MATH597 Analysis II

Pingbang Hu

January 28, 2022

Abstract

Notice that since in this course, the cross-referencing between theorems, lemmas, and propositions are quite complex and hard to keep track of, hence in this note, whenever you see a ! over =, like $\stackrel{!}{=}$, then that ! is clickable! It will direct you to the corresponding theorem, lemma, or proposition.

Additionally, we'll use [FF99] as our main text, while using [Tao13] and [Axl19] as supplementary references.

Contents

	1.1	Measurable Function	12
1		tegration 1	
	0.3	Regularity Properties of Lebesgue-Stieltjes Measures	8
		0.2.1 Cantor Function	8
	0.2	Lebesgue-Stieltjes Measure on $\mathbb R$	6
	0.1	Borel Measures on \mathbb{R}	1

Lecture 7: Borel Measures

21 Jan. 11:00

0.1 Borel Measures on \mathbb{R}

We first introduce so-called $distribution\ function.$

Definition 0.1 (Distribution function). An increasing a function

$$F \colon \mathbb{R} \to \mathbb{R}$$

and right-continuous. F is then a distribution function.

^aHere, increasing means $F(x) \leq F(y)$ for x < y.

Example. Here are some examples of right-continuous functions.

- 1. F(x) = x.
- 2. $F(x) = e^x$.

3. Define

$$F(x) = \begin{cases} 1, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0. \end{cases}$$

4. Let $\mathbb{Q} := \{r_1, r_2, \ldots\}$. Define

$$F_n(x) = \begin{cases} 1, & \text{if } x \ge r_n \\ 0, & \text{if } x < r_n, \end{cases}$$

and

$$F(x) \coloneqq \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}.$$

Then F is a distribution function (hence right-continuous).

Note. If F is increasing, and

$$F(\infty)\coloneqq \lim_{x\nearrow\infty} F(x), \quad F(-\infty)\coloneqq \lim_{x\searrow\infty} F(x)$$

exist in $[-\infty, \infty]$.

In probability theory, cumulative distribution function (CDF) is a distribution function with $F(\infty) = 1$, $F(-\infty) = 0$.

Definition 0.2 (Locally finite). Let X be a topological space, μ on $(X, \mathcal{B}(X))$ is called *locally finite* if $\mu(K) < \infty$ for every compact set $K \subset X$.

Lemma 0.1. Let μ be a locally finite Borel measure on \mathbb{R} , then

$$F_{\mu}(x) = \begin{cases} \mu((0,x]), & \text{if } x > 0\\ 0, & \text{if } x = 0\\ -\mu((x,0]), & \text{if } x < 0 \end{cases}$$

is a distribution function.

Proof. To show F_{μ} is increasing, consider x < y such that

$$F_{\mu}(x) \leq F_{\mu}(y)$$

by considering

• x > 0: Then $F_{\mu}(x) = \mu((0, x])$ and

$$F_{\mu}(y) = \mu((0, y]) = \mu((0, x] \cup (x, y]) \ge \mu((0, x]) = F_{\mu}(x).$$

• x = 0: Then $F_{\mu}(x) = 0$ and

$$F_{\mu}(y) = \mu((0, y]) \ge 0 = F_{\mu}(0)$$

since y > 0.

¹There are distributions [FF99] Ch9., but these are different from distribution functions.

• x < 0: Follows the same argument with x > 0.

Now, we need to show F_{μ} is right-continuous.

DIY, use continuity of measure

Definition 0.3 (Half intervals). We call

$$\varnothing$$
, $(a, b]$, (a, ∞) , $(-\infty, b]$, $(-\infty, \infty)$

half-intervals.

Lemma 0.2. Let \mathcal{H} be the collection of finite disjoint unions of half-intervals. Then, \mathcal{H} is an algebra on \mathbb{R} .

Proof. We see that

- $\emptyset \in \mathcal{H}$. Clearly.
- $\bullet\,$ To show ${\mathcal H}$ is closed under complements, we have

$$-\varnothing^c=\mathbb{R}=(-\infty,\infty)\in\mathcal{H}.$$

$$-(a,b]^c = (-\infty,a] \cup (a,\infty) \in \mathcal{H}^2$$

$$- (a, \infty)^c = (-\infty, a] \in \mathcal{H}.$$

$$-(-\infty,b]^c = (b,\infty) \in \mathcal{H}.$$

$$-(-\infty,\infty)^c=\varnothing\in\mathcal{H}.$$

• \mathcal{H} is closed under finite unions, clearly.

²Since it's a two disjoint union of half intervals.

Proposition 0.1 (Distribution function defines a pre-measure). Let $F: \mathbb{R} \to \mathbb{R}$ be a distribution function. For a half-interval I, define

$$\ell(I) := \ell_F(I) = \begin{cases} 0, & \text{if } I = \varnothing \\ F(b) - F(a), & \text{if } I = (a, b] \\ F(\infty) - F(a), & \text{if } I = (a, \infty] \\ F(b) - F(-\infty), & \text{if } I = (-\infty, b] \\ F(\infty) - F(-\infty), & \text{if } I = (-\infty, \infty). \end{cases}$$

Define $\mu_0 := \mu_{0,F}$ as

$$\mu_{0,F} \colon \mathcal{H} \to [0,\infty]$$

by

$$\mu_0(A) = \sum_{k=1}^{N} \ell(I_k) \text{ if } A = \bigcup_{k=1}^{N} I_k,$$

where A is a finite disjoint union of half-intervals I_1, \ldots, I_N . Then, μ_0 is a pre-measure on \mathcal{H} .

Proof. We see that

- 1. μ_0 is well-defined.
- 2. $\mu_0(\emptyset) = 0$.
- 3. μ_0 is finite additive.
- 4. μ_0 is countable additive within \mathcal{H} .

Suppose $A \in \mathcal{H}$ where $A = \bigcup_{i=1}^{\infty} A_i$ is a countable disjoint union. It is enough to consider the case that A = I, $A_k = I_k$ are all half-intervals.³

Focus on the case I = (a, b]. Let

$$(a,b] = \bigcup_{n=1}^{\infty} (a_n, b_n],$$

which is a disjoint union. Then we only need to check

$$F(b) - F(a) = \sum_{n=1}^{\infty} (F(b_n) - F(a_n)).$$

• Since $(a,b] \supset \bigcup_{n=1}^{N} (a_n,b_n]$ for any fixed $N \in \mathbb{N}$, hence

$$\bigvee_{N \in \mathbb{N}} F(b) - F(a) \ge \sum_{n=1}^{N} \left(F(b_n) - F(a_n) \right).$$

³why?

By letting $N \to \infty$, we have

$$F(b) - F(a) \ge \sum_{n=1}^{\infty} (F(b_n) - F(a_n)).$$

• Fix $\epsilon > 0$. Since F is right-continuous, $\exists a' > a$ such that

$$F(a') - F(a) < \epsilon$$
.

For each $n \in \mathbb{N}$, $\exists b'_n > b_n$ such that

$$F(b_n') - F(b_n) < \frac{\epsilon}{2^n}.$$

Then, we have

$$[a',b] \subset \bigcup_{n=1}^{\infty} (a_n,b'_n),$$

hence

$$\underset{N \in \mathbb{N}}{\exists} [a', b] \subset \bigcup_{n=1}^{N} (a_n, b'_n), {}^{4}$$

which is only finitely many unions now. In this case, we have

$$F(b) - F(a') \le \sum_{n=1}^{N} F(b'_n) - F(a_n).$$

Finally, we see that

$$F(b) - F(a) \le F(b) - F(a') + \epsilon$$

$$\le \sum_{n=1}^{\infty} (F(b'_n) - F(a_n)) + \epsilon$$

$$\le \sum_{n=1}^{\infty} \left(F(b_n) - F(a_n) + \frac{\epsilon}{2^n} \right) + \epsilon$$

$$= \sum_{n=1}^{\infty} (F(b_n) - F(a_n)) + 2\epsilon$$

for any fixed $\epsilon > 0$, hence

$$F(b) - F(a) \le \sum_{n=1}^{\infty} (F(b_n) - F(a_n)).$$

Combine these two inequalities, we have

$$F(b) - F(a) = \sum_{n=1}^{\infty} (F(b_n) - F(a_n))$$

as we desired.

⁴This essentially follows from the fact that open sets are closed under countable unions, hence the equality will not hold, even after taking the limit.

Remark. It's again the $\frac{\epsilon}{2^n}$ trick we saw before!

Lecture 8: Lebesgue-Stieltjes Measure on \mathbb{R}

24 Jan. 11:00

To classify all measures, we now see this last theorem to complete the task.

Theorem 0.1 (Locally finite Borel measures on \mathbb{R}). We have

1. $F: \mathbb{R} \to \mathbb{R}$ a distribution function, then there exists a **unique** locally finite Borel measure μ_F on \mathbb{R} satisfying

$$\mu_F((a,b]) = F(b) - F(a)$$

for every a < b.

2. Suppose $F, G: \mathbb{R} \to \mathbb{R}$ are distribution functions. Then,

$$\mu_F = \mu_G$$

on $\mathcal{B}(\mathbb{R})$ if and only if F - G is a constant function.

Proof.

-HW

Remark. Theorem 0.1 simply states that given a distribution function, if we restrict our attention on locally finite measures on \mathbb{R} following our usual convention, then it defines the measure on $\mathcal{B}(\mathbb{R})$ uniquely up to a *constant shift*.

0.2 Lebesgue-Stieltjes Measure on \mathbb{R}

We see that

F distribution function $\stackrel{!}{\Longrightarrow}$ μ_F on Carathéodory σ -algebra $\mathcal{A}_{\mu_F} \supset \mathcal{B}(\mathbb{R})$.

Furthermore, we actually have

$$(\mathcal{A}_{\mu_F}, \mu_F) = \overline{(\mathcal{B}(\mathbb{R}), \mu_F)}.$$

Definition 0.4 (Lebesgue-Stieltjes measure). Given a distribution function F, we define

- μ_F on \mathcal{A}_{μ_F} is called the *Lebesgue-Stieltjes measure* corresponding to F.
- Special case: $F(x) = x \implies$ Lebesgue measure (\mathcal{L}, m) , where \mathcal{L} is called *Lebesgue \sigma-algebra*, and m is called *Lebesgue measure*.

Note. We see that since F is right-continuous and increasing, hence

$$F(x^{-}) \le F(x) = F(x^{+}).^{5}$$

Example. We first see some examples.

- 1. $\mu_F((a,b]) = F(b) F(a)$. Then
 - $\mu_F(\{a\}) = F(a) F(a^-)$
 - $\mu_F([a,b]) = F(b) F(a^-)$
 - $\mu_F((a,b)) = F(b^-) F(a)$
- 2. We define

$$F(x) = \begin{cases} 1, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$$

Then

- $\mu_F(\{0\}) = 1$
- $\mu_F(\mathbb{R}) = 1$
- $\mu_F(\mathbb{R}\setminus\{0\})=0.$

We call that μ_F is the *Dirac measure* at 0.

3. Denote $\mathbb{Q} = \{r_1, r_2, \ldots\}$, and we define

$$F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n} \text{ where } F_n(x) = \begin{cases} 1, & \text{if } x \ge r_n; \\ 0, & \text{if } x < r. \end{cases}$$

Then

HW

- $\mu_F(\{r_i\}) > 0$ for all $r_i \in \mathbb{Q}$.
- $\mu_F(\mathbb{R} \setminus \mathbb{Q}) = 0$
- 4. If F is continuous at a, then $\mu_F(\{a\}) = 0$.
- 5. F(x) = x
 - m((a,b]) = m((a,b)) = m([a,b]) = b a.
- 6. $F(x) = e^x$
 - $\mu_F((a,b]) = \mu_F((a,b)) = e^b e^a$.

Remark. We see that the first two examples are discrete measures.

Example (Middle thirds Cantor set). Let $C := \bigcap_{n=1}^{\infty} K_n$.

⁵Some text will use x- and x+ instead of x^- and x^+ , respectively.

Figure 1: The top line corresponds to K_1 , and then K_2 , etc.

Since C is uncountable set, hence m(C) = 0. And notice that

$$x\in C\iff x=\sum_{n=1}^{\infty}\frac{a_n}{3^n},\ a_n\in\{0,2\}.$$

0.2.1 Cantor Function

Consider F as follows.

Figure 2: Cantor Function (Devil's Staircase).

We see that F is *continuous* and increasing. Furthermore,

$$\mu_F(\mathbb{R} \setminus C) = 0 \qquad m(\mathbb{R} \setminus C) = \infty > 0$$

$$\mu_F(C) = 1 \iff m(C) = 0$$

$$\mu_F(\{a\}) = 0 \qquad m(\{a\}) = 0$$

Remark. μ_F and m are said to be **singular** to each other.

0.3 Regularity Properties of Lebesgue-Stieltjes Measures

We first see a lemma.

Lemma 0.3. Let μ be Lebesgue-Stieltjes measure on \mathbb{R} . Then we have

$$\mu(A) \stackrel{!}{=} \inf \left\{ \sum_{i=1}^{\infty} \mu((a_i, b_i)) \mid \bigcup_{i=1}^{\infty} (a_i, b_i) \supset A \right\}$$
$$= \inf \left\{ \sum_{i=1}^{\infty} \mu((a_i, b_i)) \mid \bigcup_{i=1}^{\infty} (a_i, b_i) \supset A \right\}$$

for every $A \in \mathcal{A}_{\mu}$

Proof. The second equality follows from the continuity of the measure.

Lecture 9: Properties of Lebesgue-Stieltjes measure

26 Jan. 11:00

As previously seen. Let $X \subset [0, \infty]$. Recall that

•

$$\alpha = \sup X < \infty \iff \begin{cases} \forall & \alpha \geq x \\ \forall & \exists \\ \epsilon > 0 & x \in X \end{cases} \text{ such that } x + \epsilon \geq \alpha.$$

•

$$\alpha = \sup X = \infty \iff \bigvee_{L>0} \underset{x \in X}{\exists} x \ge L.$$

This should be useful latter on.

Theorem 0.2. Let μ be Lebesgue-Stieltjes measure. Then, for every $a \in \mathcal{A}_{\mu}$,

- 1. (outer regularity) $\mu(A) = \inf \{ \mu(O) \mid O \supset A, O \text{ is open} \}$
- 2. (inner regularity) $\mu(A) = \sup{\{\mu(K) \mid K \subset A, K \text{ is compact}\}}$

Proof. We check them separately.

1.

DIY

- 2. Let $s := \sup\{\mu(K) \mid K \subset A, K \text{ is compact}\}$, then by monotonicity, we have $\mu(A) \geq s$. To show the other direction,
 - Assume A is a bounded set. Then $\overline{A} \in \mathcal{B}(\mathbb{R}) \subset \mathcal{A}_{\mu}$, \overline{A} is also bounded $\Longrightarrow \mu(\overline{A}) < \infty$. Fix $\epsilon > 0$, then by outer regularity, there exists an open $O \supset \overline{A} \setminus A$, and $\mu(O) \mu(\overline{A} \setminus A) = \mu(O \setminus (\overline{A} \setminus A)) \le \epsilon$. Let $K \coloneqq \underbrace{A \setminus O}_{K \subset A} = \underbrace{\overline{A} \setminus O}_{\text{compact}}$, we show that

$$\mu(K) \ge \mu(A) - \epsilon$$
.

DIY

• Assume A is an unbounded set with $\mu(A) < \infty$. Let $A = \bigcup_{n=1}^{\infty} A_n$, $A_n = A \cap [-n, n]$ where $A_1 \subset A_2 \subset \ldots$, then

$$\lim_{n \to \infty} \mu(A_n) = \mu(A) < \infty.$$

Figure 3

• Assume A is an unbounded set with $\mu(A) = \infty$. We can show that

$$\lim_{n \to \infty} \mu(A_n) = \mu(A) = \infty.$$

Fix L > 0, then $\exists N$ such that $\mu(A_N \ge L)$.

Definition 0.5. Let X be a topological space. Then

- A G_{δ} -set is $G = \bigcap_{i=1}^{\infty} O_i$, O_i open.
- F_{σ} -set is $F = \bigcup_{i=1}^{\infty} F_i$, F_i closed.

Theorem 0.3. Let μ be a Lebesgue-Stieltjes measure. Then the following are equivalent:

- 1. $A \in \mathcal{A}_{\mu}$
- 2. $A = G \setminus M$, G is a G_{δ} -set, M is a μ -null.
- 3. $A = F \setminus N$, F is a F_{σ} -set, N is a μ -null.

CONTENTS

Proof. We see that $(2.) \implies (1.)$ and $(3.) \implies (1.)$ are clear.

- \bullet (1.) \Longrightarrow (3.)
 - Assume $\mu(A) < \infty$. From the inner regularity, we have

 $\forall n \in \mathbb{N} \exists \text{compact } K_n \subset A \text{ such that } \mu(K_n) + \frac{1}{n} \geq \mu(A).$

Let $F = \bigcup_{n=1}^{\infty} K_n$, then $N = A \setminus F$ is μ -null.

Check!

– Assume $\mu(A) = \infty$. Let $A = \bigcup_{k \in \mathbb{Z}} A_k$, $A_k = A \cap (k, k+1]$. From what we have just shown above,

$$\forall k \in \mathbb{Z} \ A_k = F_k \cup N_k, \ A = \underbrace{\left(\bigcup_k F_k\right)}_{F_\sigma} \cup \underbrace{\left(\bigcup_k N_k\right)}_{\mu\text{-null}}.$$

• $(1.) \implies (2.)$ We see that

$$A^c = F \cup N, \quad A = F^c \cap N^c = F^c \setminus N.$$

Proposition 0.2. Let μ be a Lebesgue-Stieltjes measure, and $A \in \mathcal{A}_{\mu}$, $\mu(A) < \infty$. Then we have

$$\forall \epsilon > 0 \ \exists I = \bigcup_{i=1}^{N(\epsilon)} I_i$$

disjoint open intervals such that $\mu(A \triangle I) \leq \epsilon$.

Proof. Using outer regularity and every open set is $\bigcup_{i=1}^{\infty} I_i$.

DIY

We now see some properties of Lebesgue measure.

Theorem 0.4. Let $A \in \mathcal{L} \implies A + s \in \mathcal{L}, rA \in \mathcal{L}$ for all $r, s \in \mathbb{R}$. i.e.,

$$m(A+s) = m(A), \quad m(rA) = |r| \cdot m(A)$$

Example. We now see some examples.

Proof.

■ ¬DIY

1. Let $\{r_i\}_{i=1}^{\infty}$ which is dense in \mathbb{R} . Let $\epsilon > 0$, and

$$O = \bigcup_{i=1}^{\infty} \left(r_i - \frac{\epsilon}{2^i}, r_i + \frac{\epsilon}{2^i} \right).$$

We see that O is open and dense in \mathbb{R} . But we see

$$m(O) = \sum_{i=1}^{\infty} \frac{2\epsilon}{2^i} = 2\epsilon.$$

Furthermore, $\partial O = \overline{O} \setminus O$, $m(\partial O) = \infty$

- 2. There exists uncountable set A with m(A) = 0.
- 3. There exists A with m(A) > 0 but A contains no non-empty open intervals.
- 4. There exists $A \notin \mathcal{L}$. e.g. Vitali set.⁶
- 5. There exists $A \in \mathcal{L} \setminus \mathcal{B}(\mathbb{R})$.

Lecture 10: Integration

26 Jan. 11:00

1 Integration

1.1 Measurable Function

[Measurable function] We start with a definition.

Definition 1.1. Suppose $(X, \mathcal{A}), (Y, \mathcal{B})$ are measurable spaces. Then we say $f: X \to Y$ is $(\mathcal{A}, \mathcal{B})$ -measurable if

$$\forall B \in \mathcal{B} \ f^{-1}(B) \in \mathcal{A}.$$

Lemma 1.1. Suppose $\mathcal{B} = \langle \mathcal{E} \rangle$. Then,

$$f: X \to Y$$
 is $(\mathcal{A}, \mathcal{B})$ -measurable $\iff \forall E \in \mathcal{E} \ f^{-1}(E) \in \mathcal{A}$.

Proof. We see that the *only if* part (\Longrightarrow) is clear. On the other direction, we consider the following.

Let $\mathcal{D} = \{ E \subset Y \mid f^{-1}(E) \in \mathcal{A} \}$, then

- $E \subset \mathcal{D}$ by assumption
- \mathcal{D} is a σ -algebra

check!

 $\implies \langle \mathcal{E} \rangle \subset \mathcal{D}.$

Note. Recall that

•
$$f^{-1}(E^c) = f^{-1}(E)^c$$

⁶https://en.wikipedia.org/wiki/Vitali_set

•
$$f^{-1}(\bigcup_{\alpha} E_{\alpha}) = \bigcup_{\alpha} f^{-1}(E_{\alpha})$$

Definition 1.2. Let (X, \mathcal{A}) be a measurable space. Then,

$$\left. \begin{array}{l} f \colon X \to \mathbb{R} \\ f \colon X \to \overline{\mathbb{R}} \\ f \colon X \to \mathbb{C} \end{array} \right\} \ \text{is \mathcal{A}-measurable if } \left\{ \begin{aligned} f \ \text{is } (\mathcal{A}, \mathcal{B}(\mathbb{R}))\text{-measurable} \\ f \ \text{is } (\mathcal{A}, \mathcal{B}(\overline{\mathbb{R}}))\text{-measurable} \\ \Re f, \Im f \colon X \to \mathbb{R} \ \text{are \mathcal{A}-measurable.} \end{aligned} \right.$$

Notation. Notice that $\overline{\mathbb{R}}$ is equal to $[-\infty, \infty]$.

Example. We see that

- $A = P(X) \implies$ every function is A-measurable.
- $A = \{\emptyset, X\} \implies$ only A-measurable functions are constant functions.

Lemma 1.2. Given $f: X \to \mathbb{R}$, the following are equivalent.

- 1. f is A-measurable
- 2. $\forall a \in \mathbb{R}, f^{-1}((a, \infty)) \in \mathcal{A}$
- 3. $\forall a \in \mathbb{R}, f^{-1}([a, \infty)) \in \mathcal{A}$
- 4. $\forall a \in \mathbb{R}, f^{-1}((-\infty, a)) \in \mathcal{A}$
- 5. $\forall a \in \mathbb{R}, f^{-1}((-\infty, a]) \in \mathcal{A}$

Proof. The result follows from the lemma we just saw.

Property. Given $f, g: X \to \mathbb{R}$ and is A-measurable, then

1. $\phi \colon \mathbb{R} \to \mathbb{R}$, \mathcal{A} -measurable (i.e. Borel measurable), then

$$\phi \circ f \colon X \to \mathbb{R}$$

is A-measurable.

- 2. -f, 3f, f^2 , |f| are all \mathcal{A} -measurable, and $\frac{1}{f}$ is \mathcal{A} -measurable if $f(x) \neq 0, \forall x \in X$.
- 3. f + g is A-measurable. We see this from

$$(f+g)^{-1}((a,\infty)) = \bigcup_{r \in \mathbb{Q}} (f^{-1}((r,\infty)) \cap g^{-1}((a-r,\infty))).$$

4. $f \cdot g$ is \mathcal{A} -measurable. We see this from

$$f(x)g(x) = \frac{1}{2} \left((f(x) + g(x))^2 - f(x)^2 - g(x)^2 \right).$$

5. We see that

$$(f \vee g)(x) := \max\{f(x), g(x)\}\$$
and $(f \wedge g)(x) := \min\{f(x), g(x)\}\$

are A-measurable.

6. Let $f_n: X \to \overline{\mathbb{R}}$ be \mathcal{A} -measurable. Then

$$\sup_{n\in\mathbb{N}} f_n, \ \inf_{n\in\mathbb{N}} f_n, \ \limsup_{n\to\infty} f_n, \ \liminf_{n\to\infty} f_n$$

are A-measurable.

Proof. Consider $\sup_{n\in\mathbb{N}} f_n =: g$, then

$$g^{-1}((a,\infty]) = \bigcup_{n \in \mathbb{N}} f_n^{-1}((a,\infty])$$

for $\sup_{n \in \mathbb{N}} f_n(x) = g(x) > a$. A similar argument can prove the case of check $\inf_{n \in \mathbb{N}} f_n$.

And notice that $\limsup_{n\to\infty} f_n = \inf_{k\in\mathbb{N}} \sup_{n\geq k} f_n$, then the similar argument also proves this case.

7. If $\lim_{n\to\infty} f_n(x)$ converges for every $x\in X$, then f is \mathcal{A} -measurable.

Example. If $f: \mathbb{R} \to \mathbb{R}$ is continuous

- $\implies f$ is Borel measurable.
- \implies f is Lebesgue measurable.

(Considering $f^{-1}((a,\infty))$.)

Definition 1.3. For
$$f: X \to \overline{\mathbb{R}}$$
, let $f^+ := f \vee 0$ and $f^- := (-f) \vee 0$. a

$$f^+(x) = \max\{f(x), 0\}, \quad f^-(x) = \min\{-f(x), 0\}$$

Remark. If
$$\operatorname{supp} f^+ \cap \operatorname{supp} f^- = \emptyset$$
 and $f(x) = f^+(x) - f^-(x)$, then f is \mathcal{A} -measurable $\iff f^+, f^-$ are measurable.

Notation. supp f means the support of f, which is the set of domain which makes f being non-zero.

Definition 1.4 (Characteristic (Indicator) function). For $E \subset X$, the *characteristic (indicator)* function of E is

$$\mathcal{X}_E(x) = \mathbb{1}_E(x) = \begin{cases} 1, & \text{if } x \in E; \\ 0, & \text{if } x \in E^c. \end{cases}$$

Remark. We see that $\mathbb{1}_E$ is \mathcal{A} -measurable $\iff E \in \mathcal{A}$.

Definition 1.5 (Simple function). Let (X, \mathcal{A}) be a measurable space. Then a *simple function* $\phi \colon X \to \mathbb{C}$ that is \mathcal{A} -measurable and takes only finitely many values.

Remark. We see that if

$$\phi(X) = \{c_1, \dots, c_N\},\$$

and

$$E_i = \phi^{-1}(\{c_i\}) \in \mathcal{A} \implies \phi = \sum_{i=1}^N \underbrace{c_i}_{\neq \pm \infty} \mathbb{1} \underbrace{E_i}_{\in \mathcal{A}}.$$

Appendix

References

- [Axl19] S. Axler. Measure, Integration & Real Analysis. Graduate Texts in Mathematics. Springer International Publishing, 2019. ISBN: 9783030331429. URL: https://books.google.com/books?id=8hCDyQEACAAJ.
- [FF99] G.B. Folland and G.B.A. FOLLAND. Real Analysis: Modern Techniques and Their Applications. A Wiley-Interscience publication. Wiley, 1999. ISBN: 9780471317166. URL: https://books.google.com/books?id=uPkYAQAAIAAJ.
- [Tao13] T. Tao. An Introduction to Measure Theory. Graduate studies in mathematics. American Mathematical Society, 2013. ISBN: 9781470409227. URL: https://books.google.com/books?id=SPGJjwEACAAJ.