## Notes - January 17th ${\rm Math} \ 32A$

Today we will learn how to determine the equation of a plane in  $\mathbb{R}^3$ .

Given a plane  $\mathcal{P}$  in  $\mathbb{R}^3$ , we can find a vector  $\mathbf{n}$  with the following property: given two points P, Q in  $\mathcal{P}$ , let  $\mathbf{v} = \overrightarrow{PQ}$ . Then  $\mathbf{v} \perp \mathbf{n}$ . We call such vector  $\mathbf{n}$  a normal vector to the plane  $\mathcal{P}$ .

**Definition.** Let  $P_0 = (x_0, y_0, z_0)$  a point in  $\mathbb{R}^3$  and  $\mathbf{n} = \langle a, b, c \rangle$ . The plane  $\mathcal{P}$  that contains the point  $P_0$  with normal vector  $\mathbf{n}$  consists of the heads Q of all the vectors  $\overrightarrow{P_0Q}$ , based at  $P_0$ , that are perpendicular to  $\mathbf{n}$ .

From this description, how do we obtain an equation for the plane  $\mathcal{P}$ ?

The plane through the point  $P_0=(x_0,y_0,z_0)$  with normal vector  $\mathbf{n}=\langle a,b,c\rangle$  is described by the equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$



| Exercise. | Find the equation of the plane that contains the points $P_1 = (1, 2, 3)$ , $P_2 = (-1, 0, 1)$ and $P_3 = (0, 1, 1)$ .                              |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                     |
|           |                                                                                                                                                     |
|           |                                                                                                                                                     |
| ъ.        |                                                                                                                                                     |
| Exercise. | Find the point of intersection of the plane $x + 2y - 2z = 3$ and the line $\mathbf{r}(t) = \langle 4, 0, -1 \rangle + t \langle 1, 1, 0 \rangle$ . |
| Exercise. | Find the point of intersection of the plane $x+2y-2z=3$ and the line $\mathbf{r}(t)=\langle 4,0,-1\rangle+t\langle 1,1,0\rangle.$                   |
| Exercise. | Find the point of intersection of the plane $x+2y-2z=3$ and the line $\mathbf{r}(t)=\langle 4,0,-1\rangle+t\langle 1,1,0\rangle.$                   |
| Exercise. | Find the point of intersection of the plane $x+2y-2z=3$ and the line $\mathbf{r}(t)=\langle 4,0,-1\rangle+t\langle 1,1,0\rangle.$                   |

**Traces of a plane.** The trace of a plane  $\mathcal{P}$  with respect to a coordinate plane is the intersection of the plane with that coordinate plane. It might be empty if  $\mathcal{P}$  is parallel to such coordinate plane.

**Exercise.** Find the traces of the plane 2x - y + 3z = 2 in the coordinates planes.