ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА Факультет прикладної математики та інформатики

Методи комп'ютерних обчислень Лабораторна робота

«Метод скінченних елементів»

Виконав:

Стягар Ярема

Група: ПМІ-31

Оцінка____

Прийняв:

Остапов О. Ю.

1. Постановка задачі:

$$-(Tu')' + bu' + \sigma u = f, \forall x \in (0; 1)$$

$$u(0) = 0, \quad u(1) = 0$$

2. Варіаційне формулювання задачі:

$$\int_{0}^{1} \left(-(Tu')'v + bu'v + \sigma uv - fv\right) dx$$

Проінтегруємо частинами для зменшення порядку похідної

$$\int_{0}^{1} (Tu'v' + bu'v + \sigma uv - fv) dx$$

Білінійна форма a(u, v):

$$\int_{0}^{1} (Tu'v' + bu'v + \sigma uv) dx$$

Лінійний функціонал <1, v>:

$$\int_{0}^{1} fv \, dx$$

3. Метод розв'язування МСЕ:

Я побудував наступну апроксимацію

$$U_h(x) = \sum_{i=0}^n q_i \varphi_i(x)$$

Де n — це кількість відрізків розбиття(густина сітки), а $\phi(x)$ — функція Куранта, $h = x_{i+1} - x_i$.

$$\varphi_{i}(x) = \begin{cases} 0, & 0 \le x \le x_{i-1} \\ \frac{x - x_{i-1}}{h}, & x_{i-1} < x \le x_{i} \\ \frac{x_{i+1} - x}{h}, & x_{i} < x \le x_{i+1} \\ 0, & x_{i+1} < x \le 1 \end{cases}$$

3 крайових умов легко побачити, що $q_0=0$ і $q_n=0$ Інші коефіцієнти будуть розв'язками системи лінійних алгебраїчних рівнянь. Права частина це тридіагональна матриця, де $a(\varphi_i,\varphi_i)$ – елемент головної діагоналі, $a(\varphi_i,\varphi_{i+1})$ – верхньої, $a(\varphi_{i+1},\varphi_i)$ – нижньої. Правою частину заповнюємо елементами $< l, \varphi_i >$.

Позначимо:

$$m1 = (\frac{x_i + x_{i-1}}{2})$$
 ra $m2 = (\frac{x_i + x_{i+1}}{2})$

Тоді наші елементи можна обчислити так:

$$a(\varphi_{i}, \varphi_{i}) = \frac{(T(m1) + T(m2))}{h} + \frac{(B(m1) - B(m2))}{2} + \frac{h(\sigma(m1) + \sigma(m2))}{3}$$

$$a(\varphi_{i}, \varphi_{i+1}) = \frac{-T(m2)}{h} + \frac{B(m2)}{2} + \frac{h * \sigma(m2)}{6}$$

$$a(\varphi_{i+1}, \varphi_{i}) = \frac{-T(m2)}{h} - \frac{B(m2)}{2} + \frac{h * \sigma(m2)}{6}$$

$$< l, \varphi_{i} > = \frac{h * (f(m1) + f(m2))}{2}$$

Розв'язавши дану систему методом прогонки ми знайдемо відповідні коефіцієнти q.

4. Аналіз результатів, таблиці, графіки.

Функція, яку апроксимуємо $U(x) = sin^2(2 * \pi * x)$

$$T(x) = x^{2}$$

$$B(x) = x$$

$$\sigma(x) = e^{10*x}$$

$$F(x) = -4 * \pi * x * (-2 * \pi * x * (\sin^{2}(2 * \pi * x)) + 2 * \pi *$$

$$x * \cos^{2}(2 * \pi * x) + 2\sin(2 * \pi * x) * \cos(2 * \pi * x)) + x * 4 *$$

$$\pi * \sin(2 * \pi * x) * \cos(2 * \pi * x) + e^{10 * x} * \sin^{2}(2 * \pi * x)$$

$$||U_h||_1^2 = \int_0^1 (((U_h(x))')^2 + U_h^2(x)) dx$$

$$||U_h||_2^2 = \int_0^1 U_h^2(x) dx$$

$$||e||_1^2 = \int_0^1 (((U(x) - U_h(x))')^2 + (U(x) - U_h(x))^2) dx$$

Обчислювати їх будемо так:

$$||U_h||_2^2 = \frac{h}{3} * \sum_{i=0}^{n} (q_i^2 + q_i q_{i+1} + q_{i+1}^2)$$

$$||U_h||_1^2 = \sum_{i=0}^n \frac{(q_i + q_{i+1})^2}{h} + ||U_h||_2^2$$

Третю норму обчислимо через квардратурну формулу Гауса-Лежандра п'ятого порядку.

Графік U(x):

Таблиця результатів:

n	$ Uh _2$	$ Uh _1$	$ U - Uh _1$
10	0.60837238	4.45996633	1.78684303
20	0.60967598	4.47662163	0.82601741
40	0.61158151	4.48680172	0.41159301
80	0.61216450	4.48608349	0.20485739
160	0.61231941	4.48529308	0.10182916
320	0.61235906	4.48500376	0.05068352
640	0.61236907	4.48491818	0.02526928
1280	0.61237159	4.48489489	0.01261409

Графік для n = 10:

для n = 20:

5. Висновки:

При згущенні сітки у 2 рази, я помітив, що нормф похибки зменшується у 2 рази. Отже норма похибки ϵ обернено пропорційною до густини сітки.