An introduction to p-adic Hodge theory

Denis Benois

Institut de Mathématiques, Université de Bordeaux, 351, cours de la Libération 33405 Talence, France

Email address: denis.benois@math.u-bordeaux1.fr

Contents

Chapter 1. Preliminaries	5
1. Non-archimedean fields	5
2. Local fields	7
3. The different	11
4. Ramification filtration	16
5. Galois groups of local fields	25
6. Ramification in \mathbb{Z}_p -extensions	29
Chapter 2. Almost étale extensions	33
1. Norms and traces	33
2. Deeply ramified extensions	35
Bibliography	37

CHAPTER 1

Preliminaries

1. Non-archimedean fields

1.1. We recall basic definitions and facts about non-archimedean fields.

DEFINITION. A non-archimedean field is a field K equipped a non-archimedean absolute value that is, an absolute value $|\cdot|_K$ satisfying the ultrametric trinagle inequality

$$|x+y|_K \le \max\{|x|_K, |y|_K\}, \quad \forall x, y \in K.$$

We will say that K is complete if it is complete for the topology induced by $|\cdot|_K$.

To any non-archimedean field K can associate its ring of integers

$$O_K = \{ x \in K \mid |x|_K \leqslant 1 \}.$$

The ring O_K is local, with the maximal ideal

$$\mathfrak{m}_K = \{ x \in K \mid |x|_K < 1 \}.$$

The group of units of O_K is

$$U_K = \{ x \in K \mid |x|_K = 1 \}.$$

The residue field of K is defined as

$$k_K = O_K/\mathfrak{m}_K$$
.

THEOREM 1.2. Let K be a complete non-archimedean field and let L/K be a finite extension of degree n = [L:K]. Then the absolute value $|\cdot|_K$ has a unique continuation $|\cdot|_L$ to L, which is given by

$$|x|_L = |N_{L/K}(x)|_K^{1/n},$$

where $N_{L/K}$ is the norm map.

PROOF. See [1, Ch. 2, Thm 7]. Another proof (valid only for locally compact fields) can be found in [2, Chapter II, section 10]. \Box

This theorem allows to extend $|\cdot|_K$ to the algebraic closure of K. In particular, we have a unique extension of $|\cdot|_K$ to the separable closure \overline{K} of K.

PROPOSITION 1.3 (Krasner's lemma). Let K be a complete non-archimedean field. Let $\alpha \in \overline{K}$ and let $\alpha_1 = \alpha, \alpha_2, \dots, \alpha_n$ denote the conjugates of α over K. Set

$$d_{\alpha} = \min\{|\alpha - \alpha_i|_K \mid 2 \leqslant i \leqslant n\}.$$

If $\beta \in \overline{K}$ is such that $|\alpha - \beta| < d_{\alpha}$, then $K(\alpha) \subset K(\beta)$.

PROOF. We recall the proof. Assume that $\alpha \notin K(\beta)$. Then $K(\alpha, \beta)/K(\beta)$ is a non-trivial extension, and there exists an embedding $\sigma : K(\alpha, \beta)/K(\beta) \to \overline{K}/K(\beta)$ such that $\alpha_i := \sigma(\alpha) \neq \alpha$. Hence

$$|\beta - \alpha_i|_K = |\sigma(\beta - \alpha)|_K = |\beta - \alpha|_K < d_{\alpha}$$

and

$$|\alpha - \alpha_i|_K = |(\alpha - \beta) + (\beta - \alpha_i)|_K \leqslant \max\{|\alpha - \beta|_K, |\beta - \alpha_i|_K\} < d_{\alpha}.$$

This gives a contradiction.

We give an application of Krasner's lemma. Let \overline{K} be an algebraic closure of K. By Theorem 1.2, the absolute value $|\cdot|_K$ extends in a unique way to an absolute value on \overline{K} , which we will again denote by $|\cdot|_K$. Let \mathbf{C}_K denote the completion of \overline{K} with respect to $|\cdot|_K$.

PROPOSITION 1.4. Assume that K is a complete non-archimedean field of characteristic 0. Then the field \mathbf{C}_K is algebraically closed.

PROOF. Proof by contradiction. Let $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in O_{\mathbb{C}_K}[X]$ be an irreducible monic polynomial of degree ≥ 2 , and let C denotes its splitting field. By Theorem 1.2, the absolute value $|\cdot|_K$ extends to C. Let $\alpha_1, \alpha_2, \cdots, \alpha_n$ be the roots of f(X) in C. Set

$$d:=\min_{1\leqslant i\neq j\leqslant n}|\alpha_i-\alpha_j|_K>0.$$

Choose a monic polynomial $g(X) := X^n + b_{n-1}X^{n-1} + \cdots + b_0 \in \overline{K}[X]$ such that

$$|b_i - a_i|_K < d^n$$
, for all $0 \le i \le n - 1$.

Let $\beta \in \overline{K}$ be a root of g(X). Since

$$f(X) - g(X) = \sum_{i=0}^{n-1} (a_i - b_i)X^i,$$

and $\beta \in O_{\overline{K}}$, we have:

$$|f(\boldsymbol{\beta})|_K = |f(\boldsymbol{\beta}) - g(\boldsymbol{\beta})|_K \leqslant \max_{0 \le i \le n-1} |b_i - a_i|_K < d^n.$$

On the other hand, $f(\beta) = \prod_{i=1}^{n} (\beta - \alpha_i)$. Hence

$$\prod_{i=1}^n |\beta - \alpha_i|_K < d^n.$$

Therefore, there exists i_0 such that $|\beta - \alpha_{i_0}|_K < d$. Taking into account the definition of d, we obtain that

$$|eta - lpha_{i_0}|_K < \min_{i \neq i_0} |lpha_i - lpha_{i_0}|_K$$

By Krasner's lemma, this implies that $C_K(\alpha_{i_0}) \subset C_K(\beta) = C_K$. Therefore $\alpha_{i_0} \in C_K$, and we conclude that f(X) has a root in C_K . This contradicts the irreductibility of f(X).

PROPOSITION 1.5 (Hensel's lemma). Let K be a complete non-archimedean field. Let $f(X) \in O_K[X]$ be a monic polynomial such that

a) the reduction $\bar{f}(X) \in k_K[X]$ of f(X) modulo \mathfrak{m}_K has a root $\bar{\alpha} \in k_K$; b) $\bar{f}'(\bar{\alpha}) \neq 0$.

Then there exists a unique $\alpha \in O_K$ such that $f(\alpha) = 0$ and $\bar{\alpha} = \alpha \pmod{\mathfrak{m}_K}$.

PROOF. See, for example [6, Chapter 2, §2].

- **1.6.** Recall that a valuation on K is a function $v_K : K \to \mathbf{R} \cup \{+\infty\}$ satisfying the following properties:
 - 1) $v_K(xy) = v_K(x) + v_K(y), \quad \forall x, y \in K^*;$
 - 2) $v_K(x+y) \geqslant \min\{v_K(x), v_K(y)\}, \quad \forall x, y \in K^*;$
 - 3) $v_K(x) = \infty \Leftrightarrow x = 0$.

For any $\rho \in]0,1[$, the function $|x|_{\rho}=\rho^{\nu_K(x)}$ defines an ultrametric absolute value on K. Conversely, if $|\cdot|_K$ is an ultrametric absolute value, then for any c the function $\nu_c(x)=\log_c|x|_K$ is a valuation on K. This establishes a one to one correspondence between equivalence classes of non-archimedean absolute values and equivalence classes of valuations on K.

Exercise 1. Let K be a field of characteristic p with algebraically closed residue field. Consider the polynomial $f(X) := X^p - X - c$. Show that if $c \in O_K$, then f(X) splits in K.

2. Local fields

2.1. In this section we review the basic theory of local fields.

DEFINITION. A discrete valuation field is a field K equipped with a valuation v_K such that $v_K(K^*)$ is a discrete subgroup of \mathbf{R} . Equivalently, K is a discrete valuation field if it is equipped with an absolute value $|\cdot|_K$ such that $|K^*|_K \subset \mathbf{R}_+$ is discrete.

Let K be a discrete valuation field. In the equivalence class of discrete valuations on K we can choose the unique valuation v_K such that $v_K(K^*) = \mathbf{Z}$. An element $\pi_K \in K$ such that $v_K(\pi_K) = 1$ is called a uniformizer of K. Every $x \in K^*$ can be written in the form $x = \pi_K^{v_K(x)} u$ with $u \in U_K$, and one has:

$$K^* \simeq \langle \pi_K \rangle \times U_K, \qquad \mathfrak{m}_K = (\pi_K).$$

We adopt the following convention.

DEFINITION. A local field is a complete discrete valuation field K whose residue field k_K is finite.

Note that many (but not all) results and constructions of the theory are valid under the weaker assumption that the residue field k_K is perfect.

We will always assume that the discrete valuation

$$v_K: K \to \mathbf{Z} \cup \{+\infty\}$$

is surjective.

PROPOSITION 2.2. Let K be a local field. Then the groups O_K , \mathfrak{m}_K^n and U_K are compact.

PROOF. One can easily prove the sequential compacteness of O_K considering finite sets O_K/\mathfrak{m}_K^n . Since $\mathfrak{m}_K = \pi_K O_K$ and $U_K \subset O_K$ is closed, this proves the lemma.

2.3. If L/K is a finite extension of local fields, we define the ramification index e(L/K) and the inertia degree f(L/K) of L/K by

$$e(L/K) = v_L(\pi_K), \qquad f(L/K) = [k_L : k_K].$$

Recall the fundamental formula

$$f(L/K)e(L/K) = [L:K]$$

(see, for example, [1, Ch. 3, Thm 6]).

2.4. Let *K* be a local field, $q = |k_K|$.

PROPOSITION 2.5. *i)* For any $x \in k_K$ there exists a unique [x] such that x = [x] mod π_K and $[x]^q = [x]$.

ii) The multiplicative group of K contains the subgroup μ_{q-1} of (q-1)th roots of unity and the map

$$[\cdot]: k_K^* \to \mu_{q-1},$$
$$x \mapsto [x]$$

is an isomorphism.

iii) If char(K) = p, then $[\cdot]$ gives an inclusion of fields $k_K \hookrightarrow K$.

PROOF. The statements i-ii) follow easily from Hensel's lemma, applied to the polynomial $X^q - X$.

iii) If char(K) = p then for any $x, y \in k_K$

$$([x] + [y])^q = [x]^q + [y]^q = [x] + [y]$$

(use binomial expansion). By unicity, this implies that [x+y] = [x] + [y].

COROLLARY 2.6. Every $x \in O_K$ can be written by a unique way in the form

$$x = \sum_{i=0}^{\infty} [a_i] \pi_K^i.$$

Exercise 2. Let $x \in k_K$ and let $\hat{x} \in O_K$ be any lift of x under the map $O_K \to k_K$.

- a) Show that the sequence $(\widehat{x}^{q^n})_{n \in \mathbb{N}}$ converges to an element of O_K which doesn't depend on the choice of \widehat{x} .
 - b) Show that $[x] = \lim_{n \to +\infty} \widehat{x}^{q^n}$.

THEOREM 2.7. Let K be a local field and $p = \operatorname{char}(k_K)$.

i) If char(K) = p, then K is isomorphic to the field $k_K((X))$ of Laurent power series, where k_K is the residue field of K and X is transcendental over k. The discrete valuation on K is given by

$$v_K(f(X)) = \operatorname{ord}_X f(X) := \min\{i \in \mathbb{Z} \mid a_i \neq 0\},\$$

where $f(X) = \sum_{i \gg -\infty} a_i X^i$. Note that X is a uniformizer of K and $O_K \simeq k_K[[X]]$.

ii) If char(K) = 0, then K is isomorphic to a finite extension of the field of p-adic numbers \mathbf{Q}_p . The absolute value on K is the extension of the p-adic absolute value

$$\left|\frac{a}{b}p^k\right|_p = p^{-k}, \quad p \not a, b.$$

PROOF. i) Assume that char(K) = p. By Corollary 2.6, we have a bijection

$$K \to k_K((X)),$$

$$x \mapsto x = \sum_{i=0}^{\infty} a_i X^i,$$
 where $x = \sum_{i=0}^{\infty} [a_i] \pi_K^i.$

By Proposition 2.5 iv), this map is an isomorphism.

- ii) Assume that $\operatorname{char}(K) = 0$. Then $\mathbf{Q} \subset K$. The absolute value $|\cdot|_K$ induces an absolute value on \mathbf{Q} . By Ostrowski theorem, any non archimedean absolute value on \mathbf{Q} is equivalent to the p-adic absolute value for some prime p. Since K is complete, this implies that $\mathbf{Q}_p \subset K$. Since k_K is finite, $[k_K : \mathbf{F}_p] < +\infty$. Since v_K is discrete, $e(K/\mathbf{Q}_p) = v_K(p) < +\infty$. This implies that $[K : \mathbf{Q}_p] < +\infty$.
- **2.8.** The group of units U_K is equipped with the exhaustive descending filtration

$$U_K^{(n)} = 1 + \pi_K^n O_K, \qquad n \geqslant 0.$$

PROPOSITION 2.9. *i) The map*

$$U_K \to k_K^*, \qquad x \mapsto \bar{x} := x \pmod{\pi_K}$$

induces an isomorphism $U_K/U_K^{(1)} \simeq k_K^*$.

ii) For any $n \ge 1$, the map

$$U_K^{(n)} \to k_K, \qquad 1 + \pi_K^n x \mapsto \bar{x}$$

induces an isomorphism $U_K^{(n)}/U_K^{(n+1)} \simeq k_K^+$.

PROOF. The proof is left as an exercise.

DEFINITION 2.10. One says that L/K is

- i) unramified if e(L/K) = 1 (and therefore f(L/K) = [L:K]);
- ii) totally ramified if e(L/K) = [L:K] (and therefore f(L/K) = 1).
- 2.10.1. The unramified extensions can be described entirely in terms of the residue field k_K . Namely, there exists a one-to-one correspondence

$$\{\text{finite extensions of } k_K\} \longleftrightarrow \{\text{finite unramified extensions of } K\}$$

which can be explicitly described as follows. Let k/k_K be a finite extension of k_K . Write $k = k_K(\alpha)$ and denote by $f(X) \in k_K[X]$ the minimal polynomial of α . Let $\widehat{f}(X) \in O_K[X]$ denote any lift of f(X). Then we associate to k the extension $L = K(\widehat{\alpha})$, where $\widehat{\alpha}$ is the unique root of $\widehat{f}(X)$ whose reduction modulo \mathfrak{m}_L is α .

An easy argument using Hensel's lemma shows that L doesn't depend on the choice of the lift $\widehat{f}(X)$.

Unramified extensions form distinguished classes of extensions in the sense of [5]. In particular, for any finite extension L/K one can define its maximal unramified subextension $L_{\rm ur}$ as the compositum of all its unramified subextensions. Then one has

$$f(L/K) = [L_{ur} : K], \qquad e(L/K) = [L : L_{ur}].$$

The extension $L/L_{\rm ur}$ is totally ramified.

2.10.2. Assume that L/K is totally ramified of degree n. Let π_L be any uniformizer of L and let

$$f(X) = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0 \in O_K[X]$$

be the minimal polynomial of π_L . Then f(X) is an Eisenstein polynomial, namely

$$v_K(a_i) \geqslant 1$$
 for $0 \leqslant i \leqslant n-1$, and $v_K(a_0) = 1$.

Conversely, if α is a root of an Eisenstein polynomial of degree n over K, then $K(\alpha)/K$ is totally ramified of degree n, and α is an uniformizer of $K(\alpha)$.

DEFINITION 2.11. One says that an extension L/K is

- i) tamely ramified, if e(L/K) is coprime to p.
- ii) totally tamely ramified, if it is totally ramified and e(L/K) is coprime to p.

Using Krasner's lemma, it is easy to give an explicit description of totally tamely ramified extensions.

PROPOSITION 2.12. If L/K is totally tamely ramified of degree n, then there exists a uniformizer $\pi_K \in K$ such that

$$L = K(\pi_L), \qquad \pi_L^n = \pi_K.$$

PROOF. Assume that L/K is totally tamely ramified of degree n. Let Π be a uniformizer of L and $f(X) = X^n + \cdots + a_1X + a_0$ its minimal polynomial. Then f(X) is Eisenstein, and $\pi_K := -a_0$ is a uniformizer of K. Let $\alpha_i \in \overline{K}$ $(1 \le i \le n)$ denote the roots of $g(X) := X^n + a_0$. Then

$$|g(\Pi)|_{K} = |g(\Pi) - f(\Pi)|_{K} \leqslant \max_{1 \leqslant i \leqslant n-1} |a_{i}\Pi^{i}|_{K} < |\pi_{K}|_{K}$$

Since $|g(\Pi)|_K = \prod_{i=1}^n (\Pi - \alpha_i)$ and $\Pi = (-1)^n \prod_{i=1}^n \alpha_i$, we have

$$\prod_{i=1}^n |\Pi-lpha_i|_K < \prod_{i=1}^n |lpha_i|_K.$$

Therefore there exists i_0 such that

$$|\Pi - \alpha_{i_0}|_K < |\alpha_{i_0}|_K.$$

Set $\pi_L = \alpha_{i_0}$. Then

$$\prod_{i\neq i_0}(\pi_L-\alpha_i)=g'(\pi_L)=n\pi_L^{n-1}.$$

Since (n, p) = 1 and $|\pi_L - \alpha_i|_K \le |\pi_L|_K$, the previous equality implies that

$$d_{\pi_L} := \min_{i \neq i_0} |\pi_L - \alpha_i|_K = |\pi_L|_K.$$

Together with (1), this gives that

$$|\Pi - \alpha_{i_0}|_K < d_{\pi_L}.$$

Applying Krasner's lemma we find that $K(\pi_L) \subset L$. Since $[L:K] = [K(\pi_L):K] = n$, we obtain that $L = K(\pi_L)$, and the proposition is proved.

Exercise 3. Show that $\mathbf{Q}_p(\sqrt[p-1]{-p}) = \mathbf{Q}_p(\zeta_p)$, where ζ_p is a primitive pth root of unity.

Exercise 4. Let K be a local field and π_K and π_K' be two uniformizers of K. Show that

$$K^{\mathrm{ur}}(\sqrt[n]{\pi_K}) = K^{\mathrm{ur}}(\sqrt[n]{\pi_K'}), \quad \text{for any } (n,p) = 1.$$

Deduce that the compositum of two tamely ramified extensions is tamely ramified.

Exercise 5. (See[6, Chapter 2, Proposition 14]). Let K be a local field of characteristic 0. Show that for any $n \ge 1$ there exists only a finite number of extensions of K of degree n.

Exercise 6. Show that a local field of characteristic p has infinitely many separable extensions of degree p. This could be proved using Artin–Schreier extensions (see for example [5, Chapter VI,§6] for basic results of Artin–Schreier theory).

3. The different

3.1. The Dedekind different. In this subsection, A denotes a Dedekind ring with fraction field K. Let L/K be a finite separable extention and B the integral closure of A in L. We consider the map

$$t_{L/K}: L \times L \to K,$$

 $t_{L/K}(x, y) = \operatorname{Tr}_{L/K}(xy).$

PROPOSITION 3.2. $t_{L/K}$ is a non-degenerate symmetric K-bilinear form on L.

PROOF. We have:

$$\begin{aligned} t_{L/K}(x_1 + x_2, y) &= \mathrm{Tr}_{L/K}((x_1 + x_2)y) = \mathrm{Tr}_{L/K}(x_1 y + x_2 y) = \\ \mathrm{Tr}_{L/K}(x_1 y) &+ \mathrm{Tr}_{L/K}(x_2 y) = t_{L/K}(x_1, y) + t_{L/K}(x_2, y). \end{aligned}$$

If $a \in K$, then for any $z \in L$ on has $Tr_{L/K}(az) = aTr_{L/K}(z)$, and therefore

$$\langle ax, y \rangle = \operatorname{Tr}_{L/K}(axy) = a\operatorname{Tr}_{L/K}(xy) = a\langle x, y \rangle.$$

This shows that $t_{L/K}$ is a K-bilinear form. Moreover, it is clear that it is symmetric. From the general theory of field extensions, it is known that the separability of L/K implies that for any basis $\{\omega_i\}_{i=1}^n$ of L over K, the determinant $\det (t_{L/K}(\omega_i, \omega_j)_{1 \le i,j \le n})$ is non-zero. Therefore the form $t_{L/K}$ is non-degenarate.

Γ

If $M \subseteq L$ is a finitely generated A-module, we define its complementary module M' as

$$M' = \{x \in L | t_{L/K}(x, y) \in A \text{ for all } y \in M\}.$$

It is easy to see that M' is an A-module and that $M \subseteq N$ implies $N' \subseteq M'$. Let $\omega_1, \ldots, \omega_n$ be a base of L/K and let $\omega'_1, \ldots, \omega'_n$ denote the dual base, i.e.

$$t_{L/K}(\boldsymbol{\omega}_i, \boldsymbol{\omega}_j') = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

If $M = A\omega_1 + ... + A\omega_n$, then $M' = A\omega_1' + ... + A\omega_n'$.

We study the complementary module B' of the Dedekind ring B. Note that, in general, B is not free over A.

PROPOSITION 3.3. i) There exist free A-modules $M_1, M_2 \subset L$ such that

$$M_1 \subseteq B \subseteq M_2$$
.

- *ii)* B' *is a fractional ideal of* B *and* $B \subset B'$.
- iii) The inverse $(B')^{-1}$ of B' is an ideal of B.

PROOF. i) Let $\{\omega_i\}_{i=1}^n$ be a basis of L/K. There exists $a \in A$ such that $a\omega_1, \ldots, a\omega_n$ are integral over A. Let M_1 denote the A-module generated by $a\omega_1, \ldots, a\omega_n$. Then M_1 is A-free, and $M_1 \subseteq B$.

ii) By definition, B' is an A-module. If $x, y \in B$, then

$$t_{L/K}(x,y) = \operatorname{Tr}_{L/K}(xy) \in A.$$

Hence $B \subset B'$. To show that B' is a fractional ideal, we only should find $b \neq 0$ such that $bB' \subseteq B$. Let x_1, \ldots, x_n be a basis of M_2 over A. Then there exists $b \in B$ such that $bx_1, \ldots, bx_n \in B$. Hence $bB' \subset bM_2 \in B$.

iii) By definition, the inverse $(B')^{-1}$ of B' is the fractional ideal defined by

$$(B')^{-1} = \{x \in L \,|\, xB' \subset B\}$$

Let $x \in (B')^{-1}$. Since $B \subseteq B'$, we have $x \in xB \subset xB' \subset B$. This proves that $(B')^{-1} \subset B$.

Definition. The ideal $\mathfrak{D}_{B/A} := (B')^{-1}$ is called the different of B over A.

THEOREM 3.4. Let $K \subset L \subset M$ be a tower of separable extensions. Let B and C denote the integral closure of A in L and M respectively. Then

$$\mathfrak{D}_{C/A} = \mathfrak{D}_{C/B}\mathfrak{D}_{B/A}.$$

Here $\mathfrak{D}_{C/B}\mathfrak{D}_{B/A}$ denotes the ideal of C generated by the products xy, $x \in \mathfrak{D}_{C/B}$, $y \in \mathfrak{D}_{B/A}$.

PROOF. We will prove the theorem in the equivalent form

$$\mathfrak{D}_{C/A}^{-1} = \mathfrak{D}_{C/B}^{-1} \mathfrak{D}_{B/A}^{-1}.$$

First prove that

$$\mathfrak{D}_{C/B}^{-1}\mathfrak{D}_{B/A}^{-1}\subset\mathfrak{D}_{C/A}^{-1}.$$

The ideal $\mathfrak{D}_{C/B}^{-1}\mathfrak{D}_{B/A}^{-1}$ is generated by the products $xy \ x \in \mathfrak{D}_{C/B}^{-1}$, $y \in \mathfrak{D}_{B/A}^{-1}$. Let $z \in C$. Then $\text{Tr}_{M/L}(xz) \in B$, and

$$\operatorname{Tr}_{M/K}((xy)z) = \operatorname{Tr}_{L/K}(y\operatorname{Tr}_{M/L}(xz)) \in A.$$

therefore $xy \in \mathfrak{D}_{C/A}^{-1}$, and the inclusion (2) is proved.

Now assume that $x \in \mathfrak{D}_{C/A}^{-1}$. Then for all $y \in C$ one has

$$\operatorname{Tr}_{M/K}(xy) \in A$$
.

Since $\operatorname{Tr}_{M/K} = \operatorname{Tr}_{L/K} \circ \operatorname{Tr}_{M/L}$, we obtain that for all $b \in B$

$$\operatorname{Tr}_{L/K}(\operatorname{Tr}_{M/L}(xy)b) = \operatorname{Tr}_{M/K}(x(yb)) \in A.$$

Hence, $\operatorname{Tr}_{M/L}(xy) \in \mathfrak{D}_{B/A}^{-1}$. This implies that for all $z \in \mathfrak{D}_{B/A}$ one has

$$\operatorname{Tr}_{M/L}((xz)y) = z\operatorname{Tr}_{M/L}(xy) \in B,$$

and we obtain that $xz \in \mathfrak{D}_{C/R}^{-1}$. Therefore we proved that

$$\mathfrak{D}_{C/A}^{-1}\mathfrak{D}_{B/A}\subset\mathfrak{D}_{C/B}^{-1},$$

i.e. that

$$\mathfrak{D}_{C/A}^{-1}\subset\mathfrak{D}_{B/A}^{-1}\mathfrak{D}_{C/B}^{-1}.$$

Together with (2), this gives the theorem.

Now we compute the different in the important case of simple extensions of Dedekind rings.

THEOREM 3.5. Assume that $B = A[\alpha]$, where α is some element integral over A. Then $\mathfrak{D}_{B/A}$ coincides with the principal ideal generated by $f'(\alpha)$:

$$\mathfrak{D}_{B/A}=(f'(\alpha)).$$

PROOF. Let $f(X) = a_0 + a_1X + \cdots + a_{n-1}X^{n-1} + X^n \in A[X]$ denote the minimal monic polynomial of α over K. Then $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is a basis of B over A. In particular, B is free of rank n over A.

Let $\alpha_1, \ldots, \alpha_n$ denote the roots of f(X) in some algebraic closure of K containing B. We claim that

(3)
$$\sum_{i=1}^{n} \frac{f(X)}{X - \alpha_i} \frac{\alpha_i^r}{f'(\alpha_i)} = X^r$$

for all $r = 0, 1, \ldots, n-1$. To prove this formula, it is sufficient to remark that X^r and $\sum_{i=1}^n \frac{f(X)}{X - \alpha_i} \frac{\alpha_i^r}{f'(\alpha_i)}$ are both polynomials of degree $\leq n-1$ taking the same values at $\alpha_1, \ldots, \alpha_n$. Namely,

$$\left. \left(\frac{f(X)}{X - \alpha_i} \right) \right|_{X = \alpha_j} = \begin{cases} 0, & \text{if } i \neq j, \\ f'(\alpha_j), & \text{if } i = j. \end{cases}$$

and therefore

$$\left. \sum_{i=1}^{n} \left(\frac{f(X)}{X - \alpha_i} \frac{\alpha_i^r}{f'(\alpha_i)} \right) \right|_{X = \alpha_i} = f'(\alpha_j) \cdot \frac{\alpha_j^r}{f'(\alpha_j)} = f'(\alpha_j).$$

Now we prove the theorem using formula (3).

For any polynomial $g(X) = c_0 + c_1 X + \cdots + c_k X^k$ with coefficients in L, define:

$$\operatorname{Tr}_{L/K}(g(X)) = \sum_{i=1}^{k} \operatorname{Tr}_{L/K}(c_i) X^{i}.$$

Then formula (3) reads:

$$\operatorname{Tr}_{L/K}\left(\frac{f(X)}{X-\alpha}\frac{\alpha^r}{f'(\alpha)}\right) = X^r.$$

Set

$$\frac{f(X)}{X - \alpha} = b_0 + b_1 X + \dots + b_{n-1} X^{n-1}.$$

From the Euclidean division, it follows that all $b_i \in B$. We have:

$$\operatorname{Tr}_{L/K}\left(\frac{b_i}{f'(\alpha)}\alpha^r\right) = \begin{cases} 0, & \text{if } i \neq r, \\ 1, & \text{if } i = r. \end{cases}$$

Therefore the elements $b_i/f'(\alpha)$, $0 \le i \le n-1$ form the dual basis of the basis $1, \alpha, \dots, \alpha^{n-1}$. Hence

$$\mathfrak{D}_{B/A}^{-1} = \frac{1}{f'(\alpha)} (b_0 A + b_1 A + \dots + b_{n-1} A).$$

To complete the proof, we only need to show that

(4)
$$b_0 A + b_1 A + \dots + b_{n-1} A = A[\alpha].$$

Since $b_i \in B$ the inclusion

$$b_0A + b_1A + \cdots + b_{n-1}A \subset B$$

is clear. On the other hand from the identity

$$f(X) = (b_0 + b_1 X + \dots + b_{n-1} X^{n-1})(X - \alpha)$$

we obtain, by induction that

$$b_{n-1} = 1 \Rightarrow A = b_{n-1}A$$

 $b_{n-2} - \alpha = a_{n-1} \Rightarrow \alpha = b_{n-2} - a_{n-1} \in A + b_{n-2}A,$
 $b_{n-3} - \alpha b_{n-2} = a_{n-2} \Rightarrow \alpha^2 \in A + b_{n-2}A + b_{n-3}A,$

Therefore $A[\alpha] \subseteq b_0A + b_1A + \cdots + b_{n-1}A$, and (4) is proved. It implies that $\mathfrak{D}_{B/A}^{-1} = f'(\alpha)^{-1}B$, and we are done.

3.6. The case of local fields. Let L/K be a finite separable extension of local fields. In that case, $\mathfrak{D}_{L/K}$ is a principal ideal and therefore $\mathfrak{D}_{L/K} = \mathfrak{m}_L^s$ for some $s \ge 0$. Set

$$v_L(\mathfrak{D}_{L/K}) := s = \inf\{v_L(x) \mid x \in \mathfrak{D}_{L/K}\}.$$

PROPOSITION 3.7. Let L/K be a finite separable extension of local fields and e = e(L/K) the ramification index. The following assertions hold true:

- i) If $O_L = O_K[\alpha]$, and $f(X) \in O_K[X]$ is the minimal polynomial of α , then $\mathfrak{D}_{L/K} = (f'(\alpha))$.
 - ii) $\mathfrak{D}_{L/K} = O_L$ if and only if L/K is unramified.
 - $iii) v_L(\mathfrak{D}_{L/K}) \geqslant e 1.$
 - iv) $v_L(\mathfrak{D}_{L/K}) = e 1$ if and only if L/K is tamely ramified.

PROOF. The first statement is a particular case of Theorem 3.5. We prove ii-iv) (see also [6, Chapter 3, Proposition 8] for more detail).

a) Let L/K be an unramified extension of degree n. Write $k_L = k_K(\bar{\alpha})$ for some $\bar{\alpha} \in k_L$. Let $f(X) \in k_K[X]$ denote the minimal polynomial of $\bar{\alpha}$. Then $\deg(\bar{f}) = n$. Take any lift $f(X) \in O_K[X]$ of $\bar{f}(X)$ of degree n. By Proposition 1.5 (Hensel's lemma) there exists a unique root $\alpha \in O_L$ of f(X) such that $\bar{\alpha} = \alpha \pmod{\mathfrak{m}_K}$. It's easy to see that $O_L = O_K[\alpha]$. Since $\bar{f}(X)$ is separable, $\bar{f}'(\bar{\alpha}) \neq 0$, and therefore $f'(\alpha) \in U_L$. Applying i), we obtain that

$$\mathfrak{D}_{L/K}=(f'(\alpha))=O_L.$$

Therefore $\mathfrak{D}_{L/K} = O_L$ if L/K is unramified.

b) Assume that L/K is totally ramified. Then $O_L = O_K[\pi_L]$, where π_L is any uniformizer of O_L . Let $f(X) = X^e + a_{e-1}X^{e-1} + \cdots + a_1X + a_0$ be the minimal polynomial of p_i . Then

$$f'(\pi_L) = e\pi_L^{e-1} + (e-1)a_{e-1}\pi_L^{e-2} + \dots + a_1.$$

Since f(X) is Eisenstein, $v_L(a_i) \ge e$, and an easy estimation shows that $v_L(f'(\pi_L)) \ge e - 1$. Thus

$$v_L(\mathfrak{D}_{L/K}) = v_L(f'(\alpha)) \geqslant e - 1.$$

This proves iii). Moreover, $v_L(f'(\alpha)) = e - 1$ if and only if (e, p) = 1 i.e. if and only if L/K is tamely ramified. This proves iv).

c) Assume that $\mathfrak{D}_{L/K} = O_L$. Then $v_L(\mathfrak{D}_{L/K}) = 0$. Let L_{ur} denote the maximal unramified subextension of L/K. By $(\ref{eq:L/K})$, a) and b) we have

$$v_L(\mathfrak{D}_{L/K}) = v_L(\mathfrak{D}_{L/L_{ur}}) \geqslant e - 1.$$

Thus e=1, and we showed that each extension L/K such that $\mathfrak{D}_{L/K}=O_L$ is unramified. Together with a), this proves i).

Exercise 7. Let L/K be a finite extension of local fields. Show that $O_L = O_K[\alpha]$ for some $\alpha \in O_L$. Hint: take $\alpha = [\xi] + \pi_L$, where $k_L = k_K(\xi)$.

4. Ramification filtration

4.1. In this section, we determine Galois groups of unramified extensions.

PROPOSITION 4.2. Let L/K be a finite unramified extension. Then L/K is a Galois extension and the natural homomorphism

$$r: \operatorname{Gal}(L/K) \to \operatorname{Gal}(k_L/k_K)$$

is an isomorphism.

PROOF. a) Write $k_L = k_K(\xi)$ and denote by f(X) the minimal polynomial of ξ . Let $\widehat{f}(X) \in O_K[X]$ be a lift of f(X). Then $O_L = O_K[\widehat{\xi}]$ where $\widehat{f}(\widehat{\xi}) = 0$ and $\xi = \widehat{\xi} \pmod{\pi_L}$ Since k_L/k_K is a Galois extension, all roots ξ_1, \ldots, ξ_n of f(X) lie in k_L . By Hensel's lemma, there exists unique roots $\widehat{\xi}_1, \ldots, \widehat{\xi}_n \in O_L$ of $\widehat{f}(X)$ such that $\xi_i = \widehat{\xi}_i \pmod{\pi_L}$. This shows that L/K is a Galois extension.

b) Let $g_i \in \operatorname{Gal}(L/K)$ be such that $g_i(\widehat{\xi}) = \widehat{\xi}_i$. Then $r(g_i)(\xi) = \xi_i$. This shows that r is an isomorphism.

Recall that $Gal(k_L/k_K)$ is the cyclic group generated by the automorphism of Frobenius:

$$f_{k_L/k_K}(x) = x^q, \quad \forall x \in k_L.$$

DEFINITION. We denote by $F_{L/K}$ and call the Frobenius automorphism of L/K the pre-image of f_{k_L/k_K} in $\mathrm{Gal}(L/K)$. Thus $F_{L/K}$ is the unique automorphism such that

$$F_{L/K}(x) \equiv x^q \pmod{\pi_L}$$
.

4.3. Let L/K be a arbitrary finite Galois extension, and let $L_{\rm ur}$ denote its maximal unramified subextension. Then we have an exact sequence

$$\{1\} \rightarrow I_{L/K} \rightarrow \operatorname{Gal}(L/K) \rightarrow \operatorname{Gal}(L_{\operatorname{ur}}/K) \rightarrow \{1\}$$

The subgroup $I_{L/K} = \text{Gal}(L/L_{\text{ur}})$ is called the inertia subgroup of Gal(L/K).

4.4. Let L/K be a finite Galois extension of local fields. Set G = Gal(L/K). For any integer $i \ge -1$ define

$$G_i = \{ g \in G \mid v_L(g(x) - x) \geqslant i + 1, \quad \forall x \in O_L \}.$$

DEFINITION. The subgroups G_i are called ramification subgroups.

We have a descending chain

$$G = G_{-1} \supset G_0 \supset G_1 \supset \cdots \supset G_m = \{1\}$$

called the ramification filtration on G (in low numbering). Below we collect some basic properties of these subgroups.

1)
$$G_{-1} = G$$
 and $G_0 = I_{L/K}$.

PROOF. We have

$$g \in G_0 \Leftrightarrow g(x) \equiv x \pmod{\pi_L} \Leftrightarrow g \in I_{L/K}$$
.

2) G_i are normal subgroups of G.

PROOF. Let $g \in G_i$ and $s \in G$. Then

$$v_L(s^{-1}gs(x) - x) = v_L(s^{-1}gs(x) - s^{-1}s(x)) = v_L(gs(x) - s(x)).$$

3) For each $i \ge 0$ one has

$$G_i = \left\{ g \in G \mid v_L \left(1 - \frac{g(\pi_L)}{\pi_L} \right) \geqslant i \right\}.$$

PROOF. We have

$$g(\pi_L^k) - \pi_L^k = (g(\pi_L))^k - \pi_L^k = (g(\pi_L) - \pi_L)a, \qquad a \in O_L$$

Since g acts trivially on Teichmüller lifts, this implies that

$$g \in G_i \Leftrightarrow v_L(g(\pi_L) - \pi_L) \geqslant i + 1.$$

This implies the assertion.

PROPOSITION 4.5. *i)* For all $i \ge 0$, the map

(5)
$$s_i: G_i/G_{i+1} \to U_L^{(i)}/U_L^{(i+1)}$$

which sends $\bar{g} = g \mod G_{i+1}$ to $s_i(\bar{g}) = \frac{g(\pi_L)}{\pi_L} \pmod{U_L^{(i+1)}}$, is a well defined monomorphism which doesn't depend on the choice of the uniformizer π_L of L.

ii) The composition of s_i with the maps (2.9) gives monomorphisms

(6)
$$\delta_0: G_0/G_1 \to k^*, \quad \delta_i: G_i/G_{i+1} \to k^+, \quad \text{for all } i \geqslant 1.$$

PROOF. The proof is straightforward. See [7, Chapitre IV, Propositions 5-7]. \Box

COROLLARY 4.6. The Galois group G is solvable for any Galois extension.

4.7. For our study of the ramification filtration, it is convenient to introduce the function

$$i_{L/K}: G \rightarrow \mathbf{Z} \cup \{+\infty\}, \qquad i_{L/K}(g) = \min\{g(x) - x \mid x \in O_L\}.$$

Below, we summarize basic properties of this function:

1) If $O_L = O_K[\alpha]$, then

$$i_{L/K}(g) = v_L(g(\alpha) - \alpha).$$

Note that for any finite extension of local fields L/K, there exists $\alpha \in L$ such that $O_L = O_K[\alpha]$ (see Exercise 7).

PROOF. We only need to show that for any $x \in O_L$,

$$v_L(g(x)-x) \geqslant v_L(g(\alpha)-\alpha).$$

Since $x = \sum_{k=0}^{n-1} a_k \alpha^k$ for some $a_k \in O_K$, this follows from the computation

$$g(\alpha) - \alpha = \sum_{k=0}^{n-1} a_k g(\alpha^k) - \sum_{k=0}^{n-1} a_k \alpha^k = \sum_{k=1}^{n-1} a_k (g(\alpha)^k - \alpha^k)$$

and the identity

$$g(\alpha)^k - \alpha^k = (g(\alpha) - \alpha) \cdot \left(\sum_{j=0}^{k-1} g(\alpha)^{k-j-1} \alpha^k \right).$$

2) For all $g_1, g_2 \in G$,

$$i_{L/K}(g_1g_2) \geqslant \min\{i_{L/K}(g_1), i_{L/K}(g_2)\}.$$

PROOF. For any $x \in O_L$, one has

$$g_1g_2(x) - x = g_1(g_2(x) - x) + (g_1(x) - x).$$

Since $v_L(g(y)) = v_L(y)$ for any $y \in L$ and $g \in G$, we obtain that

$$v_L(g_1g_2(x) - x) \ge \min\{v_L(g_1(g_2(x) - x)), v_L(g_1(x) - x)\}$$

$$= \min\{v_L(g_2(x) - x), v_L(g_1(x) - x)\},$$

and we are done.

3) For all $g_1, g_2 \in G$,

$$i_{L/K}(g_1^{-1}g_2g_1) = i_{L/K}(g_2).$$

PROOF. Let $O_L = O_K[\alpha]$. Since $g_1: O_L \to O_L$ is a bijection, one has $O_L = O_K[g_1^{-1}(\alpha)]$ and $i_{L/K}(g) = v_L(gg_1^{-1}(\alpha) - g_1^{-1}(\alpha))$ for any $g \in G$. Hence

$$\begin{split} i_{L/K}(g_1^{-1}g_2g_1) &= v_L(g_1^{-1}g_2g_1(g_1^{-1}(\alpha) - g_1^{-1}(\alpha))) = v_L(g_1^{-1}g_2(\alpha) - g_1^{-1}(\alpha)) \\ &= v_L(g_1^{-1}(g_2(\alpha) - \alpha)) = v_L(g_2(\alpha) - \alpha) = i_{L/K}(g_2). \end{split}$$

4) For any $g \in G$,

$$i_{L/K}(g^{-1}) = i_{L/K}(g).$$

PROOF. This property follows immediately from the following computation:

$$v_L(g^{-1}(x)-x) = v_L(g(g^{-1}(x)-x)) = v_L(x-g(x)).$$

5) $g \in G_i$ if and only if $i_{L/K}(g) \ge i + 1$.

PROOF. This property is clear.

4.8. The different $\mathfrak{D}_{L/K}$ of a finite Galois extension can be computed in terms of the ramification subgroups.

PROPOSITION 4.9. Let L/K be a finite Galois extension of local fields. Then

$$v_L(\mathfrak{D}_{L/K}) = \sum_{g \neq 1} i_{L/K}(g) = \sum_{i=0}^{\infty} (|G_i| - 1).$$

PROOF. Let $O_L = O_K[\alpha]$ and let f(X) be the minimal polynomial of α . Since

$$f'(\alpha) = \prod_{g \neq 1} (\alpha - g(\alpha)),$$

we have

$$v_{L}(\mathfrak{D}_{L/K}) = v_{L}(f'(\alpha)) = \sum_{g \neq 1} v_{L}(\alpha - g(\alpha)) = \sum_{g \neq 1} i_{L/K}(g) = \sum_{i=0}^{\infty} (i+1)(|G_{i}| - |G_{i+1}|)$$

$$= \sum_{i=0}^{\infty} (i+1)((|G_{i}| - 1) - (|G_{i+1}| - 1)) = \sum_{i=0}^{\infty} (|G_{i}| - 1).$$

4.10. Our next goal is to understand the behavior of the ramification filtration in towers of local fields. We will consider a tower

(7)

where $G := \operatorname{Gal}(L/K)$ and $H := \operatorname{Gal}(L/F)$. From the definition of the ramifiaction subgroups it follows immediately that

$$H_i = H \cap G_i, \qquad i \geqslant -1.$$

COROLLARY 4.11. One has

$$e(L/F) v_F(\mathfrak{D}_{F/K}) = \sum_{g \in G \backslash H} i_{L/K}(g).$$

PROOF. Write Proposition 4.9 for the extension L/F:

$$v_L(\mathfrak{D}_{L/F}) = \sum_{h \in H \setminus \{e\}} i_{L/F}(h)$$

Taking into account that $i_{L/F}(h) = i_{L/K}(h)$ and $G = (G \setminus H) \cup H$, we have

(8)
$$v_L(\mathfrak{D}_{L/K}) - v_L(\mathfrak{D}_{L/F}) = \sum_{g \in G \setminus H} i_{L/F}(g).$$

On the other hand, from Theorem 3.4, we have

$$(9) v_L(\mathfrak{D}_{L/K}) = v_L(\mathfrak{D}_{L/F}) + v_L(\mathfrak{D}_{F/K}) = v_L(\mathfrak{D}_{L/F}) + e(L/F)v_F(\mathfrak{D}_{F/K}).$$

(Here we use the formula $v_L(x) = e(L/F)v_F(x)$ for $x \in F$.) Comparing formulas (8) and (9), we obtain the corollary.

From now one, we assume that F/K is a Galois extension. Note that in that case Gal(F/K) = G/H. If $g \in G$ and $s \in G/H$, we will write $g \mapsto s$ if s is the image of g under the canonical projection $G \to G/H$.

PROPOSITION 4.12. For all $s \in G/H$,

$$e(L/F)i_{F/K}(s) = \sum_{g \mapsto s} i_{L/K}(g).$$

PROOF. If s = e, the both sides of the formula are equal to $+\infty$. Assume that $s \neq e$. Write $O_L = O_F[\alpha]$ and denote by $f(X) \in O_F[X]$ the minimal polynomial of α over F. Let $sf(X) \in O_F[X]$ denote the polynomial obtained acting s on the coefficients of f(X) (so, s acts trivially on the variable X). Directly from the definition of $i_{F/K}$, one has

$$sf(X) - f(X) \equiv 0 \pmod{\mathfrak{m}_F^{i_{F/K}(s)}}.$$

Hence $(sf)(\alpha) \equiv 0 \pmod{\mathfrak{m}_F^{i_{F/K}(s)}}$. On the other hand, acting on the both sides of the formula $f(X) = \prod_{h \in H} (X - h(\alpha))$ by any lift of s in G, we obtain

$$s f(X) = \prod_{g \mapsto s} (X - g(\alpha)).$$

Therefore, $(sf)(\alpha) = \prod_{g \mapsto s} (\alpha - g(\alpha))$, and

$$\prod_{\alpha \in \mathcal{S}} (\alpha - g(\alpha)) \equiv 0 \pmod{\mathfrak{m}_F^{i_{F/K}(s)}}.$$

Taking the valuations of the both sides, we obtain the inequality

$$\sum_{g\mapsto s}i_{L/K}(g)\geqslant e(L/F)i_{F/K}(s).$$

To show that this inequality is in fact equality, we take the sum over all $s \neq e$ and use Corollary 4.11:

$$e(L/F)\sum_{s\neq e}i_{F/K}(s)\geqslant \sum_{s\neq e}\sum_{g\mapsto s}i_{L/K}(g)=\sum_{g\in G\backslash H}i_{L/K}(g)=e(L/F)\sum_{s\neq e}i_{F/K}(s).$$

Therefore $e(L/F)i_{F/K}(s) = \sum_{g \mapsto s} i_{L/K}(g)$ for all s, and the proposition is proved. \square

For any $s \in G/H$, define

$$j(s) := \max\{i_{L/K}(g) \mid g \mapsto s\}.$$

Then there exists $\tilde{g} \mapsto s$ such that $j(s) = i_{L/K}(\tilde{g})$. Then any g such that $g \mapsto s$ can be written in the form $g = \tilde{g}h$ for some $h \in H$. Hence

$$i_{L/K}(g) \geqslant \min\{i_{L/K}(\tilde{g}), i_{L/K}(h)\}.$$

On the other hand, writing $h = \tilde{g}^{-1}g$ we have

$$i_{L/K}(h) \geqslant \min\{i_{L/K}(\tilde{g}^{-1}), i_{L/K}(g)\} = \min\{i_{L/K}(\tilde{g}), i_{L/K}(g)\} = i_{L/K}(g).$$

Therefore

$$i_{L/K}(g) = \min\{i_{L/K}(\tilde{g}), i_{L/K}(h)\},$$

and we can write Proposition 4.12 in the following form:

COROLLARY 4.13. For all $s \in G/H$,

$$e(L/F)i_{F/K}(s) = \sum_{h \in H} \min\{j(s), i_{L/K}(h)\}.$$

4.14. Let L/K en a finite Galois extension of local fields. For any real $x \ge -1$ set $G_x := G_m$, where m is the unique integer such that $m \le x < m+1$. The Hasse–Herbrand function $varphi_{L/K}$ is defined as follows

(10)
$$\varphi_{L/K}(u) = \begin{cases} u & \text{if } -1 \leq u \leq 0, \\ \int_0^u \frac{dx}{(G_0 : G_x)}, & \text{if } u \geq 0 \end{cases}$$

From definition it follows that $\varphi_{L/K}$ is a continuous strictly increasing piecewise linear function. More explicitly, if we set $g_m := |G_m|$ for all integer $m \ge -1$, then

$$\varphi_{L/K}(u) = \frac{1}{g_0}(g_1 + \ldots + g_m + (u - m)g_{m+1}), \quad \text{if} \quad m < u \leqslant m + 1.$$

In particular $\varphi_{L/K}: [-1, +\infty[\to [-1, +\infty[$ is a bijection, and we denote by $\psi_{L/K}$ its inverse function:

$$\psi_{L/K}(v) := \varphi_{L/K}^{-1}(v).$$

LEMMA 4.15. The following formula holds true:

$$\varphi_{L/K}(u) = \frac{1}{g_0} \sum_{g \neq e} \min\{i_{L/K}(g), u+1\} - 1.$$

PROOF. a) The both sides of this formula are continuous functions. In addition, because $i_{L/K}(g) \ge 0$, for any $u \in [-1,0]$ one has

$$\min\{i_{L/K}(g), u+1\} = \begin{cases} 0, & \text{if } g \notin G_0, \\ u+1, & \text{if } g \in G_0. \end{cases}$$

Therefore, if $u \in [-1, 0]$, then

$$RHS(u) = \frac{1}{g_0} \sum_{g \neq e} \min\{i_{L/K}(g), u+1\} - 1 = \frac{g_0(u+1)}{g_0} - 1 = u,$$

and RHS(*u*) = $\varphi_{L/K}(u)$ on [-1.0].

b) Assume that m < u < m + 1 for some integer $m \ge 0$. Then

$$\min\{i_{L/K}(g), u+1\} = \begin{cases} i_{L/K}(g), & \text{if } g \notin G_{m+1}, \\ u+1, & \text{if } g \in G_{m+1}, \end{cases}$$

and therefore

RHS'(u) =
$$\frac{g_{m+1}}{g_0} = \varphi'_{L/K}(u)$$
.

This implies that RHS'(u) = $\varphi'_{L/K}(u)$ if $u \notin \mathbf{Z}$. Hence RHS(u) = $\varphi_{L/K}(u)$, and the lemma is proved.

LEMMA 4.16. Let $K \subset F \subset L$ be a tower of finite Galois extensions. We keep notation of diagram (7). Then

$$i_{F/K}(s) = \varphi_{L/F}(j(s) - 1) + 1, \quad s \in G/H.$$

PROOF. From Lemma 4.15 it follows that

$$\varphi_{L/F}(j(s)-1)+1 = \frac{1}{|H_0|} \sum_{h \neq e} \min\{i_{L/K}(h), j(s)\}.$$

On the other hand, Corollary 4.13 can be written in the form

$$i_{F/K}(s) = \frac{1}{|H_0|} \sum_{h \in H} \min\{j(s), i_{L/K}(h)\}.$$

Here we remark that $e(L/F) = |H_0|$. These formulas imply the lemma.

We are now in position to prove the central results of the ramification theory of Hasse-Herbrand.

THEOREM 4.17. i) For any $u \ge 0$

$$G_uH/H \simeq (G/H)_{\varphi_{L/F}(u)}$$
.

ii)
$$\varphi_{L/K} = \varphi_{F/K} \circ \varphi_{L/F}$$
 and $\psi_{L/K} = \psi_{L/F} \circ \psi_{F/K}$.

PROOF. i) The first statement follows from the equivalences

$$s \in (G/H)_{\varphi_{L/F}(u)} \Leftrightarrow i_{F/K}(s) \geqslant \varphi_{L/F}(u) + 1 \stackrel{\text{lemma 4.16}}{\Leftrightarrow} \varphi_{L/F}(j(s) - 1) \geqslant \varphi_{L/F}(u)$$

 $\Leftrightarrow j(s) \geqslant u + 1 \Leftrightarrow \exists g \mapsto s, \text{ such that } g \in G_u.$

ii) We deduce ii) from i). We have

$$(\varphi_{F/K} \circ \varphi_{L/F})'(u) = \varphi'_{F/K}(\varphi_{L/F}(u))\varphi'_{L/F}(u) = \frac{1}{((G/H)_0 : (G/H)_{\varphi_{L/F}(u)}) \cdot (H_0 : H_u)}$$

and

$$(G/H)_{\varphi_{L/F}(u)} = G_u H/H = G_u/(H \cap G_u) = G_u/H_u.$$

This implies that

$$((G/H)_0: (G/H)_{\varphi_{U/F}(u)}) = (G_0: G_u)/(H_0: H_u),$$

and therefore

$$(\varphi_{F/K}\circ\varphi_{L/F})'(u)=\frac{1}{(G:G_u)}=\varphi'_{L/K}(u).$$

This implies ii).

4.18. In order to define the ramification filtration for infinite extensions, we introduce the so-called upper numbering of ramification subgroups.

DEFINITION. The ramification subgroups in upper numbering are defined as follows:

$$G^{(v)} = G_{\psi_{L/K}(v)}$$

or equivalently $G^{\varphi_{L/K}(u)} = G_u$.

THEOREM 4.19.

$$(G/H)^{(v)} = G^{(v)}/G^{(v)} \cap H, \qquad \forall v \geqslant 0.$$

PROOF. We have $(G/H)^{(v)} = (G/H)_{\Psi_{F/K}(v)}$ and

$$G^{(v)}/G^{(v)}\cap H=G_{\psi_{L/K}(v)}/G_{\psi_{L/K}(v)}\cap H.$$

Setting $x = \psi_{L/K}(v)$, we have

$$G^{(v)}/G^{(v)}\cap H=G_x/G_x\cap H$$

and $(G/H)^{(v)}=(G/H)_{\varphi_{L/F}(x)}$. By Theorem 4.17, $(G/H)_{\varphi_{L/F}(x)}=G_x/G_x\cap H$, and we are done.

PROPOSITION 4.20. One has

$$\psi_{L/K}(v) = \begin{cases} v & \text{if } -1 \leqslant v \leqslant 0, \\ \int_0^v (G^{(0)} : G^{(x)}) dx & \text{if } u \geqslant 0. \end{cases}$$

PROOF. Since $\psi_{L/K}(v) = \varphi_{L/K}^{-1}(v)$, we have

$$\psi'_{L/K}(\varphi_{L/K}(u)) = \frac{1}{\varphi'_{L/K}(u)} = (G_0 : G_u) = (G^{(0)} : G^{(\varphi_{L/K}(u))}).$$

Setting $x = \varphi_{L/K}(u)$, we obtain that $\psi'_{L/K}(x) = (G^{(0)}:G^{(x)})$. This proves the proposition.

4.21. Hasse-Hebrand theory allows to define the ramification filtration for infinite Galois extensions. Namely, for any (finite or infinite) Galois extension of local fields M/K define

$$\operatorname{Gal}(M/K)^{(v)} = \varprojlim_{L/K \text{ finite}} \operatorname{Gal}(L/K)^{(v)}$$

In particular, we can consider the ramification filtration on the absolute Galois group G_K of K. This filtration contains fundamental information about the field K.

Exercise 8. 1) Let ζ_{p^n} be a p^n th primitive root of unity. Set $K = \mathbf{Q}_p(\zeta_{p^n})$ and $G = \operatorname{Gal}(K/\mathbf{Q}_p)$. We have the isomorphism

$$\chi_n: G \simeq (\mathbf{Z}/p^n\mathbf{Z})^*, \qquad g(\zeta_{p^n}) = \zeta_{p^n}^{\chi_n(g)}.$$

Set $\Gamma = (\mathbf{Z}/p^n\mathbf{Z})^*$. Let $\Gamma^{(m)} = \{\bar{a} \in (\mathbf{Z}/p^n\mathbf{Z})^* \mid a \equiv 1 \pmod{p^m}\}$ (in particular $\Gamma^{(0)} = (\mathbf{Z}/p^n\mathbf{Z})^*$ and $\Gamma^{(n)} = \{1\}$).

a) Show that

 $\chi(G_i) = \Gamma^{(m)}$, where *m* is the unique integer such that $p^{m-1} \leq i < p^m$.

- b) Give Hasse–Herbrand's functions ϕ_{K/\mathbf{Q}_p} and ψ_{K/\mathbf{Q}_p} .
- c) Set

$$\Gamma^{(v)} = \Gamma^{(m)}$$
 where *m* is the smallest integer $\geqslant v$.

Show that the upper ramifiation filtration on G is given by

$$\chi_n(G^{(v)}) = \Gamma^{(v)}$$
.

2) Let $(\zeta_{p^n})_{n\geqslant 1}$ denote a system of p^n th primitive roots of unity such that $\zeta_{p^n}^p = \zeta_{p^{n-1}}$. Set $K_n = \mathbf{Q}_p(\zeta_{p^n})$, $K_\infty = \bigcup_{n\geqslant 1} K_n$ and $G_\infty = \operatorname{Gal}(K_\infty/\mathbf{Q}_p)$. Let $U_{\mathbf{Q}_p} = \mathbf{Z}_p^*$ be the group of units of \mathbf{Q}_p . We have the isomorphism:

$$\chi: G \simeq U_{\mathbf{Q}_p}, \qquad g(\zeta_{p^n}) = \zeta_{p^n}^{\chi(g)}, \quad \forall n \geqslant 1.$$

For any $v \ge 0$ set

$$U_{\mathbf{Q}_n}^{(v)} = U_{\mathbf{Q}_n}^{(m)}$$
, where *m* is the smallest integer $\geqslant v$.

Show that

$$\chi(G^{(v)}) = U_{\mathbf{O}_n}^{(v)}, \qquad \forall v \geqslant 0.$$

4.22. Formula (4.9) can be written in terms of upper ramification subgroups:

THEOREM 4.23. Let L/K be a finite Galois extension. Then

$$v_K(\mathfrak{D}_{L/K}) = \int_{-1}^{\infty} \left(1 - \frac{1}{|G^{(v)}|}\right) dv.$$

PROOF. We start with the computation of the derivative of $\psi_{L/K}$. From the identity $\psi_{L/K} \circ \varphi_{L/K}(u) = u$, we have $\psi'_{L/K}(\varphi_{L/K}(u)) \varphi'_{L/K}(u) = 1$. Since $\varphi'_{L/K}(u) = 1/(G_0 : G_u)$, this implies that

$$\psi'_{L/K}(\varphi_{L/K}(u))=(G_0:G_u).$$

Setting $v = \varphi_{L/K}(u)$, we obtain the formula

$$\psi'_{L/K}(v) = (G_0: G_{\psi_{L/K}(v)}) = (G_0: G^{(v)}) = (G^{(0)}: G^{(v)}).$$

We pass to the proof of the theorem. By (4.9), we have

$$v_K(\mathfrak{D}_{L/K}) = \frac{v_L(\mathfrak{D}_{L/K})}{e(L/K)} = \frac{1}{|G_0|} \int_{-1}^{\infty} (|G_u| - 1) du.$$

Setting $u = \psi_{L/K}(v)$ and taking into account that $\psi'_{L/K}(v) = (G^{(0)}:G^{(v)})$ we can write:

$$\begin{split} v_K(\mathfrak{D}_{L/K}) &= \frac{1}{|G_0|} \int_{-1}^{\infty} (|G^{(v)}| - 1) \psi'_{L/K}(v) dv \\ &= \frac{1}{|G_0|} \int_{-1}^{\infty} (|G^{(v)}| - 1) (G^{(0)} : G^{(v)}) dv = \int_{-1}^{\infty} \left(1 - \frac{1}{|G^{(v)}|}\right) dv. \end{split}$$

The theorem is proved.

The above theorem can be generalized to arbitrary (not necessarily Galois) finite extensions as follows. For any $v \ge 0$ define

$$\overline{K}^{(v)} = \overline{K}^{G_K^{(v)}}.$$

THEOREM 4.24. For any finite extension L/K one has

(11)
$$v_K(\mathfrak{D}_{L/K}) = \int_{-1}^{\infty} \left(1 - \frac{1}{[L:L \cap \overline{K}^{(v)}]}\right) dv$$

PROOF. See [3, Lemma 2.1]).

5. Galois groups of local fields

5.1. The maximal unramified extension. In this section, we review the structure of Galois groups of local fields. Let K be a local field. Fix a separable closure \overline{K} of K and set $G_K = \operatorname{Gal}(\overline{K}/K)$. Since the compositum of two unramified (respectively tamely ramified) extensions of K is unramified (respectively tamely ramified) we have the well defined notions of the maximal unramified (respectively maximal tamely ramified) extension of K. We denote these extension by K^{ur} and K^{tr} respectively.

For each n there exists a unique unramified Galois extension K_n of degree n, and we have a canonical isomorphism $\operatorname{Gal}(K_n/K) \simeq \mathbb{Z}/n\mathbb{Z}$ which sends the Frobenius automorphism $\operatorname{Fr}_{K_n/K}$ onto $1 \mod n\mathbb{Z}$. If $n \mid m$, the diagram

$$Gal(K_m/K) \xrightarrow{\sim} \mathbf{Z}/m\mathbf{Z}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Gal(K_n/K) \xrightarrow{\sim} \mathbf{Z}/n\mathbf{Z}$$

commutes. Passing to projective limits, we obtain an isomorphism

$$\operatorname{Gal}(K^{\operatorname{ur}}/K) = \varprojlim_{n} \operatorname{Gal}(K_{n}/K) \xrightarrow{\sim} \widehat{\mathbf{Z}},$$

where $\widehat{\mathbf{Z}} = \varprojlim_n \mathbf{Z}/n\mathbf{Z}$. To sum up, the maximal unramified extension K^{ur} of K is procyclic and its Galois group is generated by the Frobenius automorphism Fr_K :

$$\operatorname{Gal}(K^{\operatorname{ur}}/K) \stackrel{\sim}{\longrightarrow} \widehat{\mathbf{Z}},$$
 $\operatorname{Fr}_K \longleftrightarrow 1.$
 $\operatorname{Fr}_K(x) \equiv x^{q_K} \pmod{\pi_K}, \quad \forall x \in O_{K^{\operatorname{ur}}}.$

Exercise 9. 1) Let ℓ be a prime number. Show that $\varprojlim_k \mathbf{Z}/\ell^k\mathbf{Z} \simeq \mathbf{Z}_{\ell}$. 2) Show that $\widehat{\mathbf{Z}} \simeq \prod_{\ell} \mathbf{Z}_{\ell}$.

Exercise 10. Let K be a local field with residue field of characteristic p. Show that

$$K^{\mathrm{ur}} = \bigcup_{(n,p)=1} K(\zeta_n).$$

5.2. The maximal tamely ramified extension. Let L/K be a finite Galois extension with the Galois group G. Recall that G_0 coincides with the inertia subgroup $I_{L/K}$ of G and $L_0 := L^{G_0}$ is the maximal unramified subextension of L/K. Set $L_1 := L^{G_1}$. Then $\operatorname{Gal}(L_1/L_0) \simeq G_0/G_1$ and $\operatorname{Gal}(L/L_1) = G_1$. From Propositions 4.5 and 2.9 it follows that L_1 is the maximal tamely ramified subextension L_{tr} of L/K. To sup up, we have the tower of extensions

DEFINITION 5.3. The group $P_{L/K} := G_1$ is called the wild inertia subgroup.

We remark that $P_{L/K}$ is a *p*-group (its order is a power of *p*). Passing to direct limit in the above diagram (12), we have:

(13)
$$\begin{array}{c|c}
\overline{K} \\
 & | P_{K} \\
\hline
K^{tr} \\
 & | \\
K^{ur} \\
\widehat{\mathbf{z}} \\
K
\end{array}$$

Consider the exact sequence

(14)
$$1 \to \operatorname{Gal}(K^{\operatorname{tr}}/K^{\operatorname{ur}}) \to \operatorname{Gal}(K^{\operatorname{tr}}/K) \to \operatorname{Gal}(K^{\operatorname{ur}}/K) \to 1.$$

Here $\operatorname{Gal}(K^{\operatorname{ur}}/K) \simeq \widehat{\mathbf{Z}}$. From the explicit description of tamely ramified extensions (see also Exercise 4), it follows that K^{tr} is generated over K^{ur} by the roots $\pi_K^{1/n}$,

(n,p)=1 of any uniformizer π_K of K. Since

$$\operatorname{Gal}(K^{\operatorname{ur}}(\pi_K^{1/n})/K^{\operatorname{ur}}) \simeq \mathbf{Z}/n\mathbf{Z}$$
 (not canonically)

this immediately implies that

$$\mathrm{Gal}(K^{\mathrm{tr}}/K^{\mathrm{ur}}) \simeq \varprojlim_{(n,p)=1} \mathbf{Z}/n\mathbf{Z} \simeq \prod_{\ell \neq p} \mathbf{Z}_{\ell}.$$

REMARK 5.4. It is not difficult to discribe the group $Gal(K^{tr}/K)$ in terms of generators and relations.

5.5. Local class field theory. We say that a Galois extension L/K is abelian if $\operatorname{Gal}(L/K)$ is an abelian group. It's easy to see that the compositum of two abelian extensions is abelian. Denote by K^{ab} the compositum of all abelian extensions of K and by $G_K^{\operatorname{ab}} := \operatorname{Gal}(K^{\operatorname{ab}}/K)$ its Galois group. Local class field theory gives an explicit description of G_K^{ab} in terms of K.

THEOREM 5.6. There exists a canonical group homomorphism (called the reciprocity map) with dense image

$$\theta_K:K^*\to G_K^{\mathrm{ab}}$$

such that

i) For any finite abelian extension L/K, the homomorphism θ_K induces an isomorphism

$$\theta_{L/K}: K^*/N_{L/K}(L^*) \xrightarrow{\sim} \operatorname{Gal}(L/K),$$

where $N_{L/K}: L \to K$ is the norm map.

ii) If K^{ur}/K is the maximal unramified extension of K, then for any uniformizer $\pi_K \in K^*$ the restriction of the automorphism $\theta_K(\pi_K)$ on K^{ur} coincides with the Frobenius $\mathrm{Fr}_{L/K}$, and we have a commutative diagram

$$K^* \xrightarrow{\theta_K} G_K^{ab}$$

$$\downarrow^{\nu_K} \qquad \qquad \downarrow^{\nu_K}$$

$$\widehat{\mathbf{Z}} \xrightarrow{} \operatorname{Gal}(K^{\operatorname{ur}}/K),$$

where the bottom map sends 1 to Fr_K . Equivalently, for any $x \in K^*$, the automorphism $\theta_K(x)$ acts on K^{ur} by

$$\theta_K(x)|_{K^{\mathrm{ur}}} = \mathrm{Fr}_K^{\nu_K(x)}.$$

REMARK 5.7. Local class field theory was developed by Hasse. The modern approach is based on the cohomology of finite groups (see [7] or [2, Chapter VI], written by Serre).

It can be shown, that the reciprocity map is compatible with the ramification filtration in the following sense. For any real $v \ge 0$, set $U_K^{(v)} = U_K^{(n)}$, where n is the smallest integer $\ge v$. Then

(15)
$$\theta_K\left(U_K^{(v)}\right) = (G_K^{ab})^{(v)}, \qquad \forall v \geqslant 0.$$

For the classical proof of this result, see [7, Chapter XV].

5.8. Ramification jumps.

DEFINITION. Let L/K be a Galois extension of local fields (finite or infinite). We say that $v \ge -1$ is a ramification jump of L/K if

$$\operatorname{Gal}(L/K)^{(v+\varepsilon)} \neq \operatorname{Gal}(L/K)^{(v)}, \quad \forall \varepsilon > 0.$$

From (15) it follows that the ramification jumps of K^{ab}/K are the integers -1, $0, 1, \ldots$ Under the reciprocity map, the inertia subgroup $I_{K^{ab}/K}$ of G_K^{ab} is isomorphic to U_K and the wild ramification subgroup $P_{K^{ab}/K}$ of $I_{K^{ab}/K}$ is isomorphic to $U_K^{(1)}$. Therefore, for the maximal abelian tamely ramified extension $K^{ab,tr}$ we have

$$\operatorname{Gal}(K^{\operatorname{ab},\operatorname{tr}}/K^{\operatorname{ur}}) \simeq U_K/U_K^{(1)} \simeq k_K^*.$$

If L/K is an abelian extension with Galois group G, then by Galois theory, $G = G_K^{ab}/H$ for some closed subgroup $H \subset G_K^{ab}$. From Herbrand's theorem we have $G^{(v)} = (G_K^{ab})^{(v)}/H \cap (G_K^{ab})^{(v)}$. Therefore from (15) it follows that the jumps of the ramification filtration on G are integers (theorem of Hasse-Arf). Assume, in addition, that L/K is wildly ramified i.e. totally ramified of degree power of p. The canonical projection of G_K^{ab} onto G induces a diagram

$$0 \longrightarrow P_{K^{ab}/K} \longrightarrow G_K^{ab} \longrightarrow Gal(K^{ab,tr}/K) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow P_{L/K} \longrightarrow G \longrightarrow G/P_{L/K} \longrightarrow 0.$$

Since L/K is wildly ramified, $G = P_{L/K}$, and one has

$$G \simeq P_{K^{\mathrm{ab}}/K}/(H \cap P_{K^{\mathrm{ab}}/K}).$$

Therefore

$$G^{(v)} \simeq P_{K^{\mathrm{ab}}/K}^{(v)}/(H \cap P_{K^{\mathrm{ab}}/K}^{(v)}), \qquad v \geqslant 1.$$

We can write this property in terms of the group of units U_K . Namely, let N denote the subgroup of $U_K^{(1)}$ that corresponds to $H \cap P_{K^{\mathrm{ab}}/K}$ under the isomorphism $P_{K^{\mathrm{ab}}/K} \simeq U_K^{(1)}$. Then we have an isomorphism

$$\rho: G \simeq U_K^{(1)}/N.$$

From the description of the ramification in terms of the reciprocity map (15), we obtain that

(16)
$$\rho\left(G^{(\nu)}\right) \simeq U_K^{(\nu)}/(N \cap U_K^{(\nu)}), \qquad \nu \geqslant 1.$$

Let denote by $v_0 < v_1 < v_2 < \dots$ the ramification jumps of L/K. Since the quotients $U_K^{(i)}/U_K^{(i)}$ are p-elementary abelian groups (each non trivial element has order p), we conclude that all quotients $G^{(v_i)}/G^{(v_{i+1})}$ are p-elementary. This also can be

proved directly using Proposition 4.5 without any reference to the reciprocity map θ_K .

6. Ramification in \mathbb{Z}_p -extensions

We illustrate the ramification theory of infinite extensions on the example of \mathbf{Z}_p -extensions.

DEFINITION. A \mathbb{Z}_p -extension is a Galois extension L/K with Galois group isomorphic to \mathbb{Z}_p .

In this section, we assume that K_{∞}/K is a totally ramified \mathbb{Z}_p -extension of local fields of characteristic 0 and set $\Gamma = \operatorname{Gal}(K_{\infty}/K)$. For any n, $p^n\mathbb{Z}_p$ is the unique open subgroup of \mathbb{Z}_p of index p^n and we denote by $\Gamma(n)$ the corresponding subgroup of Γ . Set $K_n = L^{\Gamma(n)}$. Then K_n is the unique subextension of K_{∞}/K of degree p^n over K. We have

$$K_{\infty} = \bigcup_{n>1} K_n, \quad \operatorname{Gal}(K_n/K) \simeq \mathbf{Z}/p^n\mathbf{Z}.$$

Note that K_{∞}/K is abelian by definition. Let $(v_i)_{i\geqslant 0}$ denote the increasing sequence of ramification jumps of L/K. Since $\Gamma \simeq \mathbf{Z}_p$ and all quotients $\Gamma^{(v_i)}/\Gamma^{(v_{i+1})}$ are p-elementary, we obtain that

$$\Gamma^{(v_i)} = p^i \mathbf{Z}_p, \quad \forall i \geqslant 1.$$

THEOREM 6.1 (Tate [8]). Let K be a finite extension of \mathbb{Q}_p and let K_{∞}/K be totally ramified \mathbb{Z}_p -extension. Let $(v_i)_{i\geqslant 1}$ denote the increasing sequence of ramification jumps of K_{∞}/K . Then

i) There exists i₀ such that

$$v_{i+1} = v_i + e_K, \quad \forall i \geqslant i_0.$$

ii) There exists a constant c such that for all $n \ge 1$

$$v_K(\mathfrak{D}_{K_n/K}) = e_K n + c + a_n p^{-n},$$

where $(a_n)_{n\geqslant 1}$ is bounded.

We first prove the following auxiliary lemma:

LEMMA 6.2. Let K/\mathbb{Q}_p be a finite extension and let $e_K = e(K/\mathbb{Q}_p)$. Then the following holds true:

i) The series

$$\log(1+x) = \sum_{m=1}^{\infty} (-1)^{m+1} \frac{x^m}{m}$$

converges for all $x \in \mathfrak{m}_K$.

ii) The series

$$\exp(x) = \sum_{m=0}^{\infty} \frac{x^m}{m!}$$

converges for all x such that $v_K(x) > \frac{e_K}{p-1}$.

iii) For any integer $n > \frac{e_K}{p-1}$ we have isomorphisms

$$\log: U_K^{(n)} \to \mathfrak{m}_K^n, \qquad \exp: \mathfrak{m}_K^n \to U_K^{(n)}$$

which are inverse to each other.

PROOF. We have

$$v_K(m) \leqslant e_K \log_p(m)$$
,

and

$$v_K(m!) = e_K([m/p] + [m/p^2] + \cdots) \le \frac{e_K m}{p-1}.$$

This implies the convergence of the series. Other assertions can be proved by routine computations. \Box

COROLLARY 6.3. For any integer $n > \frac{e_K}{p-1}$

$$\left(U_K^{(n)}\right)^p = U_K^{(n+e_K)}.$$

PROOF. $\left(U_K^{(n)}\right)^p$ and $U_K^{(n+e_K)}$ have the same image under \log . \Box

PROOF OF THE THEOREM.

i) We apply the arguments of Section 5.8 to our setting with $L = K_{\infty}$ and $G = \Gamma$. Write $\Gamma = G_K^{ab}/H$ with some closed subgroup H of G_K^{ab} . Let N denote the subgroup of $U_K^{(1)}$ that corresponds to $P_{K^{ab}/K} \cap H$ under the reciprocity map. Set

$$\mathscr{U}^{(v)} = U_K^{(v)}/(N \cap U_K^{(v)}), \qquad \forall v \geqslant 1.$$

Then the isomorphism (16) reads

$$\rho(\Gamma^{(v)}) \simeq \mathscr{U}^{(v)}, \qquad v \geqslant 1.$$

Let γ be a topological generator of Γ . Then $\gamma_n = \gamma^{p^n}$ is a topological generator of $\Gamma(n)$. Let i_0 be an integer such that

$$\rho(\gamma_{i_0}) \in \mathscr{U}^{(m_0)},$$

with some integer $m_0 > \frac{e_K}{p-1}$. Fix such i_0 and assume that, for this fixed i_0 , m_0 is the biggest integer satisfying these conditions. Since γ_{i_0} generates $\Gamma(i_0)$, this means that

$$\rho(\Gamma(i_0)) = \mathscr{U}^{(m_0)}, \quad \text{but} \quad \rho(\Gamma(i_0)) \neq \mathscr{U}^{(m_0+1)}.$$

Therefore m_0 is the i_0 -th ramification jump for K_{∞}/K , i.e.

$$m_0 = v_{i_0}$$

We can write $\rho(\gamma_{i_0}) = \overline{x}$, where $\overline{x} = x \pmod{(N \cap U_K^{(m_0)})}$ and $x \in U_K^{(m_0)} \setminus U_K^{(m_0+1)}$. By Corollary 6.3,

$$x^{p^n} \in U_K^{(m_0+e_Kn)} \setminus U_K^{(m_0+e_Kn+1)}, \qquad \forall n \geqslant 0.$$

Since $\rho(\gamma_{i_0+n}) = \overline{x}^{p^n}$ and γ_{i_0+n} generates $\Gamma(m_0+n)$, this implies that

$$\rho(\Gamma(i_0+n)) = \mathscr{U}^{(m_0+ne_K)} \quad \text{but} \quad \rho(\Gamma(i_0+n)) \neq \mathscr{U}^{(m_0+ne_K+1)}$$

This shows that for each integer $n \ge 0$ the ramification filtration has a jump at $m_0 + ne_K$ and

$$\Gamma^{(m_0+ne_K)} = \Gamma(i_0+n).$$

In other terms, for any real $v \ge v_{i_0} = m_0$ we have

$$\Gamma^{(v)} = \Gamma(i_0 + n + 1)$$
 if $v_{i_0} + ne_K < v \le v_{i_0} + (n + 1)e_K$.

This shows that $v_{i_0+n} = v_{i_0} + e_K n$ for all $n \ge 0$, and the assertion i) is proved.

ii) We prove ii) applying Theorem 4.23. For any n > 0, set $G(n) = \Gamma/\Gamma(n)$. We have

$$v_K(\mathfrak{D}_{K_n/K}) = \int_{-1}^{\infty} \left(1 - \frac{1}{|G(n)^{(v)}|}\right) dv.$$

By Herbrand's theorem, $G(n)^{(v)} = \Gamma^{(v)}/(\Gamma(n) \cap \Gamma^{(v)})$. Since $\Gamma^{(v_n)} = \Gamma(n)$, the ramification jumps of G(n) are v_0, v_1, \dots, v_{n-1} , and we have

(17)
$$|G(n)^{(v)}| = \begin{cases} p^{n-i}, & \text{if } v_{i-1} < v \leq v_i, \\ 1, & \text{if } v > v_{n-1} \end{cases}$$

(for i = 0 we set $v_{i-1} := 0$ to uniformize notation). Assume that $n > i_0$. Then

$$v_K(\mathfrak{D}_{K_n/K}) = A + \int_{v_{i_0}}^{v_{n-1}} \left(1 - \frac{1}{|G(n)^{(v)}|}\right) dv,$$

where $A = \int_{-1}^{v_{i_0}} \left(1 - \frac{1}{|G(n)^{(v)}|}\right) dv$. We evaluate the second integral

$$\int_{v_{i_0}}^{v_{n-1}} \left(1 - \frac{1}{|G(n)^{(v)}|} \right) dv =$$

$$\sum_{i=i_0+1}^{n-1} (v_i - v_{i-1}) \left(1 - \frac{1}{|G(n)^{(v)}|} \right) = \sum_{i=i_0+1}^{n-1} e_K \left(1 - \frac{1}{p^{n-i}} \right)$$

(here we use i) and (17). An easy computation gives

$$\sum_{i=i_0+1}^{n-1} e_K \left(1 - \frac{1}{p^{n-i}} \right) = e_K (n-i_0-1) + \frac{e_K}{p-1} \left(1 - \frac{1}{p^{n-i_0-1}} \right).$$

Setting $c = A - e_K(i_0 + 1) + \frac{e_K}{p-1}$, we see that for $n > i_0$

$$v_K(\mathfrak{D}_{K_n/K}) = c + e_K n - \frac{1}{(p-1)p^{n-i_0-1}}.$$

The theorem is proved.

CHAPTER 2

Almost étale extensions

1. Norms and traces

1.0.1. The results proved in this section are technical by the nature, but they play a crucial role in our discussion of deeply ramified extensions and the field of norms functor. They can be seen as a first manifestation of a deep relation between characteristic 0 and characteristic p cases. In this section, we assume that L/K is a finite extension of local fields of characteristic 0.

LEMMA 1.1. One has

$$\operatorname{Tr}_{L/K}(\mathfrak{m}_L^n) = \mathfrak{m}_K^r$$

where
$$r = \left[\frac{v_L(\mathfrak{D}_{L/K}) + n}{e(L/K)}\right]$$
.

PROOF. From the definition of the different if follows immediately that $\mathfrak{D}_{L/K}^{-1}$ is the maximal fractional ideal such that

$$\operatorname{Tr}_{L/K}(\mathfrak{D}_{L/K}^{-1})=O_K.$$

Set $\delta = v_L(\mathfrak{D}_{L/K})$ and e = e(L/K). Then

$$\mathrm{Tr}_{L/K}(\mathfrak{m}_L^n\mathfrak{m}_K^{-r})=\mathrm{Tr}_{L/K}(\mathfrak{m}_L^n\mathfrak{m}_L^{-er})\subset\mathrm{Tr}_{L/K}(\mathfrak{m}_L^{n-(\delta+n)})=\mathrm{Tr}_{L/K}(\mathfrak{D}_{L/K}^{-1})=O_K,$$

and therefore $\operatorname{Tr}_{L/K}(\mathfrak{m}_L^n) \subset \mathfrak{m}_K^r$. Conversely, $\operatorname{Tr}_{L/K}(\mathfrak{m}_L^n)$ is an ideal of O_K , and we can write in in the form $\operatorname{Tr}_{L/K}(\mathfrak{m}_L^n) = \mathfrak{m}_K^a$. Then $\operatorname{Tr}_{L/K}(\mathfrak{m}_L^n\mathfrak{m}_K^{-a}) = O_K$ and therefore $\mathfrak{m}_L^n\mathfrak{m}_K^{-a} \subset \mathfrak{D}_{L/K}^{-1}$. This implies that

$$n-ae \geqslant -\delta$$
.

Therefore $a \leqslant \left\lceil \frac{n+\delta}{e} \right\rceil = r$ and $\mathfrak{m}_K^r \subset \mathrm{Tr}_{L/K}(\mathfrak{m}_L^n)$. The lemma is proved.

1.1.1. Assume that L/K is a totally ramified Galois extension of degree p. Set $G = \operatorname{Gal}(L/K)$ and denote by t the maximal natural number such that $G_t = G$ (and therefore $G_{t+1} = \{1\}$). Formula for the different from Proposition 4.9 reads in our case:

(18)
$$v_L(\mathfrak{D}_{L/K}) = (p-1)(t+1).$$

LEMMA 1.2. Then for any $x \in \mathfrak{m}_I^n$

$$N_{L/K}(1+x) \equiv 1 + N_{L/K}(x) + \operatorname{Tr}_{L/K}(x) \pmod{\mathfrak{m}_K^s},$$

where
$$s = \left\lceil \frac{(p-1)(t+1)+2n}{p} \right\rceil$$
.

PROOF. Set $G = \operatorname{Gal}(L/K)$ and for each $1 \le n \le p$ denote by C_n the set of all n-subsets $\{g_1, \dots, g_n\}$ of G (note that $g_i \ne g_j$ if $i \ne j$). Then

$$\begin{split} N_{L/K}(1+x) &= \prod_{g \in G} (1+g(x)) = 1 + N_{L/K}(x) + \mathrm{Tr}_{L/K}(x) \\ &+ \sum_{\{g_1,g_2\} \in C_2} g_1(x)g_2(x) + \dots + \sum_{\{g_1,\dots g_{p-1}\} \in C_{p-1}} g_1(x) \dots g_{p-1}(x). \end{split}$$

It's clear that the rule

$$g \star \{g_1, \ldots, g_n\} = \{gg_1, \ldots, gg_n\}$$

defines an action of G on C_n . Moreover, from the fact that |G| = p is a prime number, it's easy to see that all stabilizers are trivial, and therefore each orbit has p elements. This implies that each sum

$$\sum_{\{g_1,\dots g_n\}\in C_n} g_1(x)\cdots g_n(x), \qquad 2\leqslant n\leqslant p-1$$

can be written as the trace $\operatorname{Tr}_{L/K}(x_n)$ of some $x_n \in \mathfrak{m}_L^{2n}$. From (18) and Lemma 1.1 it follows that $\operatorname{Tr}_{L/K}(x_n) \in \mathfrak{m}_K^s$. The lemma is proved.

LEMMA 1.3. For any $x \in \mathfrak{m}_I^n$

$$N_{L/K}(1+x) \equiv 1 + N_{L/K}(x) + \operatorname{Tr}_{L/K}(x) \pmod{\mathfrak{m}_K^s},$$

where
$$s = \left[\frac{(p-1)(t+1)+2n}{p}\right]$$
.

PROOF. Set $G = \operatorname{Gal}(L/K)$ and for each $1 \le n \le p$, denote by C_n the set of all n-subsets $\{g_1, \ldots, g_n\}$ of G (note that $g_i \ne g_j$ if $i \ne j$). Then

$$\begin{split} N_{L/K}(1+x) &= \prod_{g \in G} (1+g(x)) = 1 + N_{L/K}(x) + \mathrm{Tr}_{L/K}(x) \\ &+ \sum_{\{g_1,g_2\} \in C_2} g_1(x)g_2(x) + \dots + \sum_{\{g_1,\dots g_{p-1}\} \in C_{p-1}} g_1(x) \dots g_{p-1}(x). \end{split}$$

It's clear that the rule

$$g \star \{g_1, \ldots, g_n\} = \{gg_1, \ldots, gg_n\}$$

defines an action of G on C_n . Moreover, from the fact that |G| = p is a prime number, it's easy to see that all stabilizers are trivial, and therefore each orbit has p elements. This implies that each sum

$$\sum_{\{g_1,\dots g_n\}\in C_n} g_1(x)\cdots g_n(x), \qquad 2\leqslant n\leqslant p-1$$

can be written as the trace $\operatorname{Tr}_{L/K}(x_n)$ of some $x_n \in \mathfrak{m}_L^{2n}$. From (18) and Lemma 1.1 it follows that $\operatorname{Tr}_{L/K}(x_n) \in \mathfrak{m}_K^s$. The lemma is proved.

COROLLARY 1.4. Let L/K is a totally ramified Galois extension of degree p. Then

$$v_K(N_{L/K}(1+x)-1-N_{L/K}(x)) \geqslant \frac{t(p-1)}{p}.$$

PROOF. From Lemmas 1.1 and 1.3 if follows that

$$v_K(N_{L/K}(1+x)-1-N_{L/K}(x)) \geqslant \left\lceil \frac{(p-1)(t+1)}{p} \right\rceil,$$

and it's easy to see that

$$\left\lceil \frac{(p-1)(t+1)}{p} \right\rceil = \left\lceil \frac{(p-1)t}{p} + 1 - \frac{1}{p} \right\rceil \geqslant \frac{t(p-1)}{p}.$$

2. Deeply ramified extensions

2.0.1. In this section, we review the theory of deeply ramified extensions of Coates—Greenberg [3]. This theory goes back to the fundamental paper of Tate [8], where the case of \mathbb{Z}_p -extensions was studied and applied to the proof of the Hodge–Tate decomposition for p-divisible groups.

Let K be a local field of characteristic 0. In this section, we consider an infinite algebraic extension K_{∞}/K . Since for each m the number of algebraic extensions of K of degree m is finite, we can always write K_{∞} in the form

$$K_{\infty} = \bigcup_{n=0}^{\infty} K_n, \qquad K_0 = K, \qquad K_n \subset K_{n+1}, \qquad [K_n : K] < \infty.$$

Following [4], we define the different of K_{∞}/K as the intersection of differents of its finite subextensions.

DEFINITION. The different of K_{∞}/K is defined by

$$\mathfrak{D}_{K_{\infty}/K}=\bigcap\limits_{n=0}^{\infty}(\mathfrak{D}_{K_{n}/K}O_{K_{\infty}}),$$

where $\mathfrak{D}_{K_n/K}O_{K_\infty}$ denotes the ideal in O_{K_∞} generated by $\mathfrak{D}_{K_n/K}$.

Let L_{∞} be a finite extension of K_{∞} . Then $L_{\infty} = K_{\infty}(\alpha)$, where α is a root of an irreducible polynomial $f(X) \in K_{\infty}[X]$. The coefficients of f(X) lie in a finite extension K_f of K. Let

$$n_0 = \min \{ n \in \mathbb{N} \mid f(X) \in K_n[X] \}.$$

Setting $L_n = K_n(\alpha)$ for all $n \ge n_0$, we can write

$$L_{\infty} = \bigcup_{n=n_0}^{\infty} L_n.$$

In what follows we will assume that $n_0 = 0$ without loss of generality. Note that $[L_n : K_n] = \deg(f)$ doesn't depend on $n \ge 0$.

PROPOSITION 2.1. *i)* If $m \ge n$, then

$$\mathfrak{D}_{L_n/K_n}O_{L_m}\subset \mathfrak{D}_{L_m/K_m}.$$

ii) One has

$$\mathfrak{D}_{L_{\infty}/K_{\infty}}=\mathop{\cup}\limits_{n=0}^{\infty}(\mathfrak{D}_{L_{n}/K_{n}}O_{L_{\infty}}).$$

PROOF. i) We consider the bilinear form provided by the trace map (see Chapter I, Section 3):

$$t_{L_n/K_n}: L_n \times L_n \to K_n, \qquad t_{L_n/K_n}(x,y) = \operatorname{Tr}_{L_n/K_n}(xy).$$

Let $\{e_k\}_{k=1}^s$ be a basis of O_{L_n} over O_{K_n} , and let $\{e_k^*\}_{k=1}^s$ denote the dual basis. Then

$$\mathfrak{D}_{L_n/K_n} = O_{L_n}e_1^* + \cdots + O_{L_n}e_s^*.$$

Since $\{e_k\}_{k=1}^s$ is also a basis of L_m over K_m , any $x \in \mathfrak{D}^{-1}_{L_m/K_m}$ can be written as

$$x = \sum_{k=1}^{s} a_k e_k^*.$$

Then

$$a_k = t_{L_m/K_m}(x, e_k) \in O_{K_m}, \quad \forall 1 \leqslant k \leqslant s,$$

and we have:

$$x \in O_{K_m}e_1^* + \cdots + O_{K_m}e_s^* \subset \mathfrak{D}_{L_n/K_n}^{-1}O_{L_m}.$$

Therefore $\mathfrak{D}_{L_m/K_m}^{-1} \subset \mathfrak{D}_{L_n/K_n}^{-1} O_{L_m}$, and, by consequence, $\mathfrak{D}_{L_n/K_n} O_{L_m} \subset \mathfrak{D}_{L_m/K_m}$. ii) With the same argument as in the proof of i), we have

$$\mathop{\cup}\limits_{n=0}^{\infty}(\mathfrak{D}_{L_n/K_n}O_{L_{\infty}})\subset \mathfrak{D}_{L_{\infty}/K_{\infty}}.$$

We need to prove that $\mathfrak{D}_{L_{\infty}/K_{\infty}}\subset \bigcup\limits_{n=0}^{\infty}(\mathfrak{D}_{L_n/K_n}O_{L_{\infty}})$ or equivalently that

$$\bigcap_{n=0}^{\infty} (\mathfrak{D}_{L_n/K_n}^{-1} O_{L_{\infty}}) \subset \mathfrak{D}_{L_{\infty}/K_{\infty}}^{-1}.$$

 $\operatorname{Let} x \in \bigcap_{n=0}^{\infty} (\mathfrak{D}_{L_n/K_n}^{-1} O_{L_{\infty}}) \text{ and } y \in O_{L_{\infty}}. \text{ Choosing } n \text{ such that } x \in \mathfrak{D}_{L_n/K_n}^{-1} \text{ and } y \in O_{L_n},$

$$t_{L_{\infty}/K_{\infty}}(x,y) = t_{L_n/K_n}(x,y) \in O_{K_n} \subset O_{K_{\infty}}.$$

Hence $x \in \mathfrak{D}^{-1}_{L_{\infty}/K_{\infty}}$, and the inclusion $\bigcap\limits_{n=0}^{\infty} (\mathfrak{D}^{-1}_{L_n/K_n}O_{L_{\infty}}) \subset \mathfrak{D}^{-1}_{L_{\infty}/K_{\infty}}$ is proved.

Bibliography

- [1] E. Artin, *Algebraic Numbers and Algebraic Functions*, Gordon and Breach, New York, 1967, 349 pp.
- [2] J.W. C. Cassels and A. Fröhlich (eds) *Algebraic Number Theory*, Thompson Book Company, 1967, 366 pages.
- [3] J. Coates and R. Greenberg, *Kummer theory for abelian varieties over local fields*, Invent. Math. **124** (1996), pp. 129-174.
- [4] J. Fresnel and M. Matignon, *Produit tensoriel topologique de corps valués*, Can. J. Math., **35**, no. 2, (1983), pp. 218-273.
- [5] S. Lang, Algebra, Graduate Texts in Mathematics 211, 2002
- [6] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics 110, 1986, 354 pp.
- [7] J.-P. Serre, Corps locaux, Hermann, Paris, 1968.
- [8] J. Tate *p-divisible groups*, Proc. Conf. Local Fields, Driebergen, 1967, pp. 158-183.