## Homework Problems

H6.1 (a) Design a context-free grammar for the language

$$L=\{a^ib^jc^k\mid i=j\text{ or }j=k\}.$$

(b) Show that the grammar you gave in part (a) is ambiguous.

| Exercise 1:                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Design CFG for grammar: L= {a'bJck i=JorJ=k}                                                                                                                                                                             |
| $\begin{array}{c} S_0 \rightarrow S_1   S_{44} \\ \hline \left( S_1 \rightarrow \alpha S_2   S_3   \varepsilon \right) \\ \hline \end{array} \qquad \begin{array}{c} S_5 \rightarrow S_5   S_6 c   \varepsilon \end{array}$ |
| 1=J { S2 > a S2b (E ) > ) S5 > a S5 (E                                                                                                                                                                                      |
| b) Show that the CFG is ambiguous                                                                                                                                                                                           |
| To prove that the CFG is ambiguous, if some word at EL(G) has 2 different parse trees                                                                                                                                       |
| Let $x = aabbcc$ and $x$ has more than 1 parse trees<br>$S_0 \rightarrow S_1 \rightarrow aS_2 + S_3 \rightarrow aaS_2 + bbS_3 \rightarrow aa(\epsilon) + bbcS_3 \rightarrow aabbccS_3 \rightarrow aabbcc$                   |
| So > S4 > S5 bSgc > S5 bbSgcc > aS5 bbSgcc -) aaS5 bbSgcc -) aabbcc                                                                                                                                                         |

## H6.2 (a) Design a context-free grammar for the language

 $L = \{w \in \{a,b\}^* \mid w \text{ contains equally many $a$'s and $b$'s}\}.$ 

Draw the corresponding parse trees for sentences aabb, abab and baab.

- (b) Is the grammar you designed in part (a) ambiguous or unambiguous? If it is ambiguous, then try to design also an unambiguous grammar for the language.
- (c) Prove (precisely!) that the language in part (a) is not regular.

| Exercise 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Design CFG for language: L= { w \in \{a, b\}^*\}    a  =  b  \}  The CFG is: S -> SS   a S b   b Sa   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parse tree for: aabb: S -> aSb -> aaSbb -> aabb  abab: S -> aSb -> abSab -> abab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| boab: S -> SS -> bSaaSb -> boab  b) The grammar designed in part (a) is ambiguous  For example: String "ab": S -> SS -> (aSb)& -> ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| S-) SS-) & (aSb) -) ab  There are two different parse tree for ab =) ambiguous  The unam biguous version would be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} S \to a \times 1b \times 1\epsilon \\ X \to b S \mid a \times X \\ Y \to a S \mid b \times Y \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| c) Prove (precisely!) that language in part (a) is not regular 1st, we assume that L is a regular language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Let $w = aib^{J} =  w  = i + j$ , also $i = j =  w  = 2i > i = n$<br>By pumping lemma, let $w = xyz$ where $ xy  \le n = i$<br>Let $x = a^{i}$ , $y = b^{J}$ , $y \neq 0$ , $z = \varepsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Let multiple of y be Z. I hen $x^{i}y^{2} = a^{i}(b^{j})^{2} = a^{i}b^{2}$<br>Since $j \neq 0$ and $i = j = i \neq 2j = 2j$ |
| =) Lis not a regular language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

**H6.3** A party walk is a sequence of consequent steps, whose direction with respect to the starting point is either forward (abbr. f), backward (b), left (l) or right (r). For instance, the sequence flbbrrfrff describes the following walk, whose total result is to move the walker a distance of two steps forward (and concurrently two steps to the right):



Design a context-free grammar that generates all party walks whose total result is to move the walker at least one step forward from the starting point (ignoring any possible sideways movement).

| By the problem formulation, it means that the step sequence can contain arbitrary number of left and right, while number of forwards $>$ backward $>$ The language: $L = \{ w \in \{1, r, f, b\}^* \mid  f  >  b  \}$ The CFG would be: $S \to TfT$ | Exercise 3 |                                                     |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------|---|
| The language: L = { W \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                           |            |                                                     | ~ |
| ⇒) The larguage: $L = \{w \in \{1, r, f, b\}^* \mid  f  >  b  \}$ The CFG would be:  S → TfT                                                                                                                                                        | number of  | left and right, while number of forwards > backward | Y |
| S-) TfT                                                                                                                                                                                                                                             | =) The lar | quage: L= { w ∈ \$ 1, r, f, b3*   1 f   > 1 b / }   |   |
|                                                                                                                                                                                                                                                     | The CF     | G would be:                                         |   |
| T-) FT bT bT fT let   Te   FT   Te   FT   Tf   E                                                                                                                                                                                                    | 5-) 7      | FT T                                                |   |
|                                                                                                                                                                                                                                                     | T-) +      | TOTIOTET TELETITE FT TELE                           |   |