The Picard Pipelines

Tim Fennell Sequencing Pipeline Informatics Broad Institute

Pipeline Context

- Production pipelines feed into computational pipelines of other groups at Broad including:
 - Cancer mutation and rearrangement detection
 - Medical Genetics variant calling
 - Automated microbial assembly
- Datamarts allow both rapid reporting of QC metrics and correlation of metrics to LIMS information

Pipeline requirements

- Produce analysis ready BAM¹ files
 - "State of the art" data processing
 - Retain all data; flag don't discard
 - Identity and integrity checked
 - Aggregated by "Sample"

- Produce project tracking metrics
 - "Is my sample done"?
 - Enable project managers

- Produce key QC metrics
 - Assess run quality
 - Assess library construction
 - Identify trends
 - Informs downstream analysis
- Efficient use of compute and storage
 - Optimize for throughput; turn around time still important
 - Less compute = cheaper and faster results
 - Storage costs now roughly equivalent to reagent costs!

¹ SAM specification: http://samtools.sourceforge.net

BAM: A few notes about your BAM files

- All primary data is delivered in BAM format, which includes basecalls (the reads), quality scores, alignment data, etc.
- BAM files processed through Picard always contain all reads, including:
 - All unaligned reads (marked as unmapped)
 - All duplicate reads (marked as duplicates)
 - All "non-PF" reads (marked as failing vendor quality)

BIOINFORMATICS APPLICATIONS NOTE

Vol. 25 no. 16 2009, pages 2078-2079 doi:10.1093/bioinformatics/btp352

Sequence analysis

The Sequence Alignment/Map format and SAMtools

Heng Li^{1,†}, Bob Handsaker^{2,†}, Alec Wysoker², Tim Fennell², Jue Ruan³, Nils Homer⁴, Gabor Marth⁵, Goncalo Abecasis⁶, Richard Durbin^{1,*} and 1000 Genome Project Data Processing Subgroup

¹Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK, ²Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA, ³Beijing Institute of Genomics, Chinese Academy of Science, Beijing 100029, China, ⁴Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, ⁵Department of Biology, Boston College, Chestnut Hill, MA 02467, ⁶Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA and ⁷http://1000genomes.org

Received on April 28, 2009; revised on May 28, 2009; accepted on May 30, 2009

Advance Access publication June 8, 2009

Associate Editor: Alfonso Valencia

The WGS/Exome Pipeline High Level Overview

- Adapter trimming/marking happens during data extraction from Illumina (information is used during alignment)
- Indexed runs are de-multiplexed during extraction and each index/sample processed independently
- Recalibration only performed for references with dbSNP data available
- Many pipeline variants exist for:
 - Whole methylome and reduced representation bisulfite sequencing
 - Various long mate pair protocols
 - Hybrid selection
 - Pre-assembly QC

The Aggregation Pipeline High Level Overview

- A single BAM file is created per Sample (within the context of a project)
- Aggregations are started after data is processed or re-processed through the run-level pipeline (after a 12 hour "quiet period")
- Outdated aggregations are kept for 2 weeks after newer aggregations are completed

Extracting Bases + Qualities

- Parses file formats produced by all major versions of Illumina pipelines
- Auto-detects Illumina pipeline version and read configuration
- Detects and marks Illumina adapter sequences
 - Allows us to rescue reads from inserts significantly shorter than the read length that would otherwise not align
 - Ensures base quality calibration isn't aversely affected by reads from inserts slightly shorter than the read length
- Can also:
 - Run multithreaded to reduce runtime
 - Parse intensity information
 - De-multiplex multiplexed runs on the fly
- Generates a well-formed "unmapped" BAM complete with
 - Sample and library metadata
 - Adapter clip points

Generating aligned BAM files

Three stage process to generate well-formed aligned BAM file

- SamToFastq creates fastq files with adapter sequences clipped
- Alignment performed with BWA
 - Uses BWA's quality trimming feature with a low cutoff (Q5)
 - Run multithreaded (usually 4 threads per alignment)
 - Otherwise mostly default options
- MergeBamAlignment to create "aligned" bam
 - Merges SAM output from bwa with unmapped bam
 - Carries forward all unmapped reads
 - Carries forward all tags/metadata from unmapped bam
 - Restores bases hard-clipped before alignment (with soft clip)
 - Produces a very "well-formed" BAM file for downstream processing

Optical and PCR duplicate marking

Problem: PCR amplification causes molecular duplicates, sequencing artifacts cause optical duplicates; significant duplication causes problems for variant discovery etc.

MarkDuplicates outputs new BAM with duplicate reads marked

- Supports downstream analyses
 - Duplicates can be accounted for
 - Improves base quality recalibration
- Yields key metrics to assess library quality
 - Percent duplication
 - Optical duplication rate
 - Estimated library size (from non-optical duplicates)
- Works on all paired-end and single-end data simultaneously

Indel Realignment

Problem: Short reads are often misaligned around small insertions and deletions

GATK Indel Realigner identifies reads that map across positions of known indels from dbSNP and the 1000 Genomes project and

- 1. Realigns reads against all known haplotypes
- Re-writes read alignment information based on best haplotype alignment
- Improves base quality recalibration
- Reduces false-positive SNP calls
- Improves indel genotyping

Indel Realignment

Base Quality Score Recalibration

Problem: Base quality score accuracy is lower than desired

GATK base quality score recalibrator

- Uses multiple covariates to separate high and low quality bases and provides a more information-rich distribution
 - Instrument cycle
 - Assigned quality score
 - Dinucleotide context
- Ensures quality scores are accurate wrt observed error rates
- Retains original quality scores in BAM file alongside calibrated quality scores
- Only performed for references with dbSNP build

Base Quality Score Recalibration

Sample Fingerprinting

Problem: In a lab handling thousands of samples a week with rapidly evolving protocols mix ups will happen; need to be able to catch and un-mix informatically

SNP Fingerprinting

- Panels of 24-36 SNPs picked specifically for this purpose
 - High minor allele frequency in all HapMap populations
 - Ideally with many perfect proxies
- Sub \$5 assay performed in separate lab from independent aliquot
- Bayesian likelihood model allows us to robustly test
 - Sequence data vs. expected SNP fingerprint
 - Sequence data vs. SNP fingerprint for all samples in lab
 - Sequence data vs. other sequence data

Pipeline manager

- Now on our second pipeline manager, called "Zamboni"
- Key requirements:
 - Robustness, robustness!
 - Totally independent from our LIMS and environment
 - Workflows defined as graphs; parallelism inferred
 - Scale to tens of thousands of concurrent workflows
 - Small runtime footprint
 - Maximize use of available compute resources
 - Automatic retry for known failure modes
 - Restart of any workflow from where it stopped
 - Workflow versioning; multiple versions live at once
 - Rapid development/modification/testing of pipelines
- In the six weeks it has been live we have run over 50,000 pipelines and processed ~40 terabases of sequence

Where to find tools, data, source code, etc.

What	Where
Pipeline Outputs	/seq/picard/{flowcell}
Aggregation Outputs	/seq/picard_aggregation/{project}/{sample}
Picard Binaries	/seq/software/picard/current/bin
Metrics Documentation	http://iwww/~picard/picard_metric_definitions.html
Source Code	https://svn.broadinstitute.org/picard/trunk https://picard.svn.sourceforge.net/svnroot/picard/trunk

- And coming soon BASS
 - Programmatic access to BAM files in BASS available
 - Web page to access BAM files in BASS under construction