Proposition The following are equivalent:

- 1. (Division Algorithm) For any $\alpha, \beta \in \mathcal{O}_K$ there exists a unique integer q, γ that satisfies $\alpha = q\beta + \gamma$
- 2. (Approximation) For any $\theta \in K$, there exists a K-integer $\kappa \in \mathcal{O}_K$ that satisfies $|N(\theta \kappa)| < 1$

<u>Proof</u> $(2 \Leftarrow 1)$ The idea is to approximate the field element α/β . Let θ be this fraction, and obtain κ accordingly. By the precision of the approximation:

$$|N(\alpha/\beta - \kappa)| < 1$$

With some manipulation:

$$|N(\alpha - \kappa \beta)/N(\beta)| < 1$$

Which in turn, yields:

$$|N(\alpha - \kappa \beta)| < |N(\beta)|$$

 $(\alpha - \kappa \beta)$ is in \mathcal{O}_K . Call it γ . By the definition of γ , we also have:

$$\alpha = \kappa \beta + \gamma$$

as desired. \checkmark

 $(2\Rightarrow 1)$ The idea is to multiply by some integer c to guarantee $c\theta$ is in the ring of integers.