Сравнение параметрических и непараметрических тестов с помощью статистического моделирования

Сальников Дмитрий Игоревич, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н. Мелас В.Б. Рецензент: к.ф.-м.н. Шпилев П.В.

Санкт-Петербург 2016г

Введение

Преследуемые цели:

- Выяснить, эффективно ли использовать перестановочные тесты для проверки статистических гипотез.
- Сравнить их мощности с мощностями наиболее популярных неперестановочных тестов в зависимости от вида распределения и размера выборки.
- Дать общие рекомендации для тех случаев, когда эффективно применять тот или иной тест.

Постановка задачи

Две выборки

$$X_{ij} \sim F_i, i = 1, 2, j = 1 \dots n_i,$$

нулевая гипотеза

$$H_0: F_1 = F_2,$$

альтернативная гипотеза

$$H_1: F_1 \neq F_2.$$

Будем считать $n_1 = n_2 = n$; $n = \{10, 30, 100\}$.

Постановка задачи

Исследуемые тесты:

- Перестановочные тесты $K_1, K_2, K_3, K_4, K_5, K_6$
- тест Стьюдента,
- тест Колмогорова-Смирнова,
- тест Манна-Уитни.

Исходная объединенная выборка

$$Z(\pi_0) = X_{11}, \dots, X_{1n}, X_{21}, \dots, X_{2n},$$

перестановки

$$Z(\pi_k) = \tilde{X}_{11}, \dots, \tilde{X}_{1n}, \tilde{X}_{21}, \dots, \tilde{X}_{2n},$$

где $\pi_k, \ k=0\dots n$ — различные способы замены k элементов первой выборки на k элементов второй.

 $K_i(Z)$ — статистика перестановочного теста K_i .

- $K_1(Z) = (\overline{X}_1 \overline{X}_2)^2$ (Sturino J., et al., 2010),
- $K_2(Z) = \sum_{i,j=1}^n (X_{1i} X_{2j})^2/n^2$ (Sirsky M., 2012),
- $K_3(Z) = nK_1(Z)/(S_1^2(Z) + S_2^2(Z)),$ $S_i^2(Z) = \frac{1}{n} \sum_{j=1}^n (X_{ij} - \overline{X}_i)^2$ (Cox D., Lee J., 2008 and Ramsay J., et al., 2009).

Теорема (Melas V. et al., 2013)

Перестановочные тесты $K_1,\ K_2$ и K_3 для проверки гипотезы однородности эквивалентны для любой перестановки и для любого произвольно заданного уровня значимости α .

Рассмотренные перестановочные тесты:

- $K_1(Z) = (\overline{X}_1 \overline{X}_2)^2$ (Sturino J., et al., 2010),
- $K_4(Z) = (X_{1med} X_{2med})^2$ (Sirsky M., 2012),
- $K_5(Z) = (\sum_{i=1}^n |X_{1i} X_{1med}| + \sum_{i=1}^n |X_{2i} X_{2med}|)^2$,
- $K_6(Z) = \sum_{i,j=1}^{n} |X_{1i} X_{2j}|$ (Sirsky M., 2012).

Перестановочный K_i -тест проверки гипотезы H_0 :

- пусть r_2 общее число перестановок, r_1 число перестановок π_k , для которых $K_i(Z(\pi_k)) > K_i(Z(\pi_0))$, lpha = 0.05 заданный уровень значимости;
- H_0 не отвергается при lpha-уровне значимости для тестов $K_1,\,K_4,\,K_6$, если $rac{r_1}{r_2}\geq lpha$, для K_5 если $rac{r_1}{r_2}\leq 1-lpha$.

При моделировании $r_2=1600$, перестановки случайны (Keller-McNulty S., Higgins J., 1987).

Распределения

- ullet Нормальное распределение ${\sf N}(\mu,\,\sigma)$
- ullet Распределение Коши $\mathsf{C}(x_0,\,\gamma)$
- ullet Смесь 95% N(μ , σ) и 5% C(0, 1)
- ullet Распределение Стьюдента $\mathsf{t}(n,\,x_0)$
- ullet Распределение Фишера $\mathsf{F}(d_1,\ d_2)$
- ullet Бета-распределение $B(lpha,\ eta)$
- ullet Гамма-распределение $\mathsf{G}(k,\, heta)$
- ullet Равномерное распределение $\mathsf{U}(a,\,b)$
- ullet Распределение Вейбулла W $(k,\;\lambda)$

Вспомогательное предложение

Предложение

Пусть в N экспериментах получена оценка мощности p_1 по первому тесту и p_2 по второму. Тогда, если N достаточно велико и

$$p_2 > p_1 + 3\frac{p_1(1-p_1) + p_2(1-p_2)}{\sqrt{N}},$$

то с вероятностью более чем 99% второй тест является более мощным, чем первый.

Второй тест мощнее первого с вероятностью более 99%

Нормальное распределение

Загрязненное нормальное распределение

Распределение Стьюдента

B(1, 1) vs B(shift, shift) 8 10 shift

Бета-распределение

Итоги

- Тест K_6 является наиболее мощным среди всех рассмотренных тестов, за исключением ряда случаев. Особенно велико преимущество этого теста, если распределения симметричны относительно общего центра.
- В случаях сдвига распределений Коши, Фишера и Гамма и при изменении первого параметра распределения Фишера K_6 значительно уступает лидирующим в мощности тестам.
- ullet Тесты K_4 и K_5 эффективны в случае сдвига распределения Коши, в других случаях уступают в мощности K_6 .
- По результатам работы подготовлена статья, принятая к печати в журнале «Вестник СПбГУ, сер. 1» вып. 3 (2016).

