Álgebra Linear e Geometria Analítica

Agrupamento IV: Mestrado Integrado em Eng. ^a Eletrónica e Telecomunicações | Mestrado Integrado em Eng. ^a de Computadores e Telemática | Licenciatura em Eng. ^a Informática

03 de Fevereiro de 2020 Duração: 2h30

Exame de Recurso

Justifique devidamente todas as suas respostas.

1. Considere o sistema de equações lineares AX = B, cuja matriz ampliada [A|B] é equivalente por linhas à matriz [C|D] a seguir indicadas, sendo a um parâmetro real.

$$[A|B] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & a & 1 & -1 \\ a & a & 1 & -1 \end{bmatrix}, \qquad [C|D] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & a & 1 & -1 \\ 0 & 0 & 1-a & -1-a \end{bmatrix}$$

- (a) Indique, justificando, os valores de a para os quais $\mathcal{N}(A) = \{(0,0,0)\}.$
- (b) Faça a=1. Diga a posição relativa do plano $\mathcal P$ de equação cartesiana x+y+z=1 e da reta $\mathcal R$ de equações cartesianas $\begin{cases} y & +z & =-1 \\ x & +y & +z & =-1 \end{cases}$. Qual a distância entre ambos?
- 2. Considere A e B, matrizes 4×4 tais que $\det(A) = -2$ e $\operatorname{car}(B) = 3$. Diga se as seguintes afirmações são verdadeiras ou falsas. Justifique as verdadeiras e corrija, justificando, as falsas.
 - (a) A matriz B é invertível.
 - (b) $\det(2A^{-1}B^T) = 3 \times 2^4$.
- 3. Conhecendo as bases ordenadas S = ((2,1,1),(0,2,1),(0,0,1)) de \mathbb{R}^3 e $\mathfrak{T} = ((0,1),(1,2))$ de \mathbb{R}^2 , o vetor de coordenadas $[X]_S = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$, a matriz $C = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ e a transformação linear $\phi : \mathbb{R}^3 \to \mathbb{R}^2$ dada por $\phi(X) = CX$ para todo o $X \in \mathbb{R}^3$ responda às seguintes questões.
 - (a) Escreva o vetor X na base canónica.
 - (b) Diga, justificando, se a transformação linear ϕ é injetiva. É sobrejetiva?
 - (c) Encontre a matriz G representativa da transformação ϕ relativamente às bases \mathcal{S} de \mathbb{R}^3 e \mathcal{T} de \mathbb{R}^2 .
 - (d) Usando a matriz obtida na alínea anterior, determine $[\phi(X)]_{\mathfrak{T}}.$

Caso não tenha resolvido a alínea anterior, use uma matriz com as entradas todas iguais a 1.

- 4. Considere a matriz $A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 - (a) Justifique que os valores próprios de A são 1 e -1.
 - (b) Conhecendo o subespaço próprio $\mathcal{U}_1 = \langle (1, -1, 0), (0, 0, 1) \rangle$, indique o conjunto de vetores próprios associados ao valor próprio 1.
 - (c) A matriz A é diagonalizável? Justifique.
- 5. Considere a quádrica de equação $x^2 + 2x + z^2 = 2y^2 + 4y$ Determine uma sua equação reduzida e classifique-a.

Questão	1	2	3	4	5
Cotação	4	3	6	5	2