Análisis Matemático II

Docentes:

Dra. Gabriela Reyero. Dana Pizarro

Asignatura:

R-122 Análisis Matemático II.

Carreras:

Licenciatura en Ciencias de la Computación.

Departamento: de Ciencias de la Computación.

Escuela:

de Ciencias Exactas y Naturales.

Facultad:

de Ciencias Exactas, Ingeniería y Agrimensura.

Universidad:

Nacional de Rosario.

Contenidos:

- Aplicaciones de la derivada.
- Cálculo integral.
- Cálculo diferencial en campos escalares.
- Cálculo integral en campos escalares.

Análisis Matemático II - LCC

Unidad 1 – Aplicaciones de la derivada

#13

Extremos de una función.

La derivación se puede utilizar para determinar los extremos de una función, es decir los máximos y mínimos.

Definición: Sean $f:D\subseteq\mathbb{R}\to\mathbb{R}$ una función y $c,d\in D$ diremos que:

- i) f(c) es máximo absoluto de f en D si $f(x) \leq f(c)$
- ii) f(d) es mínimo absoluto de f en D si $f(x) \ge f(d)$ $\forall x \in D$.

Un número que es un máximo absoluto o un mínimo absoluto de una función f se denomina valor extremo o extremo de f.

También se dice que f alcanza su máximo absoluto en c si f(c) es un máximo absoluto o que f alcanza su mínimo absoluto en d si f(d) es un mínimo absoluto

f(c) máx absoluto, f(d) mín absoluto

f(a) mín absoluto, f no tiene máx absoluto.

Nota: No todas las funciones tienen extremos. Condición suficiente de existencia de extremos.

Teorema de Weierstrass: Sea f continua en un intervalo cerrado y acotado [a,b]. Entonces falcanza su máximo y mínimo absoluto en [a,b]. Es decir, existen $c \in [a,b]$ y $d \in [a,b]$ tales que $f(x) \leq f(c)$ $\forall x \in [a, b] \ y \ f(d) \le f(x)$ $\forall x \in [a,b].$

Dem: no la hacemos.

Observación: Las hipótesis f continua y [a, b] cerrado y acotado son imprescindibles.

Ejemplos:

f cont en (a,b) pero no tiene max (aunque si min) y es f(c)

f no tiene max abs en [a, b]

pero f(c) rum abs.

 $f(x) = x^2$ es cont sin embargo no tiene max abs si tiene min abs.

Definición: Sean $f:D\subseteq\mathbb{R}\to\mathbb{R}$ una función y $c,d\in D$ diremos que:

- i) f alcanza un $m\'{a}ximo$ relativo en c (o que f(c) es un m\'{a}ximo relativo de f) si existe un entorno de c, E(c) tal que $f(x) \le f(c) \ \forall x \in E(c)$.
- ii) f alcanza un mínimo relativo en d (o que f(d) es un mínimo relativo de f) si existe un entorno de d, E(d) tal que $f(x) \ge f(d) \ \forall x \in E(d)$.
- iii) f tiene un estremo relativo en x_0 si tiene un máximo o un mínimo relativo en x_0 .

Observación: Un máximo relativo en c es un máximo absoluto en cierto entorno de c, si bien no necesariamente es absoluto en D y naturalmente todo máximo absoluto es, en particular, máximo relativo. Notaremos MA (máximo absoluto), MR (máximo relativo), ma (mínimo absoluto) y mr (mínimo relativo). También se suele usar el término extremo local en lugar de relativo.

Ejemplos:

 $f(x_1)$ es MR y $f(x_2)$ es mr no tiene MA ni ma

 $g(x_1)$ y $g(x_3)$ son MR, $g(x_2)$ es mr, no tiene ma $g(x_3)$ es además MA

Veremos una condición necesaria de existencia de extremos para funciones derivables. **Teorema de Fermat:** Sea f definida en un entorno de x_0 y supongamos que f tiene en x_0 un extremo relativo. Entonces, si f es derivable en x_0 , es $f'(x_0) = 0$.

Dem: Por el absurdo, supongamos que $f'(x_0) \neq 0$. Es decir, $f'(x_0) > 0$ 0 $f'(x_0) < 0$. Supongamos que fuese $f'(x_0) > 0$. Tenemos que

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} > 0$$

Por el teorema de conservación del signo, existirá un $\delta > 0$ tal que si $0 < |x - x_0| < \delta \Rightarrow$

$$\frac{f\left(x\right)-f\left(x_{0}\right)}{x-x_{0}}>0.$$

xo-8 xo xo+8

Por lo tanto:

· si $x_0 - \delta < x < x_0$ (o sea x está a la izq de x_0) : $\frac{f(x) - f(x_0)}{x - x_0} > 0$ y $x - x_0 < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0)$.

• si $x_0 < x < x_0 + \delta$ (o sea x está a la der de x_0) : $\frac{f(x) - f(x_0)}{x - x_0} > 0$ y $x - x_0 > 0 \Rightarrow$ $f(x) - f(x_0) > 0 \Rightarrow$ $f(x) > f(x_0)$.

Es decir, f no tendrá un extremo relativo en x_0 Absurdo! por lo tanto no puede ser $f'(x_0) > 0$. Análogamente, no podrá ser $f'(x_0) < 0$.

$$\therefore f'(x_0) = 0 \qquad \Box$$

Observación: 1) El teorema dice que si existe $f'(x_0)$ y f tiene un extremo relat en x_0 , entonces $f'(x_0) = 0$. No vale el recíproco, (la condición <u>no</u> es suficiente).

Ejemplo: $f(x) = x^3$, f es derivable y f'(0) = 0 sin embargo f no tiene extremo relativo en 0.

2) El teorema nos dice que si f tiene un extremo relativo en x_0 , o bien $f'(x_0) = 0$ o bien $f'(x_0) = 0$.

Ejemplo: f(x) = |x| tiene un mínimo abs en 0 y $\nexists f'(x_0)$.

Definición: Decimos que $c \in \text{dom } f$ es un *punto crítico* de f si f'(c) = 0 o f no es derivable en c (o sea $\nexists f'(c)$.

Observación 1) El teorema de Fermat nos dice que si f tiene un extremo relativo en c, entonces c es un punto crítico de f. Por lo tanto, para hallar extremos relativos de una función, debemos localizar sus puntos críticos y necesitaremos establecer un criterio para analizar si en ellos hay o no extremos y de que tipo, pues no en todo punto crítico hay extremos, por ej $f(x) = x^3$.

2) El teorema de Weierstrass nos asegura la existencia de máximo y mínimo absolutos para una función continua en [a, b]. Estos pueden alcanzarse en a, en b o en puntos interiores del intervalo. Para hallarlos, entonces, deberemos localizar los puntos críticos de f en (a, b) y comparar el valor de f en ellos con f(a) y f(b). El mayor de todos será el máximo absoluto y el menor, el mínimo absoluto.

Ejemplo: Hallar los extremos de $f(x) = x^3 - 3x^2 + 1$ en $[-\frac{1}{2},4]$. f es derivable en $(-\frac{1}{2},4)$, por lo tanto no hay puntos críticos donde la derivada no exista. Busquemos en los x tales f'(x) = 0, es decir, $3x^2 - 6x = 0 \Leftrightarrow x = 0 \in (-\frac{1}{2},4)$ o $x = 2 \in (-\frac{1}{2},4)$. Calculamos f en los extremos del intervalo $f(-\frac{1}{2}) = \frac{1}{8}$, f(4) = 17 y en los puntos críticos f(0) = 1 y f(2) = -3 y comparamos todos los valores, entonces f(2) = -3 es ma y f(4) = 17 es MA. esbozo de la gráfica de f.

Teorema: Sea $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$ y $f^{(n)}(x_0) \neq 0$. Si $f^{(n)}$ es continua en un entorno $E(x_0)$, entonces:

si n es par \Rightarrow $f(x_0)$ es un extremo si n es impar \Rightarrow no hay extremo en x_0

Dem: no la hacemos.

Ejemplo: $f(x) = x^n, n \in \mathbb{N}, x_0 = 0$. Completar!

٩/٦ Teoremas de valor medio.

Teorema de los valores intermedios: Sea f definida en el intervalo [a,b] y supongamos que fes continua en [a, b]. Sean M y m sus respectivos máximos y mínimos absolutos. Entonces alcanza the first todos los valores entre m y M. Es decir, Im f = [m, M].

Dem: no la hacemos.

Dem: Por ser f continua en [a,b] el teorema de Weierstrass asegura la existencia de extremos de f en [a,b]. Sean M el máximo absoluto de f en [a,b] y m el mínimo absoluto de f en [a,b]. Será entonces $m \leq M$. Si fuese m = M, resultaría f(x) = cte = m = M en [a, b] y por lo tanto tendríamos $f'(x) = 0 \ \forall x \in (a, b)$. Si m < M, por ser f(a) = f(b), al menos uno de los valores entre m y M será asumido en un punto interior $c \in (a, b)$. Por lo tanto, f tendrá un extremos relativo en c y siendo derivable en (a, b), será f'(c) = 0.

Teorema de Lagrange (Teorema del valor medio del cálculo diferencial): Sea f definida en el intervalo [a,b] y supongamos que f es continua en [a,b] y derivable en (a,b). Entonces existe (al menos) un $c \in (a, b)$ tal que $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Interpretación geométrica La pendiente de la recta secante s es $\frac{f(b)-f(a)}{b-a}$, la de la recta tangente t a la gráfica de f en c es f'(c). Si las pendientes son iguales, entonces $s \parallel t$.

Dem: Definition $F(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$ para $x \in [a, b]$, entonces F verifica:

i)
$$F(a) = f(a) - \frac{f(b) - f(a)}{b - a} (a - a) = f(a)$$

$$F(b) = f(b) - \frac{f(b) - f(a)}{b - a} (b - a) = f(b) - f(b) + f(a) = f(a)$$

Luego

$$F(a) = F(b)$$

- ii) F es continua en [a, b] por ser f continua en [a, b] y el álgebra de las funciones continuas.
- iii) F es derivable en (a, b) por ser f derivable en (a, b) y el álgebra de las funciones derivables. Por i, ii y iii F verifica las hipótesis del teorema de Rolle, entonces existe $c \in (a, b)$ tal que F'(c) = 0.

Ahora, para cada
$$x \in (a, b)$$
 es $F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$, luego $F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$, entonces $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Teorema de Cauchy: Sean f y g funciones continuas en [a,b] y derivables en (a,b). Entonces existe $c \in (a,b)$ tal que

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a))$$

Dem: Ejercicio, definir h(x) = f(x)[g(b) - g(a)] - g(x)[f(b) - f(a)] y aplicar el teorema de Rolle a la función h.

Observación: El teorema de Rolle es un caso particular del teorema de Lagrange y éste un caso particular del teorema de Cauchy, cuando g(x) = x.

Propiedades geométricas de las funciones. Criterios para determinar crecimiento, convexidad y extremos.

Teorema (criterio para determinar los intervalos de monotonía de una función): Sea f una función continua en [a, b] y derivable en (a, b).

- a) Si $f'(x) > 0 \ \forall x \in (a, b)$ entonces f es estrictamente creciente en [a, b].
- b) Si $f'(x) < 0 \ \forall x \in (a, b)$ entonces f es estrictamente decreciente en [a, b].
- c) Si $f'(x) = 0 \ \forall x \in (a, b)$ entonces f es constante en [a, b].

Dem: Sean $x_1, x_2 \in [a, b]$ tales que $x_1 < x_2$ por teorema de Lagrange $\exists c \in (x_1, x_2)$ tal que $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$.

- a) Como $f'(x) > 0 \ \forall x \in (a,b)$ entonces $f'(c) = \frac{f(x_2) f(x_1)}{x_2 x_1} > 0 \ \text{y} \ x_2 x_1 > 0$ resulta $f(x_2) > f(x_1)$ y luego f es estrictamente creciente en [a,b].
- b) Análogo para $f'(x) < 0 \ \forall x \in (a,b)$ resulta $f(x_2) < f(x_1)$.
- c) Sea ahora $x \in (a, b)$, por teorema de Lagrange existe $c \in (a, x)$ tal que $f'(c) = \frac{f(x) f(a)}{x a}$. Como f'(x) = 0 resulta f'(c) = 0 entonces $f(x) = f(a) \ \forall x \in (a, b]$ y como es f es continua, es $f(x) = f(a) \ \forall x \in [a, b]$. Entonces f es constante en [a, b].

Observación: 1) Puede ser $f'(x) \ge 0$ en (a, b) y resultar f estrictamente creciente en [a, b].

Ejemplo: $f(x) = x^3$ es estrictamente creciente en \mathbb{R} y f'(0) = 0.

2) Puede ser creciente o decreciente en (a,b) y no ser derivable.

Teorema (criterio de la derivada primera para la determinación de extremos): Sea f una función continua en [a,b] y derivable en (a,b) salvo a lo sumo en $x_0 \in (a,b)$.

- a) Si $f'(x) > 0 \ \forall x \in (a, x_0)$ y $f'(x) < 0 \ \forall x \in (x_0, b)$ entonces $f(x_0)$ es el máximo de f en (a, b).
- b) Si $f'(x) < 0 \ \forall x \in (a, x_0) \ y \ f'(x) > 0 \ \forall x \in (x_0, b)$ entonces $f(x_0)$ es el mínimo de f en (a, b).

6

Dem: a) El teorema anterior nos dice que f es estrictamente creciente en (a, x_0) y estrictamente decreciente en (x_0, b) , luego $f(x) < f(x_0) \ \forall x \neq x_0$ luego f tiene un máximo en x_0 .

3

Recordemos que por teorema de Weierstrass si f es continua [a,b] posee extremos absolutos, si además f es derivable en (a,b) entonces esos extremos pueden presentarse en a, b (los extremos del intervalo) o bien, en los puntos en donde f'(x) = 0, es decir en los puntos críticos, pero no necesariamente todos los puntos críticos serán extremos de f, por ejemplo si f constante en las cercanías de un punto crítico. Debemos estudiar entonces o bien el signo de la derivada primera en las cercanías del punto f crítico o signo de la derivada segunda en el punto crítico, como lo demuestra el siguiente:

Teorema (criterio de la derivada segunda para la determinación de extremos): Sea f una función dos veces derivable en (a,b) tal que f'' es continua en $c \in (a,b)$ y f'(c) = 0 (c es punto crítico de f). Entonces:

- a) Si f''(c) > 0 entonces f(c) es un mínimo relativo.
- b) Si f''(c) < 0 entonces f(c) es un máximo relativo.

Dem: a) Si f''(c) > 0, por ser f'' continua en c, existirá un entorno $E(c, \delta)$ donde f''(x) > 0 $\forall x \in E(c, \delta)$ (por teorema de conservación del signo). Por lo tanto por teorema anterior es f' estrictamente creciente en $E(c, \delta)$ pero como f'(c) = 0 y f' continua en $E(c, \delta)$ (por ser derivable) con lo que f' cambio de signo (de negativa a positiva) en c, luego f tiene un mínimo relativo en c.

b) análogo.

Ejemplo: Sea $f(x) = xe^{-x^2}$, f es dos veces derivable y f'' continua en \mathbb{R} . $f'(x) = e^{-x^2} + xe^{-x^2}(-2x) = e^{-x^2}(1-2x^2) = 0 \Leftrightarrow 1-2x^2 = 0 \Leftrightarrow x = \pm \frac{\sqrt{2}}{2}$, puntos críticos $x_1 = \frac{\sqrt{2}}{2}$ y $x_2 = -\frac{\sqrt{2}}{2}$.

1) Criterio de derivada primera, intervalos de monotonía.

 $\begin{array}{l} f'(x) \,=\, e^{-x^2}(1-2x^2) \,>\, 0 \,\Leftrightarrow\, 1-2x^2 \,>\, 0 \,\Leftrightarrow\, x \,\in\, \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right) \,\,\text{y} \,\, f'(x) \,=\, e^{-x^2}(1-2x^2) \,<\, 0 \,\Leftrightarrow\, 1-2x^2 \,<\, 0 \,\Leftrightarrow\, x \in \left(-\infty,-\frac{\sqrt{2}}{2}\right) \,\,\text{y} \,\, x \in \left(\frac{\sqrt{2}}{2},\infty\right) \,\,\text{entonces} \,\, f \,\,\text{es creciente en} \,\, \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right) \,\,\text{y} \,\, \text{decreciente en} \,\, \left(-\infty,-\frac{\sqrt{2}}{2}\right) \,\,\text{y} \,\, \text{entonces} \,\, f \,\, \text{es creciente} \,\, \text{en} \,\, \left(-\infty,-\frac{\sqrt{2}}{2}\right) \,\, \text{y} \,\, \text{entonces} \,\, f \,\, \text{es creciente} \,\, \text{entonces} \,\, f \,\, \text{entonces} \,\, f \,\, \text{es creciente} \,\, \text{entonces} \,\, f \,\, \text{es creciente} \,\, \text{entonces} \,\, f \,\, \text{entonces} \,$

2) Criterio de derivada segunda.

 $f''(x) = e^{-x^2}(-2x)(1-2x^2) + e^{-x^2}(-4x) = e^{-x^2}(-6x+4x^3)$, calculamos f'' en los puntos críticos:

$$f''(\frac{\sqrt{2}}{2}) = e^{-\frac{1}{2}} \left(-6\frac{\sqrt{2}}{2} + 4\left(\frac{\sqrt{2}}{2}\right)^3 \right) = -2\sqrt{2}e^{-\frac{1}{2}} < 0$$

$$f''(-\frac{\sqrt{2}}{2}) = e^{-\frac{1}{2}}(6\frac{\sqrt{2}}{2} - 4\left(\frac{\sqrt{2}}{2}\right)^3) = 2\sqrt{2}e^{-\frac{1}{2}} > 0$$

Por ambos criterios podemos concluir que f tiene en $\frac{\sqrt{2}}{2}$ un max relativo y un min relativo en $-\frac{\sqrt{2}}{2}$.

Concavidad y convexidad. Puntos de inflexión.

Definición: Un conjunto C se dice convexo si $\forall p, q \in C$, el segmento $\overline{pq} \subset C$.

PPT

Envexos

no convexos

Cómo se aplican estos conceptos a una función?

Definición: Llamamos *epigrafo* a la región que está por encima de G_f . Diremos que f es *convexa*, si su epigrafo es convexo. Diremos que f es *cóncava* si -f es convexa.

Consideremos un punto $z \in (x, y)$ entonces $z = \alpha y + (1 - \alpha)x$ para algún $\alpha \in (0, 1)$. El punto de abscisa z que está en el segmento $\overline{p_1p_2}$ tiene ordenada $w = \alpha f(y) + (1 - \alpha)f(x)$. En efecto, como $z - x = \alpha(y - x)$

$$\frac{f(y) - f(x)}{(y - x)} = \frac{w - f(x)}{z - x} = \frac{w - f(x)}{\alpha(y - x)}$$

entonces $w - f(x) = \alpha(f(y) - f(x)) \Rightarrow w = \alpha f(y) + (1 - \alpha)f(x)$.

f(x) x z y x

Definición:

a) Una función f se dice convexa en un intervalo [a,b] sii cualesquiera sean $x,y\in [a,b]$ y $\alpha\in(0,1)$ se tiene

$$f(\alpha y + (1 - \alpha) x) \le \alpha f(y) + (1 - \alpha) f(x)$$

b) Una función f se dice c'oncava en un intervalo [a,b] sii cualesquiera sean $x,y\in [a,b]$ y $\alpha\in(0,1)$ se tiene

$$f(\alpha y + (1 - \alpha) x) \ge \alpha f(y) + (1 - \alpha) f(x)$$

Ejemplo: f(x) = |x| en \mathbb{R} . Sean $x, y \in \mathbb{R}$ y $z = \alpha y + (1 - \alpha) x$, con $\alpha \in (0, 1)$,

$$f(z) = |z| = |\alpha y + (1 - \alpha) x| \le \inf_{\text{des triang}} |\alpha y| + |(1 - \alpha) x| = |\alpha| |y| + |1 - \alpha| |x| = \alpha |y| + (1 - \alpha) |x| = \alpha f(y) + (1 - \alpha) f(x)$$

luego f es convexa en \mathbb{R} .

Propiedad: Si f es convexa en [a, b], entonces -f es cóncava en [a, b].

Dem: ejercicio.

Teorema (criterios de la derivada primera y segunda para la determinación de la concavidad):

- 1) Sea f continua en [a, b] y derivable en (a, b):
 - i) si f' es creciente en (a, b) entonces f es convexa en [a, b],
 - ii) si f' es decreciente en (a, b) entonces f es cóncava en [a, b].
- 2) Además, si existe f'' en (a, b):
 - i) si $f'' \ge 0$ en (a, b) entonces f es convexa en [a, b],
 - ii) si $f'' \le 0$ en (a, b) entonces f es cóncava en [a, b].

Dem: 1) i) Sean x, y tales que $a \le x < y \le b$ y $z = \alpha y + (1 - \alpha) x$, con $\alpha \in (0, 1)$. Veamos que las siguientes expresiones son equivalentes:

$$f \text{ es convexa en } [a, b] \Leftrightarrow f(z) \leq \alpha f(y) + (1 - \alpha) f(x) \Leftrightarrow$$

$$f(z) + \alpha f(z) - \alpha f(z) \leq \alpha f(y) + (1 - \alpha) f(x) \Leftrightarrow$$

$$f(z) = \alpha f(z) + (1 - \alpha) f(z) \leq \alpha f(y) + (1 - \alpha) f(x) \Leftrightarrow$$

$$(1 - \alpha) [f(z) - f(x)] \leq \alpha [f(y) - f(z)]$$

Mostraremos entonces que si f' es creciente, se obtiene esta última desigualdad. f es continua en [a,b] y derivable en (a,b) entonces f continua en [x,z] y en [z,y] y derivable en (x,z) y en (z,y). Por lo tanto, aplicando el TVM a f en cada uno de esos intervalos, podemos asegurar que existen $c \in (x,z)$ y $d \in (z,y)$ tales que

$$d \in (z, y)$$
 tales que
$$f'(c) = \frac{f(z) - f(x)}{z - x} \qquad f'(d) = \frac{f(y) - f(z)}{y - z} \qquad b$$

Como f' es creciente y c < d resulta f'(c) < f'(d) (*). Entonces

$$(1 - \alpha) [f(z) - f(x)] = (1 - \alpha) (z - x) f'(c) \le (1 - \alpha) (z - x) f'(d)$$
(1)

Ahora

$$(1-\alpha)z + \alpha z = z - \alpha z + \alpha z = z = \alpha y + (1-\alpha)x \Leftrightarrow (1-\alpha)(z-x) = \alpha(y-z)$$

Volviendo a (1) tenemos

$$(1 - \alpha)(z - x) f'(d) = \alpha(y - z) f'(d) = \alpha[f(y) - f(z)]$$

Por lo tanto f es convexa en [a, b].

- 1) ii) Se puede repetir la demostración anterior teniendo en cuenta que si f' es decreciente $\Rightarrow -f'$ es creciente $\Rightarrow -f$ es convexa $\Rightarrow f$ es cóncava.
- 2) i) Si $f'' \ge 0$ en $(a, b) \Rightarrow f'$ es creciente en $(a, b) \Rightarrow f$ es convexa en [a, b].

Definición: Sea f derivable en c y c es un punto de contacto entre dos intervalos tales que f es convexa en uno de ellos y cóncava en el otro, diremos entonces que f tiene en c un punto de inflexión.

Teorema: Sea f derivable en I y $c \in I$. Entonces: f tiene un punto de inflexión en c si y sólo si f' tiene un extremo relativo en c.

Dem: ejercicio (idea vista en las gráficas).

Corolario: Sea f derivable en I y $c \in I$ un punto de inflexión de f. Si existe f''(c), necesariamente será f''(c) = 0.

Dem: Resulta de aplicar a f' la condición necesaria para extremo de una función derivable. \Box

Observación: f''(c) = 0 no es condición suficiente para que f tenga un punto de inflexión en c. Ejemplo: $f(x) = x^4$, $f'(x) = 4x^3$, $f''(x) = 12x^2$, luego f''(0) = 0 pero f no tiene un punto de inflexión en f(x) = 0.

Estudio de la variación de una función

Bosquejo del plan a seguir para el estudio de una función f y realizar un bosquejo de su gráfica. Determinar:

- 1. Dominio
- 2. Paridad
- 3. Raíces de la ecuación f(x) = 0 o intersección con el eje x, intersección con el eje y (los puntos (0, f(0)), si $0 \in \text{dom} f$).

4. Límites: se calculan los que resulten de interés según la función.

Ejemplo: Si dom
$$f = \mathbb{R}$$
, $\lim_{x \to +\infty} f(x)$ y $\lim_{x \to -\infty} f(x)$.

Si dom
$$f = (a, +\infty)$$
, $\lim_{x \to +\infty} f(x)$ y $\lim_{x \to +\infty} f(x)$

Si dom
$$f = (-\infty, b)$$
, $\lim_{x \to -\infty} f(x)$ y $\lim_{x \to -\infty} f(x)$

Si dom
$$f = (a, +\infty)$$
, $\lim_{x \to a^+} f(x)$ y $\lim_{x \to +\infty} f(x)$.
Si dom $f = (-\infty, b)$, $\lim_{x \to -\infty} f(x)$ y $\lim_{x \to b^-} f(x)$.
Si dom $f = \mathbb{R} - \{c\}$, $\lim_{x \to \pm \infty} f(x)$, $\lim_{x \to c^-} f(x)$ y $\lim_{x \to c^+} f(x)$.

5. Asíntotas horizontales y verticales.

$$\lim_{x\to\pm\infty} f(x) \ \text{y } c \text{ tales que } \lim_{x\to c^\pm} f(x) = \pm\infty$$

6. Máximos y mínimos relativos.

Buscamos puntos críticos (x tales que f'(x) = 0 o no existe f'(x)) criterios de la derivada 1º o

7. Intervalos de monotonía.

Buscamos
$$\{x \in \text{dom} f : f'(x) > 0\}$$
 y $\{x \in \text{dom} f : f'(x) < 0\}$.

8. Concavidad y convexidad. Puntos de inflexión.

Buscamos
$$\{x \in \text{dom } f : f''(x) > 0\}, \{x \in \text{dom } f : f''(x) < 0\} \text{ y } \{x \in \text{dom } f : f''(x) = 0\}.$$

- 9. Extremos absolutos.
- 10. Gráfica.

Ejemplo:
$$f(x) = x + \frac{1}{x}$$

1.
$$dom f = \mathbb{R} - \{0\}$$

- 2. El dominio es simétrico, $f(-x) = -x + \frac{1}{-x} = -x \frac{1}{x} = -f(x)$, luego f es impar.
- 3. Intersección con el eje x, buscamos $x: x + \frac{1}{x} = 0 \Leftrightarrow x = -\frac{1}{x} \Leftrightarrow x^2 = -1$ no tiene solución real, luego G_f no corta al eje x. Tampoco al eje y, ya que $\nexists f(0)$.

4.
$$\lim_{x\to 0^-}\underbrace{x}_0 + \underbrace{\frac{1}{x}}_0 = -\infty$$
 y $\lim_{x\to 0^+}\underbrace{x}_0 + \underbrace{\frac{1}{x}}_0 = +\infty$ luego $x=0$ es asíntota vertical.

$$\lim_{x \to -\infty} \underbrace{x}_{-\infty} + \underbrace{\frac{1}{x}}_{0} = -\infty \text{ y } \lim_{x \to +\infty} \underbrace{x}_{+\infty} + \underbrace{\frac{1}{x}}_{0} = +\infty \text{ no hay asíntotas horizontales.}$$

- 5. ya fueron analizadas en 4) (no hay más asíntotas verticales ya que f es continua en su dominio)
- 6. f es derivable en su dominio, $f'(x) = 1 \frac{1}{x^2} = 0 \Leftrightarrow x^2 = 1 \Leftrightarrow x = \pm 1$ puntos críticos $f''(x) = \frac{2}{x^3}$, f''(1) > 0 luego f tiene en 1 un min relat, f''(-1) < 0 luego f tiene en -1 un max

$$f(1) = 2, f(-1) = -2$$

- 7. $f'(x) = 1 \frac{1}{x^2} > 0 \Leftrightarrow x^2 > 1 \Leftrightarrow x > 1$ o x < -1, luego f es creciente en $(-\infty, -1)$ y en $(1, \infty)$, y decreciente en (-1, 0) y en (0, 1).
- 8. $f''(x) = \frac{2}{x^3} > 0 \Leftrightarrow x > 0$ luego f es convexa en \mathbb{R}^+ y cóncava en \mathbb{R}^-
- 9. Por los límites vistos en 4) f no posee extremos absolutos.

10. Gráfica

20/3 La Regla de Bernoulli-L'Hôpital

En Análisis I resolvimos límites con indeterminaciones del tipo " $\frac{0}{0}$ " e " $\frac{\infty}{\infty}$ ", aplicando distintas técnicas. Pero hay límites de esos tipos que sólo pueden calcularse utilizando la siguiente regla:

Teorema (Regla de L'Hôpital): Sean f y g dos funciones derivables en un entorno (reducido) $\overset{\circ}{E}(a)$, tales que

$$\lim_{x \to a} f(x) = 0 \qquad \text{y} \qquad \lim_{x \to a} g(x) = 0$$

y supongamos que $g'(x) \neq 0 \ \forall x \in \stackrel{\circ}{E}(a)$. Entonces

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \quad \Longrightarrow \quad \lim_{x \to a} \frac{f(x)}{g(x)} = L$$

Dem: Consideremos las funciones

$$F(x) = \begin{cases} f(x) & \text{si } x \neq a \\ 0 & \text{si } x = a \end{cases} \quad \text{y} \quad G(x) = \begin{cases} g(x) & \text{si } x \neq a \\ 0 & \text{si } x = a \end{cases}$$

Así definidas F y G son continuas en todo E(a), ya que f y g los son (por ser derivables) en $\overset{\circ}{E}(a)$ y

$$\lim_{x \to a} F(x) = \lim_{x \to a} f(x) = 0 = F(a) \qquad (idem G)$$

Sea $x \in E(a)$ y supongamos 1) x > a, F y G son continuas es [a, x] y derivables en (a, x). Además $G' \neq 0$ en (a, x) (pues G' = g'). Por lo tanto, por el teorema de Cauchy, existe $c \in (a, x)$ tal que F'(c)[G(x) - G(a)] = G'(c)[F(x) - F(a)] o sea

$$\frac{F'(c)}{G'(c)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F(x)}{G(a)} = \frac{F(x)}{G(x)}$$

Ahora, si $x \to a^+,$ entonces $c \to a^+ \ \, (a < c < x)$ de modo que

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{F(x)}{G(x)} = \lim_{x \to a^+} \frac{F'(c)}{G'(c)} = \lim_{c \to a^+} \frac{F'(c)}{G'(c)} = \lim_{c \to a^+} \frac{f'(c)}{g'(c)} = L$$

Análogo para 2)
$$x < a$$
, se demuestra que $\lim_{x \to a^-} \frac{f(x)}{g(x)} = L$ y luego $\lim_{x \to a} \frac{f(x)}{g(x)} = L$.

Nota: La regla de L'Hôpital (que indicaremos L'H) también se cumple cuando: f y g son dos funciones derivables en un entorno (reducido) $\overset{\circ}{E}(a)$, tales que

$$\lim_{x \to a} f(x) = \pm \infty \qquad \text{y} \qquad \lim_{x \to a} g(x) = \pm \infty$$

y supongamos que $g'(x) \neq 0 \ \forall x \in \stackrel{\circ}{E}(a)$. Entonces

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \quad \Longrightarrow \quad \lim_{x \to a} \frac{f(x)}{g(x)} = L$$

es decir, cuando tenemos indeterminaciones del tipo " $\frac{\infty}{\infty}$ ".

Teorema (Regla de L'Hôpital): Sean f y g dos funciones derivables en $(M, +\infty)$, siendo M > 0 fijo, supongamos que

$$\lim_{x \to +\infty} f(x) = 0 \qquad \text{y} \qquad \lim_{x \to +\infty} g(x) = 0$$

y supongamos que $g'(x) \neq 0 \ \forall x > M$. Entonces

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = L \quad \Longrightarrow \quad \lim_{x \to +\infty} \frac{f(x)}{g(x)} = L$$

Dem: Sean $F(t) = f(\frac{1}{t})$ y $G(t) = g(\frac{1}{t})$, entonces si $x = \frac{1}{t}$, será

$$\frac{f(x)}{g(x)} = \frac{f(\frac{1}{t})}{g(\frac{1}{t})} = \frac{F(t)}{G(t)}$$

y además $t \to 0^+$ cuando $x \to +\infty$.

Como $\lim_{t\to 0^+} \frac{F(t)}{G(t)}$ es una indeterminación del tipo " $\frac{0}{0}$ ", podemos aplicar regla LH $(G'(t)\neq 0)$ $\forall 0< t<\frac{1}{M}$ y tenemos

$$\lim_{t \to 0^{+}} \frac{F(t)}{G(t)} \Leftarrow \lim_{t \to 0^{+}} \frac{F'(t)}{G'(t)} = \lim_{t \to 0^{+}} \frac{f'(\frac{1}{t})(\frac{-1}{t^{2}})}{g'(\frac{1}{t})(\frac{-1}{t^{2}})} = \lim_{t \to 0^{+}} \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = L$$

$$\lim_{t \to 0^{+}} \frac{F(t)}{G(t)} = L \implies \lim_{x \to +\infty} \frac{f(x)}{g(x)} = L$$

luego

Nota: La regla de L'Hôpital también vale cuando: f y g son dos funciones derivables en $(M, +\infty)$, siendo M > 0 fijo, supongamos que

$$\lim_{x \to +\infty} f(x) = \pm \infty \qquad \text{y} \qquad \lim_{x \to +\infty} g(x) = \pm \infty$$

y supongamos que $g'(x) \neq 0 \ \forall x > M$. Entonces

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = L \quad \Longrightarrow \quad \lim_{x \to +\infty} \frac{f(x)}{g(x)} = L$$

es decir, cuando tenemos indeterminaciones del tipo " $\frac{\infty}{\infty}$ ".

También valen, teoremas análogos cuando tenemos indeterminaciones de tipo " $\frac{0}{0}$ " o " $\frac{\infty}{\infty}$ " cuando $x \to -\infty$ y $g'(x) \neq 0$ en $(-\infty, -M)$ será entonces

$$\lim_{x \to -\infty} \frac{f'(x)}{g'(x)} = L \quad \Longrightarrow \quad \lim_{x \to -\infty} \frac{f(x)}{g(x)} = L$$

Ejemplos:

1.
$$\lim_{x \to +\infty} \frac{\ln x}{x} \stackrel{L'H}{=} \lim_{x \to +\infty} \frac{\frac{1}{x}}{1} = 0$$

2.
$$\lim_{x \to 1} \frac{\ln x}{x - 1} \stackrel{L'H}{=} \lim_{x \to 1} \frac{\frac{1}{x}}{1} = 1$$

3.
$$\lim_{x \to +\infty} \frac{\stackrel{/+\infty}{e^x}}{x^2} \stackrel{L'H}{=} \lim_{x \to +\infty} \frac{\stackrel{/+\infty}{e^x}}{2x} \stackrel{L'H}{=} \lim_{x \to +\infty} \frac{e^x}{2} = +\infty.$$

En general puede probarse que $\lim_{x\to +\infty} \frac{e^x}{x^n} = +\infty \ \forall n\in\mathbb{N}$

4. Indeterminaciones del tipo "0.∞"

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} \stackrel{L'H}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x) = 0$$

5. Indeterminaciones del tipo " $\infty - \infty$ ".

$$\lim_{x \to \frac{\pi}{2}^{-}} (\sec x - \tan x) = \lim_{x \to \frac{\pi}{2}^{-}} (\frac{1}{\cos x} - \frac{\sin x}{\cos x}) = \lim_{x \to \frac{\pi}{2}^{-}} \frac{\frac{1 - \sin x}{1 - \sin x}}{\cos x} \stackrel{L'H}{=} \lim_{x \to \frac{\pi}{2}^{-}} \frac{-\cos x}{-\sin x} = 0$$

6. Indeterminaciones del tipo " 1^{∞} ".

$$\lim_{x \to +\infty} \underbrace{(1+\frac{1}{x})}_{1+}^{+\infty} = \lim_{x \to +\infty} e^{\int_{x}^{+\infty} \ln(1+\frac{1}{x})} \text{ resolvemos la indeterminación "} 0.\infty \text{" del exponente}$$

$$\lim_{x \to +\infty} x \ln(1 + \frac{1}{x}) = \lim_{x \to +\infty} \frac{\ln(1 + \frac{1}{x})}{\frac{1}{x}} \stackrel{L'H}{=} \lim_{x \to +\infty} \frac{\frac{1}{1 + \frac{1}{x}} \left(\frac{1}{x^2}\right)}{\frac{1}{x^2}} = \lim_{x \to +\infty} \frac{1}{1 + \frac{1}{x}} = 1, \text{ luego como la}$$

exponencial es continua, tenemos

$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x = \lim_{x \to +\infty} e^{x \ln\left(1 + \frac{1}{x}\right)} = e^1 = e$$

23/3 Aproximación lineal. Polinomio de aproximación.

Teorema: Si f es derivable en x_0 entonces

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{P(x)} + \underbrace{O(x)(x - x_0)}_{E(x)}$$

siendo

$$\lim_{x \to x_0} O(x) = 0$$

Dem: Sabemos que $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0)$ y esto es equivalente a

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) = 0.$$
 Sea entonces

$$O(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0)$$

luego esta función verifica:

$$\oint \qquad \lim_{x \to x_0} O(x) = 0$$

Nota: El polinomio, $P(x) = f(x_0) + f'(x_0)(x - x_0)$, es la "aproximación lineal" de f(x). Y el término $E(x) = O(x)(x - x_0)$ es el "error".

- 1) Este polinomio P satisface las siguientes condiciones:
 - $P(x_0) = f(x_0)$

 - $\oint \operatorname{gr}(P(x)) = 1$
 - P es el único polinomio que satisface las tres condiciones anteriores.

En efecto, supongamos que existe Q(x) = Ax + B (otro polinomio de grado 1) que verifica las condiciones, será $Q(x_0) = Ax_0 + B = f(x_0)$ y $Q'(x_0) = A = f'(x_0)$, luego $B = f(x_0) - f'(x_0)x_0$. Por lo tanto $Q(x) = Ax + B = f'(x_0)x + f(x_0) - f'(x_0)x_0 = f(x_0) + f'(x_0)(x - x_0) = P(x)$.

2) $E(x) \to 0$ cuando $x \to x_0$ "más rápido" que $(x-x_0)$ y "al menos tan rápidamente" como $(x-x_0)^2$.

¿Qué queremos decir con estas expresiones? Antes de seguir daremos algunas definiciones:

Definición: Una función f se dice un *infinitésimo en a* (o cuando $x \to a$) si $\lim_{x \to a} f(x) = 0$. Pudiendo ser también $a = \pm \infty$.

Ejemplos:

- 1) f(x) = x 1 es un infinitésimo en 1.
- 2) $g(x) = e^x$ es un infinitésimo en $-\infty$.

Definición: Se dice que dos infinitésimos en a, f(x) y g(x) son equivalentes si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Ejemplos:

- 1) $\sin x$ y x son infinitésimos equivalentes en 0, pues $\lim_{x\to 0} \sin x = 0$, $\lim_{x\to 0} x = 0$ y $\lim_{x\to 0} \frac{\sin x}{x} = 1$.
- 2) $\lim_{x\to 0} \frac{(e^x-1)^{t/0}}{x \to 0} \stackrel{L'H}{=} \lim_{x\to 0} e^x = 1$, luego e^x-1 y x son infinitésimos equivalentes en 0.

Definición (Comparación de infinitésimos): Sean f y g dos infinitésimos en a:

i) Se dice que f y g tienen el mismo orden si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = k \neq 0$$

ii) Se dice que el orden de f es mayor que el orden de q si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

iii) Se dice que el orden de f es menor que el orden de g si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \infty$$

iv) Cuando $\nexists \lim_{x\to a} \frac{f(x)}{g(x)}$ se dice que los infinitésimos no son comparables.

Ejemplos: f(x) = x, $g(x) = 1 - \cos x$ y $h(x) = x^2$ son infinitésimos en 0. Calculamos los límites de los cocientes

a) $\lim_{x\to 0} \frac{g(x)}{f(x)} = \lim_{x\to 0} \frac{1-\cos x}{x} \stackrel{L'H}{=} \lim_{x\to 0} \sin x = 0$, luego el orden de g es mayor que el de f.

b) $\lim_{x\to 0} \frac{g(x)}{h(x)} = \lim_{x\to 0} \frac{1-\cos x}{x^2} \stackrel{L'H}{=} \lim_{x\to 0} \frac{\sin x}{2x} = \frac{1}{2}$, luego g y h tienen el mismo orden.

c) $\lim_{x\to 0} \frac{h(x)}{f(x)} = \lim_{x\to 0} \frac{x^2}{x} = \lim_{x\to 0} x = 0$, luego el orden de h es mayor que el de f, obvio por a, b).

Definición: Decimos que un infinitésimo f en a tiene orden α , si $\lim_{x\to a} \frac{f(x)}{(x-a)^{\alpha}} = k \neq 0$.

Volviendo a la pregunta que dejamos pendiente. Comparemos el orden de E(x) con potencias de $(x-x_0)$:

$$\lim_{x \to x_0} \frac{E(x)}{(x - x_0)} = \lim_{x \to x_0} \frac{O(x)(x - x_0)}{(x - x_0)} = \lim_{x \to x_0} O(x) = 0$$

Por lo tanto E(x) es de mayor orden que $(x-x_0)$. Ahora veremos que E(x) tiene orden mayor o igual que $(x-x_0)^2$. Para ello, sabemos que f es derivable en x_0 , supongamos además que existen y son continuas f' y f'' en un entorno $E(x_0, \delta)$. Sean $E(x) = f(x) - f(x_0) - f'(x_0)(x-x_0)$ y $\varphi(x) = (x-x_0)^2$.

Estas funciones verifican: son derivables en $\stackrel{\circ}{E}(x_0, \delta)$ y además

$$E'(x) = f'(x) - f'(x_0)$$
 $E''(x) = f''(x)$ $\varphi'(x) = 2(x - x_0)$ $\varphi''(x) = 2$

Evaluadas en x_0 :

Evaluation
$$E(x_0) = 0$$
 $E'(x_0) = 0$ $E''(x_0) = f''(x_0)$ $\varphi(x_0) = 0$ $\varphi'(x_0) = 0$ $\varphi''(x_0) = 2$ Luego si $x_0 < x < x_0 + \delta$ tenemos que

$$\frac{E(x)}{\varphi(x)} = \frac{E(x) - E(x_0)}{\varphi(x) - \varphi(x_0)} \xrightarrow{\exists \xi_1 : x_0 < \xi_1 < x} \frac{E'(\xi_1)}{\varphi'(\xi_1)} = \frac{E'(\xi_1) - E'(x_0)}{\varphi'(\xi_1) - \varphi'(x_0)} \xrightarrow{\text{Cauchy}}_{\exists \xi : x_0 < \xi < \xi_1 < x} \frac{E''(\xi)}{\varphi''(\xi)}$$

Por lo tanto

$$\frac{E(x)}{(x-x_0)^2} = \frac{E''(\xi)}{\varphi''(\xi)} = \frac{f''(\xi)}{2}$$

es decir, $E(x) = \frac{f''(\xi)}{2}(x - x_0)^2$ si $x_0 < \xi < x$.

Análogamente se demuestra para $x_0 - \delta < x < x_0$ que $E(x) = \frac{f''(\eta)}{2} (x - x_0)^2$ si $x < \eta < x_0$. Además cuando $x \to x_0$ resulta $\xi \to x_0$ y $\eta \to x_0$ y f'' continua, entonces para $x > x_0$

$$\lim_{x \to x_0^+} \frac{E(x)}{(x - x_0)^2} = \lim_{\xi \to x_0} \frac{f''(\xi)}{2} (x - x_0)^2 = \frac{f''(x_0)}{2}$$

lo mismo para $x < x_0$

$$\lim_{x \to x_0^-} \frac{E(x)}{(x - x_0)^2} = \lim_{\eta \to x_0} \frac{f''(\eta)}{2} \underbrace{(x - x_0)^2}_{(x - x_0)^2} = \frac{f''(x_0)}{2}$$

Como ambos límites existen y son iguales, es

$$\lim_{x \to x_0} \frac{E(x)}{(x - x_0)^2} = \frac{f''(x_0)}{2}$$

y por lo tanto el orden de E(x) es mayor o igual de $(x-x_0)^2$ (pues $f''(x_0)$ puede ser cero).

 $\Im 3$ Fórmula final que f(x)

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \underbrace{\frac{f''(\xi)}{2}(x - x_0)^2}_{\text{Fórmula de Lagrange para el error}} \quad \text{con } \xi \text{ entre } x_0 \neq x.$$

Acotación del error

$$|E(x)| = \left| \frac{f''(\xi)}{2} \right| \left| (x - x_0)^2 \right| \le M(x - x_0)^2, \quad \text{si } \left| \frac{f''(\xi)}{2} \right| \le M$$

El punto intermedio ξ (entre x_0 y x) puede expresarse como

$$\xi = \alpha x + (1 - \alpha)x_0, \quad \text{con } 0 < \alpha < 1$$

o más comunmente:

$$\xi = x_0 + \alpha(x - x_0), \quad 0 < \alpha < 1$$

Ejemplos:

1) Sean
$$f(x) = e^x$$
, $x_0 = 0$. $f'(x) = f''(x) = e^x$. $P(x) = f(0) + f'(0)x = 1 + x$ $E(x) = \frac{e^{\xi}}{2}x^2 \text{ con } \xi \text{ entre } 0 \text{ y } x, \text{ o sea } \xi = \alpha x \text{ con } 0 < \alpha < 1.$ Luego

$$e^x = 1 + x + \frac{e^{\xi}}{2}x^2 = 1 + x + \frac{e^{\alpha x}}{2}x^2$$
 con $0 < \alpha < 1$

2) Sean
$$f(x) = \sin x$$
, $x_0 = 0$. $f'(x) = \cos x$, $f''(x) = -\sin x$. $P(x) = f(0) + f'(0)x = x$
$$E(x) = \frac{-\sin \xi}{2}x^2 = \frac{-\sin \alpha x}{2}x^2 \text{ con } \xi = \alpha x \text{ con } 0 < \alpha < 1.$$
 Luego

$$\sin x = x - \frac{\sin \alpha x}{2}x^2 = 1 + x + \frac{e^{\alpha x}}{2}x^2$$
 con $0 < \alpha < 1$

Además $|E(x)|=\left|\frac{-\sin\alpha x}{2}x^2\right|\leq \frac{|-\sin\alpha x|}{2}x^2\leq \frac{x^2}{2}$. Por ejemplo, $\sin 0.1\simeq 0.1$ con error $<\frac{0.1^2}{2}=0.005$

Diferencial de una función.

Vimos que si f es derivable en x_0 , entonces vale

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + O(x)(x - x_0)$$
 con $\lim_{x \to x_0} O(x) = 0$

O bien

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + O(x)(x - x_0)$$

Sean $\Delta x = x - x_0$ el incremento de x y $\Delta f = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0)$ el incremento de f. Así, resulta

$$\Delta f = \underbrace{f'(x_0)\Delta x}_{\text{término lineal}} + \underbrace{O(x)\Delta x}_{\text{término no lineal}} \quad \text{con } \lim_{\Delta x \to 0} O(x) = \lim_{x \to x_0} O(x) = 0$$

Observación: Ambos términos son infinitésimos en 0.

Definición: Llamamos diferencial de f en x_0 , y notamos df, a la parte lineal del incremento de Δf , es decir

$$df = f'(x_0)\Delta x$$

Así, como $x = x_0 + \Delta x$

$$\Delta f = df + O(x_0 + \Delta x)\Delta x = df + E(\Delta x)$$
 con $\lim_{\Delta x \to 0} E(\Delta x) = 0$

Si $f'(x_0) \neq 0$, Δf y df son infinitésimos equivalentes cuando $\Delta x \rightarrow 0$. En efecto,

$$\lim_{\Delta x \to 0} \frac{\Delta f}{df} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{f'(x_0)\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}}{f'(x_0)} = 1$$

Por otra parte

$$\lim_{\Delta x \to 0} \frac{E(\Delta x)}{df} = \lim_{\Delta x \to 0} \frac{O(x_0 + \Delta x) \Delta x}{f'(x_0) \Delta x} = \lim_{\Delta x \to 0} \frac{O(x_0 + \Delta x)}{f'(x_0)} = 0$$

Por lo tanto el orden de E es mayor que el de df (o sea, $E(\Delta x) \to 0$ más rápidamente que df).

$$\Delta f = \mathop{df}\limits_{\simeq \Delta f} + \mathop{E(\Delta x)}\limits_{\sim 0 \text{ más rápido que } \mathit{df}}$$

df: parte principal de Δf . Se considera que para valores pequeños de $\Delta x,\,\Delta f\simeq df$. Es decir,

$$f(x_0 + \Delta x) - f(x_0) \simeq df = f'(x_0) \Delta x$$

$$f(x_0 + \Delta x) \simeq f(x_0) + f'(x_0) \Delta x = P(x) = P(x_0 + \Delta x)$$

Interpretación geométrica. $\frac{u}{\Delta x} = \tan \alpha = f'(x_0) \qquad u = f'(x_0) \Delta x = df$ $f(x_0 + Dx)$ $f(x_0) \qquad X_0 \qquad X_0 + Dx$

Observación: Si $y = \varphi(x) = x$ función identidad. $d\varphi = 1\Delta x$ entonces

$$dx = \Delta x$$

El incremento de la función identidad, coincide con su diferencial, que es igual al incremento de la variable independiente.

$$y = f(x),$$
 $dy = df = f'(x)\Delta x = f'(x)dx$

Aplicación al cálculo numérico aproximado.

Ejemplo: Calcular aproximadamente $\sqrt{101}$.

Sean $f(x) = \sqrt{x}$, $x_0 = 100$ y $\Delta x = 1$. Entonces, como $f(x_0 + \Delta x) \simeq f(x_0) + df = f(x_0) + f'(x_0) \Delta x$ será

 $\sqrt{101} \simeq \sqrt{100} + \frac{1}{2\sqrt{100}} = 10 + \frac{1}{20} = 10,05$

Polinomios de Taylor.

P(x) es la mejor aproximación lineal de f(x) cerca de $x = x_0 = a$. Pero se puede tener una mejor aproximación de f(x) que la lineal, con polinomios de mayor grado.

Teorema: Se puede probar que si f es dos veces derivable en un entorno de a entonces

$$f(x) = \underbrace{f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2}_{T_2(x)} + E(x) \quad \text{con } \lim_{x \to a} E(x) = 0$$

Este polinomio T_2 es el único polinomio de grado menor o igual que 2 que verifica:

$$T_2(a) = f(a)$$
 $T'_2(a) = f'(a)$ $T''_2(a) = f''(a)$

En general,

Definición: Si f es n veces derivable en un entorno de a, llamamos polinomio de Taylor de grado n de f alrededor de a al polinomio

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{2}(x-a)^n$$

Se tiene que T_n es el único polinomio de grado menor o igual que n tal que sus primeras n derivadas en a coinciden con f y sus n primeras derivadas en a y además

$$f(x) = T_n(x) + E(x)$$
 con $\lim_{x \to a} E(x) = 0$

Puede probarse además que

$$E(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1} \qquad \text{con } \xi \text{ entre } a \le x.$$

Ejemplo: Calcular $T_2(x)$ para $f(x) = \sqrt{x}$ con $a = x_0 = 100$ y $\Delta x = 1$.