Ricerca operativa

Giacomo De Liberali

$28 \ {\rm settembre} \ 2017$

Indice

1	Introduzione				
	1.1	Proble	emi di esempio	2	
		1.1.1	Minimizzare costi	2	

1 Introduzione

21 Settembre 2017

Gli argomenti trattati in questo corso sono:

- 1. Modelli di programmazione lineare
- 2. Metodo del simplesso
- 3. Branch & Bound
- 4. Problema di flusso su reti

1.1 Problemi di esempio

1.1.1 Minimizzare costi

Vi sono delle fabbriche F_1, F_2, F_3 che producono dei prodotti P_1, P_2 che inviano ai magazzini M_1, M_2 .

Tabella 1: Costi e tempi di produzione

	F_1		F_2		F_3\$	
	С	t	С	t	С	t
P_1	7.2	0.72	6.3	0.63	5.2	0.5
P_2	9.2	0.81	7.3	0.68	6.6	0.67
ore max	2200		9	30	16	600

Tabella 2: Costi di trasporto

	F_1	F_2	F_3
M_1	0.90	0.88	1.03
M_2	0.99	1.10	0.85

Tabella 3: Quantitativi minimi per i magazzini $\begin{array}{c|c} \hline M_1 & M_2 \end{array}$

	M_1	M_2
P_1	1100	1900
P_2	1650	1300

L'obbiettivo è minimizzare i cosi di produzione e trasporto di P_1 e P_2 . Il primo passo è la scelta delle variabili:

 x_{ij} = numero di prodotti di tipo P_1 fabbricati in F_i ed inviati a M_j (con i=1,2,3 e j=1,2)

 y_{ij} = numero di prodotti di tipo P_2 fabbricati in F_i ed inviati a M_j (con i=1,2,3 e j=1,2)

La funzione obbiettivo viene costruita come

costo di produzione di
$$P_1$$
 in F_1

$$7.2 \overbrace{(x_{11} + x_{12})} + 7.3 \underbrace{(y_{11} + y_{12})}_{\text{costo di produzione di } P_2 \text{ in } F_1$$

$$\text{costo di produzione di } P_1 \text{ in } F_2$$

$$6.3 \overbrace{(x_{21} + x_{22})}_{\text{costo di produzione di } P_2 \text{ in } F_2$$

$$\text{costo di produzione di } P_2 \text{ in } F_2$$

$$5.2(x_{31} + x_{32}) + 6.6(y_{31} + y_{32}) + 0.9\underbrace{(x_{11})}_{\text{costo di trasporto di } P_1 \text{ e } P_2 \text{ da } F_1 \text{ a } M_1$$

$$0.88(x_{21} + y_{21}) + 1.1(x_{22} + y_{22}) + 1.03(x_{31} + y_{31}) + 0.85(x_{32} + y_{32})$$

La funzione obbiettivo definita deve comunque tenere conto dei vincoli che sono imposti, ovvero il massimo numero di ore lavorabili e il quantitativo di prodotto che i magazzini devono ricevere. Andiamo quindi a formalizzare i vincoli.

Vincoli temporali:

$$0.72(x_{11} + x_{12}) + 0.81(y_{11} + y_{12}) \le 2200$$

$$0.63(x_{21} + x_{22}) + 0.68(y_{21} + y_{22}) \le 930$$

$$0.5(x_{31} + x_{32}) + 0.67(y_{31} + y_{32}) \le 1600$$

tempo complessivo di produzione e trasporto di P_1 e P_2 in M_1 tempo complessivo di produzione e trasporto di P_1 e P_2 in M_2 tempo complessivo di produzione e trasporto di P_1 e P_2 in M_3

Vincoli quantitativi:

$$(x_{11}+x_{21}+x_{31})\geq 1100$$
 quantitativo di prodotto P_1 che M_1 deve ricevere $(y_{11}+y_{21}+y_{31})\geq 1650$ $(x_{12}+x_{22}+x_{32})\geq 1900$ $(y_{12}+y_{22}+y_{32})\geq 1300$

e i vincoli impliciti, ovvero che i valori devono essere interi e non negativi

$$x_{ij} \ge 0 \ \forall ij \in \mathbb{N}$$
$$y_{ij} \ge 0 \ \forall ij \in \mathbb{N}$$