Thesis Proposal

Slimmable Neural Networks for Perception aboard Nano-Drones

Politecnico di Torino

Prof. Daniele Jahier Pagliari Prof. Alessio Burrello Beatrice Alessandra Motetti

University of California, Irvine

Prof. Marco Levorato

Nano-drones

Unmanned Aerial Vehicles taxonomy by size [1]

Vehicle class	⊘: Weight [cm:kg]	Power [W]	Onboard device
standard-size micro-size	$\begin{array}{l} \sim 50 : \geq 1 \\ \sim 25 : \sim 0.5 \end{array}$	≥ 100 ~ 50	Desktop Embedded
nano-size pico-size	$\sim 10 : \sim 0.01$ $\sim 2 : \leq 0.001$	~ 5 ~ 0.1	MCU ULP

Miniaturization comes at the cost of **limited available power**

Image source: https://www.dji.com/it/inspire-2

Image source: bitcraze.io/products/crazyflie-2-1/

[1] D. Palossi et al., "Fully onboard ai-powered human-drone pose estimation on ultra-low power autonomous flying nano-uavs," IEEE IOTJ, 2022

Onboard inference

Computation on-board for a more predictable inference latency

• It requires to optimize the neural network

Static	Adaptive	
Compress model before	Adapt inference complexity	
deployment	at runtime	
 Neural Architecture Search 	 Dynamic slimmable networks 	
o Pruning		
 Quantization 		

Task: object detection

Datasets

- COCO2017 (possible starting point) [<u>link</u>]
- Cityscapes [<u>link</u>]
- RADIATE [link]
- nuScenes [<u>link</u>]

Models

- Faster-RCNN
- Mask-RCNN
- •

DNN Deployment on Edge devices

After Model Optimization:

DNN topology, typically written in **Python** with common frameworks

- Pytorch
- Keras

How to fit them in edge devices?

Problems:

- No Operating System
- Low Memory

DNN Deployment on Edge devices

(1)

Phase 1: Creation of a new kernel library

 $\left(2\right)$

Phase 2: Deployment on an edge platform and gather results

Milestones

- 1. Literature review on the topic
- Implementation of a slimmable object detector in PyTorch and evaluation on one (or more) benchmarks
- 3. Deployment of the object detector

Useful material

- Yu et al., Slimmable Neural Networks, ICLR 2019 [link]
- Yu et al., Universally Slimmable Networks and Improved Training Techniques, ICCV 2019 [link]
- Available code [link]

