Digital Electronics

CA #1

Name: Mohammad

Last Name: Taghizadeh Givari

Student No: 810198373

Contents

1. Question 1	2
Part a	2
Part b	4
Part g	13
2. Question 2	16
Part a	16
Part b	19
Part g	25

Question 1:

Transfer characteristic of an inverter

Part a:

VTC(Voltage Transfer Characteristic) for β = 0.8

VTC(Voltage Transfer Characteristic) for β = 2

VTC(Voltage Transfer Characteristic) for β = 10

Part b:

 $V_{OH}V_{IL}$ for β = 0.8

$$=> V_{OH} = 933 \text{ mv}, V_{IL} = 290 \text{ mv}$$

$V_{OL}V_{IH}$ for β = 0.8

$$=> V_{OL} = 59.1 \text{ mv}, V_{IH} = 526 \text{ mv}$$

V_M for β = 0.8

$V_{OH}V_{IL}$ for $\beta = 2$

$$=> V_{OH} = 940 \text{ mv}, \qquad V_{IL} = 338 \text{ mv}$$

$V_{OL}V_{IH}$ for β = 2

$$=> V_{OL} = 67.3 \text{ mv}, V_{IH} = 587 \text{ mv}$$

V_M for $\beta = 2$

$$=> V_{M} = 480 \text{ mv}$$

$V_{OH}V_{IL}$ for β = 10

$$=> V_{OH} = 935 \text{ mv}, \qquad V_{IL} = 447 \text{ mv}$$

$V_{OL}V_{IH}$ for β = 10

$$=> V_{OL} = 66.9 \text{ mv}, V_{IH} = 696 \text{ mv}$$

V_M for $oldsymbol{eta}$ = 10

β	V _{IL}	V _{IH}	V _{OL}	V _{OH}	V _M
0.8	290 mv	526 mv	59.1 mv	933 mv	434 mv
2	338 mv	587 mv	67.3 mv	940 mv	480 mv
10	447 mv	696 mv	66.9 mv	935 mv	558 mv

Part g:

Output waveform of capacitor(20fF)

Output waveform of capacitor(50fF)

T_{rise} ,T_{fall} of output voltage of capacitor(20fF)

 $=> T_{rise} = 3.1636E-10, T_{fall} = 2.3355E-10$

T_{rise} , T_{fall} of output voltage of capacitor (50fF)

 $=> T_{rise} = 8.2167E-10, T_{fall} = 5.9883E-10$

Сар	t _{fall} (ps)	t _{rise} (ps)
20fF	233.55	316.36
50fF	598.83	821.67

As the capacitance increases, the value of RC(Time Constant) increases, then duration of the transient state(5 \times Time Constant) increases, so T_{rise} and T_{fall} increase.

Question 2:

Extracting Model's Parameters from Simulation

Part a:

IV characteristic for $V_{gs} = 0.4v$

IV characteristic for V_{gs} = 0.6v

IV characteristic for $V_{gs} = 0.8v$

IV characteristic for $V_{gs} = 1v$

Part b:

VT0:

To calculate VT0, we consider 2 points of IV characteristic with the same V_{DS} but different V_{GS} then we have:

 $I_{DS1} = I_{DS}$ of first considered point, $I_{DS2} = I_{DS}$ of second considered point

$$\frac{\text{Ids1}}{\text{Ids2}} = \frac{(Vgs1 - VT0)^2}{(Vgs2 - VT0)^2} \ => \ \, VT0 = \frac{\sqrt{\frac{\text{Ids1}}{\text{Ids2}}}Vgs2 - Vgs1}{\sqrt{\frac{\text{Ids1}}{\text{Ids2}}} - 1}$$

First considered point of IV for VT0 calculation:

$$=> I_{DS1} = 3.86 \text{ uA}, V_{gs1} = 0.8 \text{ v}$$

Second considered point of IV for VT0 calculation:

$$=> I_{DS2} = 74.5 \text{ uA}, \qquad V_{gs2} = 0.6 \text{ v}$$

=>
$$VT0 = \frac{\sqrt{\frac{3.86 \text{ uA}}{74.5 \text{ uA}}} 0.6 - 0.8}{\sqrt{\frac{3.86 \text{ uA}}{74.5 \text{ uA}}} - 1} = 0.34 \text{ v}$$

λ:

To calculate λ , we consider 2 points of IV characteristic with the same V_{GS} but different V_{DS} then we have:

 $I_{DS1} = I_{DS}$ of first considered point, $I_{DS2} = I_{DS}$ of second considered point

$$\frac{\text{Ids1}}{\text{Ids2}} = \frac{1 + \lambda V ds1}{1 + \lambda V ds2} \quad => \quad \lambda = \frac{1 - \frac{\text{Ids1}}{\text{Ids2}}}{\frac{\text{Ids1}}{\text{Ids2}} V ds2 - V ds1}$$

First considered point of IV for λ calculation:

$$=> I_{DS1} = 271 \text{ uA}, \qquad V_{ds1} = 1 \text{ v}$$

Second considered point of IV for λ calculation:

$$=> I_{DS2} = 266 \text{ uA}, V_{ds2} = 0.8 \text{ v}$$

$$\Rightarrow \lambda = \frac{1 - \frac{271 \text{ uA}}{266 \text{ uA}}}{\frac{271 \text{ uA}}{266 \text{ uA}} 0.8 - 1} = 0.1 \text{ } v^{-1}$$

k_p:

To calculate k_p , we consider a single point of IV characteristic in saturation region then we have:

$$k_p = \frac{Ids}{\frac{1}{2} \frac{W}{L} (Vgs - VT0)^2 (1 + \lambda Vds)}$$

single considered point of IV for k_{p} calculation:

$$=> I_{ds} = 495 \text{ uA}, \qquad V_{gs} = 1 \text{ v}, \qquad V_{ds} = 0.8 \text{ v}$$

$$k_p = \frac{495 \text{ uA}}{\frac{1}{2} \frac{1 \text{u}}{0.1 \text{u}} (1 - 0.34)^2 (1 + 0.1 \times 0.8)} = 210 \frac{\mu A}{V^2}$$

VT0	0.34
λ	0.1
k _p	210

Part g:

IV characteristic of original NMOS and simple NMOS for V_{gs} = $1 v\,$

 $I_{m1} = I_{DS}$ original NMOS, $I_{m2} = I_{DS}$ simple NMOS

IV characteristic of original NMOS and simple NMOS for V_{gs} = 0.8 ν

IV characteristic of original NMOS and simple NMOS for V_{gs} = 0.6 ν

IV characteristic of original NMOS and simple NMOS for $V_{gs} = 0.4v$

As you can see the IV characteristic of original NMOS and simple NMOS are almost same. There is a small difference(about μ A) due to the approximation of kp, λ and VTO and the fact that kp, λ and VTO are not exactly equal to the original kp, λ and VTO.