Progetto Data Mining

Analisi "Small-body" database: Asteroidi e Comete

Francesco Pasceri 204963

Contesto

Nel 1801, a Palermo, fu scoperto il primo asteroide "Cerere"...

Contesto

Corpi più presenti nel sistema solare

- Meccanica e dinamica celeste
- Buon campione statistico
- Contengono informazioni storiche
- Possibili pianeti nani
- Potenzialmente disastrosi

Asteroidi meteore e meteoriti...

Comete

Database e obiettivi

JPL Small-body Database (https://ssd.jpl.nasa.gov/sbdb_query.cgi#x)

	full_name	neo	pha	Н	G	M1	diameter	albedo	rot_per	GM	е	a	q	i	om	w	ma	ad	per_y	moid	moid_jup	t_jup	class	first_obs	n_obs_used	condition_code
0	1 Ceres (A801 AA)	N	N	3.40	0.12	NaN	939.400	0.0900	9.074170	62.6284	0.076009	2.769165	2.558684	10.594067	80.305531	73.597695	77.372098	2.979647	4.608202	1.594780	2.09753	3.309	MBA	1995-01-05	1030.0	0
1	2 Pallas (A802 FA)	N	N	4.20	0.11	NaN	545.000	0.1010	7.813200	14.3000	0.229972	2.773841	2.135935	34.832932	173.024741	310.202392	144.975675	3.411748	4.619880	1.234290	1.85093	3.042	MBA	1804-08-27	8477.0	0
2	3 Juno (A804 RA)	N	N	5.33	0.32	NaN	246.596	0.2140	7.210000	NaN	0.256936	2.668285	1.982706	12.991043	169.851482	248.066193	125.435355	3.353865	4.358696	1.034290	2.18899	3.299	MBA	1804-10-17	7188.0	0
3	4 Vesta (A807 FA)	N	N	3.00	0.32	NaN	525.400	0.4228	5.342128	17.8000	0.088721	2.361418	2.151909	7.141771	103.810804	150.728541	95.861938	2.570926	3.628837	1.139480	2.46988	3.535	MBA	1950-09-23	9397.0	0
4	5 Astraea (A845 XA)	N	N	6.90	NaN	NaN	106.699	0.2740	16.806000	NaN	0.190913	2.574037	2.082619	5.367427	141.571026	358.648418	17.846343	3.065455	4.129814	1.095750	1.95968	3.396	MBA	1845-12-15	3034.0	0
5	6 Hebe (A847 NA)	N	N	5.80	0.24	NaN	185.180	0.2679	7.274500	NaN	0.203219	2.424533	1.931822	14.739653	138.643432	239.736273	190.686496	2.917243	3.775290	0.973673	2.63933	3.439	MBA	1848-09-05	6134.0	0
6	7 Iris (A847 PA)	N	N	5.60	NaN	NaN	199.830	0.2766	7.139000	NaN	0.230145	2.387375	1.837933	5.521598	259.563942	145.201546	247.425812	2.936818	3.688835	0.850693	2.47160	3.492	MBA	1848-08-23	5218.0	0
7	8 Flora (A847 UA)	N	N	6.50	0.28	NaN	147.491	0.2260	12.865000	NaN	0.155833	2.201415	1.858362	5.889081	110.876524	285.458915	315.318013	2.544467	3.266337	0.875980	2.87060	3.642	MBA	1847-10-27	2775.0	0
8	9 Metis (A848 HA)	N	N	6.30	0.17	NaN	190.000	0.1180	5.079000	NaN	0.123300	2.386189	2.091972	5.576494	68.909459	6.337325	23.912205	2.680407	3.686087	1.107110	2.55296	3.518	MBA	1849-07-31	2746.0	0
9	10 Hygiea (A849 GA)	N	N	5.50	NaN	NaN	407.120	0.0717	27.630000	7.0000	0.112117	3.142435	2.790114	3.831786	283.198444	312.412932	222.850543	3.494757	5.570674	1.780300	1.53545	3.197	MBA	1849-05-26	3547.0	0

- Calcolo del diametro con modelli di regressione
- Classificazione fascia orbitale
- Anomaly detection "PHA"

Analisi degli attributi

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 999016 entries, 0 to 999015
Data columns (total 26 columns):
     Column
                     Non-Null Count
                                       Dtype
     full name
                     999016 non-null
                                       object
     neo
                     995518 non-null
                                       object
                     955081 non-null
                                       object
     pha
                     989524 non-null
                                       float64
     G
                     119 non-null
                                       float64
 5
     M1
                     1449 non-null
                                       float64
                     140299 non-null float64
     diameter
     albedo
                     139035 non-null
                                       float64
 8
     rot_per
                     23110 non-null
                                       float64
                     14 non-null
                                       float64
 10
                     999016 non-null float64
 11
                     997187 non-null
                                       float64
 12
     q
                     999016 non-null
                                       float64
 13
                     999016 non-null
                                       float64
 14
                     999016 non-null
                                       float64
 15
                     999016 non-null
                                       float64
 16
                     997186 non-null
                                       float64
 17
                     996797 non-null
                                       float64
     per_y
                                       float64
 18
                     996654 non-null
 19
     moid
                     956653 non-null
                                       float64
     moid jup
                     955923 non-null
                                       float64
 21
     t_jup
                     996876 non-null
                                       float64
     class
                     999016 non-null
                                       object
     first obs
                     998991 non-null
                                       object
     n obs used
                     998945 non-null
                                       float64
     condition code
                     995513 non-null
                                       object
dtypes: float64(20),
                     object(6)
memory usage: 198.2+ MB
```


Attributo di interesse:

2. Potentially Hazardous Asteroids (PHAs) [Y/N]

Future missioni per deviare i PHA

Orbite vicine e circolari

Orbite più lontane ed ellittiche

La riflessione non aiuta la distinzione

Più luminose potrebbero preoccupare?

Attributo di interesse:

3. Classe orbitale

- 0 MBA -> Main Belt Asteroid : Asteroids with orbital elements;
- 1 OMB -> Outer Main Belt : Asteroids with orbital elements;
- . 2 MCA -> Mars Crossing Asteroid : Asteroids that cross the orbit of Mars;
- · 3 AMO -> Amor : Near-Earth asteroid orbits similar to that of 1221 Amor;
- · 4 IMB -> Inner Main Belt : Asteroids with orbital elements;
- 5 TJN -> Jupiter Trojan : Asteroids trapped in Jupiter's L4/L5 Lagrange points;
- . 6 CEN -> Centaur : Objects with orbits between Jupiter and Neptune;
- . 7 APO -> Apollo : Near-Earth asteroid orbits which cross the Earth's orbit similar to that of 1862 Apollo;
- . 8 ATE -> Atene : Near-Earth asteroid orbits similar to that of 2062 Aten;
- . 9 AST -> Asteroid : Asteroid orbit not matching any defined orbit class;
- 10 TNO -> TransNeptunian Object : Objects with orbits outside Neptune;
- 11 ETc -> Encke-type Comet : Encke-type comet;
- . 12 COM -> Comete: Comet orbit not matching any defined orbit class;

La distanza del perielio è un attributo con una elevata affinità con la classe orbitale

Corpi tra il Sole e Giove hanno orbite circolari.

Corpi esterni hanno orbite ellittiche.

Il semiasse maggiore caratterizza lievemente le orbite.

Controlliamo anche le relazioni con eventuali trasformazioni...

Obiettivo: È possibile predire il valore corretto del diametro?

Modello: Linear, Ensemble, SVM, MLP, Tree e Nearest Neighbor

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

Misure di valutazione

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

 \hat{y} – predicted value of y \bar{y} – mean value of y

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Questo il comportamento dei regressori usati...

Bene modelli più complessi

Male modelli lineari e SVM

Possibile usare pochi ma buoni attributi?

Otteniamo una valutazione più o meno simile...

Obiettivo: Predire la fascia di appartenenza di un corpo?

Modello: Linear, Tree, SVM, Nearest Neighbor, Naive Bayes e MLP

Classi sbilanciate...

0	127090		
1	7608		
5	1876		
7	740		
2	612		
4	555		
3	337		
8	125		
6	52		
10	12		
9	7		
Name:	class,	dtype:	int64

- 0 MBA -> Main Belt Asteroid : Asteroids with orbital elements;
- 1 OMB -> Outer Main Belt : Asteroids with orbital elements;
- 2 MCA -> Mars Crossing Asteroid: Asteroids that cross the orbit of Mars;
- 3 AMO -> Amor : Near-Earth asteroid orbits similar to that of 1221 Amor;
- 4 IMB -> Inner Main Belt : Asteroids with orbital elements;
- 5 TJN -> Jupiter Trojan : Asteroids trapped in Jupiter's L4/L5 Lagrange points;
- . 6 CEN -> Centaur : Objects with orbits between Jupiter and Neptune;
- 7 APO -> Apollo: Near-Earth asteroid orbits which cross the Earth's orbit similar to that of 1862 Apollo;
- 8 ATE -> Atene : Near-Earth asteroid orbits similar to that of 2062 Aten:
- 9 AST -> Asteroid : Asteroid orbit not matching any defined orbit class;
- 10 TNO -> TransNeptunian Object: Objects with orbits outside Neptune;
- 11 ETc -> Encke-type Comet : Encke-type comet;
- 12 COM -> Comete: Comet orbit not matching any defined orbit class;

```
1. Subsampling
2. Fusione classi (6,9,10 -> 6)
```

```
7 600
5 600
1 600
2 600
0 600
4 555
3 337
8 125
6 71
Name: class, dtype: int64
```

Vediamo subito ai risultati...

Accuratezza con classi sbilanciate?

Proviamo a migliorare con il Voting..

Parte tre: Anomaly Detection

Obiettivo: individuare i corpi PHA

Modello: Autoencoder (Feature extraction) + Logistic Regressor

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$F1_{score} = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

Parte tre: Anomaly Detection

1. Perché usare l'autoencoder?

2. Visualizzazione dei dati con t-SNE

Converte i valori di similarità in distribuzioni e minimizza la distanza di KL tra la probabilità ad alta dimensionalità e quella a bassa dimensionalità.

Parte tre: Anomaly Detection

Conclusioni

La anomaly detection riesce nel riconoscimento dei PHA.

Questo task è particolarmente riuscito perché:

- 1. Recall e precision alti;
- 2. FN rate basso e possiamo analizzare pochi corpi;
- L'autoencoder ci dà una "visione" diversa che aiuta nella distinzione;

Aiuta nel tracciare possibili missioni di PD (*Planetary Defense*).

La classificazione delle orbite risulta molto accurata.

- Anche nel peggiore dei casi, sono pochi i misclassificati (recall e precision alti);
- Record molto diversi con alcune feature (perielio, eccentricità, etc.).

I risultati delle misure sono buoni, tuttavia il problema si riscontra nei corpi il cui diametro è di più alta dimensione: l'errore commesso risulta essere più marcato. La probabile causa è da imputare alla mancanza di dati su corpi di maggiore dimensione.

La regressione del diametro, seppur buona, non è del tutto soddisfacente.

Appendice tecnica

- **Pandas :** gestione dei DataFrame e operazioni di preprocessing
- Numpy: gestione di valori in array, conversione dei tipi
- Matplotlib -> pyplot : gestire i grafici e le varie figure
- **Seaborn**: alternativa per la gestione dei grafici
- **Scikit-learn**: modellazione regressori, classificatori e metriche di valutazione
- **Keras**: costruzione dell'autoencoder

Pre-processing dei dati

Gestione dati <u>mancanti</u> e "<u>null</u>"

```
#removing columns
vect = np.asarray(pd.DataFrame(data.isnull().sum() / data.shape[0]).T).flatten()
colstoRem = np.asarray(np.where(vect>0.5)).flatten().tolist()
print('index of columns to remove = ', colstoRem)
data.drop(data.columns[colstoRem], axis=1, inplace=True)
data.drop(['first_obs', 'n_obs_used', 'full_name'], axis=1, inplace=True)
data.info()
```

```
#remove meaningless rows
data = data[data.diameter.notnull()]
data = data[data.albedo.notnull()]
data = data[data.pha.notnull()]

data.info()

#filling
value = data.H.mode()[0]
data['H'].fillna(value, inplace=True)
```

Trasformazione <u>tipo</u> dati

```
#converting into numerical
data['moid'] = pd.to_numeric(data['moid'])
data['pha'] = pd.to_numeric(data['pha'].map(dict(Y=1, N=0)))
data['neo'] = pd.to_numeric(data['neo'].map(dict(Y=1, N=0)))
data.info()
```

Pre-processing dei dati

Trasformazione <u>tipo</u> dei dati

```
Convert class and condition code (or Uncertainty parameter U) into numerical attributes

classes = data['class'].unique()
codes = np.arange(classes.shape[0])
dict_classes = {}
for key, val in zip(classes, codes):
    dict_classes[key] = val

data['class'] = pd.to_numeric(data['class'].map(dict_classes))
data['condition_code'] = pd.to_numeric(data['condition_code'])
data.info()
```

Trasformazione in <u>scala</u> <u>logaritmica</u>

```
For column in ['albedo','n','H','ad','e','om','i','q']:
data['log('+column+')'] = data[column].apply(np.log)
data.head()

e a q i om ... class condition_code log(albedo) log(n) log(H) log(ad) log(e) log(om) log(l) log(g)

8009 2.769165 2.558684 10.594067 80.305531 ... 0 0 2.407946 1.542316 1.223775 1.091805 2.576903 4.385838 2.360294 0.939493

9972 2.773841 2.135935 34.832932 173.024741 ... 0 0 2.229635 1.544847 1.435085 1.22725 1.469797 5.153435 3.550563 0.758904

8936 2.668285 1.982706 12.991043 169.851482 ... 0 0 0 -1.541779 -1.486651 1.673351 1.210113 -1.358927 5.134924 2.564260 0.684462

8721 2.361418 2.151909 7.141771 103.810804 ... 0 0 0 -0.860856 -1.303390 1.098612 0.944266 2.422253 4.642570 1.965961 0.766356

913 2.574037 2.082619 5.367427 141.571026 ... 0 0 0 -1.294627 -1.432710 1.931521 1.120196 -1.655936 4.952802 1.680349 0.733626
```

Regressori: grid-search e cross validation

```
def grid searching(model, name, X train, X test, y train, y test, k feature, params=None):
    clf = {}
    # grid searching
    if params is not None:
        grid_searcher = GridSearchCV(estimator=model, cv=5, n_jobs=-1, param_grid=params,
                                     scoring='neg mean squared error')
        grid searcher.fit(X train, y train)
        best model = grid searcher.best estimator
    else:
        best_model = model.fit(X_train, y_train)
    #cross validating
    scores = cross_validate(best_model, X_train, y_train, cv=5, return_train_score=True,
                            scoring=['r2', 'neg_mean_absolute_error', 'neg_mean_squared_error'])
                                                    MSE e MAE per la
                                                   regressione secondo
                                                       scikit-learn
```

Miglior modello sulla base del parametro "scoring"

Regressori: modelli e risultati

TIPOLOGIA	REGRESSORE	G.SEARCH	PARAMETERES OF G.S.
Linear			
	Linear	K	
	SGD	1	alpha': [1,, 5,, 10,, 50,, 100.], 'loss': ['squared_loss', 'epsilon_insensitive', 'squared_epsilon_insensitive']
	Huber	X	
	Ridge	1	'alpha' : [1., 5., 10., 50., 100.]
	BayesianRidge	1	alpha_1':[0.0001, 0.001, 0.01, 0.1, 1., 5., 10., 50., 100.]
Tree			
	DecisionTree	4	splitter': ['best', 'random'], 'criterion' : ['mse', 'friedman_mse', 'mae']
	ExtraTree	1	splitter': ['best', 'random']
Nearest Neighbor			
	KNeigh	4	n_neighbors' : [5, 10, 15, 50]
Ensemble		2025	
	Adaboost	1	n_estimators' : [5, 10, 25, 50], 'base_estimator' : [DecisionTreeRegressor(max_depth=3, 10, 15, 25, 30]
	Bagging	1	n_estimators' : [5, 10, 25, 50], 'base_estimator' : [DecisionTreeRegressor(max_depth=3, 10, 15, 25, 30]
	GradientBoosting	4	n_estimators' : [5, 10, 25, 30], 'loss' : ['ls','lad','quantile']
SVM			
	Linear	1	C':[0.1,1,10,50]
	Polynomial	K	
	RBF	X	
Neural Network			
	MLP	1	hidden_layer_sizes' : [(10,), (50,), (100,), (10, 10,), (10, 50,), (10, 100),
			(50,10,), (50,50,), (50,100,), (100,10,), (100,50,), (100,100,)]

Classificatori: modelli e valutazioni

TIPOLOGIA	CLASSIFICATORE	PARAMETERES OF CLFs
Linear	·	
	Ridge	alpha=1.0
	SGD	alpha=0.0001, loss='hinge'
	LogisticRegressor	multi_class='ovr', solver'='lbfgs'
Tree	*	
	DecisionTree	criterion='gini', splitter='best'
	ExtraTree	criterion='gini', splitter='random'
Nearest Neighbor		
	KNeigh	n_neighbor=15, metric='minkowski', p=2
Ensemble		
	Adaboost	base_estimator=DecisionTree, n_estimator=50, algorithm='SAMME.R'
	Bagging	base_estimator=DecisionTree, n_estimator=50, criterion='gini'
	GradientBoosting	n_estimator=50, criterion='friedman_mse', learning_rate=0.1
SVM		
	Linear	C=100, decision_function_shape='ovr'
	Polynomial	degree=2
	RBF	decision_function_shape='ovr'
Neural Network		
	MLP	learning_rate='adaptive', hidden_layer_sizes=(10, 50,), activation='relu'
Naive Bayes	·	
	GaussianNB	var_smoothing=1e-09
Γ	BernoulliNB	alpha=0.1

Classificatori: confusion matrix e cross validation

A	dat	000	st								Log	istic	: Re	gr.							MLF)								E	3er	nou	lliN	В								
	0	1	2	3	4	5	6	7	8		0	1	2	3	4	5	6	7	8		0	1	2	3	4	5	6	7	8		0	1	2	3	4	5	6	7	8			
0	124	0	0	0	0	0	0	0	0	0	82	37	4	0	1	0	0	0	0	0	118	4	2	0	0	0	0	0	0	0	70	40	8	0	6	0	0	0	0			
1	0	126	0	0	0	0	0	0	0	1	7	119	0	0	0	0	0	0	0	1	5	120	0	0	0	0	1	0	0	1	3	121	0	0	0	0	2	0	0			
2	0	0	118	0	0	0	0	0	0	2	0	0	110	0	8	0	0	0	0	2	0	C	115	0	3	0	0	0	0	2	0	0	108	0	10	0	0	0	0			
3	0	0	0	72	0	0	0	0	0	3	0	0	0	66	0	0	0	6	0	3	0	C	0	68	0	0	0	4	0	3	0	0	0	28	0	0	1	28	15			
4	0	0	0	0	110	0	0	0	0	4	0	0	0	0	110	0	0	0	0	4	0	C	0	0	110	0	0	0	0	4	0	0	0	0	110	0	0	0	0			
5	0	0	0	0	0	118	0	0	0	5	0	0	0	0	0	118	0	0	0	5	0	C	0	0	0	118	0	0	0	5	0	0	0	0	0	118	0	0	0			
6	0	0	1	0	0	0	10	0	0	6	0	0	1	0	0	1	9	0	0	6	0	C	0	0	0	0	11	0	0	6	0	0	0	0	0	0	11	0	0			
7	0	0	0	0	0	0	0	111	0	7	0	0	0	7	0	0	0	104	0	7	0	C	0	2	0	0	0	109	0	7	0	0	0	29	0	0	0	44	38			
8	0	0	0	0	0	0	0	0	28	8	0	0	0	0	0	0	0	1	27	8	0	C	0	0	0	0	0	1	27	8	0	0	0	0	0	0	0	7	21			

Autoencoder: modello e funzionamento

Impara a ricostruire tramite compressione e decompressione

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 27)]	Θ
dense (Dense)	(None, 20)	560
dense_1 (Dense)	(None, 10)	210
dense_2 (Dense)	(None, 20)	220
dense_3 (Dense)	(None, 27)	567

Total params: 1,557 Trainable params: 1,557 Non-trainable params: 0

```
input_layer = Input(shape=(X.shape[1],))

## encoding part
encoded = Dense(20, activation='relu')(input_layer)
encoded = Dense(10, activation='relu')(encoded)

## decoding part
decoded = Dense(20, activation='relu')(encoded)

## output layer
output_layer = Dense(X.shape[1], activation='relu')(decoded)
autoencoder = Model(input_layer, output_layer)
autoencoder.compile(optimizer="adam", loss="mse")
autoencoder.summary()
```

Esegue feature extraction grazie alla rappresentazione latente al termine del "bottleneck"

Fine