E0 265 : Convex Optimization and Applications Poissonian image restoration using ADMM

Sweta Sharma

Department of Computer Science and Automation Indian Institute of Science

02.05.2018

- 1 Introduction
- 2 Problem Definition
- 3 Problem Formulation
- 4 ADMM
- 5 Experiments

Introduction

• In the area of image denoising, a large fraction of work has been devoted to developing regularizers to deal with the presence of noise, and to solve the resulting optimization problem efficiently.

- In the area of image denoising, a large fraction of work has been devoted to developing regularizers to deal with the presence of noise, and to solve the resulting optimization problem efficiently.
- The resulting optimization problems are convex and usually non-smooth, of very high dimensionality.

- In the area of image denoising, a large fraction of work has been devoted to developing regularizers to deal with the presence of noise, and to solve the resulting optimization problem efficiently.
- The resulting optimization problems are convex and usually non-smooth, of very high dimensionality.
- The algorithms developed for Gaussian noise models cannot be directly applied to other noise models such as the Poisson case.

- In the area of image denoising, a large fraction of work has been devoted to developing regularizers to deal with the presence of noise, and to solve the resulting optimization problem efficiently.
- The resulting optimization problems are convex and usually non-smooth, of very high dimensionality.
- The algorithms developed for Gaussian noise models cannot be directly applied to other noise models such as the Poisson case.
- Poissonian image models are well studies in fields like astronomical, biomedical and, photographic imaging.

Problem Definition

 Given an observed image, possibly corrupted with Poisson noise, restore the original image using various regularizers using ADMM(Alternating direction method of multipliers).

Let $y = (y_1, ..., y_m) \in \mathbb{N}^m$ be the vector of observed image pixels, assumed to be a sample of a random vector $Y = (Y_1, ..., Y_m)$ of m independent Poisson variables, with probability distribution

$$P[Y = y|\lambda] = \prod_{i=1}^{m} \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!}$$
 (1)

■ Let $y = (y_1, ..., y_m) \in \mathbb{N}^m$ be the vector of observed image pixels, assumed to be a sample of a random vector $Y = (Y_1, ..., Y_m)$ of m independent Poisson variables, with probability distribution

$$P[Y = y | \lambda] = \prod_{i=1}^{m} \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!}$$
 (1)

■ $\lambda = (\lambda_1, ..., \lambda_m)$ is the underlying mean intensity vector, assumed to be a linear observation of the image to be estimated x , i.e.,

$$\lambda = Kx \tag{2}$$

• K is the observation operator, which is simply a matrix $K \in \mathbb{R}^{m \times n}$.

- K is the observation operator, which is simply a matrix $K \in \mathbb{R}^{m \times n}$.
- It is assumed that all elements of K are non-negative.

- K is the observation operator, which is simply a matrix $K \in \mathbb{R}^{m \times n}$
- It is assumed that all elements of K are non-negative.
- Log-likelihood

$$-logP[Y = y|x] = \sum_{i=1}^{m} (Kx)_i - y_i log((Kx)_i) + log(y_i!)$$

$$= \mathcal{L}(Kx)$$

$$= (\mathcal{L} \circ K)(x)$$
(3)

■ For the case K = I we have,

$$\mathcal{L}(z) = \sum_{i=1}^{m} -y_i \log(z_i) + z_i + \log(y_i!)$$

$$= C + \sum_{i=1}^{m} \zeta(z_i, y_i)$$
(4)

where $C = \sum_{i=1}^{m} log(y_i!)$. ζ is defined as

$$\zeta(z,y) = z + \mathbb{I}_{\mathbb{R}_+}(z) - ylog(z_+)$$
 (5)

where \mathbb{I} is the indicator function.

Regularization Criteria

■ Total Variation Regularization :

$$TV(x) = \sum_{i=1}^{n} \sqrt{(\Delta_{s}^{h} x)^{2} + (\Delta_{s}^{v} x)^{2}}$$
 (6)

where $(\Delta_s^h xx)$ and $(\Delta_s^v x)$ denote the horizontal and vertical first order differences respectively.

Total Variation Regularization :

$$TV(x) = \sum_{i=1}^{n} \sqrt{(\Delta_{s}^{h} x)^{2} + (\Delta_{s}^{v} x)^{2}}$$
 (6)

where $(\Delta_s^h xx)$ and $(\Delta_s^v x)$ denote the horizontal and vertical first order differences respectively.

■ The resulting optimization problem is

$$minL^{TV}(x) = \mathcal{L}(Kx) + \tau TV(x) + \mathbb{I}_{\mathbb{R}_+}(x)$$
 (7)

where $\tau \in \mathbb{R}_+$ is the regularization parameter.

000

■ Frame Analysis Regularization: Penalizes the norm of the representation coefficients of x on some wavelet basis or tight frame, given by Px, where P is the analysis operator associated with the frame.

- Frame Analysis Regularization: Penalizes the norm of the representation coefficients of x on some wavelet basis or tight frame, given by Px, where P is the analysis operator associated with the frame.
- The resulting optimization problem is

$$minL^{FA}(x) = \mathcal{L}(Kx) + \tau ||Px||_1 + \mathbb{I}_{\mathbb{R}_+}(x)$$
 (8)

where $\tau \in \mathbb{R}_+$ is the regularization parameter as in TV regularizer.

Regularization Criteria

■ Frame Synthesis Regularization : The unknown image is represented on a frame and then the coefficients of this representation are estimated from the observed data under some regularizer.

- Frame Synthesis Regularization: The unknown image is represented on a frame and then the coefficients of this representation are estimated from the observed data under some regularizer.
- Let $W \in \mathbb{R}^{n \times d}$ be the synthesis matrix, the image is x = Ws, where s is the vector of representation coefficients, the resulting optimization problem is

$$minL^{FS}(s) = \mathcal{L}(KWs) + \tau ||s||_1 + \mathbb{I}_{\mathbb{R}_+}(Ws)$$
 (9)

where $\tau \in \mathbb{R}_+$ is the regularization parameter.

The Alternating Direction Method of Multipliers(ADMM)

Unconstrained problem of the following form

$$min_{z \in \mathcal{R}^d} f_1(z) + f_2(Gz).$$
 (10)

ADMM • • • • •

where $f_1: \mathcal{R}^d - > \mathcal{R}$ and $f_2: \mathcal{R}^p - > \mathcal{R}$ and $G \in \mathcal{R}^{p \times d}$.

The Alternating Direction Method of Multipliers (ADMM)

Unconstrained problem of the following form

$$min_{z \in \mathcal{R}^d} f_1(z) + f_2(Gz).$$
 (10)

where $f_1: \mathcal{R}^d - > \mathcal{R}$ and $f_2: \mathcal{R}^p - > \mathcal{R}$ and $G \in \mathcal{R}^{p \times d}$.

■ The ADMM for the above problem is

Algorithm ADMM

- 1. Set k = 0, choose $\mu > 0$, \mathbf{u}_0 , and \mathbf{d}_0 .
- repeat

3.
$$\mathbf{z}_{k+1} \in \arg\min_{\mathbf{z}} f_1(\mathbf{z}) + \frac{\mu}{2} \|\mathbf{G} \mathbf{z} - \mathbf{u}_k - \mathbf{d}_k\|_2^2$$

4.
$$\mathbf{u}_{k+1} \in \arg\min_{\mathbf{u}} f_2(\mathbf{u}) + \frac{\mu}{2} \|\mathbf{G} \mathbf{z}_{k+1} - \mathbf{u} - \mathbf{d}_k\|_2^2$$

5.
$$\mathbf{d}_{k+1} \leftarrow \mathbf{d}_k - (\mathbf{G} \mathbf{z}_{k+1} - \mathbf{u}_{k+1})$$

- 6. $k \leftarrow k+1$
- 7. **until** stopping criterion is satisfied.

Generalization of the formulation

$$\min_{z \in \mathcal{R}^d} \sum_{j=1}^J g_j(H^{(j)}z) \tag{11}$$

where $g_j: \mathcal{R}^{p_j} -> \mathcal{R}$ are closed, proper, convex functions and $H^{(j)} \in \mathcal{R}^{p_j \times d}$ are arbitrary matrices.

■ The minimization in (11) can be written using the following correspondences : $f_1 = 0$,

$$G = \begin{bmatrix} H^{(1)} \\ \vdots \\ \vdots \\ H^{(J)} \end{bmatrix} \in \mathcal{R}^{p \times d}$$

where $p = p_1 + ... + p_j$, and $f_2 : \mathcal{R}^p - > \mathcal{R}$ given by

$$f_2(u) = \sum_{i=1}^{J} g_j(u^{(j)})$$
 (13)

ADMM ○ ○ ○ ○

■ The resulting ADMM has exactly the same structure with

$$d_k = egin{bmatrix} d_k^{(1)} \ \cdot \ \cdot \ d_k^{(J)} \end{bmatrix}$$

■ The objective function with J=3,

$$g_1 = \mathcal{L}, \quad g_2 = \tau TV, \quad g_3 = \mathbb{I}_{\mathbb{R}_+}.$$
 (16)

and

$$H^{(1)} = \mathcal{K}, \quad H^{(2)} = I, \quad H^{(3)} = I.$$
 (17)

Experiments

■ The objective function with J = 3,

$$g_1 = \mathcal{L}, \quad g_2 = \tau TV, \quad g_3 = \mathbb{I}_{\mathbb{R}_+}.$$
 (16)

and

$$H^{(1)} = \mathcal{K}, \quad H^{(2)} = I, \quad H^{(3)} = I.$$
 (17)

• In one experiment the original image was corrupted with Poisson noise and in the other experiment the original image was first blurred with a Gaussian Filter of size 3×3 of unit variance and then corrupted with Poisson noise.

Algorithm Poisson Image Deconvolution by AL (PIDAL-TV) 1. Choose $\mathbf{u}_0^{(1)}, \mathbf{u}_0^{(2)}, \mathbf{u}_0^{(3)}, \mathbf{d}_0^{(1)}, \mathbf{d}_0^{(2)}, \mathbf{d}_0^{(3)}, \mu$, and τ . Set $k \leftarrow 0$. $\zeta_{i}^{(1)} \leftarrow \mathbf{u}_{i}^{(1)} + \mathbf{d}_{i}^{(1)}$ $\zeta_{i}^{(2)} \leftarrow \mathbf{u}_{i}^{(2)} + \mathbf{d}_{i}^{(2)}$ $C_i^{(3)} \leftarrow \mathbf{u}_i^{(3)} + \mathbf{d}_i^{(3)}$ $\gamma_k \leftarrow \mathbf{K}^T \zeta_k^{(1)} + \zeta_k^{(2)} + \zeta_k^{(3)}$ $\mathbf{z}_{k+1} \leftarrow (\mathbf{K}^T \mathbf{K} + 2 \mathbf{I})^{-1} \gamma_k$ $\nu_{L}^{(1)} \leftarrow \mathbf{K} \mathbf{z}_{k+1} - \mathbf{d}_{L}^{(1)}$ $\mathbf{u}_{k+1}^{(1)} \leftarrow \arg \min_{\mathbf{v}} \frac{\mu}{2} \|\mathbf{v} - \nu_k^{(1)}\|_2^2 + \sum_{i=1}^{m} \xi(v_i, y_i)$ $\nu_k^{(2)} \leftarrow \mathbf{z}_{k+1} - \mathbf{d}_k^{(2)}$ $\mathbf{u}_{k+1}^{(2)} \leftarrow \arg \min_{\mathbf{v}} \frac{\mu}{2} \|\mathbf{v} - \nu_k^{(2)}\|^2 + \tau \, \text{TV}(\mathbf{v}).$ $\nu_{L}^{(3)} \leftarrow \mathbf{z}_{k+1} - \mathbf{d}_{L}^{(3)}$ $\mathbf{u}_{k+1}^{(3)} \leftarrow \arg \min_{\mathbf{v}} \frac{\mu}{2} \|\mathbf{v} - \nu_k^{(3)}\|^2 + \iota_{\mathbb{R}^n_+}(\mathbf{v}).$ $\mathbf{d}_{k+1}^{(1)} \leftarrow \mathbf{d}_{k}^{(1)} - (\mathbf{K} \mathbf{z}_{k+1} - \mathbf{u}_{k+1}^{(1)})$ $\mathbf{d}_{k+1}^{(2)} \leftarrow \mathbf{d}_{k}^{(2)} - (\mathbf{z}_{k+1} - \mathbf{u}_{k+1}^{(2)})$ $\mathbf{d}_{k+1}^{(3)} \leftarrow \mathbf{d}_{k}^{(3)} - (\mathbf{z}_{k+1} - \mathbf{u}_{k+1}^{(3)})$ 16. 18. until some stopping criterion is satisfied.

Experiments

Poissonian image reconstruction with TV-Based Regularization

Original image(left), Noisy image(middle) and Estimate from PIDAL-TV(right)

Experiments

Poissonian image reconstruction with TV-Based Regularization

Original image(left), Noisy and blurred image(middle) and Estimate from PIDAL-TV(right)

Poissonian image reconstruction using Frame-Based Regularization

■ The objective function with J=3,

$$g_1 = \mathcal{L}, \quad g_2 = \tau ||.||_1, \quad g_3 = \mathbb{I}_{\mathbb{R}_+}.$$
 (18)

and

$$H^{(1)} = \mathcal{K}, \quad H^{(2)} = P, \quad H^{(3)} = I.$$
 (19)

Poissonian image reconstruction using Frame-Based Regularization

■ The objective function with J = 3,

$$g_1 = \mathcal{L}, \quad g_2 = \tau ||.||_1, \quad g_3 = \mathbb{I}_{\mathbb{R}_+}.$$
 (18)

and

$$H^{(1)} = \mathcal{K}, \quad H^{(2)} = P, \quad H^{(3)} = I.$$
 (19)

• In one experiment the original image was corrupted with Poisson noise and in the other experiment the original image was first blurred with a Gaussian Filter of size 3 × 3 of unit variance and then corrupted with Poisson noise. The matrix P was initialized with a Haar Wavelet Transformation matrix.

Sweta Sharma Indiar

Algorithm Poisson Image Deconvolution by AL (PIDAL-FA) 1. Choose $\mathbf{u}_{0}^{(1)}, \mathbf{u}_{0}^{(2)}, \mathbf{u}_{0}^{(3)}, \mathbf{d}_{0}^{(1)}, \mathbf{d}_{0}^{(2)}, \mathbf{d}_{0}^{(3)}, \mu$, and τ . Set $k \leftarrow 0$. repeat $\zeta_{k}^{(1)} \leftarrow \mathbf{u}_{k}^{(1)} + \mathbf{d}_{k}^{(1)}$ $\zeta_{i}^{(2)} \leftarrow \mathbf{u}_{i}^{(2)} + \mathbf{d}_{i}^{(2)}$ $\zeta_{k}^{(3)} \leftarrow \mathbf{u}_{k}^{(3)} + \mathbf{d}_{k}^{(3)}$ $\gamma_k \leftarrow \mathbf{K}^T \zeta_k^{(1)} + \mathbf{P}^T \zeta_k^{(2)} + \zeta_k^{(3)}$ 7. $\mathbf{z}_{k+1} \leftarrow (\mathbf{K}^T \mathbf{K} + 2\mathbf{I})^{-1} \gamma_k$ $\nu_{L}^{(1)} \leftarrow \mathbf{K} \mathbf{z}_{k+1} - \mathbf{d}_{L}^{(1)}$ $\mathbf{u}_{k+1}^{(1)} \leftarrow \frac{1}{2} \left(\nu_{i,k}^{(1)} - \frac{1}{\mu} + \sqrt{\left(\nu_{i,k}^{(1)} - \frac{1}{\mu} \right)^2 + 4 y_i} \right)$ $\nu_k^{(2)} \leftarrow \mathbf{Pz}_{k+1} - \mathbf{d}_k^{(2)}$ 11. $\mathbf{u}_{k+1}^{(2)} \leftarrow \arg \min_{\mathbf{v}} \frac{\mu}{2} \|\mathbf{v} - \nu_k^{(2)}\|^2 + \tau \|\mathbf{v}\|_1$. $\nu_{L}^{(3)} \leftarrow \mathbf{z}_{k+1} - \mathbf{d}_{L}^{(3)}$ 13. $\mathbf{u}_{k+1}^{(3)} \leftarrow \max \{ \nu_k^{(3)}, 0 \}.$ $\mathbf{d}_{k+1}^{(1)} \leftarrow \mathbf{d}_{k}^{(1)} - \mathbf{K} \mathbf{z}_{k+1} + \mathbf{u}_{k+1}^{(1)}$ $\mathbf{d}_{k+1}^{(2)} \leftarrow \mathbf{d}_{k}^{(2)} - \mathbf{P} \mathbf{z}_{k+1} + \mathbf{u}_{k+1}^{(2)}$ $\mathbf{d}_{k+1}^{(3)} \leftarrow \mathbf{d}_{k}^{(3)} - \mathbf{z}_{k+1} + \mathbf{u}_{k+1}^{(3)}$ 18. until some stopping criterion is satisfied.

Poissonian image reconstruction using Frame-Based Regularization

Original image(left), Noisy image(middle) and Estimate from PIDAL-FA(right)

Experiments 0000

Original image(left), Noisy and blurred image(middle) and Estimate from PIDAL-FA(right)

Studied ADMM based algorithm to handle the optimization problems resulting from regularization approaches to the restoration of Poissonian images.

Summary

- Studied ADMM based algorithm to handle the optimization problems resulting from regularization approaches to the restoration of Poissonian images.
- Experiments show that the proposed algorithm runs fast and is able to restore images.

For Further Reading I

- Chambolle., A. An algorithm for total variation minimiza-tion and applications. InJour. Math. Imaging and Vision,pp. vol. 20,pp. 8997, 2004, 2004.
- Goldstein and Oshe. The split bregman method for I1 regu-larized problems. InSIAM Journal on Imaging Sciences2(2), 2009.
- Mrio A. T. Figueiredo, Jos M. Bioucas-Dias. Restoration of poissonian images using alternating direction optimization. InIEEE Transactions on Image Processing, pp.Volume: 19, Issue: 12. IEEE Press, 2010.