

Mahavir Education Trust's SHAH & ANCHOR KUTCHHI ENGINEERING COLLEGE

Chembur, Mumbai - 400 088 UG Program in Cyber Security

Experiment Number: 11							
Date of Performance:							
Date of Submission:							
Program	Documentation	Timely	Viva Answer	Experiment	Sign		
Execution/	(02)	Submission	to sample	Total (15)			
formation/		(03)	questions				
correction/			(03)				
ethical							
practices (07)							
correction/ ethical		(03)	· -				

Mahavir Education Trust's

SHAH & ANCHOR KUTCHHI ENGINEERING COLLEGE

Chembur, Mumbai - 400 088 UG Program in Cyber Security

Experiment 11

Aim: Implement Linear regression using R tool.

Lab outcome: CSL 503.2: Implement data mining algorithms like classification.

Problem Statement: To implement Linear regression.

Theory:

Linear Regression

Linear Regression is one of the most widely used regression techniques to model the relationship between two variables. It uses a linear relationship to model the regression line. There are 2 variables used in the linear relationship equation i.e., predictor variable and response variable.

Program Listing and

Output: Simple regression

summary(income.data) > summary(income.data)

happiness income Min. Min. 1.0 :1.506 Min. :0.266 1st Qu.:125.2 1st Qu.:3.006 1st Qu.:2.266 Median :249.5 Median :4.424 Median : 3.473 :3.393 :4.467 Mean :249.5 Mean Mean 3rd Qu.:373.8 3rd Qu.:5.992

3rd Qu.:373.8 3rd Qu.:5.992 3rd Qu.:4.503 Max. :498.0 Max. :7.482 Max. :6.863

hist(income.data\$happiness)

Histogram of income.data\$happiness

SHAH S ANCHOR

Mahavir Education Trust's

SHAH & ANCHOR KUTCHHI ENGINEERING COLLEGE

Chembur, Mumbai - 400 088 UG Program in Cyber Security

plot(happiness ~ income, data = income.data)

Multiple Regression

summary(heart.data)

> summary(heart.data)							
X	biking	smoking	heart.disease				
Min. : 1.0	Min. : 1.119	Min. : 0.5259	Min. : 0.5519				
1st Qu.:125.2	1st Qu.:20.205	1st Qu.: 8.2798	1st Qu.: 6.5137				
Median :249.5	Median :35.824	Median :15.8146	Median :10.3853				
Mean :249.5	Mean :37.788	Mean :15.4350	Mean :10.1745				
3rd Qu.:373.8	3rd Qu.:57.853	3rd Qu.:22.5689	3rd Qu.:13.7240				
Max. :498.0	Max. :74.907	Max. :29.9467	Max. :20.4535				

hist(heart.data\$heart.disease)

Mahavir Education Trust's

SHAH & ANCHOR KUTCHHI ENGINEERING COLLEGE

Chembur, Mumbai - 400 088 UG Program in Cyber Security

plot(heart.disease ~ biking, data=heart.data)

plot(heart.disease ~ smoking, data=heart.data)

income.happiness.lm <- lm(happiness ~ income, data =income.data)

summary(income.happiness.lm)

Mahavir Education Trust's

SHAH & ANCHOR KUTCHHI ENGINEERING COLLEGE

Chembur, Mumbai - 400 088

UG Program in Cyber Security

```
> income.happiness.lm <- lm(happiness ~ income, data =income.data)</pre>
> summary(income.happiness.lm)
Call:
lm(formula = happiness ~ income, data = income.data)
Residuals:
    Min
              1Q Median
-2.02479 -0.48526 0.04078 0.45898 2.37805
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.20427 0.08884 2.299 0.0219 * income 0.71383 0.01854 38.505 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.7181 on 496 degrees of freedom
                                Adjusted R-squared: 0.7488
Multiple R-squared: 0.7493,
F-statistic: 1483 on 1 and 496 DF, p-value: < 2.2e-16
```

Conclusion:

The above result shows that there is a significant positive relationship between income and happiness (p- value < 0.001), with a 0.713-unit (+/- 0.01) increase in happiness for every unit increase in income.