Algebra I, 25.11. 2022

Wszystkie rozwiązania powinny być dokładnie uzasadnione

 D_n oznacza grupę dihedralną rzędu 2n.

- 1. Niech $\sigma = (6,13)(7,8)(2,3,11,4,12,9)(1,2,3,4,5,6,7,8,9) \in S_{13}$. Uwaga: permutacje składamy "od prawej do lewej".
 - (a) Zapisać σ^{-1} w postaci iloczynu parami rozłącznych cykli.
 - (b) Określić parzystość permutacji σ .
 - (c) Zbadać, czy w S_{13} istnieje permutacja parzysta rzędu 28.
- 2. Niech H będzie podgrupą grupy G indeksu $[G:H]=n<\infty$ i niech $a\in G$. Wykazać, że:
 - (a) istnieje k takie, że $1 \le k \le n$ oraz $a^k \in H$,
 - (b) jeżeli H jest podgrupą normalną, to $a^n \in H$.
- 3. Podaj przykład dwóch nietrywialnych homomorfizmów $f_i: D_4 \longrightarrow S_3 \times C_2, i=1,2,$ takich, że $|\ker(f_1)| \neq |\ker(f_2)|$. (W każdym przypadku należy podać obrazy wszystkich elementów grupy D_4 i uzasadnić, że otrzymane przekształcenie jest homomorfizmem.)
- 4. (a) Wyznacz wszystkie podgrupy indeksu 2 w grupie D_6 .
 - (b) Sprawdź, czy D_6 jest iloczynem prostym swoich dwóch podgrup właściwych.
- 5. Załóżmy, że G jest grupą skończoną, a p jest najmniejszą liczbą pierwszą dzielącą rząd grupy G. Niech $H \subseteq G$ i |H| = p. Udowodnij, że $H \subseteq Z(G)$.