Note that if ν is chosen so that $\nu < 1/(p+q)$, then $p_f = q_f = 0$, which means that none of the data points are misclassified; in other words, the u_i s and v_j s are linearly separable. Thus we see that if the u_i s and v_j s are not linearly separable we must pick ν such that $1/(p+q) \le \nu \le 1$ for the method to succeed. In fact, by Proposition 54.5, we must choose ν so that

$$\frac{p_f + q_f}{p + q} \le \nu \le \frac{p_m + q_m}{p + q}.$$

Furthermore, in order to be able to determine b, we must have the strict inequality

$$\frac{p_f + q_f}{p + q} < \nu.$$

54.11 Existence of Support Vectors for (SVM_{s3})

The following proposition is the version of Proposition 54.2 for Problem (SVM_{s3}).

Proposition 54.6. For every optimal solution $(w, b, \eta, \epsilon, \xi)$ of Problem (SVM_{s3}) with $w \neq 0$ and $\eta > 0$, if $\nu < 1$ and if no u_i is a support vector and no v_j is a support vector, then there is another optimal solution such that some u_{i_0} or some v_{j_0} is a support vector.

Proof. We may assume that $K_s = 1/(p+q)$ and we proceed by contradiction. Thus we assume that for all $i \in \{1, ..., p\}$, if $\epsilon_i = 0$, then the constraint $w^{\top}u_i - b \geq \eta$ is not active, namely $w^{\top}u_i - b > \eta$, and for all $j \in \{1, ..., q\}$, if $\xi_j = 0$, then the constraint $-w^{\top}v_j + b \geq \eta$ is not active, namely $-w^{\top}v_j + b > \eta$.

Let $E_{\lambda} = \{i \in \{1, \dots, p\} \mid \epsilon_i > 0\}$ and let $E_{\mu} = \{j \in \{1, \dots, q\} \mid \xi_j > 0\}$. By definition, $p_{sf} = |E_{\lambda}|, q_{sf} = |E_{\mu}|, p_{sf} \leq p_f$ and $q_{sf} \leq q_f$, so by Proposition 54.1,

$$\frac{p_{sf} + q_{sf}}{p + q} \le \frac{p_f + q_f}{p + q} \le \nu.$$

Therefore, if $\nu < 1$, then $p_{sf} + q_{sf} , which implies that either there is some <math>i \notin E_{\lambda}$ such that $\epsilon_i = 0$ or there is some $j \notin E_{\mu}$ such that $\xi_j = 0$.

By complementary slackness all the constraints for which $i \in E_{\lambda}$ and $j \in E_{\mu}$ are active, so our hypotheses are

$$w^{\top}u_{i} - b = \eta - \epsilon_{i} \qquad \qquad \epsilon_{i} > 0 \qquad \qquad i \in E_{\lambda}$$

$$-w^{\top}v_{j} + b = \eta - \xi_{j} \qquad \qquad \xi_{j} > 0 \qquad \qquad j \in E_{\mu}$$

$$w^{\top}u_{i} - b > \eta \qquad \qquad i \notin E_{\lambda}$$

$$-w^{\top}v_{j} + b > \eta \qquad \qquad j \notin E_{\mu},$$

and either there is some $i \notin E_{\lambda}$ or there is some $j \notin E_{\mu}$. Our strategy, as illustrated in Figures 54.8 and 54.9, is to increase the width η of the slab keeping the separating hyperplane unchanged. Let us pick θ such that

$$\theta = \min\{w^{\mathsf{T}}u_i - b - \eta, \ -w^{\mathsf{T}}v_j + b - \eta \mid i \notin E_{\lambda}, j \notin E_{\mu}\}.$$