CÁU TRÚC ĐỀ KIỂM TRA VÀ NỘI DUNG ÔN TẬP VẬT LÝ BÁN DẪN

A. Cấu trúc đề kiểm tra cuối kỳ

- Thời gian làm bài: 75 phút.
- Phân bố: tỉ lệ lý thuyết và bài tập khoảng 60-40.
- Thí sinh được mang vào phòng thi tài liệu in theo quy định của giảng viên.
- Phải mang theo máy tính cầm tay để tính toán.
- Các giá trị tính toán được **làm tròn đến 2 chữ số thập phân** (ví dụ: $1.23678 \approx 1.24$; $1.23478 \approx 1.23$). Sai đơn vị coi như sai kết quả; Không ghi đơn vị, bị trừ điểm.
- Để thuận tiện cho quá trình chấm bài, sinh viên **làm riêng phần lý thuyết và phần bài tập**.

B. Nội dung ôn tập

1. Vật lý bán dẫn

- Lý thuyết: phân loại vật liệu bán dẫn; cấu tạo nguyên tử; bán dẫn thuần; bán dẫn pha tạp; dòng trôi; dòng khuếch tán; mô hình vùng năng lượng,...
- Bài tập: mật độ hạt tải điện trong bán dẫn thuần và bán dẫn pha tạp; điện trở suất, độ dẫn điện, mật độ dòng trôi; mật độ dòng khuếch tán,...

2. Diode

- Lý thuyết: cấu tạo; nguyên lý hoạt động (không phân cực, phân cực thuận, phân cực ngược, đánh thủng); đặc tuyến; tính chất tĩnh điện của vùng nghèo; mô hình toán học; mô hình mạch tương đương; các thông số của diode: điện trở, điện dung, hệ số hồi phục ngược,...
- Bài tập: tính dòng và điện áp qua diode dựa trên phương trình Shockley; tính dòng và điện áp qua diode sử dụng mô hình sụt áp (mạch sử dụng 1-2 diode và 1-2 nguồn DC; mạch sử dụng 1 diode Zener),...

3. BJT

- Lý thuyết: cấu tạo; nguyên lý hoạt động (npn và pnp); mối quan hệ giữa các dòng điện qua BJT; dòng rò; đặc tuyến; các vùng hoạt động; hiệu ứng Early,...
- Bài tập: tính dòng và điện áp trong mạch sử dụng BJT ở vùng tích cực (mạch phân cực cố định, mạch phân cực sử dụng hồi tiếp tại Emitter, mạch phân cực bằng 4 điện trở, mạch phân cực sử dụng hồi tiếp tại Collector); xác định các thông số dựa trên đặc tuyến,...

4. Tụ điện C

- Hiểu và phân tích được quá trình nạp xả của tụ điện.

CÁC CÔNG THỨC CHO TRƯỚC TRONG ĐỀ THI

(Giảng viên sẽ gửi file tài liệu để sinh viên in ra và mang vào phòng thi)

$$n_i^2 = BT^3 \exp\left(-\frac{E_G}{kT}\right)$$
 cm⁻⁶

where E_G = semiconductor bandgap energy in eV (electron volts)

 $k = \text{Boltzmann's constant}, 8.62 \times 10^{-5} \text{ eV/K}$

T = absolute temperature, K

B = material-dependent parameter, $1.08 \times 10^{31} \text{ K}^{-3} \cdot \text{cm}^{-6}$ for Si

$$j_T^{\text{drift}} = j_n + j_p = q(n\mu_n + p\mu_p)E = \sigma E$$

$$\sigma = q(n\mu_n + p\mu_p) \qquad (\Omega \cdot \text{cm})^{-1} \qquad q(N_D + p - N_A - n) = 0$$

$$\rho = \frac{1}{\sigma} \qquad (\Omega \cdot \text{cm})$$

$$n = \frac{(N_D - N_A) + \sqrt{(N_D - N_A)^2 + 4n_i^2}}{2} \quad \text{and} \quad p = \frac{n_i^2}{n} \quad n \cong N_D - N_A \quad p = \frac{n_i^2}{N_D - N_A}$$

$$p = \frac{(N_A - N_D) + \sqrt{(N_A - N_D)^2 + 4n_i^2}}{2} \quad \text{and} \quad n = \frac{n_i^2}{p} \quad p \cong N_A - N_D \quad n = \frac{n_i^2}{N_A - N_D}$$

$$j_p^{\text{diff}} = (+q)D_p \left(-\frac{\partial p}{\partial x} \right) = -qD_p \frac{\partial p}{\partial x}$$

$$j_n^{\text{diff}} = (-q)D_n \left(-\frac{\partial n}{\partial x} \right) = +qD_n \frac{\partial n}{\partial x}$$

$$A/\text{cm}^2 \qquad \frac{D_n}{\mu_n} = \frac{kT}{q} = \frac{D_p}{\mu_p}$$

$$E(x) = \frac{1}{\varepsilon_s} \int \rho_c(x) dx \quad q N_A x_p = q N_D x_n \quad \phi_j = -\int E(x) dx$$

$$\phi_j = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$
 $w_{do} = (x_n + x_p) = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D} \right) \phi_j}$

$$i_D = I_S \left[\exp \left(\frac{q v_D}{nkT} \right) - 1 \right] = I_S \left[\exp \left(\frac{v_D}{nV_T} \right) - 1 \right]$$

q = electronic charge $(1.60 \times 10^{-19} \text{ C})$

 $k = \text{Boltzmann's constant } (1.38 \times 10^{-23} \text{ J/K})$

MỘT SỐ BÀI TẬP MẪU

Sách tham khảo: R.C. Jaeger, T.N. Blalock. Microelectronic circuit design. 5th edtion, 2015.

1. Vật lý bán dẫn

Câu 1. Mẫu bán dẫn Si được pha tạp bởi nguyên tử P với mật độ $3 \times 10^{18} \ cm^{-3}$ và nguyên tử B với mật độ $8 \times 10^{18} \ cm^{-3}$. Cho biết $n_i = 10^{10} \ cm^{-3}$.

- a. Hãy cho biết mẫu bán dẫn Si thuộc loại n hay p?
- b. Hãy tính mật độ điện tử và lỗ trống.

Câu 2. Mẫu bán dẫn Si được pha tạp mật độ nguyên tử cho bằng $5 \times 10^{16} \ cm^{-3}$. Biết rằng, độ linh động trôi của điện tử và lỗ trống lần lượt bằng 885 và $198 \ cm^2/V \cdot s$. Hãy tính điện trở suất của mẫu bán dẫn tại $300 \ K$.

Câu 3. Mật độ điện tử trong mẫu bán dẫn tại 300 K được thể hiện ở hình dưới. Cho biết độ linh động trôi của điện tử bằng $350 \ cm^2/V \cdot s$ và chiều dài của mẫu bán dẫn $W_B = 0.25 \ \mu m$. Hãy xác định mật độ dòng khuếch tán của điện tử.

Câu 4. Hãy cho biết mật độ hạt tải điện thuần thay đổi như thế nào khi nhiệt độ tăng. Giải thích.

2. Diode

Câu 1. Cho diode có $I_S = 0.2 \, fA$, $V_T = 0.025 \, V$ và n = 1.

a. Tính dòng qua diode nếu điện áp trên diode bằng 0.675 V.

b. Tính điện áp trên diode nếu dòng qua diode tăng gấp 3 lần so với câu (a).

Câu 2. Tính dòng và điện áp qua diode trong các mạch bên dưới.

Câu 3. Hãy tính dòng và điện áp qua diode Zener trong mạch sau. Biết rằng diode Zener hoạt động trong vùng đánh thủng. Điện áp đánh thủng của diode Zener bằng 6 *V*.

Câu 4. Hãy trình bày ngắn gọn hoạt động của diode khi không phân cực. Số lượng từ không vượt quá 200.

3. BJT

Câu 1. Cho đặc tuyến của BJT ở hình dưới. Hãy xác định giá trị của hệ số β tại điểm làm việc:

a.
$$I_C = 5 mA$$
, $V_{CE} = 5 V$
b. $I_C = 7 mA$, $V_{CE} = 7.5 V$
c. $I_C = 10 mA$, $V_{CE} = 14 V$

Câu 2. Tìm điểm Q của BJT trong các mạch ở hình dưới. Cho biết $\beta=50$.

Câu 3. Hãy cho biết vùng hoạt động của BJT p
np đối với các cặp giá trị điện áp V_{EB} và V_{CB} cho ở bảng sau.

EMITTER-BASE VOLTAGE	COLLECTOR-BASE VOLTAGE	
	0.7 V	-0.65 V
0.7 V		
-0.65 V		