Nome:

 $N.^{\underline{0}}$ mec.:

Classificação (espaço reservado ao professor):

E\C	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Duração: 0h15

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4 2021/22

1.º miniteste: turma TP4-2; versão 1

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será a seguinte: 10 pontos se a tua escolha de opção estiver correta; 0 pontos se não escolheres nenhuma opção ou se escolheres mais do que uma; -5 pontos se a tua escolha de opção estiver errada. Designando por S a soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores que terás neste miniteste será dada pela expressão $\lceil \frac{2}{3} \max\{S,0\} \rceil$ (em resumo, será a nota no quadro no espaço acima reservado ao professor que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- 1. Escolhe a função u(x) que mais diretamente (isto é, com menos contas ou com contas mais simples) permite primitivar quase imediatamente a função $\frac{e^{\sqrt[3]{x}}}{\sqrt[3]{x^2}}$:
 - **A.** $\sqrt[3]{x}$.
 - **B.** $\sqrt[3]{x^2}$.
 - C. $\frac{1}{\sqrt[3]{x^2}}$.
- 2. Se na primitivação quase imediata de $\frac{e^{-x}}{e^{-x}+e^x}$ escolhermos para u(x) a função e^{-x} , a igualdade correta é

A.
$$\int \frac{e^{-x}}{e^{-x} + e^x} dx = \int \frac{u}{u + u^{-1}} du.$$

B.
$$\int \frac{e^{-x}}{e^{-x} + e^x} dx = \int \frac{1}{u + u^{-1}} du$$
.

C.
$$\int \frac{e^{-x}}{e^{-x} + e^x} dx = -\int \frac{u}{u^2 + 1} du$$
.

- 3. Se numa primitivação quase imediata usarmos $u(x)=\arctan x$ e daí resultar $\int \frac{1}{1+u^2}\,du$, em intervalos a expressão geral das primitivas da função dada é
 - **A.** $\ln(1 + (\arctan x)^2) + C$.
 - **B.** $(\arctan x)^2 + C$.
 - C. $\arctan(\arctan x) + C$.