Name				
Vorname	_	Note		
Matrikelnummer		1	. 2	ı N
Studiengang	_	'		14
Hörsaal Reihe Platz	_ 1			
Unterschrift	_ 2			
Mit dieser Unterschrift bestätigt der/die Kandidat/-in die Richtigkeit der obigen Angabe	n 2			
	3			
Technische Universität München				
Fakultät für Mathematik	4			
Testklausur				
zur Analysis 1 für Physiker	5			
3. Februar 2014, 90 Minuten	6			
Prüfer: Prof. DrIng. R. Callies				
	7			
Hinweise	- 8			
ninweise				
Überprüfen Sie die Angabe:	9			
Es sind 9 Aufgaben auf den Seiten 1 bis 9.				
Ergebnisse ohne Rechenweg werden nicht gewertet. Ausnahme: Es wird explizit auf die Begründung verzichtet. Zum Bestehen der Klausur sind etwa 17 Punkte nötig.				
Jede Aufgabe ist in dem unmittelbar anschließenden Platz zu bearbeiten. Schreiben Sie die Ergebnisse in die eingerahmten Kästen, falls diese vorhanden sind!				
	Σ			
lur von der Aufsicht auszufüllen:	·			
lörsaal verlassen von bis		Er	stkorrektı	ır
orzeitig abgegeben um				
Bemerkungen:Nachkorre	ktur	Zv	veitkorrek	tur

Ι

Stellen Sie die folgenden komplexen Zahlen in der Form $\alpha + i\beta$ dar, mit $\alpha, \beta \in \mathbb{R}$.

a)

$$\frac{2}{1+3i} + \frac{4i}{3-i}$$

b)

$$\left(\frac{1+i}{1-i}\right)^{1000}$$

Bestimmen Sie alle komplexen Zahlen z in der Form $\alpha + i\beta$ mit $\alpha, \beta \in \mathbb{R}$, die den folgenden Bedingungen genügen:

c)

$$\operatorname{Re}(z \cdot \bar{w}) = 0, \quad w := 2 + i$$

d)

$$\frac{|z-i|}{|z+i|} = 1$$

a)

$$\frac{2}{1+3i} + \frac{4i}{3-i} = \frac{2(1-3i) + 4i(3+i)}{10} = \boxed{-\frac{1}{5} + \frac{3}{5}i}$$

b)

$$\frac{1+i}{1-i} = i$$
 bzw. $\left(\frac{1+i}{1-i}\right)^2 = -1$ \Rightarrow $\left(\frac{1+i}{1-i}\right)^{1000} = \boxed{1}$

c)

$$\operatorname{Re}(z \cdot \bar{w}) = 0, \quad w = 2 + i, \quad z = \alpha - 2i\alpha, \ \alpha \in \mathbb{R}$$

Denn:

$$(\alpha + i\beta)(2 - i) = (2\alpha + \beta) + i(2\beta - \alpha)$$

d)

$$\frac{|z-i|}{|z+i|} = 1, \quad \boxed{z = \alpha, \ \alpha \in \mathbb{R}}$$

Denn:

$$|\alpha + i\beta - i| = |\alpha + i\beta + i| \Rightarrow \alpha^2 + (\beta - 1)^2 = \alpha^2 + (\beta + 1)^2 \Rightarrow \beta = 0$$

Aufgabe 2 (ca. 2 P)

II

a) Man bestimme alle $x \in \mathbb{R}$, für die gilt:

$$||x| - 5| < 1$$

b) Man berechne die Ableitung nach x an den Stellen, an denen die Funktion differenzierbar ist, von

$$f(x) := \cos(\sin(\cos(x^2)))$$

Zu (a):

Fall 1: $x \ge 0$

$$|x| = x \Rightarrow |x - 5| < 1 \Rightarrow x \in]4, 6[$$

Fall 2: x < 0

$$|x| = -x \implies |x+5| < 1 \implies x \in]-6, -4[$$

Zu (b):

$$f(x) := \cos(\sin(\cos(x^2)))$$

$$f'(x) := 2x\sin(\sin(\cos(x^2))) \cdot \cos(\cos(x^2)) \cdot \sin(x)$$

Aufgabe 3 (ca. 6 P)

Seite 3

Für $n \in \mathbb{N}$ definiert man

$$a_n := \frac{(-1)^n}{\sqrt{n+1}}, \quad b_n := -\frac{(-1)^n}{\sqrt{n}}$$

II

Man zeige, daß die Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ konvergieren, ihr Cauchy-Produkt aber nicht.

Die beiden Reihen sind gleich (k := n - 1):

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} -\frac{(-1)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} = \sum_{n=0}^{\infty} \frac{(-1)^{k+2}}{\sqrt{k+1}} = \sum_{k=0}^{\infty} a_k$$

Es bleibt also nur die Reihe $\sum_{n=0}^{\infty} a_n$ zu untersuchen. Da die a_n positiv sind und eine monoton fallende Nullfolge bilden (zu zeigen!), ist das Leibnizkriterium anwendbar und sichert die Konvergenz.

Für das Cauchy-Produkt gilt

$$\sum_{n=0}^{\infty} c_n \,, \quad c_n := \sum_{k=0}^{n} a_{n-k} a_k = \sum_{k=0}^{n} \frac{(-1)^{n-k}}{\sqrt{n-k+1}} \cdot \frac{(-1)^k}{\sqrt{k+1}} = (-1) \sum_{k=0}^{n} \frac{1}{\sqrt{(n-k+1)(k+1)}}$$

Für $k = 0, 1, \ldots, n$ gilt

$$(n-k+1)(k+1) = \underbrace{(n-k)}_{\leq n} \cdot \underbrace{k}_{\leq n} + (n+1) \leq n^2 + n + 1 \leq n^2 + 2n + 1 = (n+1)^2$$

Also erhält man

$$|c| \ge \sum_{k=0}^{n} \frac{1}{n+1} = 1$$

Somit bilden die $\{c_n\}$ keine Nullfolge und die Reihe divergiert.

a) Betrachtet werde die rekursiv definierte Folge $\{a_n\} \subset \mathbb{R}$ mit

$$a_{n+1} := \frac{3+3a_n}{3+a_n}, \quad n = 1, 2, \dots, \qquad a_1 := 1.$$

Unter der Annahme, daß die Folge konvergiert (diese Konvergenz muß nicht gezeigt werden), berechne man den Grenzwert $a=\lim_{n\to\infty}a_n$ und begründe die Wahl.

Grenzwert: a =

Lösung:

Begründung:

b) Man berechne den Grenzwert b der Folge $\{b_n\}_{n\in\mathbb{N}}$ für $n\to\infty$ (ohne l'Hospital) mit

$$b_n := 2n - 1 - \sqrt{4n^2 - 3n - 3}$$
.

Lösung: Grenzwe

Grenzwert: b =

Zu a) Grenzwertberechnung:

$$a = \frac{3+3a}{3+a}$$

$$\Rightarrow a^2 + 3a - 3a - 3 = a^2 - 3 = 0$$

$$\Rightarrow a_{1,2} = \pm \sqrt{3}$$

Wahl: $a = \sqrt{3}$

Begründung:

Verkürzte Induktion: Mit $a_n > 0$ ist auch $a_{n+1} > 0$ und der Nenner kann nicht Null werden.

Bemerkung:

Übersieht man den Fall $a_{1,2}=\pm\sqrt{3}$, so gibt es auf die Begründung keinen Punkt.

Zu b)

$$a_n = \frac{(2n-1)^2 - \left(\sqrt{4n^2 - 3n - 3}\right)^2}{(2n-1) + \sqrt{4n^2 - 3n - 3}} = \frac{4n^2 - 4n + 1 - 4n^2 + 3n + 3}{(2n-1) + \sqrt{4n^2 - 3n - 3}}$$
$$= \frac{n \cdot (4/n - 1)}{n(2 - 1/n + \sqrt{4 - 4/n - 3/n^2})} \xrightarrow{n \to \infty} -\frac{1}{4}$$

Gegeben sei für x > -3 die Funktion $f(x) := \ln \frac{(3+x)^2}{4}$.

a) Man zeige mit vollständiger Induktion: die k-te Ableitung von f(x) ist gegeben durch

$$f^{(k)}(x) = (-1)^{k-1} \cdot \frac{2(k-1)!}{(3+x)^k} , k \in \mathbb{N}.$$

b) Man gebe die Taylorreihe von f(x) um $x_0 = -1$ an und bestimme deren Konvergenzradius R.

a) I.A.:
$$k = 1$$
: $f^{(1)}(x) = \frac{d}{dx}f(x) = \frac{4}{(3+x)^2} \cdot \frac{2(3+x)}{4} = \frac{2}{3+x} = (-1)^0 \cdot \frac{2 \cdot 0!}{(3+x)^1}$ $\sqrt{ }$

I.V.: $f^{(k)}(x) = (-1)^{k-1} \cdot \frac{2(k-1)!}{(3+x)^k}$

I.S.:

$$k \to k+1: \quad f^{(k+1)}(x) = \frac{d}{dx} f^{(k)}(x) \stackrel{I.V.}{=} \frac{d}{dx} \left[(-1)^{k-1} \cdot \frac{2(k-1)!}{(3+x)^k} \right]$$
$$= (-1)^{k-1} \cdot \frac{2(k-1)!}{(3+x)^{k+1}} \cdot (-k) = (-1)^k \cdot \frac{2k!}{(3+x)^{k+1}} \quad \checkmark$$

b)
$$T_f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
; $x_0 = -1$

$$f(-1) = \ln 1 = 0$$
, $f^{(k)}(-1) = (-1)^{k-1} \cdot \frac{2(k-1)!}{2^k} = (-1)^{k-1} \cdot \frac{(k-1)!}{2^{k-1}}$ für $k \in \mathbb{N}$

$$T_f(x) = \sum_{k=1}^{\infty} (-1)^{k-1} \cdot \frac{1}{k \, 2^{k-1}} \, (x+1)^k \left(= \sum_{k=0}^{\infty} (-1)^k \cdot \frac{1}{(k+1) \, 2^k} \, (x+1)^{k+1} \right)$$

Konvergenzradius (mit Quotientenkriterium):

$$a_k := \frac{(-1)^{k-1} \, (x+1)^k}{k \, 2^{k-1}}$$

$$\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{(-1)^k (x+1)^{k+1} k 2^{k-1}}{(k+1) 2^k (-1)^{k-1} (x+1)^k} \right| = \left| \frac{(x+1) k}{2 (k+1)} \right|$$

$$\Rightarrow \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \frac{|x+1|}{2}$$

$$\Rightarrow$$
 Konvergenz für $\frac{|x+1|}{2} < 1 \Leftrightarrow |x+1| < 2$

$$\Rightarrow$$
 Konvergenzradius $R = 2$

Aufgabe 6 (ca. 4 P)

a) Gegeben sei die Reihe

$$S := \sum_{n=3}^{\infty} (-1)^n \frac{n^2}{2^n}.$$

II

Welche Aussage ist richtig? Bitte nur eine Antwort ankreuzen ohne Begründung.

- ☐ Die Reihe ist konvergent, aber nicht absolut konvergent.
- ☐ Die Reihe ist absolut konvergent.
- \square Die Reihe ist divergent.
- b) Gegeben sei die Folge $\{b_n\}_{n\in\mathbb{N}_0}$ und die Folge der Partialsummen $\{s_n\}_{n\in\mathbb{N}_0}$ mit

$$b_n := \left(\frac{1}{5}\right)^n, \quad s_n := \sum_{k=0}^n b_k .$$

Welche Aussage ist richtig? Bitte nur eine Antwort ankreuzen ohne Begründung.

- \Box $\lim_{n\to\infty} s_n = 1.25$
- $\square \quad s_n = \frac{1 \left(\frac{1}{5}\right)^{n+1}}{\frac{5}{4}}$
- c) Wie lautet der Konvergenzradius der Potenzreihe $\sum_{k=0}^{\infty} k^5 5^k x^k$? Begründen Sie Ihre Antwort.

Zu (a):

Quotientenkriterium

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+1)^2 \cdot 2^n}{n^2 \cdot 2^{n+1}}\right| = \left|\frac{(n^2 + 2n + 1)}{n^2 \cdot 2}\right| \xrightarrow{n \to \infty} \frac{1}{2} < 1;$$

damit ist die Reihe absolut konvergent.

Zu (b):

Geometrische Reihe mit x = 1/5:

$$s_n = \sum_{k=0}^n \left(\frac{1}{5}\right) = \frac{1 - \left(\frac{1}{5}\right)^n}{1 - \left(\frac{1}{5}\right)} \to \frac{1}{4/5} = \frac{5}{4} \quad \text{für } n \to \infty$$

Zu (c):

Wurzelkriterium:

$$\sup \sqrt[k]{k^5 5^k x^k} = \sup (\sqrt[k]{k})^5 \cdot (5x) = 1 \cdot 5x \stackrel{!}{\le} 1 \quad \Rightarrow \quad R = \frac{1}{5}$$

Aufgabe 7 (ca. 4 P)

Seite 7

Bestimmen Sie den Wert des folgenden Integrals

II

$$\int_{0}^{1} \cos(\arcsin x) \frac{x}{\sqrt{1-x^2}} \, \mathrm{d}x.$$

Substitution:

$$x =: \sin y$$
, $dx = \cos y dy$

Dies führt auf

$$\int_{0}^{1} \cos(\arcsin x) \frac{x}{\sqrt{1 - x^{2}}} dx = \int_{0}^{\pi/2} \cos y \frac{\sin y}{\cos y} \cos y dx$$

$$= \int_{0}^{\pi/2} \cos y \sin y dy$$

$$= \frac{1}{2} \int_{0}^{\pi/2} 2 \cos y \sin y dy$$

$$= \frac{1}{2} \int_{0}^{\pi/2} \sin(2y) dy$$

$$= -\frac{1}{4} \cos(2y) \Big|_{0}^{\pi/2}$$

$$= \frac{1}{4} + \frac{1}{4} = \boxed{\frac{1}{2}}$$

- a) Zeigen Sie, dass $\lim_{x\to 0+} (x\sin(\ln x)) = 0$ ist.
- b) Berechnen Sie das Integral

$$\int_0^1 \sin(\ln x) \, dx \, .$$

a)
$$\lim_{x \to 0+} |x \sin(\ln x)| = \lim_{x \to 0+} |x| \underbrace{|\sin(\ln x)|}_{\leq 1} \leq \lim_{x \to 0+} |x| = 0$$

$$\Rightarrow \qquad \lim_{x \to 0+} (x \sin(\ln x)) = 0$$

b) Sei $a \in]0, 1[$.

$$I(a) := \int_{a}^{1} 1 \cdot \sin(\ln x) \, dx \stackrel{\text{p.I.}}{=} [x \cdot \sin(\ln x)]_{a}^{1} - \int_{a}^{1} 1 \cdot \cos(\ln x) \, dx$$

$$\stackrel{\text{p.I.}}{=} -a \sin(\ln a) - [x \cdot \cos(\ln x)]_{a}^{1} - \int_{a}^{1} 1 \cdot \sin(\ln x) \, dx$$

$$= -a \sin(\ln a) - 1 + a \cos(\ln a) - I(a)$$

$$I(a) = \frac{1}{2} (-a \sin(\ln a) - 1 + a \cos(\ln a))$$

$$\int_{0}^{1} \sin(\ln x) \, dx = \lim_{a \to 0+} I(a) = \lim_{a \to 0+} \frac{1}{2} (-a \sin(\ln a) - 1 + a \cos(\ln a)) = -\frac{1}{2}$$

Aufgabe 9 (ca. 4 P)

Seite 9

Untersuchen Sie das folgende Integral auf Konvergenz und berechnen Sie **gegebenenfalls** den Grenzwert:

 Π

$$\int_0^\infty e^{-5x} (3x+2) \, \mathrm{d}x.$$

$$\int_0^R e^{-5x} (3x+2) \, \mathrm{d}x \quad \stackrel{p.I.}{=} \quad -\frac{1}{5} e^{-5R} (3R+2) + \frac{2}{5} + \frac{1}{5} \int_0^R 3e^{-5x} \, \mathrm{d}x$$

$$= \quad -\frac{1}{5} e^{-5R} (3R+2) + \frac{2}{5} - \frac{3}{25} \left(e^{-5x} \Big|_0^R \right)$$

$$= \quad -\frac{1}{5} e^{-5R} (3R+2) + \frac{2}{5} - \frac{3}{25} (e^{-5R} - 1)$$

$$\stackrel{R \to \infty}{\longrightarrow} \quad \frac{2}{5} + \frac{3}{25} = \frac{13}{25}$$