Sheet 1: Semiconductor Basics

- 1- Show that the resistivity of the intrinsic germanium at 300°K is 45 Ω .cm, and also find the resistivity of intrinsic silicon at 300°K.
- 2- Sample of silicon is 5 cm long and has square cross section 3x3 mm the current is due to electrons whose mobility is 1400 cm² /V.s. Two volts applied across the bar results in a current of 8mA. Calculate:
- (a) Concentration of free electrons (n).
- (b) Drift velocity (v_d) .
- 3- (a) Determine the concentration of free electrons (n) and holes (p) in a sample of germanium at 300° K which has a concentration of donor atoms (N_D) equal to $3x10^{14}$ atoms/cm³ and a concentration of acceptor atoms (N_A) equal to $4x10^{14}$ atoms/cm³. Is this p- or n-type germanium?
- (b) Repeat part (a) for equal donor and acceptor concentration of 10^{16} atoms/cm³. Is this p- or n-type germanium?
- (c) Repeat part (a) for donor concentration of 10^{17} atoms/cm³ and acceptor concentration of 10^{14} atoms/cm³
- 4- Sample of germanium is doped to the extent of $4x10^{14}$ donor atoms/cm³ and $5x10^{14}$ acceptor atoms/cm³. At the temperature of the sample the resistivity of pure (intrinsic) germanium is $60~\Omega$ -cm. Assume that the value of the mobility of holes and electrons is approximately the same as at 300° K (μ_p =1800 cm²/V.s and μ_n =3800 cm²/V.s). If the applied electric field intensity is 4 V/cm, find the total current density (J).