# Metal Sulfides and their Relation to Atmospheric Sulfur on Venus

S.T. PORT, A.C. BRISCOE, V.F. CHEVRIER

ARKANSAS CENTER FOR SPACE AND PLANETARY SCIENCES
THIS STUDY WAS SUPPORTED BY NASA SOLAR SYSTEM WORKINGS GRANT #NNX15AL57G



### Introduction

- Sulfur is an important constituent in the atmosphere
  - ► SO<sub>2</sub>
  - **▶** COS
  - ► H<sub>2</sub>SO<sub>4</sub>
- More abundant in atmosphere than on Earth
- Expect a complex Sulfur Cycle on Venus
- Little understanding of the surface composition
- Sources and sinks of sulfur?



Fegley, B., et al. (1995)

# Objective

- ▶ Determine possible sources and sinks for sulfur:
  - ▶ Venusian temperature and pressure
  - ▶ CO<sub>2</sub>, SO<sub>2</sub>, and COS

# Mineralogy

- Galena (PbS)
  - ▶ SO<sub>2</sub> can be released via the oxidation Abdel-Rehim, A.M., 2006
  - ▶ Most common lead mineral on Earth Nowak, P. et al., 2009
  - ▶ On list of metal frost candidates Schaefer, L., et al., 2004
- Pyrrhotite (Fe<sub>7</sub>S<sub>8</sub>)
  - ▶ Speculated to be one of the most abundant sulfur minerals on Venus Fegley, B., et al., 1992
  - ▶ Decomposition can release COS Fegley, B., et al., 1995
  - ▶ On list of metal frost candidates Fegley, B., et al., 1992
- Metacinnabar (HgS)
  - ▶ Stable form of cinnabar at high temperatures Ballirano, P., et al., 2013
  - ► Temperature sensitive Ballirano, P., et al., 2013
  - ► Found near volcanic activity Rytuba J.J. et al., 1992

### Methods

- ▶ One gram of each mineral
- ► Two Scenarios:
  - ▶ 1. Oven
    - **▶ Lindberg Tube Oven**
    - **▶** Temperature
      - ▶ 460°C (avg. lowland altitude)
      - ▶ 425°C (slightly above frost line)
      - ▶ 380°C (11 km)
    - ▶ Gases
      - ▶ CO<sub>2</sub>
      - **▶** CO<sub>2</sub> 100ppm SO<sub>2</sub>
      - ► CO<sub>2</sub> 100ppm COS



#### Methods

- ▶ 2. Chamber
  - ▶ UArk Cassiopeia Chamber
  - ► Temperature/Pressure
    - ▶ 460°C/95 bar
    - ▶ 425°C/75 bar
    - ▶ 380°C/45 bar
  - ▶ Gases
    - ▶ CO<sub>2</sub>
    - ▶ CO<sub>2</sub> 100ppm SO<sub>2</sub>
    - ► CO<sub>2</sub> 100ppm COS
- ► All experiments lasted 24 hours
- ► All samples were analyzed with the PANalytical X'Pert MRD



# Results



Pyrrhotite: Untreated (left),  $380^{\circ}$ C in  $CO_2$ ,  $425^{\circ}$ C in  $CO_2$ ,  $460^{\circ}$ C in  $CO_2$  (right)

# Pyrrhotite CO<sub>2</sub> Oven v. Chamber

|         | 460°C/1 bar<br>(lowlands)                                                                                  | 425°C/1 bar<br>(frost line)                                                              | 380°C/1 bar<br>(highlands)                                     |
|---------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Oven    | Hematite (Fe <sub>2</sub> O <sub>3</sub> )<br>Mikasaite (Fe <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> ) | Magnetite (Fe <sub>3</sub> O <sub>4</sub> ) Pyrrhotite (Fe <sub>7</sub> S <sub>8</sub> ) | Pyrrhotite (Fe <sub>7</sub> S <sub>8</sub> )<br>Troilite (FeS) |
|         | 460°C/95 bar                                                                                               | 425°C/75 bar                                                                             | 380°C/45 bar                                                   |
| Chamber | Pyrrhotite<br>Troilite                                                                                     |                                                                                          | Pyrrhotite<br>Troilite                                         |

# Pyrrhotite SO<sub>2</sub> v. COS (Oven)

|                                  | 460°C/1 bar<br>(lowlands)          | 425°C/1 bar<br>(frost line)        | 380°C/1 bar<br>(highlands)                                        |
|----------------------------------|------------------------------------|------------------------------------|-------------------------------------------------------------------|
| CO <sub>2</sub> /SO <sub>2</sub> | Pyrrhotite<br>Troilite<br>Hematite |                                    | Pyrite (FeS <sub>2</sub> ) Pyrrhotite Hematite Troilite Magnetite |
|                                  | 460°C/1 bar                        | 425°C/1 bar                        | 380°C/1 bar                                                       |
| CO <sub>2</sub> /COS             | Hematite<br>Mikasaite              | Hematite<br>Maghemite<br>Mikasaite | Pyrrhotite Pyrite Hematite                                        |

# Galena CO<sub>2</sub> Oven v. Chamber

|         | 460°C/1 bar<br>(lowlands)                                                                     | 425°C/1 bar<br>(frost line)                                                                   | 380°C/1 bar<br>(highlands)                    |
|---------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|
| Oven    | Galena (PbS) Anglesite (Pb(SO <sub>4</sub> )) Lanarkite (Pb <sub>2</sub> (SO <sub>4</sub> )O) | Galena (PbS) Anglesite (Pb(SO <sub>4</sub> )) Lanarkite (Pb <sub>2</sub> (SO <sub>4</sub> )O) | Galena (PbS) Anglesite (Pb(SO <sub>4</sub> )) |
|         | 460°C/95 bar                                                                                  | 425°C/75 bar                                                                                  | 380°C/45 bar                                  |
| Chamber | Galena                                                                                        |                                                                                               | Galena<br>PbO (Litharge)                      |

# Galena SO<sub>2</sub> v. COS (Oven)

|                                  | 460°C/1 bar                      | 425°C/1 bar         | 380°C/1 bar         |
|----------------------------------|----------------------------------|---------------------|---------------------|
|                                  | (lowlands)                       | (frost line)        | (highlands)         |
| CO <sub>2</sub> /SO <sub>2</sub> | Galena<br>Anglesite<br>Lanarkite | Galena<br>Anglesite | Galena<br>Anglesite |
|                                  | 460°C/1 bar                      | 425°C/1 bar         | 380°C/1 bar         |
| CO <sub>2</sub> /COS             | Galena                           | Galena              | Galena              |
|                                  | Anglesite                        | Anglesite           | Anglesite           |

## Metacinnabar



|                                  | 380°C/1 bar<br>(highlands) |
|----------------------------------|----------------------------|
| CO <sub>2</sub> /SO <sub>2</sub> | Metacinnabar               |
|                                  | 380°C/1 bar                |
| CO <sub>2</sub> /COS             | Cinnabar                   |

# Pyrrhotite

- Pyrrhotite → Magnetite → Maghemite → Hematite Fegley, B., et al., 1995
- Troilite: Vaporization of S increases the ratio of Fe to S
- Quicker oxidization in mixed gas experiments
- Pyrite formation in the low temperature, mixed gas experiments
  - Product of oxidation
- ►  $3Fe_7S_8 + 28CO_2 \leftrightarrow 7Fe_3O_4 + 12S_2 + 28CO$  $S_2(g) + 2CO(g) \leftrightarrow 2COS(g)$  Fegley, B., et al., 1995

Unable to verify



Mycroft, J. R., et al. (1994)

### Galena

- ► Formation of Anglesite:
  - ►  $3PbS+5O_2 \rightarrow 2PbO+PbSO_4 + 2SO_2$
- ▶ Formation of Lanarkite:
  - ▶  $PbS+7PbSO_4 \rightarrow 4(PbSO_4 \cdot PbO)+4SO_2$
- ► Formation of Lead Oxide (Litharge):
  - $\triangleright$  2PbS+3O<sub>2</sub>  $\rightarrow$  2PbO+2SO<sub>2</sub>
- ▶ SO<sub>2</sub> produced in all equations
- Currently unable to verify

#### Metacinnbar

- ▶ Instability in all CO₂ experiments in the oven
- Cinnabar is a low T/P version of metacinnabar
- ► Heating and cooling of metacinnabar can form cinnabar Ballirano, P., et al., 2013
- Stability in CO<sub>2</sub> in the chamber at lowland and highland conditions

#### Future Work

- Gas Chromatograph
- Gas Mixture Experiments in the Chamber
- ► In situ Studies with RAMAN
- ► Longer Experiments (48-72h)

- Pyrrhotite
  - ▶ Unstable in oven
  - ▶ Stable in chamber
  - ► More rapid oxidation in mixed gases

- Pyrrhotite
  - ▶ Unstable in oven
  - ► Stable in chamber
  - More rapid oxidation in mixed gases
- Galena
  - ► Minor instability in oven
  - ▶ Better stability in chamber
  - Mixed gases had no effect

- Pyrrhotite
  - ▶ Unstable in oven
  - Stable in chamber
  - More rapid oxidation in mixed gases
- Galena
  - Minor instability in oven
  - ▶ Better stability in chamber
  - Mixed gases had no effect
- Metacinnabar
  - Unstable in high temperatures in oven
  - May show better stability in chamber

- Pyrrhotite
  - ▶ Unstable in oven
  - Stable in chamber
  - More rapid oxidation in mixed gases
- Galena
  - Minor instability in oven
  - Better stability in chamber
  - Mixed gases had no effect
- Metacinnabar
  - Unstable in high temperatures in oven
  - May show better stability in chamber
- Mixed gas experiments need to be completed in the chamber
- Currently cannot determine what gases are released during reactions
  - Source/Sink?