Université Hassiba Benbouali Chlef Faculté des Sciences Exactes & Informatique Département de Mathématiques Année universitaire 2021/2022 MasterI:Math.Appli & Stat Module : Séries temporelles linéaires

Fiche TD N = 05

Exercice 01:

Soit $(X_t)_{t\in\mathbb{Z}}$ un processus AR(1).

a.Calculer la variance de $(X_1 + X_2 + X_3 + X_4)/4$ quand $\phi = 0, 9$ et $\sigma^2 = 1$.

b.Répéter la partie a) avec $\phi = -0.9$ et comparer le résultat avec celui obtenu en a). Interpréter.

Exercice 02:

Soit
$$(Z_t)$$
 un bruit IID avec $Z_t \sim N(0,1)$. On définit $X_t = \begin{cases} Z_t, & \text{t est pair;} \\ \frac{Z_{t-1}^2 - 1}{\sqrt{2}}, & \text{t est impair.} \end{cases}$

Calculer $E[X_t]$, $Var[X_t]$, $\gamma_X(1)$ et $\gamma_X(h)$

Indication: si $Z_t \sim N(0,1)$, alors $Z_t^2 \sim \chi^2(1)$, d'où $E[Z_t^2] = 1$ et $Var[Z_t^2] = 2$.

et tous les moments impairs d'une variable aléatoire normale sont nuls.

Exercice 03:

On vous donne les cinq valeurs suivantes d'un bruit blanc de moyenne 0 et de variance 1 : 0,18 1,61 3,00 1,33 0,37.

Calculer quatre valeurs des processus ci-dessous.avec $X_0 = 0$

a) AR(1) avec $\phi = 0, 6$. **b)** MA(1) avec $\theta = 0, 4$. **c)** ARMA(1, 1) avec $\phi = 0, 6$ et $\theta = 0, 4$.

Exercice 04:

Soit le processus X_t définie par: $X_t = -0.8X_{t-1} + 0.1X_{t-2} + \epsilon_t$ où $\epsilon_t \sim BB(0,1)$.

- 1- Le processus X_t est-il stationnaire? Justifier.
- 2- Montrer que le processus X_t admet une écriture $\mathrm{MA}(\infty)$ (i.e. $X_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t_j}$) et déterminer les 5 premiers termes de ψ_j .
- 3) Déterminer les 5 premieres autocorrélations et les 5 premières autocorrélations partielles.

Exercice 05:

Soit $\{Y_t\}$ la somme d'un processus AR(1) et d'un bruit blanc, c'est-à-dire $Y_t = X_t + W_t$ où $\{Wt\} \sim WN(0, \sigma_W^2)$ et $\{X_t\}$ est le processus AR(1) avec $|\phi| < 1$

$$X_t - \phi X_{t-1} = \epsilon_t, \quad , \epsilon_t \sim WN(0, \sigma_{\epsilon}^2).$$

On suppose de plus que $E[W_s \epsilon_t] = 0$ pour tous s et t.

- a) Démontrer que $\{Y_t\}$ est stationnaire et calculer sa fonction d'auto-covariance.
- **b)** Démontrer que la série chronologique $U_t = Y_t \phi Y_{t-1}$ est 1-corrélée (c'est-à-dire que $\gamma_U(h) = 0$ pour tout |h| > 1) et que, par conséquent, elle peut s'écrire comme un processus MA(1).
- c) Conclure de b) que $\{Y_t\}$ est un processus ARMA(1,1).

Exercice 06:

Déterminer si les processus autorégressifs suivants sont stationnaires (inversibles) et causaux. (Dans chaque cas ϵ_t est un bruit blanc.)

a)
$$X_t + 0.2X_{t-1} - 0.48X_{t-2} = \epsilon_t$$
. b) $X_t + 1.9X_{t-1} - 0.88X_{t-2} = \epsilon_t + 0.2\epsilon_{t-1} + 0.7\epsilon_{t-7}$.

c) $X_t + 0.6X_{t-1} = \epsilon_t + 1.2\epsilon_{t-1}$. d) $X_t + 1.8X_{t-1} - 0.81X_{t-2} = \epsilon_t$

e) $X_t + 1.6X_{t-1} = \epsilon_t - 0.4\epsilon_{t-1} + 0.04\epsilon_{t-2}$.

Exercice 07: On considère le processus ARMA(1,1):

$$X_t = \phi X_{t-1} + \epsilon_t - \theta \epsilon_{t-1}$$
 ; $\epsilon_t \sim BB(0, \sigma^2)$ avec $|\phi| < 1$ et $|\theta| < 1$

1) Calculer $\gamma(0)$, $\gamma(1)$ et $\gamma(2)$ à partir de l'expression précedente. 2) Montrer que la variance du processus est:

$$\gamma(0) = \sigma^2 \frac{1 + \theta^2 - 2\phi\theta}{1 - \phi^2}.$$

Exercice 08:

Consider the ARMA(1,1) process $(1-0.4B)Z_t = (1+0.8B)\epsilon_t$ where ϵ_t is a white noise series with zero mean and constant variance 1. Calculate the cross-correlation function between ϵ_t and Z_t . $\underline{\text{ie}}\ (\rho_{\epsilon,Z}(h) = \gamma_{\epsilon,Z}(h)/\gamma_Z(0) = cov(\epsilon_t, Z_{t+h})/var(Z_t))$

Exercice 09:

On considère le processus (Y_n) défini par $Y_n=2Y_{n-1}+\mu_n$ où (μ_n) est un BB centré de variance 5/18.

On suppose que l'observation de Y_n est entachée d'une erreur et qu'on observe $X_n = Y_n + \eta_n$ où (η_n) est un bruit blanc centré, de variance 1/6, non corrélé avec (μ_n) .

- 1) Montrer que le processus $\omega_n = \mu_n + \eta_n 2\eta_{n-1}$ est un processus moyenne mobile.
- 2) En déduire que (X_n) est un processus ARMA dont on précisera les ordres.

Exercice 10:

On considère l'équation suivante : $X_t = \phi X_{t-1} + \mu_t - \theta \mu_{t-4}$ avec $\theta = \phi^4$ et μ_t un processus en bruit blanc de variances σ^2_{μ} .

- Vérifiez que les polynômes $(1 \phi B)$ et $(1 \theta B^4)$ possèdent une racine commune et déduisez en conséquence l'écriture ARMA minimale pour X. Ecrivez l'équation de cette écriture minimale.
- Quelle(s) condition(s) faudrait-il imposer au coefficient ϕ pour avoir la stationarité de X_t ?
- $\bullet\,$ Donnez les expressions des 4 premiers coefficients de la fonction d'autocorrélation de X.

Exercice 11:

Soit $(\epsilon_t)_{t\in Z}$ un bruit blanc faible de variance σ^2 . Pour tous les processus $(X_t)_{t\in Z}$ definis ci-dessous, dire (en le justifiant) s'il s'agit d'un processus centré et/ou stationnaire et/ou de type ARMA :

• $X_t + X_{t-2} - 2X_{t-4} = \epsilon_t$

• $X_t/2 + \epsilon_t^2 = \sigma^2$

 $\bullet \ X_t = \epsilon_t - 2\epsilon_{t-1} + 3t,$

• $X_t - 2X_{t-1}/\sqrt{5} + X_{t-2} = \epsilon_t - 2\epsilon_{t-1}$,

• $X_t = \epsilon_t - 2t\epsilon_{t-1}$,

• $X_t - \epsilon_t = 5X_{t-1} - 6X_{t-2}$