

Searching for applications for novel piezohydraulic actuator

Background

Currently used actuation principles have serious deficiencies when it comes to inherent safety and/or harsh environment applications.

Drive Technology		Characteristics
Electromagnetic Drive	+	• Low cost
	-	 Low force density Challenging thermal management Low efficiency at low power levels No inherent safety (due to reflected inertia when combined with gearbox)
Hydraulic/ Pneumatic Drive	+	•High torque and power density
	-	 Loss of efficiency over time Low bandwidth capabilities limited to less than 20 Hz No inherent safety (due to very high output stiffness)
Piezoelectric Drive	+	•Superior efficiency compared to electromagnetic drives at low power regions
	-	 Limited to very short displacements (typically strains of 0.15%) Unsuited for static applications due to self-discharge

Researchers at Siemens have developed a small but powerful piezohydraulic actuator

Picture of first laboratory model

Key characteristics

- · High force density
- Low power region (around 20 W)
- Variable impedance
- Human-like force/velocity characteristic
- Intrinsic passive safety
- · Low intrinsic inertia
- High accuracy in µm range
- · High efficiency in ranges up to 30W
- · High robustness e.g. in case of impact or vibrations
- Use in harsh environment possible (metal encapsulated system)

The concept combines piezomechanics with hydraulics

Schematic concept of piezohydraulic actuator

Working principle

- Hydraulic amplifying system is used as a stroke integrator of the piezo.
- Damping factor of the system is improved due to viscous damping of the fluid providing high robustness.
- Basic function of the actuator is similar to micro pump principle: pumping of fluid resulting in piston/bellow displacement.
- By adjusting the input voltage three different operation modes can be distinguished:

I: Low force - high velocity

II: High force - low velocity

III: Highest force - no velocity (blocking force)

• This results in a muscle-like behavior: maximum force at zero velocity and low force for movements with high velocity

Operation modes:

- Low force high velocity

 High force low velocity
- III. Highest force no velocity (blocking force) -

The piezohydraulic actuator at a glance

What is the technology about?

- A novel piezohydraulic actuation principle able to mimic human muscle behavior has been developed.
- In order to accomplish this muscle performance a piezo actuator unit is combined with an hydraulic system of throttles and check valves.
- Different velocity-force relations can be achieved by adjusting the duty cycles of the piezo voltage

What is the benefit of the technology?

- Variable impedance possible by adjusting duty cycle of the piezo voltage signal.
- Passive safety: for the protection of other creatures and objects as well as actuator itself, the system operates with low forces at high velocities and has a low impact energy. The maximum force is reached at zero velocity.
- High robustness: in addition to high impact robustness, the system is highly damped by the fluid, which enables applications at high vibrations.

What is your challenge?

- We are convinced that applications of this technology widely surpass our current scope of business.
- We are therefore looking for new ideas of other possible applications and/or potential customers to incorporate their requirements in the further development process

Exceptional proposals will be rewarded

What can we offer?

- •All submitted proposals have the chance to further influence our prototype/ development process towards your need/application requirements.
- •Additionally, **exceptional contributions** can benefit from:
 - •joint evaluation of cooperation opportunities in commercial areas, technology development, manufacturing, integration et al.
 - open discussion of licensing opportunities
 - •cross-functional workshop to further develop joint business opportunity.