Tree Based Methods

Eun Soo Choi

Outline

- Base model: Logistic Regression
- Basic vs. Hyperparameter tuned Tree based methods
 - 1. Decision Tree
 - 2. Random Forest
 - 3. Adaptive Boosting
 - 4. Gradient Boosting

Results

	Basic				F	lyperparan	neter Tuning			
Decision Tree		precision	recall	f1-score			precision	recall	f1-score	
max_depth = 5	No Yes	0.86	0.79 0.51	0.83 0.45		No Yes	0.86 0.52	0.89 0.44	0.87 0.47	
	accuracy			0.73	ě	accuracy			0.80	
Random Forest		precision	recall	f1-score			precision	recall	f1-score	
bootstrap=True	No	0.86	0.89	0.88		No	0.87	0.92	0.89	
max_depth=7	Yes	0.53	0.47	0.50		Yes	0.61	0.49	0.54	
max_features=5										
n_estimators=200	accuracy			0.80		accuracy			0.83	
Adaptive Boosting		precision	recall	f1-score	Log	gistic Regre	ession			
	No	0.88	0.90	0.89						
	Yes	0.60	0.54	0.57						
	accuracy			0.83			precision	recall	f1-score	
Gradient Boosting max_depth=3		precision	recall	f1-score		No	0.87	0.91	0.89	
						Yes	0.60	0.50	0.54	
	No	0.87	0.90	0.89						
	Yes	0.57	0.50	0.54		accuracy			0.83	
	accuracy			0.82						

Imbalanced Classification

Eun Soo Choi, Ph.D.

Outline

- Classification metrics
- Imbalanced classification cases
- Challenges of imbalanced classification

Imbalanced classification cases

Small portion of

- Medical conditions
- Credit card fraud
- Churn(Cancellation of service)

• • •

Challenges in Imbalance Classification

- > Resampling: Undersampling from major class + Oversampling from minor class
- 1. Model parameters: Learned by major class (neglect small portion of minor class)
- Weighted loss: n_samples / (n_classes * np.bincount(y)) ex) weight_no = 704/(2*557), weight_yes = 704/(2*147)
- 2. Model performance evaluation:
 - Accuracy is not an appropriate metric because it depends on Prevalence.

```
ex1) 704 = 557 vs. 147 (79% vs. 21%)
Predict all as No(0) = 557 vs. 147, Accuracy = 557/704 (79%), Recall = 0/127 = 0
ex2) 10,000 = 9,900 vs. 100 (99% vs. 1%)
Predict all as 0 = 10,000 vs. 0, Accuracy = 9,900/10,000 (99%), Recall = 0/100 = 0
```

- Recalls does not depend on Prevalence
- Diagnostically, Precisions are more helpful.
- > F1-score(Precision, Recall), Precision-Recall Curve, AUC ROC (using different thresholds)

Base model: Logistic Regression

	1	Best without c	lass_weigh	nt	Best with class_weight				
Logistic Regression		precision	recall	f1-score		precision	recall	f1-score	
	No Yes	0.87	0.91	0.89	No Yes	0.91	0.74	0.82 0.54	
	accuracy	0.00	0.50	0.83	accuracy	0.43	0.73	0.74	

Tree based methods

nee based methods										
		Best without class_weight				Best with class_weight				
Decision Tree		precision	recall	f1-score		precision	recall	f1-score		
max_depth = 5	No Yes	0.86 0.52	0.89 0.44	0.87 0.47	0 1	0.91 0.41	0.72 0.74	0.81 0.53		
	accuracy	60% 1000	888 1921 <u>2</u> 8	0.80	accuracy			0.73		
Random Forest		precision	recall	f1-score		precision	recall	f1-score		
bootstrap=True	No	0.87	0.92	0.89	0	0.91	0.77	0.83		
max_depth=7	Yes	0.61	0.49	0.54	1	0.45	0.73	0.56		
max_features=5										
n_estimators=200	accuracy			0.83	accuracy			0.76		
Adaptive Boosting		precision	recall	f1-score		precision	recall	f1-score		
	No	0.88	0.90	0.89	0	0.92	0.72	0.81		
	Yes	0.60	0.54	0.57	1	0.42	0.77	0.55		
	accuracy			0.83	accuracy			0.73		
Gradient Boosting		precision	recall	f1-score						
	No	0.87	0.90	0.89						
	Yes	0.57	0.50	0.54						
	accuracy			0.82						