CL 433 Chemical Engineering Lab-4 [2024]

Experiment Number	MT407			
Title	Kinetics of Esterification Reaction			
Sub-group Code		A8a		
Date of Experiment		13/8/2024		
Date of Report Submission		16/8/2024		

Roll Number	Name	Responsibility owned (data, analysis, plots, report)
210020095	Pranav Savla	Plot,analysis
210020086	Piyush Anand	Report
210020029	Ayushi Priya	Sample Calculations
210020009	Agrawal Sanya Rajesh	Plot,analysis

(For use by examiners only)

Criterion	Faculty assigned marks
Calculations	
Graphical plots	
Hypothesis testing	
Report quality	
Initials with date	

R&P TA initials with date	

OBJECTIVE

Kinetics of a (Solid-liquid) Esterification Reaction
Ain
Time
To determine the reaction rate condents for the forward and backward reactions for extensional of acetic acid with but and at different temperatures:
neactions for extensication of acetic acid with but and at different
temperatures.

REACTION

Reaction	
Спз Соон + Сандон	CAHgCOOCH3 + H20
Acetic Acid Butoms	ol Butyl Actor Water

THEORY

Reory
The Syntheria of butyle acetate is done through extension of acetic acid with a but and. The ester has wide application as a very dile solvent in chemical industry. It is a surveyible secucion that takes there in the presence of acid Catalyse. The Catalyse used in the pexent experiment is a solid heterogenous Catalyse. Hence, neartion takes place on the surface of the Catalyse II the neartion is performed in a back neartor, the conversion will increase and the neartion grate will drop with neartest to time. Eventually it will atlain equilibrium.
when in chemical industry. It is a surrountly beaution that takes
blace in the presence of acid Catalysis. The Catalyse used in the
point experiment in a solid heterogenous Catalyat. Hence, meastion
takes place on the surface of the Catalyor If the execution is
performed in a back neactor, the conversion will increase and
the neartien grate hall drop with nespect to dime . Crentially it
will attain equilibrium.
Kinectic Model
Among all the models the Simplest model is the fleudohomogenous
Among all the models the Simplest model is the fleudohomogenous model given by the following leak equation:
- TCH3COOK = KICCH3COOHCCAHJOH - K2CCAHJCOOCH3CH3O
10 10 10 10 10 10 10 10 10 10 10 10 10 1
where k is the seaction equilibrium constant (i.e. \$1/2) that can be
where k is the seaction equilibrium constant (i.e. k./ks) that can be independently calculated using the following relation:
. 0 0 0
Dn. k - AHOO(6)[]-1]
$\ln \frac{k}{k^o} = \frac{\Delta H_0^{o(l)}}{R} \left[\frac{1}{L} - \frac{1}{L} \right]$
**
[(0) 7
Where, $k' = \exp \left(-\frac{\Delta G_{k'}(\ell)}{RT_{k'}}\right)$
Klo J
ΔHe = - 3.887 KJ/mal , ΔGe(1) =- 8.889 KJ/mal
- 1 / mac , say - out my max

SCHEMATIC DIAGRAM

Figure 38.1: Schematic diagram of the Esterification setup

RAW DATA

Cou	rse: CL 422	DATA S [A-8 (a.8 NT 407 R/*		Date: Id in Je = 1		
	t. Number & Name Temp(°C) 43 46 46 46 48 45 44	Vol(me) 1 8 1-6 1-4 7.1 5.8 6.1 5.9	Time(min) 0 5 10 20 30 45 60	Reachs(2) Temp(°()) 42 44 44 43 42 41 41	7.9 7.5 7.2 6.4 6.2 5.7 5.2	
Res Time(mu) 6 5 10 20 30 45 60	75 76 75 76 75 73 74 73	Val (ml) 7 ml 6 4 5 6 4.8 4.2 4.2 3.5	Time(nu) 0 5 10 20 30 45	Reactor Templ*() 83 85 85 85 83 83	4 va(ne) 8 58 4.9 4.2 4 3.2 8.1	
	ent Sign. 1)	2) And 69 000 (2)002001	3). (4). 7) 21002015 2). (18) (5)	10020029 2100 24	2 160200 A	

SAMPLE CALCULATIONS

```
Arrhenine Equation m(K_0) = -\Delta M^{\circ} \left(\frac{1}{T} - \frac{1}{T_0}\right)

K_0 = \exp\left(-\frac{\Delta G^{\circ}}{RT_0}\right) = K_0 = \exp\left(-\frac{3.134 \times 10^{-3}}{8314 \times 298.15}\right)
                                                                                                                                                                                 = 36.089 .
                                                                         K= KO CAP ( - AN ( + - 1/70))
            Differential Analysis
                                                      \frac{dx}{dt} = K_1 C_{40} \left[ (1-x)(0-x) - \frac{x^2}{K} \right] = K_1 \int_{2}^{2} (x)
           Consider Leador 1, t=5 mm
                            \frac{dx}{dt} = x[t=5] - x[t=0] = 0.406 -
                                                                                           0.436 - 0.406 = 0.03 = 0.006
-\sqrt{2(x)} = 6.734 \left[ \left( 1 - 6.436 \right)^2 - \frac{6.436^2}{36.089 \ln p} \left( \frac{3367}{8.314} \right) \right] = \frac{1}{25+273}
   Similarly we find dx and f2(n) for our times
       Upon performing linear regression, and obtain steps \frac{1}{473} \times 10^{-3} = \frac{1}{473} \times 10^{-3} \times 10^{-3
                                                                                                                                                                                                                                                                                                             4.68 × 104 $/mol
                                                                    Intucept = In A = 11.3
Af = 80,821
```

Simularly
$$-\frac{E_{b}}{R} = -6100$$
 $E_{b} = 5.07 \times 104 \text{ J/mol}$

In $A_{b} = 9.25$, $A_{b} = 10,404$

Integral Analysis

$$\frac{dy}{dt} = k_{1}(A_{0})\left((1-x)(0-x) - \frac{x^{2}}{K}\right)$$
 $K_{1}\int dt = \frac{x}{k_{0}}\left(\frac{dy}{(1-x)(0-x)} - \frac{x^{2}}{K}\right)$
 $A_{1}\int dt = \frac{x}{k_{0}}\left(\frac{dy}{(1-x)(0-x)} - \frac{x^{2}}{k_{0}}\right)$
 $A_{2}\int dt = \frac{x}{k_{0}}\left(\frac{dy}{(1-x)(0-x)} - \frac{x^{2}}{k_{0}}\right)$
 $A_{3}\int dt = \frac{x}{k_{0}}\left(\frac{dy}{(1-x)(0-x)} - \frac{x}{k_{0}}\right)$
 $A_{3}\int dt = \frac{x}{k_{0}}\left(\frac{dy$

PLOTS

Integral Analysis

Time (min) and f1(X) -R1

Time (min) and f1(X) -R2

Time (min) and f1(X) - R3

Time (min) and f1(X) -R4

In(k1) vs. 1/T

In(k2) vs. 1/T

Differential Analysis

dX/dT Vs f2(X) -- Reactor 2, T= 42.42 deg C

dX/dT Vs f2(X) -- Reactor 3, T= 73.17 deg C

dX/dT Vs f2(X) -- Reactor 4, T=83.58 deg C

Integral Analysis

CALCULATIONS

Reactor 1									
Time (min)	Vol of sample (ml)	T (degC)	Vol of NaOH (ml)	Conc of AA (M)	Conversi on (X)	a=2*(K-1)*X	f1(X)		
0	1	43	8	8	-0.18800 70547	-11.9200 3367	0		
5	1	46	7.6	7.6	-0.12860 67019	-8.15392 9225	0.04333 791017	К	32.70102764
10	1	46	7.4	7.4	-0.09890 652557	-6.27087 7002	0.06671 606803	b = sqrt(K*(T heta-1)^ 2 + 4*theta)	2
20	1	46	7.1	7.1	-0.05435 626102	-3.44629 8666	0.10418 30457	c= (Theta+1)*K	65.40205528
30	1	45	6.8	6.8	-0.00980 5996473	-0.62172 03304	0.14485 86168		
45	1	45	6.1	6.1	0.09414 462081	5.96896 2453	0.25481 93653		
60	1	44	5.9	5.9	0.12384 47972	7.85201 4676	0.29086 79451		

Reactor 2									
Time (min)	Vol of sample (ml)	T (degC)	Vol of NaOH (ml)	Conc of AA (M)	Conversi on (X)	a=2*(K-1)*X	f1(X)		
0	1	42	7.9	7.9	-0.17315 69665	-11.1149 2618	0		
5	1	44	7.5	7.5		-7.30202 4224		K	33.0949 4368
10	1	44	7.2	7.2		-4.44234 776		b = sqrt(K*(T heta-1)^	2

								2 + 4*theta)	
20	1	43	6.4	6.4	0.04959 435626	3.18345 6142	0.19446 83516	c= (Theta+1)*K	66.1898 8736
30	1	42	6.2	6.2	0.07929 453263	5.08990 7118	0.22728 11266		
45	1	41	5.7	5.7	0.15354 49735	9.85603 4557	0.31904 10146		
60	1	41	5.2	5.2	0.22779 54145	14.6221 62	0.42778 61484		
		42.4285 7143							

Reactor 3									
Time (min)	Vol of sample (ml)	T (degC)	Vol of NaOH (ml)	Conc of AA (M)	Conversi on (X)	a=2*(K-1)*X	f1(X)		
0	1	70	7	7	-0.03950 617284	-2.20882 1942	0		
5	1	75	6.4	6.4	0.04959 435626		0.08713 536679	K	28.9554 0271
10	1	76	5.6	5.6	0.16839 50617	9.41510 3529	0.23120 56085	b = sqrt(K*(T heta-1)^ 2 + 4*theta)	2
20	1	75	4.8	4.8	0.28719 57672	16.0573 4666	0.42109 58794	c= (Theta+1)*K	57.9108 0541
30	1	73	4.2	4.2	0.37629 62963	21.0390 29	0.60852 77496		
45	1	74	4.2	4.2	0.37629 62963	21.0390 29	0.60852 77496		
60	1	73	3.5	3.5	0.48024 69136	26.8509 9174	0.90346 12282		
		73.7142 8571							

Reactor 4									
Time (min)	Vol of sample (ml)	T (degC)	Vol of NaOH (ml)	Conc of AA (M)	Conversi on (X)	a=2*(K-1)*X	f1(X)		
0	1	83	8	8	-0.18800 70547	-10.1025 7883	0	K	27.8675 5252
5	1	85	5.8	5.8	0.13869 48854	7.45278 4232	0.30820 55804	b = sqrt(K*(T heta-1)^ 2 + 4*theta)	2
10	1	85	4.9	4.9	0.27234 5679	14.6345 2367	0.51032 4174	c= (Theta+1)*K	55.7351 0503
20	1	85	4.2	4.2	0.37629 62963	20.2203 21	0.72419 77475		
30	1	83	4	4	0.40599 64727	21.8162 631	0.79828 46229		
45	1	83	3.2	3.2	0.52479 71781	28.2000 3149	1.18090 6669		
60	1	83	3.1	3.1	0.53964 72663	28.9980 0254	1.24164 7696		
		83.8571 4286							

For kf			For kb		
slope	-6115		slope	-6582	
intercept	14.1		intercept	12.1	
Ef	50840.11	J/mol	Eb	54722.748	J/mol
Af	1329083.281		Ab	179871.8623	

Reactor 1		K	32.701027 64				
Time (min)	Vol of sample (ml)	T (degC)	Vol of NaOH (ml)	Conc of AA (M)	Conversion (X)	dX/dt	f2(X)
0	1	43	8	8	-0.1880070 547		9.49677767
5	1	46	7.6	7.6	-0.1286067 019	0.0118800705 5	
10	1	46	7.4	7.4	-0.0989065 2557	0.0059400352 73	8.129893825
20	1	46	7.1	7.1	-0.0543562 6102		
30	1	45	6.8	6.8	-0.0098059 96473	0.0044550264 55	
45	1	45	6.1	6.1	0.0941446 2081	0.0069300411 52	5.523892655
60	1	44	5.9	5.9	0.1238447 972	0.0019800117 58	

Reactor 2		K	33.094943 68				
Time (min)	Vol of sample (ml)	T (degC)	Vol of NaOH (ml)	Conc of AA (M)	Conversion (X)	dX/dt	f2(X)
0	1	42	7.9	7.9	-0.1731569 665		9.2617657 1
5	1	44	7.5	7.5	-0.1137566 138		8.3505098 14
10	1	44	7.2	7.2	-0.0692063 4921	0.0089100 5291	7.6972994 32
20	1	43	6.4	6.4	0.0495943 5626		6.0820896 26
30	1	42	6.2	6.2	0.0792945 3263		5.7070791 17
45	1	41	5.7	5.7		0.0049500 29394	4.8199387 45
60	1	41	5.2	5.2		0.0049500 29394	4.0047782 3
		42.428571 43					

Reactor 3		K	28.955402 71				
Time (min)	√ol of	T (degC)	Vol of	Conc of AA	Conversion	dX/dt	f2(X)

	sample (ml)		NaOH (ml)	(M)	(X)		
0	1	70	7	7	-0.0395061 7284		7.2762218 15
5	1	75	6.4	6.4	0.0495943 5626	0.0178201 0582	6.0820896 26
10	1	76	5.6	5.6	0.1683950 617	0.0237601 4109	4.6511482 54
20	1	75	4.8	4.8	0.2871957 672	0.0118800 7055	3.4044753 14
30	1	73	4.2	4.2	0.3762962 963	0.0089100 5291	2.5903967 68
45	1	74	4.2	4.2	0.3762962 963	0	2.5903967 68
60	1	73	3.5	3.5	0.4802469 136	0.0069300 41152	1.7716418 04

Reactor 4		K	27.867552 52				
Time (min)	Vol of sample (ml)	T (degC)	Vol of NaOH (ml)	Conc of AA (M)	Conversion (X)	dX/dt	f2(X)
0	1	83	8	8	-0.1880070 547		9.4967776 7
5	1	85	5.8	5.8	0.1386948 854	0.0653403 8801	4.9916084 31
10	1	85	4.9	4.9	0.2723456 79	0.0267301 5873	
20	1	85	4.2	4.2	0.3762962 963	0.0103950 6173	
30	1	83	4	4	0.4059964 727	0.0029700 17637	
45	1	83	3.2	3.2	0.5247971 781	0.0079200 47031	1.4639347 34
60	1	83	3.1	3.1	0.5396472 663		
		83.857142 86					

Arrhenius Calculations

T (degC)	T (K)	1/T	K	k1	k2	ln(k1)	ln(k2)
		0.0031431	32.701027			-6.4824875	-9.9698940
45	318.15	7146	64	1.53E-03	4.68E-05	44	47
		0.0031688	33.094943			-6.4253291	-9.9247096
42.42	315.57	69031	68	1.62E-03	4.90E-05	3	42
		0.0028830	28.955402			-5.5115105	-8.8772673
73.71	346.86	07553	71	4.04E-03	1.40E-04	87	96

		0.0028011	27.867552			-4.0923465	-7.4198095	
83.85	357	20448	52	1.67E-02	5.99E-04	6	79	

DISCUSSIONS

1 HYPOTHESIS

2 QUESTIONS

DISCUSSIONS

1. If K is not known, how will you evaluate k, and K
from the kinetic data you have generate?

And We see that the conversion begins to saturate with time. Eventually, we will reach a point when $\frac{dX}{dt} = 0$ (ie, NaOH titrant values are consecutively same).

At this point, k, Goo [(1-x)(0-x) - x²] = 0

\[
\times_{Z} = (x-0)(x-1)
\times_{Z} = (x-1)^{2}
\times_{X-1}
\]

Now, the above procedure can be followed again to get k, - either integral or differential analysis.

CONCLUSIONS

- 1. We see that the rate constants increase with temperature, as predicted by the Arrhenius equation.
- 2. By comparing the activation energies for the forward and backward reactions, we see that the reaction is exothermic.