

PCT/GB 2004 / 0 0 3 0 5 0

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

REC'D 20 SEP 2004
WIPO PC1

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 17 August 2004

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

Patents Form 1/77 18 FEB 2004

Patents Act 1977
(Rule 16)

NEWPORT

18FEB04 E874276-1 D02884
P01/7700 0.00-0403582.0 NONE

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

Cardiff Road
Newport
South Wales
NP10 8QQ

1. Your reference

P346711/NBR/MEA

2. Patent application number

(The Patent Office will fill in this part)

0403582.0

18 FEB 2004

3. Full name, address and postcode of the or of each applicant (underline all surnames)

Hamilton Erskine Limited
17 Moss Road, Ballygowan
Newtownards, Co Down
BT23 6JQ, Northern Ireland

Patents ADP number (if you know it)

8676413001

If the applicant is a corporate body, give the country/state of its incorporation

4. Title of the invention

"Improvements Relating to Impact-Resistant Structures and Assemblies"

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Murgitroyd & Company

Scotland House
165-169 Scotland Street
Glasgow
G5 8PL

Patents ADP number (if you know it)

1198013 1198015

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
(if you know it)

Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if

yes

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.

See note (d))

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form	0
Description	25
Claim(s)	0
Abstract	0
Drawing(s)	8 <i>+8</i>

10. If you are also filing any of the following, state how many against each item.

Priority documents -
Translations of priority documents -
Statement of inventorship and right to grant of a patent (*Patents Form 1/77*) -
Request for preliminary examination and search (*Patents Form 9/77*).
Request for substantive examination (*Patents Form 10/77*) -
Any other documents (please specify) -

CA2389502A1

11.

I/We request the grant of a patent on the basis of this application.

Signature *Murphy* Date
Murphy & Company 17 February 2002

12. Name and daytime telephone number of person to contact in the United Kingdom

Mark Eamshaw

0141 307 8400

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 1/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

1 Improvements Relating to Impact-Resistant Structures
2 and Assemblies

3

4 The present invention relates to improved impact-
5 resistant structures and assemblies such as walls
6 and windows, including ballistic-, blast- and
7 hurricane-resistant optically transparent composite
8 materials involving glass.

9

10 In relation to windows, there have been many
11 suggestions for "bullet-proof" and "blast-proof"
12 transparent windows and the like, either for
13 civilian purposes such as for use in aircraft, or
14 for military purposes, especially protection against
15 enemy and terrorist attack. However, with the
16 developing threat from international terrorism and
17 events such as those of September 11 2001, many
18 governments and major organisations are re-
19 appraising their security requirements. High
20 velocity weapons and better explosives are
21 increasingly available to terrorists and the like.
22 Whilst traditional 'bullet-proof' glass will still

1 be required, there is now an increasing need for
2 certain key installations, persons and equipment,
3 especially in and around military and high
4 governmental locations, to be protected against a
5 higher level of threat than previously considered
6 necessary.

7
8 Where pure optical transmission for a window is not
9 a necessity, there are many available materials
10 having high strength and impact resistance.
11 However, where optical transparency of 'normal'
12 windows and glazing is desired, e.g. for military
13 base houses and offices, current forms of glazing
14 are only adequate for protection against low
15 velocity bullets (e.g. from small arms), and low
16 levels of blast. Most current forms of 'bullet
17 proof' glass use several layers of glass bonded by
18 adhesive polymer film. The energy of the projectile
19 is dissipated over increasingly large areas of
20 blast. To some extent the projectile can be
21 deformed or fragmented and can be deviated from the
22 original line of attack. The energy is directed
23 towards a direction different to the previous path,
24 resulting in further dissipation of energy, e.g. as
25 shown in figure 1..

26
27 Typical design solutions involve either glass/glass
28 combinations or glass/polycarbonate (PC)
29 combination. The latter offer an advantage in that
30 they are lighter than the former, but they often
31 have delamination problems. The effect of bonding
32 of PC to glass is also difficult as PC has a

1 substantially higher rate of thermal expansion than
 2 glass. This causes high stress levels in the
 3 bonding interlayer during temperature changes which
 4 often leads to delamination.

5 The PC designs are often 'complex', particular as
 6 the level of protection required increases. The
 7 number of layers can cause problems with optical
 8 interference and secondary image formation because
 9 of the number of glass/PC interfaces. There may
 10 also be weight or thickness limitations preventing
 11 their use in particular applications. This is shown
 12 in the following table.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Weapon type & Calibre	Class	Design	Thickness (mm)	Weight (kg/m ²)	Transmittance (%)
Hand Gun 9mm Luger	BR2/C1	6 ² PC5 ² 3-12-ESG6	35	47	77
Rifle 0.223 (5.56*45)hc	BR5/C3	8 ² 6 ² PC6 ² 6 ² PC6 8 ² PC8 ² 6-12- 6 ² PC8 ² 3-20-ESG6	39 82	71 95	64 ?
Rifle 0.308 (7.62*51)	BR6/C4	8 ² 8 ² 6 ² PC6 ² 6 ² PC6 8 ² PC8 ² 3-12- 10 ² PC8 ² 3-20-ESG6	49 85	93 102	?
Rifle 0.308 (7.62*51)hc	BR7/C5	6 ² 8 ² 8 ² PC8-20- 6 ² 8 ² 82PC8	91	143	58

30

31

32

1. US5665450 discusses the introduction of glass fibres
2. and glass ribbons into transparent composites; but,
3. as it states, the introduction of glass fibres into
4. an optically transparent polymer destroys the
5. transparency of the polymer.

6.

7. US5665450 considers that the introduction of glass
8. ribbons provide a higher degree of optical clarity
9. and lower level of distortion than glass fibres.
10. However the photographs in US5665450 indicating the
11. degree of optical clarity of fibre and ribbon-
12. reinforced materials still show distortion even
13. based on photographic reproduction of relatively
14. indistinctive photographs.. Figure 7 shows
15. percentage like transmission as a function of
16. temperature and wavelength. However, it can be seen
17. that the percentage transmission barely gets above
18. 80% at the lowest temperature and highest wavelength
19. measured. The lowest temperature measured is at
20. 30°C, which is also not a temperature generally
21. encountered in many countries on a regular basis. It
22. is interesting that the percentage transmission in
23. US5665450 was not measured at more temperate or
24. freezing temperatures. Moreover, 80% optical
25. transmission is very poor in comparison with the
26. expectancy of 'normal' glass, which should be at
27. least 90% at all temperatures. It is appreciated
28. that the human eye can easily recognise or perceive
29. a less than 100% optical transmission of light
30. through a 'transparent' material.

31.

1 In essence, there is a requirement for an optically
2 transparent composite material having about or at
3 least 90% optical transmission over a range of
4 temperatures, including below 0°C, and also able to
5 withstand high velocity ballistic projection whilst
6 having a relatively low manufacturing cost.

7

8 According to one aspect of the present invention,
9 there is provided an optically transparent composite
10 material comprising at least one glass/resin/glass
11 lamination, wherein the resin is a PRR material
12 having optical fibre-reinforcement therein.

13

14 The term "PRR" refers to 'polycarbonate replacement
15 resins', a range of materials provided by Chemetall
16 GmbH of Frankfurt, Germany, and generally defined in
17 their International Patent Application No WO
18 01/38087A1. The PRR materials are a range of
19 transparent cast resins that can consist of reactive
20 acrylate and methacrylate monomers, acrylate and
21 methacrylate oligomers, bonding agents and
22 initiators. The content of WO 01/38087A1 defining
23 these materials is incorporated herein by way of
24 reference.

25

26 The term "PRR" also extends to similarly provided
27 polyurethane resins, often termed "PUR".

28

29 A range of commonly available PRR materials are sold
30 under the trade name Naftlolan®. The Naftlolan
31 materials are provided in a range of different
32 formulations to provide slightly different

1 properties. A list of product data of certain
2 polyurethane Naftolan materials are listed in
3 Tables 2 and 3 hereinafter, by way of example only.
4 PRR materials have been found to have several
5 advantages over previously used polymer glass
6 lamination layers. Firstly, the refractive index of
7 PRR material overlaps very closely with many types
8 of glass. Secondly, PRR materials have been found
9 to expand and contract at very close rates with that
10 of glass, thus leading to minimal if ever cracking
11 or delamination (due to internal stress) during any
12 thermal expansion and contraction of the composite
13 material. Thirdly, PRR materials are relatively
14 very easy to use and set in transparent composite
15 materials, especially compared with processes of
16 curing previously used types of polymers and resins.
17 They are also useable in designs incorporating
18 complex curves.

19
20 Because PRR materials have a co-efficient of
21 expansion and contraction very close to glass, these
22 materials are usable to provide optically
23 transparent composite materials with glass over a
24 much greater range of temperatures than, e.g. that
25 shown in US5665450. In particular, the present
26 invention is designed to provide a ballistic-
27 resistant optically transparent composite material
28 which is usable at temperatures even as low as -15°C
29 to -40 °C, generally -20°C, e.g. the temperature of
30 windows in military installations in certain
31 countries such as Canada, as well as temperatures
32 going up to 30°C to 40°C, such as the temperature of

1 windows in more tropical countries. To that extent,
2 the difference in co-efficiency of glass, such as a
3 normal silica-based glass, and PRR materials,
4 deviates little over a wide temperature range.

5

6 Table 4 hereinafter lists the refractive indices of
7 a number of resins, including a number of the
8 Naftolan range, indicating their close refractive
9 index to that of glass in general.

10

11 In general, the refractive index of the PRR
12 materials are sufficiently close to readily
13 available types of glass, such as a silica-based
14 glass, that the optical transparency of the
15 composite material of the present invention is as
16 good as that from any current glass/glass or
17 glass/PC laminations.

18

19 The fibre reinforcement in the PRR layer of the
20 composite material of the present invention can be
21 provided by any known type of "fibre material", being
22 for instance in the form of filaments, or in the
23 form of particles such as beads, or even powders, as
24 long as such fibre material wholly or very
25 substantially has the same refractive index as glass
26 across all or most the wavelengths of optical light.
27 Such glass fibres are well known in the art, one
28 such available product being sold under the trade
29 name Tyglas by Fothergill Engineered Fabrics.

30

31 The fibre reinforcement provide the PRR intermediate
32 layer with improved strength because of their well

1 known ability to laterally transmit impact energy.
2 Meanwhile, PRR materials also have improved utility
3 as a resin to bond the fibre material fillers
4 because of their similar co-efficient of thermal
5 expansion and adhesive strength to glass.

6

7 In the present invention, the thickness of the glass
8 and PRR layers, and the density of fibre
9 reinforcement in the PRR layer, can vary according
10 to the qualities of the final composite material
11 desired. Cost and physical properties are factors
12 in considering the thickness of the layers.. One
13 known ratio of thickness is glass/PRR/glass of
14 6/20/4mm; this is provided by way of example only.
15 Another suitable dimension is 4/4/3mm.

16

17 Indeed, a major facet of PRR material is that its
18 strength is independent of its thickness. Many
19 types of resins and adhesives only have strength for
20 a minimal thickness, as their use is to bond
21 together the layers (e.g. of glass) on each side,
22 rather than provide any inherent strength of their
23 own right. PRR has been found not only to provide
24 good bonding to glass, but also have internal
25 strength in its own right. The thickness of the PRR
26 layer is therefore independent of the thickness of
27 the glass layers either side.

28

29 The nature of "high velocity ballistic protection"
30 can be defined in general terms as the difference
31 between a hand gun and a rifle, e.g. above a NATO
32 5.56 or 7.62mm ball.

1 According to a second aspect of the present
2 invention, there is provided a process for making an
3 optically transparent composite material as herein
4 before defined, comprising the steps admixing the
5 PRR material with the optical fibre-reinforcement,
6 and allowing the combination to cure and set between
7 the two layers of glass.

8
9 Further information on the curing of PRR resins may
10 be found in WO 01/38087A1.

11
12 Meanwhile, increasing power and sophistication of
13 explosive-technology means that 'blast-proof'
14 optically transparent material is also desired
15 having increasing in situ strength and load ability.
16 In this regard, it is now generally desired to
17 provide blast-resistant optically transparent
18 material having the ability to withstand a blast of
19 500kg TNT or equivalent at 40m.

20
21 US patent No 3953630 discloses a laminated
22 transparent assembly suitable for use as a
23 windscreen for a high speed vehicle wherein high
24 strength flexible material is embedded in a plastic
25 material, laid between two layers of glass. The
26 flexible material extends beyond the transparent
27 assembly, so as to be directly conjoined with the
28 structure of the vehicle. Thus, as any blast causes
29 deformation of the transparent assembly (as part of
30 the impact absorption), the high strength flexible
31 material provides a direct bond between the vehicle
32 structure bolts and the transparent assembly,

1 hopefully thereby resisting complete separation of
2 the two and travel of the transparent assembly into
3 the vehicle.

4

5 However, US3953630 has three major disadvantages.
6 Firstly, it only discloses the use of
7 polyvinylbutyral (PVB) as the plastic layered to
8 provide the bonding between the glass sheets and the
9 flexible material. Manufacture of the transparent
10 assembly in US3953630 requires an altering of the
11 conventional laminating technique, in order to
12 provide good bonding between a number of PVB sheets,
13 and the glass. This requires pre-heating treatment,
14 insertion of the full assembly including glass
15 sheets in a closed bag to evacuate all air, followed
16 by heating in a autoclave with high pressure. This
17 method of manufacture has not lent itself to cost-
18 efficient production for a number of transparent
19 assemblies, other than for the very special uses
20 such as our aircraft windscreens as mentioned.

21

22 Moreover, PVB in particular is a material only
23 designed to provide good bonding between glass
24 layers. It is typically only 1-2mm thick. Further
25 thickness of layer is not desired, as PVB has little
26 internal strength in its own right.

27

28 Thus, in a third aspect of the present invention,
29 there is provided a laminated optically transparent
30 assembly comprising at least one glass/resin/glass
31 lamination, and having one or more high tensile
32 strength flexible material reinforcement pieces

1 extending laterally from the resin layer to provide
2 attachment of the assembly to a surround, wherein
3 the resin is a PRR material.

4

5 PRR materials are those as defined herein above. As
6 well as the greater similarity of refractive index
7 and co-efficient of thermal expansion of PRR
8 material to glass, the PRR-flexible material and
9 PRR-glass bonding has been found to be superior to
10 that of prior materials such as PVB.

11

12 Meanwhile, the assembly of the present invention
13 still provides the degree of flexibility desired for
14 a blast-resistant window, with the reinforced
15 attachment of the window to the surround, such as
16 the window rebate of a frame.

17

18 The high tensile strength flexible material may be
19 similar to that disclosed in US3953630, i.e. woven
20 fabric or woven glass fibre material or polyester
21 fibre material. One such product is Kevlar®.

22

23 The flexible material could extend wholly or
24 substantially around opposites sides of the complete
25 transparent assembly, to provide flexibility of
26 attachment to the surround. It could also extend as
27 a series of discrete straps.

28

29 For the ballistic-resistant material described
30 hereinabove, the thickness of the glass and resin
31 layers of the blast-resistant assembly can follow
32 those well known in the art. One suitable dimension

1 for the glass/resin/glass in 4mm glass, 4mm PRR and
2 3mm glass.

3

4 The thickness of the PRR layer can indeed be up to
5 40-50mm thick, as PRR has inherent strength
6 independent of thickness as mentioned above. To
7 that extent, the PRR material can be as thick and
8 therefore as strong as desired, as all the strength
9 from a blast is taken by the resin (whilst any glass
10 shatters).

11

12 The second disadvantage of US3953630 concerns its
13 design. All the windows in the examples shown in
14 US3953630 are rigidly attached to or through the
15 window frame. If the frame fails, the window will
16 then be unattached, and so 'fail'.

17

18 According to a fourth aspect of the present
19 invention, there is provided a laminated transparent
20 assembly comprising at least one glass and one resin
21 lamination, and having one or more high tensile
22 strength flexible material reinforcement pieces
23 extending laterally from the resin layer to provide
24 attachment of the assembly to a subframe and/or
25 wall.

26

27 By direct attachment of the transparent assembly,
28 generally a window, to the subframe and/or wall, any
29 weakness in the impact-resistance of the assembly
30 because of weakness and/or damage to the frame,
31 generally a window frame, is avoided. This allows a

1 larger load on the transparent assembly to be
2 supported by the subframe and/or wall.

3

4 A third disadvantage of US3953630 is the lack of
5 reinforcement in the window pane.

6

7 Thus, according to a fifth aspect of the present
8 invention, there is provided a laminated transparent
9 assembly comprising at least one glass and at least
10 one resin lamination, and having one or more high
11 tensile strength flexible material reinforcement
12 pieces extending laterally from the resin layer to
13 provide attachment of the assembly to a surround,
14 wherein the resin layer includes directional fibre
15 reinforcement at or near each edge of the resin
16 layer, and wherein the or each reinforcement piece
17 loops around the fibre reinforcement.

18

19 The fibre reinforcement may be any suitable
20 reinforcement means known in the art. As it is
21 intended only to be at or near the edges of the
22 assembly, the reinforcement pieces need not be in
23 any way wholly or partly transparent, and could even
24 be hidden within any framing used for the assembly,
25 such as a window frame.

26

27 Preferably the fibre reinforcements are
28 unidirectional glass fibres, whose direction follows
29 the edge direction of the resin layer. More
30 preferably, the fibre reinforcements are cast in the
31 resin layer simultaneously with casting of the
32 resin.

1 The fourth and fifth aspects of the present
2 invention described above are not limited to the use
3 of a PRR material as the resin, and are equally
4 applicable to the use of other resin materials such
5 as polycarbonate (PC) and/or PET.

6
7 The flexible material reinforcement pieces suitable
8 for the above aspects of the present invention may
9 be pieces of wepping or similar as are well known in
10 the art, and as hereinbefore described. Preferably,
11 the pieces are of sufficient length to allow their
12 attachment along from the glass and resin part,
13 and/or any assembly frame involved, such as a window
14 frame.

15
16 According to another embodiment, some slack is
17 allowed in the extent or length of the flexible
18 material reinforcement pieces extending from the
19 resin to allow some flexibility in the absorption of
20 a shock load. This is contrary to the rigid system
21 of attachment in US3953630.

22
23 These aspects of the present invention provide two
24 advantages.

25
26 Firstly, impact loading on the laminated transparent
27 assembly, generally a window, is passed through or
28 across the frame to the subframe and/or wall, such
29 that the frame can fail but the window remains
30 attached or 'in place'. Secondly, the reinforcement
31 pieces (preferably with some slack therein) have
32 sufficient 'give' in them to reduce the shock

1 loading, meaning less loading is put on the subframe
2 and/or wall.

3

4 An example of such a laminated transparent assembly,
5 as shown in Figure 4 herewith, has been tested by
6 the UK Home Office against a 100kg charge at a
7 stand-off of 21m, and has withstood the blast
8 successfully.

9

10 In the present invention, the ability to provide a
11 PRR layer of any thickness provides a further
12 benefit.

13

14 Thus, according to a sixth aspect of the present
15 invention, there is provided a blast-resistant
16 composite material comprising at least one layer of
17 PRR material having at least one reinforcement piece
18 extending wholly or substantially across the PRR
19 layer.

20

21 Preferably, the reinforcement piece is a strip or
22 bars or other reinforcement means. There is
23 preferably a series of such pieces, more preferably
24 forming a grid or grid-like structure wholly or
25 substantially across the composite material. An
example is shown in Figure 5 herewith.

27

28 The PRR material is that as defined hereinabove.
29 The reinforcement piece can be one or more of woven
30 roving, webbing, webbing material or even metal
31 material. The use of a metallic grid provides the
32 same effect as a "muntin" system which uses metallic

1 reinforcement grid alongside a glazing panel, but
2 not actually therein. The present invention
3 therefore achieves the same effect and strength as a
4 muntin system, but as a one piece assembly, thereby
5 significantly reducing assembly and installation.

6

7 The blast-resistance is achieved because the PRR
8 layer can be any thickness desired, e.g. up to 40-
9 50mm, which is able to accommodate reinforcement
10 pieces, whereas previous resins were not able to
11 achieve such thickness, and thereby accommodate
12 reinforcement therein.

13

14 The benefit of achieving reinforcement within the
15 PRR material is that each 'section' created by the
16 reinforcement piece or pieces, e.g. each small
17 section within the grid, can be regarded as having
18 its own frame, as thus regarded as a separate
19 section in terms of analysis against blast. As is
20 well known in the art, the blast-resistance of a
21 small section is greater than that of a large
22 section. By dividing the composite panel into a
23 number of small sections, significant blast-
24 resistance is achieved.

25

26 It is noted that the optical transparency of blast-
27 resistant panels using for example the muntin system
28 is not as important as that described for other
29 aspects of the present invention, so that the
30 comparative refractive index is not as important as
31 that as described above in relation to other aspects
32 of the present invention.

1 Turning to impact-resistance structures, a further
2 important feature of any impact-resistant window is
3 ensuring that the surrounding frame and even the
4 surrounding wall are sufficiently strong to support
5 the window and survive the impact such as a
6 explosive blast. Any system with little or no
7 'give' i.e. a rigid system, suffers much higher
8 stresses than the one which allows some flexibility,
9 elasticity or give within it. Even apparently rigid
10 structures such as walls will flex under loading.

11

12 The present invention therefore also provides a
13 surface-reinforcement assembly designed to allow
14 flexibility to a surface such as a wall, floor or
15 ceiling or the like, whilst also reinforcing its
16 strength.

17

18 Thus, according to a seventh aspect of the present
19 invention, there is provided a wall-reinforcement
20 assembly for a wall having an adjacent floor and
21 ceiling, comprising a first wall-adjacent layer
22 formed wholly or substantially of fibre reinforced
23 composite flexible material, and a second layer
24 comprising one or more high tensile strength
25 flexible material reinforcement pieces, wherein at
26 least one of said reinforcement pieces is secured to
27 the floor and the ceiling.

28

29 The terms "wall", "floor" and "ceiling" are
30 interchangeable in the sense that the wall-
31 reinforcement assembly is usable on a floor, wall or
32 ceiling, having appropriate other structures.

1 therearound to form an internal part of a building
2 or the like. The reinforcement pieces are
3 preferably, secured to a 'strong' floor, such as
4 made of concrete, and a 'strong' part of a ceiling
5 such as a reinforced concrete ring beam or steel I-
6 section now commonly used in building construction,
7 more preferably through set fixing points.

8

9 The first composite layer is preferably a sheet of
10 glass fibre reinforced plastic or kevlar material,
11 either loose or in resin, which is able to extend
12 across the area of the wall to be reinforced. In
13 particular, this layer provides a layer of
14 protection from small fragments being dislodged by
15 any blast or other impact causing flexing of the
16 wall. The thickness of this layer can be varied to
17 bolster the physical attack and ballistic protection
18 of the wall.

19

20 The second layer preferably comprises a series of
21 parallel straps, such as webbing straps. The
22 reinforcement pieces could run horizontally, as well
23 as vertically, or indeed both. The material of the
24 reinforcement pieces is selected for its strength
25 and ability to stretch under shock loading.

26

27 The assembly could include a third layer adapted to
28 provide a suitable internal finished layer, as well
29 as possibly including the appropriate level of
30 installation, fire resistance, etc., and internal
31 fittings such as electrical sockets.

32

1. The assembly could be retrofitted to an existing
2. wall or other surface, or included as part of a
3. purposed built design.
4.
5. The assembly could be formed to be the size of the
6. wall or other surface on which it is to be located,
7. or be formed in modular form, e.g. made in panels,
8. which are joined together to make the desired or
9. necessary size in-situ.
10.
11. In general, the present invention provides the
12. ability to consider the impact-resistance across a
13. complete portion of a building, especially a wall
14. which can include one or more windows, doors or
15. other openings.
16.
17. Thus, according to an eighth aspect of the present
18. invention, there is provided an impact-resistant
19. system comprising the conjunction or combination of
20. two or more aspects of the present invention
21. hereinbefore defined.
22.
23. An example of the system includes a wall-
24. reinforcement assembly as hereinbefore described, in
25. combination with a laminated transparent assembly as
26. hereinbefore described in a form of a window,
27. wherein the flexible material reinforcement pieces
28. of the assembly combine with the flexible material
29. reinforcement pieces of the window assembly. In
30. this case, the window reinforcements are attached to
31. the frame.
32.

1 In a second example, the material reinforcement
2 pieces of a wall reinforcement assembly as
3 hereinbefore described extend internally through a
4 window assembly as hereinbefore described, such that
5 the reinforcement pieces are secured by the cast
6 resin in the window, and are of sufficient length to
7 enable the pieces to be secured at the fixing points
8 at the top and bottom of the wall being reinforced
9 by the assembly. This design also allows for
10 securing non-glass windows such as polycarbonate,
11 which may be desired where the emergency or
12 hazardous nature of the work conditions are not
13 suitable for handling glass.

14

15 It will be recognised by these skilled in the art
16 the composite materials and assemblies could also be
17 used to provide hurricane or the like resistance,
18 and thus the present invention is extended thereto.
19 The term "impact" as used herein refers to any type
20 of severe blow such as an explosion, bullet, wind,
21 etc. Blast-resistance generally relates to
22 resistance against an explosion.

23

24 Embodiments of the present invention will now be
25 described by way of example only and with reference
26 to the accompanying drawings in which:

27

28 Figure 1 is schematic cross-sectional view of the
29 impact of a projectile against a current multi-glass
30 laminated windowpane;

31

- 1 Figure 2 is a cross-sectional view of a optically
- 2 transparent composite material according to one
- 3 embodiment of the present invention;
- 4
- 5 Figure 3 is a laminated optically transparent
- 6 assembly according to a second embodiment of the
- 7 present invention;
- 8
- 9 Figure 4 is a perspective photograph of a laminated
- 10 optically transparent assembly according to a third
- 11 embodiment of the present invention;
- 12
- 13 Figure 5 is a schematic front view of a reinforced
- 14 laminated optically transparent assembly according
- 15 to a forth embodiment of the present invention;
- 16
- 17 Figure 6 is a cross-sectional part view of a
- 18 laminated optically transparent assembly according
- 19 to a fifth embodiment of the present invention
- 20 attached to a wall and subframe;
- 21
- 22 Figure 7 is a perspective photographic view of a
- 23 wall-reinforcement assembly according to a sixth
- 24 embodiment of the present invention; and
- 25
- 26 Figure 8 is a schematic front view of a laminated
- 27 optically transparent assembly according to an
- 28 eighth embodiment of the present invention.
- 29
- 30 As previously mentioned, Figure 1 shows how the
- 31 energy of a projectile is dissipated over
- 32 increasingly large areas of glass of a known glass

1 PC lamination pane, leading to a large area of glass
2 shattered from the left hand side.

3

4 Figure 2 shows a optically transparent composite
5 material 2 comprising a glass/resin/glass
6 lamination. Within the PRR resin layer 4 are a
7 series of traditional fibre glass woven rovings 6.

8

9 To produce the material, the rovings 6 were secured
10 between two panes of glass 8, and the PRR resin 4
11 was injected into the cavity. The resin 4 flows up
12 the inside of the glass 8 and disperses through the
13 woven roving 6, wetting the fibres and forming an
14 excellent bond.

15

16 Figure 3 shows a blast-resistant assembly 10 mounted
17 to a wall 12. Between the two panes of glass 14, a
18 2 inch wide unidirectional glass fibre woven roving
19 16 was bonded into the same PRR resin 18 as
20 mentioned above. The complete assembly 10 was
21 located in the rebate of a window frame 20, and the
22 roving reinforcement material 16 fixed to the frame
23 20 by adhesive, and also by means of a lateral bolt
24 22.

25

26 The assembly 10 was tested in a Hannsfield 20k-w
27 tensometer. Loads in access of 8000N were applied
28 before the fibre woven 16 broke. Considerably
29 greater loads could be achieved with the use of
30 thicker fibres or different types of fibres.

31

1 Figure 4 shows a similar blast-resistant window
2 assembly 30 as that partly shown in Figure 3, but
3 wherein the PRR resin intermediate layer includes a
4 complete loop of unidirectional glass fibre 32
5 around the perimeter of the resin and glass
6 lamination and inside two panes of glass. Lengths
7 of webbing material 34 acting as high tensile
8 strength flexible material reinforcement pieces are
9 wrapped around the loop of unidirectional glass
10 fibre 32, and the loose ends of the webbing material
11 34 extend outside the glass and resin lamination.
12 Thus, the lengths of webbing material 34 are bonded
13 into the resin layer, and are also wrapped around
14 the unidirectional glass fibre 32 that is bonded
15 into the resin. The loose ends of the webbing
16 material 34 are then secured by a bolt 38 directly
17 to a subframe or wall 36 as shown in figure 6.

18
19 The arrangement in Figure 6 means that the
20 glass/resin lamination is directly secured in place
21 by the webbing material 34 rather than by any
22 securement into a window frame or rebate. This
23 allows for the use of different types of webbing or
24 other materials as the reinforcement pieces to
25 ensure the correct strength as required and to
26 absorb an appropriate shock load.

27
28 The length of webbing material 34 can also be
29 adjusted to allow some slack, which further assists
30 with the absorption of a shock load. In this way,
31 failure of the window frame or rebate does not
32 result in detachment of the window from the wall.

1 Moreover, the loading against the window is passed
2 through to the subframe or wall 36.

3

4 Figure 5 is schematic front view of a blast-
5 resistant composite material for a window or similar
6 wherein a series of horizontal and vertical
7 reinforcement webbing straps 38 extend through the
8 intermediate resin layer to form a net or a grid
9 pattern. The webbing pieces 38 could extend further
10 so as to be part of the webbing arrangement shown in
11 Figure 7.

12

13 Figure 7 shows a wall-reinforcement assembly
14 comprising a first wall-adjacent layer 40 formed
15 from glass fibre reinforced plastic material. This
16 layer of 40 provides protection from small fragments
17 being dislodged from the wall following any blast
18 impact. The thickness of the layer could be varied
19 improve to the physical attack and ballistic
20 protection of the wall. A second layer 42 comprises
21 a series of vertical webbing straps running between
22 fixing points in the floor 44 and ceiling 46. Once
23 again the webbing straps act as high tensile
24 strength flexible material reinforcement pieces, and
25 their actual material and width can be chosen to
26 achieve the correct balance of strength and
27 elasticity/stretch for a shock loading.

28

29 The arrangement shown in Figure 7 was able to resist
30 a charge of 500kg of TNT equivalent at a distance of
31 17.5m from a wall of brick and block with a cavity
32 foam insulation, similar to 'standard' house-wall

1 construction in the UK. That is, the blast did not
2 puncture the reinforcement assembly.

3
4 Figure 8 shows a window assembly similar to that
5 shown in Figures 3 and 4, wherein the reinforcement
6 piece 50 extending laterally from the resin layer
7 has a series of holes, through which suitable
8 reinforcement pieces such as webbing straps 52 can
9 be entered, so as for attachment to a wall or
10 subframe, or also to be the reinforcement pieces for
11 use in Figure 7. That is, the wall-reinforcement
12 assembly in Figure 7 is able to accommodate opening
13 such as windows and doors, and the reinforcement
14 pieces can be conjoined or interlinked or formed as
15 one, so as to provide the strongest arrangement for
16 strength and elasticity across the whole wall
17 surface.

18
19 The present invention provides ballistic-resistant
20 and blast-resistant assemblies providing protection
21 against much higher levels of protection from high
22 velocity weapons and explosives than currently known
23 with current forms of wall and glazing. Production
24 of the assemblies is also comparatively simple and
25 cost effective compared to previous types of similar
26 assemblies, which used less suitable polymers and
27 plastic material.

28

1/2

Fig 1

2/8

Fig. 2

Fig 5

Fig 3

4/8

30
→

34 —

Fig 4

Fig 6

518

Fig 7

Charge 500kg at 17.5 m,

Fig 8

ଶ୍ରୀମତୀ ପାତ୍ନୀ କଣ୍ଠରୁ ଏହାରେ ପାଦପାଦିକାଳରେ ପାଦପାଦିକାଳରେ

618

These values are for guidance only and do not represent a specification.

Product Data of Polyurethan Composite Materials

Physical Properties	Naftolan PU-A 700 / PU-B 304	Naftolan PU-A 206 / PU-B 608	Naftolan VP-PA [911 / VP-PB 2110]	Standard			
Flammability	Because of the molecular structure, the materials do not melt and boil	Because of the molecular structure, the materials do not melt and boil					
Melting point							
Boiling point							
Smoke emission							
Critical Oxygen Index (COI) (minimum oxygen fraction in oxygen-nitrogen mixture which will support steady state combustion of the plastic. Plastics with COI > 0.21 are self extinguishing)							
Chemical Resistance							
Acids							
Alkalis	The materials are not resistant against Alkalies						
Organic solvents		The resistance against organic solvents depends very much on the tested solvents					
Weatherability/degradation							
Gelling – Temp cycling test	Tests according to DIN 1286 with different kind of laminates were passed without failures.						
V absorption							
Desorption of water		See the transmission data on the next sheets					
Additional Data							
Viscosity (23°C) [mPas]	Component A	450	320	600	515	435	360
Viscosity (23°C) [mPas]	Component B	3250	85	85	85	85	85
Viscosity (23°C) [mPas]	Mixture	2550	200	225	200	245	230
Specific weight (23°C) [g/cm³]	Component A liqu	1.02	1.01	1.03	1.02	1.02	1.01
Specific weight (23°C) [g/cm³]	Component B liqu	1.04	1.05	1.05	1.05	1.05	1.05
Specific weight (23°C) [g/cm³]	Mixture liquid	1.04	1.037	1.04	1.03	1.03	1.02
Volume Shrinkage [%]		2	2	4	4	3	2
Processing time (23°C) [min]		45	15	40	30	30	30
Curing time (23°C) [h]		12	48	12	24	24	12
Orange time before delivery (18°C to 23 °C) [d]		4	6				
Tore A hardness after 1 day (cured resin) DIN		65		75	65	50	40
Tore A hardness after 7 days (cured resin)		90	73	85	90	65	55
Thermal conductivity (DIN 52612) [W/(mK)]		0.18					DIN 52612
Transmittance (DIN 67507) (assembly 6/8/4mm) [%]		90					DIN 67 507
Transmittance (DIN 67507) (assembly 6/15/4mm) [%]		88					DIN 67 507
Transmittance (DIN 67507) (assembly 6/20/4mm) [%]		88					DIN 67 507

These values are for guidance only and do not represent a specification.

Table 4

Refractive Index liquid / cured Resins (at 20°C)

Resin	n_{D20} liquid	n_{D20} cured
UV 11	1,4362	-
UV 22	1,4417	-
UV 33	1,4396	1,4813
ICE-Gießharz EP 1309-103	1,4434	-
UV 203	1,4370	-
S 700 M	1,4299	1,4713
S 696 M	1,4272	-
Naftolan VP-PA 0511	1,4542	-
Naftolan VP-PA 1011	1,4568	-
Naftolan PU-A 206	1,4540	1,4844*
Naftolan VP-PB 2110	1,4169	-
Naftolan PU-B 606	1,4777	-
Naftolan VP-PA 2601	1,4553	-
Naftolan PU-A 700	-	-
Naftolan PU-B 304	1,4739	-

* cured with corresponding B component

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.