Chapter 1

Kombinatorna prebrojavanja

1.1 Uvodni pojmovi i oznake

1.1.1 Oznake

Za proizvoljno $n\in\mathbb{N},$ skup prvihn prirodnih brojeva (bez nule) ćemo označiti sa $\mathbb{N}_n.$ Znači,

$$\mathbb{N}_n := \{1, \dots, n\}.$$

1.1.2 Kardinalnost skupa

Kardinalni brojevi predstavljaju meru veličine (kardinalnosti) skupa i definišu se uz pomoć bijektivnih preslikavanja.

Po svojoj kardinalnosti, kažemo da skup \boldsymbol{X} može biti

- konačan ili
- beskonačan, pri čemu on može biti
 - prebrojiv ili
 - neprebrojiv.

Skup X je **konačan** u sledećim slučajevima:

- ako je $X = \emptyset$, onda je |X| = 0;
- ako je $X \neq \emptyset$ i postoji bijektivno preslikavanje skupa X u skup \mathbb{N}_n . U tom slučaju kažemo da je broj elemenata (kardinalnost) skupa X jednaka n i pišemo |X| = n.

Na osnovu prethodne definicije, direktno sledi sledeće tvrđenje, koje nazivano principom bijekcije.

Teorema 1 (princip bijekcije) $Ncka\ su\ A\ i\ Bneprazni\ konačni\ skupovi.$ $Tada\ važi$

|A| = |B| ako i samo ako postoji bijektivno preslikavanje $f: A \to B$.

Za skup koji nije konačan kažemo da je beskonačan. Ako postoji bijektivno preslikavanja f skupa X u \mathbb{N} onda je skup X prebrojivo beskonačan (ili prebrojiv).

1.2 Osnovne tehnike prebrojavanja

Kombinatorni problemi, između ostalog, uključuju probleme

- nabrajanja elemenata nekog konačnog skupa, tj. uređivanja svih elemenata nekog skupa u niz;
- prebrojavanje elemenata nekog konačnog skupa, tj. određivanje broja njegovih elemenata (kardinalnosti);
- pitanja egzistencije (postojanja) u konačnom skupu elementa sa nekom datom osobinom, pri čemu nije neophodna njegova konstrukcija.

 ${\bf U}$ nastavku ćemo uvesti neka pravila (principa) koja se koriste pri analizi kombinatornih objekata. To su:

- (1.2.1) princip proizvoda,
- (1.2.2) princip sume,
- (1.2.3) princip uključenja-isključenja i
- (1.2.4) Diribleov princip.

1.2.1 Princip sume

Ako se broj elemenata nekog konačnog skupa određuje pomoću njegove dekompozicije na uniju manjih skupova, razlikuju se slučajevi kada neki od tih skupova imaju zajedničke elemente i kada su svaka dva skupa međusobno disjunktni.

U drugom slučaju koristimo princip sume. Slučaj kada prebrojavamo elemente unije dva disjunktna skupa možemo pokazati direktno, koristeći definiciju (tj. pomoću bijektivnih preslikavanja).

Lema 2 Ako su A i B disjunktni konačni skupovi $(A \cap B = \emptyset)$, onda je

$$|A \cup B| = |A| + |B|.$$

Dokaz. Neka je $A = \{a_1, \dots, a_n\} \neq \emptyset$ i $B = \{b_1, \dots, b_m\} \neq \emptyset$ (ako je $A = \emptyset$ ili $B = \emptyset$ tvrđenje sledi direktno). Tada je

$$A \cup B = \{a_1, \dots, a_n, b_1, \dots, b_m\}.$$

Kako je $A \cap B = \emptyset$, možemo zaključiti da je $|A \cup B| = n + m$, zato što postoji bijektivno preslikavanje skupa $A \cup B$ u skup $\{1, 2 \dots, n + m\}$:

$$a_1 \mapsto 1 \quad \dots \quad a_n \mapsto n \quad b_1 \mapsto n+1 \quad \dots \quad b_m \mapsto n+m.$$

Teorema 3 (princip sume) Neka je $n \geq 2$ i neka su A_1, \dots, A_n konačni skupovi sa osobinom

$$\forall i, j \in \{1, \dots, n\} \quad i \neq j \Rightarrow A_i \cap A_j = \emptyset.$$

Tada je

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + |A_2| + \ldots + |A_n|.$$

Dokaz. Indukcijom po n.

Baza n=2: Sledi na osnovu Leme 2.

Induktivna pretpostavka: Pretpostavimo da je $|A_1 \cup ... \cup A_n| = |A_1| + ... + |A_n|$. Induktivni korak: Dokazaćemo da tvrđenje važi za n+1 skupova. Na osnovu Leme 2, imamo

$$|(A_1 \cup \ldots \cup A_n) \cup A_{n+1}| = |A_1 \cup \ldots \cup A_n| + |A_{n+1}|.$$

Na osnovu induktivne pretpostavke dalje sledi

$$|A_1 \cup \ldots \cup A_n \cup A_{n+1}| = |A_1| + \ldots + |A_n| + |A_{n+1}|,$$

što je i trebalo dokazati. \square

Princip sume pojavljuje se, na primer, kod određivanja složenosti algoritma u kojem postoje nezavisne petlje.

Primer 1 Za date vrednosti n,m i k odrediti s na kraju izvršavanja koda napisanog u programskom jeziku Java:

```
public class OdrediS {

   public static void main(String args[]) {

      int s=0;
         for (int i=1; i<=n; i++){
            s += 1;
         }
         for (int j=1; j<=m; j++){
            s += 1;
         }
         for (int l=1; l<=k; l++){
            s += 1;
         }
        System.out.println("s = " + s);
    }
}</pre>
```

Rešenje. Promenljiva s broji korake izvršavanja datog koda (pre samog štampanja konačne vrednosti za s). Svakoj vrednosti indeksa petlji i,j i k odgovara po jedno izvršavanje tela petlje, pri čemu u svakom telu imamo po jednu operaciju. Dodelimo svakom izvršavanju operacije s+=1 oznaku iz jednog od tri skupa (u zavisnosti od petlje u okviru koje se izvršava):

$$\begin{array}{rcl} A_i & = & \{i_1, i_2, \ldots, i_n\} \\ A_j & = & \{j_1, j_2, \ldots, j_m\} \\ A_l & = & \{l_1, l_2, \ldots, l_k\}. \end{array}$$

Svakom elementu unije data tri skupa odgovara jedno izvršavanje posmatranje naredbe, tako da je na kraju s jednako broju elemenata unije

$$|A_i \cup A_j \cup A_l| = |A_i| + |A_j| + |A_l| = n + m + k.$$

1.2.2 Princip uključenja-isključenja

U slučaju kada se prebrojavaju elementi unije proizvoljnih skupova, može se desiti da neki parovi imaju zajedničke elemente. Tako kada određujemo broj elementa unije dva skupa, prebrojavanjem elemenata jednog, a zatim drugog, dva puta se prebroje elementi preseka tih skupova. Zato se oni na kraju moraju oduzeti, kao što je to formulisano lemom u nastavku.

Lema 4 Neka su A i B proizvoljni konačni skupovi. Tada je

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Dokaz. Skupovi $A \cap B$ i $A \setminus B$ (kao i parovi $A \cap B$, $B \setminus A$ i $A \setminus B$, $B \setminus A$) su disjunktni i važe sledeće jednakosti (što sledi direktno iz definicija skupovnih operacija):

$$\begin{array}{rcl} A & = & (A \cap B) \cup (A \setminus B), \\ B & = & (A \cap B) \cup (B \setminus A), \\ A \cup B & = & (A \setminus B) \cup (A \cap B) \cup (B \setminus A). \end{array}$$

Na osnovu principa sume sledi:

$$\begin{aligned} |A| &= |(A \cap B) \cup (A \setminus B)| = |A \cap B| + |A \setminus B|, \\ |B| &= |(A \cap B) \cup (B \setminus A)| = |A \cap B| + |B \setminus A|, \\ |A \cup B| &= |A \setminus B| + |A \cap B| + |B \setminus A|. \end{aligned}$$

Odatle je

$$|A|+|B|=|A\cap B|+|A\setminus B|+|A\cap B|+|B\setminus A|=|A\cap B|+|A\cup B|, \ \mathrm{tj.}$$

$$|A\cup B|=|A|+|B|-|A\cap B|.$$

П

Posmatraćemo sada tri proizvoljna skupa, čime će biti ilustrovan induktivni korak Teoreme 6.

Lema 5 Neka su A, B i C proizvoljni konačni skupovi. Tada je

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|.$$

Dokaz. Ako dva puta primenimo Lemu 4, uz korišćenje osobina skupova, dobijamo

$$\begin{split} |A \cup B \cup C| &= |(A \cup B) \cup C| \\ &= |A \cup B| + |C| - |(A \cup B) \cap C| \\ &= |A| + |B| - |A \cap B| + |C| - |(A \cap C) \cup (B \cap C)| \\ &= |A| + |B| - |A \cap B| + |C| - |A \cap C| - |B \cap C| + |A \cap B \cap C|. \end{split}$$

Teorema 6 (princip uključenja-isključenja) . Neka je $n \ge 2$ i neka su $A_1,$. . . , A_n proizvoljni konačni skupovi. Tada je

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\emptyset \neq I \subset \{1, 2, \dots, n\}} (-1)^{|I|-1} \left| \bigcap_{i \in I} A_i \right|$$

(gde je $\cap A = A$).

Dokaz. Indukcijom po n.

Baza n = 2: Sledi na osnovu Leme 4.

Induktivna pretpostavka: Zan-1 proizvoljnih konačnih skupova važi jednakost iz tvrđenja.

Induktivni korak: Primenom Leme 4 i induktivne pretpostavke dobijamo

$$\begin{vmatrix} \bigcup_{i=1}^{n} A_i | &= & \left| A_1 \cup \bigcup_{i=2}^{n} A_i \right| = |A_1| + \left| \bigcup_{i=2}^{n} A_i \right| - \left| \bigcup_{i=2}^{n} (A_1 \cap A_i) \right|$$

$$= & |A_1| + \sum_{\emptyset \neq I \subseteq \{2, \dots, n\}} (-1)^{|I|-1} \left| \bigcap_{i \in I} A_i \right|$$

$$- \sum_{\emptyset \neq I \subseteq \{2, \dots, n\}} (-1)^{|I|-1} \left| \bigcap_{i \in I} (A_1 \cap A_i) \right|$$

$$= & \sum_{\emptyset \neq I \subseteq \{1, 2, \dots, n\}} (-1)^{|I|-1} \left| \bigcap_{i \in I} A_i \right|.$$

Posledica 7 Neka je $n \geq 2$ i neka su A_1, \ldots, A_n proizvoljni konačni skupovi. Tada je

$$|A_1 \cup A_2 \cup \ldots \cup A_n| \le |A_1| + |A_2| + \ldots + |A_n|.$$

1.2.3 Princip proizvoda

Kada se prebrojavaju elementi nekog uređenog skupa, primenjuje se princip proizvoda. U nastavku je prvo data formulacija za slučaj dva skupa, tj. dat je broj elemenata Dekartovog proizvoda dva konačna skupa.

Lema 8 Neka su Ai Bkonačni skupovi. Broj elemenata skupa $A\times B$ jednak je

$$|A \times B| = |A| \cdot |B|.$$

Dokaz. Neka je $A = \{a_1, \dots, a_m\} \neq \emptyset$ i $B = \{b_1, \dots, b_n\} \neq \emptyset$ (ako je $A = \emptyset$ ili $B = \emptyset$ tvrđenje direktno sledi). Tada je

$$A\times B=|\{(a,b):a\in A,b\in B\}=\bigcup_{a\in A}\left(\{a\}\times B\right).$$

Kako za $a_i \neq a_j$ važi $(\{a_i\} \times B) \cap (\{a_j\} \times B) = \emptyset$, prema Tvrđenju 3 sledi

$$|A \times B| = \sum_{a \in A} |\{a\} \times B| = \sum_{a \in A} \sum_{b \in B} |\{(a, b)\}|$$

= $\sum_{a \in A} \sum_{b \in B} 1 = |A| \cdot |B|$.

Opšti oblik principa prozivoda, za proizvoljan broj skupova, formulisan je i dokazan sledećim tvrđenjem.

Teorema 9 (princip proizvoda) Neka je $n \geq 2$ i neka su A_1, \ldots, A_n konačni skupovi. Tada je

$$|A_1 \times A_2 \times \ldots \times A_n| = |A_1| \cdot |A_2| \ldots |A_n|.$$

Dokaz. Indukcijom po n.

Baza n=2: Sledi na osnovu Leme 8.

Induktivna pretpostavka: Pretpostavimo da je $|A_1 \times \ldots \times A_n| = |A_1| \cdot \ldots \cdot |A_n|$. Induktivni korak: Dokazaćemo da tvrđenje važi za Dekartov proizvod n+1 skupova. Na osnovu Leme 8, imamo

$$|(A_1 \times \ldots \times A_n) \times A_{n+1}| = |A_1 \times \ldots \times A_n| \cdot |A_{n+1}|.$$

Prema induktivnoj pretpostavci, dalje je

$$|A_1 \times \ldots \times A_n \times A_{n+1}| = |A_1| \cdot \ldots \cdot |A_n| \cdot |A_{n+1}|.$$

Ilustrovaćemo u nastavku primer primene principa proizvoda na određivanje broja koraka u Java kodu.

Primer 2 Za date vrednosti n,m i k odrediti s na kraju izvršavanja koda napisanog u programskom jeziku Java:

 $Re \check{s}enje.$ Kako su date tri ugnježdene petlje, svakom izvršavanju naredne s+=1odgovara jedna uređena trojka vrednosti

$$(i, j, l) \in \{1, \dots, m\} \times \{1, \dots, n\} \times \{1, \dots, k\}.$$

Broj takvih uređenih trojki je

$$|\{1,\ldots,m\} \times \{1,\ldots,n\} \times \{1,\ldots,k\}| = \{1,\ldots,m\} |\cdot|\{1,\ldots,n\}| \cdot |\{1,\ldots,k\}|$$

= $m \cdot n \cdot k$.

1.2.4 Dirichleov princip

Iako se Dirichleov princip prvi put pojavljuje 1624. godine u knjizi francuskog naučnika Jean Leurechona, njegov naziv se ipak pripisuje nemačkom matematičaru Dirichletu, nakon njegovih razmatranja istog principa 1834. godine. Princip tvrdi da ako imamo više golubova nego rupa u koje su se oni uvukli, onda sigurno postoji bar jedna rupa u kojoj se nalaze bar dva goluba. Važno je napomenuti da je princip egzistencijalnog karaktera: on tvrdi da objekti sa nekom osobinom postoje, ali pri tome ne daje eksplicitnu konstrukciju tih objekata.

Teorema 10 (Dirihleov princip) Za $m,n\in\mathbb{N},$ neka su A_1,\ldots,A_n konačni skupovi i neka je

$$A_1 \cup \ldots \cup A_n = \{a_1, \ldots, a_m\}.$$

Ako je m > n, onda postoji $j \in \{1, ..., n\}$ sa osobinom $|A_j| \ge 2$.

Dokaz. Pretpostavimo suprotno, da za svako $j \in \{1, \dots, n\}$ važi

$$|A_j| \leq 1$$
.

Tada za broj elemenata u uniji skupova važi

$$m = |A_1 \cup \ldots \cup A_n| \le |A_1| + \ldots + |A_n| \le n,$$

što je u kontradikciji sa pretpostavkom da je m>n. Time zaključujemo da pretpostavka nije bila tačna. \square

Dirihleov princip možemo dodatno uopštiti kao što je formulisano u sledećoj teoremi.

Teorema 11 (Uopšteni Dirihleov princip) Za $n, m \in \mathbb{N}$, neka su A_1, \ldots, A_n konačni skupovi i neka je

$$A_1 \cup \ldots \cup A_n = \{a_1, \ldots, a_m\}.$$

Ako je $m>n\cdot q$, za neko $q\in\mathbb{N},$ onda postoji $j\in\{1,\dots,n\}$ sa osobinom $|A_j|\geq q+1.$

Dokaz. Pretpostavimo suprotno, da za svako $j \in \{1, \dots, n\}$ važi

$$|A_i| \leq q$$
.

Tada za broj elemenata u uniji skupova važi

$$m = |A_1 \cup \ldots \cup A_n| \le |A_1| + \ldots + |A_n| \le n \cdot q$$

što je u kontradikciji sa pretpostavkom da je $m>n\cdot q.$ \Box

1.2.5 Zadaci za vežbu

1. Student treba da izabere dva predmeta iz dve različite izborne grupe, $A_1 = \{ \text{algebra}, \text{analiza}, \text{dm} \}$ i $A_2 = \{ \text{OOP}, \text{fizika}, \text{engleski}, \text{francuski} \}$. Na koliko načina student može izabrati izborne predmete?

Rešenje. Svakom izboru studenta odgovara jedan element skupa $A_1 \times A_2$ tj. svi izbori navedeni su u tom Dekartovom proizvodu. Tako je broj mogućnosti da student izabere izborne predmete jednak

$$|A_1 \times A_2| = |A_1| \cdot |A_2| = 12.$$

2. Koliko ima reči dužine 5 nad azbukom od 30 slova?

Rešenje. Svako slovo reči može biti proizvoljan element azbuke koja ima 30 elemenata. Ukupan broj takvih (smislenih ili besmislenih) reči je

$$30^5 = 24300000$$
.

П

3. Koliko ima različitih nizova bitova dužine 8?

Rešenje. Nizovi bitova dužine 8 su elementi Dekartovog stepena A^8 skupa $A = \{0, 1\}$. Kardinalnost tog skupa je

$$|A^8| = |A \times ... \times A| = |A|^8 = 2^8 = 256.$$

- 4. Odrediti koliko ima petocifrenih brojeva
 - (i) ukupno,
 - (ii) čije sve cifre su parni brojevi,
 - (iii) čije sve cifre su neparni brojevi,
 - (iv) čija bar jedna cifra je neparan broj,
 - (v) čija bar jedna cifra je paran broj,
 - (vi) čija bar jedna cifra je paran broj i bar jedna cifra je neparan broj.

Rešenje. Neka je

 $A = \{x \in \mathbb{N} : x \text{ je petocifren broj}\},$

 $B = \{x \in \mathbb{A} : x \text{ ima sve pame cifre}\},\$

 $C = \{x \in \mathbb{A} : x \text{ ima sve neparne cifre}\},$

 $D = \{x \in \mathbb{A} : x \text{ ima bar jednu neparnu cifru}\},$

 $E = \{x \in \mathbb{A} : x \text{ ima bar jednu parnu cifru}\},$

 $F = \{x \in \mathbb{A} : x \text{ ima bar jednu parnu i bar jednu neparnu cifru}\}$

U svim slučajevima, koristićemo oznaku $A_i, i \in \{1,2,3,4,5\}$ za skup cifara koje mogu biti na poziciji i.. Petocifrene brojeve možemo predstaviti kao uređene petorke iz skupa

$$A_1 \times A_2 \times A_3 \times A_4 \times A_5$$
,

gde će se ti skupovi razlikovati od slučaja do slučaja.

(i) Kako prva cifra ne može biti 0,

$$\begin{array}{rcl} A_1 & = & \{1,2,3,4,5,6,7,8,9\}, \\ A_2 & = & A_3 = A_4 = A_5 = \{0,1,2,3,4,5,6,7,8,9\}. \end{array}$$

Na osnovu principa proizvoda.

$$|A_1 \times A_2 \times A_3 \times A_4 \times A_5| = |A_1| \cdot |A_2| \cdot |A_3| \cdot |A_4| \cdot |A_5|$$

= $9 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 90000$.

(ii) Iz uslova da prva cifra ne može biti 0 i da su sve cifre parni brojevi, zaključujemo da je

$$A_1 = \{2, 4, 6, 8\},\$$

 $A_2 = A_3 = A_4 = A_5 = \{0, 2, 4, 6, 8\}.$

Na osnovu principa proizvoda,

$$|B| = |A_1 \times A_2 \times A_3 \times A_4 \times A_5|$$

= |A_1| \cdot |A_2| \cdot |A_3| \cdot |A_4| \cdot |A_5|
= 4 \cdot 5 \cdot 5 \cdot 5 \cdot 5 = 2500.

(iii) U ovom slučaju je

$$A_1 = A_2 = A_3 = A_4 = A_5 = \{1, 3, 5, 7, 9\}.$$

Na osnovu principa proizvoda,

$$|C|$$
 = $|A_1 \times A_2 \times A_3 \times A_4 \times A_5|$
 = $|A_1|^5 = 5^5 = 3125$.

(iv) Može se primetiti da je

$$A = B \cup D$$
 i $B \cap D = \emptyset$.

Tada je na osnovu principa zbira

$$|A| = |B| + |D|,$$

odakle je

$$|D| = |A| - |B| = 90000 - 2500 = 87500.$$

(v) Slično kao u prethodnom slučaju, prvo treba primetiti da važi

$$A = C \cup E$$
 i $C \cap E = \emptyset$.

Tada je na osnovu principa zbira

$$|A| = |C| + |E|,$$

odakle je

$$|E| = |A| - |C| = 90000 - 3125 = 86875.$$

(vi) Prema principu uključenja-isključenja,

$$|D \cup E| = |D| + |E| - |D \cap E|.$$

Kako je $A=D\cup E$ i $F=D\cap E$, zaključujemo

$$|A| = |D| + |E| - |F|,$$

odakle je

$$|F| = |D| + |E| - |A| = 87500 + 86875 - 90000 = 84375$$

5. Pretpostavimo da je u istom danu organizovan kolokvijum iz Diskretne matematike i kolokvijum iz Analize. Ako u grupi od 160 studenata, 93 studenta polažu Diskretnu matematiku, a 98 Analizu, koliko studenata će izaći na oba kolokvijuma?

 $Re\check{s}enje$. Označimo sa A skup studenata koji polažu kolokvijum iz Diskretne matematike, a sa B skup studenata koji polažu kolokvijum iz Analize. Na osnovu principa uključenja-isključenja, tada važi

$$\begin{split} |A \cup B| &= |A| + |B| - |A \cap B| \\ \Leftrightarrow & 160 = 93 + 98 - |A \cap B| \\ \Leftrightarrow & |A \cap B| = 93 + 98 - 160 \Leftrightarrow |A \cap B| = 31. \end{split}$$

Znači na oba kolokvijuma će izaći 31 student. 🗆

6. Odrediti broj nenegativnih celih brojeva x < 100000 sa osobinom $\{2,4,8\} \subseteq \text{cifre}(x)$.

Rešenje. Neka je $A = \{x \in \mathbb{N}_0 : x < 100000\}$ i

$$\begin{array}{lclcl} A_2 & = & \{x \in A : 2 \not\in \mathtt{cifre}(x)\} & B_2 & = & \{x \in A : 2 \in \mathtt{cifre}(x)\} \\ A_4 & = & \{x \in A : 4 \not\in \mathtt{cifre}(x)\} & B_4 & = & \{x \in A : 4 \in \mathtt{cifre}(x)\} \\ A_8 & = & \{x \in A : 8 \not\in \mathtt{cifre}(x)\} & B_8 & = & \{x \in A : 8 \in \mathtt{cifre}(x)\}. \end{array}$$

Tada je posmatrani skup brojeva $B_2 \cap B_4 \cap B_8$ jednak razlici skupa A i unije skupova A_2 , A_4 i A_8 , tj.

$$B_2 \cap B_4 \cap B_8 = A \setminus (A_2 \cup A_4 \cup A_8)$$

Odatle je

$$|B_2 \cap B_4 \cap B_8| = |A| - |A_2 \cup A_4 \cup A_8|.$$

Na osnovu principa uključenja-isključenja, dobijamo

$$|A_2 \cup A_4 \cup A_8| = |A_2| + |A_4| + |A_8| - |A_2 \cap A_4| - |A_2 \cap A_8|$$
$$-|A_4 \cap A_8| + |A_2 \cap A_4 \cap A_8|$$
$$= 9^5 + 9^5 + 9^5 - 8^5 - 8^5 + 7^5$$
$$= 95650.$$

Odatle je

$$|B_2 \cap B_4 \cap B_8| = 100000 - 95650 = 4350.$$

7. Napisati princip uključenja-isključenja za 4 skupa.

Rešenje.

$$\begin{split} |A \cup B \cup C \cup D| &= |A| + |B| + |C| + |D| \\ -|A \cap B| - |A \cap C| - |A \cap D| - |B \cap C| - |B \cap D| - |C \cap D| \\ +|A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D| \\ -|A \cap B \cap C \cap D|. \end{split}$$

- 8. Godina je prestupna ako zadovoljava sledeće osobine:
 - (a) deljiva je sa 4 i nije deljiva sa 100
 - (b) deljiva je sa 400.

Koliko ima prestupnih godina u intervalu godina [1501, 2501)?

 $Re {\it senje}$. Neka je Askup godina deljivih sa 4 koje nisu deljive sa 100 i neka je Bskup godina deljivih sa 400, sve u periodu između 1501. i 2501. godine. Ako je godina deljiva sa 400, onda je ona deljiva i sa 100, što znači da je $A\cap B=\emptyset$. Tada je broj prestupnih godina u periodu između 1501. i 2501. godine jednak

$$|A \cup B| = |A| + |B|.$$

Broj godina između 1501. i 2501. godine koje su deljive sa 4, a nisu deljive sa 100. jednak je

$$|A| = 250 - 10 = 240.$$

Skup godina između 1501. i 2501. godine koje su deljive sa 400 jednak je

$$|B| = 3.$$

Znači, ukupno ima 243 prestupne godine. \Box

9. Ime promenljive u programskom jeziku jeste string koji može sadržati velika i mala slova engleskog alfabeta koji ima 26 slova, cifre i donje crtice. Prvi karakter stringa ne može biti donja crta. Ako je ime promenljive određeno sa 8 karaktera, koliko različitih promenljivih može biti uvedeno u tom programskom jeziku?

Rešenje. Broj simbola koji je na raspolaganju jednak je

$$26 + 26 + 10 + 1 = 63$$
,

pri čemu je za prvi karakter na raspolaganju 62 simbola. Odatle je, prema principu proizvoda, broj različitih imena promenjljivih koja se mogu formirati

$$62 \cdot 63^{7}$$
.

- 10. Pretpostavimo da lozinka sadrži bar 8, a manje od 12 karaktera. Svaki karakter je malo ili veliko slovo engleskog alfabeta, cifra ili jedan od 6 datih specijalnih simbola.
 - (a) Koliko se različitih lozinki može kreirati nad datom azbukom?
 - (b) Koliko lozinki sadrži bar jedan od 6 specijalnih simbola?
 - (c) Koristeći odgovor pod (a) odrediti koliko vremena treba hakeru da isproba sve moguće lozinke, ako mu za jednu treba jedna nanosekunda.

Rešenje. Broj simbola koji su na raspolaganju je

$$26 + 26 + 10 + 6 = 68.$$

(a) Broj načina da se formira lozinka dužine 8,9,10 ili 11 je:

$$68^8 + 68^9 + 68^{10} + 68^{11}$$
.

(b) Ako od broja svih lozinki oduzmemo broj onih koje ne sadrže nijedan od 6 specijalnih simbola dobijamo broj lozinki koje sadrže bar jedan specijalni simbol, a to je

$$(68^8 + 68^9 + 68^{10} + 68^{11}) - (62^8 + 62^9 + 62^{10} + 62^{11}).$$

(c)

$$68^8 \cdot (1 + 68 + 68^2 + 68^3) \cdot 10^{-9} = 68^8 \cdot 444829 \cdot 10^{-9} s$$
$$= 68^8 \cdot 7413.81667 \cdot 10^{-9}$$

Ako pretpostavimo da je broj sekundi u godini (koja nije prestupna) jednak

$$365 \cdot 24 \cdot 60 \cdot 60 = 31536000,$$

hakeru bi bilo potrebno više od 3448 godina da proveri sve lozinke.

11. Kolimo ima palindroma dužine n nad azbukom $\{0,1\}$?

Rešenje. Palindrom je reč koja se jednako čita unapred i unazad. Broj različitih palindroma dužine n jednak je broju različitih reči dužine $\frac{n}{2}$, za parno n, odnosno $\frac{n+1}{2}$ za neparno n. Znači, ima ih

$$2^{\left[\frac{n}{2}\right]}$$

gde je [x] najmanji ceo broj ne manji od x.

12. Data je kvadratna matrica reda 4 sa elementima iz skupa $\{-1,0,1\}$. Dokazati da među sumama elemenata po vrstama, po kolonama i na dijagonalama postoje bar dve jednake.

Rešenje. Zbir elemenata u svakoj od 4 vrste, 4 kolone i 2 dijagonale pripada skupu

$$\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}.$$

Kako pri tome imamo 10 suma iz skupa od 9 elemenata, prema Dirihleovom principu, postoje bar dve jednake sume.

13. Pokazati da među svakih n+1 prirodnih brojeva postoje dva čija razlika je deljiva sa $n\ (n\geq 1)$.

Rešenje. Ako broj pri deljenju sa n daje količnik q i ostatak r, možemo ga zapisati u obliku $q\cdot n+r$, gde je $r\in\{0,1,\ldots,n-1\}$. Svaki od datih n+1 brojeva ćemo tako zapisati u obliku

$$q_i \cdot n + r_i$$
, $r_i \in \{0, 1, \dots, n-1\}$, $i \in \{1, 2, \dots, n+1\}$.

Kako brojeva ima više nego ostataka, postoje bar dva broja koji imaju isti ostatak prei deljenju sa n. Neka su to, za l>m, brojevi

$$q_l \cdot n + r \mathbf{i} \ q_m \cdot n + r.$$

Razlika ovih brojeva je sada

$$(q_l \cdot n + r) - (q_m \cdot n + r) = (q_l - q_m) \cdot n,$$

što pokazuje da je deljiva sa n.

14. Dokazati da za svaki prirodan broj n postoji prirodan broj koji je deljiv sa n i čije cifre su iz skupa $\{0,1\}$.

Rešenje. Posmatrajmo n+1 brojeva zapisanih koristeći samo cifru 1:

1 11 111
$$\dots \underbrace{11\dots 1}_{n+1}$$

Ako svaki od n+1 posmatranih brojeva pri deljenju sa n daje ostatak iz skupa $\{0, 1, \ldots, n-1\}$, onda prema Dirihleovom principu postoje (bar)

dva broja sa istim ostatkom. Neka su to brojevi sa m i l cifara, gde je $m \geq l$. Ako pretpostavimo da je

$$\underbrace{11\dots 1}_{n} = q_1 \cdot n + r \qquad \qquad \mathbf{i} \qquad \qquad \underbrace{11\dots 1}_{l} = q_2 \cdot n + r$$

možemo zaključiti da je njihova razlika

$$\underbrace{11...1}_{m} - \underbrace{11...1}_{l} = q_1 \cdot n + r - (q_2 \cdot n + r) = q_1 \cdot n - q_2 \cdot n = (q_1 - q_2) \cdot n$$

deljiva sa n.

Pored toga, razlika data dva broja

$$\underbrace{11\dots 1}_{m} - \underbrace{11\dots 1}_{l} = \underbrace{11\dots 1}_{m-l} \underbrace{00\dots 0}_{l}$$

je broj zapisan pomoću cifara 0 i 1. □

15. Pokazati da među n+1 prirodnih brojeva koji ne prelaze 2n postoji broj koji deli neki drugi broj iz istog skupa brojeva ($n \ge 1$).

Rešenje. Svaki broj iz skupa $A=\{1,2,\ldots,n+1\}$ moguće je zapisati u obliku

$$2^i \cdot q_i$$
, gde je q_i neparan broj i $i \geq 0$

(za neparne brojeve i=0, dok svaki parni broj možemo deliti uzastopno sa 2 dok god ne dobijemo neparan broj). Kako je $q_i<2n$, sledi da je $q_i=2l_i-1$ i $l_i\in\{1,2,\ldots,n\}$. Na osnovu Dirihleovog principa, među izabranih n+1 brojeva, postoje bar dva broja sa istim neparnim činiocem q. Neka su to brojevi

$$2^l \cdot q$$
 i $2^m \cdot q$ za $l > m$.

Sada se lako pokazuje da $2^m \cdot q$ deli $2^l \cdot q$:

$$2^l \cdot q = (2^m \cdot q) \cdot 2^{l-m}.$$

16. Dokazati da postoji prirodan broj n sa osobinom da se 7^n završava sa 0001.

Rešenje. Pokazaćemo ekvivalentnu tvrdnju, a to je da postoji prirođan broj n sa osobinom da se 7^n-1 završava sa 0000 tj. da je deljiv sa 10^4 . Posmatraćemo sledećih 10001 brojeva:

$$7, 7^2, \ldots, 7^{10000}, 7^{10001}$$

Ostatak pri deljenju proizvoljnog prirodnog broja sa 10000 jeste jedan od sledećih 10000 brojeva:

$$0, 1, \ldots, 9999.$$

Prema Dirihleovom principu, postoje $l,m\in\{1,2,\dots,10001\}$ tako da 7^l i 7^m (l< m) imaju isti ostatak pri deljenju sa 10000. U tom slučaju je sa 10000 deljiv broj

$$7^m - 7^l = 7^l \cdot (7^{m-l} - 1).$$

Treba primetiti da 7^l nije deljiv sa 10000, odakle dobijamo da je $7^{m-l}-1$ deljiv sa 10000. Konačno, to znači da se broj $7^{m-l}-1$ završava sa 0000 i direktno, dodavanjem jedinice tom broju, zaključujemo da se 7^{m-l} završava sa 0001.