```
In [62]: # multiple model ensemble
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import warnings
          warnings.filterwarnings('ignore')
In [63]: df = sns.load dataset("tips")
          df.head()
Out[63]: total_bill tip
                             sex smoker day
                                                time size
               16.99 1.01 Female
          0
                                     No Sun Dinner
                                                       2
          1
               10.34 1.66
                                                       3
                            Male
                                     No Sun Dinner
          2
               21.01 3.50
                            Male
                                     No Sun
                                              Dinner
                                                       2
          3
               23.68 3.31
                            Male
                                      No Sun
                                              Dinner
          4
               24.59 3.61 Female
                                     No Sun Dinner
                                                       4
In [64]: # predict what its times if its is lunch or dinner
In [65]: df.time.unique()
Out[65]: ['Dinner', 'Lunch']
          Categories (2, object): ['Lunch', 'Dinner']
In [66]: #since time is nominal value we will use labelencoder
          from sklearn.preprocessing import LabelEncoder
          encoder = LabelEncoder()
          df['time']= encoder.fit_transform(df['time'])
          df
Out[66]:
              total_bill tip
                               sex smoker day time size
                                                        2
                 16.99 1.01 Female
                                            Sun
                                                   0
                                        No
            1
                 10.34 1.66
                                        No
                                            Sun
                                                   0
                                                        3
            2
                 21.01 3.50
                              Male
                                        No
                                            Sun
                                                   0
                                                        3
           3
                 23.68 3.31
                                                        2
                              Male
                                        No
                                            Sun
                                                   0
                 24.59 3.61 Female
                                            Sun
                                        No
                  ... ...
          239
                 29.03 5.92
                              Male
                                        No
                                            Sat
                                                   0
                                                        3
          240
                 27.18 2.00 Female
                                            Sat
                                                        2
                                       Yes
                                                   0
          241
                 22.67 2.00
                              Male
                                            Sat
                                                   0
                                                        2
                                       Yes
          242
                 17.82 1.75
                                            Sat
                                                        2
                              Male
                                        No
          243
                 18.78 3.00 Female
                                       No Thur
                                                   0
                                                        2
         244 rows × 7 columns
In [67]: df.time.unique()
Out[67]: array([0, 1])
In [68]: x = df.drop('time',axis= 1)
         y = df['time']
```

In [69]: x

```
3
                 23.68 3.31
                                                   2
                              Male
                                       No
                                            Sun
                 24.59 3.61 Female
           4
                                                   4
                                       No
                                           Sun
         239
                 29.03 5.92
                                       No
                                            Sat
                                                   3
         240
                 27.18 2.00 Female
                                                   2
                                       Yes
                                            Sat
         241
                 22.67 2.00
                              Male
                                       Yes
                                            Sat
                                                   2
         242
                 17.82 1.75
                              Male
                                       No
                                            Sat
                                                   2
         243
                 18.78 3.00 Female
                                       No Thur
                                                   2
        244 rows × 6 columns
In [70]: y
Out[70]:
                 0
                 0
          2
                 0
          3
                 0
          4
                 0
          239
                0
          240
                0
          241
                0
          242
                 0
          243
          Name: time, Length: 244, dtype: int32
In [71]: from sklearn.model selection import train test split
In [72]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size =0.20,random_state = 1)
In [73]: x_train
Out[73]:
              total_bill tip
                               sex smoker
                                           day size
                 16.99 1.01 Female
                                       No
                                            Sun
                                                   2
         154
                 19.77 2.00
                              Male
                                       No
                                            Sun
                                                   4
         167
                 31.71 4.50
                                                   4
                              Male
                                       No
                                            Sun
         110
                 14.00 3.00
                                            Sat
                                                   2
                              Male
                                       No
         225
                 16.27 2.50 Female
                                             Fri
                                                   2
         137
                 14.15 2.00 Female
                                       No Thur
                                                   2
                 26.86 3.14 Female
                                            Sat
                                                   2
                                       Yes
          140
                 17.47 3.50 Female
                                       No Thur
                                                   2
         235
                 10.07 1.25
                                                   2
                              Male
                                       No
                                            Sat
          37
                 16.93 3.07 Female
                                            Sat
                                                   3
                                       No
         195 rows × 6 columns
In [74]: y_train
Out[74]:
         0
          154
                 0
          167
                 0
          110
                 0
          225
                1
          137
                1
          72
                 0
          140
                 1
```

Out[69]:

2

235

37

0

Name: time, Length: 195, dtype: int32

total_bill tip

10.34 1.66

21.01 3.50

16.99 1.01 Female

Male

Male

sex smoker day size

No Sun

No

No

Sun

Sun

2

3

```
In [75]: x_train.head()
Out[75]:
             total_bill tip
                             sex smoker day size
                                                2
                16.99 1.01 Female
                                     No Sun
                19.77 2.00
                             Male
                                     No Sun
         167
                31.71 4.50
                            Male
                                     No Sun
                                                4
         110
                14.00 3.00
                            Male
                                     No
                                         Sat
         225
                16.27 2.50 Female
                                     Yes Fri
In [76]: # handling the missing value
         #data encoding
         #feature scaling
         from sklearn.impute import SimpleImputer #foe missing value
         \textbf{from} \  \, \textbf{sklearn.preprocessing} \  \, \textbf{import} \  \, \textbf{OneHotEncoder} \  \, \textbf{\#fro} \  \, \textbf{encoding}
         from sklearn.preprocessing import StandardScaler # for scaling
         from sklearn.pipeline import Pipeline #A squential of data transformer
         from sklearn.compose import ColumnTransformer # group the above the step for specific columns
         cat_cols = ["sex","smoker","day"]
num_cols = ["total_bill","tip","size"]
In [77]:
In [78]: num Pipeline = Pipeline(steps= [('imputation',SimpleImputer(strategy="median")),('scaling',StandardScaler())])
         cat Pipeline = Pipeline(steps = [('imputation',SimpleImputer(strategy="most frequent")),('encoding', OneHotEncoding')
In [79]: preprocessor = ColumnTransformer([("num Pipeline",num Pipeline,num cols),("cat Pipeline",cat Pipeline,cat cols)
In [80]: preprocessor
Out[80]:
                            ColumnTransformer
                                           cat_Pipeline
                num Pipeline
              SimpleImputer 
                                           ▶ SimpleImputer
               StandardScaler
                                           OneHotEncoder
In [81]: x train = preprocessor.fit transform(x train)
         x test = preprocessor.transform(x test)
In [82]: x_train
Out[82]: array([[-0.28611937, -1.47443803, -0.57766863, ..., 0.
                  1. , 0. ],
                [ \ 0.02695905, \ -0.71612531, \ 1.47042924, \ \ldots, \ 0.
                           , Θ.
                                      ],
                  1.
                [\ 1.3716196\ ,\ 1.19880579,\ 1.47042924,\ \ldots,\ 0.
                           , 0.
                  1.
                                    ],
                \hbox{$[\,\hbox{-0.23206267}\,,}\quad \hbox{0.43283335}\,, \,\,\hbox{-0.57766863}\,, \,\, \dots, \,\,\, \hbox{0.}
                0. , 1. ],
[-1.06543688, -1.29060464, -0.57766863, ..., 1.
                , 0. ]])
In [83]: x_test
Out[83]: array([[-1.85376383, -1.48209775, -1.60171757, 1.
                  0
                \hbox{[-0.08453291,}\quad 0.04984713,\ -0.57766863,\quad 1.
                                                                   , 0.
                  1. , 0. , 0.
                                               , Θ.
                  1.
                            ],
                [ \ 0.79501474, \ 0.36389583, \ 0.44638031, \ 0.
                                                                  , 1.
                  0.
                [-0.59356688, -0.33313909, -0.57766863, 0.
                  1. , 0. , 0. , 0.
                                                                    0.
                  1.
                            ],
                [ 0.18349826, 0.04984713, -0.57766863, 0.
                                                                  , 1.
                  1. , 0. , 0. , 0.
                                                                  , 0.
                  1.
                [-1.32783714, -1.14506988, -0.57766863, 0.
                                                                  , 1.
```

0. ,	1. ,	0. ,	1.	,	Θ.	,
[-0.93367366,	-0.8999587 ,	-0.57766863,	0.	,	1. 0.	,
[0.15421754,	0.43283335,	0.44638031,	1.	,	0. 1.	,
[-0.56879089,	-0.71612531,	0. ,-0.57766863,	Θ.	,	1.	,
0.] [0.56977847	, 0 51709032	0. , 1.47042924,	1	,	0.	,
1. , 0. 1	0. ,	0. ,	0.	,	1.	,
[-0.83006497, 0. , 0.]	1. ,	-0.57766863, 1. ,	0. 0.	,	1. 0.	,
[-1.06318451, 0. ,	-0.71612531, 1. ,	-0.57766863, 1. ,		,	0. 0.	,
1	1.63541008, 0.	1.47042924, 0. ,	0.	,	1. 1.	,
0.] [0.63960171,	, 1.03795158,	-0.57766863, 0. ,	0.	,	1. 0.	,
[3.52262601,	5.41165421,	0.44638031, 0. ,	0.	,	1. 0.	,
[0.35355165,	-0.71612531,	-0.57766863,	0.	,	1. 0.	,
0.] [0.42787962, 0. ,	, 2.07967409, 1.	0. , -0.57766863, 0. ,	0. 0.	,	1. 1.	,
[-1.04066089, 1. ,	-0.25654185, 0.	-0.57766863, 0.	1.	,	0. 1.	,
1. ,	-0.71612531, 0. ,	-0.57766863, 0.	0. 1.	,	1. 0.	,
0.] [0.86145944, 0. ,	-0.71612531,	-0.57766863, 0. ,	1. 1.	,	0. 0.	,
0.] [1.19480913, 0. ,	0.11878465,	1.47042924, 0. ,	1.	,	0. 0.	,
0.] [-0.19715104,	, 0.25665969,	-0.57766863, 0. ,	Θ.	,	1. 0.	,
0. [-0.36157352,	, 1.0456113 ,	-0.57766863, 1.	1.	,	0. 0.	,
0.] [0.40986071,	, 2.73075067,	1.47042924,	0.	,	1.	,
0.] [-0.79965807	, _A 8603108	0. ,-0.57766863,	1	,	0.	,
		0. ,		,	0.0.	,
1. , 1.]	0. ,	0. ,-0.57766863,	Θ.	,	0.	,
0. , 0.]	1. ,	0. ,	1.	,	0.	,
[0.64748498, 0. , 0.]	1. ,	-0.57766863, 0. ,	1. 1.	,	0. 0.	,
[-0.09466854, 1. ,	-0.47867385, 0. ,	0.44638031, 0. ,		,	1. 0.	,
[1.18579968, 0. ,	-0.71612531, 1. ,	0.44638031, 0. ,		,	1. 0.	,
0. ,	-0.71612531, 1. ,	-0.57766863, 0. ,		,	0. 0.	,
1. ,	2.04137547, 0. ,	1.47042924, 0. ,	0. 0.	,	1. 1.	,
[-0.95844965,	1. ,	-0.57766863, 0. ,	0. 1.	,	_	,

```
],
              [ 1.72298819, 1.71200732, 1.47042924, 1.
                                                        , 0.
               1. , 0. , 0. , 0.
                                                        , 0.
               1.
              [-0.68816612, -1.03783373, -0.57766863, 0.
                                                          1.
               0. , 1.
                             , 1. , 0.
                       1,
                                                     , 1.
              [\ 1.32206762,\ 1.58179201,\ 0.44638031,\ 0.
               1. , 0. , 0. , 1.
                                                         , 0.
               0
              \hbox{$[-0.1329587\ ,\ -0.33313909,\ 1.47042924,\ 0.}
               1. , 0. , 0. , 1.
               0.
              [-0.28837173, 0.43283335, 0.44638031, 1.
                                                           0.
               1. , 0. , 0. , 0.
               0.
              [-0.94155693, -1.09911153, -0.57766863, 1.
               1. , 0. , 0. , 0.
                                                        , 0.
               1.
                        1,
              [ 0.51234322, -0.01143067, 1.47042924, 1.
                                                        , 0.
               1. , 0. , 0.
                                        , 0.
               1
              [ 0.12606301, 0.31793748, 0.44638031, 0.
               1. , 0. , 0. , 1.
                                                          0.
               0.
                       ],
                                                        , 1.
              [ \ 0.33328038, \ 0.43283335, \ -0.57766863, \ 0.
               1. , 0. , 1. , 0.
               0.
              [-0.50910328, -0.64718779, -0.57766863, 0.
               0. , 1. , 0. , 1.
                                                        , 0.
              [ 0.13056774, -0.37143771, 1.47042924, 1.
                                                          0.
               1. , 0. , 0.
               0.
                        ],
              [ 1.06304591, 0.04984713, -0.57766863, 0.
               0. , 1. , 1. , 0.
               0.
                       1,
                                                        , 1.
              [ 0.51009086, 0.50943059, 0.44638031, 0.
               1. , 0. , 0.
                                        , 1.
               0.
                       ],
              [ 1.77141399, 1.58179201, 1.47042924, 1.
               1. , 0. , 0. , 0.
                                                        , 1.
               0.
              [ \ 0.01344487, \ 0.04984713, \ -0.57766863, \ 1.
                                                       , 0.
               1. , 0. , 0. , 1.
               0.
                       ]])
In [84]: from sklearn.tree import DecisionTreeClassifier
       from sklearn.svm import SVC
       from sklearn.ensemble import RandomForestClassifier
In [85]: models ={"support vector classifier":SVC(),
              "DT classifier":DecisionTreeClassifier()}
In [86]: from sklearn.metrics import accuracy_score
       def model_train_eval(x_train,y_train,x_test,y_test,models):
           evaluation= {}
           for i in range(len(models)):
              model=list(models.values())[i]
              model.fit(x train,y train)
              y_pred = model.predict(x_test)
              model score = accuracy score(y test,y pred)
              evaluation[list(models.keys())[i]]=model_score
           return evaluation
        model train eval(x train,y train,x test,y test,models)
        {'support vector classifier': 0.9183673469387755,
         'DT classifier': 0.9387755102040817}
In [88]: #Random forest
In [89]: from sklearn.ensemble import RandomForestClassifier
In [90]: rf =RandomForestClassifier()
In [91]: rf
```

[1.83560633, 1.3290211 , 0.44638031, 1. , 0.

1. , 0.

0.

, 1.

```
In [92]: x train,x test
Out[92]: (array([[-0.28611937, -1.47443803, -0.57766863, ..., 0.
               1. , 0. ],
               [ \ 0.02695905, \ -0.71612531, \ 1.47042924, \ \ldots, \ 0.
              1. , 0. ],
[ 1.3716196 , 1.19880579, 1.47042924, ..., 0.
               1. , 0. ],
               [-0.23206267, 0.43283335, -0.57766863, \ldots, 0.
                           1. ],
               [-1.06543688, -1.29060464, -0.57766863, \ldots, 1.
              0. , 0. ],
[-0.29287646, 0.1034652 , 0.44638031, ..., 1.
               0. , 0. ]]),
         array([[-1.85376383, -1.48209775, -1.60171757, 1.
                0. , 1. , 0. , 1.
                                                          , 0.
                0.
                         ],
               [-0.08453291, 0.04984713, -0.57766863, 1.
                                                          , 0.
               1. , 0. , 0. , 0. , 0.
1. ],
               [ \ 0.79501474, \ 0.36389583, \ 0.44638031, \ 0.
                                                            1.
                0.
               [-0.59356688, -0.33313909, -0.57766863, 0.
                                                          , 1.
                1. , 0. , 0. , 0.
                1.
                         ],
               [ \ 0.18349826 , \ \ 0.04984713 , \ -0.57766863 , \ \ 0.
                1. , 0. , 0. , 0.
                                                          , 0.
                         ],
               \hbox{[-1.32783714, -1.14506988, -0.57766863, 0.}\\
                                                          , 1.
                0. , 1. , 0. , 1.
                0.
                        ],
               [-0.93367366, -0.8999587, -0.57766863, 0.
               0. , 1. , 0. , 1.
0. ],
                                                          , 0.
               [ \ 0.15421754, \ 0.43283335, \ 0.44638031, \ 1.
                                                          , 0.
                0. , 1. , 0. , 0.
                         ],
               [-0.56879089, -0.71612531, -0.57766863, 0.
                                                          , 1.
               0. , 1. , 0. , 0.
                                                          , 1.
                0.
               [ 0.56977847, 0.51709032, 1.47042924, 1.
                                                          , 0.
               1. , 0. , 0. , 0.
                                                          , 1.
                Θ.
                         ],
               \hbox{$[-0.83006497,\ -0.56293082,\ -0.57766863,\ 0.$}
                                                            1.
                0. , 1. , 1. , 0.
                                                          , 0.
                0.
               \hbox{[-1.06318451, -0.71612531, -0.57766863, 1.}\\
                                                          , 0.
                0. , 1. , 1. , 0.
                                                          , 0.
                0
                         ],
               [\ 1.17115932,\ 1.63541008,\ 1.47042924,\ 0.
                                                          , 1.
                1. , 0. , 0. , 0.
                                                          , 1.
               [ 0.63960171, 1.03795158, -0.57766863, 0.
                                                          , 1.
                0. , 1. , 0. , 1.
                                                          , 0.
                0.
                        1,
               [ 3.52262601, 5.41165421, 0.44638031, 0.
                                                          , 1.
                0. , 1. , 0. , 1.
0. ],
                                                          , 0.
               [ \ 0.35355165, \ -0.71612531, \ -0.57766863, \ \ 0.
                                                            1.
                , 0.
               [ \ 0.42787962 , \ \ 2.07967409 , \ -0.57766863 , \ \ 0.
                                                          , 1.
                0. \hspace{1.5cm} , \hspace{1.5cm} 1. \hspace{1.5cm} , \hspace{1.5cm} 0. \hspace{1.5cm} , \hspace{1.5cm} 0.
                                                          , 1.
                0.
                         ],
               [-1.04066089, -0.25654185, -0.57766863, 1.
                                                          , 0.
                1. , 0. , 0. , 0.
                                                          , 1.
                        1,
               [-0.77037736, -0.71612531, -0.57766863, 0.
                                                            1.
                                                          , 0.
               1. , 0. , 0. , 1.
                0
                        ],
              [ 0.86145944, -0.71612531, -0.57766863, 1. 0. , 1. , 0. , 1.
                                                          , 0.
```

],

],

0.

0. , 1. , 0.

 $[\ 1.19480913,\ 0.11878465,\ 1.47042924,\ 1.$

, 0.

, 0.

1.	, 0.25665969, , 0. ,				1. 9.	,
0. [-0.36157352]], , 1.0456113 ,	-0.57766863,	1.		Ð. Ð.	,
0.40986071 0.	, 1. ,], , 2.73075067, , 1. ,	1.47042924, 0. ,	0. 0.	•	1. 1.	,
[-0.79965807	, -0.8693198 , , 0. ,	-0.57766863,	1.	•	⊙. ⊙.	,
[-1.00011836	, -1.09911153, , 0. ,	-0.57766863,	1.	, (9. 9.	,
[0.10804411, 0. 0.	, 0.86177792, , 1. ,],	-0.57766863, 0. ,	0. 1.	, :	1. 9.	,
0.64748498 0. 0.	, 1.58179201, , 1. ,],	-0.57766863, 0.	1.	, (9. 9.	,
1.	, -0.4/86/385, , 0. , 1.	0.44638031, 0. ,	0. 1.	•	1. 9.	,
0. 0.	, -0.71612531, , 1. ,	0. ,	1.	•	1. 9.	,
[-0.73546574] 0. 1.	, -0.71612531, , 1. , l,	-0.57766863, 0. ,	1. 0.		Ð. Ð.	,
1. 0.	2.04137547, , 0. ,	0. ,	Θ.	,	1. 1.	,
0. 0.		0. ,	1.	, (1. 9.	,
1. 0.	, 1.3290211 , , 0. ,], , 1.71200732,	0. ,	1.	, (9. 9.	,
1. 1.	, 1.71200732, , 0. ,], , -1.03783373,	0. ,	0.	,	9. 9. 1.	,
0. 0.	, 1. ,	1. ,	0.	•	Ͽ.	,
1.	, 0. ,], , -0.33313909, , 0. ,	Θ. ,	1.	, (∍.	,
1. 0. [-0.28837173	, 0. ,], , 0.43283335,	0.44638031.	1.	, (9. 9.	,
1. 0. [-0.94155693]	, 0. ,], , -1.09911153,	0. , -0.57766863,	0.	, :	1.	,
1. 1. [0.51234322	, 0. ,], , -0.01143067,	0. , 1.47042924,	0.	, (Ð.	,
[0.12606301	, 0. ,], , 0.31793748,	0.44638031,	0.	,	,	,
0. [0.33328038	, 0. ,], , 0.43283335,	-0.57766863,	0.	, :		,
[-0.50910328]	, 0. ,], , -0.64718779,	-0.57766863,	0.	,	1.	,
[0.13056774	, 1. ,], , -0.37143771,	1.47042924,	1.	, (9. 9. 9.	,
0. [1.06304591	, 0. ,], , 0.04984713,	-0.57766863, 1.	0. 0.	•	1. 9.	,
0. [0.51009086	, 0.04984713, , 1. ,], , 0.50943059, , 0. ,	0.44638031,	0. 1.	, : , :	1	,
0. [1.77141399]], , 1.58179201, , 0. ,	1.47042924, 0. ,	1. 0.	, (9. 1.	,
0. [0.01344487 1.	, 0.04984713, , 0. ,	-0.57766863, 0. ,	1. 1.	, (, (9. 9.	,

```
]]))
In [93]: from sklearn.model selection import RandomizedSearchCV
         params = {"max_depth":[1,2,3,5,10,None,],
                    "n estimators": [50,100,200,300],
                     "criterion":["ginni", "entropy"]}
In [94]: params
Out[94]: {'max depth': [1, 2, 3, 5, 10, None],
           'n_estimators': [50, 100, 200, 300],
           'criterion': ['ginni', 'entropy']}
In [95]: clf = RandomizedSearchCV(rf,param distributions=params,cv= 5,verbose=5,scoring='accuracy')
In [56]: clf
Out[56]: .
                   RandomizedSearchCV
           ▶ estimator: RandomForestClassifier
               RandomForestClassifier
In [57]: clf.fit(x_train,y_train)
        Fitting 5 folds for each of 10 candidates, totalling 50 fits
        [CV 1/5] END criterion=ginni, max depth=3, n estimators=50;, score=nan total time=
        [CV 2/5] END criterion=ginni, max_depth=3, n_estimators=50;, score=nan total time=
         [CV 3/5] END criterion=ginni, max_depth=3, n_estimators=50;, score=nan total time=
         [CV 4/5] END criterion=ginni, max_depth=3, n_estimators=50;, score=nan total time=
         [CV 5/5] END criterion=ginni, max depth=3, n estimators=50;, score=nan total time=
        [CV 1/5] END criterion=entropy, max_depth=5, n_estimators=200;, score=0.923 total time=
         [CV 2/5] END criterion=entropy, \max_{n=1}^{\infty} \frac{1}{n} = 100, \max_{n=1}^{\infty} \frac{1}{n} = 100
                                                                                                      0.1s
        [CV 3/5] END criterion=entropy, max_depth=5, n_estimators=200;, score=1.000 total time= [CV 4/5] END criterion=entropy, max_depth=5, n_estimators=200;, score=1.000 total time=
                                                                                                      0.1s
                                                                                                      0.1s
        [CV 5/5] END criterion=entropy, max depth=5, n estimators=200;, score=0.974 total time=
        [CV 1/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=0.923 total time=
         [CV 3/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=1.000 total time=
                                                                                                      0.1s
        [CV 4/5] END criterion=entropy, max depth=3, n estimators=200;, score=1.000 total time=
         [CV 5/5] END criterion=entropy, max_depth=3, n_estimators=200;, score=1.000 total time=
        [CV 1/5] END criterion=entropy, max_depth=5, n_estimators=300;, score=0.923 total time= [CV 2/5] END criterion=entropy, max_depth=5, n_estimators=300;, score=0.974 total time=
        [CV 3/5] END criterion=entropy, max depth=5, n estimators=300;, score=1.000 total time=
        [CV 4/5] END criterion=entropy, max_depth=5, n_estimators=300;, score=1.000 total time=
         [CV 5/5] END criterion=entropy, max depth=5, n estimators=300;, score=0.974 total time=
        [CV 1/5] END criterion=ginni, max_depth=5, n_estimators=200;, score=nan total time= 0.0s
        [CV 2/5] END criterion=ginni, max depth=5, n estimators=200;, score=nan total time=
         [CV 3/5] END criterion=ginni, max_depth=5, n_estimators=200;, score=nan total time=
         [CV 4/5] END criterion=ginni, max depth=5, n estimators=200;, score=nan total time=
        [CV 5/5] END criterion=ginni, max_depth=5, n_estimators=200;, score=nan total time=
                                                                                                  0.0s
        [CV 1/5] END criterion=ginni, max_depth=1, n_estimators=50;, score=nan total time=
        [CV 2/5] END criterion=ginni, max_depth=1, n_estimators=50;, score=nan total time=
                                                                                                 0 05
         [CV 3/5] END criterion=ginni, max_depth=1, n_estimators=50;, score=nan total time=
        [CV 4/5] END criterion=ginni, max depth=1, n estimators=50;, score=nan total time=
                                                                                                 0.05
         [CV 5/5] END criterion=qinni, max depth=1, n estimators=50;, score=nan total time=
         [CV 1/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=0.923 total time= 0.0s
        [CV 2/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=0.974 total time= [CV 3/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=1.000 total time=
                                                                                                      0.05
        [CV 4/5] END criterion=entropy, max_depth=3, n_estimators=100;, score=1.000 total time=
         [CV 5/5] END criterion=entropy, max depth=3, n estimators=100;, score=1.000 total time=
         [CV 1/5] END criterion=ginni, max depth=3, n estimators=300;, score=nan total time=
        [CV 2/5] END criterion=ginni, max_depth=3, n_estimators=300;, score=nan total time=
                                                                                                  0.0s
         [CV 3/5] END criterion=ginni, max depth=3, n estimators=300;, score=nan total time=
         [CV 4/5] END criterion=ginni, max_depth=3, n_estimators=300;, score=nan total time=
                                                                                                  0.0s
         [CV 5/5] END criterion=ginni, max_depth=3, n_estimators=300;, score=nan total time=
        [CV 1/5] END criterion=entropy, max_depth=None, n_estimators=200;, score=0.923 total time=
                                                                                                         0.1s
        [CV 2/5] END criterion=entropy, max_depth=None, n_estimators=200;, score=0.974 total time=
         [CV 3/5] END criterion=entropy, max_depth=None, n_estimators=200;, score=1.000 total time=
                                                                                                         0.0s
         [CV 4/5] END criterion=entropy, max depth=None, n estimators=200;, score=0.974 total time=
        [CV 5/5] END criterion=entropy, max depth=None, n estimators=200;, score=0.974 total time=
                                                                                                         0.05
         [CV 1/5] END criterion=ginni, max depth=2, n estimators=300;, score=nan total time=
         [CV 2/5] END criterion=ginni, max_depth=2, n_estimators=300;, score=nan total time=
                                                                                                  0.0s
         [CV 3/5] END criterion=ginni, max depth=2, n estimators=300;, score=nan total time=
```

[CV 4/5] END criterion=ginni, max_depth=2, n_estimators=300;, score=nan total time= [CV 5/5] END criterion=ginni, max_depth=2, n_estimators=300;, score=nan total time=

```
In [58]: clf.best_params_
Out[58]: {'n_estimators': 200, 'max_depth': 3, 'criterion': 'entropy'}
In [59]: clf.best_score_
Out[59]: 0.9794871794871796
In [60]: models ={"support vector classifier":SVC(),
                  "DT classifier":DecisionTreeClassifier(),
                 "random_forest":RandomForestClassifier()}
In [61]: from sklearn.metrics import accuracy_score
         def model_train_eval(x_train,y_train,x_test,y_test,models):
             evaluation= {}
             for i in range(len(models)):
                 model=list(models.values())[i]
                 model.fit(x train,y train)
                 y_pred = model.predict(x_test)
                 model_score = accuracy_score(y_test,y_pred)
                 evaluation[list(models.keys())[i]]=model_score
             return evaluation
 In [ ]:
 In [ ]:
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js