

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/507,375	09/21/2004	Kazushige Ohno	259205US90PCT	4117
22850	7590	09/26/2007	EXAMINER	
OBLON, SPIVAK, MCCLELLAND MAIER & NEUSTADT, P.C. 1940 DUKE STREET ALEXANDRIA, VA 22314			BOYER, RANDY	
		ART UNIT	PAPER NUMBER	
				1764
		NOTIFICATION DATE	DELIVERY MODE	
		09/26/2007	ELECTRONIC	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

patentdocket@oblon.com
oblonpat@oblon.com
jgardner@oblon.com

Office Action Summary	Application No.	Applicant(s)
	10/507,375	OHNO ET AL.
	Examiner	Art Unit
	Randy Boyer	1764

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 20 July 2007.
- 2a) This action is **FINAL**. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-6 and 8-12 is/are pending in the application.
 - 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-6 and 8-12 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date: _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date: _____ | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

Response to Amendment

1. Examiner acknowledges response filed 20 July 2007 containing amendments to the claims and remarks.
2. Claims 1-6 and 8-12 are pending.
3. The previous rejections of claims 8-12 are maintained.
4. New grounds for rejection, necessitated by Applicant's amendments to the claims, are entered with respect to claims 1-6. The rejections follow.

Claim Rejections - 35 USC § 103

5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office Action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

6. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.

Art Unit: 1764

4. Considering objective evidence present in the application indicating obviousness or nonobviousness.
7. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
8. Claims 1-6 and 8-12 are rejected under 35 U.S.C. 103(a) as being unpatentable over Takeuchi (US 3991254) in view of Iseli (US 4503128) and Clough (US 5326633), and further in view of Lange (US 4166147). Alternatively, claims 1-6 and 8-12 are rejected under 35 U.S.C. 103(a) as being unpatentable over Takeuchi (US 3991254) in view of Iseli (US 4503128) and Clough (US 5326633), and further in view of Lange (US 4166147) as evidenced by Sakashita (JP 06239656 A).
9. With respect to claim 1, Takeuchi discloses a filter for the purification of an exhaust gas comprising a porous ceramic carrier (520) configured to filter particles from an exhaust gas.

Takeuchi does not disclose wherein the filter further comprises a catalyst coat layer comprising at least one oxide ceramic and a catalyst active component and coating the porous ceramic carrier, the catalyst coat layer further comprising (a) a first substance having a thermal conductivity higher than the oxide ceramic, (b) a second

Art Unit: 1764

substance having a refractive index larger than a refractive index of the oxide ceramic, or (c) a colored pigment; and wherein the porous ceramic carrier has a porosity of 40 – 80 % and a thermal conductivity of a filter body comprising the porous ceramic carrier and the catalyst coat layer is 0.3-60 W/mK.

However, Takeuchi discloses wherein the filter further comprises a heat insulating ceramic layer (c) surrounding the porous ceramic catalyst (520), wherein the heat insulating ceramic layer is porous and has a thermal conductivity in the range of 0.3 – 0.6 kcal/mH°C (see Takeuchi, column 5, lines 40-45). Moreover, Iseli discloses cordierite-based spray coatings which are highly porous, thermally shock resistant, low in thermal conductivity, and provide well-adhered oxides having excellent abradable and erosion resistant properties (see Iseli, column 2, lines 1-10). Iseli explains that such coatings are compatible for use with other ceramics (see Iseli, column 3, lines 18-20), and are particularly useful in high temperature, high erosivity environments (e.g. that encountered by the exhaust gas purification filter of Takeuchi) (see Iseli, column 3; lines 36-39). In addition, Iseli notes that the porosity of the coating layer can be controlled by the method of application (see Iseli, column 4, lines 20-34), and that porosity is directly related to thermal conductivity (see Iseli, column 1, lines 44-47). Likewise, Clough discloses the coating of monolithic catalyst substrates (e.g. the porous ceramic carrier (520) of Takeuchi) used in the catalytic conversion of combustion gases (see Clough, column 18, lines 50-54; column 19, lines 15-28; column 20, lines 44-46, 54-57, and 62-64; and column 21, lines 5-9). Clough explains that the porosity of such substrates, typically in the range of 10% to 65% (see Clough, column 21, lines 45-51), can be

Art Unit: 1764

controlled. Clough notes that the thermal conductivity of the monolithic substrate can be reduced in magnitude by up to 90% compared to non-porous supports by optimizing the degree of porosity (see Clough, column 21, lines 59-68). Finally, Lange discloses the formation of an aqueous mixture or sol of titania which is shaped and fired into solid forms (see Lange, column 1, lines 14-19), and used for filtering applications and as catalyst supports (e.g. the porous ceramic carrier (520) of Takeuchi) (see Lange, column 10, lines 22-27). Lange explains that the precursor titania mixture is particularly useful for applications requiring high strength and high reflectivity in a high-temperature environment (e.g. that encountered by the exhaust gas purification filter of Takeuchi) (see Lange, column 1, lines 44-48).

Therefore, the person having ordinary skill in the art of exhaust gas purification filters would have been motivated to modify the filter of Takeuchi to provide for spray-coating of the porous ceramic carrier (520) with the titania sol of Lange as taught by Iseli, and varying the porosity of the catalyst coat layer (as taught by both Iseli and Clough) so as to provide a porous ceramic carrier having a porosity of 40-80%, a thermal conductivity of 0.3-60 W/mK, and containing a substance having a refractive index greater than that of the oxide ceramic; the coat layer comprising an oxide ceramic (e.g. alumina as taught by Iseli) and catalyst active component (e.g. rare earth oxides as taught by Iseli), and a substance having a refractive index larger than a refractive index of the oxide ceramic (e.g. titania as taught by Lange).

Finally, the person having ordinary skill in the art of exhaust gas purification filters would have been motivated to modify the filter of Takeuchi as described above

Art Unit: 1764

because: (1) Iseli, Clough, and Lange are all directed to materials for use at high temperature and/or high erosive environments (e.g. that encountered by the filters of Takeuchi); (2) both Clough and Lange contemplate use of their respective materials as a coating or composite material for catalyst supports (e.g. the porous ceramic carrier (520) of Takeuchi; and (3) Iseli notes the use of rare earth oxides in his coating material as a means of varying the chemical properties of the coating, e.g. with the rare earth oxide serving as a "catalyst active component."

10. With respect to claim 2, both Iseli and Clough disclose the change in porosity to affect thermal conductivity. In addition, Clough discloses the optimization of thermal conductivity by varying porosity (see discussion *supra* at paragraph 9).

11. With respect to claim 3, Iseli discloses a coating layer made, in part, of alumina and silica (see Iseli, column 2, lines 39-42).

12. With respect to claim 4, Iseli discloses that additives may be included to change the chemical properties (e.g. catalyst activity) of the coating (see Iseli, column 3, lines 9-13), while Clough discloses the use of catalyst components such as gold, silver, and copper as coating additives (see Clough, column 20, lines 27-43).

13. With respect to claim 5, Iseli discloses wherein the coating layer contains a rare earth oxide (see Iseli, column 2, lines 48-51).

14. With respect to claim 6, Takeuchi discloses wherein the ceramic insulating layer is cordierite (see Takeuchi, column 1, lines 67-68; and column 2, lines 1-3).

15. With respect to claim 8, Takeuchi discloses wherein the thermal conductivity is 0.3 kcal/mH°C (0.35 W/mK). In addition, both Iseli and Clough disclose the change in

porosity to affect thermal conductivity. In addition, Clough discloses the optimization of thermal conductivity by varying porosity (see discussion *supra* at paragraph 9).

16. With respect to claims 9, 11, and 12, Lange discloses a titania sol with iron oxide as a pigment to form a refractory body (see Lange, column 3, lines 11-20 and 25-31), wherein the refractory turns black in color upon reduction in a hydrogen environment (see Lange, column 3, lines 25-31).

17. With respect to claim 10, Lange discloses wherein the shaped and fired refractory is in the form of rutile titanium dioxide (see Lange, column 6, lines 4-31). Rutile titanium dioxide is known in the art to have a peak in a portion that a reflectance against an electromagnetic wave of not less than 10 μm is not less than 70% (see e.g., Sakashita (JP 06239656 A), English machine translation at page 5, paragraph [0008]).

Response to Arguments

18. Applicant's arguments filed 20 July 2007 have been fully considered but they are not persuasive.

19. Examiner understands Applicant's principal arguments to be:

- I. Takeuchi does not teach or suggest "a catalyst coat layer comprising at least one oxide ceramic and a catalyst active component and coating [a] porous ceramic carrier, the catalyst coat layer further comprising a first substance having a thermal conductivity higher than the oxide ceramic, a second substance having a refractive index larger than a refractive index of the oxide ceramic, or a colored pigment, wherein the porous ceramic carrier has a porosity of 40-80% and a thermal conductivity of a filter body comprising the porous ceramic carrier and the catalyst coat layer is set to be 0.3-60 W/mk."

Art Unit: 1764

- II. Neither Iseli nor Clough teach or suggest "a catalyst coat layer comprising at least one oxide ceramic and a catalyst active component and coating [a] porous ceramic carrier, the catalyst coat layer further comprising a first substance having a thermal conductivity higher than the oxide ceramic, a second substance having a refractive index larger than a refractive index of the oxide ceramic, or a colored pigment, wherein the porous ceramic carrier has a porosity of 40-80% and a thermal conductivity of a filter body comprising the porous ceramic carrier and the catalyst coat layer is set to be 0.3-60 W/mk."
- III. Iseli provides a porosity of only up to 40 volume %, which is believed to be too low for a filter.
- IV. Lange does not teach or suggest "a catalyst coat layer comprising at least one oxide ceramic and a catalyst active component and coating [a] porous ceramic carrier, the catalyst coat layer further comprising a first substance having a thermal conductivity higher than the oxide ceramic, a second substance having a refractive index larger than a refractive index of the oxide ceramic, or a colored pigment, wherein the porous ceramic carrier has a porosity of 40-80% and a thermal conductivity of a filter body comprising the porous ceramic carrier and the catalyst coat layer is set to be 0.3-60 W/mk."

20. With respect to Applicant's first, second, and fourth arguments, Examiner notes that a new ground for rejection is entered with respect to claim 1 based on the *combined* teachings of Takeuchi, Iseli, Clough, and Lange. In this regard, Applicant's arguments are unpersuasive because one cannot show nonobviousness by attacking references *individually* where the rejections are based on the *combination* of references. See In re Keller, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); In re Merck & Co., 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986).

21. With respect to Applicant's third argument, Examiner notes that Applicant claims a filter having a porous ceramic carrier with a lower limit of porosity at 40% (see Applicant's claim 1). Thus, Applicant's argument that the porosity of Iseli's coating is too low for a filter is unpersuasive since Applicant claims this same value of porosity for his own filter.

Moreover, both Iseli and Clough note that changes in porosity will affect thermal conductivity. In addition, Clough explains the optimization of thermal conductivity by varying porosity (see discussion *supra* at paragraph 9). Thus, from the teachings of Iseli and Clough, the person having ordinary skill in the art could have applied a catalyst coat layer to the exhaust gas purification filter of Takeuchi so as to achieve a "porous ceramic carrier [having] a porosity of 40-80% and a thermal conductivity of a filter body comprising the porous ceramic carrier and the catalyst coat layer set to be 0.3-60 W/mk" (i.e. with a *higher* porosity than that disclosed by Iseli) by mere routine experimentation and optimization of porosity as a result-effective variable to control thermal conductivity at the desired level. See MPEP 2144.05(II).

Conclusion

22. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office Action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

23. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Randy Boyer whose telephone number is (571) 272-7113. The examiner can normally be reached Monday through Friday from 10:00 A.M. to 7:00 P.M.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Glenn A. Calderola, can be reached at (571) 272-1444. The fax number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

Art Unit: 1764

USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

RPB

Glenn Calderola
Supervisory Patent Examiner
Technology Center 1700