EE788: Assignment 2

Sai Saketika Chekuri 190070054

October 12, 2022

All parts of the assignment are for an NMOS type transistor.

From the graph given, the following conditions are used in code for the 3 cases:

Case	$L (in \mu m)$	t_{ox} (in nm)	V_{DD} (in V)	V_{th} (in V)
1	1	20	5	0.8
2	0.5	10	3.5	0.55
3	0.35	7	3	0.5

- For fixed mobility calculations, $\mu_n = 200 cm^2/V \cdot s$ is used.
- For all the parts below, based on the V_{th} from the graph, the substrate concentration N_A is obtained via interpolation and used in further calculations.
- Width used is $1\mu m$ for all calculations. For a width of $W\mu m$, the results obtained below would merely have to be scaled W times.
- For $I_D V_D$ characteristics, V_G values of 2.5, 3.5 and 4.5 V are used

The equations used are: Depending on the region of operation, different equations of current are used. Here, $V_{D,sat} = (V_{GS} - V_{th})/m$

Linear region $(V_{GS} \ge V_{th} \text{ and } V_{DS} < V_{D,\text{sat}})$:

$$I_D = \mu C_{ox} \left(\frac{W}{L}\right) \left(V_{GS} - V_{th} - \frac{mV_{DS}}{2}\right) V_{DS} \tag{1}$$

Saturation region $(V_{GS} \ge V_{th} \text{ and } V_{DS} \ge V_{D,\text{sat}})$:

$$I_D = \mu C_{ox} \left(\frac{W}{L}\right) \frac{\left(V_{GS} - V_{th}\right)^2}{2m} \tag{2}$$

Here, V_{GS} values are well above V_{th} so we need not look at subthreshold characteristics.

Constant Mobility I-V characteristics

Here, μ used in equations 1 and 2 is taken as a fixed value of $200cm^2/V\cdot s$

EE 788

Vertical field induced mobility degradation I-V characteristics

$$|Q_I| = C_{ox} \left(V_{GS} - V_{th} \right) \tag{3}$$

$$|Q_D| = C_{ox} \left(V_{th} - V_{FB} - 2\phi_B \right) \tag{4}$$

$$|E_{eff}| = \frac{1}{\epsilon_{Si}} \left(|Q_D| + \frac{1}{2} |Q_I| \right) \tag{5}$$

$$|\mu_{eff}| = A \cdot (E_{eff})^{-n} \tag{6}$$

For calculation here, the values of A and n used are 1 and 0.3 respectively.

Once, μ_{eff} is obtained, this is used in equations 1 and 2 to get the desired curves.

Observations

For all 3 cases, the current is around an order of magnitude lower for the mobility degraded case in comparison to the constant mobility current.

Plots

Figure 1: Case 1: $I_D - V_D$ characteristics for Piecewise model with constant mobility

EE 788

Figure 2: Case 1: $I_D - V_D$ characteristics for Piecewise model with vertical field induced mobility degradation

Figure 3: Case 2: $I_D - V_D$ characteristics for Piecewise model with constant mobility

EE 788 4

Figure 4: Case 2: $I_D - V_D$ characteristics for Piecewise model with vertical field induced mobility degradation

Figure 5: Case 3: $I_D - V_D$ characteristics for Piecewise model with constant mobility

EE 788 5

Figure 6: Case 3: $I_D - V_D$ characteristics for Piecewise model with vertical field induced mobility degradation

Figure 7: Case 1: $I_D - V_D$ characteristics for Piecewise model with all plots superimposed

EE 788

Figure 8: Case 2: $I_D - V_D$ characteristics for Piecewise model with all plots superimposed

Figure 9: Case 3: $I_D - V_D$ characteristics for Piecewise model with all plots superimposed