F - TEST

Introduction & formula

Objective of F. Text:

- To find out whether the two independent estimates of population variance differ significantly of
- · To find out whether the Two samples may be regarded as drawn from the normal populations having some variance.
- · To perform the test of significance, we have to compute the ratio of F.

$$\vec{\tau} = \frac{S_1^2}{S_2^2}$$
 or $\vec{\tau} = \frac{S_1^2}{S_2^2}$ (in case of samples)
$$\vec{s}_1^2 \times \vec{S}_2^2$$

$$\vec{s}_1^2 \times \vec{s}_2^2$$

- Narrance = $\delta_1^2 = \frac{\sum (x-\mu)^2}{n}$, $\delta_2^2 = \frac{\sum (x-\bar{x})^2}{n-1}$
- F can be written as:

- Degree of freedom (v)

 V, (Numerator) = n_1-1 & V_(denominator) = n_2-1

 2, (Larger variance) & (Smaller Variance)
- · Now the Fralse will be compared with tabulated F value for vi & V2 at 1% or 5% level of significance.
 - D Calc; F value < Tab; F value: ≠ Ho is accepted & No Significant difference between the two variance (5°)

-1 -0 Teg. " if Calc Fralue > Tab; Fralue Then Ho is rejected & more will be significant difference between The two variance (52).

· Hence, F-Test is based on the batio of The 2 variance, it is also known as The ("Varrance fationtest")

PROPERTIES OF F-DISTRIBUTION

f-distribution curve for n-degree of freedom.

1:- F-distribution curve is skewed towards right with range 0 to as and having a median value roughly=4.0

2: Value of & will always be more than O.

3: Shape of F-distribution curve is dependent - def of Numerator & defor denominator

4: F-distribution curve is never symmetrical but if dof increases then it will be more similar to the symmetrical Shape.

fo.05 = 5.05

facos = 1.84

Degree of skewness decreases with increase in degree

of Freedom (12) for numerator (14) & denominator (12). 6. Shape of the curve will be more Symmetrical by with The increase in degree of freedom.

· In F-test variance will be compared from randomly drawn samples and the observations are dependent.

QNO: 01	\	0	\rightarrow
	Given days		7

A: 16, 17, 25, 26, 32, 34, 38, 40, 42 8: 14,16,24,28,32,35,37,42,43,45,47 n=11

Ho:
$$\delta_1^2 = \delta_2^2$$
; Ha: $\delta_1^2 > \delta_2^2$

 $F = S_1^2/S_2^2$, $S^2 = \frac{\sum (x - \bar{x})^2}{x - 1}$

As we studied above that s1^2 will be greater than s2^2 for F value greater than 0. so alternative hypothesis Ha= s1&2 > s2^2

A	$(\chi - \bar{\chi}_A)$	$(x-\bar{x}_A)^2$	В	$(x-\overline{x}_{\theta})$	$(\chi - \overline{\chi}_{B})^{2}$	
16 17 25 26 32 34 38 40 42	-14 -13 -5 -4 2 4 8 10 12	196 169 25 16 4 16 64 100 144	14 16 14 28 32 35 37 42 43 45 47	-19 -17 -9 -5 -1 2 4 9 10 12 14	361 289 81 25 01 4 16 81 100 144 196	
270	Σ(x-7),	=734	$\sum_{B} = 363$ $X_{B} = 363$	3 34. = 23	$\overline{\sum (x-x_B^2)^2} = 12.$	98
97012=30)		VB -	/// 55		

$$S_{2}^{2} = 734/9-1 = 91.75$$
 $S_{1}^{2} = \frac{1298}{10} = 129.8$

$$F = \frac{129.8}{91.75} = 1.4147$$
 (calculated F value)

Calculated & Value < Tabalated & value.

Ho is correct & accepted. We can say that the two populations have same variance.

Q NO: 02

Given data.

$$n=9$$
; $\Sigma (x-\bar{x})^2 = 64$ (sum of the squared)

$$n=11$$
; $\sum (x-\bar{x})^2 = 88$

Hypothesis

$$H_0: \sigma_1^2 = \sigma_2^2 ; H_a: \sigma_1^2 > \sigma_2^2$$

$$F = \frac{S_1^2}{S_2^2}$$
, $S_1^2 > S_2^2$

$$S^{2} = \frac{\sum (x - \overline{x})^{2}}{n - 1} \Rightarrow S_{2}^{2} = \frac{64}{9 - 1} = \frac{64}{8} = 8$$

$$S_{1}^{2} = \frac{88}{11 - 1} = \frac{88}{10} = 8.8$$

$$F = 8.8$$

$$8 = 1.1 \text{ (calculated F value)}$$

$$V_1 = 10$$

$$V_2 = 8$$

. Ho is accepted. No significance in The Variance.

QUESTION

Given data:
$$S_1^2 = 130$$

$$n_1 = 61$$
 (no; of women)

$$S_2^2 = 70$$

Hypolnesis.

$$H_0: \delta_{(100men)}^2 = \delta^2(men)$$

$$V_1 = n_1 - 1 = 60$$

$$\sqrt{1} = \eta_2 - 1 = 30$$

Hy is accepted & Hy is rejected;

Herce, The result of the research support The

belief that women have a greater variation in attitude towards political issues than men.

Properties:

1) Range: 0 → 20

- 2) $M = \frac{V_1}{V_{-2}} : v_2 > 2$
- 3) $\delta^2 = \frac{\partial v_2^2(v_1 + v_2 2)}{\nabla_1(v_2 2)^2(v_2 4)}$ for $v_2 > 4$
- 4) Homogenity of Several means.
- 5) Unimodel
- 6) Skewed to the right

