TD 3 : Ouverts et fermés dans les espaces métriques

Gönenç Onay

2025-26 GSU - Cours MAT-301

Exercice 1.

On considère l'espace métrique (\mathbb{R}^2, d_2) où d_2 est la distance euclidienne.

- 1. Montrer que la boule fermée $B_{\mathbf{F}}(0,1) = \{x \in \mathbb{R}^2 : d_2(x,0) \leq 1\}$ est une partie fermée de \mathbb{R}^2 .
- 2. Soit $A = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ et } y > 0\}$, le premier quadrant ouvert, montrer que A est une partie ouverte de \mathbb{R}^2 .
- 3. Soit $F = \{(x, y) \in \mathbb{R}^2 : x \ge 0 \text{ et } y \ge 0\}$, le premier quadrant fermé, montrer que F est une partie fermée de \mathbb{R}^2 .
- 4. Soit $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ le cercle unité. Montrer que S est une partie fermée de \mathbb{R}^2 .

Exercice 2.

Soit E un ensemble non vide et d la distance discrète sur E.

- 1. Déterminer la boule ouverte B(a, r) pour $a \in E$ et r > 0.
- 2. En déduire que toute partie de E est à la fois ouverte et fermée pour la topologie induite par la distance discrète.

Exercice 3. Soit (E, d) un espace métrique et r > 0. Est-ce que la boule fermée $B_{\mathbb{F}}(a, r)$ est la plus petite partie fermée contenant la boule ouverte B(a, r)? Justifier votre réponse.

Exercice 4.

1. **Ultramétrique.** On dit qu'une fonction $d: E \times E \to \mathbb{R}_{\geq 0}$ sur un ensemble E est une *ultramétrique* si pour tous $x, y, z \in E$, on a d(x, y) = 0 si et seulement si x = y, d(x, y) = d(y, x), et

$$d(x, z) \le \max\{d(x, y), d(y, z)\}.$$

Vérifier qu'une ultramétrique est une métrique :

$$d(x,z) \le d(x,y) + d(y,z).$$

- 2. Valuation p-adique. Soit p un nombre premier. Pour tout entier $n \in \mathbb{Z} \setminus \{0\}$, on définit la valuation p-adique $v_p(n)$ comme le plus grand entier $k \geq 0$ tel que p^k divise n. On pose également $v_p(0) = +\infty$.
 - a) Calculer $v_2(12)$, $v_3(18)$, et $v_5(100)$.
 - b) Montrer que pour tous $n, m \in \mathbb{Z}$, on a $v_p(nm) = v_p(n) + v_p(m)$.
 - c) Montrer que pour tous $n, m \in \mathbb{Z}$, on a $v_p(n+m) \ge \min\{v_p(n), v_p(m)\}.$
- 3. Norme p-adique. Pour tout $x \in \mathbb{Q} \setminus \{0\}$, on peut écrire $x = \frac{a}{b}$ avec $a, b \in \mathbb{Z} \setminus \{0\}$ premiers entre eux. On définit la valuation p-adique de x par $v_p(x) = v_p(a) v_p(b)$ et on pose $v_p(0) = +\infty$. On définit alors la norme p-adique $|\cdot|_p : \mathbb{Q} \to \mathbb{R}_{\geq 0}$ par

$$|x|_p = \begin{cases} p^{-v_p(x)} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

- a) Calculer $|12|_2$, $|1/3|_3$, et $|10|_5$.
- b) Montrer que pour tous $x, y \in \mathbb{Q}$, on a $|xy|_p = |x|_p |y|_p$.

- c) Montrer que pour tous $x, y \in \mathbb{Q}$, on a $|x + y|_p \le \max\{|x|_p, |y|_p\}$.
- d) En déduire que la fonction $d_p: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}_{\geq 0}$ définie par $d_p(x,y) = |x-y|_p$ est une ultramétrique sur \mathbb{Q} .
- 4. Boules dans les espaces ultramétriques. Soit (E, d) un espace ultramétrique.
 - a) Montrer que si $x \in B(a,r)$, alors B(x,r) = B(a,r). Autrement dit, tout point d'une boule ouverte est un centre de cette boule.
 - b) Montrer que deux boules ouvertes de même rayon sont soit disjointes, soit identiques.
 - c) En déduire que toute boule ouverte est également une partie fermée de E.
 - d) Dans l'espace métrique (\mathbb{Q}, d_2) où d_2 est la distance 2-adique, décrire explicitement les boules B(0,1), B(0,1/2), et $B_{\mathbb{F}}(0,1)$.