Cartesian products as profinite completions

Martin Kassabov Nikolay Nikolov

Abstract

We prove that if a Cartesian product of alternating groups is topologically finitely generated, then it is the profinite completion of a finitely generated residually finite group. The same holds for Cartesian product of other simple groups under some natural restrictions.

1 Introduction

Given a profinite group \mathfrak{G} it is generally a difficult question to determine if there exists a finitely generated residually finite group G such that \mathfrak{G} is isomorphic to the profinite completion \widehat{G} of G. If this is the case, we then say that \mathfrak{G} is a profinite completion.

Of course for this to happen it is necessary that \mathfrak{G} is topologically finitely generated but not much is known beyond that. Dan Segal [8] has proved that any collection of nonabelian finite simple groups can appear as the upper composition factors of such a $\mathfrak{G} \simeq \widehat{G}$. In his examples the group G is a branch group, i.e., a subgroup of the automorphism group of a rooted tree with some nice 'branching' properties.

Not all finitely generated profinite groups are profinite completions. The argument in [9] 6.2 shows that:

Example 1. For each $d \in \mathbb{N}$ and every infinite sequence of primes p_1, p_2, \ldots the 2-generated profinite group $\prod_{i=1}^{\infty} \operatorname{SL}_d(\mathbb{F}_{p_i})$ is not a profinite completion.

On the other hand Laci Pyber [7] has found examples of profinite completions of the form

$$\mathfrak{G} = \widehat{\mathbb{Z}} \times \prod_{n=5}^{\infty} \operatorname{Alt}(n)^{f(n)}$$

where the sequence $\{f(n)\}$ satisfies some mild growth conditions, in particular f(n) can be all 1 or all n!.

It is the nature of these examples that they always have a direct factor $\hat{\mathbb{Z}}$ and one might wonder if this is inevitable. This was disproved by M. Kassabov using ideas from [3] and [4] who found a dense finitely generated subgroup of

 $\prod_{n=5}^{\infty} Alt(n)$ which has property τ and with profinite completion

$$(\widehat{G})^6 \times \prod_{n=5}^{\infty} \operatorname{Alt}(n), \quad G = \operatorname{SL}_3(\mathbb{F}_p[t, t^{-1}]).$$

In this note we show that for a Cartesian product of alternating groups the obvious necessary condition for being a profinite completion is also sufficient, i.e.:

Theorem 2. If a Cartesian product $\mathfrak{G} = \prod_{n=5}^{\infty} \operatorname{Alt}(n)^{f(n)}$ of alternating groups is topologically finitely generated then it is a profinite completion.

We obtain this as a corollary of the following more general result. First, a definition:

Definition 3. For a finite simple group S define l(S) to be the largest integer l such that S contains a copy of Alt(l).

Theorem 4. Let

$$\mathfrak{S} = \prod_{n=1}^{\infty} S_n^{f(n)}$$

be a Cartesian product of an infinite family $\{S_n\}$ of finite simple groups such that $l(S_n) \to \infty$. If \mathfrak{S} is topologically finitely generated then it is a profinite completion.

We say that the family $\{S_n\}$ of simple groups has essentially unbounded rank if $l(S_n) \to \infty$. Note that if S is a classical simple group of rank r(S) then the ratio l(S)/r(S) is bounded. Thus $l(S_n) \to \infty$ is equivalent to the ranks $r(S_n)$ tending to infinity. Example 1 shows that some restriction of this form in Theorem 4 is necessary.

It is easy to see that the product \mathfrak{S} in Theorem 4 is finitely generated iff there is c such that $f(n) < |S_n|^c$ for all $n \in \mathbb{N}$. We shall prove that then \mathfrak{G} has a *frame* subgroup Γ as defined below. Moreover, Γ can be taken to be 22(c+1)-generated.

Remark. Actually our proof shows the following more general result:

Let $d \in \mathbb{N}$. Suppose that $\{T_n\}$ is a family of finite groups. Assume that each T_n is generated by the images of d homomorphisms from the alternating group $\operatorname{Alt}(n)$ to T_n . Then the product $\prod_{n=1}^{\infty} T_n$ is a profinite completion of a finitely generated group.

Suppose that a Cartesian product \mathfrak{G} of alternating groups is topologically generated by d elements. In view of Theorem 2 the following natural question presents itself:

Question 5. Is \mathfrak{G} the completion of a d-generated residually finite group?

This seems unlikely but we don't have a counterexample.

Our interest in Cartesian products as profinite completions was motivated by our search for possible connections between property τ and subgroup growth. In this setting we ask the following natural (and seemingly difficult) question:

Question 6. Is \mathfrak{G} the profinite completion of a finitely generated group which has property τ ?

At least some Cartesian products \mathfrak{G} are, namely those $\mathfrak{G} = \prod_{n=1}^{\infty} \operatorname{Alt}(n)^{f(n)}$ with $f(n) < n^{\log n}$. See [5] to which this note is a companion. However at this time we don't even know whether in general \mathfrak{G} always has a dense finitely generated subgroup with τ .

Our proof is based on the idea of *frame* subgroups of Cartesian products. These are defined in Section 2. Theorem 4 is then reduced in Section 3 to proving the existence of a single frame subgroup (namely Theorem 12). This is the main technical difficulty and it is done in Section 4 using some results of the first author in [3].

Notation

- Alt(n) (resp. Sym(n)) is the alternating (resp. symmetric) group on n letters,
- [a, b] is the set of integers between a < b,
- The elements of a Cartesian product $\prod_{n\in I} S_n$ of groups are denoted by $(a_n)_{n\in I}$ or just by $(a_n)_n$ when there is no possibility of confusion (each $a_n\in S_n$).

2 Frame subgroups

Let $\mathfrak{S} = \prod_{n=1}^{\infty} S_n$ be a Cartesian product of finite groups.

Definition 7. A finitely generated subgroup $G < \mathfrak{S}$ is a frame for \mathfrak{S} if the following hold:

- (a) G contains $\bigoplus_{n=1}^{\infty} S_n$.
- (b) The natural surjection $\widehat{G} \to \mathfrak{S}$ is an isomorphism.

One can think of condition (a) as saying that G is a good approximation of \mathfrak{S} from 'within' while condition (b) says that G approximates very well \mathfrak{S} from 'above'.

More precisely, for a finite subset $V \subset \mathbb{N}$ of integers define the V-principal congruence subgroup G_V to be the kernel of the projection of G onto $\prod_{n \in V} S_n$. Let G(V) be the projection of G onto $\mathfrak{S}(V) := \prod_{n \notin V} S_n$. The m-th principal congruence subgroup G_m is just $G_{\{1,\ldots,m\}}$ and $G(m) := G(\{1,\ldots,m\})$.

Part (a) of the above definition is now equivalent to

$$G = \left(\prod_{n \in V} S_n\right) \times G_V, \quad G_V = G \cap \mathfrak{S}(V).$$

Therefore the congruence subgroup G_V can be identified with the projection G(V).

On the other hand, part (b) of Definition 7 says that the profinite topology of G is the same as its congruence topology: Every subgroup of finite index in G contains a congruence subgroup G_m for some $m \in \mathbb{N}$.

We stress that the existence of even a single example of a frame is far from obvious at this stage.

The following Lemma allows us to find many frame groups provided we already know at least one:

Lemma 8. Let $A_n, B_n < C_n$, $(n \in \mathbb{N})$ be finite groups with $C_n = \langle A_n, B_n \rangle$. Suppose that X (resp. Y) is a frame subgroup of the product $\mathfrak{A} = \prod_{n=1}^{\infty} A_n$ (resp. $\mathfrak{B} = \prod_{n=1}^{\infty} B_n$). Each of X and Y can be considered as a subgroup of $\mathfrak{C} := \prod_{n=1}^{\infty} C_n$ in the natural way. Then the group

$$Z = \langle X, Y \rangle < \mathfrak{C}$$

is a frame in C.

Proof: It is clear that Z contains the direct product of C_n . Suppose that N is a subgroup of finite index in Z. By hypothesis N contains the m-th principal congruence subgroups X_m , Y_m for some m. Identifying them with X(m), Y(m) in $\mathfrak{C}(m)$ we see that N contains $\langle X(m), Y(m) \rangle = Z(m)$, which under our identification is Z_m . \square

It is clear that for every c > 2 Lemma 8 can be generalized by induction from a pair X, Y to c frame subgroups X_1, \ldots, X_c satisfying an analogous condition.

For possible future use we prove the following extension:

Lemma 9. Let A_n, M_n, B_n , (n = 1, 2, ...) be finite groups such that $M_n = A_n \ltimes B_n$. For each n let $b_{n,1}, ..., b_{n,k}$ be elements in B_n , such that M_n is generated by A_n and $[A_n, b_{n,s}]$ $(1 \le s \le k)$.

Suppose that $X = \langle x_1, \dots, x_m \rangle$ is a frame subgroup of the product $\prod_{n=1}^{\infty} A_n$. Then X can be considered as a subgroup of $\mathfrak{M} := \prod_{n=1}^{\infty} M_n$ in the natural way. Define $b_s = (b_{n,s})_n$ for $s = 1, \dots k$. Then the group

$$Z = \langle X, [x_j, b_s] \mid 1 \le j \le m, \ 1 \le s \le k \rangle < \mathfrak{M}$$

is a frame in \mathfrak{M} .

Proof: The condition that M_n is generated by A_n and $[A_n, b_{n,s}]$, together with $X \ge \oplus A_n$, easily gives that $Z \ge \oplus M_n$.

Suppose now that H is a normal subgroup of finite index in Z. By hypothesis H contains the l-th principal congruence subgroup X_l for some l. Identifying it with X(l) in $\mathfrak{M}(l)$ we see that N contains $\langle X(l), [X(l), n_s] \mid s = 1, \ldots, k \rangle = Z(l)$, which under our identification is Z_l . \square

3 Reductions

The following is a corollary of [10] and [6], Theorem 1.2:

Theorem 10. For every $m \geq 5$ there is an integer r = r(m) such that if S is a finite simple group with l(S) > r then S is generated by two subgroups isomorphic to Alt(m).

Incidentally this raises the following basic

Question 11. Is it true that if a finite simple group S contains a copy of Alt(m), $m \geq 5$ then S is generated by two copies of Alt(m)?

Our starting point for Theorem 4 is the following

Theorem 12. For every odd prime p, there exists a 10-generated group G_1 which is a frame for the Cartesian product

$$\prod_{n=3}^{\infty} \operatorname{Alt}(u_{n,p}),$$

where $u_{n,p} = (p^{3n} - 1)(p - 1)^{-1}$.

This is proved in Section 4. Assuming that we complete the proof of Theorem 4 in two steps as follows:

Step 1

Proposition 13. Given any sequence $\{S_n\}$ of distinct finite simple groups of essentially infinite rank, there is a 22-generated group G_2 which is frame for the Cartesian product

$$\mathfrak{G} = \prod_{n=1}^{\infty} S_n.$$

Proof: Without loss of generality we may assume that S_n are numbered so that $l(S_1) \leq l(S_2) \leq \ldots$

Assume first that $l(S_1) \ge r(3^9)$, where r(m) is the number from Theorem 10.

Define a function $h: \mathbb{N} \to \mathbb{N}$ inductively by

h(1) = 1,

h(k) is the smallest n > h(k-1) such that $l(S_n) \ge r(u_k)$, where $u_k := (3^{3(k+2)} - 1)/2 = u_{k+2,3}$.

The existence of such h(k) follows from the fact that $l(S_i) \to \infty$. Set

$$B_k = \prod_{h(k) \le n < h(k+1)} S_n.$$

Then $\mathfrak{G} = \prod_{k=1}^{\infty} B_k$.

For every $n \in [h(k), h(k+1))$ we have that $l(S_n) \ge r(u_k)$ and therefore by Theorem 10 the group S_n is generated by two copies of $Alt(u_k)$. In other words we have two embeddings

$$f_{n,j}: \operatorname{Alt}(u_k) \to S_n, \quad i = 1, 2,$$

such that $S_n = \langle f_{n,1}(Alt(u_k)), f_{n,2}(Alt(u_k)) \rangle$.

Now B_k is generated by two copies of $Alt(u_k)$ as follows:

For j = 1, 2 define $P_{k,j}$ to be the image of

$$Alt(u_k) \ni a \mapsto (f_{n,i}(a))_n \in B_k, \quad (h(k) \le n < h(k+1)).$$

Then $\langle P_{k,1}, P_{k,2} \rangle$ is the whole of B_k because it is a subdirect product of distinct simple groups.

Now by Theorem 12 there are two embeddings, t_j (j=1,2) of G_1 into $\prod_{k=1}^{\infty} P_{k,j}$ such that the images $t_j(G_1)$ are frame subgroups. Lemma 8 gives that these two copies of G_1 embedded in $\prod_{k=1}^{\infty} B_k = \mathfrak{G}$ via the t_j generate a frame subgroup G_2 for \mathfrak{G} .

In general we can write \mathfrak{G} as $\mathfrak{G} = K \times \mathfrak{G}'$ where K is a finite product of distinct simple groups and \mathfrak{G}' is a Cartesian product of simple groups S with $l(S) > r(3^9)$. Taking a 20-generated frame G' in \mathfrak{G}' together with 2 generators $a, b \in K$ gives the frame $G = \langle a, b, G' \rangle$ in \mathfrak{G} . \square

Step 2

Recall the following well known

Proposition 14. For any finite simple group S and any integers $c, m \in \mathbb{N}$ such that $m \leq |\operatorname{Aut}(S)|^c$ there exist c+1 embeddings

$$f_i: S \to S^m \quad (i = 1, \dots, c+1)$$

such that $S^m = \langle f_1(S), \dots, f_{c+1}(S) \rangle$.

Proof: It is sufficient to prove the Proposition for the case when $m = |\operatorname{Aut}(S)|^c$.

Set $N = |\operatorname{Aut}(S)|$. Identify S^{N^c} with the sequences $(a_{\mathbf{t}})_{\mathbf{t}}$ labelled by the c-tuples $\mathbf{t} = (t_1, \dots, t_c) \in \operatorname{Aut}(S)^c$ of elements of $\operatorname{Aut}(S)$.

Now define c+1 embeddings $f_i: S \to S^{N^c}$ by $f_0: a \in S \mapsto (a)_{\mathbf{t}}$ for i=0 and for $i=1,2,\ldots c$ define

$$f_i: a \mapsto (a^{t_i})_{\mathbf{t}}, a \in S.$$

We claim that the (c+1) subgroups $f_i(S)$ generate D:

By [1] Exercise 4.3, if $M < \prod_{k=1}^n S_k$ is a subdirect product of isomorphic non-abelian simple groups S_k , then there exist indices $1 \le i < j \le n$ such that the projection of M onto $S_i \times S_j$ is the diagonal subgroup $\{(a, f(a)) \mid a \in S_i\}$, where $f: S_i \to S_j$ is an isomorphism.

We have chosen the emebeddings f_i such that this is impossible. \square

We also need

Proposition 15. For every $c \in \mathbb{N}$, every finite simple group S and $m > |S|^c$, the direct product $D = S^m$ is not generated by c elements.

Proof: Suppose that $g_i = (g_{i,k})_{k=1}^m \in D$, (i = 1, ...c) are any c elements of D. Since $m > |S|^c$ there are two coordinates $k \neq k' \in \{1, ...m\}$ such that $g_{i,k} = g_{i,k'}$ for all $i \in [1,c]$. Therefore $g_1, ..., g_c$ cannot generate D.

In fact a similar proof shows that D is not c-generated for $m > \frac{|S|^c}{|\operatorname{Aut}(S)|}$. \square

Now we can easily finish the proof of Theorem 4:

Suppose $\mathfrak{G} = \prod_n S_n^{f(n)}$ is topologically finitely generated.

By Proposition 13 there is a 22-generated group G_2 which is a frame in $\prod_n S_n$. Since \mathfrak{G} is assumed to be finitely generated, by Proposition 15 there is $c \in \mathbb{N}$ such that

$$f(n) < |S_n|^c < |\operatorname{Aut}(S_n)|^c$$
, for all n .

Now by Proposition 14, for each $n=1,2,\ldots$ we find (c+1) copies of S_n inside the product $S_n^{f(n)}$, which together generate it. By an application of Lemma 8 we deduce that there exists a frame subgroup $\Gamma < \mathfrak{G}$ generated by (c+1) copies of G_2 , and Theorem 4 is proved.

We conclude this Section with

Question 16. Does there exists a function f(d) with the following property: Suppose that $n \in \mathbb{N}$ and G is a d-generated finite group, which can also be generated by several subgroups isomorphic to Alt(n). Then there exist f(d) homomorphisms $i_s : Alt(n) \to G$, such that

$$G = \langle \operatorname{im} i_s \mid s = 1, \dots, f(d) \rangle.$$

If true this will imply the following generalization of Theorem 4:

A finitely generated Cartesian product $\prod G_n$ is a profinite completion, provided that each G_n is generated by subgroups isomorphic to Alt(n).

4 Theorem 12

4.1 Rings and EL_3

In this section we present a construction from [3] which will be necessary for Theorem 12. By $M_n(A)$ we denote the ring of $n \times n$ matrices over a ring A. The elementary matrix in $M_n(\mathbb{F}_p)$ with entry $r \in A$ in position (i, j) and 0 elsewhere is $e_{i,j}(a)$. We write $e_{i,j} := e_{i,j}(1)$.

is $e_{i,j}(a)$. We write $e_{i,j} := e_{i,j}(1)$. Let R be the subring of $\prod_{n=3}^{\infty} M_n(\mathbb{F}_p)$ generated by the five elements $1 = (\mathrm{Id}_n)$, $\mathbf{a} = (a_n)$, \mathbf{a}^{-1} , $\mathbf{b} = (b_n)$ and $\mathbf{c} = (c_n)$, defined as follows:

$$a_n = e_{1,2} + e_{2,3} + \ldots + e_{n,1}, \quad b_n = e_{1,2}, \quad c_n = e_{2,1}, \quad i \ge 2.$$

Note that R contains the elements

$$\mathbf{d} := [\mathbf{b}, \mathbf{a}^{-1} \mathbf{b} \mathbf{a}] = (e_{1,3})_n, \quad \mathbf{e} := [\mathbf{a}^{-1} \mathbf{c} \mathbf{a}, \mathbf{c}] = (e_{3,1})_n,$$

which together with **b** and **c** and 1 generate a subring of R isomorphic to $M_3(\mathbb{F}_p)$ sitting diagonally in the top left corner of each factor.

Proposition 17 ([3]). The ring R contains the direct sum

$$\bigoplus_{n=3}^{\infty} M_n(\mathbb{F}_p).$$

The profinite completion \hat{R} of R is

$$\widehat{R} = \widehat{\mathbb{F}_p[t, t^{-1}]} \bigoplus \prod_{n=3}^{\infty} M_n(\mathbb{F}_p),$$

Proof: (sketch)

Let us observe that the commutator $[b_n, a_n^{-k}b_na_n^k]$ is non-zero iff n divides k-1 or k+1. This, together with the simplicity of the ring $M_n(\mathbb{F}_p)$ implies that the ring generated by \mathbf{a} , \mathbf{a}^{-1} and \mathbf{b} contains the infinite direct sum.

Let I be an ideal of finite index in R, which contains $\mathbf{a}^N - 1$. Let $\tilde{R} = R/J$, where $J = I + \bigoplus_{n=3}^{2N} M_n(\mathbb{F}_p)$. Then in \tilde{R} we have

$$\tilde{\mathbf{d}} = \left[\tilde{\mathbf{b}}, \tilde{\mathbf{a}}^{-1} \tilde{\mathbf{b}} \tilde{\mathbf{a}} \right] = \left[\tilde{\mathbf{b}}, \tilde{\mathbf{a}}^{-N-1} \tilde{\mathbf{b}} \tilde{\mathbf{a}}^{N+1} \right] = 0$$

because

$$\left[\mathbf{b}, \mathbf{a}^{-N-1} \mathbf{b} \mathbf{a}^{N+1}\right] \subset \bigoplus_{n=3}^{2N} M_n(\mathbb{F}_p) \subset J.$$

Similar proof gives also that $\tilde{\mathbf{e}} = 0$. The relations

$$\mathbf{b} = \left[\mathbf{d}, \mathbf{a}^{-1}\mathbf{c}\mathbf{a}\right], \quad \mathbf{c} = \left[\mathbf{a}^{-1}\mathbf{b}\mathbf{a}, \mathbf{e}\right]$$

give that \tilde{R} is an image of $\mathbb{F}_p C_N = \mathbb{F}_p[t, t^{-1}]/\langle t^N = 1 \rangle$ because it is generated by **a** and \mathbf{a}^{-1} , which implies that the profinite completion of R has the desired form. \square

The profinite ring $U := \mathbb{F}_p[t, t^{-1}]$ is the inverse limit of the group algebras $\mathbb{F}_p C_n$ of the cyclic groups C_n for $n \in \mathbb{N}$. If proj_U is the projection of \hat{R} onto U then the above argument gives that:

$$\operatorname{proj}_{U}(\mathbf{a}^{\pm}) = t^{\pm}, \quad \operatorname{proj}_{U}(\mathbf{b}) = \operatorname{proj}_{U}(\mathbf{c}) = 0.$$

Definition 18. Let $G_0 := \operatorname{EL}_3(R)$ be the subgroup of $M_3(R)$ generated by the elementary matrices $e_{i,j}(r)$ for $1 \le i \ne j \le 3$ and $r \in R$.

Then G_0 is generated by the following set of ten elements:

$$\{e_{i,j} \mid 1 \le i \ne j \le 3\} \bigcup I := \{e_{1,2}(x) \mid x \in \{\mathbf{a}, \mathbf{a}^{-1}, \mathbf{b}, \mathbf{c}\}\}.$$

In fact it is easy to see that G_0 is generated by the 5 elements

$$\{e_{1,2}(\mathbf{a}), e_{2,3}(\mathbf{a}^{-1}), e_{1,2}(\mathbf{b}), e_{1,2}(\mathbf{c}), g\},\$$

where g is a matrix in $SL_3(\mathbb{F}_p)$ such that $SL_3(\mathbb{F}_p) = \langle e_{1,3}, g \rangle$.

Since R is a subring of $\prod_{n=3}^{\infty} M_n(\mathbb{F}_p)$ we can consider G_0 as a subgroup of

$$\prod_{n=3}^{\infty} \mathrm{EL}_{3}(M_{n}(\mathbb{F}_{p})) = \prod_{n=3}^{\infty} \mathrm{SL}_{3n}(\mathbb{F}_{p}).$$

Proposition 19 ([3]). The group G_0 contains

$$\bigoplus_{n=3}^{\infty} \mathrm{SL}_{3n}(\mathbb{F}_p).$$

The profinite completion of G_0 is

$$\mathrm{EL}_{3}(U) \oplus \prod_{n=3}^{\infty} \mathrm{EL}_{3}(M_{n}(\mathbb{F}_{p})) = \varprojlim_{n \in \mathbb{N}} \mathrm{SL}_{3}(\mathbb{F}_{p}C_{n}) \oplus \prod_{n=3}^{\infty} \mathrm{SL}_{3n}(\mathbb{F}_{p}).$$

We can say more. Suppose $\bar{G}_0 = G_0/H$ is a finite image of G_0 . Then:

(i) There exists $N < [G_0: H]$ such that we have the following diagram:

$$\operatorname{SL}_{3}(\mathbb{F}_{p}C_{N}) \qquad \begin{array}{c} G_{0} \\ \\ G_{0}/H \\ \\ \end{array}$$

$$G_{0}/\widetilde{H} = \widetilde{G}_{0}$$

where $\widetilde{H} = H \cdot \bigoplus_{n=3}^{N} \mathrm{SL}_{3n}(\mathbb{F}_p)$. The map $G_0 \to \mathrm{SL}_3(\mathbb{F}_pC_n)$ comes from the projection $R \to \mathbb{F}_pC_N$, sending **b** and **c** to 0.

(ii) If π is the map $G_0 \to \widetilde{G}_0$ then for each pair of indices $1 \le i \ne j \le 3$ we have $\pi(e_{i,j}(\mathbf{b})) = \pi(e_{i,j}(\mathbf{c})) = 1$, and moreover, \widetilde{G}_0 is the normal closure of any of its elements $\pi(e_{i,j})$.

(iii)
$$G_0/H = \widetilde{G}_0 \times M$$
, where M is a central quotient of $\bigoplus_{n=3}^N \mathrm{SL}_{3n}(\mathbb{F}_p) < G_0$.

Proof: Using Proposition 17 we can see that the group $G_0 = \mathrm{EL}_3(R)$ has the congruence subgroup property (CSP) because $\mathrm{EL}_3(\mathbb{F}_p[t,t^{-1}])$ has CSP and $K_2(M_n(\mathbb{F}_p))$ is trivial for any n. Therefore the profinite completion of G_0 is the same as the congruence completion which is

$$\mathrm{EL}_3(U) \oplus \prod_{n=3}^{\infty} \mathrm{EL}_3(M_n(\mathbb{F}_p)).$$

This is easily gives (i) and (ii). Part (iii) follows from the fact that G_0 contains $\bigoplus_{n=3}^{\infty} \mathrm{SL}_{3n}(\mathbb{F}_p)$. \square

4.2 The construction

The group G_0 is our first 'approximation' to a frame subgroup. It remains to modify it and suppress the 'bad' factor $\mathrm{EL}_3(U)$ in \hat{G}_0 .

Let

$$D := \langle e_{1,3}(\mathbf{b}), e_{3,1}(\mathbf{c}), e_{1,3}(\mathbf{d}), e_{3,1}(\mathbf{e}) \rangle < G_0.$$

Then D is isomorphic to a copy of

$$\operatorname{SL}_3(\mathbb{F}_p) \simeq D < G_0 < \prod_{n=3}^{\infty} \operatorname{SL}_{3n}(\mathbb{F}_p)$$

diagonally embedded in positions $(a,b) \in \{1,2n+2,2n+3\}^2$ in each factor $\mathrm{SL}_{3n}(\mathbb{F}_p)$.

We remark that from the Chevalley commutator relations for elementary matrices it follows that $e_{1,2}(\mathbf{d})$ and $e_{1,2}(\mathbf{e})$ are each in the normal closure of $\langle e_{1,2}(\mathbf{b}), e_{2,1}(\mathbf{c}) \rangle$ in G_0 . Therefore, the projection of D in the 'bad' factor $\mathrm{EL}_3(U)$ of \hat{G}_0 is trivial, by Proposition 19 (ii).

Define $q := (q_n) \in D$ where $q_n \in \operatorname{SL}_{3n}(\mathbb{F}_p)$ is the diagonal element with entries all 1 except -1 in positions 2n+2 and 2n+3 on the diagonal of $\operatorname{SL}_{3n}(\mathbb{F}_p)$. It is clear that q commutes with the element $v := e_{1,2} = (e_{1,2}(\operatorname{Id}_n)) \in G_0$.

Recall that $u_{n,p} = (p^{3n}-1)/(p-1)$. We will use the following crucial Lemma:

Lemma 20. For every $n \geq 2$ there exist two homomorphisms $i' = i'_n$, $i'' = i''_n$ of $K := \mathrm{SL}_{3n}(\mathbb{F}_p)$ into $\mathrm{Alt}(u_{n,p})$ such that

$$i''(q)^{-1}i'(v)i''(q) = i'(v)^{-1}, \quad i'(q)^{-1}i''(v)i'(q) = i''(v)^{-1}$$

and $\langle i'(K), i''(K) \rangle = \text{Alt}(u_{n,p}).$ (1)

Assuming this we can prove Theorem 12:

Set $S_n := Alt(u_{n,p})$. Consider the two homomorphisms

$$E', E'': \prod_{n=3}^{\infty} \mathrm{SL}_{3n}(\mathbb{F}_p) \to \mathfrak{A} := \prod_{n=3}^{\infty} S_n,$$

given by $(g_n)_n \mapsto (i'_n(g_n))_n$ and $(g_n)_n \mapsto (i''_n(g_n))_n$.

Set $G_0' = E'(G_0), G_0'' = E''(G_0)$. For an element $a \in G_0$ we shall write a' (resp. a'') for $E'(a) \in G_0'$ (resp. $E''(a) \in G_0''$) and do the same for subgroups of G_0 .

Definition 21. Set $G = G_1 := \langle G'_0, G''_0 \rangle < \mathfrak{A}$.

We shall prove that G_1 is a frame subgroup for \mathfrak{A} .

The group G_1 contains $\bigoplus_{n=3}^{\infty} S_n$, because each copy of G_0 contains the infinite direct sum of the images of $\mathrm{SL}_{3n}(\mathbb{F}_p)$ in S_n .

Suppose now that G_1/H is a finite quotient of $G = G_1$. By Proposition 19 (i) applied to G'_0 and G''_0 , there exists an integer $N < [G_1 : H]$ such that if

$$\widetilde{H} = H. \bigoplus_{n=3}^{N} S_n \quad \widetilde{H'} = \widetilde{H} \cap G'_0, \quad \widetilde{H''} = \widetilde{H} \cap G''_0.$$

then $\widetilde{G}=G_1/\widetilde{H}$ is generated by $\widetilde{G}_0'=G_0'/\widetilde{H}'$ and $\widetilde{G}_0''=G_0''/\widetilde{H}''$ which are images of $\mathrm{SL}_3(\mathbb{F}_pC_N)$.

By Proposition 19 (ii) the images of $e_{i,j}(\mathbf{b})$ and $e_{i,j}(\mathbf{c})$ in \widetilde{G}'_0 and \widetilde{G}''_0 are trivial. In particular the group D is in the kernel of both $\pi' = \pi \circ E'$ and $\pi'' = \pi \circ E''$, where π is the projection $G \to \widetilde{G}$. This implies that $\pi'(q) = \pi''(q) = 1$. By (1) the following relations hold in G:

$$E'(q)^{-1}E''(v)E'(q) = E''(v)^{-1}$$
 $E''(q)^{-1}E'(v)E''(q) = E'(v)^{-1}$.

Therefore we have

$$\pi'(q)^{-1}\pi''(v)\pi'(q) = \pi''(v)^{-1} \qquad \pi''(q)^{-1}\pi'(v)\pi''(q) = \pi'(v)^{-1}.$$

These, together with $\pi'(q) = \pi''(q) = 1$ and $v^p = 1$ imply that $\pi'(v) = \pi''(v) = 1$. The last two elements normally generate \widetilde{G}' and \widetilde{G}'' , therefore these groups are trivial. This shows that $\widetilde{G} = \{1\}$, i.e., $G = H \cdot \bigoplus_{n=3}^N S_n$. Now $G > \bigoplus_{n=3}^N S_n$, hence H contains the congruence subgroup G_N and so G is a frame. \square

Theorem 12 is now proved modulo Lemma 20.

4.3 Proof of Lemma 20

Consider the action of $\mathrm{SL}_{3n}(\mathbb{F}_p)$ on the set P of $u_{p,n}$ points of the projective plane $\mathbb{P}(V)$, where $V = \mathbb{F}_n^{3n}$.

This gives the homomorphism $i': \operatorname{SL}_{3n}(\mathbb{F}_p) \to \operatorname{Alt}(u_{p,n}) =: S$. The element q is a diagonal element with two eigenvalues -1 and so $q' = i'(q) \in S$ is an involution which fixes $(p^{3n-2} + p^2 - 2)/(p-1)$ points of P. The element $v' = i'(v) = i'(e_{1,2})$ has order p and we see that it moves a set $M \subseteq P$ consisting of mp points in $m = (p^{3n} - p^{2n})p^{-1}(p-1)^{-1}$ p-cycles. Of these p-cycles m/p^2 are pointwise fixed by q' and the rest are swapped by q'. Recall that v' and q' commute.

The essential point now is that exactly $1/p^2$ of the p-cycles of v' are fixed by the involution q' and the rest are 'swapped'. Without loss of generality we may assume that the set M of points moved by v' is arranged in $N = m/p^2$ cubes of size p each, say

$$M = \bigcup_{i=1}^{N} B_i, \quad B_i = \{b_i(j, k, m) \mid j, k, m \in [0, p)\}.$$

We may assume that v' acts on M by a shift of the first coordinate $b_i(j, k, m) \mapsto b_i(j+1, k, m)$, while q_i restricted to M acts by

$$b_i(j,k,m) \mapsto b_i(j,-k,-m) \quad \forall i \in [1,N], \ j,k,m \in [0,p).$$

The indices j, k, m are taken mod p everywhere.

Let $\sigma \in \text{Sym}(P)$ be defined on M as the cyclic shift

$$b_i(j, k, m) \mapsto b_i(k, m, j)$$

and on $P \setminus M$ as the the identity.

Consider $q'' = (q')^{\sigma}$ and $v'' = v'^{\sigma}$. Then q'' acts by a shift of the second coordinate, while v'' acts as the reflection in the 1-st and 3-rd coordinates. An easy calculation now shows that the conditions (1) hold.

So we can define

$$i'': \operatorname{SL}_{3n}(\mathbb{F}_n) \to S, \quad i''(x) = (i'(x))^{\sigma}$$

provided $\langle (K')^{\sigma}, K' \rangle = S$.

It is enough to show that $(K')^{\sigma} \neq K'$:

By [2] if K' is contained in a proper subgroup $H < S = \text{Alt}(u_{p,n})$ then $H \leq N_S(K')$. Assuming $K'' = i''(K) = (K')^{\sigma} \neq K'$ then K'' certainly does not normalize K' and so $\langle K', (K')^{\sigma} \rangle = S$.

Now suppose that σ defined above normalizes K'. Replace σ with $\sigma' = a\sigma$ where a is a transposition which centralizes both q' and v'. For example we can

take a to be any transposition moving points of P fixed by both q' and v': there are $(p^{2n-2}+p^2-2)/(p-1)$ of them. Then $(v')^{\sigma'}=(v')^{\sigma}$, $(q')^{\sigma'}=(q')^{\sigma}$ and if σ' normalizes K' then so does a. However, in that case $\langle K',a\rangle$ is a proper primitive subgroup of $\operatorname{Sym}(P)$ containing a transposition, which is impossible. \square

Acknowledgement. Part of this research was carried out during a visit of the first author to Oxford in January 2006. We gratefully acknowledge the support of the London Mathematical Society with a Scheme 4 grant.

References

- [1] P. J. Cameron, Permutation groups, CUP, 1999.
- [2] Kantor, W. M.; McDonough, T. P. On the maximality of PSL(d+1, q), $d \ge 2$. J. London Math. Soc. (2) 8 (1974), 426.
- [3] M. Kassabov, Unbounded rank expanders, to appear in Invent. Math., 2006.
- [4] M. Kassabov, Symmetric groups as expanders, preprint, 2005.
- [5] M. Kassabov, N. Nikolov, A. Zaikin, Property tau and subgroup growth, work in progress...
- [6] M. Liebeck, A. Shalev, Residual properties of the modular group and other free products, J. Algebra, 268 (2003), 264-285.
- [7] L. Pyber, Groups of intermediate subgroup growth and a problem of Grothendieck. *Duke Math. J.* 121 (2004), no. 1, 169–188.
- [8] D. Segal, The finite images of finitely generated groups. *Proc. London Math. Soc.* (3) 82 (2001), no. 3, 597–613.
- [9] D. Segal, Some aspects of profinite group theory, preprint, 2004.
- [10] M. C. Tamburini, J. S. Wilson, On the generation of finite simple groups by pairs of subgroups, J. Algebra 116 (1988) 316–333.

Martin Kassabov,
Department of Mathematics,
Cornell University, Ithaca, NY 14853, USA.
kassabov@math.cornell.edu
Nikolay Nikolov,
New College, Oxford, OX1 3BN, UK.
nikolay.nikolov@new.ox.ac.uk