

Concrétisation disciplinaire Projet ESTER

ESTER : Natacha FOUQUET Anna LLOYD

Référent : Vincent Barichard Laurent Garcia Chefs de projet (M2):
Hugues DUMONT
Guillaume HUET
Zineb LOUKILI

Équipe de développement (M1) :
Nidal BEDYOUCH
Imane BELHOUARI
Théo DÉZÉ
Charles MALLET

Table des matières

1	Ges	etion du projet
	1.1	Présentation du projet
	1.2	Choix technologies
		1.2.1 Technologie côté serveur
		1.2.1.1 JEE
		1.2.2 Technologie côté client
		1.2.2.1 Highcharts
		1.2.3 Base de données
		1.2.3.1 MongoDB
	1.3	Planification et répartition des tâches
		1.3.1 Outils utilisés
		1.3.2 Diagramme de Gantt
		1.3.3 Répartitions des rôles
2	Bac	ek-end
	2.1	Base de Données
		2.1.1 Utilisateur ESTER
		2.1.2 Questionnaire
		2.1.3 Réponse
		2.1.4 Sécurité
	2.2	Connexion
		2.2.1 Génération chaîne de caractère aléatoire
		2.2.2 Formulaire première connexion patient
	2.3	Administration e-mail
		2.3.1 Envoie Email
		2.3.2 Réinitialisation mot de passe oublié
3	Fro	nt-end 12
	3.1	Structure du site et style
	3.2	Questionnaire
		3.2.1 Création de questionnaires
		3.2.2 Questionnaire Eval_Risk_TMS
	3.3	Résultat
		3.3.0.1 DWR
4	Pro	blèmes rencontrés
	4.1	Problèmes au cours du projet
		4.1.1 Modification des Scripts
		4.1.2 Versions Bootstrap et JQuery
	4 2	Perspectives d'amélioration 20

Remerciement

Nous souhaitons, tout d'abord remercier nos chefs de projet qui nous ont aidés et soutenus tout le long de notre réalisation. Sans leur participation, nous n'aurions jamais été en mesure d'aboutir au site que nous avons actuellement. Grâce à leur implication, nous avons pu mieux intégrer le sujet et nous améliorer dans nos domaines respectifs. Dans un deuxième temps, nous voudrions remercier nos professeurs qui sont demeurés présents à nos côtés pendant tout le développement, qui nous écoutés et conseillés lorsque nous en avions. Enfin, nous tenions à remercier l'équipe ESTER pour leur retour à la mi-novembre concernant la réunion de présentation de nos travaux d'alors.

Introduction

Au cours de ce semestre de Master 1 Informatique, nous avons participé en concrétisation disciplinaire, du développement d'une application ou d'un site web. Nous devions répondre au besoin d'un client, en collaboration avec les Master 2. Ces derniers avaient pour rôle d'organiser les tâches et de gérer toute l'organisation du projet, ainsi que la structure globale. À ce titre, ils étaient les organisateurs et chefs de projet. En tant que Master 1, nous étions chargés du développement de l'application. Nous devions nous assurer de la bonne implémentation des fonctionnalités et du bon fonctionnement de l'application. Dans ce rapport, vous pourrez découvrir l'avancée de notre projet durant ce semestre, selon quatre points. En un premier temps, nous parlerons dans ce compte-rendu de la Gestion de projet suivi Projet côté Serveur. Puis, nous poursuivrons avec la partie côté Client et nous terminerons en abordant les Difficultés et Problèmes rencontrés.

Chapitre 1

Gestion du projet

1.1 Présentation du projet

En lien avec l'équipe ESTER, nous avons reçu, pour tâche, de réaliser un site web permettant de créer des questionnaires médicaux auxquels pourraient répondre des salariés de diverses entreprises. Selon le cahier des charges et tout en respectant le secret professionnel, nous devions faire en sorte que les patients puissent répondre aux questions que les médecins auraient préparé dans des questionnaires, enregistrés dans une base de données. Une fois créé et enregistré, le corps médical devait pouvoir les attribuer en fonction des cas. Par la suite, des résultats devaient être calculé et affiché aux personnels soignants afin qu'ils puissent se rendre compte des chiffres.

1.2 Choix technologies

1.2.1 Technologie côté serveur

Nous avons proposer d'utilisé NodeJS coté serveur, qui avais pour avantage d'être bien intégré avec MongoDB et de nous permetre d'utilisé un seul technologies qui est le JavaScript. Cela nous aurrais économiser du temps de développément.

1.2.1.1 JEE

Nos chefs de projet ont décidé d'utiliser le JEE car c'est une technologie qu'ils connaisaient et car le JEE nous sera utilie lors du prochain semestre. JEE est la version spécialise de Java pour la création d'application pour les entreprises et permet de développé des service web.

1.2.2 Technologie côté client

JavaScript : Est un langage de programmation développé par Netscape en 1995 sous le nom de LiveScript. Il s'agit d'un langage de script léger, orienté objet, principalement connu comme le langage de script des pages web.

CSS : « Cascading Style Sheets » ce qui signifie « feuille de style en cascade ». Il s'agit d'un langage informatique utilisé pour mettre en forme les fichiers HTML ou XML.

Bootstrap : Correspond à une collection d'outils, développé depuis 2010, utiles pour la création de sites web. Cette collection contient des codes HTML et CSS ainsi que des extensions JavaScript.

Le projet, nous demande une certaine mise en forme (voir figure si dessous) des résultats. Dans les besoins, il avais aussi d'exporter les donnée dans diverses formats CSV, PDF, PNG et autres et d'être compatible avec les PC/Tablette/Smartphone.

1.2.2.1 Highcharts

Highcharts est un librairie JavaScript qui permet de généré des graphiques interactifs. Les paramétrages s'effectue en JSON et offre la possibilité export dans les différents formats.

1.2.3 Base de données

Pour le projet, nous avons eu besoin d'une base de données modulaire car un des besoins était que les questionnaires pouvait évoluer création, modification ou ajout de question. Et un autre des besoins était que l'utilisateur puisse faire des sauvegarde partiel pour reprendre le questionnaires en case de problème ou si l'utilisateur veut faire une pause.

En plus des besoins spécifique pour la sauvegarde des questionnaires et des réponses. Il y a des besoins plus génériques comme la gestion des comptes que nous verrons plus en détails dans un autre partie.

1.2.3.1 MongoDB

Nous somme partie sur du MongoDB qui fais partie de la mouvance NoSQL qui s'écarte du paradigme classique des bases relationnelles. Cela nous permet de nous affranchir d'une des contraintes des base de données SQL qui est de devoir définir un schéma prédéfini. Nous somme quand même partie d'un schéma de base pour avoir des données en partie structurée.

En offrant un plus grande flexibilité en permettant de gérer des données hétérogènes. Dans cas cela est particulièrement utile pour les questionnaires et les réponses car si un questionnaires est modifier, il faut que les anciens réponses reste en parti utilisable.

FIGURE 1.1 – Logo de MongoDB

Ce choix du type de la base de données a été proposer par nos chefs de projet. La raison du choix de MongoDB est car il est le membre le plus populaire de la famille NoSQL.

1.3 Planification et répartition des tâches

1.3.1 Outils utilisés

- Git hub : Git est un outil très utilisé de nos jours dans les entreprises et projets nécessitant un partage de fichiers. Grâce à un espace de stockage à distance et à des fichiers en local, chacun peut travailler sur sa partie et la partager aux autres de manière efficace. Sitôt une partie réalisée, les utilisateurs de git peuvent envoyer en ligne leurs tâches ce qui permet à leurs collègues de récupérer le code et de l'ajouter au leur par fusion.
- Trello : Trello est un site internet que nous avons utilisé régulièrement afin de nos attribués des tâches. Il nous permettait de connaître les parties de chacun et ainsi de mieux nous diriger lorsqu'il était nécessaire de demander des fonctionnalités, les uns les autres.
- Slack:

Nous disposions tout au long du cycle de développement d'un Slack afin d'échanger respectivement nos remarques et interrogations. Toutefois, ne disposant pas d'une version

premium, nous ne l'avons pas utilisé pour partager des informations importantes car elles auraient été perdues.

— e-mail:

Comme dit précédemment, nous n'avons pas pu nous servir de Slack pour échanger de documents importants ou pour garder des conversations importantes. C'est pourquoi nous avons privilégié les adresses e-mails.

1.3.2 Diagramme de Gantt

FIGURE 1.2 – Diagramme de Gantt

1.3.3 Répartitions des rôles

Nos chefs de projet nous ont demandés dès le début du semestre de leur indiquer nos préférences concernant nos tâches dans le cycle de développement. Imane et Charles se sont occupés principalement du Front-End, Théo et Nidal se sont chargés du Back-End. Par ailleurs, nos Master 2 souhaitaient que nous nous attribuions un rôle de groupe :

Nidal : Chargée de décisions
Imane : Chargée d'organisation
Théo : Référent technique

— Charles : Chargé de communication

Chapitre 2

Back-end

2.1 Base de Données

La basse de données est divisé en collections

Pour l'implémentation nous avons utilisé le driver officiel proposer par MongoDB pour le Java. Nous avons crée un classe en Java qui nous héritons et que permet des interfaces pour simplifier l'utilisation dans le reste du code.

Nous avons divisé notre base de données en plusieurs collections.

2.1.1 Utilisateur ESTER

Clée	Valeur	
Identifiant	Chaine de caratères peut être utilisé à la place du mail lors de la connexion	
Nom	Chaine de caratères	
Prénom	Chaine de caratères	
Première connexion	Boolean	
Mot de passe	Chaine de caratères chiffré	
Mail	Chaine de caratères	
Statut	Chaine de caratères représente le status du salarié (Medecin, Administrateur, Preventeur, Assistant)	

FIGURE 2.1 – Tableau de la collection Utilisateur ESTER

La collection correpond à celle prévue par nos chefs de projet comme les collections Entreprise et Salarie qui sont des collections proches (L'entreprise ne possède pas d'email et le salarie n'a pas de mots de passe mais a la liste des questionnaires réponds ou a répondre) de Utilisateur ESTER donc nous nous répéterons pas.

2.1.2 Questionnaire

Clée	Valeur
Nom	Mom du questionnaire
Identifiant	Version simplifier du nom
Identifiant ESTER	Identifiant de la personne qui a soumis le questionnaire
Date de soumission	Date
Mail	Chaine de caratères
HTML	Chaine de caratères (HTML brut)

FIGURE 2.2 – Tableau de la collection questionnaire

2.1.3 Réponse

Clée	Valeur
Identifiant salarie	Identifiant du salarie qui a répondu
Identifiant questionnaire	Identifiant du questionnaire répondu
Reponses	Tableau associatif qui lie les identifiants des reponses avec leurs reponses

FIGURE 2.3 – Tableau de la colection réponse

2.1.4 Sécurité

Car nous stockons des mots de passe dans la base de données, nous avons eu besoin de sécuriser les mots de passe pour ne pas les stocker en clair.

Nous avons comparé plusieurs technologies MD5, SHA256, SHA512, PBKDF2, BCrypt et SCrypt. Ce sont tous des fonctions de hachage mais certaine propose de base le salage (PBKDF2, BCrypt, SCrypt) qui permet de ce protéger contre les attaques utilisant des rainbow tables ou par dictionnaire.

Certaine fonction de hachage sont difficilement optimisable ce qui permet de rendre plus difficile les attaques par brute force ce qui permettra de donné le temps a l'utilisateur de changer sont mots de passe.

Nous avons choisi d'utilisé BCrypt car il propose un implémentation en java et il fais parti des plus sécuriser de algorithme.

2.2 Connexion

2.2.1 Génération chaîne de caractère aléatoire

— Problématique : Lors de la création d'un utilisateur ester par un autre (un médecin peut créer un compte infirmier, assistant, préventeur), un mot de passe provisoire est

- communiqué à l'utilisateur crée pour sa première connexion. D'autre part, le patient se connecte en utilisant un identifiant unique de 5 caractères communiqué par son médecin.
- Implémentation : Pour l'implémentation, nous avons utilisé une instance de la classe SecureRandom ¹ permettant de tirer aléatoirement les caractères de la chaîne et de la permutée aléatoirement afin d'être imprédictible.
- Bilan : Le générateur de chaîne de caractère aléatoire est fonctionnel et sera utilisé pour la génération de mot de passe provisoire. Tandis que, l'identifiant du patient sera abandonné vu que la complexité vérification de l'unicité est haute. Les M2 se chargeront de définir un algorithme générant des identifiants cryptés et successives.

Figure 2.4 – E-mail pour la première connexion

^{1.} Cette classe fournit un générateur de nombres aléatoires (RNG) de chiffrement fort.

FIGURE 2.5 – Générateur de code patient

2.2.2 Formulaire première connexion patient

Lors de la création d'un compte patient seul l'identifiant est enregistré en base de données. Et afin de compléter les informations manquantes au profil tel que le sexe, l'âge en quintal (pour préserver l'anonymat du patient) , poste de travail, secteur d'activité et département , le patient est redirigé lors de sa première connexion vers le formulaire ci-dessous.

FIGURE 2.6 – Formulaire du patient à la première connexion

2.3 Administration e-mail

2.3.1 Envoie Email

- Problématique : Pour la gestion des utilisateurs ester, nous avons eu besoin d'envoyer des emails pour communiquer un mot de passe provisoire pour la première connexion ainsi qu'un lien permettant de réinitialiser le mot de passe.
- JavaMail API et protocole :
 - 1. JavaMail API: L'API JavaMail fournit une plateforme indépendante et un Framework de protocoles indépendant pour créer des mails et des applications de messagerie. L'API JavaMail fournit un ensemble de classes abstraites définissant des objets qui constituent un système de messagerie. Il s'agit d'un package optionnel (extension standard) pour la lecture, la composition et l'envoi de messages électroniques. JavaMail fournit des éléments utilisés pour construire une interface avec un système de messagerie, y compris des composants système et des interfaces. Bien que cette spécification ne définisse aucune implémentation spécifique, JavaMail inclut plusieurs classes qui implémentent les normes de messagerie Internet RFC822 et MIME. Ces classes sont livrées dans le cadre du package de classe JavaMail.
 - 2. Protocole SMTP : SMTP est l'acronyme de Simple Mail Transport Protocol. Ce protocole défini par la recommandation RFC 821 permet l'envoi de mails vers un serveur de mails qui supporte ce protocole.

— Implémentation :

- 1. Envoie email : L'envoi d'email en utilisant JavaMail API nécessite :
- 2. Une authentification nécessitant un email, son mot de passe, un hôte et un port. Pour notre projet en s'est servi du serveur Gmail correspondant à 'smtp.gmail.com ' et le port 587;
- 3. Une instance MimeMessage servant à indiquer destinataire, sujet et corps du message pouvant être en html ou chaîne de caractère.
- 4. Pour Java9+, il est nécessaire d'ajouter le module activation.jar parce qu'il n'est plus activé par défaut.
- 5. Configuration serveur mail : Un compte administrateur peut accéder à l'interface lui permettant de configurer l'envoi d'email en indiquant un email, son mot de passe, un hôte et un port.

2.3.2 Réinitialisation mot de passe oublié

Dans le cadre de la gestion des utilisateurs ester, il s'est avéré important de définir la fonctionnalité réinitialisation de mot de passe. Pour cette fin, nous avons défini deux interfaces, la première sert à indiquer l'email du compte et la deuxième sert définir un nouveau mot de passe. Ainsi que l'email de réinitialisation expire dans un délai prédéfini. Pour l'implémenter, nous avons optons pour l'utilisation d'un token unique dans l'URL envoyé en email. Il est généré en utilisant la méthode Java UUID.randomUUID(), qui sert à créer un UUID aléatoire afin d'éviter les collisions. Ainsi ce token est enregistré en base de données en le liant à l'email du compte et la date d'expiration qui à son tour est vérifié lors de l'accès au lien afin de définir sa validité.

Chapitre 3

Front-end

3.1 Structure du site et style

Pour la partie interface utilisateur, nous avons réalisé des pages web en JSP. Nous avions pour consigne de faire en sorte que celles-ci soient responsives grâce à Bootstrap. L'utilisation de scripts JSP représentaient un réel avantage dans cette tâche cas elle permettait de rendre modulable le site tout entier grâce à des liaisons avec des servlets correspondants. Chaque page, selon un lien cliquable, peut afficher un nouveau champ et modifier des éléments du Back-end. Par ailleurs, nous avons défini deux fichiers JSP, servant de header et de footer. Nous les avons appelés dans la plupart de nos pages. Grâce aux Header, il est aisé de se connecter ainsi que se déplacer à travers le site, selon l'utilisateur connecté. Le Footer, quant à lui, permet de trouver les mentions légales, un descriptif du projet et les contacts.

FIGURE 3.1 – Page d'Accueil ESTER

Afin de donner un exemple concernant l'aspect modulable de nos pages, nous pouvons regarder la page de Connexion. Sur cette dernière, en fonction du bouton sélectionné ("Sala-rié"/"Entreprise"/"Utilisateur" 1), vous aurez des champs de saisi différents. Puis, une fois la vérification effectuée, l'utilisateur du site sera redirigé automatiquement au bout de quelques secondes vers sa page.

Une fois connecté, l'utilisateur se retrouve sur la page qui correspond à son statut. Il peut choisir ce qu'il souhaite faire à l'aide des liens dans le Menu à gauche. Pour certains liens, du

^{1.} Fait référence aux utilisateurs médicaux et aux administrateurs; par opposition aux entreprises et salariés.

FIGURE 3.2 – Page de Connexion

contenu s'ajoutera sur sa page s'il les sélectionne. Il sera également redirigé vers une nouvelle page correspondante pour d'autres.

FIGURE 3.3 – Page de l'Administrateur

3.2 Questionnaire

3.2.1 Création de questionnaires

La problématique consistait à proposer un outil de création de questionnaire facile à utiliser. Cet outil était un des besoins fondamentaux dans le projet qui nous a été donnés. La solution pour répondre au besoin formulé par le client que nous avons adopté, était de créer un générateur de questionnaires. L'utilisateur, à l'aide de celui-ci, peut créer des formulaires HTML en glissédéposé. Étant donné que les utilisateurs de cet outil sont des non-informaticiens, on a adapté cet outil aux besoins de ces derniers pour le rendre plus facile aussi bien à l'utilisation qu'à la compréhension de son fonctionnement.

FIGURE 3.4 – Ajout d'une question dans le générateur de questionnaires

Cette interface permet à l'utilisateur de créer un questionnaire et paramétrer ses questions en glissant les questions de la partie droite vers la partie gauche et en cliquant sur la question déposée, un nouveau formulaire apparaît avec un nombre de zones de texte différent selon le type de question. Ce formulaire permet de modifier ou remodifier la question.

FIGURE 3.5 – Modification d'une question

Pour supprimer une question, il suffit de glisser la question hors du cadre. Cela permet de la retirer des autres questions.

FIGURE 3.6 – Suppression d'une question

Lorsqu'on souhaite repositionner les questions, nous avons fait en sorte qu'il suffise de glisser puis déposer les questions à l'endroit où nous souhaitons la placer (en restant dans le même cadre).

FIGURE 3.7 – Repositionnement des questions

Pour finaliser la création d'un questionnaire, il faut que l'utilisateur saisisse le nom et l'identifiant du questionnaire puis en cliquant sur le bouton enregistrer. Le questionnaire va être sauvegardé en deux formes différentes, la première est sous forme d'un fichier HTML (figure 3.9) et la deuxième est dans la base de données qu'on peut consulter à partir de la liste des questionnaires (figure 3.10).

FIGURE 3.8 – Saisie de données pour finaliser la sauvegarde

FIGURE 3.9 – Sauvegarde sous forme d'un formulaire HTML

FIGURE 3.10 – Affichage du questionnaire enregistré dans la base de données

3.2.2 Questionnaire Eval_Risk_TMS

Dans le cahier des charges, il était spécifié qu'un questionnaire devait impérativement être créé. Eval_Risk_TMS est un questionnaire relatif à la médecine du travail. Il fut le premier créé, sous forme d'un script HTML. Il a été enregistré dans un fichier HTML ainsi que dans la base de données en tant que String. Il est ensuite appelé dans la partie d'affichage des utilisateurs où le personnel soignant peut regarder les pages une part une dont Eval_Risk_TMS ou encore les salariés qui peuvent y répondre.

FIGURE 3.11 – Logo de Santé publique France

3.3 Résultat

L'implémentation de base de Highcharts a été assez simple, mais la création des lignes de séparation (exemple "D'accord vs Pas d'accord") et de coche pour les réponses du le salarie on demandé plus de temps.

Ce temps en plus est du au temps à la nécessité pour l'adapter a nos besoins. Car certaine n'avais pas des fonctions par défaut pour efféctuer les taches si dessus.

3.3.0.1 DWR

DWR (Direct Web Remoting) est un librairie Java qui permet de recevoir des résultats du serveur sur le principe Ajax (asynchronous JavaScript and XML) qui permet de faire des requêtes aux serveur, mais de manière simplifier.

Cette librairie nous permet de faire le line entre Highcharts et notre serveur pour récupéré les information telle que les questions et leurs valeurs (réponse et pourcentage).

FIGURE 3.12 – Mise en forme des résultat rendus final

Chapitre 4

Problèmes rencontrés

4.1 Problèmes au cours du projet

4.1.1 Modification des Scripts

Dans un premier temps, nous avons créé des premières pages HTML afin d'avoir un rendu visuel et de définir un premier style CSS servant à voir, pour le développement, à quoi s'apparenterait les pages finales.

FIGURE 4.1 – Ancienne Page de Connexion

FIGURE 4.2 – Ancienne Page de l'Administrateur

Au sein de nos pages, nous avons défini des liens permettant d'appeler des pop-up de Bootstrap. Ces Modals devaient nous permettre d'une manière élégante de créer des comptes ou encore d'appeler la partie de modification de l'interface utilisateur par l'administrateur.

FIGURE 4.3 – Modal avec Bootstrap

L'interface de modification graphique permettait à l'administrateur de modifier à loisir chaque page du site comme il le souhaitait. Grâce à JQuery, nous récupérions la page choisie dans un modal et l'interface permettait de faire glisser de nouveaux éléments dans la page selon le désir de son utilisateur. Il pouvait également les supprimer ou les redimensionnés, tout en demeurant responsive.

FIGURE 4.4 – Interface de modification graphique pour l'administrateur

Toutefois, les scripts HTML ont fini remplacés par des scripts JSP car plus avantageux comme dit précédemment. De ce fait, les modals et l'interface utilisateur, n'étant plus compatibles avec les nouveaux scripts, ont été laissés. D'un autre côté, nous n'avons pas tous défini de la même manière nos styles CSS. Ce fut les membres d'ESTER qui décidèrent au cours de la réunion de novembre du visuel qu'ils préféraient. Nous avons ensuite appliqués les modifications voulues et directement réécrit dans des scripts JSP. Cependant, ces changements nous ont coûté un peu de temps qui aurait pu nous être utile dans l'implémentation d'autres fonctionnalités.

4.1.2 Versions Bootstrap et JQuery

N'étant pas tous parti de la même origine, d'un même code, nous avons développé chacun nos tâches à part tel que nos chefs de projet nous les donnaient. Cependant, lors de l'intégration commune en novembre, nous nous sommes aperçus de certaines incompatibilités. Certaines parties étaient développés avec la dernière version de Bootstrap et la dernière de JQuery, tandis que d'autres utilisaient la précédente. De ce fait, il fut plus compliqué, plus laborieux de réunir chaque partie et de faire correspondre chaque page à nos propres normes.

4.2 Perspectives d'amélioration

Malgré les nombreuses semaines à travailler sur ce projet, nous n'avons pas été en mesure de finir totalement le projet. Avec les difficultés listées précédemment et les tâches de plus en plus nombreuses, nous n'avons pu que faire au mieux. Le projet que nous avons à vous proposer correspond donc avant tout aux principales fonctionnalités attendues. Toutefois, il serait envisageable d'intégrer davantage les entreprises dans le site puisqu'elles sont légèrement délaissées. Également, les questionnaires créés par les médecins et administrateurs ne prennent pas en compte les scores qui seraient grandement utiles dans les calculs des statistiques. Nous pouvons penser qu'à terme, il serait remis l'interface de modification graphique. Bien qu'elle fut avant tout penser en HTML, il devrait être possible de la réutiliser en correspondance avec le JSP.

Conclusion

Ce projet fut pour nous une véritable nouveauté. Encadré par nos chefs de projets avec qui nous avons eu plusieurs réunions et avec qui nous avons souvent échangés, nous avons pu développer un site web assez important. En dépit des difficultés rencontrés, nous avons essayé de mener notre travail jusqu'à son terme. Le projet ESTER fut pour nous l'occasion de découvrir certaines technologies et de les mettre en application, telles que Bootstrap ou surtout JEE. Le cycle de développement que nous avons suivis, nécessitait une bonne organisation. Que ce soit de définir la base de données, de choisir les technologies ou d'implémenter les fonctionnalités dans le temps imparti, il était impossible de passer outre une certaine rigueur dans le planning. La réalisation de ce site nous a également demandés de faire preuve d'une certaine adaptation et de coordination. Nous avons pu constater que travailler dans son coin sur un projet d'une telle importance, n'est pas possible, tout comme prendre les tâches les unes après les autres sans compter sur celles à venir. Nous avons partager nos connaissances, nos visions sur le projet et à ce titre, nous avons pu bien plus appréhender le sujet. Par manque de temps, nous n'avons pas faire aboutir totalement le site. Tout de même, nous sommes parvenus à créer une interface utilisateur correspondant aux attentes de notre client. Nous avons développé un générateur de questionnaires que les médecins pourront prendre en main assez aisément et enregistrer leur travaux. Les salariés peuvent répondre aux questionnaires et les utilisateurs sont en mesure d'accéder aux résultats calculés selon les réponses données par l'utilisateur. Enfin, plusieurs autres fonctionnalités ont été ajoutées à ces principales afin que les utilisateurs puissent mieux s'approprier les pages de notre site.

Table des figures

1.1	Logo de MongoDB	4
1.2	Diagramme de Gantt	5
2.1	Tableau de la collection Utilisateur ESTER	6
2.2	Tableau de la collection questionnaire	7
2.3	Tableau de la colection réponse	7
2.4	E-mail pour la première connexion	
2.5	Générateur de code patient	9
2.6	Formulaire du patient à la première connexion	10
3.1	Page d'Accueil ESTER	12
3.2	Page de Connexion	13
3.3	Page de l'Administrateur	13
3.4	Ajout d'une question dans le générateur de questionnaires	14
3.5	Modification d'une question	14
3.6	Suppression d'une question	15
3.7	Repositionnement des questions	15
3.8	Saisie de données pour finaliser la sauvegarde	15
3.9	Sauvegarde sous forme d'un formulaire HTML	16
3.10	Affichage du questionnaire enregistré dans la base de données	16
3.11	Logo de Santé publique France	17
3.12	Mise en forme des résultat rendus final	17
4.1	Ancienne Page de Connexion	18
4.2	Ancienne Page de l'Administrateur	19
4.3	Modal avec Bootstrap	19
4.4	Interface de modification graphique pour l'administrateur	20

Bibliographie

 $[1]\,$ Donald Knuth. Knuth : Computers and type setting.