1) Il existe une grande similitude entre les attractions Coulombienne et Newtonienne concernant deux points P(q ou m) et M(q' ou m'): $\vec{F}_{q \to q'} = \frac{q'q}{4\pi\epsilon_0 PM^2} \vec{u}_{PM}$ $\vec{F}_{m \to m'} = -\frac{m'm \, \mathcal{G}}{PM^2} \vec{u}_{PM}$

Le théorème de Gauss de la gravitation s'écrit ainsi : $\oiint \vec{G}. \, d\vec{S}_{ext} = -4\pi \mathcal{G} m_{int}$

2-4) La distribution est invariante par rotation suivant θ et ϕ : la norme du champ ne dépend que de r. Tous les plans contenant \overrightarrow{CM} sont des plans de symétrie pour la distribution donc des plans de symétrie pour le champ: $\vec{G}_T(M)$ appartient à tous ces plans, il est donc dirigé suivant \vec{e}_r .

On choisit comme surface de Gauss la sphère centrée en $\mathcal C$ et de rayon $r: \oiint \overrightarrow{G}.d\overrightarrow{S}_{ext} = 4\pi r^2 G_T(r)$

$$\overrightarrow{\boldsymbol{G}}_{T}(\boldsymbol{r}) = -\frac{g_{M_{T}} \overrightarrow{\boldsymbol{e}}_{r}}{(R_{T} + z)^{2}} = -\frac{g_{M_{T}} \overrightarrow{\boldsymbol{e}}_{r}}{R_{T}^{2} \left(1 + \frac{z}{R_{T}}\right)^{2}} \sim -\frac{g_{M_{T}}}{R_{T}^{2}} \left(1 - \frac{2z}{R_{T}}\right) \overrightarrow{\boldsymbol{e}}_{r} \quad \text{On observe une variation de } 1\% \text{ en } \boldsymbol{z} = \boldsymbol{31,9} \ \boldsymbol{km}$$

5 & 6)
$$\overline{grad}(\|\vec{G}_T(r)\|) = -\frac{2GM_T\vec{e}_r}{(R_T + z)^3} \sim -\frac{2GM_T\vec{e}_r}{R_T^3} \text{ si } z \ll R_T$$

Considérons un objet de longueur L, ses deux extrémités ne subissent pas la même force gravitationnelle. Si on s'intéresse au produit **"gradient de gravité** * L", on a accès à **la différence des forces de gravité** subies par les extrémités de l'objet. Ceci est très utile dans le cas de la stabilisation d'un satellite ...

$$\left\|-\frac{2\mathcal{G}M_T \vec{e}_r}{R_T^3}\right\| \sim 3,08.\,10^{-6}~s^{-2} = 3,08~\mu gal.\,cm^{-1}$$
 Valeur faible, sa mise en évidence nécessite grand soin.

7-9) La force d'inertie a pour expression $\vec{F}_{ie}=m\omega^2 \overrightarrow{HM}=mR_T\cos\phi\,\omega^2 \vec{u}$

C'est faible mais pas tant que ça ! Il faut s'élever de $10 \ km$ pour que la variation due à l'altitude atteigne ce niveau.

- 10) La période des petites oscillations est $T=2\pi\sqrt{\frac{l}{g}}$, sa mesure nous permet d'accéder à g.
- 11) Lorsque l'horloge à Paris décrit 86400 périodes $(T_P=1,0000~s)$, il s'est écoulé un jour (86400~s). Alors qu'à Cayenne, lorsque l'horloge décrit 86400 périodes $\left(T_C=2\pi\sqrt{\frac{l}{g_C}}\right)$, il s'est écoulé 86548~s. On en déduit $T_C=1,0017~s \rightarrow g_C=g_P\frac{T_P^2}{T_S^2}=9,78~m.s^{-2}$

Les valeurs de g sont différentes à Cayenne et à Paris pour plusieurs raisons :

- La latitude qui conditionne à la fois la force d'inertie (contribution négative à l'équateur) et le champ gravitationnel à cause de l'aplatissement de la Terre aux pôles (contribution positive à l'équateur)
- L'altitude qui contribue (faiblement) de façon négative : $\frac{\Delta_g^{alt.}}{g}\sim\frac{2*100}{6,7.10^6}\sim0,003~\%$
- Les forces de marée dues à la Lune et au Soleil
- La masse volumique hétérogène du sous-sol

12)
$$g = \frac{4\pi^2 l}{T^2} \rightarrow \frac{u(g)}{g} = 2\frac{u(T)}{T} \rightarrow \frac{u(T)}{T} \sim \frac{10^{-8}}{2*9.8} \sim 5.10^{-10}$$
 L'exigence est trop grande!

- **13)** La raideur d'un ressort usuel est de $5 N.m^{-1}$ environ. Prenons une masse de 50 g, l'élongation x du ressort à l'équilibre est de 10 cm environ : $\Delta x = \frac{m\Delta g}{k} = 1 nm$! La technique n'est pas adaptée.
- **14)** Un ressort de longueur nulle au repos permet de diminuer l'incertitude sur Δx car $x=l_{\acute{e}q}$ et non plus $x=l_{\acute{e}q}-l_0 \rightarrow u(\Delta x)=u\big(l_{\acute{e}q,2}-l_{\acute{e}q,1}\big)=\sqrt{2}\;u(l_{\acute{e}q})\;$ au lieu de $u(\Delta x)=\sqrt{2}\sqrt{u^2\big(l_{\acute{e}q}\big)+u^2(l_0)}$
- **15)** Heu ? Si on en reparlait après la question 27 ? ! En faisant un effort d'imagination, on peut prédire qu'une variation de g se traduira par un angle θ à l'équilibre et une période d'oscillations différents ...

16 & 17)
$$\mathcal{E}_p = \frac{1}{2}k(s-s_0)^2 - mga\sin\theta + cste$$
 $s = \sqrt{y^2 + b^2 + 2yb\sin\theta}$ Al-Kashi

18)
$$\Gamma = mga\cos\theta - k(s-s_0)\frac{ds}{d\theta} = \cos\theta \left(mga - k(s-s_0)\frac{yb}{s}\right) = \cos\theta \left(mga - kyb + \frac{kybs_0}{s}\right)$$

19) La longueur "y" est ajustée afin d'atteindre l'équilibre pour tout θ . Si $\theta_{\acute{e}q}\neq\frac{\pi}{2}$, $\Gamma=0$ \rightarrow $\boldsymbol{g}=\frac{kyb}{ma}$ Avec un ressort classique, $g=\frac{kyb}{ma}\Big(1-\frac{s_0}{s_{\acute{e}q}}\Big)$. La mesure serait possible mais nécessiterait la détermination de s_0 , s et de leur incertitude ... On abandonne l'idée ! Le ressort classique doit être tendu $(s_{\acute{e}q}>s_0)$

20)
$$s = \sqrt{y^2 + b^2 + 2yb\sin(\theta - \phi)}$$
 $\mathcal{E}'_p = \frac{1}{2}k(y^2 + b^2 + 2yb\sin(\theta - \phi)) - mga\sin\theta + cste$

21) Sans inclinaison, $m{ heta}_{\acute{e}q} = \frac{\pi}{2}$ et **peut** correspondre à un équilibre instable si kyb > mga (cas de la figure) Avec inclinaison, $m{ heta}_{\acute{e}q}$ vérifie la relation $kyb\cos(m{ heta}_{\acute{e}q} - m{\phi}) = mga\cos m{ heta}_{\acute{e}q}$, cet équilibre est **toujours stable**. La comparaison est biaisée mais nous répondrons ce que l'examinateur veut lire : L'inclinaison permet d'obtenir un équilibre **stable** à $m{ heta}_{\acute{e}q} \neq \frac{\pi}{2}$

22)
$$\Gamma' = mga\cos\theta - kyb\cos(\theta - \phi) = (mga - kyb\cos\phi)\cos\theta - kyb\sin\theta\sin\phi$$

23 & 24) T.M.C. au système :
$$\ddot{\boldsymbol{\theta}} + \frac{kyb\phi}{J}\boldsymbol{\theta} = \frac{mga-kyb}{J}$$
 $\rightarrow \omega_0 = \sqrt{\frac{kyb\phi}{J}}$ $\theta_0 = \frac{mga-kyb}{kyb\phi} \left(= \frac{mga-kyb\cos\phi}{kyb\sin\phi} \right)$

25 & 26)
$$\phi = \frac{4\pi^2 J}{mg_0 a T^2} = \frac{4\pi^2 a}{g_0 T^2} = 9, 9. \, \mathbf{10^{-5}} \, rad$$
 $\theta'_0 = \frac{m\Delta g a}{kyb\phi} = \frac{\Delta g}{g_0 \phi}$ $\left(\theta'_0 = \frac{m\Delta g a}{kyb\sin\phi} = \frac{\Delta g\cos\phi}{g_0\sin\phi}\right)$ $\left(mg_0 a = kyb\right)$

27) $\theta'_0 = 1, 0.10^{-4} \, rad \sim 0, 34'$ L'angle est petit mais mesurable. En goniométrie pure cela risque d'être un peu juste mais avec un grossissement, c'est tout à fait possible. **28)** En assimilant le champ de pesanteur au champ gravitationnel $\vec{g}_B(r) = -\frac{4\pi R^3 (\mu_m + \Delta\mu) \mathcal{G}}{3r^2} \vec{e}_r$

29)
$$g_{BZ} = \frac{4\pi R^3 (\mu_m + \Delta \mu) \mathcal{G}}{3r^2} \cos \theta = \frac{4\pi R^3 (\mu_m + \Delta \mu) \mathcal{G} h}{3(h^2 + x^2)^{3/2}}$$

30-34) La distribution de masse peut être décomposée ainsi :

35 & 36) Le champ gravitationnel à l'extérieur d'une distribution à symétrie sphérique est le même que celui créé par la même masse placée au centre. Il suffit donc de placer **une boule d'or au centre** de la grotte sphérique, **la masse d'or étant égale à la masse de terre déblayée**!

On évalue $\mu_m \sim \frac{M_T}{\frac{4}{3}\pi R_T^3} \rightarrow m = \frac{4}{3}\pi R^3 \mu_m \sim \frac{R^3}{R_T^3} M_T = 23 \ tonnes$ Ce résultat est surestimé car la croûte terrestre est moins dense $(\mu_m \sim 3.10^3 \ kg.m^{-3}) \rightarrow m = \frac{4}{3}\pi R^3 \mu_m \sim 13 \ t$ $(R_{or} \sim 54 \ cm)$

A la cotation du 12 décembre 2019, cela représente un trésor de 500 millions d'euros ... Une pelle, vite ! La sensibilité des gravimètres n'est pas si fine, un gros écart autour de la valeur ne permettrait pas d'être démasqué : $\Delta m = \frac{4}{3}\pi R^3 \Delta \mu = \frac{h^2}{G} \Delta g = 2,4~t~$ (La contribution de notre or au champ total est faible).

37) Les deux grottes créent deux anomalies négatives, la première étant la plus creuse :

38)
$$\rho j = E \rightarrow \rho \frac{I}{A} = \frac{U}{L} \rightarrow RI = U$$
 Avec $\mathbf{R} = \frac{\rho L}{A}$

39) On évite ainsi des phénomènes capacitifs qui **accumuleraient des charges** aux abords des électrodes et qui **diminueraient la tension effectivement** appliquée.

40 & 41) Le milieu étant homogène, les lignes de courant sont rectilignes.

Le courant I se conserve à travers chaque **hémisphère** de rayon $r: j(r) = \frac{I}{2\pi r^2} \rightarrow \vec{E} = \frac{\rho I \vec{e}_r}{2\pi r^2} \rightarrow V = \frac{\rho I}{2\pi r}$

42) On superpose deux états semblables au précédent $\left(\vec{E}_A = \frac{\rho I \ \vec{e}_{rA}}{2\pi r_A^2} \ ; \vec{E}_B = -\frac{\rho I \ \vec{e}_{rB}}{2\pi r_B^2}\right) : V(P) = \frac{\rho I}{2\pi} \left(\frac{1}{r_A} - \frac{1}{r_B}\right)$ Les équipotentielles sont définies par l'équation $\frac{1}{r_A} - \frac{1}{r_B} = cste$

43 & 44)
$$\Delta V = \frac{\rho I}{2\pi} \left(\frac{1}{MA} - \frac{1}{MB} - \frac{1}{NA} + \frac{1}{NB} \right) \rightarrow f = \frac{1}{MA} - \frac{1}{MB} - \frac{1}{NA} + \frac{1}{NB} \rightarrow f_{Wenner} = \frac{1}{l}$$

- **45)** $f_{Wenner}=0,30~m^{-1}$ Plaçons-nous aux points M(-1,7;0) et N(1,7;0), on lit $\Delta V=2,4~V$ $\rightarrow \rho=1,0.10^2~\Omega.~m$ L'accord est parfait!
- 46) Les lignes de courant sont des lignes de champ \vec{E} , elles sont donc orthogonales aux équipotentielles.
- **47)** Si AB est faible, peu de lignes de courant traverseront la couche inférieure ightarrow $ho_{ap}=
 ho_1$.

Si AB est très grande, la plupart des lignes de courant traverseront la couche inférieure sur une longue distance ightarrow $ho_{ap}=
ho_2$.

48) $\rho_1 = 400 \ \Omega$. m $\rho_2 = 40 \ \Omega$. m Nous allons donc suivre la courbe paramétrée par $\frac{\rho_2}{\rho_1} = 0, 1$

On relève figure 18 la valeur de $\frac{\rho_a}{\rho_1}=\frac{170}{400}\sim 0$, 43 en $\frac{AB}{2}=8$, 0 m.

L'intersection de la courbe paramétrée "0,1" avec l'horizontale "0,43" se produit en $\frac{AB}{2h_1} \sim 2,2$ On en déduit que h_1 est de l'ordre de h_2 .