Варіанти завдань для програм з лінійною структурою

(довільне значення х слід ввести)

№ вар.	Функція	№ вар.	Функція
1	$y = \frac{2x^2 - \sin^2 x}{\cos(2x) + x^2} - \frac{x+1}{\ln x}$	2	$y = \frac{\ln x^2 + \cos^2 x}{\cos(2x) + x^2} + \frac{\sqrt[3]{x}}{x}$
3	$y = \frac{\ln x^2 + 2\cos^2 x}{\cos(2x)^2} + \frac{\sqrt[3]{x}}{x}$	4	$y = \frac{2\cos^2 x}{1 + x\cos(2x)} + \frac{0.3^x}{x\ln x - 2\sin^2 x}$
5	$y = \frac{x + 2x + \sin x}{\cos^2 x + x^2} + \frac{0.3^x}{\ln x}$	6	$y = \frac{2x + \sin x}{\cos^2 x + x^2} + \frac{0.5^x}{\sqrt{x}}$
7	$y = \frac{\sin x - x^2}{2x + 1} + \frac{(1 + x)^x}{1 + 3x}$	8	$y = \frac{x - \ln x}{2x - 1} + \frac{2x - 1}{x^2 + 3x}$
9	$y = \frac{\ln x + 2x}{x^2 + 1} + \frac{x + 1}{2x^2 + 1}$	10	$y = \frac{3x^2 + 2x}{\sin x + x^2} - \frac{2x}{(1+x^2)(1+2x)}$
11	$y = \frac{4x^2 + 3x}{(1+x)(1+2x)} + \frac{2x+1}{\sin x + 1}$	12	$y = \frac{(2x^2 - 1)}{x^2 + \sin^2 - \frac{2x + 1}{(x + 2)(x + 3)}}$
13	$y = \frac{(4x^2 - 2)(x + 2)}{2x + 3} + \frac{x^2 \sin x}{2x + 1}$	14	$y = \frac{x^2 + 2\sin x}{2x + 1} + \frac{\sqrt{x} - \cos x}{(2x + 1)(\ln x^2 + 1)}$
15	$y = \frac{x^2 + 2(x-1)}{(x+1)(x+\sqrt{3})} + \frac{2\sin^2 x}{2x+3^x}$	16	$y = \frac{4x^2 - 3^x}{2x^2 + 1} + \frac{\ln x}{2x + 3}$
17	$y = \frac{3x - 2}{(2x + 3)(x + 1)} + \frac{\sin 2x}{(x^2 + 1)(x + 2)}$	18	$y = \frac{x^2 - 2x}{(2x+3)(x+4)} + \frac{\sqrt[3]{x}}{2x+3}$
19	$y = \frac{x^2 + 1}{x^3 + 3} + \frac{\sin x}{2x + 3}$	20	$y = \frac{4x^2 + 3x}{3x + 4} + \frac{\sin x}{2\cos x + 1}$
21	$y = \frac{3x+2}{2x+3} + \frac{x^2}{(2x+1)(\sin x + 2)}$	22	$y = \frac{4x - \sin x}{x^2 + 3x + 1} + \frac{3x^2 + 2^x}{(x+1)(x^2 + 1)}$
23	$y = \frac{2x + \sin x}{(x+2)(x+\sqrt{x})} + \frac{4x}{(2x+\sqrt[3]{3})(x^2+1)}$	24	$y = \frac{3x+4}{(x+3)(x+1)^2} + \frac{2x-1}{(x+\sin x)(\ln x + 1)}$
25	$y = \frac{4x}{(x+\sin)^2} + \frac{2x+\sqrt[3]{x}}{(x^2+1)(x+1)}$	26	$y = \frac{2x+3^{x}}{(x+1)(x+3)} + \frac{x^{2}+\sqrt{x}}{(2x+1)(x+\sin x)}$

Варіанти завдань з лінійною структурою (перше зі значень параметрів задати як константу, друге – ввести з екрана)

№ вар.	Функція $y = f(x)$	Значення параметрів
1	$y = a \sin^2 b + b \cos^2 a$; $a = \sqrt[3]{ b+c }$; $b = \sqrt{x}$	x = 1.52; c = 5
2	$y = a^2 + b^2$; $a = \ln x $; $b = e^k + a$	x = 5.3; k = 3
3	$y = e^{x} + 5.8^{c}$; $c = a^{2} + \sqrt{b}$; $a = b^{3} + \ln b $	x = 2.5; b = 0.7
4	$y = \sqrt[3]{ a-b }$; $a = \lg x$; $b = \sqrt{x^2 + t^2}$	x = 1.7; t = 3
5	$y = a^3/b^2$; $a = e^{\sqrt{ x }}$; $b = (\sin p^2 + x^3)$	x = 2.1; p = 2
6	$y = p^2 + t^4$; $p = x^2 - \sqrt{ x }$; $t = \sqrt[3]{x + a^2}$	x = 4; a = 3.7
7	$y = c^3 / \cos c$; $c = a^2 + b^2$; $a = \sqrt{ x } + e^{\sqrt{b}}$	x = -11; $b = 12.5$
8	$y = \sin^3(a+b); a = t^3 + \sqrt{b}; \ b = \lg^2 x $	x = 10.9; t = 2
9	$y = \operatorname{arctg}^{3} x^{2}; x = p + k; k = \sqrt{p + t^{2}}$	t = 4.1; p = 3
10	$y = \cos^2(a + \sin b); \ a = \sqrt{ x }; \ b = x^4 + m^2$	m=2; x=1.1
11	$y = \sin^3 a + \cos^2 x$; $a = c + k^2$; $c = \arctan x $	k = 7.2; x = 5
12	$y = e^{\sqrt{ x }} + \cos x$; $x = a + c^3$; $a = \sin^5 b$	b = 3; c = 1.7
13	$y = a\cos x - b\sin x; \ x = \sqrt[3]{a - b}; \ a = t^2b$	t = 2.2; b = 3
14	$y = \sqrt{x} \sin a + \sqrt{b} \cos x; \ a = \lg x ; \ b = x + p^3$	x = 11; p = 2.6
15	$y = \lg a / \lg b$; $a = \sqrt{x^2 + b^2}$; $x = e^b + n$	n = 9.1; b = 3
16	$y = \ln x + t ; \ x = t^2 + p; \ t = \sqrt{m}$	m = 3.8; p = 2
17	$y = e^{a+b}$; $a = \lg t + b^2 $; $t = b^2 + \sqrt{bx}$	b = 3; $x = 5.2$
18	$y = \sqrt[3]{x^2 + c^2}$; $x = e^{mk}$; $c = \cos^2 m + k^2$	k = 2; m = 1.8
19	$y = e^x + 5.8^c$; $c = a^2 + \sqrt{b}$; $a = b^3 + \ln b $	x = 2.8; b = 3
20	$y = x^3 / t^2$; $x = e^{\sqrt{p+a}}$; $t = p^3 + a^3$	a = 2; p = 2.6
21	$y = c^2 + \sqrt{ a }; \ c = \lg b ; \ a = (b+x)^3$	b = 7; x = 2
22	$y = \operatorname{arctg}^2 x $; $x = t^3 + b^2$; $t = b^3 + e^{\sqrt{q}}$	q = 2; b = 1.8
23	$y = v^3 + \cos^2 w$; $v = \cos^2 a$; $w = \sqrt{a + x }$	x = 2.9; a = -0.9
24	$y = x^2 + \sqrt[3]{ x }$; $x = \cos^2 b + \sin^2 a$; $a = \sqrt{b + t^2}$	b = 7.1; t = 2
25	$y = \sin^3 x + \cos x^2$; $x = \lg ct $; $c = t^2 + \sqrt{a}$	t = -3; $a = 8.8$

Варіанти задач з лінійною структурою

№ вар.	Завдання			
1	Трикутник задано координатами своїх вершин. Обчислити його площу,			
	використовуючи формулу Герона: $S = p(p-a)(p-b)(p-c)$, де $p = (a+b+c)/2$;			
	а, в і с – довжини сторін трикутника. Координати вершин ввести			
	з клавіатури. Для обчислення довжини відрізка між точками $(x_1, y_1), (x_2, y_2)$			
	використовувати формулу $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$			
2	Знайти період T і частоту ν коливань у контурі, ємність конденсатора			
	в якому — C , індуктивність — L . Значення C і L ввести з клавіатури.			
	$T = 2\pi\sqrt{LC}$, $v = 1/T$			
3	Обчислити довжину і площу кола для заданого радіуса. Значення радіуса			
	ввести з екрана			
4	Обчислити площу трикутника за трьома сторонами $-a, b, c, -$ використову-			
	ючи формулу Герона (див. варіант 1). Довжини сторін ввести з клавіатури			
5	Знайти косинус кута між векторами $\vec{a} = (a_1, a_2)$ та $\vec{b} = (b_1, b_2)$			
	за формулою $\cos \alpha = (\vec{a} \cdot \vec{b})/(\vec{a} \cdot \vec{b})$. Модуль вектора $ \vec{a} = \sqrt{a_1^2 + a_2^2}$.			
	Скалярний добуток векторів обчислити за формулою $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$			
6	Обчислити відстань від точки M до площин $22x - 4y - 20z - 45 = 0$ та			
	3x - y + 5z + 1 = 0, використовуючи формулу відстані від точки до площини			
	$\rho = \frac{\left ax_0 + y_0 + cz_0 + d \right }{\sqrt{a^2 + b^2 + c^2}} . \ \ \text{Координати точки } M \ \ \text{ввести 3 екрана}$			