International Islamic University Chittagong Department of Electrical and Electronic Engineering

Program: B.Sc. Engg. (EEE) Final Examination Autumn-2018 Course Title: Mathematics-I Course Code: MATH 1107 Full Marks: 50 Time: 2 hours 30 minutes Part A [Answer any two questions from the followings; figures in the right margin indicate full marks.] 03 1(a). If $u = \log \frac{x^2 + y^2}{x + y}$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$ State Euler's theorem and Verify Euler's theorem for $u = \frac{x^{1/4} + y^{1/4}}{x^{1/5} + v^{1/5}}$ 04 03 1(c). Show that the minimum value of $\frac{x}{logx}$ is e 05 2(a). Evaluate any one of the following: $\int \frac{dx}{x^2(a^2+x^2)} \text{ (ii) } \int \sin^{-1} \sqrt{\frac{x}{a+x}}$ 05 2(b). Evaluate any one of the following: $\int \frac{x^3+1}{x(x^2+1)^2} dx \quad (ii) \int \sin^n x dx$ 3(a). If z is a homogeneous function of n^{th} order of x, y variable, then 04 prove that the Euler's equation $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$ 03 3(b). Evaluate $\int \frac{\sqrt{a+x}}{a-x} dx$ 03 3(c) Evaluate $\int \tan^n x \, dx$ Part B [Answer any three questions from the followings; figures in the right margin indicate full marks.] 02 4(a). Prove that $\int_a^b f(x) dx = -\int_b^a f(x) dx$ 03 4(b). Evaluate any one $\int_0^\infty e^{-y\frac{1}{x}} dy = \Gamma(n+1) \text{ (ii) } \int_0^{\frac{\pi}{2}} \sin^2 \theta \cos^3 \theta \ d\theta$ 05 4(c). Prove that $\int_a^b e^x dx$ by using interation limit sum method 03 Evaluate any one: 5(a). $\int_0^1 \int_0^1 e^{\frac{y}{x}} dx dy \text{ (ii) } \int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dy dx}{1+x^2+y^2}$ 04 5(b). Evaluate any one: $\iiint (x + y + z) dx dy dz$ over the region $0 \le x \le 1, 1 \le$ $v \le 2, 2 \le z \le 3$ $\iiint (x - 2y + z) dx dy dz \text{ over the region } 0 \le x \le 1, 0 \le$ $y \le x^2, 0 \le z \le x + y$ 5(c). Determine the area between the parabola $y^2 = 4ax$ and $x^2 = 4ay$ 03

Page 1 of 2

6(a).	Find the volume of the Cardioid $r = a(1 + \cos\theta)$	05
6(b).	Find the perimeter of the circle $x^2+y^2=36$	05
	ý.	
7(a).	Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$	04
	Applying the Jacobian method and using the transformation $x + y =$	06
	$u, y = uv$, then show that $\iint \{xy(1-x-y)^{\frac{1}{2}}dxdy = \frac{2\pi}{12\pi}$	