LECTURE 7 FUNCTIONS AND LINEAR MAPPINGS IN \mathbb{R}^n

1. Functions in Euclidean spaces

1.1. Functions.

Let us first recall the definition and some properties of functions, as introduced in Lecture 1.

DEFINITION. Let *A* and *B* be sets. We say that a relation $f \subseteq A \times B$ is a *function from A to B* and we denote $f : A \to B$ if:

- (i) Dom f = A;
- (ii) $(x, y) \in f$, $(x, z) \in f \Rightarrow y = z$, $\forall x \in A$, $\forall y, z \in B$.

As we are already used to, for $x \in A$ we denote by f(x) the unique element y such that $(x, y) \in f$.

Sometimes, the domain of *A* is not known *a priori*, so we will simply say that *f* is a *function* if there exist two sets, D(f) and *B* such that $f:D(f) \to B$. Of course, we will have D(f) = Dom f.

Proposition 1.1.

i) If $f: A \to B$ and $g: B \to C$ are functions, then $g \circ f$ is a function, $g \circ f: A \to C$ and

$$(g \circ f)(x) = g(f(x)), \ \forall x \in A.$$

ii) If $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$ are functions, then

$$(h \circ g) \circ f = h \circ (g \circ f).$$

DEFINITION. If $f: A \rightarrow B$ is a function and $E \subseteq A$, $F \subseteq B$, we denote:

- a) $f|_E := \{(x, f(x)) \mid x \in E\}$, the *restriction* of f to the subset E;
- b) $f[E] := \{f(x) \mid x \in E\}$, the image of f through the subset E;
- c) Im f := f[A], the image of f;
- d) $f^{-1}[F] := \{x \in A \mid f(x) \in F\}$, the the preimage or the inverse image of f through the subset F.

Of course, Dom $f|_E = E$ and $f|_E(x) = f(x)$, $\forall x \in E$. Also, $f^{-1}[B] = \text{Dom } f = A$ and $f[\emptyset] = f^{-1}[\emptyset] = \emptyset$.

DEFINITION. A function $f : A \rightarrow B$ is called:

a) injective or one-to-one if for any $x, y \in A$,

$$f(x) = f(y) \Rightarrow x = y;$$

b) surjective or onto if Im f = B, i.e.

$$\forall y \in B, \exists x \in A : f(x) = y;$$

- c) bijective if it is both injective and surjective;
- *d*) *invertible* if there exists $q: B \to A$ such that $f \circ q = 1_B$ and $q \circ f = 1_A$.

Proposition 1.2. A function $f: A \to B$ is bijective if and only if it is invertible. In this case, f^{-1} is a bijective function from B to A and

$$f \circ f^{-1} = 1_B$$
, $f^{-1} \circ f = 1_A$.

1.2. Functions between Euclidean spaces.

We will often consider functions between Euclidean spaces, *i.e.* functions of the type $f: D(f) \subseteq \mathbb{R}^n \to \mathbb{R}^m$, where $m, n \in \mathbb{N}^*$, called *vector valued* (or \mathbb{R}^m -valued) functions of n (real) variables. In the case m = 1, we will simply call the function f a real (or real-valued) function of n (real) variables.

In the case m > 1, for every $\mathbf{x} = (x_1, \dots, x_n) \in D(f)$, $f(\mathbf{x}) = f(x_1, \dots, x_n)$ has m components, that we will usually denote $f_1(\mathbf{x}) = f_1(x_1, \dots, x_n)$, $f_2(\mathbf{x}) = f_2(x_1, \dots, x_n)$, ..., $f_m(\mathbf{x}) = f_m(x_1, \dots, x_n)$. Hence, we have defined m real functions of n variables, $f_j : D(f) \to \mathbb{R}$, $1 \le j \le m$, such that

$$f(x_1, \dots, x_n) = (f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n)), \ \forall (x_1, \dots, x_n) \in D(f).$$

1

Conversely, if $f_j : D(f_j) \to \mathbb{R}$, $1 \le j \le m$ are m real functions of n variables, then we can define an \mathbb{R}^m -valued function of *n* variables by the formula (1), where this time $D(f) := D(f_1) \cap \cdots \cap D(f_m)$.

Let us now give some examples of the most used real functions $f: D(f) \subseteq \mathbb{R} \to \mathbb{R}$.

- 1. basic elementary functions:
 - the constant function: the function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = c, \forall x \in \mathbb{R}$, where $c \in \mathbb{R}$. This function is simply noted c (but attention to distinguish it from the number c);
 - the *identity* function $1_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$ (recall that $1_{\mathbb{R}}(x) = x, \forall x \in \mathbb{R}$);
 - the *exponential* function with *basis* a > 0: the function $f : \mathbb{R} \to \mathbb{R}$, $f(x) := a^x$, $\forall x \in \mathbb{R}$;
 - the logarithmic function with basis a > 0, $a \ne 1$: $\log_a : (0, +\infty) \to \mathbb{R}$ is the inverse of the exponential function with basis a > 0;
 - the power function with exponent $a \in \mathbb{R}$: $f : D(f) \subseteq \mathbb{R} \to \mathbb{R}$, with $f(x) := x^a$, $\forall x \in \mathbb{R}$;
 - the (*direct*) *trigonometric* functions: cos, sin, tg, ctg;
 - the *inverse trigonometric* functions: arccos, arcsin, arctg, arcctg.
- 2. Elementary functions: Any function which can be obtained by applying all or some of the four basic operations on basic elementary functions: addition, multiplication, subtraction and division.
- 3. Special functions:
 - *floor* function: $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := |x| = \sup \{n \in \mathbb{Z} \mid n \le x\}$;
 - *ceiling* function: $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := [x] = \inf \{ n \in \mathbb{Z} \mid n \ge x \};$
 - *sawtooth* function: $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := \{x\} = x \lfloor x \rfloor$;
 - sign function: $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := sgn x = \begin{cases} -1, & x < 0; \\ 0, & x = 0; \\ 1, & x > 0; \end{cases}$
 - absolute value function: $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := |x| = \begin{cases} x, & x \ge 0; \\ -x, & x < 0; \end{cases}$
 - positive part function: $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := x^+ = \begin{cases} x, & x \ge 0; \\ 0, & x < 0; \end{cases}$
 - negative part function: $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := x^- = \begin{cases} 0, & x \ge 0; \\ -x, & x < 0; \end{cases}$
 - *Heaviside* function: $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) := \begin{cases} 1, & x \ge 0; \\ 0, & x < 0; \end{cases}$

 - Dirichlet function: $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) := \begin{cases} 1, & x \in \mathbb{Q}; \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}; \end{cases}$ Riemann function: $f: [0,1] \to \mathbb{R}$ defined by $f(x) := \begin{cases} 0, & x = 0 \text{ or } x \in (0,1) \setminus \mathbb{Q}; \\ \frac{1}{q}, & x = \frac{p}{q} \text{ with } p \in \mathbb{N}, q \in \mathbb{N}^*, (p,q) = 1. \end{cases}$

Let us now give some examples of real functions of several variables. Examples.

1. $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, defined by

$$f(x_1,x_2) := -\sqrt{\sin(x_1^2 + x_2^2)}, (x_1,x_2) \in A,$$

where

$$A := \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid \sin(x_1^2 + x_2^2) \ge 0 \right\} = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid \exists k \in \mathbb{N} : 2k\pi \le x_1^2 + x_2^2 \le (2k+1)\pi \right\}.$$

2. $f: A \subseteq \mathbb{R}^3 \to \mathbb{R}$, defined by

$$f(x_1, x_2, x_3) := \ln(1 - x_1 - x_2 - x_3) - (x_1 + x_3)^{x_2}, (x_1, x_2, x_3) \in A,$$

where

$$A := \left\{ \left(x_1, x_2, x_3 \right) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 < 1, \ x_1 + x_3 > 0 \right\}.$$

3. The polynomial function $P: \mathbb{R}^n \to \mathbb{R}$ defined by

$$P(x_1, x_2, \dots, x_n) := \sum_{i_1, i_2, \dots, i_n = 0}^{k_1, k_2, \dots, k_n} a_{i_1, i_2, \dots, i_n} x_1^{i_1} \cdot x_2^{i_2} \cdot \dots \cdot x_n^{i_n}, \ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$
 (2)

The real numbers $a_{i_1,i_2,...,i_n}$ are called the *coefficients* of the polynomial P. Every term $a_{i_1,i_2,...,i_n}x_1^{i_1} \cdot x_2^{i_2} \cdot \cdots \cdot x_n^{i_n}$ where $a_{i_1,i_2,...,i_n} \neq 0$ is called a *monomial* (of P); the *degree* of this monomial is $i_1 + i_2 + \cdots + i_n$. We call the *degree* of the polynomial P the largest degree among all its monomials.

We say that the polynomial *P* is *homogeneous* if all its monomials have the same degree. An example of homogeneous polynomial is the following polynomial of degree 1:

$$P(x_1, x_2, ..., x_n) := a_1x_1 + a_2x_2 + ... + a_nx_n, (x_1, x_2, ..., x_n) \in \mathbb{R}^n.$$

A polynomial *P* of form (2) is called *symmetric polynomial* if for every *permutation* (i.e., bijective function) $\sigma : \{1, ..., n\} \rightarrow \{1, ..., n\}$, we have

$$\sum_{i_1,i_2,\ldots,i_n=0}^{k_1,k_2,\ldots,k_n} a_{i_1,i_2,\ldots,i_n} x_1^{i_1} \cdot x_2^{i_2} \cdot \cdots \cdot x_n^{i_n} = \sum_{i_1,i_2,\ldots,i_n=0}^{k_1,k_2,\ldots,k_n} a_{i_1,i_2,\ldots,i_n} x_{\sigma(1)}^{i_1} \cdot x_{\sigma(2)}^{i_2} \cdot \cdots \cdot x_{\sigma(n)}^{i_n}.$$

For instance, $P(x_1, x_2) := ax_1^2 + bx_1x_2 + cx_2^2$, $(x_1, x_2) \in \mathbb{R}^2$ is a symmetric polynomial if and only if a = c.

2. Linear maps

DEFINITION. Let $(V, +, \cdot)$ and $(W, +, \cdot)$ two linear spaces. A function $T: V \to W$ is called *linear* if:

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in V (additivity);$
- (ii) $T(\alpha \cdot \mathbf{u}) = \alpha \cdot T(\mathbf{u}), \ \forall \alpha \in \mathbb{R}, \ \forall \mathbf{u} \in V \ (homogeneity).$

We use also the name *linear operator* or *linear map/mapping* for linear functions.

Example. All homogeneous polynomials of degree 1 are linear mappings.

Proposition 2.1. Let $(V, +, \cdot)$ and $(W, +, \cdot)$ two linear spaces. The function $T: V \to W$ is a linear operator if and only if

$$T(\alpha \cdot \mathbf{u} + \beta \cdot \mathbf{v}) = \alpha \cdot T(\mathbf{u}) + \beta \cdot T(\mathbf{v}), \ \forall \alpha, \beta \in \mathbb{R}, \ \forall \mathbf{u}, \mathbf{v} \in V.$$

Remarks.

- 1. When the linear map $T: V \to W$ is bijective, T is called a *linear isomorphism* between V and W. It is easy to prove that $T^{-1}: W \to V$ is also a linear isomorphism. We say that two linear spaces V and W are *isomorphic* if there is at least a linear isomorphism between the two spaces.
- 2. If V = W, a linear map $T : V \to V$ is also called *linear endomorphism*. The identity function 1_V is clearly a linear endomorphism on V.
- 3. Let $T: V \to W$ be a linear map. If $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $\mathbf{u}_1, \ldots, \mathbf{u}_n \in V$, then

$$T(\alpha_1 \cdot \mathbf{u}_1 + \dots + \alpha_n \cdot \mathbf{u}_n) = \alpha_1 \cdot T(\mathbf{u}_1) + \dots + \alpha_n \cdot T(\mathbf{u}_n).$$

Of course, $T(\mathbf{0}) = \mathbf{0}$ (sometimes, if we want to distinguish between the neutral elements in V and W, we denote them $\mathbf{0}_V$ and $\mathbf{0}_W$, respectively; the previous relation is then written $T(\mathbf{0}_V) = \mathbf{0}_W$).

- 4. If V and W are linear spaces, we denote L(V;W) the set of all linear maps between V and W. It is clear that (see Lecture 5) L(V;W) is still a linear space (when endowed with the natural the addition and multiplication with scalars of functions). If V = W we simply denote L(V) instead L(V;V).
- 5. Let U, V and W be linear spaces. If $T: V \to W$ and $S: U \to V$ are linear operators, then $T \circ S$ is still a linear operator between V and W. Therefore, the composition \circ introduces a new internal operation on L(V), which is associative and has 1_V as neutral element.

Definition. Let $(V, +, \cdot)$ and $(W, +, \cdot)$ two linear spaces and $T: V \to W$ a linear operator.

a) The set

$$\ker T := \{ \mathbf{u} \in V \mid T(\mathbf{u}) = \mathbf{0}_W \} = T^{-1} [\{ \mathbf{0}_W \}].$$

is called the *kernel* or the *null space* of the operator *T*.

b) The set $\operatorname{Im} T$ is sometimes called the *range* of T.

Proposition 2.2. Let $(V, +, \cdot)$ and $(W, +, \cdot)$ two linear spaces and $T: V \to W$ a linear operator.

- i) ker T is a linear subspace of V and Im T is a linear subspace of W.
- *ii*) T is injective if and only if ker $T = \{\mathbf{0}_V\}$.

The next result is one of the fundamental results of linear algebra. We state it here only for finite-dimensional linear spaces.

Theorem 2.3 (the dimension theorem). Let $(V, +, \cdot)$ be a finite-dimensional linear space, $(W, +, \cdot)$ a linear space and $T: V \to W$ a linear operator. Then Im T is a finite-dimensional subspace of W and

$$\dim(\ker T) + \dim(\operatorname{Im} T) = \dim V.$$

The above relation is called the *dimension formula*.

Let $T: V \to W$ be a linear operator between linear spaces. If $\ker T$ is finite-dimensional, the number $\dim(\ker T)$ is called the *nullity* of T and is denoted by $\operatorname{null} T$. If $\operatorname{Im} T$ is finite-dimensional, then $\dim(\operatorname{Im} T)$ is called the *rank* of T and is denoted by $\operatorname{rank} T$. The dimension formula becomes

$$\operatorname{null} T + \operatorname{rank} T = \dim V.$$

The next series of results give characterization for the injectivity, surjectivity and bijectivity of linear mappings.

Proposition 2.4. Let $(V, +, \cdot)$ be a finite-dimensional linear space, $(W, +, \cdot)$ a linear space and $T: V \to W$ a linear operator. The following statements are equivalent:

- (i) T is injective;
- (ii) rank $T = \dim V$;
- (iii) $\operatorname{null} T = 0$;
- (iv) for any linearly independent vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ in V, the vectors $T(\mathbf{u}_1), \dots, T(\mathbf{u}_n)$ are linearly independent.

Proposition 2.5. Let $(V, +, \cdot)$ be linear space, $(W, +, \cdot)$ a finite-dimensional linear space and $T: V \to W$ a linear operator. The following statements are equivalent:

- (i) *T* is surjective;
- (ii) rank $T = \dim W$;
- (iii) for any vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ which generate V, the vectors $T(\mathbf{u}_1), \dots, T(\mathbf{u}_n)$ generate W.

Proposition 2.6. Let $(V, +, \cdot)$ and $(W, +, \cdot)$ be two finite-dimensional linear spaces and $T: V \to W$ a linear operator. The following statements are equivalent:

- (i) T is bijective;
- (ii) $\operatorname{rank} T = \dim V = \dim W$;
- (iii) for any basis $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ of V, the set $T[B] = \{T(\mathbf{b}_1), \dots, T(\mathbf{b}_n)\}$ is a basis of W.

2.1. Matrices associated with linear operators.

Let $(V, +, \cdot)$, $(W, +, \cdot)$ be two finite-dimensional linear spaces with dim V = n and dim W = m. Let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis of V and $\bar{B} = \{\bar{\mathbf{b}}_1, \dots, \bar{\mathbf{b}}_m\}$ be a basis of W.

- **1**. Suppose that $T: V \to W$ is a linear operator.
 - a) For every $k \in \{1, ..., n\}$ we can write

$$T(\mathbf{b}_k) = a_{1k}\bar{\mathbf{b}}_1 + \dots + a_{mk}\bar{\mathbf{b}}_m,$$

i.e. $a_{1k}, \ldots, a_{mk} \in \mathbb{R}$ are the coordinates of $T(\mathbf{b}_k)$ with respect to the basis \bar{B} . Then the matrix

$$A_{B,\bar{B}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathcal{M}_{mn}$$

is called the *matrix associated* to the operator T with respect to the bases B, \bar{B} .

b) If $\mathbf{v} \in V$, let $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ be the coordinates of \mathbf{v} with respect to B. Then

$$T(\mathbf{v}) = T(\alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n) = \alpha_1 T(\mathbf{b}_1) + \dots + \alpha_n T(\mathbf{b}_n)$$

$$= \alpha_1 (a_{11} \bar{\mathbf{b}}_1 + \dots + a_{m1} \bar{\mathbf{b}}_m) + \dots + \alpha_n (a_{1n} \bar{\mathbf{b}}_1 + \dots + a_{mn} \bar{\mathbf{b}}_m)$$

$$= (\alpha_1 a_{11} + \dots + \alpha_n a_{1n}) \bar{\mathbf{b}}_1 + \dots + (\alpha_1 a_{m1} + \dots + \alpha_n a_{mn}) \bar{\mathbf{b}}_m.$$

This means that if a vector $\mathbf{v} \in V$ has $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ as coordinates and $T(\mathbf{v}) \in W$ has $\beta_1, \dots, \beta_m \in \mathbb{R}$ as coordinates, then

$$X_{\bar{R}} = A_{R\bar{R}} \cdot X_{B}$$

where $X_B := [\alpha_1, \dots, \alpha_n]^T \in \mathcal{M}_{n1}$ and $X_{\bar{B}} := [\beta_1, \dots, \beta_m]^T \in \mathcal{M}_{m1}$.

c) Let $r \in \{1, ..., \min\{m, n\}\}$ be the the *rank* of the matrix $A_{B,\bar{B}}$. Since r is the maximal number of independent vectors among $T(\mathbf{b}_1), ..., T(\mathbf{b}_n)$ (for that, see Theorem 2.2 in Lecture 5), let's say $T(\mathbf{b}_{k_1}), ..., T(\mathbf{b}_{k_r})$, it clearly follows that $\dim(\operatorname{Im} T) \geq r$. On the other hand, supposing that $\dim(\operatorname{Im} T) > r$, one can find $\mathbf{v} \in V$ such that $T(\mathbf{b}_{k_1}), ..., T(\mathbf{b}_{k_r})$ and $T(\mathbf{v})$ are linear independent (Propostion 2.4 in Lecture 5). But $T(\mathbf{v})$ is a linear combination of $T(\mathbf{b}_1), ..., T(\mathbf{b}_n)$. Since

for every $k \notin \{\mathbf{b}_{k_1}, \dots, \mathbf{b}_{k_r}\}$, $T(\mathbf{b}_k)$ is a linear combination of $T(\mathbf{b}_{k_1}), \dots, T(\mathbf{b}_{k_r})$, it follows that $T(\mathbf{v})$ is a linear combination of $T(\mathbf{b}_{k_1}), \dots, T(\mathbf{b}_{k_r})$, which contradicts the linear independency of $T(\mathbf{b}_{k_1}), \dots, T(\mathbf{b}_{k_r})$ and $T(\mathbf{v})$. Therefore, $\dim(\operatorname{Im} T) = r$, *i.e.*

$$\operatorname{rank} A_{B,\bar{B}} = \operatorname{rank} T.$$

d) Let us see how the matrix associated with the operator T behaves to a change of bases. Let $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ be another basis of V and $\bar{B}' = \{\bar{\mathbf{b}}'_1, \dots, \bar{\mathbf{b}}'_m\}$ be another basis of W.

Let us denote $S = (s_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n$ the transition matrix from B to B' and $\bar{S} = (\bar{s}_{ij})_{1 \le i,j \le m} \in \mathcal{M}_m$ the transition matrix from \bar{B} to \bar{B}' .

This means that

$$\mathbf{b}'_{k} = s_{1k}\mathbf{b}_{1} + \dots + s_{nk}\mathbf{b}_{n}, \ \forall k \in \{1, \dots, n\};$$

 $\bar{\mathbf{b}}'_{i} = \bar{s}_{1i}\bar{\mathbf{b}}_{1} + \dots + \bar{s}_{mi}\bar{\mathbf{b}}_{m}, \ \forall i \in \{1, \dots, m\}.$

Let $A_{B',\bar{B}'} := (a'_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in \mathcal{M}_{mn}$ be the matrix associated to the operator T with respect to the bases B',\bar{B}' . Then, for $1 \le k \le n$.

$$T(\mathbf{b}'_{k}) = a'_{1k}\bar{\mathbf{b}}'_{1} + \dots + a'_{mk}\bar{\mathbf{b}}'_{m}$$

$$= a'_{1k}(\bar{s}_{11}\bar{\mathbf{b}}_{1} + \dots + \bar{s}_{m1}\bar{\mathbf{b}}_{m}) + \dots + a'_{mk}(\bar{s}_{1m}\bar{\mathbf{b}}_{1} + \dots + \bar{s}_{mm}\bar{\mathbf{b}}_{m})$$

$$= (a'_{1k}\bar{s}_{11} + \dots + a'_{mk}\bar{s}_{1m})\bar{\mathbf{b}}_{1} + \dots + (a'_{1k}\bar{s}_{m1} + \dots + a'_{mk}\bar{s}_{mm})\bar{\mathbf{b}}_{m}.$$

On the other hand,

$$T(\mathbf{b}'_{k}) = (s_{1k}a_{11} + \dots + s_{nk}a_{1n})\bar{\mathbf{b}}_{1} + \dots + (s_{1k}a_{m1} + \dots + s_{nk}a_{mn})\bar{\mathbf{b}}_{m}.$$

Identifying the coordinates with respect to \bar{B} we get

$$a'_{1k}\bar{s}_{j1} + \dots + a'_{mk}\bar{s}_{jm} = s_{1j}a_{j1} + \dots + s_{nk}a_{jn}, \ \forall k \in \{1,\dots,n\}, \ \forall j \in \{1,\dots,m\},$$

i.e.

$$\bar{S} \cdot A_{B'|\bar{B}'} = A_{B|\bar{B}} \cdot S,$$

so we finally get

$$A_{B',\bar{B}'}=\bar{S}^{-1}\cdot A_{B,\bar{B}}\cdot S.$$

- e) Suppose now that $(W', +, \cdot)$ is another finite-dimensional linear space with dim W' = m and $T' : W \to W'$ is a linear operator.
 - If $\bar{B}' = \{\bar{\mathbf{b}}'_1, \dots, \bar{\mathbf{b}}'_m\}$ is a basis of W' and $A_{\bar{B}, \bar{B}'} \in \mathcal{M}_{mm'}$ is the matrix associated to T' with respect to \bar{B} and \bar{B}' , then one can show in a similar way that $T' \circ T : V \to W'$ has $A_{\bar{B}, \bar{B}'} \cdot A_{B, \bar{B}}$ as associated matrix with respect to B and \bar{B}' .
 - A simple consequence is that T ∈ L(V) is bijective if and only if its associated matrix (with respect to any basis
 of V) is invertible.
- 2. Conversely, if $A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ is a matrix in \mathcal{M}_{mn} , then one can define a function $T: V \to W$ by the following formula

$$T(\mathbf{v}) := (\alpha_1 a_{11} + \dots + \alpha_n a_{1n}) \bar{\mathbf{b}}_1 + \dots + (\alpha_1 a_{m1} + \dots + \alpha_n a_{mn}) \bar{\mathbf{b}}_m,$$

where $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ are the coordinates of **v** with respect to the basis *B*.

It is easy to prove that T is a linear mapping, called the *linear operator associated* to A with respect to the bases B, \bar{B} . The matrix associated to T with respect to the bases B, \bar{B} is precisely A.

- 3. Suppose now that $V = \mathbb{R}^n$, $W = \mathbb{R}^m$ and B, \bar{B} are the canonical bases in \mathbb{R}^n , respectively \mathbb{R}^m .
 - Then

$$T(\mathbf{v}) = A_{B,\bar{B}} \cdot \mathbf{v}, \ \forall \mathbf{v} \in \mathbb{R}^n.$$

where we have identified vectors in \mathbb{R}^n with column-matrices in \mathcal{M}_{n1} and vectors in \mathbb{R}^m with column-matrices in \mathcal{M}_{m1} .

• If we identify vectors in Euclidean spaces with column-matrices, then we can rewrite the above formula as

$$T(\mathbf{v}) = A_{B,\bar{B}} \cdot \mathbf{v}, \ \forall \mathbf{v} \in \mathbb{R}^n.$$

By the considerations from above, giving a linear operator T between \mathbb{R}^n and \mathbb{R}^m is the same to giving a matrix $A \in \mathcal{M}_{mn}$; they are linked by the formula

$$T(\mathbf{v}) = A \cdot \mathbf{v}, \ \forall \mathbf{v} \in \mathbb{R}^n$$

(with the convention that vectors in Euclidean spaces are column-matrices).

2.2. Adjoint operators.

DEFINITION. Let $(V, \langle \cdot, \cdot \rangle_V)$, $(W, \langle \cdot, \cdot \rangle_W)$ be two prehilbertian spaces and $T: V \to W$ a linear operator

a) An operator $T^*: W \to V$ satisfying

$$\langle T^*(\mathbf{w}), \mathbf{v} \rangle_V = \langle T(\mathbf{v}), \mathbf{w} \rangle_W, \ \forall \mathbf{v} \in V, \ \forall \mathbf{w} \in W$$

is called the *adjoint operator* of *T*.

b) If $(W, \langle \cdot, \cdot \rangle) = (V, \langle \cdot, \cdot \rangle)$, the operator T is called *autoadjoint* or symmetric if $T = T^*$, i.e.

$$\langle T(\mathbf{w}), \mathbf{v} \rangle_V = \langle T(\mathbf{v}), \mathbf{w} \rangle_W, \ \forall \mathbf{v}, \mathbf{w} \in V.$$

c) If $(W, \langle \cdot, \cdot \rangle) = (V, \langle \cdot, \cdot \rangle)$, the operator T is called *antisymmetric* if $T = -T^*$, i.e.

$$\left\langle T(\mathbf{w}), \mathbf{v} \right\rangle_V = -\left\langle T(\mathbf{v}), \mathbf{w} \right\rangle_W, \ \forall \mathbf{v}, \mathbf{w} \in V.$$

1. The adjoint of an operator is unique. Indeed, if T^* and \tilde{T}^* are adjoints of T, then

$$\langle T^*(\mathbf{w}) - \tilde{T}^*(\mathbf{w}), \mathbf{v} \rangle_V = 0, \ \forall \mathbf{v} \in V, \ \forall \mathbf{w} \in W,$$

i.e. $T^*(\mathbf{w}) - \tilde{T}^*(\mathbf{w}) \in V^{\perp}$, for every $\mathbf{w} \in W$. Since $V^{\perp} = \{\mathbf{0}_V\}$, it follows that $\tilde{T}^* = T^*$.

2. If $(V, \langle \cdot, \cdot \rangle_V)$, $(W, \langle \cdot, \cdot \rangle_W)$ are finite-dimensional, then the adjoint of a linear operator $T: V \to W$ always exists. Indeed, by the Gram-Schmidt orthonormalization procedure, there exist orthonormal bases $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\bar{B} = \{\bar{\mathbf{b}}_1, \dots, \bar{\mathbf{b}}_m\}$ in V, respectively W. Let $A_{B,\bar{B}}$ be the matrix associated to the operator T with respect to the bases B and \bar{B} . If $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ and $\beta_1, \dots, \beta_m \in \mathbb{R}$ are the coordinates of two vectors $\mathbf{v} \in V$ and $\mathbf{w} \in W$ with respect to B, respectively B', then we obtain

$$\langle T(\mathbf{v}), \mathbf{w} \rangle_{W}$$

$$= \langle (\alpha_{1}a_{11} + \dots + \alpha_{n}a_{1n})\bar{\mathbf{b}}_{1} + \dots + (\alpha_{1}a_{m1} + \dots + \alpha_{n}a_{mn})\bar{\mathbf{b}}_{m}, \beta_{1}\bar{\mathbf{b}}_{1} + \dots + \beta_{n}\bar{\mathbf{b}}_{n} \rangle_{W}$$

$$= (\alpha_{1}a_{11} + \dots + \alpha_{n}a_{1n})\beta_{1} + \dots + (\alpha_{1}a_{m1} + \dots + \alpha_{n}a_{mn})\beta_{m} = \sum_{k=1}^{n} \sum_{j=1}^{m} \alpha_{k}\beta_{j}a_{jk}.$$

If we define $T^*: W \to V$ as the linear operator associated with $A_{B,\bar{B}}^T \in \mathcal{M}_{mn}$, then we see (by interchanging the roles of V and W) that

$$\langle T^*(\mathbf{w}), \mathbf{v} \rangle_V = \sum_{j=1}^m \sum_{k=1}^n \beta_j \alpha_k a_{jk},$$

hence $\langle T^*(\mathbf{w}), \mathbf{v} \rangle_V = \langle T(\mathbf{v}), \mathbf{w} \rangle_W$. This proves that T^* is the adjoint of T.

Clearly, T is autoadjoint or antisymmetric if and only if the matrix $A_{B,B}$ is symmetric $(A_{B,B}^T = A_{B,B})$, respectively antisymmetric $(A_{B,B}^T = -A_{B,B})$.

DEFINITION.

a) Let (X, d), (Y, d') be metric spaces. We say that a mapping $f: X \to Y$ is an *isometry* (with respect to d and d') if

$$d'(f(x), f(y)) = d(x, y), \ \forall x, y \in X.$$

b) Let $(V, \langle \cdot, \cdot \rangle)$ be a prehilbertian space and $T: V \to V$ a linear endomorphism. We say that T is *orthogonal* if

$$||T(\mathbf{u})|| = ||\mathbf{u}||, \forall \mathbf{u} \in V,$$

where $\|\cdot\|$ is the norm induced by the scalar product $\langle\cdot,\cdot\rangle$.

Remarks.

- 1. It is clear that a linear endomorphism $T \in L(V)$ is an isometry if and only if T is orthogonal.
- 2. Suppose that V is finite-dimensional and $T \in L(V)$ is orthogonal. Let us denote $\tilde{T} := T^* \circ T$. Then

$$\langle \bar{T}(\mathbf{u}), \mathbf{v} \rangle = \langle (T^* \circ T)(\mathbf{u}), \mathbf{v} \rangle = \langle T(\mathbf{u}), T(\mathbf{v}) \rangle, \ \forall \mathbf{u}, \mathbf{v} \in V.$$

Hence

$$\langle \bar{T}(\mathbf{u}), \mathbf{u} \rangle = \|T(\mathbf{u})\|^2 = \|\mathbf{u}\|^2, \ \forall \mathbf{u} \in V$$

and \bar{T} is autoadjoint, *i.e.* $\langle \bar{T}(\mathbf{u}), \mathbf{v} \rangle = \langle \bar{T}(\mathbf{v}), \mathbf{u} \rangle$, $\forall \mathbf{u}, \mathbf{v} \in V$. Consequently,

$$4\left\langle \bar{T}(\mathbf{u}),\mathbf{v}\right\rangle =\left\langle \bar{T}(\mathbf{u}+\mathbf{v}),\mathbf{u}+\mathbf{v}\right\rangle -\left\langle \bar{T}(\mathbf{u}-\mathbf{v}),\mathbf{u}-\mathbf{v}\right\rangle =\left\Vert \mathbf{u}+\mathbf{v}\right\Vert ^{2}-\left\Vert \mathbf{u}-\mathbf{v}\right\Vert ^{2}=4\left\langle \mathbf{u},\mathbf{v}\right\rangle ,\ \forall \mathbf{u},\mathbf{v}\in V.$$

Therefore, $\bar{T}(\mathbf{u}) - \mathbf{u} \in V^{\perp} = \{\mathbf{0}\}$, *i.e.* $\bar{T} = 1_V$. This shows that T^* is the inverse of the linear operator T, so T has to be bijective.

If $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is an orthonormal basis of V, we can show that the matrix $A := A_{B,B}$ associated to V with respect to B is orthonormal, *i.e.*

$$A^{\mathrm{T}}A = AA^{\mathrm{T}} = I_n$$
.

This implies that *A* is invertible, $A^{-1} = A^{T}$ and det $A \in \{-1, 1\}$.

2.3. Eigenvalues and eigenvectors.

DEFINITION. Let $(V, +, \cdot)$ be a linear space and $T \in L(V)$.

- *a*) A vector $\mathbf{v} \in V \setminus \{\mathbf{0}\}$ such that there exists $\lambda \in \mathbb{R}$ satisfying $T(\mathbf{v}) = \lambda \cdot \mathbf{v}$ is called an *eigenvector* of T, while the corresponding scalar λ is called an *eigenvalue* of T.
- *b*) If $\lambda \in \mathbb{R}$ is an eigenvalue of T, the linear subspace $\ker(T \lambda \cdot 1_V)$ is called the *eigenspace* or *characteristic space* associated with λ .

Remarks.

- 1. The eigenspace associated with an eigenvalue $\lambda \in \mathbb{R}$ is the subspace of all eigenvectors corresponding to λ , so it is a subspace larger than $\{0\}$. As a consequence, there are more than one (in fact, much more) eigenvectors corresponding to an eigenvalue (but only one eigenvalue corresponding to an eigenvector).
- 2. The eigenspace V_{λ} associated with an eigenvalue λ is invariant with respect to T, *i.e.* $T[V_{\lambda}] \subseteq V_{\lambda}$. Indeed, if $\mathbf{v} \in V_{\lambda}$, then

$$T(T(\mathbf{v})) = T(\lambda \cdot \mathbf{v}) = \lambda \cdot T(\mathbf{v}),$$

so $T(\mathbf{v}) \in V_{\lambda}$.

3. Of course, if λ_1 and λ_2 are two distinct eigenvalues, then $V_{\lambda_1} \cap V_{\lambda_2} = \{0\}$. Actually, the following result states more.

Proposition 2.7. Let $(V, +, \cdot)$ be a linear space and $T \in L(V)$. If $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ are distinct eigenvalues of T and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are corresponding eigenvectors, then $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

PROOF. We will prove this result by mathematical induction. For n = 1, it is obviously true, because $\mathbf{v}_1 \neq \mathbf{0}$.

Suppose now that it holds for some $n \ge 1$ and let $\lambda_1, \ldots, \lambda_n, \lambda_{n+1} \in \mathbb{R}$ be distinct eigenvalues with $\mathbf{v}_1, \ldots, \mathbf{v}_n, \mathbf{v}_{n+1}$ corresponding eigenvectors. Suppose that

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n + \alpha_{n+1} \mathbf{v}_{n+1} = \mathbf{0},\tag{3}$$

for some $\alpha_1, \ldots, \alpha_n, \alpha_{n+1} \in \mathbb{R}$. Then

$$0 = T(\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n + \alpha_n \mathbf{v}_{n+1}) = \alpha_1 T(\mathbf{v}_1) + \dots + \alpha_n T(\mathbf{v}_n) + \alpha_{n+1} T(\mathbf{v}_{n+1})$$
$$= \alpha_1 \lambda_1 \mathbf{v}_1 + \dots + \alpha_n \lambda_n \mathbf{v}_n + \alpha_{n+1} \lambda_{n+1} \mathbf{v}_{n+1}.$$

By multiplying (3) with $-\lambda_{n+1}$ and adding to the above equality, we get

$$\alpha_1(\lambda_1 - \lambda_{n+1})\mathbf{v}_1 + \cdots + \alpha_n(\lambda_n - \lambda_{n+1})\mathbf{v}_n = \mathbf{0}.$$

Since $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent and $\lambda_{n+1} \neq \lambda_k$, for $1 \leq k \leq n$, $\alpha_1 = \cdots = \alpha_n = 0$. Again from (3) we get $\alpha_{n+1} = 0$.

Suppose now that $(V, +, \cdot)$ is a finite-dimensional linear space and $T \in L(V)$. If $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis of V and $A \in \mathcal{M}_n$ is the matrix associated to T with respect to B, then every eigenvalue $\lambda \in \mathbb{R}$ satisfies the equation

$$\det(A - \lambda I_n) = 0.$$

We recall that the polynomial function $\lambda \mapsto \det(A - \lambda I_n)$ is called the *characteristic polynomial* of A. Since this polynomial is invariant to changes of basis, we will also call it the *characteristic polynomial* of T. Therefore, the eigenvalues of T are the real roots of the characteristic polynomial of T.

- If $\lambda \in \mathbb{R}$ is an eigenvalue of T, the number $\operatorname{null}(T \lambda \operatorname{I}_n) = \dim \ker(T \lambda \cdot \operatorname{I}_V)$ is called the *geometric multiplicity* of λ .
- If $\lambda \in \mathbb{R}$ is a root of a polynomial $P \in \mathbb{R}[X]$, we call *algebraic multiplicity* of λ the greatest $m \in \mathbb{N}^*$ such that $(X \lambda)^m$ is a divisor of P(X).

One can show that the geometric multiplicity of an eigenvalue λ is smaller than the algebraic multiplicity of λ with respect to the characteristic polynomial of T. Therefore, if λ has algebraic multiplicity 1, then the geometric multiplicity of λ has to be 1 (*i.e.* ker($T - \lambda \cdot 1_V$) has dimension 1).

DEFINITION. Let $(V, +, \cdot)$ be a finite-dimensional linear space with dim V = n and $T \in L(V)$. We say that T is diagonalizable if there exists a basis B of V such that the matrix associated to T with respect to B is a diagonal matrix, *i.e.* there exist $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that $A_{B,B} = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

Remark. If an endomorphism T is autoadjoint, then it is diagonalizable.

Theorem 2.8. Let $(V, +, \cdot)$ be a finite-dimensional linear space and $T \in L(V)$. Then T is diagonalizable if and only if the set of all eigenvectors generate V.

PROOF. If $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis of V and the matrix associated to T with respect to B is diag $(\lambda_1, \dots, \lambda_n)$, we have that $T\mathbf{b}_k = \lambda_k \mathbf{b}_k$ for every $k \in \{1, \dots, n\}$. This means that $\mathbf{b}_1, \dots, \mathbf{b}_n$ are eigenvectors and $\lambda_1, \dots, \lambda_n$ are their corresponding eigenvalues. We have of course Lin(B) = V, hence the set of all eigenvectors generate V.

Conversely, if the set of all eigenvectors generate V, we can choose the eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ such that $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for V. Then the matrix associated to T with respect to $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a diagonal matrix with the corresponding eigenvalues as entries.

In the case $V = \mathbb{R}^n$, there is a practical method for determining if a an endomorphism $T : \mathbb{R}^n \to \mathbb{R}^n$ is diagonalizable.

1) We consider the canonical basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ of \mathbb{R}^n . With respect to this basis, we find the matrix A associated to T and the characteristic polynomial

$$P_A(\lambda) := \det(A - \lambda I_n), \ \lambda \in \mathbb{R}.$$

- 2) We determine the eigenvalues of T by determinating the real roots of P_A . If all the n roots of P_A are real, we can continue. If not, T is not diagonalizable and we stop here.
- 3) For each eigenvalue λ we calculate $r_{\lambda} := \operatorname{rank}(A \lambda \operatorname{I}_n)$ $(n r_{\lambda})$ is then the geometric multiplicity of λ , by the dimension theorem). If $r_{\lambda} = n m_{\lambda}$, for every eigenvalue λ , where m_{λ} is the algebraic multiplicity of λ in P_A , then we can conclude that T is diagonalizable. Otherwise, it is not and we stop here.
- 4) For each eigenvalue λ we solve the equation $A\mathbf{v} = \lambda \mathbf{v}$, where the vectors $\mathbf{v} \in \mathbb{R}^n$ are considered as colum matrices. Since rank $(A \lambda \mathbf{I}_n) = r_\lambda$ we can find linearly independent eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_{r_\lambda}$ solving the equation. Moreover, by Gram-Schmidt orthonormalization procedure, we can choose $\mathbf{v}_1, \dots, \mathbf{v}_{r_\lambda}$ to be orthonormal.
- 5) The basis B of V for which the matrix associated to T is diagonal is then the set of all $\mathbf{v}_1, \dots, \mathbf{v}_{r_{\lambda}}$, for all eigenvalues λ . The transition matrix S from $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ to B is the matrix which diagonalize A, *i.e.*

$$\operatorname{diag}(\lambda_1,\ldots,\lambda_n)=S^{-1}AS.$$

SELECTIVE BIBLIOGRAPHY

- [1] S. Axler, Linear Algebra Done Right, Springer International Publishing AG, 2015.
- [2] V. Borcea, C. Davideanu, Corina Forăscu, Probleme de Algebră Liniară, Gh. Asachi Publishing House, Iași, 2000.
- [3] E. Cioară, M. Postolache, Capitole de analiză matematică, Ed. "Fair Partners", Buc., 2010.
- [4] D. Drăghici, Algebră, Editura Didactică și Pedagogică, București, 1972.
- [5] G. Galbură, F. Radó, Geometrie, Ed. Didactică și Pedag., București, 1979.
- [6] J. Hefferon, Linear Algebra, Saint Michael's College, 2014.
- [7] S. Heilman, Linear Transformations and Matrices, UCLA Department of Mathematics, Los Angeles, 2016.
- [8] F. Iacob, E. Macovei, Matematică (pentru anul I ID, Informatică), Editura Universității "Al. I. Cuza", 2005-2006.
- [9] I. D. Ion, R. Nicolae, Algebră, Editura Didactică și Pedagogică, București, 1981.
- [10] K. Kuttler, Linear Algebra, Theory And Applications, The Saylor Foundation, 2013.
- [11] I. Radomir, Elemente de algebră vectorială, geometrie și calcul diferențial, Editura Albastră, Cluj-Napoca, 2000.