MATH UN1207, Honors Math A

Columbia University, Fall 2019

Mateo Maturana

Contents

1	September 4, 2019										
	1.1	Statements	2								
	1.2	Conditionals	2								
2	September 9, 2019										
	2.1	Predicates	3								
	2.2	Sets	4								
	2.3	Axioms for Sets	5								
	2.4	Russell's Paradox	5								
	2.5	Axioms Cont	5								
3	Sep	September 11, 2019									
	3.1	More De Morgan	6								
	3.2	Power Sets	6								
	3.3	Cartesian Products	6								
	3.4	Functions	7								
	3.5	Injectivity and Surjectivity	7								
	3.6	Inverses	8								
4	Sep	September 16, 2019									
	4.1	Inverses Cont	8								
	4.2	Numbers	9								
	4.3	Axioms	9								
5	September 18, 2019										
	5.1	Application of Axioms	0								
	5.2	Natural Numbers	2								
	5.3	Sums	3								
6	September 23, 2019										
	6.1	Supremum	13								
	6.2	Infimum	4								
	6.3	Absolute Value	15								
7	September 25, 2019										
	7.1	Archimedean Prop	15								
	7.2	Finite Sets	6								
	7.3		8								

1 September 4, 2019

1.1 Statements

Definition. A statement (or proposition) is an assertion that its true \underline{or} false (but not both).

 $\underline{\mathbf{E}}\mathbf{x}$

P = "Ringo Starr is alive"

Q = "The earth is flat"

Definition. The truth value of a statement is T (if true) and F (if false)

Definition. The negation of a statement P is the statement "P is false" $(\sim P)$

Ex

 \sim P = "Ringo Starr is dead"

 \sim Q = "The earth is not flat"

Remark. $\sim (\sim P) = P$

Definition. The conjunction of two statements P, Q is the statement "P and Q" $(P \land Q)$

i.e. The truth value of $P \land Q$ is T if P is T and Q is T, and F otherwise.

Proposition. $P \wedge (\sim P) = F$

$$\begin{array}{c|c|c} P & \sim P & P \land (\sim P) \\ \hline T & F & F \\ F & T & F \end{array}$$

Definition (Disjunction). P or Q ($P \lor Q$) is F if P is F and Q is F, and T otherwise. "or" in math is always inclusive.

Proposition. $(P \wedge Q) \vee (\sim P \vee \sim Q) = T$

Р	Q	$P \wedge Q$	$\sim P \lor \sim Q$	$(P \land Q) \lor (\sim P \lor \sim Q)$
Т	Т	Т	F	T
Τ	F	\mathbf{F}	${ m T}$	${ m T}$
F	T	F	T	${ m T}$
F	F	\mathbf{F}	${ m T}$	T

1.2 Conditionals

Definition (Conditional). P <u>implies</u> Q or <u>if</u> P then Q, or $P \Rightarrow Q$, is $Q \lor (\sim P)$. i.e. if P is T, then Q is T.

Remark. If P is F, then we say $P \Rightarrow Q$ is "vacuously true"

Proposition.
$$(P \land Q) \Rightarrow P, (P \land Q) \Rightarrow Q, (P \land (P \Rightarrow Q)) \Rightarrow Q$$

Definition (Biconditional). P <u>iff</u> Q or P <u>if and only if</u> Q or $P \iff Q$ is $(P \Rightarrow Q) \land (Q \Rightarrow P)$

Ρ	Q	$P \Longleftrightarrow Q$
Т	Т	Т
\mathbf{T}	F	F
\mathbf{F}	Т	F
F	F	$_{ m T}$

Proposition. 1 - Suppose P and $P \Rightarrow Q$. Then Q.

- 2 Suppose $P \Rightarrow Q$ and $\sim Q$. Then $\sim P$.
- 3 Suppose $P \Rightarrow Q$ and $P \Rightarrow \sim Q$. Then $\sim P$.
- 4 Suppose $P \vee Q, P \Rightarrow R$, and $Q \Rightarrow R$. Then R.

Proof of 3. $(P \Rightarrow Q) \land (P \Rightarrow \sim Q) \Rightarrow \sim P$

Ρ	Q	$P \Rightarrow Q$	$P \Rightarrow \sim Q$	$(P \Rightarrow Q) \land (P \Rightarrow \sim Q)$	Whole
Т	Т	Т	F	F	Т
${ m T}$	F	F	${ m T}$	F	Τ
\mathbf{F}	T	T	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	F	T	Τ	T	${ m T}$

De Morgan's Laws $\begin{cases} \sim (P \wedge Q) \Longleftrightarrow \sim P \vee \sim Q \\ \sim (P \vee Q) \Longleftrightarrow \sim P \wedge \sim Q \end{cases}$

Definition (Contrapositive). $(P \Rightarrow Q) \iff (\sim Q \Rightarrow \sim P)$

2 September 9, 2019

2.1 Predicates

Definition. A predicate P(x) is a family of statements depending on a variable x

 $\mathbf{E}\mathbf{x}$

P(x) = "x is a banana"

Q(x) = "x > 7"

Existential Quantifier:

 $\exists x \mid P(x)$: "there exists an x such that P(x)"

Universal Quantifier:

$$\forall x P(x)$$
: "for all $x, P(x)$ "

e.g. $\forall x, Q(x)$ is false (Q(x) as above) $\forall x(P(x) \lor \sim P(x)))$ is always true

e.g.

$$\sim (\forall x P(x)) \Longleftrightarrow \exists x (\sim P(x))$$

 $\sim (\exists P(x)) \Longleftrightarrow \forall x (\sim P(x))$

Remark. To prove $\exists x P(x)$, just find an x such that P(x). To prove $\forall x P(x)$, write something like "take an x..."

2.2 Sets

A set is a collection of objects. e.g.

$$S = \{1, 2, 4\}, T = \{\{1\}, 2, \text{water}\}$$

 $\{1\} \in T$, but $1 \notin T$. "1 is not an element of T"

 $\mathbb{N} = \text{set of natural numbers } \{1, 2, 3, ...\}$

 $\mathbb{Z} = \text{set of integers } \{..., -2, -1, 0, 1, 2, ...\}$

 \mathbb{Q} = rational numbers

 \mathbb{R} = real numbers

 $\mathbb{C} = \text{complex numbers}$

Definition. $\forall x \in S, P(x) \text{ just means } \forall x (x \in S \Rightarrow P(x))$

Definition (Set Inclusion). $S \subseteq T$ (S is a subset of T) if $\forall x \in S, x \in T$

Remark. In definitions, we write "if" instead of "if and only if" even though the latter is what we mean.

Definition. S = T if $S \subset T$ and $T \subset S$

Warning - Order matters with quantifiers! $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z} \mid m+n=0 \text{ is } \underline{\text{TRUE}}$ $\exists m \in \mathbb{Z} \mid \forall n \in \mathbb{Z}, m+n=0 \text{ is } \text{FALSE}$

Proposition. IF $S \subset T$ and $T \subset U$, then $S \subset U$

Proof. We know $\forall x \in S, x \in T$ and $\forall yinT, y \in U$. Therefore, $\forall x \in S, x \in U$. Thus, $S \subset U$.

2.3 Axioms for Sets

- 1. There exists a set
- 2. "Axiom of Specification" (how to take subsets) Given set S and any predicate P(x), there exists a set T such that
 - (a) $T \subset S$
 - (b) $\forall x, (x \in T \iff P(x))$

We write $T = \{x \in S \mid P(x)\}.$

Take $Q(x) = "x \neq x"$ (always false). Then, take S any set $= \{x \in S \mid Q(x)\} = \emptyset$ (the empty set).

2.4 Russell's Paradox

If we take axiom of specification w/o picking S, we get a contradiction. Take P(x) = "x = x" (always true). Stengthened axiom \Rightarrow get a set of all sets \mathcal{V} . We will show a contradiction.

Let $T = \{S \in \mathcal{V} \mid S \notin S\}$. Is $T \in T$?. If $T \in T \Rightarrow T$ really bad $\Rightarrow T \notin T \Rightarrow \Leftarrow$. If $T \notin T \Rightarrow T$ is not really bad $\Rightarrow T \in T \Rightarrow \Leftarrow$. We conclude that there is no "set of all sets".

2.5 Axioms Cont.

- 3. Axiom of Unions Given sets S, T, there exists $S \cup T$ such that $\forall x, x \in S \cup T \iff x \in S$ or $x \in T$.
- 3'. Axiom of Intersection Given sets S,T, there eixsts $S\cap T$ such that $\forall x(x\in S\cap T)\Longleftrightarrow x\in S$ and $x\in T$

Theorem 2.1. $A \cup B = B \cup A$

Theorem 2.2. $(A \cup b) \cup C = A \cup (B \cup C)$

Theorem 2.3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof of 2.3. Need to show: $\forall x, x \in LHS \iff x \in RHS$

$$x \in LHS \Longleftrightarrow x \in A \cap (B \cup C)$$

$$\iff x \in A \land x \in (B \cup C)$$

$$\iff x \in A \land (x \in B \lor x \in C)$$

$$\iff (x \in A \land x \in B) \lor (x \in A \land x \in C)$$

$$\iff x \in A \cap B \lor x \in A \cap C$$

$$\iff x \in (A \cap B) \cup (A \cap C)$$

$$\iff x \in RHS$$

3 September 11, 2019

3.1 More De Morgan

Definition. Let S, A be sets. Then the complement S-A or $S \setminus A$ is $\{x \in S \mid x \notin A\}$

There are two more De Morgan laws.

1.
$$S \setminus (A \cup B) = (S \setminus A) \cap (S \setminus B)$$

2.
$$S \setminus (A \cap B) = (S \setminus A) \cup (S \setminus B)$$

3.2 Power Sets

4. For all sets A, there exists a set $\mathcal{P}(A)$, the power set of A, such that its elements are precisely the subsets of A.

$$\forall B, B \subseteq A \Leftrightarrow B \in \mathcal{P}(A)$$

$$\underline{\text{Ex}} A = \{1, 2\}, \, \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$$

Proposition. $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$

Proof. Similar to other set equality proofs.

$$S \in \mathcal{P}(A \cap B) \Longleftrightarrow S \subseteq (A \cap B)$$

$$\iff \forall x \in S, (x \in A \cap B)$$

$$\iff \forall x \in S, (x \in A \text{ and } x \in B)$$

$$\iff \forall x \in S, x \in A \text{ and } \forall x \in S, s \in B$$

$$\iff S \subseteq A \text{ and } S \subseteq B$$

$$\iff S \in \mathcal{P}(A) \text{ and } S \in \mathcal{P}(B)$$

$$LHS \iff S \in \mathcal{P}(A) \cap \mathcal{P}(B)$$

3.3 Cartesian Products

<u>"Def":</u> An ordered pair is a list (a,b) where a,b are math objects. We say (a,b)=(a',b') if a=a' and b=b'. $\underline{\operatorname{Ex}}\ (1,2)\neq (2,1)$

5. Axiom of Products: Givens sets A, B, there exists a set $A \times B$ whose elements are exactly the pais (a, b) with $a \in A, b \in B$.

$$\forall x, x \in A \times B \iff x = (a, b) \text{ with } a \in A, b \in B$$

Remark. This axiom is actually not necessary

Proposition.
$$A \times (B \cup C) = A \times B \cup A \times C$$

Proof. Same format as any other set equality proof.

$$(a,b) \in LHS \iff a \in A \text{ and } b \in (B \cup C)$$

 $\implies a \in A \text{ and } (b \in B \text{ or } b \in C)$
 $\iff (a \in A \text{ and } b \in B) \text{ or } (a \in A \text{ and } b \in C)$
 $\iff (a,b) \in A \times B \text{ or } (a,b) \in A \times C$
 $\iff (a,b) \in (A \times B) \cup (A \times C)$

3.4 Functions

<u>"Def"</u> Let S, T be sets. A function $F: S \to T$ (from S to T) is a rule assigning an element of T to each element of S. i.e. If $s \in S$, this element of T is denoted f(s).

Remark. We can make a non-fake def of a function $S \to T$ by defining it as a subset of $S \times T$.

Remark. We write $f: S \to T$, "f is a function from S to T", "f maps S to T", and $x \mapsto x^2$, "x maps to x^2 ".

Definition. If $f: S \to T$, then S is the domain and T is the codomain.

Definition. The graph of $f: S \to T$, (sometimes denoted $\Gamma(f)$) is $\{(x,y) \in S \times T \mid y = f(x)\}$.

Definition. Two functions $f: S \to T$ and $g: S' \to T'$ are equal if S = S', T = T', and $\forall s \in S, f(s) = g(s)$.

Definition. If $f: S \to T$ and $g: T \to U$ are functions, their <u>composition</u> is the function $g \circ f: S \to U$ such that $(g \circ f)(s) = g(f(s)) \forall s \in S$.

Definition. If S is set, then $id_s: S \to S$ is called the identity function

3.5 Injectivity and Surjectivity

Definition. $f: S \to T$ is injective if whenever f(s) = f(s'), s = s'.

Definition. $f: S \to T$ is surjective if $\forall t \in T, \exists s \in S$ such that f(s) = t.

Proposition. id_s is injective and surjective/

Proof. If $id_s(s) = id_s(s')$, s = s'. This proves injectivity. $\forall s \in S$, we have $d_s(s) = s$. This proves surjectivity. Thus, we have both.

Remark. $f: S \to T$ injective $\iff \forall t \in T$, there is at \underline{most} one preimage(at most one $s \in S$ such that f(s) = t). f surj $\iff \forall t \in T$, there is at least one element of preimage.

Definition. $f: S \to T$ is bijective if it is injective and surjective.

Ex/Prop

- 1. $f: S \to T, g: T \to U$, both inj.
 - (a) $\Rightarrow g \circ f$ inj.
 - (b) $\Rightarrow f \text{ inj.}$
- 2. $f: S \to T, g: T \to U$ surj.
 - (a) $g \circ f$ surj.
 - (b) g surj.

3.6 Inverses

Definition. If $f: S \to T$ is a function, an <u>inverse</u> to f is a function $g: T \to S$ such that

- 1. $q \circ f = id_S: S \to S$
- 2. $f \circ g = \mathrm{id}_{\mathrm{T}} \colon T \to T$

4 September 16, 2019

4.1 Inverses Cont.

Theorem 4.1. $f: S \to T$ has an inverse if and only if it is bijective.

Proof. (\Rightarrow) by homework problem

(\Leftarrow) We know by definition of bijectivity, $\forall t \in T, \exists s \in S \mid f(s) = t \text{ and } \forall s, s' \in S, f(s) = f(s') \Rightarrow s = s'$. Define $g: T \to S$.

Lemma 4.2. $f(s) = t \iff g(t) = s$

Lemma can be proven by definition of g. Lemma \Rightarrow if g(t) = s', then f(s') = t. Thus, t = f(s) = f(s'). By injectivity of f, s = s'.

$$(f \circ g)(t) = f(g(t))$$

$$= f(s)$$

$$= t$$

$$(g \circ f)(s) = g(f(s))$$
$$= g(t)$$
$$= s$$

Remark. By definition, if g is inverse to f, then f is inverse to g.

Proposition. If g, g' are inverses to f, then g = g'. (Inverses are unique)

Proof. Take any $t \in T$.

$$g'(t) = (g' \circ id_t)(t)$$

$$= (g' \circ (f \circ g))(t)$$

$$= ((g' \circ f) \circ g)(t)$$

$$= (id_s \circ g)(t)$$

$$= g(t)$$

Definition. If $f: S \to T$ and $U \subseteq S$, then the image of $U(under\ f)$, denoted f(U), is $\{t \in T \mid \exists s \in U \text{ with } f(s) = t\} = \{f(s) \mid s \in U\}.$

Definition. If $f: S \to T$ and $V \subseteq T$, the preimage of V under f, denoted $f^{-1}(V, is \{s \in S \mid f(s) \in V\}.$

4.2 Numbers

We will axiomatize \mathbb{R} .

Definition. A binary operation on a set S is a function $S \times S \to S$.

Definition. A relation on S is a subset of $S \times S$.

Assumption: There exists a set \mathbb{R} , equippied with two binary relations +, \bullet , one relation >, and two elements 0, 1 satisfying the following axioms.

4.3 Axioms

All of the axioms are $\forall x, y, z \in \mathbb{R}$, unless otherwise noted.

1. Commutativity

$$x + y = y + x \qquad \qquad x \cdot y = y \cdot x$$

2. Associativity

$$x + (y+z) = (x+y) + z$$

$$x + (y + z) = (x + y) + z$$
 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

3. Distributivity

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

4. Identity Elements

$$0 \neq 1 \qquad \qquad 0 + x = x \qquad \qquad 1 \cdot x = x$$

5. Additive Inverse

$$\forall x \in \mathbb{R}, \exists w \in \mathbb{R} \mid w + x = 0.$$
 We can denote w by $-x$.

Note: Axioms 1-5 are a commutative ring.

6. Multiplicative Inverse

$$\forall x \neq 0 \in \mathbb{R}, \exists w \in \mathbb{R} \mid w \cdot x = 1$$
. We can denote w by $\frac{1}{x}, x^{-1}$, etc.

Note: Axioms 1-6 are a field.

e.g. $\frac{\mathbb{Z}}{n\mathbb{Z}} = \{0, 1, ..., n-1\}$ with modular arithmetic is a commutative ring and is a field iff n is prime.

Notation:
$$x + (-y) =: x - y$$

 $x \cdot \frac{1}{y} = \frac{x}{y}$

7. Order Axiom 1

If
$$x > 0$$
 and $y > 0$, then $x + y > 0$ and $x \cdot y > 0$. ("add + mult preserve the order").

8. Order Axiom 2

If
$$x \neq 0$$
, then $x < 0$ or $x > 0$ but not both. ("trichotomy")

9. Order Axiom 3

not
$$0 > 0 \ (0 \ge 0)$$

10. Order Axiom 4

If
$$x > y$$
, then $x + z > y + z$.

Note: Axioms 1 - 10 are an ordered field. (e.g. \mathbb{Q}, \mathbb{R})

Proposition. High School Algebra

Proof. exercise
$$\Box$$

5 September 18, 2019

5.1 Application of Axioms

Proposition (Multiplicative Cancellation). Given an ordered field $\mathbb{R}, \forall a, b, x \in \mathbb{R}$

$$xa = xb, x \neq 0 \Longrightarrow a = b$$

Proof. By axiom of multiplicative inverse, $\exists w \in \mathbb{R}$ with wx = 1. Since xa = xb, we can multiply both sides by w to obtain wxa = wxb. This statement is equal to (wx)a = (wx)b by associativity. Then, 1a = 1b. Thus, a = b by the axiom of identity.

Theorem 5.1 (Trichotomy). $\forall a, b \in \mathbb{R}$, exactly one of the following is true:

- 1. a > b
- 2. b > a
- 3. a = b

Lemma 5.2. $\forall a, b \in \mathbb{R}, a > b \Longleftrightarrow a - b > 0$

Proof. Do each direction separately.

 (\Rightarrow)

 $a>b\Rightarrow a+(-b)>b+(-b)$ by axiom of add. inverse and axiom 10 =a-b>0 by def of "-" \checkmark

 (\Leftarrow)

 $a-b>0 \Rightarrow (a-b)+b>0+b$ by axiom 10 $\Rightarrow a+(-b+b)>b$ by associativity and add. identity $\Rightarrow a+(b+-b)>b$ by commutativity $\Rightarrow a+0>b$ by add. inverse $\Rightarrow 0+a>b$ by commutativity $\Rightarrow a>b$ by add. identity

Lemma 5.3. $\forall a, b \in \mathbb{R}, b > a \iff 0 > a - b$

Proof. Either copy Lemma 5.2 (almost) or $b > a \iff b - a > 0$ by Lemma 5.2 then show $b - a > 0 \iff 0 > a - b$.

Lemma 5.4. $\forall a, b \in \mathbb{R}, a = b \iff a - b = 0$

Proof. Simple

 $a = b \Rightarrow a + (-b) = b + (-b)$ $\Rightarrow a - b = 0$ $\Rightarrow (a - b) + b = 0 + b$ $\Rightarrow (a) + (-b + b) = b$ $\Rightarrow a + (b + -b) = b$ $\Rightarrow a + 0 = b$ $\Rightarrow a = b$

Proof of 5.1. Let x=a-b. Either x=0 or $x\neq 0$ but not both. By Axiom 8, if $x\neq 0$, either x>0 or 0>x but not both. By Axiom 9, if x=0 then NOT x>0,0>x. This implies that exactly one of x=0,x>0,0>x is true. Lemmas 5.2, 5.3, 5.4 tell us that $x=0\Longleftrightarrow 5.4, x>0\Longleftrightarrow 5.2, 0>x\Longleftrightarrow 5.3$.

Exercises to try on own

- $\bullet \ \forall x, 0 \cdot x = 0$
- 1 > 0 (tricky)

5.2 Natural Numbers

Definition. $S \subseteq \mathbb{R}$ is an <u>inductive set</u> if

- 1. $0 \in S$
- $2. \ \forall x \in S, x+1 \in S$

 $\underline{\text{Ex}} \quad \{x \in \mathbb{R} \mid x \ge 0\} \text{ is inductive (by above exercise)}$

Definition. A <u>natural number</u> is an $x \in \mathbb{R}$ such that x is a number of every inductive set.

The set of natural numbers is called $\mathbb{Z}_{\geq 0}$.

Theorem 5.5 (Mathematical Induction). ?? Let P(n) be a predicate defined on $\mathbb{Z}_{\geq 0}$ such that

- 1. P(0) is true (base case)
- 2. $\forall n \in \mathbb{Z}, P(n) \Rightarrow P(n+1)$

Then, $\forall n \in \mathbb{Z}_{>0}, P(n)$ is true.

Proof. $\{n \in \mathbb{R} \mid P(n)\}$ is an inductive set. Hence $\mathbb{Z}_{\geq 0} \subseteq S$ by definition of the natural numbers.

Proposition. $\forall n \in \mathbb{Z}_{\geq 0}, n^2 > n$

Proof. Base Case $n = 0 : 0 \ge 0 \checkmark$. Inductive step: Assume $n^2 \ge n$.

$$(n+1)^2 = n^2 + 2n + 1$$

$$\geq n + 2n + 1$$

$$\geq n + n + 1$$

$$\geq n + 1$$

Proposition. $\forall n \in \mathbb{Z}_{\geq 0}, 0 + 1 + 2 + ... + n = \frac{n(n+1)}{2}$

Proof. Base Case n=0:0=0. Inductive step: Assume $0+\ldots+n=\frac{n(n+1)}{2}$. Add n+1 to both sides.

$$0 + \dots + n + n + 1 = \frac{n(n+1)}{2} + n + 1$$
$$= n + 1\left(\frac{n}{2} + 1\right)$$
$$= \frac{(n+1)(n+2)}{2}$$

Definition. A positive integer is a natural number that is not 0.

Definition. An integer is the difference of two natural numbers (called \mathbb{Z}).

Definition. A rational number is a quotient of two integers (\mathbb{Q}) .

<u>"Principle"</u> of recursive definition: For any set S, a function $f: \mathbb{Z}_{\geq 0} \to S$ may be specified by a choice of f(0) and a function expressing f(n) in terms of f(m), m < n.

"Proof"

 $\overline{\{n \in \mathbb{Z}_{\geq 0} \mid \forall m < n, \text{ the above data determine } f(n) \text{ uniquely}\}}$ is an inductive set

 $_{\rm Ex}$

Define $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}$. f(0) = 0, f(1) = 0, f(n) = f(n-1) + f(n-2).

5.3 Sums

Define for $n \in \mathbb{Z}_{\geq 0}, f : \mathbb{Z}_{\geq 0} \to \mathbb{R}$.

$$\sum_{i=0}^{n} f(i)$$

Remark. A few rules

1. "i" is a dummy variable so we can use anything.

2.

$$\sum_{i=m}^{n} f(i) = \sum_{i=1}^{n} f(i) - \sum_{i=1}^{m-1} f(i)$$

6 September 23, 2019

6.1 Supremum

Recall: Both $\mathbb Q$ and $\mathbb R$ should be ordered fields (satisfy axioms 1-10) e.g. $\sqrt{2} \in \mathbb R, \notin \mathbb Q$

Definition. A subset $S \subseteq \mathbb{R}$ is <u>bounded above</u> if $\exists y \in \mathbb{R}$ such that $\forall x \in S, x \leq y$. e.g. $S = \{3, 3.1, 3.14, 3.141, ...\}$ is bounded above by 4 (or π).

Definition. An upper bound y for $S \subseteq \mathbb{R}$ is a least upper bound or supremum if y is an upper bound for S and if z is an upper bound for S, then $y \leq z$.

11. Axiom(completeness): every nonempty bounded above set $S \subseteq \mathbb{R}$ has a supremum.

Proposition. If y and y' are suprema of S, then y = y'. (suprema are unique)

Proof. y is a supremum, and y' is an upper bound $\Rightarrow y \leq y'$ by definition of supremum. y' is a supremum, and y is an upper bound $\Rightarrow y' \leq y$ by definition of supremum. So y = y' by trichotomy.

Notation: $\sup S$ is the supremum of S.

6.2 Infimum

Definition. S is bounded below if existsy $| \forall x \in S, y \leq x.y$ is a lower bound for S if $\forall x \in S, y \leq x.y$ is the greatest lower bound or infimum if y is a lower bound and if z is any other lower bound, then $x \leq y$. inf $\overline{S} = infimum$ of S.

Definition. If $S \subseteq \mathbb{R}$ is nonempty and bdd below, then $\exists !$ infimum inf S.

Proof. Let $-S = \{x \mid x \in S\}$. -S is nonempty and bounded above. Thus, $\sup(-S)$ exists and is unique.

Claim: $-\sup(-S)$ is an infimum for S. Uniqueness same as for sup.

Theorem 6.1 (Approximation Property). Let $S \subseteq \mathbb{R}$ be nonempty and bounded above. $\forall \epsilon > 0, \exists x \in S \mid \sup S - \epsilon \leq x$.

Proof by Contradiction. Assume $\exists \epsilon > 9. \forall x \in S, \sup S - \epsilon > x$. Then, $\sup S - \epsilon$ is an upper bound for S. Then, by definition of $\sup S, \sup S \leq \sup S - \epsilon$. Contradiction of $\epsilon > 0$.

Theorem 6.2 (Additivity of Supremum). If $S,T \subseteq \mathbb{R}$ nonempty, bounded above, let $S+T:=\{s+t\mid s\in S,t\in T\}$. Then $\sup(S+T)$ exists and equals $\sup(S)+\sup(T)$.

Proof. Let $s = \sup S, t = \sup T$. $\forall x \in S, x \leq s, \forall y \in T, y \leq t \Rightarrow \forall x \in S, \forall y \in T, x + y \leq s + t \Rightarrow s + t$ is an upper bound for S + T. We want to show that s + t is the <u>least</u> upper bound. Suppose not. Then $\exists \delta > 0 \mid s + t - \delta$ is an upper bound for S + T. Let $\epsilon = \frac{\delta}{2}$.

Approximation Property
$$\Longrightarrow \exists x \in S \mid s - \epsilon < x$$

 $\exists y \in T \mid t - \epsilon < y$

Then $x + y \in S + T$. $s + t - \delta = s + t - 2\epsilon < x + y$. Contradiction!

Proposition. Suppose S, $T \subseteq \mathbb{R}$ such that $\forall x \in S, \forall y \in T, x \leq y$. Then $\sup S$ exists and $\inf T$ exists, and $\sup S \leq \inf T$.

Proof. Any $x \in S$ is a lower bound for T

 $\Rightarrow \inf T$ exists

Any $y \in T$ is upper bd for S

 $\Rightarrow \sup S$ exists

Suppose $\sup S > \inf T$. Then $S - \sup S - \inf T$. Let $\epsilon = \frac{\delta}{2}$.

Approx $\Rightarrow \exists x \in S \mid \sup S - \epsilon < x$. Similar approx. result $\Rightarrow \exists y \in T \mid \inf T + \epsilon > y$.

$$y < \inf T + \epsilon = \sup S - \epsilon < x$$

Contradiction! $\sup S \leq \inf T$

Theorem 6.3. $\mathbb{Z}_{\geq 0} \subseteq \mathbb{R}$ has no upper bound.

Proof. By contradiction. If it did, let $\Psi = \sup \mathbb{Z}_{\geq 0}$. Approx w/ $\epsilon = \frac{1}{2} \Rightarrow \exists n \in \mathbb{Z}_{\geq 0}$ such that $\Psi - \frac{1}{2} < n$. Then $n+1 \in \mathbb{Z}_{\geq 0}$ and $n+1 > \Psi + \frac{1}{2} > \Psi$. Contradiction.

6.3 Absolute Value

$$\begin{aligned} |\cdot|:\mathbb{R} &\to \mathbb{R} \\ |x| &= \begin{cases} x & x \geq 0 \\ -x & x < 0 \end{cases} &\text{"Distance" between } x,y \in \mathbb{R} \text{ is } |x-y|. \ |x-y| < \epsilon \text{ means } \\ x,y \text{ are "ϵ-close"}. \end{aligned}$$

Theorem 6.4 (Triangle Inequality).

$$|x+y| \le |x| + |y|$$

$$|x - z| \le |x - y| + |y - z|$$

Proof. Easy if x=0 or y=0. If both >0, then LHS = x+y = RHS. If both <0, then LHS = -x-y = RHS. If y<0< x, RHS = x-y

$$\left. \begin{array}{l} x - y > -x - y \\ x - y > x + y \end{array} \right\} \Longrightarrow x - y \ge |x + y|$$
 Similar if $x < 0 < y$.

7 September 25, 2019

7.1 Archimedean Prop.

Proposition (Archimedean Property). Let x > 0 and $y \in \mathbb{R}$. Then $\exists n \in \mathbb{Z} \mid nx > y$.

Proof. Consider $\frac{y}{x}$. From earlier result, $\exists n \in \mathbb{Z}_{\geq 0}$ with

$$n > \frac{y}{x} \Longleftrightarrow nx > y$$

Corollary 7.0.1. If $a, x, y \in \mathbb{R}$ with $a \leq x \leq a + \frac{y}{n}$ for every $n \in \mathbb{Z}_{\geq 0}$, then a = x.

Proof. Assume otherwise, so $a < x \iff x - a > 0$.

Prop
$$\Rightarrow \exists n \in \mathbb{Z}_{\geq 0}$$
 such that $n(x-a) > y$
$$x-a > \frac{y}{n}$$

$$x > \frac{y}{n} + a$$

7.2 Finite Sets

Notation $[n] = \{ m \in \mathbb{Z}_{\geq 0} \mid 0 < m \leq n \}$ = $\{1, 2, 3, ..., n \}$

Theorem 7.1. $\forall m, n \in \mathbb{Z}_{>0}$

- 1. $\exists inj. f : [m] \rightarrow [n] \iff m \leq n$
- 2. $\exists surj. f : [m] \rightarrow [n] \iff m \ge n$

Proof. Proof of both.

- 1. (\Leftarrow) $m \leq n$ so define $f:[m] \to [n]$. f(i) = i so f is clearly injective.
 - $(\Rightarrow) \text{ Induct on } m \text{ (fix } n). \text{ Assume for given } m, \text{ all } n. \text{ Suppose } f: [m+1] \to [n] \text{ is injective.} \quad \forall i \in [m+1], \text{ if } i \neq m+1 \Rightarrow f(m+1).$ Define $\bar{f}: [m] \to [n] \setminus \{f(m+1)\}.$ $\bar{f}(i) = f(i)$ so it is still injective. Define $h: [n] \setminus \{f(m+1)\} \to [n-1].$
 - $h(i) = \begin{cases} i \text{ if } i < f(m+1) \\ i-1 \text{ if } i > f(m+1) \end{cases}$ Easy to show that h is injective. Then

 $h\circ \bar{f}:[m]\to [n-1]$ is injective (composition of injective functions). Inductive hypothesis $\Rightarrow m\leq n-1\Rightarrow m+1\leq n$

2. Similar to 1

Definition. A set is finite if \exists bijection $f : [n] \to S$ for some $n \in \mathbb{Z}_{\geq 0}$. If not, S is infinite.

Proposition. Given finite set S, the $n \in \mathbb{Z}_{\geq 0}$ as above is unique.

Proof. Suppose $f:[n] \to S.g:[m] \to S$ are bijections. Then let $h:S \to [n]$ be inverse of f. Then $h \circ g:[m] \to [n]$ is bijective.

Thm applied to
$$h \circ g \Longrightarrow m \leq n$$

$$n \leq m$$

$$\Longrightarrow n = m$$

 $\mathbf{E}\mathbf{x}$

 $\overline{\#}$ of elemenets: $|\dot{S}|$ (like magnitude). If S,T are finite sets, then $S \cup T, S \cap T, S \times T, S^T$ are finite. Any subset of S is finite. If $S \subseteq T, |\dot{S}| \leq |\dot{T}|$.

Ex

 $\overline{\mathbb{Z}_{\geq 0}}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are infinite.

Notation: Suppose $f: S \to T, U \subseteq S$. Then, $f|_U: U \to T.f|_U(s) = f(s), s \in U$.

Definition. The inclusion of $S \subseteq T$ is $id_T|_S$.

 $\mathbf{E}\mathbf{x}$

f injective $\Rightarrow f|_U$ injective. Does <u>not</u> hold for sujectivity.

Definition. For $a \leq b \in \mathbb{R}$, an <u>interval</u> is one of

$$[a,b] = \{a \le x \le b \mid x \in \mathbb{R}\}$$

$$(a,b) = \{a < x < b \mid x \in \mathbb{R}\}$$

$$[a,b) = \{a \le x < b \mid x \in \mathbb{R}\}$$

$$(a,b] = \{a < x \le b \mid x \in \mathbb{R}\}$$

 \underline{or} allow a or b to be " ∞ " or " $-\infty$ " for open intervals $w/-\infty < x < \infty \ \forall x \in \mathbb{R}$.

 $\underline{\mathbf{E}}\mathbf{x}$

If $a \neq b$, these are infinite sets.

Definition. Some function definitions

$$\begin{array}{ll} \text{If } f:[a,b] \to \mathbb{R} & \text{then} & f+g:[a,b] \to \mathbb{R} \\ g:[a,b] \to \mathbb{R} & fg:[a,b] \to \mathbb{R} \end{array}$$

If
$$c \in \mathbb{R}$$
, $cf : [a, b] \to \mathbb{R}$. $(cf)(x) = cf(x)$.

Definition. If $f_1, \ldots, f_n : [a, b] \to \mathbb{R}, c_1, \ldots, c_n \in \mathbb{R}$, then the corresponding linear combination is

$$\sum_{i=1}^{n} c_i f_i = c_1 f_1 + c_2 f_2 + \dots c_n f_n$$

7.3 Step Functions

Definition. $f:[a,b] \to \mathbb{R}$ is a step function if \exists a finite set of real numbers $S = \{x_0, \ldots, x_n\} \subset \mathbb{R}$, called a partition for f, with $a = x_0 < x_1 < x_2 < \ldots < x_n = b$ and $c_1 \ldots c_2 \in \mathbb{R}$ such that $\forall i \in [n], \forall x \in (x_{i-1}, x_i), f(x) = c_i$.

$$(i.e f|_{(x_{i-1},x_i)} = c_i)$$

Proposition. If $f, g : [a, b] \to \mathbb{R}$, so are f + g, fg.

Proof. Let S be partition for f and let T be partition for g. Idea: Then $S \cup T$ is a partition for f+g and fg. Let $S = \{x_0, \ldots, x_m\}, T = \{y_0, \ldots, y_n\}$. $S \cup T = \{z_0, \ldots, z_p\}$ (is finite by earlier exercise). For any $z_k \in S \cup T$ with k > 0, let $k_i =$ greatest element of $S \mid x_i < z_k$. Let $y_j =$ greatest element of $T \mid y_j < z_k$. Then $z_{k-1} =$ a maximum of x_i, y_j and $z_k =$ a minimum of x_{i+1}, y_{j+1} . Hence $(z_{k-1}, z_k) \subset (x_i, x_{i+1}) \cap (y_j, y_{j+1})$

$$\Rightarrow f + g, fg, \text{ constant on } (z_{k-1}, z_k)$$