

Pumping Lemma for Regular Languages

BITS Pilani

Pilani Campus

Shashank Gupta
Assistant Professor
Department of Computer Science and Information Systems

Weak Points of Finite Automaton (FA)

Every language is not regular.

- There exists some non-regular languages as well.
- Non-regular languages cannot be recognized by FA

Intuitively, languages that have some memory element are generally not regular.

Pumping Lemma for Regular Languages

innovate achieve lead

Pumping Lemma

If L is a regular language, then there exists a constant p such that for every string $w \in L$ s.t. $|w| \ge p$ there exists a partition of w in strings x, y, and z s.t. w = xyz such that

- |y| > 0,
- $|xy| \le p$, and
- for all $i \ge 0$ we have that $xy^iz \in L$.

Contrapositive form of Pumping Lemma

• Let $\bot \subset \Sigma^*$ if

- \forall p \geq 0,
- \exists w \in L s.t. $|w| \ge p$
- If L is a regular language, then there exists a constant p such that for every string $w \in L$ s.t. $|w| \ge p$ there exists a partition of w in strings x, y, and z s.t. w = xyz such that |y| > 0, $|xy| \le p$, and

for all $i \ge 0$ we have that $xy^iz \in L$.

- s.t. for all partitions
- w = xyz where $-|xy| \le p$ and |y| > 0
- $\exists i \geq 0 \text{ s.t. } xy^iz \notin L$
- Then L is not regular.

Contrapositive form of Pumping Lemma (Continued....)

- Let $\bot \subset \Sigma^*$ if
- \forall p \geq 0,
- $\exists w \in L \text{ s.t. } |w| \ge p$
- s.t. for all partitions
- w = xyz where $-|xy| \le p$ and |y| > 0
- $\exists i \geq 0 \text{ s.t. } xy^iz \notin L$
- Then L is not regular.

innovate achieve lead

Example

Prove that the language $L = \{0^n1^n | n \ge 0\}$ is not regular.

Proof: Given $p \ge 0$

Choose $w = 0^p1^p$

Now, given a partition

w=xyz where $|xy| \le p$ and |y| > 0

Note that x and y consist only of 0's.

Choose i = 0

 $xy^0z = xz = 0^r1^p$ where $r = p - |y| \neq p$

Hence, $xy^0z \notin L$, Therefore, L is not regular.

innovate achieve lead

Example

Prove that the language $L = \{a^lb^mc^n| l+m \le n\}$ is not regular.

Proof: Given p

Choose $w = a^p b^p c^{2p}$

Now, given a partition

w=xyz where $|xy| \le p$ and |y| > 0

We have $y = a^t$ for some t > 0

Choose i = 2

 $xy^2z = a^{p+t}b^pc^{2p}$ which implies |a|+|b|>|c|

Hence, $xy^2z \notin L$, Therefore, L is not regular.

Revisited Pumping Lemma

If L is a regular language, then there exists a constant p such that for every string $w \in L$ s.t. $|w| \ge p$ there exists a partition of w in strings x, y, and z s.t. w = xyz such that

- |y| > 0,
- $|xy| \le p$, and
- for all $i \ge 0$ we have that $xy^iz \in L$.

Proof of Pumping Lemma

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA for L. Set p = |Q|

Given $w \in L$ s.t. $|w| \ge p$, \exists a sequence of states $q0, q1, q2, ----- q_t$ s.t. $t \ge p$ and $q_t \in F$

By pigeonhole principle, \exists m, $n \ge 0$ s.t. $0 \le m < n \le t$ and $q_m = q_n$

Set $x = String from q0 to q_m$ y = String on the loopz = Remaining String

Hence, $\forall i, xy_i z \in L$

10

In other words, the DFA traverses from q0 to qm on x, traverses from qm to qn (qn is the same as qm) on y and then proceeds to qt.

• Since m < n therefore |y| > 0.

Now for all $i \ge 0$, $\delta(q0, xy^i) = qm$, as the automaton loops on the state qm on the string y.

• Therefore $\delta(q0, xy^iz) = qt$ and hence, $xy^i z \in L$.

Important Observation

We are now "overloading" the definition of δ to accommodate strings as well instead of input alphabet symbols only.

- We can formalize this by defining δ recursively as follows:
- $\delta: Q \times \Sigma^* \rightarrow Q$ such that

$$\delta(q, \in) = q,$$

 $\delta(q, xa) = \delta(\delta(q, x), a).$

Home Assignment

Prove that the language $L = \{0^p | p \text{ is a prime}\}$ is not regular.