<u>Lab 4: AI - ML</u>

Anish Deshpande:- 180100013

Part1:

	Date :
	Assignment/Lab4
1.1	To prove: K_: R * R-1R: K_(x,y) = emp (-11x-y112)
	252
	is a valid kernel
	Assumptions (proved in class): DIF K, (x,y) is a volid
	kernel, K2(x,y) is a valid kernel
	a K. (x,y) + BK2(x,y) = K(x,y) is a valid kernel
	α,β>0.
	3 The polynomial Remel is valid i.e. $K(u,y) = 2^7 y$
	= < 4, 4>
	=> k'(n,y)= (xTy) = ((x,y)) is a valid Remel.
	Proof: 11x-y112 zan be written as an inner product.
	11x-y112 = <x-y,x-y></x-y,x-y>
	But, by the linearity of the inner product:
	(x-y, x-y > = (2,x)-(x,y)-(y,x)+(y,y)
	:. Kr(xy) = exp (-1/x112-1/y112+2(x,y)
	25"
	Ko(ny)= exp(-(x)2+ y 2)) exp(<x,y>)</x,y>
	Let $\exp\left(-\frac{\ \mathbf{x}\ ^2}{2\sigma^2}\right)$ be a function from $\mathbb{R}^2 \to \mathbb{R} : g(\mathbf{x})$
	: K_(x,y) = g(x) enp (x,y) g(y)

Alternately, we know that K(u,y) = g(x)g(y) is a valid kernel q(x): R" -IR. as the Gram matrix K is the outer product of V= (g(xi), ... g(xn)' :: VVT = K(gram matin).

... Outer product of a vector is a positive semidefinite matrix (ronk 1).

K= Éq(x)g(y) ((x,y)) is a valid kernol as K(x,y) = K, (x,y) K2(x,y) is a valid go kernel By linearity of kernels, the summation of kernels is also a kernel Signigly) ((x,y)) is a valid kernel

1.2 b)

Sigma = 1 is the optimal sigma

This figure shows the trend between the number of mistakes and sigma. There is a minimum at sigma = 1. With increasing sigma, the value of the evaluated gaussian kernel also increases. Hence, even when far from each other, two points will still have a high value as the output of K evaluated at them. This leads to a misrepresentation of similarity, and hence an increasing sigma will increase the errors of prediction. Effectively, we have blurred the boundaries between different classes by flattening out the gaussian/rbf kernel.

1.2 c)
The two figures shown below depict the variation of the fit of the curve with varying sigma and lambda (keeping the other constant)

Too high a value for either parameter ends up with the curve underfitting the data severely. Sigma = 10 and lambda = 0.1 seem to be the optimal values for ridge regression. Too high a sigma makes spread out data comparable (we lose the distinction between points), and too high a lambda means our regularisation penalty is high- a lot of weights will go to zero (ridge regression).

We also observe that sigma = 1 overfits the data, introducing unwanted artifacts. It mistakes noise for actual variation in the data.

2.1:

	Date :
2.	
i) K(x,x') is a valid kernel R"xR"	→ R
$Q(x)$ $R \to R$	
to prox: K(g(n), g(n')) is a	valid kernel.
Say we have $K(x,x') = \phi^{T}(x)$	\$(x')
$\mathcal{K}(g(n),g(n')) = \mathcal{O}^{T}(g(n)) \mathcal{O}(g(n))$	g(n'))
Take: O(g(n))	
P. R For some b	
g: IR H IR	
$\phi(g(x)): \mathbb{R}^n \to \mathbb{R}^n \to \mathbb{R}^k$	
$: \mathbb{R}^n \mapsto_{\mathbb{R}^k}$	
This of composite function of	(n)), so is
in the same space as the oric	inal $\phi(u)$.
$Say \Phi(g(n)) = \Phi_g(n)$	
We have, in the same sp	ace .
$(g(n), g(n')) = (g(x)) \Phi_g(x')$) = K'(x,x1)
We have found a \$ for	which
$K(g(n), g(n')) = \phi_{g}(x) \phi_{g}(x')$ We have found a ϕ for $K(g(n), g(n'))$ is a Remel fun	ction.
Hence K(g(n), g(n')) is a vali	d kernel.
(h) & life ant class	band the
(It is simply a & different chino same feature space)	Dethe in the
Same feature space	

	Date :
2.1	Given: $K(x,x')$ is a valid kernel, q is a polynomial with non-negative coefficients. (let its degree be in) $q(K(x,x')) = a_0 + a_n(K(x,x'))^n + a_{n-1}(K(x,x'))^{n-1} + a_nK(x,x')$
	Lemma: The product of two kernels (valid): $K(x_{\bullet}, x_{\bullet}) = K_{1}(x_{\bullet}, x_{\bullet}) K_{2}(x_{\bullet}, x_{\bullet})$ is a valid kernel. Say $K_{1}(x_{\bullet}, x_{\bullet}) = \Phi_{1}(x_{\bullet}) \Phi_{1}(x_{\bullet})$ $K_{2}(x_{\bullet}, x_{\bullet}) = \Phi_{3}(x_{\bullet}) \Phi_{2}(x_{\bullet})$ $K_{3}(x_{\bullet}, x_{\bullet}) = \Phi_{3}(x_{\bullet}) \Phi_{3}(x_{\bullet}) \left(\sum \Phi_{2}(x_{\bullet}) \Phi_{2}(x_{\bullet})\right)$ $K_{3}(x_{\bullet}, x_{\bullet}) = \left(\sum \Phi_{1}(x_{\bullet}) \Phi_{1}(x_{\bullet})\right) \left(\sum \Phi_{2}(x_{\bullet}) \Phi_{2}(x_{\bullet})\right)$
	Converting this product of sum to sum of product
5	$K, K_2 = \sum_{i} \sum_{R} \Phi_{ii}(x) \Phi_{2R}(x) \Phi_{i}(x') \Phi_{2R}(x')$ Let $\tilde{\Phi}(x) = \Phi_{ii}(x) \Phi_{2R}(x)$ Consider the $\tilde{\Phi}(x) = \Phi_{ii}(x) \Phi_{2R}(x')$ (a long vector)
	This $\tilde{\phi}(x)$ gives us $K = K_1 K_1 = \tilde{\phi}'(x) \phi(x')$ Hence, we have found a representation for $K = K_1 (n, x') K_2 (x, n')$ in terms of $\tilde{\phi}$.
	K(n, n') is a valid kerne!

: If K(x,x') is a valid kernel
.: (K(x,x')) is a valid benel (K'(x,x') = K(x,x') Kh,
If (K(x,x1))n-1 is a valid keine) , then
$K'(x,x') = (K(x,x'))^{N-1} K(x,x') = (K(x,x'))^{N-1}$
is a valid kernel (from previous proof)
By mathematical induction (K(x,x1)) is
a valid Remel 4n
a valid Reside VII
= q = (nKn+ (n-1Kn-1+ Cn-2Kn-2+
q(K(x,x')) is a linear combination of valid
kernels, with Ci >0 Vi.
··· Ki, Kz valid => aK, + BKz valid +a, B>0
= q(K(n,n1)) is a valid kernel (The
"polynomial kernel")
To de la constant de
Hence proved.
TIETICE PROVED.

Date:

2.2:

The kernel I have selected as my custom kernel is a polynomial kernel. After visualising the data, one observes than when y is plotted against x, we see that the curve has 3 extrema. Also, it undulates like a polynomial, Hence, I tried a 4th degree polynomial (xTy)^4. However, this 'passes through the origin', which is an unneeded constraint our model. Therefore, to generalise, the kernel used is: (1+xTy)^4.

3.1:

3.1 Given: {x', x2, xm} & cluster C, {xmi,, xn} & duster Q.
zieRd dzil
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Consider the points c, and cz in space Rd.
in If $x \in C_1$, then $ x-c_1 ^2 < x-c_1 ^2 - 0$ $ x-c_1 ^2 < x-c_1 ^2 - 0$
Consider the hyperplane which is the perpendicular bisector of C, and C2 (C,C2). Let this hyperplane be H
: \frac{1}{2} = 1/2 - (2112)
One form of the eq of H is: 112-C112-112-C112=0
$ \begin{array}{c c} & \text{If } H(x) > 0 \\ & \text{if } x \in \mathbb{C}_2 - 0 \end{array} $
and if $H(n) < 0$
(=) x € (, - Ū
side of which lie the points belonging to

3.2: Here are images with k = 2,5,10

In each case, we see that the quality of the generated image increases with the number of clusters. This is because, with a higher k, we do not have to sacrifice details in the image like object edges or the complexity of an object.

Image 1:

Eg, here we can make out the cubes for k = 5, and we can distinguish between the different red cubes and blue cubes for k = 10. Due to the increased number of colours, there is also a perceived increase in sharpness.

Image 2: Here, k = 10 is required to see the image with its required details

Image 3: A stark difference between k=2 and k=5, but not so much between k=5 and k=10 K=2

k=10

k=5

Images 1 and 3 can make do with 5 clusters, while image 2 needs 10 to be able to be seen properly/replicate the original image to a reasonable degree. This is because image 2 has a transitioning gradient, and hence a wider range of colours. Clustering them into few clusters is not a good enough representation of the original image. It ruins subtle trends and differences in the image. Image 1 and 3 however, have more 'blobs' or patches of uniform colour. This makes clustering them, even with a few clusters, extremely natural and easy.