Lista 9 Dedução natural na LPO

Equivalência entre quantificadores

Sejam A uma fórmulada LPO. Então, temos as seguintes equivalências entre os quantificadores:

$$\neg \forall x A = \exists x \neg A$$
$$\neg \exists x A = \forall x \neg A$$

- 1. Transforme os argumentos em linguagem da lógica de primeira ordem, indique os predicados, e prove a validade do argumento usando dedução natural.
 - a) Todos que estavam doentes foram medicados. Alguns não foram medicados. Portanto, nem todos estavam doentes.
 - b) Todos que gostam de mar bravo são surfistas. Alguns gostam de mar bravo e não gostam de garotas bonitas. Portanto, alguns surfistas não gostam de garotas bonitas.
 - c) Ácidos ou bases são produtos químicos. O vinagre é um ácido. Logo, o vinagre é um produto químico.
- 2. Demostre o argumento pelas regras da dedução natural.
 - a) $\forall x \forall y P(x, y) \vdash \forall u \forall v P(u, v)$
 - b) $\exists x \forall y P(x,y) \vdash \forall y \exists x P(x,y)$
 - c) $\forall x (P(x) \to R(x)), \neg R(y) \vdash \neg P(y)$
 - d) $\forall x (P(x) \land Q(x)) \vdash \forall x P(x) \land \forall x Q(x)$
 - e) $\forall x P(x) \lor \forall x Q(x) \vdash \forall x (P(x) \lor Q(x))$
 - f) $\exists x F(x) \lor \exists x G(x) \vdash \exists x (F(x) \lor G(x))$ (bônus)
 - g) $S \to \forall x Q(x) \vdash \forall x (S \to Q(x))$
 - h) $\neg \exists x P(x) \vdash \forall x \neg P(x)$ (bônus)