

Monopolistischer Betrieb

Aufgabennummer: B-C6_31

Technologieeinsatz: möglich □ erforderlich ⊠

Die Produktion und der Verkauf einiger Produkte eines monopolistischen Betriebes werden untersucht.

a) Die lineare Preisfunktion der Nachfrage *p* für das Produkt *A* kann annähernd durch die nachstehende Grafik dargestellt werden.

x ... nachgefragte Menge in Mengeneinheiten (ME)

p(x) ... Preis in Geldeinheiten pro Mengeneinheit (GE/ME) bei x ME

- Stellen Sie die Gleichung der in der obigen Grafik dargestellten Preisfunktion der Nachfrage auf.
- Interpretieren Sie die Nullstelle des dargestellten Funktionsgraphen im Sachzusammenhang.
- Argumentieren Sie, wie sich bei einem bestimmten Preis p₀ eine Preissenkung um 1 GE/ME auf den Absatz auswirkt.
- b) Für das Produkt *B* gilt folgender Zusammenhang zwischen der nachgefragten Menge *x* und dem Erlös *E*:

$$E(x) = -15 \cdot x^2 + 3000 \cdot x$$

x ... nachgefragte Menge in Mengeneinheiten (ME)

E(x) ... Erlös in Geldeinheiten (GE) bei einer nachgefragten Menge von x ME

- Berechnen Sie den maximalen Erlös mithilfe der Differenzialrechnung.
- Stellen Sie die Erlösfunktion grafisch für eine passende Definitionsmenge dar.
- Lesen Sie die mittlere Änderungsrate des Erlöses im Intervall [0 ME; 80 ME] ab.
- Erklären Sie die Bedeutung der mittleren Änderungsrate des Erlöses im Sachzusammenhang.

c) In der nachstehenden Tabelle sind für das Produkt C die Gesamtkosten K in Geldeinheiten (GE) in Abhängigkeit von der Produktionsmenge x in Mengeneinheiten (ME) angegeben:

X	0	6	15	23,5	30,3	40	60
K(x)	35	110	198	283	359	498	1 091

- Zeichnen Sie einen Streckenzug durch die gegebenen Punkte (x|K(x)) in ein Koordinatensystem
- Beurteilen Sie, ob durch den Streckenzug (x|K(x)) eine zu einer Kostenfunktion passende Monotonie erkennbar ist.
- Bestimmen Sie mithilfe der Regressionsrechnung eine kubische Kostenfunktion für dieses Produkt.
- Berechnen Sie die Kostenkehre dieser kubischen Funktion.
- d) Der Gewinn für das Produkt *D* kann annähernd durch die folgende Funktion *G* beschrieben werden:

$$G(x) = -0.14 \cdot x^3 + 1.21 \cdot x^2 + 6.63 \cdot x - 16.98$$

 $x\dots$ verkaufte Menge in Mengeneinheiten (ME)

 $G(x)\dots$ erzielter Gewinn in Geldeinheiten (GE) bei x ME

- Kreuzen Sie die zutreffende Aussage zur Gewinnfunktion an. [1 aus 5]

Bei einer Verkaufsmenge von 2 ME wird ein Verlust erzielt.	
Die gewinnmaximierende Menge liegt bei einer Verkaufsmenge von 2 ME.	
Der Break-even-Point liegt bei einer Verkaufsmenge von 2 ME.	
Bei einer Verkaufsmenge von 2 ME wird die obere Gewinngrenze erreicht.	
Das Betriebsoptimum liegt bei einer Verkaufsmenge von 2 ME.	

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Möglicher Lösungsweg

a)
$$p(x) = 500 - \frac{x}{12}$$

Die Nullstelle befindet sich bei $x = 6\,000$ ME. Es handelt sich um die Sättigungsmenge für dieses Produkt.

Wenn man den Preis p_0 um $\Delta p=1$ senkt, dann bedeutet dies eine Zunahme des Absatzes um 12 Mengeneinheiten.

Begründung: $x = 6000 - 12 p \Rightarrow \Delta x = -12 \cdot \Delta p$

b)
$$E'(x) = 0: -30 \cdot x + 3000 = 0$$

x = 100 ME

Der maximale Erlös E(100) beträgt 150 000 GE.

Der Graph darf keine negativen Funktionswerte aufweisen.

Die mittlere Änderungsrate zwischen 0 ME und 80 ME beträgt rund 1 800 GE/ME.

Die mittlere Änderungsrate gibt an, wie groß im Mittel pro zusätzliche ME ein Zuwachs des Erlöses im vorgegebenen Intervall ist.

c) Streckenzug:

	Da alle Teilstrecken einen positiven Anstieg aufweisen, könnten die gegebenen Wemente einer streng monoton steigenden Funktion sein. Dies ist u. a. eine Bedingung für ein passendes Modell einer Kostenfunktion.					
	Regressionsfunktion mittels Technologieeinsatz: $K(x) = 0,0061 \cdot x^3 - 0,3152 \cdot x^2 + 14,5417 \cdot x + 33,7192$					
	Kostenkehre aus $K''(x) = 0$: 0,0366 · $x - 0$,6304 = 0 Die Kostenkehre liegt bei $x_K \approx 17,21$ ME.					
d)						
	Der Break-even-Point liegt bei einer Verkaufsmenge von 2 ME.					

Monopolistischer Betrieb 5

Klassifikation

Wesentlicher Bereich der Inhaltsdimension:

- a) 4 Analysis
- b) 4 Analysis
- c) 4 Analysis
- d) 4 Analysis

Nebeninhaltsdimension:

- a) 3 Funktionale Zusammenhänge
- b) —
- c) —
- d) —

Wesentlicher Bereich der Handlungsdimension:

- a) A Modellieren und Transferieren
- b) B Operieren und Technologieeinsatz
- c) B Operieren und Technologieeinsatz
- d) C Interpretieren und Dokumentieren

Nebenhandlungsdimension:

- a) C Interpretieren und Dokumentieren, D Argumentieren und Kommunizieren
- b) C Interpretieren und Dokumentieren, D Argumentieren und Kommunizieren
- c) A Modellieren und Transferieren, D Argumentieren und Kommunizieren
- d) -

Schwierigkeitsgrad:

Punkteanzahl:

- a) mittel
- b) mittel
- c) mittel
- d) mittel

- a) 3
- b) 4
- c) 4
- d) 1

Thema: Wirtschaft

Quelle: Itemwriterkurs OÖ3 2014