Optimization for the information and data sciences

Mahdi Soltanolkotabi

Introduction

Ming Hsieh Department of Electrical Engineering

Introduction (convex optimization...)

- mathematical optimization
- least-squares and linear programming
- convex optimization
- example
- course goals and topics
- nonlinear optimization
- brief history of convex optimization

Mathematical Optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- $f_i: \mathbb{R}^n \to \mathbb{R}$, $i=1,\ldots,m$: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

least-squares problems

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

minimize
$$||Ax - b||_2^2$$

solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k $(A \in \mathbb{R}^{k \times n})$; less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, ..., m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i, \quad i = 1, \dots, m$

objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Example

m lamps illuminating n (small, flat) patches

intensity I_k at patch k depends linearly on lamp powers p_j :

$$I_k = \sum_{j=1}^m a_{kj} p_j, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos \theta_{kj}, 0\}$$

problem: achieve desired illumination I_{des} with bounded lamp powers

minimize
$$\max_{k=1,...,n} |\log I_k - \log I_{\mathsf{des}}|$$

subject to $0 \le p_j \le p_{\mathsf{max}}, \quad j=1,\ldots,m$

how to solve?

 $oldsymbol{0}$ use uniform power: $p_j=p$, vary p

how to solve?

- **1** use uniform power: $p_j = p$, vary p

round
$$p_j$$
 if $p_j>p_{\rm max}$ or $p_j<0$

how to solve?

- **1** use uniform power: $p_j = p$, vary p
- use weighted least-squares:

minimize
$$\sum_{k=1}^n (I_k - I_{\rm des})^2 + \sum_{j=1}^m w_j (p_j - p_{\rm max}/2)^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{\text{max}}$

how to solve?

- **1** use uniform power: $p_j = p$, vary p
- @ use least-squares: $\min \min_k \sum_{k=1}^n (I_k I_{\rm des})^2$ round p_i if $p_i > p_{\rm max}$ or $p_i < 0$
- use weighted least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{\text{des}})^2 + \sum_{j=1}^{m} w_j (p_j - p_{\text{max}}/2)^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{\text{max}}$

use linear programming:

$$\begin{array}{ll} \text{minimize} & \max_{k=1,\ldots,n} |I_k - I_{\mathsf{des}}| \\ \text{subject to} & 0 \leq p_j \leq p_{\mathsf{max}}, \quad j = 1,\ldots,m \\ \end{array}$$

which can be solved via linear programming of course these are approximate (suboptimal) 'solutions'

5. use convex optimization: problem is equivalent to

$$\begin{array}{ll} \mbox{minimize} & f_0(p) = \max_{k=1,\dots,n} h(I_k/I_{\rm des}) \\ \mbox{subject to} & 0 \leq p_j \leq p_{\rm max}, \quad j=1,\dots,m \\ \end{array}$$

with $h(u) = \max\{u, 1/u\}$

 f_0 is convex because maximum of convex functions is convex

exact solution obtained with effort \approx modest factor \times least-squares effort

additional constraints: does adding 1 or 2 below complicate the problem?

- 1 no more than half of total power is in any 10 lamps
- 2 no more than half of the lamps are on $(p_j > 0)$
 - answer: with (1), still easy to solve; with (2), extremely difficult
 - moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

- ullet find a point that minimizes f_0 among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Brief history of convex optimization

theory (convex analysis): ca1900-1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ...)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
- late 1980s-now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, ...); new problem classes (semidefinite and second-order cone programming, robust optimization)