

Explanation DATALOGGER and ACTUAL DATA of CXN and CX Controller

Interface CX / CXN Controller:

Picture 1:CXN Interface socket

Picture 2: CX Interface socket

Data Interface socket (the left socket 4 pins by CXN)

The left socket is for using the CXM, CXI/CXCOM or EEM (Excess Energy Management).

Using the left socket for data transmission CXI/CXCOM (or CXM only CXN)

The controller can receive and sending out asciicharacters with following transfer settings

- Transfer rate 9600 Baud (Bit/s)
- 8 Data bit
- 1 Stopp bit
- No parity bit

On the sending and receiving line where logical 0 and logical 1 transmitted as you can see as following:

- Logical $0 \rightarrow CX=5V$ by CXN = battery voltage + <math>5V
- Logical 1 \rightarrow CX=0V by CXN = battery voltage + 0V

Using the left socket for EEM (Excess Energy Management)

Set point 8.1 or 8.2 in the controller menu to use this function.

Frequenz of the excess energy signal = 12,5Hz

The excess energy signal is a PWM (pulse width modulated) signal between 0V and 5V. The average of this signal gives you the value of the excess energy. If the average is 5V, than you have 100% excess energy, if the average is 0V, than you have no excess energy.

At CX controller you can measure the signal between TxD and GND and at the CXN controller you can measure the signal between TxD and battery voltage line of the left socket, when you have set the controller on point 8.1 or 8.2 (see CXN manual)

Temperature sensor socket (the right socket with 5 pins only by CXN)

The left socket is used for the extern temperature sensor. The data where transmitted by the I²C bus.

Data of the CXN and CX

If you send the ASCII character exclamation mark "!" (Asciicharacter 33) you get the **DATALOGGER DATA**, and if you send a Space " "(Asciicharacter 32) you get the **ACTUAL DATA**.

Please notice that the CX / CXN controller send back as echo the "!" respectively the space to confirm that communication worked.

The CX respectively CXN always send out Asciicharacters.

All Asciicharacters which the Controller send out respectively you need to program the Controller can you see on the following table:

Asciicharacter	In Byte	Asciinumber in decimal
0	0011 0000	48
1	0011 0001	49
2	0011 0010	50
3	0011 0011	51
4	0011 0100	52
5	0011 0101	53
6	0011 0110	54
7	0011 0111	55
8	0011 1000	56
9	0011 1001	57
А	0100 0001	65
В	0100 0010	66
С	0100 0011	67
D	0100 0100	68
Е	0100 0101	69
F	0100 0110	70
+	0010 1011	43
-	0010 1101	45

Asciicharacter	In Byte	Asciinumber in decimal
Space	0010 0000	32
!	0010 0001	33
%	0010 0111	37
С	0110 0011	99
X	0111 1000	120
Р	0101 0000	80
Н	0100 1000	72
0	0100 1111	79
G	0100 0111	71
I	0100 1001	73
J	0100 1010	74
K	0100 1011	75
L	0100 1100	76
M	0100 1101	77
N	0100 1110	78
Q	0101 0001	81
А	0100 0001	65

table 1 ASCII table

In the whole document:

Rating of the bits:

Bit $0 \rightarrow 1$

Bit1 \rightarrow 2

Bit2 \rightarrow 4

Bit3 \rightarrow 8

Bit4 → 16

Bit5 \rightarrow 32

Bit6 → 64

Bit7 → 128

Values

The **ACTUAL DATA** is composed always with Asciicharacters which represent decimal numbers (0,1,2,3,4,5,6,7,8,9)

The **DATALOGGER DATA** is composed always with Asciicharacters which represent hex numbers (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

The values always separated with Ascii character 32 (Space).

The Asciicharacter which is send first has always the highest rating. In the datalogger it can be that a values is composed by two, three or six parts. Then part1 has always the highest rating.

Data Read out with Hyper Terminal:

Example ACTUAL DATA CX: 064 023 004 003 146 160 000 000 004 000 120 000 +000 +000 229

Example ACTUAL DATA CXN:

020 004 005 107 170 161 000 000 255 015 120 021 -003 -003 000 0000 0000 001 000

Example DATALOGGER:

```
        !F5
        AF
        6A
        08
        0B
        D7
        00
        01
        1F
        7D
        0A
        03
        01
        08
        8E
        FF
        FF
        FF
        EF
        28
        12
        00
        07
        00
        00
        04
        0C
        00

        02
        AO
        00
        01
        FO
        00
        5C
        6O
        5E
        00
        00
        02
        2D
        5E
        5D
        00
        00
        05
        00
        00
        22
        02
        5E
        5E
        5E
        5E
        00
        00
        05
        00
        00
        05
        00
        00
        05
        00
        00
        05
        00
        00
        05
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00<
```

ACTUAL DATA:

Send the Ascii character 32 (Space) and you will get the ACTUAL DATA.

Please notice that the CX / CXN controller send back as echo the Space to confirm that communication worked.

Value number	Valuename	Number
Hamber	valuename	1
1	VERSIONNUMBER_CX_CXN	2
•		3
		4
		5
2	SOC_CX_CXN	6
		7
		8
		9
3	DISCONADJ_CX_CXN	10
		11
		12
		13
4	BATTERY_VOLTAGE_CX_CXN	14
		15
		16
	DATTEDY END CHARGE OV CVN	17
5	BATTERY_END_CHARGE_CX_CXN	18
		19
		20
6	STATUS_CX_CXN	21 22
U	5111105_0/L_0/111	23
		24
	LOAD_AH_DAY_CXN	25
7	LOADCURRENT CX	26
		27
		28
		29
8	VOLTAGE_BATTERY_WIRES_CX_CXN	30
		31

		32
		33
9	PWM_CX_CXN	34
		35
		36
		37
10	NIGHTHOURS_CX_CXN	38
		39
		40
		41
11	NIGHTHOURS_LAST_NIGHT_CX_CXN	42
		43
		44
4.0		45
12	SPECBITS_CX_CXN	46
		47
		48
		49
13	TEMPERATURE_INTERN_CX_CXN	50
10	TEINI ETIATOTIE_INTETIN_OX_OXIV	51
		52
		53
		54
14	TEMPERATURE_ENVIRONMENTAL_CX_CXN	55
1-4		56
		57
		58
4 =	PV_AH_DAY_CXN	59
15	PV_CURRENT_CX	60
		61
		62
	PV_CURRENT_CXN	63
16		64
. •	(Only CXN)	65
		66
		67
17	LOAD_CURRENT_CXN	68
		69
	(Only CXN)	70
		71

		72
4.0	REASON_LOAD_OFF_CXN	73
18	(Only CVN)	74
	(Only CXN)	75
		76
	EXCESS AH DAY CXN	77
19	(Only OVAI)	78
	(Only CXN)	79

table 2: ACTUAL DATA

The most ACTUAL DATA values are current values of the chargecontrollers.

The **ACTUAL DATA** values are all composed with several Ascii characters. The first one has always the highest rating.

A Space (Ascii character 32) will separate all the values.

The most of the **ACTUAL DATA** are decimal number system.

1. VERSIONNUMBER CX CXN

versionnumber of the microcontroller software from the controller

→ 3 Ascci characters

2. soc_cx_cxn

Actual SOC (Battery State of charge)

Dimension: %

→ 3Ascii characters

If $SOC_CX_CXN = 0$

expect

0% state of charge

The Soc value depends on the battery protection setting. Look at the DATALOGGER value 14 (**MENUSTATE_CX_CXN**) there you can see the battery deep discharge setting.

- By setting: "Low voltage disconnect current compensated 11.4V-11.9V"

 SOC_CX_CXN = 30 accord → Battery SOC = 100%
- By setting: "Low voltage disconnect current compensated 11.0V–11.75V" SOC_CX_CXN = 35 accord → Battery SOC = 100%
- By setting:Low voltage disconnect current compensated/adaptive 11.0V-12.2V

SOC_CX_CXN = 35 accord
$$\rightarrow$$
 Battery $SOC = 100\%$

By setting load disconnect by a fixed voltage the value SOC_CX_CXN shows you the voltage difference

Voltage_difference_load_disconnect = SOC_CX_CXN * 0,032V

To show it as battery state of charge (fully charged by 12,8V)

• By setting: Low voltage disconnect 11.5V

SOC_CX_CXN = 41 accord
$$\rightarrow$$
 SOC = 100%

• By setting: Low voltage disconnect 11.0V

$$SOC_CX_CXN = 57 \text{ accord } \rightarrow SOC = 100\%$$

Example: \rightarrow **SOC_CX_CXN** = 25

Battery protection setting: Low voltage disconnect 11.0V

$$\rightarrow$$
 SOC = 44%

3. DISCONADJ CX CXN

This value increase every day when battery is not fully charged (only by setting: Low voltage disconnect current compensated/adaptiv 11.0V-12.2V(datalogger value 13)

→ 3Ascii characters

If **DISCONADJ_CX_CXN** = **SOC_CX_CXN** the load will disconnected.

4. BATTERY_VOLTAGE_CX_CXN

Current battery voltage
Dimension = Volt
→3 Ascii characters

Calculation:

By 12V system:

 $Battery_voltage = (BATTERY_VOLTAGE_CX_CXN * 0,032) + 9$

By 24V system:

Battery_voltage = 2 * [(BATTERY_VOLTAGE_CX_CXN * 0,032) + 9]

Look at value 6 (STATE_CX_CXN) there you can see if the controller work at a 12V or 24V system.

Example: battery_voltage = $114 \rightarrow 12.6V$ (by 12V system)

5. END_CHARGE_CX_CXN

Voltage which the chargecontroller controll the battery voltage.

Dimension: Volt → 3Ascii characters

Calculation:

12V system:

 $Voltage_end_charge = (END_CHARGE_CX_CXN * 0,032) + 9$

24V system:

 $Voltage_end_charge = 2 * [(END_CHARGE_CX_CXN * 0,032) + 9]$

Look at value 6 (**STATUS_CX_CXN**) there you can see if the controller work at a 12V or 24V system.

Example: END_CHARGE_VOLTAGE = $151 \rightarrow 13.8V$ (by 12V system)

6. STATUS_CX_CXN

Shows you some status bits

→3Ascii characters

Convert the decimal number into a binary number:

Bit0 = 0: BOOST Mode: off

Bit0 = 1: charging in the BOOST Mode

Bit 1 = 0: EQUAL Mode: off

Bit1 = 1: charging in the EQUAL Mode

Bit2 = 0: 12V system Bit2 = 1: 24V system

Only by CXN:

Bit7 = 0: external temperature sensor is connected Bit7 = 1: external temperature sensor is not connected

BOOST Mode: battery charging by 14,5V EQUAL Mode: battery charging by 14,8V

Example: STATE_CX_CXN = $160_{10} = 10100001_2 \rightarrow$

Bit0 = 1 \rightarrow BOOST MODE: on

Bit1 = $0 \rightarrow EQUAL MODE: off$

Bit2 = 0 \rightarrow 12V System

Bit7 = 1 \rightarrow external temperature sensor is not connected (only CXN)

7. LOAD AH DAY CXN/LOAD CURRENT CX

LOAD_AH_DAY_CXN: Load Amperehours of the actual day

Dimension: Amperehours (Ah)

LOAD_CURRENT_CX: actual load current

Dimension: percent of nominal current

→ 3Asciizeichen

CX:

FULLCUR_CX you see at **DATALOGGER** value (number 3).

```
If FULLCUR_CX > 50 then

If FULLCUR_CX > 23 and FULLCUR_CX < 30 then

\Rightarrow CX10: x = 10

\Rightarrow CX20: x = 20

\Rightarrow CX40: x = 40
```

Load_current = (LOAD_CURRENT_CX / FULLCUR_CX) * x

CXN:

If CXN10 \rightarrow x=10 If CXN20 \rightarrow x=20 If CXN40 \rightarrow x=40

The CXN Type you see by **the DATALOGGER** value (number 19)

 $Load_Ah = (LOAD_AH_DAY_CXN * x * 4) / 60$

8. VOLTAGE BATTERY WIRES CX CXN

Shows you the voltage drop on the wires to the battery

→ 3Ascijzeichen

9. PWM_CX_CXN

If the System has excess energy because the battery is fully charged. The PV current will reduced with pulse width modulation. The relation of pwm will shown you here.

→ 3Asciizeichen

The value is between 0 and 255:

Ratio_used_PV_current_in_% = (PWM_CX_CXN / 255) * 100%

Example:

PWM_CX_CXN = $200 \rightarrow 78\%$ of the PV current is used at the moment.

10. NIGHTHOURS CX CXN

Shows you the hours since the night begun when it is night.

Dimension: hours
→ 3Asciizeichen

Nighthours_final_value = **NIGHTHOURS_CX_CXN** / 10

Example: NIGHTHOURS_CX_CXN = 10 so it's for 1h night

11. NIGHTHOURS_LAST_NIGHT_CX_CXN

Shows you the hours of the last night.

Dimension: hours
→ 3Asciizeichen

 $Nighthours_last_night = NIGHTHOURS_LAST_NIGHT_CX_CXN / 10$

Example: **NIGHTHOURS_LAST_NIGTH CX_CXN** = 120

 \rightarrow nighthours last night = 12hours

12. SPECBITS CX CXN

Convert the decimal number into a binary number:

→ 3Ascii characters

if Bit2 = 1 Load output off

if Bit2 = 0 Load output on

if Bit4 = 1 night at the moment

if Bit4 = 0 day at the moment

13. TEMPERATURE_INTERN_CX_CXN

Shows you the intern temperature of the controller

Dimension: °C

→4 Ascii characters

The first Ascii character is "+" or "-" and shows you if you should

Temperature = 25 -TEMPERATURE_INTERN_CX_CXN

Respectively:

Temperature = 25 +TEMPERATURE_INTERN_CX_CXN

Example:

TEMPERATURE_INTERN_CX_CXN = $-009 \rightarrow 25-9 = 16^{\circ}$ C

14. TEMPERATURE_ENVIRONMENTAL_CX_CXN

Shows you the temperature outside of the controller

Dimension: °C

→ 4 Ascii characters

The first Ascii character is "+" or "-" and shows you if you should add or subtract.

Temperature = 25 -TEMPERATURE_ENVIRONMENTAL_CX_CXN

Respetively:

Temperature = 25 + TEMPERATURE_ENVIRONMENTAL_CX_CXN

Example:

TEMPERATURE_ENVIRONMENTAL_CX_CXN = $-009 \rightarrow 25-7=18$ °C

15. PV_AH_DAY_CXN / PV_CURRENT_CX

PV_CURRENT_CX: PV current at the moment

Dimension: in % of the nominal current

PV_AH_DAY_CXN: The used PV amperehours of the actual day

Dimension: amperehours (Ah)

→3Asciizeichen

CX:

FULLCUR_CX you see at **DATALOGGER** value (number 3).

```
If FULLCUR_CX > 50_{10} then

If FULLCUR_CX > 23_{10} and FULLCUR_CX < 30_{10} then

\Rightarrow CX10: x = 10
\Rightarrow CX20: x = 20
\Rightarrow CX40: x = 40
```

 $PV_CURRENT = (PV_CURRENT_CX / FULLCUR_CX) * x$

CXN:

If CXN10: x=10 If CXN20: x=20 If CXN40: x=40

The CXN Type you see by the **DATALOGGE**R values (number 19)

 $PV_Ah = (PV_AH_DAY_CXN * x * 4) / 60$

16. PV_CURRENT_CXN

PV current at the moment Dimension: Ampere (A) → 4 Ascii characters

If CXN10: x=10 If CXN20: x=20 If CXN40: x=40

The CXN Type you see by the **DATALOGGE**R values (number 19)

 $PV_current = (PV_CURRENT_CXN/256) * x$

Example:

CXN 10: **PV_CURRENT_CXN** = $26 \rightarrow PV_current = 1A$

17. LOAD_CURRENT_CXN

Load current at the moment Dimension: Ampere (A) →4 Ascii characters

If CXN10: x=10 If CXN20: x=20 If CXN40: x=40

The CXN Type you see by the **DATALOGGE**R values (number 19)

 $Load_current = (LOAD_CURRENT_CXN/256) * x$

Example:

LOAD_CURRENT_CXN = $13 \rightarrow Load_current = 0.5 \text{ A}$

18. REASON LOAD OFF CXN

Convert this decimal number into a dual number and the bits has following explanation:

→ 4 Ascii characters

Bit $0 = 1 \rightarrow$ Load off because battery is empty

Bit1 = $1 \rightarrow$ Load off manual by CXN button

Bit2 = $1 \rightarrow$ Load off because load current was higher than nominal current

Bit3 = $1 \rightarrow PV$ current reduce because of to high intern temperature

Bit4 = $1 \rightarrow$ Load off because of nightlight function

Bit5 = $1 \rightarrow$ Load off because of too high battery voltage

Bit6 = $1 \rightarrow$ Load off because of too high intern temperature

19. EXCESS_AH_DAY_CXN

Shows you the excess energy (amperehours) of the actual day. Dimension: amperehours (Ah)

→3Asciizeichen

If CXN10: x=10 If CXN20: x=20 If CXN40: x=40

The CXN Type you see by the **DATALOGGE**R values (number 19)

 $excess_Ah_day = (EXCESS_AH_DAY_CXN * x * 4) / 60$

DATENLOGGER:

If you send out asciicharacter 33 ("!") then you get the DATALOGGER data of CX respectively CXN controller. Please notice that the CX / CXN controller send back as echo the "!" to confirm that communication worked.

The controller send the DATALOGGER values always with two asciicharacters seperated with 32 (space). The asciicharacters represent hexnumbers (1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). The first character has always the highest rating.

The datalogger can separated in

Setting values SOS (State of System) values Data about last week, last month and last year Serialnumber (only CXN)

Datalogger Setting values

Valuenumber	Value name	Number
1		15
1,2	values have no meaning	
		6
3		7
3	FULLCUR_CX	8
		9
410		1029
410	values have no meaning	
		30
11	MENUOTATES OV OVN	31
	MENUSTATE2_CX_CXN	32
_		33
12	EVENINGHOURS CX CXN	34
	EVENINGHOURS_CX_CXN	35
		36
13	MORNINGHOURS_CX_CXN	
	MORNINGHOURS_CX_CXN	38
		40
14	MENUSTATE CX CXN	41
	WE14001741E_0X_0X14	42
4 =		43
15	NIGHTLEVEL_CX_CXN	44
		45
10		46
16	RESERVED_CX_CXN	47
		48
17		49
1 /	RESERVED_CX_CXN	50
		51
18		52
10	RESERVED_CX_CXN	53
		54
19	TYPE_CXN	55
19	RESERVED_CX	56
		57
20		58
20	VERSIONNUMBER_CX_CXN	59
		60

3. Fullcur_CX

If **FULLCUR_CX** >
$$50_{10}$$
 (= 32_{16}) \Rightarrow it's a CX10 controller If 23_{10} (= 17_{16}) < **FULLCUR_CX** < 30_{10} (= $1E_{16}$) \Rightarrow it's a CX20 controller If **FULLCUR_CX** < 22_{10} (= 16_{16}) \Rightarrow it's a CX40 controller

11. MENUSTATE2_CX_CXN

Convert it to a binary number and look at the Bits Bit 0 and 1 shows you the setting of the interface

Bit1	Bit0	
0	0	Serial interface EXCESS ENERGY & CURRENT DATA
0	1	Serial interface EXCESS ENERGY & DATALOGGER
1	0	Serial interface BIDIRECTIONAL NO EXCESS ENERGY

Bit 2 shows you if the menu button of the CX is locked or not:

Bit2 = $0 \rightarrow$ button not locked Bit2 = $1 \rightarrow$ button locked

Example:

Menustate2 = 2_{16} = 2_{10} = 0000 0010₂ Bit2 and Bit1 = 10 \rightarrow Serial interface Bidirectional no excess energy Bit3 = 0 \rightarrow button not locked

12. EVENINGHOURS_CX_CXN

If the nightlight function is activated (look at MENUSTATE_CX_CXN DATALOGGER value 14) then you can see here the setting.

- 0 → Nightlight function Evening off
- 1 → Nightlight function Evening 1HR
- 2 → Nightlight function Evening 2HR
- 3 → Nightlight function Evening 3HR
- 4 → Nightlight function Evening 4HR
- 5 → Nightlight function Evening 5HR
- 6 → Nightlight function Evening to 4 Hours before mid of night
- 7 → Nightlight function Evening to 3 Hours before mid of night
- 8 → Nightlight function Evening to 2 Hours before mid of night
- 9 → Nightlight function Evening to 1 Hours before mid of night
- 10 → Nightlight function Evening to mid of night

Example:

EVENINGHOURS_CX_CXN = $2 \rightarrow$ Nightlight function Evening 2HR

13. MORNINGHOURS_CX_CXN

If the nightlight function is activated (look at MENUSTATE_CX_CXN DATALOGER VALUE 14) then you can see here the setting.

- 0 → Nightlight function Morning off
- 1 → Nightlight function Morning 1HR
- 2 → Nightlight function Morning 2HR
- 3 → Nightlight function Morning 3HR
- 4 → Nightlight function Morning 4HR
- 5 → Nightlight function Morning 5HR
- 6 → Nightlight function Morning to 4 Hours before mid of night
- 7 → Nightlight function Morning to 3 Hours before mid of night
- 8 > Nightlight function Morning to 2 Hours before mid of night
- 9 → Nightlight function Morning to 1 Hours before mid of night
- 10 → Nightlight function Morning to mid of night

Example:

$MORNINGHOURS_CX_CXN = 8$

→ Nightlight function Morning to 2 Hours before mid of night

14. MENUSTATE_CX_CXN

Convert the value in a binary number and the single Bits show how the chargecontroller is set:

Bit2	Bit1	Bit0	
0	0	0	Low voltage disconnect current compensated 11.4-11.9V
0	0	1	Low voltage disconnect current compensated 11.0-11.75V
0	1	0	Low voltage disconnect current compensated/ daptive 11.0V-12.2V
0	1	1	Low voltage disconnect 11.5V
1	0	0	Low voltage disconnect 11.0V

Bit3 = $0 \rightarrow$ Battery type liquid electrolyte

Bit3 = $1 \rightarrow$ Battery type GEL (VRLA)

Bit4 = $0 \rightarrow$ Buzzer off

Bit $4 = 1 \rightarrow$ Buzzer on

Bit7	Bit6	Bit5	
0	0	0	Nightlight function off
1	1	0	Nightlight function DUSK TO DAWN
1	0	1	Nightlight function EVENING/MORNING

By "Nightlight function EVENING/MORNING" the values EVENINGHOURS_CX_CXN (DATALOGGER value 12) and

MORINGHOURS_CX_CXN (DATALOGGER value13) shows you the setting.

Example:

 $MENUSTATE_CX_CXN = 0C_{16} = 12_{10} = 0000 \ 1010$

Bit2 and Bit1 and Bit0 = 010 → Low voltage disconnect current Compensated / adaptive 11.0V-12.2V

Bit3: = $1 \rightarrow$ Battery type GEL (VRLA)

Bit $4 = 0 \Rightarrow$ Buzzer off

Bit7 and Bit6 and Bit5 = $000 \rightarrow NIGHTLIGHT_FUNCTION_OFF$

15. NIGHTLEVEL_CX_CXN

This value shows you the PV panel voltage level when the CXN respectively CX controller should know it's night. If PV panel voltage decrease under this voltage the controller know it's night and start for example with nightlight functions.

First value is in a 12V system and the second value for a 24V System

```
NIGHTLEVEL_CX_CXN = 1E<sub>16</sub> = Day/Night PV voltage: 1.0/2.0V NIGHTLEVEL_CX_CXN = 2E<sub>16</sub> = Day/Night PV voltage: 1.6/3.1V NIGHTLEVEL_CX_CXN = 3E<sub>16</sub> = Day/Night PV voltage: 2.1/4.2V NIGHTLEVEL_CX_CXN = 4E<sub>16</sub> = Day/Night PV voltage: 2.7/5.4V NIGHTLEVEL_CX_CXN = 5E<sub>16</sub> = Day/Night PV voltage: 3.2/6.5V NIGHTLEVEL_CX_CXN = 6E<sub>16</sub> = Day/Night PV voltage: 3.8/7.6V NIGHTLEVEL_CX_CXN = 7E<sub>16</sub> = Day/Night PV voltage: 4.4/8.8V NIGHTLEVEL_CX_CXN = 8E<sub>16</sub> = Day/Night PV voltage: 4.9/9.8V NIGHTLEVEL_CX_CXN = 9E<sub>16</sub> = Day/Night PV voltage: 5.5/11.0V NIGHTLEVEL_CX_CXN = AE<sub>16</sub> = Day/Night PV voltage: 6.0/12.1V NIGHTLEVEL_CX_CXN = BE<sub>16</sub> = Day/Night PV voltage: 6.6/13.2V NIGHTLEVEL_CX_CXN = CE<sub>16</sub> = Day/Night PV voltage: 7.2/14.3V NIGHTLEVEL_CX_CXN = DE<sub>16</sub> = Day/Night PV voltage: 7.7/15.4V
```

Example:

NIGHTLEVEL_CX_CXN = $8E_{16} = 142_{10}$ \rightarrow Day/Night threshold4.9/9.8V solar voltage

19. TYPE_CXN

Shows you the CXN Controller type:

Type_CXN =
$$0A_{16} = 10_{10} \rightarrow CXN10$$

Type_CXN = $14_{16} = 20_{10} \rightarrow CXN20$
Type_CXN = $28_{16} = 40_{10} \rightarrow CXN40$

20. VERSIONNUMBER_CX_CXN

Convert it to a decimal number and you have the versionnumber of the microcontroller software.

Datalogger State of System values

SOS (State of System) Values

This values are saved since the beginning of the datalogger recording. If the DATALOGGER will delete this values will set all to zero.

All data about amperehours and voltage will calculated as you see in the following lines:

Calculation of the amperehours:

CXN10 respectively CX10 \rightarrow x=10 CXN20 respectively CX20 \rightarrow x=20 CXN40 respectively CX40 \rightarrow x=40

Insert x in the following formula:

amperehours_value_dec = The amperehours value in the **DATALOGGER**

converted into a decimal number

result_amperehours = result (dimension: amperehours)

result_amperehours = (amperehours_value_dec * x * 4) / 60

Calculation of voltage values:

Voltage_value_dec = The voltage value in the datalogger

converted into a decimal number

result_voltage = result (dimenstion: volt)

<u>By 12V system:</u> result_voltage = (Voltage_value_dec * 0,032V) + 9V <u>By 24V system:</u> result_voltage = [(Voltage_value_dec * 0,032V) + 9V] * 2

Rating if a value is composed on more parts:

Part1 have always the highest rating:

Valuenumber	Value name	Bytenumber	Ascii character	Ascii value	Decimal
21	DEEP_DISCHARGE_EVENTS_CX_CXN(part1)	61 62	48 48	0	
		63		Space	17
22	DEEP_DISCHARGE_EVENTS_CX_CXN(part2)	64	49	1	1
22	DEEP_DISCHARGE_EVENTS_CX_CXN(partz)	65	49	1	
		66		Space	
23	WEEKS WITHOUT FULL BATTERY CX CXN	67	48	0	9
25		68	57	9	
		69	- 10	Space	
24	MONTHS_WITHOUT_FULL_BATTERY_CX_CXN	70	48	0	7
		71	55	7	
		72 73	52	Space	
25	SUMMARY_SOC_MORNING_CX_CXN(part1)	73 74	52 54	0 A	
		75	54	Space	2740
000		76	65	B	2740
26	SUMMARY_SOC_MORNING_CX_CXN(part2)	77	52	4	
		78		Space	
07		79	48	0	
27	PV_AH_CX_CXN(part1)	80	49	0	
		81		Space	
28	PV_AH_CX_CXN(part2)	82	50	1	4113
20	FV_AH_CX_CXIN(partz)	83	48	0	4113
		84		Space	
29	PV_AH_CX_CXN (part3)	85	49	1	
23		86	49	1	
		87	40	Space	
30	LOAD_AH_CX_CXN(part1)	88	48	0	
		89	49	0 Space	
		90 91	50	Space 1	
31	LOAD_AH_CX_CXN (part2)	92	49	0	4113
		93		Space	
00		94	48	1	
32	LOAD_AH_CX_CXN (part3)	95	48	1	
		96		Space	
22	DATALOCCED DAVO CV CVN (novid)	97	48	0	
33	DATALOGGER_DAYS_CX_CXN (part1)	98	49	1	
		99		Space	274
34	DATALOGGER_DAYS_CX_CXN(part2)	100	49	1	
34	DATALOGGET_DATO_OAT(partz)	101	50	2	
		102		Space	

table 3: datalogger values

26

21. and 22. DEEP_DISCHARGE_EVENTS_CX_CXN

This values shows the number of load disconnects in the time periode of the whole **DATALOGGER** record.

Convert into a decimal number.

Example:

Deep_charge_event part1 and part2 = 0011_{16} = 17_{10}

23. WEEKS_WITHOUT_FULL_BATTERY_CX_CXN

Sums up the number of weeks were the battery was not fully charged for the whole week.

Convert into a decimal number.

Example:

Number of weeks without fully charged battery = $09_{16} = 9_{10}$

24. MONTHS_WITHOUT_FULL_BATTERY_CX_CXN

Sums up the number of months were the battery was not fully charged for the whole month.

Convert into a decimal number.

Example:

Number of months without fully charged battery = $07_{16} = 7_{10}$

25. and 26. SUMMARY_SOC_morning

Convert into a decimal number and divide it through the datalogger record days (DATALOGGER number 33/34) then multiple this with 6,6 and then you have the average of the battery state of charge in the mornings in %.

$$summary _soc _morning _final _value = \frac{summary _soc _morning}{datalogger days (32/33)} * 6,6$$

Example:

Summary_soc_morning part1 and part2 = $0AB4_{16} = 2740_{10}$ Datalogger_days = $0112_{16} = 274_{10}$

$$\rightarrow$$
 summary $_$ soc $_$ morning $_$ final $_$ value $=\frac{2740}{274}*6,6=66\%$

27, 28 and 29. PV_AH_CX_CXN

Calculate it as in you see on page 25.

This value shows you how many amperehours has been used from the PV panel.

Example:

PV current Ah part1 and part2 and part3 = 001011_{16} = 4113_{10}

Type = CXN10:
$$x = 10$$

PV_amperehours_final = $(4113 * 10 * 4) / 60 = 2742$

→ PV amperehours at the whole time periode of the DATALOGGER = 2742Ah

30, 31 and 32. LOAD_AH_CX_CXN

Calculate it as in you see on page 25.

This value shows you how many amperehours has the load used.

Example:

Load_Ah part1, part2 and part3 = 001011_{16} = 4113_{10}

Type = CXN10:
$$x = 10$$

Load_amperehours_final = $(4113 * 10 * 4) / 60 = 2742$

→ Load amperehours at the whole time periode of the datalogger= 2742Ah

33 and 34. DATALOGGER_DAYS_CX_CXN

Shows you the whole time periode of the datalogger Convert it to a decimal number.

Example:

Datalogger days = $112_{16} = 274_{10}$

Datalogger data last week, last months, last year

Valuenumber	Value name	Bytenumber	character	Ascii value	Decimal
35	DAY1_BATTERY_VOLTAGE_MAX	103 104			
	2777.2777.277.277.277.37	105		Space	
26	DAVA DATTEDY VOLTAGE MIN	106		_ орасс	
36	DAY1_BATTERY_VOLTAGE_MIN	107			
		108		Space	
37	DAY1_PV_AH	109			
		111		Space	
00		112		Space	
38	DAY1_LOAD_AH	113			
		114		Space	
39	DAY1 MAX LOAD CURRENT	115			
		116		-	
		117		Space	
40	DAY1_EXCESS_AH	119			
		120		Space	
41	DAY1 MAX PV CURRENT	121			
41	DATI_MAX_FV_CORRENT	122			
		123		Space	
42	DAY1_SOC	124 125			
		126		Space	
40	DAV4 OTATE	127		эригэ	
43	DAY1_STATE	128			
		129		Space	
4497	day2day7	130 290			
		291		Space	
98133	week1week4	292			
30100		398		Space	
104 044		400		Space	
134241	month1month12	722			
		723		Space	
241250	reserved	724 758			
		759		Space	

table 4: Data day1

The datalogger save seven data sets from the last seven days, four data sets from the last four weeks and twelve data sets from the last twelve months. A data set includes following data:

BATTERY VOLTAGE MAX

maximal battery voltage from the battery of this day respectively the week or month. Calculate it as you see on page 25.

BATTERY_VOLTAGE_MIN

minimal battery voltage from the battery of this day respectively the week or month. Calculate it as you see on page 25.

PV AH

By the day data: PV Amperehours of this day By the week and month data it's the average of all days in this week respectively month. Calculate it as you see on page 25

LOAD AH

By the day data: Load Amperehours of this day By the week and month data it's the average of all days in this week respectively month. Calculate it as you see on page 25

• EXCESS AH

By the day data: Amperehours of the PV generator which can't used from the system (excess energy) of this day.

By the week and month: Average excess amperehours of all

days in this week respectively month of the PV generator which can't used from the system (excess energy)

Calculate it as you see on page 25

MAX_LOAD_CURRENT

By day data: maximal Load current of this day

By week and month data: average of all maximal load currents in

this week respectively month

If CX10 / CXN10: x = 10 If CX20 / CXN20: x = 20 If CX40 / CXN40: x = 40

Max Load current = (MAX_LOAD_CURRENT / 64) * x

MAX_PV_Current

By day data: maximal PV current of this day maximal PV current in this week

respectively month

If CX10 / CXN10: x = 10 If CX20 / CXN20: x = 20 If CX40 / CXN40: x = 40

Max PV current = (MAX_PV_CURRENT / 64) * x

SOC

Shows you the state of battery charge at morning and evening

By day data: state of battery charge morning and evening

By week and month data: Average of battery state of charge at

the mornings and evenings of each day of this week respectively month.

Convert the high and low hex number into a decimal number. The first hex number is a value for the SOC in the EVENING and the other one for the SOC in the MORNINGS:

Multiple this number with 6,6% and you have the state of battery charge at evening respectively in mornings.

Example:

DATALOGGER SOC Value: C7

 C_{16} : 12₁₀ → SOC EVENING : 12 * 6,6% = 79% 7₁₆: 7₁₀ → SOC MORNING : 7 * 6,6% = 46%

• STATE

Convert this Value into a binary number. Each bit shows following information.

Bit0 = 1 \rightarrow Load disconnected

The battery has been disconnected from the load output because the state of charge was too low.

Bit1 = 1 \rightarrow Fully charged battery

The battery has been fully charged.

Bit 2 = 1 \rightarrow PV over current

The PV current was over the nominal current

Bit3 = 1 \rightarrow Load over current

The Load current was over the nominal current

Bit4 = 1 \rightarrow Over battery voltage

By 12V system the battery voltage was over 15,5V By 24V system the battery voltage was over 31V

Bit5 = 1 → PV current reduce because of too high temperature

Bit6 = 1 → Load disconnect because of too high temperature

The datasets will saved in the following order as you see in the picture.

Serialnumber

Only CXN:

Valuenumber	Value name	Bytenumber
251	251 SERIALNUMBER_CXN (part1)	
231	OZITIMZINOMBZIN_OXIN (PARTI)	751
		752
252	SERIALNUMBER_CXN (part2)	753
ZJZ	OZI W ZI TOWSZI ZOST (PARZ)	754
		756
253	SERIALNUMBER_CXN (part3)	757
255	ESS GET II/LENGINBET (parts)	
		759
254	SERIALNUMBER CXN (part4)	760
237	SELIMENTONIBELIZOMIN (PAILI)	761
		762
255	SERIALNUMBER CXN (part5)	763
255	ZJJ OLITIALITOMBETI_OXIT (parts)	
		765
256 SERIALNUMBER_CXN (part6)	766	
230	CEITIME (CONSETT_OXIV (Parto)	767

table 5: serial number

Commands to set the CX/CXN controller

Ascii characters which you need to send Commands to the CX/CXN:

Ascii value	Byte	Asciinumber
0	00110000	48
1	00110001	49
2	00110010	50
3	00110011	51
4	00110100	52
5	00110101	53
6	00110110	54
7	00110111	55
8	00111000	56
9	00111001	57
А	01000001	65
В	01000010	66
С	01000011	67
D	01000100	68
Е	01000101	69
F	01000110	70
+	00101011	43
-	00101101	45

%	00100101	37
С	01100011	99
Χ	01111000	120
Р	01010000	80
Н	01001000	72
0	01001111	79
G	01000111	71
I	01001001	73
J	01001010	74
K	01001011	75
L	01001100	76
M	01001101	77
N	01001110	78
Q	01010001	81
Α	01000001	65

table 6: Ascii characters for commands

In table8 you have a list of all command which you can send to the controller

The CX/CXN sends back each character after reception. Don't send the next character before you get the Echo.

command	description
Space (Ascci character 32)	Space key :cx sends the normal uart values
! (Ascii character 31)	"!": cx sends the datalogger values
%cxPHOGxx	The hex value xx is stored in menustate(EEPROM)
	example: $%$ cxPHOG10 : => menustate = 0 x10 => Buzzer on
%cxPHOHxx	The hex value xx is stored in menustate2(EEPROM)
%cxPHOIxx	The hex value xx is stored in eveninghours(EEPROM)
%cxPHOJxx	The hex value xx is stored in morninghours(EEPROM)
%cxPHOLAA	clear datalogger in the CXN
%cxPHOMxx	set nightlevel

table 7: List of all commands to the CXN

The following pages shows you some examples how you can set the CXN:

Set "MENUSTATE" (DATALOGGER Value 14)

You can set the

- Battery protections setting
- Battery typ
- o Buzzer
- Nightlight function

To set the controller look at value15 by the datalogger values there you can see what possibilities you have:

Example:

```
Low voltage disconnect 11,5V \rightarrow Bit3 = 1, Bit2 = 0, Bit1 = 0.
Battery typ Gel \rightarrow Bit4 = 1
Buzzer on \rightarrow Bit5 = 1
Nightlight function Evening/morning: Bit8 = 1, Bit7=0, Bit6 = 1
```

Convert this binary number into a hex number: $10111100_2=BC_{16}$

Send now the Ascii character for setting the menuestate and and the end send BC as you see following:

%cxPHOGBC

Read out the DATALOGGER again and now the value menustate have the value BC.

Set "MENUSTATE2" (DATALOGGER Value 11)

To set values in menustate2 send following Ascii characters.

%cxPHOH--

For - - send a hex number with tow digits with the Bits which you want to set.

Set "NIGHTLEVEL" (DATALOGGER Value 15)

```
Nightlevel = 1E_{16} = Day/Night thres hold1.0/2.0V Solar voltage Nightlevel = 2E_{16} = Day/Night thres hold1.6/3.1V Solar voltage Nightlevel = 3E_{16} = Day/Night thres hold2.1/4.2V Solar voltage Nightlevel = 4E_{16} = Day/Night thres hold2.7/5.4V Solar voltage Nightlevel = 5E_{16} = Day/Night thres hold3.2/6.5V Solar voltage Nightlevel = 6E_{16} = Day/Night thres hold3.8/7.6V Solar voltage Nightlevel = 7E_{16} = Day/Night thres hold4.4/8.8V Solar voltage Nightlevel = 8E_{16} = Day/Night thres hold4.9/9.8V Solar voltage Nightlevel = 9E_{16} = Day/Night thres hold5.5/11.0V Solar voltage Nightlevel = AE_{16} = Day/Night thres hold6.0/12.1V Solar voltage Nightlevel = AE_{16} = Day/Night thres hold6.6/13.2V Solar voltage Nightlevel = AE_{16} = Day/Night thres hold7.2/14.3V Solar voltage Nightlevel = AE_{16} = Day/Night thres hold7.2/14.3V Solar voltage Nightlevel = AE_{16} = Day/Night thres hold7.2/14.3V Solar voltage
```

If you want to change the nightlevel setting send following characters before:

%cxPHOM

For Example if you want to set the for "Day/Night threshold4.9/9.8V Solar Voltage"

Then send:

%cxPHOM8E

Set "EVENINGHOURS" (DATALOGGER Value 12)

- 00 → Nightlight function Evening off
- 01 → Nightlight function Evening 1HR
- 02 → Nightlight function Evening 2HR
- 03 → Nightlight function Evening 3HR
- 04 → Nightlight function Evening 4HR
- 05 → Nightlight function Evening 5HR
- 06 → Nightlight function Evening to 4 Hours before mid of night
- 07 → Nightlight function Evening to 3 Hours before mid of night
- 08 → Nightlight function Evening to 2 Hours before mid of night
- 09 → Nightlight function Evening to 1 Hours before mid of night
- 0A → Nightlight function Evening to mid of night

Example:

If you want to set eveninghours "Nightlight function Evening to mid of night"

Send: %cxPHOI0A

Set "MORNINGHOURS" (DATALOGGER Values 13)

- 00 → Nightlight function Morning off
- 01 → Nightlight function Morning 1HR
- $02 \rightarrow \text{Nightlight function Morning 2HR}$
- 03 → Nightlight function Morning 3HR
- 04 → Nightlight function Morning 4HR
- 05 → Nightlight function Morning 5HR
- 06 → Nightlight function Morning to 4 Hours before mid of night
- 07 → Nightlight function Morning to 3 Hours before mid of night
- 08 → Nightlight function Morning to 2 Hours before mid of night
- 09 → Nightlight function Morning to 1 Hours before mid of night
- 0A → Nightlight function Morning to mid of night

Example:

If you want to set eveninghours "Nightlight function Morning to 4 Hours before mid of night"

Send: %cxPHOJ06