Rocket Motor Calculations

Optimisation of a solid fuel motor using RNX-57V propellant Malcolm Snowdon

21 August 2009

Operating Parameters

p chamber := 1×10^6 * Design pressure

p exit := 101325* Ambient pressure

T_exit := 1016 + 273 * Burn temperature at ambient pressure (see 'Burn Temperature Measurement' report)

Casing Geometry

t casing := 0.0016_* Tube wall thickness N screws := 10_*

 ϕ_i _casing := 0.0605_* Tube inner diameter $L_segment := 0.1_*$ Segment length

 ϕ segment := ϕ i casing -0.002 * Propellant OD t segment := 0.02* Segment wall thickness

 ϕ screw := 0.005* Cap screw diameter N segments := 4* # propellant segments

Material Properties

 $\sigma_{\text{yield_casing}} := 250 \cdot 10^6 * \phi 2.5"$ 304 stainless handrail tube purchased from Little Metals Co.

τ screws yield := $500 \cdot 10^6$ * Standard black finish cap screws

Aerodynamic Parameters

 $Cd := 0.75_*$ Drag coeff from CFD simulation $m_dry := 6_*$ Allowing 1.2 kg more than 1st rocket for payload and

φ_airframe := .087 electronics, assuming some mass will be lost

Propellant Parameters

A RNX := 400.9_* From Nakka's charts, adjusted after static test

 $n RNX := 0.641_*$ From Nakka's charts

 $k := 1.055_*$ Determined from Nakka's charts

R RNX := 287* Universal gas constant, will not be accurate with high temperatures

 ρ RNX := 1664* Measured by volumetric displacement, agrees with literature

Burn Surface Area

$$A_ends(d_burn) := \frac{N_segments \cdot 2 \cdot \pi}{4} \cdot \left[\phi_segment^2 - \left(\phi_segment - 2 \cdot t_segment + 2 \cdot d_burn \right)^2 \right] *$$

$$A_core(d_burn) := N_segments \cdot \pi \cdot (\phi_segment - 2 \cdot t_segment + 2 \cdot d_burn) \cdot (L_segment - 2 \cdot d_burn) *$$

$$A_burn(d_burn) := A_core(d_burn) + A_ends(d_burn)_*$$

N points := 100*

 $d_b := 0, \frac{t_segment}{N_points} .. t_segment_*$

Array of burn distance for plotting against burn surface area

Solve for the maximum burn area

$$Grad(d) := \frac{d}{dd} A_burn(d) \to 8 \cdot \pi \cdot (.1 - 2 \cdot d) - 8 \cdot \pi \cdot (.185e - 1 + 2 \cdot d) + 2 \cdot \pi \cdot [(-.740e - 1) - 8 \cdot d]_*$$

 $guess := 0_*$ Initail guess for the solver to work with

d A max := root(Grad(guess), guess)*

A burn $max := A core(d A max) + A ends(d A max)_*$

Propellant mass assuming square end faces

$$m_propellant := N_segments \cdot \rho_RNX \cdot \frac{\pi}{4} \cdot \left[\phi_segment^2 - \left(\phi_segment - 2 \cdot t_segment \right)^2 \right] \cdot L_segment *$$

Motor Operating Conditions

Potter and Wiggert Equation 9.3.12:

$$Mach_exit := \left[\left(\frac{2}{k-1} \right) \cdot \left(\frac{p_chamber}{p_exit} \right)^{\frac{k-1}{k}} - \frac{2}{k-1} \right]^{\frac{1}{2}}$$

$$Mach_exit := 2.147$$

Combining Potter and Wiggert Equations 9.3.12 and 9.3.13:

$$T_chamber := T_exit \cdot \left[1 + \left(\frac{k-1}{2} \right) \cdot Mach_exit^2 \right] * T_chamber = 1.452 \times 10^3$$

Casing Stresses

$$\sigma_{-}hoop := p_chamber \cdot \frac{\phi_i_casing}{2 \cdot t_casing} * \qquad \sigma_{-}hoop = 1.891 \times 10^{7}$$

$$\sigma_{-}axial := p_chamber \cdot \frac{\phi_i_casing^{2}}{\left(\phi_i_casing + 2 \cdot t_casing\right)^{2} - \phi_i_casing^{2}} * \qquad \sigma_{-}axial = 9.21 \times 10^{6}$$

$$\sigma_{-}von_Mises := \left[\frac{1}{2} \cdot \left[\left(\sigma_hoop - \sigma_axial\right)^{2} + \left(\sigma_axial - p_chamber\right)^{2} + \left(p_chamber - \sigma_hoop\right)^{2}\right]\right]^{\frac{1}{2}} *$$

$$Safety_factor_casing := \frac{\sigma_yield_casing}{\sigma_von_Mises} * \qquad \sigma_von_Mises = 1.553 \times 10^{7}$$

$$Safety_factor_casing := \frac{\phi_i_casing^{2}}{\phi_screw} * \qquad (Assumes pure shear)$$

$$\tau_screws := p_chamber \cdot \frac{\phi_1_casing}{\phi_screw} * (Assumes pure shear)$$

$$\tau_screws = 1.464 \times 10^{7}$$

$$Safety_factor_screws := \frac{\tau_screws_yield}{\tau_screws} * Safety_factor_screws = 34.151$$

$$\sigma_holes := p_chamber \cdot \frac{\frac{\pi}{4} \phi_i_casing^2}{\phi_screw \cdot t_casing \cdot N_screws} * (Assumes pressure acts uniformly over a rectangle of dimensions $\phi_hole \ x \ t_wall)$$$

Safety_factor_holes :=
$$\frac{\sigma_{\text{yield_casing}}}{\sigma_{\text{holes}}} *$$

$$\sigma_{\text{holes}} = 3.593 \times 10^{7}$$
Safety_factor_holes = 6.957

Nozzle Geometry at Design Condition

$$K_n := A_RNX \cdot \left(\frac{p_chamber}{10^6}\right)^{n_RNX} *$$

(Ratio of burn surface area to throat area, p conv. to MPa)

Note: For p_chamber = 1 MPa, n_RNX has no effect on K_n. A_RNX only was adjusted to correct chamber pressure from previous iteration

Nakka Equation 14 - Nozzle Theory

$$\text{Expansion_ratio} := \left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} \cdot \left(\frac{p_\text{exit}}{p_\text{chamber}}\right)^{\frac{1}{k}} \cdot \left[\frac{k+1}{k-1} \cdot \left[1 - \left(\frac{p_\text{exit}}{p_\text{chamber}}\right)^{\frac{k-1}{k}}\right]\right]^{\frac{1}{2}} *$$

Expansion ratio = 0.383

$$A_star := \frac{A_burn_max}{K_n} * A_star = 1.27 \times 10^{-4}$$

$$A_{\text{exit}} := \frac{A_{\text{star}}}{\text{Expansion ratio}} * A_{\text{exit}} = 3.313 \times 10^{-4}$$

$$\phi_throat := \sqrt{4 \cdot \frac{A_star}{\pi}} * \qquad \qquad \phi_throat = 0.013$$

$$\phi_{\text{exit}} := \sqrt{\frac{4 \cdot A_{\text{exit}}}{\pi}} * \qquad \qquad \phi_{\text{exit}} = 0.021$$

Perfromance Metrics

Nakka Equation 3 - Solid Rocket Motor Thrust Calculations:

Thrust := A_star·p_chamber·
$$\left[\frac{2 \cdot k^2}{k-1} \cdot \left[\left(\frac{2}{k+1} \right)^{\frac{k+1}{k-1}} \cdot \left[1 - \left(\frac{p_exit}{p_chamber} \right)^{\frac{1}{k}} \right] \right]^{\frac{1}{2}} \right]$$
Thrust = 163.252

Potter and Wigert Equation ???:

Trajectory Approximation by Numerical Method

$$\begin{array}{ll} t_inc := 0.1_* & t_sim := 70_* & N_sim := floor \\ \hline \begin{pmatrix} \underline{t_sim} \\ \underline{t_inc} \end{pmatrix} tim := 0, t_inc...t_sim \\ \\ thrust(tim) := \begin{bmatrix} Thrust & if tim < Burn_time \\ 0 & otherwise \\ \end{bmatrix}$$

$$mass(tim) := \begin{bmatrix} m_propellant + m_dry - \frac{m_propellant}{Burn_time} \cdot tim & if \ tim < Burn_time \\ m_dry & otherwise \end{bmatrix}$$

$$\begin{aligned} \mathbf{U} &\coloneqq & \left[\mathbf{U}_0 \leftarrow 1 \cdot 10^{-12} \right] \\ &\text{for } \ \mathbf{i} \in 1 ... \, \mathbf{N}_{sim} - 1 \\ & \left[\mathbf{Fd}_{\mathbf{i}} \leftarrow \frac{1}{2} \cdot \mathbf{Cd} \cdot \rho_{air} \cdot \mathbf{Area} \cdot \left(\mathbf{U}_{\mathbf{i}-1} \right)^2 \cdot \frac{\mathbf{U}_{\mathbf{i}-1}}{\left| \mathbf{U}_{\mathbf{i}-1} \right|} \right] \\ & \left[\mathbf{F}_{total}_{\mathbf{i}} \leftarrow \text{thrust}(\mathbf{i} \cdot \mathbf{t}_{inc}) - \mathbf{Fd}_{\mathbf{i}} - 9.81 \cdot \mathbf{mass}(\mathbf{i} \cdot \mathbf{t}_{inc}) \right] \\ & \left[\mathbf{U}_{\mathbf{i}} \leftarrow \mathbf{U}_{\mathbf{i}-1} + \frac{\mathbf{F}_{total}_{\mathbf{i}}}{\mathbf{mass}(\mathbf{i} \cdot \mathbf{t}_{inc})} \cdot \mathbf{t}_{inc} \right] \end{aligned}$$

$$\begin{aligned} \mathbf{h} &\coloneqq & \begin{vmatrix} \mathbf{h}_0 \leftarrow \mathbf{0} \\ &\text{for } \mathbf{i} \in \mathbf{0}... \, \mathbf{N}_{\text{sim}} - \mathbf{1} \\ &\mathbf{h}_{i+1} \leftarrow \mathbf{h}_i + \mathbf{U}_i \cdot \mathbf{t}_{\text{inc}} \\ &\text{return } \mathbf{h} \end{aligned}$$

$$h_{max} := max(h)$$
 $h_{max} = 1.778 \times 10^{3}$
 $U_{max} := max(U)$
 $U_{max} = 145.954$

Results Summary

```
m_propellant = 1.61 *
```

$$T_chamber = 1.452 \times 10^3 *$$

$$\phi$$
_throat = 0.013 *

$$\phi_{exit} = 0.021$$
 *

$$h_{max} = 1.778 \times 10^3$$

$$U_{max} = 145.954$$