# (19) World Intellectual Property Organization International Bureau



# 

# (43) International Publication Date 28 June 2001 (28.06.2001)

# (10) International Publication Number WO 01/45728 A2

A61K 38/08, (51) International Patent Classification7: 39/00, 39/385, 39/39, C07H 21/04, C07K 14/435

Road S.W., Rochester, MN 55902 (US). KEOGH, Elissa [US/US]; 799 Caminito Dia #2, San Diego, CA 92122 (US).

- (21) International Application Number: PCT/US00/35516
- (74) Agents: LOCKYER, Jean, M. et al.; Townsend Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111 (US).
- (22) International Filing Date:
  - 20 December 2000 (20.12.2000)
- (25) Filing Language:

English

(26) Publication Language:

**English** 

(30) Priority Data:

60/171.312 09/633,364

21 December 1999 (21.12.1999) 7 August 2000 (07.08.2000) US

- (71) Applicant: EPIMMUNE INC. [US/US]; 5820 Nancy Ridge Drive, San Diego, CA 92121 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): FIKES, John [US/US]; 4671 Robbins Street, San Diego, CA 92122 (US). SETTE, Alessandro [IT/US]; 5551 Linda Rosa Avenue, La Jolla, Ca California 92037 (US). SIDNEY, John [US/US]; 4218 Corte delaa Siena, San Diego, CA 92130 (US). SOUTHWOOD, Scott [US/US]; 19679 Strathmore Drive, Santee, CA 92071 (US). CHESNUT, Robert [US/US]; 1473 Kings Cross Drive, Cardiff-by-the-Sea, CA 92007 (US). CELIS, Esteban [US/US]; 3683 Wright
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

With declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: INDUCING CELLULAR IMMUNE RESPONSES TO PROSTATE CANCER ANTIGENS USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS

(57) Abstract:

15

20

25

30

35

40

# 5 INDUCING CELLULAR IMMUNE RESPONSES TO PROSTATE CANCER ANTIGENS USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS

#### L BACKGROUND OF THE INVENTION

A growing body of evidence suggests that cytotoxic T lymphocytes (CTL) are important in the immune response to tumor cells. CTL recognize peptide epitopes in the context of HLA class I molecules that are expressed on the surface of almost all nucleated cells. Following intracellular processing of endogenously synthesized tumor antigens, antigen-derived peptide epitopes bind to class I HLA molecules in the endoplasmic reticulum, and the resulting complex is then transported to the cell surface. CTL recognize the peptide-HLA class I complex, which then results in the destruction of the cell bearing the HLA-peptide complex directly by the CTL and/or via the activation of non-destructive mechanisms, e.g., activation of lympholeines such as tumor necrosis factor-α (TNF-α) or interferon-γ (IFNγ) which enhance the immune response and facilitate the destruction of the tumor cell.

Tumor-specific helper T lymphocytes (HTLs) are also known to be important for maintaining effective antitumor immunity. Their role in antitumor immunity has been demonstrated in animal models in which these cells not only serve to provide help for induction of CTL and antibody responses, but also provide effector functions, which are mediated by direct cell contact and also by secretion of lymphokines (e.g., IFNγ and TNF- α).

A fundamental challenge in the development of an efficacious tumor vaccine is immune suppression or tolerance that can occur. There is therefore a need to establish vaccine embodiments that elicit immune responses of sufficient breadth and vigor to prevent progression and/or clear the tumor.

The epitope approach, as we have described, represents a solution to this challenge, in that it allows the incorporation of various CTL, HTL, and antibody (if desired) epitopes from discrete regions of one or more target tumor-associated antigens (TAAs) in a single vaccine composition. Such a composition may simultaneously target multiple dominant and subdominant epitopes and thereby be used to achieve effective immunization in a diverse population.

Prostate cancer is the most common malignancy in men. Current therapies, i.e., chemotherapy combined with androgen blockade, antiandrogen withdrawal, and other secondary hormonal therapies, have met with limited success. Thus, there is a need to develop more efficacious therapies. The multiepitopic immunotherapy vaccine compositions of the present invention fulfill this need.

Antigens that are associated with prostate cancer include, but are not limited to, prostate specific antigen (PSA), prostate specific membrane antigen (PSM), prostatic acid phosphatase (PAP), and human kallikrein2 (hK2 or HuK2). These antigens represent important antigen targets for the polyepitopic vaccine compositions of the invention.

PSM is also an important candidate for prostate cancer therapy. It is a Type II membrane protein that is expressed at high levels on prostate adenocarcinomas. The levels of expression increase on

10

15

20

25

30

35

40

metastases and in carcinomas that are refractory to hormone therapy. PSM is not generally present on normal tissues, although low levels have been detected in the colonic crypts and in the duodenum, and PSM can be detected in normal male serum and seminal fluid (see, e.g., Silver et al., Clin. Cancer Res. 3:81-85, 1997). CTL responses to PSM have also been documented (see, e.g., Murphy et al., Prostate 29:371-380, 1996; and Salgaller et al., Prostate 35:144-151, 1998).

PAP is a tissue-specific differentiation antigen that is secreted exclusively by cells in the prostate (see, e.g., Lam et al., Prostate 15:13-21, 1989). It can be detected in serum and levels are increased in patients with prostate carcinoma (see, e.g., Jacobs et al., Curr. Probl. Cancer 15:299-360, 1991). The PAP protein sequence has, at best, a 49% sequence homology with other acid phosphatases with the homologous regions distributed throughout the protein. Accordingly, PAP-specific epitopes can be identified and several different CTL epitopes have been described (see, e.g., Peshwa et al., Prostate 36:129-138, 1998).

The hK2 protein is functionally a serine protease involved in posttranslational processing of polypeptides. It is expressed by prostate epithelia exclusively, and is found in both benign and malignant prostate cancer tissue. Although it is expressed in 50% of normal prostate cells, the percentage of cells expressing hK2 is increased in adenocarcinomas and prostatic intraepithelial neoplasia (PIN) (see, e.g., Darson et al., Urology 49:857-862, 1997). Based on the preferential expression of this antigen on prostate cancer cells, hK2 is also an important target for immunotherapy.

Prostate-specific antigen (PSA), also referred to as hK3, is a secreted serine protease and a member of the kallikrein family of proteins. The PSA gene is 80% homologous with the hK2 gene, however, tissue expression of hK2 is regulated independently of PSA (see, e.g., Darson et al., Urology 49:857-862, 1997). Expression of PSA is restricted to prostate epithelial cells, both benign and malignant. The antigen can be detected in the serum of most prostate cancer patients and in seminal plasma. Several T cell epitopes from PSA have been identified and have been found to be immunogenic, and antibody responses have been reported in patients (see, e.g., Correale et al., J. Immunol. 161:3186, 1998; and Alexander et al., Urology 51:150-157, 1998). Thus, based on its prostate-restricted expression and ability to stimulate immune responses, PSA is an attractive target for immunotherapy of prostate cancer.

The information provided in this section is intended to disclose the presently understood state of the art as of the filing date of the present application. Information is included in this section which was generated subsequent to the priority date of this application. Accordingly, information in this section is not intended, in any way, to delineate the priority date for the invention.

### IL. SUMMARY OF THE INVENTION

This invention applies our knowledge of the mechanisms by which antigen is recognized by T cells, for example, to develop epitope-based vaccines directed towards TAAs. More specifically, this application identifies epitopes for inclusion in diagnostic and/or pharmaceutical compositions and methods of use of the epitopes for the evaluation of immune responses and for the treatment and/or prevention of cancer.

The use of epitope-based vaccines has several advantages over current vaccines, particularly when compared to the use of whole antigens in vaccine compositions. For example,

10

15

20

25

30

35

40

immunosuppressive epitopes that may be present in whole antigens can be avoided with the use of epitopebased vaccines. Such immunosuppressive epitopes may, e.g., correspond to immunodominant epitopes in whole antigens, which may be avoided by selecting peptide epitopes from non-dominant regions (see, e.g., Disis et al., J. Immunol. 156:3151-3158, 1996).

An additional advantage of an epitope-based vaccine approach is the ability to combine selected epitopes (CTL and HTL), and further, to modify the composition of the epitopes, achieving, for example, enhanced immunogenicity. Accordingly, the immune response can be modulated, as appropriate, for the target disease. Similar engineering of the response is not possible with traditional approaches.

Another major benefit of epitope-based immune-stimulating vaccines is their safety. The possible pathological side effects caused by infectious agents or whole protein antigens, which might have their own intrinsic biological activity, is eliminated.

An epitope-based vaccine also provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen (a "pathogen" may be an infectious agent or a tumor-associated molecule). Thus, patient-by-patient variability in the immune response to a particular pathogen may be alleviated by inclusion of epitopes from multiple antigens from the pathogen in a vaccine composition.

Furthermore, an epitope-based anti-tumor vaccine also provides the opportunity to combine epitopes derived from multiple tumor-associated molecules. This capability can therefore address the problem of tumor-to tumor variability that arises when developing a broadly targeted anti-tumor vaccine for a given tumor type and can also reduce the likelihood of tumor escape due to antigen loss. For example, prostate cancer cells in one patient may express target TAAs that differ from the prostate cancer cells in another patient. Epitopes derived from multiple TAAs can be included in a polyepitopic vaccine that will target both prostate cancers.

One of the most formidable obstacles to the development of broadly efficacious epitope-based immunotherapeutics, however, has been the extreme polymorphism of HLA molecules. To date, effective non-genetically biased coverage of a population has been a task of considerable complexity; such coverage has required that epitopes be used that are specific for HLA molecules corresponding to each individual HLA allele. Impractically large numbers of epitopes would therefore have to be used in order to cover ethnically diverse populations. Thus, there has existed a need for peptide epitopes that are bound by multiple HLA antigen molecules for use in epitope-based vaccines. The greater the number of HLA antigen molecules bound, the greater the breadth of population coverage by the vaccine.

Furthermore, as described herein in greater detail, a need has existed to modulate peptide binding properties, e.g., so that peptides that are able to bind to multiple HLA molecules do so with an affinity that will stimulate an immune response. Identification of epitopes restricted by more than one HLA allele at an affinity that correlates with immunogenicity is important to provide thorough population coverage, and to allow the elicitation of responses of sufficient vigor to prevent or clear an infection in a diverse segment of the population. Such a response can also target a broad array of epitopes. The technology disclosed herein provides for such favored immune responses.

In a preferred embodiment, epitopes for inclusion in vaccine compositions of the invention are selected by a process whereby protein sequences of known antigens are evaluated for the

presence of motif or supermotif-bearing epitopes. Peptides corresponding to a motif- or supermotif-bearing epitope are then synthesized and tested for the ability to bind to the HLA molecule that recognizes the selected motif. Those peptides that bind at an intermediate or high affinity i.e., an IC<sub>50</sub> (or a K<sub>D</sub> value) of about 500 nM or less for HLA class I molecules or an IC<sub>50</sub> of about 1000 nM or less for HLA class II molecules, are further evaluated for their ability to induce a CTL or HTL response. Immunogenic peptide epitopes are selected for inclusion in vaccine compositions.

Supermotif-bearing peptides may additionally be tested for the ability to bind to multiple alleles within the HLA supertype family. Moreover, peptide epitopes may be analoged to modify binding affinity and/or the ability to bind to multiple alleles within an HLA supertype.

The invention also includes embodiments comprising methods for monitoring or evaluating an immune response to a TAA in a patient having a known HLA-type. Such methods comprise incubating a T lymphocyte sample from the patient with a peptide composition comprising a TAA epitope that has an amino acid sequence comprising a supermotif or motif and which binds the product of at least one HLA allele present in the patient, and detecting for the presence of a T lymphocyte that binds to the peptide. A CTL peptide epitope may, for example, be used as a component of a tetrameric complex for this type of analysis.

An alternative modality for defining the peptide epitopes in accordance with the invention is to recite the physical properties, such as length; primary structure; or charge, which are correlated with binding to a particular allele-specific HLA molecule or group of allele-specific HLA molecules. A further modality for defining peptide epitopes is to recite the physical properties of an HLA binding pocket, or properties shared by several allele-specific HLA binding pockets (e.g. pocket configuration and charge distribution) and reciting that the peptide epitope fits and binds to the pocket or pockets.

As will be apparent from the discussion below, other methods and embodiments are also contemplated. Further, novel synthetic peptides produced by any of the methods described herein are also part of the invention.

#### III. BRIEF DESCRIPTION OF THE FIGURES

not applicable

5

10

15

20

25

35

40

# 30 IV. DETAILED DESCRIPTION OF THE INVENTION

The peptide epitopes and corresponding nucleic acid compositions of the present invention are useful for stimulating an immune response to a TAA by stimulating the production of CTL or HTL responses. The peptide epitopes, which are derived directly or indirectly from native TAA protein amino acid sequences, are able to bind to HLA molecules and stimulate an immune response to the TAA. The complete sequence of the TAA proteins to be analyzed can be obtained from GenBank. Peptide epitopes and analogs thereof can also be readily determined from sequence information that may subsequently be discovered for heretofore unknown variants of particular TAAs, as will be clear from the disclosure provided below.

A list of target TAAs includes, but is not limited to, the following antigens: MAGE 1, MAGE 2, MAGE 3, MAGE-11, MAGE-A10, BAGE, GAGE, RAGE, MAGE-C1, LAGE-1, CAG-3,

10

15<sup>,</sup>

20

25

30

35

DAM, MUC1, MUC2, MUC18, NY-ESO-1, MUM-1, CDK4, BRCA2, NY-LU-1, NY-LU-7, NY-LU-12, CASP8, RAS, KIAA-2-5, SCCs, p53, p73, CEA, Her 2/neu, Melan-A, gp100, tyrosinase, TRP2, gp75/TRP1, kallikrein, PSM, PAP, PSA, PT1-1, B-catenin, PRAME, Telomerase, FAK, cyclin D1 protein, NOEY2, EGF-R, SART-1, CAPB, HPVE7, p15, Folate receptor CDC27, PAGE-1, and PAGE-4. Epitopes derived from these antigens may be used in combination with one another to target a specific tumor type, e.g., prostate tumors, or to target multiple types of tumors.

The peptide epitopes of the invention have been identified in a number of ways, as will be discussed below. Also discussed in greater detail is that analog peptides have been derived and the binding activity for HLA molecules modulated by modifying specific amino acid residues to create peptide analogs exhibiting altered immunogenicity. Further, the present invention provides compositions and combinations of compositions that enable epitope-based vaccines that are capable of interacting with HLA molecules encoded by various genetic alleles to provide broader population coverage than prior vaccines.

#### IV.A. Definitions

The invention can be better understood with reference to the following definitions, which are listed alphabetically:

A "construct" as used herein generally denotes a composition that does not occur in nature. A construct can be produced by synthetic technologies, e.g., recombinant DNA preparation and expression or chemical synthetic techniques for nucleic or amino acids. A construct can also be produced by the addition or affiliation of one material with another such that the result is not found in nature in that form.

A "computer" or "computer system" generally includes: a processor; at least one information storage/retrieval apparatus such as, for example, a hard drive, a disk drive or a tape drive; at least one input apparatus such as, for example, a keyboard, a mouse, a touch screen, or a microphone; and display structure. Additionally, the computer may include a communication channel in communication with a network. Such a computer may include more or less than what is listed above.

"Cross-reactive binding" indicates that a peptide is bound by more than one HLA molecule; a synonym is degenerate binding.

A "cryptic epitope" elicits a response by immunization with an isolated peptide, but the response is not cross-reactive *in vitro* when intact whole protein which comprises the epitope is used as an antigen.

A "dominant epitope" is an epitope that induces an immune response upon immunization with a whole native antigen (see, e.g., Sercarz, et al., Annu. Rev. Immunol. 11:729-766, 1993). Such a response is cross-reactive in vitro with an isolated peptide epitope.

With regard to a particular amino acid sequence, an "epitope" is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) receptors. In an immune system setting, in vivo or in vitro, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site

recognized by an immunoglobulin, T cell receptor or HLA molecule. Throughout this disclosure epitope and peptide are often used interchangeably.

5

10

15

20

25

30

35

40

It is to be appreciated that protein or peptide molecules that comprise an epitope of the invention as well as additional amino acid(s) are within the bounds of the invention. In certain embodiments, there is a limitation on the length of a peptide of the invention which is not otherwise a construct as defined herein. An embodiment that is length-limited occurs when the protein/peptide comprising an epitope of the invention comprises a region (i.e., a contiguous series of amino acids) having 100% identity with a native sequence. In order to avoid a recited definition of epitope from reading, e.g., on whole natural molecules, the length of any region that has 100% identity with a native peptide sequence is limited. Thus, for a peptide comprising an epitope of the invention and a region with 100% identity with a native peptide sequence (and which is not otherwise a construct), the region with 100% identity to a native sequence generally has a length of: less than or equal to 600 amino acids, often less than or equal to 500 amino acids, often less than or equal to 400 amino acids, often less than or equal to 250 amino acids, often less than or equal to 100 amino acids, often less than or equal to 85 amino acids, often less than or equal to 75 amino acids, often less than or equal to 65 amino acids, and often less than or equal to 50 amino acids. In certain embodiments, an "epitope" of the invention which is not a construct is comprised by a peptide having a region with less than 51 amino acids that has 100% identity to a native peptide sequence, in any increment of (50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5) down to 5 amino acids.

Certain peptide or protein sequences longer than 600 amino acids are within the scope of the invention. Such longer sequences are within the scope of the invention so long as they do not comprise any contiguous sequence of more than 600 amino acids that have 100% identity with a native peptide sequence, or if longer than 600 amino acids, they are a construct. For any peptide that has five contiguous residues or less that correspond to a native sequence, there is no limitation on the maximal length of that peptide in order to fall within the scope of the invention. It is presently preferred that a CTL epitope of the invention be less than 600 residues long in any increment down to eight amino acid residues.

"Human Leukocyte Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (see, e.g., Stites, et al., IMMUNOLOGY, 8<sup>TH</sup> ED., Lange Publishing, Los Altos, CA, 1994).

An "HLA supertype or family", as used herein, describes sets of HLA molecules grouped on the basis of shared peptide-binding specificities. HLA class I molecules that share somewhat similar binding affinity for peptides bearing certain amino acid motifs are grouped into HLA supertypes. The terms HLA superfamily, HLA supertype family, HLA family, and HLA xx-like molecules (where xx denotes a particular HLA type), are synonyms.

Throughout this disclosure, results are expressed in terms of "IC<sub>50</sub>'s." IC<sub>50</sub> is the concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Given the conditions in which the assays are run (*i.e.*, limiting HLA proteins and labeled peptide concentrations), these values approximate K<sub>D</sub> values. Assays for determining binding are described in detail, *e.g.*, in PCT publications WO 94/20127 and WO 94/03205. It should be noted that IC<sub>50</sub> values can change, often dramatically, if the assay conditions are varied, and depending on the particular reagents used

10

15

20

25

30

35

(e.g., HLA preparation, etc.). For example, excessive concentrations of HLA molecules will increase the apparent measured IC<sub>50</sub> of a given ligand.

Alternatively, binding is expressed relative to a reference peptide. Although as a particular assay becomes more, or less, sensitive, the IC<sub>50</sub>'s of the peptides tested may change somewhat, the binding relative to the reference peptide will not significantly change. For example, in an assay run under conditions such that the IC<sub>50</sub> of the reference peptide increases 10-fold, the IC<sub>50</sub> values of the test peptides will also shift approximately 10-fold. Therefore, to avoid ambiguities, the assessment of whether a peptide is a good, intermediate, weak, or negative binder is generally based on its IC<sub>50</sub>, relative to the IC<sub>50</sub> of a standard peptide.

Binding may also be determined using other assay systems including those using: live cells (e.g., Ceppellini et al., Nature 339:392, 1989; Christnick et al., Nature 352:67, 1991; Busch et al., Int. Immunol. 2:443, 19990; Hill et al., J. Immunol. 147:189, 1991; del Guercio et al., J. Immunol. 154:685, 1995), cell free systems using detergent lysates (e.g., Cerundolo et al., J. Immunol. 21:2069, 1991), immobilized purified MHC (e.g., Hill et al., J. Immunol. 152, 2890, 1994; Marshall et al., J. Immunol. 152:4946, 1994), ELISA systems (e.g., Reay et al., EMBO J. 11:2829, 1992), surface plasmon resonance (e.g., Khilko et al., J. Biol. Chem. 268:15425, 1993); high flux soluble phase assays (Hammer et al., J. Exp. Med. 180:2353, 1994), and measurement of class I MHC stabilization or assembly (e.g., Ljunggren et al., Nature 346:476, 1990; Schumacher et al., Cell 62:563, 1990; Townsend et al., Cell 62:285, 1990; Parker et al., J. Immunol. 149:1896, 1992).

As used herein, "high affinity" with respect to HLA class I molecules is defined as binding with an IC<sub>50</sub>, or  $K_D$  value, of 50 nM or less; "intermediate affinity" is binding with an IC<sub>50</sub> or  $K_D$  value of between about 50 and about 500 nM. "High affinity" with respect to binding to HLA class II molecules is defined as binding with an IC<sub>50</sub> or  $K_D$  value of 100 nM or less; "intermediate affinity" is binding with an IC<sub>50</sub> or  $K_D$  value of between about 100 and about 1000 nM.

The terms "identical" or percent "identity," in the context of two or more peptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using a sequence comparison algorithm or by manual alignment and visual inspection.

An "immunogenic peptide" or "peptide epitope" is a peptide that comprises an allelespecific motif or supermotif such that the peptide will bind an HLA molecule and induce a CTL and/or
HTL response. Thus, immunogenic peptides of the invention are capable of binding to an appropriate HLA
molecule and thereafter inducing an HLA-restricted cytotoxic or helper T cell response to the antigen from
which the immunogenic peptide is derived.

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment.

10

15

20

30

35

"Link" or "join" refers to any method known in the art for functionally connecting peptides, including, without limitation, recombinant fusion, covalent bonding, disulfide bonding, ionic bonding, hydrogen bonding, and electrostatic bonding.

"Major Histocompatibility Complex" or "MHC" is a cluster of genes that plays a role in control of the cellular interactions responsible for physiologic immune responses. In humans, the MHC complex is also known as the HLA complex. For a detailed description of the MHC and HLA complexes, see, Paul, FUNDAMENTAL IMMUNOLOGY, 3<sup>RD</sup> ED., Raven Press, New York, 1993.

The term "motif" refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids, often 8 to 11 amino acids, for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.

A "negative binding residue" or "deleterious residue" is an amino acid which, if present at certain positions (typically not primary anchor positions) in a peptide epitope, results in decreased binding affinity of the peptide for the peptide's corresponding HLA molecule.

i.e., is "non-naturally occurring". Such sequences include, e.g., peptides that are lipidated or otherwise modified, and polyepitopic compositions that contain epitopes that are not contiguous in a native protein sequence.

The term "peptide" is used interchangeably with "oligopeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to the other, typically by peptide bonds between the α-amino and carboxyl groups of adjacent amino acids. CTL-inducing peptides of the invention are often 13 residues or less in length and usually consist of between about 8 and about 11 residues, preferably 9 or 10 residues. HTL-inducing oligopeptides are often less than about 50 residues in length and usually consist of between about 6 and about 30 residues, more usually between about 12 and 25, and often between about 15 and 20 residues.

"Pharmaceutically acceptable" refers to a generally non-toxic, inert, and/or physiologically compatible composition.

A "pharmaceutical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.

A "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a "motif" for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding grooves of an HLA molecule, with their side chains buried in specific pockets of the binding grooves themselves. In one embodiment, for example, the primary anchor residues are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 9-residue peptide epitope in accordance with the invention. The primary anchor positions for each motif and supermotif are set forth in Table I. For example, analog peptides can be created by altering the presence or absence of

10

15

20

25

30

35

particular residues in these primary anchor positions. Such analogs are used to modulate the binding affinity of a peptide comprising a particular motif or supermotif.

"Promiscuous recognition" is where a distinct peptide is recognized by the same T cell clone in the context of various HLA molecules. Promiscuous recognition or binding is synonymous with cross-reactive binding.

A "protective immune response" or "therapeutic immune response" refers to a CTL and/or an HTL response to an antigen derived from an infectious agent or a tumor antigen, which prevents or at least partially arrests disease symptoms or progression. The immune response may also include an antibody response which has been facilitated by the stimulation of helper T cells.

The term "residue" refers to an amino acid or amino acid mimetic incorporated into an oligopeptide by an amide bond or amide bond mimetic.

A "secondary anchor residue" is an amino acid at a position other than a primary anchor position in a peptide which may influence peptide binding. A secondary anchor residue occurs at a significantly higher frequency amongst bound peptides than would be expected by random distribution of amino acids at one position. The secondary anchor residues are said to occur at "secondary anchor positions." A secondary anchor residue can be identified as a residue which is present at a higher frequency among high or intermediate affinity binding peptides, or a residue otherwise associated with high or intermediate affinity binding. For example, analog peptides can be created by altering the presence or absence of particular residues in these secondary anchor positions. Such analogs are used to finely modulate the binding affinity of a peptide comprising a particular motif or supermotif.

A "subdominant epitope" is an epitope which evokes little or no response upon immunization with whole antigens which comprise the epitope, but for which a response can be obtained by immunization with an isolated peptide, and this response (unlike the case of cryptic epitopes) is detected when whole protein is used to recall the response in vitro or in vivo.

A "supermotif" is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Preferably, a supermotif-bearing peptide is recognized with high or intermediate affinity (as defined herein) by two or more HLA molecules.

"Synthetic peptide" refers to a peptide that is man-made using such methods as chemical synthesis or recombinant DNA technology.

As used herein, a "vaccine" is a composition that contains one or more peptides of the invention. There are numerous embodiments of vaccines in accordance with the invention, such as by a cocktail of one or more peptides; one or more epitopes of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The "one or more peptides" can include any whole unit integer from 1-150, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of targeting or other sequences. HLA class I-binding peptides of the invention can be admixed with, or linked to, HLA class II-binding peptides, to facilitate activation of

both cytotoxic T lymphocytes and helper T lymphocytes. Vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells.

The nomenclature used to describe peptide compounds follows the conventional practice wherein the amino group is presented to the left (the N-terminus) and the carboxyl group to the right (the Cterminus) of each amino acid residue. When amino acid residue positions are referred to in a peptide epitope they are numbered in an amino to carboxyl direction with position one being the position closest to the amino terminal end of the epitope, or the peptide or protein of which it may be a part. In the formulae representing selected specific embodiments of the present invention, the amino- and carboxyl-terminal groups, although not specifically shown, are in the form they would assume at physiologic pH values, unless otherwise specified. In the amino acid structure formulae, each residue is generally represented by standard three letter or single letter designations. The L-form of an amino acid residue is represented by a capital single letter or a capital first letter of a three-letter symbol, and the D-form for those amino acids having D-forms is represented by a lower case single letter or a lower case three letter symbol. Glycine has no asymmetric carbon atom and is simply referred to as "Gly" or G. The amino acid sequences of peptides set forth herein are generally designated using the standard single letter symbol. (A, Alanine; C, Cysteine; D, Aspartic Acid; E, Glutamic Acid; F, Phenylalanine; G, Glycine; H, Histidine; I, Isoleucine; K, Lysine; L, Leucine; M, Methionine; N, Asparagine; P, Proline; Q, Glutamine; R, Arginine; S, Serine; T, Threonine; V, Valine; W, Tryptophan; and Y, Tyrosine.) In addition to these symbols, "B"in the single letter abbreviations used herein designates \alpha-amino butyric acid.

20

25

30

15

5

10

# IV.B. Stimulation of CTL and HTL responses

The mechanism by which T cells recognize antigens has been delineated during the past ten years. Based on our understanding of the immune system we have developed efficacious peptide epitope vaccine compositions that can induce a therapeutic or prophylactic immune response to a TAA in a broad population. For an understanding of the value and efficacy of the claimed compositions, a brief review of immunology-related technology is provided.

A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. et al., Cell 47:1071, 1986; Babbitt, B. P. et al., Nature 317:359, 1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601, 1989; Germain, R. N., Annu. Rev. Immunol. 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are described herein and are set forth in Tables I, II, and III (see also, e.g., Southwood, et al., J. Immunol. 160:3363, 1998; Rammensee, et al., Immunogenetics 41:178, 1995; Rammensee et al., SYFPEITHI, access via web at:

http://134.2.96.221/scripts.hlaserver.dll/home.htm; Sette, A. and Sidney, J. Curr. Opin. Immunol. 10:478, 1998; Engelhard, V. H., Curr. Opin. Immunol. 6:13, 1994; Sette, A. and Grey, H. M., Curr. Opin. Immunol. 4:79, 1992; Sinigaglia, F. and Hammer, J. Curr. Biol. 6:52, 1994; Ruppert et al., Cell 74:929-937, 1993; Kondo et al., J. Immunol. 155:4307-4312, 1995; Sidney et al., J. Immunol. 157:3480-3490, 1996; Sidney et al., Human Immunol. 45:79-93, 1996; Sette, A. and Sidney, J. Immunogenetics 1999 Nov;50(3-4):201-12, Review 9).

Furthermore, x-ray crystallographic analysis of HLA-peptide complexes has revealed pockets within the peptide binding cleft of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D.R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stern et al., Structure 2:245, 1994; Jones, E.Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et al., Proc. Natl. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Silver, M. L. et al., Nature 360:367, 1992; Matsumura, M. et al., Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al., Science 257:919, 1992; Saper, M. A., Bjorkman, P. J. and Wiley, D. C., J. Mol. Biol. 219:277, 1991.)

Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that have the potential of binding particular HLA molecules.

The present inventors have found that the correlation of binding affinity with immunogenicity, which is disclosed herein, is an important factor to be considered when evaluating candidate peptides. Thus, by a combination of motif searches and HLA-peptide binding assays, candidates for epitope-based vaccines have been identified. After determining their binding affinity, additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, antigenicity, and immunogenicity.

20

25

30

5

10

15

Various strategies can be utilized to evaluate immunogenicity, including:

1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995; Celis, B. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, I. et al., Human Immunol. 59:1, 1998); This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a lymphokine-release or a <sup>51</sup>Cr cytotoxicity assay involving peptide sensitized target cells.

2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997); In this method, peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.

35

40

3) Demonstration of recall T cell responses from patients who have been effectively vaccinated or who have a tumor; (see, e.g., Rehermann, B. et al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Immunol. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997; Tsang et al., J. Natl. Cancer Inst. 87:982-990, 1995; Disis et al., J. Immunol. 156:3151-3158, 1996). In applying this strategy, recall responses are detected by culturing PBL from patients with cancer who have generated an immune response

WO 01/45728 PCT/US00/35516

12

"naturally", or from patients who were vaccinated with tumor antigen vaccines. PBL from subjects are cultured *in vitro* for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays for T cell activity including <sup>51</sup>Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.

The following describes the peptide epitopes and corresponding nucleic acids of the invention.

### IV.C. Binding Affinity of Peptide Epitopes for HLA Molecules

5

10

15

20

25

30

35

40

As indicated herein, the large degree of HLA polymorphism is an important factor to be taken into account with the epitope-based approach to vaccine development. To address this factor, epitope selection encompassing identification of peptides capable of binding at high or intermediate affinity to multiple HLA molecules is preferably utilized, most preferably these epitopes bind at high or intermediate affinity to two or more allele-specific HLA molecules.

CTL-inducing peptides of interest for vaccine compositions preferably include those that have an IC<sub>50</sub> or binding affinity value for class I HLA molecules of 500 nM or better (i.e., the value is  $\leq$  500 nM). HTL-inducing peptides preferably include those that have an IC<sub>50</sub> or binding affinity value for class II HLA molecules of 1000 nM or better, (i.e., the value is  $\leq$  1,000 nM). For example, peptide binding is assessed by testing the capacity of a candidate peptide to bind to a purified HLA molecule in vitro. Peptides exhibiting high or intermediate affinity are then considered for further analysis. Selected peptides are tested on other members of the supertype family. In preferred embodiments, peptides that exhibit cross-reactive binding are then used in cellular screening analyses or vaccines.

High HLA binding affinity is correlated with greater immunogenicity (see, e.g., Sette, et al., J. Immunol. 153:5586-5592, 1994; Chen et al., J. Immunol. 152:2874-2881, 1994; and Ressing et al., J. Immunol. 154:5934-5943, 1995). Greater immunogenicity can be manifested in several different ways. Immunogenicity corresponds to whether an immune response is elicited at all, and to the vigor of any particular response, as well as to the extent of a population in which a response is elicited. For example, a peptide might elicit an immune response in a diverse array of the population, yet in no instance produce a vigorous response. Moreover, higher binding affinity peptides lead to more vigorous immunogenic responses. As a result, less peptide is required to elicit a similar biological effect if a high or intermediate affinity binding peptide is used. Thus, in preferred embodiments of the invention, high or intermediate affinity binding epitopes are particularly useful.

The relationship between binding affinity for HLA class I molecules and immunogenicity of discrete peptide epitopes on bound antigens has been determined for the first time in the art by the present inventors. The correlation between binding affinity and immunogenicity was analyzed in two different experimental approaches (see, e.g., Sette, et al., J. Immunol. 153:5586-5592, 1994). In the first approach, the immunogenicity of potential epitopes ranging in HLA binding affinity over a 10,000-fold range was analyzed in HLA-A\*0201 transgenic mice. In the second approach, the antigenicity of approximately 100 different hepatitis B virus (HBV)-derived potential epitopes, all carrying A\*0201 binding motifs, was assessed by using PBL from acute hepatitis patients. Pursuant to these approaches, it

was determined that an affinity threshold value of approximately 500 nM (preferably 50 nM or less) determines the capacity of a peptide epitope to elicit a CTL response. These data are true for class I binding affinity measurements for naturally processed peptides and for synthesized T cell epitopes. These data also indicate the important role of determinant selection in the shaping of T cell responses (see, e.g., Schaeffer et al., Proc. Natl. Acad. Sci. USA 86:4649-4653, 1989).

An affinity threshold associated with immunogenicity in the context of HLA class II DR molecules has also been delineated (see, e.g., Southwood et al. J. Immunology 160:3363-3373,1998, and co-pending U.S.S.N. 09/009,953 filed 1/21/98). In order to define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element (i.e., the HLA molecule that binds the motif) was compiled. In approximately half of the cases (15 of 32 epitopes), DR restriction was associated with high binding affinities, i.e. binding affinity values of 100 nM or less. In the other half of the cases (16 of 32), DR restriction was associated with intermediate affinity (binding affinity values in the 100-1000 nM range). In only one of 32 cases was DR restriction associated with an IC<sub>50</sub> of 1000 nM or greater. Thus, 1000 nM can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.

In the case of tumor-associated antigens, many CTL peptide epitopes that have been shown to induce CTL that lyse peptide-pulsed target cells and tumor cell targets endogenously expressing the epitope exhibit binding affinity or IC<sub>50</sub> values of 200 nM or less. In a study that evaluated the association of binding affinity and immunogenicity of a small set of such TAA epitopes, 100% (10/10) of the high binders, i.e., peptide epitopes binding at an affinity of 50 nM or less, were immunogenic and 80% (8/10) of them elicited CTLs that specifically recognized tumor cells. In the 51 to 200 nM range, very similar figures were obtained. With respect to analog peptides, CTL inductions positive for wildtype peptide and tumor cells were noted for 86% (6/7) and 71% (5/7) of the peptides, respectively. In the 201-500 nM range, most peptides (4/5 wildtype) were positive for induction of CTL recognizing wildtype peptide, but tumor recognition was not detected.

The binding affinity of peptides for HLA molecules can be determined as described in Example 1, below.

#### IV.D. Peptide Epitope Binding Motifs and Supermotifs

5

10

15

20

25

30

35

40

Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues required for allele-specific binding to HLA molecules have been identified. The presence of these residues correlates with binding affinity for HLA molecules. The identification of motifs and/or supermotifs that correlate with high and intermediate affinity binding is an important issue with respect to the identification of immunogenic peptide epitopes for the inclusion in a vaccine. Kast et al. (J. Immunol. 152:3904-3912, 1994) have shown that motif-bearing peptides account for 90% of the epitopes that bind to allele-specific HLA class I molecules. In this study all possible peptides of 9 amino acids in length and overlapping by eight amino acids (240 peptides), which cover the entire sequence of the E6 and E7 proteins of human papillomavirus type 16, were evaluated for binding to five allele-specific HLA molecules that are expressed at high frequency among different ethnic groups. This unbiased set of peptides allowed an evaluation of the predictive value of HLA class I motifs.

10

15

20

25

30

35

40

From the set of 240 peptides, 22 peptides were identified that bound to an allele-specific HLA molecule with high or intermediate affinity. Of these 22 peptides, 20 (i.e. 91%) were motif-bearing. Thus, this study demonstrates the value of motifs for the identification of peptide epitopes for inclusion in a vaccine: application of motif-based identification techniques will identify about 90% of the potential epitopes in a target antigen protein sequence.

Such peptide epitopes are identified in the Tables described below.

Peptides of the present invention may also comprise epitopes that bind to MHC class II DR molecules. A greater degree of heterogeneity in both size and binding frame position of the motif, relative to the N and C termini of the peptide, exists for class II peptide ligands. This increased heterogeneity of HLA class II peptide ligands is due to the structure of the binding groove of the HLA class II molecule which, unlike its class I counterpart, is open at both ends. Crystallographic analysis of HLA class II DRB\*0101-peptide complexes showed that the major energy of binding is contributed by peptide residues complexed with complementary pockets on the DRB\*0101 molecules. An important anchor residue engages the deepest hydrophobic pocket (see, e.g., Madden, D.R. Ann. Rev. Immunol. 13:587, 1995) and is referred to as position 1 (P1). P1 may represent the N-terminal residue of a class II binding peptide epitope, but more typically is flanked towards the N-terminus by one or more residues. Other studies have also pointed to an important role for the peptide residue in the 6<sup>th</sup> position towards the C-terminus, relative to P1, for binding to various DR molecules.

In the past few years evidence has accumulated to demonstrate that a large fraction of HLA class I and class II molecules can be classified into a relatively few supertypes, each characterized by largely overlapping peptide binding repertoires, and consensus structures of the main peptide binding pockets. Thus, peptides of the present invention are identified by any one of several HLA-specific amino acid motifs (see, e.g., Tables I-III), or if the presence of the motif corresponds to the ability to bind several allele-specific HLA molecules, a supermotif. The HLA molecules that bind to peptides that possess a particular amino acid supermotif are collectively referred to as an HLA "supertype."

The peptide motifs and supermotifs described below, and summarized in Tables I-III, provide guidance for the identification and use of peptide epitopes in accordance with the invention.

Examples of supermotif and/or motif-bearing peptide epitopes are shown in Tables VII-XX. To obtain the peptide epitope sequences, protein sequence data for the prostate cancer antigens PAP, PSA, PSM, and hK2, which is designated as kallikrein in Tables VII-XX, were evaluated for the presence of the designated supermotif or motif. The "Position" column indicates the position in the protein sequence that corresponds to the first amino acid residue of the putative epitope. The "number of amino acids" indicates the number of residues in the epitope sequence. The tables also include a binding affinity ratio listing for some of the peptide epitopes for the allele-specific HLA molecule indicated in the column heading. The ratio may be converted to IC<sub>50</sub> by using the following formula: IC<sub>50</sub> of the standard peptide/ratio = IC<sub>50</sub> of the test peptide (i.e., the peptide epitope). The IC<sub>50</sub> values of standard peptides used to determine binding affinities for Class I peptides are shown in Table IV. The IC<sub>50</sub> values of standard peptides used as standards for the binding assays described herein are examples of standards; alternative standard peptides can also be used when performing binding studies.

To obtain the peptide epitope sequences listed in each of Tables VII-XX, the amino acid sequences of PSA, PSM, PAP, and HuK were evaluated for the presence of the designated supermotif or motif, i.e., the amino acid sequence was searched for the presence of the primary anchor residues as set out in Table I (for Class I motifs) or Table III (for Class II motifs) for each respective motif or supermotif.

In the Tables, the motif- and/or supermotif-bearing amino acid sequences are identified by the position number and the length of the epitope with reference to the prostate antigen amino acid sequence and numbering provided below. The "protein" indicates the prostate antigen sequence that includes the epitope. The "pos" (position) column designates the amino acid position in the prostate antigen sequence protein sequence below that corresponds to the first amino acid residue of the epitope. The "number of amino acids" indicates the number of residues in the epitope sequence and hence, the length of the epitope. For example, the first peptide sequence listed in Table VII is a sequence of 11 residues in length starting at position 122 of PAP. Accordingly, the amino acid sequence of the epitope is ALFPPEGVSIW. Similarly, the first kallikrein sequence in Table VII starts at position 147 and is 11 residues in length. Thus the amino acid sequence is ALGTTCYASGW.

Binding data presented in Tables VII-XX are expressed as a relative binding ratio, *supra* in the in columns labeled with the allele-specific HLA molecule.

#### PSA (Prostate Specific Antigen)

5

10

15

30

1 VVFLTLSVTW IGAAPLILSR IVGGWECEKH SQPWQVLVAS RGRAVCGGVL VHPQWVLTAA 60
20 HCIRNKSVIL LGRHSLFHPE DTGQVFQVSH SFPHPLYDMS LLKNRFLRPG DDSSHDLMLL 120
RLSEPAELTD AVKVMDLPTQ EPALGTTCYA SGWGSIEPEE FLTPKKLQCV DLHVISNDVC 180
AQVHPQKVTK FMLCAGRWTG GKSTCSGDSG GPLVCNGVLQ GITSWGSEPC ALPERPSLYT 240
KVVHYRKWIK DTIVANP 257

# 25 PAP (Prostatic Acid Phosphatase)

1 MRAAPLLAR AASLSLGFLF LLFFWLDRSV LAKELKFVTL VFRHGDRSPI DTFPTDPIKE 60
SSWPQGFGQL TQLGMEQHYE LGEYIRKRYR KFLNESYKHE QVYIRSTDVD RTLMSAMTNL 120
AALFPPEGVS IWNPILLWQP IPVETVPLSE DQLLYLPFRN CPRFQELESE TLKSEEFQKR 180
LHPYKDFIAT LGKLSGLHGQ DLFGIWSKVY DPLYCESVHN FTLPSWATED TMTKLRELSE 240
LSLLSLYGIH KQKEKSRLQG GVLVNEILNH MKRATQIPSY KKLIMYSAHD TTVSGLQMAL 300
DVYNGLLPPY ASCHLTELYF BKGEYFVEMY YRNETQHRPY PLMLPGCSPS CPLERFAELV 360
GPVIPQDWST ECMTTNSHQG TEDSTD 386

#### PSM (prostate specific membrane antigen)

35 1 MWNLLHETDS AVATARRPRW LCAGALVLAG GFFLLGFLFG WFIKSSNEAT NITPKHNMKA 60 FLDKLKAKNI KKFLYNFTQI PHLAGTKONF QLAKQIQSQW KEFGLDSVKL AHYDVLLSYP 120 NKTHPNYISI INEDGNEIFN TSLFEPPPPG YENVSDIVPP FSAFSPOGMP EGDLVYVNYA 180 RTEDFFKLER DMKINCSGKI VIARYGKVFR GNKVKNAQLA GAKGVILYSD PADYFAPGVK 240 SYPDGWNLPG GGVQRGNILN LNGAGDPLTP GYPANKYAYR RGIARAVGLP SIPVHPIGYY 300 40 DAQKLLEKMG GSAPPDSSWR GSLKVPYNVG PGFTGNFSTO KVKMHIHSTN EVTRIYNVIG 360 TLRGAVEPDR YVILGGHRDS WVFGGIDPQS GAAVVHBIVR SFGTLKKEGW RPRRTILFAS 420

| WDAKEFGLLG  | STEWARENSR | LLQERGVAYI         | NADSSIEGNY | TLRVDCTPLM | YSLVHNLTKE | 480 |
|-------------|------------|--------------------|------------|------------|------------|-----|
| LKSPDEGFEG  | KSLYESWIKK | SPSPBFSGMP         | RISKLGSGND | FEVFFQRLGI | ASGRARYTKN | 540 |
| WETNKFSGYP  | Lyhsvyetye | <b>LARKŁAD</b> DWŁ | KYHLTVAQVR | GGMVFELANS | IVLPFDCRDY | 600 |
| AVVILRKYADK | IYSISMKHPQ | EMKTYSVSFD         | SLFSAVKNFT | BIASKFSERL | QDFDKSNPIV | 660 |
| LRMMNDQLMF  | LERAFIDPLG | LPDRPFYRHV         | TYAPSSHNKY | AGESFPGIYD | ALFDIESKVD | 720 |
| PSKAWGKVKR  | OTYVAAFTVO | AAAETLSEVA         | 750        |            |            |     |

#### Kallikrein (human kallikrein2, Accession NM005551)

MWDLVLSIAL SVGCTGAVPL IQSRIVGGWE CEKHSQPWQV AVYSHGWAHC GGVLVHPQWV 60

LTAAHCLKKN SQVWLGRHNL FEPEDTGQRV PVSHSFPHPL YNMSLLKHQS LRPDEDSSHD 120

LMLLRLSEPA KITDVVKVLG LPTQEPALGT TCYASGWGSI EPEEFLRPRS LQCVSLHLLS 180

NDMCARAYSE KVTEFMLCAG LWTGGKDTCG GDSGGPLVCN GVLQGITSWG PEPCALPEKP 240

AVYTKVVHYR KWIKDTIAAN P 261

### 15 HLA Class I Motifs Indicative of CTL Inducing Peptide Epitopes:

The primary anchor residues of the HLA class I peptide epitope supermotifs and motifs delineated below are summarized in Table I. The HLA class I motifs set out in Table I(a) are those most particularly relevant to the invention claimed here. Primary and secondary anchor positions are summarized in Table II. Allele-specific HLA molecules that comprise HLA class I supertype families are listed in Table VI. In some cases, peptide epitopes may be listed in both a motif and a supermotif Table. The relationship of a particular motif and respective supermotif is indicated in the description of the individual motifs.

# IV.D.1. HLA-A1 supermotif

5

20

40

The HLA-A1 supermotif is characterized by the presence in peptide ligands of a small (T or S) or hydrophobic (L, I, V, or M) primary anchor residue in position 2, and an aromatic (Y, F, or W) primary anchor residue at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind to the A1 supermotif (i.e., the HLA-A1 supertype) is comprised of at least: A\*0101, A\*2601, A\*2602, A\*2501, and A\*3201 (see, e.g., DiBrino, M. et al., J. Immunol. 151:5930, 1993;

DiBrino, M. et al., J. Immunol. 152:620, 1994; Kondo, A. et al., Immunogenetics 45:249, 1997). Other allele-specific HLA molecules predicted to be members of the A1 superfamily are shown in Table VI. Peptides binding to each of the individual HLA proteins can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif. Representative peptide epitopes that comprise an A1 supermotif are set forth on the

Representative peptide epitopes that comprise an A1 supermotif are set forth on the attached Table VII.

### IV.D.2. HLA-A2 supermotif

Primary anchor specificities for allele-specific HLA-A2.1 molecules (see, e.g., Falk et al., Nature 351:290-296, 1991; Hunt et al., Science 255:1261-1263, 1992; Parker et al., J. Immunol. 149:3580-3587, 1992; Ruppert et al., Cell 74:929-937, 1993) and cross-reactive binding among HLA-A2 and -A28

1.4.

10

15

20

25

30

35

PCT/US00/35516

molecules have been described. (See, e.g., Fruci et al., Human Immunol. 38:187-192, 1993; Tanigaki et al., Human Immunol. 39:155-162, 1994; Del Guercio et al., J. Immunol. 154:685-693, 1995; Kast et al., J. Immunol. 152:3904-3912, 1994 for reviews of relevant data.) These primary anchor residues define the HLA-A2 supermotif; which presence in peptide ligands corresponds to the ability to bind several different HLA-A2 and -A28 molecules. The HLA-A2 supermotif comprises peptide ligands with L, I, V, M, A, T, or Q as a primary anchor residue at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope.

The corresponding family of HLA molecules (i.e., the HLA-A2 supertype that binds these peptides) is comprised of at least: A\*0201, A\*0202, A\*0203, A\*0204, A\*0205, A\*0206, A\*0207, A\*0209, A\*0214, A\*6802, and A\*6901. Other allele-specific HLA molecules predicted to be members of the A2 superfamily are shown in Table VI. As explained in detail below, binding to each of the individual allele-specific HLA molecules can be modulated by substitutions at the primary anchor and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise an A2 supermotif are set forth on the attached Table VIII. The motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

### IV.D.3. HLA-A3 supermotif

The HLA-A3 supermotif is characterized by the presence in peptide ligands of A, L, I, V, M, S, or, T as a primary anchor at position 2, and a positively charged residue, R or K, at the C-terminal position of the epitope, e.g., in position 9 of 9-mers (see, e.g., Sidney et al., Hum. Immunol. 45:79, 1996). Exemplary members of the corresponding family of HLA molecules (the HLA-A3 supertype) that bind the A3 supermotif include at least: A\*0301, A\*1101, A\*3101, A\*3301, and A\*6801. Other allele-specific HLA molecules predicted to be members of the A3 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions of amino acids at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the A3 supermotif are set forth on the attached Table IX.

# IV.D.4. HLA-A24 supermotif

The HLA-A24 supermotif is characterized by the presence in peptide ligands of an aromatic (F, W, or Y) or hydrophobic aliphatic (L, I, V, M, or T) residue as a primary anchor in position 2, and Y, F, W, L, I, or M as primary anchor at the C-terminal position of the epitope (see, e.g., Sette and Sidney, Immunogenetics 1999 Nov;50(3-4):201-12, Review). The corresponding family of HLA molecules that bind to the A24 supermotif (i.e., the A24 supertype) includes at least: A\*2402, A\*3001, and A\*2301. Other allele-specific HLA molecules predicted to be members of the A24 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the A24 supermotif are set forth on the attached Table X.

#### IV.D.5. HLA-B7 supermotif

The HLA-B7 supermotif is characterized by peptides bearing proline in position 2 as a primary anchor, and a hydrophobic or aliphatic amino acid (L, I, V, M, A, F, W, or Y) as the primary anchor at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind the B7 supermotif (i.e., the HLA-B7 supertype) is comprised of at least twenty six HLA-B proteins comprising at least: B\*0702, B\*0703, B\*0704, B\*0705, B\*1508, B\*3501, B\*3502, B\*3503, B\*3504, B\*3505, B\*3506, B\*3507, B\*3508, B\*5101, B\*5102, B\*5103, B\*5104, B\*5105, B\*5301, B\*5401, B\*5501, B\*5502, B\*5601, B\*5602, B\*6701, and B\*7801 (see, e.g., Sidney, et al., J. Immunol. 154:247, 1995; Barber, et al., Curr. Biol. 5:179, 1995; Hill, et al., Nature 360:434, 1992; Rammensee, et al., Immunogenetics 41:178, 1995 for reviews of relevant data). Other allele-specific HLA molecules predicted to be members of the B7 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B7 supermotif are set forth on the attached Table XI.

20

25

30

15

5

10

#### IV.D.6. HLA-B27 supermotif

The HLA-B27 supermotif is characterized by the presence in peptide ligands of a positively charged (R, H, or K) residue as a primary anchor at position 2, and a hydrophobic (F, Y, L, W, M, I, A, or V) residue as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics 1999 Nov;50(3-4):201-12, Review). Exemplary members of the corresponding family of HLA molecules that bind to the B27 supermotif (i.e., the B27 supertype) include at least B\*1401, B\*1402, B\*1509, B\*2702, B\*2703, B\*2704, B\*2705, B\*2706, B\*3801, B\*3901, B\*3902, and B\*7301. Other allele-specific HLA molecules predicted to be members of the B27 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B27 supermotif are set forth on the attached Table XII.

# IV.D.7. HLA-B44 supermotif

The HLA-B44 supermotif is characterized by the presence in peptide ligands of negatively charged (D or E) residues as a primary anchor in position 2, and hydrophobic residues (F, W, Y, L, I, M, V, or A) as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney et al., Immunol. Today 17:261, 1996). Exemplary members of the corresponding family of HLA molecules that bind to the B44 supermotif (i.e., the B44 supertype) include at least: B\*1801, B\*1802, B\*3701, B\*4001, B\*4002, B\*4006, B\*4402, B\*4403, and B\*4404. Peptide binding to each of the allele-specific HLA

molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the supermotif.

# IV.D.8. HLA-B58 supermotif

5

10

15

20

25

35

The HLA-B58 supermotif is characterized by the presence in peptide ligands of a small aliphatic residue (A, S, or T) as a primary anchor residue at position 2, and an aromatic or hydrophobic residue (F, W, Y, L, I, V, M, or A) as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics 1999 Nov; 50(3-4):201-12, Review). Exemplary members of the corresponding family of HLA molecules that bind to the B58 supermotif (i.e., the B58 supertype) include at least: B\*1516, B\*1517, B\*5701, B\*5702, and B\*5801. Other allele-specific HLA molecules predicted to be members of the B58 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B27 supermotif are set forth on the attached Table XII.

#### IV.D.9. HLA-B62 supermotif-

The HLA-B62 supermotif is characterized by the presence in peptide ligands of the polar aliphatic residue Q or a hydrophobic aliphatic residue (L, V, M, I, or P) as a primary anchor in position 2, and a hydrophobic residue (F, W, Y, M, I, V, L, or A) as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics 1999 Nov;50(3-4):201-12, Review). Exemplary members of the corresponding family of HLA molecules that bind to the B62 supermotif (i.e., the B62 supertype) include at least: B\*1501, B\*1502, B\*1513, and B5201. Other allele-specific HLA molecules predicted to be members of the B62 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B62 supermotif are set forth on the attached Table XIV.

# 30 IV.D.10. HLA-A1 motif

The HLA-A1 motif is characterized by the presence in peptide ligands of T, S, or M as a primary anchor residue at position 2 and the presence of Y as a primary anchor residue at the C-terminal position of the epitope. An alternative allele-specific A1 motif is characterized by a primary anchor residue at position 3 rather than position 2. This motif is characterized by the presence of D, E, A, or S as a primary anchor residue in position 3, and a Y as a primary anchor residue at the C-terminal position of the epitope (see, e.g., DiBrino et al., J. Immunol., 152:620, 1994; Kondo et al., Immunogenetics 45:249, 1997; and Kubo et al., J. Immunol. 152:3913, 1994 for reviews of relevant data). Peptide binding to HLA-A1 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

WO 01/45728 PCT/US00/35516

Representative peptide epitopes that comprise either A1 motif are set forth on the attached Table XV. Those epitopes comprising T, S, or M at position 2 and Y at the C-terminal position are also included in the listing of HLA-A1 supermotif-bearing peptide epitopes listed in Table VII, as these residues are a subset of the A1 supermotif.

5

10

15

20

25

#### IV.D.11. HLA-A\*0201 motif

An HLA-A2\*0201 motif was determined to be characterized by the presence in peptide ligands of L or M as a primary anchor residue in position 2, and L or V as a primary anchor residue at the C-terminal position of a 9-residue peptide (see, e.g., Falk et al., Nature 351:290-296, 1991) and was further found to comprise an I at position 2 and I or A at the C-terminal position of a nine amino acid peptide (see, e.g., Hunt et al., Science 255:1261-1263, March 6, 1992; Parker et al., J. Immunol. 149:3580-3587, 1992). The A\*0201 allele-specific motif has also been defined by the present inventors to additionally comprise V, A, T, or Q as a primary anchor residue at position 2, and M or T as a primary anchor residue at the Cterminal position of the epitope (see, e.g., Kast et al., J. Immunol. 152:3904-3912, 1994). Thus, the HLA-A\*0201 motif comprises peptide ligands with L, I, V, M, A, T, or Q as primary anchor residues at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope. The preferred and tolerated residues that characterize the primary anchor positions of the HLA-A\*0201 motif are identical to the residues describing the A2 supermotif. (For reviews of relevant data, see, e.g., del Guercio et al., J. Immunol. 154:685-693, 1995; Ruppert et al., Cell 74:929-937, 1993; Sidney et al., Immunol. Today 17:261-266, 1996; Sette and Sidney, Curr. Opin. in Immunol. 10:478-482, 1998). Secondary anchor residues that characterize the A\*0201 motif have additionally been defined (see, e.g., Ruppert et al., Cell 74:929-937, 1993). These are shown in Table II. Peptide binding to HLA-A\*0201 molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise an A\*0201 motif are set forth on the attached Table VII. The A\*0201 motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

### 30 IV.D.12. HLA-A3 motif

The HLA-A3 motif is characterized by the presence in peptide ligands of L, M, V, I, S, A, T, F, C, G, or D as a primary anchor residue at position 2, and the presence of K, Y, R, H, F, or A as a primary anchor residue at the C-terminal position of the epitope (see, e.g., DiBrino et al., Proc. Natl. Acad. Sci USA 90:1508, 1993; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise the A3 motif are set forth on the attached Table XVI. Those epitopes that comprise the A3 supermotif are also listed in Table IX, as the A3 supermotif primary anchor residues comprise a subset of the A3- and A11-allele-specific motifs.

35

10

15

20

30

35

40

#### IV.D.13. HLA-A11 motif

The HLA-A11 motif is characterized by the presence in peptide ligands of V, T, M, L, I, S, A, G, N, C, D, or F as a primary anchor residue in position 2, and K, R, Y, or H as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Zhang et al., Proc. Natl. Acad. Sci USA 90:2217-2221, 1993; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A11 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise the A11 motif are set forth on the attached Table XVII; peptide epitopes comprising the A3 allele-specific motif are also present in this Table because of the extensive overlap between the A3 and A11 motif primary anchor specificities. Further, those peptide epitopes that comprise the A3 supermotif are also listed in Table IX.

#### IV.D.14. HLA-A24 motif

The HLA-A24 motif is characterized by the presence in peptide ligands of Y, F, W, or M as a primary anchor residue in position 2, and F, L, I, or W as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Kondo et al., J. Immunol. 155:4307-4312, 1995; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A24 molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise the A24 motif are set forth on the attached Table XVIII. These epitopes are also listed in Table X, which sets forth HLA-A24-supermotif-bearing peptide epitopes, as the primary anchor residues characterizing the A24 allele-specific motif comprise a subset of the A24 supermotif primary anchor residues.

# 25 Motifs Indicative of Class II HTL Inducing Peptide Epitopes

The primary and secondary anchor residues of the HLA class II peptide epitope supermotifs and motifs delineated below are summarized in Table III.

#### IV.D.15. HLA DR-1-4-7 supermotif

Motifs have also been identified for peptides that bind to three common HLA class II allele-specific HLA molecules: HLA DRB1\*0401, DRB1\*0101, and DRB1\*0701 (see, e.g., the review by Southwood et al. J. Immunology 160:3363-3373,1998). Collectively, the common residues from these motifs delineate the HLA DR-1-4-7 supermotif. Peptides that bind to these DR molecules carry a supermotif characterized by a large aromatic or hydrophobic residue (Y, F, W, L, I, V, or M) as a primary anchor residue in position 1, and a small, non-charged residue (S, T, C, A, P, V, I, L, or M) as a primary anchor residue in position 6 of a 9-mer core region. Allele-specific secondary effects and secondary anchors for each of these HLA types have also been identified (Southwood et al., supra). These are set forth in Table III. Peptide binding to HLA-DRB1\*0401, DRB1\*0101, and/or DRB1\*0701 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative 9-mer peptide sequences comprising the DR-1-4-7 supermotif, wherein position 1 of the supermotif is at position 1 of the nine-residue core, are set forth in Table XIX. For each sequence, the "protein" column indicates the prostate-associated antigen, i.e., PSA, PSM, PAP, or HuK2 (kallikrein). The "position" column designates the amino acid position in the prostate antigen protein sequence that corresponds to the first amino acid residue of the core sequence. The core sequences are all 9 residues in length. For example, the first PSM sequence listed in Table XIX is a core sequence of nine residues in length that starts at position 611 of the PSM amino acid sequence provided herein. Accordingly, the amino acid sequence of the core sequence is IYSISMKHP. Exemplary epitopes of 15 amino acids in length that comprises the nine residue core include the three residues on either side that flank the nine residue core. For example, the exemplary epitope of 15 amino acids in length that comprises the core epitope at position 611 of PSM is ADKIYSISMKHPQEM.

HTL epitopes that comprise the core sequences can also be of lengths other than 15 amino acids, *supra*. For example, epitopes of the invention include sequences that comprise the nine residue core plus the 1, 2, 3 (as in the exemplary 15-mer), 4, or 5 flanking residues immediately adjacent to the nine residue core on each side.

#### IV.D.16. HLA-DR3 motifs

5

10

15

20

25

30

35

40

Two alternative motifs (i.e., submotifs) characterize peptide epitopes that bind to HLA-DR3 molecules (see, e.g., Geluk et al., J. Immunol. 152:5742, 1994). In the first motif (submotif DR3a) a large, hydrophobic residue (L, I, V, M, F, or Y) is present in anchor position 1 of a 9-mer core, and D is present as an anchor at position 4, towards the carboxyl terminus of the epitope. As in other class II motifs, core position 1 may or may not occupy the peptide N-terminal position.

The alternative DR3 submotif provides for lack of the large, hydrophobic residue at anchor position 1, and/or lack of the negatively charged or amide-like anchor residue at position 4, by the presence of a positive charge at position 6 towards the carboxyl terminus of the epitope. Thus, for the alternative allele-specific DR3 motif (submotif DR3b): L, I, V, M, F, Y, A, or Y is present at anchor position 1; D, N, Q, E, S, or T is present at anchor position 4; and K, R, or H is present at anchor position 6. Peptide binding to HLA-DR3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Peptide epitope 9-mer core regions corresponding to a nine residue sequence comprising the DR3a or the DR3b submotifs (wherein position 1 of the motif is at position 1 of the nine residue core) are set forth in Table XXa and b. For each sequence, the "protein" column indicates the prostate-associated antigen, i.e., PSA, PSM, PAP, or HuK2 (kallikrein). The "position" column designates the amino acid position in the prostate antigen protein sequence that corresponds to the first amino acid residue of the core sequence. The core sequences are all 9 residues in length. For example, the first sequence listed in Table XXa is a core sequence of nine residues in length that starts at position 124 of the PAP amino acid sequence provided herein. Accordingly, the amino acid sequence of the core sequence is FPPEGVSIW. Exemplary epitopes of 15 amino acids in length that comprises the nine residue core include the three residues on either side that flank the nine residue core. For example, the exemplary epitope of 15 amino acids in length that comprises the core epitope at position 124 of PAP is AALFPPEGVSIWNPI.

PCT/US00/35516 WO 01/45728 23

HTL epitopes that comprise the core sequences can also be of lengths other than 15 amino acids, supra. For example, epitopes of the invention include sequences that comprise the nine residue core plus the 1, 2, 3 (as in the exemplary 15-mer), 4, or 5 flanking residues immediately adjacent to the nine residue core on each side.

Each of the HLA class I or class II peptide epitopes identified as described herein is deemed singly to be an inventive aspect of this application. Further, it is also an inventive aspect of this application that each peptide epitope may be used in combination with any other peptide epitope.

# IV.E. Enhancing Population Coverage of the Vaccine

5

10

15

20

25

30

40

Vaccines that have broad population coverage are preferred because they are more commercially viable and generally applicable to the most people. Broad population coverage can be obtained using the peptides of the invention (and/or nucleic acid compositions that encode such peptides) through selecting peptide epitopes that bind to HLA alleles which, when considered in total, are present in most of the population. Table XXI shows the overall frequencies of HLA class I supertypes in various ethnicities (Table XXIa) and the combined population coverage achieved by the A2-, A3-, and B7supertypes (Table XXIb). The A2-, A3-, and B7 supertypes are each present on average of over 40% in each of these five major ethnic groups. Coverage in excess of 80% is achieved with a combination of these supermotifs. These results suggest that effective and non-ethnically biased population coverage is achieved upon use of a limited number of cross-reactive peptides. Although the population coverage reached with these three main peptide specificities is high, coverage can be expanded to reach 95% population coverage and above, and more easily achieve truly multispecific responses upon use of additional supermotif or allele-specific motif bearing peptides.

The B44-, A1-, and A24-supertypes are each present, on average, in a range from 25% to 40% in these major ethnic populations (Table XXIa). While less prevalent overall, the B27-, B58-, and B62 supertypes are each present with a frequency >25% in at least one major ethnic group (Table XXIa). Table XXIb summarizes the estimated prevalence of combinations of HLA supertypes that have been identified in five major ethnic groups; the incremental coverage obtained by the inclusion of A1,- A24-, and B44supertypes to the A2, A3, and B7 coverage; and coverage obtained with all of the supertypes described herein, is shown.

The data presented herein, together with the previous definition of the A2-, A3-, and B7supertypes, indicates that all antigens, with the possible exception of A29, B8, and B46, can be classified into a total of nine HLA supertypes. By including epitopes from the six most frequent supertypes, an average population coverage of 99% is obtained for five major ethnic groups.

# IV.F. Immune Response-Stimulating Peptide Analogs

In general, CTL and HTL responses to whole antigens are not directed against all possible epitopes. Rather, they are restricted to a few "immunodominant" determinants (Zinkernagel, et al., Adv. Immunol. 27:5159, 1979; Bennink, et al., J. Exp. Med. 168:19351939, 1988; Rawle, et al., J. Immunol. 146:3977-3984, 1991). It has been recognized that immunodominance (Benacerraf, et al., Science 175:273-279, 1972) could be explained by either the ability of a given epitope to selectively bind a particular HLA

10

15

20

25

30

35

40

protein (determinant selection theory) (Vitiello, et al., J. Immunol. 131:1635, 1983); Rosenthal, et al., Nature 267:156-158, 1977), or to be selectively recognized by the existing TCR (T cell receptor) specificities (repertoire theory) (Klein, J., IMMUNOLOGY, THE SCIENCE OF SELF/NONSELF DISCRIMINATION, John Wiley & Sons, New York, pp. 270-310, 1982). It has been demonstrated that additional factors, mostly linked to processing events, can also play a key role in dictating, beyond strict immunogenicity, which of the many potential determinants will be presented as immunodominant (Sercarz, et al., Annu. Rev. Immunol. 11:729-766, 1993).

Because tissue specific and developmental TAAs are expressed on normal tissue at least at some point in time or location within the body, it may be expected that T cells to them, particularly dominant epitopes, are eliminated during immunological surveillance and that tolerance is induced. However, CTL responses to tumor epitopes in both normal donors and cancer patient have been detected, which may indicate that tolerance is incomplete (see, e.g., Kawashima et al., Hum. Immunol. 59:1, 1998; Tsang, J. Natl. Cancer Inst. 87:82-90, 1995; Rongcun et al., J. Immunol. 163:1037, 1999). Thus, immune tolerance does not completely eliminate or inactivate CTL precursors capable of recognizing high affinity HLA class I binding peptides.

An additional strategy to overcome tolerance is to use analog peptides. Without intending to be bound by theory, it is believed that because T cells to dominant epitopes may have been clonally deleted, selecting subdominant epitopes may allow existing T cells to be recruited, which will then lead to a therapeutic or prophylactic response. However, the binding of HLA molecules to subdominant epitopes is often less vigorous than to dominant ones. Accordingly, there is a need to be able to modulate the binding affinity of particular immunogenic epitopes for one or more HLA molecules, and thereby to modulate the immune response elicited by the peptide, for example to prepare analog peptides which elicit a more vigorous response.

Although peptides with suitable cross-reactivity among all alleles of a superfamily are identified by the screening procedures described above, cross-reactivity is not always as complete as possible, and in certain cases procedures to increase cross-reactivity of peptides can be useful; moreover, such procedures can also be used to modify other properties of the peptides such as binding affinity or peptide stability. Having established the general rules that govern cross-reactivity of peptides for HLA alleles within a given motif or supermotif, modification (*i.e.*, analoging) of the structure of peptides of particular interest in order to achieve broader (or otherwise modified) HLA binding capacity can be performed. More specifically, peptides which exhibit the broadest cross-reactivity patterns, can be produced in accordance with the teachings herein. The present concepts related to analog generation are set forth in greater detail in co-pending U.S.S.N. 09/226,775 filed 1/6/99.

In brief, the strategy employed utilizes the motifs or supermotifs which correlate with binding to certain HLA molecules. The motifs or supermotifs are defined by having primary anchors, and in many cases secondary anchors. Analog peptides can be created by substituting amino acid residues at primary anchor, secondary anchor, or at primary and secondary anchor positions. Generally, analogs are made for peptides that already bear a motif or supermotif. Preferred secondary anchor residues of supermotifs and motifs that have been defined for HLA class I and class II binding peptides are shown in Tables II and III, respectively.

WO 01/45728 PCT/US00/35516

For a number of the motifs or supermotifs in accordance with the invention, residues are defined which are deleterious to binding to allele-specific HLA molecules or members of HLA supertypes that bind the respective motif or supermotif (Tables II and III). Accordingly, removal of such residues that are detrimental to binding can be performed in accordance with the present invention. For example, in the case of the A3 supertype, when all peptides that have such deleterious residues are removed from the population of peptides used in the analysis, the incidence of cross-reactivity increased from 22% to 37% (see, e.g., Sidney, J. et al., Hu. Immunol. 45:79, 1996). Thus, one strategy to improve the cross-reactivity of peptides within a given supermotif is simply to delete one or more of the deleterious residues present within a peptide and substitute a small "neutral" residue such as Ala (that may not influence T cell recognition of the peptide). An enhanced likelihood of cross-reactivity is expected if, together with elimination of detrimental residues within a peptide, "preferred" residues associated with high affinity binding to an allele-specific HLA molecule or to multiple HLA molecules within a superfamily are inserted.

5

10

15

20

25

30

35

40

To ensure that an analog peptide, when used as a vaccine, actually elicits a CTL response to the native epitope in vivo (or, in the case of class II epitopes, elicits helper T cells that cross-react with the wild type peptides), the analog peptide may be used to immunize T cells in vitro from individuals of the appropriate HLA allele. Thereafter, the immunized cells' capacity to induce lysis of wild type peptide sensitized target cells is evaluated. It will be desirable to use as antigen presenting cells, cells that have been either infected, or transfected with the appropriate genes, or, in the case of class II epitopes, cells that have been pulsed with whole protein antigens, to establish whether endogenously produced antigen is also recognized by the relevant T cells.

Another embodiment of the invention is to create analogs of weak binding peptides, to thereby ensure adequate numbers of cross-reactive cellular binders. Class I binding peptides exhibiting binding affinities of 500-5000 nM, and carrying an acceptable but suboptimal primary anchor residue at one or both positions can be "fixed" by substituting preferred anchor residues in accordance with the respective supertype. The analog peptides can then be tested for crossbinding activity.

Another embodiment for generating effective peptide analogs involves the substitution of residues that have an adverse impact on peptide stability or solubility in, e.g., a liquid environment. This substitution may occur at any position of the peptide epitope. For example, a cysteine can be substituted out in favor of  $\alpha$ -amino butyric acid ("B" in the single letter abbreviations for peptide sequences listed herein). Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substituting  $\alpha$ -amino butyric acid for cysteine not only alleviates this problem, but actually improves binding and crossbinding capability in certain instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999).

IV.G. Computer Screening of Protein Sequences from Disease-Related Antigens for Supermotif- or Motif-Bearing Peptides

In order to identify supermotif- or motif-bearing epitopes in a target antigen, a native protein sequence, e.g., a tumor-associated antigen, or sequences from an infectious organism, or a donor tissue for transplantation, is screened using a means for computing, such as an intellectual calculation or a

10

15

20

25

30

35

40

computer, to determine the presence of a supermotif or motif within the sequence. The information obtained from the analysis of native peptide can be used directly to evaluate the status of the native peptide or may be utilized subsequently to generate the peptide epitope.

Computer programs that allow the rapid screening of protein sequences for the occurrence of the subject supermotifs or motifs are encompassed by the present invention; as are programs that permit the generation of analog peptides. These programs are implemented to analyze any identified amino acid sequence or operate on an unknown sequence and simultaneously determine the sequence and identify motif-bearing epitopes thereof; analogs can be simultaneously determined as well. Generally, the identified sequences will be from a pathogenic organism or a tumor-associated peptide. In the present invention, the target TAA molecules include, without limitation, PSA, PSM, PAP, and hK2.

It is important that the selection criteria utilized for prediction of peptide binding are as accurate as possible, to correlate most efficiently with actual binding. Prediction of peptides that bind, for example, to HLA-A\*0201, on the basis of the presence of the appropriate primary anchors, is positive at about a 30% rate (see, e.g., Ruppert, J. et al. Cell 74:929, 1993). However, by extensively analyzing peptide-HLA binding data disclosed herein, data in related patent applications, and data in the art, the present inventors have developed a number of allele-specific polynomial algorithms that dramatically increase the predictive value over identification on the basis of the presence of primary anchor residues alone. These algorithms take into account not only the presence or absence of primary anchors, but also consider the positive or deleterious presence of secondary anchor residues (to account for the impact of different amino acids at different positions). The algorithms are essentially based on the premise that the overall affinity (or  $\Delta G$ ) of peptide-HLA interactions can be approximated as a linear polynomial function of the type:

$$\Delta G = \mathbf{a}_{1i} \times \mathbf{a}_{2i} \times \mathbf{a}_{3i} \dots \times \mathbf{a}_{ni}$$

where  $a_{ji}$  is a coefficient that represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. An important assumption of this method is that the effects at each position are essentially independent of each other. This assumption is justified by studies that demonstrated that peptides are bound to HLA molecules and recognized by T cells in essentially an extended conformation. Derivation of specific algorithm coefficients has been described, for example, in Gulukota, K. et al., J. Mol. Biol. 267:1258, 1997.

Additional methods to identify preferred peptide sequences, which also make use of specific motifs, include the use of neural networks and molecular modeling programs (see, e.g., Milik et al., Nature Biotechnology 16:753, 1998; Altuvia et al., Hum. Immunol. 58:1, 1997; Altuvia et al., J. Mol. Biol. 249:244, 1995; Buus, S. Curr. Opin. Immunol. 11:209-213, 1999; Brusic, V. et al., Bioinformatics 14:121-130, 1998; Parker et al., J. Immunol. 152:163, 1993; Meister et al., Vaccine 13:581, 1995; Hammer et al., J. Exp. Med. 180:2353, 1994; Sturniolo et al., Nature Biotechnol. 17:555 1999).

For example, it has been shown that in sets of A\*0201 motif-bearing peptides containing at least one preferred secondary anchor residue while avoiding the presence of any deleterious secondary anchor residues, 69% of the peptides will bind A\*0201 with an IC<sub>50</sub> less than 500 nM (Ruppert, J. et al. Cell 74:929, 1993). These algorithms are also flexible in that cut-off scores may be adjusted to select sets of peptides with greater or lower predicted binding properties, as desired.

PCT/US00/35516

In utilizing computer screening to identify peptide epitopes, a protein sequence or translated sequence may be analyzed using software developed to search for motifs, for example the "FINDPATTERNS' program (Devereux, et al. Nucl. Acids Res. 12:387-395, 1984) or MotifSearch 1.4 software program (D. Brown, San Diego, CA) to identify potential peptide sequences containing appropriate HLA binding motifs. The identified peptides can be scored using customized polynomial algorithms to predict their capacity to bind specific HLA class I or class II alleles. As appreciated by one of ordinary skill in the art, a large array of computer programming software and hardware options are available in the relevant art which can be employed to implement the motifs of the invention in order to evaluate (e.g., without limitation, to identify epitopes, identify epitope concentration per peptide length, or to generate analogs) known or unknown peptide sequences.

In accordance with the procedures described above, prostate cancer-associated antigen peptide epitopes and analogs thereof that are able to bind HLA supertype groups or allele-specific HLA molecules are identified.

# 15 IV.H. Preparation of Peptide Epitopes

5

10

20

25

30

35

40

Peptides in accordance with the invention can be prepared synthetically, by recombinant DNA technology or chemical synthesis, or from natural sources such as native tumors or pathogenic organisms. Peptide epitopes may be synthesized individually or as polyepitopic peptides. Although the peptide will preferably be substantially free of other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides may be synthetically conjugated to native fragments or particles.

The peptides in accordance with the invention can be a variety of lengths, and either in their neutral (uncharged) forms or in forms which are salts. The peptides in accordance with the invention are either free of modifications such as glycosylation, side chain oxidation, or phosphorylation; or they contain these modifications, subject to the condition that modifications do not destroy the biological activity of the peptides as described herein.

When possible, it may be desirable to optimize HLA class I binding epitopes of the invention, such as can be used in a polyepitopic construct, to a length of about 8 to about 13 amino acid residues, often 8 to 11, preferably 9 to 10. HLA class II binding peptide epitopes of the invention may be optimized to a length of about 6 to about 30 amino acids in length, preferably to between about 13 and about 20 residues. Preferably, the peptide epitopes are commensurate in size with endogenously processed pathogen-derived peptides or tumor cell peptides that are bound to the relevant HLA molecules, however, the identification and preparation of peptides that comprise epitopes of the invention can also be carried out using the techniques described herein.

In alternative embodiments, epitopes of the invention can be linked as a polyepitopic peptide, or as a minigene that encodes a polyepitopic peptide.

In another embodiment, it is preferred to identify native peptide regions that contain a high concentration of class I and/or class II epitopes. Such a sequence is generally selected on the basis that it contains the greatest number of epitopes per amino acid length. It is to be appreciated that epitopes can be present in a nested or overlapping manner, e.g. a 10 amino acid long peptide could contain two 9 amino acid long epitopes and one 10 amino acid long epitope; upon intracellular processing, each epitope can be

exposed and bound by an HLA molecule upon administration of such a peptide. This larger, preferably multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source.

The peptides of the invention can be prepared in a wide variety of ways. For the preferred relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. (See, for example, Stewart & Young, SOLID PHASE PEPTIDE SYNTHESIS, 2D. ED., Pierce Chemical Co., 1984). Further, individual peptide epitopes can be joined using chemical ligation to produce larger peptides that are still within the bounds of the invention.

Alternatively, recombinant DNA technology can be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the art, as described generally in Sambrook *et al.*, MOLECULAR CLONING, A LABORATORY MANUAL, Cold Spring Harbor Press, Cold Spring Harbor, New York (1989). Thus, recombinant polypeptides which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.

The nucleotide coding sequence for peptide epitopes of the preferred lengths contemplated herein can be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci, et al., J. Am. Chem. Soc. 103:3185 (1981). Peptide analogs can be made simply by substituting the appropriate and desired nucleic acid base(s) for those that encode the native peptide sequence; exemplary nucleic acid substitutions are those that encode an amino acid defined by the motifs/supermotifs herein. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are transformed into suitable bacterial hosts. Of course, yeast, insect or mammalian cell hosts may also be used, employing suitable vectors and control sequences.

# IV.L. Assays to Detect T-Cell Responses

5

10

15

20

25

30

35

40

Once HLA binding peptides are identified, they can be tested for the ability to elicit a T-cell response. The preparation and evaluation of motif-bearing peptides are described in PCT publications WO 94/20127 and WO 94/03205. Briefly, peptides comprising epitopes from a particular antigen are synthesized and tested for their ability to bind to the appropriate HLA proteins. These assays may involve evaluating the binding of a peptide of the invention to purified HLA class I molecules in relation to the binding of a radioiodinated reference peptide. Alternatively, cells expressing empty class I molecules (i.e. lacking peptide therein) may be evaluated for peptide binding by immunofluorescent staining and flow microfluorimetry. Other assays that may be used to evaluate peptide binding include peptide-dependent

10

15

20

25

30

WO 01/45728 PCT/US00/35516 29

class I assembly assays and/or the inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule, typically with an affinity of 500 nM or less, are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary in vitro or in vivo CTL responses that can give rise to CTL populations capable of reacting with selected target cells associated with a disease.

Analogous assays are used for evaluation of HLA class II binding peptides. HLA class II motif-bearing peptides that are shown to bind, typically at an affinity of 1000 nM or less, are further evaluated for the ability to stimulate HTL responses.

Conventional assays utilized to detect T cell responses include proliferation assays, lymphokine secretion assays, direct cytotoxicity assays, and limiting dilution assays. For example, antigenpresenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells. Alternatively, mutant non-human mammalian cell lines that are deficient in their ability to load class I molecules with internally processed peptides and that have been transfected with the appropriate human class I gene, may be used to test for the capacity of the peptide to induce in vitro primary CTL responses.

Peripheral blood mononuclear cells (PBMCs) may be used as the responder cell source of CTL precursors. The appropriate antigen-presenting cells are incubated with peptide, after which the peptide-loaded antigen-presenting cells are then incubated with the responder cell population under optimized culture conditions. Positive CTL activation can be determined by assaying the culture for the presence of CTLs that kill radio-labeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed forms of the antigen from which the peptide sequence was derived.

Additionally, a method has been devised which allows direct quantification of antigenspecific T cells by staining with Fhorescein-labelled HLA tetrameric complexes (Altman, J. D. et al., Proc. Natl. Acad. Sci. USA 90:10330, 1993; Altman, J. D. et al., Science 274:94, 1996). Other relatively recent technical developments include staining for intracellular lymphokines, and interferon-y release assays or ELISPOT assays. Tetramer staining, intracellular lymphokine staining and ELISPOT assays all appear to be at least 10-fold more sensitive than more conventional assays (Lalvani, A. et al., J. Exp. Med. 186:859, 1997; Dunbar, P. R. et al., Curr. Biol. 8:413, 1998; Murali-Krishna, K. et al., Immunity 8:177, 1998).

HTL activation may also be assessed using such techniques known to those in the art such as T cell proliferation and secretion of lymphokines, e.g. IL-2 (see, e.g. Alexander et al., Immunity 1:751-761, 1994).

Alternatively, immunization of HLA transgenic mice can be used to determine 35 immunogenicity of peptide epitopes. Several transgenic mouse models including mice with human A2.1, A11 (which can additionally be used to analyze HLA-A3 epitopes), and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed. Additional transgenic mouse models with other HLA alleles may be generated as necessary. The mice may be immunized with peptides emulsified in Incomplete Freund's 40 Adjuvant and the resulting T cells tested for their capacity to recognize peptide-pulsed target cells and

10

15

20

25

30

35

40

target cells transfected with appropriate genes. CTL responses may be analyzed using cytotoxicity assays described above. Similarly, HTL responses may be analyzed using such assays as T cell proliferation or secretion of lymphokines.

#### IV.J. Use of Peptide Epitopes as Diagnostic Agents and for Evaluating Immune Responses

In one embodiment of the invention, HLA class I and class II binding peptides as described herein are used as reagents to evaluate an immune response. The immune response to be evaluated is induced by using as an immunogen any agent that may result in the production of antigen-specific CTLs or HTLs that recognize and bind to the peptide epitope(s) to be employed as the reagent. The peptide reagent need not be used as the immunogen. Assay systems that are used for such an analysis include relatively recent technical developments such as tetramers, staining for intracellular lymphokines and interferon release assays, or ELISPOT assays.

For example, peptides of the invention are used in tetramer staining assays to assess peripheral blood monomuclear cells for the presence of antigen-specific CTLs following exposure to a tumor cell antigen or an immunogen. The HLA-tetrameric complex is used to directly visualize antigen-specific CTLs (see, e.g., Ogg et al., Science 279:2103-2106, 1998; and Altman et al., Science 174:94-96, 1996) and determine the frequency of the antigen-specific CTL population in a sample of peripheral blood monomuclear cells. A tetramer reagent using a peptide of the invention is generated as follows: A peptide that binds to an HLA molecule is refolded in the presence of the corresponding HLA heavy chain and  $\beta_z$ -microglobulin to generate a trimolecular complex. The complex is biotinylated at the carboxyl terminal end of the heavy chain at a site that was previously engineered into the protein. Tetramer formation is then induced by the addition of streptavidin. By means of fluorescently labeled streptavidin, the tetramer can be used to stain antigen-specific cells. The cells can then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes. Cells identified by the procedure can also be used for therapeutic purposes.

Peptides of the invention are also used as reagents to evaluate immune recall responses (see, e.g., Bertoni et al., J. Clin. Invest. 100:503-513, 1997 and Penna et al., J. Exp. Med. 174:1565-1570, 1991). For example, patient PBMC samples from individuals with cancer are analyzed for the presence of antigen-specific CTLs or HTLs using specific peptides. A blood sample containing mononuclear cells can be evaluated by cultivating the PBMCs and stimulating the cells with a peptide of the invention. After an appropriate cultivation period, the expanded cell population can be analyzed, for example, for CTL or for HTL activity.

The peptides are also used as reagents to evaluate the efficacy of a vaccine. PBMCs obtained from a patient vaccinated with an immunogen are analyzed using, for example, either of the methods described above. The patient is HLA typed, and peptide epitope reagents that recognize the allelespecific molecules present in that patient are selected for the analysis. The immunogenicity of the vaccine is indicated by the presence of epitope-specific CTLs and/or HTLs in the PBMC sample.

The peptides of the invention are also used to make antibodies, using techniques well known in the art (see, e.g. Current Protocols in Immunology, Wiley/Greene, NY; and Antibodies A Laboratory Manual, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989), which may be useful

as reagents to diagnose or monitor cancer. Such antibodies include those that recognize a peptide in the context of an HLA molecule, i.e., antibodies that bind to a peptide-MHC complex.

## IV.K. Vaccine Compositions

5

10

15

20

25

30

35

40

Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more peptides as described herein are further embodiments of the invention. Once appropriately immunogenic epitopes have been defined, they can be sorted and delivered by various means, herein referred to as "vaccine" compositions. Such vaccine compositions can include, for example, lipopeptides (e.g., Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tam, J.P., J. Immunol. Methods 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine development, Kaufmann, S. H. B., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

Vaccines of the invention include nucleic acid-mediated modalities. DNA or RNA encoding one or more of the peptides of the invention can also be administered to a patient. This approach is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gum") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can also be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. As an example of this approach, vaccinia virus is used as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host

10

15

20

25

30

35

40

PCT/US00/35516

bearing a tumor, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL and/or HTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.

Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptides. A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, e.g., recombinantly or by chemical synthesis.

Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P<sub>3</sub>CSS).

Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later infection, or at least partially resistant to developing an ongoing chronic infection, or derives at least some therapeutic benefit when the antigen was tumor-associated.

In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and or helper T cell responses to the target antigen of interest. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a cross-binding HLA class II molecule such as PADRE<sup>TM</sup> (Epimmune, San Diego, CA) molecule (described, for example, in U.S. Patent Number 5,736,142).

A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicle to present peptides of the invention. Vaccine compositions can be created in vitro, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs in vitro. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention,

10

- 15

20

25

30

35

40

or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses in vivo.

Vaccine compositions, either DNA- or peptide-based, can also be administered in vivo in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo.

Antigenic peptides are used to elicit a CTL and/or HTL response ex vivo, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. Ex vivo CTL or HTL responses to a particular tumor-associated antigen are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells, such as dendritic cells, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (an infected cell or a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells.

The vaccine compositions of the invention can also be used in combination with other treatments used for cancer, including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like.

Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles are balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.

- 1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one TAA. For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (see e.g., Rosenberg et al., Science 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs as described, e.g., in Example 15.
  - 2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an  $IC_{50}$  of 500 nM or less, often 200 nM or less; and for Class II an  $IC_{50}$  of 1000 nM or less.
- 3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.
- 4.) When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope. When selecting epitopes for infectious disease-related antigens it is preferable to select either native or analoged epitopes.

WO 01/45728 PCT/US00/35516

- 5.) Of particular relevance are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise both HLA class I and HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.
- 6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a "dominant epitope." A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.

20

25

30

35

40

.5

10

15

#### IV.K.1. Minigene Vaccines

A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention.

The use of multi-epitope minigenes is described below and in, e.g., co-pending application U.S.S.N. 09/311,784; Ishioka et al., J. Immunol. 162:3915-3925, 1999; An, L. and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a multi-epitope DNA plasmid encoding supermotif- and/or motif-bearing PSA, PSM, PAP, and hK2 epitopes derived from multiple regions of one or more of the prostate cancer-associated antigens, the PADRE™ universal helper T cell epitope (or multiple HTL epitopes from PSA, PSM, PAP, and hK2), and an endoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that are derived from other TAAs.

The immunogenicity of a multi-epitopic minigene can be tested in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA-encoded epitopes in vivo can be correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that

the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.

5

10

15

20

25

30

35

40

For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.

The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an *E. coli* origin of replication; and an *E. coli* selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.

Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate *E. coli* strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.

In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can

be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (e.g., PADRETM, Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-β) may be beneficial in certain diseases.

Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in *E. coli*, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

10

15

20

25

30

35

40

Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffered saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987). In addition, peptides and compounds referred to collectively as protective, interactive, noncondensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct *in vitro* transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (<sup>51</sup>Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by <sup>51</sup>Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (IP) for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are

harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, <sup>51</sup>Cr-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for *in vivo* induction of CTLs. Immumogenicity of HTL epitopes is evaluated in transgenic mice in an analogous manner.

Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.

Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epitopes of the invention can be incorporated into a viral vector such as vaccinia.

#### IV.K.2. Combinations of CTL Peptides with Helper Peptides

5

10

. 15

20

25

30

35

Vaccine compositions comprising the peptides of the present invention can be modified to provide desired attributes, such as improved serum half-life, or to enhance immunogenicity.

For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. The use of T helper epitopes in conjunction with CTL epitopes to enhance immunogenicity is illustrated, for example, in the co-pending applications U.S.S.N. 08/820,360, U.S.S.N. 08/197,484, and U.S.S.N. 08/464.234.

Although a CTL peptide can be directly linked to a Thelper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homoligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.

In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in the majority of the population. This can be accomplished by selecting amino acid sequences that bind to many, most, or all of the HLA class II molecules. These are known as "loosely HLA-restricted" or "promiscuous" T helper sequences. Examples of peptides that are promiscuous include sequences from antigens such as tetamis toxoid at positions 830-843 (QYIKANSKFIGITE), *Plasmodium falciparum* circumsporozoite (CS) protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS), and *Streptococcus* 18kD protein at positions 116 (GAVDSILGGVATYGAA). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.

10

15

20

25

30

35

40

Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRE<sup>TM</sup>, Epimmune, Inc., San Diego, CA) are designed to most preferrably bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: aKXVAAWTLKAAa, where "X" is either cyclohexylalanine, phenylalanine, or tyrosine, and "a" is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals; regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all "L" natural amino acids and can be provided in the form of nucleic acids that encode the epitope.

PCT/US00/35516

HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.

#### IV.K.3. Combinations of CTL Peptides with T Cell Priming Agents

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes cytotoxic T lymphocytes. Lipids have been identified as agents capable of priming CTL in vivo against viral antigens. For example, palmitic acid residues can be attached to the  $\varepsilon$ -and  $\alpha$ - amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant. A preferred immunogenic composition comprises palmitic acid attached to  $\varepsilon$ - and  $\alpha$ - amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CTL responses, *E. coli* lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P<sub>3</sub>CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide (see, e.g., Deres, et al., Nature 342:561, 1989). Peptides of the invention can be coupled to P<sub>3</sub>CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P<sub>3</sub>CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses.

CTL and/or HTL peptides can also be modified by the addition of amino acids to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide, particularly class I peptides. However, it is to be noted that modification at the carboxyl terminus of a CTL epitope may, in some cases, alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural

10

15

20

25

30

35

sequence by being modified by terminal- $NH_2$  acylation, e.g., by alkanoyl ( $C_1$ - $C_{20}$ ) or thioglycolyl acetylation, terminal-carboxyl amidation, e.g., ammonia, methylamine, etc. In some instances these modifications may provide sites for linking to a support or other molecule.

#### IV.K.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides

An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin™ (Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.

The DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL response to one or more antigens of interest, e.g., prostate-associated antigens such as PSA, PSM, PAP, kallikrein, and the like. Optionally, a helper T cell peptide such as a PADRE™ family molecule, can be included to facilitate the CTL response.

#### IV.L. Administration of Vaccines for Therapeutic or Prophylactic Purposes

The peptides of the present invention and pharmaceutical and vaccine compositions of the invention are typically used therapeutically to treat cancer, particularly prostate cancer. Vaccine compositions containing the peptides of the invention are typically administered to a prostate cancer patient who has a malignancy associated with expression of one or more prostate-associated antigens.

Alternatively, vaccine compositions can be administered to an individual susceptible to, or otherwise at risk for developing prostate cancer.

In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective CTL and/or HTL response to the tumor antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.

As noted above, peptides comprising CTL and/or HTL epitopes of the invention induce immune responses when presented by HLA molecules and contacted with a CTL or HTL specific for an epitope comprised by the peptide. The peptides (or DNA encoding them) can be administered individually or as fusions of one or more peptide sequences. The manner in which the peptide is contacted with the CTL or HTL is not critical to the invention. For instance, the peptide can be contacted with the CTL or HTL either *in vivo* or *in vitro*. If the contacting occurs *in vivo*, the peptide itself can be administered to the patient, or other vehicles, e.g., DNA vectors encoding one or more peptides, viral vectors encoding the peptide(s), hiposomes and the like, can be used, as described herein.

When the peptide is contacted *in vitro*, the vaccinating agent can comprise a population of cells, e.g., peptide-pulsed dendritic cells, or TAA-specific CTLs, which have been induced by pulsing antigen-presenting cells *in vitro* with the peptide or by transfecting antigen-presenting cells with a minigene of the invention. Such a cell population is subsequently administered to a patient in a therapeutically effective dose.

5

10

15

20

25

30

35

40

For therapeutic use, administration should generally begin at the first diagnosis of cancer. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition (i.e., including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, a vaccine comprising TAA-specific CTLs may be more efficacious in killing tumor cells in patients with advanced disease than alternative embodiments.

The vaccine compositions of the invention may also be used therapeutically in combination with treatments such as surgery. An example is a situation in which a patient has undergone surgery to remove a primary tumor and the vaccine is then used to slow or prevent recurrence and/or metastasis.

Where susceptible individuals, e.g., individuals who may be diagnosed as being genetically pre-disposed to developing a prostate tumor, are identified prior to diagnosis of cancer, the composition can be targeted to them, thus minimizing the need for administration to a larger population.

The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1,000 μg and the higher value is about 10,000; 20,000; 30,000; or 50,000 μg. Dosage values for a human typically range from about 500 μg to about 50,000 μg per 70 kilogram patient. Initial doses followed by boosting doses at established intervals, e.g., from four weeks to six months, may be required, possibly for a prolonged period of time to effectively treat a patient. Boosting dosages of between about 1.0 μg to about 50,000 μg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood.

Administration should continue until at least clinical symptoms or laboratory tests indicate that the tumor has been eliminated or that the tumor cell burden has been substantially reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.

In certain embodiments, peptides and compositions of the present invention are employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.

The vaccine compositions of the invention can also be used as prophylactic agents. For example, the compositions can be administered to individuals at risk of developing prostate cancer.

Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or

50,000 µg. Dosage values for a human typically range from about 500 µg to about 50,000 µg per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 µg to about 50,000 µg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine may be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.

5

10

15

20

25

30

35

The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, intrathecal, or local administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.

The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, *i.e.*, from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, *etc.*, in accordance with the particular mode of administration selected.

A human unit dose form of the peptide composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, preferably an aqueous carrier, and is administered in a volume of fluid that is known by those of skill in the art to be used for administration of such compositions to humans (see, e.g., Remington's Pharmaceutical Sciences, 17<sup>th</sup> Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pennsylvania, 1985).

The peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or to target selectively to infected cells, as well as to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A

variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.

For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

5

10

15

20

25

30

35

40

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.

For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.

# IV.M. HLA EXPRESSION: IMPLICATIONS FOR T CELL-BASED IMMUNOTHERAPY Disease progression in cancer and infectious disease

It is well recognized that a dynamic interaction between exists between host and disease, both in the cancer and infectious disease settings. In the infectious disease setting, it is well established that pathogens evolve during disease. The strains that predominate early in HIV infection are different from the ones that are associated with AIDS and later disease stages (NS versus S strains). It has long been hypothesized that pathogen forms that are effective in establishing infection may differ from the ones most effective in terms of replication and chronicity.

Similarly, it is widely recognized that the pathological process by which an individual succumbs to a neoplastic disease is complex. During the course of disease, many changes occur in cancer cells. The tumor accumulates alterations which are in part related to dysfunctional regulation of growth and differentiation, but also related to maximizing its growth potential, escape from drug treatment and/or the body's immunosurveillance. Neoplastic disease results in the accumulation of several different biochemical alterations of cancer cells, as a function of disease progression. It also results in significant levels of intra-and inter- cancer heterogeneity, particularly in the late, metastatic stage.

Familiar examples of cellular alterations affecting treatment outcomes include the outgrowth of radiation or chemotherapy resistant tumors during the course of therapy. These examples

10

15

20

25

30

35

40

parallel the emergence of drug resistant viral strains as a result of aggressive chemotherapy, e.g., of chronic HBV and HIV infection, and the current resurgence of drug resistant organisms that cause Tuberculosis and Malaria. It appears that significant heterogeneity of responses is also associated with other approaches to cancer therapy, including anti-angiogenesis drugs, passive antibody immunotherapy, and active T cell-based immunotherapy. Thus, in view of such phenomena, epitopes from multiple disease-related antigens can be used in vaccines and therapeutics thereby counteracting the ability of diseased cells to mutate and escape treatment.

# The interplay between disease and the immune system

One of the main factors contributing to the dynamic interplay between host and disease is the immune response mounted against the pathogen, infected cell, or malignant cell. In many conditions such immune responses control the disease. Several animal model systems and prospective studies of natural infection in humans suggest that immune responses against a pathogen can control the pathogen, prevent progression to severe disease and/or eliminate the pathogen. A common theme is the requirement for a multispecific T cell response, and that narrowly focused responses appear to be less effective. These observations guide skilled artisan as to embodiments of methods and compositions of the present invention that provide for a broad immune response.

In the cancer setting there are several findings that indicate that immune responses can impact neoplastic growth:

First, the demonstration in many different animal models, that anti-tumor T cells, restricted by MHC class I, can prevent or treat tumors.

Second, encouraging results have come from immunotherapy trials.

Third, observations made in the course of natural disease correlated the type and composition of T cell infiltrate within tumors with positive clinical outcomes (Coulie PG, et al. Antitumor immunity at work in a melanoma patient In <u>Advances in Cancer Research</u>, 213-242, 1999).

Finally, tumors commonly have the ability to mutate, thereby changing their immunological recognition. For example, the presence of monospecific CTL was also correlated with control of tumor growth, until antigen loss emerged (Riker A, et al., Immune selection after antigen-specific immunotherapy of melanoma Surgery, Aug: 126(2):112-20, 1999; Marchand M, et al., Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1 Int. J. Cancer 80(2):219-30, Jan. 18, 1999). Similarly, loss of beta 2 microglobulin was detected in 5/13 lines established from melanoma patients after receiving immunotherapy at the NCI (Restifo NP, et al., Loss of functional Beta2 - microglobulin in metastatic melanomas from five patients receiving immunotherapy Journal of the National Cancer Institute, Vol. 88 (2), 100-108, Jan. 1996). It has long been recognized that HLA class I is frequently altered in various tumor types. This has led to a hypothesis that this phenomenon might reflect immune pressure exerted on the tumor by means of class I restricted CTL. The extent and degree of alteration in HLA class I expression appears to be reflective of past immune pressures, and may also have prognostic value (van Duinen SG, et al., Level of HLA antigens in locoregional metastases and clinical course of the disease in patients with melanoma Cancer Research 48, 1019-1025, Feb. 1988; Möller P, et al., Influence of major

histocompatibility complex class I and II antigens on survival in colorectal carcinoma *Cancer Research* 51, 729-736, Jan. 1991). Taken together, these observations provide a rationale for immunotherapy of cancer and infectious disease, and suggest that effective strategies need to account for the complex series of pathological changes associated with disease.

5

10

15

# The three main types of alterations in HLA expression in tumors and their functional significance

The level and pattern of expression of HLA class I antigens in tumors has been studied in many different tumor types and alterations have been reported in all types of tumors studied. The molecular mechanisms underlining HLA class I alterations have been demonstrated to be quite heterogeneous. They include alterations in the TAP/processing pathways, mutations of β2-microglobulin and specific HLA heavy chains, alterations in the regulatory elements controlling over class I expression and loss of entire chromosome sections. There are several reviews on this topic, see, e.g.,: Garrido F, et al., Natural history of HLA expression during tumour development Immunol Today 14(10):491-499, 1993; Kaklamanis L, et al., Loss of HLA class-I alleles, heavy chains and β2-microglobulin in colorectal cancer Int. J. Cancer, 51(3):379-85, May 28,1992. There are three main types of HLA Class I alteration (complete loss, allele-specific loss and decreased expression). The functional significance of each alteration is discussed separately:

#### Complete loss of HLA expression

20

25

Complete loss of HLA expression can result from a variety of different molecular mechanisms, reviewed in (Algarra I, et al., The HLA crossroad in tumor immunology Human Immunology 61, 65-73, 2000; Browning M, et al., Mechanisms of loss of HLA class I expression on colorectal tumor cells Tissue Antigens 47:364-371, 1996; Ferrone S, et al., Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance Immunology Today, 16(10): 487-494, 1995; Garrido F, et al., Natural history of HLA expression during tumour development Immunology Today 14(10):491-499, 1993; Tait, BD, HLA Class I expression on human cancer cells: Implications for effective immunotherapy Hum Immunol 61, 158-165, 2000). In functional terms, this type of alteration has several important implications.

30

35

40

While the complete absence of class I expression will eliminate CTL recognition of those tumor cells, the loss of HLA class I will also render the tumor cells extraordinary sensitive to lysis from NK cells (Ohnmacht, GA, et al., Heterogeneity in expression of human leukocyte antigens and melanoma-associated antigens in advanced melanoma J Cellular Phys 182:332-338, 2000; Liunggren HG, et al., Host resistance directed selectively against H-2 deficient lymphoma variants: Analysis of the mechanism J. Exp. Med., Dec 1;162(6):1745-59, 1985; Maio M, et al., Reduction in susceptibility to natural killer cell-mediated lysis of human FO-1 melanoma cells after induction of HLA class I antigen expression by transfection with B2m gene J. Clin. Invest. 88(1):282-9, July 1991; Schrier PI, et al., Relationship between myc oncogene activation and MHC class I expression Adv. Cancer Res., 60:181-246, 1993).

The complementary interplay between loss of HLA expression and gain in NK sensitivity is exemplified by the classic studies of Coulie and coworkers (Coulie, PG, et al., Antitumor immunity at work in a melanoma patient. In <u>Advances in Cancer Research</u>, 213-242, 1999) which described the

WO 01/45728 PCT/US00/35516

evolution of a patient's immune response over the course of several years. Because of increased sensitivity to NK lysis, it is predicted that approaches leading to stimulation of innate immunity in general and NK activity in particular would be of special significance. An example of such approach is the induction of large amounts of dendritic cells (DC) by various hematopoietic growth factors, such as Flt3 ligand or ProGP. The rationale for this approach resides in the well known fact that dendritic cells produce large amounts of IL-12, one of the most potent stimulators for innate immunity and NK activity in particular. Alternatively, IL-12 is administered directly, or as nucleic acids that encode it. In this light, it is interesting to note that Flt3 ligand treatment results in transient turnor regression of a class I negative prostate murine cancer model (Ciavarra RP, et al., Flt3-Ligand induces transient tumor regression in an ectopic treatment model of major histocompatibility complex-negative prostate cancer Cancer Res 60:2081-84, 2000). In this context, specific anti-tumor vaccines in accordance with the invention synergize with these types of hematopoietic growth factors to facilitate both CTL and NK cell responses, thereby appreciably impairing a cell's ability to mutate and thereby escape efficacious treatment. Thus, an embodiment of the present invention comprises a composition of the invention together with a method or composition that augments functional activity or numbers of NK cells. Such an embodiment can comprise a protocol that provides a composition of the invention sequentially with an NK-inducing modality, or contemporaneous with an NKinducing modality.

Secondly, complete loss of HLA frequently occurs only in a fraction of the tumor cells, while the remainder of tumor cells continue to exhibit normal expression. In functional terms, the tumor would still be subject, in part, to direct attack from a CTL response; the portion of cells lacking HLA subject to an NK response. Even if only a CTL response were used, destruction of the HLA expressing fraction of the tumor has dramatic effects on survival times and quality of life.

It should also be noted that in the case of heterogeneous HLA expression, both normal HLA-expressing as well as defective cells are predicted to be susceptible to immune destruction based on "bystander effects." Such effects were demonstrated, e.g., in the studies of Rosendahl and colleagues that investigated in vivo mechanisms of action of antibody targeted superantigens (Rosendahl A, et al., Perforin and IFN-gamma are involved in the antitumor effects of antibody-targeted superantigens J. Immunol. 160(11):5309-13, June 1, 1998). The bystander effect is understood to be mediated by cytokines elicited from, e.g., CTLs acting on an HLA-bearing target cell, whereby the cytokines are in the environment of other diseased cells that are concomitantly killed.

#### Allele-specific loss

5

10

15

20

25

30

35

40

One of the most common types of alterations in class I molecules is the selective loss of certain alleles in individuals heterozygous for HLA. Allele-specific alterations might reflect the tumor adaptation to immune pressure, exerted by an immunodominant response restricted by a single HLA restriction element. This type of alteration allows the tumor to retain class I expression and thus escape NK cell recognition, yet still be susceptible to a CTL-based vaccine in accordance with the invention which comprises epitopes corresponding to the remaining HLA type. Thus, a practical solution to overcome the potential hurdle of allele-specific loss relies on the induction of multispecific responses. Just as the inclusion of multiple disease-associated antigens in a vaccine of the invention guards against mutations that

30

35

40

yield loss of a specific disease antigens, simultaneously targeting multiple HLA specificities and multiple disease-related antigens prevents disease escape by allele-specific losses.

Decrease in expression (allele-specific or not)

5 The sensitivity of effector CTL has long been demonstrated (Brower, RC, et al., Minimal requirements for peptide mediated activation of CD8+ CTL Mol. Immunol., 31;1285-93, 1994; Chriustnick, ET, et al. Low numbers of MHC class I-peptide complexes required to trigger a T cell response Nature 352:67-70, 1991; Sykulev, Y, et al., Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response Immunity, 4(6):565-71, June 1996). Even a single peptide/MHC complex can 10 result in tumor cells lysis and release of anti-tumor lymphokines. The biological significance of decreased

HLA expression and possible tumor escape from immune recognition is not fully known. Nevertheless, it has been demonstrated that CTL recognition of as few as one MHC/peptide complex is sufficient to lead to

tumor cell lysis.

Further, it is commonly observed that expression of HLA can be upregulated by gamma IFN, commonly secreted by effector CTL. Additionally, HLA class I expression can be induced in vivo by both alpha and beta IFN (Halloran, et al. Local T cell responses induce widespread MHC expression. J Immunol 148:3837, 1992; Pestka, S, et al., Interferons and their actions Annu. Rev. Biochem. 56:727-77, 1987). Conversely, decreased levels of HLA class I expression also render cells more susceptible to NK lvsis.

20 With regard to gamma IFN, Torres et al (Torres, MJ, et al., Loss of an HLA haplotype in pancreas cancer tissue and its corresponding tumor derived cell line. Tissue Antigens 47:372-81, 1996) note that HLA expression is upregulated by gamma IFN in pancreatic cancer, unless a total loss of haplotype has occurred. Similarly, Rees and Mian note that allelic deletion and loss can be restored, at least partially, by cytokines such as IFN-gamma (Rees, R., et al. Selective MHC expression in tumours modulates adaptive 25 and innate antitumour responses Cancer Immunol Immunother 48:374-81, 1999). It has also been noted

that IFN-gamma treatment results in upregulation of class I molecules in the majority of the cases studied (Browning M, et al., Mechanisms of loss of HLA class I expression on colorectal tumor cells. Tissue Antigens 47:364-71, 1996). Kaklamakis, et al. also suggested that adjuvant immunotherapy with IFNgamma may be beneficial in the case of HLA class I negative tumors (Kaklamanis L. Loss of transporter in antigen processing 1 transport protein and major histocompatibility complex class I molecules in metastatic versus primary breast cancer. Cancer Research 55:5191-94, November 1995). It is important to underline that IFN-gamma production is induced and self-amplified by local inflammation/immunization (Halloran, et al. Local T cell responses induce widespread MHC expression J. Immunol 148:3837, 1992), resulting in large increases in MHC expressions even in sites distant from the inflammatory site.

Finally, studies have demonstrated that decreased HLA expression can render tumor cells more susceptible to NK lysis (Ohmmacht, GA, et al., Heterogeneity in expression of human leukocyte antigens and melanoma-associated antigens in advanced melanoma J Cellular Phys 182;332-38, 2000; Liunggren HG, et al., Host resistance directed selectively against H-2 deficient lymphoma variants: Analysis of the mechanism J. Exp. Med., 162(6):1745-59, December 1, 1985; Maio M, et al., Reduction in susceptibility to natural killer cell-mediated lysis of human FO-1 melanoma cells after induction of HLA

class I antigen expression by transfection with \( \beta 2m \) gene J. Clin. Invest. 88(1):282-9, July 1991; Schrier PI, et al., Relationship between myc oncogene activation and MHC class I expression Adv. Cancer Res., 60:181-246, 1993). If decreases in HLA expression benefit a tumor because it facilitates CTL escape, but render the turnor susceptible to NK lysis, then a minimal level of HLA expression that allows for resistance to NK activity would be selected for (Garrido F, et al., Implications for immunosurveillance of altered HLA class I phenotypes in human tumours Immunol Today 18(2):89-96, February 1997). Therefore, a therapeutic compositions or methods in accordance with the invention together with a treatment to

upregulate HLA expression and/or treatment with high affinity T-cells renders the tumor sensitive to CTL

10

15

20

25

30

35

40

destruction.

5

# Frequency of alterations in HLA expression

The frequency of alterations in class I expression is the subject of numerous studies (Algarra I, et al., The HLA crossroad in tumor immunology Human Immunology 61, 65-73, 2000). Rees and Mian estimate allelic loss to occur overall in 3-20% of tumors, and allelic deletion to occur in 15-50% of tumors. It should be noted that each cell carries two separate sets of class I genes, each gene carrying one HLA-A and one HLA-B locus. Thus, fully heterozygous individuals carry two different HLA-A molecules and two different HLA-B molecules. Accordingly, the actual frequency of losses for any specific allele could be as little as one quarter of the overall frequency. They also note that, in general, a gradient of expression exists between normal cells, primary tumors and tumor metastasis. In a study from Natali and coworkers (Natali PG, et al., Selective changes in expression of HLA class I polymorphic determinants in human solid tumors PNAS USA 86:6719-6723, September 1989), solid tumors were investigated for total HLA expression, using W6/32 antibody, and for allele-specific expression of the A2 antigen, as evaluated by use of the BB7.2 antibody. Tumor samples were derived from primary cancers or metastasis, for 13 different tumor types, and scored as negative if less than 20%, reduced if in the 30-80% range, and normal above 80%. All tumors, both primary and metastatic, were HLA positive with W6/32. In terms of A2 expression, a reduction was noted in 16.1 % of the cases, and A2 was scored as undetectable in 39.4 % of the cases. Garrido and coworkers (Garrido F, et al., Natural history of HLA expression during tumour development Immunol Today 14(10):491-99, 1993) emphasize that HLA changes appear to occur at a particular step in the progression from benign to most aggressive. Jiminez et al (Jiminez P, et al., Microsatellite instability analysis in tumors with different mechanisms for total loss of HLA expression. Cancer Immunol Immunother 48:684-90, 2000) have analyzed 118 different tumors (68 colorectal, 34 laryngeal and 16 melanomas). The frequencies reported for total loss of HLA expression were 11% for colon, 18% for melanoma and 13 % for larynx. Thus, HLA class I expression is altered in a significant fraction of the tumor types, possibly as a reflection of immune pressure, or simply a reflection of the accumulation of pathological changes and alterations in diseased cells.

#### Immunotherapy in the context of HLA loss

A majority of the tumors express HLA class I, with a general tendency for the more severe alterations to be found in later stage and less differentiated tumors. This pattern is encouraging in the context of immunotherapy, especially considering that: 1) the relatively low sensitivity of

immunohistochemical techniques might underestimate HLA expression in tumors; 2) class I expression can be induced in tumor cells as a result of local inflammation and lymphokine release; and, 3) class I negative cells are sensitive to lysis by NK cells.

5

10

15

20

25

30

35

40

Accordingly, various embodiments of the present invention can be selected in view of the fact that there can be a degree of loss of HLA molecules, particularly in the context of neoplastic disease. For example, the treating physician can assay a patient's tumor to ascertain whether HLA is being expressed. If a percentage of tumor cells express no class I HLA, then embodiments of the present invention that comprise methods or compositions that elicit NK cell responses can be employed. As noted herein, such NK-inducing methods or composition can comprise a Flt3 ligand or ProGP which facilitate mobilization of dendritic cells, the rationale being that dendritic cells produce large amounts of IL-12. IL-12 can also be administered directly in either amino acid or nucleic acid form. It should be noted that compositions in accordance with the invention can be administered concurrently with NK cell-inducing compositions, or these compositions can be administered sequentially.

In the context of allele-specific HLA loss, a tumor retains class I expression and may thus escape NK cell recognition, yet still be susceptible to a CTL-based vaccine in accordance with the invention which comprises epitopes corresponding to the remaining HLA type. The concept here is analogous to embodiments of the invention that include multiple disease antigens to guard against mutations that yield loss of a specific antigen. Thus, one can simultaneously target multiple HLA specificities and epitopes from multiple disease-related antigens to prevent tumor escape by allele-specific loss as well as disease-related antigen loss. In addition, embodiments of the present invention can be combined with alternative therapeutic compositions and methods. Such alternative compositions and methods comprise, without limitation, radiation, cytotoxic pharmaceuticals, and/or compositions/methods that induce humoral antibody responses.

Moreover, it has been observed that expression of HLA can be upregulated by gamma IFN, which is commonly secreted by effector CTL, and that HLA class I expression can be induced in vivo by both alpha and beta IFN. Thus, embodiments of the invention can also comprise alpha, beta and/or gamma IFN to facilitate upregualtion of HLA.

# IV.N. REPRIEVE PERIODS FROM THERAPIES THAT INDUCE SIDE EFFECTS: "Scheduled Treatment Interruptions or Drug Holidays"

Recent evidence has shown that certain patients infected with a pathogen, whom are initially treated with a therapeutic regimen to reduce pathogen load, have been able to maintain decreased pathogen load when removed from the therapeutic regimen, i.e., during a "drug holiday" (Rosenberg, E., et al., Immune control of HIV-1 after early treatment of acute infection Nature 407:523-26, Sept. 28, 2000) As appreciated by those skilled in the art, many therapeutic regimens for both pathogens and cancer have numerous, often severe, side effects. During the drug holiday, the patient's immune system is keeping the disease in check. Methods for using compositions of the invention are used in the context of drug holidays for cancer and pathogenic infection.

For treatment of an infection, where therapies are not particularly immunosuppressive, compositions of the invention are administered concurrently with the standard therapy. During this period,

the patient's immune system is directed to induce responses against the epitopes comprised by the present inventive compositions. Upon removal from the treatment having side effects, the patient is primed to respond to the infectious pathogen should the pathogen load begin to increase. Composition of the invention can be provided during the drug holiday as well.

For patients with cancer, many therapies are immunosuppressive. Thus, upon achievement of a remission or identification that the patient is refractory to standard treatment, then upon removal from the immunosuppressive therapy, a composition in accordance with the invention is administered. Accordingly, as the patient's immune system reconstitutes, precious immune resources are simultaneously directed against the cancer. Composition of the invention can also be administered concurrently with an immunosuppressive regimen if desired.

#### IV.O. Kits

The peptide and nucleic acid compositions of this invention can be provided in kit form together with instructions for vaccine administration. Typically the kit would include desired peptide compositions in a container, preferably in unit dosage form and instructions for administration. An alternative kit would include a minigene construct with desired nucleic acids of the invention in a container, preferably in unit dosage form together with instructions for administration. Lymphokines such as IL-2 or IL-12 may also be included in the kit. Other kit components that may also be desirable include, for example, a sterile syringe, booster dosages, and other desired excipients.

20

25

30

35

40

5

10

15

#### IV.P. Overview

Epitopes in accordance with the present invention were successfully used to induce an immune response. Immune responses with these epitopes have been induced by administering the epitopes in various forms. The epitopes have been administered as peptides, as nucleic acids, and as viral vectors comprising nucleic acids that encode the epitope(s) of the invention. Upon administration of peptide-based epitope forms, immune responses have been induced by direct loading of an epitope onto an empty HLA molecule that is expressed on a cell, and via internalization of the epitope and processing via the HLA class I pathway; in either event, the HLA molecule expressing the epitope was then able to interact with and induce a CTL response. Peptides can be delivered directly or using such agents as liposomes. They can additionally be delivered using ballistic delivery, in which the peptides are typically in a crystalline form. When DNA is used to induce an immune response, it is administered either as naked DNA, generally in a dose range of approximately 1-5mg, or via the ballistic "gene gum" delivery, typically in a dose range of approximately 10-100 μg. The DNA can be delivered in a variety of conformations, e.g., linear, circular etc. Various viral vectors have also successfully been used that comprise nucleic acids which encode epitopes in accordance with the invention.

Accordingly compositions in accordance with the invention exist in several forms.

Embodiments of each of these composition forms in accordance with the invention have been successfully used to induce an immune response.

One composition in accordance with the invention comprises a plurality of peptides. This plurality or cocktail of peptides is generally admixed with one or more pharmaceutically acceptable

excipients. The peptide cocktail can comprise multiple copies of the same peptide or can comprise a mixture of peptides. The peptides can be analogs of naturally occurring epitopes. The peptides can comprise artificial amino acids and/or chemical modifications such as addition of a surface active molecule, e.g., lipidation; acetylation, glycosylation, biotinylation, phosphorylation etc. The peptides can be CTL or HTL epitopes. In a preferred embodiment the peptide cocktail comprises a plurality of different CTL epitopes and at least one HTL epitope. The HTL epitope can be naturally or non-naturally (e.g., PADRE®, Epimmune Inc., San Diego, CA). The number of distinct epitopes in an embodiment of the invention is generally a whole unit integer from one through one hundred fifty (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100).

5

10

15

20

25

30

35

40

An additional embodiment of a composition in accordance with the invention comprises a polypeptide multi-epitope construct, i.e., a polyepitopic peptide. Polyepitopic peptides in accordance with the invention are prepared by use of technologies well-known in the art. By use of these known technologies, epitopes in accordance with the invention are connected one to another. The polyepitopic peptides can be linear or non-linear, e.g., multivalent. These polyepitopic constructs can comprise artificial amino acids, spacing or spacer amino acids, flanking amino acids, or chemical modifications between adjacent epitope units. The polyepitopic construct can be a heteropolymer or a homopolymer. The polyepitopic constructs generally comprise epitopes in a quantity of any whole unit integer between 2-150 (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100). The polyepitopic construct can comprise CTL and/or HTL epitopes. One or more of the epitopes in the construct can be modified, e.g., by addition of a surface active material, e.g. a lipid, or chemically modified, e.g., acetylation, etc. Moreover, bonds in the multiepitopic construct can be other than peptide bonds, e.g., covalent bonds, ester or ether bonds, disulfide bonds, hydrogen bonds, ionic bonds etc.

Alternatively, a composition in accordance with the invention comprises construct which comprises a series, sequence, stretch, etc., of amino acids that have homology to (i.e., corresponds to or is contiguous with) to a native sequence. This stretch of amino acids comprises at least one subsequence of amino acids that, if cleaved or isolated from the longer series of amino acids, functions as an HLA class I or HLA class II epitope in accordance with the invention. In this embodiment, the peptide sequence is modified, so as to become a construct as defined herein, by use of any number of techniques known or to be provided in the art. The polyepitopic constructs can contain homology to a native sequence in any whole unit integer increment from 70-100%, e.g., 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100 percent.

A further embodiment of a composition in accordance with the invention is an antigen presenting cell that comprises one or more epitopes in accordance with the invention. The antigen presenting cell can be a "professional" antigen presenting cell, such as a dendritic cell. The antigen

presenting cell can comprise the epitope of the invention by any means known or to be determined in the art. Such means include pulsing of dendritic cells with one or more individual epitopes or with one or more peptides that comprise multiple epitopes, by nucleic acid administration such as ballistic nucleic acid delivery or by other techniques in the art for administration of nucleic acids, including vector-based, e.g. viral vector, delivery of nucleic acids.

Further embodiments of compositions in accordance with the invention comprise nucleic acids that encode one or more peptides of the invention, or nucleic acids which encode a polyepitopic peptide in accordance with the invention. As appreciated by one of ordinary skill in the art, various nucleic acids compositions will encode the same peptide due to the redundancy of the genetic code. Each of these nucleic acid compositions falls within the scope of the present invention. This embodiment of the invention comprises DNA or RNA, and in certain embodiments a combination of DNA and RNA. It is to be appreciated that any composition comprising nucleic acids that will encode a peptide in accordance with the invention or any other peptide based composition in accordance with the invention, falls within the scope of this invention.

It is to be appreciated that peptide-based forms of the invention (as well as the nucleic acids that encode them) can comprise analogs of epitopes of the invention generated using principles already known, or to be known, in the art. Principles related to analoging are now known in the art, and are disclosed herein; moreover, analoging principles (heteroclitic analoging) are disclosed in co-pending application serial number U.S.S.N. 09/226,775 filed 6 January 1999. Generally the compositions of the invention are isolated or purified.

The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of non-critical parameters that can be changed or modified to yield alternative embodiments in accordance with the invention.

### V. EXAMPLES

5

10

15

20

25

30

35

40

The following examples illustrate identification, selection, and use of immunogenic Class I and Class II peptide epitopes for inclusion in vaccine compositions.

### Example 1. HLA Class I and Class II Binding Assays

The following example of peptide binding to HLA molecules demonstrates quantification of binding affinities of HLA class I and class II peptides. Binding assays can be performed with peptides that are either motif-bearing or not motif-bearing.

HLA class I and class II binding assays using purified HLA molecules were performed in accordance with disclosed protocols (e.g., PCT publications WO 94/20127 and WO 94/03205; Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)). Briefly, purified MHC molecules (5 to 500nM) were incubated with various unlabeled peptide inhibitors and 1-10nM <sup>125</sup>I-radiolabeled probe peptides as described. Following incubation, MHC-peptide complexes were separated from free peptide by gel filtration and the fraction of

peptide bound was determined. Typically, in preliminary experiments, each MHC preparation was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays were performed using these HLA concentrations.

Since under these conditions [label]<[HLA] and IC<sub>50</sub>≥[HLA], the measured IC<sub>50</sub> values are reasonable approximations of the true K<sub>D</sub> values. Peptide inhibitors are typically tested at concentrations ranging from 120 μg/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC<sub>50</sub> of a positive control for inhibition by the IC<sub>50</sub> for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC<sub>50</sub> nM values by dividing the IC<sub>50</sub> nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation has proven to be the most accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.

Binding assays as outlined above can be used to analyze supermotif and/or motif-bearing epitopes as, for example, described in Example 2.

# Example 2. Identification of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes

Vaccine compositions of the invention may include multiple epitopes that comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage is performed using the strategy described below.

Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes

The searches performed to identify the motif-bearing peptide sequences in Examples 2
and 5 employ protein sequence data for prostate cancer-associated antigens.

Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs were performed as follows. All translated protein sequences were analyzed using a text string search software program, e.g., MotifSearch 1.4 (D. Brown, San Diego) to identify potential peptide sequences containing appropriate HLA binding motifs; alternative programs are readily produced in accordance with information in the art in view of the motif/supermotif disclosure herein. Furthermore, such calculations can be made mentally.

Identified A2-, A3-, and DR-supermotif sequences were scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms take into account both extended and refined motifs (that is, to account for the impact of different amino acids at different positions), and are essentially based on the premise that the overall affinity (or  $\Delta G$ ) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:

5

10

15

20

25

30

35

WO 01/45728 PCT/US00/35516

where  $a_{ji}$  is a coefficient which represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue j occurs at position i in the peptide, it is assumed to contribute a constant amount  $j_i$  to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide. This assumption is justified by studies from our laboratories that demonstrated that peptides are bound to MHC and recognized by T cells in essentially an extended conformation (data omitted herein).

The method of derivation of specific algorithm coefficients has been described in Gulukota et al., J. Mol. Biol. 267:1258-126, 1997; (see also Sidney et al., Human Immunol. 45:79-93, 1996; and Southwood et al., J. Immunol. 160:3363-3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying j is calculated relative to the remainder of the group, and used as the estimate of  $j_i$ . For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.

#### Selection of HLA-A2 supertype cross-reactive peptides

5

10

15

20

25

30

35

The complete protein sequences of the prostate cancer-associated antigens PAP, PSA, PSM, and hK2 were obtained from GenBank and scanned, utilizing motif identification software, to identify 8-, 9-, 10-, and 11-mer sequences containing the HLA-A2-supermotif main anchor specificity.

HLA-A2 supermotif-bearing sequences are shown in Table VII. These sequences are then scored using the A2 algorithm and the peptides corresponding to the positive-scoring sequences are synthesized and tested for their capacity to bind purified HLA-A\*0201 molecules in vitro (HLA-A\*0201 is considered a prototype A2 supertype molecule).

Examples of peptides that were identified that bind to HLA-A\*0201 with IC<sub>50</sub> values  $\leq$ 500 nM are shown in Tables XXII and XXIII. These peptides were then tested for the capacity to bind to additional A2-supertype molecules (A\*0202, A\*0203, A\*0206, and A\*6802). Peptides that bind to at least three of the five A2-supertype alleles tested are deemed A2-supertype cross-reactive binders. Preferred peptides bind at an affinity equal to or less than 500 nM to three or more HLA-A2 supertype molecules. Examples of such peptides are set out in Table XXIII. (Due to the homology described above, a number of CTL and HTL epitopes are represented in both the PSA and hK2 antigens. This is represented in Tables XXIII and XXIV by the headings source and alternate source.)

# Selection of HLA-A3 supermotif-bearing epitopes

The protein sequences scanned above were also examined for the presence of peptides with the HLA-A3-supermotif primary anchors using methodology similar to that performed to identify HLA-A2 supermotif-bearing epitopes.

Peptides corresponding to the supermotif-bearing sequences are then synthesized and tested for binding to HLA-A\*0301 and HLA-A\*1101 molecules, the two most prevalent A3-supertype alleles. The peptides that are found to bind one of the two alleles with binding affinities of  $\leq$ 500 nM, preferably  $\leq$  200 nM, are then tested for binding cross-reactivity to the other common A3-supertype alleles (A\*3101, A\*3301, and A\*6801) to identify those that can bind at least three of the five HLA-A3-supertype molecules tested.

### Selection of HLA-B7 supermotif bearing epitopes

The same target antigen protein sequences were also analyzed to identify HLA-B7-supermotif-bearing sequences. The corresponding peptides are then synthesized and tested for binding to HLA-B\*0702, the most common B7-supertype allele (i.e., the prototype B7 supertype allele). Those peptides that bind B\*0702 with IC<sub>50</sub> of  $\leq$ 500 nM, preferably  $\leq$  200 nM, are then tested for binding to other common B7-supertype molecules (B\*3501, B\*5101, B\*5301, and B\*5401) to identify those peptides that are capable of binding to three or more of the five B7-supertype alleles tested.

15

20

10

5

#### Selection of A1 and A24 motif-bearing epitopes

To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into vaccine constructs. An analysis of the protein sequence data from the target antigens utilized above was performed to identify HLA-A1- and A24-motif-containing sequences. Peptides are then synthesized and tested for binding.

Peptides that bear other supermotifs and/or motifs can be assessed for binding or crossreactive binding in an analogous manner.

#### Example 3. Confirmation of Immunogenicity

25

Cross-reactive candidate CTL A2-supermotif-bearing peptides that are identified as described in Example 2 were selected for *in vitro* immunogenicity testing. Examples of immunogenic HLA-A2 cross-reactive binding peptides that bind to at least 3/5 HLA-A2 supertype family members at an IC<sub>50</sub> of 200 nM or less are shown in Table XXIV. Testing was performed using the following methodology:

30

35

# Target Cell Lines for Cellular Screening:

The .221A2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, -B, -C null mutant human B-lymphoblastoid cell line 721.221, is used as the peptide-loaded target to measure activity of HLA-A2.1-restricted CTL. This cell line is grown in RPMI-1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids and 10% (v/v) heat inactivated FCS. Cells that express an antigen of interest, or transfectants comprising the gene encoding the antigen of interest, can be used as target cells to test the ability of peptide-specific CTLs to recognize endogenous antigen.

15

20

25

30

35

40

#### **Primary CTL Induction Cultures:**

Generation of Dendritic Cells (DC): PBMCs are thawed in RPMI with 30 µg/ml DNAse, washed twice and resuspended in complete medium (RPMI-1640 plus 5% AB human serum, non-essential amino acids, sodium pyruvate, L-glutamine and penicillin/strpetomycin). The monocytes are purified by plating 10 x 10<sup>6</sup> PBMC/well in a 6-well plate. After 2 hours at 37°C, the non-adherent cells are removed by gently shaking the plates and aspirating the supernatants. The wells are washed a total of three times with 3 ml RPMI to remove most of the non-adherent and loosely adherent cells. Three ml of complete medium containing 50 ng/ml of GM-CSF and 1,000 U/ml of IL-4 are then added to each well. TNFα is added to the DCs on day 6 at 75 ng/ml and the cells are used for CTL induction cultures on day 7.

Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads® M-450) and the detacha-bead® reagent. Typically about 200-250x10<sup>6</sup> PBMC are processed to obtain 24x10<sup>6</sup> CD8<sup>+</sup> T-cells (enough for a 48-well plate culture). Briefly, the PBMCs are thawed in RPMI with 30μg/ml DNAse, washed once with PBS containing 1% human AB serum and resuspended in PBS/1% AB serum at a concentration of 20x10<sup>6</sup> cells/ml. The magnetic beads are washed 3 times with PBS/AB serum, added to the cells (140μl beads/20x10<sup>6</sup> cells) and incubated for 1 hour at 4°C with continuous mixing. The beads and cells are washed 4x with PBS/AB serum to remove the nonadherent cells and resuspended at 100x10<sup>6</sup> cells/ml (based on the original cell number) in PBS/AB serum containing 100μl/ml detacha-bead® reagent and 30μg/ml DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are washed again with PBS/AB/DNAse to collect the CD8+ T-cells. The DC are collected and centrifuged at 1300 rpm for 5-7 minutes, washed once with PBS with 1% BSA, counted and pulsed with 40μg/ml of peptide at a cell concentration of 1-2x10<sup>6</sup>/ml in the presence of 3μg/ml β<sub>2</sub>- microglobulin for 4 hours at 20°C. The DC are then irradiated (4,200 rads), washed 1 time with medium and counted again.

Setting up induction cultures: 0.25 ml cytokine-generated DC (@1x10<sup>5</sup> cells/ml) are co-cultured with 0.25ml of CD8+ T-cells (@2x10<sup>6</sup> cell/ml) in each well of a 48-well plate in the presence of 10 ng/ml of IL-7. Recombinant human IL10 is added the next day at a final concentration of 10 ng/ml and rhuman IL2 is added 48 hours later at 10IU/ml.

Restimulation of the induction cultures with peptide-pulsed adherent cells: Seven and fourteen days after the primary induction the cells are restimulated with peptide-pulsed adherent cells. The PBMCS are thawed and washed twice with RPMI and DNAse. The cells are resuspended at  $5\times10^6$  cells/ml and irradiated at ~4200 rads. The PBMCs are plated at  $2\times10^6$  in 0.5ml complete medium per well and incubated for 2 hours at  $37^{\circ}$ C. The plates are washed twice with RPMI by tapping the plate gently to remove the nonadherent cells and the adherent cells pulsed with  $10\mu$ g/ml of peptide in the presence of 3  $\mu$ g/ml  $\beta$ 2 microglobulin in 0.25ml RPMI/5%AB per well for 2 hours at  $37^{\circ}$ C. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is aspirated from the induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later rhuman IL10 is added at a final concentration of 10ng/ml and rhuman IL2 is added the next day and again 2-3 days later at 50IU/ml (Tsai et al., Critical Reviews in Immunology 18(1-2):65-75, 1998). Seven days later the cultures are assayed for CTL activity in a  $5^{\circ}$ Cr release assay. In some experiments the cultures are assayed for peptide-

specific recognition in the *in situ* IFNy ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side by side comparison.

PCT/US00/35516

# Measurement of CTL lytic activity by 51Cr release.

5

10

15

20

25

30

35

Seven days after the second restimulation, cytotoxicity is determined in a standard (5hr) <sup>51</sup>Cr release assay by assaying individual wells at a single E:T. Peptide-pulsed targets are prepared by incubating the cells with 10µg/ml peptide overnight at 37°C.

Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labelled with 200µCi of <sup>51</sup>Cr sodium chromate (Dupont, Wilmington, DE) for 1 hour at 37°C. Labelled target cells are resuspended at 10<sup>6</sup> per ml and diluted 1:10 with K562 cells at a concentration of 3.3x10<sup>6</sup>/ml (an NK-sensitive erythroblastoma cell line used to reduce non-specific lysis). Target cells (100 µl) and 100µl of effectors are plated in 96 well round-bottom plates and incubated for 5 hours at 37°C. At that time, 100 µl of supernatant are collected from each well and percent lysis is determined according to the formula: [(cpm of the test sample- cpm of the spontaneous <sup>51</sup>Cr release sample)/(cpm of the maximal <sup>51</sup>Cr release sample- cpm of the spontaneous release are determined by incubating the labelled targets with 1% Trition X-100 and media alone, respectively. A positive culture is defined as one in which the specific lysis (sample- background) is 10% or higher in the case of individual wells and is 15% or more at the 2 highest E:T ratios when expanded cultures are assayed.

# In situ Measurement of Human $\gamma$ IFN Production as an Indicator of Peptide-specific and Endogenous Recognition

Immulon 2 plates are coated with mouse anti-human IFNy monoclonal antibody (4 µg/ml 0.1M NaHCO<sub>3</sub>, pH8.2) overnight at 4°C. The plates are washed with Ca<sup>2+</sup>, Mg<sup>2+</sup>-free PBS/0.05% Tween 20 and blocked with PBS/10% FCS for 2 hours, after which the CTLs (100 µl/well) and targets (100 µl/well) are added to each well, leaving empty wells for the standards and blanks (which received media only). The target cells, either peptide-pulsed or endogenous targets, are used at a concentration of 1x10<sup>6</sup> cells/ml. The plates are incubated for 48 hours at 37°C with 5% CO<sub>2</sub>.

Recombinant human IFN $\gamma$  is added to the standard wells starting at 400 pg or 1200pg/100µl/well and the plate incubated for 2 hours at 37°C. The plates are washed and 100 µl of biotinylated mouse anti-human IFN $\gamma$  monoclonal antibody (2µg/ml in PBS/3%FCS/0.05% Tween 20) are added and incubated for 2 hours at room temperature. After washing again, 100 µl HRP-streptavidin (1:4000) are added and the plates incubated for 1 hour at room temperature. The plates are then washed 6x with wash buffer, 100µl/well developing solution (TMB 1:1) are added, and the plates allowed to develop for 5-15 minutes. The reaction is stopped with 50 µl/well 1M H<sub>3</sub>PO<sub>4</sub> and read at OD450. A culture is considered positive if it measured at least 50 pg of IFN $\gamma$ /well above background and is twice the background level of expression.

CTL Expansion. Those cultures that demonstrate specific lytic activity against peptidepulsed targets and/or tumor targets are expanded over a two week period with anti-CD3. Briefly, 5x10<sup>4</sup> CD8+ cells are added to a T25 flask containing the following: 1x10<sup>6</sup> irradiated (4,200 rad) PBMC (autologous or allogeneic) per ml,  $2x10^5$  irradiated (8,000 rad) EBV- transformed cells per ml, and OKT3 (anti-CD3) at 30ng per ml in RPMI-1640 containing 10% (v/v) human AB serum, non-essential amino acids, sodium pyruvate,  $25\mu$ M 2-mercaptoethanol, L-glutamine and penicillin/streptomycin. Rhuman IL2 is added 24 hours later at a final concentration of 200IU/ml and every 3 days thereafter with fresh media at 50IU/ml. The cells are split if the cell concentration exceeded  $1x10^6$ /ml and the cultures are assayed between days 13 and 15 at E:T ratios of 30, 10, 3 and 1:1 in the  $^{51}$ Cr release assay or at  $1x10^6$ /ml in the *in situ* IFNy assay using the same targets as before the expansion.

Cultures are expanded in the absence of anti-CD3<sup>+</sup> as follows. Those cultures that demonstrate specific lytic activity against peptide and endogenous targets are selected and  $5\times10^4$  CD8<sup>+</sup> cells are added to a T25 flask containing the following:  $1\times10^6$  autologous PBMC per ml which have been peptide-pulsed with  $10\mu$ g/ml peptide for 2 hours at 37°C and irradiated (4,200 rad);  $2\times10^5$  irradiated (8,000 rad) EBV-transformed cells per ml RPMI-1640 containing 10%(v/v) human AB serum, non-essential AA, sodium pyruvate, 25mM 2-ME, L-glutamine and gentamicin.

#### 15 Immunogenicity of A2 supermotif-bearing peptides

5

10

20

25

30

A2-supermotif cross-reactive binding peptides were tested in the cellular assay for the ability to induce peptide-specific CTL in normal individuals. In this analysis, a peptide is considered to be an epitope if it induces peptide-specific CTLs in at least 2 donors (unless otherwise noted) and preferably, also recognizes the endogenously expressed peptide. Examples of immunogenic peptides are shown in Table XXIV.

Immunogenicity is additionally confirmed using PBMCs isolated from cancer patients. Briefly, PBMCs are isolated from patients with prostate cancer, re-stimulated with peptide-pulsed monocytes and assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen.

#### Evaluation of A\*03/A11 immunogenicity

HLA-A3 supermotif-bearing cross-reactive binding peptides are also evaluated for immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotif peptides.

#### Evaluation of B7 immunogenicity

Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified in Example 2 are evaluated in a manner analogous to the evaluation of A2-and A3-supermotif-bearing peptides.

Peptides bearing other supermotifs and/or motifs, e.g., HLA-A1, HLA-a24 etc. are also evaluated using similar methodology

# Example 4. Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs

HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged, or "fixed" to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analog peptides that exhibit modulated binding affinity are set forth in this example.

#### Analoging at Primary Anchor Residues

5

10

15

20

25

30

35

Peptide engineering strategies were implemented to further increase the cross-reactivity of the epitopes identified above (see, e.g., Table XXIII). On the basis of the data disclosed, e.g., in related and co-pending U.S.S.N 09/226,775, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred L, L, V, or M at position 2, and I or V at the C-terminus.

Peptides that exhibit at least weak A\*0201 binding (IC<sub>50</sub> of 5000 nM or less), and carrying suboptimal anchor residues at either position 2, the C-terminal position, or both, can be fixed by introducing canonical substitutions (typically L at position 2 and V at the C-terminus). Those analoged peptides that show at least a three-fold increase in A\*0201 binding and bind with an IC<sub>50</sub> of 500 nM, or preferably 200 nM, or less are then tested for A2 cross-reactive binding along with their wild-type (WT) counterparts. Analoged peptides that bind at least three of the five A2 supertype alleles are then selected for cellular screening analysis.

Additionally, the selection of analogs for cellular screening analysis is further restricted by the capacity of the WT parent peptide to bind at least weakly, *i.e.*, bind at an IC<sub>50</sub> of 5000nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be biologically relevant. Analoged peptides have been shown to have increased immunogenicity and cross-reactivity by T cells specific for the WT epitope (see, e.g., Parkhurst et al., J. Immunol. 157:2539, 1996; and Pogue et al., Proc. Natl. Acad. Sci. USA 92:8166, 1995).

In the cellular screening of these peptide analogs, it is important to demonstrate that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, tumor targets that endogenously express the epitope.

Peptides that were analoged at primary anchor residues, generally by adding a preferred residue at a primary anchor position, were synthesized and assessed for enhanced binding to A\*0201 and/or enhanced cross-reactive binding. Examples of analoged peptides that exhibit increased binding and/or cross-reactivity are shown in Table XXIII.

Analogs exhibiting altered binding characteristics are then selected for cellular screening studies. Examples are shown in Table XXIV.

10

15

20

25

30

35

40

PCT/US00/35516 59

Using methodology similar to that used to develop HLA-A2 analogs, analogs of HLA-A3 and HLA-B7 supermotif-bearing epitopes are also generated. Analogous strategies can be used for peptides bearing other supermotifs/motifs as well. For example, peptides binding at least weakly to 3/5 of the A3supertype molecules may be engineered at primary anchor residues to possess a preferred residue (V, S, M, or A) at position 2. The analog peptides are then tested for the ability to bind A\*03 and A\*11 (prototype A3 supertype alleles). Those peptides that demonstrate ≤ 500 nM binding capacity, often ≤ 200 nM binding values, are then tested for A3-supertype cross-reactivity. B7 supermotif-bearing peptides may, for example, be engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney et al. (J. Immunol. 157:3480-3490, 1996) and tested for binding to B7 supertype alleles.

#### Analoging at Secondary Anchor Residues

Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased affinity by identifying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of a B7 supermotif-bearing peptide representing a discreet single amino acid substitution at position 1 can be analyzed. A peptide can, for example, be analoged to substitute L with F at position 1 and subsequently be evaluated for increased binding affinity/ and or increased cross-reactivity. This procedure will identify analoged peptides with modulated binding affinity.

Engineered analogs with sufficiently improved binding capacity or cross-reactivity are tested for immunogenicity as above.

#### Other analoging strategies

Another form of peptide analoging, unrelated to the anchor positions, involves the substitution of a cysteine with α-amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Subtitution of \alpha-amino butyric acid for cysteine not only alleviates this problem, but has been shown to improve binding and crossbinding capabilities in some instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999).

In conclusion, these data demonstrate that by the use of even single amino acid substitutions, it is possible to increase the binding affinity and/or cross-reactivity of peptide ligands for HLA supertype molecules.

#### Example 5. Identification of peptide epitope sequences with HLA-DR binding motifs

Peptide epitopes bearing an HLA class II supermotif or motif may also be identified as outlined below using methodology similar to that described in Examples 1-3.

# Selection of HLA-DR-supermotif-bearing epitopes

To identify HLA class II HTL epitopes, the prostate cancer-associate antigen protein sequences were analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif.

Specifically, 15-mer sequences are selected comprising a DR-supermotif, further comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total).

Protocols for predicting peptide binding to DR molecules have been developed (Southwood et al., J. Immunol. 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and ranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors (i.e., at position 1 and position 6) within a 9-mer core, but additionally evaluates sequences for the presence of secondary anchors. Using allele specific selection tables (see, e.g., Southwood et al., ibid.), it has been found that these protocols efficiently select peptide sequences with a high probability of binding a particular DR molecule. Additionally, it has been found that performing these protocols in tandem, specifically those for DR1, DR4w4, and DR7, can efficiently select DR cross-reactive peptides.

The prostate antigen-derived peptides identified above are tested for their binding capacity to various common HLA-DR molecules. All peptides are initially tested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least 2 of these 3 DR molecules with an IC<sub>50</sub> value of 1000 nM or less, were then tested for binding to DR5\*0101, DRB1\*1501, DRB1\*1101, DRB1\*0802, and DRB1\*1302. Peptides were considered to be cross-reactive DR supertype binders if they bound at an IC<sub>50</sub> value of 1000 nM or less to at least 5 of the 8 alleles tested.

Following the strategy outlined above DR supermotif-bearing sequences were identified within the prostate antigen protein sequence. Generally, these sequences are then scored for the combined DR 1-4-7 algorithms. The postive-scoring peptides are synthesized and tested for binding to HLA-DRB1\*0101, DRB1\*0401, DRB1\*0701. Those that bind at least 2 of the 3 alleles are then tested for binding to secondary DR supertype alleles: DRB5\*0101, DRB1\*1501, DRB1\*1101, DRB1\*0802, and DRB1\*1302.

# 25 Selection of DR3 motif peptides

5

10

15

20

30

35

40

nM.

Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is an important criterion in the selection of HTL epitopes. However, data generated previously indicated that DR3 only rarely cross-reacts with other DR alleles (Sidney et al., J. Immunol. 149:2634-2640, 1992; Gehuk et al., J. Immunol. 152:5742-5748, 1994; Southwood et al., J. Immunol. 160:3363-3373, 1998). This is not entirely surprising in that the DR3 peptide-binding motif appears to be distinct from the specificity of most other DR alleles. For maximum efficiency in developing vaccine candidates it would be desirable for DR3 motifs to be clustered in proximity with DR supermotif regions. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the distinct binding specificity of the DR3 motif, peptides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation.

To efficiently identify peptides that bind DR3, the PSA, PSM, PAP, and hK2 protein sequences were analyzed for sequences carrying one of the two DR3 specific binding motifs (Table III) reported by Gehuk et al. (J. Immunol. 152:5742-5748, 1994). The corresponding peptides are then synthesized and tested for the ability to bind DR3 with an affinity of 1000 nM or better, i.e., less than 1000

Additionally, the DR3 binders are also tested for binding to the DR supertype alleles.

Conversely, the DR supertype cross-reactive binding peptides are also tested for DR3 binding capacity.

DR3 binding epitopes identified in this manner are then included in vaccine compositions

DR3 binding epitopes identified in this manner are then included in vaccine compositions with DR supermotif-bearing peptide epitopes.

Similarly to the case of HLA class I motif-bearing peptides, the class II motif-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9-mer core sequence is an optimal residue for DR3 binding, and substitution for that residue often improves DR 3 binding.

For example, a number of HLA-DR supermotif and DR-3 motif-bearing prostate antigenassociated sequences have been identified. The number in each category is summarized in Table XXV.

### Example 6. Immunogenicity of HTL epitopes

. 5

10

25

30

35

40

This example determines immunogenic DR supermotif- and DR3 motif-bearing epitopes among those identified using the methodology in Example 5.

Immunogenicity of HTL epitopes are evaluated in a manner analogous to the determination of immunogenicity of CTL epitopes by assessing the ability to stimulate HTL responses and/or by using appropriate transgenic mouse models. Immunogenicity is determined by screening for: 1.) in vitro primary induction using normal PBMC or 2.) recall responses from cancer patient PBMCs.

# 20 Example 7. Calculation of phenotypic frequencies of HLA-supertypes in various ethnic backgrounds to determine breadth of population coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.

In order to analyze population coverage, gene frequencies of HLA alleles were determined. Gene frequencies for each HLA allele were calculated from antigen or allele frequencies utilizing the binomial distribution formulae gf=1-(SQRT(1-af)) (see, e.g., Sidney et al., Human Immunol. 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies were calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af=1-(1-Cgf)<sup>2</sup>].

Where frequency data was not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies was assumed. To obtain total potential supertype population coverage no linkage disequilibrium was assumed, and only alleles confirmed to belong to each of the supertypes were included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations were made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B\*(1-A)). Confirmed members of the A3-like supertype are A3, A11, A31, A\*3301, and A\*6801. Although the A3-like supertype may also include A34, A66, and A\*7401, these alleles were not included in overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A\*0201, A\*0202, A\*0203, A\*0204, A\*0205, A\*0206, A\*0207, A\*6802, and A\*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B\*3501-03, B51, B\*5301, B\*5401, B\*5501-2, B\*5601, B\*6701, and B\*7801 (potentially also B\*1401, B\*3504-06, B\*4201, and B\*5602).

15

20

25

35

Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups (see Table XXI). Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%. An analogous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes.

# 10 Example 8. Recognition Of Generation Of Endogenous Processed Antigens After Priming

This example determines that CTL induced by native or analogued peptide epitopes identified and selected as described in Examples 1-6 recognize endogenously synthesized, i.e., native antigens, using a transgenic mouse model.

Refrector cells isolated from transgenic mice that are immunized with peptide epitopes (as described, e.g., in Wentworth et al., Mol. Immunol. 32:603, 1995), for example HLA-A2 supermotif-bearing epitopes, are re-stimulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on <sup>51</sup>Cr labeled Jurkat-A2.1/Kb target cells in the absence or presence of peptide, and also tested on <sup>51</sup>Cr labeled target cells bearing the endogenously synthesized antigen, i.e. prostate turnor cells or cells that are stably transfected with TAA expression vectors.

The result will demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that is being evaluated. In addition to HLA-A\*0201/K<sup>b</sup> transgenic mice, several other transgenic mouse models including mice with human A11, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.

# 30 Example 9. Activity Of CTL-HTL Conjugated Epitopes In Transgenic Mice

This example illustrates the induction of CTLs and HTLs in transgenic mice by use of a tumor associated antigen CTL/HTL peptide conjugate whereby the vaccine composition comprises peptides to be administered to a cancer patient. The peptide composition can comprise multiple CTL and/or HTL epitopes and further, can comprise epitopes selected from multiple-tumor associated antigens. The epitopes are identified using methodology as described in Examples 1-6 This analysis demonstrates the enhanced immunogenicity that can be achieved by inclusion of one or more HTL epitopes in a vaccine composition. Such a peptide composition can comprise an HTL epitope conjugated to a preferred CTL epitope containing, for example, at least one CTL epitope selected from Table XXIII, or other analogs of that epitope. The peptides may be lipidated, if desired.

10

15

20

25

30

35

40

Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J. Immunol. 159:4753-4761, 1997). For example, A2/K<sup>b</sup> mice, which are transgenic for the human HLA A2.1 allele and are useful for the assessment of the immunogenicity of HLA-A\*0201 motif- or HLA-A2 supermotif-bearing epitopes, are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTL/HTL conjugate, in DMSO/saline or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS-activated lymphoblasts coated with peptide.

The target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/K<sup>b</sup> chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007, 1991).

In vitro CTL activation: One week after priming, spleen cells (30x10<sup>6</sup> cells/flask) are cocultured at 37°C with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10x10<sup>6</sup> cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.

Assay for cytotoxic activity: Target cells (1.0 to 1.5x10<sup>6</sup>) are incubated at 37°C in the presence of 200 µl of <sup>51</sup>Cr. After 60 minutes, cells are washed three times and resuspended in medium. Peptide is added where required at a concentration of 1 µg/ml. For the assay, 10<sup>4 51</sup>Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 µl) in U-bottom 96-well plates. After a 6 hour incubation period at 37°C, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific release = 100 x (experimental release - spontaneous release)/(maximum release - spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % <sup>51</sup>Cr release data is expressed as lytic units/10<sup>6</sup> cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a 6 hour <sup>51</sup>Cr release assay. To obtain specific lytic units/10<sup>6</sup>, the lytic units/10<sup>6</sup> obtained in the absence of peptide is subtracted from the lytic units/10<sup>6</sup> obtained in the presence of peptide. For example, if 30% <sup>51</sup>Cr release is obtained at the effector (E): target (T) ratio of 50:1 (i.e., 5x10<sup>5</sup> effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5x10<sup>4</sup> effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: [(1/50,000)-(1/500,000)] × 10<sup>6</sup> = 18 LU.

The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTL/HTL conjugate vaccine preparation. The magnitude and frequency of the response can also be compared to the the CTL response achieved using the CTL epitopes by themselves. Analyses similar to this may be performed to evaluate the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures it is found that a CTL response is induced, and concomitantly that an HTL response is induced upon administration of such compositions.

# Example 10. Selection of CTL and HTL epitopes for inclusion in a cancer vaccine.

This example illustrates the procedure for the selection of peptide epitopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid

sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or may be single and/or polyepitopic peptides.

The following principles are utilized when selecting an array of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection.

Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For example, a vaccine can include 3-4 epitopes that come from at least one prostate cancer-associated antigen. Epitopes from one prostate cancer-associated antigen can be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs as described, e.g., in Example 15.

5

10

15

20

25

30

35

40

Epitopes are preferably selected that have a binding affinity (IC<sub>50</sub>) of 500 nM or less, often 200 nM or less, for an HLA class I molecule, or for a class II molecule, 1000 nM or less.

Sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. For example, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage.

When selecting epitopes from cancer-related antigens it is often preferred to select analogs because the patient may have developed tolerance to the native epitope.

When creating a polyepitopic composition, e.g. a minigene, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest, although spacers or other flanking sequences can also be incorporated. The principles employed are often similar as those employed when selecting a peptide comprising nested epitopes. Additionally, however, upon determination of the nucleic acid sequence to be provided as a minigene, the peptide sequence encoded thereby is analyzed to determine whether any "junctional epitopes" have been created. A junctional epitope is a potential HLA binding epitope, as predicted, e.g., by motif analysis. Junctional epitopes are generally to be avoided because the recipient may bind to an HLA molecule and generate an immune response to that epitope, which is not present in a native protein sequence.

A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response that results in tumor cell killing and reduction of tumor size or mass.

# Example 11. Construction of Minigene Multi-Epitope DNA Plasmids

This example provides general guidance for the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of CTL and/or HTL epitopes or epitope analogs as described herein. Examples of the construction and evaluation of expression plasmids are described, for example, in co-pending U.S.S.N. 09/311,784 filed 5/13/99.

A minigene expression plasmid may include multiple CTL and HTL peptide epitopes. In this example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes. HLA class I supermotif or motif-bearing peptide epitopes derived from multiple prostate cancer-associated

10

15

20

25

30

35

40

WO 01/45728 PCT/US00/35516

antigens are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from multiple prostate cancer-associated antigens to provide broad population coverage, *i.e.* both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.

This example illustrates the methods to be used for construction of such a minigenebearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art.

The minigene DNA plasmid contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector.

Overlapping oligonucleotides that can, for example, average about 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95°C for 15 sec, annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec, and 72°C for 1 min.

For example, a minigene can be prepared as follows. For a first PCR reaction, 5 µg of each of two oligomucleotides are annealed and extended: In an example using eight oligonucleotides, *i.e.*, four pairs of primers, oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 µl reactions containing *Pfu* polymerase buffer (1x=10 mM KCL, 10 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 20 mM Tris-chloride, pH 8.75, 2 mM MgSO<sub>4</sub>, 0.1% Triton X-100, 100 µg/ml BSA), 0.25 mM each dNTP, and 2.5 U of *Pfu* polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product. The full-length product is gel-purified and cloned into pCR-bhunt (Invitrogen) and individual clones are screened by sequencing.

Example 12. The plasmid construct and the degree to which it induces immunogenicity.

The degree to which a plasmid construct, for example a plasmid constructed in accordance with Example 11, is able to induce immunogenicity can be evaluated *in vitro* by testing for epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines "antigenicity" and allows the use of human APC. The assay determines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts et al., J. Immunol. 156:683-692, 1996; Demotz et al., Nature 342:682-684, 1989); or the number of peptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by

infected or transfected target cells, and then determining the concentration of peptide necessary to obtained equivalent levels of lysis or lymphokine release (see, e.g., Kageyama et al., J. Immunol. 154:567-576, 1995).

Atlernatively, immunogenicity can be evaluated through *in vivo* injections into mice and subsequent *in vitro* assessment of CTL and HTL activity, which are analysed using cytotoxicity and proliferation assays, respectively, as detailed *e.g.*, in co-pending U.S.S.N. 09/311,784 filed 5/13/99 and Alexander *et al.*, *Immunity* 1:751-761, 1994.

5

10

15

20

25

30

35

40

For example, to assess the capacity of a DNA minigene construct (e.g., a pMin minigene construct generated as decribed in U.S.S.N. 09/311,784) containing at least one HLA-A2 supermotif peptide to induce CTLs in vivo, HLA-A2.1/K<sup>b</sup> transgenic mice, for example, are immunized intramuscularly with 100 µg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.

Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a <sup>51</sup>Cr release assay. The results indicate the magnitude of the CTL response directed against the A2-restricted epitope, thus indicating the *in vivo* immunogenicity of the minigene vaccine and polyepitopic vaccine. It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or supermotif epitopes.

To assess the capacity of a class II epitope encoding minigene to induce HTLs in vivo, DR transgenic mice, or for those epitope that cross react with the appropriate mouse MHC molecule, I-A<sup>b</sup>-restricted mice, for example, are immunized intramuscularly with 100 µg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant. CD4+ T cells, i.e. HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a <sup>3</sup>H-thymidine incorporation proliferation assay, (see, e.g., Alexander et al. Immunity 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the in vivo immunogenicity of the minigene.

DNA minigenes, constructed as described in Example 11, may also be evaluated as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (e.g., Barnett et al., Aids Res. and Human Retroviruses 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, e.g., Hanke et al., Vaccine 16:439-445, 1998; Sedegah et al., Proc. Natl. Acad. Sci USA 95:7648-53, 1998; Hanke and McMichael, Immunol. Letters 66:177-181, 1999; and Robinson et al., Nature Med. 5:526-34, 1999).

For example, the efficacy of the DNA minigene used in a prime boost protocol is initially evaluated in transgenic mice. In this example, A2.1/K<sup>b</sup> transgenic mice are immunized IM with 100 µg of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing

peptide. After an incubation period (ranging from 3-9 weeks), the mice are boosted IP with 10<sup>7</sup> pfu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 μg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated *in vitro* with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptide-specific activity in an IFN-γ ELISA.

It is found that the minigene utilized in a prime-boost protocol elicits greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-A11 or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes.

The use of prime boost protocols in humans is described in Example 20.

#### Example 13. Peptide Composition for Prophylactic Uses

5

10

15

20

25

30

35

40

Vaccine compositions of the present invention are used to prevent cancer in persons who are at high risk for developing a tumor. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in Examples 9 and/or 10, which are also selected to target greater than 80% of the population, is administered to an individual at high risk for prostate cancer. The composition is provided as a single polypeptide that encompasses multiple epitopes. The vaccine is administered in an aqueous carrier comprised of Freunds Incomplete Adjuvant. The dose of peptide for the initial immunization is from about 1 to about 50,000 µg, generally 100-5,000 µg, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against cancer.

Alternatively, the polyepitopic peptide composition can be administered as a nucleic acid in accordance with methodologies known in the art and disclosed herein.

#### Example 14. Polyepitopic Vaccine Compositions Derived from Native TAA Sequences

A native TAA polyprotein sequence is screened, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to identify "relatively short" regions of the polyprotein that comprise multiple epitopes and is preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct, even overlapping, epitopes is selected and used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The "relatively short" peptide is generally less than 1000, 500, or 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping (i.e.,

10

15

20

25

. 30

35

40

PCT/US00/35516

frame shifted relative to one another). For example, with frame shifted overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.

The vaccine composition will preferably include, for example, three CTL epitopes and at least one HTL epitope from multiple prostate cancer-associated antigens. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide.

Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.

The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent analogs) directs the immune response to multiple peptide sequences that are actually present in native TAAs thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions.

Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.

# Example 15. Polyepitopic Vaccine Compositions Comprising Epitopes From Multiple Tumor-Associated Antigens

The prostate cancer-associated antigen peptide epitopes of the present invention are used in combination with each other, or with peptide epitopes from other target tumor-associated antigens to create a vaccine composition that is useful for the treatment of prostate tumors from multiple patients. Furthermore, a vaccine composition comprising epitopes from multiple tumor antigens also reduces the potential for escape mutants due to loss of expression of an individual tumor antigen.

The composition can be provided as a single polypeptide that incorporates the multiple epitopes from the various TAAs, or can be administered as a composition comprising one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic cells which have been loaded with the peptide epitopes in vitro.

### Example 16. Use of peptides to evaluate an immune response

Peptides of the invention may be used to analyze an immune response for the presence of specific CTL or HTL populations directed to a prostate cancer-associated antigen. Such an analysis may be performed using multimeric complexes as described, e.g., by Ogg et al., Science 279:2103-2106, 1998 and Greten et al., Proc. Natl. Acad. Sci. USA 95:7568-7573, 1998. In the following example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.

In this example, highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") are used for a cross-sectional analysis of, for example, tumor-associated antigen HLA-A\*0201-specific CTL frequencies from HLA A\*0201-positive individuals at different stages of disease or following immunization using a TAA peptide containing an A\*0201 motif. Tetrameric complexes are synthesized as described (Musey et al., N. Engl. J. Med. 337:1267, 1997). Briefly, purified HLA heavy chain (A\*0201 in this example) and β2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, β2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5'triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer-phycoerythrin.

For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300g for 5 minutes and resuspended in 50 µl of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycocrythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A\*0201-negative individuals and A\*0201-positive uninfected donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the TAA epitope, and thus the stage of tumor progression or exposure to a vaccine that elicits a protective or therapeutic response.

# 25 Example 17. Use of Peptide Epitopes to Evaluate Recall Responses

5

10

15

20

30

35

40

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who are in remission, have a tumor, or who have been vaccinated with a prostate cancer-associated antigen vaccine.

For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any TAA vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.

PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, MO), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2mM), penicillin (50U/ml), streptomycin (50 µg/ml), and Hepes (10mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is added at 10 µg/ml to each well and HBV core 128-140 epitope is added at 1 µg/ml to each well as a source of T cell help during the first week of stimulation.

In the microculture format, 4 x 10<sup>5</sup> PBMC are stimulated with peptide in 8 replicate cultures in 96-well round bottom plate in 100 µl/well of complete RPMI. On days 3 and 10, 100 µl of complete RPMI and 20 U/ml final concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rIL-2 and 10<sup>5</sup> irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific <sup>51</sup>Cr release, based on comparison with uninfected control subjects as previously described (Rehermann, et al., Nature Med. 2:1104,1108, 1996; Rehermann et al., J. Clin. Invest. 97:1655-1665, 1996; and Rehermann et al. J. Clin. Invest. 98:1432-1440, 1996).

5

10

15

20

25

30

35

Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, et al. J. Virol. 66:2670-2678, 1992).

Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of the invention at 10 μM, and labeled with 100 μCi of <sup>51</sup>Cr (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS.

Cytolytic activity is determined in a standard 4 hour, split-well <sup>51</sup>Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100 x [(experimental release-spontaneous release)/maximum release-spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, MO). Spontaneous release is <25% of maximum release for all experiments.

The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to the TAA or TAA vaccine.

The class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5x10<sup>5</sup> cells/well and are stimulated with 10 µg/ml synthetic peptide, whole antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing 10U/ml IL-2. Two days later, 1 µCi <sup>3</sup>H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for <sup>3</sup>H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of <sup>3</sup>H-thymidine incorporation in the presence of antigen divided by the <sup>3</sup>H-thymidine incorporation in the absence of antigen.

#### Example 18. Induction Of Specific CTL Response In Humans

A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study. Such a trial is designed, for example, as follows:

A total of about 27 male subjects are enrolled and divided into 3 groups:

Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 µg of peptide composition;

Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 µg peptide composition:

Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 μg of peptide composition.

After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage. Additional booster inoculations can be administered on the same schedule.

The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.

Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.

Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

The vaccine is found to be both safe and efficacious.

#### 20 Example 19. Therapeutic Use in Cancer Patients

5

10

15

25

. 30

35

Evaluation of vaccine compositions are performed to validate the efficacy of the CTL-HTL peptide compositions in cancer patients. The main objectives of the trials are to determine an effective dose and regimen for inducing CTLs in prostate cancer patients, to establish the safety of inducing a CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of cancer patients, as manifested by a reduction in tumor cell numbers. Such a study is designed, for example, as follows:

The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded.

There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group are males, typically above the age of 50, and represent diverse ethnic backgrounds.

# Example 20. Induction of CTL Responses Using a Prime Boost Protocol

A prime boost protocol similar in its underlying principle to that used to evaluate the efficacy of a DNA vaccine in transgenic mice, such as described in Example 12, can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of,

for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant.

5

10

15

20

25

30

35

40

For example, the initial immunization can be performed using an expression vector, such as one constructed in accordance with Example 11, in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 µg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-10<sup>7</sup> to 5x10<sup>9</sup> pfu. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples will be obtained before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

Analysis of the results will indicate that a magnitude of response sufficient to achieve protective immunity against prostate cancer is generated.

#### Example 21. Administration of Vaccine Compositions Using Antigen Presenting Cells

Vaccines comprising peptide epitopes of the invention may be administered using antigenpresenting cells (APCs), or "professional" APCs such as dendritic cells (DC). In this example, the peptidepulsed DC are administered to a patient to stimulate a CTL response *in vivo*. In this method, dendritic cells
are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the
invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses *in vivo*.

The induced CTL and HTL then destroy (CTL) or facilitate destruction (HTL) of the specific target tumor
cells that bear the proteins from which the epitopes in the vaccine are derived.

For example, a cocktail of epitope-bearing peptides is administered ex vivo to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin<sup>TM</sup> (Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides.

As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of dendritic cells reinfused into the patient can vary (see, e.g., Nature Med. 4:328, 1998; Nature Med. 2:52, 1996 and Prostate 32:272, 1997). Although 2-50 x 10<sup>6</sup> dendritic cells per patient are typically administered, larger number of dendritic cells, such as 10<sup>7</sup> or 10<sup>8</sup> can also be provided. Such cell populations typically contain between 50-90% dendritic cells.

In some embodiments, peptide-loaded PBMC are injected into patients without purification of the DC. For example, PBMC containing DC generated after treatment with an agent such as Progenipoietin™ are injected into patients without purification of the DC. The total number of PBMC that are administered often ranges from 10<sup>8</sup> to 10<sup>10</sup>. Generally, the cell doses injected into patients is based on the percentage of DC in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if Progenipoietin™ mobilizes 2% DC in the

peripheral blood of a given patient, and that patient is to receive  $5 \times 10^6$  DC, then the patient will be injected with a total of  $2.5 \times 10^8$  peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin<sup>TM</sup> is typically estimated to be between 2-10%, but can vary as appreciated by one of skill in the art.

The ability of DC to stimulate immune responses was evaluated in both *in vitro* and *in vivo* immune function assays. These assays include the stimulation of CTL hybridomas and CTL cell lines, and the *in vivo* activation of CTL.

#### **DC** Purification

. 5

10

15

20

25

30

35

Progenipoietin<sup>TM</sup>-mobilized DC were purified from peripheral blood (PB) and spleens of Progenipoietin<sup>TM</sup>-treated C57B1/6 mice to evaluate their ability to present antigen and to elicit cellular immune responses. Briefly, DC were purified from total WBC and spleen using a positive selection strategy employing magnetic beads coated with a CD11c specific antibody (Miltenyi Biotec, Auburn CA). For comparison, ex vivo expanded DC were generated by culturing bone marrow cells from untreated C57B1/6 mice with the standard cocktail of GM-CSF and IL-4 (R&D Systems, Minneapolis, MN) for a period of 7-8 days (Mayordomo et al., Nature Med. 1:1297-1302 (1995)). Recent studies have revealed that this ex vivo expanded DC population contains effective antigen presenting cells, with the capacity to stimulate anti-tumor immune responses (Celluzzi et al., J. Exp. Med. 83:283-287 (1996)).

The purities of Progenipoietin<sup>TM</sup>-derived DC (100 µg/day, 10 days, SC) and GM-CSF/IL-4 ex vivo expanded DC were determined by flow cytometry. DC populations were defined as cells expressing both CD11c and MHC Class II molecules. Following purification of DC from magnetic CD11c microbeads, the percentage of double positive PB-derived DC, isolated from Progenipoietin<sup>TM</sup>-treated mice, was enriched from approximately 4% to a range from 48-57% (average yield = 4.5 x 10<sup>6</sup> DC/animal). The percentage of purified splenic DC isolated from Progenipoietin<sup>TM</sup> treated mice was enriched from a range of 12-17% to a range of 67-77%. The purity of GM-CSF/IL-4 ex vivo expanded DC ranged from 31-41% (Wong et al., J. Immunother., 21:32040 (1998)).

### In Vitro Stimulation of CTL Hybridomas and CTL Cell Lines: Presentation of Specific CTL Epitopes

The ability of Progenipoietin™ generated DC to stimulate a CTL cell line was demonstrated in vitro using a viral-derived epitope and a corresponding epitope responsive CTL cell line. Transgenic mice expressing human HLA-A2.1 were treated with Progenipoietin™. Splenic DC isolated from these mice were pulsed with a peptide epitope derived from hepatitis B virus (HBV Pol 455) and then incubated with a CTL cell line that responds to the HBV Pol 455 epitope/HLA-A2.1 complex by producing IFNy. The capacity of Progenipoietin™-derived splenic DC to present the HBV Pol 455 epitope was greater than that of two positive control populations: GM-CSF and IL-4 expanded DC cultures, or purified splenic B cells. A left shift in the response curve for Progenipoietin™-derived spleen cells versus the other antigen presenting cells revealed that these Progenipoietin™-derived cells required less epitope to stimulate maximal IFNy release by the responder cell line.

The ability of ex vivo peptide-pulsed DC to stimulate CTL responses in vivo was also evaluated using the HLA-A2.1 transgenic mouse model. DC derived from Progenipoietin<sup>TM</sup>-treated animals or control DC derived from bone marrow cells after expansion with GM-CSF and IL-4 were pulsed ex vivo

with the HBV Pol 455 CTL epitope, washed and injected (IV) into such mice. At seven days post immunization, spleens were removed and splenocytes containing DC and CTL were restimulated twice in vitro in the presence of the HBV Pol 455 peptide. The CTL activity of three independent cultures of restimulated spleen cell cultures was assessed by measuring the ability of the CTL to lyse <sup>51</sup>Cr-labeled target cells pulsed with or without peptide. Vigorous CTL responses were generated in animals immunized with the epitope-pulsed Progenipoietin<sup>TM</sup> derived DC as well as epitope-pulsed GM-CSF/IL-4 DC. In contrast, animals that were immunized with mock-pulsed Progenipoietin<sup>TM</sup>-generated DC (no peptide) exhibited no evidence of CTL induction.

These data confirm that DC derived from Progenipoietin™ treated mice can be pulsed ex vivo with epitope and used to induce specific CTL responses in vivo. Thus, these data support the principle that Progenipoietin™-derived DC promote CTL responses in a model that manifests human MHC Class I molecules.

In vivo pharmacology studies in mice have demonstrated no apparent toxicity of reinfusion of pulsed autologous DC into animals.

# 15 Ex vivo activation of CTL/HTL responses

5

10

20

25

30

35

40

Alternatively, ex vivo CTL or HTL responses to a particular tumor-associated antigen can be induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptides. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, i.e., tumor cells.

# Example 22. Alternative Method of Identifying Motif-Bearing Peptides

Another way of identifying motif-bearing peptides is to clute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing, have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can then be infected with a pathogenic organism or transfected with nucleic acids that express the tumor antigen of interest. Thereafter, peptides produced by endogenous antigen processing of peptides produced consequent to infection (or as a result of transfection) will bind to HLA molecules within the cell and be transported and displayed on the cell surface.

The peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo et al., J. Immunol. 152:3913, 1994). Because, as disclosed herein, the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an alternative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell.

Alternatively, cell lines that do not express any endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells may then be used as described, i.e., they may be infected with a pathogenic organism or transfected with nucleic acid encoding an antigen of interest to isolate peptides corresponding to the pathogen or antigen of interest that have been

presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell.

As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed.

Moreover, one of skill would also recognize that means other than infection or transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.

The above examples are provided to illustrate the invention but not to limit its scope. For example, the human terminology for the Major Histocompatibility Complex, namely HLA, is used throughout this document. It is to be appreciated that these principles can be extended to other species as well. Thus, other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent application cited herein are hereby incorporated by reference for all purposes.

TABLE I

|             | T                       | <u> </u>           |                        |
|-------------|-------------------------|--------------------|------------------------|
| SUPERMOTIFS | POSITION                | POSITION           | POSITION               |
|             | 2 (Primary Anchor)      | 3 (Primary Anchor) | C Terminus (Primary    |
|             | <u> </u>                |                    | Anchor)                |
| A1          | T, I, L, V, M, S        |                    | F, W, Y                |
| A2          | L, I, V, M, A, T, Q     |                    | I, V, M, A, T, L       |
| · A3        | V, S, M, A, T, L, I     |                    | R,K                    |
| A24         | Y, F, W, I, V, L, M, T  |                    | F, I, Y, W, L, M       |
| B7          | P                       |                    | V, I, L, F, M, W, Y, A |
| B27         | R, H, K                 | *:                 | F, Y, L, W, M, I, V, A |
| B44         | $\mathbf{E}, D$         |                    | F, W, L, I, M, V, A    |
| B58         | À, T, S                 |                    | F, W, Y, L, I, V, M, A |
| B62         | Q, L, I, V, M, P        |                    | F, W, Y, M, I, V, L, A |
| ·           |                         |                    | •                      |
| MOTIFS      |                         | ,                  |                        |
| A1          | T, S, M                 |                    | Y                      |
| A1          |                         | D, E, A, S         | Y                      |
| A2.1 ·      | L, M, V, Q, I, A, T     |                    | V, L, I, M, A, T       |
| A3          | L, M, V, I, S, A, T, F, |                    | K, Y, R, H, F, A       |
|             | C, G, D                 |                    |                        |
| A11         | V, T, M, L, I, S, A,    |                    | K, R, Y, H             |
|             | G, N, C, D, F           |                    | ·                      |
| A24         | Y, F, W, M              |                    | F, L, I, W             |
| A*3101      | M, V, T, A, L, I, S     |                    | R, K                   |
| A*3301      | M, V, A, L, F, I, S, T  |                    | R, K                   |
| A*6801      | A, V, T, M, S, L, I     |                    | R, K                   |
| B*0702      | P .                     |                    | L, M, F, W, Y, A, I, V |
| B*3501      | P                       |                    | L, M, F, W, Y, I, V, A |
| B51         | P                       |                    | L, I, V, F, W, Y, A, M |
| B*5301      | P                       |                    | I, M, F, W, Y, A, L, V |
| B*5401      | P                       |                    | A, T, I, V, L, M, F,   |
|             |                         |                    | W, Y                   |

Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

# TABLE Ia

| SUPERMOTIFS | POSITION                                     | POSITION                                  | POSITION               |
|-------------|----------------------------------------------|-------------------------------------------|------------------------|
|             | 2 (Primary Anchor)                           | 3 (Primary Anchor)                        | C Terminus (Primary    |
|             |                                              |                                           | Anchor)                |
| A1 .        | T, I, L, V, M, S                             | `                                         | F, W, Y                |
| A2          | V, Q, A, T                                   |                                           | I, V, L, M, A, T       |
| A3          | V, S, M, A, T, L, I                          | ·                                         | R, K                   |
| A24         | Y, F, W, I, V, L, M, T                       |                                           | F, I, Y, W, L, M       |
| В7          | P                                            |                                           | V, I, L, F, M, W, Y, A |
| B27         | R, H, K                                      | ·                                         | F, Y, L, W, M, I, V, A |
| B58         | A, T, S                                      |                                           | F, W, Y, L, I, V, M, A |
| B62         | Q, L, I, V, M, P                             |                                           | F, W, Y, M, I, V, L, A |
|             |                                              |                                           |                        |
| MOTIFS      |                                              |                                           |                        |
| A1 .        | T, S, M                                      |                                           | Y                      |
| A1          |                                              | <b>D</b> , <b>E</b> , <i>A</i> , <i>S</i> | Y                      |
| A2.1        | V, Q, A, T*                                  |                                           | V, L, I, M, A, T       |
| A3.2        | L, M, V, I, S, A, T, F,                      | erri Luciu                                | K, Y, R, H, F, A       |
|             | C, G, D                                      |                                           |                        |
| A11         | V, T, M, L, I, S, A,                         |                                           | K, R, H, Y             |
|             | <b>G</b> , N, <i>C</i> , <i>D</i> , <i>F</i> | ,                                         |                        |
| A24         | Y,F,W                                        |                                           | F, L, I, W             |

<sup>\*</sup>If 2 is V, or Q, the C-term is not L

Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

| - | Į |
|---|---|
| μ | 1 |
| Ξ | i |
| Έ | i |
| ₹ | į |
| ⋍ |   |
| _ | ٠ |

| İ        | <u> </u>   |             |                           |                          |                                               |                     |                                  |                               |                                                       |                            |                              |                                     |                              |
|----------|------------|-------------|---------------------------|--------------------------|-----------------------------------------------|---------------------|----------------------------------|-------------------------------|-------------------------------------------------------|----------------------------|------------------------------|-------------------------------------|------------------------------|
|          | C-terminus |             | 1° Anchor<br>F,W,Y        | 1° Anchor<br>L,I,V,M,A,T | 1°Anchor<br>R,K                               |                     | 1° Anchor<br>F,I,Y,W,L,M         | 1°Anchor<br>V,I,L,F,M,W,Y,A   |                                                       | 1° Anchor<br>F,Y,L,W,M,V,A | 1° Anchor<br>F,W,Y,L,I,M,V,A | 1° Anchor<br>F, W, Y, L, I, V, M, A | 1° Anchox<br>F,W,Y,M,I,V,L,A |
|          | <b>∞</b>   |             |                           |                          | P, (4/5)                                      |                     |                                  | F,W,Y,<br>(3/5)               | D,E, (4/5)                                            |                            |                              |                                     |                              |
| i        |            |             |                           |                          | Y,F,W, (4/5) P, (4/5)                         |                     |                                  |                               | Q,N, (4/5)                                            |                            | ·                            |                                     | ·                            |
| Z        | 9          | ļ           |                           |                          | Y,F,W,<br>(3/5)                               |                     |                                  | <b>&gt;</b> >                 | G, (4/5)                                              |                            | <b>,</b>                     | -                                   |                              |
| POSITION | 2          |             |                           |                          |                                               | ,                   |                                  |                               | D,B, (3/5)                                            |                            |                              |                                     | -                            |
|          | 4          |             | i                         |                          |                                               |                     |                                  |                               |                                                       |                            |                              |                                     |                              |
|          | <u>e</u>   |             |                           |                          | Y,F,W, (4/5)                                  | D,B, (4/5)          |                                  | F,W,Y (4/5)                   |                                                       |                            |                              |                                     |                              |
| •        | [2]        |             | 1° Anchor<br>T,I,L, V,M,S | 1° Anchor<br>L,I,V,M,A,  | l° Anchor<br>V,S,M,A, <i>T,</i><br><i>L,I</i> |                     | 1° Anchor<br>Y,F,W,I,V,<br>L,M,T | 1°Anchor<br>P                 |                                                       | 1º Anchor<br>R,H,K         | 1° Anchor<br>E,D             | 1° Anchor<br>A,T,S                  | 1° Anchor<br>Q,L,I,V,M,<br>P |
|          |            |             |                           |                          |                                               | D,E (3/5); P, (5/5) |                                  | F,W,Y (5/5)<br>L,I,V,M, (3/5) | D, B (3/5); P(5/5);<br>G(4/5); A(3/5);<br>Q, N, (3/5) |                            |                              |                                     |                              |
| •        | •          | SUPERMOTIFS |                           |                          | preferred                                     | deleterious         |                                  | preferred                     | deleterious                                           |                            |                              |                                     |                              |
|          |            | SUPER       | <b>A</b> 1                | FZ                       | A3                                            | •                   | A24                              | B7                            |                                                       | B27                        | B44                          | B58                                 | B62                          |

|          |                  |          |                       | •                      |                            |                        |
|----------|------------------|----------|-----------------------|------------------------|----------------------------|------------------------|
|          | C-terminus       |          | 1°Anchor<br>Y         |                        | 1°Anchor<br>Y              |                        |
|          | <b>∞</b>         |          | Y,F,W,                |                        | D,E,                       | G.P.                   |
|          |                  |          | D,E,Q,N,              |                        | L,I,V,M,                   | P,G,                   |
| Z        |                  |          | ъ,                    | Ą                      | A,S,T,C,                   | R,H,K,                 |
| POSITION | [2]              |          |                       | ර                      |                            | P,Q,N,                 |
|          | ( <del>4</del> ) |          | Y,F,W,                | Ą                      | G,S,T,C,                   | D,E,                   |
|          | ത്ര              | •        | D,B,A,                | R,H,K,L,I,V A,<br>M,P, | 1°Anchor<br>D,E,A,S        |                        |
|          | Ø                |          | 1°Anchor<br>S,T,M,    | ·                      | A,S,T,C,L,I<br>V,M,        | R,H,K,D,E,<br>P,Y,F,W, |
|          | 11               |          | G,F,Y,W,              | . D,B,                 | G,R,H,K                    | ď                      |
|          |                  | <u>S</u> | Al preferred<br>9-mer | deleterious D,B,       | A1 preferred G,R,H,K 9-mer | deleterious A          |
|          |                  | MOTIFS   | A1<br>9-mer           |                        | A1<br>9-mer                |                        |

|                   |             |          |                              |                     |            | POSITION   | z         |                  |                       | ;           |                         |
|-------------------|-------------|----------|------------------------------|---------------------|------------|------------|-----------|------------------|-----------------------|-------------|-------------------------|
|                   |             |          | [2]                          | ത                   | <b>4</b> 0 | 2          | <b>9</b>  |                  | ( <b>20</b> )         | <u>න</u> ද  | C-terminus              |
|                   |             |          |                              |                     |            |            |           |                  |                       | C-terminus  |                         |
| A1 pe<br>10-mer   | регетед     | Y,F,W,   | 1°Anchor<br>S,T,M            | D,E,A,Q,N,          | Α,         | Y,F,W,Q,N, |           | P,A,S,T,C,       | G,D,E,                | o,          | 1°Anchor<br>Y           |
| ਚੱ                | deleterious | G,P,     |                              | R,H,K,G,L,I<br>V,M, | D,E,       | R,H,K,     | Q,N,A     | R,H,K,Y,F,<br>W, | R,H,K,                | ¥           |                         |
| A1 pr             | preferred   | Y,F,W,   | S,T,C,L,I,V                  | 1°Anchor            | ¥          | Y,F,W,     |           | P,G,             | <b>ග්</b>             | Y,F,W,      | 1°Anchor                |
|                   | deleterious | R,H,K,   | M,<br>R,H,K,D,E,<br>P,Y,F,W, |                     |            | oʻ.        | <b>ෆ්</b> |                  | P,R,H,K,              | O'N,        | <b>.</b>                |
| 1                 | nraferred   | W # >    | 1°Anchor                     | Way                 | E C        | ><br>8 7   |           | 4                | ۵                     | 1º Anchor   |                         |
| 9-mer             |             |          | L,M,I,V,Q,<br>A,T            |                     |            |            |           |                  |                       | V,L,I,M,A,T |                         |
| ਰ                 | deleterious | D,E,P,   |                              | л,к,к,н             |            |            | K,K,H     | D,E,R,K,H        |                       |             |                         |
| A2.1 pi<br>10-mer | ргебетед    | A,Y,F,W, | 1.Anchor<br>L,M,I,V,Q<br>A,T | L,V,I,M,            | oʻ         |            | <b>ප්</b> |                  | F,Y,W,L,<br>V,I,M,    |             | 1°Anchor<br>V,L,I,M,A,T |
| <b>Ģ</b>          | deleterious | D,E,P,   |                              | D,E,                | R,K,H,A,   | ď.         | ·         | <b>к,к,</b> н,   | D,B,R,K, R,K,H,<br>H, | R,K,H,      |                         |

|          | C-<br>terminus |                                                      |             |                                                            |             |                     |               | 1°Anchor<br>F,L,I,W |             |                               |             |
|----------|----------------|------------------------------------------------------|-------------|------------------------------------------------------------|-------------|---------------------|---------------|---------------------|-------------|-------------------------------|-------------|
|          | ලු දි<br>(     | C-terminus<br><u>1ºAnchor</u><br>K,Y,R, <i>H,F,A</i> |             | 1°Anchor<br>K,,RY,H                                        |             | 1°Anchor<br>F,L,I,W |               |                     | D,B,A,      | 1°Anchor<br>R,K               |             |
|          | <b>©</b>       | ഫ്.                                                  |             | e,                                                         | ъ́          | Y,F,W,              | A,Q,N,        |                     | Ö,N,        | A,P,                          | D,B,        |
|          |                |                                                      |             | Y,FW,                                                      | <b>∢</b>    | Y,F,W,              | <b>.</b>      | ď.                  | ¥           | Y,F,W,                        | D,E,        |
| X(C)     | <b>I©</b>      | Y,F,W,                                               | .,          | Y,F,W,                                                     |             |                     | D,B,R,H,K, G, |                     | D,B         | Y,F,W,                        | D,E,        |
| POSITION | ত্রি           | Ą.                                                   |             | <b>,</b>                                                   |             |                     | Q,N,P,        | Y,F,W,P,            | R,H,K       |                               | A,D,E,      |
|          | <b>(4</b> )    | P,R,H,K,Y,<br>F,W,                                   |             | Y,FW,                                                      |             | S,T,C               | oʻ            | ъ,                  | N,Q         | <u>α</u> ,                    | •           |
|          | ത്ര            | Y,F,W,                                               | B,C         | Y,F,W,                                                     |             |                     | D,E,          |                     | G,D,E       | Y,F,W,                        | D,E,        |
|          | <b>[</b> ]     | 1°Anchor<br>L,M,V,I,S,<br>A,T,F,C,G<br>D             |             | 1°Anchor<br>V,T,L,M,I,<br>S,A,G,N, <i>C,</i><br><i>D,F</i> |             | 1°Anchor<br>Y,F,W,M |               | 1°Anchor<br>Y,F,W,M |             | 1°Anchor<br>M,V,T,A,L,<br>I,S |             |
|          |                | R,H,K,                                               | D,E,P,      | ₹                                                          | D,E,P,      | Y,F,W,R,H,K,        | D,B,G,        |                     |             | R,H,K,                        | D,B,P,      |
|          |                | preferred                                            | deleterious | preferred                                                  | deleterious | preferred           | deleterious   | preferred           | deleterious | A3101 preferred               | deleterious |
|          |                | <b>V3</b>                                            |             | A11                                                        |             | A24<br>9-mer        |               | A24<br>10-mer       |             | A3101                         |             |

|          | C-<br>terminus |                                        |             |                               | 82          |                                 |             |                                 |             |
|----------|----------------|----------------------------------------|-------------|-------------------------------|-------------|---------------------------------|-------------|---------------------------------|-------------|
|          |                | C-terminus<br>1ºAnchor<br>R,K          | ٠           | 1°Anchor<br>R,K               |             | 1°Anchor<br>L,M,R,W,Y,A,<br>I,V |             | 1°Anchox<br>L,M,F,W,Y,I,<br>V,A |             |
|          | <b>∞</b>       |                                        | •           | <b>6</b> 4                    | Ą           | P,A,                            | D,E,        |                                 |             |
|          |                | A,Y,F,W                                |             | Y,F,W,                        |             | R,H,K,                          | Q,N,        | F, W, Y,                        |             |
| NO       | 9              |                                        | ę           |                               |             | R,H,K,                          | G,D,E,      |                                 | ,<br>G,     |
| POSITION | <u>(7)</u>     |                                        |             | Y,F,W,L,I,<br>V,M             | R,H,K,      | R,H,K,                          | D,E,        |                                 | ,<br>G,     |
|          | <b>(45)</b>    | ,                                      |             |                               |             |                                 | D,B,        | ·                               |             |
|          | <u>.</u>       | Y,F,W                                  | D,B         |                               | D,B,G,      | R,H,K,                          | D,E,P,      | F,W,Y,                          |             |
|          | a              | l'Anchor<br>M,V,A,L,F,<br><i>I,S,T</i> |             | 1°Anchor<br>A,V,T,M,S,<br>L,I |             | 1°Anchor<br>P                   |             | 1°Anchor<br>P                   |             |
|          |                |                                        | G,P         | Y,F,W,S,T,C,                  | G,P,        | R.H.K.F.W,Y,                    | D,B,Q,N,P,  | F,W,Y,L,I,V,M,                  | A,G,P,      |
| •        |                | A3301 preferred                        | deleterious | A6801 preferred               | deleterious | B0702 preferred                 | deleterious | B3501 preferred                 | deleterious |
|          |                | A3301                                  |             | A6801                         |             | B0702                           | -           | B3501                           |             |

|       |                 |                                        |               |                   |             | POSITION        | Z    |                    |               |                                            | :              |
|-------|-----------------|----------------------------------------|---------------|-------------------|-------------|-----------------|------|--------------------|---------------|--------------------------------------------|----------------|
|       |                 | <b>I</b>                               | <u>[</u>      | ලා                | <b>[4</b> ] | <b>S</b>        | Ø    |                    | ( <b>8</b> 0) | ලු දි                                      | C-<br>terminus |
| B51   | ртебепед        | L,I,V,M,F,W,Y,                         | 1°Anchor<br>P | F,W,Y,            | S,T,C,      | F,W,Y,          |      | , ඒ                | F,W,Y,        | C-terminus 1°Anchor L',I,V,F,W,            |                |
|       | deleterious     | deleterious A,G,P,D,B,R,H,K,<br>S,T,C, |               |                   |             | D,E,            | უ    | D,B,Q,N,           | G,D,B,        | <i>χην</i> (γ. )                           |                |
| B5301 | B5301 preferred | L,I,V,M,F,W,Y,                         | 1°Anchor<br>P | F,W,Y,            | S,T,C,      | F,W,Y,          |      | L,I,V,M,F,<br>W,Y, | F,W,Y,        | 1°Anchor<br>I,M.F.W.Y,<br><i>A.L.V</i>     |                |
|       | deleterious     | A,G,P,Q,N,                             |               |                   | -           |                 | ල්   | R,H,K,Q,N,         | D,B,          |                                            |                |
| B5401 | B5401 preferred | F,W,Y,                                 | 1°Anchor<br>P | F,W,Y,L,I,V<br>M, |             | L,I,V,M,        |      | A,L,J,V,M,         | F,W,Y,A,P,    | 1°Anchor<br>A,T,I,V, <i>L</i> ,<br>M F W Y |                |
|       | deleterious     | deleterious G.P.Q.N.D.B,               |               | G,D,E,S,T,C,      |             | R,H,K,D,E, D,E, | D,E, | Q,N,D,G,E,         | D,B,          |                                            |                |
|       |                 |                                        |               |                   |             |                 |      |                    |               |                                            |                |

Italicized residues indicate less preferred or "tolerated" residues. The information in Table II is specific for 9-mers unless otherwise specified. Secondary anchor specificities are designated for each position independently.

|           |             |                               |             |                               |             |                               |             |                              | ٠           |                      |                         |
|-----------|-------------|-------------------------------|-------------|-------------------------------|-------------|-------------------------------|-------------|------------------------------|-------------|----------------------|-------------------------|
|           | <u></u>     | М, Н                          | W, D, E     | A, V, M                       |             | Λ'1                           | O           |                              |             |                      |                         |
|           | <b></b>     | ·                             |             |                               | Ω           |                               | z           |                              |             |                      |                         |
|           |             | M, H,                         | 젚           | Μ,                            | G, D, E,    | М,                            | G, R, D,    |                              | ·           | ٠                    |                         |
|           | 1° anchor 6 | V, S, T, C, P, A,<br>L, I, M, |             | V, M, A, T, S, P,<br>L, I, C, |             | I, V, M, S, A, C,<br>I, P, L, |             | V, M, S, T, A, C,<br>P, L, L | 1° anchor 6 |                      | К, R, H                 |
| POSITION  | ച്ച         | ĻŤ                            |             |                               | C, W, D     |                               |             |                              | <u>دی</u>   |                      | ·                       |
|           | <b>4</b> 0  | ,                             | w,          | P, A, M, Q,                   | F,D         | <b>,</b>                      | ර           |                              | 1° anchor 4 | Д                    | d, n, q, b,<br>S, T     |
|           | ලා          | ť.                            |             |                               | С, н        | W,                            |             |                              | ඟ           |                      |                         |
|           | [2]         | M,                            |             |                               | ပ           | M,                            | <b>ರ</b>    |                              | <u>[</u>    |                      |                         |
|           | 1° anchor 1 | F, M, Y,L, I,<br>V, W,        |             | M, F, L, I, V,<br>W, Y,       |             | M, F, L, I, V,<br>W, Y,       |             | M, F, L, I, V,<br>W, Y,      | 1° anchor 1 | L, I, V, M, F,<br>Y, | L, I, V, M, F,<br>A, Y, |
| п         | IFS         | preferred                     | deleterious | preferred                     | deleterious | preferred                     | deleterious | DR Supermotif                | DR3 MOTIFS  | m d                  |                         |
| Table III | MOTIFS      | DR4                           |             | DR1                           |             | DR7                           |             | DR S                         | DR3         | motif a<br>preferred | motif b<br>preferred    |

Italicized residues indicate less preferred or "tolerated" residues. Secondary anchor specificities are designated for each position independently.

Table IV: HLA Class I Standard Peptide Binding Affinity.

| ALLELE | STANDARD | SEQUENCE     | STANDARD         |
|--------|----------|--------------|------------------|
|        | PEPTIDE  | (SEQ ID NO:) | BINDING AFFINITY |
|        |          |              | (nM)             |
| A*0101 | 944.02   | YLEPAIAKY    | 25               |
| A*0201 | 941.01   | FLPSDYFPSV   | 5.0              |
| A*0202 | 941.01   | FLPSDYFPSV   | 4.3              |
| A*0203 | 941.01   | FLPSDYFPSV   | 10               |
| A*0205 | 941.01   | FLPSDYFPSV   | 4.3              |
| A*0206 | 941.01   | FLPSDYFPSV   | 3.7              |
| A*0207 | 941.01   | FLPSDYFPSV   | 23               |
| A*6802 | 1072.34  | YVIKVSARV    | 8.0              |
| A*0301 | 941.12   | KVFPYALINK   | 11               |
| A*1101 | 940.06   | AVDLYHFLK    | 6.0              |
| A*3101 | 941.12   | KVFPYALINK   | 18               |
| A*3301 | 1083.02  | STLPETYVVRR  | 29               |
| A*6801 | 941.12   | KVFPYALINK   | 8.0              |
| A*2402 | 979.02   | AYIDNYNKF    | 12               |
| B*0702 | 1075.23  | APRTLVYLL    | 5.5              |
| B*3501 | 1021.05  | FPFKYAAAF    | 7.2              |
| B51    | 1021.05  | FPFKYAAAF    | 5.5              |
| B*5301 | 1021.05  | FPFKYAAAF    | 9.3              |
| B*5401 | 1021.05  | FPFKYAAAF    | 10               |

Table V. HLA Class II Standard Peptide Binding Affinity.

| Allele    | Nomenclature | Standard | Sequence          | Binding  |
|-----------|--------------|----------|-------------------|----------|
|           |              | Peptide  | (SEQ ID NO:)      | Affinity |
|           |              |          |                   | (nM)     |
| DRB1*0101 | DR1          | 515.01   | PKYVKQNTLKLAT     | 5.0      |
| DRB1*0301 | DR3          | 829.02   | YKTIAFDEEARR      | 300      |
| DRB1*0401 | DR4w4        | 515.01   | PKYVKQNTLKLAT     | 45       |
| DRB1*0404 | DR4w14       | 717.01   | YARFQSQTTLKQKT    | 50       |
| DRB1*0405 | DR4w15       | 717.01   | YARFQSQTTLKQKT    | 38       |
| DRB1*0701 | DR7          | 553.01   | QYIKANSKFIGITE    | 25       |
| DRB1*0802 | DR8w2        | 553.01   | QYIKANSKFIGITE    | 49       |
| DRB1*0803 | DR8w3        | 553.01   | QYIKANSKFIGITE    | 1600     |
| DRB1*0901 | DR9          | 553.01   | QYIKANSKFIGITE    | 75       |
| DRB1*1101 | DR5w11       | 553.01   | QYIKANSKFIGITE    | 20       |
| DRB1*1201 | DR5w12       | 1200.05  | EALIHQLKINPYVLS   | 298      |
| DRB1*1302 | DR6w19       | 650.22   | QYIKANAKFIGITE    | 3.5      |
| DRB1*1501 | DR2w2β1      | 507.02   | GRTQDENPVVHFFKNIV | 9.1      |
|           |              |          | TPRTPPP           |          |
| DRB3*0101 | DR52a        | 511      | NGQIGNDPNRDIL     | 470      |
| DRB4*0101 | DRw53        | 717.01   | YARFQSQTTLKQKT    | 58       |
| DRB5*0101 | DR2w2β2      | 553.01   | QYIKANSKFIGITE    | 20       |

Table VI

|               | Allelle-specific HLA-supertype members                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ype members                                                                                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| HLA-supertype | Verified <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Predicted <sup>b</sup>                                                                         |
| A1            | A*0101, A*2501, A*2601, A*2602, A*3201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A*0102, A*2604, A*3601, A*4301, A*8001                                                         |
| A2            | A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207,<br>A*0209, A*0214, A*6802, A*6901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A*0208, A*0210, A*0211, A*0212, A*0213                                                         |
| A3            | A*0301, A*1101, A*3101, A*3301, A*6801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A*0302, A*1102, A*2603, A*3302, A*3303, A*3401,<br>A*3402, A*6601, A*6602, A*7401              |
| A24           | A*2301, A*2402, A*3001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A*2403, A*2404, A*3002, A*3003                                                                 |
| B7            | B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503, B*3503, B*3503, B*3503, B*3503, B*3503, B*3503, B*3503, B*5102, B*3503, B*5104, B*5102, B*5401, B*5501, B*5501, B*5601, B*5601 | B*1511, B*4201, B*5901                                                                         |
| B27           | B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706, B*3901, B*3901, B*3902, B*7301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B*2701, B*2707, B*2708, B*3802, B*3903, B*3904, B*3905, B*4801, B*4802, B*1510, B*1518, B*1503 |
| B44           | B*1801, B*1802, B*3701, B*4402, B*4403, B*4404, B*4001, B*4002,<br>B*4006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B*4101, B*4501, B*4701, B*4901, B*5001                                                         |
| B58           | B*5701, B*5702, B*5801, B*5802, B*1516, B*1517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |
| B62           | B*1501, B*1502, B*1513, B*5201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B*1301, B*1302, B*1504, B*1505, B*1506, B*1507, B*1515, B*1520, B*1521, B*1512, B*1514, B*1510 |

Verified alleles include alleles whose specificity has been determined by pool sequencing analysis, peptide binding assays, or by analysis of the sequences of CTL epitopes.

Predicted alleles are alleles whose specificity is predicted on the basis of B and P pocket structure to overlap with the supertype specificity. ಡ

Ġ.

|   | ata  |
|---|------|
|   | 긥    |
|   | 딀    |
|   | 置    |
|   | Ϋ́EÞ |
|   | 8    |
| 习 | 볊    |
| 읡 | 4    |
| Ħ | 별    |
|   |      |
|   | 3    |
|   | ᇘ    |
|   | 킠    |
|   | 88   |
|   | 되    |
|   |      |

|            | Prostate A01 Sup | Table VII<br>Prostate A01 Supermotif Peptides with Binding Data | nding Data |     |
|------------|------------------|-----------------------------------------------------------------|------------|-----|
| Protein    | Position         | . No. of<br>Amino Acids                                         | A*0101     | ſ   |
| DAD        |                  | ;                                                               |            | M   |
| Kalikrein  | 771              | = =                                                             |            |     |
| PSA        | [43              | : =                                                             |            |     |
| Kallikrein | 235              | 6                                                               |            |     |
| PSA        | 231              | <b>6</b>                                                        | 0.0110     | . • |
| PSM        | <b>2</b> 2       | <b>∞</b>                                                        |            |     |
| PSM        | <b>2</b> 3       | Φ (                                                             |            |     |
| PAP<br>848 | 911.             | <b>о</b> (                                                      |            |     |
|            |                  | Sh ⊊                                                            | 0.7700     |     |
| Non        | 7 5              | 2:                                                              | •          |     |
| TOW        | 331              |                                                                 |            |     |
| TOM.       | -                | <b>=</b> 0                                                      |            |     |
| WSd        | 710              | ·<br>·                                                          |            |     |
| - X        | £                | o oc                                                            |            |     |
| MSA        | : =              | , 9                                                             |            |     |
| PSM        | 393              | 20                                                              |            |     |
| Kallikrein | 241              | <u>.</u>                                                        |            |     |
| Kalikrein  | 99               | 6                                                               |            |     |
| MSd        | 961              | 0.                                                              | 0.0160     |     |
| PAP        | 347              | <b>2</b> 6                                                      |            |     |
| TOM<br>DAD | 136              | s> ⊊                                                            | •          |     |
| PSA        | 86               | 2 0                                                             |            |     |
| PSM .      | 630              | . 2                                                             |            |     |
| PSM .      | 453              | .∞                                                              |            |     |
| PSM .      | 901              | œ                                                               |            |     |
| PAP        | 301              | ₽,                                                              |            |     |
| No.        | 137              | œ;                                                              |            |     |
| TOWN       | 109              |                                                                 |            |     |
| DAP        | 000              | 25                                                              |            |     |
|            | 3 <b>3</b>       | 2 2                                                             |            |     |
| PAP        | . ¥              | <b>.</b>                                                        |            |     |
| PSM        | 480              | 6                                                               |            |     |
| PAP        | 237              | = •                                                             |            |     |
| NOW NOW    | 0 0 7 7          | × ;                                                             | ٠          |     |
| PAP        | 358              |                                                                 |            |     |
| PAP        | 317              | 6                                                               | . •        |     |
| PAP        | 317              | 2 -                                                             |            |     |
| PAP        | 168              | , 2                                                             |            |     |
| PSM        | 703              | = :                                                             |            |     |
| 200        | 917              | <b>○</b> ∘                                                      |            |     |
|            | 3                | o                                                               |            | •   |

|        | Dats              |
|--------|-------------------|
|        | Binding           |
|        | with              |
| le VII | Peptides          |
| Tabl   | <b>Supermotif</b> |
|        | 훰                 |
|        | Prostate          |

| Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Position | No. of<br>Amino Acids | A*0101         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |                |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 216      | = •                   | 0000           |
| РАР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S :      | > c                   | 0.0980         |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/-      | 10 C                  |                |
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 342      | o =                   |                |
| E S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 245      | . •                   |                |
| LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155      | , <u>c</u>            | 0.0260         |
| TAIN DOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 727      | 2                     |                |
| LOIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×-       | ; oc                  |                |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) (r)    | · 0                   | •              |
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EE       | . 01                  |                |
| A29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m        | ÷ ec                  |                |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 195      | · 00                  |                |
| ASG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161      | 80                    |                |
| MSd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 646      | œ                     |                |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 546      | . 11                  |                |
| WS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 639      | œ                     |                |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 529      | Φ                     | 0.0025         |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 204      | 11                    | •              |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104      | 01                    | 0.4800         |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 961      | œ ;                   |                |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 961      | = '                   |                |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 427      | <b>&gt;</b> 0 (       |                |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 089      | × (                   |                |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 295      | <b>a</b> ;            |                |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/       | Ξ,                    | 1000           |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89.      |                       | 0.0001         |
| WSd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.      | <b>.</b> .            |                |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 916      | × 5                   |                |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 310      | 2 •                   |                |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600      | 0 0                   |                |
| And the state of t | 100 P    | o o                   |                |
| rom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140      | . 0                   | ٠              |
| Nallikrein<br>Da A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 145      | ` 0                   |                |
| MOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 224      | ` =                   |                |
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 238      | : 6                   |                |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 221      | ٥                     |                |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 217      | Φ                     |                |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 52     | <b>00</b>             |                |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48       | <b>00</b> )           |                |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128      | Ξ,                    |                |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82       | <b>э</b> :            |                |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0/7      | _ •                   | 09600          |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | o <b>o</b>            | 0.250          |
| FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >        | >                     | >> <b>*</b> >* |

| Binding Data  |
|---------------|
| Peptides with |
| Supermotif    |
| Prostate A01  |

No. of Amino Acids

| 0.0048                                                                                                                                       | 12.0000                                       | 0.0082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9995000099999000055                                                                                                                          | • ∞ = 2 2 2 = <u>.</u> 2                      | ∞ = = 2 2 2 2 2 2 × = = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = 1 × = |
| 34<br>34<br>34<br>373<br>373<br>373<br>373<br>374<br>374<br>375<br>376<br>377<br>378<br>378<br>378<br>378<br>378<br>378<br>378<br>378<br>378 | 148<br>148<br>238<br>194<br>14<br>179         | 18<br>117<br>268<br>268<br>70<br>561<br>359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                                                                                                                                            |                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Kallikrein PSM                                                                                           | PAP<br>PAP<br>PAP<br>PAP<br>PAP<br>Kallikrein | PSA<br>PSM<br>PSM<br>PSM<br>PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|           | •                                     |
|-----------|---------------------------------------|
| Table VII | Supermotif Peptides with Binding Data |
|           | ᇘ                                     |
|           | rostate /                             |
|           | 4                                     |

| PSM<br>PSM<br>PAP<br>PSA<br>PAP<br>PSM |    |           |               |        |
|----------------------------------------|----|-----------|---------------|--------|
| PSM<br>PSP<br>PSP<br>PSP<br>PSM<br>PSM |    |           |               |        |
| PSM<br>PAP<br>PAP<br>PAP<br>PSM        |    | 92        | ∞             | •      |
| PAP<br>PAP<br>PAP<br>PSM               |    | 663       | ∞0            |        |
| PAP<br>PAP<br>PSM                      |    | <b>11</b> | 1             |        |
| . Wad                                  |    | 8         | <b>00</b> (   |        |
|                                        |    | 117       | œ <u>.</u> (  |        |
| Mod                                    |    | 2 :       | م             |        |
| Non                                    |    | 7 6       | = :           |        |
| Myd                                    |    | 378       | <u>o</u> .    |        |
| 0.00                                   |    | <u> </u>  | <b>&gt;</b> ; |        |
| MSd                                    | ٠. | . 823     | <b>:</b> c    |        |
| NSG.                                   |    | 0/0       | n :           |        |
| - PSA                                  |    | 9/9       | 2:            |        |
| Kallikrein                             |    | 2 9       | -             |        |
| PAP                                    |    | 147       | <b>:</b>      | 0000   |
| WSd                                    |    | 790       | <b>&gt;</b> = | 0007:1 |
| PAP                                    |    | 207       | : 9           |        |
| PSM                                    |    | 250       | 25            |        |
| PAP                                    |    | 349       | ? ∝           |        |
| PSM                                    |    | 290       | , 0           |        |
| PSM                                    |    | 290       | : =           |        |
| PSA                                    |    | 236       | 10            | 0.0010 |
| PAP                                    |    | 278       | · 6           | 0.0031 |
| PAP                                    |    | 54        | 10            |        |
| PSM                                    |    | 293       | œ             |        |
| Kallikrein                             |    | 16        | 11            |        |
| PAP                                    |    | 276       | 11            |        |
| PSM                                    |    | 95        | Φ.            |        |
| PSM                                    |    | 218       | 11            |        |
| PSM                                    |    | <u>.</u>  | 01            |        |
| Nod                                    |    | 2,        | <b>00</b> (   | •      |
| DAD                                    |    | 667       | φ;            |        |
| Kallikein                              |    | 3 3       | Ξ.            |        |
| Kallikasin                             |    | 77 6      | <b>90</b> (   |        |
| PSA                                    |    | 20.00     | <b>.</b>      |        |
| ASA                                    |    | \$ 5      | × 5           |        |
| WSd                                    |    | 701       |               |        |
| PSA                                    |    | 0 60      | 0 :           |        |
| Kallikrein                             |    | 3 6       | = 9           |        |
| . PSM                                  |    | 7 115     | 2 =           |        |
| PSM                                    |    | 527       |               |        |
| PAP                                    |    | 180       | . 00          |        |
| PSM                                    |    | 440       | 10            |        |
| PSM                                    |    | 662       |               |        |
| PSM                                    |    | 400       | -             |        |

| Table VII | 01 Supermotif Peptides with Binding Data |
|-----------|------------------------------------------|
| 4         | Dern                                     |

| PAP         28         10           PSM         453         9         11,0000           PSM         453         9         11,0000           PSM         453         9         11,0000           PSM         PSM         291         10           PSM         PSM         291         10           PSM         PSM         291         10           PSM         PSM         631         9           PAP         PAP         11         8           PAP         PAP         11         8           PAP         PAP         11         8           PAP         PAP         11         8           PAP         11         8         11           PAP         11         8         11           PAP         11         8         11           PAP         12         11         00017           PAP         12         11         12           PAP         12         12         12           PAP         14         14         14           PAP         14         14         14           PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Position   | No. of<br>Amino Acids | A*0101  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|---------|
| 414, 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28         | . 01                  |         |
| 453 89 8 8 1179 2291 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 414        | 2 ∞                   |         |
| 129 129 130 130 130 130 131 142 142 151 151 151 151 151 151 151 152 152 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 463        | ٥                     | 11.0000 |
| 291 99 91 11 129 11 11 129 11 11 129 11 11 129 11 11 129 11 129 11 129 11 129 11 129 11 129 11 129 11 129 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68         | <b>∞</b>              |         |
| 291 291 392 393 113 113 113 113 113 113 113 113 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129        | =                     |         |
| 291 130 130 131 142 151 151 151 151 151 151 151 151 151 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 291        | م                     |         |
| 550<br>130<br>631<br>151<br>151<br>151<br>151<br>152<br>153<br>153<br>154<br>155<br>156<br>156<br>157<br>157<br>157<br>158<br>158<br>159<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Work of the control o | 291        | <b>0</b>              |         |
| 130 142 15 15 15 15 15 16 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ESS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 290        | I                     |         |
| 142 15 15 15 16 18 18 19 19 19 237 237 29 217 217 217 217 218 229 220 220 225 225 225 226 226 226 227 217 211 211 211 227 226 227 227 228 260 260 27 28 260 27 28 260 27 28 260 27 28 260 27 28 260 27 28 260 27 28 260 27 28 260 27 28 260 27 28 260 27 28 260 27 28 260 260 27 28 260 27 28 260 27 28 260 260 27 28 28 260 27 28 28 260 27 28 28 28 28 28 28 28 28 28 28 28 28 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130        | 0                     |         |
| 1531 9 15 15 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 142        | 01                    |         |
| 15 15 9 13 11 13 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSM,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 631        | <u>.</u> 0            |         |
| 15 13 13 13 13 13 13 13 13 13 13 13 13 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15         | o                     |         |
| 15 13 13 13 14 15 15 16 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15         | . 0                   |         |
| 13   13   13   13   14   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51         | . =                   |         |
| 137 9 10<br>605 605 11<br>337 11<br>337 11<br>605 61<br>626 8 8<br>361 11<br>141 11<br>140 8 8<br>140 600 600 600 600 600 600 600 600 600 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : <u>=</u> | .0                    |         |
| 217 217 615 615 605 617 317 111 111 127 217 111 128 626 626 626 636 611 111 146 8 8 111 146 8 8 111 146 8 8 100 111 122 122 100 630 640 111 111 111 111 111 111 111 111 111 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 5        | • :                   |         |
| 6.57<br>6.95<br>6.95<br>6.95<br>6.76<br>6.76<br>6.76<br>6.77<br>1.10<br>6.76<br>6.77<br>1.11<br>1.40<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41<br>1.41 | V 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 5 6      | Ξ.                    | 1       |
| 615<br>615<br>317<br>318<br>319<br>520<br>520<br>611<br>141<br>141<br>146<br>8<br>146<br>146<br>146<br>146<br>146<br>146<br>146<br>147<br>146<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 757        | <b>ɔ</b> n.;          | 0.0017  |
| 348 9 9 11 1 10 07 11 10 07 11 10 07 11 10 07 11 10 07 11 10 07 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 615        | =                     |         |
| 317 348 348 517 67 67 67 626 88 626 88 141 141 141 145 145 145 141 145 140 68 68 60 60 60 60 60 60 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 695        | _                     |         |
| 348 9 9 626 8 8 626 8 9 9 626 8 8 11 141 141 141 141 141 141 141 141 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 317        | =                     |         |
| 217 29 29 626 626 88 861 141 141 150 88 145 145 145 145 145 146 147 147 148 149 149 149 149 149 149 149 149 149 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 348        | ,ON                   | 0.0430  |
| 67<br>626<br>626<br>63<br>61<br>146<br>146<br>145<br>575<br>60<br>68<br>690<br>690<br>690<br>690<br>690<br>690<br>690<br>690<br>690<br>690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 217        | 2                     |         |
| 29 626 626 361 461 141 141 150 145 575 68 68 690 27 27 27 27 27 28 603 603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSA .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67         | =                     |         |
| 626<br>461<br>141<br>150<br>146<br>575<br>575<br>575<br>68<br>68<br>68<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29         | ,Φ                    |         |
| 361<br>461<br>114<br>1150<br>1146<br>1146<br>1147<br>1147<br>1147<br>1148<br>1149<br>1149<br>1149<br>1149<br>1149<br>1149<br>1149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 626        | .00                   |         |
| 461<br>150<br>146<br>145<br>575<br>145<br>201<br>201<br>225<br>225<br>227<br>227<br>228<br>230<br>603<br>603<br>603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 361        | =                     |         |
| 141<br>146<br>145<br>147<br>147<br>148<br>149<br>149<br>149<br>149<br>149<br>149<br>149<br>149<br>149<br>149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 461        | , <del></del>         |         |
| 150<br>146<br>575<br>145<br>145<br>201<br>372<br>225<br>225<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141        | -                     |         |
| 146<br>575<br>145<br>145<br>201<br>372<br>68<br>690<br>690<br>27<br>27<br>27<br>27<br>28<br>292<br>292<br>293<br>603<br>603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150        | ,<br>, <b>oc</b>      |         |
| 575<br>145<br>145<br>201<br>372<br>690<br>690<br>592<br>272<br>222<br>222<br>223<br>603<br>603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146        | ), <b>o</b> ¢         |         |
| 145<br>201<br>372<br>68<br>225<br>225<br>27<br>30<br>30<br>30<br>592<br>222<br>222<br>222<br>223<br>603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51.5       | • =                   |         |
| 201<br>372<br>68<br>68<br>225<br>27<br>30<br>30<br>392<br>222<br>222<br>222<br>223<br>603<br>603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 277        |                       |         |
| 372<br>68<br>68<br>225<br>227<br>30<br>30<br>592<br>222<br>222<br>222<br>603<br>603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6          | 1.0                   |         |
| 57.2<br>68<br>225<br>227<br>30<br>30<br>392<br>222<br>222<br>218<br>603<br>603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . Wid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107        | n (                   |         |
| 255<br>225<br>227<br>27<br>30<br>30<br>592<br>222<br>222<br>218<br>603<br>154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 216        | 2.                    |         |
| 225<br>225<br>690<br>30<br>30<br>592<br>222<br>222<br>218<br>603<br>660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8          | 2                     |         |
| 225<br>690<br>30<br>30<br>592<br>222<br>218<br>603<br>660<br>660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 572        | <b>3</b> .            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 225        | ==                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 069        | -                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27         | -                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30         | . 96                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NSM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 592        |                       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 222        | Lœ                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ASA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 916        | 2.0                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NSA NSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 218        | •-3                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 903        | 2:                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 090        | =                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72         | ∞                     |         |

| Table VII | ostate A01 Supermotif Peptides with Binding Data |
|-----------|--------------------------------------------------|
|           | Prostate                                         |

| A*0101                | 0.1500<br>0.1500<br>0.0046                                                                                                              |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| No. of<br>Amino Acids | ==222 <u>==20,</u> =∞020 <u>0</u> ∞∞022 <u>=2</u>                                                                                       |
| Position              | 154<br>293<br>88<br>88<br>1129<br>192<br>193<br>497<br>497<br>497<br>497<br>497<br>497<br>497<br>497<br>497<br>497                      |
|                       |                                                                                                                                         |
| Protein               | PSM PAP Kallikrein PSA PSA PSA PSA PSM PSM PSM PAP PSM RAllikrein PAP PSM RAllikrein PSM RAllikrein PSM PSM PSM PSM PSM PSM PSM PSM PSM |

| Table VIII | tate A02 Supermotif Peptides with Binding Information |
|------------|-------------------------------------------------------|
|            | Prostate A                                            |

| Protein                                 | Position | No. of<br>Amino Acids | A*0201 | A*0202 | A*0203 | A*0206   | A*6802  |
|-----------------------------------------|----------|-----------------------|--------|--------|--------|----------|---------|
| PSM                                     | 741      |                       | 0 0002 |        |        |          |         |
| PSM                                     | 741      | . 2                   |        |        |        |          |         |
| PSM                                     | 742      |                       |        |        |        |          |         |
| . Mid                                   | 742      |                       |        |        |        |          |         |
| . WSd                                   | 735      | × 0                   | -      |        |        |          | ٠       |
| PSM                                     | 735      | •                     |        |        |        |          |         |
| PSA                                     | 59       | . 01                  | 0.0002 |        | •      |          |         |
| PSA                                     | 29       | =                     | 0.0010 | 0.0100 | 0.0140 | 0.0004   | 0.0018  |
| Kallikrein                              | 89       |                       | 0.0003 | 9000.0 | 0.0450 | 0.0001   | . 40000 |
| PAP                                     | 121      | <b>σ</b> :            | 0.0002 |        |        |          |         |
| PSA                                     | 131      | = o                   | 0000   |        |        |          |         |
| PSA                                     | 1 1      | <b>,</b> 9            | 0.0002 |        |        |          |         |
| PAP                                     |          | <u>.</u> 0            | 1      |        |        |          |         |
| PAP                                     | m        | 2                     |        |        |        |          |         |
| PAP                                     | = :      | 6                     | 0.0002 |        | ٠      |          |         |
| PAP                                     | = ;      | =                     |        |        |        |          | -       |
| 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 392      | <b>00</b> (           |        |        |        |          |         |
| PAP .                                   | 900      | <b>x</b> o c          | 0.30   |        |        |          |         |
| PSW                                     | 117      | • •                   | 0.0320 | 0000   | 7 2000 | 0        | 0000    |
| PAP                                     | 122      | <b>`</b> ••           |        |        | 0007:  | 0.0420   |         |
| PAP                                     | 122      | . 2                   | 0.0044 |        |        |          | ٠       |
| Kallikrein                              | 147      | <b>∞</b>              | 0.0230 |        |        | •        |         |
| PSA                                     | 143      | <b></b>               | 0.0230 |        |        |          |         |
| Kallikrein                              | 235      | ••                    | 0.000  | 0.0200 | 0.0510 | 0.0001   | -0.0001 |
| Kallikrein<br>PS A                      | 235      | 으 (                   | 0.0003 | 0.0050 | 0.0028 | . 0.0005 | -0.0001 |
| SSA.                                    | 2.5      | <b>∞</b> ⊊            | 0.000  | ,-I    |        |          |         |
| Kallikrein                              | · o      | 2 o                   | 0.0410 | 0.0038 | 0.1100 | 99000    | -0.0001 |
| Kallikrein                              | 0        | 01                    | 0,0180 | 0.2600 | 0.4000 | 0.0051   | 0.0012  |
| PSM                                     | 25       | 2                     | 0.0150 |        |        |          |         |
| N. C.                                   | 25       | =                     |        |        |        |          |         |
| LAT NO.                                 | 917      | oo :                  |        |        |        |          |         |
| E Z                                     | 302      | 00 C                  |        |        |        |          | •       |
| PSM                                     | 217      | <b>.</b> ⊆            |        | •      |        |          |         |
| PSM                                     | 217      | 2 =                   |        |        |        |          |         |
| PSA                                     | 181      | ; 00                  |        |        |        |          |         |
| PSA                                     | 181      | 6                     | 0.0002 |        |        |          | ٠       |
| WSA WSA                                 | 577      | ∞ ;                   |        |        |        |          |         |
| Z Z                                     | 7/0      | = 4                   | 0000   |        |        |          |         |
| PSM                                     | 13       | > =                   | 0.0002 |        |        |          |         |
| PAP                                     | 727      | : 6                   | 0.0002 |        |        |          |         |

|     | nation      |
|-----|-------------|
|     | Inform      |
|     | ding        |
|     | h Bind      |
| ∄   | es wit      |
| ape | Peptid      |
| Ä   | A<br>H<br>H |
|     | perm        |
|     | 12 Su       |
|     | Ite A       |
|     | Prosta      |
|     | _           |

| -                        | Prostate Af | <u>Lable VIII</u><br>Prostate A02 Supermotif Peptides with Binding Information | Peptides with | Binding Infor                           | mation  |         |                                         |
|--------------------------|-------------|--------------------------------------------------------------------------------|---------------|-----------------------------------------|---------|---------|-----------------------------------------|
| Protein                  | Position    | No. of<br>Amino Acids                                                          | A*0201        | A*0202                                  | A*0203  | A*0206  | A*6802                                  |
| РАР                      | 189         | 6                                                                              | 0,0005        |                                         |         |         |                                         |
| PSM                      | 49          | 01                                                                             |               |                                         |         |         |                                         |
| PAP                      | 274         | 2 :                                                                            | 0.0002        |                                         |         |         |                                         |
| PSM                      | 274         | ==                                                                             |               | ,                                       |         |         |                                         |
| PSA                      | : 🎙         | : ~                                                                            | 0,000         | han.                                    |         |         |                                         |
| PSM                      | 365         | 0 00                                                                           | 0.000         |                                         |         |         |                                         |
| PSM                      | 365         | 9                                                                              | 0.0001        | •                                       |         |         |                                         |
| PSM                      | 365         | . 2                                                                            | 0.0002        |                                         |         |         |                                         |
| MSA                      | 286         | φ.                                                                             | 0.0042        |                                         |         |         |                                         |
| . Wa                     | 635         | <b>00</b> C                                                                    |               |                                         |         |         | ٠                                       |
| AS A                     | 3 [5]       | <b>7</b> 0                                                                     | 0000          |                                         |         |         |                                         |
| Kallikrein               | 17          | , 0,                                                                           | 0.0001        | 0.0026                                  | 0.0013  | 0.0020  | 0.0610                                  |
| Kallikrein               | 17          | . 2                                                                            | 0.0014        | 0.0510                                  | 0.0490  | 0.0035  | 0.0058                                  |
| PSM                      | <u>8</u>    | <b>∞</b> ;                                                                     |               |                                         |         |         |                                         |
| rom<br>Vollibrain        | <u></u>     | = 4                                                                            | . 000         | *************************************** |         | , , ,   | *************************************** |
| MSd                      | . 6         | ×0 04                                                                          | -0.0001       | 0.0005                                  | 0.0011  | 0.0004  | 0.0003                                  |
| Kallikrein               | 198         | • =                                                                            | 0.0001        | 0.0003                                  | 0.0027  | -0.0001 | -0.0002                                 |
| PSA                      | 194         | =                                                                              | 0.0013        | 0.0370                                  | 0.0250  | 0.0002  | 0.0081                                  |
| Kallikrein               | 234         | ∞                                                                              | -0.0001       | -0.0001                                 | -0.0001 | -0.0001 | -0.0001                                 |
| Kallikrein<br>Kallikrein | 234         | o :                                                                            | 0.0002        | 0.0013                                  | 0.1100  | 0.0004  | 0.0001                                  |
| PSA                      | , S         | : o                                                                            | 0.000         | 0.0035                                  | 0.0120  | 6.1.0   | 70000-                                  |
| PSA                      | 230         | · =                                                                            | 0.0008        | 0.0130                                  | 0.0071  | 0.0016  | 0.0023                                  |
| PSA                      | <u>8</u>    | Φ;                                                                             | 0.0002        |                                         |         |         |                                         |
| Kellikrein               | 28 2        | 2 6                                                                            | 0.0001        | 70000                                   | 0000    | 0000    | 0.00                                    |
| Kallikrein               | 85          | » 5                                                                            | 0.0074        | 0.000                                   | 0.0023  | 0.0002  | 0.0012                                  |
| PSA                      | . 62        | ? ∞o                                                                           | 0.0001        |                                         |         |         |                                         |
| PSA                      | ខន          | Φ.                                                                             | 0.0003        |                                         |         |         |                                         |
| Kallikrein               | 3 %         | 2 ∝                                                                            | 1000          | טטטט ט                                  | 9000    | 1000    | 10000                                   |
| Kallikrein               | 88          | <u>.</u> 2                                                                     | 0.000         | 0.0220                                  | 0.0083  | 0.0002  | 0000                                    |
| PAP                      | 372         | 9                                                                              | 0.0002        |                                         |         |         |                                         |
| Kallikrein               | 4           | <b>∞</b>                                                                       | 0.0001        | 0.0001                                  | 0.0001  | 0.0012  | 0.0004                                  |
| PSM                      | 466<br>466  | <b>∞</b> (                                                                     | 7000          |                                         |         |         | ٠                                       |
| PSA                      | 99          | ъ <u>Г</u>                                                                     | 0.000         |                                         |         |         |                                         |
| Kallikrein               | 173         | ==                                                                             | 0000          | 0 0031                                  | 0,000   | 00000   | 0000                                    |
| PSM                      | 422         | ; ∞                                                                            | 70000         | 1                                       | 2       | 2000    | 2000                                    |
| PSM                      | 422         | Ξ                                                                              |               |                                         |         |         |                                         |
| MSd                      | 710         | <u>.</u>                                                                       | 0.0004        | . •                                     |         |         |                                         |
| FUNT<br>PCA              | 301         | <b>3</b> 0                                                                     | 1000          | 0000                                    |         | 1000    | .000                                    |
|                          | 2           | <b>.</b>                                                                       | 1000.0-       | 0.000                                   | -0.0001 | -0.0001 | 0.000                                   |

|                        | Prostate A0     | Table VIII<br>Prostate A02 Supermotif Peptides with Binding Information | Table VIII<br>[Peptides with | Binding Infor | nstion  |         |        |   |
|------------------------|-----------------|-------------------------------------------------------------------------|------------------------------|---------------|---------|---------|--------|---|
| Protein                | Position        | No. of<br>Amino Acids                                                   | A*0201                       | A*0202        | A*0203  | A*0206  | A*6802 |   |
|                        | ·               |                                                                         |                              |               |         |         |        |   |
| PSA<br>BSW             | 2 2             | 2:                                                                      | 0.0001                       |               |         |         |        |   |
| PSM                    | 156             | <b>∷</b> ∝                                                              |                              |               |         |         |        |   |
| PAP                    | 201             | o 0                                                                     | 0.0002                       |               |         |         |        |   |
| PSA                    | 171             | <b>.</b>                                                                | 0.0003                       |               |         |         |        | • |
| PSA                    | 171             | =:                                                                      | 0.0001                       |               |         |         |        |   |
| National PSA           | 071             | = =                                                                     | 0.0022                       | ٠             |         |         |        |   |
| PSA                    | 136             | <b>≓</b> ∝                                                              | 0.0001                       |               |         |         |        |   |
| PSA                    | 136             | 0                                                                       | 0.0003                       |               |         |         |        |   |
| PSA                    | 136             | =                                                                       | 0.0041                       | 0.0180        | 0.0100  | 0.0001  | 0.000  |   |
| Kalikrein<br>Kalikrein | m r             | ∞ 5                                                                     | 0.0001                       | -0.0002       | -0.0001 | -0.0001 | 0.0006 |   |
| PSM ·                  | 173             | <b>⊋</b> ∝                                                              | 0.0010                       | 0.0180        | 0.0052  | 0.0230  | 0.0031 |   |
| PSM                    | 173             | 2                                                                       | 0.000                        |               |         |         |        |   |
| Kallikrein             | 182             | =                                                                       | 0.0001                       | 0.0018        | 0.0130  | 0.0001  | 0.0170 |   |
| No.                    | <u> </u>        | 2:                                                                      | 0.0001                       | . •           |         |         |        |   |
| PSA                    | 86              | = =                                                                     | 1000                         |               |         |         |        |   |
| . WSd                  | 999             | <u>م</u>                                                                |                              |               |         |         |        |   |
| PSM                    | 999             | Ξ                                                                       |                              | ٠             |         |         |        |   |
| Kalikrein<br>PAP       | 207<br>51       | Ξ,                                                                      | 0.0001                       | -0.0001       | 0.0005  | -0.0001 | 0.0005 |   |
| Kallikrein             | . 88            | o oc                                                                    | 10000                        | 0000          | 1000    | 10000   | 0,000  |   |
| PSA                    | 8               | · ∞                                                                     | -0.0001                      | -0.0001       | -0.0001 | -0.0001 | 0.0016 |   |
| PAP                    | 230<br>280      | σ, (                                                                    | 0.0002                       |               |         |         |        |   |
| PAP                    | 280             | > <u>S</u>                                                              |                              |               |         |         |        |   |
| PAP                    | 290             | :=                                                                      |                              |               |         | •       |        |   |
| PSA .                  | 178             | = •                                                                     | 0.0001                       |               |         |         |        |   |
| PAP                    | 108             | o                                                                       |                              |               |         |         | •      |   |
| PAP                    | 108             | :=                                                                      |                              |               |         | •       |        |   |
| PSM                    | 41.             | ۹.                                                                      |                              |               |         |         |        |   |
| Kallikrein             | 134<br>45.1     | ∞ <u>\$</u>                                                             | -0.0001                      | 0.0001        | 0.0001  | 0.0001  | 0.0024 |   |
| PAP                    | 301             | 2 =                                                                     | 0.0012                       | 0.0230        | 0.0460  | 0.0004  | 0.0017 | • |
| PSM                    | 48              | :=                                                                      |                              |               |         |         |        |   |
| PSM                    | 285             | œ                                                                       |                              |               |         |         |        |   |
| EX.                    | 282<br><u>4</u> | 22                                                                      | 0.0002                       |               |         |         |        |   |
| PAP                    | 566             | 3 o                                                                     | 1000:0                       |               |         | ē       |        |   |
| PAP .                  | 266             | 01                                                                      |                              |               |         |         | •      |   |
| PSM                    | 397             | oo 0                                                                    | 0000                         |               |         | ٠       | •      |   |
| PSM                    | 601             | νœ                                                                      | *                            |               |         |         |        |   |

| .06 A*6802            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70000       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| A*0206                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0068      |
| A*0203                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1000      |
| A*0202                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0940      |
| A*0201                | 0.0028<br>0.0002<br>0.0001<br>0.0001<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002<br>0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0410      |
| No. of<br>Amino Acids | 6 x : x x 2 2 x 6 : 2 : x 2 2 x 6 2 x 6 2 : x 6 : x 6 : x 6 : x 6 : 2 2 6 : : : : : x 6 : 2 2 6 : : : : : : x 6 : 2 2 6 : : : : : : x 6 : 2 2 6 : : : : : : x 6 : 2 2 6 : : : : : : x 6 : 2 2 6 : : : : : : x 6 : 2 2 6 : : : : : : x 6 : 2 2 6 : : : : : : x 6 : 2 2 6 : : : : : : x 6 : 2 2 6 : : : : : x 6 : 2 2 6 : : : : : x 6 : 2 2 6 : : : : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x 7 6 : x | 2           |
| Position              | 986<br>987<br>123<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C01         |
| ·                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Protein               | PSM<br>PAP<br>PAP<br>PAP<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dallin vii. |

|            | Prostate A02                                                               | L<br>Supermotif I     | Peptides with | Prostate A02 Supermotif Peptides with Binding Information | nation                                  |        |          |  |
|------------|----------------------------------------------------------------------------|-----------------------|---------------|-----------------------------------------------------------|-----------------------------------------|--------|----------|--|
| Protein    | Position                                                                   | No. of<br>Amino Acids | A*0201        | A+0202                                                    | A*0203                                  | A*0206 | A*6802   |  |
|            |                                                                            |                       |               |                                                           |                                         |        |          |  |
| FV.4       | m i                                                                        | Φ;                    | 0.0150        |                                                           |                                         | •      |          |  |
| . 458      | ٠,٠                                                                        | Ξ :                   | 0.0160        |                                                           |                                         |        |          |  |
| Non        | <u> </u>                                                                   | 2,                    | 0.0310        |                                                           |                                         |        |          |  |
| . WSd      | 5 E                                                                        | <b>»</b> [            |               |                                                           |                                         |        | •        |  |
| Kallikrein | 2 6                                                                        | = <                   | 0000          | 0.000                                                     | *************************************** |        | .,       |  |
| PSA        | <u> </u>                                                                   | <b>.</b>              | 0.0220        | 0.0019                                                    | 0.0160                                  | 0.0170 | . 0.0006 |  |
| PAP        | 164                                                                        | <b>&gt;</b> 0         | 0.0039        |                                                           |                                         |        |          |  |
| PAP        | 5 2                                                                        | ۰.۰                   |               |                                                           |                                         |        |          |  |
| WSJ        | \$25                                                                       | <b>,</b>              |               |                                                           |                                         |        |          |  |
| PSA        | 8                                                                          | ==                    | •             |                                                           |                                         |        |          |  |
| PSM        | 333                                                                        | : 9                   | 0.0001        |                                                           |                                         |        |          |  |
| PAP        | 221                                                                        | ) oc                  |               |                                                           |                                         |        |          |  |
| PAP        | 221                                                                        | · =                   |               |                                                           |                                         |        |          |  |
| PSM        | 77                                                                         | 00                    |               |                                                           |                                         |        |          |  |
| PSM        | 11                                                                         | 2                     |               |                                                           |                                         |        |          |  |
| PSM        | 737                                                                        | 6                     |               |                                                           |                                         |        |          |  |
| POM.       | 737                                                                        | 0                     | 0.0001        |                                                           |                                         |        | -        |  |
| A A A      | 326                                                                        | 2 :                   |               |                                                           |                                         |        |          |  |
| VSI        | 2 5                                                                        | ≘:                    | 0.0005        |                                                           |                                         |        | !        |  |
| MSA        | 701                                                                        | <b>=</b> •            | 0.1700        | 0.0220                                                    | 0.0110                                  | 90000  | 0.0017   |  |
| PSM        | 361                                                                        |                       | 0000          |                                                           |                                         |        |          |  |
| PSM        | 24                                                                         | `=                    | 10000         |                                                           |                                         |        | •        |  |
| PSM        | 364                                                                        | 6                     | 0.0001        | ٠                                                         |                                         |        |          |  |
| W.S.       | 364                                                                        | 01                    | 0.0002        |                                                           |                                         |        |          |  |
| roin       | 364                                                                        | =                     |               |                                                           |                                         |        |          |  |
| Kallikrein | 9 7                                                                        | 2:                    | 0.0017        | 0.0520                                                    | 0.0380                                  | 0.0041 | 0.0057   |  |
| PSM        | 287                                                                        | Ξ.                    | 0.0001        | 0.0004                                                    | 0.0004                                  | 0.0003 | 0.0003   |  |
| PSIM       | 282                                                                        | • =                   |               |                                                           |                                         |        |          |  |
| PSM        | 529                                                                        | : 2                   |               |                                                           |                                         |        |          |  |
| PSM        | 385                                                                        | <b>.</b>              |               |                                                           |                                         |        |          |  |
| NS.        | 385                                                                        | o                     |               |                                                           |                                         |        |          |  |
| PSW        | 385                                                                        | 01                    | 0.0002        |                                                           |                                         |        |          |  |
| 70 M       | 385                                                                        | =:                    |               | -                                                         |                                         |        |          |  |
| Kalikein   | 248<br>336                                                                 | =:                    | 0000          |                                                           |                                         |        | - ;      |  |
| PSA        | 3.5                                                                        | 3 5                   | 0.000         | 0.00                                                      | 0.0230                                  | 0.0001 | 0.0004   |  |
| PAP        | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | = =                   | 0.0001        |                                                           |                                         |        |          |  |
| PSM        | 707                                                                        |                       | 0.0210        |                                                           |                                         |        |          |  |
| MS4        |                                                                            | • 00                  |               |                                                           |                                         |        |          |  |
| PAP        | 961                                                                        | 2                     | 0.0340        |                                                           |                                         |        |          |  |
| rom<br>DAD | 427                                                                        | ο;                    | 0.0079        |                                                           |                                         |        |          |  |
| PSM        | 689<br>89                                                                  | ==                    |               |                                                           |                                         |        |          |  |

| Table VIII | te A02 Supermotif Peptides with Binding Information |
|------------|-----------------------------------------------------|
|            | Prostate A0                                         |
|            |                                                     |

|              | Prostate A | Prostate AUZ Supermotif Reptides With Binding Information | eptides with | Sinding Intori | nation  |         |         |   |
|--------------|------------|-----------------------------------------------------------|--------------|----------------|---------|---------|---------|---|
| Protein      | Position   | No. of<br>Amino Acids                                     | A*0201       | A*0202         | A*0203  | A*0206  | A*6802  | , |
|              |            |                                                           |              |                |         |         |         |   |
| PSM          | 288        | 10                                                        | 0.0340       | 1.6000         | 4.7000  | 0.0015  | 0.0260  |   |
| Kallikrein   | 140        | <b>~</b>                                                  | -0.0001      | 0.0003         | -0.0001 | -0.0001 | -0.0001 |   |
| Kallikrein   | 140        | ٥                                                         | 0.0002       | 0.0092         | 0.0013  | 0.0007  | -0.0002 |   |
| Kallikrein   | 140        | =                                                         | 0.0003       | 0.0200         | 0.0450  | 9000'0  | 0.0020  |   |
| PAP          | 295        | <b>~</b>                                                  |              | -              |         |         | -       |   |
| Kallikrein   | 200        | 0                                                         | 0.0002       | 0.0007         | 0.0015  | -0.0001 | -0.0002 |   |
| PAP          | 74         | ∞                                                         |              |                |         |         |         |   |
| PSM          | 168        | œ                                                         |              |                |         |         |         |   |
| NS.          | 168        | 9                                                         | 0.0910       | 1.4000         | 1.4000  | 0.0230  | 0.0013  |   |
| PSM          | 208        | <b>~</b>                                                  |              | F              |         |         |         |   |
| PSM          | 582        | 2                                                         | 0.0024       |                |         |         |         |   |
| PSM          | 582        | =                                                         |              | •              |         |         |         |   |
| PAP          | 661        | =                                                         |              |                |         |         |         |   |
| PAP          | 89         | ∞                                                         |              |                |         |         |         |   |
| PSM          | 88         | <b>00</b>                                                 | •            |                |         |         |         |   |
| PSM          | 85         | σ                                                         |              |                |         |         |         |   |
| PSM          | 446        | =                                                         |              |                |         |         |         |   |
| PSM          | 224        | 0                                                         |              |                |         |         |         |   |
| PSM          | 238        | . =                                                       |              |                |         |         |         |   |
| Kallikrein . | 22         | ; <b>o</b>                                                | 0.0003       |                |         |         |         |   |
| PSA          | 48         | 0                                                         | 0.0003       |                |         |         |         |   |
| Kallikrein   | 52         | . 02                                                      | 0.0004       |                |         |         |         |   |
| PSA          | 48         | 2                                                         | 0.0004       |                |         |         |         |   |
| Kallikrein   | 25         | =                                                         | 0.0002       | 0.0005         | 0.0005  | 0.0014  | -0.0001 |   |
| PSA          | 84         | =                                                         | 0.0002       | 0.0005         | 0.0005  | 0.0014  | -0.0001 |   |
| PAP          | 761        | <b>∞</b>                                                  |              | ٠.             |         |         |         |   |
| TAP<br>101   | 261        | =                                                         |              |                |         |         |         |   |
| Mod          | 252        | ∞ ;                                                       |              | •              |         |         |         |   |
| T SINT       | 767        | 2 -                                                       | 0.0001       |                |         |         |         |   |
| PAP          | 128        | 0 0                                                       | 0.0034       |                |         |         |         |   |
| PAP          | 128        | . 2                                                       | 0.0016       |                |         |         |         |   |
| PSM          | 345        | ∞                                                         | •            |                |         |         |         |   |
| PSM          | 345        | 6                                                         |              |                |         | •       |         |   |
| PSM          | 345        | =                                                         |              |                |         |         |         |   |
| TST X        | 23         | =                                                         |              |                |         |         |         |   |
| Kallikrein   | 12         | ο :                                                       | 0.0020       | 0.0049         | 0.0005  | 0.0009  | 0.0003  | • |
| N/A          | <u> </u>   | = :                                                       | 0.0290       | 0.0540         | 0.1100  | 0.0088  | 0.000   |   |
| PAP          | 27.5       | Ξ•                                                        |              |                |         |         |         |   |
| PAP          | 378        | o oc                                                      |              |                |         |         |         |   |
| PAP          | 4          | . 01                                                      | 0.0002       |                |         | •       |         |   |
|              | ₹ :        | =                                                         |              |                |         |         |         |   |
| And<br>Pro   | 5.         | Φ;                                                        | 0.0001       |                |         |         | •       |   |
| NSA.         | 283        | <u>:</u>                                                  | 0.0024       |                |         |         |         |   |
|              | *          | 2                                                         | 200.0        |                |         |         |         |   |

| Table VIII tate A02 Supermotif Peptides with Binding Information |
|------------------------------------------------------------------|
| Prostate A0                                                      |

|                                                                                                                     | Prostate A0                                                        | I<br>Supermotif                           | Table VIII<br>[Peptides with                                                 | Table VIII<br>Prostate A02 Supermotif Peptides with Binding Information | mation                                                   |                                                   | •                                              | • |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|------------------------------------------------|---|
| Protein                                                                                                             | Position                                                           | No. of<br>Amino Acids                     | A*0201                                                                       | A*0202                                                                  | A*0203                                                   | A*0206                                            | A*6802                                         |   |
| Kallikrein Kallikrein PSM PSM PSM PSM PSM PSM PSM PSP PAP PAP PAP PAP PAP PAP PAP PAP PAP                           | 284<br>284<br>284<br>284<br>284<br>284<br>284<br>284<br>284<br>284 | \$21566586586118655                       | 0.0001<br>0.0003<br>0.0009<br>0.0002<br>0.0003<br>0.0010<br>1.3000<br>0.0001 | -0.0002<br>0.0500<br>0.0032                                             | -0.0001<br>0.0180<br>0.0270                              | -0.0001<br>0.0180<br>0.0100                       | 0.0003<br>0.0005<br>0.0061                     | - |
| Kallikrein<br>PSM<br>Kallikrein<br>Kallikrein<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM | 222 222 222 222 222 222 222 222 222 22                             | 2 & 2 & 1 2 1 2 1 6 1 2 1 8 6 6 2 8 6 2 1 | 0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0001<br>0.0001<br>0.0002<br>0.0002 | 0.0010<br>0.0084<br>0.0150<br>0.0150<br>0.0036                          | 0.0001<br>0.0088<br>0.0031<br>0.0007<br>0.0030<br>0.0030 | 0.0004<br>0.0004<br>0.00013<br>0.00011<br>0.00011 | 0.0002<br>0.0002<br>0.0003<br>0.0003<br>0.0003 |   |
| Kallikrein<br>Kallikrein<br>PSM<br>PSM                                                                              | 131<br>131<br>199<br>187                                           | ·<br>·<br>·<br>·                          | 0.0004<br>0.0047<br>0.0002<br>0.0002                                         | 0.0002<br>0.0500<br>0.0053                                              | 0.0017<br>0.0420<br>0.1700                               | 0.0002<br>0.0021<br>0.0011                        | -0.0001<br>0.0002<br>0.0006                    |   |

|           | Binding Information |
|-----------|---------------------|
| able VIII | Peptides with       |
|           | Supermotif          |
|           | Prostate A02        |

|                | Prostate A | Lange VIII<br>Prostate A02 Supermotif Peptides with Binding Information | Peptides with | Binding Inform | nation |        |        |   |
|----------------|------------|-------------------------------------------------------------------------|---------------|----------------|--------|--------|--------|---|
| Protein        | Position   | No. of<br>Amino Acids                                                   | A*0201        | A*0202         | A+0203 | A*0206 | A*6802 | - |
|                |            |                                                                         |               |                |        |        |        |   |
| PAP            | 282<br>282 | 99                                                                      | 0.0140        |                |        | •      |        |   |
| PAP            | 282        | 2 =                                                                     | 70000         |                |        |        |        |   |
| PSM            | 304        | 2                                                                       | 0.0003        |                |        |        |        |   |
| PSA            | 99         | ٥                                                                       | 0.0190        | •              |        |        |        |   |
| PSA<br>0 A D   | 166        | 0 ,                                                                     | 0.0370        |                |        | ٠      |        |   |
| DAD            | 234        | <b>.</b>                                                                | 0,00          |                | •      |        |        | • |
| PAP .          | 234        | 2 :                                                                     | 0.0040        |                |        |        |        |   |
| PAP            | 193        | : 9                                                                     | 0.0026        |                |        |        |        |   |
| PSM            | 343        | 2 2                                                                     | 0.0042        |                |        |        |        |   |
| PSM            | 343.       | =                                                                       |               |                |        |        | ,      |   |
| PAP            | 121        | <b>∞</b> (                                                              |               |                |        |        |        |   |
| PSM            | 122        | s S                                                                     | 0.0002        |                |        |        |        |   |
| PSM            | 623        | 2 2                                                                     | 0.0002        |                |        |        |        |   |
| PSM            | 718        | =                                                                       |               |                |        |        |        |   |
| MS4            | . 207      | <b>∞</b> ;                                                              |               |                |        |        |        |   |
| PSW            | 707        | <b>=</b> •                                                              |               |                |        |        |        |   |
| PSM            | 213        | <b>A</b> 00                                                             |               |                |        |        |        |   |
| PSM            | 213        | 01                                                                      |               |                |        |        |        |   |
| Kallikrein     | 137        | =                                                                       | 0.0001        | 0.0004         | 0.0009 | 0.0012 | 0.0005 | • |
| PSA            | 133        | = :                                                                     | 0.0014        |                |        |        |        |   |
| Kallikrein     | 191        | Ξσ                                                                      | 0.0035        | 0.000          | 0 1900 | 0.1600 | 7000   |   |
| Kallikrein     | 161        | <b>\</b> =                                                              | 0.0010        | 0.0280         | 0.0280 | 0.0160 | 0.0036 |   |
| PSA            | 187        | 6                                                                       | 0.0020        |                |        |        |        |   |
| Kallikrein     | 245        | 6                                                                       | 0.0001        |                |        |        |        |   |
| PAP            | 241<br>208 | σ:                                                                      | 0.0001        | ,-r-           |        |        |        |   |
| PAP            | 120        | : 2                                                                     | 71000         |                |        |        |        |   |
| PSM            | 219        | ? ∞                                                                     |               |                |        |        |        |   |
| PSM            | 219        | 0                                                                       | 0.0002        |                |        |        |        |   |
| XX XX          | 28         | ∞ ;                                                                     |               |                |        |        |        |   |
| NSA Washington | 9 E        | = =                                                                     | 10000         |                |        |        |        |   |
| PSM            | 3 23       | ? ::                                                                    | 0.000         |                |        |        |        |   |
| - PSM          | 110        | · 00                                                                    |               |                | •      |        |        |   |
| PAP            | 33         | <b>00</b> 1                                                             |               |                |        |        |        |   |
| 040            |            | σ.;                                                                     | 6000          |                |        |        |        |   |
| PAP            | 7 17       | 2 =                                                                     | 0.0002        |                |        |        |        |   |
| PAP            | . 00       | ; o                                                                     | 0.0002        |                |        |        |        |   |
| PAP            | 283        | 6                                                                       |               |                |        |        |        |   |
| PAP            | 283        | 2                                                                       |               |                |        |        |        |   |

|                                                                                                    | Prostate A                                                                          | <u> Table VIII</u><br>Prostate A02 Supermotif Peptides with Binding Information | Table VIII<br>CPeptides with                                                 | Binding Infor                        | mation                                         |                                                 |                                                  |   |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---|
| Protein                                                                                            | Position                                                                            | No. of<br>Amino Acids                                                           | A*0201                                                                       | A*0202                               | A•0203                                         | A*0206                                          | A*6802                                           |   |
| PAP<br>PAP<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PAP<br>PAP                          | 283<br>30.7<br>30.5<br>42.8<br>44.4<br>44.4<br>44.4<br>44.4<br>44.4<br>46.6<br>66.6 |                                                                                 | 0.0061<br>0.0001<br>0.6000<br>0.0058<br>0.0180<br>0.0106                     |                                      |                                                |                                                 |                                                  |   |
| PAP<br>PSM<br>PSM<br>Kallikrein<br>PSA                                                             | 306<br>144<br>123<br>123                                                            | 2 I ∞ S ∞ «                                                                     | 0.0017                                                                       | 0.7500                               | 1.5000                                         | 0.0043                                          | 0.0006                                           |   |
| PSA PSA Kallikrein Kallikrein Kallikrein Rallikrein PAP PAP PAP PSM Kallikrein PAP PAP PAP PAP PAP | 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                              | • 2 = 2 = ∞ 2 ∞ ∞ 2 = 6 2 2 ∞ σ                                                 | 0.0023<br>0.0023<br>0.0030<br>0.0003<br>0.0030<br>0.0074<br>0.0110<br>0.0018 | 0.0140<br>0.0290<br>0.0007<br>0.0800 | 0.0150<br>0.9200<br>0.0180<br>0.0003<br>0.0280 | 0.0002<br>0.0010<br>-0.0001<br>0.0021<br>0.0020 | 0.0010<br>0.0008<br>-0.0001<br>-0.0001<br>0.0042 | • |
| PAP<br>PAP<br>PSM<br>PSA<br>PSA<br>Kalikrein<br>PSM<br>PSM                                         | 469<br>469<br>113<br>167<br>171<br>171<br>442                                       | , 2                                                                             | 0.0037                                                                       | 11.0000                              | 4.8000                                         | 0.0340                                          | 0.0250                                           |   |

| Table VIII | tate A02 Supermotif Peptides with Binding Information |
|------------|-------------------------------------------------------|
|            | Prostate A                                            |

|              | Prostate A07 | Table VIII<br>Prostate A02 Supermotif Peptides with Binding Information | Table VIII<br>Peptides with I | Sinding Inform | nation                                  |         |         |  |
|--------------|--------------|-------------------------------------------------------------------------|-------------------------------|----------------|-----------------------------------------|---------|---------|--|
| Protein      | Position     | No. of<br>Amino Acids                                                   | A*0201                        | A*0202         | A*0203                                  | A*0206  | A*6802  |  |
| /10u         | 977          |                                                                         |                               |                |                                         |         |         |  |
| FSIM<br>PAP  | 258<br>258   | = 9                                                                     |                               |                |                                         |         |         |  |
| PAP          | 258          | :=                                                                      |                               |                |                                         | •       |         |  |
| PAP          | 296          | =                                                                       |                               |                |                                         |         |         |  |
| A04          | 200          | œ <u>;</u>                                                              | -0.0001                       | -0.0001        | 0.0002                                  | -0.0001 | 0.0001  |  |
| AND AND      | 87 T         | 2 •                                                                     | 0.0002                        | ,000           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |         | .000    |  |
| ASG          | * 4          | o <u>S</u>                                                              | 0.0000                        | 10000          | 0.000                                   | 0.000   | 0.0001  |  |
| PSA          | . 4          | 2 =                                                                     | 0.000<br>8000<br>8000         | 0.0450         | 0.0820                                  | 0.0110  | 0.0910  |  |
| PSM          | 768          | :=                                                                      |                               | 1              | 200                                     | 20.0    | 70007   |  |
| PSA          | 162          | ; o                                                                     | 0.0003                        |                |                                         |         |         |  |
| PSA          | 162          | - =                                                                     | 0.0007                        | 0.0087         | 0.0074                                  | 0.0004  | 0.0021  |  |
| PSM          | 574          | 9                                                                       |                               |                |                                         |         |         |  |
| PSM          | 574          | . =                                                                     |                               |                |                                         |         |         |  |
| PSA          | 37           | <b>∞</b>                                                                | 0.0001                        |                |                                         |         |         |  |
| PSA          | 37           | σ                                                                       | 0.0003                        |                | -                                       |         |         |  |
| Kallikrein   | 217          | 2                                                                       | 0.0004                        | -              |                                         |         |         |  |
| PSA          | 213          | 9                                                                       | 0.0004                        |                |                                         |         |         |  |
| Kallikrein   | 217          | =                                                                       | 0.0007                        | 0.0034         | 0.0033                                  | 0.0049  | 0.0041  |  |
| PSA          | 213          | =                                                                       | 0.0007                        | 0.0034         | 0.0033                                  | 0.0049  | 0.0041  |  |
| FOM          |              | Φ;                                                                      |                               |                |                                         |         |         |  |
| NOO          | <b>₹</b>     | = •                                                                     | ,000                          |                |                                         |         |         |  |
| Kallikrein   | 5,4<br>5,4   | <b>&gt;</b> 0                                                           | 0.000                         |                |                                         |         |         |  |
| PSA          | 8            | <b>6</b> 04                                                             | 0.000                         |                |                                         |         |         |  |
| Kallikrein   | 8            | o 0.                                                                    | 0.000                         |                |                                         |         |         |  |
| PSA          | 8            | σ.                                                                      | 0.0001                        |                | •                                       |         |         |  |
| Kallikrein . | \$ 5         | 0                                                                       | 0.0001                        |                |                                         |         |         |  |
| Volithein    | 33           | 요 :                                                                     | 0.0001                        |                |                                         | •       | •       |  |
| PSA .        | * &          | = =                                                                     | 0.000                         |                |                                         |         |         |  |
| PSM          | <b>7</b> 9   | : 0                                                                     | 0.0280                        | 0.0030         | 7000                                    | 0110    | 2000.0  |  |
| PSM          | 56           | . 2                                                                     | 0.0021                        |                |                                         |         |         |  |
| Kallikrein   | 4            | 6                                                                       | 0.0020                        | 0.0027         | 0.0085                                  | 0.0100  | 0.0002  |  |
| PAP          | 263          | ٥                                                                       |                               |                |                                         |         |         |  |
| FSM          | 174          | σ.                                                                      |                               |                |                                         |         |         |  |
| PAP          | 298          | o ;                                                                     | 0.0037                        |                |                                         |         |         |  |
|              | 967          | 2 4                                                                     | 0.0010                        |                |                                         | •       |         |  |
| PSA          | 86           | ×0 a                                                                    | 0.0014                        | 0.0020         | 0.0018                                  | 0.0001  | 0.0002  |  |
| Kallikrein   | 132          | <b>10</b> C                                                             | 0.000                         | 0.0012         | 0.0033                                  | -0.0001 | 0.0001  |  |
| PSA          |              | ٠.٥                                                                     | 0.000                         |                |                                         |         |         |  |
| PSA '        | 8            | `=                                                                      | 0.1400                        |                |                                         |         |         |  |
| Kallikrein   | 122          | Ξ                                                                       | 0.0044                        | 0.0072         | 0.2100                                  | 0.0019  | . 0.000 |  |
| PAP          | <b>3</b> 43  | = •                                                                     | •                             | ,              | ,                                       |         |         |  |
| LOIM         | 500          | <b>o</b> `.                                                             | 0.4400                        | 5.7000         | 5.8000                                  | 0.4900  | 0.0410  |  |

|            | Binding Information                   |
|------------|---------------------------------------|
| Table VIII | Prostate A02 Supermotif Peptides with |

| Protein                                                                         | Position                                                                         | No. of<br>Amino Acids                   | A*0201                                                   | A*0202                                                   | A*0203                                                    | A*0206                                            | A*6802                                             |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| PAP<br>PAP<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PS | 232<br>232<br>283<br>283<br>583<br>583<br>216<br>216<br>69<br>69<br>51<br>51     | 0.0000000000000000000000000000000000000 | 0.0002<br>0.0170<br>0.0140<br>0.0002                     | <b>~··</b> ·                                             |                                                           |                                                   |                                                    |
| Kalikrein<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM                      | 260<br>260<br>260<br>57                                                          | : * 6 2 E 6 2 6 :                       | 0.0002<br>0.0001<br>0.0027<br>0.0007<br>0.0002<br>0.0026 | 0.0935                                                   | 0.0004                                                    | -0.0001                                           | 0.0004                                             |
| Kallikrein<br>PSM<br>PSM<br>PSM<br>PSM<br>PSA                                   | 357<br>357<br>357<br>357<br>351<br>231<br>231                                    | :262:68                                 | 0.0001                                                   | 0.0260                                                   | 0.0400                                                    | 0.0058                                            | 0.0020                                             |
| FSA<br>FSA<br>Kallidrein<br>Kallidrein<br>Kallidrein<br>FSA                     | 22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25                                  | 51∞5100°                                | 0.0002<br>0.0003<br>0.0001<br>0.0002<br>0.0083           | 0.0028<br>0.0003<br>0.0100<br>0.0006<br>0.0210<br>0.0210 | 0.0008<br>-0.0001<br>0.0320<br>0.0017<br>0.0270<br>0.0270 | -0.0001<br>-0.0001<br>0.0006<br>-0.0001<br>0.0002 | -0.0001<br>-0.0001<br>0.0002 ;<br>0.0035<br>0.0035 |
| Kallikrein<br>PAP<br>PSM<br>PAP<br>PAP<br>PAP<br>PAP<br>PAP                     | 240<br>240<br>296<br>296<br>134<br>134<br>137<br>137<br>137<br>137<br>137<br>137 | : ~ 2 2 1 <b>~ 2  ~</b> 1 <b>~ 6 ~</b>  | 0.0001<br>0.0002<br>0.0001<br>0.0075<br>0.0002<br>0.0001 | 0.0001                                                   | -0.0001                                                   | -0.0001                                           |                                                    |

| Lable VIII<br>ermotif Peptides with Binding Information | vill<br>les with B                          |         |             |
|---------------------------------------------------------|---------------------------------------------|---------|-------------|
| Table VIII<br>iif Peptides with B                       | Table VIII<br>02 Supermotif Pentides with B |         | Information |
| ∷∃                                                      | 02 Supermotif                               |         | Binding     |
| ∷∃                                                      | 02 Supermotif                               | le VIII | ptides with |
|                                                         | oz Sug                                      |         | ╗           |

|                   | Prostate A        | Table VIII<br>Prostate A02 Supermotif Peptides with Binding Information | Table VIII<br>Feptides with | Binding Infor | mation  |         | ٠       | _ |
|-------------------|-------------------|-------------------------------------------------------------------------|-----------------------------|---------------|---------|---------|---------|---|
| Protein           | Position          | No. of<br>Amino Acids                                                   | A*0201                      | A*0202        | A*0203  | A*0206  | A*6802  | • |
| Kallikrein        | 61                | 80                                                                      | 0.0001                      | 0.0002        | -0.0001 | -0.0001 | -0.0001 | • |
| PAP               | 8                 | œ                                                                       |                             |               |         |         |         |   |
| PAP               | s (               | 2                                                                       | 0.0004                      |               |         |         |         |   |
| NSA N             | 894               | 2 :                                                                     | 0.0008                      |               |         |         | •       |   |
| PAP               | 408<br>147        | Ξ «                                                                     |                             |               |         |         |         |   |
| PAP               | 14                | a 9                                                                     | 0.0006                      |               |         |         |         |   |
| PSM               | 267               | œ                                                                       |                             |               |         |         |         |   |
| Kallikrein        | 216               | <b>00</b> (                                                             | 0.0001                      | •             |         |         |         |   |
| Kalikrin          | 212               | ∞                                                                       | 0.0001                      |               |         |         |         |   |
| PSA               | . 212             | :::                                                                     | 0.0020                      |               |         |         |         |   |
| PAP               | 212               | =                                                                       | ,                           |               |         |         |         |   |
| PSA<br>PSM        | x &               | 00 G                                                                    | 0.0002                      |               |         |         |         |   |
| Kallikrein        | 3 8               | N 00                                                                    | 0.0002                      | 0.0008        | 0.0002  | -0.0001 | -0.0001 |   |
| PSM               | 268               |                                                                         |                             | <u>}</u>      |         |         |         |   |
| PSM               | 268               | Φ.                                                                      | 0.0042                      |               |         |         |         |   |
| PAP               | % × %             | 2 0                                                                     | 0.0005                      |               |         |         |         |   |
| PAP               | 36.               | × 2                                                                     |                             |               |         |         |         |   |
| PAP               | 365               | =                                                                       |                             |               |         |         |         |   |
| PSM               | 619               | Φ.                                                                      |                             |               |         |         |         |   |
| PAP               | \$ 3              | » ⊊                                                                     |                             |               | •       |         |         |   |
| PSM               | 166               | ; o                                                                     |                             |               |         |         |         |   |
| PSM               | 166               | 01                                                                      |                             |               |         |         |         |   |
| PSA<br>PSA        | 185<br>285<br>285 | <b>∞</b> c                                                              | •                           |               |         |         |         |   |
| PSA               | 88<br>88          | `=                                                                      |                             |               |         |         |         |   |
| PSM               | 388               | <b>00</b> (                                                             |                             |               |         |         |         |   |
| Kallikrein        | 388<br>57         | =•                                                                      |                             |               |         |         |         |   |
| PSA               | 25                | 0 00                                                                    |                             |               |         |         | •       |   |
| PSA               | SS :              | Ξ                                                                       |                             |               |         |         | •       |   |
| Kallikrein        | 57                | =                                                                       |                             |               |         |         |         |   |
| Kallikrein<br>PSA | 13.8              | o. a                                                                    | 0.0001                      |               |         |         |         |   |
| Kallikrein        | 142               | · 2                                                                     | 0.0081                      | 0.0220        | 0.0520  | 0.0037  | 0.0005  |   |
| PSA               | 138               | 2                                                                       | 0.0084                      | 0.0220        | 0.0520  | 0.0037  | 0.0005  |   |
| PSM<br>PAP        | 293<br>263        | 2 .                                                                     |                             |               |         |         |         |   |
| Kallikrein        | <b>1</b> 2        | . 2                                                                     | 0.0019                      | 0.000         | 0.0680  | 0.0022  | 0.0011  |   |
| PSK               | 740               | 9:                                                                      | 90000                       | •             | •       |         |         |   |
| PSM               | ₹<br>62           | <b>⊒</b> ∞                                                              |                             |               |         |         |         |   |

|            | Prostate A                                                                      | Table VIII<br>Prostate A02 Supermotif Peptides with Binding Information | Table VIII<br>Peptides with | Binding Inforn | nation | -       |         |   |
|------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|----------------|--------|---------|---------|---|
| Protein    | Position                                                                        | No. of<br>Amino Acids                                                   | A*0201                      | A*0202         | A*0203 | A*0206  | A*6802  |   |
| PAP        | 776                                                                             | ۰                                                                       |                             |                |        |         |         |   |
| PAP        | 276                                                                             | • •                                                                     | 0.0002                      |                |        |         |         |   |
| PAP        | 276                                                                             | . 2                                                                     |                             | •              |        |         |         |   |
| PSM        | 95                                                                              | =                                                                       |                             |                |        |         |         |   |
| WSA.       | 731                                                                             | 00                                                                      |                             |                |        |         |         |   |
| No.        | 15.<br>15.                                                                      | <b>o</b> . :                                                            | 0.0026                      |                |        |         |         |   |
| No.        | 731                                                                             | = •                                                                     |                             |                |        |         |         |   |
| Mod        | 710                                                                             | <b>x</b> o (                                                            | . 000                       |                |        |         |         |   |
| WSd        | 218                                                                             | <b>→</b> 5                                                              | 0.0001                      |                | •      | -       |         |   |
| PAP        | -:2<br>22                                                                       | 2 5                                                                     | 0000                        |                | •      |         |         |   |
| PSM        | 299                                                                             | 2 œ                                                                     | 70000                       |                |        |         |         |   |
| PSM        | 299                                                                             | 01                                                                      | 0.0510                      | .0.1200        | 0.1100 | 0.0003  | 0.2700  |   |
| PAP        | 297                                                                             | 2:                                                                      | 0.0002                      |                |        |         |         |   |
| Kallikrein | 96                                                                              | : :                                                                     | 5000                        | 2000           | 0000   | 30000   | 2500    |   |
| PSA        | )<br>[2]                                                                        | 2 ∝                                                                     | 1000                        | , CO           | 0.0200 | 0.0003  | 0.022   |   |
| PSA        | 182                                                                             | • <b>=</b>                                                              | 0.0001                      | 100            |        | 10000   | 1000    |   |
| PSA        | 35                                                                              | 01                                                                      | 0.0001                      |                |        |         |         | ٠ |
| ASA<br>VSA | 35                                                                              | = :                                                                     | 0.0001                      |                |        |         |         |   |
| No.        | 578<br>578                                                                      | 2:                                                                      | 0.0001                      |                |        |         |         |   |
| PSA        | 87                                                                              | = =                                                                     | 1000                        |                |        |         |         |   |
| Kallikrein | 22                                                                              | On                                                                      | 0.0001                      | 0.0021         | 0.0011 | 0.0025  | 0.0510  |   |
| PAP        | 101                                                                             | σ                                                                       | 0.0002                      |                |        |         |         |   |
| PAP        | 7                                                                               | ∞ ;                                                                     |                             |                |        |         |         |   |
|            | 7 (                                                                             | 2:                                                                      |                             |                |        |         |         |   |
| PAP        | 10                                                                              | <u>:</u>                                                                | 0000                        | - ^            |        |         |         |   |
| PSM        | 673                                                                             | 20                                                                      | 0.0001                      |                |        |         |         |   |
| PSM<br>PAD | <b>8</b>                                                                        | 0:                                                                      |                             |                |        |         |         | • |
| A S d      | ? <del>?</del>                                                                  | ≓•                                                                      | .000                        | 1000,0         | 0000   |         |         |   |
| PSA<br>A   | £ 4                                                                             | <b>6</b>                                                                | -0.000                      | 1000           | 0.0003 | -0.0001 | -0.0001 |   |
| Kallikrein | 88<br>88                                                                        | <b>^ 00</b>                                                             | -0.0001                     | -0.0001        | 0.0003 | 0.0001  | 10000   |   |
| Kallikrein | 981                                                                             | Ξ                                                                       | 0.0007                      | 0.0560         | 9100'0 | 0.0018  | 0.0009  |   |
| PSM        | 354                                                                             | <b>00</b> (                                                             |                             | <b>-</b> ,     |        |         |         | _ |
| MSM        | 524<br>524                                                                      | Э. О                                                                    | 0.000                       |                |        |         |         |   |
| PAP        | 180                                                                             | N O                                                                     | 0.000                       |                |        |         |         |   |
| PAP        | 180                                                                             | . 01                                                                    | 0.0048                      |                |        |         |         |   |
| . XX       | 08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>0 | = 4                                                                     |                             |                |        |         |         |   |
| PSM        | \$                                                                              | 00                                                                      | 10000                       |                |        |         |         |   |
| PSW        | <b>4</b>                                                                        | `=                                                                      | 2000                        |                |        |         |         |   |
| NSW.       | \$                                                                              | =                                                                       |                             |                | •      |         |         |   |

| ;          | Binding Informatio                    |
|------------|---------------------------------------|
| Table VIII | Prostate A02 Supermotif Peptides with |

|                    | Prostate A     | Table VIII<br>Prostate A02 Supermotif Peptides with Binding Information | Table VIII<br>[Peptides with | Binding Inforr | nation |         |         |  |
|--------------------|----------------|-------------------------------------------------------------------------|------------------------------|----------------|--------|---------|---------|--|
| Protein            | Position       | No. of<br>Amino Acids                                                   | A*0201                       | A*0202         | A*0203 | A*0206  | A*6802  |  |
| PAP                | 756            | ٥                                                                       |                              |                |        |         |         |  |
| PAP                | 25.            | • =                                                                     |                              |                |        |         | 4       |  |
| PSA                | 121            | œ                                                                       | 0.0004                       |                |        |         |         |  |
| AN A               | <u> </u>       | o :                                                                     | 0.0003                       |                |        |         |         |  |
| Kalikain           | 721            | ≓ ∘                                                                     | 0.0007                       | ~ .cc          | 1000   | ,000    |         |  |
| Kallikrein         | 3 23           | o 0                                                                     | -0.0001                      | 0.0002         | 0.000  | 0000    | -0.000  |  |
| Kallikrein         | 125            | = .                                                                     | 0.0015                       | 0.0043         | 0.0210 | 0.0002  | 90000   |  |
| PSM                | <b>7</b> 662   | <b>∞</b> ;                                                              | ;                            | . ;            | ,      | ,       | ,       |  |
| Z Z                | 962<br>73 057  | 2 6                                                                     | 0.5100                       | 1.6000         | 1.3000 | 0.0930  | 0.0005  |  |
| PSK                | 23.0           | > 5                                                                     |                              |                |        |         |         |  |
| PSM                | 181            | 2 ∞                                                                     |                              | •              |        |         |         |  |
| PSM                | 414            | 9                                                                       |                              | •              |        |         |         |  |
| PAP                | = :            | œ :                                                                     |                              |                |        |         |         |  |
|                    | ==             | 2:                                                                      | 0.0150                       |                | -      |         |         |  |
| NSA NSA            | 111            | <b>≓∘</b>                                                               |                              |                |        |         |         |  |
| PSM                | 463            | o <u>=</u>                                                              |                              |                | ē      |         |         |  |
| PSM .              | 162            | : ∞                                                                     |                              |                |        |         |         |  |
| PAP                | 287            | 01                                                                      | 0.0002                       | •              |        |         |         |  |
| PAP                | 115            | <b>00</b> (                                                             |                              | •              |        |         |         |  |
| XX.                | CI 7           | <b>.</b>                                                                | 0.0043                       |                |        |         |         |  |
| PSM                | 634            | 01                                                                      | 10000                        |                |        |         | •       |  |
| Kalilkrein         | 7              |                                                                         | -0.0001                      | 0.0006         | 0.0087 | 90000   | 0.0004  |  |
| Kallikrein         | - ;            | Ξ,                                                                      | 0.0029                       | 0.0066         | 0.0160 | 0.0100  | 0.0055  |  |
|                    | \$<br>\$<br>\$ | ∞ <b>⊆</b>                                                              | 1000                         |                |        |         |         |  |
| Kallikrein         | 159            | 2 ∞                                                                     | 0.000                        | • .            | •      |         |         |  |
| PSA                | 155            | • <b>00</b>                                                             | 0.0001                       |                |        |         | •       |  |
| PSA                | 155            | Φ;                                                                      | 0.0001                       |                |        |         |         |  |
| Z                  | 129            | 2 5                                                                     | 0.0001                       |                |        |         |         |  |
| PAP                | 13.5           | 2 ∞                                                                     |                              |                |        |         |         |  |
| PSA                | 75             | • ••                                                                    | 0.0003                       | 0.0032         | 0.0028 | -0.0001 | -0.0001 |  |
| PSA                | 25             |                                                                         | 0.0190                       |                |        |         |         |  |
| PAP                |                | 2 ∝                                                                     | 0.0010                       |                |        |         |         |  |
| Kallikrein         | 175            | • •                                                                     | 0.0003                       | 0.0720         | 0.0180 | -0 0001 | 0 000   |  |
| Kallikrein<br>PSM  | 175            | =                                                                       | 0.0390                       | 1.9000         | 0.6900 | 0.0005  | 0.0004  |  |
| Valibaia           | 776            | <b>x</b> o (                                                            |                              |                |        |         |         |  |
| PSA<br>PA          | <u>.</u>       | <b>&gt;&gt; &gt;&gt;</b> (                                              | 0.0002                       | 0.0007         | 0.0002 | -0.0001 | -0.0001 |  |
| r Ar<br>Kaliikrein | 242<br>170     | <b>∞</b> 0                                                              | 00100                        | 0 0840         | 0.0240 | 90000   | 0.0031  |  |
|                    | :              | •                                                                       | 2                            | ) P            | >-4>-  | >>>>    |         |  |

|                                         | Prostate A     | Table VIII<br>Prostate A02 Supermotif Peptides with Binding Information | Table VIII<br>Peptides with | Binding Infor | mation |        |         |  |
|-----------------------------------------|----------------|-------------------------------------------------------------------------|-----------------------------|---------------|--------|--------|---------|--|
| Protein                                 | Position       | No. of<br>Amino Acids                                                   | A*0201                      | A*0202        | A*0203 | A*0206 | A*6802  |  |
| Kallikrein                              | 170            | 01                                                                      | . 6600 0                    | 0.4000        | 0.000  | 0\$000 | 80000   |  |
| PAP                                     | 13             | ?<br>o                                                                  | 0.0200                      | 200           | 07200  | 6000   | 0,000   |  |
| PAP                                     | 22 (           | 01 .                                                                    | 0.0170                      |               |        |        |         |  |
| PSM                                     | 4/2<br>615     | 2 ∝                                                                     | 0.0002                      | -             |        |        |         |  |
| PSM                                     | 615            | 9 2                                                                     | 0.0001                      | •             | •      |        |         |  |
| Kallikrein                              | 35             | <b>∞</b>                                                                |                             |               |        |        |         |  |
| PSA                                     | E =            | <b>∞</b> c                                                              |                             |               |        |        |         |  |
| Kallikrein                              | : =            |                                                                         |                             | ,             |        |        |         |  |
| PSM                                     | 8              | ) oo                                                                    |                             |               |        |        |         |  |
| PSK                                     | 88             | =                                                                       |                             |               |        |        |         |  |
| FOA.<br>PAD                             | 203            | =•                                                                      | 0.0005                      | 0.0150        | 0.0092 | 0.0002 | 0.0035  |  |
| PAP                                     | 2 2            | ю <i>о</i>                                                              |                             |               |        |        |         |  |
| PAP                                     | 90             | `=                                                                      |                             |               | ٠      |        |         |  |
| WSd.                                    | 431            | =                                                                       |                             |               |        |        |         |  |
| ESS ASS                                 | 348<br>348     | ∞ =                                                                     |                             |               |        |        |         |  |
| PSM                                     | 338            | <b>:</b> 0                                                              | 0.0001                      |               |        |        |         |  |
| PSM                                     | 101            | σ.                                                                      | 0.0001                      |               |        |        |         |  |
| PSK                                     | 107            | 0 =                                                                     | 0.0002                      |               |        |        |         |  |
| Kallikrein                              | =              | <b>:</b> ∞                                                              | 0.0004                      | 0.0006        | 0.0022 | 0.0003 | -0.0001 |  |
| Kallikrein<br>Voltibaia                 | =:             | 01                                                                      | 0.0024                      | 0.0760        | 0.0065 | 0.0026 | 0.0035  |  |
| PAP                                     | 217            | ==                                                                      | 0.0100                      | 0.0010        | 0.0007 | 0.0007 | 0.0005  |  |
| PSA                                     | 67             | : 2                                                                     | 0.0001                      |               |        |        |         |  |
| PAP<br>DAD                              | 3 3            | 2;                                                                      | 0.0031                      |               |        |        |         |  |
| PSM                                     | 65 ts          | 10                                                                      |                             |               |        |        | •       |  |
| PSM                                     | 979            | =                                                                       |                             |               |        |        |         |  |
| AND | r (            | ∞ ;                                                                     | 0.0001                      |               |        |        | •       |  |
| PSA                                     | - 1-           | 2 =                                                                     | 0.000                       |               |        |        |         |  |
| PSM                                     | 554            | : ∞                                                                     | 10000                       |               |        |        |         |  |
| PSW                                     | 554            | Φ.                                                                      | 0.0073                      | ,             | ,      |        |         |  |
| WSJ                                     | 8 <u>7</u>     | = ∝                                                                     | 0.0005                      | 0.0057        | 0.0085 | 0.0004 | 0.0105  |  |
| PSM                                     | . <del>4</del> | • 2                                                                     |                             |               |        |        |         |  |
| PSM<br>PAP                              | 41 <b>5</b>    | σ• o                                                                    |                             |               |        |        |         |  |
| PAP                                     | 25             | • =                                                                     |                             |               |        |        |         |  |
| PAP<br>PAP                              | 112            | φ <u>\$</u>                                                             | 0.0650                      |               |        |        |         |  |
| PAP                                     | 112            | 2 =                                                                     | 0.000                       |               |        |        |         |  |

|          | _            |
|----------|--------------|
|          | į            |
|          | nati         |
|          | nfor         |
|          |              |
|          | 귤            |
|          | inding       |
|          | 펿            |
|          | 占            |
| =        | ঈ            |
| 3        | 희            |
| 의        | eptid        |
| Table VI | 3            |
| _        | Supermotif P |
|          | 8            |
|          | ם            |
|          | Supermoti    |
|          | 4            |
|          | ৰ            |
|          | 뷬            |
|          | osta         |
|          | 밁            |
|          | _            |

| Protein          | Position   | No. of<br>Amino Acids | A*0201  | A*0202  | A*0203  | A*0206  | A*6802  |
|------------------|------------|-----------------------|---------|---------|---------|---------|---------|
| PAP              | 722        | 01                    | 0.0002  |         |         |         |         |
| Noa              | 222        | =                     | ,       |         |         |         |         |
| PSM              | 401<br>194 | a ⊆                   | 0.0012  |         |         |         |         |
| PSA              | . 5        | 2 0                   | 0.0016  |         |         |         |         |
| PSA              | 'n         | . 2                   | 0.0007  |         |         |         |         |
| PAP.             | 231        | œ                     |         |         |         |         |         |
| PAP :            | 231        | =                     |         |         |         |         |         |
| Nalikrein<br>PSA | 130        | ∞ c                   |         |         | •       |         |         |
| Kallikrein       | 159        | o c                   |         |         |         |         |         |
| PSA              | 139        | <b>.</b> 0            |         |         |         |         |         |
| PAP              | 335        | h 00                  |         |         |         |         |         |
| PAP              | 335        |                       |         |         |         |         |         |
| PAP              | 335        | 01                    | •       |         |         |         |         |
| PSM              | 78         | σ.                    |         |         |         |         |         |
| PAP              | 275        | ол :<br>С             |         |         |         |         |         |
| 240              | 275        | 2                     |         |         |         |         |         |
| NSA              | 330        | = •                   |         |         |         |         |         |
| PSM              | 330        | <b>•</b>              |         |         |         |         |         |
| PAP              | <u> </u>   | ==                    |         |         |         |         | ,       |
| Kallikrein       | 150        | : =                   | -0.0001 | 0.000   | 0.0025  | 0000    | 0 1400  |
| PSA              | 146        | =                     | -0.0001 | 0.0000  | 0.0025  | 0.0005  | 0.1400  |
| PAP              | 374        | <b>∞</b>              |         | •       |         |         |         |
| PAP              | 291        | <b>80</b> 1           |         |         |         |         |         |
| 949              | 76.<br>76. | σ;                    |         |         |         |         |         |
| PSW              | 167<br>525 | 2 0                   | 0.0020  |         |         |         | •       |
| PSM              | 575        | \ <u>S</u>            | 0000    |         |         |         |         |
| PAP              | 145        | 6                     | 0.0002  |         |         |         |         |
| PAP              | 145        | 01                    | 0.0001  |         |         |         |         |
| PSM              | 738        | œ ·                   | ,       |         |         |         |         |
| DAP TO THE TANK  | 738        | 0.0                   | 0.0002  |         |         |         |         |
| OVO              | 767        | <b>~</b>              |         |         |         |         |         |
| PAP              | 767        | <b>ɔ</b> > ;          | 0.0044  |         |         |         |         |
| PSM              | 734        | <b>≓</b> ∝            |         |         |         |         |         |
| PSM              | 734        | o                     |         |         |         |         |         |
| PSM              | 734        | \ <u>@</u>            |         |         |         |         |         |
| PSM              | 576        | 2 ∞                   |         |         |         |         |         |
| PSM.             | 576        | 6                     | 0.0002  |         |         |         |         |
| And<br>My        | æ <u>:</u> | œ <b>;</b>            | -0.0001 | -0.0001 | -0.0001 | -0.0001 | -0.0001 |
| . Kallikrein     | 7 5        | 2 4                   | 0.0001  |         |         |         | ,       |
| PSM              | 5.4        | <b>^</b> 2            | 0.0001  | -0.0001 | 0.0002  | 0.0002  | 0.0004  |

| Protein                                                     | Position                                                                                                                                                               | No. of<br>Amino Acids                         | A*0201                                                   | A*0202                               | A*0203                               | A*0206                               | A*6802                               |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| PSM<br>PSM<br>PSM<br>PSM<br>PSM                             | 201<br>358<br>358<br>372                                                                                                                                               | & & & C .                                     | 0.0002                                                   | ·                                    |                                      |                                      |                                      |  |
| PSM<br>PAP<br>PSA<br>PSA<br>PSA                             | 222<br>363<br>363<br>174<br>174                                                                                                                                        | თ ∞ ≃ ≃ ∞ <u>ე</u> ი                          | 0.0003                                                   | ·                                    |                                      |                                      |                                      |  |
| PAP<br>PAP<br>PAP<br>PAP                                    | 2882                                                                                                                                                                   | o o o e :                                     | 0.1300<br>0.0590<br>0.0021                               | 19.000                               | 0.3000                               | 0.1200                               | 0.0028                               |  |
| Kallikrein<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM        | 592<br>592<br>593<br>603<br>603<br>603                                                                                                                                 | :2=02=00;                                     | 0.0008<br>0.0001<br>0.0002<br>0.0013<br>0.0002           | 0.0150                               | 0.0110                               | 0.0004                               | 0.0006                               |  |
| FSM<br>Kallikrein<br>PSA<br>Kallikrein<br>PSA<br>Kallikrein | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>5<br>7<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 으 ∞ 드 ∞ ∞ 즉 일 ∞ ◦                             | 0.0003<br>0.0050<br>0.0001<br>0.0001<br>0.0003           | 0.0790<br>0.0011<br>0.0034           | 0.0200<br>0.0048<br>0.0001           | 0.0024                               | 0.0003                               |  |
| Kallikrein<br>PSA<br>Kallikrein<br>PSA<br>Kallikrein        | ;                                                                                                                                                                      | • • • <u>• • • • • • • • • • • • • • • • </u> | 0.0200<br>0.0200<br>0.0200<br>0.0001<br>0.0130<br>0.0130 |                                      | ·                                    |                                      |                                      |  |
| PSA<br>PSM<br>PSM<br>PSM<br>Kallikrein<br>Kallikrein        | 233<br>233<br>88<br>88                                                                                                                                                 | <u>5</u>                                      | 0.0001<br>0.0021<br>-0.0001<br>0.0008                    | 0.0042<br>0.0003<br>0.0180<br>0.0002 | 0.0014<br>0.0005<br>0.0068<br>0.0031 | 0.0001<br>0.0007<br>0.0004<br>0.0001 | 0.0003<br>0.0007<br>0.0030<br>0.0001 |  |
|                                                             |                                                                                                                                                                        |                                               |                                                          |                                      |                                      |                                      |                                      |  |

|                   | Prostate A  | Table VIII<br>Prostate A02 Supermotif Peptides with Binding Information | Table VIII<br>Peptides with | Binding Infor | mation |          |         |  |
|-------------------|-------------|-------------------------------------------------------------------------|-----------------------------|---------------|--------|----------|---------|--|
| Protein           | Position    | No. of<br>Amino Acids                                                   | A*0201                      | A*0202        | A*0203 | A*0206   | A*6802  |  |
| 7.04              |             |                                                                         |                             |               |        |          |         |  |
| Z Z               | 352         | ∞ ⊆                                                                     |                             |               |        |          |         |  |
| PSM               | 322         | 2 =                                                                     |                             |               |        |          |         |  |
| PSA               | 00          | ; o                                                                     | 0.0110                      |               |        |          |         |  |
| PSA               | œ           | 01                                                                      | 0.0019                      |               |        |          |         |  |
| PSA               | <b>00</b> 1 | =                                                                       | 0.0013                      | 0.0005        | 0.000  | . 0.0011 | 0.0002  |  |
| A00               | → .         | œ (                                                                     | 0.0002                      | <b></b> .     |        |          |         |  |
| 40d               |             | ο:                                                                      | 0.0008                      |               |        |          |         |  |
| WSd               | 104         | = =                                                                     | 0.000                       |               |        |          |         |  |
| Kallikrein        | 246         | ; a                                                                     | 1000                        | 1000          | 1000   | 1000     |         |  |
| PSA               | 242         | o oc                                                                    | 0000                        | 0.0021        | 0001   | 0.000    | 0000    |  |
| Kallikrein        | 246         | ·<br>=                                                                  | 0.0001                      | 0.0001        | 0.0002 | 0.0001   | 0.0004  |  |
| PSA               | 242         | =                                                                       | 0.0001                      | 0.0001        | 0.0002 | -0.0001  | 0.000   |  |
| Kallikrein        | 135         | o.                                                                      | -0.0001                     | -0.0005       | 0.0007 | 0.0008   | -0.0002 |  |
| PSM               | 602         | 요 .                                                                     | 0.0001                      | •             |        |          |         |  |
| Mod               | 434         | œ (                                                                     | .000                        |               |        |          |         |  |
| Kallikrein        | 474         | o •c                                                                    | 0000                        | - 600         | 3000   | .000     | 0000    |  |
| Kallikrein        | 47          | 0 0                                                                     | 1000                        | 5000          | 0.0003 | 0.000    | 0.0070  |  |
| PAP               | 226         | · 00                                                                    | 10000                       | -             | 0000   | 0000     | 21000   |  |
| PAP               | 226         | 9                                                                       | 0.0002                      | . •           |        | ٠        |         |  |
| PSA               | 2:          | ∞ (                                                                     | 0.0005                      | • .           |        |          |         |  |
| PSA<br>Vollitrain | 2 5         | ο (                                                                     | 0.0005                      | . !           |        |          |         |  |
| PSA               | 252<br>248  | × 0                                                                     | 0.0002                      | 0.0120        | 0.1700 | 0.0002   | -0.0001 |  |
| PSM               | 200         | 0 00                                                                    | 70000                       |               |        |          |         |  |
| PSM               | 70          | ,<br>o os                                                               | 0.0180                      |               |        |          |         |  |
| ZZ 4              | 25          | 01                                                                      | 0.0120                      |               |        |          |         |  |
| PAP               | <b>2</b> 22 | œ <u>:</u>                                                              |                             |               |        |          |         |  |
| PAP               | 3 85        | <u>;</u> ∝                                                              |                             |               |        |          |         |  |
| PAP .             | 138         | o 00                                                                    |                             |               |        |          |         |  |
| PAP               | 138         | =                                                                       |                             |               |        |          |         |  |
| Kallıkrein        | 38          | =                                                                       |                             |               |        |          |         |  |
| 400<br>400        | * ;         | = •                                                                     | 0000                        |               |        |          |         |  |
| Kallikrein ·      | . S         | <b>5</b> 0                                                              | 0.0008                      | 81000         | 1000   | 09100    | . 20000 |  |
| PSM               | 607         | n oc                                                                    |                             | 0.0010        | 0.000  | 0.0190   | 0.000   |  |
| PSM               | 607         | 2                                                                       | •                           |               |        |          |         |  |
|                   | §           | Φ:                                                                      | 0.0013                      |               |        |          |         |  |
| 700 A             | 170         | 2 9                                                                     | 0000                        |               |        |          |         |  |
| PAP               | 310         | 2 0                                                                     | 0.0002                      |               |        |          |         |  |
| Kallikrein        | 153         | n 00                                                                    | -0.0001                     | 0.0009        | 0.0003 | 0.0003   | 0.0120  |  |
| PSA               | 149         | œ                                                                       | -0.0001                     | 0.0009        | 0.0003 | 0.0003   | 0.0120  |  |

|          |             | Prostate A0 | Table VIII<br>Prostate A02 Supermotif Peptides with Binding Information | Table VIII<br>Peptides with I | Binding Inform | ıation |         |        |
|----------|-------------|-------------|-------------------------------------------------------------------------|-------------------------------|----------------|--------|---------|--------|
| itein    |             | Position    | No. of<br>Amino Acids                                                   | A*0201                        | A*0202         | A*0203 | A*0206  | A*6802 |
|          | VAND BOXA   |             | ,                                                                       |                               |                |        |         |        |
| Z :      | YAVVLKKYA   | 909         | o                                                                       |                               |                |        |         |        |
| ×        | YAYRRGIA    | 277         | 00                                                                      |                               |                |        |         |        |
| ×        | YAYRGIAEA   | 277         | 01                                                                      |                               |                |        |         |        |
| ×        | YAYRRGIAEAV | 27.7        | :=                                                                      |                               |                |        |         |        |
| Σ        | YINADSSI    | 449         | ; oc                                                                    |                               |                |        |         |        |
| 40       | YIRKRYRKFL  | 84          | . 2                                                                     | 0.0002                        |                |        |         |        |
| ٠.       | YIRSTDVDRT  | 103         | 2                                                                       |                               |                |        |         |        |
| ۵,       | YIRSTDVDRTL | 103         | :=                                                                      |                               |                |        |         |        |
| llikrein | YTKVVHYRKWI | 243         | =                                                                       | 0.0001                        | 0.0001         | 0.0004 | -0.0001 | 0.000  |
| ∢        | YTKVVHYRKWI | 239         | =                                                                       | 0.0001                        | 0.0001         | 0.004  | 0000    | 8000   |
| Z        | YTLRVDCT    | 460         | ; œ                                                                     |                               |                |        |         | 2000   |
| Σ.       | YTLRVDCTPL  | 460         | . 9                                                                     | 0.0015                        |                |        |         |        |
| . ▼      | YTLRVDCTPLM | 460         | :=                                                                      |                               |                |        |         |        |
| Σ.       | YVAAFTVQA   | 733         | ; o                                                                     |                               |                |        |         |        |
| Z        | YVAAFTVQAA  | 733         | . 9                                                                     | •                             |                |        | •       |        |
| Σ        | YVAAFTVQAAA | 733         | =                                                                       |                               |                |        |         |        |
|          |             |             | :                                                                       |                               |                |        |         |        |

| Table IX | Prostate A03 Supermotif with Binding Data |
|----------|-------------------------------------------|
|          |                                           |

| •                                     |                | Prostate /            | A03 Supermotif. | Prostate A03 Supermoilf with Binding Data | ag Data |        |        |          |
|---------------------------------------|----------------|-----------------------|-----------------|-------------------------------------------|---------|--------|--------|----------|
| Protein                               | Position       | No. of<br>Amino Acids | A*0301          | A*1101                                    | A*3101  | A*3301 | A*6801 | 1        |
| PSA                                   | 65             | ∞                     |                 |                                           |         |        |        | <b>L</b> |
| PSA                                   | 13             | 00                    |                 |                                           |         |        |        |          |
| PAP                                   | m              | œ                     |                 |                                           |         |        |        |          |
| PSM                                   | 392            | O 0                   |                 |                                           |         |        |        |          |
| FOM                                   | 326            | • :                   |                 | •                                         |         |        |        |          |
| NAILIKKEIU<br>PSA                     | 3 5            | <b>:</b> =            |                 |                                           |         |        | ,      |          |
| NS.                                   | ន              | :0                    | 0.0086          | 0.2700                                    |         |        |        |          |
| PAP                                   | 227            | . co                  | 0.0003          | 0.0039                                    |         |        |        |          |
| PAP                                   | 227            | 9                     |                 |                                           |         |        |        |          |
| NSA.                                  | 4 5            | =•                    | 0000            | 0                                         |         |        |        |          |
| PAP                                   | 274            | 00                    | 0.0190          | 1.2000                                    |         |        |        |          |
| MSA                                   | =              |                       |                 | 2007:                                     |         |        |        |          |
| PSM                                   | 635            | =                     |                 |                                           |         |        |        |          |
| Kaliikrein                            | 17             | œ                     |                 |                                           |         |        |        |          |
| PSM                                   | 393            | œ                     |                 |                                           |         |        |        |          |
| PSM                                   | <b>3</b>       | 요 :                   | 0.0026          | 0.0210                                    |         |        |        |          |
| Kallikrein                            | <del>7</del> 5 | 요 :                   |                 |                                           |         |        |        |          |
| Kallikrein                            | 747            | = •                   | •               |                                           |         |        |        |          |
| Nailikrein<br>DCA:                    | 8 2            | <b>&gt;</b> 0         | 90000           | \$1000                                    | •       |        |        |          |
| ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ | <u> </u>       | n oc                  | 0.0000          | 0.0013                                    |         |        |        |          |
| PSA                                   | 8 8            | · =                   |                 |                                           |         |        |        |          |
| Kallikrein                            | <u>₹</u>       | <b>∞</b>              |                 |                                           |         |        |        |          |
| PSM                                   | 96 T           | σ.                    |                 |                                           |         |        |        |          |
| PAP                                   | 347            | Φ;                    | 0.0040          | 90000                                     |         |        |        |          |
| Kallikrein<br>DSM                     | 4 6            | Ξ •                   | 7000            |                                           |         | •      |        |          |
| Zica                                  | 30.            | N 00                  | 0.000           | 0.0002                                    |         |        |        |          |
| PSM                                   | 714            | 9                     | 0.0003          | 0.0002                                    |         |        |        |          |
| PAP                                   | 701            | •••••                 | ٠               |                                           |         |        |        |          |
| PSM                                   | 2 5            | o :                   |                 |                                           |         |        |        |          |
|                                       | 791            | 2 0                   |                 |                                           |         |        |        |          |
| W.S.                                  | 8              | <b>^ 00</b>           | 0.0003          | 0.0001                                    |         | ٠      |        | ٠        |
| PSA                                   | 8              | =                     |                 |                                           |         |        |        |          |
| PSM                                   | <b>о</b> ъ (   | <b>00</b> (           |                 | •                                         | •       |        |        |          |
| PSW                                   | σ,             | on ;                  |                 |                                           |         |        |        |          |
| W.S.                                  | 6 6            | = •                   |                 |                                           |         |        |        |          |
| Kalikrein                             | 116            | . 2                   |                 |                                           |         |        |        |          |
| PSA                                   | 112            | 2                     |                 | •                                         |         |        |        |          |
| PSM                                   | 453            | = •                   | ,               |                                           |         |        |        |          |
| PSM<br>PAP                            | 316            | <b>.</b>              | 0.0032          | 0.0003                                    |         |        |        |          |
|                                       |                | •                     | •               | •                                         |         |        |        |          |

| Protein      | Posit | Position A      | No. of<br>Amino Acids                   | A*0301 | A*1101 | A*3101 | A*3301 | A*6801 |
|--------------|-------|-----------------|-----------------------------------------|--------|--------|--------|--------|--------|
| 400          |       | 178             | . 10                                    | 0.0007 | 0.0011 | -      |        |        |
| PSM          |       | <u> </u>        | ۵.                                      | 0.0006 | 0.0010 |        |        |        |
| PSM          |       | 8 5             | <b>00</b> C                             | . 000  | 0000   |        |        |        |
| POM<br>O A O |       | 3,45            | <b>λ</b> α                              | 0.000  | 0.0002 |        |        |        |
| NSA.         |       | 362             | o 0                                     |        |        |        |        |        |
| PSM          |       | 397             | ==                                      | •      |        |        |        |        |
| PAP          |       | 991             | ∞                                       |        | ,      |        |        |        |
| PAP          |       | 8               | <b>∞</b> (                              |        |        |        |        |        |
| PAP          |       | S S             | φ:                                      |        | •      |        |        |        |
| NSA          |       | 8 4             | ; ∞                                     |        |        |        |        |        |
| PSM          |       | 2               | ) O                                     |        |        |        |        |        |
| PAP          |       | 34              | 10                                      | 0.0014 | 0.0037 |        |        |        |
| PSM          |       | 716             | <b>∞</b> ;                              |        |        |        |        |        |
| PAP          |       | 25              |                                         |        |        |        |        |        |
| Z Z          |       | - 1             | 2 =                                     | ,      |        |        |        |        |
| PAP          |       | . 5             |                                         | 0.0004 | 0.0140 |        |        |        |
| PAP          |       | 170             |                                         |        |        |        |        |        |
| PSM          |       | 557             | ∞♀                                      |        | •      |        |        |        |
| NSA.         |       | <u> </u>        | 2 =                                     | •      |        |        |        |        |
| PSM          |       | 33              | · 00                                    |        |        |        |        |        |
| PAP          |       | <b>2</b> 2      | = 4                                     |        | ,000   | ٠      |        |        |
| PAP          |       | ≳               | o 5                                     | 0.0024 | 0.0004 |        |        |        |
| Z S          |       | <b>206</b>      | <b>?</b> თ                              | 5000   | 1000.0 |        |        |        |
| PSM          | •     | 639             | ======================================= |        |        |        |        |        |
| PSM          |       | 333             | Φ;                                      |        |        |        |        |        |
| PSM          |       | 333             | ==                                      | ,      |        |        |        |        |
| PSA          |       | 12              | ο.                                      | 0.0150 | 0.0350 |        |        |        |
| PSM          |       | 391             | 01                                      |        |        |        |        |        |
| Kallikrein   | •     | 91              | Φ.                                      |        |        |        |        |        |
| PSM          |       | 529             | ∞ ;                                     |        |        |        |        |        |
| PAP          |       | 248             | <b>∵</b> ∞                              |        |        |        |        |        |
| PAP          |       | 248             | 2                                       |        |        |        |        |        |
| PSM          |       | 680             | Φ.                                      | 0.0460 | 0.0280 |        |        |        |
| PSM          |       | 311             | 2 9                                     | 90000  | 0.1400 |        |        |        |
| Kallikrein   |       | 158             | 2 5                                     |        |        |        |        |        |
| PSM          |       | 3 8             | ==                                      |        |        |        |        |        |
| PSM          |       | 82              | 01                                      |        |        |        |        |        |
| PSM          |       | <del>4</del> 03 | 0                                       |        | •      |        |        |        |

|           |             | - |
|-----------|-------------|---|
|           | ing Data    |   |
| <b>≥d</b> | with Bindi  |   |
| Table IX  | upermotif   |   |
|           | state A03 S |   |
|           | Prost       |   |
|           |             |   |
|           |             |   |
|           |             |   |

|                                               |                                                                                                              | Prostate /                              | A03 Supermotif             | Lable 1A  Rrostate A03 Supermotif with Binding Data | ng Data |        |        | • |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|-----------------------------------------------------|---------|--------|--------|---|
| Protein                                       | Position                                                                                                     | No. of<br>Amino Acids                   | A*0301                     | A*1101                                              | A*3101  | A*3301 | A*6801 | ı |
| PSM<br>PSM<br>PSM                             | 403<br>360<br>345                                                                                            | ======================================= |                            | ·                                                   |         | ·      |        | l |
| Kalikrein<br>PAP<br>PSM<br>PSM                | 177<br>314<br>573                                                                                            | ,<br>5000                               | 0.2700                     | 0.5300                                              |         |        |        |   |
| PSM<br>PSM<br>PSM<br>PSM                      | 202<br>203<br>230<br>230                                                                                     | × I o 2                                 |                            |                                                     |         |        |        |   |
| PSM<br>PSM<br>PSM                             | 2 5 5<br>2 4 6                                                                                               | œ 2 e                                   | 0.1900                     | 0.1100                                              |         |        |        |   |
| rom<br>Kallikrein<br>PSA<br>PSM               | ង្គកន្                                                                                                       | ,<br>,                                  | 0.0410                     | 0.0190                                              | 0.0002  | 0.0006 | 0.001  |   |
| PSW<br>PSW<br>PSW<br>PSW<br>PSW               | 200<br>200<br>398<br>398                                                                                     | · I & 6 9                               | 0.1700<br>0.0260           | 0.0087                                              |         |        |        |   |
| PSM<br>PSM<br>PSM<br>PSM                      | . 723<br>. 199                                                                                               | ∞ ∞ o> ∞                                | 0.0740                     | 1.0000                                              |         |        |        |   |
| PAP<br>PSM<br>PSM<br>PSM                      | 491<br>491                                                                                                   | ·<br>· & 6 2 °                          | 0.4000                     | 2.1000                                              |         |        |        |   |
| PSM<br>PSA<br>PSA                             | 482<br>66 29                                                                                                 | o ⊆ ∞                                   | 0.0044                     | 0.0210                                              |         |        |        |   |
| PSM<br>PSM<br>PSA                             | 207                                                                                                          | φII.                                    | 0.1600                     | 0.1200                                              |         |        |        |   |
| Kalikrein<br>PSA<br>PSM<br>PA P               | 245<br>241<br>241<br>241                                                                                     | :000°                                   | 0.0450<br>0.0450<br>0.0031 | 0.0450<br>0.0450<br>0.0007                          |         |        |        |   |
| PSM<br>Kallikrein<br>PSA<br>Kallikrein<br>PAP | 103<br>123<br>123<br>123<br>123<br>124<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125 | . <del></del>                           | 0.0760                     | 0.2000                                              |         | •      |        |   |
| PAP<br>Kalikrein<br>PAP<br>Kalikrein          | 243<br>178<br>153<br>121                                                                                     | = 6 = =                                 |                            |                                                     |         |        |        |   |

|                          |                             | Prostate              | Table IX Prostate A03 Supermotif with Binding Data | IX<br>If with Bindir | g Data |        |        |  |
|--------------------------|-----------------------------|-----------------------|----------------------------------------------------|----------------------|--------|--------|--------|--|
| Protein                  | Position                    | No. of<br>Amino Acids | A*0301                                             | A*1101               | A*3101 | A*3301 | A*6801 |  |
| PSM<br>PAD               | 469                         | 11                    |                                                    |                      |        |        |        |  |
| PAP                      | 7 <del>7</del> <del>7</del> | <u>-</u> ∞            |                                                    |                      |        |        |        |  |
| PAP<br>Kollifornia       | 244                         | . 2 ∞                 | 0.0520                                             | 0.0370               |        |        |        |  |
| PSA                      | 5.5                         | <b>.</b> 00           |                                                    |                      |        |        |        |  |
| PSA                      | . 57                        | 0.0                   | 0.1400                                             | 0.0830               |        |        |        |  |
| Kallikrein<br>Kallikrein | i 6                         | ∞ æ                   |                                                    | •                    |        |        |        |  |
| PAP                      | 315                         | . 00 ;                | 0.0014                                             | 0.0100               |        |        |        |  |
| PSM<br>PAP               | 5<br>6                      | <b>≓</b> ∞            | 0.0003                                             | . 0.0002             |        |        |        |  |
| PSM                      | 473                         | 0;                    |                                                    | ,                    |        | ,      |        |  |
| PAP                      | 263                         | 2 :                   | 0.0560                                             | 0.1200               |        |        |        |  |
| PSM                      | 174                         | <b>:</b> ∞            |                                                    |                      |        |        | •      |  |
| Kallikrein               | 961                         | Ξ:                    |                                                    |                      |        |        |        |  |
| rsA<br>Kallikrein        | 2 22                        | <u>:</u>              |                                                    |                      |        |        |        |  |
| PSM                      | 663                         | =                     |                                                    |                      |        |        |        |  |
| Kallikrein<br>PSA        | 103<br>8                    | 9 9                   | 0,000                                              | 0110                 |        |        |        |  |
| PSM                      | 216                         | 2 ∞                   | 0.00                                               | 0.01                 |        |        |        |  |
| PSM                      | 2 5                         | Φ;                    |                                                    |                      |        |        |        |  |
| Kalingein                | 247                         | :: o                  |                                                    |                      |        |        |        |  |
| PSM                      | 57                          | . 0                   |                                                    |                      |        |        |        |  |
| Kallikrein               | 20 5                        | = :                   |                                                    |                      |        |        |        |  |
| Kallikrein               | 8                           | ⊇ ∞                   |                                                    |                      |        |        |        |  |
| PSM                      | 438                         | · oo (                |                                                    |                      |        |        |        |  |
| PSM<br>PSA               | 231<br>125                  | 0 0                   | 0000                                               | 0000                 | 0 0004 | 90000  | 1000   |  |
| Kallikrein               | 129                         | <b>,</b> 0,           |                                                    | 70000                |        | 00000  | 10000  |  |
| NSW NSW                  | 273<br>275                  | 00 G                  | 10000                                              | 2000                 |        |        |        |  |
| Kallikrein               | 243                         | `=                    |                                                    | 70000                |        |        |        |  |
| PAP                      | <b>4</b> %                  | = (                   |                                                    |                      |        |        |        |  |
| E SOL                    | 967<br>929<br>929           | o ::                  |                                                    |                      |        |        |        |  |
| PSA                      | 88                          | : o :                 | 0.2400                                             | 0.0370               | 0.0002 | 90000  | 0.0001 |  |
| rsA<br>Kallikrein        | £ &                         | : 6                   |                                                    |                      |        |        |        |  |
| PSM                      | 121                         | o (                   | ,                                                  | !                    |        |        |        |  |
| PSM<br>PSA               | 72<br>73<br>73<br>73<br>73  | 2=                    | 0.0003                                             | 0.0002               |        |        |        |  |
|                          |                             |                       |                                                    |                      |        |        |        |  |

|            |                   | Prostate              | Table IX<br>A03 Supermotif v | Table IX Prostate A03 Supermotif with Binding Data | g Data |        |        |  |
|------------|-------------------|-----------------------|------------------------------|----------------------------------------------------|--------|--------|--------|--|
| Protein    | Position          | No. of<br>Amino Acids | A*0301                       | A*1101 ·                                           | A*3101 | A*3301 | A*6801 |  |
| 7.54       | S                 | 5                     |                              |                                                    |        |        | •      |  |
| PAP        | 224               | :=                    |                              |                                                    |        |        |        |  |
| PSM        | 16                |                       |                              |                                                    |        |        |        |  |
| PAP        | 152               | DO (                  |                              |                                                    |        |        | ;      |  |
| PSA        | 182               | ο (                   | 0.0060                       | 0.0140                                             | 0.0028 | 0.0014 | 0.0051 |  |
| PAP        | ર Ξ               | ~ <del>-</del>        | 0.0021                       | 0.0018                                             |        | •      |        |  |
| PAP        |                   | : 0                   | 0 1500                       | 0.1200                                             |        |        |        |  |
| PAP        | 273               | . 0                   | 0.0210                       | 0.0600                                             |        |        |        |  |
| PAP        | 273               | 01                    | 0.0053                       | 0.0250                                             |        |        |        |  |
| Kallikrein | 24                | 01                    | 0.0460                       | 0.0670                                             |        |        |        |  |
| PSA        | 25                | 2 9                   | 0.0460                       | 0.0670                                             |        |        |        |  |
| DOM        | 3 6               | 2 «                   | 07/00                        | 0.4300                                             |        |        |        |  |
| PSK        | 527<br>527        | o <u>9</u>            |                              |                                                    |        |        |        |  |
| PSM        | 9                 | ; œ                   |                              |                                                    |        |        |        |  |
| PAP        | 78                | σ.                    | 0.0490                       | 0.1100                                             |        |        |        |  |
| PSM        | 181               | 2                     |                              |                                                    |        |        |        |  |
| No.        | 312               | o                     | 0.000                        | 0.0012                                             |        |        |        |  |
| MSM        | 2 2               | • ⊆                   |                              |                                                    |        |        |        |  |
| . WSd      | 455               | 2 0                   |                              |                                                    |        |        |        |  |
| Kallikrein | 159               | 6.                    |                              |                                                    |        |        |        |  |
| Kallikrein | 159               | =                     |                              |                                                    |        |        |        |  |
| PSA<br>You | 155               | = :                   |                              |                                                    |        |        |        |  |
| PSM        | 6 5<br>6 5<br>6 5 | = 0                   | 90000                        | 0000                                               |        |        |        |  |
| Kallikrein | ₹                 | ۰.                    |                              | 0770.0                                             |        |        |        |  |
| PSA        | 2                 | 0                     | 0.0024                       | 0.0470                                             |        |        |        |  |
| PAP        | 242               | 01                    | 0.4900                       | 2.3000                                             |        |        |        |  |
| PSK        | 472               | ∞ ;                   |                              |                                                    |        |        |        |  |
| Zig.       | 477               | <b>∷</b> ∝            |                              |                                                    |        |        |        |  |
| PSM        | 492               | • 0                   | 1.0000                       | 2.0000                                             |        |        |        |  |
| PAP        | . 245             | σ.                    | 1.1000                       | 0.8000                                             |        |        |        |  |
| PAP        | 245               | =                     | ,                            |                                                    |        |        |        |  |
| PSA .      | 237               | ٥:                    | 0.2800                       | 0.2300                                             |        |        |        |  |
| Z Z        | ) (S              | : o                   | 00110                        | 0.0700                                             |        |        |        |  |
| Kallikrein | 112               | , o                   | 0.0039                       | 1.2000                                             |        |        |        |  |
| PSA        | 113               | 0                     | 0.0039                       | 1.2000                                             |        |        |        |  |
| PSM .      | 454               | 01                    | 0.0007                       | 0.0910                                             | •      |        |        |  |
| WS.        | 45                | = (                   |                              |                                                    |        |        |        |  |
| Word No.   | 212               | ∞ <u>⊆</u>            | 3000                         | 71000                                              |        |        |        |  |
| PAP        | 53                | ⊇ ∞                   | 0.0017                       | 0.0061                                             |        |        |        |  |

|                          |                | Prostate                                | Table IX<br>A03 Supermotif w            | Table IX Prostate A03 Supermotif with Binding Data | g Data | ,      | •      |
|--------------------------|----------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------|--------|--------|--------|
| Protein                  | Position       | No. of<br>Amino Acids                   | A*0301                                  | A*1101                                             | A*3101 | A*3301 | A*6801 |
| PSM                      | 554            | 11                                      |                                         |                                                    |        | •      | •      |
| PSA                      | 88             | ο.                                      | 0.0094                                  | 0.0140                                             |        |        |        |
| Kallikrein<br>PSM        | <b>6</b> 62    | 00 QC                                   |                                         |                                                    |        |        |        |
| PSM                      | 4              | 9 음                                     | 0.0007                                  | 0.0002                                             |        |        | •      |
| PSM                      | 404            | ======================================= |                                         |                                                    |        |        |        |
| PAP                      | <u> </u>       | o ;                                     | 0.0006                                  | 0.0078                                             |        |        |        |
| PAP                      | 171            | 2 9                                     | 0.0007                                  | 0.0001                                             |        |        |        |
| PSM<br>PAP               | 30 20          | 2 ≎                                     | 0.0003                                  | 0.0002                                             | •      |        |        |
| PSM                      | 12             | . 00                                    |                                         |                                                    |        |        |        |
| PSM                      | 500            | 99                                      |                                         | 0                                                  |        |        |        |
| Z No.                    | 060            | 2 ∝                                     | 0.5400                                  | 0.7900                                             |        |        |        |
| WSd.                     | 603            | o œ                                     | •                                       |                                                    |        |        |        |
| PSA                      | 28             | a                                       | . 0.0002                                | 0.0005                                             |        |        |        |
| PSA                      | <b>%</b>       | = •                                     |                                         |                                                    |        |        |        |
| Kallikrein<br>Kallikrein | 3 6            | o                                       |                                         |                                                    |        |        |        |
| PSA                      | 3 8            | 5.∞                                     |                                         |                                                    | •      |        |        |
| PAP                      | 262            | Ξ                                       |                                         |                                                    |        |        |        |
| PSM                      | 627            | = :                                     |                                         | 00.00                                              |        |        |        |
| roa<br>Dad               | 99<br>38<br>38 | 2 5                                     | 0.0003                                  | 0.0120                                             |        |        |        |
| Kallikrein               | 246            | <u>,</u>                                | 0.0072                                  | 0.0930                                             | 0.5500 | 0.0490 | 0.0028 |
| PSA                      | 242            | ه ا                                     | 0.0072                                  | 0.0930                                             | 0.5500 | 0.0490 | 0.0028 |
| PSM                      | 926            | ov 0                                    | 0.0390                                  | 0.0660                                             |        |        | •      |
| PAP                      | 226            | `=                                      | 0000                                    | 70000                                              |        |        |        |
| PSA                      | 2              | ======================================= | . ,                                     |                                                    |        |        |        |
| PAP                      | 22             | Φ.                                      | 0.0035                                  | 0.0150                                             |        |        |        |
| Kallikrain               | ჯ <b>ჯ</b>     | 2 5                                     | 0.0004                                  | 0.0001                                             |        |        |        |
| Kallikrein               | 8              | 2 =                                     |                                         | •                                                  |        |        |        |
| PSM                      | 607            | =                                       |                                         |                                                    |        |        |        |
| PSM                      | 692            | <b>∞</b> c                              |                                         |                                                    |        |        |        |
| PSM                      | \$ 00<br>\$ 00 | <b>&gt;</b> =                           |                                         |                                                    |        |        |        |
| PAP                      | 8              | ; ∞                                     |                                         |                                                    |        |        |        |
| PAP                      | 103            | Φ.                                      |                                         |                                                    |        |        |        |
| PAP                      | 3 5            | <b>.</b>                                | 0000                                    | 0073                                               |        |        |        |
| PSW                      | 537            | <i>y</i> 0                              | 0.0800                                  | 0.3400                                             |        |        |        |
| Kallikrein               | 243            | . <b>x</b> o                            |                                         |                                                    |        |        | •      |
| PSA                      | 239            | ∞ (                                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0                                                  | ,      |        |        |
| Kallikrein               | 743            | >                                       | 0.000                                   | 0.0380                                             | 1.2000 | 2.8000 | 1.3000 |

|                                | •                     | I |
|--------------------------------|-----------------------|---|
|                                | A*6801                |   |
|                                | A*3301                |   |
| g Data                         | A*3101                |   |
| le IX<br>otif with Binding Dat | A•1101                |   |
| Table IX<br>A03 Supermotif w   | A*0301                |   |
| Prostate                       | No. of<br>Amino Acids |   |
|                                | Position              |   |
|                                |                       |   |
| •                              |                       |   |
|                                | Protein               |   |
| ÷                              | Δ,                    |   |

PSA PSM

239 371

| Table A | ate A24 Supermotif Peptides with Binding Data |
|---------|-----------------------------------------------|
|         | Prostate A                                    |
|         |                                               |

| •                                         |                |                       |        |
|-------------------------------------------|----------------|-----------------------|--------|
| Protein                                   | rosition       | No. or<br>Amino Acids | A-2401 |
|                                           | 75.7           | •                     |        |
|                                           | 100            | o I                   |        |
| NO.                                       | 00<br>200      |                       |        |
| Σ. C. | 06.7           | <u> </u>              |        |
|                                           | 000            |                       |        |
| מאם                                       | 133            | `:<br>:               |        |
|                                           | 7.5            | 2 =                   |        |
|                                           | 77             |                       |        |
| Kallikrein                                | / <del>*</del> |                       | •      |
| PSA                                       |                | =                     |        |
| Kallikrein                                | 235            | •                     |        |
| PSA                                       | 231            |                       |        |
| PSA                                       | 231            | 0                     |        |
| . WSd                                     | 25             | <b>60</b>             |        |
| WSd                                       | 25             | 6                     |        |
| NSG.                                      | 25             | 9                     |        |
| 200                                       | 25             | =                     |        |
| PAP                                       | 9 =            | ; oc                  |        |
| PAP                                       | 116            | . 6                   | 0.0150 |
| . MSd                                     |                | . 00                  |        |
| No.                                       |                | . 0                   |        |
| DAD                                       | 227            | . •                   |        |
| DAD                                       | 681            | . •                   |        |
| No.                                       | 40             | , 0                   |        |
|                                           | 274            | 2 5                   |        |
| 0.40                                      | 274            | •                     |        |
| Non                                       | ;=             | : 5                   |        |
| No.                                       |                | ?=                    |        |
| Nu                                        | 3,5            | : 0                   |        |
| Non                                       | 365            | , <u>c</u>            |        |
| Mag                                       | 635            | ? oc                  |        |
| FOINT                                     | - 2            | <b>,</b>              |        |
|                                           | 101            | . =                   | •      |
| NO                                        | 109            | 2 =                   |        |
|                                           | 145            | : 0                   |        |
|                                           | 174            | ٠, ٥                  |        |
| NO.                                       | 7.74           | , ⊆                   |        |
| ·                                         | 448            | ? o                   | 0.0190 |
| Kallibrain                                | 187            | · •                   |        |
| Kallikrein                                | 187            | 10                    |        |
| Kallikrein                                | 187            |                       |        |
| PSA                                       |                | ∵∞                    |        |
| ASA                                       | 62             | 0                     |        |
| PSA                                       | 62             | 01                    |        |
| Kallikrein                                | . 99           | 0                     |        |
| Kallikrein                                | 99             | 01                    |        |
| Kallikrein                                | 4              | <b></b>               |        |

|  |  | Table X | Prostate A24 Supermotif Peptides with Binding Data |
|--|--|---------|----------------------------------------------------|
|--|--|---------|----------------------------------------------------|

| . Data                                                    | A*2401                | 0.1700<br>0.1700                                                          | 0.0002                                        | 1000                                                                                                         |                                            |
|-----------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Table X Prostate A24 Supermois Peptides with Binding Data | No. of<br>Amino Acids | ∞ <b>=</b> 6 6 8 9 5 6 5 6                                                | <u>-</u> 6 6 2 6 8                            | o 5 = ∞ o o = 5 ∞ 5 o 5 o 5 ∞ ∞ ∞ o o ∞ =                                                                    | ≘∞o∞o=∞≘≤                                  |
| Prostate A24                                              | Position              | 466<br>173<br>152<br>168<br>148<br>652<br>652<br>652<br>652<br>652<br>652 | 184<br>186<br>156<br>201<br>201<br>3          | 207<br>298<br>290<br>290<br>134<br>194<br>164<br>164<br>165<br>166<br>167<br>194<br>194<br>194               | 641<br>137<br>109<br>109<br>88<br>88<br>88 |
|                                                           |                       |                                                                           |                                               |                                                                                                              |                                            |
| -                                                         | Protein .             | PSM<br>Kallikrein<br>Rallikrein<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM        | PSM<br>PAP<br>PSM<br>PAP<br>PSA<br>Kallikrein | PSA<br>PSA<br>PSA<br>PAP<br>PAP<br>PAP<br>PSM<br>PSM<br>PSM<br>PSM<br>Rallikrein<br>Rallikrein<br>PSA<br>PSM | PSM    |

| 3 | Table X | ate A24 Supermotif Peptides with Binding Data |
|---|---------|-----------------------------------------------|
|   |         | state.                                        |

| . Pros | C<br>state A24 Supermol | Table X Prostate A24 Supermotif Peptides with Binding Data | Zata   |
|--------|-------------------------|------------------------------------------------------------|--------|
| Pe     | Position A <sub>1</sub> | No. of<br>Amino Acids                                      | A*2401 |
|        | 3                       | 01                                                         |        |
|        | 2                       |                                                            |        |
|        | 34                      |                                                            |        |
| -      | 480                     | O                                                          |        |
|        | 237                     | 90                                                         |        |
|        | 237                     | 2                                                          |        |
|        | 237                     | Ξ,                                                         |        |
|        | 240                     |                                                            |        |
|        | 240                     | 2 (                                                        |        |
|        | /21                     | > :                                                        |        |
|        | /71                     | = 9                                                        |        |
|        | 260                     | 2                                                          |        |
|        | 200                     |                                                            |        |
|        | 328                     |                                                            |        |
|        | 517                     | <b>~</b> 5                                                 |        |
|        | 716                     | 2 σ                                                        | 01000  |
|        | 170                     | », oc                                                      | 0.000  |
|        | \$40                    | oo                                                         |        |
|        | 5.5                     | . <u>c</u>                                                 |        |
|        | 542                     | ) <del>-</del>                                             |        |
|        | 334                     | ,<br>o                                                     |        |
|        | 334                     | 01                                                         |        |
|        | 334                     | T .                                                        |        |
|        | 557                     | a :                                                        |        |
| •      | 557                     | <u>o</u> ,                                                 |        |
|        | 222                     | o ;                                                        |        |
|        | 171                     | = 6                                                        | ,      |
|        | 131                     | <b>A</b> C                                                 |        |
|        | 433                     | <b>^</b> ⊆                                                 |        |
|        | 376                     | 2 ∝                                                        |        |
| -      | 324                     | : 50                                                       |        |
|        | 83                      | 01                                                         | 0.0067 |
|        | 83                      | =                                                          |        |
|        | 185                     | ∞ '                                                        |        |
|        | 185                     | ۰ و                                                        |        |
|        | 33                      | ∞ <u>.</u>                                                 |        |
|        | 2 2                     | 2:                                                         | 0.0026 |
|        | 7. 57                   | : 0                                                        | 0.0017 |
|        | 187                     | · 00                                                       |        |
|        | 187                     |                                                            |        |
|        | 42                      | = :                                                        |        |
|        | 19                      | <u>o:</u>                                                  |        |
|        | 0/9                     | 0.                                                         |        |

|--|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prostate A24 Sups                                                               | Table X Prostate A24 Supermotif Peptides with Binding Data | inding Data |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|-------------|
| Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Position                                                                        | No. of<br>Amino Acids                                      | A*2401      |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                              | ∞ .                                                        |             |
| PAP<br>PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33 <del>8</del>                                                                 | Φ Φ                                                        |             |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E.                                                                              | 0:                                                         |             |
| PSA PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , m                                                                             | :∞                                                         |             |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | į                                                                               | Φ.                                                         |             |
| WS.J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 E                                                                             | ∞ Ξ                                                        |             |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 195                                                                             | ; ∞                                                        |             |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161                                                                             | <b>∞</b>                                                   |             |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 737                                                                             | ∞ <u>S</u>                                                 |             |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24                                                                              | ? ∞                                                        |             |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 565                                                                             | æ <u>\$</u>                                                | •           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 7887<br>487                                                                   | ⊇ ∝                                                        | 1.1000      |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 487                                                                             | • = ·                                                      |             |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>                                                                            | ∝ c                                                        | 8870        |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | <b>`</b> =                                                 | 0610:0      |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                               | ; ∞                                                        | ,           |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 %                                                                             | 0 a                                                        |             |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                                                              | c >c                                                       |             |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7:                                                                              | ο :                                                        | 0.0016      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 782                                                                             | ⊇ ∝                                                        | 0.000       |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 797<br>787                                                                      | • =                                                        |             |
| MSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 529                                                                             | Φ;                                                         |             |
| PAP<br>DAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 248                                                                             | = =                                                        |             |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                                                                             | 2 =                                                        |             |
| PSM .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 707                                                                             | <b>о</b> ;                                                 |             |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>4 | 2 ∞                                                        |             |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196                                                                             | . 2                                                        |             |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196                                                                             | Ξ°                                                         |             |
| AN PARTIES AND PAR | 305                                                                             | • =                                                        |             |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 089                                                                             | ∵ ∞                                                        |             |
| PSM<br>Kalliterin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 288                                                                             | <u>o</u>                                                   |             |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 295                                                                             | · 0                                                        |             |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.5                                                                            | ∞;                                                         |             |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/                                                                              | =                                                          |             |

| Protein             | Position        | No. of Amino Acids                      | A*2401 |
|---------------------|-----------------|-----------------------------------------|--------|
|                     | , 871           | a                                       |        |
| NSC NSC             | 20 S            | N 00                                    |        |
| NO.                 | 282             | . 01                                    | 0.0002 |
| PSM                 | . 58            | ×                                       |        |
| PSM                 | 403             | œ                                       | -      |
| Kallikrein          | 149             | Φ.                                      |        |
| PSA                 | 145             | <b>o</b> :                              |        |
| PSM                 | 446             | = :                                     |        |
| ESS.                | 224             | =                                       |        |
| E No.               | 238             | <b>a</b> I                              |        |
|                     | 2 5             | = 0                                     |        |
|                     | 717             | <b>.</b> C                              |        |
| Kallikaja           | . C.            | \ oc                                    |        |
| PSA                 | . 20            | : 00                                    |        |
| Kallikrein          | . 25            | 01                                      |        |
| PSA                 | 48              | 01                                      |        |
| PAP                 | 791             | ∞                                       |        |
| . PAP               | 197             | . =                                     |        |
| PSM                 | 252             | <b>00</b> ;                             |        |
|                     | 252             | 0Ĭ .                                    |        |
| PAP                 | 128             | <b>&gt;&gt;</b>                         |        |
| PAP                 | 128             | <b>.</b>                                |        |
|                     | 971             | 2 :                                     |        |
| 787                 | 971<br>871      |                                         |        |
|                     | <b>?</b> ?      | <b>~</b> :                              |        |
| Nailikrein          | 9 2             | ===                                     |        |
| riory (Collication) | <del>.</del> 25 | ======================================= | 2000   |
| PSA                 | 251             | 2 =                                     | 10000  |
| Kallikrein          | 126             |                                         |        |
| PSA                 | 152             | =                                       |        |
| PSM                 | 409             | œ                                       |        |
| PSM                 | 409             | 6                                       |        |
| PSM                 | 409             | 10                                      | 0.0540 |
| PSM                 | 150             | œ                                       |        |
| PSM                 | 172             | . •                                     |        |
| PSM ·               | . 548           | 0                                       |        |
| PSM                 | 298             | 00                                      |        |
| PSM                 | 298             | 6                                       |        |
| MS4                 | 345             | 11                                      |        |
| × ·                 | 82              | <b>о</b> ;                              |        |
| PSM                 | Z ;             |                                         |        |
| WS.d                | 573             | = (                                     |        |
| PAP                 | 270             |                                         |        |
| PAP                 | 270             |                                         |        |

|         | vith Binding Data    |
|---------|----------------------|
| Table X | ipermotif Peptides y |
|         | Prostate A24 S       |

| Amino Addis  Amino Addis  144 114 114 111  145 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 160  150 1 |                                         | Prostate A24 Su | Prostate A24 Supermotif Peptides with Binding Data | Sinding Data                           |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|----------------------------------------------------|----------------------------------------|---|
| 144   10   144   10   144   11   144   11   144   11   144   11   144   11   144   11   144   11   144   11   144   11   144   11   144   11   144   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   14   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Protein                                 | Position        | No. of<br>Amino Acids                              | A*2401                                 |   |
| 1144. 172 248 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p.                                      | 144             | . 01                                               |                                        |   |
| 78 8 8 8 416 416 416 416 416 416 416 416 416 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 144             | :=                                                 |                                        |   |
| 248 28 10 110 4 9 9 111 111 111 111 111 111 111 111 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 112             | œ                                                  |                                        |   |
| 248 130 130 130 130 130 130 130 130 130 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | . 28            | <b>∞</b> ∶                                         |                                        |   |
| 244 416 110 110 416 416 416 416 416 416 416 416 416 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | krein                                   | 248             | <b>0</b>                                           | 0.0550                                 |   |
| 130 130 1416 1416 1416 1416 1416 1416 1416 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                       | 244             | 9                                                  | 0.0550                                 |   |
| 130 416 416 69 69 69 69 7373 7373 7374 7375 7375 7376 7376 7376 7377 7377 7377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 130             | <b>o</b> s.:                                       |                                        |   |
| 416 416 69 69 69 69 726 728 728 728 728 728 728 729 730 730 730 730 730 730 730 730 730 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 130             | 2                                                  |                                        |   |
| 373 373 69 69 69 69 72 286 71 71 72 72 72 72 72 73 73 73 74 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 416             | =                                                  |                                        |   |
| 373 66 67 76 77 77 78 78 78 78 78 78 78 78 78 78 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 373             | <b>~</b>                                           |                                        |   |
| 69 258 258 258 258 259 250 250 250 250 250 250 250 250 250 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 373             | =                                                  |                                        |   |
| 267 267 276 276 276 276 276 276 276 277 276 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 69              | . oc                                               |                                        |   |
| 268 258 117 226 258 133 133 133 133 133 250 250 250 250 250 250 250 250 250 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | \$ 5            | 26                                                 |                                        |   |
| 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | <b>60</b>       | <b>&gt;</b> ;                                      |                                        |   |
| 258 226 226 133 133 133 134 15 227 110 228 230 110 240 259 110 269 264 264 264 264 264 264 264 264 264 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | /97             | =                                                  |                                        |   |
| 226 226 10 132 8 10 132 8 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 258             | =                                                  |                                        |   |
| 226 226 132 132 132 133 132 14 133 226 11 226 227 11 226 239 11 231 238 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | . 12            | . 9                                                |                                        |   |
| 222 132 525 526 137 138 68 68 68 68 68 68 68 68 68 68 68 68 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 300             | <b>.</b> €                                         |                                        |   |
| 226 132 52 236 11 246 256 11 257 266 11 157 267 11 131 268 268 268 268 268 268 268 268 268 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 977             | ,<br>~                                             |                                        |   |
| 132<br>52<br>526<br>526<br>527<br>509<br>659<br>659<br>131<br>131<br>133<br>134<br>135<br>136<br>137<br>138<br>138<br>139<br>130<br>130<br>130<br>131<br>131<br>131<br>132<br>133<br>133<br>134<br>135<br>136<br>137<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 226             | 2                                                  |                                        |   |
| 132 52 52 522 520 520 530 659 659 659 659 131 131 88 88 88 88 88 88 88 88 88 88 88 88 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gein                                    | 132             | <b>∞</b>                                           |                                        |   |
| 52<br>226<br>227<br>200<br>591<br>659<br>659<br>691<br>708<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lieb Lieb Lieb Lieb Lieb Lieb Lieb Lieb | 132             | .01                                                |                                        |   |
| 222 226 227 228 239 659 659 659 659 659 659 659 659 659 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | S               | ي ج                                                |                                        |   |
| 226 226 227 200 200 591 10 659 659 659 11 131 131 131 131 141 150 691 708 88 88 88 88 86 645 89 99 190 190 190 190 190 190 190 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 75              | 2:                                                 |                                        |   |
| 226 220 200 10 591 659 659 11 131 131 131 131 131 131 131 131 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 25              | 3.                                                 |                                        |   |
| 222 200 591 10 659 659 659 11 157 157 157 158 88 158 159 150 150 150 150 150 150 150 150 150 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | crein                                   | 226             | =                                                  |                                        |   |
| 200<br>591<br>659<br>659<br>131<br>131<br>131<br>131<br>131<br>131<br>131<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 222             |                                                    |                                        |   |
| 500<br>659<br>659<br>117<br>131<br>131<br>131<br>131<br>131<br>131<br>131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 000             | : =                                                |                                        |   |
| 659 659 659 11 157 157 205 205 205 190 691 190 645 545 564 193 193 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                 | 2 :                                                |                                        |   |
| 659 659 11 157 157 158 398 88 131 131 88 205 205 691 100 691 100 695 645 545 564 11 193 193 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 160             | 2                                                  |                                        |   |
| 659 1157 398 88 131 131 131 131 131 131 131 131 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 629             | 01                                                 |                                        |   |
| 157<br>131<br>131<br>131<br>131<br>131<br>131<br>131<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 629             | 11                                                 |                                        |   |
| 398<br>131<br>131<br>205<br>205<br>205<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 151             | Ģ                                                  |                                        |   |
| 131 88 8 205 99 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | (6)             | •                                                  |                                        |   |
| 131 8 8 205 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 398             | ×o·                                                |                                        |   |
| 131<br>205<br>205<br>691<br>10<br>708<br>355<br>88<br>355<br>88<br>190<br>99<br>645<br>545<br>545<br>545<br>545<br>193<br>193<br>193<br>193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                       | 131             | <b>CO</b> D                                        |                                        |   |
| 205 205 206 207 708 708 708 71 72 72 73 74 75 75 76 76 76 77 78 78 78 78 78 78 78 78 78 78 78 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 121             | - 5                                                |                                        |   |
| 203<br>205<br>691<br>708<br>72<br>72<br>73<br>88<br>88<br>86<br>645<br>645<br>564<br>564<br>193<br>193<br>193<br>193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 300             | : c                                                | 7000                                   |   |
| 203 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 507             | n-:                                                | ************************************** |   |
| 691 708 708 355 88 72 72 99 645 545 564 564 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 507             | 2:                                                 |                                        |   |
| 708 355 88 72 72 99 645 645 564 564 193 193 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 169             | 0                                                  |                                        |   |
| 355 8 72 99 99 99 99 99 99 99 99 99 99 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 708             | œ                                                  |                                        |   |
| 72 72 99 94 94 94 94 94 94 94 94 94 94 94 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 355             | œ                                                  |                                        |   |
| 190<br>645<br>545<br>564<br>564<br>193<br>193<br>193<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 5               | )· <del>č</del>                                    |                                        | • |
| 545<br>545<br>564<br>564 • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 201             | • 0                                                | 0.0310                                 |   |
| 545<br>564<br>564<br>193<br>193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0 1             | n-6                                                | 0160.0                                 |   |
| 245<br>264<br>564<br>193<br>131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 110             | <b>&gt;</b> (                                      |                                        |   |
| 564<br>564<br>193<br>131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 245             | <b>**</b>                                          |                                        |   |
| 564<br>193<br>193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 564             | ~                                                  |                                        |   |
| 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 564             | =                                                  |                                        |   |
| 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 193             | · es                                               |                                        |   |
| : <u>=</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 193             | -9                                                 |                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rier                                    | 121             |                                                    |                                        |   |

| inding Data                                                | A*2401                | 12.0000                                                                               |
|------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|
| Table X Prostate A24 Supermotif Peptides with Binding Data | No. of<br>Amino Acids | ======================================                                                |
| Prostate A24 Si                                            | Position              | - 199<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>199                  |
|                                                            |                       |                                                                                       |
|                                                            |                       |                                                                                       |
|                                                            | Protein               | Kallikrein PSM PSM PSM PSM PSM PSP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS |

| ~ 1 |  |
|-----|--|
|-----|--|

Position

Protein

|            | THY .    | Amino Acids | 1 |
|------------|----------|-------------|---|
| PAP        | S        | =           |   |
| PAP        | 306      | 10          |   |
| PSM        | 144      | •           |   |
| PSM        | 441      | .01         |   |
| PSA        | 611      | 10          |   |
| Kallikrein | 123      | 01          |   |
| Kallikrein | 178      | =           |   |
|            | 899      |             |   |
| PSM        | 899      | 0.0075      |   |
| PAP        |          |             |   |
| PAP        | 113      | =           |   |
| PSM        | 469      | <b>3</b>    |   |
| PSA        | 128      | œ           |   |
| PSA        | 128      | 10          |   |
| PAP        | 315      |             |   |
| PSA        | . 4      | ; oc        |   |
| PSM        | 268      |             |   |
| PSA        | 162      | ·<br>:=     |   |
| PAP        | 02       | 10          |   |
| No.        | \$74     | •           |   |
| Kallikrein | 217      | 2 5         |   |
| ASA        | 213      | 2 5         |   |
| NS.        | 261      | 20          |   |
| WSd        | . 195    | , <u>c</u>  |   |
| PAP        | 40       | 2.=         |   |
| PAP        | 350      | <u> </u>    |   |
| WSd        | 473      | 2 0         |   |
| Kalikrein  | <b>3</b> | · ~         |   |
| PSA S      | ţ S      |             |   |
| . WSd .    | 2 %      | > <b>~</b>  |   |
| WSd        | 3 %      |             |   |
| WSd        | 36       | . 5         |   |
| - T        |          |             |   |
| d V d      | 213      |             |   |
| dyd        | .13      |             |   |
| DCA        | C17      |             |   |
| 200        | 2.0      |             |   |
|            | 010      |             |   |
| NSA MSA    | 010      | 2.5000      |   |
| No.        | 100      | -           |   |
|            | ī .      |             |   |
| rar<br>201 | 154      |             |   |
| No.        | 47.      | 10 0.2300   |   |
| No.        | /77      |             |   |
|            | 727      | 0.4400      |   |
| A07        | 238      | <b>20</b> ; |   |
| ACT.       | 738      | =-          |   |

|         | •                                     |
|---------|---------------------------------------|
|         | <b>Binding Data</b>                   |
| Table X | Prostate A24 Supermotif Peptides with |
|         |                                       |

| Protein    | Position | No. of<br>Amino Acids | A*2401 |
|------------|----------|-----------------------|--------|
|            |          |                       | -      |
| PSM        | 699      | эc                    |        |
| PSM        | (99)     | = :                   |        |
| PSA        | <b>*</b> |                       |        |
| Kallikrein | 122      |                       |        |
| PAP        | 343      | <b>5</b> :            |        |
| WSW.       | 663      | oc e                  |        |
| PSW .      | 566      | ÷ د                   |        |
| PAP        | 232      | 2 :                   |        |
| PAP        | 117      | <b>50</b>             |        |
| PSM        | \$83     | ò                     |        |
| PSM        | 583      | 11                    |        |
| Kallikrein | _        | <b>∞</b>              |        |
| Kallikrein | _        | 10                    |        |
| PSW        | 470      | œ                     |        |
| PSM        | 68       | 00                    |        |
| NSW.       | 336      | • 6                   |        |
| No.        | 336      | `=                    |        |
| No.        | 965      | : a                   | 1000   |
|            | 929      | h c                   | 1000:0 |
|            | 2 9      | 0 (                   |        |
| FSW .      | <b>3</b> |                       |        |
| XX.        | S        | <b>∞</b> ;            |        |
| No.        | <u>.</u> | =                     |        |
| PSM        | 260      | ø                     |        |
| PSM        | 27       | •                     |        |
| Kallikrein | 102      | 0.                    |        |
| PSM        | 328      | . 01                  |        |
| PSM        | 153      | 6                     |        |
| PSM        | 240      | 10                    |        |
| PSM        | 178      | ∞                     |        |
| PSM        | 178      |                       | 0.7700 |
| PSM        | 178      | =                     |        |
| PSM        | 459      |                       |        |
| PSM        | 594      | =                     |        |
| PAP        | 157      | 00                    |        |
| PAP        | 157      | =                     |        |
| PSM        | 091      | 01                    |        |
| PSM        | . 589    | <b>∞</b> 0.           |        |
| PAP        | 49       | 01                    |        |
| PSM .      | . 536    | 01                    |        |
| PSM        | 296      | =                     |        |
| PAP        | 27       |                       |        |
|            | 134      | ; oc                  |        |
| dyd        | 140      | . 0                   |        |
| Yid        | 889      | `=                    |        |
| 0.40       | 353      | e e                   |        |
| · Mod      | 878      | o 0                   | •      |
|            | 5        | •                     |        |

| Table X | Prostate A24 Supermotif Peptides with Binding Data |
|---------|----------------------------------------------------|
|---------|----------------------------------------------------|

|                    |     | Prostate A24 Sup | Prostate A24 Supermotif Peptides with Binding Data | inding Data |
|--------------------|-----|------------------|----------------------------------------------------|-------------|
| Protein            | . • | Position         | No. of<br>Amino Acids                              | A*2401      |
|                    |     | . !              |                                                    |             |
| PSM                |     | 678              | 01                                                 |             |
| PSA                |     | 2 5              | = =                                                |             |
| Nallikrein<br>DA D |     | <u>.</u> ~       | = =                                                |             |
| NS A               |     | 468              | 2 9                                                |             |
| PAP                |     | 147              |                                                    |             |
| PAP                | -   | 147              | • •                                                |             |
| PAP                |     | 147              | 01                                                 |             |
| PSM                |     | 267              |                                                    |             |
| Kallikrein         |     | 216              | ; oo                                               |             |
| PSA                |     | 212              | . 00                                               |             |
| Kallikrein         | -   | 216              | =                                                  |             |
| PSA                |     | 212              | =                                                  |             |
| PAP                |     | 212              | 10                                                 |             |
| PSA                |     | 8                | ¦ oo                                               |             |
| PSM                |     | 550              | 10                                                 |             |
| Kallikrein         |     | 66.              | ¦∞o                                                |             |
| PAP                |     | \$               | 10                                                 |             |
| PSM                |     | 293              | <b>∞</b>                                           |             |
| Kallikrein         |     | <b>.</b>         | 01                                                 | -           |
| Kallikrein         |     | 16               | <u></u>                                            |             |
| Kallikrein         |     | 37               | = ;                                                |             |
| PAP                |     | 306              | 2 :                                                | 0.0240      |
| PAP<br>0 V O       |     | 203              | <u> </u>                                           | 90110       |
| N N                |     | 601<br>9Ct       | n oc                                               | 2011.0      |
| PAP                |     | 276              | ) ac                                               |             |
| PAP                |     | 276              |                                                    |             |
| PAP                |     | 276              | 10                                                 |             |
| PAP                |     | 276              | ==                                                 |             |
| PSM                |     | \$6              | ٥                                                  | •           |
| PSM                |     | 95               | = <                                                |             |
| FSW<br>FSW         |     | 218              |                                                    |             |
| NOM MOD            |     | 917              | 2 :                                                |             |
| PSM                |     | 6                | . 91                                               |             |
| PAP                |     | 22               | <b>.</b> 00                                        |             |
| PAP                |     | . 22             | 10                                                 |             |
| PSM                |     | 299              | Φ.                                                 |             |
| PSM                |     | 299              | ۵:                                                 |             |
| Y Y                |     | 60.0             | _ :                                                |             |
| PAP                |     | 767<br>C9C       | 2 2                                                | 0.0001      |
| Kallikrein         |     | 36               |                                                    |             |
| PSA                |     | ***              | •                                                  |             |
| PSA                |     | 182              | 01                                                 |             |

|         | THE THOUGH                          |
|---------|-------------------------------------|
| Table X | rosinte A44 Supermoni Lepitues with |

| Position Amino Acids Branch Amino Amino Acids Branch Amin |   | Prostate A24 St | Table X Prostate A24 Supermotif Peptides with Binding Data | Inding Data |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------|------------------------------------------------------------|-------------|--|
| I ∞ 2 2 I σ 2 2 2 2 2 2 σ 2 α σ 2 I I I α α α α σ 2 α α 2 α α α 2 α σ 2 α α α α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Position        | No. of<br>Amino Acids                                      | A*2401      |  |
| : ∞ 2 2 I o 2 2 2 2 2 2 o I o o 2 I I I o o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 187             | 1                                                          |             |  |
| 22 <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 578             | : ∞                                                        |             |  |
| 2= <u>0</u> 22222=0=∞02===∞∞∞02∞∞2∞∞=∞∞20=0000=000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 578             | 10                                                         |             |  |
| o22222=o=∞o2===∞∞∞∞0∞∞2∞∞=∞∞22=2o2o±o≡∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 87              | 2                                                          |             |  |
| \$ 222223265250002222∞∞∞∞∞2∞∞2∞∞2∞∞2202∞∞∞∞∞∞∞∞0022020202000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • | . 87            | =                                                          |             |  |
| 22222101∞0202111∞∞∞02∞∞2∞∞1∞∞20120202010<br>20222101∞0021110∞∞∞02∞∞2∞01∞∞201202020<br>20222101∞0021110∞∞∞02∞∞2∞01∞∞200100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 22              | <u>.</u>                                                   |             |  |
| : <u>2222379789277788898888888888882872979788</u> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • | 22              | . 9                                                        | •           |  |
| ;222101∞02111∞∞∞02∞∞2∞∞1∞∞2001201202∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 2               | : =                                                        | 0.0007      |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 5 8             | 2.5                                                        | 10000       |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 9 5             | 29                                                         | 2000        |  |
| 2 I o I o o 2 I I I o o o o o o o o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 333.            | 2                                                          | 0.0037      |  |
| ΞοΞωοΩΞΞΞ∞∝∞οΩ∞∞Ω∞οΞ∞∞ΩΩποΩοΩοΩοποσω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 163             | 01                                                         | 0.0001      |  |
| : ο Ξ ∞ ο Ξ Ξ Ξ π ∞ ∞ α ο Ξ ∞ α ο Ξ ∞ α ο Ξ α α ο Ξ α α α α α α α α α α α α α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | (15             | :=                                                         |             |  |
| o- I ∞ o- S I I I w ∝ x o- S ∞ ∞ S ∞ o- I ∞ x S S I S o- S o- I o- I ∞ x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 110             | = 1                                                        |             |  |
| I & の 5 I I I I & ∝ ≈ か G & ∞ G & の I & ∞ 5 G I G の G か I o x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - | 354             | σ.                                                         |             |  |
| : ∞ o> ==== ∞ ∞ ∞ o> = ∞ ∞ e> = ∞ ∞ = ∞ ∞ = = = = o> = o> = o = o = ∞ ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 527             | =                                                          |             |  |
| n o 5 = = = m x x 2 5 m x 5 m x 5 m x = x 5 = 5 u 5 u = v = v = x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                 | : <                                                        |             |  |
| o = = = = ∞ ∞ ≈ ο = ∞ ∞ = ∞ ∞ = ∞ ≈ = = = 0 = 0 = 0 = 0 = 0 = ∞ ∞ ∞ ∞ ∞ ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 081             | ×o                                                         |             |  |
| . = = = = ∞ ∞ ∞ ∞ ≥ ∞ ∞ = ∞ ∞ = ∞ = = 0 = 0 = 0 = 0 = 0 = ∞ ∞ ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 180             | 0                                                          |             |  |
| 2 = = = ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ≥ ∞ ≈ ≥ ≥ = ≥ ∞ ≥ ∞ ≈ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - |                 |                                                            |             |  |
| = = = ∞ ∞ ∞ ∞ ≥ ∞ ∞ ≥ ∞ ∞ = ∞ ∞ ≥ ≥ = ≥ ∞ ≥ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 2               | 2:                                                         |             |  |
| ==∞∞∞∞≥∞∞≥∞∞=∞∞=≥=≥∞±∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 440             | =                                                          |             |  |
| Ξ∞∝∞∞2∞∞2∞∞1∝∞22=20±∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 649             |                                                            |             |  |
| :∞∝∞∞9∞∞9∞∞=∞∞99=9∞9∞±∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 257             | =                                                          | •           |  |
| n ∝ ≈ 3 5 ∞ ∞ 5 ∞ 0 ± ∞ ≈ 5 5 ± 5 0 5 2 ± 0 ± ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                 | : c                                                        |             |  |
| ∝ ≈ ≈ 5 ∞ ∞ 5 ∞ ° ± ∞ ≈ 5 5 ± 5 ° 5 ° ± ° ± ∞ ∞ ≈                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 171             | ю                                                          |             |  |
| ≈ ≈ 5 ∞ ∞ 5 ∞ ≈ ± ∞ ≈ 5 5 ± 5 ∘ 5 ° ± ° ± ° ∞ ≈                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 125             | œ                                                          |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 299             | <b>3</b>                                                   |             |  |
| > 5 ∞ ∞ 5 ∞ o = ∞ ≈ 5 5 = 5 o 5 o = o = ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                 | •                                                          |             |  |
| రాజులు చాలు చాలు చాలు చాలు చాలు చాలు చాలు చ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 790             | >                                                          |             |  |
| ∞∞5∞0=∞∞55=5050±0±∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 662             | 01                                                         |             |  |
| •∞5∞v=∞≈55=5v5v±v±∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 181             | ; œ                                                        |             |  |
| ≈5∞∘=∞≈35=5°5°=°±°≈∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - | 101             | •                                                          |             |  |
| 5 ∞ v = ∞ ≈ 5 5 = 5 v 5 v = v = ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 414             | œ                                                          |             |  |
| ?∞ο=∞∞33=3ο3ο=ο±∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | ==              | 2                                                          |             |  |
| • ○ I ∝ ≈ 5 5 I 5 ° 5 ° I ° I ° ≈ ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - | 777             | 2 0                                                        |             |  |
| o = ∞ ≈ 5 5 = 5 o 5 o 5 o ± o ± ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 403             | •                                                          |             |  |
| =∞∞35=5°5°=°±°±∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 463             |                                                            |             |  |
| :∝∝55 <u>555°5°5°5°5°</u> ∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 463             | =                                                          |             |  |
| c∝33=3030±0±∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 8               | : 0                                                        |             |  |
| ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 40              | <b>c</b> :                                                 |             |  |
| 5 5 <u>5 5 ° 5 ° 5 ° 5 ° ∞</u> ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - | 2               | ×                                                          |             |  |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 61              | 9                                                          |             |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                 |                                                            | 11000       |  |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 80              | 2                                                          | 0.005/      |  |
| . ⊇ o  ⊇ o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 536             | =                                                          |             |  |
| 2.0-2.5-2.0-2∞∞∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 401             | 9                                                          |             |  |
| n. ⊇.o. ⊒.o. ⊒ ∞ ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | į               | 2, 2                                                       |             |  |
| _<br>∞ ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • | \$              | <b>.</b>                                                   |             |  |
| .ठ∙ <u>इ.</u> ठ∙ <u>इ</u> .∞ ∞ ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 704             |                                                            |             |  |
| . <u>I</u> .O. <u>I</u> oc oc oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 16              | .0                                                         | 0.0007      |  |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | : 5             | . =                                                        |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | <u> </u>        | <b>.</b>                                                   |             |  |
| 95 #1<br>455 8<br>159 8<br>155 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 95              | c.                                                         |             |  |
| 455 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | . 95            |                                                            |             |  |
| 155 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 337             | . •                                                        | •           |  |
| 159 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 403             | c                                                          |             |  |
| 155 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 139             | œ                                                          |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 155             | ×                                                          |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                 |                                                            |             |  |

| Table X | Prostate A24 Supermotif Peptides with Binding Data |
|---------|----------------------------------------------------|

| A*2401                |                                                                           |
|-----------------------|---------------------------------------------------------------------------|
| No. of<br>Amino Acids | 5=+55=×+5+×+5=+++++++++++++++++++++++++                                   |
| Position An           | 129<br>129<br>129<br>130<br>130<br>130<br>130<br>130<br>130<br>130<br>130 |
| •                     |                                                                           |
|                       |                                                                           |
| Protein               | PSM                                   |

|              | rostate A24 Superm | Table X Prostate A24 Supermotif Peptides with Binding Data | Data   |
|--------------|--------------------|------------------------------------------------------------|--------|
| Protein      | Position           | No. of<br>Amino Acids                                      | Λ*2401 |
|              | P33                | O                                                          |        |
| dVd          | 225                | o oc                                                       |        |
| PAP          | 225                | , =                                                        |        |
| PSM          | 420                | <b>.</b> 0                                                 |        |
| PSM          | 420                | 0                                                          |        |
| Kallikrein   | 228                | . O.                                                       |        |
| PSA          | 224                | 6,                                                         | 0.0001 |
| PAP          | 62                 | 6                                                          | 0.0013 |
| WSd.         | 318                | 9                                                          |        |
| <b>PSM</b>   | 496                | =                                                          |        |
| PAP          | %                  | <b>∞</b>                                                   |        |
| PAP          | %                  | •                                                          | 0.2600 |
| PAP          | 279                | 00                                                         |        |
| NSA.         | 241                | 00                                                         |        |
| PSM          | . 118              | 10                                                         |        |
| PSM          | 81                 | =                                                          |        |
| PAP          | 8                  | <b>∞</b>                                                   | •      |
| PAP          | 171                |                                                            |        |
| PAP          | 112                | <b>o</b> .                                                 |        |
| PAP          | 222                |                                                            | •      |
| No.          | 361                | = (                                                        |        |
| No.          | 461                | م                                                          |        |
| No.          | \$ <del>1</del> 9  | 2:                                                         |        |
| PAP          | 15.                | ; oc                                                       |        |
| PAP          | 231                | · =                                                        |        |
| Kallikrein   | 150                | ; œ                                                        |        |
| PSA          | 146                | 00                                                         |        |
| Kallikrein   | 150                |                                                            |        |
| PSA          | 146                | ==                                                         |        |
| PAP          | 291                | ∞ :                                                        |        |
| 747          | 162                | <u>.</u>                                                   |        |
| No.          | 5/5<br>275         | د                                                          |        |
| LOIN         | 2/2                | = <                                                        |        |
| 0.40         | ( <del>4</del> )   | <b>~</b> 5                                                 |        |
| DAD          | 34.                | 2 :                                                        |        |
| No.          | - t                |                                                            |        |
| rain.        | 707                | <b>.</b> .                                                 |        |
| ₹ <b>7</b> 8 | 7.7                | • •                                                        |        |
| A Sign       |                    | o 0                                                        | 00110  |
| PSA          | . 0                | .0                                                         | 0.3600 |
| PSM          | 558                | <u>`</u> .∞                                                |        |
| PSM          | 558                | 0.                                                         |        |
| PSM          | 624                | O                                                          |        |
| PSM.         | 624                | 0.                                                         | 3.2000 |

| •  |            |
|----|------------|
|    | ceti       |
|    | -          |
|    | <b>a</b>   |
|    | -          |
|    |            |
|    | _ 1        |
|    | 69         |
|    | a          |
|    | .=         |
|    | 77         |
|    | 껼          |
|    |            |
|    | =          |
|    | _          |
| •  | . 1        |
|    | _          |
|    | ╼          |
|    | -          |
|    | ₹:         |
|    | 7          |
|    | co.        |
|    | 2.5        |
|    |            |
|    | .9         |
| ~  | -          |
| ~  | a          |
| ~3 | 77         |
| 프  | ٠,         |
|    | Р4         |
| =  | i. I       |
| _  | =          |
| -  | ₮          |
| ٠, |            |
|    | 7          |
|    | =          |
|    | a          |
|    | 77         |
|    | =          |
|    | -          |
|    | -          |
|    | · N        |
|    | ٧4         |
|    |            |
|    | -31        |
|    | - 4        |
|    | <□         |
|    | ٦.         |
|    | انه        |
|    | -          |
|    | œ          |
|    |            |
|    | 22         |
|    | a          |
|    | 7          |
|    | <b>√</b> ] |
|    |            |

| 108_L2818<br>A *2401                           | 1047        |            |          | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | 2.1000 | 0.0062 |          | 0.0003 |            | •    | •   |     | •   |     |     |     |     |     |     |            |     |     |            |               |             |          |            |     |            |     |     |            |            |     |     |     |            |            |     |         |     |             |             |      |            |            |             |
|------------------------------------------------|-------------|------------|----------|-----------------------------------------|--------|--------|----------|--------|------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------------|---------------|-------------|----------|------------|-----|------------|-----|-----|------------|------------|-----|-----|-----|------------|------------|-----|---------|-----|-------------|-------------|------|------------|------------|-------------|
| Prostate A.44 Supermont reproces with planning | Amino Acids | <b>∞</b> ; | <b>0</b> | <b>∞</b> (                              | S      | 2.     | ••• (    | 2,     | <b>~</b> : | 01   | σ,  | 2   | 9   | =   | =   |     | Coc |     | `=  | : œ        | » = |     | = 0        | <b>&gt;</b> 0 | <b>10</b> 0 | )<br>o c | » ⊆        | 2 o | \ <u>1</u> | =   |     | œ          | Ø          | 6   | 01  |     | 01         |            | =   | <b></b> | = • | Э.          | ≘:          | =:   | 2:         | <b>:</b>   | >           |
| Position                                       | LOSMON      | 584        | 582      | \$23                                    | 7      | 77 (   | <b>S</b> | 4.0    | 707        | 372  | 89  | 89  | 225 | 225 | 363 | 069 | 27  | 7.0 | 7.7 | <b>3</b> 6 | S 5 | 200 | 138        | 292           | 777         | 217      | 708<br>708 | 660 | 999        | 099 | 26  | 09         | 53         | 49  | 262 | 134 | 192        | 192        | 188 | 352     | 352 | <b>33</b> ( | <b>96</b> ( | ×s - | <b></b> -  | 706        | <b>+</b> AC |
|                                                |             |            |          |                                         |        |        |          |        |            |      |     |     |     |     |     |     |     |     |     |            |     |     |            |               |             |          |            |     |            |     |     |            |            |     |     |     |            |            |     |         |     |             |             |      |            |            |             |
|                                                |             |            |          |                                         |        | •      | -        |        |            |      |     |     |     |     |     |     |     |     |     |            |     |     |            |               |             |          | •          |     |            |     |     |            |            |     |     |     |            |            |     |         |     |             |             |      |            |            |             |
|                                                | Protein     | PSM        | PSM      | PSM                                     | PSA    | PSA    | PSA      | PAP    | PSM        | PSM. | PSA | PSA | PSM | PSM | PAP | PSM | Myd | Myd | DCM | 13M        | 2 4 |     | Kallikrein | FSM.          | Kallıkrein  | FSA<br>S | E S        | No. | No.        | W.  | PSA | Kallikrein | Kallikrein | PSA | PAP | PSA | Kallikrein | Kallikrein | PSA | PSM     | PSM | PSA         | PSA         | PSA  | PSA<br>PSA | 40.<br>40. | PSM         |

|            | Prostate A24 Supermo | Table X Prostate A24 Supermotif Peptides with Binding Data |    |
|------------|----------------------|------------------------------------------------------------|----|
| Protein    | Position             | No. of A*2401<br>Amino Acids                               |    |
|            |                      |                                                            |    |
| Kallikrein | 246                  | <b>80</b>                                                  |    |
| PSA        | 242                  | 20                                                         |    |
| - WSd      | 602                  | 2                                                          |    |
| PSM        | 602                  | =                                                          |    |
| Kallikrein | 73                   | œ                                                          |    |
| Kallikrein | 73                   | 6                                                          |    |
| PSM        | 555                  |                                                            |    |
| PAP        | 302                  | 9.0320                                                     | 02 |
| Kallikrein | 242                  | 00                                                         |    |
| Kallikrein | 242                  | · <b>·</b>                                                 |    |
| WSd        | 175                  |                                                            |    |
| 43G        | -                    | o                                                          |    |
| 401<br>401 | 2 5                  | ė e                                                        |    |
| rsa        | 2                    | <b>&gt;</b> (                                              |    |
| PSM        | 70                   | •                                                          |    |
| PAP        | 25                   |                                                            |    |
| Kallikrein | 74                   | то <b>с</b>                                                |    |
| PSM        | 497                  | <u>o</u>                                                   |    |
| PSA        | 55                   | ÷6.                                                        |    |
| Kallikrein |                      | · •                                                        |    |
| PSM        | 234                  | . 0                                                        |    |
| PAP        | 310                  | . 00                                                       |    |
| pAp        | 310                  |                                                            |    |
| WSd        | 449                  | , oc                                                       |    |
| 0V0        | 28                   | . 0                                                        |    |
| dyd        | . 708                |                                                            |    |
| 040        | 5 5                  |                                                            | ·  |
| 44.6       |                      |                                                            |    |
|            | CC1                  | ≘:                                                         |    |
| PSM        | 537                  | -<br>•                                                     |    |
| Kallikrein | 243                  | <u>o</u>                                                   |    |
| PSA        | 239                  | <u>o</u>                                                   |    |
| Kallikrein | 243                  |                                                            | •  |
| PSA        | 239                  | -                                                          |    |
| Mod        | . 6                  | · =                                                        |    |
| No         | 700                  |                                                            |    |
|            | 0                    |                                                            |    |
| NSW .      | 3/1                  | =                                                          |    |
| PSM        | 176                  | 2                                                          |    |
| PSM        | 176                  | <b>=</b>                                                   |    |
| PSM        | 209                  | · cc                                                       |    |
| PSM        | 299                  |                                                            |    |
| PAP        | 330                  | =                                                          |    |

|     | g Data     |
|-----|------------|
|     | ith Bindir |
| EXI | eptides w  |
| Tab | ermotif P  |
|     | BO7 Sup    |
|     | Prostate   |

|              | Prostate B07 Supern | Prostate B07 Supermotif Peptides with Binding Data | Data   |
|--------------|---------------------|----------------------------------------------------|--------|
| Protein      | Position            | No. of                                             | B*0702 |
|              |                     | Amino Acids                                        |        |
| NSA.         | 236                 | =======================================            |        |
| P.S.A.       | 14                  | <b>∞</b>                                           |        |
| PSA          | 4                   | 0                                                  | 0.0007 |
| PAP          | ◀ .                 | <b>oc</b> (                                        |        |
| PAP          | ⋖ .                 | ر م                                                | 0.0210 |
| PAP          | 4                   |                                                    |        |
| PSM ·        | 313                 | =:                                                 |        |
| PSM          | 693                 | <b>00</b>                                          |        |
| MS4          | 693                 | o                                                  | 0.0003 |
| PAP          | 351                 | 6                                                  | 0.0810 |
| PAP          | 351                 | 01                                                 | 0.0054 |
| MSM          | 230                 | 01                                                 | 0.0002 |
| dVd          | 99                  | 00                                                 |        |
| Z. Z.        | 21.9                | 10                                                 | 0.0001 |
| NJ A         | 229                 |                                                    |        |
| N/A          | 266                 | . 0                                                | 0.0001 |
| 0.40         | 211                 | , oc                                               |        |
| Q V O        | 211                 | ·=                                                 |        |
| No.          | 295                 | ; oc                                               | -      |
| No.          | 295                 | , <u>S</u>                                         | 0.0001 |
| WSd          | 292                 | 11                                                 |        |
| W.G.         | 387                 | : œ                                                |        |
| WS.d.        | 387                 | ) O                                                | 0.0011 |
| WSd          | 720                 | . 0                                                | 0.0002 |
| PSA          | 124                 | 80                                                 |        |
| ASA<br>ASA   | 124                 | σ                                                  | 0.0001 |
| PSA          | 124                 | 11                                                 |        |
| Kallikrein   | 128                 | <b>∞</b>                                           |        |
| Kallikrein   | 128                 | O.                                                 | ,      |
| Kallikrein   | 128                 | =======================================            |        |
| Kallikrein   | 145                 | Q                                                  |        |
| PSA          | 141                 | 6                                                  |        |
| Kallikrein   | 145                 | . 01                                               | 0.0002 |
| PSA          | 141                 | 01                                                 | 0.0002 |
| . Kallikrein | 232                 | 01                                                 |        |
| Kallikrein   | 232                 | 11                                                 |        |
| PSA          | 228                 | 11                                                 |        |
| PSM          | 367                 | ∞                                                  |        |
| Kallikrein   | 82                  | 6                                                  |        |
| Kallikrein   | 82                  | 11                                                 |        |
| Kallikrein   | 191                 | 11                                                 |        |
| PSA          | 157                 |                                                    |        |
| PSA.         | 145                 | 0.                                                 | 0.0001 |
| LOW.         | 6 6                 | • •                                                | 2000   |
| PSIN         | 202                 | » =                                                | 5100.0 |
| NO.          | 3                   | -                                                  |        |

| Table XI<br>Prostate B07 Supermotif Peptides with Binding Data |   |     |
|----------------------------------------------------------------|---|-----|
| Table X1 Prostate B07 Supermotif Peptides with Binding D       |   | ata |
| Table X1<br>Prostate B07 Supermotif Peptides with Binding      |   | 9   |
| Table XI<br>Prostate B07 Supermotif Peptides with Bindi        |   | 3   |
| Table X1<br>Prostate B07 Supermotif Peptides with Bi           |   | 혈   |
| Table XI<br>Prostate B07 Supermotif Peptides with              |   | 쿒   |
| Table XI<br>Prostate B07 Supermotif Peptides wi                |   | 폌   |
| Table XI<br>Prostate B07 Supermotif Peptides                   |   | 璛   |
| Table XI<br>Prostate B07 Supermotif Peptide                    |   | 7   |
| Table X<br>Prostate B07 Supermotif Pept                        | - | 크   |
| Table<br>Prostate B07 Supermotif Po                            | × | 핔   |
| Tal<br>Prostate B07 Supermotif                                 | 씕 | 4   |
| ]<br>Prostate B07 Supermo                                      | 弖 | ㅋ   |
| Prostate B07 Superi                                            |   | 8   |
| Prostate B07 Sup                                               |   |     |
| Prostate B07 S                                                 |   | ₫   |
| Prostate B07                                                   |   | ø   |
| Prostate B                                                     |   | ㅂ   |
| Prostate                                                       |   | 쮜   |
| Prost                                                          |   | 븳   |
| 핅                                                              |   | 넑   |
|                                                                |   | 핅   |

| •                     |                                                             | •                                      |                                 |                                 |                                             |                   |                                 |                                  |                                                      |
|-----------------------|-------------------------------------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------------------|-------------------|---------------------------------|----------------------------------|------------------------------------------------------|
| B*0702                | 1.1000                                                      | 0.0001                                 | 0.0280                          | 0.0006                          | 0.0018                                      | 0.0003            | 0.1700<br>0.0230                | 0.0240                           | 6.0019<br>5.8000<br>0.0007                           |
| No. of<br>Amino Acids | ∞ 2 I ∞ 2 I                                                 | ∞∽⊑∞∞                                  | ∞ O₁ O₁ ∞                       | ∞ o I ∞ I                       | <b>∞ ၁</b> ٠ ∞ <i>Ο</i> ٠ ∞ ο               | ∞ <u>Q</u> ∞      | o 6 1 8 0                       | o o o o o o                      | <u></u>                                              |
| Position              | . 88888                                                     | 124<br>124<br>53<br>330<br>215         | 211<br>215<br>211<br>361        | 78<br>78<br>295<br>295          | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9       | 618<br>84<br>84   | 184<br>184<br>56                | 52<br>182<br>183<br>183          | 80<br>277<br>277<br>292<br>292<br>141<br>239         |
|                       |                                                             |                                        |                                 |                                 | :                                           |                   |                                 |                                  |                                                      |
| •                     | ·                                                           |                                        | ·                               |                                 |                                             |                   |                                 | ·                                | •                                                    |
| Protein               | PSA<br>PSA<br>PSA<br>Kallikrein<br>Kallikrein<br>Kallikrein | PAP<br>PAP<br>PAP<br>PSM<br>Kallikrein | PSA<br>Kallikrein<br>PSA<br>PAP | PSA<br>PSA<br>PSM<br>PSM<br>PSM | PSA · PSA Kalikrein Kalikrein Kalikrein PSM | PSK<br>PSK<br>PSA | PSA<br>PSA<br>Kallikrein<br>PSA | r SA<br>Kallikrein<br>PSA<br>PAP | PSM<br>PAP<br>PAP<br>PAP<br>PSM<br>PSM<br>PSM<br>PAP |

137

Table XI
Prostate B07 Supermotif Peptides with Binding Data

Protein

|                | All            | Allino Acids |        |
|----------------|----------------|--------------|--------|
|                |                | ţ            |        |
| Kallikrein     | 239            | v :          | •      |
| Madina         | 681            | :: 5         | 0,000  |
|                | 180            | 2 =          | 7000   |
| F 5141         | 100            | ; ∘          |        |
| Kallikasi      | 9.7<br>9.7     | o =          |        |
| DCA            | 33             | - 00         |        |
| V V            | 33             | · .          |        |
|                | 703            | : 0          |        |
|                | 503            | • •          | 0,0011 |
|                | 200            | n :          | 0.0011 |
|                | 593            | 2:           | 0.0150 |
| PSM            | 593            |              |        |
| PAP .          | 156            |              | 0.0049 |
| PAP            | <del>3</del> 4 |              | 0.0360 |
| MSM            | 248            |              |        |
| DAP            | 307            |              | 0.000  |
|                | 200            |              | C#000  |
| 120C           | 707            |              | 0.0.00 |
| PSS .          | 587            |              |        |
| PAP            | 223            |              | 0.0032 |
| Kallikrein     | 141            | •            |        |
| PSA            | 137            | ∞            |        |
| PSM            | 169            | ∞            |        |
| PSM            | 691            | 6            | 0.0001 |
| PSM            | 169            |              |        |
| PAP            | 133            |              | 0.0026 |
| PAP            | 133            | •            |        |
| PSM            | 657            | •            |        |
| PSM .          | 314            |              | 0.0012 |
| PAP            | 125            |              |        |
| PAP            | 125            |              |        |
| WSd            | 159            |              | •      |
| MSd            | 148            | . 2          | 10001  |
| Nya.           | 148            | 2 -          | 10000  |
| No.            | 771            |              |        |
|                | 147            | · =          |        |
| . Myd          | 146            | : 0          | 1000   |
|                |                | n 0          | 0.0001 |
| TY DAM         | 80r<br>80r     | 0 =          | •      |
| 0 Y Q          | 230            |              |        |
|                | 621            | ο :          |        |
| 7AT<br>7-1111- | 23             | 2 :          | 0.2400 |
| Kallikrein     | S :            | <b>&gt;</b>  |        |
| PSA :          | .32            | ∞ ;          |        |
| Kallikrein     | 211            | 9:           |        |
| Kallikrein     | 112            | = "          |        |
|                | 684<br>684     | <b>30</b> (  |        |
| Non            | 488            |              | 0.4700 |

| Table X1 | tate B07 Supermotif Peptides with Binding Data |
|----------|------------------------------------------------|
|          | Prostate 1                                     |
|          |                                                |

|                   |   | Prostate B07 Sup- | Prostate B07 Supermotif Peptides with Binding Data | nding Data |   |
|-------------------|---|-------------------|----------------------------------------------------|------------|---|
| Protein           |   | Position          | No. of<br>Amino Acids                              | B*0702     | 1 |
| PSM<br>PSA        |   | 684               | 01 9                                               | 0.7200     | ì |
| PSA<br>PSA        |   | 108               | 2 = 4                                              |            |   |
| PSM               |   | 414               | × 0+                                               | 0.7800     |   |
| PSM<br>Kallikrein |   | 411               | -∏ ca                                              | •          |   |
| Kallikrein        |   | 167               | •9                                                 |            |   |
| PSM<br>MSd        |   | 17                | or S                                               | 0.3200     |   |
| PSM               |   | 17                | 2 =                                                | 2.2000     |   |
| PSA               |   | 235               | <b>:</b>                                           |            |   |
| PSA               |   | 235               | <b>~</b> ;                                         |            |   |
| PSM               |   | 235<br>483        | <b>3</b> 2                                         |            |   |
| PSM               |   | 203               | 9.                                                 | 0.0020     |   |
| PAP               | , | <b>4</b> .        | =                                                  |            |   |
| PSM               |   | 165               | <u>0</u> , <u>.</u>                                | 0.0002     |   |
| PAP               |   | 348               | ; o                                                | 0.0066     |   |
| PAP               |   | 348               | <u>0</u>                                           | 0.0002     |   |
| PSM               |   | 269<br>269        | > ∙                                                | 0.0023     |   |
| PSM               |   | 569               | ,01                                                | 0.0001     |   |
| NS A              |   | 269<br>53         | :: a                                               |            |   |
| PSM               |   | 8 K               | <b>₽</b>                                           | 0.0990     |   |
| PSM               |   | 53                | , <u>0</u> .                                       | 0.0200     |   |
| PVA<br>PVA        |   | 163               | æ- <u>`</u>                                        | ,          |   |
| PSM               |   | 163               | ⊇.∞                                                | 0.0006     |   |
| PSM               |   | 467               | =                                                  |            |   |
| Kallikrein        |   | × ×               | <b>∞</b> •∂                                        |            |   |
| PAP               |   | 146               | h · 000                                            |            |   |
| PAP               |   | 146               | on :                                               | 0.0002     |   |
| PAP               |   | 146<br>146        | <b>9</b> =                                         | 0.0011     |   |
| Kallikrein        |   | 6                 | ·                                                  |            |   |
| PSM<br>PAP        |   | 325               | · en · e                                           | 0.0039     |   |
| PAP               |   | 3 33              | - =                                                |            |   |
| PSM<br>Myd        |   | 272               |                                                    |            |   |
| PSW               |   | 549<br>549        | <b>-</b> ===                                       |            |   |
| PSM               |   | 119               | <del>С</del> я                                     | 0.0001     |   |

| Sinding Data                                                | B*0702                | 0.0035 |
|-------------------------------------------------------------|-----------------------|--------|
| Table X1 Prostate B07 Supermotic Peptides with Binding Data | No. of<br>Amino Acids | ; 10   |
| Prostate B07 Su                                             | Position              | 119    |
|                                                             | •                     |        |

Protein

PSM

|           | th Binding Data            | No. of   |
|-----------|----------------------------|----------|
| Table XII | Prostate B27 Supermotif wi | Position |

. Protein

| <b>862</b> 1016:                                                                 | :aa2==a2∞=∞2=∞=a=a                                                                                    | ∞∞=∞∞≥=∞∞≥=∞∞=∞≥∞                                                                       |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 84<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 222<br>323<br>33<br>130<br>130<br>183<br>183<br>183<br>183<br>183<br>183<br>183<br>183<br>183<br>183  | 313<br>597<br>609<br>654<br>654<br>683<br>683<br>683<br>110<br>110<br>110<br>563<br>563 |
|                                                                                  |                                                                                                       |                                                                                         |
| Kallikrein<br>PSA<br>PSA<br>PSA<br>Kallikrein<br>Kallikrein                      | PSM<br>PAP<br>PAP<br>PAP<br>PSM<br>Kallikrein<br>PSM<br>PAP<br>PAP<br>Kallikrein<br>Kallikrein<br>PSM | PAP<br>PSM<br>PSM<br>PSM<br>PSM<br>PAP<br>PAP<br>PAP<br>PAP<br>PAP<br>PAP               |

|         | g Data        |
|---------|---------------|
| XII     | f with Bindin |
| Table X | Supermotif    |
|         | Prostate B27  |

| No. of<br>Amino Acids | 0=000=0=0000=0000000000000000000000000                                                                                                                |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Position              | 321<br>321<br>321<br>321<br>322<br>323<br>324<br>324<br>324<br>324<br>326<br>326<br>336<br>336<br>336<br>337<br>336<br>337<br>337<br>337<br>337<br>33 |
|                       |                                                                                                                                                       |
| Protein               | PAP PAP Kallikrein PSA Rallikrein PSA PAP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS                                                          |

| Table XII | tate B27 Supermotif with Binding Data |
|-----------|---------------------------------------|
|           | Prostate B2                           |

| Protein      | Position            | No. of<br>Amino Acids |
|--------------|---------------------|-----------------------|
| Q Y Q        | Orc                 | <u>-</u>              |
| Mud          | 547<br>9 <b>7</b> £ |                       |
| MSA          | 346                 |                       |
| PAP          | 9 95<br>95          | 0.                    |
| PSM          | 70                  | ¦ ∞                   |
| PSM          | 9,0                 | . =                   |
| PSM          |                     | 01                    |
| PAP          | . SS                | ¦ oc                  |
| PAP          | \$8                 | 6                     |
| PSA          | 63                  | . ∞                   |
| PSA          | 63                  | o                     |
| PAP          | 101                 | 01                    |
| PAP          | 104                 | 11                    |
| PSM          | \$5                 | 00                    |
| PSM .        | \$\$                | 11                    |
| PSM          | 219                 | Φ                     |
| PSM          |                     |                       |
| Kallikrein   |                     | ∞                     |
| PSA          | 29                  | •                     |
| . Kallikrein | 33                  | م:                    |
| Kallikrein   | E :                 | 0:                    |
| Kallikrein   |                     | = -                   |
| 401<br>401   | 67 ·                | » <u>S</u>            |
| - 400<br>400 | 67                  | 2 =                   |
| Z Z Z        | 406                 |                       |
| ∑            |                     | : 2                   |
| PAP          | 780                 | <b>}</b> ∞o           |
| PSA          | 591                 | • •                   |
| PSA          | 165                 | 01                    |
| PSA          | 165                 | =                     |
| Kallikrein   | 89                  | 00                    |
| PSM          | 499                 | œ                     |
| PSM          | 667                 | =                     |
| PAP          | 272                 | 0                     |
| PAP          | 6/1                 | 6                     |
| PAP          | 621                 | <b>9</b>              |
| PAP          | 179                 | = '                   |
| NSA<br>NSA   | 729                 | <b>&gt;&gt;</b> (     |
| No.          | 67 <i>1</i>         | > =                   |
| PAP          | 77.<br>18           | ÷                     |
| ∑ Sign       | , v                 | . 00                  |
| PSM          |                     | ) <b>O</b>            |

| Table XII | Prostate B27 Supermotif with Binding Data |
|-----------|-------------------------------------------|
|-----------|-------------------------------------------|

| No. of<br>Amino Acids | _ 0 0 ∞ 0 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0                               |
|-----------------------|-----------------------------------------------------------------------|
| Position              | 233<br>233<br>233<br>233<br>233<br>233<br>233<br>233<br>233<br>233    |
|                       |                                                                       |
|                       |                                                                       |
| ·                     |                                                                       |
| Protein               | PSM PAP PAP PAP RAllikrein PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS |

| Table XII | Prostate B27 Supermotif with Binding Data |
|-----------|-------------------------------------------|

| No. of<br>Amino Acids | 2=2∞=∞o=o∞o∞2=∞o=∞=0o2o0∞oo==∞0o=∞oo==                                                                                     |            |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------|------------|
| Position              | 192<br>192<br>193<br>194<br>195<br>196<br>197<br>197<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198<br>198 | 303<br>178 |
|                       |                                                                                                                            |            |
| Protein               | PSM                                                                                    | PSM<br>PAP |

| Table XII<br>Prostate B27 Supermotif with | • | Binding Data                 |
|-------------------------------------------|---|------------------------------|
| _                                         |   | Prostate B27 Supermotif with |

| No. of<br>Amino Acids | I∞≒∞□≒⊙∞□∞∞∞∞⊙≒⊙≒∞≒∞≒∞□⊙□□□±∞∞⊙⊙□□□±∞□                                                                                                                                                 | , œ |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Position              | 178<br>186<br>186<br>254<br>256<br>88<br>88<br>88<br>256<br>256<br>256<br>256<br>256<br>256<br>256<br>256<br>257<br>258<br>258<br>258<br>258<br>258<br>258<br>258<br>258<br>258<br>258 | 207 |
| Protein               | PAP PSA PSA PSA PSA PSA PSM PSM PSM PAP PAP PAP PAP PAP PAP PAP PAP PAP PA                                                                                                             | PAP |

| Table XII | Frestate D4/ Supermout with binging Data |
|-----------|------------------------------------------|
|-----------|------------------------------------------|

|                                           |             |       |     |     |      |     |      |     |     |     |          |          |            |     |              |            |     |            |     |     |     |     |            |      |     |     |     |     |                   | •           |      |      |            |     |          |            |      |            |     |     |     |
|-------------------------------------------|-------------|-------|-----|-----|------|-----|------|-----|-----|-----|----------|----------|------------|-----|--------------|------------|-----|------------|-----|-----|-----|-----|------------|------|-----|-----|-----|-----|-------------------|-------------|------|------|------------|-----|----------|------------|------|------------|-----|-----|-----|
| BIRL Zinining I                           | Amino Acids | 9     | 2 = | : 0 | . 01 | :=  | . 00 | 6   | 00  | σ.  | =        | ۹.       | <b>3</b> ( | > = | <b>≓</b> σ   | <b>n</b> Ø | ۰.  | . 2        | 9   | 9   | ∞ ; | = • | <b>~</b> S | 2 00 | • • | 6   | 01  | = ' | ο (               | <b>&gt;</b> | 2 5  | 2 == | =          | Ξ   | =        | ο (        | oc I | <b>≓</b> ∝ | : O | . 2 | ••• |
| LOSIGIC DA CAUDELINGUI WALL DINUING PARTS | rosinon     | 04    |     | 439 | 439  | 439 | 256  | 256 | 123 | 123 | 478      | 189      | 498        | 733 | . 567<br>878 | 244        | 240 | 244        | 240 | 353 | 395 | 395 | 218        | 474  | 294 | 183 | 183 | 183 | 22                | 10          | Ç. 2 | 143  | 247        | 243 | 342      | 214        | 030  | 728        | 728 | 728 | 239 |
| 4                                         |             |       |     |     |      |     |      |     |     |     |          |          |            |     |              |            |     |            |     |     |     |     |            |      |     |     |     |     |                   |             |      |      |            |     |          |            |      |            |     |     |     |
|                                           |             |       |     |     |      |     |      |     |     |     |          |          |            |     |              |            |     |            |     |     | •   |     |            |      |     |     |     |     |                   |             |      |      |            |     |          |            |      |            |     |     |     |
| Protein                                   |             | . ASd | PSA | PSM | PSM  | PSM | PAP  | PAP | PSM | PSM | ESA<br>E | PSA<br>Y | DAD        | PAP | PSM          | Kallikrein | PSA | Kallikrein | PSA | PSM | E S | PAD | PAP        | PSM  | PSM | PSA | PSA | PSA | Naliikain<br>De A | Kallikrein  | PSA  | PAP  | Kallikrein | PSA | ESM<br>S | Wod<br>Mod | NS.  | PSM        | PSM | PSM | PSM |

| Table XII Prostate B27 Supermotif with Binding Data |
|-----------------------------------------------------|
|-----------------------------------------------------|

|            | Prostate 627 Supermotity | with Binding Data                       |
|------------|--------------------------|-----------------------------------------|
| Protein    | Position                 | No. of<br>Amino Acids                   |
| ANG.       | 239                      | Q.                                      |
| PSM        | 579                      | ? ∽                                     |
| PSM        | 579                      | . 01                                    |
| PSM        | 001                      | ; <b>6</b>                              |
| PSM        | 100                      | ======================================= |
| PSM        | 319                      | •                                       |
| PSM        | 319                      | =                                       |
| PSM        | . 410                    |                                         |
| PSM        | 410                      |                                         |
| PSM        | 410                      | . 01                                    |
| PSM        | 572                      | <b>∞</b>                                |
| PSM        | 552                      | <b>∞</b>                                |
| PSM.       | . 552                    | 01                                      |
| PSW        | . 252                    | =                                       |
| PAP        | 184                      | <b>∞</b>                                |
| PAP        | <del>7</del>             | 11                                      |
| PAP        | 26                       | <b>∞</b>                                |
| PAP        | 280                      | O                                       |
| PAP        | 68                       | 6 .                                     |
| Kallikrein | 249                      | Φ                                       |
| PSA        | 245                      | ٥                                       |
| Kallikrein | . 249                    | 01                                      |
| Kallikrein | 249                      | 11.                                     |
| PSA        | 245                      | 01                                      |
| PSA        | . 245                    | =                                       |
| PAP        | 331                      | 01 .                                    |
| PSM        | 279                      | œ                                       |
| PSM        | 279                      | σ                                       |
| PSM        | 279                      | ==                                      |

| Table XIII | Prostate B58 Supermotif with Binding Data |
|------------|-------------------------------------------|
|------------|-------------------------------------------|

| No. of<br>Amino Acids | 60×6×60==6=6=60×60=×=×60=×=×60==×0=×6=60=×6=60=×60=×                             |
|-----------------------|----------------------------------------------------------------------------------|
| Position              | 747<br>748<br>749<br>749<br>749<br>749<br>749<br>749<br>749<br>749<br>749<br>749 |
| Protein               | PSM PSM PSM PSM PSM PSA PSA PAP PAP PAP PAP PAP PAP PAP PAP                      |

| TIX. | tif with Binding Data |
|------|-----------------------|
|      | Prostate B58 Super    |

| Protein            |   | Position  | No. of Amino Acids |
|--------------------|---|-----------|--------------------|
| PSM                | - | 22        | 11                 |
| Kallikrein         |   | 234       | ; ∞                |
| Kallikrein         |   | 234       | 6                  |
| Kallikrein         |   | 234       | 0.                 |
| PoA<br>PoA         |   | 230       | <b>→</b> 5         |
| PSA                |   | <u> </u>  | 20                 |
| Kallikrein         |   | 184       | <b>\</b>           |
| PSA                |   | 205       | a                  |
| PSA                |   | 205       | 10                 |
| PSM                |   | <u>86</u> | œ <b>;</b>         |
| PSM                | • | 196       | 0                  |
| PAP                |   | 347       |                    |
| Kallikrein         |   | 4         | ¦ ∞                |
| PSM                |   | 466       |                    |
| PSM                |   | 466       | σ.                 |
| PSM                |   | 422       | <b>∞</b> ;         |
| Pom                |   | 710       | 2 "                |
| FSM<br>PSA         |   | 130       |                    |
| Kallikrein         | • | 212       | · :                |
| PSA                |   | 208       | :=                 |
| PSM                |   | 630       | . 01               |
| Kallikrein<br>ne A |   | 116       | <b>.</b>           |
| rsA<br>Kalikrein   |   | 711       | <b></b>            |
| PSA                |   | 112       | · •                |
| Kallikrein         |   | 116       |                    |
| PSA                |   | 112       | 11                 |
| . Non              |   | £ 5.      | ∞ :                |
| MSM                |   | 316       | <b>3</b> ∞         |
| PSM                |   | 316       | , 01               |
| PSM                |   | 901       | ∵∞ .               |
| PSM                |   | 901       | 10                 |
| PSM                |   | 90.       | Ξ°                 |
| Kallikrein         | • | 207       | o <u>-</u>         |
| PAP                |   | 15        | ; oc               |
| Kallikrein         |   | . 58      | · 00               |
| PSA                |   | æ ;       | 00 (               |
| rar                |   | 730       | D. (               |
|                    | - | 224       | n                  |

| l<br>dth Binding Data                                | No. of<br>Amino Acids | 01  | =   | Ξ• | ∞ \$ | 2 5 | 2 4 | × = | 2 = | ; a | , <u>-</u> | 2 ∝ | <b>&gt;</b> | : 00 | === | · 000 | 6  | . 01 | <b>~</b> | 00 O |     | 2 = | : 6 | 10  | =   | 6   | 10  | <b>∞</b> ( | <b>&gt;</b> 0 | • • | <b>\</b> = |     | . 01 | = . | œ <u>-</u> | 2.5 | 2 =          | : = |     | 01  | <b>∞</b> |
|------------------------------------------------------|-----------------------|-----|-----|----|------|-----|-----|-----|-----|-----|------------|-----|-------------|------|-----|-------|----|------|----------|------|-----|-----|-----|-----|-----|-----|-----|------------|---------------|-----|------------|-----|------|-----|------------|-----|--------------|-----|-----|-----|----------|
| Table XIII Prostate B58 Supermotif with Binding Data | Position              | 290 | 290 | 48 | 782  | C87 | 100 | 202 | 703 | 317 | 917        | 9   | 39          | 216  | 216 | 56    | 95 | 56   |          | 0/1  | 25. | 542 | 334 | 334 | 334 | 557 | 557 | 356        | 926           | 418 | 4 4        | 161 | 633  | 633 | 646        | 300 | . 546<br>S46 | 25  | 337 | 337 | 639      |
|                                                      |                       |     |     |    |      |     |     |     |     |     |            |     |             |      |     |       |    |      |          |      |     |     |     |     |     |     |     |            |               |     |            |     | ,    |     |            |     | •            |     |     | •   |          |

| Table XIII | Prostate B58 Supermotif with Binding Data |
|------------|-------------------------------------------|
|------------|-------------------------------------------|

| No. of<br>Amino Acids | . 01 | } ∞ | ≘:  | 2:  | <b>∷</b> ∝ |     | . 2 | æ   | 6   | ≘:   | = •   | • •        | 01  | =   | 01         | Ξ,         | <b>o</b> s o | • 0        | <b>.</b> 9 | : œ        | œ     | 6          | a   | 6   | <b>00</b> ( | σ, ο | 000        | n 0 |            | , 00 | 01  | 01 .       | ∞          | 6          | 10         | -<br>• |      | ⊇,         | <b>~</b> |
|-----------------------|------|-----|-----|-----|------------|-----|-----|-----|-----|------|-------|------------|-----|-----|------------|------------|--------------|------------|------------|------------|-------|------------|-----|-----|-------------|------|------------|-----|------------|------|-----|------------|------------|------------|------------|--------|------|------------|----------|
| Position              | 333  | 11  | 737 | 12  | 71<br>10t  | 301 | 263 | 221 | 24  | \$ 5 | \$7 F | 2 5<br>2 4 | 364 | 364 | 91         | 16         | 311          | 516<br>516 | 516        | 158        | 154   | 158        | 154 | 321 | \$2         | 82   | 1403       | 145 | 94         | 6    | 06  | 94         | 34         | ¥.         | 34.        | 30     | 0E 3 | 30         | 34)      |
|                       |      |     |     |     |            |     |     |     |     |      |       |            |     |     |            |            |              |            |            |            |       |            |     |     |             |      |            |     |            |      |     |            |            |            |            |        |      |            |          |
| <u>-</u>              |      |     |     |     |            |     |     |     |     |      |       |            |     |     |            |            |              |            |            |            |       |            |     |     |             |      |            |     |            |      |     |            |            |            |            |        |      |            |          |
| Protein               | PSM  | PSM | PSM | PSA | PSM        | PSM | PSM | PSM | PSM | PSM  | No.   | PSM        | PSM | PSM | Kallikrein | Kallikrein | PSM          | PSM        | PSM        | Kallikrein | PSA . | Kallikrein | PSA | PSM | PSM         | PSM  | Kollibrein | PSA | Kallikrein | PSA  | PSA | Kallikrein | Kallikrein | Kallikrein | Kallikrein | PSA    | PSA  | 134<br>100 | PSM      |

| 24 | Table XIII | rostate B58 Supermotif with Binding Data |
|----|------------|------------------------------------------|
|    |            | Pro                                      |

| No. of Amino Acids | 0   | 0.5  | 2 -   | <u>.</u> 5 | 2 5        | 2 =        | ; oc | oc  | . 0 | . 01 | 11  | 9   | O   | 6    | <b>∞</b>   | 10         | <b>o</b> n : | 0:         |              | 요 :        |           | 2;    | <b>≓</b> '                   | <b>00</b> ( | ъ <u>5</u> | 2 c | ν S.   | 2 = | ; 0 | · 0·  | . 21 | 01  | <b>∞</b> ( | ъ.;   | 2 6 | <b>~</b> = | <u>:</u> | . σ. | 02    | 2   | =   |
|--------------------|-----|------|-------|------------|------------|------------|------|-----|-----|------|-----|-----|-----|------|------------|------------|--------------|------------|--------------|------------|-----------|-------|------------------------------|-------------|------------|-----|--------|-----|-----|-------|------|-----|------------|-------|-----|------------|----------|------|-------|-----|-----|
| Position           | 553 | 553  | 144   | 283        | 1 00       | 000        | 202  | 530 | 642 | 881  | 128 | 512 | 614 | 175  | 132        | 132        | 52           | 52         | 52           | 226        | 226       | 222   | 777                          | 90          | 99         | 9   | 5.C.C. | 733 | ) E | 655   | 655  | 200 | 255        | 722   | 255 | <b>‡</b> % | 240      | 122  | . 122 | 623 | 623 |
|                    |     |      |       |            |            |            |      |     |     |      |     |     |     |      |            |            |              |            |              |            |           |       |                              |             |            |     |        |     |     |       |      |     |            |       | •   |            |          |      |       |     |     |
|                    |     |      |       |            |            |            |      |     |     |      |     |     |     |      |            |            |              |            |              |            |           |       |                              |             |            |     |        |     |     |       |      |     |            |       |     |            |          |      |       |     |     |
| Protein            | PSM | PSM. | 7 A G | PSM        | Kallikrein | Kallikrein | PSM  | PSM | PSM | PAP  | PSM | PSM | PSM | PSA. | Kallikrein | Kallikrein | PSM<br>Por   | PSM<br>PSM | rsm<br>V-III | Kallikrein | Kallikrem | V V V | 7.50<br>7.50<br>7.50<br>7.50 | LOIM<br>DOM | PCM        | MSd | PSM    | PSM | PAP | . WSA | PSM  | PSM | PAP<br>DAD | . באם | Myd | PSA        | PSM      | PSM  | PSM   | PSM | rom |

| Sinding Dat                     |
|---------------------------------|
| Table XII<br>e B58 Supermotif y |
| Prostat                         |

| No. of<br>Amino Acids | 0.000000000000000000000000000000000000                                                                              |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|
| Position              | 120<br>219<br>219<br>228<br>238<br>83<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31 |
| Protein               | PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS                                                                          |

|   | œ            |
|---|--------------|
|   | Ħ            |
|   | 3            |
|   | ij           |
|   | Bind         |
|   | ᆿ            |
| Ξ | $\mathbf{E}$ |
| × | 폌            |
| ᆿ | ğ            |
| 4 | a            |
|   | ā            |
|   | 8            |
|   | 3            |
|   | 펿            |
|   | ä            |
|   | 4            |

| No. of<br>Amino Acids |                                                                                                                                                        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Position              | 117<br>118<br>128<br>128<br>162<br>163<br>114<br>114<br>114<br>114<br>117<br>118<br>119<br>119<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129 |
|                       |                                                                                                                                                        |
| Protein               | PSM PSA                                                                                                            |

## Table XIII Prostate B58 Supermotif with Binding Data

| No. of<br>Amino Acids | 0186              |
|-----------------------|-------------------|
| Position              | 240<br>349<br>349 |

|     | •                                                                                      |
|-----|----------------------------------------------------------------------------------------|
|     |                                                                                        |
| •   |                                                                                        |
| 244 | 69<br>69<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 |

|    | •                                       | •                                                    |            |          |            |
|----|-----------------------------------------|------------------------------------------------------|------------|----------|------------|
| .= |                                         | PSA<br>PSA<br>PSM<br>PSM<br>PAP<br>PAP<br>PAP<br>PSM | . <u>Ę</u> | ٠.       |            |
| 8  |                                         | •                                                    | <u> </u>   |          | 55 555     |
| ₹, | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 462223993239                                         | ZZZZ=999   | いいないないのの |            |
| 2  | PSSPS                                   | P P P P P P P P P P P P P P P P P P P                | 2222322    | 222222   | ********** |
|    |                                         | •                                                    |            |          |            |

| Table XIII | Prostate B58 Supermotif with Binding Data |
|------------|-------------------------------------------|

| Protein         | Position    | No. of<br>Amino Acids |  |
|-----------------|-------------|-----------------------|--|
| PAP             | 28          | œ                     |  |
| PAP             | <b>78</b>   | , 01                  |  |
| PAP             | 28          | ==                    |  |
| MS <sub>d</sub> | 181         | <b>00</b> (           |  |
| PSM<br>PSM      | 414         | œ                     |  |
| PSM             | 414         | <u>o</u> :            |  |
| rA.             |             | 0:                    |  |
| TAT .           |             | <b>=</b> •            |  |
| W.Y.            | 791         | ∞ ;                   |  |
| DAD             | 787         | <u>o</u> •            |  |
| pkp             | ,<br>,<br>, | <b>.</b> .            |  |
| PAP             | 115         | , <u>c</u>            |  |
| PSM             | . 312       | } ∞                   |  |
| PSM ·           | 01          |                       |  |
| PSM             | 634         | . თ                   |  |
| PSM             | 634         | 01                    |  |
| Kaljikrein      | 117         | <b>•</b>              |  |
| PSA             | 113         | <b>∞</b>              |  |
| Kallikrein      | 117         | 01                    |  |
| PSA             | 113         | 01                    |  |
| FSM             | 695         | 11                    |  |
| POW TOWN        | 404         | <b>5</b> ^ :          |  |
| FOM             | 454         | Ξ,                    |  |
| TOW DAG         | <b>.</b>    | × ;                   |  |
| NSO             | 10 5        | 2 0                   |  |
| Non             | 217         | <b>&gt;</b> ;         |  |
| 1010 P          | 203         | 11                    |  |
| pAp             | S -         | •                     |  |
| PAP             | 901         | o                     |  |
| PAP             | 901         |                       |  |
| PSM             | 431         | : =                   |  |
| PSM             | 348         | ; ∞                   |  |
| PSM             | 348         | •                     |  |
| PSM             | 348         | 11                    |  |
| PSM             | 338         | 6                     |  |
| PSA             | 58          | =                     |  |
| PSM             | 14          | ∞                     |  |
| PSM             | 14          | 10                    |  |
| PSM             | 141         | =                     |  |
| Kallikrein      | 227         | <b>ው</b> (            |  |
| Kalikrein       | 227         | 2,                    |  |
| FOA             | 577         | ,                     |  |

| No. of<br>Amino Acids | 0 8 8 1 1 8 6 2 8 6 2 8 6 2 8 6 2 8 6 2 8 6 2 1 6 2 8 2 1 6 6 2 8 6 2 1 8 6 2 8 6 2 1 8 6 2 8 6 1 8 6 1 8 1 6 |
|-----------------------|---------------------------------------------------------------------------------------------------------------|
| Position              | 23<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150                                      |
| Protein               | PSA Kallikrein PSA PAP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS                                     |

| I<br>state BS8 Sup |
|--------------------|
|--------------------|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e e          | ' ;                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|
| rrotein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Position     | No. of<br>Amino Acids |
| A 2 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •            |                       |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b></b>      | 2 :                   |
| YOU. NEED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 77         | <b>:</b>              |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 434<br>434 | × a                   |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | n o                   |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47           | •                     |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 226          | · <u>=</u>            |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 206          | 2 ∞                   |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 206          | . 6                   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 764.         | 10                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 209          | 00                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 607          | 10                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 700          | σ.                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 700          | 01                    |
| N.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 692          | <i>.</i>              |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 692          | <u>o</u> ,            |
| Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/1          | ∞ ;                   |
| DAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5/1 E        | 2.4                   |
| 474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 210          | <b>≯</b> 5            |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 016          | 2 -                   |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 153          | ; oc                  |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 149          | ) oo                  |
| PSM '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 009          |                       |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 009          | · 0                   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 772          | . 00                  |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 772          | 01                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 772          | =                     |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 286          | <b>&amp;</b>          |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 286          | ==                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 228          | œ                     |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 228          | O                     |
| Nallikrein<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20           | ∞                     |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 880          | <b>o</b> :            |
| Natilikrein      | 80 °         | 01:                   |
| Natilikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43           | =:                    |
| TOTAL STATE OF THE | 612          |                       |
| Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 471          | Ξ.                    |
| MAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 579<br>579   | <b>∞</b> α            |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 625          | <b>^</b> =            |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 537          | : 01                  |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 243          | 01                    |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 239          | 01                    |

| Š       | Amino |
|---------|-------|
| osition |       |

. 243 460 460

ingion:

Kallikreir PSA PSM

| Table XIV | 362 Supermotif with Binding Data |
|-----------|----------------------------------|
|           | Prostate B                       |

| No. of<br>Amino Acids | ∞ o o ∞ o = = ∞ o ∞ o o o o o o o o o o                                                                                                 |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Position              | 299 299 291 291 291 291 292 293 293 293 293 293 293 293 293 293                                                                         |
|                       |                                                                                                                                         |
| Protein               | PAP PAP PAP PAP PAP PAP PAP PAP PAP PABlikrein PSA Kallikrein PSA Kallikrein PSA Kallikrein PSA PSM |

| 3 | Table XIV | tate B62 Supermotif with Binding Data |
|---|-----------|---------------------------------------|
|   |           | rostat                                |

Position

| 365<br>365<br>365<br>365<br>373<br>373<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41 | 020866                          | 22×1×6×62×6262111×6626112×6×2×121622×2                                                                                                                                      |
|----------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                    | 365<br>365<br>286<br>635<br>635 | 393<br>4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                              |
|                                                                                                    |                                 |                                                                                                                                                                             |
|                                                                                                    | ein                             | Kallikrein PSM PSM PSM Kallikrein RAllikrein PAP PAP PAP PSM Kallikrein PSM Kallikrein PSM Kallikrein PSM Kallikrein PSM Kallikrein PSA |

| Table XIV | Prostate B62 Supermotif with Binding Data |
|-----------|-------------------------------------------|
|-----------|-------------------------------------------|

| h Binding Data                                      | No. of<br>Amino Acids |                                                                                              |
|-----------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------|
| Table XIV Prostate B62 Supermotif with Binding Data | Position              | 266<br>267<br>267<br>267<br>367<br>367<br>366<br>666<br>666<br>666<br>666<br>666<br>666<br>6 |
|                                                     |                       |                                                                                              |
|                                                     | Protein               | PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM                           |

| Table XIV Prostate B62 Supermotif with Binding Data |  |
|-----------------------------------------------------|--|
|-----------------------------------------------------|--|

| Position No. of Amino Acids | 560 11<br>358 11 | 317 9 | 317 | 124 . 8 | 124 9 | 124 [1 | - |  |  |  |  | ٠ |   |   |     |   |  |  |  | 42 |  |
|-----------------------------|------------------|-------|-----|---------|-------|--------|---|--|--|--|--|---|---|---|-----|---|--|--|--|----|--|
|                             |                  |       |     |         |       |        |   |  |  |  |  |   | • |   |     | • |  |  |  | •  |  |
|                             |                  |       |     | •       |       |        |   |  |  |  |  |   |   | , | PSM |   |  |  |  |    |  |

| Table XIV | ostate B62 Supermotif with Binding Data |
|-----------|-----------------------------------------|
|           | Prosts                                  |

| No. of<br>Amino Acids | o=o====∞o=∞o=∞o=∞o=∞o=======0                               |
|-----------------------|-------------------------------------------------------------|
| Position              | 18 20 20 33 33 33 34 50 50 50 50 50 50 50 50 50 50 50 50 50 |
|                       |                                                             |
|                       |                                                             |
| Protein               | PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS                  |

## Table XIV Prostate B62 Supermotif with Binding Data

Position

Protein

No. of Amino Acids

| <u>-</u>                                      | > = ∞ = 2 ∞ o ∞ o ∘                                         | o =                                                                              | o ∞ ∞ = ∞ 9 9 = o = o = o o ∞                                                                     |
|-----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 204<br>707<br>104<br>106<br>196<br>196<br>175 | 427<br>305<br>305<br>288<br>140<br>140<br>295<br>295        | 7.4<br>168<br>168<br>168<br>582<br>582<br>330<br>211<br>215                      | 211<br>361<br>199<br>68<br>87<br>87<br>87<br>224<br>224<br>238<br>238<br>238<br>238<br>238<br>238 |
|                                               |                                                             |                                                                                  |                                                                                                   |
|                                               |                                                             |                                                                                  | ·                                                                                                 |
| PAP<br>PSM<br>PSM<br>PAP<br>PAP<br>PSM<br>PSM | PSM<br>PSM<br>PSM<br>PSM<br>Kallibrein<br>Kallibrein<br>PAP | PAP<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>Kallikrein<br>PSA<br>Kallikrein | PSA: PAP PAP PAP PAP PSA PSM PSM PSM PSM PSM PSM PSM Rallikrein PSA                               |

| Я |
|---|
|   |

| No. of<br>Amino Acids | **************************************                                                             |  |
|-----------------------|----------------------------------------------------------------------------------------------------|--|
| Position              | 88<br>252<br>253<br>253<br>254<br>345<br>345<br>345<br>345<br>345<br>345<br>345<br>345<br>345<br>3 |  |
| Protein               | PSA Kallikrein PSA PAP PAP PAP PAP PAP PAP PAP PAP PAP                                             |  |

# Table XIV Prostate B62 Supermotif with Binding Data Position Amino Acids

| _ |  |
|---|--|
| ŏ |  |
| Ξ |  |
| 8 |  |
| ~ |  |

|--|

|           | Binding Data            |
|-----------|-------------------------|
| Table XIV | ate B62 Supermotif with |
|           | Pros                    |

| No. of<br>Amino Acids | 6 I 2 I 8 8 2 I 2 6 2 8 2 I 2 I 2 8 6 I 2 8 8 I 8 I 8 2 I I 2 6 I 6 8 6 6 I 2 I 2 8 9                                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Position              | 131<br>139<br>139<br>131<br>131<br>133<br>133<br>133<br>133<br>133                                                                                                                            |
|                       |                                                                                                                                                                                               |
| Protein               | Kallikrein PSM PSM PSM PSM PSM PSM PSM PSM PSP PAP PAP PAP PAP PAP PAP PAP PAP PSM Kallikrein Kallikrein PSM Kallikrein PSM Kallikrein PSM Kallikrein PSM |

| ith Binding Data                                    | No. of<br>Amino Acids | o 2 : ∞ o 2 ∞ ∞ o 2 o : 2 ∞ o 2 ∞ o 2 i ∞ i ∞ o 2 i ∞ o 2 i ∞ i ∞ o 2 i ∞ o 2 i ∞ i ∞ i ∞ o 0 i o 2 i ∞ i ∞ i ∞ o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o 0 i o |
|-----------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table XIV Prostate B62 Supermotif with Binding Data | Position              | 305<br>21<br>21<br>34<br>44<br>44<br>306<br>668<br>668<br>668<br>668<br>668<br>668<br>668<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|   | 펿  |
|---|----|
|   | ã  |
|   | 6  |
|   | .5 |
|   | 몆  |
|   | 큶  |
|   | ד  |
|   | 豈  |
| N | ٤  |
| 7 | 닠  |
| ᆲ | 育  |
| ョ | 8  |
| 2 | ā  |
|   | 3  |
|   | Ø  |
|   | 얾  |
|   | ᇳ  |
|   | 9  |
|   | ఠ  |
|   | Ħ  |
|   | Ħ  |
|   | М  |

|       | = < | <b>o</b> ; | 2    | = . | 6   | σ.  |     | . 01 | ¿ oc       | <b>ɔ</b> œ | 0 ( | <b>20</b> ( | o,  | ∞          | Φ.         | 01  | 11    | ; oc |     | `=  |      | 2 =  | : œ | o I        |     | 0 0   | <b>^</b> 5 | 2:         | . 01 | <b>o</b> n ( | 01  | = : | 2   | <b>o</b> . | ∞          | ∞   | 9          | 01  | =          | =   | <b>∞</b> | • 00 | 01  | ٥          | o.  | ٥          |
|-------|-----|------------|------|-----|-----|-----|-----|------|------------|------------|-----|-------------|-----|------------|------------|-----|-------|------|-----|-----|------|------|-----|------------|-----|-------|------------|------------|------|--------------|-----|-----|-----|------------|------------|-----|------------|-----|------------|-----|----------|------|-----|------------|-----|------------|
| . 803 | 240 | 156        | ##S  | 248 | 307 | 289 | 289 | 223  | 171        | 127        | (6) | 191         | 167 | 171        | 171.       | 650 | . 650 | 442  | 447 | 447 | 25.0 | 25.0 | 202 | 267<br>700 | 230 | 75    | . 10       | /17        | 213  | 201          | 195 | 9   | 359 | 473        | 54         | 20  | 54         | 20  | 54         | 50  | 56       | 26   | 26  | 4          | 263 | 122        |
|       |     |            |      |     |     |     |     |      |            |            |     |             |     | ٠          |            |     |       |      |     |     |      |      |     |            |     |       |            |            |      | -            |     |     |     |            |            |     |            |     |            |     |          |      |     |            |     |            |
| MSd   | MC. | PAP        | rar. | PSM | PAP | PSM | PSM | PAP  | Kallibrain | DCA        | 73A | PSA         | PSA | Kallikrein | Kallikrein | PSM | PSM   | PSM  | PSM | PSM | PAP  | PAP  | PAP | DAP        | 700 | . POQ | Volition:  | Nallikrein | PSA  | PSM          | PSM | A S | FAP | PSM        | Kallikrein | PSA | Kallikrein | PSA | Kallikrein | PSA | PSM      | PSM  | PSM | Kallikrein | PAP | Kallikrein |

|           | Binding Data    |  |
|-----------|-----------------|--|
| Table XIV | Supermotif with |  |
|           | Prostate B62    |  |

|              | A VASIANCE AND SHIPE LINVIN | The Pulling Para      |   |
|--------------|-----------------------------|-----------------------|---|
| Protein      | Position                    | No. of<br>Amino Acids |   |
|              |                             |                       |   |
| PSA          |                             | •                     |   |
| PSA          | <u>8</u>                    | = .                   |   |
| Kallikrein · | 122                         | =                     |   |
| PAP          | 343                         |                       |   |
| PSM          | 663                         | ∵ ∞                   |   |
| PSM          | 663                         | 6                     |   |
| PSM          | 691                         | · oc                  |   |
| PSM          | 691                         |                       |   |
| WSd          | 691                         | `=                    |   |
| PSM          | 583                         | : 0                   |   |
| WSA          | 583                         | , C                   |   |
| MSd          | ) (X                        | ?=                    |   |
| PSM          | 69                          | : 0                   |   |
| MSA          | 257                         | \ ec                  |   |
| MSd          | <u> </u>                    | » «                   | • |
| MSd          | :5                          | 01                    |   |
| MSM          | : 55                        | :=                    |   |
| PAP          | 611                         |                       |   |
| PSM          | . "                         | : o                   |   |
| PSM          | ı m                         | 10                    |   |
| PSM          | ) M                         | 2 =                   |   |
| PSM          | 260                         | ; <b>o</b>            |   |
| PSM          | 57                          | Φ.                    |   |
| PSM          | 57                          | =                     |   |
| Kallikrein   | 102                         | 01                    |   |
| PAP          | 133                         | 0                     |   |
| PAP          | 133                         | =                     |   |
| PSM          | 657                         | •••                   |   |
| PSM          | 328                         | <b>2</b> 1            |   |
| PSM          | 357                         | •                     |   |
| PSM          | 357                         | 01                    |   |
| PSM          | 153                         | •                     |   |
| PSM          | 153                         |                       |   |
| PAP          | 49                          | 01                    |   |
| PSM          | 296                         | 01                    |   |
| PSM          | 296                         |                       |   |
| PAP          | 57                          | =                     |   |
| PAP          | 134                         | <b>∞</b>              |   |
| PAP          | 134                         | 2                     |   |
| PAP          | 140                         | σ.                    |   |
| PSM          | 658                         | . 11                  |   |
| PAP          | 352                         | <b>00</b> 1           |   |
| AA.          | 352                         | Φ.                    |   |
| PSM          | 9/9                         | <b>5</b>              |   |

| No. of<br>Amino Acids | 2×=×=×22×62×62×==22×2×622×==2=×=6×=66=262=×                                                                                                 | 9 11       |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Position              | 678<br>153<br>164<br>144<br>144<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168                                       | 185<br>185 |
|                       |                                                                                                                                             |            |
| Protein               | PSM PSA PSA Rallikrein PAP PAP PAP PAP PAP PSM Rallikrein PSA PSM Rallikrein PSA PSM Rallikrein PSA PSM | PSA<br>PSA |

|           | ith Binding Data                          | • | No. of   |
|-----------|-------------------------------------------|---|----------|
| Table XIV | Prostate B62 Supermotif with Binding Data |   | Position |

| ·                                                           | 22=∞∽2=∽=∞=∞0=2∞2∞∞∞2=2=∞2∞                                                                                                       | ∞ o 2 o 2 i 2 i ∞ 2                                                          |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 388<br>388<br>57<br>53<br>53<br>293<br>293                  | 253<br>276<br>276<br>276<br>277<br>273<br>273<br>274<br>275<br>276<br>276<br>276<br>277<br>277<br>277<br>277<br>277<br>277<br>277 | . 33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33 |
|                                                             |                                                                                                                                   |                                                                              |
|                                                             |                                                                                                                                   |                                                                              |
| PSM<br>PSM<br>Kallikrein<br>PSA<br>PSA<br>Kallikrein<br>PSM | PSM Kallikrein PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS                                                                 | PSA<br>Kallikrein<br>Kallikrein<br>PSA<br>PSA<br>PSA<br>PSA<br>PSA           |

| ä | Table XIV | state B62 Supermotif with Binding Data |
|---|-----------|----------------------------------------|
|   |           | rostat                                 |

| No. of<br>Amino Acids |                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Position              | 578<br>877<br>727<br>729<br>527<br>527<br>527<br>527<br>527<br>527<br>649<br>649<br>649<br>662<br>662<br>662<br>663<br>664<br>664<br>664<br>665<br>665<br>667<br>668<br>668<br>668<br>668<br>669<br>670<br>671<br>671<br>671<br>671<br>671<br>671<br>671<br>672<br>673<br>673<br>673<br>674<br>675<br>676<br>677<br>677<br>678<br>678<br>678<br>678<br>678<br>678<br>678 |
|                       |                                                                                                                                                                                                                                                                                                                                                                          |
| Protein               | PSM PSA PSA Kallikrein PSM                                                                                                                                                                                                                                                                                                           |

| Table XIV | Prostate B62 Supermotif with Binding Data |
|-----------|-------------------------------------------|
|           | 머                                         |

|              | Prostate 604 Supermont | With Binding Data     |
|--------------|------------------------|-----------------------|
| Protein      | Position               | No. of<br>Amino Acids |
|              | 310                    |                       |
| PSA<br>PSA   |                        | = ∞                   |
| PSM          | 730                    | 2                     |
| PSM          | . 463                  | œ                     |
| PSM .        | 463                    | Ф:                    |
| PSM          | 463                    | Ξ,                    |
| Kallikrein   | 99                     | ∞ <u>-</u>            |
|              | 7                      | <b>≓</b> ∞.           |
| MSA          | 455                    | 0                     |
| Kallikrein   | . 651                  | ? ∞                   |
| PSA          | 155                    | <b></b>               |
| PSM          | 129                    | 01                    |
| PSM          |                        | = 4                   |
| Wood<br>Wood | 167                    | » C                   |
| PSM          | 613                    | 20                    |
| PSM          | 065                    | 11                    |
| PAP          | 061                    | <b>00</b> (           |
| PAP          | 051                    | <b>→</b> ⊆            |
| PSA          | 741                    | 2 =                   |
| PSM          | 169                    | . 6                   |
| PAP          | <b>S1</b>              |                       |
| PAP          | 51                     | D 3                   |
| YAY<br>OA    | <u> </u>               | 2 =                   |
| Kallikrein   | 5.1                    | : 6                   |
| Kallikrein   | 175                    | ==                    |
| PSM          | 322                    | . ∞                   |
| Kallikrein   | <b>25</b> .            |                       |
| PSA          | 100                    | <b>o</b> oo           |
| Kallikrein   | 021.                   | ) <b>o</b>            |
| Kallikrein   | 170                    | 01                    |
| PAP          | 13                     | ∞ :                   |
| PAP          | <u> </u>               | o <u>:</u>            |
| ያልያ<br>ያልያ   | 2 5                    | 2 =                   |
| NS A         | 472                    |                       |
| PSA          | 237                    |                       |
| PSM          |                        | ∞                     |
| PSM          | 615                    | =:                    |
| 200          |                        |                       |

| XIX     | tif with Binding Data |
|---------|-----------------------|
| Table 2 | rostate B62 Supermo   |

|                          | Table XIV Prostate B62 Supermotif with Binding Data | LV<br>Lwith Binding Data |   |
|--------------------------|-----------------------------------------------------|--------------------------|---|
| Protein                  | Position                                            | No. of<br>Amino Acids    | Ì |
| . 754                    | 503                                                 | 01                       | 1 |
| PAP                      | 48                                                  |                          |   |
| PSM WSW                  | 291<br>265                                          | <u>.</u><br>9 =          |   |
| PAP                      | 348                                                 | ; თ                      |   |
| PAP                      | 348                                                 | 01                       |   |
| PSM                      | 50!                                                 | <b>O</b>                 |   |
| Kalikrein                | 7 K                                                 | • •                      |   |
| PSA                      | : <del>E</del>                                      | . ∞                      |   |
| PSA                      | 31                                                  | <b>.</b>                 |   |
| Kallikrein               | 2 5                                                 | 0.                       |   |
| Kallikrein               | 85<br>5                                             | . ≃ ∝                    |   |
| PSM                      | % 66                                                | • =                      |   |
| PSM                      | 101                                                 | 6                        |   |
| PSM                      | 101                                                 | 01                       |   |
| PSM                      | 107                                                 | =•                       |   |
| Kallıkrein<br>Kallıkrain |                                                     | <sub>∞</sub> <u>c</u>    |   |
| Kallikrein               | :=                                                  | .=                       |   |
| PAP                      | 217                                                 | 2:                       |   |
| PAP                      | 217                                                 |                          |   |
| PSA<br>PSA               | . 19                                                | 2 =                      |   |
| PAP                      | 29                                                  | Ф.                       |   |
| PAP                      | 29                                                  | 0.0                      |   |
| PSM .                    | 626                                                 | ∞ 5                      |   |
| NA A                     | 979                                                 | 2 =                      |   |
| PSA                      | 7                                                   | ;∞                       |   |
| PSA                      | 7                                                   | <u>o</u>                 |   |
| PSA                      | 7                                                   | Ξ,                       |   |
| PSM                      | 450                                                 | ∞ (                      |   |
|                          | 400<br>8-4                                          | <b>.</b> .               |   |
| PAP                      | 061                                                 | \ <b>00</b>              |   |
| PAP                      | 171                                                 | =                        |   |
| PAP                      | 112                                                 | φ <b>:</b>               |   |
| PAP                      | 112                                                 |                          |   |
| PAP                      | 222                                                 | =                        |   |
| PSM                      | 361                                                 | = <                      |   |
| FOIM                     | 194                                                 | <b>.</b>                 |   |

|           | ith Binding Data                          | No. of   | Amino Acids |
|-----------|-------------------------------------------|----------|-------------|
| Table XIV | Prostate B62 Supermotif with Binding Date | Position |             |

| 2 - 2 - 1 - 2                                                         | >====================================                                                         | , o, 2 o o o o o o o o o o o o o o o o o                                                       |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 68<br>225<br>225<br>225<br>363<br>363<br>174<br>174<br>27<br>27<br>27 | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                       | 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                        |
| • •                                                                   |                                                                                               |                                                                                                |
| ·                                                                     |                                                                                               | •                                                                                              |
| PSA<br>PSM<br>PSM<br>PSA<br>PSA<br>PSM<br>PAP<br>PAP                  | PAP<br>PAP<br>Kalikrein<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM | PSA<br>PSA<br>Kallikrein<br>PSA<br>Kallikrein<br>PSA<br>PSA<br>PSA<br>Kallikrein<br>Kallikrein |

| Protein    | Position                                                                                                                          | No. of<br>Amino Acids |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| ASG        | . 177                                                                                                                             | <u> </u>              |
| PSM        | <del>1</del> | 2 =                   |
| PSA        | 8                                                                                                                                 | ; თ                   |
| PSA .      | ٠                                                                                                                                 | <b>2</b> (            |
| PAP        | 231                                                                                                                               | ∞ <u>-</u>            |
| PSM        | 269                                                                                                                               | : 6                   |
| PSM        | 269                                                                                                                               | . 01                  |
| PSM        | 569                                                                                                                               |                       |
| PSS        | <b>Ω</b> :                                                                                                                        | <b>00</b> (           |
| No.        |                                                                                                                                   | o :                   |
| PSA<br>ASA | £ 191                                                                                                                             | ⊇ ∝                   |
| PSA        | 69<br>163                                                                                                                         | ° 01                  |
| PSM        | . 467                                                                                                                             | ; ∞                   |
| PSM        | 467                                                                                                                               | =                     |
| Kallikrein | 143                                                                                                                               | =:                    |
| P.S.A.     | 139                                                                                                                               | Ξ.                    |
| PAP.       | 335                                                                                                                               | ∞ c                   |
| PAP        | 335                                                                                                                               | , <u>c</u>            |
| PAP        | 275                                                                                                                               | <b>?</b> a            |
| PAP        | 275                                                                                                                               | 01                    |
| PAP        | 275                                                                                                                               | =                     |
| PSM<br>D&D | 339                                                                                                                               | ∞ c                   |
| PAP        | : =                                                                                                                               | <b>&gt;</b> =         |
| PSM        | 575                                                                                                                               | ; 6                   |
| PSM        | 575                                                                                                                               | . 01                  |
| PSM        | <i>\$7</i> 8                                                                                                                      | = •                   |
| QAQ        | <u> </u>                                                                                                                          | » S                   |
| PAP        | 145                                                                                                                               | 2 =                   |
| PSM        | 738                                                                                                                               | : o                   |
| PAP        | 292                                                                                                                               | . 00                  |
| PAP        | 292                                                                                                                               | Φ                     |
| PAP        | 292                                                                                                                               | = 4                   |
| NSG.       | 200                                                                                                                               | <b>∞</b> σ            |
| PSM        | 358                                                                                                                               | <b>√</b> ∞            |
| PSM        | 358                                                                                                                               | 6                     |
| . Word     | 372                                                                                                                               | 0 =                   |
| PSA        | 89                                                                                                                                |                       |
|            |                                                                                                                                   |                       |

## Table XIV Prostate B62 Supermotif with Binding Data

| No. of<br>Amino Acids | 2==os=os2=oss2=sossocs=s=s=o=ossoc=o=                                                                 |
|-----------------------|-------------------------------------------------------------------------------------------------------|
| Position              | 146<br>146<br>133<br>133<br>153<br>160<br>160<br>160<br>160<br>160<br>160<br>160<br>160<br>160<br>160 |
|                       |                                                                                                       |
| Protein .             | PAP PAP KAllikrein PSM PSM PSM PSA PSA PSA PSA PSA PSA PSM        |

Table XIV
Prostate B62 Supermotif with Binding Data

Position

No. of Amino Acids

733 733 733 371 176

Protein

PSM PSM PSM PSM PSM

|                   | 7<br>Prostate A01 Motif | Table XV Prostate A01 Motif Peptides with Binding Data | <b>g</b> |
|-------------------|-------------------------|--------------------------------------------------------|----------|
| Protein           | Position                | No. of<br>Amino Acids                                  | A*0101   |
| PSM '             | 452                     | 6                                                      |          |
| PSM               | 220                     | 5                                                      |          |
| NSG No.           | 264                     | э c                                                    | 0.0099   |
| WSd               | 693                     | n oc                                                   |          |
| PAP               | 311                     | · cs.                                                  | 0.7700   |
| PSM               | 297                     | 7                                                      |          |
| PSM               | 961                     | <u>_</u>                                               | 0.0160   |
| - Modern          | 45.5<br>40.1            | <b>X</b> 2. 2                                          |          |
| MSd               | 005                     | 6.0                                                    |          |
| PSM               | 171                     | s. <b>Q</b> s.                                         | 0.0024   |
| PSM               | 109                     |                                                        |          |
| PAP               | 237                     | =                                                      |          |
| PAP               | 240                     | <b>0</b> 5. (                                          |          |
| Kallikrein        | 145                     | 9 (                                                    | 0.0011   |
| TOTAL DAME        | . 56<br>26              |                                                        | 0.000    |
| WSd               | 542                     | <b>20</b> .4                                           | 00000    |
| PSM               | 542                     | =                                                      |          |
| PSM               | 557                     | <u>ء</u>                                               | 0.0260   |
| Z Z Z             | 246<br>565              | ⊒.∝                                                    |          |
| PSM               | 702                     | • •••                                                  |          |
| PSM               | 487                     | .00.                                                   | 1        |
| Z W               | 529                     | <b>o</b> v                                             | 0.0025   |
| PAP               |                         | 2 =                                                    | 000      |
| PSM               | 168                     |                                                        | 0.0001   |
| PAP               | 270                     | =                                                      |          |
| Kallikrein<br>DSA | <b>3</b> 8              | <b>00</b> 0                                            | 0.0260   |
| Kallikrein        | 5 25                    | a C                                                    | 0.0200   |
| PSM               | 347                     | 0                                                      | 0.0048   |
| PSM .             | 112                     | . 90                                                   |          |
| PSM               | 530                     | œ.;                                                    |          |
| E Nu              | 346                     |                                                        |          |
| PAP               | 277                     | - 0                                                    | 0.5700   |
| PAP               | 205                     | -                                                      | 0.0012   |
| PSM.              | . 169                   | ٥.                                                     |          |
| PSM               | 545                     | ⊇ ∞                                                    | 0.0001   |
| PAP               | 322                     | •                                                      | 3.4000   |
| PAP<br>Kallikrein | 322                     | 2=                                                     | 0.0180   |
|                   | <b>)</b>                | •                                                      |          |

|   | œ |
|---|---|
|   | 룍 |
|   | 9 |
|   | 열 |
|   | ӛ |
|   | Ē |
|   | 9 |
|   | 4 |
|   | Z |
| × | 9 |
| × | 珆 |
| 롈 | 끸 |
| ᆿ | ä |
| Н | 3 |
|   | 퍨 |
|   | 4 |
|   | 9 |
|   | a |
|   | 4 |
|   | 의 |
|   | 듺 |
|   | 8 |
|   | ᆲ |
|   | • |

|                                         | Prostate A01 Mo | Table XV Prostate A01 Motif Pentides with Binding Data | Aata    |
|-----------------------------------------|-----------------|--------------------------------------------------------|---------|
| Protein                                 | Position        | No. of<br>Amino Acids                                  | A*0101  |
|                                         |                 |                                                        |         |
| Kaliikrein                              | 730             |                                                        |         |
| PAP                                     | 272             | ; 6                                                    | 0.0011  |
| PSM                                     | 669             | =                                                      |         |
| PSM                                     | 105             | <b>6</b> .                                             |         |
| MSM.                                    | 143             |                                                        | 0.0010  |
| NSW .                                   | 19              |                                                        | 0.7800  |
| Kallikrein                              | 178             | :=                                                     |         |
| PAP                                     | 93              |                                                        |         |
| Kallikrein                              | 236             | ∞ :                                                    |         |
| PSA .                                   | 232             |                                                        | 0.0002  |
| NOW | 787             | = •                                                    |         |
| PAP                                     | 148             | <b>3</b> 00                                            |         |
| PAP                                     | 238             | , 01                                                   | 12.0000 |
| Kallikrein                              | 179             | 10                                                     |         |
| PSM                                     | 117             | 11                                                     | •       |
| PAP                                     | 315             | = :                                                    |         |
| PAP                                     | 8 C             | 2.5                                                    | 0.0082  |
| PSM                                     | 227             |                                                        |         |
| PSM                                     | 691             | ∞                                                      |         |
| PSM                                     | 691             | =:                                                     |         |
| PSM                                     | 104<br>104      | 2 =                                                    | 0.4300  |
| PAP                                     | 3               | 10                                                     | 0.0033  |
| PSM                                     | 262             | 11                                                     |         |
| PSM ·                                   | 540             | ۵:                                                     |         |
| Kalikrein<br>DCA                        | 233             | ===                                                    |         |
| . WS                                    | 484             | ; =                                                    |         |
| PAP                                     | 147             | <b>.</b> 0                                             | 1.2000  |
| PSM                                     | 290             | 01.                                                    |         |
| PSM                                     | 290             | = \$                                                   | 0.00    |
| dAg                                     | 278             | 2 o                                                    | 0.0010  |
| Kallikrein                              | 16              | · =                                                    |         |
| PAP                                     | 309             | . =:                                                   |         |
| ASS.                                    | 218             | ==                                                     |         |
| PSW                                     | 363             | : 6 6                                                  | 0.0001  |
| PAP                                     | 332             | × 0^                                                   | 0.0002  |
| PSA                                     | 235             | =                                                      | ,       |
| PSM<br>PAP                              | 463<br>174      | <b>Ф</b> =                                             | 11.0000 |
|                                         | -               | <b>:</b>                                               |         |

|                                                        | Ì                     |        |          |     |             |     |        |          |        |        |     |        |     |        |        |        |        |          |     |          |     |
|--------------------------------------------------------|-----------------------|--------|----------|-----|-------------|-----|--------|----------|--------|--------|-----|--------|-----|--------|--------|--------|--------|----------|-----|----------|-----|
| ing Data                                               | A*0101                | 0.0011 | 0.001    |     |             |     | 0.0430 |          | 0.0190 | 0.0190 |     | 0.0010 |     | 0.1500 | 0.1500 | 0.0010 | 0.0046 | 0.5500   |     |          |     |
| Table XV Prostate A01 Motif Peptides with Binding Data | No. of<br>Amino Acids | 6      | <b>6</b> | 11  | <b>o</b> .: | =   | o      | <b>∞</b> | =      | 11     | 11  |        | 11  | 2      | 2      | ٥      | ٥      | <b>º</b> | Φ.  | <b>∞</b> | ∞   |
| Prostate A01 P                                         | Position              | 93     | 68       | 615 | 180         | 317 | 348    | 349      | 143    | 139    | 141 | . 558  | 293 | . 65   | 88     | 725    | 206    | 310      | 234 | 552      | 272 |
|                                                        |                       |        |          |     |             | •   |        |          |        |        |     |        |     | ٠      | •      |        |        |          |     |          |     |

|             | 7<br>Prostate A03 Motif | Table XVI Prostate A03 Motif Pentides with Binding Data | ii<br>i |
|-------------|-------------------------|---------------------------------------------------------|---------|
| Protein     | Position                | No. of<br>Amino Acids                                   | A*0301  |
|             |                         |                                                         |         |
| PSM         | 741                     | 10                                                      |         |
| PSM         | 742                     |                                                         |         |
| NO.         | 735                     | oo o                                                    |         |
| POA A       | ر<br>در                 | <b>λ</b> α                                              |         |
| DOA .       | 2 2                     | o o                                                     |         |
| 0.40        | 3 "                     | 0 00                                                    |         |
| 040         |                         | • c                                                     |         |
| 0.00        | יו מ                    | · 5                                                     |         |
| 0 A D       | `=                      | 2 ∘                                                     |         |
| dγd         | :=                      | o <u>C</u>                                              |         |
| Nea         | 1.5                     | 2 6                                                     |         |
|             | 285                     | <b>.</b>                                                |         |
| Post.       | 765                     | <b>-</b> :                                              |         |
| Pow         | 808                     | 2:                                                      |         |
| FOM         | 808                     | <b>≓</b> '                                              |         |
| No.         | 452                     | <b>2</b> 5 (                                            | ,       |
| Now.        | 757                     | <b>&gt;</b> ;                                           | 0.0006  |
| Mod         | 727                     | I ;                                                     |         |
|             | 4/0                     |                                                         |         |
|             | 00 722                  | <b>.</b>                                                |         |
| Pow         | 200                     | <b>o</b> c                                              |         |
| NSG NSG     | 07. C                   | » :                                                     |         |
| No.         | 23                      | 2 =                                                     |         |
| MSM         | 264                     | ; 0                                                     |         |
| PSM         | 264                     | , 11                                                    |         |
| PSM         | 701                     | •                                                       |         |
| PSM         | 701                     | . =                                                     |         |
| PSM         | 29                      | ; 6                                                     |         |
| PSM         | 59                      |                                                         |         |
| Kallikrein  | 199                     | 00                                                      |         |
| PSA         | 195                     | 80                                                      |         |
| PSM         | 84                      | 01                                                      |         |
| PSM         | 84                      | 11                                                      |         |
| PSM         | 711                     | <b>∞</b>                                                |         |
| Kallikrein  | 147                     | œ                                                       |         |
| PSA         | 143                     | œ                                                       |         |
| Kallikrein  | 235                     | 0                                                       |         |
| Kallikrein  | 235                     | ==                                                      |         |
| PSA         | 231                     | 6                                                       | 0.01.70 |
| PSA         | 231                     | 11                                                      |         |
| Kalikrein   | o ;                     | σ.                                                      |         |
| WG.         | 2 2                     | <b>90</b> (                                             |         |
| 13M1<br>D&D | 7 7                     | <b>.</b>                                                | •       |
|             | 9                       | <b>.</b>                                                |         |
|             | 115                     | ^                                                       | 70007   |

|     | Data     |
|-----|----------|
|     | Inding   |
|     | with B   |
| E X | ptides   |
| T B | lotif Pe |
|     | 103 MG   |
|     | state A  |
|     | 2        |

|                   | Prostate A03 Mot | Table XVI Prostate A03 Motif Peptides with Binding Data | ıfa    |
|-------------------|------------------|---------------------------------------------------------|--------|
| Protein .         | Position         | No. of<br>Amino Acids                                   | A*0301 |
| ava               | 311              | . 01                                                    |        |
| NSA.              | 531              | 20                                                      | 0.0086 |
| MSM               | 643              | = -                                                     |        |
| PAP               | 12               | Φ.                                                      |        |
| PSM               | 419              | ,<br>•••                                                |        |
| PSM               | 2                |                                                         |        |
|                   | 227              | <b>∞</b> ∶                                              | 0.0003 |
| PAP               | 727              | 01                                                      |        |
| PAP               | 681              | <u> </u>                                                |        |
| PSW               | \$ <b>6</b>      | × ;                                                     |        |
| TOW.              | y 4 C            |                                                         | 60.00  |
| 240               | \$/7             | ∞ c                                                     | 0.0180 |
| W5d               | t :              | ,<br>N G                                                | 0.1000 |
| A Section 1       | : 4              | <b>\</b> 0                                              |        |
| WSd               | 286              | . 01                                                    |        |
| PSM               | 635              | 6                                                       | •      |
| PSM               | 635              | 11                                                      |        |
| Kallikrein        | 17               | œ (                                                     |        |
| No.               | 303              | × ⊊                                                     |        |
| PSM               | 601              | 2 ∞                                                     |        |
| PSM               | 109              |                                                         | 0.0026 |
| Kallikrein        | ₹:               | <b>00</b> (                                             | -      |
| Kallikrein        | 4.5              | <b>.</b>                                                |        |
| Kallikrein        | 241              | o 0                                                     |        |
| Kallikrein        | 241              | ,01                                                     |        |
| Kallikrein .      | 241              | =======================================                 | •      |
| MSM               | 2                | <b>∞</b> ;                                              |        |
| FOM<br>Folliterii | 7 %              | Ξ •                                                     |        |
| PSA               | 761              | N 0                                                     | 90000  |
| Kallikrein        | 234              | v 00                                                    |        |
| Kallikrein        | 234              | 10                                                      |        |
| PSA               | 230              | 0                                                       |        |
| PSA               | 081              | ∞ :                                                     |        |
| Kallikein         | 184              | ] a                                                     |        |
| PSW               | 186              | <b>2 00</b>                                             |        |
| PSM               | 961              |                                                         |        |
| WSd               | 961              | 01                                                      | 0.0600 |
| rAr<br>DAD        | 347              | ٠.<br>د                                                 | 0.0040 |
| T V V             | 746              | 2 =                                                     |        |
| Kallikrein        | , 41             | :=                                                      |        |
|                   |                  |                                                         |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prostate A03 Motif | Prostate A03 Motif Peptides with Binding Data | ta     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------|--------|
| Protein ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Position           | No. of<br>Amino Acids                         | A*0301 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                               |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 466                | 01                                            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 710                | σ.                                            | 90000  |
| POM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.<br>20.         | ∞ ⊊                                           |        |
| MSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 296                | 21                                            | -      |
| WSd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 465                | : =                                           |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ξ                  | . 11                                          |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 652                | 11                                            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | <b>∞</b> ;                                    |        |
| . Will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>3</b> 3         | <u>o</u> ;                                    |        |
| PAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 134                | ∞ ;                                           | •      |
| Non-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 134                | <u> </u>                                      | 2000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *1.5               | 2:                                            | 0.0003 |
| Nuc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75.                |                                               |        |
| Z.S.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.5               |                                               |        |
| dVd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 201                | v 00                                          |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 501                | , G                                           |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 171                | ::                                            |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120                | 11                                            |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 116                | II.                                           |        |
| AND THE PROPERTY OF THE PROPER | 136                | <b>&gt;&gt;</b> 0                             |        |
| NOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 2                | o o                                           |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 182                | v c                                           |        |
| PSM .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 161                | ·<br>•                                        |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86                 | 90                                            | 0.0003 |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86                 | 6                                             |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86°                | ıı                                            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | σ, α               |                                               |        |
| Wid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>.</b> 0         | » =                                           |        |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 630                | ; 00                                          |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 630                |                                               |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116                | 10                                            |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 112                | 0.                                            |        |
| WSd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 453                | o :                                           |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 316                |                                               | 0.0032 |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 106                | œ                                             |        |
| PAP<br>Kalibenia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51                 | ο :                                           | 0.0001 |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 <del>5</del>     | 2 0                                           |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290                | 10                                            |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 178                | 10                                            | 0.0007 |
| AA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108                | o.                                            |        |

| VI<br>es with Bindi |
|---------------------|
|---------------------|

|                                                         | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|---------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ing Data                                                | A*0301                | 90000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0014      |
| Table XVI Prostate A03 Motif Peptides with Binding Data | No. of<br>Amino Acids | o : 2 : ∞ o : ∞ ∞ : o 2 : : : ∞ 2 : : o 2 2 o 2 : o : : o ∞ ∞ o 2 : : : 2 ∞ ∞ o 2 : ∞ o 2 : ∞ o 2 : ∞ o 2 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 : o 0 | <b>6</b> 01 |
| Prostate A03                                            | Position              | 114<br>114<br>115<br>116<br>117<br>117<br>117<br>117<br>117<br>117<br>117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34<br>34    |
|                                                         | •                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
|                                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| •                                                       | Protein               | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PAP<br>PAP  |

| Table XVI ostate A03 Motif Peptides with Binding Data | Table XVI<br>if Peptides with Bi |           |                                 |
|-------------------------------------------------------|----------------------------------|-----------|---------------------------------|
| Table XVI<br>if Peptides with Bi                      | Table XVI<br>if Peptides with Bi |           | Data                            |
|                                                       |                                  |           | Binding                         |
| 9                                                     | Pro                              | Table XVI | state A03 Motif Peptides with E |

| PAP         23         11           PSAM         PSAM         1383         11           PSAM         103         9         103         10           PSAM         103         9         103         10           PSAM         402         10         10         10           PSAM         402         10         10         10           PSAM         403         10         40         40           PSAM         673         10         10         10           PSAM         10         10         10         10           PSAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Amino       | Amino Acids |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------|
| 383 383 111 1103 203 203 203 203 203 203 203 203 203 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |             |
| 383 110 103 103 100 103 103 101 103 103 101 104 46 40 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105 100 105 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23        | _           |             |
| 233 244 402 103 103 103 103 104 402 403 404 405 406 406 407 407 407 407 407 407 407 407 407 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 383       | =           | •           |
| 203<br>404<br>405<br>406<br>407<br>408<br>408<br>409<br>409<br>409<br>409<br>409<br>409<br>409<br>409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nog.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 193       |             |             |
| 103 103 103 103 103 103 103 103 103 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |             |
| 103 103 103 103 103 103 103 103 103 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 507       | 10 (        |             |
| 103 426 426 426 436 437 437 438 111 137 438 131 1337 434 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FSM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103       |             |             |
| 103 405 673 673 674 675 675 676 676 676 676 676 676 676 676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103       | =           | 0           |
| 456<br>402<br>403<br>404<br>405<br>406<br>406<br>406<br>406<br>406<br>406<br>406<br>406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103       |             |             |
| 402 673 673 111 111 111 111 111 111 111 111 111 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 426       | =           | 0           |
| 37<br>47<br>47<br>47<br>47<br>48<br>49<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | . =         |             |
| 6, 5, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 701       | <b>-</b>    | •           |
| 675 675 676 677 18 8 18 18 19 106 106 673 133 19 107 134 107 108 108 108 108 108 108 108 108 108 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65        |             | _           |
| 42 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 675       | _           | 0           |
| 61<br>18<br>18<br>19<br>20<br>20<br>33<br>10<br>646<br>646<br>646<br>646<br>646<br>646<br>646<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42        | 90          |             |
| 37. 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WSd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19        | _           |             |
| 187 20 333 106 106 106 106 107 139 111 111 111 111 111 111 111 111 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Noa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5       |             | • ~         |
| 20 20 91 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | ~ •         |
| 20<br>92<br>93<br>106<br>106<br>106<br>107<br>108<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 1      | _ '         |             |
| 33 10<br>106 10<br>3 73 11<br>646 646 8<br>646 8<br>546 8<br>546 8<br>546 8<br>546 8<br>546 8<br>546 8<br>547 11<br>77 8<br>8 77 8<br>77 8<br>78 8<br>77 8<br>77 8<br>78 8<br>77 8<br>78 8<br>79 9<br>70 9<br>71 10<br>71 10<br>72 11<br>73 10<br>74 10<br>75 10<br>76 10<br>77 11<br>77 11<br>78 8<br>77 11<br>78 8<br>79 10<br>79 10                                                                                           | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20        | 5           |             |
| 92<br>93<br>73<br>646<br>646<br>646<br>646<br>646<br>646<br>646<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33        | -           | •           |
| 106<br>3<br>7 7 10<br>643 11<br>646 8<br>646 8<br>846 8<br>846 8<br>846 8<br>840 9<br>971 11<br>17 77 8<br>871 11<br>17 77 8<br>872 11<br>18 8<br>19 9<br>10 9<br>10 9<br>11 10 9<br>10 9<br>10 9<br>11 10 9<br>10 9         | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92        | .00         |             |
| 73 11.<br>646 646 8 10.<br>646 8 8 11.<br>546 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 901       | •           |             |
| 73<br>646<br>646<br>646<br>10<br>846<br>846<br>11<br>12<br>12<br>13<br>14<br>14<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | •           | · -         |
| 645<br>646<br>646<br>8<br>546<br>846<br>833<br>337<br>933<br>111<br>122<br>123<br>134<br>146<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |             |
| 0.55<br>0.66<br>0.66<br>0.66<br>0.66<br>0.76<br>0.37<br>0.37<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39<br>0.39 | DOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67        |             |             |
| 046<br>046<br>506<br>546<br>10<br>137<br>137<br>137<br>137<br>13<br>133<br>133<br>133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 650       | ·°          |             |
| 506<br>546<br>546<br>546<br>536<br>639<br>639<br>639<br>639<br>639<br>77<br>77<br>77<br>77<br>88<br>37<br>10<br>12<br>24<br>10<br>24<br>10<br>24<br>10<br>36<br>16<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 940       | <b>,</b>    |             |
| 506 546 8 8 546 11 337 9 9 11 639 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 646       | =           |             |
| 546 8 546 11 546 11 337 9 639 88 639 81 333 9 11 77 88 77 88 37 11 12 9 10 263 10 264 88 364 88 346 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 206       | σ.          |             |
| 546 11 337 539 639 639 639 639 77 77 77 88 77 78 8 77 78 8 77 78 8 78 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 546       | <b>∞</b>    | ~           |
| 337 9<br>639 8<br>639 11<br>333 9 9<br>37 8<br>37 8<br>37 11<br>12 9<br>391 10<br>221 8<br>24 9<br>24 10<br>364 8<br>366 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 546       | -           | _           |
| 337 11<br>639 8<br>639 8<br>833 9 9<br>77 7 8<br>37 11<br>37 11<br>37 11<br>263 10<br>264 10<br>364 8<br>366 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 337       | •           |             |
| 639 8 639 8 11 333 9 11 77 7 8 8 11 37 11 11 12 12 9 9 11 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 337       |             |             |
| 639<br>333<br>11<br>77<br>8<br>37<br>12<br>13<br>14<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 623       | . ~         |             |
| 333 9 5 11 77 8 8 11 12 9 9 11 12 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 639       | -           |             |
| 333 11<br>77 8<br>37 8<br>37 11<br>12 9<br>263 10<br>221 8<br>24 10<br>364 8<br>366 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NSG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 131       | . 0         |             |
| 77 8<br>37 8<br>37 11<br>12 9<br>391 10<br>263 10<br>24 9<br>24 9<br>364 8<br>364 8<br>346 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NSG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111       | `-          |             |
| 37 8<br>37 11<br>12 12<br>263 10<br>221 8<br>24 9<br>364 8<br>364 8<br>346 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 550       | . 0         | •           |
| 37 11<br>12 263<br>391 10<br>221 8 10<br>24 9<br>364 8 8<br>366 9<br>346 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72        | <b>9</b> 04 |             |
| 27<br>391<br>391<br>263<br>263<br>27<br>28<br>24<br>10<br>364<br>8<br>8<br>16<br>9<br>346<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |             |
| 391 10<br>263 10<br>221 8<br>24 9<br>24 10<br>364 8<br>346 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DOA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | -           |             |
| 253<br>221<br>24<br>24<br>364<br>364<br>366<br>346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100       | <b>`</b>    |             |
| 203<br>24<br>24<br>24<br>364<br>364<br>36<br>346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 166       |             |             |
| 24<br>24<br>24<br>364<br>364<br>346<br>346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL PROPERTY OF THE PROPERTY | 507       | <b>≒</b> .¢ |             |
| 24<br>24<br>364<br>16<br>16<br>346<br>346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177       | ю (         |             |
| 24<br>364<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>67</b> | <b>.</b>    |             |
| 364<br>- 16<br>346<br>346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24        | <b>=</b> ·  |             |
| . 16<br>346<br>346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 364       | œ           |             |
| 346<br>346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91 .      | 0           |             |
| 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 346       | <b>=</b>    | •           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 346       |             |             |

|       | Data   |
|-------|--------|
|       | nding  |
|       | 田田     |
| K     | des x  |
| Cable | Pept   |
| •     | Moti   |
|       | EABB   |
|       | rostat |
|       | 띡      |

| Amino Addis  172 8 173 174 175 19 175 19 176 177 19 177 19 178 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 179 19 | Amino Adds  Amino Adds  172 8 172 10 174 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10  | -           | Citizen                                 |             | 30 V                                    | 10004 4 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|-------------|-----------------------------------------|---------|
| 177 8 265 10 265 10 265 10 36 487 31 17 9 39 10 31 17 8 31 19 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 17 8 31 8 31 8 31 8 31 8 31 8 31 8 31 8 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177 8 265 10 265 10 265 10 36 10 37 17 9 38 17 9 39 9 30 10 30 10 31 9 31 9 32 10 33 10 34 10 35 10 36 10 36 10 37 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 10 38 | Protein     | Positio                                 |             | No. or<br>Amino Acids                   | A-0301  |
| 177 177 2 8 265 8 8 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1772 265 265 265 265 265 265 265 265 265 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                         |             |                                         |         |
| 265<br>265<br>267<br>267<br>267<br>270<br>270<br>270<br>270<br>270<br>270<br>270<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 265<br>265<br>265<br>265<br>265<br>310<br>311<br>311<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>318<br>318<br>318<br>319<br>311<br>311<br>311<br>311<br>311<br>311<br>311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W.          |                                         | 22          | × 0                                     | •       |
| 2655 2657 2658 2658 2658 2658 2658 2658 2658 2658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 265<br>265<br>265<br>265<br>267<br>271<br>271<br>272<br>273<br>274<br>275<br>276<br>276<br>277<br>278<br>278<br>278<br>278<br>278<br>278<br>278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                         | 7.          | <b>&gt;</b> (                           |         |
| 265<br>445<br>456<br>457<br>457<br>457<br>457<br>457<br>457<br>457<br>457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 265<br>265<br>4 5<br>4 6<br>4 7<br>4 8<br>4 7<br>4 8<br>3 1<br>3 1<br>3 1<br>3 1<br>3 1<br>3 1<br>3 1<br>3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X.          | <b>:-</b> ,                             | 77          | 9                                       |         |
| 455<br>457<br>457<br>457<br>457<br>457<br>457<br>457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 265<br>487<br>487<br>487<br>487<br>487<br>487<br>487<br>487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Ž                                       | 9           | × ;                                     |         |
| 45 45 9 3 11 17 17 8 8 8 18 18 19 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45 45 9 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×           | Ž                                       | 55          | 2                                       |         |
| 457<br>31 1 7 8 8<br>31 1 7 8 8<br>31 1 7 8 8<br>31 1 9 9<br>31 1 9 9<br>31 1 9 9<br>31 1 9 9<br>32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 457 31 31 31 31 31 31 31 31 31 31 31 31 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                         |             | ٠.<br>م                                 |         |
| 31 36 9 9 37 37 37 37 37 37 37 37 37 37 37 37 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31 36 9 9 37 10 8 8 37 10 9 37 10 9 37 10 9 37 10 9 37 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×           | 4                                       | 87          | œ                                       |         |
| 36 37 37 8 8 37 4 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36 37 37 8 8 37 4 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                         | 31          | 0.                                      | 00000   |
| 332<br>332<br>333<br>334<br>335<br>336<br>337<br>337<br>338<br>338<br>338<br>338<br>338<br>338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 337<br>337<br>337<br>337<br>337<br>337<br>338<br>338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                         |             | ۰ ۵                                     |         |
| 337 17 8 336 30 10 337 30 10 337 30 10 338 38 38 8 8 38 248 10 224 248 10 224 248 10 225 21 227 88 8 248 268 8 268 680 680 68 268 680 680 68 268 680 680 68 268 680 680 68 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 680 268 680 268 680 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 268 680 | 332 10 8 334 30 10 10 335 354 10 336 358 31 8 8 337 10 10 260 111 27 27 8 8 28 28 8 28 8 8 28 8 8 8 20 9 20 11 1 20 4 111 20 4 27 9 20 680 680 680 680 680 680 680 680 74 111 21 111 21 111 21 111 21 111 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 211 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 2 | W           |                                         | 0 :         | <b>.</b> (                              | 0.000   |
| 332 10 34 30 8 10 358 384 9 9 10 310 210 111 310 27 27 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 332 10 30 8 30 314 9 9 315 9 9 316 10 317 9 9 318 8 8 8 318 8 8 8 318 8 8 8 318 8 8 8 318 8 8 8 318 8 8 8 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9 318 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9-          |                                         |             | <b>xo</b>                               |         |
| 33<br>34<br>35<br>36<br>37<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33 88 384 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×           | m                                       | . 35        | 0                                       |         |
| 30<br>317<br>318<br>318<br>310<br>310<br>311<br>311<br>312<br>313<br>314<br>316<br>317<br>318<br>318<br>318<br>318<br>318<br>318<br>318<br>318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 305<br>375<br>375<br>376<br>377<br>378<br>387<br>387<br>387<br>387<br>387<br>387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                         | 30          | ox                                      |         |
| 375 9 9 384 9 384 9 384 9 384 9 384 9 384 9 384 9 385 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 375 95 95 95 95 95 95 95 95 95 95 95 95 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                         | 3 6         |                                         |         |
| 345 36 384 9 9 384 9 9 381 11 11 11 11 11 11 11 11 11 11 11 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 345 9 384 9 9 384 9 9 381 11 11 11 11 11 11 11 11 11 11 11 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × ×         |                                         | 20          | Ç                                       | ,       |
| 384 384 10 581 281 88 581 27 28 529 529 88 529 529 88 529 529 99 520 111 521 111 521 111 522 521 111 524 88 680 680 680 680 680 680 680 680 680 74 74 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 384 9 9 9 10 260 111 250 111 250 111 250 111 250 111 250 250 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | èn                                      | 75          | 6                                       | •       |
| 384 384 10 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 384 10 2 381 11 11 11 11 11 11 11 11 11 11 11 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                         |             |                                         |         |
| 384 581 88 510 111 12 250 27 27 88 529 529 529 88 529 529 68 88 529 69 520 69 68 68 68 68 68 68 68 68 68 68 68 68 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 384 10 310 310 310 310 311 311 311 322 33388 88 385 385 385 385 385 385 386 386 386 386 387 388 388 388 388 388 388 388 388 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | æ           | •                                       | \$          | <b>~</b>                                |         |
| 381 88 110 240 111 88 8229 88 88 88 88 88 88 88 88 88 88 88 88 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 310       381         240       11         27       8         23       8         23       8         385       8         385       8         385       8         224       11         225       11         226       11         227       11         104       8         105       9         680       8         680       9         680       9         680       9         680       9         74       11         10       10         10       10         10       8         10       8         10       8         10       8         10       8         10       8         10       8         10       9         205       9         205       9         206       9         207       10         10       11         10       10         20       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | eri                                     | 2           | 9                                       |         |
| 260 27 27 27 28 28 28 28 385 385 385 386 388 388 388 388 388 388 388 388 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 301 301 301 200 200 200 200 200 200 200 200 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | •                                       | 5 5         | ? •                                     | -       |
| 260 111 27 28 23 8 8 283 8 8 284 8 8 8 284 8 8 8 284 8 8 8 284 8 8 8 284 104 111 284 104 10 285 680 8 8 286 680 680 288 680 8 8 288 680 8 8 288 680 8 8 288 680 8 8 288 680 8 8 288 680 8 8 288 680 8 8 288 680 8 8 288 680 8 8 288 8 8 288 8 8 288 8 8 288 8 8 288 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 260 111 77 27 8 230 8 523 8 523 8 523 8 385 9 9 7 248 8 248 8 10 225 111 111 104 10 104 10 104 10 104 10 105 680 8 680 8 680 88 140 88 140 88 140 88 140 88 140 10 161 10 162 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¥           | ^                                       |             | ×o                                      |         |
| 260<br>27<br>23<br>23<br>529<br>529<br>529<br>8<br>385<br>385<br>385<br>385<br>38<br>38<br>38<br>38<br>38<br>38<br>39<br>30<br>427<br>30<br>680<br>680<br>680<br>680<br>680<br>680<br>680<br>680<br>680<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 250<br>27<br>27<br>23<br>88<br>529<br>529<br>88<br>529<br>9<br>529<br>9<br>680<br>680<br>680<br>680<br>680<br>680<br>680<br>680<br>680<br>680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>X</b>    | *************************************** | 9           | =                                       |         |
| 270 27 8 8 529 529 529 529 529 9 9 729 729 729 729 729 729 729 729 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 270 27 8 8 229 529 9 9 529 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                         |             |                                         |         |
| 27 88 529 529 529 529 688 680 680 680 680 680 680 680 680 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 8<br>529 98<br>529 98<br>385 99<br>248 10<br>248 10<br>224 10<br>204 11<br>104 9<br>106 88<br>680 680<br>680 680<br>680 680<br>680 680<br>680 680<br>74 11<br>168 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 7                                       | 2           | ======================================= |         |
| 23 8 8 529 9 9 529 9 9 9 720 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 8 8 529 529 9 9 529 9 9 9 529 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ilikein     |                                         | 27          | 00                                      |         |
| 529<br>529<br>529<br>529<br>529<br>529<br>524<br>525<br>521<br>524<br>525<br>526<br>527<br>527<br>528<br>529<br>529<br>529<br>529<br>529<br>529<br>529<br>529<br>529<br>529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 529<br>529<br>529<br>538<br>385<br>385<br>385<br>385<br>385<br>385<br>385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                         |             | ٥                                       |         |
| 529<br>529<br>529<br>529<br>538<br>548<br>548<br>548<br>521<br>524<br>524<br>524<br>525<br>526<br>527<br>527<br>528<br>530<br>540<br>680<br>680<br>680<br>680<br>680<br>680<br>680<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 529 529 529 529 529 538 538 538 538 538 538 538 538 538 538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ς;          | •                                       | 7           |                                         |         |
| 529<br>529<br>385<br>385<br>385<br>385<br>385<br>385<br>388<br>8<br>104<br>104<br>104<br>104<br>106<br>106<br>106<br>106<br>106<br>106<br>106<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 529<br>529<br>385<br>385<br>385<br>385<br>548<br>10<br>225<br>111<br>221<br>104<br>104<br>104<br>106<br>106<br>106<br>106<br>106<br>106<br>106<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×           | 'n                                      | 62          | <b>×</b> 0.                             |         |
| 259<br>385<br>385<br>385<br>248<br>248<br>248<br>248<br>251<br>104<br>104<br>104<br>106<br>106<br>106<br>106<br>106<br>106<br>106<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 529       385     8       385     8       248     8       248     10       221     11       221     11       204     11       104     8       106     9       427     9       427     9       680     10       680     9       680     10       288     8       140     8       140     8       140     8       140     8       140     8       140     8       140     8       140     8       140     8       140     8       140     9       141     11       140     9       141     10       142     11       15     10       168     9       168     9       168     9       168     9       168     9       168     9       168     9       168     9       168     9       168     9       168     9       168     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | •                                       | 53          | ø                                       |         |
| 365<br>365<br>365<br>365<br>365<br>365<br>366<br>366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 325<br>385<br>385<br>385<br>385<br>385<br>385<br>385<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                         | i           | . :                                     |         |
| 385 88 248 88 248 10 221 11 2221 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 385 88 248 248 10 225 11 11 12 221 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¥.          | n                                       | 67          | =                                       |         |
| 385 99 248 8 8 248 10 225 11 221 221 111 204 104 8 106 106 8 107 427 9 305 10 680 680 8 680 680 10 288 88 140 8 295 9 74 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 385       9         248       8         248       10         225       11         221       11         204       11         104       9         104       9         104       9         105       8         680       9         680       9         680       10         288       8         140       8         140       8         140       8         140       8         140       8         140       8         140       8         140       8         140       8         140       8         140       8         140       8         140       9         141       10         16       9         16       9         16       9         16       9         16       9         17       11         10       10         10       10         11       10 <td>×</td> <td>m</td> <td>Se</td> <td>00</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×           | m                                       | Se          | 00                                      |         |
| 248 8 8 10 225 11 11 1204 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 248 8 8 10 225 11 11 221 11 11 104 8 8 104 104 104 10 9 104 10 9 104 10 9 10 104 10 9 10 104 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | •                                       | <b>y</b> a: | đ                                       |         |
| 248 8 8 10 225 11 11 221 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 248 8 8 10 225 11 11 221 11 11 104 9 110 9 104 9 9 100 100 9 9 680 8 8 680 680 8 8 680 680 680 680 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>5</b>    |                                         | 3           | •                                       |         |
| 248 10 225 11 226 11 204 11 104 8 106 10 106 9 680 8 680 8 680 9 680 680 74 11 74 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 248 10 225 11 226 11 204 11 104 8 104 9 106 10 196 8 427 9 305 10 680 680 680 680 680 10 288 8 140 8 140 8 140 8 168 9 169 10 168 9 169 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ω.          | 7                                       | 248         | 00                                      |         |
| 225<br>221<br>104<br>104<br>104<br>106<br>196<br>19<br>427<br>9<br>427<br>9<br>680<br>680<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>680<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 225<br>221<br>224<br>104<br>104<br>104<br>10<br>105<br>10<br>427<br>305<br>680<br>680<br>680<br>680<br>680<br>680<br>680<br>10<br>74<br>11<br>11<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                         | 87          | 2                                       |         |
| 225<br>221<br>104<br>104<br>104<br>106<br>106<br>10<br>427<br>305<br>680<br>680<br>680<br>680<br>680<br>680<br>680<br>140<br>8<br>140<br>8<br>140<br>8<br>140<br>140<br>168<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 225 111 204 204 111 104 8 8 104 9 104 9 104 106 106 106 106 106 106 106 106 106 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·           | 4                                       |             | 2 :                                     |         |
| 221 11<br>204 11<br>104 8 8<br>104 9 9<br>105 10<br>680 8 8<br>680 680 8<br>680 680 10<br>680 10<br>680 10<br>74 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 221 11<br>204 11<br>104 8<br>104 10<br>196 8<br>427 9<br>305 10<br>680 8<br>680 8<br>680 8<br>680 10<br>288 8<br>140 8<br>140 8<br>140 8<br>140 8<br>140 8<br>160 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | likrein     | 7                                       | 52          | =                                       |         |
| 204 111<br>104 8<br>104 9<br>104 10<br>105 10<br>88 680 8<br>680 680 9<br>680 10<br>288 8<br>140 8<br>140 8<br>140 8<br>140 8<br>140 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 204 11<br>104 8<br>104 8<br>104 9<br>106 8<br>427 9<br>305 10<br>680 8<br>680 8<br>680 8<br>680 10<br>288 8<br>140 8<br>74 11<br>168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 2                                       | 121         |                                         |         |
| 204 111 111 111 111 111 111 111 111 111 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 204 11<br>104 8<br>104 9<br>104 10<br>196 8<br>680 8<br>680 8<br>680 10<br>680 10<br>288 8<br>140 8<br>140 8<br>140 8<br>140 8<br>140 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 4                                       | 1           | •                                       |         |
| 104 8<br>104 9<br>104 10<br>196 8<br>427 9<br>305 10<br>680 8<br>680 9<br>680 9<br>680 10<br>288 8<br>140 8<br>140 8<br>140 8<br>140 8<br>140 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104 8<br>104 9<br>104 10<br>196 8<br>427 9<br>305 10<br>680 8<br>680 8<br>680 9<br>680 10<br>288 8<br>140 8<br>140 8<br>140 8<br>140 8<br>140 8<br>140 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ω.          | 7                                       | 40          | 5                                       |         |
| 104 9 9 104 9 9 106 106 106 106 106 106 106 106 106 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104 9 9 104 100 104 9 9 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                         | 2           | o                                       |         |
| 104 9 104 10 9 106 8 8 427 9 305 10 680 8 8 680 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8 140 8  | 104 9 104 10 9 104 10 10 104 10 10 106 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | •                                       | 5           |                                         |         |
| 104 10<br>196 8<br>427 9<br>305 10<br>680 680 9<br>680 10<br>288 8<br>140 8<br>295 9<br>141 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104 10<br>196 8<br>427 9<br>305 10<br>680 8<br>680 9<br>680 10<br>288 8<br>140 8<br>74 11<br>163 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>=</b>    |                                         | 8           | 0                                       |         |
| 104<br>196 8<br>196 8<br>100<br>680 8<br>680 9<br>680 10<br>288 8<br>140 8<br>140 8<br>140 8<br>140 8<br>168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104<br>126<br>1305<br>10<br>680<br>680<br>680<br>10<br>288<br>8<br>140<br>8<br>140<br>8<br>140<br>168<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                         | 2           | 9                                       |         |
| 196 8 427 9 305 10 680 8 680 8 680 8 680 10 680 10 680 140 8 8 690 110 690 9 74 111 111 111 111 111 111 111 111 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196 8 427 9 305 10 680 680 8 680 10 680 10 680 10 680 10 680 10 680 10 680 140 8 8 680 140 8 8 680 1680 1680 1680 1680 1680 1680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                         | 5           | 2                                       |         |
| 427<br>305<br>305<br>680<br>680<br>680<br>680<br>10<br>288<br>8<br>140<br>8<br>140<br>18<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 427 9<br>305 10<br>680 8<br>680 10<br>680 10<br>288 8<br>140 8<br>74 11<br>168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Δ.          |                                         | 96          | oc                                      |         |
| 427<br>305<br>680<br>680<br>680<br>680<br>140<br>140<br>8<br>295<br>9<br>74<br>111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 427 9<br>305 10<br>680 8<br>680 9<br>680 10<br>288 8<br>140 8<br>74 11<br>311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                         |             | •                                       |         |
| 305 10<br>680 8<br>680 10<br>680 10<br>74 11<br>74 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 305 10<br>680 8<br>680 9<br>680 10<br>288 8<br>140 8<br>74 11<br>168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | •                                       | 7.7         |                                         |         |
| 680<br>680<br>680<br>680<br>10<br>288<br>8<br>140<br>8<br>295<br>9<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 680<br>680<br>680<br>680<br>10<br>288<br>8<br>140<br>8<br>295<br>9<br>74<br>11<br>168<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | •                                       | 50          | 9                                       |         |
| 680<br>680<br>680<br>10<br>288<br>8<br>140<br>8<br>295<br>9<br>74<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 680 8<br>680 10<br>680 10<br>288 8<br>140 8<br>295 9<br>168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 3         | •                                       |             | ? (                                     |         |
| 680 9<br>680 10<br>288 8<br>140 8<br>295 9<br>74 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 680 9<br>680 10<br>288 8<br>140 8<br>295 9<br>14 11<br>311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>≥</b>    | •                                       | 200         | ×o                                      |         |
| 680 10<br>288 8<br>140 8<br>295 9<br>74 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 680 10<br>288 8<br>140 8<br>295 9<br>74 11<br>168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3           | *                                       | Co          | o                                       | 0.0460  |
| 080 10<br>288 8<br>140 8<br>295 9<br>74 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 080 10<br>288 8<br>140 8<br>295 9<br>74 11<br>168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | •                                       | 2 5         | • (                                     | 00100   |
| 288 8 140 8 295 9 74 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 288 8<br>140 8<br>295 9<br>74 11<br>168 9<br>311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | •                                       | 080         | <u> </u>                                |         |
| 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 268 6 8 8 74 11 14 16 9 9 16 16 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                         | 00          | •                                       |         |
| 140 8 295 9 74 11 74 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140 8<br>295 9<br>74 11<br>168 9<br>311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>∑</b>    | 7                                       | 90          | •                                       |         |
| 295 9<br>74 11<br>168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 295 9<br>74 11<br>168 9<br>311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | p                                       | 40          | og                                      |         |
| 74 11 74 11 168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74 11<br>74 11<br>168 9<br>311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                         | v           | c                                       |         |
| 74 11<br>168 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74 11<br>168 9<br>311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 7                                       | 6           |                                         | •       |
| 9 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 168 9<br>311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •           |                                         | 74          | =                                       |         |
| 7 901<br>11 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                         |             | : «                                     |         |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 311 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>&gt;</b> | -                                       | 89          | о.                                      | 0.0007  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                         | -           | . 5                                     | 2000    |

| Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Position   | No. of<br>Amino Acids | A+0301 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|--------|
| PSA ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 226        | 10                    |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 516<br>516 | م 2                   |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 158        | 2 ∞                   |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154        | ∞ <b>9</b>            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 430        | 2 =                   |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88         | : 0                   |        |
| Wod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88         | <u>o</u>              |        |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63         | <b>`</b> =            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 360        | Ξ,                    |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 224        | ъ <u>Т</u>            |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 261        | : 2                   |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49         | œ ;                   |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 289        | = \$                  |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ‡ <u>8</u> | 2 =                   |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 345        | : 01                  |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28         | <b>o</b> .            |        |
| Kalikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 171        | ∽ ⊆                   |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 171        | 2 =                   | •      |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 314        | å                     | 0.2700 |
| MS4 and a second | 573        | ∞;                    |        |
| Kalikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,6        | = ∞                   | 0,0890 |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8          |                       | 0.0890 |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34         | ∞ :                   |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 6        | 0 9                   |        |
| W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 347        |                       |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 347        | 01                    | 0.0005 |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 173        | 6                     |        |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 689        | o :                   |        |
| Kalikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | »<br>«     | . 01                  |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202        | 2 ∞                   |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202        | 0.0                   |        |
| NS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 530<br>530 | ∞ <u>⊆</u>            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 642        | <b>.</b> ∞ ∶          |        |
| PAN M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 188        | <b>::</b>             |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 929        | . =                   |        |

| •        |            |
|----------|------------|
|          |            |
|          |            |
|          | -          |
|          | 7          |
|          | ø          |
|          |            |
|          |            |
|          | -          |
|          |            |
|          | Ī          |
|          | 9          |
|          |            |
|          | ith Bindin |
|          | щ          |
|          |            |
|          | #          |
|          | ì          |
|          | - 33       |
| _        |            |
| ×        | 93         |
|          | 3          |
| ~        | 9          |
| 71       | Ē          |
| 껵        | a          |
| Table XV | tif Pentic |
| ਕ        | 4          |
| ت        |            |
| _        | Ξ          |
|          | oti        |
|          |            |
|          | 2          |
|          | NO3 M      |
|          | ~          |
|          | Ö          |
|          | 7          |
|          | ٦          |
|          | نه         |
|          | -          |
|          | rostat     |
|          | 3          |
|          | ä          |
|          |            |
|          | _          |

| A*0301                  |                                                                    | 0.1900                                                             | 0.0410<br>0.0410                                                   | 0.1700<br>0.0260 | 90000                    |
|-------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------|--------------------------|
| of<br>Acids             |                                                                    |                                                                    | •                                                                  |                  |                          |
| n No. of<br>Amino Acids | 386 8 8 111 50 100 1130 1130 1130 1131 1131 113                    |                                                                    |                                                                    | ·                |                          |
| Position                |                                                                    |                                                                    |                                                                    |                  |                          |
|                         |                                                                    |                                                                    |                                                                    |                  |                          |
|                         |                                                                    |                                                                    |                                                                    |                  |                          |
| Protein .               | PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM | PSK<br>PSK<br>PSK<br>PSK<br>PSK<br>PSK<br>PSK<br>PSK<br>PSK<br>PSK | Kallikrein<br>PSA<br>Kallikrein<br>PSA<br>Kallikrein<br>PSM<br>PSM | 2                | PSM<br>PSM<br>PAP<br>PAP |

| Table XVI | Prostate A03 Motif Pentides with Binding Data |
|-----------|-----------------------------------------------|

| 772 111 645 645 645 645 546 9 645 11 74 111 75 88 764 9 764 9 764 9 764 9 764 9 764 9 764 9 765 9 765 9 765 9 766 9 766 10 767 10 767 10 768 8 768 10 769 9 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 760 0 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| oowowo2o2=2=o=∞ow=∞e=∞e=∞eoe=∞e=∞e=∞e=∞e=∞e=∞e=∞e=∞e=∞e=∞e=∞e=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2 o 2 = 2 = o = o o o = o = o 2 o = o 2 o 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| = o = ∞ o ∞ = ∞ 2 ∞ = ∞ 2 ∞ 2 ∞ o = o = ∞ 2 = = = 2 o o =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| • • • = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| ∞ = ∞ 2 o 2 ∞ 2 ∞ o = o = ∞ 2 = = = 2 o o =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 602×2×0=0=×2===2000=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| □ 2 ∞ o = o = o o =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| o=o=∞2===2oo=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| :0:02:2:2:2:0:0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

| Table XV | ate A03 Motif Peptides with Binding Data |
|----------|------------------------------------------|
|          | Prostate A                               |
|          |                                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prostate A03 Motif | Prostate A03 Motif Peptides with Binding Data | ta .   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------|--------|
| Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Position A         | No. of<br>Amino Acids                         | A*0301 |
| Kalikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 245                | 10                                            | 0.0450 |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 241                | 20                                            | 0.0450 |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 219                | 01                                            | 0.0004 |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                 | 01                                            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>.</b>           | œ ;                                           |        |
| Mind of the control o | £                  | =:                                            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 6                | 2 9                                           |        |
| Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 765                |                                               | 0.0031 |
| 1,0M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ò «                |                                               |        |
| . Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | : 0                                           |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 197                | , S                                           |        |
| P. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 193                | 01                                            |        |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29                 | 01                                            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 62               | 11                                            |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56                 | œ                                             |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78                 | 11                                            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105                | ∞                                             |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105                | O                                             |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300                | 11                                            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 417                | 2:                                            |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.                | 2 a                                           |        |
| DAU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £ ;                | <b>^</b> =                                    |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                |                                               |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26                 |                                               |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61                 | . 01                                          |        |
| PSM .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 632                | <b>00</b>                                     |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | <b>∞</b> (                                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ъ. S                                          | 0.0002 |
| 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 G                | 2:                                            | 0.0003 |
| Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                 | <b>.</b> 00                                   |        |
| Wild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                 | , <u>c</u>                                    | 0.0007 |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                 | <b>60</b>                                     |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                 | 6                                             |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 374                | 0,                                            |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 528                | <b></b>                                       | 2000 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 970                | » S                                           | 0.0000 |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161                | ⊇ ∝                                           |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 619                |                                               |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 679                | o :                                           |        |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 679                | 2 =                                           |        |
| Kollikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 136                | : 0                                           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                               |        |

|           | nding Data                |
|-----------|---------------------------|
| Table XVI | A03 Motif Peptides with B |
|           | Prostate.                 |

| Prostate A03 Motif Peptides with Binding Data | No. of A*0301<br>Amino Acids |    | , <u> </u> |     |     | 90000 | œ  |   | <b>^:</b> | =  | œ | •  | <br>0 |   | 10 |     | •      |          | . 01000 |     | 0        | •   | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - |     |        | •   | 0720 |     | . = | <b>~</b> | •           | · <u>·</u> | 2:    |       | 90000 | •   |     |     |     | 2 :    | 10  |        | 0.0005 |     |      | ×o; |     | 10 0.0005 |     |     |      | <b>.</b> |    | 00000 |
|-----------------------------------------------|------------------------------|----|------------|-----|-----|-------|----|---|-----------|----|---|----|-------|---|----|-----|--------|----------|---------|-----|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|--------|-----|------|-----|-----|----------|-------------|------------|-------|-------|-------|-----|-----|-----|-----|--------|-----|--------|--------|-----|------|-----|-----|-----------|-----|-----|------|----------|----|-------|
| Prostate A03 Motif Pen                        | Position N.<br>Amin          | 17 |            | CIC | 515 | 305   | 21 |   |           | 34 | 2 | 02 | 976   | 4 | 4  | 301 |        | <u> </u> | 30%     | 740 | <b>7</b> | 144 | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 611 | 123    | 243 | 650  | C47 | 243 | 178      | 178         | 0 0        | 0/1   | 8/1   | 116   | 136 | 151 | 699 | 66. | 171    | 117 | 121    | 21.3   | 077 | 407  | 84. | 148 | . 238     | 122 | 701 | . ** | <b>.</b> | 14 |       |
|                                               | Protein                      |    |            |     |     |       |    | - |           |    |   |    | -     |   |    |     | IKrein |          | P       |     |          |     | nie de la company de la compan |   | •   | ikrein |     |      |     |     | Krein    | in a series |            | Krein | Krein |       |     |     |     | -   | ıkrein |     | ikrein |        |     | MON. |     |     |           |     |     |      | •        | -  |       |

| -  |              |
|----|--------------|
|    |              |
|    |              |
|    |              |
|    | 9            |
|    | ᇽ            |
|    | <b>=</b>     |
|    | -            |
|    | -1           |
|    | 9            |
|    | -            |
|    | =            |
|    | 9            |
|    | -            |
|    | ≔            |
|    | щ.           |
|    | _            |
|    | =            |
|    | =            |
|    | ×            |
| _  | 7            |
| J  | 93           |
| 7  | 0            |
| ×  | ᇻ            |
| ٦. | ===          |
| ᅄ  | ᇽ            |
| =  | ===          |
| ap | ۳.           |
| œ  | 9            |
| 4  | -            |
| •  |              |
|    | =            |
|    | . =          |
|    | $\mathbf{z}$ |
|    |              |
|    | ~            |
|    | $\sim$       |
|    | <b>=</b>     |
|    | ₹4           |
|    |              |
|    | _            |
|    | =            |
|    | 44           |
|    | 93           |
|    | 9            |
|    |              |
|    | ч            |
|    | -            |
|    |              |

|               | TINGLE CAN TIME | A SUBUIC INTERSTUCE OF |         |
|---------------|-----------------|------------------------|---------|
| Protein       | Position        | No. of<br>Amino Acids  | A*0301  |
|               |                 |                        |         |
| PAP           | 244             | œ                      |         |
| dyd           | 244             | , 5                    | 0.0520  |
| Kallikmin     | 179             | ) oc                   |         |
|               | 170             |                        |         |
|               | 010             | \ <u>\$</u>            |         |
|               |                 | 2 0                    |         |
|               | 3,              | <b>10</b> .0           |         |
| FSA           | ۰ م             | <b>92.</b> (           |         |
| PSA           | 9               | •                      |         |
| PSM           | 117             | <b>00</b> -            |         |
| PSM           | 117             | =                      |         |
| PSA           | . 22            | . 002                  |         |
| 420           | 15              | 2،،2                   | 0 1400  |
| !:!!\^\       | 3 3             | 2. ∘                   | 20110   |
|               | 5 (             | <b>a</b> .c            |         |
| Kalitkrein    |                 | <b>3</b> (             |         |
| PAP           | 315             | <b>24</b> .            | 0.0014  |
| PAP           | 315             |                        |         |
| PSA           | 4               | 0                      |         |
| 400           | ∙ ₹             | -                      |         |
|               | 368             | •                      | 2000    |
|               | 200             |                        | 0,000.0 |
|               | 709             | <u>-</u> -             |         |
| . AAP .       | 21              | <b>3</b> .             |         |
| PAP           | 02              | 2.4                    | 0.0150  |
| PSA           | 37              | <b>xa</b> .            |         |
| PSM           | 561             | 0                      |         |
| PSM           | 561             | <del></del>            |         |
| PAP           | 9               | •                      | 0.0003  |
| PSM           | 473             | 10                     |         |
| Kallikrein    | 54              | 9                      |         |
| PSA           | 20              | 01                     |         |
| Kallikrein    | 28              |                        |         |
|               | , ç             | -                      |         |
| No            | 2 2             |                        |         |
| I SIM         | 07 20           | <b>o</b> . <b>o</b>    |         |
| ו ארם<br>1940 | 507             | a. <b>S</b>            |         |
|               | C 67            |                        | 0.0360  |
|               | 507             |                        |         |
|               | 101             | <b>a</b> . ¢           |         |
|               | 103             |                        |         |
| No.           | 550             |                        |         |
|               | 200             | <b>~</b> 3             |         |
|               | 96              |                        |         |
|               | 761             | <b>-</b> -             |         |
|               | 771             | 2.6                    |         |
| 73A           | e :             | <b>A</b> (             |         |
| ABIIIKITEIII  | 7 5             | 2.                     |         |
|               | 663             | no .;                  |         |
| NOW           | coo             | -                      |         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prostate A03 Motif | Table XVI Prostate A03 Motif Peptides with Binding Data |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------|---------|
| Protein .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Position           | No. of Amino Acids                                      | A*0301  |
| Abd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 114              | coc                                                     |         |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114                | •• ••                                                   | ٠       |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114                | 11                                                      |         |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103                | 0,                                                      |         |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                  |                                                         |         |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8:                 | 0 0                                                     | 0.0070  |
| rAr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/                | ∞ <u> </u>                                              |         |
| Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104                | <b>⊇</b> α                                              |         |
| NSd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 195                | • •                                                     |         |
| MSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 195                | 10                                                      |         |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 195                | 1                                                       |         |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 519                | ٥                                                       |         |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>18</b> 3        | 00                                                      |         |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 181                | = •                                                     |         |
| PSM Signal Control Con | <b>500</b>         | <b>3</b>                                                |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C 29               | 9:                                                      |         |
| AND<br>AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123                | ; ∝                                                     |         |
| PSA<br>ASA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121                | · II                                                    |         |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 336                | ; oo                                                    |         |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 336                | 01                                                      |         |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 638                | 00                                                      |         |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 638                | o o                                                     | 0.0005  |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220                | <b>90</b> (                                             |         |
| MV M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0/2                | <b>~</b> =                                              |         |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 304                |                                                         |         |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 304                | 11                                                      |         |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69                 | 6                                                       |         |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 257                | <b>00</b> (                                             |         |
| WS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 21               | <b>a</b> :                                              |         |
| Post<br>Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 2 -                                                     |         |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : 62               | : =                                                     |         |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e                  |                                                         | . 90000 |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                  |                                                         |         |
| PSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 247                | Φ;                                                      |         |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 0:                                                      |         |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )<br>(2)           | ===                                                     |         |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 589                | : 2                                                     |         |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58                 | <b>00</b> (                                             |         |
| Kallikrein<br>BeM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70                 | <b>5</b> 0                                              |         |
| ₩S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 438                | ° =                                                     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                         |         |

|         | ing Data                 |
|---------|--------------------------|
| the XVI | <b>Peptides with Bin</b> |
| T       | Prostate A03 Motif P     |

| A*0301                | 500                                                                      | 202                                                  | <b>5</b> 04                                   | 900                                                         |                                                                      |
|-----------------------|--------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|
|                       | 0.000\$                                                                  | . 0.0002                                             | 0.0004                                        | 0.0006                                                      |                                                                      |
| No. of<br>Amino Acids | :0:0:0:0000000000000000000000000000000                                   | <u>क़॒ॼक़क़॒॒क़</u>                                  | ∞♀≘∞⋷∞                                        | o 2 2 o 2 <u>7 o</u> o 3                                    | <del></del>                                                          |
| Position              | 34<br>480<br>237<br>240<br>240<br>317<br>317<br>317<br>318<br>621<br>168 | 703<br>716<br>716<br>60<br>60<br>95<br>7             | 170<br>170<br>170<br>842<br>842<br>842<br>842 | 557<br>522<br>522<br>727<br>727<br>727<br>728<br>8 4 8 8 18 | 713<br>713<br>653<br>629<br>. 185<br>. 185<br>32<br>32<br>524<br>524 |
|                       |                                                                          |                                                      |                                               |                                                             |                                                                      |
| Protein ·             | PAP<br>PAP<br>PAP<br>PAP<br>PAP<br>PAP<br>PAP                            | PSM<br>PSM<br>PSM<br>PAP<br>PSM<br>PSM<br>PSM<br>PSM | PAP<br>PAP<br>PSM<br>PSM<br>PSM               | PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM                      | PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM                 |

|           | Binding Data           |
|-----------|------------------------|
| Table AVI | 03 Motif Peptides with |
|           | Prostate /             |

| A*0301                | 0.0002                                                                    | 0.0001                                                                                                                          |
|-----------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| No. of<br>Amino Acids | 266226688666                                                              | ,<br>,<br>,<br>,<br>,<br>,                                                                                                      |
| Position              | 328<br>357<br>153<br>153<br>231<br>125<br>126<br>146<br>142               | 273<br>240<br>240<br>240<br>240<br>233<br>233<br>233<br>233<br>348<br>348<br>348<br>348<br>348<br>348<br>348<br>348<br>348<br>3 |
| Protein               | PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSA<br>Kallikrein<br>Rallikrein<br>PSA | PSM<br>Kalliforein<br>Kalliforein<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM                         |

| Table 2<br>rostate A03 Motif Peptic |
|-------------------------------------|
|-------------------------------------|

|                    | X.<br>Prostate A03 Motif | Table XVI<br>Prostate A03 Motif Peptides with Binding Data | Ifa       |
|--------------------|--------------------------|------------------------------------------------------------|-----------|
| Protein            | Position A               | No. of<br>Amino Acids                                      | A*0301    |
| . ded              | 147                      | o                                                          | . \$000 0 |
| PSM                | 267                      | \ 00                                                       | 50000     |
| PSM                | 267                      | =                                                          |           |
| PAP                | 212                      | œ <b>\$</b>                                                |           |
| DCA                | 717                      | 2 0                                                        |           |
| PSA                | S S                      | <b>~</b> =                                                 | 0.2400    |
| P\$M               | 550                      | 2                                                          | 0.0004    |
| Kallikrein         | <b>S</b> .(              | 60 ;                                                       |           |
|                    | 66 83                    | 2 :                                                        |           |
| PAP                | 349                      | 2 ∝                                                        | 0.0003    |
| PAP                | 349                      | . 0                                                        |           |
| PSM                | 290                      | 10                                                         |           |
| PSM                | 290                      | =                                                          |           |
| POM                | 121                      | Φ;                                                         | !         |
| PSA                | 721                      | ۵ ء                                                        | 0.0003    |
| PSA                | 236                      | v                                                          | 0,0070    |
| PSA                | 236                      | 2 = 1                                                      | × 0000    |
| PSM                | 202                      | 01                                                         |           |
| PSM                | 694                      | ∞ ;                                                        |           |
| PAP                | 278                      | = 0                                                        | 2000      |
| PAP                | 278                      | · =                                                        | 70000     |
| PSM                | 293                      | ∞ ;                                                        |           |
| ront<br>Volitiesia | 293                      | <u>0.</u> .                                                |           |
| Kallikein          | 5 5                      | × :                                                        |           |
| PSM                | 740                      |                                                            |           |
| PAP                | 200                      | ; <b>6</b>                                                 | 0.0006    |
| PAP                | 200                      | =                                                          |           |
| PAP                | 791                      | . 01                                                       |           |
| PSM                | 56<br>56                 | = 0                                                        |           |
| PSM                | 157                      | ·=                                                         |           |
| PSM                | 218                      | =                                                          |           |
| PSM                | <u>.</u>                 | = •                                                        |           |
| PAP                | 751                      | × 00                                                       |           |
| PSM                | 299                      | o oco                                                      |           |
| PSM                | <b>667</b>               | ο \$                                                       |           |
| PAP                | 6 6                      | 2 =                                                        |           |
| PSM                | 389                      | : œ                                                        |           |
| Kallikrein         | 109                      | =                                                          |           |

| 3 M | ø    | state A0    | Prostate A0    | Table AVI | 3 Motif Peptides with Binding Data |
|-----|------|-------------|----------------|-----------|------------------------------------|
|     | 03 M | state A03 M | Prostate A03 M | =         | otifP                              |

| Protein        | Position   | No. of<br>Amino Acids | A*0301  |
|----------------|------------|-----------------------|---------|
| X allifrair    | OF.        | . 01                  |         |
| Kallikrein     | 36.        | 2=                    |         |
| PSA            | <b>2</b>   | <b>о</b> :            |         |
| PSA            | 182        |                       | 0.0060  |
| PSA            | 182        | 01                    |         |
| PSA            | 35         | Φ.                    | 0.0021  |
| PSA            | 35         |                       |         |
| - Mud          | 578<br>878 | × =                   |         |
| - VSG          | 700        | ; ao                  |         |
| PSA            | 87         | =                     |         |
| Kallikrein     | 72         | 2:                    |         |
|                | 101        |                       |         |
|                | 7 (        |                       | . 01500 |
| TAT<br>PAP     | 1 (1       | ~ 2                   | 0.1300  |
| PAP            | 7          | =                     |         |
| PAP            | 01         | 0                     |         |
| PAP            | 0          | 11                    |         |
| PAP            | 273        | <b>60</b> (           |         |
| 7. C           | 273        | 2v <del>2</del>       | 0.0210  |
| PSA            | 43         | 2 5                   | 0.0033  |
| Kallikrein     | 981        | 0.00                  |         |
| PSM            | 130        | 10                    | 0.0021  |
| PSM            | 598        | <b>99</b> (           |         |
| WSd.           | 298        | <b>Д</b>              | 0.0024  |
| · None         | 865<br>868 | 2 -                   |         |
| ASA.           | 202        | -                     |         |
| PAP            | 163        | ===                   |         |
| PSM            | 363        | ∞                     |         |
| PSM            | 363        | Ф                     |         |
| WSW.           | 280        | Φ;                    |         |
|                | 255        | 2 6                   |         |
| Mon            | 210        | o <del>I</del>        |         |
| No.            | 320        | : œ                   |         |
| PSM            | 445        |                       |         |
| PSM            | 211        | 11                    |         |
| Kallikrein .   | 24         | 01                    | 0.0460  |
| 73A<br>7.01115 | 9 7        | 2:                    | 0.0460  |
|                | <b>*</b> 6 | ===                   |         |
|                | 3 25       |                       | 03700   |
|                | 5          | <b>?</b> .            |         |

|                       |                                                                                                                                                        | ,          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| A*0301                | 0.0032                                                                                                                                                 |            |
| No. of<br>Amino Acids | 86518565168665516858888868861865885186165                                                                                                              | •• ••      |
| Position              | 527<br>527<br>527<br>527<br>662<br>180<br>111<br>115<br>115<br>116<br>117<br>117<br>118<br>118<br>118<br>119<br>119<br>119<br>119<br>119<br>119<br>119 | 507<br>517 |
|                       |                                                                                                                                                        |            |
|                       | •                                                                                                                                                      |            |
| Protein               | PSM                                                                                                                | PSM<br>PSM |

| Table XVI Prostate A03 Motif Peptides with Binding Data |  |
|---------------------------------------------------------|--|
|---------------------------------------------------------|--|

|                                          |   | Prostate A03 Mo | Table XVI<br>Prostate A03 Motif Peptides with Binding Data | ata    |
|------------------------------------------|---|-----------------|------------------------------------------------------------|--------|
| Protein                                  |   | Position        | Ņo. of<br>Amino Acids                                      | A*0301 |
| Wa                                       |   | \$17            | a                                                          |        |
| PSM                                      |   | 517             | <b>`</b> =                                                 |        |
| PSM                                      |   | . 232           | œ                                                          |        |
| Kallikrein<br>ng 4                       |   | 155             | =:                                                         |        |
| . Man                                    |   | 151             | <u>-</u> 5                                                 |        |
| Kallikrein                               |   | 7               | 2 =                                                        |        |
| PSM                                      |   | 455             | : 6                                                        |        |
| Kallikrein                               |   | 159             |                                                            |        |
| Kallikrein                               |   | 159             | 11                                                         |        |
| PSA                                      |   | 155             |                                                            |        |
| PSW                                      |   | 129             | Ξ,                                                         |        |
| NOW  |   | 167<br>101      | - S                                                        |        |
| NO N |   | 167             | 2 =                                                        | 0.0940 |
| Z Z Z                                    |   | 590             | :0                                                         | 90000  |
| PSM                                      |   | 280             | - =                                                        |        |
| PSM                                      |   | 142             | 01                                                         |        |
| PSM                                      |   | 631             | 6                                                          |        |
| PAP                                      |   | 1 <b>3</b>      | <b>Φ</b> ;                                                 |        |
| PAP                                      | • | 51.             | <u> </u>                                                   |        |
| Nallikrelli<br>Kallikreli                |   | 5 2             | :                                                          |        |
| PSA                                      |   | 9               | . 0                                                        | 0.0024 |
| PAP                                      |   | 242             | Ġ                                                          | 0.0006 |
| PAP .                                    |   | 242             | 01                                                         | 0.4900 |
| Kallikrein                               |   | 0/1             | œ ;                                                        |        |
| Kalikrein<br>DAD :                       |   | 2:              | 0.                                                         |        |
| PAP                                      |   | <u>.</u>        | o <u>-</u>                                                 |        |
| WSd                                      |   | 472             | ; ∝                                                        |        |
| PSM                                      |   | 472             | · <del>-</del>                                             |        |
| PSM                                      |   | 492             | æ                                                          |        |
| PSM                                      |   | 492             | o                                                          | 1.0000 |
| PAP                                      |   | 245             | <b>5</b>                                                   | 1.1000 |
| PSA                                      |   | 247<br>757      | Ξ ∝                                                        |        |
| PSA                                      |   | 237             | <b>.</b> 0                                                 | 0.6800 |
| PSA                                      |   | 237             | . 02                                                       | 0.2800 |
| PSA                                      |   | . 237           | = '                                                        |        |
| WS.                                      |   | 615             | თ 🚍                                                        | 0.1100 |
| Kallikreiņ                               |   | 1117            | : •                                                        | 0.0039 |
| PSA                                      |   | 113             | o =                                                        | 0.0039 |
| PSM                                      |   | 454             |                                                            | 0.0007 |
|                                          |   |                 |                                                            |        |

| Ť                                                          |                       | Ì                 |                   |            |              |              |                                  |               |            |            |                   |            |          |                   |              |                          |                | •          |                   |                            |                          |     |
|------------------------------------------------------------|-----------------------|-------------------|-------------------|------------|--------------|--------------|----------------------------------|---------------|------------|------------|-------------------|------------|----------|-------------------|--------------|--------------------------|----------------|------------|-------------------|----------------------------|--------------------------|-----|
| ding Data                                                  | A+0301                |                   |                   | 0.0005     |              |              | 0.0017                           |               |            | 0.0094     |                   |            |          |                   | 0.0007       |                          | 0.0002         |            | 0.0007            | 0.0006<br>0.0007<br>0.0005 | 0.0003                   |     |
| Table XVI<br>Prostate A03 Motif Peptides with Binding Data | No. of<br>Amino Acids | I & I             | 111               | 20 6       | 8<br>10      | <b>∷ ∞.:</b> | <b>∷</b> ∞ ∢                     | oν ∞          | ⊇ ∞ ;      | . 6        | <b>8</b> 01       | ∞ <i>0</i> | , O. C.  | 2 & 01            | <b>8</b> 01  |                          | 9 11           | <b>0</b> 0 | ∞2;               | <u>.</u> 600               | ,<br>=                   | δ.  |
| Prostate A03                                               | Position              | 45                | 106<br>106<br>369 | 431<br>348 | 338<br>338   | 217<br>67    | 67<br>73<br>73<br>73<br>73<br>74 | 62 63<br>62 6 | 979        | 58<br>58   | 62<br>14          | œ œ        | 8<br>101 | 52<br>15          | 334          | 98 88                    | 82<br>82<br>82 | 415<br>190 | 404<br>404<br>404 | 404<br>171<br>171<br>112   | 112<br>361<br>461<br>461 | n   |
|                                                            |                       |                   |                   |            |              |              |                                  |               |            |            |                   |            |          |                   |              |                          |                |            |                   |                            |                          |     |
|                                                            | •                     |                   |                   |            |              |              |                                  |               |            |            |                   |            | •        |                   |              |                          |                |            |                   |                            |                          |     |
|                                                            | Protein               | PSM<br>PSM<br>PSM | PAP<br>PAP        | PSM<br>PSM | PSM .<br>PSM | PAP<br>PSA   | PSA<br>PAP                       | PAP<br>PSM    | PSA<br>PSA | PSA<br>PSA | Kallikrein<br>PSM | PSM        | PSM      | PAP<br>Kallikrein | PSM .<br>PSM | Kallikrein<br>Kallikrein | PSA<br>PSA     | PSM<br>PAP | PSM<br>PSM        | PSM<br>PAP<br>PAP          | PAP<br>PSM<br>PSM<br>PSM | PSA |

| Protein              | Position | No. of<br>Amino Acids | A*0301 |
|----------------------|----------|-----------------------|--------|
| PSA                  | S        | 10                    |        |
| PAP                  | 39       | 0                     | 90000  |
| PSM                  | 141      | =                     |        |
| Kallikrein           | 227      | o                     |        |
| PAP                  | 222      | <b>~</b> 0            |        |
| PSM                  | 575      | `=                    |        |
| PAP                  | 145      |                       |        |
| PAP                  | 292      | 80                    |        |
| PSM                  | 734      | <b>co</b>             |        |
| PSM                  | 734      | 6                     |        |
| NSA.                 | 734      | 10                    |        |
| NSA C                | 576      | 0 <u>.</u>            |        |
| rsm<br>r-mii-        | 12       | <b>00</b> (           |        |
| NailliCein<br>V-IIII | 9 ;      | <b>5</b>              |        |
|                      | 040      | 2,                    |        |
| AND AND              | 6/-      | <b>3</b> 0            |        |
| Mid                  | 244      | 0 0                   |        |
| PSM                  | . 612    | o =                   |        |
| PAP                  | 601      | ; 00                  |        |
| PSM                  | 523      | · 0\                  |        |
| PSM                  | 382      | =                     |        |
| PSA                  | \$\$     | œ                     |        |
| PSA                  | \$82     | . oī                  |        |
| Mod                  | 208      | · co                  |        |
| rolyt<br>Volliberia  | 807      | 2,                    |        |
|                      | 97       | <b></b>               |        |
| Kallikmin            | 77 %     | 0 0                   |        |
| PSA                  | 23       | <b>~</b> 0            |        |
| PSM                  | 287      |                       |        |
| PSM                  | 329      | . 0                   |        |
| PSM ·                | 201      | O.                    |        |
| PSM                  | 201      | 01                    |        |
| PSM .                | 358      | œ                     |        |
| PSA                  | 89       | 01                    |        |
| PSA                  | 89       | = .                   |        |
| Mod Work             | 225      | <u>.</u>              |        |
| PSM                  | 225      | 2 =                   |        |
| PSA                  | 174      | : ∞                   |        |
| PSA                  | 174      | = •                   |        |
| Non                  | 069      | ,<br>∞ (              |        |
| Mud                  | 069      | 2:                    | 0.5400 |
| LON                  | 040      | =                     |        |

| •                 | J<br>Prostate A03 Motif | <u>Table XVI</u><br>Prostate A03 Motif Peptides with Binding Data |        |
|-------------------|-------------------------|-------------------------------------------------------------------|--------|
| Protein           | Position                | No. of<br>Amino Acids                                             | A*0301 |
|                   |                         | •                                                                 |        |
| Mich.             | /7                      | = ∝                                                               |        |
| Kallikrein        | 38.                     | • ⊆                                                               |        |
| PSM               | 115                     | 2 00                                                              |        |
| PSM               | 115                     | . 9                                                               |        |
| PSM               | 592                     | . ≎                                                               |        |
| PSM               | 592                     |                                                                   | 0.0005 |
| PSM               | 603                     |                                                                   |        |
| PSM               | 603                     | 10                                                                |        |
| PSW               | 099                     | 11                                                                |        |
| PSA               | . S                     | 6                                                                 | 0.0002 |
| roa<br>Vonilania  | <b>26</b>               | = •                                                               | ,      |
| Kallikrein        | G <b>G</b>              | × 5                                                               |        |
| PSA.              | 9 92                    | ≥ ∞                                                               |        |
| PSA<br>PSA        | 2 X                     | •                                                                 |        |
| Kallikrein        | . S                     | -=                                                                |        |
| PSA               | 49                      | ==                                                                |        |
| PAP               | 262                     | 6                                                                 | 0.0019 |
| AAP.              | 262                     | =:                                                                |        |
| No.               | ¥ 2                     | 01                                                                |        |
| . × × ×           | 7 7                     | o ⊆                                                               |        |
| PSM               | 154                     | 211                                                               |        |
| PSM               | . 627                   | 0                                                                 |        |
| PSM               | 627                     | p p-                                                              | -      |
| Kallikmin         | 600                     |                                                                   | 0000   |
| PSA               | 7 00                    |                                                                   | 0.0003 |
| Kallikrein '      | 192                     |                                                                   |        |
| PSA               | . 881                   |                                                                   |        |
|                   | œ ç                     |                                                                   | 0.0003 |
| PSM               | 38                      | 2 0                                                               |        |
| Kallikrein        | 246                     | •                                                                 | 0.0072 |
| PSA               | 242                     | 6                                                                 | 0.0072 |
| PSM .             | 602                     | o ;                                                               | 0390   |
| rom<br>Kalilbesis | 209                     | = :                                                               |        |
| PAP               | 226                     |                                                                   | 9000   |
| PAP               | 226                     |                                                                   |        |
| Kallikrein        | 7 ;                     | ∞ (                                                               |        |
| NO.               | 41                      | <b>a</b> a                                                        |        |
| PSM               | 25<br>257               | <b>`</b> =                                                        |        |
| Kallikrein        | 229                     | · .                                                               |        |

| Table XVI | Prostate A03 Motif Peptides with Binding Data |
|-----------|-----------------------------------------------|
|-----------|-----------------------------------------------|

| Data                                                    | A*0301                |     |            |     |            |     |                    | 1          | 0.0026      | 0.003\$ |            | 0.0002 |     | ,   | 0.0004            |            |     |     |     |     |     | ٠          | 0.0003     |     |           |     |       |     |     |     | 90000      |     |     |     | 0.0005 |     |     | 90000      | 70000 | 0.000       |
|---------------------------------------------------------|-----------------------|-----|------------|-----|------------|-----|--------------------|------------|-------------|---------|------------|--------|-----|-----|-------------------|------------|-----|-----|-----|-----|-----|------------|------------|-----|-----------|-----|-------|-----|-----|-----|------------|-----|-----|-----|--------|-----|-----|------------|-------|-------------|
| Table XVI Prostate A03 Motif Peptides with Binding Data | No. of<br>Amino Acids | -   |            | o   | =          | =   |                    | <b>∞</b> ; | 0.0         | • •     | <b>、</b> ∞ |        | 11  | 01  | 2 9               | 2 =        |     | :0  | 00  | ο;  | 2 6 | × 0        | , <u>e</u> | =   | <b>00</b> | ο;  |       | 2 ه | : ∞ | 01  | <b>o</b> c | ×   | . 0 | ∞ ; |        |     | ∞   | ο:         | : a   | <b>^</b> :: |
| Prostate A03 Mo                                         | Position              | 316 | 157        | 153 | 157        | 10  | 252                | 248        | 7 50<br>7 8 | 22      | 47         | 206    | 368 | 497 | r 9               | V 6        | 607 | 700 | 692 | 692 | 692 | 6/1        | 310        | 310 | 009       | 009 | 900   | 277 | 214 | 209 | 300        | 6   | 210 | 266 | 734    | 319 | 325 | . 247      | 305   | 205         |
| -                                                       |                       |     |            |     |            |     |                    |            |             |         |            |        |     |     |                   |            |     |     |     |     |     |            |            |     |           |     |       |     |     |     |            |     |     |     |        |     |     |            |       |             |
|                                                         |                       |     |            |     |            |     |                    |            |             |         |            |        |     |     |                   |            |     |     |     |     |     |            |            |     |           |     |       |     |     |     |            |     |     |     |        |     |     |            | •     |             |
|                                                         | Protein               | PSA | Kallikrein | PSA | Kallikrein | PSA | Kallikrein<br>nc A | rsa<br>Sec | PSM         | PAP     | Kallikrein | PAP    | PAP | PSM | roA<br>Vellikrain | Kallikrein | PSM | PSM | PSM | PSM | PSM | PSM<br>PSM | PAP        | PAP | PSM       | PSM | . MSM | PSM | PAP | PSM | FSM<br>PSM | PSA | PAP | PSM | E S    | PAP | PAP | PAP<br>PAD | MSd   | PSM         |

Protein

| ding Data                                                         | A*0301                | 0.0600                                                                                                       |
|-------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------|
| <u>Table XVI</u><br>Prostate A03 Motif Peptides with Binding Data | No. of<br>Amino Acids | ∞°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°                                                                        |
| Prostate A03                                                      | Position              | 84<br>84<br>103<br>1155<br>1155<br>128<br>228<br>625<br>625<br>625<br>625<br>733<br>733<br>733<br>733<br>716 |

|            | <b>Binding Data</b>                |
|------------|------------------------------------|
| Table XVII | Prostate All Motif Peptides with 1 |

| Position Acids  Min Min Min Min Acids  Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Position No. of Amiro Acids  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |   |           |             |                       |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|-----------|-------------|-----------------------|--------|
| 59 8 608 608 608 608 608 608 608 608 608 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13   8   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   608   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Protein      |   | <b>μ.</b> |             | No. of<br>Amino Acids | A*1101 |
| 159<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1608<br>1 | 13 8 8 8 8 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 10 608 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |   |           |             | ,                     |        |
| 3 3 608 608 608 608 608 608 608 608 608 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 3 3 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSA          |   |           | 59          | <b></b>               |        |
| 392, 668, 668, 668, 668, 668, 668, 668, 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 937, 608 608 608 608 608 608 608 608 608 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PAP          |   |           | J           | <b>o</b> 64           |        |
| 6.08 6.08 6.08 6.07 6.74 6.75 6.74 6.75 6.77 6.77 6.77 6.77 6.77 6.77 6.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 608 608 10<br>452 232 9 9 774 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PSM          |   |           | 392         | . 0                   |        |
| 6.08 2.22 2.24 6.74 6.74 6.74 6.74 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.08 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PSM.         |   |           | 809         | 0                     |        |
| 452 252 252 254 256 257 257 257 257 257 257 257 257 257 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 452 252 256 267 267 267 270 270 270 270 271 271 271 271 271 272 274 274 274 274 274 274 274 274 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . WSM        |   |           | . 809       | =                     |        |
| 233 234 264 264 264 264 264 264 264 264 267 267 268 27 27 288 288 288 29 27 288 288 29 200 200 200 200 200 200 200 200 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 222 226 226 226 226 227 227 227 227 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSM          |   | ٠         | 452         | Φ.                    |        |
| 733<br>704<br>706<br>707<br>708<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 674 674 111 220 220 9 264 9 9 195 8 8 195 8 8 197 11 9 9 231 9 9 231 9 9 231 9 9 231 9 9 231 9 9 24 9 9 24 9 9 24 9 9 24 9 9 24 9 9 24 9 9 24 9 9 24 9 9 24 9 9 25 9 26 9 9 26 9 9 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSM          |   |           | 232         | Ф.;                   | 0.0051 |
| 254<br>264<br>195<br>195<br>195<br>195<br>196<br>196<br>197<br>198<br>198<br>198<br>199<br>199<br>199<br>199<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2074 111 2070 9 2040 9 1950 88 1951 89 1971 88 233 111 234 88 237 237 89 227 10 227 10 227 10 238 111 244 9 258 110 259 111 250 111 251 251 10 251 251 10 251 251 10 251 251 10 251 251 10 251 251 10 251 251 251 10 251 251 251 10 251 251 251 10 251 251 251 10 251 251 251 251 10 251 251 251 251 10 251 251 251 251 10 251 251 251 251 10 251 251 251 251 10 251 251 251 251 251 251 251 251 251 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PSM          |   |           | 232         |                       |        |
| 220<br>240<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250<br>264<br>264<br>199<br>199<br>198<br>198<br>231<br>231<br>231<br>231<br>231<br>231<br>231<br>231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PSZ .        |   |           | 674         | -<br>-                |        |
| 264 195 197 197 198 199 235 235 235 237 237 227 227 227 227 227 227 227 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 264 701 195 88 195 88 111 233 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PSM          |   |           | 077         | ا ح                   |        |
| 195 195 195 197 197 198 197 235 235 231 231 231 237 237 237 237 237 237 237 247 274 274 274 274 274 274 274 274 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 701<br>195<br>195<br>195<br>195<br>195<br>195<br>195<br>197<br>197<br>198<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>199<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PSM          |   | •         | 264         | <b>о</b> (            |        |
| 1995 88  84  233  234  235  235  237  237  237  237  237  249  240  241  241  241  241  241  241  241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1999   8   8   8   8   11   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PSM          |   | •         | 101         | Ф.                    |        |
| 195 197 111 235 235 235 231 231 231 231 231 231 231 231 231 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95 8 11 235 235 235 235 235 231 8 231 8 231 9 231 9 231 9 231 9 9 231 9 9 231 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kallikrein   |   |           | 199         | 00                    |        |
| 235 235 235 231 231 231 231 231 231 231 231 231 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 711 84 111 235 235 9 231 231 9 231 231 11 231 231 11 231 231 11 244 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PSA          |   |           | 195         | œ 1                   |        |
| 711<br>235<br>235<br>231<br>231<br>231<br>331<br>331<br>331<br>331<br>331<br>331<br>331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 235 9 9 235 11 231 231 11 11 231 9 9 9 274 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PSM          |   | -         | <b>2</b>    | 11                    |        |
| 235 235 231 231 231 234 8 88 831 89 80 80 80 80 80 80 80 80 80 80 80 80 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 235 235 231 231 231 234 8 88 88 88 88 88 88 88 88 88 88 88 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PSM          |   |           | 711         | œ                     |        |
| 235 231 231 231 231 231 231 234 288 249 274 288 210 241 241 241 241 241 241 241 241 241 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 235 231 231 231 231 231 231 231 231 311 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kallikrein   |   |           | 235         | o i                   |        |
| 231 231 19 274 88 831 99 227 227 88 88 49 49 11 11 11 44 99 274 99 601 10 635 601 10 641 99 241 7 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 10 635 601 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 231 9<br>274 8<br>588 11<br>531 9<br>531 9<br>531 9<br>627 10<br>189 10<br>44 9<br>64 9<br>64 9<br>64 9<br>601 10<br>61 | Kaliikrein   |   |           | 235         |                       | 1      |
| 231<br>231<br>311<br>311<br>327<br>227<br>49<br>49<br>49<br>49<br>40<br>41<br>41<br>41<br>60<br>60<br>60<br>60<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 231 234 88 88 831 227 88 110 89 49 88 274 88 874 88 88 88 88 88 601 10 41 99 41 99 241 11 12 241 11 189 99 99 99 99 99 99 99 99 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PSA          |   |           | 231         | a ;                   | 0.0013 |
| 274 8 531 99 531 99 527 10 189 49 88 49 88 274 99 274 99 601 10 635 11 17 88 601 10 611 99 612 241 99 624 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 274 58<br>531 99<br>531 99<br>537 10<br>189 10<br>49 8<br>40 8<br>11 99<br>11 99<br>11 99<br>11 99<br>11 99<br>11 99<br>11 99<br>11 99<br>11 99<br>11 10<br>12 11 10<br>12 11 10<br>13 11 11 11 11 11 11 11 11 11 11 11 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSA          |   |           | 231         | =:                    |        |
| 311 331 6 9 11 189 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 311 91<br>531 8<br>227 8<br>227 10<br>189 10<br>49 8<br>274 9<br>11 9<br>241 9<br>241 10<br>241 11<br>11 9<br>241 8<br>241 241 11<br>198 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No.          |   |           | 500         |                       |        |
| 227 227 227 88 49 49 88 274 274 88 81 11 61 61 61 61 61 61 61 61 61 61 61 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 227 227 227 10 189 49 49 49 11 274 274 88 44 9 601 635 11 7 88 601 601 601 601 601 601 601 601 601 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rom<br>n + n |   |           | 000         | Ξ α                   | 03300  |
| 227<br>227<br>189<br>49<br>49<br>8<br>274<br>8<br>274<br>8<br>11<br>9<br>601<br>601<br>601<br>601<br>601<br>601<br>601<br>601<br>601<br>601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 227 227 189 189 49 49 8 49 8 11 274 8 8 11 11 11 11 11 11 12 12 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOM          |   |           | 511         | <b>.</b>              | 0.55.0 |
| 227<br>189<br>49<br>49<br>8<br>274<br>8<br>11<br>9<br>601<br>601<br>601<br>601<br>601<br>601<br>601<br>601<br>601<br>601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 227 10<br>49 48 8<br>40 11<br>274 9 8<br>11 9 9<br>11 9 9<br>12 10<br>13 11<br>14 9 9<br>10 601 10<br>41 9 9<br>41 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . AVA        |   |           | 7.66        | . 00                  | 0.000  |
| 189<br>49<br>49<br>274<br>11<br>44<br>286<br>635<br>601<br>10<br>601<br>10<br>601<br>10<br>601<br>10<br>601<br>10<br>601<br>601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 189 10<br>49 8 8<br>274 9 11<br>11 9 9<br>44 9 9<br>635 11<br>17 8 8<br>601 10<br>41 9<br>241 10<br>241 10<br>241 10<br>198 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O V O        |   |           | 727         | . ⊆                   | 60000  |
| 49 49 8 8 274 9 8 11 1 9 9 11 1 9 9 11 1 1 9 9 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49 8 8 11 274 8 11 9 9 11 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PAP          |   |           | 27          | 2 =                   |        |
| 274 8 8 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49 11<br>274 8<br>274 8<br>11 9<br>44 9<br>286 10<br>635 11<br>17 8<br>601 10<br>41 9<br>241 8<br>241 10<br>241 11<br>198 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . Msd        |   |           | 40          | 2 00                  |        |
| 274 8 8 274 9 9 11 9 44 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 274 8<br>274 9<br>11 9<br>44 9<br>286 10<br>635 11<br>17 8<br>393 8<br>601 10<br>41 9<br>241 8<br>241 10<br>241 11<br>198 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NSd          |   |           | 49          |                       |        |
| 274 9 9 44 9 9 286 10 635 11 17 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 274 9 9 44 9 9 635 11 9 9 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PAP          |   |           | 27.4        | ; 00                  | 0.0200 |
| 11 44 44 9 286 10 635 11 17 8 8 11 8 8 601 10 10 41 9 9 241 9 241 10 9 241 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 9<br>44 9<br>286 10<br>635 11<br>17 8<br>393 8<br>601 10<br>41 9<br>241 10<br>241 10<br>198 9<br>194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAP          |   |           | 274         | • •                   | 1 2000 |
| 44 44 9 286 10 635 11 17 8 8 19 9 601 10 41 9 9 241 8 8 241 10 9 241 10 9 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 601 10 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44 9 286 10 635 11 17 8 8 19 393 8 601 10 41 9 9 241 8 8 241 10 241 11 198 9 194 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - PSW        | • |           |             |                       |        |
| 286 10 635 11 17 8 8 19 393 8 601 10 41 9 241 9 241 9 241 9 10 241 9 10 241 9 10 241 11 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 286 10<br>635 11<br>17 8<br>393 8<br>601 10<br>41 9<br>241 8<br>241 10<br>241 11<br>198 9<br>194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PSA          | • |           | 4           | . 0                   |        |
| 635 11<br>17 8<br>393 8<br>601 10<br>41 9<br>241 8<br>241 9<br>241 10<br>241 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 635 11<br>17 8<br>393 8<br>601 10<br>41 9<br>241 8<br>241 0<br>241 10<br>241 11<br>198 9<br>194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PSM          |   |           | 286         | 01                    |        |
| 17 8<br>393 8<br>601 10<br>41 9<br>241 8<br>241 10<br>241 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 8<br>393 8<br>601 10<br>41 9<br>241 8<br>241 10<br>241 10<br>198 9<br>194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PSM          |   |           | 635         | 11                    |        |
| 393 8 601 10 41 9 41 9 9 241 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 393 8 601 10 41 9 41 9 9 241 8 241 10 241 10 11 198 9 194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kallikrein   |   |           | 17          | . 00                  |        |
| 601 10<br>41 9<br>241 8<br>241 9<br>241 10<br>241 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 601 10<br>41 9<br>241 8<br>241 0<br>241 10<br>198 9<br>194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PSM          |   |           | 393         |                       |        |
| 41 9 241 8 241 9 241 10 241 10 10 108 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41 9<br>241 8<br>241 9<br>241 10<br>241 11<br>198 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PSM          |   |           | 109         | 10                    | 0.0210 |
| 241 8 241 9 241 10 241 10 10 108 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 241 8 241 9 241 10 241 10 10 11 11 11 198 9 194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kallikrein   | • |           | 14          | Φ                     |        |
| 241 9<br>241 10<br>241 11<br>198 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 241 9<br>241 10<br>241 11<br>198 9<br>194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kallikrein   | • |           | 241         | <b>∞</b>              |        |
| 241 10<br>241 11<br>198 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 241 10<br>241 11<br>198 9<br>194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kallikrein   |   |           |             | a                     |        |
| 11 16 861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 241 11 198 9 194 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kallikrein   |   |           | 241         | 0:                    |        |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 198 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kallikrein   |   | •         | 147         |                       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kallikrein   | • |           | <u>86</u> . | <b>5</b> . (          |        |

|                   | 1<br>Prostate AIL Moti | Table XVII Prostate All Motif Peptides with Binding Data | afa .  |
|-------------------|------------------------|----------------------------------------------------------|--------|
| Protein           | Position               | No. of<br>Amino Acids                                    | A*1101 |
|                   | 7.00                   |                                                          |        |
| Kallikrein<br>PSA | 234                    | 2 5                                                      |        |
| PSA               | 08-                    | ) oo                                                     |        |
| PSA               | 180                    | . II                                                     |        |
| Kallikrein        | 184                    | ∞                                                        |        |
| PSM               | 96.                    | ο;                                                       | 0070   |
| ያል<br>የል          | 147                    | 2 0                                                      | 0.0490 |
| Kallikrein        | 4                      | \ <b>=</b>                                               | 00000  |
| PSM               | 466                    | 10                                                       |        |
| PSM               | 710                    | ٥.                                                       | 0.0002 |
| NSA.              | 301                    | ∞ ⊆                                                      |        |
|                   | 965                    | 2 =                                                      |        |
| PSM               | 465                    | :=                                                       |        |
| PSA               | Ξ                      | 11                                                       |        |
| PSM               | 652                    | = •                                                      |        |
| NSW NSW           | 184                    | <b>.</b> 2                                               | •      |
| PAP               | 186                    | ¦ oo                                                     |        |
| PSM               | 714                    |                                                          | 0.0002 |
|                   | 707                    | ∞⊊                                                       |        |
| PSM               | 173                    | ; o                                                      |        |
| Kallikrein        | 182                    | 2 4                                                      |        |
| PSA .             | . 86<br>86             | > ∞                                                      | 0.0001 |
| . VSA             | 8 8                    | • <del>=</del>                                           | 10000  |
| MSM               | 6                      | ∞ (                                                      |        |
| . NSG             | o                      | φ <u>:</u>                                               |        |
| WSA               | 630                    | : ∞                                                      |        |
| Kallikrein        | 116                    | 2                                                        |        |
| PSA               | 112                    | <u></u>                                                  |        |
| WSA               | 453                    | • <del>=</del>                                           |        |
| PSM               | 316                    | 6                                                        | 0.0003 |
| PSM               | 90 5                   | ·<br>•• •                                                |        |
| Kallikrein        | 82                     | 01                                                       | 1000.0 |
| PSA               |                        | 0.                                                       | ,      |
| PSA               | 178                    | 2 0                                                      | 0.0011 |
| PSM               | 114                    | · =                                                      |        |
| PAP               | 301                    | 0.                                                       | -      |
| PSM               | 48                     | œ                                                        |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prostate All Mot | Table XVII Prostate A11 Motif Peptides with Binding Data | ata    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------|--------|
| Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Position         | No. of<br>Amino Acids                                    | A*1101 |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48               | o                                                        | 1      |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 285              | · ==                                                     | •      |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 371              | •                                                        |        |
| Pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 283              |                                                          |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S                |                                                          |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SII              | 21                                                       |        |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>3</b>         | 11                                                       |        |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 8              | 11                                                       |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 627              | ∞:                                                       |        |
| TOM TO THE TOTAL THE TOTAL TO T | 701              | <b>=</b> 0                                               |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/1              | 9                                                        |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 505              | 20                                                       |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 171              | 6                                                        |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 171              | 11                                                       |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 486              | <b>o</b> ;                                               |        |
| Now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 489              | <b>≓</b> •                                               | 6000   |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 366              |                                                          | 0.0002 |
| PSM·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 397              | , 0                                                      |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 397            | 11                                                       | •      |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>60</u>        | =                                                        |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 ≅              | oc or                                                    |        |
| dVd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 2              | o 01                                                     |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                | 01                                                       |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>8</b>         |                                                          |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>2</b> :       | oo (                                                     |        |
| TOWN DAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ \$            | o 5                                                      | 0.0033 |
| - APP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , <del>2</del>   | 2 =                                                      | 10000  |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 237              | = -                                                      |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240              | œ                                                        |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240              | Ξě                                                       |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 317              | ≫ S                                                      |        |
| NSA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89               |                                                          |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 437              | ) O.                                                     |        |
| MSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 716              |                                                          |        |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S 8              | <b>∽</b> =                                               | 0.0002 |
| NSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ş F- 1           | 01                                                       |        |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 2              | <b>=</b> 9                                               | 67.00  |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2021             | 2 =                                                      | 0.0140 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                          |        |

| Data                                                     | A*1101                | 0.0002                                                                                         | 0.0004                                                                                 | 0.0036<br>0.0007                                                   | 0.0350                                                             |            |
|----------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------|
| L<br>with Binding                                        | ls                    |                                                                                                |                                                                                        |                                                                    |                                                                    |            |
| Table XVI<br>dotif Peptides                              | No. of<br>Amino Acids | ∞ = ∞ 9 ∞ = = 9 o o = = ∞ 9 = 9 e = ∞                                                          | <b>□ 0</b> ∞ 3                                                                         | 20000101                                                           | :: o = ∞ = o 2 2 ∞ ∞ o 2 ∞ 2<br>                                   | ∞∞         |
| Table XVII Prostate A11 Motif Reptides with Binding Data | Position              | 542<br>542<br>557<br>557<br>557<br>557<br>558<br>653<br>629<br>629<br>103<br>103<br>675<br>675 | 20<br>20<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | 106<br>646<br>546<br>546<br>337<br>337                             | 639<br>333<br>333<br>340<br>263<br>264<br>172<br>172<br>172        | 265<br>487 |
|                                                          |                       |                                                                                                |                                                                                        |                                                                    |                                                                    |            |
|                                                          |                       |                                                                                                |                                                                                        |                                                                    |                                                                    |            |
|                                                          |                       |                                                                                                |                                                                                        | ·                                                                  |                                                                    |            |
|                                                          |                       |                                                                                                |                                                                                        | •                                                                  |                                                                    |            |
| •                                                        | Protein               | PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM                             | PAP<br>PAP                                                                             | PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM | PSM<br>PSM<br>PSM<br>PAP<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM | PSM<br>PSM |

| Prostate A11 | Table XVII | Motif Peptides with Binding Data |
|--------------|------------|----------------------------------|
| Prostate A11 | Tabl       | ⋍                                |
|              |            | Prostate A11                     |

|                    | Prostate A11 Mo   | Table XVII Prostate A11 Motif Peptides with Binding Data | ata .    |
|--------------------|-------------------|----------------------------------------------------------|----------|
| Protein            | Position          | No. of<br>Amino Acids                                    | A*1101   |
| PSM                | 36                | 6                                                        | 0.0014   |
| . PSM<br>PSM       | 332<br>310        | 9 ==                                                     |          |
| PAP<br>Valiberia   | 260               | Ξ «                                                      |          |
| National PSA       | 23                | o oc                                                     |          |
| PSM<br>PSW         | 529               |                                                          |          |
| PSM                | 529               | \ <b>=</b> (                                             | -        |
| PAP<br>PAP         | 248<br>248        | <b>2</b> 2                                               |          |
| PAP                | 204               | = •                                                      | ٠        |
| PSM                | <u> </u>          | <b>→</b> 2                                               |          |
| PAP                | 302               | : <b>2</b>                                               |          |
| PSM                | 080<br>080<br>080 | × 0                                                      | . 0.0280 |
| PSW                | 089               | . 0.                                                     |          |
| PSM.               | 288               | ∞ σ                                                      |          |
| PAP                | 7.4               | · = ·                                                    |          |
| PSM                | 168               | <b>o</b> ⊆                                               | 0.0002   |
| PSM                | 335               | <b>?</b> თ :                                             |          |
| PSM .              | 335               | :: £                                                     | 0 1400   |
| PSA                | 226               | 20.                                                      |          |
| Kallikrein         | 158               | 2 2                                                      |          |
| PSM                | 88                | . 0                                                      |          |
| . WSd.             | 403<br>403        | o =                                                      |          |
| PSW                | 360               | :=:                                                      |          |
| PSM                | 224<br>261        | . 01                                                     |          |
| Kallikrein<br>PA B | 64 6              | ∞ Ξ                                                      | -        |
| PAP<br>PSM         | 345               | . 0                                                      | -        |
| Kallikrein<br>PAP  | . 771             | 01 6                                                     | . 0.5300 |
| PSM                | 573               | . ∞ Ξ                                                    |          |
| PSM                | 475               | [∞]                                                      |          |
| rsm<br>Kallikrein  | 5 <del>2</del> 5  | <u>_</u> ∞ :                                             | 0.0006   |
| PSA                | ₹                 | œ                                                        | 0.0006   |

|                | Data  |
|----------------|-------|
|                |       |
|                | Bind  |
| =              | with  |
| X              | tides |
| Table<br>Table |       |
| • •            | Moti  |
|                | Ŧ     |
|                | state |
|                | 2     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • | Prostate A11 | Table XVII Prostate A11 Motif Peptides with Binding Data | inding Data |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|----------------------------------------------------------|-------------|---|
| Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Position     | No. of<br>Amino Acids                                    | A*1101      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |              |                                                          |             |   |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 34           | 10                                                       |             |   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 347          | <b>∞</b>                                                 |             |   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 347          | 0,                                                       | 0.0002      |   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 689          | σ;                                                       |             |   |
| PSW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 680          | <b>≓</b> '                                               |             |   |
| Wild and the second sec |   | 202          | <b>3</b> 0                                               |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 000          | o S                                                      |             |   |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 549<br>C49   | <b>?</b> ∝                                               |             |   |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 188          | • =                                                      |             |   |
| WS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 929          | 6                                                        |             |   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 386          | =                                                        |             |   |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | S            | 01                                                       |             |   |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | =            | ≘ ;                                                      | •           |   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 297          | oo \$                                                    |             |   |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 96.          | 2 9                                                      |             |   |
| PAT NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 226          | 2 0                                                      |             |   |
| Z XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 450          | `=                                                       |             |   |
| MSd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 194          | =                                                        |             |   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 614          | 2 :                                                      | 0.1100      |   |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 175<br>53    | 0 °                                                      |             |   |
| PSM<br>Kollibraia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 7 S          |                                                          | . 00100     |   |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 7 2          | · 0·                                                     | 0.0190      |   |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 22           | 2                                                        | •           |   |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 12           | Ω.                                                       |             |   |
| Z36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 500<br>200   | œ <u>;</u>                                               |             |   |
| NSW .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 700          | <b>≓</b> ∝                                               |             |   |
| NS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 591          | o 9                                                      | •           |   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 398          | 6                                                        | 0.0087      |   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 398          | 10                                                       | 9000'0      | - |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 99           | ο,                                                       |             |   |
| NS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 33 23        | <b></b>                                                  |             |   |
| NSC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 5 5          | æ ;                                                      |             |   |
| PAP ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 185          | ; 6                                                      | 0.0004      |   |
| a Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 6            | <b>. oc</b>                                              |             |   |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | : 5          | • •                                                      |             |   |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 72           | =                                                        |             |   |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 061          | ∞ ;                                                      |             |   |
| WSd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 645          | = ∘                                                      |             |   |
| W.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 545<br>545   | • •                                                      |             |   |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 36           | \ <b>0</b> 0                                             |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |              |                                                          |             |   |

| Table XVII | state A11 Motif Peptides with Binding Data |
|------------|--------------------------------------------|
|            | Prostate                                   |

|                   | Prostate All Moti | Table XVII Prostate A11 Motif Peptides with Binding Data | Lta    |
|-------------------|-------------------|----------------------------------------------------------|--------|
| Proteín           | Position          | No. of<br>Amino Acids                                    | A*1101 |
| 940               | 35                | a                                                        |        |
| PSM               | 56.<br>54.        |                                                          |        |
| PSM               | 564               | 6                                                        |        |
| MSA a             | 8<br>4<br>5<br>5  | 2 6                                                      | 6000   |
| PAP               | 322               | × 2                                                      | 0.0002 |
| PAP               | 322               | ==                                                       |        |
| PSM               | 199               | ° <b>0</b> ~°0                                           | 1.0000 |
| PSM<br>PSM        | 610<br>610        | <b>xo</b> ∵ <b>o</b> •                                   | 0.1200 |
| PAP               | 282               | a²∞o                                                     |        |
| . Asa             | 166               | <b>∞</b> -c                                              |        |
|                   | 415<br>637        | <b>v</b> .o                                              |        |
| Kallikrein        | 69                | v ov                                                     |        |
| Kallikrein        | 69                | 10                                                       |        |
| PSM               | 539               | <b>≅</b> •                                               |        |
| PAP               | 27.               | ∞ ⊆                                                      |        |
| PSM               | 491               | ?'ക                                                      | 2.1000 |
| PSM               | 491               | <b>0</b> 1                                               | 0.0810 |
| W.C.              | 655               | <b>∞</b> ⊆                                               | 0100   |
| PSA               | 99                | • ∞                                                      | 211000 |
| PSA               | 99                | <b>Э</b> .                                               | 0.0014 |
| PSW               | 20/               | S =                                                      | 0.1200 |
| PSA .             | 187               | ***                                                      |        |
| Kallikrein        | 245               | · 2:                                                     | 0.0450 |
| ANA<br>Myd        | 241               | <u> </u>                                                 | 0.0450 |
| MSG               | 110               | 2                                                        | 7000   |
| PSM               | 26                | 2                                                        | 0.0007 |
| Nallikrein<br>PSA | 197               | 2 2                                                      |        |
| Z ZZ              | 62                | 20                                                       |        |
| PSM               | . 29              | 2 =                                                      |        |
| PAP               | ·26               | ~∞                                                       |        |
| PAP               | 26                | = •                                                      |        |
| PSM               | 50.5              | <b>.</b>                                                 |        |
| PAP               | 300               | · =                                                      |        |
| Källikrein        | 8;                | ≥,                                                       |        |
| ያል<br>የ           | 143<br>202        | <b>.</b>                                                 |        |
| PAP               | <b>7</b> 07       | 01                                                       |        |
|                   | •                 |                                                          | r      |

|        | Sata     |
|--------|----------|
|        | ling I   |
|        | BE       |
| Ħ      | S witt   |
| X<br>P | eptide   |
| La     | OF P     |
|        | ĬI<br>II |
|        | ate A    |
|        | rost     |

| ata                                           | A•1101                |     | 0.0002 | 0.0002    |    | 0.3700 | 0.0002 |     |     |     |            |     |     |     |    |    |     |            | •   | 5000 | 0.0002 |          |     | 00000 | 0.2000 |     |       | 0.0003 |     |     |       |     |    |     | 0.0004 | 0.0002 |       |     | 0.0370 |       |       |     |     | 1   | 0.0830 |             |       |     |
|-----------------------------------------------|-----------------------|-----|--------|-----------|----|--------|--------|-----|-----|-----|------------|-----|-----|-----|----|----|-----|------------|-----|------|--------|----------|-----|-------|--------|-----|-------|--------|-----|-----|-------|-----|----|-----|--------|--------|-------|-----|--------|-------|-------|-----|-----|-----|--------|-------------|-------|-----|
| Prostate A11 Motif Peptides with Binding Data | No. of<br>Amino Acids | •   | 0      | 01        | 11 | 0.     | 6      | 01  | œ   | . 0 | \ <u> </u> | 2:  | = - | 00  | •  | 11 | ; σ | <b>.</b> 0 | • • | 0 0  |        | <b>~</b> | >   | 0 0   |        |     |       | •      | . 0 |     | -     | 11  | 11 |     | 10     | 10     | 11    | 00  | 10     | ∞     | 01    | ∞   | ` = | ∞ ; | 00 0   | <b>90</b> ( | 6     | •   |
| Prostate All Motif P                          | Position<br>Am        | 81  | 81     | <b>18</b> |    | 35     | 528    | 528 | 161 | 679 | 223        | 6/0 | 6/9 | 7.1 | 21 | 34 |     | 30.        | 33  | 0.00 | 200    | 14.      | 123 | 243   | 243    | 178 | 178   | 116    | 136 | 153 | 121   | 469 | 93 | 148 | 238    | 241    | . 241 | 244 | 244    | 179   | 179   | 117 | 117 | 57  | 53     | 75 (        | 19    | 316 |
|                                               |                       |     |        |           |    |        |        |     |     |     |            |     |     |     |    |    |     |            |     |      |        |          |     |       |        |     |       |        |     |     |       |     |    |     |        |        | •     |     |        |       |       |     |     |     |        |             |       |     |
|                                               |                       |     |        |           |    | -      |        |     |     |     |            |     |     |     |    |    |     |            |     |      |        |          |     |       |        |     |       |        |     |     |       |     |    |     |        |        |       |     |        |       |       |     | •   |     |        |             |       |     |
|                                               | Protein .             | PAP | •      |           |    |        |        |     |     |     |            |     |     |     |    |    |     | 1          |     |      |        |          |     |       |        | r.  | krein |        |     | PAP | krein |     |    |     |        |        |       |     |        | krein | krein | •   |     |     | PSA    | Krein       | krein |     |

| Pros | Table XVII | tate A11 Motif Peptides with Binding Data |
|------|------------|-------------------------------------------|
|      |            | Prostate                                  |

|                        | Prostate A11 Mot | Prostate A11 Motif Peptides with Binding Data | ata    |
|------------------------|------------------|-----------------------------------------------|--------|
| Protein                | Position         | No. of<br>Amino Acids                         | A*1101 |
| PAP                    | 315              | -                                             |        |
| PSM                    | 268              | .01                                           | 0.0002 |
| PAP                    | 21               | <b>6</b> .                                    | ,      |
| PSM                    | <b>5</b> 70      | 2 =                                           | 0.0024 |
| PAP                    | <del>.</del> 4   | , eko                                         | 0.0002 |
| PSM                    | 473              | 2.4                                           | •      |
| 240                    | . 507            | <del>;</del>                                  | . 60   |
| PAP                    | 263<br>263       | 2 =                                           | 0.1200 |
| PSM                    | 174              |                                               |        |
| Kallikrein             | 183              |                                               | •      |
| Kallikrein<br>PS A     | 196              | =:                                            |        |
| Kallikrein             | 192              | <b>-</b> 1 2                                  |        |
| PSM                    | 663              | 2 =                                           |        |
| PSM                    | 664              | 10                                            |        |
| Kallikrein<br>Do A     | <b>50</b>        | 2 :                                           |        |
| NSW.                   | 45]              | 2 2                                           | 0.0110 |
| PSM                    | 216              | e e                                           |        |
| XX XX                  | 195              | <u>e</u> :                                    |        |
| PSW                    | 519              | ; o                                           |        |
| Kallikrein             | 181              | <b>~</b>                                      |        |
| Kallikrein<br>Bey      | 181              | = •                                           |        |
| E.S.A.                 |                  | C> ed                                         |        |
| PSA                    | 121              | •=                                            |        |
| MSA                    | 336              |                                               |        |
| E No.                  | 336              | <u> </u>                                      |        |
| PSM                    | 262              | •=                                            |        |
| PAP                    | 304              |                                               |        |
| Kalikrein              | . S              | <b>о</b> ::                                   |        |
| PSM                    | 247              | <b>.</b> თ                                    |        |
| PSM                    | 57               | ٥:                                            |        |
| PSM                    | 102<br>589       | <u>.</u> 9                                    |        |
| Kalikrein<br>Kalikrein | 0 %              | · æ č                                         |        |
| PSM                    | 438              | ÷ 🕶 (                                         |        |
| rsm<br>PSA             | 231              | <del>9</del> a                                | 0.0002 |
| Kallikrein             | 129              | · <b>G</b> •                                  |        |

Table XVII
Prostate A11 Motif Peptides with Binding Data
Position
No. of A\*11

| Protein    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Position   | No. of<br>Amino Acids | A*1101 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|--------|
| Kallikrein | PALGTTCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 146        | <b>∞</b>              |        |
| PSA        | PALGTTCY<br>PANEVAVB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 142        | <b>00</b> 0           |        |
| PSM        | PANEYAYRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 273        | • •                   | 0.0002 |
| Kallikrein | PAVYTKVVH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 240        | . 0                   |        |
| Kallikrein | PAVYTKVVHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 240        | 2                     |        |
| Kallikrein | PAVYTKVVHYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 240        |                       |        |
| Kallikrein | PCALPEKPAVY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233        | and<br>offic          |        |
| PSA        | PCALPERPSLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 229        |                       |        |
| PSM        | PDEGFECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 484        | <b>00</b> , "         |        |
| PSM        | PDEGFECKSLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 484        | gang<br>gan, l        |        |
| PSM        | PDRPFYRH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 682        | <b>00</b> ;           |        |
| PSM.       | PDRPFYRHVIY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 682        | Z.                    |        |
| FOR        | PDKT VICGOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000       | 2:                    |        |
| MSM<br>MSM | PDS WDGS K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 316        |                       |        |
| PSM        | PFVRHVIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C 50       | ≥.∝                   |        |
| PAP        | PGCSPSCPLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 345        | · =                   |        |
| PSM        | POFTGNFSTOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 331        | -                     |        |
| PSM        | PGYPANEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270        | .00                   |        |
| PSM        | PGYPANEYAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 270        | 10                    |        |
| PSM        | PGYPANEYAYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270        | 11                    |        |
| PAP        | PIDTFPTDPIK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49         | =                     |        |
| PSM        | PIGYYDAQK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 296      | o.                    |        |
| PAP        | PILLWQPIPVH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 134        | =:                    |        |
| FSM        | PLGLPDRFF Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 678        | 2.:                   |        |
| rom<br>Pom | PLOLFDRF YR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9/8        | = •                   |        |
| PAP        | PLSEDOLLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 147        | 0 0                   | 0 0001 |
| PSM        | PLTPGYPANEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 267        | \. <del>.</del>       |        |
| PAP        | PLYCESVH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 212        | .00                   |        |
| PSA        | PLYDMSLLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56         | 6.                    | 0.0370 |
| PSA        | PLYDMSLLKNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$6        |                       |        |
| FSM        | PLYHSVYETY<br>PLYHASLIY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 550        | 2.4                   | 0.0002 |
| Kallikrein | PI VNMOI I KE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>N</b> 0 | ~ S                   |        |
| PSM        | PNKTHPNY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120        | ≧ ∝                   |        |
| PSM        | PSIPVHPIGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 290        | , 9                   |        |
| PSM        | PSIPVHPIGYY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 290      | ·=                    |        |
| PSM        | PSKAWGEVK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 721        | , ଦ୍                  |        |
| PSM        | PSKAWGEVKR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 721        | 01                    | 0.0002 |
| FSA        | PSLYTKVH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 236        | <b>a</b> .;           |        |
| rsa<br>bra | PSLYTKVVHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 236        | <u>e</u> :            | 0.0003 |
| NO.        | PSETINAMIK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 730        | = :                   |        |
| PAP        | PSWATEDIMIK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 706 ·      |                       |        |
|            | armina in the second in the se | 1.77       | <b>→</b>              | -      |

| Table XVII Prostate A11 Motif Peptides with Binding Data | Position No. of A*1101<br>Amino Acids | 278 9 0.0002 |     | 8 16       | =          | 200 9 0.0008 |     | . 01 291 | 276 | 218  | 16    | ZZ<br>oc | 152 | 9   | 9   |     |            | 30         | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <b>.</b> | 35 99 90 00018 | <b>.</b> ∞ | 11 48 | ==  | 0.1200 | <b>SSP- (</b>                           | 000000 | 2 9 | 2 5  | <u>.</u> |     |     | 105 |                | 363  | . a  | • 0        |     | ======================================= | ==  | 354 10 0.4300 | 527   | 01 /75 | =   | <u></u> 9 | <u>.</u> 91 | 527 11<br>440 10 0.0005 | II 03 .    |
|----------------------------------------------------------|---------------------------------------|--------------|-----|------------|------------|--------------|-----|----------|-----|------|-------|----------|-----|-----|-----|-----|------------|------------|------------------------------------------|----------|----------------|------------|-------|-----|--------|-----------------------------------------|--------|-----|------|----------|-----|-----|-----|----------------|------|------|------------|-----|-----------------------------------------|-----|---------------|-------|--------|-----|-----------|-------------|-------------------------|------------|
|                                                          | Protein                               | . dVd        | PSM | Kallikrein | Kallikrein | PAP          | PAP | . WSd    | PAP | MSA. | Z. Z. | PAP      | PAP | PAP | φΦd | No. | Kaliikrein | Kallikrein | ASG.                                     | - PSA    | PSA            | PSA        | PSA   | PAP | PAP    | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | PAD    |     | NSG. | PSM      | PSM | PSM | PSA | TAT CONTRACTOR | FOIN | Word | Kallikrein | PSA | Kallikrein                              | PSA | PSM .         | Mod a |        | EG. | Z Z Z     | PSM         | PSM                     | PSM<br>PSM |

| Table XVII | Prostate A11 Motif Peptides with Binding Data |
|------------|-----------------------------------------------|

|            | THE PARTY AND THE PARTY OF THE |                       |        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|
| Protein    | Position /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No. of<br>Amino Acids | A*1101 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |        |
| PAP        | 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                     | 0.0002 |
| PSA        | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                    |        |
| PSA        | <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ξ,                    |        |
| PSW        | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>20</b> (           |        |
| Kallikrein | 69.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ò.                    |        |
| . dVd      | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5</b>              | 0.1100 |
| PSM        | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                    |        |
| PSM .      | 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                     |        |
| Kallikrein | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                    |        |
| PSM        | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                     | 0.0012 |
| NSd        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 00                  |        |
| 700        | 2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · 5                   |        |
|            | 2 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 0                   |        |
| 444        | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o ;                   |        |
| PAP        | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                    |        |
| PSM        | 628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                    |        |
| . Word     | 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |
| NO.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :=                    |        |
|            | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ; o                   |        |
|            | 761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • <                   |        |
| LOW .      | /61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>&gt;</b> ;         |        |
| PSM        | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                    |        |
| PAP        | 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,                    |        |
| PSM        | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                    |        |
| PSM .      | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                    |        |
| PSM        | 532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ∞                     |        |
| PSM        | 547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                    |        |
| MSM        | 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                     |        |
| Kallikein  | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . •                   |        |
| Kallikrein | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ` <b>=</b>            |        |
| DCA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                     |        |
|            | 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ę                     |        |
| EG.        | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>~</b> :            |        |
| NO.        | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊇:                    | 1.4000 |
| No.        | 613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                     |        |
| PSM        | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                     | 0.0220 |
| PSM        | . 065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =                     |        |
| PSM        | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01                    |        |
| Kallikrein | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o.                    |        |
| PSA        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 0.0470 |
| . dVd      | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 0 0000 |
| DAD        | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 2000   |
|            | 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 •                   |        |
|            | 0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o ;                   |        |
| Kallikrein | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                     |        |
| PSM        | 472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                    |        |
| PSM        | 472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                     | •      |
| PSM        | 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |        |
| PSM        | 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                     | 2.0000 |
| PAP        | 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Φ                     | 0.8000 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |        |

| . 9 |
|-----|
|-----|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>Prostate A11 Motif | Table XVII Prostate A11 Motif Peptides with Binding Data | <table-cell></table-cell> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------|---------------------------|
| Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Position                | No. of<br>Amino Acids                                    | A+1101                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                          |                           |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 245                     | = 0                                                      |                           |
| ASA<br>ASA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 237                     | o 0                                                      | 0.0140                    |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 237                     | .01                                                      | 0.2300                    |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 237                     | 11                                                       | •                         |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 615                     | σ.;                                                      | 0.0720                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 615                     | Ξ.                                                       |                           |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 2                     | <b>.</b>                                                 |                           |
| PSA<br>BEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97                      | <b>y</b>                                                 |                           |
| NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44                      | 2 =                                                      |                           |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117                     | :0                                                       | 1.2000                    |
| Asa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113                     | , o                                                      | 1.2000                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 454                     | . 10                                                     | 0.0910                    |
| PSM .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                      | . 11                                                     |                           |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 317                     | <b>∞</b>                                                 |                           |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 317                     | Ξ:                                                       | •                         |
| Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 209                     | 2.5                                                      | 71000                     |
| WS-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 348                     |                                                          | 0.0018                    |
| Wish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 338                     | v 00                                                     |                           |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 338                     | 01                                                       |                           |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 19                    | ∞ (                                                      | ,                         |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29                      | ∞ <b>;</b>                                               | 0.0061                    |
| TOWN TO THE PARTY OF THE PARTY | * 85                    | : 0                                                      | 0.0140                    |
| Kallikrein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62 %                    | · ∞                                                      | 0.00                      |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ∞                       | 6.                                                       |                           |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>∞</b> ;              | 01                                                       |                           |
| PAP<br>Valibraja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52                      | ∞ ⊊                                                      |                           |
| WSd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 334                     | 2 ∞                                                      |                           |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 334                     | , 01                                                     | 0.0002                    |
| Kallikrein .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98                      | 0                                                        |                           |
| PSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28 2                    | <b>о</b>                                                 | 0.0002                    |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 404                     | <b>.</b> ∞                                               |                           |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 404                     | , 01                                                     | 0.0002                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 404                     | 11                                                       |                           |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                | م:                                                       | 0.0078                    |
| YAP<br>Yan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 171                     | 2 9                                                      | 0.0001                    |
| WS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 361                     | 0 [[                                                     | 0.0002                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 461                     | =======================================                  |                           |
| PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39                      | 6                                                        | 0.0002                    |
| PSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 349                     | ∞                                                        |                           |

| Tab<br>Motif Po | Tab<br>state A11 Motif Po | le XVII | eptides with Binding Data |
|-----------------|---------------------------|---------|---------------------------|
|                 | state A11                 | 昌       | Motif Po                  |

| •   | Zata  |
|-----|-------|
|     | 1 3 1 |
|     | Had   |
|     | 4     |
| Ħ   | X Sa  |
| X   | 켪     |
| 冒   | 3     |
| - • | Mot   |
|     | 3     |
|     | ate / |
|     | rost  |
|     | -     |

| A*1101             | 0.0930<br>0.0930<br>0.0660<br>0.0660                 | 0.0150                                                    | 0.0002                                                               | 0.0002                                               | 0.0002                                                                  |
|--------------------|------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|
| No. of Amino Acids | 000 <u>2</u> 20                                      | ·= •===== • =                                             | ;                                                                    | వి.ఇం. <u>ఇ. వి.</u> ఇం ఇం. వి. ఇం. ఇ                | ောက္ႏြင္း <del>ျခင္းက</del> ္ေတာ့ ေတာ္                                  |
| Position           | 246<br>242<br>602<br>602<br>47<br>226                | 225<br>225<br>225<br>157<br>10<br>246                     | 206<br>368<br>55<br>59<br>700<br>692<br>692<br>179                   | 310<br>600<br>709<br>300<br>210<br>234<br>324        | 247<br>247<br>205<br>205<br>84<br>84<br>103<br>103<br>303<br>303<br>303 |
|                    | ·                                                    |                                                           |                                                                      |                                                      |                                                                         |
|                    |                                                      |                                                           |                                                                      |                                                      |                                                                         |
|                    |                                                      |                                                           | ·                                                                    |                                                      |                                                                         |
| Protein            | Kallikrein<br>PSA<br>PSM<br>PSM<br>Kallikrein<br>PAP | PAP<br>PSM<br>Kallikrin<br>PSA<br>Kallikrin<br>PSA<br>PAP | PAP<br>PAP<br>PSA<br>Kallikrein<br>Kallikrein<br>PSM<br>PSM ·<br>PSM | PAP<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PSM<br>PAP | PAP<br>PAP<br>PSM<br>PSM<br>PAP<br>PAP<br>PAP<br>PAP<br>Kallikrein      |

| ng Data                                                     | A*1101                 | 0.5400            | 0.0580                   |
|-------------------------------------------------------------|------------------------|-------------------|--------------------------|
| Table XVII<br>Prostate A11 Motif Peptides with Binding Data | No. of<br>Argino Acids | <b>σ.σ.α</b>      |                          |
| Prostate A11 N                                              | Position               | 471<br>537<br>243 | 239<br>243<br>239<br>371 |

Protein

PSM PSM Kallikrein PSA Kallikrein PSA

| Table XVIII | ostate A24 Motif Peptides with Binding Data |
|-------------|---------------------------------------------|
|             | Prost                                       |

| A*2401                | 0.0150<br>0.0190<br>0.1700<br>0.1700<br>0.0002<br>0.00067<br>0.00067<br>0.00017         |  |
|-----------------------|-----------------------------------------------------------------------------------------|--|
| a zmania mi           |                                                                                         |  |
| No. of<br>Amino Acids | w===∞oooo=oo=ooooooooooooo=oooooooooooo                                                 |  |
| 244 Mu                | 674<br>674<br>674<br>675<br>675<br>675<br>675<br>677<br>677<br>677<br>677<br>677<br>677 |  |
| Position              | 0 7-11/4-111100881111 14111118809442 11 11 84                                           |  |
|                       |                                                                                         |  |
| •                     |                                                                                         |  |
|                       |                                                                                         |  |
|                       |                                                                                         |  |
| Protein               | PSM                                                 |  |

| Table X<br>Prostate A24 Motif Peptic | <b>H 3</b> | NIII N    | les with Binding Data       |
|--------------------------------------|------------|-----------|-----------------------------|
|                                      | •          | Table XVI | Prostate A24 Motif Peptides |

| Table XVIII Prostate A24 Motif Peptides with Binding Data | No. of A*2401<br>Amino Acids | 11 11 | <br>o « | 2 00016 | 7 10 0.0007 | <b>∞</b> | <b>60</b> | 10 0.0002 | 6 9 | = \$ | 0.000 | 2 == | 11 | 8 | σ; | 10 0.0540 | . 6 | œ ; |         | . = | - | 00 o |  | . 6 | = |  | 2 9 |  | , | · | 2 11 | : | 1 | O O |
|-----------------------------------------------------------|------------------------------|-------|---------|---------|-------------|----------|-----------|-----------|-----|------|-------|------|----|---|----|-----------|-----|-----|---------|-----|---|------|--|-----|---|--|-----|--|---|---|------|---|---|-----|
| Prost                                                     | Protein                      | PSM   |         | PAP     |             |          | PSM 508   |           |     |      |       |      |    |   |    |           |     |     | PAP 131 |     |   |      |  |     |   |  |     |  |   |   |      |   |   |     |

|          | Data     |
|----------|----------|
|          | inding   |
| <b>-</b> | with B   |
| e XVII   | ptides   |
| Tab      | otif Pe  |
|          | 424 M    |
|          | istate / |
|          | Pro      |

|                                               | •                     |          |     |     |      |        |     |        |        |     |     |        |        |     |     |     |       |     |     |            |            |     |     |     |        |      |     |             |     |        |       |            |           |     |            |     |            | •      |        |      |            |     |          |            |        |        |     |     | •        |  |
|-----------------------------------------------|-----------------------|----------|-----|-----|------|--------|-----|--------|--------|-----|-----|--------|--------|-----|-----|-----|-------|-----|-----|------------|------------|-----|-----|-----|--------|------|-----|-------------|-----|--------|-------|------------|-----------|-----|------------|-----|------------|--------|--------|------|------------|-----|----------|------------|--------|--------|-----|-----|----------|--|
| ding Data                                     | A*2401                | 0.0075   |     | ,   |      | 0.4400 | 1   | 0.1200 | 2.5000 |     |     | 0.2300 | 0.4400 |     |     |     |       |     |     |            |            |     |     |     | 0.0001 |      |     |             |     | 0 1100 | 0.770 |            |           |     |            |     |            | 0.0240 | 0.1100 |      | 0.0001     |     | 0.0007   |            | 0.0037 | 0.0001 |     |     |          |  |
| Prostate A24 Motif Peptides with Binding Data | No. of<br>Amino Acids | <br>On : | ∞;  | = « | Э. · | σ;     | =   |        | o      | -   | =   | 10     |        |     | 00  | - = | · oc  |     | ъ ( | <b></b>    | 01         | ∞   | 00  | -   | 6      | . 00 | , o | <b>`</b> ⊆  | 2 a | 0 0    | , ,   | ~ ,<br>→ , | <b></b> • | = • | <b>∞</b> ; |     | =          | . 01   | σ, (   | ×oʻ: | <b>9</b> : | _   | 01 :     | 91         | 2      | 2      | 6   | 01  | •        |  |
| Prostate A24                                  | Position              | 899      | = : | 517 | 469  | 213    | 213 | 96     | 318    | 551 | 154 | 74     | .227   | 238 | 699 | 699 | 663   |     | 663 | -          |            | 470 | 68  | 336 | 638    | 92   | 5.5 | 201         | 701 | 2 2 2  |       | 0/1        | 400       | 460 | 157        | 157 | 37         | 309    | 183    | 326  | 297        | 297 | <b>X</b> | 28         | 355    | 163    | 662 | 662 | <b>c</b> |  |
|                                               |                       |          | -   |     |      |        |     |        |        |     |     |        |        |     |     |     |       |     |     |            |            |     |     |     |        |      |     |             |     |        |       |            |           |     |            |     |            |        |        |      |            |     |          |            |        |        |     |     |          |  |
|                                               |                       |          |     |     |      |        |     |        |        |     |     |        |        |     |     |     | •     |     |     |            |            |     |     |     |        |      |     |             |     |        |       |            |           |     |            |     |            |        |        |      | ٠          |     |          |            |        |        |     |     |          |  |
|                                               | Protein               | PSM      | PAP | dVd | PSM  | PAP    | PAP | PSA    | ቦለቦ    | PSM | PAP | PSM    | PSM    | VSd | WSd | No. | 100 C | 100 | WS. | Kallikrein | Kallikrein | PSM | PSM | PSM | WSd    | NS.  | No. | Vol.ileasis | DOM | Form   | FSM   | Σ.         | FSM       | FSM | PAP        | PAP | Kallikrein | PAP    | PAP    | PSM  | PAP        | PAP | PSA      | Kallikrein | PAP    | PAP    | PSM | PSM | 7104     |  |

| ~3 | ¥     |
|----|-------|
|    | e A24 |

| A*2401                | 0.0001<br>0.0013<br>0.2600<br>0.3600<br>3.2000<br>2.1000<br>0.0005                                   |
|-----------------------|------------------------------------------------------------------------------------------------------|
| No. of<br>Amino Acids | 2_2626266_6262                                                                                       |
| Position              | 19<br>536<br>401<br>704<br>704<br>704<br>704<br>705<br>705<br>705<br>705<br>705<br>705<br>705<br>705 |
|                       |                                                                                                      |
|                       |                                                                                                      |
| Protein .             | PSM                                                              |

Table XIX
Prostate DR Supermotif Peptides

|   |   | ı |   |
|---|---|---|---|
| ı |   |   |   |
| ١ | • | : |   |
|   |   | Ę | ı |
|   | • | ١ |   |
|   |   | : |   |
|   |   | i |   |
|   |   |   |   |

| 340<br>102<br>102<br>101<br>101<br>101<br>55<br>59<br>53<br>300<br>138<br>138<br>138<br>138<br>225<br>524<br>614<br>62<br>226<br>227<br>228<br>228<br>303<br>309<br>309<br>309<br>309<br>310<br>310<br>310<br>310<br>310<br>310<br>310<br>310<br>310<br>310 | 671<br>120<br>124<br>310<br>292<br>226<br>170 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                                                                                                                                                                                             |                                               |
|                                                                                                                                                                                                                                                             |                                               |
|                                                                                                                                                                                                                                                             |                                               |
|                                                                                                                                                                                                                                                             |                                               |
|                                                                                                                                                                                                                                                             | ·                                             |
|                                                                                                                                                                                                                                                             |                                               |
|                                                                                                                                                                                                                                                             |                                               |
|                                                                                                                                                                                                                                                             |                                               |
|                                                                                                                                                                                                                                                             |                                               |
|                                                                                                                                                                                                                                                             |                                               |
| • • · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                     |                                               |
|                                                                                                                                                                                                                                                             | ·                                             |

| 255<br>256<br>257<br>257<br>257<br>257<br>257<br>257<br>257<br>257<br>257<br>257 |      |
|----------------------------------------------------------------------------------|------|
|                                                                                  |      |
|                                                                                  |      |
|                                                                                  |      |
|                                                                                  |      |
|                                                                                  |      |
|                                                                                  |      |
|                                                                                  |      |
|                                                                                  |      |
|                                                                                  |      |
|                                                                                  |      |
|                                                                                  |      |
| krein crein crein krein krein krein krein krein .                                | KICH |
| Kallikrein PSM PAP PAP PAP PAP PAP PAP PAP PAP PAP PA                            | 1    |

| 329<br>342<br>342<br>342<br>342<br>342<br>343<br>344<br>344<br>344<br>344  |
|----------------------------------------------------------------------------|
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
|                                                                            |
| •                                                                          |
|                                                                            |
| PSM PAP PAP PAP PAP PSM RAllikrein PSM |

Protein

Table XXa Prostate DR 3a Submotif Peptides

| · |  |
|---|--|
|   |  |
|   |  |
| · |  |
|   |  |
|   |  |
|   |  |
|   |  |

Table XXb Prostate DR 3b Submotif Peptides

TABLE XXI. Population coverage with combined HLA Supertypes

|                                            |           | PHENOT                     | TYPIC FRE | QUENCY  |                      |         |
|--------------------------------------------|-----------|----------------------------|-----------|---------|----------------------|---------|
| HLA-SUPERTYPES                             | Caucasian | North<br>American<br>Black | Japanese  | Chinese | Hispanic             | Average |
| a. Individual Supertypes                   | _         |                            |           |         |                      |         |
| A2 .                                       | 45.8      | 39.0                       | 42.4      | 45.9    | 43.0                 | 43.2    |
| A3                                         | 37.5      | 42.1                       | 45.8      | 52.7    | 43.1                 | 44.2    |
| В7                                         | 43.2      | 55.1                       | 57.1      | 43.0    | 49.3                 | 49.5    |
| A1                                         | 47.1      | 16.1                       | 21.8      | 14.7    | 26.3                 | 25.2    |
| A24                                        | 23.9      | 38.9                       | 58.6      | 40.1    | 38.3                 | 40.0    |
| B44                                        | 43.0      | 21.2                       | 42.9      | 39.1    | 39.0                 | 37.0    |
| B27                                        | 28.4      | 26.1                       | · 13.3    | 13.9    | 35.3                 | 23.4    |
| B62                                        | 12.6      | 4.8                        | 36.5      | 25.4    | 11.1                 | 18.1    |
| B58                                        | 10.0      | 25.1                       | 1.6       | 9.0     | 5.9                  | 10.3    |
| b. Combined Supertypes                     |           |                            |           |         |                      |         |
| A2, A3, B7                                 | 84.3      | 86:8                       | 89.5      | 89:8    | 8 <del>6</del> .8··· | 87.4    |
| A2, A3, B7, A24, B44, A1                   | 99.5      | 98.1                       | 100.0     | 99.5    | 99.4                 | 99.3    |
| A2, A3, B7, A24, B44, A1,<br>B27, B62, B58 | 99.9      | 99.6                       | 100.0     | 99.8    | 99.9                 | 99.8    |

Table XXII. Prostate Antigen Peptides

| Antigen Binding affinity ≤ 200nM | Sequence     |
|----------------------------------|--------------|
| PSA.117                          | LMLLRLSEPA   |
| PSA.117                          | MLLRLSEPAEL  |
|                                  | MLLRESEPA    |
| PSA.118                          | 1,1221002211 |
| PSA.143                          | ALGTTCYA     |
| PSA.161                          | FLTPKKLQCV   |
| <u>PSA.166</u>                   | KLQCVDLHV    |
| PAP.6                            | LLLARAASLSL  |
| PAP.21                           | LLFFWLDRSV   |
| PAP.30                           | VLAKELKFV    |
| PAP.92                           | FLNESYKHEQV  |
| PAP.112                          | TLMSAMTNL    |
| PAP.135                          | ILLWQPIPV    |
| PAP.284                          | IMYSAHDTTV   |
| PAP.299                          | ALDVYNGLL    |
| PSM.26                           | LVLAGGFFL    |
| PSM.27                           | VLAGGFFLL    |
| PSM.168                          | GMPEGDLVYV   |
| PSM.288                          | GLPSIPVHPI   |
| PSM.441                          | LLOERGVAYI   |
| PSM.469                          | LMYSLVHNL    |
| PSM.662                          | RMMNDOLMFL   |
| PSM.663                          | MMNDOLMFL    |
| PSM.667                          | OLMFLERAFI   |
| PSM.711                          | ALFDIESKV    |
| HuK2.165                         | FLRPRSLOCV   |
| HuK2.175                         | SLHLLSNDMCA  |
| 114152-113                       | DIMIDION     |

| Binding affinity |            |
|------------------|------------|
| >200nM           | Sequence   |
| PSM.4            | LLHETDSAV  |
| PSM.25           | ALVLAGGFFL |
| PSM.427          | GLLGSTEWA  |
| PSM 514          | KLGSGNDFEV |

Table XXIIIA A2 supermotif cross-reactive binding data

| Peptide  | ¥      | Sequence    | Source       | A*0201<br>nM | A*0202<br>nM | A*0203 | A*0206<br>nM | A*6802<br>nM | A2 Cross-<br>Reactivity |
|----------|--------|-------------|--------------|--------------|--------------|--------|--------------|--------------|-------------------------|
| 20.0044  | 6      | LLLARAASL   | PAP.6        | 208          | 13           | 29     | 425          | :            | 4                       |
| 63.0136  | 11     | LLLARAASLSL | PAP.6        | 8.1          | 3.1          | 5.3    | 8            | 143          | S                       |
| 60.0201  | ,<br>O | LLLARAASV   | PAP.6.V9     | 18           | 215          | 6.7    | 95           | 1            | 4                       |
| 20.0203  | 2      | LLARAASLSL  | PAP.7        | 200          | 5,2          | 63     | 9250         | 5714         | က                       |
| 63.0031  | 10     | LLARAASLSV  | PAP.7.V10    | 109          | 10           | 21     | 378          | 727          | 4                       |
| 63.0137  | =      | AASLSLGFLFL | PAP.11       | 727          | 23           | 53     | , 95         | ł            | 4                       |
| 1419.51  | 91     | SLSLGFLFLL  | PAP.13       | 40           | 15           | 403    | 21           | 8560         | 4                       |
| 1419.52  | 10     | SLSLGFLFLV  | PAP.13.V10   | 1.8          | 3,9          | 17     | 42           | 355          | 5                       |
| 1419.50  | 0      | SLSLGFLFV   | PAP.13.V9    | 77           | 25           | 21     | 93           | ı            | 4                       |
| 60.0203  | 6      | FLFLLFFWV   | PAP.18.V9    | 42           | 307          | . 625  | 308          | 06           | 4                       |
| 63.0138  | =      | FLLFFWLDRSV | PAP.20       | 14           | 17           | 2.8    | 285          | 364          | 5                       |
| 1097.09  | 2      | LLFFWLDRSV  | PAP.21       | 28           | 0.60         | 1.6    | 231          | 1            | 4                       |
| 1418.23  | 21     | LTFFWLDRSV  | PAP.21.T2    | 118          | =            | 9.6    | 43           | 16           | 'n                      |
| 63.0139  | Ξ      | LLFFWLDRSVL | PAP.21       | . 65         | 2,9          | 2.7    | 822          | 4444         | 3                       |
| 63.0033  | 2      | SLLAKELKFV  | PAP.29.L2    | 64           | 5,7          | 3.8    | 38           | <i>L</i> 999 | 4                       |
| 1097.171 | ٥      | VLAKELKFV   | PAP.30       | 96           | 3,6          | 6.7    | 168          | :            | 4                       |
| 63.0142  | Ξ      | VLAKELKFVTL | PAP.30       | 6.9          | 8,1          | 21     | 25           | ı            | 4                       |
| 63.0034  | 21     | VLAKELKFVV  | PAP.30.V10   | 31           | 12           | 189    | 98           | 2286         | 4                       |
| 1419.55  | =      | FLNESYKHEQV | PAP.92       | 29           | 1,4          | 5.6    | 381          | 6154         | 4                       |
| 1177.01  | 6      | TLMSAMTNL   | PAP.112      | 43           | 08.0         | 2.9    | 285          | 296          | 'n                      |
| 20.0312  | 10     | TLMSAMTNLA  | PAP.112      | 385          | 3,6          | 37     | 3700         | <b>2999</b>  | ю                       |
| 63.0037  | 10     | TLMSAMTNLV  | PAP.112.V10  | 63           | 3.9          | 12     | 43           | 242          | ٧,                      |
| 1419.56  | 6      | TLMSAMTNV   | · PAP.112.V9 | . 10         | 2,4          | 3.6    | 54           | 62           | 5                       |
| 1419.58  | 2      | LLALFPPEGV  | PAP.120.L2   | 5.0          | 0.70         | 1.6    | 148          | 163          | ς.                      |
| 1419.59  | 10     | LVALFPPEGV  | PAP.120.V2   | 156          | 17           | 4.8    | 463          | 28           | 5                       |
| 1419.6   | 2      | ALFPPEGVSI  | PAP.122      | 278          | 11           | 133    | 2643         | ı            | 3                       |
| 1419.61  | 10     | ALFPPEGVSV  | PAP.122.V10  | 15           | 1,0          | 18     | 119          | 4444         | 4                       |
| 63.0041  | 10     | GVSIWNPILV  | PAP.128.V10  | 250          | 48           | 23     | 451          | 2286         | 4                       |

indicates binding affinity >10,000nM.

Table XXIIIA A2 supermotif cross-reactive binding data

| Peptide | ¥¥ | Sequence    | Source      | A*0201<br>nM | A*0202<br>nM | A*0203<br>nM | A*0206<br>nM | A*6802<br>nM | A2 Cross-<br>Reactivity |
|---------|----|-------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------------------|
| 60.0207 | 6  | GVSIWNPIV   | PAP.128.V9  | 455          | 569          | 606          | 308          | I            | 3                       |
| 63.0042 | 01 | PLLLWQPIPV  | PAP.134.L2  | 238          | 47           | 19           | 336          | 3333         | . 4                     |
| 1044.04 | 6  | LLWQPIPV    | PAP.135     | 3.3          | 39           | 1.8          | 7.1          | 1702         | 4                       |
| 1418.25 | Q  | ITLWQPIPV   | PAP.135.T2  | 34           | 1720         | 6.2          | <b>7</b> 6   | 32           | 4                       |
| 1419.69 | 10 | LLWQPIPVHV  | PAP.136.V10 | 25           | 1,8          | 17           | 287          | 09           | 5                       |
| 1166.11 | 2  | GLHGQDLFGI  | PAP.196     | 97           | 06.0         | 2.5          | 315          | 1            | 4                       |
| 1419.62 | 10 | GLHGQDLFGV  | PAP.196.V10 | 12           | 2,3          | 3.1          | 18           | 1            | 4                       |
| 63.0048 | 10 | KLRELSELSV  | PAP.234.V10 | 263          | 9,1          | 7.1          | 49           | 1818         | 4                       |
| 1097.05 | 10 | IMYSAHDTTV  | PAP.284     | 217          | 1,5          | 14           | 411          | :            | 4                       |
| 1389.06 | 01 | IL.YSAHDTTV | PAP.284.12  | 385          | 1,0          | 15           | 1480         | 5714         | 3                       |
| 60.0213 | 6  | TVSGLQMAV   | PAP.292.V9  | 294          | 12           | 122          | 195          | 5.7          | \$                      |
| 1177.02 | 6  | ALDVYNGLL   | PAP.299     | 73           | 29           | 256          | 3083         | 1            | 3                       |
| 1419.64 | 10 | LLPPYASCHV  | PAP.306.V10 | 88           | 15           | 16           | 86           | 5260         | 4                       |

indicates binding affinity >10,000nM.

Table XXIIIB A2 supermotif cross-reactive binding data

| Peptide | AA         | Sequence    | Source      | A*0201<br>nM                            | A*0202<br>nM | A*0203<br>nM | A*0206<br>nM | A*6802<br>nM | A2 Cross-<br>Reactivity |
|---------|------------|-------------|-------------|-----------------------------------------|--------------|--------------|--------------|--------------|-------------------------|
| 1126.10 | ٥          | VLAGGFFLL   | PSIM.27     | 39                                      | 0.20         | 33           | 31           | 2857         | 4                       |
| 1389.20 | 6          | VLAGGFFLV   | PSM.27.V9   | 56                                      | 0.40         | 5.0          | 57           | 216          | 5                       |
| 1129.04 | 유          | GMPEGDLVYV  | PSM.168     | 55                                      | 3.1          | 7.1          | 161          | 6154         | 4                       |
| 1389.22 | 10         | GLPEGDLVYV  | PSM.168.L2  | 42                                      | <b>5</b> .0  | 2.1          | 112          | 964          | 4                       |
| 1418.29 | 2          | GTPEGDLVYV  | PSM.168.T2  | 313                                     | 134          | 53           | 40           | 571          | 4                       |
| 1129.10 | 2          | GLPSIPVHPI  | PSM.288     | 147                                     | 2.7          | 2.1          | 2467         | 308          | 4                       |
| 1389.24 | 21         | GLPSIPVHPV  | PSM.288.V10 | 55                                      | 0.30         | 09:0         | 308          | 121          | 5                       |
| 1129.01 | 2          | LLQERGVAYI  | PSM.441     | .641                                    | 5.7          | 2.9          | 861          | 1            | 3                       |
| 1126.14 | ٥          | LMYSLVHNL   | PSM.469     | 64                                      | 0,40         | 2.1          | 109          | 320          | 5                       |
| 1126.06 | <u> </u> ≘ | RMINIDQLMFL | PSM.662     | 8.6                                     | 2.7          | 7.7          | 40           | 1            | 4                       |
| 1126.01 | 6          | MMINDQLMFL  | PSM.663     | ======================================= | 0.80         | 1.7          | 9.7          | 195          | 5                       |
| 1126.16 | 01         | QLMFLERAFI  | PSM.667     | 86                                      | 36           | 91           | 1            | 30           | 4                       |
| 1129.08 | 6          | ALFDIESKV   | PSM.711     | 85                                      | 0.70         | 1.4          | 148          | 8889         | 4                       |
| 1418.30 | 0          | ATFDIESKV   | PSM.711.T2  | 238                                     | 27           | 44           | 82           | 258          | 5                       |

- indicates binding affinity >10,000nM.

Table XXIIIC A2 supermotif cross-reactive binding data

| Peptide | ¥¥       | Sequence    | Source      | Alternate<br>Source | A*0201<br>nM | A*0202<br>nM | A*0203<br>nM | A*0206<br>nM | A*6802<br>nM | A2 Cross-<br>Reactivity |
|---------|----------|-------------|-------------|---------------------|--------------|--------------|--------------|--------------|--------------|-------------------------|
| 1419.25 | ۱=       | VVFLTLSVTWI | PSA.1       |                     | 385          | 159          | 63           | 2846         | 1            | 3                       |
| 63.0185 | 11       | VVFLTLSVTWV | PSA.1.V11   |                     | 86           | 88           | 71           | 336          | 1            | 4                       |
| 63.0186 | =        | FLTLSVTWIGV | PSA.3.V11   |                     | . 8.9        | 3.0          | 18           | 99           | 114          | 5                       |
| 60.0216 | 6        | FLTLSVTWV   | PSA.3.V9    |                     | 53           | 8.4          | 8.3          | 49           | ı            | 4                       |
| 60.0217 | 6        | TLSVTWIGV   | PSA.5.V9    |                     | 79           | 4.9          | 940          | 712          | 229          | 4                       |
| 1419.10 | =        | VLVHPQWVLTA | PSA.49      | HuK2.53             | 294          | 7.7          | 101          | 2056         | 1            | 3                       |
| 1419.11 | 11       | VLVHPQWVLTV | PSA.49.V11  | HuK2.53.V11         | . 11         | 1.5          | 16           | 31           | 8889         | 4                       |
| 63.0109 | =        | DLMLLRLSEPV | PSA.116.V11 | HuK2.120.V11        | 50           | 57           | 29           | 148          | 2759         | 4                       |
| 63.0014 | 10       | LMLLRLSEPA  | PSA.117     | HuK2.121            | 200          | 17           | <i>L</i> 9   | 925          | 2000         | 3                       |
| 1418.43 | 10       | LMLLRLSEPV  | PSA.117.V10 | HuK2.121.V10        | 114          | 29           | 29           | 25           | 6154         | 4                       |
| 1419.02 | 6        | MLLRLSEPA   | PSA.118     | HuK2.122            | 195          | 745          | 145          | 49           | 1            | 3                       |
| 1389.10 | o,       | MLLRLSEPV   | PSA.118.V9  | HuK2.122.V9         | 36           | 36           | 46           | 638          | 421          | 4                       |
| 1389.12 | 11       | MILRISEPAEV | PSA.118.V11 |                     | 294          | 331          | 115          | 1762         | 4444         | 3                       |
| 1419.01 | <b>∞</b> | ALGITCYA    | PSA.143     | HuK2.147            | 15           | 19           | 13           | 561          | 1            | m                       |
| 1389.14 | <b>∞</b> | ALGITCYV    | PSA.143.V8  | HuK2.147.V8         | 74           | 6.4          | 12           | 264          | 1            | 4                       |
| 1098.02 | 10       | FLTPKKLQCV  | PSA.161     |                     | 52           | 8.3          | 13           | 755          | 1            | 3                       |
| 990.01  | 6        | KLQCVDLHV   | PSA.166     |                     | . 62         | 205          | 16           | . 1919       | 1            | æ                       |
| 63.0058 | 10       | KLQCVDLHVV  | PSA.166.V10 |                     | 13           | 84           | 9.1          | 200          | 1            | 4                       |
| 60.0220 | ٥        | KVTKFMLCV   | PSA.187.V9  |                     | 69           | 518          | 53           | 128          | •            | 3                       |
| 1419.17 | 11       | PLVCNGVLQGV | PSA.212.V11 | HuK2.216.V11        | 27           | 127          | 19           | 255          | 4314         | 4                       |
| 1418.55 | 10       | LVCNGVLQGV  | PSA.213.V10 | HuK2.217.V10        | 10           | 2.9          | 12           | 5.6          | 3.5          | 5                       |
|         |          |             |             |                     | :            |              |              |              |              |                         |

-- indicates binding affinity >10,000nM.

Table XXIIID A2 supermotif cross-reactive binding data

| 1418.13<br>1418.57<br>1418.59 | -   | •           | 2            | Source      | 절          | Ma   | ¥          | ΨĮ.   | ПМ          | Reactivity |
|-------------------------------|-----|-------------|--------------|-------------|------------|------|------------|-------|-------------|------------|
| 1418.57                       | ٥   | LLLSIALSV   | HuK2.4.L2    |             | 88         | 176  | 147        | 189   |             | 4          |
| 1418 59                       | =   | ILLSVGCTGAV | HuK2.8.L2    |             | 36         | 33   | 36         | 308   | ;           | 4          |
| 10:0:                         | Ξ   | TTLSVGCTGAV | HuK2.8.T2    |             | 294        | 134  | 40         | 206   | 121         | S          |
| 1419.05                       | 2   | ALSVGCTGAV  | HuK2.9       |             | 53         | 75   | 17         | 542   | ۱,          | 3          |
| 1418.15                       | σ   | ALSVGCTGV   | HuK2.9.V9    |             | 24         | 17   | 9.1        | 264   | :           | 4          |
| 1418.35                       | 2   | SVGCTGAVPV  | HuK2.11.V10  |             | 104        | 287  | 154        | 552   | 216         | 4          |
| 1419.10                       | =   | VLVHPQWVLTA | HuK2.53      | PSA.49      | 294        | 7.7  | 101        | 2056  | :           | 3          |
| 1419.11                       | =   | VLVHPQWVLTV | HuK2.53.V11  | PSA.49.V11  | 11         | 1.6  | 16         | 31    | 9378        | 4          |
| 63.0109                       | =   | DLMLLRLSEPV | HuK2.120.V11 | PSA.116.V11 | 20         | 2.2  | 29         | 148   | 2759        | 4          |
| 63.0014                       | 임   | LMLLRLSEPA  | HuK2.121     | PSA.117     | 200        | 17   | <i>L</i> 9 | 925   | 2000        | 3          |
| 1418.43                       | 10  | LMLLRLSEPV  | HuK2.121.V10 | PSA.117.V10 | 114        | 29   | 53         | 23    | 6154        | 4          |
| 1419.02                       | σ   | MILRISEPA   | HuK2.122     | PSA.118     | 195        | 745  | 145        | 49    | :           | 3          |
| 1389.10                       | 6   | MLLRLSEPV   | HuK2.122.V9  | PSA.118.V9  | 36         | 36   | 46         | 638   | 421         | 4          |
| 1419.01                       | œ   | ALGITICYA   | HuK2.147     | PSA.143     | 15         | 19   | 13         | 561   | :           | С          |
| 1389.14                       | 80  | ALGTTCYV    | HuK2.147.V8  | PSA.143.V8  | 74         | 6.4  | 12         | 264   | :           | 4          |
| 1419.07                       | 10  | FLRPRSLQCV  | HuK2.165     |             | 186        | 4.8  | 4.2        | :     |             | 3          |
| 1610.09                       | 6   | SLQCVSLHL   | HuK2.170     |             | 200        | 51   | 417        | 6167  | 2581        | 3          |
| 1419.66                       | 01  | SLQCVSLHLL  | HuK2.170     |             | 263        | 4.9  | 17         | 446   | 2000        |            |
| 1418.52                       | 2   | SLQCVSLHLV  | HuK2.170.V10 |             | 13         | 6.3  | 2.8        | 5.2   | 202         | 'n         |
| 1418.19                       | 6   | SLQCVSLHV   | HuK2.170.V9  |             | 26         | 165  | 48         | 4111  | 1600        | 3          |
| 1419.14                       | 11  | SLHLLSNDMCA | HuK2.175     |             | 11         | 4.8  | 71         | ı     | 1           | m          |
| 1418.66                       | ·11 | SLHLLSNDMCV | HuK2.175.V11 |             | 8.6        | 0.80 | 10         | 2313  | 2162        | æ          |
| 1419.15                       | 11  | HLLSNDMCARA | HuK2.177     |             | 417        | 391  | 250        | 374   |             | 4          |
| 1418.67                       | Ξ   | HLLSNDMCARV | HuK2.177.V11 |             | <b>3</b> 6 | 1.3  | 5.3        | 37    | 860         | 4          |
| 1418.20                       | 0   | HLLSNDMCV   | HuK2.177.V9  |             | 119        | 102  | 278        | 176   | 1           | 4          |
| 1418.53                       | 10  | LLSNDMCARV  | HuK2.178.V10 |             | 5.3        | 0.70 | 4.3        | 10    | 1702        | 4          |
| 1418.71                       | 11  | KVTEFMLCAGV | HuK2.191.V11 |             | 26         | 10   | 76         | 29    | 143         | S          |
| 1418.21                       | 6   | KVTEFMLCV   | HuK2.191.V9  |             | 53         | 27   | 31         | 34    | <b>2999</b> | 4          |
| 1418.22                       | 6   | FMLCAGLWV   | HuK2.195.V9  |             | 29         | 12   | 16         | 51    | :           | 4          |
| 1419.17                       | 11  | PLVCNGVLQGV | HuK2.216.V11 | PSA.212.V11 | 27         | 127  | 19         | . 255 | 4314        | 4          |
| 1418.55                       | 10  | LVCNGVLQGV  | HuK2.217.V10 | PSA.213.V11 | 10         | 2:9  | 12         | 5.6   | 3.5         | 5          |

-- indicates binding affinity >10,000nM.

Table XXIVA Immunogenicity of A2 cross-reactive binding peptides and peptide analogs

|               |    |               | •           |              |              |              |              |              |                                  |               |              |               |
|---------------|----|---------------|-------------|--------------|--------------|--------------|--------------|--------------|----------------------------------|---------------|--------------|---------------|
| Peptide<br>ID | \$ | AA Sequence   | Source      | A*0201<br>nM | A*0202<br>nM | A*0203<br>nM | A*0206<br>nM | A*6802<br>nM | Cross-<br>Reactivity<br>(<200nM) | A2<br>peptide | A2<br>native | A2<br>in vivo |
| 1419.51       | 2  | 10 SLSLGFLFLL | PAP.13      | 40           | 13           | 403          | 21           | 8560         | 3                                |               |              |               |
| 1419.52       | 10 | SLSLGFLFLV    | PAP.13.V10  | 1.8          | 3.9          | 17           | 42           | 355          | 4                                |               |              |               |
| 1097.09       | 10 | LLFFWLDRSV    | PAP.21      | 28           | 09.0         | 1.6          | 231          | 1            | <b>.</b>                         | 3/3           |              | 6/0           |
| 1418.23       | 10 | LTFFWLDRSV    | PAP.21.T2   | 118          | 11           | 9.6          | 43           | 16           | 5                                | 3/3           | 2/3          |               |
| 1097.17       | ٥  | VLAKELKFV     | PAP.30      | 96           | 3.6          | 6.7          | 168          |              | 4                                | 1/3           |              | 6/3           |
| 1177.01       | ٥  | TLMSAMTNL     | PAP.112     | 43           | 0.80         | 2.9          | 285          | 296          | 3                                | 7/2           |              | 3/3           |
| 1419.58       | 2  | LLALFPPEGV    | PAP.120.L2  | 5.0          | 0.72         | 1.6          | 146          | 164          | \$                               | •             |              |               |
| 1419.61       | 10 | ALFPPEGVSV    | PAP.122.V10 | 15           | 1.0          | 18           | 120          | 4387         | 4                                | 1/3           | 1/3          |               |
| 1044.04       | 6  | LLWQPIPV      | PAP.135     | 3.3          | 39           | 1.8          | 71           | 8511         | 4                                | · 5/5         |              | 1/6           |
| 1418.25       | 0  | ITLWQPIPV     | PAP.135.T2  | 34           | 1723         | 6.2          | 26           | 32           | 4                                | 3/3           | 2/3          | :             |
| 1419.69       | 10 | LLWQPIPVHV    | PAP.136.V10 | 25           | 1.8          | 17           | 287          | 09           | 4                                |               |              | 24            |
| 1166.11       | 10 | GLHGQDLFGI    | PAP.196     | 26           | 6.0          | 2.5          | 315          | 1            | 3                                |               |              | 3             |
| 1419.62       | 10 | GLHGQDLFGV    | PAP.196.V10 | 12           | 2.3          | 3.2          | 18           | ı            | 4                                |               |              |               |
| 1097.05       | 10 | IMYSAHDTTV    | PAP.284     | 217          | 1.5          | 14           | 411          | 1.           | 2                                | 3/3           |              | . 6/0         |
| 1419.64       | 10 | LLPPYASCHV    | PAP.306.V10 | 88           | 15           | 16           | . 98         | 5260         | 4                                |               |              |               |
|               |    |               |             |              |              |              |              |              |                                  |               |              | ]             |

| Immunogenicity of A2 cross-reactive binding peptide and peptide analogs |
|-------------------------------------------------------------------------|
| <u>ŏ</u> ′                                                              |
| na                                                                      |
| a<br>a                                                                  |
| ğ                                                                       |
| 효                                                                       |
| മ്                                                                      |
| 宫                                                                       |
| Ø                                                                       |
| ğ                                                                       |
| 즃                                                                       |
| ă                                                                       |
| 5                                                                       |
| ਰੂ                                                                      |
| ₫                                                                       |
| φ                                                                       |
| ਓ                                                                       |
| <del>Q</del>                                                            |
| <u>-</u> 5                                                              |
| S                                                                       |
| ប                                                                       |
| 8                                                                       |
| 5                                                                       |
| ⋧                                                                       |
| 즐                                                                       |
| ፙ                                                                       |
| ğ                                                                       |
| ፭                                                                       |
| 듣                                                                       |
|                                                                         |
| <b>8</b>                                                                |
| $\overline{X}$                                                          |
| ×                                                                       |
| 풀                                                                       |
| Table XXIVB                                                             |
|                                                                         |

|               |    |               | •           | •            |              |              |              |              | _                                |               |              |               |
|---------------|----|---------------|-------------|--------------|--------------|--------------|--------------|--------------|----------------------------------|---------------|--------------|---------------|
| Peptide<br>ID | ¥  | AA Sequence   | Source      | A*0201<br>nM | A*0202<br>nM | A*0203<br>nM | A*0206<br>nM | A*6802<br>nM | Cross-<br>Reactivity<br>(<200nM) | A2<br>peptide | A2<br>native | A2<br>in vivo |
| 1126.10       | ٥  | VLAGGFFLL     | PSM.27      | 39           | 0.20         | 33           | 31           | ;            | 4                                | 1/2           |              | 3/3           |
| 1389.20       | 0  | VLAGGFFLV     | PSM.27.V9   | <b>5</b> 6   | 0.40         | 5.0          | 57           | 216          | 4                                | 1/2           | 1/2          |               |
| 1129.04       | 10 | GMPEGDLVYV    | PSM.168     | 55           | 3.1          | 7.1          | 191          | 1            | 4                                | 1/0           |              | 1/3           |
| 1129.10       | 2  | 0 GLPSIPVHPI  | PSM.288     | 147          | 2.7          | 2.1          | 2467         | 1538         | 3                                | 2/4           |              | 6/3           |
| 1389.24       | 10 | 10 GLPSIPVHPV | PSM.288.V10 | 55           | 0.70         | 09.0         | 308          | 121          | 4                                | 4/4           | 3/4          |               |
| 1129.01       | 2  | 10 LLQERGVAYI | PSM.441     | 179          | 5.7          | 6.7          | 861          | 1            | 3                                | 3/3           |              |               |
| 1126.14       | 6  | LMYSLVHNL     | PSM.469     | 64           | 0.40         | 2.1          | 109          | 1600         | 4                                | 3/3           |              | 3/3           |
| 1126.06       | 10 | RMMNDQLMFL    | PSM.662     | 8.6          | 2.7          | 7.7          | 40           | i            | 4                                | 1/1           |              | 20/22         |
| 1126.01       | 6  | MININDQLMFL   | PSM.663     | 11           | 0.80         | 1.7          | 9.7          | 926          | 4                                | 2/2           |              | . 3/3         |
| 1129.08       | ٥  | ALFDIESKV     | PSM.711     | 85           | 0.70         | 1.4          | 148          | 1            | 4                                | 2/2           |              | 3/3           |
|               |    |               |             |              |              |              | ,            |              |                                  |               |              |               |

Table XXIVD Immunogenicity of A2 cross-reactive binding peptides and peptide analogs

| Peptide | А | - ₹      | ID AA Sequence | Source       | Alternate<br>Source | A*0201<br>nM | A*0202<br>nM | A*0203<br>nM  | A*0206 | A*6802<br>nM | Cross-<br>Reactivity<br>(<200nM) | A2<br>peptide | A2<br>native | A2<br>in vivo |
|---------|---|----------|----------------|--------------|---------------------|--------------|--------------|---------------|--------|--------------|----------------------------------|---------------|--------------|---------------|
| 1418.13 |   | ۵        | LLLSIALSV      | HuK2.4.L2    |                     | 88           | 176          | 147           | 189    | :            | 4                                | 272           | 772          |               |
| 1419.05 |   | 2        | 10 ALSVGCTGAV  | HuK2.9       |                     | 53           | 75           | 11            | 542    | :            | 3                                |               |              |               |
| 1419.11 |   | =        | VLVHPQWVLTV    | HuK2.53.V11  | PSA 49.V11          | 11           | 1.6          | 16            | 31.    | 9378         | 4                                | 2/2           | 772          |               |
| 1419.13 |   | =        | 11 DLMLLRLSEPV | HuK2.120.V11 | PSA.116.V11         | .05          | 57           | 29            | 148    | 2759         | 4                                | 772           | 77           |               |
| 1419.02 |   | م        | MILRISEPA      | HuK2.122     | PSA.118             | 195          | 745          | 145           | 49     | ı            | 3                                |               |              |               |
| 1389.10 |   | o,       | MLLRLSEPV      | HuK2.122.V9  | PSA.118.V9          | 36           | 36           | 46            | 638    | 421          | ·m                               | :             |              |               |
| 1419.01 |   | <b>∞</b> | ALGITICYA      | HuK2.147     | PSA.143             | 15           | 19           | į <b>E</b> I. | 295    | 1            | 3                                | 71            |              |               |
| 1389.14 |   | 00       | ALGITCYV       | HuK2.147.V8  | PSA.143.V8          | 74           | 6.4          | 12            | 264    | :            | 3                                |               |              |               |
| 1419.07 |   | ន        | 10 FLRPRSLQCV  | HuK2.165     |                     | 186          | 4.8          | . 4           | ***    | 1            | 3                                | 1/3           |              |               |
| 1419.14 |   | =        | SCHELSNDMCA    | HuK2.175     |                     | 72           | 4.8          | 73            | 1      | 1            | 9                                | 1/3           |              |               |
| 1419.17 |   | 11       | PLVCNGVLQGV    | HuK2.216.V11 | PSA.212.V11         | 27           | 127          | 19            | 255    | 4314         | 3                                | 272           | 2/2          |               |
|         |   |          |                |              |                     |              |              |               |        |              |                                  |               |              |               |

Table XXIVC Immunogenicity of A2 cross-reactive binding peptides and peptide analogs

|               |    |                |             | ,                   |              |              |              |              |              | ,                                |               |              |               |
|---------------|----|----------------|-------------|---------------------|--------------|--------------|--------------|--------------|--------------|----------------------------------|---------------|--------------|---------------|
| Peptide<br>ID | ₹  | AA Sequence    | Source      | Alternate<br>Source | A*0201<br>nM | A*0202<br>nM | A*0203<br>aM | A*0206<br>nM | A*6802<br>nM | Cross-<br>Reactivity<br>(<200nM) | A2<br>peptide | A2<br>native | A2<br>in vivo |
| 1419.27       | =  | FLTLSVTWIGV    | PSA.3.V11   |                     | 6.8          | 3.0          | 18           | . 65         | 113          | 5                                | 3/3           | 3/3          |               |
| 1419.11       | 11 | 11 VLVHPQWVLTV | PSA 49.V11  | HuK2.53.V11         | 11           | 1.6          | 16           | 31           | 9378         | 4                                |               |              |               |
| 1419.13       | =  | DLMLLRLSEPV    | PSA.116.V11 | HuK2,120.V11        | 20           | 57           | 29           | 148          | 2759         | 4                                |               |              |               |
| 1419.02       | 6  | MLLRLSEPA      | PSA.118     | HuK2.122            | 195          | 745          | 145          | 49           | 1            | 3                                |               |              |               |
| 1389.10       | 0  | MLLRLSEPV      | PSA.118.V9  | HuK2.122.V9         | 36           | . 98         | 46           | 638          | 421          | 3                                | 3/3           | 1/3          |               |
| 1419.01       | ∞  | ALGITICYA      | PSA.143     | PSA.143             | 15           | 19           | 13           | 295          | ı            | 3                                |               |              |               |
| 1389.14       | 8  | ALGITICYV      | PSA.143.V8  | HuK2.147.V8         | 74           | 6.4          | 12           | 264          | 1            | 3                                | 2/3           | 1/3          | 1             |
| 1098.02       | 10 | FLTPKKLQCV '   | PSA.161     |                     | 52           | 8.3          | 13           | 755          |              | 3                                | 3/4           |              | 9/0           |
| 10.066        | 6  | KLQCVDLHV      | PSA.166     | •                   | 6.2          | 205          | 16           | 6167         | ı            | 2                                | 1/2           |              | 1/3           |
| 1419.24       | 10 | 10 KLQCVDLHVV  | PSA.166.V10 |                     | 13           | 84           | 9.5          | 502          | 1            | 3                                | 1/2           | 1/2          |               |
| 1419.17       | Ξ  | PLVCNGVLQGV    | PSA.212.V11 | HuK2.216.V11        | 27           | 127          | 19           | 255          | 4314         | 3                                |               |              |               |
|               |    |                |             |                     |              |              |              |              |              |                                  |               |              |               |

Table XXV.

DR supermotif and DR3 motif-bearing peptides cross-reactive binding peptides

|         | DR s   | upermotif   | DR3    |
|---------|--------|-------------|--------|
| Antigen | Motif+ | Algorithm+* | Motif+ |
| PAP     | 67     | 39/15       | 21     |
| PSM     | 45     | 25/7        | 4      |
| PSA     | 108    | 54/20       | 31     |
| HuK2    | 45     | 21/6        | 4      |
| Total   | 265    | 139/48      | 60     |

<sup>\*</sup>Number scoring positive in the combined DR1, DR4w4 and DR7 algorithms ( $\geq 1/\geq 2$ )

#### WHAT IS CLAIMED IS:

3.

1. An isolated prepared prostate cancer-associated antigen epitope consisting of a sequence selected from the group consisting of the sequences set out in Table XXIV.

5

2. A composition of claim 1, wherein the epitope is admixed or joined to a CTL epitope.

10 set out in claim 1.

4. A composition of claim 1, wherein the epitope is admixed or joined to an HTL

A composition of claim 2, wherein the CTL epitope is selected from the group

set out in claim 1.

epitope.

- A composition of claim 4, wherein the HTL epitope is selected from the group
   1.
- 6. A composition of claim 4, wherein the HTL epitope is a pan-DR binding molecule.

20

- 7. A composition of claim 1, comprising at least three epitopes selected from the group set out in claim 1.
- 8. A composition of claim 1, further comprising a liposome, wherein the epitope is on or within the liposome.
  - 9. A composition of claim 1, wherein the epitope is joined to a lipid.
  - 10. A composition of claim 1, wherein the epitope is joined to a linker.

30

- 11. A composition of claim 1, wherein the epitope is bound to an HLA heavy chain, β2-microglobulin, and strepavidin complex, whereby a tetramer is formed.
- 12. A composition of claim 1, further comprising an antigen presenting cell, wherein the epitope is on or within the antigen presenting cell.
  - 13. A composition of claim 12, wherein the epitope is bound to an HLA molecule on the antigen presenting cell, whereby when a cytotoxic lymphocyte (CTL) is present that is restricted to the HLA molecule, a receptor of the CTL binds to a complex of the HLA molecule and the epitope.

249

- 14. A clonal cytotoxic T lymphocyte (CTL), wherein the CTL is cultured in vitro and binds to a complex of an epitope selected from the group set out in Table XXIV, bound to an HLA molecule.
- 5
  15. A peptide comprising at least a first and a second epitope, wherein the first epitope is selected from the group consisting of the sequences set out in Table XXIV;
  wherein the peptide comprise less than 50 contiguous amino acids that have 100% identity with a native peptide sequence.
- 10 16. A composition of claim 15, wherein the first and the second epitope are selected from the group of claim 14.
  - 17. A composition of claim 16, further comprising a third epitope selected from the group of claim 15.
    - 18. A composition of claim 15, wherein the peptide is a heteropolymer.
    - 19. A composition of claim 15, wherein the peptide is a homopolymer.
- 20 20. A composition of claim 15, wherein the second epitope is a CTL epitope.
  - 21. A composition of claim 20, wherein the CTL epitope is from a tumor associated antigen that is not prostate specific antigen (PSA), prostate specific membrane antigen (PSM), prostatic acid phosphatase (PAP), or human kallikrein (HuK2).
  - 22. A composition of claim 15, wherein the second epitope is a PanDR binding molecule.
- 23. A composition of claim 1, wherein the first epitope is linked to an a linker 30 sequence.
  - 24. A vaccine composition comprising:

a unit dose of a peptide that comprises less than 50 contiguous amino acids that have 100% identity with a native peptide sequence of a prostate cancer-associated antigen, the peptide comprising at least a first epitope selected from the group consisting of the sequences set out in Table XXIV; and;

a pharmaceutical excipient.

15

25

35

25. A vaccine composition in accordance with claim 24, further comprising a second 40 epitope.

### PATENT COOPERATION TREATY

## **PCT**

# DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT (PCT Article 17(2)(a), Rules 13ter and 39)

| Applicant's or agent's file reference<br>18623-1472PC                                                                                                                                                           | IMPORTANT DECLARATION                                                                     | Date of mailing (day/monthlyear)  0 9 ΜΔΥ 2001 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|
| International application No.                                                                                                                                                                                   | International filing date (day/month/year)                                                | (Earliest) Priority Date (day/month/year)      |  |  |  |
| PCT/US00/35516                                                                                                                                                                                                  | 20 DECEMBER 2000                                                                          | 21 DECEMBER 1999                               |  |  |  |
| International Patent Classification (IPC) Please See Continuation Sheet.                                                                                                                                        | <u></u>                                                                                   |                                                |  |  |  |
| Applicant EPIMMUNE INC.                                                                                                                                                                                         |                                                                                           |                                                |  |  |  |
|                                                                                                                                                                                                                 | hereby declares, according to Article 17(2)(a), dication for the reasons indicated below. | , that no international search report will     |  |  |  |
| 1. The subject matter of the interpretation                                                                                                                                                                     | ernational application relates to:                                                        |                                                |  |  |  |
| a. scientific theories.                                                                                                                                                                                         |                                                                                           |                                                |  |  |  |
| b. mathematical theori                                                                                                                                                                                          | - بعد م                                                                                   |                                                |  |  |  |
| c. plant varieties.                                                                                                                                                                                             |                                                                                           |                                                |  |  |  |
| d. animal varietics.                                                                                                                                                                                            |                                                                                           |                                                |  |  |  |
| e. essentially biological processes for the production of plants and animals, other than microbiological processes and the products of such processes.                                                          |                                                                                           |                                                |  |  |  |
| f schemes, rules or methods of doing business.                                                                                                                                                                  |                                                                                           |                                                |  |  |  |
| g schemes, rules or methods of performing purely mental acts.                                                                                                                                                   |                                                                                           |                                                |  |  |  |
| h. schemes, rules or methods of playing games.                                                                                                                                                                  |                                                                                           |                                                |  |  |  |
| i. methods for treatment of the human body by surgery or therapy.                                                                                                                                               |                                                                                           |                                                |  |  |  |
| j. methods for treatme                                                                                                                                                                                          | ent of the animal body by surgery or therapy.                                             |                                                |  |  |  |
| k. diagnostic methods                                                                                                                                                                                           | practiced on the human or animal body.                                                    |                                                |  |  |  |
| 1.  mere presentations of information.                                                                                                                                                                          |                                                                                           |                                                |  |  |  |
|                                                                                                                                                                                                                 | for which this International Searching Author                                             |                                                |  |  |  |
| 2. The failure of the following parts of the international application to comply with prescribed requirements prevents a meaningful search from being carried out:                                              |                                                                                           |                                                |  |  |  |
| X the description X the claims the drawings                                                                                                                                                                     |                                                                                           |                                                |  |  |  |
| 3. The failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative Instructions prevents a meaningful search from being carried out. |                                                                                           |                                                |  |  |  |
| the written form has not been furnished or does not comply with the standard.                                                                                                                                   |                                                                                           |                                                |  |  |  |
| the computer readable form has not been furnished or does not comply with the standard.                                                                                                                         |                                                                                           |                                                |  |  |  |
| Purther comments:     Please See Continuation Sheet.                                                                                                                                                            |                                                                                           | •                                              |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                           | ·                                                                                         |                                                |  |  |  |
|                                                                                                                                                                                                                 |                                                                                           |                                                |  |  |  |
|                                                                                                                                                                                                                 |                                                                                           |                                                |  |  |  |
|                                                                                                                                                                                                                 |                                                                                           | Α                                              |  |  |  |
| Name and mailing address of the ISA/U                                                                                                                                                                           |                                                                                           | TERRY J. DEY                                   |  |  |  |
| Commissioner of Patents and Trade Box PCT                                                                                                                                                                       | ANNE L. HO                                                                                | PARALECAL ODERVALION                           |  |  |  |
| Washington, D.C. 20231 Pacsimile No. (703) 305-3230                                                                                                                                                             | Telephone No.                                                                             | TECHNOLOGY CENTER 1600<br>(703) 308-0196       |  |  |  |

Form PCT/ISA/203 (July 1998) \*

## DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

l.....al application No. PCT/US00/35516

The International Patent Classification (IPC) or National Classification and IPC are as listed below:

IPC(7): A61K 38/08, 39/00, 39/385, 39/39; C07H 21/04; C07K 14/435 US CI: 424/184.1, 185.1; 530/ 300, 328; 536/23.4; 23.5

### 4. Purther Comments (Continued):

No meaningful search could be performed for the claims, 1-34, because there is no correlation in the claims, sequence listing or disclosure between the sequences recited in the 1-letter code of Tables XXIVA-D, and the sequences recited in the 3-letter coded in the sequence listing. It is, further, not clear that the Table XXIV referred to in claims is the same as Tables XXIVA-D. Careful review of the sequences listed on page 15 and in Table IV, of the description, did not reveal the required correlation. Text appears to be missing following "SEQ ID NO: " in Table IV. PCT Rule 62(a) states that the claims shall not rely on references to description or drawings.