Agrégation Interne

L'anneau $\mathbb{Z}/n\mathbb{Z}$

1

Ce problème est en relation avec les leçons d'oral suivantes :

- 101 : Groupes monogènes, groupes cycliques. Exemples.
- 103 : Congruences dans \mathbb{Z} , anneau $\mathbb{Z}/n\mathbb{Z}$. Applications.

On pourra consulter les ouvrages suivants.

- F. Combes Algèbre et géométrie. Bréal (2003).
- S. Francinou, H. Gianella, S. Nicolas : Exercices de mathématiques. Oraux X-ENS. Algèbre 1. Cassini (2001).
- S. Francinou, H. Gianella. Exercices de mathématiques pour l'agrégation. Algèbre 1. Masson (1994).
- X. Gourdon. Les Maths en tête. Algèbre. Ellipses.
- K. Madere. Préparation à l'oral de l'agrégation. Leçons d'algèbre. Ellipses (1998).
- P. Ortiz. Exercices d'algèbre. Ellipses (2004).
- D. Perrin. Cours d'algèbre. Ellipses (1996).
- A. Szpirglas. Mathématiques L3. Algèbre. Pearson (2009).

1 Énoncé

Pour tout entier naturel $n \geq 0$, on note $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ l'anneau des classes résiduelles modulo n. Si k est un entier relatif, on note $\overline{k} = k + n\mathbb{Z}$ la classe de k dans \mathbb{Z}_n .

Pour tout couple (a, b) d'entiers relatifs, on note $a \wedge b$ le pgcd de a et b et $a \vee b$ leur ppcm.

- I - Ordre d'un élément dans un groupe

On se donne un groupe additif (G, +) non nécessairement commutatif et on note 0 son élément neutre.

Le cardinal de G est aussi appelé l'ordre de G.

Si H est une partie non vide G, on note, pour tout $q \in G$:

$$g + H = \{g + h \mid h \in H\}$$

Pour tout g dans G, on note $\langle g \rangle = \{kg \mid k \in \mathbb{Z}\}$ le sous groupe de G engendré par g. Ce sous-groupe $\langle g \rangle$ est l'image du morphisme de groupes :

$$\varphi_g: \begin{tabular}{ll} $\varphi_g: & $\mathbb{Z} & \to & G \\ & k & \mapsto & kq \end{tabular}$$

L'ordre d'un élément g de G est l'élément $\theta(g) \in \mathbb{N}^* \cup \{+\infty\}$ défini par :

$$\theta(g) = \operatorname{card}(\langle g \rangle)$$

Si $\theta(q)$ est dans \mathbb{N}^* , on dit alors que q est d'ordre fini, sinon on dit qu'il est d'ordre infini.

1. Rappeler la démonstration du théorème de Lagrange : pour tout sous-groupe H d'un groupe fini G, l'ordre de H divise l'ordre de G.

^{1.} Le 26/09/2013

2. Montrer que:

$$(\theta(g) = +\infty) \Leftrightarrow (\forall k \in \mathbb{Z}^*, kg \neq 0) \Leftrightarrow (\langle g \rangle \text{ est infini isomorphe à } \mathbb{Z})$$

(dans ce cas, on dit que $\langle g \rangle$ est monogène infini) et :

$$(\theta(g) = n \in \mathbb{N}^*) \Leftrightarrow (\langle g \rangle = \{ rg \mid 0 \le r \le n - 1 \})$$

$$\Leftrightarrow (k \in \mathbb{Z} \text{ et } kg = 0 \text{ équivaut à } k \equiv 0 \mod(n))$$

$$\Leftrightarrow (n \text{ est le plus petit entier naturel non nul tel que } ng = 0)$$

(dans ce cas, $\langle g \rangle$ est dit cyclique d'ordre n et il est isomorphe à \mathbb{Z}_n).

3. Soient n un entier naturel non nul, $d \in \mathbb{N}^*$ un diviseur de n et $q = \frac{n}{d}$. Montrer que l'ensemble des éléments de \mathbb{Z}_n d'ordre divisant d est le groupe cyclique :

$$H = \langle \overline{q} \rangle = \{ \overline{0}, \overline{q}, \cdots, (d-1) \overline{q} \}$$

engendré par \overline{q} , ce groupe étant d'ordre d.

- 4. Pour $n \geq 1$, on désigne par Γ_n le groupe multiplicatif des racines complexes de l'unité.
 - (a) Montrer que pour $n \geq 1$ et $m \geq 1$, on a $\Gamma_n \cap \Gamma_m = \Gamma_{n \wedge m}$.
 - (b) Montrer que $(X^n-1) \wedge (X^m-1) = X^{n \wedge m} 1$ dans $\mathbb{C}[X]$. Expliquer pourquoi ce résultat est encore vrai dans $\mathbb{R}[X]$.

- II - Morphismes de groupes, d'anneaux de \mathbb{Z}_n dans \mathbb{Z}_m

On s'intéresse dans cette parties aux morphismes de groupes et d'anneaux de \mathbb{Z}_n dans \mathbb{Z}_m pour tout couple (n, m) d'entiers naturels.

Pour tout entier relatif k, on note respectivement \overline{k} la classe de k modulo n et k sa classe modulo m.

On suppose qu'un morphisme d'anneaux commutatifs unitaires $\varphi : \mathbb{A} \to \mathbb{B}$ est tel que $\varphi (1_{\mathbb{A}}) = 1_{\mathbb{B}}$. On note $\operatorname{Hom}_{gr}(\mathbb{Z}_n, \mathbb{Z}_m)$ [resp. $\operatorname{Hom}_{Ann}(\mathbb{Z}_n, \mathbb{Z}_m)$] l'ensemble des morphismes de groupes [resp. d'anneaux] de \mathbb{Z}_n dans \mathbb{Z}_m .

- 1. Étudier le cas (n, m) = (0, 0).
- 2. Étudier le cas $n \ge 1$ et m = 0.
- 3. Étudier le cas n = 0 et $m \ge 1$.
- 4. Étudier le cas où $n \ge 1$, $m \ge 1$ sont premiers entre eux.
- 5. Étudier le cas où $n \ge 1$, $m \ge 1$ sont non premiers entre eux.
- 6. Montrer que pour tout entier $n \geq 2$, le groupe $(\operatorname{Aut}(\mathbb{Z}_n), \circ)$ des automorphismes du groupe additif \mathbb{Z}_n est isomorphe au groupe $(\mathbb{Z}_n^{\times}, \cdot)$ des éléments inversibles de \mathbb{Z}_n .

- III - Éléments inversibles de \mathbb{Z}_n , fonction indicatrice d'Euler

Pour tout entier $n \geq 2$, on note \mathbb{Z}_n^{\times} le groupe multiplicatif des éléments inversibles de \mathbb{Z}_n . La fonction indicatrice d'Euler est la fonction qui associe à tout entier naturel non nul n, le nombre, noté $\varphi(n)$, d'entiers compris entre 1 et n qui sont premiers avec n (pour n = 1, on a $\varphi(1) = 1$).

- 1. Soit k un entier relatif. Montrer que les propriétés suivantes sont équivalentes :
 - (a) \overline{k} est inversible dans \mathbb{Z}_n ;

- (b) k est premier avec n;
- (c) \overline{k} est un générateur de $(\mathbb{Z}_n, +)$.
- 2. Montrer que, pour tout entier relatif k premier avec n, on a $k^{\varphi(n)} \equiv 1$ (n) (théorème d'Euler).
- 3. Soit p un entier naturel premier. Montrer que pour tout entier relatif k premier avec n, on a $k^{p-1} \equiv 1$ (p) et pour tout entier relatif k, on a $k^p \equiv k$ (p) (petit théorème de Fermat).
- 4. Montrer que pour $n \geq 3$, $\varphi(n)$ est un entier pair.
- 5. Calculer le reste dans la division euclidienne de 5^{2008} par 11.

6.

- (a) Soient a, b des entiers relatifs et $(n_k)_{1 \le k \le r}$ une suite finie d'entiers naturels non nuls. Monter que si $a \equiv b \mod (n_k)$ pour tout k compris entre 1 et r, alors $a \equiv b \mod (n_1 \vee \cdots \vee n_r)$.
- (b) Montrer que pour tout entier relatif a premier avec 561, on a $a^{560} \equiv 1 \pmod{561}$, alors que 561 n'est pas premier (on dit que 561 est un nombre de Carmichaël).
- 7. Montrer qu'il y a équivalence entre :
 - (a) n est premier;
 - (b) \mathbb{Z}_n est un corps;
 - (c) \mathbb{Z}_n est un intègre.
- 8. Montrer qu'un entier p est premier si et seulement si $(p-1)! \equiv -1$ (p) (théorème de Wilson).
- 9. Montrer qu'un entier p supérieur ou égal à 2 est premier si, et seulement si, (p-2)! est congru à 1 modulo p.
- 10. Montrer que les entiers n et m sont premiers entre eux si, et seulement si, les anneaux \mathbb{Z}_{nm} et $\mathbb{Z}_n \times \mathbb{Z}_m$ sont isomorphes.
- 11. Montrer que si \mathbb{A} , \mathbb{B} sont deux anneaux commutatifs unitaires et φ est un isomorphisme d'anneaux de \mathbb{A} sur \mathbb{B} , il réalise alors un isomorphisme de groupes de \mathbb{A}^{\times} (groupe des éléments inversibles de \mathbb{A}) sur \mathbb{B}^{\times} .
- 12. Montrer que si n et m sont deux entiers naturels non nuls premiers entre eux, on a alors $\varphi(nm) = \varphi(n) \varphi(m)$.
- 13. Montrer que si $n \geq 2$ a pour décomposition en facteurs premiers $n = \prod_{i=1}^r p_i^{\alpha_i}$ avec $2 \leq p_1 < \cdots < p_r$ premiers et les α_i entiers naturels non nuls, on a alors :

$$\varphi(n) = \prod_{i=1}^{r} p_i^{\alpha_i - 1} (p_i - 1) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)$$

14. Pour tout entier $n \geq 2$, on note \mathcal{D}_n l'ensemble des diviseurs positifs de n et pour tout $d \in \mathcal{D}_n$, on note :

$$S_d = \left\{ k \in \{1, \cdots, n\} \mid k \land n = \frac{n}{d} \right\}$$

Pour d = n, S_n est l'ensemble des entiers k compris entre 1 et n premier avec n.

- (a) Montrer que les S_d , pour d décrivant \mathcal{D}_n , forment une partition de $\{1, \dots, n\}$ et que pour tout $d \in \mathcal{D}_n$ on a card $(S_d) = \varphi(d)$.
- (b) Montrer que pour tout entier $n \geq 2$, on a :

$$n = \sum_{d \in \mathcal{D}_{-}} \varphi(d)$$

(formule de Möbius).

15. Soit p un nombre premier.

Pour tout $d \in \mathcal{D}_{p-1}$, on note $\psi(d)$ le nombre d'éléments d'ordre d dans le groupe multiplicatif \mathbb{Z}_p^{\times} .

- (a) Montrer que $\psi(d) = \varphi(d)$ pour tout $d \in \mathcal{D}_{p-1}$.
- (b) Montrer que le groupe \mathbb{Z}_p^{\times} est cyclique.
- 16. Soient p un nombre premier impair et α un entier supérieur ou égal à 2. On se propose de montrer que le groupe multiplicatif $\mathbb{Z}_{p^{\alpha}}^{\times}$ est cyclique.
 - (a) Montrer que pour tout entier k compris entre 1 et p-1, $\binom{p}{k}$ est divisible par p.
 - (b) Montrer qu'il existe une suite d'entiers naturels non nuls $(\lambda_k)_{k\in\mathbb{N}}$ tous premiers avec p tels que :

$$\forall k \in \mathbb{N}, \ (1+p)^{p^k} = 1 + \lambda_k p^{k+1}$$

- (c) Montrer que la classe résiduelle modulo p^{α} , $\overline{1+p}$ est d'ordre $p^{\alpha-1}$ dans $\mathbb{Z}_{p^{\alpha}}^{\times}$.
- (d) Montrer que si $x = k + p\mathbb{Z}$ un générateur du groupe cyclique \mathbb{Z}_p^{\times} , alors $y = k^{p^{\alpha-1}} + p^{\alpha}\mathbb{Z}$ est d'ordre p-1 dans $\mathbb{Z}_{p^{\alpha}}^{\times}$.
- (e) En déduire que $\mathbb{Z}_{p^{\alpha}}^{\times}$ est cyclique.
- 17. Montrer que \mathbb{Z}_2^{\times} et $\mathbb{Z}_{2^2}^{\times}$ sont cycliques.
- 18. On s'intéresse ici au groupe multiplicatif $\mathbb{Z}_{2^{\alpha}}^{\times}$ pour $\alpha \geq 3$.
 - (a) Montrer qu'il existe une suite $(\lambda_k)_{k\in\mathbb{N}}$ d'entiers impairs tels que :

$$\forall k \in \mathbb{N}, \ 5^{2^k} = 1 + \lambda_k 2^{k+2}$$

- (b) Montrer que la classe résiduelle de 5 modulo 2^{α} est d'ordre $2^{\alpha-2}$ dans $\mathbb{Z}_{2^{\alpha}}^{\times}$.
- (c) On désigne par ψ l'application qui à toute classe résiduelle modulo 2^{α} , $k+2^{\alpha}\mathbb{Z}$, associe la classe résiduelle modulo 4, $k+4\mathbb{Z}$. Montrer que cette application est bien définie, qu'elle induit un morphisme surjectif de groupes multiplicatifs de $\mathbb{Z}_{2^{\alpha}}^{\times}$ sur \mathbb{Z}_{4}^{\times} et que son noyau est un groupe cyclique d'ordre $2^{\alpha-2}$.
- (d) Montrer que l'application :

$$\pi: \ \mathbb{Z}_{2^{\alpha}}^{\times} \to \ \mathbb{Z}_{4}^{\times} \times \ker(\psi)$$
$$x \mapsto (\psi(x), \psi(x)x)$$

est un isomorphisme de groupes. En déduire que $\mathbb{Z}_{2^{\alpha}}^{\times}$ est isomorphe à $\mathbb{Z}_2 \times \mathbb{Z}_{2^{\alpha-2}}$. Le groupe $\mathbb{Z}_{2^{\alpha}}^{\times}$ est-il cyclique?

$$-$$
 IV $-$ Idéaux de \mathbb{Z}_n

- 1. Soit $\varphi : \mathbb{A} \to \mathbb{B}$ un morphisme d'anneaux commutatifs, unitaires.
 - (a) Montrer que pour tout idéal J de $\mathbb{B},\,\varphi^{-1}\left(J\right)$ est un idéal de $\mathbb{A}.$
 - (b) On suppose que φ est surjectif. Montrer que pour tout idéal I de \mathbb{A} , $\varphi(I)$ est un idéal de \mathbb{B} , puis que l'application Φ qui associe à tout idéal J de \mathbb{B} l'idéal $\varphi^{-1}(J)$ de \mathbb{A} réalise une bijection de l'ensemble des idéaux de \mathbb{B} dans l'ensemble des idéaux de \mathbb{A} qui contiennent $\ker(\varphi)$.
- 2. Soit I un idéal de \mathbb{A} . Montrer qu'il y a une bijection entre les idéaux de $\frac{\mathbb{A}}{I}$ et les idéaux de \mathbb{A} qui contiennent I.

- (a) Soient \mathbb{A} un anneau principal et I est un idéal non trivial de \mathbb{A} (i. e. $I \neq \{0\}$ et $I \neq \mathbb{A}$). Montrer que tous les idéaux de $\frac{\mathbb{A}}{I}$ sont principaux. L'anneau $\frac{\mathbb{A}}{I}$ est-il principal?
- (b) Montrer que, pour tout entier naturel n, les idéaux de l'anneau \mathbb{Z}_n sont ses sous-groupes additifs.
- (c) Déterminer tous les idéaux de \mathbb{Z}_n , où $n \geq 2$ est un entier.
- 4. Quels sont les idéaux premiers de \mathbb{Z}_n pour $n \geq 2$?

2 Solution

- I - Ordre d'un élément dans un groupe

- 1. On utilise les ensembles quotients.
 - (a) Pour tout sous-groupe H de G, la relation $\mathcal R$ définie sur G par :

$$g_1 \mathcal{R} g_2 \Leftrightarrow \exists h \in H \mid g_2 = g_1 + h \Leftrightarrow -g_1 + g_2 \in H$$

est une relation d'équivalence (attention G n'est pas nécessairement commutatif, donc $g_2=g_1+h$ n'équivaut pas à $g_2-g_1\in H$). En effet :

- i. Pour tout $g \in G$, on a $-g + g = 0 \in H$, donc \mathcal{R}_g est réflexive.
- ii. Si g_1, g_2 dans G sont tels que $-g_1 + g_2 \in H$, on a alors $-(-g_1 + g_2) = -g_2 + g_1 \in H$, ce qui signifie que $g_2 \mathcal{R} g_1$. Cette relation est donc symétrique.
- iii. Si g_1, g_2, g_3 dans G sont tels que $-g_1 + g_2 \in H$ et $-g_2 + g_3 \in H$, on a alors :

$$-g_1 + g_3 = (-g_1 + g_2) + (-g_2 + g_3) \in H$$

ce qui signifie que $g_1 \mathcal{R} g_3$. Cette relation est donc transitive.

(b) On note, pour tout $g \in G$:

$$\overline{q} = \{ q' \in G \mid q \mathcal{R} q' \} = \{ q' \in G \mid -q + q' \in H \} = q + H$$

la classe d'équivalence de g modulo \mathcal{R} et on dit que \overline{g} est la classe à gauche modulo H de g.

L'ensemble de toutes ces classes d'équivalence est noté G/H et on l'appelle l'ensemble des classes à gauche modulo H.

Le cardinal de l'ensemble G/H est noté [G:H] et on l'appelle l'indice de H dans G.

(c) Si H est un sous-groupe de G, alors l'ensemble des classes à gauche modulo H deux à deux distinctes forme une partition de G. Notons :

$$G/H = \{\overline{q_i} = q_i + H \mid i \in I\}$$

l'ensemble des classes à gauche modulo H deux à deux distinctes.

Pour tout $g \in g$, il existe un unique indice $i \in I$ tel que $\overline{g} = \overline{g_i}$, donc $G = \bigcup_{i \in I} \overline{g_i}$. Dire

que g est dans $\overline{g_j} \cap \overline{g_k}$ signifie que g est équivalent à gauche modulo H à g_j et g_k et donc par transitivité g_j et g_k sont équivalents, ce qui revient à dire que $\overline{g_j} = \overline{g_k}$. Les classes à gauche modulo H forment donc bien une partition de G.

On peut aussi tout simplement dire que dès qu'on a une relation d'équivalence, sur G les classes d'équivalence partitionnent G.

(d) Dans le cas où G est fini d'ordre $n \geq 1$, pour tout $g \in G$ on a card $(g+H) = \operatorname{card}(H)$ et :

$$\operatorname{card}(G) = [G:H]\operatorname{card}(H)$$

c'est-à-dire que l'ordre de H divise celui de G.

En effet, pour g fixé dans le groupe G, la « translation à gauche » $h \mapsto g + h$ est une bijection de G sur G et sa restriction à H réalise une bijection de H sur g + H. Il en résulte que g + H et H ont même cardinal.

L'ensemble des classes à gauche suivant H réalisant une partition de G, ces classes étant en nombre fini de même cardinal égal à celui de H, il en résulte que :

$$card(G) = [G:H] card(H)$$

et card(H) divise card(G).

2. On rappelle que les sous-groupes H de \mathbb{Z} sont ses idéaux et qu'ils sont de la forme $n\mathbb{Z}$, l'entier naturel n étant uniquement déterminé : c'est 0 pour $H = \{0\}$ et le plus petit élément de $H \cap \mathbb{N}^*$ pour $H \neq \{0\}$.

Le noyau de φ_g étant un sous-groupe de \mathbb{Z} , il existe donc un unique entier $n \geq 0$ tel que $\ker(\varphi_g) = n\mathbb{Z}$, ce qui signifie que :

$$(k \in \mathbb{Z} \text{ et } kg = 0) \Leftrightarrow (\exists j \in \mathbb{Z} \mid k = nj)$$

De plus le morphisme φ_g passe au quotient en un isomorphisme :

$$\overline{\varphi_g}: \ \mathbb{Z}/\ker\left(\varphi_g\right) = \mathbb{Z}/n\mathbb{Z} \ \to \ \langle g \rangle = \operatorname{Im}\left(\varphi_g\right)$$

$$\overline{k} \ \mapsto \ kg$$

On en déduit les équivalences :

$$(\varphi_g \text{ injectif}) \Leftrightarrow (\ker(\varphi_g) = \{0\}) \Leftrightarrow (n = 0)$$

 $\Leftrightarrow (\langle g \rangle \text{ est infini isomorphe à } \mathbb{Z}) \Leftrightarrow (\theta(g) = +\infty)$

et:

$$(\varphi_g \text{ non injectif}) \Leftrightarrow (\ker(\varphi_g) \neq \{0\}) \Leftrightarrow (n \in \mathbb{N}^*)$$

 $\Leftrightarrow (\langle g \rangle \text{ est fini isomorphe à } \mathbb{Z}/n\mathbb{Z}) \Leftrightarrow (\theta(g) = n)$
 $\Leftrightarrow (\langle g \rangle = \operatorname{Im}(\overline{\varphi_g}) = \{rg \mid 0 \leq r \leq n-1\} \text{ est d'ordre } n \in \mathbb{N}^*)$

L'équivalence :

$$(\ker(\varphi_g) = n\mathbb{Z} \neq \{0\}) \Leftrightarrow (k \in \mathbb{Z} \text{ et } kg = 0 \text{ équivaut à } k \equiv 0 \mod(n))$$

est une évidence.

L'équivalence :

$$(\ker(\varphi_g) = n\mathbb{Z} \neq \{0\}) \Leftrightarrow (n \text{ est le plus petit entier naturel non nul tel que } ng = 0)$$

se déduit de la structure des sous-groupes de \mathbb{Z} .

3. Si $x = \overline{k} \in \mathbb{Z}_n$ est d'ordre δ divisant d, on a alors $d\overline{k} = \overline{dk} = \overline{0}$, donc n = qd divise dk et q divise k, soit $\overline{k} = \overline{jq} = j\overline{q} \in \langle \overline{q} \rangle$.

Réciproquement, si $\overline{k} \in \langle \overline{q} \rangle$, on a alors $\overline{k} = j\overline{q}$ et $d\overline{k} = \overline{djq} = \overline{jn} = \overline{0}$, donc l'ordre de \overline{k} divise d. Si δ est l'ordre de $\langle \overline{q} \rangle$, on a alors $\delta \overline{q} = \overline{0}$, soit $\delta q = kn = kqd$ et $\delta = kd \geq d$. Mais on a aussi $d\overline{q} = \overline{0}$, donc $\delta = \theta(\overline{q})$ divise d, ce qui entraı̂ne $\delta \leq d$ et $\delta = d$.

En fait, $\langle \overline{q} \rangle$ est l'unique sous-groupe de \mathbb{Z}_n d'ordre d.

4.

- (a) Notons $\delta = n \wedge m$ et $H = \Gamma_n \cap \Gamma_m$. Avec $H \subset \Gamma_n$ et $H \subset \Gamma_m$, on déduit que card (H) divise n et m, il divise donc δ . Puis avec $\Gamma_\delta \subset \Gamma_n$ et $\Gamma_\delta \subset \Gamma_m$, on déduit que $\Gamma_\delta \subset H = \Gamma_n \cap \Gamma_m$ et $\delta = \operatorname{card}(\Gamma_\delta)$ divise $\operatorname{card}(H)$. On a donc $\operatorname{card}(H) = \operatorname{card}(\Gamma_\delta)$ et $H = \Gamma_\delta$.
- (b) Pour tout $r \ge 1$, on a $X^r 1 = \prod_{\lambda \in \Gamma_r} (X \lambda)$. Donc $X^n 1 = \prod_{\lambda \in \Gamma_n} (X \lambda)$, $X^m 1 = \prod_{\lambda \in \Gamma_n} (X \lambda)$

 $\prod_{\lambda \in \Gamma_m} (X - \lambda) \text{ et comme toutes ces racines sont simples} :$

$$(X^n - 1) \wedge (X^m - 1) = \prod_{\lambda \in \Gamma_n \cap \Gamma_m} (X - \lambda) = \prod_{\lambda \in \Gamma_{n \wedge m}} (X - \lambda) = X^{n \wedge m} - 1$$

Comme le pgcd dans $\mathbb{K}[X]$ se calcule en effectuant des divisions euclidiennes successives et que restes et quotients sont uniquement déterminés, on en déduit que le pgcd de deux polynômes de $\mathbb{R}[X]$ est le même dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$.

- II - Morphismes de groupes, d'anneaux de \mathbb{Z}_n dans \mathbb{Z}_m

1. Pour n = 0, l'anneau \mathbb{Z}_0 est isomorphe à \mathbb{Z} et il s'agit d'étudier les morphismes de groupes et d'anneaux de \mathbb{Z} dans \mathbb{Z} .

Un morphisme d'anneaux $\varphi : \mathbb{Z} \to \mathbb{Z}$ est en particulier un morphisme de groupes, donc on a $\varphi(0) = 0$ et $\varphi(-k) = -\varphi(k)$ pour tout $k \in \mathbb{Z}$.

En notant $a = \varphi(1)$, on vérifie facilement par récurrence que $\varphi(k) = ka$ pour tout entier naturel k et en conséquence $\varphi(k) = ka$ pour tout entier relatif k.

Réciproquement, pour entier relatif a, l'application $\varphi : k \mapsto ka$ est un morphisme de groupes et c'est un morphisme d'anneaux si, et seulement si, $a = \varphi(1) = 1$. Donc :

$$\operatorname{Hom}_{ar}(\mathbb{Z},\mathbb{Z}) \cong \mathbb{Z} \text{ et } \operatorname{Hom}_{Ann}(\mathbb{Z},\mathbb{Z}) = \{Id\}$$

2. Soient $n \in \mathbb{N}^*$, $\varphi : \mathbb{Z}_n \to \mathbb{Z}$ un morphisme de groupes et $a = \varphi(\overline{1}) \in \mathbb{Z}$. De :

$$0=\varphi\left(\overline{0}\right)=\varphi\left(\overline{n}\right)=\varphi\left(n\overline{1}\right)=na$$

on déduit que a=0. On a donc, pour $n \in \mathbb{N}^*$:

$$\operatorname{Hom}_{gr}(\mathbb{Z}_n,\mathbb{Z}) = \{0\} \text{ et } \operatorname{Hom}_{Ann}(\mathbb{Z},\mathbb{Z}) = \emptyset$$

3. Soient $m \in \mathbb{N}^*$, $\varphi : \mathbb{Z} \to \mathbb{Z}_m$ un morphisme de groupes et $\widehat{a} = \varphi(1) \in \mathbb{Z}_m$ avec $a \in \{0, 1, \dots, m-1\}$. Pour tout $k \in \mathbb{Z}$, on a :

$$\varphi(k) = k\varphi(1) = k\widehat{a} = \widehat{ka}$$

Réciproquement une telle application est un morphisme de groupes et c'est un morphisme d'anneaux si, et seulement si, a=1, ce qui signifie que φ est la surjection canonique $\pi_m: k \mapsto \widehat{k}$. Donc :

$$\operatorname{Hom}_{gr}(\mathbb{Z}, \mathbb{Z}_m) \cong \mathbb{Z}_m \text{ et } \operatorname{Hom}_{Ann}(\mathbb{Z}, \mathbb{Z}) = \{\pi_m\}$$

4. Soient $n \in \mathbb{N}^*$, $m \in \mathbb{N}^*$, $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ un morphisme de groupes et $\widehat{a} = \varphi(\overline{1}) \in \mathbb{Z}_m$ avec $a \in \{1, \dots, m\}$. De:

$$\widehat{0}=\varphi\left(\overline{0}\right)=\varphi\left(\overline{n}\right)=\varphi\left(n\overline{1}\right)=n\widehat{a}=\widehat{na}$$

on déduit que m divise na et comme il est premier avec n, il divise a, ce qui signifie que a=m. On a donc, pour $n \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$:

$$\operatorname{Hom}_{gr}(\mathbb{Z}_n, \mathbb{Z}) = \left\{ \widehat{0} \right\} \text{ et } \operatorname{Hom}_{Ann}(\mathbb{Z}, \mathbb{Z}) = \emptyset$$

5. On suppose que $\delta = n \wedge m \geq 2$ et on se donne un morphisme de groupes $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$. En notant $\widehat{a} = \varphi(\overline{1}) \in \mathbb{Z}_m$ avec $a \in \{1, \dots, m\}$, on a :

$$\widehat{0} = \varphi\left(\overline{0}\right) = \varphi\left(\overline{n}\right) = \varphi\left(n\overline{1}\right) = n\widehat{a}$$

dans \mathbb{Z}_m , donc $\theta(\widehat{a})$ divise n et comme $\theta(\widehat{a})$ divise aussi m (théorème de Lagrange), il divise $\delta = n \wedge m$, donc \widehat{a} est dans le groupe cyclique $H = \left\langle \frac{\widehat{m}}{\delta} \right\rangle$ des éléments de \mathbb{Z}_m d'ordre divisant δ .

Réciproquement, pour tout $\widehat{a} \in \left\langle \frac{\widehat{m}}{\delta} \right\rangle$, l'application $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ définie par $\varphi(\overline{k}) = k\widehat{a}$ est

bien définie (si $j \equiv k \mod(n)$, on a alors $j = k + pn = k + p'\delta$ et $p'\delta \widehat{a} = \widehat{0}$ puisque \widehat{a} est d'ordre divisant δ , donc $k\widehat{a} = j\widehat{a}$) et c'est un morphisme de groupes.

On a donc:

$$\operatorname{Hom}_{gr}(\mathbb{Z}_n,\mathbb{Z}_m) \subseteq \mathbb{Z}_{\delta} = \mathbb{Z}_{n \wedge m}$$

Si φ est un morphisme d'anneaux, on a alors $\widehat{a} = \varphi\left(\overline{1}\right) = \widehat{1}$ qui est d'ordre m divisant $\delta = n \wedge m$, ce qui revient à dire que $\delta = m$ ou encore que m divise n et dans ce cas $\varphi\left(\overline{k}\right) = k\widehat{1} = \widehat{k} = \pi_m\left(k\right)$. Il y a donc un seul morphisme d'anneaux de \mathbb{Z}_n dans \mathbb{Z}_m .

On a donc:

$$\operatorname{Hom}_{Ann}\left(\mathbb{Z},\mathbb{Z}\right) = \left\{ \begin{array}{l} \left\{\overline{k} \mapsto \widehat{k}\right\} \text{ si } m \text{ divise } n \\ \emptyset \text{ si } m \text{ ne divise pas } n \end{array} \right.$$

6. On vérifie tout d'abord que : pour tout $x \in \mathbb{Z}_n^{\times}$ l'application $\sigma(x)$ définie sur \mathbb{Z}_n par :

$$\forall y \in \mathbb{Z}_n, \ \sigma(x)(y) = xy$$

est un automorphisme du groupe additif \mathbb{Z}_n .

Pour y, z dans \mathbb{Z}_n , on a:

$$\sigma(x)(y+z) = x(y+z) = xy + xz = \sigma(x)(y) + \sigma(x)(z)$$

c'est-à-dire que $\sigma(x)$ est un morphisme de groupes additifs.

Si $y \in \ker(\sigma(x))$, alors $xy = \overline{0}$ et $y = x^{-1}xy = \overline{0}$, c'est-à-dire que $\sigma(x)$ est injectif et donc bijectif puisque \mathbb{Z}_n est fini. On a donc bien $\sigma(x) \in \operatorname{Aut}(\mathbb{Z}_n)$.

Puis, on vérifie que l'application σ réalise un isomorphisme de $(\mathbb{Z}_n^{\times},\cdot)$ sur $(\operatorname{Aut}(\mathbb{Z}_n),\circ)$.

Pour x, x' dans \mathbb{Z}_n^{\times} et y dans \mathbb{Z}_n , on a :

$$\sigma\left(xx'\right)\left(y\right) = \left(xx'\right)y = x\left(x'y\right) = \left(\sigma\left(x\right)\circ\sigma\left(x'\right)\right)\left(y\right)$$

donc $\sigma(xx') = \sigma(x) \circ \sigma(x')$ et σ est un morphisme de groupes.

Si $\sigma(x) = I_d$, on a $\sigma(x)(\overline{1}) = \overline{1}$, soit $x = x\overline{1} = \overline{1}$, donc σ est injective.

Si $u \in \text{Aut}(\mathbb{Z}_n)$ et $\overline{k} = u(\overline{1})$, alors pour tout $\overline{p} \in \mathbb{Z}_n$, on a:

$$u\left(\overline{p}\right)=u\left(p\overline{1}\right)=pu\left(\overline{1}\right)=p\overline{k}=\overline{p}\overline{k}=\sigma\left(\overline{k}\right)\overline{p}$$

L'application σ est donc surjective. En définitive σ réalise un isomorphisme de groupes de $(\mathbb{Z}_n^{\times},\cdot)$ sur $(\operatorname{Aut}(\mathbb{Z}_n),\circ)$.

- III - Éléments inversibles de \mathbb{Z}_n , fonction indicatrice d'Euler

1. C'est une application du théorème de Bézout.

Dire que \overline{k} est inversible dans \mathbb{Z}_n équivaut à dire qu'il existe \overline{u} dans \mathbb{Z}_n tel que $\overline{k}\overline{u} = \overline{1}$, encore équivalent à dire qu'il existe u, v dans \mathbb{Z} tels que ku + nv = 1, ce qui équivaut à dire que k et n sont premiers entre eux (théorème de Bézout).

En traduisant le fait que \overline{k} est inversible dans \mathbb{Z}_n par l'existence d'un entier relatif u tel que $\overline{k}\overline{u} = u\overline{k} = \overline{1}$, on déduit que cela équivaut à dire que $\overline{1}$ est dans le groupe engendré par \overline{k} et donc que ce groupe (qui est aussi un idéal) est \mathbb{Z}_n .

On en déduit que $\varphi(n)$ est le nombre de générateurs du groupe cyclique $(\mathbb{Z}_n, +)$ (ou de n'importe quel groupe cyclique d'ordre n) ou encore que c'est le nombre d'éléments inversibles de \mathbb{Z}_n .

- 2. Si k est premier avec n, \overline{k} appartient alors à \mathbb{Z}_n^{\times} qui est un groupe d'ordre $\varphi(n)$ et en conséquence son ordre divise $\varphi(n)$ (théorème de Lagrange), ce qui entraı̂ne $\overline{k}^{\varphi(n)} = \overline{1}$, ou encore $k^{\varphi(n)} \equiv 1$ (n).
- 3. Pour p premier, on a $\varphi(p) = p 1$ et le théorème d'Euler devient le petit théorème de Fermat.
- 4. $\underline{\text{Avec}}\ \overline{(-1)}^2 = \overline{(-1)^2} = \overline{1}$, on déduit que $\overline{(-1)}$ est d'ordre 1 ou 2 dans \mathbb{Z}_n^{\times} . Pour $n \geq 3$, on a $\overline{(-1)} \neq \overline{1}$, donc $\overline{(-1)}$ est d'ordre 2 qui va diviser l'ordre du groupe \mathbb{Z}_n^{\times} , soit $\varphi(n)$. On peut aussi montrer ce résultat en écrivant que :

$$\mathbb{Z}_n^{\times} = \left\{ -\overline{1}, \overline{1} \right\} \cup \left\{ \overline{k}, \frac{1}{\overline{k}} \mid \overline{k} \notin \left\{ -\overline{1}, \overline{1} \right\} \right\}$$

Pour n = 2, on a $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ et $\mathbb{Z}_2^{\times} = \{\overline{1}\}$.

5. Le principe de cet exercice est le suivant.

On cherche le reste dans la division euclidienne de a^b (= 5^{2008}) par p (= 11), où $p \ge 3$ est premier.

On effectue la division euclidienne de b par p-1, soit $b=q\,(p-1)+r$ avec $0\leq r\leq p-2$ et on a $a^b=(a^{p-1})^q\,a^r$ avec $a^{p-1}\equiv 1$ (p) si p ne divise pas a, ce qui donne $a^b\equiv a^r$ (p) (on a diminué b). Ensuite $a\equiv s$ (p) avec $1\leq s\leq p-1$ (on a diminué a) et $a^b\equiv s^r$ (p). On se débrouille pour construire un exercice où s^r est facile à calculer.

Comme 11 est premier le théorème de Fermat nous dit que 5^{10} est congru à 1 modulo 11. On effectue alors la division euclidienne de 2008 par 10, soit $2008 = 200 \times 10 + 8$ et on déduit que 5^{2008} est congru à 5^8 modulo 11. Enfin avec $5^2 \equiv 3$, $5^4 \equiv 9 \equiv -2$, $5^8 \equiv 4$ modulo 11, on déduit que $5^{2008} \equiv 4$ modulo 11, ce qui signifie que 4 est le reste dans la division euclidienne de 5^{2008} par 11.

6.

(a) Si $a \equiv b \mod (n_k)$ pour tout k compris entre 1 et r, b-a est un multiple commun aux n_k et en conséquence $n_1 \vee \cdots \vee n_r$ divise b-a, ce qui signifie que $a \equiv b \mod (n_1 \vee \cdots \vee n_r)$.

Dans le cas où les n_k sont deux à deux premiers entre eux, on a $n_1 \vee \cdots \vee n_r = \prod_{k=1}^r n_k$ et

$$a \equiv b \bmod \left(\prod_{k=1}^r n_k \right).$$

(b) On a la décomposition en facteurs premiers $561 = 3 \cdot 11 \cdot 17 = \prod_{k=1}^{3} p_k$. Si a est premier avec

561, il est alors premier avec chaque p_k et le théorème de Fermat nous dit que $a^{p_k-1} \equiv 1 \mod (p_k)$ et en remarquant que 560 est divisible par chaque p_k-1 (560 = $2 \cdot 280 = 10 \cdot 56 = 16 \cdot 35$), on en déduit que $a^{560} \equiv 1 \mod (p_k)$ pour k = 1, 2, 3 et la question précédente nous dit que $a^{560} \equiv 1 \pmod (561)$.

7. Dans le cas où n est premier tous les éléments de $\mathbb{Z}_n \setminus \{\overline{0}\}$ sont inversibles et en conséquence \mathbb{Z}_n est un corps, c'est donc un anneau intègre.

Supposons \mathbb{Z}_n intègre et soit d un diviseur de n différent de n dans \mathbb{N} . Il existe donc un entier q compris entre 2 et n tel que n=qd et dans \mathbb{Z}_n on a $\overline{q}\overline{d}=\overline{0}$ avec $\overline{d}\neq\overline{0}$, ce qui impose $\overline{q}=\overline{0}$, donc q=n et d=1. L'entier n est donc premier.

De manière plus générale, si \mathbb{A} est un anneau principal et $p \in \mathbb{A}$, on a alors :

$$(p \text{ premier}) \Leftrightarrow ((p) \text{ premier}) \Leftrightarrow \left(\frac{\mathbb{A}}{I} \text{ est intègre}\right)$$

 $\Leftrightarrow \left(\frac{\mathbb{A}}{I} \text{ est un corps}\right) \Leftrightarrow ((p) \text{ maximal}) \Leftrightarrow (p \text{ irréductible})$

L'implication (\mathbb{Z}_n est intègre) \Rightarrow (\mathbb{Z}_n est un corps) est aussi conséquence du fait que tout anneau unitaire fini et intègre est un corps (théorème de Wedderburn). Si \mathbb{A} est un anneau fini intègre, alors pour tout $a \in \mathbb{A} \setminus \{0\}$ l'application $x \mapsto ax$ est injective de \mathbb{A} dans \mathbb{A} , donc bijective, ce qui entraı̂ne l'existence de $a' \in \mathbb{A}$ tel que aa' = 1.

8. Si p est premier, alors \mathbb{Z}_p est un corps commutatif à p éléments et tout élément \overline{k} du groupe \mathbb{Z}_p^{\times} est racine du polynôme $X^{p-1} - \overline{1}$, on a donc $X^{p-1} - \overline{1} = \prod_{k=1}^{p-1} (X - \overline{k})$ dans $\mathbb{Z}_p[X]$ et en évaluant ce polynôme en $\overline{0}$, il vient $-\overline{1} = \prod_{k=1}^{p-1} (-\overline{k}) = (-1)^{p-1} \overline{(p-1)!}$. Pour p=2, on a $-\overline{1}=\overline{1}$ et pour p premier impair, on a $-\overline{1} = \overline{(p-1)!}$ dans \mathbb{Z}_p . Réciproguement si $p \geq 2$ est tel que $\overline{(p-1)!} = -\overline{1}$ dans \mathbb{Z}_p alors tout diviseur d de p compris

Réciproquement si $p \ge 2$ est tel que $(p-1)! = -\overline{1}$ dans \mathbb{Z}_p , alors tout diviseur d de p compris entre 1 et p-1 divisant (p-1)! = -1 + kp va diviser -1, ce qui donne d=1 et l'entier p est premier.

- 9. Pour $p \ge 2$, on a $(p-1)! = (p-1)(p-2)! \equiv -(p-2)!$ modulo p, avec la convention 0! = 1. Le résultat se déduit alors du théorème de Wilson.
- 10. Pour tout entier relatif k, on note \overline{k} sa classe modulo nm, k sa classe modulo n et k sa classe modulo m.

Le produit cartésien $\mathbb{Z}_n \times \mathbb{Z}_m$ est naturellement muni d'une structure d'anneau commutatif unitaire avec les lois + et \cdot définies par :

$$\begin{cases}
\begin{pmatrix}
\dot{j}, \dot{k} \\
\dot{j}, \dot{k}
\end{pmatrix} + \begin{pmatrix}
\dot{j}, \dot{k}' \\
\dot{j}', \dot{k}'
\end{pmatrix} = \begin{pmatrix}
\dot{j} + \dot{j}', \dot{k} + \dot{k}' \\
\dot{j}, \dot{k}
\end{pmatrix} \cdot \begin{pmatrix}
\dot{j}', \dot{k}' \\
\dot{j}', \dot{k}'
\end{pmatrix} = \begin{pmatrix}
\dot{j} \cdot \dot{j}', \dot{k} \cdot \dot{k}'
\end{pmatrix}$$

Supposons n et m premiers entre eux. L'application $f: k \mapsto (k, k)$ est un morphisme d'anneaux de \mathbb{Z} dans $\mathbb{Z}_n \times \mathbb{Z}_m$ et son noyau est formé des entiers divisibles par n et m donc par nm puisque ces entiers sont premiers entre eux, il se factorise donc en un morphisme injectif d'anneaux de \mathbb{Z}_{nm} dans $\mathbb{Z}_n \times \mathbb{Z}_m$ par $\overline{f}: \overline{k} \mapsto (k, k)$. Ces deux anneaux ayant même cardinal,

l'application \overline{f} réalise en fait un isomorphisme d'anneaux de \mathbb{Z}_{nm} dans $\mathbb{Z}_n \times \mathbb{Z}_m$. Si n et m ne sont pas premiers entre eux les groupes additifs \mathbb{Z}_{nm} et $\mathbb{Z}_n \times \mathbb{Z}_m$ ne peuvent être isomorphes puisque $\overline{1}$ est d'ordre nm dans \mathbb{Z}_{nm} et tous les éléments de $\mathbb{Z}_n \times \mathbb{Z}_m$ ont un ordre qui divise le ppcm de n et m qui est strictement inférieur à nm.

11. On a $\varphi(1_{\mathbb{A}}) = 1_{\mathbb{B}}$ et pour $a \in \mathbb{A}^{\times}$, de $1_{\mathbb{B}} = \varphi(1_{\mathbb{A}}) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1})$, on déduit que $\varphi(a) \in \mathbb{B}^{\times}$. Donc φ est un morphisme de groupes de \mathbb{A}^{\times} dans \mathbb{B}^{\times} . Comme φ est injectif, il en est de même de sa restriction à \mathbb{A}^{\times} . Pour tout $b = \varphi(a) \in \mathbb{B}^{\times}$, il existe $c = \varphi(a') \in \mathbb{B}^{\times}$ tel que $1_{\mathbb{B}} = bc = \varphi(aa') = \varphi(1_{\mathbb{A}})$, donc $aa' = 1_{\mathbb{A}}$ et $a \in \mathbb{A}^{\times}$. La restriction de φ à \mathbb{A}^{\times} est donc surjective sur \mathbb{B}^{\times} et elle réalise un isomorphisme de \mathbb{A}^{\times} sur \mathbb{B}^{\times} .

12. La restriction de l'isomorphisme \overline{f} à \mathbb{Z}_{nm}^{\times} réalise un isomorphisme de groupes multiplicatifs de \mathbb{Z}_{nm}^{\times} sur $\mathbb{Z}_{n}^{\times} \times \mathbb{Z}_{m}^{\times}$, ce qui entraı̂ne :

$$\varphi(nm) = \operatorname{card}(\mathbb{Z}_{nm}^{\times}) = \operatorname{card}(\mathbb{Z}_{n}^{\times}) \operatorname{card}(\mathbb{Z}_{m}^{\times}) = \varphi(n) \varphi(m)$$

13. Si p est premier, alors un entier k compris entre 1 et p^{α} n'est pas premier avec p^{α} si et seulement si il est divisible par p, ce qui équivaut à k=mp avec $1\leq m\leq p^{\alpha-1}$, il y a donc $p^{\alpha-1}$ possibilités. On en déduit alors que :

$$\varphi\left(p^{\alpha}\right) = p^{\alpha} - p^{\alpha - 1} = (p - 1) p^{\alpha - 1}$$

En utilisant les résultats précédents, on a :

$$\varphi(n) = \prod_{i=1}^{r} \varphi(p_i^{\alpha_i}) = \prod_{i=1}^{r} \varphi(p^{\alpha_i}) = \prod_{i=1}^{r} (p_i - 1) p_i^{\alpha_i - 1} = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right)$$

14.

(a) Il est clair que $S_d \cap S_{d'} = \emptyset$ pour $d \neq d'$ dans \mathcal{D}_n . Si k est un entier compris entre 1 et n, en notant δ le pgcd de k et n, $k = \delta k'$ et $n = \delta d$ avec k' et d premiers entre eux, on a $k \wedge n = \delta = \frac{n}{d}$ et $k \in S_d$ avec $d \in \mathcal{D}_n$. On a donc la partition:

$$\{1,\cdots,n\} = \bigcup_{d \in \mathcal{D}_n} S_d$$

(b) Un entier k compris entre 1 et n est dans S_d si et seulement si il s'écrit $k = \frac{n}{d}k'$ avec k' compris entre 1 et d premier avec d. On a donc :

$$\operatorname{card}(S_d) = \operatorname{card}\{k' \in \{1, \dots, d\} \mid k' \wedge d = 1\} = \varphi(d)$$

(c) Des deux questions précédentes, on déduit que $n = \sum_{d \in \mathcal{D}_n} \varphi(d)$.

15.

(a) Dire que $\psi(d) > 0$ équivaut à dire qu'il existe dans \mathbb{Z}_p^{\times} au moins un élément x d'ordre d et le groupe $G = \left\{\overline{1}, x, \cdots, x^{d-1}\right\}$ est alors formé de d solutions distinctes de l'équation $X^d - \overline{1} = \overline{0}$, or cette équation a au plus d solutions dans le corps commutatif \mathbb{Z}_p , donc G est exactement l'ensemble de toutes les solutions de cette équation. Les éléments d'ordre d dans \mathbb{Z}_p^{\times} sont donc les générateurs du groupe cyclique G et il y a $\varphi(d)$ tels générateurs, donc $\psi(d) = \varphi(d)$ si $\psi(d) > 0$.

Comme tout élément de \mathbb{Z}_p^{\times} a un ordre qui divise p-1, on a $p-1=\sum_{d\in\mathcal{D}_{p-1}}\psi(d)$ et avec la formule de Möbius, on en déduit que :

$$\sum_{d \in \mathcal{D}_{p-1}} \psi(d) = \sum_{d \in \mathcal{D}_{p-1}} \varphi(d)$$

avec $\psi(d) = 0$ ou $\psi(d) = \varphi(d)$, ce qui entraı̂ne que $\psi(d) = \varphi(d)$ pour tout $d \in \mathcal{D}_{p-1}$.

(b) On a $\psi(p-1) = \varphi(p-1) > 0$, ce qui signifie qu'il existe dans \mathbb{Z}_p^{\times} des éléments d'ordre p-1 et ce groupe est cyclique d'ordre p-1.

Ce résultat est un cas particulier du suivant : tout sous-groupe fini du groupe multiplicatif $\mathbb{K}^* = \mathbb{K} \setminus \{0\}$ d'un corps commutatif \mathbb{K} est cyclique.

16.

- (a) En effet, pour k compris entre 1 et p-1, p divise $k!(p-k)!\binom{p}{k}=p!$ et tout entier j compris entre 1 et p-1 est premier avec p, donc p divise $\binom{p}{k}$ (théorème de Gauss).
- (b) On procède par récurrence sur $k \ge 0$. Pour k = 0, on prend $\lambda_0 = 1$. Pour k = 1, on a :

$$(1+p)^p = 1 + p^2 + \sum_{k=2}^p \binom{p}{k} p^k$$

avec $\binom{p}{k}p^k$ divisible par p^3 pour k compris entre 2 et p si $p\geq 3$, ce qui donne :

$$(1+p)^p = 1 + p^2 + \nu p^3 = 1 + \lambda_1 p^2$$

avec $\lambda_1=1+\nu p$ premier avec p. En supposant le résultat acquis pour $k\geq 1,$ on a :

$$(1+p)^{p^{k+1}} = (1+\lambda_k p^{k+1})^p = 1+\lambda_k p^{k+2} + \sum_{j=2}^p \binom{p}{j} \lambda_k^j p^{j(k+1)}$$

avec $\binom{p}{j} \lambda_k^j p^{j(k+1)}$ divisible par p^{k+3} , pour j compris entre 2 et p, ce qui donne :

$$(1+p)^{p^{k+1}} = 1 + p^{k+2} (\lambda_k + \nu p) = 1 + \lambda_{k+1} p^{k+2}$$

avec $\lambda_{k+1} = \lambda_k + \nu p$ premier avec p si λ_k est premier avec p.

(c) 1+p étant premier avec p^{α} , on a bien $\overline{1+p} \in \mathbb{Z}_{p^{\alpha}}^{\times}$ et avec :

$$\begin{cases} (1+p)^{p^{\alpha-1}} = 1 + \lambda_{\alpha-1} p^{\alpha} \equiv 1 \pmod{p^{\alpha}} \\ (1+p)^{p^{\alpha-2}} = 1 + \lambda_{\alpha-2} p^{\alpha-1} \neq 1 \pmod{p^{\alpha}} \end{cases}$$

 $(\lambda_{\alpha-2} \text{ est premier avec } p, \text{ donc } \lambda_{\alpha-2} p^{\alpha-1} \text{ ne peut être divisible par } p^{\alpha})$ on déduit que $\overline{1+p}$ est d'ordre $p^{\alpha-1}$ dans $\mathbb{Z}_{p^{\alpha}}^{\times}$.

(d) Si $x = k + p\mathbb{Z}$ un générateur du groupe cyclique \mathbb{Z}_p^{\times} , $y = k^{p^{\alpha-1}} + p^{\alpha}\mathbb{Z}$ est alors d'ordre p-1 dans $\mathbb{Z}_{p^{\alpha}}^{\times}$.

La classe modulo $p, x = k + p\mathbb{Z}$ est d'ordre p-1 dans \mathbb{Z}_p^{\times} et du fait que $p^{\alpha-1}-1$ est divisible par p-1 pour $\alpha \geq 2$, on déduit que $k^{p^{\alpha-1}-1} \equiv 1 \pmod{p}$ et $k^{p^{\alpha-1}} \equiv k \pmod{p}$, ce qui entraı̂ne que la classe modulo p de $j = k^{p^{\alpha-1}}$ est d'ordre p-1 dans \mathbb{Z}_p^{\times} . D'autre part avec :

$$j^{p-1} = k^{(p-1)p^{\alpha-1}} = k^{\varphi(p^{\alpha})} \equiv 1 \pmod{p^{\alpha}}$$

on déduit que $y = j + p^{\alpha} \mathbb{Z} = k^{p^{\alpha-1}} + p^{\alpha} \mathbb{Z}$ est d'ordre p-1 dans $\mathbb{Z}_{p^{\alpha}}^{\times}$ (si $j^r \equiv 1 \pmod{p^{\alpha}}$ avec $r \geq 1$, alors p^{α} et donc p divise $j^r - 1$ ce qui entraı̂ne $j^r \equiv 1 \pmod{p}$ et r est multiple de p-1).

(e) Dans $\mathbb{Z}_{p^{\alpha}}^{\times}$ on a $x = \overline{1+p}$ d'ordre $p^{\alpha-1}$ et un élément y d'ordre p-1 avec p-1 et $p^{\alpha-1}$ premiers entre eux, il en résulte que z = xy est d'ordre ppcm $(p-1,p^{\alpha-1}) = (p-1) p^{\alpha-1} = \varphi(p^{\alpha})$ dans $\mathbb{Z}_{p^{\alpha}}^{\times}$. En conséquence $\mathbb{Z}_{p^{\alpha}}^{*}$ est cyclique d'ordre $\varphi(p^{\alpha})$.

17. On a
$$\mathbb{Z}_2^{\times} = \{\overline{1}\}$$
 et $\mathbb{Z}_4^{\times} = \{\overline{1}, \overline{-1}\} \cong \mathbb{Z}_2$.

18.

(a) On procède par récurrence sur $k \ge 0$. Pour k = 0, on a $5 = 1 + 2^2$ et $\lambda_0 = 1$. Pour k = 1, on a $5^2 = 1 + 3 * 2^3$ et $\lambda_1 = 3$. En supposant le résultat acquis pour $k \ge 1$, on a :

$$5^{2^{k+1}} = (1 + \lambda_k 2^{k+2})^2 = 1 + \lambda_{k+1} 2^{k+3}$$

avec $\lambda_{k+1} = \lambda_k + \lambda_k^2 2^{k+1} = \lambda_k \left(1 + \lambda_k 2^{k+1}\right)$ impair si λ_k l'est.

- (b) On a $5^{2^{\alpha-2}} = 1 + \lambda_{\alpha-2} 2^{\alpha} \equiv 1 \pmod{2^{\alpha}}$ et $5^{2^{\alpha-3}} = 1 + \lambda_{\alpha-3} 2^{\alpha-1} \neq 1 \pmod{2^{\alpha}}$ du fait que $\lambda_{\alpha-3} \equiv 1 \pmod{2}$. On a donc $5 + 2^{\alpha} \mathbb{Z}$ d'ordre $2^{\alpha-2}$ dans $\mathbb{Z}_{2^{\alpha}}^{\times}$ et $H = \langle 5 + 2^{\alpha} \mathbb{Z} \rangle$ est un sous-groupe cyclique d'ordre $2^{\alpha-2}$ de $\mathbb{Z}_{2^{\alpha}}^{\times}$, il est donc isomorphe à $\mathbb{Z}_{2^{\alpha-2}}$.
- (c) Si $k \equiv k' \pmod{2^{\alpha}}$ alors 2^{α} divise k k' et $k \equiv k' \pmod{4}$ ($\alpha \geq 2$), donc l'application ψ est bien définie. Dire que $k + 2^{\alpha}\mathbb{Z}$ est inversible dans $\mathbb{Z}_{2^{\alpha}}$ équivaut à dire que k est premier avec 2^{α} et donc avec 4, c'est-à-dire que ψ envoie $\mathbb{Z}_{2^{\alpha}}^*$ dans \mathbb{Z}_4^* . Il est facile de vérifier que ψ est un morphisme de groupes multiplicatifs. Si $x = k + 4\mathbb{Z}$ est inversible dans \mathbb{Z}_4 alors $k \equiv 1 \pmod{4}$ ou $k \equiv -1 \pmod{4}$ et $k \equiv k$ dans $k \equiv 1 \pmod{4}$ ou $k \equiv -1 \pmod{4}$ et $k \equiv k$ dans $k \equiv 1 \pmod{4}$ ou $k \equiv -1 \pmod{4}$ et $k \equiv k$ dans $k \equiv 1 \pmod{4}$ ou $k \equiv -1 \pmod{4}$ est surjective. Par passage au quotient $k \equiv k$ induit alors un isomorphisme de $k \equiv k$ sur $k \equiv k$ il en résulte que :

$$\operatorname{card}\left(\mathbb{Z}_{2^{\alpha}}^{\times}\right)=\operatorname{card}\left(\ker\left(\psi\right)\right)\operatorname{card}\left(\mathbb{Z}_{4}^{\times}\right)=2\operatorname{card}\left(\ker\left(\psi\right)\right)$$

et card $(\ker(\psi)) = 2^{\alpha-2}$. Avec $5 + 2^{\alpha}\mathbb{Z}$ d'ordre $2^{\alpha-2}$ dans $\ker(\psi)$ $(5 \equiv 1 \pmod{4})$ on déduit que $\ker(\psi)$ est cyclique d'ordre $2^{\alpha-2}$ engendré par $5 + 2^{\alpha}\mathbb{Z}$.

(d) Pour $x \in \mathbb{Z}_{2^{\alpha}}^{\times}$, on a $\psi(x) \in \mathbb{Z}_{4}^{*} = \{\overline{1}, \overline{-1}\}$. Si $\psi(x) = \overline{1}$, alors $\psi(x) x = x \in \ker(\psi)$ et si $\psi(x) = \overline{-1}$, alors $\psi(x) x = -x$ et $\psi(\psi(x) x) = -\psi(x) = \overline{1}$ et $\psi(x) x \in \ker(\psi)$. Du fait que ψ est un morphisme de groupes multiplicatifs, on déduit qu'il en est de même de π . Si $x \in \ker(\pi)$, alors $\psi(x) = \overline{1}$ et $\psi(x) x = \overline{1}$, donc $x = \overline{1}$ et π est injectif. Ces deux groupes ayant même cardinal, on déduit que π est un isomorphisme. En résumé $\mathbb{Z}_{2^{\alpha}}^{\times}$ est isomorphe à $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{\alpha-2}}$ pour $\alpha \geq 3$ et $\mathbb{Z}_{2^{\alpha}}^{\times}$ n'est pas cyclique puisqu'il n'y a pas d'élément d'ordre $2^{\alpha-1}$ dans $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{\alpha-2}}$.

$$-\mathbf{IV}-\mathbf{Id\acute{e}aux}\,\,\mathbf{de}\,\,\mathbb{Z}_n=rac{\mathbb{Z}}{n\mathbb{Z}}.$$

1.

(a) Soient J un idéal de \mathbb{B} et :

$$I = \varphi^{-1}(J) = \{ a \in \mathbb{A} \mid \varphi(a) \in J \}$$

Comme $\varphi(0_{\mathbb{A}}) = 0_{\mathbb{B}} \in J$, on a $0_{\mathbb{A}} \in I$.

Pour a, b dans I, on a $\varphi(a) \in J$ et $\varphi(b) \in J$, donc $\varphi(a - b) = \varphi(a) - \varphi(b) \in J$ et $a - b \in I$.

Pour $a \in I$ et $b \in \mathbb{A}$, on a $\varphi(a) \in J$, donc $\varphi(ab) = \varphi(a) \varphi(b) \in J$ et $ab \in I$.

En définitive, I est un idéal de \mathbb{A} .

En particulier, $\ker (\varphi) = \varphi^{-1}(\{0\})$ est un idéal de A.

(b) Si φ n'est pas surjectif, $\varphi(I)$ n'est pas nécessairement un idéal de \mathbb{B} . Par exemple si φ est l'injection canonique de \mathbb{Z} dans \mathbb{R} , $\varphi(\mathbb{Z}) = \mathbb{Z}$ n'est pas un idéal de \mathbb{R} $(\frac{1}{2} \cdot 1 \notin \mathbb{Z})$. Soient I un idéal de \mathbb{A} et :

$$J = \varphi(I) = \{ \varphi(a) \mid a \in I \}$$

On a $0_{\mathbb{B}} = \varphi(0_{\mathbb{A}}) \in J$ et pour $\varphi(a), \varphi(b)$ dans J, on a $a - b \in I$, donc $\varphi(a) - \varphi(b) = \varphi(a - b) \in J$. Pour $\varphi(a) \in J$ et $c \in \mathbb{B}$, dans le cas où φ est surjective, il existe $b \in \mathbb{A}$ tel que $c = \varphi(b)$ et $\varphi(a) \cdot c = \varphi(a) \varphi(b) = \varphi(ab) \in J(I)$.

En définitive, J est un idéal de \mathbb{B} .

Pour tout idéal J de \mathbb{B} et tout $a \in \ker(\varphi)$, on a $\varphi(a) = 0_{\mathbb{B}} \in J$, soit $a \in \varphi^{-1}(J)$, donc $\varphi^{-1}(J)$ est un idéal de \mathbb{A} qui contient $\ker(\varphi)$.

Comme φ est surjective, on a $\varphi(\varphi^{-1}(Y)) = Y$ pour toute partie Y de \mathbb{B} (on a toujours $\varphi(\varphi^{-1}(Y)) \subset Y$ et pour tout $b \in Y$, il existe $a \in \mathbb{A}$ tel que $b = \varphi(a)$ par surjectivité de φ , donc $a \in \varphi^{-1}(Y)$ et $b \in \varphi(\varphi^{-1}(Y))$, ce qui nous donne l'égalité $\varphi(\varphi^{-1}(Y)) = Y$), donc l'application Φ est injective.

Si I est un idéal de \mathbb{A} qui contient $\ker(\varphi)$, l'ensemble $J = \varphi(I)$ est un idéal de \mathbb{B} puisque φ est surjective et $\Phi(J) = \varphi^{-1}(\varphi(I)) = I$ (il est clair que $I \subset \varphi^{-1}(\varphi(I))$ et pour $a \in \varphi^{-1}(\varphi(I))$, on a $\varphi(a) \in \varphi(I)$, soit $\varphi(a) = \varphi(b)$ avec $b \in I$, donc $a - b \in \ker(\varphi) \subset I$ et $a \in I$). L'application Φ est donc surjective.

- 2. Résulte du fait que π_I est un morphisme d'anneaux surjectif de \mathbb{A} sur $\frac{\mathbb{A}}{I}$ de noyau ker $(\pi_I) = I$. 3.
 - (a) Pour $I = \{0\}$, $\frac{\mathbb{A}}{I} \cong \mathbb{A}$ est principal et pour $I = \mathbb{A}$, $\frac{\mathbb{A}}{I} = \{\overline{0}\}$. Soit I = (a) un idéal de l'anneau principal \mathbb{A} avec $a \neq 0$ et a non inversible. Si J est un idéal de $\frac{\mathbb{A}}{I}$, en désignant par π_I la surjection canonique de \mathbb{A} sur $\frac{\mathbb{A}}{I}$, $\pi_I^{-1}(J)$ est un idéal de \mathbb{A} qui contient I, donc $\pi_I^{-1}(J) = (b) \supset (a)$ et b divise a. De plus, comme π_I est surjectif, on a $J = \pi_I(\pi_I^{-1}(J)) = \pi_I(b\mathbb{A}) = (\overline{b})$.

Tous les idéaux de $\frac{\mathbb{A}}{I} = \frac{\mathbb{A}}{(a)}$ sont donc principaux de la forme (\bar{b}) où $b \in \mathbb{A}$ est un diviseur de a.

L'anneau $\frac{\mathbb{A}}{I}$ est donc principal si, et seulement si, il est intègre, ce qui revient à dire que l'idéal I = (a) est premier, ce qui revient à dire que a est premier.

(b) Si I est un idéal de \mathbb{Z}_n , c'est en particulier un sous-groupe additif. Réciproquement si I est un sous-groupe additif de \mathbb{Z}_n , pour $(\overline{a}, \overline{b}) \in I \times \mathbb{Z}_n$, on a :

$$\overline{a} \cdot \overline{b} = \pm \overline{|b| \, a} = \pm \, |b| \, \overline{a} = \pm \, (\overline{a} + \dots + \overline{a}) \in I$$

et I est un idéal de \mathbb{Z}_n .

- (c) Pour $n \geq 2$, ce qui précède nous dit que les idéaux de \mathbb{Z}_n sont les (\overline{q}) où $q \in \{1, \dots, n\}$ est un diviseur de n.
- 4. Dans \mathbb{Z} qui est principal, on a les équivalences :
 - $((p) \text{ maximal}) \Leftrightarrow ((p) \text{ premier}) \Leftrightarrow (p \text{ premier}).$

Pour $n \geq 2$, dans \mathbb{Z}_n qui est fini, il y a équivalence entre idéal premier et maximal.

Pour $n \geq 2$, on a vu que les idéaux de \mathbb{Z}_n sont de la forme $I = (\overline{q})$ où q = 0 ou $q \neq 0$ est un diviseur de n.

Pour n premier, \mathbb{Z}_n est un corps et ses seuls idéaux sont \mathbb{Z}_n et $\{\overline{0}\}$, seul $\{\overline{0}\}$ est maximal. Pour $n \geq 2$ non premier, on a deux possibilités, soit $I = (\overline{p})$ où $2 \leq p \leq n-1$ est un diviseur premier de n et dans ce cas I est maximal (on a $I \neq \mathbb{Z}_n$ puisque \overline{p} qui divise $\overline{0}$ n'est pas inversible et si $(\overline{p}) \subset J = (\overline{q})$ avec q qui divise n, on a alors $\overline{p} = \overline{aq}$, soit p = aq + kn = aq + kjq et q divise p, donc q = 1 ou q = p, soit $J = \mathbb{Z}_n$ ou J = I), soit $I = (\overline{q})$ où q est un diviseur non premier de n et I n'est pas maximal (pour q = 1, on a $I = \mathbb{Z}_n$ et pour $q \geq 2$, on a q = ab avec $2 \leq a, b \leq q-1$ et $I = (\overline{ab}) \subsetneq (\overline{a}) \subsetneq \mathbb{Z}_n$).

En définitive, les idéaux maximaux de \mathbb{Z}_n sont les (\overline{q}) où q est un diviseur premier de n.