PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU FACULTAD DE CIENCIAS SOCIALES ESPECIALIDAD DE ECONOMIA

Semestre 2019-2

Curso: Econometría 1 Prof.: Luis García Núñez

Examen Parcial

Primera parte: Realice sus cálculos usando Excel y guarde su trabajo.

 Introduzca la siguiente tabla en una hoja de Excel: (la suma ha sido colocada para que verifique que introdujo bien los datos)

Obs	Inemp	Ingsp	Icapital
1	7.14	10.64	10.76
2	5.45	8.96	9.41
3	7.96	11.43	11.56
4	7.51	10.87	11.18
5	5.89	9.21	9.63
6	7.31	10.79	10.97
7	7.76	11.14	11.2
8	5.7	8.99	9.31
9	7.93	11.46	11.51
10	8.86	12.43	12.59
11	7.62	10.96	11.19
12	8.42	11.85	12.12
13	5.91	9.2	9.3
14	6.92	10.13	10.59
15	5.09	8.45	8.97
16	7.5	10.96	11.09
suma	112.97	167.47	171.38

Estos datos corresponden a 16 estados del este de los Estados Unidos, del año 1974. Las variables son:

ln gsp = logaritmo del producto bruto interno del estado ln emp = logaritmo de la planilla de trabajadores ln capital = logaritmo del valor del stock de capital

(a) (3 puntos)Usando las fórmulas trabajadas en la clase estime el modelo bivariado en términos per cápita.

$$\ln\left(\frac{gsp}{emp}\right)_{i} = \beta_{1} + \beta_{2}\ln\left(\frac{capital}{emp}\right)_{i} + u_{i}$$

Escriba en el cuadernillo a los valores $\hat{\beta}_1$, $\hat{\beta}_2$, s^2 , $\widehat{Var}(\hat{\beta}_1)$, $\widehat{Var}(\hat{\beta}_2)$. Guarde sus cálculos en el archivo Excel.

(b) (1 punto) Calcule los estadísticos t de los dos estimadores. Señale si se rechaza o no la hipótesis H_0 : $\beta_2 = 0$. Calcule los intervalos de confianza al 90% de β_1 y β_2 . Use el comando =DISTR.T.INV(α , grados de libertad).

1-R2/ (N-K)

(c) (2 puntos) Utilizando matrices en Excel, estime el modelo

$$\ln gsp_i = \beta_1 + \beta_2 \ln capital_i + \beta_3 \ln emp_i + u_i$$

Escriba en sus cuadernillos a $\hat{\beta}$, s^2 , la matriz de var-cov de $\hat{\beta}$.

- (d) (1 punto) Calcule el R^2 , el R^2 ajustado, y los criterios de Akaike y Schwarz.
- (e) (1.5 puntos) Use el estadístico F para probar la hipótesis de significancia conjunta de las pendientes del modelo.
- (f) (1.5 puntos) Usando el estadístico F pruebe la hipótesis de rendimientos constantes a escala $H_0: \beta_2 + \beta_3 = 1$.

Segunda Parte: Responda en el cuadernillo lo siguiente:

2. Supongamos que tenemos un modelo con datos temporales,

$$Y_t = \beta_1 + \beta_2 X_{2t} + \dots + \beta_k X_{kt} + u_t$$
 $t = 1, \dots, T$

En matrices puede escribirse como $y=X\beta+u$, donde y y u son vectores $T\times 1$, X es $T\times k$ y β es $k\times 1$. Suponga que este modelo cumple con todos los supuestos del modelo de regresión lineal clásico.

Sea D una matriz transformadora lineal, donde

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}_{(T-1) \times T}$$

- (a) (1 punto) Si se multiplica a D por y, ¿qué tipo de transformación se genera en los valores de Y_t ?
- (b) (1 punto) Sea ahora el modelo transformado $Dy = DX\beta + Du$. Si la matriz X tiene una columna de unos, ¿qué le ocurre a esa columna de unos al multiplicarse por D? ¿Se podrá estimar al intercepto β_1 en el modelo transformado?
- (c) (3 puntos) Escriba al estimador MCO del modelo transformado. (Ayuda: No necesita minimizar la SCR, puede aplicar la fórmula conocida del estimador MCO a este caso), pruebe que es insesgado y obtenga la matriz de var-cov del estimador.
- 3. **(2.5 puntos)** Supongamos que desea estimar el modelo $Salarios_i = \beta_1 + \beta_2 E ducación_i + \beta_3 Habilidad_i + u_i$. Si no cuenta con la variable Habilidad y estima solo con E ducación y Salarios, ¿qué problema presentará la estimación MCO? ¿Se estaría violando algún supuesto?
- 4. **(2.5 puntos)** Demostrar que $M = I X(X'X)^{-1}X'$ es simétrica, idempotente y que su traza es n k.

Lima, 18 de octubre de 2019