DP-CGAN: Differentially Private Synthetic Data and Label Generation

Reihaneh Torkzadehmahani(rtorkzad@ucsc.edu)

Joint work with Peter Kairouz(Google AI) and Benedict Paten(UCSC)

Introduction

Vulnerability of ML models to attacks

Adversary

Training Data ML Algorithm ML Model

Great performance of Generative Adversarial Networks(GANs) in various applications

Introduction

■ Vulnerability of ML models to attacks

- Great performance of Generative Adversarial Networks(GANs) in various applications
- ☐ Using GANs to generate synthetic **sensitive** data

Background

- Generative Adversarial Networks(GANs)
 - Learn the training data distribution and generate synthetic data

Background(cnt'd)

Objective Function:

$$\min_{C} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014

Background(cnt'd)

Differential Privacy

A randomized mechanism **M** with domain **D** and range **R** satisfies (ε,**δ**)-differential privacy if for all pairs of adjacent datasets (d, d') and for any subset **S** of output:

$$Pr[M(d) \in S] \le e^{\epsilon} Pr[M(d') \in S] + \delta$$

Related Work

- Privacy-preserving Deep Learning[Shokri et al., 2015]
 - ☐ High privacy loss
- □ PATE[Papernot et al., 2016]
 - Assumes the model has access to public data which may not be the case in practice
- ☐ DP-GAN[Xie et al., 2018]
 - Results do not look promising even on MNIST
 - No methodology to create labels with synthetic images
- ☐ PATE-GAN[Yoon et al., 2018]
 - □ Assigns just binary labels to synthetic images

TensorFlow Privacy

https://github.com/tensorflow/privacy/

CGAN Architecture

Updating the
Differentially Private
Discriminator Network

Updating the Renyi
Differential Privacy(RDP)
accountant

Updating the
Differentially Private
Discriminator Network

- Compute per-example gradients of discriminator loss on real data and clip them
- Compute per-example gradients of discriminator loss on fake data and clip them
- Compute the overall gradients of discriminator and add Gaussian Noise to them
- Take the gradient Descent step for discriminator

Updating the Renyi
Differential Privacy(RDP)
accountant

- Accumulate the spent privacy budget using RDP accountant
- Set the termination flag ON if the spent privacy budget exceeds the target privacy budget

- Compute the gradients of Generator loss
- Take the gradient Descent step for Generator

Update the Generator Network

Evaluation Methodology

Evaluation process: Generate synthetic data Use the synthetic data to train the classifiers Test the classifier on real (test) data Real(Test) Data **Real Data** Classifier **DP-CGAN** Synthetic(Training) Data

Evaluation Methodology

- Three methods for generating synthetic training data:
 - CGAN with no privacy
 - ☐ CGAN with Basic DP
 - Applies clipping and adds noise to gradients of discriminator loss
 - □ DP-CGAN
 - Splits the gradients of discriminator to gradients on real data and gradients on fake data, then applies clipping and adds noise to them separately
- In all the experiments:
 - □ **Delta** is set to **10**⁻⁵
 - ☐ MNIST dataset is used (60,000 training samples and 10,000 test samples)

Experimental Results

☐ Evaluation Metric: AuROC

 \blacksquare ε =9.6 for DP approaches

0
1
7
3
4
0
Ē
7
F
G.

	Real	CGAN	DP-CGAN	CGAN with Basic DP
Logistic Regression	92.17%	91.10%	87.57%	83.42%
Multi-Layer Perceptron	97.60%	91.06%	88.16%	83.29%

Future Directions

- Improving DP-CGANs accuracy using techniques such as warm-start, random sampling, using a public dataset, etc.
- Evaluating the DP-CGANs on larger scale datasets
- Considering advanced CGAN architectures

Thank you! Questions?