Yaoxi Luo

Prof. Scott Leutenegger

COMP-3421

Mar.02, 2016

Assignment 6

- 1) Minimal cover of $F = \{A \rightarrow B, B \rightarrow CDE\}$.
- 2) $A^+ = (A B C D E)$.
- 3) $B^+ = (B C D E)$.
- 4) Decompose R into BCNF: R₁(A C D), R₂(C E), R₃(D B). R₁, R₂, and R₃ are BCNF.

$$F_1 = \{ \}, F_2 = \{C \rightarrow E\}, F_3 = \{D \rightarrow B\}$$

$$:$$
 (F' = F₁ U F₂ U F₃)⁺ $\not\equiv$ F⁺, F'⁺ $\not\in$ AB -> CDE

: It is not dependency preserving.

So it is not BCNF.

Decompose R into 3NF: $R_1(A B C D)$, $R_2(C E)$, $R_3(D B)$. R_1 is not BCNF, R_2 and R_3 are BCNF. So it is 3NF.

5) Decomposition: R₁(A, C, D), R₂(C, E), R₃(D, B). R₁, R₂, and R₃ are BCNF.

$$F_1 = \{A \rightarrow CD\}, F_2 = \{C \rightarrow E\}, F_3 = \{D \rightarrow B\}$$

$$\mathbf{\cdot \cdot } (F' = F_1 \ U \ F_2 \ U \ F_3)^+ \equiv F^+$$

: It is dependency preserving.

So it is BCNF and it isn't 3NF.