CHEMISTRY NMDCAT 1040 MCQs As Per PMC Syllabus 2022

	TABLE OF CONTENTS		PA	PAGE NUMBER	
S.No	CHAPTER	No of MCQs	MCQs	EXPLANATION	
1	INTRODUCTION TO FUNDAMENTAL CONCEPTS OF CHEMISTRY	100	1	8	
2	ATOMIC STRUCTURE	80	15	20	
3	GASES, LIQUIDS & SOLIDS	120	25	33	
4	CHEMICAL EQUILIBRIUM + REACTION KINETICS	120	40	50	
5	THERMOCHEMISTRY + ELECTROCHEMISTRY	100	57	64	
6	CHEMICAL BONDING	90	68	73	
7	S AND P-BLOCK ELEMENTS & TRANSITION ELEMENTS	100	77	83	
8	CHEMISTRY OF HYDROCARBONS, FUNDAMENTAL CONCEPTS OF ORGANIC CHEMISTRY	120	86	94	
9	ALKYL HALIDE, ALCOHOL, PHENOL & KETONES	130	99	108	
10	CARBOXYLIC ACIDS & MACROMOLECULES	80	113	119	

Introduction to Fundamental Concepts Of Chemistry

Atomic mass Which of the following is not macromolecule? A. Haemoglobin B. Lipoprotein D. Cellulose C. Maltose Q. 2 Which set represents pure compounds only A. Air, Alloy, Table salt. B. Glucose, Sucrose, water gas C. Milk, aspartame, serotenin D. None Haemoglobin molecule is _____ times then heavier H2 0.3 A. 10, 000 B. 68, 000 C. 1000 D. 34,000 Which of the following elements has maximum number of isotopes?

0.4 A. Ca B. Pd

C. Cd. D. Sn

Q. 5 Fractional atomic masses can be calculated from

A. Number of peaks B. Relative abundance of isotopes C. Number of isotopes D. Average mass of isotopes

CN-1 is iso-electronic with Q. 6

B. CO A. H₂O C. CO2 D. NH₃

Which of the following statement is wrong about isotopes? 0.7

A. They possess different mass number

B. They possess same chemical properties

C. They possess different physical properties

D. They possess different position in the periodic table

Bromine has two isotopes having relative abundance as and the average atomic mass of bromine is about

A. 81 B. 79 C. 80 D. 80.5

Which one of the following has maximum number of isotopes? 0.9

A. Na B. Cd C. S D. Ni

atom Q. 10 An atom of carbon is twelve times heavier than

A. H C. He D. Li

Concept of mole

Q. 11 How many numbers of electrons are present in 4.2g of azide ion?

B. 2.2 NA A. 2.1 NA C. 21 NA D. 22 NA

Q. 12 If we take same mass of following elements, largest number of atoms will be in

A. Fe (56) B. Ca (40) D. Mn (55) C. Ni (59)

Q. 13 The number of moles of CH4 which contains 3.0g of Carbon

A. 1.0 B. 0.75 C. 0.5 D. 0.25

Q. 14 4g H₂ reacts with 32.0g O₂ to produce water. Which of the following statements is

correct? A. H₂-limiting reactant B. O₂-non-limiting reactant

C. 2.0 mole water is produced D. 1 mole water is produced

Q. 15 2.8g of N₂ molecule contains number of chemical bonds

B. 1.204×10^{23} A. 6.02×10^{22} C. 1.8×10^{23} D. 1.8×10^{22}

Q. 16 The number of moles of KMnO4 that contain 1 mole of oxygen

A. 2 moles B. 0.5 moles C. 0.25 moles D. 1.5 moles

Q. 17 1 mole of CH₃OH and C₂H₅OH have equal number

A. C-Atoms B. H-atoms C. O-Atoms D. Electrons

Q. 18	The number of hydrogen atoms in 36 g of	f NH ₄ ⁺¹ is approximately	
	A. 2N _A	B. 6N _A	
0.40	C. 4N _A	D. 8N _A	
Q. 19	A sample of 100cm ³ of dilute H ₂ SO ₄ contains 0.1 moles of acid. What is hydrogen ion concentration in the solution per dm ³ ?		
	A. 2 moles	B. 0.50 moles	
	C. 0.25 moles	D. 1 mole	
Q. 20	The number of oxygen atoms contained i		
	A. 6.02×10^{23}	B. 3.3410×10^{25}	
	C. 6.692×10^{25}	D. 55.5	
0.11		number and Vm	
Q. 21	Eight grams of methane occupies volume A. 22.4 dm ³	B. 2.24 dm ³	
	C. 1.12 dm ³	D. 11.2 dm ³	
Q. 22	The number of molecules in 89.6 dm3 of a	a gas at 0°C and 1 atm pressure is?	
	A. 6.02×10^{23}	B. 1.806×10^{24}	
	C. 1.204×10 ²⁴	D. 2.408×10 ²⁴	
Q. 23	15 gram of a gas occupies 11.2 dm ³ at S.T		
	A. CO C. CO ₂	B. NO D. N ₂ O	
0. 24	Which one is incorrect relation at STP?	D. N2O	
Q	A. 6g of carbon = 3.01'1023 atoms	B. 11.2 dm3 of CO2 = 3.01'1023 molecules	
	C. $49 \text{ g of H2SO4} = 4 \text{ moles of atoms}$	D. 1 mole of sucrose = 45 moles of atoms	
Q. 25		any atoms does it contain (Cu = 63.5 amu)	
	A. 6.023×10^{21}	B. 6.02×10^{22}	
0.26	C. 6.023 × 10 ²³	D. 6.02 × 10 ²⁴	
Q. 20	Avogadro's number is the number of mo	B. 22400 cm ³ at STP	
	C. 1000 cm ³ at STP	D. 1 cm ³ at STP	
Q. 27	What volume is occupied by a mixture of		
	A. 2.24 dm ³	B. 22.4 dm ³	
0.00	C. 0.224 dm ³	D. 11.2 dm ³	
Q. 28	Which of the following will weigh more?	D. 1.6 c dom of N	
	A. 10g Fe C. 2 x 10 ²³ atoms of C	B. 1.6 g atom of N D. 11.2 dm ³ of O ₂ at STP	
Q. 29	2.24 dm ³ of CO ₂ gas at S.T.P has mass	77	
	A. 28g	B. 2.8g	
	C. 44g	D. 4.4g	
Q. 30		ass 100g. The maximum number of atoms	
	A. Mg	B. Al	
	C. Zn	D. Fe	
		Molecular formulae	
Q. 31	Which of the following term is not used for		
	A. Formula unit	B. Empirical formula	
0.22	C. Molecular formula	D. Formula Mass	
Q. 32	A compound with empirical formula CH molecular formula of a compound is	O ₂ and molecular mass 90g / mole. The	
	A. C ₆ H ₁₂ O ₆	B. (COOH) ₂	
	C. C ₁₂ H ₂₂ O ₁₁	D. HCOOH	
Q. 33	An acid with molecular mass 104 contain	s 34.6%C, 3.85% H and rest is O the	
	molecular formula of acid is		
	A. C ₃ H ₄ O ₄	$B. C_2H_2O_4$	
0.24	C. C ₂ H ₂ O	D. C ₂ HO ₂	
Q. 34	Elemental analysis is performed to determ A. Molar mass of the compound	B. Structural formula of a compound	
	C. Empirical formula of a compound	D. Mass of halogen present in a compound	
Q. 35	CH ₂ O is the empirical formula of		
	A. Cl ₂ H ₂₂ O ₁₁	B. CH ₂ (OH)CH ₂ (OH)	
	C. CH ₃ . CH(OH). COOH	D. CH₃CHO	

PAGE 2 OF 121

NMDCAT -2022 BY SKN

Q. 36		ormula CH3O. Its molar mass is 62g/mole.
	The compound may be (write formulas)	
	A. CH ₂ (OH)CH(OH)CH ₂ (OH)	B. CH ₃ COOH ₃
	C. CH ₂ (OH)CH ₂ (OH)	D. C ₂ H ₅ OH
Q. 37		
	A. H ₂ O	B. H ₂ O ₂
O 20	C. C ₁₂ H ₂₂ O ₁₁	D, CO ₂
Q. 38	A compound contains 50% S and 50% Compound is	by mass. The empirical formula of
	A. SO ₂	B S O
	A. SO ₂ C. SO ₃	B. S ₂ O ₃ D. SO
0.20		
Q. 39	molecular formula of the compound is	HO ₂ and molecular mass 90g / mole. The
	A. C ₆ H ₁₂ O ₆	B. (COOH) ₂
	C. C ₁₂ H ₂₂ O ₁₁	D. HCOOH
0.40		ormula CH3O. Its molar mass is 62g/mole.
Q. 40	The compound may be	ormula Ch50. Its molar mass is 62g/mole.
	A. CH ₂ (OH)CH(OH)CH ₂ (OH)	B. CH ₃ COCN ₃
	C. CH ₂ (OH)CH ₂ (OH)	D. C ₂ H ₅ OH
		chiometry
0.41		of negatively charged ions in case of 100%
Æ	dissociation of 1 mole	
	A. FeCl ₃	B. Na ₂ SO ₄
	C. NaOH	D. ZuCl
0.42	Efficiency of a chemical reaction is	
	A. Actual yield	B. Theoretical yield
	C. Percentage yield	D. All of these
0.43		ch react to produce alumina then which of
	the following is limiting reactant and no	
	A. Al, O ₂	B. O ₂ , Al
	C. Al, Al ₂ O ₃	D. O ₂ , Al ₂ O ₃
Q. 44	One of the following is not the limitation	of balanced chemical equation
	A. Conditions of reaction	B. Rate of reaction
	C. Physical states of reactants	D Moles of reactants and products
Q. 45	Which one act as a limiting reactant wh	en 6g of carbon and 16 g of oxygen react to
	produce CO ₂	
	A. Carbon	B. Oxygen
	C. Anyone of oxygen and carbon	D. None of these
Q. 46	For stoichiometry calculations, we have	to assume
	A. Mass of reactants is less than the mass	of products
	B. All the reactants are converted into produce	ducts
	C. Side reaction occurs	
	D. Reaction is reversible	
Q. 47	If a sample of ammonium phosphate, (N	
	atoms. Then number of moles of oxygen	
	A. 1 C. 4	B. 2 D. 6
0.40		
Q. 48	The law of conservation of mass and the while doing calculation of	e iaw of definite proportions are obeyed
		D. Theoretical wield
	A. Limiting reactant C. Stoichiometry	B. Theoretical yield D. All of these
0.40		
Q. 49	and the segases is respectively	nd He are present in a container, the mole
	A. 2: 1: 3	B. 3: 1: 2
	C. 2: 3: 1	D. 3: 2: 1

Q. 50	The sulphate of a certain metal has formula	M ₂ SO ₄ .The formula of metal chloride would be		
	A. MCI	B. MCl ₂		
	C. M ₂ Cl ₂	D. MCl ₃		
Q. 51	Which of the following sets contains only compounds?			
	A. air, water, sodium	B. hydrogen, ammonia, oxygen		
	C. carbon monoxide, phosphine, phosgene	D. table salt, glucose, German silver		
Q. 52	Iso-electronic pair among following is			
	A. Cl, Cl	B. Na ⁺ , Ne		
	C. Al ⁺³ , Cl	D. Mg ⁺³ , Ne ⁺¹		
Q. 53	Total ions in 5 formula units of NaClO ₃ is			
	A. 10 electrons in neon C. 23 nucleons in sodium atom	B. 8 protons in an oxygen atom		
0.54		D. 2 isotopes of chlorine		
Q. 54	Which one of the following pair is isoelect	B. H ₂ O, Ne		
	A. Si, CO ₂ C. Na, K	D. NH ₃ Mg		
0.55	Mass of acetone is equal to the mass of	D. Milying		
Q. 00	A. Ethanal	B. Ethanol		
	C. Propanal	D. 1-Butanol		
0, 56	Which of the following set of elements for			
	A. O, Mg, C, Ca, Fe	B. O, Mg, Si, Ca, Fe		
	C. O, Mg, S, Fe, K	D. Q, Mg, C, Si, Fe		
Q. 57	Total number of radioactive isotopes pro-	duced through artificial disintegration		
	A. 240	B. 40		
	C. 300	D. 340		
Q. 58	Which one of the following statements is	not involved in the determination of		
	empirical formula?			
	A. %age of each element	B. gram atom of each element		
0.50	C. isotopes of each element	D. atomic ratio of element		
Q. 59				
	A. Acetic acid and glucose C. Formic acid and sucrose	B. Acetic acid and formic acid D. Both a and b		
0 60	A compound used as artificial sweetener			
Q. 00	A. C ₁₄ H ₁₀ N ₂ O	B. C ₁₄ H ₁₆ N ₂ O ₅		
	C. C ₁₄ H ₁₈ N ₂ O ₅	D. C ₁₈ H ₁₄ N ₂ O		
Q. 61	There are different steps in determining t			
	Step I. Calculating the number of gram atom			
	Step II. Determining the atomic ratio			
	Step III. Determining the percentage com			
	What is the correct sequence of the above			
	A. I, II, III	B. III, II, I D. III, I, II		
0.62	C. II, I, III The value of 'n' in determining molecular			
Q. 02	_			
	A. $n = \frac{\text{molar mass}}{\text{atomic mass}}$	B. $n = \frac{\text{empirical mass}}{\text{molar mass}}$		
	C. $n = \frac{\text{molar mass}}{\text{empirical formula mass}}$	D. Cannot be determined		
Q. 63		taining 50% of element X (At.wt = 10) and		
	50% of element Y (At. wt = 20) is A. XY	D VV.		
	A. XY C. X ₂ Y	B. XY ₂ D. X ₂ Y ₃		
O. 64	A pair of compounds that has same empirical A			
	A. Acetic acid and glucose	B. Acetic acid and formic acid		
	C. Formic acid and sucrose	D. Ethane and Ethyne		

A. 6.02×10^{23} B. 3.01×10^{23} C. 9.03×10^{23} D. 12×10^{23} Q. 83 When 0.1 kg of CaCO3 is decomposed the CO2 produced occupies a volume at STP A. 2.2414 dm³ B. 22.414 dm³ C. 22414 dm3 D. 224014 dm3 Q. 84 The number of O-atoms in 45g of C₆H₁₂O₆ $A.6 \times N_A$ B. $1.50 \times N_A$ $C.3 \times N_A$ D. $0.25 \times N_A$ Q. 85 How many chlorine atoms are in 4 moles of Cl₂? A. $4 \times 6.022 \times 10^{23}$ atoms B. $8 \times 6.022 \times 10^{23}$ atoms C. $2 \times 6.022'10^{23}$ atoms D. $2 \times 6.02 \times 10^{22}$ atoms Q. 86 Which among the following is the lowest mass? A. One mole of nitrogen B. 22.414dm3 of O2 at STP C. 6.02×10²³ molecules of CO₂ D. 20g of Neon Q. 87 The volume of NH₃ obtained by the combination of 10 cm³ of N₂ and 30 cm³ of H₂ at S.T.P. is B. 40 cm3 A. 20 cm³ C. 30 cm³ D. 10 cm3 Q. 88 One mole each of NO2 and CO2 has same number of A. Molecules B. Electrons D. Neutrons C. Protons Q. 89 The weight of 5.6 dm3 of NH3 at STP would be A. 34 g B. 17g C. 8.5 g D. 4.25g Q. 90 Avogadro's number of particles of hydrogen gas weighs A. 1.008 amu B. 1.008 g C. 2.016 amu D. 2.016 g Q. 91 Which of the following sample contains the largest number of atoms? B. 1 g of Ca A. l g of Ni C. 1 g of N₂ D. 1 g of B Q. 92 The weight of 11.2 dm3 of CO2 at STP would be B. 44 g C. 32 g D. 22 g Q. 93 Which one of the following is correct formula to find number of molecules? $A. m \times M$ C. n × NA× atomicity $D. n \times NA$ Q. 94 Which of the following are limitations of chemical equations? A. They do not talk about the conditions of reactions B. Rate of reaction C. Phase change involved D. All of these Q. 95 Stoichiometric calculation assumes that A. All the reactants are completely converted into product B. No side reaction occurs C. In calculation law of conservation of mass and law of definite proportions are obeyed D. All of these Q. 96 Which type of relationship can be studied with the help of balanced chemical equation A. Mass – mass relationship B. Mole - Mass relationship C. Mass – volume relationship D. All relations can be studied

Q. 82 Total number of anions produced by complete ionization of 50g CaCO₃

Q. 97 Which one acts as a limiting reactant when 6g of carbon and 16 g of oxygen react to produce CO₂

A. Carbon

B. Oxygen

C. Carbon dioxide

D. None of these

Q. 98 "X" gram of calcium carbonate was completely burnt in air as. The weight of solid residue formed is 14g. What is value of "X" in grams

A. 25

B. 50

C. 100

D. 200

Q. 99 Two nuclides X and Y are isotonic to each other with mass number 70 and 72 respectively. If the atomic number of X is 34, then that of Y would be

A. 32

B. 34

C. 36

D. 38

Q. 100 In the reaction $4NH_{3(g)}+5O_{2(g)}$ $4NO_{(g)}+6H_2O$ when one mole of ammonia and 1-mole of O_2 are made to react to completion, then

A. 1.0 mol of H₂O is produced

B. All the ammonia will be consumed

C. 1.0 mol of NO will be produced

D. All the oxygen will be consumed

ANSWERS & EXPLANTION: -

	,	ANSWERS & EAFLANTION: -
Q.1	C	Maltose is not macromolecule. Maltose is a disaccharide formed from two units of glucose joined with an $\alpha(1 \rightarrow 4)$ bond, formed from a condensation reaction but hemoglobin is macromolecule of protein, lipoprotein is conjugated macromolecule formed from protein and lipids. Cellulose is polysaccharide carbohydrate
Q.2	D	Mixture: air, alloy, water gas (CO + H ₂), milk
4.2	ь	Compound: table salt, Glucose, sucrose, aspartame, serotenin,
Q.3	D	Haemoglobin is 68,000 times heavier than hydrogen atom and 34,000 heavier than hydrogen molecule.
		Sn has maximum number of isotopes. Sn as eleven isotopes.
		Element No. of Isotopes
Q.4	D	Ca 6
		Pd 6
		Cd 9 Sn 11
Q.5	В	Fractional atomic masses can be calculated from relative abundance of isotope Average atomic mass = (Mass of one isotope ×% age) + (Mass of other isotope ×% age)
		Average atomic mass = (Mass of one isotope ×% age) + (Mass of other isotope ×% age) 100
Q.6	В	$CN^{-1} = 6e^{-} + 7e^{-} + 1e^{-} = 14e^{-}$ $H_{2}O = 2e^{-} + 8e^{-} = 10e^{-}$ $CO = 6e^{-} + 8e^{-} = 14e^{-}$ $CO_{2} = 6e^{-} + 16e^{-} = 22e^{-}$ $NH_{3} = 7e^{-} + 3e^{-} = 10e^{-}$
Q.7	D	Isotopes have same number of proton. So they occupied same position in periodic table.
Q.8	C	
Q.9	В	
Q.10	A	
Q.11	В	
Q.12	В	
Q.13	D	The 0.25 moles of CH4 which contains 3.0g of Carbon. We know, 1 mole of CH4 contains carbon = 12 g OR 12g Carbon present in = 1 mole of CH4 1 g Carbon present in = 1/12 mole of CH4 So, 3g carbon is present in = $\frac{1}{12} \times 3 = \frac{1}{4} = 0.25$ moles
		4g H ₂ react with 32.0g O ₂ to produce 2.0 mole of water.
Q.14	C	Chemical equation used: $2H_{2(g)} + O_{2(g)} \rightleftharpoons 2H_2O_{(l)}$ $_{4g} \qquad _{32g} \qquad _{36g(2-\text{moles produced})}$
		H ₂ and O ₂ both are consumed so no one is limiting reactant.

		6.02×10 ²³
Q.15	C	$\frac{0.02 \times 10^{-28}}{28} \times 2.8$
		$=1.8\times10^{23}$
Q.16	C	
		сно
Q.17	C	CH3OH 1 4 1
		C ₂ H ₅ OH 2 6 1
Q.18	D	
Q.19	A	
Q.20	В	
		8 ×22.4
Q.21	D	16 ^22.4
		$= 11.2dm^3$
		$\frac{V}{N} = \frac{N}{N}$
		Vm N _A
Q.22	D	$N = \frac{V}{Vm} \times N_A = \frac{89.6}{22.4} \times 16.02 \times 10^{23}$
		$=2.408\times10^{24}$
		$\frac{V}{V_{m}} = \frac{m}{M}$
Q.23	В	Vm Mr
Q.23	Б	$Mr = \frac{22.4 \times 15}{11.2} = 30g/mol$
		Moler mass of NO = $30 g/mol$
Q.24	C	
Q.25	A	
Q.26	В	
Q.27	В	
Q.28	В	
Q.29	D	
Q.30	A	
Q.31	C	Ionic compound cannot exist independently so it's mass is formula mass, No of particle is called formula unit.
		$n = \frac{90}{100} = \frac{molecular mass}{molecular mass} = 2$
		45 empirical formula mass
Q.32	В	molecular formula = n × empirical formula
		$= 2 \times CHO_2 = C_2H_2O_4$
		which is molecular formula of oxalic acid

		$C = \frac{34.6}{12}$ $H = \frac{3.85}{1.008}$ $O = \frac{61.55}{16}$
Q.33	A	$C = \frac{2.88}{2.88}$ $H = \frac{3.81}{2.88}$ $O = \frac{3.84}{2.88}$
		C = 1 $H = 1.33$ $O = 1.33$
		C=3 $H=4$ $O=4$
Q.34	C	Elemental analysis is technique used to determine type of element in compound.
Q.35	C	Molecular formula CH ₃ CH(OH) COOH–C ₃ H ₆ O ₃ Empirical formula – CH ₂ O
Q.36	C	$n = \frac{62}{31} = 2$ Molecular formula = $= 2 \times \text{CH}_3\text{O}$ $= \text{C}_2\text{H}_6\text{O}_2$ $\text{CH}_2(\text{OH})\text{CH}_2(\text{OH})$
Q.37	В	H_2O , $C_{12}H_{22}O_{11}$, CO_2 have same empirical formula and molecular formula but H_2O_2 is molecular formula and HO is empirical formula.
Q.38	A	
Q.39	В	
Q.40	C	
Q.41	A	$FeCl_3 \stackrel{\square}{\Longrightarrow} Fe^{+3} + 3Cl^{-} = 3N_A \text{ ion}$ $Na_2SO_4 \stackrel{\square}{\Longrightarrow} 2Na^+ + SO_4^{-2} = 1N_A \text{ ion}$ $NaOH \stackrel{\square}{\Longrightarrow} Na^+ + OH^- = 1N_A \text{ ion}$ $ZnCl_2 \stackrel{\square}{\Longrightarrow} Zn^+ + 2Cl^{-1} = 2N_A \text{ ion}$
Q.42	C	Efficiency of a chemical reaction is calculated by percentage yield. Percentage Yield: The ratio of actual yield to theoretical yield multiplied by 100 gives us percentage yield. A chemist is usually interested in the efficiency of a reaction. The efficiency of the reaction is expressed in the form of percentage yield. %age Yield = Actual Yield / Theoretical Yiel (i) Theoretical Yield: The amount of product calculated from the balanced chemical equation is called theoretical yield. It is the maximum amount of product that should be produced according to the balanced chemical equation. (ii) Actual Yield: The amount of the product obtained experimentally as a result of chemical reaction is called
Q.43	A	actual yield. Aluminium(Al) is limiting and Oxygen(O2) is non-limiting reactant respectively. Chemical equation used:

		441 130 2410
		$4Al_{(s)} + 3O_{2(g)} \longrightarrow 2Al_2O_{3(s)}$
		Al : O2
		4 moles : 3 moles (According to balance equation) So
		1 mole : $\frac{3}{4}$
		0.36 moles : $\frac{3}{4} \times 0.36 = 0.27$ moles
		It means 0.36 moles of aluminium completely consumed but oxygen only 0.27 moles consumed out of 0.36 moles. So aluminium is limiting reactant and oxygen is in excess.
		The condition for balancing equation are following
Q.44	D	Number of atom of reactant = Number of atoms of products
		Mole of reactant and product should be mention
Q.45	D	Both have same molar ratio so none will be limiting reacting
Q.46	В	Assumption for stoichiometry
Q.47	\mathbf{A}	
Q.48	D	
Q.49	D	
Q.50	A	
Q.51	С	Carbon monoxide, phosphine phosgene are compounds. Type Specie Element Sodium, Hydrogen, Oxygen Compound Water, Carbon monoxide, Phosphene (PH3), Phosgene (COCl2), Ammonia, Table salt, Glucose Mixture Air, Alloy
Q.52	В	Na Ne 10 electron Loelectronic have equal number of electron
Q.53	A	
Q.54	В	H ₂ O and Ne are isoelectronic species Isoelectronic species having same number of electrons. Sr. No Specie Total Number of Electron 1 H ₂ O 2+8-10 2 No 10 3 3i 14 4 CO ₂ 6+8+8-22 5 Na 11 6 K 19 7 NH ₃ 7+3=10
Q.55	C	8 Mg 12 Mass of acetone = 58 g/mol Mass of Ethanol = 46 g/mol Mass of Ethanal = 32 g/mol Mass of propanal = 58 g/mol Mass of 1-Butanol = 74 g/mol
	В	
Q.56 Q.57	B	

Q.60 (Q.61 [D	A C C C	Acetic acid (C ₂ H ₄ O ₂)and glucose (C ₆ H ₁₂ O ₆)have empirical formula CH ₂ O and the molecular formula of formic acid is CH ₂ O. Aspartame C ₁₄ H ₁₈ N ₂ O ₅ is used as artificial sweetener Steps determine Empirical formula (i) Determine % Composition of element. (ii) Determine gram & atom (iii) Determine atomic ratio The value of "n" in determining molecular formula is obtained from the relation molecular mass
Q.61 E	D	Steps determine Empirical formula (i) Determine % Composition of element. (ii) Determine gram & atom (iii) Determine atomic ratio The value of "n" in determining molecular formula is obtained from the relation
		(i) Determine % Composition of element. (ii) Determine gram & atom (iii) Determine atomic ratio The value of "n" in determining molecular formula is obtained from the relation
Q.62 (C	
		$n = \frac{\text{morecular mass}}{\text{empricial formula mass}}$
Q.63	С	Gram atom of $X = \frac{50}{10} = 5$ Gram atom of $Y = \frac{50}{20} = 2.5$ Atomic ratio $X : Y$ $\frac{5}{2.5} : \frac{2.5}{2.5} = \frac{2.5}{2.5}$
Q.64 A	A	
Q.65 B	В	
Q.66 (С	
Q.67 B	В	
Q.68	A	18.0g of glucose contains number of hydrogen atoms = 3.6×10^{23} . Calculation: $\frac{18g}{180gmol^{-1}} = 0.1 \text{ moles}$ The number of moles of glucose = $180gmol^{-1}$ We know: One molecule of glucose (C 6H12O6) contains number of H-atoms = 12 So 0.1 moles of glucose contains number of H-atoms = $12 \times 0.1 \times N_A = 1.2N_A$ = $1.2 \times 6.02 \times 10^{23}$
Q.69 A	A	$\frac{3.6}{18} \times N_A = 0.2N_A H_2 O$ $\frac{2.8}{28} \times N_A = 0.1N_A CO$ $\frac{4.6}{46} \times N_A = 0.1N_A C_2 H_5 O H$ $\frac{10.8}{108} \times N_A = 0.1N_A N_2 O_5$
Q.70 C	С	$N_2O = CO_2 = 44g \ mol^{-1}$

		$H_3PO_4 \longrightarrow 3H^+ + PO_4^{-3} \qquad I\frac{49}{98} = 0.5 mol of H_3PO_4$
		$H_3PO_4.H$
		1 3
		$0.5 \ 3 \times 0.5 = 1.5$
Q.71	C	$H^{+}:OH^{-1}$
		3 3
		1.5 1.5
		$1.5 \times 6.02 \times 10^{23}$
		$=9.03\times10^{23}$
		No of molecule of $H_2 = \frac{2}{2} \times N_A = N_A$
		16
		No of molecule of $O_2 = \frac{16}{32} \times N_A = 0.5 N_A$
Q.72	D	
		No of molecule of $N_2 = \frac{7}{14} \times N_A = 0.5 N_A$
		No of molecule of $NO_2 = \frac{23}{46} \times N_A = 0.5 N_A$
		40
0.73	В	No of mole of $C = \frac{15}{12} \times N_A = \frac{5}{A} N_A$
Q.73	ь	No of mole of mg = $\frac{30}{24} \times N_A - \frac{5}{N} N_A$
0.74		24 N A
Q.74	C	
		$\frac{V}{V_{rr}} = \frac{m}{M}$
0.55		Vm M
Q.75	В	$V = \frac{4}{16} \times 22.414$
		$= 5.603 dm^3$
		$\frac{7}{2} \times N_A = 0.5 N_A \text{ of } H_2$
		$\frac{10}{28} \times N_A = 0.35 N_A \text{ of } N_2$
Q.76	D	
		$\frac{22}{32} \times N_A = 0.6875 N_A \text{ of } O_2$
		$\frac{44}{44} \times N_A = N_A \text{ of } CO_2$
Q.77	A	
Q.78	D	
Q.79	D	
0.00	A	$D_2O = 2+$
Q.80		= 10neutron
Q.80 Q.81	D	

Q.82	В	
		$CaCO_3 \longrightarrow CaO + CO_2$
Q.83	В	100g 56g 44g
		$44g ext{ of } CO_2 = 1 ext{mole of } CO_2 = 22.4 ext{ dm}^3 ext{ at STP}$
		No of oxygen atom = $\frac{m}{M} \times N_A \times 6$
Q.84	В	$=\frac{45}{180}\times N_{A}\times 6$
		= 1.50 N _A
		No of CI atoms = $n \times N_A \times 2$
Q.85	В	$=4 \times 2 \times 6.02 \times 10^{23}$
		$= 8 \times 6.02 \times 10^{23}$
Q.86	D	
Q.87	A	
Q.88	A	
Q.89	D	
Q.90	D	
Q.91	D	
Q.92	D	
Q.93	D	
Q.94	D	All of these Significance of Limiting Reactant: The significance of limiting reactant is as follows. (i) Expensive reactant is taken as limiting to ensure that it is completely used up in a chemical reaction. (ii) Sometimes one of the reactant is taken as limiting reactant to make the reaction faster e.g. Taking oxygen in excess to burn a substance makes the burning faster. (iii) To determine the effect of concentration on the rate of reaction.
Q.95	D	Stoichiometric calculation assume that (i) All the reactants are completely converted into product (ii) No side reaction occurs (iii) In calculation law of conversation of mass and law of definite proportions are obeyed
Q.96	D	
Q.97	D	
Q.98	A	
Q.99	C	
Q.100	D	

ATOMIC STRUCTURE

Discovery of Fundamental Particles, Properties of Fundamental Particles & Plancks
Theory and Bohr's Model

Q. 1	From discharge tube experiments, it is concluded that				
	A. Mass of proton is in fraction				
	B. Nucleus contains positive charge				
	C. Matter contains electrons				
	D. Positive rays are always lighter than cathode rays				
Q. 2	Consider the following reaction ${}_{4}\text{Be} + {}_{2}\text{He} \rightarrow {}_{6}\text{C} + {}_{1}\text{n}$ This reaction is				
	A. An exothermic reaction B. A nuclear reaction				
	C. An example of artificial radioactivity D. All of these				
Q. 3	The nature of cathode rays in discharge tube				
	A. Depends upon the nature of the gas used in discharge tube				
	B. Depends upon the nature of the cathode used in discharge tube				
	C. Is independent of the nature of the gas used in discharge tube				
0.4	D. Depends upon the nature of anode in the discharge type				
Q. 4	Which of the following specie has more electrons than neutrons? A. Na ⁺ B. F ⁻¹				
	A. Na C. O ⁻¹				
Q. 5	A fast-moving neutron can eject from nitrogen				
Q. 3	A. γ – rays B. α – rays				
	C. β rays D. Electrons				
Q. 6	e/m ratio of cathode rays is than that of canal rays				
Q. U	A. Smaller B. Greater				
	C. Equal D. Depend upon the condition				
Q. 7	Which of the following relationship is incorrect?				
2. /	A. E $\alpha\beta$ B. E $\alpha\beta$				
	C. $v = \lambda$ D. $E \propto 1/\lambda$				
Q. 8	Which of the following is not the unit of wave number?				
	A. m ⁻¹				
	C. mm				
Q. 9	An electron makes a transition from energy state E, to E1 will emit a photon of				
	frequency				
	A. $v = E_1 - E_3/h$ B. $v = (E_3 - E_1) h$				
0.10	C. $v = (E_1)/h$ D. None of these				
Q. 10	All of the following were theorized by Bohr in the description of atom except				
	A. Angular momentum of electron is multiple of $h/2\pi$ B. Electrons circulate in discrete circular orbit				
	C. Electron continuously radiate energy in the form of radiation in a given orbit				
	D. Distance between successive orbits are increasing				
	Quantum numbers and Shapes of orbitals				
0.11	Which of the following quantum numbers is not derived from Schrodinger wave equation?				
V. 11	A. Principal quantum number from Schrodinger				
	B. Azimuthal quantum number from Schrodinger				
	C. Magnetic quantum number from Schrodinger				
	D. Spin quantum number from Schrodinger				
Q. 12	The number of orbitals in the 2nd principal quantum number of an atom is				
	A. 4 B. 9				
	C. 16 D. 1				
Q. 13	Which of the following sets of quantum numbers is not allowed?				
	A. $n = 3$, $l = 2$, $m = 0$, $s = -1/2$ B. $n = 3$, $l = 1$, $m = -1$, $s = -1/2$				
	C. $n = 3$, $l = 0$, $m = 0$, $s = -1/2$ D. All are allowed				
Q. 14	Quantum Number values for 5p orbital is				
	A. $n = 51 = 0$ B. $n = 51 = 1$				
	C. $n = 5 l = 2$ D. $n = 5 l = 3$				
Q. 15	A sub shell having $n = 6$, and $l = 3$ is designated as				
	A. 5s B. 6p				

C. 6f

D. 6d

Q. 16	The number of degenerate orbitals i	n p—subshell is
	A. 2	B. 3
	C. 5	D. 7
0.17	n + 1 value for 4f will bea	and 5p will be
-	A. 7, 5	B. 5, 7
	C. 7, 6	D. 9, 6
O. 18		electrons, if atomic number of the element is 19
	A. 9	B. 6
	C. 10	D. 16
0. 19		=2, then 'm' can have value
A. 72	A. 3	B. 5
	C. 7	D. 9
O. 20	How many numbers of clockwise ele	
2.20	A. 0	В. 1
	C. 2	D. 4
		onfiguration of elements
0.21	Which of the following orbitals can	
Q. 21	A. Atomic orbital	B. Hybrid orbital
	C. Molecular orbital	D. All of these
0.22	If the value of $n = 4$ what is probable	
Q. 22	A. 0,1	B. 0,1,2
	C. 0,1,2,3	D. None of above
0.23		ls ² , 2s ² ,2p ⁴ Number of unpaired electrons are
Q. 23	A. 1	B. 2
	C. 3	D. 4
0.24	The number of orbitals in M - shell	
Q. 24		B. 4
	A. 1	D. 9
0.25	C. 16	
Q. 25		il ion M ⁺² is 2, 8, 14 and its atomic mass is 56.
	The number of neutrons in its nucle	
	A. 30	B. 32
0.36	C. 34	D. 42
Q. 26	Which of the following specie has m	
	A. Na	B. F ⁻¹
0.05	C 0-1	D. Mg ⁺²
Q. 27		rbital before pairing in any one sub-shell
	according to	D. Death, and a leading of the
	A. (n + 1) Rule	B. Pauli's exclusion principle
0.40	C. Hund's rule	D. Heisenberg's principle
Q. 28	Total number of valence electrons in	
	A. 16	B. 32
0.00	C. 8	D. 18
Q. 29	Which of the following oxides of nitr	_
	A. N ₂ O ₃	B. NO
	C. N ₂ O	D. NO ₂ -
O. 30	The atomic number of an element h	aving maximum number of unpaired electrons
2.00	in p-subshell, is	aring mannam namoor or anymico orottono
	A. 7	B. 10
	C. 12	D. 16
O. 31	Positive rays are produced	27120
Q. 01	A. By burning of gas	
	B. By cooling of the gas	
	C. By ionizing the gas	
	D. From anode like cathode rays, prod	uced from cathode
O. 32		kept to produce cathode rays
Q. 54	A. 10torr	B. 1torr
	C. 0.1torr	D. 0.01torr
	C. U.11011	D. U.UITUII

Q. 33	Number of electrons, protons and neut	rons present in 30 Zn 2 respectively
	A. 28, 30, 36	B. 28, 28, 36
	C. 32, 30, 36	D. 28, 36, 30
0.34	Which of the following are not able to	
	A. α-rays	B. β-rays
	C. γ-rays	D. Neutrons
0.35	Which order of mass is correct in ascer	
	A. $e^- > p^{\circ} > n$	B. e ⁻ < n < p ⁺
	C. $e^- < p^+ < n$	D. $n > p^+ > e^-$
	*	•
Q. 36		3 protons and 8 nutrons, which atoms it is
	A. C	B. N
	C. O	D. F
Q. 37	Which rays are more penetrating in na	
	A. α-rays	B. β-rays
	C. γ-rays	D. All have same nature
Q. 38	Positive rays give flash on	
	A. AgNO ₃ plate	B. AgCi plate
	C. ZnO	D. ZnS
Q. 39	The wave number of the light emitted	by a certain source is 2 × 106 m ⁻¹ . The
	wavelength of this light will be	
	A. 500nm	B. 500m
	C. 200nm	$D.5 \times 10^7 \mathrm{m}$
Q. 40	The e/m ratio for the positive rays is m	
	A. Hydrogen	B. Helium
	C. Oxygen	D. Nitrogen
Q. 41	Total number of fundamental particles	
	A. 6	B. 8
	C. 14	D. 20
Q. 42		is 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ⁶ 3d ⁶ and its atomic
	weight is 56, number of neutrons in the	
	A. 20	B. 26
	C. 28	D. 30
Q. 43		
Q. 43	A. Size of orbit	B. Shape of orbital
	A. Size of orbit C. Orientation of orbital	B. Shape of orbital D. Spin of electron
	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of	B. Shape of orbital D. Spin of electron f sodium is explained by
	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number	B. Shape of orbital D. Spin of electron f sodium is explained by B. Azimuthal quantum number
Q. 44	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number	B. Shape of orbital D. Spin of electron f sodium is explained by B. Azimuthal quantum number D. Spin quantum number
Q. 44	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the	B. Shape of orbital D. Spin of electron f sodium is explained by B. Azimuthal quantum number
Q. 44	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number e angular momentum (mvr) of an electron is
Q. 44	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number e angular momentum (mvr) of an electron is
Q. 44	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is B. $\frac{nh}{\pi}$
Q. 44	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is B. $\frac{nh}{\pi}$
Q. 44	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number e angular momentum (mvr) of an electron is
Q. 44 Q. 45	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is $B. \frac{nh}{\pi}$ D. $\frac{2nh}{\pi}$
Q. 44 Q. 45	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is $B. \frac{nh}{\pi}$ D. $\frac{2nh}{\pi}$
Q. 44 Q. 45	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not part of the equal to $\frac{3nh}{2\pi}$	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is B. $\frac{nh}{\pi}$ D. $\frac{2nh}{\pi}$ possible
Q. 44 Q. 45 Q. 46	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not part of the equal to $\frac{3nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ C. $\frac{3nh}{2\pi}$	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is $B. \frac{nh}{\pi}$ D. $\frac{2nh}{\pi}$ possible B. $n = 3, 1 = 3, s = +1/2$ D. $n = 6, 1 = 0, s = +1/2$
Q. 44 Q. 45 Q. 46	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not part A. $n = 5, 1 = 3, s = +1/2$ C. $n = 4, 1 = 2, s = +1/2$ The last electron in the Na and K can be	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is $B. \frac{nh}{\pi}$ D. $\frac{2nh}{\pi}$ possible B. $n = 3, 1 = 3, s = +1/2$ D. $n = 6, 1 = 0, s = +1/2$ be distinguished by
Q. 44 Q. 45 Q. 46	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not part of the equal to and the equal to an equal to a set of the equal to	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is $B. \frac{nh}{\pi}$ D. $\frac{2nh}{\pi}$ possible B. $n = 3, 1 = 3, s = +1/2$ D. $n = 6, 1 = 0, s = +1/2$
Q. 44 Q. 45 Q. 46	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not part of the equal to at $\frac{nh}{2\pi}$ Which set of quantum numbers is not part of the equal to at $\frac{nh}{2\pi}$ The last electron in the Na and K can be a Principal quantum number C. Magnetic quantum number	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is $B. \frac{nh}{\pi}$ D. $\frac{2nh}{\pi}$ possible B. $n = 3, 1 = 3, s = +1/2$ D. $n = 6, 1 = 0, s = +1/2$ be distinguished by B. Azimuthal quantum number D. Spin quantum number
Q. 44 Q. 45 Q. 46 Q. 47	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not part of the equal to and equal to an equ	B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is $B. \frac{nh}{\pi}$ D. $\frac{2nh}{\pi}$ possible B. $n = 3, 1 = 3, s = +1/2$ D. $n = 6, 1 = 0, s = +1/2$ be distinguished by B. Azimuthal quantum number D. Spin quantum number
Q. 44 Q. 45 Q. 46 Q. 47	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not part in the set of quantum numbers is not part in the set of quantum numbers in the last electron in the Na and K can be a Principal quantum number C. Magnetic quantum number If the value of $n = 4$ what is probable verified to the set of quantum number of the value of $n = 4$ what is probable verified to the set of quantum number of the value of $n = 4$ what is probable verified to the set of quantum number of the value of $n = 4$ what is probable verified to the set of quantum number of the value of $n = 4$ what is probable verified to the set of quantum number of the value of $n = 4$ what is probable verified to the set of quantum number of $n = 4$ what is probable verified to the set of quantum number of $n = 4$ what is probable verified to the set of $n = 4$ what is probable verified to the set of $n = 4$ what is probable verified to the set of $n = 4$ what is $n = 4$ what	 B. Shape of orbital D. Spin of electron of sodium is explained by B. Azimuthal quantum number D. Spin quantum number angular momentum (mvr) of an electron is B. π/π D. 2nh/π D. n = 3, 1 = 3, s = +1/2 D. n = 6, 1 = 0, s = +1/2 be distinguished by B. Azimuthal quantum number D. Spin quantum number alue of ξ
Q. 44 Q. 45 Q. 46 Q. 47	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not part in the set of quantum numbers is not part in the set of quantum numbers in the set of quantum number in the set of quantum number c. Magnetic quantum number if the value of $n = 4$ what is probable v. A. 0,1	B. Shape of orbital D. Spin of electron f sodium is explained by B. Azimuthal quantum number D. Spin quantum number e angular momentum (mvr) of an electron is B. π/π D. 2nh/π D. 2nh/π possible B. n = 3, 1 = 3, s = +1/2 D. n = 6, 1 = 0, s = +1/2 De distinguished by B. Azimuthal quantum number D. Spin quantum number alue of ℓ B. 0,1,2 D. 0, 1, 2, 3, 4
Q. 44 Q. 45 Q. 46 Q. 47 Q. 48	A. Size of orbit C. Orientation of orbital Existence of pair of lines in spectrum of A. Principal quantum number C. Magnetic quantum number According to Bohr's atomic theory, the equal to A. $\frac{nh}{2\pi}$ C. $\frac{3nh}{2\pi}$ Which set of quantum numbers is not part in the set of quantum numbers is not part in the set of quantum numbers in the last electron in the Na and K can be a Principal quantum number C. Magnetic quantum number If the value of $n = 4$ what is probable value o	B. Shape of orbital D. Spin of electron f sodium is explained by B. Azimuthal quantum number D. Spin quantum number e angular momentum (mvr) of an electron is B. π/π D. 2nh/π D. 2nh/π possible B. n = 3, 1 = 3, s = +1/2 D. n = 6, 1 = 0, s = +1/2 De distinguished by B. Azimuthal quantum number D. Spin quantum number alue of ℓ B. 0,1,2 D. 0, 1, 2, 3, 4

Q. 50 Which set of quantum numbers is not possible A. $n = 5, 1 = 3, s = +\frac{1}{2}$ B. n = 3, 1 = 3, s = +1/2C. n = 4, l = 2, s = +1/2D. n = 6, l = 0, s = +1/2Q. 51 The number of unpaired electrons in p-sub shell of sulphur atom is A. 4 B. 6 C. 2 D. 3 Q. 52 The number of electrons in a shell can be calculated by formula A. 21 + 1B. 2(21+1) $C. 2n^2$ $D. n^2$ Q. 53 Which quantum number is used to represent the subshells? A. Principal Quantum number B. Azimuthal quantum number C. Magnetic quantum number D. Spin quantum number Q. 54 The maximum probability of finding an electron in a hydrogen atom according to Schrodinger is A. 0.053nm B. 0.043nm C. 0.073nm D. 0.057hm O. 55 Which of following statement is correct about azimuthal quantum number, It tells A. Size of orbital B. Shape of orbital I). Nuclear stability C. Orientation of orbital in space Q. 56 The shape of p-orbital is B. Spherical symmetrical A. Spherical C. Dumb-bell shape D. Circular O. 57 Which subshell is nearest to nuclous? B. 2s C. 2p D. Both A and B Q. 58 Which atomic orbital has highest energy A. 4d B. 4f C. 5s D. 5p Q. 59 An orbital which is spherically symmetrical is A. p-orbital B. d-orbital C. f-orbital D. s-orbitat Q. 60 Which one of the following sub-shells does not exist? B. 2d A. 2p C. 3p D. 4d Q. 61 (An) is a region of space in which there is a high probability of finding an electron in an atom A. Shell B. Atomic orbital C. Nucleus D. Main energy level Q. 62 According to quantum mechanics, the size of electronic shell is told by the quantum number A. Spin quantum number B. Magnetic quantum number C. Azimuthal quantum number D. Principal quantum number Q. 63 Which of the following rule/principle helps us to determine order of filling of sub shells by electrons? A. Aufbau principle B. Hund's rule C. Pauli exclusion principle D. Mosleys law Q. 64 Filling order of 4s, before 3d is explained by A. Hund's rule B. (n+l) rule C. Pauli-exclusion principle D. Auf-bau principle Q. 65 Decreasing energy order of subshell of a particular shell is B. f > d > p > sA. f > d > s > pC. s > p > d > fD. p > s > f > dQ. 66 Which of the following helps to predict valency of element? A. Pauli's Exclusion Principle B. Sidgewick rule C. Hund's rule D. Aufbau Principle Q. 67 Which of the following contains unpaired electrons? A. Ca⁺² B. Ni⁺² C. K⁺¹ D. Zn⁺²

Q. 68	The atomic number of an eleme of the periodic table respectively	nt is sixteen. It belongs to period and group number
	A. 3, 7	B. 6, 3
	C. 3, 6	D. 7, 3
O. 69	Which electronic configuration	
	A. 1s ² , 2s ² , 2p ⁶ , 2d ² , 3s ¹	B. 1s ¹
	C. $1s^2$, $2s^2$, $2p^1_x$, $2p^1_y$, $2p^1_z$	D. $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$
0.70		
Q. /U	A. 8	the sub-shell for which $n = 3$, $l = 1$? B. 18
	A. 6 C. 6	D. 32
0.71		ons are present in an atom with $Z = 24$
Q. /1	A. Two	B. Five
	C. Six	D. Eight
O. 72	When 4f orbital is complete the	
Q. /=	A. 6s	B. 5p
	C. 5d	D. 4d
0.73		he electronic configuration of one of the following
	cannot be justified	
	A. Fluorine	H. Neon
	C. Sodium	D Phosphorous
Q. 74	Which one of the following state	ements is not correct?
	A. Unit of frequency is cycle per	second
		trum occurs in the ultraviolet region
		ctron in the ground state of hydrogen atom is equal to h / 2p
		hydrogen atom is 2.116 × 10 ⁻⁸ cm
0.55		
Q. /5	(second last) shell	of electrons in valence shell and penultimate
	A. Na ⁺	D 02
		B. O ⁻²
	C. Al ⁺³	D. Cl
Q. 76		correctly relate the arrangement of electrons?
	A. Arrangement of electrons in su	
	7 -	generate orbitals is given by Hund's rule
		orbital is given by Pauli's exclusion principle
0.77	D. Arrangement of electrons in a	
Q. 77	The second secon	an element with atomic number 29 is
	A. 1s ² ,2s ² ,2p ⁶ ,3s ² ,3p ⁶ ,3d ⁹ ,4s ²	B. 1s ² ,2s ² ,2p ⁶ ,3s ² ,3p ⁶ ,3d ¹⁰ ,4s ¹
	C. 1s ² ,2s ² ,2p ⁶ ,3s ² ,3p ⁶ ,3d ⁸ ,4s ²	D. $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2$
Q. 78	Which of the following has mini	mum number of unpaired d-electrons?
	A. Fe ³⁺	B. Co ³⁺
	C. Co ²⁺	D. Mn ²⁺
0.70		
Ų. /y	Number of unpaired electron in	-
	A. 1 C. 3	B. 2
Q. 80	Electronic configuration of K is	D. 4
Q. 00	_	
	A. [Ar]4s ²	B. [Ar]4s ¹
	C. [Kr]5s ¹	D. [He]2s ¹

ANSWERS & EXPLANTION:	ANS	WERS	& EXPL	ANTIC	N:
-----------------------	-----	------	--------	-------	----

Q.1	C	In discharge cathode rays is produced from sample gas and cathode are basically electron		
Q.2	D	This reaction is nuclear exothermic and artificial radioactivity		
Q.3	C	Nature of cathode rays is independent of nature of gas		
Q.4	C	(a) Na ⁺ = Neutron = 12		
Q.5	В	$^{14}_{7}N + ^{1}_{0}n \longrightarrow ^{11}_{5}B + ^{4}_{2}He(\alpha - particle)$		
Q.6	В	The e/m value for the positive rays is always smaller than that of electrons and depends upon the nature of the gas used in the discharge tube.		
Q.7	C	The nature of the gas used in the discharge tube. $\overline{V} = \lambda \text{ is incorrect}$ $E \propto V \text{Frequency}$ $E = hv$ $We \text{ know} : v = \frac{c}{\lambda}$ $We \text{ know} : v = -(v = \text{wave number})$ $So E = \text{hc } v$		
Q.8	A	As wave number wave length to its unit is inverse of length		
Q.9	C	An electron makes a transition from energy state E3 to E1 will emit a photon of frequency $v=(E_3-E_1)/h$. Formula used $\Delta E=hv$ $v=\frac{\Delta E}{h}$ We know: $\Delta E=E_3-E_1$ or $v=\frac{(E_3-E_1)}{h}$		
Q.10	c	According to Bohr's model of an atom electrons circulate in discrete circular orbits with fixed energy, distance between successive orbits are increasing and angular momentum of electron is multiple of h/2 except electron continuously radiate energy in the form of radiation in a given orbit.		
Q.11	D	Spin quantum number is not derived from Schrodinger wave equation. It was given by Goudsmit and Uhlenbech		
Q.12	A	The number of orbitals in any shell (n) can be calculated by taking n2.\ e.g, if n = 2 So number of orbitals = (2) ² = 4		
Q.13	D	When n=3, l=2, 'd' present in 3rd shell When n=3, l=1, 'p' present in 3rd shell When n=3, l=0, 's' present in 3rd shell so all are possible		
A S D G PS	- AT	2022 BV SKN PAGE 20 OF 424		

Q.14	В	$n = 5$ $\ell = 0 \rightarrow s$ $\ell = 1 \rightarrow p$ $\ell = 2 \rightarrow d$ $\ell = 3 \rightarrow f$	
Q.15	С	n = 6 = number of shell 1 = 3 = shape of orbital $\ell = 0 \rightarrow s$ $\ell = 1 \rightarrow p$ $\ell = 2 \rightarrow d$ $\ell = 3 \rightarrow f$	
Q.16	В	Number of orbitals in subshell – (2l+1) –2(1)+1=3	
Q.17	С	n + 1 value for $4f - (4+3) - 75p = (5+1) = 6$	
Q.18	C	Number of orbitals = total electron $/2 = 19/2 = 9.5$ @ 10 (Fraction is rounded to higher number)	
Q.19	В	$m = \pm 1$ $m = \pm 2 = -2, -1, 0, 1, 2$	
Q.20	В	Helium has 2 electrons, 1 is clock wise and other is anti-clock wise	
Q.21	D	Any orbital of any type can't accumulate more than two electrons.	
Q.22	C	If the value of $n = 4$ then probable values of ℓ is 0,1,2,3. If $n = 4$ than $l = n$ 1 So $l = 4$, $l = 0$, 1, 2, 3 s p d f	
Q.23	В	1s 2s Px Py Pz 1 1 1 1	
Q.24	D	M-n-3 Number of orbital in shell = $n^2-3^2=9$	
Q.25	A	M ⁻² = 2+8+14+2 = 26 2 e- are removed to form cation so added again in total Number of neutrons = 56 - 26 - 30	
Q.26	C	Na+ 10 12 F¹ 10 10 O¹¹ 9 8 Mg⁺² 10 12	
Q.27	С	Hund's rule If de-generate orbital available for filling of more than one e- then e- will be filled in different orbital with same spin rather than filling in same orbital with opposite spin	
Q.28	C	1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ³ H H P H H	

Q.29	c	(a) $N_2O_3 = 38$ (b) $NO = 15$ (c) $N_2O = 22 CO_2 = 22$ (d) $NO_2 = 23$
Q.30	A	$Z_{7} = 1s^{2}, 2s^{2}, 2p_{x}^{1}, 2p_{y}^{1}, 2p_{z}^{1} = 3$ $Z_{10} = 1s^{2}, 2s^{2}, 2p_{x}^{2}, 2p_{y}^{2}, 2p_{z}^{2} = 0$ $Z_{12} = 1s^{2}, 2s^{2}, 2p_{x}, 2s^{2} = 0$ $Z_{16} = 1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p_{x}^{2}, 3p_{y}^{1}, 3p_{z}^{1}$
Q.31	C	When cathode rays are strike with molecule of gas it eject electrons from gas molecule and produce positive ions. $M + e^- \longrightarrow M^{+1} + 2$
Q.32	D	Pressure should be reduced for movement of cathode rays and to avoid hindrance.
Q.33	A	
Q.34	D	Neutrons are not able to ionize the gas but α-ray, β-rays and γ-rays can ionizes the gases.
Q.35	C	Electron is the lightest particle while neutron is heaviest among three
Q.36	C	Oxygen have atomic number 8 and atomic mass 16.
Q.37	C	γ – Rays are less ionizing and more penetrating
Q.38	D	positive rays give flash on ZnS plates
Q.39	A	
Q.40	A	Lesser the mass greater the e/m value When hydrogen gas is used in the discharge tube, the e/m value is found to be the maximum in comparison to any other gas because the value e/m is the lowest for the positive particle obtained from the hydrogen gas.
Q.41	A	Number of proton = 2 Number of electron = 2 Number of neutron = 2
Q.42	D	
Q.43	C	Magnetic quantum number is related to orientation of orbital
Q.44	D	Spin quantum number explains doublet line while others explain fine or multiple structures. For valance electron of sodium spin will be clockwise or anticlockwise
Q.45	A	
Q.46	В	$n > 1$, 1^3 m
Q.47	A	The values of Azimuthal, magnetic and spin quantum numbers of sodium and potassium are same while their value of principal quantum number is changed. For sodium it is three and for potassium it is four
Q.48	C	If the value of $n=4$ then probable values of ℓ is 0,1,2,3. If $n=4$ than $l=n-1$ So $l=4-l=0$, 1, 2, 3 s p d f
Q.49	C	Number of electron = $2(2l+1) = 2(2(1)+1)-6$
Q.50	В	n = 3 means 3rd shell 1 = 3 means f-subshell f will be start 4th shell n > 1, 1 3 m

Q.51	C	$S16 = [Ne], 3s^2, 3 px^2, 3py^1, 3pz^1 = 2 un-paired$		
Q.52	C	2l + 1 = number of orbital in shell 2(2l + 1) = number of electron in subshell 2n ² = number of electron in shell n ² = number of orbital in shell		
Q.53	В	Azimuthal quantum number represents the subshell		
Q.54	A			
Q.55	В	Azimuthal quantum number describe the shapes of orbitals		
Q.56	C	= o s = Spherical shape		
Q.57	A	Coefficient represent principle quantum number (n) smaller the value of (n) a sub shell closer it to the nucleus		
Q.58	В	n+1 value is highest for 4f (4+3) is equal to 7		
Q.59	D	Shape of s-orbital is spherically symmetrical		
Q.60	В	d-Subshell does not exist in 2nd shell		
Q.61	В	An atomic orbital is a region of space in which there is a high probability of finding an electron in an atom		
Q.62	D	Principal quantum number explain the size of shell		
Q.63	A	Aufbau principle helps us to determine order of filling of sub shells by electrons. 1. Aufbau principle — Filling of electrons in sub-shells 2. Hund's rule — Filling of electrons in degenerate orbitals 3. Pauli exclusion principle — Filling of electrons in orbitals Mosley's law — Arrangement of elements in periodic table on atomic number basis.		
Q.64	В	Filling order of 4s, before 3d is explained by (n+1) rule. (n+1) rule: (a) The electrons are filled in subshells in increasing order of their (n+1) values. (b) If two subshells have same (n+1) values, then the subshell with low 'n' value will be filled first.		
Q.65	В	The correct order of sub-shells, within a shell w.r.t decreasing energy is $f > d > p > s$.		
Q.66	C	Valency of an element is equal to number of unpaired electrons in half filled orbitals. Hund's rule help use to predict number of half filled orbitals in an atom. So indirectly Hund's rule helps us to predict valency of an atom.		
Q.67	В	helps us to predict valency of an atom. Nickel ions(Ni ⁺²) contains unpaired electrons. The electronic configurations of ions given below: A. $_{20}$ Ca ⁺² = 1s ² ,2s ² ,2p ⁶ ,3s ² ,3p ⁶ B. $_{28}^{20}$ Ni ⁺² = 1s ² ,2s ² ,2p ⁶ ,3s ² ,3p ⁶ ,3d ² _{yz} ,3d ² _{xz} ,3d ² _{xz} ,3d ¹ _{x²-y²} ,3d ¹ _{z²-y²} ,3d ¹ _{z²} ,4s ⁰ C. $_{19}^{28}$ K ⁺¹ = 1s ² ,2s ² ,2p ⁶ ,3s ² ,3p ⁶ A. $_{30}^{19}$ Zn ⁺² = 1s ² ,2s ² ,2p ⁶ ,3s ² ,3p ⁶ ,4s ² ,3d ¹⁰		
Q.68	C	K=2 L=8 M=6 Valance electron is 6 so it belongs to VI group and 3rd period.		
Q.69	A	d-subshell start from third shell		
Q.70	C	Number of electron = $2(2l+1) = 2(2(1)+1)=6$		
Q.71	C	$_{24}$ Cr = [Ar]4s ¹ , 3d _{xy} ¹ , 3d _{xy} ¹ , 3d _x ¹ , 3d _x ¹ , 3d _z ¹ = 6 unpaired electron		

Q.72	C	The filling of electron according to n+l rule
		1s, 2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d
Q.73	D	$P_{15} = [Ne] 3s^2 3p_x^1, 3p_y^1, 3p_z^1$
Q.74	D	
Q.75	D	$Na^{+} = K = 2$ $L = 8$ $O^{-2} = K = 2$ $L = 8$ $Cl^{-} = K = 2$ $L = 8$ $M = 8$
Q.76	D	Octet rule is not relate with arrangement of electron according to energy.
Q.77	В	The atomic weight is 29 is chromium. When d-subshell will be half filled or complete filled are more stable than d ⁴ and d ⁹ .
Q.78	C	(a) $Fe^{3r} = 1s^2, 2s^2, 2p^4, 3s^2, 3p^4$ (b) $CO^{3r} = 1s^2, 2s^2, 2p^4, 3s^2, 3p^4$ (c) $CO^{2r} = 1s^2, 2s^2, 2p^4, 3s^2, 3p^4$ (d) $Mes^{2r} = 1s^2, 2s^2, 2p^4, 3s^2, 3p^4$
Q.79	A	15 15 15 15 1
Q.80	В	$K_{19} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^4$

GASES, LIQUIDS & SOLIDS

	Properties of Gases, Boyle's Law, Charle	es's Law &Avogadro's law
Q. 1	The volume of given mass of gas is	to inverse of pressure
	A. Inversely proportional	B. Directly proportional
	C. Equal	D. Constant
Q. 2	At constant temperature, by doubling th	e pressure volume of gas reduced to
	A. 1/2 of original volume	B. 1/4 of original volume
	C. 1/3 of original volume	D. Remain same
Q. 3	In Boyles law, plot between pressure and	l constant 'K' obtained is
_	A. Straight line passing through origin	B. Curve (hyperbolic)
	C. Straight line parallel to pressure axis	D. Straight line perpendicular to pressure axis
Q. 4	The units of 'R' depends upon	
-	A. Moles	B. Temperature
	C. Pressure and volume	D. All of these
Q. 5	The SI unit of pressure is Nm ⁻² . 10 ⁻³ atm	is equal to
	A. 1.01325 Nm ⁻²	B. 1.01325 Pa
	C. 101.325 KPa	D. 0.101325 KPa
Q. 6	One dm3 of each of H2. He, N2 and O2 in	separate vessels at STP, have number of
	molecules in each.	
	A. 6.02×10^{23}	B. 6.02×10 ²²
	C. 2.68×10^{22}	D. 3.01×10 ²³
Q. 7	The molar volume of CO2 gas is maximu	um at
_	A. 273 k and 1 atm	B. 127°C and 1 atm
	C. 0°C and 2 atm	D. 273°C and 2 atm
Q. 8	For a given mass with initial volume 'V'	
	absolute temperature is increased two time	
	A. 2V ₂	B. 2V
	C. 4V	D. 6V
Q. 9	Temperature is the measure of average l	K.E. At a temperature of -273.13°C, K.E will
	become	
	A. Low	B. High
	C. Very low	D. Drop to zero
Q. 10	Pressure remaining constant at which te	mperature the volume of gas will become
	twice of what it is at 0°C	
	A. 546°C	B. 200 °C
	C. 546 K	D. 273 K
		of gases and interpretation of T
Q. 11	The units of R' depends upon	
	A. Pressure	B. Temperature
	C. Volume	D. Both A and C
Q. 12	A container contains 0.2 moles of H2, 0.3	
	the total pressure exerted by mixture of	gases if volume of container is 20 dm ³ ,
	temperature is 25° and $R = 0.0821$ atm	dm3 mol ⁻¹ K ^{-1?}
	A. 22.4 atm	B. 1.12 atm
	C. 11.2 atm	D. 2.24 atm
Q. 13	When the value of general gas constant '	R' is given as 8.314, the relevant units will be
	A. Cal, mol ⁻¹ degree ⁻¹	B. dm^3 . atm mol^{-1} . k^{-1}
	C. J. mol ⁻¹ . K ⁻¹	D. Ergs.mol ⁻¹ .degree ⁻¹
Q. 14	The amount of energy required to increa	se the temperature of 1-mole of gas by 2K is
	A. R	B. 2R
	C. 1/2 R	D. 3R
Q. 15	The root mean square velocity at STP for th	e gases H2, N2, O2 and HBr are in the order
	A. $H_2 < N_2 < O_2 < HBr$	B. $HBr < O_2 < N_2 < H_2$
	C. $H2 < N_2 < HBr < O_2$	D. $HBr < O_2 < H_2 < N_2$
Q. 16	The molecules of which gas has highest a	verage kinetic energy at 25°C
	A. CO ₂	$B. O_2$
	C. CH ₄	D. All have same

Q. 17	A gas with lowest root mean square ve	elocity at 300K. is
	A. SO ₂	$B. SO_3$
	C. Cl ₂	\mathbf{D} . \mathbf{H}_2
Q. 18		the kinetic energy of gas molecules varies
	directly with	
	A. Pressure	B. Density
0.40	C. Volume	D. Absolute temperature
Q. 19	A. The collisions among the molecules of	
	-	in the state of ceaseless haphazard motion
	_	on of gas molecules with the wall of container
	D. The molecules exert appreciable attra	
Q. 20	In a closed vessel of 1000 cm ³ , H ₂ gas	is heated from 27°C to 127°C. Which
	statement is not correct?	D. The energy of gas melecules increases
	C. Pressure of gas increases	B. The energy of gas molecules increases
		D. The number of moles of gas increase Gases (Van der Waals Eq)
0.21		rrect according to the Vander Waal's equation
Q. 21	A. 'a' and 'b' constant of both NH ₃ and	
	B. 'a' and 'b' constant of both NH ₃ and	
		f N ₂ and b constant of NH ₂ is less than that of N ₂
	_	of N ₂ and 'b' constant of NH ₂ is more than that of N ₂
Q. 22		ideal behaviour under which of the following
_	conditions	
	A. At high temperature and low-pressure	B. At low temperature and low pressure
	C. At low temperature and high-pressure	
Q. 23		
	A. NH ₃	B. CO ₂
	C. H ₂	$D. O_2$
Q. 24	Real gases deviate at low temperature	
	A. Decrease in translational motion of n	
	B. Increase in the collisions between the C. Significant increase in the intermolec	
	D. Charge in the volume of gas	utal attractive forces
Q. 25		ve non ideally
Z. 20	Temperature	Pressure
	A Low	Low
	B High	High
	C High	Low
	D Low	High
Q. 26	Effective volume of molecules per mol	
	volume of 1 mole of gas molecules.	
	A. 2	B. 3
	C. 4	D. 5
Q. 27		high pressure. Which of the following is
	correct for non-ideality?	
	A. At high pressure, the gas molecules n	
	_ •	een the gas molecules are increased manifold
	C. At high pressure, the volume of the g	_
0.39	D. At high pressure, the intermolecular a	_
Q. 28		behavior when subjected to gradual increase
	in pressure at 0°C? A. H ₂	B. He
	C. CO ₂	D. All show same behavior
		AND AND THE STREET OF STREET AND

Q. 29 In the following graph

Which quantities are represented by X-axis and Y-axis?

	X-axis	Y-axis
Α	Temperature	PV
В	Pressure	PV/nRT
C	Volume	PV/nRT
D	Number of moles	PV/nRT

Q. 30 The compressibility factor, (Z=PV/nRT) has value at which a gas show maximum non-ideality in behavior

A. 1.5

B. 1.1

C. 1.0

D. 0.9

Properties of liquids, Intermolecular forces (Van DER WAAL's Forces)

- Q. 31 London dispersion forces are strongest in
 - A. F₂

H. Cl₂

C. Br₂

Die

Q. 32 Naphthalene is soluble in carbon tetrachloride due to the force

A. Dipole-Dipole force

B. Dipole-induced dipole force

C. Hydrogen bonding

D. London forces

Q. 33 The polarizabilities of elements mostly increase down the group due to the

- A. Increase in the atomic number
- B. Increase in the number of shell
- C. Increase in the number of protons
- D. The behaviour of element remains the same
- Q. 34 London forces are more significant in
 - A. Polar molecules

B. Metals

C. Ionic solids

D. Non polar molecules

Q. 35 Which one of the following substances will have hydrogen bonding as one of its intermolecular forces among itself?

В. Н С Н

H-C-N

C. CH3 - O - CH3

D. H F

Q. 36 Kerosene is liquid at room temperature due to

A. Hydrogen bonding

B. Organic nature

C. Dipole-dipole forces

D. Molecular size

Q. 37 Which one of the following exhibits dipole-dipole attraction between molecules?

A. SnCl₂

B. CH₄

C. CO2

D. BCl₃

O. 38 The inter-molecular attractive forces vary in the order

- A. Water < alcohol < ether
- B. Alcohol < water < ether
- C. Ether < alcohol < water
- D. Ether < water < Alcohol

Q. 39 Forces of attractions in liquids are

A. Stronger than gases

B. Weaker than solids

C. Stronger than solids

D. Both A and B

Q. 40 Rather than gases liquid contain

- A. Fix shape B. Fix
- C. Weak forces of attraction
- B. Fix volume
 D. High molecular motion

Evaporation and Vapour Pressure, Boiling point and external pressure & Hydrogen

Bonding

Q. 41 Vapour pressure of a liquid is not affected by

A. Amount of liquid

B. Volume of container

C. Surface area

D. All of the above

Q. 42	If heat is to be supplied continuously, the bo A. Extra heat is spread in the air	oiling point of any liquid remains constant, as	
	B. High energy molecules continuously lea	aving the surface of liquid	
	C. The external pressure remains the same		
	_	d becomes greater than the external pressure	
Q. 43	Vapour pressure of liquid is measured v	-	
	equilibrium it means that		
	A. Liquid and vapours have same value of	kinetic energy	
	B. Liquid and vapours have same heat con	tent	
	C. Rate of evaporation is equal to the rate	of condensation	
	D. Rate of evaporation and condensation a	re different	
Q. 44	When a liquid is evaporated		
	A. Temperature of liquid increases	B. Temperature of liquid decreases	
	C. Liquid molecules becomes more energetic		
Q. 45		e so close to each other that the empty spaces	
	between them are minimum	n a sud As	
	A. Evaporation	B. Sublimation	
0.46	C. Condensation	D. Fusion	
Q. 46	Moving from 4°C to 0°C, the density of		
	A. Increases	B. Decreases	
0.47	C. 1st increase than decrease	D. Remains same	
Q. 47	Which gas is most soluble in water?	B. NH ₃	
	A. H ₂ S C. SO ₂		
0.49	H ₂ O has higher boiling point than H ₂ S b	D. CQ:	
Q. 40	A. H ₂ O is smaller molecule and hence more		
		H ₂ S and hence the former molecules are more	
	tightly packed	130 and hence the former more dies are more	
	C. Of intermolecular hydrogen bonding in	liquid H ₂ O	
	D. The latent heat of vaporization is higher		
Q. 49	The strongest H-bond is	Total to the state of the state	
	A. H -0-0-H 0 -0	B. H-F°-HT F	
	C. H -N-5-H- N	D. H Cl ⁻⁸ -H ⁺⁵ Cl	
Q. 50	Pick out the correct arrangement with r	espect to boiling point	
	A. $H_2O > H_2Se > H_2Te > H_2S$	B. $H_2O > H_2Te > H_2Se > H_2S$	
	$C. H_2C > H_2S > H_2Se > H_2Te$	D , $H_2O > H_2S > H_2Te > H_2Se$	
	The second secon	perties of crystalline solids	
Q. 51			
	A. Zinc	B. Sugar	
	C. Iodine	D. Glass	
Q. 52	Which is a pseudo solid?		
	A. Rock salt	B. Aluminum nitride	
0.50	C. Glue	D. Graphite	
Q. 53	may be isotropic under ordin		
	A. Diamond	B. Borax	
0.54	C. Bromine	D. Sodium Chloride	
Q. 54	The most important characteristic of a s	ond inrough which it is identified as	
	crystalline solid	D. Cham multing point	
	A. Geometrical arrangement of particles	B. Sharp melting point D. Definite volume	
0.55	C. Definite shape	D. Dennite volume	
Q. 33	Diamond and graphite are A. Isomorphous	B. Polymorphous	
	C. Allotropes	D. Both "B" and "C"	
0.56			
Q. 30	NaCl and CsF have same geometry beca A. Their cations belong to 1A group	B. Their anions belong to VIIA group	
	C. Both are soluble in water	D. They have similar radii ratio	
0.57	Which one is not the anisotropic behavior	-	
2.07	A. Cleavage of crystal	B. Electrical conductivity	
	C Co-efficient of thermal expansion	D. Melting point and boiling point	

Q. 58	The arrangement of particles as a point	s in a crystal is called
	A. Unit cell	B. Crystal lattice
	C. Space lattice	D. Both B and C
Q. 59		
	A. Three	B. Four
	C. Six	D. Eight
Q. 60	The crystalline part of amorphous solid	
	A. Unit cell	B. Crystallite
0.61	C. Crystallography	D. None of these
Q. 01	Which type of intermolecular forces are	B. Vander Waal's force
	A. Dipole-dipole interaction C. Both a and c	D. None of these
0.62	An example of three-dimensional giant	
2.02	A. Ice	B. Diamond
	C. Sodium chloride	D. Iodine
O. 63	Which one of the following may not be	
	A. Transition temperature	B. Isomorphison
	C. Polymorphism	D. Isomerism
Q. 64	A wrong statement is	
	A. KCl is harder than Na - metal	F. Copper is malleable and ductile
	C. Carborundum (SiC) is a soft solid	D. The crystal of NaCl is brittle
Q. 65	Ionic solids do not conduct the electrica	current because
	A. Ions don't have translatory motion	
	B. Free electrons are less	
	C. The coordination number of ion is very	
	D. Strong covalent bonds are present in th	
Q. 66	The crystals formed due to London's fo	
	A. Ionic	B. Covalent
0 67	C. Molecular Which one is true about lattice energy?	D. Metallic
Q. 07	A. It increases with increasing the size of	cation
	B. It decreases with increase the size of an	
	C. All ionic compounds have same lattice	
	D. Lattice energy of NaCl is greater than t	
Q. 68	Ionic solids are mostly of high density d	
	A. Chemical bonding	B. Structure
	C. Close packing of ions	D. None of these
Q. 69		-
	A. Two types	B. Seven types
	C. Five types	D. Four types
Q. 70	Diamond, Silicon carbide are insoluble	
	A. They have very high lattice energy	B. They have very big size
0.71	C. They do not interact with the solvent	D. All of these
Q. /1	By what factor the pressure on a gas be A. 1/3	B. 1/2
	C. 3/1	D. 1/4
0.72		re is 10dm ³ , volume of gas at 0.8atm will be
Q. 72	A. 10dm ³	B. 12.5dm ³
	C. 8dm ³	D. 5dm ³
O. 73	Which of the following laws can be expl	ained only on the basis of Kelvin Scale?
	A. Boyle's law	B. Charle's law
	C. Avogadro's law	D. Dalton's law
Q. 74	Gases are soluble in water at	
	Gases are soluble in water at	
	A. Low temperature and high-pressure	B. High temperature and high pressure
	A. Low temperature and high-pressure C. Low temperature and low-pressure	B. High temperature and high pressure D. High temperature and low pressure
Q. 75	A. Low temperature and high-pressure C. Low temperature and low-pressure Which one has more mass at STP	D. High temperature and low pressure
Q. 75	A. Low temperature and high-pressure C. Low temperature and low-pressure	

Q. 76	Two gases having same temperature and pressure will have		
	A. Same volume	B. Same no. of molecules	
	C. Same moles	D. All of these	
Q. 77	If volume of O2 is 11.2dm3 at STP, then	the number of moles would be	
	A. 2.0 moles	B. 0.5 moles	
	C. 1.0 moles	D. 0.25 moles	
Q. 78	The original volume of a gas at 0°C is 2	73cm ³ at constant pressure. Its volume at	
	273°C becomes		
	A. Zero cm ³	B. 546 cm ³	
	C. 446 cm ³	D. 346 cm ³	
Q. 79	Which of the following expressions at co	onstant pressure represents Charles's law?	
	1		
	A. $V \propto \frac{1}{T}$	B. $V \propto \frac{1}{T^2}$	
	C. V \precent T	D. V = d	
0.00	T	•	
Q. 80	The equation Vt = Vo $(1 + \frac{t}{273})$ is bas	sed on	
	A. Celsius scale	B. Fahrenheit scale	
	C. Kelvin scale	D. Absolute scale	
O. 81	Which of following relation is true for t		
	A. RT/PM	B. M/V	
	C. P/RT	D. PM/RT	
O. 82	In the ideal gas equation PV = n RT, th	e value of R depends upon	
	A. Units of measurement	B. Pressure of gas	
	C. Temperature of gas	D. Nature of gas	
O. 83	According to Kinetic theory of gases wh		
-			
	A. PV = k	B. $PV = \frac{1}{3}RT$	
	C. $P_1V_1 = P_2V_2$	D. All of the above	
O. 84	The expression for root mean square ve		
		[3RT	
	A. $C_{rins} = \sqrt{\left(\frac{3RT}{M}\right)^2}$	B. Critis = \ \ \frac{\sqrt{\text{M}}}{M}	
	3RT		
	C. C. S. M.	D. $C_{\text{max}} = \sqrt{3/2} RT/M$	
0.85	All of the following are conclusions of the	he kinetic theory of gases except	
Q. 05	A. Derivation of the Van der waal's equat		
	B. Derivation of Boyle's and Charle's law	IOH	
	C. Relation of average kinetic energy of g	asses to temperature	
	D. Graham's law of diffusion	ases to temperature	
0.86	If the temperature of a gas is increased	four times then its average K.F.	
Q. 00	A. Increases 2 times	B. Increases 4 times	
	C. Decreases 2 times	D. Decreases 4 times	
0.87	Van der Waal's equation is reduced to		
Q. 01	A. High temperature and low-pressure	B. Low temperature and high pressure	
	C. High temperature and high-pressure	D. Low temperature and low pressure	
Q. 88		of container is less than actual pressure due to	
Q. 00	A. Haphazard motion	B. Elastic collision	
	C. Inter molecular attractive forces	D. Repulsive forces	
0.80	Which one of the following is a solid with	_	
Q. 02	A. NaCl	B. I ₂	
	C. C ₆ H ₁₂ O ₆	D. Fe	
0.00			
Q. 30	The low acidic strength of HF molecule A. Dipole – dipole forces	B. London forces	
		D. Covalent bond	
0.01	C. Hydrogen bonding		
Q. 91	which one of the following arrangement interactions?	its represents the correct order of increasing	
		nola Dinola	
	A. Hydrogen bonding, London forces, Dip		
	B. London force, Hydrogen bonding, Dipole	-	
	C. London forces, Dipole – Dipole, Hydro		
	D. Dipole – Dipole, London forces, Hydro	ogen bonding	

PAGE 30 OF 121

NMDCAT -2022 BY SKN

Q. 32	•	Torces may be present in molecular solids:
	A. Dipole – dipole forces	B. Van der Waal's forces
	C. H- bonding	D. All of the these
Q. 93	Which statement about evaporation is	
	A. It causes cooling	B. It is exothermic process
	C. It is surface phenomenon	D. It is continuous process
Q. 94	Vapour pressure of a liquid depends u	
	A. Amount of substance	B. Surface area
	C. Size of liquid container	D. Inter molecular forces
Q. 95		
	A. Diethyl ether	B. Chloroform
	C. Methyl alcohol	D. Water
Q. 96	Steam causes more severe burn than the	
	A. Latent heat of fusion	B. Latent heat of vaporization
	C. Latent heat of sublimation	D. Latent heat of solution
Q. 97		
	A. 1200 torr	B. 323 torn
	C. 760 torr	D. 23.7 tork
Q. 98		nighest vapour pressure or is the most volatile
	A. HF (<i>t</i>)	Ε. NH _{3 (ε)}
	C. C ₂ H ₅ OH (ℓ)	D. H ₂ O (t)
Q. 99	Water can boil at	
	A. 25°C	B 100°C
	C. 120°C	D. All of these
Q. 100) A correct comparison of boiling point :	
	A. NH ₃ > HF	B. HF > H Q
	C. $C_2H_5OH > HF$	D. $NH_3 > H_2O$
Q. 101		NA) to the other. The H-bonding is more
	dominant between	
	A. C and H	B N and H
	C. O and HA	D. O and N
O. 102	2 During the cleansing action, the deterg	vents attract stair particles with a force
Q. 102		B. London forces
	A. Hydrogen bonding	
	C. Dipole-induced dipole force	D. Dipole-dipole force
Q. 103	One of the following statement s regard	ding hydrogen bond is wrong.
	A. The molecule should have an atom w	hich is highly electronegative and small in size.
		stronger compared to those formed in ammonia.
	C. Compounds showing this property are	
	D. Molecules forming hydrogen bonds an	
Q. 10 ²	The average possible number of H-box	nds an NH3 molecule can form is
	A. 1	B. 3
	C. 2	D. 4
0 10		
Q. 10:	The compound soluble in water not the	
	A. Sugar	B. Salt
	C. Urea	D. Glucose
O. 10	Value of gas constant "R" is	If unit is atm dm3 mol-1K 1
Æ. 20.	A. 0.0821	B. 8.3143
	C. 62.4	D. 1.98
Q. 107	Density of liquid water if te	emperature decreases from 25°C to 0°C
	A. Decreases	B. Increases
	C. First increases and then decreases	D. First decreases and then increases
્ર. 108	3 Which gas show marked deviation from	
	A. He	\mathbf{B} . \mathbf{H}_2
	C. N ₂	$D. CO_2$

PAGE 31 OF 121

NMDCAT -2022 BY SKN

Q. 109 Butter melts over a wide range of temper	erature. On this basis, it is classified as
A. Molecular solid	B. Crystalline solid
C. Amorphous solid	D. Covalent solid
Q. 110 Glass is called super cooled liquid. The	reason is that glass has
A. Definite volume	B. Definite shape
C. Crystalline structure	D. No crystalline structure
Q. 111 Which property is incorrect about silica	1?
A. High transparency to light	B. Very low thermal expansion
C. Excellent insulator	D. Soluble in water
Q. 112 Which of the following is wrong?	
A. Water has maximum density at 4°C	
B. Molecular solids are relatively soft and	volatile
C. In graphite carbon atom has tetrahedral	
D. Graphite is a good conductor of electric	eity 4
Q. 113 K ₂ SO ₄ and K ₂ CrO ₄ are isomorphic substan	ces they have similar properties except one
A. Atomic ratio	B. Crystalline shape
C. Chemical properties	I). Geometry of anion
Q. 114 Crystalline structure of diamond is	
A. Body centered cubic	B. Face centered cubic
C. Hexagonal close packing	D. Cubic close packing
Q. 115 In structure of NaCl, the number of for	
A. 3	B. 4
C. 5	D. 6
Q. 116 Which of the following is an example of	molecular solid?
A. Aluminium nitride	B. Glucose
C. Sodium sulphate	D. Graphite
Q. 117 Ionic solids are characterized by which	one of the following properties
A. Moderate vapour pressure	B. High vapour pressure
C. Good conductivity in solid state	D. Solubility in polar solvents
Q. 118 The number of Nat ions which surround	d each Cl ion in the NaCl crystal lattice is
A. 2	B . 4
C. 6	D. 8
Q. 119 Unit cell is the smallest part and represe	ented all features of the entire
A. Molecule	B. Compound
C. Atom	D. Crystal
Q. 120 Unit cells of all crystal system vary from	
A. Sides (a,b,c) only	B. Angles (alpha, beta, gama) only
C. Sides or angles	D. Can't predicted

ANSWERS & EXPLANTION: -

Q.1	В	$if \frac{1}{p} = x \Rightarrow V \propto x$
0.2	A	Volume is inversel

Q.2 | A | Volume is inversely proportional to pressure

Graph between pressure and constant K is straight line parallel to pressure axis

- Q.3 C
- Q.4 C The units of 'R' depends upon units of pressure and volume. By changing unit of P, V unit of R is changed.
- Q.5 D $\begin{vmatrix} 1atm & = 101.325 \text{ kPa} \\ 10^{-3} \text{ atm} & = 0.101325 \text{ kPa} \end{vmatrix}$
- Q.6 C 22.4dm³ of each gas contain 6.02×10²³ molecules 1dm³ of each gas contain 2.68×10²² molecules
- Q.7 B Volume of gas is directly proportional to temperature, 127°C -400K which is highest with lowest pressure
- **Q.8** $V \propto \frac{1}{P}, V \propto T, \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$
- Q.9 Constitution of the Relation of the Relati
- 0°C = 273K, by doubling the temperature, volume of gas became double,
- Q.10 C 273K V, $546 K \longrightarrow 2V$,
- Q.11 D The units of 'R' depends upon units of pressure and volume. By changing unit of P, V unit of R is changed.

$$n = 0.2 + 0.3 + 0.5 = 1$$

$$P = 298K \cong 300$$

- Q.12 B PV = nRT $P = \frac{nRT}{V} = \frac{1 \times 0.0821 \times 300}{20} = 1.12atm$
- Q.13 C R=8.314Jk⁻¹mol⁻¹ is the S.I units of "R"
- Part B The physical meaning of R is that if we have one mole of an ideal gas at 273.16k and one atmospheric pressure and if its temperature is increased by 1k ten it requires R amount of energy (0.0821 atm dm³ mol ¹k⁻¹) To increase the temperature by 2oC it will require 2R energy

HBr
$$<$$
 O₂ $<$ N₂ $<$ H₂

$$C_{\text{rms}} = \sqrt{\frac{3RT}{M}} \rightarrow C_{\text{rms}} \propto \frac{1}{\sqrt{M}}$$

 $H_2 = 2.016g/mol$

Q.15 B
$$HBr = Polar$$

 $O_2 - 32g/mol$
 $N_2 = 28g/mol$

Q.16	D	Average kinetic energy ∝ Temperature
Q.17	В	$ m C_{rms} \propto rac{1}{\sqrt{M}}$
Q.18	D	$E_k \propto T$
Q.19	D	Molecules of gas do not have forces of attraction
Q.20	D	Number of moles are independent of temperature
Q.21	С	'a' constant of NH ₃ is greater than that of N ₂ because NH ₃ is polar while N ₂ is non-polar and 'b' constant of NH ₃ is less than that of N ₂ because N ₂ molecule is larger in size as compared to NH ₃ is correct according to the Van der Waal's equation. 'a' = attractive forces constant 'b' = effective volume constant NH ₃ has greater intermolecular forces than N ₂ and N ₂ has little greater volume at closest approach in the gaseous state.
Q.22	C	Real gases deviate from ideal behavior at low temperature and high pressure.
Q.23	A	NH ₃ being polar molecule it had highest coefficient of attraction
Q.24	C	Attractive forces develop at low T and high P
Q.25	D	At low temperature-and high-pressure intermolecular forces develop significantly.
Q.26	C	b-4Vm
Q.27	D	At high pressure and low temperature distance molecule is small so the intermolecular attraction become significant
Q.28	C	Ow increasing pressure, compressibility factor decreases then it keep an increasing PV nRT
Q.29	В	Pressure taken on X-axis and Z= PV / nRT at Y-axis
Q.30	A	Greater the value of 'z' greater the real behaviour
Q.31	D	London dispersion forces are strongest in L. London dispersion forces polarizability. I_2 is more polarizable due to large size of molecule so it is solid at room temperature. Intermolecular forces or polarizability order $I_2 > Br_2 > Cl_2 > F_2$
Q.32	D	Naphthalene and CCla are non-Polar
Q.33	В	Polarizability is directly related to size of electronic cloud
Q.34	D	Non-polar have only L.D.F as I.M.F.
Q.35	D	CH ₃ – NH ₂ have hydrogen bonding
Q.36	D	Greater the size of molecule, greater the polarizability, greater the forces of attractions
Q.37	A	All molecules except SnCl ₂ are non-polar due to zero dipole moment, so SnCl ₂ has dipole-dipole forces.
Q.38	C	Water > alcohol > ether is the correct order of force of attraction, water and alcohol have hydrogen bonding while ether has London forces.
Q.39	D	Forces of attraction of liquids are stronger than gases but weaker than solids
Q.40	В	Liquid molecule have fix volume
Q.41	D	Vapour pressure of a liquid is not affected by amount of liquid, volume of container and surface area.

Q.42	В	Energy given at B.P is consumed by escaping molecules to overcome IMF.	
Q.43	C	Evaporation and condensation are reversible.	
Q.44	В	Evaporation is endothermic.	
Q.45	C	By decreasing the temperature, forces of attractions increases and molecules come close to each other.	
Q.46	В	Density of water decreases from 4°C to 0°C due to increase sin distance between their molecule	
Q.47	В	Those compound which form strong hydrogen bond with water. NH ₃ form H Bond with water.	
Q.48	C	Hydrogen bonding present in water	
Q.49	C	Greater electronegativity difference grater the forces of attraction	
Q.50	В	Water has hydrogen bonding H2Te have strong London Forces	
Q.51	D	Zinc makes metal crystals, sugar and iodine are examples of crystalline molecular solids but glass is amorphous solid (not crystalline).	
Q.52	C	Glue is amorphous solid Pseudo solid is also called amorphous solid	
Q.53	C	Bromine exist as liquid at normal temperature so it may be isotopic	
Q.54	В	The crystalline solid have sharp melting point	
Q.55	C	Diamond graphite both consist of C-atoms.	
Q.56	D	Radius ratio of NaCl and CsF is same	
Q.57	D	Melting point and boiling point is not anisotropic behaviour	
Q.58	D	The arrangement of particles as a points in a crystal is called Crystal lattice or Space lattice	
Q.59	C	Crystal has six parameters 3 sides a, b, c 3 angles alpha, beta, gama	
Q.60	В	The crystalline part of amorphous solid is called Crystallite	
Q.61	C	Two types of intermolecular forces are responsible for holding the particles together. (i) Dipole dipole interactions or hydrogen bonding. (ii) Van der Waal's forces or London forces.	
Q.62	В	Ice (Molecular solid) Sodium chloride (Ionic solid) Iodine (Molecular solid)	
Q.63	D	In ionic compound there is non-directional forces so did not show isomerism	
Q.64	C	Molecular solid is soft but carborundum (SiC) is a covalent solid	
Q.65	A	Ionic bond is very strong so, it does not have translatory motion	
Q.66	C	Weak intermolecular forces are present in molecular solids	
Q.67	В	$L.E \propto \frac{Ch \operatorname{arg} e}{\operatorname{size}}$	
Q.68	C	Ionic solids have oppositely charge ions which are very closely packed. Due to close packing density increases.	
Q.69	D	Ionic bond Covalent solid Molecular solid Metallic solid	
		a-written WV04V	

Q.70	D	Non-polar and Macromolecules having giant structure.	
Q.71	A	$V \propto \frac{1}{P}$, to încrease the volume 3 tîmes, pressure must be decreased to 1/3 of its înîtial	
	pressure		
Q.72	В	$P_1V_1 = P_2V_2$ $V_2 = \frac{P_1V_1}{P_2} = \frac{1 \times 10}{0.8} = 12.5$	
Q.73	C	Charle's law can be explained only on the basis of Kelvin Scale or absolute temperature scale. Statement: The volume of the given mass of a gas is directly proportional to the absolute (Kelvin) temperature at constant pressure. V \alpha T (at constant pressue and fixed no. of moles) or V = KT or \frac{V}{T} = K	
Q.74	A	Gases are soluble in water at high temperature which increase the forces of attraction in gases so solubility increases.	
Q.75	A	$\frac{32}{22.4} = 1.42g$ $\frac{4}{22.4} = 0.17g$ $\frac{28}{22.4} = 1.249g$ $\frac{16}{22.4} = 0.713g$	
Q.76	D	Two gases having same temperature and pressure will have -Same volume -same no. of molecules = same moles	
Q.77	В	$11.2 \text{dm}^3 = 0.5 \text{mole}$	
Q.78	В	The original volume of a gas at 0°C is 273cm3 at constant pressure. Its volume at 273°C becomes 546 cm³ because volume of given mass of gas double on doubling the temperature at kelvin scale Calculation: The original volume (V ₁) of gas at 0°C or 273K = 273 cm³ The new volume (V ₂) of gas at 273°C or 546K -? According to Charles's law $\frac{V_1}{7} = \frac{V_2}{7_1} \times 7_2$ $V_2 = \frac{V_3}{273K} \times 546K$ $V_2 = 546cm^3$	
Q.79	C	Volume is directly proportional to temperature	
Q.80	A	If temperature is taken in Celsius scale we can use this equation.	

		PV-nRT	
		$_{ m B}=rac{m}{M}$	
		PV-m RT	
Q.81	D	$PM - \frac{m}{V}RT$	
		$\frac{m}{V}$ ~d	
		PM- dri	
		d-PM RT	
Q.82	A	Different units of constant "R" depends upon unit of measurement of pressure and volume.	
		$PV = \frac{2}{3}kT$	
		$PV = \frac{1}{3} \text{mNc}^2 1$	
		$\frac{1}{3}\text{mNc}^2 \propto T2$	
Q.83	В	$\frac{1}{2} \text{mNc}^2 = \text{KT}$	
		$PV = \frac{2}{3} \left(\frac{1}{2} \text{mNc}^2 \right)$	
		$PV = \frac{2}{3}KT$	
0.84		SRT SRT	
Q.84	В	$C_{\text{rms}} = \sqrt{\frac{3RT}{M}}$	
		Derivation of the Van der waal's equation is not conclusion of the kinetic theory of gases.	
Q.85	A	Van der Waal's equation for non-ideal gases cannot be derived from kinetic molecular theory but gas laws and temperature interpretation can be derived from KMT.	
		10	
		$E_{\nu} = \frac{1}{2N_{A}}T$	
Q.86	D	t T = 4T b So,	
Q.00	В	$E'_{i} = \frac{3R}{2N} 4T'$	
		$E' = 4 \frac{R}{R}$	
0.00		ANALY AND THE RESERVE OF THE RESERVE	
Q.87	A	At high temperature and low pressure forces in real gases become insignificant	
		Observed pressure of gas on the walls of container is less than actual pressure due to Inter molecular attractive forces. A molecule in the interior of the gas is attracted by other	
Q.88	C	molecules on all sides. These forces of attractions cancel the effect of each other. When a	
		molecule strikes the wall of a container, it experiences a force of attraction towards other molecules in centre of gas. This decreases the impact of its force on the wall.	
		NaCl Ionic bond	
		I ₂ London Force	
Q.89	В	C ₆ H ₁₂ O ₆ Dipole-Dipole force / Hydrogen bonding	
		Fe Metallic bond	
0.00	-	Greater the intermolecular forces greater the Melting point	
Q.90	C	H of HF is entrapped b/w F-atoms due to H-bond.	
0.00		LDF are the weak forces that are present between the non-polar molecule. DDF are more stronger than LDF forces because DDF are present between polar molecule. Hydrogen	
Q.91	C	bonding is the strongest attraction betweemn partical positive change hydrogen and highly	
		electronagative atom like (F,O,N)	
Q.92	D	Types of molecules polar and non-polar molecules solid and all type of forces present between molecules solid.	
		VIII TVAS AAAVAVVWAVV MVAAVI	

Т			
Q.93	В	Evaporation is not exothermic process but its endothermic process. It is continuous surface phenomenon which causes cooling.	
0.94	n	Vapor pressure of a liquid depends upon intermolecular forces but does not depends upon amount of substance, surface area and size of liquid container.	
Q.94 D amount of substance, surface area and size of liquid container. Vapour pressure Intermolecular forces		•	
		1	
Q.95	A	Vapour pressure $\propto \frac{1}{\text{I.M.F}}$ diethyl ether there is weak intermolecular force	
Q.96	В	Energy used to overcome I.M.F = Latent heat of vaporization.	
Q.97	В	Air pressure at M.E. is 323torr	
Q.98	В	NH ₃ has weakest forces among all	
Q.99	\mathbf{A}	Water can boil at any temperature by adjusting the external pressure	
Q.100	C	SO ₂ is polar and SO ₃ is non-polar it dipole moment is zero due to perfectly triangular.	
Q.101	C	The H-bonding is more dominant between O and H. Hydrogen bonding is also present between nitrogen and hydrogen.	
Q.102	В	Detergents contain polar and non-polar part and stain particles also non-polar	
Q.103	D	H-Bonded molecules will must be polar. Benzene is non-polar, so they will be insoluble in Benzene.	
Q.104	A	Ammonia has one lone pair which can be associated with one hydrogen atom of other molecule	
Q.105	В	Salts are soluble in water due to ion dipole forces.	
Q.106	A		
Q.107	C		
Q.108	D		
Q.109	C	Amorphous solid have no sharp malting point	
Q.110	D	Glass is solidified by the process annealing, due to which it has non crystalline structure	
Q.111	D	Silica is giant structure and insoluble in water.	
Q.112	C	Graphite has layer structure	
Q.113	C	Isomorphic substance have similar shape, atomic ratio geometry of anion	
Q.114	В	Crystalline structure of diamond is face centered cubic	
		In structure of NaCl, the number of formula units per unit cell is 4.	
Q.115	D	Formula unit of sodium chloride: Independent molecules of NaCl donot exist in vapour phase as well as in solid state. That is why NaCl is said formula unit of sodium chloride. Number of Formula Units per Unit Cell: The unit cells that shares one Cl ion at one corner = 8 A unit cell gets a share of one Cl ion at one corner = 1/8 A unit cell gets a total share of Cl ion at eight corners = 8×1/8 = (1) A unit cell gets a share of one Cl ion at one face = ½ A unit cell gets a total share of Cl ions at six faces = 6×½ = 3 So, a unit cell gets a total number of Cl ions = 4Cl Similarly, there are four Na ⁺ ions in a unit cell. Hence, there are four formula units (4NaCl) of NaCl in a unit cell.	
Q.116	С	Aluminium nitride (Covalent Solid) Sodium sulphate (Ionic Solid) Graphite (Covalent Solid)	

Q.117	D	Ionic compounds are soluble in Polar.
Q.118	C	Each Na ⁺ surrounded by 6 Cl.
Q.119	D	Unit cell is the smallest part, has all features of the entire crystal
Q.120	C	Unit cells of all crystal system vary from each other by Sides or angles

CHEMICAL EQUILIBRIUM + REACTION KINETICS

O. 1 For the reaction NH. \Rightarrow N. + 3H, the units of Kn will be

Q. I	For the reaction Mn ₃ — N ₂ + 3n ₂ the un	its of wh will be
	A. $(atm)^2$	B. (atm) ⁻²
	C. $(atm)^3$	D. atm
Q. 2	For the following equilibrium which is tr	$ue^{(L \times mM \iff sS+tT)}$
	A. $Kc = [S]^s [T]^t / [L]^t [M]^m$	$B. Kp = \frac{P_S^s P_T^1}{P_L^{\prime} P_M^m}$
	C. $Kc = \frac{C_S^s C_T^t}{C_S^t C_S^m}$	D. All of these
	L-M	-
Q. 3	The concentrations of the reactants and p	_
	A. Equal	B. Maximum
0.4	C. Minimum	D. Constant
Q. 4	The rate of decrease in concentration of r	A .
	concentration of products is at the	
	A. Faster, slower	B. Slower, faster
0.5	C. Slower, slower	D. Faster, faster
Q. 5	Appropriate units of Kp for the following	reaction is
	$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$	
	A. mol/dm ³	B. Torr
	C. dm ³ /mol	D. dm ⁶ /mol ²
Q. 6	The value of Kp and Kc are same for the	reaction
	A. Dissociation of COCl ₂	B. Dissociation of HF
	C. Formation of NH ₃ from N ₂ and H ₂	D. Synthesis of SO ₃ from SO ₂ and O ₂
Q. 7	For which of the following reactions Kc is	
	A. $COCl_{2(g)} = CO_{(g)} + Cl_{2(g)}$	B. $2NO_{(g)} + Cl_{2(g)} = 2NOCl_{(g)}$
	C. $H_{2(g)} + Cl_{2(g)} = 2HCl_{(g)}$ $K_c = X^2$ is true for	B. $2NO_{(g)} + Cl_{2(g)} = 2NOCl_{(g)}$ D. $PCl_{3(g)} + Cl_{3(g)} + Cl_{3(g)}$
	W X2	
Q. 8	K _c V(a=x) is true for	
	A. $2NO_2 \longrightarrow N_2O_4$	
	B. H. 1. 2HI	
	C. PCI, PCI,	
	D. CH,COOH+C,H,OH=CH,COO	C.H. + H.O
Q. 9	For below reaction if Kc is 0.25, then Kp	
	$2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$	
	A. 1.0	B. 0.25
	C. 4.0	D. 0.50
Q. 10	Following is the condition of reversible re	
•	(where $\Delta n = number of moles of product-$	- -
	$A. \Delta n = 0$	B. $\Delta n = -1$
	C. $\Delta n = 1$	D. $\Delta n = 2$
	Applications of equilibrium con-	stant, The Le Chatelier's principle
Q. 11	Kc value indicates that the chemical reac	tion reaches farthest to the completion
	A. 10 ³	B. 10 ¹⁵
	$C. 10^3$	D. 10 ¹⁰
0.12		
Q. 12	If ratio of concentration of products and reaction will move	that of reactables is greater than AC then
	A. Forward	B. Backward
	C. Unchanged	D. At equilibrium

	A. Incomplete	B. Partially complete	
	C. Almost complete	D. No effect	
Q. 14	In the following homogeneous equilibrium	um when pressure is increased at constant	
	temperature. What would be the direction of reaction for $2O_3 \rightleftharpoons 3O_2$ $K_C = 10^{55}$		
	A. Forward	B. No effect	
	C. Backward	D. Unpredictable	
0.15		d decrease in pressure favours the forward	
Q. 10	reaction	d beer bust in pressure involts the for ward	
	A. $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$	B. $N_{2(g)} + H_{2(g)} = 2NH_{3(g)}$	
	Tar Tar		
	C. 2SO _{2(g)} 2SO _{3(g)}	D. $N_{2(g)} + O_{2(g)} = 2NO_{(g)}$	
Q. 16	If number of moles of reactants are great	ater than products, then relationship	
	between Kp and Kc is	1	
	A. Kp > Kc	B. $Kp \ge Kc$	
	C. Kp = Kc	D. Kp < Kc	
Q. 17	In which case, decrease of pressure favo		
	A. $N_2 + O_2 \rightleftharpoons 2NO$	B. 2SO ₂ + O ₂ - 2SO ₃	
	C. $PCl_3 \rightleftharpoons PCl_3 + Cl_2$	D. N. $+3H$, $=2NH$	
O. 18	Increasing the concentration of reactan	ts or decreasing the concentration of the	
Q. 10		ection.	
	A. Forward	B. Backward	
	C. No effect	D. None of these	
Q. 19	In an exothermic reversible reaction	temperature will shift the equilibrium	
	towards the forward direction.	7/	
	A. Low	B. High	
	C. Moderate	D. None of these	
Q. 20	Which one will not affect both equilibri		
	A. Pressure or volume change	B. Concentration change	
	C. Temperature change	D Catalyst	
0.04	Applications of chemical equilibrium in	No.	
Q. 21	The catalyst used for the synthesis of an A. Pieces of Iron		
	C. V ₂ O ₅	B. MgO, Al ₂ O ₃ , SiO ₂ D. Both A & B	
0.22			
Q. 22	The catalyst used for the synthesis of SC A. Pieces of Iron	B. MgO, Al ₂ O ₃ , SiO ₂	
	C. V ₂ O ₅	D. Both A & B	
0.23	The optimum temperature and pressure		
Q. 23	A. 400°C/200 atm	B. 450°C/300 atm	
	C. 400°C/200-300 atm	D. 400-500°C/1 atm	
0. 24	Which statement about following equili		
Q. 21	$2SO_2 + O_2 \rightleftharpoons 2SO_3$		
	2 2	ana na na taona	
	A. The value of Kp falls with the rise in te B. The value of Kp falls with increasing p		
	_		
	C. Adding V ₂ O ₅ catalyst increase the equilibrium yield of SO ₃ D. The value of Kp is equal to Kc		

Q. 13 If the value of Kc is very small for a reaction then the reaction is

Q. 25	A pair of substances that exhibits identify II-group basic radicals	common ion effect in aqueous solution and help to
	A. NH ₄ Cl + NH ₄ OH	$B. H_2S + HC1$
	C. NaCl + HCl	D. $KClO_3 + KCl$
0.26		
Q. 26		solution then ionization of NH4OH
	A. Increases	B. Decreases
	C. No change occur	D. May increase or decrease
Q. 27	•	
	A. CO ₂ gas	B. O ₂ gas
	C. NH ₃ gas	D. HCl gas
Q. 28		ution of potassium Perchlorate. When potassium
	precipitated. It means that	ution, some of the potassium Perchlorate is
	A. KClO ₄ is stronger electrolyte that	n VCI
	B. Solubility of KClO ₄ is greater that	
	C. Both KClO ₄ and KCl are soluble	
	D. KCl is a stronger electrolyte as co	
0.30		
Q. 29	Ionization of phenol can be decrea A. Methanol	B. Toluene
	C. Hydrochloric acid	D. Benzyl alcohol
0.20		
Q. 30	The addition of H2SO4 will not su	
	A. Acetic acid	B. Benzoic acid
	C. Hydrogen sulphide	D. Hydrogen chloride
		olution, Solubility product
Q. 31	Buffer solution can be explained b	
	A. Common ion effect	B. Law of mass action
	C. Le-Chatelier Principle	D. All of these
Q. 32	If a buffer solution of higher pH t	
	A. Strong acid and strong base	B. Weak acid and strong base
		base D. Weak base and its salt with strong acid
Q. 33		ak acid and its salt. The ratio of concentration of
	salt to acid is increased tenfolds, t	7- /
	A. Increase by one unit	B. Increase tenfolds
	C. Decrease by one unit	D. Decrease tenfolds
Q. 34	Select the buffer which is not acid	
	A. HCOOH and HCOONa	B. CH ₃ COOH and CH ₃ COOK
	C. NH ₄ OH and NH ₄ NO	D. C ₆ H ₅ COONa and C ₆ H ₅ COOH
Q. 35	-	ons of salt and base are 0.1M and 0.01M
	respectively $(pKb = 4.0)$	
	A. 3.0	B. 2.0
	C. 9.0	D. 11.0
Q. 36		s 4 $ imes$ 10 ⁻⁶ mol ² . dm ⁶ . The maximum concentration
	of Pb ⁺² ions is	
	A. 1.41×10^{-5} mol.dm ⁻³	B. 2×10^{-3} mol. dm ³
	C. 2×10^{-5} mole. dm ³	D. 4×10^{-3} mol. dm ³
Q. 37	V -	compound AB2 is 32×10^{9} mol ³ . dm ⁹ ; The
	maximum concentration of A+2 io	
	A. 8 × 10 ⁻⁹ mol dm ⁻³	B. 2×10^{-9} mol. dm ⁻³
	C. 2×10^{-3} mol. dm ⁻³	D. 1.41×10^{-3} mol. dm ⁻³

Q. 38	8 The solubility product of AgCl is 2.0 × 10 ¹⁰ mol ² dm ⁶ . The maximum concentra of Ag ⁺ ions in the solution is mol dm ⁻³ .	
	A. 2.0 × 10 ⁻¹⁰	B. 1.41 × 10 ⁻⁵
	C. 1.0×10^{-10}	D. 4.0×10^{-20}
Q. 39	The solubility product of CdS is 9.0×10^{-10} of Cd ⁺² ions is	⁴ mol ² . dm ⁻⁶ . The maximum concentration
	A. $1.41 \times 10^{-5} \text{ mol.dm}^{-3}$	B. 2×10^{-3} mol. dm ⁻³
	C. 3×10^{-2} mole. dm ⁻³	D. 3×10^{-3} mol. dm ⁻³
0.40		
Q. 40	On the bases of given values Ksp, which water	sparingly soluble sait is least soluble in
	A. $Ksp = 2 \times 10^{-2}$	B. $K_{Sp} = 2 \times 10^{-6}$
	C. Ksp = 2×10^{-4}	D. Ksp = 2×10^{-3}
	-	k, Determination of the rate of a chemical
		action and its determination
0.41	The rate of reactions between two specif	
Q. 41	A. Average rate of a reaction	B. Rate of a reactions
	C. Instantaneous rate of reaction	D. Velocity constant
0.42		D. Velocity constant
Q. 42	Slowest step in the reaction is called	
	A. Elementary step	B. Rate law
	C. Rate determining step	D. Order of reaction
Q. 43	The rate of reaction	
	A. Increases as the reaction proceed	
	B. Decreases as the reaction proceed	
	C. Remains the same as reaction proceed	
	D. May decrease or increase as reaction pr	oceeds
Q. 44	Which one is NOT physical method for	rate determination of chemical reaction?
	A. Dilatometric method	B. Spectrometric method
	C. Half life method	D. Optical rotation method
Q. 45	The mechanism below has been propose	d for the reaction of CHCl3 with Cl2
	Step 1: $Cl_{2(g)} \rightleftharpoons 2Cl_{(g)}$	fast
	Step 2: $Cl_{(g)} + CHCl_{3(g)} \longrightarrow CCl_{(g)}$	
	Step 3: $CCl_{3(g)} + Cl_{(g)} \longrightarrow CCl_{4(g)}$	
	A. Rate = [CHCl ₃][Cl] ²	B. Rate $- [CHCl_3][Cl_2]^{1/2}$
	C. Rate = $[CCI_3][CI]$	D. Rate = $[Cl_2]$
Q. 46	Which technique is used to determine the	e absorption of radiations?
	A. spectrometry	B. dilatometric method
	C. refractometric method	D. optical rotation method
Q. 47	Rate expression of two reactions are give	en below
		ate = k[A][B]
	which one is correct?	
	A. Both have different order	
	B. Both have same order	
	C. Equation 1 is 1st order while equation 2	is 2nd order
	D. Equation 1 is 2nd order white equation	2 is 1st order
Q. 48	The rate law for the reaction is rate $= k$	A][B] $^{2/3}$. The order of reaction is
	A. Zero	B. 2/3
	C. 1/3	D. 5/3
0.49	Which of the followings is pseudo first o	rder reaction?
	A. Acid catalyzed hydrolysis of an ester	B. Hydrolysis of tertiary butyl bromide
	C. Chloroform to Carbon tetrachloride	D. Both (a) and (b)
	TO COME TO MAKE THE TOTAL THE TAXABLE PROPERTY OF TAXABLE PR	(-/ (-/

Q. 50 For a reaction like $X + 2Y \rightarrow Z$ Rate = $k [X]^0 [Y]^2$

If concentration of X and Y is doubled, then rate of reaction will increase

A. 8 times

B. 6 times

C. 4 times

D. 16 times

Factors affecting rate of reaction

- Q. 51 The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about
 - A. 16

B. 64

C. 32

D. 08

O. 52 The incorrect order indicated against the rate of reaction

	Rate	Order
A	$\frac{d[C]}{dt} = k[A]$	1
В	$\frac{d[C]}{dt} = k[A][B]$	2
С	$-\frac{d[A]}{dt} = k[A][B]$	2
D	$-\frac{d[A]}{dt} = k[A]$	

- Q. 53 Rate of chemical equation increase rapidly even for small increase in temperature because of rapid increase in the
 - A. Collision theory
 - B. Activation energy
 - C. Average kinetic energy of molecules
 - D. Fraction of molecules with energy more than activation energy
- Q. 54 Generally, by increasing temperature rate of chemical reaction increase. it is due to
 - A. Greater velocity of molecules
 - B. Greater number of collisions
 - C. Greater number of molecules having activation energy
 - D. None of the above
- Q. 55 The rate of reaction decreases how may times when temperature drops from 150K to 120K.
 - A. Two

B. Four

C. Eight

D. Sixteen

- Q. 56 The rate of reaction can be increased in general by all of the following factors except
 - A. By increasing the temperature

B. Using a suitable catalyst

C. By increasing activation energy

- D. By increasing concentration of reaction
- Q. 57 The rate of chemical reaction roughly doubles for every 10oC rise of temperature. If temperature is raised by 20°C, the rate may become
 - A. 4 times

B. 16 times

C. 8 times

D. 32 times

- Q. 58 The rate of a chemical reaction is independent of
 - A. Nature of reactant

B. Temperature

C. Molecularity

D. Concentration of reactant

- Q. 59 Following is an exothermic reaction Which is correct statement?
 - A. Rate of reaction will increase by increasing temperature
 - B. Yield of C can be increased by increasing pressure
 - C. Rate of reaction will decrease by increasing temperature
 - D. Rate is not affected by adding catalyst

	A. Surface area	B. Light		
	C. Temperature	D. Pressure		
	Activation e	nergy and activated complex		
Q. 61	Which is the correct expression of	Arrhenius equation		
	$\mathbf{A.} \ \mathbf{k} = \mathbf{Ae}^{\mathbf{E}_{\mathbf{B}}/\mathbf{RT}}$	$B. k = Ae^{-Ea/T}$		
	C. $\mathbf{k} = \mathbf{A}\mathbf{e}^{RT/Ea}$	$\mathbf{D.} \ \mathbf{k} = \mathbf{A} \mathbf{e}^{-\mathbf{E} \mathbf{a} / \mathbf{R} \mathbf{T}}$		
Q. 62	The energy of activation for an ex-	othermic reaction is $40kJ$ if $H = -10kJ$. What is tion is reversed?		
	A. 50 Kj	B. 40kJ		
	C. 60kJ	D. 30kJ		
Q. 63		If Ef and Eb are the activation energies for forward and backward reaction respectively. How these can be compared for the exothermic reaction.		
	A. $Ef > Eb$	B. Ef < Eb		
	C. Ef - Eb	D. No prediction can be made		
Q. 64		as an activation energy of 15 kJ/mole. The The activation energy for the reaction is $B \to A$		
	A. 15 kJ/mole	B. 10 kJ/mole		
	C. 20 kJ/mole	D. 5 kJ/mole		
Q. 65	On increasing the temperature, th	e rate of reaction increases mainly because		
	A. The activation energy of the reac	tion increases		
	B. Concentration of the reacting mod	lecules increases		
	C. Collision frequency increases			
	D. None of these			
Q. 66		reaction is less than forward reaction		
	forreaction			
	A. Endothermic	B. Exothermic		
	C. Moderate	D. Fast		
Q. 67		e 30 KJ, 110 KJ and 120 KJ respectively. The		
	activation energy for backward re	B 40 KJ		
	A. 140 KJ	D, 20 KJ		
0 (0	C. 130 KJ			
Q. 68	Which is incorrect postulate abou	_		
		particle must collide with proper orientation		
	B. Reaction between colliding particles takes place if they possess lower energy than			
	C. All collision does not lead to reaction			
0 (0	D. During collision, bond breaking &	-		
Q. 69	statement is correct?	ergy for forward and backward reactions. Which		
	A. Reaction is zero order	B. Enthalpy change is zero		
	C. Product has less energy than reac			
Q. 70		s greatly enhanced by the presence of		
	A. Coenzyme	B. Apoenzyme		
	C. Retarder	D. Without any substance		
Q. 71		onia synthesis when the equilibrium		
		en and ammonia are 2M, 2M and 4M at 400°C		
	A. 1.0 mol ⁻² dm ⁶	B. 1/64 mol ⁻² dm ⁶		
	C. 0.1 mol ⁻² dm ⁶	D. $16 \text{ mol}^{-2} \text{ dm}^6$		

Q. 60 Factor which does not generally affect the rate of reaction

Q. 72 The Kc expression for the reaction

$$cA+dB \rightleftharpoons aC+bD$$
 is

A.
$$\frac{[A]^c [B]^d}{[C]^a [D]^b}$$

$$B. \frac{[C]^a [D]^b}{[A]^c [B]^d}$$

C.
$$\frac{[C]^c [D]^d}{[A]^a [B]^b}$$

D.
$$[C]^c [D]^d + [A]^m [B]^n$$

Q. 73 For the following reaction A+B = 2C+D The equilibrium constant unit is

- D. mol²dm⁻³
- Q. 74 For the system $2X + 3Y \Longrightarrow Z$ the expression for equilibrium constant Kc is

A.
$$\frac{2X \times 3Y}{Z}$$

B.
$$\frac{2X^3 \times 3Y}{}$$

C.
$$\frac{[Z]}{X^2 \times Y^3}$$

Q. 75 For which of the following reactions Kp > Ke-

A.
$$H_{2(g)}+F_{2(g)} \Longrightarrow 2HF_{(g)}$$

C.
$$2SO_{2(g)} + O_{2(g)} \Longrightarrow 2SO_{3(g)}$$

Q. 76 For the reaction A+B One starts with 6 moles A and 7 moles B per dm3. When equilibrium is attained, 4.5 moles of C is formed, what is the value of Kc for the reaction

- Q. 77 The equilibrium expression for reaction is Kc
 - A. Increase of pressure shifts equilibria to right B. Increase of pressure increases Kc
 - C. Increase of pressure decreases Kc D. Both a and b
- Q. 78 For which of the following reactions Kp > Kc

A.
$$H_{2(g)} + F_{2(g)} = 2HF_{(g)}$$

B.
$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

C.
$$2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)}$$

D.
$$N_{\gamma_{(g)}} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

Q. 79 For the reaction $N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$, Which of the following relationship is correct?

$$A. K_c = K_p (RT)^2$$

B.
$$K_c = K_p (RT)^{-2}$$

C.
$$K_p = \frac{K_c}{(RT)^2}$$

- Q. 80 If ratio of concentration of products and that of reactants is less than Kc then reaction will move
 - A. Forward

B. Backward

C. Unchanged

- D. At equilibrium
- Q. 81 If the value of Kc is very large for a reaction then the reaction is
 - A. Incomplete

B. partially complete

C. almost complete

- D. no effect
- Q. 82 Kc value for decomposition of HF is 10⁻¹³ at 2000°C it means that
 - A. Reactants are more stable
- B. Products are more stable
- C. Reactants are unstable
- D. Reactants and products are equally stable

	number of moles will shift to right whe	en	
	A. Pressure increases	B. Volume increases	
	C. Pressure decreases	D. Both B and C	
Q. 84	Which is true about the following equilibrium		
	$HNO_3 + 2H_2SO_4 \Longrightarrow 2HSO_4^- + NO_2^+ + H_2O$		
	A. Sulphuric acid is a base	B. Sulphuric acid is dehydrating agent	
	C. Addition of water reduces [NO ₂ ⁺]	D. Both B and C	
Q. 85	In the following reaction the white ppt	i-e artificial milk (BiOCl) disappears when	
	$BiCl_3 + H_2O \Longrightarrow BiOCl + 2HCL$		
	A. More HCl is added	B. More water is added	
	C. More BiCl ₃ is added	D. Frequent removal of HCl	
Q. 86	Change in pressure is not favourable to th	e reactions having reactants and products in	
_	A. Gaseous phase	B. liquid phase	
	C. solid phase	L. Both B & C	
Q. 87	The optimum temperature and pressur	re for the synthesis of ammonia are	
	A. 400°C/200 atm	B. 450°C/300 atm	
	C. 400°C/200-300 atm	D. 400-500°C/1 atm	
Q. 88	At very high pressure and low tempera	ature, the rate of formation of NHs is	
	A. High	B. low	
	C. moderate	D. none of these	
Q. 89	If in AgCl solution, some salt of NaCl i	s added, AgCl will be presipitated due to :	
	A. Solubility	B. Un saturation effect	
	C. Electrolyte	D. Common ion effect	
Q. 90	Silver nitrate in added to aqueous barium The precipitate is removed by filtration. V	chloride according to the stoichiometric ratio. What are the main ions in the filtrate?	
	A. Ag and NO; only	B. Ba ²⁺ and NO ¹ , only	
	C Ag Ba ²⁺ , and NO;	D Ba ²⁺ , NO ₃ and Cl ¹⁻	
Q. 91		mixed in equimolar ratio to form buffer if	
	pKa is 2 what will be the pH? A. 0	B. 1	
	C. 2	D. Any one	
O 92	Buffer solution is needed in	13. 2 mly 5110	
Q. 72	A. Clinical analysis	B. Soil sciences	
	C. Microbiology	D. All of these	
0. 93		cid and its salt. The ratio of concentration of	
Q. >0	salt to acid is increased ten folds, then		
	A. Increase by one unit	B. Increase ten folds	
	C. Decrease by one unit	D. Decrease ten folds	
Q. 94	Best buffer will be one which have		
	A. [acid] - [salt]	B. [acid] > [salt]	
	C. [acid] < [salt]	D. [acid] = [Base]	
Q. 95	Buffer is a solution		
	A. Whose pH is constant		
	B. Which resists change in its pH		
	C. Which can absorb large quantity of ac	id or base without changing its pH	
	D. Whose pH may or may not change during a chemical reaction		

PAGE 47 OF 121

NMDCAT -2022 BY SKN

Q. 83 The equilibrium of gaseous reversible reaction that proceeds with decrease in

Q. 96	Addition of NH4OH and NH4Cl in water	gives		
	A. Standard solution	B. Basic buffer solution		
	C. Acidic buffer solution	D. Conjugate solution		
Q. 97	The solubility of CaF2 in water of 25°C i	s 2× 10 ⁻⁴ mol dm ⁻³ . What is the Ksp value at		
	this temperature			
	A. 3.2×10 ⁻⁸	B. 3.2×10 ⁻¹²		
	C. 3.2×10 ⁻⁴	D. 3.2×10 ⁻¹¹		
Q. 98	Smaller the value of Ksp of a salt,	is its capability to dissociate.		
	A. Smaller	B. greater		
	C. no effect	D. increases but very small		
Q. 99	Solubility of which salt in H2O increases	s with temperature		
	A. LiCl	B. Li ₂ CO ₃		
	C. KI	D. Na ₂ CO ₃		
Q. 100	Ksp values of four salts are given, which	is more <mark>solu</mark> ble in water		
	A. 10 ⁻¹³	B. 10 ⁻¹⁵		
	C. 10 ⁻¹¹	D. 10 10		
Q. 101	Ksp for following equation can be writte	en as		
	$PbCl_2 \rightleftharpoons Pb^{+2} + 2Cl^{-1}$			
	2	D 101-71 Foll 7		
	A. [Pb ⁺²] [Cl ⁻] ²	B. [Pb ⁻²] + [Cl] ²		
	C. [Pb ⁺²] [2Cl ⁻] ²	D. [Pb·2] [C1]		
Q. 102		Rate = $k[A][B]^2$. The rate is 2.5×10 ⁻³ mol		
	dm ⁻³ s ⁻¹ . When [A] is 0.2 mol dm ⁻³ and [I numerical value of rate constant	b] is 0.050 moram Calculate the		
	A. 50	B. 5.0		
	C. 2	D. 0.05		
O 103	The unit of rate constant for 1st order re			
Q. 102	A. mol dm ⁻³ s ⁻¹	B. mol ⁻¹ dm ³ s ¹		
	C. s ^d	D. mol ⁻² dm ⁶ s ¹		
O 104	The unit of rate constant is same as that			
Q. 104	A. First order reaction	B. Second order reaction		
	C. Third order reaction	D. Zero order reaction		
O 105				
Q. 103	The unit of rate constant 'K' is mol-1dm. reaction is	os - for a chemical reaction the order of		
	A. 0	B. 1		
	C. 2	D. 3		
O 106	The rate expression of a reaction is, Rate			
Q. 100	What happens to rate of reaction if conc			
	A. Increased two times	B. Increased four times		
	C. Increased eight times	D. Increased nine times		
Q. 107 If during reaction, there is rotation in plane polarized light, then its rate can be				
Q. 2	determined by	F		
	A. Spectrometry method	B. Electrical conductivity method		
	C. Optical rotation method	D. Dilatometric method		
Q. 108	Which property of liquid is measured by	y polarimeter?		
-	A. conductance	B. refractive index		
	C. optical activity	D. change in volume		
O. 109	Q. 109 Arrhenius equation describes the effect of			
£. 202	A. Temperature on rate of reaction	B. Volume on rate of reaction		
	C Pressure on rate of reaction	D. Number of moles on rate of reaction		

A. Degree	B. Kelvin
C. Per Kelvin	D. JK ⁻¹
Q. 111 Arrhenius equation describes the effect	t of
A. Temperature on rate of reaction	B. Volume on rate of reaction
C. Pressure on rate of reaction	D. Number of moles on rate of reaction
Q. 112 If rate constant for any reaction is equa	al to rate of reaction at all concentrations.
Then the order of reaction will be	
A. Zero	B. One
C. Two	D. Three
Q. 113 In the hydrolysis of an organic chloride $R_3C-Cl+H_2O\rightarrow R_3C-OH+HCl$,	
A. Second order	B. First order
C. Third order	D. Pseudo First order
Q. 114 All are correct about zero order except	i (
A. All photochemical reactions are zero of	order
B. Rate is independent of concentration	
C. Radioactive decay follows zero order	
D. Half-life is directly proportional to ini	tial concentration
Q. 115 The number of atoms or molecules who	ose concentration determines the rate of a
chemical reaction is called the	D C Cd
A. Molecularity of the reaction	B. Order of the reaction
C. Specific activity of the reaction	D. Rate constant of the reaction
Q. 116 A reaction has rate law expression as $Rate = k[A]^{3/2} [B]^{-1/2}$ The order of reaction is	
A. 1	B. 2
C. 3.2	D1/2
Q. 117 The value of activation energy of chem	
A. Nature of reacting species	B. Temperature
C. Number of collisions per unit time	D Concentration of species
Q. 118 Which statement is incorrect about act	
A. Short lived	B. Maximum energy
C. Unstable combination of atoms	D. Less energy than Ea
Q. 119 The minimum amount of energy requir	
reaction is	
A. Potential energy	B. Kinetic energy
C. Thermal energy	D. Activation energy
Q. 120 In a reaction $2X + Y \longrightarrow M + N$	
if the concentration of Y kept constant	and that of X is trippled. The reaction will be
A. Increase 3 times	B. Increase 27 times
C. Increase 9 times	D. Increase 27 times

Q. 110 The units of slope are in

ANSWERS & EXPLANTION: -

Q.1	A	$K_{\rho} = \frac{[N_2][H_2]^3}{[NH_3]^2}$ $= \frac{(atm)(atm)^3}{(atm)^2}$		
		$= atm^2$		
Q.2	D			
Q.3	D			
Q.4	A	Reaction proceed faster at the beginning while slower at the end.		
Q.5	В	Units of gaseous reactions are taken in atm or torr		
Q.6	В	if the number of moles reactants and product are same the Kp and Kc give same values as $K_p = K_C (RT)^{\Delta n}$ $2HF \rightleftharpoons H_2 + F_2$ $\Delta n = n_P - n_R$ $= 2 - 2 = 0$		
Q.7	В	If the number of moles of products is less then the moles of reactants then, Kc > Kp		
Q.8	C	$PCl_5 \Longrightarrow PCl_3 + Cl_2$		
Q.9	В	$Kp = Kc (RT)^{AB}$ $\Delta n = nP - pR - 2 - 2 = 0$ $Kp = Kc (RT)^{0}$ $Kp - Kc$		
Q.10	A	If An is equal to zero then no effect of pressure on such gaseous reactions		
Q.11	В	Greater the value of Kc, greater the concentration of product and reaction is nesses to completion.		
Q.12	В	[Product] reaction will be backward		
Q.13	В			
Q.14	C	By pressure is increases reaction moves towards lesser number of moles.		
Q.15	A	(i) When pressure is decreased reaction move towards greater number of moles. (ii) When temperature of endothermic reaction is increased, it moves in forward direction.		
Q.16	D	If mole of reactants is greater than product then Dn is ve hence Kp < Kc		
Q.17	C	When pressure of the system decreases then volume of the system increases and reaction moves towards the		
Q.18	\mathbf{A}	↑ Concentration of reactant forward reaction increased. ↑ Concentration of product increasing reverse reaction.		
Q.19	A	By ↑ rate of exothermic reaction will increase.		
Q.20	D	Catalyst does not affect both position of equilibrium and equilibrium constant. It just increases the rate of both direction.		
Q.21	D	Pieces of Iron, MgO, Al ₂ O ₃ , SiO ₂ this mixture is used as a catalyst		
Q.22	C	V ₂ O ₅ used as a catalyst		
Q.23	D	400-500°C/1 atm, at this condition rate of reaction and yield is at optimum level		

Q.24	A	$Kp = Kc (RT)^{\Delta n}$ $Kp = Kc (RT)^{-1}$ $Kp = \frac{Kc}{RT}$ As, $Kp \propto \frac{1}{T}$ $\Delta = n_P - n_R$ $= 2 - 3 = -1$		
Q.25	В	(H ₂ S + HCl) is the group reagent of basic radical of group II.		
Q.26	В	NH4OH is weak electrolyte.		
Q.27	D	NaCl is a weak electrolyte as compared to HCl.		
Q.28	D	Strong electrolyte (KCl) will suppress the ionization of weak electrolyte (KClO ₄)		
Q.29	C	Strong electrolyte (HCl) will suppress the ionization of weak electrolyte (Phenol)		
Q.30	D	HCl is strong electrolyte so, not effected by H ₂ SO ₄		
Q.31	D	Buffer solution can be explained by Common ion effect. Law of mass action and Le- Chatelier Principle		
Q.32	D	If pH of the buffer is greater than seven then buffer is basic buffer and basic buffer is formed from weak base and its salt with strong acid.		
Q.33	A	pH = pKa + log10 = pKa + 1 pH = pKa + log10 ² = pKa + 2 So if ratio of conc. Of salt and acid is increased 10 times. pH only increased 1 time.		
Q.34	C	NH4OH and NH4NO3 is example of basic buffer		
Q.35	C	$pOH = pKb+log \frac{ salt }{ base }$ $pOH = 4+log \frac{10^{-1}}{10^{-2}} = 4+1=5$ $pH = 14-pOH=14-5 = 9$		
Q.36	В	$Ksp = s^2$ $4 \times 10^{-6} [Pb^{+2}]^2$ $Pb^{+2} = 2 \times 10^{-3}$		
Q.37	C	$AB_{2} \rightleftharpoons A^{+2} + 2B^{-1}$ $32 \times 10^{-9} x 2x$ $Ksp = 4x^{3}$ $32 \times 10^{-9} = 4x^{3}$ $x^{3} = 8 \times 10^{-9}$ $x = (8 \times 10^{-9})^{1/3} = 2 \times 10^{-3}$		

		$AgCl \Longrightarrow Ag^+ + Cl^{-1}$		
		2×10^{-10} x x		
Q.38	В	$Ksp = x^2$		
		$2 \times 10^{-10} = x^2$		
		$x = 1.41 \times 10^{-5}$		
		$CdS \Longrightarrow Cd^{+2} + S^{-2}$		
		9×10^{-4} x x		
Q.39	C	$Ksp = x^2$		
		$x = (ksp)^{1/2} = (9 \times 10^{-4})^{1/2} = 3 \times 10^{-2}$		
Q.40	В	Smaller the Ksp lesser the solubility		
Q.41	A	The rate of reactions between two specific time intervals is called average rate of a reaction		
Q.42	C	Slowest step in the reaction is called rate determining step. It is used if reaction proceed in more than one step		
Q.43	В	The rate of reaction decreases as the reaction proceed due to decrease in conc.		
Q.44	C	Half-life method is used to find order of reaction		
Q.45	В	It is three step reaction, 2nd step is slow step so, rate can be determine by this step Rate = [CHCl ₃][Cl ₂] ^{1/2}		
Q.46	A	spectrometry is a technique used to measure the amount of radiation absorb.		
Q.47	В	Order of reaction is the sum of exponents of a rate equation both reactions are second order		
Q.48	D	order of reaction (O.R) is the sum of exponents of a rate equation both reactions are second order O.R - 1 + 2.3 - 5/3		
Q.49	D	Acid catalyzed hydrolysis of an ester & Hydrolysis of tertiary butyl bromide are pseudo first order because one reactant 'water' is taken in excess		
Q.50	C	By increasing the [X], no effect on rate because its not involved in rate equation, while by increasing the [Y] 2 trime, rate will increase 4 time.		
		$\Delta T = 50\Delta$		
Q.51	C	rate changes by temperature = $(2)^n$ $n = \Delta T / 10 = 50/10 = 5$		
		rate changes by temperature = $(2)^5 = 32$		
Q.52	C	Order of $-d[A] / dt = k[A][B]^{\circ}$ is one		
Q.53	D	By increasing in temperature average kinetic energy increase and fraction of those molecule increase which have more energy than activation energy.		
Q.54	C	By increasing in temperature number of those molecules increase which have equal or more energy than activation energy.		
		Change in rate = $(2)n$		
Q.55	C	n - DT/10 - 150 - 120/10 - 30/10 - 3		
0.55	_	Change in rate – (2) ³ – 8 times decrease		
Q.56	C	Rate of reaction (rate constant K) is inversely related to activation energy.		

Q.57 A Change in rate = (2)m n = AT/10 = 20 / 10 = 2 Change in rate = (2)Z = 4 time Q.58 C The rate of a chemical reaction is independent of Molecularity Q.59 A Rate of reaction will increase by increasing temperature for both endothermic & exothermic reaction Q.60 D Pressure generally does not effect the rate of reaction Q.61 D k = Ae Est/RT is the correct expression of Arrhenius equation Q.62 A For exothermic reaction Eb = Ef + (DH*) Solution For exothermic reaction, Eb is always greater than Ef Q.64 D but to temperature increase kinetic energy of molecules will increase as a result collosion frequency will efficience. Q.65 C D but to temperature increase kinetic energy of molecules will increase as a result collosion frequency will efficience. Q.66 A S B Existence mechanics Q.67 D B Existence mechanics Q.68 Linkeron Nation Q.68 Linkeron Nation Q.69 Resistance mechanics Q.69 Resistance mechanics Q.69 Resistance mechanics Q.60 Linkeron Nation Q.60 Linkeron Nation Q.60 D B Existence mechanics Q.60 Linkeron Nation Q.60 L				
Change in rate = (2)2 = 4 time Q.58 C The rate of a chemical reaction is independent of Molecularity Q.59 A Rate of reaction will increase by increasing temperature for both endothermic & exothermic reaction Q.60 D Pressure generally does not effect the rate of reaction Q.61 D R = Ae Es/RT is the correct expression of Arrhenius equation Q.62 A Processor of Arrhenius equation Q.63 B For exothermic reaction Eb = Ef + (DH*) Eb = 40 + 10 - 50k; Q.64 Processor of Arrhenius equation Q.65 C Reaction of Processor of Arrhenius equation Q.66 A Processor of Arrhenius equation Q.67 D Due to temperature increase, kinetic energy of molecules will increase as a result collosion frequency				
Q.58 C The rate of a chemical reaction is independent of Molecularity Q.59 A Rate of reaction will increase by increasing temperature for both endothermic & exothermic reaction Q.60 D Pressure generally does not effect the rate of reaction Q.61 D k = Ae Ea / Ea / Ea Ea Ea Ea Ea For exothermic reaction Eb = Ef + (DH*) only magnitude Eb = 40 + 10 - 50kj Q.63 B For exothermic reaction, Eb is always greater than Ef Q.64 Discourant conditions and the control of the control o	Q.57	A	$n = \Delta T/10 = 20 / 10 = 2$	
Q.60 D Pressure generally does not effect the rate of reaction Q.61 D R = Ae EA / RT is the correct expression of Arrhenius equation Q.62 A Processure generally does not effect the rate of reaction Q.63 B For exothermic reaction Eb = Ef + (DH*) Eb = 40 + 10 - 50kj Q.64 Processure generally does not effect the rate of reaction Eb = Ef + (DH*) Eb = 40 + 10 - 50kj Q.65 C Recursion recursions Exercises Q.66 A Processor			Change in rate = $(2)2 = 4$ time	
Q.60 D Pressure generally does not effect the rate of reaction Q.61 D R = Ae EA/RT is the correct expression of Arrhenius equation Q.62 A P	Q.58	C	The rate of a chemical reaction is independent of Molecularity	
Q.62 A Q.62 A Q.63 B For exothermic reaction, Elf is always greater than Ef Q.64 C C C C C C C C C C C C C C C C C C C	Q.59	A		
Q.62 A Q.63 B For exothermic reaction, Et is always greater than Ef Q.64 Q.65 C Q.66 A Q.66 A Q.67 D	Q.60	D	Pressure generally does not effect the rate of reaction	
Q.62 A Production Product	Q.61	D	$k = Ae^{-Ea / RT}$ is the correct expression of Arrhenius equation	
Q.66 Q.67 Q.67 Q.67 Q.67 Q.66	Q.62	A	Reactants Reactants Printer Printer	
Q.66 Q.67 Q.67 Q.67 Q.67 Q.66	Q.63	В		
Q.66 A Q.66 A Reaction coordinate GReaction coordinate Finducts Reaction Reactio	Q.64		Reactants O Reaction coordinate — X (a) Exothermic Reaction	
Q.66 A Products P	Q.65	C	frequency will increase.	
Q.67 D	Q.66	A	Reactants Reactants Reactants Reactants Reactants Reactants	
	Q.67	D		

		As in endohtemzic reaction			
		$E_0 > E_R$			
		$\Delta H = E_p - E_R$			
		= 120 - 110 = 10kJ			
		$E_1 = E_0 + \Delta H$			
		$30 = E_b + 10$			
		$30-10=E_0$			
		20kJ = Eb			
Q.68	В	All postulates are correct except "b" option. Reaction between colliding particles can only takes place if upon collision they possess energy equal or greater than activation energy.			
Q.69	В	Both reactant and product have same enthalpy and enthalpy change is zero			
Q.70	A	Catalytic activity of enzymes is greatly enhanced by the presence of a coenzyme or activator			
Q.71	A	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ $2M 2M 4M$ $Kc = \frac{[NH_3]^2}{[N_2][H_2]^3}$ $[4]^2$			
		$= \frac{[4]^2}{[2][2]^3}$ $= \frac{16}{2 \times 8}$ $= 1 \text{mol } ^2 \text{dm}^6$			
Q.72	В				
Q.73	В	$\frac{(\text{Moldm}^{-3})^{\Delta p}}{\Delta n - +1}$			
Q.74	C	[Z]/[X]2[Y]3			
		If number of moles of product are greater than reactant			
Q.75	B	$Kp > Kc$ as $Kp - Kc$ $(RT)^{\Delta m}$			
Q.76	C	A + B = C + D 6			
Q.77	A	Increase of pressure shifts equilibria to right (Products side) because with the increase of pressure volume of the system decrease and product will increase			
Q.78	В	$Kp - Kc (RT)^{\Delta n}$ If Δn is positive then Kp is greater than Kc			
Q.79	D	$\Delta n = nP - nR = 2-4 = -2$ $K_p = K_c (RT)^2$ $K_p = \frac{K_c}{(RT)^2}$ $K_c = K_p (RT)_2$			

Q.80	A	Rate $\frac{[Product]}{[Reactant]}$ of is less than numerical value of Kc means that Reactant is in excess and	
		product is in less amount. So, reaction should move in forward	
		K _c < 10 ⁻¹⁰ Reaction will be very slow	
Q.81	C	K _c = 10 ¹ Reaction will be at equilibrium	
		K _c = 10 ⁵⁰ Reaction will complete	
Q.82	A	If Kc value is very small it means that reaction is not proceeding in forward reaction favorably	
Q.83	A	When a reaction proceeds with decrease in number of moles will shift to right when pressure increased	
Q.84	D	Both Sulphuric acid is dehydrating agent and Addition of water reduces [NO ₂]	
Q.85	A	By adding HCl, Rr - increase and [BiOCl] decrease so artificial milk disappear.	
Q.86	D	Pressure is independent on the solid and liquid.	
Q.87	C	400°C/200-300 atm, at this condition rate of reaction and yield is at optimum level	
Q.88	В	The yield of ammonia is favoured at low temperature and high pressure, but at low temperature rate of reaction is very slow.	
Q.89	D	The suppression of ionization of weak electrolyte by strong electrolyte having common ion is called common ion effect.	
Q.90	В	Ba ²⁺ and NO ₃ only while Ag ⁺¹ and Cl ⁻¹ will react completely	
Q.91	C	Henderson's = Equation $pH = pKa + log \frac{[Salt]}{[Acid]}$ $= pKa + log \frac{[C_6H,COON a]}{[C_6H,COOH]}$ $= pKa + log 1 \begin{cases} salt and acid \\ are equimolar \end{cases}$ $pH = pKa + O$ $pH = pKa$ $pH = 2$	
Q.92	D	Buffer solution are needed in clinical analysis, solid sciences and Micro biology.	
Q.93		$Log 10 = 1$ $pH = pKa + log \frac{[Salt]}{[Acid]} \times 10$	
Q.94	A	If concentration of slat and acid are equal then buffer is considered as the best buffer	
Q.95	В	Buffer is a solution which resists change in its pH	
Q.96	В	Addition of NH ₄ OH and NH ₄ Cl in water gives basic buffer solution	
Q.97	D	CaF ₂ \Longrightarrow Ca ⁺² + 2F Let S is the solubility. Ksp = 4s ³ = $4 \times 8 \times 10^{-12}$ K _{sp} = 3.2×10^{-11}	
Q.98	A	Smaller the ksp less the dissociation of salt	
4.20	- A	STHOUST THE POD 1622 THE PROPOSITION OF 2011	

0.00	-	WI also and also make the first and the sales of the sale		
Q.99	C	KI give endothermic solution while other 3 slats gives exothermic solution		
Q.100	D	Greater the ksp greater the solubility of salt		
Q.101	A	$ksp = \left[Pb^{+2}\right]\left[Cl^{-1}\right]^2$		
		$Rate = K[A][B]^{2}$		
Q.102	В	$K = \frac{[Rate]}{[A][B]^2} = \frac{2.5 \times 10^{-3}}{0.2 \times 2.5 \times 10^{-3}} = \frac{1}{0.2} = 5$		
Q.103	C	Units of K = $(\text{moldm}^{-3})^{1-n}$ s ⁻¹ Units of K = $(\text{moldm}^{-3})^{1-1}$ s ⁻¹ = $(\text{moldm}^{-3})^0$ s ⁻¹ = s ⁻¹		
Q.104	D	Unit of rate of reaction and units of rate constant K for zero order reaction are same (moldm ⁻³ s ⁻¹)		
Q.105	C	mol ¹ dm3s ¹ is the unit of 2nd order reaction		
Q.106	C	By increasing the concentration of A, rate increases upto two times while by increasing conc. of B, rate increases upto four time due to the square of [B]. So, overall rate increases 8 time.		
Q.107	C	Optical rotation method is used when substance can rotate plane polarize light		
Q.108	C	polarimeter is used to measure the optical rotation of plan polarized light.		
Q.109	A	Explanation: As $k = A^{-\frac{E_a}{RT}}$ where T is temperature.		
Q.110	C	$\frac{\text{Jmol}^{-1}}{\text{Jk}^{-1}\text{mol}^{-1}} = \frac{1}{k} = k^{-1}$		
Q.111	A	Arrhenius equation describes the effect of Temperature on rate of reaction		
Q.112	A	Rate K reactant 0 Rate = K		
Q.113	D	It is pseudo first order because one reactant water' is taken in excess		
Q.114	C	Radioactive decay is 1st order reaction		
Q.115	В	The number of atoms or molecules whose concentration determines the rate of a chemical reaction is called the Order of the reaction		
Q.116	A	O.R = sum of exponents of rate equation = $3/2 - 1/2 = 1$		
Q.117	C	Number of collisions per unit time, primarily determines the value of activation energy of chemical reaction.		
Q.118	D	Activated complex has maximum energy, equivalent of activation energy. It is unstable and decompose to products.		
Q.119	D	The minimum amount of energy required for the reacting molecules to undergo reaction is Activation energy		
Q.120	C	Rate reaction for this equation will be Rate = $k [X]^2$ Rate = $k[3]^2$ Rate - k^9 while value of Y is constant		

THERMOCHEMISTRY + ELECTROCHEMISTRY

System, Surrounding and State function, Energy in chemical reactions & First Law of thermodynamics

Q. 1	Which of the following sets cons	titutes of all	the state functions	of system?
V. I	" men of the fonoting sets cons	titutes of an	the state functions	or system.

- A. Temperature, Pressure, Work
- B. Enthalpy, Work, Pressure
- C. Enthalpy, Entropy, Internal Energy
- D. Heat, Enthalpy, Volume

0.2 Hydrogen is a diatomic molecule and its molecule have

A. Translational motion

- B. Vibrational motion
- C. Vibrational and rotational motion
- D. Translational and vibrational motion

Q. 3 The system becomes more stable if it

A. Gains energy

- B. Loses energy
- C. Does not loses energy
- D. Have constant energy

Q. 4 Which of the following process may be exothermic?

A. 1st I.P

B. 2nd I.P

C. 1st E.A

D. 2nd E.A.

Q. 5 An exothermic process is

 $A. \ H_{2(g)} \longrightarrow 2H_{(g)}$

- C. $O^{-1}_{(g)} + 1^{-}e \longrightarrow O^{-2}_{(g)}$
- D. Both B and C

Reaction in which heat evolves is called Q. 6

A. Endothermic

B. Spontaneous

C. Non-spontaneous

D. Exothermic

All types of energies of particles forming a system is called Q. 7

A. Enthalpy

B. Kinetic energy

C. Potential energy

D. Internal energy

When ΔE of a system increases, then which of the following possibilities is correct 0.8

- A. Temperature of the system can increase B. Phase change may take place
- C. Chemical reaction can occur
- D. All of the above

$\Delta H = \Delta E$ for which of the following reaction

A.
$$K_{(s)} + H_2Q_{(t)} \longrightarrow KOH_{(sq)} + H_{2(g)}$$

B.
$$N_{2(g)} + 3H_{2(g)} \Longrightarrow NH_{3(g)}$$

C.
$$AlCl_{(aq)} + 3NaOH_{(aq)} \longrightarrow Al(OH)_{(aq)} + 3NaCl_{(as)}$$

D.
$$4Na_{(s)} + O_{2(g)} \longrightarrow Na_s Q_{(s)}$$

Q. 10 If there is interconversion of solid and liquid states then

 $A.\Delta V = 0$

B. ΔH ≈ ΔE

C. AH > AE

D. Both A and B

Enthalpy of a reaction and its Types, Born-Haber cycle & Hess's law of constant heat summation

Q. 11 Which of the following enthalpy is always exothermic?

A. Atomization

B. Solution

C. Formation

D. Combustion

Q. 12 For the reaction, $3O_2 = 2O_3$; $\Delta H = + ve$. We can say that

- A. Ozone is more stable than oxygen
- B. Ozone is less stable than oxygen and ozone decomposes forming oxygen readily
- C. Oxygen is less stable than ozone and oxygen readily forms ozone
- D. None of the above

Q. 13 The heat of neutralization is minimum for

- A. $NH_4OH + CH_3COOH$
- B. KOH + HNO3

C. NaOH + H_2SO_4

D. NaOH + HCl

Q. 14 Which of the following statement is incorrect?

- A. DH_n is determined by glass calorimeter
- B. DH_{latt} of NaCl is -787 kJ mol-1
- C. DH_{comb} is determined by bomb calorimeter
- D. $Na_{(s)} \longrightarrow Na_{(g)} + e^{-1} \Delta H_{at} = 108kJ \text{ mol}^{-1}$

Q. 15	Greater the lattice energy of an ionic con	npound,	will be the ionic bond or
	intermolecular forces.	1	
	A. Stronger	B. Weaker	
0.46	C. No relation	D. None of th	
Q. 16	Using the hypothetical information given		elow,
	Reactions	ΔН	
	$K_{(s)} + \frac{1}{2}Br_{2(1)} \longrightarrow KBr_{(s)}$	-400kJmol	1
	$K_{(s)} \longrightarrow K_{(g)}$	+100kJmol	1
	$K_{(g)} \longrightarrow K_{(g)}^+ + e^-$	+400kJmol	1
	$\frac{1}{2} \operatorname{Br}_{2(1)} \longrightarrow \operatorname{Br}_{(g)}$	+100kJmol	1
	$Br_{(g)} + e^- \longrightarrow Br_{(g)}^-$	-350kJmol	1
	Calculate the lattice energy of formation	-	
	A. +672kJmol ⁻¹	B. –672kJmo	
	C. +650kJmol ⁻¹	D650kJmo	
Q. 17	$\Delta \mathbf{H} = \Delta \mathbf{E}$ for which of the following react	tion	
	A. $K_{(s)} + H_2O_{(1)} \longrightarrow KOH_{(aq)} + H_{2(g)}$	11	
	B. $N_{2(g)} + 3H_{2(g)} \Longrightarrow 2NH_{3(g)}$		
	C. AlCl _{3(aq)} + 3NaOH _(aq) \longrightarrow Al(OH) _{3(aq)}	± 3NaCt	
		1 STVaCI(aq)	
	D. $4Na_{(s)} + O_{2(g)} \longrightarrow 2NaO_{(s)}$	11.	
Q. 18	Which of the following enthalpies of form		
	A. ΔH^0_{latt}	B. AH for C	
0.40	C. ΔH ^o f for B ₂ O ₃	D. All of the	
Q. 19	Based on the following reactions $C_{(graphite)} + O_2 \longrightarrow CO_{2(g)}, \longrightarrow \Delta H = -394 \text{ kJ/mole and } 2CO_{(g)} + O_{2(g)} \longrightarrow 2CO_{2(g)},$		
	$\Delta H = -569 \text{ kJ/mol}$, the heat of formation		
	A. 109.5 kJ/mol	B. 219.0 kJ/n	
0.20	C109.5 kJ/mpl Heat of formation of CO cannot be meas	D219.0 kJ	
Q. 20	A. Formation of carbon black with it.		of carbon dioxide with it.
	C. Formation of vater with it.		of CH ₄ with it.
	Oxidative number or state, Balancing of		
	Balancing redox equations by		
Q. 21	The oxidation state of group 1A metals is		
	A. +1/-2	B1/-2	
	C. +1/+2	D. None of th	nese
Q. 22	The oxidation state of oxygen in oxides, I	peroxides and	super oxides is
	A2, +2, -1	B1, -2, +1	_
	C2, -1, -1/2	D2, -1/2, -1	
Q. 23	The oxidation number of "P" in PO ₄ -3		
	A. +3	B. +8	
	C. +7	D. +5	
Q. 24	$2Cl^{-1} \longrightarrow Cl^2 + 2^{e-}$ is an example of		
	A. Oxidation	B. Reduction	
	C. Redox	D. Dispropor	
Q. 25	When KMnO4 acts as an oxidizing agent		
	Mn ₂ O ₃ and Mn ²⁺ , then the number of ele		rred in each case is
	A. 1, 3, 4, 5	B. 1, 5, 3, 7	
	C. 4, 3, 1, 5	D. 3, 5, 7, 1	
Q. 26	To balance oxygen in ion electron metho		aium, we add
	A. H+ ion	B. OH- ion	
	$C. H_2O$	$D. O_2$	

Q. 27	In fuel cell, N_2H_4 reacts $N_2H_4 + O_2 \rightarrow N_2$ each nitrogen atom will be	+ 2H ₂ O. The number of electrons lost by
	A. 3	B. 4
	C. 2	D. 6
Q. 28	HBr is formed when bromine reacts with	molecular hydrogen at high temperature.
	$H_2 + Br_2 \rightarrow 2HBr$, the reaction is an exam	aple of
	A. Disproportionation	B. Reduction
	C. Oxidation	D. Redox
Q. 29	In the reaction 2 Fe + 3Cl ₂ → 2FeCl ₃	
	A. Fe is reduced	B. Fe is oxidized
	C. Cl ₂ is oxidized	D. None of these
Q. 30	When HNO ₃ is converted into N ₂ O ₅ .	
	A. HNO ₃ is oxidized	B. HNO ₃ neither oxidized nor reduced
	C. The oxidation state of 'N' increases	D. The oxidation state of 'N' decreases
	Explanation of electrolysis (Predict the	Product), Standard electrode Potential,
	SHE and	Cell Potential
Q. 31	Electrochemistry is concerned with the	
	A. Nelson cell	B. Voltaic cell
	C. Hg-cell	D. All of these
Q. 32	In an electrolytic cell current flows in ext	ernal circuit
	A. From cathode to anode in outer circuit	B. From anode to cathode outside the cell
	C. From cathode to anode inside the cell	D. Both "B" and "C"
Q. 33	The electrolytic products of which of the	following are same as for the electrolysis of
	water.	
	A. Aqueous NaCl	B. Aqueous CuSO ₄
	C. Aqueous ZnSO ₄	D. Aqueous KCl
Q. 34	During the electrolysis of Brine solution,	the gas liberated at the cathode is
	A. H ₂	$B. O_2$
	C. Cl ₂	D. All of these
Q. 35	The product of electrolysis will not be sai	
	A. NaNO _{3(at)}	B. H. SQ _{4(aq)}
	C. NaOH _(8q)	D. CuSO _{4(an)}
Q. 36	Which of the following has a spontaneous	
	A. Electrolytic cell	B. Galvanic cell
	C. Voltaic cell	D. Both B & C
Q. 37		
	A. latm, 25°C, 1.0M	B. latm, 273K, 1.0M
	C. latm, 293K, 1.0M	D. 1atm, 290K, 1.0M
Q. 38	Select the correct statement about salt br	
	A. It acts as catalyst	B. It allows exchange of ions
	C. Maintain its neutrality	D. Both 'B' and 'C'
Q. 39		-
	A. Temperature	B. Molarity of the ions in solution
	C. Nature of metal	D. All the above
Q. 40	is not there in all the galvani	
		III) electrode
	A. I only	B. I and II only
	C. II and III only	D. I, II and III
		ries and Applications
Q. 41		te HCl whereas silver does not. The E.M.F.
	of a cell prepared by combining Al/Al+3 a	
	potential of silver electrode is + 0.80 V. T	
	A. +1.66 V	B. –1.66 V
	C. 3.26 V	D3.26 V
Q. 42	Which of the following is the weakest oxi	
	A. I ₂	$\mathbf{B}.\ \mathbf{Br}_2$
	C Cla	D. F.

Q. 43	Consider the standard reduction potentia	al of the followings	
	$Mg^{+2} + 2e^{-} \longrightarrow Mg E_{0} = -2.37 V$		
	$Fe^{+3} + 3e^{-} \longrightarrow Fe E_0 = -0.04 \text{ V}$		
	Best oxidizing agent is		
	A. Mg ⁺²	B. Mg	
	C. Fe ⁺³	D. Fe	
Q. 44	Metal that deposits at cathode when aque	eous solution of its salt is electrolysed	
-	A. Na	B. Cu	
	C. Zn	D. Sn	
Q. 45	can displace Hydrogen fron	acid more easily	
	A. Au	B. Al	
	C. Pb	D. Ca	
Q. 46	That reaction is feasible which has the ne	et cell voltage	
	A. Positive	B. Negative	
	C. Zero	D. Any of these	
Q. 47	Group 1 metals are reactive than g	group 2 metals.	
	A. More	B. Less	
	C. Equal	D. No relation	
Q. 48	can displace Hydrogen fron		
	A. Au	H. Al	
	C. Pb	D.Co	
Q. 49		lution by using Pt electrode then which of	
	the following possible change occurs		
	A. H ₂ is deposited at cathode	B. Colour of the solution becomes fade	
	C. Cu is deposited at anode	D. All are possible	
Q. 50	Which gas will be evolved at cathode dur		
	A. H ₂	B. Cl ₂	
0.51	C. Cu	D. None of these	
Q. 51	is not a state function	D. T. Love I.	
	A. Enthalpy	B. Internal energy	
0.52	C. Gibb's fire energy	D. Heat	
Q. 52	The environment in which a system is stu	B. Phase	
	A. State function C. Surrounding	D. State	
Q. 53			
Q. 55	A. Balloon	B Oxygen	
	C. Freezer	D. All of these	
0.54	Work may be defined in terms of pressur		
Q. O.	A. P V	B. F x d	
	C. H+V	D. H + PV	
0, 55	An exothermic process is		
	A. $H_{2(g)} \longrightarrow 2H_{(g)}$	B. $O_{(g)} + 1 e \longrightarrow O^{-1}$	
	C. $O_{(g)}^{-1} + 1 e^{-Q_{(g)}^{-1}}$	D. Both B and C	
Q. 56	Which of the following process will be sp	ontaneous and endothermic?	
	A. Melting of ice	B. Evaporation of water	
	C. Dissolution of NH4Cl	D. All of these	
Q. 57	In exothermic reactions		
	A. Container heats up		
	B. Container cools down		
	C. No change in temperature occurs		
	D. Enthalpy of product become greater than	n reactants	
Q. 58	Which is a non-spontaneous reaction		
	A. NaOH + HCl \longrightarrow NaCl + H ₂ O	B. $Zn + CuSO_4 \longrightarrow ZnSO_4 + Cu$	
	C. $N_2 + O_2 \longrightarrow 2NO$	D. Na + $H_2O \longrightarrow NaOH + H_2$	
Q. 59	The amount of heat required to raise the	temperature of a body through 1°C is	
-	called	_	
	A. Molar heat	B. Entropy	
	C. Specific heat	D. Heat capacity	

Q. 00	There are now many conventional ways	to change the internal energy of system
	A. 4	B. 3
	C. 2	D. 1
Q. 61	Thermodynamics relates heat with other	
	A. Gibb's free energy	B. Activation energy
	C. Internal energy	D. Potential energy
Q. 62	First law of thermodynamics relates	
	A. Heat, work and entropy	B. Internal energy, heat and work
	C. Heat, work and external energy	D. Work, internal energy and enthalpy
Q. 63	_	
	A. NH ₃ is synthesized from N ₂ & H ₂	B. LiCl is put in H ₂ O
	C. Soda ash is put in water	D. NH ₄ Cl is put in H ₂ O
Q. 64		system can be calculated by following
	relationship	
	A. $\Delta H = \Delta E - PV$	$\mathbf{B.}\ \Delta\mathbf{H} = \Delta\mathbf{E} + \mathbf{q}$
	C. $\Delta H = \Delta E - Q$	D. $\Delta H = \Delta E + P\Delta V$
Q. 65	Which of the following enthalpy change	
	A. Enthalpy of solution	B. Enthalpy of formation
	C. Enthalpy of neutralization	D. Enthalpy of atomization
Q. 66		, CO2, NH3 and HI are 142.2, -393.3, -46.2
		der of their increasing stabilities will be
	A. O ₃ CO ₂ , NH ₃ , HI	B. CO ₂ , NH ₂ , HI, O ₃
	C. O ₃ , HI, NH ₃ , CO ₂	D. NH ₃ , HI, CO ₂ , Q ₃
Q. 67	The heat of neutralization is maximum	
	A. NH ₄ OH + CH ₃ COOH	B. Ca(OH) ₂ HCl
	C. NaOH + H ₃ PO ₄	D. NaOH HCI
Q. 68		formation indicates that the product is most
	stable?	
	A. – 94 KJ	B. – 230KJ
	C. +21 KJ	D. +50 KJ
Q. 69	Enthalpy of neutralization of strong aci	ds and bases is same because
		B. Neutralization leads to formation of salts
	C. Strong acids and bases are ionic compound	
Q. 70	The enthalpy of formation of an ionic co	
		n of gaseous ions form normal physical state
	is 280 kJ / mole. The enthalpy of lattice	
	A. –112 KJ/ mol	B. – 672 KJ / mol
	C. –267 KJ / mol	D. +224KJ / mol
Q. 71		g the of ionic compounds.
	A. Structure	B. Bonding
	C. Properties	D. All of these
Q. 72		py in Born-Haber cycle may be negative?
	A. H _{LE}	B. H _{at}
	C. H _{E.A}	D. H _{diss}
Q. 73	Hess's law can be applied to determine	
	A. ΔH_{f}	B. ΔH_{latt}
	C. ΔH_{comb}	D. All of the above
Q. 74	By Hess's Law	
	$A. \Delta H = 0$	$\mathbf{B.} \sum \Delta \mathbf{H} = 0$
	$C. \sum \Delta E = 0$	D. $\sum \Delta H(\text{cycle}) = 0$
Q. 75	Standard heat of formation of Al ₂ O ₃ can	
	A. It reacts with CO ₂	B. It does not catch fire
	——————————————————————————————————————	
	C. Protective layer of Al ₂ O ₃ form	D. Al and O2 do not react
Q. 76	——————————————————————————————————————	D. Al and O2 do not react
Q. 76	C. Protective layer of Al ₂ O ₃ form	D. Al and O_2 do not react $\longrightarrow 2N_2O_{5(g)} \Delta Hr = -111kJ \text{ If } N_2O_{5(s)} \text{ is}$
Q. 76	C. Protective layer of Al ₂ O ₃ form Consider the reaction 4NO _{2(g)} + O _{2(g)} — formed instead of N ₂ O _{5(g)} in the above r	D. Al and O_2 do not react $\longrightarrow 2N_2O_{5(g)} \Delta Hr = -111kJ$ If $N_2O_{5(s)}$ is eaction, the ΔHr value will be
Q. 76	C. Protective layer of Al_2O_3 form Consider the reaction $4NO_{2(g)} + O_{2(g)} - O_{2(g)}$ formed instead of $N_2O_{5(g)}$ in the above r $(N_2O_{5(g)} \longrightarrow N_2O_{5(s)} \Delta H = -5$	D. Al and O_2 do not react $\longrightarrow 2N_2O_{5(g)} \Delta Hr = -111kJ \text{ If } N_2O_{5(s)} \text{ is eaction, the } \Delta Hr \text{ value will be}$ $54kJ\text{mol}^{-1}$
Q. 76	C. Protective layer of Al ₂ O ₃ form Consider the reaction 4NO _{2(g)} + O _{2(g)} — formed instead of N ₂ O _{5(g)} in the above r	D. Al and O_2 do not react $\longrightarrow 2N_2O_{5(g)} \Delta Hr = -111kJ$ If $N_2O_{5(s)}$ is eaction, the ΔHr value will be

Q. 77	i ne oxidation no. of nydrogen in Nah	18
	A. +1	B1
	C. 0	D. All of these
O. 78	Find the oxidation state of 'S' in H2SC	04
•	A2	B. +4
	C. +6	D. + 12
0.79	The oxidation no. of Mn in MnO ₄ ⁻² is	
Q. 13		
	A. + 4	B. + 5
	C. + 6	D 6
Q. 80	To balance oxygen in ion electron metl	hod in acidic solution, we add
	A. ion	B. ion
	C. H ₂ O	\mathbf{D}, \mathbf{O}_2
Q. 81	In which conversion oxidation number	of Mn is not changed
	A. $MnO_4^2 \longrightarrow MnO_4^1$	B. $MnO_2 \longrightarrow MnCl_2$
		D. Nama of the same
0.00	$C. \text{ KMnO}_4 \longrightarrow \text{MnSO}_4$	D. None of these
Q. 82	How many electrons are required to be	
	$2H_2O + MnO_4^{-1} \longrightarrow MnO$) +40H
	2 4	
	A. 2 e ⁻¹ on left side	B. 2e 1 on right side
	C. 3 e ⁻¹ on right side	D. Je on left side
Q. 83	Consider the following reaction	
	$2Cr_2O_7^2$ aq + $16H_{aq}^+$ + $3C_2H_2OH_3$	$4Cr^{34}$ + $14H_2O_0$ + $3CH_3COOH_{(ac)}$
	Which atom undergoes decrease in oxi	
	A. Carbon	B. Oxygen
0.01	C. Hydrogen	D. Chromium
Q. 84	Which of the following is not a redox r	
	A. $4Na + O_2 \longrightarrow 2Na_2Q$	B. $NO_2 + H_2S$ $NO_2 + H_2O + S$
	C. BaCl ₂ + $H_2SO_4 \longrightarrow BaSO_4 + 2HCl$	
Q. 85	Loss of electrons is called and gai	
	A. Oxidation reduction	B. Reduction exidation
	C. Hydration/debydration	D. None
Q. 86		Cr decreases by 3. This indicates that Cr is
	A. Reduced	B. Oxidized
	C. Neutralized	D. A reducing agent
Q. 87	Which is true about the reaction Mg +	Ct₂ → MgCt₂
	A. Mg is reduced	B. Mg is oxidized
	C. Cl ₂ is oxidized	D. Cl ₂ is reducing agent
O. 88	Which of the following has a non-spon	
	A. Electrolytic cell	B. Galvanic cell
	C. Voltaic cell	D. Both B & C
O. 89	The direction of flow of electrons through	igh external circuit in electrolytic cell is from
-	A. Anode to cathode	B. Cathode to anode
	C. Do not flow in external circuit	D. Vary from cell to cell
O. 90		of an inert electrode, product at cathode and
	at anode respectively	, P
	ar all of the first of the firs	D O III
	A. O2 and H2	B. Uz and Hz
	A. O ₂ and H ₂ C. O ₂ and Cu	B. O ₂ and H ₂ D. Cu and O ₂
O. 91	C. O ₂ and Cu	D. Cu and O ₂
Q. 91	C. O ₂ and Cu In the electrolysis of dil H ₂ SO ₄ using p	D. Cu and O ₂ latinum electrode, what is true
Q. 91	C. O ₂ and Cu In the electrolysis of dil H ₂ SO ₄ using p A. OH ⁻ is discharged at the cathode	D. Cu and O_2 latinum electrode, what is true B. H_2 is evolved at anode
	C. O ₂ and Cu In the electrolysis of dil H ₂ SO ₄ using p A. OH ⁻ is discharged at the cathode C. Oxygen is evolved at anode	D. Cu and O ₂ latinum electrode, what is true B. H ₂ is evolved at anode D. SO ₂ is evolved at anode
Q. 91 Q. 92	C. O ₂ and Cu In the electrolysis of dil H ₂ SO ₄ using p A. OH ⁻ is discharged at the cathode C. Oxygen is evolved at anode Temperature for the measurement of s	D. Cu and O ₂ latinum electrode, what is true B. H ₂ is evolved at anode D. SO ₂ is evolved at anode standard electrode potential is
	C. O ₂ and Cu In the electrolysis of dil H ₂ SO ₄ using p A. OH ⁻ is discharged at the cathode C. Oxygen is evolved at anode Temperature for the measurement of s A. 298K	D. Cu and O ₂ latinum electrode, what is true B. H ₂ is evolved at anode D. SO ₂ is evolved at anode standard electrode potential is B. 300K
Q. 92	C. O ₂ and Cu In the electrolysis of dil H ₂ SO ₄ using p A. OH ⁻ is discharged at the cathode C. Oxygen is evolved at anode Temperature for the measurement of s A. 298K C. 30°C	D. Cu and O ₂ latinum electrode, what is true B. H ₂ is evolved at anode D. SO ₂ is evolved at anode standard electrode potential is
Q. 92	C. O ₂ and Cu In the electrolysis of dil H ₂ SO ₄ using p A. OH ⁻ is discharged at the cathode C. Oxygen is evolved at anode Temperature for the measurement of s A. 298K	D. Cu and O ₂ latinum electrode, what is true B. H ₂ is evolved at anode D. SO ₂ is evolved at anode standard electrode potential is B. 300K

Q. 94 The standard reduction potential of Zn is

A. 0.76 B. – 0.76

C. – 0.34 D. 0.34

Q. 95 The conductivity of strong electrolyte

A. Increases on dilution B. Does not change considerably on dilution

C. Decreases on dilution D. Depends on density

Q. 96 The standard electrode potential is measured by

A. Electrometer B. Voltmeter

C. Galvanometer D. Polarimeter

Q. 97 A standard hydrogen electrode has zero electrode potential because

A. Hydrogen is easier to oxidize

B. This electrode potential is assumed to be zero

C. Hydrogen atom has only one electron

D. Hydrogen is the lightest element

Q. 98 If reduction potentials of different metals are

A = -0.25V B = -1.0V C = -1.50V D = -1.27V

Which can displace all others from their salts.

A. A B. B C. C D. D

Q. 99 The standard reduction potential of two electrodes are given as

A = +1.36 V B = -0.44 V the emf of the cell is

A. +1.36V B. +0.92V

C. – 1.36V D. + 1.80V

Q. 100 Metals below copper in electrochémical series do not react with

A. Dil. Acids B. Conc. Acids

C. Both A & B

D. None of these

ANSWERS & EXPLANTION

		ANSWERS & EXPLANTION: -	
Q.1	C	Heat (Q) and Work (W) are not state functions.	
Q.2	D	Hydrogen moleucle only have translational and vibrational motion. It is diatomic moleucle which does not have rotational motion.	
Q.3	В	The system becomes more stable if it Loses energy	
Q.4	С	1st electron affinity (E.A) is exothermic process. 1st E.A value may be exothermic but 2nd E.A and 1st I.P or higher I.P values are endothermic.	
Q.5	В	First electron affinity is exothermic process	
Q.6	D	When heat value reaction exothermic	
Q.7	D	All types of energies of particles forming a system is called Internal energy	
Q.8	D	When ΔE of a system increases, then temperature of the system can increase, chemical reaction can occur and phase change may takes place.	
Q.9	A	$\Delta V = 0$, for liquids and solids $\Delta H = \Delta D + PDY$, so $\Delta H \cong \Delta E$	
Q.10	D	$\Delta H - \Delta E + P\Delta V$ for solves and liquids: $\Delta V = O$	
Q.11	D	Enthalpy of combustion is always exothermic	
Q.12	В	As heat is absorbed, so the product O ₂ (O ₃) less stable than reactant oxygen (O ₂)	
Q.13	A	The heat of neutralization is minimum for NH ₄ OH + CH ₃ COOH because of weak acid and weak base	
Q.14	D	$Na_{(s)} \longrightarrow Na_{(g)} \Delta H = 108kJ \text{ mol}^{-1}$ $Na_{(g)} \longrightarrow Na^{+}_{(g)} + 1e^{-}\Delta H_{at} = +496kJ \text{ mol}^{-1}$	
Q.15	A	Greater the lattice energy of an ionic compound, Stronger will be the ionic bond or intermolecular forces.	
Q.16		$\Delta H_{latt} = \Delta H_f - \Delta H_x$ = 400 - 250650 KJ/mol	
Q.17	C	In case of liquid or solids $\Delta H - \Delta E$	
Q.18	D	All these enthalpies cannot be measured directly	
Q.19	C	$(C+O_2 \longrightarrow CO_2 \qquad \Delta H = -394)2$ $-2CO \pm O_2 \longrightarrow 2CO_2 \qquad \Delta H = \mp 509$ $-2C \pm O_2 \longrightarrow CO_2 \qquad \Delta H = -209$ Divide by 2 $2 \pm_2^1 O_2 \longrightarrow CO_2 \qquad \Delta H = -109.5 \text{KJ}^-\text{mol}^{-1}$	
Q.20	В	CO ₂ is formed with it.	
Q.21	C	Group number is O.N. of 1 and 2.	
Q.22	C	Oxidation state of O-atom in oxides, peroxides and super oxides is -2, -1, -1/2 respectively	
Q.23	D	Explanation P + 4O = -3 P + (-8) = -3 P = 5	
Q.24	A	Lose of electron is oxidation.	
Q.25	С	KMnO ₄ to MnO ₂ , oxidation state changed from +7 to +6, so Mn gains 1 electron KMnO ₄ to MnO ₂ , oxidation state changed from +7 to +4, so Mn gains 3 electron KMnO ₄ to Mn ₂ O ₃ oxidation state changed from +7 to +3, so Mn gains 4 electron	
	_		

	· · · · · · · · · · · · · · · · · · ·	7734 O + 34 2t - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
0.24	-	KMnO ₄ to Mn ²⁺ , oxidation state changed from +7 to +2, so Mn gains 5 electron Water molecules are added to balance the acid media in ion electron method.		
Q.26	C			
Q.27	C	Charge on N on left side is -2 for each nitrogen atom, on the right side it has zero charge, so 2 electron lost by N-atom		
Q.28	D	O.S of hydrogen change 0 to +1 and the O.S of bromine change 0 to -1. So, oxidation and reduction both takes place. It is the example of redox reaction		
Q.29	В	Iron (Fe) is oxidized from zero to +3 state.		
Q.30	В	Both HNO ₃ & N ₂ O ₅ have +5 oxidation state of N atom		
Q.31	D	Electrochemistry is concerned with both voltaic and electrolytic cell		
Q.32	В	In an electrolytic cell current flows from anode to cathode outside the cell		
Q.33	C	In case of zinc sulphate, salt remains unchanged and water will be hydrolysed, due lower reduction potential of Zn ion as compare to H ion, for anode, OH-1 has higher oxidation potential as compare to sulphate ions.		
Q.34	A	At cathode, H ion will reduce to Hydrogen cas due to lower reduction potential of Na ion		
Q.35	D	In all other options salt remains unchanged, while in case of copper sulphate product will be different at cathode, that is Cu metal.		
Q.36	D	Both galvanic cell & voltaic cell have a spontaneous oxidation reduction reaction.		
Q.37	A	Standard electrode potential is measured at latm, 25°C, 1.0M		
Q.38	C	Salt bridge maintain neutrality of solution by transfer of ions from one half cell to other.		
Q.39	D	Standard electrode potential of a metal depends upon nature of metal, temperature and the molarity of the ions in the solution. Alkali metals have low reduction potential.		
Q.40	A	Salt bridge is not present in all the galvanic cell. Sometime porous partition may also be used.		
Q.41	В	$E^{\circ}_{cell} - E^{\circ}_{Oxi} + E^{\circ}_{Red}$ $E^{\circ}_{Oxi} = E^{\circ}_{Cell} - E^{\circ}_{Red} - 2.46$ 0.80 = 1.66V this is oxidation potential of Al, while -1.66V is its reduction potential.		
Q.42	A	Upper position in electrochemical series as compare to F ₂ , Cl ₂ , Br ₂ so good reducing agent and weak oxidizing agent comparatively.		
Q.43	C	Metal with high value of reduction potential is good oxidizing agent. As -0.04 > -2.37 so Fe ³⁺ is correct.		
Q.44	В	Reduction potential of Cu is higher (+0.34) then other given options and deposit on cathode.		
Q.45	D	Those element that lie above the H ₂ they can displace hydrogen form acid and elements below cannot displace H form acids		
Q.46	A	Only those cells are possible and feasible having positive cell potential.		
Q.47	A	Group 1 metal have only one in valence shall and loss easily where as 2nd group members have 2 valence and are less reactive then group 1 member		
Q.48	D	Smaller the reduction potential greater the ability to displace H from dilute acid		
Q.49	В	Cu ions reduced to Cu metal, conc. Of Cu ions in the solution decrease so colour of the solution becomes fade		
Q.50	D	At cathode, Cu metal will be deposited so no gas evolves at cathode		
Q.51	D	Heat depend upon direction from high temperature to low temperature		
Q.52	C	The environment except system is called surrounding		
Q.53	В	Oxygen gas is the system which is under observation		
Q.54	A	Work is taken as P∆V		
Q.55	В	Enthalpy of atomization will be positive		

		When uni-negative ion accept 1 electron it will be endothermic and when neutral atom accept one electron it will be exothermic		
Q.56	D	In all process, heat is absorbed, so endothermic		
Q.57	A	Due to release of heat from system to surrounding		
Q.58	C	$N_2 + O_2 \longrightarrow 2NO$ This reaction proceed at high temperature or due to electric spark		
Q.59	D	The amount of heat required to raise the temperature of a body through 1°C is called Heat capacity		
Q.60	С	The two ways to change the internal energy of system. The energy can be exchanged between system and surrounding only in the form of work and energy. $\Delta E = q + W \longrightarrow First law of thermodynamics$		
Q.61	В	Activation energy relate with reaction kinetic		
Q.62	В	First law of thermodynamics relates Internal energy, heat and work		
Q.63	D	NH ₄ Cl is put in H ₂ O it is a endothermic process		
Q.64	D	Change in enthalpy of DH of a gaseous system can be calculated by following relationship $\Delta H = \Delta E + P\Delta V$		
Q.65	C	Enthalpy of neutrilization is always exothermic		
Q.66	C	Amount of released energy ∝ stability		
Q.67	D	Strong acid and strong base has maximum heat of neutralized i.e37.4 kJ/mole		
Q.68	В	That change is the most stable in which product has low energy than the reactant.		
Q.69	D	Enthalpy of neutralization of strong acids and bases is same because H and OH combine to form H ₂ O		
Q.70	В	$\Delta H_{f} = \Delta H_{x} + \Delta H_{y}$ $\Delta H_{I} = \Delta H_{f} - \Delta H_{x}$ $\Delta H_{I} = -392 - 280 = -672 \text{ kJmol}$		
Q.71	D	From lattice energy we discuss the structure, bonding and properties of ionic compound. Greater the lattice energy stable is the structure and stronger is the bonding.		
Q.72	C	Enthalpy of electron affinity is -ve in Born-Haber cycle		
Q.73	D	Hess's law is applicable to measure the enthalpy of reacting, formation and lattice energy		
Q.74	D	Enthalpy change in cyclic process is always zero		
Q.75	C	Standard heat of formation of Al ₂ O ₃ cannot be determined directly because Protective layer of Al ₂ O ₃ form		
Q.76	A	$4NO_{2} + O_{2} \rightleftharpoons 2N_{2}O_{5,s} \Delta H = ?$ $4NO_{2} + O_{2} \rightleftharpoons 2N_{2}O_{5,g} \Delta H_{1} = -111KJ$ $2N_{2}O_{5,g} \rightleftharpoons 2N_{2}O_{5,s} \Delta H_{2} = -108KJ$ $\Delta H = \Delta H_{1} + \Delta H_{2}$ $\Delta H = -111 + -108 = -219 KJ$		
Q.77	В	Oxidation number of hydrogen in metal hydrides is "-1".		
V-//	Б	2H + S + 4O = 0 $2H + S + 4O = 0$		
Q.78	С	2H + S + 4O = 0 2 + S + (-8) = 0 S - 6 = 0 S = 6		
Q.79	C	Mn + 4O = 2 Mn + (-8) = -2		

PAGE 66 OF 121

NMDCAT -2022 BY SKN

		•	
		Mn = -2 + 8 = 6	
Q.80	C	In ion method to balance 'O' atoms water molecules added.	
Q.81	D	In all conversion O.N of Mn is changing so (D) option.	
Q.82	D	Net charge on left side is -1 & on right side it has -4 charge, so to balance the charge 3 electrons are added to the left side.	
Q.83	D	Oxidation state of Cr is reduced from +6 to +3	
Q.84	C	No oxidation or reduction takes place.	
Q.85	A	Loss of electrons is called oxidation and gain of electrons is called reduction	
Q.86	\mathbf{A}	Decrease in oxidation number is reduction	
Q.87	В	Mg is oxidized from 0 to +2	
Q.88	A	Electrolytic cell consumes the electrical energy and proceeds	
Q.89	A	In electrolytic cell the direction of flow of electrons through external circuit is from anode to cathode	
Q.90	D	Cu ⁺² is reduced into Cu metal instead of H ⁺¹ ion due to higher reduction potential. At anode OH ⁻¹ is oxidised to O ₂	
Q.91	C	At anode OH ⁻¹ is oxidised to O ₂ due to higher oxidation potential as compare to sulphate ions	
Q.92	A	25°C -298K	
Q.93	A	Potential of SHE is considered arbitrary zero.	
Q.94	В	The standard reduction potential of Zn is 0.76	
Q.95	В	Strong electrolyte completely onize. So, Conductivity of strong electrolyte does not change considerably on dilution.	
Q.96	В	The standard electrode potential is measured by Voltmeter	
Q.97	В	This electrode potential is assumed to be zero	
Q.98	C	Metal with higher -ve value can replace the other metal.	
Q.99	D	$E_{cell}^{o} = E_{oxi}^{o} + E_{Re}^{o} = +0.44 + 1.36 = +1.80V$	
Q.100	A	Metals with low reduction potential react with acid to give H ₂ and the metal with high reduction potential (Present at the bottom of E.C.S) do not react with acid	

CHEMICAL BONDING

Atomic Size, Trends in IE, EA and EN & Energetics of Bond Formation

Q. 1	In a period, the atomic radii	
	A. Increases	B. Decreases
	C. Remain same	D. First decreases, then increases
Q. 2	Along period of periodic table shielding	effect
	A. Increases	B. Decreases
	C. Remains constant	D. First increases then decreases
Q. 3	Which factor does not effect I.E. across t	_
	A. Number of shells	B. Shielding effect
	C. Nature of orbitals	D. Both A and B
Q. 4	Which of following does not affect I.E in	0 -
	A. Shielding Effect	B. Effective Nuclear charge
	C. Size of atom	D. Nature of orbital
Q. 5	The correct order of ionization energy is	
	A. F > Cl > Br > I	B. Cl > Br > F > I
0.	C. Br $>$ F $>$ Cl $>$ I	D. I > Br > Cl > F
Q. 6	In general, ionization energy increases al	long the period. The group which shows
	maximum ionization energy	TI STILL
	A. IIA C. VA	B. VIIA D. VIIDA
0.7	Correct order of Electron affinity is	D. VIII
Q. 7	A. Flourine > chlorine > bromine > iodine	B. Chlorine > bromine > flourine > iodine
	C. Iodine > bromine > flourine	D. Browine > flourine > chlorine > iodine
Q. 8	The valence shell is	D. Blokane - Hourne - Chiorne - loune
Q. 0	A. The highest energy level occupied by ele	ectrons
	B. The set of orbitals used to make triple bo	
	C. The orbitals belonging to the entire mole	
	D. The lowest energy level occupied by ele	The second secon
Q. 9	Which of the following have their outer i	
	A. Noble gases	B. Alkali metata
	C. Coinage metals	D. Gun metals
Q. 10	Which one of the following compounds d	loes not obey Octet rule?
	A. PF	B. BF ₃
	C. NF	D. AsF ₃
	Types of Bond	s (Lewis Concept)
Q. 11	The compound which have three types of	bonds is
	A. NH ₃	B. H ₂ O
	C. NH ₄ Cl	D. NaCl
Q. 12	Covalent compounds are	
	A. Directional and rigid	B. Non-directional and non-rigid
	C. Non-directional and rigid	D. Directional and non-rigid
Q. 13	In which of the following central atom ca	
	A. CaCl ₂	B. NaCl
	C. NH ₃	D. NH ₄ ⁺
Q. 14	Which is not possible	
	A. Pure (100%) covalent bond	B. Pure (100 %) ionic bond
	C. Partial covalent bond	D. Both A and B
Q. 15	Dative bond is present in the molecule	D D0
	A. NH ₄ ⁺	B. BF ₃
	C. NH ₃	D. HF
Q. 16	A compound which is most ionic in natur	
	A. KCl	B. KF
0 47	C. MgCl ₂	D. RbF
Q. 17	CsF bond is % ionic	D 92
	A. 72	B. 82
	C. 92	D. 100

Q. 18	Formation of MgO is an example of	
	A. Ionic bond	B. Non-polar Covalent bond
	C. Polar covalent bond	D. Double Covalent bond
Q. 19	Most predominantly ionic compounds a of groups	are obtained by the combination of elements
	A. IVA and VIIIA	B. IA and VIIA
	C. IIA and VIA	D. IIA of VA
		PR Theory
O. 20	Which of following molecules has differ	
2.20	A. CO ₂	B. BeCl ₂
	C. CS ₂	D. H ₂ S
Q. 21		D. 1125
Q. 21	A. Linear	B. Angular
	C. Pyramidal	D. Tetrahedral
0.22	By increasing number of lone pair on co	
Q. 22	A. Increased	B. Remains same
	C. Decreased	
0.32		D. Depend upon central atom
Q. 23	9	
	A. $H_3O + H_3O^+$	B. NH ₃
0.01	C. PH ₃	II. AlCl ₃
Q. 24	Which of the following has minimum be	
	A. CCl ₄	B. NF ₃
	C. NH ₃	D. CO ₂
Q. 25	All of the following pairs have same sha	
	A. SO ₂ and AlCl ₃	B. CCL and SiCl
	C. H ₂ S and H ₂ O	D. NH ₃ and PH ₃
Q. 26	The shape of sulphate ion is	
	A. Square planar	B. Tetrahedral
	C. Trigonal bipyramidal	D. Hexagonal.
Q. 27	In NH3 and NF3 molecules the bond ans	gle is
	$A. NH_3 = NF_3$	B. NH ₂ > NF ₃
	$C. NH_3 \leq NF_3$	D. $NH_3 \leq NF_3$
Q. 28	The VSEPR theory explains the	of molecules
	A. Number	B. Kinds
	C. Geometry	D. Bonding
Q. 29	According to VSEPR theory, a molecul	e with the general formula AX4 with one
	lone pair will have a molecular sha	ape
	A. Bent	B. Trigonal planar
	C. Trigonal pyramidal	D. Tetrahedral
	VBT, Hybridization, Bond Energy and	I Bond Length & Ionic character of covalent
		ipole Moment)
Q. 30	Among following molecules, which has	different number of π-electrons than others
	A. SO ₃	$B. C_6H_6$
	C. C ₆ H ₅ CH ₃	D. CH₃CN
Q. 31	Hybridization is the extended form of	theory
	A. VSEPR	B. Lewis
	C. Molecular orbital	D. Valence bond
Q. 32	Number of sigma and pi bonds in chlor	oprene
_	A. 7, 2	B. 9, 2
	C. 10, 2	D. 11, 2
Q. 33		l orbital which indicates shortest bond length
	A. 25% s-character	B. 33.4% s-character
	C. 50% s-character	D. 75% s-character
0.34		entral atom of a molecule in which all the
Q	bond angles are 120° is	
	A. sp	$\mathbf{B}.\ sp^2$
	C. sp ³	D. dsp ³
0.35	Which one of the following is the most s	
V. 00	A. Oxygen	B. Nitrogen
	C. Fluorine	D. Hydrogen
	C. I IUUIIIU	L. HYGIOGOR

PAGE 69 OF 121

NMDCAT -2022 BY SKN

Q. 36	Which one has maximum bond dissociate	tion energy
	A. F ₂	B. Cl ₂
	C. Br ₂	\mathbf{D} . \mathbf{I}_2
Q. 37	The order of bond strength as a result of	f following head-to-head overlapping is
	A. s-s>p-p>s-p	B. $p-p > s-s > p-s$
	C. $s - s > s - p > p - P$	D. $p - p > s - p > s - s$
O. 38	Which one has dipole moment	• • •
-	A. Which one has dipole moment	B. Benzene
	C. o-Dichlorobenzene	D. Trans 1, 2-dichloroethene
0.39	CH ₄ is a nonpolar molecule. Which of the fo	
2.22	A. CH ₃ Cl	B. CH ₂ Cl ₂
	C. SiH ₃ Cl	D. SiH ₄
O. 40	Increase in atomic size down the group i	
Q. 10	A. Decrease in number of shells	B. Increase in shielding effect
	C. Inert pair effect	D. Increase in nuclear charge
0.41	Which of the following has largest ionic	
Q. 11	A. F	B. O ₂
	C. N ₃	D. Na ⁺
0.42	Which of the following is correct relation	
Q. 42	A. $A^- > A > A^+$	H. A > A ⁺ > A ⁻
	$C. A^+ > A > A^-$	$D.A^->A^+>A$
0.43		
Q. 43	For which molecule the bonding pair of atoms?	electrons is equally shared between the
		b Hel
	A. HF	B. HCI
0.44	C. H ₂	D. BF ₃
Q. 44	Which order of first ionization energy is A. O > N	No. of the last of
		B. S > P
0.45	C. Al < Mg	D. All are correct
Q. 45		D. T. Han
	A. Fluorine	B. Iodine
0.46	C. Chlorine	D. Bromine
Ų. 40		nerally abnormal trends of ionization energy.
	A. IIA and VA	B. IIIA and IVA
0.47	C. IIIA and VIA	D. VIIIA
Q. 47	Which factor does not effect ionization	
	A. Number of shell	B. Nuclear Charge
0 40	C. Nature of orbital	D. Both A & C
Q. 48		rgies and electron affinities
	generally form cations	D. Wish as delice as distribute a section
	A. Low, large negative	B. High, positive or slightly negative
0 40	C. Low, positive or slightly negative	
Q. 49		nfiguration ends on 2s ² 2p ⁶ in their highest
	occupied energy level	DWIG
	A. Ca ₂ ⁺ , Ar	B. Na ⁺ , Ca ₂ ⁺
0 50	C. Na^+ , O_2^-	D. Ar, O ₂
Q. 50		wo atoms is 1.7 units. The bond is roughly
	A. 90% ionic	B. Non polar covalent
0 54	C. 50% ionic and 50% covalent	D. Polar covalent
Q. 51	An atom loses or gains electrons, to	
	A. Gain stability	B. Form a bond
	C. Complete its outermost shell	j
Q. 52	Which of the following has the least bon	
	A. BCl ₃	$B. H_2O$
	C. NH ₃	D. CH ₄
Q. 53	Which of the following is not considered	
	A. Covalent bond	B. Hydrogen bonding
	C. Dipole- dipole inter action	_
Q. 54	A compound which has all the three typ	es of chemical bonds
	A. CuSO ₄ . 5H ₂ O	B. NaBH ₄
	C. NH ₄ Cl	D. All of these

PAGE 70 OF 121

NMDCAT -2022 BY SKN

Q. 55	in which of the following can donate at	n electron pair to the central atom?
	A. BF ₃	B. H ₃ O ⁺
	C. AlCl ₃	D. None
Q. 56	Bonding in phosphonium ion is	percent covalent
	A. 25	B. 33
	C. 50	D. 75
0. 57	Which of the following molecules conta	
2.0.	A. C ₂ H ₄	B. CO ₂
	C. CH ₄	D. NF ₃
0.58	Which one has lone pair with central a	
Q. 50	A. BF ₃	B. CH ₄
	C. NH ₄₊	D. H ₂ O
0.50		_
Q. 59	In which of the following bond pair-bo	B. Ammonia
	A. Water	
0 (0	C. Hydrogen sulphide	D. Nitrogen tri fluoride
Q. 60	All of the following have almost similar	
	A. BF ₃	B. AlCla
	C. NH ₃	D. C ₂ H ₄
Q. 61	The structure of CO ₂ is similar to that	
	A. Ethene	H. Carbon disulphide
	C. Ethyne	D. Both B and C
Q. 62	Which molecule is planar?	
	A. C ₃ H ₄	B C ₃ H ₆
	C. C ₂ Cl ₄	D. CH ₈
Q. 63	9	
	A. CCl ₄	B. NF
	C. NH ₃	D. CO ₂
Q. 64		ereas SO2 is polar (µ=1.62D). This difference
	is due to the fact that	
		whereas SO ₂ has an odd number of double bonds
	B. C and O are in different groups where	
	C. The C-O bond is nonpolar while the S	
	D. CO ₂ is linear whereas SO ₂ is not linear	
Q. 65	H-O-H bond angle in H ₂ O is 104.50 at	nd not 109.56 because of
	A. High electronegativity of oxygen	B. Lone pair – lone pair attraction
	C. Bond pair bond pair repulsion	D. Lone pair lone pair repulsion
Q. 66	Choose the species that is incorrectly n	natched with the shape of the central atom
	A. CF ₄ tetrahedral	B. BeCl ₂ linear
	C. H ₂ O tetrahedral	D. NH ₃ pyramidal
Q. 67	Which type of bond is formed by overla	p of p-orbitals perpendicular to the two nuclei
	A. $Pi(\pi)$ bond	B. sigma (б) bond
	C. Hydrogen bond	D. Dative bond
Q. 68	Pi(π) bond	
	A. Increases bond length	B. Decreases bond length
	C. Distorts the geometry of molecule	D. Make homo atomic molecule more reactive
Q. 69	Total no of sigma electrons in one mole	ecule of C2H2
	A. 3	B. 6
	C. 4	D. 8
Q. 70	The carbon number 2 in the structure	$CH_2 = CH - CH_2 - CH_3$ shows a type of
	hybridization	
	$A. sp^3$	$\mathbf{B}.\ sp^2$
	C. sp	D. dsp ²
Q. 71	-	different shapes and energy, then no of bonds
	_	
	formed will be	
	A. n	B. 2n
		B. 2n D. Cannot be predicted
Q. 72	A. n	D. Cannot be predicted
Q. 72	A. n C. n ²	D. Cannot be predicted

Q. 73	In which of the following compound, carb	oon atoms has sp ² hybridization only
	A. Carbon dioxide	B. 1, 3-butadiene
	C. Propene	D. Ethane nitrile
Q. 74	When water donates its electron pair to h	ydrogen ion to form hydronium ion,
	hybridization is changed from	
	A. sp^2 to sp^3	B. sp^3 to sp^2
	C. sp ³ to sp	D. Remains unchanged
Q. 75	All the atoms are coplanar in the molecul	e
	A. CH ₄	B. BF ₃
	C. PH₃	D. NH ₃
Q. 76	The hybridization state of 'S' in SO3 is sin	milar to that of
	A. C in C ₂ H ₂	B. C in C ₂ H ₆
	C. C in CO ₂	D. C in C_2H_4
Q. 77	In the resonance structure of benzene the	number of σ -bonds and π -delocalized
-	electrons are respectively	
	A. 12 and 6	B. 6 and 3
	C. 6 and 6	D. 12 and #
Q. 78	has sp ² hybridized carbon a	atom?
	A. CH ₃ — CH ₂ — CH ₃	B. $CH_3 - CN$
	$C. CH_2 = CH_2$	D. CH ₃ NH ₂
O. 79	Which molecule has smallest bond length	
•	A. HI	B. HF
	C, HCl	D. HBr
O. 80	Strongest bond among the following is	
2.00	A. H–H	B. F-F
	C. C- C	D. N-N
O. 81	Bond length decreases with	
2.02	A. Increase in size of atom	
	B. Increase in the number of bonds between	the atoms
	C. Decreases in the number of bonds between	No. of the last of
	D. Decrease in the s-character	
Q. 82	The bond energy of Cl - Cl bond is	7/
-	A. 155kJmol ⁻¹	B. 193 kJmof ⁻¹
	C.242 kJmol-1	D. 151 kJmoi-1
O. 83	The molecule having highest bond energy	
	A.N.N	B. Z = N
	C.C=C	D.C = O
O. 84	Which of the following has minimum book	d dissociation energy?
	A. I ₂	B. Br ₂
	C. F ₂	D. Cl ₂
O. 85	Which one of the following molecules is p	_
	A. BF ₃	B. CCl ₄
	C. SO ₂	D. CO ₂
O. 86	Ionic compounds do not show the phenon	_
	A. Directional and rigid	B. Non directional and rigid
	C. Non directional and non-rigid	D. All of the above
Q. 87	has highest dipole moment	
	A. CH ₄	B. CCl ₄
	C. CHCl ₃	D. CHI ₃
O. 88	NH3 has dipole moment whereas BF3 has	_
	A. F is more electronegative than H	
	B. BF ₃ is pyramidal while NH ₃ is triangular	nlanner
	C. BF ₃ is triangular planner while NH ₃ is py	-
	D. B is less electronegative than N	
0. 80	Which of the following compounds is non	-nolar?
2.03	A. CHCl ₃	B. SO ₂
	C. CO	D. CO ₂
	0.00	

THE RESERVE	the first term of the second
	NTION: -
THE RESERVE AND ADDRESS.	

Q.1	В	Left to right effective nuclear charge increase. So atomic size decrease.	
Q.2	C	Along the period sheilding effect does not change, because these are electrons of inner shells which do not change while present in valance shell	
Q.3	D	IE across the period does not depend upon Shielding effect because it will remain same from left to right.	
Q.4	D	Ionization energy does not depend upon nature of orbital in the group because all the elements in the group have same orbital	
Q.5	A	Ionization energy decreases down the group.	
Q.6	D	Group VIII shows maximum ionization energy.	
Q.7	В	Flourine has abnormally low E.A value due to its smaller size and electronic repulsion.	
Q.8	A	The valence shell is the highest energy level occupied by electrons	
Q.9	A	Only noble gases in periodic table which have complete outermost shell.	
Q.10	В	BF3 does not follow octet rule, it forms stable compounds with six electron.	
Q.11	C	The compound which have three types of bonds is NH ₄ Cl NH ₄ Cl NH ₄ Cl NH ₄ Cl Nitrogen makes 3-covalent and one coordinate covalent bond. NH ₄ ⁺ ion makes ionic bond with chloride(Cl ⁻) ion.	
Q.12	A	Covalent bonds are directional and rigid	
Q.13	C	NH ₃ have one lone pair of electron which is responsible for the formation of coordinate covalent bond	
Q.14	В	Maximum ionic character is present in CsF which is not 100% ionic. CsF= 92%	
Q.15	A	The bond between NH ₃ and H ⁺ dative in NH ₄ ⁺ ion	
Q.16	D	Due to high electronegativity difference	
Q.17	C	CsF is 92% ionic in nature.	
Q.18	A	Group I, II & Vi, VII mostly form ionic bonds	
Q.19	В	Strongest ionic bond-formed between group IA & VIIA elements, although group IIA & VIA elements also form ionic bond.	
Q.20	D	CO ₂ , BeCl ₂ and CS ₂ are linear but H ₂ S is angular in structure. H ₂ S is an example of AB ₄ (AB ₂ L ₂) system with two bond pairs and two lone pairs on central sulphur atom.	
Q.21	В	N has two lone pairs of electrons which is responsible for the angular structure of	
Q.22	C	Number of lone pair of electrons on central atom is inversely related to the bond angle	
Q.23	D	All except AlCl3 have trigonal pyramidal structure while AlCl3 has triangular structure	
Q.24	В	In NF ₃ , the strong polarity of N-F bond pulls the lone pair of N atom closer to its nucleus and the angle shrinks to 102°	
Q.25	A	SO ₂ triangle pyramidal AlCl ₃ triangular	
Q.26	В	The shape of sulphate ion is tetrahedral	
Q.27	В	NH ₃ > NF ₃ due to attachment of more electro negative atoms	
Q.28	C	VSEPR theory describe the geometry of covalent molecules.	
Q.29	C	Shape of AX4 with one lone pair and three bond pair is trigonal pyramidal.	
Q.30	D	Each molecule have 3 pi bonds or six pi electrons, while in methyl cyanide there are 2 pi bonds and 4 pi electrons.	
Q.31	D	Hybridization is the extended form of Valence bond theory, which was given to solve some problems and limitations of VBT	

Q.32	В	There are 9 sigma bonds and 2 pi-bonds in chloroprene molecule.	
Q.33	C	Bond length and s character have inverse relation, sp hybridizsed orbital having maximum s-	
Q.34	В	character, so shorter the bond length	
Q.34	В	sp ² hybrid orbitals arrange them at the angle of 120°	
Q.35	В	Nitrogen is the most stable element because its bond energy is higher than oxygen, fluorine and hydrogen. N ₂ 941 kJ/mol F-F 154 kJ/mol H-H 436 kJ/mol O-O 495 kJ/mol	
Q.36	В	Bond energy (kJmol ⁻¹) $F_2 = 155$, $Cl_2 = 242$, $Br_2 = 193$, $I_2 = 151$	
Q.37	D	Extent of overlapping is maximum in case of P - P overlapping	
Q.38	C	o-dichlorobenzene has dipole moment	
Q.39	D	both have net dipole moment zero due to regular geometry	
Q.40	В	Increase in atomic size down the group is due to increase in shielding effect but does not due to increase in nuclear charge. Its true nuclear charge increases down the group but its not factor to increase the atomic size down the group.	
Q.41	C	The increasing order of size: Anion > Neutral > Cation $N^{-3} > O^{-2} > F^{-1} > Na^+$ Greater the negative charge greater the size of ion.	
Q.42	A	Cation is always smaller than neutral atom and anion is always larger than neutral atom	
Q.43	C	In H ₂ molecule both atoms have same electronegativity.	
Q.44	C	Mg belongs to IIA while Al belongs to IIIA order of I.E IA < IIA > IIIA < IVA < VA > VIA < VIII A	
Q.45	C	The order of electron affinity for group VII group is CI>F>Br>I due to smaller size and greater repulsion	
Q.46	C	Due to complete s-sub shell and half p-sub shell group II & V are most stable, while group III & VI are less stable and easy to remove electron	
Q.47	A	In period number of shell and shielding effect will remain constant	
Q.48	C	Cations form when an elements having low I.E and positive or slightly negative E.A.	
Q.49	C	Na atom after losing 1 electron and O- atom after gaining 2 electrons have given electronic configuration.	
Q.50	C	If electronegativity difference between two atoms is 1.7 units. The bond is roughly 50% ionic and 50% covalent	
Q.51	D	When an atom loves or gains an electron it produces ions which react to form bond in this way atom gains stability.	
Q.52	В	$BCl_3 = 120^{\circ}$ $NH_3 = 107.5^{\circ}$ $H_2O=104.5^{\circ}$ $CH_4 = 109.5^{\circ}$	
Q.53	A	Covalent bond is not considered as an intermolecular force. This is intramolecular force.	
Q.54	D	All these compounds have ionic bond, covalent bond and co-ordinate covalent bond, Ionic bond in Cu ⁺² and SO ₄ ⁻² , Covalent vond in water molecules as well as in sulphate ion, while coordinate covalent bond formed between water molecules with Cu ⁺² and sulphate ion.	
Q.55	D	There is no lone pair in central atom of BF ₃ , H ₃ O ⁺ (in H ₃ O ⁺ water molecule has formed one dative bond by using its one lone pair)and AlCl ₃	

		Total bonds in $PH_4^{+1} = 4$	
Q.56	D	Total covalent bonds in $PH_4^{+1} = 3$	
		Total dative bonds in $PH_4^{+1} = 1$	
0.57	-	%age covalent character = (total covalent bonds / total bonds) × 100 = (3 / 4) × 100 = 75%	
Q.57	D	NF ₃ has three covalent bonds or six bonding electrons	
Q.58	D	H ₂ O has lone pair with central atom. There are two lone pairs on central oxygen atom in water but on central atom of BF ₃ , CH ₄ and NH ₄ ⁺ does not have lone pair.	
Q.59	C	Hydrogen sulphide has bent structure with two lone pairs of electron at the central atom and the angles is 92° S has greater size and comparatively smaller E.N.	
Q.60	C	NH ₃ has lone pair of electron on N atom & angle decrease to 107.5° remaining all other have 120° bond angle	
Q.61	D	Ethyne is sp hybridized so its geometry is linear like CO2 also H2S have same structure	
Q.62	C	C ₂ Cl ₄ Triangular planar geometry	
Q.63	D	CO ₂ has linear structure and angle of 180 which is maximum.	
Q.64	D	Due to linear and regular geometry of carbon dioxide it has zero dipole moment hence non polar	
Q.65	D	Lone pair - lone pair repulsion is maximum, due to which bond angle decrease.	
Q.66	C	Shape of water is angular or bent.	
		$Pi(\pi)$ bond is formed by overlap of p-orbitals perpendicular to the two nuclei. Sigma bond is	
Q.67	A	formed by axial overlapping of orbitals. Hydrogen bond and dative bond coordinate covalent bond) are formed by donating electron pair to empty orbital of an atom through linear combination.	
Q.68	В	$Pi(\pi)$ bond Decreases bond length because atom come closer due to increase in electron density	
Q.69	В	There are 3 sigma bonds therefore 3x2-6 sigma electrons	
Q.70	В	Carbon no. 2 forms 3 sigma bonds (two with C atoms and 1 H atom) therefore it is sp ² hybridized	
Q.71	A	Number of hybrid orbitals is equal to number of bond formed	
Q.72	D	SnCl ₂ is sp ² hybridize	
Q.73	В	CH ₂ CH - CH ₂ in this structure all carbon are double bonded so are sp ² hybridized.	
Q.74	D	In H_2O sp ³ and in $H_3O^+ = sp^3$	
Q.75	В	All the atoms are coplanar in the molecule BF ₃	
Q.76	D	Both C in C ₂ H ₄ and 'S' in SO ₃ are sp ² hybridized	
	D	There are 12 sigma bonds and 6 pi delocalized electrons are there in benzene resonance	
Q.77	A	structure	
Q.78	C	$CH_2 = CH_2$ has sp ² hybridized carbon atom	
Q.79	В	Bond length is directly proportional to the size of atom. HF has smallest bond length.	
		smaller the size stronger the bond	
Q.80 A Bond energy kJ/mol		Bond energy kJ/mol	
		H-H= 436, C-C= 348, F-F=154, N-N=163	
	-	Greater the bond order shorter the bond length	
Q.81	В		
Q.81 Q.82	СВ	The bond energy of Cl - Cl bond is 242 kJmol ⁻¹	

Q.84	A	Larger the size of atom smaller the bond energy.	
Q.85	С	SO ₂ molecule is polar with one lone pair on central sulphur atom but BF ₃ , CCl ₄ and CO ₂ are nonpolar molecules with regular geometries with zero dipole moments.	
Q.86	C	Ionic compounds do not show the phenomenon of isomerism because ionic bonds are non-directional and non-rigid.	
Q.87	C	Due to high electronegativity between carbon and chlorine and irregular structure.	
Q.88	С	Boron have no lone pair and regular geometry but N have one lone pair and irregular geometry	
Q.89	D	Due to linear and regular geometry it has zero dipole moment.	

S AND P-BLOCK ELEMENTS & TRANSITION ELEMENTS

Periodic Trends in Physical Properties O 1 All are the periodic properties which have same periodicity excess

Q. 1	All are the periodic properties which hav	
	A. Ionization energy	B. Electron affinity
	C. Electronegativity	D. Atomic radius
Q. 2	Atomic radius can be determined with th	e help of
	A. X-rays	B. Spectroscopy
	C. Polarimeter	D. Both A and B
Q. 3	Which of the following has largest ionic r	
Q. J	A. Cs ⁺	B. Li ⁺
	C. Na ⁺	D. Mg ⁺²
Q. 4	Which among the following is the correct	
	A. $Al^{+3} < Na^{+1} < Mg^{+2}$	B. $Al^{+3} < Mg^{+2} < Na^{+1}$
	C. $Na^+ < Mg^{+2} < Al^{+3}$	D. $Mg^{+2} < Al^{+3} < Na^{+1}$
Q. 5	Which of the following groups show abno	ormal trends in electron affinity values
	A. IIA	B. VA
	C. VIIIA	D. All of these
Q. 6	The relative attraction of the nucleus of an	atom for the electrons in a chemical bond is
	A. Ionization energy	B. Electron affinity
	C. Electronegativity	I) Shielding effect
Q. 7	How does melting point varies in a period	
Q. /		
	A. Increases upto group IVA then decreases	
	B. Generally increases throughout the perio	
	C. Decrease upto group IVA then increases	
	D. Generally decreases throughout the period	
Q. 8	Which of following is a correct order of d	legree of hydration in alkali metal ions?
	A. $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$	B. $Li^{+} > K$ $Na^{+} > Rb^{+} > Cs^{+}$
	C. $Li^+ < Na^+ < K^+ > Rb^+ < Cs^+$	D. $Li^+ > K^+ > Na \rightarrow Cs^+ > Rb^+$
Q. 9	Which of the following has maximum by	dration energy?
	A. Li ⁺	B. Ca ⁺⁺
	C. Na [†]	D. K
0.10	Which of the following is shows maximum	
Q. 10	A. Na	B. Al
	C/Mg	D. All of these
		coup 2 Elements (Alkaline earth metals) &
0.44		Water, Oxygen and Chlorine
Q. 11	Which of the following oxide is most basi	
	A. Li ₂ Q	B. Na ₂ O
	C. K ₂ O	D. BeO
Q. 12	Electronic configuration of alkali metals	is
	A. ns ² , np	$\mathbf{B}.\ \mathbf{n}\mathbf{s}^2,\ \mathbf{n}\mathbf{p}^1$
	$C. ns^2, np^0$	D. ns ¹
0.13	Which alkali metal explode spontaneousl	v when it is in contact with air/ O2
£. 22	A. Cs	B. Na
	C. K	D. Rb
0.14	Which among the alkali metals does not i	
Q. 14		
	A. Li	B. Na
	C. K	D. All of these react with C ₂ H ₂
Q. 15	Which of the following element reacts vig	
	A. Na	B. Al
	C. Mg	D. S
Q. 16	Lithium is only Group IA metal which co	ombines with nitrogen and carbon to form
_	A. Lithium nitrite and lithium carbide	B. Lithium nitride and lithium carbonate
	C. Lithium nitride and lithium carbide	D. Lithium carbide and lithium nitrite
0.17	Which of the following compound is least	
A. 11	· .	
	A. Mg(OH) ₂	B. Ca(OH) ₂
	C. Sr(OH) ₂	D. $Ba(OH)_2$

Q. 18	Which oxide of IIA dissociate into ions in	
	A. BeO	B. MgO
	C. CaO	D. BaO
Q. 19	On moving down the group in metals, rea	activity of metals.
	A. Increases	B. Decreases
	C. Remain unchanged	D. Has irregular trend
Q. 20	Solution of group IIA metal hydroxides a	rebasic than that of group IA metal
	hydroxides.	
	A. More	B. less
	C. equal to	D. two times more
	Reactions of Group IIA with Water, Ox	xygen and Nitrogen, Reactions of Period 3
	Elements with Water	r, Oxygen and Chlorine
Q. 21	In reaction between alkaline earth metal	oxide and water the base is
	A. OH-1	B. H ₂ O
	C. O ⁻²	D. M ⁺²
Q. 22	Not true about reaction of Ca with H2O.	4
	A. The reaction is endothermic	B. The reaction is exothermic
	C. Reaction is redox	D. The reaction gives slaked lime
Q. 23	Reaction of Alkaline earth metals with O	2 is
	A. Oxidation	B. Decomposition
	C. Hydration	D. All are correct
Q. 24	Which reaction is practically not possible	
	A. Be $+2H_2O \rightarrow H_2 + Be(OH)_2$	$B Mg + 2H_2O \rightarrow H_2 + MgO$
	C. Ca $+2H_2O \rightarrow H_2 + Ca(OH)_2$	D. Ba + $2H_2O \rightarrow H_2 + Ba(OH)_2$
Q. 25		
	A. Be	B. Mg
	C. Ca	D. Ba
Q. 26	Which of the following metals produce or	
	A. Be	B. Sr
	C. Ca	D. Mg
Q. 27	IIA metal which consumes most number	of moles of oxygen on burning at high
	temperature.	D.W.
	A. Be	B. Mg
0.29	C.Sr	D. Ba
Q. 28	Burning of Be in air requires A. 600°C	B. 800°C
	C. 1400°C	B. 200°C
0. 29	The elements of period 3rd react violently	
Q. 23	A. Alkaline	B. Acidic
	C. Amphoteric	D. All arepossible
O. 30	_	iod and group III does not react with water?
	A. B	B. Mg
	C. Al	D. In
	General characteristics (All), Describe e	lectronic structure of elements and ions of
		Elements
Q. 31		
	A. Sc	B. Y
	C. La	D. Ac
Q. 32	The total no. of transition elements is	
	A. 10	B. 14
	C. 40	D. 58
Q. 33	Coinage metals are present in	
	A. IB (Cu, Ag, Au)	B. IIB (Zn, Cd, Hg)
	C. IIIB (Sc, Y, La)	D. Both B & C
Q. 34	0 1	
	A. IB	В. ПВ
	C. VB	D. VIB
Q. 35	Which group contains the elements with	
	A. IB	B. IIB
	C. VB	D. VIB

PAGE 78 OF 121

NMDCAT -2022 BY SKN

Q. 36	d-Block elements are known as	
	A. Representative elements	B. Outer transition elements
	C. Inner transition elements	D. Coinage metals
Q. 37		resemblance in their valence shell configuration:
	A. Ti, Ta	B. Mn, Mo
	C. Zn, Cd	D. Pt, Au
Q. 38		resemblance in their valence shell configuration?
	A. Sc, Y	B. Mn, Mo
0.30	C. Zn, V	D. Pt, Au
Q. 39	The correct electronic configuration	
	A. $4s^2 3d^4$ C. $4s^0 3d^6$	B. 4s ¹ 3d ⁵ D. 4s ² 3d ⁵
0.40	Which one of the following ion has	
Q. 40	A. Cr ⁺³	B. Fe ⁺³
	C. Mn ⁺³	D. Co ⁺³
		lements of 3d series, Complex Formation
O. 41	The transition metal which has cold	
V. 11	A. Ni	B. Ma
	C. Co	D. Sc
0.42	The paramagnetic character of sub	
Q	A. Bond pairs of electrons	
	B. Lone pairs of electrons	
	C. Unpaired electrons in the atom or i	molecule
	D. Paired electrons in the valence she	
Q. 43	Which of the following compound of	
	A. Cu ⁺²	B. Fe
	C. Zn ⁺²	D. Fe ⁺³
Q. 44	The transition metal which has only	y colorless compounds
	A. Ti	B. Cr
	C. Cu	Q. Zn
Q. 45	If violet colour is absorb by comple	x, then colour of complex looks like
	A. Red	B. Orange
	C. Green	D. Yellow
Q. 46	Which one of the 3d series element	
	A. Scindium	B. Chromium
	C. Vanadium	D. Manganese
Q. 47	The oxidation state of Cu in [Cu(N]	
	A. +1	B. +2
0.40	C. 0	D. None of these
Q. 48		f central metal ion in the following complex
	[Cu(NH ₃) ₄] ⁺² A. dsp ²	$\mathbf{B}.\ sp^3$
	C. sp ²	D. d^2sp^3
Q. 49	Which is bidentate neutral ligand	D. u sp
Q. 42	A. Carbonato	B. Oxalato
	C. Acetato	D. Hydrazine
0.50	The central metal atom in K ₄ [Fe(C)	*
Q. 50	A. K	B. Fe
	C. C	D. N
0.51	Which is an incorrect order of atom	
6.01	A. Mg > Sr	B. Be > C
	C. Al > S	D. K > Ar
0, 52	The correct atomic size order is	
6.02	A. Li > Mg	B. Be > Al
	C. B > Si	D. Ba > Na
0. 53		ive than alkali metals due to their higher
£. 00	A. Heat of hydration	B. Atomic numbers
	C. Density	D. Ionization energy
	~	ال البياء

Q. 54	Among the following outermost electronic configuration of the least electronegative element in a given period is		
	A. ns ² np ⁵	$\mathbf{B.} \ \mathbf{ns}^2 \ \mathbf{np}^2$	
	$C. ns^2 np^4$	D. $ns^2 np^3$	
0.55	While moving down a group in the periodic table, which of the following would		
	not true		
	A. All the atoms have the same n	umber of valence electrons	
	B. Electronegativity decreases		
	C. Atomic size increases		
	D. Metallic character decreases a	nd the basic nature of their oxides decreases	
O. 56	Mark the correct statement?		
_	A. Melting points of halogens de	crease down the group.	
	B. Melting points of halogens inc		
	C. Melting points of halogens ren	nain the same throughout the group.	
	D. Melting points of halogens firs	st increase and then decrease down the group.	
Q. 57	Which is the pair of metalloids	4	
	A. Na and K	B. F and Cl	
	C. As and Sb	D. Cu and Au	
Q. 58	Point out the element which is a	a non-metal	
	A. Bi	B. Sb	
	C. Al	D. Br	
Q. 59	Ionization energy of Group IA	is minimum for	
	A. Li	B Na	
	C. K	D. C3	
Q. 60	Carbonate of is least	soluble in IA group	
	A. Li ₂ CO ₃	B. Na ₂ CO ₃	
	C. K ₂ CO ₃	D. Cs ₂ CO ₃	
Q. 61	One of the following is least rea		
	A. Li	B. Na	
	C. K	D. Cs	
Q. 62		es not give Nitrite upon heating	
	A. Na	B. Li	
	C. K	D. Mg	
Q. 63	One of the following will form		
	A. Li	B. Na	
0 (1	CK	D. Be	
Q. 64		nship with which of the following element B. Na	
	A. Mg C. Al	D. B	
0.65	When Na is dropped in water, I		
Q. 03	A. It is a metal	B. It is highly electropositive	
	C. It has higher atomic mass	D. Its reaction is highly exothermic	
0 66		s not belong to alkaline earth metals?	
Q. 00	A. Be	B. Ca	
	C. Ba	D. Rn	
0. 67	Which oxide of IIA metal is mo		
2.01	A. BeO	B. MgO	
	C. CaO	D. SrO	
O. 68	Which IIA hydroxide decompo		
	A. Mg(OH) ₂	B. Ca(OH) ₂	
	C. SrOH) ₂	D. BaOH) ₂	
Q. 69	Which of followings is not pure		
4.00	A. BeO	B. MgO	
	C. CaO	D. BaO	
O. 70		-1 oxidation state of in its oxides, formed by its	
	reaction with O ₂ at 600°C?		
	A. Be	B. Mg	
	C. Ca	D. Ba	

Q. 71	$M + O_2 \rightarrow MO_2$. The metal M is		
	A. Be	В.	Mg
	C. Ca	D.	Ba
Q. 72	The gas evolved when Ca reacts with boili	ing	water is
	$A. O_2$		\mathbf{H}_{2}
	C. Both A and B	D.	N_2
Q. 73	Magnesium burns in air to form	_	
	A. MgO		Mg_3N_2
0.74	C. MgCO ₃		MgO and Mg ₃ N ₂
Q. /4	Which IIA metal will not form normal oxi		
	C. Sr		Mg Ba
0.75	Which alkaline earth metal liberates hydr		
Q. 10	A. Mg	_	Be
	C. Ca		Ba
Q. 76	Which of the followings contains non-typi	cal	transition elements?
	A. IB (Cu, Ag, Au)		IIB (Zn/Cd, Hg)
	C. IIIB (Sc, Y, La)	D.	Both B & C
Q. 77	f- block elements are called		
	A. Inner transition		Outer transition
	C. lanthanides & actinides	-	Both A & C
Q. 78	Which of the following is the non-typical		
	A. Cr	VIII.	Mn
0.70	C. Zn The stable states of an orbital are when it		Fè
Q. 13	A. Half-filled		Completely filled
	C. Empty		Both A & R
Q. 80	Generally, the transition elements have		melting and boiling points
2.00	A. High		Very high
	C. Low		Very low
Q. 81	The number of unpaired electrons presen	t ir	Cr3+ ion is/are:
	A. 1	B.	
	C. 2	D.	
Q. 82	The number of unpaired electrons presen		
	A	B.	
0 92	Visita visit and a section of the se		A proport in
Q. 83	Minimum number of unpaired electrons a		Cu ⁺²
	C. Fe ⁺²		Cu ⁺¹
O. 84	Select the pair of ion having five electrons		
	A. Cr ³⁺ , Fe ³⁺		Sc3+, Cr3+
	C. Fe ³⁺ , Co ³⁺		Fe ³⁺ , Mn ²⁺
Q. 85	The ion that is iso-electronic with argon		
	A. Cr ⁴⁺		Sc ³⁺
	C. Ti ³⁺		Mn^{2+}
Q. 86	Which pair of ions have same number of		
	A. Sc ⁺³ , Ti ⁺³		Co ⁺² , Mn ⁺²
0.97	C. Ti ⁺³ , Cu ⁺²	D.	Fe^{+3} , Ni^{+3}
Q. 8/	Cu ²⁺ has electronic configuration A. [Ar] 3d ⁹	D	[A=] 4d9
	C. [Ar] 5d ⁹		[Ar] 4d ⁹ [Ar] 3d ⁸
Q. 88	At which state copper has partially filled		
Q. 00	A. Atomic state		Cu ⁺¹
	C. Cu ⁺²		Cu ₂ O
Q. 89	Paramagnetism depends upon no. of unpa		_
	A. s-orbital		p-orbital
	C. d-orbital		all of thes
Q. 90	The color of transition complexes is due to	Ð	
	A. d-d transition of electrons		paramagnetic nature of transition elements
	C. ionization	D.	loss of s –electrons
NMDC	AT -2022 BY SKN		PAGE 81 OF 121

Q. 91 One of the following properties of transition elements does not vary with regular pattern A. Binding energy B. Ionic radius C. Melting point and boiling point D. All of these Q. 92 Which of the following element usually not show variable oxidation state? A. Cr B. Mn C. Mn D. Zn Q. 93 Among the outer electronic configuration, the highest oxidation state is achieved by which of the following A. $(n-1)d^8 ns^2$ B. $(n-1)d^5 ns^2$ D. (n 1)d5 ns1 C. $(n-1)d^3 ns^2$ Q. 94 The complex of which ion is colourless B. Cu⁺² A. Ti⁺⁴ C. Fe⁺³ D. Mn⁺² Q. 95 When a complex absorb blue light then its colour most probably will be A. Green B. Red C. Yellow D. Orange Q. 96 The transition metal which has only colourless compounds A. Ti B. Cr C. Cu D. Zn Q. 97 The coordination number of cobalt in [Co(NH₃)6]Cl₃ A. 2 B. 4 C. 6 D. 9 Q. 98 Which of the following is monodentate ligand? A. C₂O₄-2 B. H2NCH2CH2NH2 C. NH₃ D. Both A & B Q. 99 The coordination number of Cu in [Cu(NH₃)₄]SO₄ Is B. 4 C. 1 D. 6 Q. 100 The substance which donates a pair of electron to transition metal is known as A. Ligand B. Electrophile C. Coordination number D. Lewis acid

Q.1	D	I.E, E.A and E.N are increases along the period and decreases down the group but atomic radius decreases along the period and increases down the group.	
Q.2	В	Atomic radius can be determined by the techniques of X-rays and spectroscopic	
Q.3	A	Ionic radios for same charge ions increase from top to bottom.	
Q.4	В	Greater the positive charge smaller the size of cation.	
Q.5	D	Group IIA, VA and VIIIA show abnormal trends in E.A due to stable configuration.	
Q.6	C	The relative attraction of nucleus of an atom for the electrons in a chemical bond is electronegativity	
Q. 7	A	Melting point increase with number of valence electrons upto group IVA. But VA to VIIA group element exist as diatomic form. So their melting point is smaller than IVA group.	
Q.8	A	as size increases down the group degree of hydration decreases.	
Q.9	В	Hydration energy α charge / size	
Q.10	В	Electrical conductance increases from IA to IIIA.	
Q.11	C	Basic character increases down the group.	
Q.12	D	Electronic configuration of alkali metals is ns.	
Q.13	A	Highly reactive element Cs explodes when treated with oxygen or air.	
Q.14	A	Li does not react with ethyne to give hydrogen gas due to less electropositive character, while all other alkali metals give this reaction.	
Q.15	A	Alkali metals are the most reactive metals in periodic table.	
Q.16	C	Li combines with nitrogen and carbon to form Lithium nitride (Li ₃ N) and lithium carbide (Li ₄ C)	
Q.17	A	Solubility increases down the group	
Q.18	D	Down the group dissociation increases due to decrease in lattice energy	
Q.19	A	Due to decrease I.E.	
Q.20	В	Hydroxides of IIA metals are less soluble than hydroxides of IA."	
Q.21	C	O donates electron to H ₂ O and accept M to make OH hence O-2 is base.	
Q.22	A	Energy is evolved so reaction is exothermic.	
Q.23	A	Metal is oxidized to M ⁺²	
Q.24	A	Be is least reactive in IIA due to very high I.E. and low electropositivity it does not react with water due formation of BeO layer.	
Q.25	D	Reactivity of IIX LE decreases down the group.	
Q.26	D	Be does not react with oxygen while among other group members Mg is least reactive	
Q.27	D	Only Ba forms peroxide which contains greater amount of oxygen	
Q.28	В	Be is the least reactive member of IIA and burns at 800°C 2Be + O ₂ → 2BeO	
Q.29	D	Some of 3rd period members form basic, some acidic and amphoteric solution	
Q.30	C	Al does not react with water, its oxides are amphoteric	
Q.31	A	first transition series is from 21Sc to 30Zn	
Q.32	D	58	
Q.33	A	IB elements are called coinage metals	
Q.34	В	General electronic configuration of IIB elements is (n-1)d ¹⁰ , ns ² . this means they have completely filled d subshell and ns-subshell. They only show +2 oxidation state	

Q.35	В	Binding energy is directly related to no. of unpaired electrons. IIB elements have electronic configuration as (n-1)d ¹⁰ , ns ²	
Q.36	В		
Q.37	С	$30Zn = [Ar]4s^2, 3d^{10}$ $48Cd - [Kr]5s^2, 4d^{10}$	
Q.38	A	Both belongs to same group i.e IIIB	
Q.39	D	$25Mn^{+2} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$	
Q.40	В	$26Fe^{+3} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^5$	
Q.41	D	Sc is Non-typical transition element and compound of Non-typical transition elements are colorless	
Q.42	C		
Q.43	D	Fe ⁺³ has maximum number of unpaired electrons	
Q.44	D	Zn have completely filled d-subshell	
Q.45	D		
Q.46	A		
Q.47	В	NH ₃ is neutral ligand, coordination sphere has +2 charge which the oxidation state of Cu	
Q.48	A		
Q.49	D	Hydrazine (H ₂ N – NH ₂) is b ₁ -dentate as well as neutral ligand	
Q.50	В	Fe is central metal atom	
Q.51	A	Atomic radii decrease from left to right and increase from top to bottom.	
Q.52	D	Size of Ba in greater than Na due to greater number of shells in Ba atom.	
Q.53	D	Alkaline earth metals are less reactive than alkali metals due to their higher I.E	
Q.54	В	E.N increases along the period and maximum for ns np while minimum for ns np	
Q.55	D	Metallic character increases and the basic nature of their oxides increases down the group while statement is wrongly mentioned	
Q.56	В	Molting point α LDF α Molecular size	
Q.57	C	As and Sb are lower members of group V-A and has character in between metals and non-metals.	
Q.58	D	Br ₂ is one of the element in the given lot which is a non-metals.	
Q.59	D	I.E decreases down the group.	
Q.60	A	Solubility of G-IA increases down the group due to decrease in lattice energy.	
Q.61	A	Due to high I.E Li is least reactive.	
Q.62	В	LiNO ₃ upon heating give NO ₂ and its Oxide along with O ₂ .	
Q.63	C	Potassium will form superoxide among all given options, due to high reactivity.	
Q.64	A	Li and Mg of group II A show diagonal behaviour.	
Q.65	D	Na is dropped in water, it catches fire because its reaction is highly exothermic	
Q.66	D	Rn does not belong to alkaline earth metals, it belongs to Noble gases.	
Q.67	A	BeO has very high lattice energy due the high charge density of Be ⁺²	
Q.68	A	Ease of decomposition is inverely related to cationic size inc. order of cationic size	
Q.69	A	BeO is amphoteric oxide and shows basic as well as acidic properties	
Q.70	D	Ba reacts with O ₂ at 600°C to form peroxide and O.S of 'O' in peroxides is —1	

Q.71	D	MO ₂ = Peroxide Ba gives peroxide in air at 500°—600°C		
Q.72	В	$Ca+2H_2O \rightarrow Ca(OH)_2 + H_2$		
Q.73	D	$2Mg + O_2 \rightarrow 2MgO$ $3Mg + N_2 \rightarrow Mg_3 N_2$		
Q.74	D	Barium peroxide is formed at given temperature.		
Q.75	В	$Be + 2NaOH \rightarrow Na_2BeO_2 + H_2$		
Q.76	D	In tri+ve ions of group IIIB there are no. of electron is present in d-subshell In IIB d-subshell is completely filled		
Q.77	D	f-block consist of Lanthanides (series starting with element Lanthanum) and Actinides (series starting with element Actinium)		
Q.78	C	Transition element which have empty or Fully Filled d-orbital are call now-typical Transition element e.g Sc ⁺³ , Zn ⁺² IIIB, IIB		
Q.79	D	Order of stability is Completely filled > Half filled > Partially filled		
Q.80	В	Transition element have high melting point and boiling point due to strong binding force present between their atoms		
Q.81	В	it has 3 unpaired electrons, 24Cr 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ⁰ 3d ³		
Q.82	В	${}_{24}\text{Cr}^{6+} = 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^0 3\text{d}^0,$		
Q.83	D	There are no unpaired electrons 29Cu ¹⁺ - 1s ² 2s 2p ⁶ 3s ² 3p ⁶ 4s ⁰ 3d ¹⁰		
Q.84	D	${}_{26}\text{Fe}^{+3} = 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^6 3\text{d}^5$ ${}_{25}\text{Mn}^{+2} = 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^4 3\text{d}^5$		
Q.85	В	Argon has 18 electrons. Sc has 21. So. Sc ³⁺ have 18 electrons left behind		
Q.86	C	Both have only one unpaired electron in d-subshell $23 \text{ Ti}^{+3} = 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^0 3\text{d}^4$ $29 \text{ Cu}^{-2} = 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^0 3\text{d}^6$		
Q.87	A	$Cu'^2 - ls^2 2s^2 2p^6 3s^3 3p^6 4s^0 3d^9$ Or $29 Cu'^2 = Ar 3d^9$		
Q.88	C	$_{29}\text{Cu}^{+2} = 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^0 3\text{d}^9$		
Q.89	C	Paramagnetic no. of unpaired electrons in d-orbital		
Q.90	A	Transition complexes shows color due to d-d transition of		
Q.91	D			
Q.92	D	Zn have completely filled d-subshell. Zn only show +2 oxidation state		
Q.93	В	(n-1)d ⁵ ns ² is the general electronic configuration of group VIIB. Mn also belongs to group VIIB		
Q.94	A	Ti ⁺⁴ have empty d-subshell		
Q.95	D			
Q.96	D	Zn have completely filled d-subshell		
Q.97	C	There are six monodentate ligands directly joint with cobalt		
Q.98	C	NH ₃ can donate only one lone pair		
Q.99	В	Cu is central metal. it contain 4-amino group (which is monodentate ligand) attached to it		
Q.100	A			

CHEMISTRY OF HYDROCARBONS, FUNDAMENTAL CONCEPTS OF ORGANIC CHEMISTRY

Classification of organic compounds

- Which of the following is alicyclic organic compound?
 - A. Benzene

B. Cyclohexene

C. Thiophene

- D. Toluene
- O. 2 The aliphatic compounds are of two types
 - A. Straight chain and cyclic
- B. Straight chain and branched
- C. Branched chain and alicyclic
- D. Homocyclic and aliyelic
- Q. 3 All are homocyclic compounds except
 - A. Furan

B. Aniline

C. Benzaldelyde

- D. Benzylchloride
- 0.4 Which may not present as heteroatom in heterocyclic compounds generally
 - A. Sulphur

B. Nitrogen

C. Oxygen

- D. Bromine
- All are saturated alicyclic compounds except 0.5
 - A. Cyclohexane

B. Methyl cyclopropane

C. Cyclohexene

- D. Ethylene epoxide
- Q. 6 Which of the following does not contain isolated rings?
 - A. Biphenyl

H. Phenanthrene

C. Diphenyl amine

- D. Triphyenyl methane
- Naphthalene and Anthracene are the example of 0.7
 - A. Alicyclic hydrocarbons
- B. Acyclic Hydrocarbons
- C. Aromatic hydrocarbons
- D. Heterocyclic hydrocarbons
- Which of the following pair of organic compounds have same hetero atom? Q. 8
 - A. Pyridine, Furan

B. Furan, pyrrole

- C. Pyrrole, thiophene
- D. Pyridine, Pyrrole General formula of saturated alicyclic compound is
- A. CnH2n C. CnH2n-2

Q. 9

- B. CnH2n+2 D. CnHn
- Q. 10 Open chain (Acyclic) compounds are classified into
 - A. Straight chain and branched chain
- B. Aromatic and non-aromatic
- C. Homocyclic and heterocyclic
- D. Straight chain and closed chain

Nomenclature of organic compunds (All Families)

Q. 11 The name of the below structure is:

A. 1,1-Dichloropentane

B.1,2-Dichloropentane

C. 2,3-Dichloroheptane

- D. 6,7-Dichloroheptane
- O. 12 IUPAC name of CH $\not\in$ C CH(CH₃) C \equiv CH
 - A. 3-Methlypent-1,5-diyne
- B. 3-Methlybut-1,4-diyne
- C. 3-Methlypent-1,4-diyne
- Q. 13 IUPAC name of Tartaric acid is
- D. 2-Methlypent-1,4-diyne
- A. 3-Hydroxypentanoic acid
 - C. 2,3-Diodroxypropanoic acid
- B. 2,3-dihydroxy-But-1,4-dioic acid D. 2-hydroxypropanoic acid

- Q. 14 IUPAC name of
 - CH₃
 - A. 2,3,5 Trimethyl 2-hexene
- B. 2,3,5 Trimethyl 2-hexane
- C. 2,4,5 Trimethyl 2-hexene
- D. 2,4,5 Trimethyl 2-pentene

Q. 15 Iso-butylene has structure:

D. None of these

Q. 16 Benzyl group is:

Q. 17 CH₃-CH=CH-CHO. The common name is

A. Lactic acid C. 2-Butenal B. Crotonaldehyde

D. 3-Butenal

Which one of the following is the structure of acteldehyde

Q. 19 The common name of below is

A. Phthalic acid

B. Malonic acid

C. Tartaric acid

D. Oxalic acid

Q. 20 IUPAC name of mustard gas is

A. 2,2 dichloroethylsulphide

B. 2,2 - dichloroethylsulphate

C. 2,2 – dichloroethylsulphite

D. 1,2 – dichloroethylsulphide

Free radical reaction and Mechanism

Q. 21 In halogenation of alkane, the least reactive halogen is

 $\mathbf{A}. \mathbf{F}_2$

 $B. I_2$

C. Cl₂

D. Br2

Q. 22 Termination of free radical mechanism takes place by the:

- A. Reaction of free radical with free radical
- B. Formation of two free radicals
- C. Reaction of a free radical with a molecule
- D. Reaction between two molecules

Q. 23 The order of reactivity of halogens with alkanes in sunlight is A. $I_2 > Br_2 > Cl_2 > F_2$ B. $Cl_2 > Br_2 > F_2 > I_2$ C. $F_2 > Cl_2 > Br_2 > I_2$ D. None of these Q. 24 Formula of chloroform is A. CH₃Cl B. CCl4 C. CH₂Cl₂ D. CHCl₃ Q. 25 When methane reacts with Cl₂ in the presence of diffused sunlight, the products obtained are A. Chloroform only B. Carbon tetrachloride only C. Chloromethane and dichloromethane D. Mixture of A, B, C O. 26 Propagation of free radical mechanism takes place by the A. Reaction of free radical with free radical B. Formation of two free radicals C. Consumption as well as production of another free radical D. Reaction between two molecules Q. 27 The chlorination of methane to give CCl₄ is an example of B. A chain reaction A. An addition reaction C. A reduction D. An elimination reaction Q. 28 Which one of the following is called free radical? A. Cl+ B. Ci C. Cl !vml]--> D. Cl2 Q. 29 Reaction mechanism of alkanes with halogens is known as A. Addition B. Elimination C. Free radical substitution D. Nucleophylic substitution Q. 30 In halogenation of alkane, the least reactive halogen is $A. F_2$ B. I2 C. Cl₂ D. Br Structure, preparation and reactivity of Alkenes Q. 31 If ozonolysis of an alkene produce acetone and propionaldehyde, then the alkene is A. 2-Methyl-1-pentene B. 2-Methyl 3-Ethyl-propene C.2-Methyl-2-pentene D. 4-Methyl-3-pentene Q. 32 Dehydrohalogenation of alkyl halides takes place in the presence of: A. Aqueous KOH B. Alcoholic KOH C. Dry AlCl3 D. Anhydrous P2O5 Q. 33 The ease of dehydration of alcohols is in the order of: A. Tertiary alcohol > Primary alcohol > Secondary alcohol B. Tertiary alcohol > Secondary alcohol > Primary alcohol C. Tertiary alcohol < Primary alcohol > Secondary alcohol D. Secondary alcohol > Primary alcohol > Tertiary alcohol Q. 34 Polymerization of othere to polyethene takes place in the presence of: B. (CH₃)₄Pb and TiCl₄ A. $(C_2H_5)_4Pb$ C. $Al(C_2H_5)_3$ and $TiCl_4$ D. Zn/HCl Q. 35 Conversion of alkyl halide to alkene is an example of: A. Addition reaction B. β-elimination C. S_N1 reaction D. S_N2 reaction Q. 36 Addition of HX to CH₃CH = CH₂ takes place according to: A. Hund's Rule B. Markownikov's Rule C. Aufbau principle D. Octet rule Q. 37 In which reaction addition Markownikov's rule is not obeyed: A. $CH_3CH = CH_2 + HCl \rightarrow$ B. $CH_3CH_2CH = CH_2 + HI \rightarrow$ C. $CH_3CH = CH_2 + HBr \rightarrow$ D. $CH_3CH = CHCH_3 + HBr \rightarrow$ Q. 38 Which ion is the most stable carbocation? A. CH₃⁺ B. (CH₃)₂CH⁺ C. $CH_3 - CH_2^+$ D. $(CH_3)_3C^+$

Q. 39	The olefins are	
	A. Alkane	B. Alkene
	C. Alkyne	D. None of these
Q. 40	The dehydration of tertiary alcohols can	be done in the presence of
	A. $Al_2O_3/340 - 450^{\circ}C$	B. 75% conc. H ₂ SO ₄ / 140-170°C
	C. 20% conc. H ₂ SO ₄ / 85°C	D. All of these
	Structure, preparation	and reactivity of Alkynes
Q. 41	When 20% H ₂ SO ₄ reacts with propyne in	
	A. Ethanal	B. Propanol
	C. Propanoic Acid	D. Acetone
Q. 42	Acetone is prepared by the hydration of	D D
	A. Ethyne	B. Propyne
0.42	C. Ethane	D. Propane
Q. 43	Which of the following is used as a starting	
	A. CaCl ₂	B. CaCO ₃
0.44	C. CaO	D. CaO + C
Ų. 44	Which of the following reagent is used to A. Alkaline KMnO ₄	B. Br ₂ water
	C. Cl ₂ water	D. Ammoniacal Ca ₂ Cl ₂
0.45	Ethyne polymerize into chloroprene in th	
Q. 43	A. Cu ₂ Cl ₂ / NH ₄ Cl	B. Cu ₂ Cl ₂ / NH ₁ OH
	C. CuCl ₂ / NH ₄ Cl	D. CoCl ₂ / NH ₄ OH
0.46	The formation of ethyne from ethylene d	
Q. 10	A. Spontaneous reaction	B. Elimination reaction
	C. Substitution reaction	D. Addition reaction
Q. 47	Ethyne can be identified by treating with	ammonical cuprous chloride or
_	ammonical silver nitrate. Which of the fo	
	A. Ethene	B. 1-butyne
	C. 2-butyne	D. 2-pentyne
Q. 48	Which of the following reagent is used to	
	A. Alkaime KMnO ₄	B. Br. water
0 10	C. Cl. water	D. Ammonical Cu ₂ Cl ₂
Q. 49	When Calcium Carbide is treated with w	B. Ethane
	A. Ethyne C. Ethene	D. Ethanol
0.50	Acetylene has a characteristic ethereal sn	
Q. 50	A. Ginger	B. Vinegar
	C. Garlic	D. Onion
		Structure and Stability
Q. 51	According to modern concept benzene ha	
	A. Three Double bond	B. Two double bonds
	C. Six delocalized π electrons	D. One double bond
Q. 52	The C-C bond length in benzene molecul	
	A. 1.54 Å C. 1.397 Å	B. 1.34 Å D. 1.20 Å
0. 53	Which of the following does not contain i	
Q. 00	A. Biphenyl	B. Phenanthrene
	C. Diphenyl methane	D. Tetraphenyl methane
	•	
O. 54	The reaction of bromobenzene with ethyl	bromide in presence of Na/ether is called:
	A. Wurtz reaction	B. Friedal craft reaction
	C. Halogenation	D. Wurtz-Fittig reaction
Q. 55	The total resonance structures of benzen	
	A. 2 C. 4	B. 3 D. 5
	1. 4	1.7.3

Q. 56	I otal number of sigma electrons if	i denzene are
	A. 12	B. 14
	C. 18	D. 24
Q. 57	Formula of benzoyl chloride is	
	A. C ₆ H ₅ CH ₂ Cl	B. $C_6H_5CHCl_2$
	C. C ₆ H ₅ CCl ₃	D. C ₆ H ₅ COCl
Q. 58	2-Butyne on hydrogenation in the	presence of Na-Liq NH3 catalyst generates
	A. Trans 2-Butene	B. Cis 2-Butene
	C. 1-Butene	D. n-Butane
Q. 59	Addition of hydrogen accompanie	d by a bond cleavage is called
	A. Hydrogenation	B. Hydrolysis
	C. Hydrogenolysis	D. Hydroxylation
Q. 60	Ammonia when added to acetylene	e in the presence of hot alumina forms
	A. Ethanenitirile	B. Acrylonitrile
	C. Ethyl nitrile	D. Methyl alcohol
	Reactivity	and Reactions of Benzene
Q. 61	Benzene cannot undergo	
	A. Substitution reaction	B. Addition reaction
	C. Oxidation reaction	D. Elimination reaction
Q. 62	Benzene shows reactions.	
	A. Addition	B. Substitution
	C. Both a & b	D. None of these
Q. 63	is less reactive than benzene al	though it contains ortho, para directing group
	A. Nitrobenzene	B. Phenol
	C. Chlorobenzene	D. Benzene sulphonic acid
Q. 64	Under which of the following tolue	ne shows side chain substitution reaction:
	A. Cl ₂ in presence of UV light	B. Cl ₂ in presence of AlCl ₃
	C. CH ₃ COCl in presence of AlCl	D. Hydrogen in presence of FeCl ₃
Q. 65		acidified KMnO4 forming:
	A. Maleic anhydride	B. Benzoic acid
	C. Benzyl Alcohol	D. Benzaldehyde
Q. 66	The name of the following compou	
	A. Benzyl chloride	B. Benzal chloride
	C. Phenyl chloride	D. Benzo chloride
Q. 67		irm the presence of unsaturation in benzene:
	A. Bromination is sunlight	B. Catalytic oxidation
	C. Brommation with Fe and Br ₂	D. Oxidation by acidified KMnO ₄
Q. 68	10	
	A. Maleic anhydride	B. Benzoic acid
	C. Benzyl alcohol	D. Benzaldehyde
Q. 69	Which one does not undergo polyn	
	A. Benzene	B. Ethyne
	C. Ethene	D. Chloroprene
Q. 70		cid, which of the following regents are used
	A. KMnO ₄ / H ₂ SO ₄	B. KMnO ₄ /H ₂ O
	C. H ₂ / Pt	D. N ₂ H ₄ / KOH
Q. 71	Position isomerism is shown by all	_
	A. Alkene	B. Alkyne
	C. Alkanol	D. Alkanal
Q. 72	Ether and ketone shows the pheno	
	A. Position	B. Functional group
	C. Metamerism	D. cis-trans
Q. 73		le & ketone, cycloalkane & alkene show
	isomerism.	
	A. Functional group	B. Position
	C. Metamerism	D. cis-trans
Q. 74	Which isomer will be the most stal	
	A. Cis-isomer	B. Trans-isomer
	C. Both A & B	D. None of these

O. 103 Maleic acid is A. Saturated dicarboxylic acid B. Unsaturated dicarboxylic acid C. Unsaturated monocarboxylic acid D. Saturated monocarboxylic acid Q. 104 The resonance energy of benzene is: A. 358.5 kJ/mole B. -150.5 kJ/mole D. 231.5 kJ/mole C. 150.5 kJ/mole Q. 105 Benzene structure is actually: A. Equilibrium mixture of all 5 contributors B. Like two kekule's structure C. Resonance hybrid of all 5 contributors D. Like three Dewar's structure Q. 106 Which of the following is a tricyclic compound? A. Benzene B. Anthracene C. Naphthalene D. Toluene Q. 107 Compound with highest hydrogen to carbon ratio is: A. Alkene B. Alkyne D. Alkane C. Benzene Q. 108 In benzene geometry of each carbon is B. Tetrahedral A. Trigonal planar C. Linear D. Hexagonal Q. 109 All of the following are polycyclic aromatic compounds except A. Biphenyl B. Xylene D. Naphthalene C. Anthracene Q. 110 Ortho and Para directing groups release electron density to the benzene ring. Which of the following is Ortho, Para directing group: B. - CN $A.-NH_2$ D. - COOCH3 C. - COOH Q. 111 Among the following compounds which can be readily sulphonated: A. Phenol B. Nitrobenzene C. Benzene D. Chlorobenzene Q. 112 Which reagent can best be used to distinguish between 1-hexene and toluene: A. Aqueous ammoniacal AgNO; solution B. Iodine in aqueous sodium hydroxide D. Dilute aqueous sulphuric acid C. Bromine in carbon tetrachloride Q. 113 Which of the following is produced by the action of CH3Cl on benzene in presence of AlCla followed by oxidation in the presence of acidified KMnO4 give? A. Toluene B. ortho-Xylene D. Benzoic acid O. meta-Xylene Q. 114 When toluene reacts with C12 in the presence of smilight, the final product will be A. Benzotrichloride B. Benzal chloride D. Chlorobenzene C. Benzyl chloride Q. 115 The order of reactivity of halogens with alkanes is in the order of: A. $I_2 > F_2 > Cl_2 > Br_2$ B. $I_2 < Br_2 < Cl_2 < F_2$ C. $I_2 > Br_2 > Cl_2 > F_2$ D. $I_2 < Br_2 < F_2 < Cl_2$ Q. 116 Termination of free radical mechanism takes place by the: A. Reaction of free radical with free radical B. Formation of two free radicals C. Reaction of a free radical with a molecule D. Reaction between two molecules Q. 117 Ethyne polymerize into chloroprene in the presence of A. Cu₂Cl₂ / NH₄Cl B. Cu₂Cl₂ / NH₄OH C. CuCl₂ / NH₄Cl D. CuCl₂ / NH₄OH Q. 118 Vinylacetylene combine with HCl to form A. Polyacetylene B. Benzene C. Chloroprene D. Divinyl acetylene Q. 119 Electrolysis of aqueous solution of potassium salt of maleic acid yields A. Ethane B. Ethene C. Ethyne D. Benzene Q. 120 All the alkynes are colourless and odourless except A. Acetylene B. Propyne C. Butyne D. Pentyne

		ANSWERS & EATLANTION	
Q.1	В	An alicyclic compound contains one or more all caron-carbon rings which may be either saturated or unsaturated but do not have aromatic character	
Q.2	В		
Q.3	A	Homocyclic compounds are those which have only carbon atoms in the ring. Furan is not homocyclic as it have an oxygen atom in the ring.	
Q.4	D	In heterocyclic compounds, the heteroatom might be O, N or S	
Q.5	C	Cyclohexene have a carbon-carbon double bond	
Q.6	В	Phenanthrene have fused rings	
Q.7	C		
Q.8	D	Both Pyridine and Pyrrole have nitrogen atom in ring	
Q.9	A	Both alkenes and saturated alicyclic compound have same general formula	
Q.10	A		
Q.11	C		
Q.12	C		
Q.13	В	СООН Н—С—ОН ——С—ОН	
Q.14	A		
Q.15	C		
Q.16	В		
Q.17	В		
Q.18	A		
Q.19	A		
Q.20	A		
Q.21	В	The order of reactivity of halogens with alkanes is in the order $I_2 < Br_2 < Cl_2 < F_2$	
Q.22	A	These are the termination reactions $CH_3^{\bullet} + Cl^{\bullet} \longrightarrow CH_3Cl$ $CH_3^{\bullet} + CH_3^{\bullet} \longrightarrow CH_3CH_3$	
Q.23	C	The order of reactivity of halogens with alkanes in sunlight is $F_2 > Cl_2 > Br_2 > I_2$	
Q.24	D	Formula of chloroform is CHCl ₃	
Q.25	D	By free Radical Mechanism of alkanes chloroform, chloromethane, dichloromethane, and carbon tetra chloride is produce	
Q.26		These are the propagation reactions: $CH_4 + Cl^{\bullet} \longrightarrow CH_3^{\bullet} + HCl$ $CH_3^{\bullet} + Cl_2 \longrightarrow CH_3Cl + Cl^{\bullet}$	
Q.27	В	Halogenation of alkanes is a free radical mechanism, which consists of three steps: 1. Initiation	
MBADA	TAS	2022 BY SKN PAGE 94 OF 121	

		2. Propagation
		3. Termination This reaction is also considered as chain reaction
Q.28	C	A free radical can be defined as any molecular species capable of independent existence that contains an unpaired electron in an atomic orbital. It is represented as Cl(a dot on top right corner of the symbol)
Q.29	C	Reaction mechanism of alkanes with halogens is known as free radical substitution
Q.30	В	The order of reactivity of halogens with alkanes is in the order $I_2 < Br_2 < Cl_2 < F_2$
Q.31	C	
Q.32	В	$R - CH_2 - CH_2X + KOH \longrightarrow R - CH = CH_2 + KX + H_2O$
Q.33	В	Ease of dehydration of alcohols is 3° Alcohol > 2° Alcohol > 1° Alcohol
Q.00	.,	Because more electron donating group attached with 3° alcohol
Q.34	C	
0.35	-	Elimination of HX group. from adjacent carbon is
Q.35	В	$R \leftarrow CH_2 - CH_2X + KOH \longrightarrow R + CH = CH_2 + KX + H_2O$
Q.36	В	Addition of unsymmetrical reagent to an unsymmetrical alkenes follow Markonikov's rule.
Q.37	D	Markonikov's rule is obeyed by only unsymmetrical alkenes.
		2-Butene (CH ₃ CH = CHCH ₃) is symmetrical alkene
Q.38	D	Order of stability of carbocations 3° > 2° > 1°
Q.39	В	
Q.40	C	tertiary alcohols are easily exidized relative to primary and secondary alcohols. Thus, tertiary alcohols require relatively mild condition for dehydration
Q.41	D	
Q.42	В	
Q.43	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Q.45		$CaC_2 + 2H_2O \longrightarrow HC \equiv CH + Ca OH_2$
Q.44	D	Ethyne reacts with Ammoniscal Cu2Cl ₂ to give reddish brown ppt of dicopperacetylides whereas ethene does not reacts with ammoniacal Cu ₂ Cl ₂
Q.45	A	
Q.46	В	$Br - CH = CH - Br - (Alc, KOH) \longrightarrow HC \equiv CH + 2HBr$
Q.47	В	
Q.48	D	
		HO H C
Q.49	\mathbf{A}	+ Ca
	1.	HO—H C/ CH Calcium Carbide
Q.50	C	
Q.51	C	Benzene has six delocalized pi electrons
Q.52	C	The C—C bond length in benzene is 1.397A°.
Q.53	В	
Q.54	D	
Q.55	D	

0.56	Ъ	There are total 12 sigma bonds in benzene molecules (6 bonds between C C and 6 bonds	
Q.56	D	between C – H). So, total number of sigma electrons are 24	
Q.57	D		
Q.58	A	2-Butyne to trans-2-Butene $CH_3 - C = C - CH_3 + 2[H] \xrightarrow{Na/liqNH_3} C = C$ $CH_3 - C = C$	
Q.59	C		
Q.60	A	$CH \equiv CH + NH_3 \xrightarrow{A1,O_3} CH_3 - C \equiv N + H_2$ $Methyl nitride$	
Q.61	D	Benzene undergoes substitution reactions readily but addition reactions reluctantly.	
Q.62	C	Benzene gives addition reaction with hydrogen and halogens, and substitution reaction with Conc. HNO ₃ and Conc. H ₂ SO ₄	
Q.63	В	Because halogroups weakly withdraw the electrons of benzene and reactivity of halobenzene is less than benzene	
Q.64	A	Free radical mechanism. When alkyl benzenes are treated with chlorure or bromine in the presence of sunlight, only the alkyl groups are substituted, like halogenation of alkanes	
Q.65	В		
Q.66	A		
Q.67	A	Because it is an addition reaction.	
Q.68	В	All alkyl benzene gives same product (benzoic acid) on oxidation with acidified KMnO4	
Q.69	A		
Q.70	A	Oxidation of alkyl benzene gives benzoic acid	
Q.71	D	In Alkanal formyl group always present at terminal end so it cannot show position isomerism	
Q.72	C	Number of carbon can be changed on both side of functional group.	
Q.73	A	For functional group isomerism, molecular formula is same but functional group is different	
Q.74	В	Trans isomer is table than cis isomer	
Q.75	D	Position of the functional group (Chloro) can be different	
Q.76	В	There are total two isomers of C ₄ H ₁₀ . These are: n-Butane, iso-Butane	
Q.77	C	In carboxylic acids, functional group is -COOH which always present at the end of chain. So, carboxylic acids do not show position isomerism	
Q.78	D	Both have same molecular formula but different functional group	
Q.79	D	Metamerism are shown by those compounds which have functional groups which is present within chain (not at the terminal of chain like -COOH group)	
Q.80	A	1-Butene and 2-Butene	
Q.81	A	Amines are R - NH ₂ whereas - CO - NH ₂ is amide functional group	
Q.82	В	- CHO is aldehydic functional group	
Q.83	C	Imino functional group is C = NH	
Q.84	В		
Q.85	C		
Q.86	C		

Q.87	В			
	C	These are the termination reactions		
Q.88		$CH_3^{\bullet} + Cl^{\bullet} \longrightarrow CH_3Cl$		
		$CH_3^{\bullet} + CH_3^{\bullet} \longrightarrow CH_3CH_3$		
Q.89	C	An initiation step is a reaction in which radicals are generated from a stable specie		
Q.90	A	Dehydrating agents Al ₂ O ₃ , H ₂ SO ₄ , H ₃ PO ₄ , P ₄ O ₁₀		
Q.91	В	Bayer's test		
Q.92	A	Ozonolysis is used to test the position of double bond		
Q.93	В			
Q.94	В	Terminal alkynes gives this test		
Q.95	A	Silver and copper acetylides reacts with acids to regenerate ethyne		
Q.96	C			
Q.97	В	In Kolbe's electrolysis ethyne can be prepared by using salt of unsaturated dicarboxylic acid like Potassium maleate		
Q.98	C			
Q.99	A			
Q.100	D			
Q.101	В			
Q.102	В			
Q.103	В			
Q.104	C	The resonance energy of benzene is 150.5kj/mol		
Q.105	C	Benzene structure is resonance hybrid of thee Dewar structures and two Kekule's structure.		
Q.106	В			
Q.107	D	The general formulas are: Alkane: CnH2n+2 Alkene: CnH2n Alkyne: CnH2n-2 Benzene: CnHin		
Q.108	A	Carbon show sp ² hybridization and planer geometry		
Q.109	В	Xylene is monocylclic compound		
Q.110	A	Ortho and Para directing groups are N(CH ₃) ₂ , NH ₂ , OH, CH ₃ , Cl, Br,		
Q.111	A	Benzene having ortho-para director group are reactive.		
Q.112	C	1-hexene reacts with bromine and decolorizes reddish-brown color whereas toluene does not reacts in this condition		
Q.113	D	CH ₃ Cl with benzene in the presence of AlCl ₃ gives toluene. Further oxidation of toluene in the presence of acidified KMnO ₄ gives benzoic acid		
Q.114	A	When toluene reacts with Cl ₂ in the presence of sunlight, chlorine substituted in methyl group and the final product we get is Benzotrichloride		
Q.115	В			
Q.116	A	These are the termination reactions		

	<u>. </u>	$CH_3^{\bullet} + Cl^{\bullet} \longrightarrow CH_3Cl$
		$CH_3^{\bullet} + CH_3^{\bullet} \longrightarrow CH_3CH_3$
Q.117	A	
Q.118	C	
Q.119	С	$CH - C - \tilde{O}\tilde{K}$ $\parallel + 2H_2O \xrightarrow{Electrolysis} CH$ $CH - C - O\tilde{K}$ $\parallel + 2CO_2 + H_2 + 2KOH$ CH
Q.120	A	

ALKYL HALIDE, ALCOHOL, PHENOL & KETONES

Classification and Nomenclature of alkyl halides

The general formula of alkyl halides is: 0.1

A. $C_nH_{2n+1}X$

D. All of these $C. C_nH_{2n-1}X_3$

The general formula of primary alkyl halides is: **Q.2**

A. C_nH_{2n+1}X

B. $C_nH_{2n}X_2$

B. $C_nH_{2n}X_2$

C. $C_nH_{2n-1}X_3$

D. All of these

Q.3 The general formula of secondary alkyl halides is:

A. $C_nH_{2n+1}X$

B. C_nH_{2n}X₂

 $C. C_nH_{2n-1}X_3$

D. All of these

The general formula of tertiary alkyl halides is: 0.4

A. $C_nH_{2n+1}X$

B. C_nH_{2n}X₂

 $C_{1}C_{n}H_{2n-1}X_{3}$

D. All of these

Tertiary alkyl halide is that which Q.5

A. have only one halogen atom

B. have tertiary carbon atom

C. have three β-carbons

D All of these

1-Chloro-2,2-dimethylpropane also known as Q.6

A. Isobutyl chloride

B. Neopentyl chloride

C. Tertiary butyl chloride

D. Isopropyl chloride

The common name of following compound is Q.7

A. Isobutyl chloride

B. Neopentyl chloride

C. Tertiary butyl chloride

D. Isopropyl chloride

Q.8 The IUPAC name of following compound is

A. 1-Chloro-2-methylpropane

B. 2-Chloro-2-methylpropane

C. 2,2-Dichlorobutane

D. 2-Chloro-4-methylbutane

The IUPAC name of following compound is Q.9

A. 1-Chloro-2-methylpropane

B. 2-Chloro-2-methylpropane

C. 2,2-Dichlorobutane

D. 2-Chloro-4-methylbutane

Q.10 The IUPAC name of following compound is

A. 1-Chloro-2-methylpropane

B. 2-Chloro-2-methylpropane

C. 2,2-Dichlorobutane

D. 2-Chloro-4-methylbutane

Discuss Structure and Reactivity of Alkyl Halides Q.11 2-Bromopentane reacts with Alcoholic KOH to give A. 1-pentene B. 1-pentanol C. 2-pentene D. 2-pentanol Q.12 of the following decides the reactivity of alkyl halides B. C – H bond strength A. C - C bond strength C. C - X bond strength D. C - X bond polarity Q.13 Tetramethyl lead and tetraethyl lead are used as anti-knocking agent in B. Gasoline A. Kerosene C. Gas oil D. Naphtha Q.14 Which pair of reactants can form tertiary amine? A. R - X + HCNB. $R - X + (NH_2)_2CO$ C. $R - X + N_2$ D. $R - X + NH_3$ Q.15 Alkyl halides undergo: B. Nucleophilic addition reaction A. Electrophilic substitution reaction D. Nucleophilic substitution reaction C. Electrophilic addition reaction Q.16 Elimination bimolecular reaction involves: A. First order kinetics B. Second order kinetics C. Third order kinetics D. Zero order kinetics Q.17 The conversion of ethyl bromide to ethene requires B. Aqueous KOH A. Alcoholic KOH C. Etheral KOH D. Dry KOH Q.18 For which mechanism, the first step involved is the same A. E_1 and E_2 B. E₂ and S_N2 C. S_NI and E₂ \mathbf{D}_{1} and $\mathbf{S}_{N}\mathbf{1}$ Q.19 The removal of Halogen acid is not possible in which of the following compounds A. Methyl chloride B. Ethyl bromide C. iso-propyl chloride D. Tertiary butyl bromide Q.20 E2 reaction is best carried out by B CH3—CH2X A, CH₃-X D. (CH₃)₃CX C. (CH₃)₂CHX Classification and Nomenclature of alcohols, Prepapration of Alcohols & Reactivity of Alcohols Q.21 Which of the following is correct name of CH₃ – CH = CH – CH₂OH A. 4-Hydroxy-2-butene B. 2-Buten-1-ol C. 1-Butenol D. 2-Buten-4-ol Q.22 Ethylene glycol is a A. Monohydric B. Dihydric alcohol C. Secondary alcohol D. Tertiary alcohol Q.23 Which alcohol will form three hydrogen bonds in water? A. Ethanol B. 3-Pentanol

C. three D. four Q.25 Which enzyme is used to convert sucrose into glucose and fructose?

Q.24 In glycerol how many hydroxyl groups are present

A. Zymase B. Invertase C. Diastase D. Maltase

A. one

C. Propylene glycol

D. Glycerol

B. two

Q.20	Absolute alcohol is obtained when rec	timed spirit is distined with
	A. $Ca(OH)_2$	B. CaCO ₃
	C. CaCl ₂	D. CaO
Q.27	Enzyme maltase helps the hydrolysis	of
	A. Starch to maltose	B. Maltose to glucose
	C. Glucose to ethyl alcohol	D. Ethyl alcohol to carboxylic acid
Q.28		10% methanol to make it unfit for drinking is
	A. Rectified spirit	B. Methylated spirit
	C. Absolute alcohol	D. Commercial alcohol
Q.29	If an electrophile attacks alcohols, wh	ich bond will break
	A. C – O	B. C – H
	C. O – H	D.C-C
Q.30	Which is correct order of reactivity of	alcohols with ZnCl2 and HCl
V.D 0	A. Tertiary alcohol > Primary alcohol >	
	B. Tertiary alcohol < Secondary alcohol	
	C. Tertiary alcohol < Secondary alcohol	
	D. Tertiary alcohol > Secondary alcohol	
Q.31	Which of the following is not consider	
Q.51	A. Alcohols	B. Phenols
	C. Ethers	D. Aldebydes
0.33		
Q.32	In tertiary alcohols the tertiary carbon	
	A. One hydrogen atom	B. Two hydrogen atoms
	C. Three hydrogen atoms	D. One hydroxal group
Q.33	Which of the following is not used for	
	A. Pyridine	B. Acetone
	C. Methyl alcohol	D. Carbon tetrachloride
Q.34	Optimum temperature for fermentati	
	A. 100 120°C	B. 10 20°C
	C, 50 80°C	D. 50 – 80°C
Q.35	The final products of fermentation of	molasses is
	A. Ethanol and CO	B. Ethanol and oxygen
	C. Glucose and water	D. Ethanol and acetic acid
Q.36	1-Propanol and 2-Propanol can be dis	tinguished by
	A. Lucas test	B. Alkaline KMnO4 test
	C. Fehling's solution	D. Sodium nitroprusside test
Q.37	The compound which undergoes dehy	dration most readily is
_	A. (CH ₃) ₂ CHCH2OH	В. (СН ₃) ₃ СОН
	C. CH ₃ CH ₂ CH ₂ CH ₂ OH	D. CH ₃ CH(OH)CH ₂ CH ₃
Q.38	Dehydration products of alcohols are	
4.00	A. Alkanes	B. Alkenes
	C. Alkynes	D. Aldehydes
Q.39	Which alcohol is most reactive toward	
Ų.37	A. ter.Butyl alcohol	B. n-Propyl alcohol
	C. Isopropyl alcohol	D. All have same reactivity
0.40		
Q.40	The boiling points of alcohols are	
	A. Higher	B. Almost equal
	C. Lower	D. No regular trend

Nomenclature and Physical Properties of Phenols, Acidity and Reactivity of Phenol

Q.41 Phenol is also known as

A. Pierie acid

C. Formic acid

D. Carbonic acid

Q.42 Which of the following shows more acidic strength?

A. RCOOH B. HOH C. C₆H₅OH D. ROH

Q.43 Which one of the following is not property of phenol?

A. It is insoluble in water

B. It is weaker acid than carboxylic acid

C. It is less reactive to nucleophiles D. It is poisonous nature

Q.44 When phenol is treated with Zn, the product formed is

A. Benzoic acid B. Benzene

C. Toluene D. Phenyl acetate

Q.45 Phenol reacts with alkaline acetyl chloride to form

A. ortho-Hydroxy acetophenone

B. Phenyl acetate
C. para-Hydroxy acetophenone
D. Acetophenone

Q.46 C₆H₅OH reacts with alkalies to form

A. Carbonic acid

B. Benzene

C. Salt D. Ester

Q.47 Phenol is

A. White PPt

C. Reddish brown liquid

D. Colorless

Q.48 Which of the following is not the property of phenol?

A. Phenol is colorless

B. It is crystalline solid

C. It is sparingly soluble in water D. All are properties of phenol

Q.49 Which of the following has following properties?

i) Deliquesent solid ii) Melting point = 41°C

iii) Boiling point = 182°C iv) Sparingly soluble in water

A. Methanol

B. Ethanol

C. Phenol D. Benzoic acid

Q.50 IUPAC name is:

A. 4-Hydroxyaniline

B. 4-Hydroxyamine

C. 4-aminophenol D. p-aminophenol

Nomenclature and structure of aldehydes and ketones, Preparation of aldehydes

and ketones

Q.51 3-Pentanone forms a yellow precipitate with 2,4-dinitrophenyl hydrazine but does not form precipitate with:

A. Ammonical silver nitrate solution B. Aqueous NaOH and Iodine

C. Saturated NaHSO3 solution D. All of these

Q.52 Ketones are prepared by the oxidation of:

A. Primary alcohols

B. Tertiary alcohols

C. Secondary alcohols D. All of these

Q.53	.53 The oxidation of iso-propyl alcohol in the presence of acidify K2Cr2O7		
	A. Propanal	B. Propanone	
	C. Propane	D. Butanone	
Q.54	54 The reduction of gives secondary alcohols always.		
	A. Alcohol	B. Aldehyde	
	C. Ketone	D. Carboxylic acid	
Q.55	The reduction of gives Primary alco		
	A. Alcohol	B. Aldehyde	
	C. Ketone	D. Carboxylic acid	
Q.56	Formalin is	•	
Q.o.u		B. 20% solution of formaldehyde in water	
	· ·	D. 60% solution of formaldehyde in water	
Q.57	The catalyst used for the laboratory prep	•	
Qioi	A. Cd-asbestos	B. Pb-asbestos	
	C. Pt-asbestos	D. Cu-asbestos	
0.50			
Q.58	Y reacts with another molecule of Y in the presence of dil. NaOH, Z is formed. If the compound Z is 3-Hydroxybutanal then what is Y?		
	A. Ethanol	B. Ethanal	
	C. Propanol	D. Acetone	
Q.59	Homologous series of both aldenyde and		
Quas	A. C _n H _{2n}	B. C.H. n. O	
	C. C _n H _{2n} O ₂	D. C _n H _{2n} O	
0.60			
Q.60	The structure and hybridization of carbo A. Trigonal and sp ³	B. Linear and sp ²	
	C. Linear and sp		
		D. Planar and sp ²	
Q.61	Reactivity of aldehydes and ketones and their comparison Which one of the following does not give aldol condensation reaction?		
Q.01	A. Ethanal	B. Propanal	
	C. Propanone	D. Methanal	
0.62			
Q.62			
	A. HCHO	B. Glucose	
0.70	C. CH ₃ CHO	D. (CH ₃) ₂ CO	
Q.63	Which of the following statements is incorrect about ethanal and propanone:		
	A. Both can be prepared by oxidation of alc B. Both gives wine red or orange colour with		
	C. Both react with 2,4-Dinitrophenyl hydra:	zine reagent	
	D. Both give positive jodoform test		
Q.64	Which of the following tests are given by both aldehyde and ketones?		
	A. 2,4 – DNPH test & sodium nitroprusside	e test	
	B. Fehling solution & Tollen's reagent test	1.4	
	C. Benedict's solution test & sodium bisulp		
	D. 2,4 – DNPH test & sodium bisulphite tes		
Q.65	Which of the following is also called silve		
	A. 2,4 – DNPH test	B. Sodium nitroprusside test	
	C. Tollen's reagent test	D. None of these	
Q.66	.66 Aldehydes give precipitate with Benedict's solution on boiling		
	A. Wine red or orange red	B. Brick red	
	C. Silver mirror	D. White	

Q.67	Which of the following is the or	cidizing agent?
	A. Tollen's reagent	B. Fehling's solution
	C. Benedict's solution	D. All of these
Q.68	Which of the following will rea	ct with nitroprusside solution?
	A. CH ₃ CH ₂ CHO	B. (CH ₃) ₂ CO
	C. CH₃COOH	D. CH ₃ –CH ₂ –OH
Q.69	Which of the following compou	ands give positive Fehling solution test?
_	A. Benzaldehyde	B. Acetone
	C. Acetaldehyde	D. Both A and C
Q.70	Which compound gives positive	e silver mirror test
	A. Propanone	B. Propanol
	C. Propanal	D. Propanoic acid
		Oxidation of aldehydes and ketones
Q.71	An organic compound P when	treated with NaBH forms Q, which is used in
	denaturing of the spirit. The co	
	A. Ethanol	B. Methanal
	C. Methanol	I). Ethanal
Q.72	All of the following can produc	e ketone except
	A. Secondary alcohol	B. Propyne
	C. Calcium acetate	D. Primary alcohol
Q.73	Alcohols react with aldehydes i	n presence of dry HCl to give
•	A. Esters	B. Ethers
	C. Acetals	D. Glyoxal
Q.74	Sodium borohydride reduces t	pe bond
	A. C - C	B. C = N
	C.C = C	D. C = 0
Q.75	Statement NOT true about red	uction of acetone
	A. With NaBH, it follows nucleo	
	B. With LiAlH4 it gives propane	
	C. It gives to propanol with NaB	
	D. Can easily be reduced with L.	
Q.76	The acid(s) produced by the ox	idation of butanone is/are
	A. Formic acid + propanoic acid	
	C. Only propionic acid	D. Only acetic acid
Q.77	Acetophenone cannot give	
	A. Iodoform	B. Cannizaro's reaction
	C. Aldol Condensation	D. Sodium nitroprusside test
Q.78		2HCHO + NaOH ——— CH3OH + HCOONa. The
Q.70	formation of alcohol is	Elicito i Naoli - Clison i Recoona. Inc
	A. Oxidation process	B. Reduction process
	C. Addition reaction	D. Disproportionation reaction
Q.79	The conversion of ethylene in t	he presence of PdCl2 and CuCl2 into acetaldehyde
~~~	involves	prosent of 1 doi: and odo: mid doi: not
	A. Hydration	B. Oxidation
	C. Oxidative cleavage	D. Reduction
Q.80	Among the following,	is NOT a structural derivative of water
	A. Alcohols	B. Phenols
	C. Ethers	D. Aldehydes

Q.81 Alkyl halide is represented by the formula A. RCH₂X B. RCHX₂ C. RCHXCHX D. All of these Q.82  $C_nH_{2n}X_2$  is the general formula of B. Di- haloalkanes A. Mono haloalkanes C. Tri- haloalkanes D. None of these Q.83 The reactivity of "C-X" bond depends upon mainly A. Bond strength B. Bond polarity C. E.N difference D. Ionic character Q.84 Which of the following is a good leaving group A. OR 1 B. HSO₄ ¹ C. OH-1 D. NH2-1 Q.85 Wurtz's synthesis reaction is particularly useful for the preparation of A. Symmetrical alkenes B. Symmetrical alkanes C. Symmetrical alkynes D. Unsymmetrical alkanes Q.86 S_N2 mechanism is favored in B. Non-Polar solvent A. Polar solvent C. Strongly polar solvent ID. Both A and C Q.87 When alkyl halide reacts with excess ammonia, amine is formed. A. Primary amine B. Secondary amine C. Tert. Amine D. Quart. Amine Q.88 Which of following will not form elimination product on treating with alcoholic KOH? B. 2,2Dimethyl-1-Chloropropane A. Chloromethene C. 1,1 - Dichloroetharte D. Both A and B. Q.89 In SN2 reaction the % of retention of configuration is: A. 0% B. 100% C. 50% D. 66% Q.90 The removal of two atoms or groups from adjacent carbon atoms in presence of Nucleophile is A. Nucleophilic substitution Reaction B. Condensation reaction C. Redox reaction D. None of the above Q.91 What will be the product when ethyl bromide reacted with methanol? A. Dimethyl ether B. Diethyl ether C. Ethyl methyl ether D. Propanol 0.92 S_N2 reaction can be best carried out with A. Primary alkyl halide B. Secondary alkyl halide C. Tertiary alkyl hande D. All of the above Q.93 How an alkyl halide can be converted into an alkene A. Dehydration B. Substitution C. Elimination D. Addition Q.94 The molecularity of elimination reaction followed by R-X depends upon B. Concentration of nucleophile A. Concentration of substrate C. Concentration of base D. Nature of R-X Q.95 Which of the following can produce ketone: A. Secondary alcohol B. Propyne D. All of these C. Calcium acetate Q.96 The oxidation of primary alcohol gives A. Alcohol B. Aldehyde C. Ketone D. None of these Q.97 2-Methyl-2-propanol is an example of A. Primary alcohol B. Secondary alcohol C. Tertiary alcohol D. Dihydric alcohol

Q.98 Acetone reacts with NaHSO₃ to form bisulphite adduct. This is an example of? A. Electrophilic substitution reaction B. Nucleophilic substitution reaction C. Electrophilic addition reaction D. Nucleophilic addition reaction Q.99 Acetaldehyde when treated with "HCN" and followed by acidic hydrolysis gives A. Acetal B. Lactic acid C. Aldol D. Cyanohydrin Q.100 Which of the following reagents will react with both aldehyde and ketones? A. Grignard's reagent B. Tollen's reagent C. Fehling's reagent D. Benedict's reagent Q.101 CH₃ – CO – CH₂ – CH₃ + [O]  $\rightarrow$  C + D In the given reaction, C and D are A. CH₃COOH + CH₃COOH B. CH₃COOH + CH₃CH₂CHO C. CH₃COOH + CH₃CH₂COOH D. HCHO + 2CH₃COOH Q.102 Which of the following is the formula of crotonaldehyde? A.  $CH_3 - CH_2 - CH_2 - CHO$ B.  $CH_3 - CH = CH - CHO$ C.  $CH_3 - CH_2 - CHO$ D. CH₃ CHO Q.103 The least reactive carbonyl compound towards nucleophilic addition reactions is B. CH₃CHO A. HCHO C. C. H. CHO I). CH₃COCH₃ Q.104 Which of the following will produce white precipitate on reaction with NaHSO₃? B. Propanone A. 2-butanone D. All of these C. Ethanal Q.105 When two moles of acetone are treated with a base the product is A. 4-hydroxy -4 methyl -2-pentanone B. 3-hydroxy butanone. C. 3-hydroxy -2-methyl pentanone D. 3- hydroxyl pentanal Q.106 Which of the following show no reactivity with hydrazine? A. HCHO B. CH₃OH C. CH₃CHO D. (CH₃)₂CO Q.107 When acetaldehyde reacts with hydrazine in presence of an acid the product formed is A. Hydroxy acetaldehyde B. Acetaldehyde hydrazone D. Acetaldehyde phenyl hydrazone C. Acetaldehyde oxime Q.108 Methyl ketones are usually characterized by A. Tollen's tests B. Lucas test C. Iodoform test D. Fehling solution test Q.109 2, 3- Dihydroxy butanedioic acid is also called A. Tartarie acid B. Oxalic acid C. Phenol D. Lactic acid Q.110 The oxygen atom in alcoholic group is A. sp-hybridized B. sp³ hybridized C. sp² hybridized D. Only carbons are hybridized O.111 The concentration of ethanol obtained by fermentation is A. 1.2 - 1.4%B. 12 - 14%C. 95% D. 99.9% Q.112 Ethanol is denatured by addition of 10% methanol to make it unfit for drinking is called A. Rectified spirit B. Methylated spirit C. Absolute alcohol D. Commercial alcohol Q.113 Rectified spirit cannot be purified directly to 99.9% ethanol because A. It contain 5% methanol B. It is an azeotropic mixture D. It contains 5% ethanol C. It kills micro-organisms Q.114 Enzyme Zymase helps the hydrolysis of A. Starch to maltose B. Maltose to glucose C. Glucose to ethyl alcohol D. Ethyl alcohol to carboxylic acid

Q.115 which enzyme is used to convert sucros	e into giucose and iructose?
A. Zymase	B. Invertase
C. Diastase	D. Maltase
Q.116 1-propanol is oxidized in the presence o	f acid dichromate, the product is
A. Acetone	B. Propanal
C. Acetaldehyde	D. Butanal
Q.117 One of the following can produce gra	eater number of moles of ethylchloride on
reacting with excess of ethanol	
A. PCl ₅	B. HCl / ZnCl ₂
C. PCl ₃	D. SOCl ₂
Q.118 Ethyl alcohol is heated with conc. H ₂ SO	4 at 180°C. The product formed
A. CH ₃ COC ₂ H ₅	$B. C_2H_4$
C. CH₃COCH₃	$\mathbf{D}. \mathbf{C}_2\mathbf{H}_2$
Q.119 Ketones are prepared by the oxidation of	of
A. Primary alcohols	B. Tertiary alcohols
C. Secondary alcohols	D. All of these
Q.120 Which one of the following is not proper	
A. It is insoluble in water	B. It is weaker acid than carboxylic acid
C. It is less reactive to nucleophiles	D. It is poisonous nature
Q.121 Phenol reacts with alkaline acetyl chlor	ide to form
A. Arial	B. Phenyl acetate
C. para-Hydroxy acetophenone	D. Acetophenone
Q.122 The monomers for bakelite are	
A. O-Hydroxybenzyl alcohol	B. P-Hydroxybenzyl alcohol
C. Formaldehyde + Phenol	D. Both (a) and (b)
Q.123 When hydrogen gas is passed through p	
A. Benzene	B. Cyclohexane
C. Cyclohexanol	D. Benzoic acid
CH ₃	
НО	
Q.124	
A. Tartaric acid	B. 2-chloro 3-hydroxy ethylbenzene
C. 1-Hydroxy-2 chloro-3-ethylbenzene	D. 2-chloro-3-ethylphenol
Q.125 Which pair of compounds cannot be dis	stinguished by means of Tollen's test:
A. HCHO & CHACOCH	B. HCHO & CH ₃ CHO
C. CH3CHO & CH3COCH3	D. C ₆ H ₅ COCH ₃ & C ₆ H ₅ CHO
Q.126 Which of the following test is given by k	xetones only?
A. 2,4 DNPH test	B. Sodium nitroprusside test
C. Tollen's reagent test	D. None of these
Q.127 An alkaline solution of cupric tartrate c	omplex ion is called
A. Tollen's reagent	B. Fehling's solution
C. Benedict's solution	D. None of these
Q.128 An aldehyde when strongly heated with Fel	hling's reagent gives brick red precipitate of
A. CuO	B. Cu ₂ O
C. CuO ₂	D. Cu(OH) ₂
Q.129 Acetophenone is also called	
A. Diphenyl ketone	B. Dimethyl ketone
C. Ethyl methyl ketone	D. Methyl phenyl ketone
	a structural derivative of water
A. Alcohols	B. Phenols
C. Ethers	D. Aldehydes

## ANSWERS & EXPLANTION: -

		ANSWERS & EAFLANTION: -		
Q.1	A	Mono halo alkanes (R X) are called alkyl halide		
Q.2	A	Mono halo alkanes $(R-X)$ are called alkyl halide. These are classified as primary, secondary and tertiary. All have same general formula. The difference in the position of halo group		
Q.3	A	Mono halo alkanes $(R-X)$ are called alkyl halide. These are classified as primary, secondary and tertiary. All have same general formula. The difference in the position of halo group		
Q.4	A	Mono halo alkanes (R X) are called alkyl halide. These are classified as primary, secondary and tertiary. All have same general formula. The difference in the position of halo group		
Q.5	D	Tertiary alkyl halides are type of mono-haloalkanes		
Q.6	В			
Q.7	A			
Q.8	C			
Q.9	В			
Q.10	A			
Q.11	C			
Q.12	C	Deciding factor for the reactivity of alkyl halide is C X bond strength		
Q.13	В			
Q.14	D	The reaction between $R = X$ . NH ₃ is nucleophilic substitution reaction. In this reaction we can get primary, secondary, tertiary and quaternary amines as; $CH_3 = CH_2 = Br + NH_3 = C_2H_5 = NH_2 + HBr$ $CH_3 = CH_2 = Br + CH_3 = CH_2 = NH_2 = (CH_3 = CH_2)_2 NH + HBr$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_2 NH = (CH_3 = CH_2)_3 N + HBr$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_3 N + HBr$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + (CH_3 = CH_2)_4 N + Br$ $CH_3 = CH_2 = Br + CH_3 = CH_2 + CH_3 = CH_3 + CH$		
Q.15	D	Alkyl halides undergo Nucleophilic substitution reaction and β-elimination reaction		
Q.16	В	Rate equation is:  Rate = k[Substrate] ¹ [Base] ¹		
Q.17	A	Elimination is promoted by Alcoholic KOH because in alcoholic medium, OH- becomes strongly basic		
Q.18	D	The first step in both E ₁ and S _N 1 is ionization.		
Q.19	A			
Q.20	В	Primary alkyl halide form eliminations product through E2 mechanism		
Q.21	В			
Q.22	В	но — с — он н н		
Q.23	D	Because glycerol have 3-hydroxyl group		

		Glycerol CH.=OH			
Q.24	C	сн-он			
		сн-он			
Q.25	В				
Q.26	D				
Q.27	В				
Q.28	В				
Q.29	C	It is an example of electrophilic substitution reaction in which hydrogen will be replaced by electrophile and O – H bond breaks.			
Q.30	D	It is an example of substitution reaction in which carbocation is produced. Tertiary carbocation is most stable that's why it is most reactive.			
Q.31	D	Alcohol, ether and phenol a derivative of water so they will resemble closely with the structure of water.			
Q.32	D	In tertiary alcohol, tertiary carbon is attached to one hydroxyl group three carbons and no hydrogen.			
Q.33	D				
Q.34	D	25 – 35°C			
Q.35	A				
Q.36	A				
Q.37	В	Order of dehydration of alcohol is Tertiary > Secondary > Primary			
Q.38	В	Dehydration is an example of elimination reaction which will produce alkene.			
Q.39	В	It is an example of electrophilic substitution reaction in which primary alcohols are most reactive. Ter. > Sec > Pri			
Q.40	A	Boiling points are higher in alcohol due to hydrogen bonding.			
Q.41	B				
Q.42	A				
Q.43	A				
Q.44	В				
Q.45	В				
Q.46	C	Sodium phenoxide salt is formd.			
Q.47	D				
Q.48	D				
Q.49	C				
Q.50	C				
Q.51	D	3- Pentanone does not react with Tollen's reagent (A)			
Q.52	C				
Q.53	В				
Q.54	C				
Q.55	В				
Q.56	C	Formalin is a mixture of 40% formaldehyde, 8% methyl Alcohol abd 52% water.			
Q.57	C	Pt-asbestos is sued for preparation of formaldehyde in laboratory.			
Q.58	В	· · · · · · · · · · · · · · · · · · ·			
MMD		2022 BY SVN			

0.50	- D				
Q.59	D				
Q.60	D				
Q.61	D				
Q.62	D	Oxidation of ketone is difficult			
Q.63	В	Sodium nitroprusside gives wine red color only with ketones.			
Q.64	D	Aldehydes show reduction with NaHSO3 + Fehling's + Benedict + Tollen's test + 2,4-DNPH Ketones only react with i) Nitropruside ii) 2,4-DNPH iii) With NaHSO3			
Q.65	C	Tollen's test is known as silver mirror test because silver mirror is formed as product.			
Q.66	В	Aldehyde give brik red precipties of Cu ₂ O on reacting with Bendict solution.			
Q.67	D	These above mentioned compound weak oxidizing agent.			
Q.68	В	Ketones react with nitro prusside solution			
Q.69	C	Aldehyde give reaction with fehling solution			
Q.70	C	aldehyde gives silver mirror test			
Q.71	В	Q is methanol, so P will be methanal.			
Q.72	D	Primary alcohol gives aldehyde			
Q.73	C	CH ₃ H-C-OC ₂ H ₅ OC ₂ H ₅			
Q.74	D	Carbonyl compound reduced by NaBH4			
Q.75	В	DiAlH4 reduces carboxylic acid			
Q.76	D	CH ₃ -C-CH ₂ -CH ₃ split or oxidation group remain attached with smaller chain			
Q.77	В	Acetophenone has α-hydrogen and α-methyl group			
Q.78	В	Aldehyde reduced to form alcohol.			
Q.79	В	Cleavage oxidation of ethylene			
Q.80	D	R-C-H is not sturcture similar to water			
Q.81	A	Mono halo alkanes (R - X) are called alkyl halide			
Q.82	В	Di- haloalkanes have two halogens			
Q.83	A	Deciding factor for the reactivity of alkyl halide is C - X bond strength			
Q.84	В	Cl ⁻ , Br ⁻ , I ⁻ , HSO ₄ ⁻ are good leaving groups			
Q.85	В				
Q.86	В				
Q.87	A	In excess ammonia, only one single reaction takes place resulting primary amine as			

		$CH_3$ — $CH_2$ — $Br + NH_3$ — $C_2H_5$ — $NH_2 + HBr$ Excess Ethylamine		
Q.88	D	Elimination is not possible where there is no β-Hydrogen atom		
Q.89	A	In $S_{\rm N}2$ reaction nucleophile always attacks from opposite to the leaving group which results in inversion of configuration		
Q.90	D	Removal of two species from adjacent carbon atoms result in elimination reaction		
Q.91	C	$C_2H_5 - Br + CH_3 - OH \longrightarrow C_2H_5 - O - CH_3 + HBr$		
Q.92	A	S _N 2 reaction is single step bimolecular reaction in which nucleophile attacks and leaving group leaves simultaneously. This is best carried out with primary alkyl halides		
Q.93	C	β-Elimination reaction		
Q.94	D	Primary alkyl halide follow E2 mechanism. The molecularity of this reaction is 2 while in case of tertiary alkyl halides which follow E1 mechanism its molecularity is one.		
Q.95	D			
Q.96	В			
Q.97	C			
Q.98	D			
Q.99	В			
Q.100	A			
Q.101	A			
Q.102	В			
Q.103	D			
Q.104	D	Mechanism of Cannizzaro's reaction		
Q.105	A	Acetone condense with each other in the presence of base.		
Q.106	В	Alcohols do not react		
Q.107	В	Name of reactant + hydrazone		
Q.108	C	a-methyl ketones gives iodoform reaction.		
Q.109	A			
Q.110	В	Oxygen atom is sp ³ hybridized		
Q.111	В	Above this limit enzymes become inactive		
Q.112	A			
Q.113	В	Rectified spirit contains 95.6% ethanol and 4.4% water. This mixture of ethanol is known as an azeotropic mixture.		
Q.114	C			
Q.115	В			
Q.116	В			
Q.117	C	PCl ₃ consumes three moles of alcohol, and produce three moles of ethyl chloride.		
Q.118	В	At 180°C elimination is favoured over elimination.		
Q.119	C	Secondary alcohol on oxidation yields ketones		
Q.120	A			
Q.121	В			
Q.122	C			

Q.123	C	
Q.124	D	
Q.125	В	HCHO and CH ₃ CHO both give silver mirror so cannot be distinguished.
Q.126	В	Aldehydes show reaction with NaHSO ₃ + Fehling + Benedict + Tollen's test + 2,4-DNPH Ketones only react with i) Nitropruside ii) 2,4-DNPH iii) With NaHSO ₃
Q.127	В	Alkaline solution of cupric tartarate is Fehling's solution.  Alkaline solution cupric citrate is Benedict's solution.
Q.128	В	R-CHO+2Cu(OH) ₂ +NaOH → R-COONa + Cu ₂ O + 3H ₂ O Brickred ppt.
Q.129	D	
Q.130	D	R-C-H is not sturcture similar to water

## Carboxylic acids & Macromolecules

Nomenclature, Classification and Physical Properties of Carboxylic Acids,
Preparations and Reactivity of carboxylic acids

Q.1	Which of the following is not a fatty ac	10:				
	A. Formic acid	B. Palmitic acid				
	C. Stearic acid	D. All are fatty acids				
Q.2	Carboxylic acids are soluble in benzene forming cyclic dimmers. The number of carbon atoms in the dimmeric ring are:					
	A. 8	B. 6				
	C. 4	D. 2				
Q.3	C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a fatty acid, its solubility is:					
	A. Higher than fatty acid	B. Lower than the fatty acid				
	C. Completely soluble	D. Not predictable				
Q.4	Which of the following is a polyprotica	cid:				
	A. Acetic acid	B. Salicylic acid				
	C. Oxalic acid	D. Benzoic acid				
Q.5	Which of the followings is the formic a	cld?				
	A. HCOOH	В. СН ₃ СООН				
	C. (COOH) ₂	D. CH ₂ (COOH) ₂				
Q.6	C ₆ H ₅ COOH is the chemical formula of					
	A. Palmitic acid	B. Stearic acid				
	C. Benzoic acid	D. Phthalic acid				
Q.7	C6H4(COOH)2 is the chemical formula	of				
	A. Palmitic acid	B. Stearic acid				
	C. Benzoic acid	D. Phthalic acid				
Q.8	The number of atoms present in the r	ing of dimer of acetic acid in benzene solvent				
	are					
	A.2	B. 4				
	C. 6	D. 8				
Q.9	Phthalte acid is also called					
	A. Benzoic acid	B. 1, 2-benzenedicarboxylic acid				
	C. 1, 3-benzenedicarboxylic acid	D. 1, 4-benzendicarboxylic acid				
Q.10	The carboxylic acids which are liquid v	with pungent smell have number of carbons				
	$A. C_1 - C_4$	B. $C_1 - C_3$				
	$C. C_4 - C_6$	D. $C_2 - C_5$				
	Interconversion of	carboxylic acid derivatives				
Q.11	Which of following is cannot be directl	y prepared from acetic acid:				
	A. Acetamide	B. Acetic anhydride				
	C. Ethyl acetate	D. Acetyl chloride				
Q.12	Conversion of wine to vinegar requires					
_	A. Reduction	B. Oxidation				
	C. Addition	D. β-elimination				
Q.13	Ammonium acetate on strong heating	·				
	A. Ammonium carbamate	B. Acetamide				
	C. Urea	D. Ammonia				
Q.14	If benzyl acetate is added to a liquid, it	will develop a flavor of:				
	A. Banana	B. Jasmine				
	C. Pineapple	D. Apricot				

Q.15	Apricot havor is given by					
	A. Amylacetate	B. Benzylacetate				
	C. Amylbutyrate	D. Isobutylformate				
Q.16	6 Pineapple flavor is given by					
	A. Amylacetate	B. octylacetate				
	C. ethylbutyrate	D. isobutylformate				
Q.17						
2.1.	A. Amylacetate	B. octylacetate				
	C. ethylbutyrate	D. isobutylformate				
Q.18		on with alcohols in the presence of conc. H ₂ SO ₄ .				
Q.10	A. Ester	B. aldehyde				
	C. ketone	D. alcohols				
O 10						
Q.19	Which reagent is used to reduce a car	B. HI / N				
	A. H ₂ / Ni C. NaBH ₄	D. LIAIH				
0.20	•					
Q.20	Acetic acid can be manufactured by _	of carbohydrates.				
	A. Distillation	H. Fermentation				
	C. Ozonolysis	D. Esterification				
		of enzymes as biocatalysts				
Q.21		oup of one amino acid and amino group of other				
	amino acid condensed together to give					
	<ul> <li>A. Peptide linkage</li> <li>C. 1 → 6 glycosidic linkage</li> </ul>	B. Ester linkage D. β 1-4 Glycosidic linkage				
0.22						
Q.22	The bond that join two amino acids ca					
	A. Covalent bond	B. Peptide bond				
	C. Amide linkage  D. Di sulfide bond					
Q.23	Amino acids are the building blocks of					
	A. Carbohydrates	B. Proteins				
	C. Vitamins	D. Fats				
Q.24	Denaturation of protein is caused by					
	A. Changing the temperature	B. Intensified light				
	C. Changing the Ph	D. All of these				
Q.25	The molecular weight of protein is					
	A. > 1000 amu.) < 1000 amu,	B. < 1000 amu.				
	C. > 10000 amu.	D. < 10000 amu.				
Q.26	No. of the contract of the con	addition of ammonia, water or carbon dioxide				
	to double bond					
	A. Phospho-transferase	B. Phospho-glyceromutases				
	C. Fumarase	D. Succinic thiokinase				
Q.27	Enzyme used for conversion of starch					
	A. Invertase + Diastase	B. Zymase + Invertase				
	C. Invertase + Zymase	D. Diastase + Zymase				
Q.28	Which statement is incorrect					
	A. Enzymes are stereo specific	B. Enzymes are highly specific				
	C. Enzymes can be crystallized	D. Enzyme can resist the radiation				
Q.29	Indicate the enzyme which catalyses t	he following reaction				
	$(NH_2)_2CO + H_2O \longrightarrow 2NH_3 + CO$	2				
	A. Zymase	B. Invertase				
	C. Urease	D. Diastase				

Q.30	The three-dimensional twisting and folding of the polypeptide chain results in the of proteins.				
	A. Primary structure	B. Secondary structure			
	C. Tertiary structure	D. Quaternary structure			
Q.31	Which of the following is most acidic in nature?				
	A. Fluoroacetic acid	B. Nitroacetic acid			
	C. Acetic acid	D. Aminoacetic acid			
Q.32	Which of the following acid is found in	the stings of bees and ants:			
	A. Formic acid	B. Benzoic acid			
	C. Acetic acid	D. Phthalic acid			
0.33	The highest melting point is of:				
	A. C ₄ H ₉ COOH	B. C ₃ H ₇ COOH			
	C. C ₂ H ₅ COOH	D. All have same melting points			
Q.34	Only first four members of aliphatic ac				
<b>Q.D.</b>	A. Hydrogen bonding	B. Ion dipole			
	C. Debye forces	D. All of these forces			
Q.35	Which of the following will give acetic				
Q.55	A. CH ₃ CN	B. Acetone			
	C. C ₂ H ₅ CN	D. Lactic acid			
Q.36	Which of the following is a cyclic carbo				
Q.50	A. Phthalic acid	B. Oxalic acid			
	C. Lactic acid	D. Succinic acid			
Q.37	Which of the followings is the acetic ac				
Q.37	A. HCOOH	B. CH ₃ COOH			
	C. (COOH) ₂	D. CH ₂ (COOH) ₂			
Q.38	Which of the followings is the oxalic acid?				
Ų.So	A. HCOOH	B. CH ₃ COOH			
	C. (COOH)	D. CH ₂ (COOH) ₂			
Q.39	C ₁₇ H ₂₈ COOH is the chemical formula				
Q.37	A. Palmitic acid	B. Stearic acid			
	C. Benzoic acid	D. Phthalic acid			
0.40					
Q.40	CH ₃ CH ₂ COOH is the chemical formul				
	A. Propanoic acid	B. Propionic acid D. Both A and B			
0.41	C. Ethyl acetate	D. Botti A aliu B			
Q.41	A carboxylic acid contains	D. Controlled			
	A. Hyroxyl group	B. Carboxyl group			
0.42	C. Hydroxyl & carboxyl group	D. Carboxyl & formyl group			
Q.42	Formic acid was first isolated from	D 37			
	A. Butter	B. Vinegar			
- 10	C. Milk	D. Red ant			
Q.43	Butyric acid was first isolated from	D. V.			
	A. Butter	B. Vinegar			
	C. Milk	D. Red ant			
Q.44	The solubility of carboxylic acids _v hydrogens.	vith the increase in the no. of carbons and			
	A. Increases	B. Decreases			
	C. Un-affected	D. First increases and then decreases			
Q.45	Which of the following is the weaker a	cid?			
	A. HCl	$\mathbf{B.}\;\mathbf{H_{2}SO_{4}}$			
	C. CH ₃ COOH	D. None of these			
ALDED C	AT 2022 BY CVN	DACE 44E OF 404			

**PAGE 115 OF 121** 

NMDCAT -2022 BY SKN

Q.46	6 2-Butene when heated with alkaline KMnO ₄ gives		
	A. Glycol	B. Glyoxal	
	C. Carboxylic acid	D. Ester	
Q.47	.47 $CH_3CN + HCl \rightarrow A + B$ in presence of water in the above reaction A and B		
	A. Acetic acid and acid amide	B. Acetic acid and ammonia	
	C. Acetic acid and methyl chloride	D. Acetic acid and ammonium chloride	
Q.48	Which of the following has maximum nu	umber of carbon atoms?	
	A. Succinic acid	B. Adipic acid	
	C. Oxalic acid	D. Malonic acid	
Q.49	Glacial acetic acid freezes to ice like soli	d at	
	A. 8°C	B. 25°C	
	C. 39°C	D. 17°C	
Q.50	Which one is aliphatic dicarboxylic acid	?	
4.00	A. Ethanoic acid	B. Oxalic acid	
	C. Benzoic acid	D. Phthalic acid	
0.51	The boiling points of carboxylic acids ar		
Q.51	A. Low due to low molecular masses	H High due to hydrogen bonding	
	C. High due to high molecular masses	D. Low due to weak intermolecular forces	
Q.52	The solution of which acid is used for se		
Q.52	A. Formic acid	B. Benzoic acid	
	C. Acetic acid	D. Butanoic acid	
0.53			
Q.53	Which one of the following acid has different A. Methanoic acid	B. Butanoic acid	
	C. Ethanoic acid	D. Propanoic acid	
	C. Ethanole acid	D. I topanole acid	
0.54	The general formula of allahotte contact		
Q.54	The general formula of aliphatic carbox	ythe acid is	
Q.54	A. (CH ₂ O) _n	ylic acid is B. (C6H18O5).	
	A. (CH ₂ O) _n C. C _n H _{2n} O ₂	ylle-acid is  B. (C ₆ H ₁₀ O ₅ ).  D. C _n H _{2n} O	
Q.54 Q.55	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid	ylic acid is  B. (C6H10O5).  D. CnH2nO  ds are soluble in water due to	
	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acle A. Hydrogen bonding	ylic acid is  B. (C ₆ H ₁₀ O ₅ ) _n D. C _n H _{2n} O  ds are soluble in water due to  B. Ion dipole	
Q.55	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid. A. Hydrogen bonding C. Debye forces	ylic acid is  B. (C6H10O5).  D. CnH2nO  ds are soluble in water due to	
	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid. A. Hydrogen bonding C. Debye forces  C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a	ylic acid is  B. (C6H10O5).  D. CnH2nO  ds are soluble in water due to  B. Ion dipole  D. London dispersion forces	
Q.55	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid	ylic acid is  B. (C6H10O5).  D. CnH2nO  ds are soluble in water due to  B. Ion dipole  D. London dispersion forces  B. Oleic acid	
Q.55 Q.56	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid	B. (C ₆ H ₁₀ O ₅ ). D. C _n H _{2n} O  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid	
Q.55	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner	ylic acid is  B. (C6H10O5).  D. CnH2nO  ds are soluble in water due to  B. Ion dipole  D. London dispersion forces  B. Oleic acid  D. Palmitic acid  al acids or alkali yields:	
Q.55 Q.56	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine	B. (C6H10O5) D. CnH2nO  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane	
Q.55 Q.56	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid	B. (C6H10O2) D. CnH2nO  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane D. Tertiary amine	
Q.55 Q.56	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid Which of the following will give positive	B. (C6H10O5). D. CnH2nO  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane D. Tertiary amine bromine water test:	
Q.55 Q.56 Q.57	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid Which of the following will give positive A. Malonic acid	B. (C6H7eO5). D. CnH2nO  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane D. Tertiary amine  bromine water test: B. Succinic acid	
Q.55 Q.56 Q.57	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid Which of the following will give positive	B. (C6H10O5). D. CnH2nO  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane D. Tertiary amine bromine water test:	
Q.55 Q.56 Q.57	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid Which of the following will give positive A. Malonic acid	B. (C6H10C5). D. CnH2nO  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane D. Tertiary amine  bromine water test: B. Succinic acid D. Maleic acid	
Q.55 Q.56 Q.57	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid Which of the following will give positive A. Malonic acid C. Oxalic acid	B. (C6H10C5). D. CnH2nO  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane D. Tertiary amine  bromine water test: B. Succinic acid D. Maleic acid	
Q.55 Q.56 Q.57	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid. A. Hydrogen bonding C. Debye forces  C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a  A. Adipic acid. C. Stearic acid.  Hydrolysis of alkane nitriles with miner. A. Primary amine. C. Carboxylic acid.  Which of the following will give positive. A. Malonic acid. C. Oxalic acid.  When a carboxylic acid is protonated, p.	B. (Coffre Oc).  D. CnH2nO  ds are soluble in water due to  B. Ion dipole  D. London dispersion forces  B. Oleic acid  D. Palmitic acid  al acids or alkali yields:  B. Alkane  D. Tertiary amine  bromine water test:  B. Succinic acid  D. Maleic acid  rotonation occurs at:	
Q.55 Q.56 Q.57	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid Which of the following will give positive A. Malonic acid C. Oxalic acid When a carboxylic acid is protonated, p A. Hydroxyl oxygen atom	B. (CoHinOs). D. CnHinO  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane D. Tertiary amine  bromine water test: B. Succinic acid D. Maleic acid rotonation occurs at: B. Carbonyl oxygen atom D. Carbonyl carbon atom	
Q.55 Q.56 Q.57 Q.58	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid Which of the following will give positive A. Malonic acid C. Oxalic acid When a carboxylic acid is protonated, p A. Hydroxyl oxygen atom C. Hydroxyl hydrogen atom	B. (CoHinOs). D. CnHinO  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane D. Tertiary amine  bromine water test: B. Succinic acid D. Maleic acid rotonation occurs at: B. Carbonyl oxygen atom D. Carbonyl carbon atom	
Q.55 Q.56 Q.57 Q.58	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces  C ₁ 7H ₃ 5COO Na ⁺ is sodium salt of a  A. Adipic acid C. Stearic acid  Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid  Which of the following will give positive A. Malonic acid C. Oxalic acid  When a carboxylic acid is protonated, p  A. Hydroxyl oxygen atom C. Hydroxyl hydrogen atom  Which of the following compound will c	ythe acid is  B. (CoffineOs).  D. CnHinO  ds are soluble in water due to  B. Ion dipole  D. London dispersion forces  B. Oleic acid  D. Palmitic acid  al acids or alkali yields:  B. Alkane  D. Tertiary amine  bromine water test:  B. Succinic acid  D. Maleic acid  rotonation occurs at:  B. Carbonyl oxygen atom  D. Carbonyl carbon atom  onvert acetic acid to acetyl chloride:	
Q.55 Q.56 Q.57 Q.58	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces C ₁₇ H ₃₅ COO Na ⁺ is sodium salt of a A. Adipic acid C. Stearic acid Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid Which of the following will give positive A. Malonic acid C. Oxalic acid When a carboxylic acid is protonated, p A. Hydroxyl oxygen atom C. Hydroxyl hydrogen atom Which of the following compound will c A. NaCl	B. (C ₆ H ₁₀ O ₅ ). D. C _n H _{2n} O  ds are soluble in water due to B. Ion dipole D. London dispersion forces  B. Oleic acid D. Palmitic acid al acids or alkali yields: B. Alkane D. Tertiary amine  bromine water test: B. Succinic acid D. Maleic acid rotonation occurs at: B. Carbonyl oxygen atom D. Carbonyl carbon atom  onvert acetic acid to acetyl chloride: B. HCl D. SOCl ₂	
Q.55 Q.56 Q.57 Q.58 Q.59	A. (CH ₂ O) _n C. C _n H _{2n} O ₂ Only first four members of aliphatic acid A. Hydrogen bonding C. Debye forces  C ₁₇ H ₃₅ COO Na [†] is sodium salt of a  A. Adipic acid C. Stearic acid  Hydrolysis of alkane nitriles with miner A. Primary amine C. Carboxylic acid  Which of the following will give positive A. Malonic acid C. Oxalic acid  When a carboxylic acid is protonated, p A. Hydroxyl oxygen atom C. Hydroxyl hydrogen atom Which of the following compound will c A. NaCl C. ZnCl ₂	ylie acid is  B. (C ₆ H ₁₀ O ₅ ).  D. C _n H _{2n} O  ds are soluble in water due to  B. Ion dipole  D. London dispersion forces  B. Oleic acid  D. Palmitic acid  al acids or alkali yields:  B. Alkane  D. Tertiary amine  bromine water test:  B. Succinic acid  D. Maleic acid  rotonation occurs at:  B. Carbonyl oxygen atom  D. Carbonyl carbon atom  onvert acetic acid to acetyl chloride:  B. HCl  D. SOCl ₂	

Q.62	what is obtained if n-Propyl ace	tate is doned w	ith aqueous sodium nydroxide:
	A. CH₃OH	B. C:	$_{1}H_{8}$
	C. C ₃ H ₇ OH	D. C.	3H7COONa
Q.63	Banana flavor is given by		
	A. Amylacetate	B. Be	enzylacetate
	C. Amylbutyrate	D. Is	obutylformate
Q.64	Jasmine or peach flavor is given	by	
	A. Amylacetate	B. Be	enzylacetate
	C. Amylbutyrate	D. Is	obutylformate
Q.65	Raspberry flavor is given by		
	A. Amylacetate	B. B.	enzylacetate
	C. Amylbutyrate	D. Is	obutylformate
Q.66	Acetamide is prepared by		
	A. Heating CH ₃ COONH ₄	B. H	eating CH ₃ CN
	C. Heating CH ₃ COOC ₂ H ₅	D. H	ydrolysis of CH3CN
Q.67	Organic compounds having fruit	ty smell are	
	A. Alcohols		arboxylic acrds
	C. Ethers	D. E.	
Q.68	2-Hydroxylpropanoic acid is call	ed and 2,3-I	Dihydroxybutandioic acid is called
	A. Oxalic acid, Maleic acid	-	etic acid, tartaric acid
	C. Citric acid, aspartic acid		one of these
Q.69	The reactivity of carboxylic acid		
Q.05	A. Carbonyl group		ydroxyl group
	C. Ester group		oth A and B
Q.70			
2.10	Organic compounds X and Y react to form organic compound Z. what tylescompounds can X, Y and Z be?		
	X	Y	Z
	Altohol	Ester	Acid
	B Acid	Ester	Alcohol
	C Ester	Alcohol	Acid
		Acid	Ester
0.71	Mhich acid is used in the manuf		
Q.71	A. Formic acid		euc uber: xalic acid
	C. Carbonic acid		cetic acid
0.73			
Q.72	The three-dimensional twisting a		
	A. Primary structure C. Tertiary structure		econdary structure uaternary structure
0.72		_	
Q.73	Which of following is / are exam		
	A. Polypeptide C. Phospo proteins		ollagen and albumin
0.74		D. 13	prones
Q.74	Gelatin is obtained by heating:	D 01	: <u> </u>
	A. Bones C. Tendons	B. Sl	
0.55		D. A	
Q.75			
	A. Ketones		mino acid
	C. Carbohydrates		lcohols
Q.76			
	A. N and H		and H
	C. O and C	D. C	and H

**PAGE 117 OF 121** 

NMDCAT -2022 BY SKN

Q.77 Many enzymes contain a protein part and non protein part. This protein part

is

A. Apoenzyme

B. Holoenzyme

C. Co-factor

D. Co-enzyme

Q.78 The enzyme which can catalyze the conversion of glucose to ethyl alcohol is

A. Zymase

B. Invertase

C. Urease

D. Maltase

Q.79 Which one of the following statements is incorrect?

A. Enzymes are protein in nature

B. Enzymes can act as a catalyst

C. Enzymes can catalyze any reaction

D. Urease is an enzyme

Q.80 Glucose is converted into ethanol by the enzyme

A. Zymase C. Urease B. Invertase

D. Diastase



ANSWERS & EXPLANTION: -
-------------------------

Q.1	D	Aliphatic mono-carboxylic acid and fatty acid.		
Q.2	D			
Q.3	A			
Q.4	C	oxalic acid have formula (COOH) ₂		
Q.5	A	HCOOH is formic acid.		
Q.6	C	book information		
Q.7	D	phthalic acid is 1,2-benxzene dicarboxylic acid		
Q.8	D	every dimer of carboxyli	c acid have 8 car	bon atoms
Q.9	В	IUPAC name		
Q.10	В	first three carboxylic acid	l have pungent s	mell
Q.11	A	Ammonium salt of acetic	acid formed as	intermediate
Q.12	В	Wine contains ethanol w	hich on oxidation	n produces acetic acid which is present in vinegar.
Q.13	В	Acetamide cannot be pre	pared directly	
Q.14	В	book information	4	
		Ester_	Flavour	
		Amylacetate	Banana	
		Isobutyl formate	Raspberry	
Q.15	C	Benzylacetate	Jasmine	
		Ethyl butyrate	Pineapple	
		Amyl butyrate	Apricot	
		Octyl acetate	Orange	
Q.16	C	SEE EXPLANTION OF	Q.15	
Q.17	В	SEE EXPLANTION OF	Q.15	7
Q.18	A	When carboxylic acid rea	et with acid it al	ways converted into ester.
Q.19	В	LiAlH4 is the reducing ag	gent which is use	ed to converted carboxylic acid into alcohol.
Q.20	В	Partial oxidation		
Q.21	A	Peptide linkage formed b	y the combination	on of carboxylic acid and amino group
Q.22	D	Di sulfide bond is responsible for physical properties and structure rather than that of chemical bond		
Q.23	В	Amino acids are the building blocks of proteins		
Q.24	D	All these factors are involved in denaturation of proteins		
Q.25	C	The molecular weight of	protein is greate	r than 10000 amu
Q.26	В	Phospho-glyceromutases is used to catalyze the addition of ammonia, water or carbon dioxide to double bond		
Q.27	D	Enzyme used for conversion of starch to glucose and glucose to ethanol are Diastase + Zymase		
Q.28	D	Enzyme can denature by radiation.		
Q.29	C	The enzyme which act at urea is called Urease		
Q.30	C	The three dimensional twisting and folding of the polypeptide chain results in the Tertiary structure		

Q.31	В	Electron withdrawing group increases acidic character of carboxylic acid
Q.32	A	
Q.33	В	Even number of carbon atoms in carboxylic acid have melting point.
Q.34	A	Hydrogen bonding.
Q.35	A	
Q.36	A	
Q.37	В	CH ₃ COOH ethanoic acid/acetic acid
Q.38	C	book information
Q.39	В	book information
Q.40	В	Propionic acid common name of Propanoic acid
Q.41	В	general formula is RCOOH
Q.42	D	book information
Q.43	A	book information
Q.44	В	Solubility of carboxylic acid in H ₂ O
Q.45	C	organic acids are weaker
Q.46	C	oxidative cleavage reaction
Q.47	D	
Q.48	В	COOH (CH) ₂ COOH
Q.49	D	book information
Q.50	В	book information
Q.51	В	polar hydroxyl group causes hydrogen bonding
Q.52	C	information
Q.53	В	butanoic acid have unpleasant smell
Q.54	C	book information
Q.55	A	polar hydroxyl group forms hydrogen bonding with water
Q.56	C	C ₁₇ H ₃₅ COOH is stearic acid
Q.57	C	CN group hydrolysis to produce COOH
Q.58	D	Maleic acid have double bond (C=C).
Q.59	В	lone pairs of CO attach proton
Q.60	D	Thionyl chloride can replace OH group with Cl
Q.61	A	Partial reduction of acetic acid gives ethanol
Q.62	C	hydrolysis
Q.63	A	book information
Q.64	В	book information
Q.65	D	book information
Q.66	A	book information
Q.67	D	
Q.68	В	IUPAC names
Q.69	D	both groups give corresponding reactions

Q.70	D	Esterification
Q.71	D	uses
Q.72	C	The three dimensional twisting and folding of polypeptide chain results in tertiary structure
Q.73	В	Albumins globulins legumin and collagen are examples of simple proteins
Q.74	A	Gelatin is obtained by heating bones
Q.75	В	All proteins made up of amino acids so, on hydrolysis, proteins yield Amino acids.
Q.76	В	Hydrogen bonding exist between O atom and H atom in secondary proteins
Q.77	A	protein part of enzyme is apoenzyme
Q.78	A	enzyme which can catalyze the conversion of glucose to ethyl alcohol is Zymase
Q.79	C	Enzymes catalysis is highly specific, for example, urease catalyzes the hydrolysis of urea only and it cannot hydrolyse any other amide even methyl urea.
Q.80	A	

