# Support Vector Machines

#### Data contamination Validation Expected Error $E_{\text{out}} \left(g_{m^*}\right)$ (N) $E_{ m val}\left(g_{m^*}^ight)$ (N-K)Validation Set Size, K $\mathcal{D}_{val}$ slightly contaminated (K) Cross validation $\mathcal{D}_{2}, \mathcal{D}_{3}, \mathcal{D}_{4}, \mathcal{D}_{5}, \mathcal{D}_{6}, \mathcal{D}_{7}, \mathcal{D}_{8}, \mathcal{D}_{9}, \mathcal{D}_{10}$ estimates $E_{\text{out}}(g)$ $E_{\rm val}(g^-)$ 10-fold cross validation

- g- is the reduced hypothesis (we train with a subset)
- g is the original best possible hypothesis (to work with the most trained examples)
- $E_{val}(g_{-}) = validation error$  on the reduced hypothesis, is used to estimate the
- E<sub>out</sub>(g), i.e. the **out of sample** error on the hypothesis we are actually delivering > the question is "how accurate is the E<sub>val</sub> estimate for E<sub>out</sub>?"
- $K \rightarrow$  should not be to small or too big for  $E_{\text{val}}$  estimate to be reliable
- K = rule of thump 20% to give us a reasonable estimate

Optimistic bias

We use 25 examples to exaggerate the effect (bias) and see that as we increase K, bias (diff. between curves) decreases ->

Thus, with a reasonable size validation set we can estimate a couple of parameters without contaminating the data - > Thus, we can assume that the measurement you are getting from the validation set is reliable

e.g. use all data, 10 runs, validation is the way to go

#### **SVMs**

One of the most successful classification method in Machine Learning

#### **Neat Piece of Work:**

- There is a principle derivation for the method
- A very nice optimization package that you can use in order to get the solution
- Solution has a very intuitive interpretation

#### Outline

- Maximizing the margin (margin the main notion in SVMs -> need to maximize margin)
- Formulate the solution (analytical; constrained optimization problem)
- Nonlinear Transformations (expand from linear case to non-linear)



#### Question

#### Which one is the best? Knowing that:

- Classification: All give zero classification error
- Generalization: All deal with a liner problem with 4 points
- Intuitive Decision: we would choose the last one

#### Q: Is there any advantage of choosing 1 line over any other?

- Linearly separable data: there are lines that can separate red from blue
- Different separating lines: We can apply different algorithms -> find different boundaries -> zero error



#### **New Questions**

- Why is the bigger margin better?
- If we decide that 'bigger margin better', can we solve for a "w" that maximizes the margin?

#### e.g. noisy data -> intuition: last case good

- > 1st case (Small Margin) a noisy point can be misclassified
- Last case, it's high change that a noisy point can be classified correctly

A discriminant function that is a linear combination of the components of x can be written as

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0, \tag{1}$$

THRESHOLD WEIGHT

where w is the weight vector and  $w_0$  the bias or threshold weight. A two-category linear classifier implements the following decision rule: Decide  $\omega_1$  if  $g(\mathbf{x}) > 0$  and  $\omega_2$  if  $g(\mathbf{x}) < 0$ . Thus, x is assigned to  $\omega_1$  if the inner product  $\mathbf{w}^t \mathbf{x}$  exceeds the threshold  $-w_0$  and  $\omega_2$  otherwise. If  $g(\mathbf{x}) = 0$ , x can ordinarily be assigned to either class, but in this chapter we shall leave the assignment undefined. Figure 5.1 shows a typical implementation, a clear example of the general structure of a pattern recognition system



Figure 5.1: A simple linear classifier having d input units, each corresponding to the values of the components of an input vector. Each input feature value  $x_i$  is multiplied by its corresponding weight  $w_i$ ; the output unit sums all these products and emits a +1 if  $\mathbf{w}^t\mathbf{x} + w_0 > 0$  or a -1 otherwise.



- If few have 3 points > how many boundaries or dichotomies/lines?
  - 2<sup>3</sup> possible lines
- Having many possible boundaries is bad for generalization
- Question: is this affected by the margin? [lines + margin!]

# Dichotomies with fat margin



- 3 points again
- We have the max (fat) margin for all cases
- Every time the margin touches all points
- If I want to have classifier with a specific margin > I can rule out cases

# Dichotomies with fat margin × 0

- Assume: we need a classifier with a margin at least as fat as in the red box to accept it
- Fat margins (we restrict them) → implies fewer dichotomies and VC dimension (is a measure of the capacity of a statistical classification algorithm), when compared to the case where we did not restrict them at all

#### **Informally**:

- By requiring the margin to be restricted > I have fewer dichotomies
- So, we can **estimate** the **out of sample error** based on the margin
- We will see that if we have indeed a BIGGER margin  $\rightarrow$  a BETTER out of sample performance

# Thus – Fat margins are good:

At the end of the lecture we will find that the out that the estimated out of sample error/performance is better with a fat margin

#### Goal:

Find the w, that not only classifies the points correctly, but also achieves so by the biggest possible margin

### Finding w with large margin

Margin = a distance from a plane to a point

Let  $\mathbf{x}_n$  be the nearest data point to the line  $\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$ . Linear equation

We are going to refer to the line as a plane (not going to n-DIM space and hyperplanes)

So, if I have w and x, can we find the distance between the plane (described by w) and the point  $x_n$ ?

That distance will be the margin that we are looking for.

# **Technicalities**

1. Normalize  $w = |w^Tx_n| > 0$ , for all points in the dataset, near and far,  $w^Tx_n$  will result with a number plus or minus, so we take the absolute value.

Q: We like to relate w with the margin >> however, there is a technicality: if we multiply w by 1M does the plane changes? -> No! see equation above (I can multiply with any number and have the same plane)

Thus, any formula that takes w and produces the margin will need to have scale invariance -> so we do this now to simplify the analysis later!

So we can have (no loss of generality):  $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n| = 1$  -> we consider all representations (planes) and pick one that requires, for the minimum point, that the absolute value is 1

- Basically we can scale w up and down until we get the point where the abs. value =1

So, we need the Euclidean distance - we do not compare the performance of each plane for different points but comparing the performance of different planes for the same point

# **Technicalities**

2. Pull out  $w_0$ :

Solve the problem (different) w<sub>1</sub>-w<sub>d</sub>, than w<sub>0</sub>-w<sub>d</sub>



The plane is now  $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ 

> There is no xo (was multiplied by b and now its gone)

$$|\mathbf{w}^\mathsf{T}\mathbf{x}_n| = 1$$
 Becomes:  $|\mathbf{w}^\mathsf{T}\mathbf{x}_n + b| = 1$ 

 $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$  Becomes the NEW plane

These are the technicalities we need to get out of our way to simplify our math!

# Geometry of the Problem

#### Computing the distance

The distance between  $\mathbf{x}_n$  and the plane  $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$  (1), where  $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$ 

The vector  $\mathbf{w}$  is  $\perp$  to the plane in the  $\mathcal{X}$  space: (Input space)

Question: why is it perpendicular to the place?

Answer: Take x' and x'' on the plane  $\rightarrow$  they need to satisfy the plane equation (1)

 $\Rightarrow$   $\mathbf{w}^{\mathsf{T}}\mathbf{x}' + b = 0$  and  $\mathbf{w}^{\mathsf{T}}\mathbf{x}'' + b = 0$ 

<u>Note</u>: remember the concept is  $>> x_n$  is a point; we have a plane; thus, we would like to estimate the distance

# Geometry of the Problem (see we drop b > not needed)

The vector 
$$\mathbf{w}$$
 is  $\bot$  to the plane in the  $\mathcal{X}$  space:

Take  $\mathbf{x}'$  and  $\mathbf{x}''$  on the plane

 $\mathbf{w}^{\mathsf{T}}\mathbf{x}' + b = 0$  and  $\mathbf{w}^{\mathsf{T}}\mathbf{x}'' + b = 0$  We take the difference

 $\mathbf{w}^{\mathsf{T}}(\mathbf{x}' - \mathbf{x}'') = 0$ 

#### **Conclusion**: vector w is orthogonal to the vector (x' - x")



**Interesting**: we did not make any restrictions about the x' and x'' points, so they can be any points on the plane

<u>Conclusion</u>: vector w that defines the plane is orthogonal to every vector to the plane =>

W is orthogonal to the plane!

#### and the distance is ...

Distance between  $\mathbf{x}_n$  and the plane:

Take any point x on the plane

Projection of 
$$\mathbf{x}_n - \mathbf{x}$$
 on  $\mathbf{w}$  is the distance we are looking for

In order to get the projection, we get the unit vector of w:

$$\hat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \implies \text{distance} = \left|\hat{\mathbf{w}}^{\mathsf{T}}(\mathbf{x}_n - \mathbf{x})\right|$$

, which is a unit vector, i.e. w divided by its norm

**Note**: w hat can be + or – (vector facing either x or the other direction) → we use the ABS of this value

distance 
$$=\frac{1}{\|\mathbf{w}\|} |\mathbf{w}^\mathsf{T} \mathbf{x}_n - \mathbf{w}^\mathsf{T} \mathbf{x}| = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^\mathsf{T} \mathbf{x}_n + b - \mathbf{w}^\mathsf{T} \mathbf{x} - b| = \frac{1}{\|\mathbf{w}\|}$$

**Point 1:** by having the plane and insist on a canonical representation of w, by  $|\mathbf{w}| \times \mathbf{n} + b| = 1$  for the nearest point  $x_n \rightarrow$  then, the your margin (distance) will be 1/norm of the w you use

**Point 2:** we use this distance  $\rightarrow$  will be able to find out which combinations of w will give me the best possible margin

### The optimization problem

Maximize 
$$\frac{1}{\|\mathbf{w}\|}$$
 subject to  $\min_{n=1,2,\dots,N} |\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$ 

This is not a friendly optimization problem; we have minimum and that does not help

→ thus, we need to "get rid of the min and abs" and find an equivalent optimization problem that is more friendly

So, what do we notice?  $\rightarrow$  Notice:  $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$ 

Minimize 
$$\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
 subject to  $y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) \geq 1$  for  $n = 1, 2, \dots, N$ 

Notice: 
$$|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$$
 Why?

#### [1] Getting rid of ABS:

- We are only considering the points that are classified correctly (that separate the data correctly)
- Then, we're choosing among them those that maximize the margin > since
  they are classifying the data correctly, the signal (wxn+b) agrees with the label
  yn (+1 or -1)

#### [2] Getting rid of the min:

• Instead of maximizing the 1/norm of  $w > we minimize \frac{1}{2} w^{\mathsf{T}} \cdot w$ 

subject to 
$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1$$
 for  $n = 1, 2, ..., N$ 

This is an inequality constraint that is linear in nature

Minimize 
$$\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
 Friendly Optimization Problem

subject to 
$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1$$
 for  $n = 1, 2, ..., N$ 

This quantity is the same as the signal ( $wx_n+b$ )

- If the min is 1, then yn(wxn+b) is fine

#### **Important Points:**

- Maybe the optimization will result having all of these points make this quantity strictly > 1
- So, if <u>for a certain point</u>  $\rightarrow$  this quantity >1  $\rightarrow$  and then, we get the minimum of  $\frac{1}{2}W^{T} \cdot W$  then this is the point I am going to have

We cannot get the min  $\mathbf{w}$ , when all values are strictly greater than  $1 = \mathbf{v}$ 

**Conclusion:** "When we solve the above optimization problem, the solution necessarily satisfies the inequality constraint, with <u>at least one of the points resulting = 1</u>", so this new friendly opt. problem to find the best margin, **is equal to** the unfriendly opt. problem we had in the beginning

#### **Constraint Optimization Problem - Overview**

Minimize 
$$\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

subject to 
$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \geq 1$$
 for  $n = 1, 2, ..., N$ 

#### DOMAIN:

$$\mathbf{w} \in \mathbb{R}^d, \ b \in \mathbb{R}$$
 • d is the dimension   
• B is a real number

#### **Question: Constrained Optimization Problem: how to solve it?**

- We need an analytic way to solve it: **form a Lagrange** and the <u>constrained problem becomes unconstrained</u> etc.
- The small problem is that we have to convert the inequality problem to equality  $\rightarrow$  can we square and then, solve he equality problem?

# **Lagrange Formulation**



- 2. We have a Lagrange multiplier an an or you may see it as  $\lambda i$  in the notes

$$\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n (y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - 1)$$



- We have a new that formula makes sense
- We minimize w.r.t w, b and maximizing w.r.t an≥0
- We have new variable Lagrange Multipliers (vector a)
- There are n multiplies, one for every point in the set

Minimize 
$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n (y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - 1)$$

# **Lagrange Formulation**

Minimize 
$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n (y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - 1)$$

Working with the unconstrained part: we just need to optimize L w.r.t w and b and the following conditions result:



$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = \mathbf{0}$$
 (2)

$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n y_n = 0$$
 (3)

- We take the gradient of L with respect to w
- We take the derivative of L with respect to b

**Next Step**: Substitute 2,3 to eq. 1, such that the maximization of a (Lagrangian) – tricky since a has a range – becomes free of w and b

$$\mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n$$
 and  $\sum_{n=1}^N \alpha_n y_n = 0$ 

The goal is to come up with an equation that is a function of the Lagrangian a only!

# **Lagrange Formulation**

Minimize 
$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n (y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - 1)$$



in the Lagrangian 
$$\mathcal{L}(\mathbf{w},b,\pmb{\alpha}) = \frac{1}{2} \, \mathbf{w}^{\scriptscriptstyle\mathsf{T}} \mathbf{w} \, - \, \sum_{n=1}^{N} \alpha_n \left( y_n \left( \mathbf{w}^{\scriptscriptstyle\mathsf{T}} \mathbf{x}_n \! + \! b \right) - 1 \, \right)$$

we get 
$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \; \alpha_n \alpha_m \; \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_m$$

**Constraints:** 

Maximize w.r.t. to 
$$\alpha$$
 subject to  $\alpha_n \geq 0$  for  $n=1,\cdots,N$  and  $\sum_{n=1}^N \alpha_n y_n = 0$ 

Initial Constraints: 
$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$
 and  $\sum_{n=1}^{N} \alpha_n y_n = 0$ 

No need any more – does not depend on w

We need this!

Thus, we need to work on solving this constrained optimization problem using quadratic programming

# ... The Solution – Quadratic Programming

We need to translate the objective and the constraints we have into the coefficients that we will pass onto the package called quadratic programming

$$\max_{\boldsymbol{\alpha}} \quad \sum_{n=1}^{N} \alpha_{n} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_{n} y_{m} \alpha_{n} \alpha_{m} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}_{m} \qquad \qquad \min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_{n} y_{m} \alpha_{n} \alpha_{m} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}_{m} - \sum_{n=1}^{N} \alpha_{n}$$

#### **NEXT STEP**: Isolate the coefficients from alphas,

- Where, alphas are the parameters (these are not passes to QP)
- What we pass to QP are the coefficients  $y_n$  and  $y_m$  decided by  $y_s$  and  $x_s \rightarrow see$  matrix next slide
- Thus, QP will work and provide us with the alphas that minimize equation (4)

# ... The Solution – Quadratic Programming

$$\min_{\alpha} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_{n} y_{m} \alpha_{n} \alpha_{m} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}_{m} - \sum_{n=1}^{N} \alpha_{n}$$

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{\mathsf{T}} \begin{bmatrix} y_{1} y_{1} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{1} & y_{1} y_{2} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{2} & \dots & y_{1} y_{N} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{N} \\ y_{2} y_{1} \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{1} & y_{2} y_{2} \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{2} & \dots & y_{2} y_{N} \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{N} \\ \dots & \dots & \dots & \dots \\ y_{N} y_{1} \mathbf{x}_{N}^{\mathsf{T}} \mathbf{x}_{1} & y_{N} y_{2} \mathbf{x}_{N}^{\mathsf{T}} \mathbf{x}_{2} & \dots & y_{N} y_{N} \mathbf{x}_{N}^{\mathsf{T}} \mathbf{x}_{N} \end{bmatrix} \alpha + \underbrace{(-1^{\mathsf{T}})}_{\text{linear}} \alpha$$

$$= \underbrace{(1)^{\mathsf{T}}_{1} \alpha_{1} \cdots \alpha_{N}^{\mathsf{T}}_{1} \cdots \alpha_{N}^{\mathsf{T}}_{N}}_{\text{quadratic coefficients}}$$

- We have: Quadratic term a<sup>T</sup> and a
- In the bracket: the coefficients in the double summation:
  - These are red from the training data
  - We have have yi and xi and we generate the multiplication factors
- What is passed to QP: The matrix; the sum of alphas (a set of linear coefficients); the constraints (i) the  $y^T$  as a vector and (ii) a range

subject to 
$$\mathbf{y}^{\mathsf{T}} \boldsymbol{\alpha} = 0$$
 linear constraint  $\mathbf{0}$   $\leq \alpha \leq \infty$  upper bounds

# ... The Solution – Quadratic Programming





#### Or even simpler:

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \, \boldsymbol{\alpha}^{\scriptscriptstyle\mathsf{T}} Q \boldsymbol{\alpha} - \mathbf{1}^{\scriptscriptstyle\mathsf{T}} \boldsymbol{\alpha} \qquad \text{subject to} \qquad \mathbf{y}^{\scriptscriptstyle\mathsf{T}} \boldsymbol{\alpha} = 0; \quad \boldsymbol{\alpha} \geq \mathbf{0}$$

- Linear Equality Constraint
- Other range constraints

#### What is passed to QP:

- The matrix
- The sum of alphas (a set of linear coefficients)
- The constraints
  - $\mathbf{y}^{\mathsf{T}}$  as a vector
  - Range for a

QP will give us back the alphas

# The rest of this lecture can be found at:

HERE

or

https://www.youtube.com/watch?v=eHsErlPJWUU