## Formelsammlung Mathematik 3

Tim Hilt

23. Januar 2019

## Inhaltsverzeichnis

| 1. | Grui  | ndlagen und Wiederholung                                       | 6  |
|----|-------|----------------------------------------------------------------|----|
|    | 1.1.  | Allgemeine trigonometrische Umformungen; Additionstheoreme und |    |
|    |       | Doppelwinkelformeln                                            | 6  |
|    | 1.2.  | Komplexe Zahlen                                                | 7  |
|    |       | 1.2.1. Darstellungsformen komplexer Zahlen                     | 7  |
|    |       | 1.2.2. Umrechnung verschiedener Darstellungsformen ineinander  | 7  |
|    |       | 1.2.3. Darstellung Sinus und Kosinus als komplexe Zahlen       | 8  |
|    | 1.3.  | Sinus Kardinalis                                               | 8  |
| l. | Tra   | ansformationen und Verallgemeinerte Funktionen                 | 9  |
| 2. | Vera  | allgemeinerte Funktionen                                       | 10 |
|    | 2.1.  | Heaviside-Funktion                                             | 10 |
|    | 2.2.  | Dirac-Distribution                                             | 11 |
|    | 2.3.  | Verallgemeinerte Ableitung                                     | 11 |
|    |       | 2.3.1. Grafisches Ableiten verallgemeinerter Funktionen        | 12 |
|    | 2.4.  | Faltung                                                        | 12 |
|    | 2.5.  | Faltung mit $\sigma(t)$                                        | 12 |
|    | 2.6.  | Faltung mit $\delta(t)$                                        | 13 |
|    | 2.7.  | Einseitige Faltung                                             | 13 |
| 3. | Four  | rier-Transformation                                            | 14 |
|    | 3.1.  | Real- und Imaginärteil direkt berechnen                        | 14 |
|    | 3.2.  | Fourier-Transformation von geraden- und ungeraden Funktionen   | 15 |
|    | 3.3.  | Darstellung mit Amplituden- und Phasenwinkel                   | 15 |
|    | 3.4.  | Inverse Fourier-Transformation                                 | 16 |
| 4. | Lapl  | acetransformation                                              | 17 |
| 5. | z-Tra | ansformation                                                   | 19 |

| II. | . Statistik und Wahrscheinlichkeitsrechnung 20         |    |  |  |  |  |
|-----|--------------------------------------------------------|----|--|--|--|--|
| 6.  | Beschreibende Statistik                                | 21 |  |  |  |  |
| 7.  | Kombinatorik und Wahrscheinlichkeitsrechnung           | 22 |  |  |  |  |
|     | 7.1. Kombinatorik                                      | 22 |  |  |  |  |
|     | 7.1.1. Permutation                                     | 22 |  |  |  |  |
|     | 7.2. Kombination und Variation                         | 22 |  |  |  |  |
|     | 7.3. Wahrscheinlichkeitsrechnung                       | 24 |  |  |  |  |
|     | 7.3.1. Wahrscheinlichkeitsverteilungen                 | 24 |  |  |  |  |
|     | Allgemeine Form                                        | 24 |  |  |  |  |
|     | Hypergeometrische Verteilung                           | 25 |  |  |  |  |
|     | Binomialverteilung                                     | 26 |  |  |  |  |
|     | Poissonverteilung                                      | 27 |  |  |  |  |
|     | Geometrische Verteilung                                | 27 |  |  |  |  |
|     | Quantile und Zufallsstreubereich der Normalverteilung  | 28 |  |  |  |  |
| 8.  | Anhang                                                 | 30 |  |  |  |  |
|     | A. Tabellen aus Buch von Prof. Koch und Prof. Stämpfle | 30 |  |  |  |  |

### Kapitel 1.

### Grundlagen und Wiederholung

### 1.1. Allgemeine trigonometrische Umformungen; Additionstheoreme und Doppelwinkelformeln

$$\tan x = \frac{\sin x}{\cos x}$$

$$\sin^2 x + \cos^2 x = 1$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} = \frac{\sin(x \pm y)}{\cos(x \pm y)}$$

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$$

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

### 1.2. Komplexe Zahlen

### 1.2.1. Darstellungsformen komplexer Zahlen

Kartesische Form:  $z = x + \mathbf{j}y$ 

Polarform; Polarkoordinaten:  $z = r \cos \varphi + jr \sin \varphi$ 

Exponential form:  $re^{j}$ 



### 1.2.2. Umrechnung verschiedener Darstellungsformen ineinander

$$z = r\cos\varphi + \mathbf{j}r\sin\varphi = re^{\mathbf{j}\varphi}$$
  
 $r = |z| = \sqrt{x^2 + y^2}$ 

Seite 6 Tim Hilt

$$\arg(z) = \varphi = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{für } x > 0, y \text{ bel.} \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{für } x < 0, y \text{ bel.} \\ \frac{\pi}{2} & \text{für } x = 0, y > 0 \\ -\frac{\pi}{2} & \text{für } x = 0, y < 0 \end{cases}$$

#### 1.2.3. Darstellung Sinus und Kosinus als komplexe Zahlen

Zudem können Kosinus und Sinus auch dargestellt werden durch:

$$\cos arphi = rac{e^{\mathrm{j}arphi} + e^{-\mathrm{j}arphi}}{2} \qquad \sin arphi = rac{e^{\mathrm{j}arphi} - e^{-\mathrm{j}arphi}}{2\mathrm{j}}$$

#### 1.3. Sinus Kardinalis

Der Sinus Kardinals si(x) ist definiert als

$$\mathbf{si}(x) = \begin{cases} \frac{\sin(x)}{x} & x \in \mathbb{R} \setminus 0 \\ 1 & x = 0 \end{cases}$$

Eine spezielle Form ist die sinc(x)-Funktion. Sie ist definiert als:

$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x} & x \in \mathbb{R} \setminus 0\\ 1 & x = 0 \end{cases}$$





### Teil I.

# Transformationen und Verallgemeinerte Funktionen

### Kapitel 2.

### Verallgemeinerte Funktionen

### 2.1. Heaviside-Funktion

Die Heaviside-Funktion oder Einheitssprungfunktion ist definiert durch:

$$\sigma(t) = \begin{cases} 0 & t \in (-\infty, 0] \\ 1 & t \in (0, \infty) \end{cases}$$

Wird eine Funktion mit der Heaviside-Funktion multipliziert, so werden Teile der Funktion ausgeblendet.





Mithilfe der Heaviside-Funktion können Rechteckimpulse erstellt werden.

$$r(t) = \sigma(t - t_0) - \sigma(t - t_1)$$



#### 2.2. Dirac-Distribution

Die Dirac-Distribution ist definiert durch:

$$\delta(x) = \begin{cases} 0 & t \in \mathbb{R} \backslash 0 \\ 1 & t = 0 \end{cases}$$



Genauer wird die Dirac-Distribution durch eine Folge von Rechteckimpulsen hergeleitet, die den konstanten Flächeninhalt 1 besitzen, deren Breite dabei jedoch gegen 0 strebt, deren Höhe dafür aber gegen  $\infty$ .

Wird eine Funktion mit der Dirac-Distribution an einem Punkt  $t_0$  multipliziert, so wird die **gesamte Funktion, bis auf den Funktionswert an der Stelle**  $t_0$ **ausgeblendet!** 



### 2.3. Verallgemeinerte Ableitung

Leitet man die Heaviside-Funktion ab entsteht die Dirac-Distribution.

Seite 10 Tim Hilt

$$\dot{\sigma}(t) = \delta(t)$$

Beim Ableiten ist insbesondere auf die innere Ableitung zu achten!

#### 2.3.1. Grafisches Ableiten verallgemeinerter Funktionen

Wird eine Funktion mit Unstetigkeitsstellen abgeleitet, so wird an der Sprungstelle ein Dirac-Impuls in Höhe und Richtung des Sprungs eingezeichnet. Dieser Impuls ist von der *x*-Achse aus zu zeichnen.



Jedoch kann die Dirac-Distribution mit unserem Wissensstand nicht weiter abgeleitet werden.

### 2.4. Faltung

"A convolution is an integral that expresses the amount of overlap of one function g as it is shifted over another function f." (http://mathworld.wolfram.com/Convolution.html)

Die Faltung ist definiert durch:

$$h(t) = f(t) \star g(t) = \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) d\tau$$

Dadurch entsteht eine neue Funktion h(t).  $\tau$  ist eine Dummy-Variable! Beim Integrieren verschwindet sie und bildet die Funktion wieder auf t ab.

### **2.5.** Faltung mit $\sigma(t)$

Wird eine Funktion mit  $\sigma(t)$  gefaltet, so ergibt sich für das Faltungsintegral:

$$(t) \star \sigma(t) = \int_{-\infty}^{\infty} f(\tau) \cdot \sigma(t - \tau) d\tau = \int_{-\infty}^{t} f(\tau) d\tau$$

### **2.6.** Faltung mit $\delta(t)$

Wird eine Funktion f(t) mit der Dirac-Distribution  $\delta(t)$  gefaltet, so ergibt sich:

$$f(t) \star \delta(t) = \int_{-\infty}^{\infty} f(\tau) \cdot \delta(t - \tau) d\tau = f(t)$$

Dies haben wir den Ausblendeigenschaften der Dirac-Distribution zu verdanken.

### 2.7. Einseitige Faltung

Sind beide Funktionen f(t) und g(t) = 0 für  $x \le 0$ , so ergibt sich das Faltungsintegral:

$$f(t) \star g(t) = \int_0^t f(\tau) \cdot g(t - \tau) d\tau$$

### Kapitel 3.

### Fourier-Transformation

Mithilfe der Fouriertransformation werden Funktionen aus dem Zeitbereich in den Frequenzbereich übersetzt:

### 3.1. Real- und Imaginärteil direkt berechnen

In der Regel ist das Ergebnis einer Fouriertransformation eine komplexwertige Funktion. Natürlich lässt sich diese stets in Real- und Imaginärteil aufspalten — die Anteile lassen sich aber auch direkt berechnen:

$$\operatorname{Re}(z) = \int_{-\infty}^{\infty} s(t) \cos(2\pi f t) dt$$
$$\operatorname{Im}(z) = -\int_{-\infty}^{\infty} s(t) \sin(2\pi f t) dt$$

# 3.2. Fourier-Transformation von geraden- und ungeraden Funktionen

Ist die zu transformierende Funktion **gerade**, so ist die Transformierte **rein reell und ebenfalls gerade**, aufgrund der Symmetrieeigenschaften des Kosinus. Zudem muss nicht mehr von  $-\infty$  bis  $\infty$  integriert werden. Es genügt das Integral von 0 bis  $\infty$  mit 2 zu multiplizieren. Ihre Berechnung reduziert sich dabei auf:

$$S(f) = \text{Re}(f) = 2\int_0^\infty s(t) \cos(2\pi f t) dt$$

Das selbe Prinzip lässt sich auf die Berechnung **ungerader** Funktionen anwenden. Hier ist die Transformierte **rein imaginär und ungerade**:

$$S(f) = \mathbf{j} \operatorname{Im}(f) = -2\mathbf{j} \int_0^\infty s(t) \sin(2\pi f t) dt$$

### 3.3. Darstellung mit Amplituden- und Phasenwinkel

Fourierreihen lassen sich auch in Exponentialform darstellen:

$$S(f) = |S(f)|e^{j\varphi(f)}$$

Dabei ist

- Die Amplitude  $|S(f)| = \sqrt{\text{Re}(f)^2 + \text{Im}(f)^2}$  eine **gerade, reelle** Funktion
- Die Phase  $\varphi(f) = \arg(S(f)) = \arg(\mathrm{Re}(f) + \mathrm{j}\,\mathrm{Im}(f))$  eine **ungerade, reelle** Funktion.

Diese Darstellung findet insbesondere in der Elektrotechnik ihre Anwendung (Bode-Diagramm). Seite 14 Tim Hilt

### 3.4. Inverse Fourier-Transformation

Um aus einer fouriertransormierten Funktion S(f) die Zeitfunktion s(t) zu erhalten muss S(f) rücktransformiert werden:

$$S(f) \bullet - \circ s(t) = \int_{-\infty}^{\infty} S(f) e^{j2\pi f} df$$

### Kapitel 4.

### Laplacetransformation

Die Berechnung der Laplace-Transformation ist definiert durch:

$$f(t) \circ - \bullet F(s) = \int_0^\infty f(t) \cdot e^{-st} dt$$

#### Standardrechteck im Laplacebereich

Das Standardrechteck  $r(t) = \sigma(t) - \sigma(t-1)$  entspricht im Laplacebereich

$$\circ - \bullet \quad \frac{1 - e^{-s}}{s}$$



#### Eingangssignal, Ausgangssignal, Impulsantwort

Eine inhomogene Differential- oder Differenzengleichung mit Stöfunktion  $r(t) \neq 0$  besitzt das **Eingangssignal** r(t). Sie besitzt die Lösung x(t) bzw.  $f_k$ . Ist nun noch auch die Impulsantwort  $g(k)/g_k$  des Systems bekannt, so gilt:

$$x(t) = q(k) \star r(t)$$

bzw.

$$f_k = g_k \star r(t)$$

Seite 16 Tim Hilt

Die Ausgangsfunktion entspricht demnach der Faltung der Störfunktion r(t) mit der Impulsantwort  $g(k)/g_lk$ .



Kapitel 5.

z-Transformation

## Teil II.

# Statistik und Wahrscheinlichkeitsrechnung

Kapitel 6.

Beschreibende Statistik

### Kapitel 7.

# Kombinatorik und Wahrscheinlichkeitsrechnung

### 7.1. Kombinatorik

#### 7.1.1. Permutation

| Permutation ohne Wiederholung: | n!                                                   |
|--------------------------------|------------------------------------------------------|
| Permutation mit Wiederholung:  | $\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_s!}$ |

### 7.2. Kombination und Variation

Kombinationen werden verwendet, wenn **nur einige** der Elemente in einer Menge angeordnet werden sollen. Permutationen hingegen ordnen **alle** Elemente an.

| Urnenmodell: Ziehen von $k$ aus $n$ | Anzahl<br>Möglichkeiten | Name Vorlesung                                                   | typische Beispiele                                                              |
|-------------------------------------|-------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|
| ohne Zurücklegen;<br>ungeordnet     | $\binom{n}{k}$          | Kombination<br>verschiedene<br>Elemente                          | a) Lotto: 6 aus 49<br>b) $k$ Personen aus $n$<br>(Arbeitsgruppe)                |
| mit Zurücklegen;<br>ungeordnet      | $\binom{n+k-1}{k}$      | Kombination<br>Elemente<br>mehrfach                              | a) Widerstände parallel<br>b) 2 T-Shirts aus 5<br>Farben auswählen              |
| ohne Zurücklegen;<br>geordnet       | $\frac{n!}{(n-k)!}$     | Variation verschiedene Elemente Spezialfall: $n = k$ Permutation | a) Siegerpodest b) Rangreihenfolge Auswahl Studierende c) Zieleinlauf insgesamt |
| mit Zurücklegen;<br>geordnet        | $n^k$                   | Variation<br>Elemente<br>mehrfach                                | a) Binäre Ziffernfolge<br>b) Wörter aus<br>7 Buchstaben                         |

Seite 22 Tim Hilt

### 7.3. Wahrscheinlichkeitsrechnung

### 7.3.1. Wahrscheinlichkeitsverteilungen

#### Allgemeine Form

#### **Dichtefunktion:**

Funktion, bei der auf der x-Achse alle Elemente mit der auf der y-Achse aufgetragenen Wahrscheinlichkeit gezeichnet sind. Es ergibt sich ein Säulendiagramm.

#### Verteilungsfunktion:

$$F(x) = P(X \le x) = \sum_{k=0}^{x} (k \cdot P(X = k))$$

**Erwartungswert:** 

$$E(X) = \mu = \sum_{k} k \cdot P(X = k)$$

**Varianz** 

$$\mathrm{Var}(X) = \sigma^2 = \sum_k \left( k^2 \cdot P(X=k) \right) - \mu^2$$

#### Hypergeometrische Verteilung

Beschreibung: Ziehen ohne Zurücklegen o Wahrscheinlichkeit verändert sich im Verlauf des Experiments

Es müssen folgende Variablen (bis auf k) gegeben sein:

- N Anzahl aller Elemente
- $\,M\,\,$  Anzahl Elemente mit bestimmter Eigenschaft
- *n* Anzahl Elemente in der Stichprobe
- k Anzahl Elemente aus der Stichprobe, die das Merkmal aufweisen sollen

#### **Dichtefunktion:**

$$X \sim H(k, n, N, M)$$

$$P(X = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

#### **Verteilungsfunktion:**

$$F(x) = P(X \le x) = \sum_{k=0}^{x} H(k, n, N, M)$$

**Erwartungswert:** 

$$E(X) = \mu = n \cdot \frac{M}{N}$$

Varianz:

$$\operatorname{Var}(X) = \sigma^2 = n \cdot \frac{M}{N} \left( 1 - \frac{M}{N} \right) \frac{N - n}{N - 1}$$

Seite 24 Tim Hilt

#### Binomialverteilung

Beschreibung: Ziehen  $\mathbf{mit}$  zurücklegen  $\to$  Wahrscheinlichkeit bleibt während dem Experiment gleich

Es müssen folgende Variablen gegeben sein:

- $p\quad$  Anteil der Elemente/ Wahrscheinlichkeit beim Ziehen **eines** Elementes aus der Grundgesamtheit
- n Anzahl Elemente in der Stichprobe
- k Anzahl Elemente aus der Stichprobe, die das Merkmal aufweisen sollen

#### **Dichtefunktion:**

$$X \sim \mathbf{B}(k, n, p)$$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Verteilungsfunktion: Hier müssen die einzelnen Dichtefunktionen berechnet werden

$$F(x) = P(X \le x) = \sum_{k=0}^{x} B(k, n, p)$$

**Erwartungswert:** 

$$E(X) = \mu = n \cdot p$$

Varianz:

$$\operatorname{Var}(X) = \sigma^2 = n \cdot p \cdot (1-p)$$

Annäherung der Hypergeometrischen Verteilung durch Binomialverteilung:

Falls  $\frac{n}{N} \leq 0.1$  kann der Parameter p durch  $p = \frac{M}{N}$  angenähert werden.

#### Poissonverteilung

Beschreibung: Gegeben ist ein Durchschnittswerts (*Erwartungswert*)  $\lambda$  pro einer gewissen Einheit (z.B. im Durchschnitt 3 Anrufe in 5 Minuten). Die Poissonverteilung soll berechnen, wie groß die Wahrscheinlichkeit ist einen anderen Wert k als Ergebnis zu erhalten.

#### **Dichtefunktion:**

$$X \sim \text{Po}(k, \lambda)$$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

#### **Verteilungsfunktion:**

$$F(x) = P(X \le x) = \sum_{k=0}^{x} \text{Po}(k, \lambda)$$

**Erwartungswert:** 

$$E(X) = \mu = \lambda$$

Varianz:

$$Var(X) = \sigma^2 = \lambda$$

#### Annäherung der Binomialverteilung durch Poissonverteilung:

Wenn n groß und p klein ist ( $n \geq 30, p \leq 0.1$ ) kann der Parameter  $\lambda$  durch  $\lambda = n \cdot p$  angenähert werden.

#### Geometrische Verteilung

Beschreibung: Gegeben ist die Wahrscheinlichkeit für einen Erfolg  $(p, Misserfolg \ q = 1-p)$ . Die geometrische Verteilung berechnet die Wahrscheinlichkeit dafür, dass genau k Versuche benötigt werden um zum ersten Erfolg zu kommen; dass man also **beim** k-ten Versuch Erfolg hat.

#### **Dichtefunktion:**

$$P(X = k) = p \cdot (1 - p)^{k-1}$$

**Verteilungsfunktion:** 

$$P(X \le k) = 1 - (1 - p)^k$$

**Erwartungswert:** 

$$E(X) = \mu = \frac{1}{p}$$

Varianz:

$$\operatorname{Var}(X) = \sigma^2 = \frac{1 - p}{p^2}$$

Seite 26 Tim Hilt

#### Quantile und Zufallsstreubereich der Normalverteilung

Quantile berechnen einen bestimmten Prozentsatz der Fläche unter der Verteilungsfunktion einer normalverteilten Zufallsvariable.

Bsp. das 95% Quantil wird geschrieben als

$$q_{0.95} = \mu + z_{0.95} \cdot \sigma$$

Das bedeutet, dass 95% der Werte unterhalb des Wertes  $q_{0.95}$  liegen.

Die Werte für  $z_m$  sind tabelliert, können jedoch auch mit dem Taschenrechner (mit  $\mu = 0$  und  $\sigma = 1$ ) berechnet werden:

| $\overline{m}$ | 0.8   | 0.9   | 0.95  | 0.975 | 0.99  | 0.995 | 0.999 |
|----------------|-------|-------|-------|-------|-------|-------|-------|
| $z_m$          | 0.842 | 1.282 | 1.654 | 1.960 | 2.326 | 2.576 | 3.090 |

Der Zufallsstreubereich (ZSB) Ist ein Intervall, das zwei Quantile berechnet. ZSBs können nach unten, nach oben oder zweiseitig beschränkt sein. Der Zufallsstreubereich kann für ein gegebenes  $\mu$  oder für den arithmetischen Mittelwert  $\overline{X}$  eines gegebenen Datensatzes berechnet werden.

Es sei p die gegebene Wahrscheinlichkeit/die gewünschte Fläche unter der Verteilungsfunktion für das Quantil oder den ZSB. Wir definieren  $\alpha$  als den Kehrwert  $\alpha = \mathbf{1} - \mathbf{p}$  von p.

Soll nun ein ZSB berechnet werden so passiert dies über die Formeln:

Nach oben beschränkt 
$$(-\infty~;~q_{1-\alpha}] = (-\infty~;~\mu + z_{1-\alpha} \cdot \sigma]$$
  
Nach unten beschränkt  $[q_\alpha~;~\infty) = [\mu - z_{1-\alpha} \cdot \sigma~;~\infty)$   
Beidseitig beschränkt  $[q_{\frac{\alpha}{2}}~;~q_{1-\frac{\alpha}{2}}] = [\mu - z_{1-\frac{\alpha}{2}} \cdot \sigma~;~\mu + z_{1-\frac{\alpha}{2}} \cdot \sigma]$ 

Auch hier kann der **Taschenrechner** eingesetzt werden (InvNormal). Hier sind die Werte **Area**,  $\mu$  und  $\sigma$  verlangt.  $\mu$  und  $\sigma$  sind meist in der Aufgabenstellung gegeben, für Area muss:

| einseitiger Grenzwert:  |                        |                      |
|-------------------------|------------------------|----------------------|
|                         | nach oben beschränkt:  | p                    |
|                         | nach unten beschränkt: | $\alpha$             |
| zweiseitiger Grenzwert: |                        |                      |
|                         | untere Grenze:         | $\frac{lpha}{2}$     |
|                         | obere Grenze:          | $1-\frac{\alpha}{2}$ |

Ist ein Datensatz mit n Elementen gegeben, so ändern sich die Formeln zu:

Nach oben beschränkt 
$$(-\infty\,;\,q_{1-\alpha}] = \left(-\infty\,;\,\mu+z_{1-\alpha}\cdot\frac{\sigma}{\sqrt{n}}\right]$$
  
Nach unten beschränkt  $[q_{\alpha}\,;\,\infty) = \left[\mu-z_{1-\alpha}\cdot\frac{\sigma}{\sqrt{n}}\,;\,\infty\right)$   
Beidseitig beschränkt  $[q_{\frac{\alpha}{2}}\,;\,q_{1-\frac{\alpha}{2}}] = \left[\mu-z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\,;\,\mu+z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\right]$ 

Nun muss selbstverständlich für  $\sigma$  in der Inv<br/>Normal-Funktion  $\frac{\sigma}{\sqrt{n}}$  eingegeben werden.

### A.2 Trigonometrische Funktionen

| Quadrant | I | П | Ш | IV |
|----------|---|---|---|----|
| $\sin x$ | + | + | - | _  |
| $\cos x$ | + | 1 | - | +  |
| $\tan x$ | + | _ | + | _  |

| x        | 0  | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$     | $\frac{3\pi}{4}$      | $\frac{5\pi}{6}$      | $\pi$ | $\frac{7\pi}{6}$      | $\frac{5\pi}{4}$      | $\frac{4\pi}{3}$      | $\frac{3\pi}{2}$ | $\frac{5\pi}{3}$      | $\frac{7\pi}{4}$      | $\frac{11\pi}{6}$     | $2\pi$ |
|----------|----|----------------------|----------------------|----------------------|-----------------|----------------------|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|--------|
| $\alpha$ | 0° | 30°                  | 45°                  | 60°                  | 90°             | 120°                 | 135°                  | 150°                  | 180°  | 210°                  | 225°                  | 240°                  | 270°             | 300°                  | 315°                  | 330°                  | 360°   |
| $\sin x$ | 0  | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$  | $\frac{1}{2}$         | 0     | $-\frac{1}{2}$        | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1               | $-\frac{\sqrt{3}}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{1}{2}$        | 0      |
| $\cos x$ | 1  | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0               | $-\frac{1}{2}$       | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1    | $-\frac{\sqrt{3}}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{1}{2}$        | 0                | $\frac{1}{2}$         | $\frac{\sqrt{2}}{2}$  | $\frac{\sqrt{3}}{2}$  | 1      |
| $\tan x$ | 0  | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           | _               | $-\sqrt{3}$          | -1                    | $-\frac{\sqrt{3}}{3}$ | 0     | $\frac{\sqrt{3}}{3}$  | 1                     | $\sqrt{3}$            | _                | $-\sqrt{3}$           | -1                    | $-\frac{\sqrt{3}}{3}$ | 0      |

| Verschiebung                          | des S |           | Verschiebung des Kosinus                                                                                                                                                                                         |   |           |  |  |
|---------------------------------------|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------|--|--|
| $\sin\left(x + \frac{\pi}{2}\right)$  | =     | $\cos x$  | $\cos\left(x + \frac{\pi}{2}\right)$ $\cos\left(x - \frac{\pi}{2}\right)$ $\cos\left(\frac{\pi}{2} - x\right)$ $\cos\left(-\frac{\pi}{2} - x\right)$ $\cos\left(x \pm \pi\right)$ $\cos\left(\pm \pi - x\right)$ | = | $-\sin x$ |  |  |
| $\sin\left(x - \frac{\pi}{2}\right)$  | =     | $-\cos x$ | $\cos\left(x-\frac{\pi}{2}\right)$                                                                                                                                                                               | = | $\sin x$  |  |  |
| $\sin\left(\frac{\pi}{2} - x\right)$  | =     | $\cos x$  | $\cos\left(\frac{\pi}{2} - x\right)$                                                                                                                                                                             | = | $\sin x$  |  |  |
| $\sin\left(-\frac{\pi}{2} - x\right)$ | =     | $-\cos x$ | $\cos\left(-\frac{\pi}{2} - x\right)$                                                                                                                                                                            | = | $-\sin x$ |  |  |
| $\sin\left(x\pm\pi\right)$            | =     | $-\sin x$ | $\cos\left(x\pm\pi\right)$                                                                                                                                                                                       | = | $-\cos x$ |  |  |
| $\sin\left(\pm\pi-x\right)$           | =     | $\sin x$  | $\int \cos\left(\pm\pi-x\right)$                                                                                                                                                                                 | = | $-\cos x$ |  |  |

| Additionsthe               | oreme |                                                 | Doppelwinkelformeln |   |                                 |  |  |
|----------------------------|-------|-------------------------------------------------|---------------------|---|---------------------------------|--|--|
| $\sin\left(x \pm y\right)$ | =     | $\sin x \cos y \pm \cos x \sin y$               | $\sin(2x)$          | = | $2\sin x\cos x$                 |  |  |
| $\cos(x \pm y)$            | =     | $\cos x \cos y \mp \sin x \sin y$               | $\cos(2x)$          | = | $\cos^2 x - \sin^2 x$           |  |  |
| $\tan(x \pm y)$            | =     | $\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$ | $\tan(2x)$          | = | $\frac{2\tan x}{1-\tan^2 x}$    |  |  |
| $\cot(x \pm y)$            | =     | $\frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$ | $\cot(2x)$          | = | $\frac{\cot^2 x - 1}{2 \cot x}$ |  |  |

A.3 Ableitungen 709

### A.3 Ableitungen

| Funktion $f(x)$           | Ableitung $f'(x)$         | Funktion $f(x)$               | Ableitung $f'(x)$        |
|---------------------------|---------------------------|-------------------------------|--------------------------|
| $\frac{1}{x}$             | $-\frac{1}{x^2}$          | $e^x$                         | $e^x$                    |
| $\sqrt{x}$                | $\frac{1}{2\sqrt{x}}$     | $a^x  (a > 0)$                | $(\ln a) a^x$            |
| $x^a  (a \in \mathbb{R})$ | $a x^{a-1}$               | $\ln x$                       | $\frac{1}{x}$            |
|                           |                           | $\log_a x  (a > 0, a \neq 1)$ | $\frac{1}{(\ln a) x}$    |
| $\sin x$                  | $\cos x$                  | $\sinh x$                     | $\cosh x$                |
| $\cos x$                  | $-\sin x$                 | $\cosh x$                     | $\sinh x$                |
| $\tan x$                  | $1 + \tan^2 x$            | $\tanh x$                     | $1 - \tanh^2 x$          |
| $\cot x$                  | $-1-\cot^2 x$             | $\coth x$                     | $1 - \coth^2 x$          |
| $\arcsin x$               | $\frac{1}{\sqrt{1-x^2}}$  | $\operatorname{arsinh} x$     | $\frac{1}{\sqrt{1+x^2}}$ |
| $\arccos x$               | $-\frac{1}{\sqrt{1-x^2}}$ | $\operatorname{arcosh} x$     | $\frac{1}{\sqrt{x^2-1}}$ |
| $\arctan x$               | $\frac{1}{1+x^2}$         | $\operatorname{artanh} x$     | $\frac{1}{1-x^2}$        |
| $\operatorname{arccot} x$ | $-\frac{1}{1+x^2}$        | $\operatorname{arcoth} x$     | $-\frac{1}{x^2-1}$       |

### A.4 Ableitungsregeln

| Regel           | Formel                                                                                                                                                                                                     |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Faktorregel     | (C f(x))' = C f'(x)                                                                                                                                                                                        |
| Summenregel     | $(f(x) \pm g(x))' = f'(x) \pm g'(x)$                                                                                                                                                                       |
| Produktregel    | $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$                                                                                                                                                 |
| Quotientenregel | $(Cf(x))' = Cf'(x)$ $(f(x) \pm g(x))' = f'(x) \pm g'(x)$ $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$ |
| Kettenregel     | $(f(u(x)))' = f'(u(x)) \cdot u'(x)$                                                                                                                                                                        |
| Umkehrfunktion  | $(f(u(x)))' = f'(u(x)) \cdot u'(x)$ $(f^{-1}(y))' = \frac{1}{f'(x)}$                                                                                                                                       |

### A.5 Integrale

| Funktion                                       | Stammfunktion (ohne Konstante $C$ )                       | Funktion                                       | Stammfunktion (ohne Konstante $C$ )                     |
|------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|
| $\int \frac{1}{x}  \mathrm{d}x =$              | $= \ln  x $                                               | $\int e^x dx =$                                | $e^x$                                                   |
| $\int \sqrt{x}  \mathrm{d}x =$                 | $=$ $\frac{2}{3}x\sqrt{x}$                                | $\int a^x  \mathrm{d}x =$                      | $\frac{1}{\ln a} a^x  (a > 0)$                          |
| $\int x^a  \mathrm{d}x =$                      | $= \frac{1}{a+1} x^{a+1}  (a \neq -1)$                    | $\int \ln x  \mathrm{d} x =$                   | $x(\ln x - 1)$                                          |
|                                                |                                                           | $\int \log_a x  \mathrm{d}x =$                 | $x (\log_a x - \log_a e)$<br>$(a > 0, a \neq 1)$        |
| $\int \sin x  \mathrm{d}x =$                   | $= -\cos x$                                               | $\int \sinh x  \mathrm{d}x =$                  | $\cosh x$                                               |
| $\int \cos x  \mathrm{d} x =$                  | $=$ $\sin x$                                              | $\int \cosh x  \mathrm{d} x =$                 | $\sinh x$                                               |
| $\int \tan x  \mathrm{d}x =$                   | $= -\ln \cos x $                                          | $\int \tanh x  \mathrm{d}x =$                  | $\ln \cosh x $                                          |
| $\int \cot x  \mathrm{d}x =$                   | $=$ $\ln \sin x $                                         | $\int \coth x  \mathrm{d}x =$                  | $\ln  \sinh x $                                         |
| $\int \arcsin x  \mathrm{d}x =$                | $= x \arcsin x + \sqrt{1 - x^2}$                          | $\int \operatorname{arsinh} x  \mathrm{d} x =$ | $x \operatorname{arsinh} x - \sqrt{x^2 + 1}$            |
| $\int \arccos x  \mathrm{d}x =$                | $= x \arccos x - \sqrt{1 - x^2}$                          | $\int \operatorname{arcosh} x  \mathrm{d}x =$  | $x \operatorname{arcosh} x - \sqrt{x^2 - 1}$            |
| $\int \arctan x  \mathrm{d}x =$                | $= x \arctan x - \frac{\ln(1+x^2)}{2}$                    | $\int \operatorname{artanh} x  \mathrm{d} x =$ | $x \operatorname{artanh} x + \frac{\ln(1-x^2)}{2}$      |
| $\int \operatorname{arccot} x  \mathrm{d} x =$ | $= x \operatorname{arccot} x + \frac{\ln(1+x^2)}{2}$      | $\int \operatorname{arcoth} x  \mathrm{d}x =$  | $x\operatorname{arcoth} x + \frac{\ln(x^2 - 1)}{2}$     |
| $\int \frac{1}{x-a}  \mathrm{d}x =$            | $= \ln  x - a $                                           | $\int \frac{1}{x^2 + a^2}  \mathrm{d}x =$      | $\frac{1}{a}\arctan\frac{x}{a}  (a \neq 0)$             |
| $\int \frac{1}{(x-a)^n}  \mathrm{d}x =$        | $= -\frac{1}{(n-1)(x-a)^{n-1}} $ $(n \neq 1)$             | $\int \frac{2ax+b}{ax^2+bx+c} \mathrm{d}x =$   | $\ln ax^2 + bx + c   (a \neq 0)$                        |
| $\int x e^{ax} dx =$                           | $=\frac{ax-1}{a^2}e^{ax}$                                 | $\int x^2 e^{ax} dx =$                         | $\frac{a^2x^2 - 2ax + 2}{a^3}e^{ax}$                    |
| $\int x \sin ax  dx =$                         | $= \frac{1}{a^2} \sin ax - \frac{x}{a} \cos ax$           | $\int x \cos ax  \mathrm{d}x =$                | $\frac{1}{a^2}\cos ax + \frac{x}{a}\sin ax$             |
| •                                              | $= \frac{2x}{a^2}\sin ax - \frac{a^2x^2 - 2}{a^3}\cos ax$ | $\int x^2 \cos ax  \mathrm{d}x =$              | $\frac{2x}{a^2}\cos ax + \frac{a^2x^2 - 2}{a^3}\sin ax$ |
|                                                | $= \frac{e^{ax}}{a^2 + b^2} (a\sin bx - b\cos bx)$        |                                                | 0.00                                                    |
|                                                | $= \frac{x}{2} - \frac{1}{2}\sin x \cos x$                | $\int \cos^2 x  \mathrm{d}x =$                 |                                                         |

### A.6 Integralregeln

| Regel                 | Formel                                                                      |                                                             |
|-----------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|
| Faktorregel           | $\int C f(x)  \mathrm{d}x$                                                  | $= C \int f(x)  \mathrm{d}x$                                |
| Summenregel           | $\int f(x) \pm g(x)  \mathrm{d}x$                                           | $= \int f(x)  \mathrm{d}x \pm \int g(x)  \mathrm{d}x$       |
| Substitution          | $\int f(u(x)) \cdot u'(x)  \mathrm{d}x$                                     | $f = \int f(u) du$                                          |
|                       | $\int f(x) \cdot f'(x)  \mathrm{d}x$                                        | $= \frac{1}{2}f^2(x)$                                       |
|                       | $\int \frac{f'(x)}{f(x)}  \mathrm{d}x$                                      | $= \ln  f(x) $                                              |
| Partielle Integration | $\int f(x) \cdot g'(x) \mathrm{d}x$                                         | $= f(x) \cdot g(x) - \int f'(x) \cdot g(x)  \mathrm{d}x$    |
| Vertauschen           | $\int_a^b f(x)  \mathrm{d}x$                                                | $= -\int_b^a f(x)  \mathrm{d}x$                             |
| Integrationsbereich   | $\int_a^b f(x)  \mathrm{d}x$                                                | $= \int_a^c f(x)  \mathrm{d}x + \int_c^b f(x)  \mathrm{d}x$ |
| Hauptsatz I           | $\frac{\mathrm{d}}{\mathrm{d}t} \left( \int_a^t f(x)  \mathrm{d}x \right)'$ | = f(t)                                                      |
| Hauptsatz II          | $\int_a^b f(x)  \mathrm{d}x$                                                | = F(b) - F(a)                                               |

### A.7 Potenzreihen

| Funktion        | Potenzreihe                                                             |                                                              | Konvergenzradius |
|-----------------|-------------------------------------------------------------------------|--------------------------------------------------------------|------------------|
| $\frac{1}{1-x}$ |                                                                         |                                                              | 1                |
| $e^x$           | $\sum_{k=0}^{\infty} \frac{1}{k!} x^k = 1 + x$                          | $x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots$                 | $\infty$         |
|                 | $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k = x - \frac{1}{2}$        | 2 0 1                                                        | 1                |
| $\sin x$        | $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{2}{3}$ | $\frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \pm \dots$ | ∞                |
| $\cos x$        | $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{3}{2}$     | $\frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \dots$  | $\infty$         |
| $\arctan x =$   | $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} = x - \frac{1}{2}$    | $\frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} \pm \dots$    | 1                |
|                 | $\sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1} = x + \frac{1}{2}$      |                                                              | ∞                |
| $\cosh x$ =     | $\sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k} = 1 + \frac{2}{3}$          | $\frac{x^2}{2} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$    | ∞                |

712 A Anhang

### A.8 Fourier-Reihen

#### **Funktion**

#### Fourier-Reihe



$$f(x) = \begin{cases} -1 & -\pi \le x < 0 \\ 1 & 0 \le x < \pi \end{cases}$$





$$f(x) = \frac{4}{\pi} \left( \sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \ldots \right)$$



$$f(x) = \begin{cases} 0 & -\pi \le x < -\frac{\pi}{2} \\ 1 & -\frac{\pi}{2} \le x < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \le x < \pi \end{cases}$$





$$\begin{array}{c|c}
-\pi \le x < -\frac{\pi}{2} \\
-\frac{\pi}{2} \le x < \frac{\pi}{2} \\
\frac{\pi}{2} \le x < \pi
\end{array}
\qquad f(x) = \frac{1}{2} + \frac{2}{\pi} \left( \cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} + \ldots \right)$$











$$f(x) = \begin{cases} 0 & -\pi \le x < 0\\ \sin x & 0 \le x < \pi \end{cases}$$





$$\begin{array}{c|c}
-\pi \le x < 0 \\
0 \le x < \pi
\end{array} \quad f(x) = \frac{1}{\pi} - \frac{2}{\pi} \left( \frac{\cos 2x}{1 \cdot 3} + \frac{\cos 4x}{3 \cdot 5} + \frac{\cos 6x}{5 \cdot 7} + \ldots \right) + \frac{\sin x}{2}$$

#### **Funktion**

#### Fourier-Reihe



$$f(x) = x - \pi \le x < \pi$$







$$f(x) = \begin{cases} 0 & -\pi \le x < 0 \\ x & 0 \le x < \pi \end{cases}$$





$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left( \cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right) + \sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} \mp \dots$$



$$f(x) = |x| - \pi \le x < \pi$$





$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left( \cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right)$$



$$f(x) = \begin{cases} -x(x+\pi) & -\pi \le x < 0 \\ -x(x-\pi) & 0 \le x < \pi \end{cases}$$







714 A Anhang

### A.9 Korrespondenzen der Fourier-Transformation



Fourier-Transformation S(f) = R(f) + i I(f)







$$s(t) = \operatorname{sgn}(t)$$

$$S(f) = -\mathbf{i} \, \frac{1}{\pi f}$$







$$s(t) = \sigma(t)$$









$$s(t) = \delta(t)$$

$$S(f) = 1$$







$$s(t) = 1$$

$$S(f) = \delta(f)$$

#### Zeitfunktion s(t)

#### Fourier-Transformation S(f) = R(f) + i I(f)







$$s(t) = \sigma(t+1) - \sigma(t-1)$$

$$S(f) = 2 \frac{\sin(2\pi f)}{2\pi f}$$







$$s(t) = (1+t)(\sigma(t+1) - \sigma(t)) + (1-t)(\sigma(t) - \sigma(t-1))$$









$$s(t) = e^{-t}\sigma(t)$$

$$S(f) = \frac{1}{1 + \mathbf{i} 2\pi f} = \frac{1}{1 + 4\pi^2 f^2} - \mathbf{i} \frac{2\pi f}{1 + 4\pi^2 f^2}$$







$$s(t) = \cos\left(2\pi t\right)$$

$$S(f) = \frac{1}{2} \Big( \delta(f-1) + \delta(f+1) \Big)$$

### A.10 Eigenschaften der Fourier-Transformation

| Eigenschaft                         | Zeitfunktion                                     | Bildfunktion                                               |
|-------------------------------------|--------------------------------------------------|------------------------------------------------------------|
| Linearität                          | $C_1 s_1(t) + C_2 s_2(t)$                        | $C_1 S_1(f) + C_2 S_2(f)$                                  |
| Zeitverschiebung                    | $s(t-t_0)$                                       | $e^{-\mathrm{i}2\pift_0}S(f)$                              |
| Frequenzverschiebung                | $\mathrm{e}^{\mathrm{i}2\pif_0t}s(t)$            | $S(f-f_0)$                                                 |
| Amplitudenmodulation                | $s(t)\cos(2\pi f_0 t)$                           | $\frac{1}{2}\left(S(f-f_0)+S(f+f_0)\right)$                |
| Ähnlichkeit                         | s(at)                                            | $\frac{1}{ a } S\left(\frac{f}{a}\right)$                  |
| Zeitumkehr                          | s(-t)                                            | S(-f)                                                      |
| Differenziation in $\boldsymbol{t}$ | $\dot{s}(t)$                                     | $\mathrm{i}2\pifS(f)$                                      |
|                                     | $ \ddot{s}(t) $                                  | $(\mathrm{i} 2\pi f)^2 S(f)$                               |
|                                     | :                                                | :                                                          |
|                                     | $\frac{\mathrm{d}^n}{\mathrm{d}t^n}s(t)$         | $(\mathrm{i} 2\pi f)^n S(f)$                               |
| Differenziation in $f$              | $(-\mathrm{i}2\pit)s(t)$                         | S'(f)                                                      |
|                                     | $\left  (-\mathbf{i}  2  \pi  t)^2 s(t) \right $ | S''(f)                                                     |
|                                     | :                                                | :                                                          |
|                                     | $\left(-\mathrm{i}2\pit\right)^n s(t)$           | $S^{(n)}(f)$                                               |
| Multiplikation in $t$               | t s(t)                                           | S'(f)                                                      |
|                                     | $\int t^2 s(t)$                                  | $\frac{S''(f)}{-i 2 \pi}$                                  |
|                                     | :                                                | -12 <i>n</i>                                               |
|                                     | $oxed{t^n  s(t)}$                                | $\frac{S^{(n)}(f)}{(-\mathrm{i}2\pi)^n}$                   |
| Integration                         | $\int_{-\infty}^{t} s(\tau)  \mathrm{d}  \tau$   | $\frac{1}{\mathrm{i}2\pif}S(f) + \frac{1}{2}S(0)\delta(f)$ |
| Faltung in $t$                      | $s_1(t) \star s_2(t)$                            | $S_1(f) \cdot S_2(f)$                                      |
| Faltung in $f$                      | $s_1(t) \cdot s_2(t)$                            | $S_1(f) \star S_2(f)$                                      |

### A.11 Korrespondenzen der Laplace-Transformation

| Bildfunktion $F(s)$             | Zeitfunktion $f(t)$                                                                          | Bildfunktion $F(s)$               | Zeitfunktion $f(t)$                       |
|---------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| 1                               | $\delta(t)$                                                                                  | $\frac{a}{s^2 + a^2}$             | $\sin at$                                 |
| $\frac{1}{s}$                   | 1                                                                                            | $\frac{s}{s^2 + a^2}$             | $\cos at$                                 |
| $\frac{1}{s^2}$                 | $oxed{t}$                                                                                    | $\frac{a}{s^2 - a^2}$             | $\sinh at$                                |
| $\frac{n!}{s^{n+1}}$            | $t^n$                                                                                        | $\frac{s}{s^2 - a^2}$             | $\cosh at$                                |
| $\frac{1}{s-a}$                 | $e^{at}$                                                                                     | $\frac{a}{(s-b)^2 + a^2}$         | $e^{bt} \sin at$                          |
| $\frac{1}{(s-a)^2}$             | $t e^{at}$                                                                                   | $\frac{s-b}{(s-b)^2+a^2}$         | $e^{bt}\cos at$                           |
| $\frac{a}{s(s-a)}$              | $e^{at} - 1$                                                                                 | $\frac{a}{(s-b)^2 - a^2}$         | $e^{bt} \sinh at$                         |
| $\frac{a-b}{(s-a)(s-b)}$        | $e^{at} - e^{bt}$                                                                            | $\frac{s-b}{(s-b)^2 - a^2}$       | $e^{bt} \cosh at$                         |
| $\frac{a}{1+as}$                | $e^{-\frac{t}{a}}$ $(a \neq 0)$                                                              | $\frac{2as}{(s^2+a^2)^2}$         | $t \sin at$                               |
| $\frac{a^2}{(1+as)^2}$          | $t e^{-\frac{t}{a}}  (a \neq 0)$                                                             | $\frac{s^2 - a^2}{(s^2 + a^2)^2}$ | $t\cos at$                                |
| $\frac{1}{s(1+as)}$             | $1 - e^{-\frac{t}{a}}  (a \neq 0)$                                                           | $\frac{2as}{(s^2 - a^2)^2}$       | $t \sinh at$                              |
| $\frac{a-b}{(1+as)(1+bs)}$      | $e^{-\frac{t}{a}} - e^{-\frac{t}{b}}  (a, b \neq 0)$                                         | $\frac{s^2 + a^2}{(s^2 - a^2)^2}$ | $t \cosh at$                              |
| $\frac{s}{(s-a)^2}$             | $(1+at)e^{at}$                                                                               | $\frac{2}{(s-a)^3}$               | $t^2 e^{at}$                              |
| $\frac{(a-b)s}{(s-a)(s-b)}$     | $a e^{at} - b e^{bt}$                                                                        | $\frac{2s}{(s-a)^3}$              | $\left(at^2 + 2t\right)e^{at}$            |
| $\frac{a^3 s}{(1+as)^2}$        | $(a-t)e^{-\frac{t}{a}}  (a \neq 0)$ $a e^{-\frac{t}{b}} - b e^{-\frac{t}{a}}  (a, b \neq 0)$ | $\frac{2s^2}{(s-a)^3}$            | $\left  (a^2t^2 + 4at + 2)e^{at} \right $ |
| $\frac{ab(a-b)s}{(1+as)(1+bs)}$ | $a e^{-\frac{t}{b}} - b e^{-\frac{t}{a}} (a, b \neq 0)$                                      | $\frac{a^2}{s^2(s-a)}$            | $e^{at} - at - 1$                         |

### A.12 Eigenschaften der Laplace-Transformation

| Eigenschaft                         | Zeitfunktion                       | Bildfunktion                                         |
|-------------------------------------|------------------------------------|------------------------------------------------------|
| Linearität                          | $C_1 f_1(t) + C_2 f_2(t)$          | $C_1 F_1(s) + C_2 F_2(s)$                            |
| Ähnlichkeit $(a > 0)$               | f(at)                              | $\frac{1}{a}F\left(\frac{s}{a}\right)$               |
| Zeitverschiebung                    | $\sigma(t-t_0)f(t-t_0)$            | $e^{-t_0 s} F(s)$                                    |
| Dämpfung                            | $= e^{-s_0 t} f(t)$                | $F(s+s_0)$                                           |
| Differenziation in $\boldsymbol{t}$ | f'(t)                              | sF(s)-f(0)                                           |
|                                     | $\int f''(t)$                      | $s^2 F(s) - s f(0) - f'(0)$                          |
|                                     | :                                  | :                                                    |
|                                     | $f^{(n)}(t)$                       | $s^{n} F(s) - \sum_{k=0}^{n-1} s^{n-k-1} f^{(k)}(0)$ |
| Differenziation in $s$              | -t f(t)                            | F'(s)                                                |
|                                     | $\int t^2 f(t)$                    | F''(s)                                               |
|                                     | :                                  | :                                                    |
|                                     | $(-t)^n f(t)$                      | $F^{(n)}(s)$                                         |
| Multiplikation mit $t$              | t f(t)                             | -F'(s)                                               |
|                                     | $\int t^2 f(t)$                    | F''(s)                                               |
|                                     | :                                  | :                                                    |
|                                     | $\int t^n f(t)$                    | $(-1)^n F^{(n)}(s)$                                  |
| Integration im Zeitbereich          | $\int_0^t f(\tau) \mathrm{d} \tau$ | $\frac{1}{s}F(s)$                                    |
| Integration im Bildbereich          | $\frac{1}{t}f(t)$                  | $\int_{s}^{\infty} F(u)  \mathrm{d}  u$              |
| Faltung im Zeitbereich              | $f_1(t) \star f_2(t)$              | $F_1(s) \cdot F_2(s)$                                |
| Periodische Funktion                | f(t+T)=f(t)                        | $\frac{1}{1 - e^{-Ts}} \int_0^T f(t) e^{-st} dt$     |

### A.13 Korrespondenzen der z-Transformationen

| Bildfunktion $F(z)$ | ${\sf Zeitfolge}\;(f_k)$ | Bildfunktion $F(z)$  | ${\sf Zeitfolge}\;(f_k)$ |
|---------------------|--------------------------|----------------------|--------------------------|
| 1                   | $\delta_k$               | $\frac{1}{z^n}$      | 1 für $k = n$ , 0 sonst  |
| $\frac{z}{z-1}$     | 1                        | $\frac{z}{(z-1)^2}$  | $oxed{k}$                |
| $\frac{z}{z-a}$     | $a^k$                    | $\frac{az}{(z-a)^2}$ | $igg  k a^k$             |

### A.14 Eigenschaften der z-Transformationen

| Eigenschaft            | Zeitfolge                                   | Bildfunktion                                                   |
|------------------------|---------------------------------------------|----------------------------------------------------------------|
| Linearität             | $C_1\left(f_k\right) + C_2\left(g_k\right)$ | $C_1 F(z) + C_2 G(z)$                                          |
| Dämpfung               | $(a^{-k}f_k)$                               | F(az)                                                          |
| Indexverschiebung      | $(f_{k-n})$                                 | $z^{-n}F(z)$                                                   |
|                        | $(f_{k+1})$                                 | $z(F(z)-f_0)$                                                  |
|                        | $(f_{k+2})$                                 | $z^2(F(z) - f_0 - f_1 z^{-1})$                                 |
|                        | :                                           | :                                                              |
|                        | $(f_{k+n})$                                 | $z^n \left( F(z) - \sum_{k=0}^{n-1} f_k z^{-k} \right)$        |
| Differenzen            | $(\Delta f_k)$                              | $(z-1)F(z)-zf_0$                                               |
|                        | $\left(\Delta^2 f_k\right)$                 | $(z-1)^2F(z)-z((z-1)f_0+\Delta f_0)$                           |
|                        | :                                           | :                                                              |
|                        | $(\Delta^n f_k)$                            | $(z-1)^n F(z) - z \sum_{k=0}^{n-1} (z-1)^{n-k-1} \Delta^k f_0$ |
| Multiplikation mit $k$ | $(k f_k)$                                   | -z F'(z)                                                       |
|                        | $\left( \left( k^{2}f_{k} ight)$            | $z F'(z) - z^2 F''(z)$                                         |
|                        | :                                           | :                                                              |
| Faltung im Zeitbereich | $(f_k)\star(g_k)$                           | $F(z) \cdot G(z)$                                              |