Pertemuan 7 Uji Normalitas Data dengan Uji Liliefors

A. Pengujian Persyaratan Analasis

Dalam rangka menentukan statistik uji mana yang perlu digunakan apakah uji parametrik atau uji non parametrik, perlu dilakukan uji persyaratan analisis atau uji pelanggaran klasik. Pengujian dengan statistik inferensial parametrik menyaratkan beberapa hal, seperti uji normalitas, uji homogenitas dan uji linearita. Selain itu uji statistik parametrik juga menyaratkan data yang di analisis harus berskala interval atau rasio, serta pengambilan sampel harus secara random.

B. Uji Normalitas

Pengujian normalitas dilakukan untuk mengetahui normal tidaknya suatu distribusi data. Hal ini penting diketahui berkaitan dengan ketepatan pemilihan uji statistik yang akan digunakan. Karena uji parametrik statistik menyaratkan data harus berdistribusi normal. Apabila data tidak berdistribusi normal maka disarankan untuk menggunakan uji statistik non parametrik.

C. Uji Liliefors (Lo)

Uji normalitas dengan uji liliefors dilakukan apabila data tunggal atau frekuensi data tunggal, bukan data distribusi frekuensi kelompok. Uji normalitas menggunakan uji liliefors (Lo) dilakukan dengan Langkah-Langkah sebagai berikut:

- 1. Menentukan taraf signifikasi (a), yaitu misalnya 1% atau 5 % atau 10 %.
- 2. Menentukan hipotesis yang di uji :
 - $H_0 = data \ berdistribusi \ normal$
 - $H_1 = data tidak berdistribusi normal$

Dengan kriteria pengujian:

- Jika $L_{hitung} < L_{tabel,m}$ aka terima H_o dan tolak H_1
- Jika $L_{hitung} > L_{tabel}$ maka tolak H_o dan terima H_1

 $L_o = L_{hitung}$

 $H_o = Hipotesis Oportunity (hipotesis utama)$

 $H_1 = Hipotesis opsional (hipotesis pilihan lain)$

- 3. Melakukan langkah-langkah perhitungan nilai L_{hituna}
- 4. Menentukan nilai L_{tabel}
- 5. Membuat analisa dan menarik kesimpulan

Contoh soal uji Liliefors

Seorang guru telah selesai melakukan ulangan tengah semester mata pelajaran Biologi yang diikutii oleh 27 siswa kelas XII IPA 3. Berikut data nilainya:

6	8	7	8	9	10	4	4	6
7	7	2	5	6	6	3	4	6
7	8	9	10	6	5	5	7	8

Dari data di atas tentukan apakah data berdistribusi normal atau tidak jika taraf signifikasinya 5 %?.

Langkah-langkah penyelesaian:

1. Urutkan data dari yang terkecil

or arrian dark faing refrices.									
1		7		13		19		25	
2		8		14		20		26	
3		9		15		21		27	
4		10		16		22			_
5		11		17		23			
6		12		18		24			

2. Buat Tabel uji deskriptif

No.	Y_i	f_i	$f_i.Y_i$	$(Y_i - \overline{Y})$	$f_i(Y_i - \overline{Y})^2$
Σ					

3. Hitung nilai mean (\overline{Y})

$$\bar{Y} = \frac{\sum f_i. Y_i}{\sum f_i} = \frac{1}{\sum f_i}$$

4. Hitung nilai simpangan baku (s)

$$s = \sqrt{\frac{\sum f_i (Y_i - \overline{Y})^2}{n - 1}} = \sqrt{\frac{1}{n - 1}}$$

5. Buat tabel penolong uji Liliefors

<u>J.</u>	5. Buat tabel penolong uji Lilletors									
No.	Yi	f _i	F Kum	$\mathbf{Z_i}$	\mathbf{Z}_{tabel}	$F(Z_i)$	$S(Z_i)$	$ F(\mathbf{Z_i}) - S(\mathbf{Z_i}) $		
	Lo adalah nilai tertinggi dari kolom $ F(Z_i) - S(Z_i) $									

Catatan : nilai Z_i harus menggunakan pembualatan 2 angka di belakang koma (,) dengan pembulatan yang tepat.

6.	Dari hasil perhitungan uji liliefors Lo = dengan a = 5 % dan n =, maka L _{tabel} =	sedangkan nilai L _{tabel}
	Kesimpulan:	

Latihan Soal:

Diketahui data sebagai berikut

1	115	7	125	13	130	19	131	25	138
2	117	8	127	14	130	20	133	26	138
3	117	9	128	15	130	21	134	27	138
4	120	10	128	16	130	22	136	28	139
5	125	11	128	17	130	23	136	29	140
6	125	12	128	18	130	24	136	30	140

Ujilah apakah data di atas berdistribusi normal atau tidak?

Tebel Z

Kumulatif sebaran frekuensi normal (Area di bawah kurva normal baku dari 0 sampai z)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
8.0	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.444
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.463
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.485
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.489
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.493
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.495
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.496
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.498
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.498
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.499
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.499
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.499
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.499
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.499
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.499
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.499
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.499
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.499
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.500

Dipergunakan untuk kepentingan Praktikum dan Kuliah Statistika Agrotek cit. Ade

Tabel Nilai Kritis L untuk uji Liliefors

n\ ^a	0.01	0.05	0.10	0.15	0.20
4	0.417	0.381	0.352	0.319	0.300
5	0.405	0.337	0.315	0.299	0.285
6	0.364	0.319	0.294	0.277	0.265
7	0.348	0.300	0.276	0.258	0.247
8	0.331	0.285	0.261	0.244	0.233
9	0.311	0.271	0.249	0.233	0.223
10	0.294	0.258	0.239	0.224	0.215
11	0.284	0.249	0.230	0.217	0.206
12	0.275	0.242	0.223	0.212	0.199
13	0.268	0.234	0.214	0.202	0.190
14	0.261	0.227	0.207	0.194	0.183
15	0.257	0.220	0.201	0.187	0.177
16	0.250	0.213	0.195	0.182	0.173
17	0.245	0.206	0.189	0.177	0.169
18	0.239	0.200	0.184	0.173	0.166
19	0.235	0.195	0.179	0.169	0.163
20	0.231	0.190	0.174	0.166	0.160
25	0.203	0.180	0.165	0.153	0.149
30	0.187	0.161	0.144	0.136	0.131
O1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.031	0.886	0.805	0.768	0.736
OVER 30					