

Dr. Gavin McArdle

Email: gavin.mcardle@ucd.ie

Office: A1.09 Computer Science

MULTIPLEXING

Multiplexing is the network word for the sharing of a resource

E.g. Sharing a link or channel among different users

- Time Division Multiplexing (TDM)
- Frequency Division Multiplexing (FDM)

TIME DIVISION MULTIPLEXING (TDM)

Users take turns on a fixed schedule

FREQUENCY DIVISION MULTIPLEXING (FDM)

Put different users on different frequency bands

TDM VERSUS FDM

- TDM: a user sends at a high rate a fraction of the time
- FDM: a user sends at a low rate all the time

TDM/FDM USAGE

Statically divide a resource

Suited for continuous traffic, fixed number of users

Widely used in telecommunications

- TV and radio stations (FDM)
- 2G/3G allocates calls using TDM within FDM

MULTIPLEXING NETWORK TRAFFIC

Network traffic is **bursty**

- ON/OFF sources
- Load varies greatly over time

MULTIPLEXING NETWORK TRAFFIC

Network traffic is **bursty**

Inefficient to always allocate user their ON needs with

TDM/FDM

MULTIPLEXING NETWORK TRAFFIC

<u>Multiple access</u> schemes multiplex users according to their demands – for gains of statistical multiplexing

MODERN ETHERNET

Based on switches, not multiple access

WIRELESS - WIFI

How do wireless nodes share a single link?

- Build on our simple, wired model
- Wifi

WIRELESS COMPLICATIONS

Wireless is more complicated than the wired case

- Nodes may have different areas of coverage
- Nodes can't hear while sending can't Collision Detect
- A Collision occurs when messages collide, this produces noise and garbage data.

CARRIER SENSE MULTIPLE ACCESS/COLLISION AVOIDANCE

Carrier Sense Multiple Access

 A transmitting nodes listens to see if another node is transmitting and if the channel is free will transmit its frame

Collision Avoidance

- If there is another node transmitting, wait a random amount of time and listen again.
- Can use Binary Exponential Backoff instead of a random wait time.
- BEB doubles interval for each successive detection
 - Quickly gets large enough to work
 - Very efficient in practice

DIFFERENT COVERAGE AREAS

Wireless signal is broadcast and received nearby, where there is sufficient SNR

HIDDEN TERMINALS

Nodes A and C are <u>hidden terminals</u> when sending to B

- Can't hear each other (to coordinate) yet collide at B
- We want to avoid the inefficiency of collisions

EXPOSED TERMINALS

B and C are <u>exposed terminals</u> when sending to A and D

- Can hear each other yet don't collide at receivers A and D
- We want to send concurrently to increase performance

POSSIBLE SOLUTION: NEGOTIATE

Multiple Access Collision Avoidance (MACA)

MACA uses a short handshake to negotiate when sending messages is possible.

Protocol rules:

- 1.A sender node transmits a RTS (Request-To-Send, with frame length)
- 2. The receiver replies with a CTS (Clear-To-Send, with frame length)
- Sender transmits the frame while nodes hearing the CTS stay silent
 - Collisions on the RTS/CTS are still possible, but less likely

MACA - HIDDEN TERMINALS

A→B with hidden terminal C

1. A sends RTS, to B

MACA - HIDDEN TERMINALS

A B with hidden terminal C

- 1. A sends RTS, to B
- 2. B sends CTS, to A, and C too

MACA - HIDDEN TERMINALS

A→B with hidden terminal C

- 1. A sends RTS, to B
- 2. B sends CTS, to A, and C too
- 3. A sends frame while C defers

MACA - EXPOSED TERMINALS

 $B\rightarrow A$, $C\rightarrow D$ as exposed terminals

A B C D

MACA - EXPOSED TERMINALS

 $B \rightarrow A$, $C \rightarrow D$ as exposed terminals

1. B and C send RTS to A and D

MACA - EXPOSED TERMINALS (3)

$B \rightarrow A$, $C \rightarrow D$ as exposed terminals

- 1. B and C send RTS to A and D
- 2. A and D send CTS to B and C

MACA - EXPOSED TERMINALS

$B \rightarrow A$, $C \rightarrow D$ as exposed terminals

- 1. B and C send RTS to A and D
- 2. A and D send CTS to B and C
- 3. B sends frame to A and C sends frame to D

802.11 WIFI AT THE LINK LAYER

- Multiple access uses Carrier Sense Multiple Access/Collision Avoidance
 - RTS/CTS optional to help hidden node problem
- Frames are ACKed and retransmitted with ARQ
- Errors are detected with a 32-bit CRC
- Many, many features (e.g., encryption, power save)

SWITCHED ETHERNET

SWITCHED ETHERNET

Hosts are wired to Ethernet switches with twisted pair

Switch serves to connect the hosts

WHAT'S IN THE BOX?

Remember from protocol layers:

INSIDE A HUB All ports are wired together; more convenient and reliable than a single shared wire

Uses frame addresses to connect input port to the right output port; multiple frames may be switched in parallel

Port may be used for both input and output (full-duplex)

Just send, no multiple access protocol

Need buffers for multiple inputs to send to one output

Sustained overload will fill buffer and lead to

ADVANTAGES OF SWITCHES

Switches and hubs have replaced the shared cable of classic Ethernet

- Convenient to run wires to one location
- More reliable; wire cut is not a single point of failure that is hard to find

Switches offer scalable performance

E.g., 100 Mbps per port instead of 100 Mbps for all nodes of shared cable / hub