CSC420 Project Proposal

Nutrition Label Extractor

David Shan & Wilbert Guo

Background:

Given a picture of food packaging with a nutrition label, we will extract the information from the nutrition label and output the information in a pie chart showing the breakdown of the macronutritional information.

Challenges:

- Not all food packaging is flat, they may be in a cylindrical shape etc.
- Some food packaging color could create difficulties in extracting the label info clearly
- Bad lighting and illumination in photos could cause difficulties in extracting the label

Outline:

Step/ Motivation	Implementation
Image Processing & Label Extraction: We want the image in a clean format where the English text and numerical values are easily readable.	 Convert image to grayscale and apply a blur Use TSAW skew detection to deal with irregular packaging Apply histogram equalization to darken nutrition label border Use Gaussian thresholding to make dark pixels to black and lighter pixels to white Use contour identification to locate where the nutrition label is located in the image Apply perspective transform to orientate label and output new image containing only the nutrition label
Information Extraction: We want to take the image generated in the previous step and identify the English words and numerical values	 Use Optical Character Recognition (OCR) Filter through the Tesseract output and decide which information to keep Make a key/value pairs data structure with the nutrient name and value Use bipartite graph matching algorithm to determine the Levenshtein distance between each key to a known nutrient name and minimize total edit distance among all matches Output information to a text file for making pie charts in the next step
Displaying Information in a Pie Chart: We want to take the information we have extracted and show it in a pie chart for the user to visualize	 Extract the information from the text file produced in the previous step and convert it to python data structures Use Matplotlib to plot data into pie chart for users to visualize

Citations:

 $\frac{https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=8204\&context=etd}{https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=5916\&context=etd}{https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein}\%20Distance.htm$