An Evaluation Framework for Granger Matrix Extraction via Point Processes

Guilherme Resende Borges

Flavio Figueiredo

Pedro O. S. Vaz de Melo

Renato Assunção

Estimating a Granger Causal Graph

What is observed

What is observed

Point Processes

Data containing events occurring randomly in time is found across several fields, e.g.

- Occurrence of earthquakes and aftershocks
- Spiking neurons
- Activity in online social networks

The Conditional Intensity Function

Multivariate Point Processes

$$\lambda_a(t|\mathcal{H}(t)) = \underline{\mu_a} + \sum_{b=1}^n \alpha_{ba}\omega_{ba}(t)$$

Baseline or endogenous intensity

Multivariate Point Processes

$$\lambda_a(t|\mathcal{H}(t)) = \mu_a + \sum_{b=1}^n \alpha_{ba} \underline{\omega_{ba}(t)}$$

Multivariate Point Processes

$$\lambda_a(t|\mathcal{H}(t)) = \mu_a + \sum_{b=1}^n \underline{\alpha_{ba}} \omega_{ba}(t)$$

Captures the influence of b on a

Methods

Several previous efforts have been made to accomplish this task

- Problem #1: they mostly employed a different evaluation methodology
- Problem #2: it is difficult to compare newly proposed methods

Methods

We analyzed 7 models to which open source implementations are available:

- SumGaussians (SG)
- ADM4
- HawkesEM
- HawkesBasisKernels / MMEL
- Hawkes Conditional Law
- NPHC
- GrangerBusca

Methods

Method	Per Iteration Complexity
ADM4	$O(N^3K^3)$
MMEL	$O(MN^3K^2 + ML_m(NK + N^2))$
CondLaw	$O(NK^2Q + K^4Q^3)$ (non interative)
SG	$O(MN^3K^2)$
NPHC	$O(K^3)$
GBusca	$O(N(\log N + \log K))$

Metrics

- 1. Comparing the estimated Granger matrix with a ground truth
- 2. Comparing the real series of events with simulated series
 - a. Evaluating the number of events generated
 - b. Evaluating the distribution of inter-event times

Metrics tested for each paper

Metrics\Papers	[3]	[5]	[4]	[6]	[2]	[1]	[7]
RelErr		X	X			X	
RankCorr		X				X	X
Q-Q plot for goodness of fit					X		
Loglik		X	X	X			
RelErr Baseline			X				
L2 error of kernel	X			X			
Precision@k							X

Rank Correlation

$$MRankCorr(A, B) = \frac{1}{K} \sum_{i=0}^{K-1} RankCorr([a^i], [b^i])$$

Where RankCorr(x, y) is the Kendall's tau Rank Correlation

Relative Error

$$RelErr(A,B) = rac{1}{K^2} \sum_{i,j} rac{|a^{ij} - b^{ij}|}{|a^{ij}|} 1_{a^{ij}
eq 0} + |b^{ij}| 1_{a^{ij} = 0}$$

Results

Memetracker (15-day) dataset

RankCorr	P@3	RelErr
GBusca(0.29)	GBusca(0.44)	GBusca(88.88)
NPHC(0.20)	ADM4(0.09)	SG(577.74)
MMEL(0.20)	SG(0.07)	NPHC(2027.59)
ADM4(0.19)	MMEL(0.07)	MMEL(4088.59)
SG(0.14)	NPHC(0.05)	CLaw(7900.25)
CLaw(0.09)	CLaw(0.0)	ADM4(2872960.85)

Results Granger-Simulated

RankCorr	P@3	RelErr	MSE	FMatch	MAPE	KolDiff	CorrDiff	VarDiff
GBusca(0.69)	GBusca(0.47)	ADM4(0.15)	ADM4(1430.78)	ADM4(0.82)	ADM4(0.16)	ADM4(0.14)	GBusca(0.12)	ADM4(86.00)
SG(0.59)	MMEL(0.40)	SG(0.16)	MMEL(28572.92)	GBusca(0.66)	GBusca(0.30)	GBusca(0.15)	SG(0.18)	GBusca(119.08)
HkEM(0.55)	ADM4(0.23)	HkEM(0.21)	SG(28610.89)	MMEL(0.49)	MMEL(0.44)	SG(0.23)	ADM4(0.18)	MMEL(377.20)
ADM4(0.54)	SG(0.20)	MMEL(0.22)	GBusca(44502.65)	SG(0.48)	SG(0.48)	MMEL(0.24)	MMEL(0.21)	SG(650.02)
MMEL(0.34)	CLaw(0.17)	GBusca(0.27)	HkEM(81174.62)	HkEM(0.32)	HkEM(0.75)	HkEM(0.33)	HkEM(0.23)	HkEM(4044.50)
NPHC(0.09)	HkEM(0.10)	NPHC(1.44)						
CLaw(-0.12)	NPHC(0.10)	CLaw(9.85)						

Results Granger-Simulated

Results HawkesExp-Simulated

RankCorr	P@3	RelErr	MSE	FMatch	MAPE	KolDiff	CorrDiff	VarDiff
ADM4(0.63)	GBusca(0.36)	ADM4(0.04)	ADM4(460.11)	ADM4(0.98)	HkEM(0.07)	ADM4(0.08)	HkEM(0.08)	ADM4(985.08)
HkEM(0.62)	MMEL(0.21)	HkEM(0.04)	HkEM(508.50)	HkEM(0.98)	ADM4(0.07)	MMEL(0.08)	MMEL(0.08)	HkEM(1243.60)
MMEL(0.62)	ADM4(0.19)	NPHC(0.13)	MMEL(918.46)	MMEL(0.89)	MMEL(0.09)	HkEM(0.08)	ADM4(0.09)	MMEL(1376.41)
SG(0.62)	NPHC(0.17)	MMEL(0.19)	SG(3342.82)	SG(0.52)	SG(0.21)	SG(0.12)	SG(0.09)	SG(3691.79)
GBusca(0.56)	SG(0.14)	CLaw(0.29)	GBusca(28964980.00)	GBusca(0.00)	GBusca(20.45)	GBusca(0.79)	GBusca(0.11)	GBusca(4543.58)
NPHC(0.56)	HkEM(0.12)	SG(0.33)						
CLaw(0.19)	CLaw(0.07)	GBusca(0.42)						

Results HawkesExp-Simulated

References

- [1] Massil Achab, Emmanuel Bacry, Stéphane Gaiffas, Iacopo Mastromatteo, and Jean-François Muzy. Uncovering causality from multivariate hawkes integrated cumulants. In International Conference on Machine Learning, pages 1–10, 2017.
- [2] Emmanuel Bacry and Jean-Francois Muzy. Second order statistics characterization of hawkes processes and non-parametric estimation. arXiv preprint arXiv:1401.0903, 2014.
- [3] Erik Lewis and George Mohler. A nonparametric em algorithm for multiscale hawkes processes. Journal of Nonparametric Statistics, 1(1):1–20, 2011.
- [4] Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning granger causality for hawkes processes. In International Conference on Machine Learning, pages 1717–1726. 2016.
- [5] Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse low-rank networks using multi-dimensional hawkes processes. In Artificial Intelligence and Statistics, pages 641–649, 2013.
- [6] Ke Zhou, Hongyuan Zha, and Le Song. Learning triggering kernels for multidimensional hawkes processes. In International Conference on Machine Learning, pages 1301–1309, 2013.
- [7] Flavio Figueiredo, Guilherme Borges, Pedro Olmo Stancioli Vaz de Melo, and Assunção. Fast estimation of causal interactions using wold processes. In NIPS, 2018.