Dynamique et Contrôle des Systèmes

NICOLAS PETIT

Centre Automatique et Systèmes
MINES ParisTech
nicolas.petit@mines-paristech.fr

30 novembre 2018 Amphi 4

http://cas.ensmp.fr/~petit/ensta2018/

Plan de l'amphi 4

- Suivi de trajectoires
- 2 Observer pour fermer la boucle
- Mesure et estimation d'état
- Systèmes linéaires

$$\ddot{\theta} = u$$

Calculer en temps réel la correction Δu en fonction des écarts observés Δx (loi de rétroaction ou feedback) pour que Δx reste petit: stabilisation en 0 de Δx .

La planification de trajectoire donne une trajectoire de référence $t\mapsto (x_r,u_r)$ qui vérifie les équations

 $\frac{d}{dt}x_r = Ax_r + Bu_r$. Si on note $\Delta x = x - x_r$ et $\Delta u = u - u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \, \Delta x + B \, \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Théorème (placement de pôles)

Si la paire (A, B) est commandable alors, pour toute matrice $n \times n$ réelle F, il existe une matrice $m \times n$, K (non nécessairement unique si $\dim(u) = m > 1$), telle que le spectre de A + BK coı̈ncide avec celui de F.

La planification de trajectoire donne une trajectoire de référence $t\mapsto (x_r,u_r)$ qui vérifie les équations $\frac{d}{dt}x_r=Ax_r+Bu_r$. Si on note $\Delta x=x-x_r$ et $\Delta u=u-u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \, \Delta x + B \, \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Théorème (placement de pôles)

Si la paire (A, B) est commandable alors, pour toute matrice $n \times n$ réelle F, il existe une matrice $m \times n$, K (non nécessairement unique si $\dim(u) = m > 1$), telle que le spectre de A + BK coïncide avec celui de F.

La planification de trajectoire donne une trajectoire de référence $t\mapsto (x_r,u_r)$ qui vérifie les équations $\frac{d}{dt}x_r=Ax_r+Bu_r$. Si on note $\Delta x=x-x_r$ et $\Delta u=u-u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \, \Delta x + B \, \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Théorème (placement de pôles)

Si la paire (A, B) est commandable alors, pour toute matrice $n \times n$ réelle F, il existe une matrice $m \times n$, K (non nécessairement unique si $\dim(u) = m > 1$), telle que le spectre de A + BK coı̈ncide avec celui de F.

La planification de trajectoire donne une trajectoire de référence $t\mapsto (x_r,u_r)$ qui vérifie les équations $\frac{d}{dt}x_r=Ax_r+Bu_r$. Si on note $\Delta x=x-x_r$ et $\Delta u=u-u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \, \Delta x + B \, \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Théorème (placement de pôles)

Si la paire (A, B) est commandable alors, pour toute matrice $n \times n$ réelle F, il existe une matrice $m \times n$, K (non nécessairement unique si $\dim(u) = m > 1$), telle que le spectre de A + BK coı̈ncide avec celui de F.

$$K = -\begin{bmatrix} 0 & \dots 0 & 1 \end{bmatrix} C^{-1} \mathcal{P}(A)$$

Mesure et estimation d'état

où \mathcal{P} est le polynôme caractéristique désiré, \mathcal{C} la matrice de commandabilité

Avec une seule commande: formule d'Ackermann

$$K = -\begin{bmatrix} 0 & \dots 0 & 1 \end{bmatrix} C^{-1} \mathcal{P}(A)$$

où \mathcal{P} est le polynôme caractéristique désiré, \mathcal{C} la matrice de commandabilité

Comment choisir les valeurs propres?

à parties réelles <0, très negatives le système sera très rapide, éloignées des valeurs propres en boucle ouverte on trouvera des gains forts

Placement de pôles

Si (A, B) est commandable, alors le système $\frac{d}{dt}x = Ax + Bu$ est stabilisable par retour d'état u = Kx. On peut même choisir toutes les valeurs propres de A + BK

Retour de sortie et non pas retour d'état

Seule la mesure y est accessible, en général $\dim y \neq n = \dim x$

Mesure et estimation d'état

Plusieurs cas de figure

- Les mesures sont en nombre insuffisant dim y < n : reconstruction d'état
- 2 Les mesures sont de mauvaise qualité
- **Solution** Les mesures sont redondantes mais de mauvaise qualité $\dim y \ge n$: fusion de données

Systèmes linéaires

Quantification, échantillonnage, bruit

Fusion de données

Mesure et estimation d'état

Pour l'estimation de la position du véhicule: GPS, caméras, télémètres, sonars, odomètres, magnétomètres, accéléromètres. Chaque technologie a ses défauts caractéristiques

Mesures expérimentales

bruit basse fréquence du GPS, dérive des odomètres

Observateur

On va intercaler entre les mesures et le contrôleur un système dynamique pour estimer l'état du système

On dispose: du modèle du système, des valeurs de la commande *u* et des mesures *y* (avec leurs défauts)

Systèmes linéaires

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx$$

Définition (distinguabilité)

Deux états initiaux x et \widetilde{x} sont dits indistinguables (notés $x(\widetilde{x})$ si pour tout $t \geq 0$, les sorties y(t) et $\widetilde{y}(t)$ sont identiques pour toute entrée u(t). Ils sont dits distinguables sinon.

L'indistinguabilité est une relation d'équivalence. Notons I(x) la classe d'équivalence de x.

Définition (observabilité globale)

Le système est dit observable si $I(x) = \{x\}$ pour tout x.

Distinguabilité

$$\frac{d^2}{dt^2}x = -x - \frac{1}{2}\frac{d}{dt}x + \frac{1}{10}\cos(t)$$

Formellement.

$$\begin{cases} y = x \\ \frac{d}{dt}y = \frac{d}{dt}x \end{cases}$$

$$\begin{cases} y = \frac{d}{dt}x \\ \frac{d}{dt}y = -x - \frac{1}{2}\frac{d}{dt}x + \frac{1}{10}\cos(t) \end{cases}$$

Dans les deux cas, on reconstitue $(x, \frac{d}{dt}x)^T$, la condition initiale est distinguable

Peut-on distinguer la condition initiale d'un système linéaire?

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx$$

$$x(t) = \exp(tA)x(0) + \int_0^t \exp[(t-\tau)A]Bu(\tau)d\tau$$

$$y(t) = C\exp(tA)x(0) + \int_0^t C\exp[(t-\tau)A]Bu(\tau)d\tau$$

Équation d'inconnue x(0)

$$\underbrace{C \exp(tA)}_{\text{non inversible}} x(0) = y(t) - \int_0^t C \exp[(t-\tau)A]Bu(\tau)d\tau$$

$$\underbrace{\int_0^T \exp(t\mathsf{A}')C'C\exp(t\mathsf{A})dt}_{\phi(T)} x(0) = \operatorname{Fonction}(y(t \in [0, T]), u(t \in [0, T]))$$

Si $\phi(T)$ est inversible alors on peut reconstruire x(0) à partir des mesures y et de la commande sur [0, T]

$$v'\left(\int_0^T \exp(tA')C'C\exp(tA)dt\right)v=0$$

et par suite

$$\int_0^T \|C\exp(tA)v\|^2 dt = 0$$

ďoù

$$C \exp(tA)v = 0$$

Les mesures issues de la condition initiale x(0) et x(0) + v sont identiques. Ces conditions initiales sont indistinguables

$$\exists v \neq 0$$
, $C \exp(tA)v = 0$, $\forall t \in [0, T]$

d'où, par dérivations $\frac{d}{dt}(.)$ (fonction analytique) en t=0

$$CA \exp(tA)v = 0$$
, $CA^2 \exp(tA)v = 0$, ...,
 $CA^{n-1} \exp(tA)v = 0$, $CA^n \exp(tA)v = 0$, ...
 $\iff \exists v \neq 0, Cv = 0$, $CAv = 0$,..., $CA^{n-1}v = 0$, $CA^nv = 0$,...
 $\iff \exists v \neq 0, Cv = 0$, $CAv = 0$,..., $CA^{n-1}v = 0$
 $\iff [C; CA; ...; CA^{n-1}]$ n'est pas de rang plein

Le système $\frac{d}{dt}x = Ax + Bu$, y = Cx est observable si et seulement si la matrice d'observabilité $\mathcal{O} = (C; CA; \dots CA^{n-1})$ est de rang $n = \dim(x)$

Dualité

Le système $\frac{d}{dt}x = Ax + Bu$, y = Cx est observable (resp. commandable) si et seulement si $\frac{d}{dt}x = A'x + C'u$, y = B'x est commandable (resp. observable)

Forme normale observateur

$$\frac{d}{dt}x = Ax + Bu$$
, $y = Cx$, $(\dim C = 1 \times n)$

Changement de variables mettant le système sous forme canonique observateur

Forme canonique

$$A_{2} = \begin{pmatrix} 0 & \dots & 0 & -a_{0} \\ 1 & 0 & 0 & \dots \\ \dots & 1 & 0 & \dots \\ 0 & \dots & 1 & -a_{n-1} \end{pmatrix}, B_{2} = \begin{pmatrix} b_{0} \\ \dots \\ b_{n-1} \end{pmatrix}$$

$$C_{2} = \begin{pmatrix} 0 & \dots & 0 & 1 \end{pmatrix}$$

 $M = [H, AH, ..., A^{n-1}H], H$ dernière colonne de l'inverse de \mathcal{O}

$$\mathcal{L}_2 = \left(egin{array}{ccc} \mathcal{L}_0 \ dots \ \mathcal{L}_{n-1} \end{array}
ight) \ A_2 + \mathcal{L}_2 C_2 = \left(egin{array}{cccc} 0 & ... & 0 & -a_0 + \mathcal{L}_0 \ 1 & 0 & 0 & ... \ ... & 1 & 0 & ... \ 0 & ... & 1 & -a_{n-1} + \mathcal{L}_{n-1} \end{array}
ight)$$

Polynôme caractéristique

$$s^{n} - (a_{n-1} - L_{n-1})s^{n-1} - \dots - (a_{1} - L_{1})s - (a_{0} - L_{0}) = 0$$

On peut librement choisir les pôles de A + LC si (A, C) est observable

Construction d'un observateur (suite)

$$\begin{cases} \frac{d}{dt}x = Ax + Bu, & y = Cx \\ \frac{d}{dt}\hat{x} = A\hat{x} + Bu + L(C\hat{x} - y) \\ \frac{d}{dt}(x - \hat{x}) = (A + LC)(x - \hat{x}) \end{cases}$$

d'où, si les pôles sont à partie réelle strictement négative

$$\lim_{t\to+\infty} (x(t) - \hat{x}(t)) = 0$$

On reconstitue asymptotiquement x en l'estimant par \hat{x}

Exemple d'observateur: centrale inertielle bas coût

$$\frac{d}{dt}Q = \frac{1}{2}M(p,q,r)Q$$

avec

$$M = \begin{pmatrix} 0 & -p & -q & -r \\ p & 0 & r & -q \\ q & -r & 0 & p \\ r & q & -p & 0 \end{pmatrix}$$

$$Y = -R(Q) \begin{pmatrix} 0 \\ 0 \\ q \end{pmatrix}$$

$$R(Q) =$$

$$\begin{pmatrix} 2 \cdot (q_0^2 + q_1^2) - 1 & 2 \cdot q_1 \cdot q_2 + 2 \cdot q_0 \cdot q_3 & 2 \cdot q_1 \cdot q_3 - 2 \cdot q_0 \cdot q_2 \\ 2 \cdot q_1 \cdot q_2 - 2 \cdot q_0 \cdot q_3 & 2 \cdot (q_0^2 + q_2^2) - 1 & 2 \cdot q_2 \cdot q_3 + 2 \cdot q_0 \cdot q_1 \\ 2 \cdot q_1 \cdot q_3 + 2 \cdot q_0 \cdot q_2 & 2 \cdot q_2 \cdot q_3 - 2 \cdot q_0 \cdot q_1 & 2 \cdot (q_0^2 + q_3^2) - 1 \end{pmatrix}$$

$$A = \frac{1}{2}M(p, q, r)$$

$$Y = CX$$

$$C = -2 \cdot g \cdot egin{pmatrix} -q_2 & q_3 & -q_0 & q_1 \ q_1 & q_0 & q_3 & q_2 \ 2q_0 & 0 & 0 & 2q_3 \end{pmatrix}$$

Convergence

Le système (étendu, dimension 2n) à étudier est

$$\frac{d}{dt}x = Ax + Bu, y = Cx$$

$$\frac{d}{dt}\hat{x} = A\hat{x} + Bu + L(C\hat{x} - y) observateur$$

$$u = u_r(t) + K(\hat{x} - x_r(t)) contrôleur$$

Hypothèses

Par le choix de K et L, A + BK est stable, A + LC est stable

Question

Le système bouclé par l'observateur contrôleur est-il stable?

Étude de stabilité

$$\begin{cases} \frac{d}{dt}x = Ax + B(u_r(t) + K(\hat{x} - x_r(t))) \\ \frac{d}{dt}\hat{x} = A\hat{x} + B(u_r(t) + K(\hat{x} - x_r(t))) + L(C\hat{x} - Cx) \\ \frac{d}{dt}\begin{pmatrix} x \\ \hat{x} \end{pmatrix} = \underbrace{\begin{pmatrix} A & BK \\ -LC & A + BK + LC \end{pmatrix}}_{=M}\begin{pmatrix} x \\ \hat{x} \end{pmatrix} + f(t) \end{cases}$$

Etude du polynôme caractéristique de la matrice M du système étendu

$$\det(SI - M) = \begin{vmatrix} SI - A & -BK \\ LC & SI - A - BK - LC \end{vmatrix}$$

$$= \begin{vmatrix} SI - A - LC & -SI + A + LC \\ LC & SI - A - BK - LC \end{vmatrix}$$

$$= \begin{vmatrix} SI - A - LC & 0 \\ LC & SI - A - BK \end{vmatrix}$$

$$= \det(SI - A - LC) \det(SI - A - BK)$$

L'ensemble des valeurs propres du système bouclé par l'observateur contrôleur est constitué des valeurs propres de A + BK et de celles de A + LC

Mesure et estimation d'état

Démarche pratique: l'observateur-contrôleur

- On conçoit le contrôleur comme si on disposait de la mesure de tout l'état x. On place les pôles de A + BK
- Séparément on construit un observateur asymptotique. On place les pôles de A + LC
- **1** On substitue \hat{x} à x et on boucle: les valeurs propres ainsi obtenues sont connues à l'avance

Observateur-contrôleur

Systèmes linéaires