程序设计方法与实践

蛮力法

- 简单直接地解决问题的方法,也就暴力法、枚举法、穷举法。——基本适合所有问题
- •解题步骤——依靠循环
 - (1)确定扫描和枚举变量。
 - (2) 确定枚举变量的范围,设置相应的循环。
 - (3) 根据问题的描述确定约束的条件,以便找到合理的解。

蛮力法

- •1、选项排序和冒泡排序
- 2、顺序查找和蛮力字符串匹配
- •3、最近对和凸包问题的蛮力算法
- 4、穷举查找
- •5、深度优先查找和广度优先查找

- 选择排序
 - 1)从i=0开始扫描列表从i到末尾,找到最小元素
 - 2) 最小元素与i元素交换位置。
 - 3) i++返回1

```
算法 SelectionSort (A[0...n-1])

//该算法用选择排序对给定的数组排序

//输入: 一个可排序数组A

//输出: 升序排列的数组A

for i \leftarrow 0 to n-2 do

min \leftarrow i

for j \leftarrow i+1 to n-1 do

if A[j] < A[min] min \leftarrow j

swap A[i] and A[min]
```

- 选择排序
 - 举例: 89,45,68,90,29,34,17

- 选择排序
 - 举例: 89,45,68,90,29,34,17

17 45 68 90 29 34 89

- 选择排序
 - 举例: 89,45,68,90,29,34,17

- 选择排序
 - 举例: 89,45,68,90,29,34,17

17 29 68 90 45 34 89

- 选择排序
 - 举例: 89,45,68,90,29,34,17

- 选择排序
 - 举例: 89,45,68,90,29,34,17

17 29 34 90 45 68 89

- 选择排序
 - 举例: 89,45,68,90,29,34,17

• 选择排序

• 举例: 89,45,68,90,29,34,17

17 29 34 45 90 68 89

• 选择排序

• 举例: 89,45,68,90,29,34,17

• 选择排序

• 举例: 89,45,68,90,29,34,17

17 29 34 45 68 90 89

- 选择排序
 - 举例: 89,45,68,90,29,34,17

- 选择排序
 - 举例: 89,45,68,90,29,34,17

 | 89
 45
 68
 90
 29
 34
 17

 | 17
 | 45
 68
 90
 29
 34
 89

 | 17
 | 29
 | 68
 90
 45
 34
 89

 | 17
 | 29
 | 34
 | 90
 45
 68
 89

 | 17
 | 29
 | 34
 | 45
 | 90
 89

 | 17
 | 29
 | 34
 | 45
 | 68
 | 90
 89

 | 17
 | 29
 | 34
 | 45
 | 68
 | 89
 | 90

 | 17
 | 29
 | 34
 | 45
 | 68
 | 89
 | 90

 | 17
 | 29
 | 34
 | 45
 | 68
 | 89
 | 90

17 29 34 45 68 89 90

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1]$$
$$= \sum_{i=0}^{n-2} (n-1-i) = \frac{(n-1)n}{2} \in \Theta(n^2)$$

• 算法比较次数为 $\Theta(n^2)$, 交换次数为 $\Theta(n)$

- 冒泡排序
 - 比较相邻元素,逆序则交换,直到最大元素沉底。则完成一个最大元素的排序。循环执行n次。

```
算法 BubbleSort (A[0...n-1])

//该算法用冒泡排序对给定的数组排序

//输入: 一个可排序数组A

//输出: 升序排列的数组A

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-2-i do

if A[j+1] < A[j] swap A[j] and A[j+1]
```

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 0$$

$$\begin{bmatrix} i = 0 \end{bmatrix}$$
89 45 68 90 29 34 17

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 0$$

$$45 89 68 90 29 34 17$$

$$[i]$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 0$$

$$45 89 68 90 29 34 17$$

$$[i]$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 0$$

$$45 68 89 90 29 34 17$$

$$[$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 0$$

$$45 68 89 90 29 34 17$$

$$i = 0$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 0$$

$$\begin{bmatrix}
45 & 68 & 89 & 29 & 90 & 34 & 17 \\
i & i & j
\end{bmatrix}$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 0$$

$$\begin{bmatrix}
45 & 68 & 89 & 29 & 90 & 34 & 17 \\
i & i & j
\end{bmatrix}$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 0$$

$$\begin{bmatrix}
45 & 68 & 89 & 29 & 34 & 90 & 17 \\
i & i & j
\end{bmatrix}$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 1$$

$$45 68 89 29 34 17 90$$

$$i = 1$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 1$$

$$45 68 29 89 34 17 90$$

$$i = 1$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 1$$

$$45 68 29 89 34 17 90$$

$$i = 1$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 1$$

$$45 68 29 34 89 17 90$$

$$i = 1$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 1$$

$$45 68 29 34 89 17 90$$

$$1 = 1$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 1$$

$$45 68 29 34 17 89 90$$

$$1 = 1$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 2$$

$$45 68 29 34 17 89 90$$

$$[\hat{i}]$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 2$$

$$45 29 68 34 17 89 90$$

$$[\hat{i}]$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 2$$

$$45 29 68 34 17 89 90$$

$$i = 2$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 2$$

$$45 29 34 68 17 89 90$$

$$i = 2$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$i = 3$$

$$29 34 45 17 68 89 90$$

$$i = 3$$

- 冒泡排序
 - 举例: 89,45,68,90,29,34,17

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2-i} 1 = \sum_{i=0}^{n-2} [(n-2-i)-0+1]$$

$$= \sum_{i=0}^{n-2} (n-1-i) = 1+2+3...+(n-1)$$

$$= \frac{(n-1)n}{2} \in \mathcal{O}(n^2)$$

算法交换次数 $S_{worst}(n) = C(n) \in O(n^2)$

蛮力法

- •1、选项排序和冒泡排序
- 2、顺序查找和蛮力字符串匹配
- •3、最近对和凸包问题的蛮力算法
- 4、穷举查找
- •5、深度优先查找和广度优先查找

- 顺序查找
 - 使用限位器, 节省循环内的范围比较操作

```
算法 SequentialSearch2 (A[0...n],K)

//顺序查找算法,使用查找键做限位器

//输入: 一个n个元素的数组A和一个查找键K

//输出: 第一个值等于K的元素位置,找不到返回-1

A[n] \leftarrow K
i \leftarrow 0

while A[i] \neq K do
i \leftarrow i + 1
if i < n return i
else return -1
```

顺序查找是阐释蛮力法的很好的工具,有着蛮力法典型的优点(简单)和缺点(效率低)。

- 蛮力字符串匹配
 - •给定一个n个字符的串(称为文本)
 - •给定一个m个字符的串(称为模式, m≤n)
 - 从文本中寻找匹配模式的子串。

$$t_0 \dots t_i \dots t_{i+j} \dots t_{i+m-1} \dots t_{n-1}$$
 文本T $p_0 \dots p_j \dots p_{m-1}$ 模式P

• 蛮力字符串匹配

```
算法 BruteForceStringMatch (T[0...n-1], P[0...m-1])
   //蛮力字符串匹配
   //输入: 一个n个字符的数组T代表文本
   // 一个m个字符的数组P代表模式
   //输出: 文本第一个匹配子串中第一个字符位置
         找不到返回-1
   for i \leftarrow 0 to n - m do
      j \leftarrow 0
      while j < m and P[j] = T[i + j] do
           j \leftarrow j + 1
           if j = m return i
   return - 1
```

- 蛮力字符串匹配
 - 举例: NOBODY_NOTICED_HIM, 匹配NOT

NOBODY_NOTICED_HIM

- 蛮力字符串匹配
 - 举例: NOBODY_NOTICED_HIM, 匹配NOT

- 蛮力字符串匹配
 - 举例: NOBODY_NOTICED_HIM, 匹配NOT

算法最差比较次数 $C_{worst}(n,m) \in O(nm)$

▶蛮力字符串匹配

- 比较次数: 待检索文本长度 n, Pattern长度m

- 最差效率: Θ(n*m) 000 000 000 000

- 平均效率: $\Theta(n+m)$ 001

- 最好情况: 第i个位置匹配成功,比较了(i-1+m)次,平均比较次数:

$$\sum_{i=0}^{n-m} p(i-1+m) = \frac{1}{n-m+1} \sum_{i=0}^{n-m} (i-1+m)$$
$$= \frac{n+m}{2} - 1 = \Theta(n+m)$$

蛮力法

- •1、选项排序和冒泡排序
- 2、顺序查找和蛮力字符串匹配
- •3、最近对和凸包问题的蛮力算法
- 4、穷举查找
- •5、深度优先查找和广度优先查找

- 最近对问题
 - 在包含n个点的集合中,找出距离最近的两个点
 - 可对应聚类分析等问题

```
算法 BruteForceClosestPoints(p[0...n-1])
   //蛮力算法求平面中距离最近的两个点
   //输入:包含m个点的列表p
   //输出:两个最近点的距离
   d \leftarrow \infty
   for i \leftarrow 0 to n-2 do
     for j \leftarrow i + 1 to n - 1 do
          d \leftarrow \min(d, distance(P_i, P_i))
   return d
```

- 最近对问题
 - 在包含n个点的集合中,找出距离最近的两个点 基本操作:

 $distance(P_i, P_j) = sqrt((x_i - x_j)^2 + (y_i - y_j)^2)$ 可忽略开方操作,则基本操作为2次平方操作。

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 2 = 2 \sum_{i=0}^{n-2} [n-1-i] = \frac{(n-1)n}{2} \in \Theta(n^2)$$

- 凸包问题
 - 凸包可以为给定集合提供近似。
 - 凸包可以代替点集进行快速碰撞检测。
- 凸集合: 平面上点的集合,若其中任意两点为端点的线段都属于该集合,则此集合是凸的

- 凸包问题
- · 凸包:点集S的凸包,是包含S的最小凸集合。
 - 任意包含n>2个点(不共线)的集合S的凸包是以 S中某些点为顶点的凸多边形。 n.

图中8个点的集合的凸包是以P1, P5, P6, P7和P3为顶点的凸多边形

- 凸包问题是为一个n个点的集合构造凸包的问题。 为了解决该问题,需要找出某些点,它们将作为这 个集合的凸多边形的顶点。数学家将这种多边形的 顶点称为"极点"。
- 一个凸集合的极点是这个集合中这样的点: 对于任 何以集合中的点为端点的线段来说,它们不是这种 线段的中点。例如,一个三角形的极点是它的3个 顶点,一个圆形的极点是它圆周上的所有点,对于 图中8个点的集合来说,它的凸包的极点是P₁,P₅

,P₆. P₇和P₃。

3、最近对和凸包问题的蛮力算法

• step1: 对于一个n个点集合中的两个点P_i,P_j,当且仅当该集合中的其他点都位于穿过这两点的直线的同一边时,它们的连线是该集合凸包边界的一部分。

• step2:对每一对点都做一遍检查之后,满足条件的线段构成该凸包的边界。

3、最近对和凸包问题的蛮力算法

- 凸包问题
 - •1、取集合n中的两个点i,j点。
 - 2、构造方程: ax + by = c, 其中 $a = y_2 y_1, b = x_1 x_2, c = x_1y_2 y_1x_2$
 - 3、若n中所有其他点带入2式左均≥c或均≤c, 说明其他点都在i,j点一侧。i,j边为凸包一个边。

$$C(n) \in \mathcal{O}(n^3)$$

蛮力法

- •1、选项排序和冒泡排序
- 2、顺序查找和蛮力字符串匹配
- •3、最近对和凸包问题的蛮力算法
- 4、穷举查找
- •5、深度优先查找和广度优先查找

要求生成问题域中每个元素,选出满足问题 约束的元素,然后找出一个期望元素(最优 化元素)

- 旅行商问题
- 背包问题
- 分配问题

- 旅行商问题
 - 找出n个给定城市间的最短路径,回到出发的城市前,每个城市只访问一次。
 - 求图的最短哈密顿回路(Hamiltonian circuit)
 - •哈密顿回路为n+1个相邻顶点构成的序列 $V_{i_0}, V_{i_1}, ..., V_{i_{n-1}}, V_{i_0}$
 - 开始和结束设定为 V_{i_0} ,则需要生成n-1个中间城市的组合得到所有路线,从中选择最优路线。

• 旅行商问题

路线	旅程
$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	l = 2 + 8 + 1 + 7 = 18
$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	l = 2 + 3 + 1 + 5 = 11
$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$	l = 5 + 8 + 3 + 7 = 23
$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$	l = 5 + 1 + 3 + 2 = 11
$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$	l = 7 + 3 + 8 + 5 = 23
$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$	l = 7 + 1 + 8 + 2 = 18

- S(n) = (n-1)!
- 考虑到反向路径长度相同,可以减少一半
- S(n) = (n-1)!/2

- 旅行商问题
- a. 假设每一条旅行路线都能够在固定的时间内生成出来,对于书中描述的旅行 商问题的穷举查找算法来说,它的效率类型是怎样的?
 - b. 如果该算法的实现运行在一台每秒能做 10 亿次加法的计算机上,请估计在下 述时间中,该算法能够处理的城市个数。

 - i. 1 小时 ii. 24 小时 iii. 1 年 iv. 100 年

3.6E12	8.64E13	3.15E16	3.15E18

15!	16!	17!	18!	19!	20!
1.3E12	2.1E13	3.6E14	6.4E15	1.2E17	2.4E18

- •背包问题
 - 给定重量为 $w_1, w_2, ..., w_n$,价值为 $v_1, v_2, ..., v_n$ 的物品和一个承重为W的背包,求最多装多少价值物品?
 - ·穷举查找n个物品的所有子集
 - 总重量不超过承重能力
 - 找出价值最大的

- 背包问题
 - 例子: 背包体积W=10。物品1(体积7,价值42), 物品2(3,12),物品3(4,40),物品4(5,25)

子集	总重量	总价值
Ø	0	0
{1}	7	42
{2}	3	12
{3}	4	40
{4}	5	25
{1,2}	10	54
{1,3}	11	不可行不可行
{1,4}	12	不可行

- 背包问题
 - 例子: 背包体积W=10。物品1(体积7,价值42), 物品2(3,12),物品3(4,40),物品4(5,25)

子集	总重量	总价值
{2,3}	7	52
{2,4}	8	37
{3,4}	9	65
{1,2,3}	14	不可行
{1,2,4}	15	不可行
{1,3,4}	16	不可行
{2,3,4}	12	不可行
{1,2,3,4}	19	不可行

- •背包问题
 - 例子: 背包体积W=10。物品1(体积7,价值42), 物品2(3,12),物品3(4,40),物品4(5,25)
 - n个元素的子集个数为 2^n ,以查找子集为基准的算法复杂度 $\in \Omega(2^n)$
- 旅行商问题和背包问题都是NP(非多项式)问题,目前没有已知的效率可以用多项式来表示的算法。

- 分配问题
 - •n个任务分配给n个人执行,每个任务一个人。 对i,j∈1,2,...,n来说,j任务分配给i人的成本 为C[i,j]。问最小成本的分配方案。
 - 例子,成本矩阵:

人员	任务1	任务2	任务3	任务4
人员1	9	2	7	8
人员2	6	4	3	7
人员3	5	8	1	8
人员4	7	6	9	4

• 分配问题

人员	任务1	任务2	任务3	任务4
人员1	9	2	7	8
人员2	6	4	3	7
人员3	5	8	1	8
人员4	7	6	9	4

• 4个任务全排列分配给1-4号人员执行,复杂度n!

分配方案	成本
<1,2,3,4>	9+4+1+4=18
<1,2,4,3>	9+4+8+9=30
<1,3,2,4>	9+3+8+4=24
<1,3,4,2>	9+3+8+6=26
<1,4,2,3>	9+7+8+9=33
<1,4,3,2>	9+7+1+6=23
<2,1,3,4>	2+6+1+4=13

蛮力法

- •1、选项排序和冒泡排序
- 2、顺序查找和蛮力字符串匹配
- •3、最近对和凸包问题的蛮力算法
- 4、穷举查找
- •5、深度优先查找和广度优先查找

- ·深度优先查找DFS
 - •1) 从任意顶点开始访问图的顶点,标记为己访问
 - •2)访问当前节点邻接的一个未访问节点,直到遇到终点(所有临边都被访问过)
 - •3)沿着来路后退一条边。若还有未访问的点则转2,否则结束
- 可根据深度优先遍历图,构造出深度优先查找森林,深度优先使用堆栈数据结构

·深度优先查找DFS

算法 DFS(G) //实现给定图的深度优先查找遍历 //输入: 图G=<V,E> //输出: 图G的顶点,按DFS首次访问顺序,用连续整数标记 将1中的每个顶点标记为0,表示"未访问" $count \leftarrow 0$ for each vertex v in V do if v is marked with 0 dfs(v)dfs(v)//递归访问和v相连的未访问顶点,赋值访问顺序。 $count \leftarrow count + 1$; $mark \ v \ with \ count$ for each vertex w in V adjacent to v do if w is marked with 0 dfs(v)

• 深度优先查找DFS

• 深度优先查找DFS

• 深度优先查找DFS

c(2) a(1)

实线 树向边,是连接顶点的边。

·深度优先查找DFS

虚线 回边,是指向已访问的节点,且非直接前驱的边

• 深度优先查找DFS

• 深度优先查找DFS

• 深度优先查找DFS

• 深度优先查找DFS

• 深度优先查找DFS

• 深度优先查找DFS

• 深度优先查找DFS

• 深度优先查找DFS

• 深度优先查找DFS

• 深度优先查找DFS

·深度优先查找DFS

实线 树向边,是连接顶点的边。 虚线 回边,是指向已访问的节点,且非直接前驱的边

- ·深度优先查找DFS
 - 深度优先查找的效率: 消耗的时间和用来表示图的数据结构的规模是成正比的。因此,对于邻接矩阵表示法,该遍历的时间效率属于Θ(|V|²); 而对于邻接链表表示法,它属于Θ(|V|+|E|),其中|V|和|E|分别是图的顶点和边的数量。
 - 具有两种顶点访问顺序: 先序访问(顶点入 栈的时候访问)和后序访问(顶点出栈的时 候访问)。

- ·深度优先查找DFS
 - DFS重要的基本应用包括检查图的连通性和无环性。因为DFS在访问了所有和初始项点有路径相连的顶点之后就会停下来,所以我们可以这样检查一个图的连通性:
 - 从任意一个节点开始DFS遍历,算法停下 来时,检查是否所有的顶点都被访问过。
 - •利用回边查找无环性。

- 广度优先查找BFS
 - 首先访问所有和初始顶点邻接的顶点
 - 然后是离它两条边的所有未访问顶点,循环
 - 直到所有与初始点联通的顶点访问完毕。
- 可根据广度优先遍历图,构造出广度优先查找 森林,广度优先使用队列数据结构

• 广度优先查找BFS

```
算法 BFS(G)
    //给定图的广度优先查找遍历
    //输入:图G=<V.E>
    //输出: 图G的顶点,按BFS访问顺序,用连续整数标记
    V中每个顶点标记为0,表示未访问
    count \leftarrow 0
    for each vertex v in V do
       if v is marked with 0
          bfs(v)
    bfs(v)
    //访问所有和v相连接的未访问节点, 根据访问顺序,给他们赋值。
    count \leftarrow count + 1; mark \ v \ with \ count \ and \ initialize \ a \ queue \ with \ v;
    while the queue is not empty do
       for each vertex w in V adjacent to the front vertex do
       if w is marked with 0
          count = count + 1; mark w with count
          add w to the queue
       remove the front vertex from the queue
```


count = 0

		队列		

count = 1

		队列		
a				

• 广度优先查找BFS

count = 2

			队列		
а	С				

实线 <mark>树向边</mark>,是 连接顶点的边。

count = 3

			队列		
a	С	d			

count = 4

				队列		
a	С	d	е			

count = 4

			队列		
С	d	е			

• 广度优先查找BFS

count = 5

			队列		
C	d	е	f		

虚线 交叉边,是指向已 访问的节点,且非直接 前驱的边

●广度优先查找BFS

			队列		
С	d	e	f		

count = 5

		队列		
d	е	f		

●广度优先查找BFS

队列							
e	f	b					

count = 6

	队列			
e	f	b		

●广度优先查找BFS

队	列		
f	b		

count = 6

队	列		
f	b		

●广度优先查找BFS

		队列			
			b		

●广度优先查找BFS

		队列		

●广度优先查找BFS

		队列		
g				

count = 8

			队列		
g	h				

count = 9

			队列		
g	h	j			

• 广度优先查找BFS

count = 9

队列								
h	j							

• 广度优先查找BFS

count = 10

队列									
h	j	i							

●广度优先查找BFS

			队列		
	j	i			

count = 10

			队列		
	j	i			

• 广度优先查找BFS

count = 10

			队列		
		i			

• 广度优先查找BFS

count = 10

			队列				
0555555555							

- 广度优先查找BFS
 - •广度优先查找的效率: 和深度优先查找一样,消耗的时间和用来表示图的数据结构的规模是成正比的。因此,对于邻接矩阵表示法,该遍历的时间效率属于Θ(|V|²); 而对于邻接链表表示法,它属于Θ(|V|+|E|),其中|V|和|E|分别是图的顶点和边的数量。

- 广度优先查找BFS
 - 广度优先查找的效率:
 - 不同的是:广度优先查找只产生顶点的一种排序。因为队列是FIFO(先进先出)的结构,所以顶点入队的次序和他们出队的次序是相同的。
 - 也可以通过广度优先查找验证图的连通性和无环性。

• 主要性质对比

表 3.1 深度优先查找(DFS)和广度优先查找(BFS)的主要性质

项 目	DFS	BFS
数据结构	栈	队列
顶点顺序的种类	两种顺序	一种顺序
边的类型(无向图)	树向边和回边	树向边和交叉边
应用	连通性、无环性、关节点	连通性、无环性、最少边路径
邻接矩阵的效率	$\Theta(V ^2)$	$\Theta(V ^2)$
邻接链表的效率	$\Theta(V + E)$	$\Theta(V + E)$

蛮力法总结

- 蛮力法是一种简单直接解决问题的方法。
- 具有广泛的适用性和简单性,但效率低下。
- 著名的蛮力法算法包括:
 - 基于定义的矩阵乘法
 - 选择排序
 - 顺序查找
 - 简单的字符串匹配
- 穷举查找是解组合问题的蛮力法。
- 旅行商问题,背包问题和分配问题是典型的能够用穷举查找求解的问题。