564	48	958	981366 981819	45		
859	933993	51	909		48	959		45		
860	934498	50	910	959041	48	960	982271	45		
861	935003	50	911	959518	48	961 962	982723	45		
862	935507	50	912	959995	48	963	983175 983626	45		
863 864	936011	50	913 914	960471 960946	48	964	984077	45		
•	936514	50	' '	, ,,	47			45		
865	937016	50	915	961421	47	965 966	984527 984977	45		
866	937518	50	916	961895 962369	47	967	985426	45		
867 868	938019	50	917 918	962843	47	968	985875	45		
869	938520 939020	50	919	963316	47	969	986324	45		
•		50	1 1		47			45		
870	939519	50	920	963788	47	970	986772 987219	45		
871	940018	50	921	964260	47	971 9 72	987666	45		
872 873	940516	50	922	964731 965202	47	973	988113	45		
874	941511	50	924	965672	47	974	988559	45		
		50			47		989005	45		
875 876	942008	50	925 926	9661 42 966611	47	975 976	989450	45		
877	942504 943000	50	927	967080	47	977	989895	44		
878	943495	49	928	967548	47	978	990339	44		
879	943989	49	929	968016	47	979	990783	44		
880		49	930	968483	47	980	991226	1		
188	944483 944976	49	931	968950	47	981	991669	44		
882	945469	49	932	969416	47	982	992111	44		
883	945961	49	933	969882	47	983	992554	44		
884	946452	49 49	934	970347	47 46	984	992995	44		
885	946943		935	970812		985	993436			
886	947434	49	936	971276	46	986	993877	44		
887	947924	49	937	971740	46 46	987	994317	44		
888	948413	49	938	972203	46	988	994757	44		
889	948902	49 49	939	972666	46	989	995196	44		
890	949390	1 1	940	973128		990	995635	1		
891	949878	49	941	973590	46 46	991	996074	44 44		
892	950365	49. 49	942	974051	46	992	996512	44		
893	950851	49	943	974512	46	993	996949	44		
894	951338	49	944	974972	46	994	997386	44		
895	951823	48	945	975432	46	995	997823	44		
896	952308	48	946	975891	46	996	998259	##		
897	952792	48	947	976350	46	997	998695	44		
898	953276	48	948	976808	46	998	999131	44		
899	953760	48	949	977266	46	999	999565	43		

LOGARITHMIC SINES AND COSINES.—TABLE 29

	SINES 0° to 45° 50′, for each 10 minutes.									
Dega,	O'	10'	20′	30′	40′	50′	Degs.			
0		7.463726	7.764754	7.940842	8.065776	8.162681	89			
1	8.241855	8.308794	8.366777	8.417919	.463665	.505045	88			
2	.542819	.577566	.609734	.639680	.667689	.693998	87			
3	.718800	.742259	.764511	.785675	.805852	.825130	86			
4	.843585	.861283	.878285	.894643	.910404	.925609	85			
5	.940296	·95 44 99	.968249	981573	·994497	9.007044	84			
6	9.019235	9.031089	9.042625	9.053859	9.064806	.075480	83			
7	.085894	.096062	.105992	.115698	.125187	134470	82			
8	.143555	.152451	.161164	.169702	.178072	.186280	81			
9	.194332	.202234	.209992	.217609	.225092	·232444	80			
10	.239670	.246775	.253761	.260633	.267395	-274049	79			
11	. 280599	.287048	.293399	.299655	.305819	.311893	78			
12	.317879	.323780	.329599	-335337	.340996	.346579	77			
13	352088	-357524	.362889	.368185	.373414	·378577	76			
14	.383675	.388711	.393685	.398600	•403455	.408254	75			
15	.412996	.417684	.422318	.426899	-431429	•435908	74			
16	.440338	.444720	.449054	-453344	•457584	.461782	73			
17	.465935	.470046	.474115	.478142	.482128	.486075	72			
18	.489982	.493851	.497682	.501476	.505234	.508956	71			
19	.512642	.516294	.519911	.523495	.527046	.530565	70			
20	.534052	-537507	.540931	.544325	-547689	.551024	69			
21	-554329	.557606	.560855	.564075	.567269	.570435	68			
22	•573575	.576689	.579777	582840	.585877	.588890	67			
23	.591878	.594842	.597783	1600700	.603594	.606465	66			
24	.609313	.612140	.614944	.617727	.620488	.623229	65			
25	625948	.628647	.631326	.633984	.636623	1639242	64			
1					.652052	.654558	63			
26	-641842	.644423	.646984 .661970	.649527 .664406	.666824	.669225	62			
27	.657047	.659517	.676328	.678663	.680982	.683284	61			
28	.671609 .685571	.673977	.690098	.692339	.694564	.696775	60			
29	698970	.701151	.703317	.705469	.707606	.709730	59			
30		' '								
31	.711839	713935	.716017	718085	.720140	.722181	58			
32	.724210	.726225	.728227	'730217 '741889	.732193	.734157 .745683	57 56			
33	.736109	.738048	•739975	.753128	·743792 ·754960	.756782	55			
34	.747562	•749429	.751284	.763954	.765720	.767475	54			
35	.758591	.760390	' ''							
36	.769219	.770952	.772675	.774388	-776090	.777781	53			
37	•779463	.781134	.782796	.784447	.786089	.787720	52			
38	.789342	-790954	.792557	.794150	•795733	·797307	51			
39	.798872	.800427	.801973	.803511	.805039	.806557 .815485	50			
40	.808067	.809569	.811061	.812544	.814019		49			
41	.816943	.818392	.819832	.821265	.822688	.824104	48			
42	.825511	.826910	.828301	.829683	.831058	.832425	47			
43	.833783	.835134	.836477	.837812	.839140	.840459	46			
44	.841771	.843076	.844372	.845662	.846944	.848218	45			
45	.849485	.850745	.851997	.853242	.854480	.855711	44			
Degs.	60 ⁴	50′	40′	30′	20′	10′	Degs.			
	COST	NES 44°	10' to 9	0°, for ea	ch 10 mi	inutes.				
COSINES 44° 10′ to 90°, for each 10 minutes.										

LOGARITHMIC SINES AND COSINES.—Table 29

SINES 46° to 90°, for each 10 minutes.									
Degs.	·oʻ	10'	20′	30′	40′	50′	Degs.		
46	9.856934	9.858151	9.859360	9.860562	9.861758	9.862946	43		
	.864127	.865302	.866470	.867631	.868785	.869933	42		
47 48	.871073	.872208	.873335	.874456	.875571	.876678	41		
49	.877780	.878875	.979963	.881046	.882121	.883191	40		
50	.884254	.885311	.886362	.887406	.888444	.889477	39		
-		••	.892536	.893544	.894546	.895542	38		
51	.890503	.891523 .897516	.898494	.899467	.900433	.901394	37		
52	.896532	.903298	.904241	.905179	.906111	907037	36		
53	.907958	.908873	.909782	.910686	.911584	.912477	35		
54	.907958	.914246	.915123	.915994	.916859	.917719	34		
55			1	1	1		1 1		
56	.918574	.919424	.920268	.921107	.921940	.922768	33		
57	.923591	.924409	.925222	.926029	926831	.927629	32		
58	.928420	.929207	.929989	.930766	.931537	.932304	31		
59	.933066	.933822	•934574	.935320	.936062	.936799	30		
60	·937531	.938258	.938980	.939697	•940409	.941117	29		
61	.941819	.942517	.943210	.943899	.944582	.945261	28		
62	945935	.946604	.947269	.947929	.948584	·949235	27		
63	.949881	.950522	.951159	.951791	.952419	.953042	26		
64	.953660	.954274	.954883	.955488	.956089	.956684	25		
65	.957276	.957863	.958445	.959023	.959596	.960165	24		
66		.961290	.961846	.962398	.962945	.963488	23		
	.960730	.964560	.965090	.965615	.966136	.966653	22		
67	.964026	.967674	.968178	.968678	.969173	.969665	21		
68	.967166	.970635	.971113	.971588	.972058	.972524	20		
69	.970152	•973444	.973897	•974347	.974792	.975233	19		
70	• • •		1		ł * · · · · ·		1 1		
71	.975670	.976103	.976532	.976957	•977377	•977794	18		
72	978206	.978615	.979019	.979420	.979816	.980208	17		
73	.980596	•980981.	.981361	.981737	.982109	.982477	16		
74	.982842	.983202	.983558	.983911	.984259	.984603	15		
75	•984944	.985280	.985613	.985942	.980200		14		
76	.986904	.987217	.987526	.987832	.988133	.988430	13		
77	.988724	.989014	.989300	.989582	.989860	.990134	12		
78	990404	.990671	.990934	.991193	991448	.991699	11		
79	.991947	.992190	.992430	.992666	.992898	.993127	10		
79 80	.993351	.993572	.993789	.994003	.994212	.994418	9		
81	.994620	.994818	.995013	.995203	.995390	.995573	8		
82	•995753	.995928	.996100	.996269	.996433	.996594			
83	.995753	.996904	.997053	.997199	.997341	.997480	7 6		
84	.997614	.997745	.997872	.997996	.998116	.998232	5		
85	.998344	.998453	.998558	.998659	.998757	.998851	4		
		1	''		.999265	.999336	3		
86	.998941	.999027	.999110	.999189 .999586	.999405	.999689	2		
87	.999404	.999469	.999529	.999560	.999882	.999910	ī		
88	•999735	.999778	.999816	.999983	.999993	.999998	6		
89	•999934	•999954	• 17777	1777703	,,,,,,,	'	ا ا		
90	10.000000	•••••							
	60'	50'	40′	30'	20'	10'	Degs.		
Degs.			<u> </u>	!	<u> </u>	<u>'</u>			
	COSINES 0° to 44°, for each 10 minutes.								

TRIGONOMETRIC RATIOS .- TABLE 30.

NATURAL SINES, TANGENTS, AND SECANTS,

WITH THEIR COSINES, COTARGENTS, AND COSECANTS,

To every degree of the Quadrant, radius being 1.000000.

Note.—From o to 44 degrees the name of the column is at the head of the page; from 45 to 90 degrees the name of the column is at the foot of the page.

Arc.	Sine.	Cosine.	Tangent.	Cotan.	Secant.	Cosec.	Arc.
o°	.000000	1.000000	.000000		1,000000	Infinite.	900
1	.017452	.999848	.017455	57.28996	1.000152	57.29869	89
2	.034899	.999391	.034921	28.63625	1.000609	28.65371	88
3	.052336	.998630	.052408	19.08114	1.001372	19.10732	87
	.069756	.997564	.069927	14.30066	1.002442	14-33559	86
5	.087156	.996195	.087489	11.43005	1.003820	11.47371	85
6		201522					84
	.104528	.994522	.105104		1.005508	9.566772	
7 8	.121869	.992546	.122784		1.007510	8.205509	83 82
11 1	.139173	.990278	.140541	7.115370	1.009828	7.185297	81
12	.156434	.987688	.158384		1.012465	6.392453	
10	.173648	.984808	.176327	5.671282	1.015427	5.758771	80
111	. 190809	.981627	.194380	5 - 144554	1.018717	5.240843	79
12	.207912	.978148	.212557	4.704630	1.022341	4.809734	78
13	.224951	.974370	.230868	4.331476	1.026304	4.445411	77
14	. 241922	.970296	.249328	4.010781	1.030614	4.133566	7.6
15	.258819	.965926	.267949	3.732051	1.035276	3.863703	75
			1				1
16	.275637	.961262	.286745	3.487414	1.040299	3.627955	74
17	.292372		.305731	3.270853	1.045692	3.420304	73
18	.309017	.951056	.324920		1.051462	3.236068	72
19	. 325568	·945519	344328		1.057621	3.071554	21
20	. 342020	.939693	.363970	2.747477	1.064178	2.923804	70
21	. 358368	.933580	.383864	2.605089	1.071145	2.790428	69
22	.374607	.927184	.404026	2.475087	1.078535	2.669467	68
23	.390731	920505	.424475		1.086360	2.559305	67
24	.406737	.913546	.445229		1.094636	2.458593	66
25	.422618		.466308		1.103378	2.366202	65
	•	1		• • • •		· .	
26	.438371	.898794	.487733	2.050304	1.112602	2 281172	64
27	·453991	.891007	.509525	1.962611	1.122326	2.202689	63
28	.469472	.882948	.531709	1.880727	1.132570	2.130045	62
29	.484810		·554309	1.804048	1.143354	2.062665	61
30	.500000	.866025	·577350	1.732051	1.154701	2,000000	60
31	.515038	.857167	.600861	1.664280	1.166633	1.941604	59
32	.529919	.848048	.624869	1.600335	1.179178	1.887080	58
33	.544639		.649408	1.539865	1.192363	1.836079	57
34	.559193	.829038	.674509	1.482561	1.206218	1.788292	56
35	573576	.819152	.700208		1.220775	1.743447	55
36	.587785	.809017	.726543	1.376382	1.236068	1.701302	54
37	.601815	.798636	·753544	1.327045	1.252136	1.661640	53
38	.615661	.788011	.781286	1.279942	1.269018	1.624269	52
32	.629320		.809784	1.234897	1.286760	1.589016	51
40	.642788	.766044	.839100	1.191754	1.305407	1.555724	50
41	.656059	.754710	.869287	1.150368	1.325013	1.524253	49
42	.669131	.743145	.900404	1.110613	1.345633	1.494477	48
43	.681998	.731354	.932515	1.072369	1.367328	1.466279	47
44	.694658	.719340	.965689	1.035530	1.390164	1.439557	46
45	.707107	.707107	1.000000	1.000000	1.414214	1.414214	45
	-,-,-,						
Arc.	Cosine.	Sine.	Cotan.	Tangent.	Cosec.	Secant.	Arc.
	<u> </u>					'	

ANNUITIES AND LEASES.

TABLES 31, 31a, and 31b.

Abstracted from Weale's Edition of INWOOD'S TABLES.

ANNUITIES AND LEASES.—TABLE 31,

TABLE FOR FINDING VALUE

OF

ANNUITIES AND LEASES, HELD FOR A CERTAIN TERM.

Bule.—The tabular number in the column of the estimated rate of interest, opposite the number of years the lease is to continue, multiplied by the annual rental, will give the value.

For Freeholds, take the number in the line marked "Perp," from the column of the estimated rate of interest.

Years of Lease.	YEARS' PURCHASE.								
Ann.,	3 P Cent.	4₩ Cent.	5 🏕 Cent.	8 ₩ Cent.	7 ₽ Cent.	8 🌮 Cent.	9 🏕 Cent.	101/Cent.	
5 10	4.58 8.53	4·45 8.11	4·33 7·72	4.21 7.36	4.10 7.02	3.99 6.71	3.89 6.42	3.79 6.14	
15 20	11.94	11.12	10.38	9.71	9.11	8.56 9.82	8.06 9.13	7.61 8.51	
21 22 23	15.42 15.94 16.44	14.03 14.45 14.86	12.82 13.16 13.49	11.76 12.04 12.30	10.84 11.06 11.27	10.02 10.20 10.37	9.29 9.44 9.58	8.65 8.77 8.88	
24 25	16.94 17.41	15.25 15.62	13.80	12.55	11.47	10.53	9.71	8.99 9.08	
26 27 28 29	17.88 18.33 18.76 19.19	15.98 16.33 16.66 16.98	14.38 14.64 14.90 15.14	13.00 13.21 13.41 13.59	11.83 11.99 12.14 12.28	10.81 10.94 11.05 11.16	9.93 10.03 10.12 10.20	9.16 9.24 9.31 9.37	
30	19.60	17.29	15.37	13.77	12.41	11.26	10.27	9·43 9·48	
3 <u>9</u> 33 34 35	20.39 20.77 21.13 21.49	17.87 18.15 18.41 18.67	15.80 16.00 16.19 16.37	14.08 14.23 14.37 14.50	12.65 12.75 12.85 12.95	11.43 11.51 11.59 11.65	10.41 10.46 10.52 10.57	9.53 9.57 9.61 9.64	
36 37 38	21.83 22.17 22.49	18 91 19.14 19.37	16.55 16.71 16.87	14.62 14.74 14.85	13.04 13.12 13.19	11.72 11.78 11.83	10.61 10.65 10.69	9.68 9.71 9.73	
39 40	22.80	19.58	17.02	14.95	13.26	11.88	10.73	9.76 9.78	
45 50 55 60	24.52 25.73 26.77 27.68	20.72 21.48 22.11 22.62	17.77 18.26 18.63 18.93	15.46 15.76 15.99 16.16	13.61 13.80 13.94 14.04	12.11 12.23 12.32 12.38	10.88 10.96 11.01	9.86 9.92 9.95 9.97	
70 80 90	30.20 31.00	23.40 23.92 24.27	19.34 19.60 19.75	16.39 16.51 16.58	14.16 14.22 14.25	12.47	11.10	9.99 10.00	
100 Perp.	31.60	24.51 25.00	19.85	16.62 16.67	14.27	12.49	11.11 11.11	10.00	

ANNUITIES AND LEASES .- TABLE 31a.

TABLE FOR FINDING VALUE

OF

ANNUITIES AND LEASES, HELD FOR A SINGLE LIFE.

Rule.—The tabular number in the column of the estimated rate of interest, opposite the age of the life in the first column, multiplied by the annual rental, will give the value.

Years		YEARS' PURCHASE.							
Age.	3 & Cent.	4 ₩ Cent.	5 P Cent.	6 P Cent.	7 ₩ Cent.	8 # Cent.			
10	20.66	17.52	15.14	13.28	11.81	10.61			
15	19.66	16.79	14.59	12.86	11.47	10.34			
16	19.44	16.63	14.46	12.76	11.38	10.27			
17	19.22	16.46	14.33	12.66	11.30	10.20			
18	19.01	16.31 16.17	14.22 14.11	12.56 12.48	11.23	10.14			
20	18.64	16.03	14.01	12.40	11.09	10.03			
21	18.47	15.91	13.92	12.33	11.04	9.99			
22	18.31	15.80	13.83	12.27	10.99	9.95			
23	18.15	15.68	13.75	12.20	10.94	9.91			
24	17.98	15.56	13.66	12.13	10.89	9.87			
25	17.81	15.44	13.57	12.06	10.84	9.82			
26	17.64	15.31	13.47	11.99	10.78	9.78			
27	17.47	15.18	13.38	11.92	10.72	9.73			
28	17.29	15.05	13.28	11.84	10.66	9.69			
29	17.11	14.92	13.18	11.76	10.60	9.64			
30	16.92	14.78	13.07	11.68	10.54	9.58			
31	16.73	14.64	12.97	11.60	10.47	9.53			
32	16.54	14.50	12.85	11.51	10.40	9.48			
33	16.34	14.35	12.74	11.42	10.33	9.42			
34	16.14	14.20	12.62	11.33	10.26	9.36			
35	15.94	14.04	12.50	11.24	10.18	9.30			
36	15.73	13.88	12.38	11.14	10.10	9.23			
37	15.52	13.72	12.25	11.04	10.02	9.16			
38	15.30	13.55	12.12	10.93	9.94	9.09			
39	15.08	13.38	11.98	10.82	9.85	9.02			
40	14.85	13.20	11.84	10.71	9·75	8.94			
45	13.69	12.28	11.11	10.11	9·26	8.53			
50	12.44	11.26	10.27	9.42	8·68	8.04			
55	11.15	10.20	9.38	8.67	8·05	7.50			
60	9.78	9.04	8.39	7.82	7.31	6.86			
70	6.73	6.36	6.02	5.72	5.43	5.18			
80	3.78	3.64	3.52	3.39	3.28	3.17			
90	1.79	1.76	1.72	1.69	1.66	1.63			

ANNUITIES AND LEASES .- TABLE 31b.

TABLE SHEWING PRESENT VALUE OF A REVERSION IN PERPETUITY.

AFTER ANY GIVEN TERM, FROM 10 TO 60 YEARS,

At Rates of Interest from 3 to 8 per Cent.

Rule.—The tabular number in the column of the estimated rate of interest, opposite the number of years to run, multiplied by the rental, will give the value.

Years	Years'	Years'	Years'	Years' Purchase	Years' Purchase	Years' Purchase	Years' Purchase
to	Purchase	Purchase	Purchase	Purchase	Purchase	Purchase at	rurchase
Run.	3 4 Cent.	4 1 Cent.	5 P Cent.	6 P Cent.			10 # Cent.
10	24.80	16.89	12.28	9.31	7.26	5.79	3.85
12	23.38	15.61	11.14	8.28	6.34	4.96	3.17
14	22.04	14.44	10.10	7.37	5 · 54	4.26	2.63
16	20.77	13.35	9.16	6.56	4.84	3.65	2.18
18	19.58	12.34	8.31	5.84	4.23	3.13	1.80
							١. ۾
20	18.46	11.41	7 - 54	5.20	3.69	2.68	1.48
22	17.40	10.55	6.84	4.62	3.22	2.30	1.23
24	16.40	9.75	6.20	4.12	2.82	1.97	1.01
26	15.46	9.02	5.62	3.66	2.46	2.69	.84
28	14.57	8.34	5.10	3.26	2.15	1.45	.69
1 1							ļ.
80	13.73	7.71	4.62	2.90	1.88	1.24	-57
32	12.94	7.13	4.20	2.58	8.64	1.06	-47
84	12.20	6.59	3.81	2.30	1.43	.91	•39
86	11.50	6.09	3 · 45	2.05	1.25	.78	.32
88	10.84	5.63	3.13	1.82	1.09	.67	.27
							i
40	10.22	5.21	2.84	1.62	.95	.57	.22
42	9.63	4.8t	2.58	1.44	.83	•49	.18
44	9.08	4.45	2.34	1.28	•73	.42	.15
46	8.55	4.11	2.12	1.14	.63	.36	.12
48	8.07	3.80	1.92	1.02	-55	.31	,10
50	7.60	3 • 52	1.74	.90	.48	.27	.08
52	7.17	3.25	1.58	.81	•42	.23	.07
54	6.76	3.01	1.43	.72	•37	.20	.06
56	6.37	2.78	1.30	• 64.	.32	.17	.05
58	6.00	2.57	1.18	•57	.28	.14	.04
60	5.66	2.38	1.07	.51	.25	.12	.03

Table 31c.

SHEWING THE VALUE OF AN ANNUITY OF £100, ON A SINGLE LIFE FROM 10 TO 90 YEARS OF AGE.

As Fixed by the Legacy Act.

Age.	Value.	Age.	Value.	Age.	Value.	Age.	Value.
10 15 20 25	1,603 6	30 35 40	£ s. 1,478 2 1,403 18 1,319 14 1,228 6		£ s. 1,126 8 1,020 2 903 18 776 2	70 75 80 90	£ 8. 636 2 496 4 364 6 175 16

TIDES OF BRITISH PORTS,

AND

TIDE TABLES;

WITH THE

MOON'S TRANSIT AND HORIZONTAL PARALLAX

FOR 1852, 1853, AND 1854.

TABLES 32, 32a, 32b, 32c, 33, 34, and 35.

TIDES OF BRITISH PORTS.

DESCRIPTION OF TABLES 32, 32a, 32b, 33, 34 & 35.

These tables, which are chiefly based on the notes to the Admiralty tide tables, will be found useful, not only for finding the heights and times of high water at the various ports mentioned, but also for tracing the progress of the tidal wave, and for readily ascertaining when any particularly high or low tide may be expected, by the rise attached to the different hours of the moon's declination at noon.

Table 32 gives the constants for finding the time of high water at twenty places; no other corrections are given, as they are too small to affect the validity of the result; a light breeze would occasion a greater variation than the largest correction that can be applied for time, and

often for heights.

Table 32a gives the constants for finding the heights of high water at the same twenty places; for greater accuracy, the corrections for the moon's declination and parallax given in Table 32b must be applied.

Table 32b gives the corrections of height for the moon's declination and parallax for twenty places, which are to be applied to the constants

previously found in Table 32a.

Table 34 contains the moon's transit and declination at noon, for the years 1852, 1853, and 1854, from the Nautical Almanac. New moon and full moon occur when the transit is at 12 and 24 hours respectively.

Table 35 gives the moon's horizontal parallax at noon, for every fifth day of the month, for 1852, 1853, and 1854; the intermediate days may be averaged accurately enough for the corrections of Table 32b.

Tables 32 and 32a give the time and heights for a London tide two

Tables 32 and 32a give the time and heights for a London tide two days following the transit, to be taken as a datum; for tides at the other specified places, take the additions shewn in Table 32. The time in Tables 34 and 35 is mean solar; therefore, for reducing all the times of the tables to common time, correction must be made from an almanac according to the season.

Example.—Required the Time and Height of High Water at Hull, on January 24th, 1852.

	D.	H.	X.
Moon's transit on January 22nd, at	0	1	13
Table 32 gives for 1h. 13m. at Hull	1	19	10
The time of high water following noon of Jan. 22nd or 8h. 23m. a.m. mean solar time on January 24th.		20	23
•		1	Peet.
The same transit gives, by Table 32a		20	0.63
Correction for declination on January 22nd, viz., 18	leg		16
" parallax " viz., 55 r	ain.	. –	63
The height of high water, when corrected, being on January 24th, or 19 feet 10 ins. at 8.23 a.m.	• • •	. 19	9.84

Table 33 gives the mean spring range, and the constants of time and heights of high water, for a number of places, to be added or deducted, in reference to the standard places designated in black letters at the head of each division; the time and heights of these leading places being found from the tables 32, 32a, and 32b, in connection with the moon's transit, as before described. It must be recollected that whatever the tide may range on the particular day required at the standard place, yet the constant difference at any other place, referred to such standard, will be the same; the places being in fact both situate on co-tidal lines.

TIDES OF BRITISH PORTS.

Water at Great Grimsby on to Hull is the port of reference time of high water ther	ired to find the Time and Height of High he same date, viz., January 24th, 1852. c for Great Grimsby. The H. M. c, by the former example, is 8 23 a.m. sby
Giving for th	ne time of high water 7 30 a.m.
Height of high water at Constant for Great Grim	Ft. In. Hull on January 24th 19 10 sby
Giving for th	e height of high water 18 2
by Dr. Whewell, from observed deduced from three and the hard The method of using them but in order to make it cleare	leight of High Water at Devonport, on
	24th ,
Time of high water, or 6h. 36m. a.m.	January 26th, being 18 36
To find the height,— The above transit gives Correction for declination	Feet 15.37 1, 23 deg
Height of high water	r, January 26th, being 15.02
The zero of heights in Tab water at spring tides. The low water of any one low water as the high water of	Water and the Range of the Tide. les 32 and 32a, is the mean height of low tide is generally as much above the mean f the same tide is below mean high water; we mean high water, the low water is as bles.
EXAMPLE.—Required the H at Hull, on January 22nd, 188	leight of Low Water and the Range of Tide 52.
Height of high water as Mean height of high wat	above
below that of mean spring tid therefore the range of the da To find the height of the ti above day, take multiplier fo .258 × 20 feet, = 5.16 feet a 5 inches above zero of the tab the height of the tide, at 4 h In contracted places and river be seen in our various exam throughout the Irish Sea, by (Table 32c shews the state	of tide at each half-hour of rise or fall, for feet; this will give by inspection a more

TIDES OF BRITISH PORTS.—TABLE 32.

TABLE FOR COMPUTING TIME OF HIGH WATER,

For Twenty Places specified,

Showing the Semi-menstrual Inequality, + a constant; representing the Interval between the Moon's Transit, two days preceding a London Tide, and the Time of High Water; the Moon's Parallax being 57', her Declination 15°; the Sun's Parallax 8'.8, and Declination 15°.

_				0,1		D		1011	٠.												
I.	on's med B.		Bre	st.]	Port	t.	De)Ve			The Dec		I	ond	on.	Ha	rwic	h.	H	all.
ii 💮		a	h	m	d	h	m	đ	h	m	đ	h	m	a	h	m	đ	h	m	d l	
0	0	li	4	_	ī	12	21		_	54	2	ï	56	2	3		2	I	او	1 1	
1	ŏ	li			li	12	08		•	1			-			13		-			•
ê	_	1	4		1 -	-		1		1 3	2	I	39	12	2	57	2	_		1 1	•
-	0	I	3	-	I	11	53	ı	-	32	2	1	22	2	2	41	2			1 1	_ ,
	0	1	3	39	I	ΙI	40	II	1 2	11	2,	I	9	2	2	29	2	0 2	7	1 1	
4	0	1	3	33	1	11	32	1 1	1	[3	2	I	3	2	2	23	2	0 1	8	II	B 39
5	0	1	3	35	1	11	32	1 1	1 1	12	2	I	10	2	2	28	2	0 2	I	1 1	8 54
_		1	-	- •	1		•	ı		- 1				ı			ı		- 1		٠.
	0	l I	3	56	ı	u	40	111	1 2	12	2	I	37	1 2	2	51	2	0 4	اما	I 19	81 0
7	ŏ	1	4	33	Ī	12	7) 21			17	2	2	12	2	3	24	2	- 1		1 19	
á	ŏ	l.			i	12			- 7			_			-	•				1 20	•
	_		4	56	•		47			12	2	2	32	2	3	47	2		-1		-
	0	I	5	00	I	12	54			16	2	2	33	2	3	50	2		• 1	1 20	
10	0	1	4	51	I	12	47	1 1		3	2	2	24	2	3	43	2		7	1 19	53
11	0	1	_ 4	38	1	12	34	JI	2 (74	2	2	CI	2	3	29	2	I 2	41	5 19	42
		1			Г								7.						T.		4
Ira	on's nait B.		und lan	ler- d.	I	eit	b.	Th	aro() .	Ør	66IL	ock	Li	verj	oool		em-		sup Ma	er- er-
h.	m.	d	h	m	a	h	m	d 1	h	m	đ	h	m	a	h	m	đ	h ı	n	d h	m
Ö	ö	lï	16	18			15		_	4	ĭ	12	48	ī		02	ī	6 5	_		_
ì	ŏ	li	16	02		_	-			6	i		•	1		46	ī			•	
	_				1	•	00				-	12	34	1			-		- 1	•	
	0	I	15	48			47			7	I	12	18	I		33	I	6 2		' 2	
	0	I	15	38	I	14	36		_	8	I	12	04	1	11	22	I	6 0	- 1	ι 6	T-
4	0	1	15	35	1	14	34	_		6	I	11	55	1	11	14	I	5 5	5 1		
5	0	ı	15	42	1	14	45	T :	83	5	1	11	56	1	11	17	I	5 5	0 1	: 6	17
1	-	ŀ	•	-					_	1			Ť						-		
6	0	1	16	08	1	15	13	1 (9 0	6	I	12	15	1	11	43	1	5 5	B 1	ι 6	34
7	ŏ	ī	16	36		_	42		9 4				46			15	I	5 5 6 3:		. 7	
á	ŏ	ī	16	51			58		9 5		1		09	I		36	I	7 0		-	•
9	ŏ	_	16					•				-	- 1			40	ī	7 1		_	
10	0		_	55			55	•	9 5			13	14						٠,		
	_		16	49			47		9 3			-	10			33	I	7 14		•	
11	0	1	16	34	I	15	33	1 9	2	1	ı	13	01	I	12	20	I	<u>7 0</u>	5 ! !	7	47
M	oon nsit	B.	H	olyh	ead	. 1	Kin tow	gu- n.	:	Bel	fa	st.	1	Nie	ŗo.	6	alv	ay.	q	tow	
,	h. 1	n.	d	h	m	ď	Ъ	m	a	h		m	a	h	m	a	ъ	m	a	h	m
		Ö	1	10	_	1 3	_		1 1	_		_	1	6	37	1	_	14	lï	5	41
	_	ŏ	١i	10		l i			l i			25	i	6	37	1	5	00	١i		26
		ŏ	-		30	4 .		2.1	1 -			09	_				5	-		5	
		_	I	10	18	1	11		1		•	57	I	6	09	1	4	46	1	5	II
	_	0	1	10	10	1			1	10	2	49	I	5	55	I	4	35	1	4	57
	-	0	1	10	07	1	11	06	I	10	2	49	I	5	54	1	4	31	I	4	45
	5 (0	I	10	16	1 1	II	15	1	10)	57	I	6	11	1	4	36	I	4	42
			ı			1			1		•	-				1			l		1
	6 (0	1	10	46	1	II	38	1	11	: 1	20	1	6	38	1	5	OI	1	5	00
	Ž (Ď	Ī		16	li			1	11		48	ī	7	04	Ī	5	33	I	5	32
	_	Ď	_		_	li		-				56	1		•	l i			lî		59
-	_	6	ľ	II	31	1 -	12	_	1	12			1	2	15	1	5	49		5	
	_	5	1	11	31	1	12		1	12	•	05	I	7	12	I	5	50	1		08
10	-	_	I	11	20	1	12	19	1	11	. !	56	1	7	04	1	5	42	I	6	04
1	1 (0	I	11	06	1	12	03	1	11		42	1	6	52	1	5	29	I	5	53
								-								-					

TIDES OF BRITISH PORTS .- TABLE 32a.

TABLE FOR COMPUTING HEIGHTS OF HIGH WATER,

For Twenty Places specified,

Showing the Semi-menstrnal Inequality, + a constant, in the Height of High Water, with reference to the apparent Solar time of the Moon's Transit B, the Moon's Parallax being 57', and her Declination 15°; the Sun's Parallax 8".8, and Declination 15°.

Tra	on's nsit 3.	Brest.	Ports- mouth.	De	over.	She		Lond	on.	Harwi	ch. Hull.
h. 0	0	Feet. 19.06 18.92	Feet. 12.62 12.51	1	eet. 8.66 8.61	15	.10 .96	Fee 19.	51 45	Feet. 11.5 11.3	6 20.87 8 20.75
9 4 5	0000	18.36 17.31 15.88 14.47	12.29 11.84 11.24 10.57	1	8.24 7.54 6.48 5.36	14 14	·59 ·98 ·17 ·46	19. 18. 17. 16.	48 65	11.1 10.7 10.2 9.8	2 19.18 8 18.05
6 7 8 9	0000	13.83 14.08 15.17 16.66	10.07 10.19 10.91 11.62	I	4.51 4.72 5.75 6.85	13 14 14	.10 .48 .21	16. 16. 17.	39 00 85	9·7: 9·9: 10·4: 10·9:	16.78 18.06 4 19.22
10	0	18.03 18.84	12.18		7.78 8.41		.61 .03	18.	•	11.3	
Mod Tra	on's nsit	Sunder- land.	Leith.					Liver	2001		Weston
h. O 1	H 0 0	Feet. 14.43 14.26	Feet. 16.29 16.00	1	eet. 3.25 3.00		t. .72 .71	Feet 25.	50	Feet. 21.00 20.8	3,
3 4	000	13.71 13.01 12.22	15.54 14.88 13.92	1:	2.46	9	.61 33 00	24.0 23.0 22°	68 66	19.25	36.37 34.83
5	0	11.46	13.05	9	9.98	8.	64	20.	98	16.58	30.34
6 7 8	000	11.02 11.25 12.09	12.58 12.87 13.60	9	9.52 9.61 0.30	8.	29	20.2	48	15.63 15.77 17.00	29.08
10 11	000	12.95 13.64 14.14	14.61 15.59 16.18	12	1.45 2.52 3.18	9.	31	23.1 24.2 25.1	1 3 28	18.54 19.81 20.62	35.25
Mo	on's	B. Holyhe	ad. King	8- 1.	Belf	ast.	81	igo.	G	alway.	Queens- town.
•	1. m 0 0	16.00	10.8	4	9	43	8	eet. -54 -45	1	Feet. 4.83 4.68	Feet. 11.75 11.69
	2 C 3 C 4 C	14.68	10.6	5	9.	24 00 63 30	7	.51 .83	1	4.20 3.43 2.34 1.30	11.37 10.84 10.19 9.55
	6 0	12.97	9.1	5	8. 8. 8.	09 07 36 86	5 6	.98 ·94 ·35 ·25	I	0.87 1.17 2.02 2.98 3.82	9.14 9.26 9.78 10.47
11				6	ģ.	41		.31	1	4.49	11.57

TIDES OF BRITISH PORTS.—TABLE 32b.

TABLE OF CORRECTIONS FOR THE MOON'S DECLINATION AND PARALLAX.

For the Twenty Places specified.

Note.—For the Moon's Declination, no correction from 14° to 16°.

Parallax , n for 57.

	1	100N	S DEC	LIN	ATIO	n.	M	ooms'	PAR	ALL	X.
Name of Port.	0° to	9.°+ and 21.°-	12.°+ and 18.°—	240	27°	300	54' —	55'— and 59'+	56'— and 58+	60 [,]	61'
Brest	.23 .38 .26 .29 .17 .41 .29 .32 .32 .46 .75 .32 .17 .23	Ft42 .21 .34 .23 .26 .16 .29 .29 .13 .42 .42 .68 .29 .16 .10 .20 .17 .21	Ft 19 . 10 . 16 . 11	Ft72 .36 .49 .45 .49 .49 .22 .72 .117 .49 .27 .36 .36 .36 .36 .36		Ft. 1. 31	Ft. 1. 02 . 51 . 83 . 58 . 09 . 64 . 70 . 32 I. 02 I. 06 . 51 . 77 . 51	Ft72 .36 .77 .49 .49 .27 .72 .18 .36 .54 .36	Ft35 .18 .29 .19 .22 .13 .31 .24 .24 .11 .35 .35 .57 .24 .13 .09 .18	.79 .36 I.15 I.15	Ft. 1.56 .78 1.26 .87 .58 1.36 .97 1.07 .48 1.56 1.56 2.53 1.56 2.53 .78

DEVONPORT TIDES.

Table shewing the Semi-menstrual Inequality, or the interval between the apparent Solar time of the Moon's Transit, 1½ day preceding a Devonport Tide, and the time of High Water; also the same inequality in the height of High Water, the Moon's Declination being 16° 30', and Horizontal Parallax 5''.

Moon's Transit.	Inter- val.	Height.	Moon's Transit.	Inter- val.	Height	Moon's Transit.	Inter- val.	Height
H. M.	H. M.	Feet.	H. M.	H. M.	Feet.	H. M.	H. M.	Feet.
O 30	6.20	15.34	4 30	5·35	12.82	8 30	7.07	13.85
I 30	6.11	15.01	5 30	5·45	12.24	9 30	7.07	14.64
2 30	5.55	14.41	6 30	6.19	12.29	10 30	6.59	15.14
3 30	5.40	13.64	7 30	6.52	12.92	11 30	6.46	15.40

TABLE OF CORRECTIONS FOR THE MOON'S DECLINATION AND PARALLAX.

Moon's		Mo	n's D	clina	tion.	Moon's Parallax.							
Transit.	0° to 3°+	6° to 9°+	12°+ and 21°-	15+ and 18-	24°—	27°—	54′—	55'— and 59+	56- and 58+	60'	61'		
H. M. A.M. 0 30 to 6 0 6 Oto 11 30	Ft26	Ft. .18	Ft. .13 .18	Ft. .04 .05	Ft. .31 .39	Ft. •44 .60	Ft80 .66	Ft. •54 •45	Ft27	Ft. .81	Ft. 1.00 .86		

Digitized by Google

TIDES OF BRITISH PORTS .- TABLE 32c.

TABLE FOR FINDING THE HEIGHT OF THE TIDE

AT ANY INTERMEDIATE HOURS OR HALF-HOURS

BEFORE OR AFTER HIGH WATER.

The first column gives the several Ranges of Tide; the Low Water is supposed to be Zero at six hours after High Water.

Ran H.	ge. M.	н.	M.	H.	M.	Ħ.	X.	H.	M.	Ħ.	¥.	н.	M.	н.	×	H.	X.	Ħ.	X.	н.	×	н.	2
6	<u>o</u> .	5	30	5	0	4	30	4	0	3	30	3	0	2	30	2	0	1	30	1	0	0	30
7£	Ins.	Ft.	Ins.	Ft.	Ips.	Pt.	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins.	Ft.	Ins	Ft.	Inc
6	0	5	10	5	6	5	1	4	6	3	9	3	0	2	3	1	6	0	11	0	6	0	2
7	0	6	10	6	5	- 5	11	5	3	4	4	3	6	2	7	1	9	1	I	0	7	١.	2
8	0	7	10	7	4	6	9	6	0	5	0	4	0	3	٥	2	0	1	3	0	8	0	2
9	0	8	9	8	3	7	7	6	8	5	8	4	6	3	5	2	4	1	5	۰	9	0	3
10	0	9	9	9	2	8	5	7	5	6	3	5	0	3	9	2	7	1	7	٥	10	0	3
1 f	0	10	9	10	1	9	4	8	2	6	10	5	6	4	2	2	10	1	9		11		3
12	0	11	8	11	0	10	2	8	11	7	6	6	0	4	6	3	1	1	10	1	0	0	4
13	0	12	8	12	0	11	٥	9	8	8	2	6	6	4	10	3	4	2	٥	1	0	0	4
14	0	13	8	12	11	11	10	10	5	8	9	7	0	5	3	3	7	2	2	1	1	0	4
15	0	14	7	13	10	12	8	11	2	9	5	7	6	5	8	3	10	2	4	1	2	0	5
16	0	15	7	14	9	13	6	11	11	10	0	8	0	6	0	4	I	2	6	1	3		5
17	0	16	7	15	8	14	4	12	8	10	8	8	6	6	4	4	4	2	8	1	4	۰	5
18	0	17	7	16	7	15	3	13	5	11	3	9	٥	6	9	4	7	2	9	1	5	۰	5
19	0	18	6	17	6	16	I	14	2	11	10	9	6	7	I	4	10	2	11	ĸ	6	٥	6
20	0	19	6	18	5	16	11	14	11	12	6	10	•	7	6	5	1	3	1	1	7	۰	6
22	0	21	5	20	3	18	7	16	5	13	9	11	٥	8	3	5	7	3	5	1	9	۰	7
24	0	23	5	22	1	20	3	17	11	15	0	12	۰	9	٥	6	I	3	9	1	11	۰	7
26	0	25	4	23	11	22	٥	19	4	16	3	13	۰	9	10	6	8	4	0	2	1	۰	8
28	0	27	4	25	9	23	8	20	10	17	6	14	۰	10	6	7	2	4	4	2,	3	٥	8
30	0	29	3	27	7	25	4	22	4	18	9	15	٥	11	3	7	8	4	8	2	5	۰	9
32	0	31	2	29	5	27	0	23	10	20	o	16	0	12	٥	8	2	5	٥	2	7	۰	10
34	0	33	2	31	3	28	9	25	4	21	3	17	٥	12	9	8	8	5	3	2	9	۰	10
36	0	35	1	33	I	30	5	26	10	22	6	18	٥	13	6	9	2	5	7	2	II	۰	11
38	0	37	1	35	0	32	1	28	4	23	9	19	٥	14	3	9	8	5	11	3.	۰	•	11
40	0	39	٥	36	10	33	10	29	10	25	۰	20	۰	15	•	10	2	6	2	3	2	1	٥
н. О	¥.	н. О	ж. 30	H.	M. O	н.	¥. 30	н. 2	ж. О	н. 2	ж. 30	н. З	M. O	н. З	ж. 30	н. 4	м. О	H.	м. 30	н. 5	M. O	н. 5	ж 30

TIDES OF BRITISH PORTS .- TABLE 33.

TABLE OF CONSTANTS,

To be added to, or deducted from, the Times and Heights of High Water, as computed from Tables 32 and 32a.

The Ports of Reference and their Tidal Ranges are in Black Figures.

Range Time Hght Range Time Hght Range Time Hght Range Time Hght Range Time Hght Ft. In. H. K. Ft. In. H. K. Ft. In. H. K. Ft. In. Hght Ft. In. Hght Ft. In. H. K. Ft. In. H. K. Ft. In. Hght Ft. In. H. K. Ft. In. Hght H		Mean	Const	ants.	2025		Const	ants.
19 1 1 1 1 1 1 1 1 1	PORTS.	Sprg. Range	Time.	Hght.	PORTS.	Sprg. Range	Time.	Hght.
Realization Realization		Ft. In.	W. M.	Ft. In.			н. н.	Ft.In.
SHEERNESS	Beaumaris Whitehaven and Tarn Point, Solway F Ile de Seine Ushant St. Malo and Granville Honfieur Guernsey Dieppe Boulogne Cape Grisnez PORTSMOUTH Beachy Head Newhaven Shoreham Littlehampton & Seisea Bembridge Point Southampton Cowes Lymington Hurst Camber Needles Christchurch Poole Weymouth Portland Breakwater Portland Bill West Bay DOVER Limerick Tarbert Margate Broadstairs Ramsgate Bandwich Deal	19 1 3 3 23 17 6 4 19 19 14 16 16 19 18 8 16 19 18 6 1	4 308 134 44 40 18 4 11 1 7 5 4 0 5 13 4 5 15 0 5 0 5 4 5 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+2 4 +4 17 7 +0 3 3 +4 3 9 +2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Gravesend Purfleet Woolwich Blackwall Greenwich HARWICH Yarmouth Lowestoft Orfordness HULL Flamborough Head Bridlington Spurn Point Great Grimsby Wainfleet Point Blackeney and Wells. Wisbeach Quay Lynn Deep Lynn Deep Porth Tide Harbour Warkworth Tynemouth Bar North Shields Hartlepool Tees Month Whitby Scarboro LEITH Peterhead Aberdeen Stonehaven Montrose Arbroath Berwick Holy Island THURSO Banff	19 6	-2 49 9 0 17 1 19 9 0 17 1 19 1 19 1 19 1 19	+0 6 4 +0 4 -4 0 -4 0 -1 8 +0 8 +1 5
	SHEERNESS	16 1	+0 15	+3 5	Port Patrick Loch Rvan	::	-0 54 -0 48 -0 15 +0 8	z O

TIDES OF BRITISH PORTS.—TABLE 33.

TABLE OF CONSTANTS,

To be added to or deducted from the Times and Heights of High Water, as computed from Tables 32 and 32a.

The Ports of Reference and their Tidal Ranges are in Black Figures.

	,						
PORTS.	Mean Sprg.		Hght.	PORTS.	Sprg.		ants.
	remige	Time.	Hgnt.		Range	Time.	Hght.
	Ft. In.	н. м.	Ft. In.		Ft. In.	H. N.	Ft. In.
GREENOCK	9 9	<u></u>		KINGSTOWN	11 0		i li
Port Glasgow	6	+0 10	<u>ا</u> ، ما	Crinan	6 1	-0 0	+I 2
Largs	7 9	+1 35	a o	Wick	9 9	+0 12	+I 2 -4 II -I 3
LIVERPOOL	25 6			BELFAST	9.5		
Fleetwood		-0 12	i i	Church Bay		-2 48	l i
St. Bee's Head		→ 17 +0 38	1	Ballycastle	2 5	-4 58 -1 8	7 0
PORT CERTIFICATION		+0 48		Torr Point (Antrim) Loch Larne	1 8	—1 8 —0 18	7 9
Parkgate Douglas	::	-0 30				~ 18	T* 5
Douglas		- 0 4		ELIGO	8 8		
PEMBROKE	21 0		1	Donegal BarKillebegs	••	0 29 0 29	1 1
Tenby		-0 a	l i	Tory Island	::	20	1 1
		⊸ 11	1 1	Sheephaven	11 11	-0 35	+3 3
Ramsey Sound		+0 3	l I	Killebegs	90	-0 31	+0 4
Aberdovey	::	+0 47 +2 3	1	Loch Inver	11 .7	II 17	+2 11
Port Dynlsen	١ ا	 +2 33				-0 34	+5 3
Bardsea Isle Moriaix		+1 33	l	Bordeaux	14 1	+0 50	+5 5
MOTIBLE	23 9	1 19	+3 9	CATWAY			1 1
WESTON SUPER-			1 1	GALWAY		+0 7	
WESTON SUPER-	37 8			Aberystwith	13 5	+2 50 +3 11	-1 5
St. Ive's		-2 10		Pwllheli	13 8	+3 11	-I 1
Lundy Isle		-1 7 -1 22	l i	La Hogue	14 3	—1 17 —4 7	- Z
				Calais	10 5	+7 14	13 7 11
Bridgewater Bay Portishead Bristol Cardiff	35 0	+0 5	-2 3		, ,	' /	7
Portishead	35 9	+0 22	—ī 6	QUEENSTOWN	11 9	_	1
Cardiff	l ::	+0 27		Rantry	to a	_1 9	-1 7 I
POR TRIDOT		-020		Valentia	10 2 11 1	-1 14 -1 10	<u> </u>
Swansea		-0 44	لہ ا	Dumaire's Bay Bantry Valentia Achilry Wayford	10 9	+0 13	_I 0
				*** ***********************************	1	+1 29 +1 3	l H
HOLYHRAD	16 1		1 1	Waterford		I. 3	ااء بيا
Westport	12 9	-5 14	−3 4	Dunmore	12 1	+o 28	+1 8 +0 6 +0 11
Caernarvon	13 10	├ ० 38	-2 3	Dunmore Youghal	12 8	+0 13	+0 11
Tobermory	10 4	C 57	TO 3	Inverness	I2 2	+7 17	+0 5
Barfleur	17 1	-I 20	+i a	DEVONPORT	15 6		
HOLYHRAD	16 11	+1 57	+0 10	Lyme Cobb		-0 27	
WINGSTOWN	11 0	1		Torbay		+0 52	
Donaghadee	111 1	+0 2	+0 3	Dertmonth	••	TO 27	
Donaghadee	1	-0 28	`	Eddystone		ò	11
Howth		-0 3	l. l	Fowey		-0 18	1 1
Wicklow	13 0	° 40	+2 0	Falmouth	• • •		
Wicklow	::	2 25		Lizard and Mount's Bay Scilly	::	° 53	
		,			l "	1	{
	-				·		

TIDES OF BRITISH PORTS.—TABLE 34.

TABLE OF THE MOON'S TRANSIT, AND DECLINATION AT NOON, Por the Years 1852, 1853 and 1854.

		J	ANU	AR	Y.			F	EBRI	JAR	Y.	
Day of	1852.		185	1853.		1854.		1852.		3.	188	4.
Month.	Moon's Transit.	Mn's. Decl. at Noon	Moon's Transit.	Mn's. Decl. at Noon.	Moon's Transit	Mn's. Decl. at Noon.	Mòon's Transit.	Mn's. Decl. at Noon	Moon's Transit.	Mn's. Decl. at Noon	Moon's Transit.	Mn's. Decl. at Noon.
	H. M.	Deg.	н. м,	Deg.	н, м.	Deg.	н, м.	Deg.	н. м.	Deg.	н. м	Deg.
1 9 3 4 5	7·37 8·21 9·09 10·00		17.32 18.21 19.10 20.03 20.58	8 2 3 9 14	2.27 3.22 4.14 5.01 5.45	21 17 12 7	8.39 9.34 10.32 11.31 12.30	22 22 21	18.51 19.47 20.46 21.45 22.44	13 18 21 23 24	3·37 4·21 5·04 5·48 6·33	3 2 8 13
6 7 8 9	11.51 12.50 13.48 14.45 15.39	22 22 21 18 14	21.57 22.58 23.59 0.58	19 22 24 24 23	6.27 7.09 7.53 8.37 9.23	4 9 14 18 21	13.28 14.23 15.16 16.08 16.59	16 11 6 0 5	23.41 0.34 1.24 2.10	23 21 18 14	7.19 8.06 8.56 9.47 10.37	21 23 25 26 25
11 19 13 14 15	16.32 17.22 18.12 19.03	9 4 1 6	1.54 2.46 3.34 4.18 5.00	20 16 12 7 2	10.12 11.02 11.53 12.43 13.33	24 25 25 25 25 23	17.51 18.44 19.37 20.31 21.24	10 15 18 21 22	2.53 3.35 4.17 4.58 5.41	i 6	11.27 12.16 13.03 13.49 14.34	23 20 16 12 6
16 17 18 19 20	20.47 21.41 22.36 23.30	15 19 21 22 22	5.41 6.22 7.04 7.48 8.34	3 7 12 16 19	14.20 15.06 15.51 16.35 17.20		22.17 23.07 23.55 0.41	22 21 19 16	6.27 7.14 8.04 8.57 9.51	21 23 24	15.19 16.05 16.54 17.47 18.43	1 5 11 16 20
91 92 93 94 95	0.23 1.13 2.00 2.45 3.27	21 18 15 11	9.24 10.15 11.09 12.03 12.57	22 23 24 23 21	18.08 18.58 19.53 20.53 21.57	6 12 17 21 24	1.24 2.06 2.46 3.27 4.09	4 0 4	10.45 11.39 12.31 13.22 14.13	19 15 10	19.43 20.46 21.49 22.49 23.45	23 25 26 24 21
26 27 28 29 30 31	4.09 4.50 5.31 6.14 6.59 7.47	3 1 6 10 14 17	13.49 14.40 15.30 16.19 17.08 17.58	18 14 9 3 2 8	23.02 0.05 1.05 2.00 2.50	26 25 23 19 15 9	4·53 5·38 6·28 7·20	16	15.03 15.55 16.48 	7 12 	0.37	17 11 6

TIDES OF BRITISH PORTS.—Table 34.

TABLE OF THE MOON'S TRANSIT, AND DECLINATION AT NOON, Por the Years 1852, 1853, and 1854.

		:	MAR	СĦ.			APRIL.							
Day	1852.		1853.		1854.		1852.		1853.		1854.			
of Month.	Moon's Transit.	Mn's. Decl. at Noon.	Moon's Transit	Mn's. Decl. at Noon.	Moon's Trausit.	Mn's. Decl. at Noon.	Moon's Transit.	Mn's. Decl. at Noon.	Moon's Trausit	Mn's. Decl. at Noon.	Moon's Transit	Mn's. Decl. at Noon.		
	H. M	Deg.	н. м.	Deg.	H. M	Deg.	н. м.	Deg.	н. м.	Deg.	H. M	Deg.		
1 2 3 4 5	8.15 9.12 10.11 11.09		17.43 18.40 19.39 20.32 21.33	17 21 23 24 24	2.12 2.56 3.41 4.25 5.11	0 6 11 16	9.48 10.43 11.38 12.33 13.28	I	19.29 20.33 21.14 22.00	24 23 20 16	3.03 3.51 4.40 5.30 6.21	19 22 25 26 26		
6 7 8 9	13.01 13.56 14.49 15.43 16.37	8	22.27 23.16 0.03 0.47	19 15 10 6	5.59 6.48 7.39 8.29 9.20	23 25 27 26 24	14.23 15.20 16.17 17.14 18.09	11	23.27 0.09 0.50	7 2 3 8	7.11 8.00 8.48 9.34 10.20	25 23 20 15		
11 19 18 14 15	17.32 18.27 19 21 20.14 21.05	18 20 22 23 22	1.30 2.12 3.53 3.36 4.20	0 4 9 13	10.08 10.57 11.43 12.29 13.15	22 18 13 8	19.01 19.51 20.37 21.21 22.03	22 21 18 15	2.16 3.01 3.49 4.38 5.29	23 24	11.06 11.53 12.43 13.35 14.31	5 7 13 18		
16 17 18 19 20	21.53 22.38 23.24 0.00 0.04	20 17 14 10 5	5.06 5.55 6.46 7.38 8.31	21 23 24 24 23	14.02 14.51 15.43 16.38 17.38	3 9 15 19 23	22.44 23.25 0.06 0.48	7 2 22 7 11	6.21 7.13 8.05 8.56 9.46	19 15	15.30 16.33 17.35 18.35 19.31	22 25 26 26 26		
21 22 23 24 25	0.45 1.26 2.07 2.50 3.35	8 12	9.25 10.17 11.09 12.00 12.52	21 17 12 7	18.39 19.40 20.39 21.35 22.27	25 26 25 22 18	1.32 2.19 3.08 3.59 4.53	18 21 22	10.37 11.29 11.23 13.20 14.20	2 8 14	20.24 21.12 21.58 22.43 23.27	19 15 9 4 2		
26 27 28 29 30	4.22 5.12 6.04 6.59 7.56 8.52	23 21	13.45 14.39 15.35 16.34 17.33	5 11 16 20 23 24	23.16 0.03 0.48 1.32 2.17	13 7 2 4 9	5.47 6.42 7.37 8.30 9.23	20 17 12	15.22 16.24 17.23 18.19 19.12	22 24 25 23 21	0.11 0.56 1.43 2.32	8 13 17 21 24		

TIDES OF BRITISH PORTS.—TABLE 34.

TABLE OF THE MOON'S TRANSIT, AND DECLINATION AT NOON, For the Years 1852, 1853 and 1854.

			X A	Y.					JUI	E.		
Day of	185	1852. 1858.		185	4.	185	2.	180	3.	1854.		
Month.	Moon's Transit.	Mn's. Decl. at Noon.	Moon's Transit	Mn's. Decl. at Noon.	Moon's Transit.	Mn's. Decl. at Noon.	Moon's Transit.	Mn's. Decl. at Noon	Moon's Transit.	Mn's. Decl. at Noon	Moon's Transit.	Mn's. Decl. at Noon.
	H. M.	Deg.	н. м.	Deg.	H. M.	Deg.	H. M.	Deg.	H. M.	Deg.	H. M	Deg.
1	10.16	2	20.00	17	3.22	26	11.43	17	20.49	0	4.35	22
2	11.10	4	20.44	13	4.13	26	12.42	21	21.30	5	5.21	18
8	12.05	9	21.27	8	5.03	26	13.41	22	22.12	10	6.05	14
4 5	13.02 14.01	14	22.08 22.49	3	5.5 ² 6.40	24 21	14.39 15.34	23	22.56 23.42	15	6.49 7.33	9
•		ا " ا		· •	0.40		-3-34		-3.4-		7.33	•
6	15.00	21	23.31	7	7.26		16.26	20	••	21	8.19	2
7	15.57	23	••	II	8.11	12	17.13	17	0.31	24	9.07	8
8	16.53 17.45	23 21	0.13	15	8.57 9.42	7	17.58	13 9	1.21 2.12	25 25	9.59	I4 I9
10	18.33	20	1.45		10.30	5	19.21	5	3.03	23	11.59	23
						ľ		•	"	Ť	-	
11	19.19	16	2.34	24	11.21	II	20.02	0	3 · 54		13.05	26
19 13	20.02 20.43	12 8	3 · 24 4 · I 5	25 25	12.17	16 21	20.43 21.26	4 8	4·43 5·31	, ,	14.12	26 25
14	21.24	3	5.07	23	14.20	25	22.11	12	6.18		16.13	22
18	22.04	ī	5.57	20	15.25	26	22.59	16	7.06		17.06	17
												1
16 17	22.46 23.30	5	6.47 7.36	16 12	16.28 17.26	26 24	23.50	19	7.55		17.55	6
18	73.30	14	8.25	6	18.21	21	0.43	23	9.42		19.24	ö
19	0.16	18	9.14	1	19.11	16	1.38	- 1	10.42	•	20.07	4
20	1.05	20	10.06	5	19.57	11	2.34	21	11.44	23	20.51	10
	1.56	22	11.01	11	20.41	5	3.28	19	12.49	24	21.36	15
21 22	2.49	23	12.00		21.25	1	4.21		13.53		22.23	10
23	3.43	22	13.02	21	22.08	6	5.12		14.52	-	23.12	23
24	4.38	_	14.07	24	22.53	11	6.02		15.47	20		25
25	5.31	18	15.10	24	23.39	16	6.52	°	16.36	16	0.02	26
26	6.24	14	16.10	24		20	7.43	6	17.22	11	0.53	36
27	7.15		17.05	22	0.27	23	8.35	11	18.05	6	1.43	25
28	8.06		17.56	18	1.16	25	9.30		18.47	1	2.31	22
29 80	8.58		18.42	14	2.07		10.27	-	19.28	4	3.17	19
81	9.50		19.26 20.08	10 5	3.47	25	11.25	22	20.10	9	4.02	15
	7.73			٥	3.7/	~~		" ["	"	··
			•	·	•	•	•	Ĭ	•	•	•	- 1

TIDES OF BRITISH PORTS.—Table 34.

TABLE OF THE MOON'S TRANSIT, AND DECLINATION AT NOON, For the Years 1852, 1853, and 1854.

			JUI	. y .		AUGUST.								
Day	184	52.	185		185	4.	185		1858.	1854.				
of Month.	Moon's Transit.	Mn's. Decl. at Noon.	Moon's Transit	Mn's. Decl. at Noon.	Moon's Transit.	Mn's. Leci at Noon.	Moon's Transit.	Mn's. Desi. at Noon.	Moon's Transit. Transit. Moon,	Moon's Deel. Transit.				
	H. M	Deg.	н. м.	Deg.	E. M	Deg.	н. м.	Deg.	H. M. Dog.	H. M Deg.				
1 2 3 4	12.24 13.21 14.15 1 5. 05	23 21	20.53 21.39 22.27 23 16	14 18 21 23	4·45 5·28 6·12 6·57	10 5 1 6	13.44 14.29 15.12 15.53	16 12 8 3	22.01 24 22.53 25 23.45 24	5.39 11 6.29 16 7.24 20 8.23 24				
5	15.51	•	••	25	7.46	12	16.34	1	0.36 19	9.28 26				
6 7 8 9 10	16.35 17.17 17.58 18.39 19.21	11 7 2 2 7	0.08 0.59 1.51 2.40 3.29	25 24 21 18 14	8.40 9.39 10.43 11.49 12.56	17 22 25 26 26	17.15 17.58 18.43 19.31	5 10 14 17 10	1.25 15 2.14 10 3.01 5 3.48 1 4.36 6	10.33 26 11.38 25 12.38 21 13.34 16 14.25 11				
11 12 13 14 15	20.04 20.51 21.41 22.33 23.29	15 19 21	4.16 5.03 5.50 6.39 7.31	2	13.58 14.55 15.47 16.36 17.21	23 19 14 8	21.15 22.11 23.08	23 23 22 21 17	5.26 12 6.20 17 7.17 21 8.17 25 9.18 25	15.13 4 15.59 2 16.44 8 17.30 13 18.16 18				
16 17 18 19 20	0.25 1.21 2.16 3.09	23 22 19 16 12	8.27 9.27 10.29 11.33	18 22 24 25 24	18.05 18.49 19.34 20.21	4 9 14 18 22	1.00 1.53 2.45 3.36 4.28	8	10.19 25 11.18 22 12.13 19 13.03 15 13.50 10	19.04 21 19.54 24 20.45 26 21.35 26 22.24 26				
21 22 23 24 25	4.00 4.50 5.40 6.31 7.24	6 1 4 9 14	13.32 14.25 15.14 15.59 16.42	21 17 13 8	21.59 22.49 23.39 	25 26 26 25 23	5.21 6.15 7.11 8.07 9.03	13 18 21 23 23	14.35 4 15.18 1 16.01 6 16.44 11 17.28 15	23.12 24 23.58 21 17 0.43 12 1.26 7				
26 27 28 29 30 81	8.19 9.15 10.13 11.09 12.04		17.24 18.06 18.49 19.34 20.21	2 7 12 17 20 22	1.15 2.01 2.44 3.27 4.09 4.53	20 16 11 6 1	9.57 10.49 11.38 12.24 13.07	17	18.14 19 19.02 22 19.52 24 20.44 25 21.36 25 22.27 23	2.09 2 2.52 4 3.37 10 4.25 15 5.17 20 6.13 23				

TIDES OF BRITISH PORTS.—TABLE 34.

TABLE OF THE MOON'S TRANSIT, AND DECLINATION AT NOON, For the Years 1852, 1853, and 1854.

			8 E	P I	E	M B	E B			OCTOBER.								
Day of Month.		1852.		1853.			1854.		1852.		1853.		1854.					
of Month.		on's nsit.	Mn's. Decl. at Noon.		on's nsit.	Mn's. Decl. at Noon.		on's nsit.	Mn's. Decl. at Noon.	Moo Tran		Mn's. Decl. at Noon.		on's	Mn's. Decl. at Noon.		on's usit	Mn' Dec at Noor
	H.	×	Deg.	H.	M.	Deg.	H.	M	Deg.	H.	M.	Deg.	H.	M.	Deg.	H.	M	Deg
1	14	. 30	0	23	. 18	21		. 14	26	14.	33	12	23	. 35	9	8	. 10	
2		. I I	4	١.	•	17		.17	27	15.		16		• •	3		.07	20
3	15	• 53	9		.07	12	-	. 21	26	16.				. 24	3		.00	
4		• 37	13		. 56	7		.21	23	16.		22		. 15			. 50	
5	17	. 2 3	17	1.	44	1	11	. 18	19	۲7.	47	23	1.*	.08	15	ľʻ	. 38	3
6	18	. 11	20	2.	. 33	5	12	. 1 1	13	18.	40	23	3	.05	19	12	. 25	3
7	19	.03	22		. 23	11	13	.01	7	19.		23		.04		13	. 1 1	3
8		. 57	23	4	. 16	16	13	.49	1	20.		21		.05			• 59	14
9		· 5 3	23		. 1 I	20		•35	5	21.	-	17		•05			.48	, ,
10	21	· 4 9	21	6.	. 10	23	15	. 21	11	22.	16	12	7	.04	24	15	. 38	2.3
11	22	. 45	19	7.	10	25	16	.09	16	23.	10	7	7	. 59	21	16	. 29	25
12		. 39	15		10	25		. 58		ľ.		ī	8	. 51	17	17	. 20	
13	ı,	•	10		.09	23		•47	24	٥.	04	4		• 39	13		. 11	27
14		• 33	4		.04			. 38		٥.	•	10		. 24			.00	
15	1	. 26	I	10.	55	16	19	. 28	27	1.	55	15	11	۰٥٦	2	19	•47	23
16	2	. 1ġ	7	11.	43	11	20	. 18	26	2.	54	19	11	. 50	2	20.	. 33	20
17		. 13	12	12.	28	6		.07	25	3 -	53	22	12	. 32	8	21	. 17	16
18 19		.08	17	13.		1		. 54	22	4.		23		. 16	13		.00	11
20	5	.05		13.	٠.	4		• 39	18	5٠٠		23		.01	17		44	5
	٥	02	22	14	37	9	23	- 23	14	6	43	22	14	.48	21	23.	.29	1
21	6.	59	23	15.	21	14		.	9	7.	33	19	15	. 36	23	١.		6
22	7.	54		16.		18	0	.06	3	8.	20	15	16	. 26	25	0.	. 16	12
23		46		16.		21		.50	2	9.	- 21			. 16	25		07	18
24		35		17.		24		• 35	8	9				.07	25		02	22
25	10.	21	14	18.	34	25	2.	. 22	14	10.	27	2	18.	.57	23	3	01	25
	11.	05	10	19.	25	25	3	. 13	19	11.0	08	2	19.	46	20	4.	02	27
27	11.	~ 1	6	20.		24	4	.08	23	I I	49	6	-	34	16		05	27
	12.			21.	07	22		.07	26	12.			21.		11		05	25
	13.			21.		18		.08	27	13.	٠,	15	22.	,	6		02	21
30	13.	50	8	22.	46	14	7.	11	26	14.0		18	23.		o l		55	17
31	•	.			٠	• •	•	.	••	14.	51	21	23.	54	6	١ ٥.	45	11

TIDES OF BRITISH PORTS .- TABLE 34.

TABLE OF THE MOON'S TRANSIT, AND DECLINATION AT NOON, For the Years 1852, 1853 and 1854.

		N (VEI	f B F	R.	DECEMBER.								
Day of	185		1853. 1854.				185		1858.	1854.				
Month.	Moon's Transit.	Mn's. Decl at Noon.	Moon's Transit.	Mn's. Decl. at Noon.	Moon's Transit.	Mn's. Decl. at Noon.	Moon's Decl. Transit. at Noon		Moon's Decl Transit. Noon	Moon's Transit.	Mn's. Decl. at Noon.			
	н. ж.	Deg.	н. м,	Deg.	н. м.	Deg.	н. ж.	Deg.	H. M. Deg.	н. м	Deg.			
1 9 4 5	15.41 16.34 17.27 18.19	23 24 23 22	0 51 1.51 2.54 3.57	13 18 22 25 26	9.32 10.17 11.03 11.50 12.38	5 1 7 13	16.15 17.06 17.57 18.46 19.36	19 16 11 6	0.33 24 1.38 25 2.44 25 3.45 23 4.42 20	9·45 10.32 11.20 12.11 13.02	11 16 21 24 27			
6 7 8 9	20.03 20.55 21.47 22.40 23.36	15 10 4 1	4.58 5.56 6.49 7.37 8.23	25 22 19 14	13.28 14.19 15.11 16.02 16.52	22 25 26 27 27	20.26 21.19 22.15 23.13	0 5 10 16 20	5.34 16 6.21 11 7.05 5 7.47 0 8.29 5	13.54 14.45 15.34 16.20 17 04	27 26 25 22			
11 12 13 14	0.34 1.35 2.37 3.37	13 18 22 23 24	9.06 9.48 10.30 11.13	4 6 11 16	17.40 18.26 19.10 19.53 20.36	24 21 17 13 7	0.15 1.17 2.18 3.15 4.08	23 24 23 22 18	9.12 10 9.55 15 10.40 19 11.27 22 12.16 24	17.46 18.28 19.10 19.54 20.41	14 9 4 2 8			
16 17 18 19 20	4·34 5·28 6.17 7·03 7·45	23 20 17 13	12.43 13.31 14.21 15.11 16.01	20 23 25 26 25	21.19 22.06 22.55 23.49	2 4 10 16 21	4·57 5·42 6·24 7·05 7·45		13.57 25	21.32 22.29 23.31 0.36	13 18 23 26 27			
21 22 23 24 25	8.27 9.07 9.48 10.30	4 1 5 10 14	16.51 17.39 18 25 19.12 19.59	24 21 17 13 8	0.48 1.51 2.55 3.59 4.58	24 27 27 25 22	8.27 9.10 9.54 10.42 11.32	13 17 20	17.07 14 17.52 9 18.38 4 19.25 1	1.43 2.46 3.45 4.38 5.28	26 23 19 14 8			
26 27 28 29 30	11.59 12.47 13.38 14.30 15.23	-	20.47 21.37 22.31 23.30	2 4 10 15 20	5.52 6.43 7.30 8.15 9.00	o 5	12.25 13.18 14.11 15.04 15.54 16.43	24	21.09 13 22.09 18 23.13 22 25 0.20 26 1.25 24	6.14 6.59 7.44 8.29 9.17	2 4 10 15 19 23			

TIDES OF BRITISH PORTS.—TABLE 35.

TABLE OF THE MOON'S HORIZONTAL PARALLAX

AT NOON,

Por the Years 1852, 1853, and 1854.

The following Table gives the Moon's Parallax for correcting the Tidal Heights. Every fifth day only is given; and for the intermediate days sufficient accuracy will be obtained by averaging the intervals. When the Horisontal Parallax is 57 minutes, there is no correction, as the Tables 82, &c., are computed at this Parallax.

Day.	1852.	1853.	1854.	Day.	1852.	1853.	1854.
JANUABY.	M. Sec. 54 46 58 1 59 34 58 6 55 46 54 7	M. Sec. 58 15 59 58 57 52 54 34 54 56 57 37	M. Sec. 60 9 55 39 54 0 55 7 57 56 60 46	F 1 6 11 16 21 26	M. Sec. 58 22 55 7 54 29 57 11 59 14 58 44	M. Sec. 54 8 54 50 57 15 60 3 59 17 55 23	M. Sec. 55 23 59 33 61 6 56 57 54 10 54 23
FEBRUARY. 11 9 11 26 21 26 26 26 26 26 26 26 26 26 26 26 26 26	56 45 60 19 59 1 56 3 54 13 54 37	59 14 58 20 55 25 54 21 57 05 59 38	57 29 54 18 54 51 57 10 59 26 59 21	AUGUST. 19 81 86 81 86	55 52 54 12 56 10 59 40 59 16 56 44	54 32 56 54 59 1 59 23 56 35 54 17	57 32 60 56 58 58 54 54 54 14 56 3
MABOH. 11 96 11 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	57 33 61 8 58 39 55 8 53 55 55 5	59 23 57 27 55 2 54 17 57 19 60 32	57 19 54 23 55 14 58 0 59 15 58 26	SEPTERISE 31 19 21 11 11 11 11 11 11 11 11 11 11 11 11	54 17 54 51 58 51 60 42 57 31 54 47	56 25 59 6 59 5 57 9 54 38 54 48	59 23 59 58 56 18 54 12 55 45 58 12
APRIL. 1 6 11 6 11 6 12 6 12 6 12 6 12 6 12 6	60 5 60 43 56 19 54 1 54 28 57 11	58 5 55 40 54 2 55 36 60 1 60 34	55 3 54 32 57 35 59 46 58 28 56 5	00TOBER.	53 59 56 I 60 29 60 15 56 I 54 I	58 23 60 7 57 57 55 25 54 5 55 57	59 29 58 7 54 58 54 40 57 35 59 23
TV 6 11 16 21 26	60 50 59 16 55 3 54 5 55 44 58 35	56 36 54 15 54 13 57 4 61 10 59 28	54 13 55 30 59 33 60 7 57 I 54 40	#0VEMBER.	54 51 58 24 61 19 57 53 54 24 54 14	60 46 59 19 55 49 54 6 54 39 58 28	58 11 55 41 54 13 56 31 59 59 59 8
H 6 11 16 21 26	60 9 56 34 54 10 55 25 57 54 59 30	54 44 54 I 55 42 59 25 60 52 56 51	54 26 57 55 61 14 58 30 55 1 53 57	DECEMBER. 11 16 21 26	56 10 59 33 60 20 56 15 54 5 55 20	61 26 57 59 54 36 54 1 55 47 59 53	56 30 54 27 54 34 58 17 61 0 58 2

WATERLOW AND SONS, PRINTERS, LONDON WALL AND PARLIAMENT STREET.

Eng 965.1.9
Hydraulic tables, to aid the calcul
Cabot Science 004137838

3 2044 091 964 916