Dinghuai Zhang*, Ricky T. Q. Chen, Cheng-Hao Liu, Aaron Courville & Yoshua Bengio

Thomas Mousseau

October 20, 2025

oduction Methodology Results and Limitations Conclusion

Overview

1. Introduction

- 1.1 Problem Statement
- 1.2 Stochastic Optimal Control

2. Methodology

2.1 DGFS framework

3. Results and Limitations

3.1 Results

4. Conclusion

- 4.1 Key Insights
- 4.2 Future Directions and Usage since its release

Generative Modeling

Task

Sample from a complex (high-dimensional and multimodal) distribution D

D can be given under the form of:

• A dataset of samples $\{x_i\}_{i=1}^N \sim D$ (e.g., images, text, audio)

• An unnormalized density $\mu(x)$ where D has density $\pi(x) \propto \mu(x)$ (e.g., energy-based models, physics/chemistry)

Sampling from Unnormalized Densities

Goal. Sample from a *D*-dimensional target with unnormalized density $\mu(x)$ where $\mathbb{R}^D \to \mathbb{R}^+$.

$$\pi(x) = \frac{\mu(x)}{Z}, \qquad Z = \int_{\mathbb{R}^D} \mu(x) \, dx \text{ (unknown)}.$$

We assume we can evaluate $\mu(x)$, but we have no samples from π and do not know Z.

Context. We seek a *sampler* (similar to MCMC/VI) that produces calibrated samples and, ideally, estimates of $\log Z$, *without* any dataset from π .

Chemistry (small-molecule conformers). Different 3D conformations have a formation energy from force-field terms (bonds, angles, dihedrals, nonbonded); lower energy \Rightarrow higher Boltzmann probability. A well-calibrated sampler is needed to draw conformers in proportion to these probabilities, which is important in binding-pose ranking/free-energy estimation, Boltzmann-weighted property prediction (e.g., NMR shifts), and generating diverse realistic 3D conformers for screening.

Diffusion Generative Flow Samplers

Idea. We will reframe sampling from an unnormalized target $\pi(x) \propto \mu(x)$ as a stochastic optimal control (SOC) problem: learn a control that steers a simple reference diffusion so its terminal marginal matches π .

Why this helps.

- Gives a path-space training objective/metric: a KL on trajectories $\mathrm{KL}(Q \parallel P)$ where P is the reference paths reweighted by $\mu(x_T)$.
- The partition function Z cancels inside this objective, so we can train using only μ (and optionally $\nabla \log \mu$).
- Lets us optimize without samples from π and still measure closeness to the true normalized endpoint.

Caveat (sets up DGFS). This path-KL places supervision *only at the terminal time* \Rightarrow poor *credit assignment* and high-variance gradients.

DGFS fix (preview). Inject *intermediate* learning signals via a GFlowNet-inspired *learned flow* and *subtrajectory balance*, enabling partial-trajectory training and more stable learning.

Steps 1–2: Forward & Reference in discrete time

Controlled forward transition (learned drift).

$$P_F(x_{n+1} | x_n) = \mathcal{N}(x_{n+1}; x_n + h f(x_n, n), h\sigma^2 I)$$

Controlled path law.

$$Q(x_{0:N}) = p_0^{\text{ref}}(x_0) \prod_{n=0}^{N-1} P_F(x_{n+1} \mid x_n)$$

Uncontrolled (reference) transition (zero drift).

$$P_F^{\text{ref}}(x_{n+1} \mid x_n) = \mathcal{N}(x_{n+1}; x_n, h\sigma^2 I)$$

Reference path law and marginals.

$$Q^{\text{ref}}(x_{0:N}) = p_0^{\text{ref}}(x_0) \prod_{n=0}^{N-1} P_F^{\text{ref}}(x_{n+1} \mid x_n), \qquad p_n^{\text{ref}}(x) \text{ is closed form.}$$

Goal. Learn f so that the terminal marginal $Q(x_N)$ matches $\pi(x) = \mu(x)/Z$ (no data, Z unknown).

Step 3: Path target & KL \Rightarrow SOC objective

Target path measure via terminal reweighting.

$$P(x_{0:N}) \propto Q^{\text{ref}}(x_{0:N}) \frac{\mu(x_N)}{p_{\text{sef}}^{\text{ref}}(x_N)} \Longrightarrow P(x_N) \propto \mu(x_N).$$

KL decomposition.

$$\mathrm{KL}(Q\|P) = \mathbb{E}_Q igg[\log rac{Q}{Q^{\mathrm{ref}}} igg] + \mathbb{E}_Q igg[\log rac{
ho_N^{\mathrm{ref}}(\mathsf{x}_N)}{\pi(\mathsf{x}_N)} igg] \ .$$

Running control cost (Gaussian mean-shift) Girsanov theorem.

$$\mathbb{E}_{Q}\left[\log\frac{Q}{Q^{\mathrm{ref}}}\right] = \mathbb{E}_{Q}\sum_{n=0}^{N-1}\frac{h}{2\sigma^{2}}\left\|f(x_{n},n)\right\|^{2}.$$

Terminal potential from the target Girsanov theorem.

$$\mathbb{E}_{Q}\left[\log \frac{p_{N}^{\text{ref}}(x_{N})}{\pi(x_{N})}\right] = \mathbb{E}_{Q}\left[\log p_{N}^{\text{ref}}(x_{N}) - \log \mu(x_{N})\right] + \log Z.$$

SOC objective

SOC objective (discrete-time).

$$\min_{f} \mathbb{E}_{Q} \Big[\sum_{n=0}^{N-1} \frac{h}{2\sigma^{2}} \| f(x_{n}, n) \|^{2} + \log p_{N}^{\text{ref}}(x_{N}) - \log \mu(x_{N}) \Big]$$

Diffusion Process

Idea. Let the target "diffuse to Gaussian" via a reference process (VP/VE SDE). The reverse-time dynamics can, in principle, generate target samples if we know the score $\nabla_x \log p_t(x)$:

$$\underbrace{dx_t = \sigma \, dW_t}_{\text{forward/noising}} \iff \underbrace{dx_t = \left[f_{\text{ref}}(x,t) - \sigma^2 \nabla_x \log p_t(x)\right] dt + \sigma \, d\bar{W}_t}_{\text{reverse/generative}}.$$

What is score matching? Learn a network $s_{\theta}(x,t) \approx \nabla_x \log p_t(x)$ by regressing on noised data:

$$\min_{ heta} \ \mathbb{E}_t \, \mathbb{E}_{x_0 \sim p_{\mathsf{data}}} \, \mathbb{E}_{arepsilon} ig| s_{ heta}(x_t,t) -
abla_x \log p_t(x_t) ig|^2,$$

which is equivalent to denoising a corrupted sample x_t back toward x_0 .

Why Denoising Score Matching is *not* applicable here

• We have no dataset from π , only the unnormalized $\mu(x)$ (and maybe $\nabla \log \mu$).

Alternative to DSM: learn the vector field (control)

Reverse SDE drift (generative side).

$$dx_t = [f_{\mathsf{ref}}(x, t) - \sigma^2 \nabla_x \log p_t(x)] dt + \sigma d\bar{W}_t.$$

DSM route (data world). Learn the *score* $s_{\theta}(x,t) \approx \nabla_x \log p_t(x)$ from noised *data*, then plug it into the reverse drift

Vector-field route (our setting). Directly learn the control/drift $u_{\theta}(x,t)$ instead of the score. The two are equivalent via:

$$u_{\theta}(x,t) = f_{\text{ref}}(x,t) - \sigma^2 s_{\theta}(x,t) \iff s_{\theta}(x,t) = \frac{f_{\text{ref}}(x,t) - u_{\theta}(x,t)}{\sigma^2}.$$

Why do this here?

- We have no dataset from π , so DSM can't form expectations over p_t ; scores $\nabla \log p_t$ are unavailable.
- Instead, treat u_{θ} as a control and learn it by minimizing a Z-free path-space KL that uses only the given $\mu(\cdot)$.
- This sets up diffusion samplers à la PIS/DDS and enables DGFS's improvements (intermediate, subtrajectory credit).

Notation tip. Use u_{θ} (or f) for the vector field to avoid clashing with $\mu(\cdot)$, which denotes the unnormalized density.

Sampling as a Stochastic Optimal Control problem

Forward (controlled) process *Q*. A Markov chain with Gaussian transitions:

$$Q(x_{0:N}): x_0 \sim p_0^{\text{ref}}, x_{n+1} \sim P_F(\cdot \mid x_n) = \mathcal{N}(x_n + h f(x_n, n), h\sigma^2 I).$$

Reference process Q^{ref} . Same covariance, zero drift:

$$x_{n+1} \sim P_F^{\text{ref}}(\cdot \mid x_n) = \mathcal{N}(x_n, h\sigma^2 I), \qquad x_0 \sim p_0^{\text{ref}}, p_n^{\text{ref}} \text{ known.}$$

Target process P. Tie the terminal marginal to π via the reference:

$$P(x_{0:N}) := Q^{\text{ref}}(x_{0:N}) \frac{\pi(x_N)}{p_N^{\text{ref}}(x_N)}.$$

Then $P(x_N) \propto \mu(x_N)$, making P a valid path-space target.

Sampling as a Stochastic Optimal Control problem

Learning objective (discrete-time SOC). Learn f by minimizing the path KL:

$$\min_{f} D_{\mathrm{KL}}(Q \parallel P) \iff \min_{f} \mathbb{E}_{Q} \Big[\sum_{n=0}^{N-1} \frac{h}{2\sigma^{2}} \left\| f(x_{n}, n) \right\|^{2} + \log \Psi(x_{N}) \Big],$$

with
$$\Psi(x_N) = \frac{p_N^{\rm ref}(x_N)}{\mu(x_N)}$$
. (Continuous-time limit recovers the classic VE-SDE SOC formulation.)

Conclusion