Architettura degli Elaboratori

Esercitazione

Su cosa ci esercitiamo oggi?

- Notazione posizionale pesata per numeri interi
 - Rappresentazione nelle basi 10, 2, 8, 16
 - Conversioni tra le diverse basi
- Notazione posizionale pesata per frazioni proprie
 - Rappresentazione in base 2
 - Conversioni Decimale-Binario e Binario-Decimale
- > Aritmetica in binario

- Descrivere un algoritmo che dato un numero $N=(b_7\ b_6\ ...\ b_0)_2$, ne fornisca la rappresentazione in base 4
 - > L'algoritmo non deve utilizzare conversioni intermedie
 - E' necessario giustificare perché l'algoritmo è corretto (funziona sempre)
 - Eseguire l'algoritmo proposto sulla sequenza (01000110)₂

Possiamo convertire un numero da Binario a Base 4 facendo due conversioni, ma non dobbiamo farlo!

Esiste un metodo per passare dalla rappresentatione binaria a quella

in base 4 senza passare per quella decimale?

Rappresentazione in base 4

 $0 \ 0 = 0$

0.1 = 1

10 = 2

1 1 = 3

$$N = (b_7 b_6...b_1b_0)_2$$

$$= b_7 2^7 + b_6 2^6 + ... + b_1 2 + b_0$$

=
$$b_7 \times 2^7 + b_6 \times 2^6 + b_5 \times 2^5 + b_4 \times 2^4 + b_3 \times 2^3 + b_2 \times 2^2 + b_1 \times 2 + b_0$$

=
$$(b_7 \times 2^1 + b_6) \times 2^6 + (b_5 \times 2^1 + b_4) \times 2^4 + (b_3 \times 2^1 + b_2) \times 2^2 + (b_1 \times 2^2 + b_0) \times 2^0$$

$$= a_3 \times 4^3 + a_2 \times 4^2 + a_1 \times 4^1 + a_0 \times 4^0$$

Nota che a_3 , a_2 , a_1 , a_0 sono compresi fra 0 e 3

> Algoritmo

- Raggruppa i bit 2 a 2 da destra
- Ad ogni gruppo fai corrispondere la cifra in base 4 (da 0 a 3)

- > Algoritmo
 - Raggruppa i bit 2 a 2 da destra
 - > Ad ogni gruppo fai corrispondere la cifra in base 4 (da 0 a 3)
 - ightharpoonup Quindi, partendo da (01000110)₂ abbiamo ightharpoonup 01 00 01 10 ightharpoonup 1012₄

$$0 \ 0 = 0$$

$$0.1 = 1$$

$$1 \ 0 = 2$$

Quiz 2

Domanda:

Il valore di (10001011100)2 in ottale è

- **(4230)**₈
- (2134)₈
- **(1234)**₈
- > Nessuno dei precedenti

Quiz 2: Soluzione

Domanda:

Il valore di (10001011100)2 in ottale è

- (4230)₈
- **>** (2134)₈
- (1234)₈
- > Nessuno dei precedenti

Risposta:

Raggruppando in gruppi di 3 bit: 10 001 011 100 Quindi il valore giusto è (2134)₈

0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Quiz 3

Domanda:

Il valore di (1011)⁵ in decimale è

- **(131)**₁₀
- **>** (521)₁₀
- **(11)**₁₀
- > Nessuno dei precedenti

Quiz 3: Soluzione

Domanda:

Il valore di (1011)⁵ in decimale è

- **(131)**₁₀
- **(521)**₁₀
- **(11)**₁₀
- > Nessuno dei precedenti

Risposta: $5^3+5^1+5^0=125+5+1=131_{10}$

Il valore corretto è (131)10

Domanda:

Determinare quanti bit sono necessari per rappresentare l'insieme dei caratteri che comprende le lettere maiuscole e minuscole dell'alfabeto inglese, i numeri da 0 a 9 e i caratteri . + -

Domanda:

Determinare quanti bit sono necessari per rappresentare l'insieme dei caratteri che comprende le lettere maiuscole e minuscole dell'alfabeto inglese, i numeri da 0 a 9 e i caratteri . + -

Risposta:

Poiché si tratta di 26x2+10+3=65 simboli, sono necessari 7 bit

- > Infatti con 7 bit posso rappresentare 27=128 oggetti distinti
- > Invece con 6 bit posso rappresentare 26=64 oggetti distinti

Convertire in binario il numero 12,125₁₀

- > Convertire in binario il numero 12,125₁₀
 - Convertiamo separatamente la parte intera e quella frazionaria

$$2 \times 0,125 = 0 + 0,25$$

 $2 \times 0,25 = 0 + 0,50$
 $2 \times 0,50 = 1 + 0,00$

$$0,125_{10} = 0,001_2$$

$$12,125_{10} = 1100,001_2$$

 \triangleright Convertire in binario il numero 24,250₁₀

- \succ Convertire in binario il numero 24,250₁₀
 - Convertiamo separatamente la parte intera e quella frazionaria

$$0,250_{10} = 0,01_2$$

Convertire in binario il numero 0,07₁₀

Convertire in binario il numero 0,07₁₀

 $0,07_{10} = (0,0001000111101)_2$

••••

 $2 \times 0.72 = 1 + 0.44$

Convertire in binario il numero 0,06875₁₀

Convertire in binario il numero 0,06875₁₀

```
F=0,06875_{10}
                   2 \times 0.06875 = 0 + 0.1375
                      2 \times 0.1375 = 0 + 0.275
                       2 \times 0.275 = 0 + 0.55
                         2 \times 0.55 = 1 + 0.1
                           2 \times 0.1 = 0 + 0.2
                           2 \times 0.2 = 0 + 0.4
                           2 \times 0.4 = 0 + 0.8
                           2 \times 0.8 = 1 + 0.6
                           2 \times 0.6 = 1 + 0.2
                          2 \times 0.2 = 0 + 0.4
                          2 \times 0.4 = 0 + 0.8
                          2 \times 0.8 = 1 + 0.6 \quad 0.06875_{10} = (0.0001000110011)_{2}
```

2 X 0,6 = 1 + 0.2

 \triangleright Convertire in decimale il numero $(0,0011101)_2$

 \triangleright Convertire in decimale il numero $(0,0011101)_2$

 $F_{-6}=1/2=0,5$ $F_{-5}=(0+0,5)/2=0,25$ $F_{-4}=(1+0,25)/2=1,25/2=0,625$ $F_{-3}=(1+0,625)/2=1,625/2=0,8125$ $F_{-2}=(1+0,8125)/2=1,8125/2=0,90625$ $F_{-1}=(0+0,90625)/2=0,453125$ $F_{0}=(0+0,453125)/2=0,2265625$

 $(0,0011101)_2 = 0,2265625_{10}$

 \triangleright Convertire in decimale il numero (1101,00111)₂

- > Convertire in decimale il numero (1101,00111)2
 - Convertiamo separatamente la parte intera e quella frazionaria

$$S_3 = a_3 = 1$$

 $S_2 = a_2 + 2S_3 = 1 + 2 = 3$
 $S_1 = a_1 + 2S_2 = 0 + 6 = 6$
 $S_0 = a_0 + 2S_1 = 1 + 12 = 13$
 $1101_2 = 13_{10}$

$$(0,00111)_2$$

$$F_{-4}=1/2=0.5$$

 $F_{-3}=(1+0.5)/2=1.5/2=0.75$
 $F_{-2}=(1+0.75)/2=1.75/2=0.875$
 $F_{-1}=(0+0.875)/2=0.4375$
 $F_{0}=(0+0.4375)/2=0.21875$
 $(0.00111)_{2}=0.21875_{-10}$

s=5

 $(1101,00111)_{2=} = 13,21875_{10}$

 \triangleright Convertire in decimale il numero (110,01)₂

- Convertire in decimale il numero (110,01)₂
 - Convertiamo separatamente la parte intera e quella frazionaria

$$110_2$$
 n=3 $(0,01)_2$ s=2

$$S_2 = \alpha_2 = 1$$

 $S_1 = \alpha_1 + 2S_2 = 1 + 2 = 3$
 $S_0 = \alpha_0 + 2S_1 = 0 + 6 = 6$
 $F_{-1} = 1/2 = 0,5$
 $F_0 = (0+0,5)/2 = 0,25$

$$110_2 = 6_{10}$$
 $(0.01)_2 = 0.25_{10}$

- $> 21_b + 131_b = 24_b + 120_b + 4_b$
- $(23_b)^2 240_b = (14_b)^2 + 60_b$

$$> 21_b + 131_b = 24_b + 120_b + 4_b$$

Poiché si tratta di un sistema posizionale pesato, si ha

```
2b+1+b<sup>2</sup>+3b+1 = 2b+4+b<sup>2</sup>+2b+4 da cui
5b+2=4b+8 da cui
b=6
```


$$> (23_b)^2 - 240_b = (14_b)^2 + 60_b$$

Poiché si tratta di un sistema posizionale pesato, si ha

$$(2b+3)^2-2b^2-4b = (b+4)^2+6b$$
 da cui
 $4b^2+12b+9-2b^2-4b = b^2+8b+16+6b$ da cui
 $b^2-6b-7=0$ che ha soluzioni b=-1 e b=7

Essendo b un intero positivo, allora b=7

- > Eseguire le seguenti operazioni in binario
 - > 10011101 + 10101110
 - **>** 10011 + 1101

- Eseguire la seguente operazione in binario
 - **>** 10011101 + 10101110

```
1 1111
10011101 +
10101110 =
```

101001011

- > Eseguire la seguente operazione in binario
 - **>** 10011 + 1101

100000

- 1. In accordo alla codifica ASCII Estesa (8 bit) scrivere in decimale e in binario le parole «Cosa» e «Papà»
- In accordo alla codifica ASCII Estesa decodificare la stringa:
 - 01010100 01110101 01110100 01101111 01110010

Codifica ASCII estesa

' Primo gruppo (codici da 0 a 127)

Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char
00000000		Null	00100000	32	Spc	01000000	64	(a)	01100000	96	C//ar
00000001	1	Start of heading	00100001	33	1	01000001	65	A	01100001	97	a
00000010	2	Start of text	00100010	34	"	01000010	66	В	01100010	98	b
00000011	3	End of text	00100011	35	#	01000011	67	C	01100011	99	С
00000100	4	End of transmit	00100100	36	\$	01000100	68	D	01100100	100	d
00000101	5	Enquiry	00100101	37	%	01000101	69	E	01100101	101	е
00000110	6	Acknowledge	00100110	38	&	01000110	70	F	01100110	102	f
00000111	7	Audible bell	00100111	39	,	01000111	71	G	01100111	103	g
00001000	8	Backspace	00101000	40	(01001000	72	H	01101000	104	h
00001001	9	Horizontal tab	00101001	41)	01001001	73	Ι	01101001	105	i
00001010	10	Line feed	00101010	42	*	01001010	74	J	01101010	106	j
00001011	11	Vertical tab	00101011	43	+	01001011	75	K	01101011	107	k
00001100	12	Form Feed	00101100	44	,	01001100	76	L	01101100	108	1
00001101	13	Carriage return	00101101	45		01001101	77	\mathbf{M}	01101101	109	m
00001110	14	Shift out	00101110	46		01001110	78	N	01101110	110	n
00001111	15	Shift in	00101111	47	1	01001111	79	0	01101111	111	0
00010000	16	Data link escape	00110000	48	0	01010000	80	P	01110000	112	p
00010001	17	Device control 1	00110001	49	1	01010001	81	Q	01110001	113	q
00010010	18	Device control 2	00110010	50	2	01010010	82	Ř	01110010	114	r
00010011	19	Device control 3	00110011	51	3	01010011	83	S	01110011	115	S
00010100	20	Device control 4	00110100	52	4	01010100	84	T	01110100	116	t
00010101	21	Neg. acknowledge	00110101	53	5	01010101	85	U	01110101	117	u
00010110	22	Synchronous idle	00110110	54	6	01010110	86	V	01110110	118	v
00010111	23	End trans, block	00110111	55	7	01010111	87	W	01110111	119	w
00011000	24	Cancel	00111000	56	8	01011000	88	X	01111000	120	x
00011001	25	End of medium	00111001	57	9	01011001	89	Y	01111001	121	y
00011010	26	Substitution	00111010	58	:	01011010	90	Z	01111010	122	z
00011011	27	Escape	00111011	59	;	01011011	91	1	01111011	123	-{
00011100	28	File separator	00111100	60	Ŕ	01011100	92	, i	01111100	124	Ì
00011101	29	Group separator	00111101	61	=	01011101	93	1	01111101	125	}
00011110	30	Record Separator	00111110	62	>	01011110	94	À	01111110	126	~
00011111	31	Unit separator	00111111	63	?	01011111	95		01111111	127	Del

Codifica ASCII estesa

Secondo gruppo (codici da 128 a 255)

Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char
10000000	128	Ç	10100000	160	á	11000000	192	+	11100000	224	Ó
10000001	129	ü	10100001	161	í	11000001	193		11100001	225	ß
10000010	130	é	10100010	162	Ó	11000010	194	_	11100010	226	ô
10000011	131	â	10100011	163	ú	11000011	195	+	11100011	227	Ò
10000100	132	ä	10100100	164	ñ	11000100	196	_	11100100	228	õ
10000101	133	à	10100101	165	Ñ	11000101	197	+	11100101	229	Õ
10000110	134	å	10100110	166	a	11000110	198	ã	11100110	230	μ
10000111	135	ç	10100111	167	0	11000111	199	Ã	11100111	231	þ
10001000	136	ê	10101000	168	3	11001000	200	+	11101000	232	Ď
10001001	137	ë	10101001	169	®	11001001	201	+	11101001	233	Ú
10001010	138	è	10101010	170	\neg	11001010	202	_	11101010	234	Û
10001011	139	ï	10101011	171	1/2	11001011	203	_	11101011	235	Ù
10001100	140	î	10101100	172	1/4	11001100	204		11101100	236	ý
10001101	141	ì	10101101	173	i	11001101	205		11101101	237	Ý
10001110	142	Ä	10101110	174	*	11001110	206	+	11101110	238	_
10001111	143	Å	10101111	175	»	11001111	207	ø	11101111	239	1
10010000	144	É	10110000	176		11010000	208	ð	11110000	240	_
10010001	145	æ	10110001	177		11010001	209	Ð	11110001	241	±
10010010	146	Æ	10110010	178	_	11010010	210	$\hat{\mathbf{E}}$	11110010	242	
10010011	147	ô	10110011	179	Ī	11010011	211	Ë	11110011	243	3/4
10010100	148	ö	10110100	180		11010100	212	È	11110100	244	¶
10010101	149	Ò	10110101	181	À	11010101	213	i	11110101	245	§
10010110	150	û	10110110	182	Â	11010110	214	Í	11110110	246	÷
10010111	151	ù	10110111	183	À	11010111	215	Î	11110111	247	
10011000	152	ÿ	10111000	184	©	11011000	216	Ϊ	11111000	248	ó
10011001	153	Ö	10111001	185		11011001	217	+	11111001	249	•
10011010	154	Ü	10111010	186		11011010	218	+	11111010	250	
10011011	155	ø	10111011	187	+	11011011	219		11111011	251	1
10011100	156	£	10111100	188	+	11011100	220		11111100	252	3
10011101	157	Ø	10111101	189	¢	11011101	221	Ī	111111101	253	2
10011110	158	×	10111110	190	¥	11011110	222	Ì	11111110	254	
10011111	159	f	10111111	191	+	11011111	223		11111111	255	

- 1. In accordo alla codifica ASCII Estesa scrivere in decimale e in binario:
 - Cosa:
 - 67 111 115 97
 - 01000011 01101111 01110011 01100001
 - Papà:
 - 80 97 112 133
 - 01010000 01100001 01110000 10000101
- 2. 84 117 116 111 114, Tutor

