Bonus: 94

difficulty: Medium to Hard. Proposed by: Petko Mitkov https://www.hackerrank.com/contests/practice-6-sda/challenges/94

Студентите от СИ нямат търпение да посетят ежеседмичната лекция по СДА. Те все още са в Студентски Град и ще използват автобус 94 за да се придвижат до ФМИ. Бивайки лоши хора, асистентите са забранили да има повече от един студент в даден автобус за да се избегне подсказване за домашното. В студентски град има m спирки, като за всяка от тях знаете позицията ѝ y_i , както и времето t_i , когато автобус 94 ще спре на нея(само един автобус 94 ще спре на дадена спирка и на всяка спирка спира различен автобус). Студентите от СИ са n на брой и за всеки от тях знаете неговата първоначална позиция x_i . Студентите могат да се придвижват с една единица разстояние напред и назад по маршрута за единица време. Даден студент може да хване автобус на дадена спирка, ако стигне дотам преди автобуса да е спрял (и потеглил). Ако на спирката има повече от един студент, само един от тях може да се качи.

От вас се иска да намерите колко най-много студенти ще успеят да посетят лекцията.

Входен формат

- На първия ред са зададени числата *n* и *m*
 - *n* брой студенти
 - *m* брой спирки
- Следват n реда, като всеки ред съответства на позиция x_i на i-тия студент.
- Следват m реда, като всеки ред съдържа две числа съответсващи на позицията на i -тата спирка и времето, в което автобуса тръгва от спирката.

Ограничения

- $1 < n < 2 * 10^5$
- $1 \le m \le 2 * 10^5$
- $1 \le x_i \le 10^9$
- $1 \le y_i \le 10^9$
- $1 \le t_i \le 10^9$

Изходен формат

На един ред изведете максималния брой студенти, които могат да се качат на автобусите.

Примерен вход	Очакван изход
4 3 1 3 5 6 2 1 4 3 7 2	3
2 2 1 10 2 10 3 2	2

