## Homework 8 of Introduction to Analysis(II)

## AM15 黃琦翔 111652028

## April 13, 2024

- 1.  $f_x(0,0) = \lim_{x\to 0} \frac{f(x,0) f(0)}{x} = \lim_{x\to 0} \frac{x \cdot 0(x^2 0^2)/(x^2 + 0^2)}{x} = 0$  exists. Also, we can esaily get that  $f_y(0,0) = 0$ . Then,  $f_{xy}(0,0) = \frac{\partial f_x}{\partial y}(0,0) = \lim_{y\to 0} \frac{y(0^4 + 4 \cdot 0^2 y^2 y^4)/(0^2 + y^2)^2}{y} = \lim_{y\to 0} \frac{-y^4}{y^4} = -1$ . And,  $f_{yx}(0,0) = 1$ . Therefore,  $f_{xy}(0,0) \neq f_y(0,0)$ .
- 2. Since Df is continuous on S, for any  $\varepsilon > 0$ , there exists  $\delta > 0$  s.t.  $||f(x) f(y)|| < \frac{\varepsilon}{||b a||}$  if  $||x y|| < \delta$ . And since S is a closed line in  $R^p$ , we can find a sequence  $\{x_k\}_{k=1}^n$  s.t.  $D(x_k, \frac{\delta}{2}) \supseteq S$  and  $||x_k + 1 a|| > ||x_k a||$ . Let  $x_0 = a$  and  $x_{n+1} = b$ . Then, by MCT,  $Df(x_1) Df(a) = Df(c_1)(x_1 a)$  for  $c_1$  on the line between  $a, x_1$  and  $c_k$  on the line between  $x_k, x_k 1$ .

Thus,

$$|f(b) - f(a) - \int_{0}^{1} Df(a + t(b - a))(b - a) dt| \leq \sum_{k=1}^{n+1} ||f(x_{k}) - f(x_{k-1}) - \int_{0}^{1} Df(x_{k} + t(x_{k} - x_{k-1}))(b - a) dt||$$

$$= \sum_{k=1}^{n+1} ||\int_{0}^{1} Df(c_{k})(x_{k} - x_{k-1}) dt$$

$$- \int_{0}^{1} Df(tx_{k} + (1 - t)x_{k-1})(b - a) dt||$$

$$< \frac{\varepsilon}{b - a}(b - a)$$

$$= \varepsilon$$

Therefore,  $f(b) = f(a) = \int_0^1 Df(tb + (1-t)a)(b-a) dt$ .

3. 
$$\lim_{u \to 0} \frac{\|g(x+u) - g(x) - Dg(x)(u)\|}{\|u\|} = \lim_{u \to 0} \frac{\|g(x) + g(u) + B(x,u) + B(u,x) - g(x) - Dg(x)(u)\|}{\|u\|} = 0.$$

4. Since  $\frac{\partial^2 f}{\partial x \partial y}$  exists, for any  $(x_0, y_0) \in \mathbb{R}^2$  and  $h, k \in \mathbb{R}$ ,