LinePicking

Generated by Doxygen 1.8.2

Wed Aug 29 2012 17:34:39

Contents

1	Line	Picking	I				1
2	Todo	o List					3
3	Mod	lule Inde	ex				5
	3.1	Module	es		 	 	5
4	Data	a Struct	ure Index				7
	4.1	Data S	Structures		 	 	7
5	File	Index					9
	5.1	File Lis	st		 	 	9
6	Mod	lule Dod	cumentation	ion			11
	6.1	LinePi	cking API		 	 	11
		6.1.1		Description			11
		6.1.2	Function	n Documentation	 	 	11
			6.1.2.1	LinePickingCDF	 	 	11
			6.1.2.2	LinePickingCheckParameters	 	 	12
			6.1.2.3	LinePickingNumberOfProblems	 	 	12
			6.1.2.4	LinePickingPDF	 	 	12
			6.1.2.5	LinePickingSupport	 	 	12
			6.1.2.6	LinePickingVar	 	 	12
7	Data	a Struct	ure Docur	mentation			13
	7.1	LinePi	ckingRec S	Struct Reference	 	 	13
		7.1.1	Detailed	Description	 	 	13
8	File	Docum	entation				15
	8.1			rence	 	 	15
		8.1.1		Description			15
		8.1.2		Documentation			15
			8.1.2.1	beta			15
				heta inc			16

ii CONTENTS

8.2	Cube.h	n File Refe	rence	16
	8.2.1	Detailed	Description	17
	8.2.2	Function	Documentation	17
		8.2.2.1	CubeDistanceCDF	17
		8.2.2.2	CubeDistanceCheckParameters	17
		8.2.2.3	CubeDistanceMean	17
		8.2.2.4	CubeDistancePDF	18
		8.2.2.5	CubeDistanceSupport	18
		8.2.2.6	CubeDistanceVar	18
8.3	Disk.h	File Refere	ence	19
	8.3.1	Detailed	Description	19
	8.3.2	Function	Documentation	19
		8.3.2.1	DiskDistanceCDF	19
		8.3.2.2	DiskDistanceCheckParameters	20
		8.3.2.3	DiskDistanceMean	20
		8.3.2.4	DiskDistancePDF	20
		8.3.2.5	DiskDistanceSupport	21
		8.3.2.6	DiskDistanceVar	21
8.4	Hyperb	oall.h File F	Reference	21
	8.4.1	Detailed	Description	22
	8.4.2	Function	Documentation	22
		8.4.2.1	HyperballDistanceCDF	22
		8.4.2.2	HyperballDistanceCheckParameters	22
		8.4.2.3	HyperballDistanceMean	23
		8.4.2.4	HyperballDistancePDF	23
		8.4.2.5	HyperballDistanceSupport	23
		8.4.2.6	HyperballDistanceVar	24
8.5	Line.h	File Refere	ence	24
	8.5.1	Detailed	Description	24
	8.5.2	Function	Documentation	25
		8.5.2.1	LineDistanceCDF	25
		8.5.2.2	LineDistanceCheckParameters	25
		8.5.2.3	LineDistanceMean	25
		8.5.2.4	LineDistancePDF	25
		8.5.2.5	LineDistanceSupport	26
		8.5.2.6	LineDistanceVar	26
8.6	LinePi	cking.h File	e Reference	27
	8.6.1	Detailed	Description	28
	8.6.2	Macro De	efinition Documentation	28
		8.6.2.1	ExpandFields	28

CONTENTS

	8.6.3	Variable [Documentation	28
		8.6.3.1	LinePickingFields	28
8.7	PrismG	ieodesic.h	File Reference	28
	8.7.1	Detailed I	Description	29
	8.7.2	Function	Documentation	29
		8.7.2.1	PrismGeodesicDistanceCDF	29
		8.7.2.2	PrismGeodesicDistanceCheckParameters	29
		8.7.2.3	PrismGeodesicDistanceMean	30
		8.7.2.4	PrismGeodesicDistancePDF	30
		8.7.2.5	PrismGeodesicDistanceSupport	30
		8.7.2.6	PrismGeodesicDistanceVar	30
8.8	Rectan	gle.h File I	Reference	31
	8.8.1	Detailed I	Description	31
	8.8.2	Function	Documentation	31
		8.8.2.1	RectangleDistanceCDF	31
		8.8.2.2	RectangleDistanceCheckParameters	32
		8.8.2.3	RectangleDistanceMean	32
		8.8.2.4	RectangleDistancePDF	32
		8.8.2.5	RectangleDistanceSupport	33
		8.8.2.6	RectangleDistanceVar	33
8.9	Sphere	.h File Ref	ference	33
	8.9.1	Detailed I	Description	34
	8.9.2	Function	Documentation	34
		8.9.2.1	SphereDistanceCDF	34
		8.9.2.2	SphereDistanceCheckParameters	34
		8.9.2.3	SphereDistanceMean	35
		8.9.2.4	SphereDistancePDF	35
		8.9.2.5	SphereDistanceSupport	35
		8.9.2.6	SphereDistanceVar	36
8.10	Sphere	Geodesic.	h File Reference	36
	8.10.1	Detailed I	Description	36
	8.10.2	Function	Documentation	37
		8.10.2.1	SphereGeodesicDistanceCDF	37
		8.10.2.2	SphereGeodesicDistanceCheckParameters	37
		8.10.2.3	SphereGeodesicDistanceMean	37
		8.10.2.4	SphereGeodesicDistancePDF	38
		8.10.2.5	SphereGeodesicDistanceSupport	38
		8.10.2.6	SphereGeodesicDistanceVar	38
8.11	Square	.h File Ref	ference	38
	8.11.1	Detailed I	Description	39

iv CONTENTS

	8.11.2	Function	Documentation	39
		8.11.2.1	SquareDistanceCDF	39
		8.11.2.2	SquareDistanceCheckParameters	39
		8.11.2.3	SquareDistanceMean	40
		8.11.2.4	SquareDistancePDF	40
		8.11.2.5	SquareDistanceSupport	40
		8.11.2.6	SquareDistanceVar	41
Index				41

LinePicking

Numerical code for geometric probability problems, in particular PDFs, CDFs, means and variances for the "line picking" problem. The problem is a standard problem in stochastic geometry, where we pick lines at random from some region. The typical questions one asks are: what will the mean line length be? What will the Probability Density Function (PDF) be? This software implements the current list of known PDFs, CDFs, means and variances for such problems. It also provides solutions to some previously unsolved problems.

The library has been designed to provide a small set of entry points which are callable from R, Matlab and other C programs. Documentation for the R and Matlab bindings to this libary have been provided in the a format suitable for each of their help systems.

Much of this manual is dedicated to documenting functions specific to a particular problem but users of the library only need to understand the entry points documented in the LinePicking API.

A simple method for seamlessly extending the library has been provided and is also documented in the LinePicking API.

Authors

Eric Parsonage eric.parsonage@adelaide.edu.au Matthew Roughan matthew.roughan@adelaide.edu.au Jonothan Tuke simon.tuke@adelaide.edu.au

LinePicking 2

Todo List

Group api

Add some more preamble about the API.

Global CubeDistanceCDF (double a, double *b)

Write up how to derive the CDF.

Global CubeDistanceVar (double *parameters)

Try to derive a value algebaricaly

Global DiskDistanceCDF (double a, double *b)

Write up how to derive the CDF.

Global DiskDistanceVar (double *parameters)

Derive an algebraic expression.

Global HyperballDistanceCDF (double t, double *parameters)

Implement!

Global PrismGeodesicDistanceCDF (double t, double *parameters)

Write up the derivation.

Global PrismGeodesicDistanceMean (double *parameters)

re-derive the mean without using the three part PDF as a basis I am sure a simpler result can be found using a similar methods to that used on the rectangle

Global PrismGeodesicDistancePDF (double t, double *parameters)

Write up the derivation.

Global PrismGeodesicDistanceVar (double *parameters)

re-derive the variance without using the three part PDF as a basis I am sure a simpler result can be found using a similar methods to that used on the rectangle

Global RectangleDistanceCDF (double t, double *parameters)

Write up the derivation.

Global SphereGeodesicDistanceCDF (double s, double *parameters)

Write up the derivation.

Global SphereGeodesicDistanceMean (double *parameters)

Write up the derivation.

Global SphereGeodesicDistancePDF (double s, double *parameters)

Write up the derivation.

Global SphereGeodesicDistanceVar (double *parameters)

Write up the derivation.

Todo List

Module Index

3.1	Modules	
Here i	s a list of all modules:	
Lin	nePicking API	1

6 **Module Index**

Data Structure Index

4.1	Data Structures	
Here a	are the data structures with brief descriptions:	
Lir	ne Picking Rec	4.9

8 Data Structure Index

File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

oeta.h		
	Implements the beta function and the regularized incomplete beta function	15
Cube.h	Functions to provide PDF, CDF, mean and variance of the distance between two random points within a cube	16
Disk.h	within a dabo	10
	Functions to provide PDF, CDF, mean and variance of the distance between two random points on a disk	19
Hyperba	ll.h	
	Functions to provide PDF, CDF, mean and variance of the distance between two random points within a hyper-ball	21
Line.h		
	Functions to provide PDF, CDF, mean and variance of the distance between two random points	
	on a line	24
LinePick		
	Exposes to matlab and R a set of functions that implement PDF, CDF, mean and variance of the distance between two random points in various geometries	27
PrismGe	eodesic.h	
	Functions to provide PDF, CDF, mean and variance of the distance between two random points on the surface (not including the ends) of an upright prism of any cross section. The distance is measured around the surface i.e., it is a geodesic	28
Rectang		
	Functions to provide PDF, CDF, mean and variance of the distance between two random points on a rectangle	31
Sphere.h	1	
	Functions to provide PDF, CDF, mean and variance of the distance between two random points on the surface of a sphere	33
SphereG	Geodesic.h	
	Functions to provide PDF, CDF, mean and variance of the distance between two random points on the surface of a sphere. The distance is measured around the surface of the sphere i.e., it is a geodesic	36
Square.h	<u> </u>	
1	Functions to provide PDF, CDF, mean and variance of the distance between two random points	
	on a square	38

10 File Index

Module Documentation

6.1 LinePicking API

Functions

- void LinePickingNumberOfProblems (int *)
- void LinePickingPrintAllProblems ()
- void LinePickingAllProblems (char **, char **)
- void LinePickingProblemLookup (int *, char **, char **)
- void LinePickingCheckParameters (int *, double *, int *, int *, char **)
- void LinePickingSupport (double *, int *, double *, int *, int *, char **)
- void LinePickingPDF (double *, double *, int *, int *, double *, int *, int *, char **)
- void LinePickingCDF (double *, double *, int *, int *, double *, int *, int *, char **)
- void LinePickingMean (double *, int *, double *, int *, int *, char **)
- void LinePickingVar (double *, int *, double *, int *, int *, char **)

6.1.1 Detailed Description

This section documents the API exposed for the use of other programs. These are the functions called by the R and Matlab wrappers included in this package.

Todo Add some more preamble about the API.

6.1.2 Function Documentation

```
6.1.2.1 void LinePickingCDF ( double * t, double * t, int * t, int * t, int * t t, double * t, double * t, int * t t, int * t t, double * t, do
```

compute distance distribution function ^x g(t) dt (at points t) between two points in a region.

t = array of points at which to calculate density g = array to store output problem = type of region (see LinePicking-ProblemLookup) Npar = number of parameters result = exit code 0: parameters are valid 1: unsupported problem 2: parameters out of range. 3: not enough parameters were entered. 4: other error. error_str: a message explaining the error

Note that N, problem and Npar are all passed in by reference so R can cope, and similarly,the function must return void, so we return the exit code in the last argument.

12 Module Documentation

6.1.2.2 void LinePickingCheckParameters (int * problem, double * parameters, int * Npar, int * result, char ** error_str)

check that a problem and a set of parameters are valid

problem = type of region (see LinePickingProblemLookup) Npar = number of parameters result = exit code 0: parameters are valid 1: unsupported problem 2: parameters out of range. 3: not enough parameters were entered. 4: other error. error_str: a message explaining the error

Note that N, problem and Npar are all passed in by reference so R can cope, and similarly, the function must return void, so we return the exit code in the last argument.

6.1.2.3 void LinePickingNumberOfProblems (int * N)

Helper function to expose the number of currently implemented problems.

Parameters

\$N | Pointer to an integer to store the number of currently implemented problems.

Returns

The number of currently implemented problems is returned in \$N

6.1.2.4 void LinePickingPDF (double * t, double * g, int * N, int * problem, double * parameters, int * Npar, int * result, char ** error_str)

compute distance density g(t) (at points t) between two points in a region.

t = array of points at which to calculate density g = array to store output problem = type of region (see LinePicking-ProblemLookup) Npar = number of parameters result = exit code 0: parameters are valid 1: unsupported problem 2: parameters out of range. 3: not enough parameters were entered. 4: other error. error_str: a message explaining the error

Note that N, problem and Npar are all passed in by reference so R can cope, and similarly, the function must return void, so we return the exit code in the last argument.

6.1.2.5 void LinePickingSupport (double * t, int * problem, double * parameters, int * Npar, int * result, char ** error_str)

compute support of distance density g(t) (at points t) between two points in a region.

t = [t_min, t_max]: assumes 2 spaces are allocated!!!!! problem = type of region (see LinePickingProblemLookup)

Npar = number of parameters result = exit code 0: parameters are valid 1: unsupported problem 2: parameters out of range. 3: not enough parameters were entered. 4: other error. error_str: a message explaining the error

Note that N, problem and Npar are all passed in by reference so R can cope, and similarly, the function must return void, so we return the exit code in the last argument.

6.1.2.6 void LinePickingVar (double * var, int * problem, double * parameters, int * Npar, int * result, char ** error_str)

compute variance between two points in a region.

t = array of points at which to calculate density var = var line length problem = type of region (see LinePicking-ProblemLookup) Npar = number of parameters result = exit code 0: parameters are valid 1: unsupported problem 2: parameters out of range. 3: not enough parameters were entered. 4: other error. error_str: a message explaining the error

Note that problem and Npar are all passed in by reference so R can cope, and similarly,the function must return void, so we return the exit code in the last argument.

Data Structure Documentation

7.1 LinePickingRec Struct Reference

```
#include <LinePicking.h>
```

Data Fields

- double(* **PDF**)(double, double *)
- double(* CDF)(double, double *)
- double(* MEAN)(double *)
- double(* VAR)(double *)
- void(* SUPPORT)(double *, double *)
- void(* CHECK_PAR)(double *, int *, char *)
- int * Npar
- char ** name
- char ** description

7.1.1 Detailed Description

structure thingo test

The documentation for this struct was generated from the following file:

· LinePicking.h

File Documentation

8.1 beta.h File Reference

Implements the beta function and the regularized incomplete beta function.

```
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
```

Macros

• #define PRINT_STDOUT(...) Rprintf(__VA_ARGS__)

Functions

- double beta (double, double)
- double beta inc (double, double, double, int *result)

8.1.1 Detailed Description

Implements the beta function and the regularized incomplete beta function.

Author

Matthew Roughan matthew.roughan@adelaide.edu.au

Date

22/09/2012

8.1.2 Function Documentation

8.1.2.1 double beta (double x, double y)

Implements the beta function. i.e., the Euler integral of the first kind, defined by $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} \, dt$.

Parameters

\$x	in B $(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$.
\$ <i>y</i>	in B $(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$.

Returns

The result of evaluating Eulers integral of the first kind with the given parameters.

8.1.2.2 double beta_inc (double a, double b, double x, int * result)

Implements the regularized incomplete beta function. Defined as $I_x(a,b) = \frac{B(x;a,b)}{B(a,b)}$. Where $B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$ and $B(x;a,b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$.

See Also

```
http://doi.acm.org/10.1145/131766.131776
http://www.boost.org/doc/libs/1_38_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html
http://dlmf.nist.gov/8.17
```

Parameters

\$a	$ in I_x(a,b) = \frac{B(x;a,b)}{B(a,b)}. $
\$b	$ in I_x(a,b) = \frac{B(x;a,b)}{B(a,b)}. $
\$x	$ in I_x(a,b) = \frac{B(x;a,b)}{B(a,b)}. $
\$result	is non zero if some error occured.

Returns

The result of evaluating the incomplete beta function with the given parameters or an error conditon returned in \$result

8.2 Cube.h File Reference

Functions to provide PDF, CDF, mean and variance of the distance between two random points within a cube.

Functions

- double CubeDistancePDF (double t, double *parameters)
- double CubeDistanceCDF (double a, double *b)
- double CubeDistanceMean (double *parameters)
- double CubeDistanceVar (double *parameters)
- void CubeDistanceSupport (double *t, double *parameters)
- void CubeDistanceCheckParameters (double *parameters, int *result, char *error_str)

Variables

- char * CubeDistanceName
- $\bullet \ \ \text{char} * \textbf{Cube Distance Description}$
- int CubeDistanceNpar

8.2 Cube.h File Reference 17

8.2.1 Detailed Description

Functions to provide PDF, CDF, mean and variance of the distance between two random points within a cube.

Author

Eric Parsonage eric.parsonage@adelaide.edu.au

Date

22/09/2012

8.2.2 Function Documentation

8.2.2.1 double CubeDistanceCDF (double t, double * parameters)

Implements the CDF of the distance between two random points within a cube.

Derived by Eric Parsonage eric.parsonage@adelaide.edu.au

Parameters

\$t	The distance to calculate the cumulative density for.
\$parameters	\$parameters[0] is the size of the cube (i.e., the length of any side).

Todo Write up how to derive the CDF.

Returns

The cumulative density at \$t.

8.2.2.2 void CubeDistanceCheckParameters (double * parameters, int * result, char * error_str)

Intended to determine if the parameters supplied are valid input to the other functions implemented in this file. However as there is only one parameter and the calling function checks that it is positive this is merely a place holder to allow for a complete implementation in geometries that have more complex relationships between parameters.

Parameters

\$parameters	\$parameters[0] is the size of the cube (i.e., the length of any side).
\$result	Pointer to storage for an integer indicating any errors in the supplied parameters.
\$error_str	Pointer to storage for a message explaining any errors in the supplied parameters.

Returns

Any error conditions are indicated by placing a value other than 0 in the location pointed to by \$result and a message explaining the error is copied in to the location pointed to by \$error_str

8.2.2.3 double CubeDistanceMean (double * parameters)

Calculates the mean of the distance between two random points within a cube.

From Mathai, A. M.; Moschopoulos, P.; and Pederzoli, G. "Distance between Random Points in a Cube." J. Statistica 59, 61-81, 1999. but with 'corrected typos'

Parameters

.	\$parameters[0] is the size of the cube (i.e., the length of any side).
"Snaramatare	Snaramatare(()) is the size of the clibe (i.e. the length of any side)
Ψραιαιτισισι σ	woaldingleisjoj is the size of the cube the., the length of any side).

Returns

The mean distance between two points in a unit cube.

See Also

http://mathworld.wolfram.com/CubeLinePicking.html

8.2.2.4 double CubeDistancePDF (double t, double * parameters)

Implements the PDF of the distance between two random points within a cube.

From Mathai, A. M.; Moschopoulos, P.; and Pederzoli, G. "Distance between Random Points in a Cube." J. Statistica 59, 61-81, 1999. but with 'corrected typos'

Parameters

\$t	The distance to calculate the density for.
\$parameters	\$parameters[0] is the size of the cube (i.e., the length of any side).

Returns

The density at \$t.

See Also

http://mathworld.wolfram.com/CubeLinePicking.html

8.2.2.5 void CubeDistanceSupport (double * t, double * parameters)

Calculates the support for the PDF and CDF of the distance between two random points within a cube.

Parameters

\$t	Pointer to storage for lower and upper ends of the support for the PDF and CDF of the distance
	between two random points within a cube.
\$parameters	\$parameters[0] is the size of the cube. (i.e., the length of any side).

Returns

The lower end of the interval is returned in \$t[0] and the upper end of the interval is returned in \$t[1].

8.2.2.6 double CubeDistanceVar (double * parameters)

Calculates the variance of the distance between two random points within a cube.

This was calculated numerically.

Parameters

\$parameters \$parameters[0] is the size of the cube (i.e., the length of any side).
--

8.3 Disk.h File Reference 19

Todo Try to derive a value algebraicaly

Returns

The variance of the distances between two points in a unit cube.

8.3 Disk.h File Reference

Functions to provide PDF, CDF, mean and variance of the distance between two random points on a disk.

Functions

- double DiskDistancePDF (double t, double *parameters)
- double DiskDistanceCDF (double a, double *b)
- double DiskDistanceMean (double *parameters)
- double DiskDistanceVar (double *parameters)
- void DiskDistanceSupport (double *t, double *parameters)
- void DiskDistanceCheckParameters (double *parameters, int *result, char *error_str)

Variables

- char * DiskDistanceName
- char * DiskDistanceDescription
- · int DiskDistanceNpar

8.3.1 Detailed Description

Functions to provide PDF, CDF, mean and variance of the distance between two random points on a disk.

Author

```
Eric Parsonage eric.parsonage@adelaide.edu.au
```

Date

22/09/2012

8.3.2 Function Documentation

8.3.2.1 double DiskDistanceCDF (double t, double * parameters)

Implements the CDF of the distance between two random points on a disk.

Derived by Eric Parsonage eric.parsonage@adelaide.edu.au

Parameters

\$t	The distance to calculate the cumulative density for.
\$parameters	\$parameters[0] is the radius of the disk.

Todo Write up how to derive the CDF.

Returns

The cumulative density at \$t.

8.3.2.2 void DiskDistanceCheckParameters (double * parameters, int * result, char * error_str)

Intended to determine if the parameters supplied are valid input to the other functions implemented in this file. However as there is only one parameter and the calling function checks that it is positive this is merely a place holder to allow for a complete implementation in geometries that have more complex relationships between parameters.

Parameters

	\$parameters	\$parameters[0] is the radius of the disk.
	\$result	Pointer to storage for an integer indicating any errors in the supplied parameters.
Ì	\$error_str	Pointer to storage for a message explaining any errors in the supplied parameters.

Returns

Any error conditions are indicated by placing a value other than 0 in the location pointed to by \$result and a message explaining the error is copied in to the location pointed to \$error str

8.3.2.3 double DiskDistanceMean (double * parameters)

Calculates the mean of the distance between two random points on a disk.

From Tu, S.-J. and Fischbach, E. "A New Geometric Probability Technique for an {N}-Dimensional Sphere and Its Applications"

Parameters

\$parameters	\$parameters[0] is the radius of the disk.
--------------	--

Returns

The mean distance between two points on a disk.

See Also

```
http://mathworld.wolfram.com/BallLinePicking.html
```

8.3.2.4 double DiskDistancePDF (double t, double * parameters)

Implements the PDF of the distance between two random points on a disk.

From Tu, S.-J. and Fischbach, E. "A New Geometric Probability Technique for an {N}-Dimensional Sphere and Its Applications"

Parameters

\$t	The distance to calculate the density for.
\$parameters[0]	The radius of the disk.

Returns

The density at \$t.

See Also

http://mathworld.wolfram.com/BallLinePicking.html

8.3.2.5 void DiskDistanceSupport (double * t, double * parameters)

Calculates the support for the PDF and CDF of the distance between two random points on a disk.

Parameters

\$t	Pointer to storage for lower and upper ends of the support for the PDF and CDF of the distance
	between two random points on a disk.
\$parameters	\$parameters[0] is the radius of the disk.

Returns

The lower end of the interval is returned in \$t[0] and the upper end of the interval is returned in \$t[1].

8.3.2.6 double DiskDistanceVar (double * parameters)

Calculates the variance of the distances between two random points on a disk.

Currently calculated numerically.

Parameters

\$parameters	\$parameters[0] is the radius of the disk.

Returns

The variance of distances between two points on a disk.

See Also

http://mathworld.wolfram.com/BallLinePicking.html

Todo Derive an algebraic expression.

8.4 Hyperball.h File Reference

Functions to provide PDF, CDF, mean and variance of the distance between two random points within a hyper-ball.

Functions

- double HyperballDistancePDF (double t, double *parameters)
- double HyperballDistanceCDF (double t, double *parameters)
- double HyperballDistanceMean (double *parameters)
- double HyperballDistanceVar (double *parameters)
- void HyperballDistanceSupport (double *t, double *parameters)
- void HyperballDistanceCheckParameters (double *parameters, int *result, char *error_str)

Variables

- · char * HyperballDistanceName
- char * HyperballDistanceDescription
- · int HyperballDistanceNpar

8.4.1 Detailed Description

Functions to provide PDF, CDF, mean and variance of the distance between two random points within a hyper-ball.

Author

```
Eric Parsonage eric.parsonage@adelaide.edu.au
```

Date

22/09/2012

8.4.2 Function Documentation

8.4.2.1 double HyperballDistanceCDF (double a, double *b)

Will implement the CDF of the distance between two random points in a hyper-ball.

Not yet implemented.

Todo Implement!

Parameters

\$t	The distance to calculate the cumulative density for.
\$parameters	\$parameters[0] is the dimension of the hyper-ball and \$parameters[1] is the radius of the hyper-
	ball.

Returns

The cumulative density at \$t, currently -1 for all \$t.

8.4.2.2 void HyperballDistanceCheckParameters (double * parameters, int * result, char * error_str)

Determines if the parameters supplied are valid input to the other functions implemented in this file.

Parameters

\$parameters	\$parameters[0] is the dimension of the hyper-ball under consideration and \$parameters[1] is
	the radius of the hyper-ball under consideration.
\$result	Pointer to storage for an integer indicating any errors in the supplied parameters.
\$error_str	Pointer to storage for a message explaining any errors in the supplied parameters.

Returns

Any error conditions are indicated by placing a value other than 0 in the location pointed to by \$result and a message explaining the error is copied in to the location pointed to \$error_str The only condition this function needs to check is that the dimesnion of the hyper-ball consider is at least 1.

8.4.2.3 double HyperballDistanceMean (double * parameters)

Calculates the mean distance between two random points in a hyper-ball.

From Tu, S.-J. and Fischbach, E. "A New Geometric Probability Technique for an {N}-Dimensional Sphere and Its Applications"

Parameters

\$parameters	\$parameters[0] is the dimension of the hyper-ball and \$parameters[1] is the radius of the hyper-	
	ball.	

Returns

The mean distance between two random points in a hyper-ball.

See Also

```
http://arxiv.org/abs/math-ph/0004021
http://mathworld.wolfram.com/BallLinePicking.html
```

8.4.2.4 double HyperballDistancePDF (double t, double * parameters)

Implements the PDF of the distance between two random points in a hyper-ball.

From Tu, S.-J. and Fischbach, E. "A New Geometric Probability Technique for an {N}-Dimensional Sphere and Its Applications"

Parameters

\$t	The distance to calculate the density for.
\$parameters	\$parameters[0] is the dimension of the hyper-ball and \$parameters[1] is the radius of the hyper-
	ball.

Returns

The density at \$t.

See Also

```
http://arxiv.org/abs/math-ph/0004021
http://mathworld.wolfram.com/BallLinePicking.html
```

8.4.2.5 void HyperballDistanceSupport (double *t, double *parameters)

Calculates the support for the PDF and CDF of the distance between two random in a hyper-ball.

Parameters

\$t	Pointer to storage for lower and upper ends of the support for the PDF and CDF of the distance
	between two random points in a hyper-ball.
\$parameters	\$parameters[0] is the dimension of the hyper-ball and \$parameters[1] is the radius of the hyper-
	ball.

Returns

The lower end of the interval is returned in \$t[0] and the upper end of the interval is returned in \$t[1].

8.4.2.6 double HyperballDistanceVar (double * parameters)

Calculates the variance of distances between two random points in a hyper-ball.

From Tu, S.-J. and Fischbach, E. "A New Geometric Probability Technique for an {N}-Dimensional Sphere and Its Applications"

Parameters

\$parameters	\$parameters[0] is the dimension of the hyper-ball and \$parameters[1] is the radius of the hyper-	
	ball.	

Returns

The variance of distances between two random points in a hyper-ball.

See Also

```
http://arxiv.org/abs/math-ph/0004021
http://mathworld.wolfram.com/BallLinePicking.html
```

8.5 Line.h File Reference

Functions to provide PDF, CDF, mean and variance of the distance between two random points on a line.

Functions

- double LineDistancePDF (double t, double *parameters)
- double LineDistanceCDF (double a, double *b)
- double LineDistanceMean (double *parameters)
- double LineDistanceVar (double *parameters)
- void LineDistanceSupport (double *t, double *parameters)
- void LineDistanceCheckParameters (double *parameters, int *result, char *error_str)

Variables

- char * LineDistanceName
- char * LineDistanceDescription
- · int LineDistanceNpar

8.5.1 Detailed Description

Functions to provide PDF, CDF, mean and variance of the distance between two random points on a line.

Author

```
Eric Parsonage eric.parsonage@adelaide.edu.au
```

Date

22/09/2012

8.5 Line.h File Reference 25

8.5.2 Function Documentation

8.5.2.1 double LineDistanceCDF (double t, double * parameters)

Implements the CDF of the distance between two random points on a line.

Parameters

\$t	The distance to calculate the density for.
\$parameters	\$parameters[0] is the length of the line.

Returns

The cumulative density at \$t.

See Also

```
http://mathworld.wolfram.com/LineLinePicking.html
```

8.5.2.2 void LineDistanceCheckParameters (double * parameters, int * result, char * error_str)

Intended to determine if the parameters supplied are valid input to the other functions implemented in this file. However as there is only one parameter and the calling function checks that it is positive this is merely a place holder to allow for a complete implementation in geometries that have more complex relationships between parameters.

Parameters

\$parameters	parameters[0] is the length of the line under consideration.
\$result	Pointer to storage for an integer indicating any errors in the supplied parameters.
\$error_str	Pointer to storage for a message explaining any errors in the supplied parameters.

Returns

Any error conditions are indicated by placing a value other than 0 in the location pointed to by \$result and a message explaining the error is copied in to the location pointed to \$error_str

8.5.2.3 double LineDistanceMean (double * parameters)

Calculates the mean of the distance between two random points on a line.

Parameters

\$parameters	\$parameters[0] is the length of the line.

Returns

The mean distance between two points on a line

See Also

```
http://mathworld.wolfram.com/LineLinePicking.html
```

8.5.2.4 double LineDistancePDF (double t, double * parameters)

Implements the PDF of the distance between two random points on a line.

Parameters

\$t	The distance to calculate the density for.
\$parameters	\$parameters[0] is the length of the line.

Returns

The density at \$t.

See Also

http://mathworld.wolfram.com/LineLinePicking.html

8.5.2.5 void LineDistanceSupport (double * t, double * parameters)

Calculates the support for the PDF and CDF of the distance between two random points on a line

Parameters

\$t	Pointer to storage for lower and upper ends of the support for the PDF and CDF of the distance
	between two random points on a line.
\$parameters	\$parameters[0] is the length of the line.

Returns

The lower end of the interval is returned in \$t[0] and the upper end of the interval is returned in \$t[1].

8.5.2.6 double LineDistanceVar (double * parameters)

Calculates the variance of the distances between two random points on a line.

Currently calculated numerically.

Parameters

\$parameters	\$parameters[0] is the length of the line.

Returns

The variance of distances between two points on a line

See Also

http://mathworld.wolfram.com/BallLinePicking.html

8.6 LinePicking.h File Reference

Exposes to matlab and R a set of functions that implement PDF, CDF, mean and variance of the distance between two random points in various geometries.

```
#include <math.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdint.h>
#include <stdio.h>
#include "Square.h"
#include "Disk.h"
#include "Hyperball.h"
#include "Rectangle.h"
#include "Line.h"
#include "Cube.h"
#include "Sphere.h"
#include "SphereGeodesic.h"
#include "PrismGeodesic.h"
#include <R.h>
```

Data Structures

• struct LinePickingRec

Macros

- #define _LINEPICKING_H
- #define PRINT_STDOUT(...) Rprintf(__VA_ARGS___)
- #define ExpandFields(x)
- #define **elements**(x) (sizeof(x) / sizeof(x[0]))
- #define NUMBER_OF_PROBLEMS elements(LinePickingFields)

Functions

- void LinePickingNumberOfProblems (int *)
- void LinePickingPrintAllProblems ()
- void LinePickingAllProblems (char **, char **)
- void LinePickingProblemLookup (int *, char **, char **)
- void LinePickingCheckParameters (int *, double *, int *, int *, char **)
- void LinePickingSupport (double *, int *, double *, int *, int *, char **)
- void LinePickingPDF (double *, double *, int *, int *, double *, int *, int *, char **)
- void LinePickingCDF (double *, double *, int *, int *, double *, int *, int *, char **)
- void LinePickingMean (double *, int *, double *, int *, int *, char **)
- void LinePickingVar (double *, int *, double *, int *, int *, char **)

Variables

• LinePickingRec LinePickingFields []

8.6.1 Detailed Description

Exposes to matlab and R a set of functions that implement PDF, CDF, mean and variance of the distance between two random points in various geometries.

Author

```
Eric Parsonage eric.parsonage@adelaide.edu.au Matthew Roughan matthew.roughan@adelaide.edu.au
```

Date

22/09/2012

8.6.2 Macro Definition Documentation

```
8.6.2.1 #define ExpandFields(\_x)
```

Value:

```
&_x##DistancePDF,&_x##DistanceCDF,\
&_x##DistanceMean,&_x##DistanceVar,\
&_x##DistanceSupport,&_x##DistanceCheckParameters,\
&_x##DistanceNpar,&_x##DistanceName,\
&_x##DistanceDescription
```

8.6.3 Variable Documentation

8.6.3.1 LinePickingRec LinePickingFields[]

Initial value:

```
{
    {ExpandFields(Square)},
    {ExpandFields(Disk)},
    {ExpandFields(Hyperball)},
    {ExpandFields(Rectangle)},
    {ExpandFields(Line)},
    {ExpandFields(Cube)},
    {ExpandFields(Sphere)},
    {ExpandFields(SphereGeodesic)},
    {ExpandFields(PrismGeodesic)}
}
```

8.7 PrismGeodesic.h File Reference

Functions to provide PDF, CDF, mean and variance of the distance between two random points on the surface (not including the ends) of an upright prism of any cross section. The distance is measured around the surface i.e., it is a geodesic.

Functions

- double PrismGeodesicDistancePDF (double t, double *parameters)
- double PrismGeodesicDistanceCDF (double t, double *parameters)
- double PrismGeodesicDistanceMean (double *parameters)
- double PrismGeodesicDistanceVar (double *parameters)
- void PrismGeodesicDistanceSupport (double *t, double *parameters)
- void PrismGeodesicDistanceCheckParameters (double *parameters, int *result, char *error_str)

Variables

- char * PrismGeodesicDistanceName
- char * PrismGeodesicDistanceDescription
- int PrismGeodesicDistanceNpar

8.7.1 Detailed Description

Functions to provide PDF, CDF, mean and variance of the distance between two random points on the surface (not including the ends) of an upright prism of any cross section. The distance is measured around the surface i.e., it is a geodesic.

Author

Eric Parsonage eric.parsonage@adelaide.edu.au

Date

22/09/2012

8.7.2 Function Documentation

8.7.2.1 double PrismGeodesicDistanceCDF (double w, double * parameters)

Implements the CDF of the distance between two random points on the surface of an upright prism (excluding the ends). The distance is measured around the the surface of the prism (i.e., a geodesic). Derived by Eric Parsonage eric.parsonage@adelaide.edu.au

Todo Write up the derivation.

Parameters

\$w	The distance to calculate the cumulative density for.
\$parameters	\$parameters[0] is the length of the prism and \$parameters[1] is the perimeter of the prism.

Returns

The cumulative density at \$w.

8.7.2.2 void PrismGeodesicDistanceCheckParameters (double * parameters, int * result, char * error_str)

Determines if the parameters supplied are valid input to the other functions implemented in this file.

Parameters

\$parameters	parameters[0] is the length of the prism under consideration and parameters[1] is the perimeter of the prism under consideration.
\$result	Pointer to storage for an integer indicating any errors in the supplied parameters.
\$error_str	Pointer to storage for a message explaining any errors in the supplied parameters.

Returns

Any error conditions are indicated by placing a value other than 0 in the location pointed to by \$result and a message explaining the error is copied in to the location pointed to \$error_str The only condition this function needs to check is that the length of the prism is at least as long as half the perimeter

8.7.2.3 double PrismGeodesicDistanceMean (double * parameters)

Calculates the mean distance between two random points on the surface of an upright prism (excluding the ends).

Derived by Eric Parsonage eric.parsonage@adelaide.edu.au

Parameters

\$parameters	\$parameters[0] is the length of the prism and \$parameters[1] is the perimeter of the prism.	
--------------	---	--

Returns

The mean distance between two random points on the surface of an upright prism (excluding the ends).

Todo re-derive the mean without using the three part PDF as a basis I am sure a simpler result can be found using a similar methods to that used on the rectangle

8.7.2.4 double PrismGeodesicDistancePDF (double w, double * parameters)

Implements the PDF of the distance between two random points on the surface of an upright prism (excluding the ends). The distance is measured around the the surface of the prism (i.e., a geodesic). Derived by Eric Parsonage eric.parsonage@adelaide.edu.au

Todo Write up the derivation.

Parameters

\$w	The distance to calculate the density for.
\$parameters	\$parameters[0] is the length of the prism and \$parameters[1] is the perimeter of the prism.

Returns

The density at \$w.

8.7.2.5 void PrismGeodesicDistanceSupport (double *t, double *parameters)

Calculates the support for the PDF and CDF of the distance between two random points on the surface of an upright prism (excluding the ends).

Parameters

\$t	Pointer to storage for lower and upper ends of the support for the PDF and CDF of the distance
	between two random points on the surface of an upright prism (excluding the ends).
\$parameters	\$parameters[0] is the length of the prism and \$parameters[1] is the perimeter of the prism.

Returns

The lower end of the interval is returned in \$t[0] and the upper end of the interval is returned in \$t[1].

8.7.2.6 double PrismGeodesicDistanceVar (double * parameters)

Calculates the variance of distances between two random points on the surface of an upright prism (excluding the ends).

Derived by Eric Parsonage eric.parsonage@adelaide.edu.au

Parameters

\$parameters \$parameters[0] is the length of the prism and \$parameters[1] is the perimeter of the prism.

Returns

The variance of distances between two random points on the surface of an upright prism (excluding the ends).

Todo re-derive the variance without using the three part PDF as a basis I am sure a simpler result can be found using a similar methods to that used on the rectangle

8.8 Rectangle.h File Reference

Functions to provide PDF, CDF, mean and variance of the distance between two random points on a rectangle.

Functions

- double RectangleDistancePDF (double t, double *parameters)
- double RectangleDistanceCDF (double t, double *parameters)
- double RectangleDistanceMean (double *parameters)
- double RectangleDistanceVar (double *parameters)
- void RectangleDistanceSupport (double *t, double *parameters)
- void RectangleDistanceCheckParameters (double *parameters, int *result, char *error_str)

Variables

- char * RectangleDistanceName
- char * RectangleDistanceDescription
- int RectangleDistanceNpar

8.8.1 Detailed Description

Functions to provide PDF, CDF, mean and variance of the distance between two random points on a rectangle.

Author

Eric Parsonage eric.parsonage@adelaide.edu.au

Date

22/09/2012

8.8.2 Function Documentation

8.8.2.1 double RectangleDistanceCDF (double w, double * parameters)

Implements the CDF of the distance between two random points on a rectangle.

Derived by Eric Parsonage eric.parsonage@adelaide.edu.au

Todo Write up the derivation.

\$w	The distance to calculate the cumulative density for.
\$parameters	\$parameters[0] is the length of one side of the rectangle and \$parameters[1] is the length of
	the other.

Returns

The cumulative density at \$w.

8.8.2.2 void RectangleDistanceCheckParameters (double * parameters, int * result, char * error_str)

Intended to determine if the parameters supplied are valid input to the other functions implemented in this file. However as the calling function checks that the supplied parameters are positive this is merely a place holder to allow for a complete implementation in geometries that have more complex relationships between parameters.

Parameters

ſ	\$parameters	parameters[0] and parameters[1] are the lengths of the sides of the rectangle under consider-
		ation.
	\$result	Pointer to storage for an integer indicating any errors in the supplied parameters.
ſ	\$error str	Pointer to storage for a message explaining any errors in the supplied parameters.

Returns

Any error conditions are indicated by placing a value other than 0 in the location pointed to by \$result and a message explaining the error is copied in to the location pointed to \$error_str

8.8.2.3 double RectangleDistanceMean (double * parameters)

Calculates the mean distance between two random points on a rectangle.

From "Random Distances Within a Rectangle and Between Two Rectangles", B. Ghosh, Bulletin of the Calcutta Mathematical Society, Col.43 (1), p.17-24, 1951. "RANDOM POINTS ASSOCIATED WITH RECTANGLES", A.M. MATHAI - R MOSCHOPOULOS - G. PEDERZOLI RENDICONT1 DEL CIRCOLO MATEMATICO DI PALERMO, Serie 11, Tomo XLVIII (1999), pp. 163-190

Parameters

\$parameters	\$parameters[0] is the length of one side of the rectangle and \$parameters[1] is the length of
•	the other.

Returns

The mean distance between two random points on a rectangle.

8.8.2.4 double RectangleDistancePDF (double t, double * parameters)

Implements the PDF of the distance between two random points on a rectangle.

From "Random Distances Within a Rectangle and Between Two Rectangles", B. Ghosh, Bulletin of the Calcutta Mathematical Society, Col.43 (1), p.17-24, 1951. "RANDOM POINTS ASSOCIATED WITH RECTANGLES", A.M. MATHAI - R MOSCHOPOULOS -G. PEDERZOLI RENDICONT1 DEL CIRCOLO MATEMATICO DI PALERMO, Serie 11, Tomo XLVIII (1999), pp. 163-190

Parameters

\$t	The distance to calculate the density for.
\$parameters	\$parameters[0] is the length of one side of the rectangle and \$parameters[1] is the length of
	the other.

Returns

The density at \$t.

8.8.2.5 void RectangleDistanceSupport (double *t, double *parameters)

Calculates the support for the PDF and CDF of the distance between two random points on a rectangle.

Parameters

\$t	Pointer to storage for lower and upper ends of the support for the PDF and CDF of the distance
	between two random points on a rectangle.
\$parameters	\$parameters[0] is the length of one side of the rectangle and \$parameters[1] is the length of
	the other.

Returns

The lower end of the interval is returned in \$t[0] and the upper end of the interval is returned in \$t[1].

8.8.2.6 double RectangleDistanceVar (double * parameters)

Calculates the variance of distances between two random points on a rectangle.

From "Random Distances Within a Rectangle and Between Two Rectangles", B. Ghosh, Bulletin of the Calcutta Mathematical Society, Col.43 (1), p.17-24, 1951. "RANDOM POINTS ASSOCIATED WITH RECTANGLES", A.M. MATHAI - R MOSCHOPOULOS - G. PEDERZOLI RENDICONT1 DEL CIRCOLO MATEMATICO DI PALERMO, Serie 11, Tomo XLVIII (1999), pp. 163-190

Parameters

\$parameters	\$parameters[0] is the length of one side of the rectangle and \$parameters[1] is the length of	
	the other.	

Returns

The variance of distances between two random points on a rectangle.

8.9 Sphere.h File Reference

Functions to provide PDF, CDF, mean and variance of the distance between two random points on the surface of a sphere.

Functions

- double SphereDistancePDF (double t, double *parameters)
- double SphereDistanceCDF (double a, double *b)
- double SphereDistanceMean (double *parameters)
- double SphereDistanceVar (double *parameters)

- void SphereDistanceSupport (double *t, double *parameters)
- void SphereDistanceCheckParameters (double *parameters, int *result, char *error_str)

Variables

- char * SphereDistanceName
- char * SphereDistanceDescription
- int SphereDistanceNpar

8.9.1 Detailed Description

Functions to provide PDF, CDF, mean and variance of the distance between two random points on the surface of a sphere.

Author

Eric Parsonage eric.parsonage@adelaide.edu.au

Date

22/09/2012

8.9.2 Function Documentation

8.9.2.1 double SphereDistanceCDF (double s, double * parameters)

Implements the CDF of the distance between two random points on the surface of a sphere.

From Solomon, H. Geometric Probability. Philadelphia, PA: SIAM, 1978.

Parameters

ſ	<i>\$s</i>	The distance to calculate the cumulative density for.
Ī	\$parameters	\$parameters[0] is the radius of the sphere.

Returns

The cumulative density at \$s.

See Also

http://mathworld.wolfram.com/SphereLinePicking.html

8.9.2.2 void SphereDistanceCheckParameters (double * parameters, int * result, char * error_str)

Intended to determine if the parameters supplied are valid input to the other functions implemented in this file. However as there is only one parameter and the calling function checks that it is positive this is merely a place holder to allow for a complete implementation in geometries that have more complex relationships between parameters.

\$paramete	parameters[0] is the radius of the sphere under consideration.	
\$resu	Pointer to storage for an integer indicating any errors in the supplied parameters.	
\$error_s	Pointer to storage for a message explaining any errors in the supplied parameters.	

Returns

Any error conditions are indicated by placing a value other than 0 in the location pointed to by \$result and a message explaining the error is copied in to the location pointed to \$error_str

8.9.2.3 double SphereDistanceMean (double * parameters)

Calculates the mean of the distance between two random points on the surface of a sphere.

From Solomon, H. Geometric Probability. Philadelphia, PA: SIAM, 1978.

Parameters

-		
	\$parameters	\$parameters[0] is the radius of the sphere.

Returns

The mean of the distance between two random points on the surface of a sphere

See Also

```
http://mathworld.wolfram.com/SphereLinePicking.html
```

8.9.2.4 double SphereDistancePDF (double s, double * parameters)

Implements the PDF of the distance between two random points on the surface of a sphere.

From Solomon, H. Geometric Probability. Philadelphia, PA: SIAM, 1978.

Parameters

<i>\$s</i>	The distance to calculate the density for.
\$parameters	\$parameters[0] is the radius of the sphere.

Returns

The density at \$s.

See Also

```
http://mathworld.wolfram.com/SphereLinePicking.html
```

8.9.2.5 void SphereDistanceSupport (double * t, double * parameters)

Calculates the support for the PDF and CDF of the distance between two random points on the surface of a sphere.

\$t	Pointer to storage for lower and upper ends of the support for the PDF and CDF of the distance
	between two random points on the surface of a sphere.
\$parameters	\$parameters[0] is the radius of the sphere.

Returns

The lower end of the interval is returned in \$t[0] and the upper end of the interval is returned in \$t[1].

8.9.2.6 double SphereDistanceVar (double * parameters)

Calculates the variance of the distances between two random points on the surface of a sphere.

From Solomon, H. Geometric Probability. Philadelphia, PA: SIAM, 1978.

Parameters

\$parameters | \$parameters[0] is the radius of the sphere.

Returns

The variance of the distances between two random points on the surface of a sphere

See Also

http://mathworld.wolfram.com/SphereLinePicking.html

8.10 SphereGeodesic.h File Reference

Functions to provide PDF, CDF, mean and variance of the distance between two random points on the surface of a sphere. The distance is measured around the surface of the sphere i.e., it is a geodesic.

Functions

- double SphereGeodesicDistancePDF (double s, double *parameters)
- double SphereGeodesicDistanceCDF (double s, double *parameters)
- double SphereGeodesicDistanceMean (double *parameters)
- double SphereGeodesicDistanceVar (double *parameters)
- void SphereGeodesicDistanceSupport (double *t, double *parameters)
- void SphereGeodesicDistanceCheckParameters (double *parameters, int *result, char *error_str)

Variables

- char * SphereGeodesicDistanceName
- char * SphereGeodesicDistanceDescription
- int SphereGeodesicDistanceNpar

8.10.1 Detailed Description

Functions to provide PDF, CDF, mean and variance of the distance between two random points on the surface of a sphere. The distance is measured around the surface of the sphere i.e., it is a geodesic.

Author

Eric Parsonage eric.parsonage@adelaide.edu.au

Date

22/09/2012

8.10.2 Function Documentation

8.10.2.1 double SphereGeodesicDistanceCDF (double s, double * parameters)

Implements the CDF of the distance between two random points on the surface of a sphere measured around the surface of the sphere (i.e., a geodesic).

Derived by Eric Parsonage eric.parsonage@adelaide.edu.au.

Todo Write up the derivation.

Parameters

\$s	The distance to calculate the cumulative density for.
\$parameters	\$parameters[0] is the radius of the sphere.

Returns

The cumulative density at \$s.

8.10.2.2 void SphereGeodesicDistanceCheckParameters (double * parameters, int * result, char * error_str)

Intended to determine if the parameters supplied are valid input to the other functions implemented in this file. However as there is only one parameter and the calling function checks that it is positive this is merely a place holder to allow for a complete implementation in geometries that have more complex relationships between parameters.

Parameters

	\$parameters	parameters[0] is the radius of the sphere under consideration.
\$result Pointer to storage for an integer indicating any errors in the supplied parameter		Pointer to storage for an integer indicating any errors in the supplied parameters.
	\$error_str	Pointer to storage for a message explaining any errors in the supplied parameters.

Returns

Any error conditions are indicated by placing a value other than 0 in the location pointed to by \$result and a message explaining the error is copied in to the location pointed to \$error_str

8.10.2.3 double SphereGeodesicDistanceMean (double * parameters)

Calculates the mean of the distance between two random points on the surface of a sphere measured around the surface of the sphere (i.e., a geodesic).

Derived by Eric Parsonage eric.parsonage@adelaide.edu.au.

Todo Write up the derivation.

Parameters

\$parameters	\$parameters[0] is the radius of the sphere.

Returns

The mean of the distance between two random points on the surface of a sphere measured around the surface of the sphere (i.e., a geodesic).

8.10.2.4 double SphereGeodesicDistancePDF (double s, double * parameters)

Implements the PDF of the distance between two random points on the surface of a sphere measured around the surface of the sphere (i.e., a geodesic).

Derived by Eric Parsonage eric.parsonage@adelaide.edu.au.

Todo Write up the derivation.

Parameters

<i>\$s</i>	The distance to calculate the density for.
\$parameters	\$parameters[0] is the radius of the sphere.

Returns

The density at \$s.

8.10.2.5 void SphereGeodesicDistanceSupport (double * t, double * parameters)

Calculates the support for the PDF and CDF of the distance between two random points on the surface of a sphere measured around the surface of the sphere (i.e., a geodesic).

Parameters

\$t	Pointer to storage for lower and upper ends of the support for the PDF and CDF of the distance
	between two random points on the surface of a sphere measured around the surface of the
	sphere (i.e., a geodesic).

Returns

The lower end of the interval is returned in \$t[0] and the upper end of the interval is returned in \$t[1].

8.10.2.6 double SphereGeodesicDistanceVar (double * parameters)

Calculates the variance of the distances between two random points on the surface of a sphere measured around the surface of the sphere (i.e., a geodesic).

Derived by Eric Parsonage eric.parsonage@adelaide.edu.au.

Todo Write up the derivation.

Parameters

\$parameters	\$parameters[0] is the radius of the sphere.

Returns

The mean of the distance between two random points on the surface of a sphere measured around the surface of the sphere (i.e., a geodesic).

8.11 Square.h File Reference

Functions to provide PDF, CDF, mean and variance of the distance between two random points on a square.

Functions

- double SquareDistancePDF (double t, double *parameters)
- double SquareDistanceCDF (double a, double *b)
- double SquareDistanceMean (double *parameters)
- double SquareDistanceVar (double *parameters)
- void SquareDistanceSupport (double *t, double *parameters)
- void SquareDistanceCheckParameters (double *parameters, int *result, char *error_str)

Variables

- char * SquareDistanceName
- char * SquareDistanceDescription
- · int SquareDistanceNpar

8.11.1 Detailed Description

Functions to provide PDF, CDF, mean and variance of the distance between two random points on a square.

Author

```
Eric Parsonage eric.parsonage@adelaide.edu.au
```

Date

22/09/2012

8.11.2 Function Documentation

8.11.2.1 double SquareDistanceCDF (double t, double * parameters)

Implements the CDF of the distance between two random points on a square.

Parameters

\$t	The distance to calculate the cumulative density for.
\$parameters	\$parameters[0] is the size of the square.

Returns

The cumulative density at \$t.

See Also

```
http://mathworld.wolfram.com/SquareLinePicking.html
```

8.11.2.2 void SquareDistanceCheckParameters (double * parameters, int * result, char * error_str)

Intended to determine if the parameters supplied are valid input to the other functions implemented in this file. However as there is only one parameter and the calling function checks that it is positive this is merely a place holder to allow for a complete implementation in geometries that have more complex relationships between parameters.

<i>\$parameters</i> parameters[0] is the length of the sides of the square under consideration.	
\$result	Pointer to storage for an integer indicating any errors in the supplied parameters.
\$error_str	Pointer to storage for a message explaining any errors in the supplied parameters.

Returns

Any error conditions are indicated by placing a value other than 0 in the location pointed to by \$result and a message explaining the error is copied in to the location pointed to \$error_str

8.11.2.3 double SquareDistanceMean (double * parameters)

Calculates the mean of the distance between two random points on a square.

Parameters

\$parameters	\$parameters[0] is the size of the square.

Returns

The mean distance between two random points on a square.

See Also

http://mathworld.wolfram.com/SquareLinePicking.html

8.11.2.4 double SquareDistancePDF (double t, double * parameters)

Implements the PDF of the distance between two random points on a square.

Parameters

\$t	The distance to calculate the density for.
\$parameters	\$parameters[0] is the size of the square.

Returns

The density at \$t.

See Also

http://mathworld.wolfram.com/SquareLinePicking.html

8.11.2.5 void SquareDistanceSupport (double *t, double *parameters)

Calculates the support for the PDF and CDF of the distance between two random points on a square.

\$t	Pointer to storage for lower and upper ends of the support for the PDF and CDF of the distance
	between two random points on a square.
\$parameters	\$parameters[0] is the size of the square.

Returns

The lower end of the interval is returned in \$t[0] and the upper end of the interval is returned in \$t[1].

8.11.2.6 double SquareDistanceVar (double * parameters)

Calculates the variance of the distances between two random points on a square.

Parameters

\$parameters | \$parameters[0] is the size of the square.

Returns

The variance of the distances between two points random points on a square.

See Also

http://mathworld.wolfram.com/SquareLinePicking.html

Index

beta	Hyperball.h, 21
beta.h, 15	HyperballDistanceCDF, 22
beta.h, 15	HyperballDistanceCheckParameters, 22
beta, 15	HyperballDistanceMean, 22
beta_inc, 16	HyperballDistancePDF, 23
beta_inc	HyperballDistanceSupport, 23
beta.h, 16	HyperballDistanceVar, 24
	HyperballDistanceCDF
Cube.h, 16	Hyperball.h, 22
CubeDistanceCDF, 17	HyperballDistanceCheckParameters
CubeDistanceCheckParameters, 17	Hyperball.h, 22
CubeDistanceMean, 17	HyperballDistanceMean
CubeDistancePDF, 18	Hyperball.h, 22
CubeDistanceSupport, 18	HyperballDistancePDF
CubeDistanceVar, 18	Hyperball.h, 23
CubeDistanceCDF	HyperballDistanceSupport
Cube.h, 17	Hyperball.h, 23
CubeDistanceCheckParameters	HyperballDistanceVar
Cube.h, 17	Hyperball.h, 24
CubeDistanceMean) [
Cube.h, 17	Line.h, 24
CubeDistancePDF	LineDistanceCDF, 25
Cube.h, 18	LineDistanceCheckParameters, 25
CubeDistanceSupport	LineDistanceMean, 25
Cube.h, 18	LineDistancePDF, 25
CubeDistanceVar	LineDistanceSupport, 26
Cube.h, 18	LineDistanceVar, 26
, -	LineDistanceCDF
Disk.h, 19	Line.h, 25
DiskDistanceCDF, 19	LineDistanceCheckParameters
DiskDistanceCheckParameters, 20	Line.h, 25
DiskDistanceMean, 20	LineDistanceMean
DiskDistancePDF, 20	Line.h, 25
DiskDistanceSupport, 21	LineDistancePDF
DiskDistanceVar, 21	Line.h, 25
DiskDistanceCDF	LineDistanceSupport
Disk.h, 19	Line.h, 26
DiskDistanceCheckParameters	LineDistanceVar
Disk.h, 20	Line.h, 26
DiskDistanceMean	LinePicking API, 11
Disk.h, 20	LinePickingCDF, 11
DiskDistancePDF	LinePickingCheckParameters, 11
Disk.h, 20	LinePickingNumberOfProblems, 12
DiskDistanceSupport	LinePickingPDF, 12
Disk.h, 21	LinePickingSupport, 12
DiskDistanceVar	LinePickingVar, 12
Disk.h, 21	LinePicking.h, 27
Diokin, Li	ExpandFields, 28
ExpandFields	LinePickingFields, 28
LinePicking.h, 28	LinePickingCDF
- , <u>-</u>	

INDEX 43

LinePicking API, 11	SphereDistancePDF, 35
LinePickingCheckParameters	SphereDistanceSupport, 35
LinePicking API, 11	SphereDistanceVar, 36
LinePickingFields	SphereDistanceCDF
LinePicking.h, 28	Sphere.h, 34
LinePickingNumberOfProblems	SphereDistanceCheckParameters
LinePicking API, 12	Sphere.h, 34
LinePickingPDF	SphereDistanceMean
LinePicking API, 12	Sphere.h, 35
LinePickingRec, 13	SphereDistancePDF
LinePickingSupport	Sphere.h, 35
LinePicking API, 12	SphereDistanceSupport
LinePickingVar	Sphere.h, 35
LinePicking API, 12	SphereDistanceVar
	Sphere.h, 36
PrismGeodesic.h, 28	SphereGeodesic.h, 36
PrismGeodesicDistanceCDF, 29	SphereGeodesicDistanceCDF, 37
PrismGeodesicDistanceCheckParameters, 29	SphereGeodesicDistanceCheckParameters, 37
PrismGeodesicDistanceMean, 30	SphereGeodesicDistanceMean, 37
PrismGeodesicDistancePDF, 30	SphereGeodesicDistancePDF, 37
PrismGeodesicDistanceSupport, 30	SphereGeodesicDistanceSupport, 38
PrismGeodesicDistanceVar, 30	SphereGeodesicDistanceVar, 38
PrismGeodesicDistanceCDF	SphereGeodesicDistanceCDF
PrismGeodesic.h, 29	SphereGeodesic.h, 37
PrismGeodesicDistanceCheckParameters	SphereGeodesicDistanceCheckParameters
PrismGeodesic.h, 29	SphereGeodesic.h, 37
PrismGeodesicDistanceMean	SphereGeodesicDistanceMean
PrismGeodesic.h, 30	SphereGeodesic.h, 37
PrismGeodesicDistancePDF	SphereGeodesicDistancePDF
PrismGeodesic.h, 30	SphereGeodesic.h, 37
PrismGeodesicDistanceSupport	SphereGeodesicDistanceSupport
PrismGeodesic.h, 30	SphereGeodesic.h, 38
PrismGeodesicDistanceVar	SphereGeodesicDistanceVar
PrismGeodesic.h, 30	SphereGeodesic.h, 38
	Square.h, 38
Rectangle.h, 31	SquareDistanceCDF, 39
RectangleDistanceCDF, 31	SquareDistanceCheckParameters, 39
RectangleDistanceCheckParameters, 32	SquareDistanceMean, 40
RectangleDistanceMean, 32	SquareDistancePDF, 40
RectangleDistancePDF, 32	SquareDistanceSupport, 40
RectangleDistanceSupport, 33	SquareDistanceVar, 41
RectangleDistanceVar, 33	SquareDistanceCDF
RectangleDistanceCDF	Square.h, 39
Rectangle.h, 31	SquareDistanceCheckParameters
RectangleDistanceCheckParameters	Square.h, 39
Rectangle.h, 32	SquareDistanceMean
RectangleDistanceMean	Square.h, 40
Rectangle.h, 32	SquareDistancePDF
RectangleDistancePDF	Square.h, 40
Rectangle.h, 32	SquareDistanceSupport
RectangleDistanceSupport	Square.h, 40
Rectangle.h, 33	SquareDistanceVar
RectangleDistanceVar	Square.h, 41
Rectangle.h, 33	•
Sphere.h, 33	
SphereDistanceCDF, 34	
SphereDistanceCheckParameters, 34	
SphereDistanceMean, 35	