Exercise 11.4-1

- Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of length m = 11 using open addressing with the auxiliary hash function h'(k) = k. Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1 = 1$ and $c_2 = 3$, and using double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m-1))$.
- 考虑用开放寻址法将元素10, 22, 31, 4, 15, 28, 17, 88, 59 加入到长度为 m = 11 的散列表中,使用辅助散列函数h'(k) = k。分别展示使用线性探查,二次探查($c_1 = 1$, $c_2 = 3$)和双重散列($h_1(k) = k$, $h_2(k) = 1 + (k \mod (m-1))$)加入散列表的过程。

- $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod 11$.
- Insert without collisions:

•
$$h(10, 0) = 10$$

0	1	2	3	4	5	6	7	8	9	10
										10

- $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod 11$.
- Insert without collisions:
 - h(10, 0) = 10
 - h(22, 0) = 0

0	1	2	3	4	5	6	7	8	9	10
22										10

- $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod 11$.
- Insert without collisions:
 - h(10, 0) = 10
 - h(22, 0) = 0
 - h(31, 0) = 9

0	1	2	3	4	5	6	7	8	9	10
22									31	10

- $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod 11$.
- Insert without collisions:
 - h(10, 0) = 10
 - h(22, 0) = 0
 - h(31, 0) = 9
 - h(4,0) = 4

0	1	2	3	4	5	6	7	8	9	10
22				4					31	10

- $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod 11$.
- Further inserts:
 - $h(15, 0) = 4 \text{collision!} \ h(15, 1) = 5$

0	1	2	3	4	5	6	7	8	9	10
22				4	15				31	10

- $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod 11$.
- Further inserts:
 - $h(15, 0) = 4 \text{collision!} \ h(15, 1) = 5$
 - h(28, 0) = 6

0	1	2	3	4	5	6	7	8	9	10
22				4	15	28			31	10

- $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod 11$.
- Further inserts:
 - $h(15, 0) = 4 \text{collision!} \ h(15, 1) = 5$
 - h(28, 0) = 6
 - h(17, 0) = 6 collision! h(17, 1) = 7

primary clustering 主要群集

0	1	2	3	4	5	6	7	8	9	10
22				4	15	28	17		31	10

- $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod 11$.
- Further inserts:
 - $h(15, 0) = 4 \text{collision!} \ h(15, 1) = 5$
 - h(28, 0) = 6
 - h(17, 0) = 6 collision! h(17, 1) = 7
 - h(88, 0) = 0 collision! h(88, 1) = 1

0	1	2	3	4	5	6	7	8	9	10
22	88			4	15	28	17		31	10

- $h(k, i) = (h'(k) + i) \mod m = (k + i) \mod 11$.
- Last insert:
 - h(59, 0) = 4 collision!
 - h(59, 1) = 5 collision!
 - h(59, 2) = 6 collision!
 - h(59, 3) = 7 collision!
 - h(59, 4) = 8

0	1	2	3	4	5	6	7	8	9	10
22	88			4	15	28	17	59	31	10

- $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m = (k + i + 3i^2) \mod 11$.
- Insert without collisions:
 - h(10, 0) = 10
 - h(22, 0) = 0
 - h(31, 0) = 9
 - h(4,0) = 4

0	1	2	3	4	5	6	7	8	9	10
22				4					31	10

- $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m = (k + i + 3i^2) \mod 11$.
- Further inserts:
 - h(15, 0) = 4 collision! $h(15, 1) = (15 + 1 + 3 \cdot 1^2) \mod 11 = 8$
 - h(28, 0) = 6
 - h(17, 0) = 6 collision! $h(17, 1) = (17 + 1 + 3 \cdot 1^2) \mod 11 = 10 \text{collision!}$ $h(17, 2) = (17 + 2 + 3 \cdot 2^2) \mod 11 = 9 \text{collision!}$ $h(17, 3) = (17 + 3 + 3 \cdot 3^2) \mod 11 = 3$

0	1	2	3	4	5	6	7	8	9	10
22			17	4		28		15	31	10

• $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m = (k + i + 3i^2) \mod 11$.

•
$$h(88, 0) = 0 - \text{collision!}$$

 $h(88, 1) = (88 + 1 + 3 \cdot 1^2) \mod 11 = 4 - \text{collision!}$
 $h(88, 2) = (88 + 2 + 3 \cdot 2^2) \mod 11 = 3 - \text{collision!}$
 $h(88, 3) = (88 + 3 + 3 \cdot 3^2) \mod 11 = 8 - \text{collision!}$
 $h(88, 4) = (88 + 4 + 3 \cdot 4^2) \mod 11 = 8 - \text{collision!}$
 $h(88, 5) = (88 + 5 + 3 \cdot 5^2) \mod 11 = 3 - \text{collision!}$
 $h(88, 6) = (88 + 6 + 3 \cdot 6^2) \mod 11 = 4 - \text{collision!}$
 $h(88, 7) = (88 + 7 + 3 \cdot 7^2) \mod 11 = 0 - \text{collision!}$

 $h(88, 8) = (88 + 8 + 3.8^2) \mod 11 = 2$

Problem: repeated probes

- not all slots will be tried

0	1	2	3	4	5	6	7	8	9	10
22		88	17	4		28		15	31	10

- $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m = (k + i + 3i^2) \mod 11$.
- Last insert:
 - h(59, 0) = 4 collision! $h(59, 1) = (59 + 1 + 3 \cdot 1^2) \mod 11 = 8 - \text{collision!}$ $h(59, 2) = (59 + 2 + 3 \cdot 2^2) \mod 11 = 7$

0	1	2	3	4	5	6	7	8	9	10
22		88	17	4		28	59	15	31	10

Exercise 11.4-1 Solution: Double hashing

- $h(k, i) = (h_1(k) + ih_2(k)) \mod m = (k + i[1 + (k \mod 10)]) \mod 11$
- Insert without collisions:
 - h(10, 0) = 10
 - h(22, 0) = 0
 - h(31, 0) = 9
 - h(4,0) = 4

0	1	2	3	4	5	6	7	8	9	10
22				4					31	10

Exercise 11.4-1 Solution: Double Hashing

- $h(k, i) = (h_1(k) + ih_2(k)) \mod m = (k + i[1 + (k \mod 10)]) \mod 11$
- Further inserts:
 - h(15, 0) = 4 collision!
 h(15, 1) = (15 + 1[1 + (15 mod 10)]) mod 11 = 10 collision!
 h(15, 2) = (15 + 2[1 + (15 mod 10)]) mod 11 = 5
 - h(28, 0) = 6
 - h(17, 0) = 6 collision! $h(17, 1) = (17 + 1[1 + (17 \mod 10)]) \mod 11 = 3$

0	1	2	3	4	5	6	7	8	9	10
22			17	4	15	28			31	10

Exercise 11.4-1 Solution: Double Hashing

- $h(k, i) = (h_1(k) + ih_2(k)) \mod m = (k + i[1 + (k \mod 10)]) \mod 11$
- Last two inserts:
 - h(88, 0) = 0 collision!
 h(88, 1) = (88 + 1[1 + (88 mod 10)]) mod 11 = 9 collision!
 h(88, 2) = (88 + 2[1 + (88 mod 10)]) mod 11 = 7
 - h(59, 0) = 4 collision!
 h(59, 1) = (59 + 1[1 + (59 mod 10)]) mod 11 = 3 collision!
 h(59, 2) = (59 + 2[1 + (59 mod 10)]) mod 11 = 2

0	1	2	3	4	5	6	7	8	9	10
22		59	17	4	15	28	88		31	10

Exercise 11.4-1 Solution: General comments

- Watch the primary clustering (for linear probing), where keys that have almost the same hash lead to many collisions.
- For quadratic probing, a problem is that some slots are not touched by the probing function (it must repeat after at most *m* probes).
- There are very many collisions! The exercise has been created to demonstrate handling of collisions. Practical implementations avoid load factors $\alpha > \frac{2}{3}$ (Python) or $> \frac{3}{4}$ (Java).
 - ⇒ at most 7 or 8 entries in a hash table with 11 elements