SCLS598B - NOVEMBER 2004 - REVISED APRIL 2008

- Qualified for Automotive Applications
- Targeted Specifically for High-Speed Memory Decoders and Data-Transmission Systems
- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive up to Ten LSTTL Loads
- Low Power Consumption, 80-μA Max I_{CC}
- Typical t_{pd} = 10 ns
- ±4-mA Output Drive at 5 V

description/ordering information

The SN74HC139 device is designed for high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder can minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay time of this decoder and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

- Low Input Current of 1 μA Max
- Incorporate Two Enable Inputs to Simplify Cascading and/or Data Reception
- ESD Protection Level per AEC-Q100 Classification
 - 2000-V (H2) Human-Body Model
 - 200-V (M3) Machine Model
 - 1000-V (C5) Charged-Device Model

The SN74HC139 device comprises two individual 2-line to 4-line decoders in a single package. The active-low enable (\overline{G}) input can be used as a data line in demultiplexing applications. This decoder/demultiplexer features fully buffered inputs, each of which represents only one normalized load to its driving circuit.

ORDERING INFORMATION[†]

T _A	PACKA	GE‡	ORDERABLE PART NUMBER	TOP-SIDE MARKING
4000 1- 40500	SOIC - D	Reel of 2500	SN74HC139QDRQ1	HC139Q
–40°C to 125°C	TSSOP – PW	Reel of 2000	SN74HC139QPWRQ1	HC139Q

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

FUNCTION TABLE

	INPUTS			OUT	DUTO						
_	SEL	ECT		OUTPUTS							
G	В	Α	Y0	Y 1	Y2	Y3					
Н	Χ	Х	Н	Н	Н	Н					
L	L	L	L	Н	Н	Н					
L	L	Н	Н	L	Н	Н					
L	Н	L	Н	Н	L	Н					
L	Н	Н	Н	Н	Н	L					

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (see Note 1)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	±20 mA
Continuous output current, I _O (V _O = 0 to V _{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ _{JA} (see Note 2): D package	73°C/W
PW package	108°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS598B - NOVEMBER 2004 - REVISED APRIL 2008

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		2	5	6	V
		V _{CC} = 2 V	1.5			
V_{IH}	High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15			V
		V _{CC} = 6 V	4.2			
		V _{CC} = 2 V			0.5	
V_{IL}	Low-level input voltage	$V_{CC} = 4.5 \text{ V}$			1.35	V
		V _{CC} = 6 V			1.8	
VI	Input voltage		0		V_{CC}	٧
Vo	Output voltage		0		V_{CC}	V
		V _{CC} = 2 V			1000	
$\Delta t/\Delta v$	Input transition rise/fall time	$V_{CC} = 4.5 \text{ V}$			500	ns
		V _{CC} = 6 V			400	
T _A	Operating free-air temperature		-40		125	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST C	V _{CC}	T	_A = 25°C	;	T _A = -40°C TO 125°C		T _A = -40°C TO 85°C		UNIT		
				MIN	TYP	MAX	MIN	MAX	MIN	MAX		
			2 V	1.9	1.998		1.9		1.9			
		$I_{OH} = -20 \mu A$	4.5 V	4.4	4.499		4.4		4.4			
V _{OH}	$V_{I} = V_{IH}$ or V_{IL}		6 V	5.9	5.999		5.9		5.9		V	
		$I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$I_{OH} = -5.2 \text{ mA}$	6 V	5.48	5.8		5.2		5.34			
			2 V		0.002	0.1		0.1		0.1		
		I _{OL} = 20 μA	4.5 V		0.001	0.1		0.1		0.1		
V _{OL}	$V_{I} = V_{IH}$ or V_{IL}		6 V		0.001	0.1		0.1		0.1	V	
		$I_{OL} = 4 \text{ mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$I_{OL} = 5.2 \text{ mA}$	6 V		0.15	0.26		0.4		0.33		
I _I	$V_I = V_{CC}$ or 0		6 V		±0.1	±100		±1000		±1000	nA	
I _{CC}	$V_I = V_{CC}$ or 0,	I _O = 0	6 V			8		160		80	μΑ	
C _i			2 V to 6 V		3	10		10		10	pF	

SCLS598B - NOVEMBER 2004 - REVISED APRIL 2008

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO (OUTDUT)	v _{cc}	T _A = 25°C			T _A = -40°C TO 125°C		T _A = -40°C TO 85°C		UNIT
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
			2 V		47	175		255		220	
	A or B	Y	4.5 V		14	35		51		44	ns
			6 V		12	30		44		38	
t _{pd}	G	Y	2 V		39	175		255		220	
			4.5 V		11	35		51		44	
			6 V		10	30		44		38	
			2 V		38	75		110		95	
t _t		Υ	4.5 V		8	15		22		19	ns
			6 V		6	13		19		16	

operating characteristics, T_A = 25°C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per decoder	No load	25	pF

PARAMETER MEASUREMENT INFORMATION V_{CC} From Output Test Input 50% 50% **Under Test Point** 0 V $C_L = 50 pF$ t_{PHL} (see Note A) V_{OH} In-Phase Output **LOAD CIRCUIT ←** t_{PHL} 90% 90% Input 50% 10% 90% **Out-of-Phase** Output **VOLTAGE WAVEFORM VOLTAGE WAVEFORMS**

NOTES: A. C_L includes probe and test-fixture capacitance.

INPUT RISE AND FALL TIMES

B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r = 6 \text{ ns}$, $t_f = 6 \text{ ns}$.

PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

- C. The outputs are measured one at a time, with one input transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74HC139QDRG4Q1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC139Q	Samples
SN74HC139QDRQ1	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC139Q	Samples
SN74HC139QPWRG4Q1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC139Q	Samples
SN74HC139QPWRQ1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	HC139Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

6-Feb-2020

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74HC139-Q1:

• Catalog: SN74HC139

Military: SN54HC139

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC139QPWRG4Q1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC139QPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 14-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74HC139QPWRG4Q1	TSSOP	PW	16	2000	367.0	367.0	35.0	
SN74HC139QPWRQ1	TSSOP	PW	16	2000	367.0	367.0	35.0	

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated