# PHY101: Introduction to Physics I

# Monsoon Semester 2024 Lecture 18

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR

#### **Previous Lecture**

**Damped harmonic motion** 



#### **This Lecture**

**Driven harmonic motion** 



## **Forced (or Driven) vibration**





**Restoring force + resistive force + driven force** 

Forced vibrations are produced in the air inside the box and intensity of sound increases

### Applications of forced vibration

- 1. Structural dynamics: To study the response of structures such as bridges, buildings, and towers to wind and earthquake forces.
- 2. **Vibration testing**: To test the structural integrity of products such as aircraft, automobiles, and electronic devices.
- 3. **Manufacturing**: It can shake any loose particles or contaminants on a surface and ensure that a surface or material is homogeneous.
- 4. **Energy Harvesting**: Vibration energy harvesting devices use forced vibration to generate electrical energy. Piezoelectric and electromagnetic materials are used to convert mechanical energy into electrical energy.
- 5. **Medical field**: Vibration therapy is used to help treat conditions such as osteoarthritis and improve muscle strength and flexibility.
- 6. Music: Forced vibration is used in instruments with strings.

#### Driven harmonic motion

⇒ System under restoring, resistive and driven forces.

The external driving force should be periodic! Let's apply a driving force,

$$F_d(t) = F_d \cos \omega_d t$$



The differential equation,

$$F(x, \dot{x}, t) = -b\dot{x} - kx + F_d \cos \omega_d t$$

$$=> \ddot{x} + 2\gamma \dot{x} + \omega^2 x = F \cos \omega_d t$$

$$= \frac{F}{2} \left( e^{i\omega_d t} + e^{-i\omega_d t} \right)$$

$$F\equiv F_d/m$$
  $\sin x=rac{e^{ix}-e^{-ix}}{2i}$   $\cos x=rac{e^{ix}+e^{-ix}}{2}$ 

Here,  $\omega$  is the natural frequency of oscillation of the spring.  $\omega_d$  is the frequency of applied force. damping parameter  $(2\gamma = b/m)$ 

#### Solution of the differential equation

$$=> \ddot{x} + 2\gamma \dot{x} + \omega^2 x = \frac{F}{2} \left( e^{i\omega_d t} + e^{-i\omega_d t} \right)$$

Step 1: Taking first part of right hand side (RHS)

$$=> \ddot{x} + 2\gamma \dot{x} + \omega^2 x = \frac{F}{2} \left[ e^{i\omega_d t} \right]$$
Trial solution,  $x(t) = Ae^{i\omega_d t}$ 

$$A = \left(\frac{F/2}{-\omega_d^2 + 2i\gamma\omega_d + \omega^2}\right)$$
 Follow steps as before

Step 2: Taking second part of right hand side (RHS)

$$\ddot{x} + 2\gamma \dot{x} + \omega^2 x = \frac{F}{2} e^{-i\omega_d t}$$
Trial solution,  $x(t) = Be^{-i\omega_d t}$ 

$$\mathbf{B} = \left(\frac{F/2}{-\omega_d^2 - 2i\gamma\omega_d + \omega^2}\right)$$

The particular solution,  $x_p(t) = Ae^{i\omega_d t} + Be^{-i\omega_d t}$ 

$$x_p(t) = \left(\frac{F/2}{-\omega_d^2 + 2i\gamma\omega_d + \omega^2}\right)e^{i\omega_d t} + \left(\frac{F/2}{-\omega_d^2 - 2i\gamma\omega_d + \omega^2}\right)e^{-i\omega_d t}.$$

Simplify to,

$$x_p(t) = \left(\frac{F(\omega^2 - \omega_d^2)}{(\omega^2 - \omega_d^2)^2 + 4\gamma^2 \omega_d^2}\right) \cos \omega_d t + \left(\frac{2F\gamma\omega_d}{(\omega^2 - \omega_d^2)^2 + 4\gamma^2 \omega_d^2}\right) \sin \omega_d t.$$

$$\equiv \frac{F}{R} \cos(\omega_d t - \phi)$$

Note: Particular solution given above is not a complete solution.

A more detailed mathematical solution is beyond the scope of this course.

$$R \equiv \sqrt{(\omega^2 - \omega_d^2)^2 + (2\gamma\omega_d)^2}$$

$$x_p(t) = \frac{F}{R} \cos(\omega_d t - \phi)$$

(w-u, - 21) (w-u, - 21) (w-u, - 21) = F/2 (W: - 2) - 21807) (car(Walk) + is inway) + F ( wi - wi + 2 is was) ( Calust - in was (W-Wa) + 48 Toa - F (W, - W, ) Carly - F1. 2i Vy contall + i F/2 62- 52) smart - F/2iYWAisin WAL France Flice Tower + F/ 21 Yes OUL - Mailanismus (U, 7 W) + 48 cg) F(W-W) Con Wat +2F & Wy sin wat (Wo - was ) + 48 was = F(W, -wg1) corcupt + 2 FYUd Sinwall (Wi-Wi) +48 WI (Wi-Wi) +48 Wi = F Gs Wat Gold + F Sinuar Sint x (1) - 835. F/n cos (Vas-4)



#### The Phase

$$\cos \phi = \frac{\omega^2 - \omega_d^2}{R}$$
,  $\sin \phi = \frac{2\gamma \omega_d}{R}$   $\Longrightarrow$   $\tan \phi = \frac{2\gamma \omega_d}{\omega^2 - \omega_d^2}$ 

## The Amplitude

$$\frac{F}{R} = \frac{F}{\sqrt{\omega^2 - \omega_d^2}^2 + (2\gamma\omega_d)^2}$$

Triangle describes the relation among all the parameters.



#### Resonance

$$\frac{F}{R} = \frac{F}{\sqrt{\omega^2 - \omega_d^2)^2 + (2\gamma\omega_d)^2}}$$

- => At values of  $\omega_d$  less than the  $\omega$ , the amplitude increases with  $\omega_d$ .
- $\Rightarrow$  if damping of the system is very small, at resonance, the sharpness of amplitude is maximum for  $\omega_d = \omega$ . [Homework/Tutorial]



- => At values of  $\omega_d$  more than  $\omega$ , the amplitude decreases.
- => The nature depends on **damping parameter**  $(2\gamma = b/m)$ .
- => For no damping, the applied driving force at resonance frequency, will provide infinite amplitude.

#### Properties of driven harmonic motion

- The reason for **large-amplitude oscillations** at the resonance frequency is that **energy is being transferred** to the system under the most favourable conditions.
- In the absence of a damping force (b = 0), we see that the steady-state amplitude approaches infinity as  $\omega$  approaches  $\omega_0$ .
- In other words, if there are no losses in the system and we continue to drive an initially motionless oscillator with a periodic force that is in phase with the velocity, the amplitude of motion builds without limit.
- This limitless building does not occur in practice because **some damping** is always present in reality.

# Risks factors associated with the driven vibration (Engineering applications)

- 1. Damage to the system: High amplitude vibrations can lead to fatigue failures and other types of damage.
- 2. Noise and vibration: Forced vibrations can generate noise and vibration that can disrupt people and equipment.
- 3. Extra cost: The excitation may incur an extra cost, both in terms of equipment and labour.
- **4.** The complexity of the system: Different loading conditions can make the testing and analysis more complex and difficult to interpret.
- **5. Inaccurate results**: It may give inaccurate results for the system's behaviour, as it may not simulate the real loading conditions of the system.
- **6. Safety hazards**: It can create safety hazards, particularly if the system is not properly secured or the excitation source is not controlled properly.