# MA2047 Algebra och diskret matematik

Något om trigonometriska funktioner

Mikael Hindgren



8 oktober 2025

## Enhetscirkeln



### Definition 1 (Vinkelmåttet radianer)



- Den vinkel som motsvarar en båge med längden 1 l.e. i enhetscirkeln är 1 radian.
- Normalt anges ingen enhet om vinkeln anges i radianer.
- Vridning moturs motsvarar positiv vinkel.
- 1 varv i e.c.  $\Leftrightarrow$  vinkeln  $2\pi$  radianer.

## Definition 2 (Trigonometriska funktioner)



### I enhetscirkeln:

$$\circ$$
 sin  $V = Y$ 

$$\circ$$
 cos  $V = X$ 

• 
$$\tan V = \frac{\sin v}{\cos v}, \quad V \neq \frac{\pi}{2} + n\pi$$

• 
$$\cot V = \frac{\cos v}{\sin v} = \frac{1}{\tan v}, \quad v \neq n\pi$$

# Rätvinkliga trianglar





De båda trianglarna är likformiga:

$$b = \frac{y}{1} = \sin v$$

$$\frac{a}{c} = \frac{x}{1} = \cos x$$

## Trigonometriska samband i rätvinkliga trianglar

• 
$$\sin v = \frac{\text{motstående katet}}{\text{hypotenusan}}$$

• 
$$\cos v = \frac{\text{n\"{a}rliggande katet}}{\text{hypotenusan}}$$

• 
$$tan v = \frac{motstående katet}{närliggande katet}$$

# Viktiga vinklar



#### Exempel 1

Bestäm  $\sin v$ ,  $\cos v$  och  $\tan v$  då  $v = \frac{\pi}{3}$  respektive  $v = \frac{\pi}{6}$ .



• 
$$\sin \frac{\pi}{3} = y = \sqrt{1^2 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2}$$

$$\bullet \sin \tfrac{\pi}{6} = X = \tfrac{1}{2}$$

$$\bullet \ \tan \frac{\pi}{3} = \frac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}} = \sqrt{3}$$

$$\bullet \tan \frac{\pi}{6} = \frac{\sin \frac{\pi}{6}}{\cos \frac{\pi}{6}} = \frac{1}{\sqrt{3}}$$

## Viktiga vinklar



#### Exempel 2

Bestäm sin v, cos v och tan v då  $v = \frac{\pi}{4}$ .

## Lösning:



### Pythagoras sats:

$$x^2 + x^2 = 1^2 \Rightarrow x = \frac{1}{\sqrt{2}}$$

• 
$$\sin \frac{\pi}{4} = X = \frac{1}{\sqrt{2}}$$

• 
$$\cos \frac{\pi}{4} = X = \frac{1}{\sqrt{2}}$$

$$\bullet \ \tan \frac{\pi}{4} = \frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}} = 1$$

### Viktiga vinklar!

| V   |                 | sin <i>V</i>                                    | cos V                |
|-----|-----------------|-------------------------------------------------|----------------------|
| 0°  | 0               | 0                                               | 1                    |
| 30° | $\frac{\pi}{6}$ | 1/2                                             | $\frac{\sqrt{3}}{2}$ |
| 45° | $\frac{\pi}{4}$ | $\frac{1}{\sqrt{2}}$                            | $\frac{1}{\sqrt{2}}$ |
| 60° | $\frac{\pi}{3}$ | $\frac{\frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{2}}$ | 1/2                  |
| 90° | $\frac{\pi}{2}$ | 1                                               | 0                    |

# Symmetriegenskaper och samband





## Symmetriegenskaper

$$\circ$$
  $\sin(\pi - V) = \sin V$ 

• 
$$sin(-v) = -sin v$$
 (udda funktion)

• 
$$cos(-v) = cos v$$
 (jämn funktion)

$$\circ \cos(\tfrac{\pi}{2} \pm v) = \mp \sin v$$

Pythagoras sats 
$$\Rightarrow x^2 + y^2 = 1^2 \Leftrightarrow$$

### "Trigonometriska ettan"

$$\cos^2 v + \sin^2 v = 1$$

## De periodiska funktionerna $\sin x$ , $\cos x$ och $\tan x$





- $\cos x = \cos(x + n \cdot 2\pi)$ Period  $T = 2\pi$
- $\sin x = \sin(x + n \cdot 2\pi)$ Period  $T = 2\pi$



•  $\tan x = \tan(x + n \cdot \pi)$ Period  $T = \pi$ 

Anm:  $y = \tan x$  har lodräta asymptoter  $x = (2n + 1) \cdot \frac{\pi}{2}$ 

## Additions och subtraktionssatserna



#### Sats 1

För alla vinklar u och v gäller:

### Exempel 3

$$\cos\frac{\pi}{12} = \cos(\frac{\pi}{3} - \frac{\pi}{4}) \underset{(1.4)}{=} \cos\frac{\pi}{3}\cos\frac{\pi}{4} + \sin\frac{\pi}{3}\sin\frac{\pi}{4} = \frac{1}{2}\frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2}\frac{1}{\sqrt{2}} = \frac{\sqrt{3}+1}{2\sqrt{2}}$$

u = v i (1) och (3) ger:

### Sats 2 (Formler för dubbla vinkeln)

- $\bigcirc$   $\sin 2v = 2 \sin v \cos v$
- $\cos 2v = \cos^2 v \sin^2 v = 2\cos^2 v 1 = 1 2\sin^2 v$

# Trigonometriska ekvationer



#### Exempel 4

Lös ekvationen sin  $x = \frac{\sqrt{3}}{2}$ 

### Lösning:

$$x = \frac{\pi}{3} + n \cdot 2\pi$$
 eller  $x = \pi - \frac{\pi}{3} + n \cdot 2\pi = \frac{2\pi}{3} + n \cdot 2\pi$ 

### Exempel 5

Lös ekvationen  $\cos 2x = 1 - \sin x$ 

$$\cos 2x = 1 - 2\sin^2 x = 1 - \sin x \Leftrightarrow 2\sin^2 x = \sin x$$

$$\Leftrightarrow \sin x \left(\sin x - \frac{1}{2}\right) = 0$$

$$\Leftrightarrow \begin{cases} \sin x = 0 \Leftrightarrow x = n \cdot \pi \\ \text{eller} \\ \sin x = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{6} + n \cdot 2\pi \text{ eller } x = \frac{5\pi}{6} + n \cdot 2\pi \end{cases}$$

# Trigonometriska ekvationer



### Exempel 6

Lös ekvationen  $\cos x = \frac{1}{\sqrt{2}}$ 

## Lösning:

$$x = \frac{\pi}{4} + n \cdot 2\pi \text{ eller } x = -\frac{\pi}{4} + n \cdot 2\pi$$

### Exempel 7

Lös ekvationen  $2\sin^2 x - \cos x = 1$ 

$$\sin^2 x = 1 - \cos^2 x$$
 och  $t = \cos x$  ger

$$2(1-t^2) - t - 1 = 0 \quad \Leftrightarrow \quad t^2 + \frac{t}{2} - \frac{1}{2} = 0 \Leftrightarrow t = -1 \text{ eller } t = \frac{1}{2}$$

$$\Leftrightarrow \quad \begin{cases} t = \cos x = -1 \Leftrightarrow x = \pi + n \cdot 2\pi \\ \text{eller} \\ t = \cos x = \frac{1}{2} \Leftrightarrow x = \pm \frac{\pi}{3} + n \cdot 2\pi \end{cases}$$

# Trigonometriska ekvationer



#### Exempel 8

Lös ekvationen  $\cos 5x = \cos 3x$ 

### Lösning:

$$\cos 5x = \cos 3x \quad \Leftrightarrow \quad 5x = \pm 3x + n \cdot 2\pi$$

$$\Leftrightarrow \quad \begin{cases} 2x = n \cdot 2\pi \Leftrightarrow x = n \cdot \pi \\ \text{eller} & \Leftrightarrow x = n\frac{\pi}{4} \end{cases}$$

$$8x = n \cdot 2\pi \Leftrightarrow x = n\frac{\pi}{4}$$

#### Exempel 9

Lös ekvationen  $\sin x = \cos 3x$ 

$$\sin x = \cos\left(\frac{\pi}{2} - x\right) = \cos 3x \Leftrightarrow \frac{\pi}{2} - x = \pm 3x + n \cdot 2\pi$$

$$\Leftrightarrow x = \frac{\pi}{8} + n\frac{\pi}{4} \text{ eller } x = -\frac{\pi}{4} + n\pi$$

## Hjälpvinkelmetoden



#### Exempel 10

Lös ekvationen  $\sin x + \sqrt{3}\cos x = 1$ 

Allmänt: Vi vill lösa ekvationer av typen  $a \sin kx + b \cos kx = c$ 

• Kan vi använda additionssatsen för sin x (Sats 1.1):

$$\sin(kx + \varphi) = \cos\varphi\sin kx + \sin\varphi\cos kx ?$$

- Fungerar endast om punkten (a, b) ligger på e.c. dvs om  $a = \cos \varphi$  och  $b = \sin \varphi \Rightarrow a^2 + b^2 = 1$ . Vad gör vi om det inte gäller?
- Bryt ut  $\sqrt{a^2 + b^2}$ :

$$a\sin kx + b\cos kx = \sqrt{a^2 + b^2} \left( \frac{a}{\sqrt{a^2 + b^2}} \sin kx + \frac{b}{\sqrt{a^2 + b^2}} \cos kx \right)$$
$$= A(a_1 \sin kx + b_1 \cos kx)$$

 $\Rightarrow$   $a_1^2 + b_1^2 = 1 \Rightarrow$  vi kan hitta en hjälpvinkel  $\varphi$  sådan att

$$\cos \varphi = a_1 = \frac{a}{\sqrt{a^2 + b^2}}$$
  $\sin \varphi = b_1 = \frac{b}{\sqrt{a^2 + b^2}}$ 

## Hjälpvinkelmetoden



### Sammanfattning:

Varje funktion av typen  $f(x) = a \sin kx + b \cos kx$  kan skrivas på formen  $f(x) = A \sin(kx + \varphi)$  där amplituden  $A = \sqrt{a^2 + b^2}$ 

## Exempel 10 (forts)

$$\sin x + \sqrt{3}\cos x = \sqrt{1^2 + \sqrt{3}^2} \left( \frac{1}{\sqrt{1^2 + \sqrt{3}^2}} \sin x + \frac{\sqrt{3}}{\sqrt{1^2 + \sqrt{3}^2}} \cos x \right)$$

$$= 2 \left( \frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x \right) = 2(\cos \varphi \sin x + \sin \varphi \cos x)$$

$$\Leftrightarrow \cos \varphi = \frac{1}{2}, \quad \sin \varphi = \frac{\sqrt{3}}{2} \Rightarrow \text{ vi kan v\"alja } \varphi = \frac{\pi}{3}$$

$$\Rightarrow \sin x + \sqrt{3} \cos x = 2 \sin \left( x + \frac{\pi}{3} \right) = 1 \Leftrightarrow \sin \left( x + \frac{\pi}{3} \right) = \frac{1}{2}$$

$$\Leftrightarrow x + \frac{\pi}{3} = \frac{\pi}{6} + n \cdot 2\pi \text{ eller } x + \frac{\pi}{3} = \frac{5\pi}{6} + n \cdot 2\pi$$

$$\Leftrightarrow x = -\frac{\pi}{6} + n \cdot 2\pi \text{ eller } x = \frac{\pi}{2} + n \cdot 2\pi$$

# Hjälpvinkelmetoden



#### Exempel 11

Lös ekvationen  $\sin 2x - \cos 2x = 1$ 

### Lösning:

Hjälpvinkelmetoden med  $A = \sqrt{1^2 + (-1)^2} = \sqrt{2}$ :

$$\sin 2x - \cos 2x = \sqrt{2} \left( \frac{1}{\sqrt{2}} \sin 2x + \frac{-1}{\sqrt{2}} \cos 2x \right)$$

$$= \sqrt{2} (\cos \varphi \sin 2x + \sin \varphi \cos 2x)$$

$$\Leftrightarrow \begin{cases} \cos \varphi = \frac{1}{\sqrt{2}} \\ \sin \varphi = -\frac{1}{\sqrt{2}} \end{cases} \Rightarrow \text{vi kan v\"alja } \varphi = -\frac{\pi}{4} \end{cases}$$

$$\Rightarrow \sin 2x - \cos 2x = \sqrt{2} \sin \left( 2x - \frac{\pi}{4} \right) = 1 \Leftrightarrow \sin \left( 2x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}$$

$$\Leftrightarrow 2x - \frac{\pi}{4} = \frac{\pi}{4} + n \cdot 2\pi \text{ eller } 2x - \frac{\pi}{4} = \frac{3\pi}{4} + n \cdot 2\pi$$

$$\Leftrightarrow x = \frac{\pi}{4} + n \cdot \pi \text{ eller } x = \frac{\pi}{2} + n \cdot \pi$$



### Studera funktionen $f(x) = \sin x$ :



- f(x) är periodisk  $\Rightarrow f(x) = f(x + 2\pi) = f(x + 4\pi) = ...$   $\therefore x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$  $\Rightarrow f(x)$  är inte inverterbar.
- Motsvarande gäller för cos x, tan x och cot x.



Studera istället funktionen  $f(x) = \sin x$ ,  $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ :



- f(x) är strängt växande  $\Rightarrow f(x)$  är inverterbar och har en invers.
- Det finns intervall där även cos x, tan x och cot x är strängt monotona och har invers.



#### **Definition 3**

Inverserna till de trigonometriska funktionerna kallas arcusfunktioner och definieras genom:

mom:  

$$y = \sin x, -\frac{\pi}{2} \le x \le \frac{\pi}{2},$$
  $\Leftrightarrow x = \arcsin y$   
 $y = \cos x, \ 0 \le x \le \pi,$   $\Leftrightarrow x = \arccos y$   
 $y = \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2},$   $\Leftrightarrow x = \arctan y$   
 $y = \cot x, \ 0 < x < \pi,$   $\Leftrightarrow x = \operatorname{arccot} y$ 

| f(x)     | $D_f$        | $V_f$                                       |
|----------|--------------|---------------------------------------------|
| arcsin X | [-1, 1]      | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ |
| arccos X | [-1, 1]      | $[0,\pi]$                                   |
| arctan X | $\mathbb{R}$ | $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ |
| arccot X | $\mathbb{R}$ | $(0,\pi)$                                   |

### Minnesregel:

arcsin y = "Den vinkel mellan  $-\frac{\pi}{2}$  och  $\frac{\pi}{2}$  vars sinusvärde är y"



 $y = \arcsin x$ 





 $y = \arccos x$ 





#### $y = \arctan x$



- $\arctan x \to \pm \frac{\pi}{2} \text{ då } x \to \pm \infty$
- ullet  $\Rightarrow$  kurvan y=rctan x har de vågräta asymptoterna  $x=\pmrac{\pi}{2}$  då  $x o\pm\infty$



### $y = \operatorname{arccot} X$



- ullet arccot x o 0 resp  $\pi$  då  $x o \infty$  resp  $-\infty$
- ullet  $\Rightarrow$  kurvan y= arccot x har de vågräta asymptoterna y=0 då  $x\to\infty$  och  $y=\pi$  då  $x\to-\infty$



#### Exempel 12

$$\begin{split} &\arcsin\tfrac{1}{2}=\{\text{Den vinkel mellan}-\tfrac{\pi}{2}\text{ och }\tfrac{\pi}{2}\text{ som ger sinusvärdet }\tfrac{1}{2}\}=\tfrac{\pi}{6}\\ &\arccos\tfrac{-\sqrt{3}}{2}=\{\text{Den vinkel mellan 0 och }\pi\text{ som ger cosinusvärdet }-\tfrac{\sqrt{3}}{2}\}=\tfrac{5\pi}{6} \end{split}$$

#### Anm:

- $sin(arcsin \frac{1}{2}) = \frac{1}{2}$
- $\arcsin(\sin\frac{\pi}{2}) = \frac{\pi}{2}$
- $\arcsin(\sin\frac{2\pi}{3}) = \frac{\pi}{3}$ !

#### Allmänt:

- sin(arcsin x) = x för alla  $x \in [-1, 1]$
- $\arcsin(\sin x) = x \text{ endast om } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ !

Motsvarande gäller för övriga arcusfunktioner.



#### Exempel 13

Lös ekvationerna  $= \frac{\pi}{4}$  och  $= -\frac{\pi}{4}$ 

- $\arctan X = \frac{\pi}{4} \Leftrightarrow X = \tan \frac{\pi}{4} = 1$
- $\operatorname{arccot} x = -\frac{\pi}{4}$  saknar lösning eftersom  $0 < \operatorname{arccot} x < \pi$ !



# Hyperboliska funktioner



#### **Definition 4**

Cosinus-, sinus-, tangens- och cotangens-hyperbolikus definieras enligt:

$$\bullet \ \sinh x = \frac{e^x - e^{-x}}{2}$$

• 
$$\tanh x = \frac{\sinh x}{\cosh x}$$



De hyperboliska funktioner har vissa egenskaper som liknar de trigonometriska, t.ex. "hyperboliska ettan":

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} \\
= \frac{1}{4}(e^{2x} + 2 + e^{-2x} - (e^{2x} - 2 + e^{-2x})) = 1$$