

3 more challenges to get your gold badge!

Points: 17/20

Problem

Day 5: Normal Distribution I *

Editorial 🖰

Normal Distribution

The probability density of normal distribution is:

$$\mathcal{N}(\mu,\sigma^2) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- $m{\cdot}$ $m{\mu}$ is the mean (or expectation) of the distribution. It is also equal to median and mode of the distribution.
- σ is the standard deviation.

Standard Normal Distribution

If $\mu=0$ and $\sigma=1$, then the normal distribution is known as standard normal distribution:

$$\phi(x)=rac{e^{-rac{x^2}{2}}}{\sqrt{2\pi}}$$

Every normal distribution can be represented as standard normal distribution:

$$\mathcal{N}(\mu,\sigma^2) = rac{1}{\sigma}\phi(rac{x-\mu}{\sigma})$$

Cumulative Probability

Consider a real-valued random variable, $m{X}$. The cumulative distribution function of $m{X}$ (or just the distribution function of $m{X}$) evaluated at $m{x}$ is the probability that $m{X}$ will take a value less than or equal to $m{x}$:

$$F_X(x) = P(X \leq x)$$

Also,

$$P(a \le X \le b) = P(a < X < b) = F_X(b) - F_X(a)$$

The cumulative distribution function for a function with normal distribution is:

$$\Phi(x) = rac{1}{2}igg(1+ ext{erf}\left(rac{x-\mu}{\sigma\sqrt{2}}
ight)igg)$$

Where **erf** is the error function:

$$\mathtt{erf}(z) = rac{2}{\sqrt{\pi}} \int_0^z e^{-x^2} dx$$

Solve Problem