FISIKA

Kinematika 1

(Gerak Pada Dimensi Satu)

Damar Wicaksono, S.T., M.Eng

Learning Objective

Mampu memahami dan menjelaskan konsep gerak lurus

Mampu menyelesaikan persoalan Gerak Lurus Beraturan (GLB)

Mampu menyelesaikan persoalan Gerak Lurus Berubah Beraturan (GLBB)

Review Vektor

Sebuah pesawat sedang terbang ke arah utara dengan kecepatan 150 Km/h.

- 1. Jika angin berhembus menuju selatan dengan kecepatan 30 Km/h, berapakah kecepatan pesawat tersebut?
- 2. Jika angin berhembus dari barat dengan kecepatan 30 Km/h, berapakah kecepatan pesawat tersebut?
- 3. Jika angin berhembus dari arah barat laut dengan sudut 30° dengan kecepatan 30 Km/h, berapakah kecepatan pesawat tersebut?

Solusi: Review Vektor

$$c^{2} - y^{2} = a^{2} - b^{2} + 2by - y^{2}$$

$$c^{2} = a^{2} - b^{2} + 2by$$

$$a^{2} = c^{2} + b^{2} - 2by$$

$$\cos A = \frac{y}{c} \quad y = c \cos A$$

$$a^{2} = c^{2} + b^{2} - 2bc \cos A$$

$$a^{2} = 30^{2} + 150^{2} - 2(150)(30) \cos 30^{\circ}$$

$$a^{2} = 900 + 22500 - 2(150)(30) \frac{1}{2}\sqrt{3}$$

$$a^{2} = 23400 - 4500\sqrt{3}$$

$$a = \sqrt{23400 - 4500\sqrt{3}}$$

$$a = 125 \text{ Km/h}$$

Apa Itu Gerak?

Andaikan Anda menjadi penumpang dalam becak yang bergerak meninggalkan teman Anda.

Apakah anda bergerak?

Suatu benda dikatakan bergerak bila posisinya setiap saat berubah terhadap suatu acuan tertentu.

Gerak Benda

Besaran Gerak

Posisi (x)m

Jarak(d)m

Perpindahan (Δx) m

Kelajuan $(s)^{\frac{m}{s}}$

Kecepatan $(v) \frac{m}{s} \hat{\imath}$

Percepatan $(a) \frac{m}{s^2} \hat{\imath}$

Posisi, Jarak, & Perpindahan

Perpindahan (*displacement*) $\Rightarrow \Delta x$ (Mengukur perubahan posisi awal dan akhir suatu benda)

$$\Delta x = x_{akhir} - x_{awal} = x_2 - x_0 = 100 - 0 = 100$$
m

Jarak (distance) $\Rightarrow d$ (Mengukur seluruh lintasan gerak tanpa memandang arah)

 $d_{total} = d_{maju} + d_{mundur} = (x_0 + x_1) + (x_1 - x_2) = (0 + 190) + (190 - 100) = 190 + 90 = 280$ m

Kelajuan Rata-Rata

Seberapa cepat suatu benda bergerak?

Kelajuan (speed) rata-rata (s_{ava} atau \overline{s})

Seberapa jauh **jarak tempuh** (d) benda dalam suatu **selang waktu** (Δt) tertentu.

$$Kelajuan rata - rata = \frac{total jarak tempuh}{selang waktu}$$

$$s_{avg} = \bar{s} = \frac{d}{\Delta t} = \frac{d}{t_1 - t_0}$$
 SKALAR

$$s_{ava} = \bar{s} = \text{kelajuan rata} - \text{rata} (m/s)$$

$$d = \text{total jarak tempuh } (m)$$

$$\Delta t = \text{selisih waktu tempuh } (s)$$

$$t_0$$
 = waktu awal (s)

$$t_1$$
 = waktu akhir (s)

Kecepatan Rata-Rata

Seberapa cepat suatu benda bergerak?

Kecepatan (*velocity*) rata-rata (v_{ava} atau \overline{v})

Seberapa jauh **perpindahan benda** (Δx) dalam suatu **selang waktu** (Δt) tertentu

$$Kecepatan rata - rata = \frac{perpindahan}{selang waktu}$$

$$v_{avg} = \overline{v} = \frac{\Delta x}{\Delta t} = \frac{x_1 - x_0}{t_1 - t_0}$$
 VEKTOR

$$v_{avg} = \bar{v} = \text{kecepatan rata} - \text{rata} (m/s)$$

$$\Delta x = \text{selisih perpindahan posisi } (m)$$

$$x_0 = posisi awal (m)$$

$$x_1 = \text{posisi akhir}(m)$$

$$\Delta t = \text{selisih waktu tempuh } (s)$$

$$t_0$$
 = waktu awal (s)

$$t_1$$
 = waktu akhir (s)

Contoh Soal

Budi berlari ke timur sejauh 20 m selama 6 s lalu balik ke barat sejauh 8 m dalam waktu 4 s. Hitung kelajuan rata-rata dan kecepatan rata-rata Budi!

Diketahui:

$$x_1 = 20m$$
 (ke timur)

$$x_2 = 8m$$
 (ke barat)

$$t_1 = 6s$$
 (ke timur)

$$t_2 = 4s$$
 (ke barat)

Ditanya:

$$\bar{v} \dots ?$$

$$\bar{s} = \frac{d_{total}}{t_{total}} = \frac{x_1 + x_2}{(t_1 + t_2) - t_0} = \frac{20 + 8}{(6 + 4) - 0} = \frac{28}{10} = 2.8 \, m/s$$

$$\bar{v} = \frac{\Delta x}{t_{total}} = \frac{(x_2 - x_0)}{(t_1 + t_2) - t_0} = \frac{(x_1 - 8) - 0}{(6 + 4) - 0} = \frac{(20 - 8) - 0}{(6 + 4) - 0} = \frac{12}{10} = 1.2 \, \text{m/s}$$

Analisis Grafik x - t

Apa maksud dari grafik di samping ?

Maka kecapatan rata-rata nya:

$$\bar{v} = \frac{x_{10} - x_0}{t_{10} - t_0}$$

$$\bar{v} = \frac{4 - 4}{10 - 0} = \frac{0}{10} = 0 \frac{m}{s} \hat{t}$$

Pada selang waktu dari $0s \rightarrow 10s$, posisi (x) benda tidak berubah yaitu di x = 4m

Benda dalam keadaan Diam

Analisis Grafik x - t

Apa maksud dari grafik di samping ?

Maka kecapatan rata-rata nya:

$$\bar{v} = \frac{x_{10} - x_0}{t_{10} - t_0}$$

$$\bar{v} = \frac{5-0}{10-0} = \frac{5}{10} = 0.5 \frac{m}{s} \,\hat{\imath}$$

Pada selang waktu dari $0s \rightarrow 10s$, posisi (x) benda berubah yaitu dari x = 0m ke x = 5m

Benda dalam keadaan bergerak

Kecepatan & Kelajuan Sesaat

Seberapa cepat suatu benda bergerak tepat saat melintas di depan kita?

Kecepatan (*velocity*) sesaat, "kecepatan" (*v*)

Seberapa jauh **perpindahan benda** (Δx) dalam suatu **selang waktu yang sangat sempit** ($\Delta t \rightarrow 0$)

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Kelajuan (speed) sesaat, "kelajuan" (v)

Merupakan besar (*magnitudo*) dari **kecepatan sesaat**.

$$v = |v|$$

Contoh: Kecepatan dan Kelajuan Sesaat

Sebuah partikel bergerak dengan fungsi posisi $x(t) = 3t - 3t^2$ m. Hitunglah kecepatan sesaat dan kelajuan sesaat pada saat t = 0.25s, t = 0.5s, dan t = 1s

Diketahui:

$$x(t) = 3t - 3t^{2}m$$

$$t_{1} = 0.25s$$

$$t_{2} = 0.5s$$

$$t_{3} = 1s$$

Ditanya: $v \dots ?$

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

$$v = \frac{d(3t - 3t^2)}{dt} \Rightarrow v(t) = 3 - 6t$$

Kecepatan sesaat:

$$v(\mathbf{0.25}) = 3 - 6(\mathbf{0.25}) = 1.5 \frac{m}{s}$$

$$v(\mathbf{0}.\mathbf{5}) = 3 - 6(\mathbf{0}.\mathbf{5}) = 0\frac{m}{s}$$

$$v(\mathbf{1}) = 3 - 6(\mathbf{1}) = -3\frac{m}{s}$$

Kelajuan sesaat:

$$|v|(\mathbf{0.25}) = 1.5\frac{m}{s}$$

$$|v|(\mathbf{0.5}) = 0\frac{m}{s}$$

$$|v|(1) = 3\frac{m}{s}$$

Plotting Grafik

t s	x(t)m
0.25	0.5625
0.5	0.75
1	0

t s	v(t) m/s
0.25	1.5
0.5	0
1	-2

t s	v (t) m/s
0.25	1.5
0.5	0
1	3

Percepatan (Accelaration)

Percepatan rata-rata (a_{avg} atau a)

Perubahan kecepatan benda dalam selang waktu tertentu.

$$Percepatan rata - rata = \frac{perubahan kecepatan}{selang waktu}$$

$$a_{avg} = \bar{a} = \frac{\Delta v}{\Delta t}$$

Percepatan sesaat, "percepatan" (a)

Perubahan kecepatan benda

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

Benda dipercepat:

jika arah percepatan dan kecapatan sama.

Benda diperlambat:

jika arah percepatan dan kecepatan saling berlawanan.

Contoh: Percepatan Rata-Rata

Seekor kuda pacu yang keluar dari gerbang mengalami percepatan dari keadaan diam menjadi kecepatan 15 m/s ke barat dalam waktu 1.8 s. Berapa percepatan rata-ratanya?

Diketahui:

$$v_0 = 0 \ m/s$$

 $v_1 = 15 \ m/s \ (ke \ barat)$

$$t_0 = 0s$$

$$t_1 = 1.8s$$

Ditanya: \bar{a} ...?

$$a_{avg} = \bar{a} = \frac{\Delta v}{\Delta t}$$
 $\bar{a} = 0$

$$a_{avg} = \bar{a} = \frac{\Delta v}{\Delta t}$$
 $\bar{a} = \frac{v_1 - v_0}{t_1 - t_0} = \frac{15 - 0}{1.8 - 0} \Rightarrow \bar{a} = 8.33 \frac{m}{s^2}$

Contoh: Percepatan Sesaat

Sebuah partikel bergerak dan berakselarasi dengan fungsi kecepatan $v(t) = 20t - 5t^2 m/s$. Hitunglah kecepatan sesaat dan percepatan sesaat pada saat t = 1, 2, 3, 5s

Diketahui:

$$v(t) = 20t - 5t^{2} m/s$$

$$t_{1} = 1s$$

$$t_{2} = 2s$$

$$t_{3} = 3s$$

$$t_{4} = 5s$$

Ditanya: $v \dots$?

Kecepatan sesaat:

$$v(t) = 20t - 5t^2 \, m/s$$

$$v(\mathbf{1}) = 20(\mathbf{1}) - 5(\mathbf{1})^2 = 15\frac{m}{s}$$

$$v(\mathbf{2}) = 20(\mathbf{2}) - 5(\mathbf{2})^2 = 20 \frac{m}{s}$$

$$v(3) = 20(3) - 5(3)^2 = 15 \frac{m}{s}$$

$$v(5) = 20(5) - 5(5)^2 = -25 \frac{m}{s}$$

Percepatan sesaat:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

$$a = \frac{d(20t - 5t^2)}{dt} \Rightarrow a(t) = 20 - 10t$$

$$a(1) = 20 - 10(1) = 10 \text{ m/s}^2$$

$$a(2) = 20 - 10(2) = 0 m/s^2$$

$$a(3) = 20 - 10(3) = -10 \text{ m/s}^2$$

$$a(5) = 20 - 10(5) = -30 \text{ m/s}^2$$

Plotting Grafik

t s	v(t) m/s
1	15
2	20
3	15
5	-25

t s	$a(t) m/s^2$
1	10
2	0
3	-10
5	-30

