

lace Recognition under Occlusion and Changing Appearance via Disentangled Representations

Yue Chen¹ Xingyu Chen¹ Yicen Li² ¹Xi'an Jiaotong University ²McMaster University

Motivation

(a) CycleGAN

(c) MUNIT, DRIT

(d) PROCA

PROCA, an unsupervised method to decompose the image representation into three codes:

- a domain-invariant place code used as a descriptor to retrieve images
- a domain-specific appearance code that captures appearance properties
- a domain-invariant occlusion code that encodes occlusion content.

Our Method

We train the PROCA with adversarial objectives to ensure disentangled representations and the cross-cycle consistency objective to learn the mapping between domains with unpaired data. We further disentangle the place and occlusion codes with the geometry consistency and crosscycle geometry consistency objectives.

Results

Query image

Retrieved image

Query image Retrieved image

	Overcast(%)	$\operatorname{Sunny}(\%)$	Low Sun(%)	Cloudy(%)	$\operatorname{Snow}(\%)$
Methods	0.25m / 0.5m / 5m	0.25m / 0.5m / 5m	0.25m / 0.5m / 5m	0.25m / 0.5m / 5m	0.25m / 0.5m / 5m
	2° / 5° / 10°	2° / 5° / 10°	2° / 5° / 10°	2° / 5° / 10°	2° / 5° / 10°
FAB-MAP [28]	0.9 / 2.7 / 17.0	1.0 / 2.5 / 15.2	2.0 / 4.6 / 20.8	1.8 / 4.1 / 20.1	2.2 / 4.8 / 22.4
NetVLAD [19]	10.9 / 27.0 / 82.7	10.5 / 25.9 / 79.2	10.1 / 25.7 / 77.7	13.0 / 30.5 / 82.9	10.2 / 25.3 / 75.5
DenseVLAD [18]	15.1 / 35.2 / 85.2	13.2 / 31.3 / 81.4	15.1 / 36.9 / 86.0	18.4 / 41.8 / 89.0	17.4 / 41.3 / 87.2
DIFL-FCL [23]	15.9 / 36.9 / 83.1	14.1 / 32.7 / 78.7	13.9 / 34.1 / 79.2	16.4 / 37.6 / 84.8	13.6 / 33.4 / 70.1
DISAM [24]	18.0 / 39.6 / 85.3	15.2 / 33.9 / 80.9	15.8 / 37.3 / 82.3	18.6 / 40.5 / 87.6	15.7 / 37.3 / 76.3
PROCA-O	12.9 / 31.5 / 83.1	11.4 / 27.1 / 79.5	11.7 / 29.6 / 81.2	15.5 / 32.9 / 83.4	10.8 / 27.2 / 76.5
PROCA-A	18.4 / 40.5 / 87.6	16.7 / 35.9 / 81.5	17.3 / 40.6 / 84.6	19.7 / 42.4 / 88.3	18.1 / 43.8 / 87.8
PROCA	19.5 / 43.9 / 88.4	17.2 / 38.9 / 82.9	17.6 / 42.1 / 87.7	20.0 / 44.4 / 90.4	18.3 / 44.3 / 89.6

https://www.youtube.com/watch?v=W_tol4aHIQk