Applied Data Science with R Capstone project

Sean Michael Gunawan
July 22 2022

Outline

- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Introduction

- The case assumed that the learner has just been hired by an AI – powered weather data analysis company as a data scientist.
- The data used in this case are Seoul Bike Sharing Demand Dataset, OpenWeather API Data, Global Bike Sharing Sytems Dataset, and World Cities Data.
- The end goal of this project is to combine our analysis results and create a dashboard displaying an interactive map and visualization of the current weather and the estimated bike demand.

Methodology

- Perform data collection
- Perform data wrangling
- Perform exploratory data analysis (EDA) using SQL and visualization
- Perform predictive analysis using regression models
 - How to build the baseline model
 - How to improve the baseline model
- Build a R Shiny dashboard app

Methodology

Data collection

- The datasets were collected through 3 different ways:
- a. HTTP Requests for OpenWeather,
- b. Webscraping for Bike Sharing Systems (Wikipedia), and
- c. File Downloads for Historical Bike Demand (IBM Cloud Storage).

Data wrangling

- Next, the data that we collects go through data wrangling, in order to improve the data quality. In this case, we use 2 ways, with regular expressions and dplyr package.
- Add the screenshots of data wrangling code cell and output for regular expressions, missing values handling, generating indicator columns to the Appendix section for peerreview

EDA with SQL

- Next, we do EDA through SQL queries using RODBC. We determine many values, such as:
- 1. Total records in Seoul Bike Sharing Dataset,
- 2. Operational Hours of rented bike count,
- 3. Weather outlook for the next 3 hours,
- 4. Seasons that are included in the dataset,
- 5. First and last dates in the dataset,
- 6. Which date and hour has the highest rentals,
- 7. Average of hourly temperature and bike rentals per hour over each season,
- 8. Weather seasonality,
- 9. Total bike count and city info for Seoul, and
- 10. Comparable cities with total bike counts starting from 15,000 20,000.

EDA with data visualization

- Next, we begin visualizing the data through ggplot2. In here, we create:
- 1. Scatter plot of Rented Bike Count and Date,
- 2. Scatter plot of Rented Bike Count and Date with Hour as the colour,
- 3. Histogram overlaid with a kernel density curve
- 4. Scatter plot of Rented Bike Count and Temperature by Seasons, and
- 5. Boxplots of Rented Bike Count and Hour by Seasons.
- Each of the graph are used to search for correlations between the variables used (such as Rented Bike Count and Date).

Predictive analysis

 Next, we create, compare, and find the best model to use. Here, we use linear regression to find out which variables has the most impact. After that, we add polynomial terms to handle non – linear data. Then, we add interaction terms to find correlations between response variables and predictor variables. At last, we add regularization to normalize the model.

Build a R Shiny dashboard

 Next, we build a dashboard that points out 5 cities with labels such as weather. We also inserted graph visualization of FORECASTDATETIME and TEMPERATURE, FORECASTDATETIME and BIKE_PREDICTION, and HUMIDITY and BIKE_PREDICTION.

Results

EDA with SQL

Busiest bike rental times

The busiest bike rental times could be search through selecting date and hour, then set the max rented bike count at the time.

Task 6 - Subquery - 'all-time high'

determine which date and hour had the most bike rentals.

Solution 6

1 19/06/2018

```
[7]: # provide your solution here
query6 <- paste("SELECT DATE, HOUR FROM SEOUL_BIKE_SHARING WHERE RENTED_BIKE_COUNT = (SELECT MAX(RENTED_BIKE_COUNT) FROM SEOUL_BIKE_SHARING)")
most_q <- sqlQuery(conn,query6)
most_q

A data.frame: 1 × 2

DATE HOUR

<fct> <int>
```

Hourly popularity and temperature by seasons

Could be found through selecting hour, average temperature, average rented bike count, then grouping it by hour.

Solution 7

[8]: # provide your solution here
query7 <- paste("SELECT HOUR, SEASONS, AVG(TEMPERATURE) AS HOURLY_TEMP, AVG(RENTED_BIKE_COUNT) AS HOURLY_RENTED FROM SEOUL_BIKE_SHARING
GROUP BY HOUR, SEASONS ORDER BY AVG(RENTED_BIKE_COUNT) DESC LIMIT 10")
hourly_q <- sqlQuery(conn,query7)
hourly_q</pre>

HOUR	SEASONS	HOURLY_TEMP	HOURLY_RENTED

A data.frame: 10 × 4

	<int></int>	<fct></fct>	<dbl></dbl>	<int></int>
1	18	Summer	29.38696	2135
2	18	Autumn	16.03086	1983
3	19	Summer	28.27283	1889
4	20	Summer	27.06630	1801
5	21	Summer	26.27826	1754
6	18	Spring	15.97222	1689
7	22	Summer	25.69891	1567
8	17	Autumn	17.27778	1562
9	17	Summer	30.07500	1526
10	19	Autumn	15.06049	1515

Rental Seasonality

Could be found by selecting hour, seasons and rented bike count. We apply min, max, and standard deviation to rented bike count to know the rental averages. Then, we group by seasons.

Solution 8

provide your solution here

query8 <- paste("SELECT HOUR, AVG(RENTED_BIKE_COUNT) AS HOURLY_RENTED, MIN(RENTED_BIKE_COUNT) AS MIN, MAX(RENTED_BIKE_COUNT) AS MAX, STDDEV(RENTED_BIKE_COUNT) AS STD,

SEASONS FROM SEOUL_BIKE_SHARING

GROUP BY HOUR, SEASONS ORDER BY AVG(RENTED_BIKE_COUNT) DESC LIMIT 10")

rental_q <- sqlQuery(conn, query8)

rental_q

		/ ^ 0	raine, ic	A uata.		
EASONS	STD	MAX	MIN	HOURLY_RENTED	HOUR	
<fct></fct>	<dbl></dbl>	<int></int>	<int></int>	<int></int>	<int></int>	
Summer	884,0829	3556	17	2135	18	1
Autumn	778.4414	3298	40	1983	18	2
Summer	728.8799	2984	18	1889	19	3
Summer	662.2163	2579	10	1801	20	4
Summer	596.1374	2505	17	1754	21	5
Spring	898.8971	3251	22	1689	18	6
Summer	516.6434	2309	16	1567	22	7
Autumn	554.3165	2432	23	1562	17	8
Summer	608.7917	2664	25	1526	17	9
Autumn	571.1497	2518	19	1515	19	10
	596.1374 898.8971 516.6434 554.3165 608.7917	2505 3251 2309 2432 2664	17 22 16 23 25	1754 1689 1567 1562 1526	21 18 22 17	5 6 7 8 9

A data frame: 10 × 6

Weather Seasonality

Could be found by averaging weather variables, such as temperature, humidity, snowfall, rainfall, etc. Then, we group it by seasons.

Solution 9

```
query9 <- paste("SELECT AVG(RENTED_BIKE_COUNT) AS AVG_BIKE,
AVG(TEMPERATURE) AS AVG_TEMP,
AVG(HUMIDITY) AS AVG_HUMID,
AVG(WIND_SPEED) AS AVG_WIND,
AVG(VISIBILITY) AS AVG_VISIB,
AVG(DEW_POINT_TEMPERATURE) AS AVG_DEW,
AVG(SOLAR_RADIATION) AS AVG_SOLAR,
AVG(RAINFALL) AS AVG_RAINFALL,
AVG(SNOWFALL) AS AVG_SNOWFALL,
SEASONS FROM SEOUL_BIKE_SHARING GROUP BY SEASONS ORDER BY AVG(RENTED_BIKE_COUNT) DESC")
weather_seaq <- sqlQuery(conn, query9)
weather_seaq

# provide your solution here
```

Δ	-	-		**	1000	-	- 4	200	- 7	63
_	10.0	-	ua.		55 6 3	_		-	- 1	1.7

	AVG_BIKE	AVG_TEMP	AVG_HUMID	AVG_WIND	AVG_VISIB	AVG_DEW	AVG_SOLAR	AVG_RAINFALL	AVG_SNOWFALL	SEASONS
	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1	1034	26.587274	64	1.609420	1501	18.750136	0.7612545	0.25348732	0.00000000	Summer
2	924	13.821167	59	1.492101	1558	5.150594	0.5227827	0.11765617	0.06350026	Autumn
3	746	13.021389	58	1.857778	1240	4.091389	0.6803009	0.18694444	0.00000000	Spring
4	225	-2.540463	49	1.922685	1445	-12.416667	0.2981806	0.03282407	0.24750000	Winte ^{‡7}

Bike-sharing info in Seoul

Could be found by using JOIN function and combining both BIKE_SHARING_SYSTEMS and WORLD_CITIES data, with CITY_ASCII and CITY as the key.

Solution 10 # provide your solution here query10 <- paste("SELECT BS.BICYCLES, WC.CITY ASCII, WC.COUNTRY, WC.LAT, WC.LNG, WC.POPULATION FROM BIKE SHARING SYSTEMS AS BS, WORLD CITIES AS WC WHERE WC.CITY ASCII = BS.CITY AND WC.CITY = 'Seoul'") total bike <- sqlQuery(conn, guery10) total bike A data.frame: 1 × 6 BICYCLES CITY ASCII COUNTRY LAT LNG POPULATION <fct> <fct> <dbl> <dbl> <int> <int> Seoul Korea, South 37.58 21794000 20000 127

Cities similar to Seoul

Could be found by using JOIN, and stating some constraints, such as number of bicycles between 15000 and 20000.

Solution 11

```
# provide your solution here
query11 <- ("SELECT BS.BICYCLES, WC.CITY_ASCII, WC.COUNTRY, WC.LAT, WC.LNG, WC.POPULATION FROM BIKE_SHARING_SYSTEMS AS BS,
WORLD_CITIES AS WC WHERE WC.CITY_ASCII = BS.CITY AND BICYCLES BETWEEN 15000 AND 20000 ORDER BY BICYCLES DESC")
city_names <- sqlQuery(conn, query11)
city_names</pre>
```

			A data.irairic.			
	BICYCLES	CITY_ASCII	COUNTRY	LAT	LNG	POPULATION
	<int></int>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	20000	Seoul	Korea, South	37.58	127.00	21794000
2	20000	Weifang	China	36.71	119.10	9373000
3	20000	Xi'an	China	34.26	108.90	7135000
4	20000	Zhuzhou	China	27.84	113.14	3855609
5	19165	Shanghai	China	31.16	121.46	22120000
6	16000	Beijing	China	39.90	116.39	19433000
7	15000	Ningbo	China	29.87	121.54	7639000

A data frame: 7 × 6

EDA with Visualization

Bike rental vs. Date

The graph explains that there's a fluctuation of the rented bike count amount, starting from April 2018 until October 2018, with some fluctuations.

provide your solution here
qplot(DATE, RENTED_BIKE_COUNT, data = seoul_dataset, alpha = I(50))

Bike rental vs. Datetime

As we dive deeper, by adding hour as the color in the graph, we see here that the usage of rented bike count happens at around 17 - 19 and 6 - 7 (the colour green and dark blue filling most of the graph).

Bike rental histogram

We can see from the histogram that most of the time there are relatively few bikes rented. Indeed, the 'mode', or most frequent number of bikes rented, is about 250.

Judging by the 'bumps' at about 700, 900, and 1900, and 3200 bikes, it looks like there may be other modes hiding within subgroups of the data.

Interestingly, judging from the tail of the distribution, on rare occasions there are many more bikes rented out than usual.

Daily total rainfall and snowfall

As we can see in the graph, although the overall scale of bike rental counts changes with the seasons, key features remain very similar.

For example, peak demand times are the same across all seasons, at 8 am and 6 pm.

provide your soLution here
ggplot(seoul_dataset, aes(x=HOUR, y=RENTED_BIKE_COUNT), alpha = 1/5) + geom_boxplot() + facet_wrap(~SEASONS)

Predictive analysis

Ranked coefficients

As we ranked these coefficients, we could see the most impactful variable is rainfall. Some of the other variables, such as wind speed and visibility, doesn't impact the rented bike count at all.

```
ggplot(data=coefs_sorted, aes(x= reorder(Variable,Coef),Coef)) +
geom_bar(stat = "identity") +
coord_flip() +
theme_minimal()
```


Model evaluation

As we can see from the bar, Polynomial has the highest RMSE scores, but it has the lowest R2 score. So, in order to valuate the best model, we can use some combination of poly and other model.

Find the best performing model

Model:

fit(RENTED BIKE COUNT ~ poly(TEMPERATURE,6) + poly(RAINFALL*HUMIDITY,8) + poly(HUMIDITY*TEMPERATURE, 6) +poly(DEW POINT TEMPERATUR E*TEMPERATURE,6) + AUTUMN + SUMMER + SPRING + HOLIDAY + poly(SOLAR RADIATION,2) + poly(SNOWFALL*TEMPERATURE, 2), data = train data)

theoretical

Q-Q plot of the best model

Dashboard

Dashboard All World

Below are the max bike prediction for All Around the world. The graph consists of FORECASTDATETIME, BIKE_PREDICTION, HUMIDITY, and TEMPERATURE.

Dashboard Seoul

• Below is the dashboard for Seoul. Here, we can see the label popups with detailed weather, and the graph consists of the same element in All World, but a different results for Seoul data.

Dashboard Suzhou

• Below is the dashboard for Suzhou. Here, we can see the label popups with detailed weather, and the graph consists of the same element in All World, but a different results for Suzhou data.

CONCLUSION

- Temperature in a day could fluctuate and affect the Bike prediction
- Different day affected by the temperature and weather further influence the Bike Prediction
- Humidity also affect the Bike Prediction

Data Collection

[15]: # Export the dataframe into a csv file

write.csv(data_bike_share, "raw_bike_sharing_systems.csv")

Next, you need to convert this HTML table into a data frame using the html_table() function. You may choc

```
[13]: # Convert the bike-sharing system table into a dataframe
     table_nodes <- html_nodes(root_node, "table")</pre>
     table nodes
     bike share <- html table(table nodes, fill = TRUE)
     data bike share = bike share[[2]]
     {xml nodeset (5)}
     [1] <table class="box-Copy edit plainlinks metadata ambox ambox-style ambox-C ...
     [2] \n\n ...
     [3] <table class="nowraplinks mw-collapsible autocollapse navbox-inner" style ...
     [4] <tbod ...
     [5] <tbod ...
     Summarize the bike sharing system data frame
[14]: # Summarize the dataframe
     summary(data bike share)
        Country
                                         Name
                                                         System
      Length: 520
                      Length:520
                                      Length:520
                                                      Length:520
      Class : character
                      Class :character
                                     Class :character
                                                      Class : character
      Mode :character
                      Mode :character
                                     Mode :character
                                                      Mode :character
       Operator
                       Launched
                                      Discontinued
                                                       Stations
      Length:520
                      Length:520
                                      Length:520
                                                      Length:520
      Class : character Class : character Class : character
                                                     Class :character
      Mode :character
                      Mode :character
                                     Mode :character
                                                      Mode :character
       Bicycles
                      Daily ridership
      Length: 520
                      Length:520
      Class : character Class : character
      Mode :character Mode :character
     Export the data frame as a csv file called raw bike sharing systems.csv
```

For more details about webscraping with rivest, please refer to the previous webscraping notebook here:

```
forecast_query <- list(q = city_name, appid = "8e9f83353198340479e43d48cef10a2f", units="metric")</pre>
    # Make HTTP GET call for the given city
    response_forecast <- GET(forecast_url, query=forecast_query)
    # Note that the 5-day forecast JSON result is a list of lists. You can print the reponse to check the results
    #results <- json_list$list
    json_result2 <- content(response_forecast, as="parsed")
    result <- json_result$list
    # Loop the json result
    for(result in results) {
        city <- c(city, json_result2$city)
        weather <- c(weather, json_result2$weather[[1]]$main)
        visibility <- c(visibility, json_result2$visibility)
        temp <- temp, json_result$main$temp)</pre>
        temp_min <- c(temp_min, json_result2$main$temp_min)
        temp_max <- c(temp_max, json_result2$main$temp_max)
        pressure <- c(pressure, json_result2$main$pressure)
        humidity <- c(humidity, json_result2$main$humidity)
        wind_speed <- c(wind_speed, json_result2$wind$speed)
        wind_deg <- c(wind_deg, json_result$wind$deg)
        forecast_datetime <- c(forecast_datetime, jsonresult2$dt_text)
        months_forecast <- as.numeric(format(as.Date(forecast_datetime), "%m"))</pre>
        indx <- setNames(rep(c("Winter", "Spring", "Summer", "Fall"), each=3), c(12, 1:11))
        season <- unname(indx[as.character(months_forecast)])</pre>
    # Add the R Lists into a data frame
    df <- data.frame(city=city,
                                       weather=weather.
                             visibility=visibility,
                             temp=temp,
                             temp_min=temp_min,
                             temp_max=temp_max,
                             pressure=pressure,
                             humidity=humidity,
                             wind_speed=wind_speed,
                             wind_deg=wind_deg,
                                      forecast_datetime = forecast_datetime, season=season)
# Return a data frame
return(df)
                                                                                                                  35
```

Get forecast data for a given city List

for (city_name in city_names){
 # Forecast API URL

Create query parameters

df <- data.frame()

get_weather_forecaset_by_cities <- function(city_names){

forecast_url <- 'https://api.openweathermap.org/data/2.5/forecast'

Data Wrangling

TASK: Extract the numeric value using regular expressions

TODO: Write a custom function using stringr::str extract to extract the first digital substring match and convert it into numeric type For e

```
[70]: # Extract the first number
extract_num <- function(columns){
    # Define a digital pattern
    digitals_pattern <- "[0-9]+"
    as.numeric(str_extract(columns, digitals_pattern))
    # Find the first match using str_extract
    # Convert the result to numeric using the as.numeric() function
}</pre>
```

TODO: Use the dplyr::mutate() function to apply extract num on the BICYCLES column

```
[71]: # Use the mutate() function on the BICYCLES column
result <- sub_bike_sharing_df %>% mutate(BICYCLES=extract_num(BICYCLES))
```

TODO: Use the summary function to check the descriptive statistics of the numeric BICYCLES column

```
[79]: summary(result$BICYCLES)
final_result <- sub_bike_sharing_df %>% mutate(BICYCLES=extract_num(BICYCLES)) %>% mutate(CITY=remove_ref(CITY), SYSTEM=remove_ref2(SYSTEM))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
5 100 343 2012 1400 78000 76
```

TODO: Write the cleaned bike-sharing systems dataset into a csv file called bike_sharing_systems.csv

```
[80]: # Write dataset to `bike_sharing_systems.csv`
write.csv(final_result, "bike_sharing_systems.csv", row.names=FALSE)
```

Standardize the column names again for the new datasets

[39]: # Dataset List

Since you have added many new indicator variables, you need to standardize their column names again by using the following code:

```
dataset_list <- c('seoul_bike_sharing.csv', 'seoul_bike_sharing_converted.csv', 'seoul_bike_sharing_converted_normalized.csv')
for (dataset_name in dataset_list){
   # Read dataset
    dataset <- read csv(dataset name)
    # Standardized its columns:
    # Convert all columns names to uppercase
    names(dataset) <- toupper(names(dataset))</pre>
    # Replace any white space separators by underscore, using str_replace_all function
    names(dataset) <- str_replace_all(names(dataset), " ", "_")</pre>
   # Save the dataset back
    write.csv(dataset, dataset_name, row.names=FALSE)
"Missing column names filled in: 'X1' [1]"Parsed with column specification:
 X1 = col double(),
 DATE = col_character(),
 RENTED_BIKE_COUNT = col_double(),
 HOUR = col_double(),
 TEMPERATURE = col_double(),
 HUMIDITY = col_double(),
 WIND_SPEED = col_double(),
 VISIBILITY = col_double(),
 DEW_POINT_TEMPERATURE = col_double(),
 SOLAR_RADIATION = col_double(),
 RAINFALL = col double(),
 SNOWFALL = col_double(),
 SEASONS = col_character(),
 HOLIDAY = col_character(),
 FUNCTIONING DAY = col character()
Parsed with column specification:
cols(
 .default = col_double(),
 DATE = col_character()
See spec(...) for full column specifications.
Parsed with column specification:
 .default = col_double(),
 DATE = col_character(),
 RENTED_BIKE_COUNT = col_logical(),
 TEMPERATURE = col_logical()
                                                                                                                      36
See spec(...) for full column specifications.
```

• EDA with SQL

Solution 1

[2]: query <- paste("SELECT COUNT(") AS COUNT FROM SECUL_BIKE_SHARING")

Task 4 - Seasons

Find which seasons are included in the seoul bike sharing dataset.

Solution 4

1 Autumn
2 Spring
3 Summer
4 Winter

Task 5 - Date Range

Find the first and last dates in the Seoul Bike Sharing dataset.

Solution 5

[6]: # provide your solution here
querys <- paste("SELECT MIN(DATE), MAX(DATE) FROM SEOUL_BIKE_SHARING")
date_q <- sqlquery(conn,querys)
date_q

A dataframe: 1 = 2

1 2 <fct> <fct>

1 01/01/2018 31/12/2017

Task 6 - Subquery - 'all-time high'

determine which date and hour had the most bike rentals.

Solution 6

]: # provide your solution here
query6 <- paste("SELECT DATE, HOUR FROM SEOUL_BIKE_SHARING WHERE RENTED_BIKE_COUNT -> (SELECT MAX(RENTED_BIKE_COUNT) FROM SEOUL_BIKE_SHARING)*)
most_q

A dataframe: 1 * 2

DATE HOUR <fct> <int>
1 19/06/2018 18

37

• EDA with SQL

Solution 7

provide your solution here
query? <- paste("SEEK! HOUR, SEASONS, AVG(TEMPERATURE) AS HOURLY_TEMP, AVG(RENTED_BIKE_COUNT) AS HOURLY_RENTED FROM SECUL_BIKE_SHARING
ROURD #9 HOURS, SEASONS ORDER BY AVG(RENTED_BIKE_COUNT) DESC LIMIT 10")
hourly_q <- sqlQuery(conn,query?)
hourly_q <- sqlQuery(conn,query?)

A data frame: 10 × 4

	HOUR	SEASONS	HOURLY TEMP	HOURLY RENTER
	<int></int>	<fct></fct>	<dbl></dbl>	<int< th=""></int<>
1	18	Summer	29.38696	213
2	18	Autumn	16.03086	198
3	19	Summer	28.27283	188
4	20	Summer	27.06630	180
5	21	Summer	26.27826	175
6	18	Spring	15.97222	168
7	22	Summer	25.69891	156
8	17	Autumn	17.27778	156
9	17	Summer	30.07500	152
10	19	Autumn	15.06049	151

Task 8 - Rental Seasonality

Find the average hourly bike count during each season.

HOUR HOURLY RENTED MIN MAX STD SEASONS

Also include the minimum, maximum, and standard deviation of the hourly bike count for each season.

Solution 8

provide your solution here
querys <- paste("Select Hour, AvG(RENTED_BIKE_COUNT) AS HOURLY_RENTED_BIKE_COUNT) AS MIN, MAX(RENTED_BIKE_COUNT) AS MAX, STOREY(RENTED_BIKE_COUNT) AS STD, SEASONS FROM SECUL_BIKE_SHARING
GROUP BY MOUR, SEASONS ORDER BY AVG(RENTED_BIKE_COUNT) DESC LIMIT 18")
rental_q <- sqlquery(conn, query8)
rental_q <- sqlquery(conn, query8)
rental_q <- sqlquery(conn, query8)

A data frame: 10 × 6

	HOUR	HOUKET KEIVIED	INCH'S	MAA	310	SEASONS
	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<fct></fct>
1	18	2135	17	3556	884.0829	Summer
2	18	1983	40	3298	778.4414	Autumn
3	19	1889	18	2984	728.8799	Summer
- 4	20	1801	10	2579	662.2163	Summer
5	21	1754	17	2505	596.1374	Summer
6	18	1689	22	3251	898.8971	Spring
7	22	1567	16	2309	516.6434	Summer
8	17	1562	23	2432	554.3165	Autumn
9	17	1526	25	2664	608.7917	Summer
10	19	1515	19	2518	571.1497	Autumn

Solution 9

Querys (- paste("SEECT ANG (RENTED BIKE_COUNT) AS ANG_BIKE,
ANG (EMPERATURE) AS ANG_THEM,
ANG (HAIDT) AS ANG_THEM,
ANG (HAIDT)
ANG

A data frame: 4 = 10

AVG BIKE	AVG TEMP	AVG HUMID	AVG WIND	AVG VISIB	AVG DEW	AVG SOLAR	AVG RAINFALL	AVG SNOWFALL	SEASONS
<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1034	26.587274	64	1.609420	1501	18.750136	0.7612545	0.25348732	0.00000000	Summer
924	13.821167	59	1.492101	1558	5.150594	0.5227827	0.11765617	0.06350026	Autumn
746	13.021389	58	1.857778	1240	4.091389	0.6803009	0.18694444	0.00000000	Spring
225	-2.540463	49	1.922685	1445	-12.416667	0.2981806	0.03282407	0.24750000	Winter
	<int> 1034 924 746</int>	<int> <dbl> 1034 26587274 924 13.821167 746 13.021389</dbl></int>	<int> <dbl> <int> 1034 26.587274 64 924 13.821167 59 746 13.021389 58</int></dbl></int>	cint> cdbl> cint> cdbl> 1034 26.587274 64 1.699420 924 13.821167 59 1.482101 746 13.021389 58 1.857778	cint> cdbl> cint> cdbl> cint> 1034 26587274 64 1.609420 1501 924 13.821167 59 1.492101 1558 746 13.021389 58 1.857778 1240	cint> cdbl> cint> cdbl> cint> cdbl> 1034 26587274 64 1,699420 1501 18750136 924 13,821167 59 1,492101 1558 5,150394 746 13,021389 58 1,857778 1240 4,091389	cint> cint> cint> cint> cdbl> cint> cdbl> cdbl> <th< td=""><td>cint> cibt> cibt> cibt> cdbl> <th< td=""><td>cint> cibt> cibt> cibt> cdbl> <th< td=""></th<></td></th<></td></th<>	cint> cibt> cibt> cibt> cdbl> cdbl> <th< td=""><td>cint> cibt> cibt> cibt> cdbl> <th< td=""></th<></td></th<>	cint> cibt> cibt> cibt> cdbl> cdbl> <th< td=""></th<>

Task 10 - Total Bike Count and City Info for Seoul

Use an implicit join across the WORLD_CITIES and the BIKE_SHARING_SYSTEMS tables to determine the total number of bikes avaiable in Seoul, plus the following city information about Seoul: CITY, COUNTRY, LAT, LON, POPULAT Notice that in this case, the CITY column will work for the WORLD_CITIES table, but in general you would have to use the CITY_ASCII column.

Solution 10

provide your solution here
queryle -- parte("SELECT BS.BICYLES, WC.CITY_ASCII, WC.COUNTRY, WC.LAT, WC.LMS, WC.POPULATION FROM BIKE_SHARING_SYSTEMS AS BS, WORLD_CITIES AS WC MMERE WC.CITY_ASCII + BS.CITY_AMD WC.CITY = "Secoil")
total_bike

total_bike

Task 11 - Find all city names and coordinates with comparable bike scale to Seoul's bike sharing system

Find all cities with total bike counts between 15000 and 20000. Return the city and country names, plus the coordinates (LAT, LNG), population, and number of bicycles for each city.

Later we will ask you to visualize these similar cities on leaflet, with some weather data.

Solution 11

[38]: # provide your solution here
query11 <- ("SELECT BS.EITYLES, WC.CITY_ASCII, WC.COUNTRY, WC.LAT, WC.LNG, WC.POPULATION FROM BIKE_SHARING_SYSTEMS AS BS, MORLO_CITIES AS NC WHERE NC.CITY_ASCII = 85.CITY_AND BICYCLES BETWEEN 15000 AND 20000 AND

EDA with Data Visualization

Solution 1

Task 2 - Recast DATE as a date

Use the format of the data, namely "%d/%m/%Y".

Solution 2

'Date'

```
[2]: # provide your solution here
seoul_dataset$DATE <- as.Date(seoul_dataset$DATE, format = "%d/%n/%Y")
class(seoul_dataset$DATE)
```

Task 3 - Cast HOURS as a categorical variable

Also, coerce its levels to be an ordered sequence. This will ensure your visualizations correctly utilize HOURS as a discrete variable with the expected ordering.

Solution 3

```
[3]: # provide your solution here
seoul_dataset$HOUR <-factor(seoul_dataset$HOUR, ordered = TRUE)
class(seoul_dataset$HOUR)

'ordered'
'factor'</pre>
```

Task 4 - Dataset Summary

Use the base R sumamry() function to describe the seoul bike sharing dataset.

Solution 4

6]: # provide your solution here summary(seoul_dataset)

```
DATE
                                          HOUR
                                                     TEMPERATURE
                    RENTED_BIKE_COUNT
     :2017-12-01
                    Min. : 2.0
                                            : 353
                                                    Min. :-17.80
1st Ou.:2018-02-27
                    1st Ou.: 214.0
                                            : 353
                                                   1st Ou.: 3.00
Median :2018-05-28
                    Median : 542.0
                                            : 353
                                                    Median : 13.50
Mean :2018-05-28
                    Mean : 729.2
                                                    Mean : 12.77
                                     10
                                            : 353
3rd Qu.:2018-08-24
                    3rd Qu.:1084.0
                                     11
                                            : 353
                                                   3rd Qu.: 22.70
                                     12
     :2018-11-30
                    Max. :3556.0
                                            : 353
                                                   Max. : 39.40
                                     (Other):6347
   HUMIDITY
                 WIND_SPEED
                                VISIBILITY
                                             DEW_POINT_TEMPERATURE
      : 0.00
               Min.
                     :0.000
                                             Min. :-30.600
               1st Ou.:0.900
1st Ou.:42.00
                              1st Ou.: 935
                                             1st Ou.: -5.100
Median :57.00
               Median :1.500
                              Median :1690
                                             Median: 4.700
      :58.15
               Mean :1.726
                              Mean
                                     :1434
                                             Mean : 3.945
3rd Qu.:74.00
               3rd Qu.:2.300
                              3rd Qu.:2000
                                             3rd Ou.: 15.200
      :98.00
               Max. :7.400
                              Max.
                                     :2000
                                             Max. : 27.200
SOLAR_RADIATION
                   RAINFALL
                                    SNOWFALL
                                                     SEASONS
     :0.0000
                Min. : 0.0000
                                        :0.00000
                                                   Autumn:1937
                                 Min.
1st Qu.:0.0000
                1st Qu.: 0.0000
                                 1st Qu.:0.00000
                                                   Spring:2160
Median :0.0100
                Median : 0.0000
                                 Median :0.00000
                                                   Summer:2208
                                                   Winter:2160
      :0.5679
                Mean : 0.1491
                                       :0.07769
3rd Qu.:0.9300
                3rd Qu.: 0.0000
                                 3rd Qu.:0.00000
      :3.5200
                Max. :35.0000
                                 Max. :8.80000
      HOLIDAY
                 FUNCTIONING DAY
Holiday : 408
                 Yes:8465
No Holiday:8057
```

EDA with Data Visualization

Solution 5:

```
[7]: # provide your solution here
holiday <- seoul_dataset %>% filter(HOLIDAY == 'Holiday') %>% count()
holiday

A tibble:
1 × 1
    n
    <int>
    408
```

Task 6 - Calculate the percentage of records that fall on a holiday.

Solution 6

Task 7 - Given there is exactly a full year of data, determine how many records we expect to have.

Solution 7

```
[9]: # provide your solution here
one_day <- seoul_dataset %>% filter(DATE == "2017-12-01") %>% count()
predicted <- 365 * one_day
predicted

A
data.frame:
1 × 1</pre>
```

Solution 8

Drilling Down

Let's calculate some seasonally aggregated measures to help build some more context.

Task 9 - Load the dplyr package, group the data by SEASONS, and use the summarize() function to calculate the seasonal total rainfall and snowfall

Solution 9

```
[11]: # provide your solution here
library(dplyr)
group <- seoul_dataset %>% group_by(SEASONS) %>%
summarize(rainfall = sum(RAINFALL), snowfall = sum(SNONFALL))
group
```

A tibble: 4 × 3

SEASONS rainfall snowfall

<fct></fct>	<dbl></dbl>	<dbl></dbl>
Autumn	227,9	123.0
Spring	403,8	0.0
Summer	559.7	0.0
Winter	70,9	534.6

Wow, that seems like a lot of snow,

40

Now that you have some ideas about what sorts of questions can be answered through descriptive statistics, let's start visualizing the data.

• EDA with Data Visualization

Jan 2018

Apr 2018

Oct 2018

• EDA with Data Visualization

[24]: # provide your solution here ggplot(seoul_dataset, aes(x = RENTED_BIKE_COUNT)) + geom_histogram(binwidth = 35, color = "black", alpha = I(50), fill = I("white"), aes(y = ..density..))

30]: # provide your solution here ggplot(seoul_dataset, aes(x=TEMPERATURE, y=RENTED_BIKE_COUNT), alpha = I(50)) + geom_point(aes(color = HOUR)) + facet_wrap(~SEASONS)

Solution 14

[32]: # provide your solution here
ggplot(seoul_dataset, aes(x=HOUR, y=RENTED_BIKE_COUNT), alpha = 1/5) + geom_boxplot() + facet_wrap(~SEASONS)

• EDA with Data Visualization

