Deep Learning

Exercise 11: Adversarial Training

Instructor: Manuel Günther

Email: guenther@ifi.uzh.ch

Office: AND 2.54

Friday, May 21, 2021

Outline

- Adversarial Examples via FGS/FGV
- Adversarial Training

Outline

Adversarial Examples via FGS/FGV

Adversarial Examples via FGS/FGV

Gradient Calculation

- Loss function categorical $\mathcal{J}^{\mathrm{CE}}$
- Gradient w.r.t. \mathcal{X} : $\nabla_{\mathcal{X}} = \frac{\partial \mathcal{J}^{\text{CE}}}{\partial \mathcal{X}}$
 - → Enable gradient for input: X.requires grad (True)
 - \rightarrow Compute loss: J = loss(X,t)
 - → Compute gradient: J.backward()
 - → Access gradient: X.grad

Fast Gradient Sign

Adversarial input:

$$\check{\mathcal{X}}_{FGS} = \mathcal{X} + \alpha \operatorname{sign}(\nabla_{\mathcal{X}})$$

• Clip to pixel range [0,1]

Fast Gradient Value

• Adversarial input:
$$\check{\mathcal{X}}_{FGV} = \mathcal{X} + \alpha \frac{\nabla_{\mathcal{X}}}{\max \left| \nabla_{\mathcal{X}} \right|}$$

• Clip to pixel range [0,1]

Adversarial Examples via FGS/FGV

Task 1: Network

- Small convolutional network
- ightarrow Copy from last exercises
- With or without BatchNorm

Task 2: FGS

- Implement FGS(X,T,alpha)
- **2** One-step with fixed $\alpha = 0.3$

Task 2(b, optional): FGV

- Implement FGV(X,T,alpha)
- **2** One-step with fixed $\alpha = 0.6$

Task 3: Evaluation

- Accuracy on original test samples
- Accuracy on adversarial test samples
 - → Only correctly classified originals
 - → Compare to original targets

Outline

Adversarial Training

Adversarial Training

Training Schedule

Obtain batch:

$$\mathcal{B} = \left\{ (\mathcal{X}^{^{[n_1]}}, t^{^{[n_1]}}), \ldots, (\mathcal{X}^{^{[n_B]}}, t^{^{[n_B]}})
ight\}$$

- **2** Compute gradient $\nabla_{\mathbf{\Theta}}$ for \mathcal{B}
- Create adversarial samples:

$$\check{\mathcal{B}} = \left\{ (\check{\mathcal{X}}^{[n_1]}, t^{[n_1]}), \dots, (\check{\mathcal{X}}^{[n_B]}, t^{[n_B]}) \right\}$$

- lacktriangle Compute gradient $\check{\nabla}_{m{\Theta}}$ for $\check{\mathcal{B}}$
- Update weights:

$$\mathbf{\Theta} = \mathbf{\Theta} - \eta(\nabla_{\mathbf{\Theta}} + \check{\nabla}_{\mathbf{\Theta}})$$

Task 4: Training

- Dataset: MNIST
- Categorical cross-entropy loss
- Implement training schedule
- Train for \sim 50 epochs
- Evaluate after each epoch
 - → Accuracy on original images
 - → Accuracy on adversarial images

Task 4(b, optional): Plot

Plot accuracies over epoch

Advarsarial Training

Variations (optional)

- Standard training
 - → Train on clean images only
 - \rightarrow Evaluate original and adversarial
- Training with noise

$$\rightarrow \hat{\mathcal{X}} = \mathcal{X} + \alpha \{-1, +1\}^{D \times E}$$

- \rightarrow Evaluate original and adversarial
- Network w/o and w/ BatchNorm

Results might not transfer to other datasets!

Advarsarial Training

Variations (optional)

- Standard training
 - → Train on clean images only
 - \rightarrow Evaluate original and adversarial
- Training with noise

$$\rightarrow \hat{\mathcal{X}} = \mathcal{X} + \alpha \{-1, +1\}^{D \times E}$$

- \rightarrow Evaluate original and adversarial
- Network w/o and w/ BatchNorm

Results might not transfer to other datasets!

