CS 70 Discrete Mathematics and Probability Theory Spring 2015 Vazirani Discussion 12W

1. Sanity Check!

a.	Prove or give a	counterexample:	for any rand	lom variables 2	X and Y .	Var[X+Y] =	Var[X] + Var[Y]	

b. Derive Chebyshev's inequality using Markov's inequality for some random variable X.

2. Balls and Bins Again

For this problem we toss m balls into n bins.

a. What is the expected number of collisions?

b. Now, let's define X to be the number of collisions. At what threshold of collisions c can we ensure that the probability of having more than c collisions is less than 1/2n?

3. Coin flips

	a.	Suppose we flip a fair coin n times and we wish to understand the probability that we get at least $3n/4$ heads. Use Markov's inequality to come up with an upper bound for this probability.
	b.	Use Markov's inequality to come up with a similar upper bound on the probability that the number of heads is at least n .
	c.	Find the true probability that there are at least n heads in a sequence of n fair coin flips. Is the bound you derived in the previous part tight?
4.		ore coin flips Suppose we flip a biased coin 100 times and X is the number of heads we get. We know that $Var[X] = 16$. What are the possible values for the expected vaue of X ?
	b.	Now suppose $E[X] = 20$. Use Chebyshev's inequality to derive an upper bound on $Pr[X \ge 40]$.