UNIVERSITY OF TORONTO ENGINEERING SCIENCE

2018 FINAL EXAM

MAT185

Duration - 2.5 hours

No Aids Allowed

Name:	Student Number:
DO NOT OPEN THIS BOOKLE	T UNTIL YOU ARE TOLD TO DO SO

Instructions:

- Put your name, student number and tutorial section on this page. Write clearly.
- You may ask us questions, but we cannot answer math questions or questions like "have I shown enough work?"
- There will be partial credit awarded for some questions, so show your work.
- If you need extra room to write a solution, use the back of the pages of the exam. Make sure you write "CONTINUED ON BACK" so that the grader knows where to look.
- Please try to write neatly and to express your ideas clearly. We cannot give points for solutions that we cannot read or understand.
- You may leave early. Put your completed exam on the front table and enjoy your day.

Grades:

Question 1:	(out of 16)
Question 2:	(out of 12)
Question 3:	(out of 10)
Question 4:	(out of 18)
Question 5:	(out of 16)
Question 6:	(out of 12)
Question 7:	(out of 16)
Total:	(out of 100)

Determine whether the following claims are true or false and mark the appropriate box – you do not need to explain your answer. (2 points each)

(a)	If <i>U</i> and <i>W</i> are two subsalso a vector space.	spaces of a given vector space	v , then the intersection $U \cap W$ is
		True	False
(b)	If $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ is diagonalization	able with $\lambda_i = 0$ for $i = 1, \ldots,$	n, then A is the zero matrix.
		True	False
(c)	The set of continuous fur operations on functions,		at $f(0,1) = 2$, together with usual
		True	False
(d)	All the eigenvectors and	eigenvalues of a real matrix a	re real.
		True	False
(e)	Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ such that \mathbf{A}	\mathbf{A}^2 is the zero matrix. Then \mathbf{A}	can have non-zero eigenvalues.
		True	False
(f)	For any matrix $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$	and $\mu \in \mathbb{R}$, we have $\det_{\tau}(\mu \mathbf{A})$	$)=\mu\det_{n}(\mathbf{A}).$
		True	False
(g)	The mapping $T(f(x)) =$	$e^x f(x)$ is a linear transformation	tion.
		True	False
(h)	It is possible to find a $2i^2 = -1$.	2×2 real matrix with eigenv	values equal to 2 and $i\in\mathbb{C},$ where
		True	False

(a) Which triangular matrices $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ are invertible? Justify your answer. (4 points)

Recall that the set of integers is the set

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\},\$$

and that ${}^{n}\mathbb{Z}^{n}$ denotes the set of $n \times n$ matrices all of whose entries are integers. For questions (b-c) below, you may use the fact (without proving it) that if all entries of a matrix are integers, then the determinant of that matrix is also an integer.

(b) Which matrices from ${}^{n}\mathbb{Z}^{n}$ have an inverse in ${}^{n}\mathbb{Z}^{n}$? Justify your answer. (4 points)

(c) Let $\mathbf{A} \in {}^{n}\mathbb{Z}^{n}$ such that $\det_{n}(\mathbf{A}) = 1$. Show that for any $\mathbf{b} \in {}^{n}\mathbb{Z}$, the solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ also belongs to ${}^{n}\mathbb{Z}$. (4 points)

Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$. Consider the set $U = \left\{\mathbf{x} \in {}^{n}\mathbb{R} \text{ such that } \mathbf{A}\mathbf{x} = \mathbf{A}^{T}\mathbf{x}\right\}$.

(a) Show that U is a vector space. (4 points)

(b) Consider the matrix

$$\mathbf{A} = \left(\begin{array}{ccccc} 5 & 4 & 3 & 2 & 1 \\ 4 & 5 & 6 & 7 & 3 \\ 4 & 6 & 8 & 2 & 7 \\ 2 & 7 & 3 & 4 & 2 \\ 1 & 3 & 7 & 2 & 5 \end{array}\right).$$

Find a basis for U. (6 points)

Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 1001 & 2 & 3 & 4 & 5 \\ 1 & 1002 & 3 & 4 & 5 \\ 1 & 2 & 1003 & 4 & 5 \\ 1 & 2 & 3 & 1004 & 5 \\ 1 & 2 & 3 & 4 & 1005 \end{pmatrix}.$$

(a) Let $\mathbf{B} = \mathbf{A} - 1000 \, \mathbf{I}$, where \mathbf{I} is the 5×5 identity matrix. Show that $\lambda_1 = 0$ is an eigenvalue of \mathbf{B} . (4 points)

(b) Determine the geometric multiplicity of λ_1 and find a basis of the corresponding eigenspace of **B**. (4 points)

(c) Show that $\lambda_2 = 15$ is also an eigenvalue for B, and give an eigenvector associated to λ_2 . (3 points)

Question 4, (continued)

(d) Show that the algebraic multiplicity of λ_2 is equal to 1 (Hint: use the geometric multiplicity of λ_1 obtained in part (b)). Is **B** diagonalizable? (4 points)

(e) Deduce the eigenvalues and eigenvectors of A. (3 points)

Consider the space \mathbb{P}_2 of polynomials of degree at most 2.

(a) Show that the set v given by $\{v_1 = 1, v_2 = 1 + x, v_3 = 1 + x^2\}$ forms a basis of \mathbb{P}_2 . (6 points)

(b) Let $T: \mathbb{P}_2 \to \mathbb{P}_2$ be a linear transformation whose matrix (in the basis of the previous question) is

$$[T]_v^v = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

What is the polynomial $T(x^2)$? (6 points)

(c) Compute $[T]_w^w$ where $w = \{w_1 = 1, w_2 = x, w_3 = x^2\}$. (4 points)

(a) Let **A** be a
$$3 \times 3$$
 matrix with eigenvectors $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ (with eigenvalue $\lambda_1 = 2$) and $v_2 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ (with eigenvalue $\lambda_2 = -1$). Compute **A** $\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$. (6 points)

(b) Let
$$\mathbf{B} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
, and let $v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Compute $\mathbf{B}^{1000}v$. (6 points)

Let **A** and **B** be $n \times n$ matrices, such that AB = BA.

(a) Show that if x is an eigenvector of A, then Bx is also an eigenvector of A, with the same eigenvalue. (6 points)

(b) Suppose ${}^{n}\mathbb{R}$ has a basis $\{v_1,\ldots,v_n\}$ of eigenvectors of \mathbf{A} , with **distinct** eigenvalues $\lambda_1,\ldots,\lambda_n$. Show that each v_i is also an eigenvector for \mathbf{B} . (6 points)

(c) Show that given the assumptions of the previous question, B is also diagonalizable. points)
You're done with MAT 185! To protect the exam,