Lista 3 - Espaços Métricos - IME USP 2025

Professor: Rodrigo Rey Carvalho

Sobre as aulas de 20/01/2025 - 24/01/2025

Esta lista será utilizada para a avaliação do curso de verão. Escolha uma das duas opções:

- resolver dois dos exercícios dentre (1) a (4);
- resolver o exercício (5).

O prazo para entrega é até o dia 31/01 (sexta-feira).

- 1) Dados (X,d) espaço métrico e $Y,Z\subseteq X$ subespaços completos de X. Mostre que $Y\cap Z$ é um subespaço completo de X.
- 2) Seja (X, d) espaço métrico onde $X = \{f : \mathbb{R} \to \mathbb{R} : f[\mathbb{R}] \text{ é limitada}\} e d(f, g) = \sup\{|f(x) g(x)| : x \in \mathbb{R}\}.$ Mostre que X é completo. (Dica: use o fato de que o contradomínio é completo e considere como candidato a limite a função dada pelo limite ponto a ponto das funções)
- 3) Sejam (X,d) espaço métrico e $s: \mathbb{N} \to X$, $s': \mathbb{N} \to X$ sequências em X. Se, para todo $n \in \mathbb{N}$, $d(s(n),s'(n)) < \frac{1}{n+1}$, mostre que valem:
 - (a) s é sequência de Cauchy se, e somente se, s' é sequência de Cauchy;
 - (b) se $x \in X$, então $s(n) \to x$ se, e somente se, $s'(n) \to x$.
- 4) Dados (X_1,d_1) e (X_2,d_2) espaços métricos $s:\mathbb{N}\to X_1$ sequência de cauchy em X_1 e $f:X_1\to X_2$ função. Verifique:
 - (a) se f é uniformemente contínua então $f \circ s$ é de Cauchy em X_2 ;
 - (b) exiba um exemplo, considerando X_1 e X_2 sendo \mathbb{R} com a métrica usual, onde s é de Cauchy, f é contínua, mas $f \circ s$ não é de Cauchy.
- 5) Siga o seguinte roteiro para mostrar que os reais com a métrica usual é completo no sentido das sequências de Cauchy.
 - (a) Prove que toda sequência de cauchy $s: \mathbb{N} \to \mathbb{R}$ crescente converge (Dica: usar a propriedade do supremo);
 - (b) prove que toda sequência de cauchy $s: \mathbb{N} \to \mathbb{R}$ decrescente converge (Dica: usar a propriedade do ínfimo);

- (c) dada uma sequência s, um índice $n \in \mathbb{N}$ é dito bom se, para todo $m \ge n$, temos $s(m) \le s(n)$. Mostre que, se temos infinitos índices bons, então temos subsequência decrescente de s;
- (d) mostre que se temos uma quantidade finita de índices bons, então temos uma subsequência crescente de s (Dica: pegue o maior desses índices e ...);
- (e) conclua que toda sequência em $\mathbb R$ admite subsequência crescente ou admite subsequência decrescente;
- (f) conclua que toda sequência de Cauchy converge (Dica: usar a subsequência do item (e) e alguns resultados das aulas).

Note que crescente e decrescente não consideram a desigualdade no sentido estrito (por exemplo, uma sequência constante é crescente e decrescente ao mesmo tempo).