1

2

3

CLAIMS

T T 71			•			•
Wha	o t	10	\sim	วาท	24	10
* * 110	αı	13	•	аш	u	10

1	1. An apparatus comprising:
2	a processor having a normal execution mode and a secure execution
3	environment to create a secure execution environment; and
4	a secure virtual machine monitor (SVMM) to implement the secure
5	execution mode in which a plurality of separate virtual machines are created that
6	operate simultaneously and separately from one another including at least a first virtual
7	machine to implement trusted guest software in a protected memory area and a second
8	virtual machine to implement a non-trusted guest operating system (OS) in a non-
9	protected memory area;
10	wherein responsive to a command to tear down the secure execution
11	environment, the SVMM causes the processor to exit out of the secure execution mode
12	tears down the secure execution environment, and instructs the non-trusted guest OS to
13	resume control in the normal execution mode.
1	2. The apparatus of claim 1, further comprising a virtual machine control
2	structure (VCMS) to store guest state information related to the non-trusted guest
3	operating system (OS) for use in restoring the non-trusted guest OS in the normal
4	execution mode.

- 1 3. The apparatus of claim 2, wherein the virtual machine control structure 2 (VCMS) stores a guest OS entry point field to point to a command used for instructing 3 the non-trusted guest OS to resume control at a virtual address and a host entry point 4 field to point to a command to instruct the processor to exit out of a virtual machine execution mode. 5
 - 4. The apparatus of claim 1, further comprising, the SVMM scrubbing the protected memory associated with the trusted guest software when the secure execution environment is torn down.
- 1 5. The apparatus of claim 4, further comprising, the SVMM causing the 2 processor to exit out of a virtual machine extension mode before exiting out of the 3 secure execution mode when the secure execution environment is torn down.

1	6.	The apparatus of claim 1, wherein the non-trusted guest operating			
2	system (OS)	issues the command to tear down the secure execution environment.			
1	7.	The apparatus of claim 1, wherein the secure virtual machine monitor			
2	(SVMM) iss	sues the command to tear down the secure execution environment.			
1	8.	The apparatus of claim 7, wherein the secure virtual machine monitor			
2	(SVMM) iss	sues the command to tear down the secure execution environment due to a			
3	detected sec	urity breach.			
1	9.	A method comprising:			
2		providing a normal execution mode in a processor and a secure			
3	execution m	ode in a processor; and			
4		creating a secure execution environment in which a plurality of separate			
5	virtual mach	ines operate simultaneously and separately from one another including at			
6	least a first virtual machine to implement trusted guest software in a protected memory				
7	area and a se	econd virtual machine to implement a non-trusted guest operating system			
8	(OS) in a no	n-protected memory area;			
9		wherein responsive to a command to tear down the secure execution			
10	environment	t, exiting out of the secure execution mode, tearing down the secure			
11	execution er	avironment, and instructing the non-trusted guest OS to resume control in			
12	the normal e	execution mode.			
1	10.	The method of claim 9, further comprising storing guest state			
2	information	related to the non-trusted guest operating system (OS) for use in restoring			
3	the non-trus	ted guest OS in the normal execution mode.			
1	11.	The method of claim 10, further comprising:			
2		storing a guest OS entry point field to point to a command used for			
3	instr	ucting the guest OS to resume control at a virtual address; and			
4		storing a host entry point field to point to a command to instruct the			
5	proce	essor to exit out of a virtual machine execution mode.			

1	12.	The method of claim 9, further comprising scrubbing the protected			
2	memory associated with the trusted guest software when the secure execution				
3	environment i	s torn down.			
1	13.	The method of claim 12, further comprising causing the processor to exit			
2	out of a virtua	al machine extension mode before exiting out of the secure execution			
3	mode when th	ne secure execution environment is torn down.			
1	14.	The method of claim 9, wherein the non-trusted guest operating system			
2	(OS) issues th	e command to tear down the secure execution environment.			
1	15.	The method of claim 9, further comprising issuing the command to tear			
2	down the secu	are execution environment due to a detected security breach.			
1	16.	A machine-readable medium having stored thereon instructions, which			
2		d by a machine, cause the machine to perform the following operations			
3	comprising:				
4	1 0	providing a normal execution mode in a processor and a secure			
5	execution mo	de in a processor; and			
6		creating a secure execution environment in which a plurality of separate			
7	virtual machii	nes that operate simultaneously and separately from one another including			
8		virtual machine to implement trusted guest software in a protected			
9		and a second virtual machine to implement a non-trusted guest operating			
10		n a non-protected memory area;			
11	• , ,	wherein responsive to a command to tear down the secure execution			
12	environment,	exiting out of the secure execution mode, tearing down the secure			
13	•	ironment, and instructing the non-trusted guest OS to resume control in			
14		ecution mode.			
1	17.	The machine-readable medium of claim 16, wherein the instructions			
2	cause the mad	chine to perform further operations comprising storing guest state			
3	information re	elated to the non-trusted guest operating system (OS) for use in restoring			

the non-trusted guest OS in the normal execution mode.

I	18. The machine-readable medium of claim 17, wherein the instructions
2	cause the machine to perform further operations comprising:
3	storing a guest OS entry point field to point to a command used for
4	instructing the guest OS to resume control at a virtual address; and
5	storing a host entry point field to point to a command to instruct the
6	processor to exit out of a virtual machine execution mode.
1	19. The machine-readable medium of claim 16, wherein the instructions
2	cause the machine to perform further operations comprising scrubbing the protected
3	memory associated with the trusted guest software when the secure execution
4	environment is torn down.
1	20. The machine-readable medium of claim 19, wherein the instructions
2	cause the machine to perform further operations comprising causing the processor to
3	exit out of a virtual machine extension mode before exiting out of the secure execution
4	mode when the secure execution environment is torn down.
1	21. The machine-readable medium of claim 16, wherein the non-trusted
2	guest operating system (OS) issues the command to tear down the secure execution
3	environment.
_	
1	22. The machine-readable medium of claim 16, wherein the instructions
2	cause the machine to perform further operations comprising issuing the command to
3	tear down the secure execution environment due to a detected security breach.
1	
1	23. A system comprising:
2	a processor including virtual machine extension (VMX)
3	instruction support, the processor further having a normal execution
4	mode and a secure execution mode to create a secure execution
5	environment;
6	a memory including a protected memory area and a non-
7	protected memory area; and

19

8	a secure virtual machine monitor (SVMM) to implement the
9	secure execution environment in which a plurality of separate virtual
10	machines are created that operate simultaneously and separately from
11	one another including at least a first virtual machine to implement
12	trusted guest software in the protected memory area and a second virtual
13	machine to implement a non-trusted guest operating system (OS) in the
14	non-protected memory area;
15	wherein responsive to a command to tear down the secure
16	execution environment, the SVMM causes the processor to exit out of
17	the secure execution mode, tears down the secure execution
18	environment, and instructs the non-trusted guest OS to resume control in

1 24. The system of claim 23, further comprising a virtual machine control 2 structure (VCMS) to store guest state information related to the non-trusted guest 3 operating system (OS) for use in restoring the non-trusted guest OS in the normal execution mode. 4

the normal execution mode.

- 1 25. The system of claim 24, wherein the virtual machine control structure 2 (VCMS) stores a guest OS entry point field to point to a command used for instructing 3 the non-trusted guest OS to resume control at a virtual address and a host entry point 4 field to point to a command to instruct the processor to exit out of a virtual machine 5 execution mode.
- 1 26. The system of claim 23, further comprising, the SVMM scrubbing the 2 protected memory associated with the trusted guest software when the secure execution 3 environment is torn down.
- 1 27. The system of claim 26, further comprising, the SVMM causing the 2 processor to exit out of a virtual machine extension mode before exiting out of secure 3 execution mode when the secure execution environment is torn down.
- 1 28. The system of claim 23, wherein the non-trusted guest operating system 2 (OS) issues the command to tear down the secure execution environment.

- 1 29. The system of claim 23, wherein the secure virtual machine monitor 2 (SVMM) issues the command to tear down the secure execution environment.
- 1 30. The system of claim 29, wherein the secure virtual machine monitor
- 2 (SVMM) issues the command to tear down the secure execution environment due to a
- 3 detected security breach.