

# COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface



## **Chapter 3**

#### **Arithmetic for Computers**



#### **Outline**

- Introduction
- Addition and Subtraction
- Multiplication
- Division
- Floating Point
- Parallelism and Computer Arithmetic: Subword Parallelism
- Real Stuff: Streaming SIMD Extensions and Advanced Vector Extensions in x86
- Going Faster: Subword Parallelism and Matrix Multiply
- Fallacies and Pitfalls
- Concluding Remarks

### **Arithmetic for Computers**

- Operations on integers
  - Addition and subtraction
  - Multiplication and division
  - Dealing with overflow
- Floating-point real numbers
  - Representation and operations



### Integer Addition

Example: 7 + 6



- Overflow if result out of range
  - Adding +ve and –ve operands, no overflow
  - Adding two +ve operands
    - Overflow if result sign is 1
  - Adding two –ve operands
    - Overflow if result sign is 0



### Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
  - +7: 0000 0000 ... 0000 0111
  - <u>-6:</u> 1111 1111 ... 1111 1010
  - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
  - Subtracting two +ve or two –ve operands, no overflow
  - Subtracting +ve from –ve operand
    - Overflow if result sign is 0
  - Subtracting –ve from +ve operand
    - Overflow if result sign is 1

### **Decoder and Multiplexer**



| Inputs |    |    | Outputs |      |      |      |      |      |      |      |
|--------|----|----|---------|------|------|------|------|------|------|------|
| 12     | 11 | 10 | Out7    | Out6 | Out5 | Out4 | Out3 | Out2 | Out1 | Out0 |
| 0      | 0  | 0  | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 1    |
| 0      | 0  | 1  | 0       | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| 0      | 1  | 0  | 0       | 0    | 0    | 0    | 0    | 1    | 0    | 0    |
| 0      | 1  | 1  | 0       | 0    | 0    | 0    | 1    | 0    | 0    | 0    |
| 1      | 0  | 0  | 0       | 0    | 0    | 1    | 0    | 0    | 0    | 0    |
| 1      | 0  | 1  | 0       | 0    | 1    | 0    | 0    | 0    | 0    | 0    |
| 1      | 1  | 0  | 0       | 1    | 0    | 0    | 0    | 0    | 0    | 0    |
| 1      | 1  | 1  | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

a. A 3-bit decoder

b. The truth table for a 3-bit decoder





## Programmable Logic Array



|   | Inputs |   | Outputs |   |   |  |
|---|--------|---|---------|---|---|--|
| A | В      | С | D       | Е | F |  |
| 0 | 0      | 0 | 0       | 0 | 0 |  |
| 0 | 0      | 1 | 1       | 0 | 0 |  |
| 0 | 1      | 0 | 1       | 0 | 0 |  |
| 0 | 1      | 1 | 1       | 1 | 0 |  |
| 1 | 0      | 0 | 1       | 0 | 0 |  |
| 1 | 0      | 1 | 1       | 1 | 0 |  |
| 1 | 1      | 0 | 1       | 1 | 0 |  |
| 1 | 1      | 1 | 1       | 0 | 1 |  |



### **Arithmetic Logic Unit (ALU)**



|   | Inputs |         | Outp     | uts |                               |
|---|--------|---------|----------|-----|-------------------------------|
| а | b      | Carryin | CarryOut | Sum | Comments                      |
| 0 | 0      | 0       | 0        | 0   | $0 + 0 + 0 = 00_{two}$        |
| 0 | 0      | 1       | 0        | 1   | $0 + 0 + 1 = 01_{two}$        |
| 0 | 1      | 0       | 0        | 1   | $0 + 1 + 0 = 01_{two}$        |
| 0 | 1      | 1       | 1        | 0   | $0 + 1 + 1 = 10_{two}$        |
| 1 | 0      | 0       | 0        | 1   | $1 + 0 + 0 = 01_{two}$        |
| 1 | 0      | 1       | 1        | 0   | 1 + 0 + 1 = 10 <sub>two</sub> |
| 1 | 1      | 0       | 1        | 0   | 1 + 1 + 0 = 10 <sub>two</sub> |
| 1 | 1      | 1       | 1        | 1   | 1 + 1 + 1 = 11 <sub>two</sub> |

Sum = 
$$(a b Carryln) + (a b Carryln) + (a b Carryln) + (a b Carryln)$$

### **Arithmetic Logic Unit (ALU)**





### Multiplication (Example)



## Multiplication (Ideas,)

| 1101                           | 1101                                                | 1101                  | 1 1 0 1            |  |  |  |  |
|--------------------------------|-----------------------------------------------------|-----------------------|--------------------|--|--|--|--|
| 1101                           | 1101                                                | 1101                  | 1101               |  |  |  |  |
| $\times$ 101 <b>1</b>          | × 10 <b>1</b> 1                                     | $\times 1011$         | $\times$ 1011      |  |  |  |  |
| 0000                           | $\frac{0000}{000}$                                  | $\frac{0\ 0\ 0\ 0}{}$ | 0000               |  |  |  |  |
| + 1101                         | $+\ 1\ 1\ 0\ 1$                                     | $+\ 1\ 1\ 0\ 1$       | + 1101             |  |  |  |  |
| 1 1 0 1                        | 1 1 0 1                                             | 1 1 0 1               | 1 1 0 1            |  |  |  |  |
|                                | + 1 1 0 1 -                                         | + 1 1 0 1 -           | + 1 1 0 1 -        |  |  |  |  |
|                                | 100111                                              | 100111                | $1\ 0\ 0\ 1\ 1\ 1$ |  |  |  |  |
|                                |                                                     | +0000-                | +00000             |  |  |  |  |
|                                |                                                     | $1\ 0\ 0\ 1\ 1\ 1$    | 100111             |  |  |  |  |
|                                |                                                     |                       | +1 1 0 1           |  |  |  |  |
| <ul> <li>Multiplier</li> </ul> | • Multiplier decides the addition by one $10001111$ |                       |                    |  |  |  |  |

- Multiplier decides the addition by one bit and the deciding bit moves left.
- Multiplicand always shift left

# Multiplication (Ideas<sub>2</sub>)

| Multiplier   | 101 <b>1</b> | 10 <b>1</b>     | 1 <b>0</b>         | 1                     |
|--------------|--------------|-----------------|--------------------|-----------------------|
| Multiplicand | 1101         | $1\ 1\ 0\ 1\ 0$ | $1\ 1\ 0\ 1\ 0\ 0$ | 1101000               |
| Product      | + 0000       | + 1101          | -100111            | + 100111              |
|              | 1101         | 100111          | 100111             | $\overline{10001111}$ |

- Look "last bit" of Multiplier
- Shift Multiplier right
- Shift Multiplicand Left

### Multiplication

Start with long-multiplication approach



1101000

+ 100111

10001111



Length of product is the sum of operand lengths

Multiplier

32 bits

Shift right

### **Multiplication Hardware**



### **Optimized Multiplier (Ideas)**



### **Optimized Multiplier**

Perform steps in parallel: add/shift



- One cycle per partial-product addition
  - That's ok, if frequency of multiplications is low

### **Faster Multiplier**

- Uses multiple adders
  - Cost-performance tradeoff





### **RISC-V Multiplication**

- Four multiply instructions:
  - mul: multiply
    - Gives the lower 32 bits of the product
  - mulh: multiply high
    - Gives the upper 32 bits of the product, assuming the operands are signed
  - mulhu: multiply high unsigned
    - Gives the upper 32 bits of the product, assuming the operands are unsigned
  - mulhsu: multiply high signed/unsigned
    - Gives the upper 32 bits of the product, assuming one operand is signed and the other unsigned
  - Use mulh result to check for 32-bit overflow



#### **Division**



*n*-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
  - If divisor ≤ dividend bits
    - 1 bit in quotient, subtract
  - Otherwise
    - 0 bit in quotient, bring down next dividend bit
- Restoring division
  - Do the subtract, and if remainder goes < 0, add divisor back</li>
- Signed division
  - Divide using absolute values
  - Adjust sign of quotient and remainder as required

#### **Division Hardware**





#### **Division Hardware**







### **Optimized Divider**



- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
  - Same hardware can be used for both

### **Optimized Multiplier & Divider**





#### **RISC-V Division**

- Four instructions:
  - div, rem: signed divide, remainder
  - divu, remu: unsigned divide, remainder

- Overflow and division-by-zero don't produce errors
  - Just return defined results
  - Faster for the common case of no error

### Floating Point

- Representation for non-integral numbers
  - Including very small and very large numbers
- Like scientific notation

$$-2.34 \times 10^{56}$$
 $+0.002 \times 10^{-4}$ 
 $+987.02 \times 10^{9}$ 
not normalized

In binary

$$\blacksquare$$
 ±1. $xxxxxxx_2 \times 2^{yyyy}$ 

$$\blacksquare$$
 a.bcd = a × 2<sup>0</sup> + b × 2<sup>-1</sup> + c × 2<sup>-2</sup>+ d × 2<sup>-3</sup>

Types float and double in C



### Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
  - Portability issues for scientific code
- Now almost universally adopted
- Two representations
  - Single precision (32-bit)
  - Double precision (64-bit)

### **IEEE Floating-Point Format**

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
  - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
  - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
  - Ensures exponent is unsigned
  - Single: Bias = 127; Double: Bias = 1023

### Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
  - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
  - Fraction: 000...00 ⇒ significand = 1.0
  - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
  - exponent: 11111110⇒ actual exponent = 254 127 = +127
  - Fraction: 111...11 ⇒ significand ≈ 2.0
  - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

### **Double-Precision Range**

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
  - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
  - Fraction: 000...00 ⇒ significand = 1.0
  - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
  - Exponent: 11111111110⇒ actual exponent = 2046 1023 = +1023
  - Fraction: 111...11 ⇒ significand ≈ 2.0
  - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

### Floating-Point Precision

- Relative precision
  - all fraction bits are significant
  - Single: approx 2<sup>-23</sup>
    - Equivalent to 23 × log<sub>10</sub>2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
  - Double: approx 2<sup>-52</sup>
    - Equivalent to 52 × log<sub>10</sub>2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

# Floating-Point Example

- Represent –0.75
  - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
  - $\blacksquare$  S = 1
  - Fraction = 1000...00<sub>2</sub>
  - Exponent = -1 + Bias
    - Single: −1 + 127 = 126 = 011111110<sub>2</sub>
    - Double:  $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 1011111111101000...00

# Floating-Point Example<sub>2</sub>

 What number is represented by the single-precision float

11000000101000...00

$$= S = 1$$

- Fraction =  $01000...00_2$  =  $.01_2$  = 0.25
- Exponent = 10000001<sub>2</sub> = 129

$$x = (-1)^{1} \times (1 + .01_{2}) \times 2^{(129 - 127)}$$
$$= (-1) \times 1.25 \times 2^{2}$$
$$= -5.0$$

#### **Denormal Numbers**

■ Exponent =  $000...0 \Rightarrow$  hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
  - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

#### **Infinities and NaNs**

- Exponent = 111...1, Fraction = 000...0
  - ±Infinity
  - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
  - Not-a-Number (NaN)
  - Indicates illegal or undefined result
    - e.g., 0.0 / 0.0
  - Can be used in subsequent calculations

# **IEEE Floating-Point Encoding**

| Single      | precision | <b>Double</b> | precision | Object represented      |
|-------------|-----------|---------------|-----------|-------------------------|
| Exponent    | Fraction  | Exponent      | Fraction  |                         |
| 0           | 0         | 0             | 0         | 0                       |
| 0           | Nonzero   | 0             | Nonzero   | ± denormalized number   |
| 1–254       | Anything  | 1–2046        | Anything  | ± floating-point number |
| 255         | 0         | 2047          | 0         | ± infinity              |
| 255 Nonzero |           | 2047          | Nonzero   | NaN (Not a Number)      |



### Floating-Point Addition

- Consider a 4-digit decimal example
  - $\bullet$  9.999 × 10<sup>1</sup> + 1.610 × 10<sup>-1</sup>
- 1. Align decimal points
  - Shift number with smaller exponent
  - $\bullet$  9.999 × 10<sup>1</sup> + 0.016 × 10<sup>1</sup>
- 2. Add significands
  - $\blacksquare$  9.999 × 10<sup>1</sup> + 0.016 × 10<sup>1</sup> = 10.015 × 10<sup>1</sup>
- 3. Normalize result & check for over/underflow
  - $\blacksquare$  1.0015 × 10<sup>2</sup>
- 4. Round and renormalize if necessary
  - $\blacksquare$  1.002 × 10<sup>2</sup>

## Floating-Point Addition

- Now consider a 4-digit binary example
  - $1.000_{2} \times 2^{-1} + -1.110_{2} \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
  - Shift number with smaller exponent
  - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
  - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
  - $1.000_2 \times 2^{-4}$ , with no over/underflow
- 4. Round and renormalize if necessary
  - $\blacksquare$  1.000<sub>2</sub> × 2<sup>-4</sup> (no change) = 0.0625

#### **FP Adder Hardware**

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
  - Much longer than integer operations
  - Slower clock would penalize all instructions
- FP adder usually takes several cycles
  - Can be pipelined

#### **FP Adder Hardware**



# Floating-Point Multiplication

- Consider a 4-digit decimal example
  - $\blacksquare$  1.110 × 10<sup>10</sup> × 9.200 × 10<sup>-5</sup>
- 1. Add exponents
  - For biased exponents, subtract bias from sum
  - New exponent = 10 + -5 = 5
- 2. Multiply significands
  - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
  - $\blacksquare$  1.0212 × 10<sup>6</sup>
- 4. Round and renormalize if necessary
  - $\blacksquare$  1.021 × 10<sup>6</sup>
- 5. Determine sign of result from signs of operands
  - $+1.021 \times 10^6$

# Floating-Point Multiplication

- Now consider a 4-digit binary example
  - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
  - Unbiased: -1 + -2 = -3
  - Biased: -3 + 127
- 2. Multiply significands
  - $1.000_2 \times 1.110_2 = 1.110_2 \Rightarrow 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
  - $1.110_2 \times 2^{-3}$  (no change) with no over/underflow
- 4. Round and renormalize if necessary
  - $\blacksquare$  1.110<sub>2</sub> × 2<sup>-3</sup> (no change)
- 5. Determine sign: +ve × –ve ⇒ –ve
  - $-1.110_2 \times 2^{-3} = -0.21875$

## **FP Multiplication & Addition**





#### **FP Arithmetic Hardware**

- FP multiplier is of similar complexity to FP adder
  - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
  - Addition, subtraction, multiplication, division, reciprocal, square-root
  - FP ← integer conversion
- Operations usually takes several cycles
  - Can be pipelined

#### **FP Instructions in RISC-V**

- Separate FP registers: f0, ..., f31
  - double-precision
  - single-precision values stored in the lower 32 bits
- FP instructions operate only on FP registers
  - Programs generally don't do integer ops on FP data, or vice versa
- FP load and store instructions
  - flw, fld
  - fsw, fsd

#### **FP Instructions in RISC-V**

- Single-precision arithmetic
  - fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s
    e.g., fadds.s f2, f4, f6
- Double-precision arithmetic
  - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d
    e.g., fadd.d f2, f4, f6
- Single- and double-precision comparison
  - feq.s, flt.s, fle.s
  - feq.d, flt.d, fle.d
  - Result is 0 or 1 in integer destination register
    - Use beq, bne to branch on comparison result
- Branch on FP condition code true or false
  - b.cond



#### **FP Instructions in RISC-V**

#### **RISC-V floating-point operands**

| Name                                      | Example                                                      | Comments                                                                                                                                                                             |
|-------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32 floating-point registers               | f0-f31                                                       | An f-register can hold either a single-precision floating-point number or a double-precision floating-point number.                                                                  |
| 2 <sup>61</sup><br>memory double<br>words | Memory[0], Memory[8],,<br>Memory[18,446,744,073,709,551,608] | Accessed only by data transfer instructions. RISC-V uses byte addresses, so sequential doubleword accesses differ by 8. Memory holds data structures, arrays, and spilled registers. |

#### **RISC-V floating-point assembly language**

| Category      | Instruction                   | Example           | Meaning                    | Comments                           |
|---------------|-------------------------------|-------------------|----------------------------|------------------------------------|
|               | FP add single                 | fadd.s f0, f1, f2 | f0 = f1 + f2               | FP add (single precision)          |
|               | FP subtract single            | fsub.s f0, f1, f2 | f0 = f1 - f2               | FP subtract (single precision)     |
|               | FP multiply single            | fmul.s f0, f1, f2 | f0 = f1 * f2               | FP multiply (single precision)     |
|               | FP divide single              | fdiv.s f0, f1, f2 | f0 = f1 / f2               | FP divide (single precision)       |
| Arithmetic    | FP square root single         | fsqrt.s f0, f1    | f0 = √f1                   | FP square root (single precision)  |
|               | FP add double                 | fadd.d f0, f1, f2 | f0 = f1 + f2               | FP add (double precision)          |
|               | FP subtract double            | fsub.d f0, f1, f2 | f0 = f1 - f2               | FP subtract (double precision)     |
|               | FP multiply double            | fmul.d f0, f1, f2 | f0 = f1 * f2               | FP multiply (double precision)     |
|               | FP divide double              | fdiv.d f0, f1, f2 | f0 = f1 / f2               | FP divide (double precision)       |
|               | FP square root double         | fsqrt.d f0, f1    | f0 = √f1                   | FP square root (double precision)  |
|               | FP equality single            | feq.s x5, f0, f1  | x5 = 1 if f0 == f1. else 0 | FP comparison (single precision)   |
|               | FP less than single           | flt.s x5, f0, f1  | x5 = 1 if f0 < f1, else 0  | FP comparison (single precision)   |
| 0             | FP less than or equals single | fle.s x5, f0, f1  | x5 = 1 if f0 <= f1, else 0 | FP comparison (single precision)   |
| Comparison    | FP equality double            | feq.d x5, f0, f1  | x5 = 1 if f0 == f1, else 0 | FP comparison (double precision)   |
|               | FP less than double           | flt.d x5, f0, fl  | x5 = 1 if f0 < f1, else 0  | FP comparison (double precision)   |
|               | FP less than or equals double | fle.d x5, f0, f1  | x5 = 1 if f0 <= f1, else 0 | FP comparison (double precision)   |
|               | FP load word                  | flw f0, 4(x5)     | f0 = Memory[x5 + 4]        | Load single-precision from memory  |
| Data transfer | FP load doubleword            | fld f0, 8(x5)     | f0 = Memory[x5 + 8]        | Load double-precision from memory  |
|               | FP store word                 | fsw f0, 4(x5)     | Memory[x5 + 4] = f0        | Store single-precision from memory |
|               | FP store doubleword           | fsd f0, 8(x5)     | Memory[x5 + 8] = f0        | Store double-precision from memory |

## FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in f10, result in f10, literals in global memory space
- Compiled RISC-V code:

## FP Example: Matrix Multiplication<sub>1</sub>

- $C = C + A \times B$ 
  - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of c, a, b in x10, x11, x12, and i, j, k in x5, x6, x7

# FP Example: Matrix Multiplication<sub>2</sub>

#### RISC-V code:

```
mm:...
      li
            x28,32
                        // x28 = 32  (row size/loop end)
      li
            x5,0
                        // i = 0; initialize 1st for loop
  L1: li x6.0
                        // j = 0; initialize 2nd for loop
  L2: li x7,0
                       // k = 0; initialize 3rd for loop
      slli x30,x5,5
                        // x30 = i * 2**5  (size of row of c)
      add
           x30,x30,x6
                        // x30 = i * size(row) + j
      slli x30,x30,3
                        // x30 = byte offset of [i][j]
      add
            x30, x10, x30
                        // x30 = byte address of c[i][j]
      fld
           f0,0(x30)
                        // f0 = c[i][i]
  L3: slli x29,x7,5
                        // x29 = k * 2**5  (size of row of b)
      add
                        // x29 = k * size(row) + j
           x29,x29,x6
      slli x29,x29,3
                        // x29 = byte offset of [k][j]
                        // x29 = byte address of b[k][j]
      add
           x29,x12,x29
      fld
           f1,0(x29)
                        // f1 = b[k][i]
```



#### FP Example: Array Multiplication

•••

```
slli x29, x5, 5 // x29 = i * 2**5 (size of row of a)
add x29, x29, x7 // x29 = i * size(row) + k
slli x29, x29, 3 // x29 = byte offset of [i][k]
add x29,x11,x29 // x29 = byte address of a[i][k]
fld f2,0(x29) // f2 = a[i][k]
fmul.d f1, f2, f1 // f1 = a[i][k] * b[k][j]
fadd.d f0, f0, f1 // f0 = c[i][j] + a[i][k] * b[k][j]
addi
    x7, x7, 1   // k = k + 1
bltu x7, x28, L3 // if (k < 32) go to L3
fsd f0,0(x30) // c[i][j] = f0
addi x6, x6, 1 // j = j + 1
bltu x6, x28, L2 // if (j < 32) go to L2
addi x5, x5, 1 // i = i + 1
bltu x5, x28, L1 // if (i < 32) go to L1
```

#### **Accurate Arithmetic**

- IEEE Std 754 specifies additional rounding control
  - Extra bits of precision (guard, round, sticky)
  - Choice of rounding modes
  - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
  - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

# **IEEE 754 Rounding Mode**

#### A 1-digit decimal example

|              | \$1.40 | \$1.60 | \$1.50 | \$2.50 | \$-1.50 |
|--------------|--------|--------|--------|--------|---------|
| Round up     | \$2    | \$2    | \$2    | \$3    | -\$1    |
| Round down   | \$1    | \$1    | \$1    | \$2    | -\$2    |
| Truncate     | \$1    | \$1    | \$1    | \$2    | -\$1    |
| Nearest even | \$1    | \$2    | \$2    | \$2    | -\$2    |

# Rounding to Nearest Even

#### A 3-digit decimal example

| Value <sub>10</sub> | Rounded <sub>10</sub> | Action           |
|---------------------|-----------------------|------------------|
| 7.8949999           | 7.89                  | Less than 1/2    |
| 7.8950001           | 7.90                  | Greater than 1/2 |
| 7.8950000           | 7.90                  | 1/2 Round up     |
| 7.8850000           | 7.88                  | 1/2 Round down   |

#### A 4-digit binary example

| Value <sub>2</sub> | Rounded <sub>2</sub> | Action           |
|--------------------|----------------------|------------------|
| 10.00001           | 10.00                | Less than 1/2    |
| 10.00110           | 10.01                | Greater than 1/2 |
| 10.11100           | 11.00                | 1/2 round up     |
| 10.10100           | 10.10                | 1/2 round down   |

## **Example**

- Use guard bit, round bit, and sticky bit
- Consider the following example

```
S E F
1 10000000 1.110000000000000011111
+ 1 10000010 1.11100000000000000001001
```

 Shift the smaller to line up exponents, add significands, and normalize

## **Example**

#### Now let's round the number in these modes

```
1 10000011 1.001010000000000000011 (from the above)

1 10000011 1.00101000000000000000 (round up)

1 10000011 1.001010000000000001001 (round down)

1 10000011 1.0010100000000000000 (truncate)

1 10000011 1.00101000000000000000 (nearest even)
```

#### **Subword Parallellism**

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
  - Example: 128-bit adder:
    - Sixteen 8-bit adds
    - Eight 16-bit adds
    - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)



### x86 FP Architecture

- Originally based on 8087 FP coprocessor
  - 8 × 80-bit extended-precision registers
  - Used as a push-down stack
  - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
  - Converted on load/store of memory operand
  - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
  - Result: poor FP performance



## **x86 FP Instructions**

| Data transfer                                  | Arithmetic                                                                               | Compare                           | Transcendental                            |
|------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ | FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT | FICOMP<br>FIUCOMP<br>FSTSW AX/mem | FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X |

#### Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed



#### **Streaming SIMD Extension 2 (SSE2)**

- Adds 4 × 128-bit registers
  - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
  - 2 × 64-bit double precision
  - 4 × 32-bit double precision
  - Instructions operate on them simultaneously
    - Single-Instruction Multiple-Data

#### Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for(int k = 0; k < n; k++)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }</pre>
```



#### x86 assembly code:

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx # register %rcx = %rsi
3. xor %eax, %eax # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add r9, rcx # register rcx = rcx + rcx
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
7. add \$0x1,\$rax # register \$rax = \$rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 <dgemm+0x30> # jump if %eax > %edi
11. add \$0x1,\$r11d # register \$r11 = \$r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```

#### Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
   for ( int i = 0; i < n; i+=4 )
     for ( int j = 0; j < n; j++ ) {
     m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
6.
* /
7. for ( int k = 0; k < n; k++ )
8.
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd(mm256 load pd(A+i+k*n),
10.
                mm256 broadcast sd(B+k+j*n)));
     mm256 \text{ store pd}(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```

#### Optimized x86 assembly code:

```
1. vmovapd (%r11), %ymm0  # Load 4 elements of C into %ymm0
2. mov %rbx, %rcx
                # register %rcx = %rbx
3. xor %eax, %eax # register %eax = 0
4. vbroadcastsd (%rax, %r8,1), %ymm1 # Make 4 copies of B element
5. add $0x8, %rax
                   # register %rax = %rax + 8
6. vmulpd (%rcx), %ymm1, %ymm1 # Parallel mul %ymm1, 4 A elements
7. add %r9,%rcx
                  # register %rcx = %rcx + %r9
8. cmp %r10,%rax
                       # compare %r10 to %rax
9. vaddpd %ymm1, %ymm0, %ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 <dgemm+0x50> # jump if not %r10 != %rax
11. add $0x1, %esi
                 # register % esi = % esi + 1
12. vmovapd %ymm0, (%r11) # Store %ymm0 into 4 C elements
```

### Right Shift and Division

- Left shift by i places multiplies an integer by 2<sup>i</sup>
- Right shift divides by 2<sup>i</sup>?
  - Only for unsigned integers
- For signed integers
  - Arithmetic right shift: replicate the sign bit
  - e.g., 11111011<sub>2</sub> = -5
     11111011<sub>2</sub> >> 2 = 111111110<sub>2</sub> = -2
  - $\bullet$  cf. 11111011<sub>2</sub> >>> 2 = 001111110<sub>2</sub> = +62

# **Associativity**

Associativity may fail

|   |           | (x+y)+z  | x+(y+z)   |
|---|-----------|----------|-----------|
| X | -1.50E+38 |          | -1.50E+38 |
| у | 1.50E+38  | 0.00E+00 |           |
| Z | 1.0       | 1.0      | 1.50E+38  |
|   |           | 1.00E+00 | 0.00E+00  |

- Parallel programs may interleave operations in unexpected orders
- Need to validate parallel programs under varying degrees of parallelism

#### Who Cares About FP Accuracy?

- Important for scientific code
  - But for everyday consumer use?
    - "My bank balance is out by 0.0002¢!" <</p>
- The Intel Pentium FDIV bug
  - The market expects accuracy
  - See Colwell, The Pentium Chronicles

# **Concluding Remarks**

- Bits have no inherent meaning
  - Interpretation depends on the instructions applied

- Computer representations of numbers
  - Finite range and precision
  - Need to account for this in programs



# **Concluding Remarks**

- ISAs support arithmetic
  - Signed and unsigned integers
  - Floating-point approximation to reals

- Bounded range and precision
  - Operations can overflow and underflow

# **Concluding Remarks**

| RISC-V Instruction      | Name    | Frequency | Cumulative |
|-------------------------|---------|-----------|------------|
| Add immediate           | addi    | 14.36%    | 14.36%     |
| Load word               | lw      | 12.65%    | 27.01%     |
| Add registers           | add     | 7.57%     | 34.58%     |
| Load fl. pt. double     | fld     | 6.83%     | 41.41%     |
| Store word              | sw      | 5.81%     | 47.22%     |
| Branch if not equal     | bne     | 4.14%     | 51.36%     |
| Shift left immediate    | slli    | 3.65%     | 55.01%     |
| Fused mul-add double    | fmadd.d | 3.49%     | 58.50%     |
| Branch if equal         | beq     | 3.27%     | 61.77%     |
| Add immediate word      | addiw   | 2.86%     | 64.63%     |
| Store fl. pt. double    | fsd     | 2.24%     | 66.87%     |
| Multiply fl. pt. double | fmul.d  | 2.02%     | 68.89%     |