《基础物理实验》实验报告

1 实验目的

- 研究 RLC 电路的谐振现象。
- 了解 RLC 电路的相频特性与幅频特性。
- 用数字存储示波器观察 RLC 串联电路的暂态过程,理解阻尼振动规律。

2 实验器材

标准电感、标准电容, 100Ω 标准电阻,电阻箱,电感箱,函数发生器,示波器,数字多用表,导线等。

3 实验原理

3.1 串联谐振

RLC 串联电路如图3.1所示。根据电磁学课程中介绍的交流电复数解法, 其总阻抗 |Z|、电压 u 和电流 i 之间相位差 φ 、电流 i 分别为:

$$|Z| = \sqrt{R^2 + (\omega L - 1/\omega C)^2}$$

$$\varphi = \arctan \frac{\omega L - 1/\omega C}{R}$$

$$i = \frac{u}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$$

图 1: RLC 串联电路图

其中 $\omega=2\pi f$ 为角频率, $|Z|,\, \varphi,\, i$ 都是 f 的函数。当电路中其他元件参量都取确定值的情况下,它们的特性完全取决于频率。

 φ , i 关于 $f=\frac{\omega}{2\pi}$ 的函数分别称为相频特性曲线、幅频特性曲线。我们对 |Z| 求关于自变量 ω 的函数,求得 |Z| 的极值点 ω_0 :

$$\frac{\mathrm{d}|Z|}{\mathrm{d}\omega} = \frac{2(\omega L - 1/\omega C)(L + 1/\omega^2 C)}{2\sqrt{R^2 + (\omega L - 1/\omega C)^2}}$$

$$\frac{\mathrm{d}|Z|}{\mathrm{d}\omega}\Big|_{\omega=\omega_0} = 0$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$f_0 = \frac{1}{2\pi}\omega_0 = \frac{1}{2\pi\sqrt{LC}}$$

此时电路的总阻抗 |Z| 最大 = R, 电流 i 最小 = $\frac{u}{R}$, 相位差 $\varphi = 0$ 。即电流与电压的相位完全相同, 整个电路 呈纯电阻性。我们称此时的电路状态为串联谐振。

在串联状态下,电路的电压关系如下:

$$u_L = i_m |Z_L| = \frac{\omega_0 L}{R} u, \qquad \frac{u_L}{u} = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
$$u_C = i_m |Z_C| = \frac{1}{R\omega_0 C} u, \quad \frac{u_C}{u} = \frac{1}{R\omega_0 C} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

定义谐振电路的品质因数 Q:

$$Q = \frac{u_L}{u} = \frac{u_C}{u} = \frac{\omega_0 L}{R} = \frac{1}{R\omega_0 C}$$

Q 值标志谐振电路的储耗能特性、电压分配特性、频率选择性。

3.2 并联谐振

如图3.2所示电路,其总阻抗 $|Z_p|$ 、电压 u 与电流 i 之间的相位差 φ 、电压 u(或电流 i)分别为

$$|Z_p| = \sqrt{\frac{R^2 + (\omega L)^2}{(1 - \omega^2 LC)^2 + (\omega CR)^2}}$$
$$\omega = \arctan \frac{\omega L - \omega C[R^2 + (\omega L)^2]}{R}$$
$$u = i|Z_p| = \frac{u_{R'}}{R'}|Z_p|$$

图 2: RLC 并联电路图

它们都是 ω 的函数。类似串联谐振电路,当 $\omega=0$ 时,电流和电压同相位,整个电路呈纯电阻性,即发生谐振。 此时的 ω 为并联谐振电路的角频率 ω_p , f 为并联谐振电路的频率 f:

$$\omega_p = 2\pi f_p = \sqrt{\frac{1}{LC} - \left(\frac{R}{L}\right)^2} = \omega_0 \sqrt{1 - \frac{1}{Q^2}}$$

其中 $\omega_0=2\pi f_0=1/\sqrt{LC}$, $Q=\omega L/R=\sqrt{L/C}/R$ 。可见, 并联谐振频率 f_p 与 f_0 稍有不同, 当 Q>>1 时, $\omega_p\approx\omega_0,\ f_p\approx f_0$ 。

3.3 RLC 电路的暂态过程

考虑串联 RLC 电路,如图3.3。

图 3: 观察 RLC 暂态过程所用电路图

先观察放电过程,即开关 S 先合向"1"使电容充电至 E,然后把 S 倒向"2",电容就在闭合的 RLC 电路中放电。电路方程为

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri + u_C = 0$$

$$L\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + R\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = 0$$

这是一个二阶常微分方程,有初始条件 $t=0,\,u_C=E,\,\frac{\mathrm{d}u_C}{\mathrm{d}t}=0$ 。方程的解分 3 种情况,对应下图中的三种曲线:

图 4: RLC 暂态过程中的三种阻尼曲线

• $R^2 < 4L/C$ 属于阻尼较小的情况。此时我们定义阻尼系数 $\zeta = \frac{R}{2} \sqrt{\frac{C}{L}} < 1$,时间常量 $\tau = \frac{2L}{R}$,则方程的解为:

$$u_C = \sqrt{\frac{4L}{4L - R^2C}} Ee^{-\frac{t}{\tau}} cos(\omega t + \varphi)$$

$$\omega = \frac{1}{LC} \sqrt{1 - \frac{R^2C}{4L}}$$

该情况对应图3.3中的图线 I, 称为欠阻尼状态。

• $R^2 > 4L/C$ 时, 阻尼系数 $\zeta > 1$, 方程的解为:

$$u_C = \sqrt{1 - \frac{R^2 C}{4L}} E e^{-at} \sinh(\beta t + \varphi)$$

其中:

$$\alpha = \frac{R}{2L}, \ \beta = \frac{1}{\sqrt{LC}} \sqrt{\frac{R^2C}{4L} - 1}$$

该情况对应图3.3中的图线 II, 称为过阻尼状态。

• $R^2 = 4L/C$,即阻尼系数 $\zeta = 1$ 。方程的解为:

$$u_C = E(1 + \frac{t}{\tau})e^{-\frac{t}{\tau}}$$

该情况对应图3.3中的图线 III, 称为临界阻尼状态, 是以上三种情况中衰减最快的一种。

此外,对于充电过程,类似的,我们有如下方程:

$$LC\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + RC\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = E$$

初始条件为 $t=0,\,u_C=E,\,rac{\mathrm{d} u_C}{\mathrm{d} t}=0$ 。最终的曲线可以看成放电曲线沿 $y=rac{E}{2}$ 翻折,这里不再具体写出过程。

4 实验内容

本实验中所用的函数发生器、示波器都是接地的(已通过其电源插头与大地连通)。示波器实际上测量的是通道中心线对地的电压,因此利用示波器测量某元件上的电压时,需要留意电路中共地点的位置。一般我们将电阻放在电路的最下游,然后在电流流出电阻的位置同时接上两个示波器输入信号的负极,以达到共地的效果。

4.1 测 RLC 串联电路的相频特性和幅频特性曲线

取 $u_{pp}=2.0\,\mathrm{V},~L=0.1\,\mathrm{H},~C=0.05\,\mu\mathrm{F},~R=100\,\Omega$ 时,用示波器 CH1、CH2 通道分别观测 RLC 串联电路的总电压 u 和电阻两端电压 u_R 。注意限制总电压峰值不超过 $3.0\,\mathrm{V}$ (或有效值不超过 $0.1\,\mathrm{V}$),防止串联谐振时产生有危险的高电压。

- 1. 调谐振,改变函数发生器的输出频率,通过 CH1 与 CH2 相位差为 0, CH2 幅度最大来判断谐振与否,记录谐振时的频率 f_0 。
- 2. 用万用表记录谐振时的电感 u_L 、电容两端的电压 u_C 和电源路端电压 u, 计算 Q 值。
- 3. 保持 CH1 的幅度为 2 V 不变,按照建议的频率点测量 CH1 与 CH2 的相位差、CH2 的幅度值,并绘制相频 曲线和幅频曲线,即 φf 图象、i f 图象。

4.2 测 RLC 并联电路的相频特性和幅频特性曲线

取 $L=0.1\,\mathrm{H},~C=0.05\,\mu\mathrm{F},~R'=5\,\mathrm{k}\Omega$ 。为观测电感与电容并联部分的电压和相位,用 CH1 测量总电压,用 CH2 测量 R' 两端电压,通过示波器面板上的"MATH"将两通道的波形相减,得到并联部分的电压 u。

- 1. 调节函数发生器频率,通过观察 CH1-CH2 与 CH2 相位差为 0, CH2 的幅度最小来判断谐振点,记录此时的频率。
- 2. 保持 CH1 测得的总电压 (即 u+u') 为 2 V 不变 (不同频率点需要调节函数发生器), 按照建议的频率点测量 CH1-CH2 与 CH2 的相位差,与 CH1-CH2、CH2 的幅度值, 绘制相频曲线与幅频曲线,即 $\varphi-f$ 图象、i-f 图象、u-f 图象。

4.3 观测 RLC 串联电路的暂态过程

由函数发生器产生方波,为便于观察,需将方波的低电平调整至与示波器的扫描基线一致。由低电平到高电平相当于充电,由高电平到低电平相当于放电。函数发生器各参数可设置为:频率 $50~{\rm Hz}$,电压峰峰值 $u_{pp}=2.0~{\rm V}$,偏移 $1~{\rm V}$ 。示波器 CH1 通道用于测量总电压,CH2 用来测量电容两端电压 u_C ,注意两个通道必须共地。实验中 $L=0.1~{\rm H},~C=0.2~{\rm \mu F}.$

- 1. 当 $R = 0 \Omega$ 时,测量 u_C 波形;
- 2. 调节 R 测得临界电阻 R_C ,并与理论值比较;
- 3. 记录 $R=2\,\mathrm{k}\Omega$, $20\,\mathrm{k}\Omega$ 的 u_C 波形。函数发生器频率可设置为 250 Hz($R=2\,\mathrm{k}\Omega$)和 20 Hz($R=20\,\mathrm{k}\Omega$)。

5 实验结果与数据处理

5.1 测 RLC 串联电路的相频特性曲线和幅频特性曲线

首先改变函数发生器的的输出频率, 在示波器中先点击 Auto 键, 在点击 "Measure" 案件, 显示屏左侧选择 "相位 1-2"(上升沿和下降沿均可), 读取相位差的平均值 Avg 即得 CH1 和 CH2 的相位差。当两者相位差最小时, 即可测出谐振频率 $f_0=2.252~\mathrm{KHz}$ 。此时用万用表测得:

$$u_L = 5.43 \,\mathrm{V}, \, u_C = 5.41 \,\mathrm{V}, \, u = 0.468 \,\mathrm{V}$$

由 $Q = \frac{u_L}{u} = \frac{u_C}{u}$ 可以计算 Q 值

$$Q_1 = \frac{u_C}{u} = 11.56, \quad Q_2 = \frac{u_C}{u} = 11.60$$

在实验讲义给出的参考频率下, 在必要时适当调节函数发生器幅度, 在保证路端电压 $u_{pp}=2.0\,\mathrm{V}$ 不变的情况下测得电压、电流相位差, 以及相应的 u_R 值(如下页表格所示)。

根据该数据可以作出 RLC 串联电路的 $\phi-f$ 曲线和 i-f 曲线(见下页)。利用 $Q=\frac{f_0}{\Delta F}$ 算出品质因数。

f/KHz	U(Vpp)/V	$(CH1-CH2)\phi/^{\circ}$	$u_R(V_{amp})/V$	I_{max}/mA
1.88	2.00	-75.64	0.351	3.51
2.00	2.00	-72.06	0.496	4.96
2.08	2.00	-61.32	0.734	7.34
2.15	2.00	-47.88	1.01	10.1
2.19	2.00	-35.72	1.18	11.8
2.22	2.00	-18.65	1.38	13.8
2.24	2.00	-4.028	1.42	14.2
2.25	2.00	-0.225	1.44	14.4
2.26	2.00	5.198	1.39	13.9
2.275	2.00	11.73	1.34	13.4
2.30	2.00	24.08	1.24	12.4
2.36	2.00	46.62	0.916	9.16
2.43	2.00	58.20	0.728	7.28
2.62	2.00	72.50	0.382	3.82
3.18	2.00	74.82	0.174	1.74

表 1: RLC 串联电路实验数据记录表

图 5: RLC 串联电路的 $\phi - f$ 图

图 6: RLC 串联电路的 $I_{max} - f$ 图

注:以上两张图像使用 Python 中的 Matplotlib 库绘制,用光滑曲线连接散点图只能选取"quadratic"(二次拟合)或"cubic"(三次拟合),故画出的图像不一定精确,线型也不是很符合我的预期。

由 $I_{max}-f$ 图知, $f=2.24\,\mathrm{KHz}$ 时, I_{max} 取最大值 $14.4\,\mathrm{mA}$ 。故可设 $f_0=2.24\,\mathrm{KHz}$ 为 RLC 串联电路的谐振频率。 $I_{max}=\frac{14.4}{\sqrt{2}}\approx 10.18\,\mathrm{mA}$ 时,在 Matplotlib 的程序运行页面,用鼠标光标可以大致读取对应的频率 $f_1=2.152\,\mathrm{KHz}$, $f_2=2.340\,\mathrm{KHz}$, $\Delta f=f_2-f_1=0.188\,\mathrm{KHz}$, $Q=\frac{f_0}{\Delta f}\approx 11.91$ 。个人认为该结果和上面的 $Q_1=\frac{u_C}{u}=11.56$, $Q_2=\frac{u_C}{u}=11.60$ 结果相近,在误差允许范围内可以接受。可能的误差原因除了读取时的数据 跳变意外,还可能有电感、电容的内阻时的实际电路与理想情况并不相同。

5.2 测 RLC 并联电路的相频特性和幅频特性曲线

调节函数发生器输出频率至并联部分电压 u 与总电流相位相同,即达到谐振,此时可得谐振频率 $f_p=2.246~\mathrm{KHz}$ 。

在实验讲义给出的参考频率下,在必要时适当调节函数发生器幅度,在保证路端电压峰峰值 $u_{pp}=u+u_{R'}=2.0\,\mathrm{V}$ 不变的情况下测得电压、电流相位差,以及相应的 u_R 值 (如下表所示)。根据表格可作出 RLC 并联电路的 $\phi-f$ 曲线和 u-f、i-f 曲线。

注: 为求得 u(CH1-CH2) 和 i 的相位差,只能先用示波器光标求得两者峰值之间的时间差,然后利用公式 $\phi = \frac{\Delta t}{T} \cdot 360^\circ = f\Delta t \cdot 360^\circ$ 求出相位差。此外原始数据中的 Δt 部分与此表相反,因为实验中读取了 i(CH2) 与 u(CH1-CH2) 的时间差,因此需要取反。

f/KHz	$U(V_{pp})/V$	$\Delta t/\mu s$	φ/°	u(Vamp)/V(CH1-CH2)	$u_R(Vamp)/mV$	I_{max}/mA
2.050	2.00	114	84.13	1.49	894	0.1788
2.150	2.00	104	80.50	1.69	442	0.0884
2.200	2.00	86	68.11	1.74	645	0.129
2.231	2.00	44	35.34	1.77	146	0.0292
2.240	2.00	24	19.35	1.78	117	0.0234
2.247	2.00	-2	-1.618	1.79	0.724	0.0001448
2.250	2.00	-10	-8.100	1.78	130	0.026
2.253	2.00	-20	-16.22	1.77	118	0.0236
2.256	2.00	-32	-25.99	1.77	120	0.024
2.265	2.00	-44	-35.88	1.77	158	0.0316
2.275	2.00	-58	-47.50	1.76	203	0.0406
2.320	2.00	-82	-68.49	1.73	408	0.0816
2.400	2.00	-94	-81.22	1.62	778	0.1556
2.600	2.00	-92	-86.11	1.18	1260	0.252

表 2: RLC 并联电路实验数据记录表

图 7: RLC 并联电路的 $\phi - f$ 图

图 8: RLC 并联电路的 u-f 图

图 9: RLC 并联电路的 $I_{max} - f$ 图

其中 RLC 并联电路的电路图第 3 个数据点很可能是记录有误,导致画出的图像非常奇怪。

5.3 观察 RLC 串联电路的暂态过程

• 调节 $R = 0\Omega$, RLC 串联电路处于欠阻尼震荡状态, 得到的波形图如下:

图 10: $R = 0 \Omega$ 时的波形图

- 自小到大调节 R 的大小,当 $R=1300\,\Omega$ 时,波形图的振动基本消失,可以看作看作临界阻尼状态。事实上临界阻尼状态下的电阻值理论上为 $R=\sqrt{4L}C=\sqrt{4\cdot0.1}0.2\times10^{-6}\approx1414.2\,\Omega$,但在实验中,大约在 $1200\,\Omega$ 之后,电阻值每增加 $100\,\Omega$,波形的变化非常小。除了波形上难以区分外,造成误差的原因还可能是 电容、电感的内阻等。
- 按照建议的函数发生器频率调节 $R=2\,\mathrm{K}\Omega$ 和 $R=20\,\mathrm{K}\Omega$, 电路均处于过阻尼状态。波形图如下所示:

图 11: $R = 2 \text{ K}\Omega$ 时的波形图

图 12: $R = 20 \, \mathrm{K}\Omega$ 时的波形图

6 反思总结与心得体会

- 搭建电路是本实验的一大难点,我在上面花费了较多时间。需要注意电学元件的接口问题,电容箱和电阻 箱都有三个接线柱,但只有两个接线柱之间是元件,还有一个显示为"接地"的接线柱在本实验中用不到。 此外还需要注意示波器 CH1 和 CH2 在电流流出电阻处相接,以保证共地。
- 在做实验时需要仔细查看要求,虽然讲解过,但是还是很容易做着做着就忘了。此时需要仔细查看讲义上的要求,也需要查看老师讲解时的笔记。我在实验中对于"保持 CH1 的 u_{pp} 为 $2.0\,\mathrm{V}$ "理解有误,以为这就是路端电压。事实上函数发生器有 $50\,\Omega$ 内阻,而外部阻抗在谐振点附近时会明显减小,故函数发生器输出电压不等于路端电压。这导致我重新做了一遍实验。
- 使用 Python 的 Matplotlib 库绘制散点图并用光滑曲线拟合可以得到很漂亮的图, 个人认为比 Origin 和 Excel 画出的图像更专业也更好看, 而且可以直接通过移动鼠标光标直接读取曲线上的点坐标。以后可以 多加使用。
- 最后,本篇实验报告全部用 LATEX 编写,虽然费时费力,但也很大程度上锻炼了我的 LATEX 使用水平。这里也感谢 21 级计算机系的吉骏雄同学和 21 级人工智能系的林诚皓同学提供了实验报告抬头的模板。